diff --git a/README.md b/README.md index 08c2bf2..1ba140b 100644 --- a/README.md +++ b/README.md @@ -7,19 +7,15 @@ The best and most comprehensive links for MNA on the web: [Examples](https://www.swarthmore.edu/NatSci/echeeve1/Ref/mna/MNA4.html), and [Matrix formation rules](https://www.swarthmore.edu/NatSci/echeeve1/Ref/mna/MNAMatrixRules.html). -the network is labeled: - -|rows/columns->|0|1|2|...|c-1| -|---|:---:|:---:|:---:|:---:|:---:| -|0|0 |1 |2 | ... |c-1 | -|1|c |c+1|c+2|...|c+c-1| -|2|2c|2c+1|...|...|2c+c-1| -|...|...|...|...|...|...| -|(r-1)*c|(r-1)*c+1|...|...|...|(r-1)*c+c-1=r*c-1| - ## electrical junction values: Fuhrer: mm=200kOhm, ss=400kOhm -tombler : mm 400 to 600 ohm from on to off +tombler : mm 400 to 600 ohm from on to off. compares ms junction to Ti electrode-s junction. +Nirmalraj : 98kOhm to 2.6MOhm for 1.2nm to 14nm diameter bundles. +Topinka : 200kOhm junction resistance from tombler. Treats ms junctions and crosses as nonconductive +Stadermann : 100MOhm at some steps along the scan, attributed to junctions. +Lyons : estimates interjunction resistance from 70kOhm to 3.5Mohm for bundles and tubes +E. Lee : "demonstrate that potential barriers +located at nanotube crossings become dominant in the OFF state of cross-junction devices, as a result of the flattening of Schottky barriers present at the electrical contacts. Consequently, under applied bias, the electrostatic potential drop, and thus the photoresponse, occurs predominantly at these positions." ## Optimization use cProfile and the [gprof2dot](https://github.com/jrfonseca/gprof2dot).py script to generate profiles of time spent for running the script. explicit number to run optimization on is: diff --git a/measure_perc.py b/measure_perc.py index 89e83fc..d7c895c 100644 --- a/measure_perc.py +++ b/measure_perc.py @@ -7,17 +7,30 @@ from multiprocessing import Pool import uuid as id +#### preset offmappings ##### +### 0 ### +# only intertube junctions have a 10^3 on off ratio +offmap0={'ms':1000,'sm':1000, 'mm':1,'ss':1,'vs':1,'sv':1,'vm':1,'mv':1} +### 1 ### +# all ms junctions including electrodes have a 10^3 on off ratio +offmap1={'ms':1000,'sm':1000, 'mm':1,'ss':1,'vs':1000,'sv':1000,'vm':1000,'mv':1000} +### 2 ### +# all junctions including electrodes have a 10^3 on off ratio +offmap2={'ms':1000,'sm':1000, 'mm':1000,'ss':1000,'vs':1000,'sv':1000,'vm':1000,'mv':1000} +offmappings=[offmap0,offmap1,offmap2] + + def checkdir(directoryname): if os.path.isdir(directoryname) == False: os.system("mkdir " + directoryname) pass - -def measure_fullnet(n,scaling, l='exp', save=False, seed=0, v=True ,remote=False): +def measure_fullnet(n,scaling, l='exp', save=False, seed=0,offmap=1, v=True ,remote=False): + datacol=['sticks', 'size', 'density', 'nclust', 'maxclust', 'ion', 'ioff','gate', 'fname','seed','offmap'] start = timer() - data=pd.DataFrame(columns = ['sticks', 'size', 'density', 'nclust', 'maxclust', 'ion', 'ioff','ioff_totaltop', 'ioff_partialtop', 'runtime', 'fname','seed']) + data=pd.DataFrame(columns = datacol) try: - collection=perc.StickCollection(n,scaling=scaling,notes='run',l=l,seed=seed) + collection=perc.StickCollection(n,scaling=scaling,notes='run',l=l,seed=seed,offmap=offmappings[offmap]) collection.label_clusters() nclust=len(collection.sticks.cluster.drop_duplicates()) maxclust=len(max(nx.connected_components(collection.graph))) @@ -45,9 +58,9 @@ def measure_fullnet(n,scaling, l='exp', save=False, seed=0, v=True ,remote=False collection.cnet.set_global_gate(10) collection.cnet.update() ioff=sum(collection.cnet.source_currents) + gate='back' + except Exception as e: - ion=0 - ioff=0 print("measurement failed: error global gating") print("ERROR for {} sticks:\n".format(n),e) traceback.print_exc(file=sys.stdout) @@ -63,26 +76,34 @@ def measure_fullnet(n,scaling, l='exp', save=False, seed=0, v=True ,remote=False except: ioff_totaltop=0 ioff_partialtop=0 + data.loc[0]=[n,scaling,n/scaling**2,nclust,maxclust,ion,ioff,'back',fname,seed,offmap] + data.loc[1]=[n,scaling,n/scaling**2,nclust,maxclust,ion,ioff_totaltop,'total',fname,seed,offmap] + data.loc[2]=[n,scaling,n/scaling**2,nclust,maxclust,ion,ioff_partialtop,'partial',fname,seed,offmap] else: ion=0 ioff=0 - ioff_totaltop=0 - ioff_partialtop=0 + gate='back' + data.loc[0]=[n,scaling,n/scaling**2,nclust,maxclust,ion,ioff,gate,fname,seed,offmap] end = timer() runtime=end - start - data.loc[0]=[n,scaling,n/scaling**2,nclust,maxclust,ion,ioff,ioff_totaltop,ioff_partialtop,runtime,fname,seed] + data['runtime']=runtime if fname: data.to_csv(fname+"_data.csv") return data -def measure_async(cores,start,step,number,scaling,save=False): +def measure_async(cores, start, step, number, scaling, save=False, offmap=1, seeds=[]): uuid=id.uuid4() starttime = timer() nrange=[int(start+i*step) for i in range(number)] - seeds=np.random.randint(low=0,high=2**32,size=number) - np.savetxt("seeds_{}.csv".format(uuid), seeds, delimiter=",") + if not(len(seeds)==number): + seeds=np.random.randint(low=0,high=2**32,size=number) + if not(os.path.isfile("seeds_{}.csv".format(uuid))): + np.savetxt("seeds_{}.csv".format(uuid), seeds, delimiter=",") pool=Pool(cores) - results=[pool.apply_async(measure_fullnet,args=(nrange[i],scaling,'exp',save,seeds[i])) for i in range(number)] + results=[] + for omap in offmap: + results= results+[pool.apply_async(measure_fullnet, args=(nrange[i],scaling,'exp',save,seeds[i],omap)) for i in range(number)] + print(len(results)) output=[res.get() for res in results] endtime = timer() runtime=endtime - starttime @@ -90,6 +111,7 @@ def measure_async(cores,start,step,number,scaling,save=False): data=pd.concat(output) data.to_csv('measurement_batch_{}.csv'.format(uuid)) + if __name__ == '__main__': parser = argparse.ArgumentParser() parser.add_argument("-t",'--test',action="store_true",default=False) @@ -99,9 +121,10 @@ def measure_async(cores,start,step,number,scaling,save=False): parser.add_argument("--step",type=int,default=0) parser.add_argument("--number",type=int) parser.add_argument("--scaling",type=int,default=5) + parser.add_argument("--offmap",nargs='*',type=int) args = parser.parse_args() checkdir('data') if args.test: measure_async(2,500,0,10,5,save=True) else: - measure_async(args.cores, args.start, args.step, args.number,args.scaling, args.save) + measure_async(args.cores, args.start, args.step, args.number,args.scaling, args.save,args.offmap) diff --git a/percolation.py b/percolation.py index 7566541..32aa49a 100644 --- a/percolation.py +++ b/percolation.py @@ -11,7 +11,8 @@ class StickCollection(object): - def __init__(self, n=2, l='exp', pm=0.135, scaling=5, fname='', directory='data', notes='',seed=0): + def __init__(self, n=2, l='exp', pm=0.135, scaling=5, fname='', directory='data', notes='', seed=0, + offmap={'ms':1000, 'sm':1000, 'mm':1, 'ss':1, 'vs':1000, 'sv':1000, 'vm':1000, 'mv':1000}): self.scaling=scaling self.n=n self.pm=pm @@ -19,7 +20,7 @@ def __init__(self, n=2, l='exp', pm=0.135, scaling=5, fname='', directory='data' self.notes=notes self.directory=directory self.percolating=False - + self.offmap=offmap #seeds are included to ensure proper randomness on slurm if seed: self.seed=seed @@ -141,7 +142,7 @@ def make_graph(self): if self.percolating: self.ground_nodes=[1] self.voltage_sources=[[0,0.1]] - self.populate_graph() + self.populate_graph(self.offmap) for node in connected_graph.nodes(): connected_graph.nodes[node]['pos'] = [self.sticks.loc[node,'xc'], self.sticks.loc[node,'yc']] for edge in connected_graph.edges(): @@ -150,8 +151,8 @@ def make_graph(self): else: return False,False,False - def populate_graph(self): - offmap={'ms':1000,'sm':1000, 'mm':1,'ss':1,'vs':1000,'sv':1000,'vm':1000,'mv':1000} + def populate_graph(self,offmap): + for edge in self.graph.edges(): self.graph.edges[edge]['component']=Transistor( off_resistance=offmap[self.graph.edges[edge]['kind']])