-
Notifications
You must be signed in to change notification settings - Fork 6
/
L1_formula.m
125 lines (114 loc) · 4.17 KB
/
L1_formula.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
classdef L1_formula
% The L1 approximation of Caputo fractional derivatives
%
% Input:
% qformula: qformula.alpha: vector
% qformula.w: vector
% t: partation of [0, T] (can be non uniform)
% u0: initial value
% tol: EOS tolerence
%
% Reference:
% Yanan Zhang, Zhizhong Sun, Honglin Liao. *Finite difference methods
% for the time fractional diffusion equation on non-uniform meshes.*
% Journal of Computational Physics. 265 (2014) 195�210.
% _doi: 10.1016/j.jcp.2014.02.008_
%
% Author: Zongze Yang
% Email: yangzongze@gmail.com
% Data: 2019-07-24
%
properties (Access = private)
alpha % a column vector of fractional orders.
w % coefficience of the fractional operator.
N % the partation number of [0, T].
t % a row vector of the partation of [0, T].
% partation: t_0, t_1, t_2, ..., t_N.
% vector t: [t(1) t(2) t(3) ... t(N+1)].
tau % a vector of interval length of the partation
% \tau_n = t_{n} - t_{n-1}
% tau = diff(t);
% partation: \tau_1, \tau_2, \tau_3, ..., \tau_N.
% vector tau: [tau(1) tau(2) tau(3) ... tau(N)].
shape % the shape of original u, used to reshape the result
% unh to its original shape.
u0 % initial value of u
up % previous value of u
% up = [u_0(:), u_1(:), u_2(:), ... ]
a %
wn % weight of the u^n.
un_h % history part: w * D^alpha u = wn*u^n + un_h
n % current time level n = 0, 1, 2, 3, ...
end
methods
function obj = L1_formula(qformula, t, u0, ~)
obj.alpha = qformula.alpha(:);
obj.w = qformula.w(:);
obj.t = t(:)';
obj.tau = diff(t);
obj.N = length(obj.tau);
obj.shape = size(u0);
obj.u0 = u0(:);
obj.up = zeros(length(obj.u0), obj.N + 1);
% obj.un_h = zeros(size(obj.u0));
obj.n = 0;
% obj.wn %
% obj.a %
end
function [obj, ret] = update(obj, n, u_n_minus_one)
assert(obj.n + 1 == n);
obj.n = n; % update the time level
obj.up(:, n) = u_n_minus_one(:);
t_n = obj.t(n+1);
obj.a = ((t_n - obj.t(1:n)).^(1-obj.alpha) ...
- (t_n - obj.t(2:n+1)).^(1-obj.alpha))...
./(obj.tau(1:n).*gamma(2-obj.alpha)); % Equ. (3.1) in Ref 1.
% a^n_k -> a(k)
%
% Let
% $ D_t^alpha u = \sum_{k=1}^n c^{(n)}_{n-k} (u^k - u^{k-1}) $
% Then $c^{(n)}_{n-k} = a(k)$.
% Also
% \[
% D_t^alpha u = c^{(n)}_0 u^n +
% \sum_{k=1}^{n-1} (c^{(n)}_{n-k} - c^{(n)}_{n-k-1}) u^k
% - c^{(n)}_{n-1} u^{0})
% \]
% If we set c = a, then
% c_{n-1}, c_{n-2}, c_{n-3} c_{0}
% [ c(1), c(2), c(3), ..., c(n) ]
% Also we have
% \[
% D_t^alpha u
% = c(n)*u(n) + \sum_{k=1}^{n-1}(c(k)-c(k+1))*u(k) - c(1)*u(0)
% = -c(1)*u(0) + \sum_{k=1}^{n-1}(c(k)-c(k+1))*u(k) + c(n)*u(n)
% \]
c = obj.a;
wc = obj.w'*c;
obj.wn = wc(end);
new_wc = [-wc(1), -diff(wc)];
ret = reshape(obj.up(:, 1:n)*new_wc', obj.shape);
obj.un_h = ret;
end
function ret = get_t(obj)
ret = obj.t(obj.n+1);
end
function ret = get_ti(obj, i)
ret = obj.t(i + 1);
end
function ret = get_tn(obj)
ret = obj.t(obj.n+1);
end
function ret = get_sigma(obj)
ret = 0;
end
function ret = get_history_array(obj, n)
assert(obj.n == n);
ret = obj.un_h;
end
function ret = get_wn(obj, n)
assert(obj.n == n);
ret = obj.wn;
end
end
end