From 3782b87c8adf03d4892579b627bb5d33c43301e5 Mon Sep 17 00:00:00 2001 From: Thomas Richter Date: Tue, 17 Dec 2024 06:11:01 +0100 Subject: [PATCH] Changed to 1 gauss point integration for Cartesian meshes --- dynamics/src/ParametricMesh.cpp | 9 +++------ 1 file changed, 3 insertions(+), 6 deletions(-) diff --git a/dynamics/src/ParametricMesh.cpp b/dynamics/src/ParametricMesh.cpp index 095a69c62..5ec524947 100644 --- a/dynamics/src/ParametricMesh.cpp +++ b/dynamics/src/ParametricMesh.cpp @@ -309,20 +309,17 @@ double ParametricMesh::hmin() const */ double ParametricMesh::area(const size_t eid) const { - // the element area is computed by transforming the reference element K = [0,1]^2 onto the element T + // The element area is computed by transforming the reference element K = [0,1]^2 onto the element T // Hence, Area(T) = \int_T dx = \int_K J(z) dz // The integral is computed with Gauss-Quadrature - // Strangely, 1-point Gauss seems to be exact. But I am not sure if this must be the case. - // As J = det( nabla A ) I expect that 2 points must be used. A is bi-linear, hence, nabla A - // has linear parts and det( nabla A) can be quadratic. - // I am using 2 to make it safe :-) + // For Cartesian meshes, 1 Gauss point is sufficient as J is a bi-linear function. // // In Spherical Coordinates, the cosine of the lat must be added. This increases the error // Machine precision is only achieved for 3 GP. I propose to use only two, which still gives // 10^-9 rel. error. if (CoordinateSystem == CARTESIAN) { - return (ParametricTools::J<2>((*this),eid).array() * GAUSSWEIGHTS<2>.array()).sum(); + return (ParametricTools::J<1>((*this),eid).array() * GAUSSWEIGHTS<1>.array()).sum(); } else if (CoordinateSystem == SPHERICAL) {