This repository has been archived by the owner on Jul 19, 2022. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 0
/
question_2.py
930 lines (805 loc) · 31.2 KB
/
question_2.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
#%%[markdown]
# ![Université Laval](img/ulaval.jpg)
# # <center><b>GLO-4030/GLO-7030 : Apprentissage par réseaux de neurones profonds</b></center>
# # <center><b>Travail Pratique 2</b></center>
# ***
# __Course__: GLO-4030/GLO-7030 : Apprentissage par réseaux de neurones profonds <br>
# __Title__: Travail Pratique 2 <br>
# __Semester__: Winter 2021 <br>
# __Lecturer__: Dr. Pascal Germain <br>
# __Author__: Parham Nooralishahi <br>
# __Organization__: Université Laval <br>
# ***
#
# ## Question 2 - Neural Style Transfer (45%)
#
# This code is modified version of <a href="https://pytorch.org/tutorials/advanced/neural_style_tutorial.html">PyTorch Tutorial</a>
#
# ## NEURAL TRANSFER USING PYTORCH
# This code explains how to implement the Neural-Style algorithm developed by Leon A. Gatys, Alexander S. Ecker and Matthias Bethge. Neural-Style, or Neural-Transfer, allows you to take an image and reproduce it with a new artistic style. <br>
#
#
# __What does it need?__ The algorithm takes three images, an input image, a content-image, and a style-image. <br>
#
# __What does it provide?__ It changes the input to resemble the content of the content-image and the artistic style of the style-image. <br>
#
# #### Underlying Principle
# The principle is simple: we define two distances, one for the content $D_C$ and one for the style $D_S$. $D_C$ measures how different the content is between two images while $D_S$ measures how different the style is between two images. Then, we take a third image, the input, and transform it to minimize both its content-distance with the content-image and its style-distance with the style-image. Now we can import the necessary packages and begin the neural transfer. <br>
#
# #### The required packages
# * torch, torch.nn, numpy (indispensables packages for neural networks with PyTorch)
# * torch.optim (efficient gradient descents)
# * PIL, PIL.Image, matplotlib.pyplot (load and display images)
# * torchvision.transforms (transform PIL images into tensors)
# * torchvision.models (train or load pre-trained models)
# * copy (to deep copy the models; system package)
#%%
from __future__ import print_function
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
import os
import shutil
from pathlib import Path
from PIL import Image
import matplotlib.pyplot as plt
import torchvision.transforms as transforms
import torchvision.models as models
import copy
#%%[markdown]
# Next, we need to choose which device to run the network on and import the content and style images. Running the neural transfer algorithm on large images takes longer and will go much faster when running on a GPU.
#%%
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
#%%[markdown]
# ### Content Loss
#
# The content loss is a function that represents a weighted version of the content distance for an individual layer. The function takes the feature maps of a layer in a network processing input and returns the weighted content distance between the image and the content image. The distance $∥FXL−FCL∥^2$ is the mean square error between the two sets of feature maps. <br>
#
# We will add this content loss module directly after the convolution layer(s) that are being used to compute the content distance. This way each time the network is fed an input image the content losses will be computed at the desired layers and because of auto grad, all the gradients will be computed. <br>
#%%
class ContentLoss(nn.Module):
def __init__(self, target,):
super(ContentLoss, self).__init__()
# we 'detach' the target content from the tree used
# to dynamically compute the gradient: this is a stated value,
# not a variable. Otherwise the forward method of the criterion
# will throw an error.
self.target = target.detach()
def forward(self, input):
self.loss = F.mse_loss(input, self.target)
return input
#%%[markdown]
# ### Style Loss
#
# The style loss module is implemented similarly to the content loss module. It will act as a transparent layer in a network that computes the style loss of that layer. In order to calculate the style loss, we need to compute the gram matrix. <br>
#
# A gram matrix is the result of multiplying a given matrix by its transposed matrix. In this application the given matrix is a reshaped version of the feature maps of a layer. <br>
#%%
def gram_matrix(input):
a, b, c, d = input.size() # a=batch size(=1)
# b=number of feature maps
# (c,d)=dimensions of a f. map (N=c*d)
features = input.view(a * b, c * d) # resise F_XL into \hat F_XL
G = torch.mm(features, features.t()) # compute the gram product
# we 'normalize' the values of the gram matrix
# by dividing by the number of element in each feature maps.
return G.div(a * b * c * d)
class StyleLoss(nn.Module):
def __init__(self, target_feature):
super(StyleLoss, self).__init__()
self.target = gram_matrix(target_feature).detach()
def forward(self, input):
G = gram_matrix(input)
self.loss = F.mse_loss(G, self.target)
return input
#%%[markdown]
# ### Normalization
#
# VGG networks are trained on images with each channel normalized by mean=[0.485, 0.456, 0.406] and std=[0.229, 0.224, 0.225]. We will use them to normalize the image before sending it into the network. <br>
#%%
cnn_normalization_mean = torch.tensor([0.485, 0.456, 0.406]).to(device)
cnn_normalization_std = torch.tensor([0.229, 0.224, 0.225]).to(device)
# create a module to normalize input image so we can easily put it in a nn.Sequential.
class Normalization(nn.Module):
def __init__(self, mean, std):
super(Normalization, self).__init__()
# .view the mean and std to make them [C x 1 x 1] so that they can
# directly work with image Tensor of shape [B x C x H x W].
# B is batch size. C is number of channels. H is height and W is width.
self.mean = torch.tensor(mean).view(-1, 1, 1)
self.std = torch.tensor(std).view(-1, 1, 1)
def forward(self, img):
# normalize img
return (img - self.mean) / self.std
#%%[markdown]
# ### Importing Neural Network's model
#
# We will use a 19 layer VGG network like the one used in the related paper.
# PyTorch’s implementation of VGG is a module divided into two child Sequential modules: features (containing convolution and pooling layers), and classifier (containing fully connected layers). We will use the features module because we need the output of the individual convolution layers to measure content and style loss. Some layers have different behavior during training than evaluation, so we must set the network to evaluation mode using .eval(). <br>
#%%
cnn = models.vgg19(pretrained=True).features.to(device).eval()
#%%[markdown]
# ### Module Initialization
#
# A Sequential module contains an ordered list of child modules. For instance, vgg19.features contains a sequence (Conv2d, ReLU, MaxPool2d, Conv2d, ReLU…) aligned in the right order of depth. We need to add our content loss and style loss layers immediately after the convolution layer they are detecting. To do this we must create a new Sequential module that has content loss and style loss modules correctly inserted. <br>
#%%
def get_style_model_and_losses(cnn, normalization_mean, normalization_std,
style_img, content_img,
content_layers=['conv_4'],
style_layers=['conv_1', 'conv_2', 'conv_3', 'conv_4', 'conv_5']):
cnn = copy.deepcopy(cnn)
# normalization module
normalization = Normalization(normalization_mean, normalization_std).to(device)
# just in order to have an iterable access to or list of content/syle
# losses
content_losses = []
style_losses = []
# assuming that cnn is a nn.Sequential, so we make a new nn.Sequential
# to put in modules that are supposed to be activated sequentially
model = nn.Sequential(normalization)
i = 0 # increment every time we see a conv
for layer in cnn.children():
if isinstance(layer, nn.Conv2d):
i += 1
name = 'conv_{}'.format(i)
elif isinstance(layer, nn.ReLU):
name = 'relu_{}'.format(i)
# The in-place version doesn't play very nicely with the ContentLoss
# and StyleLoss we insert below. So we replace with out-of-place
# ones here.
layer = nn.ReLU(inplace=False)
elif isinstance(layer, nn.MaxPool2d):
name = 'pool_{}'.format(i)
elif isinstance(layer, nn.BatchNorm2d):
name = 'bn_{}'.format(i)
else:
raise RuntimeError('Unrecognized layer: {}'.format(layer.__class__.__name__))
model.add_module(name, layer)
if name in content_layers:
# add content loss:
target = model(content_img).detach()
content_loss = ContentLoss(target)
model.add_module("content_loss_{}".format(i), content_loss)
content_losses.append(content_loss)
if name in style_layers:
# add style loss:
target_feature = model(style_img).detach()
style_loss = StyleLoss(target_feature)
model.add_module("style_loss_{}".format(i), style_loss)
style_losses.append(style_loss)
# now we trim off the layers after the last content and style losses
for i in range(len(model) - 1, -1, -1):
if isinstance(model[i], ContentLoss) or isinstance(model[i], StyleLoss):
break
model = model[:(i + 1)]
return model, style_losses, content_losses
#%%[markdown]
# ### Gradient Descent
#
# we will use L-BFGS algorithm to run our gradient descent. Unlike training a network, we want to train the input image in order to minimise the content/style losses. <br>
#%%
def get_input_optimizer(input_img):
# this line to show that input is a parameter that requires a gradient
optimizer = optim.LBFGS([input_img.requires_grad_()])
return optimizer
#%%[markdown]
# ### Transfer Learning
#
# Finally, we must define a function that performs the neural transfer. For each iteration of the networks, it is fed an updated input and computes new losses. We will run the backward methods of each loss module to dynamicaly compute their gradients. The optimizer requires a “closure” function, which reevaluates the module and returns the loss. <br>
#
# We still have one final constraint to address. The network may try to optimize the input with values that exceed the 0 to 1 tensor range for the image. We can address this by correcting the input values to be between 0 to 1 each time the network is run. <br>
#%%
def run_style_transfer(cnn, normalization_mean, normalization_std,
content_img, style_img, input_img, content_layers, style_layers,
num_steps=300, style_weight=1000000, content_weight=1,
):
"""Run the style transfer."""
print('Building the style transfer model..')
model, style_losses, content_losses = get_style_model_and_losses(cnn,
normalization_mean, normalization_std, style_img, content_img,
content_layers=content_layers, style_layers=style_layers)
optimizer = get_input_optimizer(input_img)
print('Optimizing..')
run = [0]
while run[0] <= num_steps:
def closure():
# correct the values of updated input image
input_img.data.clamp_(0, 1)
optimizer.zero_grad()
model(input_img)
style_score = 0
content_score = 0
for sl in style_losses:
style_score += sl.loss
for cl in content_losses:
content_score += cl.loss
style_score *= style_weight
content_score *= content_weight
loss = style_score + content_score
loss.backward()
run[0] += 1
if run[0] % 50 == 0:
print("run {}:".format(run))
print('Style Loss : {:4f} Content Loss: {:4f}'.format(
style_score.item(), content_score.item()))
print()
return style_score + content_score
optimizer.step(closure)
# a last correction...
input_img.data.clamp_(0, 1)
return input_img
#%%[markdown]
# ### Loading the Images
# Now we will import the style and content images. The original PIL images have values between 0 and 255, but when transformed into torch tensors, their values are converted to be between 0 and 1. The images also need to be resized to have the same dimensions. An important detail to note is that neural networks from the torch library are trained with tensor values ranging from 0 to 1. If you try to feed the networks with 0 to 255 tensor images, then the activated feature maps will be unable to sense the intended content and style. However, pre-trained networks from the Caffe library are trained with 0 to 255 tensor images. <br>
#
# #### Determining Output Size
# For the first step, the desired size for the output will be determined based on available devices (the computation power).
#%%
imsize = 512 if torch.cuda.is_available() else 128 # use small size if no gpu
#%%[markdown]
# #### Defining transform operations
#%%
loader = transforms.Compose([
transforms.Resize(imsize), # scale imported image
transforms.ToTensor()]) # transform it into a torch tensor
#%%[markdown]
# #### Defining a method to load the images
#%%
def image_loader(image_name):
image = Image.open(image_name)
# fake batch dimension required to fit network's input dimensions
image = loader(image).unsqueeze(0)
return image.to(device, torch.float)
#%%[markdown]
# #### Defining how to display images
#%%
unloader = transforms.ToPILImage() # reconvert into PIL image
def imshow(tensor, title=None):
image = tensor.cpu().clone() # we clone the tensor to not do changes on it
image = image.squeeze(0) # remove the fake batch dimension
image = unloader(image)
plt.imshow(image)
if title is not None:
plt.title(title)
plt.pause(0.001) # pause a bit so that plots are updated
return image
#%%[markdown]
# ### Defining a method as an entry point for the whole processing pipeline
#%%
def run_pipeline(
res_path,
content_img_path : str,
style_img_path : str,
input_img = None,
content_layers= ['conv_4'],
style_layers = ['conv_1', 'conv_2', 'conv_3', 'conv_4', 'conv_5'],
style_weight = 1000000,
content_weight = 1,
num_steps=300,
check_img_size = True
):
if not os.path.isfile(style_img_path) or not os.path.isfile(content_img_path):
print('ERROR: one or more of the input images does/do not exist!')
return
style_img = image_loader(style_img_path)
content_img = image_loader(content_img_path)
# shutil.copy(style_img_path, res_path)
# shutil.copy(content_img_path, res_path)
if check_img_size:
assert style_img.size() == content_img.size(), \
"we need to import style and content images of the same size"
plt.ion()
if input_img is None:
# if you want to use white noise instead uncomment the below line:
# input_img = torch.randn(content_img.data.size(), device=device)
input_img = content_img.clone()
else:
plt.figure()
imshow(input_img, title='Input Image')
plt.figure()
imshow(style_img, title='Style Image')
plt.figure()
imshow(content_img, title='Content Image')
output = run_style_transfer(cnn, cnn_normalization_mean, cnn_normalization_std,
content_img, style_img, input_img, num_steps=num_steps,
content_layers=content_layers, style_layers=style_layers,
style_weight=style_weight, content_weight=content_weight)
plt.figure()
res_out = imshow(output, title='Output Image')
res_out.save(res_path)
plt.ioff()
plt.show()
#%%[markdown]
# # Experiments
#
# ## Data Preparation
#
# For this question one content image and three style image is selected which are employed in the following experiments. <br>
#
# ### Selected Content Images
# This image is an thermal image of my face :D captured by DALSA Teledyne GXM640. <br>
#
# ![My Face](img/content_1.jpg)
#
# ### Selected Style Images
#
# The first image is a <a href="https://www.nasa.gov/mission_pages/hubble/multimedia/index.html">the luminous heart of the galaxy M61</a> dominates this image, framed by its winding spiral arms threaded with dark tendrils of dust.
#
# ![Glaxy](img/style_1.jpg)
#
#%%[markdown]
# The second image is a <a href="https://www.scientificamerican.com/slideshow/small-world-microscope-photography/">magmatic rock olivine</a> (a mineral which in a pure form is the germ peridot) inclusions, rumbles in at just 5x magnification. Bernardo Cesare of the University of Padova's Geoscience Department in Italy captured them with a polarized transmitted-light microscope. This image won the nineth place in the 20 Microscopic Photo Competition Prizewinners.
#
# ![Microscopic](img/style_2.jpg)
#
#%%[markdown]
# The last image is a Picasso painting named <a href="https://www.pablopicasso.org/seated-nude.jsp">Seated Nude (1909)</a>.
# Seated Nude is part of a series from late 1909 to spring 1910, and a summation of earlier Cubist three-dimensional experimental work on still life and portraits. In fact, this time of experiment and research gives this period the title of Analytical Cubism, with its manipulation and fragmentation of space and multiple angles of vision Picasso whole preoccupation with the notion of vision, explored in the earlier blind man images, now finds its thematic challenge in Cubis.
#
# ![Picasso](img/picasso.jpg)
#%%
result_dir = 'results/question_2'
Path(result_dir).mkdir(parents=True, exist_ok=True)
#%%[markdown]
# ## Experiment 1-a : original values for hyperparameters
#
# |__Parameter__|__Value__|
# |---------|-----|
# |__Content Layers__|conv_4|
# |__Style Layers__|conv_1, conv_2, conv_3, conv_4, conv_5|
# |__Style Weight__|1000000|
# |__Content Weight__|1|
#%%
result_path = os.path.join(result_dir,'experiment_1_a.jpg')
run_pipeline(
result_path,
content_img_path = 'img/content_1.jpg',
style_img_path = 'img/picasso.jpg',
content_layers= ['conv_4'],
style_layers = ['conv_1', 'conv_2', 'conv_3', 'conv_4', 'conv_5'],
style_weight = 1000000,
content_weight = 1,
num_steps=300,
check_img_size = True
)
#%%[markdown]
# ## Experiment 1-b : other selection of layers to calculate the loss functions
#
# |__Parameter__|__Value__|
# |---------|-----|
# |__Content Layers__|conv_2, conv_4, conv_5|
# |__Style Layers__|conv_3, conv_4, conv_5|
# |__Style Weight__|1000000|
# |__Content Weight__|1|
#%%
result_path = os.path.join(result_dir,'experiment_1_b.jpg')
run_pipeline(
result_path,
content_img_path = 'img/content_1.jpg',
style_img_path = 'img/picasso.jpg',
content_layers= ['conv_2', 'conv_4', 'conv_5'],
style_layers = ['conv_1', 'conv_2', 'conv_5'],
style_weight = 1000000,
content_weight = 1,
num_steps=300,
check_img_size = True
)
#%%[markdown]
# ## Experiment 1-c : first combination for style loss (style weight) and content loss (content weight)
#
# |__Parameter__|__Value__|
# |---------|-----|
# |__Content Layers__|conv_4|
# |__Style Layers__|conv_1, conv_2, conv_3, conv_4, conv_5|
# |__Style Weight__|8000000|
# |__Content Weight__|1|
#%%
result_path = os.path.join(result_dir,'experiment_1_c.jpg')
run_pipeline(
result_path,
content_img_path = 'img/content_1.jpg',
style_img_path = 'img/picasso.jpg',
content_layers= ['conv_4'],
style_layers = ['conv_1', 'conv_2', 'conv_3', 'conv_4', 'conv_5'],
style_weight = 8000000,
content_weight = 1,
num_steps=300,
check_img_size = True
)
#%%[markdown]
# ## Experiment 1-d : second combination for style loss (style weight) and content loss (content weight).
#
# |__Parameter__|__Value__|
# |---------|-----|
# |__Content Layers__|conv_4|
# |__Style Layers__|conv_1, conv_2, conv_3, conv_4, conv_5|
# |__Style Weight__|1000000|
# |__Content Weight__|200|
#%%
result_path = os.path.join(result_dir,'experiment_1_d.jpg')
run_pipeline(
result_path,
content_img_path = 'img/content_1.jpg',
style_img_path = 'img/picasso.jpg',
content_layers= ['conv_4'],
style_layers = ['conv_1', 'conv_2', 'conv_3', 'conv_4', 'conv_5'],
style_weight = 1000000,
content_weight = 200,
num_steps=300,
check_img_size = True
)
#%%[markdown]
# ## Experiment 1-e : third combination for style loss (style weight) and content loss (content weight)
#
# |__Parameter__|__Value__|
# |---------|-----|
# |__Content Layers__|conv_4|
# |__Style Layers__|conv_1, conv_2, conv_3, conv_4, conv_5|
# |__Style Weight__|80|
# |__Content Weight__|1|
#%%
result_path = os.path.join(result_dir,'experiment_1_e.jpg')
run_pipeline(
result_path,
content_img_path = 'img/content_1.jpg',
style_img_path = 'img/picasso.jpg',
content_layers= ['conv_4'],
style_layers = ['conv_1', 'conv_2', 'conv_3', 'conv_4', 'conv_5'],
style_weight = 80,
content_weight = 1,
num_steps=300,
check_img_size = True
)
#%%[markdown]
# ## Experiment 1-f : third combination for style loss (style weight) and content loss (content weight)
#
# |__Parameter__|__Value__|
# |---------|-----|
# |__Content Layers__|conv_1|
# |__Style Layers__|conv_1|
# |__Style Weight__|80|
# |__Content Weight__|1|
#%%
result_path = os.path.join(result_dir,'experiment_1_f.jpg')
run_pipeline(
result_path,
content_img_path = 'img/content_1.jpg',
style_img_path = 'img/picasso.jpg',
content_layers= ['conv_1'],
style_layers = ['conv_1'],
style_weight = 80,
content_weight = 1,
num_steps=300,
check_img_size = True
)
#%%[markdown]
# ## Experiment 1-g : third combination for style loss (style weight) and content loss (content weight)
#
# |__Parameter__|__Value__|
# |---------|-----|
# |__Content Layers__|conv_1|
# |__Style Layers__|conv_5|
# |__Style Weight__|80|
# |__Content Weight__|1|
#%%
result_path = os.path.join(result_dir,'experiment_1_g.jpg')
run_pipeline(
result_path,
content_img_path = 'img/content_1.jpg',
style_img_path = 'img/picasso.jpg',
content_layers= ['conv_1'],
style_layers = ['conv_5'],
style_weight = 80,
content_weight = 1,
num_steps=300,
check_img_size = True
)
#%%[markdown]
# ## Experiment 2-a : original values for hyperparameters
#
# |__Parameter__|__Value__|
# |---------|-----|
# |__Content Layers__|conv_4|
# |__Style Layers__|conv_1, conv_2, conv_3, conv_4, conv_5|
# |__Style Weight__|1000000|
# |__Content Weight__|1|
#%%
result_path = os.path.join(result_dir,'experiment_2_a.jpg')
run_pipeline(
result_path,
content_img_path = 'img/content_1.jpg',
style_img_path = 'img/style_1.jpg',
content_layers= ['conv_4'],
style_layers = ['conv_1', 'conv_2', 'conv_3', 'conv_4', 'conv_5'],
style_weight = 1000000,
content_weight = 1,
num_steps=300,
check_img_size = True
)
#%%[markdown]
# ## Experiment 2-b : other selection of layers to calculate the loss functions
#
# |__Parameter__|__Value__|
# |---------|-----|
# |__Content Layers__|conv_2, conv_4, conv_5|
# |__Style Layers__|conv_3, conv_4, conv_5|
# |__Style Weight__|1000000|
# |__Content Weight__|1|
#%%
result_path = os.path.join(result_dir,'experiment_2_b.jpg')
run_pipeline(
result_path,
content_img_path = 'img/content_1.jpg',
style_img_path = 'img/style_1.jpg',
content_layers= ['conv_2', 'conv_4', 'conv_5'],
style_layers = ['conv_1', 'conv_2', 'conv_5'],
style_weight = 1000000,
content_weight = 1,
num_steps=300,
check_img_size = True
)
#%%[markdown]
# ## Experiment 2-c : first combination for style loss (style weight) and content loss (content weight)
#
# |__Parameter__|__Value__|
# |---------|-----|
# |__Content Layers__|conv_4|
# |__Style Layers__|conv_1, conv_2, conv_3, conv_4, conv_5|
# |__Style Weight__|8000000|
# |__Content Weight__|1|
#%%
result_path = os.path.join(result_dir,'experiment_2_c.jpg')
run_pipeline(
result_path,
content_img_path = 'img/content_1.jpg',
style_img_path = 'img/style_1.jpg',
content_layers= ['conv_4'],
style_layers = ['conv_1', 'conv_2', 'conv_3', 'conv_4', 'conv_5'],
style_weight = 8000000,
content_weight = 1,
num_steps=300,
check_img_size = True
)
#%%[markdown]
# ## Experiment 2-d : second combination for style loss (style weight) and content loss (content weight).
#
# |__Parameter__|__Value__|
# |---------|-----|
# |__Content Layers__|conv_4|
# |__Style Layers__|conv_1, conv_2, conv_3, conv_4, conv_5|
# |__Style Weight__|1000000|
# |__Content Weight__|200|
#%%
result_path = os.path.join(result_dir,'experiment_2_d.jpg')
run_pipeline(
result_path,
content_img_path = 'img/content_1.jpg',
style_img_path = 'img/style_1.jpg',
content_layers= ['conv_4'],
style_layers = ['conv_1', 'conv_2', 'conv_3', 'conv_4', 'conv_5'],
style_weight = 1000000,
content_weight = 200,
num_steps=300,
check_img_size = True
)
#%%[markdown]
# ## Experiment 2-e : third combination for style loss (style weight) and content loss (content weight)
#
# |__Parameter__|__Value__|
# |---------|-----|
# |__Content Layers__|conv_4|
# |__Style Layers__|conv_1, conv_2, conv_3, conv_4, conv_5|
# |__Style Weight__|80|
# |__Content Weight__|1|
#%%
result_path = os.path.join(result_dir,'experiment_2_e.jpg')
run_pipeline(
result_path,
content_img_path = 'img/content_1.jpg',
style_img_path = 'img/style_1.jpg',
content_layers= ['conv_4'],
style_layers = ['conv_1', 'conv_2', 'conv_3', 'conv_4', 'conv_5'],
style_weight = 80,
content_weight = 1,
num_steps=300,
check_img_size = True
)
#%%[markdown]
# ## Experiment 2-f : third combination for style loss (style weight) and content loss (content weight)
#
# |__Parameter__|__Value__|
# |---------|-----|
# |__Content Layers__|conv_1|
# |__Style Layers__|conv_1|
# |__Style Weight__|80|
# |__Content Weight__|1|
#%%
result_path = os.path.join(result_dir,'experiment_2_f.jpg')
run_pipeline(
result_path,
content_img_path = 'img/content_1.jpg',
style_img_path = 'img/style_1.jpg',
content_layers= ['conv_1'],
style_layers = ['conv_1'],
style_weight = 80,
content_weight = 1,
num_steps=300,
check_img_size = True
)
#%%[markdown]
# ## Experiment 2-g : third combination for style loss (style weight) and content loss (content weight)
#
# |__Parameter__|__Value__|
# |---------|-----|
# |__Content Layers__|conv_1|
# |__Style Layers__|conv_5|
# |__Style Weight__|80|
# |__Content Weight__|1|
#%%
result_path = os.path.join(result_dir,'experiment_2_g.jpg')
run_pipeline(
result_path,
content_img_path = 'img/content_1.jpg',
style_img_path = 'img/style_1.jpg',
content_layers= ['conv_1'],
style_layers = ['conv_5'],
style_weight = 80,
content_weight = 1,
num_steps=300,
check_img_size = True
)
#%%[markdown]
# ## Experiment 3-a : original values for hyperparameters
#
# |__Parameter__|__Value__|
# |---------|-----|
# |__Content Layers__|conv_4|
# |__Style Layers__|conv_1, conv_2, conv_3, conv_4, conv_5|
# |__Style Weight__|1000000|
# |__Content Weight__|1|
#%%
result_path = os.path.join(result_dir,'experiment_3_a.jpg')
run_pipeline(
result_path,
content_img_path = 'img/content_1.jpg',
style_img_path = 'img/style_2.jpg',
content_layers= ['conv_4'],
style_layers = ['conv_1', 'conv_2', 'conv_3', 'conv_4', 'conv_5'],
style_weight = 1000000,
content_weight = 1,
num_steps=300,
check_img_size = True
)
#%%[markdown]
# ## Experiment 3-b : other selection of layers to calculate the loss functions
#
# |__Parameter__|__Value__|
# |---------|-----|
# |__Content Layers__|conv_2, conv_4, conv_5|
# |__Style Layers__|conv_3, conv_4, conv_5|
# |__Style Weight__|1000000|
# |__Content Weight__|1|
#%%
result_path = os.path.join(result_dir,'experiment_3_b.jpg')
run_pipeline(
result_path,
content_img_path = 'img/content_1.jpg',
style_img_path = 'img/style_2.jpg',
content_layers= ['conv_2', 'conv_4', 'conv_5'],
style_layers = ['conv_1', 'conv_2', 'conv_5'],
style_weight = 1000000,
content_weight = 1,
num_steps=300,
check_img_size = True
)
#%%[markdown]
# ## Experiment 3-c : first combination for style loss (style weight) and content loss (content weight)
#
# |__Parameter__|__Value__|
# |---------|-----|
# |__Content Layers__|conv_4|
# |__Style Layers__|conv_1, conv_2, conv_3, conv_4, conv_5|
# |__Style Weight__|8000000|
# |__Content Weight__|1|
#%%
result_path = os.path.join(result_dir,'experiment_3_c.jpg')
run_pipeline(
result_path,
content_img_path = 'img/content_1.jpg',
style_img_path = 'img/style_2.jpg',
content_layers= ['conv_4'],
style_layers = ['conv_1', 'conv_2', 'conv_3', 'conv_4', 'conv_5'],
style_weight = 8000000,
content_weight = 1,
num_steps=300,
check_img_size = True
)
#%%[markdown]
# ## Experiment 3-d : second combination for style loss (style weight) and content loss (content weight).
#
# |__Parameter__|__Value__|
# |---------|-----|
# |__Content Layers__|conv_4|
# |__Style Layers__|conv_1, conv_2, conv_3, conv_4, conv_5|
# |__Style Weight__|1000000|
# |__Content Weight__|200|
#%%
result_path = os.path.join(result_dir,'experiment_3_d.jpg')
run_pipeline(
result_path,
content_img_path = 'img/content_1.jpg',
style_img_path = 'img/style_2.jpg',
content_layers= ['conv_4'],
style_layers = ['conv_1', 'conv_2', 'conv_3', 'conv_4', 'conv_5'],
style_weight = 1000000,
content_weight = 200,
num_steps=300,
check_img_size = True
)
#%%[markdown]
# ## Experiment 3-e : third combination for style loss (style weight) and content loss (content weight)
#
# |__Parameter__|__Value__|
# |---------|-----|
# |__Content Layers__|conv_4|
# |__Style Layers__|conv_1, conv_2, conv_3, conv_4, conv_5|
# |__Style Weight__|80|
# |__Content Weight__|1|
#%%
result_path = os.path.join(result_dir,'experiment_3_e.jpg')
run_pipeline(
result_path,
content_img_path = 'img/content_1.jpg',
style_img_path = 'img/style_2.jpg',
content_layers= ['conv_4'],
style_layers = ['conv_1', 'conv_2', 'conv_3', 'conv_4', 'conv_5'],
style_weight = 80,
content_weight = 1,
num_steps=300,
check_img_size = True
)
#%%[markdown]
# ## Experiment 3-f : third combination for style loss (style weight) and content loss (content weight)
#
# |__Parameter__|__Value__|
# |---------|-----|
# |__Content Layers__|conv_1|
# |__Style Layers__|conv_1|
# |__Style Weight__|80|
# |__Content Weight__|1|
#%%
result_path = os.path.join(result_dir,'experiment_3_f.jpg')
run_pipeline(
result_path,
content_img_path = 'img/content_1.jpg',
style_img_path = 'img/style_2.jpg',
content_layers= ['conv_1'],
style_layers = ['conv_1'],
style_weight = 80,
content_weight = 1,
num_steps=300,
check_img_size = True
)
#%%[markdown]
# ## Experiment 3-g : third combination for style loss (style weight) and content loss (content weight)
#
# |__Parameter__|__Value__|
# |---------|-----|
# |__Content Layers__|conv_1|
# |__Style Layers__|conv_5|
# |__Style Weight__|80|
# |__Content Weight__|1|
#%%
result_path = os.path.join(result_dir,'experiment_3_g.jpg')
run_pipeline(
result_path,
content_img_path = 'img/content_1.jpg',
style_img_path = 'img/style_2.jpg',
content_layers= ['conv_1'],
style_layers = ['conv_5'],
style_weight = 80,
content_weight = 1,
num_steps=300,
check_img_size = True
)