-
Notifications
You must be signed in to change notification settings - Fork 0
/
nitroxides_SI.tex
624 lines (592 loc) · 33.5 KB
/
nitroxides_SI.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
\documentclass[11pt,a4paper]{article}
\usepackage[left=2cm, right=2cm, top=2cm, bottom=2cm]{geometry}
\usepackage{graphicx}
\usepackage{mathtools}
\usepackage{amssymb}
\usepackage{hyperref}
\usepackage{siunitx}
\usepackage[version=4]{mhchem}
\usepackage{tabularray}
\usepackage[square,sort,comma,numbers]{natbib}
\title{Solvent effects on the prediction of redox potentials: application to nitroxides\\ Supporting information}
\author{Pierre Beaujean}
\begin{document}
\maketitle
\renewcommand{\thetable}{S\arabic{table}}
\renewcommand{\thefigure}{S\arabic{figure}}
\begin{figure}[!h]
\centering
\includegraphics [width=\linewidth]{FigureS1}
\caption{Evolution of (left) the Born solvation energy, $\Delta G^\star_{Born}$ [computed with Eq.~(7)] as a function of the dielectric constant of the solvent for different radii of the spherical cavities ($a$) and of (right) the Debye-Hückel correction, $\Delta G^\star_{DH}$ [computed with Eq.~(5)] as a function of the concentration in electrolyte, $[X]$, in water and acetonitrile.}
\end{figure}
\begin{figure}[!h]
\centering
\includegraphics [width=.5\linewidth]{FigureS2}
\caption{Impact of the concentration of electrolyte on the formal oxidation potential [computed with Eq.~(10)] , $E^f_{abs}(\ce{N+}|\ce{N^.})$, considering a fictitious case where $E^0_{abs} = \SI{0}{\volt}$.}
\end{figure}
\begin{figure}[!h]
\centering
\includegraphics [width=.7\linewidth]{FigureS3}
\caption{Evolution of the cologarithm of the equilibrium constant, $pK_{pair}$ [computed from Eq.~(12)] between two ions as a function of $\chi$, the ratio between the radii of the two ions and for 3 values of dipole cavity shape factor ($s_2$). The ion charges are set to $\pm 1$, and two possible scaling factors for the close contact distance are used ($s_1$, left and right). }
\end{figure}
\begin{figure}[!h]
\centering
\includegraphics [width=.7\linewidth]{FigureS4}
\caption{Comparison between the absolute oxidation (top) and reduction (bottom) potentials obtained by Hodgson \emph{et al.} (at the G3(MP2)-RAD:MP2/6-311+G(3df,2p) level, using solvation energy computed at the B3LYP/6-31G(d) level in water [CPCM]) \cite{hodgsonOneElectronOxidationReduction2007}, and in this work (at the $\omega$B97X-D/6-311+G(d) level in water [SMD]). The DH correction has \textbf{not} been applied. The large differences (e.g., for the oxidation of APOs) are due to change in geometries after re-optimization at the DFT level. The dashed line is a linear regression, from which points marked with triangle ($\blacktriangle$) have been excluded.}
\end{figure}
\clearpage
\begin{longtblr}[caption={Radii ($a$, in \si{\angstrom}) for all oxidized states of compounds \textbf{1}-\textbf{61} and corresponding absolute redox potentials ($E^0_{abs}$, in \si{\volt}), as computed at the $\omega$B97X-D/6-311+G(d) level in water (SMD), in the limit of $[\ce{X}]=\SI{0}{\mole\per\liter}$.}]{colspec={>{\bfseries}lX[c]X[c]X[c]X[c]X[c]},width = 0.85\linewidth, rowhead=1}
\hline
& $a_{\ce{N+}}$ & $a_{\ce{N^.}}$ & $a_{\ce{N-}}$ & $E^0_{abs}(\ce{N+}|\ce{N^.})$ & $E^0_{abs}(\ce{N^.}|\ce{N-})$\\
\hline
1 & 3.40 & 3.38 & 3.39 & 5.00 & 2.88\\
2 & 3.33 & 3.30 & 3.34 & 5.09 & 2.97\\
3 & 3.92 & 3.91 & 3.90 & 5.17 & 3.03\\
4 & 3.36 & 3.35 & 3.35 & 5.13 & 3.00\\
5 & 3.91 & 3.91 & 3.91 & 5.18 & 3.00\\
6 & 3.31 & 3.30 & 3.34 & 5.18 & 3.02\\
7 & 4.27 & 4.47 & 4.46 & 5.09 & 2.77\\
8 & 4.06 & 4.05 & 4.06 & 5.19 & 3.04\\
9 & 4.05 & 4.04 & 4.05 & 5.29 & 3.13\\
10 & 4.16 & 4.16 & 4.16 & 5.32 & 3.14\\
11 & 3.37 & 3.36 & 3.36 & 5.29 & 3.10\\
12 & 3.33 & 3.31 & 3.34 & 5.30 & 3.14\\
13 & 3.28 & 3.30 & 3.34 & 5.14 & 2.99\\
14 & 3.27 & 3.27 & 3.24 & 5.08 & 2.84\\
15 & 3.57 & 3.82 & 3.74 & 5.26 & 2.95\\
16 & 3.27 & 3.26 & 3.24 & 5.15 & 2.89\\
17 & 3.47 & 3.48 & 3.85 & 5.13 & 2.91\\
18 & 3.25 & 3.25 & 3.24 & 5.15 & 2.95\\
19 & 4.20 & 4.19 & 4.33 & 5.11 & 2.76\\
20 & 3.81 & 3.81 & 3.81 & 5.33 & 3.03\\
21 & 3.27 & 3.24 & 3.23 & 5.28 & 3.17\\
22 & 3.24 & 3.23 & 3.18 & 5.35 & 3.10\\
23 & 3.60 & 3.60 & 3.62 & 5.27 & 2.96\\
24 & 4.58 & 4.58 & 4.62 & 5.29 & 3.07\\
25 & 4.05 & 4.02 & 4.01 & 5.23 & 2.96\\
26 & 4.65 & 4.66 & 4.69 & 5.23 & 2.98\\
27 & 3.94 & 3.94 & 3.98 & 5.24 & 2.99\\
28 & 5.01 & 5.00 & 5.07 & 5.24 & 2.79\\
29 & 4.30 & 4.29 & 4.24 & 5.28 & 3.08\\
30 & 4.32 & 4.32 & 4.35 & 5.36 & 3.12\\
31 & 4.61 & 4.60 & 4.62 & 5.32 & 3.12\\
32 & 4.57 & 4.57 & 4.58 & 5.34 & 3.11\\
33 & 4.63 & 4.64 & 4.65 & 5.34 & 3.04\\
34 & 4.69 & 4.71 & 4.24 & 5.27 & 3.01\\
35 & 4.05 & 4.04 & 4.07 & 5.34 & 3.06\\
36 & 4.13 & 4.14 & 4.13 & 5.24 & 3.10\\
37 & 4.58 & 4.62 & 4.61 & 5.26 & 3.15\\
38 & 5.21 & 5.18 & 5.00 & 5.30 & 3.08\\
39 & 5.10 & 5.09 & 5.11 & 5.30 & 3.15\\
40 & 5.19 & 5.10 & 5.17 & 5.31 & 3.19\\
41 & 5.09 & 5.05 & 5.06 & 5.29 & 3.21\\
42 & 5.08 & 5.12 & 5.00 & 5.33 & 3.08\\
43 & 5.47 & 5.49 & 5.68 & 5.31 & 3.15\\
44 & 5.32 & 5.41 & 5.46 & 5.29 & 3.22\\
45 & 5.21 & 4.90 & 4.98 & 5.31 & 3.19\\
46 & 5.14 & 5.17 & 5.15 & 5.32 & 3.16\\
47 & 5.22 & 5.22 & 5.55 & 5.29 & 3.13\\
48 & 5.12 & 5.13 & 4.79 & 5.31 & 3.16\\
49 & 4.13 & 4.14 & 4.14 & 5.14 & 3.07\\
50 & 4.56 & 4.52 & 4.57 & 5.24 & 3.08\\
51 & 4.52 & 4.50 & 4.49 & 5.19 & 3.06\\
52 & 4.11 & 4.12 & 4.12 & 5.35 & 3.19\\
53 & 4.74 & 4.71 & 4.68 & 5.36 & 3.13\\
54 & 4.63 & 4.64 & 4.65 & 5.33 & 3.17\\
55 & 4.67 & 4.68 & 4.67 & 5.41 & 3.23\\
56 & 3.80 & 3.85 & 3.88 & 5.18 & 2.76\\
57 & 3.57 & 3.54 & 3.60 & 5.07 & 2.89\\
58 & 3.67 & 3.65 & 3.64 & 5.31 & 2.78\\
59 & 3.63 & 3.62 & 3.65 & 5.20 & 2.91\\
60 & 4.01 & 4.00 & 4.01 & 5.31 & 3.04\\
61 & 3.31 & 3.30 & 3.34 & 5.20 & 3.06\\
\hline
\end{longtblr}
\clearpage
\begin{longtblr}[caption={Absolute redox potentials ($E^0_{abs}$, in \si{\volt}) computed at the $\omega$B97X-D/6-311+G(d) level in gas phase.}]{colspec={>{\bfseries}lX[c]X[c]c>{\bfseries}lX[c]X[c]},width = 0.85\linewidth, rowhead=1}
\hline
& $E^0_{abs}(\ce{N+}|\ce{N^.})$ & $E^0_{abs}(\ce{N^.}|\ce{N-})$ &&& $E^0_{abs}(\ce{N+}|\ce{N^.})$ & $E^0_{abs}(\ce{N^.}|\ce{N-})$\\
\hline
1 & 6.69 & 0.18 & & 32 & 7.22 & 0.57 \\
2 & 7.01 & 0.23 & & 33 & 7.33 & 0.60 \\
3 & 7.16 & 0.41 & & 34 & 6.98 & 0.32 \\
4 & 7.06 & 0.31 & & 35 & 9.93 & 3.04 \\
5 & 7.09 & 0.33 & & 36 & 7.04 & 0.52 \\
6 & 7.12 & 0.40 & & 37 & 6.97 & 0.65 \\
7 & 6.89 & 0.41 & & 38 & 7.12 & 0.67 \\
8 & 7.15 & 0.46 & & 39 & 7.11 & 0.73 \\
9 & 7.28 & 0.64 & & 40 & 6.99 & 0.75 \\
10 & 7.27 & 0.69 & & 41 & 7.06 & 0.82 \\
11 & 10.41 & 3.54 & & 42 & 7.07 & 0.74 \\
12 & 7.40 & 0.63 & & 43 & 7.07 & 0.78 \\
13 & 7.08 & 0.23 & & 44 & 7.00 & 0.75 \\
14 & 7.04 & 0.03 & & 45 & 7.17 & 0.78 \\
15 & 7.20 & 0.29 & & 46 & 7.17 & 0.85 \\
16 & 7.01 & 0.14 & & 47 & 7.19 & 0.81 \\
17 & 6.95 & 0.13 & & 48 & 7.20 & 0.88 \\
18 & 7.01 & 0.33 & & 49 & 6.80 & 0.51 \\
19 & 6.93 & 0.36 & & 50 & 6.91 & 0.49 \\
20 & 7.30 & 0.50 & & 51 & 6.76 & 0.46 \\
21 & 10.82 & 6.26 & & 52 & 7.20 & 0.82 \\
22 & 7.37 & 0.31 & & 53 & 7.34 & 0.87 \\
23 & 7.12 & 0.28 & & 54 & 7.32 & 0.92 \\
24 & 7.25 & 0.47 & & 55 & 7.62 & 1.26 \\
25 & 6.93 & 0.19 & & 56 & 6.91 & 0.22 \\
26 & 7.02 & 0.24 & & 57 & 6.88 & 0.15 \\
27 & 7.08 & 0.29 & & 58 & 7.22 & 0.24 \\
28 & 7.00 & 0.44 & & 59 & 7.03 & 0.06 \\
29 & 7.06 & 0.35 & & 60 & 7.26 & 0.45 \\
30 & 6.98 & 0.51 & & 61 & 7.28 & 0.57 \\
31 & 7.17 & 0.55 & & & & \\
\hline
\end{longtblr}
\clearpage
\begin{longtblr}[caption={Radii ($a$, in \si{\angstrom}) for all oxidized states of the compounds and corresponding absolute redox potentials ($E^0_{abs}$, in \si{\volt}), as computed at the $\omega$B97X-D/6-311+G(d) level in acetontrile (SMD), with $[\ce{X}]=\SI{0}{\mole\per\liter}$.}]{colspec={>{\bfseries}lX[c]X[c]X[c]X[c]X[c]},width = 0.85\linewidth, rowhead=1}
\hline
& $a_{\ce{N+}}$ & $a_{\ce{N^.}}$ & $a_{\ce{N-}}$ & $E^0_{abs}(\ce{N+}|\ce{N^.})$ & $E^0_{abs}(\ce{N^.}|\ce{N-})$\\
\hline
2 & 3.33 & 3.30 & 3.35 & 4.99 & 2.32\\
3 & 3.92 & 3.91 & 3.90 & 5.15 & 2.37\\
4 & 3.36 & 3.36 & 3.35 & 5.06 & 2.34\\
6 & 3.31 & 3.30 & 3.35 & 5.11 & 2.37\\
12 & 3.33 & 3.31 & 3.34 & 5.27 & 2.46\\
15 & 3.58 & 3.81 & 3.74 & 5.20 & 2.30\\
23 & 3.61 & 3.60 & 3.62 & 5.24 & 2.33\\
24 & 4.59 & 4.57 & 4.62 & 5.27 & 2.37\\
25 & 4.05 & 4.03 & 4.02 & 5.19 & 2.30\\
26 & 4.65 & 4.65 & 4.68 & 5.22 & 2.31\\
27 & 3.95 & 3.94 & 3.98 & 5.23 & 2.32\\
33 & 4.63 & 4.64 & 4.65 & 5.28 & 2.42\\
36 & 4.13 & 4.12 & 4.08 & 5.19 & 2.51\\
51 & 4.53 & 4.50 & 4.47 & 5.12 & 2.47\\
54 & 4.61 & 4.62 & 4.63 & 5.33 & 2.58\\
55 & 4.68 & 4.68 & 4.62 & 5.40 & 2.68\\
58 & 3.66 & 3.65 & 3.64 & 5.24 & 2.12\\
59 & 3.62 & 3.61 & 3.65 & 5.14 & 2.27\\
60 & 4.01 & 3.99 & 4.02 & 5.28 & 2.36\\
61 & 3.31 & 3.30 & 3.34 & 5.15 & 2.42\\
\hline
\end{longtblr}
\clearpage
\begin{figure}[!h]
\centering
\begin{tblr}{lccc}
\hline
& $\sigma_p$ & $\sigma_m$ & $\sigma_I$ \\
\hline
\ce{COOH} & 0.45 &0.37 &--- \\
\ce{NH2} & -0.66 & -0.16 & 0.10\\
\ce{OMe} & -0.27 & 0.12 & 0.23\\
\ce{OH} & -0.37 & 0.12 &0.27\\
\ce{NH3+} & 0.60 & 0.86 &---\\
\ce{Br} & 0.23 & 0.39 & 0.45\\
$>$\ce{C=O} & 0.50 & --- & --- \\
\ce{C=C-CONH2} & 0.36 & 0.28 & --- \\
\ce{NO2} & 0.78 & 0.71 & 0.63 \\
\hline
\end{tblr}
\includegraphics [width=\linewidth]{FigureS5}
\caption{Correlation between absolute oxidation (left) and reduction (right) as computed at the $\omega$B97X-D/6-311+G(d) level in water (SMD) and the Hammet (top, $\sigma_p$ for P6O and $\sigma_m$ for P5O) or the inductive (bottom, $\sigma_I$) constant of their substituent for compounds of the P5O (black markers, correlated with $\sigma_m$) and P6O (blue markers, correlated with $\sigma_p$) families. All constants are obtained from Ref.~\cite{hanschSurveyHammettSubstituent1991}.}
\end{figure}
\clearpage
\begin{longtblr}[caption={Distance ($r$, in \si{\angstrom}), $x$-component of the dipole moment ($\mu_x$, in \si{\elementarycharge\bohr}) and $xx$ component of the traceless quadrupole moment ($Q_{xx}$, in \si{\elementarycharge\bohr\squared}) for all compounds, as computed at the $\omega$B97X-D/6-311+G(d) level in gas phase for model geometries ($>$\ce{N-O^.} replaced by \ce{CH2}, see main text) }]{colspec={>{\bfseries}lX[c]X[c]X[c]}, width = 0.85\linewidth, rowhead=1}
\hline
& $r$ & $\mu_x$ & $Q_{xx}$\\
\hline
2 & 2.87 & -0.05 & -0.06\\
3 & 2.87 & 0.29 & 3.36\\
4 & 2.89 & 0.33 & -1.26\\
5 & 2.87 & 0.19 & 0.99\\
6 & 2.87 & 0.73 & -2.41\\
7 & 2.86 & 0.35 & 3.14\\
8 & 2.86 & 0.29 & 1.94\\
9 & 2.86 & 0.63 & 3.10\\
10 & 2.85 & 0.80 & -0.49\\
12 & 2.83 & 1.28 & -1.44\\
13 & 2.80 & 0.06 & 0.64\\
14 & 2.20 & -0.02 & -0.03\\
15 & 2.20 & 0.29 & 2.22\\
16 & 2.20 & 0.42 & -2.33\\
17 & 2.21 & -0.33 & 1.09\\
18 & 2.21 & -0.03 & 0.10\\
19 & 2.20 & 0.34 & 1.26\\
20 & 2.19 & 0.77 & 0.35\\
22 & 2.15 & 0.62 & -0.24\\
23 & 2.19 & 0.17 & 2.74\\
24 & 2.19 & 0.61 & 7.84\\
25 & 2.19 & -0.27 & 2.42\\
26 & 2.19 & 0.18 & 1.13\\
27 & 2.19 & 0.03 & 3.80\\
28 & 2.18 & 0.60 & 7.36\\
29 & 2.19 & -0.01 & 4.95\\
30 & 2.18 & -0.36 & 3.30\\
31 & 2.18 & -0.11 & 11.49\\
32 & 2.19 & 0.70 & 5.41\\
33 & 2.18 & 1.14 & 6.51\\
34 & 2.19 & -0.22 & 5.34\\
36 & 2.81 & 0.26 & 4.61\\
37 & 2.81 & 0.31 & 5.55\\
38 & 2.82 & 0.50 & 9.83\\
39 & 2.83 & 0.77 & 8.60\\
40 & 2.81 & 0.68 & 7.29\\
41 & 2.81 & 0.45 & 12.13\\
42 & 2.82 & 0.96 & 5.67\\
43 & 2.81 & -0.43 & 1.02\\
44 & 2.81 & -0.07 & 5.29\\
45 & 2.82 & 1.42 & 4.35\\
46 & 2.83 & 0.25 & 10.50\\
47 & 2.81 & -0.17 & 7.36\\
48 & 2.82 & 1.19 & 10.49\\
49 & 2.79 & -0.21 & 4.30\\
50 & 2.82 & -0.15 & 4.82\\
51 & 2.82 & -0.16 & 4.23\\
52 & 2.81 & 1.01 & 7.74\\
53 & 2.82 & 2.18 & 3.27\\
54 & 2.83 & 2.37 & 2.41\\
55 & 2.83 & 3.96 & 6.84\\
56 & 2.22 & -0.19 & 2.94\\
57 & 2.21 & 0.36 & -3.39\\
58 & 2.19 & 0.28 & 2.91\\
59 & 2.19 & -0.15 & 2.12\\
60 & 2.19 & 0.98 & 2.98\\
61 & 2.85 & 1.01 & -0.94\\
\hline
\end{longtblr}
\clearpage
\begin{longtblr}[caption={Distances ($d$, in \si{\angstrom}) between $>$\ce{N+=O} and \ce{A-} (left, measured as the distance between the nitrogen and the boron of \ce{A-}) and between \ce{N-O-} and \ce{C+} (right, measured as the distance between the oxygen and the nitrogen of \ce{C+}) together with their corresponding Gibbs free energy of complexation ($\Delta G^\star_{cplx}$, in \si{\kilo\joule\per\mole}) in two different cases: in front of the methyls ($f$, near the redox center) and behind the methyls ($b$, near the substituent), as computed at the $\omega$B97X-D/6-311+G(d) level in water (SMD), with $[\ce{X}]=\SI{0}{\mole\per\liter}$.}]{colspec={>{\bfseries}lX[c]X[c]X[c]X[c]cX[c]X[c]X[c]X[c]}, width = \linewidth,rowhead=2}
\hline
& \SetCell[c=4]{c} \ce{N+A-} & & & & & \SetCell[c=4]{c} \ce{N^-C+} & & & \\
\cline{2-5} \cline{7-10}
& $d_f$ & $\Delta{G}_{cplx,f}^\star$ & $d_b$ & $\Delta{G}_{cplx,b}^\star$ && $d_f$ & $\Delta{G}_{cplx,f}^\star$ & $d_b$ & $\Delta{G}_{cplx,b}^\star$\\
\hline
2 & 4.041 & 20.8 & 4.127 & 17.6 & & 4.133 & 39.6 & 4.376 & 38.7 \\
3 & 4.056 & 20.8 & 4.068 & 18.2 & & 3.832 & 38.8 & 4.064 & 38.5 \\
4 & 4.046 & 18.4 & 4.699 & 14.5 & & 3.915 & 38.9 & 4.146 & 34.1 \\
5 & 4.059 & 15.0 & 4.056 & 16.5 & & 3.766 & 37.5 & 4.262 & 29.8 \\
6 & 4.491 & 20.9 & 4.870 & 13.9 & & 3.913 & 38.6 & 4.159 & 37.1 \\
7 & 4.396 & 20.5 & 4.771 & 18.7 & & --- & --- & 3.867 & 32.6 \\
8 & 4.000 & 22.0 & 5.749 & 18.6 & & 4.072 & 47.9 & 4.706 & 41.8 \\
9 & 4.037 & 23.4 & 4.869 & 22.7 & & 4.330 & 50.8 & 3.737 & 47.8 \\
10 & 4.103 & 25.7 & 5.920 & 17.7 & & 4.535 & 40.0 & 4.087 & 40.2 \\
11 & --- & --- & 4.865 & 6.7 & & 3.805 & 36.8 & 4.070 & 32.7 \\
12 & --- & --- & 4.010 & 14.2 & & 3.830 & 34.4 & 4.433 & 27.6 \\
13 & 3.836 & 21.6 & 5.269 & 20.6 & & 4.261 & 14.7 & 6.505 & 16.7 \\
14 & 4.250 & 19.0 & 5.401 & 19.4 & & 4.097 & 17.1 & 7.081 & 17.9 \\
15 & 4.069 & 26.6 & --- & --- & & 3.894 & 13.8 & 7.129 & 27.5 \\
16 & 4.203 & 24.3 & --- & --- & & 4.876 & 30.4 & 6.732 & 18.7 \\
17 & 4.064 & 16.9 & 5.672 & 22.7 & & 4.657 & 18.3 & 7.120 & 8.6 \\
18 & 4.072 & 21.3 & --- & --- & & 4.865 & 24.8 & 7.515 & 27.4 \\
19 & 4.450 & 35.9 & 5.626 & 35.1 & & 3.697 & 21.2 & 5.827 & 17.0 \\
20 & 4.182 & 54.5 & --- & --- & & 3.898 & 25.6 & 6.681 & 22.8 \\
21 & 4.142 & 18.1 & 5.137 & 13.9 & & 4.120 & 13.9 & --- & --- \\
22 & 4.001 & 20.0 & 5.511 & 20.4 & & 3.992 & 15.5 & 6.799 & 18.6 \\
23 & 4.207 & 18.7 & 5.009 & 20.5 & & 4.851 & 17.4 & 6.265 & 8.2 \\
24 & 4.188 & 20.3 & 5.511 & 18.9 & & 4.201 & 18.2 & 6.616 & 6.5 \\
25 & 4.123 & 19.5 & 5.547 & 19.0 & & 4.963 & 18.9 & 6.507 & 7.9 \\
26 & 4.115 & 24.9 & 5.574 & 22.7 & & 4.842 & 19.3 & 6.372 & 8.2 \\
27 & 4.168 & 21.1 & 5.467 & 17.2 & & 4.793 & 19.0 & 6.314 & 9.6 \\
28 & 4.559 & 15.4 & 5.988 & 15.2 & & 4.165 & 17.2 & 6.940 & 5.1 \\
29 & 4.257 & 20.5 & 4.770 & 16.8 & & 3.867 & 20.2 & 6.431 & 9.1 \\
30 & 4.067 & 18.4 & 4.621 & 11.5 & & 3.871 & 19.1 & 6.405 & 6.3 \\
31 & 4.408 & 20.6 & 4.690 & 18.9 & & 3.931 & 18.5 & 6.684 & 6.5 \\
32 & 4.030 & 26.8 & 5.098 & 19.7 & & 3.860 & 20.6 & 6.460 & 4.8 \\
33 & 4.009 & 22.1 & 4.733 & 16.9 & & --- & --- & 6.164 & 17.2 \\
34 & 4.103 & 17.1 & 5.453 & 16.9 & & --- & --- & 6.360 & 7.4 \\
35 & 4.113 & 21.0 & 5.817 & 10.4 & & 4.793 & 24.9 & 6.323 & 10.4 \\
36 & 3.931 & 20.3 & 4.074 & 16.4 & & 4.547 & 14.2 & 5.653 & 4.7 \\
37 & 4.154 & 19.5 & 4.053 & 17.2 & & 3.830 & 17.2 & 5.649 & 1.7 \\
38 & 4.297 & 16.6 & 4.036 & 16.0 & & 3.810 & 13.7 & 6.112 & -2.0 \\
39 & 4.213 & 18.2 & 4.063 & 14.5 & & 3.823 & 17.5 & --- & --- \\
40 & 4.919 & 15.9 & 5.217 & 12.0 & & 4.456 & 16.0 & --- & --- \\
41 & 4.086 & 19.7 & 4.051 & 18.4 & & --- & --- & 6.093 & 3.5 \\
42 & 4.239 & 22.5 & --- & --- & & 4.273 & 13.9 & 5.308 & -5.5 \\
43 & 4.160 & 18.6 & 4.030 & 16.3 & & 4.855 & 12.5 & 5.188 & 6.4 \\
44 & 4.237 & 20.9 & 4.103 & 16.2 & & 4.306 & 19.8 & 6.661 & 6.9 \\
45 & 4.039 & 18.3 & 3.764 & 17.5 & & 3.773 & 23.4 & 5.456 & 7.0 \\
46 & 4.055 & 20.3 & 5.307 & 14.5 & & 3.845 & 21.4 & 5.830 & -0.4 \\
47 & 4.265 & 23.4 & 4.047 & 15.0 & & 4.196 & 15.4 & 5.937 & 4.9 \\
48 & 4.275 & 35.7 & 5.385 & 19.4 & & --- & --- & 6.384 & 15.0 \\
49 & 4.271 & 17.7 & 4.158 & 18.1 & & 4.798 & 21.4 & 6.293 & -2.4 \\
50 & 4.271 & 18.2 & 4.056 & 17.8 & & 3.766 & 17.7 & --- & --- \\
51 & 3.892 & 21.6 & 4.148 & 15.8 & & 4.781 & 18.2 & 6.006 & 5.2 \\
52 & 3.942 & 19.6 & 3.995 & 11.8 & & 4.783 & 17.4 & 5.566 & 2.2 \\
53 & 4.252 & 15.7 & 4.088 & 13.7 & & 3.770 & 19.9 & 5.896 & 7.3 \\
54 & 3.917 & 17.8 & 4.033 & 16.4 & & 4.794 & 19.2 & 5.822 & -1.1 \\
55 & 4.111 & 17.5 & --- & --- & & 4.787 & 13.4 & 6.135 & -2.0 \\
56 & 4.070 & 16.2 & --- & --- & & 4.749 & -14.7 & 5.546 & -8.9 \\
57 & 4.068 & 18.4 & 5.669 & 20.6 & & 3.895 & 4.2 & 7.126 & 3.6 \\
58 & 4.011 & 21.2 & 4.686 & 17.9 & & 3.880 & -2.7 & 4.884 & -1.1 \\
59 & 4.051 & 20.4 & 5.054 & 19.2 & & 3.820 & 16.4 & 4.984 & 16.4 \\
60 & 4.081 & 19.9 & 5.199 & 15.4 & & 4.580 & 21.1 & 6.352 & 10.0 \\
61 & 3.979 & 24.5 & 4.053 & 20.6 & & --- & --- & 3.928 & 29.6 \\
\hline
\end{longtblr}
\clearpage
\begin{longtblr}[caption={Distances ($d$, in \si{\angstrom}) between $>$\ce{N+=O} and \ce{A-} (left, measured as the distance between the nitrogen and the boron of \ce{A-}) and between \ce{N-O-} and \ce{C+} (right, measured as the distance between the oxygen and the nitrogen of \ce{C+}) together with their corresponding Gibbs free energy of complexation ($\Delta G^\star_{cplx}$, in \si{\kilo\joule\per\mole}) in two different cases: in front of the methyls ($f$, near the redox center) and behind the methyls ($b$, near the substituent), as computed at the $\omega$B97X-D/6-311+G(d) level in acetonitrile (SMD), with $[\ce{X}]=\SI{0}{\mole\per\liter}$.}]{colspec={>{\bfseries}lX[c]X[c]X[c]X[c]cX[c]X[c]X[c]X[c]}, width = \linewidth,rowhead=2}
\hline
& \SetCell[c=4]{c} \ce{N+A-} & & & & & \SetCell[c=4]{c} \ce{N^-C+} & & & \\
\cline{2-5} \cline{7-10}
& $d_f$ & $\Delta{G}_{cplx,f}^\star$ & $d_b$ & $\Delta{G}_{cplx,b}^\star$ && $d_f$ & $\Delta{G}_{cplx,f}^\star$ & $d_b$ & $\Delta{G}_{cplx,b}^\star$\\
\hline
2 & 3.861 & 20.3 & 4.083 & 16.3 & & 3.310 & 11.9 & 3.234 & 17.6 \\
3 & 3.870 & 18.9 & 4.078 & 17.7 & & --- & --- & 3.245 & 11.2 \\
4 & 3.840 & 18.7 & 4.071 & 14.4 & & 3.313 & 11.6 & 3.260 & 16.8 \\
6 & 3.880 & 17.7 & 4.233 & 14.3 & & 3.316 & 9.7 & 3.261 & 16.2 \\
12 & --- & --- & 4.011 & 10.7 & & 3.349 & -2.1 & 3.246 & 3.9 \\
15 & 4.146 & 26.1 & --- & --- & & 3.358 & -6.8 & 6.286 & 19.4 \\
23 & 4.235 & 20.6 & 5.020 & 20.6 & & 3.360 & -9.1 & 5.857 & 9.8 \\
24 & 4.093 & 18.7 & 5.566 & 19.8 & & 3.273 & -0.4 & 6.361 & 10.7 \\
25 & 4.135 & 18.7 & 5.531 & 21.3 & & 3.263 & 0.4 & 6.493 & 15.1 \\
26 & 4.125 & 21.4 & 5.549 & 21.4 & & 3.271 & 1.2 & 6.421 & 13.3 \\
27 & 4.211 & 19.8 & 5.375 & 17.8 & & 3.265 & 0.0 & 6.495 & 12.1 \\
33 & 4.080 & 25.0 & 5.072 & 22.6 & & 3.278 & -0.1 & 3.321 & 23.2 \\
36 & 4.259 & 19.5 & 4.049 & 16.5 & & 3.331 & -4.5 & 5.632 & 6.1 \\
51 & 3.942 & 20.8 & 4.128 & 16.7 & & 3.333 & -5.5 & 5.680 & 0.3 \\
54 & 4.240 & 11.5 & 4.027 & 9.3 & & 3.337 & -2.2 & 5.624 & 2.6 \\
55 & 4.158 & 14.1 & 4.004 & 13.0 & & 3.341 & -2.9 & 6.121 & 4.7 \\
58 & 4.187 & 18.8 & 4.885 & 17.0 & & 3.259 & -21.8 & 4.046 & 13.1 \\
59 & 4.925 & 23.8 & 5.096 & 17.6 & & 3.361 & -5.2 & --- & --- \\
60 & 4.119 & 19.8 & 5.344 & 20.4 & & 3.271 & -0.3 & 6.432 & 14.2 \\
61 & --- & --- & 4.055 & 17.0 & & --- & --- & 3.265 & 12.9 \\
\hline
\end{longtblr}
\clearpage
\begin{longtblr}[caption={Radii ($a$, in \si{\angstrom}) of the ion-pair for the 3 oxidation states of the nitroxides, together with their corresponding Gibbs free energy of complexation ($\Delta G^\star_{cplx}$, in \si{\kilo\joule\per\mole}), as computed at the $\omega$B97X-D/6-311+G(d) level in water (SMD), with $[\ce{X}]=\SI{1}{\mole\per\liter}$.}]{colspec={>{\bfseries}lX[c]X[c]cX[c]X[c]cX[c]X[c]}, width =\linewidth,rowhead=2}
\hline
& \SetCell[c=2]{c} \ce{N+ + A- <=> N+A-} & & & \SetCell[c=2]{c} \ce{N^. + C+ <=> N^.C^+} & & & \SetCell[c=2]{c} \ce{N- + C+ <=> N^-C+} & \\
\cline{2-3} \cline{5-6} \cline{8-9}
& $a_{\ce{N+A-}}$ & $\Delta{G}_{cplx}^\star$ & & $a_{\ce{N^.C+}}$ & $\Delta{G}_{cplx}^\star$ & & $a_{\ce{N^-C+}}$ & $\Delta{G}_{cplx}^\star$\\
\hline
1 & 3.95 & 24.1 & & 5.02 & 19.2 & & 4.96 & 21.8\\
2 & 3.98 & 19.2 & & 5.04 & 21.2 & & 4.96 & 40.1\\
3 & 3.92 & 19.7 & & 6.05 & 22.8 & & 4.85 & 39.9\\
4 & 4.12 & 16.1 & & 5.46 & 21.3 & & 4.97 & 35.6\\
5 & 5.47 & 16.7 & & 6.01 & 20.5 & & 4.90 & 31.2\\
6 & 4.15 & 15.4 & & 5.42 & 23.3 & & 4.94 & 38.5\\
7 & 4.92 & 20.2 & & 6.12 & 24.2 & & 5.47 & 33.9\\
8 & 4.72 & 20.1 & & 5.54 & 26.3 & & 5.24 & 43.2\\
9 & 4.54 & 24.2 & & 6.13 & 34.2 & & 5.04 & 49.1\\
10 & 4.91 & 19.2 & & 5.48 & 31.5 & & 5.20 & 41.4\\
11 & 4.16 & 8.6 & & 5.47 & 24.8 & & 4.93 & 34.0\\
12 & 3.72 & 15.7 & & 4.99 & 21.6 & & 4.95 & 29.0\\
13 & 4.28 & 22.2 & & 5.08 & 20.6 & & 5.13 & 16.1\\
14 & 3.97 & 20.5 & & 4.71 & 22.3 & & 4.65 & 18.5\\
15 & 4.99 & 28.2 & & 5.14 & 20.3 & & 5.36 & 15.3\\
16 & 3.95 & 25.9 & & 5.16 & 28.4 & & 4.78 & 20.2\\
17 & 5.15 & 18.6 & & 5.87 & 15.9 & & 5.24 & 10.0\\
18 & 4.23 & 22.9 & & 4.94 & 22.3 & & 4.95 & 26.3\\
19 & 5.39 & 36.7 & & 5.43 & 35.2 & & 5.26 & 18.3\\
20 & 4.58 & 56.0 & & 5.53 & 52.8 & & 4.90 & 24.2\\
21 & 4.28 & 15.9 & & 5.34 & 24.3 & & 5.32 & 15.2\\
22 & 3.94 & 21.6 & & 4.53 & 22.2 & & 4.40 & 17.0\\
23 & 4.52 & 20.3 & & 5.74 & 21.7 & & 4.78 & 9.6\\
24 & 4.60 & 20.4 & & 6.75 & 17.8 & & 4.80 & 7.8\\
25 & 4.24 & 20.5 & & 6.15 & 17.5 & & 4.77 & 9.2\\
26 & 4.66 & 24.2 & & 6.66 & 21.0 & & 4.67 & 9.5\\
27 & 4.23 & 18.7 & & 5.88 & 18.4 & & 4.68 & 10.9\\
28 & 5.19 & 16.7 & & 7.07 & 18.4 & & 5.76 & 6.4\\
29 & 4.31 & 18.3 & & 5.85 & 17.7 & & 4.79 & 10.4\\
30 & 4.32 & 13.0 & & 5.92 & 18.9 & & 4.76 & 7.6\\
31 & 4.63 & 20.4 & & 6.59 & 20.8 & & 4.78 & 7.8\\
32 & 4.63 & 21.2 & & 6.53 & 22.9 & & 4.76 & 6.0\\
33 & 4.63 & 18.3 & & 6.58 & 21.4 & & 5.63 & 18.5\\
34 & 4.71 & 18.3 & & 6.83 & 15.4 & & 4.74 & 8.7\\
35 & 4.45 & 12.1 & & 6.17 & 20.5 & & 4.69 & 11.7\\
36 & 4.14 & 17.9 & & 5.71 & 19.2 & & 4.64 & 6.0\\
37 & 4.56 & 18.6 & & 6.38 & 18.3 & & 4.72 & 2.9\\
38 & 5.01 & 17.4 & & 6.75 & 24.8 & & 4.99 & -0.7\\
39 & 5.13 & 16.0 & & 5.59 & 19.4 & & 7.28 & 18.9\\
40 & 5.20 & 13.5 & & 7.05 & 26.9 & & 5.77 & 17.3\\
41 & 5.08 & 19.9 & & 5.09 & 11.3 & & 4.98 & 4.7\\
42 & 6.47 & 24.1 & & 7.25 & 22.8 & & 4.73 & -4.2\\
43 & 5.61 & 17.8 & & 6.45 & 18.9 & & 5.58 & 7.6\\
44 & 5.33 & 17.6 & & 5.38 & 8.0 & & 5.40 & 8.2\\
45 & 5.22 & 19.0 & & 7.27 & 22.0 & & 5.13 & 8.3\\
46 & 4.97 & 16.0 & & 7.16 & 26.7 & & 4.94 & 0.8\\
47 & 5.56 & 16.5 & & 6.73 & 21.6 & & 5.55 & 6.2\\
48 & 4.84 & 20.8 & & 6.10 & 32.5 & & 4.96 & 16.3\\
49 & 5.54 & 19.3 & & 4.89 & 13.9 & & 4.83 & -1.1\\
50 & 4.64 & 19.3 & & 5.55 & 20.8 & & 6.53 & 19.1\\
51 & 4.52 & 17.3 & & 4.83 & 18.3 & & 4.63 & 6.5\\
52 & 4.12 & 13.2 & & 4.63 & 9.9 & & 4.63 & 3.6\\
53 & 4.75 & 15.2 & & 5.43 & 23.5 & & 4.64 & 8.6\\
54 & 4.66 & 17.9 & & 6.22 & 21.0 & & 4.68 & 0.2\\
55 & 6.10 & 19.0 & & 6.32 & 18.2 & & 4.73 & -0.7\\
56 & 5.18 & 17.8 & & 5.69 & 19.0 & & 5.56 & -13.3\\
57 & 5.26 & 20.1 & & 5.96 & 18.4 & & 4.93 & 5.0\\
58 & 3.95 & 19.4 & & 5.83 & 18.6 & & 5.56 & -1.3\\
59 & 4.07 & 20.7 & & 5.63 & 20.5 & & 5.73 & 17.9\\
60 & 4.15 & 16.9 & & 6.08 & 16.1 & & 4.67 & 11.4\\
61 & 3.77 & 22.2 & & 5.41 & 23.0 & & 4.86 & 31.0\\
\hline
\end{longtblr}
\clearpage
\begin{longtblr}[caption={Radii ($a$, in \si{\angstrom}) of the ion-pair for the 3 oxidation states of the nitroxides, together with their corresponding Gibbs free energy of complexation ($\Delta G^\star_{cplx}$, in \si{\kilo\joule\per\mole}), as computed at the $\omega$B97X-D/6-311+G(d) level in acetonitrile (SMD), with $[\ce{X}]=\SI{1}{\mole\per\liter}$.}]{colspec={>{\bfseries}lX[c]X[c]cX[c]X[c]cX[c]X[c]}, width =\linewidth,rowhead=2}
\hline
& \SetCell[c=2]{c} \ce{N+ + A- <=> N+A-} & & & \SetCell[c=2]{c} \ce{N^. + C+ <=> N^.C^+} & & & \SetCell[c=2]{c} \ce{N- + C+ <=> N^-C+} & \\
\cline{2-3} \cline{5-6} \cline{8-9}
& $a_{\ce{N+A-}}$ & $\Delta{G}_{cplx}^\star$ & & $a_{\ce{N^.C+}}$ & $\Delta{G}_{cplx}^\star$ & & $a_{\ce{N^-C+}}$ & $\Delta{G}_{cplx}^\star$\\
\hline
2 & 3.78 & 21.1 & & 5.09 & 25.3 & & 4.74 & 16.1\\
3 & 3.78 & 22.3 & & 6.07 & 30.7 & & 4.71 & 15.2\\
4 & 3.77 & 19.2 & & 5.48 & 24.8 & & 5.24 & 16.0\\
6 & 3.85 & 19.1 & & --- & --- & & 4.90 & 14.0\\
12 & 3.72 & 15.5 & & 5.03 & 28.4 & & 4.96 & 2.3\\
15 & 5.08 & 31.2 & & 5.22 & 24.9 & & 5.16 & -2.6\\
23 & 4.10 & 25.4 & & 5.61 & 23.8 & & 5.56 & -4.8\\
24 & 5.97 & 23.6 & & 6.63 & 29.3 & & 6.90 & 3.9\\
25 & 4.32 & 23.4 & & 6.10 & 24.5 & & 6.32 & 4.8\\
26 & 6.13 & 26.4 & & 6.67 & 28.5 & & 6.90 & 5.5\\
27 & 4.22 & 22.5 & & 5.80 & 25.8 & & 6.00 & 4.3\\
33 & 4.65 & 27.2 & & 6.62 & 30.0 & & 6.65 & 4.2\\
36 & 4.14 & 21.1 & & 4.90 & 23.7 & & 5.80 & -0.3\\
51 & 4.53 & 21.3 & & 4.97 & 25.9 & & 6.06 & -1.3\\
54 & 4.63 & 14.0 & & 5.29 & 27.1 & & 6.38 & 1.9\\
55 & 4.69 & 17.6 & & 6.27 & 29.6 & & 6.38 & 1.3\\
58 & 4.04 & 21.8 & & 5.86 & 31.1 & & 5.66 & -17.4\\
59 & 4.09 & 22.4 & & 5.63 & 30.7 & & 5.55 & -0.8\\
60 & 4.30 & 24.5 & & 5.98 & 28.7 & & 6.20 & 4.1\\
61 & 3.76 & 21.8 & & 5.49 & 27.9 & & 4.67 & 17.1\\
\hline
\end{longtblr}
\begin{figure}[!h]
\centering
\includegraphics [width=\linewidth]{FigureS6}
\caption{Enthalpic ($\Delta H^\star_{cplx}$, filled bars) and entropic (-T$\Delta S^\star_{cplx}$, empty bars) contributions to the ion-pair formation Gibbs free energy ($\Delta G^\star_{cplx}$, round markers) of the 3 states of the nitroxides, as computed at the $\omega$B97X-D/6-311+G(d) level in water (SMD), with $[\ce{X}]=\SI{1}{\mole\per\liter}$.}
\end{figure}
\clearpage
\begin{longtblr}[caption={Radii ($a$, in \si{\angstrom}) of the ion-pair for the 3 oxidation states of the nitroxides, toghether with their corresponding Gibbs free energy of complexation ($\Delta G^\star_{cplx}$, in \si{\kilo\joule\per\mole}), as computed at the $\omega$B97X-D/6-311+G(d) level in water (SMD), with $[\ce{X}]=\SI{1}{\mole\per\liter}$.}]{colspec={>{\bfseries}lX[c]X[c]cX[c]X[c]cX[c]X[c]}, width =\linewidth,rowhead=2}
\hline
& \SetCell[c=2]{c} \ce{N+ + A- + C+ <=> N+AC} & & & \SetCell[c=2]{c} \ce{N^. + A- + C+ <=> N^.AC} & & & \SetCell[c=2]{c} \ce{N- + A- + C+ <=> N^-AC} & \\
\cline{2-3} \cline{5-6} \cline{8-9}
& $a_{\ce{N+AC}}$ & $\Delta{G}_{cplx}^\star$ & & $a_{\ce{N^.AC}}$ & $\Delta{G}_{cplx}^\star$ & & $a_{\ce{N^-AC}}$ & $\Delta{G}_{cplx}^\star$\\
\hline
1 & 4.77 & 40.4 & & 4.73 & 43.6 & & 5.40 & 43.4\\
2 & 5.28 & 42.9 & & 4.89 & 42.7 & & 5.95 & 71.3\\
3 & 6.31 & 43.5 & & 5.10 & 40.4 & & 5.39 & 71.6\\
4 & 5.67 & 41.5 & & 6.33 & 45.3 & & 5.06 & 59.0\\
5 & 6.24 & 42.7 & & 6.70 & 47.2 & & 4.90 & 58.1\\
6 & 5.31 & 40.0 & & 6.52 & 44.1 & & 5.10 & 60.7\\
7 & 6.11 & 41.6 & & 5.57 & 42.4 & & 5.50 & 63.5\\
8 & 6.02 & 43.2 & & 4.87 & 36.0 & & 5.38 & 63.3\\
9 & 5.51 & 39.3 & & 5.47 & 43.9 & & 6.82 & 74.0\\
10 & 5.40 & 37.5 & & 5.13 & 39.0 & & 5.90 & 63.6\\
11 & 6.08 & 37.7 & & 6.34 & 34.1 & & 5.18 & 54.4\\
12 & 5.38 & 44.0 & & 4.73 & 40.0 & & 4.88 & 54.4\\
13 & 5.26 & 43.5 & & 4.99 & 38.4 & & 5.05 & 41.0\\
14 & 5.41 & 45.4 & & 4.67 & 44.7 & & 4.96 & 46.9\\
15 & 5.10 & 44.7 & & 5.36 & 55.6 & & 5.65 & 46.6\\
16 & 4.97 & 43.5 & & 6.04 & 50.9 & & 5.97 & 52.4\\
17 & 5.51 & 43.5 & & 5.51 & 43.5 & & 5.10 & 49.5\\
18 & 4.92 & 42.0 & & 4.99 & 37.7 & & 6.65 & 52.4\\
19 & 5.30 & 52.8 & & 5.36 & 59.5 & & 6.68 & 47.0\\
20 & 6.62 & 74.4 & & 5.36 & 72.4 & & 5.71 & 54.6\\
21 & 4.68 & 43.3 & & 4.54 & 33.9 & & 5.14 & 36.0\\
22 & 4.71 & 41.2 & & 4.61 & 47.1 & & 4.87 & 43.4\\
23 & 4.98 & 38.3 & & 5.66 & 44.3 & & 6.01 & 46.7\\
24 & 6.57 & 39.7 & & 6.80 & 39.8 & & 6.56 & 45.1\\
25 & 6.21 & 34.4 & & 5.44 & 39.2 & & 6.19 & 44.1\\
26 & 6.10 & 37.8 & & 5.94 & 43.7 & & 6.74 & 43.5\\
27 & 6.21 & 35.1 & & 5.24 & 40.1 & & 5.89 & 39.2\\
28 & 6.51 & 27.6 & & 7.11 & 37.9 & & 7.09 & 37.3\\
29 & 5.27 & 30.9 & & 6.55 & 39.4 & & 6.43 & 51.6\\
30 & 5.23 & 28.4 & & 6.17 & 39.3 & & 5.15 & 38.3\\
31 & 6.50 & 37.8 & & 5.92 & 34.4 & & 6.13 & 40.1\\
32 & 5.55 & 34.3 & & 6.02 & 40.0 & & 6.63 & 43.9\\
33 & 6.52 & 37.3 & & 6.68 & 44.8 & & 6.47 & 37.9\\
34 & 6.26 & 32.6 & & 6.21 & 36.3 & & 6.88 & 44.3\\
35 & 5.33 & 33.3 & & 5.28 & 34.3 & & 6.26 & 33.8\\
36 & 5.00 & 24.4 & & 5.75 & 38.3 & & 5.24 & 37.0\\
37 & 5.30 & 35.0 & & 5.70 & 37.4 & & 6.51 & 34.2\\
38 & 5.26 & 22.3 & & 6.31 & 46.8 & & 6.45 & 37.8\\
39 & 5.24 & 22.1 & & 5.98 & 40.5 & & 5.94 & 34.9\\
40 & 6.66 & 32.8 & & 6.81 & 45.4 & & 6.59 & 52.2\\
41 & 6.36 & 35.3 & & 7.20 & 40.1 & & 5.62 & 38.0\\
42 & 5.20 & 23.9 & & 7.08 & 45.3 & & 7.43 & 37.9\\
43 & 5.88 & 31.4 & & 5.97 & 35.7 & & 5.63 & 38.1\\
44 & --- & --- & & 6.08 & 28.6 & & --- & ---\\
45 & 5.16 & 19.4 & & 6.97 & 42.6 & & 7.17 & 47.7\\
46 & 5.18 & 25.1 & & 7.11 & 54.7 & & 7.22 & 47.8\\
47 & 5.56 & 22.2 & & 6.86 & 39.4 & & 6.46 & 27.1\\
48 & 5.76 & 37.6 & & 6.06 & 34.4 & & 6.15 & 31.3\\
49 & 5.01 & 33.3 & & 5.11 & 36.2 & & 5.55 & 32.8\\
50 & 5.88 & 39.9 & & 6.53 & 39.6 & & 6.27 & 40.7\\
51 & 4.97 & 20.4 & & 5.45 & 36.0 & & 5.22 & 37.6\\
52 & 5.60 & 29.7 & & 5.37 & 34.7 & & 5.16 & 34.1\\
53 & 5.01 & 19.1 & & 5.29 & 37.8 & & 5.33 & 40.8\\
54 & 5.14 & 34.4 & & 5.83 & 35.6 & & 5.67 & 37.4\\
55 & 5.11 & 24.2 & & 5.97 & 23.9 & & 5.87 & 31.7\\
56 & 5.79 & 38.7 & & 5.61 & 44.5 & & 6.60 & 16.0\\
57 & 5.90 & 44.6 & & 4.67 & 32.6 & & 5.72 & 34.0\\
58 & 6.36 & 42.0 & & 6.53 & 40.3 & & 6.46 & 23.8\\
59 & 6.31 & 47.3 & & 6.59 & 44.0 & & 6.61 & 41.5\\
60 & 6.33 & 33.2 & & 6.42 & 41.4 & & 6.19 & 43.4\\
61 & 5.57 & 47.1 & & 5.89 & 40.9 & & 5.03 & 72.7\\
\hline
\end{longtblr}
\clearpage
\begin{longtblr}[caption={Radii ($a$, in \si{\angstrom}) of the ion-pair for the 3 oxidation states of the nitroxides, toghether with their corresponding Gibbs free energy of complexation ($\Delta G^\star_{cplx}$, in \si{\kilo\joule\per\mole}), as computed at the $\omega$B97X-D/6-311+G(d) level in acetonitrile (SMD), with $[\ce{X}]=\SI{1}{\mole\per\liter}$.}]{colspec={>{\bfseries}lX[c]X[c]cX[c]X[c]cX[c]X[c]}, width =\linewidth,rowhead=2}
\hline
& \SetCell[c=2]{c} \ce{N+ + A- + C+ <=> N+AC} & & & \SetCell[c=2]{c} \ce{N^. + A- + C+ <=> N^.AC} & & & \SetCell[c=2]{c} \ce{N- + A- + C+ <=> N^-AC} & \\
\cline{2-3} \cline{5-6} \cline{8-9}
& $a_{\ce{N+AC}}$ & $\Delta{G}_{cplx}^\star$ & & $a_{\ce{N^.AC}}$ & $\Delta{G}_{cplx}^\star$ & & $a_{\ce{N^-AC}}$ & $\Delta{G}_{cplx}^\star$\\
\hline
2 & 5.55 & 56.3 & & 6.09 & 53.9 & & 5.85 & 54.2\\
3 & 6.35 & 57.7 & & 6.06 & 59.2 & & 5.49 & 57.1\\
4 & 5.94 & 58.0 & & 6.36 & 55.9 & & 6.57 & 48.4\\
6 & 5.32 & 56.1 & & 4.73 & 41.5 & & 5.16 & 48.6\\
12 & 5.71 & 57.1 & & 4.90 & 47.9 & & 4.95 & 34.3\\
15 & 6.42 & 66.2 & & 5.25 & 61.9 & & 6.26 & 28.9\\
23 & 6.25 & 54.7 & & 5.64 & 47.4 & & 5.51 & 30.7\\
24 & 6.53 & 55.9 & & 6.74 & 58.2 & & 6.60 & 39.2\\
25 & 6.63 & 58.2 & & 5.58 & 51.1 & & 6.27 & 34.7\\
26 & 6.16 & 51.3 & & 6.08 & 53.8 & & 6.87 & 34.0\\
27 & 6.19 & 50.7 & & 5.90 & 58.2 & & 5.93 & 33.4\\
33 & 6.40 & 58.9 & & 6.22 & 54.6 & & 6.55 & 36.9\\
36 & 6.09 & 49.8 & & 6.36 & 51.2 & & 5.66 & 30.2\\
51 & 5.17 & 44.6 & & 6.22 & 52.6 & & 6.74 & 29.8\\
54 & 5.19 & 37.3 & & 6.24 & 52.2 & & 6.74 & 39.0\\
55 & 5.11 & 39.5 & & 6.23 & 47.7 & & 6.85 & 34.7\\
58 & 6.16 & 60.1 & & 6.62 & 47.0 & & 6.47 & 7.7\\
59 & 6.23 & 58.6 & & 6.65 & 53.0 & & 6.49 & 35.4\\
60 & 6.23 & 50.1 & & 6.41 & 57.1 & & 6.15 & 31.4\\
61 & 6.41 & 59.2 & & 5.83 & 54.6 & & 5.24 & 49.4\\
\hline
\end{longtblr}
\clearpage
\begin{longtblr}[caption={Litterature experimental $E^0_{rel}(\ce{N+}|\ce{N^.})$ (in \si{\milli\volt} vs SHE), measured in water and acetonitrile. When two values are reported, the first one is used in the regressions and discussions.},
note{a} = {From Ref.~\citenum{goldsteinStructureActivityRelationship2006}.},
note{b} = {From Ref.~\citenum{morrisChemicalElectrochemicalReduction1991}, converted from SCE to SHE with +\SI{244}{\milli\volt} \cite{pavlishchukConversionConstantsRedox2000}.},
note{c}={From Ref.~\citenum{blincoExperimentalTheoreticalStudies2008}.},
note{d}={From Ref.~\citenum{zhangEffectHeteroatomFunctionality2018}, converted from Fc to SHE with +\SI{624}{\milli\volt} \cite{pavlishchukConversionConstantsRedox2000}.},
label={tab:exp}
]{colspec={>{\bfseries}lX[c]X[c]c>{\bfseries}lX[c]X[c]}, width = 0.85\linewidth,rowhead=1}
\hline
& Water & Acetonitrile & & & Water & Acetonitrile\\
\hline
2 & 740\TblrNote{a} & 850\TblrNote{c}, 858\TblrNote{d} & & 33 & --- & 1123\TblrNote{c} \\
3 & 805\TblrNote{a}, 774\TblrNote{b} & 924\TblrNote{c}, 939\TblrNote{d} & & 36 & --- & 1010\TblrNote{c} \\
4 & 817\TblrNote{a}, 874\TblrNote{b} & 1063\TblrNote{c} & & 51 & --- & 1102\TblrNote{c} \\
6 & 825\TblrNote{a}, 724\TblrNote{b} & 877\TblrNote{c}, 908\TblrNote{d} & & 54 & --- & 1096\TblrNote{c} \\
11 & 892\TblrNote{a} & --- & & 55 & --- & 1175\TblrNote{c} \\
12 & 918\TblrNote{a}, 914\TblrNote{b} & 1034\TblrNote{d} & & 56 & 867\TblrNote{a}, 874\TblrNote{b} & --- \\
13 & 795\TblrNote{a} & --- & & 57 & 853\TblrNote{a} & --- \\
15 & 870\TblrNote{a}, 784\TblrNote{b} & 976\TblrNote{c} & & 58 & 955\TblrNote{a}, 974\TblrNote{b} & 1073\TblrNote{d} \\
18 & 814\TblrNote{b} & --- & & 59 & --- & 1109\TblrNote{d} \\
23 & --- & 1045\TblrNote{c} & & 60 & --- & 1099\TblrNote{c} \\
24 & --- & 1095\TblrNote{c} & & 61 & --- & 996\TblrNote{d} \\
25 & --- & 990\TblrNote{c} & \\
26 & --- & 1030\TblrNote{c} & \\
27 & --- & 1023\TblrNote{c} & & & & \\
\hline
\end{longtblr}
\begin{figure}[!h]
\centering
\includegraphics[width=.75\linewidth]{FigureS7}
\caption{Comparison between experimental ($E^0_{rel} $ vs SHE, from Table \ref{tab:exp}) and calculated relative oxidation potential ($E^f_{rel}$ vs SHE) in water (top) and acetonitrile (bottom) as computed at the $\omega$B97X-D/6-311+G(d) level using SMD, but \textbf{without} correction due to DH or ion-pair formation. The dashed line is a linear regression.}
\label{fig:expvstheo}
\end{figure}
\clearpage
\bibliographystyle{unsrt}
\bibliography{biblio}
\end{document}