-
Notifications
You must be signed in to change notification settings - Fork 0
/
model_handle_util.py
548 lines (477 loc) · 21.5 KB
/
model_handle_util.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
import urllib
import os
from datetime import datetime
import matplotlib.pyplot as plt
from util import csv_to_dataset, history_points
import keras
import tensorflow as tf
from keras.models import Model
from keras.layers import Dense, Dropout, LSTM, Input, Activation, concatenate
from keras import optimizers
import numpy as np
from keras.models import load_model
import json
import webbrowser
np.random.seed(4)
tf.random.set_seed(4)
def get_info_from_options(options):
file_name = options.get(
'file_name') if 'file_name' in options else 'VN_INDEX_daily.csv'
data_path = options.get(
'data_path') if 'data_path' in options else f'{os.getcwd()}/data/index/'
base_name = file_name.replace(".csv", "")
file_name_path = f'{data_path}{file_name}'
moving_average = options.get(
'moving_average') if 'moving_average' in options else 30
epochs = options.get('epochs') if 'epochs' in options else 10
start = options.get('start') if 'start' in options else 0
end = options.get('end') if 'end' in options else -1
predict_delay_session_list = options.get(
'predict_delay_session_list') if 'predict_delay_session_list' in options else [1, 3, 5, 10]
model_base_name = f'{base_name}_{epochs}_{moving_average}'
model_name = f'{os.getcwd()}/models/{base_name}_{epochs}_{moving_average}.h5'
result_name = f'{os.getcwd()}/result/{base_name}.json'
json_path = f'{os.getcwd()}/web/json/{base_name}.json'
return {
'file_name': file_name_path,
'base_name': base_name,
'moving_average': moving_average,
'file_name_path': file_name_path,
'epochs': epochs,
'model_name': model_name,
'model_base_name': model_base_name,
'start': start,
'end': end,
'predict_delay_session_list': predict_delay_session_list,
'result_name': result_name,
'json_path': json_path
}
def check_result_already_exist(options):
info = get_info_from_options(options)
moving_average = info['moving_average']
epochs = info['epochs']
predict_delay_session_list = info['predict_delay_session_list']
result_name = info['result_name']
return_value = True
if os.path.isfile(result_name) == True:
pre_content = json.loads(open(result_name, "r").read())
epochs_key = f'epochs_{epochs}'
if (epochs_key in pre_content) == False:
return_value = False
else:
moving_average_key = f'moving_average_{moving_average}'
if (moving_average_key in pre_content[epochs_key]) == False:
return_value = False
else:
for delay_session in predict_delay_session_list:
delay_session_key = f'delay_session_{delay_session}'
if (delay_session_key in pre_content[epochs_key][moving_average_key]) == False:
return_value = False
else:
return_value = False
return return_value
def train_model(options):
info = get_info_from_options(options)
file_name = info['file_name']
moving_average = info['moving_average']
epochs = info['epochs']
save_name = info['model_name']
model_base_name = info['model_base_name']
print(f'{model_base_name}')
if os.path.isfile(save_name) == True:
print(f'{model_base_name} trained')
return
try:
ohlcv_histories, technical_indicators, next_day_open_values, unscaled_y, y_normaliser = csv_to_dataset(
file_name)
except():
print('data parse false')
test_split = 0.9
n = int(ohlcv_histories.shape[0] * test_split)
ohlcv_train = ohlcv_histories[:n]
tech_ind_train = technical_indicators[:n]
y_train = next_day_open_values[:n]
ohlcv_test = ohlcv_histories[n:]
tech_ind_test = technical_indicators[n:]
y_test = next_day_open_values[n:]
unscaled_y_test = unscaled_y[n:]
# model architecture
# define two sets of inputs
lstm_input = Input(shape=(history_points, 5), name='lstm_input')
dense_input = Input(
shape=(technical_indicators.shape[1],), name='tech_input')
# the first branch operates on the first input
x = LSTM(moving_average, name='lstm_0')(lstm_input)
x = Dropout(0.2, name='lstm_dropout_0')(x)
lstm_branch = Model(inputs=lstm_input, outputs=x)
# the second branch opreates on the second input
y = Dense(20, name='tech_dense_0')(dense_input)
y = Activation("relu", name='tech_relu_0')(y)
y = Dropout(0.2, name='tech_dropout_0')(y)
technical_indicators_branch = Model(inputs=dense_input, outputs=y)
# combine the output of the two branches
combined = concatenate(
[lstm_branch.output, technical_indicators_branch.output], name='concatenate')
z = Dense(64, activation="sigmoid", name='dense_pooling')(combined)
z = Dense(1, activation="linear", name='dense_out')(z)
# our model will accept the inputs of the two branches and
# then output a single value
model = Model(inputs=[lstm_branch.input,
technical_indicators_branch.input], outputs=z)
adam = optimizers.Adam(lr=0.0005)
model.compile(optimizer=adam, loss='mse')
model.fit(x=[ohlcv_train, tech_ind_train], y=y_train,
batch_size=64, epochs=epochs, shuffle=True, validation_split=0.1)
# evaluation
y_test_predicted = model.predict([ohlcv_test, tech_ind_test])
# print('y_test_predicted.shape', y_test_predicted.shape)
y_test_predicted = y_normaliser.inverse_transform(y_test_predicted)
y_predicted = model.predict([ohlcv_histories, technical_indicators])
y_predicted = y_normaliser.inverse_transform(y_predicted)
assert unscaled_y_test.shape == y_test_predicted.shape
real_mse = np.mean(np.square(unscaled_y_test - y_test_predicted))
scaled_mse = real_mse / (np.max(unscaled_y_test) -
np.min(unscaled_y_test)) * 100
# print(scaled_mse)
plt.gcf().set_size_inches(22, 15, forward=True)
start = 0
end = -1
real = plt.plot(unscaled_y_test[start:end], label='real')
pred = plt.plot(y_test_predicted[start:end], label='predicted')
plt.legend(['Real', 'Predicted'])
# plt.show()
model.save(save_name)
def predict_model(options):
info = get_info_from_options(options)
file_name = info['file_name']
modal_name = info['model_name']
start = info['start']
end = info['end']
model_base_name = info['model_base_name']
predict_delay_session_list = info['predict_delay_session_list']
check_result_already_exist_value = check_result_already_exist(options)
if check_result_already_exist_value == True:
print(f'{model_base_name} predicted')
return False
model = load_model(modal_name)
ohlcv_histories, technical_indicators, next_day_open_values, unscaled_y, y_normaliser = csv_to_dataset(
file_name)
test_split = 0.9
n = int(ohlcv_histories.shape[0] * test_split)
ohlcv_train = ohlcv_histories[:n]
tech_ind_train = technical_indicators[:n]
y_train = next_day_open_values[:n]
ohlcv_test = ohlcv_histories[n:]
tech_ind_test = technical_indicators[n:]
y_test = next_day_open_values[n:]
unscaled_y_test = unscaled_y[n:]
y_test_predicted = model.predict([ohlcv_test, tech_ind_test])
y_test_predicted = y_normaliser.inverse_transform(y_test_predicted)
buys = []
sells = []
thresh = 0.1
# start = 0
# end = -1
x = 0
todayPriceList = []
predictedPriceList = []
length = len(ohlcv_test[start: end])
for ohlcv, ind in zip(ohlcv_test[start: end], tech_ind_test[start: end]):
normalised_price_today = ohlcv[-1][0]
normalised_price_today = np.array([[normalised_price_today]])
price_today = y_normaliser.inverse_transform(normalised_price_today)
ohlcv_predict = np.array(ohlcv, ndmin=3) # fix dimension
ind_predict = np.array(ind, ndmin=2) # fix dimension
predicted_price_tomorrow = np.squeeze(y_normaliser.inverse_transform(
model.predict([ohlcv_predict, ind_predict])))
todayPriceList.append(price_today[0][0])
predictedPriceList.append(float(predicted_price_tomorrow))
delta = predicted_price_tomorrow - price_today
if delta > thresh:
buys.append((x, price_today[0][0]))
elif delta < -thresh:
sells.append((x, price_today[0][0]))
x += 1
# print(x, '/', length)
# print(f"buys: {len(buys)}")
# print(f"sells: {len(sells)}")
# def compute_earnings(buys_, sells_):
# purchase_amt = 10
# stock = 0
# balance = 0
# while len(buys_) > 0 and len(sells_) > 0:
# if buys_[0][0] < sells_[0][0]:
# # time to buy $10 worth of stock
# balance -= purchase_amt
# stock += purchase_amt / buys_[0][1]
# buys_.pop(0)
# else:
# # time to sell all of our stock
# balance += stock * sells_[0][1]
# stock = 0
# sells_.pop(0)
# print(f"earnings: ${balance}")
# we create new lists so we dont modify the original
# compute_earnings([b for b in buys], [s for s in sells])
# plt.gcf().set_size_inches(15, 10, forward=True)
# real = plt.plot(todayPriceList, label='real')
# pred = plt.plot(predictedPriceList, label='predicted')
# if len(buys) > 0:
# plt.scatter(list(list(zip(*buys))[0]),
# list(list(zip(*buys))[1]), c='#00ff00', s=30)
# if len(sells) > 0:
# plt.scatter(list(list(zip(*sells))[0]),
# list(list(zip(*sells))[1]), c='#ff0000', s=30)
# caculate buy sell with difference predicted price
buyWithDifference = []
sellWithDifference = []
buy_sell_difference = []
rootPredictedPriceList = predictedPriceList[0]
for index, predictedValue in enumerate(predictedPriceList):
if index > 0:
if predictedValue > predictedPriceList[index - 1]:
buyWithDifference.append(
(index - 1, predictedPriceList[index - 1]))
buy_sell_difference.append('buy')
else:
sellWithDifference.append(
(index - 1, predictedPriceList[index - 1]))
buy_sell_difference.append('sell')
# plt.scatter(list(list(zip(*buyWithDifference))[0]),
# list(list(zip(*buyWithDifference))[1]), c='#00ff00', s=10)
# plt.scatter(list(list(zip(*sellWithDifference))[0]),
# list(list(zip(*sellWithDifference))[1]), c='#ff0000', s=10)
# plt.legend(['Real', 'Predicted', 'Buy', 'Sell',
# 'buyWithDifference', 'sellWithDifference'])
# caculate accuracy
# print('buyWithDifference', len(buyWithDifference))
# print('sellWithDifference', len(sellWithDifference))
# print('todayPriceList', len(todayPriceList))
def caculate_accuracy_buy_sell_with_delay_session(deal_type, delay_session):
total_caculate_deal = 0
true_deal = 0
false_deal = 0
if(deal_type == 'buy'):
list_data = buyWithDifference
else:
list_data = sellWithDifference
# remove last item because list predict from 0 to length - 1
length_real_data = len(todayPriceList) - 1
for index, deal_predicted_price in list_data:
# print(index, deal_predicted_price)
index_has_delay_session = index + delay_session
if index_has_delay_session <= length_real_data:
total_caculate_deal += 1
deal_real_price = todayPriceList[index]
delay_session_price = todayPriceList[index_has_delay_session]
# print('dealRealPrice', deal_real_price,
# 'delay_sessionPrice', delay_session_price)
if(deal_type == 'buy'):
if(delay_session_price > deal_real_price):
true_deal += 1
else:
false_deal += 1
else:
if(delay_session_price < deal_real_price):
true_deal += 1
else:
false_deal += 1
if total_caculate_deal > 0:
print(deal_type, ': total deal: ', len(list_data), ', total caculate deal: ',
total_caculate_deal, ', true: ', true_deal, ', false: ', false_deal, ' accuracy: ',
round(true_deal/total_caculate_deal*100, 1), '%')
return [deal_type, len(list_data), total_caculate_deal, true_deal, false_deal, round(true_deal/total_caculate_deal*100, 1)]
# return [deal_type, len(list_data), total_caculate_deal, true_deal, false_deal,'no_signed_deal']
else:
print(deal_type, ': total deal: ', len(list_data), ', total caculate deal: ',
total_caculate_deal, ', true: ', true_deal, ', false: ', false_deal)
return [deal_type, len(list_data), total_caculate_deal, true_deal, false_deal,'no_signed_deal']
def caculate_accuracy_predicted_with_delay_session(delay_session):
print('delay_session: ', delay_session)
buy_result = caculate_accuracy_buy_sell_with_delay_session(
'buy', delay_session)
# sell_result = caculate_accuracy_buy_sell_with_delay_session('sell', delay_session)
# print('total: total deal: ', buy_result[1]+sell_result[1], ', total caculate deal: ',
# buy_result[2] + sell_result[2], ', true: ', buy_result[3] +
# sell_result[3], ', false: ', buy_result[4] +
# sell_result[4], ' accuracy: ',
# ((buy_result[3] +
# sell_result[3])/(buy_result[2] + sell_result[2])*100), '%')
return buy_result
buy_result_list = {}
for delay_session in predict_delay_session_list:
buy_result = caculate_accuracy_predicted_with_delay_session(
delay_session)
buy_result_list[delay_session] = buy_result
return {
'options': options,
'buy_result_list': buy_result_list,
'predicted_price_list' : predictedPriceList,
'buy_sell_difference' : buy_sell_difference
}
# plt.show()
def save_result(predict_result):
info = get_info_from_options(predict_result['options'])
base_name = info['base_name']
moving_average = info['moving_average']
epochs = info['epochs']
predict_delay_session_list = info['predict_delay_session_list']
result_name = info['result_name']
if os.path.isfile(result_name) == False:
result_file = open(result_name, "x")
result_file.write("{}")
result_file.close()
pre_content = json.loads(open(result_name, "r").read())
epochs_key = f'epochs_{epochs}'
if (epochs_key in pre_content) == False:
pre_content[epochs_key] = {}
moving_average_key = f'moving_average_{moving_average}'
if (moving_average_key in pre_content[epochs_key]) == False:
pre_content[epochs_key][moving_average_key] = {}
for delay_session in predict_delay_session_list:
delay_session_key = f'delay_session_{delay_session}'
pre_content[epochs_key][moving_average_key][delay_session_key] = predict_result['buy_result_list'][delay_session]
pre_content['predicted_price_list'] = predict_result['predicted_price_list']
pre_content['buy_sell_difference'] = predict_result['buy_sell_difference']
result_file = open(result_name, "w+")
result_file.write(json.dumps(pre_content, sort_keys=True))
result_file.close()
def train_predict(input_config):
# epochs_range = 2
# moving_average_range = 5
# predict_delay_session_list = [1, 3, 5, 10, 20]
epochs_range = input_config['epochs_range']
moving_average_range = input_config['moving_average_range']
predict_delay_session_list = input_config['predict_delay_session_list']
file_name = input_config['file_name']
data_path = input_config['data_path']
# for j in range(epochs_range):
# epochs = (j+1)*10
epochs = epochs_range
for i in range(moving_average_range):
moving_average = (i+1)*10
options = {
'file_name': file_name,
'epochs': epochs,
'moving_average': moving_average,
'predict_delay_session_list': predict_delay_session_list,
'data_path': data_path
}
train_model(options)
predict_result = predict_model(options)
if predict_result != False:
save_result(predict_result)
def find_max_value_matrix(value_matrix, options):
info = get_info_from_options(options)
predict_delay_session_list = info['predict_delay_session_list']
moving_average_range = options.get('moving_average_range')
return_value = {}
# max moving_average
for i in range(moving_average_range):
moving_average = (i+1)*10
moving_average_list = value_matrix[i]
max_moving_average = max(moving_average_list)
max_moving_average_key = f'max_moving_average_{moving_average}'
return_value[max_moving_average_key] = max_moving_average
# max delay_session
for delay_session_index, delay_session in enumerate(predict_delay_session_list):
delay_session_list = []
for j in range(moving_average_range):
delay_session_list.append(value_matrix[j][delay_session_index])
max_delay_session = max(delay_session_list)
max_delay_session_key = f'max_delay_session_{delay_session}'
return_value[max_delay_session_key] = max_delay_session
# max value_matrix
max_value_matrix = {
'value': value_matrix[0][0],
'delay_session': predict_delay_session_list[0],
'moving_average': 10
}
for delay_session_index, delay_session in enumerate(predict_delay_session_list):
for k in range(moving_average_range):
if value_matrix[k][delay_session_index] > max_value_matrix['value']:
moving_average = (k+1)*10
max_value_matrix = {
'value': value_matrix[k][delay_session_index],
'delay_session': delay_session,
'moving_average': moving_average
}
return_value['max_value_matrix'] = max_value_matrix
return_value['value_matrix'] = value_matrix
return_value['moving_average_range'] = moving_average_range
return_value['predict_delay_session_list'] = predict_delay_session_list
return return_value
def view_statistic_result(statistic_result, options):
info = get_info_from_options(options)
base_name = info['base_name']
moving_average = info['moving_average']
epochs = info['epochs']
predict_delay_session_list = info['predict_delay_session_list']
result_name = info['result_name']
json_path = info['json_path']
template_file = open(f'{os.getcwd()}/web/template/template.html', "r")
content = template_file.read()
template_file.close()
result_file_name = f'{os.getcwd()}/web/html/{base_name}.html'
result_file = open(result_file_name, "w")
result_file.write(
f'{content}<script> var data = {statistic_result}; index.build(data);</script>')
result_file.close()
result_json_file_name = json_path
result_json_file = open(result_json_file_name, "w")
result_json_file.write(json.dumps(statistic_result, sort_keys=True))
result_json_file.close()
# print(statistic_result)
# url = "file://"+result_file_name
# webbrowser.open(url, new=1)
def statistic_result(input_config):
# epochs_range = 2
# moving_average_range = 5
# predict_delay_session_list = [1, 3, 5, 10, 20]
epochs_range = input_config['epochs_range']
moving_average_range = input_config['moving_average_range']
predict_delay_session_list = input_config['predict_delay_session_list']
file_name = input_config['file_name']
list_statistic = {}
# for j in range(epochs_range):
# epochs = (j+1)*10
epochs = epochs_range
value_matrix = np.zeros(
(moving_average_range, len(predict_delay_session_list)))
for i in range(moving_average_range):
moving_average = (i+1)*10
options = {
'file_name': file_name,
'epochs': epochs,
'moving_average': moving_average,
'predict_delay_session_list': predict_delay_session_list,
'moving_average_range': moving_average_range
}
info = get_info_from_options(options)
moving_average = info['moving_average']
epochs = info['epochs']
predict_delay_session_list = info['predict_delay_session_list']
result_name = info['result_name']
pre_content = json.loads(open(result_name, "r").read())
epochs_key = f'epochs_{epochs}'
moving_average_key = f'moving_average_{moving_average}'
for delay_session_index, delay_session in enumerate(predict_delay_session_list):
delay_session_key = f'delay_session_{delay_session}'
ratio_predicted = pre_content[epochs_key][moving_average_key][delay_session_key][-1]
value_matrix[i][delay_session_index] = ratio_predicted if ratio_predicted!='no_signed_deal' else -1
statistic_result = find_max_value_matrix(
value_matrix.tolist(), options)
list_statistic[epochs] = statistic_result
statistic_result['buy_sell_difference'] = pre_content['buy_sell_difference']
view_statistic_result(list_statistic, options)
return list_statistic
def main(options):
input_config = options.get('input_config') or {
'epochs_range': 10,
'moving_average_range': 5,
'predict_delay_session_list': [1, 3, 5, 10, 20],
'file_name': 'AAA.csv',
}
train_predict(input_config)
list_statistic = statistic_result(input_config)
return list_statistic