-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.py
executable file
·499 lines (399 loc) · 16.8 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
##############################################
# sudo apt-get install -y python3-picamera
# sudo -H pip3 install imutils --upgrade
##############################################
import multiprocessing as mp
import sys
from time import sleep
import argparse
import cv2
import numpy as np
import time
try:
from armv7l.openvino.inference_engine import IENetwork, IEPlugin
except:
from openvino.inference_engine import IENetwork, IEPlugin
import heapq
import threading
try:
from imutils.video.pivideostream import PiVideoStream
from imutils.video.filevideostream import FileVideoStream
import imutils
except:
pass
lastresults = None
threads = []
processes = []
frameBuffer = None
results = None
fps = ""
detectfps = ""
framecount = 0
detectframecount = 0
time1 = 0
time2 = 0
cam = None
vs = None
window_name = ""
elapsedtime = 0.0
g_plugin = None
g_inferred_request = None
g_heap_request = None
g_inferred_cnt = 0
g_number_of_allocated_ncs = 0
LABELS = ["neutral", "happy", "sad", "surprise", "anger"]
COLORS = np.random.uniform(0, 255, size=(len(LABELS), 3))
def camThread(LABELS, resultsEm, frameBuffer, camera_width, camera_height, vidfps, number_of_camera, mode_of_camera):
global fps
global detectfps
global lastresults
global framecount
global detectframecount
global time1
global time2
global cam
global vs
global window_name
if mode_of_camera == 0:
cam = cv2.VideoCapture(number_of_camera)
if cam.isOpened() != True:
print("USB Camera Open Error!!!")
sys.exit(0)
cam.set(cv2.CAP_PROP_FPS, vidfps)
cam.set(cv2.CAP_PROP_FRAME_WIDTH, camera_width)
cam.set(cv2.CAP_PROP_FRAME_HEIGHT, camera_height)
window_name = "USB Camera"
else:
vs = PiVideoStream((camera_width, camera_height), vidfps).start()
sleep(3)
window_name = "PiCamera"
cv2.namedWindow(window_name, cv2.WINDOW_AUTOSIZE)
while True:
t1 = time.perf_counter()
# USB Camera Stream or PiCamera Stream Read
color_image = None
if mode_of_camera == 0:
s, color_image = cam.read()
if not s:
continue
else:
color_image = vs.read()
if frameBuffer.full():
frameBuffer.get()
frames = color_image
height = color_image.shape[0]
width = color_image.shape[1]
frameBuffer.put(color_image.copy())
res = None
if not resultsEm.empty():
res = resultsEm.get(False)
# print("[LOG] ".format(type(res)))
# print(res)
detectframecount += 1
imdraw = overlay_on_image(frames, res)
lastresults = res
else:
imdraw = overlay_on_image(frames, lastresults)
cv2.imshow(window_name, cv2.resize(imdraw, (width, height)))
if cv2.waitKey(1) & 0xFF == ord('q'):
sys.exit(0)
## Print FPS
framecount += 1
if framecount >= 25:
fps = "(Playback) {:.1f} FPS".format(time1 / 25)
detectfps = "(Detection) {:.1f} FPS".format(detectframecount / time2)
framecount = 0
detectframecount = 0
time1 = 0
time2 = 0
t2 = time.perf_counter()
elapsedTime = t2 - t1
time1 += 1 / elapsedTime
time2 += elapsedTime
# l = Search list
# x = Search target value
def searchlist(l, x, notfoundvalue=-1):
if x in l:
return l.index(x)
else:
return notfoundvalue
def async_infer(ncsworkerFd, ncsworkerEm):
while True:
ncsworkerFd.predict_async()
ncsworkerEm.predict_async()
class BaseNcsWorker():
def __init__(self, devid, model_path, number_of_ncs):
global g_plugin
global g_inferred_request
global g_heap_request
global g_inferred_cnt
global g_number_of_allocated_ncs
self.devid = devid
if number_of_ncs == 0:
self.num_requests = 4
elif number_of_ncs == 1:
self.num_requests = 4
elif number_of_ncs == 2:
self.num_requests = 2
elif number_of_ncs >= 3:
self.num_requests = 1
print("g_number_of_allocated_ncs =", g_number_of_allocated_ncs, "number_of_ncs =", number_of_ncs)
if g_number_of_allocated_ncs < 1:
self.plugin = IEPlugin(device="MYRIAD")
self.inferred_request = [0] * self.num_requests
self.heap_request = []
self.inferred_cnt = 0
g_plugin = self.plugin
g_inferred_request = self.inferred_request
g_heap_request = self.heap_request
g_inferred_cnt = self.inferred_cnt
g_number_of_allocated_ncs += 1
else:
self.plugin = g_plugin
self.inferred_request = g_inferred_request
self.heap_request = g_heap_request
self.inferred_cnt = g_inferred_cnt
self.model_xml = model_path + ".xml"
self.model_bin = model_path + ".bin"
self.net = IENetwork(model=self.model_xml, weights=self.model_bin)
self.input_blob = next(iter(self.net.inputs))
self.exec_net = self.plugin.load(network=self.net, num_requests=self.num_requests)
class NcsWorkerFd(BaseNcsWorker):
def __init__(self, devid, frameBuffer, resultsFd, model_path, number_of_ncs):
super().__init__(devid, model_path, number_of_ncs)
self.frameBuffer = frameBuffer
self.resultsFd = resultsFd
def image_preprocessing(self, color_image):
prepimg = cv2.resize(color_image, (300, 300))
prepimg = prepimg[np.newaxis, :, :, :] # Batch size axis add
prepimg = prepimg.transpose((0, 3, 1, 2)) # NHWC to NCHW
return prepimg
def predict_async(self):
try:
if self.frameBuffer.empty():
return
color_image = self.frameBuffer.get()
prepimg = self.image_preprocessing(color_image)
reqnum = searchlist(self.inferred_request, 0)
if reqnum > -1:
self.exec_net.start_async(request_id=reqnum, inputs={self.input_blob: prepimg})
self.inferred_request[reqnum] = 1
self.inferred_cnt += 1
if self.inferred_cnt == sys.maxsize:
self.inferred_request = [0] * self.num_requests
self.heap_request = []
self.inferred_cnt = 0
self.exec_net.requests[reqnum].wait(-1)
out = self.exec_net.requests[reqnum].outputs["detection_out"].flatten()
detection_list = []
face_image_list = []
for detection in out.reshape(-1, 7):
confidence = float(detection[2])
if confidence > 0.3:
detection[3] = int(detection[3] * color_image.shape[1])
detection[4] = int(detection[4] * color_image.shape[0])
detection[5] = int(detection[5] * color_image.shape[1])
detection[6] = int(detection[6] * color_image.shape[0])
if (detection[6] - detection[4]) > 0 and (detection[5] - detection[3]) > 0:
detection_list.extend(detection)
face_image_list.extend([color_image[int(detection[4]):int(detection[6]),
int(detection[3]):int(detection[5]), :]])
if len(detection_list) > 0:
self.resultsFd.put([detection_list, face_image_list])
self.inferred_request[reqnum] = 0
except:
import traceback
traceback.print_exc()
class NcsWorkerEm(BaseNcsWorker):
def __init__(self, devid, resultsFd, resultsEm, model_path, number_of_ncs):
super().__init__(devid, model_path, number_of_ncs)
self.resultsFd = resultsFd
self.resultsEm = resultsEm
def image_preprocessing(self, color_image):
try:
prepimg = cv2.resize(color_image, (64, 64))
except:
prepimg = np.full((64, 64, 3), 128)
prepimg = prepimg[np.newaxis, :, :, :] # Batch size axis add
prepimg = prepimg.transpose((0, 3, 1, 2)) # NHWC to NCHW
return prepimg
def predict_async(self):
try:
if self.resultsFd.empty():
return
resultFd = self.resultsFd.get()
detection_list = resultFd[0]
face_image_list = resultFd[1]
emotion_list = []
max_face_image_list_cnt = len(face_image_list)
image_idx = 0
end_cnt_processing = 0
heapflg = False
cnt = 0
dev = 0
if max_face_image_list_cnt <= 0:
detection_list.extend([""])
self.resultsEm.put([detection_list])
return
while True:
reqnum = searchlist(self.inferred_request, 0)
if reqnum > -1 and image_idx <= (max_face_image_list_cnt - 1) and len(face_image_list[image_idx]) > 0:
if len(face_image_list[image_idx]) == []:
image_idx += 1
continue
else:
prepimg = self.image_preprocessing(face_image_list[image_idx])
image_idx += 1
self.exec_net.start_async(request_id=reqnum, inputs={self.input_blob: prepimg})
self.inferred_request[reqnum] = 1
self.inferred_cnt += 1
if self.inferred_cnt == sys.maxsize:
self.inferred_request = [0] * self.num_requests
self.heap_request = []
self.inferred_cnt = 0
heapq.heappush(self.heap_request, (self.inferred_cnt, reqnum))
heapflg = True
if heapflg:
cnt, dev = heapq.heappop(self.heap_request)
heapflg = False
if self.exec_net.requests[dev].wait(0) == 0:
self.exec_net.requests[dev].wait(-1)
out = self.exec_net.requests[dev].outputs["prob_emotion"].flatten()
emotion = LABELS[int(np.argmax(out))]
detection_list.extend([emotion])
self.resultsEm.put([detection_list])
self.inferred_request[dev] = 0
end_cnt_processing += 1
if end_cnt_processing >= max_face_image_list_cnt:
break
else:
heapq.heappush(self.heap_request, (cnt, dev))
heapflg = True
except:
import traceback
traceback.print_exc()
def inferencer(resultsFd, resultsEm, frameBuffer, number_of_ncs, fd_model_path, em_model_path):
# Init infer threads
threads = []
for devid in range(number_of_ncs):
# Face Detection, Emotion Recognition start
thworker = threading.Thread(target=async_infer,
args=(NcsWorkerFd(devid, frameBuffer, resultsFd, fd_model_path, number_of_ncs),
NcsWorkerEm(devid, resultsFd, resultsEm, em_model_path, 0),))
thworker.start()
threads.append(thworker)
print("Thread-" + str(devid))
for th in threads:
th.join()
def overlay_on_image(frames, object_infos):
try:
color_image = frames
if isinstance(object_infos, type(None)):
return color_image
# Show images
height = color_image.shape[0]
width = color_image.shape[1]
img_cp = color_image.copy()
for object_info in object_infos:
if object_info[2] == 0.0:
break
if (not np.isfinite(object_info[0]) or
not np.isfinite(object_info[1]) or
not np.isfinite(object_info[2]) or
not np.isfinite(object_info[3]) or
not np.isfinite(object_info[4]) or
not np.isfinite(object_info[5]) or
not np.isfinite(object_info[6])):
continue
min_score_percent = 60
percentage = int(object_info[2] * 100)
if (percentage <= min_score_percent):
continue
box_left = int(object_info[3])
box_top = int(object_info[4])
box_bottom = int(object_info[6])
emotion = str(object_info[7])
label_text = emotion + " (" + str(percentage) + "%)"
label_text_color = (255, 255, 255)
# info fps
cv2.putText(img_cp, fps, (width - 170, 15), cv2.FONT_HERSHEY_SIMPLEX, 0.5, (38, 0, 255), 1, cv2.LINE_AA)
cv2.putText(img_cp, detectfps, (width - 170, 30), cv2.FONT_HERSHEY_SIMPLEX, 0.5, (38, 0, 255), 1,
cv2.LINE_AA)
# background of expression list
overlay = img_cp.copy()
opacity = 0.4
cv2.rectangle(img_cp, (box_left + box_bottom + 10 - 250, box_top - 25),
(box_left + box_bottom - 50, box_top + 25),
(64, 64, 64), cv2.FILLED)
cv2.addWeighted(overlay, opacity, img_cp, 1 - opacity, 0, img_cp)
# connect face and expressions
cv2.line(img_cp, (int((box_left + box_left + box_bottom - 250) / 2), box_top + 15),
(box_left + box_bottom - 250, box_top - 20),
(255, 255, 255), 1)
cv2.line(img_cp, (box_left + box_bottom - 250, box_top - 20),
(box_left + box_bottom + 10 - 250, box_top - 20),
(255, 255, 255), 1)
cv2.putText(img_cp, label_text, (int(box_left + box_bottom + 15 - 250), int(box_top - 12 + 20)),
cv2.FONT_HERSHEY_SIMPLEX, 0.5, label_text_color,
1)
return img_cp
except:
import traceback
traceback.print_exc()
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument('-cm', '--modeofcamera', dest='mode_of_camera', type=int, default=0,
help='Camera Mode. 0:=USB Camera, 1:=PiCamera (Default=0)')
parser.add_argument('-cn', '--numberofcamera', dest='number_of_camera', type=int, default=0,
help='USB camera number. (Default=0)')
parser.add_argument('-wd', '--width', dest='camera_width', type=int, default=640,
help='Width of the frames in the video stream. (Default=640)')
parser.add_argument('-ht', '--height', dest='camera_height', type=int, default=480,
help='Height of the frames in the video stream. (Default=480)')
parser.add_argument('-numncs', '--numberofncs', dest='number_of_ncs', type=int, default=1,
help='Number of NCS. (Default=1)')
parser.add_argument('-vidfps', '--fpsofvideo', dest='fps_of_video', type=int, default=30,
help='FPS of Video. (Default=30)')
parser.add_argument('-fdmp', '--facedetectionmodelpath', dest='fd_model_path',
default='./model/face-detection-retail-0004',
help='Face Detection model path. (xml and bin. Except extension.)')
parser.add_argument('-emmp', '--emotionrecognitionmodelpath', dest='em_model_path',
default='./model/emotions-recognition-retail-0003',
help='Emotion Recognition model path. (xml and bin. Except extension.)')
args = parser.parse_args()
mode_of_camera = args.mode_of_camera
number_of_camera = args.number_of_camera
camera_width = args.camera_width
camera_height = args.camera_height
number_of_ncs = args.number_of_ncs
vidfps = args.fps_of_video
fd_model_path = args.fd_model_path
em_model_path = args.em_model_path
try:
mp.set_start_method('forkserver')
frameBuffer = mp.Queue(10)
resultsFd = mp.Queue() # Face Detection Queue
resultsEm = mp.Queue() # Emotion Recognition Queue
# Start streaming
p = mp.Process(target=camThread,
args=(LABELS, resultsEm, frameBuffer, camera_width, camera_height, vidfps, number_of_camera,
mode_of_camera),
daemon=True)
p.start()
processes.append(p)
# Start detection MultiStick
# Activation of inferencer
p = mp.Process(target=inferencer,
args=(resultsFd, resultsEm, frameBuffer, number_of_ncs, fd_model_path, em_model_path),
daemon=True)
p.start()
processes.append(p)
while True:
sleep(1)
except:
import traceback
traceback.print_exc()
finally:
for p in range(len(processes)):
processes[p].terminate()
print("\n\nFinished\n\n")