diff --git a/04. Presentation - P2.pptx b/04. Presentation - P2.pptx new file mode 100644 index 0000000..76a4c88 Binary files /dev/null and b/04. Presentation - P2.pptx differ diff --git a/04. Presentation - P3.pptx b/04. Presentation - P3.pptx new file mode 100644 index 0000000..1a7a28d Binary files /dev/null and b/04. Presentation - P3.pptx differ diff --git a/05. Jupyter Notebook _ Code - P2 b/05. Jupyter Notebook _ Code - P2 new file mode 100644 index 0000000..85cf8c6 --- /dev/null +++ b/05. Jupyter Notebook _ Code - P2 @@ -0,0 +1 @@ +{"nbformat":4,"nbformat_minor":0,"metadata":{"colab":{"provenance":[]},"kernelspec":{"name":"python3","display_name":"Python 3"},"language_info":{"name":"python"}},"cells":[{"cell_type":"markdown","source":["## Importing Libraries and reading in CSV file"],"metadata":{"id":"5N3wcJiYIo_3"}},{"cell_type":"code","execution_count":null,"metadata":{"id":"c6uRrmEsOMEg"},"outputs":[],"source":["import numpy as np\n","import pandas as pd\n","df = pd.read_csv('/content/salary_model.csv')"]},{"cell_type":"markdown","source":["## Initial Data Exploration of count and Dtypes"],"metadata":{"id":"FyP7cw3CI20o"}},{"cell_type":"code","source":["print(df.info())\n","print()\n","df.head(15)"],"metadata":{"colab":{"base_uri":"https://localhost:8080/","height":1000},"id":"B1c4hTFaIjts","executionInfo":{"status":"ok","timestamp":1714700826473,"user_tz":300,"elapsed":204,"user":{"displayName":"Jenny O","userId":"07622373657144372939"}},"outputId":"271ec487-e395-46e2-8530-8b61e4f2b6d9"},"execution_count":null,"outputs":[{"output_type":"stream","name":"stdout","text":["\n","RangeIndex: 14199 entries, 0 to 14198\n","Data columns (total 12 columns):\n"," # Column Non-Null Count Dtype \n","--- ------ -------------- ----- \n"," 0 work_year 14199 non-null int64 \n"," 1 experience_level 14199 non-null object\n"," 2 employment_type 14199 non-null object\n"," 3 job_title 14199 non-null object\n"," 4 salary 14191 non-null object\n"," 5 salary_currency 14199 non-null object\n"," 6 salary_in_usd 14199 non-null int64 \n"," 7 employee_residence 14199 non-null object\n"," 8 work_setting 14199 non-null object\n"," 9 company_location 14199 non-null object\n"," 10 company_size 14199 non-null object\n"," 11 job_category 14199 non-null object\n","dtypes: int64(2), object(10)\n","memory usage: 1.3+ MB\n","None\n","\n"]},{"output_type":"execute_result","data":{"text/plain":[" work_year experience_level employment_type \\\n","0 2024 Entry-level Freelance \n","1 2024 Executive Full-time \n","2 2024 Executive Full-time \n","3 2024 Senior Full-time \n","4 2024 Senior Full-time \n","5 2024 Mid-level Full-time \n","6 2024 Mid-level Full-time \n","7 2024 Entry-level Full-time \n","8 2024 Entry-level Full-time \n","9 2024 Senior Full-time \n","10 2024 Senior Full-time \n","11 2024 Senior Full-time \n","12 2024 Senior Full-time \n","13 2024 Entry-level Full-time \n","14 2024 Entry-level Full-time \n","\n"," job_title salary salary_currency salary_in_usd \\\n","0 Applied Data Scientist 30000 USD 30000 \n","1 Business Intelligence 230000 USD 230000 \n","2 Business Intelligence 176900 USD 176900 \n","3 Data Architect 171210 USD 171210 \n","4 Data Architect 92190 USD 92190 \n","5 Data Science 46203 GBP 57753 \n","6 Data Science 38280 GBP 47850 \n","7 Insight Analyst 50000 USD 50000 \n","8 Insight Analyst 40000 USD 40000 \n","9 Data Engineer 276000 USD 276000 \n","10 Data Engineer 148000 USD 148000 \n","11 Research Scientist 234000 USD 234000 \n","12 Research Scientist 146000 USD 146000 \n","13 Business Intelligence Analyst 192300 USD 192300 \n","14 Business Intelligence Analyst 120200 USD 120200 \n","\n"," employee_residence work_setting company_location company_size \\\n","0 United Kingdom Remote United Kingdom M \n","1 United States In-person United States M \n","2 United States In-person United States M \n","3 Canada In-person Canada M \n","4 Canada In-person Canada M \n","5 United Kingdom In-person United Kingdom M \n","6 United Kingdom In-person United Kingdom M \n","7 United States Remote United States M \n","8 United States Remote United States M \n","9 United States In-person United States M \n","10 United States In-person United States M \n","11 United States In-person United States M \n","12 United States In-person United States M \n","13 United States In-person United States M \n","14 United States In-person United States M \n","\n"," job_category \n","0 Data Science and Research \n","1 BI and Visualization \n","2 BI and Visualization \n","3 Data Architecture and Modeling \n","4 Data Architecture and Modeling \n","5 Data Science and Research \n","6 Data Science and Research \n","7 Data Analysis \n","8 Data Analysis \n","9 Data Engineering \n","10 Data Engineering \n","11 Data Science and Research \n","12 Data Science and Research \n","13 BI and Visualization \n","14 BI and Visualization "],"text/html":["\n","
\n","
\n","\n","\n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n","
work_yearexperience_levelemployment_typejob_titlesalarysalary_currencysalary_in_usdemployee_residencework_settingcompany_locationcompany_sizejob_category
02024Entry-levelFreelanceApplied Data Scientist30000USD30000United KingdomRemoteUnited KingdomMData Science and Research
12024ExecutiveFull-timeBusiness Intelligence230000USD230000United StatesIn-personUnited StatesMBI and Visualization
22024ExecutiveFull-timeBusiness Intelligence176900USD176900United StatesIn-personUnited StatesMBI and Visualization
32024SeniorFull-timeData Architect171210USD171210CanadaIn-personCanadaMData Architecture and Modeling
42024SeniorFull-timeData Architect92190USD92190CanadaIn-personCanadaMData Architecture and Modeling
52024Mid-levelFull-timeData Science46203GBP57753United KingdomIn-personUnited KingdomMData Science and Research
62024Mid-levelFull-timeData Science38280GBP47850United KingdomIn-personUnited KingdomMData Science and Research
72024Entry-levelFull-timeInsight Analyst50000USD50000United StatesRemoteUnited StatesMData Analysis
82024Entry-levelFull-timeInsight Analyst40000USD40000United StatesRemoteUnited StatesMData Analysis
92024SeniorFull-timeData Engineer276000USD276000United StatesIn-personUnited StatesMData Engineering
102024SeniorFull-timeData Engineer148000USD148000United StatesIn-personUnited StatesMData Engineering
112024SeniorFull-timeResearch Scientist234000USD234000United StatesIn-personUnited StatesMData Science and Research
122024SeniorFull-timeResearch Scientist146000USD146000United StatesIn-personUnited StatesMData Science and Research
132024Entry-levelFull-timeBusiness Intelligence Analyst192300USD192300United StatesIn-personUnited StatesMBI and Visualization
142024Entry-levelFull-timeBusiness Intelligence Analyst120200USD120200United StatesIn-personUnited StatesMBI and Visualization
\n","
\n","
\n","\n","
\n"," \n","\n"," \n","\n"," \n","
\n","\n","\n","
\n"," \n","\n","\n","\n"," \n","
\n","\n","
\n","
\n"],"application/vnd.google.colaboratory.intrinsic+json":{"type":"dataframe","variable_name":"df","summary":"{\n \"name\": \"df\",\n \"rows\": 14199,\n \"fields\": [\n {\n \"column\": \" work_year \",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 0,\n \"min\": 2020,\n \"max\": 2024,\n \"num_unique_values\": 5,\n \"samples\": [\n 2023,\n 2021,\n 2022\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"experience_level\",\n \"properties\": {\n \"dtype\": \"category\",\n \"num_unique_values\": 4,\n \"samples\": [\n \"Executive\",\n \"Mid-level\",\n \"Entry-level\"\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"employment_type\",\n \"properties\": {\n \"dtype\": \"category\",\n \"num_unique_values\": 6,\n \"samples\": [\n \"Freelance\",\n \"Full-time\",\n \"full-time\"\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"job_title\",\n \"properties\": {\n \"dtype\": \"category\",\n \"num_unique_values\": 149,\n \"samples\": [\n \"AI Product Manager\",\n \"BI Analyst\",\n \"Staff Data Scientist\"\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"salary\",\n \"properties\": {\n \"dtype\": \"category\",\n \"num_unique_values\": 2230,\n \"samples\": [\n \"192500\",\n \"207760\",\n \"398900\"\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"salary_currency\",\n \"properties\": {\n \"dtype\": \"category\",\n \"num_unique_values\": 12,\n \"samples\": [\n \"SGD\",\n \"TRY\",\n \"USD\"\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"salary_in_usd\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 64379,\n \"min\": 15000,\n \"max\": 450000,\n \"num_unique_values\": 2578,\n \"samples\": [\n 342400,\n 104220,\n 240500\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"employee_residence\",\n \"properties\": {\n \"dtype\": \"category\",\n \"num_unique_values\": 86,\n \"samples\": [\n \"Indonesia\",\n \"United Kingdom\",\n \"Chile\"\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"work_setting\",\n \"properties\": {\n \"dtype\": \"category\",\n \"num_unique_values\": 3,\n \"samples\": [\n \"Remote\",\n \"In-person\",\n \"Hybrid\"\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"company_location\",\n \"properties\": {\n \"dtype\": \"category\",\n \"num_unique_values\": 74,\n \"samples\": [\n \"Poland\",\n \"Bahamas\",\n \"Switzerland\"\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"company_size\",\n \"properties\": {\n \"dtype\": \"category\",\n \"num_unique_values\": 6,\n \"samples\": [\n \"M\",\n \"S\",\n \"s\"\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"job_category\",\n \"properties\": {\n \"dtype\": \"category\",\n \"num_unique_values\": 10,\n \"samples\": [\n \"Cloud and Database\",\n \"BI and Visualization\",\n \"Leadership and Management\"\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n }\n ]\n}"}},"metadata":{},"execution_count":33}]},{"cell_type":"markdown","source":["## Checking salary column as to why the total count differs from all of the other columns"],"metadata":{"id":"bHFqmMTEEyOY"}},{"cell_type":"code","source":["# Trying to convert salary to float as it should be numerical, not an object\n","\n","df['salary'] = df['salary'].astype('float')"],"metadata":{"id":"_Igz7MKwEvpY","executionInfo":{"status":"error","timestamp":1714700839841,"user_tz":300,"elapsed":172,"user":{"displayName":"Jenny O","userId":"07622373657144372939"}},"colab":{"base_uri":"https://localhost:8080/","height":339},"outputId":"f6e0c411-df94-4d84-9351-2bd0d785e2c0"},"execution_count":null,"outputs":[{"output_type":"error","ename":"ValueError","evalue":"could not convert string to float: '238,000'","traceback":["\u001b[0;31m---------------------------------------------------------------------------\u001b[0m","\u001b[0;31mValueError\u001b[0m Traceback (most recent call last)","\u001b[0;32m\u001b[0m in \u001b[0;36m\u001b[0;34m()\u001b[0m\n\u001b[1;32m 1\u001b[0m \u001b[0;31m# Trying to convert salary to float as it should be numerical, not an object\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 2\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m----> 3\u001b[0;31m \u001b[0mdf\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0;34m'salary'\u001b[0m\u001b[0;34m]\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mdf\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0;34m'salary'\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mastype\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m'float'\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m","\u001b[0;32m/usr/local/lib/python3.10/dist-packages/pandas/core/generic.py\u001b[0m in \u001b[0;36mastype\u001b[0;34m(self, dtype, copy, errors)\u001b[0m\n\u001b[1;32m 6322\u001b[0m \u001b[0;32melse\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 6323\u001b[0m \u001b[0;31m# else, only a single dtype is given\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m-> 6324\u001b[0;31m \u001b[0mnew_data\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_mgr\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mastype\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mdtype\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mdtype\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mcopy\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mcopy\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0merrors\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0merrors\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 6325\u001b[0m \u001b[0;32mreturn\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_constructor\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mnew_data\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m__finalize__\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mmethod\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;34m\"astype\"\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 6326\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n","\u001b[0;32m/usr/local/lib/python3.10/dist-packages/pandas/core/internals/managers.py\u001b[0m in \u001b[0;36mastype\u001b[0;34m(self, dtype, copy, errors)\u001b[0m\n\u001b[1;32m 449\u001b[0m \u001b[0mcopy\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0;32mFalse\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 450\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 451\u001b[0;31m return self.apply(\n\u001b[0m\u001b[1;32m 452\u001b[0m \u001b[0;34m\"astype\"\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 453\u001b[0m \u001b[0mdtype\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mdtype\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n","\u001b[0;32m/usr/local/lib/python3.10/dist-packages/pandas/core/internals/managers.py\u001b[0m in \u001b[0;36mapply\u001b[0;34m(self, f, align_keys, **kwargs)\u001b[0m\n\u001b[1;32m 350\u001b[0m \u001b[0mapplied\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mb\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mapply\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mf\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m**\u001b[0m\u001b[0mkwargs\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 351\u001b[0m \u001b[0;32melse\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 352\u001b[0;31m \u001b[0mapplied\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mgetattr\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mb\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mf\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m**\u001b[0m\u001b[0mkwargs\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 353\u001b[0m \u001b[0mresult_blocks\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mextend_blocks\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mapplied\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mresult_blocks\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 354\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n","\u001b[0;32m/usr/local/lib/python3.10/dist-packages/pandas/core/internals/blocks.py\u001b[0m in \u001b[0;36mastype\u001b[0;34m(self, dtype, copy, errors, using_cow)\u001b[0m\n\u001b[1;32m 509\u001b[0m \u001b[0mvalues\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mvalues\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 510\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 511\u001b[0;31m \u001b[0mnew_values\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mastype_array_safe\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mvalues\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mdtype\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mcopy\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mcopy\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0merrors\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0merrors\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 512\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 513\u001b[0m \u001b[0mnew_values\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mmaybe_coerce_values\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mnew_values\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n","\u001b[0;32m/usr/local/lib/python3.10/dist-packages/pandas/core/dtypes/astype.py\u001b[0m in \u001b[0;36mastype_array_safe\u001b[0;34m(values, dtype, copy, errors)\u001b[0m\n\u001b[1;32m 240\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 241\u001b[0m \u001b[0;32mtry\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 242\u001b[0;31m \u001b[0mnew_values\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mastype_array\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mvalues\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mdtype\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mcopy\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mcopy\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 243\u001b[0m \u001b[0;32mexcept\u001b[0m \u001b[0;34m(\u001b[0m\u001b[0mValueError\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mTypeError\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 244\u001b[0m \u001b[0;31m# e.g. _astype_nansafe can fail on object-dtype of strings\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n","\u001b[0;32m/usr/local/lib/python3.10/dist-packages/pandas/core/dtypes/astype.py\u001b[0m in \u001b[0;36mastype_array\u001b[0;34m(values, dtype, copy)\u001b[0m\n\u001b[1;32m 185\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 186\u001b[0m \u001b[0;32melse\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 187\u001b[0;31m \u001b[0mvalues\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0m_astype_nansafe\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mvalues\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mdtype\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mcopy\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mcopy\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 188\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 189\u001b[0m \u001b[0;31m# in pandas we don't store numpy str dtypes, so convert to object\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n","\u001b[0;32m/usr/local/lib/python3.10/dist-packages/pandas/core/dtypes/astype.py\u001b[0m in \u001b[0;36m_astype_nansafe\u001b[0;34m(arr, dtype, copy, skipna)\u001b[0m\n\u001b[1;32m 136\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0mcopy\u001b[0m \u001b[0;32mor\u001b[0m \u001b[0mis_object_dtype\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0marr\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mdtype\u001b[0m\u001b[0;34m)\u001b[0m \u001b[0;32mor\u001b[0m \u001b[0mis_object_dtype\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mdtype\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 137\u001b[0m \u001b[0;31m# Explicit copy, or required since NumPy can't view from / to object.\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 138\u001b[0;31m \u001b[0;32mreturn\u001b[0m \u001b[0marr\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mastype\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mdtype\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mcopy\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;32mTrue\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 139\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 140\u001b[0m \u001b[0;32mreturn\u001b[0m \u001b[0marr\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mastype\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mdtype\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mcopy\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mcopy\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n","\u001b[0;31mValueError\u001b[0m: could not convert string to float: '238,000'"]}]},{"cell_type":"code","source":["# Removing comma from 238,000 and trying to convert to float again\n","\n","df['salary'].replace({\",\":\"\"}, regex=True, inplace=True)\n","df['salary'] = df['salary'].astype('float')"],"metadata":{"id":"GiEmW-XSFG8j","colab":{"base_uri":"https://localhost:8080/","height":339},"executionInfo":{"status":"error","timestamp":1714700846660,"user_tz":300,"elapsed":294,"user":{"displayName":"Jenny O","userId":"07622373657144372939"}},"outputId":"58993f86-0dca-4419-b989-9df4635a2c1e"},"execution_count":null,"outputs":[{"output_type":"error","ename":"ValueError","evalue":"could not convert string to float: '$154000 '","traceback":["\u001b[0;31m---------------------------------------------------------------------------\u001b[0m","\u001b[0;31mValueError\u001b[0m Traceback (most recent call last)","\u001b[0;32m\u001b[0m in \u001b[0;36m\u001b[0;34m()\u001b[0m\n\u001b[1;32m 2\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 3\u001b[0m \u001b[0mdf\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0;34m'salary'\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mreplace\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m{\u001b[0m\u001b[0;34m\",\"\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\"\"\u001b[0m\u001b[0;34m}\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mregex\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;32mTrue\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0minplace\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;32mTrue\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m----> 4\u001b[0;31m \u001b[0mdf\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0;34m'salary'\u001b[0m\u001b[0;34m]\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mdf\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0;34m'salary'\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mastype\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m'float'\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m","\u001b[0;32m/usr/local/lib/python3.10/dist-packages/pandas/core/generic.py\u001b[0m in \u001b[0;36mastype\u001b[0;34m(self, dtype, copy, errors)\u001b[0m\n\u001b[1;32m 6322\u001b[0m \u001b[0;32melse\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 6323\u001b[0m \u001b[0;31m# else, only a single dtype is given\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m-> 6324\u001b[0;31m \u001b[0mnew_data\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_mgr\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mastype\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mdtype\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mdtype\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mcopy\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mcopy\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0merrors\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0merrors\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 6325\u001b[0m \u001b[0;32mreturn\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_constructor\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mnew_data\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m__finalize__\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mmethod\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;34m\"astype\"\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 6326\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n","\u001b[0;32m/usr/local/lib/python3.10/dist-packages/pandas/core/internals/managers.py\u001b[0m in \u001b[0;36mastype\u001b[0;34m(self, dtype, copy, errors)\u001b[0m\n\u001b[1;32m 449\u001b[0m \u001b[0mcopy\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0;32mFalse\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 450\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 451\u001b[0;31m return self.apply(\n\u001b[0m\u001b[1;32m 452\u001b[0m \u001b[0;34m\"astype\"\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 453\u001b[0m \u001b[0mdtype\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mdtype\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n","\u001b[0;32m/usr/local/lib/python3.10/dist-packages/pandas/core/internals/managers.py\u001b[0m in \u001b[0;36mapply\u001b[0;34m(self, f, align_keys, **kwargs)\u001b[0m\n\u001b[1;32m 350\u001b[0m \u001b[0mapplied\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mb\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mapply\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mf\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m**\u001b[0m\u001b[0mkwargs\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 351\u001b[0m \u001b[0;32melse\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 352\u001b[0;31m \u001b[0mapplied\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mgetattr\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mb\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mf\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m**\u001b[0m\u001b[0mkwargs\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 353\u001b[0m \u001b[0mresult_blocks\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mextend_blocks\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mapplied\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mresult_blocks\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 354\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n","\u001b[0;32m/usr/local/lib/python3.10/dist-packages/pandas/core/internals/blocks.py\u001b[0m in \u001b[0;36mastype\u001b[0;34m(self, dtype, copy, errors, using_cow)\u001b[0m\n\u001b[1;32m 509\u001b[0m \u001b[0mvalues\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mvalues\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 510\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 511\u001b[0;31m \u001b[0mnew_values\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mastype_array_safe\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mvalues\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mdtype\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mcopy\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mcopy\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0merrors\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0merrors\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 512\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 513\u001b[0m \u001b[0mnew_values\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mmaybe_coerce_values\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mnew_values\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n","\u001b[0;32m/usr/local/lib/python3.10/dist-packages/pandas/core/dtypes/astype.py\u001b[0m in \u001b[0;36mastype_array_safe\u001b[0;34m(values, dtype, copy, errors)\u001b[0m\n\u001b[1;32m 240\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 241\u001b[0m \u001b[0;32mtry\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 242\u001b[0;31m \u001b[0mnew_values\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mastype_array\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mvalues\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mdtype\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mcopy\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mcopy\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 243\u001b[0m \u001b[0;32mexcept\u001b[0m \u001b[0;34m(\u001b[0m\u001b[0mValueError\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mTypeError\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 244\u001b[0m \u001b[0;31m# e.g. _astype_nansafe can fail on object-dtype of strings\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n","\u001b[0;32m/usr/local/lib/python3.10/dist-packages/pandas/core/dtypes/astype.py\u001b[0m in \u001b[0;36mastype_array\u001b[0;34m(values, dtype, copy)\u001b[0m\n\u001b[1;32m 185\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 186\u001b[0m \u001b[0;32melse\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 187\u001b[0;31m \u001b[0mvalues\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0m_astype_nansafe\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mvalues\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mdtype\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mcopy\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mcopy\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 188\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 189\u001b[0m \u001b[0;31m# in pandas we don't store numpy str dtypes, so convert to object\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n","\u001b[0;32m/usr/local/lib/python3.10/dist-packages/pandas/core/dtypes/astype.py\u001b[0m in \u001b[0;36m_astype_nansafe\u001b[0;34m(arr, dtype, copy, skipna)\u001b[0m\n\u001b[1;32m 136\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0mcopy\u001b[0m \u001b[0;32mor\u001b[0m \u001b[0mis_object_dtype\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0marr\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mdtype\u001b[0m\u001b[0;34m)\u001b[0m \u001b[0;32mor\u001b[0m \u001b[0mis_object_dtype\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mdtype\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 137\u001b[0m \u001b[0;31m# Explicit copy, or required since NumPy can't view from / to object.\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 138\u001b[0;31m \u001b[0;32mreturn\u001b[0m \u001b[0marr\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mastype\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mdtype\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mcopy\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;32mTrue\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 139\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 140\u001b[0m \u001b[0;32mreturn\u001b[0m \u001b[0marr\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mastype\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mdtype\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mcopy\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mcopy\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n","\u001b[0;31mValueError\u001b[0m: could not convert string to float: '$154000 '"]}]},{"cell_type":"code","source":["# Removing \"$\" from $154000 and trying to convert to float again\n","\n","df['salary'].replace({\"\\$\":\"\"}, regex=True, inplace=True)\n","df['salary'] = df['salary'].astype('float')"],"metadata":{"id":"OwOQkWyFFwEQ"},"execution_count":null,"outputs":[]},{"cell_type":"code","source":["# Checking for missing values for all columns\n","\n","df.isnull().sum()"],"metadata":{"colab":{"base_uri":"https://localhost:8080/"},"id":"luNqJ6OkGG1N","executionInfo":{"status":"ok","timestamp":1714700852192,"user_tz":300,"elapsed":196,"user":{"displayName":"Jenny O","userId":"07622373657144372939"}},"outputId":"f150933f-7bde-4d7f-9b09-de75d3273e23"},"execution_count":null,"outputs":[{"output_type":"execute_result","data":{"text/plain":[" work_year 0\n","experience_level 0\n","employment_type 0\n","job_title 0\n","salary 8\n","salary_currency 0\n","salary_in_usd 0\n","employee_residence 0\n","work_setting 0\n","company_location 0\n","company_size 0\n","job_category 0\n","dtype: int64"]},"metadata":{},"execution_count":39}]},{"cell_type":"code","source":["# Replacing missing values with the mean of the salary column and rounding to 2 decimal places\n","\n","df['salary'] = df['salary'].transform(lambda x: x.fillna(x.mean())).round(2)"],"metadata":{"id":"bbXGYCLVGj1V"},"execution_count":null,"outputs":[]},{"cell_type":"code","source":["# Re-checking the count of missing values in the salary column\n","\n","print(\"The number of missing values in the salary column is:\", df['salary'].isnull().sum())"],"metadata":{"colab":{"base_uri":"https://localhost:8080/"},"id":"FgTDTpV5HFqi","executionInfo":{"status":"ok","timestamp":1714700857312,"user_tz":300,"elapsed":303,"user":{"displayName":"Jenny O","userId":"07622373657144372939"}},"outputId":"f81237e9-b57c-4015-fd42-7ea80baff6cf"},"execution_count":null,"outputs":[{"output_type":"stream","name":"stdout","text":["The number of missing values in the salary column is: 0\n"]}]},{"cell_type":"code","source":["df.info()"],"metadata":{"colab":{"base_uri":"https://localhost:8080/"},"id":"vfEmJIAGIqU_","executionInfo":{"status":"ok","timestamp":1714700858664,"user_tz":300,"elapsed":240,"user":{"displayName":"Jenny O","userId":"07622373657144372939"}},"outputId":"53a4f2d3-23a5-4859-faf4-017d69c268e4"},"execution_count":null,"outputs":[{"output_type":"stream","name":"stdout","text":["\n","RangeIndex: 14199 entries, 0 to 14198\n","Data columns (total 12 columns):\n"," # Column Non-Null Count Dtype \n","--- ------ -------------- ----- \n"," 0 work_year 14199 non-null int64 \n"," 1 experience_level 14199 non-null object \n"," 2 employment_type 14199 non-null object \n"," 3 job_title 14199 non-null object \n"," 4 salary 14199 non-null float64\n"," 5 salary_currency 14199 non-null object \n"," 6 salary_in_usd 14199 non-null int64 \n"," 7 employee_residence 14199 non-null object \n"," 8 work_setting 14199 non-null object \n"," 9 company_location 14199 non-null object \n"," 10 company_size 14199 non-null object \n"," 11 job_category 14199 non-null object \n","dtypes: float64(1), int64(2), object(9)\n","memory usage: 1.3+ MB\n"]}]},{"cell_type":"markdown","source":["## Running Descriptive Statistics on Salary"],"metadata":{"id":"7B0wYG2CLqLQ"}},{"cell_type":"code","source":["df['salary'].describe()"],"metadata":{"colab":{"base_uri":"https://localhost:8080/"},"id":"pJYIH5sWLpf4","executionInfo":{"status":"ok","timestamp":1714700860694,"user_tz":300,"elapsed":198,"user":{"displayName":"Jenny O","userId":"07622373657144372939"}},"outputId":"5acc85d4-08bd-40be-8bbd-976381b8ad31"},"execution_count":null,"outputs":[{"output_type":"execute_result","data":{"text/plain":["count 14199.000000\n","mean 149006.380452\n","std 64875.217695\n","min 0.000000\n","25% 102100.000000\n","50% 142000.000000\n","75% 185900.000000\n","max 450000.000000\n","Name: salary, dtype: float64"]},"metadata":{},"execution_count":43}]},{"cell_type":"markdown","source":["## Pulling row where salary value is 0"],"metadata":{"id":"48mswf4kME9l"}},{"cell_type":"code","source":["df.loc[df['salary'] == 0]"],"metadata":{"colab":{"base_uri":"https://localhost:8080/","height":118},"id":"ePYWVdHqMKik","executionInfo":{"status":"ok","timestamp":1714700863640,"user_tz":300,"elapsed":194,"user":{"displayName":"Jenny O","userId":"07622373657144372939"}},"outputId":"c7d2a7b0-aa04-44dc-b597-66179407ab1a"},"execution_count":null,"outputs":[{"output_type":"execute_result","data":{"text/plain":[" work_year experience_level employment_type job_title salary \\\n","10126 2023 Senior Full-time Data Analyst 0.0 \n","\n"," salary_currency salary_in_usd employee_residence work_setting \\\n","10126 USD 116000 United States Remote \n","\n"," company_location company_size job_category \n","10126 United States M Data Analysis "],"text/html":["\n","
\n","
\n","\n","\n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n","
work_yearexperience_levelemployment_typejob_titlesalarysalary_currencysalary_in_usdemployee_residencework_settingcompany_locationcompany_sizejob_category
101262023SeniorFull-timeData Analyst0.0USD116000United StatesRemoteUnited StatesMData Analysis
\n","
\n","
\n","\n","
\n"," \n","\n"," \n","\n"," \n","
\n","\n","\n","
\n","
\n"],"application/vnd.google.colaboratory.intrinsic+json":{"type":"dataframe","summary":"{\n \"name\": \"df\",\n \"rows\": 1,\n \"fields\": [\n {\n \"column\": \" work_year \",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": null,\n \"min\": 2023,\n \"max\": 2023,\n \"num_unique_values\": 1,\n \"samples\": [\n 2023\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"experience_level\",\n \"properties\": {\n \"dtype\": \"string\",\n \"num_unique_values\": 1,\n \"samples\": [\n \"Senior\"\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"employment_type\",\n \"properties\": {\n \"dtype\": \"string\",\n \"num_unique_values\": 1,\n \"samples\": [\n \"Full-time\"\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"job_title\",\n \"properties\": {\n \"dtype\": \"string\",\n \"num_unique_values\": 1,\n \"samples\": [\n \"Data Analyst\"\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"salary\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": null,\n \"min\": 0.0,\n \"max\": 0.0,\n \"num_unique_values\": 1,\n \"samples\": [\n 0.0\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"salary_currency\",\n \"properties\": {\n \"dtype\": \"string\",\n \"num_unique_values\": 1,\n \"samples\": [\n \"USD\"\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"salary_in_usd\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": null,\n \"min\": 116000,\n \"max\": 116000,\n \"num_unique_values\": 1,\n \"samples\": [\n 116000\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"employee_residence\",\n \"properties\": {\n \"dtype\": \"string\",\n \"num_unique_values\": 1,\n \"samples\": [\n \"United States\"\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"work_setting\",\n \"properties\": {\n \"dtype\": \"string\",\n \"num_unique_values\": 1,\n \"samples\": [\n \"Remote\"\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"company_location\",\n \"properties\": {\n \"dtype\": \"string\",\n \"num_unique_values\": 1,\n \"samples\": [\n \"United States\"\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"company_size\",\n \"properties\": {\n \"dtype\": \"string\",\n \"num_unique_values\": 1,\n \"samples\": [\n \"M\"\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"job_category\",\n \"properties\": {\n \"dtype\": \"string\",\n \"num_unique_values\": 1,\n \"samples\": [\n \"Data Analysis\"\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n }\n ]\n}"}},"metadata":{},"execution_count":44}]},{"cell_type":"markdown","source":["## Salary should be 116000 based on salary_in_usd column, so replacing the 0 with that value"],"metadata":{"id":"Z4ChM4V1M_gi"}},{"cell_type":"code","source":["df['salary'] = df['salary'].replace(0, 116000)"],"metadata":{"id":"aZ7PPX47MP-y"},"execution_count":null,"outputs":[]},{"cell_type":"code","source":["df['salary'].describe()"],"metadata":{"colab":{"base_uri":"https://localhost:8080/"},"id":"VQ5_vQkJNEXQ","executionInfo":{"status":"ok","timestamp":1714700866913,"user_tz":300,"elapsed":215,"user":{"displayName":"Jenny O","userId":"07622373657144372939"}},"outputId":"6d0a8409-dd0f-4806-9d67-31d5b2e84449"},"execution_count":null,"outputs":[{"output_type":"execute_result","data":{"text/plain":["count 14199.000000\n","mean 149014.550042\n","std 64863.755133\n","min 14000.000000\n","25% 102150.000000\n","50% 142000.000000\n","75% 185900.000000\n","max 450000.000000\n","Name: salary, dtype: float64"]},"metadata":{},"execution_count":46}]},{"cell_type":"markdown","source":["## Checking unique values for each column"],"metadata":{"id":"ReTBcxmKJDWc"}},{"cell_type":"code","source":["# Printing this column's unique values out individually as its dtype is not object\n","\n","print(f\"WORK YEAR Unique Values: {df.work_year.unique()}\")\n","print()"],"metadata":{"colab":{"base_uri":"https://localhost:8080/","height":315},"id":"MV3a7ICjJCn1","executionInfo":{"status":"error","timestamp":1714700903741,"user_tz":300,"elapsed":155,"user":{"displayName":"Jenny O","userId":"07622373657144372939"}},"outputId":"20a8857f-9380-4038-e496-ad50efdcf27c"},"execution_count":null,"outputs":[{"output_type":"error","ename":"AttributeError","evalue":"'DataFrame' object has no attribute 'work_year'","traceback":["\u001b[0;31m---------------------------------------------------------------------------\u001b[0m","\u001b[0;31mAttributeError\u001b[0m Traceback (most recent call last)","\u001b[0;32m\u001b[0m in \u001b[0;36m\u001b[0;34m()\u001b[0m\n\u001b[1;32m 1\u001b[0m \u001b[0;31m# Printing this column's unique values out individually as its dtype is not object\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 2\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m----> 3\u001b[0;31m \u001b[0mprint\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34mf\"WORK YEAR Unique Values: {df.work_year.unique()}\"\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 4\u001b[0m \u001b[0mprint\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n","\u001b[0;32m/usr/local/lib/python3.10/dist-packages/pandas/core/generic.py\u001b[0m in \u001b[0;36m__getattr__\u001b[0;34m(self, name)\u001b[0m\n\u001b[1;32m 5987\u001b[0m ):\n\u001b[1;32m 5988\u001b[0m \u001b[0;32mreturn\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0mname\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m-> 5989\u001b[0;31m \u001b[0;32mreturn\u001b[0m \u001b[0mobject\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m__getattribute__\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mname\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 5990\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 5991\u001b[0m \u001b[0;32mdef\u001b[0m \u001b[0m__setattr__\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mname\u001b[0m\u001b[0;34m:\u001b[0m \u001b[0mstr\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mvalue\u001b[0m\u001b[0;34m)\u001b[0m \u001b[0;34m->\u001b[0m \u001b[0;32mNone\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n","\u001b[0;31mAttributeError\u001b[0m: 'DataFrame' object has no attribute 'work_year'"]}]},{"cell_type":"markdown","source":["## Checking column names to explore why work_year is throwing an error"],"metadata":{"id":"nvADk_N0CQDU"}},{"cell_type":"code","source":["df.columns"],"metadata":{"colab":{"base_uri":"https://localhost:8080/"},"id":"Cnq7N29ZCOx2","executionInfo":{"status":"ok","timestamp":1714700905776,"user_tz":300,"elapsed":166,"user":{"displayName":"Jenny O","userId":"07622373657144372939"}},"outputId":"e1964e3a-b8e0-4f9d-a0e1-adf32087f609"},"execution_count":null,"outputs":[{"output_type":"execute_result","data":{"text/plain":["Index([' work_year ', 'experience_level', 'employment_type', 'job_title',\n"," 'salary', 'salary_currency', 'salary_in_usd', 'employee_residence',\n"," 'work_setting', 'company_location', 'company_size', 'job_category'],\n"," dtype='object')"]},"metadata":{},"execution_count":48}]},{"cell_type":"code","source":["# Removing the spaces in the work_year column name\n","\n","df = df.rename(columns={' work_year ': 'work_year'})"],"metadata":{"id":"Q9_vw17YCO9C"},"execution_count":null,"outputs":[]},{"cell_type":"code","source":["# Re-running code to print out unique values\n","\n","print(f\"WORK YEAR Unique Values: {df.work_year.unique()}\")\n","print()"],"metadata":{"colab":{"base_uri":"https://localhost:8080/"},"id":"Z2N5tcUmDwVh","executionInfo":{"status":"ok","timestamp":1714700908046,"user_tz":300,"elapsed":300,"user":{"displayName":"Jenny O","userId":"07622373657144372939"}},"outputId":"77268c71-2383-49d4-a50b-acb20d7795e1"},"execution_count":null,"outputs":[{"output_type":"stream","name":"stdout","text":["WORK YEAR Unique Values: [2024 2023 2022 2020 2021]\n","\n"]}]},{"cell_type":"markdown","source":["## Checking Unique Values of columns where dtype is \"Object\""],"metadata":{"id":"BoyQAFCKjjw7"}},{"cell_type":"code","source":["# This loop checks the dtype of each column and produces the unique values if the column dtype matches object\n","# Otherwise it passes and moves on to the next column to check\n","\n","for column in df.columns:\n"," if df.dtypes[column] == \"object\":\n"," print (f\"{column.upper()} Unique Values: {df[column].unique()}\")\n"," print()\n"," else:\n"," pass"],"metadata":{"colab":{"base_uri":"https://localhost:8080/"},"id":"qsQm4QXRCPAB","executionInfo":{"status":"ok","timestamp":1714700909830,"user_tz":300,"elapsed":245,"user":{"displayName":"Jenny O","userId":"07622373657144372939"}},"outputId":"581d8e65-f4ea-40ff-c0dd-97b4b08fd9a0"},"execution_count":null,"outputs":[{"output_type":"stream","name":"stdout","text":["EXPERIENCE_LEVEL Unique Values: ['Entry-level' 'Executive' 'Senior' 'Mid-level']\n","\n","EMPLOYMENT_TYPE Unique Values: ['Freelance' 'Full-time' 'Fulltime' 'Contract' 'Part-time' 'full-time']\n","\n","JOB_TITLE Unique Values: ['Applied Data Scientist' 'Business Intelligence' 'Data Architect'\n"," 'Data Science' 'Insight Analyst' 'Data Engineer' 'Research Scientist'\n"," 'Business Intelligence Analyst' 'Analytics Engineer' 'Data Scientist'\n"," 'Research Engineer' 'BI Developer' 'Data Analyst'\n"," 'Business Intelligence Engineer' 'Data Quality Engineer'\n"," 'Machine Learning Engineer' 'Cloud Database Engineer' 'Head of Data'\n"," 'BI Analyst' 'Data Manager' 'Computational Biologist'\n"," 'Data Integration Specialist' 'Data Science Manager' 'AI Engineer'\n"," 'Applied Scientist' 'BI Data Analyst' 'AI Research Scientist'\n"," 'MLOps Engineer' 'Research Analyst' 'Admin & Data Analyst'\n"," 'Business Intelligence Manager' 'Data Developer' 'Prompt Engineer'\n"," 'Data Specialist' 'Data Integration Engineer' 'Data Science Analyst'\n"," 'Data Analytics Associate' 'Data Reporting Analyst'\n"," 'Business Intelligence Developer' 'Machine Learning Scientist'\n"," 'Data Science Consultant' 'Data Management Analyst'\n"," 'Data Operations Analyst' 'Data Management Consultant'\n"," 'Data Quality Analyst' 'ML Engineer' 'Robotics Software Engineer'\n"," 'Machine Learning Researcher' 'Data DevOps Engineer'\n"," 'AI Software Engineer' 'Data Operations Specialist' 'AI Architect'\n"," 'Data Product Manager' 'Data Science Director' 'Data Strategist'\n"," 'Big Data Developer' 'Quantitative Research Analyst'\n"," 'Lead Machine Learning Engineer' 'Machine Learning Research Engineer'\n"," 'Data Infrastructure Engineer' 'Data Analytics Lead'\n"," 'Data Analytics Manager' 'Data Analytics Consultant'\n"," 'AI Research Engineer' 'Data Analytics Specialist' 'ETL Developer'\n"," 'Data Science Engineer' 'Big Data Engineer' 'Data Modeler'\n"," 'Robotics Engineer' 'Business Intelligence Lead' 'AI Programmer'\n"," 'ETL Engineer' 'AI Product Manager' 'Data Management Specialist'\n"," 'Data Operations Associate' 'AI Developer' 'AI Scientist'\n"," 'Computer Vision Engineer' 'Head of Machine Learning' 'Data Analyst Lead'\n"," 'Machine Learning Operations Engineer' 'Data Lead'\n"," 'Data Science Practitioner' 'Data Integration Developer'\n"," 'ML Ops Engineer' 'Data Pipeline Engineer' 'Data Science Lead'\n"," 'Director of Data Science' 'Managing Director Data Science'\n"," 'Data Visualization Specialist' 'Data Quality Manager'\n"," 'Data Product Owner' 'Machine Learning Infrastructure Engineer'\n"," 'Business Data Analyst' 'NLP Engineer' 'Marketing Data Scientist'\n"," 'Deep Learning Engineer' 'Machine Learning Modeler'\n"," 'Business Intelligence Specialist' 'Decision Scientist'\n"," 'Financial Data Analyst' 'Data Strategy Manager'\n"," 'Data Visualization Engineer' 'Azure Data Engineer'\n"," 'Principal Data Scientist' 'Staff Data Analyst'\n"," 'Machine Learning Software Engineer' 'Applied Machine Learning Scientist'\n"," 'Data Operations Engineer' 'Machine Learning Manager'\n"," 'Lead Data Scientist' 'Principal Machine Learning Engineer'\n"," 'Principal Data Engineer' 'Power BI Developer' 'Head of Data Science'\n"," 'Staff Machine Learning Engineer' 'Staff Data Scientist'\n"," 'Consultant Data Engineer' 'Machine Learning Specialist'\n"," 'Business Intelligence Data Analyst' 'Data Operations Manager'\n"," 'Data Modeller' 'Finance Data Analyst' 'Software Data Engineer'\n"," 'Compliance Data Analyst' 'Cloud Data Engineer'\n"," 'Analytics Engineering Manager' 'AWS Data Architect'\n"," 'Product Data Analyst' 'Machine Learning Developer'\n"," 'Data Visualization Analyst' 'Autonomous Vehicle Technician'\n"," 'Sales Data Analyst' 'Applied Machine Learning Engineer'\n"," 'Lead Data Analyst' 'BI Data Engineer' 'Deep Learning Researcher'\n"," 'Big Data Architect' 'Computer Vision Software Engineer'\n"," 'Marketing Data Engineer' 'Manager Data Management'\n"," 'Data Science Tech Lead' 'Data Scientist Lead' 'Marketing Data Analyst'\n"," 'Data Analytics Engineer' 'Cloud Data Architect' 'Lead Data Engineer'\n"," 'Principal Data Analyst']\n","\n","SALARY_CURRENCY Unique Values: ['USD' 'GBP' 'EUR' 'CAD' 'CHF' 'NZD' 'AUD' 'PLN' 'BRL' 'TRY' 'SGD' 'DKK']\n","\n","EMPLOYEE_RESIDENCE Unique Values: ['United Kingdom' 'United States' 'Canada' 'Lithuania' 'Poland' 'France'\n"," 'Germany' 'Saudi Arabia' 'India' 'Australia' 'United Arab Emirates'\n"," 'Ukraine' 'Netherlands' 'Egypt' 'Austria' 'Spain' 'Philippines' 'Finland'\n"," 'Türkiye' 'Switzerland' 'Oman' 'New Zealand' 'Mexico' 'Portugal'\n"," 'Bosnia and Herzegovina' 'Brazil' 'Argentina' 'Latvia' 'South Africa'\n"," 'Italy' 'Ireland' 'Estonia' 'Malta' 'Croatia' 'Lebanon' 'Romania'\n"," 'Hungary' 'Viet Nam' 'Nigeria' 'Czechia' 'Pakistan' 'Uganda' 'Colombia'\n"," 'Slovenia' 'Greece' 'Mauritius' 'Armenia' 'Thailand' 'Korea, Republic of'\n"," 'Qatar' 'Russian Federation' 'Kenya' 'Tunisia' 'Ghana' 'Belgium'\n"," 'Andorra' 'Ecuador' 'Peru' 'Moldova, Republic of' 'Uzbekistan' 'Georgia'\n"," 'Central African Republic' 'Singapore' 'Sweden' 'Kuwait' 'Cyprus'\n"," 'Iran, Islamic Republic of' 'American Samoa' 'China' 'Costa Rica' 'Chile'\n"," 'Puerto Rico' 'Denmark' 'Bolivia, Plurinational State of'\n"," 'Dominican Republic' 'Indonesia' 'Malaysia' 'Japan' 'Honduras' 'Algeria'\n"," 'Iraq' 'Bulgaria' 'Jersey' 'Serbia' 'Hong Kong' 'Luxembourg']\n","\n","WORK_SETTING Unique Values: ['Remote' 'In-person' 'Hybrid']\n","\n","COMPANY_LOCATION Unique Values: ['United Kingdom' 'United States' 'Canada' 'Lithuania' 'Poland' 'France'\n"," 'Germany' 'Saudi Arabia' 'Australia' 'United Arab Emirates' 'Ukraine'\n"," 'Netherlands' 'Egypt' 'Austria' 'Spain' 'Philippines' 'Finland'\n"," 'Türkiye' 'Switzerland' 'Oman' 'New Zealand' 'Mexico' 'Portugal'\n"," 'Bosnia and Herzegovina' 'Brazil' 'Argentina' 'Latvia' 'South Africa'\n"," 'Italy' 'American Samoa' 'Ireland' 'Estonia' 'India' 'Malta' 'Hungary'\n"," 'Lebanon' 'Romania' 'Viet Nam' 'Nigeria' 'Luxembourg' 'Gibraltar'\n"," 'Colombia' 'Slovenia' 'Greece' 'Mauritius' 'Russian Federation'\n"," 'Korea, Republic of' 'Czechia' 'Qatar' 'Kenya' 'Denmark' 'Ghana' 'Sweden'\n"," 'Andorra' 'Ecuador' 'Israel' 'Japan' 'Central African Republic'\n"," 'Singapore' 'Croatia' 'Armenia' 'Pakistan' 'Iran, Islamic Republic of'\n"," 'Bahamas' 'Puerto Rico' 'Thailand' 'Belgium' 'Indonesia' 'Malaysia'\n"," 'Honduras' 'Algeria' 'Iraq' 'China' 'Moldova, Republic of']\n","\n","COMPANY_SIZE Unique Values: ['M' 'S' 'm' 'L' 'l' 's']\n","\n","JOB_CATEGORY Unique Values: ['Data Science and Research' 'BI and Visualization'\n"," 'Data Architecture and Modeling' 'Data Analysis' 'Data Engineering'\n"," 'Leadership and Management' 'Data Quality and Operations'\n"," 'Machine Learning and AI' 'Cloud and Database'\n"," 'Data Management and Strategy']\n","\n"]}]},{"cell_type":"markdown","source":["## Cleaning of Employment Type column values"],"metadata":{"id":"gCuZVz65jpt3"}},{"cell_type":"code","source":["# Fixing column values in the Employment Type for consistency by capitalizing lower case values and fixing the value that is missing a \"-\"\n","\n","df['employment_type'] = df['employment_type'].str.capitalize()\n","df['employment_type'] = df['employment_type'].str.replace('Fulltime', 'Full-time')\n","\n","# Verifying the changes applied correctly\n","\n","df['employment_type'].value_counts()"],"metadata":{"id":"JRLeK1Wvo6dZ","executionInfo":{"status":"ok","timestamp":1714700911259,"user_tz":300,"elapsed":195,"user":{"displayName":"Jenny O","userId":"07622373657144372939"}},"colab":{"base_uri":"https://localhost:8080/"},"outputId":"ccaad558-0da2-4320-a7cd-ee67a90c11c9"},"execution_count":null,"outputs":[{"output_type":"execute_result","data":{"text/plain":["employment_type\n","Full-time 14139\n","Contract 26\n","Part-time 22\n","Freelance 12\n","Name: count, dtype: int64"]},"metadata":{},"execution_count":52}]},{"cell_type":"markdown","source":["## Cleaning of Company Size column values"],"metadata":{"id":"JsPbLNmEjvfY"}},{"cell_type":"code","source":["# Fixing the Company Size column to make sure each value is consistent in casing\n","\n","df['company_size'] = df['company_size'].str.capitalize()\n","\n","# Verifying the changes were applied correctly\n","\n","df['company_size'].value_counts()"],"metadata":{"id":"ln6Azml7o6--","executionInfo":{"status":"ok","timestamp":1714700911993,"user_tz":300,"elapsed":190,"user":{"displayName":"Jenny O","userId":"07622373657144372939"}},"colab":{"base_uri":"https://localhost:8080/"},"outputId":"74ce95f1-1747-430b-f71b-13360ca9f7ad"},"execution_count":null,"outputs":[{"output_type":"execute_result","data":{"text/plain":["company_size\n","M 13112\n","L 919\n","S 168\n","Name: count, dtype: int64"]},"metadata":{},"execution_count":53}]},{"cell_type":"markdown","source":["## Filtering out data based on USD salary info"],"metadata":{"id":"1ygwoVWOj8oF"}},{"cell_type":"code","source":["# This filters out only rows that are pertaining to USD salary information and the company being located in the United States\n","\n","usd_salary_df = df[((df['salary_currency'] == \"USD\") & (df['employee_residence'] == 'United States'))]\n","\n","# Checking value counts for various columns to determine if any can be removed from the dataset\n","\n","print(usd_salary_df['company_location'].value_counts())\n","print()\n","print(usd_salary_df['employment_type'].value_counts())\n","print()\n","print(usd_salary_df['employee_residence'].value_counts())\n","print()\n","print(usd_salary_df['salary_currency'].value_counts())\n","print()\n","print(usd_salary_df['experience_level'].value_counts())"],"metadata":{"colab":{"base_uri":"https://localhost:8080/"},"id":"k5hm8KVmiCid","executionInfo":{"status":"ok","timestamp":1714700912893,"user_tz":300,"elapsed":195,"user":{"displayName":"Jenny O","userId":"07622373657144372939"}},"outputId":"326a4a62-a902-4f92-bd5d-abce691bb4a8"},"execution_count":null,"outputs":[{"output_type":"stream","name":"stdout","text":["company_location\n","United States 12398\n","Canada 2\n","Japan 1\n","Australia 1\n","Germany 1\n","France 1\n","Name: count, dtype: int64\n","\n","employment_type\n","Full-time 12381\n","Contract 14\n","Part-time 9\n","Name: count, dtype: int64\n","\n","employee_residence\n","United States 12404\n","Name: count, dtype: int64\n","\n","salary_currency\n","USD 12404\n","Name: count, dtype: int64\n","\n","experience_level\n","Senior 8555\n","Mid-level 2693\n","Entry-level 793\n","Executive 363\n","Name: count, dtype: int64\n"]}]},{"cell_type":"markdown","source":["## Filtering out non-United States company locations"],"metadata":{"id":"x2zOARrLEbzJ"}},{"cell_type":"code","source":["usd_salary_df = df[((df['company_location'] == \"United States\"))]\n","\n","print(usd_salary_df['company_location'].value_counts())"],"metadata":{"colab":{"base_uri":"https://localhost:8080/"},"id":"hJ-VyrHhEiFR","executionInfo":{"status":"ok","timestamp":1714700914013,"user_tz":300,"elapsed":366,"user":{"displayName":"Jenny O","userId":"07622373657144372939"}},"outputId":"6b8f84f2-d958-44a6-bc41-23b814e57a3f"},"execution_count":null,"outputs":[{"output_type":"stream","name":"stdout","text":["company_location\n","United States 12465\n","Name: count, dtype: int64\n"]}]},{"cell_type":"markdown","source":["## Dropping columns that are no longer needed"],"metadata":{"id":"cPMboPtEmXkN"}},{"cell_type":"code","source":["# Dropping the company_location as we are only looking at locations located in the United States\n","# Dropping the employee_residence column as we are only looking at employees who reside in the United States\n","# Dropping the salary_currency column as this column only contains the value \"USD\"\n","# Dropping the salary_in_usd column as we already filtered the salary column by salaries in the United States, so this column is redundant data\n","\n","usd_salary_df = usd_salary_df.drop({'company_location', 'employee_residence', 'salary_currency', 'salary_in_usd'}, axis=1)"],"metadata":{"id":"J2icSnhbmNTJ"},"execution_count":null,"outputs":[]},{"cell_type":"code","source":["df_u=usd_salary_df\n","usd_salary_df.head(15)"],"metadata":{"id":"vF0OL2RHmNiF","executionInfo":{"status":"ok","timestamp":1714700915320,"user_tz":300,"elapsed":197,"user":{"displayName":"Jenny O","userId":"07622373657144372939"}},"colab":{"base_uri":"https://localhost:8080/","height":869},"outputId":"cb7fc514-f1c3-46c5-ad47-c44aa8243491"},"execution_count":null,"outputs":[{"output_type":"execute_result","data":{"text/plain":[" work_year experience_level employment_type job_title \\\n","1 2024 Executive Full-time Business Intelligence \n","2 2024 Executive Full-time Business Intelligence \n","7 2024 Entry-level Full-time Insight Analyst \n","8 2024 Entry-level Full-time Insight Analyst \n","9 2024 Senior Full-time Data Engineer \n","10 2024 Senior Full-time Data Engineer \n","11 2024 Senior Full-time Research Scientist \n","12 2024 Senior Full-time Research Scientist \n","13 2024 Entry-level Full-time Business Intelligence Analyst \n","14 2024 Entry-level Full-time Business Intelligence Analyst \n","15 2024 Entry-level Full-time Analytics Engineer \n","16 2024 Entry-level Full-time Analytics Engineer \n","17 2024 Entry-level Full-time Data Engineer \n","18 2024 Entry-level Full-time Data Engineer \n","19 2024 Senior Full-time Data Scientist \n","\n"," salary work_setting company_size job_category \n","1 230000.00 In-person M BI and Visualization \n","2 176900.00 In-person M BI and Visualization \n","7 50000.00 Remote M Data Analysis \n","8 40000.00 Remote M Data Analysis \n","9 276000.00 In-person M Data Engineering \n","10 148000.00 In-person M Data Engineering \n","11 234000.00 In-person M Data Science and Research \n","12 146000.00 In-person M Data Science and Research \n","13 192300.00 In-person M BI and Visualization \n","14 120200.00 In-person M BI and Visualization \n","15 132500.00 In-person M Leadership and Management \n","16 111500.00 In-person M Leadership and Management \n","17 234000.00 In-person M Data Engineering \n","18 146000.00 In-person M Data Engineering \n","19 149006.38 In-person M Data Science and Research "],"text/html":["\n","
\n","
\n","\n","\n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n","
work_yearexperience_levelemployment_typejob_titlesalarywork_settingcompany_sizejob_category
12024ExecutiveFull-timeBusiness Intelligence230000.00In-personMBI and Visualization
22024ExecutiveFull-timeBusiness Intelligence176900.00In-personMBI and Visualization
72024Entry-levelFull-timeInsight Analyst50000.00RemoteMData Analysis
82024Entry-levelFull-timeInsight Analyst40000.00RemoteMData Analysis
92024SeniorFull-timeData Engineer276000.00In-personMData Engineering
102024SeniorFull-timeData Engineer148000.00In-personMData Engineering
112024SeniorFull-timeResearch Scientist234000.00In-personMData Science and Research
122024SeniorFull-timeResearch Scientist146000.00In-personMData Science and Research
132024Entry-levelFull-timeBusiness Intelligence Analyst192300.00In-personMBI and Visualization
142024Entry-levelFull-timeBusiness Intelligence Analyst120200.00In-personMBI and Visualization
152024Entry-levelFull-timeAnalytics Engineer132500.00In-personMLeadership and Management
162024Entry-levelFull-timeAnalytics Engineer111500.00In-personMLeadership and Management
172024Entry-levelFull-timeData Engineer234000.00In-personMData Engineering
182024Entry-levelFull-timeData Engineer146000.00In-personMData Engineering
192024SeniorFull-timeData Scientist149006.38In-personMData Science and Research
\n","
\n","
\n","\n","
\n"," \n","\n"," \n","\n"," \n","
\n","\n","\n","
\n"," \n","\n","\n","\n"," \n","
\n","\n","
\n","
\n"],"application/vnd.google.colaboratory.intrinsic+json":{"type":"dataframe","variable_name":"usd_salary_df","summary":"{\n \"name\": \"usd_salary_df\",\n \"rows\": 12465,\n \"fields\": [\n {\n \"column\": \"work_year\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 0,\n \"min\": 2020,\n \"max\": 2024,\n \"num_unique_values\": 5,\n \"samples\": [\n 2023,\n 2020,\n 2022\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"experience_level\",\n \"properties\": {\n \"dtype\": \"category\",\n \"num_unique_values\": 4,\n \"samples\": [\n \"Entry-level\",\n \"Mid-level\",\n \"Executive\"\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"employment_type\",\n \"properties\": {\n \"dtype\": \"category\",\n \"num_unique_values\": 4,\n \"samples\": [\n \"Contract\",\n \"Freelance\",\n \"Full-time\"\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"job_title\",\n \"properties\": {\n \"dtype\": \"category\",\n \"num_unique_values\": 127,\n \"samples\": [\n \"Data Integration Engineer\",\n \"BI Data Engineer\",\n \"NLP Engineer\"\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"salary\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 61523.413918642145,\n \"min\": 20000.0,\n \"max\": 450000.0,\n \"num_unique_values\": 2006,\n \"samples\": [\n 146115.0,\n 195200.0,\n 331640.0\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"work_setting\",\n \"properties\": {\n \"dtype\": \"category\",\n \"num_unique_values\": 3,\n \"samples\": [\n \"In-person\",\n \"Remote\",\n \"Hybrid\"\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"company_size\",\n \"properties\": {\n \"dtype\": \"category\",\n \"num_unique_values\": 3,\n \"samples\": [\n \"M\",\n \"L\",\n \"S\"\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"job_category\",\n \"properties\": {\n \"dtype\": \"category\",\n \"num_unique_values\": 10,\n \"samples\": [\n \"Data Architecture and Modeling\",\n \"Data Analysis\",\n \"Data Quality and Operations\"\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n }\n ]\n}"}},"metadata":{},"execution_count":57}]},{"cell_type":"markdown","source":["## Exploratory Data Analysis (EDA)"],"metadata":{"id":"Ijy3cqNoU4s0"}},{"cell_type":"markdown","source":["## Removing 'job Title' column"],"metadata":{"id":"El--_dZ6-Iz4"}},{"cell_type":"code","source":["usd_salary_df = usd_salary_df.drop('job_title', axis=1)"],"metadata":{"id":"_4EI_4OBueNr"},"execution_count":null,"outputs":[]},{"cell_type":"markdown","source":["## Ensuring the column has been removed"],"metadata":{"id":"wJ9-vYI6_nGB"}},{"cell_type":"code","source":["usd_salary_df.head(15)"],"metadata":{"colab":{"base_uri":"https://localhost:8080/","height":606},"id":"x5qXNrLEqccG","executionInfo":{"status":"ok","timestamp":1714700917755,"user_tz":300,"elapsed":222,"user":{"displayName":"Jenny O","userId":"07622373657144372939"}},"outputId":"abf9662e-e516-4c70-8f15-58764965b271"},"execution_count":null,"outputs":[{"output_type":"execute_result","data":{"text/plain":[" work_year experience_level employment_type salary work_setting \\\n","1 2024 Executive Full-time 230000.00 In-person \n","2 2024 Executive Full-time 176900.00 In-person \n","7 2024 Entry-level Full-time 50000.00 Remote \n","8 2024 Entry-level Full-time 40000.00 Remote \n","9 2024 Senior Full-time 276000.00 In-person \n","10 2024 Senior Full-time 148000.00 In-person \n","11 2024 Senior Full-time 234000.00 In-person \n","12 2024 Senior Full-time 146000.00 In-person \n","13 2024 Entry-level Full-time 192300.00 In-person \n","14 2024 Entry-level Full-time 120200.00 In-person \n","15 2024 Entry-level Full-time 132500.00 In-person \n","16 2024 Entry-level Full-time 111500.00 In-person \n","17 2024 Entry-level Full-time 234000.00 In-person \n","18 2024 Entry-level Full-time 146000.00 In-person \n","19 2024 Senior Full-time 149006.38 In-person \n","\n"," company_size job_category \n","1 M BI and Visualization \n","2 M BI and Visualization \n","7 M Data Analysis \n","8 M Data Analysis \n","9 M Data Engineering \n","10 M Data Engineering \n","11 M Data Science and Research \n","12 M Data Science and Research \n","13 M BI and Visualization \n","14 M BI and Visualization \n","15 M Leadership and Management \n","16 M Leadership and Management \n","17 M Data Engineering \n","18 M Data Engineering \n","19 M Data Science and Research "],"text/html":["\n","
\n","
\n","\n","\n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n","
work_yearexperience_levelemployment_typesalarywork_settingcompany_sizejob_category
12024ExecutiveFull-time230000.00In-personMBI and Visualization
22024ExecutiveFull-time176900.00In-personMBI and Visualization
72024Entry-levelFull-time50000.00RemoteMData Analysis
82024Entry-levelFull-time40000.00RemoteMData Analysis
92024SeniorFull-time276000.00In-personMData Engineering
102024SeniorFull-time148000.00In-personMData Engineering
112024SeniorFull-time234000.00In-personMData Science and Research
122024SeniorFull-time146000.00In-personMData Science and Research
132024Entry-levelFull-time192300.00In-personMBI and Visualization
142024Entry-levelFull-time120200.00In-personMBI and Visualization
152024Entry-levelFull-time132500.00In-personMLeadership and Management
162024Entry-levelFull-time111500.00In-personMLeadership and Management
172024Entry-levelFull-time234000.00In-personMData Engineering
182024Entry-levelFull-time146000.00In-personMData Engineering
192024SeniorFull-time149006.38In-personMData Science and Research
\n","
\n","
\n","\n","
\n"," \n","\n"," \n","\n"," \n","
\n","\n","\n","
\n"," \n","\n","\n","\n"," \n","
\n","\n","
\n","
\n"],"application/vnd.google.colaboratory.intrinsic+json":{"type":"dataframe","variable_name":"usd_salary_df","summary":"{\n \"name\": \"usd_salary_df\",\n \"rows\": 12465,\n \"fields\": [\n {\n \"column\": \"work_year\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 0,\n \"min\": 2020,\n \"max\": 2024,\n \"num_unique_values\": 5,\n \"samples\": [\n 2023,\n 2020,\n 2022\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"experience_level\",\n \"properties\": {\n \"dtype\": \"category\",\n \"num_unique_values\": 4,\n \"samples\": [\n \"Entry-level\",\n \"Mid-level\",\n \"Executive\"\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"employment_type\",\n \"properties\": {\n \"dtype\": \"category\",\n \"num_unique_values\": 4,\n \"samples\": [\n \"Contract\",\n \"Freelance\",\n \"Full-time\"\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"salary\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 61523.413918642145,\n \"min\": 20000.0,\n \"max\": 450000.0,\n \"num_unique_values\": 2006,\n \"samples\": [\n 146115.0,\n 195200.0,\n 331640.0\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"work_setting\",\n \"properties\": {\n \"dtype\": \"category\",\n \"num_unique_values\": 3,\n \"samples\": [\n \"In-person\",\n \"Remote\",\n \"Hybrid\"\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"company_size\",\n \"properties\": {\n \"dtype\": \"category\",\n \"num_unique_values\": 3,\n \"samples\": [\n \"M\",\n \"L\",\n \"S\"\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"job_category\",\n \"properties\": {\n \"dtype\": \"category\",\n \"num_unique_values\": 10,\n \"samples\": [\n \"Data Architecture and Modeling\",\n \"Data Analysis\",\n \"Data Quality and Operations\"\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n }\n ]\n}"}},"metadata":{},"execution_count":59}]},{"cell_type":"markdown","source":["## Summary statistics of numerical variables"],"metadata":{"id":"2xE9ibaqKori"}},{"cell_type":"code","source":["summary_stats = usd_salary_df.describe()\n","print(summary_stats)"],"metadata":{"id":"ZmsZAoOavLjr","colab":{"base_uri":"https://localhost:8080/"},"executionInfo":{"status":"ok","timestamp":1714700919043,"user_tz":300,"elapsed":186,"user":{"displayName":"Jenny O","userId":"07622373657144372939"}},"outputId":"ec93c791-c8f9-4d30-ecf5-186fcd2d798a"},"execution_count":null,"outputs":[{"output_type":"stream","name":"stdout","text":[" work_year salary\n","count 12465.000000 12465.000000\n","mean 2023.141998 156454.438752\n","std 0.644336 61523.413919\n","min 2020.000000 20000.000000\n","25% 2023.000000 112000.000000\n","50% 2023.000000 148350.000000\n","75% 2024.000000 191200.000000\n","max 2024.000000 450000.000000\n"]}]},{"cell_type":"markdown","source":["## Salary Histogram and Box plot"],"metadata":{"id":"F-L1KJ41DRvY"}},{"cell_type":"code","source":["import pandas as pd\n","import matplotlib.pyplot as plt\n","import seaborn as sns\n","\n","# Set the style of seaborn for better visuals\n","sns.set(style=\"whitegrid\")\n","\n","# Create a figure with specified size\n","plt.figure(figsize=(12, 6))\n","\n","# Create a histogram\n","plt.subplot(1, 2, 1) # 1 row, 2 columns, 1st subplot\n","sns.histplot(usd_salary_df['salary'], kde=True, color='blue')\n","plt.title('Histogram of Salaries')\n","plt.xlabel('Salary')\n","plt.ylabel('Frequency')\n","\n","# Create a boxplot\n","plt.subplot(1, 2, 2) # 1 row, 2 columns, 2nd subplot\n","sns.boxplot(x=df['salary'], color='green')\n","plt.title('Boxplot of Salaries')\n","plt.xlabel('Salary')\n","\n","# Display the plots\n","plt.tight_layout()\n","plt.show()"],"metadata":{"id":"3LH3_oR4vLdU","colab":{"base_uri":"https://localhost:8080/","height":440},"executionInfo":{"status":"ok","timestamp":1714700921481,"user_tz":300,"elapsed":1232,"user":{"displayName":"Jenny O","userId":"07622373657144372939"}},"outputId":"a17a46c1-ae34-404e-e26a-cdd476ce3345"},"execution_count":null,"outputs":[{"output_type":"display_data","data":{"text/plain":["
"],"image/png":"iVBORw0KGgoAAAANSUhEUgAABJ8AAAJICAYAAADPZkXcAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAACW9klEQVR4nOzdd3yN5//H8ffJJCGIVXsnYscmsX2pUVur2qKtUi3Kt4rq+HaotjqMolVUqWp1GK3dql2zlNrUVrUlIiHr/P64f+dwJCFycnKfJK/n45HHfeWen5Nb4uSd67pui9VqtQoAAAAAAABwAQ+zCwAAAAAAAEDWRfgEAAAAAAAAlyF8AgAAAAAAgMsQPgEAAAAAAMBlCJ8AAAAAAADgMoRPAAAAAAAAcBnCJwAAAAAAALgM4RMAAAAAAABchvAJAAAAAAAALkP4BOC+NW/eXCNHjjS7jCxv+vTpatGihUJCQtSxY8cMvXZwcLA++eSTdD3n/PnzFRwcrNOnT6freQEAyOxc8f+us3bv3q0ePXqoRo0aCg4O1v79+zPs2iNHjlTz5s3T/bzu+HUGsgsvswsAYK758+fr5Zdf1g8//KCqVasm2f7EE0/oypUrWrx4sVPXWbt2rXbv3q1BgwY5dZ7sYsOGDfrggw/UoUMHDRo0SPny5bvr/r/99pu++OIL/f3334qOjlaBAgVUpUoVde3aVY0bN86gqgEAcC+29zm3CwwMVPny5dW3b181adLEpMrSx5EjR7Rs2TJ17txZxYsXT7fzxsXFaciQIfLx8dHLL7+sHDlyqGjRoinuf/r0aU2ePFnbtm3TuXPnFBAQoNKlS6tevXoaPHhwutUFIPMifAJw35YvXy6LxXJfx6xdu1Zff/014VMqbd68WR4eHnrnnXfk4+Nz131nzJihsWPHqm7duurfv79y5MihEydOaNOmTVq6dKnbhE8dO3ZUu3bt7vl6AABIb4MHD1bx4sVltVp16dIlLViwQP369dNnn32mZs2amV1emh05ckSTJk1S3bp10zV8OnnypM6cOaPRo0ere/fud933xIkT6tatm3x9fdW1a1cVL15c58+f1759+zRt2jS3Cp92794tT09Ps8sAsiXCJwD3LTOGB9HR0fLz8zO7jFS7dOmScuTIcc+vdXx8vKZMmaKwsDB98cUXyZ7HbLavvaenJ2/4AACmaNy4sUMP727duiksLEyLFy/O1OGTq1y+fFmSlDt37nvu++WXXyo6OloLFy5UsWLFHLa5w/uQxMRExcXFydfXV76+vmaXA2RbzPkE4L7dOedTXFycJk2apFatWqlq1aqqV6+eHn30UW3cuFGSMW7/66+/lmSMtbd92ERHR+u9995TkyZNVKVKFbVu3VozZsyQ1Wp1uO6NGzc0evRo1atXT6GhoXr22Wd17ty5JOP3P/nkEwUHB+vIkSN68cUXVadOHfXs2VOSdODAAY0cOVItWrRQ1apVFRYWppdffllXrlxxuJbtHMeOHdOwYcNUq1Yt1a9fX+PHj5fVatXZs2c1YMAA1axZM8XgJznx8fGaPHmyWrZsqSpVqqh58+b6+OOPFRsba98nODhY8+fPV3R0tP1rNX/+/GTPd+XKFUVFRalmzZrJbs+fP7+9HRsbqwkTJqhLly6qVauWatSooZ49e2rz5s33rPvMmTN644031Lp1a1WrVs3ejf7O+Zts8zpt3bpVb7zxhho0aGAf0pDSnE9r165Vz549VaNGDYWGhqpfv346fPiwwz4XLlzQyy+/rMaNG6tKlSoKDw/XgAEDmD8KAJAmAQEB8vX1lZeX49/i7/We5MaNG3rwwQf14IMP6saNG/bjrl69qvDwcPXo0UMJCQmSjPc/oaGhOnXqlJ5++mnVqFFD4eHhmjRpUpL3OMnZt2+f+vbtq5o1ayo0NFS9e/fWn3/+ad8+f/58vfDCC5KkXr162d8zbNmy5a7n3bRpk/3/3dq1a2vAgAH6+++/7dtHjhypxx9/XJL0wgsvKDg4WE888USK5zt58qQKFy6cJHiSHN+HSNKvv/6qfv36KTw8XFWqVFHLli01efJk+9fsbmbMmKEePXqoXr16qlatmrp06aLly5cn2S84OFhvvfWWfvrpJ7Vr105Vq1bV+vXr7dvunPPp3Llzevnll9WwYUNVqVJF7dq10w8//JDkvF999ZXatWun6tWrq06dOurSpYt+/vnne9YNwEDPJwCSpKioKPtfuW4XFxd3z2MnTZqkqVOnqnv37qpWrZqioqK0Z88e7d27V2FhYXrkkUd0/vx5bdy4UWPHjnU41mq1asCAAdqyZYu6deumkJAQrV+/XmPHjtW5c+c0atQo+74jR47UsmXL1LFjR1WvXl3btm1Tv379UqzrhRdeUKlSpTR06FD7m7zff/9dp06dUpcuXVSwYEEdPnxY3333nY4cOaLvvvsuyXDCoUOHqly5cnrxxRe1du1affrpp8qbN6++/fZb1a9fX8OGDdPPP/+s999/X1WrVlWdOnXu+rV69dVXtWDBArVu3VpPPvmkdu/eralTp+rvv//W5MmTJUljx47Vd999p927d2v06NGSdNdwKUeOHPrtt9/0+OOPK2/evCleOyoqSt9//73at2+v7t276/r16/rhhx/Ut29fff/99woJCUnx2L/++ks7d+5Uu3bt9MADD+jMmTP65ptv1KtXLy1ZskQ5c+Z02P/NN99UYGCgnn/+eUVHR6d43oULF2rkyJEKDw/XsGHDFBMTo2+++UY9e/bUggUL7EMIBg0apCNHjujxxx9XsWLFdPnyZW3cuFFnz55N12EGAICs6fb3OZcuXdJXX32l6OhodejQwb5Pat6T5MiRQ++//74effRRjRs3zj6f1FtvvaVr167p3Xffdejlm5CQoL59+6p69ep66aWXtH79en3yySdKSEiwB0fJOXz4sB577DH5+/urb9++8vLy0rx58/TEE09ozpw59gDkiSee0FdffaVnn31WZcuWlSSVK1cuxfP+/vvveuaZZ1S8eHENHDhQN27c0Jw5c/Too49q/vz5Kl68uB555BEVLlxYn332mZ544glVrVpVBQoUSPGcxYoV06ZNm7Rp0yY1aNDgrvdhwYIF8vPz05NPPik/Pz9t3rxZEydOVFRUlEaMGHHXY2fPnq3mzZvroYceUlxcnJYsWaIXXnhBU6dOVdOmTR323bx5s5YtW6bHHntM+fLlSzYYk6SLFy/q4YcflsVi0WOPPabAwECtW7dOr7zyiqKiotSnTx9J0nfffafRo0erdevW6tWrl27evKmDBw9q165deuihh+5aN4D/ZwWQrf3444/WoKCgu360a9fO4ZhmzZpZR4wYYf+8Q4cO1n79+t31Om+++aY1KCgoyfpffvnFGhQUZJ0yZYrD+kGDBlmDg4OtJ06csFqtVuuePXusQUFB1nfeecdhv5EjR1qDgoKsEydOtK+bOHGiNSgoyPrf//43yfViYmKSrFu8eLE1KCjIum3btiTneO211+zr4uPjrY0bN7YGBwdbp06dal8fERFhrVatmsPXJDn79++3BgUFWV955RWH9e+99541KCjIumnTJvu6ESNGWGvUqHHX89lMmDDBGhQUZK1Ro4a1b9++1k8//dS6Z8+eJPvFx8dbb9686bAuIiLC2rBhQ+vLL7/ssP7Or2lyX7edO3dag4KCrAsWLLCvs/17evTRR63x8fEO+9u2nTp1ymq1Wq1RUVHW2rVrW1999VWH/S5cuGCtVauWfX1ERIQ1KCjIOn369FR8NQAAuCWl9zlVqlSxzp8/32Hf1L4nsVqt1o8++shasWJF67Zt26zLli2zBgUFWb/88kuH40aMGGENCgqyvv322/Z1iYmJ1n79+lkrV65svXTpkn39nf/vPvfcc9bKlStbT548aV937tw5a2hoqPWxxx6zr7Nde/Pmzan6enTs2NHaoEED65UrV+zr9u/fb61YsaJ1+PDh9nWbN2+2BgUFWZctW3bPcx46dMharVo1a1BQkLVjx47W0aNHW3/55RdrdHR0kn2Tez/x2muvWatXr+7wHmXEiBHWZs2a3fXY2NhYa/v27a29evVyWB8UFGStWLGi9fDhw0mudefXedSoUdawsDDr5cuXHfYbOnSotVatWvZrDhgwIMn7YQD3h2F3ACRJr7/+umbOnJnk4/bhcSkJCAjQ4cOHdfz48fu+7rp16+Tp6ZmkO/dTTz0lq9WqdevWSZK9u7Rt+JyNrVt4cnr06JFkXY4cOeztmzdv6vLly6pevbokae/evUn279atm73t6empKlWqyGq1OqwPCAhQmTJldOrUqRRrkYzhZZL05JNPOqx/6qmnHLbfr8GDB+ujjz5SSEiINmzYoHHjxqlLly7q3LmzQzd6T09P+xxSiYmJunr1quLj41WlShXt27fvrte4/esWFxenK1euqGTJkgoICEj22Icffvie8zv9/vvvioyMVLt27XT58mX7h4eHh6pXr24fNpAjRw55e3tr69atioiISPXXBQAAm9vf53zwwQeqV6+eXn31Va1cudK+T2rfk0jSwIEDVb58eY0YMUJvvvmm6tatq169eiV77ccee8zetvWwiYuL06ZNm5LdPyEhQRs3blTLli1VokQJ+/pChQqpffv2+uOPPxQVFXXfX4Pz589r//796ty5s0NP6YoVK6phw4Zpfh9SoUIFLVy4UB06dNCZM2c0e/ZsPf/882rYsKG+++47h31vfz9h641Wu3ZtxcTE6OjRo3e9zu3HRkRE6Nq1a6pVq1ay70Pq1Kmj8uXL3/V8VqtVK1euVPPmzWW1Wh3ei4SHh+vatWv294YBAQH6999/tXv37nt+PQAkj2F3ACRJ1apVc5iI0yZPnjxJ5kO60+DBg/Xcc8+pdevWCgoKUnh4uDp27KiKFSve87pnzpxRoUKFlCtXLof1ti7jZ86ckST9888/8vDwSDLEqlSpUimeO7nhWFevXtWkSZO0dOnSJJNgXrt2Lcn+dz5WOHfu3PL19VVgYGCS9VevXk2xFttr8fDwUMmSJR3WFyxYUAEBAfbXmhbt27dX+/btFRUVpV27dmn+/PlavHixnn32WS1evNg+weaCBQv0xRdf6NixYw5DKu81dO3GjRuaOnWq5s+fr3PnzjnMVZHc1y01Q+FsYWXv3r2T3W77N+Hj46Nhw4bp/fffV1hYmKpXr66mTZuqU6dOKliw4D2vAwDAne9z2rdvr06dOumtt95S06ZN5ePjk+r3JJLxf9OYMWPsT3kbM2ZMsk8C9vDwcAiQJKlMmTJJzne7y5cvKyYmxr7fnbUkJibq7NmzqlChQipfveGff/5xuP6d592wYUOaH9BSpkwZffDBB0pISNCRI0e0Zs0aTZ8+Xa+99pqKFy+uhg0bSjKGE44fP16bN29OEqAl937idqtXr9ann36q/fv3O8yVmdzXPTXvQy5fvqzIyEjNmzdP8+bNS3EfSXrmmWf0+++/q3v37ipVqpTCwsLUvn171apV657XAWAgfALgtDp16uiXX37RqlWrtHHjRv3www+aNWuW3nzzzXs+nteVknuiyZAhQ7Rz5049/fTTCgkJkZ+fnxITE9W3b99kJ//08EjaQTSlHj3JHZ+c5N4kpZdcuXIpLCxMYWFh8vb21oIFC7Rr1y7VrVtXixYt0siRI9WyZUs9/fTTyp8/vzw9PTV16tR79tp6++23NX/+fPXu3Vs1atRQ7ty5ZbFYHObTul1qniZjO27s2LHJhki3f5379Omj5s2b69dff9WGDRs0YcIEff7555o1a5YqVap0z2sBAHA7Dw8P1atXT7Nnz9aJEyfuO8iRpA0bNkgyelKfOHEiSciUHXl6etonPq9Ro4Z69eqln3/+WQ0bNlRkZKQef/xx5cqVS4MHD1bJkiXl6+urvXv36sMPP1RiYmKK592+fbsGDBigOnXq6H//+58KFiwob29v/fjjj1q8eHGS/W/vJZUS2/U6dOigzp07J7uPbQRAuXLltHz5cq1Zs0br16/XypUrNXfuXD3//PMaPHhwar40QLZH+AQgXeTNm1ddu3ZV165ddf36dT3++OP65JNP7OFTSoGLbZLKqKgoh7802rpe2yaILFq0qBITE3X69GmVLl3avt+JEydSXWNERIQ2bdqkQYMGaeDAgfb1aRkumBbFihVTYmKiTpw44TAZ6MWLFxUZGZniZJhpVaVKFS1YsEAXLlyQJK1YsUIlSpTQpEmTHO7HxIkT73muFStWqFOnTg5PObx58+Y9/0p5N7Y36fnz57f/RfRuSpYsqaeeekpPPfWUjh8/rk6dOumLL77Qhx9+mOYaAADZl+0Ja7YHY6T2PYlkPD138uTJ6tKliw4cOKBXX31VP//8s3Lnzu1wjcTERJ06dcqht9GxY8eSnO92gYGBypkzp32/2x09elQeHh4qUqSIpPv7g5atN3dK582XL1+aej2lpEqVKpKM4X6StHXrVnsP9Nsf0JKaJ9euWLFCvr6+mjFjhn0KAUn68ccf01xfYGCg/P39lZiYmKr3IX5+fmrbtq3atm2r2NhYDRo0SJ999pn69++fqj+6Adkdcz4BcNqdw/L8/f1VsmRJhy7RtqehRUZGOuzbuHFjJSQk6Ouvv3ZY/+WXX8pisahx48aSpPDwcEnS3LlzHfabM2dOqutMqcfSrFmzUn0OZzRp0iTZ682cOdNh+/2IiYnRzp07k91mm5vC9obX9vpv76m0a9cuh8c2pyS5r91XX32Vqkcjp6RRo0bKlSuXpk6dmuxTFW1d3WNiYnTz5k2HbSVLlpS/v7/DvzEAAFIrLi5OGzdulLe3t/0PQql9TxIXF6eXX35ZhQoV0iuvvKJ3331XFy9e1JgxY5K91u3ns1qt+vrrr+Xt7Z3ik+E8PT0VFhamVatWOQQzFy9e1OLFi1WrVi17OGZ7f5WaPwYVKlRIISEhWrhwocP7sUOHDmnjxo1peh8iGb2Skvt/3DaHlO19iK03+e3vQ2JjY5O8t0uOp6enLBaLw/uO06dPa9WqVWmq2XbO1q1ba8WKFTp06FCS7bc/BfrO97o+Pj4qV66crFZrqp4MDYCeTwDSQbt27VS3bl1VrlxZefPm1V9//aUVK1Y4TAZeuXJlSdLo0aMVHh4uT09PtWvXTs2bN1e9evU0btw4nTlzRsHBwdq4caNWrVql3r172+dHqlKlilq3bq1Zs2bp6tWrql69urZt22bvtZSav/zlypVLderU0fTp0xUXF6fChQtr48aNqfqLW3qoWLGiOnfurHnz5ikyMlJ16tTRX3/9pQULFqhly5aqX7/+fZ8zJiZGPXr0UI0aNdSoUSM98MADunbtmn799Vdt375dLVu2tA9La9q0qVauXKnnn39eTZs21enTp/Xtt9+qfPny9r/6pqRp06ZatGiRcuXKpfLly+vPP//U77//7jBh6f3KlSuX3njjDQ0fPlxdunRR27ZtFRgYqH/++Udr165VzZo19frrr+v48ePq06ePHnzwQZUvX16enp769ddfdfHiRbVr1y7N1wcAZB/r1q2z92C6fPmyfv75Zx0/flz9+vWzBzmpfU9im3foyy+/VK5cuVSxYkU9//zzGj9+vB588EGHEMfX11fr16/XiBEjVK1aNa1fv15r1qzRs88+m2T+yNsNGTJEv//+u3r27KmePXvK09NT8+bNU2xsrF566SX7fiEhIfL09NS0adN07do1+fj4qH79+sqfP3+y5x0+fLieeeYZPfLII+rWrZtu3LihOXPmKHfu3A69wu/HtGnTtHfvXv3nP/+xD1Pbt2+fFi5cqLx589rndgwNDVWePHk0cuRIPfHEE7JYLFq0aFGqpi1o0qSJZs6cqb59+6p9+/a6dOmS5s6dq5IlS+rgwYNpqluSXnzxRW3ZskUPP/ywunfvrvLlyysiIkJ79+7Vpk2btHXrVknS008/rQIFCqhmzZrKnz+/jh49qjlz5qhJkyZJ5ggDkDzCJwBOe+KJJ/Tbb79p48aNio2NVdGiRTVkyBA9/fTT9n1atWqlJ554QkuWLNFPP/0kq9Wqdu3aycPDQ59++qkmTpyopUuXav78+SpWrJiGDx9ufwqczfvvv68CBQpoyZIl+uWXX9SwYUONGzdODz74oEMX7Lv56KOP9Pbbb2vu3LmyWq0KCwvTtGnT1KhRo3T9mqRk9OjRKl68uBYsWKBff/1VBQoUUP/+/dP8hi8gIECjR4/WmjVrNH/+fF24cEGenp4qU6aMhg8f7vDEni5duujixYuaN2+eNmzYoPLly+uDDz7Q8uXL7W+uUvLKK6/Iw8NDP//8s27evKmaNWva3wQ646GHHlKhQoX0+eefa8aMGYqNjVXhwoVVu3ZtdenSRZL0wAMPqF27dtq0aZN++ukneXp6qmzZsho/frxat27t1PUBANnD7UPMfX19VbZsWb3xxhsOT8ZNzXuSvXv3aurUqXr88ccd/mjUr18/rVq1Sq+++qqWLFmigIAASUbvmunTp+uNN97QBx98IH9/fw0cOFDPP//8XeutUKGCvv76a3300UeaOnWqrFarqlWrpg8++MD+lF7JeGjJm2++qalTp+qVV15RQkKCZs+enWL41LBhQ02fPl0TJ07UxIkT5eXlpTp16uill15K85xV/fv31+LFi7Vt2zb9/PPPunHjhgoWLKh27drpueees583X758+uyzz/T+++9r/PjxCggIUIcOHdSgQQOH94zJadCggd555x1NmzZNY8aMUfHixTVs2DCdOXPGqfCpQIEC+v777zV58mT98ssv+uabb5Q3b16VL19ew4YNs+/3yCOP6Oeff9bMmTMVHR2tBx54QE888YSee+65NF8byG4s1tTOkAsAbmj//v3q1KmTPvjgA3Xo0MHscgAAACRJI0eO1IoVK1IcHg8A2QlzPgHING7cuJFk3axZs+Th4eEwcSUAAAAAwH0w7A5ApjF9+nTt2bNH9evXl6enp9atW6d169bpkUcesT/1BQAAAADgXgifAGQaoaGh2rhxo6ZMmaLo6GgVKVJEgwYN0rPPPmt2aQAAAACAFDDnEwAAAAAAAFyGOZ8AAAAAAADgMoRPAAAAAAAAcBnmfLoPO3fulNVqlbe3t9mlAACALCouLk4Wi0WhoaFOnYf3LQAAwNVS+76Fnk/3wWq1ymq1KjY2VkyVlflxL7MG7mPWwH3MGriP6cP2fiMjzsM9y9y4f5kf9zDz4x5mbtw/56X2fQs9n+6Dt7e3rFar4uLiVL58efn5+ZldEpwQHR2t/fv3cy8zOe5j1sB9zBq4j+njr7/+Spfz2Ho8Va1aNcV9uGeZG/cv8+MeZn7cw8yN++e81L5voecTAAAAAAAAXIbwCQAAAAAAAC5D+AQAAAAAAACXIXwCAAAAAACAyxA+AQAAAAAAwGUInwAAAAAAAOAyhE8AAAAAAABwGcInAAAAAAAAuAzhEwAAAAAAAFyG8AkAAAAAAAAuQ/gEAAAAAAAAlyF8AgAAAAAAgMsQPgEAAAAAAMBlCJ8AAAAAAADgMoRPAAAAAAAAcBnCJwAAAAAAALgM4RMAAAAAAABchvAJAAAAAAAALkP4BAAAAAAAAJchfAIAAAAAAIDLED4BAAAAAADAZQifAAAAAAAA4DJeZhcAZHeRkdL16ylv9/eXAgIyrh4AAAAAANIT4RNgsuvXpalTU97evz/hEwAAAAAg82LYHQAAAAAAAFyG8AkAAAAAAAAuQ/gEAAAAAAAAlyF8AgAAAAAAgMsQPgEAAAAAAMBlCJ8AAAAAAADgMoRPAAAAAAAAcBnCJwAAAAAAALgM4RMAAAAAAABchvAJAAAAAAAALkP4BAAAAAAAAJchfAIAAAAAAIDLED4BAAAAAADAZQifAAAAAAAA4DKETwAAAAAAAHAZwicAAAAAAAC4DOETAAAAAAAAXIbwCQAAAAAAAC5D+AQAAAAAAACXIXwCAAAAAACAyxA+AQAAAAAAwGUInwAAAAAAAOAyXmYXAAAAAMB5//zzj65cuWJ2GdlOvnz5VLRoUbPLAAC3RvgEAAAAZHL//POPWj/YWrE3Y80uJdvx8fXRiuUrCKAA4C4InwAAAIBM7sqVK4q9GauI6hFKyJVgdjmp4hnlqTy78mSqmu9kew1XrlwhfAKAuyB8AgAAALKIhFwJis8Tb3YZ9yUz1gwAuD9MOA4AAAAAAACXIXwCAAAAAACAyxA+AQAAAAAAwGUInwAAAAAAAOAyhE8AAAAAAABwGcInAAAAAAAAuAzhEwAAAAAAAFyG8AkAAAAAAAAu43bh06pVq9S9e3eFhoYqPDxcL7zwgk6dOpVkv++//16tW7dW1apV1aFDB61evTrJPteuXdOoUaNUt25dhYaGavDgwTp//nxGvAwAAAAAAADIzcKnLVu2aODAgSpfvrwmT56sUaNG6cCBA3rqqad048YN+35LlizRa6+9pjZt2mjatGmqUaOGBg4cqD///NPhfEOGDNHGjRv1xhtv6MMPP9SxY8f0zDPPKD4+PoNfGQAAAAAAQPbkZXYBt1uyZImKFi2qMWPGyGKxSJICAwPVu3dv7dmzR7Vr15YkTZw4Ue3atdOQIUMkSfXr19ehQ4c0efJkTZs2TZK0c+dObdiwQTNmzFB4eLgkqUyZMmrbtq1Wrlyptm3bZvwLBAAAAAAAyGbcqudTfHy8/P397cGTJOXOnVuSZLVaJUmnTp3S8ePH1aZNG4dj27Ztq02bNik2NlaStG7dOgUEBCgsLMy+T9myZRUSEqJ169a5+qUAAAAAAABAbhY+denSRX///be+/vprXbt2TadOndLHH3+sSpUqqWbNmpKko0ePSjJ6Md2uXLlyiouLs88PdfToUZUpU8YhyJKMAMp2DgAAAAAAALiWWw27q127tiZNmqQXX3xRb731liQpJCRE06dPl6enpyQpIiJCkhQQEOBwrO1z2/bIyEh7r6nb5cmTR3v27ElzjbYeWDExMWk+B9yD7R6afS/j430UF2e9y3aLoqNjM7CizMVd7iOcw33MGriP6cNqtSb54xkAAEBm5lbh044dOzR8+HA9/PDDatq0qa5evaopU6aoX79+mjt3rnLkyGF2ifbJyo8fP25uIUg3Zt9LP79yunAhOsXtUVF+On/+7wysKHMy+z4ifXAfswbuo/N8fHzMLgEAACDduFX4NHr0aNWvX18jR460r6tRo4aaNm2qRYsW6ZFHHlGePHkkSdeuXVPBggXt+0VGRkqSfXtAQID+/fffJNeIiIiw75MWXl5eio+PV+nSpZUzZ840nwfmi4mJ0fHjx02/l5cu+ahgQf8Ut+fKZVGpUiEZWFHm4i73Ec7hPmYN3Mf0ceTIEbNLAAAASFduFT79/fffatGihcO6Bx54QPny5dPJkyclGXM2ScacTra27XNvb2+VKFHCvt+mTZuSdF0/duyYgoKC0lyj7Vw5c+aUn59fms8D92H2vYyIkLy9U97u5SX5+bnVt6pbMvs+In1wH7MG7qNzGHIHAACyGreacLxo0aLat2+fw7ozZ87oypUrKlasmCSpRIkSKl26tJYvX+6w39KlS9WgQQN7N/XGjRsrIiJCmzZtsu9z7Ngx7du3T40bN3bxKwEAAAAAAIDkZj2fevTooTFjxmj06NFq3ry5rl69qk8//VT58+dXmzZt7PsNGjRIw4YNU8mSJVWvXj0tXbpUu3fv1pw5c+z7hIaGKjw8XKNGjdKIESPk6+urcePGKTg4WK1atTLj5QEAAAAAAGQ7bhU+9erVSz4+Pvrmm2/0448/yt/fXzVq1ND48eOVL18++37t27dXTEyMpk2bps8//1xlypTRpEmTFBoa6nC+8ePH691339Xrr7+u+Ph4hYeH69VXX5WXl1u9bAAAAAAAgCzLrVIYi8WiRx99VI8++ug99+3evbu6d+9+131y586tMWPGaMyYMelVIgAAAAAAAO6DW835BAAAAAAAgKyF8AkAAAAAAAAuQ/gEAAAAAAAAlyF8AgAAAAAAgMsQPgEAAAAAAMBlCJ8AAAAAAADgMoRPAAAAAAAAcBnCJwAAAAAAALgM4RMAAAAAAABchvAJAAAAAAAALkP4BAAAAAAAAJchfAIAAAAAAIDLED4BAAAAAADAZQifAAAAAAAA4DKETwAAAAAAAHAZwicAAAAAAAC4DOETAAAAAAAAXIbwCQAAAAAAAC5D+AQAAAAAAACXIXwCAAAAAACAyxA+AQAAAAAAwGUInwAAAAAAAOAyhE8AAAAAAABwGcInAAAAAAAAuAzhEwAAAAAAAFyG8AkAAAAAAAAuQ/gEAAAAAAAAlyF8AgAAAAAAgMsQPgEAAAAAAMBlCJ8AAAAAAADgMoRPAAAAAAAAcBnCJwAAAAAAALgM4RMAAAAAAABchvAJAAAAAAAALkP4BAAAAAAAAJchfAIAAAAAAIDLED4BAAAAAADAZQifAAAAAAAA4DKETwAAAAAAAHAZwicAAAAAAAC4DOETAAAAAAAAXIbwCQAAAAAAAC5D+AQAAAAAAACXIXwCAAAAAACAyxA+AQAAAAAAwGUInwAAAAAAAOAyhE8AAAAAAABwGcInAAAAAAAAuAzhEwAAAAAAAFyG8AkAAAAAAAAuQ/gEAAAAAAAAlyF8AgAAAAAAgMsQPgEAAAAAAMBlCJ8AAAAAAADgMoRPAAAAAAAAcBkvswsA4DqRkdL16ylv9/eXAgIyrh4AAAAAQPZD+ARkYdevS1Onpry9f3/CJwAAAACAazHsDgAAAAAAAC5D+AQAAAAAAACXIXwCAAAAAACAyxA+AQAAAAAAwGUInwAAAAAAAOAyhE8AAAAAAABwGcInAAAAAAAAuAzhEwAAAAAAAFyG8AkAAAAAAAAuQ/gEAAAAAAAAlyF8AgAAAAAAgMsQPgEAAAAAAMBlCJ8AAAAAAADgMoRPAAAAAAAAcBnCJwAAAAAAALgM4RMAAAAAAABchvAJAAAAaXL58mWzSwCATIefnciOCJ8AAABw306dOqWwsDCdOnXK7FIAINPgZyeyKy+zCwBwd1ardOiQtHGjVLSo1KqVZLGYXRUAILuLjIxUYmKiIiMjzS4FADINfnYiuyJ8AtzYsWNSnTrSP//cWvfww9Jnn0n58plXFwAAAAAAqcWwO8BNXbokffedETz5+Ej160teXsa66tWlPXvMrhAAAAAAgHsjfALc0I0b0jffGMtataTLl6VNm6Tff5fKl5dOnZIef1yKizO7UgAAAAAA7o7wCXBDCxcaPZ8CAqQZMyR/f2N9nTrG3E+BgdKuXdK4caaWCQAAAADAPRE+AW7m5Enp4EHJw0N65BGpUCHH7YUKSR99ZLTfeEP6++8MLxEAAAAAgFQjfALczMaNxrJ6dePpdhaLdPas40erVlJYmBQTI/XrZ269AAAAAADcDU+7A9zIuXPSoUNGOyzMWMbESLNmJd03NNSYB+q336StW6W6dTOuTgAAAAAAUoueT4AbsfV6qlRJyp//7vvmzy9VrWq0J0xwbV0AAAAAAKQV4RPgJq5ckfbsMdq2Xk/3Uq+esfzuO+nMGdfUBQAAAACAMwifADexY4dktUplyxpzPaVGkSJS/fpSfLw0ebJr6wMAAAAAIC0InwA3YLXe6vUUGnp/xz7zjLGcOlWKjk7fugAAAAAAcBbhE+AGzpyRrl6VvL2l4OD7O7ZVK6lMGenyZWnuXJeUBwAAAABAmhE+AW7gr7+MZcWKRgB1Pzw9pWefNdpffZW+dQEAAAAA4CzCJ8BkCQnSvn1Gu0qVtJ3j0Ucli0Vat046cSL9agMAAAAAwFmET4DJfv9dioqScuaUypVL2zlKlJCaNjXaDL0DAAAAALgTwifAZAsXGsuQEGMIXVo9/rix/OorYwJzAAAAAADcAeETYKL4eGnZMqOd1iF3Nl27Sr6+0v790p9/Ol0aAAAAAADpwi3DpwULFqhTp06qWrWq6tWrp759++rGjRv27b/99ps6dOigqlWrqnXr1vrxxx+TnCM2Nlbvv/++wsLCVKNGDT355JM6evRoRr4M4J42bTKecpczp1SqlHPnypNHeughoz1njtOlAQAAAACQLtwufPr000/19ttvq23btpoxY4beeustFS9eXAkJCZKk7du3a+DAgapRo4amTZumNm3a6JVXXtHy5csdzjN69Gh9//33Gjp0qD755BPFxsaqT58+unbtmhkvC0jWkiXGsnx5ySMdvhttQ++++UZKTHT+fAAAAAAAOMvL7AJud/ToUU2aNElTpkxRkyZN7Otbt25tb3/66aeqVq2a3nrrLUlS/fr1derUKU2cOFEPPvigJOnff//VDz/8oP/973/q1q2bJKlq1apq1qyZvv32Wz3zzDMZ+KqAlNnCpwoV0ud8Dz4oBQRIZ88avarKlk2f8wIAAAAAkFZu1fNp/vz5Kl68uEPwdLvY2Fht2bLFHjLZtG3bVn///bdOnz4tSdqwYYMSExMd9subN6/CwsK0bt06170A4D6cOCHt2WP0eCpfPn3O6esrdehgtH/4IX3OCQAAAACAM9wqfNq1a5eCgoI0ZcoUNWjQQFWqVFGPHj20a9cuSdLJkycVFxensnd05yj3/8+nt83pdPToUeXPn1958uRJsh/zPsFd2Ho91aljzPmUXv6/s59++MH5oXeRkUYvqpQ+IiOdrxcAAAAAkLW51bC7CxcuaM+ePTp06JD+97//KWfOnPrss8/01FNPaeXKlYqIiJAkBQQEOBxn+9y2PTIyUrlz505y/oCAAPs+aWX9/2fYx8TEOHUemM92D826l4sW+UryVLNmCYqLSzklslo9FReXkOL2+HiLoqNj7Z+Hh0u5cuXU6dMW/fFHvOLirKk+9k4RET767LOUj3/2WYu8vFI+PiOYfR+RPriPWQP3MX1YrVZZLBazywAAAEg3bhU+Wa1WRUdHa8KECapYsaIkqXr16mrevLnmzJmj8PBwkyuU4uPjJUnHjx83txCkGzPuZUyMh9asqS5JatDguhYvjkpx3/j4grpw4UKK26Oi/HT+/N8O6xo2LKOVKwO1aFG8PD0v39ext/PzK6cLF6LTfHxG4nsya+A+Zg3cR+f5+PiYXQIAAEC6cavwKSAgQHnz5rUHT5IxV1OlSpV05MgRtWvXTpKSPLEu8v/H/tiG2QUEBCgqKukv85GRkUmG4t0vLy8vxcfHq3Tp0sqZnmOlkOFiYmJ0/PhxU+7lsmUeio31UMmSiapRw09btqR8fS8vTxUsWDDF7blyWVSqVIjDul69PLVypfTLL756/PGCSukP6Mkde7tLl3xUsKD/fV07o5l5H5F+uI9ZA/cxfRw5csTsEgAAANKVW4VP5cuX18mTJ5PddvPmTZUsWVLe3t46evSoGjVqZN9mm8fJNhdU2bJldfHiRUVERDiETUePHk0yX9T9snWDz5kzp/z8/Jw6F9yDGfdyzRpj2bath7y9PeTtnfK+Fovk7Z3y9GxeXpKfn+O3cqdOxjxSp05ZdOmSt4oUSf2xt4uI0F1ru9fxGYnvyayB+5g1cB+dw5A7AACQ1bjVhOPNmjXT1atXtX//fvu6K1euaO/evapcubJ8fHxUr149rVixwuG4pUuXqly5cipevLgkKTw8XB4eHlq5cqV9n4iICG3YsEGNGzfOmBcD3IXtn3Dr1q45v7+/1Lat0d63zzXXAAAAAAAgNdyjy8L/a9mypapWrarBgwdr6NCh8vX11eeffy4fHx/17NlTkjRgwAD16tVLb7zxhtq0aaMtW7Zo8eLFGjdunP08DzzwgLp166axY8fKw8NDhQsX1tSpU5U7d2716NHDrJcHSJKOHZMOH5Y8PaXmzaXr111znW7dpB9/NMKn5s2V4tA7AAAAAABcya3CJw8PD33++ed699139frrrysuLk61a9fW119/bZ/zpnbt2vrkk080fvx4/fDDDypatKhGjx6tNm3aOJzr1Vdflb+/vz766CNdv35dNWvW1MyZM5N9Ch6QkWwd8ho0kAICXBc+tWsn+fpKly9L589LhQu75joAAAAAANyNW4VPkhQYGKgPPvjgrvu0aNFCLVq0uOs+Pj4+GjFihEaMGJGe5QFOs4VPrhpyZ5M7t9SkiXG9ffsInwAAAAAA5nCrOZ+ArC4+Xlq1ymi3auX667Vvbyxvm0YNAAAAAIAMRfgEZKCtW40nyAUGSrVquf56//mP5OEhXbhgfAAAAAAAkNEIn4AMZBty17KlMeG4q+XJI5UrZ7Tp/QQAAAAAMAPhE5CBVqwwlhkx5M4mJMRY7tuXcdcEAAAAAMCG8AnIIFeuGMPupIwNn4KDJYtFOndOunQp464LAAAAAIDkhk+7A9xRZKR0/Xry2/z9pYCAe59j1SopMdHoiVSiRPrWdzd+flKZMtLRo8bQu/DwjLs2AAAAAACET0AqXL8uTZ2a/Lb+/VMXPtnme2rdOv3qSq1KlQifAAAAAADmYNgdkAGsVnPme7KpWNEYevfPP9LVqxl/fQAAAABA9kX4BGSAQ4ekkyclHx+pceOMv76/v1SqlNFm4nEAAAAAQEYifAIygG3IXaNGRhBkBttT7/bvN+f6AAAAAIDsifAJyABmDrmzsYVPp08bE6gDAAAAAJARCJ8AF7t5U1q92mibMdm4Te7cUsmSRpveTwAAAACAjEL4BLjY779L0dFS4cJS1arm1mLr/cS8TwAAAACAjEL4BLjYkiXGsnVrycPk7zhb+HTypHTtmrm1AAAAAACyB8InwMUWLzaWDz1kbh2SlCePVKyY0T5wwNxaAAAAAADZA+ET4EKHD0sHD0peXuZONn67SpWMJfM+AQAAAAAyAuET4EK2IXeNG0sBAebWYmMbenf8uHTpkqmlAAAAAACyAcInwIVsQ+7atze3jtvlyycVKSJZrdLy5WZXAwAAAADI6gifABeJjJTWrjXa7hQ+SbeG3v30k7l1AAAAAACyPsInwEVWrpTi46WgIKlCBbOrcVS5srHcsEE6dcrcWgAAAAAAWRvhE+Ai7jjkziZfPqlUKWPo3ezZZlcDAAAAAMjKCJ8AF4iNvTWk7aGHzK0lJTVqGMsvvzRCKAAAAAAAXIHwCXCBVaukK1ekwoWlRo3MriZ5lSpJfn7SkSPG8DsAAAAAAFyB8Alwge++M5bdukmenubWkhIfn1u9smbONLcWAAAAAEDWRfgEpLPYWGnBAqP98MPm1nIvPXoYy+++k6KizK0FAAAAAJA1ET4B6eyXX6SICKlIESkszOxq7q5uXal8een6dembb8yuBgAAAACQFTkVPp0/fz696gCyjHnzjKU7D7mzsVik/v2N9pQpTDwOAAAAAEh/ToVPTZs21VNPPaWFCxcqOjo6vWoCMq0bN6RFi4y2uw+5s3nqKSlHDunPP6VNm8yuBgAAAACQ1TgVPg0ePFjnz5/XyJEjFRYWpmHDhmndunVKTExMr/qATGXxYikyUipWTGrY0OxqUicwUHr0UaM9ebK5tQAAAAAAsh6nwqdnn31Wixcv1vz589WjRw9t3bpV/fr1U6NGjTRmzBj99ddf6VUnkCl8/rmx7N1b8shEM6o9/7yx/P576dw5c2sBAAAAAGQt6fLrcaVKlTRixAitXbtWM2fOVJMmTTR//nw9/PDDatu2rT777DP9888/6XEpwG0dPWpMNm6xSH37ml3N/alVS6pXT4qLk6ZPN7saAAAAAEBWkq59MywWi2rVqqUmTZqoevXqslqtOnHihCZNmqSWLVvah+kBWZEttGnVSipTxtxa0sLW+2nyZOnmTXNrAQAAAABkHekWPm3evFmvvPKKwsLCNGTIEF28eNHeG2r9+vV68cUXtXnzZg0fPjy9Lgm4jbg46YsvjHa/fubWklaPPCIVLSqdPSvNnWt2NQAAAACArMLLmYMPHDign376SUuWLNH58+dVoEABdevWTZ06dVJwcLDDvk8//bR8fX31/vvvO1Uw4I5++smYK+mBB6SHHjK7mrTx8ZFeeEEaMUL68EOpTx+zKwIAAAAAZAVOhU+dOnVSjhw51KJFC3Xq1ElhYWHyuMssy+XLl1eNGjWcuSTgliZNMpZPPSV5e5tbizP695dGj5b27ZOWLZNCQ82uCAAAAACQ2TkVPo0ZM0atW7eWv79/qvavX7++6tev78wlAbezdau0Zo0ROj37rNnVOCdPHumZZ6SPP5Y++IDhdwAAAAAA5zk151OXLl1SHTwBWdXEicayTx+pRAlTS0kXQ4ZIXl5GoLZzp9nVAAAAAAAyO6fCp9mzZ+vpp59OcXvfvn01l64TyML++Uf67TfJ01MaOdLsatJHiRLSY48Z7XHjzK0FAAAAAJD5ORU+/fDDDypXrlyK28uXL6/vvvvOmUsAbm39emPZs6dUtqy5taSnV16RPDykX381AjYAAAAAANLKqfDp1KlTdw2fypYtq5MnTzpzCcBtnT0rHTggWSzSyy+bXU36qlDhVu+ndetcc43ISONrmNJHZKRrrgsAAAAAyFhOTTju7e2tCxcupLj9/Pnzd336HZBZWa3S8uVGu3NnKSTE3Hpc4ZVXpK+/lg4eNMKgIkXS9/zXr0tTp6a8vX9/KSAgfa8JAAAAAMh4TiVD1atX14IFCxQVFZVk27Vr1zR//nxVr17dmUsAbmnvXunkSeMJd6NGmV2NawQHSx07Gm1X9X4CAAAAAGR9ToVPAwcO1Pnz59WpUyd99dVX2rRpkzZt2qTZs2erU6dOunDhggYOHJhetQJuIS5O+uUXox0WJhUtam49rjRkiLE8cEA6d87UUgAAAAAAmZRTw+6qV6+uzz77TK+//rreeecdWSwWSZLValXx4sX16aefKjQ0NF0KBdzFhg3GfER58kgNG5pdjWtVqCBVrmz09Fq7Vnr4YbMrAgAAAABkNk6FT5IUFhamX375Rfv27bNPLl6yZElVrlzZHkYBWcX580b4JEmtWhnD7rK6xo2N8Gn/fuP1FypkdkUAAAAAgMzE6fBJkjw8PFSlShVVqVIlPU4HuKXEROmnn4xlcHDWnGQ8OYUKSZUqSfv2GXM/detmdkUAAAAAgMwkXcKnI0eO6NSpU4qIiEh2e6dOndLjMoCptmyRzpyRfH2ldu2k7NSxr3FjI3zau9do0/sJAAAAAJBaToVPJ0+e1EsvvaTdu3fLarUmu4/FYiF8QqZ37Jj0229Gu1UrKXduc+vJaIULGz299u+n9xMAAAAA4P44FT69/vrrOnTokEaNGqXatWsrICAgveoC3IbVKr30khQfL5UpI2XXOfSbNDHCJ3o/AQAAAADuh1Ph044dO9S/f3898cQT6VUP4HamT5d+/92YXPyhh7LXcLvbFS58a+6ntWul7t3NrggAAAAAkBl4OHNwvnz5lDu7jT9CtnL6tDRsmNFu3lzKl8/ceszWpImx3LdPOnfO3FoAAAAAAJmDU+FTjx499NNPPykhISG96gHcyuDBUmSkVKuWVLeu2dWYr1AhqXJlo712rbm1AAAAAAAyB6eG3ZUuXVqJiYnq2LGjunbtqgceeECenp5J9mvVqpUzlwFMsWyZtGCB5OkpffABYYtNkybGvE/790t79khFiphdEQAAAADAnTkVPg0dOtTefv/995Pdx2KxaP/+/c5cBshwMTHSwIFGe8gQqWLFrBk+WSzS2bMpb4+LS7quYEGpShUjeBo3TvrPf1xXHwAAAAAg83MqfJo9e3Z61QG4lfffl44elYoWlf73PykqyuyKXCMmRpo1K+XtvXsnv75xYyN8WrZM+vNPqUYNV1QHAAAAAMgKnAqf6jIJDrKgkyel994z2uPGSblzZ93wKa1u7/30xhvSwoVmVwQAAAAAcFdOhU82sbGx2rt3ry5duqSaNWsqMDAwPU4LmOKNN6SbN425jbp3N7uae7vb0Lnkhs2llyZNjKfeLVok7dgh1azpumsBAAAAADIvp8On2bNna9KkSbp27Zok6YsvvlCDBg10+fJltWnTRi+99JK6devmdKFARti379YwtPfeM4Idd3e3oXMpDZtLDwUKSJ06SfPnG4HdTz+57loAAAAAgMzLw5mDf/zxR40ZM0aNGjXSO++8I6vVat8WGBio+vXra+nSpU4XCWSUUaOkxESpc2epfn2zq3F/Q4dKHh7Szz9L27ebXQ0AAAAAwB05FT7NnDlTLVq00EcffaRmzZol2V65cmUdPnzYmUsAGWbTJmMImYeH9M47ZleTOZQrJz32mNF+4w1TSwEAAAAAuCmnwqcTJ06ocePGKW7Pmzevrl696swlgAzz9tvGsndvKSTE3Foyk9dekzw9pSVLpK1bza4GAAAAAOBunJrzKSAgQFeuXElx+5EjR1SwYEFnLgFkiN27pWXLjF5Po0aZXU3mUqGC9PjjxrxTb7whMdIWAAAAuLsff/xRw4cP18WLF5WQkKD4+HjFxsbK09NTOXLkUOnSpRUUFKQbN27o4sWL2rx5s8PxJUuWVKlSpXTo0CGdO3cu2Wvky5dPPXv2tD8gzNfXV4GBgdq3b58iIyOVI0cOlShRQrly5ZKvr682bdqk2NhYVa1aVR9++KGioqLUpUsXRUREyNfXV//5z3+UM2dOWSwWVa9eXUWKFFFoaKiWLVumkSNHKjExUZJUp04dhYeH6/z58ypatKgsFovOnDmjkiVLqmfPnjp27Jg6d+6shIQEeXp66q233tLJkyd15swZXbhwQZcvX1bu3LnVokUL9erVS56entq8ebMWLFigM2fOqGjRoipSpIhmzpyp+Ph4eXh4aOzYsWrbtq08PT0lSQkJCdq+fbsuXLigggULqnbt2vZtkvHQtDlz5mjr1q2KjY3V448/riZNmsjT01OxsbGaO3euTp48aa/Z09PTfr78+fNLks6dO6ddu3bZX0flypW1d+9eWa1WlS5dWj179pSPj889a7kf+/btU9euXZWYmCgPDw/9+OOPqlSpksM+tuudPXtWu3btkiSVKlXKXo9ZnAqfGjdurO+++049e/ZMsu3w4cP6/vvv1bVrV2cuAWSI9983lt26SeXL39+xd3vanCT5+0sBAWmvLTN49VVpzhwjwNuyRapXz+yKAAAAAPcze/ZsSdLXX3+d7PaEhATFxsZq9+7d2r17d4rnOXnypE6ePHnXa125ckWTJ0++6z5///13knWrV69WrVq1HNbFx8dr4cKF9s/nzp2b4jm3bdumbdu2Jbvt3Xffdfg8ISFBr7zySrL77tixQx988IG8vb0Vd9tjvHfs2OGwX2JiooYNG6Zhw4bpk08+kSS99957OnPmjH2fYsWKaeTIkWrVqpXGjh2rmTNn2sMySdq4caNy5cqlevXqac2aNUpISLBve//99+Xn56eoqKgUX3Nyxo4dq6ZNm+rAgQMp1nI/goODk7zuzp07S5IOHjwoSVq5cmWS1357PX369NHw4cPv67rpxalhd0OGDFFCQoLat2+v8ePHy2KxaOHChRo2bJi6du2qwMBAPffcc+lVK+ASJ05YNG+e0R4x4v6Pj4mRpk5N+eP69fSt1x2VLy898YTRZu4nAAAAIKmxY8c6BDiZWY4cOZKsy507d5J1Hh4e8vPzS/V5PTySRhS24OmBBx645zGDBg3S4MGDFRQUpHnz5mnHjh2aN2+egoKCNHjwYD333HOaMWOGEhMTFRwcrAkTJqhPnz4KCAhQVFSUVq1aJT8/P7399tvasGGDevToocTEREVFRal27dqyWCwqXLjwXb8WxYoVk8Vikbe3t1atWiVPT89ka1m5cmWqvy63B0/e3t4aMGCAvL29HbavXLlSgwcPtn89AgMD1a9fPzVs2FCS5OfnpxkzZmjs2LGpvm56cip8Kly4sObPn69GjRpp2bJlslqtWrRokVavXq127drpu+++U2BgYHrVCrjExIleSkiQWraUatY0u5rM69VXjbmfli83Jm8HAAAAYIiNjdUXX3zh1DnuJ8RJi3z58qW4vkiRIvYQQ5Ju3LjhsE+RIkV0/fp1BQYGOvSaSkxM1OrVqx2Ge9leh7e3d5JhYN99952aNWuW7PCw23sj5c2b1x6yFC5cWA0aNLBv8/T01CeffKIaNWrI399fNWrU0JQpU9SkSROtWrVKFotFTZo00cKFC9W4cWO1atVKy5Ytsx/v7+9v70yzfv16NWnSRIGBgdq+fbsaNWqkCxcuKF++fMqRI4dy5MihGzduyNvbW8WKFVNgYKDOnj2rxo0bKy4uTt7e3jp9+rQqVarkUEvTpk31/vvvO7ymlOzbt8/eXrVqlfbs2aMhQ4Zoz549WrVqlX3ba6+9psaNG+uff/5R/vz5tX79er344ouaMWOGmjVrpty5cyt//vz68ssvFRsbe8/rpjenht1JUv78+fXOO+/onXfe0eXLl5WYmKjAwMBkE0vA3Vy75qlZs4xvg7T0esIt5coZk7V/8YXR+2nFCrMrAgBkhOSGbCBj3LhxQ8eOHZOkZIdYIOOk9fvg9nuYXE8SuL/U3sOff/5ZVqvVqWvlz59f0dHRTp3jbgoVKpTsnM65cuXSqVOnNH78eB0/flz//POPw/YyZcrYvwZDhw7VoUOH9Mcff9i3jxo1yt57ycPDQ4888ohmzpzpMJTO5pFHHtHXX3+t1atXJ9l24cIFe/vFF1/Ua6+9Jkk6e/as+vbtq03//xfw+Ph47dixQ/VumwvEw8NDJUqUkCRZrVY999xzDpnFggUL7O1///1X27dvl2T8bP3444+1fPlyzZw5U9HR0fbhbreHiX369NG0adP05JNPaubMmfa5nh588EEtWbJEc+fOVZ8+fey19O/fXz169ND27dsd6kyObSojb29vFS9e3GFb8eLF5eXlpfj4eF29elWlSpXS2rVrNWTIEHl5eSW5nq2+2+vJKE6HT7ejlxMym8WL8ysmxqIqVaQWLcyuJvN79VVp9mxp5Upp2zapTh2zKwIAuNpLL71kdgmA6fg+QEa4efOmS8+fXBh0+3UrVKig//73vxo2bJjD9qCgIHv41KxZM/31118O20+dOmUP3kJCQuwhUHISEhJUoUKFe9batGlTh8/vDP5uD6rufB2213JnjSkdX6FCBe3du1eSdPXqVUlK8hq6d++uadOm2ddfu3ZNklS1alUtWbIkyfxctusnV+edbHNT9e3bN9ntvXv31owZMyTdeo3NmjVL9nq2+u41X5grOBU+TZo06Z77WCwWPf/8885cBnAJq1X6/nvjaYzPPWdMHA7nlCkj9expBFDvvSf9+KPZFQEAXO2DDz5QuXLlzC4jW7L1uChTpozOnDlDAGKitH4f3H4P6fmUOaX2Hv7888+aOXOmU9fy9fV16vh7uX0OoeSue/jwYX388cdJth86dMjeXr16dZI6S5QoocOHD8tqtWr//v1Jgp7beXp66vDhw/esdc2aNQ6f3zkMsGDBgim+Dsl4LTVq1HCoMaXjDx8+bK85b968kpKGVd9//73Detv8V7YgrmTJkg77215jcnXeycPDQ4mJiZo+fbqGDBmSZPusWbPsbdtrXL16tR5++OEk17PVd2c9GcFl4ZPFYpHVaiV8gttas8ZDJ0/mUK5cVj3+OMlTehk+3AifFiyQDhyQKlY0uyIAgCuVK1dOlStXNruMbMk2/CYkJITgwmRp/T64/R66ej4fuEZq72GFChX05ZdfOjX07tKlS2k+NjXOnz+f7PqoqCgVKVJEEyZMSDLkTpKOHTumIkWK6Ny5cxo3bpzKlCnjsH3MmDFq1KiRYmNjlZiYqHn//7Qnb29vWSwWh/mH5s2bp8mTJ8vHxyfJvEQFCxa09xT66KOP7KFMkSJF9Ouvv9r38/LyUs07JvNNTEy0By8Wi0VTpkzRZ599Zt/euXNnffjhh5KMic1r164tyZg8fMqUKfYQyc/PTx4eHlqwYIH95+6NGzf05ZdfqlixYlq0aJE8PDwUGxsrT09PrVy5Uh4eHurZs6dDLVOnTlXx4sXt17mbH3/8UZ07d1ZcXJxOnz7tMPTu9OnTio+Pl2QEYydOnJCnp6fGjx+vLl26yMvLy369okWL6qeffpKnp6dDPRnFqfDpwIEDSdYlJibqzJkzmjt3rrZt26Zp06Y5cwnAZaZPN/759+wZr9y5k0/5cf8qV5Y6dJB++kkaO9aYAwoAAADIznx8fPTUU0/Zh0elhSvne5KU7HxPt68/e/asfZ1tom2bs2fPyt/fX5cvX9bly5ft6z08PNSsWTOHIMn2OpIb5vfwww/bh5nd6fY5mmzD3yTp3LlzDrUlJCRo0KBB6t+/vypUqKDDhw9r6tSpWrt2rVq0aKFVq1Zp7dq16tixowYMGKAdO3Zo0aJF9uOvX7+uH374QU2bNlWjRo307bffSpJq166t9evXq1ChQjp37lySr4Vt7r2iRYtq3bp18vX11Y0bN1SyZEnt3bvXoZY1a9Zo4sSJ8vT0TPa13q5SpUr2dosWLeTl5aXevXtr1qxZ9uBJkt5++20NHjxYxYsX16lTp9SoUSN16dJFe/fu1aZNm5Q7d25du3ZNTz/9dLITurtaus75JN2ayGvEiBF68cUXNXr0aH300UfpfRnAKWfOSD//bHyj9+0bL4nwKT29/LIRPs2ZI735pnSXYd0AAABAtjB8+HBdunRJCxcuNLsUp905zE0yQps7JSYm3ldollzw5O3trbi4OIfAJ6VjPvnkE0nSe++9px49etjXFy9eXBMnTlSrVq00duxYzZw5U4cOHdLQoUPt++TKlUv16tXTmjVr9Prrr9vXe3h4yM/Pzz4J+Z113Pm1sPUOi4uLU4sWLXTgwIEUa0mtgwcPKjg4WJIxofqdIebBgwclSRMnTtR7770nSbp8+bKmT59u3yc6OlpPP/20hg8fnurrpqd0D59uV6dOHXvXNcCVIiOlZH7W2fn7SwEBtz7/4gspIcGi0NBrqlz53mkz7k/9+lKTJtLatdK4cVIyQ8MBAACAbKdXr15auHChHnvsMW3ZskUXL15UQkKC4uPj7UO1cuTIodKlSysoKEg3btzQxYsXtXnzZofzlCxZUqVKldKhQ4dSDGXy5cunnj17KjY2Vnv37pWvr68CAwO1b98+RUZGKkeOHCpRooRy5colX19fbdq0SbGxsapatao+/PBDRUVFqUuXLoqIiJCvr6/+85//KGfOnLJYLKpevbqKFCmi0NBQLVu2TCNHjrSHQHXq1FF4eLjOnz+vokWLymKx6MyZMypZsqR69uypY8eOqXPnzkpISJCnp6feeustnTx5UmfOnNGFCxd0+fJl5c6dWy1atFCvXr3k6empzZs3a8GCBTpz5oyKFi2qIkWKaObMmYqPj5eHh4fGjh2rtm3b2nsStWjRQtu3b9eFCxdUsGBB1a5d275t+PDhGjJkiObMmaOtW7cqNjZWjz/+uJo0aSJPT0/FxsZq7ty5OnnypL1mT09P+/ny588vyQihdu3aZX8dlStX1t69e2W1WlW6dGn17NnT/tS7lGq5HwcPHtS+ffvUtWtXJSYmysPDQz/++KNDz6hWrVrZX/vZs2e1a9cuSVKpUqXs9ZjFpeHTnj17HLrGAa5y/bo0dWrK2/v3vxU+JSZKX35ptDt1uiipsKvLy5ZeftkInz7/XHrlFen/f0YDAAAA2V7Xrl0dete4o1y5cun333+/534dO3ZUx44dU33e4OBg7du3775qCQsLU1hYmMO6O5+6dztPT0/Vq1cvxe22YZA9evTQ/v37FRISYg+EfHx81KdPnyTHJHe+Tp06OXzerVu3+67lflSqVEn79++/6z63X+/O+szkVPiUUnfByMhIbd++XStXrlT37t2duQSQ7tavl44elXLntqpFiysifHKNVq2kGjWkP/+UJk2S/vc/sysCAAAAAJjBqfBp5MiRKW7Lly+f+vXrx5Pu4HZsTzjt2jVBOXKk/WkTuDuLRRo5UurRQ5o4UXrxRSlXLrOrAgAAAABkNKfCp1WrViVZZ7FYFBAQoFz8lgk3FBUl/fCD0X788fi77wyndesmlSsn/f23NH26NGSI2RUBAAAAADKaUxMyFStWLMlH0aJFCZ7gtr7/3pgfKihIql8/+Ud4Iv14ekq2hyl89JGUzNNUAQAAAABZHLOBI1uxTTTep48xLAyu16uXVKiQdPq0tGCB2dUAAAAAADKaU8PuKlasKMt9/gZvsVjue2Z7ID2cOCGtW2eETk88kXHXtViks2dT3p7VewPlyGE8bfDtt425nx5+2OyKAAAAAAAZyanw6fnnn9evv/6qI0eOKDw8XGXKlJEkHT16VBs3blSFChXUsmXLdCkUcNbcucayaVOpeHEpOjpjrhsTI82alfL23r0zpg4zDRggvfuutHGj9McfUq1aZlcEAAAAAMgoToVPhQoV0qVLl/Tzzz+rbNmyDtv+/vtv9e7dW4UKFdLDdHWAyaxW6euvjfZjj5lbS3ZUpIjR42nuXKP3093COAAAAABA1uLUnE8zZszQ448/niR4kqRy5crpscce0/Tp0525BJAu9u2T9u6VfHykrl3NriZ7euEFY/ntt9K5c+bWAgAAAADIOE6FT//++6+8vFLuPOXl5aV///3XmUsA6WL+fGPZvr2UN6+ppWRbdetK9epJsbHS55+bXQ0AAAAAIKM4FT5VqFBBc+fO1blkujH8+++/+uabbxQUFOTMJQCnWa3SwoVGmyF35ho82FhOmWKEUAAAAACArM+pOZ9efvll9e3bV61bt1bLli1VqlQpSdLx48e1atUqWa1WjR07Nl0KBdLqxAnjaXMBAVJo6K0nz8XH+8jPr5wuXfJRfLyxHa7VrZs0bJhxDxYvNrsaAAAAAEBGcCp8ql27tr777jtNmDBBv/76q27cuCFJypEjh8LDwzVo0CAFBwenS6FAWu3ebSzLlXOc6DouzqoLF6JVsKC/Bg4kfMoIPj7Gk+9ef12aMUPq0MHsigAAAAAAruZU+CRJQUFBmjx5shITE3X58mVJUmBgoDw8nBrRB6SL+Hhp/36jXbVqyvtZLLd6RCUnLi5968rO+veXRo+Wdu6UataUihc3uyIAAAAAgCs5HT7ZeHh4yNfXV35+fgRPcBuHD0s3bkgPPCCVLp3yfjExjr2i7tS7d7qXlm0VKiQ9+qjx9d6yhfAJAAAAALI6p1Oiv/76S08//bSqV6+uevXqaevWrZKky5cva8CAAdqyZYvTRQJp9ddfxvKhh4zeTXAPtonH9+2ToqLMrQUAAAAA4FpOhU87duxQz549deLECXXo0EGJiYn2bYGBgYqKitK8efOcLhJIixs3pEOHjHbHjubWAkc1a0q1akmJidKOHWZXAwAAAABwJafCp3HjxqlcuXJaunSphg4dmmR7vXr1tGvXLmcuAaTZ/v1SQoJUsKAUEmJ2NbhTnz7G8o8/jBAKAAAAAJA1ORU+/fXXX+rSpYt8fHxkSWZMU+HChXXx4kVnLgGkmW3IXdWqDLlzR+3bS35+UmSkdPCg2dUAAAAAAFzFqfDJy8vLYajdnc6dOyc/Pz9nLgGkSWSkdOyY0b7bU+5gHl9fY/idJG3bZm4tAAAAAADXcSp8ql69ulasWJHstujoaM2fP1916tRJ07mvX7+uxo0bKzg4WH/ZurD8v++//16tW7dW1apV1aFDB61evTrJ8deuXdOoUaNUt25dhYaGavDgwTp//nyaakHmY/snU7KklDevqaXgLmrVMnqlHTsm0UkSAAAAALImp8KnwYMHa8+ePerXr5/WrVsnSTp48KC+//57denSRZcvX9Zzzz2XpnNPmTJFCQkJSdYvWbJEr732mtq0aaNp06apRo0aGjhwoP7880+H/YYMGaKNGzfqjTfe0Icffqhjx47pmWeeUXx8fJrqQeZhtUq7dxvtatXMrQV3lzevFBRktOn9BAAAAABZk9M9nz7//HOdOHFCI0aMkCS99957eu2115SYmKjPP/9cFStWvO/z/v3335o7d64GDRqUZNvEiRPVrl07DRkyRPXr19dbb72lqlWravLkyfZ9du7cqQ0bNuidd95R27Zt1aJFC02YMEEHDx7UypUr0/6CkSmcOyedPy95ekqVK5tdDe7F1jly1y4pNtbcWgAAAAAA6c8rrQdarVZdv35dNWvW1IoVK7R//34dP35cVqtVJUqUUJUqVZKdhDw1Ro8erR49eqhMmTIO60+dOqXjx4/rpZdecljftm1bjR07VrGxsfLx8dG6desUEBCgsLAw+z5ly5ZVSEiI1q1bp7Zt26apLmQOtgcsBgdLOXKYWwvurWxZKTBQunzZ6LFWu7bZFQEAAAAA0lOaez7FxcWpbt26mj17tiQpJCREbdq0Udu2bVW1atU0B0/Lly/XoUOH9PzzzyfZdvToUUlKEkqVK1dOcXFxOnXqlH2/MmXKJKmhbNmy9nMga0pMlPbsMdoMucscLJZbgdO2bcawSQAAAABA1pHmnk8+Pj4qUKCAfHx80q2YmJgYvffeexo6dKhy5cqVZHtERIQkKSAgwGG97XPb9sjISOXOnTvJ8Xny5NEeWzKRRtb//804JibGqfMgfcXH+yguzqqjRy2KivJSzpxWlSoVr7g4Y7vV6qm4OMc5xOL+f2NcXFyy2293t+3OHOvq7a6+dny8RdHRaRsrZ7tnkjE88rffvHT+vEXHjsWrRAlrqs9t+17kezJz4z5mDdzH9GG1WtP8RzwAAAB3lObwSZI6d+6sRYsW6dFHH02XEOrTTz9V/vz51bVrV6fP5Sq2CcuPHz9ubiFw4OdXThcuRGv79rySvFSmTLQuX46wb4+PL6gLFy4ke+zVq1fvuv1exztzrKu3u/raUVF+On/+7xS3343tntmUK5dHBw/66/ffY9W8+dX7Pjffk1kD9zFr4D46Lz3/uAcAAGA2p8Kn4OBgrVq1Su3bt1fnzp1VrFgx5Uhmkp1WrVrd81xnzpzRF198ocmTJ+vatWuSpOjoaPvy+vXrypMnjyTp2rVrKliwoP3YyMhISbJvDwgI0L///pvkGhEREfZ90srLy0vx8fEqXbq0cubM6dS5kH4uXfJRnjz+OnHC+Cddp46vw78RLy9Ph88lo8fT1atXlTdv3mS33+5u25051tXbXX3tXLksKlUqJMXtd3Ppko8KFvS3fx4WJh08KB07llM5c3qn+twxMTE6fvw435OZHPcxa+A+po8jR46YXQIAAEC6cip8+u9//2tvT5gwIdl9LBaL9u/ff89znT59WnFxcerXr1+Sbb169VL16tX10UcfSTLmdCpbtqx9+9GjR+Xt7a0SJUpIMuZ22rRpU5Ju68eOHVOQ7bnuaWQ7X86cOeXn5+fUuZB+IiKkI0ekuDhj8upSpbx0+4gFi0Xy9k5+ijNvb29ZLB4pbr/X8XfbZvZ2V1/by0vy80vbj5GICMnb+9bnJUpIxYtLp09btHu3932fm+/JrIH7mDVwH53DkDsAAJDV3PdvjR9//LHatm2rihUr2icbTw8hISFJzrd//369++67evPNN1W1alWVKFFCpUuX1vLly9WyZUv7fkuXLlWDBg3sXdQbN26sKVOmaNOmTWrYsKEkI3jat2+f+vbtm241w73s3m0sq1WTeN+eOdWpI50+Lf3xh/T/I1wBAAAAAJncfYdPn3/+uSpUqKCKFSuqbt26unLliho2bKgvvvhCDRo0SHMhAQEBqlevXrLbKleurMqVK0uSBg0apGHDhqlkyZKqV6+eli5dqt27d2vOnDn2/UNDQxUeHq5Ro0ZpxIgR8vX11bhx4xQcHJyqIYDIfM6elWwPMuQpd+4jMlK6fj35bbbJ4G9XqZK0YoV07Zq0cqX09NOurQ8AAAAA4HpODbuzsWbgs9Hbt2+vmJgYTZs2TZ9//rnKlCmjSZMmKTQ01GG/8ePH691339Xrr7+u+Ph4hYeH69VXX5WXV7q8ZLiZBQuMZcmSUr585taCW65fl6ZOTX5b795J13l5STVrShs2SF9+SfgEAAAAAFmBWycx9erV08GDB5Os7969u7p3737XY3Pnzq0xY8ZozJgxrioPbsJqlb7/3mhXrWpuLXBe7drSxo1GALVvn9EbCgAAAACQeaU8kzCQSWzZYjwlzctLqlLF7GrgrDx5pOBgoz1+vKmlAAAAAADSQZp6Pp05c0Z79+6VJF27dk2SdOLECQUEBCS7v22+JsAVpk83lpUrSzlymFsL0keDBtKBA9Ls2dLbb0uFCyfdxzafVHy8j/z8yunSJR9FRNza7u8vpfAjCQAAAACQgdIUPk2YMEETJkxwWPfmm28m2c9qtcpisWj//v1pqw64h2vXpG+/Ndp3TPuFTKxECWPupx07pMmTpbfeSrqPbT6puDirLlyIVsGC/vL2vrW9f3/CJwAAAABwB/cdPr377ruuqANIk3nzjBCiXDljsnFkDRaLER717y9NmSKNHCn5+ZldFQAAAAAgLe47fOrcubMr6gDSZNo0Y9mzpxFYIOto00YqU0Y6dkyaNUsaMMDsigAAAAAAacGE48i0du+Wtm41Jhq/x8MP4SIWi3T2bMofcXFpP7eXlzRkiNH+4APnzgUAAAAAME+a5nwC3MGMGcayY0epQAFza8muYmKMXkkp6d3bufM//bQ0erTR++nrr6U+fZw7HwAAAAAg49HzCZnSjRvSV18Z7WeeMbcWuI6/v/TSS0Z79GgpPj71x96rV1ZkpGtqBgAAAAA4oucTMqUFC6QrV4xJxlu2lM6fN7siuMqAAdLYsdLff0vffCM98UTqjrtXryyehgcAAAAAGYOeT8iUbBONP/WU5Olpbi1wrVy5pBdfNNqjR0sJCebWAwAAAAC4P4RPyHSOHJFWrzaGVT35pNnVICM8/7wUGCgdOiTNm2d2NQAAAACA+0H4hEzniy+M5YMPGsPukPXlzi39979G++236f0EAAAAAJkJ4RPcRmTkvSeHjo+XZs402k8/bV6tyHgDB0p580oHDkg//GB2NQAAAACA1GLCcbiN69elqVOT32abHHrpUunff6VChaSHHsrY+mCuPHmkoUOl//3P6P20YoXZFQEAAAAAUoOeT8hUpk83lr17Sz4+5taCjDd4sBFC7d0rLVlidjUAAAAAgNQgfEKmcebMrcCBIXfZU9680gsvGO3x4yWr1cxqAAAAAACpQfiETGPWLCkxUWrUSAoONrsamOWFF4whmPv3G/M/AQAAAADcG+ETMoXERGnGDKNNr6fsLTDQGH4nSWvX0vsJAAAAANwd4RMyhd9/l44eNXq8dOtmdjUw29ChUq5c0rlz0qFDFrPLAQAAAADcBeETMoVvvjGWnTpJkZHS2bOOH3FxppaHDBYYKD31lNHesMGT3k8AAAAA4Ma8zC4AuJeYmFsTjfv6SlOnJt2nd++MrQnm69dP+uwz6dw5i06e9FWhQmZXBAAAAABIDj2f4PZ275ZiY6UHHpCKFDG7GriLwECpbl2j/ccfuen9BAAAAABuivAJbs1qlXbsMNqhoZKF6X1wmwYNJG9vqy5d8tGRI/zjAAAAAAB3RPgEt/bPP9L588Zwu6pVza4G7sbPT6pdO1GStH69B72fAAAAAMANET7Bre3caSzbtJFy5jS3FrinunUT5eWVqH//9dDhw2ZXAwAAAAC4E+ET3FZ8vLR3r9Hu2tXcWuC+/P2lSpWiJUkbN5pcDAAAAAAgCcInuK0jR6QbN6RcuaT69c2uBu6sSpUoeXhYdfKkdOaM2dUAAAAAAG5H+AS39ddfxrJKFcnT09xa4N78/RNVubIx4dOmTSYXAwAAAABwQPgEt3TjhnTwoNGuVs3cWpA51K2bIEnat0+6etXcWgAAAAAAtxA+wS3t3y8lJEgFCkgPPGB2NcgMCheWypaVrFZpyxazqwEAAAAA2BA+wS3ZhtxVrSpZLObWgsyjQQNjuWOHdO2aubUAAAAAAAyET3A7UVHSsWNGu2pVc2tB5lKunNFbLjZWWrTI7GoAAAAAABLhE9zQgQPGsmhRKV8+c2tB5mKxSLVrG+05c4wheAAAAAAAcxE+we3s328sQ0LMrQOZU/Xqkre3dOiQdOqU2dUAAAAAAAif4FZiYqTjx4024RPSIkcOqUoVo719u7m1AAAAAAAIn+BmDh6UEhOlQoWk/PnNrgaZlW3o3b590vXr5tYCAAAAANkd4RPcim2+J3o9wRlFi0rVqkkJCdKff5pdDQAAAABkb4RPcBtRUdKRI0ab8AnOevRRY7lzJxOPAwAAAICZCJ/gNn77zeipEhhoDLsDnNGunTHx+KVLTDwOAAAAAGYifILbWLHCWFasKFks5taCzC9XLqlyZaO9c6e5tQAAAABAdkb4BLeQkCCtWWO0g4NNLQVZSGiosdy7V7p509xaAAAAACC7InyCW9iyRbpyRcqRQype3OxqkFWUKGE8NTEuznjyHQAAAAAg4xE+wS0sXWosy5WTPPhXiXRisUg1ahhtht4BAAAAgDn4NR9uwRY+Vahgbh3IeqpXN0KoU6ekixfNrgYAAAAAsh/CJ5jun3+MXikWi1S+vNnVIKvJnftWqEnvJwAAAADIeIRPMN3y5cayRg3J39/UUpBF2SYe37XLmNweAAAAAJBxCJ9gOtuQu+bNza0DWVeFCkawef26dOSI2dUAAAAAQPZC+ARTxcVJK1ca7RYtzK0FWZenp1StmtFm6B0AAAAAZCzCJ2SYyEjp7FnHj6VLpWvXpHz5pJAQsytEVmYbenfokBQVZW4tAAAAAJCdeJldALKP69elqVMd161ZYyyLFpWs1gwvCdlIwYJS8eLS6dPS7t1mVwMAAAAA2Qc9n2CqY8eMZZky5taB7KFGDWO5cydhJwAAAABkFMInmCY21uiFIklly5pbC7KHKlUkb2/p4kXpjz/MrgYAAAAAsgfCJ5jmxAkpMVHKm9eY8wlwNV9fqVIlo/3tt+bWAgAAAADZBeETTHP0qLFkyB0ykm3i8UWLjHnIAAAAAACuRfgE09jme2LIHTJSyZJSYKARPH3/vdnVAAAAAEDWR/gEU1y/Lp07Z7Tp+YSMZLHcmnj8iy9MLQUAAAAAsgXCJ5jC1uupcGHJ39/cWpD9VK8ueXhI69dLhw6ZXQ0AAAAAZG2ETzCFLXyi1xPMEBAgNWtmtGfONLcWAAAAAMjqCJ9gihMnjGXp0qaWgWzs0UeN5axZUny8ubUAQGYUEBAgDw8PBQQEmF0KAGQa/OxEdkX4hAwXFSVdumS0S5Y0txZkXy1bSgUKSGfPSitWmF0NAGQ+JUqU0MaNG1WiRAmzSwGATIOfnciuCJ+Q4Wy9ngoXlnLmNLcWZF8+PtITTxhtJh4HgLQJDAw0uwQAyHT42YnsiPAJGe74cWNZqpSpZQB66ilj+dNP0vnz5tYCAAAAAFkV4RMyHPM9wV1UqSLVrWvM+cTE4wAAAADgGoRPyFDR0dKFC0ab+Z7gDp591lhOmcLE4wAAAADgCoRPyFC2Xk8FC0r+/ubWAkjGU+8KFJBOnpQWLTK7GgAAAADIegifkKGY7wnuJkcOqX9/oz1hgrm1AAAAAEBWRPiEDHXypLEkfII7GTBA8vKS1q+Xdu40uxoAAAAAyFoIn5BhIiOlf/812oRPcCfFiknduhntiRPNrQUAAAAAshrCJ2SYP/4wlvnySblzm1sLcKcXXjCWX38tnTljbi0AAAAAkJUQPiHDbN1qLHnKHdxR/fpSo0ZSXJz03nvS2bMpf0RGml0tAAAAAGQeXmYXgOxj2zZjWaKEuXUgc7BYjKAnJXFx6X/Nl1825n2aOVPy85Ny5kx+v2efla5fT/k8/v5SQED61wcAAAAAmRHhEzJEXJy0Y4fRpucTUiMmRpo1K+XtvXun/zUffFCqXl3atcvoqdekSdpq69+f8AkAAAAAbBh2hwyxc6d044bxWPsCBcyuBkiexSKNHGm0t2yRYmPNrQcAAAAAsgLCJ2SIjRuNZcmSxi/4gLvq1s14GmNMjLR9u9nVAAAAAEDmR/iEDLFhg7Fkvie4Oy+vW0++27BBunnT3HoAAAAAILMjfILLWa2OPZ8Ad9etm5Q/v9H7afNms6sBAAAAgMyN8Akud/SodO6c5OMjFS1qdjXAvXl5SU2bGu1Nm4wQKiNFRhpP+kvuIzIyY2sBAAAAAGfxtDu4nG3IXdWqxi/1QGZQubLxb/fcOaPnXsuWGXft69elqVOT38aT9AAAAABkNvR8gsvZhtzVrWtuHcD9sFikZs2M9pYtUlSUufUAAAAAQGZF+ASXs/V8qlPH3DqA+xUUJBUvLsXHS+vWmV0NAAAAAGROhE9wqcuXpf37jTbhEzIbi0Vq3txo//GHdPWqqeUAAAAAQKZE+ASX+v13YxkcbDw9DMhsypQxPhITpbVrza4GAAAAADIfwie4lG3IXViYuXUAzrD1ftq1S7p40dxaAAAAACCzIXyCS9kmGw8PN7cOwBnFixu996xW6ddfza4GAAAAADIXwie4zM2b0rZtRpueT8jsWrQw5oA6eFDavNnsagAAAAAg8yB8gsv88YcRQBUsKFWoYHY1gHMKFpRq1TLaY8YYvaAAAAAAAPdG+ASXsQ25CwszeowAmV3TppKPj7Rnj/TXX2ZXAwAAAACZA+ETXIbJxpHV+PtLjRoZ7VWrpLg4c+sBAAAAgMyA8AkuYbVKv/9utAmfkJXUqycVLSpFRjL3EwAAAACkBuETXOLgQeOR9Dly3JonB8gKvL2lYcOM9oYN0vXr5tYDAAAAAO6O8AkuYRtyV6+eMUcOkJV06GD0foqNldasMbsaAAAAAHBvhE9wCVv4FB5ubh2AK3h4SK1aGe0//pDOnze3HgAAAABwZ4RPcAnCJ2R1pUpJISHG/GbLlhlLAAAAAEBSbhU+LVu2TAMGDFDjxo1Vo0YNdezYUT/88IOsd/xW9/3336t169aqWrWqOnTooNWrVyc517Vr1zRq1CjVrVtXoaGhGjx4sM7TPSFDnD0r/f23ZLFIDRqYXQ3gOq1aSV5e0vHj0r59ZlcDAAAAAO7JrcKnL7/8Ujlz5tTIkSP16aefqnHjxnrttdc0efJk+z5LlizRa6+9pjZt2mjatGmqUaOGBg4cqD///NPhXEOGDNHGjRv1xhtv6MMPP9SxY8f0zDPPKD4+PoNfVfZj6/VUrZqUJ4+5tQCulDfvrac5rlxpzAEFAAAAAHDkZXYBt/v0008VGBho/7xBgwa6evWqZs6cqeeee04eHh6aOHGi2rVrpyFDhkiS6tevr0OHDmny5MmaNm2aJGnnzp3asGGDZsyYofD/H/dVpkwZtW3bVitXrlTbtm0z/LVlJ7bwqVEjc+sAMkJYmLRrl3T1qrRundSypdkVAQAAAIB7caueT7cHTzYhISGKiopSdHS0Tp06pePHj6tNmzYO+7Rt21abNm1S7P93O1i3bp0CAgIUZuuSIKls2bIKCQnRunXrXPsiwHxPyFa8vaXWrY32pk3Sv/+aWw8AAAAAuBu3Cp+S88cff6hw4cLKlSuXjh49KsnoxXS7cuXKKS4uTqdOnZIkHT16VGXKlJHFYnHYr2zZsvZzwDWuXZNsIyBvy/6ALK1iRWPy8cRE6aefJEb3AgAAAMAtbjXs7k7bt2/X0qVLNWLECElSRESEJCkgIMBhP9vntu2RkZHKnTt3kvPlyZNHe/bscaom2+TnMTExTp0nq1qzxkOJiTlUqlSiAgNvKDr61rb4eB/FxaX8SDCr1VNxcQn3vS2t2+Pi4uxLZ87vitrSa3t2qO32+3g/x8fHWxQdnfwkTWn5t/qf/0jHjnnp7FmLPvssQa+8cjPF4+/lbte/W92Zme1nKj9bMzfuY/qwWq1J/oAGAACQmblt+PTvv/9q6NChqlevnnr16mV2OXa2CcuPHz9ubiFu6uefi0gqqkqVrmj//uMO2/z8yunChehkj5Ok+PiCunDhwn1vc3b71atXnTrelbU5uz071Xb16tX7Oj4qyk/nz/+d7La0/lutWzen1q3Lp48+8lD16sdUrtyNFM9xN3e7/t3qzgr42Zo1cB+d5+PjY3YJAAAA6cYtw6fIyEg988wzyps3rz755BN5eBijA/P8/6PTrl27poIFCzrsf/v2gIAA/ZvMxCsRERH2fdLKy8tL8fHxKl26tHLmzOnUubKigwd9JUlt2uRWSEiIw7ZLl3xUsKB/isd6eXk63NfUbkvr9ri4OF29elV58+Z16vyuqC29tmeH2m6/j97e3qk+Plcui0qVCkl2W1r/rRYoIJ0+naijRz30v/+FaN26G/JP+TQputv171Z3ZhYTE6Pjx4/zszWT4z6mjyNHjphdAgAAQLpyu/Dpxo0b6t+/v65du6Z58+Y5DJ8rW7asJGNOJ1vb9rm3t7dKlChh32/Tpk1Juq0fO3ZMQUFBTtVnO1/OnDnl5+fn1Lmymrg4ads2o92ihY/8/Bz/ahsRYUzOnBKLRfL2Tn4asrttc3a7t7e3LBaPNB/vytqc3Z6davP29nYIn+51vJeX5OeX/I9AZ/6tdukiffWVdOCAh4YP99PMmSmfJyV3u/7d6s4K+NmaNXAfncOQOwAAkNW41YTj8fHxGjJkiI4eParp06ercOHCDttLlCih0qVLa/ny5Q7rly5dqgYNGti7qDdu3FgRERHatGmTfZ9jx45p3759aty4setfSDa1c6cUEyMFBhoTMAPZkb+/NGWK5OEhffmlNG2a2RUBAAAAgLnc6s/nb775plavXq2RI0cqKipKf9oemyapUqVK8vHx0aBBgzRs2DCVLFlS9erV09KlS7V7927NmTPHvm9oaKjCw8M1atQojRgxQr6+vho3bpyCg4PVqlUrE15Z9rBhg7EMCzN+8QayqwYNpLfekl59VXr2WalgQalTJ7OrAgAAAABzuFX4tHHjRknSe++9l2TbqlWrVLx4cbVv314xMTGaNm2aPv/8c5UpU0aTJk1SaGiow/7jx4/Xu+++q9dff13x8fEKDw/Xq6++Ki8vt3rJWYotfAoPN7cOwB2MGiUdPSp98YX0yCPSsmVS8+ZmVwUAAAAAGc+tkpjffvstVft1795d3bt3v+s+uXPn1pgxYzRmzJj0KA33YLUSPgG3s1ikqVOlK1ekBQukhx6SZs+WunY1uzIAAAAAyFgMjkK6OHxYunBB8vWVatUyuxrAPXh5SXPnSm3aSNHRUrdu0htvSImJZlcGAAAAABmH8AnpwtbrqV49I4ACYMiRQ/rpJ2noUOPzN9+UmjWT9u83ty4AAAAAyCiET0gX69cbS4bcAUl5eUkff2zM/5Qzp7RunVS9ujRypBQRYXZ1AAAAAOBahE9IF7bwKSzM3DoAd/bkk9K+fVL79lJcnPT++1LZskYwdeOG2dUBAAAAgGsQPsFpp09Lf/8teXjQ8wm4l9KljWF4ixZJISHS5cvSiy9KwcHSrFlSQoLZFQIAAABA+iJ8gtPWrjWWtWpJAQHm1gJkBteuSXXqSCtWSB9+KBUpIp08KfXpI9WsKR06ZHaFAAAAAJB+vMwuAJnfmjXGsmlTM6sA7o/FIp09m/y2uDjXXvv6dWnq1FufP/mktHWrMXH/7t1Su3bSf/5jzAsFAAAAAJkd4ROcRviEzCgmxhjmlpzevTO2Fm9vY760qlWl+fOlEyekhQuNIXnNmmVsLQAAAACQ3gif4JTTp6UjR4z5nqpVS7knieT63iRAZhcQIPXqJV29Kn3yifFUPA8PqUkTsysDAAAAgLQjfIJTbp/vydPTcSjRnTK6NwmQGXl4SEOHSvv3S7/+avQs9PLiSZIAAAAAMi8mHIdTGHIHuEZYmNS8udH+9Vfp2DFz6wEAAACAtCJ8glMInwDXadRICg012gsWSNHR5tYDAAAAAGlB+IQ0u32+p/Bws6sBsqYHH5QKFJCuXZMWLZKsVrMrAgAAAID7Q/iENFu92ljWrGlMlAwg/fn4SN26GXOqHTokffut2RUBAAAAwP0hfEKarVplLFu2NLcOIKsrXPjW/E/vvitFRppbDwAAAADcD8InpInVakyCLBE+ARmhXj0pf37p4kXp7bfNrgYAAAAAUo/wCWly8KB05oyUIwePgAcygqen1Lq10Z4wwRiCBwAAAACZAeET0sTW6ykszAigALhehQpSixZSXJz00ktmVwMAAAAAqUP4hDRhyB1gjtdfN54w+dNP0h9/mF0NAAAAANwb4RPuW3z8rSfdET4BGatCBalnT6P91lvm1gIAAAAAqUH4hPu2fbvxtK18+aTQULOrAbKfV1+91ftp506zqwEAAACAuyN8wn2zDblr3tyYBBlAxgoOlnr0MNo8+Q4AAACAuyN8wn375Rdj2aKFuXUA2dmrr0oWi7RggfTXX2ZXAwAAAAApI3zCfYmMlH7/3Wj/5z/m1gJkZyEhUvfuRvujj8ytBQAAAADuhvAJ9+W334wJx8uXNz4AJGWxSGfPpvwRF5c+13nxRWM5d65xXgAAAABwR15mF4DMZflyY9mmjbl1AO4sJkaaNSvl7b17p8916taVwsOlDRukSZOkd95Jn/MCAAAAQHqi5xNSzWq9FT49+KC5tQAw/Pe/xvKzz6Tr182tBQAAAACSQ/iEVNu+XTpxQvL1NZ625aqhRABSr0MHqVw56fJlafZss6sBAAAAgKQYdodUW7rUWBYrJn31VdLt6TWUCEDqeXpKQ4ZIgwZJ48ZJ/ftLHvxZAQAAAIAb4VcUpNrq1caSicYB99Knj5Q3r3T4sLR4sdnVAAAAAIAjwiekSnS0tHmz0SZ8AtxLrlzSs88a7Y8+MrcWAAAAALgT4RNSZfVq6eZNKU8eqUABs6sBcKeBAyUvL2ndOmN+NgAAAABwF4RPSJWffzaWFSpIFou5tQBIqlgxqUcPo/3xx+bWAgAAAAC3I3zCPVmtt+aRCQoytxYAKfvvf43ld99Jp06ZWwsAAAAA2BA+wS4yUjp7NunHL79IZ85IOXNKZcqYXSWAlISGSs2aSQkJ0sSJZlcDAAAAAAYvswuA+7h+XZo6Nen6tWuNZXi4MacMAPf14ovGHG2ffy69/rqUO7fZFQEAAADI7uj5hHs6dMhYNm9ubh0A7q1NGyk42OjJ+MUXZlcDAAAAAIRPuIdr16R//jHahE+A+/PwuDX30/jxUny8qeUAAAAAAOET7s7W66lYMalgQXNrAZA6Tzwh5c8vHT8uLVxodjUAAAAAsjvCJ9yVLXziKXdA5pEzp/Tcc0b7vfeMJ1YCAAAAgFkIn5Ci2Fjp77+NdnCwubUAuD+DBkl+ftIff0jLl5tdDQAAAIDsjPAJKTp82Hhke758UqFCZlcD4H4ULCgNGGC033qL3k8AAAAAzEP4hBQdOGAsQ0Iki8XcWgDcv2HDpBw5pM2bpVWrzK4GAAAAQHZF+IRkxcffmu8pJMTcWgCkzQMPSP36Ge0336T3EwAAAABzED4hWceOGXM+5cplPOkOQOY0fLjk4yNt2CCtWGF2NQAAAACyI8InJGv/fmNZsSJD7oDMJDJSOnv21oeHh9Snj7FtyBDp8mUzqwMAAACQHXmZXQDcT2KidPCg0WbIHeBeLBYjVEpJXJz0xReO6/LmlXLmNL6vZ8yQXnrJpSUCAAAAgAPCJyRx8qQUHW1MVFyqlNnVALhdTIw0a1bK23v3TrouZ06pcWNj2N3YsVL//lJAgOtqBAAAAIDbMewOSezZYywrVpQ8Pc2tBUD6qFNHCgyULl6URo82uxoAAAAA2Qk9n+AgMfHWfE9VqphbC4D04+kptW4tffON9NFHUteuUr16ZlcFAEhvnlGZ5y+HtlozU813ysy1A0BGInyCg+PHjSF3OXNKpUubXQ2A9BQUJHXuLC1YYExCvnOnMbwWAJD55cuXTz6+PsqzK4/Zpdy3zFjz7Xx8fZQvXz6zywAAt0b4BAe2IXchIQy5A7Kit9+WNm2SDhyQXn/dmAMKAJD5FS1aVCuWr9CVK1fMLiXbyZcvn4oWLWp2GQDg1gifYBcXZ/xCKjHkDsiqAgOlqVOljh2lDz80JiJv397sqgAA6aFo0aKEIAAAt8SE47DbsMF4kpa/P0+5A7KyDh2kZ5+VrFbp0Udv9XgEAAAAAFcgfILdokXGMiRE8uBfBpClTZwoNW0qRUVJDz0kXbhgdkUAAAAAsioiBkgyJhlfssRoV61qbi0AXM/bW/rhB6lsWeNBAy1aSOfOmV0VAAAAgKyI8AmSjF5P169LefNKJUqYXQ2AjJA/vxE6Fyki/fWX1KiRdOqU2VUBAAAAyGqYcBySpDlzjGW1apLFYm4tADJOxYrSunVSy5bS4cNSgwbSlClSnTpJ9/X3lwICXFdLvnyldOmSjyIikt/u6usDAAAAcA3CJ+jcOWnFCqNdrZq5tQDIeOXLS+vXS61aGU+87NxZat5catjQMYzu39+14c/Nm16aMcMqb+/kt7v6+gAAAABcg2F30LffSgkJUmioMQwHQPZTooS0davUsaOUmCj9+qs0cybzQAEAAABwHuET7EPuunQxtw4A5sqd2xhy166dMSH5qVPS1KnS0qXGU/EAAAAAIC0YdpfN7dsnbd8ueXpKnToZT78CkH1ZLFLt2lKFCsZw3P37pW3bpJ07jadiPvOM9MADyR/LnEwAAAAAkkP4lM1Nn24sH3qIIXcAbsmTR3r4YenoUem336QzZ6RPPzV6QlWpItWtKxUtmrFzQgEAAADInAifsrGbN6XZs412377m1gIgY1gs0tmzKW+Pi3P8vGxZqUwZ40l4hw8bPSV37zY+ChaUatSQKlWS8uZ1ZdUAAAAAMjPCp2xs4ULp0iWpWDHpwQel8+fNrgiAq8XESLNmpby9d++k6ywWKShIeucdacwYacsWYzjehQvSL78YH4ULGz9DHnxQatDACKYAAAAAQCJ8ytamTTOWTz1lzPkEAPdSrJjxcIIbN6Q9e6S9e6UTJ4yn4n36qfEhSQUKSCEhRq+pEiWk4sWNpa2dL5/jkD0AAAAAWRfhUzZ19Ki0apXxy99TT5ldDYDMJkcOY2Ly2rWNiciPHJH8/KQdO4xeURcvSuvXGx/J8fOTypeXGjaUwsOlxo0ztn4AAAAAGYfwKZuyTTT+n/9IpUubWgqATM7PT6pWzZhwvEgRKSpKOnRIOnDA6BV1+rR06pTxcfq0EUxFR9+aO+qzzyRv75xq0sRLgYEWVaxIrygAAAAgKyF8yoZiYqTPPzfa/fubWwuArCdXLqlmTePjdpGR0vXrxs+gs2eNcGrbNqN31L59Fv36q48k4yl6TZsaPaMIoQAAAIDMj/ApG5o715hovFQpqWNHs6sBkF1cvy5Nneq47oEHpO7dpTNn4pSQ4KE5czz0zz8WzZ1rhE/t20t58phTLwAAAID0QfiUzVit0oQJRnvgQCYaB+AeChWSevdOVEBAorZu9dbWrcY8UlOmGMODa9Uyu0IAAAAAaeVhdgHIWGvWSH/9ZczR8vTTZlcDAI78/aVWraRnnzWejBcbKy1ZIn33nXTlitnVAQAAAEgLwqdsxtbrqXdv41HnAOCOChSQnnxSat3a6KF54IARSm3caHZlAAAAAO4X4VM2cvCg9NNPRnvwYHNrAYB7sVik+vWNXpqBgdKZM1KTJtKYMVJCgtnVAQAAAEgtwqds5J13jDmfOnSQKlY0uxoASJ0iRaR+/aQuXYzQ6ZVXjB5R//5rdmUAAAAAUoPwKZs4ckT6+muj/dpr5tYCAPfL11f65BPpyy+NOetWrZKqV5dWrDC7MgAAAAD3QviUTYwZIyUmSm3bSrVrm10NANw/Dw9j3qdly6RKlaTz56UHH5Sef166dMm5c0dGSmfPpvwRGZk+rwEAAADIjrzMLgCud+yYNHu20abXE4DMKiZGmjXLaHfubDwZb9s2acoUafNm6YcfpDJl0nbu69elqVNT3t6/vxQQkLZzAwAAANkd4VM28L//GfOktGplTN4LAK5gsRi9hFISF5d+1/LyMnpyliljPEhhxw6pcmVp2DBp+HApV670uxYAAAAA5xA+ZXFbtkhffWW0R482txYAWdvtPZOS07t3+l8zJMSYkHzbNun336W335Y+/1x64QWjt1JgYPpfEwAAAMD9Yc6nLCwx0fgFTJL69JHq1DG1HABwibx5pe+/l+bPl8qVk86dk0aNkooXN372LVsmXbx49zmd0rNXFgAAAABH9HzKwubONXo+5cplTDgOAFmVxWLMA9WunTRvnvTxx9Kffxo9sWbNMuZreuABqVQpqXRpo+1x259fXNErCwAAAICB8CmLunJFGjHCaI8aZQxLAYCszsdHeuIJ6fHHpY0bpW+/NSYiP3fOeGLdoUO39itVypgzqmxZyWo1t24AAAAgKyN8yqIGDpT++UeqUEEaOtTsagAgY1ksUni48TFhgvTLL0ZvqBMnjI+bN6XDh40PyQioihQxhu1VrCj5+ppbPwAAAJCVED5lQfPmGUPuPD2NycZz5Li1LTLSeKR4cpjzBEBW5OkpVa8uNWxofCQmGj2hjh0zPo4fN+aEunhR+usvY//gYCk01AijLBazXwEAAACQuRE+ZTGnT0sDBhjtV16R6tVz3H79ujR1avLHMucJgOzAw8Po5VSkiBFGxcdLVapIU6ZI+/cbIdS+fcZHgQJS3brGUD4AAAAAaUP4lIVERUkdOxrzPdWuLb36qtkVAYD78/IygvoDB6RmzYxeUTt3GhOWX7woLV1qzB/Vr580aJBUooTZFQMAAACZi8e9d0FmkJAgPfqotGOHVLCgMfTO29vsqgAgc7FYjCfhtWkj/fe/UuvWUr58UkSE9MEHxuTkvXpJu3ebXSkAAACQeRA+ZQGJidLzz0uLFxvzO/30k/ELEgAg7Xx9pfr1jQc4fPml1LSpMUTvq6+MOaTatJF++40n5QEAAAD3QviUycXGGnOR2OZx+uor45clAED68PCQWrWSVq+Wtm2THn7YWLd8udSihTFf1IQJ0uXLZlcKAAAAuCfmfMrErlyRHnnEeIS4l5f0xRfGL0hnz6Z8DE+0A5AVWSwZ87Ovdm1jWPPRo9K4ccbP3f9r7/6joirzP4C/B4TyBwMroZtpKRKEIGdQ06XZxt+VOsIeW7PMLLXUDlnZ+Z42W9GvJ88u1nrKtFVcUqtzUhfcbQ8i+LMDKuK6gj++lfkVMKDEXyUz8mtG+Hz/uN+5OAwgJtNwZ96vc+4Z5rnPPPPMfeZePny497lffw28/jrwX/8FTJwI/P73yrG4f//OeU8iIiIiIq1j8kmjdu8G5s0Dvv8e6NkT2LFDmZvkwoW272YH8I52ROSd6uqATz5pe31nH/vCw4G1a4GVK4HPPwc2blQmKM/JURYAiIwEEhKAuDggJga4/34lIdWrl5Isc7BYlDuRtqVnT0Cvb3v9nb6eiIiIiMjdmHzSmPPngf/+7+Y/siIjga1bgWHDPNkrIiLfFBwMvPyyspw5A2RkKPPuFRUBZ88qS0t+fkD37kCPHspjQIAyoTngPH+U4+fgYOU1Is1l/v5KUqlHD+XnS5eUOaoc7TqW7t2VS7OHDFEmUvf3d+6LLyeufPmzExEREf3SvDr5VFJSgpUrV6K4uBg9e/ZEUlISXn/9dQQGBnq6a21qKxg+c0aZ8Hbr1ubLRxYtAlJTlT8wiIjIsx56CEhJUZZr14BDh5Qk1OnTwDffAJWVSpKpqUk5zreX+LjZnc4l9dlnyqO/v3Lm1f33Ny/Bwcqd+371K2VpmZxasMB7EzA1Ne2fKezNn52IiIjol+a1yafq6mo8//zzGDhwINauXYuLFy8iNTUV9fX1WLZsmae716abg+Eff1T+a/4//6NcXucwYQLwzjucWJyI6JdyqzmlAgJc55UaPlxZbl5XUwNYrUB9ffNy/TqQnd38Pje/JwAkJQFhYc3PdTqlvbo6oLZW+f2Qmws0NCjP6+qa19XWKq/58UegsRH47jtlaeszBgcDoaFA797KEhEBjBoFDByofA4iIiIiop/Da5NP27ZtQ01NDdatW4eQkBAAQGNjI1asWIEFCxagb9++nu1gK+rqgMxMICtL+ePg6tXmdX5+QFSUMr/ItGme6yMRkS/qyJxSba1vb51j/Vdftb1+5Ejg3nvbXn/hAnD5ctvrFywA+vQBqqqA8nLn5exZ4ORJ5QYWNptyxta1a0BJifLa3buVx27dlATUgw+6Lg884HrGVFdnswEXLypLba2SmNPplN+1juWbb5TPFRqqvc9HRERE1NV4bfIpPz8fCQkJauIJACZNmoTly5fj8OHDmNYFMzivvgqkpzc/9/NTgvrISGDoUGX+iYQEz/WPiIi0R6dT5oTy81MSSAMHNq+z25U79okoZ2VdvaqcJeV41OmAsjIl+XbunLI4JlR3CAxUJmB/4AEgKCgQOt0ADBoUgD59gKAg5YypwMDmxfE8IMA52dORpWWCSKdrPnuspkZ5tFqbP8OVK8rS8mer9dbbbdMm5dHPTznzrE8f5bLFBx4A4uOBOXN4NhgRERFRR3lt8qm0tBRPPvmkU5ler0dYWBhKS0s91Kv2TZ6s/BfableC2wceAO6+29O9IiIiT7rVJX8tL/drqb2zthx3AdTplLvw9eql/O5xWLAA6NsX+OEH4H//13UpKVEu9ztzRlmUsKLPbXw6z/H3VyZp79FDObNLRJmPy7HodMoZYU1NzWdJnT7d/PrwcOUyeCIiIiK6NZ3IzffW8R4xMTF47bXXMH/+fKdys9mM+Ph4vPPOO7fdZlFRERybq1u3btDdPDlHJ2ls1LX7H1m93vluSK1p7/VBQW2vb2+dp9e7o20RQVNTE/z8/KDXt7/dud26bt9uHseb98mu0Dd3rPfW9xYRBAXpYLVKm8fWrrpdvL1v/v5t/9JpatLhxg0lAdbYqCRqGhsFIjo0NTnfoa+tnx1a+93W2t3/WtLpms+Icvzs7688Vx6lxXPlUaRjv2+bP5ey3LihvEdIiMANYQAAwG63Q6fTYdgd3srWEbe0d6MVEYHdbkdAQIBb4hpyL46f9nEMtY9jqG0cvztns9k6FLd47ZlP7uD4Mga48Tz7bt2UOw7diVu9vr31d/Jad6/v/LZ1APzbWd/x9n1ru3Xe+s5p23kcO6t9799uXe29leNr797t/9LvqtvlVuu13DfH2LTG37/5DKKO1PeMtvvTkd+33dqMlNz3OXU6XacEwB1pQ6fTdem7AFP7OH7axzHUPo6htnH87lxH4xavTT7p9XpYW/mXZnV1NYKDg39Wm/Hx8XfaLSIiIqJfBOMWIiIi6ir8PN0BdwkPD3eZ28lqteLy5csIDw/3UK+IiIiIiIiIiHyL1yafTCYTCgoKYLFY1LLc3Fz4+fnBaDR6sGdERERERERERL7Dayccr66uxpQpUzBo0CAsWLAAFy9eRGpqKqZOnYply5Z5untERERERERERD7Ba5NPAFBSUoJ33nkHxcXF6NmzJ5KSkrB48WJOKEZERERERERE9Avx6uQTERERERERERF5ltfO+URERERERERERJ7H5BMREREREREREbkNk09EREREREREROQ2TD4REREREREREZHbMPlERERERERERERuw+QTERERERERERG5DZNPt6GkpARz5syBwWCA0WjEu+++C5vN5ulueZXvvvsOy5YtQ1JSEoYMGQKz2dxqvYyMDDz++OMYOnQoEhMT8eWXX7rUsVqtePvttzFy5EjEx8fj1VdfxaVLl1zqFRUVYcaMGYiLi8PYsWOxceNGiIhTHRHBxo0bMWbMGMTFxWHGjBk4ceKES1sXL17EokWLEB8fj5EjR+KPf/wjrl+//vM2hobl5OTg5ZdfhslkgsFgQFJSEjIzM122K8exa8vLy8OsWbPwm9/8BrGxsRg/fjz+/Oc/w2q1OtU7cOAAEhMTMXToUDz++OPYsWOHS1s2mw2rVq2C0WiEwWDAnDlzUFpa6lKvo8fZzvzu+JqamhqYTCZERUXh9OnTTuu4T/oOxjTuxXhG2xjHaB9jGO/C2MVLCHXItWvXxGg0yrPPPiv5+fmSkZEhw4cPlxUrVni6a15l7969YjKZZNGiRWI2m2XKlCkudXbu3ClRUVHy/vvvy5EjRyQlJUWGDBkixcXFTvXmzp0rJpNJsrOzZd++fWI2myUxMVHsdrta5/z582IwGCQ5OVkKCgpk8+bNEhMTI+np6U5tpaWlSUxMjGzevFkKCgokOTlZ4uPjpby8XK1js9nEbDaL2WyW/fv3S3Z2tphMJpk/f37nbiQNeOqpp2Tx4sWSnZ0tBQUF8pe//EUeeughWbt2rVqH49j1ffHFF7Jq1SrJzc2VwsJC+eyzz2TkyJEyZ84ctc6xY8ckOjpaUlJS5MiRI/L+++9LVFSU5OTkOLWVkpIiw4cPl4yMDMnPz5eZM2fKo48+KhaLRa3T0eNsZ353fNG7774rjzzyiERGRsqpU6fUcu6TvoMxjfsxntE2xjHaxxjGuzB28Q5MPnXQhg0bxGAwyE8//aSWbdu2TaKjo6WqqspzHfMyjY2N6s9/+MMfWg3WHnvsMXnjjTecymbMmCEvvvii+ryoqEgiIyPl4MGDallJSYlERUVJdna2WpaSkiJjx46VhoYGtWz16tUyYsQItay+vl6GDRsmq1evVus0NDTI2LFjZfny5WpZVlaWREVFSUlJiVp28OBBiYyMlJMnT97OZtC8q1evupQtXbpUhg0bpo4xx1Gbtm/fLpGRkepxb+7cuTJjxgynOm+88YZMmjRJfX7hwgWJjo6Wbdu2qWU//fSTGAwG2bhxo1rW0eNsZ353fM25c+fEYDDI1q1bXQI47pO+gzGN+zGe0TbGMd6JMYw2MXbxHrzsroPy8/ORkJCAkJAQtWzSpEloamrC4cOHPdcxL+Pn1/5XsqKiAufPn8ekSZOcyidPnowjR46op7bm5+dDr9fDaDSqdcLDwxEdHY38/Hy1LD8/H+PHj0dgYKBTWxaLBcXFxQCU0y+vX7/u9J6BgYGYOHGiS1tRUVEIDw9Xy4xGI0JCQpCXl3c7m0Hzevfu7VIWHR2N69evo7a2luOoYY5joN1uh81mw9GjR/HEE0841Zk8eTJKSkpQWVkJADh06BCampqc6oWEhMBoNLps+1sdZzv7u+NrVq5ciaeffhqDBg1yKuc+6VsY07gf4xltYxzjnRjDaBNjF+/B5FMHlZaWOn15AECv1yMsLKzVa37JPRzbuuXBZ/DgwbDb7aioqFDrDRo0CDqdzqleeHi42kZtbS0uXLjgMq7h4eHQ6XRqPcdjy3qDBw/GDz/8gPr6erVeyzo6nQ6DBg3idwTA8ePH0bdvX/Tq1YvjqDGNjY1oaGjAV199hY8++gjjxo1D//79UV5eDrvd3uo2BeC07UNDQxEcHOxS7+Zt2pHjbGd+d3xNbm4uzp49i+TkZJd13Cd9C2Maz+M+pz2MY7SJMYy2MXbxLkw+dZDFYoFer3cpDw4ORnV1tQd65Jsc27rlWDieO9ZbLBYEBQW5vP7m8XJMONiyrcDAQHTv3t2prcDAQNx1110u7ykit/Wevuo///kPdu3ahblz5wLgOGrN2LFjERcXh2nTpiEsLAyrV68GcOfjqNfrnbZpR46znfnd8SV1dXVITU3F4sWL0atXL5f13Cd9C2Maz+M+py2MY7SLMYx2MXbxPt083QEi8m5VVVVYvHgxRo0ahdmzZ3u6O/QzbNy4EXV1dTh37hzWr1+PhQsXYvPmzZ7uFt2G9evXIzQ0FE8++aSnu0JEpCmMY7SNMYx2MXbxPjzzqYP0er3LrTkBJaPa8jRMch/Htm45FhaLxWm9Xq9v9VaWN4+XIxvdsi2bzYa6ujqntmw2GxoaGlzeU6fT3dZ7+hqLxYKXXnoJISEhWLt2rToHBsdRWx566CHEx8dj+vTp+Otf/4qjR49i7969dzyOFovFaZt25Djbmd8dX/H9999j06ZNePXVV2G1WmGxWFBbWwtAOc28pqaG+6SPYUzjedzntIFxjPYxhtEmxi7eicmnDmrtGlur1YrLly+7XM9J7uPY1i3HorS0FAEBARgwYIBar6ysDCLiVK+srExto0ePHrj33ntd2nK8zlHP8VhWVubynv369cPdd9+t1mvZlog4vacvqa+vx4IFC2C1WpGenu506inHUbuioqIQEBCA8vJy3H///QgICGh1HAE4bfsrV664nGbc8nr4jhxnO/O74ysqKytht9sxf/58PPzww3j44YexcOFCAMDs2bMxZ84c7pM+hjGN53Gf6/oYx3gfxjDawdjFOzH51EEmkwkFBQVqJhVQJkDz8/Nzmjmf3GvAgAEYOHAgcnNzncp37dqFhIQE9e4EJpMJ1dXVOHLkiFqnrKwMX3/9NUwmk1pmMpmwf/9+2O12p7b0ej3i4+MBAMOGDUOvXr2Qk5Oj1rHb7dizZ49LW2fOnMH58+fVsiNHjuDatWsYPXp052wAjbhx4wZef/11lJaWIj09HX379nVaz3HUrpMnT8Jut6N///4IDAzEqFGjsHv3bqc6u3btwuDBg9G/f38AwG9/+1v4+flhz549ap3q6mocOnTIZdvf6jjb2d8dXxAdHY1PP/3UaVmyZAkAYMWKFVi+fDn3SR/DmMbzuM91bYxjvBNjGO1g7OKlhDrk2rVrYjQaZdasWXLw4EHJzMyUESNGyIoVKzzdNa9SW1srOTk5kpOTI7NmzZLRo0erz69evSoiIllZWRIVFSVr1qyRwsJCWbZsmQwZMkSKioqc2po7d66MHj1adu3aJfv37xez2SyJiYlit9vVOufPnxeDwSCLFi2SgoIC2bJli8TExEh6erpTW2lpaRIbGytbtmyRgoICWbRokcTHx0t5eblax2azidlsFrPZLAcOHJDs7GwZPXq0zJ8/341brGtaunSpREZGyqZNm6S4uNhpaWhoEBGOoxYkJyfL+vXr5cCBA1JQUCCbNm0So9EoU6dOVcfx2LFjEh0dLcuXL5fCwkJZs2aNREVFya5du5zaSklJkREjRkhmZqYcPHhQZs2aJY8++qhYLBa1TkePs5353fFVhYWFEhkZKadOnVLLuE/6DsY07sd4RtsYx2gfYxjvw9hF+5h8ug3nzp2T559/XuLi4iQhIUFSU1PVgxd1joqKComMjGx1KSwsVOv9/e9/l4kTJ0pMTIy6U7dksVhkyZIlMmLECDEYDPLKK69IVVWVS73jx4/L9OnTJTY2Vkwmk6SlpUlTU5NTnaamJtmwYYOYTCaJjY2V6dOnuxzURESqqqrklVdeEYPBICNGjJAlS5aI1WrthC2jLWPHjm1zHCsqKtR6HMeuLS0tTZKSkiQ+Pl4MBoNMmTJFPvjgA5dtsW/fPjGbzRITEyMTJ06UjIwMl7YaGhokNTVVEhISJC4uTl544QU5d+6cS72OHmc787vji1oL4ES4T/oSxjTuxXhG2xjHaB9jGO/D2EX7dCItLn4kIiIiIiIiIiLqJJzziYiIiIiIiIiI3IbJJyIiIiIiIiIichsmn4iIiIiIiIiIyG2YfCIiIiIiIiIiIrdh8omIiIiIiIiIiNyGySciIiIiIiIiInIbJp+IiIiIiIiIiMhtmHwiIiIiIiIiIiK3YfKJiKgTPffcc3juuec83Q0iIiKiW2LcQkS/lG6e7gARkad9++23+Oijj3D69GlcuXIFISEhiIiIwLhx4xiQERERUZfCuIWItIjJJyLyaUVFRZg9ezb69euH6dOnIywsDBcuXMDJkyfx6aefMogjIiKiLoNxCxFpFZNPROTTNmzYgKCgIGRmZkKv1zutu3r1qod6pbhx4waampoQGBjo0X4QERFR18C4hYi0inM+EZFPKy8vR0REhEsABwChoaHqzzt27MDs2bORkJCA2NhYTJ48GZ9//vkt27fZbFizZg2mTZuG4cOHw2AwYObMmSgsLHSqV1lZiaioKHz88cfYsmULJkyYgKFDh+LUqVMwGAxYuXKlS9tVVVWIjo5GWlraz/jkREREpDWMW4hIq3jmExH5tPvuuw/FxcU4e/YsIiMj26y3detWPPjggxg3bhy6deuGL7/8EitWrICI4Nlnn23zddevX0dGRgbMZjOmT5+OmpoaZGZm4sUXX0RGRgaio6Od6v/jH/9AQ0MDnnrqKQQGBqJfv36YMGECcnJysGTJEvj7+6t1d+7cCRHB1KlT73xDEBERUZfHuIWItEonIuLpThARecrhw4fx0ksvAQDi4uIwfPhwJCQkYNSoUQgICFDr1dfX4+6773Z67bx58/Ddd99h3759apljroXPPvsMANDY2IjGxkanU9AtFgsmTZqE0aNH409/+hMA5T+I48ePR69evbB371707t1brX/o0CHMmzcPf/vb32AymdTyxMREBAcHq+9FRERE3o1xCxFpFS+7IyKfZjQasW3bNowbNw5nzpxBeno65s2bB5PJhP3796v1bg7grFYrfvzxR4wcORIVFRWwWq1ttu/v768GcE1NTbh27Rpu3LiB2NhYfP311y71H3vsMacADgAeeeQR9OnTB1lZWWrZ2bNn8e233yIxMfFnf3YiIiLSFsYtRKRVvOyOiHxeXFwc1q1bB5vNhjNnzmDfvn3YsmULXnvtNXzxxReIiIjA8ePHsXbtWpw4cQJ1dXVOr7darQgKCmqz/X/+85/YtGkTysrKYLfb1fL+/fu71G2tzM/PD1OnTsXWrVtRV1eH7t27IysrC3fddReeeOKJO/jkREREpDWMW4hIi5h8IiL6f4GBgYiLi0NcXBwGDhyIJUuWIDc3F4mJiXjhhRcQHh6Ot956C/feey8CAgKQl5eHLVu2oKmpqc02//Wvf+Gtt97ChAkTMG/ePISGhsLf3x9paWmoqKhwqd/yFHmH3/3ud/j444+xb98+mM1m7Ny5E2PGjGk3eCQiIiLvxbiFiLSEySciolbExsYCAC5duoQDBw7AZrNh/fr16Nevn1rn6NGjt2xn9+7dGDBgANatWwedTqeWf/jhh7fVn8jISAwZMgRZWVn49a9/jR9++AFLly69rTaIiIjIOzFuIaKujnM+EZFPKywsRGv3XcjLywMAhIeHq3dqubme1WrFjh07btl+a689efIkTpw4cdt9TUpKwuHDh/HJJ58gJCTEaRJPIiIi8n6MW4hIq3jmExH5tJUrV6Kurg4TJ05EeHg47HY7ioqKkJOTg/vuuw/Tpk3DlStXEBAQgIULF+Lpp59GTU0NMjIyEBoaisuXL7fb/pgxY7Bnzx4kJydjzJgxqKysxLZt2xAREYHa2trb6qvZbMZ7772HvXv34plnnnG6qw0RERF5P8YtRKRVTD4RkU978803kZubi7y8PGzfvh12ux39+vXDzJkz8fLLL0Ov10Ov1+PDDz/EBx98gFWrVuGee+7BM888g969e+Ptt99ut31HELh9+3YcOnQIEREReO+995Cbm4t///vft9XXe+65B0ajEXl5eUhKSrqTj01EREQaxLiFiLRKJ62dt0lERF1ScnIyzp49i71793q6K0RERETtYtxCRA6c84mISCMuXbrE/x4SERGRJjBuIaKb8bI7IqIurqKiAkVFRcjMzES3bt0wY8YMT3eJiIiIqFWMW4ioNTzziYioizt27BjefPNNVFZWIjU1FWFhYZ7uEhEREVGrGLcQUWs45xMREREREREREbkNz3wiIiIiIiIiIiK3YfKJiIiIiIiIiIjchsknIiIiIiIiIiJyGyafiIiIiIiIiIjIbZh8IiIiIiIiIiIit2HyiYiIiIiIiIiI3IbJJyIiIiIiIiIichsmn4iIiIiIiIiIyG2YfCIiIiIiIiIiIrf5P/EtUU35fzLIAAAAAElFTkSuQmCC\n"},"metadata":{}}]},{"cell_type":"markdown","source":["## Key Insights for Predicting Salary:\n","\n","The histogram indicates that the majority of salaries fall within a specific range, providing a baseline for salary prediction.\n","The box plot allows us to identify outliers, which may need to be addressed in the salary prediction model."],"metadata":{"id":"_NgdU6mRNVo4"}},{"cell_type":"markdown","source":["## Average Salary Distribution by Category"],"metadata":{"id":"soNFLqnuKtqB"}},{"cell_type":"code","source":["# Define a function to create bar plots for salary across different categories\n","def plot_salary_by_category(category, data, rotation=0):\n"," plt.figure(figsize=(10, 6))\n"," sns.barplot(\n"," x=category,\n"," y='salary',\n"," data=data,\n"," estimator=np.mean,\n"," ci=None,\n"," palette='viridis',\n"," order=data.groupby(category)['salary'].mean().sort_values(ascending=False).index\n"," )\n"," plt.title(f'Average Salary by {category.title().replace(\"_\", \" \")}')\n"," plt.xlabel(category.title().replace(\"_\", \" \"))\n"," plt.ylabel('Average Salary')\n"," plt.xticks(rotation=rotation)\n"," plt.tight_layout()\n"," plt.show()\n","\n","# Plotting bar plots for each category\n","categories = ['experience_level', 'employment_type', 'work_year', 'work_setting', 'company_size', 'job_category']\n","\n","for category in categories:\n"," plot_salary_by_category(category, usd_salary_df, rotation=90 if category in ['job_title', 'job_category'] else 0)"],"metadata":{"colab":{"base_uri":"https://localhost:8080/","height":1000},"id":"1BrTXYB_AS2T","executionInfo":{"status":"ok","timestamp":1714700926764,"user_tz":300,"elapsed":3432,"user":{"displayName":"Jenny O","userId":"07622373657144372939"}},"outputId":"4ca07624-53ac-47e5-c833-d15c56dadc40"},"execution_count":null,"outputs":[{"output_type":"stream","name":"stderr","text":[":4: FutureWarning: \n","\n","The `ci` parameter is deprecated. Use `errorbar=None` for the same effect.\n","\n"," sns.barplot(\n",":4: FutureWarning: \n","\n","Passing `palette` without assigning `hue` is deprecated and will be removed in v0.14.0. Assign the `x` variable to `hue` and set `legend=False` for the same effect.\n","\n"," sns.barplot(\n"]},{"output_type":"display_data","data":{"text/plain":["
"],"image/png":"iVBORw0KGgoAAAANSUhEUgAAA9gAAAJICAYAAACaO0yGAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAACFVElEQVR4nOzdeVyU5f7/8fcIDIIKilvugh0QUwLMLRBxwQUtO30z85hlElKdNLeOS2Z6srROqWmLiqMtmifNTorilpma2apmprkEmrslAnJYlfv3hz/u44gL4q2AvZ6Phw+a6/7MdV8zzQ3znuu677EZhmEIAAAAAABcl3IlPQAAAAAAAG4FBGwAAAAAACxAwAYAAAAAwAIEbAAAAAAALEDABgAAAADAAgRsAAAAAAAsQMAGAAAAAMACBGwAAAAAACxAwAYAAAAAwAIEbAAASolvvvlGAQEB+uabb0p6KKZRo0YpJCSkpIdR6gUEBGjGjBklPYxb2qhRo9ShQ4eSHgYAXJFrSQ8AAFC6LViwQP/85z8VFBSkxYsXl/RwSpXc3FwtXLhQ//nPf/Tbb7+pXLlyqlmzpkJDQ9W/f381atSopIdYZnTo0EFHjhy55Lbw8HA5HI6bPKI/p4CAAPXt21fjxo0r6aEAQJlEwAYAXFFCQoLq1KmjHTt26ODBg2rQoEFJD6nUGDx4sDZu3Kju3burV69eOnv2rJKSkvTFF18oJCSEgH2NAgMD9dhjjxVqr1GjRgmM5trs2LFDLi4uJT0MAEAJI2ADAC7r0KFD2rZtm958802NGzdOCQkJevrpp2/qGPLz85WXlyd3d/ebut+r2bFjh9avX6+hQ4fqiSeecNp27tw5paenl9DI/iczM1Oenp4lPYwiq1mzpnr27FnSwyiyC1+bpe31CQAoGZyDDQC4rISEBHl7e6tdu3bq0qWLEhISzG15eXlq2bKlRo8eXeh+GRkZatasmV555RWzLTc3V9OnT1dUVJSaNm2qdu3a6dVXX1Vubq7TfQMCAvTPf/5Ty5YtU/fu3dWsWTNt2rRJkuRwOPTQQw+pVatWCgoK0v33369Vq1YV2n92drYmTpyoVq1aKSQkRE888YROnDhxyfNkT5w4odGjR+vuu+9W06ZN1b17d3388cdXfW4OHTokSQoNDS20zcXFRVWqVDFvHzlyROPHj1eXLl0UFBSkVq1aafDgwTp8+PBV9/P9999r8ODBioyMNJ+3l19+WdnZ2U51BedK//bbb4qNjVVISIhGjBih6dOn64477lBKSkqhvp9//nndddddysnJKdLjjYmJUXBwsMLDw/Xmm2/KMAxJkmEY6tChg5588slC98vJyVHz5s0tWXJ86tQptW7dWv369TP3LUkHDx5UcHCwhgwZYrb169dPPXr00M6dO/XQQw8pKChIHTp00MKFCwv1a8Vrs7ivrYLz7hMTE/XOO+8oIiJCzZo106OPPqqDBw8WGuuPP/6o2NhYtWjRQsHBwbrnnnv03nvvOdX8+uuvGjx4sFq2bKlmzZrp/vvv17p164r2JBdBfn6+3n33XfM5uPvuuzVu3DilpaWZNXFxcerYseMl79+7d2/df//9Tm1Lly7V/fffr6CgILVs2VJDhw7VsWPHLBszANwszGADAC4rISFBUVFRstvt6tGjhxYuXKgdO3YoKChIbm5u6tSpk9auXasJEybIbreb9/vss8+Um5ur6OhoSeffkD/55JP64Ycf9OCDD6pRo0bau3ev3nvvPR04cEBvv/22036//vprrVy5Un379lWVKlVUp04dSdL777+vDh066J577lFeXp5WrFihZ555RrNmzVJkZKR5/1GjRmnlypXq2bOn7rzzTn333XcaOHBgocf3xx9/6MEHH5TNZlPfvn3l4+OjjRs36rnnnlNGRob69+9/2eemdu3a5nMUGhoqV9fL/0n96aeftG3bNnXv3l233Xabjhw5ooULF+qRRx7RihUr5OHhcdn7rlq1StnZ2erTp48qV66sHTt2aP78+Tp+/LimT5/uVHv27FnFxMSoefPmGjlypMqXL6+QkBC99dZbSkxM1MMPP2zW5ubmavXq1ercufNVZ1/PnTunxx9/XHfeeaeeffZZbdq0STNmzNC5c+f0zDPPyGaz6Z577pHD4VBqaqoqV65s3vfzzz9XRkaG7r333ivuo2D8l/ogwNPTU+XLl1fVqlU1fvx4PfPMM/rggw/0yCOPKD8/X6NGjVKFChX0wgsvON0vLS1NAwcOVLdu3dS9e3etXLlS48ePl5ubmx544AFJ1r02L3atr634+HjZbDYNGDBAGRkZmjNnjkaMGOF03YPNmzcrLi5ONWrU0COPPKJq1arp119/1RdffKFHH31UkrRv3z716dNHNWvWVGxsrDw9PbVy5Ur9/e9/14wZMxQVFXXV/w9XM27cOP3nP//R/fffr379+unw4cNasGCBdu3apYULF8rNzU3dunXTyJEjzd8XBY4cOaLt27frH//4h9n2zjvv6I033lC3bt30wAMPKCUlRfPnz1ffvn316aefysvL67rHDAA3jQEAwCX89NNPhr+/v7F582bDMAwjPz/fiIiIMCZOnGjWbNq0yfD39zc+//xzp/vGxsYaHTt2NG9/+umnRuPGjY3vvvvOqW7hwoWGv7+/8cMPP5ht/v7+RuPGjY19+/YVGlNWVpbT7dzcXKNHjx7GI488Yrbt3LnT8Pf3N1566SWn2lGjRhn+/v7G9OnTzbYxY8YYYWFhRkpKilPt0KFDjebNmxfa34Xy8/ONhx9+2PD39zfuvvtuY9iwYcb8+fONI0eOXHXchmEY27ZtM/z9/Y3//Oc/ZtvXX39t+Pv7G19//fUV7ztr1iwjICDAaV8jR440/P39jddee61Qfe/evY1evXo5ta1Zs6bQvi6loN8XX3zR6bEPHDjQuOOOO4xTp04ZhmEYSUlJhr+/v/Hhhx863f+JJ54w2rdvb+Tn519xP+3btzf8/f0v+W/WrFlOtcOGDTPuvPNOIzk52ZgzZ47h7+9vrF271qmm4P/N3LlzzbacnByjZ8+eRps2bYzc3FzDMKx7bRb3tVXw/7xbt25GTk6OWffee+8Z/v7+xp49ewzDMIyzZ88aHTp0MNq3b2+kpaU59Xnhc/voo48aPXr0cOorPz/f6N27t9G5c+dC477U45gwYcJlt3/33XeGv7+/sWzZMqf2jRs3OrWfOXPGaNq0qTF58mSnuvj4eKfX7uHDh43AwEDjnXfecarbs2eP0aRJE6f2kSNHGu3bt7/qYwCAksQScQDAJSUkJKhatWpq1aqVJMlmsyk6OlqJiYk6d+6cJKl169aqUqWKEhMTzfulpaXpq6++MmevpfOzsI0aNZKfn59SUlLMf61bt5akQl9L1aJFC91+++2FxlS+fHmn/Zw5c0bNmzfXrl27zPaCJbt/+9vfnO574eytdH5Z85o1a9ShQwcZhuE0rvDwcJ05c0Y///zzZZ8fm80mh8OhIUOGyMvLS8uXL9c///lPtW/fXkOGDHE6B/vCcefl5en06dOqX7++vLy8nMZ+KRfeNzMzUykpKQoJCZFhGJe8b58+fQq19ezZUz/++KN+++03sy0hIUG1atVSy5Ytr7j/An379nV67H379lVeXp62bNkiSfL19dWdd97pdBpBamqqNm3apHvuuUc2m+2q+7jzzjs1b968Qv+6d+/uVPf888+rYsWKGjx4sN544w317NlTnTp1KtSfq6urevfubd622+3q3bu3Tp06Zf6/teq1eaHivLbuv/9+p1Ugd911l6T/nYqwa9cuHT58WI888kihGd2C5zY1NVVff/21unXrpoyMDHOfp0+fVnh4uA4cOKATJ05ccexXs2rVKlWqVElhYWFOj+uOO+6Qp6en+XxVrFhRERERWrlypdNy/sTERAUHB5srQNauXav8/Hx169bNqb9q1aqpQYMGpeor6wCgKFgiDgAo5Ny5c1qxYoVatWrldJ5wUFCQ5s6dqy1btig8PFyurq7q3Lmzli9frtzcXNntdq1Zs0Z5eXlOAfvgwYP69ddf1aZNm0vu79SpU06369ate8m69evX65133tHu3budzo+9MLwdPXpU5cqVK9THxVc/T0lJUXp6uj766CN99NFHl9zfpZYrX8hut+vJJ5/Uk08+qZMnT+q7777T+++/r5UrV8rV1VWvvfaapPPnhM+aNUuffPKJTpw44RQ4zpw5c8V9HD16VNOnT9fnn3/udI6rdP5c9wu5urrqtttuK9RHdHS0Xn75ZS1btkxPP/20zpw5o/Xr16t///5FCr7lypVTvXr1nNp8fX0lyemrtXr27KkXX3xRR44cUZ06dbRq1Srl5eUV+cJlVapU0d13333VusqVK2vs2LF65plnVK1aNY0dO/aSdTVq1Ch0kbeGDRua4w4ODrbstXmh4ry2CgJngYIQXfBBTUHQ9vf3v+x+f/vtNxmGoTfeeENvvPHGJWtOnTqlmjVrXvUxXM7Bgwd15syZIj1f0dHR+uyzz7Rt2zaFhobqt99+088//6wxY8aYNQcOHJBhGOrcufMl+7vSqRcAUBrxWwsAUMjXX3+t33//XStWrNCKFSsKbU9ISFB4eLgkqXv37vroo4+0ceNGderUSatWrZKfn58aN25s1ufn58vf3/+SF0STVCgUXjhrW+D777/Xk08+qRYtWuiFF15Q9erV5ebmpiVLlmj58uXX/Bjz8/MlSffee6/++te/XrImICCgyP3VqFFD3bt3V+fOndWjRw+tWrVKkydPlqurq1588UV98sknevTRRxUcHKxKlSrJZrNp6NChTmH7YufOndNjjz2mtLQ0Pf744/Lz85Onp6dOnDihUaNGmY+hgN1uV7lyhReneXt7q3379uZV4FetWqXc3NwinRd9Lbp3765JkyYpISFBTzzxhJYtW6amTZvKz8/P0v1I0pdffinp/EqG48ePF/s8XStem5fqU7q219al/r9JuuLr43L7HTBggNq2bXvJmvr16xe5v8vto2rVquaHRxfz8fEx/7t9+/by8PDQypUrFRoaqpUrV6pcuXLq2rWrU382m03x8fGX/JqzsnQVfACQCNgAgEtISEhQ1apVL3nl57Vr15oXNitfvrxatGih6tWrKzExUaGhofr6668LfW1V/fr19csvv6hNmzZFmjG9lNWrV8vd3V0Oh8NpKe2SJUuc6mrXrq38/HwdPnzYnK2UVOiKzD4+PqpQoYLy8/OLNGtaVG5ubgoICNCBAwd0+vRpVa9eXatXr9Z9992nUaNGmXU5OTlXnb3eu3evDhw4oFdeeUX33Xef2b558+ZrHlfPnj311FNPaceOHUpISFCTJk30l7/8pUj3zc/P16FDh8xZa0lKTk6WJKeLfFWuXFmRkZFKSEjQPffco61btzrNVlpl48aNWrx4sR5//HElJCRo1KhRWrRoUaHZzpMnTxb6qrIDBw44jduK1+bFbsRrq2AFwd69ey/bZ0GNm5ubpa/pC9WvX19btmxRaGjoVT9s8PT0VGRkpFatWqXRo0crMTFRd911l9MMev369WUYhurWrev0+gKAsopzsAEATrKzs7VmzRpFRkaqa9euhf717dtX//3vf/X5559LkjkjtX79ei1btkxnz551Wh4uSd26ddOJEye0aNGiS+4vMzPzquNycXGRzWYzz/+WpMOHDxf6+qGCmfUPP/zQqX3+/PmF+uvSpYtWr16tvXv3Ftrf1ZaHHzhwQEePHi3Unp6erm3btsnb29uczbvUzNwHH3zg9FgupWBW88JZTMMw9P7771/xfpcSERGhKlWqaM6cOfruu++uefZ6wYIFTmNYsGCB3NzcCi0V7tmzp/bv369XX31VLi4uhc6fvl7p6ekaO3asgoKCNGzYME2cOFE///yzZs6cWaj27NmzTku0c3Nz9dFHH8nHx0d33HGHJGtemxe73tfWpdxxxx2qW7eu3n///ULfsV7w+qhatapatmypjz76SCdPnrRkvxfr1q2bzp07V+jq6tL55/visUVHR+vkyZNavHixfvnlF3Xr1s1pe+fOneXi4uL0tW8FDMPQ6dOnr3vMAHAzMYMNAHDy+eef67///a86dOhwye3BwcHy8fHRsmXLzCDdrVs3ffDBB5o+fbr8/f3VqFEjp/v07NlTK1eu1AsvvKBvvvlGoaGhOnfunJKSkrRq1SrNmTNHzZo1u+K42rVrp3nz5unxxx9Xjx49dOrUKX344YeqX7++9uzZY9Y1bdpUXbp00XvvvafU1FTza7oKZi4vnKUcPny4vvnmGz344IPq1auXbr/9dqWlpennn3/Wli1b9O233152PL/88otGjBihtm3b6q677pK3t7dOnDihTz/9VCdPntSYMWPMYB0ZGamlS5eqYsWKuv3227V9+3Z99dVXTl9ndSl+fn6qX7++XnnlFZ04cUIVK1bU6tWrC4WYonBzc1P37t01f/78aw6+7u7u2rRpk0aOHKmgoCBt2rRJX3zxhZ544gmnJcHS+f9PlStX1qpVqxQREaGqVasWeT8nTpzQ0qVLC7VXqFDBvIjZSy+9pNTUVM2bN08uLi6KiIhQr169NHPmTHXq1Mnp1IQaNWooPj5eR44cUcOGDZWYmKjdu3frxRdflJubmyRrXpuXcj2vrUspV66cxo8fryeffFL33Xef7r//flWvXl1JSUnav3+/HA6HJOmFF17Q3/72N91zzz168MEHVa9ePf3xxx/avn27jh8/rmXLll11Xzt37rxkgG7ZsqVatmyp3r17a9asWdq9e7fCwsLk5uamAwcOaNWqVXruueecloC3a9dOFSpU0CuvvGJ+8HCh+vXra8iQIXr99dd15MgRderUSRUqVNDhw4f12Wef6cEHH1RMTMw1PVcAUJII2AAAJ8uWLZO7u7vCwsIuub1cuXLmMuDTp0+rSpUqCg0NVa1atXTs2LFCs9cF93nrrbf07rvvaunSpVq7dq08PDxUt25d9evXr0hLQ9u0aaOXXnpJ8fHxevnll1W3bl2NGDFCR44ccQrYkvTKK6+oWrVqWrFihdauXau7775bU6dOVdeuXZ2Wl1erVk2LFy/WW2+9pbVr12rhwoWqXLmybr/9do0YMeKK42nRooUGDx6sTZs2ad68eTp9+rQqVKigwMBAjRgxwilIPPfccypXrpwSEhKUk5Oj0NBQ88OCK3Fzc9PMmTM1ceJEzZo1S+7u7oqKilLfvn2LfOGwC/Xs2VPz589XmzZtVKNGjSLfz8XFRXPmzNH48eP1r3/9SxUqVNDTTz+tv//974Vq7Xa7oqOj9eGHH17zGHfv3u30/cgF6tSpo06dOmndunX69NNPNWrUKKcPcUaNGqWvvvpKI0eO1Mcff2yGZ29vb02ePFkTJ07UokWLVK1aNY0bN04PPvigeV8rXpuXcj2vrctp27at3nvvPb311luaO3euDMNQvXr1nB7P7bffriVLlujNN9/Uf/7zH6WmpsrHx0dNmjS55P+vS/nxxx/1448/Fmp/5plndNddd+mf//ynmjZtqn//+9+aOnWqXFxcVKdOHd17770KDQ11uo+7u7s6dOighIQE3X333Zf8wGXgwIFq2LCh3n33Xb311luSzp/7HhYWdtkP+gCgtLIZ13L1DAAAyqjdu3frvvvu07/+9S/LL+5VVvzyyy/q2bNnoXO6rfbyyy/r448/1ubNm+Xh4XHD9nMl/fr10+nTp4t1ATwAAIqLc7ABALec7OzsQm3vvfeeypUrpxYtWpTAiEqHRYsWydPT87JfiWSFnJwcLVu2TF26dCmxcA0AQElhiTgA4JYzZ84c7dy5U61bt5aLi4s2btyojRs3qnfv3qpVq1ZJD++m+/zzz7V//34tWrRIffv2vSFffXTq1Cl99dVXWr16tVJTU/XII49Yvg8AAEo7AjYA4JYTEhKizZs36+2331ZmZqZq1aqlQYMGFfr6sD+LiRMn6o8//lBERIQGDRp0Q/axf/9+jRgxQlWrVtXYsWMVGBh4Q/YDAEBpxjnYAAAAAABYgHOwAQAAAACwAAEbAAAAAAALcA52Kbdt2zYZhmF+pycAAAAA4ObJy8uTzWZTSEjIVWsJ2KWcYRjiNHkAAAAAKBnXkscI2KVcwcx1s2bNSngkAAAAAPDn89NPPxW5lnOwAQAAAACwAAEbAAAAAAALELABAAAAALAAARsAAAAAAAsQsAEAAAAAsAABGwAAAAAACxCwAQAAAACwAAEbAAAAAAALELABAAAAALAAARsAAAAAAAuUqoC9cuVKPfnkk4qIiFBwcLB69uypjz/+WIZhONUtXrxYXbp0UbNmzXTvvfdq/fr1hfo6c+aMxowZo5YtWyokJESDBw/WyZMnC9Vt3bpVvXv3VlBQkNq3b6/Zs2cX2p9hGJo9e7YiIyMVFBSk3r17a/v27YX6OnHihAYNGqSQkBC1bNlSzz33nDIyMq7vSQEAAAAAlAmlKmC/++678vDw0KhRo/TOO+8oIiJCzz//vN566y2zZsWKFXr++efVrVs3xcfHKzg4WE8//XShwDtkyBBt3rxZ48eP12uvvabk5GTFxsbq7NmzZs3BgwcVExOj6tWra9asWXr00Uc1ffp0zZ0716mv+Ph4TZ8+Xf3799esWbNUvXp1DRgwQIcOHTJr8vLy9Pjjj+vAgQN6/fXXNX78eH355ZcaPnz4jXmyAAAAAAClimtJD+BC77zzjnx8fMzbbdq0UWpqqubNm6ennnpK5cqV0/Tp09W9e3cNGTJEktS6dWvt3btXb731luLj4yVJ27Zt05dffimHw6Hw8HBJkq+vr6Kjo7VmzRpFR0dLkhwOh6pUqaIpU6bIbrerTZs2SklJ0cyZM9WvXz/Z7Xbl5ORo1qxZGjBggPr37y9Jat68ubp27SqHw6Hx48dLklavXq19+/YpMTFRfn5+kiQvLy/FxMRox44dCgoKugnPIAAAAACgpJSqGewLw3WBwMBAZWRkKDMzU4cOHdKBAwfUrVs3p5ro6Ght2bJFubm5kqSNGzfKy8tLYWFhZo2fn58CAwO1ceNGs23jxo3q2LGj7Ha7U1/p6enatm2bpPNLyDMyMpz2abfbFRUVVaivgIAAM1xLUlhYmCpXrqwNGzYU9ykBAAAAAJQRpSpgX8oPP/ygmjVrqmLFikpKSpJ0fjb6Qo0aNVJeXp65ZDspKUm+vr6y2WxOdX5+fmYfmZmZOnbsmFMgLqix2WxmXcHPi+saNWqko0ePKjs726y7uMZms8nX19fsAwAAAABw6ypVS8Qv9v333ysxMVEjR46UJKWlpUk6v/T6QgW3C7anp6erUqVKhfrz9vbWzp07JZ2/CNql+rLb7fLw8HDqy263y93dvdA+DcNQWlqaypcvf8V9FvRVXIZhKDMz87r6AAAAAABcO8MwCk3eXk6pDdjHjx/X0KFD1apVKz3yyCMlPZwSlZeXp927d5f0MAAAAADgT+nC04qvpFQG7PT0dMXGxqpy5cqaMWOGypU7v5Ld29tb0vnZ5+rVqzvVX7jdy8tLx48fL9RvWlqaWVMw21wwk10gNzdXWVlZTn3l5uYqJyfHaRY7PT1dNpvNqe5SX8mVlpamWrVqFeNZ+B83Nzfdfvvt19UHAAAAAODa7d+/v8i1pS5gZ2dnKy4uTmfOnNFHH33ktOy64Bzni893TkpKkpubm+rVq2fWbdmypdBUfnJysvz9/SVJnp6eqlWrVqHzo5OTk2UYhtl/wc/k5GQ1btzYaZ+1a9dW+fLlzbq9e/c69WUYhpKTk50utlYcNptNnp6e19UHAAAAAODaFXV5uFTKLnJ29uxZDRkyRElJSZozZ45q1qzptL1evXpq2LChVq1a5dSemJioNm3amNP2ERERSktL05YtW8ya5ORk7dq1SxEREWZbRESE1q1bp7y8PKe+vLy8FBISIkkKDQ1VxYoVtXLlSrMmLy9Pa9asKdTXL7/8ogMHDphtW7ZsUWpqqtq1a3cdzwoAAAAAoCwoVTPYEyZM0Pr16zVq1ChlZGRo+/bt5rYmTZrIbrdr0KBBGjFihOrXr69WrVopMTFRO3bs0Pz5883akJAQhYeHa8yYMRo5cqTc3d01depUBQQEqHPnzmZdTEyMEhISNHz4cPXp00d79+6Vw+HQ0KFDzbDu7u6uuLg4zZgxQz4+PvL399fChQuVmpqqmJgYs68uXbpo1qxZGjRokIYNG6asrCy9+uqrioyM5DuwAQAAAOBPwGYYhlHSgyjQoUMHHTly5JLb1q1bp7p160qSFi9erPj4eB09elS+vr4aNmyY2rdv71R/5swZTZo0SWvXrtXZs2cVHh6usWPHFpoV37p1qyZPnqzdu3fLx8dHffv2VWxsrNMyAMMwNHv2bH344YdKSUlRYGCgRo8ebc5yFzhx4oQmTpyoL7/8Uq6uroqKitKYMWNUsWLFYj8nP/30kySpWbNmxe4DAAAAAFA815LJSlXARmE3KmDn5+ebF48DygpetwAAALjZriWTlaol4rh5ypUrp3+99rEOHf6jpIcCFEm9utX07IgHSnoYAAAAwGURsP/EDh3+Q7/+eqykhwEAAAAAtwTWWgIAAAAAYAECNgAAAAAAFiBgAwAAAABgAQI2AAAAAAAWIGADAAAAAGABAjYAAAAAABYgYAMAAAAAYAECNgAAAAAAFiBgAwAAAABgAQI2AAAAAAAWIGADAAAAAGABAjYAAAAAABYgYAMAAAAAYAECNgAAAAAAFiBgAwAAAABgAQI2AAAAAAAWIGADAAAAAGABAjYAAAAAABYgYAMAAAAAYAECNgAAAAAAFiBgAwAAAABgAQI2AAAAAAAWIGADAAAAAGABAjYAAAAAABYgYAMAAAAAYAECNgAAAAAAFiBgAwAAAABgAQI2AAAAAAAWIGADAAAAAGABAjYAAAAAABYgYAMAAAAAYAECNgAAAAAAFiBgAwAAAABgAQI2AAAAAAAWIGADAAAAAGABAjYAAAAAABYgYAMAAAAAYAECNgAAAAAAFiBgAwAAAABgAQI2AAAAAAAWIGADAAAAAGABAjYAAAAAABYgYAMAAAAAYAECNgAAAAAAFnAt6QFc6ODBg3I4HPrxxx+1b98++fn5afny5eb2w4cPq2PHjpe8r91u108//XTFujvvvFOLFi1yatu6dateeeUV7d69W1WrVlWfPn0UGxsrm81m1hiGofj4eH344YdKSUlRYGCgRo8ereDgYKe+Tpw4oYkTJ+rLL7+Um5uboqKiNHr0aFWsWLG4TwkAAAAAoIwoVQF737592rBhg+68807l5+fLMAyn7TVq1NBHH33k1GYYhh5//HG1bt26UH/Dhg1Tq1atzNsVKlRw2n7w4EHFxMQoLCxMQ4YM0Z49e/Taa6/JxcVFMTExZl18fLymT5+uESNGKCAgQAsWLNCAAQO0dOlS1atXT5KUl5enxx9/XJL0+uuvKzs7W6+88oqGDx+uWbNmXd8TAwAAAAAo9UpVwO7QoYM6deokSRo1apR27tzptN1utxeaNf7mm2+UkZGhHj16FOqvQYMGheov5HA4VKVKFU2ZMkV2u11t2rRRSkqKZs6cqX79+slutysnJ0ezZs3SgAED1L9/f0lS8+bN1bVrVzkcDo0fP16StHr1au3bt0+JiYny8/OTJHl5eSkmJkY7duxQUFBQ8Z4UAAAAAECZUKrOwS5X7tqHs3z5clWsWFEdOnS45vtu3LhRHTt2lN1uN9uio6OVnp6ubdu2STq/hDwjI0PdunUza+x2u6KiorRx40anvgICAsxwLUlhYWGqXLmyNmzYcM1jAwAAAACULaUqYF+rvLw8rVmzRlFRUXJ3dy+0ffz48QoMDFSbNm00duxYpaammtsyMzN17Ngxp0AsSX5+frLZbEpKSpIk8+fFdY0aNdLRo0eVnZ1t1l1cY7PZ5Ovra/YBAAAAALh1laol4tdq48aNSk1NLbQ83G63q0+fPgoPD5eXl5d+/PFHzZw5Uzt37tTixYvl5uamM2fOSDq/jPvi+3p4eCgtLU2SlJ6eLrvdXijAe3l5yTAMpaWlqXz58kpPT1elSpUKjdHb29vsq7gMw1BmZuZ19XEhm80mDw8Py/oDbqasrKxC12cAAAAAbhTDMJwugn0lZTpgJyQkqFq1amrTpo1Te40aNcxzoyWpZcuW+stf/qK4uDitXbtW0dHRN3mk1ycvL0+7d++2rD8PDw81adLEsv6Amyk5OVlZWVklPQwAAAD8iVx4WvGVlNmA/d///lfr169Xr1695OLictX6du3aydPTUz///LOio6PN2eaCmewCubm5ysrKkre3t6TzM9W5ubnKyclxmsVOT0+XzWZzqsvIyCi037S0NNWqVavYj1OS3NzcdPvtt19XHxcq6qcvQGnk6+vLDDYAAABumv379xe5tswG7LVr1yo7O1v33HNPse7v6empWrVqFTo/Ojk5WYZhmOdTF/xMTk5W48aNzbqkpCTVrl1b5cuXN+v27t3r1JdhGEpOTlZYWFixxljAZrPJ09PzuvoAbhWc3gAAAICb6VomKMvsRc6WL1+u+vXr68477yxS/fr165WZmalmzZqZbREREVq3bp3y8vLMtsTERHl5eSkkJESSFBoaqooVK2rlypVmTcHF1SIiIpz6+uWXX3TgwAGzbcuWLUpNTVW7du2K+zABAAAAAGVEqZrBzsrKMr/S6siRI8rIyNCqVasknT+P2sfHR5KUkpKiLVu2KDY29pL9TJ48WTabTcHBwfLy8tKOHTs0a9YsNW3a1PyebUmKiYlRQkKChg8frj59+mjv3r1yOBwaOnSoucbe3d1dcXFxmjFjhnx8fOTv76+FCxcqNTVVMTExZl9dunTRrFmzNGjQIA0bNkxZWVl69dVXFRkZyXdgAwAAAMCfQKkK2KdOndIzzzzj1FZw+/3331erVq0kSStXrtTZs2cvuzy8UaNGWrhwoRYtWqTs7GzVrFlTDzzwgAYPHixX1/895AYNGsjhcGjy5MkaOHCgfHx8NHjwYA0YMMCpv9jYWBmGoblz5yolJUWBgYFyOByqV6+eWePm5qY5c+Zo4sSJGjZsmFxdXRUVFaUxY8ZY8twAAAAAAEo3m8HVgkq1n376SZKclrZbZfCQmfr112OW9wvcCI0a1dL0aU+U9DAAAADwJ3MtmazMnoMNAAAAAEBpQsAGAAAAAMACBGwAAAAAACxAwAYAAAAAwAIEbAAAAAAALEDABgAAAADAAgRsAAAAAAAsQMAGAAAAAMACBGwAAAAAACxAwAYAAAAAwAIEbAAAAAAALEDABgAAAADAAgRsALhBzuXnl/QQgGvG6xYAgOJzLekBAMCtyqVcOY2b/x8dOPFHSQ8FKJKGNavpnw//taSHAQBAmUXABoAb6MCJP7TnyPGSHgYAAABuApaIAwAAAABgAQI2AAAAAAAWIGADAAAAAGABAjYAAAAAABYgYAMAAAAAYAECNgAAAAAAFiBgAwAAAABgAQI2AAAAAAAWIGADAAAAAGABAjYAAAAAABYgYAMAAAAAYAECNgAAAAAAFiBgAwAAAABgAQI2AAAAAAAWIGADAAAAAGABAjYAAAAAABYgYAMAAAAAYAECNgAAAAAAFiBgAwAAAABgAQI2AAAAAAAWIGADAAAAAGABAjYAAAAAABYgYAMAAAAAYAECNgAAAAAAFiBgAwAAAABgAQI2AAAAAAAWIGADAAAAAGABAjYAAAAAABYgYAMAAAAAYAECNgAAAAAAFiBgAwAAAABggVIVsA8ePKhx48apZ8+eatKkiXr06FGopl+/fgoICCj079dff3WqO3PmjMaMGaOWLVsqJCREgwcP1smTJwv1t3XrVvXu3VtBQUFq3769Zs+eLcMwnGoMw9Ds2bMVGRmpoKAg9e7dW9u3by/U14kTJzRo0CCFhISoZcuWeu6555SRkXF9TwoAAAAAoExwLekBXGjfvn3asGGD7rzzTuXn5xcKugVCQ0M1cuRIp7a6des63R4yZIj279+v8ePHy93dXdOmTVNsbKyWLFkiV9fzD/vgwYOKiYlRWFiYhgwZoj179ui1116Ti4uLYmJizL7i4+M1ffp0jRgxQgEBAVqwYIEGDBigpUuXql69epKkvLw8Pf7445Kk119/XdnZ2XrllVc0fPhwzZo1y7LnCAAAAABQOpWqgN2hQwd16tRJkjRq1Cjt3LnzknVeXl4KDg6+bD/btm3Tl19+KYfDofDwcEmSr6+voqOjtWbNGkVHR0uSHA6HqlSpoilTpshut6tNmzZKSUnRzJkz1a9fP9ntduXk5GjWrFkaMGCA+vfvL0lq3ry5unbtKofDofHjx0uSVq9erX379ikxMVF+fn7mOGNiYrRjxw4FBQVZ8AwBAAAAAEqrUrVEvFw5a4azceNGeXl5KSwszGzz8/NTYGCgNm7c6FTXsWNH2e12sy06Olrp6enatm2bpPNLyDMyMtStWzezxm63KyoqqlBfAQEBZriWpLCwMFWuXFkbNmyw5HEBAAAAAEqvUhWwi+rbb79VcHCwmjVrpocffljfffed0/akpCT5+vrKZrM5tfv5+SkpKUmSlJmZqWPHjjkF4oIam81m1hX8vLiuUaNGOnr0qLKzs826i2tsNpt8fX3NPgAAAAAAt65StUS8KFq0aKGePXuqYcOGOnnypBwOhx577DF98MEHCgkJkSSlp6erUqVKhe7r7e1tLjs/c+aMpPPLuC9kt9vl4eGhtLQ0sy+73S53d3enOi8vLxmGobS0NJUvX/6K+yzoq7gMw1BmZuZ19XEhm80mDw8Py/oDbqasrKzLXp+hNOE4Q1lWVo4zAABuBsMwCk3eXk6ZC9iDBw92uh0ZGakePXro7bffVnx8fAmN6sbKy8vT7t27LevPw8NDTZo0saw/4GZKTk5WVlZWSQ/jqjjOUJaVleMMAICb5cLTiq+kzAXsi3l6eqpdu3ZavXq12ebl5aXjx48Xqk1LS5O3t7ckmbPNBTPZBXJzc5WVlWXWeXl5KTc3Vzk5OU6z2Onp6bLZbE51l/pKrrS0NNWqVeu6HqObm5tuv/326+rjQkX99AUojXx9fcvEzBrHGcqysnKcAQBwM+zfv7/ItWU+YF+Kn5+ftmzZUmgqPzk5Wf7+/pLOB/NatWoVOj86OTlZhmGY51MX/ExOTlbjxo3NuqSkJNWuXVvly5c36/bu3evUl2EYSk5OdrrYWnHYbDZ5enpeVx/ArYJl18CNx3EGAMD/XMvESZm8yNmFMjMz9cUXX6hZs2ZmW0REhNLS0rRlyxazLTk5Wbt27VJERIRT3bp165SXl2e2JSYmysvLyzyfOzQ0VBUrVtTKlSvNmry8PK1Zs6ZQX7/88osOHDhgtm3ZskWpqalq166dpY8ZAAAAAFD6lKoZ7KysLPMrrY4cOaKMjAytWrVKktSyZUslJSVpzpw5ioqKUp06dXTy5EnNmzdPv//+u9544w2zn5CQEIWHh2vMmDEaOXKk3N3dNXXqVAUEBKhz585mXUxMjBISEjR8+HD16dNHe/fulcPh0NChQ8019u7u7oqLi9OMGTPk4+Mjf39/LVy4UKmpqYqJiTH76tKli2bNmqVBgwZp2LBhysrK0quvvqrIyEi+AxsAAAAA/gRKVcA+deqUnnnmGae2gtvvv/++brvtNuXl5Wnq1KlKTU2Vh4eHQkJCNGHChEIhdtq0aZo0aZLGjRuns2fPKjw8XGPHjpWr6/8ecoMGDeRwODR58mQNHDhQPj4+Gjx4sAYMGODUV2xsrAzD0Ny5c5WSkqLAwEA5HA7Vq1fPrHFzc9OcOXM0ceJEDRs2TK6uroqKitKYMWOsfpoAAAAAAKWQzeAqJqXaTz/9JElOS+CtMnjITP366zHL+wVuhEaNamn6tCdKehjX7JHX47XnSOGLLgKlUUCd2/T+8NiSHgYAAKXKtWSyMn8ONgAAAAAApQEBGwAAAAAACxCwAQAAAACwAAEbAAAAAAALELABAAAAALAAARsAAAAAAAsQsAEAAAAAsAABGwAAAAAACxCwAQAAAACwAAEbAAAAAAALELABAAAAALAAARsAAAAAAAsQsAEAAAAAsAABGwAAAAAACxCwAQAAAACwAAEbAAAAAAALELABAAAAALAAARsAAAAAAAsQsAEAAAAAsAABGwAAAAAACxCwAQAAAACwAAEbAAAAAAALELABAAAAALAAARsAAAAAAAsQsAEAAAAAsAABGwAAAAAACxCwAQAAAACwAAEbAAAAAAALELABAAAAALAAARsAAAAAAAsQsAEAAAAAsAABGwAAAAAACxCwAQAAAACwAAEbAACUSefy80t6CMA143UL3NpcS3oAAAAAxeFSrpzGrlus5NO/l/RQgCLxrVJdEzv2KulhALiBCNgAAKDMSj79u/b8caykhwEAgCSWiAMAAAAAYAkCNgAAAAAAFiBgAwAAAABgAQI2AAAAAAAWKFbAzs3NtXocAAAAAACUacUK2OHh4Xr++ef1/fffWz0eAAAAAADKpGJ9TVeXLl20Zs0affzxx6pVq5buuece3XvvvWrUqJHV4wMAAAAAoEwo1gz2iy++qC+//FLTp09X06ZNNW/ePPXo0UP333+/3nvvPf3xxx9WjxMAAAAAgFKt2Bc5c3NzU1RUlKZPn66vvvpK//znP1WpUiW98sorioyMVGxsrBISEpSdnW3leAEAAAAAKJWKtUT8YhUrVlSvXr3UuHFjxcfHa82aNdq0aZM2bdqkChUq6MEHH9SgQYPk6elpxe4AAAAAACh1rjtgHzp0SAkJCUpISNCBAwdUuXJlPfzww+rZs6fc3Ny0aNEiffDBBzp8+LBmzJhxxb4OHjwoh8OhH3/8Ufv27ZOfn5+WL19ubs/IyNC8efO0YcMGHThwQHa7XUFBQRo6dKgCAgLMusOHD6tjx46F+r/zzju1aNEip7atW7fqlVde0e7du1W1alX16dNHsbGxstlsZo1hGIqPj9eHH36olJQUBQYGavTo0QoODnbq68SJE5o4caK+/PJLc4Z/9OjRqlix4rU8pQAAAACAMqhYAfv06dNKTExUQkKCfvzxR7m5uSkyMlLPPvusIiIi5Or6v27HjRun2267TW+//fZV+923b582bNigO++8U/n5+TIMw2n70aNH9dFHH+n//u//NGTIEOXk5Gju3Lnq3bu3lixZUugia8OGDVOrVq3M2xUqVHDafvDgQcXExCgsLExDhgzRnj179Nprr8nFxUUxMTFmXXx8vKZPn64RI0YoICBACxYs0IABA7R06VLVq1dPkpSXl6fHH39ckvT6668rOztbr7zyioYPH65Zs2YV8ZkFAAAAAJRVxQrYbdu21dmzZxUcHKwXXnhB0dHR8vLyumz9X/7yF/n4+Fy13w4dOqhTp06SpFGjRmnnzp1O2+vWrau1a9fKw8PDbGvdurU6dOigDz/8UM8//7xTfYMGDQrNMl/I4XCoSpUqmjJliux2u9q0aaOUlBTNnDlT/fr1k91uV05OjmbNmqUBAwaof//+kqTmzZura9eucjgcGj9+vCRp9erV2rdvnxITE+Xn5ydJ8vLyUkxMjHbs2KGgoKCrPn4AAAAAQNlVrIucxcXFac2aNfr3v/+thx566IrhWpLat2+vzz///OqDKXfl4Xh6ejqFa+n8rHT9+vV18uTJqw/8Ihs3blTHjh1lt9vNtujoaKWnp2vbtm2Szi8hz8jIULdu3cwau92uqKgobdy40amvgIAAM1xLUlhYmCpXrqwNGzZc89gAAAAAAGXLNQfsrKws7dmzR9u3b78Bw7l26enp5vnaFxs/frwCAwPVpk0bjR07Vqmpqea2zMxMHTt2rND9/Pz8ZLPZlJSUJEnmz4vrGjVqpKNHj5pXSU9KSipUY7PZ5Ovra/YBAAAAALh1XfMScQ8PD3311VeKiIi4EeO5Zv/6179ks9nUp08fs81ut6tPnz4KDw+Xl5eXfvzxR82cOVM7d+7U4sWL5ebmpjNnzkhSodl3u90uDw8PpaWlSTof4O12u9zd3Z3qvLy8ZBiG0tLSVL58eaWnp6tSpUqFxuft7W32VVyGYSgzM/O6+riQzWYrtBIAKCuysrIKXZ+hNOI4Q1lWFo4zjjGUZWXhGAPwP4ZhOF0E+0qKdQ528+bNtW3bNj344IPFubtllixZokWLFmny5Mm67bbbzPYaNWqY50ZLUsuWLfWXv/xFcXFxWrt2raKjo0tgtMWXl5en3bt3W9afh4eHmjRpYll/wM2UnJysrKyskh7GVXGcoSwrC8cZxxjKsrJwjAFwduFpxVdSrIA9btw4xcTEaOrUqerTp49TuL1ZNmzYoHHjxumpp57SX//616vWt2vXTp6envr5558VHR1tzjYXzGQXyM3NVVZWlry9vSWdn6nOzc1VTk6O0yx2enq6bDabU11GRkah/aalpalWrVrFfpyS5Obmpttvv/26+rhQUT99AUojX1/fMvGpP8cZyrKycJxxjKEsKwvHGID/2b9/f5FrixWw7733Xp07d06zZ8/W7Nmz5eLiUijR22w2/fDDD8Xp/qq2b9+uZ555Rvfdd5+eeeaZYvXh6empWrVqFTo/Ojk5WYZhmOdTF/xMTk5W48aNzbqkpCTVrl1b5cuXN+v27t3r1JdhGEpOTlZYWFixxljAZrPJ09PzuvoAbhUsCQVuPI4z4MbiGAPKlmv5ULdYAbtLly4l9snx/v37FRcXp9atW2vChAlFvt/69euVmZmpZs2amW0RERFat26dnn32Wbm5uUmSEhMT5eXlpZCQEElSaGioKlasqJUrV5oBOy8vT2vWrHE6Dz0iIkLLli3TgQMH1LBhQ0nSli1blJqaqnbt2l3vwwYAAAAAlHLFCtiTJ0+2ehySzl/woeArrY4cOaKMjAytWrVK0vnzqA3DUExMjNzd3fXoo486fU92xYoVzWXUkydPls1mU3BwsLy8vLRjxw7NmjVLTZs2Nb9nW5JiYmKUkJCg4cOHq0+fPtq7d68cDoeGDh1qzsi7u7srLi5OM2bMkI+Pj/z9/bVw4UKlpqYqJibG7KtLly6aNWuWBg0apGHDhikrK0uvvvqqIiMj+Q5sAAAAAPgTKFbAvlFOnTpVaMl3we33339fknT8+HFJUv/+/Z3qWrZsqQ8++EDS+a/QWrhwoRYtWqTs7GzVrFlTDzzwgAYPHixX1/895AYNGsjhcGjy5MkaOHCgfHx8NHjwYA0YMMCp79jYWBmGoblz5yolJUWBgYFyOByqV6+eWePm5qY5c+Zo4sSJGjZsmFxdXRUVFaUxY8ZY8+QAAAAAAEq16wrYx48f165du3TmzJlLXqjhvvvuu6b+6tatqz179lyx5mrbJalXr17q1atXkfYZGhqqRYsWXbHGZrMpLi5OcXFxV6yrWbOmZsyYUaT9AgAAAABuLcUK2Dk5ORo5cqTWrFmj/Px82Ww2M2BfeG72tQZsAAAAAADKqnLFudOUKVO0du1aDRkyRB988IEMw9DkyZM1d+5cRUREqHHjxlq6dKnVYwUAAAAAoNQqVsBevXq17r//fg0cONC8sFjNmjV19913a9asWapUqZIWLFhg6UABAAAAACjNihWwT506ZV4Zu+B7oLOyssztXbp00dq1ay0YHgAAAAAAZUOxAna1atV0+vRpSZKHh4e8vb2VnJxsbs/IyFBOTo41IwQAAAAAoAwo1kXOgoKCtHXrVvN2+/bt5XA4VL16deXn5+vdd99VcHCwVWMEAAAAAKDUK1bA7tevn1atWqXc3FzZ7XY988wz2rZtm/7xj39IkurXr6/nnnvO0oECAAAAAFCaFStg33XXXbrrrrvM27Vq1dLKlSu1d+9elStXTn5+fnJ1va6v2AYAAAAAoEyxLAWXK1dOjRs3tqo7AAAAAADKlCIF7O+++65Ynbdo0aJY9wMAAAAAoKwpUsDu16+fbDZbkTs1DEM2m027d+8u9sAAAAAAAChLihSw33///Rs9DgAAAAAAyrQiBeyWLVve6HEAAAAAAFCmlSvpAQAAAAAAcCso9lXEc3JytHr1au3atUtnzpxRfn6+03abzaaXX375ugcIAAAAAEBZUKyAfeTIET3yyCM6cuSIvLy8dObMGXl7e+vMmTM6d+6cqlSpIk9PT6vHCgAAAABAqVWsJeKvvvqqMjIytGjRIq1atUqGYWjq1Knatm2bRowYofLly8vhcFg9VgAAAAAASq1iBeyvv/5affr0UVBQkMqV+18Xdrtdjz/+uFq3bs3ycAAAAADAn0qxAnZ2drbq1KkjSapYsaJsNpvOnDljbg8JCdEPP/xgzQgBAAAAACgDihWwa9WqpRMnTkiSXF1dVbNmTW3fvt3cvn//frm7u1syQAAAAAAAyoJiXeSsdevWWrdunZ5++mlJ0l//+lfNnj1b6enpys/P17Jly9SzZ09LBwoAAAAAQGlWrIA9cOBA/fTTT8rNzZXdbtcTTzyhkydPavXq1SpXrpx69Oih0aNHWz1WAAAAAABKrWIF7Nq1a6t27drmbXd3d7300kt66aWXLBsYAAAAAABlSbHOwb6U/Px8nTp1SoZhWNUlAAAAAABlRpEDdnJysj799FOlpaU5tWdkZOgf//iH7rzzToWHh6t169aaP3++5QMFAAAAAKA0K3LAnjdvnt544w15eXk5tT///PNatmyZateuraioKNntdr300kv67LPPLB8sAAAAAAClVZHPwd66dasiIyNls9nMtmPHjmnlypUKDg7W/Pnz5erqqvT0dD3wwANasGCBOnXqdEMGDQAAAABAaVPkGewTJ07Iz8/PqW39+vWy2Wx65JFH5Op6Pqt7eXmpZ8+e2rVrl7UjBQAAAACgFCtywM7PzzdDdIEffvhBktSyZUun9ttuu03//e9/LRgeAAAAAABlQ5EDdv369fXjjz+at8+dO6dvvvlGfn5+qlatmlNtWlqafHx8rBslAAAAAAClXJHPwb7vvvv0r3/9S35+fgoNDdWyZct06tQp9evXr1Dt999/r4YNG1o5TgAAAAAASrUiB+y//e1v2rJli6ZMmSKbzSbDMNSiRQsNGDDAqe7YsWPauHGjhgwZYvVYAQAAAAAotYocsN3c3DRz5kz99NNPOnTokGrXrq3g4OBCdbm5uXr99dfVokULK8cJAAAAAECpVuSAXaBZs2Zq1qzZZbc3aNBADRo0uK5BAQAAAABQ1hT5ImcAAAAAAODyCNgAAAAAAFiAgA0AAAAAgAUI2AAAAAAAWICADQAAAACABa75KuIXys3N1c8//6xTp04pNDRUPj4+Vo0LAAAAAIAypdgz2O+//77Cw8P1t7/9TYMGDdKePXskSSkpKWrVqpU+/vhjywYJAAAAAEBpV6yAvWTJEr388stq27atXnrpJRmGYW7z8fFR69atlZiYaNkgAQAAAAAo7YoVsOfNm6eOHTvq9ddfV/v27Qttv+OOO7Rv377rHhwAAAAAAGVFsQL2wYMHFRERcdntlStXVmpqanHHBAAAAABAmVOsgO3l5aXTp09fdvv+/ftVvXr1Yg8KAAAAAICyplgBOyIiQosWLVJ6enqhbfv27dPixYvVoUOH6x4cAAAAgJKRb+SX9BCAa1bSr9tifU3XkCFD9OCDD6pHjx5q3769bDabPv30Uy1ZskRr1qxR9erV9dRTT11zvwcPHpTD4dCPP/6offv2yc/PT8uXLy9Ut3jxYs2ZM0dHjx6Vr6+vhg4dWuhc8DNnzmjSpEn67LPPlJeXp7Zt22rs2LGqUaOGU93WrVv1yiuvaPfu3apatar69Omj2NhY2Ww2s8YwDMXHx+vDDz9USkqKAgMDNXr0aAUHBzv1deLECU2cOFFffvml3NzcFBUVpdGjR6tixYrX/FwAAAAAJamcrZw++WW2fs88WtJDAYqkumdt3d94YImOoVgBu2bNmvrkk080ZcoUrVy5UoZhaOnSpapQoYK6d++uESNGFOs7sfft26cNGzbozjvvVH5+vtPVyQusWLFCzz//vJ544gnzauVPP/20FixY4BR4hwwZov3792v8+PFyd3fXtGnTFBsbqyVLlsjV9fzDPnjwoGJiYhQWFqYhQ4Zoz549eu211+Ti4qKYmBizr/j4eE2fPl0jRoxQQECAFixYoAEDBmjp0qWqV6+eJCkvL0+PP/64JOn1119Xdna2XnnlFQ0fPlyzZs265ucCAAAAKGm/Zx7V8YzfSnoYQJlRrIAtSVWrVtVLL72kl156SSkpKcrPz5ePj4/KlSv2V2urQ4cO6tSpkyRp1KhR2rlzZ6Ga6dOnq3v37hoyZIgkqXXr1tq7d6/eeustxcfHS5K2bdumL7/8Ug6HQ+Hh4ZIkX19fRUdHa82aNYqOjpYkORwOValSRVOmTJHdblebNm2UkpKimTNnql+/frLb7crJydGsWbM0YMAA9e/fX5LUvHlzde3aVQ6HQ+PHj5ckrV69Wvv27VNiYqL8/PwknT9XPSYmRjt27FBQUFCxnxcAAAAAQOlX/DR8AR8fH1WrVu26wrWkq97/0KFDOnDggLp16+bUHh0drS1btig3N1eStHHjRnl5eSksLMys8fPzU2BgoDZu3Gi2bdy4UR07dpTdbnfqKz09Xdu2bZN0fgl5RkaG0z7tdruioqIK9RUQEGCGa0kKCwtT5cqVtWHDhmt5GgAAAAAAZVCxZrDffPPNK2632Wxyd3fXbbfdphYtWqhmzZrFGtzFkpKSJJ2fjb5Qo0aNlJeXp0OHDqlRo0ZKSkqSr6+v03nU0vmQXdBHZmamjh075hSIC2psNpuSkpLUqlUrs/7iukaNGum9995Tdna2ypcvr6SkpEI1NptNvr6+Zh8AAAAAgFtXsQN2QXi9+Dzpi9tdXFzUq1cvjRs37rpnuNPS0iSdX3p9oYLbBdvT09NVqVKlQvf39vY2l52fOXPmkn3Z7XZ5eHg49WW32+Xu7l5on4ZhKC0tTeXLl7/iPgv6Ki7DMJSZmXldfVzIZrPJw8PDsv6AmykrK+uS12cobTjOUJaVheOMYwxlGccYcGNZfYwZhlFo8vZyihWwN2zYoLi4OAUGBqpfv36qX7++pPMXDZs/f7727NmjqVOnKjMzU++9954++ugj1ahRo1hXFsf5C6jt3r3bsv48PDzUpEkTy/oDbqbk5GRlZWWV9DCuiuMMZVlZOM44xlCWcYwBN9aNOMYuPK34SooVsCdMmCA/Pz9NmjTJqf2OO+7QpEmTNHToUL3++uuaPn26Jk+erFOnTmnp0qXXHbC9vb0lnZ99rl69utle8H3cBdu9vLx0/PjxQvdPS0szawpmmwtmsgvk5uYqKyvLqa/c3Fzl5OQ4zWKnp6fLZrM51WVkZFxyn7Vq1SreA/7/3NzcdPvtt19XHxcq6qcvQGnk6+tb6j/1lzjOULaVheOMYwxlGccYcGNZfYzt37+/yLXFCthff/21nn322ctub9GihV5//XXzdrt27fTKK68UZ1dOCs5xvvh856SkJLm5uZlfmeXn56ctW7YUmspPTk6Wv7+/JMnT01O1atUqdH50cnKyDMMw+y/4mZycrMaNGzvts3bt2ipfvrxZt3fvXqe+DMNQcnKy08XWisNms8nT0/O6+gBuFSxXA248jjPgxuIYA24sq4+xa/nAqVgnRdvtdu3YseOy23/88Ue5ubmZt8+ePWtJQKxXr54aNmyoVatWObUnJiaqTZs25rR9RESE0tLStGXLFrMmOTlZu3btUkREhNkWERGhdevWKS8vz6kvLy8vhYSESJJCQ0NVsWJFrVy50qzJy8vTmjVrCvX1yy+/6MCBA2bbli1blJqaqnbt2l33YwcAAAAAlG7FmsHu0aOHFixYoMqVK6tPnz6qW7euJOnw4cP68MMPtWzZMvXt29es/+abb4q0xDkrK8v8SqsjR44oIyPDDNMtW7aUj4+PBg0apBEjRqh+/fpq1aqVEhMTtWPHDs2fP9/sJyQkROHh4RozZoxGjhwpd3d3TZ06VQEBAercubNZFxMTo4SEBA0fPlx9+vTR3r175XA4NHToUDOsu7u7Ky4uTjNmzJCPj4/8/f21cOFCpaamKiYmxuyrS5cumjVrlgYNGqRhw4YpKytLr776qiIjI/kObAAAAAD4EyhWwH722Wf1xx9/aN68eXr33XfNq4Pn5+fLMAx17tzZXEKek5OjO+64Q6GhoVft99SpU3rmmWec2gpuv//++2rVqpV69OihrKwsxcfHa/bs2fL19dWbb75pzjgXmDZtmiZNmqRx48bp7NmzCg8P19ixY+Xq+r+H3KBBAzkcDk2ePFkDBw6Uj4+PBg8erAEDBjj1FRsbK8MwNHfuXKWkpCgwMFAOh8Ncki6dP096zpw5mjhxooYNGyZXV1dFRUVpzJgx1/DMAgAAAADKqmIFbHd3d02bNk27du3Spk2bdOTIEUlSnTp1FB4erjvuuMOp9umnny5Sv3Xr1tWePXuuWterVy/16tXrijWVKlXSyy+/rJdffvmKdaGhoVq0aNEVa2w2m+Li4hQXF3fFupo1a2rGjBlXrAEAAAAA3JqKFbALNGnShMv3AwAAAACgYl7kDAAAAAAAOCv2DPaGDRv07rvvateuXTpz5swlv2ds9+7d1zU4AAAAAADKimLNYK9evVpPPPGE/vjjD0VHRys/P1/du3dXdHS0ypcvr4CAAP3973+3eqwAAAAAAJRaxZrBnjVrloKCgvThhx8qLS1NCxcu1P/93/+pTZs2Onz4sHr37m1+dRcAAAAAAH8GxZrB/vXXXxUdHS0XFxfza6/Onj0r6fyVwPv06aP4+HjrRgkAAAAAQClXrIBdvnx5ubm5SZK8vLxkt9v1+++/m9urVaumw4cPWzNCAAAAAADKgGIFbF9fX/3666/m7cDAQC1dulRnz55VTk6Oli9frlq1alk2SAAAAAAASrtiBeyoqCitW7dOubm5kqQnnnhC3377rVq0aKHWrVvr+++/18CBAy0dKAAAAAAApVmxLnIWExOjmJgY83b79u31wQcfaM2aNXJxcVG7du3UunVrywYJAAAAAEBpd80BOzc3V5s2bVKdOnXUuHFjs/2uu+7SXXfdZengAAAAAAAoK655ibibm5ueeeYZbdu27UaMBwAAAACAMumaA7bNZlPDhg11+vTpGzEeAAAAAADKpGJd5CwuLk4LFixQUlKS1eMBAAAAAKBMKtZFzn788UdVrlxZ99xzj1q2bKk6deqofPnyherGjh173QMEAAAAAKAsKFbAnj9/vvnfW7ZsuWSNzWYjYAMAAAAA/jSKFbB/+eUXq8cBAAAAAECZVqxzsAEAAAAAgLNizWAX2L59u7755hudOnVKf/vb39SwYUNlZWUpKSlJDRs2VIUKFawaJwAAAAAApVqxAnZubq6GDRumdevWyTAM2Ww2tW/fXg0bNlS5cuU0YMAA9e/fX08++aTV4wUAAAAAoFQq1hLxN954Q1988YXGjx+vVatWyTAMc5u7u7u6du2qdevWWTZIAAAAAABKu2IF7BUrVuihhx5S79695e3tXWh7o0aNdOjQoeseHAAAAAAAZUWxAvapU6cUEBBw2e0uLi7Kzs4u9qAAAAAAAChrihWwa9WqpaSkpMtu37p1q+rXr1/sQQEAAAAAUNYUK2D36NFD//73v7Vt2zazzWazSZIWLVqklStX6r777rNkgAAAAAAAlAXFuor4E088oR9//FEPP/yw/Pz8ZLPZNGnSJKWlpen48eNq166d+vfvb/FQAQAAAAAovYoVsO12u+bMmaNly5Zp9erVys/PV25urgICAjRkyBD17NnTnNEGAAAAAODPoFgBWzq/JLxnz57q2bOnleMBAAAAAKBMKtY52K+++qp27dpl9VgAAAAAACizihWw58+fr//7v/9T586dNW3aNO3Zs8fqcQEAAAAAUKYUK2B/9dVXmjRpkho2bKg5c+bovvvuU/fu3fXWW29d8eu7AAAAAAC4VRXrHOyKFSvqvvvu03333af09HStXr1aq1at0jvvvKM333xT/v7+6t69uwYOHGj1eAEAAAAAKJWKNYN9IS8vL/Xq1UsOh0ObNm3SyJEjdfjwYU2dOtWK8QEAAAAAUCYU+yriF8rLy9PGjRuVmJio9evXKzMzU7Vq1bKiawAAAAAAyoRiB+yzZ89q8+bNSkxM1Lp165SRkaHq1avr/vvvV3R0tEJDQ60cJwAAAAAApVqxAvaYMWO0bt06paWlqUqVKurevbu6d++uFi1ayGazWT1GAAAAAABKvWIF7HXr1qlTp06Kjo5W69at5eLiUqgmLS1N3t7e1z1AAAAAAADKgmIF7M2bN8vVtfBdc3NztW7dOiUkJGjTpk366aefrnuAAAAAAACUBcUK2BeGa8MwtGXLFiUkJGjt2rXKyMiQj4+PevToYdkgAQAAAAAo7Yp9kbOdO3cqISFBK1as0B9//CGbzabo6Gg9/PDDCg4O5lxsAAAAAMCfyjUF7EOHDmnZsmVKSEjQwYMHVbNmTd1zzz0KCgrS0KFD1aVLF4WEhNyosQIAAAAAUGoVOWD37t1bO3bsUJUqVdSlSxdNnDhRd911lyTpt99+u2EDBAAAAACgLChywP7xxx9Vt25djRo1SpGRkZe8yBkAAAAAAH9W5Ypa+Pzzz6t69ep6+umnFRYWpnHjxunrr7+WYRg3cnwAAAAAAJQJRZ6G7tu3r/r27atDhw4pISFBy5cv16JFi1StWjW1atVKNpuNC5sBAAAAAP60ijyDXaBevXp66qmnlJiYqI8//ljdu3fXt99+K8MwNGHCBD3//PNav369cnJybsR4AQAAAAAola7rROqmTZuqadOmGjlypL7++mstW7ZMiYmJWrx4sTw8PLRt2zarxmnq16+fvv3220tumzJlirp3737ZmsTERDVq1Mi8febMGU2aNEmfffaZ8vLy1LZtW40dO1Y1atRwut/WrVv1yiuvaPfu3apatar69Omj2NhYpxl7wzAUHx+vDz/8UCkpKQoMDNTo0aMVHBxszQMHAAAAAJRqllyprFy5crr77rt19913a8KECVq3bp0SEhKs6LqQF154QRkZGU5t7733ntasWaM2bdqYbaGhoRo5cqRTXd26dZ1uDxkyRPv379f48ePl7u6uadOmKTY2VkuWLDEv4nbw4EHFxMQoLCxMQ4YM0Z49e/Taa6/JxcVFMTExZl/x8fGaPn26RowYoYCAAC1YsEADBgzQ0qVLVa9ePaufBgAAAABAKWP5pcDd3d0VHR2t6Ohoq7uWJN1+++2F2oYPH66wsDD5+PiYbV5eXlecPd62bZu+/PJLORwOhYeHS5J8fX0VHR2tNWvWmON3OByqUqWKpkyZIrvdrjZt2iglJUUzZ85Uv379ZLfblZOTo1mzZmnAgAHq37+/JKl58+bq2rWrHA6Hxo8fb9njBwAAAACUTtd8DnZps3XrVh0+fFj33HPPNd1v48aN8vLyUlhYmNnm5+enwMBAbdy40amuY8eOstvtZlt0dLTS09PNJfBbt25VRkaGunXrZtbY7XZFRUU59QUAAAAAuHWV+YC9fPlyeXp6qmPHjk7t3377rYKDg9WsWTM9/PDD+u6775y2JyUlydfXt9CVz/38/JSUlCRJyszM1LFjx+Tn51eoxmazmXUFPy+ua9SokY4ePars7Ozrf6AAAAAAgFLN8iXiN9PZs2e1cuVKdejQQZ6enmZ7ixYt1LNnTzVs2FAnT56Uw+HQY489pg8++EAhISGSpPT0dFWqVKlQn97e3tq5c6ek8xdBk84vN7+Q3W6Xh4eH0tLSzL7sdrvc3d2d6ry8vGQYhtLS0lS+fPliP07DMJSZmVns+1/MZrPJw8PDsv6AmykrK0uGYZT0MK6K4wxlWVk4zjjGUJZxjAE3ltXHmGEYRf5K6jIdsDdv3qyUlBT16NHDqX3w4MFOtyMjI9WjRw+9/fbbio+Pv5lDtEReXp52795tWX8eHh5q0qSJZf0BN1NycrKysrJKehhXxXGGsqwsHGccYyjLOMaAG+tGHGMXnjJ8JWU6YC9fvlyVK1c2L1J2OZ6enmrXrp1Wr15ttnl5een48eOFatPS0uTt7S1J5gx3wUx2gdzcXGVlZZl1Xl5eys3NVU5OjtMsdnp6umw2m1lXXG5ubpe8uFtxFfXTF6A08vX1LfWf+kscZyjbysJxxjGGsoxjDLixrD7G9u/fX+TaMhuws7Oz9dlnn+nee++Vm5vbNd/fz89PW7ZsKTTdn5ycLH9/f0nng3mtWrXMc6wvrDEMwzznuuBncnKyGjdubNYlJSWpdu3a17U8XDr/C+7CJfDAnxnL1YAbj+MMuLE4xoAby+pj7Fo+cCqzFzn7/PPPlZmZWaSrh2dmZuqLL75Qs2bNzLaIiAilpaVpy5YtZltycrJ27dqliIgIp7p169YpLy/PbEtMTJSXl5d5PndoaKgqVqyolStXmjV5eXlas2aNU18AAAAAgFtXmZ3BTkhIUO3atdW8eXOn9u+//15z5sxRVFSU6tSpo5MnT2revHn6/fff9cYbb5h1ISEhCg8P15gxYzRy5Ei5u7tr6tSpCggIUOfOnc26mJgYJSQkaPjw4erTp4/27t0rh8OhoUOHmuvw3d3dFRcXpxkzZsjHx0f+/v5auHChUlNTFRMTc3OeEAAAAABAiSqTATstLU2bNm3So48+Wmi6vnr16srLy9PUqVOVmpoqDw8PhYSEaMKECQoKCnKqnTZtmiZNmqRx48bp7NmzCg8P19ixY+Xq+r+npUGDBnI4HJo8ebIGDhwoHx8fDR48WAMGDHDqKzY2VoZhaO7cuUpJSVFgYKAcDofq1at3454IAAAAAECpUSYD9oVfpXWxgkBcFJUqVdLLL7+sl19++Yp1oaGhWrRo0RVrbDab4uLiFBcXV6R9AwAAAABuLWX2HGwAAAAAAEoTAjYAAAAAABYgYAMAAAAAYAECNgAAAAAAFiBgAwAAAABgAQI2AAAAAAAWIGADAAAAAGABAjYAAAAAABYgYAMAAAAAYAECNgAAAAAAFiBgAwAAAABgAQI2AAAAAAAWIGADAAAAAGABAjYAAAAAABYgYAMAAAAAYAECNgAAAAAAFiBgAwAAAABgAQI2AAAAAAAWIGADAAAAAGABAjYAAAAAABYgYAMAAAAAYAECNgAAAAAAFiBgAwAAAABgAQI2AAAAAAAWIGADAAAAAGABAjYAAAAAABYgYAMAAAAAYAECNgAAAAAAFiBgAwAAAABgAQI2AAAAAAAWIGADAAAAAGABAjYAAAAAABYgYAMAAAAAYAECNgAAAAAAFiBgAwAAAABgAQI2AAAAAAAWIGADAAAAAGABAjYAAAAAABYgYAMAAAAAYAECNgAAAAAAFiBgAwAAAABgAQI2AAAAAAAWIGADAAAAAGABAjYAAAAAABYgYAMAAAAAYAECNgAAAAAAFihzAfuTTz5RQEBAoX+vvfaaU93ixYvVpUsXNWvWTPfee6/Wr19fqK8zZ85ozJgxatmypUJCQjR48GCdPHmyUN3WrVvVu3dvBQUFqX379po9e7YMw3CqMQxDs2fPVmRkpIKCgtS7d29t377d0scOAAAAACi9XEt6AMU1Z84cVapUybxds2ZN879XrFih559/Xk888YRat26txMREPf3001qwYIGCg4PNuiFDhmj//v0aP3683N3dNW3aNMXGxmrJkiVydT3/1Bw8eFAxMTEKCwvTkCFDtGfPHr322mtycXFRTEyM2Vd8fLymT5+uESNGKCAgQAsWLNCAAQO0dOlS1atX78Y/IQAAAACAElVmA/Ydd9whHx+fS26bPn26unfvriFDhkiSWrdurb179+qtt95SfHy8JGnbtm368ssv5XA4FB4eLkny9fVVdHS01qxZo+joaEmSw+FQlSpVNGXKFNntdrVp00YpKSmaOXOm+vXrJ7vdrpycHM2aNUsDBgxQ//79JUnNmzdX165d5XA4NH78+Bv6XAAAAAAASl6ZWyJ+NYcOHdKBAwfUrVs3p/bo6Ght2bJFubm5kqSNGzfKy8tLYWFhZo2fn58CAwO1ceNGs23jxo3q2LGj7Ha7U1/p6enatm2bpPNLyDMyMpz2abfbFRUV5dQXAAAAAODWVWYDdo8ePRQYGKiOHTtq1qxZOnfunCQpKSlJ0vnZ6As1atRIeXl5OnTokFnn6+srm83mVOfn52f2kZmZqWPHjsnPz69Qjc1mM+sKfl5c16hRIx09elTZ2dlWPGQAAAAAQClW5paIV69eXYMGDdKdd94pm82mzz//XNOmTdOJEyc0btw4paWlSZK8vLyc7ldwu2B7enq60zncBby9vbVz505J5y+Cdqm+7Ha7PDw8nPqy2+1yd3cvtE/DMJSWlqby5csX+zEbhqHMzMxi3/9iNptNHh4elvUH3ExZWVmFLjJYGnGcoSwrC8cZxxjKMo4x4May+hgzDKPQxOzllLmA3bZtW7Vt29a8HR4eLnd3d7333nt64oknSnBkN05eXp52795tWX8eHh5q0qSJZf0BN1NycrKysrJKehhXxXGGsqwsHGccYyjLOMaAG+tGHGMXnjJ8JWUuYF9Kt27dNHfuXO3evVve3t6Szs8+V69e3axJT0+XJHO7l5eXjh8/XqivtLQ0s6ZghrtgJrtAbm6usrKynPrKzc1VTk6O0yx2enq6bDabWVdcbm5uuv3226+rjwsV9dMXoDTy9fUt9Z/6SxxnKNvKwnHGMYayjGMMuLGsPsb2799f5NpbImBfqOA86KSkJKdzopOSkuTm5mZ+ZZafn5+2bNlSaLo/OTlZ/v7+kiRPT0/VqlXLPMf6whrDMMz+C34mJyercePGTvusXbv2dS0Pl87/gvP09LyuPoBbBcvVgBuP4wy4sTjGgBvL6mPsWj5wKrMXObtQYmKiXFxc1KRJE9WrV08NGzbUqlWrCtW0adPGnNqPiIhQWlqatmzZYtYkJydr165dioiIMNsiIiK0bt065eXlOfXl5eWlkJAQSVJoaKgqVqyolStXmjV5eXlas2aNU18AAAAAgFtXmZvBjomJUatWrRQQECBJWrdunRYtWqRHHnnEXBI+aNAgjRgxQvXr11erVq2UmJioHTt2aP78+WY/ISEhCg8P15gxYzRy5Ei5u7tr6tSpCggIUOfOnZ32l5CQoOHDh6tPnz7au3evHA6Hhg4daoZ1d3d3xcXFacaMGfLx8ZG/v78WLlyo1NRUxcTE3MRnBwAAAABQUspcwPb19dWSJUt0/Phx5efnq2HDhhozZoz69etn1vTo0UNZWVmKj4/X7Nmz5evrqzfffNOccS4wbdo0TZo0SePGjdPZs2cVHh6usWPHytX1f09LgwYN5HA4NHnyZA0cOFA+Pj4aPHiwBgwY4NRXbGysDMPQ3LlzlZKSosDAQDkcDnNJOgAAAADg1lbmAvbYsWOLVNerVy/16tXrijWVKlXSyy+/rJdffvmKdaGhoVq0aNEVa2w2m+Li4hQXF1ek8QEAAAAAbi23xDnYAAAAAACUNAI2AAAAAAAWIGADAAAAAGABAjYAAAAAABYgYAMAAAAAYAECNgAAAAAAFiBgAwAAAABgAQI2AAAAAAAWIGADAAAAAGABAjYAAAAAABYgYAMAAAAAYAECNgAAAAAAFiBgAwAAAABgAQI2AAAAAAAWIGADAAAAAGABAjYAAAAAABYgYAMAAAAAYAECNgAAAAAAFiBgAwAAAABgAQI2AAAAAAAWIGADAAAAAGABAjYAAAAAABYgYAMAAAAAYAECNgAAAAAAFiBgAwAAAABgAQI2AAAAAAAWIGADAAAAAGABAjYAAAAAABYgYAMAAAAAYAECNgAAAAAAFiBgAwAAAABgAQI2AAAAAAAWIGADAAAAAGABAjYAAAAAABYgYAMAAAAAYAECNgAAAAAAFiBgAwAAAABgAQI2AAAAAAAWIGADAAAAAGABAjYAAAAAABYgYAMAAAAAYAECNgAAAAAAFiBgAwAAAABgAQI2AAAAAAAWIGADAAAAAGABAjYAAAAAABYocwF75cqVevLJJxUREaHg4GD17NlTH3/8sQzDMGv69eungICAQv9+/fVXp77OnDmjMWPGqGXLlgoJCdHgwYN18uTJQvvcunWrevfuraCgILVv316zZ8922p8kGYah2bNnKzIyUkFBQerdu7e2b99+Q54DAAAAAEDp41rSA7hW7777rurUqaNRo0apSpUq+uqrr/T888/r+PHjevrpp8260NBQjRw50um+devWdbo9ZMgQ7d+/X+PHj5e7u7umTZum2NhYLVmyRK6u55+agwcPKiYmRmFhYRoyZIj27Nmj1157TS4uLoqJiTH7io+P1/Tp0zVixAgFBARowYIFGjBggJYuXap69erdwGcEAAAAAFAalLmA/c4778jHx8e83aZNG6WmpmrevHl66qmnVK7c+Ul5Ly8vBQcHX7afbdu26csvv5TD4VB4eLgkydfXV9HR0VqzZo2io6MlSQ6HQ1WqVNGUKVNkt9vVpk0bpaSkaObMmerXr5/sdrtycnI0a9YsDRgwQP3795ckNW/eXF27dpXD4dD48eNvyHMBAAAAACg9ytwS8QvDdYHAwEBlZGQoMzOzyP1s3LhRXl5eCgsLM9v8/PwUGBiojRs3OtV17NhRdrvdbIuOjlZ6erq2bdsm6fwS8oyMDHXr1s2ssdvtioqKcuoLAAAAAHDrKnMB+1J++OEH1axZUxUrVjTbvv32WwUHB6tZs2Z6+OGH9d133zndJykpSb6+vrLZbE7tfn5+SkpKkiRlZmbq2LFj8vPzK1Rjs9nMuoKfF9c1atRIR48eVXZ2tjUPFAAAAABQapW5JeIX+/7775WYmOh0vnWLFi3Us2dPNWzYUCdPnpTD4dBjjz2mDz74QCEhIZKk9PR0VapUqVB/3t7e2rlzp6TzF0GTzi83v5DdbpeHh4fS0tLMvux2u9zd3Z3qvLy8ZBiG0tLSVL58+WI/RsMwrml2/mpsNps8PDws6w+4mbKysgpdZLA04jhDWVYWjjOOMZRlHGPAjWX1MWYYRqGJ2csp0wH7+PHjGjp0qFq1aqVHHnnEbB88eLBTXWRkpHr06KG3335b8fHxN3uY1y0vL0+7d++2rD8PDw81adLEsv6Amyk5OVlZWVklPYyr4jhDWVYWjjOOMZRlHGPAjXUjjrELTxm+kjIbsNPT0xUbG6vKlStrxowZ5sXNLsXT01Pt2rXT6tWrzTYvLy8dP368UG1aWpq8vb0lyZzhLpjJLpCbm6usrCyzzsvLS7m5ucrJyXGaxU5PT5fNZjPrisvNzU233377dfVxoaJ++gKURr6+vqX+U3+J4wxlW1k4zjjGUJZxjAE3ltXH2P79+4tcWyYDdnZ2tuLi4nTmzBl99NFHl1zqfTV+fn7asmVLoen+5ORk+fv7SzofzGvVqmWeY31hjWEY5jnXBT+Tk5PVuHFjsy4pKUm1a9e+ruXh0vlfcJ6entfVB3CrYLkacONxnAE3FscYcGNZfYxdywdOZe4iZ2fPntWQIUOUlJSkOXPmqGbNmle9T2Zmpr744gs1a9bMbIuIiFBaWpq2bNlitiUnJ2vXrl2KiIhwqlu3bp3y8vLMtsTERHl5eZnnc4eGhqpixYpauXKlWZOXl6c1a9Y49QUAAAAAuHWVuRnsCRMmaP369Ro1apQyMjK0fft2c1uTJk20Y8cOzZkzR1FRUapTp45OnjypefPm6ffff9cbb7xh1oaEhCg8PFxjxozRyJEj5e7urqlTpyogIECdO3c262JiYpSQkKDhw4erT58+2rt3rxwOh4YOHWquw3d3d1dcXJxmzJghHx8f+fv7a+HChUpNTVVMTMxNe24AAAAAACWnzAXszZs3S5ImT55caNu6detUvXp15eXlaerUqUpNTZWHh4dCQkI0YcIEBQUFOdVPmzZNkyZN0rhx43T27FmFh4dr7NixcnX939PSoEEDORwOTZ48WQMHDpSPj48GDx6sAQMGOPUVGxsrwzA0d+5cpaSkKDAwUA6HQ/Xq1bsBzwIAAAAAoLQpcwH7888/v2qNw+EoUl+VKlXSyy+/rJdffvmKdaGhoVq0aNEVa2w2m+Li4hQXF1ekfQMAAAAAbi1l7hxsAAAAAABKIwI2AAAAAAAWIGADAAAAAGABAjYAAAAAABYgYAMAAAAAYAECNgAAAAAAFiBgAwAAAABgAQI2AAAAAAAWIGADAAAAAGABAjYAAAAAABYgYAMAAAAAYAECNgAAAAAAFiBgAwAAAABgAQI2AAAAAAAWIGADAAAAAGABAjYAAAAAABYgYAMAAAAAYAECNgAAAAAAFiBgAwAAAABgAQI2AAAAAAAWIGADAAAAAGABAjYAAAAAABYgYAMAAAAAYAECNgAAAAAAFiBgAwAAAABgAQI2AAAAAAAWIGADAAAAAGABAjYAAAAAABYgYAMAAAAAYAECNgAAAAAAFiBgAwAAAABgAQI2AAAAAAAWIGADAAAAAGABAjYAAAAAABYgYAMAAAAAYAECNgAAAAAAFiBgAwAAAABgAQI2AAAAAAAWIGADAAAAAGABAjYAAAAAABYgYAMAAAAAYAECNgAAAAAAFiBgAwAAAABgAQI2AAAAAAAWIGADAAAAAGABAjYAAAAAABYgYFvs119/1WOPPabg4GCFhYXp1VdfVW5ubkkPCwAAAABwg7mW9ABuJWlpaXr00UfVsGFDzZgxQydOnNDkyZOVnZ2tcePGlfTwAAAAAAA3EAHbQv/+97/13//+V2+++aYqV64sSTp37pwmTJiguLg41axZs2QHCAAAAAC4YVgibqGNGzeqTZs2ZriWpG7duik/P1+bN28uuYEBAAAAAG44AraFkpKS5Ofn59Tm5eWl6tWrKykpqYRGBQAAAAC4GVgibqH09HR5eXkVavf29lZaWlqx+szLy5NhGNqxY8f1Ds+JzWbTgw8E6+zZZpb2C9worq4u+umnn2QYRkkPpchsNpsevztIZ8/dUdJDAYrE1aVsHWc2m01x9UOVV/dcSQ8FKBK3cmXvGLtTndWswtmSHgpQJOXkekOOsby8PNlstiLVErBLuYL/kUX9H3otvL0rWN4ncKPdiGPhRqpS0bOkhwBcs7J0nFXx4G8Zyp6ydIxVcKtU0kMArpnVx5jNZiNglwQvLy+dOXOmUHtaWpq8vb2L1WdISMj1DgsAAAAAcBNwDraF/Pz8Cp1rfebMGf3++++Fzs0GAAAAANxaCNgWioiI0FdffaX09HSzbdWqVSpXrpzCwsJKcGQAAAAAgBvNZpSVqyyUAWlpaerevbt8fX0VFxenEydOaPLkybrnnns0bty4kh4eAAAAAOAGImBb7Ndff9WLL76obdu2qUKFCurZs6eGDh0qu91e0kMDAAAAANxABGwAAAAAACzAOdgAAAAAAFiAgA0AAAAAgAUI2AAAAAAAWICADQAAAACABQjYAAAAAABYgIANAAAAAIAFCNgo82bMmKGAgIBL/ps9e3ZJD++S3n33XW3YsKFQe4cOHfTPf/6zBEYEWG/ZsmV64IEH1Lx5c4WGhqpbt2567rnndOrUqRuyv379+ikuLu6G9A3cTAV/19q2bav8/PxC2x966CEFBARo1KhRZn1ISMhV+33qqafUr1+/q9YFBATI4XBc+8AtwrEMq1j1HnH37t2aMWOGsrKybuBozyvp139Rf5/g8lxLegCAFcqXL6/33nuvUHutWrVKYDRX9/777ysyMlLt2rVzan/zzTfl5eVVQqMCrBMfH6/XX39d/fv31+DBg2UYhvbt26eEhASdPHlSVatWtXyfL7zwgsqV43Nj3Brc3Nx0+vRpfffdd2rVqpXZfuTIEW3fvl2enp5mW69evQr9PQFwnhXvEXfv3q0333xTffv2lYeHh5XDwy2IgI1bQrly5RQcHFzSw7huTZo0KekhAJb44IMP9Ne//tWcYZOkdu3a6fHHH7/kjJwVbr/9dkv6yc7OVvny5S3pCyguNzc3tWnTRitWrHAK2CtWrNBf/vIXpw+TbrvtNt12220lMUyg1LvZ7xH5GwI+6sct77PPPlNAQIDWr19vtqWmpqpt27YaNmyY2fbrr7/qySefVPPmzRUcHKyBAwfqt99+c+orPz9f8+bNU7du3dS0aVOFhYVp8ODBOnPmjCRp1KhR6tGjh9N90tPTFRAQoE8++UTS+WXgR44c0YIFC8xlShduK1gi/sknn6hJkyb6448/nPpLTU1V06ZN9e9//9ts27Ztmx555BEFBwerefPmGj58+A1bhgsURXp6umrUqHHJbRfPMn/yySe655571KxZM7Vt21ZTp07VuXPnnLYHBARo165devzxxxUcHKzOnTvr008/dernUsvqvvvuOz300EMKCgpSq1atNHr0aKWmpprbDx8+bB6DY8eOVatWrdSrV6/re/CARXr06KHVq1crLy/PbFu+fHmhvzOXWtL566+/6uGHH1azZs3UqVMn/ec//7musXzxxRfq1auXgoKC1Lp1a73wwgvKzMyUJGVmZio4OPiSy8oHDx6s3r17m7fT09M1fvx4hYeHq2nTprr//vv15ZdfXtfYgOsREBCg+Ph4zZgxQ3fffbf5t6Lg9f3JJ59o9OjRkqQ2bdooICBAHTp0MLcFBARo27ZteuyxxxQcHKxXX31VgwYN0kMPPVRoXx9++KGaNWvm9HeoKK72HvVyy8rnz5+voKAg832qYRhyOBzq0qWLmjZtqo4dO+rdd9+9prHg6gjYuGWcPXu20D9J6tSpk+677z6NHTtWKSkpkqQJEyZIOr+kVJIOHTqkhx56SGlpaZo8ebJee+01paSkqH///srNzTX38eKLL+pf//qXIiMjNXPmTI0bN04VKlQwfwkXxZtvvqnq1aurS5cu+uijj/TRRx8pMjKyUF1UVJRcXFy0atUqp/Y1a9ZIkrp27SrpfLju16+fKlWqpKlTp+rFF1/UTz/9pKeeeqrIYwKsdscdd+jf//63Fi9erN9///2ydfPmzdPYsWMVHh6umTNnKjY2Vu+//76mTp1aqHbEiBEKDw/XW2+9pcDAQI0aNUq//vrrZfveuXOnHnvsMVWoUEFvvPGGRowYofXr1ys2NtYpwEvSlClTZBiGXn/9dT377LPFf+CAhdq3b6/c3Fxt3rxZkrR//37t2bNH0dHRV7xfTk6OBgwYoD/++EOvvvqqhg8frtmzZ+unn34q1jhWrVqlJ598Uv7+/nrzzTf17LPPau3atXruueckSZ6enurQoYNWrFjhdL+MjAx98cUX5gcCubm5euyxx/TFF19oyJAheuedd9SoUSPFxcVpz549xRobUBSXe49YYMGCBTpw4IAmT56sv//970pISNDbb78tSYqMjNSTTz4pSZozZ44++ugjvfnmm073Hz58uFq3bq2ZM2eqZ8+e6tWrl7Zt26akpCSnuiVLligqKkqVK1cu8tiL8h61e/fu2rx5c6Hgvnz5crVr106VKlWSJL300kuaPn267rvvPs2ePVt//etf9dprr2nhwoVFHg+ujiXiuCVkZmbqjjvuKNS+YMEC3XXXXRo7dqzuuecejRs3Tl27dlViYqLmzJkjb29vSedDr7e3t+bNmyd3d3dJUmhoqDp27KjFixerb9++Sk5O1sKFCzV06FCnTwm7dOlyTWNt0qSJ7Ha7qlWrdsUlS5UqVVK7du20fPlyPfzww2b78uXLFRYWZv5yfv3119W0aVO9+eabstlskiR/f3/16NFDGzZs4Lw8lIgXXnhBTz/9tMaOHStJqlu3rtq3b6/+/furbt26ks6/+Z4+fboef/xxczVJWFiY3NzcNHnyZMXExKhKlSpmn3379lXfvn0lSSEhIdqwYYNWr1592Q+TZs6cqerVq2vmzJlyc3OTdP6cu5iYGG3YsMGcgZCkxo0b66WXXrL+iQCug4eHhxlcIyMjtXz5coWEhKhevXpXvN8nn3yikydPauXKlWrYsKGk8397unbtat4uKsMw9Oqrryo6OtrpGKlevboGDhyop556Sn/5y1/UvXt3PfXUUzpw4IC5j88++0xnz55Vt27dJEkJCQn65ZdftHTpUvOUjrZt2+rgwYN6++239cYbb1zT2ICiuNp7ROn86/n111+XJEVERGjXrl1avXq1RowYIR8fH9WvX1/S+Q+PfXx8CvX10EMPaeDAgebt/Px81a5dW0uWLDE/tN27d6927tzptHqyKIryHrVLly6aOHGi1qxZowcffFDS/67XMG3aNEnSb7/9pvnz52vChAnmqpK7775b2dnZeuutt9S7d2+uY2IRnkXcEsqXL6+PP/640L/AwEBJ58PqpEmT9Nlnn2n06NHq06eP2rZta95/8+bN6tChg1xcXMxPNr28vNSkSRPt3LlTkvT111/LMAw98MADN+1xde/eXdu3b9fRo0clSSdPntR3332n7t27S5KysrK0detWde3aVefOnTPH3rBhQ9WqVavYsxXA9fL399fy5cs1e/ZsPfLII6pUqZI++OAD3Xvvvdq9e7ek86svMjMz1bVrV6dZhYI/+Pv27XPqMzw83PxvT09P1a5dW8ePH7/sGL7//nt17NjRDNcFfXh5eemHH35wqr3UKhKgNOjRo4fWrVun7OxsJSYmmr//r2THjh36y1/+4hSmGzRooMaNGzvVXXjcXbyqo0BycrKOHDmibt26OdW3bNlS5cqVM/9Gtm3bVl5eXk6z2AXnj1erVk3S+b+1/v7+atiwYaFjnr9XuFGu9h5ROh80L9SoUaMr/n252MV/Q8qVK6f/+7//09KlS83Z8iVLlqhOnTpq06aNJDm9b7t4Rv1CRXmPWqVKFd19991Ox19iYqI8PT3Vvn17SdJXX30lSercuXOh4+/333/XsWPHivx4cWXMYOOWUK5cOTVr1uyKNc2bN1ft2rV15MgRpxlhSTp9+rTee++9S15lsuDNeWpqqlxdXW/I1Y8vp3379vLw8NCKFSsUGxurlStXyt3dXZ06dZJ0/ly2c+fOadKkSZo0aVKh+/PLEiXJbrerXbt25iqKTZs2KS4uTm+99ZbefPNNnT59WpL017/+9ZL3v/j1W7DErYCbm5vTKRwXS09Pv+TxWrVqVaWlpRVqA0qj8PBwubm56Y033tDhw4fN2eArudyV+qtWraqcnBxJ568/0LFjR3NbnTp19Pnnnxe6T8Fx+ve///2S+yo4Tu12uzp37qzExET9/e9/1+nTp/XVV185ffXk6dOntWvXrkvOJrq4uFz1cQHFUZT3iBd/g8vV/r5crOBDpAs98MADevvtt7VhwwZFRERo2bJl+tvf/mbOEkdFRenIkSNm/bp168wVXhcqyntU6fykzKhRo/T777+revXqWrFihaKiosxZ79OnT8swDLVu3fqSj+HYsWOqU6dOkR8zLo+AjT+N6dOn6/Tp02rYsKEmTJig999/31xS7e3trXbt2ulvf/tboftVqFBBklS5cmWdPXtWp06duuybcbvd7nQxGkmF3shfi/Lly6tTp05KTExUbGysEhMT1b59e/PrWSpVqiSbzaa4uDgzdF/owuW1QElr27atGjdubJ43feEpGpe6AvKl3mhcC29v70te7O/UqVPmvgsU/C4AShs3Nzd17txZ7777rtq0aXPJN/IXq1Gjhn7++edC7adOnVLFihXNmo8//tjcZrfbL9lXwelI48aNU1BQ0CX3VaBHjx76+OOP9csvv2j79u0qV66cOnfubG739vZWQEAAp2PgT+G2225T27ZttWTJEp07d06nT5/W/fffb25/5513nEL85S4MWpT3qJLUsWNH2e12rVy5UuHh4dq9e7fTcnRvb2/ZbDZ9+OGHTsG8gK+vb7EeJwojYONPYevWrXI4HBo/fryaNGmihx56SO+995769+8v6fxVIfft26cmTZpc9lP01q1by2azacmSJU7n2Vzotttu0/Hjx/Xf//7X/KVXcHGaC7m5uZmzCFfTo0cPDRw4UJs2bdL27dsVGxtrbvP09FRwcLCSkpKu+ukscDP98ccfhYJAdna2jh07Zp57GRISIg8PDx0/flxRUVGWj6F58+Zat26dRo0aJVfX83/uNm/erPT0dDVv3tzy/QE3Sq9evXTq1Cnz3MqradasmT799FMdPHhQDRo0kCQdPHhQv/zyi3nOqd1uL9LfDT8/P9122206dOiQeQ2Ey2nZsqU5c7Z9+3ZFREQ4rTy5++67tWHDBtWoUUM1a9Ys0mMBSoOCQHots9rS+WP3mWeeUUpKitq0aeM0QxwQEFCkPoryHlWSKlasqMjISK1YsUJpaWny8fFxWvpesDQ9NTXV6RoksB4BG7eE/Px8bd++vVB71apVVbVqVY0cOVLh4eHmRR2eeOIJTZkyRW3btlWjRo00ePBgPfDAA4qJidGDDz6oatWq6Y8//tC3336ru+66Sz169JCvr68eeughvfHGG0pLS1ObNm2UnZ2tL774QoMGDVLNmjXVuXNnTZ8+XWPGjNGDDz6offv2Oc0QFPDz89PXX3+tzZs3y8vLS3Xr1r3sbPPdd9+typUra8yYMfLy8lJERITT9n/84x969NFHNWTIEHXv3l1eXl46fvy4vvrqK91///1O358K3Cz33HOP2rdvr/DwcNWoUUMnTpzQ/Pnzdfr0aT366KOSzi/JGzx4sP71r3/p+PHjatmypVxcXHTo0CGtW7dOM2bMkIeHR7HH8MQTT+ihhx5SXFyc+vXrpz/++EOvv/66goKCuPgfypSgoCDzisZFcf/99+udd95RXFycnnnmGUnnV3EVZfb7YjabTaNGjdKIESOUmZmpyMhIeXh46OjRo9qwYYOGDh1qzny5uLioa9eu+s9//qNTp05pypQpTn3dd999+ve//61HHnlEAwYMUMOGDXXmzBnt2rVLeXl5Gj58+DWPD7iaK71HvNoFAws0atRI0vkLo3Xq1Enly5cvUkCOjIxUlSpVtG3btkLHQ1EV5T1qgR49eujpp5/WkSNH1LVrV/PDZen8DHXfvn31j3/8QzExMbrzzjuVl5enAwcO6Jtvvrmm3zG4MgI2bgnZ2dlO37NZ4IEHHpCLi4vS09OdlqQ9+eST+uKLL/SPf/xDH330kRo0aKDFixdr2rRpmjBhgjIzM1W9enW1aNHC6RfouHHjVLduXS1evFjvvfeeKleurBYtWpiz1bfffrsmT56st99+W0899ZSaN2+u1157TT179nQa17BhwzR+/HgNGjRI//3vfzVp0iSnZUMXcnNzM7/S64EHHii0jC80NFQffvihZsyYodGjRysvL0+33XabWrdubc5cADfb008/rfXr12vy5MlKSUlRlSpVFBAQoHfffdfp/K8BAwaoZs2amjdvnubPny9XV1fVr19fkZGRl1zCdi2aNm2quXPnasqUKRo0aJD5VUIjR47kfE/c0sqXL6+5c+dq/PjxevbZZ1WzZk099dRTWrdunfl9uNeiW7du8vLy0syZM5WQkCDp/Dnbbdu2LRTae/TooQ8++MDp4koF7Ha73n//fc2YMUMzZ87U77//rsqVK6tJkyaXXP4KWOFK7xGLerpCkyZNNGjQIC1evFhz5sxRrVq1LnnNgou5urqqQ4cOWrVqVbFXahX1Paok8yu5fv/990teEHHs2LHy9fXVRx99pLfeeksVKlSQr6+v+dWvsIbNMAyjpAcBAAAAALeS/Px8derUSe3bt9fzzz9f0sPBTcIMNgAAAABYJDc3V7/88otWr16t48ePX/X6Bf+vvbsNiqr64wD+hZWsdRsEYWxKQInZBdnFgqRgwReMA7Kg0U4sRSAlYZiGgU2gO2I5NdakFYiCMRM4U1OkiFmttvRoU0hOk9I4RkmzPDiFyfPDxpB7/i8a7rTukmD3H2nfz8x9cc8595zfvbzhd8+5Z+n6wgSbiIiIiIhIJhcuXEB6ejp8fX2xdetWBAcHz3RI9A/iEnEiIiIiIiIiGXjOdABERERERERE1wMm2EREREREREQyYIJNREREREREJAMm2EREREREREQyYIJNREREREREJAMm2ERERAQA2L17NzQazUyHcV3r6uqCRqPBoUOHZjoUIiL6P2CCTUREJJNDhw5Bo9FMepw6dWqmQ/xPmHhR0NvbO9OhEBHRf8ysmQ6AiIjoelNQUIAFCxa4lAcGBs5ANFO3bt06rF27dqbDICIiumYxwSYiIpLZsmXLoNPpZjqMKRsdHYVSqcSsWbMwaxb/NSAiIrpaXCJORET0DysvL0doaCiampqcyrdu3QqtVovvv/8eANDc3AyNRgOLxYKXX34Zer0ed9xxB/Lz8/Hzzz+79Hv69Gnk5uYiKioKS5YsQVZWFr755hunNhPLp8+dO4dNmzZh6dKlyMzMdKq73Lvvvguj0YiIiAhER0ejsLDQZfzs7Gykpqbi3LlzyM7OxpIlSxAfH4/q6mqX/sbGxrB7924kJSVBp9MhLi4OGzZsQEdHh9TG4XCgtrYWKSkp0Ol0iI2NRWlpKQYGBqb4lK+sra0NBQUFiI6Ohk6ng9FoxMcffyzVf/fdd9BoNGhoaHC59osvvoBGo8Gnn34qlXV3d2Pz5s2IjY2FVqtFSkoKDh48KFu8RET078cEm4iISGbDw8Po7e11Ovr6+qT6devWISwsDGazGcPDwwD+SNjeeecdPP744wgNDXXqr7KyEp999hny8vKQnZ2Nr776Cg8//DB+++03qU1TUxMeeughjIyMYMOGDSgsLMTg4CBycnLQ0tLiEuPGjRtht9tRWFiI9PT0Se+lsrISxcXFCAoKQklJCVavXi2NNTg46NR2YGAAjz76KEJDQ1FcXIzg4GDs3LkTn3/+udTm0qVLeOyxx1BRUYHw8HCpz6GhIfzwww9Su9LSUrz00kuIjIyE2WyG0WjEe++9h9zcXIyPj0/xLzG5H3/8ERkZGWhra0NeXh5KSkqgVCqxfv16NDY2AgB0Oh0CAgJw9OhRl+stFgu8vb0RFxcHALh48SJMJpP0bMxmMwIDA2E2m1FbW/u34yUiomuEICIiIlnU19cLtVrt9tBqtU5tW1tbRXh4uDCbzWJgYEDEx8cLo9EoxsfHpTYnTpwQarVaxMfHi6GhIancYrEItVot9u/fL4QQwuFwiMTERLFmzRrhcDikdna7XSQkJIhHHnlEKisvLxdqtVoUFRW5xD9RN6Grq0uEhYWJyspKl9gXL17sVJ6VlSXUarVoaGiQysbGxoRerxdPPPGEVHbw4EGhVqtFTU2Ny/gTsZ88eVKo1Wpx5MgRp/rjx4+7LZ/sPnp6eiZtk5OTI1JTU8XY2JjT+BkZGSIxMVEq27VrlwgPDxf9/f1O93XXXXeJzZs3S2VbtmwRer1e9Pb2Oo1TWFgooqKihN1uF0II0dnZKdRqtaivr//LeyAiomsTZ7CJiIhkVlpaipqaGqfj8qXSarUaBQUFOHDgAHJzc9HX14cXX3zR7TfQaWlpUKlU0vmKFSvg7+8vzQyfPXsWNpsNK1euRF9fnzRrPjo6ipiYGJw8eRIOh8OpzwceeOCK99HY2AiHw4Hk5GSn2Xg/Pz8EBQWhubnZqb1SqcS9994rnd9www3Q6XTo7OyUyqxWK3x8fJCVleUynoeHBwDg2LFjuPnmm6HX653GDQ8Ph1KpdBl3uvr7+3HixAkkJyc7rTbo6+tDXFwcbDYburu7AQAGgwHj4+OwWq3S9V9++SUGBwdhMBgAAEIIWK1WJCQkQAjhFHNcXByGhoZw5syZvxUzERFdG7iTCRERkcwiIiKmtMlZbm4uPvjgA7S0tKCoqAghISFu2wUFBTmde3h4ICgoCOfPnwcA2Gw2AEBxcfGkYw0NDcHb21s6d7fL+eVsNhuEEEhMTHRbf/nLgFtuuUVKkid4e3ujtbVVOu/o6MCiRYv+cjO19vZ2DA0NISYmxm19T0/PFWP/Kx0dHRBCoKysDGVlZZOOMX/+fISGhiI4OBhHjx6VltJbLBb4+PjgnnvuAQD09vZicHAQdXV1qKurc9sffzKMiOi/gQk2ERHRDOns7ER7ezsAOH1/PF1CCADA008/jbCwMLdtlEql0/ns2bOv2K/D4YCHhweqq6uhUCiu2Ke7NlfD4XBg3rx52Llzp9t6X1/fv90/AKxZswbx8fFu2/z5J9UMBgOqqqrQ29sLlUqFTz75BCkpKdJLgon+Vq1ahfvuu89tf+42jyMiousPE2wiIqIZ4HA4UFJSApVKhZycHFRVVSEpKcntbPFEEj5BCIH29nYpaQsICAAAqFQqxMbGyhZjYGAghBBYsGABFi1aJFufp0+fxvj4OLy8vCZt09TUhMjISNx4442yjPtnE8/Ly8trSs/LYDCgoqICVqsVfn5+GB4eRkpKilTv6+uLOXPmwOFwyPr8iYjo2sNvsImIiGZATU0Nvv32W2zfvh0bN27EnXfeiWeeecbtUuLDhw9Lu40Df3yj/Ouvv2LZsmUAAK1Wi8DAQLz++usYGRlxuf5qlycnJiZCoVCgoqJCmiWfIIRw2hl9On329fXhzTffdKmbGCM5ORmXLl3C3r17Xdr8/vvvLruXT9e8efMQHR2Nuro6XLhwwaX+8ud1++23Q61Ww2KxwGKxwN/fH0uXLpXqFQoFkpKS8OGHH7pdicDl4URE/x2cwSYiIpLZ8ePH8dNPP7mUR0ZGIiAgAG1tbSgrK4PRaERCQgIA4IUXXkBaWhqeffZZl++Cvb29kZmZCaPRiJ6eHuzfvx9BQUEwmUwAAE9PTzz33HPIy8tDamoqjEYj5s+fj+7ubjQ3N0OlUqGqqmra9xEYGIgnn3wSu3btwvnz57F8+XLMmTMHXV1d+Oijj2AymZCbmzutPtPS0nD48GHs2LEDLS0tiIqKgt1uR1NTEx588EEsX74c0dHRyMjIwL59+3D27Fno9Xp4eXnBZrPh2LFjMJvNWLFixRXHqq2tdZkB9/T0RH5+PrZt24bMzEysXLkSJpMJAQEBuHjxIk6dOoVffvkFR44ccbrOYDCgvLwcs2fPxv333w9PT+c5ik2bNqG5uRkmkwnp6ekICQnBwMAAzpw5g6amJnz99dfTek5ERHRtYoJNREQks/LycrflO3bswK233ori4mL4+Phgy5YtUt3ChQtRVFSE559/HhaLRdqhGgDy8/PR2tqK1157DSMjI4iJicG2bdtw0003SW3uvvtu1NXVYe/evXjjjTcwOjoKf39/REREICMj46rvZe3atVi4cCFqa2uxZ88eAH9sZqbX66WXA9OhUChQXV2NyspKvP/++7BarZg7dy4iIyOdvlPevn07tFot3n77bbzyyitQKBS47bbbsGrVKkRGRk5prH379rkdPz8/HyEhIaivr0dFRQUaGhrQ398PX19fLF68GOvXr3e5zmAw4NVXX4XdbkdycrJLvZ+fHw4cOIA9e/agsbERb731FubOnYuQkBA89dRT03hCRER0LfMQl6/5IiIion+F5uZmrF69GmVlZVOasSUiIqKZxW+wiYiIiIiIiGTABJuIiIiIiIhIBkywiYiIiIiIiGTAb7CJiIiIiIiIZMAZbCIiIiIiIiIZMMEmIiIiIiIikgETbCIiIiIiIiIZMMEmIiIiIiIikgETbCIiIiIiIiIZMMEmIiIiIiIikgETbCIiIiIiIiIZMMEmIiIiIiIikgETbCIiIiIiIiIZ/A9UMnmzS02CQQAAAABJRU5ErkJggg==\n"},"metadata":{}},{"output_type":"stream","name":"stderr","text":[":4: FutureWarning: \n","\n","The `ci` parameter is deprecated. Use `errorbar=None` for the same effect.\n","\n"," sns.barplot(\n",":4: FutureWarning: \n","\n","Passing `palette` without assigning `hue` is deprecated and will be removed in v0.14.0. Assign the `x` variable to `hue` and set `legend=False` for the same effect.\n","\n"," sns.barplot(\n"]},{"output_type":"display_data","data":{"text/plain":["
"],"image/png":"iVBORw0KGgoAAAANSUhEUgAAA9gAAAJICAYAAACaO0yGAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAACEOklEQVR4nOzdeVwW5f7/8feNciMuN0qR+wIaqAkC7km4pSZaeDqZeswlSbFScztpZqZlap5cQi2RsDLT0uqUJqJmJi7kqSNmfa1MQXOvNFkCWeT+/eGPOd7dqIijgL2ej4cPvGc+c811j4zwvq9rZix2u90uAAAAAABwXVxKugMAAAAAANwKCNgAAAAAAJiAgA0AAAAAgAkI2AAAAAAAmICADQAAAACACQjYAAAAAACYgIANAAAAAIAJCNgAAAAAAJiAgA0AAAAAgAkI2AAAlKDdu3fLz89Pu3fvLumuGCZNmqSgoKCS7kaJGDhwoAYOHFjS3QAAlFHlS7oDAIDS591339ULL7yggIAArVmzpqS7U6rk5ORo1apV+ve//62ff/5ZLi4uql69uoKDgzVkyBA1bNiwpLtYZnTu3FnHjx8vdF1ISIhiY2Nvco/+mk6fPq3Vq1fr3nvvVZMmTa5Y6+fnV6Q2ly9frjZt2pjRPQAoUwjYAAAn69atU+3atbVv3z4dOXJE9evXL+kulRqjR49WQkKCevbsqT59+igvL0/Jycn64osvFBQURMC+Rk2aNNGjjz7qtPyOO+4ogd78Nf3yyy9atGiRateufdWAPWfOHIfXn3zyiXbu3Om0nPMAwF8VARsA4ODo0aNKSkrSokWLNHXqVK1bt04jR468qX3Iz89Xbm6u3Nzcbup+r2bfvn3aunWrxo4dqxEjRjisu3DhgtLS0kqoZ/+TmZmpihUrlnQ3iqx69eoKDw8v6W6giP78b/XNN99o586d/BsCwP/HNdgAAAfr1q2Th4eHOnTooO7du2vdunXGutzcXLVu3VrPPPOM03YZGRny9/fXyy+/bCzLyclRVFSUunbtqmbNmqlDhw6aM2eOcnJyHLb18/PTCy+8oLVr16pnz57y9/fX9u3bJUmxsbHq16+f2rRpo4CAAD344IOKj4932v/58+c1Y8YMtWnTRkFBQRoxYoROnz4tPz8/LVy40KH29OnTeuaZZ3T33XerWbNm6tmzpz744IOrHpujR49KkoKDg53WlStXTtWqVTNeHz9+XNOmTVP37t0VEBCgNm3aaPTo0Tp27NhV9/P1119r9OjR6tixo3HcZs6cqfPnzzvUFVwr/fPPP2vYsGEKCgrShAkTFBUVpbvuuktnz551avu5555Ty5YtlZ2dXaT3GxERocDAQIWEhGjRokWy2+2SJLvdrs6dO+vxxx932i47O1stWrTQ1KlTr7qPoih4nydOnFBkZKSCgoJ0zz336N1335Uk/fjjjxo0aJACAwPVqVMnh+9ZSfroo4/k5+enr776SlOnTlWbNm0UHBysp59+WqmpqVfd/5kzZzR58mTdfffd8vf31wMPPKB///vfxvprORYF19zHxcVp0aJFuueeexQUFKTRo0crPT1dOTk5eumll9SuXTsFBQXpmWeecTpfpIsjxw8++KACAgLUunVrjR07VidPnnSoGThwoHr16qWDBw9q4MCBat68ue655x7FxMQYNbt379ZDDz0kSXrmmWfk5+cnPz8/ffTRR1c9LoWZOHGi2rRpo9zcXKd1Q4cOVffu3Y3Xl5733bt3l7+/vx588EF99dVXTtsW95wFgJuNEWwAgIN169apa9euslqt6tWrl1atWqV9+/YpICBArq6uuvfee7V582ZNnz5dVqvV2O6zzz5TTk6OwsLCJF0chX788cf13//+Vw8//LAaNmyoAwcO6O2339bhw4f12muvOez3yy+/1IYNGzRgwABVq1ZNtWvXlnTxWs7OnTvr/vvvV25urtavX6+nnnpK0dHR6tixo7H9pEmTtGHDBoWHh6t58+b66quvNHz4cKf399tvv+nhhx+WxWLRgAED5OnpqYSEBD377LPKyMjQkCFDLntsatWqZRyj4OBglS9/+R+j3377rZKSktSzZ0/VqFFDx48f16pVqzRo0CCtX79e7u7ul902Pj5e58+fV//+/VW1alXt27dPK1as0KlTpxQVFeVQm5eXp4iICLVo0UITJ05UhQoVFBQUpMWLFysuLk6PPPKIUZuTk6ONGzeqW7duV50dcOHCBT322GNq3ry5/vnPf2r79u1auHChLly4oKeeekoWi0X333+/YmNjde7cOVWtWtXY9vPPP1dGRoYeeOCBK+6joP+FfRBQsWJFVahQwaE/w4YNU8uWLTVhwgStW7dOL7zwgtzd3TV//nzdf//96tatm9577z1NnDhRgYGBqlu3rkObL7zwgmw2m0aOHKmUlBStWrVKJ06c0DvvvCOLxVJo/86fP6+BAwfq559/1oABA1SnTh3Fx8dr0qRJSktL0+DBg4t1LJYuXaoKFSpo+PDhOnLkiFasWKHy5cvLYrEoLS1NI0eO1DfffKOPPvpItWvXdphF8vrrr+vVV19Vjx499NBDD+ns2bNasWKFBgwYoI8//lg2m82oTU1N1WOPPaauXbuqR48e2rhxo1555RX5+vqqQ4cOatiwoUaPHq2oqCj17dtXLVq0kFT4h0hFER4ero8//lg7duxQp06djOW//vqrvvzySz355JMO9V999ZXi4uI0cOBAWa1WrVq1So899pjWrFkjX19fSdd3zgLATWcHAOD/+/bbb+2+vr72nTt32u12uz0/P98eGhpqnzFjhlGzfft2u6+vr/3zzz932HbYsGH2Ll26GK8//vhje+PGje1fffWVQ92qVavsvr6+9v/+97/GMl9fX3vjxo3tP/30k1OfsrKyHF7n5OTYe/XqZR80aJCx7LvvvrP7+vraX3rpJYfaSZMm2X19fe1RUVHGssmTJ9vbt29vP3v2rEPt2LFj7S1atHDa36Xy8/PtjzzyiN3X19d+991328eNG2dfsWKF/fjx41ftt91utyclJdl9fX3t//73v41lX375pd3X19f+5ZdfXnHb6Ohou5+fn8O+Jk6caPf19bW/8sorTvV9+/a19+nTx2HZpk2bnPZVmIJ2X3zxRYf3Pnz4cPtdd91lP3PmjN1ut9uTk5Ptvr6+9pUrVzpsP2LECHunTp3s+fn5V9xPp06d7L6+voX+iY6OdurPkiVLjGWpqan2gIAAu5+fn339+vXG8kOHDjn9m3/44Yd2X19f+9/+9jd7Tk6OsTwmJsbu6+tr/+yzz4xljzzyiP2RRx4xXr/11lt2X19f+yeffGIsy8nJsfft29ceGBhoT09Pv6ZjUfDv3atXL4e+jBs3zu7n52d/7LHHHLbv27evvVOnTsbrY8eO2Zs0aWJ//fXXHep+/PFHe9OmTR2WF3yvXvr9lp2dbW/fvr191KhRxrJ9+/bZfX197R9++KH9Wk2fPt3u6+trvL5w4YI9NDTUPmbMGIe6N9980+7n52f/+eefjWUF/9bffvutsez48eN2f39/+5NPPmksu55zFgBuNqaIAwAM69at0+23327c/ddisSgsLExxcXG6cOGCJKlt27aqVq2a4uLijO1SU1O1a9cuY/RaujgK27BhQ/n4+Ojs2bPGn7Zt20qS02OpWrVqpUaNGjn16dJRzNTUVKWnp6tFixbav3+/sbxgOvk//vEPh20vHb2VLk7l3bRpkzp37iy73e7Qr5CQEKWnp+v//u//Lnt8LBaLYmNjNWbMGNlsNn366ad64YUX1KlTJ40ZM8bhGuxL+52bm6vff/9d9erVk81mc+h7YS7dNjMzU2fPnlVQUJDsdnuh2/bv399pWXh4uL755hv9/PPPxrJ169apZs2aat269RX3X2DAgAEO733AgAHKzc1VYmKiJMnb21vNmzd3mJJ97tw5bd++Xffff/9lR4Uv1bx5c7355ptOf3r27OlU26dPH+PvNptN3t7ecnd3V48ePYzlPj4+stlsxnT+S/Xt21eurq7G6/79+6t8+fLatm3bZfuXkJAgLy8v9erVy1jm6uqqgQMHKjMz05jOfK3HIjw83KEvAQEBstvt+vvf/+5QFxAQoJMnTyovL0+StHnzZuXn56tHjx4O37+333676tev73ReVaxY0eH6aKvVKn9//0KPjxlcXFx0//33GyP3BdauXaugoCCnWQVBQUFq1qyZ8bpWrVrq0qWLduzYoQsXLlz3OQsANxtTxAEAki5OwV2/fr3atGnjcJ1wQECAli1bpsTERIWEhKh8+fLq1q2bPv30U+Xk5MhqtWrTpk3Kzc11CNhHjhzRoUOH1K5du0L3d+bMGYfXderUKbRu69atev311/X99987XIt6aWA5ceKEXFxcnNr4893Pz549q7S0NL3//vt6//33C91fYdOVL2W1WvX444/r8ccf1y+//KKvvvpKy5cv14YNG1S+fHm98sorki5OLY6OjtZHH32k06dPG9cuS1J6evoV93HixAlFRUXp888/d7pG+NLQIknly5dXjRo1nNoICwvTzJkztXbtWo0cOVLp6enaunWrhgwZUqTg6+Li4hSGvL29Jcnh0Vrh4eF68cUXdfz4cdWuXVvx8fHKzc0t8k2vqlWrprvvvvuqdW5ubvL09HRYVqVKFdWoUcPp/VSpUqXQG879+fuhUqVK8vLyuuyjwqSL77V+/fpycXEckyi4S/aJEyeMZddyLAouN7i0z5JUs2ZNp+X5+flKT09XtWrVdPjwYdntdnXr1q3Q/v75soXCjo+Hh4d+/PHHy77n69W7d2/FxMTos88+U+/evZWcnKz/+7//0/Tp051qC3tCQYMGDZSVlaWzZ8/KxcXlus9ZALiZCNgAAEkXr4H+9ddftX79eq1fv95p/bp16xQSEiJJ6tmzp95//30lJCTo3nvvVXx8vHx8fNS4cWOjPj8/X76+voXeEE2SUyi8dNS2wNdff63HH39crVq10vPPPy8vLy+5urrqww8/1KeffnrN7zE/P1+S9MADD+hvf/tboTVFfc6vdPFRUj179lS3bt3Uq1cvxcfHa/bs2SpfvrxefPFFffTRRxo8eLACAwNVpUoVWSwWjR071iFs/9mFCxf06KOPGtfO+vj4qGLFijp9+rQmTZpkvIcCVqvVKfxJF0NUwQ2/Ro4cqfj4eOXk5BTpuuhr0bNnT82aNUvr1q3TiBEjtHbtWjVr1kw+Pj6m7qdcuXLXtPxKx/hGuZZjUdi/2ZWWF7yf/Px8WSwWxcTEFPre/3wH+csdnxupUaNGuuuuu7R27Vr17t1ba9eulaurq8NMg6Iy+5wFgBuNgA0AkHQxQN92222F3vl58+bNxo3NKlSooFatWsnLy0txcXEKDg7Wl19+6fTYqnr16umHH35Qu3btijRiWpiNGzfKzc1NsbGxDjdU+/DDDx3qatWqpfz8fB07dkwNGjQwlh85csShztPTU5UqVVJ+fn6RRk2LytXVVX5+fjp8+LB+//13eXl5aePGjerdu7cmTZpk1GVnZ1919PrAgQM6fPiwXn75ZfXu3dtYvnPnzmvuV3h4uJ544gnt27dP69atU9OmTXXnnXcWadv8/HwdPXrUGLWWpJSUFEkybkAnSVWrVlXHjh21bt063X///dqzZ48mT558zX29GY4cOWJcoiBJf/zxh3799VeFhoZedpvatWvrxx9/VH5+vkP4TU5OluQ4En0zjkW9evVkt9tVp04dh3+b61Hc8/NKevfurdmzZ+uXX37Rp59+qo4dO8rDw8Op7s/nqCQdPnxY7u7uxoyFG3HOAsCNwjXYAACdP39emzZtUseOHXXfffc5/RkwYID++OMPff7555IujrLdd9992rp1q9auXau8vDyH6eGS1KNHD50+fVqrV68udH+ZmZlX7Ve5cuVksViM678l6dixY9qyZYtDXcHI+sqVKx2Wr1ixwqm97t27a+PGjTpw4IDT/q421fTw4cMOU4ILpKWlKSkpSR4eHkYoKGzk8J133nF4L4UpCHGXjsDa7XYtX778itsVJjQ0VNWqVdMbb7yhr7766ppHrwseg1XQh3fffVeurq5O0/7Dw8N18OBBzZkzR+XKlSv0+unS4P3333d4fNSqVauUl5d3xYAdGhqqX3/91eGeA3l5eXrnnXdUsWJFtWrVyqH+Rh+Lbt26qVy5cg6PTCtgt9v1+++/X3ObBXe0N/M57r169ZLFYtFLL72ko0ePXvZ7LykpyeEa6pMnT2rLli1q3769ypUrd93nLADcbIxgAwD0+eef648//lDnzp0LXR8YGChPT0+tXbvWCNI9evTQO++8o6ioKPn6+hrXpBYIDw/Xhg0b9Pzzz2v37t0KDg7WhQsXlJycrPj4eL3xxhvy9/e/Yr86dOigN998U4899ph69eqlM2fOaOXKlapXr57DNaTNmjVT9+7d9fbbb+vcuXPGY7oOHz4syXGEbvz48dq9e7cefvhh9enTR40aNVJqaqr+7//+T4mJifrPf/5z2f788MMPmjBhgu655x61bNlSHh4eOn36tD7++GP98ssvmjx5shGsO3bsqE8++USVK1dWo0aNtHfvXu3atcvhEU6F8fHxUb169fTyyy/r9OnTqly5sjZu3Fis8OPq6qqePXtqxYoV1xz23NzctH37dk2cOFEBAQHavn27vvjiC40YMcLpWugOHTqoatWqio+PV2hoqG677bYi7+f06dP65JNPnJZXqlRJ9957b5HbKYrc3FwNGTJEPXr0UEpKilauXKkWLVqoS5cul92mb9++ev/99zVp0iT93//9n2rXrq2NGzcao9OVK1d2qL+eY1EU9erV05gxYzR37lwdP35c9957rypVqqRjx47ps88+08MPP6yIiIhrbtNms+m9995TpUqVVLFiRQUEBDhdg38tPD09dc899yg+Pl42m83hkXqX8vX1VUREhMNjuiRp1KhRRs31nLMAcLMRsAEAWrt2rdzc3NS+fftC17u4uBhTX3///XdVq1ZNwcHBqlmzpk6ePOk0el2wzeLFi/XWW2/pk08+0ebNm+Xu7q46depo4MCBRZre2q5dO7300kuKiYnRzJkzVadOHU2YMEHHjx93uknTyy+/rNtvv13r16/X5s2bdffdd2v+/Pm67777HKaX33777VqzZo0WL16szZs3a9WqVapataoaNWqkCRMmXLE/rVq10ujRo7V9+3a9+eab+v3331WpUiU1adJEEyZMUPfu3Y3aZ599Vi4uLlq3bp2ys7MVHBxsfFhwJa6urlqyZIlmzJih6Ohoubm5qWvXrhowYECRbxx2qfDwcK1YsULt2rXTHXfcUeTtypUrpzfeeEPTpk3Tv/71L1WqVEkjR450eo6xdPE68LCwMK1cufKa+/j999/r6aefdlpeu3Zt0wP21KlTtW7dOkVFRSk3N1c9e/bUlClTrjhFukKFCnrnnXf0yiuv6N///rcyMjLk7e2tWbNm6cEHH3Sqv55jUVTDhw9XgwYN9NZbb2nx4sWSLt7ToH379pf9kOxKXF1dNXv2bM2bN0/Tpk1TXl6eZs2adV0BW7r4vbd161b16NHD4Ry8VKtWrRQYGKjFixfrxIkTatSokWbNmuVwP4frOWcB4Gaz2EviLiAAANwE33//vXr37q1//etfpt/cq6z44YcfFB4e7nRNt9lmzpypDz74QDt37jSmHJcWH330kZ555hl98MEHV501YYbSfCxups8++0xPPvmk3n33XbVs2dJpvZ+fnwYMGFDofR8AoKziGmwAwC3h/PnzTsvefvttubi4OF0n+1eyevVqVaxY8bKPdTJDdna21q5dq+7du/+lA6XEsbjUmjVrVLduXbVo0aKkuwIANw1TxAEAt4Q33nhD3333ndq2baty5copISFBCQkJ6tu3r9Ozhf8KPv/8cx08eFCrV6/WgAEDnB7fZIYzZ85o165d2rhxo86dO6dBgwaZvo+ygmPxP+vXr9ePP/6oL774Qs8+++wNuUs5AJRWBGwAwC0hKChIO3fu1GuvvabMzEzVrFlTo0aNcnp82F/FjBkz9Ntvvyk0NNThhlFmOnjwoCZMmKDbbrtNU6ZMUZMmTW7IfsoCjsX/jBs3ThUrVtRDDz2kf/zjHyXdHQC4qbgGGwAAAAAAE3ANNgAAAAAAJiBgAwAAAABgAq7BLuWSkpJkt9vl6upa0l0BAAAAgL+c3NxcWSwWBQUFXbWWgF3K2e12cZk8AAAAAJSMa8ljBOxSrmDk2t/fv4R7AgAAAAB/Pd9++22Ra7kGGwAAAAAAExCwAQAAAAAwAQEbAAAAAAATELABAAAAADABARsAAAAAABMQsAEAAAAAMEGpCthHjhzR1KlTFR4erqZNm6pXr16F1qWlpWnGjBkKCQmRv7+/7r33Xi1btsyhJicnRy+//LLat2+vwMBAPfroo0pOTnZq69ChQ3r00UcVGBio9u3ba86cOcrJyXGqW7Nmjbp37y5/f3898MAD2rp1q1NNenq6Jk+erNatWysoKEijR4/WL7/8UsyjAQAAAAAoS0rVc7B/+uknbdu2Tc2bN1d+fn6hD/TOzMzUwIEDVa5cOU2ePFm33XabDh8+rIyMDIe6GTNmKC4uTpMmTVL16tW1ZMkSDRkyROvXr1eVKlUkSampqRo8eLAaNGighQsX6vTp05o9e7bOnz+vqVOnGm2tX79ezz33nEaMGKG2bdsqLi5OI0eO1LvvvqvAwECjbsyYMTp48KCmTZsmNzc3LViwQMOGDdOHH36o8uVL1aEGAAAAAJisVKW+zp07695775UkTZo0Sd99951TzdKlS/XHH39o7dq1qlixoiSpTZs2DjWnTp3SBx98oOeff14PPfSQJMnf31+dOnXSe++9p2HDhkmS3nvvPf3xxx9atGiRqlatKkm6cOGCpk+frsjISFWvXl2SFBUVpZ49e2rMmDGSpLZt2+rAgQNavHixYmJiJElJSUnasWOHYmNjFRISIkny9vZWWFiYNm3apLCwMBOPFAAAAACgtClVU8RdXK7enQ8++EB///vfjXBdmB07dig/P1/33Xefsaxq1apq3769EhISjGUJCQlq166dEa4lqUePHsrPz9fOnTslSUePHtXhw4fVo0cPh32EhYUpMTHRmE6ekJAgm82m9u3bGzU+Pj5q0qSJwz4BAAAAALemUhWwr+bYsWP69ddfVa1aNY0YMULNmjVT69atNWXKFP3xxx9GXXJysm677TZ5eHg4bN+wYUOH67CTk5Pl4+PjUGOz2eTl5WXUFXz19vZ2ais3N1dHjx416ry9vWWxWBzqfHx8Cr32GwAAAABwaylVU8Sv5rfffpMkvfzyy+rWrZtiYmJ0+PBhzZ07V5mZmZo3b56kizdBK7jO+lI2m02pqanG67S0NNlsNqc6Dw8Po67g65/rCl4XrL/cPj08PAqd6n4t7Ha7MjMzr6sNAAAAAMC1s9vtTgOpl1OmAnZ+fr6ki6PJL7/8siSpXbt2Kl++vKZMmaKxY8eqbt26JdnFGyI3N1fff/99SXcDAAAAAP6SrFZrkerKVMAumPL955uatW3bVtLFu5DXrVtXNpvN6a7i0sVR5kunjdtsNqWnpzvVpaamGnUFX9PT0+Xl5eXQ1qXrbTabTp06dcW2isvV1VWNGjW6rjYAAAAAANfu4MGDRa4tUwG7bt26V/zkIDs7W9LF655/++03p3D752uuC7s+Oj09Xb/++qtRV/D1z9smJyfL1dXVGDH38fFRYmKi0/SBlJQU+fr6FvctS5IsFssVb+oGAAAAALgxijo9XCpjNzmzWq1q3769EhMTHZbv2rVLknTXXXdJkkJCQuTi4qJNmzYZNampqdqxY4dCQ0ONZaGhodq1a5cxGi1J8fHxcnFxMe4GXrduXTVo0EDx8fEO+4yLi1O7du2MwB8aGqrU1FSHvqWkpGj//v0O+wQAAAAA3JpK1Qh2VlaWtm3bJkk6fvy4MjIyjGDbunVreXp6auTIkerXr5/Gjx+vv/3tbzpy5Ijmzp2r+++/X/Xq1ZMk1ahRQw899JDmzJkjFxcXVa9eXdHR0apSpYr69etn7K9fv35655139OSTTyoyMlKnT5/WnDlz1K9fP+MZ2JI0atQoTZgwQfXq1VObNm0UFxenffv2acWKFUZNUFCQQkJCNHnyZE2cOFFubm6aP3++/Pz81K1bt5tx+AAAAAAAJchit9vtJd2JAseOHVOXLl0KXbd8+XLj2uvExES98sorOnDggDw8PHT//fdr7NixDtPHc3JyNH/+fH3yySf6448/FBwcrClTpqhhw4YO7R46dEgvvviikpKSVKlSJYWHhzu1JUlr1qxRTEyMTpw4IW9vb40bN06dOnVyqElPT9esWbO0efNm5eXlKSQkRFOmTHEI69fq22+/lST5+/sXuw0AAAAAQPFcSyYrVQEbzgjYAAAAAFByriWTlalrsAEAAAAAKK0I2AAAAAAAmICADQAAAACACQjYf1H5+fkl3QXgmvF9CwAAgNKsVD2mCzePi4uL/vXKBzp67LeS7gpQJHXr3K5/TniopLsBAAAAXBYB+y/s6LHfdOjQyZLuBgAAAADcEpgiDgAAAACACQjYAAAAAACYgIANAAAAAIAJCNgAAAAAAJiAgA0AAAAAgAkI2AAAAAAAmICADQAAAACACQjYAAAAAACYgIANAAAAAIAJCNgAAAAAAJiAgA0AAAAAgAkI2AAAAAAAmICADQAAAACACQjYAAAAAACYgIANAAAAAIAJCNgAAAAAAJiAgA0AAAAAgAkI2AAAAAAAmICADQAAAACACQjYAAAAAACYgIANAAAAAIAJCNgAAAAAAJiAgA0AAAAAgAkI2AAAAAAAmICADQAAAACACQjYAAAAAACYgIANAAAAAIAJCNgAAAAAAJiAgA0AAAAAgAkI2AAAAAAAmICADQAAAACACQjYAAAAAACYgIANAAAAAIAJCNgAAAAAAJiAgA0AAAAAgAkI2AAAAAAAmICADQAAAACACQjYAAAAAACYgIANAAAAAIAJCNgAAAAAAJigVAXsI0eOaOrUqQoPD1fTpk3Vq1evK9Z/9tln8vPzK7QuPT1dkydPVuvWrRUUFKTRo0frl19+carbs2eP+vbtq4CAAHXq1ElLly6V3W53qLHb7Vq6dKk6duyogIAA9e3bV3v37nVq6/Tp0xo1apSCgoLUunVrPfvss8rIyLi2gwAAAAAAKJNKVcD+6aeftG3bNtWvX18NGza8Yu358+c1c+ZM3X777YWuHzNmjHbu3Klp06bplVdeUUpKioYNG6a8vDyj5siRI4qIiJCXl5eio6M1ePBgRUVFadmyZQ5txcTEKCoqSkOGDFF0dLS8vLw0dOhQHT161KjJzc3VY489psOHD2vu3LmaNm2aduzYofHjx1/HEQEAAAAAlBXlS7oDl+rcubPuvfdeSdKkSZP03XffXbY2OjpatWrVUp06dZzqkpKStGPHDsXGxiokJESS5O3trbCwMG3atElhYWGSpNjYWFWrVk3z5s2T1WpVu3btdPbsWS1ZskQDBw6U1WpVdna2oqOjNXToUA0ZMkSS1KJFC913332KjY3VtGnTJEkbN27UTz/9pLi4OPn4+EiSbDabIiIitG/fPgUEBJh5qAAAAAAApUypGsF2cSlad37++We9+eabmjJlSqHrExISZLPZ1L59e2OZj4+PmjRpooSEBIe6Ll26yGq1GsvCwsKUlpampKQkSRenkGdkZKhHjx5GjdVqVdeuXZ3a8vPzM8K1JLVv315Vq1bVtm3bivS+AAAAAABlV6kK2EX10ksvKTw8XI0bNy50fXJysry9vWWxWByW+/j4KDk5WZKUmZmpkydPOgTighqLxWLUFXz9c13Dhg114sQJnT9/3qj7c43FYpG3t7fRBgAAAADg1lWqpogXxeeff66kpCTFx8dftiYtLU1VqlRxWu7h4WFMJ09PT5d0cRr3paxWq9zd3ZWammq0ZbVa5ebm5lBns9lkt9uVmpqqChUqXHGfBW0Vl91uV2Zm5nW1cSmLxSJ3d3fT2gNupqysLKcbEQIAAAA3it1udxq8vZwyFbCzs7M1c+ZMjRo1Sp6eniXdnZsmNzdX33//vWntubu7q2nTpqa1B9xMKSkpysrKKuluAAAA4C/k0suKr6RMBey3335bLi4u6tmzp9LS0iRdDJ/5+flKS0tThQoVZLVaZbPZdOrUKaftU1NT5eHhIUnGaHPBSHaBnJwcZWVlGXU2m005OTnKzs52GMVOS0uTxWJxqCvskVypqamqWbPmdb1vV1dXNWrU6LrauFRRP30BSiNvb29GsAEAAHDTHDx4sMi1ZSpgJycn68iRI2rXrp3TulatWmnatGnq37+/fHx8lJiY6DSUn5KSIl9fX0lSxYoVVbNmTafro1NSUmS3243rqQu+pqSkOFzznZycrFq1aqlChQpG3YEDBxzastvtSklJcbjZWnFYLBZVrFjxutoAbhVc3gAAAICb6VoGKMvUTc6GDRum5cuXO/wJCQlR7dq1tXz5cnXu3FmSFBoaqtTUVCUmJhrbpqSkaP/+/QoNDTWWhYaGasuWLcrNzTWWxcXFyWazKSgoSJIUHBysypUra8OGDUZNbm6uNm3a5NTWDz/8oMOHDxvLEhMTde7cOXXo0MH0YwEAAAAAKF1K1Qh2VlaW8Uir48ePKyMjw7iZWevWrdWwYUM1bNjQYZt///vfOn36tNq0aWMsCwoKUkhIiCZPnqyJEyfKzc1N8+fPl5+fn7p162bURUREaN26dRo/frz69++vAwcOKDY2VmPHjjXm2Lu5uSkyMlILFy6Up6enfH19tWrVKp07d04RERFGW927d1d0dLRGjRqlcePGKSsrS3PmzFHHjh15BjYAAAAA/AWUqoB95swZPfXUUw7LCl4vX77cIURfzYIFCzRr1ixNnTpVeXl5CgkJ0ZQpU1S+/P/ecv369RUbG6vZs2dr+PDh8vT01OjRozV06FCHtoYNGya73a5ly5bp7NmzatKkiWJjY1W3bl2jxtXVVW+88YZmzJihcePGqXz58uratasmT55cnEMBAAAAAChjLHbuFlSqffvtt5Ikf39/09sePWaJDh06aXq7wI3QsGFNRS0YUdLdAAAAwF/MtWSyMnUNNgAAAAAApRUBGwAAAAAAExCwAQAAAAAwAQEbAAAAAAATELABAAAAADABARsAAAAAABMQsAEAAAAAMAEBGwAAAAAAExCwAQAAAAAwAQEbAAAAAAATELABAAAAADABARsAAAAAABMQsAEAAAAAMAEBGwAAAAAAExCwAQAAAAAwAQEbAAAAAAATELABAAAAADABARsAAAAAABMQsAEAAAAAMAEBGwAAAAAAExCwAQAAAAAwAQEbAAAAAAATELABAAAAADABARsAbpAL+fkl3QXgmvF9CwBA8ZUv6Q4AwK2qnIuLpq74tw6f/q2kuwIUSYPqt+uFR/5W0t0AAKDMImADwA10+PRv+vH4qZLuBgAAAG4CpogDAAAAAGACAjYAAAAAACYgYAMAAAAAYAICNgAAAAAAJiBgAwAAAABgAgI2AAAAAAAmIGADAAAAAGACAjYAAAAAACYgYAMAAAAAYAICNgAAAAAAJiBgAwAAAABgAgI2AAAAAAAmIGADAAAAAGACAjYAAAAAACYgYAMAAAAAYAICNgAAAAAAJiBgAwAAAABgAgI2AAAAAAAmIGADAAAAAGACAjYAAAAAACYgYAMAAAAAYIJSFbCPHDmiqVOnKjw8XE2bNlWvXr0c1mdkZGjhwoV66KGH1LJlS919990aMWKEfvzxR6e20tPTNXnyZLVu3VpBQUEaPXq0fvnlF6e6PXv2qG/fvgoICFCnTp20dOlS2e12hxq73a6lS5eqY8eOCggIUN++fbV3716ntk6fPq1Ro0YpKChIrVu31rPPPquMjIzrOygAAAAAgDKhVAXsn376Sdu2bVP9+vXVsGFDp/UnTpzQ+++/r/bt22vBggV68cUXlZ6err59++rQoUMOtWPGjNHOnTs1bdo0vfLKK0pJSdGwYcOUl5dn1Bw5ckQRERHy8vJSdHS0Bg8erKioKC1btsyhrZiYGEVFRWnIkCGKjo6Wl5eXhg4dqqNHjxo1ubm5euyxx3T48GHNnTtX06ZN044dOzR+/HiTjxIAAAAAoDQqX9IduFTnzp117733SpImTZqk7777zmF9nTp1tHnzZrm7uxvL2rZtq86dO2vlypV67rnnJElJSUnasWOHYmNjFRISIkny9vZWWFiYNm3apLCwMElSbGysqlWrpnnz5slqtapdu3Y6e/aslixZooEDB8pqtSo7O1vR0dEaOnSohgwZIklq0aKF7rvvPsXGxmratGmSpI0bN+qnn35SXFycfHx8JEk2m00RERHat2+fAgICbthxAwAAAACUvFI1gu3icuXuVKxY0SFcS1KlSpVUr149h+nfCQkJstlsat++vbHMx8dHTZo0UUJCgkNdly5dZLVajWVhYWFKS0tTUlKSpItTyDMyMtSjRw+jxmq1qmvXrk5t+fn5GeFaktq3b6+qVatq27ZtRT0EAAAAAIAyqlQF7OJIS0vTTz/95BBsk5OT5e3tLYvF4lDr4+Oj5ORkSVJmZqZOnjzpsF1BjcViMeoKvv65rmHDhjpx4oTOnz9v1P25xmKxyNvb22gDAAAAAHDrKlVTxIvjX//6lywWi/r3728sS0tLU5UqVZxqPTw8jGnn6enpki5O476U1WqVu7u7UlNTjbasVqvc3Nwc6mw2m+x2u1JTU1WhQoUr7rOgreKy2+3KzMy8rjYuZbFYnGYCAGVFVlaW040ISyPOM5RlZeU8AwDgZrDb7U6Dt5dTpgP2hx9+qNWrV2v27NmqUaNGSXfnhsnNzdX3339vWnvu7u5q2rSpae0BN1NKSoqysrJKuhtXxXmGsqysnGcAANwsl15WfCVlNmBv27ZNU6dO1RNPPKG//e1vDutsNptOnTrltE1qaqo8PDwkyRhtLhjJLpCTk6OsrCyjzmazKScnR9nZ2Q6j2GlpabJYLA51hT2SKzU1VTVr1ryOdyq5urqqUaNG19XGpYr66QtQGnl7e5eJkTXOM5RlZeU8AwDgZjh48GCRa8tkwN67d6+eeuop9e7dW0899ZTTeh8fHyUmJjoN5aekpMjX11fSxRum1axZ0+n66JSUFNntduN66oKvKSkpaty4sVGXnJysWrVqqUKFCkbdgQMHHNqy2+1KSUlxuNlacVgsFlWsWPG62gBuFUy7Bm48zjMAAP7nWgZOytxNzg4ePKjIyEi1bdtW06dPL7QmNDRUqampSkxMNJalpKRo//79Cg0NdajbsmWLcnNzjWVxcXGy2WwKCgqSJAUHB6ty5crasGGDUZObm6tNmzY5tfXDDz/o8OHDxrLExESdO3dOHTp0uO73DQAAAAAo3UrVCHZWVpbxSKvjx48rIyND8fHxkqTWrVvLbrcrIiJCbm5uGjx4sMNzsitXrmxMow4KClJISIgmT56siRMnys3NTfPnz5efn5+6detmbBMREaF169Zp/Pjx6t+/vw4cOKDY2FiNHTvWmGPv5uamyMhILVy4UJ6envL19dWqVat07tw5RUREGG11795d0dHRGjVqlMaNG6esrCzNmTNHHTt25BnYAAAAAPAXUKoC9pkzZ5ymfBe8Xr58uSQZ11YPGTLEoa5169Z65513jNcLFizQrFmzNHXqVOXl5SkkJERTpkxR+fL/e8v169dXbGysZs+ereHDh8vT01OjR4/W0KFDHdoeNmyY7Ha7li1bprNnz6pJkyaKjY1V3bp1jRpXV1e98cYbmjFjhsaNG6fy5cura9eumjx58vUfGAAAAABAqWexcxeTUu3bb7+VJPn7+5ve9ugxS3To0EnT2wVuhIYNaypqwYiS7sY1GzQ3Rj8ed77pIlAa+dWuoeXjh5V0NwAAKFWuJZOVuWuwAQAAAAAojQjYAAAAAACYgIANAAAAAIAJCNgAAAAAAJiAgA0AAAAAgAkI2AAAAAAAmICADQAAAACACQjYAAAAAACYgIANAAAAAIAJCNgAAAAAAJiAgA0AAAAAgAkI2AAAAAAAmICADQAAAACACQjYAAAAAACYgIANAAAAAIAJCNgAAAAAAJiAgA0AAAAAgAkI2AAAAAAAmICADQAAAACACQjYAAAAAACYgIANAAAAAIAJCNgAAAAAAJiAgA0AAAAAgAkI2AAAAAAAmICADQAAAACACQjYAAAAAACYgIANAAAAAIAJCNgAAAAAAJiAgA0AAAAAgAkI2AAAAAAAmICADQAAAACACQjYAAAAAACYgIANAAAAAIAJCNgAAAAAAJiAgA0AAAAAgAkI2AAAAAAAmICADQAAAACACQjYAAAAAACYgIANAAAAAIAJCNgAAAAAAJiAgA0AAAAAgAkI2AAAAAAAmICADQAAAACACYoVsHNycszuBwAAAAAAZVqxAnZISIiee+45ff3112b3BwAAAACAMql8cTbq3r27Nm3apA8++EA1a9bU/fffrwceeEANGzY0u38AAAAAAJQJxRrBfvHFF7Vjxw5FRUWpWbNmevPNN9WrVy89+OCDevvtt/Xbb78VqzNHjhzR1KlTFR4erqZNm6pXr16F1q1Zs0bdu3eXv7+/HnjgAW3dutWpJj09XZMnT1br1q0VFBSk0aNH65dffnGq27Nnj/r27auAgAB16tRJS5culd1ud6ix2+1aunSpOnbsqICAAPXt21d79+51auv06dMaNWqUgoKC1Lp1az377LPKyMgo1rEAAAAAAJQtxb7Jmaurq7p27aqoqCjt2rVLL7zwgqpUqaKXX35ZHTt21LBhw7Ru3TqdP3++yG3+9NNP2rZtm+rXr3/Z0fD169frueeeU48ePRQTE6PAwECNHDnSKfCOGTNGO3fu1LRp0/TKK68oJSVFw4YNU15enlFz5MgRRUREyMvLS9HR0Ro8eLCioqK0bNkyh7ZiYmIUFRWlIUOGKDo6Wl5eXho6dKiOHj1q1OTm5uqxxx7T4cOHNXfuXE2bNk07duzQ+PHji/z+AQAAAABlV7GmiP9Z5cqV1adPHzVu3FgxMTHatGmTtm/fru3bt6tSpUp6+OGHNWrUKFWsWPGK7XTu3Fn33nuvJGnSpEn67rvvnGqioqLUs2dPjRkzRpLUtm1bHThwQIsXL1ZMTIwkKSkpSTt27FBsbKxCQkIkSd7e3goLC9OmTZsUFhYmSYqNjVW1atU0b948Wa1WtWvXTmfPntWSJUs0cOBAWa1WZWdnKzo6WkOHDtWQIUMkSS1atNB9992n2NhYTZs2TZK0ceNG/fTTT4qLi5OPj48kyWazKSIiQvv27VNAQMB1HWMAAAAAQOl23Y/pOnr0qF577TX16NFDDz/8sL766is98sgjWrNmjT7++GOFh4frnXfe0cSJE6/eGZcrd+fo0aM6fPiwevTo4bA8LCxMiYmJxt3NExISZLPZ1L59e6PGx8dHTZo0UUJCgrEsISFBXbp0kdVqdWgrLS1NSUlJki5OIc/IyHDYp9VqVdeuXZ3a8vPzM8K1JLVv315Vq1bVtm3brvreAQAAAABlW7FGsH///XfFxcVp3bp1+uabb+Tq6qqOHTvqn//8p0JDQ1W+/P+anTp1qmrUqKHXXnvtujubnJws6eJo9KUaNmyo3NxcHT16VA0bNlRycrK8vb1lsVgc6nx8fIw2MjMzdfLkSYdAXFBjsViUnJysNm3aGPV/rmvYsKHefvttnT9/XhUqVFBycrJTjcVikbe3t9EGAAAAAODWVayAfc899ygvL0+BgYF6/vnnFRYWJpvNdtn6O++8U56ensXuZIHU1FRJctpXweuC9WlpaapSpYrT9h4eHsa08/T09ELbslqtcnd3d2jLarXKzc3NaZ92u12pqamqUKHCFfdZ0FZx2e12ZWZmXlcbl7JYLHJ3dzetPeBmysrKcroRYWnEeYayrKycZwAA3Ax2u91p8PZyihWwIyMjFR4ernr16hWpvlOnTurUqVNxdgVdvIHa999/b1p77u7uatq0qWntATdTSkqKsrKySrobV8V5hrKsrJxnAADcLJdeVnwl1xyws7Ky9OOPP2rv3r1FDthm8fDwkHRx9NnLy8tYnpaW5rDeZrPp1KlTTtunpqYaNQWjzQUj2QVycnKUlZXl0FZOTo6ys7MdRrHT0tJksVgc6gp7JFdqaqpq1qxZvDf8/7m6uqpRo0bX1calivrpC1AaeXt7l4mRNc4zlGVl5TwDAOBmOHjwYJFrrzlgu7u7a9euXQoNDb3WTa9bwTXOf77eOTk5Wa6urqpbt65Rl5iY6DSUn5KSIl9fX0lSxYoVVbNmTafro1NSUmS32432C76mpKSocePGDvusVauWKlSoYNQdOHDAoS273a6UlBSHm60Vh8Viueod2IG/CqZdAzce5xkAAP9zLQMnxbqLeIsWLYy7bN9MdevWVYMGDRQfH++wPC4uTu3atTOG7UNDQ5WamqrExESjJiUlRfv373f4YCA0NFRbtmxRbm6uQ1s2m01BQUGSpODgYFWuXFkbNmwwanJzc7Vp0yantn744QcdPnzYWJaYmKhz586pQ4cO5hwAAAAAAECpVaxrsKdOnaqIiAjNnz9f/fv3V40aNUzpTFZWlvFIq+PHjysjI8MI061bt5anp6dGjRqlCRMmqF69emrTpo3i4uK0b98+rVixwmgnKChIISEhmjx5siZOnCg3NzfNnz9ffn5+6tatm1EXERGhdevWafz48erfv78OHDig2NhYjR071gjrbm5uioyM1MKFC+Xp6SlfX1+tWrVK586dU0REhNFW9+7dFR0drVGjRmncuHHKysrSnDlz1LFjR56BDQAAAAB/ARZ7MS6yCgoK0oULF4yR33Llyjld9G2xWPTf//73mto9duyYunTpUui65cuXq02bNpKkNWvWKCYmRidOnJC3t7fGjRvndBO19PR0zZo1S5s3b1ZeXp5CQkI0ZcoUVa9e3aFuz549mj17tr7//nt5enpqwIABGjZsmMM0ALvdrqVLl2rlypU6e/asmjRpomeeecYY5S5w+vRpzZgxQzt27FD58uXVtWtXTZ48WZUrV76m43Cpb7/9VpLk7+9f7DYuZ/SYJTp06KTp7QI3QsOGNRW1YERJd+OaDZobox+PO98TAiiN/GrX0PLxw0q6GwAAlCrXksmKFbAnTZpUpHnos2bNutam8ScEbOAiAjZw4xGwAQBwdi2ZrFhTxGfPnl2czQAAAAAAuGUV6yZnAAAAAADAUbFGsAucOnVK+/fvV3p6eqHPy+zdu/f1NA8AAAAAQJlRrICdnZ2tiRMnatOmTcrPz5fFYjEC9qXXZhOwAQAAAAB/FcWaIj5v3jxt3rxZY8aM0TvvvCO73a7Zs2dr2bJlCg0NVePGjfXJJ5+Y3VcAAAAAAEqtYgXsjRs36sEHH9Tw4cPVqFEjSVL16tV19913Kzo6WlWqVNG7775rakcBAAAAACjNihWwz5w5o4CAAElShQoVJElZWVnG+u7du2vz5s0mdA8AAAAAgLKhWAH79ttv1++//y5Jcnd3l4eHh1JSUoz1GRkZys7ONqeHAAAAAACUAcW6yVlAQID27NljvO7UqZNiY2Pl5eWl/Px8vfXWWwoMDDSrjwAAAAAAlHrFCtgDBw5UfHy8cnJyZLVa9dRTTykpKUlPP/20JKlevXp69tlnTe0oAAAAAAClWbECdsuWLdWyZUvjdc2aNbVhwwYdOHBALi4u8vHxUfny1/WIbQAAAAAAyhTTUrCLi4saN25sVnMAAAAAAJQpRQrYX331VbEab9WqVbG2AwAAAACgrClSwB44cKAsFkuRG7Xb7bJYLPr++++L3TEAAAAAAMqSIgXs5cuX3+h+AAAAAABQphUpYLdu3fpG9wMAAAAAgDLNpaQ7AAAAAADAraDYdxHPzs7Wxo0btX//fqWnpys/P99hvcVi0cyZM6+7gwAAAAAAlAXFCtjHjx/XoEGDdPz4cdlsNqWnp8vDw0Pp6em6cOGCqlWrpooVK5rdVwAAAAAASq1iTRGfM2eOMjIytHr1asXHx8tut2v+/PlKSkrShAkTVKFCBcXGxprdVwAAAAAASq1iBewvv/xS/fv3V0BAgFxc/teE1WrVY489prZt2zI9HAAAAADwl1KsgH3+/HnVrl1bklS5cmVZLBalp6cb64OCgvTf//7XnB4CAAAAAFAGFCtg16xZU6dPn5YklS9fXtWrV9fevXuN9QcPHpSbm5spHQQAAAAAoCwo1k3O2rZtqy1btmjkyJGSpL/97W9aunSp0tLSlJ+fr7Vr1yo8PNzUjgIAAAAAUJoVK2APHz5c3377rXJycmS1WjVixAj98ssv2rhxo1xcXNSrVy8988wzZvcVAAAAAIBSq1gBu1atWqpVq5bx2s3NTS+99JJeeukl0zoGAAAAAEBZUqxrsAuTn5+vM2fOyG63m9UkAAAAAABlRpEDdkpKij7++GOlpqY6LM/IyNDTTz+t5s2bKyQkRG3bttWKFStM7ygAAAAAAKVZkQP2m2++qVdffVU2m81h+XPPPae1a9eqVq1a6tq1q6xWq1566SV99tlnpncWAAAAAIDSqsjXYO/Zs0cdO3aUxWIxlp08eVIbNmxQYGCgVqxYofLlyystLU0PPfSQ3n33Xd177703pNMAAAAAAJQ2RR7BPn36tHx8fByWbd26VRaLRYMGDVL58hezus1mU3h4uPbv329uTwEAAAAAKMWKHLDz8/ONEF3gv//9rySpdevWDstr1KihP/74w4TuAQAAAABQNhQ5YNerV0/ffPON8frChQvavXu3fHx8dPvttzvUpqamytPT07xeAgAAAABQyhX5GuzevXvrX//6l3x8fBQcHKy1a9fqzJkzGjhwoFPt119/rQYNGpjZTwAAAAAASrUiB+x//OMfSkxM1Lx582SxWGS329WqVSsNHTrUoe7kyZNKSEjQmDFjzO4rAAAAAAClVpEDtqurq5YsWaJvv/1WR48eVa1atRQYGOhUl5OTo7lz56pVq1Zm9hMAAAAAgFKtyAG7gL+/v/z9/S+7vn79+qpfv/51dQoAAAAAgLKmyDc5AwAAAAAAl0fABgAAAADABARsAAAAAABMQMAGAAAAAMAEBGwAAAAAAExwzXcRv1ROTo7+7//+T2fOnFFwcLA8PT3N6hcAAAAAAGVKsUewly9frpCQEP3jH//QqFGj9OOPP0qSzp49qzZt2uiDDz4wrZMAAAAAAJR2xQrYH374oWbOnKl77rlHL730kux2u7HO09NTbdu2VVxcnGmdBAAAAACgtCtWwH7zzTfVpUsXzZ07V506dXJaf9ddd+mnn3667s4BAAAAAFBWFCtgHzlyRKGhoZddX7VqVZ07d664fQIAAAAAoMwpVsC22Wz6/fffL7v+4MGD8vLyKnanrmbLli3q06ePgoKCFBISoqeeekpHjx51qluzZo26d+8uf39/PfDAA9q6datTTXp6uiZPnqzWrVsrKChIo0eP1i+//OJUt2fPHvXt21cBAQHq1KmTli5d6jA1XpLsdruWLl2qjh07KiAgQH379tXevXtNe98AAAAAgNKrWAE7NDRUq1evVlpamtO6n376SWvWrFHnzp2vu3OF2b17t0aOHKlGjRpp8eLFmjx5sn744QcNHTpU58+fN+rWr1+v5557Tj169FBMTIwCAwM1cuRIp8A7ZswY7dy5U9OmTdMrr7yilJQUDRs2THl5eUbNkSNHFBERIS8vL0VHR2vw4MGKiorSsmXLHNqKiYlRVFSUhgwZoujoaHl5eWno0KGFhn8AAAAAwK2lWI/pGjNmjB5++GH16tVLnTp1ksVi0ccff6wPP/xQmzZtkpeXl5544gmz+yrpYnCuVauWZs6cKYvFIunijdUGDx6s7777Ti1btpQkRUVFqWfPnhozZowkqW3btjpw4IAWL16smJgYSVJSUpJ27Nih2NhYhYSESJK8vb0VFhamTZs2KSwsTJIUGxuratWqad68ebJarWrXrp3Onj2rJUuWaODAgbJarcrOzlZ0dLSGDh2qIUOGSJJatGih++67T7GxsZo2bdoNOR4AAAAAgNKhWCPY1atX10cffaR77rlHGzZskN1u1yeffKKtW7eqZ8+eWr169Q17JnZeXp4qVapkhGtJqlKliiQZU7aPHj2qw4cPq0ePHg7bhoWFKTExUTk5OZKkhIQE2Ww2tW/f3qjx8fFRkyZNlJCQYCxLSEhQly5dZLVaHdpKS0tTUlKSpItTyDMyMhz2abVa1bVrV4e2AAAAAAC3pmI/B/u2227TSy+9pP/85z/atWuXduzYoa+++kqzZs3SbbfdZmYfHTz44IM6dOiQ3n33XaWnp+vo0aOaN2+emjZtquDgYElScnKypIuj0Zdq2LChcnNzjSnbycnJ8vb2dgjr0sWQXdBGZmamTp48KR8fH6cai8Vi1BV8/XNdw4YNdeLECYfp6wAAAACAW0+xpoj/2Y0arS5My5YttWjRIo0fP14vvPCCJKlJkyZ64403VK5cOUlSamqqpIs3Y7tUweuC9Wlpacbo96U8PDz03XffSbp4E7TC2rJarXJ3d3doy2q1ys3NzWmfdrtdqampqlChQrHes91uV2ZmZrG2LYzFYpG7u7tp7QE3U1ZWltMNBksjzjOUZWXlPAMA4Gaw2+1Og7KXU6yAvWjRoiuut1gscnNzU40aNdSqVStVr169OLsp1J49e/T000/r4YcfVseOHXXu3Dm99tprGj58uFauXFnsEFua5ebm6vvvvzetPXd3dzVt2tS09oCbKSUlRVlZWSXdjaviPENZVlbOMwAAbpZLLxe+kmIH7IIE/+dPuP+8vFy5curTp4+mTp0qF5diz0g3zJgxQ23bttWkSZOMZYGBgerYsaM++eQT9e3bVx4eHpIujj5f+riwgrueF6y32Ww6deqU0z5SU1ONmoIR7oKR7AI5OTnKyspyaCsnJ0fZ2dkOo9hpaWmyWCxGXXG4urqqUaNGxd7+z4r66QtQGnl7e5eJkTXOM5RlZeU8AwDgZjh48GCRa4sVsLdt26bIyEg1adJEAwcOVL169SRdfJzVihUr9OOPP2r+/PnKzMzU22+/rffff1933HGHKXcWP3TokLp06eKwrEaNGqpWrZp+/vlnSf+7Djo5Odnhmujk5GS5urqqbt26Rl1iYqLTkH9KSop8fX0lSRUrVlTNmjWNa6wvrbHb7Ub7BV9TUlLUuHFjh33WqlXrukbWLRaLKlasWOztgVsJ066BG4/zDACA/7mWgZNiDSlPnz5dPj4+mjVrlpo2barKlSurcuXKuuuuuzRr1izVr19fc+fOVZMmTTR79myFhITok08+Kc6unNSqVUv79+93WHb8+HH9/vvvql27tiSpbt26atCggeLj4x3q4uLi1K5dO2N4PzQ0VKmpqUpMTDRqUlJStH//foWGhhrLQkNDtWXLFuXm5jq0ZbPZFBQUJEkKDg5W5cqVtWHDBqMmNzdXmzZtcmgLAAAAAHBrKlbA/vLLL9WqVavLrm/VqpV27txpvO7QoYNOnDhRnF056devnz777DPNmDFDu3btUlxcnEaMGKHbbrvN4RFZo0aN0qeffqqoqCjt3r1bzz//vPbt2+cwih4UFKSQkBBNnjxZGzZs0Oeff67Ro0fLz89P3bp1M+oiIiJ09uxZjR8/XomJiXr77bcVGxurESNGGGHdzc1NkZGRWrZsmd5++20lJiZq/PjxOnfunCIiIkx57wAAAACA0qtYU8StVqv27dun/v37F7r+m2++kaurq/E6Ly/PtCnOgwYNktVq1apVq/Thhx+qUqVKCgwM1IIFC1StWjWjrlevXsrKylJMTIyWLl0qb29vLVq0yBhxLrBgwQLNmjVLU6dOVV5enkJCQjRlyhSVL/+/Q1O/fn3FxsZq9uzZGj58uDw9PTV69GgNHTrUoa1hw4bJbrdr2bJlOnv2rJo0aaLY2FhjSjoAAAAA4NZVrIDdq1cvvfvuu6patar69++vOnXqSJKOHTumlStXau3atRowYIBRv3v3btNu0mWxWNS/f//LhvtL9enTR3369LliTZUqVTRz5kzNnDnzinXBwcFavXr1VfsWGRmpyMjIq/YNAAAAAHBrKVbA/uc//6nffvtNb775pt566y3j7uD5+fmy2+3q1q2b/vnPf0qSsrOzdddddyk4ONi8XgMAAAAAUMoUK2C7ublpwYIF2r9/v7Zv367jx49LkmrXrq2QkBDdddddDrUjR440p7cAAAAAAJRSxQrYBZo2baqmTZua1RcAAAAAAMqsYt1FHAAAAAAAOCr2CPa2bdv01ltvaf/+/UpPT5fdbneq+f7776+rcwAAAAAAlBXFGsHeuHGjRowYod9++01hYWHKz89Xz549FRYWpgoVKsjPz09PPvmk2X0FAAAAAKDUKtYIdnR0tAICArRy5UqlpqZq1apV+vvf/6527drp2LFj6tu3r/HoLgAAAAAA/gqKNYJ96NAhhYWFqVy5cipf/mJGz8vLkyTVqVNH/fv3V0xMjHm9BAAAAACglCtWwK5QoYJcXV0lSTabTVarVb/++qux/vbbb9exY8fM6SEAAEAhLuTnl3QXgGvG9y1wayvWFHFvb28dOnTIeN2kSRN98skneuCBB3ThwgV9+umnqlmzpmmdBAAA+LNyLi6asmWNUn7/9erFQCngXc1LM7r0KeluALiBihWwu3btqnfeeUcTJ06U1WrViBEj9MQTT6hVq1aSpKysLM2cOdPUjgIAAPxZyu+/6sffTpZ0NwAAkFTMgB0REaGIiAjjdadOnfTOO+9o06ZNKleunDp06KC2bdua1kkAAAAAAEq7aw7YOTk52r59u2rXrq3GjRsby1u2bKmWLVua2jkAAAAAAMqKa77Jmaurq5566iklJSXdiP4AAAAAAFAmXXPAtlgsatCggX7//fcb0R8AAAAAAMqkYj2mKzIyUu+++66Sk5PN7g8AAAAAAGVSsW5y9s0336hq1aq6//771bp1a9WuXVsVKlRwqpsyZcp1dxAAAAAAgLKgWAF7xYoVxt8TExMLrbFYLARsAAAAAMBfRrEC9g8//GB2PwAAAAAAKNOKdQ02AAAAAABwVKwR7AJ79+7V7t27debMGf3jH/9QgwYNlJWVpeTkZDVo0ECVKlUyq58AAAAAAJRqxQrYOTk5GjdunLZs2SK73S6LxaJOnTqpQYMGcnFx0dChQzVkyBA9/vjjZvcXAAAAAIBSqVhTxF999VV98cUXmjZtmuLj42W32411bm5uuu+++7RlyxbTOgkAAAAAQGlXrIC9fv169evXT3379pWHh4fT+oYNG+ro0aPX3TkAAAAAAMqKYgXsM2fOyM/P77Lry5Urp/Pnzxe7UwAAAAAAlDXFCtg1a9ZUcnLyZdfv2bNH9erVK3anAAAAAAAoa4oVsHv16qX33ntPSUlJxjKLxSJJWr16tTZs2KDevXub0kEAAAAAAMqCYt1FfMSIEfrmm2/0yCOPyMfHRxaLRbNmzVJqaqpOnTqlDh06aMiQISZ3FQAAAACA0qtYAdtqteqNN97Q2rVrtXHjRuXn5ysnJ0d+fn4aM2aMwsPDjRFtAAAAAAD+CooVsKWLU8LDw8MVHh5uZn8AAAAAACiTinUN9pw5c7R//36z+wIAAAAAQJlVrIC9YsUK/f3vf1e3bt20YMEC/fjjj2b3CwAAAACAMqVYAXvXrl2aNWuWGjRooDfeeEO9e/dWz549tXjx4is+vgsAAAAAgFtVsa7Brly5snr37q3evXsrLS1NGzduVHx8vF5//XUtWrRIvr6+6tmzp4YPH252fwEAAAAAKJWKNYJ9KZvNpj59+ig2Nlbbt2/XxIkTdezYMc2fP9+M/gEAAAAAUCYU+y7il8rNzVVCQoLi4uK0detWZWZmqmbNmmY0DQAAAABAmVDsgJ2Xl6edO3cqLi5OW7ZsUUZGhry8vPTggw8qLCxMwcHBZvYTAAAAAIBSrVgBe/LkydqyZYtSU1NVrVo19ezZUz179lSrVq1ksVjM7iMAAAAAAKVesQL2li1bdO+99yosLExt27ZVuXLlnGpSU1Pl4eFx3R0EAAAAAKAsKFbA3rlzp8qXd940JydHW7Zs0bp167R9+3Z9++23191BAAAAAADKgmIF7EvDtd1uV2JiotatW6fNmzcrIyNDnp6e6tWrl2mdBAAAAACgtCv2Tc6+++47rVu3TuvXr9dvv/0mi8WisLAwPfLIIwoMDORabAAAAADAX8o1BeyjR49q7dq1WrdunY4cOaLq1avr/vvvV0BAgMaOHavu3bsrKCjoRvUVAAAAAIBSq8gBu2/fvtq3b5+qVaum7t27a8aMGWrZsqUk6eeff75hHQQAAAAAoCwocsD+5ptvVKdOHU2aNEkdO3Ys9CZnAAAAAAD8VbkUtfC5556Tl5eXRo4cqfbt22vq1Kn68ssvZbfbb2T/AAAAAAAoE4ocsAcMGKBVq1Zp8+bNGjx4sL7++msNGTJE99xzj1599VVZLJabemOzf//73+rdu7f8/f3Vpk0bPfbYYzp//ryx/vPPP9cDDzwgf39/de/eXR9++KFTGzk5OXr55ZfVvn17BQYG6tFHH1VycrJT3aFDh/Too48qMDBQ7du315w5c5STk+NUt2bNGnXv3l3+/v564IEHtHXrVnPfNAAAAACg1CpywC5Qt25dPfHEE4qLi9MHH3ygnj176j//+Y/sdrumT5+u5557Tlu3blV2dvaN6K8k6fXXX9eLL76osLAwxcbG6oUXXlCdOnV04cIFSdLXX3+tkSNHKjAwUDExMerRo4eeffZZxcfHO7QzY8YMrVmzRmPHjtXChQuVk5OjIUOGKD093ahJTU3V4MGDlZubq4ULF2rs2LFavXq1Zs+e7dDW+vXr9dxzz6lHjx6KiYlRYGCgRo4cqb17996w4wAAAAAAKD2u60LqZs2aqVmzZpo4caK+/PJLrV27VnFxcVqzZo3c3d2VlJRkVj8NycnJWrRokV577TV16NDBWN69e3fj76+//roCAgL0wgsvSJLatm2ro0ePKioqSvfdd58k6dSpU/rggw/0/PPP66GHHpIk+fv7q1OnTnrvvfc0bNgwSdJ7772nP/74Q4sWLVLVqlUlSRcuXND06dMVGRmp6tWrS5KioqLUs2dPjRkzxtjngQMHtHjxYsXExJh+HAAAAAAApcs1j2AX2oiLi+6++27Nnj1bu3bt0rx589S2bVszmnby0UcfqU6dOg7h+lI5OTnavXu3EaQLhIWF6dChQzp27JgkaceOHcrPz3eoq1q1qtq3b6+EhARjWUJCgtq1a2eEa0nq0aOH8vPztXPnTkkXH192+PBh9ejRw2mfiYmJhU4nBwAAAADcWkwJ2Jdyc3NTWFiYXn/9dbOblnTxbua+vr567bXX1K5dOzVr1kz9+vXTN998I+niI8Nyc3Pl4+PjsF3Dhg0lybjGOjk5Wbfddps8PDyc6i69Djs5OdmpLZvNJi8vL4e2JMnb29uprdzcXB09evR63zYAAAAAoJQrc8/a+vXXX/Xdd9/pwIEDev755+Xu7q4lS5Zo6NCh2rRpk1JTUyVdDMGXKnhdsD4tLU1VqlRxat9msxk1BXV/bkuSPDw8jLqi7rO47Ha7MjMzr6uNS1ksFrm7u5vWHnAzZWVllYmnF3CeoSwrC+cZ5xjKsrJwjgH4H7vdXuQbepe5gF0QNl999VU1btxYktS8eXN17txZK1asUEhISAn30Hy5ubn6/vvvTWvP3d1dTZs2Na094GZKSUlRVlZWSXfjqjjPUJaVhfOMcwxlWVk4xwA4slqtRaorcwHbZrOpatWqRriWLl473bRpUx08eFA9e/aUJIc7gUsXR6IlGVPCbTabMjIynNpPS0tzmDZus9mc2pIujkoX1BV8TU9Pl5eX12X3WVyurq5q1KjRdbVxqZv5ODXAbN7e3mXiU3/OM5RlZeE84xxDWVYWzjEA/3Pw4MEi15a5gN2oUSP9/PPPha7Lzs5WvXr15OrqquTkZN1zzz3GuoLrpAuup/bx8dFvv/3mEJQL6i695trHx8fp2djp6en69ddfHdoqbNvk5GS5urqqbt261/OWZbFYVLFixetqA7hVMCUUuPE4z4Abi3MMKFuu5UNd029ydqN16tRJ586dc5gy/fvvv+v//u//dNddd8lqtapNmzbauHGjw3ZxcXFq2LCh6tSpI0kKCQmRi4uLNm3aZNSkpqZqx44dCg0NNZaFhoZq165dxmi0JMXHx8vFxUXt27eXdPHZ4A0aNHB6znZcXJzatWtX5OkEAAAAAICyq8yNYN97773y9/fX6NGjNXbsWLm5uWnp0qWyWq36xz/+IUl6/PHHNWjQIE2bNk09evTQ7t279emnn2r+/PlGOzVq1NBDDz2kOXPmyMXFRdWrV1d0dLSqVKmifv36GXX9+vXTO++8oyeffFKRkZE6ffq05syZo379+hnPwJakUaNGacKECapXr57atGmjuLg47du3TytWrLh5BwcAAAAAUGLKXMB2cXHR0qVLNWvWLE2dOlW5ublq2bKl3n33XeP655YtW2rhwoVasGCBPvjgA9WqVUszZsxwek71lClTVKlSJc2dO1d//PGHgoOD9eabbzrcXdzDw0Nvv/22XnzxRT355JOqVKmSHnroIY0dO9ahrV69eikrK0sxMTFaunSpvL29tWjRIgUFBd34gwIAAAAAKHFlLmBLkqenp/71r39dsaZLly7q0qXLFWusVqsmTpyoiRMnXrGuYcOGeuutt67arz59+qhPnz5XrQMAAAAA3HrK3DXYAAAAAACURgRsAAAAAE7y7fkl3QXgmpX0922ZnCIOAAAA4MZysbjoox+W6tfMEyXdFaBIvCrW0oONh5doHwjYAAAAAAr1a+YJncr4uaS7AZQZTBEHAAAAAMAEBGwAAAAAAExAwAYAAAAAwAQEbAAAAAAATEDABgAAAADABARsAAAAAABMQMAGAAAAAMAEBGwAAAAAAExAwAYAAAAAwAQEbAAAAAAATEDABgAAAADABARsAAAAAABMQMAGAAAAAMAEBGwAAAAAAExAwAYAAAAAwAQEbAAAAAAATEDABgAAAADABARsAAAAAABMQMAGAAAAAMAEBGwAAAAAAExAwAYAAAAAwAQEbAAAAAAATEDABgAAAADABARsAAAAAABMQMAGAAAAAMAEBGwAAAAAAExAwAYAAAAAwAQEbAAAAAAATEDABgAAAADABARsAAAAAABMQMAGAAAAAMAEBGwAAAAAAExAwAYAAAAAwAQEbAAAAAAATEDABgAAAADABARsAAAAAABMQMAGAAAAAMAEBGwAAAAAAExAwAYAAAAAwAQEbAAAAAAATEDABgAAAADABARsAAAAAABMQMAGAAAAAMAEZT5g//HHHwoNDZWfn5++/fZbh3Vr1qxR9+7d5e/vrwceeEBbt2512j49PV2TJ09W69atFRQUpNGjR+uXX35xqtuzZ4/69u2rgIAAderUSUuXLpXdbneosdvtWrp0qTp27KiAgAD17dtXe/fuNfX9AgAAAABKpzIfsF977TVduHDBafn69ev13HPPqUePHoqJiVFgYKBGjhzpFHjHjBmjnTt3atq0aXrllVeUkpKiYcOGKS8vz6g5cuSIIiIi5OXlpejoaA0ePFhRUVFatmyZQ1sxMTGKiorSkCFDFB0dLS8vLw0dOlRHjx69Ie8dAAAAAFB6lOmAfejQIa1cuVKjRo1yWhcVFaWePXtqzJgxatu2rV544QX5+/tr8eLFRk1SUpJ27Nihl156SWFhYerSpYteffVV/fjjj9q0aZNRFxsbq2rVqmnevHlq166dhgwZoqFDh2rJkiXKycmRJGVnZys6OlpDhw7VkCFD1K5dO82bN09Vq1ZVbGzsjT8YAAAAAIASVaYD9owZM9SvXz95e3s7LD969KgOHz6sHj16OCwPCwtTYmKiEYoTEhJks9nUvn17o8bHx0dNmjRRQkKCsSwhIUFdunSR1Wp1aCstLU1JSUmSLk4hz8jIcNin1WpV165dHdoCAAAAANyaymzAjo+P14EDB/Tkk086rUtOTpYkp+DdsGFD5ebmGlO2k5OT5e3tLYvF4lDn4+NjtJGZmamTJ0/Kx8fHqcZisRh1BV//XNewYUOdOHFC58+fL+5bBQAAAACUAeVLugPFkZWVpdmzZ2vs2LGqXLmy0/rU1FRJks1mc1he8LpgfVpamqpUqeK0vYeHh7777jtJF2+CVlhbVqtV7u7uDm1ZrVa5ubk57dNutys1NVUVKlS45vcqXbx5WmZmZrG2LYzFYpG7u7tp7QE3U1ZWltMNBksjzjOUZWXhPOMcQ1nGOQbcWGafY3a73WlQ9nLKZMB+/fXXddttt+nvf/97SXflpsjNzdX3339vWnvu7u5q2rSpae0BN1NKSoqysrJKuhtXxXmGsqwsnGecYyjLOMeAG+tGnGOXXi58JWUuYB8/flzLli3T4sWLjdHlgtHdzMxM/fHHH/Lw8JB0cfTZy8vL2DYtLU2SjPU2m02nTp1y2kdqaqpRUzDCXbCvAjk5OcrKynJoKycnR9nZ2Q6j2GlpabJYLEZdcbi6uqpRo0bF3v7PivrpC1AaeXt7l/pP/SXOM5RtZeE84xxDWcY5BtxYZp9jBw8eLHJtmQvYx44dU25uroYPH+60btCgQWrevLnmzp0r6eJ10ZdeE52cnCxXV1fVrVtX0sXrpRMTE52G/FNSUuTr6ytJqlixomrWrGlcY31pjd1uN9ov+JqSkqLGjRs77LNWrVrFnh4uXfwPrmLFisXeHriVMF0NuPE4z4Abi3MMuLHMPseu5QOnMneTsyZNmmj58uUOf5555hlJ0vTp0/X888+rbt26atCggeLj4x22jYuLU7t27Yzh/dDQUKWmpioxMdGoSUlJ0f79+xUaGmosCw0N1ZYtW5Sbm+vQls1mU1BQkCQpODhYlStX1oYNG4ya3Nxcbdq0yaEtAAAAAMCtqcyNYNtsNrVp06bQdXfddZfuuusuSdKoUaM0YcIE1atXT23atFFcXJz27dunFStWGPVBQUEKCQnR5MmTNXHiRLm5uWn+/Pny8/NTt27djLqIiAitW7dO48ePV//+/XXgwAHFxsZq7NixRlh3c3NTZGSkFi5cKE9PT/n6+mrVqlU6d+6cIiIibuARAQAAAACUBmUuYBdVr169lJWVpZiYGC1dulTe3t5atGiRMeJcYMGCBZo1a5amTp2qvLw8hYSEaMqUKSpf/n+Hpn79+oqNjdXs2bM1fPhweXp6avTo0Ro6dKhDW8OGDZPdbteyZct09uxZNWnSRLGxscaUdAAAAADAreuWCNht2rTRjz/+6LS8T58+6tOnzxW3rVKlimbOnKmZM2desS44OFirV6++Yo3FYlFkZKQiIyOv3mkAAAAAwC2lzF2DDQAAAABAaUTABgAAAADABARsAAAAAABMQMAGAAAAAMAEBGwAAAAAAExAwAYAAAAAwAQEbAAAAAAATEDABgAAAADABARsAAAAAABMQMAGAAAAAMAEBGwAAAAAAExAwAYAAAAAwAQEbAAAAAAATEDABgAAAADABARsAAAAAABMQMAGAAAAAMAEBGwAAAAAAExAwAYAAAAAwAQEbAAAAAAATEDABgAAAADABARsAAAAAABMQMAGAAAAAMAEBGwAAAAAAExAwAYAAAAAwAQEbAAAAAAATEDABgAAAADABARsAAAAAABMQMAGAAAAAMAEBGwAAAAAAExAwAYAAAAAwAQEbAAAAAAATEDABgAAAADABARsAAAAAABMQMAGAAAAAMAEBGwAAAAAAExAwAYAAAAAwAQEbAAAAAAATEDABgAAAADABARsAAAAAABMQMAGAAAAAMAEBGwAAAAAAExAwAYAAAAAwAQEbAAAAAAATEDABgAAAADABARsAAAAAABMQMAGAAAAAMAEBGwAAAAAAExQ5gL2hg0b9Pjjjys0NFSBgYEKDw/XBx98ILvd7lC3Zs0ade/eXf7+/nrggQe0detWp7bS09M1efJktW7dWkFBQRo9erR++eUXp7o9e/aob9++CggIUKdOnbR06VKn/dntdi1dulQdO3ZUQECA+vbtq71795r63gEAAAAApVeZC9hvvfWW3N3dNWnSJL3++usKDQ3Vc889p8WLFxs169ev13PPPacePXooJiZGgYGBGjlypFPgHTNmjHbu3Klp06bplVdeUUpKioYNG6a8vDyj5siRI4qIiJCXl5eio6M1ePBgRUVFadmyZQ5txcTEKCoqSkOGDFF0dLS8vLw0dOhQHT169IYeDwAAAABA6VC+pDtwrV5//XV5enoar9u1a6dz587pzTff1BNPPCEXFxdFRUWpZ8+eGjNmjCSpbdu2OnDggBYvXqyYmBhJUlJSknbs2KHY2FiFhIRIkry9vRUWFqZNmzYpLCxMkhQbG6tq1app3rx5slqtateunc6ePaslS5Zo4MCBslqtys7OVnR0tIYOHaohQ4ZIklq0aKH77rtPsbGxmjZt2k07PgAAAACAklHmRrAvDdcFmjRpooyMDGVmZuro0aM6fPiwevTo4VATFhamxMRE5eTkSJISEhJks9nUvn17o8bHx0dNmjRRQkKCsSwhIUFdunSR1Wp1aCstLU1JSUmSLk4hz8jIcNin1WpV165dHdoCAAAAANy6ylzALsx///tfVa9eXZUrV1ZycrKki6PRl2rYsKFyc3ONKdvJycny9vaWxWJxqPPx8THayMzM1MmTJ+Xj4+NUY7FYjLqCr3+ua9iwoU6cOKHz58+b9E4BAAAAAKVVmZsi/mdff/214uLiNHHiRElSamqqJMlmsznUFbwuWJ+WlqYqVao4tefh4aHvvvtO0sWboBXWltVqlbu7u0NbVqtVbm5uTvu02+1KTU1VhQoViv0e7Xa7MjMzi739n1ksFrm7u5vWHnAzZWVlOd1ksDTiPENZVhbOM84xlGWcY8CNZfY5ZrfbnQZmL6dMB+xTp05p7NixatOmjQYNGlTS3blhcnNz9f3335vWnru7u5o2bWpae8DNlJKSoqysrJLuxlVxnqEsKwvnGecYyjLOMeDGuhHn2KWXDF9JmQ3YaWlpGjZsmKpWraqFCxfKxeXibHcPDw9JF0efvby8HOovXW+z2XTq1CmndlNTU42aghHugpHsAjk5OcrKynJoKycnR9nZ2Q6j2GlpabJYLEZdcbm6uqpRo0bX1calivrpC1AaeXt7l/pP/SXOM5RtZeE84xxDWcY5BtxYZp9jBw8eLHJtmQzY58+fV2RkpNLT0/X+++87TPUuuA46OTnZ4Zro5ORkubq6qm7dukZdYmKi03B/SkqKfH19JUkVK1ZUzZo1jWusL62x2+1G+wVfU1JS1LhxY4d91qpV67qmh0sX/4OrWLHidbUB3CqYrgbceJxnwI3FOQbcWGafY9fygVOZu8lZXl6exowZo+TkZL3xxhuqXr26w/q6deuqQYMGio+Pd1geFxendu3aGUP7oaGhSk1NVWJiolGTkpKi/fv3KzQ01FgWGhqqLVu2KDc316Etm82moKAgSVJwcLAqV66sDRs2GDW5ubnatGmTQ1sAAAAAgFtXmRvBnj59urZu3apJkyYpIyNDe/fuNdY1bdpUVqtVo0aN0oQJE1SvXj21adNGcXFx2rdvn1asWGHUBgUFKSQkRJMnT9bEiRPl5uam+fPny8/PT926dTPqIiIitG7dOo0fP179+/fXgQMHFBsbq7Fjxxph3c3NTZGRkVq4cKE8PT3l6+urVatW6dy5c4qIiLhpxwYAAAAAUHLKXMDeuXOnJGn27NlO67Zs2aI6deqoV69eysrKUkxMjJYuXSpvb28tWrTIGHEusGDBAs2aNUtTp05VXl6eQkJCNGXKFJUv/7/DUr9+fcXGxmr27NkaPny4PD09NXr0aA0dOtShrWHDhslut2vZsmU6e/asmjRpotjYWGNKOgAAAADg1lbmAvbnn39epLo+ffqoT58+V6ypUqWKZs6cqZkzZ16xLjg4WKtXr75ijcViUWRkpCIjI4vUPwAAAADAraXMXYMNAAAAAEBpRMAGAAAAAMAEBGwAAAAAAExAwAYAAAAAwAQEbAAAAAAATEDABgAAAADABARsAAAAAABMQMAGAAAAAMAEBGwAAAAAAExAwAYAAAAAwAQEbAAAAAAATEDABgAAAADABARsAAAAAABMQMAGAAAAAMAEBGwAAAAAAExAwAYAAAAAwAQEbAAAAAAATEDABgAAAADABARsAAAAAABMQMAGAAAAAMAEBGwAAAAAAExAwAYAAAAAwAQEbAAAAAAATEDABgAAAADABARsAAAAAABMQMAGAAAAAMAEBGwAAAAAAExAwAYAAAAAwAQEbAAAAAAATEDABgAAAADABARsAAAAAABMQMAGAAAAAMAEBGwAAAAAAExAwAYAAAAAwAQEbAAAAAAATEDABgAAAADABARsAAAAAABMQMAGAAAAAMAEBGwAAAAAAExAwAYAAAAAwAQEbAAAAAAATEDABgAAAADABARsAAAAAABMQMAGAAAAAMAEBGwAAAAAAExAwAYAAAAAwAQEbJMdOnRIjz76qAIDA9W+fXvNmTNHOTk5Jd0tAAAAAMANVr6kO3ArSU1N1eDBg9WgQQMtXLhQp0+f1uzZs3X+/HlNnTq1pLsHAAAAALiBCNgmeu+99/THH39o0aJFqlq1qiTpwoULmj59uiIjI1W9evWS7SAAAAAA4IZhiriJEhIS1K5dOyNcS1KPHj2Un5+vnTt3llzHAAAAAAA3HAHbRMnJyfLx8XFYZrPZ5OXlpeTk5BLqFQAAAADgZmCKuInS0tJks9mclnt4eCg1NbVYbebm5sput2vfvn3X2z0HFotFDz8UqLw8f1PbBW6U8uXL6dtvv5Xdbi/prhSZxWLRY3cHKO/CXSXdFaBIypcrW+eZxWJRZL1g5da5UNJdAYrE1aXsnWPN1U3+lfJKuitAkbio/A05x3Jzc2WxWIpUS8Au5Qr+IYv6D3otPDwqmd4mcKPdiHPhRqpWuWJJdwG4ZmXpPKvmzs8ylD1l6Ryr5FqlpLsAXDOzzzGLxULALgk2m03p6elOy1NTU+Xh4VGsNoOCgq63WwAAAACAm4BrsE3k4+PjdK11enq6fv31V6drswEAAAAAtxYCtolCQ0O1a9cupaWlGcvi4+Pl4uKi9u3bl2DPAAAAAAA3msVeVu6yUAakpqaqZ8+e8vb2VmRkpE6fPq3Zs2fr/vvv19SpU0u6ewAAAACAG4iAbbJDhw7pxRdfVFJSkipVqqTw8HCNHTtWVqu1pLsGAAAAALiBCNgAAAAAAJiAa7ABAAAAADABARsAAAAAABMQsAEAAAAAMAEBGwAAAAAAExCwAQAAAAAwAQEbAAAAAAATELBxS1q4cKH8/Pyc/vTq1atI2x87dkx+fn6Kj483lnXu3FkvvPDCFbdLS0vTwoULdfDgwau2B9wqtmzZoqFDh6p169Zq1qyZOnfurKlTpyolJcX0fS1cuFB79uwxvd2r+eijj7Ru3bqbvl/89fz551fbtm01aNAgff3119fd9rFjx7Rw4UKdPn26SPWX+74fOHCgIiMjr7s/wM12vb8fXi8/Pz/FxsbelH2h5JQv6Q4AN0qFChX09ttvOy27kdLS0rRo0SLdeeedatSokbH8jjvu0Pvvv68GDRrc0P0DN9srr7yimJgYde/eXS+++KI8PT31888/68MPP9TYsWP18ccfm7q/RYsWqWLFigoODja13av597//rYoVK+r++++/qfvFX9OlP79OnTql1157TUOGDNFHH30kX1/fYrd7/PhxLVq0SB07dlT16tWvWn+57/vnn39eLi6M0aBsKonfD/HXQsDGLcvFxUWBgYEl3Q1JktVqLTV9Acyybds2xcTE6IknntBTTz1lLG/VqpX+/ve/a+vWrSXWt/Pnz/MLE8qsP//8CggIUOfOnfXee+9p6tSp19ye3W5Xbm6uaf279ANkoKwp6u+H/BxBcfHxI/5yCpvq/dlnn8nPz0/Hjh0rdrvHjh1Tly5dJElPPfWUMe3o2LFjV5xy/tZbb6lDhw4KCgrSpEmTlJOTo++//179+vVTYGCgHnroIf34448O+7Lb7YqNjVX37t3VrFkzdenSRW+99Vax+w4Ux7Jly3T77bfriSeeKHR9p06dJEnZ2dmaNWuWQkJC5O/vr/DwcG3evNmhdtKkSerVq5d2796t3r17G9/73333nVHj5+cnSZozZ45xfu3evdtYt3TpUv3rX/9S+/bt1a5dO0lSUlKSRowYoZCQEAUGBio8PLzQUfW0tDS9+OKLCg0NNaa5z507V9LF6bD/+c9/9MUXXxj7Xbhw4fUdPOAa1KpVS56enjp27JiWLVumv//972rRooXatWunyMhIp8sxCs6nbdu26YEHHpC/v78+//xzDRo0SJL00EMPGd/Ll3Ol7/s/TxFfuHChgoKCtH//fvXt21cBAQH629/+pv379ys7O1vPP/+8WrVqpdDQ0EJ/ViUlJWnQoEEKDAxUixYtNH78eJ05c8aEIwcU3eV+jhT1d65Dhw7p8ccfV4sWLRQYGKjhw4fr559/vuI+v/jiCz366KNq166dgoOD1adPHyUkJDjUfPTRR/Lz89P+/fv12GOPKTAwUN26dSv0Z9kXX3yhfv36qXnz5mrVqpUGDhyo/fv3G+vT0tI0bdo0hYSEqFmzZnrwwQe1Y8eOaz9YuCJGsHFLy8vLc3hdrly5G7avO+64Q4sWLdLIkSM1btw4tWnTxlj+yy+/FLrNli1bdOedd+qFF17Q0aNHNXv2bLm6umrv3r0aMmSIbr/9dr3yyit66qmnFBcXZ0zJe+mll7RmzRqNGDFCzZs31549e/TKK6/Izc1N/fv3v2HvESiQl5enPXv2qFu3bnJ1db1i7YQJE7R9+3aNGTNGPj4++uSTTzRq1CgtXrzY+FBKkn799VfNmDFDw4cPV5UqVTR37lyNHDlSmzdvlqurq95//3317dtXAwcONK6Xu3Qkbfny5WrevLleeukl49w/ceKEgoOD1b9/f1mtVu3Zs0dTpkyR3W7X3/72N0lSTk6OBg8erOPHj+vJJ5+Ur6+vTp06pf/+97+SLk6H/ec//6kKFSpo4sSJkqQaNWqYdzCBq8jIyNC5c+d0xx136NSpU3rkkUdUq1YtZWRk6L333lO/fv20ceNGVa1a1djml19+0YwZM/T444+rZs2aqlatmqZOnaoXXnhBs2bNko+PzxX3ea3f97m5uZo4caLDz66RI0cqODhYt912mxYsWKAtW7Zo1qxZCggIMC7zSEpK0sCBA9WhQwfNnz9fWVlZWrBggZ544gm9//7713/wgEJc7vfDwn6OFOV3rqNHj6pfv3668847NXv2bFksFi1ZskRDhgxRfHy8rFZrof04duyYOnXqpKFDh8rFxUUJCQkaPny43n77beP3yAITJkzQww8/rEcffVSrV6/WpEmT5O/vr4YNG0qS4uLiNG7cOHXp0kVz586Vq6ur9uzZo9OnT6tp06bKycnRo48+qjNnzmjMmDGqXr261q5dq8jISCPEwxwEbNyyMjMzdddddzksmzNnzg3bn9VqVZMmTSRJ9evXL/KU8Ndee834j/c///mPVq9erZiYGIWGhkqS8vPzNWLECB04cECNGzfWzz//rBUrVmj69Onq27evJOnuu+/W+fPntXjxYvXt25dr43DDnTt3Tjk5OapVq9YV63744Qdt2rRJ06dPV79+/SRJoaGhOn78uFPATk1N1YoVK3TnnXdKktzd3TVo0CB98803atmypXFO1axZs9Dzy8PDQ4sWLZLFYjGW9ezZ0/i73W5Xq1atdPr0ab3//vtGwP7444+1f/9+vffeewoKCjLqC9Y3atRIlStXVsWKFbnUAzdNwS/3p06d0ssvv6wLFy6oe/fuuueee4yaCxcuGCNtGzduNH4mSBfPp5iYGDVv3txhmSTdeeed8vf3v+L+r/X7Pjc3VxMmTFCHDh0k/e9nV/PmzfXMM89Iktq2bav4+HjFx8cbAXvu3Llq1qyZw7nr6+trjMAXtAeY5Uq/H/7550hRf+datGiRPDw89Oabb8rNzU2SFBwcrC5dumjNmjUaMGBAoX155JFHjL/n5+erTZs2OnjwoFavXu0UsAcMGGC0ExQUpG3btmnjxo164oknZLfb9fLLL6t9+/ZavHixsc2l58+6dev0ww8/6JNPPjE+nL7nnnt05MgRvfbaa3r11Vev/WCiUARs3LIqVKigFStWOCyrW7euKf+B2O12XbhwwXhtsViKNTreqlUrh081GzRoIBcXF7Vt29ZhmSSdPHlSjRs31q5duyRJ3bp1c/gE9u6771ZMTIxOnjyp2rVrX3NfgOK4NMwWpmAU+L777nNY3qNHD82aNUuZmZmqWLGipIuzPQrCtfS/0emi3vE4NDTUqT+pqalauHChtmzZotOnTxvn7aUjfYmJiWrYsKFDuAZK0p8DgIeHh6ZOnap77rlHe/fu1auvvqr9+/fr3LlzRs3hw4cd2qhatapDuL6SCxcuyG63G6/Ll7/2Xw9dXFyMKbXS/3523X333caycuXKqV69ejp16pQkKSsrS3v27NHTTz/t8DO1QYMGqlmzpr799lsCNkx3ud8PJeefI0X9nWvnzp0KCwtTuXLljDqbzaamTZs6XOr0Z6dOndL8+fO1a9cu/frrr8Z5+OcPACQpJCTE+HvFihVVq1Yt41xKTk7WqVOnjNkmhdm5c6d8fX3VoEEDp/eydu3ay26Ha0fAxi3LxcXlqp/QF9d//vMf41o2SWrdurXeeeeda27HZrM5vHZ1dVWFChUcQnfB9Nvs7GxJ0u+//y673e4Qwi9FwMbNULVqVbm5uenEiRNXrEtNTZWrq6tDoJWk22+/XXa7Xenp6UbALux8kP73vX81t912m9OySZMmKSkpSU8++aQxIrdq1Spt2LDBqCmYeguUFgUBwGKxqFq1aqpZs6ZcXFx04sQJDR06VM2aNdP06dN1xx13yNXVVZGRkU7nye23317k/XXt2lXHjx83Xm/ZskV16tS55j4X9rOrSpUqDnWurq5GX9PS0nThwgXNmjVLs2bNcmrz5MmT19QHoCiu9Pvhn3+OFPV3rt9//11vv/22093JJV32Mqr8/Hw9/vjjSk9P1+jRo1W/fn25u7srKiqq0O/9ws6lnJwcSTI+bLvSz7Lff/9d+/fvLzS838hLKP+KCNj4y7FarU53Uy2YNldUd911lz744APjdaVKlUzpW1F4eHjIYrFo5cqVhf6n7e3tfdP6gr+u8uXLKzg4WF9++aXy8vIuO+Ll4eGh3NxcpaamysPDw1j+22+/yWKxOP3CcD3+PHqdnZ2tL774QpMmTdLAgQON5StXrnSoq1q1qtONBIGSdLkAsH37dmVmZmrRokXGB1J5eXmF/gy72uySS73++uvGL+rSlX9JN1OVKlVksVgUGRmpe++912l9tWrVbko/gAJ/Pm+K+juXh4eHOnTooH/84x9ONZf7HfHIkSPav3+/Fi9e7PD9f/78+Wvud8GH2Je7509BH/38/PTSSy9dc/u4NgRs/OXUqFFDhw4dcli2c+fOa2qjcuXKhf7yc60jbsVRMAXv3Llz6ty58w3bD3A1jz76qIYPH64lS5Zo5MiRTuu3bdumFi1aSJLi4+Mdrg+Nj49X06ZNjdHrorp09OtqcnJylJ+f7/BLUUZGhj7//HOHurvvvltxcXH65ptvLjul9lr2C9wo58+fl8VicfhAa8OGDU43bLqcy/2MutzNjW70933B9d3Jyck3bMYZcD2K+jtXu3bt9NNPP6lp06ZFHg0uOLcu/Rl1/PhxJSUlGZdYFJWPj49q1Kihjz76SGFhYYXW3H333dq2bZvuuOMOVa9e/Zrax7UhYOMvp3v37po2bZoWLVpk3CRi7969prTt5eUlm82m9evXq06dOrJarabfldHb21sDBgzQ008/rYiICDVv3ly5ubk6fPiwdu/erddee83U/QGX06FDBz322GNauHChDh48qJ49e6patWo6duyYPvzwQ6Wnp+vjjz9Wt27dNHv2bJ0/f17e3t5au3atkpKSivW96uPjoy1btqhly5Zyd3eXt7e3KleuXGhtlSpV5O/vr5iYGHl6eqp8+fJaunSpKleurLNnzxp14eHhWrlypYYPH66RI0fqzjvv1OnTp/X111/rxRdfNPb78ccf6/PPP5eXlxe/oKBEFExTfeaZZ9SvXz/99NNPevPNN50ur7icBg0aqFy5cvrwww9Vvnx5lStX7orB9mZ83z/99NMaPHiwxowZo549e8pms+nUqVPatWuXHnzwQacbPQE3U1F/5xo9erQeeughRURE6OGHH9btt9+u3377Tf/5z3/UsmVL48kXlyoIxXPnzlV+fr4yMzMVFRVVrBkkFotFEydO1Lhx4zRq1CiFh4fLarVq79698vf3V6dOndS7d2+99957GjRokIYOHaoGDRooPT1d+/fvV25ursaPH3/dxwsXEbDxl9OnTx/9/PPPWrVqld566y2FhYVp3LhxpvzH4uLiolmzZmnevHkaMmSIcnJytGXLFhN67WjKlCny9vbW+++/r8WLF6tSpUry9vZ2upEUcKP985//VFBQkN59911NnjxZWVlZuuOOOxQSEqKIiAhJ0r/+9S/NmzdPMTExOnfunHx8fBQVFVWsGRhTp07VzJkzNWzYMJ0/f17Lly+/4i/gc+fO1dSpUzVp0iRVrVpVAwcOVGZmppYtW2bUWK1WvfXWW5o/f76io6N17tw51ahRw+EO5MOGDdPPP/+siRMnKi0tTSNHjtSoUaOuuf/A9fDz89OsWbO0aNEiRUZGqkmTJnr11Vc1ZsyYIm3v6empqVOn6o033tDatWuVl5d3xcsjbsb3fXBwsFauXKmFCxfqmWeeUW5urmrUqKG2bduqfv36pu4LKI6i/M5Vv359rVmzRgsWLND06dOVmZkpLy8vtWrV6rIDLVarVQsXLtQLL7ygp556SjVr1tTjjz+uL7/88oo3RrucsLAwVahQQUuWLNG4cePk5uampk2bqmvXrsb+li9froULF2rJkiX69ddfVbVqVTVt2rTQqe0oPov90ttGAgAAAACAYuFhuQAAAAAAmICADQAAAACACQjYAAAAAACYgIANAAAAAIAJCNgAAAAAAJiAgA0AAAAAgAkI2AAAAAAAmICADQAAAACACQjYAADcYnbv3i0/Pz/t3r27pLsCAMBfSvmS7gAAAGXZRx99pGeeeeay699//30FBgbevA79ha1bt05nzpzRkCFDrli3cOFCLVq06KrttW7dWu+8845JvQMA/BUQsAEAMMHo0aNVp04dp+X16tUrgd78NX366af66aefrhqwu3bt6vDvkpmZqWnTpqlr167q2rWrsfz222+/UV0FANyiCNgAAJggNDRU/v7+Jd0NFEHjxo3VuHFj4/XZs2c1bdo0+fn5KTw8vAR7BgAo67gGGwCAm+DYsWPy8/NTbGys3n33XXXp0kXNmzfX0KH/r737j6my/P84/lQMEJASJS3lh6AcXQiLmiYIGRKIqBxZsgispSuoNkV+VMZwtdVYDNICQsdmpElaQgYMFJoZWUy2qEZoY5EyIQcFBLKZOc/5/sE483jQ9c3Tx/h8Xo+Nzeu6r+u+3/fNJntf13Vf9yYuXLiA2WympKSEiIgIgoKCeO655/j999+tzhEZGUlqaionT54kPj6exYsXs3r1ahoaGv5SDPX19SQkJBAUFMTSpUvJysqit7fXcryyshKDwcDp06dt+u7evZtFixZZ2m/cuJE1a9bw448/kpKSQnBwMI8++ihHjx4FoKWlhQ0bNhAUFERMTAxff/21zTl7e3vZvn07oaGhBAYGEhcXx+HDh63ajL1PXldXR2lpqWUg46mnnqKrq8vSbuPGjZw4cYKenh4MBgMGg4HIyMi/9Fyud/78eQwGA+Xl5TbHWltbMRgM1NbWAqPLzQ0GA52dnWzdupWQkBCWLl3K66+/zuXLl236f/rpp5bfwZIlS9i2bRsXLlz4W3GKiMi/jxJsEREROxgZGWFgYMDqZ3Bw0KZdTU0NFRUVbNy4kaeffpqWlhbS09PZtWsXX375Jc888wyJiYl8/vnnvPnmmzb9z507x7Zt24iIiCAzMxMHBwe2bt3KV199ddP4qqqqSE9PZ/LkyWRkZJCYmEhjYyNJSUkMDw8DEBMTg7OzMzU1NePGvWTJEmbNmmWpGxoaIi0tjaCgILKzs3F0dCQjI4O6ujoyMjJ4+OGHyczM5NKlS2zZsoWRkRFL399++43ExESam5tJTk4mJycHb29vcnJyxk1sy8rKaGxsZNOmTaSmpvL999+TlZVlOZ6WlsaiRYuYPn06+fn55Ofn88orr9z0mdyIl5cXISEhVFdXj/scXF1dWblypVV9eno6ly9fJjMzk4iICPbv309ubq5Vm9LSUl566SV8fHx4+eWXefLJJy33P/Y7EBGRiU1LxEVEROxgvPd+HR0daWtrs6rr7e2loaGBadOmAWAymdizZw9//PEHlZWVTJky+qd5cHCQmpoaXnvtNRwdHS39z507R1FREdHR0QA89thjrFq1ioKCAsLCwsaN7cqVKxQUFBAQEMCBAwdwcnIC4IEHHiA1NZXy8nK2bNmCm5sbUVFR1NbWkp2dzeTJo+Pwp0+f5qeffmLz5s1W5+3r66OwsJA1a9YAEBoaSmxsLJmZmRw8eJDg4GAA/P392bx5Mw0NDSQkJACwc+dOrl69Sk1NDdOnTwcgKSmJjIwMiouLefzxx3F2drZc6/Llyxw5csTyLNzd3XnjjTfo6OggICCAsLAw9u3bx/DwsF2WeRuNRnbs2EFnZyf+/v6W51hfX090dDRTp061aj937lxKS0sBSE5Oxs3NjYqKCjZt2sTChQvp6emhqKiI9PR00tLSLP2io6NZv349FRUVVvUiIjIxaQZbRETEDnbs2MF7771n9VNWVmbTbtWqVZbkGiAoKAiAdevWWZLrsforV65YLeEGuPvuu6024nJzc8NoNHL69Gl+/fXXcWP74Ycf6O/vJykpyZJcA6xYsQI/Pz9OnDhhqYuPj6evr8/qE181NTU4OztbkvoxLi4uxMXFWcp+fn64u7vj7+9vSa4By7/Pnz8PgNlspqGhgcjISMxms9Ws//Lly7l48SLt7e1W10pISLAaaHjwwQetzmlvsbGxODk5Wc3mnzx5ksHBQdatW2fTPjk52aqckpICQFNTEwCNjY2YTCZiY2Ot7nfmzJn4+Pjok2oiIv8lNIMtIiJiB0FBQX9pk7N77rnHqjyWbN+ofmhoCC8vL0u9j48PkyZNsmrr6+sLQE9PD56enjbX/OWXXwCYN2+ezTE/Pz+++eYbSzksLAxPT0+qq6tZtmwZJpOJ2tpaVq5ciZubm1Xf2bNn28Qybdo0Zs+ePe69jC2DHhgYYHh4mEOHDnHo0CGbmMbaXOvee++1Kru7u1ud097c3d155JFHqK2tJT09HRgdaJg1axYPPfSQTXsfHx+rsre3N5MnT6a7uxsYXXlgNpttBinGXDu4IiIiE5f+NxcREfkPcnBwGLd+bDn29cxm8z8Zjg0HBwfWrl3LRx99xKuvvkprayt9fX3jztre6F5uVD92LyaTCRidtV+/fv24bQ0Gg1X5djwfo9HI0aNHaW1tJSAggOPHj5OUlHTDWK51/cCDyWRi0qRJlJWVjft8XFxc7Ba3iIjcPkqwRUREJpCuri7MZrNVAnfu3DkA5syZM26fsdnfs2fPsmzZMqtjZ8+etZkdjo+PZ+/evRw/fpympiY8PDxYvny53e7Bw8MDV1dXTCYToaGhdjvv9UntrQoPD8fDw4OamhqCg4O5dOnSDd/v7urqslpp0NXVhclksnwb3dvbG7PZzNy5c8ddSSAiIv8d9A62iIjIBNLX10djY6OlPDIywpEjR1i0aNG4y8MBAgMDmTFjBgcPHuTPP/+01H/xxRd0dnayYsUKq/YLFy7EYDBw+PBhGhoaiIuLs+sSZgcHB2JiYjh27BgdHR02x69fHv5XTZ06lYsXL95qeBZTpkwhLi6O+vp6qqqqCAgIsPp+9rUOHDhgVf7ggw+A0e+jw+hmZg4ODhQXF9vMupvN5nF3nBcRkYlHM9giIiJ20NTUxM8//2xTHxISYjWzeat8fX3Jycmhra2NGTNmUFlZSX9/P3l5eTfsc8cdd5CVlcX27dtJSUkhLi6O/v5+9u3bx5w5c8bdAd1oNFo+Ezbe8vBblZmZyalTp0hMTGTDhg3Mnz+foaEh2tvbaW5upqWl5f99zvvuu4+6ujry8vJYvHgxLi4uf/tb2GOMRiP79+/n1KlTVp8Fu153dzdpaWmEh4fz3XffUV1dzZo1aywJube3N+np6RQWFtLT00NUVBSurq50d3fz2WefkZiYaLNLu4iITDxKsEVEROzgnXfeGbc+Ly/P7gl2bm4u+fn5nD17lrlz57Jz507Cw8Nv2i8hIQFnZ2fKysooKCjAxcWFqKgosrOzLRuGXWvt2rUUFBTg5eVl2encnmbOnMnHH39MSUkJjY2NfPjhh9x1113Mnz//ponszTzxxBOcOXOGqqoqysvLmTNnzi0n2IGBgSxYsIDOzs6bDjTs2rWLt99+m8LCQqZMmUJKSgovvviiVZtnn30WX19fysvLKSkpAUY3igsLC7vlOEVE5N9hkvk/vXuKiIiI/C2RkZEsWLCAPXv2/OPXGhgYIDw8nOeff54XXnjhH7/ev5nRaOTOO+/k/ffftzlWVFREcXExzc3NeHh43IboRETk30TvYIuIiIiNTz75hKtXr95wU6//FW1tbZw5cwaj0Xi7QxERkQlAS8RFRETEorm5mc7OTnbv3k1UVJRlF+z/NR0dHbS3t7N37148PT1ZvXr17Q5JREQmACXYIiIiYvHuu+/y7bffcv/995Obm3u7w7ltjh07RklJCfPmzeOtt97CycnpdockIiITgN7BFhEREREREbEDvYMtIiIiIiIiYgdKsEVERERERETsQAm2iIiIiIiIiB0owRYRERERERGxAyXYIiIiIiIiInagBFtERERERETEDpRgi4iIiIiIiNiBEmwRERERERERO1CCLSIiIiIiImIH/wclLkgdyKVGqgAAAABJRU5ErkJggg==\n"},"metadata":{}},{"output_type":"stream","name":"stderr","text":[":4: FutureWarning: \n","\n","The `ci` parameter is deprecated. Use `errorbar=None` for the same effect.\n","\n"," sns.barplot(\n",":4: FutureWarning: \n","\n","Passing `palette` without assigning `hue` is deprecated and will be removed in v0.14.0. Assign the `x` variable to `hue` and set `legend=False` for the same effect.\n","\n"," sns.barplot(\n"]},{"output_type":"display_data","data":{"text/plain":["
"],"image/png":"iVBORw0KGgoAAAANSUhEUgAAA9gAAAJICAYAAACaO0yGAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAAB3o0lEQVR4nO3deXxN1/7/8fcJORFDQjRVakq4iTGVGNOkMU8xdlBUlQqiLUr1XqqllJpqatA2iLZKBzrcKxVDr/o2hui9iKm0hoQqRVEZiAyyf3/45VynB43YJEdfz8fDIz17f/baax/rkXqftdc+FsMwDAEAAAAAgNviUtgdAAAAAADgXkDABgAAAADABARsAAAAAABMQMAGAAAAAMAEBGwAAAAAAExAwAYAAAAAwAQEbAAAAAAATEDABgAAAADABARsAAAAAABMQMAGAOAv7vvvv5e/v7++//77wu6KzZgxYxQYGFjY3bjj5s2bJ39/f50/f76wuwIAMAEBGwBQJC1fvlz+/v7q0aNHYXelyMnKytKHH36o7t27KygoSI0aNVKnTp00btw4HTlypLC75zTCw8PVtWtXh+3ffPON/P399fTTTzvs+/zzz+Xv76/NmzffjS7e0MCBA9W4cWOdPXvWYV9aWppCQ0PVo0cP5ebmFkLvAOCvi4ANACiSYmNj9eCDD2rPnj06duxYYXenSBk+fLimT5+uv/3tbxo1apSGDRumRo0aKT4+Xrt37y7s7jmNhg0b6tChQ0pLS7PbvnPnThUvXlx79+5Vdna2w75ixYqpQYMGd7Gnjl5//XVlZ2dr6tSpDvtmz56t33//XZMmTZKLC//UA4C7id+6AIAi5/jx40pMTNQrr7wiLy8vxcbG3vU+5ObmKjMz866f98/s2bNHGzdu1PDhw/XWW2+pT58+6tevnyZOnKhvv/1WLVu2LOwu6tKlS4XdhXxp2LChcnNztXPnTrvtO3fuVIcOHXT58mX98MMPdvt27Nghf39/lS5d+rbOfbvvUZUqVfTCCy/o66+/tptN37Nnjz799FP1799ftWrVuq1z5EdmZiaz5ABwDQI2AKDIiY2Nlaenp5o3b6727dvbBezs7Gw1adJEr7zyisNx6enpql+/vqZPn27blpWVpaioKLVt21b16tVT8+bNNWPGDGVlZdkd6+/vrzfeeEOrVq1Sp06dVL9+fW3atEmSFBMTo169eqlp06YKCAjQY489prVr1zqc//Lly5o8ebKaNm2qwMBADRkyRKdPn5a/v7/mzZtnV3v69Gm98sorevjhh1WvXj116tRJn3/++Z++N8ePH5ckBQUFOewrVqyYypUrZ3t94sQJTZgwQe3bt1dAQICaNm2q4cOH65dffvnT82zfvl3Dhw9XixYtbO/blClTdPnyZbu6vLXSP//8swYNGqTAwEC9/PLLioqKUt26da+7tnjcuHFq1KhRvj7AOH78uCIiItSgQQOFhoZq/vz5MgxDkmQYhlq1aqXnnnvO4bjMzEw1bNhQ48ePv2HbDRs2lCS7gJ2ZmakffvhB7dq1U5UqVez2nT9/XkePHrUdJ0n79+/XwIEDFRQUpMDAQPXr10+7du2yO8+XX34pf39//ec//9GECRMUHBys5s2b37BfJ06cUNu2bdW5c+fr3gKe59lnn5W/v78mTpyozMxMXblyRRMmTFClSpU0dOhQSdKRI0c0fPhwNWnSRPXr19djjz2mDRs22LVz4cIFTZ8+XV26dFFgYKCCgoI0cOBA/fjjj3Z1eWv1V69erTlz5uiRRx7RQw89pPT09Bv2EQD+aooXdgcAAPij2NhYtW3bVlarVZ07d9Ynn3yiPXv2KCAgQK6urmrTpo2++eYbTZw4UVar1Xbcv//9b2VlZSk8PFzS1Vno5557Tjt27NCTTz6pGjVq6ODBg/rwww919OhRvfPOO3bn3bZtm9asWaM+ffqoXLlyevDBByVJS5cuVatWrdSlSxdlZ2dr9erVevHFFxUdHa0WLVrYjh8zZozWrFmjbt266aGHHtJ///tfDR482OH6zp49qyeffFIWi0V9+vSRl5eX4uPj9eqrryo9PV39+/e/4XtTqVIl23sUFBSk4sVv/L/yvXv3KjExUZ06ddIDDzygEydO6JNPPtEzzzyj1atXy93d/YbHrl27VpcvX1bv3r1VtmxZ7dmzR8uWLdOpU6cUFRVlV5uTk6OIiAg1bNhQo0ePVokSJRQYGKgFCxYoLi7Obi1zVlaW1q1bp3bt2snNze2G55ekK1euaODAgXrooYf097//XZs2bdK8efN05coVvfjii7JYLOrSpYtiYmJ04cIFlS1b1nbst99+q/T09Ouusc5TpUoV3X///XYhOu+28MDAQAUGBmrnzp0aMGCApP8F8bwPNw4dOqQ+ffqoVKlSGjhwoIoXL67PPvtMffv21bJly/TQQw/ZnW/ixIny8vLSCy+8cMMZ7J9//ln9+vWTp6enlixZIi8vrxv2v3jx4po0aZJ69eqld955R15eXvrhhx+0ePFiubu769ChQ+rdu7cqVKigQYMGqWTJklqzZo1eeOEFzZs3T23btpV09UOMf//73+rQoYMqV66ss2fP6rPPPtPTTz+t1atXq0KFCnbnfeedd+Tq6qqIiAhlZWXJ1dX1hn0EgL8cAwCAImTv3r2Gn5+fsWXLFsMwDCM3N9cICwszJk+ebKvZtGmT4efnZ3z77bd2xw4aNMho3bq17fU///lPo1atWsZ///tfu7pPPvnE8PPzM3bs2GHb5ufnZ9SqVcs4dOiQQ58yMjLsXmdlZRmdO3c2nnnmGdu2ffv2GX5+fsabb75pVztmzBjDz8/PiIqKsm0bO3asERISYpw/f96uduTIkUbDhg0dznet3Nxc4+mnnzb8/PyMhx9+2HjppZeMZcuWGSdOnPjTfhuGYSQmJhp+fn7GV199Zdu2bds2w8/Pz9i2bdtNj42Ojjb8/f3tzjV69GjDz8/PmDlzpkN9z549jR49ethtW79+vcO5riev3UmTJtld++DBg426desa586dMwzDMJKSkgw/Pz/j448/tjt+yJAhRsuWLY3c3Nybnmf48OFGQECAkZWVZbvGVq1aGYZhGMuXLzeCg4NttdOmTTP8/PyMU6dOGYZhGM8//7xRt25d4+eff7bVnD592ggMDDT69Olj2/bFF18Yfn5+Ru/evY2cnBy780dFRRl+fn7GuXPnjMOHDxuhoaHG448/bly4cOGm/b7WG2+8YdStW9do0KCB8dJLL9m29+vXz+jcubORmZlp25abm2v07NnTaNeunW1bZmamceXKFbs2jx8/btSrV8+YP3++bVveOGnduvVNxygA/JVxizgAoEiJjY3Vfffdp6ZNm0qSLBaLwsPDFRcXpytXrkiSmjVrpnLlyikuLs52XEpKirZu3WqbvZauzsLWqFFDvr6+On/+vO1Ps2bNJMnha6kaN26smjVrOvSpRIkSdudJS0tTw4YNtX//ftv2vNvJn3rqKbtj//gkasMwtH79erVq1UqGYdj1KzQ0VGlpaQ7rfq9lsVgUExOjESNGyMPDQ19//bXeeOMNtWzZUiNGjFBqaup1+52dna3ff/9dVatWlYeHh13fr+faYy9duqTz588rMDBQhmFc99jevXs7bOvWrZt2796tn3/+2bYtNjZWFStWVJMmTW56/jx9+vSxu/Y+ffooOztbCQkJkiQfHx899NBDdssILly4oE2bNqlLly6yWCw3bb9hw4Z2a6137txp+3qwoKAgnTt3TkePHpUkJSYmqnLlyqpQoYKuXLmiLVu2qE2bNqpSpYqtvfvvv1+dO3fWjh07HG6dfvLJJ1WsWLHr9uPQoUPq27evHnzwQX3wwQfy9PTM1/sjSSNHjlTZsmXl4uJiWzpx4cIFbdu2TR07dlR6erptjP3+++8KDQ3V0aNHdfr0aUmS1Wq1PQztypUr+v3331WyZEn5+Phc9++6e/fuduMDAPA/3CIOACgyrly5otWrV6tp06Z264QDAgK0ZMkSJSQkKDQ0VMWLF1e7du309ddfKysrS1arVevXr1d2drZdwD527JiOHDmi4ODg657v3Llzdq8rV6583bqNGzfq3Xff1YEDB+zWbl8b3k6ePCkXFxeHNqpVq2b3+vz580pNTdVnn32mzz777Lrn+7PvRLZarXruuef03HPP6cyZM/rvf/+rpUuXas2aNSpevLhmzpwp6eqa8OjoaH355Zc6ffq0be2yJIcnZ//RyZMnFRUVpW+//VYpKSl2+/4YHIsXL64HHnjAoY3w8HBNmTJFq1at0tChQ5WWlqaNGzeqf//+fxp8JcnFxcUuvEpXA7V0dZ1ynm7dumnSpEk6ceKEHnzwQa1du1bZ2dnq1q3bn57j2nXYDz30kBITE/Xiiy9Kkvz8/FS6dGnt3LlTFStW1L59+2zj6/z588rIyLD151o1atRQbm6ufv31V/3tb3+zbb/R+JKkIUOG6L777lNMTIxKlSr1p/2+VunSpeXj46Pff/9d9913n6Srt5obhqG3335bb7/99nWPO3funCpUqKDc3FwtXbpUH3/8sX755RfbB1mS7G67z891AMBfHQEbAFBkbNu2Tb/99ptWr16t1atXO+yPjY1VaGioJKlTp0767LPPFB8frzZt2mjt2rXy9fW1e3Jybm6u/Pz8rvtANEkOofB6s3Lbt2/Xc889p8aNG+v111+Xt7e3XF1d9cUXX+jrr7++5WvMe+Jy165d9eijj163xt/fP9/t3X///erUqZPatWunzp07a+3atZo2bZptfe6XX36pfv36qUGDBipTpowsFotGjhxpF7b/6MqVK3r22WeVkpKigQMHytfXVyVLltTp06c1ZswYh6dGXzsDei1PT0+1bNlSsbGxGjp0qNauXausrKybrosuiE6dOmnq1KmKjY3VkCFDtGrVKtWrV0++vr5/emytWrVUqlQp7dixQ82bN9eFCxdsa6xdXFz00EMPaceOHapataqys7PtHnB2q2625rx9+/b66quvFBsbq169ehX4HHny/o4GDBigRx555Lo1VatWlSS99957evvtt/X444/rxRdflKenp1xcXDRlypTrjhNmrwHgxgjYAIAiIzY2VuXLl7/uk5+/+eYb24PNSpQoocaNG8vb21txcXEKCgrStm3bNGTIELtjqlatqh9//FHBwcH5mjG9nnXr1snNzU0xMTF2D1T74osv7OoqVaqk3Nxc/fLLL6pevbpt+x+/w9vLy0ulSpVSbm6uHn744QL16XpcXV3l7++vo0eP6vfff5e3t7fWrVun7t27a8yYMba6zMzMP529PnjwoI4eParp06ere/futu1btmy55X5169ZNzz//vPbs2aPY2FjVqVPHblb3ZnJzc3X8+HG7WeLk5GRJsj2ATro6y9qiRQvFxsaqS5cu2rlzp8aOHZuvc+R9p/XOnTu1Y8cOlS5dWn5+frb9gYGBiouLs92JkBewvby85O7ubuvPtZKSkuTi4qKKFSvmqw+S9I9//EPFihXTxIkTVapUKXXp0iXfx15P3sy/q6vrn46zdevWqWnTppoyZYrd9tTUVLun0gMA/hxrsAEARcLly5e1fv16tWjRQh06dHD406dPH128eFHffvutpKuzix06dNDGjRu1atUq5eTk2N0eLkkdO3bU6dOntWLFiuueLz/fRVysWDFZLBa722Z/+eUXh686yptZ//jjj+22L1u2zKG99u3ba926dTp48KDD+f7s9vCjR4/q5MmTDttTU1OVmJgoT09P25Onr7fe96OPPrK7luvJm42+dvbSMAwtXbr0psddT1hYmMqVK6fFixfrv//97y3PXi9fvtyuD8uXL5erq6vDbf/dunXT4cOHNWPGDBUrVkydOnXK9zmCgoJ0/vx5ffnll3rooYfsZuMDAwOVnJysDRs2qGzZsqpRo4akq+9tSEiINmzYYLec4ezZs/r666/VsGHDW/6u7EmTJql9+/YaM2aMw/i6VeXLl1eTJk302Wef6cyZMw77rx1nxYoVc5ipXrNmjW2NNgAg/5jBBgAUCd9++60uXryoVq1aXXd/gwYN5OXlpVWrVtmCdMeOHfXRRx8pKipKfn5+tvCTp1u3blqzZo1ef/11ff/99woKCtKVK1eUlJSktWvXavHixapfv/5N+9W8eXO9//77GjhwoDp37qxz587p448/VtWqVfXTTz/Z6urVq6f27dvrww8/1IULF2xf05X3gKxrZ9BHjRql77//Xk8++aR69OihmjVrKiUlRT/88IMSEhL0n//854b9+fHHH/Xyyy/rkUceUaNGjeTp6anTp0/rn//8p86cOaOxY8fagnWLFi30r3/9S6VLl1bNmjW1a9cubd269brraq/l6+urqlWravr06Tp9+rRKly6tdevW2T1ALb9cXV3VqVMnLVu27JaDr5ubmzZt2qTRo0crICBAmzZt0v/93/9pyJAhDl9f1bx5c5UtW1Zr165VWFiYypcvn+/z5M1KJyYmatiwYXb7GjRoIIvFol27dqlly5Z2f48jRozQ1q1b9dRTT+mpp55SsWLF9NlnnykrK0t///vf833+PC4uLnrrrbf0wgsvaMSIEVq4cOENnx+QH6+//rqeeuopdenSRU8++aSqVKmis2fPateuXTp16pRWrVol6eo4WbBggV555RUFBgbq4MGDio2NdVj/DgD4c8xgAwCKhFWrVsnNzU0hISHX3e/i4qIWLVpo8+bN+v333yVdnXmsWLGiLl686DB7nXfMggULNGrUKB08eFDTp0/XggULtHfvXvXt2/e6D6j6o+DgYL355ps6e/aspkyZotWrV+vll1+2fYfwtaZPn64+ffrou+++08yZM5Wdna05c+ZIkt3t5ffdd59Wrlypxx57TN98840mTZqkpUuXKiUlRS+//PJN+9O4cWMNHz5c6enpev/99/X666/rww8/VKVKlRQVFaV+/frZal999VV169ZNsbGxmjZtms6cOaP333//Tx+i5erqqvfee0+1a9dWdHS05s+fr+rVq2v69Ol/+n5dT97DxoKDg3X//ffn+7hixYpp8eLFOnv2rN566y3t3btXQ4cOtT2E7FpWq9U2BvLzcLNrNWjQwPZ94nlPEM9TunRp2y3tf1x//be//U3Lly/X3/72N0VHR2vBggWqVKmSli5d6vAd2Pnl6uqqqKgoNWjQQM8//7x2795doHYkqWbNmvriiy/UokULffXVV3rjjTf06aefysXFRS+88IKtbsiQIRowYIA2bdqkN998Uz/88IOio6Nv6RZ3AMBVFuNmTzkBAAC35cCBA+revbveeust0x/u5Sx+/PFHdevWzWFNt9mmTJmizz//XFu2bJG7u/sdOw8AADfCDDYAACa5fPmyw7YPP/xQLi4uaty4cSH0qGhYsWKFSpYsqXbt2t2xc2RmZmrVqlVq37494RoAUGhYgw0AgEkWL16sffv2qVmzZipWrJji4+MVHx+vnj17/iVvt/322291+PBhrVixQn369FHJkiVNP8e5c+e0detWrVu3ThcuXNAzzzxj+jkAAMgvbhEHAMAkW7Zs0fz583XkyBFdunRJFStWVLdu3TRkyBDbGt+/klatWuns2bMKDQ3VjBkzbvmp2vnx/fff65lnnlH58uX1/PPP6+mnnzb9HAAA5BcBGwAAAAAAE7AGGwAAAAAAExCwAQAAAAAwwV9vQZiTSUxMlGEYcnV1LeyuAAAAAMBfTnZ2tiwWiwIDA/+0loBdxBmGIZbJAwAAAEDhuJU8RsAu4vJmruvXr1/IPQEAAACAv569e/fmu5Y12AAAAAAAmICADQAAAACACQjYAAAAAACYgIANAAAAAIAJCNgAAAAAAJiAgA0AAAAAgAkI2AAAAAAAmICADQAAAACACQjYAAAAAACYgIANAAAAAIAJCNgAAAAAAJiAgA0AAAAAgAkI2AAAAAAAmKBIBexjx45p/Pjx6tatm+rUqaPOnTtfty41NVWTJ09WaGio6tevrzZt2mjJkiV2NVlZWZo+fbpCQkLUoEEDPfvss0pKSnJo68iRI3r22WfVoEEDhYSEaMaMGcrKynKoW7lypdq3b6/69eura9eu2rhxo0NNWlqaxo4dqyZNmigwMFDDhw/XmTNnCvhuAAAAAACcSfHC7sC1Dh06pO+++04PPfSQcnNzZRiGQ82lS5fUt29fFStWTGPHjlX58uV19OhRpaen29VNnjxZcXFxGjNmjCpUqKD33ntP/fv31+rVq1WmTBlJUkpKivr166fq1atr3rx5On36tKZNm6bLly9r/PjxtrZWr16tcePGaciQIWrWrJni4uI0dOhQLV++XA0aNLDVjRgxQocPH9aECRPk5uamuXPnatCgQfriiy9UvHiReqsBAAAAACYrUqmvVatWatOmjSRpzJgx2rdvn0PNwoULdfHiRa1atUolS5aUJDVt2tSu5tSpU/r888/1+uuv64knnpAk1a9fXy1bttSnn36qQYMGSZI+/fRTXbx4UfPnz1fZsmUlSVeuXNHEiRMVGRmpChUqSJKioqLUqVMnjRgxQpLUrFkzHTx4UAsWLNCiRYskSYmJidq8ebNiYmIUGhoqSfLx8VF4eLjWr1+v8PBwE98pAAAAAEBRU6RuEXdx+fPufP7553r88cdt4fp6Nm/erNzcXHXo0MG2rWzZsgoJCVF8fLxtW3x8vIKDg23hWpI6duyo3NxcbdmyRZJ0/PhxHT16VB07drQ7R3h4uBISEmy3k8fHx8vDw0MhISG2Gl9fX9WuXdvunAAAAACAe1ORCth/5pdfftFvv/2mcuXKaciQIapXr56aNGmi1157TRcvXrTVJSUlqXz58vL09LQ7vkaNGnbrsJOSkuTr62tX4+HhIW9vb1td3k8fHx+HtrKzs3X8+HFbnY+PjywWi12dr6/vddd+AwAAAADuLUXqFvE/c/bsWUnS9OnT1a5dOy1atEhHjx7VrFmzdOnSJc2ePVvS1Yeg5a2zvpaHh4dSUlJsr1NTU+Xh4eFQ5+npaavL+/nHurzXeftvdE5PT8/r3up+KwzD0KVLl26rDQAAAADArTMMw2Ei9UacKmDn5uZKujqbPH36dElScHCwihcvrtdee00jR45UlSpVCrOLd0R2drYOHDhQ2N0AAAAAgL8kq9WarzqnCth5t3z/8aFmzZo1k3T1KeRVqlSRh4eHw1PFpauzzNfeNu7h4aG0tDSHupSUFFtd3s+0tDR5e3vbtXXtfg8PD506deqmbRWUq6urataseVttAAAAAABu3eHDh/Nd61QBu0qVKjf95CAzM1PS1XXPZ8+edQi3f1xzfb310Wlpafrtt99sdXk//3hsUlKSXF1dbTPmvr6+SkhIcLh9IDk5WX5+fgW9ZEmSxWK56UPdAAAAAAB3Rn5vD5ec7CFnVqtVISEhSkhIsNu+detWSVLdunUlSaGhoXJxcdH69ettNSkpKdq8ebPCwsJs28LCwrR161bbbLQkrV27Vi4uLrangVepUkXVq1fX2rVr7c4ZFxen4OBgW+APCwtTSkqKXd+Sk5O1f/9+u3MWltwruYXdBTgJxgoAAABQMEVqBjsjI0PfffedJOnEiRNKT0+3BdsmTZrIy8tLQ4cOVa9evTRq1Cg9+uijOnbsmGbNmqUuXbqoatWqkqQHHnhATzzxhGbMmCEXFxdVqFBB0dHRKlOmjHr16mU7X69evfTRRx/phRdeUGRkpE6fPq0ZM2aoV69etu/AlqRhw4bp5ZdfVtWqVdW0aVPFxcVpz549WrZsma0mMDBQoaGhGjt2rEaPHi03NzfNmTNH/v7+ateu3d14+27KpZiLZk75TMd//q2wu4IirEpVb708tmdhdwMAAABwShbDMIzC7kSeX375Ra1bt77uvqVLl9rWXickJGjmzJk6ePCgPD091aVLF40cOdLu9vGsrCzNmTNH//rXv3Tx4kUFBQXptddeU40aNezaPXLkiCZNmqTExESVKlVK3bp1c2hLklauXKlFixbp5MmT8vHx0UsvvaSWLVva1aSlpWnq1Kn65ptvlJOTo9DQUL322mt2Yf1W7d27V5JUv379AreR58Uh83Xk0Mnbbgf3rhp/q6S33xta2N0AAAAAioxbyWRFKmDDEQEbdxMBGwAAALB3K5nMqdZgAwAAAABQVBGwAQAAAAAwAQEbAAAAAAATELABAAAAADABARsAAAAAABMQsAEAAAAAMAEBGwAAAAAAExCwAQAAAAAwAQEbAAAAAAATELABFFlXcnMLuwtwEowVAABQFBQv7A4AwI0Uc3HRGzFf6divZwu7KyjCqlW8T+MjHi3sbgAAABCwARRtx349q4PHTxV2NwAAAIA/xS3iAAAAAACYgIANAAAAAIAJCNgAAAAAAJiAgA0AAAAAgAkI2AAAAAAAmICADQAAAACACQjYAAAAAACYgIANAAAAAIAJCNgAAAAAAJiAgA0AAAAAgAkI2AAAAAAAmICADQAAAACACQjYAAAAAACYgIANAAAAAIAJCNgAAAAAAJiAgA0AAAAAgAkI2AAAAAAAmICADQCAia7k5hZ2F+AkGCsAcO8pXtgdAADgXlLMxUVj//mFks6eLeyuoAjzve8+Ten+eGF3w+aKkatiFuZd8OcYK8DNEbABADBZ0tmz+vHUr4XdDSDfillcNC3hM/2ceqawu4IirKrH/RoT3LOwuwEUaQRsAAAA6OfUMzr8+8nC7gYAODXu7wAAAAAAwAQEbAAAAAAATEDABgAAAADABARsAAAAAABMQMAGAAAAAMAEBGwAAAAAAExAwAYAAAAAwAQEbAAAAAAATEDABgAAAADABARsAAAAAABMQMAGAAAAAMAEBGwAAAAAAExAwAYAAAAAwARFKmAfO3ZM48ePV7du3VSnTh117tz5pvX//ve/5e/vf926tLQ0jR07Vk2aNFFgYKCGDx+uM2fOONTt3LlTPXv2VEBAgFq2bKmFCxfKMAy7GsMwtHDhQrVo0UIBAQHq2bOndu3a5dDW6dOnNWzYMAUGBqpJkyZ69dVXlZ6efmtvAgAAAADAKRWpgH3o0CF99913qlatmmrUqHHT2suXL2vKlCm67777rrt/xIgR2rJliyZMmKCZM2cqOTlZgwYNUk5Ojq3m2LFjioiIkLe3t6Kjo9WvXz9FRUVpyZIldm0tWrRIUVFR6t+/v6Kjo+Xt7a0BAwbo+PHjtprs7GwNHDhQR48e1axZszRhwgRt3rxZo0aNuo13BAAAAADgLIoXdgeu1apVK7Vp00aSNGbMGO3bt++GtdHR0apUqZIqV67sUJeYmKjNmzcrJiZGoaGhkiQfHx+Fh4dr/fr1Cg8PlyTFxMSoXLlymj17tqxWq4KDg3X+/Hm999576tu3r6xWqzIzMxUdHa0BAwaof//+kqSGDRuqQ4cOiomJ0YQJEyRJ69at06FDhxQXFydfX19JkoeHhyIiIrRnzx4FBASY+VYBAAAAAIqYIjWD7eKSv+78/PPPev/99/Xaa69dd398fLw8PDwUEhJi2+br66vatWsrPj7erq5169ayWq22beHh4UpNTVViYqKkq7eQp6enq2PHjrYaq9Wqtm3bOrTl7+9vC9eSFBISorJly+q7777L13UBAAAAAJxXkQrY+fXmm2+qW7duqlWr1nX3JyUlycfHRxaLxW67r6+vkpKSJEmXLl3Sr7/+aheI82osFoutLu/nH+tq1KihkydP6vLly7a6P9ZYLBb5+PjY2gAAAABgjlwjt7C7ACdxN8dKkbpFPD++/fZbJSYmau3atTesSU1NVZkyZRy2e3p62m4nT0tLk3T1Nu5rWa1Wubu7KyUlxdaW1WqVm5ubXZ2Hh4cMw1BKSopKlChx03PmtVVQhmHo0qVLBT7eYrHI3d39tvqAv5aMjAyHh/3dbYxb3CrGLZwR4xbOqCiN2zUH5+n8pROF2hcUbV4lH1RHv2G3NW4Nw3CYvL0RpwrYmZmZmjJlioYNGyYvL6/C7s5dk52drQMHDhT4eHd3d9WpU8fEHuFel5ycrIyMjELtA+MWt4pxC2fEuIUzKkrj9vylE/rtYnKh9gXO4XbH7bXLim/GqQL2hx9+KBcXF3Xq1EmpqamSrobP3NxcpaamqkSJErJarfLw8NCpU6ccjk9JSZGnp6ck2Wab82ay82RlZSkjI8NW5+HhoaysLGVmZtrNYqempspisdjVXe8ruVJSUlSxYsXbum5XV1fVrFmzwMfn99MWII+Pj0+R+GQauBWMWzgjxi2cEeMWzuh2xu3hw4fzXetUATspKUnHjh1TcHCww77GjRtrwoQJ6t27t3x9fZWQkOAwlZ+cnCw/Pz9JUsmSJVWxYkWH9dHJyckyDMO2njrvZ3Jyst2a76SkJFWqVEklSpSw1R08eNCuLcMwlJycbPewtYKwWCwqWbLkbbUB3ApuFYQzYtzCGTFu4YwYt3BGtzNub+UDHad6yNmgQYO0dOlSuz+hoaF68MEHtXTpUrVq1UqSFBYWppSUFCUkJNiOTU5O1v79+xUWFmbbFhYWpg0bNig7O9u2LS4uTh4eHgoMDJQkBQUFqXTp0lqzZo2tJjs7W+vXr3do68cff9TRo0dt2xISEnThwgU1b97c9PcCAAAAAFC0FKkZ7IyMDNtXWp04cULp6em2h5k1adJENWrUUI0aNeyO+eqrr3T69Gk1bdrUti0wMFChoaEaO3asRo8eLTc3N82ZM0f+/v5q166drS4iIkKxsbEaNWqUevfurYMHDyomJkYjR4603WPv5uamyMhIzZs3T15eXvLz89Mnn3yiCxcuKCIiwtZW+/btFR0drWHDhumll15SRkaGZsyYoRYtWvAd2AAAAADwF1CkAva5c+f04osv2m3Le7106VK7EP1n5s6dq6lTp2r8+PHKyclRaGioXnvtNRUv/r9LrlatmmJiYjRt2jQNHjxYXl5eGj58uAYMGGDX1qBBg2QYhpYsWaLz58+rdu3aiomJUZUqVWw1rq6uWrx4sSZPnqyXXnpJxYsXV9u2bTV27NiCvBUAAAAAACdTpAJ25cqV9dNPP93SMdOmTbvu9jJlymjKlCmaMmXKTY8PCgrSihUrblpjsVgUGRmpyMjIm9ZVqFBB8+bNu3mHAQAAAAD3JKdagw0AAAAAQFFFwAYAAAAAwAQEbAAAAAAATEDABgAAAADABARsAAAAAABMQMAGAAAAAMAEBGwAAAAAAExAwAYAAAAAwAQEbAAAAAAATEDABgAAAADABARsAAAAAABMQMAGAAAAAMAEBGwAAAAAAExAwAYAAAAAwAQEbAAAAAAATEDABgAAAADABARsAAAAAABMQMAGAAAAAMAEBGwAAAAAAExAwAYAAAAAwAQEbAAAAAAATEDABgAAAADABARsAAAAAABMQMAGAAAAAMAEBGwAAAAAAExAwAYAAAAAwAQEbAAAAAAATEDABgAAAADABARsAAAAAABMQMAGAAAAAMAEBGwAAAAAAExAwAYAAAAAwAQEbAAAAAAATEDABgAAAADABARsAAAAAABMQMAGAAAAAMAEBGwAAAAAAExAwAYAAAAAwAQEbAAAAAAATEDABgAAAADABARsAAAAAABMQMAGAAAAAMAEBGwAAAAAAExAwAYAAAAAwAQEbAAAAAAATFCkAvaxY8c0fvx4devWTXXq1FHnzp3t9qenp2vevHl64okn1KhRIz388MMaMmSIfvrpJ4e20tLSNHbsWDVp0kSBgYEaPny4zpw541C3c+dO9ezZUwEBAWrZsqUWLlwowzDsagzD0MKFC9WiRQsFBASoZ8+e2rVrl0Nbp0+f1rBhwxQYGKgmTZro1VdfVXp6+u29KQAAAAAAp1CkAvahQ4f03XffqVq1aqpRo4bD/pMnT+qzzz5TSEiI5s6dq0mTJiktLU09e/bUkSNH7GpHjBihLVu2aMKECZo5c6aSk5M1aNAg5eTk2GqOHTumiIgIeXt7Kzo6Wv369VNUVJSWLFli19aiRYsUFRWl/v37Kzo6Wt7e3howYICOHz9uq8nOztbAgQN19OhRzZo1SxMmTNDmzZs1atQok98lAAAAAEBRVLywO3CtVq1aqU2bNpKkMWPGaN++fXb7K1eurG+++Ubu7u62bc2aNVOrVq308ccfa9y4cZKkxMREbd68WTExMQoNDZUk+fj4KDw8XOvXr1d4eLgkKSYmRuXKldPs2bNltVoVHBys8+fP67333lPfvn1ltVqVmZmp6OhoDRgwQP3795ckNWzYUB06dFBMTIwmTJggSVq3bp0OHTqkuLg4+fr6SpI8PDwUERGhPXv2KCAg4I69bwAAAACAwlekZrBdXG7enZIlS9qFa0kqVaqUqlatanf7d3x8vDw8PBQSEmLb5uvrq9q1ays+Pt6urnXr1rJarbZt4eHhSk1NVWJioqSrt5Cnp6erY8eOthqr1aq2bds6tOXv728L15IUEhKismXL6rvvvsvvWwAAAAAAcFJFKmAXRGpqqg4dOmQXbJOSkuTj4yOLxWJX6+vrq6SkJEnSpUuX9Ouvv9odl1djsVhsdXk//1hXo0YNnTx5UpcvX7bV/bHGYrHIx8fH1gYAAAAA4N5VpG4RL4i33npLFotFvXv3tm1LTU1VmTJlHGo9PT1tt52npaVJunob97WsVqvc3d2VkpJia8tqtcrNzc2uzsPDQ4ZhKCUlRSVKlLjpOfPaKijDMHTp0qUCH2+xWBxm/oGbycjIcHjY393GuMWtYtzCGTFu4YwYt3BGtzNuDcNwmLy9EacO2F988YVWrFihadOm6YEHHijs7twx2dnZOnDgQIGPd3d3V506dUzsEe51ycnJysjIKNQ+MG5xqxi3cEaMWzgjxi2c0e2O22uXFd+M0wbs7777TuPHj9fzzz+vRx991G6fh4eHTp065XBMSkqKPD09Jck225w3k50nKytLGRkZtjoPDw9lZWUpMzPTbhY7NTVVFovFru56X8mVkpKiihUr3saVSq6urqpZs2aBj8/vpy1AHh8fnyLxyTRwKxi3cEaMWzgjxi2c0e2M28OHD+e71ikD9q5du/Tiiy+qe/fuevHFFx32+/r6KiEhwWEqPzk5WX5+fpKuPjCtYsWKDuujk5OTZRiGbT113s/k5GTVqlXLVpeUlKRKlSqpRIkStrqDBw/atWUYhpKTk+0etlYQFotFJUuWvK02gFvBLVdwRoxbOCPGLZwR4xbO6HbG7a18oON0Dzk7fPiwIiMj1axZM02cOPG6NWFhYUpJSVFCQoJtW3Jysvbv36+wsDC7ug0bNig7O9u2LS4uTh4eHgoMDJQkBQUFqXTp0lqzZo2tJjs7W+vXr3do68cff9TRo0dt2xISEnThwgU1b978tq8bAAAAAFC0FakZ7IyMDNtXWp04cULp6elau3atJKlJkyYyDEMRERFyc3NTv3797L4nu3Tp0rbbqAMDAxUaGqqxY8dq9OjRcnNz05w5c+Tv76927drZjomIiFBsbKxGjRql3r176+DBg4qJidHIkSNt99i7ubkpMjJS8+bNk5eXl/z8/PTJJ5/owoULioiIsLXVvn17RUdHa9iwYXrppZeUkZGhGTNmqEWLFnwHNgAAAAD8BRSpgH3u3DmHW77zXi9dulSSbGur+/fvb1fXpEkTffTRR7bXc+fO1dSpUzV+/Hjl5OQoNDRUr732mooX/98lV6tWTTExMZo2bZoGDx4sLy8vDR8+XAMGDLBre9CgQTIMQ0uWLNH58+dVu3ZtxcTEqEqVKrYaV1dXLV68WJMnT9ZLL72k4sWLq23btho7duztvzEAAAAAgCKvSAXsypUr66effrppzZ/tz1OmTBlNmTJFU6ZMuWldUFCQVqxYcdMai8WiyMhIRUZG3rSuQoUKmjdvXr76BwAAAAC4tzjdGmwAAAAAAIoiAjYAAAAAACYgYAMAAAAAYAICNgAAAAAAJiBgAwAAAABgAgI2AAAAAAAmIGADAAAAAGACAjYAAAAAACYgYAMAAAAAYAICNgAAAAAAJiBgAwAAAABgAgI2AAAAAAAmIGADAAAAAGACAjYAAAAAACYgYAMAAAAAYAICNgAAAAAAJiBgAwAAAABgAgI2AAAAAAAmIGADAAAAAGACAjYAAAAAACYgYAMAAAAAYAICNgAAAAAAJiBgAwAAAABgAgI2AAAAAAAmIGADAAAAAGACAjYAAAAAACYgYAMAAAAAYAICNgAAAAAAJiBgAwAAAABgAgI2AAAAAAAmIGADAAAAAGACAjYAAAAAACYgYAMAAAAAYAICNgAAAAAAJiBgAwAAAABgAgI2AAAAAAAmIGADAAAAAGACAjYAAAAAACYoUMDOysoyux8AAAAAADi1AgXs0NBQjRs3Ttu3bze7PwAAAAAAOKXiBTmoffv2Wr9+vT7//HNVrFhRXbp0UdeuXVWjRg2z+wcAAAAAgFMo0Az2pEmTtHnzZkVFRalevXp6//331blzZz322GP68MMPdfbsWbP7CQAAAABAkVbgh5y5urqqbdu2ioqK0tatW/XGG2+oTJkymj59ulq0aKFBgwYpNjZWly9fNrO/AAAAAAAUSQW6RfyPSpcurR49eqhWrVpatGiR1q9fr02bNmnTpk0qVaqUnnzySQ0bNkwlS5Y043QAAAAAABQ5tx2wjx8/rtjYWMXGxuro0aMqW7asnn76aXXr1k2urq5asWKFPvroI/3yyy+aN2+eGX0GAAAAAKDIKVDA/v333xUXF6fY2Fjt3r1brq6uatGihf7+978rLCxMxYv/r9nx48frgQce0DvvvGNapwEAAAAAKGoKtAb7kUce0aRJkyRJr7/+uu2BZ61atbIL13n+9re/ycvL60/bPXbsmMaPH69u3bqpTp066ty583XrVq5cqfbt26t+/frq2rWrNm7c6FCTlpamsWPHqkmTJgoMDNTw4cN15swZh7qdO3eqZ8+eCggIUMuWLbVw4UIZhmFXYxiGFi5cqBYtWiggIEA9e/bUrl27HNo6ffq0hg0bpsDAQDVp0kSvvvqq0tPT//S6AQAAAADOr0ABOzIyUuvXr9enn36qXr16ycPD46b1LVu21Lfffvun7R46dEjfffedqlWrdsOv/Fq9erXGjRunjh07atGiRWrQoIGGDh3qEHhHjBihLVu2aMKECZo5c6aSk5M1aNAg5eTk2GqOHTumiIgIeXt7Kzo6Wv369VNUVJSWLFli19aiRYsUFRWl/v37Kzo6Wt7e3howYICOHz9uq8nOztbAgQN19OhRzZo1SxMmTNDmzZs1atSoP71uAAAAAIDzu+VbxDMyMvTTTz9p165dqlq1qqmdadWqldq0aSNJGjNmjPbt2+dQExUVpU6dOmnEiBGSpGbNmungwYNasGCBFi1aJElKTEzU5s2bFRMTo9DQUEmSj4+PwsPDtX79eoWHh0uSYmJiVK5cOc2ePVtWq1XBwcE6f/683nvvPfXt21dWq1WZmZmKjo7WgAED1L9/f0lSw4YN1aFDB8XExGjChAmSpHXr1unQoUOKi4uTr6+vJMnDw0MRERHas2ePAgICTH2vAAAAAABFyy3PYLu7u2vr1q135Ou3XFxu3p3jx4/r6NGj6tixo9328PBwJSQkKCsrS5IUHx8vDw8PhYSE2Gp8fX1Vu3ZtxcfH27bFx8erdevWslqtdm2lpqYqMTFR0tVbyNPT0+3OabVa1bZtW4e2/P39beFakkJCQlS2bFl99913t/I2AAAAAACcUIFuEW/YsKEtgN5NSUlJkq7ORl+rRo0ays7Ott2ynZSUJB8fH1ksFrs6X19fWxuXLl3Sr7/+aheI82osFoutLu/nH+tq1KihkydP2j5oSEpKcqixWCzy8fGxtQEAAAAAuHcV6Cni48ePV0REhObMmaPevXvrgQceMLtf15WSkiJJDmu+817n7U9NTVWZMmUcjvf09LTddp6WlnbdtqxWq9zd3e3aslqtcnNzczinYRhKSUlRiRIlbnrOvLYKyjAMXbp0qcDHWywWubu731Yf8NeSkZHh8LC/u41xi1vFuIUzYtzCGTFu4YxuZ9wahuEweXsjBQrYXbt21ZUrV7Rw4UItXLhQxYoVs7vNWro66Hfs2FGQ5vEH2dnZOnDgQIGPd3d3V506dUzsEe51ycnJysjIKNQ+MG5xqxi3cEaMWzgjxi2c0e2O2z/m3RspUMBu3759vhO8mTw9PSVdnX329va2bU9NTbXb7+HhoVOnTjkcn5KSYqvJm23Om8nOk5WVpYyMDLu2srKylJmZaTeLnZqaKovFYld3va/kSklJUcWKFQt2wf+fq6uratasWeDjC+PvCs7Nx8enSHwyDdwKxi2cEeMWzohxC2d0O+P28OHD+a4tUMCeNm1aQQ67bXlrnP+43jkpKUmurq6qUqWKrS4hIcFhKj85OVl+fn6SpJIlS6pixYoO66OTk5NlGIat/byfycnJqlWrlt05K1WqpBIlStjqDh48aNeWYRhKTk62e9haQVgsFpUsWfK22gBuBbdcwRkxbuGMGLdwRoxbOKPbGbe38oFOgR5yVliqVKmi6tWra+3atXbb4+LiFBwcbJu2DwsLU0pKihISEmw1ycnJ2r9/v8LCwmzbwsLCtGHDBmVnZ9u15eHhocDAQElSUFCQSpcurTVr1thqsrOztX79eoe2fvzxRx09etS2LSEhQRcuXFDz5s3NeQMAAAAAAEVWgWaw85w6dUr79+9XWlradafbu3fvfkvtZWRk2L7S6sSJE0pPT7eF6SZNmsjLy0vDhg3Tyy+/rKpVq6pp06aKi4vTnj17tGzZMls7gYGBCg0N1dixYzV69Gi5ublpzpw58vf3V7t27Wx1ERERio2N1ahRo9S7d28dPHhQMTExGjlypC2su7m5KTIyUvPmzZOXl5f8/Pz0ySef6MKFC4qIiLC11b59e0VHR2vYsGF66aWXlJGRoRkzZqhFixZ8BzYAAAAA/AUUKGBnZmZq9OjRWr9+vXJzc2WxWGwB+9rp81sN2OfOndOLL75oty3v9dKlS9W0aVN17txZGRkZWrRokRYuXCgfHx/Nnz/fNuOcZ+7cuZo6darGjx+vnJwchYaG6rXXXlPx4v+75GrVqikmJkbTpk3T4MGD5eXlpeHDh2vAgAF2bQ0aNEiGYWjJkiU6f/68ateurZiYGNst6dLVddKLFy/W5MmT9dJLL6l48eJq27atxo4de0vvAQAAAADAORUoYM+ePVvffPONRowYocDAQPXt21fTpk3T/fffrw8//FBnzpzR9OnTb7ndypUr66effvrTuh49eqhHjx43rSlTpoymTJmiKVOm3LQuKChIK1asuGmNxWJRZGSkIiMjb1pXoUIFzZs376Y1AAAAAIB7U4HWYK9bt06PPfaYBg8ebHu6dYUKFfTwww8rOjpaZcqU0fLly03tKAAAAAAARVmBAva5c+ds64rznqJ97XeKtW/fXt98840J3QMAAAAAwDkUKGDfd999+v333yVdfdy5p6enkpOTbfvT09OVmZlpTg8BAAAAAHACBVqDHRAQoJ07d9pet2zZUjExMfL29lZubq4++OADNWjQwKw+AgAAAABQ5BUoYPft21dr165VVlaWrFarXnzxRSUmJuof//iHJKlq1ap69dVXTe0oAAAAAABFWYECdqNGjdSoUSPb64oVK2rNmjU6ePCgXFxc5Ovra/d1WAAAAAAA3OtMS8EuLi6qVauWWc0BAAAAAOBU8hWw//vf/xao8caNGxfoOAAAAAAAnE2+Anbfvn1lsVjy3ahhGLJYLDpw4ECBOwYAAAAAgDPJV8BeunTpne4HAAAAAABOLV8Bu0mTJne6HwAAAAAAODWXwu4AAAAAAAD3ggI/RTwzM1Pr1q3T/v37lZaWptzcXLv9FotFU6ZMue0OAgAAAADgDAoUsE+cOKFnnnlGJ06ckIeHh9LS0uTp6am0tDRduXJF5cqVU8mSJc3uKwAAAAAARVaBbhGfMWOG0tPTtWLFCq1du1aGYWjOnDlKTEzUyy+/rBIlSigmJsbsvgIAAAAAUGQVKGBv27ZNvXv3VkBAgFxc/teE1WrVwIED1axZM24PBwAAAAD8pRQoYF++fFkPPvigJKl06dKyWCxKS0uz7Q8MDNSOHTvM6SEAAAAAAE6gQAG7YsWKOn36tCSpePHiqlChgnbt2mXbf/jwYbm5uZnSQQAAAAAAnEGBHnLWrFkzbdiwQUOHDpUkPfroo1q4cKFSU1OVm5urVatWqVu3bqZ2FAAAAACAoqxAAXvw4MHau3evsrKyZLVaNWTIEJ05c0br1q2Ti4uLOnfurFdeecXsvgIAAAAAUGQVKGBXqlRJlSpVsr12c3PTm2++qTfffNO0jgEAAAAA4EwKtAb7enJzc3Xu3DkZhmFWkwAAAAAAOI18B+zk5GT985//VEpKit329PR0/eMf/9BDDz2k0NBQNWvWTMuWLTO9owAAAAAAFGX5Dtjvv/++3n77bXl4eNhtHzdunFatWqVKlSqpbdu2slqtevPNN/Xvf//b9M4CAAAAAFBU5XsN9s6dO9WiRQtZLBbbtl9//VVr1qxRgwYNtGzZMhUvXlypqal64okntHz5crVp0+aOdBoAAAAAgKIm3zPYp0+flq+vr922jRs3ymKx6JlnnlHx4lezuoeHh7p166b9+/eb21MAAAAAAIqwfAfs3NxcW4jOs2PHDklSkyZN7LY/8MADunjxogndAwAAAADAOeQ7YFetWlW7d++2vb5y5Yq+//57+fr66r777rOrTUlJkZeXl3m9BAAAAACgiMv3Guzu3bvrrbfekq+vr4KCgrRq1SqdO3dOffv2dajdvn27qlevbmY/AQAAAAAo0vIdsJ966iklJCRo9uzZslgsMgxDjRs31oABA+zqfv31V8XHx2vEiBFm9xUAAAAAgCIr3wHb1dVV7733nvbu3avjx4+rUqVKatCggUNdVlaWZs2apcaNG5vZTwAAAAAAirR8B+w89evXV/369W+4v1q1aqpWrdptdQoAAAAAAGeT74ecAQAAAACAGyNgAwAAAABgAgI2AAAAAAAmIGADAAAAAGACAjYAAAAAACa45aeIXysrK0s//PCDzp07p6CgIHl5eZnVLwAAAAAAnEqBZ7CXLl2q0NBQPfXUUxo2bJh++uknSdL58+fVtGlTff7556Z1EgAAAACAoq5AAfuLL77QlClT9Mgjj+jNN9+UYRi2fV5eXmrWrJni4uJM6yQAAAAAAEVdgQL2+++/r9atW2vWrFlq2bKlw/66devq0KFDt905AAAAAACcRYEC9rFjxxQWFnbD/WXLltWFCxcK2icAAAAAAJxOgQK2h4eHfv/99xvuP3z4sLy9vQvcKQAAAAAAnE2BAnZYWJhWrFih1NRUh32HDh3SypUr1apVq9vuHAAAAAAAzqJAX9M1YsQIPfnkk+rcubNatmwpi8Wif/7zn/riiy+0fv16eXt76/nnnze7rwAAAAAAFFkFmsGuUKGCvvzySz3yyCNas2aNDMPQv/71L23cuFGdOnXSihUr+E5sAAAAAMBfSoG/B7t8+fJ688039Z///Edbt27V5s2b9d///ldTp05V+fLlzeyjgw0bNqhHjx4KDAxUaGioXnzxRR0/ftyhbuXKlWrfvr3q16+vrl27auPGjQ41aWlpGjt2rJo0aaLAwEANHz5cZ86ccajbuXOnevbsqYCAALVs2VILFy60+3oySTIMQwsXLlSLFi0UEBCgnj17ateuXaZdNwAAAACg6CpwwL6Wl5eX7rvvPrm4mNLcTX3//fcaOnSoatasqQULFmjs2LH68ccfNWDAAF2+fNlWt3r1ao0bN04dO3bUokWL1KBBAw0dOtQh8I4YMUJbtmzRhAkTNHPmTCUnJ2vQoEHKycmx1Rw7dkwRERHy9vZWdHS0+vXrp6ioKC1ZssSurUWLFikqKkr9+/dXdHS0vL29NWDAgOuGfwAAAADAvaVAa7Dnz59/0/0Wi0Vubm564IEH1LhxY1WoUKFAnbue1atXq1KlSpoyZYosFoukqwG/X79+2rdvnxo1aiRJioqKUqdOnTRixAhJUrNmzXTw4EEtWLBAixYtkiQlJiZq8+bNiomJUWhoqCTJx8dH4eHhWr9+vcLDwyVJMTExKleunGbPni2r1arg4GCdP39e7733nvr27Sur1arMzExFR0drwIAB6t+/vySpYcOG6tChg2JiYjRhwgTT3gMAAAAAQNFT4ICdF27/eJv0H7cXK1ZMPXr00Pjx402Z4c7JyVGpUqVs55GkMmXK2J3z+PHjOnr0qP7+97/bHRseHq4ZM2YoKytLVqtV8fHx8vDwUEhIiK3G19dXtWvXVnx8vC1gx8fHq23btrJarXZtRUdHKzExUU2bNtXOnTuVnp6ujh072mqsVqvatm2rb7755ravGwAAAABQtBUo8X733Xfy9/dX9+7d9eWXX2r79u3avn27vvjiC3Xv3l21a9fWunXr9NVXX6lLly767LPP9N5775nS4ccee0xHjhzR8uXLlZaWpuPHj2v27NmqU6eOgoKCJElJSUmSrs5GX6tGjRrKzs623bKdlJQkHx8fu7AuXQ3ZeW1cunRJv/76q3x9fR1qLBaLrS7v5x/ratSooZMnT9rdvg4AAAAAuPcUaAZ74sSJ8vX11dSpU+22161bV1OnTtXIkSM1a9YsRUVFadq0aTp37pz+9a9/mfLVXY0aNdL8+fM1atQovfHGG5Kk2rVra/HixSpWrJgkKSUlRZLk4eFhd2ze67z9qampttnva3l6emrfvn2Srj4E7XptWa1Wubu727VltVrl5ubmcE7DMJSSkqISJUoU6JoNw9ClS5cKdKx09a4Cd3f3Ah+Pv56MjAyHu1PuNsYtbhXjFs6IcQtnxLiFM7qdcWsYhsOk7I0UKGBv27bN4fbrazVu3FizZs2yvW7evLmmT59ekFM52Llzp/7xj3/oySefVIsWLXThwgW98847Gjx4sD7++OMCh9iiLDs7WwcOHCjw8e7u7qpTp46JPcK9Ljk5WRkZGYXaB8YtbhXjFs6IcQtnxLiFM7rdcXvtcuGbKVDAtlqt2rNnj3r37n3d/bt375arq6vtdU5OjkqWLFmQUzmYPHmymjVrpjFjxti2NWjQQC1atNC//vUv9ezZU56enpKuzj57e3vb6lJTUyXJtt/Dw0OnTp1yOEdKSoqtJm+GO28mO09WVpYyMjLs2srKylJmZqbdLHZqaqosFoutriBcXV1Vs2bNAh+f309bgDw+Pj5F4pNp4FYwbuGMGLdwRoxbOKPbGbeHDx/Od22BAnbnzp21fPlylS1bVr1791blypUlSb/88os+/vhjrVq1Sn369LHVf//997cVEK915MgRtW7d2m7bAw88oHLlyunnn3+W9L910ElJSXZropOSkuTq6qoqVarY6hISEhym/JOTk+Xn5ydJKlmypCpWrGhbY31tjWEYtvbzfiYnJ6tWrVp256xUqdJtzaxbLBbTPqAA8oNbruCMGLdwRoxbOCPGLZzR7YzbW/lAp0APOfv73/+u9u3b6/3331f79u1Vv3591a9fX+3bt9cHH3ygtm3b2m4hz8zMVN26dfXCCy8U5FQOKlWqpP3799ttO3HihH7//Xc9+OCDkqQqVaqoevXqWrt2rV1dXFycgoODbdP7YWFhSklJUUJCgq0mOTlZ+/fvV1hYmG1bWFiYNmzYoOzsbLu2PDw8FBgYKEkKCgpS6dKltWbNGltNdna21q9fb9cWAAAAAODeVKAZbDc3N82dO1f79+/Xpk2bdOLECUnSgw8+qNDQUNWtW9eudujQoeb0VlKvXr00ZcoUTZ48Wa1atdKFCxf07rvvqnz58nZfkTVs2DC9/PLLqlq1qpo2baq4uDjt2bNHy5Yts9UEBgYqNDRUY8eO1ejRo+Xm5qY5c+bI399f7dq1s9VFREQoNjZWo0aNUu/evXXw4EHFxMRo5MiRtrDu5uamyMhIzZs3T15eXvLz89Mnn3yiCxcuKCIiwrTrBwAAAAAUTQUK2Hnq1Klz1x8u8Mwzz8hqteqTTz7RF198oVKlSqlBgwaaO3euypUrZ6vr3LmzMjIytGjRIi1cuFA+Pj6aP3++bcY5z9y5czV16lSNHz9eOTk5Cg0N1Wuvvabixf/31lSrVk0xMTGaNm2aBg8eLC8vLw0fPlwDBgywa2vQoEEyDENLlizR+fPnVbt2bcXExNhuSQcAAAAA3LtuK2AXBovFot69e9/wAWvX6tGjh3r06HHTmjJlymjKlCmaMmXKTeuCgoK0YsWKP+1bZGSkIiMj/7RvAAAAAIB7S4ED9nfffacPPvhA+/fvV1pa2nWfyHY7Xy0FAAAAAIAzKdBDztatW6chQ4bo7NmzCg8PV25urjp16qTw8HCVKFFC/v7+pj3UDAAAAAAAZ1CgGezo6GgFBATo448/VkpKij755BM9/vjjCg4O1i+//KKePXvavroLAAAAAIC/ggLNYB85ckTh4eEqVqyY7WFgOTk5kqTKlSurd+/eWrRokXm9BAAAAACgiCtQwC5RooRcXV0lSR4eHrJarfrtt99s+++77z798ssv5vQQAAAAAAAnUKCA7ePjoyNHjthe165dW//617+Uk5OjzMxMff3116pYsaJpnQQAAAAAoKgrUMBu27atNmzYoKysLEnSkCFD9J///EeNGzdWs2bNtH37dg0ePNjUjgIAAAAAUJQV6CFnERERioiIsL1u2bKlPvroI61fv17FihVT8+bN1axZM9M6CQAAAABAUXfLATsrK0ubNm3Sgw8+qFq1atm2N2rUSI0aNTK1cwAAAAAAOItbvkXc1dVVL774ohITE+9EfwAAAAAAcEq3HLAtFouqV6+u33///U70BwAAAAAAp1Sgh5xFRkZq+fLlSkpKMrs/AAAAAAA4pQI95Gz37t0qW7asunTpoiZNmujBBx9UiRIlHOpee+212+4gAAAAAADOoEABe9myZbb/TkhIuG6NxWIhYAMAAAAA/jIKFLB//PFHs/sBAAAAAIBTK9AabAAAAAAAYK9AM9h5du3ape+//17nzp3TU089perVqysjI0NJSUmqXr26SpUqZVY/AQAAAAAo0goUsLOysvTSSy9pw4YNMgxDFotFLVu2VPXq1eXi4qIBAwaof//+eu6558zuLwAAAAAARVKBbhF/++239X//93+aMGGC1q5dK8MwbPvc3NzUoUMHbdiwwbROAgAAAABQ1BUoYK9evVq9evVSz5495enp6bC/Ro0aOn78+G13DgAAAAAAZ1GggH3u3Dn5+/vfcH+xYsV0+fLlAncKAAAAAABnU6CAXbFiRSUlJd1w/86dO1W1atUCdwoAAAAAAGdToIDduXNnffrpp0pMTLRts1gskqQVK1ZozZo16t69uykdBAAAAADAGRToKeJDhgzR7t279fTTT8vX11cWi0VTp05VSkqKTp06pebNm6t///4mdxUAAAAAgKKrQAHbarVq8eLFWrVqldatW6fc3FxlZWXJ399fI0aMULdu3Wwz2gAAAAAA/BUUKGBLV28J79atm7p162ZmfwAAAAAAcEoFWoM9Y8YM7d+/3+y+AAAAAADgtAoUsJctW6bHH39c7dq109y5c/XTTz+Z3S8AAAAAAJxKgQL21q1bNXXqVFWvXl2LFy9W9+7d1alTJy1YsOCmX98FAAAAAMC9qkBrsEuXLq3u3bure/fuSk1N1bp167R27Vq9++67mj9/vvz8/NSpUycNHjzY7P4CAAAAAFAkFWgG+1oeHh7q0aOHYmJitGnTJo0ePVq//PKL5syZY0b/AAAAAABwCgV+ivi1srOzFR8fr7i4OG3cuFGXLl1SxYoVzWgaAAAAAACnUOCAnZOToy1btiguLk4bNmxQenq6vL299dhjjyk8PFxBQUFm9hMAAAAAgCKtQAF77Nix2rBhg1JSUlSuXDl16tRJnTp1UuPGjWWxWMzuIwAAAAAARV6BAvaGDRvUpk0bhYeHq1mzZipWrJhDTUpKijw9PW+7gwAAAAAAOIMCBewtW7aoeHHHQ7OysrRhwwbFxsZq06ZN2rt37213EAAAAAAAZ1CggH1tuDYMQwkJCYqNjdU333yj9PR0eXl5qXPnzqZ1EgAAAACAoq7ADznbt2+fYmNjtXr1ap09e1YWi0Xh4eF6+umn1aBBA9ZiAwAAAAD+Um4pYB8/flyrVq1SbGysjh07pgoVKqhLly4KCAjQyJEj1b59ewUGBt6pvgIAAAAAUGTlO2D37NlTe/bsUbly5dS+fXtNnjxZjRo1kiT9/PPPd6yDAAAAAAA4g3wH7N27d6ty5coaM2aMWrRocd2HnAEAAAAA8Fflkt/CcePGydvbW0OHDlVISIjGjx+vbdu2yTCMO9k/AAAAAACcQr6nofv06aM+ffro+PHjio2N1ddff60VK1bovvvuU9OmTWWxWHiwGQAAAADgLyvfM9h5qlSpoueff15xcXH6/PPP1alTJ/3nP/+RYRiaOHGixo0bp40bNyozM/NO9BcAAAAAgCLpthZS16tXT/Xq1dPo0aO1bds2rVq1SnFxcVq5cqXc3d2VmJhoVj8BAAAAACjSbnkG+7qNuLjo4Ycf1rRp07R161bNnj1bzZo1M6PpG/rqq6/UvXt31a9fX02bNtXAgQN1+fJl2/5vv/1WXbt2Vf369dW+fXt98cUXDm1kZWVp+vTpCgkJUYMGDfTss88qKSnJoe7IkSN69tln1aBBA4WEhGjGjBnKyspyqFu5cqXat2+v+vXrq2vXrtq4caO5Fw0AAAAAKLJMCdjXcnNzU3h4uN59912zm7Z59913NWnSJIWHhysmJkZvvPGGKleurCtXrkiStm/frqFDh6pBgwZatGiROnbsqFdffVVr1661a2fy5MlauXKlRo4cqXnz5ikrK0v9+/dXWlqarSYlJUX9+vVTdna25s2bp5EjR2rFihWaNm2aXVurV6/WuHHj1LFjRy1atEgNGjTQ0KFDtWvXrjv2PgAAAAAAig6n+66tpKQkzZ8/X++8846aN29u296+fXvbf7/77rsKCAjQG2+8IUlq1qyZjh8/rqioKHXo0EGSdOrUKX3++ed6/fXX9cQTT0iS6tevr5YtW+rTTz/VoEGDJEmffvqpLl68qPnz56ts2bKSpCtXrmjixImKjIxUhQoVJElRUVHq1KmTRowYYTvnwYMHtWDBAi1atOiOvicAAAAAgMJn+gz2nfbll1+qcuXKduH6WllZWfr+++9tQTpPeHi4jhw5ol9++UWStHnzZuXm5trVlS1bViEhIYqPj7dti4+PV3BwsC1cS1LHjh2Vm5urLVu2SJKOHz+uo0ePqmPHjg7nTEhIuO7t5AAAAACAe4vTBezdu3fLz89P77zzjoKDg1WvXj316tVLu3fvliT9/PPPys7Olq+vr91xNWrUkCTbGuukpCSVL19enp6eDnXXrsNOSkpyaMvDw0Pe3t52bUmSj4+PQ1vZ2dk6fvz47V42AAAAAKCIc7pbxH/77Tft27dPBw8e1Ouvvy53d3e99957GjBggNavX6+UlBRJV0PwtfJe5+1PTU1VmTJlHNr38PCw1eTV/bEtSfL09LTV5fecBWUYhi5dulTg4y0Wi9zd3W+rD/hrycjIkGEYhdoHxi1uFeMWzohxC2fEuIUzup1xaxiGLBZLvmqdLmDnhc23335btWrVkiQ99NBDatWqlZYtW6bQ0NBC7qH5srOzdeDAgQIf7+7urjp16pjYI9zrkpOTlZGRUah9YNziVjFu4YwYt3BGjFs4o9sdt1arNV91ThewPTw8VLZsWVu4lq6una5Tp44OHz6sTp06SZLdk8ClqzPRkmy3hHt4eCg9Pd2h/dTUVLvbxj08PBzakq7OSufV5f1MS0uTt7f3Dc9ZUK6urqpZs2aBj8/vpy1AHh8fnyLxyTRwKxi3cEaMWzgjxi2c0e2M28OHD+e71ukCds2aNfXzzz9fd19mZqaqVq0qV1dXJSUl6ZFHHrHty1snnbee2tfXV2fPnrULynl116659vX1dfhu7LS0NP322292bV3v2KSkJLm6uqpKlSq3c8myWCwqWbLkbbUB3ApuuYIzYtzCGTFu4YwYt3BGtzNub+UDHad7yFnLli114cIFu1umf//9d/3www+qW7eurFarmjZtqnXr1tkdFxcXpxo1aqhy5cqSpNDQULm4uGj9+vW2mpSUFG3evFlhYWG2bWFhYdq6dattNlqS1q5dKxcXF4WEhEiSqlSpourVqzt8z3ZcXJyCg4PzfTsBAAAAAMB5Od0Mdps2bVS/fn0NHz5cI0eOlJubmxYuXCir1aqnnnpKkvTcc8/pmWee0YQJE9SxY0d9//33+vrrrzVnzhxbOw888ICeeOIJzZgxQy4uLqpQoYKio6NVpkwZ9erVy1bXq1cvffTRR3rhhRcUGRmp06dPa8aMGerVq5ftO7AladiwYXr55ZdVtWpVNW3aVHFxcdqzZ4+WLVt2994cAAAAAEChcbqA7eLiooULF2rq1KkaP368srOz1ahRIy1fvty2/rlRo0aaN2+e5s6dq88//1yVKlXS5MmTHb6n+rXXXlOpUqU0a9YsXbx4UUFBQXr//fftni7u6empDz/8UJMmTdILL7ygUqVK6YknntDIkSPt2urcubMyMjK0aNEiLVy4UD4+Ppo/f74CAwPv/JsCAAAAACh0ThewJcnLy0tvvfXWTWtat26t1q1b37TGarVq9OjRGj169E3ratSooQ8++OBP+9WjRw/16NHjT+sAAAAAAPcep1uDDQAAAABAUUTABgAAAADABARsAAAAAABMQMAGAAAAAMAEBGwAAAAAAExAwAYAAAAAwAQEbAAAAAAATEDABgAAAADABARsAAAAAABMQMAGAAAAAMAEBGwAAAAAAExAwAYAAAAAwAQEbAAAAAAATEDABgAAAADABARsAAAAAABMQMAGAAAAAMAEBGwAAAAAAExAwAYAAAAAwAQEbAAAAAAATEDABgAAAADABARsAAAAAABMQMAGAAAAAMAEBGwAAAAAAExAwAYAAAAAwAQEbAAAAAAATEDABgAAAADABARsAAAAAABMQMAGAAAAAMAEBGwAAAAAAExAwAYAAAAAwAQEbAAAAAAATEDABgAAAADABARsAAAAAABMQMAGAAAAAMAEBGwAAAAAAExAwAYAAAAAwAQEbAAAAAAATEDABgAAAADABARsAAAAAABMQMAGAAAAAMAEBGwAAAAAAExAwAYAAAAAwAQEbAAAAAAATEDABgAAAADABARsAAAAAABMQMAGAAAAAMAETh+wL168qLCwMPn7+2vv3r12+1auXKn27durfv366tq1qzZu3OhwfFpamsaOHasmTZooMDBQw4cP15kzZxzqdu7cqZ49eyogIEAtW7bUwoULZRiGXY1hGFq4cKFatGihgIAA9ezZU7t27TL1egEAAAAARZPTB+x33nlHV65ccdi+evVqjRs3Th07dtSiRYvUoEEDDR061CHwjhgxQlu2bNGECRM0c+ZMJScna9CgQcrJybHVHDt2TBEREfL29lZ0dLT69eunqKgoLVmyxK6tRYsWKSoqSv3791d0dLS8vb01YMAAHT9+/I5cOwAAAACg6HDqgH3kyBF9/PHHGjZsmMO+qKgoderUSSNGjFCzZs30xhtvqH79+lqwYIGtJjExUZs3b9abb76p8PBwtW7dWm+//bZ++uknrV+/3lYXExOjcuXKafbs2QoODlb//v01YMAAvffee8rKypIkZWZmKjo6WgMGDFD//v0VHBys2bNnq2zZsoqJibnzbwYAAAAAoFA5dcCePHmyevXqJR8fH7vtx48f19GjR9WxY0e77eHh4UpISLCF4vj4eHl4eCgkJMRW4+vrq9q1ays+Pt62LT4+Xq1bt5bVarVrKzU1VYmJiZKu3kKenp5ud06r1aq2bdvatQUAAAAAuDc5bcBeu3atDh48qBdeeMFhX1JSkiQ5BO8aNWooOzvbdst2UlKSfHx8ZLFY7Op8fX1tbVy6dEm//vqrfH19HWosFoutLu/nH+tq1KihkydP6vLlywW9VAAAAACAEyhe2B0oiIyMDE2bNk0jR45U6dKlHfanpKRIkjw8POy2573O25+amqoyZco4HO/p6al9+/ZJuvoQtOu1ZbVa5e7ubteW1WqVm5ubwzkNw1BKSopKlChxy9cqXX142qVLlwp0rCRZLBa5u7sX+Hj89WRkZDg8xO9uY9ziVjFu4YwYt3BGjFs4o9sZt4ZhOEzK3ohTBux3331X5cuX1+OPP17YXbkrsrOzdeDAgQIf7+7urjp16pjYI9zrkpOTlZGRUah9YNziVjFu4YwYt3BGjFs4o9sdt9cuF74ZpwvYJ06c0JIlS7RgwQLb7HLe7O6lS5d08eJFeXp6Sro6++zt7W07NjU1VZJs+z08PHTq1CmHc6SkpNhq8ma4886VJysrSxkZGXZtZWVlKTMz024WOzU1VRaLxVZXEK6urqpZs2aBj8/vpy1AHh8fnyLxyTRwKxi3cEaMWzgjxi2c0e2M28OHD+e71ukC9i+//KLs7GwNHjzYYd8zzzyjhx56SLNmzZJ0dV30tWuik5KS5OrqqipVqki6ul46ISHBYco/OTlZfn5+kqSSJUuqYsWKtjXW19YYhmFrP+9ncnKyatWqZXfOSpUqFfj2cOnqL5CSJUsW+HjgVnHLFZwR4xbOiHELZ8S4hTO6nXF7Kx/oON1DzmrXrq2lS5fa/XnllVckSRMnTtTrr7+uKlWqqHr16lq7dq3dsXFxcQoODrZN74eFhSklJUUJCQm2muTkZO3fv19hYWG2bWFhYdqwYYOys7Pt2vLw8FBgYKAkKSgoSKVLl9aaNWtsNdnZ2Vq/fr1dWwAAAACAe5PTzWB7eHioadOm191Xt25d1a1bV5I0bNgwvfzyy6pataqaNm2quLg47dmzR8uWLbPVBwYGKjQ0VGPHjtXo0aPl5uamOXPmyN/fX+3atbPVRUREKDY2VqNGjVLv3r118OBBxcTEaOTIkbaw7ubmpsjISM2bN09eXl7y8/PTJ598ogsXLigiIuIOviMAAAAAgKLA6QJ2fnXu3FkZGRlatGiRFi5cKB8fH82fP98245xn7ty5mjp1qsaPH6+cnByFhobqtddeU/Hi/3trqlWrppiYGE2bNk2DBw+Wl5eXhg8frgEDBti1NWjQIBmGoSVLluj8+fOqXbu2YmJibLekAwAAAADuXfdEwG7atKl++uknh+09evRQjx49bnpsmTJlNGXKFE2ZMuWmdUFBQVqxYsVNaywWiyIjIxUZGfnnnQYAAAAA3FOcbg02AAAAAABFEQEbAAAAAAATELABAAAAADABARsAAAAAABMQsAEAAAAAMAEBGwAAAAAAExCwAQAAAAAwAQEbAAAAAAATELABAAAAADABARsAAAAAABMQsAEAAAAAMAEBGwAAAAAAExCwAQAAAAAwAQEbAAAAAAATELABAAAAADABARsAAAAAABMQsAEAAAAAMAEBGwAAAAAAExCwAQAAAAAwAQEbAAAAAAATELABAAAAADABARsAAAAAABMQsAEAAAAAMAEBGwAAAAAAExCwAQAAAAAwAQEbAAAAAAATELABAAAAADABARsAAAAAABMQsAEAAAAAMAEBGwAAAAAAExCwAQAAAAAwAQEbAAAAAAATELABAAAAADABARsAAAAAABMQsAEAAAAAMAEBGwAAAAAAExCwAQAAAAAwAQEbAAAAAAATELABAAAAADABARsAAAAAABMQsAEAAAAAMAEBGwAAAAAAExCwAQAAAAAwAQEbAAAAAAATELABAAAAADABARsAAAAAABM4XcBes2aNnnvuOYWFhalBgwbq1q2bPv/8cxmGYVe3cuVKtW/fXvXr11fXrl21ceNGh7bS0tI0duxYNWnSRIGBgRo+fLjOnDnjULdz50717NlTAQEBatmypRYuXOhwPsMwtHDhQrVo0UIBAQHq2bOndu3aZeq1AwAAAACKLqcL2B988IHc3d01ZswYvfvuuwoLC9O4ceO0YMECW83q1as1btw4dezYUYsWLVKDBg00dOhQh8A7YsQIbdmyRRMmTNDMmTOVnJysQYMGKScnx1Zz7NgxRUREyNvbW9HR0erXr5+ioqK0ZMkSu7YWLVqkqKgo9e/fX9HR0fL29taAAQN0/PjxO/p+AAAAAACKhuKF3YFb9e6778rLy8v2Ojg4WBcuXND777+v559/Xi4uLoqKilKnTp00YsQISVKzZs108OBBLViwQIsWLZIkJSYmavPmzYqJiVFoaKgkycfHR+Hh4Vq/fr3Cw8MlSTExMSpXrpxmz54tq9Wq4OBgnT9/Xu+995769u0rq9WqzMxMRUdHa8CAAerfv78kqWHDhurQoYNiYmI0YcKEu/b+AAAAAAAKh9PNYF8brvPUrl1b6enpunTpko4fP66jR4+qY8eOdjXh4eFKSEhQVlaWJCk+Pl4eHh4KCQmx1fj6+qp27dqKj4+3bYuPj1fr1q1ltVrt2kpNTVViYqKkq7eQp6en253TarWqbdu2dm0BAAAAAO5dThewr2fHjh2qUKGCSpcuraSkJElXZ6OvVaNGDWVnZ9tu2U5KSpKPj48sFotdna+vr62NS5cu6ddff5Wvr69DjcVisdXl/fxjXY0aNXTy5EldvnzZpCsFAAAAABRVTneL+B9t375dcXFxGj16tCQpJSVFkuTh4WFXl/c6b39qaqrKlCnj0J6np6f27dsn6epD0K7XltVqlbu7u11bVqtVbm5uDuc0DEMpKSkqUaJEga/RMAxdunSpwMdbLBa5u7sX+Hj89WRkZDg8yO9uY9ziVjFu4YwYt3BGjFs4o9sZt4ZhOEzM3ohTB+xTp05p5MiRatq0qZ555pnC7s4dk52drQMHDhT4eHd3d9WpU8fEHuFel5ycrIyMjELtA+MWt4pxC2fEuIUzYtzCGd3uuL12yfDNOG3ATk1N1aBBg1S2bFnNmzdPLi5X73b39PSUdHX22dvb267+2v0eHh46deqUQ7spKSm2mrwZ7ryZ7DxZWVnKyMiwaysrK0uZmZl2s9ipqamyWCy2uoJydXVVzZo1C3x8fj9tAfL4+PgUiU+mgVvBuIUzYtzCGTFu4YxuZ9wePnw437VOGbAvX76syMhIpaWl6bPPPrO71TtvHXRSUpLdmuikpCS5urqqSpUqtrqEhASH6f7k5GT5+flJkkqWLKmKFSva1lhfW2MYhq39vJ/JycmqVauW3TkrVap0W7eHS1d/gZQsWfK22gBuBbdcwRkxbuGMGLdwRoxbOKPbGbe38oGO0z3kLCcnRyNGjFBSUpIWL16sChUq2O2vUqWKqlevrrVr19ptj4uLU3BwsG1qPywsTCkpKUpISLDVJCcna//+/QoLC7NtCwsL04YNG5SdnW3XloeHhwIDAyVJQUFBKl26tNasWWOryc7O1vr16+3aAgAAAADcu5xuBnvixInauHGjxowZo/T0dO3atcu2r06dOrJarRo2bJhefvllVa1aVU2bNlVcXJz27NmjZcuW2WoDAwMVGhqqsWPHavTo0XJzc9OcOXPk7++vdu3a2eoiIiIUGxurUaNGqXfv3jp48KBiYmI0cuRIW1h3c3NTZGSk5s2bJy8vL/n5+emTTz7RhQsXFBERcdfeGwAAAABA4XG6gL1lyxZJ0rRp0xz2bdiwQZUrV1bnzp2VkZGhRYsWaeHChfLx8dH8+fNtM8555s6dq6lTp2r8+PHKyclRaGioXnvtNRUv/r+3pVq1aoqJidG0adM0ePBgeXl5afjw4RowYIBdW4MGDZJhGFqyZInOnz+v2rVrKyYmxnZLOgAAAADg3uZ0Afvbb7/NV12PHj3Uo0ePm9aUKVNGU6ZM0ZQpU25aFxQUpBUrVty0xmKxKDIyUpGRkfnqHwAAAADg3uJ0a7ABAAAAACiKCNgAAAAAAJiAgA0AAAAAgAkI2AAAAAAAmICADQAAAACACQjYAAAAAACYgIANAAAAAIAJCNgAAAAAAJiAgA0AAAAAgAkI2AAAAAAAmICADQAAAACACQjYAAAAAACYgIANAAAAAIAJCNgAAAAAAJiAgA0AAAAAgAkI2AAAAAAAmICADQAAAACACQjYAAAAAACYgIANAAAAAIAJCNgAAAAAAJiAgA0AAAAAgAkI2AAAAAAAmICADQAAAACACQjYAAAAAACYgIANAAAAAIAJCNgAAAAAAJiAgA0AAAAAgAkI2AAAAAAAmICADQAAAACACQjYAAAAAACYgIANAAAAAIAJCNgAAAAAAJiAgA0AAAAAgAkI2AAAAAAAmICADQAAAACACQjYAAAAAACYgIANAAAAAIAJCNgAAAAAAJiAgA0AAAAAgAkI2AAAAAAAmICADQAAAACACQjYAAAAAACYgIANAAAAAIAJCNgAAAAAAJiAgA0AAAAAgAkI2CY7cuSInn32WTVo0EAhISGaMWOGsrKyCrtbAAAAAIA7rHhhd+BekpKSon79+ql69eqaN2+eTp8+rWnTpuny5csaP358YXcPAAAAAHAHEbBN9Omnn+rixYuaP3++ypYtK0m6cuWKJk6cqMjISFWoUKFwOwgAAAAAuGO4RdxE8fHxCg4OtoVrSerYsaNyc3O1ZcuWwusYAAAAAOCOI2CbKCkpSb6+vnbbPDw85O3traSkpELqFQAAAADgbuAWcROlpqbKw8PDYbunp6dSUlIK1GZ2drYMw9CePXtuq28Wi0U9+jRSTs6V22oH97bixYtp7969MgyjsLsi6eq47d8qQNlX6hZ2V1CEuRYreuP2+foPKbtO/cLuCoow12IuRW7c9i7fWDnl+HcCbqy4S9H7ffu33C7yLZFT2F1BEVYst/htj9vs7GxZLJZ81RKwi7i8v8j8/oXejGfZUrfdBv4azBhvZilbpmRhdwFOoiiN23Il+X2L/ClK47asG+MW+VOUxq27q+PkFnA9tzNuLRYLAbsweHh4KC0tzWF7SkqKPD09C9RmYGDg7XYLAAAAAHAXsAbbRL6+vg5rrdPS0vTbb785rM0GAAAAANxbCNgmCgsL09atW5WammrbtnbtWrm4uCgkJKQQewYAAAAAuNMsRlF5SsE9ICUlRZ06dZKPj48iIyN1+vRpTZs2TV26dNH48eMLu3sAAAAAgDuIgG2yI0eOaNKkSUpMTFSpUqXUrVs3jRw5UlartbC7BgAAAAC4gwjYAAAAAACYgDXYAAAAAACYgIANAAAAAIAJCNgAAAAAAJiAgA0AAAAAgAkI2AAAAAAAmICADQAAAACACYoXdgeAW7VmzRqtWrVKP/zwg1JTU1WtWjX17dtXjz/+uCwWi61u5cqVWrx4sU6ePCkfHx+NHDlSLVu2tO3fs2ePPvnkE23fvl1nzpxRhQoV1L59ez333HMqWbKkre6rr77SJ598oqNHjyojI0OVKlVS165dNWjQIL7fHPl2t8fttU6dOqWOHTvq0qVLSkhIkJeX1x2/Xtwb7va4/fTTT7V+/Xr99NNPysjIUM2aNTV48GC1adPmrl43nFth/L7duXOnpk+frgMHDqh8+fLq3bu3Bg0aZHc+4Gbu9rjdu3evPv74Y+3atUvJyclq3ry5oqOj7+o136sI2HA6H3zwgR588EGNGTNG5cqV09atWzVu3DidOnVKQ4cOlSStXr1a48aN05AhQ9SsWTPFxcVp6NChWr58uRo0aCDp6i+yY8eOaeDAgapevboOHz6sqKgo7d69W0uXLrWdLyUlRY888ogGDx6s0qVLa8+ePZo/f75OnTqlSZMmFcZbACd0t8fttaZNm6aSJUvq0qVLd+tycY+42+P2vffeU2hoqHr37q2SJUtq7dq1euGFFzRt2jQ9+uijhfEWwAnd7XF77NgxRUREKCQkRCNGjNBPP/2kmTNnqlixYoqIiCiMtwBO6G6P2507d2r79u0KCAhQZmZmYVzyvcsAnMy5c+cctr322mtGUFCQceXKFcMwDKNdu3bGSy+9ZFfTs2dPY+DAgTdtZ9WqVYafn5+xd+/em/Zh9uzZRkBAgJGTk1OQS8BfUGGN261btxpNmjQxYmJiDD8/v+seD9zI3R6316t79tlnjc6dOxf4GvDXc7fH7bhx44yWLVsamZmZtm2zZs0yGjVqZLcNuJm7PW7z2jQMw3j66aeNwYMH3/Y14CrWYMPpXO/21tq1ays9PV2XLl3S8ePHdfToUXXs2NGuJjw8XAkJCcrKyrphO3Xq1JEknTlz5qZ9KFu2rHJycpSbm1vQy8BfTGGM2+zsbE2aNEnDhg1T2bJlTboS/JXc7XF7o/P92e9k4Fp3e9zGx8erdevWdsvGwsPDlZqaqsTERFOuCfe+uz1uXVyIgXcK7yzuCTt27FCFChVUunRpJSUlSZJ8fHzsamrUqKHs7GwdP378pu1Ikq+vr8O+nJwcZWRkaPv27frwww/Vu3dvubq6mngV+Ku50+N26dKlKlasmHr37m1yz/FXdjd+3/6x7s9qgD9zp8btpUuX9OuvvzqMUV9fX1ksFtu5gIK4279vYQ7WYMPpbd++XXFxcRo9erSkq2umJcnDw8OuLu913v4/On/+vObNm6fWrVurevXqdvtycnJUt25d2+tHH31UY8eONesS8Bd0p8ft6dOntWDBAi1YsEDFihW7A1eAv6K78fv2WrGxsUpMTNSCBQtM6D3+qu7kuE1LS7tuW1arVe7u7jdsC/gzd/v3LcxDwIZTO3XqlEaOHKmmTZvqmWeeKXA72dnZeumllyRJEyZMcNhfvHhxff7558rMzNS+ffv07rvv6pVXXtH06dMLfE78dd2NcTtjxgyFhIQoODj4droK2Nyt37d5fvzxR73++ut67LHHeIo4Cuxuj1vADIxb50bAhtNKTU3VoEGDVLZsWc2bN8+2lsTT01PS1U+Vvb297eqv3Z/HMAyNHTtWe/bs0ccff6z777//uuerX7++JKlRo0aqXLmyXnjhBT399NO27UB+3I1xm5iYqHXr1mnFihW24zMyMiRJFy9elLu7u9zd3e/cReKec7d/3544cUKDBg1SQECA3njjjTtxSfgLuBvjtkyZMra2rpWVlaWMjAyHtoA/c7d/38J8BGw4pcuXLysyMlJpaWn67LPPbP+Dk/63viQpKclurUlSUpJcXV1VpUoVu7amT5+uNWvWaNGiRapVq1a+zl+vXj1J0s8//0zARr7drXGbnJys7Ozs636tUZs2bRQeHq45c+aYeWm4h93t37fnz59XRESEypcvr/nz5/OsCxTI3Rq3JUuWVMWKFR3WWicnJ8swDNa84pYU9r9vYQ4ecgank5OToxEjRigpKUmLFy9WhQoV7PZXqVJF1atX19q1a+22x8XFKTg42O4pnwsXLtQHH3ygadOm3dKttHkPi/jjLzPgRu7muH3kkUe0dOlSuz+DBg2SJC1YsEAvvPDCHbhC3Ivu9u/bixcvatCgQcrOztbChQtVunRp8y8K97y7PW7DwsK0YcMGZWdn27Xl4eGhwMBAE68M97Ki8O9bmIMZbDidiRMnauPGjRozZozS09O1a9cu2746derIarVq2LBhevnll1W1alU1bdpUcXFx2rNnj5YtW2arjY2N1axZs9S1a1dVrlzZrp2qVavavuagT58+atu2rXx9feXi4qLdu3dryZIleuSRRxQQEHC3LhtO7m6OW29vb7vbx6Srt9xKUlBQ0HW/wgO4nrv9+3bYsGH68ccf9eabb+rkyZM6efKkra5BgwZ3+nJxj7jb4zYiIkKxsbEaNWqUevfurYMHDyomJkYjR460Cz3AzdztcXv+/Hn95z//sf33xYsXbeG9efPmLCW7DRbDMIzC7gRwK1q1amULC3+0YcMGVa5cWZK0cuVKLVq0SCdPnpSPj49eeukltWzZ0lY7ZswYffXVV9dtZ+rUqXrsscds/71p0yadPHlSxYsXV+XKldW9e3c99dRT/I8T+Xa3x+0fffnll3rllVeUkJBAwEa+3e1x6+/vf8O+/PTTTwW9DPzFFMbv2507d2ratGk6cOCAvLy81KdPHw0aNEgWi8XEK8O97G6P2++///6GD1C79ny4dQRsAAAAAABMwBpsAAAAAABMQMAGAAAAAMAEBGwAAAAAAExAwAYAAAAAwAQEbAAAAAAATEDABgAAAADABARsAAAAAABMQMAGAAAAAMAEBGwAAHDb/P399cYbbxR2NwAAKFQEbAAAnFhcXJz8/f31zTffOOzr2rWr/P39tW3bNod9LVq0UK9eve5GF28oMTFRtWrV0qxZs667f+HChfL399f//d//3d2OAQBQQARsAACcWMOGDSVJO3bssNuenp6uQ4cOqXjx4tq5c6fdvl9//VW//vqrgoKC7lo/rycwMFA9e/bU+++/r0OHDtntO3HihN555x116NBBLVq0KJwOAgBwiwjYAAA4sQoVKqhy5coOATsxMVGGYahDhw4O+/Je54XzgjIMQ5cvX76tNl5++WWVLVtW48ePl2EYtu2TJk1S8eLF9eqrr95W+/mVkZFxV84DALi3EbABAHByDRs21IEDB+zC7s6dO/W3v/1NjzzyiHbv3q3c3Fy7fRaLxTaDnZOTowULFqhNmzaqV6+eWrVqpdmzZysrK8vuPK1atVJkZKQ2bdqkxx57TAEBAfr0009v2K933nlHtWrV0kcffXTDmjJlyujVV1/Vzp07tXLlSknSN998o40bN2rUqFG6//77lZubqw8++ECdOnVS/fr19fDDD2v8+PFKSUmxa+vf//63Bg8erNDQUNWrV09t2rTRggULdOXKFbu6vn37qnPnztq3b5/69Omjhx56SLNnz/6TdxkAgD9HwAYAwMk1bNhQ2dnZ2r17t23bzp07FRgYqKCgIKWlpengwYN2+3x9fVWuXDlJ0muvvaaoqCjVqVNHr7zyiho3bqzo6GiNHDnS4VzJyckaNWqUQkJC9Oqrr6p27drX7dOcOXMUFRWlN954Q3379r1p/zt27KgWLVpo5syZOn78uN58800FBgba1oiPHz9eb731loKCgvTqq6/qscceU2xsrCIiIpSdnW1r56uvvlLJkiX17LPP6tVXX1XdunUVFRWlmTNnOpzzwoULGjRokGrXrq2xY8eqadOmN+0jAAD5UbywOwAAAG7PteuwmzZtqpycHO3Zs0ePPvqoqlatqvvuu087duxQrVq1lJ6eroMHD+rxxx+XJP3444/66quv1KNHD02ePFmS1KdPH3l5eWnJkiXatm2bmjVrZjvXsWPHtHjxYj3yyCM37M/06dP1wQcfaOrUqXr00UfzdQ3jx49X586d9cQTT+jixYtauHChLBaLtm/frpUrV2rmzJnq0qWLrb5p06YaOHCg1q5da9s+a9YslShRwlbTu3dvjR8/Xp988olGjhwpq9Vq2/fbb79p4sSJhf6gNwDAvYUZbAAAnFyNGjVUtmxZ29rqH3/8UZcuXVJgYKCkqw8Ty3vQ2a5du3TlyhVbKP/uu+8kSc8++6xdmwMGDLDbn6dy5co3DNeGYeiNN97Q0qVL9dZbb+U7XEvSgw8+qBdeeEEXLlxQ//795efnJ0lau3atypQpo5CQEJ0/f972p27duipZsqS+//57WxvXhuv09HSdP39ejRo1UkZGhpKSkuzOZ7Va9dhjj+W7fwAA5Acz2AAAODmLxaLAwEBt375dubm52rlzp8qXL69q1apJuhqwly9fLkm2oJ0XsE+cOCEXFxdVrVrVrk1vb295eHjoxIkTdtsrV658w37885//1KVLlzRhwgR17tz5lq+jfv36kqR69erZth07dkxpaWkKDg6+7jHnzp2z/fehQ4c0d+5cbdu2Tenp6XZ1aWlpdq8rVKhgN6MNAIAZCNgAANwDGjZsqI0bN+rgwYO29dd5AgMDNWPGDJ0+fVo7duzQ/fffrypVqtgdb7FY8nWea2eJ/ygoKEg//vijli9fro4dO6ps2bIFupZr5ebmqnz58tddRy1JXl5ekqTU1FQ9/fTTKl26tIYPH66qVavKzc1NP/zwg2bOnGn3kLc/uw4AAAqKgA0AwD3g2nXYO3fuVL9+/Wz76tWrJ6vVqu+//1579uxRWFiYbd+DDz6o3NxcHTt2TDVq1LBtP3v2rFJTU/Xggw/muw/VqlXT3//+dz3zzDMaOHCgPvjgA5UuXfq2rqtq1apKSEhQUFDQTUPxf/7zH124cEHz589X48aNbdt/+eWX2zo/AAC3gjXYAADcA+rVqyc3NzfFxsbq9OnTdjPYVqtVdevW1ccff6xLly7Zff918+bNJUkffvihXXvvv/++3f78qlWrlhYuXKgjR47oueeeu+3vye7YsaOuXLmid955x2FfTk6OUlNTJUkuLlf/SXPtd2lnZWXp448/vq3zAwBwK5jBBgDgHmC1WlW/fn1t375dVqvVbh2zdPU28SVLlkiSXcCuVauWHn30UX322WdKTU1V48aNtXfvXn311Vdq06aN3RPE86tBgwZ65513NHjwYA0fPlwLFiyQq6trga6rSZMm6tmzp6Kjo3XgwAGFhITI1dVVR48e1dq1a/Xqq6+qQ4cOCgwMlKenp8aMGaO+ffvKYrHoX//6l13gBgDgTmMGGwCAe0RecK5bt67DA7yCgoIkSaVKlVKtWrXs9k2ePFnDhg3T3r17NXXqVG3btk2RkZGaM2dOgfsSHBysuXPnasuWLfrHP/7hsAb6VrzxxhuaNGmSzp07pzlz5mjWrFnatm2bunbtaruucuXK6b333pO3t7fmzp2rmJgYPfzww/r73/9e4PMCAHCrLAYf7QIAAAAAcNuYwQYAAAAAwAQEbAAAAAAATEDABgAAAADABARsAAAAAABMQMAGAAAAAMAEBGwAAAAAAExAwAYAAAAAwAQEbAAAAAAATEDABgAAAADABARsAAAAAABMQMAGAAAAAMAEBGwAAAAAAExAwAYAAAAAwAT/DyYvUVmRTpkjAAAAAElFTkSuQmCC\n"},"metadata":{}},{"output_type":"stream","name":"stderr","text":[":4: FutureWarning: \n","\n","The `ci` parameter is deprecated. Use `errorbar=None` for the same effect.\n","\n"," sns.barplot(\n",":4: FutureWarning: \n","\n","Passing `palette` without assigning `hue` is deprecated and will be removed in v0.14.0. Assign the `x` variable to `hue` and set `legend=False` for the same effect.\n","\n"," sns.barplot(\n"]},{"output_type":"display_data","data":{"text/plain":["
"],"image/png":"iVBORw0KGgoAAAANSUhEUgAAA9gAAAJICAYAAACaO0yGAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAAB/90lEQVR4nOzde3zP9f//8ft77D3HjWk5H7Zpc9raRg5tzaGcNsXHJ6E+IoupEFEkpJJTOTRUwyjpJKksc0oyp/QpC32Qw0bIIWQHZht7/f7w2+vr3RsxL7bpdr1cXNb79Xq8nq/H+1175f5+vg42wzAMAQAAAACAG+JS0A0AAAAAAHA7IGADAAAAAGABAjYAAAAAABYgYAMAAAAAYAECNgAAAAAAFiBgAwAAAABgAQI2AAAAAAAWIGADAAAAAGABAjYAAAAAABYgYAMAcJvZvHmz/P39tXnz5oJuxTR8+HAFBwcXdBs33fTp0+Xv769Tp04VdCv5Nnz4cLVq1aqg2wCAIomADQC4JT788EP5+/urS5cuBd1KoZOdna33339fnTp1UkhIiBo1aqTIyEiNGjVK+/btK+j2ioyIiAg99NBDTstXrVolf39//ec//3Fat2jRIvn7+2v9+vW3osW/9euvv2rgwIFq2bKlAgICdN999+mJJ57QBx98kK/x4uPj9d577zktP3bsmKZPn66dO3feYMcAgEsVL+gGAAD/DPHx8apataq2bdumAwcOqGbNmgXdUqExcOBAJSYmKjIyUl26dNH58+eVnJys7777TsHBwfL19S3oFouEhg0batGiRUpPT1fZsmXN5Vu2bFHx4sW1fft25eTkyNXV1WFdsWLFFBQUVAAdO9qyZYsef/xxValSRV26dJGXl5eOHDmirVu3av78+erRo8d1j/n1119rz5496tWrl8Py48ePa8aMGapatarq1q3rsO61116TYRg38lYA4B+LgA0AuOkOHjyopKQkzZgxQ6NHj1Z8fLz69+9/S3vIzc1VTk6O3Nzcbul+/862bdu0Zs0aDR48WP369XNYd+HCBaWlpRVQZ//n7NmzKlWqVEG38bcaNmyohQsXasuWLWrevLm5fMuWLWrXrp2+/vpr/e9//3MI0z/99JP8/f1VpkyZG9q3FZ/Ru+++q7Jly2rRokVyd3d3WHfy5MkbGvt6XPoFBADg+nCKOADgpouPj5eHh4eaN2+utm3bKj4+3lyXk5Ojxo0b68UXX3TaLiMjQwEBAZo4caK5LDs7WzExMWrdurUaNGig5s2ba9KkScrOznbY1t/fX6+++qqWLFmiyMhIBQQEaN26dZKkuLg4devWTU2aNFFgYKA6d+6s5cuXO+3/3LlzGjt2rJo0aaLg4GD169dPx44dk7+/v6ZPn+5Qe+zYMb344ou699571aBBA0VGRmrRokV/+9kcPHhQkhQSEuK0rlixYipfvrz5+vDhwxozZozatm2rwMBANWnSRAMHDtShQ4f+dj8//vijBg4cqBYtWpif27hx43Tu3DmHurxrpX/77Tf16dNHwcHBGjp0qGJiYlS/fv3LXls8atQoNWrUSFlZWdf0fqOiohQUFKSwsDDNmDHDnC01DEOtWrXSU0895bRdVlaWGjZsqNGjR19x7IYNG0q6GKgv3e5///uf2rRpo+rVqzusO3XqlPbv329uJ0k7duzQk08+qZCQEAUHB6tnz576+eefHfazePFi+fv764cfftCYMWPUrFkzh0D/V4cPH1br1q3VoUMHnThx4op1v/32m2rXru0UriWpQoUKTsu++uorde7cWYGBgWrcuLEGDx6sI0eOmOt79Oih7777TocPH5a/v7/8/f3VqlUrbd68WQ8//LAk6cUXXzTXLV68WJLzNdiHDh2Sv7+/4uLi9Omnn+qBBx5QgwYN9O9//1vbtm1z6mvZsmWKiIhQQECAOnTooFWrVnFdN4B/DGawAQA3XXx8vFq3bi273a4OHTro448/1rZt2xQYGChXV1c98MADWrVqlV555RXZ7XZzu2+++UbZ2dmKiIiQdHEW+qmnntJPP/2kRx55RL6+vtq9e7fef/997d+/X2+//bbDfr///nstW7ZMjz32mMqXL6+qVatKkubPn69WrVrpwQcfVE5OjpYuXapnn31WsbGxatGihbn98OHDtWzZMnXs2FF33323/vvf/6pv375O7+/EiRN65JFHZLPZ9Nhjj8nT01OJiYl66aWXlJGR4XR67qWqVKlifkYhISEqXvzK/2vevn27kpKSFBkZqUqVKunw4cP6+OOP9fjjj2vp0qUqWbLkFbddvny5zp07p+7du6tcuXLatm2bFixYoKNHjyomJsah9vz584qKilLDhg01bNgwlShRQsHBwZo5c6YSEhIcrmXOzs7WihUr1KZNm789O+DChQt68skndffdd+v555/XunXrNH36dF24cEHPPvusbDabHnzwQcXFxen06dMqV66cue23336rjIyMy15jnad69eq68847HUJ03mnhwcHBCg4O1pYtW9S7d29J/xfE877c2LNnjx577DGVLl1aTz75pIoXL65PP/1UPXr00IIFC3T33Xc77O+VV16Rp6ennnnmGZ09e/ayPf3222/q2bOnPDw8NHfuXHl6el6x/6pVqyopKUm7d++Wn5/fVT/Ld955R2+99Zbat2+vhx9+WKdOndKCBQv02GOP6csvv5S7u7v69eun9PR0HT161PwCq3Tp0vL19dXAgQMVExOjrl27ml8wXO5Lnkt9/fXXOnPmjLp27SqbzaY5c+ZowIAB+uabb8xZ7++++06DBw+Wn5+fhgwZotTUVL300kuqWLHiVccGgNuGAQDATbR9+3bDz8/P2LBhg2EYhpGbm2uEh4cbY8eONWvWrVtn+Pn5Gd9++63Dtn369DHuv/9+8/WXX35p1KlTx/jvf//rUPfxxx8bfn5+xk8//WQu8/PzM+rUqWPs2bPHqafMzEyH19nZ2UaHDh2Mxx9/3Fz2yy+/GH5+fsbrr7/uUDt8+HDDz8/PiImJMZeNGDHCCA0NNU6dOuVQO3jwYKNhw4ZO+7tUbm6u8Z///Mfw8/Mz7r33XuO5554zFixYYBw+fPhv+zYMw0hKSjL8/PyML774wlz2/fffG35+fsb3339/1W1jY2MNf39/h30NGzbM8PPzM958802n+q5duxpdunRxWLZy5UqnfV1O3rivvfaaw3vv27evUb9+fePkyZOGYRhGcnKy4efnZ3z00UcO2/fr189o2bKlkZube9X9DBw40AgMDDSys7PN99iqVSvDMAzjww8/NJo1a2bWTpgwwfDz8zOOHj1qGIZhPP3000b9+vWN3377zaw5duyYERwcbDz22GPmss8//9zw8/Mzunfvbpw/f95h/zExMYafn59x8uRJY+/evUZYWJjx73//2zh9+vRV+zYMw1i/fr1Rt25do27dukbXrl2NSZMmGevWrTPfS55Dhw4ZdevWNd555x2H5b/++qtRr149h+V9+/Y1WrZs6bSvbdu2GX5+fsbnn3/utG7YsGEO2xw8eNDw8/MzGjdu7PA+vvnmG6ff2w4dOhjh4eFGRkaGuWzz5s2Gn5/fZfsAgNsNp4gDAG6q+Ph43XHHHWrSpIkkyWazKSIiQgkJCbpw4YIkqWnTpipfvrwSEhLM7VJTU7Vx40Zz9lq6OAvr6+srHx8fnTp1yvzTtGlTSXJ6LNU999yj2rVrO/VUokQJh/2kp6erYcOG2rFjh7k873TyRx991GHbv96J2jAMrVy5Uq1atZJhGA59hYWFKT09Xf/73/+u+PnYbDbFxcVp0KBBcnd319dff61XX31VLVu21KBBgxyuwb6075ycHP3555+qUaOG3N3dHXq/nEu3PXv2rE6dOqXg4GAZhnHZbbt37+60rGPHjtq6dat+++03c1l8fLwqV66sxo0bX3X/eR577DGH9/7YY48pJydHmzZtkiR5e3vr7rvvdriM4PTp01q3bp0efPBB2Wy2q47fsGFDnTt3zvzMt2zZYj4eLCQkRCdPntT+/fslSUlJSapWrZoqVqyoCxcuaMOGDXrggQdUvXp1c7w777xTHTp00E8//aSMjAyHfT3yyCMqVqzYZfvYs2ePevTooapVq+q9996Th4fH3342oaGh+uSTT9SqVSvt2rVLc+bMUVRUlMLDw7V69WqzbtWqVcrNzVX79u0d/nu74447VLNmzZv2eLaIiAiH99GoUSNJ/3eZw7Fjx7R792516tRJpUuXNusaN278tzPyAHC74BRxAMBNc+HCBS1dulRNmjRxuE44MDBQc+fO1aZNmxQWFqbixYurTZs2+vrrr5WdnS273a6VK1cqJyfHIWAfOHBA+/btU7NmzS67v7/eCKpatWqXrVuzZo3eeecd7dy50+Ha7UvD2++//y4XFxenMf569/NTp04pLS1Nn376qT799NPL7u/vnolst9v11FNP6amnntLx48f13//+V/Pnz9eyZctUvHhxvfnmm5IuXhMeGxurxYsX69ixYw53ek5PT7/qPn7//XfFxMTo22+/VWpqqsO6vwbH4sWLq1KlSk5jREREaNy4cVqyZIn69++v9PR0rVmzRr169frb4CtJLi4uDuFVuhiopYvXKefp2LGjXnvtNR0+fFhVq1bV8uXLlZOTo44dO/7tPi69Dvvuu+9WUlKSnn32WUmSn5+fypQpoy1btqhy5cr65ZdfzP++Tp06pczMTLOfS/n6+io3N1dHjhzRXXfdZS6/0n9fktSvXz/dcccdiouLcwibfycwMFAzZsxQdna2du3apW+++Ubvvfeenn32WX355ZeqXbu29u/fL8Mw1KZNm8uOcbXLDG5E5cqVHV7nhe28L4F+//13SVKNGjWctq1Zs+bffgkEALcDAjYA4Kb5/vvv9ccff2jp0qVaunSp0/r4+HiFhYVJkiIjI/Xpp58qMTFRDzzwgJYvXy4fHx/VqVPHrM/NzZWfn99lb4gmySkUXjprm+fHH3/UU089pXvuuUcvv/yyvLy85Orqqs8//1xff/31db/H3NxcSdJDDz2kf/3rX5et8ff3v+bx7rzzTkVGRqpNmzbq0KGDli9frgkTJqh48eJ67bXXtHjxYvXs2VNBQUEqW7asbDabBg8efNXHKl24cEFPPPGEUlNT9eSTT8rHx0elSpXSsWPHNHz4cPM95LHb7XJxcT7JzcPDQy1btjTvAr98+XJlZ2df9bro/IiMjNT48eMVHx+vfv36acmSJWrQoIF8fHz+dts6deqodOnS+umnn9S8eXOdPn3avLbYxcVFd999t3766SfVqFFDOTk5Djc4u15Xu+a8bdu2+uKLLxQfH69u3bpd99h2u12BgYEKDAxUrVq19OKLL2r58uXq37+/cnNzZbPZNHv27MvOoN+sO75fabb+av/tAcA/DQEbAHDTxMfHq0KFCpe98/OqVavMG5uVKFFC99xzj7y8vJSQkKCQkBB9//33To+tqlGjhnbt2qVmzZpd04zp5axYsUJubm6Ki4tzuKHa559/7lBXpUoV5ebm6tChQ6pVq5a5/MCBAw51np6eKl26tHJzc3Xvvffmq6fLcXV1lb+/v/bv368///xTXl5eWrFihTp16qThw4ebdVlZWX87e717927t379fEydOVKdOnczlGzZsuO6+OnbsqKefflrbtm1TfHy86tWr5zCrezW5ubk6ePCgwyxxSkqKJJk3oJOkcuXKqUWLFoqPj9eDDz6oLVu2aMSIEde0j7xnWm/ZskU//fSTypQp43B6cnBwsBISEswzEfICtqenp0qWLGn2c6nk5GS5uLg4zeBezQsvvKBixYrplVdeUenSpfXggw9e87Z/1aBBA0kXn10tXfw9MAxD1apVu+yM+6Wu9HuS39+fq8m7Yd+llxDk+evvDQDcrrgGGwBwU5w7d04rV65UixYt1K5dO6c/jz32mM6cOaNvv/1W0sXZxXbt2mnNmjVasmSJzp8/73B6uCS1b99ex44d08KFCy+7vyvdyflSxYoVk81mM6//li4+hujSa1wlmTPrH330kcPyBQsWOI3Xtm1brVixQrt373ba39+dHr5//37z1NpLpaWlKSkpSR4eHuadpy83g/jBBx84vJfLyZuNvnSm0TAMzZ8//6rbXU54eLjKly+vOXPm6L///e91z15/+OGHDj18+OGHcnV1dTrtv2PHjtq7d68mTZqkYsWKKTIy8pr3ERISolOnTmnx4sW6++67HWbjg4ODlZKSotWrV6tcuXLy9fWVdPGzDQ0N1erVqx0uZzhx4oS+/vprNWzY8Lqflf3aa6+pbdu2Gj58uNN/X5fz/fffX3Y2eO3atZJkzuC3adNGxYoVc3jEWR7DMPTnn3+ar0uWLHnZL2Dy7jhv5XPWK1asKD8/P3355Zc6c+aMufyHH3647O8GANyOmMEGANwU3377rc6cOXPFZ98GBQXJ09NTS5YsMYN0+/bt9cEHHygmJkZ+fn5m+MnTsWNHLVu2TC+//LI2b96skJAQXbhwQcnJyVq+fLnmzJmjgICAq/bVvHlzzZs3T08++aQ6dOigkydP6qOPPlKNGjX066+/mnUNGjRQ27Zt9f777+v06dPmY7rybpB16QzgkCFDtHnzZj3yyCPq0qWLateurdTUVP3vf//Tpk2b9MMPP1yxn127dmno0KG677771KhRI3l4eOjYsWP68ssvdfz4cY0YMcIM1i1atNBXX32lMmXKqHbt2vr555+1ceNGh8dZXY6Pj49q1KihiRMn6tixYypTpoxWrFiRr3Dl6uqqyMhILViw4LqDr5ubm9atW6dhw4YpMDBQ69at03fffad+/fo5Pb6qefPmKleunJYvX67w8PDLPgf6SvJmpZOSkjRgwACHdUFBQbLZbPr555/VsmVLh3+PgwYN0saNG/Xoo4/q0UcfVbFixfTpp58qOztbzz///DXvP4+Li4veeOMNPfPMMxo0aJBmzZp1xfsHSNLYsWOVmZmp1q1by8fHRzk5OdqyZYuWLVumqlWrqnPnzpIuzmAPGjRIkydP1uHDh/XAAw+odOnSOnTokL755hs98sgjioqKkiTVr19fCQkJGj9+vAICAlSqVCm1atXKvDneJ598otKlS6tUqVIKDAx0ukb+eg0ePFhPP/20unfvrs6dOystLU0ffvih/Pz8HEI3ANyumMEGANwUS5YskZubm0JDQy+73sXFRS1atND69evNGbeQkBBVrlxZZ86ccZq9zttm5syZGjJkiHbv3q2JEydq5syZ2r59u3r06PG3p8tKUrNmzfT666/rxIkTGjdunJYuXaqhQ4eqdevWTrUTJ07UY489prVr1+rNN99UTk6Opk6dKkkOp5ffcccd+uyzz9S5c2etWrVKr732mubPn6/U1FQNHTr0qv3cc889GjhwoDIyMjRv3jy9/PLLev/991WlShXFxMSoZ8+eZu1LL72kjh07Kj4+XhMmTNDx48c1b968v72Jlqurq959913VrVtXsbGxmjFjhmrVqqWJEyf+7ed1OXk3G2vWrJnuvPPOa96uWLFimjNnjk6cOKE33nhD27dvV//+/c2bkF3Kbreb/w1cy83NLhUUFGTe6CvvDuJ5ypQpY57S/tfrr++66y59+OGHuuuuuxQbG6uZM2eqSpUqmj9/vtMzsK+Vq6urYmJiFBQUpKefflpbt269Yu0LL7ygJk2aaO3atRo/frzGjx+v7du369FHH9Vnn30md3d3s7Zv376aPn26+TsxadIkffvttwoNDXX4UuvRRx9Vhw4dtHjxYg0ZMkRjx441+5owYYKKFSumMWPG6LnnntN///vffL3HS7Vq1UpTpkxRTk6OJk+erFWrVmn8+PHy9vb+2+ekA8DtwGZwZwoAAK7Zzp071alTJ73xxhuW39yrqNi1a5c6duzodE231caNG6dFixZpw4YN5inNKJo6duwoT09PzZs3r6BbAYCbihlsAACu4Ny5c07L3n//fbm4uOiee+4pgI4Kh4ULF6pUqVJXfEyUFbKysrRkyRK1bduWcF2E5OTk6Pz58w7LNm/erF27dl3zs9IBoCjjGmwAAK5gzpw5+uWXX9S0aVMVK1ZMiYmJSkxMVNeuXa/rjtK3i2+//VZ79+7VwoUL9dhjj92Ux0GdPHlSGzdu1IoVK3T69Gk9/vjjlu8DN8+xY8f0xBNP6KGHHtKdd96p5ORkffLJJ/Ly8srX48oAoKghYAMAcAXBwcHasGGD3n77bZ09e1aVK1fWgAEDnB4f9k8xduxYnThxQuHh4U43D7PK3r17NXToUFWoUEEjR45U3bp1b8p+cHN4eHiofv36+uyzz3Tq1CmVKlVKzZs319ChQ1W+fPmCbg8AbjquwQYAAAAAwAJcgw0AAAAAgAUI2AAAAAAAWIBrsAu5pKQkGYYhV1fXgm4FAAAAAP5xcnJyZLPZFBwc/Le1BOxCzjAMcZk8AAAAABSM68ljBOxCLm/mOiAgoIA7AQAAAIB/nu3bt19zLddgAwAAAABgAQI2AAAAAAAWIGADAAAAAGABAjYAAAAAABYgYAMAAAAAYAECNgAAAAAAFiBgAwAAAABgAQI2AAAAAAAWIGADAAAAAGABAjYAAAAAABYgYAMAAAAAYIFCFbAPHDig0aNHq2PHjqpXr546dOhw2bq0tDSNHTtWYWFhCggI0AMPPKC5c+c61GRnZ2vixIkKDQ1VUFCQnnjiCSUnJzuNtW/fPj3xxBMKCgpSaGioJk2apOzsbKe6zz77TG3btlVAQIAeeughrVmzxqkmPT1dI0aMUOPGjRUcHKyBAwfq+PHj+fw0AAAAAABFSfGCbuBSe/bs0dq1a3X33XcrNzdXhmE41Zw9e1Y9evRQsWLFNGLECFWoUEH79+9XRkaGQ93YsWOVkJCg4cOHq2LFinr33XfVq1cvLV26VGXLlpUkpaamqmfPnqpVq5amT5+uY8eOacKECTp37pxGjx5tjrV06VKNGjVK/fr1U9OmTZWQkKD+/fvrww8/VFBQkFk3aNAg7d27V2PGjJGbm5umTZumPn366PPPP1fx4oXqowYAAAAAWKxQpb5WrVrpgQcekCQNHz5cv/zyi1PNrFmzdObMGS1ZskSlSpWSJDVp0sSh5ujRo1q0aJFefvllPfzww5KkgIAAtWzZUp988on69OkjSfrkk0905swZzZgxQ+XKlZMkXbhwQa+88oqio6NVsWJFSVJMTIwiIyM1aNAgSVLTpk21e/duzZw5U7Nnz5YkJSUlaf369YqLi1NYWJgkydvbWxEREVq5cqUiIiIs/KQAAAAAAIVNoTpF3MXl79tZtGiR/v3vf5vh+nLWr1+v3NxctWvXzlxWrlw5hYaGKjEx0VyWmJioZs2ameFaktq3b6/c3Fxt2LBBknTw4EHt379f7du3d9hHRESENm3aZJ5OnpiYKHd3d4WGhpo1Pj4+qlu3rsM+AQAAAAC3p0IVsP/OoUOH9Mcff6h8+fLq16+fGjRooMaNG2vkyJE6c+aMWZecnKwKFSrIw8PDYXtfX1+H67CTk5Pl4+PjUOPu7i4vLy+zLu+nt7e301g5OTk6ePCgWeft7S2bzeZQ5+Pjc9lrvwEAAAAAt5dCdYr43zlx4oQkaeLEiWrTpo1mz56t/fv3a/LkyTp79qymTJki6eJN0PKus76Uu7u7UlNTzddpaWlyd3d3qvPw8DDr8n7+tS7vdd76K+3Tw8Pjsqe6Xw/DMHT27NkbGgMAAAAAcP0Mw3CaSL2SIhWwc3NzJV2cTZ44caIkqVmzZipevLhGjhypwYMHq3r16gXZ4k2Rk5OjnTt3FnQbAAAAAPCPZLfbr6muSAXsvFO+/3pTs6ZNm0q6eBfy6tWry93d3emu4tLFWeZLTxt3d3dXenq6U11qaqpZl/czPT1dXl5eDmNdut7d3V1Hjx696lj55erqqtq1a9/QGAAAAACA67d3795rri1SAbt69epX/eYgKytL0sXrnk+cOOEUbv96zfXlro9OT0/XH3/8Ydbl/fzrtsnJyXJ1dTVnzH18fLRp0yan0wdSUlLk5+eX37csSbLZbFe9qRsAAAAA4Oa41tPDpSJ2kzO73a7Q0FBt2rTJYfnGjRslSfXr15ckhYWFycXFRStXrjRrUlNTtX79eoWHh5vLwsPDtXHjRnM2WpKWL18uFxcX827g1atXV61atbR8+XKHfSYkJKhZs2Zm4A8PD1dqaqpDbykpKdqxY4fDPgEAAAAAt6dCNYOdmZmptWvXSpIOHz6sjIwMM9g2btxYnp6e6t+/v7p166YhQ4boX//6lw4cOKDJkyfrwQcfVI0aNSRJlSpV0sMPP6xJkybJxcVFFStWVGxsrMqWLatu3bqZ++vWrZs++OADPfPMM4qOjtaxY8c0adIkdevWzXwGtiQNGDBAQ4cOVY0aNdSkSRMlJCRo27ZtWrBggVkTHByssLAwjRgxQsOGDZObm5umTp0qf39/tWnT5lZ8fAAAAACAAmQzDMMo6CbyHDp0SPfff/9l182fP9+89nrTpk168803tXv3bnl4eOjBBx/U4MGDHU4fz87O1tSpU/XVV1/pzJkzCgkJ0ciRI+Xr6+sw7r59+/Taa68pKSlJpUuXVseOHZ3GkqTPPvtMs2fP1u+//y5vb28999xzatmypUNNenq6xo8fr1WrVun8+fMKCwvTyJEjHcL69dq+fbskKSAgIN9j5MeF3FwVu4bnkgO4tfjdBAAAuLWuJ5MVqoANZwUVsCVpwvTF+u3wiVu+XwCXV6PqHRo+oHNBtwEAAPCPcj2ZrFCdIo7C5bfDJ7Q3xfnO6AAAAAAAZ5xnCAAAAACABQjYAAAAAABYgIANAAAAAIAFCNgAAAAAAFiAgA0AAAAAgAUI2AAAAAAAWICADQAAAACABQjYAAAAAABYgIANAAAAAIAFCNgAAAAAAFiAgA0AAAAAgAUI2AAAAAAAWICADQAAAACABQjYAAAAAABYgIANAAAAAIAFCNgAgELnQm5uQbcA4Ar4/QSAKyte0A0AAPBXxVxcNOLLz5V84kRBtwLgEj533KFxnf5d0G0AQKFFwAYAFErJJ05o19EjBd0GAADANeMUcQAAAAAALEDABgAAAADAAgRsAAAAAAAsQMAGAAAAAMACBGwAAAAAACxAwAYAAAAAwAIEbAAAAAAALEDABgAAAADAAgRsAAAAAAAsQMAGAAAAAMACBGwAAAAAACxAwAYAAAAAwAIEbAAAAAAALEDABgAAAADAAgRsAAAAAAAsQMAGAAAAAMACBGwAAAAAACxAwAYAAAAAwAIEbAAAAAAALEDABgAAAADAAgRsAAAAAAAsQMAGAAAAAMACBGwAAAAAACxAwAYAAAAAwAIEbAAAAAAALEDABgAAAADAAgRsAAAAAAAsUKgC9oEDBzR69Gh17NhR9erVU4cOHa5a/80338jf3/+ydenp6RoxYoQaN26s4OBgDRw4UMePH3eq27Jli7p27arAwEC1bNlSs2bNkmEYDjWGYWjWrFlq0aKFAgMD1bVrV/38889OYx07dkwDBgxQcHCwGjdurJdeekkZGRnX9yEAAAAAAIqkQhWw9+zZo7Vr16pmzZry9fW9au25c+c0btw43XHHHZddP2jQIG3YsEFjxozRm2++qZSUFPXp00fnz583aw4cOKCoqCh5eXkpNjZWPXv2VExMjObOnesw1uzZsxUTE6NevXopNjZWXl5e6t27tw4ePGjW5OTk6Mknn9T+/fs1efJkjRkzRuvXr9eQIUNu4BMBAAAAABQVxQu6gUu1atVKDzzwgCRp+PDh+uWXX65YGxsbqypVqqhatWpOdUlJSVq/fr3i4uIUFhYmSfL29lZERIRWrlypiIgISVJcXJzKly+vKVOmyG63q1mzZjp16pTeffdd9ejRQ3a7XVlZWYqNjVXv3r3Vq1cvSVLDhg3Vrl07xcXFacyYMZKkFStWaM+ePUpISJCPj48kyd3dXVFRUdq2bZsCAwOt/KgAAAAAAIVMoZrBdnG5tnZ+++03zZs3TyNHjrzs+sTERLm7uys0NNRc5uPjo7p16yoxMdGh7v7775fdbjeXRUREKC0tTUlJSZIunkKekZGh9u3bmzV2u12tW7d2Gsvf398M15IUGhqqcuXKae3atdf0vgAAAAAARVehCtjX6vXXX1fHjh1Vp06dy65PTk6Wt7e3bDabw3IfHx8lJydLks6ePasjR444BOK8GpvNZtbl/fxrna+vr37//XedO3fOrPtrjc1mk7e3tzkGAAAAAOD2VahOEb8W3377rZKSkrR8+fIr1qSlpals2bJOyz08PMzTydPT0yVdPI37Una7XSVLllRqaqo5lt1ul5ubm0Odu7u7DMNQamqqSpQocdV95o2VX4Zh6OzZszc0xvWw2WwqWbLkLdsfgOuTmZnpdDPG2wnHIKDwu92PQwBwKcMwnCZvr6RIBeysrCyNGzdOAwYMkKenZ0G3c8vk5ORo586dt2x/JUuWVL169W7Z/gBcn5SUFGVmZhZ0GzcNxyCg8Lvdj0MA8FeXXlZ8NUUqYL///vtycXFRZGSk0tLSJF0Mn7m5uUpLS1OJEiVkt9vl7u6uo0ePOm2fmpoqDw8PSTJnm/NmsvNkZ2crMzPTrHN3d1d2draysrIcZrHT0tJks9kc6i73SK7U1FRVrlz5ht63q6urateufUNjXI9r/XYGQMHw9va+rWeOOAYBhd/tfhwCgEvt3bv3mmuLVMBOTk7WgQMH1KxZM6d199xzj8aMGaPu3bvLx8dHmzZtcprKT0lJkZ+fnySpVKlSqly5stP10SkpKTIMw7yeOu9nSkqKwzXfycnJqlKlikqUKGHW7d6922EswzCUkpLicLO1/LDZbCpVqtQNjQHg9sHp0wAKGschAP8k1/Plf5G6yVmfPn00f/58hz9hYWGqWrWq5s+fr1atWkmSwsPDlZqaqk2bNpnbpqSkaMeOHQoPDzeXhYeHa/Xq1crJyTGXJSQkyN3dXcHBwZKkkJAQlSlTRsuWLTNrcnJytHLlSqexdu3apf3795vLNm3apNOnT6t58+aWfxYAAAAAgMKlUM1gZ2Zmmo+0Onz4sDIyMsybmTVu3Fi+vr7y9fV12OaLL77QsWPH1KRJE3NZcHCwwsLCNGLECA0bNkxubm6aOnWq/P391aZNG7MuKipK8fHxGjJkiLp3767du3crLi5OgwcPNs+xd3NzU3R0tKZPny5PT0/5+fnp448/1unTpxUVFWWO1bZtW8XGxmrAgAF67rnnlJmZqUmTJqlFixY8AxsAAAAA/gEKVcA+efKknn32WYdlea/nz5/vEKL/zrRp0zR+/HiNHj1a58+fV1hYmEaOHKnixf/vLdesWVNxcXGaMGGC+vbtK09PTw0cOFC9e/d2GKtPnz4yDENz587VqVOnVLduXcXFxal69epmjaurq+bMmaOxY8fqueeeU/HixdW6dWuNGDEiPx8FAAAAAKCIsRncoaJQ2759uyQpICDglu/76eGztDfF+WZxAApGbe9KentC34Ju45bpNidWu44eKeg2AFyiTqXK+uTJ6IJuAwBuqevJZEXqGmwAAAAAAAorAjYAAAAAABYgYAMAAAAAYAECNgAAAAAAFiBgAwAAAABgAQI2AAAAAAAWIGADAAAAAGABAjYAAAAAABYgYAMAAAB/kWvkFnQLAK6gMP9+Fi/oBgAAAIDCxsXmovd/ma+jZ48VdCsALlGpVEX1bPB4QbdxRQRsAAAA4DKOnj2mQ+mHCroNAEUIp4gDAAAAAGABAjYAAAAAABYgYAMAAAAAYAECNgAAAAAAFiBgAwAAAABgAQI2AAAAAAAWIGADAAAAAGABAjYAAAAAABYgYAMAAAAAYAECNgAAAAAAFiBgAwAAAABgAQI2AAAAAAAWIGADAAAAAGABAjYAAAAAABYgYAMAAAAAYAECNgAAAAAAFiBgAwAAAABgAQI2AAAAAAAWIGADAAAAAGABAjYAAAAAABYgYAMAAAAAYAECNgAAAAAAFiBgAwAAAABgAQI2AAAAAAAWIGADAAAAAGABAjYAAAAAABYgYAMAAAAAYAECNgAAAAAAFiBgAwAAAABgAQI2AAAAAAAWIGADAAAAAGABAjYAAAAAABYgYAMAAAAAYAECNgAAAAAAFiBgAwAAAABggUIVsA8cOKDRo0erY8eOqlevnjp06OCwPiMjQ9OnT9fDDz+sRo0a6d5771W/fv3066+/Oo2Vnp6uESNGqHHjxgoODtbAgQN1/Phxp7otW7aoa9euCgwMVMuWLTVr1iwZhuFQYxiGZs2apRYtWigwMFBdu3bVzz//7DTWsWPHNGDAAAUHB6tx48Z66aWXlJGRcWMfCgAAAACgSChUAXvPnj1au3atatasKV9fX6f1v//+uz799FOFhoZq2rRpeu2115Senq6uXbtq3759DrWDBg3Shg0bNGbMGL355ptKSUlRnz59dP78ebPmwIEDioqKkpeXl2JjY9WzZ0/FxMRo7ty5DmPNnj1bMTEx6tWrl2JjY+Xl5aXevXvr4MGDZk1OTo6efPJJ7d+/X5MnT9aYMWO0fv16DRkyxOJPCQAAAABQGBUv6AYu1apVKz3wwAOSpOHDh+uXX35xWF+tWjWtWrVKJUuWNJc1bdpUrVq10kcffaRRo0ZJkpKSkrR+/XrFxcUpLCxMkuTt7a2IiAitXLlSERERkqS4uDiVL19eU6ZMkd1uV7NmzXTq1Cm9++676tGjh+x2u7KyshQbG6vevXurV69ekqSGDRuqXbt2iouL05gxYyRJK1as0J49e5SQkCAfHx9Jkru7u6KiorRt2zYFBgbetM8NAAAAAFDwCtUMtovL1dspVaqUQ7iWpNKlS6tGjRoOp38nJibK3d1doaGh5jIfHx/VrVtXiYmJDnX333+/7Ha7uSwiIkJpaWlKSkqSdPEU8oyMDLVv396ssdvtat26tdNY/v7+ZriWpNDQUJUrV05r16691o8AAAAAAFBEFaqAnR9paWnas2ePQ7BNTk6Wt7e3bDabQ62Pj4+Sk5MlSWfPntWRI0cctsursdlsZl3ez7/W+fr66vfff9e5c+fMur/W2Gw2eXt7m2MAAAAAAG5fheoU8fx44403ZLPZ1L17d3NZWlqaypYt61Tr4eFhnnaenp4u6eJp3Jey2+0qWbKkUlNTzbHsdrvc3Nwc6tzd3WUYhlJTU1WiRImr7jNvrPwyDENnz569oTGuh81mczpTAEDhkZmZ6XQzxtsJxyCg8OM4BKCg3crjkGEYTpO3V1KkA/bnn3+uhQsXasKECapUqVJBt3PT5OTkaOfOnbdsfyVLllS9evVu2f4AXJ+UlBRlZmYWdBs3DccgoPDjOASgoN3q49CllxVfTZEN2GvXrtXo0aP19NNP61//+pfDOnd3dx09etRpm9TUVHl4eEiSOducN5OdJzs7W5mZmWadu7u7srOzlZWV5TCLnZaWJpvN5lB3uUdypaamqnLlyjfwTiVXV1fVrl37hsa4Htf67QyAguHt7X3bzxwBKNw4DgEoaLfyOLR3795rri2SAfvnn3/Ws88+q06dOunZZ591Wu/j46NNmzY5TeWnpKTIz89P0sUbplWuXNnp+uiUlBQZhmFeT533MyUlRXXq1DHrkpOTVaVKFZUoUcKs2717t8NYhmEoJSXF4WZr+WGz2VSqVKkbGgPA7YPTFgEUNI5DAArarTwOXc+XbkXuJmd79+5VdHS0mjZtqldeeeWyNeHh4UpNTdWmTZvMZSkpKdqxY4fCw8Md6lavXq2cnBxzWUJCgtzd3RUcHCxJCgkJUZkyZbRs2TKzJicnRytXrnQaa9euXdq/f7+5bNOmTTp9+rSaN29+w+8bAAAAAFC4FaoZ7MzMTPORVocPH1ZGRoaWL18uSWrcuLEMw1BUVJTc3NzUs2dPh+dklylTxjyNOjg4WGFhYRoxYoSGDRsmNzc3TZ06Vf7+/mrTpo25TVRUlOLj4zVkyBB1795du3fvVlxcnAYPHmyeY+/m5qbo6GhNnz5dnp6e8vPz08cff6zTp08rKirKHKtt27aKjY3VgAED9NxzzykzM1OTJk1SixYteAY2AAAAAPwDFKqAffLkSadTvvNez58/X5LMa6t79erlUNe4cWN98MEH5utp06Zp/PjxGj16tM6fP6+wsDCNHDlSxYv/31uuWbOm4uLiNGHCBPXt21eenp4aOHCgevfu7TB2nz59ZBiG5s6dq1OnTqlu3bqKi4tT9erVzRpXV1fNmTNHY8eO1XPPPafixYurdevWGjFixI1/MAAAAACAQq9QBexq1arp119/vWrN363PU7ZsWY0bN07jxo27al1ISIgWLlx41Rqbzabo6GhFR0dfta5ixYqaPn36NfUHAAAAALi9FLlrsAEAAAAAKIwI2AAAAAAAWICADQAAAACABQjYAAAAAABYgIANAAAAAIAFCNgAAAAAAFiAgA0AAAAAgAUI2AAAAAAAWICADQAAAACABQjYAAAAAABYgIANAAAAAIAFCNgAAAAAAFiAgA0AAAAAgAUI2AAAAAAAWICADQAAAACABQjYAAAAAABYgIANAAAAAIAFCNgAAAAAAFiAgA0AAAAAgAUI2AAAAAAAWICADQAAAACABQjYAAAAAABYgIANAAAAAIAFCNgAAAAAAFiAgA0AAAAAgAUI2AAAAAAAWICADQAAAACABQjYAAAAAABYgIANAAAAAIAFCNgAAAAAAFiAgA0AAAAAgAUI2AAAAAAAWICADQAAAACABQjYAAAAAABYgIANAAAAAIAFCNgAAAAAAFiAgA0AAAAAgAUI2AAAAAAAWICADQAAAACABfIVsLOzs63uAwAAAACAIi1fATssLEyjRo3Sjz/+aHU/AAAAAAAUScXzs1Hbtm21cuVKLVq0SJUrV9aDDz6ohx56SL6+vlb3BwAAAABAkZCvGezXXntN69evV0xMjBo0aKB58+apQ4cO6ty5s95//32dOHHC6j4BAAAAACjU8n2TM1dXV7Vu3VoxMTHauHGjXn31VZUtW1YTJ05UixYt1KdPH8XHx+vcuXNW9gsAAAAAQKGUr1PE/6pMmTLq0qWL6tSpo9mzZ2vlypVat26d1q1bp9KlS+uRRx7RgAEDVKpUKSt2BwAAAABAoXPDAfvgwYOKj49XfHy89u/fr3Llyuk///mPOnbsKFdXVy1cuFAffPCBDh06pOnTp1vRMwAAAAAAhU6+Avaff/6phIQExcfHa+vWrXJ1dVWLFi30/PPPKzw8XMWL/9+wo0ePVqVKlfT222//7bgHDhxQXFyctm7dqj179sjHx0dff/21U91nn32mOXPm6Pfff5e3t7cGDx6sli1bOtSkp6dr/Pjx+uabb5STk6P77rtPI0eO1J133ulQt2XLFk2cOFE7d+5UhQoV1L17d/Xp00c2m82sMQxDs2fP1kcffaRTp06pbt26evHFFxUUFOQw1rFjxzR27FitX7/ePIX+xRdfVJkyZa7lYwUAAAAAFGH5ugb7vvvu02uvvSZJevnll80bnrVq1cohXOe566675Onp+bfj7tmzR2vXrlXNmjWveEfypUuXatSoUWrfvr1mz56toKAg9e/fXz///LND3aBBg7RhwwaNGTNGb775plJSUtSnTx+dP3/erDlw4ICioqLk5eWl2NhY9ezZUzExMZo7d67DWLNnz1ZMTIx69eql2NhYeXl5qXfv3jp48KBZk5OToyeffFL79+/X5MmTNWbMGK1fv15Dhgz52/cNAAAAACj68jWDHR0drY4dO6pGjRrXVN+yZUunGebLadWqlR544AFJ0vDhw/XLL7841cTExCgyMlKDBg2SJDVt2lS7d+/WzJkzNXv2bElSUlKS1q9fr7i4OIWFhUmSvL29FRERoZUrVyoiIkKSFBcXp/Lly2vKlCmy2+1q1qyZTp06pXfffVc9evSQ3W5XVlaWYmNj1bt3b/Xq1UuS1LBhQ7Vr105xcXEaM2aMJGnFihXas2ePEhIS5OPjI0lyd3dXVFSUtm3bpsDAwGv6rAAAAAAARdN1z2BnZmbq119/dZoxtqQZl6u3c/DgQe3fv1/t27d3WB4REaFNmzYpOztbkpSYmCh3d3eFhoaaNT4+Pqpbt64SExPNZYmJibr//vtlt9sdxkpLS1NSUpKki6eQZ2RkOOzTbrerdevWTmP5+/ub4VqSQkNDVa5cOa1du/Z6PgYAAAAAQBF03QG7ZMmS2rhxY4E8fis5OVnSxdnoS/n6+ionJ8c8ZTs5OVne3t4O11FLF0N23hhnz57VkSNHHAJxXo3NZjPr8n7+tc7X11e///67+TkkJyc71dhsNnl7e5tjAAAAAABuX/k6Rbxhw4ZKSkrSI488YnU/V5Wamirp4qnXl8p7nbc+LS1NZcuWddrew8PDPO08PT39smPZ7XaVLFnSYSy73S43NzenfRqGodTUVJUoUeKq+8wbK78Mw9DZs2dvaIzrYbPZVLJkyVu2PwDXJzMzU4ZhFHQbNw3HIKDw4zgEoKDdyuOQYRhOk7dXkq+APXr0aEVFRWnq1Knq3r27KlWqlJ9hcI1ycnK0c+fOW7a/kiVLql69erdsfwCuT0pKijIzMwu6jZuGYxBQ+HEcAlDQbvVx6NLLiq8mXwH7oYce0oULFzRr1izNmjVLxYoVc9qhzWbTTz/9lJ/hr8jDw0PSxdlnLy8vc3laWprDend3dx09etRp+9TUVLMmb7Y5byY7T3Z2tjIzMx3Gys7OVlZWlsMsdlpammw2m0NdRkbGZfdZuXLl/L3h/8/V1VW1a9e+oTGux7V+OwOgYHh7e9/2M0cACjeOQwAK2q08Du3du/eaa/MVsNu2bVsgB568a5z/er1zcnKyXF1dVb16dbNu06ZNTlP5KSkp8vPzkySVKlVKlStXdro+OiUlRYZhmOPn/UxJSVGdOnUc9lmlShWVKFHCrNu9e7fDWIZhKCUlxeFma/lhs9lUqlSpGxoDwO2D0xYBFDSOQwAK2q08Dl1P9s1XwJ4wYUJ+Nrth1atXV61atbR8+XLzcV6SlJCQoGbNmpmz6OHh4Xr77be1adMm3XvvvZIuBuQdO3boySefNLcLDw/X6tWr9fzzz8vV1dUcy93dXcHBwZKkkJAQlSlTRsuWLTMDdk5OjlauXKnw8HCHsZYsWaL9+/erVq1akqRNmzbp9OnTat68+c37UAAAAAAAhUK+AvbNkpmZaT7S6vDhw8rIyNDy5cslSY0bN5anp6cGDBigoUOHqkaNGmrSpIkSEhK0bds2LViwwBwnODhYYWFhGjFihIYNGyY3NzdNnTpV/v7+atOmjVkXFRWl+Ph4DRkyRN27d9fu3bsVFxenwYMHm2Hdzc1N0dHRmj59ujw9PeXn56ePP/5Yp0+fVlRUlDlW27ZtFRsbqwEDBui5555TZmamJk2apBYtWvAMbAAAAAD4B7ihgH306FHt2LFD6enplz3/vVOnTtc13smTJ/Xss886LMt7PX/+fDVp0kQdOnRQZmamZs+erVmzZsnb21szZswwZ5zzTJs2TePHj9fo0aN1/vx5hYWFaeTIkSpe/P/ecs2aNRUXF6cJEyaob9++8vT01MCBA9W7d2+Hsfr06SPDMDR37lydOnVKdevWVVxcnHlKunTxOuk5c+Zo7Nixeu6551S8eHG1bt1aI0aMuK7PAAAAAABQNNmMfFwZnpWVpWHDhmnlypXKzc2VzWYzA/al56ffyjtf3662b98uSQoICLjl+356+CztTXG+WRyAglHbu5LentC3oNu4ZbrNidWuo0cKug0Al6hTqbI+eTK6oNu4ZSb+8IYOpR8q6DYAXKJa2Woa1vj5W7rP68lkLvnZwZQpU7Rq1SoNGjRIH3zwgQzD0IQJEzR37lyFh4erTp06+uqrr/IzNAAAAAAARVK+AvaKFSvUuXNn9e3b13x8VMWKFXXvvfcqNjZWZcuW1YcffmhpowAAAAAAFGb5CtgnT540b9yV95iqSx/y3bZtW61atcqC9gAAAAAAKBryFbDvuOMO/fnnn5IuPn/Mw8NDKSkp5vqMjAxlZWVZ0yEAAAAAAEVAvu4iHhgYqC1btpivW7Zsqbi4OHl5eSk3N1fvvfeegoKCrOoRAAAAAIBCL18Bu0ePHlq+fLmys7Nlt9v17LPPKikpSS+88IIkqUaNGnrppZcsbRQAAAAAgMIsXwG7UaNGatSokfm6cuXKWrZsmXbv3i0XFxf5+Pg4PG8aAAAAAIDbnWUp2MXFRXXq1LFqOAAAAAAAipRrCtj//e9/8zX4Pffck6/tAAAAAAAoaq4pYPfo0UM2m+2aBzUMQzabTTt37sx3YwAAAAAAFCXXFLDnz59/s/sAAAAAAKBIu6aA3bhx45vdBwAAAAAARZpLQTcAAAAAAMDtIN93Ec/KytKKFSu0Y8cOpaenKzc312G9zWbTuHHjbrhBAAAAAACKgnwF7MOHD+vxxx/X4cOH5e7urvT0dHl4eCg9PV0XLlxQ+fLlVapUKat7BQAAAACg0MrXKeKTJk1SRkaGFi5cqOXLl8swDE2dOlVJSUkaOnSoSpQoobi4OKt7BQAAAACg0MpXwP7+++/VvXt3BQYGysXl/4aw2+168skn1bRpU04PBwAAAAD8o+QrYJ87d05Vq1aVJJUpU0Y2m03p6enm+uDgYP3000/WdAgAAAAAQBGQr4BduXJlHTt2TJJUvHhxVaxYUT///LO5fu/evXJzc7OkQQAAAAAAioJ83eSsadOmWr16tfr37y9J+te//qVZs2YpLS1Nubm5WrJkiTp27GhpowAAAAAAFGb5Cth9+/bV9u3blZ2dLbvdrn79+un48eNasWKFXFxc1KFDB7344otW9woAAAAAQKGVr4BdpUoVValSxXzt5uam119/Xa+//rpljQEAAAAAUJTk6xrsy8nNzdXJkydlGIZVQwIAAAAAUGRcc8BOSUnRl19+qdTUVIflGRkZeuGFF3T33XcrLCxMTZs21YIFCyxvFAAAAACAwuyaA/a8efP01ltvyd3d3WH5qFGjtGTJElWpUkWtW7eW3W7X66+/rm+++cbyZgEAAAAAKKyu+RrsLVu2qEWLFrLZbOayI0eOaNmyZQoKCtKCBQtUvHhxpaWl6eGHH9aHH36oBx544KY0DQAAAABAYXPNM9jHjh2Tj4+Pw7I1a9bIZrPp8ccfV/HiF7O6u7u7OnbsqB07dljbKQAAAAAAhdg1B+zc3FwzROf56aefJEmNGzd2WF6pUiWdOXPGgvYAAAAAACgarjlg16hRQ1u3bjVfX7hwQZs3b5aPj4/uuOMOh9rU1FR5enpa1yUAAAAAAIXcNV+D3alTJ73xxhvy8fFRSEiIlixZopMnT6pHjx5OtT/++KNq1aplZZ8AAAAAABRq1xywH330UW3atElTpkyRzWaTYRi655571Lt3b4e6I0eOKDExUYMGDbK6VwAAAAAACq1rDtiurq569913tX37dh08eFBVqlRRUFCQU112drYmT56se+65x8o+AQAAAAAo1K45YOcJCAhQQEDAFdfXrFlTNWvWvKGmAAAAAAAoaq75JmcAAAAAAODKCNgAAAAAAFiAgA0AAAAAgAUI2AAAAAAAWICADQAAAACABa77LuKXys7O1v/+9z+dPHlSISEh8vT0tKovAAAAAACKlHzPYM+fP19hYWF69NFHNWDAAP3666+SpFOnTqlJkyZatGiRZU0CAAAAAFDY5Stgf/755xo3bpzuu+8+vf766zIMw1zn6emppk2bKiEhwbImAQAAAAAo7PIVsOfNm6f7779fkydPVsuWLZ3W169fX3v27Lnh5gAAAAAAKCryFbAPHDig8PDwK64vV66cTp8+nd+eAAAAAAAocvIVsN3d3fXnn39ecf3evXvl5eWV76YAAAAAAChq8hWww8PDtXDhQqWlpTmt27Nnjz777DO1atXqhpsDAAAAAKCoyNdjugYNGqRHHnlEHTp0UMuWLWWz2fTll1/q888/18qVK+Xl5aWnn37a6l4BAAAAACi08jWDXbFiRS1evFj33Xefli1bJsMw9NVXX2nNmjWKjIzUwoULb+ozsVevXq0uXbooODhYYWFhevbZZ3Xw4EGnus8++0xt27ZVQECAHnroIa1Zs8apJj09XSNGjFDjxo0VHBysgQMH6vjx4051W7ZsUdeuXRUYGKiWLVtq1qxZDndPlyTDMDRr1iy1aNFCgYGB6tq1q37++WfL3jcAAAAAoPDK93OwK1SooNdff10//PCDNm7cqPXr1+u///2vxo8frwoVKljZo4PNmzerf//+ql27tmbOnKkRI0Zo165d6t27t86dO2fWLV26VKNGjVL79u01e/ZsBQUFqX///k6Bd9CgQdqwYYPGjBmjN998UykpKerTp4/Onz9v1hw4cEBRUVHy8vJSbGysevbsqZiYGM2dO9dhrNmzZysmJka9evVSbGysvLy81Lt378uGfwAAAADA7SVfp4j/1c2crf6rpUuXqkqVKho3bpxsNpu5/549e+qXX35Ro0aNJEkxMTGKjIzUoEGDJElNmzbV7t27NXPmTM2ePVuSlJSUpPXr1ysuLk5hYWGSJG9vb0VERGjlypWKiIiQJMXFxal8+fKaMmWK7Ha7mjVrplOnTundd99Vjx49ZLfblZWVpdjYWPXu3Vu9evWSJDVs2FDt2rVTXFycxowZc8s+IwAAAADArZevgD1jxoyrrrfZbHJzc1OlSpV0zz33qGLFivlq7nLOnz+v0qVLm+FaksqWLStJ5inbBw8e1P79+/X88887bBsREaFJkyYpOztbdrtdiYmJcnd3V2hoqFnj4+OjunXrKjEx0QzYiYmJat26tex2u8NYsbGxSkpKUpMmTbRlyxZlZGSoffv2Zo3dblfr1q21atUqy94/AAAAAKBwynfAzgu4f70O+a/LixUrpi5dumj06NFyccn3Gemmzp0766uvvtKHH36ohx56SKdPn9aUKVNUr149hYSESJKSk5MlXZyNvpSvr69ycnJ08OBB+fr6Kjk5Wd7e3g5hXboYsvPGOHv2rI4cOSIfHx+nGpvNpuTkZDVp0sSs/2udr6+v3n//fZ07d04lSpS44fcPAAAAACic8hWw165dq+joaNWtW1c9evRQjRo1JF28VnnBggX69ddfNXXqVJ09e1bvv/++Pv30U915552W3Fm8UaNGmjFjhoYMGaJXX31VklS3bl3NmTNHxYoVkySlpqZKuvi87kvlvc5bn5aWZs5+X8rDw0O//PKLpIs3QbvcWHa7XSVLlnQYy263y83NzWmfhmEoNTU13wHbMAydPXs2X9vmh81mU8mSJW/Z/gBcn8zMTKcvN28nHIOAwo/jEICCdiuPQ4ZhOE3KXkm+AvYrr7wiHx8fjR8/3mF5/fr1NX78eA0ePFiTJ09WTEyMJkyYoJMnT+qrr76yJGBv2bJFL7zwgh555BG1aNFCp0+f1ttvv62+ffvqo48+ui1niXNycrRz585btr+SJUuqXr16t2x/AK5PSkqKMjMzC7qNm4ZjEFD4cRwCUNBu9XHo0suFryZfAfv77793ur75Uvfcc48mT55svm7evLkmTpyYn105GTt2rJo2barhw4eby4KCgtSiRQt99dVX6tq1qzw8PCRdnH328vIy69LS0iTJXO/u7q6jR4867SM1NdWsyZvhzpvJzpOdna3MzEyHsbKzs5WVleUwi52WliabzWbW5Yerq6tq166d7+2v17V+OwOgYHh7e9/2M0cACjeOQwAK2q08Du3du/eaa/MVsO12u7Zt26bu3btfdv3WrVvl6upqvj5//rxKlSqVn1052bdvn+6//36HZZUqVVL58uX122+/Sfq/66CTk5MdrolOTk6Wq6urqlevbtZt2rTJaco/JSVFfn5+kqRSpUqpcuXK5jXWl9YYhmGOn/czJSVFderUcdhnlSpVbmhm3WazWfb5ASj6OG0RQEHjOASgoN3K49D1fOmWr7uOdejQQV9++aUmTpyo3377Tbm5ucrNzdVvv/2mCRMmaMmSJerQoYNZv3nzZstmYKtUqaIdO3Y4LDt8+LD+/PNPVa1aVZJUvXp11apVS8uXL3eoS0hIULNmzczp/fDwcKWmpmrTpk1mTUpKinbs2KHw8HBzWXh4uFavXq2cnByHsdzd3RUcHCxJCgkJUZkyZbRs2TKzJicnRytXrnQYCwAAAABwe8rXDPbzzz+vEydOaN68eXrvvffMu4Pn5ubKMAy1adPGPIU8KytL9evXN+/wfaO6deumcePGaezYsWrVqpVOnz6td955RxUqVHB4RNaAAQM0dOhQ1ahRQ02aNFFCQoK2bdumBQsWmDXBwcEKCwvTiBEjNGzYMLm5uWnq1Kny9/dXmzZtzLqoqCjFx8dryJAh6t69u3bv3q24uDgNHjzYDOtubm6Kjo7W9OnT5enpKT8/P3388cc6ffq0oqKiLHnvAAAAAIDCK18B283NTdOmTdOOHTu0bt06HT58WJJUtWpVhYWFqX79+g61/fv3t6ZbSY8//rjsdrs+/vhjff755ypdurSCgoI0bdo0lS9f3qzr0KGDMjMzNXv2bM2aNUve3t6aMWOGOeOcZ9q0aRo/frxGjx6t8+fPKywsTCNHjlTx4v/30dSsWVNxcXGaMGGC+vbtK09PTw0cOFC9e/d2GKtPnz4yDENz587VqVOnVLduXcXFxZmnpAMAAAAAbl8243a+Q8VtYPv27ZKkgICAW77vp4fP0t4U55vAASgYtb0r6e0JfQu6jVum25xY7Tp6pKDbAHCJOpUq65Mnowu6jVtm4g9v6FD6oYJuA8AlqpWtpmGNr3zD7ZvhejJZvq7BBgAAAAAAjvJ1irgkrV27Vu+995527Nih9PT0y94i/VY+uxkAAAAAgIKUrxnsFStWqF+/fjpx4oQiIiKUm5uryMhIRUREqESJEvL399czzzxjda8AAAAAABRa+ZrBjo2NVWBgoD766COlpqbq448/1r///W81a9ZMhw4dUteuXVWtWjWrewUAAAAAoNDK1wz2vn37FBERoWLFipl32z5//rwkqVq1aurevbtmz55tXZcAAAAAABRy+QrYJUqUkKurqyTJ3d1ddrtdf/zxh7n+jjvu0KFD3HERAAAAAPDPka+A7e3trX379pmv69atq6+++krnz59XVlaWvv76a1WuXNmyJgEAAAAAKOzyFbBbt26t1atXKzs7W5LUr18//fDDD7rnnnvUtGlT/fjjj+rb95/zrFYAAAAAAPJ1k7OoqChFRUWZr1u2bKkPPvhAK1euVLFixdS8eXM1bdrUsiYBAAAAACjsrjtgZ2dna926dapatarq1KljLm/UqJEaNWpkaXMAAAAAABQV132KuKurq5599lklJSXdjH4AAAAAACiSrjtg22w21apVS3/++efN6AcAAAAAgCIpXzc5i46O1ocffqjk5GSr+wEAAAAAoEjK103Otm7dqnLlyunBBx9U48aNVbVqVZUoUcKpbuTIkTfcIAAAAAAARUG+AvaCBQvMf960adNla2w2GwEbAAAAAPCPka+AvWvXLqv7AAAAAACgSMvXNdgAAAAAAMBRvmaw8/z888/avHmzTp48qUcffVS1atVSZmamkpOTVatWLZUuXdqqPgEAAAAAKNTyFbCzs7P13HPPafXq1TIMQzabTS1btlStWrXk4uKi3r17q1evXnrqqaes7hcAAAAAgEIpX6eIv/XWW/ruu+80ZswYLV++XIZhmOvc3NzUrl07rV692rImAQAAAAAo7PIVsJcuXapu3bqpa9eu8vDwcFrv6+urgwcP3nBzAAAAAAAUFfkK2CdPnpS/v/8V1xcrVkznzp3Ld1MAAAAAABQ1+QrYlStXVnJy8hXXb9myRTVq1Mh3UwAAAAAAFDX5CtgdOnTQJ598oqSkJHOZzWaTJC1cuFDLli1Tp06dLGkQAAAAAICiIF93Ee/Xr5+2bt2q//znP/Lx8ZHNZtP48eOVmpqqo0ePqnnz5urVq5fFrQIAAAAAUHjlK2Db7XbNmTNHS5Ys0YoVK5Sbm6vs7Gz5+/tr0KBB6tixozmjDQAAAADAP0G+ArZ08ZTwjh07qmPHjlb2AwAAAABAkZSva7AnTZqkHTt2WN0LAAAAAABFVr4C9oIFC/Tvf/9bbdq00bRp0/Trr79a3RcAAAAAAEVKvgL2xo0bNX78eNWqVUtz5sxRp06dFBkZqZkzZ1718V0AAAAAANyu8nUNdpkyZdSpUyd16tRJaWlpWrFihZYvX6533nlHM2bMkJ+fnyIjI9W3b1+r+wUAAAAAoFDK1wz2pdzd3dWlSxfFxcVp3bp1GjZsmA4dOqSpU6da0R8AAAAAAEVCvu8ifqmcnBwlJiYqISFBa9as0dmzZ1W5cmUrhgYAAAAAoEjId8A+f/68NmzYoISEBK1evVoZGRny8vJS586dFRERoZCQECv7BAAAAACgUMtXwB4xYoRWr16t1NRUlS9fXpGRkYqMjNQ999wjm81mdY8AAAAAABR6+QrYq1ev1gMPPKCIiAg1bdpUxYoVc6pJTU2Vh4fHDTcIAAAAAEBRkK+AvWHDBhUv7rxpdna2Vq9erfj4eK1bt07bt2+/4QYBAAAAACgK8hWwLw3XhmFo06ZNio+P16pVq5SRkSFPT0916NDBsiYBAAAAACjs8n2Ts19++UXx8fFaunSpTpw4IZvNpoiICP3nP/9RUFAQ12IDAAAAAP5RritgHzx4UEuWLFF8fLwOHDigihUr6sEHH1RgYKAGDx6stm3bKjg4+Gb1CgAAAABAoXXNAbtr167atm2bypcvr7Zt22rs2LFq1KiRJOm33367aQ0CAAAAAFAUXHPA3rp1q6pVq6bhw4erRYsWl73JGQAAAAAA/1Qu11o4atQoeXl5qX///goNDdXo0aP1/fffyzCMm9kfAAAAAABFwjVPQz/22GN67LHHdPDgQcXHx+vrr7/WwoULdccdd6hJkyay2Wzc2AwAAAAA8I91zTPYeapXr66nn35aCQkJWrRokSIjI/XDDz/IMAy98sorGjVqlNasWaOsrKyb0S8AAAAAAIXSDV1I3aBBAzVo0EDDhg3T999/ryVLlighIUGfffaZSpYsqaSkJKv6BAAAAACgULvuGezLDuLionvvvVcTJkzQxo0bNWXKFDVt2tSKoa/oiy++UKdOnRQQEKAmTZroySef1Llz58z13377rR566CEFBASobdu2+vzzz53GyM7O1sSJExUaGqqgoCA98cQTSk5Odqrbt2+fnnjiCQUFBSk0NFSTJk1Sdna2U91nn32mtm3bKiAgQA899JDWrFlj7ZsGAAAAABRalgTsS7m5uSkiIkLvvPOO1UOb3nnnHb322muKiIhQXFycXn31VVWrVk0XLlyQJP3444/q37+/goKCNHv2bLVv314vvfSSli9f7jDO2LFj9dlnn2nw4MGaPn26srOz1atXL6Wnp5s1qamp6tmzp3JycjR9+nQNHjxYCxcu1IQJExzGWrp0qUaNGqX27dtr9uzZCgoKUv/+/fXzzz/ftM8BAAAAAFB4FLlnbSUnJ2vGjBl6++231bx5c3N527ZtzX9+5513FBgYqFdffVWS1LRpUx08eFAxMTFq166dJOno0aNatGiRXn75ZT388MOSpICAALVs2VKffPKJ+vTpI0n65JNPdObMGc2YMUPlypWTJF24cEGvvPKKoqOjVbFiRUlSTEyMIiMjNWjQIHOfu3fv1syZMzV79uyb+pkAAAAAAAqe5TPYN9vixYtVrVo1h3B9qezsbG3evNkM0nkiIiK0b98+HTp0SJK0fv165ebmOtSVK1dOoaGhSkxMNJclJiaqWbNmZriWpPbt2ys3N1cbNmyQJB08eFD79+9X+/btnfa5adOmy55ODgAAAAC4vRS5gL1161b5+fnp7bffVrNmzdSgQQN169ZNW7dulST99ttvysnJkY+Pj8N2vr6+kmReY52cnKwKFSrIw8PDqe7S67CTk5OdxnJ3d5eXl5fDWJLk7e3tNFZOTo4OHjx4o28bAAAAAFDIFblTxP/44w/98ssv2r17t15++WWVLFlS7777rnr37q2VK1cqNTVV0sUQfKm813nr09LSVLZsWafx3d3dzZq8ur+OJUkeHh5m3bXuM78Mw9DZs2dvaIzrYbPZVLJkyVu2PwDXJzMzU4ZhFHQbNw3HIKDw4zgEoKDdyuOQYRiy2WzXVFvkAnZe2HzrrbdUp04dSdLdd9+tVq1aacGCBQoLCyvgDq2Xk5OjnTt33rL9lSxZUvXq1btl+wNwfVJSUpSZmVnQbdw0HIOAwo/jEICCdquPQ3a7/ZrqilzAdnd3V7ly5cxwLV28drpevXrau3evIiMjJcnhTuDSxZloSeYp4e7u7srIyHAaPy0tzeG0cXd3d6expIuz0nl1eT/T09Pl5eV1xX3ml6urq2rXrn1DY1yPa/12BkDB8Pb2vu1njgAUbhyHABS0W3kc2rt37zXXFrmAXbt2bf3222+XXZeVlaUaNWrI1dVVycnJuu+++8x1eddJ511P7ePjoxMnTjgE5by6S6+59vHxcXo2dnp6uv744w+HsS63bXJyslxdXVW9evUbecuy2WwqVarUDY0B4PbBaYsAChrHIQAF7VYeh67nS7cid5Ozli1b6vTp0w6nTP/555/63//+p/r168tut6tJkyZasWKFw3YJCQny9fVVtWrVJElhYWFycXHRypUrzZrU1FStX79e4eHh5rLw8HBt3LjRnI2WpOXLl8vFxUWhoaGSpOrVq6tWrVpOz9lOSEhQs2bNrvl0AgAAAABA0VXkZrAfeOABBQQEaODAgRo8eLDc3Nw0a9Ys2e12Pfroo5Kkp556So8//rjGjBmj9u3ba/Pmzfr66681depUc5xKlSrp4Ycf1qRJk+Ti4qKKFSsqNjZWZcuWVbdu3cy6bt266YMPPtAzzzyj6OhoHTt2TJMmTVK3bt3MZ2BL0oABAzR06FDVqFFDTZo0UUJCgrZt26YFCxbcug8HAAAAAFBgilzAdnFx0axZszR+/HiNHj1aOTk5atSokT788EPz+udGjRpp+vTpmjZtmhYtWqQqVapo7NixTs+pHjlypEqXLq3JkyfrzJkzCgkJ0bx58xzuLu7h4aH3339fr732mp555hmVLl1aDz/8sAYPHuwwVocOHZSZmanZs2dr1qxZ8vb21owZMxQcHHzzPxQAAAAAQIErcgFbkjw9PfXGG29cteb+++/X/ffff9Uau92uYcOGadiwYVet8/X11Xvvvfe3fXXp0kVdunT52zoAAAAAwO2nyF2DDQAAAABAYUTABgAAAADAAgRsAAAAAAAsQMAGAAAAAMACBGwAAAAAACxAwAYAAAAAwAIEbAAAAAAALEDABgAAAADAAgRsAAAAAAAsQMAGAAAAAMACBGwAAAAAACxAwAYAAAAAwAIEbAAAAAAALEDABgAAAADAAgRsAAAAAAAsQMAGAAAAAMACBGwAAAAAACxAwAYAAAAAwAIEbAAAAAAALEDABgAAAADAAgRsAAAAAAAsQMAGAAAAAMACBGwAAAAAACxAwAYAAAAAwAIEbAAAAAAALEDABgAAAADAAgRsAAAAAAAsQMAGAAAAAMACBGwAAAAAACxAwAYAAAAAwAIEbAAAAAAALEDABgAAAADAAgRsAAAAAAAsQMAGAAAAAMACBGwAAAAAACxAwAYAAAAAwAIEbAAAAAAALEDABgAAAADAAgRsAAAAAAAsQMAGAAAAAMACBGwAAAAAACxAwAYAAAAAwAIEbAAAAAAALEDABgAAAADAAgRsAAAAAAAsUOQD9pkzZxQeHi5/f39t377dYd1nn32mtm3bKiAgQA899JDWrFnjtH16erpGjBihxo0bKzg4WAMHDtTx48ed6rZs2aKuXbsqMDBQLVu21KxZs2QYhkONYRiaNWuWWrRoocDAQHXt2lU///yzpe8XAAAAAFA4FfmA/fbbb+vChQtOy5cuXapRo0apffv2mj17toKCgtS/f3+nwDto0CBt2LBBY8aM0ZtvvqmUlBT16dNH58+fN2sOHDigqKgoeXl5KTY2Vj179lRMTIzmzp3rMNbs2bMVExOjXr16KTY2Vl5eXurdu7cOHjx4U947AAAAAKDwKNIBe9++ffroo480YMAAp3UxMTGKjIzUoEGD1LRpU7366qsKCAjQzJkzzZqkpCStX79er7/+uiIiInT//ffrrbfe0q+//qqVK1eadXFxcSpfvrymTJmiZs2aqVevXurdu7feffddZWdnS5KysrIUGxur3r17q1evXmrWrJmmTJmicuXKKS4u7uZ/GAAAAACAAlWkA/bYsWPVrVs3eXt7Oyw/ePCg9u/fr/bt2zssj4iI0KZNm8xQnJiYKHd3d4WGhpo1Pj4+qlu3rhITE81liYmJuv/++2W32x3GSktLU1JSkqSLp5BnZGQ47NNut6t169YOYwEAAAAAbk9FNmAvX75cu3fv1jPPPOO0Ljk5WZKcgrevr69ycnLMU7aTk5Pl7e0tm83mUOfj42OOcfbsWR05ckQ+Pj5ONTabzazL+/nXOl9fX/3+++86d+5cft8qAAAAAKAIKF7QDeRHZmamJkyYoMGDB6tMmTJO61NTUyVJ7u7uDsvzXuetT0tLU9myZZ229/Dw0C+//CLp4k3QLjeW3W5XyZIlHcay2+1yc3Nz2qdhGEpNTVWJEiWu+71KF2+edvbs2Xxtmx82m00lS5a8ZfsDcH0yMzOdbrJ4O+EYBBR+HIcAFLRbeRwyDMNpUvZKimTAfuedd1ShQgX9+9//LuhWbomcnBzt3Lnzlu2vZMmSqlev3i3bH4Drk5KSoszMzIJu46bhGAQUfhyHABS0W30cuvRy4aspcgH78OHDmjt3rmbOnGnOLufN7p49e1ZnzpyRh4eHpIuzz15eXua2aWlpkmSud3d319GjR532kZqaatbkzXDn7StPdna2MjMzHcbKzs5WVlaWwyx2WlqabDabWZcfrq6uql27dr63v17X+u0MgILh7e19288cASjcOA4BKGi38ji0d+/ea64tcgH70KFDysnJUd++fZ3WPf7447r77rs1efJkSRevi770mujk5GS5urqqevXqki5eL71p0yanKf+UlBT5+flJkkqVKqXKlSub11hfWmMYhjl+3s+UlBTVqVPHYZ9VqlTJ9+nh0sWDfKlSpfK9PYDbC6ctAihoHIcAFLRbeRy6ni/ditxNzurWrav58+c7/HnxxRclSa+88opefvllVa9eXbVq1dLy5csdtk1ISFCzZs3M6f3w8HClpqZq06ZNZk1KSop27Nih8PBwc1l4eLhWr16tnJwch7Hc3d0VHBwsSQoJCVGZMmW0bNkysyYnJ0crV650GAsAAAAAcHsqcjPY7u7uatKkyWXX1a9fX/Xr15ckDRgwQEOHDlWNGjXUpEkTJSQkaNu2bVqwYIFZHxwcrLCwMI0YMULDhg2Tm5ubpk6dKn9/f7Vp08asi4qKUnx8vIYMGaLu3btr9+7diouL0+DBg82w7ubmpujoaE2fPl2enp7y8/PTxx9/rNOnTysqKuomfiIAAAAAgMKgyAXsa9WhQwdlZmZq9uzZmjVrlry9vTVjxgxzxjnPtGnTNH78eI0ePVrnz59XWFiYRo4cqeLF/++jqVmzpuLi4jRhwgT17dtXnp6eGjhwoHr37u0wVp8+fWQYhubOnatTp06pbt26iouLM09JBwAAAADcvm6LgN2kSRP9+uuvTsu7dOmiLl26XHXbsmXLaty4cRo3btxV60JCQrRw4cKr1thsNkVHRys6OvrvmwYAAAAA3FaK3DXYAAAAAAAURgRsAAAAAAAsQMAGAAAAAMACBGwAAAAAACxAwAYAAAAAwAIEbAAAAAAALEDABgAAAADAAgRsAAAAAAAsQMAGAAAAAMACBGwAAAAAACxAwAYAAAAAwAIEbAAAAAAALEDABgAAAADAAgRsAAAAAAAsQMAGAAAAAMACBGwAAAAAACxAwAYAAAAAwAIEbAAAAAAALEDABgAAAADAAgRsAAAAAAAsQMAGAAAAAMACBGwAAAAAACxAwAYAAAAAwAIEbAAAAAAALEDABgAAAADAAgRsAAAAAAAsQMAGAAAAAMACBGwAAAAAACxAwAYAAAAAwAIEbAAAAAAALEDABgAAAADAAgRsAAAAAAAsQMAGAAAAAMACBGwAAAAAACxAwAYAAAAAwAIEbAAAAAAALEDABgAAAADAAgRsAAAAAAAsQMAGAAAAAMACBGwAAAAAACxAwAYAAAAAwAIEbAAAAAAALEDABgAAAADAAgRsAAAAAAAsQMAGAAAAAMACBGwAAAAAACxQ5AL2smXL9NRTTyk8PFxBQUHq2LGjFi1aJMMwHOo+++wztW3bVgEBAXrooYe0Zs0ap7HS09M1YsQINW7cWMHBwRo4cKCOHz/uVLdlyxZ17dpVgYGBatmypWbNmuW0P8MwNGvWLLVo0UKBgYHq2rWrfv75Z0vfOwAAAACg8CpyAfu9995TyZIlNXz4cL3zzjsKDw/XqFGjNHPmTLNm6dKlGjVqlNq3b6/Zs2crKChI/fv3dwq8gwYN0oYNGzRmzBi9+eabSklJUZ8+fXT+/Hmz5sCBA4qKipKXl5diY2PVs2dPxcTEaO7cuQ5jzZ49WzExMerVq5diY2Pl5eWl3r176+DBgzf18wAAAAAAFA7FC7qB6/XOO+/I09PTfN2sWTOdPn1a8+bN09NPPy0XFxfFxMQoMjJSgwYNkiQ1bdpUu3fv1syZMzV79mxJUlJSktavX6+4uDiFhYVJkry9vRUREaGVK1cqIiJCkhQXF6fy5ctrypQpstvtatasmU6dOqV3331XPXr0kN1uV1ZWlmJjY9W7d2/16tVLktSwYUO1a9dOcXFxGjNmzC37fAAAAAAABaPIzWBfGq7z1K1bVxkZGTp79qwOHjyo/fv3q3379g41ERER2rRpk7KzsyVJiYmJcnd3V2hoqFnj4+OjunXrKjEx0VyWmJio+++/X3a73WGstLQ0JSUlSbp4CnlGRobDPu12u1q3bu0wFgAAAADg9lXkAvbl/PTTT6pYsaLKlCmj5ORkSRdnoy/l6+urnJwc85Tt5ORkeXt7y2azOdT5+PiYY5w9e1ZHjhyRj4+PU43NZjPr8n7+tc7X11e///67zp07Z9E7BQAAAAAUVkXuFPG/+vHHH5WQkKBhw4ZJklJTUyVJ7u7uDnV5r/PWp6WlqWzZsk7jeXh46JdffpF08SZolxvLbrerZMmSDmPZ7Xa5ubk57dMwDKWmpqpEiRL5fo+GYejs2bP53v562Ww2lSxZ8pbtD8D1yczMdLrR4u2EYxBQ+HEcAlDQbuVxyDAMp4nZKynSAfvo0aMaPHiwmjRposcff7yg27lpcnJytHPnzlu2v5IlS6pevXq3bH8Ark9KSooyMzMLuo2bhmMQUPhxHAJQ0G71cejSS4avpsgG7LS0NPXp00flypXT9OnT5eJy8Wx3Dw8PSRdnn728vBzqL13v7u6uo0ePOo2bmppq1uTNcOfNZOfJzs5WZmamw1jZ2dnKyspymMVOS0uTzWYz6/LL1dVVtWvXvqExrse1fjsDoGB4e3vf9jNHAAo3jkMACtqtPA7t3bv3mmuLZMA+d+6coqOjlZ6erk8//dThVO+866CTk5MdrolOTk6Wq6urqlevbtZt2rTJabo/JSVFfn5+kqRSpUqpcuXK5jXWl9YYhmGOn/czJSVFderUcdhnlSpVbuj0cOniQb5UqVI3NAaA2wenLQIoaByHABS0W3kcup4v3YrcTc7Onz+vQYMGKTk5WXPmzFHFihUd1levXl21atXS8uXLHZYnJCSoWbNm5tR+eHi4UlNTtWnTJrMmJSVFO3bsUHh4uLksPDxcq1evVk5OjsNY7u7uCg4OliSFhISoTJkyWrZsmVmTk5OjlStXOowFAAAAALh9FbkZ7FdeeUVr1qzR8OHDlZGRoZ9//tlcV69ePdntdg0YMEBDhw5VjRo11KRJEyUkJGjbtm1asGCBWRscHKywsDCNGDFCw4YNk5ubm6ZOnSp/f3+1adPGrIuKilJ8fLyGDBmi7t27a/fu3YqLi9PgwYPNsO7m5qbo6GhNnz5dnp6e8vPz08cff6zTp08rKirqln02AAAAAICCU+QC9oYNGyRJEyZMcFq3evVqVatWTR06dFBmZqZmz56tWbNmydvbWzNmzDBnnPNMmzZN48eP1+jRo3X+/HmFhYVp5MiRKl78/z6WmjVrKi4uThMmTFDfvn3l6empgQMHqnfv3g5j9enTR4ZhaO7cuTp16pTq1q2ruLg485R0AAAAAMDtrcgF7G+//faa6rp06aIuXbpctaZs2bIaN26cxo0bd9W6kJAQLVy48Ko1NptN0dHRio6Ovqb+AAAAAAC3lyJ3DTYAAAAAAIURARsAAAAAAAsQsAEAAAAAsAABGwAAAAAACxCwAQAAAACwAAEbAAAAAAALELABAAAAALAAARsAAAAAAAsQsAEAAAAAsAABGwAAAAAACxCwAQAAAACwAAEbAAAAAAALELABAAAAALAAARsAAAAAAAsQsAEAAAAAsAABGwAAAAAACxCwAQAAAACwAAEbAAAAAAALELABAAAAALAAARsAAAAAAAsQsAEAAAAAsAABGwAAAAAACxCwAQAAAACwAAEbAAAAAAALELABAAAAALAAARsAAAAAAAsQsAEAAAAAsAABGwAAAAAACxCwAQAAAACwAAEbAAAAAAALELABAAAAALAAARsAAAAAAAsQsAEAAAAAsAABGwAAAAAACxCwAQAAAACwAAEbAAAAAAALELABAAAAALAAARsAAAAAAAsQsAEAAAAAsAABGwAAAAAACxCwAQAAAACwAAEbAAAAAAALELABAAAAALAAARsAAAAAAAsQsAEAAAAAsAABGwAAAAAACxCwLbZv3z498cQTCgoKUmhoqCZNmqTs7OyCbgsAAAAAcJMVL+gGbiepqanq2bOnatWqpenTp+vYsWOaMGGCzp07p9GjRxd0ewAAAACAm4iAbaFPPvlEZ86c0YwZM1SuXDlJ0oULF/TKK68oOjpaFStWLNgGAQAAAAA3DaeIWygxMVHNmjUzw7UktW/fXrm5udqwYUPBNQYAAAAAuOkI2BZKTk6Wj4+PwzJ3d3d5eXkpOTm5gLoCAAAAANwKnCJuobS0NLm7uzst9/DwUGpqar7GzMnJkWEY2rZt2422d11sNpu6Pxio8+cb3NL9Ariy4sVdtH37dhmGUdCt3HQ2m01PB9ytnHoBBd0KgEu4FvtnHYfCi4XpvMeFgm4FwCWK24rd8uNQTk6ObDbbNdUSsAu5vH+R1/ov1Erl3Evf8n0C+HsFcTwoCOVLcQwCCqt/ynGojL1MQbcA4Apu5XHIZrMRsAuCu7u70tPTnZanpqbKw8MjX2MGBwffaFsAAAAAgFuAa7At5OPj43StdXp6uv744w+na7MBAAAAALcXAraFwsPDtXHjRqWlpZnLli9fLhcXF4WGhhZgZwAAAACAm81m/BPuUnGLpKamKjIyUt7e3oqOjtaxY8c0YcIEPfjggxo9enRBtwcAAAAAuIkI2Bbbt2+fXnvtNSUlJal06dLq2LGjBg8eLLvdXtCtAQAAAABuIgI2AAAAAAAW4BpsAAAAAAAsQMAGAAAAAMACBGwAAAAAACxAwAYAAAAAwAIEbAAAAAAALEDABgAAAADAAgRs4CaZPn26goODC7oNAHAyffp0+fv7m3+aNGmi7t27a+3atQXdmpP33nuvUPYFwFpX+3vT9f6d6tChQ/L399fy5cvz3Y+/v7/i4uKuWrNz5075+/tr8+bN+d4Pbj8EbAAA/oFKlCihTz/9VJ9++qlee+01ZWVlqV+/ftqyZUtBt+Zg/vz5BGwAt9ynn36qBx98sKDbQBFUvKAbAFCwLly4oNzcXLm6uhZ0KwBuIRcXFwUFBZmv7777bjVv3lxffvmlQkJCCq4xAChA586dU4kSJRyOj8D1YAYbuAXyTlX66quv9Oqrr+qee+5RWFiYJk6cqPPnz//t9v7+/po1a5YmTZqkpk2bKjg4WMOHD1dGRoZDXVpamsaMGaOwsDA1aNBAnTt31vr16x1qevTooejoaH3xxRdq27atAgICtGvXLqWlpWnkyJG67777FBAQoObNm2vw4MEO2/7666+KiopSUFCQGjZsqIEDB+r333936nX27NmaPn267r33XjVp0kQvvviizp49m89PD8CtULFiRXl6ejr8TiclJenxxx83f+eHDBmikydPmuvzjm1ffvmlRo8erUaNGqlZs2aaN2+eJGnp0qVq27atQkJC1L9/f6WlpTns8/Dhwxo4cKAaNmyooKAgRUVF6ddffzXXt2rVSocPH9aHH35ons6+ePFic/3ixYv14IMPKiAgQPfdd5+mTp2qCxcu3KyPCEAh0LlzZw0ZMsRp+RtvvKGwsDCHY0BmZqZGjBihhg0bqnHjxho/frzD37sWL14sf39/JSUl6YknnlBQUJAmTZok6fKniL/99tsKDQ1VcHCw+vfv73A8BPIwgw3cQtOmTdP999+vadOmKSkpSdOnT1eNGjXUvXv3v932gw8+UP369TVx4kQdOnRIb775prKysjR16lRJUnZ2tp544gmdPHlSgwYNUsWKFbVkyRJFR0eb/wPJ88svv+jw4cN69tln5e7ursqVK2v8+PFat26dhgwZoqpVq+qPP/5QYmKiuc2RI0f0n//8R9WrV9cbb7xh7vs///mPlixZojJlypi1H374oRo2bKgJEyZo//79mjRpkipUqKChQ4da+GkCsNKZM2eUmpqqatWqSboYrnv06KHmzZtr6tSpyszM1LRp0/T000/r008/ddh22rRpatOmjd566y198803mjBhgk6dOqUffvhBzz//vDIyMjR27Fi98cYbeu211yRJGRkZ6tGjh1xcXPTKK6/Izc1N77zzjnlMqVy5smbMmKG+ffsqJCREvXv3liTVqFFDkjRv3jy98cYb6tmzp4YPH659+/aZAZtjDVB0XW7iITc31/znLl26aMKECUpPT1fZsmUlXTwb76uvvtK//vUvFStWzKydMmWKwsLCNG3aNO3YsUMxMTFydXV1OkYMGTJEXbt2VXR0tEqWLHnZvhYsWKC33npLvXv31r333quNGzfqpZdesuIt4zZDwAZuocDAQI0cOVKSFBoaqs2bN2vFihXXFLDtdrtmzpxp/o/Dzc1NI0eOVP/+/eXr66v4+Hjt2rVLX331lWrXri1Juu+++3TgwAG9/fbbeuutt8yxUlNTtWjRIlWuXNlctn37dnXo0EH/+te/zGWRkZHmP7/33ns6f/685s6dq3LlykmS6tatq8jISH3xxRfq0aOHWevl5aXJkydLksLDw7Vjxw6tWLGCv/QChUzeX2SPHz+uN954Q6VLl9bjjz8uSZo8ebIaNGigGTNmyGazSZL8/PzUoUMHrV27Vs2bNzfHCQoK0ogRIyRJTZs21cqVK7VgwQJ9++23Kl++vKSLZ8AsWrTIDNiLFy/W77//rqVLl8rX11eSdM8996hly5Z6//33NXz4cNWrV092u1133HGHw+maGRkZiomJ0ZNPPqnnnntO0sVjqqurqyZMmKCoqChzvwCKjrNnz6p+/fqXXVeqVClJ0oMPPqiJEycqPj5ejz76qCRp7dq1+uOPP/Tvf//bYZsaNWpo/Pjxki7+nejcuXOaN2+e+vTpIw8PD7OuW7du6tu37xX7unDhgmJjY9WxY0cNGzbMHO/kyZP66quv8v+GcVviFHHgFgoLC3N47evrq6NHj5qvz58/b/7562mOLVu2dPhWtl27djIMQ9u3b5ckbdiwQX5+fqpVq5bDOPfee69Zk8fPz88hXEtSvXr19MUXXyguLk67d+926v3HH39UkyZNzHCd13+dOnX0008/OdTee++9V32fAApe3l9k69evr5YtW2rFihWaNGmSfHx8lJmZqS1btqhdu3a6cOGCeTypVauWKleu7HRMCQ0NNf+5WLFiql69uurUqeMQcmvVqqW0tDSdOXNG0sVjyl133WWGa0kqV66c7r33Xqdjyl8lJSXp7NmzateundPx7ty5c9qzZ48VHxGAW6xEiRJatGiR059HHnnErClTpozat2+vzz//3Fy2ePFiNWrUSLVq1XIYr3Xr1g6v27Ztq8zMTKe/57Ro0eKqfR09elTHjx+/7HjAXzGDDdxCeacy5XF1dVV2draki9cy3n///ea6qlWr6ttvvzVfV6hQwWHbMmXKyM3NTcePH5ck/fnnn9qxY8dlv/m9NJhL0h133OFUM2rUKHl4eGjevHmaNGmSKleurL59+5rfDqelpalu3bpO21WoUEGpqakOy9zd3a/4PgEUDiVKlNCCBQtkGIb279+vyZMna9iwYYqPj5dhGLpw4YLGjx9vzv5c6siRIw6vL3dsy5ttunSZJGVlZal06dJKS0u77LGoQoUKfxuQ//zzT0lyOOPmav0BKBpcXFwUEBDgtPy7775zeP3II4+oW7du2rVrl+6880599913evXVV5228/T0dHidd8z5448/Lrv8SvLqrzQecCkCNlBI3HnnnVq0aJH52m63O6z/6400MjIylJWVpTvvvFOS5OHhIX9/f73++ut/u6+80z0vVbZsWb300kt66aWX9Ouvv2r+/Pl65ZVX5Ofnp0aNGsnDw+OyN/M4efKk0zfGAAq/S/8iGxgYKG9vbz3yyCOaOXOmhg0bJpvNpujoaD3wwANO21px+rWHh4dSUlKclp88edLh1M0rbStJM2bMUKVKlZzW511HDuD2FBwcrLvuukuff/65qlSpIrvdrnbt2jnVnTp1yuH1iRMnJF28lO165NVfaTzgUgRsoJCw2+2X/dY2z5o1a/Tiiy+as9HLly+XzWYzt7n33nu1du1a3XnnnapYseIN9eLv768XX3xRixYt0r59+9SoUSM1bNhQCxcuVGpqqvmX2+TkZP36669O1zwBKHoCAgIUGRmpxYsXq3///goKClJycvJVj0s3omHDhlqxYoWSk5Pl4+Mj6eL9ITZu3KiuXbuada6ursrKynLYNjg4WCVLltTRo0edTtkE8M/QpUsXvfPOO6pQoYIiIiKczpqRpFWrVqlXr17m6xUrVqhkyZLy8/O7rn1VqlRJXl5eWrVqlcMxZ8WKFfnuH7cvAjZQRGRnZ+uZZ55R9+7dzbuIt23b1rx+sVOnTvrkk0/0+OOPq3fv3qpVq5bS09O1Y8cO5eTkXPaRFpfq1q2bWrdurbvuukvFihXTl19+KVdXVzVq1EiS1KtXLy1evFi9e/fWU089paysLE2bNk2VK1e+4mmaAIqWp59+WgkJCXr//ff1wgsvqGfPnho0aJAiIyPl7u6uo0ePauPGjercubOaNGlyQ/vq3Lmz3nvvPUVHR2vQoEHmXcSLFy+unj17mnU+Pj76/vvvtWHDBrm7u6tatWoqX768Bg4cqDfeeENHjx5V48aNVaxYMR08eFCrV6/W9OnTr3gnYAC3h44dO+rNN9/Un3/+ecWz93777Te9+OKLioiI0I4dOzRr1iz17Nnzb8+S+atixYqpb9++ev3111WhQgWFhoZqw4YN2rx5sxVvBbcZAjZQRPTo0UOnTp3SCy+8oOzsbLVu3VqjR48219vtds2fP1/Tp0/Xu+++qz/++EPlypVTvXr1zOuoryYkJERffvmlDh06JBcXF/n5+endd981A3zlypX1wQcfaNKkSRo6dKhcXFwUGhqq4cOHOzyiC0DR5ePjo4iICH388ceKjo7WRx99pOnTp+vFF19UTk6OKlWqpKZNm6pmzZo3vK8yZcrogw8+0IQJEzRq1Cjl5uYqJCRECxYscLgJ43PPPacxY8ZowIABOnPmjMaPH6/OnTurd+/eqlixoubNm6cFCxaoePHiqlGjhlq0aGFe7w3g9lWuXDk1btxYR48edXjKwKUGDx6sH374Qc8++6yKFSumRx99VIMHD87X/nr06KG0tDR99NFH+vjjj9WsWTONHTtWTz755A28C9yObIZhGAXdBICr8/f31wsvvKCoqKiCbgUAAKDAZWRk6L777tOAAQPUu3fvgm4HMDGDDQAAAKBIyMjI0L59+/TRRx/JZrOpc+fOBd0S4ICADQAAAKBI+N///qfHH39clStX1sSJE1WuXLmCbglwwCniAAAAAABYwKWgGwAAAAAA4HZAwAYAAAAAwAIEbAAAAAAALEDABgAAAADAAgRsAAAAAAAsQMAGAABO/P399eqrrxZ0G/l26NAh+fv7a/HixQXdCgDgH4SADQBAIZKQkCB/f3+tWrXKad1DDz0kf39/ff/9907rWrRooW7dut2KFv9Wdna23n//fXXq1EkhISFq1KiRIiMjNWrUKO3bt++6xzt27JimT5+unTt3Oq2Lj4/Xe++9Z0HXAADcOAI2AACFSMOGDSVJP/30k8PyjIwM7dmzR8WLF9eWLVsc1h05ckRHjhxRSEjILevzagYOHKiJEyfqrrvu0pAhQzRgwAA1atRIiYmJ2rp163WPd/z4cc2YMeOyAfvrr7/W/PnznZZXrVpV27ZtU8eOHfP1HgAAyI/iBd0AAAD4PxUrVlS1atWcAnZSUpIMw1C7du2c1uW9zgvn+WUYhrKyslSiRIl8j7Ft2zatWbNGgwcPVr9+/RzWXbhwQWlpaTfU47Wy2Wxyc3O7JfsCACAPM9gAABQyDRs21M6dO3Xu3Dlz2ZYtW3TXXXfpvvvu09atW5Wbm+uwzmazmTPY58+f18yZM/XAAw+oQYMGatWqlaZMmaLs7GyH/bRq1UrR0dFat26dOnfurMDAQH3yySdX7Ovtt99WnTp19MEHH1yx5uDBg5J02dn0YsWKqXz58g7Ljh07phdffFH33nuvGjRooMjISC1atMhcv3nzZj388MOSpBdffFH+/v7mtdU9evTQd999p8OHD5vLW7VqJeny12APHz5cwcHBOnbsmJ5++mkFBweradOmmjhxoi5cuODQ159//qnnn3/ePMV92LBh2rVrF9d1AwCuihlsAAAKmYYNG+qrr77S1q1b1aRJE0kXQ3RwcLBCQkKUnp6u3bt3q06dOuY6Hx8fM7yOHDlSX3zxhdq2basnnnhC27ZtU2xsrPbt26eZM2c67CslJUVDhgxR165d9cgjj8jb2/uyPU2dOlWxsbF69dVX9cgjj1yx9ypVqki6eG10SEiIihe/8l81Tvy/9u42pKk2DgP4pWsTXajMl0CdggYKU3GaZaGFIYUkwQqtadArxZBEVIwMSlRQKzCkgiI1F0papGD0YmZUhJpvoQhDCFJS0sRwDsts2/MhPHTMbPXsodFz/WAfzsvOfZ/z7Tr3/T/31BTS0tLg5OSEjIwMKBQKPHv2DKdOnYLJZMKBAwcQEhKCrKwsVFZWYs+ePcIofXR0NNasWYPZ2Vm8e/cOJ0+eBADI5fIVn63ZbMbhw4cRGRmJ/Px8dHR0oLq6GkqlEunp6QAAi8UCnU6HgYEBaLVaBAcH4/Hjxzhx4sSK1yYiImLAJiIicjDf1mFv2LABX758wcDAADQaDQIDA+Ht7Y3e3l6EhYXBZDJheHgYu3fvBgAYDAY0NTUhNTUVJSUlACCE1+rqanR2diIuLk5oa2RkBNeuXUNCQsIP+1NeXo7r16+jtLQUGo1mxb5HRUVh/fr1aGxsRHt7O+Li4hAdHY3ExEQhfC+qqKiA2WxGS0uL8HJAq9UiJycHFy9exN69e+Ht7Y3NmzejsrISUVFRoppqpVIJvV4Po9Foc631/Pw8kpOTkZmZKbSn0Whw+/ZtIWC3tbWhv78fBQUF2L9/v3DewYMHbWqDiIj+vzhFnIiIyMGEhITA09NTqK02GAyYm5uDWq0GAKjVauFDZ69evYLZbBZC+dOnTwHguzB46NAh0fFFAQEBPwzXVqsVRUVF0Ov1OHfu3E/DNfC19rmqqgrZ2dlwd3fH3bt3UVRUhMTERGRnZws12FarFa2trdi6dSusViump6eFX3x8PGZnZzE0NGTT8/pVWq1WtB0TE4O3b98K28+fP4dUKhWN1Ds7OyMjI+M/6Q8REf09OIJNRETkYJycnKBWq9HT0wOLxYK+vj54eXkhKCgIwNeAXVdXBwBC0F4M2GNjY3B2dkZgYKDomj4+PnB3d8fY2Jhof0BAwA/70dzcjLm5ORQWFiIlJcXm/stkMuh0Ouh0OkxOTqK7uxt6vR7379/HqlWrcP78eUxPT8NoNKKhoQENDQ3LXmd6etrmNm3l4uIChUIh2ufh4YGZmRlhe3x8HD4+PnB1dRWdt/SZEhERLcWATURE5IBiYmLw5MkTDA8PC/XXi9RqNc6ePYuJiQn09vbC19cXSqVS9H8nJyeb2lnpi+HR0dEwGAyoq6tDcnIyPD09f/k+fH19sWPHDmzbtg0pKSl48OABysrKhI+07dy584cj46Ghob/c3s9IJBK7X5OIiGgRp4gTERE5oG/rsPv6+kRf5Q4PD4dMJkNXVxcGBgZEx/z9/WGxWDAyMiK63tTUFIxGI/z9/W3uQ1BQEKqqqjA5OYkjR47AZDL99v1IpVKEhoZiYWEBHz58gEKhgFwuh8ViwaZNm5b9eXl5AVj5ZYGtLxJ+hZ+fH96/f4+PHz+K9o+Ojtq9LSIi+rswYBMRETmg8PBwuLi4oKWlBRMTE6IRbJlMBpVKhfr6eszNzYnWv96yZQsAoLa2VnS9mpoa0XFbhYWF4erVq3j9+jV0Op1o6bDlvHnzBuPj49/tNxqN6O/vh4eHBxQKBSQSCbZv346HDx9ieHj4u/O/nR6+OFV7uTW0XV1dMTs7+0v39DPx8fFYWFhAY2OjsM9isQjT8omIiH6EU8SJiIgckEwmQ0REBHp6eiCTyRAeHi46rlarUV1dDQCigB0WFgaNRoOGhgYYjUbExsZicHAQTU1NSEpKEn1B3FZRUVG4fPkyjh49iqysLFy6dAlSqXTZcw0GA/Ly8pCQkIB169bBw8MDExMTaG5uxuTkJAoKCoRp2rm5uejq6kJaWhpSU1Oxdu1azMzMYGhoCB0dHXj58iWAr7XP7u7uuHnzJuRyOdzc3BAZGQmlUgmVSoV79+6htLQUERERcHNzE9bC/l1JSUmIjIxEeXk5RkdHERwcjPb2dqFO+78YNScior8DR7CJiIgc1GJwVqlUkMlkomOL08LlcrmwHvaikpISHD9+HIODgygtLUVnZyeOHTuGioqK3+7Lxo0bceHCBbx48QL5+flCDfVSsbGxyMrKgslkQk1NDc6cOYPa2lr4+fmhsrJSWPYKALy9vXHr1i3s2rULjx49QnFxMfR6PWZmZpCXlyecJ5VKUVZWBolEgsLCQuTk5KC7uxsAkJ6ejpSUFNy5cwe5ubnC0mT/hkQiwZUrV5CcnIympiZUVFTA19cXp0+fBvD1Q2lERETLcbJardY/3QkiIiIiR9fW1obMzEzU19eLZg0QEREt4gg2ERER0RJLa83NZjNu3LiB1atXQ6VS/aFeERGRo2MNNhEREdESxcXF+PTpE9RqNT5//ozW1lb09/cjJydnxaXNiIjo/41TxImIiIiWaGlpQU1NDUZGRjA/P4+goCBotVrs27fvT3eNiIgcGAM2ERERERERkR2wBpuIiIiIiIjIDhiwiYiIiIiIiOyAAZuIiIiIiIjIDhiwiYiIiIiIiOyAAZuIiIiIiIjIDhiwiYiIiIiIiOyAAZuIiIiIiIjIDhiwiYiIiIiIiOyAAZuIiIiIiIjIDv4BjvgjAvRvD8kAAAAASUVORK5CYII=\n"},"metadata":{}},{"output_type":"stream","name":"stderr","text":[":4: FutureWarning: \n","\n","The `ci` parameter is deprecated. Use `errorbar=None` for the same effect.\n","\n"," sns.barplot(\n",":4: FutureWarning: \n","\n","Passing `palette` without assigning `hue` is deprecated and will be removed in v0.14.0. Assign the `x` variable to `hue` and set `legend=False` for the same effect.\n","\n"," sns.barplot(\n"]},{"output_type":"display_data","data":{"text/plain":["
"],"image/png":"iVBORw0KGgoAAAANSUhEUgAAA9gAAAJICAYAAACaO0yGAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAAB2u0lEQVR4nO3df3zP9f7/8ft77D3zY2NZIr+2OZufy4TR1vJbRqZOQhLH/OgHopxDQiohJZ2hmpnKjxR1kmWGJEOr049JHQptNAox9sPGxl7fP3z3+nj3RsyL98bterm47Lxfr8fr+Xq8X/Q6l/uerx82wzAMAQAAAACAK+Lm6gYAAAAAALgeELABAAAAALAAARsAAAAAAAsQsAEAAAAAsAABGwAAAAAACxCwAQAAAACwAAEbAAAAAAALELABAAAAALAAARsAAAAAAAsQsAEAKKO++uorBQUF6auvvnJ1K6bx48crJCTE1W3gKimN/+YAoDQp7+oGAADXl6VLl+r5559XcHCwVqxY4ep2SpWCggItW7ZMH330kX799Ve5ubmpRo0aatGihQYNGqSAgABXt1imnDlzRitXrtTKlSv1888/Ky8vTzfffLNCQ0P14IMPqlmzZq5uscwoKirSqlWrtHTpUu3bt0+FhYW6+eabddttt+nBBx9U8+bNXd0iAJQJBGwAgKUSEhJ06623avv27dq3b5/q1avn6pZKjVGjRik5OVndu3dX7969dfr0aaWlpenzzz9XSEgIAfsynDx5UiNGjNDmzZvVqlUrDR8+XN7e3jpw4IDWrFmjjz76SJ9//rluueUWV7daJkydOlVLly5Vx44ddc8996hcuXJKT0/X5s2bVadOHTNgt2rVStu3b5e7u7trGwaAUoqADQCwTEZGhlJTUzV37lxNnjxZCQkJGjFixDXtoaioSIWFhfLw8Lim+/0r27dv18aNGzVmzBg98sgjDuvOnDmj7OxsF3X2f/Ly8lSxYkVXt3FJZs6cqc2bN+vpp5/WoEGDHNaNGDFCb7/9tkv6KouOHDmid999Vw888IBeeOEFh3WGYSgzM9P87ObmVur+2wKA0oR7sAEAlklISJC3t7fuuusude3aVQkJCea6wsJCtW7dWk8//bTTdrm5uWrWrJleeuklc1lBQYFiYmLUuXNnNW3aVHfddZdmzpypgoICh22DgoL0/PPPa9WqVerevbuaNWumzZs3S5Li4+PVt29fhYaGKjg4WPfdd5+SkpKc9n/y5ElNnTpVoaGhCgkJ0SOPPKJDhw4pKChIc+bMcag9dOiQnn76ad1xxx1q2rSpunfvrg8++OAvj01GRoYkqUWLFk7rypUrp2rVqpmfDxw4oClTpqhr164KDg5WaGioRo0apf379//lfr755huNGjVK7dq1M4/btGnTdPLkSYe64nulf/31Vw0dOlQhISEaO3asYmJi1KRJE4dQVWzSpElq2bKlTp06dUnfNzo6Ws2bN1d4eLjmzp0rwzAknQ1tHTp00KOPPuq03alTp3T77bdr8uTJFxz74MGDev/99xUWFuYUrqWzxzM6Otph9nrHjh0aMmSIWrRooZCQEA0cOFDbtm1z2O4///mPgoKC9M0332jq1Klq06aNWrZsqcmTJ6ugoEDZ2dn617/+pVatWqlVq1aaOXOm+Z0kaf/+/QoKClJ8fLzefvtttW/fXsHBwXrooYe0a9cuh3399NNPGj9+vDp27KhmzZopLCxMTz/9tI4dO+ZQN2fOHAUFBWnfvn0aP368WrZsqdtvv11PP/208vPzzbqHHnpIPXv2PO/x6tq1q6Kjoy94PPfv3y/DMM77b9Nms+mmm24yP//5HuziY3a+PwMGDHAY6+OPP9Z9992n4OBgtW7dWmPGjNHvv/9+wb4AoCxiBhsAYJmEhAR17txZdrtdPXr00LJly7R9+3YFBwfL3d1dnTp10vr16/Xcc8/Jbreb23366acqKChQZGSkpLOz0I8++qi+/fZbPfDAAwoICNCuXbv0zjvvaO/evXr99dcd9vvll19qzZo16t+/v6pVq6Zbb71VkrRo0SJ16NBB99xzjwoLC7V69Wo98cQTio2NVbt27cztx48frzVr1igqKkq33Xabvv76aw0bNszp+x05ckQPPPCAbDab+vfvLx8fHyUnJ+uZZ55Rbm7uecNesVq1apnHqEWLFipf/sL/F/zDDz8oNTVV3bt31y233KIDBw5o2bJlevjhh7V69Wp5enpecNukpCSdPHlS/fr1U9WqVbV9+3YtWbJEBw8eVExMjEPt6dOnFR0drdtvv13jxo1ThQoVFBISonnz5ikxMVEPPfSQWVtQUKC1a9eqS5cufzmDeebMGQ0ZMkS33Xab/vnPf2rz5s2aM2eOzpw5oyeeeEI2m0333HOP4uPjdfz4cVWtWtXc9rPPPlNubu4Fw6IkJScn6/Tp0xetOdfu3bvVv39/VapUSUOGDFH58uX1/vvva8CAAVqyZIluu+02h/qpU6eqevXqGjlypL7//nu9//77qlKlilJTU1WzZk2NGTNGycnJio+PV2BgoHr16uWw/cqVK3XixAk9+OCDOnXqlBYvXqyBAwcqISFB1atXlyR98cUXysjI0H333SdfX1/t3r1by5cv1549e7R8+XLZbDaHMUePHq3atWvrySef1I4dO7RixQr5+Pjon//8pyQpKipKEydO1K5duxQYGGhut337du3du/e8v8woVvxvMykpSXffffdF/339WfEvGs7122+/6bXXXpOPj4+57I033tC///1vdevWTffff78yMzO1ZMkS9e/fXytXrpSXl9cl7xMASjUDAAAL/PDDD0ZgYKCxdetWwzAMo6ioyIiIiDCmTp1q1mzevNkIDAw0PvvsM4dthw4danTs2NH8vHLlSqNhw4bG119/7VC3bNkyIzAw0Pj222/NZYGBgUbDhg2N3bt3O/WUn5/v8LmgoMDo0aOH8fDDD5vLfvzxRyMwMNB48cUXHWrHjx9vBAYGGjExMeayCRMmGGFhYUZmZqZD7ZgxY4zbb7/daX/nKioqMh566CEjMDDQuOOOO4wnn3zSWLJkiXHgwIG/7NswDCM1NdUIDAw0PvroI3PZl19+aQQGBhpffvnlRbeNjY01goKCHPY1btw4IzAw0HjllVec6vv06WP07t3bYdm6deuc9nU+xeO+8MILDt992LBhRpMmTYyjR48ahmEYaWlpRmBgoPHuu+86bP/II48Y7du3N4qKii64j2nTphmBgYHGjh07LtpLsccee8xo0qSJ8euvv5rLDh06ZISEhBj9+/c3l3344YdGYGCgMXjwYIf99+nTxwgKCjImT55sLjt9+rQRERFhPPTQQ+ayjIwMIzAw0AgODjYOHjxoLv/++++NwMBAY9q0aeay8/09ffLJJ0ZgYKDDv/uYmBgjMDDQePrppx1qH3/8caN169bm5+zsbKNZs2bGyy+/7FD3wgsvGM2bNzdOnDhx0WP0r3/9ywgMDDRatWplPP7440Z8fLyxZ88ep7rz/Zs718mTJ417773XCA8PNw4fPmwYhmHs37/faNSokfHGG2841P78889G48aNnZYDQFnGJeIAAEsUz86FhoZKOntpaWRkpBITE3XmzBlJUps2bVStWjUlJiaa22VlZemLL74wZ6+lszNpAQEB8vf3V2ZmpvmnTZs2kuT0iqBWrVqpQYMGTj1VqFDBYT85OTm6/fbbtWPHDnN58eXkDz74oMO2587eSmcva163bp06dOhg3pda/Cc8PFw5OTn63//+d8HjY7PZFB8fr9GjR8vLy0uffPKJnn/+ebVv316jR492uAf73L4LCwt17Ngx1a1bV15eXg69n8+52+bl5SkzM1MhISEyDOO82/br189pWVRUlL7//nv9+uuv5rKEhATVrFlTrVu3vuj+i/Xv39/hu/fv31+FhYVKSUmRJPn5+em2225zuI3g+PHj2rx5s+655x6nGdxz5ebmSpIqVar0l32cOXNGW7duVadOnVSnTh1z+c0336wePXro22+/Nccrdv/99zvsPzg4WIZh6P777zeXlStXTk2bNjUv/T9Xp06dVKNGDYftb7vtNm3atMlcdu7f06lTp5SZmWnOpJ/v31Hfvn0dPrds2VLHjx83e69SpYo6duyo1atXm5etnzlzRmvWrFHHjh3/8t766dOna/Lkyapdu7bWr1+vl156SZGRkRo4cKAOHTp00W3PNWXKFO3atUtz5syRr6+vJGn9+vUqKipSt27dHP67qV69uurVq8crvwBcV7hEHABwxc6cOaPVq1crNDTU4T7h4OBgLVy4UCkpKQoPD1f58uXVpUsXffLJJyooKJDdbte6detUWFjoELD37dunX375RW3btj3v/o4ePerwuXbt2uet27hxo9544w3t3LnT4d7tc8PTb7/9Jjc3N6cx/vz088zMTGVnZ+v999/X+++/f979ne++5XPZ7XY9+uijevTRR3X48GF9/fXXWrRokdasWaPy5cvrlVdekXT2nvDY2Fj95z//0aFDhxzu883JybnoPn777TfFxMTos88+U1ZWlsO6PwfJ8uXLn/cp25GRkZo2bZpWrVqlESNGKCcnRxs3btSgQYMuGnyLubm5OYRZ6Wygls7eX14sKipKL7zwgg4cOKBbb71VSUlJKiwsVFRU1EXHr1y5siTpxIkTf9lLZmam8vPzzf2fKyAgQEVFRfr999/1t7/9zVxefMl0sSpVqkiSatas6bT8z8dYcv63I0n169fXmjVrzM/Hjx/X3LlzlZiY6PTv+Xx/x3/uqfiS6qysLPN49OrVS4mJifrmm2/UqlUrffHFFzpy5MhfHk/p7N9Z//791b9/fx07dkzfffed3nvvPSUnJ2vMmDF69913/3KM9957T//5z3/0/PPPO7zWa+/evTIMQ126dDnvdhe7XQIAyhrOaACAK/bll1/qjz/+0OrVq7V69Wqn9QkJCQoPD5ckde/eXe+//76Sk5PVqVMnJSUlyd/fXw0bNjTri4qKFBgYeN4HoklyCoXnzgYW++abb/Too4+qVatWevbZZ+Xr6yt3d3d9+OGH+uSTTy77OxYVFUmSevbsqXvvvfe8NUFBQZc83s0336zu3burS5cu6tGjh5KSkjRjxgyVL19eL7zwgv7zn/9o4MCBat68uapUqSKbzaYxY8Y4hO0/O3PmjP7xj38oKytLQ4YMkb+/vypWrKhDhw5p/Pjx5ncoZrfb5ebmfDGbt7e32rdvbz4FPikpSQUFBZd8z/Ol6t69u6ZPn66EhAQ98sgjWrVqlZo2bSp/f/+Lble8/ueff1ajRo0s7UnSeY/JxZaXxOjRo5Wamqro6Gg1atRIFStWVFFRkYYMGXLev+ML7fvc2vDwcFWvXl2rVq1Sq1attGrVKvn6+uqOO+64rN6qVaumjh07qmPHjhowYID++9//mr8EuZDt27frxRdfVO/evdWnTx+HdUVFRbLZbIqLi1O5cuWcti0rT64HgEtBwAYAXLGEhATddNNN533y8/r1680Hm1WoUEGtWrWSr6+vEhMT1aJFC3355ZdOr62qW7eufvrpJ7Vt2/aSZkzPZ+3atfLw8FB8fLzDA9U+/PBDh7patWqpqKhI+/fvV/369c3l+/btc6jz8fFRpUqVVFRUdNmB5WLc3d0VFBSkvXv36tixY/L19dXatWvVq1cvjR8/3qw7derUX85e79q1S3v37tVLL73k8OCtrVu3XnZfUVFReuyxx7R9+3YlJCSocePGDrO8F1NUVKSMjAyHWeP09HRJcghpVatWVbt27ZSQkKB77rlH3333nSZMmPCX40dERKhcuXJKSEhwesDYn/n4+MjT09Pc/7nS0tLk5ubmNDN9pf78b0c6O4tb/N2zsrKUkpKikSNHOrzGbu/evVe033LlyqlHjx766KOPNHbsWH366ad64IEHzhtqL1XTpk313//+V3/88ccFA3ZmZqZGjRqlRo0anfccULduXRmGodq1a5/3SgIAuJ5wDzYA4IqcPHlS69atU7t27XT33Xc7/enfv79OnDihzz77TNLZmbi7775bGzdu1KpVq3T69GmHy8MlqVu3bjp06JCWL19+3v3l5eX9ZV/lypWTzWYz7/+Wzr6OaMOGDQ51xTPrf74EdsmSJU7jde3aVWvXrnV65ZL015eH7927V7/99pvT8uzsbKWmpsrb29t86vL5AtHixYsdvsv5FM9ynjuraRiGFi1adNHtziciIkLVqlXTggUL9PXXX1/27PXSpUsdeli6dKnc3d2dLvuPiorSnj17NHPmTJUrV07du3f/y7Fr1qyp3r17a8uWLVq8eLHT+qKiIi1cuFAHDx5UuXLlFBYWpg0bNjjcvnDkyBF98sknuv32281LrK3y6aefOty3vH37dn3//feKiIiQdP6/X0l65513rnjfUVFRysrK0uTJk5WXl3dJf29//PGH9uzZ47S8oKBAKSkpcnNzU926dc+77ZkzZzRmzBgVFhZqzpw5Dr/MKtalSxeVK1fO4VVtxQzDcHo1GQCUZcxgAwCuyGeffaYTJ06oQ4cO513fvHlz+fj4aNWqVWaQ7tatmxYvXqyYmBgFBgYqICDAYZuoqCitWbNGzz77rL766iu1aNFCZ86cUVpampKSkrRgwQI1a9bson3dddddeuuttzRkyBD16NFDR48e1bvvvqu6devq559/NuuaNm2qrl276p133tHx48fN13QVzyaeO4P+1FNP6auvvtIDDzyg3r17q0GDBsrKytL//vc/paSk6L///e8F+/npp580duxY3XnnnWrZsqW8vb116NAhrVy5UocPH9aECRPM4NWuXTt9/PHHqly5sho0aKBt27bpiy++cHid1fn4+/urbt26eumll3To0CFVrlxZa9eudXiA2qVyd3dX9+7dtWTJkksOvsU8PDy0efNmjRs3TsHBwdq8ebM+//xzPfLIIw6vbpLO/j1VrVpVSUlJioiIcHjn8sWMHz9eGRkZmjp1qtatW6f27dvLy8tLv//+u5KSkpSWlmb2PHr0aH3xxRd68MEH9eCDD6pcuXJ6//33VVBQYL7mykp169ZVv3791K9fPxUUFGjRokWqWrWqhgwZIunsPeStWrXSggULVFhYqBo1amjr1q2X9J7zv9K4cWMFBgaaDwps0qTJX25z8OBB9e7dW23atFHbtm1VvXp1HT16VKtXr9ZPP/2kgQMHOv29FXvvvff05Zdfqm/fvvryyy8d1lWvXl1hYWGqW7euRo8erVmzZunAgQPq1KmTKlWqpP3795uz7Bd7TzcAlCUEbADAFVm1apU8PDwUFhZ23vVubm7mZcDHjh1TtWrV1KJFC9WsWVO///670+x18Tbz5s3T22+/rY8//ljr16+Xp6enateurQEDBlzSZaZt27bViy++qLi4OE2bNk21a9fW2LFjdeDAAYeALUkvvfSSqlevrtWrV2v9+vW64447NHv2bN19990OM3LVq1fXihUrNG/ePK1fv17Lli1T1apV1aBBA40dO/ai/bRq1UqjRo3S5s2b9dZbb+nYsWOqVKmSGjVqpLFjx6pr165m7TPPPCM3NzclJCTo1KlTatGihfnLgotxd3fXm2++qalTpyo2NlYeHh7q3Lmz+vfvf0kPuvqzqKgoLVmyRG3bttXNN998yduVK1dOCxYs0JQpU/Tyyy+rUqVKGjFihB5//HGnWrvdrsjISL377ruX1aOnp6fi4uL0n//8RytXrtTrr7+ukydP6uabb1ZoaKheeeUV80nef/vb37R06VLNmjVLsbGxMgxDwcHBevnll53egW2FXr16yc3NTe+8846OHj2q4OBgTZo0yeEYzpo1Sy+88ILeffddGYahsLAwxcXF6c4777zi/UdFRenll1++5OPp5+enCRMmaNOmTXr33Xd19OhR2e12BQYGaurUqQ5PT/+z4is33nvvPb333nsO61q3bm2eF4YNG6b69evr7bff1rx58ySdfZZCWFjYBX85BwBlkc242NNSAAC4Qe3cuVO9evXSyy+/bPnDvcqKn376SVFRUU73dFtt2rRp+uCDD7R161Z5enpetf1cbfv371fHjh31r3/9y6Uzsu+8846mT5+uzz77zOnp4wCAq4t7sAEAN7yTJ086LXvnnXfk5uamVq1auaCj0mH58uWqWLHiBV+vZIVTp05p1apV6tq1a5kO16WFYRj64IMP1KpVK8I1ALgAl4gDAG54CxYs0I8//qg2bdqoXLlySk5OVnJysvr06WP5E6bLgs8++0x79uzR8uXL1b9//6vyGqWjR4/qiy++0Nq1a3X8+HE9/PDDlu/jRpKXl6fPPvtMX331lXbt2qXXX3/d1S0BwA2JgA0AuOGFhIRo69atev3115WXl6eaNWtq5MiRTq8Pu1FMnTpVR44cUUREhEaOHHlV9rFnzx6NHTtWN910kyZOnHhV3md9I8nMzNRTTz0lLy8vPfLII+rYsaOrWwKAGxL3YAMAAAAAYAHuwQYAAAAAwAIEbAAAAAAALMA92KVcamqqDMOQu7u7q1sBAAAAgBtOYWGhbDabQkJC/rKWgF3KGYYhbpMHAAAAANe4nDxGwC7limeumzVr5uJOAAAAAODG88MPP1xyLfdgAwAAAABgAQI2AAAAAAAWIGADAAAAAGABAjYAAAAAABYgYAMAAAAAYAECNgAAAAAAFiBgAwAAAABgAQI2AAAAAAAWIGADAAAAAGABAjYAAAAAABYgYAMAAAAAYAECNgAAAAAAFiBgAwAAAABgAQI2AAAAAAAWIGADAAAAAGABAjYAAAAAABYgYAMAAAAAYAECNgAAAAAAFiBgAwAAAABgAQI2AAAAAAAWIGADAAAAAGABAjYAAAAAABYgYOO8zhQVuboFAOfBf5sAAAClV3lXN4DSqZybm2bM+Y9+PXDE1a0A+P/q3lpd40fe5+o2AAAAcAEEbFzQrweOaE/6QVe3AQAAAABlApeIAwAAAABggVIVsPft26fJkycrKipKjRs3Vo8ePc5bl52dralTpyo8PFzNmjVTp06dtHDhQoeagoICvfTSSwoLC1Pz5s31j3/8Q2lpaU5j/fLLL/rHP/6h5s2bKywsTDNnzlRBQYFT3YoVK9S1a1c1a9ZMPXv21MaNG51qcnJyNGHCBLVu3VohISEaNWqUDh8+XMKjAQAAAAAoS0rVJeK7d+/Wpk2bdNttt6moqEiGYTjV5OXlacCAASpXrpwmTJigm266SXv37lVubq5D3dSpU5WYmKjx48erRo0aevPNNzVo0CCtXr1aVapUkSRlZWVp4MCBql+/vubMmaNDhw5pxowZOnnypCZPnmyOtXr1ak2aNEmPPPKI2rRpo8TERI0YMUJLly5V8+bNzbrRo0drz549mjJlijw8PPTaa69p6NCh+vDDD1W+fKk61AAAAAAAi5Wq1NehQwd16tRJkjR+/Hj9+OOPTjXz58/XiRMntGrVKlWsWFGSFBoa6lBz8OBBffDBB3r22Wd1//33S5KaNWum9u3b67333tPQoUMlSe+9955OnDihuXPnqmrVqpKkM2fO6LnnntPw4cNVo0YNSVJMTIy6d++u0aNHS5LatGmjXbt2ad68eYqLi5MkpaamasuWLYqPj1d4eLgkyc/PT5GRkVq3bp0iIyMtPFIAAAAAgNKmVF0i7ub21+188MEH+vvf/26G6/PZsmWLioqKdPfdd5vLqlatqrCwMCUnJ5vLkpOT1bZtWzNcS1K3bt1UVFSkrVu3SpIyMjK0d+9edevWzWEfkZGRSklJMS8nT05OlpeXl8LCwswaf39/NWrUyGGfAAAAAIDrU6kK2H9l//79+uOPP1StWjU98sgjatq0qVq3bq2JEyfqxIkTZl1aWppuuukmeXt7O2wfEBDgcB92Wlqa/P39HWq8vLzk6+tr1hX/9PPzcxqrsLBQGRkZZp2fn59sNptDnb+//3nv/QYAAAAAXF9K1SXif+XIkbPvZH7ppZfUpUsXxcXFae/evZo1a5by8vL06quvSjr7ELTi+6zP5eXlpaysLPNzdna2vLy8nOq8vb3NuuKff64r/ly8/kL79Pb2Pu+l7pfDMAzl5eVd0RiXw2azydPT85rtD8Dlyc/PP+8zKgAAAGA9wzCcJlIvpEwF7KKiIklnZ5NfeuklSVLbtm1Vvnx5TZw4UWPGjFGdOnVc2eJVUVhYqJ07d16z/Xl6eqpx48bXbH8ALk96erry8/Nd3QYAAMANw263X1JdmQrYxZd8//mhZm3atJF09inkderUkZeXl9NTxaWzs8znXjbu5eWlnJwcp7qsrCyzrvhnTk6OfH19HcY6d72Xl5cOHjx40bFKyt3dXQ0aNLiiMS7Hpf52BoBr+Pn5MYMNAABwjezZs+eSa8tUwK5Tp85Ff3Nw6tQpSWfvez5y5IhTuP3zPdfnuz86JydHf/zxh1lX/PPP26alpcnd3d2cMff391dKSorT5QPp6ekKDAws6VeWdDbwXuyhbgBuLNzCAQAAcO1czgRkmXrImd1uV1hYmFJSUhyWf/HFF5KkJk2aSJLCw8Pl5uamdevWmTVZWVnasmWLIiIizGURERH64osvzNloSUpKSpKbm5v5NPA6deqofv36SkpKcthnYmKi2rZtawb+iIgIZWVlOfSWnp6uHTt2OOwTAAAAAHB9KlUz2Pn5+dq0aZMk6cCBA8rNzTWDbevWreXj46MRI0aob9++euqpp3Tvvfdq3759mjVrlu655x7VrVtXknTLLbfo/vvv18yZM+Xm5qYaNWooNjZWVapUUd++fc399e3bV4sXL9bjjz+u4cOH69ChQ5o5c6b69u1rvgNbkkaOHKmxY8eqbt26Cg0NVWJiorZv364lS5aYNSEhIQoPD9eECRM0btw4eXh4aPbs2QoKClKXLl2uxeEDAAAAALiQzShFN/Lt379fHTt2PO+6RYsWmfdep6Sk6JVXXtGuXbvk7e2te+65R2PGjHG4fLygoECzZ8/Wxx9/rBMnTqhFixaaOHGiAgICHMb95Zdf9MILLyg1NVWVKlVSVFSU01iStGLFCsXFxem3336Tn5+fnnzySbVv396hJicnR9OnT9f69et1+vRphYeHa+LEiQ5h/XL98MMPkqRmzZqVeIySemz8fO1Jd76vHIBrNPC7Ra/PGObqNgAAAG4ol5PJSlXAhjMCNoBiBGwAAIBr73IyWZm6BxsAAAAAgNKKgA0AAAAAgAUI2AAAAAAAWICADQAAAACABQjYAIBS50xRkatbAHAB/PcJABdWqt6DDQCAJJVzc9OElR8q7cgRV7cC4Bz+1atrWq+/u7oNACi1CNgAgFIp7cgR/XTwd1e3AQAAcMm4RBwAAAAAAAsQsAEAAAAAsAABGwAAAAAACxCwAQAAAACwAAEbAAAAAAALELABAAAAALAAARsAAAAAAAsQsAEAAAAAsAABGwAAAAAACxCwAQAAAACwAAEbAAAAAAALELABAAAAALAAARsAAAAAAAsQsAEAAAAAsAABGwAAAAAACxCwAQAAAACwAAEbAAAAAAALELABAAAAALAAARsAAAAAAAsQsAEAAAAAsAABGwAAAAAACxCwAQAAAACwAAEbAAAAAAALELABAAAAALAAARsAAAAAAAsQsAEAAAAAsAABGwAAAAAACxCwAQAAAACwAAEbAAAAAAALELABAAAAALAAARsAAAAAAAsQsAEAAAAAsAABGwAAAAAACxCwAQAAAACwAAEbAAAAAAALELABAAAAALAAARsAAAAAAAuUqoC9b98+TZ48WVFRUWrcuLF69Ohx0fpPP/1UQUFB563LycnRhAkT1Lp1a4WEhGjUqFE6fPiwU913332nPn36KDg4WO3bt9f8+fNlGIZDjWEYmj9/vtq1a6fg4GD16dNH27Ztcxrr0KFDGjlypEJCQtS6dWs988wzys3NvbyDAAAAAAAok0pVwN69e7c2bdqkevXqKSAg4KK1J0+e1LRp01S9evXzrh89erS2bt2qKVOm6JVXXlF6erqGDh2q06dPmzX79u1TdHS0fH19FRsbq4EDByomJkYLFy50GCsuLk4xMTEaNGiQYmNj5evrq8GDBysjI8OsKSws1JAhQ7R3717NmjVLU6ZM0ZYtW/TUU09dwREBAAAAAJQV5V3dwLk6dOigTp06SZLGjx+vH3/88YK1sbGxqlWrlmrXru1Ul5qaqi1btig+Pl7h4eGSJD8/P0VGRmrdunWKjIyUJMXHx6tatWp69dVXZbfb1bZtW2VmZurNN9/UgAEDZLfbderUKcXGxmrw4MEaNGiQJOn222/X3Xffrfj4eE2ZMkWStHbtWu3evVuJiYny9/eXJHl5eSk6Olrbt29XcHCwlYcKAAAAAFDKlKoZbDe3S2vn119/1VtvvaWJEyeed31ycrK8vLwUFhZmLvP391ejRo2UnJzsUNexY0fZ7XZzWWRkpLKzs5Wamirp7CXkubm56tatm1ljt9vVuXNnp7GCgoLMcC1JYWFhqlq1qjZt2nRJ3wsAAAAAUHaVqoB9qV588UVFRUWpYcOG512flpYmPz8/2Ww2h+X+/v5KS0uTJOXl5en33393CMTFNTabzawr/vnnuoCAAP322286efKkWffnGpvNJj8/P3MMAAAAAMD1q1RdIn4pPvvsM6WmpiopKemCNdnZ2apSpYrTcm9vb/Ny8pycHElnL+M+l91ul6enp7Kyssyx7Ha7PDw8HOq8vLxkGIaysrJUoUKFi+6zeKySMgxDeXl5VzTG5bDZbPL09Lxm+wNwefLz850exng94RwElH7X+3kIAM5lGIbT5O2FlKmAferUKU2bNk0jR46Uj4+Pq9u5ZgoLC7Vz585rtj9PT081btz4mu0PwOVJT09Xfn6+q9u4ajgHAaXf9X4eAoA/O/e24ospUwH7nXfekZubm7p3767s7GxJZ8NnUVGRsrOzVaFCBdntdnl5eengwYNO22dlZcnb21uSzNnm4pnsYgUFBcrPzzfrvLy8VFBQoFOnTjnMYmdnZ8tmsznUne+VXFlZWapZs+YVfW93d3c1aNDgisa4HJf62xkAruHn53ddzxxxDgJKv+v9PAQA59qzZ88l15apgJ2WlqZ9+/apbdu2TutatWqlKVOmqF+/fvL391dKSorTVH56eroCAwMlSRUrVlTNmjWd7o9OT0+XYRjm/dTFP9PT0x3u+U5LS1OtWrVUoUIFs27Xrl0OYxmGofT0dIeHrZWEzWZTxYoVr2gMANcPLp8G4GqchwDcSC7nl/9l6iFnQ4cO1aJFixz+hIeH69Zbb9WiRYvUoUMHSVJERISysrKUkpJibpuenq4dO3YoIiLCXBYREaENGzaosLDQXJaYmCgvLy+FhIRIklq0aKHKlStrzZo1Zk1hYaHWrVvnNNZPP/2kvXv3mstSUlJ0/Phx3XXXXZYfCwAAAABA6VKqZrDz8/PNV1odOHBAubm55sPMWrdurYCAAAUEBDhs89FHH+nQoUMKDQ01l4WEhCg8PFwTJkzQuHHj5OHhodmzZysoKEhdunQx66Kjo5WQkKCnnnpK/fr1065duxQfH68xY8aY19h7eHho+PDhmjNnjnx8fBQYGKhly5bp+PHjio6ONsfq2rWrYmNjNXLkSD355JPKz8/XzJkz1a5dO96BDQAAAAA3gFIVsI8ePaonnnjCYVnx50WLFjmE6L/y2muvafr06Zo8ebJOnz6t8PBwTZw4UeXL/99XrlevnuLj4zVjxgwNGzZMPj4+GjVqlAYPHuww1tChQ2UYhhYuXKjMzEw1atRI8fHxqlOnjlnj7u6uBQsWaOrUqXryySdVvnx5de7cWRMmTCjJoQAAAAAAlDE2gydUlGo//PCDJKlZs2bXfN+PjZ+vPenOD4sD4BoN/G7R6zOGubqNa6bvglj9dPB3V7cB4BwNb6mp94YMd3UbAHBNXU4mK1P3YAMAAAAAUFoRsAEAAAAAsAABGwAAAAAACxCwAQAAAACwAAEbAAAAAAALELABAAAAALAAARsAAAAAAAsQsAEAAAAAsAABGwAAAAAACxCwAQAAAACwAAEbAAAAAAALELABAAAAALAAARsAAAAAAAsQsAEAAAAAsAABGwAAAAAACxCwAQAAAACwAAEbAAAAAAALELABAAAAALAAARsAAAAAAAsQsAEAAAAAsAABGwAAAAAACxCwAQAAAACwAAEbAAAAAAALELABAAAAALAAARsAAAAAAAsQsAEAAAAAsAABGwAAAAAACxCwAQAAAACwAAEbAAAAAAALELABAAAAALAAARsAAAAAAAsQsAEAAAAAsAABGwAAAAAACxCwAQAAAACwAAEbAAAAAAALELABAAAAALAAARsAAAAAAAsQsAEAAAAAsAABGwAAAAAACxCwAQAAAACwAAEbAAAAAAALELABAAAAALAAARsAAAAAAAsQsAEAAAAAsECpCtj79u3T5MmTFRUVpcaNG6tHjx4O63NzczVnzhzdf//9atmype644w498sgj+vnnn53GysnJ0YQJE9S6dWuFhIRo1KhROnz4sFPdd999pz59+ig4OFjt27fX/PnzZRiGQ41hGJo/f77atWun4OBg9enTR9u2bXMa69ChQxo5cqRCQkLUunVrPfPMM8rNzb2ygwIAAAAAKBNKVcDevXu3Nm3apHr16ikgIMBp/W+//ab3339fYWFheu211/TCCy8oJydHffr00S+//OJQO3r0aG3dulVTpkzRK6+8ovT0dA0dOlSnT582a/bt26fo6Gj5+voqNjZWAwcOVExMjBYuXOgwVlxcnGJiYjRo0CDFxsbK19dXgwcPVkZGhllTWFioIUOGaO/evZo1a5amTJmiLVu26KmnnrL4KAEAAAAASqPyrm7gXB06dFCnTp0kSePHj9ePP/7osL527dpav369PD09zWVt2rRRhw4d9O6772rSpEmSpNTUVG3ZskXx8fEKDw+XJPn5+SkyMlLr1q1TZGSkJCk+Pl7VqlXTq6++KrvdrrZt2yozM1NvvvmmBgwYILvdrlOnTik2NlaDBw/WoEGDJEm333677r77bsXHx2vKlCmSpLVr12r37t1KTEyUv7+/JMnLy0vR0dHavn27goODr9pxAwAAAAC4XqmawXZzu3g7FStWdAjXklSpUiXVrVvX4fLv5ORkeXl5KSwszFzm7++vRo0aKTk52aGuY8eOstvt5rLIyEhlZ2crNTVV0tlLyHNzc9WtWzezxm63q3Pnzk5jBQUFmeFaksLCwlS1alVt2rTpUg8BAAAAAKCMKlUBuySys7O1e/duh2CblpYmPz8/2Ww2h1p/f3+lpaVJkvLy8vT77787bFdcY7PZzLrin3+uCwgI0G+//aaTJ0+adX+usdls8vPzM8cAAAAAAFy/StUl4iXx8ssvy2azqV+/fuay7OxsValSxanW29vbvOw8JydH0tnLuM9lt9vl6emprKwscyy73S4PDw+HOi8vLxmGoaysLFWoUOGi+yweq6QMw1BeXt4VjXE5bDab05UCAEqP/Px8p4cxXk84BwGl3/V+HgKAcxmG4TR5eyFlOmB/+OGHWr58uWbMmKFbbrnF1e1cNYWFhdq5c+c125+np6caN258zfYH4PKkp6crPz/f1W1cNZyDgNLvej8PAcCfnXtb8cWU2YC9adMmTZ48WY899pjuvfdeh3VeXl46ePCg0zZZWVny9vaWJHO2uXgmu1hBQYHy8/PNOi8vLxUUFOjUqVMOs9jZ2dmy2WwOded7JVdWVpZq1qx5Bd9Ucnd3V4MGDa5ojMtxqb+dAeAafn5+1/XMEecgoPS73s9DAHCuPXv2XHJtmQzY27Zt0xNPPKFevXrpiSeecFrv7++vlJQUp6n89PR0BQYGSjr7wLSaNWs63R+dnp4uwzDM+6mLf6anp6thw4ZmXVpammrVqqUKFSqYdbt27XIYyzAMpaenOzxsrSRsNpsqVqx4RWMAuH5w+TQAV+M8BOBGcjm//C9zDznbs2ePhg8frjZt2ui55547b01ERISysrKUkpJiLktPT9eOHTsUERHhULdhwwYVFhaayxITE+Xl5aWQkBBJUosWLVS5cmWtWbPGrCksLNS6deucxvrpp5+0d+9ec1lKSoqOHz+uu+6664q/NwAAAACgdCtVM9j5+fnmK60OHDig3NxcJSUlSZJat24twzAUHR0tDw8PDRw40OE92ZUrVzYvow4JCVF4eLgmTJigcePGycPDQ7Nnz1ZQUJC6dOlibhMdHa2EhAQ99dRT6tevn3bt2qX4+HiNGTPGvMbew8NDw4cP15w5c+Tj46PAwEAtW7ZMx48fV3R0tDlW165dFRsbq5EjR+rJJ59Ufn6+Zs6cqXbt2vEObAAAAAC4AZSqgH306FGnS76LPy9atEiSzHurBw0a5FDXunVrLV682Pz82muvafr06Zo8ebJOnz6t8PBwTZw4UeXL/99XrlevnuLj4zVjxgwNGzZMPj4+GjVqlAYPHuww9tChQ2UYhhYuXKjMzEw1atRI8fHxqlOnjlnj7u6uBQsWaOrUqXryySdVvnx5de7cWRMmTLjyAwMAAAAAKPVsBk+oKNV++OEHSVKzZs2u+b4fGz9fe9KdHxYHwDUa+N2i12cMc3Ub10zfBbH66eDvrm4DwDka3lJT7w0Z7uo2AOCaupxMVubuwQYAAAAAoDQiYAMAAAAAYAECNgAAAAAAFiBgAwAAAABgAQI2AAAAAAAWIGADAAAAAGABAjYAAAAAABYgYAMAAAAAYAECNgAAAAAAFiBgAwAAAH9SZBS5ugUAF1Ca//ss7+oGAAAAgNLGzeamd35cpIN5h1zdCoBz3FKxhgY2fdjVbVwQARsAAAA4j4N5h7Q/Z7+r2wBQhnCJOAAAAAAAFiBgAwAAAABgAQI2AAAAAAAWIGADAAAAAGABAjYAAAAAABYgYAMAAAAAYAECNgAAAAAAFiBgAwAAAABgAQI2AAAAAAAWIGADAAAAAGABAjYAAAAAABYgYAMAAAAAYAECNgAAAAAAFiBgAwAAAABgAQI2AAAAAAAWIGADAAAAAGCBEgXsgoICq/sAAAAAAKBMK1HADg8P16RJk/TNN99Y3Q8AAAAAAGVS+ZJs1LVrV61bt04ffPCBatasqXvuuUc9e/ZUQECA1f0BAAAAAFAmlGgG+4UXXtCWLVsUExOjpk2b6q233lKPHj1033336Z133tGRI0es7hMAAAAAgFKtxA85c3d3V+fOnRUTE6MvvvhCzz//vKpUqaKXXnpJ7dq109ChQ5WQkKCTJ09a2S8AAAAAAKVSiS4R/7PKlSurd+/eatiwoeLi4rRu3Tpt3rxZmzdvVqVKlfTAAw9o5MiRqlixohW7AwAAAACg1LnigJ2RkaGEhAQlJCRo7969qlq1qh566CFFRUXJ3d1dy5cv1+LFi7V//37NmTPHip4BAAAAACh1ShSwjx07psTERCUkJOj777+Xu7u72rVrp3/+85+KiIhQ+fL/N+zkyZN1yy236PXXX7esaQAAAAAASpsSBew777xTp0+fVvPmzfXss88qMjJSXl5eF6z/29/+Jh8fnxI3CQAAAABAaVeigD18+HBFRUWpbt26l1Tfvn17tW/fviS7AgAAAACgTLjsp4jn5+fr559/1rZt265COwAAAAAAlE2XHbA9PT31xRdf8PotAAAAAADOUaL3YN9+++1KTU21uhcAAAAAAMqsEgXsyZMn69tvv9Xs2bN18OBBq3sCAAAAAKDMKdFDznr27KkzZ85o/vz5mj9/vsqVKye73e5QY7PZ9O2331rSJAAAAAAApV2JAnbXrl1ls9ms7gUAAAAAgDKrRAF7xowZVvchSdq3b5/i4+P1/fffa/fu3fL399cnn3ziVLdixQotWLBAv/32m/z8/DRmzBin14Dl5ORo+vTp+vTTT1VYWKg777xTEydO1M033+xQ99133+mll17Szp07ddNNN6lfv34aOnSowy8QDMNQXFyc3n33XWVmZqpRo0Z6+umn1bx5c4exDh06pKlTp2rLli1yd3dX586d9fTTT6ty5crWHSQAAAAAQKlUonuwr5bdu3dr06ZNqlevngICAs5bs3r1ak2aNEndunVTXFycmjdvrhEjRji9Nmz06NHaunWrpkyZoldeeUXp6ekaOnSoTp8+bdbs27dP0dHR8vX1VWxsrAYOHKiYmBgtXLjQYay4uDjFxMRo0KBBio2Nla+vrwYPHqyMjAyzprCwUEOGDNHevXs1a9YsTZkyRVu2bNFTTz1l3QECAAAAAJRaJZrBLnbw4EHt2LFDOTk5MgzDaX2vXr0ua7wOHTqoU6dOkqTx48frxx9/dKqJiYlR9+7dNXr0aElSmzZttGvXLs2bN09xcXGSpNTUVG3ZskXx8fEKDw+XJPn5+SkyMlLr1q1TZGSkJCk+Pl7VqlXTq6++KrvdrrZt2yozM1NvvvmmBgwYILvdrlOnTik2NlaDBw/WoEGDJJ19ivrdd9+t+Ph4TZkyRZK0du1a7d69W4mJifL395ckeXl5KTo6Wtu3b1dwcPBlHQsAAAAAQNlSooB96tQpjRs3TuvWrVNRUZFsNpsZsM+9tPpyA7ab28Un1DMyMrR3717985//dFgeGRmpmTNnqqCgQHa7XcnJyfLy8lJYWJhZ4+/vr0aNGik5OdkM2MnJyercubPDA9oiIyMVGxur1NRUhYaG6rvvvlNubq66detm1tjtdnXu3Fnr1683lyUnJysoKMgM15IUFhamqlWratOmTQRsAAAAALjOlegS8VdffVXr16/X6NGjtXjxYhmGoRkzZmjhwoWKiIhQw4YN9fHHH1vdq9LS0iSdnY0+V0BAgAoLC81LttPS0uTn5+f0IDZ/f39zjLy8PP3+++8Ogbi4xmazmXXFP/9cFxAQoN9++00nT5406/5cY7PZ5OfnZ44BAAAAALh+lWgGe+3atbrvvvs0bNgwHTt2TJJUo0YNtW3bVnfccYcefvhhLV26VM8995ylzWZlZUk6e+n1uYo/F6/Pzs5WlSpVnLb39vY2LzvPyck571h2u12enp4OY9ntdnl4eDjt0zAMZWVlqUKFChfdZ/FYJWUYhvLy8q5ojMths9nk6el5zfYH4PLk5+ef97ac6wXnIKD04zwEwNWu5XnIMIxLfotWiQL20aNHzUueK1SoIOnsFyzWtWtXzZs3z/KAfaMqLCzUzp07r9n+PD091bhx42u2PwCXJz093eGce73hHASUfpyHALjatT4PnXtb8cWUKGBXr17dnLn29PSUt7e30tPTzfW5ubk6depUSYa+KG9vb0lnZ599fX3N5dnZ2Q7rvby8dPDgQafts7KyzJri2ebimexiBQUFys/PdxiroKBAp06dcpjFzs7Ols1mc6jLzc097z5r1qxZsi/8/7m7u6tBgwZXNMbl4B3nQOnm5+d33c8cASjdOA8BcLVreR7as2fPJdeWKGAHBwfru+++Mz+3b99e8fHx8vX1VVFRkd5++22nd0Rbofge5z/f75yWliZ3d3fVqVPHrEtJSXGayk9PT1dgYKAkqWLFiqpZs6bT/dHp6ekyDMMcv/hnenq6GjZs6LDPWrVqmTP4/v7+2rVrl8NYhmEoPT3d4WFrJWGz2VSxYsUrGgPA9YPLFgG4GuchAK52Lc9Dl/NLtxI95GzAgAGqXbu2CgoKJElPPPGEqlSpon/9618aP368qlSpomeeeaYkQ19UnTp1VL9+fSUlJTksT0xMVNu2bc1p+4iICGVlZSklJcWsSU9P144dOxQREWEui4iI0IYNG1RYWOgwlpeXl0JCQiRJLVq0UOXKlbVmzRqzprCwUOvWrXMa66efftLevXvNZSkpKTp+/Ljuuusuaw4AAAAAAKDUKtEMdsuWLdWyZUvzc82aNbVmzRrt2rVLbm5u8vf3V/nylz90fn6+Nm3aJEk6cOCAcnNzzTDdunVr+fj4aOTIkRo7dqzq1q2r0NBQJSYmavv27VqyZIk5TkhIiMLDwzVhwgSNGzdOHh4emj17toKCgtSlSxezLjo6WgkJCXrqqafUr18/7dq1S/Hx8RozZowZ1j08PDR8+HDNmTNHPj4+CgwM1LJly3T8+HFFR0ebY3Xt2lWxsbEaOXKknnzySeXn52vmzJlq164dr+gCAAAAgBtAiQL2+bi5uTlcQl0SR48e1RNPPOGwrPjzokWLFBoaqh49eig/P19xcXGaP3++/Pz8NHfuXHPGudhrr72m6dOna/LkyTp9+rTCw8M1ceJEh+Bfr149xcfHa8aMGRo2bJh8fHw0atQoDR482GGsoUOHyjAMLVy4UJmZmWrUqJHi4+PNS9Kls/dJL1iwQFOnTtWTTz6p8uXLq3PnzpowYcIVHRMAAAAAQNlgMy7hzvCvv/66RIO3atWqRNvh//zwww+SpGbNml3zfT82fr72pDs/LA6AazTwu0Wvzxjm6jaumb4LYvXTwd9d3QaAczS8pabeGzLc1W1cMy/992Xtz9nv6jYAnKN2ldoa1/qf13Sfl5PJLmkGe8CAAZd1Y3fxw8Wu5aulAAAAAABwpUsK2IsWLbrafQAAAAAAUKZdUsBu3br11e4DAAAAAIAyrUSv6QIAAAAAAI5K/BTxU6dOae3atdqxY4dycnJUVFTksN5ms2natGlX3CAAAAAAAGVBiQL2gQMH9PDDD+vAgQPy8vJSTk6OvL29lZOTozNnzqhatWqqWLGi1b0CAAAAAFBqlegS8ZkzZyo3N1fLly9XUlKSDMPQ7NmzlZqaqrFjx6pChQqKj4+3ulcAAAAAAEqtEgXsL7/8Uv369VNwcLDc3P5vCLvdriFDhqhNmzZcHg4AAAAAuKGUKGCfPHlSt956qySpcuXKstlsysnJMdeHhITo22+/taZDAAAAAADKgBIF7Jo1a+rQoUOSpPLly6tGjRratm2buX7Pnj3y8PCwpEEAAAAAAMqCEj3krE2bNtqwYYNGjBghSbr33ns1f/58ZWdnq6ioSKtWrVJUVJSljQIAAAAAUJqVKGAPGzZMP/zwgwoKCmS32/XII4/o8OHDWrt2rdzc3NSjRw89/fTTVvcKAAAAAECpVaKAXatWLdWqVcv87OHhoRdffFEvvviiZY0BAAAAAFCWlOge7PMpKirS0aNHZRiGVUMCAAAAAFBmXHLATk9P18qVK5WVleWwPDc3V//617902223KTw8XG3atNGSJUssbxQAAAAAgNLskgP2W2+9pX//+9/y8vJyWD5p0iStWrVKtWrVUufOnWW32/Xiiy/q008/tbxZAAAAAABKq0u+B/u7775Tu3btZLPZzGW///671qxZo+bNm2vJkiUqX768srOzdf/992vp0qXq1KnTVWkaAAAAAIDS5pJnsA8dOiR/f3+HZRs3bpTNZtPDDz+s8uXPZnUvLy9FRUVpx44d1nYKAAAAAEApdskBu6ioyAzRxb799ltJUuvWrR2W33LLLTpx4oQF7QEAAAAAUDZccsCuW7euvv/+e/PzmTNn9NVXX8nf31/Vq1d3qM3KypKPj491XQIAAAAAUMpd8j3YvXr10ssvvyx/f3+1aNFCq1at0tGjRzVgwACn2m+++Ub169e3sk8AAAAAAEq1Sw7YDz74oFJSUvTqq6/KZrPJMAy1atVKgwcPdqj7/ffflZycrNGjR1vdKwAAAAAApdYlB2x3d3e9+eab+uGHH5SRkaFatWqpefPmTnUFBQWaNWuWWrVqZWWfAAAAAACUapccsIs1a9ZMzZo1u+D6evXqqV69elfUFAAAAAAAZc0lP+QMAAAAAABcGAEbAAAAAAALELABAAAAALAAARsAAAAAAAsQsAEAAAAAsMBlP0X8XAUFBfrf//6no0ePqkWLFvLx8bGqLwAAAAAAypQSz2AvWrRI4eHhevDBBzVy5Ej9/PPPkqTMzEyFhobqgw8+sKxJAAAAAABKuxIF7A8//FDTpk3TnXfeqRdffFGGYZjrfHx81KZNGyUmJlrWJAAAAAAApV2JAvZbb72ljh07atasWWrfvr3T+iZNmmj37t1X3BwAAAAAAGVFiQL2vn37FBERccH1VatW1fHjx0vaEwAAAAAAZU6JAraXl5eOHTt2wfV79uyRr69viZsCAAAAAKCsKVHAjoiI0PLly5Wdne20bvfu3VqxYoU6dOhwxc0BAAAAAFBWlOg1XaNHj9YDDzygHj16qH379rLZbFq5cqU+/PBDrVu3Tr6+vnrssces7hUAAAAAgFKrRDPYNWrU0H/+8x/deeedWrNmjQzD0Mcff6yNGzeqe/fuWr58Oe/EBgAAAADcUEo0gy1JN910k1588UW9+OKLyszMVFFRkXx8fOTmVuJXawMAAAAAUGaVOGCfi9lqAAAAAMCNrkQBe+7cuRddb7PZ5OHhoVtuuUWtWrVSjRo1StQcAAAAAABlRYkDts1mkyQZhuGw7s/Ly5Urp969e2vy5MlcPg4AAAAAuG6VKGBv2rRJw4cPV6NGjTRgwADVrVtXkrRv3z4tWbJEP//8s2bPnq28vDy98847ev/993XzzTfzZHEAAAAAwHWrRFPKzz33nPz9/TV9+nQ1btxYlStXVuXKldWkSRNNnz5d9erV06xZs9SoUSPNmDFD4eHh+vjjj63uHQAAAACAUqNEAfvLL79Uq1atLri+VatW2rp1q/n5rrvu0m+//VaSXZ3Xhg0b1Lt3b4WEhCg8PFxPPPGEMjIynOpWrFihrl27qlmzZurZs6c2btzoVJOTk6MJEyaodevWCgkJ0ahRo3T48GGnuu+++059+vRRcHCw2rdvr/nz5ztdHm8YhubPn6927dopODhYffr00bZt2yz73gAAAACA0qtEAdtut2v79u0XXP/999/L3d3d/Hz69GlVrFixJLty8tVXX2nEiBFq0KCB5s2bpwkTJuinn37S4MGDdfLkSbNu9erVmjRpkrp166a4uDg1b95cI0aMcAq8o0eP1tatWzVlyhS98sorSk9P19ChQ3X69GmzZt++fYqOjpavr69iY2M1cOBAxcTEaOHChQ5jxcXFKSYmRoMGDVJsbKx8fX01ePDg84Z/AAAAAMD1pUT3YPfo0UNLly5V1apV1a9fP9WuXVuStH//fr377rtatWqV+vfvb9Z/9dVXatCggSUNr169WrVq1dK0adPMB6r5+Pho4MCB+vHHH9WyZUtJUkxMjLp3767Ro0dLktq0aaNdu3Zp3rx5iouLkySlpqZqy5Ytio+PV3h4uCTJz89PkZGRWrdunSIjIyVJ8fHxqlatml599VXZ7Xa1bdtWmZmZevPNNzVgwADZ7XadOnVKsbGxGjx4sAYNGiRJuv3223X33XcrPj5eU6ZMseT7AwAAAABKpxLNYP/zn/9U165d9dZbb5mXYDdr1kxdu3bV22+/rc6dO+uf//ynJOnUqVNq0qSJHn/8cUsaPn36tCpVqmSGa0mqUqWKpP97cnlGRob27t2rbt26OWwbGRmplJQUFRQUSJKSk5Pl5eWlsLAws8bf31+NGjVScnKyuSw5OVkdO3aU3W53GCs7O1upqamSzl5Cnpub67BPu92uzp07O4wFAAAAALg+lWgG28PDQ6+99pp27NihzZs368CBA5KkW2+9VeHh4WrSpIlD7YgRI6zpVtJ9992njz/+WEuXLlXPnj11/Phxvfrqq2rcuLFatGghSUpLS5N0djb6XAEBASosLFRGRoYCAgKUlpYmPz8/h7AunQ3ZxWPk5eXp999/l7+/v1ONzWZTWlqaQkNDzfo/1wUEBOidd97RyZMnVaFCBcuOAwAAAACgdClRwC7WuHFjNW7c2KpeLknLli01d+5cPfXUU3r++eclSY0aNdKCBQtUrlw5SVJWVpYkycvLy2Hb4s/F67Ozs83Z73N5e3vrxx9/lHT2IWjnG8tut8vT09NhLLvdLg8PD6d9GoahrKysEgdswzCUl5dXom1LwmazydPT85rtD8Dlyc/Pd3rI4vWEcxBQ+nEeAuBq1/I8ZBiG06TshVxRwHaF7777Tv/617/0wAMPqF27djp+/Lhef/11DRs2TO++++51OUtcWFionTt3XrP9eXp6XvNfnAC4dOnp6crPz3d1G1cN5yCg9OM8BMDVrvV56NzbhS+mxAF706ZNevvtt7Vjxw7l5OSc97cHVyMUTp06VW3atNH48ePNZc2bN1e7du308ccfq0+fPvL29pZ0dvbZ19fXrMvOzpYkc72Xl5cOHjzotI+srCyzpniGu3gmu1hBQYHy8/MdxiooKNCpU6ccZrGzs7Nls9nMupJwd3e37CFxl+JSfzsDwDX8/Pyu+5kjAKUb5yEArnYtz0N79uy55NoSBey1a9dq9OjRatCggSIjI7Vs2TL16NFDhmHos88+U7169dSpU6eSDP2XfvnlF3Xs2NFh2S233KJq1arp119/lfR/90GnpaU53BOdlpYmd3d31alTx6xLSUlxmvJPT09XYGCgJKlixYqqWbOmeY/1uTWGYZjjF/9MT09Xw4YNHfZZq1atK5pZt9lslr3mDEDZx2WLAFyN8xAAV7uW56HL+aVbiZ4iHhsbq+DgYK1cuVIjR46UJP3973/XrFmzlJCQoD/++MN8dZfVatWqpR07djgsO3DggI4dO6Zbb71VklSnTh3Vr19fSUlJDnWJiYlq27atOb0fERGhrKwspaSkmDXp6enasWOHIiIizGURERHasGGDCgsLHcby8vJSSEiIJKlFixaqXLmy1qxZY9YUFhZq3bp1DmMBAAAAAK5PJZrB/uWXX/Tkk0+qXLlyKl/+7BCnT5+WJNWuXVv9+vVTXFycevXqZVmjxfr27atp06Zp6tSp6tChg44fP6433nhDN910k8MrskaOHKmxY8eqbt26Cg0NVWJiorZv364lS5aYNSEhIQoPD9eECRM0btw4eXh4aPbs2QoKClKXLl3MuujoaCUkJOipp55Sv379tGvXLsXHx2vMmDFmWPfw8NDw4cM1Z84c+fj4KDAwUMuWLdPx48cVHR1t+XEAAAAAAJQuJQrYFSpUkLu7u6Sz9x7b7Xb98ccf5vrq1atr//791nT4Jw8//LDsdruWLVumDz/8UJUqVVLz5s312muvqVq1amZdjx49lJ+fr7i4OM2fP19+fn6aO3euOeNc7LXXXtP06dM1efJknT59WuHh4Zo4caL5iwNJqlevnuLj4zVjxgwNGzZMPj4+GjVqlAYPHuww1tChQ2UYhhYuXKjMzEw1atRI8fHx5iXpAAAAAIDrV4kCtp+fn3755Rfzc6NGjfTxxx+rZ8+eOnPmjD755BPVrFnTsibPZbPZ1K9fP/Xr1+8va3v37q3evXtftKZKlSqaNm2apk2bdtG6Fi1aaPny5X/Z2/DhwzV8+PC/7A0AAAAAcH0p0T3YnTt31oYNG1RQUCBJeuSRR/Tf//5XrVq1Ups2bfTNN99o2LBhljYKAAAAAEBpVqIZ7OjoaIf7itu3b6/Fixdr3bp1KleunO666y61adPGsiYBAAAAACjtLjtgFxQUaPPmzbr11lsdXkfVsmVLtWzZ0tLmAAAAAAAoKy77EnF3d3c98cQTSk1NvRr9AAAAAABQJl12wLbZbKpfv76OHTt2NfoBAAAAAKBMKtFDzoYPH66lS5cqLS3N6n4AAAAAACiTSvSQs++//15Vq1bVPffco9atW+vWW29VhQoVnOomTpx4xQ0CAAAAAFAWlChgL1myxPzfKSkp562x2WwEbAAAAADADaNEAfunn36yug8AAAAAAMq0Et2DDQAAAAAAHJVoBrvYtm3b9NVXX+no0aN68MEHVb9+feXn5ystLU3169dXpUqVrOoTAAAAAIBSrUQBu6CgQE8++aQ2bNggwzBks9nUvn171a9fX25ubho8eLAGDRqkRx991Op+AQAAAAAolUp0ifi///1vff7555oyZYqSkpJkGIa5zsPDQ3fffbc2bNhgWZMAAAAAAJR2JQrYq1evVt++fdWnTx95e3s7rQ8ICFBGRsYVNwcAAAAAQFlRooB99OhRBQUFXXB9uXLldPLkyRI3BQAAAABAWVOigF2zZk2lpaVdcP13332nunXrlrgpAAAAAADKmhIF7B49eui9995Tamqqucxms0mSli9frjVr1qhXr16WNAgAAAAAQFlQoqeIP/LII/r+++/10EMPyd/fXzabTdOnT1dWVpYOHjyou+66S4MGDbK4VQAAAAAASq8SBWy73a4FCxZo1apVWrt2rYqKilRQUKCgoCCNHj1aUVFR5ow2AAAAAAA3ghIFbOnsJeFRUVGKioqysh8AAAAAAMqkEt2DPXPmTO3YscPqXgAAAAAAKLNKFLCXLFmiv//97+rSpYtee+01/fzzz1b3BQAAAABAmVKigP3FF19o+vTpql+/vhYsWKBevXqpe/fumjdv3kVf3wUAAAAAwPWqRPdgV65cWb169VKvXr2UnZ2ttWvXKikpSW+88Ybmzp2rwMBAde/eXcOGDbO6XwAAAAAASqUSzWCfy8vLS71791Z8fLw2b96scePGaf/+/Zo9e7YV/QEAAAAAUCaU+Cni5yosLFRycrISExO1ceNG5eXlqWbNmlYMDQAAAABAmVDigH369Glt3bpViYmJ2rBhg3Jzc+Xr66v77rtPkZGRatGihZV9AgAAAABQqpUoYE+YMEEbNmxQVlaWqlWrpu7du6t79+5q1aqVbDab1T0CAAAAAFDqlShgb9iwQZ06dVJkZKTatGmjcuXKOdVkZWXJ29v7ihsEAAAAAKAsKFHA3rp1q8qXd960oKBAGzZsUEJCgjZv3qwffvjhihsEAAAAAKAsKFHAPjdcG4ahlJQUJSQkaP369crNzZWPj4969OhhWZMAAAAAAJR2JX7I2Y8//qiEhAStXr1aR44ckc1mU2RkpB566CE1b96ce7EBAAAAADeUywrYGRkZWrVqlRISErRv3z7VqFFD99xzj4KDgzVmzBh17dpVISEhV6tXAAAAAABKrUsO2H369NH27dtVrVo1de3aVVOnTlXLli0lSb/++utVaxAAAAAAgLLgkgP2999/r9q1a2v8+PFq167deR9yBgAAAADAjcrtUgsnTZokX19fjRgxQmFhYZo8ebK+/PJLGYZxNfsDAAAAAKBMuORp6P79+6t///7KyMhQQkKCPvnkEy1fvlzVq1dXaGiobDYbDzYDAAAAANywLnkGu1idOnX02GOPKTExUR988IG6d++u//73vzIMQ88995wmTZqkjRs36tSpU1ejXwAAAAAASqUrupG6adOmatq0qcaNG6cvv/xSq1atUmJiolasWCFPT0+lpqZa1ScAAAAAAKWaJU8qc3Nz0x133KE77rhDzz33nDZs2KCEhAQrhgYAAAAAoEyw/FHgHh4eioyMVGRkpNVDAwAAAABQal32PdgAAAAAAMAZARsAAAAAAAsQsAEAAAAAsECZDdgfffSRevXqpWbNmik0NFRDhgzRyZMnzfWfffaZevbsqWbNmqlr16768MMPncYoKCjQSy+9pLCwMDVv3lz/+Mc/lJaW5lT3yy+/6B//+IeaN2+usLAwzZw5UwUFBU51K1asUNeuXdWsWTP17NlTGzdutPZLAwAAAABKrTIZsN944w298MILioyMVHx8vJ5//nnVrl1bZ86ckSR98803GjFihJo3b664uDh169ZNzzzzjJKSkhzGmTp1qlasWKExY8Zozpw5Kigo0KBBg5STk2PWZGVlaeDAgSosLNScOXM0ZswYLV++XDNmzHAYa/Xq1Zo0aZK6deumuLg4NW/eXCNGjNC2bduu+vEAAAAAALie5U8Rv9rS0tI0d+5cvf7667rrrrvM5V27djX/9xtvvKHg4GA9//zzkqQ2bdooIyNDMTExuvvuuyVJBw8e1AcffKBnn31W999/vySpWbNmat++vd577z0NHTpUkvTee+/pxIkTmjt3rqpWrSpJOnPmjJ577jkNHz5cNWrUkCTFxMSoe/fuGj16tLnPXbt2ad68eYqLi7uqxwQAAAAA4Hplbgb7P//5j2rXru0Qrs9VUFCgr776ygzSxSIjI/XLL79o//79kqQtW7aoqKjIoa5q1aoKCwtTcnKyuSw5OVlt27Y1w7UkdevWTUVFRdq6daskKSMjQ3v37lW3bt2c9pmSknLey8kBAAAAANeXMhewv//+ewUGBur1119X27Zt1bRpU/Xt21fff/+9JOnXX39VYWGh/P39HbYLCAiQJPMe67S0NN10003y9vZ2qjv3Puy0tDSnsby8vOTr6+swliT5+fk5jVVYWKiMjIwr/doAAAAAgFKuzF0i/scff+jHH3/Url279Oyzz8rT01NvvvmmBg8erHXr1ikrK0vS2RB8ruLPxeuzs7NVpUoVp/G9vLzMmuK6P48lSd7e3mbdpe6zpAzDUF5e3hWNcTlsNps8PT2v2f4AXJ78/HwZhuHqNq4azkFA6cd5CICrXcvzkGEYstlsl1Rb5gJ2cdj897//rYYNG0qSbrvtNnXo0EFLlixReHi4izu0XmFhoXbu3HnN9ufp6anGjRtfs/0BuDzp6enKz893dRtXDecgoPTjPATA1a71echut19SXZkL2F5eXqpataoZrqWz9043btxYe/bsUffu3SXJ4Ung0tmZaEnmJeFeXl7Kzc11Gj87O9vhsnEvLy+nsaSzs9LFdcU/c3Jy5Ovre8F9lpS7u7saNGhwRWNcjkv97QwA1/Dz87vuZ44AlG6chwC42rU8D+3Zs+eSa8tcwG7QoIF+/fXX8647deqU6tatK3d3d6WlpenOO+801xXfJ118P7W/v7+OHDniEJSL686959rf39/p3dg5OTn6448/HMY637ZpaWlyd3dXnTp1ruQry2azqWLFilc0BoDrB5ctAnA1zkMAXO1anocu55duZe4hZ+3bt9fx48cdLpk+duyY/ve//6lJkyay2+0KDQ3V2rVrHbZLTExUQECAateuLUkKDw+Xm5ub1q1bZ9ZkZWVpy5YtioiIMJdFREToiy++MGejJSkpKUlubm4KCwuTJNWpU0f169d3es92YmKi2rZte8mXEwAAAAAAyq4yN4PdqVMnNWvWTKNGjdKYMWPk4eGh+fPny26368EHH5QkPfroo3r44Yc1ZcoUdevWTV999ZU++eQTzZ492xznlltu0f3336+ZM2fKzc1NNWrUUGxsrKpUqaK+ffuadX379tXixYv1+OOPa/jw4Tp06JBmzpypvn37mu/AlqSRI0dq7Nixqlu3rkJDQ5WYmKjt27dryZIl1+7gAAAAAABcpswFbDc3N82fP1/Tp0/X5MmTVVhYqJYtW2rp0qXm/c8tW7bUnDlz9Nprr+mDDz5QrVq1NHXqVKf3VE+cOFGVKlXSrFmzdOLECbVo0UJvvfWWw9PFvb299c477+iFF17Q448/rkqVKun+++/XmDFjHMbq0aOH8vPzFRcXp/nz58vPz09z585VSEjI1T8oAAAAAACXK3MBW5J8fHz08ssvX7SmY8eO6tix40Vr7Ha7xo0bp3Hjxl20LiAgQG+//fZf9tW7d2/17t37L+sAAAAAANefMncPNgAAAAAApREBGwAAAAAACxCwAQAAAACwAAEbAAAAAAALELABAAAAALAAARsAAAAAAAsQsAEAAAAAsAABGwAAAAAACxCwAQAAAACwAAEbAAAAAAALELABAAAAALAAARsAAAAAAAsQsAEAAAAAsAABGwAAAAAACxCwAQAAAACwAAEbAAAAAAALELABAAAAALAAARsAAAAAAAsQsAEAAAAAsAABGwAAAAAACxCwAQAAAACwAAEbAAAAAAALELABAAAAALAAARsAAAAAAAsQsAEAAAAAsAABGwAAAAAACxCwAQAAAACwAAEbAAAAAAALELABAAAAALAAARsAAAAAAAsQsAEAAAAAsAABGwAAAAAACxCwAQAAAACwAAEbAAAAAAALELABAAAAALAAARsAAAAAAAsQsAEAAAAAsAABGwAAAAAACxCwAQAAAACwAAEbAAAAAAALELABAAAAALAAARsAAAAAAAsQsAEAAAAAsAABGwAAAAAAC5T5gH3ixAlFREQoKChIP/zwg8O6FStWqGvXrmrWrJl69uypjRs3Om2fk5OjCRMmqHXr1goJCdGoUaN0+PBhp7rvvvtOffr0UXBwsNq3b6/58+fLMAyHGsMwNH/+fLVr107BwcHq06ePtm3bZun3BQAAAACUTmU+YL/++us6c+aM0/LVq1dr0qRJ6tatm+Li4tS8eXONGDHCKfCOHj1aW7du1ZQpU/TKK68oPT1dQ4cO1enTp82affv2KTo6Wr6+voqNjdXAgQMVExOjhQsXOowVFxenmJgYDRo0SLGxsfL19dXgwYOVkZFxVb47AAAAAKD0KNMB+5dfftG7776rkSNHOq2LiYlR9+7dNXr0aLVp00bPP/+8mjVrpnnz5pk1qamp2rJli1588UVFRkaqY8eO+ve//62ff/5Z69atM+vi4+NVrVo1vfrqq2rbtq0GDRqkwYMH680331RBQYEk6dSpU4qNjdXgwYM1aNAgtW3bVq+++qqqVq2q+Pj4q38wAAAAAAAuVaYD9tSpU9W3b1/5+fk5LM/IyNDevXvVrVs3h+WRkZFKSUkxQ3FycrK8vLwUFhZm1vj7+6tRo0ZKTk42lyUnJ6tjx46y2+0OY2VnZys1NVXS2UvIc3NzHfZpt9vVuXNnh7EAAAAAANenMhuwk5KStGvXLj3++ONO69LS0iTJKXgHBASosLDQvGQ7LS1Nfn5+stlsDnX+/v7mGHl5efr999/l7+/vVGOz2cy64p9/rgsICNBvv/2mkydPlvSrAgAAAADKgPKubqAk8vPzNWPGDI0ZM0aVK1d2Wp+VlSVJ8vLyclhe/Ll4fXZ2tqpUqeK0vbe3t3788UdJZx+Cdr6x7Ha7PD09Hcay2+3y8PBw2qdhGMrKylKFChUu+7tKZx+elpeXV6JtS8Jms8nT0/Oa7Q/A5cnPz3d6yOL1hHMQUPpxHgLgatfyPGQYhtOk7IWUyYD9xhtv6KabbtLf//53V7dyTRQWFmrnzp3XbH+enp5q3LjxNdsfgMuTnp6u/Px8V7dx1XAOAko/zkMAXO1an4fOvV34YspcwD5w4IAWLlyoefPmmbPLxbO7eXl5OnHihLy9vSWdnX329fU1t83OzpYkc72Xl5cOHjzotI+srCyzpniGu3hfxQoKCpSfn+8wVkFBgU6dOuUwi52dnS2bzWbWlYS7u7saNGhQ4u0v16X+dgaAa/j5+V33M0cASjfOQwBc7Vqeh/bs2XPJtWUuYO/fv1+FhYUaNmyY07qHH35Yt912m2bNmiXp7H3R594TnZaWJnd3d9WpU0fS2fulU1JSnKb809PTFRgYKEmqWLGiatasad5jfW6NYRjm+MU/09PT1bBhQ4d91qpVq8SXh0tnT/IVK1Ys8fYAri9ctgjA1TgPAXC1a3keupxfupW5h5w1atRIixYtcvjz9NNPS5Kee+45Pfvss6pTp47q16+vpKQkh20TExPVtm1bc3o/IiJCWVlZSklJMWvS09O1Y8cORUREmMsiIiK0YcMGFRYWOozl5eWlkJAQSVKLFi1UuXJlrVmzxqwpLCzUunXrHMYCAAAAAFyfytwMtpeXl0JDQ8+7rkmTJmrSpIkkaeTIkRo7dqzq1q2r0NBQJSYmavv27VqyZIlZHxISovDwcE2YMEHjxo2Th4eHZs+eraCgIHXp0sWsi46OVkJCgp566in169dPu3btUnx8vMaMGWOGdQ8PDw0fPlxz5syRj4+PAgMDtWzZMh0/flzR0dFX8YgAAAAAAEqDMhewL1WPHj2Un5+vuLg4zZ8/X35+fpo7d64541zstdde0/Tp0zV58mSdPn1a4eHhmjhxosqX/79DU69ePcXHx2vGjBkaNmyYfHx8NGrUKA0ePNhhrKFDh8owDC1cuFCZmZlq1KiR4uPjzUvSAQAAAADXr+siYIeGhurnn392Wt67d2/17t37ottWqVJF06ZN07Rp0y5a16JFCy1fvvyiNTabTcOHD9fw4cP/umkAAAAAwHWlzN2DDQAAAABAaUTABgAAAADAAgRsAAAAAAAsQMAGAAAAAMACBGwAAAAAACxAwAYAAAAAwAIEbAAAAAAALEDABgAAAADAAgRsAAAAAAAsQMAGAAAAAMACBGwAAAAAACxAwAYAAAAAwAIEbAAAAAAALEDABgAAAADAAgRsAAAAAAAsQMAGAAAAAMACBGwAAAAAACxAwAYAAAAAwAIEbAAAAAAALEDABgAAAADAAgRsAAAAAAAsQMAGAAAAAMACBGwAAAAAACxAwAYAAAAAwAIEbAAAAAAALEDABgAAAADAAgRsAAAAAAAsQMAGAAAAAMACBGwAAAAAACxAwAYAAAAAwAIEbAAAAAAALEDABgAAAADAAgRsAAAAAAAsQMAGAAAAAMACBGwAAAAAACxAwAYAAAAAwAIEbAAAAAAALEDABgAAAADAAgRsAAAAAAAsQMAGAAAAAMACBGwAAAAAACxAwAYAAAAAwAIEbAAAAAAALEDABgAAAADAAmUuYK9Zs0aPPvqoIiIi1Lx5c0VFRemDDz6QYRgOdStWrFDXrl3VrFkz9ezZUxs3bnQaKycnRxMmTFDr1q0VEhKiUaNG6fDhw0513333nfr06aPg4GC1b99e8+fPd9qfYRiaP3++2rVrp+DgYPXp00fbtm2z9LsDAAAAAEqvMhew3377bXl6emr8+PF64403FBERoUmTJmnevHlmzerVqzVp0iR169ZNcXFxat68uUaMGOEUeEePHq2tW7dqypQpeuWVV5Senq6hQ4fq9OnTZs2+ffsUHR0tX19fxcbGauDAgYqJidHChQsdxoqLi1NMTIwGDRqk2NhY+fr6avDgwcrIyLiqxwMAAAAAUDqUd3UDl+uNN96Qj4+P+blt27Y6fvy43nrrLT322GNyc3NTTEyMunfvrtGjR0uS2rRpo127dmnevHmKi4uTJKWmpmrLli2Kj49XeHi4JMnPz0+RkZFat26dIiMjJUnx8fGqVq2aXn31VdntdrVt21aZmZl68803NWDAANntdp06dUqxsbEaPHiwBg0aJEm6/fbbdffddys+Pl5Tpky5ZscHAAAAAOAaZW4G+9xwXaxRo0bKzc1VXl6eMjIytHfvXnXr1s2hJjIyUikpKSooKJAkJScny8vLS2FhYWaNv7+/GjVqpOTkZHNZcnKyOnbsKLvd7jBWdna2UlNTJZ29hDw3N9dhn3a7XZ07d3YYCwAAAABw/SpzAft8vv32W9WoUUOVK1dWWlqapLOz0ecKCAhQYWGhecl2Wlqa/Pz8ZLPZHOr8/f3NMfLy8vT777/L39/fqcZms5l1xT//XBcQEKDffvtNJ0+etOibAgAAAABKqzJ3ififffPNN0pMTNS4ceMkSVlZWZIkLy8vh7riz8Xrs7OzVaVKFafxvL299eOPP0o6+xC0841lt9vl6enpMJbdbpeHh4fTPg3DUFZWlipUqFDi72gYhvLy8kq8/eWy2Wzy9PS8ZvsDcHny8/OdHrR4PeEcBJR+nIcAuNq1PA8ZhuE0MXshZTpgHzx4UGPGjFFoaKgefvhhV7dz1RQWFmrnzp3XbH+enp5q3LjxNdsfgMuTnp6u/Px8V7dx1XAOAko/zkMAXO1an4fOvWX4YspswM7OztbQoUNVtWpVzZkzR25uZ6929/b2lnR29tnX19eh/tz1Xl5eOnjwoNO4WVlZZk3xDHfxTHaxgoIC5efnO4xVUFCgU6dOOcxiZ2dny2azmXUl5e7urgYNGlzRGJfjUn87A8A1/Pz8rvuZIwClG+chAK52Lc9De/bsueTaMhmwT548qeHDhysnJ0fvv/++w6XexfdBp6WlOdwTnZaWJnd3d9WpU8esS0lJcZruT09PV2BgoCSpYsWKqlmzpnmP9bk1hmGY4xf/TE9PV8OGDR32WatWrSu6PFw6e5KvWLHiFY0B4PrBZYsAXI3zEABXu5bnocv5pVuZe8jZ6dOnNXr0aKWlpWnBggWqUaOGw/o6deqofv36SkpKcliemJiotm3bmlP7ERERysrKUkpKilmTnp6uHTt2KCIiwlwWERGhDRs2qLCw0GEsLy8vhYSESJJatGihypUra82aNWZNYWGh1q1b5zAWAAAAAOD6VeZmsJ977jlt3LhR48ePV25urrZt22aua9y4sex2u0aOHKmxY8eqbt26Cg0NVWJiorZv364lS5aYtSEhIQoPD9eECRM0btw4eXh4aPbs2QoKClKXLl3MuujoaCUkJOipp55Sv379tGvXLsXHx2vMmDFmWPfw8NDw4cM1Z84c+fj4KDAwUMuWLdPx48cVHR19zY4NAAAAAMB1ylzA3rp1qyRpxowZTus2bNig2rVrq0ePHsrPz1dcXJzmz58vPz8/zZ0715xxLvbaa69p+vTpmjx5sk6fPq3w8HBNnDhR5cv/32GpV6+e4uPjNWPGDA0bNkw+Pj4aNWqUBg8e7DDW0KFDZRiGFi5cqMzMTDVq1Ejx8fHmJekAAAAAgOtbmQvYn3322SXV9e7dW717975oTZUqVTRt2jRNmzbtonUtWrTQ8uXLL1pjs9k0fPhwDR8+/JL6AwAAAABcX8rcPdgAAAAAAJRGBGwAAAAAACxAwAYAAAAAwAIEbAAAAAAALEDABgAAAADAAgRsAAAAAAAsQMAGAAAAAMACBGwAAAAAACxAwAYAAAAAwAIEbAAAAAAALEDABgAAAADAAgRsAAAAAAAsQMAGAAAAAMACBGwAAAAAACxAwAYAAAAAwAIEbAAAAAAALEDABgAAAADAAgRsAAAAAAAsQMAGAAAAAMACBGwAAAAAACxAwAYAAAAAwAIEbAAAAAAALEDABgAAAADAAgRsAAAAAAAsQMAGAAAAAMACBGwAAAAAACxAwAYAAAAAwAIEbAAAAAAALEDABgAAAADAAgRsAAAAAAAsQMAGAAAAAMACBGwAAAAAACxAwAYAAAAAwAIEbAAAAAAALEDABgAAAADAAgRsAAAAAAAsQMAGAAAAAMACBGwAAAAAACxAwAYAAAAAwAIEbAAAAAAALEDABgAAAADAAgRsAAAAAAAsQMAGAAAAAMACBGwAAAAAACxAwLbYL7/8on/84x9q3ry5wsLCNHPmTBUUFLi6LQAAAADAVVbe1Q1cT7KysjRw4EDVr19fc+bM0aFDhzRjxgydPHlSkydPdnV7AAAAAICriIBtoffee08nTpzQ3LlzVbVqVUnSmTNn9Nxzz2n48OGqUaOGaxsEAAAAAFw1XCJuoeTkZLVt29YM15LUrVs3FRUVaevWra5rDAAAAABw1RGwLZSWliZ/f3+HZV5eXvL19VVaWpqLugIAAAAAXAtcIm6h7OxseXl5OS339vZWVlZWicYsLCyUYRjavn37lbZ3WWw2m/rdE6zTp5te0/0CuLDy5d30ww8/yDAMV7dy1dlsNj3W7DYVNm7m6lYAnMO93I11HoooF67T3mdc3QqAc5S3lbvm56HCwkLZbLZLqiVgl3LFf5GX+hdqpapela75PgH8NVecD1yhWkXOQUBpdaOchyrbK7u6BQAXcC3PQzabjYDtCl5eXsrJyXFanpWVJW9v7xKNGRIScqVtAQAAAACuAe7BtpC/v7/TvdY5OTn6448/nO7NBgAAAABcXwjYFoqIiNAXX3yh7Oxsc1lSUpLc3NwUFhbmws4AAAAAAFebzbgRnlJxjWRlZal79+7y8/PT8OHDdejQIc2YMUP33HOPJk+e7Or2AAAAAABXEQHbYr/88oteeOEFpaamqlKlSoqKitKYMWNkt9td3RoAAAAA4CoiYAMAAAAAYAHuwQYAAAAAwAIEbAAAAAAALEDABgAAAADAAgRsAAAAAAAsQMAGAAAAAMACBGwAAAAAACxAwAauU3PmzFFISIir2wBwg5kzZ46CgoJ05513qqioyGl93759FRQUpPHjx7ugOwA3klWrVun+++/X7bffrhYtWqhbt2565plndPToUVe3hutYeVc3AAAAri/u7u46duyYvv76a4WGhprLDxw4oG3btqlixYou7A7AjSAuLk6zZs3SoEGDNGrUKBmGod27dyshIUGHDx/WTTfd5OoWcZ0iYAMAAEu5u7urbdu2Wr16tUPAXr16tf72t7/JzY0L6ABcXYsXL9a9997rcLXMXXfdpSFDhpz36hrAKvw/HAAAsFyPHj20du1aFRYWmss++eQT9ejRw4VdAbhRZGdn6+abbz7vOn7Jh6uJf10AAMBy7du3V0FBgbZu3SpJ2rNnj37++WdFRka6uDMAN4ImTZrovffe04oVK/THH3+4uh3cQAjYAADAcp6enurQoYNWr14t6ezsdUhIiOrUqePizgDcCJ599ll5e3tr4sSJCg8PV8eOHTV16lTt37/f1a3hOkfABgAAV0WPHj20YcMGnTx5UomJierevburWwJwgwgMDNQnn3yi+fPn6+GHH1aVKlW0ePFi9ezZUzt37nR1e7iOEbABAMBVER4eLnd3d/373//W/v371a1bN1e3BOAGYrfbddddd+mZZ57RypUrtWDBAp08eVLz5s1zdWu4jhGwAQDAVeHu7q4uXbro7bffVps2bVS9enVXtwTgBnbnnXeqYcOG+uWXX1zdCq5jvKYLAABcNb1799bRo0f1wAMPuLoVADeQI0eOOP1S7+TJk/r999/VoEEDF3WFGwEBG7iOnTlzRklJSU7Lg4ODVatWLRd0BOBGExwcrNdff93VbQC4wdxzzz1q3769wsPDdfPNN+vQoUNasmSJjh07poEDB7q6PVzHCNjAdezUqVN64oknnJbPnDlTUVFRLugIAADg6hsxYoQ2btyoGTNmKDMzU9WqVVNQUJB5ywpwtdgMwzBc3QQAAAAAAGUdDzkDAAAAAMACBGwAAAAAACxAwAYAAAAAwAIEbAAAAAAALEDABgAAAADAAgRsAAAAAAAsQMAGAAAAAMACBGwAAAAAACxAwAYAADecAQMGaMCAAa5uAwBwnSnv6gYAALjR/frrr1qwYIG2bt2qw4cPy93dXYGBgerWrZv69OmjChUquLrFMmP//v2aN2+evv76ax06dEheXl6qX7++QkNDNWrUKFe3BwC4ztkMwzBc3QQAADeqzz//XE888YTsdruioqIUGBiowsJCffvtt1q3bp3uvfdevfDCC65us0zYt2+f7r//fnl4eOjvf/+7ateurcOHD2vHjh1KTk7WDz/8YNYWFBRIkux2u6vaBQBch5jBBgDARTIyMjRmzBjVqlVL77zzjm6++WZzXf/+/bVv3z59/vnnrmuwjHn77beVl5enlStX6tZbb3VYd/ToUYfPBGsAwNXAPdgAALjIggULlJeXpxdffNEhXBerV6+eBg4caH4+ffq05s2bp06dOqlp06bq0KGDXn31VXM2tliHDh00fPhwffXVV7rvvvsUHByse+65R1999ZUkad26dbrnnnvUrFkz3XfffdqxY4fD9uPHj1dISIgyMjIUHR2t5s2bKzw8XHPnztWfL3yLj49X3759FRoaquDgYN13331KSkpy+i5BQUF6/vnn9emnn6pHjx5q2rSpunfvruTkZLPmyy+/VFBQkNavX++0fUJCgoKCgpSamnrB4/nrr7+qRo0aTuFakm666SaHz3++B7tDhw4KCgo675/i4yZJhw4d0tNPP6077rjD/A4ffPDBBXsCANxYuEQcAAAXiYiIkN1u16effnpJ9ePHj9dHH32krl27KjQ0VNu3b9fKlSvVqVMnzZs3z6zr0KGD7Ha7cnNz1bdvX1WuXFkLFy5UTk6OnnvuOc2ePVv9+vWTJM2fP18+Pj5KSkqSm5ubuZ/ExETVrFlTt912m2677TZt3rxZGzdu1GOPPaYnnnjC3Nddd92lDh06qEGDBiosLNTq1au1fft2xcbGql27dmZdUFCQGjZsqKNHj+rBBx9UpUqVtHjxYh05ckQbN25UtWrVZBiG2rdvr+DgYMXExDh892HDhik9Pf284bvY5MmT9cEHHyg+Pl5t27a96LEsDteLFy+WJH366ac6ceKEQ80777yjnTt3auXKlQoKCtKRI0f097//XTabTb1795aPj4+Sk5P12Wef6emnn9agQYMuuk8AwA3AAAAA11xOTo4RGBhoPProo5dUv3PnTiMwMNB45plnHJbPmDHDCAwMNFJSUsxl7du3NwIDA43vvvvOXLZ582YjMDDQCA4ONg4cOGAuf++994zAwEDjyy+/NJeNGzfOCAwMNF544QVzWVFRkTFs2DCjSZMmxtGjR83l+fn5Dv0UFBQYPXr0MB5++GGH5YGBgUaTJk2Mffv2OX2nxYsXm8tmzZplNG3a1MjOzjaXHT161GjcuLERExNz0WO0a9cuIzg42AgMDDSioqKMqVOnGuvXrzfy8vKcah966CHjoYceuuBYiYmJRmBgoDF37lxz2YQJE4ywsDAjMzPToXbMmDHG7bff7nQsAAA3Hi4RBwDABXJzcyVJlSpVuqT6TZs2SZL+8Y9/OCwfPHiww/piDRo0UEhIiPn5tttukyS1adNGtWrVclqekZHhtM/+/fub/9tms6l///4qLCxUSkqKufzcJ5xnZWUpJydHt99+u9Nl55J0xx13qG7duubnhg0bqnLlyg77joqKUkFBgcNl5omJiTp9+rR69uzpNOa5/va3v2nlypXq2bOnDhw4oEWLFunxxx/XHXfcoeXLl19023Pt2bNHEyZMUMeOHfXYY49JkgzD0Lp169ShQwcZhqHMzEzzT3h4uHJycvS///3vkvcBALg+8ZAzAABcoHLlypLkdFnyhRw4cEBubm4OAVWSfH195eXlpQMHDjgsr1mzpsPnKlWqSJJuueWW8/aRnZ3tsNzNzU116tRxWObn52f2Umzjxo164403tHPnTod7wW02m9N3+HNPkuTt7e2w74CAADVr1kwJCQnq3bu3pLP3Xzdv3lz16tVz2v7P/Pz89PLLL+vMmTPas2ePPv/8cy1YsECTJk1S7dq1dccdd1x0+9zcXI0YMUI1atTQzJkzze+RmZmp7Oxsvf/++3r//ffPu21mZuZf9gcAuL4RsAEAcIHKlSvr5ptv1u7duy9ru/MF1/MpV67cZS03SvBIlm+++UaPPvqoWrVqpWeffVa+vr5yd3fXhx9+qE8++aTE++7Vq5defPFFHTx4UAUFBdq2bZsmT558Wb2VK1fOfEhZ8+bN9fDDDyshIeEvA/b48eN1+PBhrVixwvzlgyQVFRVJknr27Kl77733vNsGBQVdVo8AgOsPARsAABdp37693n//faWmpjpczn0+t956q4qKirRv3z4FBASYy48cOaLs7OzzPjn7ShQVFSkjI8OctZak9PR0sxdJWrt2rTw8PBQfH+/w2qsPP/zwivYdGRmpGTNm6JNPPtHJkyfl7u6ubt26lXi8pk2bSpIOHz580br58+fr008/1dy5cx2OsST5+PioUqVKKioq+suQDgC4cXEPNgAALjJkyBBVrFhREydO1JEjR5zW//rrr3rnnXcknX1atyTzc7G33nrLYb2Vli5dav5vwzC0dOlSubu7m0/oLleunGw2m86cOWPW7d+/Xxs2bLii/fr4+OjOO+/UqlWrlJCQoPDwcPn4+Pzldt98840KCwudlhffn37uLwv+7IsvvtBrr72mRx55RJ06dXJaX65cOXXt2lVr167Vrl27nNZzeTgAQGIGGwAAl6lbt65eeeUVjRkzRpGRkYqKilJgYKAKCgqUmpqqpKQk3XfffZLOPhDs3nvv1fvvv6/s7Gy1atVKP/zwgz766CN16tRJbdq0sbQ3Dw8Pbd68WePGjVNwcLA2b96szz//XI888ogZdu+66y699dZbGjJkiHr06KGjR4/q3XffVd26dfXzzz9f0f579eqlUaNGSZLDa8EuJi4uTv/73//UuXNn83LtHTt2aOXKlapatarDO8X/7Mknn5SPj4/q16+vjz/+2GFdWFiYqlevrqeeekpfffWVHnjgAfXu3VsNGjRQVlaW/ve//yklJUX//e9/S/htAQDXCwI2AAAu1LFjR61atUrx8fHasGGDli1bJrvdrqCgII0fP14PPPCAWTt16lTVrl1bH330kT799FNVr15dw4cP14gRIyzvq1y5clqwYIGmTJmil19+WZUqVdKIESP0+OOPmzVt27bViy++qLi4OE2bNk21a9fW2LFjdeDAgSsO2O3bt5e3t7eKiorUsWPHS9pm+PDh+uSTT/T1118rISFBJ0+elK+vr7p3767HHnvM6aFt5zp27Jgkady4cU7rFi1apOrVq6t69epasWKF5s2bp/Xr12vZsmWqWrWqGjRooLFjx5bsiwIAris2oyRPNQEAANet8ePHa+3atUpNTXVZD6dPn9add96p9u3ba9q0aS7rAwCAy8E92AAAoNT59NNPlZmZqV69erm6FQAALhmXiAMAgFLj+++/188//6zXX39djRs3VuvWrV3dEgAAl4yADQAASo1ly5Zp1apVatiwoWbMmOHqdgAAuCzcgw0AAAAAgAW4BxsAAAAAAAsQsAEAAAAAsAABGwAAAAAACxCwAQAAAACwAAEbAAAAAAALELABAAAAALAAARsAAAAAAAsQsAEAAAAAsAABGwAAAAAAC/w/GEdKKYkpkxAAAAAASUVORK5CYII=\n"},"metadata":{}},{"output_type":"stream","name":"stderr","text":[":4: FutureWarning: \n","\n","The `ci` parameter is deprecated. Use `errorbar=None` for the same effect.\n","\n"," sns.barplot(\n",":4: FutureWarning: \n","\n","Passing `palette` without assigning `hue` is deprecated and will be removed in v0.14.0. Assign the `x` variable to `hue` and set `legend=False` for the same effect.\n","\n"," sns.barplot(\n"]},{"output_type":"display_data","data":{"text/plain":["
"],"image/png":"iVBORw0KGgoAAAANSUhEUgAAA9gAAAJICAYAAACaO0yGAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAADuaElEQVR4nOzdeVyN6f8/8NfdqqSI7FtlWkQUIRJlEhVZxjYmW9Yhg8lkDA0zxr59ZMxYGjtjHYpkiVF2Q4axU2iiLO20d//+8Ov+OnNCnU5OJ6/n4+Exc+77Ovd5dUmd97mvRRBFUQQRERERERERlYqGqgMQERERERERVQQssImIiIiIiIiUgAU2ERERERERkRKwwCYiIiIiIiJSAhbYRERERERERErAApuIiIiIiIhICVhgExERERERESkBC2wiIiIiIiIiJWCBTURERERERKQELLCJiIgqmPPnz8PS0hLnz59XdRTJtGnTYGdnp+oY72RpaYkffvhB1TGIiEiNscAmIqIPYuvWrbC0tES/fv1UHaXcycnJwcaNG9GrVy/Y29ujdevW8PT0xMyZM3H//n1Vx1Mrrq6uGDNmjMpePyMjAytXrkTPnj1hZ2cHW1tbeHl5YdGiRUhMTCzx9U6ePImgoKAySEpERGVBS9UBiIjo4xAaGop69erh6tWrePjwIRo1aqTqSOXGxIkTERkZCU9PT/Tr1w95eXmIiYnBn3/+CTs7O5ibm6s6IhVDXFwchg0bhidPnqBbt24YMGAAtLW1cfv2bezevRvHjh3D4cOHS3TNkydPYuvWrfDz8yuj1EREpEwssImIqMzFxcUhOjoaK1euRGBgIEJDQzFhwoQPmqGgoAC5ubnQ1dX9oK/7PlevXsWJEycwefJkjB07VuZcfn4+0tLSVJTs/7x69Qr6+vqqjlGu5eXlYcKECXjx4gU2bdqE1q1by5yfPHky1q5dq6J0ZS87Oxva2trQ0ODgSCL6uPGnIBERlbnQ0FAYGRmhU6dOcHd3R2hoqHQuNzcXbdq0wbfffiv3vIyMDDRv3hwLFiyQjuXk5GDFihVwc3NDs2bN0KlTJyxcuBA5OTkyzy2cTxsSEgJPT080b94cUVFRAIDg4GAMHDgQbdu2ha2tLfr06YPw8HC518/KysKcOXPQtm1b2NnZYezYsUhMTISlpaXcsN3ExER8++23aN++PZo1awZPT0/s3r37vX0TFxcHALC3t5c7p6mpiWrVqkmP4+PjMWvWLLi7u8PW1hZt27bFxIkT8e+//773df766y9MnDgRnTt3lvpt7ty5yMrKkmlXOFf60aNHGDVqFOzs7ODv748VK1bAxsYGSUlJcteeOXMmWrdujezs7GJ9vb6+vmjZsiWcnJywcuVKiKIIABBFEa6urhg3bpzc87Kzs9GqVSsEBga+9zX+69WrV5g/fz46deqEZs2awd3dHcHBwdLr/ldISAjc3d3RvHlz9OnTBxcvXnzvaxw5cgS3bt3C2LFj5YprADAwMMDkyZOlx8X5+5g2bRq2bt0K4PX3c+GfQgUFBdiwYYP0/d2+fXsEBgYiNTVV5rULCgoQFBQEJycntGjRAj4+Prh37x5cXV0xbdo0mbZxcXGYOHEi2rRpgxYtWqB///74888/ZdoUzvE/ePAgli1bho4dO6JFixa4efMmLC0tsWHDBrmv//Lly7C0tMSBAwfe25dEROqMd7CJiKjMhYaGws3NDTo6OvDy8sL27dtx9epV2NraQltbG59++imOHj2K2bNnQ0dHR3resWPHkJOTAw8PDwCvC4Vx48bh0qVL6N+/P8zNzXHnzh1s3LgRDx48wKpVq2Re99y5czh06BAGDx6MatWqoV69egCATZs2wdXVFT169EBubi4OHjyIr776CqtXr0bnzp2l50+bNg2HDh2Ct7c3WrRogYsXL2L06NFyX9/z58/Rv39/CIKAwYMHw9jYGJGRkfjuu++QkZGBYcOGvbVv6tatK/WRvb09tLTe/qv52rVriI6OhqenJ2rXro34+Hhs374dQ4YMwcGDB6Gnp/fW54aHhyMrKwuDBg1C1apVcfXqVWzZsgUJCQlYsWKFTNu8vDz4+vqiVatWCAgIQKVKlWBnZ4eff/4ZYWFh+OKLL6S2OTk5OHz4MLp27fre0QH5+fkYOXIkWrRogalTpyIqKgpBQUHIz8/HV199BUEQ0KNHDwQHByMlJQVVq1aVnnv8+HFkZGSgZ8+e73yN/xJFEePGjcP58+fx2WefwdraGlFRUVi4cCESExMxffp0mfYXL15EWFgYfHx8oKOjg+3bt2PkyJHYtWsXLCws3vo6ERERAABvb+9i5SrO38eAAQPw9OlTnD59GgsXLpS7RmBgIP744w/06dMHPj4++Pfff7F161bcuHED27dvh7a2NgBgyZIlWLduHVxcXNCxY0fcunULvr6+ch+IPH/+HAMHDkRmZiZ8fHxQrVo1/PHHHxg3bpz0odabVq1aBW1tbfj6+iInJwdmZmawt7dHSEiI3Pd8aGgoKleujC5duhSrf4iI1JZIRERUhq5duyZaWFiIp0+fFkVRFAsKCkRnZ2dxzpw5UpuoqCjRwsJCPH78uMxzR40aJXbp0kV6vG/fPtHKykq8ePGiTLvt27eLFhYW4qVLl6RjFhYWopWVlXj37l25TJmZmTKPc3JyRC8vL3HIkCHSsX/++Ue0sLAQf/rpJ5m206ZNEy0sLMQVK1ZIx6ZPny526NBBTEpKkmk7efJksVWrVnKv96aCggLxiy++EC0sLMT27duLU6ZMEbds2SLGx8e/N7coimJ0dLRoYWEh/vHHH9Kxc+fOiRYWFuK5c+fe+dzVq1eLlpaWMq8VEBAgWlhYiIsXL5ZrP2DAALFfv34yx44cOSL3WkUpvO6PP/4o87WPHj1atLGxEV+8eCGKoijGxMSIFhYW4rZt22SeP3bsWNHFxUUsKCh45+u4uLiIo0ePlh4fPXpUtLCwEFetWiXTzs/PT7S0tBQfPnwoHbOwsBAtLCzEa9euScfi4+PF5s2bi+PHj3/n6/bq1Uts1arVO9u8qbh/H7NnzxYtLCzk2l68eFG0sLAQQ0JCZI5HRkbKHH/27JnYtGlT8csvv5RpFxQUJFpYWIgBAQHSsZ9++km0sLCQ+feVkZEhurq6ii4uLmJ+fr4oiv/3/dWlSxe5r+P3338XLSwsxHv37knHcnJyxLZt28q8FhFRRcUh4kREVKZCQ0NRo0YNtG3bFgAgCAI8PDwQFhaG/Px8AEC7du1QrVo1hIWFSc9LTU3FmTNnpLvXwOu7fubm5jAzM0NSUpL0p127dgAgty2Vg4MDmjRpIpepUqVKMq+Tnp6OVq1a4caNG9LxwuHkn3/+ucxz37x7C7y+Q3rkyBG4urpCFEWZXE5OTkhPT8f169ff2j+CICA4OBiTJk2CoaEhDhw4gB9++AEuLi6YNGmSzBzsN3Pn5uYiOTkZDRs2hKGhoUz2orz53FevXiEpKQl2dnYQRbHI5w4aNEjumLe3N/7++288evRIOhYaGoo6deqgTZs273z9QoMHD5b52gcPHozc3FycPXsWAGBqaooWLVrITCNISUlBVFQUevToAUEQivU6hSIjI6GpqQkfHx+Z4yNGjIAoioiMjJQ5bmdnh2bNmkmP69atiy5duuDUqVPS92tRMjIyULly5WLnKunfx3+Fh4ejSpUq6NChg8z3nI2NDfT19aV/C2fPnkVeXt57v4+B1wuq2draygxxr1y5MgYMGID4+Hjcu3dPpn2vXr1kvg4A6N69O3R1dWX+/k6dOoXk5OQSjz4gIlJHHCJORERlJj8/HwcPHkTbtm1l5gnb2trit99+w9mzZ+Hk5AQtLS107doVBw4cQE5ODnR0dHDkyBHk5ubKFNgPHz7E/fv34ejoWOTrvXjxQuZx/fr1i2x34sQJ/PLLL7h586bM3O03i7fHjx9DQ0ND7hr/Xf08KSkJaWlp2LFjB3bs2FHk6xU1b/lNOjo6GDduHMaNG4enT5/i4sWL2LRpEw4dOgQtLS0sXrwYwOs54atXr8bevXuRmJgoM4c4PT39na/x+PFjrFixAsePH5ebo5uRkSHzWEtLC7Vr15a7hoeHB+bOnYuQkBBMmDAB6enpOHHiBIYNG1aswldDQwMNGjSQOWZqagrg9fzyQt7e3vjxxx8RHx+PevXqITw8HLm5ucUefv2m+Ph41KxZEwYGBjLHC1dmf/N1Afm/XwBo3LgxMjMzkZSUBBMTkyJfx8DAQJpPXxwl+fsoysOHD5Genv7efwuPHz8GADRs2FDmfNWqVWFkZCSXqUWLFnLXMjMzk86/OUy+qH9fhoaGcHFxwYEDBzBp0iQArz+EqVWrlvRBGBFRRcYCm4iIysy5c+fw7NkzHDx4EAcPHpQ7HxoaCicnJwCAp6cnduzYgcjISHz66acIDw+HmZkZrKyspPYFBQWwsLAockE0AHJF4X/vrgGvF5caN24cHBwc8P3338PExATa2trYs2ePQgswFRQUAAB69uyJ3r17F9nmzYWp3qdmzZrw9PRE165d4eXlhfDwcMyfPx9aWlr48ccfsXfvXgwdOhQtW7ZElSpVIAgCJk+e/NYFu4DXH3QMHz4cqampGDlyJMzMzKCvr4/ExERMmzZN+hoK6ejoFLkatJGREVxcXKRV4MPDw5GTk6P0O5Oenp6YN28eQkNDMXbsWISEhKBZs2ZSoVcemZmZ4caNG3jy5Anq1KnzzrYl/fsoSkFBAapXry59+PJfxsbGCn0dJVHUvy/g9Z3t8PBwXL58GRYWFjh+/DgGDRrEFcaJ6KPAApuIiMpMaGgoqlevXuTKz0ePHpUWNqtUqRIcHBxgYmKCsLAw2Nvb49y5c3LbVjVs2BC3bt2Co6NjiYcKFzp8+DB0dXURHBwss6Danj17ZNrVrVsXBQUF+Pfff9G4cWPp+MOHD2XaGRsbo3LlyigoKED79u0VylQUbW1tWFpa4sGDB0hOToaJiQkOHz6MXr16yaz8nJ2d/d6713fu3MGDBw+wYMEC9OrVSzp++vTpEufy9vbGl19+iatXryI0NBRNmzbFJ598UqznFhQUIC4uTrprDQCxsbEAIC1AB7y+u9q5c2eEhoaiR48euHz5stxiZMVVr149nD17FhkZGTJ3sWNiYuReF5D/+wWABw8eQE9P751Fa+Fd25CQEIwZM+admUry9/G27/OGDRvi7NmzsLe3f2uhC/zfInqPHj2SGT2QnJwsd+e8bt260t/Hmwr7qvBa79OxY0cYGxsjNDQULVq0QGZmpkKjD4iI1BE/SiQiojKRlZWFI0eOoHPnzujWrZvcn8GDB+Ply5c4fvw4gNfDh7t164YTJ04gJCQEeXl5MsPDgdfzOxMTE7Fz584iX+/Vq1fvzaWpqQlBEGTm0/7777/SKtCFCu+sb9u2Teb4li1b5K7n7u6Ow4cP486dO3Kv977h4Q8ePJCG8b4pLS0N0dHRMDIykgo7TU1NuXabN29+59xgANKdwzfvcouiiE2bNr3zeUVxdnZGtWrVsG7dOly8eLHEd68Lt50qzLB161Zoa2vLDXX29vbGvXv3sHDhQmhqasLT07PEWQvz5ufny7wuAGzYsAGCIMDZ2VnmeHR0tMyc+SdPniAiIgIdOnQosv8Lubu7w8LCAr/++iuio6PlzmdkZGDZsmUASvb3Ubgy/H/3Q+/evTvy8/PlVs4HXq8CX9je0dERWlpa2L59u0yb//YHAHTq1AlXr16Vyf/q1Svs3LkT9erVK3I9g6JoaWnB09MThw4dwt69e2FhYSEzEoWIqCLjHWwiIioTx48fx8uXL+Hq6lrk+ZYtW8LY2BghISFSId29e3ds3rwZK1asgIWFhTRPtpC3tzcOHTqE77//HufPn4e9vT3y8/MRExOD8PBwrFu3Ds2bN39nrk6dOmH9+vUYOXIkvLy88OLFC2zbtg0NGzbE7du3pXaF+yVv3LgRKSkp0jZdDx48ACB7Z/Hrr7/G+fPn0b9/f/Tr1w9NmjRBamoqrl+/jrNnz+LChQtvzXPr1i34+/ujY8eOaN26NYyMjJCYmIh9+/bh6dOnmD59ulTYde7cGfv374eBgQGaNGmCK1eu4MyZMzLbWRXFzMwMDRs2xIIFC5CYmAgDAwMcPnxYrmgrDm1tbXh6emLLli0lLnx1dXURFRWFgIAA2NraIioqCn/++SfGjh0rd3e4U6dOqFq1KsLDw+Hs7Izq1auXOCsAuLq6om3btli2bBni4+NhaWmJ06dPIyIiAkOHDpWbm2xhYQFfX1+ZbboAwM/P752vo62tjZUrV2L48OH44osv0K1bN9jb20NbWxt3797FgQMHYGhoiMmTJ5fo78PGxgYAMGfOHDg5OUl93qZNGwwYMACrV6/GzZs30aFDB2hra+PBgwcIDw/Hd999h27duqFGjRoYMmQIfvvtN4wdOxYdO3bE7du3ERkZiWrVqsl8H48ePRoHDx7EqFGj4OPjAyMjI+zbtw///vsvgoKCSjTEu1evXti8eTPOnz8Pf3//Yj+PiEjdscAmIqIyERISAl1dXXTo0KHI8xoaGtIw4OTkZFSrVg329vaoU6cOnjx5Inf3uvA5P//8MzZs2ID9+/fj6NGj0NPTQ/369eHj4yMz9PhtHB0d8dNPP2Ht2rWYO3cu6tevD39/f8THx8sU2ACwYMEC1KhRAwcPHsTRo0fRvn17LFu2DN26dZMZXl6jRg3s2rULP//8M44ePYrt27ejatWqaNKkyXuLCwcHB0ycOBFRUVFYv349kpOTUblyZVhbW8Pf3x/u7u5S2++++w4aGhoIDQ1FdnY27O3tpQ8L3kVbWxu//vor5syZg9WrV0NXVxdubm4YPHiwQkN3vb29sWXLFjg6OqJmzZrFfp6mpibWrVuHWbNmYdGiRahcuTImTJiA8ePHy7XV0dGBh4cHtm3bVqKMoijKFIIaGhr45ZdfsGLFCoSFhWHv3r2oV68evvnmG4wYMULu+Q4ODmjZsiV+/vlnPH78GE2aNMG8efOKdQe2UaNG2LdvHzZs2ICjR48iIiICBQUFaNSoEfr16yetZF6Sv4+uXbvCx8cHBw8eREhICERRlD7U+OGHH9CsWTP8/vvvWLZsGTQ1NVGvXj307NkT9vb20jX8/f1RqVIl7Nq1C2fPnkXLli0RHByMzz//XO77+Pfff8eiRYuwZcsWZGdnw9LSEr/++qvM/vDF0axZM3zyySe4f/8+Vw8noo+KIL5rVRQiIiKScfPmTfTq1QuLFi36aAuHW7duwdvbW24OsbLNnTsXu3fvxunTp6Wh0u/Tpk0bdOrUCYsWLSqzXBVBWloaHBwcMGnSJIwbN65MXqNXr14wMjLCxo0by+T6RETlEedgExERvUVWVpbcsY0bN0JDQwMODg4qSFQ+7Ny5E/r6+ujatWuZvUZ2djZCQkLg7u5e7OL60aNHSE1NLfZc4Y/F276PARR7//KSunbtmvRhFBHRx4RDxImIiN5i3bp1+Oeff9CuXTtoamoiMjISkZGRGDBgwHu3YqqIjh8/jnv37mHnzp0YPHgw9PX1lf4aL168wJkzZ3D48GGkpKRgyJAh731OXFwcTp48ie3bt0NbW7vI6QUfs7CwMPzxxx9wdnaGvr4+Ll++jAMHDsDJyQmtWrVS6mvduXMH169fx2+//QYTExP+XRDRR4cFNhER0VvY2dnh9OnTWLVqFV69eoU6derAz89Pbvuwj8WcOXPw/PlzODs7v3fRL0Xdu3cP/v7+qF69OmbMmAFra+v3PufixYuYP38+mjRpglWrVslsR0Wv92EvnP/+8uVLVK9eHUOGDMGkSZOU/lqHDx/Gzz//DFNTUyxduhS6urpKfw0iovKsXM3BPnToEEJCQnD9+nWkpaWhUaNG8PHxQd++fWVWudy1axfWrVuHx48fw9TUFJMnT4aLi4vMtdLT0zFv3jwcO3YMubm56NixI2bMmCG3GMvly5exYMEC3Lx5E9WrV8egQYMwatQomdcTRRFr167Ftm3bkJSUBGtra3z77bdo2bKlzLUSExMxZ84cnDp1Ctra2nBzc8O3334rs+8mERERERERVUzlqsAeMGAA6tWrh08//RTVqlXDmTNnsG7dOowfPx4TJkwAABw8eBBff/01xo4di3bt2iEsLAx79uzB1q1bZQpeX19f3Lt3DwEBAdDV1cXy5cuhoaGBPXv2QEvr9Y37hw8folevXujQoQMGDx6M27dvY/HixZg8eTJ8fX2la61ZswYrVqyAv78/LC0tsXXrVpw5cwb79++XPiXPzc1Fnz59AACTJ09GVlYWFixYACsrK6xevfoD9SARERERERGpSrkqsJOSkuT2wZw5cybCwsJw8eJFaGhowN3dHc2aNcOSJUukNgMHDkSVKlWwdu1aAEB0dDQGDhyI4OBgODk5AQBiYmLg4eGBpUuXSvOBAgMDcerUKYSHh0vbVCxduhTbt2/H6dOnoaOjg+zsbLRv3x6DBw/GlClTAAA5OTno1q0bnJ2dMWvWLADAgQMH4O/vj7CwMJiZmQEATp06BV9fX+zatQu2trZl13FERERERESkcuVqDvZ/i2sAsLa2xs6dO/Hq1SskJyfjwYMHmDp1qkwbDw8PLFy4EDk5OdDR0UFkZCQMDQ1l9l41MzODtbU1IiMjpQI7MjISbm5uMntAenh4YPXq1YiOjkbbtm1x+fJlZGRkoHv37lIbHR0duLm54ejRo9KxyMhIWFpaSsU1AHTo0AFVq1bFyZMnFS6wo6OjIYoitLW1FXo+ERERERERKS43NxeCIMDOzu69bcv9Nl2XLl1CrVq1YGBggJiYGACAqampTBtzc3Pk5uYiLi4OwOu71aampjLzqIHXRXbhNV69eoUnT57IFMSFbQRBkNoV/ve/7czNzfH48WNp64uYmBi5NoIgwNTUVLqGIkRRRDkaZEBERERERPRRKUlNVq7uYP/XX3/9hbCwMAQEBAAAUlNTAQCGhoYy7QofF55PS0tDlSpV5K5nZGSEf/75B8DrRdCKupaOjg709PRkrqWjoyO3CqahoSFEUURqaioqVar0ztcsvJYitLW1IYoizM3NFb4GERERERERKebevXtyN2/fptwW2AkJCZg8eTLatm1brD0wK7Lc3FzcvHlT1TGIiIiIiIg+Sm9OK36Xcllgp6WlYdSoUahatSqCgoKgofF6JLuRkRGA13efTUxMZNq/ed7Q0BAJCQly101NTZXaFN5tLryTXSgnJweZmZky18rJyUF2drbMXey0tDQIgiDTLiMjo8jXrFOnjgK98H+0tbXRpEmTUl2DiIiIiIiISu7evXvFblvuCuysrCyMGTMG6enp2LFjh8yw68I5zv+d7xwTEwNtbW1pyywzMzOcPXsWoijK3MqPjY2FhYUFAEBfXx916tSRmx8dGxsLURSl6xf+NzY2FlZWVjKvWbduXVSqVElqd+fOHZlriaKI2NhYmcXWFCEIAvT19Ut1DSIiIiIiIiq54g4PB8rZImd5eXmYNGkSYmJisG7dOtSqVUvmfIMGDdC4cWOEh4fLHA8LC4Ojo6N0297Z2Rmpqak4e/as1CY2NhY3btyAs7OzdMzZ2RkRERHIzc2VuZahoaG0Qpy9vT0MDAxw6NAhqU1ubi6OHDkid61bt27hwYMH0rGzZ88iJSUFnTp1KkWvEBERERERkTooV3ewZ8+ejRMnTmDatGnIyMjAlStXpHNNmzaFjo4O/Pz84O/vj4YNG6Jt27YICwvD1atXsWXLFqmtnZ0dnJycMH36dAQEBEBXVxfLli2DpaUlunbtKrXz9fVFaGgovv76awwaNAh37txBcHAwJk+eLBXrurq6GDNmDIKCgmBsbAwLCwts374dKSkp8PX1la7l7u6O1atXw8/PD1OmTEFmZiYWLlyIzp07cw9sIiIiIiKij4AglqM9oFxdXREfH1/kuYiICNSvXx8AsGvXLqxduxaPHz+GqakppkyZAhcXF5n26enpmDdvHo4ePYq8vDw4OTlhxowZcnfFL1++jPnz5+PmzZswNjbG4MGDMWrUKJlhAKIoYs2aNdi2bRuSkpJgbW2Nb7/9Vm4ftMTERMyZMwenTp2ClpYW3NzcMH36dBgYGCjcJ9euXQMANG/eXOFrEBERERERkWJKUpOVqwKb5LHAJiIiIiIiUp2S1GTlag42ERERERERkbpigU1ERERERESkBCywiYiIiIiIiJSABTYRERERERGRErDArgAK8gtUHaFcYr8QEREREdGHVK72wSbFaGhqYOG03xAXk6DqKOVGA7Pa+Gb+CFXHICIiIiKijwgL7AoiLiYB92/GqToGERERERHRR4tDxImIiIiIiIiUgAU2ERERERERkRKwwCYiIiIiIiJSAhbYRERERERERErAApuIiIiIiIhICVhgExERERERESkBC2wiIiIiIiIiJWCBTURERERERKQELLCJiIiIiIiIlIAFNhEREREREZESsMAmIiIiIiIiUgIW2ERERERERERKwAKbiIiIiIiISAlYYBMREREREREpAQtsIiIiIiIiIiVggU1ERERERESkBCywiYiIiIiIiJSABTYRERERERGRErDAJiIiIiIiIlICFthERERERERESsACm4iIiIiIiEgJWGATERERERERKQELbCIiIiIiIiIlYIFNREREREREpAQssIneoSC/QNURyiX2CxERERGRPC1VByAqzzQ0NbBowS7ExT1TdZRyo0EDE0wN6KfqGERERERE5Q4LbKL3iIt7hvv3nqg6BhERERERlXMcIk5ERERERESkBCywiYiIiIiIiJSABTYRERERERGRErDAJiIiIiIiIlICFthERERERERESsACm4iIiIiIiEgJWGATERERERERKQELbCIiIiIiIiIlYIFNREREREREpAQssImIiIiIiIiUgAU2EalEfkGBqiOUS+wXIiIiIvWlpeoARPRx0tTQwNyf/8Cjx89VHaXcaFi3BqaP763qGERERESkIBbYRKQyjx4/x70HCaqOQURERESkFBwiTkRERERERKQELLCJiIiIiIiIlIAFNhEREREREZESsMAmIiIiIiIiUoJyVWA/fPgQgYGB8Pb2RtOmTeHl5SXXxsfHB5aWlnJ/7t+/L9MuPT0d06dPR5s2bWBnZ4eJEyfi6dOncte7fPkyBgwYAFtbW7i4uGDNmjUQRVGmjSiKWLNmDTp37gxbW1sMGDAAV65ckbtWYmIi/Pz8YGdnhzZt2uC7775DRkZG6TqFiIiIiIiI1EK5WkX87t27OHnyJFq0aIGCggK5QreQvb09AgICZI7Vr19f5vGkSZNw7949zJo1C7q6uli+fDlGjRqFPXv2QEvr9Zf98OFD+Pr6okOHDpg0aRJu376NxYsXQ1NTE76+vtK11q5dixUrVsDf3x+WlpbYunUrRowYgf3796NBgwYAgNzcXIwcORIAsGTJEmRlZWHBggX4+uuvsXr1aqX1EREREREREZVP5arAdnV1xaeffgoAmDZtGv75558i2xkaGqJly5ZvvU50dDROnTqF4OBgODk5AQBMTU3h4eGBI0eOwMPDAwAQHByMatWqYenSpdDR0YGjoyOSkpLw66+/wsfHBzo6OsjOzsbq1asxYsQIDBs2DADQqlUrdOvWDcHBwZg1axYA4PDhw7h79y7CwsJgZmYm5fT19cXVq1dha2urhB4iInq//IICaGqUqwFK5QL7hYiIiMpauSqwNZT0xicyMhKGhobo0KGDdMzMzAzW1taIjIyUCuzIyEi4ublBR0dHaufh4YHVq1cjOjoabdu2xeXLl5GRkYHu3btLbXR0dODm5oajR4/KvKalpaVUXANAhw4dULVqVZw8eZIFNhF9MJoaGpi14Q88SHiu6ijlRuPaNTBrWG9VxyAiIqIKrlwV2MV14cIFtGzZEvn5+WjRogW++uorODg4SOdjYmJgamoKQRBknmdmZoaYmBgAwKtXr/DkyROZgriwjSAIiImJQdu2baX2/21nbm6OjRs3IisrC5UqVUJMTIxcG0EQYGpqKl2DiOhDeZDwHHf+TVB1DCIiIqKPitoV2A4ODvD29kbjxo3x9OlTBAcHY/jw4di8eTPs7OwAAGlpaahSpYrcc42MjKRh5+np6QBeD+N+k46ODvT09JCamipdS0dHB7q6ujLtDA0NIYoiUlNTUalSpXe+ZuG1FCWKIl69elXkOUEQoKenV6rrV2SZmZlvncv/Puzbd2Pflh32bdkpTd8SERHRx0kURbmbt2+jdgX2xIkTZR537twZXl5eWLVqFdauXauiVGUrNzcXN2/eLPKcnp4emjZt+oETqY/Y2FhkZmYq9Fz27buxb8sO+7bslKZviYiI6OP15rTid1GowM7JySn2C5Q1fX19dOrUCYcPH5aOGRoaIiFBfmhkamoqjIyMAEC621x4J7tQTk4OMjMzpXaGhobIyclBdna2zF3stLQ0CIIg066oLblSU1NRp06dUn2N2traaNKkSZHnivtJysfK1NS0VHcC6e3Yt2WHfVt2StO3RERE9HG6d+9esdsqVGA7OTnB3d0d3t7eaN26tSKXKFNmZmY4e/as3K382NhYWFhYAHhdmNepU0dufnRsbCxEUZTmUxf+NzY2FlZWVlK7mJgY1K1bF5UqVZLa3blzR+ZaoigiNjZWZrE1RQiCAH19/VJd42PFobJlh31bdti3ZYd9S0RERCVVkhsYCi3b7e7ujiNHjsDHxweurq5YtmwZ7t+/r8ilSu3Vq1f4888/0bx5c+mYs7MzUlNTcfbsWelYbGwsbty4AWdnZ5l2ERERyM3NlY6FhYXB0NBQms9tb28PAwMDHDp0SGqTm5uLI0eOyF3r1q1bePDggXTs7NmzSElJQadOnZT6NRMREREREVH5o9Ad7B9//BGBgYH4888/ERoaivXr12PNmjWwtraGt7c3PD09UaNGjRJfNzMzEydPngQAxMfHIyMjA+Hh4QCANm3aICYmBuvWrYObmxvq1auHp0+fYv369Xj27Bn+97//Sdexs7ODk5MTpk+fjoCAAOjq6mLZsmWwtLRE165dpXa+vr4IDQ3F119/jUGDBuHOnTsIDg7G5MmTpSHwurq6GDNmDIKCgmBsbAwLCwts374dKSkp8PX1la7l7u6O1atXw8/PD1OmTEFmZiYWLlyIzp07c4suIiIiIiKij4DCi5xpa2vDzc0Nbm5uyMjIwKFDh3DgwAEsWLAAixYtgqOjI3r27Ak3NzdpGPX7vHjxAl999ZXMscLHmzZtQu3atZGbm4tly5YhJSUFenp6sLOzw+zZs+WK2OXLl2PevHkIDAxEXl4enJycMGPGDGhp/d+X3KhRIwQHB2P+/PkYPXo0jI2NMXHiRIwYMULmWqNGjYIoivjtt9+QlJQEa2trBAcHo0GDBjL9sW7dOsyZMwdTpkyBlpYW3NzcMH369BL1KxEREREREaknpawibmBggH79+sHKygpr167FkSNHEBUVhaioKFSuXBn9+/eHn5/fe+cR169fH7dv335nm+Dg4GJlqlKlCubOnYu5c+e+s529vT127tz5zjaCIGDMmDEYM2bMO9vVqlULQUFBxcpHRETqJ7+gAJoaCs2uqtDYL0RERK+VusCOi4tDaGgoQkND8eDBA1StWhVffPEFvL29oa2tjZ07d2Lz5s34999/WXwSEZFa09TQwIydexH77Lmqo5QbpiY1MKd/H1XHICIiKhcUKrCTk5MRFhaG0NBQ/P3339DW1kbnzp0xdepUODs7ywzDDgwMRO3atbFq1SqlhSYiIlKV2GfPceux/FaQRERERAoV2B07dkReXh5atmyJ77//Hh4eHjA0NHxr+08++QTGxsYKhyQiIiIiIiIq7xQqsMeMGQNvb280bNiwWO1dXFzg4uKiyEsRERHRR4DzuIvGfiEiUi8lLrAzMzNx+/ZtXLlypdgFNhEREdG7aGpo4NuDuxHzgvPbC5lVr4F5np+pOgYREZVAiQtsPT09nDlzBs7OzmWRh4iIiD5SMS+e49bTJ6qOQUREpDCFxhy1atUK0dHRys5CREREREREpLYUKrADAwNx6dIlLFu2DAkJXEmViIiIiIiISKFFznr27In8/HysWbMGa9asgaamJnR0dGTaCIKAS5cuKSUkERERERERUXmnUIHt7u4OQRCUnYWIiIiIiIhIbSlUYM+fP1/ZOYiIiIiIiIjUGjdWJCIiIiIiIlIChe5gF0pISMCNGzeQnp4OURTlzvfq1as0lyciIiIiIiJSGwoV2NnZ2QgICMCRI0dQUFAAQRCkAvvNudkssImIiIiIiOhjodAQ8aVLl+Lo0aOYNGkSNm/eDFEUMX/+fPz2229wdnaGlZUV9u/fr+ysREREREREROWWQgX24cOH0adPH4wePRpNmjQBANSqVQvt27fH6tWrUaVKFWzdulWpQYmIiIiIiIjKM4UK7BcvXsDW1hYAUKlSJQBAZmamdN7d3R1Hjx5VQjwiIiIiIiIi9aBQgV2jRg0kJycDAPT09GBkZITY2FjpfEZGBrKzs5WTkIiIiIgUll9QoOoI5Q77hIjKikKLnNna2uLy5cvSYxcXFwQHB8PExAQFBQXYsGEDWrZsqayMRERERKQgTQ0NzI7ciYcpz1QdpVxoVNUE3zv3V3UMIqqgFCqwfXx8EB4ejpycHOjo6OCrr75CdHQ0vvnmGwBAw4YN8d133yk1KBEREREp5mHKM9xJeqzqGEREFZ5CBXbr1q3RunVr6XGdOnVw6NAh3LlzBxoaGjAzM4OWVqm22CYiIiIiIiJSK0qrgjU0NGBlZaWsyxERERERERGplWIV2BcvXlTo4g4ODgo9j4iIiIiIiEjdFKvA9vHxgSAIxb6oKIoQBAE3b95UOBgRERERERGROilWgb1p06ayzkFERERERESk1opVYLdp06ascxARERERERGpNQ1VByAiIiIiIiKqCBReRTw7OxuHDx/GjRs3kJ6ejoKCApnzgiBg7ty5pQ5IREREREREpA4UKrDj4+MxZMgQxMfHw9DQEOnp6TAyMkJ6ejry8/NRrVo16OvrKzsrERERERERUbml0BDxhQsXIiMjAzt37kR4eDhEUcSyZcsQHR0Nf39/VKpUCcHBwcrOSkRERERERFRuKVRgnzt3DoMGDYKtrS00NP7vEjo6Ohg5ciTatWvH4eFERERERET0UVGowM7KykK9evUAAAYGBhAEAenp6dJ5Ozs7XLp0STkJiYiIiIiIiNSAQgV2nTp1kJiYCADQ0tJCrVq1cOXKFen8vXv3oKurq5SAREREREREROpAoUXO2rVrh4iICEyYMAEA0Lt3b6xZswZpaWkoKChASEgIvL29lRqUiIiIiIiIqDxTqMAePXo0rl27hpycHOjo6GDs2LF4+vQpDh8+DA0NDXh5eeHbb79VdlYiIiIiIiKickuhArtu3bqoW7eu9FhXVxc//fQTfvrpJ6UFIyIiIiIiIlInCs3BLkpBQQFevHgBURSVdUkiIiIiIiIitVHsAjs2Nhb79u1DamqqzPGMjAx88803aNGiBZycnNCuXTts2bJF6UGJiIiIiIiIyrNiF9jr16/H//73PxgaGsocnzlzJkJCQlC3bl24ublBR0cHP/30E44dO6b0sERERERERETlVbHnYF++fBmdO3eGIAjSsSdPnuDQoUNo2bIltmzZAi0tLaSlpeGzzz7D1q1b8emnn5ZJaCIiIiIiIqLypth3sBMTE2FmZiZz7MSJExAEAUOGDIGW1uta3dDQEN7e3rhx44ZykxIRERERERGVY8UusAsKCqQiutClS5cAAG3atJE5Xrt2bbx8+VIJ8YiIiIiIiIjUQ7EL7IYNG+Lvv/+WHufn5+P8+fMwMzNDjRo1ZNqmpqbC2NhYeSmJiIiIiIiIyrliz8Hu1asXFi1aBDMzM9jb2yMkJAQvXryAj4+PXNu//voLjRs3VmZOIiIiIqJypUAsgIagtF1vKwT2CX3sil1gf/755zh79iyWLl0KQRAgiiIcHBwwYsQImXZPnjxBZGQkJk2apOysRERERETlhoaggdV/b8GTjERVRykX6hjUwpgWX6g6BpFKFbvA1tbWxq+//opr164hLi4OdevWRcuWLeXa5eTkYMmSJXBwcFBmTiIiIiKicudJRiIepsWrOgYRlRPFLrALNW/eHM2bN3/r+UaNGqFRo0alCkVERERERESkbjhBgoiIiIiIiEgJWGATERERERERKQELbCIiIiIiIiIlYIFNREREREREpAQssImIiIiIiIiUoFQFdk5ODqKjo3Hs2DEkJSWVOszDhw8RGBgIb29vNG3aFF5eXkW227VrF9zd3dG8eXP07NkTJ06ckGuTnp6O6dOno02bNrCzs8PEiRPx9OlTuXaXL1/GgAEDYGtrCxcXF6xZswaiKMq0EUURa9asQefOnWFra4sBAwbgypUrctdKTEyEn58f7Ozs0KZNG3z33XfIyMhQrDOIiIiIiIhIrShcYG/atAlOTk74/PPP4efnh9u3bwMAkpKS0LZtW+zevbvE17x79y5OnjyJRo0awdzcvMg2Bw8exMyZM9G9e3esXbsWLVu2xIQJE+QK3kmTJuH06dOYNWsWFi9ejNjYWIwaNQp5eXlSm4cPH8LX1xcmJiZYvXo1hg4dihUrVuC3336TudbatWuxYsUKDBs2DKtXr4aJiQlGjBiBuLg4qU1ubi5GjhyJBw8eYMmSJZg1axZOnTqFr7/+usT9QEREREREROqnxPtgA8CePXswd+5ceHp6okOHDpg+fbp0ztjYGO3atUNYWBg+++yzEl3X1dUVn376KQBg2rRp+Oeff+TarFixAp6enpg0aRIAoF27drhz5w5+/vlnrF27FgAQHR2NU6dOITg4GE5OTgAAU1NTeHh44MiRI/Dw8AAABAcHo1q1ali6dCl0dHTg6OiIpKQk/Prrr/Dx8YGOjg6ys7OxevVqjBgxAsOGDQMAtGrVCt26dUNwcDBmzZoFADh8+DDu3r2LsLAwmJmZAQAMDQ3h6+uLq1evwtbWtkR9QUREREREROpFoTvY69evR5cuXbBkyRK4uLjInbexscHdu3dLHkbj3XHi4uLw4MEDdO/eXea4h4cHzp49i5ycHABAZGQkDA0N0aFDB6mNmZkZrK2tERkZKR2LjIxEly5doKOjI3OttLQ0REdHA3g9hDwjI0PmNXV0dODm5iZ3LUtLS6m4BoAOHTqgatWqOHnyZEm6gYiIiIjoo1YgFqg6QrnDPlEPCt3BfvjwIXx8fN56vmrVqkhJSVE001vFxMQAeH03+k3m5ubIzc1FXFwczM3NERMTA1NTUwiCINPOzMxMusarV6/w5MkTmYK4sI0gCIiJiUHbtm2l9v9tZ25ujo0bNyIrKwuVKlVCTEyMXBtBEGBqaipdg4iIiIiI3k9D0EDo7VV48eqxqqOUC9X166KH5ZeqjkHFoFCBbWhoiOTk5Leev3fvHkxMTBQO9TapqanS6/83z5vn09LSUKVKFbnnGxkZScPO09PTi7yWjo4O9PT0ZK6lo6MDXV1dudcURRGpqamoVKnSO1+z8FqKEkURr169KvKcIAjQ09Mr1fUrsszMTLlF64qLfftu7Nuyw74tO+zbssO+LTvs27JRmn4F2Lfvoqy+ffHqMRJfPlBesAqgtH1LihFFUe7m7dsoVGA7Oztj586d+Pzzz+XO3b17F7t27ULfvn0VuTQVITc3Fzdv3izynJ6eHpo2bfqBE6mP2NhYZGZmKvRc9u27sW/LDvu27LBvyw77tuywb8tGafoVYN++C/u27JS2b0lxb04rfheFCuxJkyahf//+8PLygouLCwRBwL59+7Bnzx4cOXIEJiYm+PJL5Q9hMDIyAvD67vObd8jT0tJkzhsaGiIhIUHu+ampqVKbwrvNhXeyC+Xk5CAzM1PmWjk5OcjOzpa5i52WlgZBEGTaFbUlV2pqKurUqaPYF/z/aWtro0mTJkWeK+4nKR8rU1PTUn3qT2/Hvi077Nuyw74tO+zbssO+LRul6VeAffsu7NuyU9q+JcXcu3ev2G0VKrBr1aqFvXv3YunSpTh06BBEUcT+/ftRuXJleHp6wt/fH8bGxopc+p0K5zj/d75zTEwMtLW10aBBA6nd2bNn5W7lx8bGwsLCAgCgr6+POnXqyM2Pjo2NhSiK0vUL/xsbGwsrKyuZ16xbty4qVaoktbtz547MtURRRGxsrMxia4oQBAH6+vqlusbHikO3yg77tuywb8sO+7bssG/LDvu2bLBfyw77tuywb1WjJB/6KLwPdvXq1fHTTz/hwoULOHPmDE6dOoWLFy9i3rx5qF69uqKXfacGDRqgcePGCA8PlzkeFhYGR0dH6ba9s7MzUlNTcfbsWalNbGwsbty4AWdnZ+mYs7MzIiIikJubK3MtQ0ND2NnZAQDs7e1hYGCAQ4cOSW1yc3Nx5MgRuWvdunULDx48kI6dPXsWKSkp6NSpk3I6gIiIiIiIiMothe5g/5ey7lZnZmZKW1rFx8cjIyNDKqbbtGkDY2Nj+Pn5wd/fHw0bNkTbtm0RFhaGq1evYsuWLdJ17Ozs4OTkhOnTpyMgIAC6urpYtmwZLC0t0bVrV6mdr68vQkND8fXXX2PQoEG4c+cOgoODMXnyZKlY19XVxZgxYxAUFARjY2NYWFhg+/btSElJga+vr3Qtd3d3rF69Gn5+fpgyZQoyMzOxcOFCdO7cmXtgExERERERfQQUKrBXrlz5zvOCIEBXVxe1a9eGg4MDatWqVazrvnjxAl999ZXMscLHmzZtQtu2beHl5YXMzEysXbsWa9asgampKVauXCndcS60fPlyzJs3D4GBgcjLy4OTkxNmzJgBLa3/+5IbNWqE4OBgzJ8/H6NHj4axsTEmTpyIESNGyFxr1KhREEURv/32G5KSkmBtbY3g4GBpSDrwep70unXrMGfOHEyZMgVaWlpwc3PD9OnTi/W1ExERERERlTVRzIcgaKo6RrmizD5RuMAuHIf+30n2/z2uqamJfv36ITAwEBoa7x6RXr9+fdy+ffu9r9+vXz/069fvnW2qVKmCuXPnYu7cue9sZ29vj507d76zjSAIGDNmDMaMGfPOdrVq1UJQUNA72xAREREREamKIGji8r3ZyMh8qOoo5YKBXiPYN/leaddTqMA+efIkxowZA2tra/j4+KBhw4YAgIcPH2LLli24ffs2li1bhlevXmHjxo3YsWMHatasWSYrixMREREREVHxZWQ+ROqrO+9vSCWm0CJns2fPhpmZGebNm4emTZvCwMAABgYGsLGxwbx589CoUSMsWbIE1tbWmD9/PpycnLB//35lZyciIiIiIiIqNxQqsM+dOwcHB4e3nndwcMDp06elx506dcLjx48VeSkiIiIiIiIitaBQga2jo4OrV6++9fzff/8NbW1t6XFeXh73cSYiIiIiIqIKTaE52F5eXti6dSuqVq2KQYMGoX79+gCAf//9F9u2bUNISAgGDx4stT9//jyaNGminMRERERERERE5ZBCBfbUqVPx/PlzrF+/Hhs2bJBWBy8oKIAoiujatSumTp0KAMjOzoaNjQ3s7e2Vl5qIiIiIiIionFGowNbV1cXy5ctx48YNREVFIT4+HgBQr149ODk5wcbGRqbthAkTlJOWiIiIiIiIqJxSqMAu1LRpUzRt2lRZWYiIiIiIiIjUlkKLnBERERERERGRLIXvYJ88eRIbNmzAjRs3kJ6eDlEU5drcvHmzVOGIiIiIiIiI1IVCd7APHz6MsWPH4vnz5/Dw8EBBQQE8PT3h4eGBSpUqwdLSEuPHj1d2ViIiIiIiIqJyS6E72KtXr4atrS22bduG1NRUbN++HX379oWjoyP+/fdfDBgwQNq6i4iIiIiIiOhjoNAd7Pv378PDwwOamprQ0npdo+fl5QEA6tevj0GDBmHt2rXKS0lERERERERUzilUYFeqVAna2toAAENDQ+jo6ODZs2fS+Ro1auDff/9VTkIiIiIiIiIiNaBQgW1qaor79+9Lj62trbF//37k5eUhOzsbBw4cQJ06dZQWkoiIiIiIiKi8U6jAdnNzQ0REBHJycgAAY8eOxYULF+Dg4IB27drhr7/+wujRo5UalIiIiIiIiKg8U2iRM19fX/j6+kqPXVxcsHnzZhw5cgSampro1KkT2rVrp7SQREREREREROVdiQvsnJwcREVFoV69erCyspKOt27dGq1bt1ZqOCIiIiIiIiJ1UeIh4tra2vjqq68QHR1dFnmIiIiIiIiI1FKJC2xBENC4cWMkJyeXRR4iIiIiIiIitaTQImdjxozB1q1bERMTo+w8RERERERERGpJoUXO/v77b1StWhU9evRAmzZtUK9ePVSqVEmu3YwZM0odkIiIiIiIiEgdKFRgb9myRfr/s2fPFtlGEAQW2ERERERERPTRUKjAvnXrlrJzEBEREREREak1heZgExEREREREZEshe5gF7py5QrOnz+PFy9e4PPPP0fjxo2RmZmJmJgYNG7cGJUrV1ZWTiIiIiIiIqJyTaECOycnB1OmTEFERAREUYQgCHBxcUHjxo2hoaGBESNGYNiwYRg3bpyy8xIRERERERGVSwoNEf/f//6HP//8E7NmzUJ4eDhEUZTO6erqolu3boiIiFBaSCIiIiIiIqLyTqEC++DBgxg4cCAGDBgAIyMjufPm5uaIi4srdTgiIiIiIiIidaFQgf3ixQtYWlq+9bympiaysrIUDkVERERERESkbhQqsOvUqYOYmJi3nr98+TIaNmyocCgiIiIiIiIidaNQge3l5YXff/8d0dHR0jFBEAAAO3fuxKFDh9CrVy+lBCQiIiIiIiJSBwqtIj527Fj8/fff+OKLL2BmZgZBEDBv3jykpqYiISEBnTp1wrBhw5QclYiIiIiIiKj8UqjA1tHRwbp16xASEoLDhw+joKAAOTk5sLS0xKRJk+Dt7S3d0SYiIiIiIiL6GChUYAOvh4R7e3vD29tbmXmIiIiIiIiI1JJCc7AXLlyIGzduKDsLERERERERkdpSqMDesmUL+vbti65du2L58uW4ffu2snMRERERERERqRWFCuwzZ85g3rx5aNy4MdatW4devXrB09MTP//88zu37yIiIiIiIiKqqBSag21gYIBevXqhV69eSEtLw+HDhxEeHo5ffvkFK1euhIWFBTw9PTF69Ghl5yUiIiIiIiIqlxS6g/0mQ0ND9OvXD8HBwYiKikJAQAD+/fdfLFu2TBn5iIiIiIiIiNSCwquIvyk3NxeRkZEICwvDiRMn8OrVK9SpU0cZlyYiIiIiIiJSCwoX2Hl5eTh9+jTCwsIQERGBjIwMmJiYoE+fPvDw8IC9vb0ycxIRERERERGVawoV2NOnT0dERARSU1NRrVo1eHp6wtPTEw4ODhAEQdkZiYiIiIiIiMo9hQrsiIgIfPrpp/Dw8EC7du2gqakp1yY1NRVGRkalDkhERERERESkDhQqsE+fPg0tLfmn5uTkICIiAqGhoYiKisK1a9dKHZCIiIiIiIhIHShUYL9ZXIuiiLNnzyI0NBRHjx5FRkYGjI2N4eXlpbSQREREREREROWdwouc/fPPPwgNDcXBgwfx/PlzCIIADw8PfPHFF2jZsiXnYhMREREREdFHpUQFdlxcHEJCQhAaGoqHDx+iVq1a6NGjB2xtbTF58mS4u7vDzs6urLISERERERERlVvFLrAHDBiAq1evolq1anB3d8ecOXPQunVrAMCjR4/KLCARERERERGROih2gf3333+jfv36mDZtGjp37lzkImdEREREREREHyuN4jacOXMmTExMMGHCBHTo0AGBgYE4d+4cRFEsy3xEREREREREaqHYBfbgwYOxfft2HD16FEOHDsVff/2FYcOGoWPHjvjf//4HQRA+yMJme/fuhaWlpdyfxYsXy7TbtWsX3N3d0bx5c/Ts2RMnTpyQu1Z6ejqmT5+ONm3awM7ODhMnTsTTp0/l2l2+fBkDBgyAra0tXFxcsGbNGrkPFkRRxJo1a9C5c2fY2tpiwIABuHLlilK/diIiIiIiIiq/SjzOu0GDBvjyyy/x5ZdfSiuJh4WFQRRFzJ49G5GRkXB1dUX79u2hq6tbFpkBAOvWrUOVKlWkx7Vq1ZL+/+DBg5g5cybGjh2Ldu3aISwsDBMmTMDWrVvRsmVLqd2kSZNw7949zJo1C7q6uli+fDlGjRqFPXv2SEPgHz58CF9fX3To0AGTJk3C7du3sXjxYmhqasLX11e61tq1a7FixQr4+/vD0tISW7duxYgRI7B//340aNCgzPqBiIiIiIiIyodSTaRu1qwZmjVrhoCAAJw7dw4hISEICwvDrl27oKenh+joaGXllGNjYwNjY+Miz61YsQKenp6YNGkSAKBdu3a4c+cOfv75Z6xduxYAEB0djVOnTiE4OBhOTk4AAFNTU3h4eODIkSPw8PAAAAQHB6NatWpYunQpdHR04OjoiKSkJPz666/w8fGBjo4OsrOzsXr1aowYMQLDhg0DALRq1QrdunVDcHAwZs2aVWb9QEREREREROVDsYeIv/MiGhpo37495s+fjzNnzmDp0qVo166dMi5dYnFxcXjw4AG6d+8uc9zDwwNnz55FTk4OACAyMhKGhobo0KGD1MbMzAzW1taIjIyUjkVGRqJLly7Q0dGRuVZaWpr0AcLly5eRkZEh85o6Ojpwc3OTuRYRERERERFVXEopsN+kq6sLDw8P/PLLL8q+tAwvLy9YW1ujS5cuWL16NfLz8wEAMTExAF7fjX6Tubk5cnNzERcXJ7UzNTWVmzduZmYmXePVq1d48uQJzMzM5NoIgiC1K/zvf9uZm5vj8ePHyMrKUsaXTEREREREROWY2u21ZWJiAj8/P7Ro0QKCIOD48eNYvnw5EhMTERgYiNTUVACAoaGhzPMKHxeeT0tLk5nDXcjIyAj//PMPgNeLoBV1LR0dHejp6clcS0dHR27OuaGhIURRRGpqKipVqqTw1yyKIl69elXkOUEQoKenp/C1K7rMzEyFV7pn374b+7bssG/LDvu27LBvyw77tmyUpl8B9u27sG/LDvu27Lyrb0VRLPaC3mpXYHfs2BEdO3aUHjs5OUFXVxcbN27E2LFjVZis7OTm5uLmzZtFntPT00PTpk0/cCL1ERsbi8zMTIWey759N/Zt2WHflh32bdlh35Yd9m3ZKE2/Auzbd2Hflh32bdl5X9++OWX4XdSuwC5K9+7d8dtvv+HmzZswMjIC8Prus4mJidQmLS0NAKTzhoaGSEhIkLtWamqq1KbwDnfhnexCOTk5yMzMlLlWTk4OsrOzZe5ip6WlQRAEqZ2itLW10aRJkyLPfYit0dSZqalpqT71p7dj35Yd9m3ZYd+WHfZt2WHflo3S9CvAvn0X9m3ZYd+WnXf17b1794p9nQpRYL+pcB50TEyMzJzomJgYaGtrS1tmmZmZ4ezZs3K3+2NjY2FhYQEA0NfXR506daQ51m+2EUVRun7hf2NjY2FlZSXzmnXr1i3V8HDg9T8EfX39Ul3jY8UhMGWHfVt22Ldlh31bdti3ZYd9WzbYr2WHfVt22Ldl5119W5IPJpS+yJkqhIWFQVNTE02bNkWDBg3QuHFjhIeHy7VxdHSUbu07OzsjNTUVZ8+eldrExsbixo0bcHZ2lo45OzsjIiICubm5MtcyNDSEnZ0dAMDe3h4GBgY4dOiQ1CY3NxdHjhyRuRYRERERERFVXGp3B9vX1xdt27aFpaUlACAiIgI7d+7EkCFDpCHhfn5+8Pf3R8OGDdG2bVuEhYXh6tWr2LJli3QdOzs7ODk5Yfr06QgICICuri6WLVsGS0tLdO3aVeb1QkND8fXXX2PQoEG4c+cOgoODMXnyZKlY19XVxZgxYxAUFARjY2NYWFhg+/btSElJga+v7wfsHSIiIiIiIlIVtSuwTU1NsWfPHiQkJKCgoACNGzfG9OnT4ePjI7Xx8vJCZmYm1q5dizVr1sDU1BQrV66U7jgXWr58OebNm4fAwEDk5eXByckJM2bMgJbW/3VLo0aNEBwcjPnz52P06NEwNjbGxIkTMWLECJlrjRo1CqIo4rfffkNSUhKsra0RHBwsDUknIiIiIiKiik3tCuwZM2YUq12/fv3Qr1+/d7apUqUK5s6di7lz576znb29PXbu3PnONoIgYMyYMRgzZkyx8hEREREREVHFUiHmYBMRERERERGpGgtsIiIiIiIiIiVggU1ERERERESkBCywiYiIiIiIiJSABTYRERERERGRErDAJiIiIiIiIlICFthERERERERESsACm4iIiIiIiEgJWGATERERERERKQELbCIiIiIiIiIlYIFNREREREREpAQssImIiIiIiIiUgAU2ERERERERkRKwwCYiIiIiIiJSAhbYRERERERERErAApuIiIiIiIhICVhgExERERERESkBC2wiIiIiIiIiJWCBTURERERERKQELLCJiIiIiIiIlIAFNhEREREREZESsMAmIiIiIiIiUgIW2ERERERERERKwAKbiIiIiIiISAlYYBMREREREREpAQtsIiIiIiIiIiVggU1ERERERESkBCywiYiIiIiIiJSABTYRERERERGRErDAJiIiIiIiIlICFthERERERERESsACm4iIiIiIiEgJWGATERERERERKQELbCIiIiIiIiIlYIFNREREREREpAQssImIiIiIiIiUgAU2ERERERERkRKwwCYiIiIiIiJSAhbYRERERERERErAApuIiIiIiIhICVhgExERERERESkBC2wiIiIiIiIiJWCBTURERERERKQELLCJiIiIiIiIlIAFNhEREREREZESsMAmIiIiIiIiUgIW2ERERERERERKwAKbiIiIiIiISAlYYBMREREREREpAQtsIiIiIiIiIiVggU1ERERERESkBCywlez+/fsYPnw4WrZsiQ4dOmDhwoXIyclRdSwiIiIiIiIqY1qqDlCRpKamYujQoWjcuDGCgoKQmJiI+fPnIysrC4GBgaqOR0RERERERGWIBbYS/f7773j58iVWrlyJqlWrAgDy8/Mxe/ZsjBkzBrVq1VJtQCIiIiIiIiozHCKuRJGRkXB0dJSKawDo3r07CgoKcPr0adUFIyIiIiIiojLHAluJYmJiYGZmJnPM0NAQJiYmiImJUVEqIiIiIiIi+hAEURRFVYeoKGxsbPDVV19h9OjRMse9vLxgZ2eHH3/8scTXvHz5MkRRhLa29lvbCIKA1KR05OXll/j6FZWWliaMjKugtN/egiAgNeUl8vLZt4W0NDVhVLWyUvo2Je0V+/YNWpqaqGqor5S+Tc54xZ8Jb9DS0kQ1AyX17cuXyM0vUFIy9aetqYFqlZXzMyHp1UvkFfD7tpCWhiaM9ZXTt8lZ7NtCWhqaqFap9P0KvO7b9JwM9u3/p6WhiSo6Bkrr21e5aSgQ2bcAoCFoQl/bUGl9m5ObjAIxTwnJ1J+GoAUd7Wrv7Nvc3FwIggB7e/v3Xo9zsMs5QRBk/vs2RsZVPkQctfO+fisOo6qVlZCk4lFG31Y11FdCkopHGX1bzYB9WxSl9G1l/kwoijL61liffVsUpXzfVmLf/pcy+hUAqugYKOU6FYmy+lZf21Ap16lIlNW3OtrVlHKdiuRdfSsIQrH7ngW2EhkaGiI9PV3ueGpqKoyMjBS6pp2dXWljERERERER0QfAOdhKZGZmJjfXOj09Hc+ePZObm01EREREREQVCwtsJXJ2dsaZM2eQlpYmHQsPD4eGhgY6dOigwmRERERERERU1rjImRKlpqbC09MTpqamGDNmDBITEzF//nz06NEDgYGBqo5HREREREREZYgFtpLdv38fP/74I6Kjo1G5cmV4e3tj8uTJ0NHRUXU0IiIiIiIiKkMssImIiIiIiIiUgHOwiYiIiIiIiJSABTYRERERERGRErDAJiIiIiIiIlICFthERERERERESsACm4iIiIiIiEgJWGATERERERERKQELbCIiIiIiIiIlYIFNRERUjl28eBEvX74s8tzLly9x8eLFD5yo4klNTcVff/2F0NBQpKamAgCys7NRUFCg4mRExXPp0iXs2rULMTExqo5CVKT+/ftj165db/19VpEIoiiKqg5B6uH69eslam9jY1NGSSq+U6dO4fDhw0hISEB2drbMOUEQsHHjRhUlU29WVlYQBKHIc4IgoEqVKrCyssLQoUPh6ur6gdOpN1dX17f2rYaGhtS3gwcP5s+GErK2tsaOHTtga2srd+6ff/5Bv379cPPmTRUkU3+iKGLZsmXYvHkzMjMzIQgCdu/eDRsbG4waNQotWrTAhAkTVB1TbcXExODIkSNv/V02d+5cFSVTb19//TV0dHQwb948AMD27dsxe/ZsAICOjg5Wr14NR0dHVUZUW//88w/S09Ol/ktNTcWiRYtw//59tG/fHuPHj4eGBu9PKmLSpEk4fvw4NDU10a1bN/Tt2xetW7dWdawyoaXqAKQ++vbt+9Y30G8SRRGCIPANn4LWrVuHxYsXo169ejA3N0eVKlVUHanC+Oabb7B582bo6OjA1dUVxsbGePHiBU6cOIHs7Gz07t0bFy5cwPjx47F48WJ4enqqOrLa6NKlC44dO4aMjAw4OjrC2NgYSUlJOHv2LAwMDGBpaYm//voLISEhWLNmDdq3b6/qyGrjXZ+DZ2ZmolKlSh8wTcWyfPlybNmyBQEBAXB0dIS7u7t0ztXVFbt27WKBraB9+/Zh+vTp0NXVRd26daGtrS1zvjjvJ6holy5dwjfffCM9XrNmDfr164dp06Zh1qxZWLlyJQtsBc2bNw+Ojo5S/82dOxfHjh1Dhw4d8Ntvv0FDQwPjx49XcUr1tHz5cqSmpiIkJAR//PEHvvjiCzRq1Ah9+/ZFr169ULNmTVVHVBoW2FRsmzZtUnWEj8K2bdvwxRdfYMaMGaqOUuGkpqaiWbNmWLFihcybu4CAAPj5+SErKwtbt27F5MmTsXbtWhbYJVCvXj3UrVsXa9euhb6+vnT85cuXGD16NMzMzPDDDz9g9OjRWLFiBQvs97hy5Qqio6Olx6Ghobh06ZJMm+zsbERERMDMzOxDx6sw/vjjD0yZMgUDBw5Efn6+zLmGDRsiLi5ORcnU3y+//AJ3d3fMnTsXenp6qo5ToSQlJUnFyN27d/HkyRMMGTIElStXRu/evfHVV1+pOKH6unfvHkaPHg0AyMrKwuHDhzFz5kz07dsXW7duxaZNm1hgl4KRkRF8fHzg4+ODW7duYffu3fjtt9+wYsUKODk54bPPPoOrq6vajxJggU3F1qZNm2K3zczMLMMkFVtKSgq6dOmi6hgV0u7duzFv3jy5OyeCIKB///4ICAhAQEAAvLy8MHnyZBWlVE8bN25EYGCgTHENAJUrV4avry9mzZqFUaNGYdCgQQgICFBRSvVx6tQprFy5EsDr78/NmzfLtdHS0oK5uTm+//77Dx2vwkhJSYG5uXmR5/Lz85GXl/eBE1UcT58+xaxZs1hcl4GqVasiPj4erVu3RlRUFExMTPDJJ58AeP19y7UDFJeVlSV9z16+fBk5OTnSezJLS0skJCSoMl6FUrt2bTRo0AA1atRASkoKHjx4AD8/P9SrVw+LFy9Gy5YtVR1RYSywSWny8/MRFRWF0NBQHD9+XObuCxWfi4sLLl26xOFdZSAzMxNPnjwp8tzjx4+lOYL6+vpywxnp3ZKTk5GRkVHkufT0dKSlpQF4/ek1vd+ECROkoclWVlbYuXNnkXOwqXQaN26M06dPF/nz9sKFC1LRQiXXunVr3Llzh7/LyoCzszMWL16MW7du4Y8//oC3t7d07u7du6hfv74K06m3Bg0aIDIyEm3atEFoaChsbGxQtWpVAMCLFy9gYGCg2oAVQFRUFPbs2YPjx4+jcuXK6NmzJ/73v//B3Nwcjx49wuzZszF9+nSEhYWpOqrCWGBTqV26dAkHDhxAeHg4UlJSYGxsjP79+6s6llp5cwG5vn37YtasWcjOzkb79u1haGgo156LRCnG1dUVS5Ysgb6+PlxcXGBgYICMjAxERERgyZIl+PTTTwEAt2/fRqNGjVScVr20bdsWS5YsQb169WBvby8d/+uvv7B06VK0a9cOABAbG4t69eqpKqZaunXrlqojVFjDhg3DzJkzoaWlhW7dugEAEhIScOXKFWzevFlaRIpKbsqUKZg6dSp0dXXRoUOHItcTKSxcqGQCAgKQn5+PU6dOoVOnTvDz85POHT16FB07dlRhOvU2bNgwzJgxA7t370ZqaioWLlwonbtw4QIsLS1VmE69LV++HPv370dCQgLatGmDefPmwc3NDTo6OlKbhg0bYvz48Rg8eLAKk5YeVxEnhdy9excHDhxAaGgonjx5Am1tbeTm5uLbb7/F4MGDoampqeqIauW/q1u/+c/yv8e5gJziMjIyMG3aNBw7dgyCIEBLSwt5eXkQRRFubm6YN28eDAwMcOTIEejr68PJyUnVkdVGYmIixo0bh5s3b8LQ0BDVqlVDcnIy0tLSYG1tjV9++QW1atXCzp07oaOjg169eqk6slrJz8/H33//jYSEBOTk5MidZ38qbv369QgKCkJmZqb0s1dPTw8TJ07E8OHDVZxOfVlZWUn//7YFzfi7jMqjixcv4tq1a2jatKn04TAABAUFoXnz5ujcubPqwqkxJycn9O7dG/369UPDhg3f2i4lJQUnTpxA7969P2A65WKBTcWWkJAgFdV37tyBpqYm2rVrBy8vL7Rt2xYuLi7YvHkzHBwcVB1V7Vy4cKFE7UsyH57k3b9/H1evXsWzZ89Qs2ZNNGvWDE2aNFF1rArh5MmTuHbtGp49ewYTExM0b94cnTp1UnUstXb9+nX4+fnhyZMnRa4ozg/dSu/ly5eIjo5GcnIyjIyMYGdnxx0cSmnv3r3vXSlcnd9AE1HJ5OXlQUvr4xg8zQKbis3a2hrA6+HJvXv3Rvfu3WFsbAzg9RxLBwcHFthERErWr18/ZGdnY8aMGWjSpEmR6wOwGCSq2Hr06IElS5bAwsICPXr0eG/70NDQD5CqYuKIISqtj+NjBFIKQ0NDpKamIi4uDrdv34aFhYVUYJPy3Lp1C4mJiUXe9Tt58iRq1aolM/SOSoa/OMtWYmIiEhMTpQXj3sQP3xRz7949LF++nCNXykBkZCTS0tLg5eUFAHjy5AmmT5+O+/fvo3379kWujE8lk5qaiqtXryI1NRVGRkawtbXlYocKaNasmbS6tY2NDfcRLyPFGTHE9wmK+e90yDcJgoAqVarAysoKQ4cOhaur6wdOp1wssKnYTp8+jVOnTiE0NBShoaHYtWsXatWqBQ8PDw4BVaK5c+fC3t6+yD69evUqLl++jPXr16sgmfrjL86yExcXh6lTp+Lvv/8GALn+5TBmxTVu3BgvX75UdYwKacWKFejevbv0+IcffsD9+/fh6emJkJAQrFixAtOmTVNhQvUliiIWLVqELVu2yHyYqaOjAx8fH0ydOlWF6dTPmwvuzZ8/X4VJKrZZs2bBwMAAGzdufOuIIVLMN998g82bN0NHRweurq4wNjbGixcvcOLECWRnZ6N37964cOECxo8fj8WLF8PT01PVkRXGApuKTUtLC507d0bnzp2RmZmJo0eP4sCBA9i0aRPWr18PQRBw6NAh1KlTh1tElMKtW7cwcuTIIs+1bNkSW7Zs+cCJKg7+4iw7M2bMQGJiIubOnQtzc3OZVUGpdL799lv89NNPsLS0fOuezaSYhw8fSiOCMjIyEBUVhcWLF6Nbt2745JNPsHLlShbYCvr111+xceNGjBw5Et27d0eNGjXw/PlzHDp0COvWrYOhoSHGjBmj6pgVRmZmJp4+fYqGDRvy7nYpcMRQ2UlNTUWzZs2wYsUKme/RgIAA+Pn5ISsrC1u3bsXkyZOxdu1aFtj08dHT00PPnj3Rs2dPJCcnIywsDAcPHsT27dvx+++/o1WrVti8ebOqY6qlnJwc5ObmvvVcUUNvqXj4i7PsXL16FQsWLEDXrl1VHaXC+fHHH/Hs2TP06NEDNWvWlJtvLQgCQkJCVJROveXl5UFDQwPA65WDAUhbHDVo0ADPnz9XWTZ1t2vXLowbN07azx0AatSoASsrK2hra2PHjh0ssBUUHByMzMxMqW//+usvjBs3DhkZGahfvz6Cg4PfuUozvR1HDJWd3bt3Y968eXIfAAmCgP79+yMgIAABAQHw8vLC5MmTVZRSOTRUHYDUX7Vq1TB48GBs27YNERER+Oqrr5CSkqLqWGrL2toa+/fvL/Lc/v37Of+6FPiLs+zUqlVLKlRIuWxsbODi4gJvb284OjqiWbNmMn9sbGxUHVFtmZmZISQkBK9evcKOHTtgZ2eHypUrAwCePXvGfZpL4dmzZ7C3ty/ynJ2dHZ49e/aBE1UchVP0Cs2bNw9NmjTBqlWrUK1aNSxdulSF6dTbt99+i9WrV+P+/fuqjlLhZGZm4smTJ0Wee/z4sXQDSV9fX+1HGPIONilV3bp1MWbMGH4qXQpjxozBuHHjMHr0aPTp0wc1a9bE06dPsXfvXpw6dQqrVq1SdUS1xaG2ZadwSFfr1q1ZlCgZ51uWnS+//BJfffUV9u3bB01NTfz666/SuaioKDRt2lSF6dRbvXr18Oeff6J9+/Zy506ePIl69eqpIFXFkJCQgEaNGgF4vbDk9evXsWXLFrRu3Rr5+fmYNWuWagOqMY4YKjuurq5YsmQJ9PX14eLiAgMDA2RkZCAiIgJLlizBp59+CgC4ffu29P2trlhgE5UznTt3xpIlS7Bw4UJMmjQJgiBAFEXUrl0bixcvRufOnVUdUW3xF2fZ+eOPP5CQkABXV1dYW1sX2be//PKLitJVHKIo4unTp6hevfpHs59oWerSpQsOHTqEGzduwNLSEo0bN5bOtWzZEpaWlqoLp+aGDRuGWbNmISkpCd26dUP16tXx4sULhIeH4+DBgywCS0FXVxcZGRkAgLNnz0JfXx92dnYAXm/Zl56ersp4ao0rtJedWbNmYdq0aZg6dSoEQYCWlhby8vIgiiLc3NwQGBgI4PXNuilTpqg4benwtzNROZKXl4fbt2+jXbt2+PPPPxETE4OUlBRUrVoVZmZmqo6n9viLs+y8fPlSZs4fh+IrV1RUFIKCgnDjxg3k5+dj9+7dsLGxwcyZM+Hg4ICePXuqOqLaatCgARo0aCB3fMCAASpIU3EMHDgQubm5WLVqFQ4cOCB9WGxsbIzvvvuO/VsKtra2WLNmDTQ0NBAcHAxnZ2doamoCAB49eiQzfJxKhiOGyo6BgQFWrlyJ+/fv4+rVq3j27Blq1qyJZs2aoUmTJlK7irCWiyAWtVcNEalEQUGB9IuzqGF1RPTxOXDgAKZOnYru3bvD0dERM2fOxJ49e2BjY4M1a9bgzJkz2LBhg6pjqrWHDx/iwYMHRS4iWRHe7KlSQUEBYmJikJqaiqpVq8LU1JTrNZTSvXv3MGbMGMTHx6Nu3bpYv369NKR2xIgRMDExwYIFC1ScUv1lZWUhLS0NhoaGqFSpkqrjkBrhHWyickRDQwP169dHamqqqqMQUTmxatUqDB06FNOmTUN+fj5mzpwpnfvkk0+wceNGFaZTbxkZGRg/fjwuXLgA4P/2b39zpAv3by8dDQ0NmbtTVHpNmjRBREQEkpOTUa1aNZlzAQEBMDExUVGyiuHEiRNYuXIlbt68CVEUIQgCrK2tMXHiRHTq1EnV8dRabm4udu/ejWvXriEhIQGBgYFo3LgxwsLCKtT6OCywicqZsWPHYtWqVbC3t+cwLyWYM2cORowYgbp162LOnDnvbT9jxowPkKpiWL9+PXr06IEaNWpg/fr172wrCAKGDRv2YYJVMHFxcW99U6enp8f5lqWwaNEiPH/+HFu3bsXnn3+OlStXwsjICCEhITh37hyWLFmi6ohqhT8TPozt27ejR48ecsU1AK4bUErHjh2Dn58fWrRogWnTpqFGjRp49uwZwsPDMW7cOKxYsUJajItKJi4uDsOGDUNycjKaNm2KS5cuSdPJLl68iKioKMybN0/FKZWDBTYV27ffflui9hXlH8mHFh4ejuTkZHz66aewtLREjRo1ZM5zsaiSOX78OD777DPUrVsXx48ff2dbQRBYYJfAggUL0KpVK9SoUeO9wxH5ZlpxJiYmiImJgaOjo9y527dvo27duipIVTFERUVh8uTJaNGiBQCgZs2asLW1hYODA+bPn4/169dj2bJlKk6pPvgz4cOYP38+FixYADc3N/Tr1w9t2rRRdaQKY+XKlfD09MTixYtljg8dOhT+/v5YuXIlC2wFzZkzB8bGxti1axcMDQ3RrFkz6ZyDg0OF2l6OBTYV23+HySUmJiI5ORlGRkbS6qCpqamoVq0aateuraKU6u/ly5cwNTWVeUyKe7Oofl+BTSVz69atIv+flMvLywtBQUEwMzOT3kgLgoA7d+5g3bp1GDRokIoTqq+kpCTUqVMHmpqa0NPTQ0pKinSuU6dO8PPzU104NcSfCR9GVFQUQkNDsWfPHgwZMgQNGjRA37590bt3b458K6WYmBj4+/sXec7b2xvjx4//wIkqjgsXLmDJkiUwNjZGfn6+zDkTExM8e/ZMRcmUjwU2Fdu+ffuk/4+MjMSsWbOwbNkytGvXTjp+9uxZfPfdd5g0adKHD1hBbN68WdURiEokOzsbixYtQs+ePWFra6vqOBXOhAkTcPfuXQwfPlzaY3zUqFFISkpC586dMXr0aNUGVGO1a9dGcnIyAKBx48Y4fvw4nJ2dAQDR0dHQ1dVVZTy1dvHiRTRt2hSVK1eWO/fq1Stcv34dDg4OKkim/gwNDTF48GAMHjwYt27dwp49e7Bx40YEBQWhQ4cO6Nu3L1xdXaGtra3qqGrHyMgIsbGxcHJykjsXGxsLIyMjFaSqGDQ1NfG2tbWfP38OfX39D5yo7LDAJoUsWrQIEydOlCmuAcDR0RF+fn5YtGgRF4KgcuHIkSMlas8Vg0tOV1cXe/bsYd+VER0dHfzyyy84d+4czpw5I40cat++PXcbKKUOHTrgzJkzcHNzkxaSu3r1KrS1tXH16lUMHz5c1RHV1pAhQ7Bjx44iP3SLiYnBkCFDuICcElhZWeG7777DyJEj4e/vj8jISERGRqJatWoYNGgQRo8ezRWwS8DDwwNLly5FpUqV4O7uDkNDQ6SnpyM8PBzLly9H//79VR1RbTk4OGD9+vVwdnaWdhIo3L5v586dRU6DUlcssEkhDx8+lO6k/JeRkREePXr0YQNVMAUFBTh37hxiY2ORk5Mjd55v+opv4sSJxW4rCALf8CnIzs4OV65c4VzAMtSuXTu5DzWpdPz9/ZGZmQkA6NWrFypXrozw8HBkZ2dj5syZGDhwoIoTqq937QKbmZnJok8JRFFEZGQk9uzZgxMnTsDQ0BC+vr5wc3PDyZMnsWXLFty9exdBQUGqjqo2vv76azx+/BgzZ85EYGAgtLS0kJeXB1EU0bVrV0yZMkXVEdWWv78/Bg0aBE9PT7i6ukIQBGzduhV3797Fw4cPsWvXLlVHVBrug00K6dOnDypVqoS1a9fKDP/KyMjAyJEjkZOTg71796owofp69uwZfHx88ODBA+mTPYDbxigqPj6+RO3r1atXRkkqtitXrki/PDt16oTq1avLfM8CeOuHclQ8GRkZSEhIKHKvZhsbGxUkIpJ15coVREdHA3i94JmPj4/cInzZ2dmIiIhAQUEB9uzZo4qYau/Ro0fYs2cP9u3bh6dPn6J9+/bo378/unTpAi2t/7t3FhERgSlTpuDvv/9WYVr1dPv2bfz1119IS0uDkZERWrVqxRXalSAuLg4rV67E6dOnkZKSAiMjIzg6OmLixIlo2LChquMpDQtsUsjly5cxcuRIaGhooG3bttIiZ+fPn0d+fj7WrVuHVq1aqTqmWvr6668RHx+P//3vf+jUqRN27tyJGjVqICQkBPv27cOaNWsq1A8hqhisrKyk//9vYV2IHwwpJjExEdOnT8eZM2fkzhXu0cq+LZ3Y2FhcvXoVz549Q82aNdG8eXOZxSapeFauXImVK1cCgMwHxG/S0tKCubk5vv/+e9jb23/oiBWClZUVatWqhT59+uCzzz576wfDsbGxCAwM5NouRB8YC2xS2PPnz7FhwwbpTYmJiQlsbW0xdOhQmJiYqDqe2nJ2dsaMGTPw6aefomnTpti5c6c0h+2XX37BpUuXsG7dOhWnVG+RkZG4du0aEhISMG7cONStWxcXL15Ew4YNuQKrgvbu3fvWwrpQ7969P1CaimXYsGF48OABRo0ahcaNGxe5cBGH5ivm5cuXCAwMxKFDh1BQUABdXV1kZ2dDQ0MD3bp1w48//ljkIl30flZWVjK/v0h5Tpw4gU6dOknzWKl0rl+/DnNzc1SqVAnXr19/b3uOGFLMkCFD8P3338Pc3FzuXGxsLL7//nts2rRJBcmUj3OwSWE1atR461YGpLj09HQYGxtDQ0MDBgYGePHihXSuZcuWWLNmjQrTqbekpCR8+eWX+Pvvv1GnTh08efIEAwcORN26dbFnzx7o6enh+++/V3VMtdSnTx9VR6iw/v77byxatIh7r5aBOXPm4MSJE/jxxx/h7u4OAwMDZGRkIDw8HHPnzsWcOXMwb948VcdUS9ymq+y4uLioOkKF0rdvX+nDoL59+771w2KOGCqdCxcuvHXr2YyMDPz1118fOFHZYYFNVM7Ur18fT58+BQA0adIE+/fvl36ZHjt2jPNYS+Gnn35CcnIyDhw4gEaNGqFZs2bSOUdHR/zyyy8qTFcxpKam4u7du3jy5AmcnZ1hZGSE7OxsaGtr826Lgho1aoS8vDxVx6iQDh8+DH9/f/Tt21c6ZmBggM8++wzZ2dlYunQpC+xSys7ORlxcHNcOKKU5c+aUqP2MGTPKKEnFs2nTJumu6saNG987GouULzo6GsbGxqqOoTQssEkhWVlZWLVqFQ4fPoyEhIQiV7rmJ3yK6dy5M06fPg0PDw+MGzcO48ePh6OjI7S0tPD8+XOOGiiFkydP4scff4S5uTny8/NlztWpUweJiYkqSqb+CgoKsHz5cmzevBmZmZkQBAG7d++GkZERJkyYgBYtWmDChAmqjqmWAgICMH/+fFhaWnJesJLp6uqifv36RZ5r0KCBzIJRVDI5OTmYNWsWQkJC5H7eFuL7hOI7fvx4sdsKgsACuwTenGLTtm1bFSapeFavXo3Vq1cDeP19OXToULkPMHJycpCfn4/PP/9cFRHLBH9zkEJmz56NAwcOwMvLC+bm5kXOCSTFfP3119L/d+rUCdu2bUNERASysrLQvn177i9eCvn5+dDX1y/yXFpaGr+PS+F///sftmzZgoCAADg6OsLd3V065+rqil27drHAVpCjoyPat28PT09P1KxZE1WqVJE5LwgCQkJCVJROvfXp0wfbt29Hx44dZd70iaKIbdu2cepDKfz88884ffo05s+fD39/fwQGBkJfXx8hISF49OgRZs6cqeqIaqUkBTYpztra+q37t//zzz/o168fPxgqATs7O4wYMQKiKOLnn3+Gp6cnateuLdNGW1sb5ubmFWrqAwtsUsiJEycQEBCAL774QtVRKjxbW1suEqMktra22LNnT5EfUhw8eJAr2pbCH3/8gSlTpmDgwIFyd6saNmyIuLg4FSVTf4sWLcL69ethY2ODxo0bQ0dHR9WR1Nr69eul/69atSquX7+Orl27wsXFRdoR48SJE8jJyUHr1q1VmFS9hYeHY8KECejevTv8/f1ha2uLZs2aoVevXggICMDx48f5gTGVO+9a+zk/Px+ampofMI36a9OmjTRCQBAE9OvX76NYTJYFNilEU1MTjRs3VnWMCo0rXSvfpEmTMGTIEAwePBju7u4QBAHHjh3D6tWrcfLkSWzbtk3VEdVWSkpKkSuDAq/flHAOseJ27tyJiRMn4ssvv1R1lAphwYIFRR4vavXaJUuWYOTIkWUdqUJKSEiAqakpNDU1oauri7S0NOlcz549MWXKFMyePVuFCdXfw4cP8eDBgyLnt3ft2lUFidTTs2fPpLVvACAmJkaukM7OzsaePXvk9nWn4vuYRrGxwCaFDBo0CPv374eTk5Oqo1Q4XOm67NjZ2WHTpk1YsmQJFixYAFEU8euvv6Jly5bYsGEDF9wphcaNG+P06dNwdHSUO3fhwgV88sknKkhVMWhra6NFixaqjlFhcHXrD8PExEQqquvXr4/z58+jffv2AIAHDx6oMJn6y8jIwPjx43HhwgUA/3fX9c1pDhzGXHw7duzAypUrIQgCBEHAt99+K9dGFEVoamry/VcpPXz4EHv37n3rB0O//vqrClIpHwtsUkilSpVw6dIlDBw4EI6OjjA0NJQ5LwgChg0bpppwao4rXZctOzs7bNmyBVlZWUhNTYWhoSH09PRUHUvtDRs2DDNnzoSWlha6desG4PUdrCtXrmDz5s1cibkU+vXrh5CQEHTo0EHVUYiKrU2bNvjrr7/g6uqKfv36YeHChYiJiYG2tjaOHTsGLy8vVUdUW4sWLcLz58+xdetWfP7551i5ciWMjIwQEhKCc+fOYcmSJaqOqFZ69+6NNm3aQBRFDB06FIGBgWjSpIlMG21tbTRu3BjVqlVTUUr1d/XqVfj4+KBu3bp48OABLC0tkZ6ejvj4eNSuXRsNGzZUdUSlEcR3TTYgegsrK6t3nuc+gYpr3bo1fvzxR3Tv3h35+fmwsbHBnj17YGNjgwsXLmDMmDGIjo5WdUwiOevXr0dQUBAyMzOlOyp6enqYOHEihg8fruJ06mvt2rXYtm0batWqxQ80ywi3klK+Z8+eITk5GRYWFgCADRs2IDw8HNnZ2Wjfvj3Gjx//1kUn6d1cXV0xefJkeHh4wMbGRtrDGQDmz5+PxMRELFu2TMUp1dOFCxfQtGlTGBgYqDpKhePj44N69erhp59+knlve/nyZXz99df44Ycf0LFjR1XHVArewSaFcIhd2eFK18pV1FCvd+GdVsUNHz4c/fv3x+XLl5GSkgIjIyPY2dnJrXpNJVN4N+rJkye4cuWK3HkW2IrjVlJlx8TEBCYmJtLjYcOG8ftUSZKSklCnTh1oampCT08PKSkp0rlOnTrBz89PdeHU3JtbdpFy3b59G6NHj4aGhgYASB9o2tvbY8KECViyZAkLbCIqG1zpWrn+++Y4MTERycnJMDIyklYMTk1NRbVq1eS2jqCSq1y5coX5BVle8APNssOtpMrOt99+CzMzM4waNUruXFxcHFatWsUPNBVUu3ZtJCcnA3i9/sXx48fh7OwMAIiOjoaurq4q46m9ffv2YceOHW+dJ3z58mUVpFJ/giBAW1sbgiCgevXqePz4sfSetnbt2hVqbQYNVQcg9ZadnY179+7h+vXrcn9IMZMmTcKJEycwePBgbN26VVrpeuLEiTh+/Dg/mS6hffv2SX+mTJkCPT09bNiwAefPn0dYWBjOnz+P9evXQ09PD5MmTVJ1XLWWlJSExYsXY+jQoXB3d8fdu3cBABs3bizyziuRqr25lRTw+gPOXr164bfffkOrVq2493Ap/PHHH1i2bBlGjx6N9PR0mXNJSUnYt2+faoJVAB06dMCZM2cAAEOHDsXvv/+OPn36YMCAAQgKCoK3t7eKE6qv/fv3Y+bMmfjkk0+QnJyM7t27w93dHdra2qhevTpGjBih6ohqy9zcXNqys2XLlvjtt99w584dxMTEYM2aNWjQoIGKEyoPC2xSSE5ODqZPn45WrVqhR48e+Oyzz+T+kGIKV7oWBEFmpetnz55xpetSWrRoESZOnIh27drJHHd0dISfnx8WLVqkomTq7/r163B3d0dYWBhq166NR48eIScnB8DrUQMbNmxQbUA1l5ubi+3bt2P69OkYMWKE9El/WFgY7t+/r9pwaux9W0mFh4erMJ36mzVrFu7fv4/PPvuM36dK5O/vL33Y3qtXLwQFBcHU1BQmJiaYOXMm/P39VZxQfa1fvx5ffvmltFr4559/jnnz5iEiIgLGxsaoXLmyihOqr/79+0vboU2ZMgUvXryAt7c3PD09ce3aNQQEBKg4ofJwiDgphMPqyhZXui4bDx8+RNWqVYs8Z2RkhEePHn3YQBXIvHnz0LJlS6xatQqCIGD//v3SuRYtWuDQoUMqTKfe4uLiMGzYMCQnJ6Np06a4dOkSXr58CQC4ePEioqKiONRWQdxKqmxZWVlh9+7dmDhxIvr3748FCxbg008/VXUstaenpyfznsDNzQ1ubm4qTFRxPHz4EPb29tDU1ISmpiYyMjIAAAYGBhg1ahTmzp3LRTsV1KtXL+n/zc3NERYWhitXriArKwstW7ZE9erVVRdOyXgHmxTCYXUfRqVKlVCrVi0Ar3/oc9H/0mnSpAnWrFkjFSeFMjIysGbNGrltOaj4rl27Bh8fH2l+1ZuMjY3x4sULFSVTf3PmzIGxsTGOHTuGDRs2yPwccHBwwMWLF1WYTr0VbiUFvN4Obe3atfDz88OUKVOwYMECdOnSRcUJ1V+1atWwfv169OjRAxMnTkRQUBB/lynRixcv8PjxY7k/pBgDAwNp9FWtWrVw79496Vx+fr40951KJjs7G2PHjpX5fVW5cmV06NABXbp0qVDFNcA72KSg9w2rmzJlCmbPnq3ChOorODgYmZmZmDBhAgDgr7/+wrhx45CRkYH69esjODi4Qu0V+CHNmDEDI0eORKdOndC2bVtpkbPz588jPz8f69atU3VEtaWnpyd90v9fjx8/fuvIAXq/CxcuYMmSJTA2NpZb6drExATPnj1TUTL1N3nyZOkNc+EK14VbSfn4+GD8+PEqTFdxaGlpYdasWbCyssKcOXNw5MgRVUdSa8nJyVI/5uXlyZwTRZFbpZZCs2bNcPv2bXTs2BGurq74+eefIYoitLS0sGbNGrRs2VLVEdWSrq4uLl68+NHsJMACmxTCYXVlZ9euXfD19ZUez5s3D02aNMHo0aPxyy+/YOnSpVi+fLnqAqoxe3t7HDlyBBs2bMDVq1cRExMDExMTDBw4EEOHDpXZUoZKxsnJCb/88ovMPs2CICArKwubNm0qclV8Kh5NTc233vF7/vw59xIuBW4lVXbq1q0LHR0dmWMDBw5EkyZNuFhnKc2YMQMXL17EmDFjYG5uzu07lWjMmDHSCICJEyciPj4ec+fORUFBAZo3b44ffvhBxQnVV4cOHXD69Gm5dXAqIhbYpJDCYXWurq7o168fFi5ciJiYGGhra+PYsWPw8vJSdUS1lZCQgEaNGgF4vTjU9evXsWXLFrRu3Rr5+fmYNWuWagOquRo1anABmDIwdepUDBo0CO7u7mjbti0EQcDy5ctx7949CILAFdpLwcHBAevXr4ezs7O0f6ggCBBFETt37oSjo6OKE6qvLl264Oeff4aVlZXcuTt37mDcuHGIiIhQQTL197apYq1bt8bRo0eRmpr6gRNVHOfPn8eMGTNk5rSScrRs2VK6S21oaIhffvkFOTk5yMnJgYGBgWrDqbm+ffsiMDAQL1++RKdOnVC9enW5KWUVZSFfFtikEA6rKzu6urrSUNuzZ89CX18fdnZ2AIAqVarIbXdCJZeamoqrV68iNTUVVatWRfPmzWFkZKTqWGqtVq1a2LdvHzZs2IAzZ86gYcOGSElJQY8ePTB8+HAOES8Ff39/DBo0CJ6ennB1dYUgCNi6dSvu3r2Lhw8fYteuXaqOqLbi4+Ol+Zb/lZWVhYSEhA+c6ONgYGDAYqUUDA0NUa1aNVXHqHCys7PRvn17LFq0CK6urtJxHR0dudEYVHJjxowBAGzbtg3btm2TKa4r2tQGFtikEA6rKzu2trZYs2YNNDQ0EBwcDGdnZ2hqagIAHj16JC16RiUniiIWLVqELVu2yLyp1tHRgY+PD6ZOnarCdOrP0NAQEydOxMSJE1UdpUIxNzfHnj17sHLlShw4cACampr4888/4ejoiMWLF3NNhhLKzs5GZmamNOw+IyMDKSkpcm2OHTuGmjVrqiCh+urRoweWLFkCCwsL9OjR451tBUFASEjIB0pWsfj6+mLz5s3o0KEDtLT4Vl5ZdHV1oaenJ73nIuXauHGj3B3rior/KonKmYCAAIwZMwZjx45F3bp1MXnyZOncoUOHpLvZVHK//vorNm7ciJEjR6J79+6oUaMGnj9/jkOHDmHdunUwNDSUPmElKk8aNGiABQsWqDpGhbB27Vr8/PPPAF4XeW+uefFfhYtNUvE0a9ZM2j7Kxsbmo3kz/aHFxMTg/v37cHNzg4ODg7TuxZtmzJihgmTqr1evXti9ezfXDSkDbdu2VXWED0YQuVcCUbmUnJwsNwTs9u3bMDExgbGxsYpSqTdXV1f06dOnyDfNK1euxN69e7nFnIKysrKwatUqHD58GAkJCUUOu60oQ79Ivd26dQs3b96EKIqYPn06xo0bJzcKQFtbG+bm5rC2tlZRSqK3e3P4clEEQeDaAQpas2YNNm/ejKpVq6Jjx46oUaOGzAdFgiBwxKaCrK2tsWPHDtja2sqd++eff9CvX78K8z6Bd7CJyqlq1apBFEU8ffoU1atXh5aWFiwtLVUdS609e/YM9vb2RZ6zs7PD6tWrP3CiimP27Nk4cOAAvLy8uKqtkg0ZMuSt5zQ0NFClShVYW1ujb9++nEJSDFZWVtKiZoIgoHPnzpzPSmqFHwSXnaVLlwJ4/X7h7t27cudZYCvuXfd08/PzK9TQfBbYROVQVFQUgoKCcOPGDRQUFGDXrl2wsbHBzJkz4eDggJ49e6o6olqqV68e/vzzT2lLuTedPHkS9erVU0GqiuHEiRMICAjAF198oeooFU6VKlVw/fp1PHv2DJaWltL+7YUjWho2bIj169cjODgYmzZtqjCrsH4IvXv3VnWECmXOnDklas9hzMr34MEDHDhwgNMbFHTr1i1VR6hQnj17hqdPn0qPY2Ji5Arp7Oxs7NmzB3Xr1v3Q8coMC2yicubAgQOYOnUqunfvjn79+mHmzJnSuQYNGmDv3r0ssBU0bNgwzJo1C0lJSejWrZtUqISHh+PgwYPcAq0UNDU10bhxY1XHqJC6deuGR48eYevWrTIfAv37778YN24cevfujaCgIAwfPhxLly5FcHCwCtOqn4sXL2LHjh148OABsrOz5c6HhoaqIJV6KsmdVUEQWGArybNnz3Dw4EGEhobi+vXr0NbWZoFN5cKOHTuwcuVKCIIAQRDw7bffyrURRRGampr4/vvvVZCwbHAONlE54+HhAWdnZ0ybNg35+fmwsbHBnj17YGNjgxMnTmDGjBk4ffq0qmOqrc2bN2PVqlVITk6W9hI2NjbGl19+ybuvpbBy5Uo8fPgQixYtUnWUCsfd3R1ff/01unbtKncuPDwcS5YswdGjR3HgwAF8//33uHTpkgpSqqeoqCiMGTMGjo6OOH36NJydnZGVlYXLly+jdu3acHBwwLx581Qdk0hORkYGjhw5gtDQUFy4cAEFBQWwtLRE37594eXlxWkPpZCbm4vdu3fj2rVrSEhIQGBgIBo3boywsDBYWlrC3Nxc1RHVRnx8POLj4yGKIoYOHYrAwEA0adJEpo22tjYaN25cob5neQebFGJlZfXW1UEFQUCVKlVgZWWFoUOHvncxDpIVFxf31tUr9fT0uA92Kfn4+GDw4MGIiYmR9sE2NTWFhoaGqqOptUqVKuHSpUsYOHAgHB0d5Va15bw1xT158uSdP28TExMBADVr1kR+fv6HjKb2goKCMHToUPj7+8PGxgZfffUVbGxsEB8fD19fX7Rr107VEYkkubm5OHnyJEJCQnDy5ElkZ2ejQYMG8PHxwcaNG/Hdd9/BwcFB1THVWlxcHIYNG4bk5GQ0bdoUly5dwsuXLwG8Hu0SFRXFD91KoF69etLIq8IpTJUrV1ZxqrLHApsU8s0332Dz5s3Q0dGBq6srjI2N8eLFC5w4cQLZ2dno3bs3Lly4gPHjx2Px4sXw9PRUdWS1YWJigpiYGDg6Osqdu337doWao6IqGhoacp+gUuksXrwYAPD48WNcuXJF7jwLbMU1b94cK1asQLNmzVCnTh3peHx8PIKCgqQVWePj47nIWQndv38fkydPhoaGBgRBQGZmJoDXbwr9/PwQFBQEb29vFadUbw8fPnzr8PuiRmVQ0WbMmIGjR48iLS0N1atXR79+/dCjRw+0aNEC6enp2LBhg6ojVghz5syBsbExdu3aBUNDQzRr1kw65+DgIC2CRiXXpk0bmccnTpzA/fv3UaNGDbi5uVWowpsFNikkNTUVzZo1w4oVK2TurAQEBMDPzw9ZWVnYunUrJk+ejLVr17LALgEvLy8EBQXBzMxM+mEkCALu3LmDdevWYdCgQSpOqF727dtXova9evUqkxwVHReGKTuzZ8/G8OHD4ebmBgsLC1SrVg3Jycm4ffs2qlevjv/9738AgOfPn6N///4qTqtedHV1UVBQAEEQYGJigkePHqF169YAgMqVKyMhIUHFCdVXRkYGxo8fjwsXLgD4vxWE33zPUFG25PkQdu/eDUEQ0L59e/zwww9clLOMXLhwAUuWLIGxsbHciCATExM8e/ZMRcnU08aNG/Hnn39i/fr10rH8/HwMHz4cFy9elH4uBAUFYceOHahRo4aqoioVC2xSyO7duzFv3jy5YYuCIKB///4ICAhAQEAAvLy8MHnyZBWlVE8TJkzA3bt3MXz4cFStWhUAMGrUKCQlJaFz584YPXq0agOqmWnTpknfp+9bckIQBBbYVO40adIEx44dw+7du/HPP/9Iq4l/9tln6Nu3L3R1dQG8/jlBJWNlZYXY2Fh06NABjo6O+PXXX1GtWjVoaWlh+fLlsLCwUHVEtbVo0SI8f/4cW7duxeeff46VK1fCyMgIISEhOHfuHJYsWaLqiGpl2rRpCA0NxenTp+Hm5obWrVujR48ecHd3f+sUEio5TU3Nt75XeP78OfT19T9wIvV2+PBhNG3aVObY9u3bceHCBfTp0wfDhg1DbGwsvv/+e6xdu7bIRdDUEQtsUkhmZiaePHlS5LnHjx9LQ8H09fW5H24J6ejo4JdffsG5c+dw5swZJCcnw8jICO3bty9yeyl6Nx0dHWhpacHNzQ1eXl5o2bKlqiNVGNevX4e5uTkqVaqE69evv7c9t49SnK6uLgYPHqzqGBXO0KFD8e+//wIApkyZgrFjx2LcuHEAgNq1a2PlypWqjKfWoqKiMHnyZLRo0QLA6zUCbG1t4eDggPnz52P9+vVYtmyZilOqj2HDhmHYsGF48OABQkNDceDAAcycORM//PAD2rRpA0EQUFBQoOqYas/BwQHr16+Hs7OztDZL4YKoO3fuLHL6Hr3dgwcP5BaQPXToEGrUqIEff/wRmpqasLCwQHx8PHbt2sUCmz5urq6uWLJkCfT19eHi4gIDAwNkZGQgIiICS5Yswaeffgrg9ZzhRo0aqTitemrXrp3cAjupqanYvHkzt98ogbNnz+Lo0aM4ePAgxo0bh9q1a8PLywteXl6ch11Kffv2xc6dO2Fra4u+ffu+9S6KKIoQBIHDQanceXNByVq1amHv3r14+PAhsrKyYGZmBh0dHRWmU29JSUmoU6cONDU1oaenh5SUFOlcp06d4Ofnp7pwaqxx48bw8/ODn58frl69igMHDiAsLAyiKGLcuHFwd3dHr1690LZtW1VHVUv+/v4YNGgQPD094erqCkEQsHXrVty9excPHz7Erl27VB1RrWRkZMDExER6nJOTg7///hvdu3eX2Q+7adOmFWpKDgtsUsisWbMwbdo0TJ06FYIgQEtLC3l5eRBFEW5ubggMDAQA1K1bF1OmTFFxWvXx/PlzPH78GPXq1UP16tWl44mJiQgODsauXbuQm5vLArsEKleujF69eqFXr15ISkrCoUOHEBYWhtWrV+OTTz6Bl5cXevToIbN4FBXPpk2bpO1KNm3apOI0Fdu+ffveuVfz5cuXVZCq4hEEgfu5K0nt2rWRnJwM4HVRePz4cTg7OwMAoqOjpakNpDhbW1vY2tri22+/xblz5xASEoJjx45h3759/EBTQebm5tizZw9WrlyJAwcOQFNTE3/++SccHR2xePFiNGzYUNUR1UqdOnUQGxsrrW5/+fJl5OXlyS14lpeXV6E+0OQ+2FQq9+/fx9WrV/Hs2TPUrFkTzZo1411BBaSmpmLq1KmIiooC8HqV64EDB+K7777D8uXLsWHDBuTn58PDwwNffvklTE1NVZxY/SUkJGDDhg3YvHkzXFxcOBSUyq39+/djxowZ6N27N3bu3Im+ffuioKAAx48fh6GhIby9vfmhmwIuX76Mbdu24cqVK3j+/DkEQUCNGjVgb2+PwYMHS6uzk2J+/PFHFBQU4Pvvv8e+ffswbdo0NG3aFNra2rh69SqGDx+Ob775RtUxK5ycnBz8+eefXKGdyoW5c+fi2LFjWLRoEUxMTPDdd9/h77//xokTJ2RuJK1atQoRERHYs2ePCtMqDwtsonJgzpw5+P3339GnTx9YW1sjPj4ev//+O6ysrPDXX3/BxcUF33zzDQtrJUhPT8eRI0dw8OBBnD9/HvXr18fo0aPRt29fVUcjKlKvXr3g7u6O0aNHw8bGBnv27IGNjQ0yMjLg6+uLbt26Yfjw4aqOqVbWrVuHpUuXQltbGzY2NqhTpw5EUURCQgL++ecf5OXl4ZtvvuHWcqWQmZmJzMxMGBsbAwCOHj2K8PBwZGdno3379hg4cKA0x5WoPEpISMDTp09Rq1YtboGooJSUFAwZ8v/au/OwGtP/D+Dvp5WKmpISGYRKjERUIrJkKVu2iTRjL2GsY8jYGUPWbGlsDWNNWgzGMrZhsvMdM8akLG0qLVpP6vz+cDm/aU5Iqqdzer+u63f96rlv9Z6uvqfzeZ77/tyj8PDhQwCvVwl988038PT0lM0pLCxEr1690KtXL8yYMUOsqOWKBTaVWWFhIe7cuYPExERIJBK5cXZjLr2ePXuiX79+xZ5CnTt3Dt7e3hg6dCgWL14sYjrFl5eXh7NnzyIiIgIXL16EgYEBevfuDVdXVzbeKicWFhZv3YMtCAJq1aoFCwsLeHl5wdnZuZLTKbY2bdpg69at6NChA6ysrLBjxw7Z/srTp09j+fLlOHv2rMgpFcfdu3cxbNgwuLm5Yd68edDV1S02np6ejmXLluH48eM4ePAgXyOIqpkDBw5gy5YtSEpKkvUQqVu3Lry9vTF8+HCx4ymcwsJCREVFISMjA5aWlnK9mTIyMnD16lW0bt0axsbGIqUsX9yDTWXyxx9/YPLkyUhISCjxOAMed/Rh4uPj5RqSvGlw1q9fPzEiKY0ZM2bg7NmzqFmzJlxcXLBz507ZObdUfmbPno3g4GBoaGjA2dkZ+vr6SE1Nxblz55Cfn4+BAwciKioKkyZNwurVq9G3b1+xIysMHR0d2U1MIyMj/PPPP7LXi8LCQtk+Vyqd/fv3o2XLlvj+++9LHNfT08P333+P2NhY7Nu3D8uWLavkhEQklm3btmHt2rXo378/XFxcUKdOHaSkpODEiRNYtGgRMjIyMGHCBLFjKhRVVdV3dl/X1dWFi4tLJSaqeCywqUwWLlwIHR0d7N69G02bNuVRXB/p1atXcg1f3jR7qFmzphiRlEZkZCS0tbVhZWWFhIQEBAUFISgoqMS5giBgy5YtlZxQOWRkZKBly5bYsGFDsSfZX3/9NSZPnoy8vDzs3bsX06ZNw/bt21lgf4CWLVviwYMH6NSpE5ydnbFp0yZIpVKoqakhMDCQR899oFu3bsHLy+udcwRBgLu7O3bv3l1JqZTPu1a1vMFGXFTVBAcHY8yYMZg1a1ax687OzjAwMEBwcDALbHovFthUJv/88w/WrVsn1wWQyi4iIgI3btyQfV5UVARBEBAeHo6oqCjZdUEQuC/wA7zpXJmXlydyEuV2+PBhrFixQu4NtSAIGDp0KL7++mt8/fXXcHV1xbRp00RKqZgmTJiA+Ph4AMCUKVMQFxeH5cuXo6ioCK1ateIWkg+UlJRUqn4WjRs3RlJSUiUkUk5z5syRez3IzMzE5cuX8fz5c4waNUqkZERvl52dDQcHhxLHHB0dsX///kpORIqIBTaVSaNGjZCdnS12DKXytmOOdu3aVexzFtgfJjg4WOwI1UJubi4SEhJKHIuPj5cdLaWlpcUVLx/I2tpa9pS6du3a2LJlCyQSCSQSCXR0dMQNp4BycnJKtTKoRo0ayM3NrYREyultf6cmT56M2bNnIyMjo3IDKanc3NwSj+7T09Or/DBKwNHREb/99hs6duwoN3b58uV3LnUmeoMFNpXJN998g2XLlsHc3Fx2Di6V3V9//SV2BKKP4uzsDH9/f2hpaaFr167Q0dFBVlYWzpw5A39/f3Tv3h0A8ODBA7kGJ/ThNDQ0lOrM0MqWlZWF9PT0d855+fJl5YSphvr164fZs2dj6tSpYkdRSFKpFJs3b8aBAweQnJxc4hwuvy+bwYMHY8GCBXjx4gW6desGAwMDpKam4vTp07h69SoWLVqEP/74QzafTRCpJOwiTmXi5uaG5ORkZGZmom7duqhVq1axcUEQEBYWJlI6IqpsWVlZmDNnDk6fPg1BEKCmpoZXr15BKpWiR48eWLFiBXR0dHDq1CloaWnB0dFR7MgK5dKlSzh58iQSExPlnlYJgsC9wh+gNHuDAci6B7NQKX/BwcHYtGkTrl69KnYUhbRz505s3rwZY8eOxdq1a+Ht7Q1VVVVERkaioKAAEydOxODBg8WOqZAsLCyKfS4IQrFmvm9eO/j6QO/CJ9hUJlZWVqV6g0JE1YOOjg4CAgIQHR2Nu3fvIjk5GXXr1kXLli3RtGlT2byePXuKmFIxBQUFYfXq1ahfvz7MzMzkbmjSh1mxYoXYEaqFnTt3yl0rKChAdHQ0Tpw4AVdXVxFSKYfDhw9j8uTJGDFiBNauXYvu3bvDysoKPj4+8Pb2xpMnT8SOqLDetl2PyiY0NPSD5ivLCUR8gk1ERFSFOTs7w9nZGX5+fmJHISq1/z4JBF5vbTA2NoaLiwt8fHx4SkYZWVtbY/v27bC1tUXLli2xfft22d7g8+fPY968ebh06ZLIKYlKXhEAoMRVAYDybG3gE2wiIioXhYWFuHPnDhITE2XnNv+bstyZrmzp6eno1q2b2DGIPgh7i1QcPT095OTkAABMTExw//59WYGdlpbGUzM+QkJCAm7cuIHExEQAgLGxMdq1awdjY2ORkymma9euyT5+/Pgxpk6dWuIZ42FhYVi3bp14QcsZC2wqtaVLl2L06NEwMTHB0qVL3zufT1uIqo8//vgDkydPRkJCAkpaGCUIAgvsMuratStu3LjB7rVEBACwsbHBvXv34OTkBFdXVwQEBCAlJQVqamo4ePAgXyvKIDU1FYsWLcLp06dRVFRUbExFRQU9e/bE/PnzYWBgIFJCxfTvLU3+/v4YNmwYxo8fL7tmYGAAc3Nz1KhRA6tXr1aafiIssKnUzp49i8GDB8PExARnz55951xBEFhgU5UQEBDwQfN9fX0rKIlyW7hwIXR0dLB79240bdqUR3GVI3d3dyxcuBD5+flwcHBA7dq15eawky1VNRcuXEBmZqZsr3VCQgLmzp2L6OhoODg44Ntvv4WWlpbIKRWTr6+v7Iz2iRMnIjMzExEREbLXiPnz54ucULFkZGTAw8MDCQkJcHd3h7OzM+rVqwfg9e/tuXPnEBoair/++gsHDx4s8TWY3u/WrVsYO3ZsiWNWVlbYsmVLJSeqONyDTVQF/HsJTWnY2tpWUBLl89+fVUFBgWz5nKampqwjc40aNaChoYGoqKhKz6gM2rRpg3Xr1sHJyUnsKErnbXvYAHaypapr8ODB6N27N8aMGQMA8Pb2xh9//IG+ffsiLCwMbm5umDNnjsgpiYCVK1fi2LFj+PHHH9GkSZMS58TExMDT01N2xBx9OGdnZ9jb22PZsmVyY9988w1+//339z7AUxR8gk1UBXh6ehY7CqKkN9D/xjfTpffvmxf37t3DV199BR8fH7i4uMjOaj5x4gS2bNmCtWvXiphUsTVq1AjZ2dlix1BK7GpLiujx48eym0NZWVm4ePEiVq9ejV69eqFZs2YICAhggV1Go0aNwoIFC2BmZiY3FhMTgwULFvB14wP88ssv8PHxeWtxDQCNGzfGhAkTsHv3bhbYZTRx4kR8++23ePLkCbp3717sjPFr165h8eLFYkcsNyywqcwyMjJw4cKFEs9lBbjU9kP8+xiD1NRUzJs3Dx06dJBrAhEVFVXinT8qnSVLlmDMmDFwd3eXXdPR0cHgwYORn5+PxYsX4/DhwyImVFzffPMNli1bBnNz8xLf9FHZtW/fXuwIRB/s1atXUFFRAfD/Nzo7deoEADA1NUVKSopo2RRdVFTUW29oZmVl4fr165WcSLElJSWV2PX+vywtLfH8+fNKSKSchg4dCkNDQ2zduhWrVq3Cq1evoKamhhYtWmDz5s1wdnYWO2K5YYFNZXLp0iVMmTIFOTk5qFGjhtx+S0EQWGB/gH+/sE+ZMgV9+vSRu0Pq7OyMlStX4qeffkLHjh0rO6JS+Ouvv9CgQYMSx0xNTfHw4cNKTqQ8lixZguTkZLi5uaFu3bpyZzULgoCwsDCR0hH9P2dnZ7lVQe9y5syZCkyjvJo0aYKwsDC0bt0aBw4cQJs2baCtrQ0ASE5Ohp6enrgBldStW7egr68vdgyFoqurK+sa/i4JCQncf/2Runbtiq5du6KoqAgvXryAvr6+7EacMmGBTWWycuVKtGrVCsuXL0f9+vXFjqNULl68+NbGXI6Ojrxx8RHq16+P/fv3o1OnTnLL8Pft2wcTExMR0yk2KyurDypa6MOEhobiwIEDiI2NLXHF0M2bN0VIpZi6detW7Hf15MmTyMrKgoODg2zJ4m+//YZatWrBxcVFxKSKzcfHB1OnTkVoaChUVVWxdetW2djFixfRokULEdMpnm3btmHbtm0AXt+w9PLyknvNlUgkKCwshIeHhxgRFVaHDh3www8/oEePHtDU1CxxTl5eHnbu3Ak7O7tKTqecVFRUUKdOHbFjVBgW2FQmT58+xZw5c1hcVwBtbW1cuXKlxKfUly9flj0BoA83Y8YMTJ06FT179kTXrl1lb6bPnTuH+Ph4rF+/XuyICuu7774TO4LSOnbsGObPn4+BAwfi1q1bcHd3R1FREc6ePYvatWujf//+YkdUKPPmzZN9HBQUhHr16iEoKAg6Ojqy6y9fvsS4ceN4JM9H6NatG37++Wfcv38f5ubmaNSokWzM2toa5ubm4oVTQG3atMHo0aMhlUqxadMm9O3bV+5sZnV1dZiZmaFr164ipVRMkyZNgru7OwYPHgxvb2906dJF1uE+JycHv/76K7Zs2YK4uDj4+/uLnFaxXbp0CSdPnixxe6kgCDymi6q3Fi1aICEhQewYSsnDwwMbNmxAamoqunXrVqwJxLFjxzB58mSxIyqs7t274/DhwwgMDMSZM2eQnJwMQ0NDfPbZZ9iwYQMsLS3FjkgkZ+fOnfDx8cH48eNx8OBBeHh4wMrKCllZWRgzZgxvun2E4OBgLFiwoFhxDbw+u3XcuHFYtGhRsTNb6cOYmprC1NRU7vqwYcNESKPY2rdvL+vHIAgChgwZAiMjI5FTKYcmTZogMDAQ06dPx4wZMwBAthQ8MzMTUqkUdevWRWBgIBo3bixmVIUWFBSE1atXo379+jAzM5PbSqZMWGBTmSxcuBCzZs2CkZER7O3toabGX6Xy4uPjg9q1ayMwMBBHjx6VdRc3NDTE3Llz4enpKXZEhWZpaclu4eWkT58+WLt2rexJlFQqxbfffgsfHx/ZGaIAcPfuXXh4eOB///ufWFEV2uPHj2FjYwNVVVWoqqoiKysLwOsGfePGjcPy5cvx5ZdfipxSMWVkZODly5cljr18+RKZmZmVnEixnTp1CnZ2dqhduzZOnTr13vk9e/ashFTKh1vFyp+trS1Onz6Nn3/+GdeuXZOdM25kZARbW1v07t37rcvHqXT27duHkSNHws/PT+woFY5VEZXJsGHD8OrVK4wfPx4qKipyLzqCIODGjRsipVN8I0eOhIeHBxITE2VPWY2NjZWyEQQprkePHhVb4lVUVITDhw9j+PDhxQpsqVSKwsJCMSIqBR0dHUgkEgCv3+z9888/6NChAwCgsLAQaWlpYsZTaHZ2dli9ejXq1atXrFv777//Dn9/f+63/EBTpkzBwYMH8dlnn2HKlCnvnMvz2z/O48ePERIS8ta+DP/e806lo6mpiQEDBmDAgAFiR1FK6enp6Natm9gxKgULbCqTMWPGiB1B6amoqMDExISNt8pRUVERDh069M79P6dPnxYpnXJ4c5Y7lZ+WLVviwYMH6NSpE5ydnbFp0yZIpVKoqakhMDAQ1tbWYkdUWIsXL4a3tze8vLxQq1YtfPLJJ0hLS8PLly9haWmJRYsWiR1RoZw5cwZ169aVfUwV4+7du/D09ISJiQliY2Nhbm6Oly9fIi4uDsbGxmjYsKHYEYnkdO3aFTdu3IC9vb3YUSocC2z6YBKJBM2bN4elpWWJe6vo4z169AinTp16axG4fPlykZIptlWrVmHnzp2wtbVFhw4d5I6XI6qKJkyYgPj4eACvnxDGxcVh+fLlKCoqQqtWrbB48WKREyquunXr4siRI7hw4QLu3r1brC9D586dxY6ncDZu3Ih+/frB3t6eTVAr0KpVq9C7d28sW7YMVlZWsv9/8+ZNzJgxA+PGjRM7IpEcd3d3LFy4EPn5+XBwcCjxyDMrKysRkpU/Ftj0wTQ0NDBjxgwEBQWxwK4AoaGhmDt3LjQ1NWFiYlLiGeNUNuHh4Zg8eTImTZokdhSiUrO2tpY9pa5duza2bNkCiUQCiUQi15yLyqZz584sqMvBhQsXcOzYMRgYGKBPnz5wc3NDq1atxI6ldB48eCDbogdAdiPexsYGvr6+8Pf3R6dOncSMSCRn9OjRAIDt27dj+/btcselKtO2ERbYVCZNmjRhF/EKsmXLFri4uGD58uWoWbOm2HGUikQigY2NjdgxlMrvv/+OxMREAK+X4AuCgN9//x1xcXGyObGxsSKlU14aGhrQ0NAQO4bSSEpKQlJSUol7WW1tbUVIpJguXbqE3377DREREQgJCUFwcDAaNmwINzc3uLq6Fjuqi8pOEASoq6tDEAQYGBggPj5e9rfN2NiYr7lUJe3Zs0fsCJVGkHLDHJXB+fPnsXz5cqxevZp3p8tZmzZtsHnz5mqxR6WyLVmyBCoqKsXOwaWys7CwKPVcZbozXRkCAgJKPVcQBK7KKKOnT59i1qxZuHPnDgD5HgL8vS07iUSCc+fOITIyEufPn4dEIkGLFi3Qr18/9OnTB4aGhmJHVFgeHh4YOHAghgwZgkmTJiEhIQHfffcd1NTUsGjRIrx48QLh4eFixySqtlhgU5m4ubnh+fPnyMzMhJ6eHurUqVNsXBAEhIWFiZROsY0bNw6Ojo7w8vISO4rSCQsLw7p162Btbf3W/T88Nqb0/v2UujS4J7P0LCwsoKmpCU1Nzfc2jhMEAVFRUZWUTLl4eXnhyZMnmDJlCszMzEpcFfAhN5KoZNnZ2Th16hQiIyNx9epVSKVSdOjQATt27BA7mkIKDQ1FfHw8fHx8EB0djdGjR+P58+cAgJo1a2LDhg1wdHQUOaXieNPjorTYfJbehwU2lcmcOXPeuxd4xYoVlZRGufz555+YNWsWRo4ciY4dO6JWrVpyc/T09Co/mBJ43xtlPq2iqsLJyQmpqano1KkT3Nzc4OzsjBo1aogdS+m0adMGK1eu5I21ShITE4Pdu3fjwIEDAMDX23KSnZ2NW7duIT8/H9bW1jAwMBA7kkKxsLD4oP42/L0tu9DQUBw4cOCtx8vdvHlThFTljwU2URXz7yLwbS/4fHEvm9I8ceVTVqoqrl+/joiICJw8eRL5+fno1q0bXF1d4ejoCFVVVbHjKYVevXph5syZ6N69u9hRlFZSUhKOHz+O8PBw/Pnnn9DQ0ICTkxP69evHnztVCf8+njMnJwf+/v5o2LAhevbsCQMDA6SkpODUqVN4+vQpZs6cCTc3NxHTKq5jx47Bz88PAwcOxMGDB+Hu7o6ioiKcPXsWtWvXRv/+/eHr6yt2zHLBApuoigkJCXnvndSBAwdWUhoiElthYSEuXbqEyMhInDlzBurq6nBxccGQIUPQsmVLseMptJMnT2LHjh3Ytm0bVwaVo4yMDJw4cQIRERG4ceMGBEFAhw4d4Obmhh49erD7/Ud49uwZDh06hNu3byMlJQWCIKBOnTqwsbHB4MGDuXz5I/n5+aGwsLDEVZjffPMNAK7QLKsBAwbAxcUF48ePh5WVFY4cOQIrKytkZWVhzJgx6NWrF7788kuxY5YLFthUZpmZmTh58iRiYmIgkUjkxv38/ERIRVQ6ubm5JS5P4ptsqsry8/Oxfv167Nq1C87Ozh/UDI3kTZw4EX/++SdevnwJS0tLuS05giBgy5YtIqVTPOHh4YiMjMTly5dRUFCAVq1awc3NDX369JHr1UIfLjw8HPPmzYNEIoGRkRHq1asHqVSKxMREJCUlQVNTEytWrECfPn3Ejqqw2rVrh/Xr16Njx45yY5cuXcK0adNw7do1EZIpvjZt2mDr1q3o0KEDrKyssGPHDnTo0AHA61UEy5cvx9mzZ0VOWT54TBeVSWxsLIYPHw6JRILc3Fzo6+sjIyMDr169gq6uLnR0dFhgU5UjlUqxefNmHDhwAMnJySXO4fJ7qoqio6MRGRmJyMhIPHv2DPb29hg8eLDYsRRednY2GjZsWOxzKrtZs2ahcePGmDhxItzc3Ir9bOnjREdHY+7cuWjbti3mz58PMzOzYuMPHz7EkiVLMGfOHFhaWqJx48YiJVVsqqqquH//fokF9v3792Vnj9OH09HRkT2QMzIywj///CMrsAsLC5GWliZmvHLFApvK5LvvvkPr1q2xfv16WFtbIzAwEBYWFjh+/DjWrl2L9evXix1RoV27du2dTSB4/EbZ7Nq1C7t27cLYsWOxdu1aeHt7Q1VVFZGRkSgoKMDEiRPFjkgkExcXh8jISERERODhw4ewtrbGqFGj0KtXLzYxKifBwcFiR1Aqb5Z8Uvnbt28fTE1NERgYWGK3+2bNmiEoKAgDBgzA3r17+ZCjjPr164cNGzYgPz8f3bt3h76+Pl68eIFffvkFgYGBGD58uNgRFVbLli3x4MEDdOrUCc7Ozti0aROkUinU1NQQGBgIa2trsSOWGxbYVCZ3797FsmXLZC/yBQUFUFVVhZubG9LS0rB06VLs379f5JSK6eLFi5gwYQLs7e3xv//9D507d0ZeXh5u3rwJY2Nj2Nraih1RYR0+fBiTJ0/GiBEjsHbtWnTv3h1WVlbw8fGBt7c3njx5InZEpcDl9x9v+PDhuHPnDiwsLNCvXz/07dsX9erVEzsW0TuxuK44UVFRGDp0aInF9RsaGhoYOnQoQkJCKjGZcvn666+hpqaGoKAgbNq0SXZdU1MTI0aMwIwZM0RMp9gmTJggOxJtypQpiIuLw/Lly1FUVIRWrVph8eLFIicsPyywqUwkEgl0dHSgoqICXV1d2fmLwOu7qH/99ZeI6RTbxo0b4eXlhZkzZ8LKygpTp06FlZUV4uLiMGbMGNjZ2YkdUWHFxcXB0tISqqqqUFNTQ2ZmJgBARUUFHh4emDdvHqZPny5ySsXE5ffl6/bt29DS0sKrV69w7NgxHDt27K1zBUFAWFhYJaZTLkVFRbh69epb+4koS9MdUmwJCQkwNzd/7zxzc/NSnZhBJVNTU8PXX3+NiRMn4u+//0ZycjIMDQ3RvHlz6Orqih1PoVlbW8ueUteuXRtbtmyBRCKR1RTKhAU2lUmjRo0QFxcHW1tbtGjRAvv27YODgwPU1NRw4MAB1K1bV+yICis6OhrTpk2DiooKBEFAbm4ugNfHR02ePBkbN25E//79RU6pmPT09JCTkwMAMDExwf3792Fvbw8ASEtLQ15enpjxFBqX35evAQMGfNC5rFQ2ycnJ8PT0RGxsLARBwJu+r//+2bPApqogOzsb2tra752npaUl+ztHZaerq8sVg5VAQ0PjnasyFBULbCqTvn37yp5ST506FWPGjEH79u1lb1C+++47kRMqLk1NTRQVFUEQBBgaGuLJkydo164dAEBbWxuJiYkiJ1RcNjY2uHfvHpycnODq6oqAgACkpKRATU0NBw8elBXb9OG4/L588TW0cnz33XfQ09PD+fPn4eTkhIMHD6JOnToICwtDaGgoAgMDxY5IBADgoT+VJyMjAxcuXEBiYqLcdidBEDBp0iSRkpGiYIFNZfLvO/rW1taIiIjAhQsXkJ+fDzs7OzRv3lzEdIrNwsICMTEx6NixI+zt7bF161Z88sknUFNTw7p16/iz/Qi+vr5ISkoC8Pp4nszMTERERCA/Px8ODg6YP3++yAkVF5ffkyK6du0a/Pz8YGhoKLtmYmKCiRMnQiqVYvHixQgKChIxIdH/8/Lyeu/KFhbiH+fSpUuYMmUKcnJyUKNGDairqxcbZ4FNpcECm8pFvXr1MGzYMLFjKAUvLy88e/YMADB9+nRMnDgR3t7eAABjY2Oee/sRmjRpgiZNmgB4vSzJz8+PnVbLCZffkyJ6+fIl9PX1oaKiAh0dHaSmpsrG3pyQQaX3oecDcwlu6fn6+oodoVpYuXIlWrVqheXLl6N+/fpixyEFxQKbyqygoACHDx/GvXv3kJiYiG+//RaNGjXC8ePHYW5uLndGI5WOk5OT7GMjIyOEhITg8ePHyMvLQ5MmTZRyrwopPi6/J0XUoEEDWZPOpk2b4tixY+jatSsA4PTp0+x8/4E8PT3fupddKpXKPX1l48PSY4FdOZ4+fYo5c+awuKaPwgKbyuTp06f44osvkJaWhhYtWuDGjRvIzs4G8PoO9sWLF7FixQqRUyoHQRDQqFEjsWMQvROX35Mi6tKlCy5fvow+ffrA29sbkyZNgr29PdTU1JCSkoKZM2eKHVGhhIaGyj5OTU3FvHnz0KFDB7i4uKBOnTpISUnBiRMnEBUVhWXLlokXlOgtWrRogYSEBLFjKKVRo0ZhwYIFJT6Ai4mJwYIFC7Bnzx4RkpU/QcrNGlQGEyZMwIsXL7Bt2zbUrl0bLVu2xJEjR2BlZYXjx49jzZo1OH36tNgxiYiISu3evXs4ffo08vLy4ODgUGxFEX2YKVOmoEGDBpg9e7bc2MqVK/H06VNueaIq5++//8asWbMwc+ZM2c02Kh8WFhY4ePAgPvvsM7mxe/fuYdiwYbh//74Iycoff2uoTKKiouDv7w99fX0UFhYWGzM0NHzrObhEpJyq051pUl6tWrVCq1atxI6hFC5evPjWAtrR0ZFLnqlKGjZsGF69eoXx48dDRUUFmpqaxcYFQcCNGzdESqe8bt26BX19fbFjlBsW2FQmqqqqb+1UmZKSAi0trUpORERiioqKkm0T+a+srCxcv369khMptm+++eaD5nNLDlU12trauHLlCjp27Cg3dvny5VKd6UxU2UaPHv3eTu1Uetu2bcO2bdsAvL45UVInfIlEgsLCQnh4eIgRsUKwwKYysbW1xc6dO9G5c2eoqKgAgKyxCRsaUVWXkZGBhw8fIiEhAZ07d4auri7y8/Ohrq4u+32m8qNsd6Yrw3+bPyUlJSEtLQ26urowMDBAamoqMjIy8Mknn8DY2FiklERv5+HhgQ0bNiA1NRXdunWT/d6ePn0ax44dw+TJk8WOSCSHv5flq02bNhg9ejSkUik2bdqEvn37yv3NUldXh5mZmazBpDLgHmwqk+joaHz++efQ09ODs7Mzdu/ejUGDBuHhw4d4/PgxDh06hIYNG4odU+FJpVI8f/4cBgYG3AdUDqRSKdauXYvg4GDk5uZCEAQcPnwYVlZWGDduHFq3bs1lix/g33emc3NzUaNGjXfemWajs7K5cOECFi5ciOXLl8POzk52/cqVK5g3bx4WLFjAvcJUJf34448IDAzE8+fPZTfhDQ0NMX78eHh6eoodj4gqUUBAAIYMGQIjIyOxo1Q4FthUZm8alFy+fBnp6enQ1dWFvb09pkyZwuL6I128eBEbN27E/fv3UVRUhEOHDsHKygrz58+Hra0t+vXrJ3ZEhfSmuJ49ezbs7e3h4uIia873008/4dChQwgJCRE7psKIiopCVFSU7M704MGD33lnWlVVVaSkis3NzQ1jxozBgAED5MaOHj2KH374AREREZUfjKgUioqKkJiYiOTkZBgaGsLY2JgrhahKe/z4MUJCQhAbG4v8/Hy58a1bt4qQihQJH4lRmZmammLlypVy1zMyMnDz5k3Y2NiIkErxRUREYNasWejduzeGDBlS7KmfqakpQkJCWGCX0dGjRzF9+nQMHz5crjlfw4YN8fTpU5GSKab27dujffv2AF5vEakud6Yr2+PHj996HrOuri6ePHlSuYGIPoCKigpMTExgYmIidhSi97p79y48PT1hYmKC2NhYmJub4+XLl4iLi4OxsTEfIH2ENw+MTp48icTERLmbF4IgKM0JRCywqdxdvXoVX331ldweQiqdzZs3w8vLC3PmzEFhYWGxArtZs2bYvXu3iOkUW3p6eoldrgGgsLAQr169quREyoNL6ytO06ZNERgYCFtb22KNobKyshAYGIimTZuKmE7xXLt27YPm29raVlAS5ffo0SOcOnXqrW+mly9fLlIyopKtWrUKvXv3xrJly2BlZSX7/zdv3sSMGTMwbtw4sSMqrFWrVmHnzp2wtbVFhw4doK6uLnakCsMCm6iKefr06Vv3U9asWRMvX76s5ETKo1GjRrh8+XKJTfiioqLQrFkzEVIpDy6rqxh+fn4YO3YsnJyc0KFDB1mzqN9//x2FhYUICgoSO6JC8fT0lO0HBlCsb4BUKpXrI8CbxWUTGhqKuXPnQlNTEyYmJnJvptmpmaqiBw8eyI7oAiD7W2ZjYwNfX1/4+/ujU6dOYkZUWOHh4Zg8eTImTZokdpQKxwKbqIoxNDTEo0ePSiwCHzx4wGV2H+GLL77A/Pnzoaamhl69egEAEhMTcfv2bQQHB/Ooo4/AZXUVx8bGBqdOncKuXbtw9+5dPHr0CIaGhhg+fDi8vLxgaGgodkSFEhoaKvs4NTUV8+bNQ4cOHeDi4oI6deogJSUFJ06cQFRUFJYtWyZeUAW3ZcsWuLi4YPny5ahZs6bYcYhKRRAEqKurQxAEGBgYID4+Xrbl0djYGLGxseIGVGASiaTabB9lgU1Uxbi6umLjxo1o0qRJsf2tf//9N4KCgvD555+LnFBxDRo0CBkZGdi4caOs+/WkSZNQs2ZNfPXVV+jTp4/ICRUXl9VVrDp16mDmzJlix1AKFhYWso+nTJmCPn36YPbs2cXmODs7Y+XKlfjpp59KPMeZ3u/58+dYuHAhi2tSKGZmZnj69Cns7OxgbW2NHTt2oHnz5lBTU0NgYCBMTU3Fjqiw3NzccPbs2WpxlC8LbKIqxtfXFw8fPsSXX34pa2w0btw4vHjxAl26dMH48ePFDaigpFIpMjIyMGLECAwdOhS3bt2SnSvcpk0b1KpVS+yICo3L6kgRXbx4EQEBASWOOTo6srfAR2jXrh3+/vvvavFmmpTH0KFDER8fDwCYPn06Ro8ejf79+wN4vU1vw4YNYsZTaK1bt8a6deuQmpoKBwcH1K5dW25Oz549RUhW/lhgU6m5ubmVal5WVlYFJ1FuGhoa2LJlC65evYrffvtNVgQ6ODjAwcFB7HgKq6CgAA4ODti8eTO6dOkCR0dHsSMpFS6rqzh5eXnYvHmzrPOqRCKRm8N9wmWjra2NK1eulPiU+vLly8WaytGHmT59OmbNmgVNTU107NixxJuYb+uOTySWfx+HaGZmhuPHj+P27dvIy8uDtbU1DAwMxAun4N6sFIqPj8fx48flxgVBUJq/ZSywqdSsrKzYlKQS2dnZwc7OTuwYSkNDQwPGxsZyx3NR+eCyuoqzaNEiREREwNXVFWZmZkrdebWyeXh4YMOGDUhNTUW3bt1kDeROnz6NY8eOYfLkyWJHVFgDBw4EACxcuPCt7x2U5c00KS9tbW1uEyknZ86cETtCpRGkb9poElGVcOXKFcTHx8Pd3V1uLCQkBCYmJiy8yygoKAjnz59HUFAQNDU1xY6jVEJDQxEfHw8fHx9ER0dj9OjReP78OYD/X1bHVQNlY2dnB19fX4wcOVLsKErpxx9/RGBgIJ4/fy7rLm5oaIjx48fD09NT7HgKKyQk5L035d8U4UREyoQFNlEVM2zYMHTr1q3EvdZBQUE4ffo09u/fL0IyxbdkyRKcPHkShYWFaN++PerUqSP3BtDPz0+kdMolOzsbt27dQn5+PpfVfaSOHTti5cqVvEFRgYqKipCYmIjk5GQYGhrC2NhY1k+AiIjKz4ULF3Dv3j0kJibC29sbJiYmuHbtGho2bAgjIyOx45ULFthEVYyNjQ0CAgJK3G995coVTJ48GdevXxchmeJzdnZ+57ggCNVqCRMphoCAADx+/BirVq0SOwoREVGZvHjxAj4+Prhz5w7q1auHhIQEHD58GFZWVpgzZw5q1qyJBQsWiB2zXHAPNlEVIwgCXr58WeJYRkYG9xB/hLNnz4odQSk9e/YMhw4dwu3bt5GSkgJBEFCnTh3Y2Nhg8ODBPLv9I9WoUQM3btzA8OHDYW9vL9d5VRAEfPHFF+KEU3Bv6yD+hiAImDRpUiWlUT7Xrl3DgQMHEBsbKztZ4N/Cw8NFSEVEYli2bBnS0tIQERGBTz/9FC1btpSN2dvbY8uWLSKmK18ssImqmNatW2Pv3r3o2bNnseXLUqkU+/btQ+vWrUVMR1RceHg45s2bB4lEAiMjI9SrVw9SqRQxMTG4evUqfvjhB6xYsYJnjH+E1atXA3jdefX27dty4yywy2737t1y13JyclBYWIgaNWpAQ0ODBXYZXbx4ERMmTIC9vT3+97//oXPnzsjLy8PNmzdhbGwMW1tbsSMSyblw4QI6derEpr4V4Pz581iyZAnMzMzkHhbVq1cPSUlJIiUrfyywiaqYyZMnY9SoUejXrx8GDhwIQ0NDPH/+HKGhoYiNjUVwcLDYERVWaGjoe+f8+4gOerfo6GjMnTsXbdu2xfz582FmZlZs/OHDh1iyZAnmzJkDS0tLNG7cWKSkiu2vv/4SO4LSunbtmty1V69e4cqVK1i1ahW+//57EVIph40bN8LLywszZ86ElZUVpk6dCisrK8TFxWHMmDFs1klV0vjx42FsbIyBAwdi0KBBPAGjHBUWFkJLS6vEsczMTKU6IYN7sOmjSaVSPH/+HAYGBlBT4z2b8nDjxg2sWrUKd+/eRVFREVRUVGBtbY0ZM2agbdu2YsdTWBYWFiVe//edah4bU3pLlizBlStXEBoaCg0NjRLnSCQSDBgwAA4ODmwgRwrl8OHDOHz4MJtKllHbtm0REBAAOzs7tGjRAsHBwWjXrh0AIDIyEhs3bsSJEydETklUXHR0NA4fPozw8HC8ePEC7dq1w5AhQ+Di4vLWv3NUOl5eXtDV1cWGDRtQWFgIKysrHDlyBFZWVpg2bRpyc3OxdetWsWOWC1ZDVGYXL17Exo0bcf/+fRQVFeHQoUOwsrLC/PnzYWtri379+okdUWG1bdsW+/fvR15eHjIyMlC7dm3UrFlT7FgKr6SnVRkZGbh06RL27t0rW4pLpRMVFYWhQ4e+802HhoYGhg4dipCQkEpMppzy8/Px9OnTEveyWllZiZBIuRkbG3P1wEfQ1NREUVERBEGAoaEhnjx5IiuwtbW1kZiYKHJCInlmZmb4+uuvMXPmTPz66684cuQIvvnmGyxevBiurq5wd3cvtneYSu+rr77CqFGjMGLECLi4uEAQBJw+fRrbtm3D+fPnsW/fPrEjlhsW2FQmERERmDVrFnr37o0hQ4Zg/vz5sjFTU1OEhISwwC4HNWrUQI0aNcSOoTRq1apV4rXhw4cjPz8fq1atQlBQkAjJFFNCQgLMzc3fO8/c3BxxcXGVkEg5SSQSLFy4EGFhYW9tcsiVF+Xr6dOn2L59O5eHfgQLCwvExMSgY8eOsLe3x9atW/HJJ59ATU0N69atQ/PmzcWOSPRWqqqq6NatG7p164akpCTMnDkTP/30E/bv349mzZrBy8sL7u7uYsdUKG3atMGePXvg7++PlStXQiqVYuvWrbC2tsauXbuU6kYxC2wqk82bN8PLywtz5sxBYWFhsQK7WbNmJTaOodK7dOkSTp48icTERLmnVYIg8OdbAZo1a4Z169aJHUOhZGdnQ1tb+73ztLS0kJOTUwmJlNOmTZtw+fJlfPfdd5g5cya+/fZbaGlpISwsDE+ePCn2+ksfpk2bNnLNjF69eoWCggLUqFHjvV3G6e28vLzw7NkzAMD06dMxceJEeHt7A3i9OoA/W6rq3iwXDwsLQ2ZmJnr16oUePXrg/PnzWLBgAe7cuYPFixeLHVOhtGnTBj/++KPSr9BkgU1l8vTpUzg5OZU4VrNmzbceM0XvFxQUhNWrV6N+/fowMzMr8akrla/c3FwcPHgQdevWFTuKQmELj8px4sQJ+Pr6onfv3pg5cyY+++wztGzZEgMGDMDXX3+Ns2fPvvX1mN5t9OjRcgW2hoYGjI2N0blzZ+jp6YkTTAn8+3fSyMgIISEhePz4MfLy8tCkSRPuZ6UqKTs7G5GRkThy5Aju3r2LRo0aYcyYMRgwYAD09fUBAH379oWDgwMWLVrEAruMlH2FJgtsKhNDQ0M8evQI9vb2cmMPHjzgubcfYd++fRg5ciQbQlUANzc3uWsFBQVISkpCXl4eVq5cKUIqxebl5fXe40xYiH+cxMRENG7cGKqqqtDU1ERmZqZsrF+/fpg+fToWLVokYkLFNXnyZLEjVBuCIKBRo0ZixyB6p44dOwIAevbsiVmzZsn6BvxXixYt8Mknn1RmNKVw+/ZtnDhxAgkJCSWu0FSWs7BZYFOZuLq6YuPGjWjSpAnat28P4PX/MP7++28EBQXh888/Fzmh4kpPT0e3bt3EjqGUrKys3vq0qmfPnnLHTNG7+fr6ih2hWjA0NJQV1Q0aNMDvv/8OBwcHAEBsbKyIyZRHRkYG7t69i4yMDOjq6uKzzz6Drq6u2LGIqJLNnDkT/fr1Q+3atd85r3nz5jh79mwlpVIOu3fvxooVK2BgYABTU1OlOpbrv1hgU5n4+vri4cOH+PLLL2VL6MaNG4cXL16gS5cuGD9+vLgBFVjXrl1x48aNElcH0Mf57rvvxI6gVFhgV4727dvj+vXrcHZ2xpAhQ/D999/j0aNHUFdXx+nTp+Hq6ip2RIUllUqxatUq/Pjjj5BIJLLrGhoa8PT0xKxZs0RMR0SVLT09Hbm5uSUW2M+fP8fBgwf5t6+MduzYgZEjR2Lu3LlQUVERO06FYoFNZaKhoYEtW7bg6tWr+O2335CWlgZdXV04ODjInqxQ2bi7u2PhwoXIz8+Hg4NDiS/yytRpsTKNGjUKCxYsKPFJdUxMDBYsWIA9e/aIkIzo7aZNm4a0tDQAwBdffAHg9b7s/Px8eHp6YtKkSSKmU2xbt27F7t27MXbsWPTu3Rt16tRBSkoKfv75ZwQFBaF27dqYMGGC2DGJqJJs2rQJnTt3hpGRkdzY8+fPsWnTJhbYZZSbm4tu3bopfXENsMCmj2RnZwc7OzuxYyiV0aNHAwC2b9+O7du3F1vSLJVKIQgCj+Qpo6ioKGRnZ5c4lpWVhevXr1dyIqL3MzQ0hKGhoezzL774QlZo08c5dOgQvL29i71hrlOnDiwsLKCuro4DBw6wwCaqRt7VMyQ5Ofm9S8fp7Xr37o0LFy5UixWaLLDpoyQlJSEpKUmuUQEA2NraipBI8fEJqjhu3bol6xBKRNVDcnIybGxsShxr06YNtm3bVsmJiKiyRUREICIiAsDrfkIrV66UO8FFIpHgf//731tfL+j95s2bh3nz5mHGjBmwt7cv8WZFz549RUhW/lhgU5k8ffoUs2bNwp07dwDI3/HjU9aye9M0jsrHtm3bZG+SBUEoseu1RCJBYWEhPDw8xIhIRCKpX78+fv311xK3Np0/fx7169cXIZXi2rlzZ6nnCoLAlRhUJRQUFMhWt0mlUuTm5sotY9bQ0ED//v0xduxYMSIqhUePHuHmzZuIi4tDZGSk3Lgy1Q6ClOenUBl4eXnhyZMnmDJlCszMzEo8z9LCwkKEZMojOjoa9+7dQ2JiItzd3WFoaIjHjx/DwMAAOjo6YsdTGFFRUYiKioJUKsWmTZswePBgGBsbF5ujrq4OMzMzdO3aFaqqqiIlJaLKtn//fixcuBCurq7o1asXDAwMkJqaihMnTiAyMhILFy7EsGHDxI6pMD7k774yvZkm5eHp6YmFCxfyVJEKMGjQIBQUFGDGjBlo1KhRiV3EleWmJgtsKpM2bdpg5cqVSrOUoyrJzc2Fn58fjh8/DhUVFRQVFeHw4cOwsrLClClT0KBBA8yePVvsmAopICAAQ4YMKbF5CRFVT8HBwdi8eTPS0tIgCAKkUin09fXh4+ODkSNHih2PiEgptG7dGhs3bkTnzp3FjlLhuEScysTIyKhadAEUw8qVK3H16lVs374d7dq1g7W1tWzMyckJu3btYoFdRl988QVycnJKHHv+/Dm0tbWhra1dyamISEyenp4YMWIEHj16hIyMDOjp6aFx48b8G0dUTezcuRNubm6oU6fOe7c5cGtD2VlaWiI1NVXsGJWCBTaVybRp02QF4JtzsKl8nDx5ErNnz4ajoyMKCwuLjdWvXx9xcXEiJVN8fn5+0NbWxrJly+TGNm7ciJycHPj7+4uQjOj9YmJicPfuXSQnJ8PQ0BCtWrVCkyZNxI6lFFRUVNC0aVOxYyi1f/75Bw8fPsQnn3wCW1tbbsehKmPlypVo27Yt6tSpg5UrV75zLgvssluwYAHmzJkDQ0ND2NnZQU1NectQ5f0vowp19OhRJCYmwtnZGZaWlnLdFgVBwJYtW0RKp9hycnKKHcnzb7m5uZWcRrlcv34dCxYsKHHMyckJixYtquRERO+XnZ2Nb7/9Fj///DOKioqgqamJ/Px8qKiooFevXliyZAlXXnwANuKqOFKpFEFBQfjll1/w6tUr9OrVC+PGjcO8efNw9OhR2bymTZti9+7dPLmBqoS//vqrxI+pfHl4eODVq1cYN24cVFRUoKmpWWxcEATcuHFDpHTliwU2lUl2djYaNmxY7HMqH+bm5jh16hQcHR3lxn799Ve0bNlShFTKISMj462FSM2aNZGenl65gYhKYenSpTh37hyWLFkCFxcX6OjoICsrCydOnMDy5cuxdOlSrFixQuyYCuN9T6j+jQX2h/nhhx+wZs0adOvWDdra2tiyZQsePHiACxcu4Ouvv0aTJk3w999/Y+vWrdi8eTP8/PzEjkxElWT06NFyp7goKxbYVCbBwcFiR1BaPj4+8PHxQW5uLnr16gVBEHD37l1ERETgyJEj2L59u9gRFZapqSl+++23Eo/kuXLlitJ0ryTlcvLkScycORPu7u6yazo6Ohg8eDDy8/OxZs0aFtgfgE+oKk5ISAh8fHwwefJkAK/PtPX19cW8efNkDeM6d+4MNTU17N27lwU2VQl//PHHB823srKqoCTK7c3rQnXAApuoiunSpQvWrFmD77//HuHh4QCARYsWwdjYGKtXr4a9vb3ICRXXkCFD4O/vD11dXbi7u0NfXx8vXrxASEgIdu3ahenTp4sdkUiOpqYmGjRoUOKYqampUu9jI8Xy7NkzdOjQQfa5nZ0dpFKpXEHSsmVLJCQkVHY8ohK5u7uX6smqVCrl8XLlJCEhAQkJCbCwsICWlpbYccod/ypTqbHLYuXp1asXevXqhZiYGKSlpUFXV5dnMpaDL774Ak+ePMGaNWuwZs0aqKqqyhrJDR8+HKNHjxY5IZG8QYMG4aeffkKnTp2KvQmUSqXYt28fBg0aJGI6xRMbG4vp06dj6tSpcHJyKnHO+fPnsX79eqxfvx6mpqaVnFBxSSQS1KhRQ/b5m481NDSKzVNXV5dr4kkklj179ogdodo4cOAAAgICkJycDEEQZMfQTpo0Ce3bt4eXl5fYEcsFC2wqNXZZrHyNGzdG48aNxY6hNARBwIIFC+Dl5YUrV67IjuSxs7NDo0aNxI5HVCJdXV3cv38fPXv2RNeuXWFgYIDU1FScO3cOEokEbdu2ld305Gvv++3YsQNaWlpvLa6B100Pg4KC8MMPP2DhwoWVF05JVZd9l6SY2rdvL3aEamHXrl1YvXo1vvzyS9jb2xd7qNG+fXucOHFCaQpsQSqVSsUOQVTdcXUAEb2NhYVFqedy+eL7devWDb6+vhg4cOA754WGhiIgIACnT5+upGSKz8LCAjVr1ixWUOfk5Mhdk0qlyMvL4+8qUTXSvXt3DBo0CD4+PigsLISVlRWOHDkCKysrXLhwAbNnz8bVq1fFjlku+ASbqArg6oDKU1BQgMOHD+PevXtITEzEt99+i0aNGuH48eMwNzfnUnyqctiUq3wlJSWVatl3gwYNkJSUVAmJlIevr6/YEYg+WmhoKA4cOIDY2Fjk5+fLjd+8eVOEVIovKSkJbdq0KXFMXV0dOTk5lZyo4rDApjIrLCzEnTt3kJiYCIlEIjc+YMCAyg+loHgGY+V4+vQpvvjiC6SlpaFFixa4ceOG7Ii5a9eu4eLFi+zGTKTktLW1kZaW9t556enpStl8pyKxwCZFd+zYMcyfPx8DBw7ErVu34O7ujqKiIpw9exa1a9dG//79xY6osExMTHDv3r0Sm/XeuXNHqbbqscCmMvnjjz8wefJkJCQkoKRdBoIgsMCmKmfp0qXQ19fHoUOHULt27WJnitva2mLNmjUipiP6f3/88QfMzMxQo0aNUh0hw2NjSq9ly5Y4fvw4evTo8c55kZGRxV4jiEj57dy5Ez4+Phg/fjwOHjwIDw8PWFlZISsrC2PGjIG2trbYERXW0KFDERAQgE8++QQ9e/YEALx69Qq//vorfvjhB3z11VfiBixHLLCpTBYuXAgdHR3s3r0bTZs2hbq6utiRlMbx48cRHx+PsWPHyo0FBQWhfv366N27twjJFF9UVBT8/f2hr68v18HW0NAQycnJIiUjKs7d3R0HDx7EZ5999s4jZHhszIfz8PDApEmTYGZmBm9vb6iqqhYbLyoqwubNm3HixAls2rRJpJREJIbHjx/DxsYGqqqqUFVVRVZWFgBAR0cH48aNw/Lly/Hll1+KnFIxjRkzBgkJCfj222+xYMECAMDnn38O4PXr8ogRI8SMV65YYFOZ/PPPP1i3bh07L1aAwMDAtx67U7NmTWzfvp0FdhmpqqqWuOICAFJSUrgclKqMPXv2yPoB8AiZ8tWtWzeMHTsWAQEB2L9/P+zt7WFiYgLg9dmsV65cQUpKCsaMGQNnZ2eR0xJRZdLR0ZFtezQyMsI///wjO9u9sLCwVNtL6O38/Pzg5eWFy5cvIz09Hbq6urC3t1eq5eEAC2wqo0aNGsn2rlL5io2NRbNmzUocMzMzQ0xMTCUnUh62trbYuXMnOnfuDBUVFQCvtzNIpVIcPHiwxH1BRGL4981L3sgsfzNnzoStrS127NiBkydPyt5Qa2pqwsbGBkuXLn3nMV5EpJxatmyJBw8eoFOnTnB2dsamTZsglUqhpqaGwMBAWFtbix1R4ZmammL48OFix6hQLLCpTL755hssW7aMXZcrgKamJlJTU0scS05Ohpoa/2dbVjNnzsTnn3+Ovn37wtnZGYIgYO/evXj48CEeP36MQ4cOiR2R6J1SU1NL7Gr75gkslZ6TkxOcnJxQWFiI9PR0AICenp7cknEiqj4mTJiA+Ph4AMCUKVMQFxeH5cuXo6ioCK1atcLixYtFTqi4rl279tYxQRBQq1YtNG7cGBoaGpWYqmLwHGwqNTc3t2KfJycnIzMzE3Xr1kWtWrWKjQmCgLCwsMqMpzR8fX3x5MkT7N+/v9iS5ZycHHz++edo0KAB9wV+hKdPnyIgIEBuedKUKVPQsGFDseMRyUlLS8PSpUtx6tQpvHr1qtgY92ATEVUsiUQCiUQCHR0dsaMoNAsLi2L9RN78/fq3GjVqYNiwYZg9e7ZspaEi4qMwKjUrK6u3Ntqh8jNt2jQMHz4cPXr0gIuLC+rWrYvnz5/j5MmTKCgoYKfrj2Rqavres8aJqhI/Pz9cu3YNEyZMgJmZGZtKEhFVIg0NDaV4qiq2nTt3Yt68eXBwcEC3bt1gYGCA1NRU/PLLL7h69SpmzZqFBw8e4IcffoCWlhamTJkiduQy4xNsoiro8ePH2LBhA37//Xekp6dDT08P9vb28PX1xaeffip2PIU1atQoLFiwoMRtDTExMViwYAEbSlGV065dO/j5+fHoQyKiCvbNN9+8d86KFSsqIYny+eqrr9CwYUNMnz5dbmzNmjV49OgRAgICsHbtWkRERODMmTMipCwffIJNVAV9+umn8Pf3FzuG0omKinprc76srCxcv369khMRvV/t2rXxySefiB2DiEjplbTdJjMzEwkJCfjkk09gZGQkQirlcP78+bducezQoQOCg4NlH//www+VGa3cscCmMvnmm2+Qm5uLdevWyY1NmzYNOjo6WLJkSeUHU0KZmZmIjY2FoaEh6tWrJ3YcpXXr1i3o6+uLHYNIzpgxYxAcHIyOHTuyySERUQUKDQ0t8Xp0dDSmT5+Or7/+unIDKRFtbW38/vvvcHBwkBv7/fffoa2tDQAoKCiQfayo+JeayuS3335764tMz5498f3331dyIsV24cIFXLt2DTNmzCh2fcOGDQgMDERhYSEAoEePHli9ejX3An2Abdu2Ydu2bQBeN9/z8vKS6yUgkUhQWFgIDw8PMSISyVm6dGmxz6Ojo9GjRw/Y2tqidu3acvP9/PwqKxoRUbVjZmaGcePGYcWKFTh27JjYcRTS8OHDsWnTJrx48QJdu3aFvr4+Xrx4gTNnziAkJAS+vr4AgJs3b8LCwkLktB+HBTaVyYsXL966ZFFPTw8pKSmVnEix7du3DzVq1Ch27ezZs9i8eTNatGiBQYMGISYmBj/99BN++ukneHl5iZRU8bRp0wajR4+GVCrFpk2b0LdvXxgbGxebo66uDjMzM3Tt2lWklETFnT17ttjnb24KlbSNQRAEFthERBWsVq1aePLkidgxFJavry9q166N7du349ChQxAEAVKpFHXq1MHcuXPh6ekJAOjXrx+GDRsmctqPwwKbysTIyAh3796Fvb293Njdu3dhaGgoQirF9eeff+Krr74qdu3IkSOoWbMmfvjhB9nNDDU1NYSGhrLA/gDt27dH+/btAbwuRIYMGcI9VFTl/bfAJiKiipeeni53raCgANHR0VizZg2aNWtW+aGUyKhRozBy5EgkJiYiOTkZhoaGMDY2LnYkV0mNaBUNC2wqk759+2Lr1q0wNTVFnz59ZNd//vlnbN26FaNGjRIxneJJS0tD/fr1ZZ9LpVJcvXoVHTp0KLZSwNHREUePHhUjolJ4s/yIiIiI6L/s7OxKPJJWKpWiXr16b23SRaWnoqICExMTmJiYiB2lwrDApjKZNGkS/vrrL0yfPh3z5s2TndWcl5eHzp07Y9KkSWJHVCiffPIJUlNTZZ8/ePAA2dnZaNu2bbF5mpqasv3YVDoTJ07EnDlz0KhRI0ycOPGdcwVBwJYtWyopGVHpXLhwAZmZmXB1dQUAJCQkYO7cuYiOjoaDgwO+/fZbaGlpiZySiEjxLV++XK7A1tTUhJGREVq3bs1Gkx+pqKgIV69eRUxMDCQSSbExQRDwxRdfiBOsnPG3hMpEQ0MD27Ztw+XLl3H16lXZWc0ODg4lLhund2vdujWCg4PRrVs3aGho4KeffoIgCHB2di427+HDh1ze/IGys7NlNyXedkQXUVW2YcMG9O7dW/b54sWLER0djb59+yIsLAwbNmzAnDlzRExIRKQcBg0aJHYEpZWcnAxPT0/ExsbK9l8DKHZDQ1kKbEH65r+OiEQTHR2NIUOGQBAE6OjoICkpCW5ubli1alWxeR4eHjAzM+MRaETViK2tLdatW4eOHTsiKysLdnZ2WL16NXr16oWQkBAEBARwzzYRUTl4/vw5rl+/jsTERAiCACMjI7Rt25YPN8rBjBkzEBcXh/Xr18PJyQkHDx5EnTp1EBYWhtDQUAQGBqJhw4ZixywXfIJNHy03Nxf5+fly1/X09Co/jIIyMzPDsWPHcPjwYbx8+RJWVlYYOHBgsTmpqamwtLRE//79RUpJRGJ49eqVrAHMtWvXAACdOnUCAJiamvLUBiKij5SWloalS5fixIkTclvxVFVV0blzZyxZsgR16tQBAKSkpMg+ptK5du0a/Pz8ijVCNjExwcSJEyGVSrF48WIEBQWJmLD8sMCmMpFKpdi8eTMOHDiA5OTkEuf8+eeflZxKsZmammLatGlvHTcwMMD8+fMrMZFyevToEU6dOoXExMQSbwytWLFChFREb9ekSROEhYWhdevWOHDgANq0aQNtbW0Ar5fc8WYmEVHZvXz5EiNHjsTTp08xaNAgODs7o169egBe97w4d+4cQkND4e7ujtDQUKSkpGDChAlcOfSBXr58CX19faioqEBHR6dY7yFra2sEBgaKmK58scCmMtm1axd27dqFsWPHYu3atfD29oaqqioiIyNRUFDw3mZSRGIIDQ3F3LlzoampCRMTE6irqxcbL6lzKJHYfHx8MHXqVISGhkJVVRVbt26VjV28eBEtWrQQMR0RkWLbunUr0tLSEBoaiiZNmhQbs7CwQNeuXfHll1/C09MTkyZNwj///KMUR0lVtgYNGuD58+cAgKZNm+LYsWPo2rUrAOD06dNKdbOYe7CpTPr27Ythw4ZhxIgRsLKywpEjR2BlZYWioiJ4e3vD3Nwc06dPFzsmUTEuLi5o0aIFli9fjpo1a4odh6jUnj59ivv378Pc3ByNGjWSXT9w4ADMzc1hbW0tWjYiIkXWo0cPeHl5YeTIke+cFxwcjGXLlmHo0KGYP3++3E16ejd/f3+8ePECy5Ytw/nz5zFp0iTUqlULampqSElJwcyZMzFmzBixY5YLPsGmMomLi4OlpSVUVVWhpqaGzMxMAK/PtvPw8MC8efNYYFOV8/z5cyxcuJDFNSmM/Px8TJ06FWPGjIGLi4vc+LBhw0RIRUSkPBITE2FhYfHeeZaWllBRUcHixYsrIZXymTFjhuxjJycn7Nu3D2fOnEFeXh4cHBzg5OQkYrryxQKbykRPTw85OTkAXjcouH//vux4rrS0NOTl5YkZj6hE7dq1w99//82j5EhhaGpq4tq1a0pzdAkRUVWjq6uLxMTE985LSEiAvr5+JSSqHj777DN89tlnYseoECywqUxsbGxw7949ODk5wdXVFQEBAUhJSYGamhoOHjzIAoaqjPT0dNnH06dPx6xZs6CpqYmOHTuiVq1acvOVaQ8QKYeOHTvi8uXLsLOzEzsKEZHS6dChA3744Qf06NEDmpqaJc7Jy8vDzp070aFDh0pOp3ySkpKQlJRUYqNZW1tbERKVP+7BpjJ59OgRkpKSYG9vD4lEgu+//x4nT55Efn4+HBwcMH/+fBgYGIgdU+HxCLSPZ2FhUax52ZuXvLc1NGP3e6pqzp8/j2+//RbdunWDk5MTDAwM5H5/raysREpHRKTYHj16BHd3dzRo0ADe3t7o0qULtLS0AAA5OTn49ddfsWXLFsTFxeHw4cNyjdCodJ4+fYpZs2bhzp07AP7//dgbgiAozXswFthEVQyPQCtfISEhH9Qd/L/njxOJ7b97A/97w0iZ3pQQEYnh2rVrmD59OlJSUgAAtWvXBgBkZmZCKpXCyMgI/v7+aNeunZgxFZqXlxeePHmCKVOmwMzMDBoaGnJzSrMXXhGwwCaqYnbu3InNmze/8wi0wYMHix2TiCpJVFTUe+e0b9++EpIQESmv/Px8/Pzzz7h27RqSkpIAAMbGxrC1tUWvXr3eunycSqdNmzZYuXIlevbsKXaUCscCm0rtm2++KfVcQRCwfPnyCkyjvHgEWsVJSEjAixcvSlxO+8cff8DAwADGxsYiJCMiIiJSXr169cLMmTPRvXt3saNUODY5o1I7evQotLW10bBhQ7l9E//1IUtyqTgegVZxFi5ciE8//bTEAjsiIgKxsbHYsmWLCMmI3i86Ohr37t1DYmIi3N3dYWhoiMePH8PAwAA6OjpixyMiInqradOmYfv27WjXrp3S9xJigU2lZm1tjTt37qCwsBCurq7o27cv6tevL3YspcMj0CrOnTt33npucIcOHRAaGlq5gYhKITc3F35+fjh+/DhUVFRQVFSETp06wdDQEP7+/mjQoAFmz54tdkwiIqK3Onr0KBITE+Hs7AxLS0u5k1wEQVCahxwssKnU9u/fj/j4eERGRiIiIgJr166FtbU1XF1d0bt3b54NWE54BFrFycnJgZpayS97giAgOzu7khMRvd/KlStx9epV2Z1/a2tr2ZiTkxN27drFApuIiKq07OxsNGzYsNjnyooFNn0QExMTjBs3DuPGjcM///yDiIgI7NmzBytWrICdnR08PT3h5OQkdkyF5uvrK2uuMXHiRGRmZiIiIqLYEWhUNmZmZjh9+jQ6d+4sN3bmzBk0btxYhFRE73by5EnMnj0bjo6OKCwsLDZWv359xMXFiZSMiIiodIKDg8WOUGlYYFOZNW3aFF999RW8vb2xfv167Nq1CzVq1GCB/ZGaNGkiO2NRQ0MDfn5+8PPzEzmVcvDy8sKcOXOgoqICd3d31K1bF8+fP0dISAgOHTrExnxUJeXk5MDQ0LDEsdzc3EpOQ0RERO/CApvKpLCwEJcuXcLx48dx5swZqKqqYvDgwTw+qhyMGjUKCxYsgJmZmdxYTEwMFixYgD179oiQTPENGDAAKSkp2LRpEw4cOCC7XqNGDcyYMYNnYFOVZG5ujlOnTsHR0VFu7Ndff0XLli1FSEVEpNxyc3ORn58vd13ZG3RVpKKiIly9ehUxMTGQSCRy419++aUIqcofC2z6INeuXUNERAROnDgBiUSCbt26YfXq1XB0dHzr3lb6MFFRUW/dl5KVlYXr169XciLlIJVKkZGRgVGjRmH48OG4desW0tPToaenhzZt2rALM1VZPj4+8PHxQW5uLnr16gVBEHD37l1ERETgyJEj2L59u9gRiYiUglQqxebNm3HgwAEkJyeXOOfPP/+s5FTKITk5GZ6enoiNjYUgCLITif598hALbKp2nJyckJaWhs6dO2PhwoVwdnaGpqam2LGqlVu3brGZXBkVFBTAwcEBmzdvRpcuXdCpUyexIxGVSpcuXbBmzRp8//33CA8PBwAsWrQIxsbGWL16NRsfEhGVk127dmHXrl0YO3Ys1q5dC29vb6iqqiIyMhIFBQWYOHGi2BEV1nfffQc9PT2cP38eTk5OOHjwIOrUqYOwsDCEhoYiMDBQ7IjlhgU2lVpSUhLU1NRw+fJl/Pbbb++cKwgCbty4UUnJFN+2bduwbds2AK9/dl5eXnJniUskEhQWFsLDw0OMiApPQ0MDxsbGck2iiBRBr1690KtXL8TExCAtLQ26urolbiMhIqKyO3z4MCZPnowRI0Zg7dq16N69O6ysrODj4wNvb288efJE7IgK69q1a/Dz8yvWU8TExAQTJ06EVCrF4sWLERQUJGLC8sMCm0rN19dX7AhKq02bNhg9ejSkUik2bdqEvn37wtjYuNgcdXV1mJmZoWvXriKlVHweHh7YtWsXHB0dufqCFFLjxo3Z7Z6IqILExcXB0tISqqqqUFNTQ2ZmJgBARUUFHh4emDdvHqZPny5ySsX08uVL6OvrQ0VFBTo6OkhNTZWNWVtb8wk2VU8ssCtO+/bt0b59ewCvn2APGTIERkZGIqdSPgkJCYiJiUGXLl3Qvn171KlTR26lADu2U1UQEBDwQfP5+kxE9PH09PSQk5MD4PXT1fv378u24aSlpSEvL0/MeAqtQYMGeP78OYDXJxEdO3ZM9tDo9OnTStU8jgU2URXDN8oV59y5c9DQ0AAA3Lt3T25cEAQW2FQl7N69u9jnBQUFsjd2mpqass62NWrUgIaGBl83iIjKgY2NDe7duwcnJye4uroiICAAKSkpUFNTw8GDB9nz4iN06dIFly9fRp8+feDt7Y1JkybB3t4eampqSElJwcyZM8WOWG4E6ZsWbkRUZTx+/BghISGIjY0t8YiIrVu3ipCKiMRw7949fPXVV/Dx8YGLiwt0dHSQlZWFEydOYMuWLVi7di0+++wzsWMSESm8R48eISkpCfb29pBIJPj+++9x8uRJ5Ofnw8HBAfPnz4eBgYHYMZXCvXv3cPr0aeTl5cHBwQFOTk5iRyo3LLCJqpi7d+/C09MTJiYmiI2Nhbm5OV6+fIm4uDgYGxujYcOGPAe7AsTGxiIiIoJPAqnKGTp0KAYMGFBig8O9e/fi6NGjOHz4sAjJiIiI6L9UxA5ARMWtWrUKvXv3RkREBKRSKZYtW4YzZ85g3759EAQB48aNEzui0khOTsauXbvg7u6OXr16yTq5E1Ulf/31Fxo0aFDimKmpKR4+fFjJiYiIlNOoUaMQHR1d4lhMTAxGjRpVyYlIEXEPNlEV8+DBA4wfPx4qKq/vf71ZIm5jYwNfX1/4+/vzDOePkJWVhVOnTiE8PBxRUVEoKiqCubk55s2bB1dXV7HjEcmpX78+9u/fj06dOhVryieVSrFv3z6YmJiImI6ISHlERUUhOzu7xLGsrCxcv369khMpNktLyw+a/+eff1ZQksrFApuoihEEAerq6hAEAQYGBoiPj4eNjQ0AwNjYGLGxseIGVEAFBQU4f/48wsLCcP78eeTn58PU1BSenp7YvXs35s2bB1tbW7FjEpVoxowZmDp1Knr27ImuXbvCwMAAqampOHfuHOLj47F+/XqxIxIRKb1bt25BX19f7BgKRSqVQltbG927d0eLFi3EjlNpWGATVTFmZmZ4+vQp7OzsYG1tjR07dqB58+ZQU1NDYGAgTE1NxY6oUPz8/PDLL78gMzMTBgYGGDJkCNzc3NC6dWu8fPkSu3btEjsi0Tt1794dhw8fRmBgIM6cOYPk5GQYGhris88+w4YNGz74CQEREf2/bdu2ybaICYIALy8vuSM8JRIJCgsLS+yFQW+3ePFiREZGIjw8HHfv3kXfvn3h5uaGTz/9VOxoFYpNzoiqmNDQUMTHx8PHxwfR0dEYPXq07NzAmjVrYsOGDXB0dBQ5peKwsLCAIAhwcHDA4sWLUb9+fdnYy5cvYWtri+DgYD7BJiIiqoaioqIQFRUFqVSKTZs2YfDgwTA2Ni42R11dHWZmZujatStUVVVFSqq4kpOTERkZicjISPzvf/9DixYt4Obmht69e8PIyEjseOWOBTZRFZednY1bt24hPz8f1tbWPB7iA+3atQvh4eH4448/oKKignbt2sHNzQ0uLi4QBIEFNhEREQEAAgICMGTIEKUs+qqKJ0+eyIrtmJgYeHl5Yfbs2WLHKlcssImoWoiNjUV4eDgiIiLw+PFjqKuro3379vjtt9+wa9cudOjQQeyIRG/1+PFjhISEIDY2Vtb48N+2bt0qQioiIqIPk5ubi9OnTyMiIgIXL16Em5sbVq5cKXascsUCm6gKefbsGQ4dOoTbt28jJSUFgiCgTp06sLGxweDBg9ktuJzcvXsXEREROH78OFJSUqClpQUXFxcMGDCAhTZVOXfv3oWnpydMTEwQGxsLc3NzvHz5EnFxcTA2NkbDhg2xZ88esWMSESkF3tAsfxKJBBcuXEBERAR+/fVX6OjooFevXujbty/atGkjdrxyxwKbqIoIDw/HvHnzIJFIYGRkhHr16kEqlSIxMRFJSUnQ1NTEihUr0KdPH7GjKg2pVIqrV68iLCwMp0+fRlZWltIcEUHKw9PTE/Xr18eyZctgZWWFI0eOwMrKCjdv3sSMGTOwePFiHt1HRFQOeEOzfF26dAmRkZE4ffo0BEFA9+7d4erqCjs7O9lxtMqIBTZRFRAdHY0BAwagbdu2mD9/PszMzIqNP3z4EEuWLMHt27dx7NgxNG7cWKSkyksikeDXX39Fz549xY5CVEz79u3h7+8PR0dHWFpaYt++fbKj+44cOYLg4GCEhoaKG5KISAnwhmb5srCwgLa2Nrp164bOnTtDQ0PjnfOV5T0Yj+kiqgL27dsHU1NTBAYGlvji06xZMwQFBWHAgAHYu3cv/Pz8REip3DQ0NJTmhZ2UiyAIUFdXhyAIMDAwQHx8vKzANjY2RmxsrLgBiYiUxIMHDzB+/HjZ09U3S8RtbGzg6+sLf39/FtgfKDs7G2FhYQgPD8e7nusKgqA0qwhZYBNVAVFRURg6dOg77+xpaGhg6NChCAkJqcRkRCQ2MzMzPH36FHZ2drC2tsaOHTvQvHlzqKmpITAwEKampmJHJCJSCryhWb7OnDkjdgRRsMAmqgISEhJgbm7+3nnm5uaIi4urhEREVFUMHToU8fHxAIDp06dj9OjR6N+/PwCgZs2a2LBhg5jxiIiUBm9olq/69euLHUEULLCJqoDs7Gxoa2u/d56WlhZycnIqIRERVRUDBgyQfWxmZobjx4/j9u3byMvLg7W1NQwMDMQLR0SkRHhDk8oDC2yiKoC9BomotLS1tdGxY0exYxARKZ2SbmjeunUL+fn5vKFJpcYu4kRVgIWFBWrWrAlBEN45TyqVIi8vT2maQIgpNze3xPMt9fT0Kj8M0Xu8ePECO3bswL1795CYmIiAgAA0a9YMu3fvRuvWrWFtbS12RCIiIgKfYBNVCb6+vmJHqBakUik2b96MAwcOIDk5ucQ5vHlBVc0ff/yBL774ArVq1YKtrS2ioqIgkUgAAElJSdi1axfWrVsnbkgiIgX37NkzHDp0CLdv30ZKSgoEQUCdOnVgY2ODwYMHw8TEROyIpCBYYBNVASywK8euXbuwa9cujB07FmvXroW3tzdUVVURGRmJgoICTJw4UeyIRHJWrFgBa2trbN68GYIg4NixY7Kx1q1b4+effxYxHRGR4gsPD8e8efMgkUhgZGSEevXqQSqVIiYmBlevXsUPP/yAFStWoE+fPmJHJQXAApuIqo3Dhw9j8uTJGDFiBNauXYvu3bvDysoKPj4+8Pb2xpMnT8SOSCTn3r172LhxI9TV1VFYWFhsTF9fH6mpqSIlIyJSfNHR0Zg7dy7atm2L+fPnw8zMrNj4w4cPsWTJEsyZMweWlpZo3LixSEmVh7Jv01MROwARUWWJi4uDpaUlVFVVoaamhszMTACAiooKPDw8eMY4VUk1a9ZEVlZWiWPx8fFK84aEiEgM+/btg6mpKQIDA+WKawBo1qwZgoKC0KBBA+zdu1eEhMpBKpVi06ZN6Ny5M2xsbGBvby/3f8qCBTYRVRt6enqyY85MTExw//592VhaWhry8vLEikb0Vo6OjtiyZQvS0tJk1wRBQF5eHvbs2QMnJycR0xERKbaoqCgMHToUGhoab52joaGBoUOHIioqqhKTKZc32/RGjBgBqVSKiRMnYtKkSWjUqBHq16+PJUuWiB2x3HCJOBFVGzY2Nrh37x6cnJzg6uqKgIAApKSkQE1NDQcPHlSqu6ekPGbNmoXPP/8cLi4u6NChAwRBwLp16/DPP/8AAL766itxAxIRKbCEhASYm5u/d565uTni4uIqIZFyqk7b9PgEm4iqDV9fX7Rt2xYAMHHiRLi7uyMiIgIHDhyAvb09Fi5cKG5AohIYGRkhNDQUI0eORHJyMho2bIj09HS4ubkhJCSE57ISEX2E7OxsaGtrv3eelpaWbBUcfbjqtE2PT7CJqNpo0qQJmjRpAuD1ci8/Pz/4+fmJnIro/WrXro0pU6ZgypQpxa4nJiYiPDwcbm5uIiUjIlJsUqlU7AjVQknb9N6sHFS2bXossImo2hg1ahQWLFhQYhOTmJgYLFiwAHv27BEhGVHZ3LlzB7Nnz2aBTUT0Eby8vCAIwjvnsBD/ONVpmx4LbCKqNqKiopCdnV3iWFZWFq5fv17JiYiIiEhMvr6+YkeoFnx9fZGUlATg9Ta9zMxMREREID8/Hw4ODpg/f77ICcsPC2wiIgC3bt2Cvr6+2DGIiIioErHArhzVaZseC2wiUmrbtm3Dtm3bALw+2qikZWASiQSFhYXw8PAQIyIRERGRUqtO2/RYYBORUmvTpg1Gjx4NqVSKTZs2oW/fvjA2Ni42R11dHWZmZujatatIKYmIiIiUV3XapscCm4iUWvv27dG+fXsAr59gDxkyBEZGRiKnInq3Nm3avLfhDgAUFhZWQhoiIqKKo2zb9FhgE1G1wX1WpChGjx5dqgKbiIioqqqu2/QEKXvOE1E18vjxY4SEhCA2Nhb5+fly41u3bhUhFREREZFyiYqKQlRUlGyb3uDBg9+5TU9VVVWkpOWLT7CJqNq4e/cuPD09YWJigtjYWJibm+Ply5eIi4uDsbExGjZsKHZEIiIiIqVQXbfp8Qk2EVUbnp6eqF+/PpYtWwYrKyscOXIEVlZWuHnzJmbMmIHFixejU6dOYsckIiIiIgXFJ9hEVG08ePAA48ePh4qKCgDIlojb2NjA19cX/v7+LLCJiIiIKkB12abHApuIqg1BEKCurg5BEGBgYID4+HjY2NgAAIyNjREbGytuQCIiIiIlVJ226amIHYCIqLKYmZnh6dOnAABra2vs2LEDf//9Nx49eoTAwECYmpqKnJCIiIhI+axatQq9e/dGREQEpFIpli1bhjNnzmDfvn0QBAHjxo0TO2K5YYFNRNXG0KFDkZycDACYPn06UlNT0b9/f/Tt2xf37t3D119/LXJCIiIiIuXz4MED9O3b953b9JQFl4gTUbUxYMAA2cdmZmY4fvw4bt26hfz8fFhbW8PAwEC8cERERERKqjpt02OBTUTVlra2NhwdHcWOQURERKTU3mzTs7Ozk23Ta968OdTU1JRumx4LbCKqFp49e4ZDhw7h9u3bSElJgSAIqFOnDmxsbDB48GCYmJiIHZGIiIhIKQ0dOhTx8fEAXm/TGz16NPr37w8AqFmzJjZs2CBmvHLFc7CJSOmFh4dj3rx5kEgkMDIyQr169SCVSpGYmIikpCRoampixYoV6NOnj9hRiYiIiJRedna20m7TY4FNREotOjoaAwYMQNu2bTF//nyYmZkVG3/48CGWLFmC27dv49ixY2jcuLFISYmIiIhI0bHAJiKltmTJEly5cgWhoaHQ0NAocY5EIsGAAQPg4OAAPz+/Sk5IREREpLyq2zY9HtNFREotKioKQ4cOfWtxDQAaGhoYOnQooqKiKjEZERERkXILDw9Hnz59sG3bNsTGxqJWrVrQ1tZGTEwMNm/ejN69e+P48eNixyxXbHJGREotISEB5ubm751nbm6OuLi4SkhEREREpPyio6Mxd+7c927TmzNnDiwtLZVmmx6fYBORUsvOzoa2tvZ752lpaSEnJ6cSEhEREREpv3379sHU1BSBgYFyxTUANGvWDEFBQWjQoAH27t0rQsKKwQKbiJQa20wQERERVb7quk2PS8SJSOl5eXlBEIR3zmEhTkRERFR+qus2PRbYRKTUfH19xY5AREREVO1U1216LLCJSKmxwCYiIiKqfNV1dSALbCIiIiIiIip31XGbHgtsIiIiIiIiKlfVdRWhIFW2WwZEREREREREIuAxXURERERERETlgAU2ERERERERUTlggU1ERERERERUDlhgExEREREREZUDFthERERERERE5YAFNhERkZLYuHEjzM3N8eLFC7GjEBERVUsssImIiKqYkJAQmJub4969e6J8/99//x2+vr7o2LEjWrZsCXt7e0ycOBGnTp364K+Vm5uLjRs34vfff6+ApERERFULC2wiIiKS2bBhA0aNGoWHDx9i2LBhWLhwIcaMGYPs7GxMnjwZ4eHhH/T1cnNzERAQgKioqApKTEREVHWoiR2AiIiIqoYTJ05g06ZNcHFxgb+/P9TV1WVjY8eOxcWLF/Hq1SsRE1as3Nxc1KxZU+wYRESkwPgEm4iISAFcuXIFHh4esLa2Rrt27eDt7Y3o6OgS56alpWHq1KmwsbFBhw4dsHTpUuTn57/3e6xfvx56enpYvnx5seL6jU6dOqFr164AAIlEgvXr12PQoEFo27YtrK2t4eHhgatXr8rmP3v2DPb29gCAgIAAmJubw9zcHBs3bpTNiY6OxpQpU9C+fXu0atUKgwYNwpkzZ+S+919//YWRI0fis88+Q+fOnbF582YcOXIE5ubmePbsWbG5e/fuRd++fdGyZUs4Ojpi0aJFyMzMLDbH09MTrq6u+N///ocRI0agdevWWLNmDb7++mt06NABBQUFchlGjx4NFxeX9/4ciYio+uITbCIioirut99+w7hx49CgQQP4+voiLy8PP/74Iz7//HOEhISgQYMGxeZ/9dVXqF+/PmbMmIHbt28jODgYmZmZ+P7779/6PWJjY/Ho0SO4u7tDR0fnvZmysrJw6NAhuLq6YsiQIcjOzsbhw4cxduxYHDp0CJaWltDX18fChQuxcOFC9OjRAz169AAAmJubAwAePnyIzz//HEZGRhg3bhy0tLTw888/Y9KkSdi4caNsflJSEry8vAAA48ePh5aWFg4dOgQNDQ25XBs3bkRAQAAcHBzw+eefIyYmBj/99BPu3buHn376qdiNg/T0dIwbNw59+/ZFv379YGBgAC0tLYSGhuLSpUuymwkAkJycjKtXr2LSpEnv/dkQEVH1xQKbiIioivv++++hq6uLAwcOQE9PDwDQvXt3DBw4EBs3bsTKlSuLzW/QoAG2bNkCABgxYgR0dHSwb98+jB49GhYWFiV+jzdPw5s3b16qTLq6ujh79myxInfo0KHo3bs3goODsXz5cmhpacHFxQULFy6Eubk5+vfvX+xrLFu2DPXq1cORI0dkX8fDwwOff/45Vq9eLSuwt2/fjoyMDBw9ehSWlpYAgEGDBsk9TX7x4gW2bdsGR0dHbN++HSoqrxfqNWnSBIsXL0ZYWBjc3d1l85OTk7Fo0SIMHz5cdq2oqAjGxsYICwsrVmBHRkaiqKgI/fr1K9XPh4iIqicuESciIqrCnj9/jj///BMDBw6UFdcAYGFhAQcHB5w/f17u34wYMaLY5yNHjgQAXLhw4a3fJysrCwCgra1dqlyqqqqyorioqAjp6el49eoVWrZsifv377/336enp+Pq1avo3bs3srKy8OLFC7x48QJpaWlwdHREbGwskpKSAAAXL16EtbW1rLgGAD09Pbi5uRX7mr/99hsKCgowatQoWXENAEOGDIGOjo7cz0pDQwODBg0qdk1FRQVubm44e/as7GcCAGFhYWjTpg1MTU1L9fMhIqLqiU+wiYiIqrD4+HgAQOPGjeXGzMzMcOnSJeTk5EBLS0t2/dNPPy02r2HDhlBRUZHbq/xvb5aFZ2dnlzrb0aNHsWPHDsTExBTbs/zfJeslefLkCaRSKdavX4/169eXOCc1NRVGRkaIi4uDtbW13HjDhg2Lff7mZ9WkSZNi1zU0NGBqaoq4uLhi142MjEpcZj5gwABs374dp0+fxoABA/Do0SP88ccfWLRo0Xv/u4iIqHpjgU1ERKTkBEF475w3Renff/9dqq957NgxzJkzB927d8eYMWNgYGAAVVVVbNu2DU+fPn3vvy8qKgLwunFYp06dSpzz3wK6vNWoUaPE602bNoWVlRXCwsIwYMAAhIWFQV1dHb17967QPEREpPhYYBMREVVhJiYmAICYmBi5sUePHuGTTz4p9vQaAB4/flxsKfPjx49RVFT0zifLjRs3RuPGjXHmzBlkZ2e/d6n4yZMnYWpqioCAgGIF/IYNG4rNe1tx/yafuro6HBwc3vm96tevj8ePH8tdf/LkSbHP3/ysHj16VOy/XyKR4NmzZ+/9Pv82YMAAfPfdd3j+/DkiIiLQpUsX6OrqlvrfExFR9cQ92ERERFVY3bp1YWlpidDQ0GJHTf3999+4fPkynJyc5P7N3r17i33+448/AgA6d+78zu81ZcoUpKenw8/Pr8Tzri9duoRz584BeL0HGwCkUqls/M6dO7h9+3axf/PmXOn/HpNlYGCA9u3b48CBA3j+/Lnc93rx4oXsY0dHR9y+fRt//vmn7Fp6ejrCw8OL/RsHBweoq6sjODi4WK7Dhw/j5cuXJf6s3sbV1RWCIGDZsmV4+vQpm5sREVGp8Ak2ERFRFTd79myMGzcOw4YNw+DBg2XHdNWqVQu+vr5y8589e4aJEyeiU6dOuH37NsLCwuDq6vrWDuJv9OnTBw8ePMDWrVtx//59uLq6wsTEBOnp6bh48SKuXLkCf39/AECXLl1w6tQpTJo0CV26dMGzZ8+wf/9+NG3aFDk5ObKvWaNGDTRt2hQ///wzGjVqBD09PTRr1gzNmzfHggUL4OHhATc3NwwdOhSmpqZISUnB7du3kZiYiLCwMADA2LFjERYWhi+//BIjR46UHdNVr149pKeny56S6+vrY8KECQgICMDYsWPh7OyMmJgY7Nu3D61atfqgIllfXx+dOnXCiRMnULt2bXTp0qXU/5aIiKovFthERERVzJunr2+eEjs4OCAoKAgbNmzAhg0boKamBltbW8yaNavErtbr1q3D+vXr4e/vDzU1NYwcORKzZ88u1feeNm0a7OzsEBwcjJ9++gkZGRmoXbs2Wrdujc2bN6Nbt24AXh+TlZKSggMHDuDSpUto2rQpVq1ahRMnTiAqKqrY11y6dCmWLFmCFStWoKCgAL6+vmjevDmaNm2KI0eOICAgAEePHkV6ejr09fXRokWLYudN16tXD3v27MHSpUuxbds26OvrY8SIEahZsyaWLl0KTU1N2dzJkydDX18fP/74I1asWAFdXV0MHToU06dPL3YGdmn0798f586dQ+/evUtshkZERPRfgvTfa6iIiIhIdHv27MGyZcvwyy+/VHijL0W2bNkyHDhwALdu3ZLdjChPp0+fxqRJk7B37160a9eu3L8+EREpH+7BJiIiqmLu3bsHLS0tWdMuAvLy8op9npaWhrCwMLRt27ZCimsAOHToEExNTdG2bdsK+fpERKR8uESciIioijh58iSioqIQHh6OIUOGQE2Nf6bfGDZsGNq3bw8zMzOkpKTgyJEjyMrKgo+PT7l/r8jISDx48AC//vor5s2bV6pjzoiIiAAuESciIqoynJ2dkZ2djR49emDu3Llyx29VZ2vWrMHJkyeRmJgIQRDQokUL+Pr6ftDRW6Vlbm4OLS0t9OnTB4sWLeKNDiIiKjUW2ERERERERETlgHuwiYiIiIiIiMoBC2wiIiIiIiKicsACm4iIiIiIiKgcsMAmIiIiIiIiKgcssImIiIiIiIjKAQtsIiIiIiIionLAApuIiIiIiIioHLDAJiIiIiIiIioHLLCJiIiIiIiIysH/AUDhHvxUc3JeAAAAAElFTkSuQmCC\n"},"metadata":{}}]},{"cell_type":"markdown","source":["## Salary Distribution by Category"],"metadata":{"id":"lBLZqD6tDw2q"}},{"cell_type":"code","source":["# Define a function to create boxplots for salary distribution across different categories\n","def plot_salary_distribution_by_category(category, data, rotation=0):\n"," plt.figure(figsize=(14, 8))\n"," sns.boxplot(\n"," x=category,\n"," y='salary',\n"," data=data,\n"," palette='muted'\n"," )\n"," plt.title(f'Salary Distribution by {category.title().replace(\"_\", \" \")}')\n"," plt.xlabel(category.title().replace(\"_\", \" \"))\n"," plt.ylabel('Salary')\n"," plt.xticks(rotation=rotation)\n"," plt.tight_layout()\n"," plt.show()\n","\n","# Plotting boxplots for each category\n","categories = ['job_category', 'work_year', 'experience_level', 'work_setting', 'company_size', 'employment_type']\n","\n","for category in categories:\n"," plot_salary_distribution_by_category(category, usd_salary_df, rotation=90 if category in ['job_category'] else 0)"],"metadata":{"colab":{"base_uri":"https://localhost:8080/","height":1000},"id":"HR3JXmIrD5BU","executionInfo":{"status":"ok","timestamp":1714700930013,"user_tz":300,"elapsed":3251,"user":{"displayName":"Jenny O","userId":"07622373657144372939"}},"outputId":"3734821e-6d5b-4f02-91ff-24e8c7536f09"},"execution_count":null,"outputs":[{"output_type":"stream","name":"stderr","text":[":4: FutureWarning: \n","\n","Passing `palette` without assigning `hue` is deprecated and will be removed in v0.14.0. Assign the `x` variable to `hue` and set `legend=False` for the same effect.\n","\n"," sns.boxplot(\n"]},{"output_type":"display_data","data":{"text/plain":["
"],"image/png":"iVBORw0KGgoAAAANSUhEUgAABWgAAAMQCAYAAAC60ozSAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOzdeVzU5fr/8TeMgLsouYxLxmigoZPoKRVJquOStkieUimsTmpFZGV6Ksn5tWC0eVq0MXKrDhRmZaRlbi2UoeYparQyU8hMcUNRSQUc5veHZ+bLCJYL+IHh9Xw8fMjc98Xnc80MA8zF/bluP5fL5RIAAAAAAAAA4JzzNzoBAAAAAAAAAKirKNACAAAAAAAAgEEo0AIAAAAAAACAQSjQAgAAAAAAAIBBKNACAAAAAAAAgEEo0AIAAAAAAACAQSjQAgAAAAAAAIBBKNACAAAAAAAAgEEo0AIAAAAAAACAQSjQAgAA1CCjR4/W6NGjjU7jrPz+++8KDw/XwoULq/1cCxcuVHh4uH7//XfP2JVXXqk777yz2s8tSWvXrlV4eLjWrl17Ts5X3rm8n2fC/dgsXbrU6FQAAABqtHpGJwAAAFCb/fzzz7Lb7Vq/fr327t2r4OBgde7cWVdeeWWtL7S6hYeHez42mUxq3Lix2rdvr549e2rUqFHq3LlzlZznzTffVIMGDTR8+PAqOV5Vqsm5Vafff/9df//73/Xggw9qzJgxhuTw22+/ac6cOfrqq6+0e/duBQQEKCwsTEOGDNHIkSNVv3790zpeXX0uAQBAzUWBFgAA4Ax9++23uuWWW9S2bVvdeOONatmypfLz8/X999/rP//5j88UaCWpX79+GjZsmFwul4qKirRx40ZlZmYqIyNDkyZN0j//+U9PbLt27eRwOFSv3un9qpmRkaHmzZufVuFs2LBhuvrqqxUYGHha5zpdJ8vtkksukcPhUEBAQLWev676/PPPdd999ykwMFDDhg1TWFiYSktL9c033+i5557T5s2blZycfFrHPJOvMwAAgOpEgRYAAOAMpaamqkmTJnr33XfVtGlTr7mCggKDsvo/x44dU1lZWZUULy+44AINGzbMa2zixIlKSEjQ008/LYvFopiYGEmSn5+fgoKCzvqcf+bw4cNq2LChTCaTTCZTtZ7rz/j7+1f7fa2rtm3bpgkTJqht27Z644031KpVK8/czTffrK1bt+rzzz83LsFq5v4aBwAAvo8etAAAAGfot99+U+fOnSsUZyUpJCTE6/Z7772nW265RX379lW3bt00dOhQvfXWW395jpKSEr300ksaPny4evXqpR49euimm27SmjVrvOLcfV/nzp2r119/XQMGDFD37t3lcDjUo0cPTZ06tcKxd+7cqa5du+rVV189zXt+XPPmzfX888+rXr16euWVVyrkUr4H7Z49ezR58mT1799f3bp1U3R0tBISEjy9Y6+88kr98ssv+vrrrxUeHq7w8HDPCmR3n9mvv/5ajz32mPr27espBlfWg9Zt1apVGjZsmLp3766hQ4dq+fLlXvMzZszwat/gduIx/yy3k/Wg/fjjjzV8+HBZrVb17t1bkyZN0q5du7xiHn74YUVGRmrXrl26++67FRkZqT59+uiZZ56R0+k8tSfhL+7ntm3bFB4ertdff73C53377bcKDw/Xhx9+eMrnKn/ce++9V5deeqkuvvhijRgx4qTF0rKyMj3//PPq16+fevToobvuukv5+fl/eY45c+bo8OHDevLJJ72Ks24dO3bUrbfe6rl9Kq+xP3suJengwYN68sknFRMTo27dumngwIGaNWuWysrKvI6zf/9+/etf/1LPnj31t7/9TQ899JA2btxYae/l1atX66abblKPHj30t7/9TQkJCdqyZYtXjPtrcfPmzZo4caIuueQS3XTTTXrvvfcUHh6uH3/8scL9T01NVdeuXSt8XQEAgNqHFbQAAABnqF27dsrJydGmTZsUFhb2p7EZGRm68MILdeWVV6pevXr67LPP9Pjjj8vlcunmm28+6ecVFRXpnXfe0TXXXKMbb7xRf/zxh959912NHTtW77zzjrp27eoVv3DhQhUXF2vEiBEKDAxU27ZtNWDAAH388ceaPHmy12rTDz/8UC6XS9dee+0ZPwZt27bVJZdcorVr16qoqEiNGzeuNG78+PHavHmz4uPj1a5dO+3bt09fffWV8vPz1b59eyUlJSk5OVkNGzbUXXfdJUk677zzvI7x+OOPq0WLFkpMTNThw4f/NK9ff/1VEyZM0KhRo3T99dfrvffe03333ac5c+aoX79+p3UfTyW38hYuXKjJkyere/fueuCBB1RQUKD//Oc/+vbbb5WZmelV0Hc6nRozZoysVqsefPBBrV69WvPmzVOHDh100003/WVuf3U/O3TooJ49e2rRokW67bbbvD538eLFatSokf7+97+f1uOxd+9ejRo1SkeOHNHo0aPVvHlzvf/++0pISND06dM1cOBAr/hXXnlFfn5+GjdunAoKCvTGG2/otttu0wcffPCn/WM/++wzT/6n4lReY3/2XB45ckTx8fHatWuXRo0aJbPZrJycHD3//PPas2ePHnnkEUnHC84JCQlyOByKi4uTxWLRJ598ooceeqhCTtnZ2Ro3bpzat2+ve+65R0ePHlV6erri4uK0cOFCtW/f3iv+vvvuU8eOHTVhwgS5XC4NHjxYTzzxhBYvXqyLLrrIK3bx4sW69NJL1bp161N6fAAAQA3mAgAAwBlZtWqVq2vXrq6uXbu6Ro4c6Xr22WddX375paukpKRC7JEjRyqM3X777a6///3vXmPx8fGu+Ph4z+1jx465iouLvWIOHDjgioqKck2ePNkztm3bNldYWJirZ8+eroKCAq/4L7/80hUWFubKysryGr/22mu9znUyYWFhrscff/yk81OnTnWFhYW5fvrpJ69c3nvvPU++YWFhrjlz5vzpea6++upK83nvvfdcYWFhrri4ONexY8cqndu2bZtn7IorrnCFhYW5li1b5hk7dOiQq1+/fq7Y2FjP2PTp011hYWEnPV/5Y54stzVr1rjCwsJca9ascblcLldJSYmrb9++rmuuucZ19OhRT9xnn33mCgsLc7300kuesYceesgVFhbmevnll72OGRsb67r++usrPkAnONX7OX/+fFdYWJhr8+bNnrGSkhJX7969XQ899NCfnsP9XJZ/7p588klXWFiYa926dZ6xoqIi15VXXum64oorXE6n0+uxueyyy1yHDh3yxC5ZssQVFhbmeuONN0563kOHDrnCwsJcCQkJf/k4uJ3qa+xkz6Xdbnf16NHDlZeX5zU+bdo0V9euXV07duxwuVwu17Jly1xhYWGu119/3RPjdDpdt9xyi9fXvcvlcg0bNszVt29f1/79+z1jP/30k6tLly6uBx980DPm/lp84IEHKuT1wAMPuKKjoz2Pq8vlcv3www8VzgUAAGovWhwAAACcoX79+mn+/Pm68sortXHjRs2ZM0djxoxR//799cknn3jFll8peOjQIe3bt0+XXnqptm3bpkOHDp30HCaTydNDtqysTIWFhTp27Ji6detW6WXPgwYNUosWLbzGoqKi1KpVKy1evNgztmnTJv3888+67rrrzui+l+fuk/nHH39UOl+/fn0FBATo66+/1oEDB874PCNGjDjlfrOtWrXyWsnZuHFjxcbG6scff9SePXvOOIe/smHDBhUUFCguLs6rN+3ll18ui8VSaRuAuLg4r9u9evWqtGVDZU7lfg4ZMkRBQUFez/+qVau0f//+M3r+s7KyZLVa9be//c0z1qhRI40cOVLbt2/X5s2bveJjY2O9VlZfddVVatmypbKysk56jqKiIs9xT9WZvsbcli5dql69eqlp06bat2+f519UVJScTqfWrVsnSfryyy8VEBCgESNGeD7X39+/wkr43bt366efftL111+v4OBgz3iXLl0UFRVV6f0fNWpUhbFhw4Zp9+7dXm00Fi9erPr162vQoEF/eb8AAEDNR4sDAACAs2C1WvXyyy+rpKREGzdu1MqVK/X666/rvvvuU2Zmpjp37ixJ+uabbzRjxgx99913OnLkiNcxDh06pCZNmpz0HO+//77mzZunvLw8lZaWesZPvDz6ZGP+/v669tprlZGRoSNHjqhBgwZavHixgoKCdNVVV53pXfdwtxs4WTEtMDBQkyZN0jPPPKN+/frp4osv1uWXX67Y2Fi1bNnylM9T2X07mY4dO8rPz89r7IILLpAkbd++/bTOezp27NghSQoNDa0wZ7FY9M0333iNBQUFVSioN2vW7JQL2adyP5s2baorrrhCH374oe6//35Jxwt8rVu3Vp8+fU7pPOXt2LFDF198cYVxi8XimS/f8qNjx45ecX5+furYsaO2b99+0nO4C7onK/pX5mxeY5K0detW/fzzz+rbt2+l8/v27ZN0/P61bNlSDRo08Jo///zzvW7/2ddCp06dtGrVqgobgVX2Nd6vXz+1bNlSixYtUt++fVVWVqYPP/xQf//730/aUgQAANQuFGgBAACqQGBgoKxWq6xWqy644AJNnjxZS5cu1T333KPffvtNt912mywWix5++GGZzWYFBAQoKytLr7/+eoUNiMr74IMP9PDDD2vAgAEaM2aMQkJCZDKZ9Oqrr2rbtm0V4k/W0zM2NlZz587VypUrdc011+jDDz/U5Zdf/pdFq1Pxyy+/yGQy/WkB9bbbbtOVV16plStXatWqVXrppZc0a9YsvfHGGxV6a55M+RWpVeHEwqbb6WzQdbZOdUXw2YqNjdXSpUv17bffKiwsTJ9++qni4uLk718zL6hr3LixWrVqpV9++eWU4s/mNeZWVlamfv36aezYsZXOuwvf1amyr3GTyaRrr71WCxYs0GOPPaZvv/1Wu3fvrpLV7wAAoGagQAsAAFDFunXrJun4Jc6S9Omnn6qkpESvvPKK2rZt64krf8nyySxbtkwdOnTQyy+/7FVQnD59+mnlFBYWposuukiLFy9WmzZttGPHDk2ZMuW0jlGZHTt2aN26derRo8dfruY7//zzdfvtt+v222/Xr7/+qtjYWM2bN0/Tpk2TdPKC6ZnYunWrXC6X1zF//fVXScc3d5Pk2azr4MGDXht3uVc+lnequbmf37y8vAorMfPy8rye/6pwKvdTki677DK1aNFCixcv1sUXX6wjR45o2LBhZ3TOtm3bKi8vr8J4bm6uZ/7EHMtzuVzaunWrwsPD//Q8V1xxhd5++23l5OQoMjLyT2NP5zV2sufy/PPP1+HDhxUVFfWn52rbtq3Wrl3rWY3u9ttvv1WIk3TSx6p58+Zeq2f/zLBhwzRv3jx9+umn+uKLL9SiRQtFR0ef0ucCAICar2b+yRwAAKAWWLNmjVwuV4Vxd29J9yXf7lWS5WMPHTqk99577y/PUdnnfv/99/ruu+9OO99hw4bpq6++0htvvKHg4GD179//tI9RXmFhoR544AE5nU7dddddJ407cuSIiouLvcbOP/98NWrUSCUlJZ6xBg0a6ODBg2eVk9vu3bu1YsUKz+2ioiJlZmaqa9eunvYG7kvS3b1FpePtGjIzMysc71Rz69atm0JCQjR//nyv+5aVlaUtW7bo8ssvP8N7VLlTuZ+SVK9ePV199dX6+OOPtXDhQoWFhalLly5ndM6YmBg5HA7l5OR4xg4fPqwFCxaoXbt2nrYebpmZmZ6estLxXq979uz5y6+/sWPHqmHDhpoyZYr27t1bYf63337TG2+8Ien0XmMney6HDBminJwcffnllxXmDh48qGPHjkmSoqOjVVpaqgULFnjmy8rK9Oabb3p9TqtWrdS1a1dlZmZ6nW/Tpk366quvFBMT86f3v7wuXbooPDxc7777rpYvX66rr75a9eqx1gYAAF/BT3UAAIAzNHXqVB05ckQDBw6UxWJRaWmpvv32W3388cdq166dhg8fLul4D8mAgADdddddGjVqlP744w+98847CgkJ+csNqy6//HItX75ciYmJuvzyy/X7779r/vz56ty5s6f366m65ppr9Nxzz2nFihWKi4tTQEDAKX/ur7/+qg8++EAul0t//PGHNm7cqKVLl+rw4cN6+OGH/7TY9uuvv+q2227TVVddpc6dO8tkMmnlypXau3evrr76ak9cRESEMjIyNHPmTHXs2FEtWrQ4aT/Qv3LBBRfokUce0fr16xUSEqL33ntPBQUFeuqppzwx/fr1U9u2bfXII48oNzdXJpNJ7733npo3b15hFe2p5hYQEKBJkyZp8uTJio+P19VXX62CggL95z//Ubt27XTbbbed0f05m/vpFhsbq7S0NK1du1aTJk0643Pecccd+uijjzRu3DiNHj1azZo1U2Zmpn7//XfNmDGjQtuEZs2a6aabbtLw4cNVUFCgN954Qx07dvTaZKsy559/vqZNm6YJEyZo6NChGjZsmMLCwlRSUqKcnBwtXbr0jF5jJ3sux4wZo08//VR33XWXrr/+ekVEROjIkSPatGmTli1bpk8++UQtWrTQgAEDZLVa9cwzz+i3336TxWLRp59+6ukbXH6F7oMPPqhx48Zp5MiRuuGGG3T06FGlp6erSZMmuueee07rcY+NjdUzzzwjSbQ3AADAx1CgBQAAOEMPPvigli5dqqysLL399tsqLS1V27ZtddNNNykhIcFz2bzFYtH06dP14osv6plnntF5552nuLg4tWjRQklJSX96juHDh2vv3r16++23tWrVKnXu3FnPPfecli5dqq+//vq08j3vvPPUr18/ZWVlnfbl7V999ZW++uor+fv7q3Hjxmrfvr1iY2M1cuTICismT9SmTRtdffXVWr16tRYtWiSTySSLxaIXX3xRgwcP9sQlJiZqx44dmjNnjv744w9deumlZ1WgtdlsevbZZ5WXl6f27dvrhRde0GWXXeaJCQgI0Msvv6zHH39cL730klq2bKlbb71VTZs21eTJk72Odzq5DR8+XPXr19fs2bM1bdo0NWzYUAMGDNC//vUvr1YKVeFU7qdbt27ddOGFF2rLli2nXOBzr0gt3yv3vPPO0/z58/Xcc88pPT1dxcXFCg8PV2pqaqUrhO+66y79/PPPmjVrlv744w/17dtXjz76aIVNtirz97//XYsWLdLcuXP1ySefKCMjQ4GBgQoPD9fDDz/sKfKezmvsZM9lgwYNlJaWpldffVVLly5VZmamGjdurAsuuEDjx4/39Gt294B+8skn9f7778vf318DBw5UYmKi4uLivPrIRkVFac6cOZo+fbqmT5+uevXq6ZJLLtG//vUvdejQ4ZSeA7drr71W06ZNU4cOHWS1Wk/rcwEAQM3m56rsujwAAAD4pMTERG3atMnrsnjUHbGxsWrWrJmnNcBf2bhxo4YNG6apU6fqxhtvrObsareVK1cqMTFRb731lnr16lXlx9+3b58uu+wy3X333UpMTKzy4wMAAOPQgxYAAKCO2L179xmtnoVvWL9+vX766SfFxsae1udI+stV0nXN0aNHvW47nU6lpaWpcePGioiIqJZzvv/++3I6nbx+AQDwQbQ4AAAA8HHbtm3Tt99+q3fffVf16tXTyJEjjU4J59CmTZv0ww8/aN68eWrZsqWGDh36l5+Tk5OjtWvXas6cOQoNDdXFF198DjKtPZKTk3X06FFFRkaqpKREy5cvV05Ojh544AHVr1+/Ss+1evVqbdmyRampqRowYIDat29fpccHAADGo0ALAADg49atW6fJkyerbdu2evrpp9WyZUujU8I5tGzZMtntdoWGhur555/36pF6Mm+//baWLl2qXr16yWazVdj4q67r06ePXnvtNX3++ecqLi5Wx44dZbPZFB8fX+XnmjlzpnJychQZGSmbzVblxwcAAMajBy0AAAAAAAAAGIQ/hQMAAAAAAACAQSjQAgAAAAAAAIBB6EFbw+Xk5MjlcikgIMDoVAAAAAAAAACcgtLSUvn5+SkyMvIvYynQ1nAul0u0CQYAAAAAAABqj9Op51GgreHcK2e7d+9ucCYAAAAAAAAATsX69etPOZYetAAAAAAAAABgEAq0AAAAAAAAAGAQCrQAAAAAAAAAYBAKtAAAAAAAAABgEAq0AAAAAAAAAGAQCrQAAAAAAAAAYBAKtAAAAAAAAABgEAq0AAAAAAAAAGAQCrQAAAAAAAAAYBAKtAAAAAAAAABgEAq0AAAAAAAAAGAQCrQAAAAAAAAAYBAKtAAAAAAAAABgEAq0AAAAAAAAAGCQekYnAAAA6raSkhJlZmZq+/btateunWJjYxUYGGh0WgAAAABwTlCgBQAAhpk5c6YWLFggp9PpNTZixAjdfffdBmYGAAAAAOcGBVoAAGCImTNnKiMjQ82bN9e4ceMUFRWl7OxszZ49WxkZGZJEkRYAfIzT6ZTD4VBBQYFCQkJktVplMpmMTgsAAEP5uVwul9FJ4OTWr18vSerevbvBmQAAUHVKSko0aNAgNW3aVAsXLlS9ev/3N+Njx45p+PDhOnjwoJYvX067AwDwEVlZWbLb7crPz/eMmc1mJSYmKiYmxsDMAACoeqdT02OTMAAAcM5lZmbK6XRq3LhxXsVZSapXr57Gjh0rp9OpzMxMYxIEAFSprKws2Ww2WSwWpaamatmyZUpNTZXFYpHNZlNWVpbRKQIAYBgKtAAA4Jzbvn27JCkqKqrSefe4Ow4AUHs5nU7Z7XZFRUUpJSVFERERatiwoSIiIpSSkqKoqCjZ7XavfuQAANQlFGgBAMA5165dO0lSdnZ2pfPucXccAKD2cjgcys/P1+jRo+Xv7/0W1N/fX/Hx8crPz5fD4TAoQwAAjEWBFgAAnHOxsbEymUyaPXu2jh075jV37NgxzZkzRyaTSbGxscYkCACoMgUFBZKk0NDQSuctFotXHAAAdQ0FWgAAcM4FBgZqxIgR2r9/v4YPH65FixZp7969WrRokYYPH679+/drxIgRbBAGAD4gJCREkpSXl1fpfG5urlccAAB1Tb2/DgEAAKh6d999tyRpwYIFeu655zzjJpNJcXFxnnkAQO1mtVplNpuVlpamlJQUrzYHZWVlSk9Pl9lsltVqNTBLAACM4+dyuVxGJ4GTW79+vSSpe/fuBmcCAED1+PnnnzV27FjP7Tlz5ig8PNzAjAAAVS0rK0s2m019+/ZV7969FRQUpOLiYq1du1arV69WcnKyYmJijE4TAIAqczo1PVbQAgAAw1x22WUVxtzF2i+//PJcpwMAqCYxMTEaNWqUFixY4LVBpMlk0qhRoyjOAgDqNAq0AADAEOWLswEBAbrlllv0n//8R6WlpZ55irQA4BuysrI0f/78SlfQzp8/XxERERRpAQB1FgVaAABwzm3ZssXz8dtvv622bdtKkm677Tbt2LFDI0eO9MR16tTJkBwBAFXD6XTKbrcrKiqqQg/a2NhYJSUlyW63Kzo6WiaTycBMAQAwhv9fhwAAAFSt22+/XdLxlbPu4qxb27ZtFRAQ4BUHAKi9HA6H8vPzNXr0aK/irCT5+/srPj5e+fn5cjgcBmUIAICxKNACAIBzrqysTJJ0yy23VDo/atQorzgAQO1VUFAgSQoNDa103mKxeMUBAFDXUKAFAADnnHsF1X/+859K5+fPn+8VBwCovUJCQiRJeXl5lc7n5uZ6xQEAUNfwrgcAAJxz8+bNkySVlpZqx44dXnM7duzwbBTmjgMA1F5Wq1Vms1lpaWkVrowoKytTenq6zGazrFarQRkCAGAsNgkDAADnXPmNv0aOHKmAgACNGjVK8+fP9xRnT4wDANROJpNJiYmJstlsSkpKUnx8vCwWi3Jzc5Wenq7s7GwlJyezQRgAoM7yc7lcLqOTwMmtX79ektS9e3eDMwEAoOpddtllJ5378ssvz2EmAIDqlpWVJbvdrvz8fM+Y2WxWYmKiYmJiDMwMAICqdzo1PVbQAgAAw3z55ZfasmWLbr/9dpWVlcnf31/z5s1j5SwA+KCYmBhFR0fL4XCooKBAISEhslqtrJwFANR5FGgBAIChOnXqpKysLKPTAACcAyaTSZGRkUanAQBAjcImYQAAAAAAAABgEAq0AAAAAAAAAGAQCrQAAAAAAAAAYBAKtAAAAAAAAABgEDYJAwAAAACcE06nUw6HQwUFBQoJCZHVapXJZDI6LQAADEWBFgAAAABQ7bKysmS325Wfn+8ZM5vNSkxMVExMjIGZAQBgLFocAAAAAACqVVZWlmw2mywWi1JTU7Vs2TKlpqbKYrHIZrMpKyvL6BQBADAMBVoAAAAAQLVxOp2y2+2KiopSSkqKIiIi1LBhQ0VERCglJUVRUVGy2+1yOp1GpwoAgCEo0AIAAAAAqo3D4VB+fr5Gjx4tf3/vt6D+/v6Kj49Xfn6+HA6HQRkCAGAsetACAAAAAKpNQUGBJCk0NFQlJSXKzMzU9u3b1a5dO8XGxspisXjFAQBQ11CgBQAAAABUm5CQEEnStGnT9Omnn3q1Mpg5c6auvPJKrzgAAOoaCrQAAMBQTqdTDodDBQUFCgkJkdVqlclkMjotAEAVsVqtatSokVasWKHg4GDdcccdioqKUnZ2tmbNmqUVK1aoUaNGslqtRqcKAIAhKNACAADDZGVlyW63Kz8/3zNmNpuVmJiomJgYAzMDAFQVp9OpI0eOSJIuuugihYaGqkGDBgoNDdVFF12k7OxsHTlyRE6nkz/QAQDqJAq0AADAEFlZWbLZbOrbt69GjRql+vXr6+jRo1q7dq1sNpuSk5Mp0gKAD8jMzFRZWZliY2O1Zs0aJSQkeObMZrOGDRumDz74QJmZmRoxYoSBmQIAYAwKtAAA4JxzOp2y2+0KDw9Xbm6usrOzPXNt2rRReHi47Ha7oqOjWU0FALXc9u3bJUnh4eFas2aN15zL5VJ4eLhXHAAAdQ0FWgAAcM45HA7l5+crPz9fUVFRiouLU1BQkIqLi7V27VpPwdbhcCgyMtLgbAEAZ6Ndu3aSpGeeeUb9+vXTY489ptDQUOXl5SktLU3PPvusVxwAAHUNBVoAAHDO7dmzR5IUFhZW6QraCy+8UL/88osnDgBQe1177bWaMWOGAgIC9MQTTygwMFCSFBERoSeeeEJXXXWVSktLde211xqcKQAAxvA3OgEAAFD3FBYWSpI2bdqkTp06KTU1VcuWLVNqaqo6deqkX375xSsOAFB7bdy4UZJUWlqqG264QYsWLdLevXu1aNEi3XDDDSotLfWKAwCgrmEFLQAAOOeaNm0qSWrevLmmTp2qevWO/0oSERGhqVOnavjw4dq/f78nDgBQexUUFEiSbrjhBr3//vt67rnnPHMmk0k33HCD3n33XU8cAAB1DQVaAABwzh08eFCStH//fk2ZMkXx8fGyWCzKzc1Venq69u/f7xUHAKi9QkJCJEkDBgxQQkKCMjMztX37drVr106xsbHatGmT3n33XU8cAAB1DQVaAABwzgUHB0s63oN2y5YtSkhI8MyZzWZPD1p3HACg9rJarTKbzUpLS1NKSopGjBjhmSsrK1N6errMZrOsVquBWQIAYBwKtAAA4Jxr2bKlpOM9aKOiohQXF6egoCAVFxdr7dq1nk3D3HEAgNrLZDIpMTFRNptNSUlJFa6ayM7OVnJyskwmk9GpAgBgCD+Xy+UyOgmc3Pr16yVJ3bt3NzgTAACqjtPpVFxcnJo1a6b9+/dr165dnrnWrVurefPmOnDggDIyMnjD7sOcTqccDocKCgoUEhIiq9XK8w34sKysLNntduXn53vGzGazEhMTFRMTY2BmAABUvdOp6bGCFgAAnHPlV1MFBgZ6zRUWFmr37t2spvJxFGqAuicmJkbR0dH8YQYAgBP4G50AAACou052IQ8X+Pi2rKws2Ww2WSwWpaamatmyZUpNTZXFYpHNZlNWVpbRKQKoJiaTSZGRkRowYIAiIyMpzgIAIFoc1Hi0OAAA+CJ3iwOLxaLk5GRt2LDBs5qqW7dustlsys3NpcWBDyr/3KekpMjf///WC5SVlSkpKYnnHgAAALXe6dT0auwK2j/++EP9+/dXeHi45w65vfPOOxo8eLC6d++u6667Tp999lmFzz906JCSkpJ06aWXKjIyUvfee692795dIe7bb7/VyJEjZbVadcUVV2jWrFkVVu24XC7NmjVLl19+uaxWq0aOHKnvvvuuwrF27dql8ePHKzIyUpdeeqkeeeQRFRUVnd0DAQCAD3I4HMrPz9fo0aMVEBDgtZoqICBA8fHxys/Pl8PhMDpVVLHyz3354qwk+fv789wDAACgzqmxBdqZM2fK6XRWGP/oo49ks9k0ZMgQzZ49Wz169NA999xToWB6//3366uvvtJjjz2madOmKS8vT+PGjdOxY8c8MVu3btWYMWPUsmVLvfrqq7r11ls1ffp0zZs3z+tYs2fP1vTp03Xbbbfp1VdfVcuWLXX77bdr27ZtnpjS0lKNHTtWv/76q/7973/rscce06pVqzRx4sSqfWAAAPABBQUFkqTQ0NBK5y0Wi1ccfAfPPVC3OZ1O5eTkaOXKlcrJyan0PR8AAHVNjdwkbMuWLXrrrbf00EMP6dFHH/Wamz59uq6++mrdf//9kqQ+ffpo06ZNstvtmj17tiQpJydHq1at0ty5cxUdHS3p+JuAoUOHavny5Ro6dKgkae7cuWrevLmef/55BQYGqm/fvtq3b59SU1M1evRoBQYGqri4WK+++qpuv/123XbbbZKkXr166aqrrtLcuXP12GOPSZKWLVumX375RUuWLPG8sWjatKnGjBkjh8Mhq9VazY8aAAC1R0hIiCQpLy9PERERFeZzc3O94uA7yj/3F154oTIzM7V9+3a1a9dOsbGxPPeAD2NzQAAAKlcjV9BOnTpVo0aNqrCyYtu2bfr11181ZMgQr/GhQ4dq9erVKikpkSR98cUXatq0qfr16+eJsVgs6tq1q7744gvP2BdffKG///3vXrtHDx06VAcPHlROTo6k4y0QioqKvM4ZGBiogQMHVjhWeHi4pzgrSf369VNwcDAbXQAAcAKr1Sqz2ay0tDSVlZV5zZWVlSk9PV1ms5k/cPog93OfnJysgQMHasaMGVq4cKFmzJihgQMHaurUqTz3gA9ic0AAAE6uxhVoly5dqk2bNikxMbHCnHtFxYmF206dOqm0tNTTciA3N1ehoaHy8/PzirNYLJ5jHD58WPn5+V4FVXeMn5+fJ879/4lxnTp10o4dO3T06FFP3Ikxfn5+Cg0N9RwDAAAcZzKZlJiYqOzsbCUlJWnDhg06fPiwNmzYoKSkJGVnZysxMZFNonyQyWRSp06dtH37dplMJt18883KyMjQzTffLJPJpO3bt6tTp04894APcTqdstvtioqKUkpKiiIiItSwYUNFREQoJSVFUVFRstvttDsAANRZNarFwZEjR/T0009rwoQJaty4cYX5AwcOSDreOqA89233/MGDB9WkSZMKn9+sWTNt2LBB0vFNxCo7VmBgoBo0aOB1rMDAQAUFBVU4p8vl0oEDB1S/fv0/Paf7WGfK5XLp8OHDZ3UMAABqmksuuURTpkzRrFmzlJCQ4Blv06aNpkyZoksuuYSffz6opKRE2dnZatSokRo3bqw333xTb775piSpdevWKioq0urVq1VYWOh1lROA2uv7779Xfn6+HnroIc8Cl/JuuOEGTZgwQV9//bUuvvhiAzIEAKDquVyuCotHT6ZGFWhfeeUVhYSE6B//+IfRqdQopaWl+umnn4xOAwCAKhcSEqKHHnpIW7Zs0cGDB9W0aVN16tRJ/v7+/OzzUZ9//rnKysp0zTXXqHfv3hWe+zVr1mjBggWaO3euLr/8cqPTBVAF1q9fL0kqLi6u9Ht7cXGxJ44/zAAAfMmp/lyrMQXa7du3a968ebLb7Z7Vre5VM4cPH9Yff/yhZs2aSTq++rVly5aezz148KAkeeabNm2qnTt3VjjHgQMHPDHu1a7uc7mVlJToyJEjXscqKSlRcXGx1yragwcPys/PzyuuqKio0nOazebTfTi8BAQEqHPnzmd1DAAAarLKNgqDb/r0008lSbGxsWrRokWF575NmzZasGCBysrK1LVrVyNSBFDF3HuFBAUFVfq6/vHHHyVJ3bt353UPAPAZmzdvPuXYGlOg/f3331VaWqo77rijwtwtt9yiiy++WP/+978lVez3mpubq4CAAHXo0EHS8X6xq1evrrCUOC8vT2FhYZKkhg0bymw2V+gPm5eXJ5fL5Tm++/+8vDx16dLF65xt27ZV/fr1PXGbNm3yOpbL5VJeXp7XZmVnws/PTw0bNjyrYwAAANQEHTt2lCTl5OTo2muvrTC/cuVKTxy//wC+4dJLL5XZbNY777yj5ORkbdiwQQUFBQoJCVG3bt307rvvymw269JLL6X/NADAZ5xqewOpBhVou3btqv/85z9eYz/99JOeeuopPf744+revbs6dOigCy64QEuXLtWAAQM8cUuWLFHfvn09y4b79++vmTNnavXq1YqKipJ0vMD6448/auzYsZ7P69+/vz755BP961//UkBAgOdYTZs2VWRkpCSpZ8+eaty4sT7++GNPgba0tFTLly9X//79vY61aNEi/frrr7rgggskydM/LSYmpoofLQAAgNopNjZWM2fO1OzZszVkyBDVq/d/v44eO3ZMc+bMkclkUmxsrHFJAqhS7o0hp0yZoiFDhnhaGkjHV9UWFxdr6tSpFGcBAHVWjSnQNm3aVL179650LiIiwnP52/jx4zVp0iSdf/756t27t5YsWSKHw6H09HRPfGRkpKKjo5WUlKSHHnpIQUFBeuGFFxQeHq5BgwZ54saMGaPFixdr4sSJiouL06ZNmzR37lxNmDDBU+wNCgrSnXfeqRkzZqhFixYKCwtTRkaGCgsLNWbMGM+xBg8erFdffVXjx4/XAw88oCNHjujZZ5/V5ZdfLqvVWh0PGQAAQK0TGBioESNGKCMjQ8OHD9fYsWMVFRWl7OxszZkzR/v371dcXBx9KAEfdLKVRKezwggAAF/k53K5XEYncTJr167VLbfconfffVfdu3f3jL/zzjuaPXu2duzYodDQUD3wwAO64oorvD730KFDeuqpp7RixQodO3ZM0dHRmjJlilq3bu0V9+233+rpp5/WTz/9pBYtWujmm2/WuHHjvH5JcLlcmjVrlt566y3t27dPXbt21eTJkz2rbN127dqlqVOnatWqVapXr54GDhyopKQkNW7c+IwfA3dD/fL3HwAAoLabOXOmFixYIKfT6RkzmUwaMWKE7r77bgMzA1DVnE6n4uLiZLFYKm1xYLPZlJubq4yMDFbRAgB8xunU9Gp0gRYUaAEAgO8qKSlRZmamtm/frnbt2ik2NpaVs4APysnJ0b333qvU1NRKN4XcsGGDEhISNH369AqLYAAAqK1Op6ZXY1ocAAAAoG5xtzsA4NsKCgokSaGhoZXOuzdmdscBAFDXUKAFAAAAAFSbkJAQScc3bu7SpYscDoenxYHValVubq5XHAAAdQ0FWgA1itPprPBLO73I6oZ9+/bpvvvu0759+9SiRQu99NJLatGihdFp4RzgMncA8G1Wq1Vms1kvvvii9u3bp927d3vmWrVqpRYtWshsNrO5MgCgzqJAC6DGyMrKkt1uV35+vmfMbDYrMTFRMTExBmaG6jZs2DDt27fPc/vgwYMaNmyYWrRooQ8++MDAzFDdKtsoaubMmWwUBQA+xGQy6fLLL1dGRkaFud27d2v37t2Ki4vjj/IAgDrL3+gEAEA6Xpy12WyyWCxKTU3VsmXLlJqaKovFIpvNpqysLKNTRDUpX5y96KKL9MILL+iiiy6SdHxV7bBhw4xMD9Vo5syZysjIUNOmTfXggw8qMzNTDz74oJo2baqMjAzNnDnT6BQBAFXA6XT+5R9cFy1a5PXHOgAA6hI/l8vlMjoJnNzp7PgG1FZOp1NxcXGyWCxKSUmRv////e2orKxMSUlJys3NVUZGBisrfEz5AuzHH3+sxo0be+aKioo0ZMgQSdIHH3xAuwMfU1JSokGDBqlp06Z655139OOPP3pam1x00UW68cYbdfDgQS1fvpx2BwBQy3399deaOHGiJKlv377q06ePgoKCVFxcrDVr1mj16tWSpH//+9+69NJLjUwVAIAqczo1PVocADCcw+FQfn6+Hn30Ua/irCT5+/srPj5eCQkJcjgcioyMNChLVIf77rtP0vGVs+WLs5LUuHFjde3aVT/99JPuu+8+paWlGZEiqklmZqacTqdiYmIUHx+vnTt3eubatGmj/v3764MPPlBmZqZGjBhhYKYAgLO1bNkySZLFYtHTTz/t9ftebGysbrvtNuXl5WnZsmUUaAEfxD4jwF+jQAvAcAUFBZKk0NDQSuctFotXHHyHu7XBuHHjKp0fM2aMJk2a5NWfFr5h+/btko4Xak9cIbtv3z7PpbDuOABA7eXeX+Cqq66q9I/xgwcPVmpqqtc+BAB8A/uMAKeGHrQADBcSEiJJysvLq3Q+NzfXKw6+w922YPbs2ZXOz5071ysOvsNsNns+9vPz85orf7t8HACgdmrTpo2k4+2MysrKvObKysq0dOlSrzgAvoF9RoBTR4EWgOGsVqvMZrPS0tIq/aU9PT1dZrNZVqvVoAxRXV566SVJ0o8//qiioiKvuaKiIv30009ecfAd5VfM9+zZ0+uX9p49e1YaBwCona666ipJx/8Y//DDD2vDhg06fPiwNmzYoIcffli//vqrVxyA2s/pdMputysqKkopKSmKiIhQw4YNFRERoZSUFEVFRclut7M5IPA/FGgBGM5kMikxMVHZ2dlKSkry+qU9KSlJ2dnZSkxMpE+RD2rRooVndeyQIUN0xx13aO3atbrjjjs8G4SVj4Hv+P777z0f//TTT9qyZYsOHz6sLVu2eArzJ8YBAGqnXr16qVGjRpKkNWvWKCEhQYMHD1ZCQoLWrFkjSWrUqJF69eplZJoAqpB7n5HRo0efdJ+R/Px8ORwOgzIEahZ60AKoEWJiYpScnCy73a6EhATPuNlsVnJyMv2JfNgHH3ygYcOGad++ffrpp580adIkz1yLFi08vUjhW3bv3i3p+OrZ7777Ts8995xnzt/fXz179tS3337riQMA1F4mk0mTJ0/WlClT5HK5vObctydPnswf4wEfUn6fkco2CWOfEcAbBVoANUZMTIyio6PZ4bMO+uCDD7Rv3z7dd9992rdvn1q0aKGXXnqJlbM+rFWrVpKkPXv2qGXLltq1a5dnrmXLlp7CrDsOAFC7xcTEaOrUqZoxY4bX9/w2bdronnvu4Y/xgI9x7x+ycOFCLVq0qMImYddee61XHFDXUaAFUKOYTCZFRkYanQYM0KJFC6WlpRmdBs6Rnj17Ki0tTdu2batw2duePXs8/ajL96MFANR+J24MCcA3Wa1WBQcH69VXX1VUVJQeffRRhYaGKi8vT//5z380a9YsBQcHs88I8D8UaAEAwDlntVrl5+cnl8tV6eaA0vE38fzSDgC+wb2be9++fRUXF6f69evr6NGjWrt2rWw2Gy2tAB/nbmdSvs0Jf7AB/g8FWgAAcM6tX7/e8wu6u1Dr5r7tcrm0fv16No0BgFrOvZt7eHi4tmzZouzsbM9c69atFR4eLrvdrujoaFpbAT7C4XCosLBQd955pxYtWlRhn5E77rhDs2bNksPh4ApKQBRoAQCAAb755htJUocOHVRaWqqdO3d65tq0aaN69epp27Zt+uabbyjQAkAt597NPT8/X0FBQV5zhYWFnp60FGoA3+He/Gv48OGKi4ursM9IcXGxZs2axSZhwP9QoAUA1AiV7e7KKhrf5d4E7B//+If+9re/6Z///KdKS0sVEBCg5557TuvWrdNLL73kiQMA1F579uzxfBwZGan27durpKREgYGB+v3337VmzZoKcQBqN/fmX3l5eYqIiKjwx5fc3FyvOKCuo0ALADBcVlaW7HZ7hd1dExMT6Ufno1q1aiVJevHFF73GS0tLFR8fXyEOAFB77du3T5IUHBysdevWeQqy0vENYps1a6YDBw544gDUflarVWazWWlpaUpJSfHaFLasrEzp6ekym83sNwD8j/9fhwAAUH3cm4ZYLBalpqZq2bJlSk1NlcVikc1mU1ZWltEpohqc2LagYcOGuvfee9WwYcM/jQMA1D4HDx6UdLydQZMmTfTggw8qMzNTDz74oJo0aaIDBw54xQGo/UwmkxITE5Wdna2kpCRt2LBBhw8f1oYNG5SUlKTs7GwlJiZyxRzwPxRoAQCGcW8aEhUVpZSUFEVERKhhw4aKiIhQSkqKoqKiZLfb5XQ6jU4VVey8887zfFyvXj0dPnxY06dP1+HDh1WvXr1K4wAAtVNZWZnn44suukihoaFq0KCBQkNDddFFF1UaB6D2i4mJUXJysnJzc5WQkKDBgwcrISFBubm5Sk5O5ko5oBxaHAAADOPeNOTRRx/1uuxJkvz9/RUfH6+EhAQ2DfFBY8eO9XxsMpl07NixSm+PHTtWK1asOOf5AQCqzh9//CFJatGihadQ49amTRs1b95c+/fv98QB8B0xMTGKjo5mrwngL1CgBQAYxr1ra2hoaKXzFovFKw6+o7i4WJJ03XXX6euvv9bOnTs9c82bN1fPnj21ZMkSTxwAoPby8/OTpEp7zJb//u+OA+BbTCYTiy2Av0CBFgBgmBN3dz0Ru7v6rqCgIB09elSff/65Fi1aVGFVxbXXXuuJAwDUbu3bt6/SOAAAfA09aAEAhim/u+uJfefY3dW3zZs3T9LxDWH279+vyMhIDRgwQJGRkdq/f78OHTrkFQcAqL2GDh3q+bhVq1Zec+Vvl48D4DtKSkq0YMECvfDCC1qwYIFKSkqMTgmocVhBCwAwjHt3V5vNpqSkJMXHx8tisSg3N1fp6enKzs5WcnIyPap8UIcOHWQymeR0OnX99derSZMmuv322zVv3jxPcdZkMqlDhw4GZwoAOFtLlizxfFxaWqqRI0eqbdu22rFjh5YvX+4VN2LECCNSBFBNZs6cqQULFnht+jtz5kyNGDFCd999t4GZATULBVoAgKHcu7va7XavTUPMZjO7u/q4zz//XJdffrmcTqcOHTqkl156yTNnMpn0+eefG5ccAKDKbN++XZIUGxurxYsX6+233/bMmUwmDRs2TB988IEnDoBvmDlzpjIyMtS8eXONGzdOUVFRys7O1uzZs5WRkSFJFGmB/6FACwAwHLu71l0jRozw/IJ+4jgAwDe0a9fO8/F5552nXbt2ed2uLA5A7eZua9C8eXMtXLhQ9eodLz9de+21GjJkiIYPH64FCxZo7NixCgwMNDhbwHgUaAEANQK7u9Y97lUVlWFVBQD4jtjYWNntdmVmZqpPnz666aabVL9+fR09elSrV6/WBx98IH9/f8XGxhqdKoAqkpmZKafTqXHjxnmKs2716tXT2LFj9dxzzykzM5M/zAOiQAsAAAxQUlLiVZwNCgrSP//5T7322msqLi6WdLxIy6oKAKj9TCaT6tevr8OHD2vt2rVas2aNZ87Pz0+S1KBBA66cAXyIu2VJVFRUpfPucVqbAMf5G50AAACoe1JTUz0fv/POO1q5cqVuvvlmrVy5Uu+8806lcQCA2snhcOjw4cOSJJfL5TXnvv3HH3/I4XCc89wAVA93y5Ls7OxK593jtDYBjqNACwAAzjl3ETYoKEht2rTxmmvTpo1n1Wz5Yi0AoHbas2ePJKlPnz5asWKFxo8fr+HDh2v8+PFasWKFevfu7RUHoPaLjY2VyWTS7NmzdezYMa+5Y8eOac6cOTKZTLQ2Af6HFgcAAMAwl156aaXjf/vb30664gIAULsUFhZKkvr376/69etX6DfZv39/rV271hMHoPYLDAz0bAZ7/fXXa/DgwWrXrp22b9+uZcuWqbCwUHFxcbSyAv6HAi0AADjnTCaTnE6nvvzySx0+fFgffvihtm/frnbt2umaa67xFGfpRwgAtV9wcLAk6YsvvtDVV18tf///u5CzrKxMX375pVccAN9w9913a9u2bVq1apXefvttr7no6Gg2gwXKoUALAADOuddee0233HKLJGnw4MFeczNmzPCKAwDUbi1btpQkrV27VklJSYqPj5fFYlFubq7S09O1du1arzgAviErK0tfffWV+vbtq/bt26u4uFhBQUH6/fff9dVXXykrK0sxMTFGpwnUCBRoAQDAORcaGlqlcQCAmstqtcpsNqtZs2basmWLEhISPHNms1nh4eE6cOCArFargVkCqEpOp1N2u11RUVFKSUmpsHI+KSlJdrtd0dHRXDEFiE3CAAA1hNPpVE5OjlauXKmcnBw5nU6jU0I1Kikp+ctfxk0mk0pKSs5RRjACr3ugbjCZTEpMTNTGjRtVUFDgNbd3715t3LhRiYmJFGkAH+JwOJSfn6/Ro0d7FWclyd/fX/Hx8crPz5fD4TAoQ6BmYQUtAMBwWVlZstvtys/P94yZzWYlJiZy2ZOPyszMlNPpVOfOnbV58+YK8506ddKWLVuUmZlZYTMZ+AZe90DdVFpa+qe3AfgG9x9jTnY1lMVi8YoD6jpW0AIADJWVlSWbzSaLxaLU1FQtW7ZMqampslgsstlsysrKMjpFVIPt27dLkjZv3qyAgADFx8crIyND8fHxCggI0JYtW7zi4Ft43QN1i9Pp1LRp0yRJffv21YQJEzR58mRNmDBBffv2lSRNmzaNVfSADwkJCZEk5eXlVTqfm5vrFQfUdRRoAQCGObE3VUREhBo2bKiIiAilpKQoKipKdrudN2w+yL0RjMlk0tKlS3XnnXeqffv2uvPOO7V06VLPZa5sGON7eN0Ddc93332nwsJCWa1WPf300xo+fLiGDh2q4cOH6+mnn1b37t1VWFio7777zuhUAVQRd+/ptLQ0lZWVec2VlZUpPT1dZrOZ3tPA/1CgBQAYht5UddfOnTslSfXq1av0ua9Xr55XHHwHr3ug7snJyZEk3X777ZW+7m+//XavOAC1n7v3dHZ2tiZPnqyFCxfqo48+0sKFCzV58mRlZ2fTexoohx60AADD0Juq7tqxY4ckqbi4WMOHD1ePHj3UoEEDHTlyRN99952Ki4u94uA7yr/unU6nHA6HCgoKFBISIqvVyuseAAAfERMTo1GjRmnBggXKzs72jJtMJo0aNYqe80A5FGgBAIYp35sqIiKiwjy9qXxX+/bttW7dOrVo0UL79u3TZ5995jXvHm/fvr1BGaK6uF/PCxcu1KJFiypsEnbttdd6xQGo/Xr06KE33nhD8+bNU2RkpNcq2rKyMs2bN88TB8B3ZGVlaf78+erbt6969+6t+vXr6+jRo1q7dq3mz5+viIgIirTA//i5XC6X0Ung5NavXy9J6t69u8GZAEDVczqdiouLk8ViUUpKSoU3bElJScrNzVVGRgaXP/mYI0eOaNCgQZKkpk2bqlevXp4VtN98840OHjwoSVq+fLkaNGhgZKqoYk6nU7GxsSosLFTfvn3Vp08fBQUFqbi4WGvWrNHq1avVvHlzvf/++7zuAR9R/nUfFRWl0aNHy2KxKDc3V2lpacrOzuZ1D/gYfs8HTq+mxwpaAIBh3L2pbDabkpKSFB8f73nDlp6eruzsbCUnJ/NLmw8q/5weOXJEZrNZ11xzjT788EMdOXKk0jj4nm+//VarV6/23A4KCpIksX4A8C0mk0mTJk2SzWbTN99843Wpc1BQkPz8/DRx4kS+5wM+xN1z/tFHHz1pz/mEhAQ5HA5FRkYalCVQc1CgBQAYKiYmRsnJybLb7UpISPCMm81mJScnc9mTj8rMzJQkde7cWZs3b9Zbb72lt956yzPfqVMnbdmyRZmZmRoxYoRBWaI6OBwOFRYW/mlMYWEhb9gAg+zYsUOHDh2q8uO2adNGd911lxYsWODpMy5JTZo00Y033qg2bdro559/rtJzNmnSRG3btq3SYwI4New1AZweCrQAAMPFxMQoOjq6wmZBrKTxXdu3b5ckTZs2TfXq1dPDDz+s3bt3q1WrVnr66adVWlqq66+/3hMH37Fnzx5JUp8+fZSSkqINGzZ4XvfdunVTUlKS1qxZ44kDcO4UFhYqLi5OZWVl5+yce/fu1SuvvFItxzaZTMrMzFRwcHC1HB/AybHXBHB6KNACAGoEk8nEark6pF27dpKklJQUffPNN3I6nZKk3bt3a9iwYerZs6dXHHyHe/Vs//79FRAQUOF1f9lll2nNmjV/ucoWQNULDg5WRkZGtaygLW/r1q1KTk6WzWZTx44dq+08TZo0oTgLGMRqtcpsNistLa3SHrTp6ekym82yWq0GZgnUHBRoAQDAORcbG6uXX35ZX3/9tfz8/LzmysrKtG7dOvn5+Sk2NtaYBFFt3MWSL774QldffXWFN2xffPGFVxyAc+tctgTo2LGjwsPDz9n5AJw77DUBnB4KtAAAwBDujaBO3BDqZOPwDS1btpQkrVmzptI3bGvXrvWKAwAAtRN7TQCnjgItAAA45xYuXHjKcaNGjarmbHAuuS95bNasmbZs2eL1hq1Nmzbq0qWLDhw4wCWPAAD4APaaAE4NBVoAAHDOfffdd56P+/Tpow4dOqi4uFhBQUHatm2b1qxZ44mjQOtbyl/y2LdvX8XFxSkoKEjFxcVau3atVq9ezSWPAAD4EPaaAP4aBVoAQI1QUlKizMxMbd++Xe3atVNsbKwCAwONTgvVZM+ePZKk8847T4899pheffVV5efnq3379nrssccUHx+vvXv3euLgW8pf8pidne0Z55JHAAAA1EUUaAEAhps5c6YWLFggp9PpNTZixAjdfffdBmaG6hIQECBJ2rdvn6666irP+Lp16/T+++97No5yx8H3cMkjAAAAcBwFWgCAoWbOnKmMjAw1b95cHTt2lMvlkp+fn7Zu3aqMjAxJokjrg9q2basffvhBZWVlkqQuXbqob9++Wr16tTZu3OgZP5e7iePc45JHAAAAgAItAMBAJSUlWrBggQICArR//37t37/faz4gIEALFizQ2LFjaXfgY6644gqtWLHCc3vjxo3auHFjpXEAAAAA4Mv8jU4AAFB3ZWZmyul0qrS0VAEBAYqPj1dGRobi4+MVEBCg0tJSOZ1OZWZmGp0qqtjXX39dpXGonYqKijR58mTdeuutmjx5soqKioxOCQAAADjnWEELADDM1q1bJUn16tXT0qVLPatk77zzTv3zn//UoEGD5HQ6PXHwHb///nuVxqH2GTdunNeq6dzcXA0ZMkRdunTR7NmzDcwMAAAAOLdYQQsAMExubq4kqVevXhVaGAQGBqpnz55ecfAd9evXr9I41C7u4qyfn58GDx6s1157TYMHD5afn582btyocePGGZ0iAAAAcM6wghYAYJigoCBJx/uPHjt2TPXq/d+PpWPHjmnTpk1ecfAdffv21apVqyRJzZo1U8+ePdWgQQMdOXJE3377rQ4cOOCJg28pKiryFGeXL1/uKcJPmTJFkyZN0qBBg7Rx40YVFRWpcePGBmcLAAAAVD9W0AKoUZxOp3JycrRy5Url5OTI6XQanRKq0fnnny9JOnDggIYPH65FixZp7969WrRokYYPH+4p0rnj4DvcxXfp+PP/2WefacmSJfrss888z/uJcfANTz75pCRp0KBBFVZI169fXwMGDPCKAwAAAHwdK2gB1BhZWVmy2+3Kz8/3jJnNZiUmJiomJsbAzFBdEhIS9P7778vf31+FhYV67rnnPHP+/v7y9/dXWVmZEhISDMwS1WHLli1VGofaY8eOHZKkUaNGVTo/atQorVixwhMHAAAA+DpW0AKoEbKysmSz2WSxWJSamqply5YpNTVVFotFNptNWVlZRqeIatCgQQNFR0errKxMLpfLa66srExlZWWKjo5WgwYNDMoQQFVr27atJGn+/PmVzrvH3XEAAACAr6NAC8BwTqdTdrtdUVFRSklJUUREhBo2bKiIiAilpKQoKipKdruddgc+6qqrrjqredROoaGhVRqH2uORRx6RJC1fvlxHjx71mjt69KhWrlzpFQcAAAD4Ogq0AAzncDiUn5+v0aNHy9/f+9uSv7+/4uPjlZ+fL4fDYVCGqC7u4ny/fv20dOlSXX/99brkkkt0/fXXa+nSperXrx/FeR914qrooKAgXXzxxRU2hGP1tO9p3LixunTpIpfLpUGDBumJJ57Qpk2b9MQTT2jQoEFyuVzq0qULG4QBAACgzqBAC8BwBQUFkk6+Us5isXjFwXeUL843atRIDzzwgJ5//nk98MADatSoEcV5H/bFF1943S4uLtb333+v4uLiP42Db5g9e7anSLtixQqNGTNGK1as8BRnZ8+ebXSKAAAAwDnDJmEADBcSEiJJysvLU0RERIX53Nxcrzj4DorzddfOnTurNA61z+zZs1VUVKQnn3xSO3bsUNu2bfXII4+wchYAAAB1DgVaAIazWq0ym81KS0tTSkqKV5uDsrIypaeny2w2y2q1GpglqgPFeUhS79691aFDB5WUlCgwMFDbtm3T2rVrjU4L50Djxo311FNPGZ0GAAAAYCgKtAAMZzKZlJiYKJvNpqSkJMXHx8tisSg3N1fp6enKzs5WcnKyTCaT0amiipUvzicnJ2vDhg0qKChQSEiIunXrRnHehzVq1Eh//PGHJCknJ8erIBsYGOgVBwAAAAC+jAItgBohJiZGycnJstvtSkhI8IybzWYlJycrJibGwOxQXcoX54cMGeLVfzQoKEglJSUU533U2LFj9dJLL0mSSkpKvObK3x47duw5zQsAAAAAzjUKtABqjJiYGEVHR8vhcHhWUVqtVopzdYDL5TqtcdR+nTp1qtI4AAAAAKitKNACqFFMJpMiIyONTgPniNPplN1uV5cuXbR//37t2rXLMxccHKzmzZvLbrcrOjqaQr2PiYiIkMlkktPpPGmMyWSqtDcxAAAAAPgSCrQAAMM4HA7l5+dr586d6tOnj/r376/i4mIFBQXp999/15o1a+RyueRwOCjc+5gffvjBU5zt1auXNm3apKNHj6p+/foKCwvTN998I6fTqR9++IHnHgAAAIBPo0ALADDMnj17JElt2rTR2rVrtXr1as+cv7+/2rRpo/z8fE8cjLNjxw4dOnSoyo63fv16Scd7zGZmZnqOXVpaqq1bt2rMmDGaO3eu1q9fr4YNG1bZeZs0aaK2bdtW2fEAAAAA4GxRoAUAGKawsFCSlJ+fr+bNm2vcuHGKiopSdna2Zs+erfz8fK84GKOwsFBxcXEqKyur8mPPmTOnwtjevXs1d+5cSdLs2bM1e/bsKjufyWRSZmamgoODq+yYAAAAAHA2KNACAAzTuHFjSVK9evVkt9uVmJioF154QY0bN5bdbtctt9yiY8eOeeJgjODgYGVkZFTpCtqysjIlJSWpXbt2SkxM1LZt25ScnCybzaYOHTrIbrdr+/btSklJkb+/f5Wdt0mTJhRnAQAAziGn08lG0MBfoEALADDMxo0bJUnHjh3TTTfd5Bnfv3+/1+2NGzdq6NCh5zw//J/qaAtw//33y2az6Y033lD//v0lHf9aeOONN+RwOJScnKyuXbtW+XkBAABwbmRlZclut3uujJMks9msxMRExcTEGJgZULNU3ZIUAACA0xATE6Pk5GTl5ubqqaeekiQ99dRTys3NVXJyMr+0AwAA1GJZWVmy2WyyWCxKTU3VsmXLlJqaKovFIpvNpqysLKNTBGoMCrQAAMOUb11Qr573RR3lb9PiwHfFxMQoIyNDkyZNkiRNmjRJGRkZFGcBAABqMafTKbvdrqioKKWkpCgiIkINGzZURESEUlJSFBUVJbvdLqfTaXSqQI1AgRYAYJgPP/zQ8/GJfajK3y4fB99jMpnUpUsXSVKXLl3oSQYAAFDLORwO5efna/To0Tp8+LAmT56sW2+9VZMnT9bhw4cVHx+v/Px8ORwOo1MFagR60AIADFNUVOT5ODAwUO3bt1dpaakCAgK0e/duFRcXV4gDAAAAULMVFBRIkp5//nlt2rTJM56bm6shQ4YoLCzMKw6o6yjQAgAMExQUpNLSUvn5+enQoUM6dOiQ17yfn59cLpeCgoIMyhAAAADA6QoJCZEkbdq0SX5+fho0aJBGjRql+fPna/ny5Z6irTsOqOtocQAAMMyYMWMkSS6Xq9J597g7DgAAAEDNZ7FYPB8vXbpUU6ZMUefOnTVlyhQtXbq00jigLqNACwAwTPv27b1ut2jRQg899JBatGjxp3EAAAAAaq6nn37a8/ETTzyhDRs26PDhw9qwYYOeeOKJSuOAuqxGFWizsrIUHx+vPn36qFu3bvr73/+up556qsIlr59++qmuu+46de/eXYMHD9Z7771X4VglJSV65pln1K9fP/Xo0UP//Oc/lZubWyFuy5Yt+uc//6kePXqoX79+evbZZ1VSUlIh7p133tHgwYPVvXt3XXfddfrss88qxBw6dEhJSUm69NJLFRkZqXvvvVe7d+8+i0cEAHzbl19+6XV73759euaZZ7Rv374/jQMAAABQc+3YsUOSlJiYqNzcXCUkJGjw4MFKSEjw3C4fB9R1NapAW1hYKKvVqscff1xz587VP//5T2VmZuq+++7zxPz3v//VPffcox49emj27NkaMmSIHnnkEa8l8pI0depUvfPOO5owYYJmzJihkpIS3XbbbV7F3gMHDujWW29VaWmpZsyYoQkTJmjBggUV/oLz0UcfyWazaciQIZo9e7Z69Oihe+65R999951X3P3336+vvvpKjz32mKZNm6a8vDyNGzdOx44dq/oHC/BRTqdTOTk5WrlypXJycuR0Oo1OCdXo559/rtI4AAAAAMZr27atJGnz5s1KT0/X+PHjNXz4cI0fP17p6enavHmzVxxQ19WoTcKGDRvmdbt3794KDAyUzWbTrl271Lp1a73yyiuyWq2eJfF9+vTRtm3bNH36dF111VWSpJ07d+rdd9/Vo48+qhtuuEGS1L17d11xxRWaP3++xo0bJ0maP3++/vjjD7388ssKDg6WdLw49Pjjj+vOO+9U69atJUnTp0/X1Vdfrfvvv99zzk2bNslut2v27NmSpJycHK1atUpz585VdHS0JCk0NFRDhw7V8uXLNXTo0Op74AAfkZWVJbvdrvz8fM+Y2WxWYmKiYmJiDMwM1aVp06ZVGgcAAADAeI888oiGDBmiZcuW6dtvv9WePXs8c/Pnz/fcfuSRR4xKEahRatQK2sq4C6elpaUqKSnR2rVrPYVYt6FDh2rLli36/fffJUmrVq1SWVmZV1xwcLD69eunL774wjP2xRdfqG/fvp5zSNKQIUNUVlamr776SpK0bds2/frrrxoyZEiFc65evdrTDuGLL75Q06ZN1a9fP0+MxWJR165dvc4JoHJZWVmy2WyyWCxKTU3VsmXLlJqaKovFIpvNpqysLKNTRDVw/xHNzd/fX126dJG/v/+fxgEAAACouRo3bqx27dpJkvbs2aNLL71UL7/8si699FJPcbZdu3Zq3LixkWkCNUaNLNA6nU4VFxfrhx9+kN1u15VXXqn27dvrt99+U2lpaYVd/jp16iRJnh6zubm5CgkJUbNmzSrEle9Dm5ubW+FYTZs2VcuWLb2OJR1fDXvisUpLS7Vt2zZPXGhoqPz8/LziLBZLpb1vAfwfp9Mpu92uqKgopaSkKCIiQg0bNlRERIRSUlIUFRUlu91OuwMfVP4v6ZJUVlamjRs3qqys7E/jAAAAANRcTqdTZWVlngLs119/rXvuuUdff/21pOMF3LKyMt7jAf9To1ocuF1xxRXatWuXJOmyyy7Tv//9b0nHe8ZKFS91dd92zx88eFBNmjSpcNymTZt6YtxxlV0226xZM0/c2Z6zWbNm2rBhw5/e37/icrl0+PDhszoGUJN9//33ys/P10MPPaSjR49WmL/hhhs0YcIEff3117r44osNyBDVxf39/VTiBg4cWM3ZwEju1/7Ro0f5mQcAPo7v+YDvc7/He/HFF9WhQwdNmzZN+fn5MpvNmjRpkn777Tfe48HnuVyuCgs5T6ZGFmhnzZqlI0eOaPPmzXrllVd011136bXXXjM6LcOUlpbqp59+MjoNoNqsX79eklRcXFzp13pxcbEnLjAw8JzmhurlcrkkSYGBgZ6WMeUFBASotLRULpeL74M+zn1FSl5eHptrAoCP43s+4PvKv8fbtm2bRo4c6Znbtm0b7/FQZ5zq13eNLNB26dJFkhQZGanu3btr2LBhWrFihTp37ixJOnTokFf8wYMHJcnT0qBp06YqKiqqcNyDBw96tT1o2rRphWNJx1fFuuPc/x86dEgtW7b803Pu3LnzT491pgICAjz3HfBF7sJcUFCQunbtWmH+xx9/lHR8s7/K5lF7+fn5yeVyqaSkRJdcconatWunkpISBQYGavv27Vq3bp0njufet9Wrd/xXktDQUF144YUGZwMAqE58zwd8H+/xAGnz5s2nHFsjC7TlhYeHKyAgQL/99puuvPJKBQQEKDc3V5dddpknxt3j1d1P1mKxaO/evRWKoyf2nK2sP+yhQ4e0Z88er2NV9rm5ubkKCAhQhw4dPHGrV6+usHw5Ly9PYWFhZ/UY+Pn5qWHDhmd1DKAmu/TSS2U2m/XOO+8oOTlZGzZsUEFBgUJCQtStWze9++67MpvNuvTSS2UymYxOF1Vo3LhxmjVrliRp3bp1noJsZXF8H/Rt9evX9/zPcw0Avo3v+YDvK/8eLyUlxWsT4LKyMt7joU441fYGUg3dJKy877//XqWlpWrfvr0CAwPVu3dvLVu2zCtmyZIl6tSpk9q3by9Jio6Olr+/v5YvX+6JOXDggFatWqX+/ft7xvr376/s7GzPalhJWrp0qfz9/dWvXz9JUocOHXTBBRdo6dKlFc7Zt29fz1Ll/v3768CBA1q9erUnJi8vTz/++KPXOQFUZDKZlJiYqOzsbA0ZMkT33nuvHn/8cd17770aMmSIsrOzlZiYyA9uHxQUFFSlcQAAAACMV/49XlJSkjZs2KDDhw9rw4YNSkpK4j0ecIIatYL2nnvuUbdu3RQeHq769etr48aNmjt3rsLDwzVgwABJUkJCgm655RY99thjGjJkiNauXasPP/xQL7zwguc4bdq00Q033KBnn31W/v7+at26tV599VU1adJEo0aN8sSNGjVKaWlpSkxM1J133qldu3bp2Wef1ahRo9S6dWtP3Pjx4zVp0iSdf/756t27t5YsWSKHw6H09HRPTGRkpKKjo5WUlKSHHnpIQUFBeuGFFxQeHq5Bgwadg0cPqP3c/UhPdRy1X2UbNZ5NHIDa5cCBA3r44Ye1e/dutWrVSk8//fRZt4YCAAA1Q0xMjJKTk2W325WQkOAZN5vNSk5OVkxMjIHZATVLjSrQWq1WLVmyRLNmzZLL5VK7du104403asyYMZ6Vqn/72980Y8YMvfjii3r33XfVtm1bTZ06VUOGDPE61pQpU9SoUSP9+9//1h9//KGePXvqtddeU5MmTTwxzZo10xtvvKHk5GQlJiaqUaNGnt3iy7vmmmt05MgRzZ49W7NmzVJoaKhefvllRUZGesW9+OKLeuqpp/T//t//07FjxxQdHa0pU6Z4eiwBqJzT6ZTdble/fv0qbXFgs9lkt9sVHR3NX1h9TPkrGKoiDkDtMWrUKG3fvt1ze/fu3brmmmvUrl07zZ8/38DMcC44nU45HA7Pz3ur1crPeADwQTExMYqOjuZ7PvAX/FwsTavR3Dsfdu/e3eBMgOqTk5Oje++9V6mpqYqIiKgwv2HDBiUkJGj69OkV/jCC2m3JkiV66qmnJP3fhmFu5W9PnjxZQ4cONSRHnBs///yzxo4dqzlz5ig8PNzodFDNyhdne/furdtuu02vv/661q5dK0kUaX1cVlaW7Ha78vPzPWNms1mJiYmspqoj+J4PAKgLTqemV+N70ALwfQUFBZKO7+RbGfcGfe44+I4ffvjB8/GJVxuUv10+DkDtduDAAU9xdsmSJbr55pu1c+dO3XzzzVqyZIkkafv27Tpw4ICRaaKaZGVlyWazyWKxKDU1VcuWLVNqaqosFotsNpuysrKMThEAAOCc49p7AIYLCQmRdHxjvcpW0Obm5nrFwXe4n1up4g6X5W+XjwNQuz388MOSpAsvvFBjxoypsIqyc+fO2rx5sx5++GG98sorRqWJauBuaRQVFeW1o3dERIRSUlKUlJRESyMAAFAnsYIWgOGsVqvMZrPS0tJUVlbmNVdWVqb09HSZzWZZrVaDMsS50KtXL02YMEEPP/ywJkyYoF69ehmdEoBqsHv3bknSL7/8Uukqys2bN3vFwXc4HA7l5+dr9OjRnuKsm7+/v+Lj45Wfny+Hw2FQhgAAAMZgBS0Aw5lMJiUmJspmsykpKUnx8fGyWCzKzc1Venq6srOzlZyczGoaH9SpUydt2LBBAQEBys3N1erVqz1zrVu3VkBAgEpLS9WpUycDswRQlVq1aqXdu3crODi40lWU1113nQ4cOKBWrVoZnCmqGi2NAAAAKscKWgA1QkxMjJKTk5Wbm6uEhAQNHjxYCQkJys3NVXJyMpuG+Khu3bpJkkpLS1VSUqKRI0dqwoQJGjlypEpKSlRaWuoVB6D2i4+PlyQVFhbq6NGjXnNHjx719J51x8F3lG9pVBlaGgEAgLqKFbQAaoyYmBhFR0fL4XCooKBAISEhslqtrJytQXbs2KFDhw5V2fGKi4s9H+/fv19vv/32SeN+/vnnKjtvkyZN1LZt2yo7HoBTd+TIEc/HgwcP1iWXXKJbb71Vb7zxhtatW1dpHHxD+ZZG5VdPS7Q0AgAAdRsFWgA1islkUmRkpNFpoBKFhYWKi4ur0Cf4XJg2bVqVHs9kMikzM1PBwcFVelwAf829OrJly5bas2eP1q1b51WYdY+zitL30NIIAGqmql6EYSQWYqC2okALoEYpKSlRZmamtm/frnbt2ik2NlaBgYFGpwVJwcHBysjIqPJf3r755hulpqaqW7duql+/vtatW6dLLrlER48e1YYNG3TXXXdV+YZhTZo0oTgLGMS9itJisWju3LlKSkrS7t271apVK6WkpOiZZ55RvXr1WEXpo9wtjex2uxISEjzjZrOZlkYAYAAjF2FUBxZioLaiQAugxpg5c6YWLFggp9PpNTZixAjdfffdBmYGt+r4a3R4eLjatWsnu92u/Px8SdK6det4sw74qPKrKJ955hklJiZ6VlE+88wzrKKsA2hpBAA1R3UtwjjR1q1blZycLJvNpo4dO1bbeViIgdqKAi2AGmHmzJnKyMhQ8+bNNW7cOEVFRSk7O1uzZ89WRkaGJFGk9WHuN+sffvihpk2bpkmTJumaa67hzTrgo1hFCVoaAUDNcS5bAnTs2FHh4eHn7HxAbUGBFoDhSkpKtGDBAjVv3lwLFy5UvXrHvzVde+21GjJkiIYPH64FCxZo7NixtDvwYSaTSV26dJEkdenSheIs4ONYRQkAAAAc5//XIQBQvTIzM+V0OjVu3DhPcdatXr16Gjt2rJxOpzIzM41JEABQLdyrKAcMGKDIyEiKswAAAKiTWEELwHDbt2+XJEVFRVU67x53xwEAfAMbQwIAAAAUaAHUAO3atZMkZWdn69prr60wn52d7RUHAKj92BgSAAAAOI4WBwAMFxsbK5PJpNmzZ+vYsWNec8eOHdOcOXNkMpkUGxtrTIIAgCrl3hiyadOmGjVqlCZOnKhRo0apadOmysjI0MyZM41OEQAAADhnKNACMFxgYKBGjBih/fv3a/jw4Vq0aJH27t2rRYsWafjw4dq/f79GjBjBZa8A4APcG0M2btxYgYGBmj9/vv79739r/vz5CgwMVOPGjbVgwQKVlJQYnSoAAABwTtDiAECN4L6cdcGCBXruuec84yaTSXFxcVzuCgA+wr0xZFFRkS6++GI9/vjjCg0NVV5entLS0vTVV1954kaMGGFwtgAAAED1o0ALoMa4++67NXbsWDaMAQAf9vvvv0uSLrnkEqWkpMjf//gFXREREUpJSdHEiRP13//+1xMHAAAA+DoKtABqFHe7AwCAbwsPD/cUZ938/f0VFham//73vwZlBQAAAJx79KAFAADAOXPRRRdJkj766KNKN4b8+OOPveIAAAAAX0eBFgAAAOdM69atJelPN4YsHwcAAAD4OlocAAAAoFI7duzQoUOHqvSY9evX13nnnSc/Pz8VFBR4bQzp7++vli1byuVyqX79+vr555+r7LxNmjRR27Ztq+x4AAAAQFWhQAsAAIAKCgsLFRcXp7KysnN2zrKyMu3Zs0eSdMcdd1TpsU0mkzIzMxUcHFylxwUAAADOFgVaAAAAVBAcHKyMjIwqX0Hr9s033+idd97R3r17PWPnnXeebrzxRvXq1avKz9ekSROKswAAAKiRKNACAACgUtXZEiA8PFwjR47Uhx9+qGnTpmnSpEm65pprZDKZqu2cAAAAQE3EJmEAAAAwhMlkUpcuXSRJXbp0oTgLAACAOokCLQAAAAAAAAAYhBYHOGPVsbOzEdjVGQAAAAAAAEahQIszYsTOztWFXZ0BAAAAAABgFAq0OCPVvbOzJG3dulXJycmy2Wzq2LFjtZ2HXZ0BAAAAAABgFAq0OGPnqi1Ax44dFR4efk7OBQAAAAAAAJxLbBIGAAAAAAAAAAahQAsAAAAAAAAABjnjAu2sWbO0a9euqswFAAAAAAAAAOqUMy7Qvvjii7riiit0yy236L333lNRUVFV5gUAAAAAAAAAPu+MC7SfffaZHnjgAR04cECPPPKIoqOjNWHCBH3++edyOp1VmSMAAAAAAAAA+KR6Z/qJrVu31tixYzV27Fht2rRJixcv1kcffaSPP/5YzZs319ChQ3Xdddfp4osvrsp8Afi4oqIiPfnkk9qxY4fatm2rRx55RI0bNzY6LQAAAAAAcBqcTqccDocKCgoUEhIiq9Uqk8lkdFo10hkXaMsLCwvTxIkTNXHiRP33v//VG2+8obfeektvvfWWzj//fA0bNkwjR45USEhIVZwOgI8aN26cNm7c6Lmdm5urIUOGqEuXLpo9e7aBmQEAAAAAgFOVlZUlu92u/Px8z5jZbFZiYqJiYmIMzKxmOuMWBycqLi7WRx99pDlz5uizzz6TyWRS//79deGFF2rmzJkaMGCAVqxYUVWnA+Bj3MVZPz8/DR48WK+99poGDx4sPz8/bdy4UePGjTM6RQAAAAAA8BeysrJks9lksViUmpqqZcuWKTU1VRaLRTabTVlZWUanWOOc1Qpal8ulr776SosXL9bKlSv1xx9/6KKLLtKkSZN07bXXelbM7t69WxMnTtTTTz+tgQMHVkniAHxHUVGRpzi7fPly1a9fX5I0ZcoUTZo0SYMGDdLGjRtVVFREuwMAAAAAAGoop9Mpu92uqKgopaSkyN//+NrQiIgIpaSkKCkpSXa7XdHR0bQ7KOeMV9CmpKTosssu07hx47R69WqNGjVKixcv1sKFC3Xbbbd5tTNo1aqVbrjhBm3fvr1KkgbgW5588klJ0qBBgzzFWbf69etrwIABXnEAAAAAAKDmcTgcys/P1+jRoz3FWTd/f3/Fx8crPz9fDofDoAxrpjNeQfvOO+9owIABio2NVVRUlPz8/P40vlevXnrqqafO9HQAfNiOHTskSaNGjap0ftSoUVqxYoUnDgAAAAAA1DwFBQWSpNDQ0ErnLRaLVxyOO6MVtKWlpZozZ44mTpyofv36/WVxVpLat2+v66+//kxOB8DHtW3bVpI0f/78Sufd4+44AAAAAABQ87ivqM/Ly6t0Pjc31ysOx51Rgdbf31+33HKLli9fXtX5AKiDHnnkEUnS8uXLdfToUa+5o0ePauXKlV5xAAAAAACg5rFarTKbzUpLS1NZWZnXXFlZmdLT02U2m2W1Wg3KsGY6owKtyWRS27ZtVVJSUtX5AKiDGjdurC5dusjlcmnQoEF64okntGnTJj3xxBMaNGiQXC6XunTpwgZhAAAAAADUYCaTSYmJicrOzlZSUpI2bNigw4cPa8OGDUpKSlJ2drYSExPZIOwEZ9yDNj4+Xm+++aZuuOEGBQcHV2FKAOqi2bNna9y4cdq4caNWrFihFStWeOa6dOmi2bNnG5gdAAAAAAA4FTExMUpOTpbdbldCQoJn3Gw2Kzk5WTExMQZmVzOdcYG2rKxMgYGBGjhwoAYPHqx27dpV2H3dz89Pt91229nmCKCOiI+P14wZM7Rr1y7PWOvWrRUfH29gVgAAoKo5nU45HA4VFBQoJCREVquVlTQAAPiQmJgY9e3bV5mZmdq+fbvatWun2NhYBQYGGp1ajXTGBdpnnnnG8/G7775baQwFWgCnKisrSzabTVFRUXr88ccVGhqqvLw8paWlyWaz8Vc2AAB8RFZWll5++WXt3LnTM9amTRvdc889/KwHAMBHZGVlyW63Kz8/3zP27rvvKjExkZ/3lTjjAu0nn3xSlXkAqMOcTqfsdruioqKUkpIif//j7bEjIiKUkpKipKQk2e12RUdHs7oGAIBaLCsrS1OmTFFQUJDX+P79+zVlyhRNnTqVN20AANRy5RdgPfrooyzAOgVntEmYJLVr1+6U/gHAX3E4HMrPz9fo0aPlcrmUk5OjlStXKicnRy6XS/Hx8crPz5fD4TA6VQAAcIacTqemTZsmSerVq5dSU1O1bNkypaamqlevXpKkadOmyel0GpkmAAA4CycuwIqIiFDDhg09C7CioqJkt9v5eX+CM15BCwBVpaCgQJK0fft2Pf74416XQJjNZo0dO9YrDgAA1D7fffedCgsLZbVa9dRTT3ldMfPUU0/pnnvu0fr16/Xdd995CrYAAKB2cS/AevTRRz0/6938/f0VHx+vhIQEORwORUZGGpRlzXNWBdqNGzcqPT1dP/74ow4dOqSysjKveT8/P61cufKsEgTg+0JCQiRJU6dOVd++fTVq1CjVr19fR48e1dq1azV16lSvOAAAUPvk5ORIkm6//fZK37DdfvvtmjBhgnJycijQAgBQS7kXVoWGhlY6b7FYvOJw3BkXaNeuXauxY8eqWbNm6tatm3788Uf16dNHxcXF+u6779S5c2d169atKnMF4KMiIiJkMpnUoEEDbd68WdnZ2Z65Vq1aqVGjRjpy5IgiIiIMzBIAAAAAAPwZ98KqvLy8St/D5+bmesXhuDPuQTt9+nR16NBBS5cuVUpKiiTpzjvvVEZGhubPn69du3bpqquuqrJEAfiuH374QU6nU0VFRdq7d6/X3N69e1VUVCSn06kffvjBoAwBAMDZ6tGjhyRp3rx5Fa68Kysr07x587ziAABA7WO1WmU2m5WWllbpz/v09HSZzWZZrVaDMqyZzrhA++OPP+qGG25Q48aNPbuqux/4iy++WCNHjtRLL71UNVkC8Gl79uzxfBwQEOA1V/52+TgAAFC7REZGKjg4WA6HQ5MnT9aGDRt0+PBhbdiwQZMnT9b69evVvHlz+tEBAFCLmUwmJSYmKjs7W0lJSV4/75OSkpSdna3ExERPLRHHnXGLA5PJpEaNGkmSmjZtqnr16nn1j+jQoYO2bNly9hkC8Hn79u2TJHXq1El2u12vvvqqfv/9d7Vv31533nmn7r77buXm5nriAABA7WMymTRp0iTZbDZ98803Xi2NgoKC5Ofnp4kTJ/KGDQCAWi4mJkbJycmy2+1KSEjwjJvNZiUnJysmJsbA7GqmMy7Qnn/++fr1118lHd8MzGKxaOXKlbruuuskSZ9//rnOO++8KkkSgG87ePCgJKmwsFBDhw71rMZft26dPvjgAzVv3twrDgAA1E7uN2wvv/yydu7c6Rlv0aKFEhMTecMGAICPiImJUXR0tBwOhwoKChQSEiKr1cofYk/ijAu0MTExeu+99zRx4kTVq1dP//znPzV58mQNGjRIkvTbb7/pgQceqLJEAfgu907Ole3iWFZW5hk/ccdnAABQ+/CGDQCAusFkMtG66BSdcYH27rvv1i233OL5Rer666+Xv7+/li9fLpPJpLvuukvDhw+vskQB+K7u3bt7Pg4KClJxcXGlt8vHAQCA2os3bAAAAP/njAu0AQEBnsuO3YYNG6Zhw4addVIA6pby/apdLpfXXPnbW7ZsUe/evc9ZXgAAAAAAANWN64UBGG7Dhg2ej48dO+Y1V/52+TgAAAAAAABfcMoraG+55ZbTPrifn5/eeOON0/48AHVLgwYNJEmtWrWSn5+fdu3a5Zlr2bKlXC6Xdu/e7YkDAAAAAADwFae8gtblcp32P/dO7ADwZzp37ixJKioq0muvvabrr79el1xyia6//nq99tprKioq8ooDAAAAAADwFae8gjYtLa068wBQh4WEhEiSDh8+rKFDh3rG161bp/fff79CHAAAQF20a9cuFRYWGp3GWdu6davX/7VZcHCwWrdubXQaAIBa7ow3CQOAqtKyZcsqjQMAAPA1u3bt0s0336zi4mKjU6kyycnJRqdw1oKCgvTmm29SpAWASjidTjkcDhUUFCgkJERWq1Umk8notGqkKinQFhUVqaioqNKWBm3btq2KUwDwYV26dJEkmUwmNW/eXHv37vXMtWzZUvv27ZPT6fTEAQAA1DWFhYUqLi7WrT2vV5vG/NG6JthZtEdvfPu+CgsLKdACwAmysrJkt9uVn5/vGTObzUpMTFRMTIyBmdVMZ1Wgfeutt/T6669r27ZtJ4356aefzuYUAOqAxYsXSzr+17VDhw55zR08eFBOp9MTN2LEiHOeHwAAQE3RpnFLdQg2G50GAAAnlZWVJZvNpqioKD366KMKDQ1VXl6e0tLSZLPZlJycTJH2BKe8SdiJMjIy9MQTT+j888/X/fffL5fLpVtvvVV33HGHzjvvPHXp0kVPPvlkVeYKwEdt3769SuMAAAAAAMC553Q6ZbfbFRUVpZSUFEVERKhhw4aKiIhQSkqKoqKiZLfbPQuxcNwZF2jT09MVHR2tOXPmeFa0xcTEaMKECVqyZIn++OMPn2hgD6D6mc3HV4F06tRJH3/8saZPn65HH31U06dP18cffyyLxeIVBwAAAAAAah6Hw6H8/HyNHj1a/v7eZUd/f3/Fx8crPz9fDofDoAxrpjMu0P7222+64oorJEkBAQGSpNLSUklSkyZNdMMNN+itt96qghQB+LpOnTpJknbv3i0/Pz9FRkZqwIABioyMlJ+fn/bs2eMVBwAAAAAAap6CggJJUmhoaKXz7gVY7jgcd8YF2iZNmniWIzdu3FgNGjTQzp07PfONGjXy2ugHAE7mwIEDkqRDhw5p+PDhWrRokfbu3atFixZp+PDhnr607jgAAAAAAFDzhISESJLy8vIqnc/NzfWKw3FnXKC98MILtXHjRs/tiy++WBkZGdq1a5fy8/P19ttv64ILLqiKHAH4OPc35oEDB+rgwYN67rnndP311+u5557TwYMHNXDgQK84AAAAAABQ81itVpnNZqWlpamsrMxrrqysTOnp6TKbzbJarQZlWDOdcYH2uuuu0y+//KKSkhJJ0vjx47VlyxZdfvnluvLKK5WXl6f777+/qvIE4MPc38APHz6spUuXavz48Ro+fLjGjx+vpUuX6vDhw3wDBwAAAACghjOZTEpMTFR2draSkpK0YcMGHT58WBs2bFBSUpKys7OVmJgok8lkdKo1Sr0z/cR//OMf+sc//uG53atXL3300Uf69NNPZTKZ1K9fv5P2mwBQu+3YscPTdqCqxMbGKjU1VZMmTdLQoUN15ZVXavv27Zo0aZIcDofuuusubd68uUrP2aRJE7Vt27ZKjwkAAAAAQF0WExOj5ORk2e12JSQkeMbNZrOSk5MVExNjYHY10xkXaE+0ZcsWLV26VHv27FFoaKhatmxZVYcGUIMUFhYqLi6uwqUKVeX777/X999/X2H8lVdeqfJzmUwmZWZmKjg4uMqPDQAAAABAXRUTE6Po6Gg5HA4VFBQoJCREVquVlbMncVoF2vT0dKWlpSkjI0MtWrTwjH/66ae67777VFpaKkny8/NTenq63n77ba84ALVfcHCwMjIyqnwFrVtZWZm+/PJLpaWlafTo0brsssvk73/G3Vj+VJMmTSjOAgAAAABQDUwmkyIjI41Oo1Y4rQLtp59+qg4dOngVXY8dO6YpU6bIZDLpiSeeULdu3fT555/rxRdfVGpqqpKSkqo8aQDGqu62AP7+/kpLS1NMTIzCw8Or9VwAAAAAAABGOq1laZs3b1aPHj28xtauXat9+/bp1ltv1fXXX68LL7xQ48aN01VXXaWsrKyqzBUAAAAAAAAAfMppFWgLCwvVpk0br7HVq1fLz89PAwcO9Brv2bOn8vPzzz5DAAAAAAAAAPBRp1WgPe+887R3716vsf/+97+qX7++unTp4jUeGBiogICAs88QAAAAAAAAAHzUaRVou3Xrpvfff19FRUWSpF9++UXr16/XZZddpnr1vNvZ5ubmVlhtCwAAAAAAAAD4P6e1SVhiYqJuuOEGDR48WJ07d9YPP/wgPz8/3XHHHRViV6xYoT59+lRZogAAAAAAAADga06rQBseHq433nhDqamp2rZtmy6++GKNGTNG3bp184pbu3atGjRooKuuuqpKkwUAAABQ/Xbs2KFDhw4ZnUaVaNKkidq2bWt0GgAAACd1WgVa6fjmX7NmzfrTmN69e2vx4sVnnBQAAAAAYxQWFiouLk5lZWVGp1IlTCaTMjMzFRwcbHQqAAAAlTrtAm11+vjjj7Vo0SL98MMPOnjwoDp27KjRo0frH//4h/z8/Dxx77zzjubMmaMdO3YoNDRUEyZM0BVXXOF1rEOHDumpp57SypUrVVpaqssuu0xTpkxRq1atvOK+/fZbPfPMM/rpp58UEhKiuLg4jRs3zut8LpdLs2fP1ltvvaV9+/apa9eumjx5snr06OF1rF27dmnq1KlatWqVAgICNHDgQE2ePFmNGzeu+gcLAAAd/9lTWFhodBpnbevWrV7/13bBwcFq3bq10WkAZyQ4OFgZGRnVvoJ269atSk5Ols1mU8eOHavtPE2aNKE4CwCAAZxOpxwOhwoKChQSEiKr1SqTyWR0WjVSjSrQvv7662rXrp0efvhhNW/eXNnZ2bLZbNq5c6fuueceSdJHH30km82mu+66S3369NGSJUt0zz336M033/QqmN5///3avHmzHnvsMQUFBenFF1/UuHHj9N5773k2NNu6davGjBmjfv366f7779fPP/+sadOmyWQyacyYMZ5jzZ49W9OnT9ekSZMUHh6uN998U7fffrs++OADdejQQZJUWlqqsWPHSpL+/e9/6+jRo3rmmWc0ceJEvfrqq+foEQQA1CW7du3SzTfdpOKSEqNTqTLJyclGp1AlggID9eZbb1GkRa11LlsCdOzYUeHh4efsfAAAoPplZWXJbrcrPz/fM2Y2m5WYmKiYmBgDM6uZalSB9pVXXlGLFi08t/v27avCwkK99tpruvvuu+Xv76/p06fr6quv1v333y9J6tOnjzZt2iS73a7Zs2dLknJycrRq1SrNnTtX0dHRkqTQ0FANHTpUy5cv19ChQyVJc+fOVfPmzfX8888rMDBQffv21b59+5SamqrRo0crMDBQxcXFevXVV3X77bfrtttukyT16tVLV111lebOnavHHntMkrRs2TL98ssvWrJkiSwWiySpadOmGjNmjBwOh6xW6zl4BAEAdUlhYaGKS0oUd8EFalW/vtHp4H92Hz2qjF9/VWFhIQVaAAAA1DlZWVmy2WyKiorSo48+qtDQUOXl5SktLU02m03JyckUaU9Qowq05Yuzbl27dtWCBQt0+PBh7d+/X7/++qv+9a9/ecUMHTpUzz77rEpKShQYGKgvvvhCTZs2Vb9+/TwxFotFXbt21RdffOEp0H7xxRcaOHCgAgMDvY716quvKicnR71799a3336roqIiDRkyxBMTGBiogQMHasWKFZ6xL774QuHh4Z7irCT169dPwcHBysrKokALAKg2rerXV/uGDY1OAwAAAEAd53Q6ZbfbFRUVpZSUFPn7+0uSIiIilJKSoqSkJNntdkVHR9PuoBx/oxP4K998841at26txo0bKzc3V9Lx1bDlderUSaWlpdq2bZskKTc3V6GhoV59ZKXjRVr3MQ4fPqz8/Hyvgqo7xs/PzxPn/v/EuE6dOmnHjh06evSoJ+7EGD8/P4WGhnqOAQAAAAAAAPgqh8Oh/Px8jR492lOcdfP391d8fLzy8/PlcDgMyrBmqlEraE/03//+V0uWLNFDDz0kSTpw4ICk460DynPfds8fPHhQTZo0qXC8Zs2aacOGDZLk2fTgxGMFBgaqQYMGXscKDAxUUFBQhXO6XC4dOHBA9evX/9Nzuo91plwulw4fPnxWx6iN3MXvo0eP1sn7X5fx3NddPPenx/14oWbi6/jU8Lqvu3juTw/f82suvoaBv8b3/Lpjx44dkqQ2bdpU+ly3adPGE+frPehdLleFxaMnU2MLtDt37tSECRPUu3dv3XLLLUanY6jS0lL99NNPRqdxzrlXROfl5enYsWMGZ4Nziee+7uK5Pz3uxws1E1/Hp4bXfd3Fc396+J5fc/E1DPw1vufXHe4FkZ9//rkuuOCCCvN5eXmeuLpQ6yrfVvXP1MgC7cGDBzVu3DgFBwdrxowZniXRzZo1k3T8SWzZsqVXfPn5pk2baufOnRWOe+DAAU+Me7Wr+wvHraSkREeOHPE6VklJiYqLi71W0R48eFB+fn5ecUVFRZWe02w2n8Gj8H8CAgLUuXPnszpGbVSv3vEvz9DQUF144YUGZ4Nziee+7uK5Pz3uxws1E1/Hp4bXfd3Fc396+J5fc/E1DPw1vufXHWFhYXr33Xe1Zs0aDR482KvNQVlZmebPn682bdro6quv9vketJs3bz7l2Br3U/7o0aO68847dejQIb399ttebQPcPV5P7Peam5urgIAAdejQwRO3evXqCkuJ8/LyFBYWJklq2LChzGZzhf6weXl5crlcnuO7/8/Ly1OXLl28ztm2bVvV/9+u2RaLRZs2bfI6lsvlUl5entdmZWfCz89PDevg5i/ux7Z+/fp18v7XZTz3dRfP/elxP16omfg6PjW87usunvvTw/f8mouvYeCv8T2/bhk/frxsNpumTp2q+Ph4z55Q6enpWrt2rZKTkyttE+prTrW9gVTDNgk7duyY7r//fuXm5mrOnDlq3bq113yHDh10wQUXaOnSpV7jS5YsUd++fT3Lhvv3768DBw5o9erVnpi8vDz9+OOP6t+/v2esf//++uSTT1RaWup1rKZNmyoyMlKS1LNnTzVu3Fgff/yxJ6a0tFTLly+vcKyNGzfq119/9YytXr1ahYWFiomJOYtHBQAAAAAAAKgdYmJilJycrNzcXCUkJGjw4MFKSEhQbm6ukpOTqZNVokatoH388cf12Wef6eGHH1ZRUZG+++47z9xFF12kwMBAjR8/XpMmTdL555+v3r17a8mSJXI4HEpPT/fERkZGKjo6WklJSXrooYcUFBSkF154QeHh4Ro0aJAnbsyYMVq8eLEmTpyouLg4bdq0SXPnztWECRM8xd6goCDdeeedmjFjhlq0aKGwsDBlZGSosLBQY8aM8Rxr8ODBevXVVzV+/Hg98MADOnLkiJ599lldfvnlslqt1f/gAQAAAAAAADVATEyMoqOj5XA4VFBQoJCQEFmtVp9va3CmalSB9quvvpIkPf300xXmPvnkE7Vv317XXHONjhw5otmzZ2vWrFkKDQ3Vyy+/7Fnx6vbiiy/qqaee0v/7f/9Px44dU3R0tKZMmeLVu6ljx46aO3eunn76ad1xxx1q0aKF7r33Xt1+++1exxo3bpxcLpfmzZunffv2qWvXrpo7d66npYJ0vE/snDlzNHXqVD3wwAOqV6+eBg4cqKSkpKp8iAAAAAAAAIAaz2QyVajXoXI1qkD76aefnlLcjTfeqBtvvPFPY5o0aaKUlBSlpKT8aVzPnj21YMGCP43x8/PTnXfeqTvvvPNP41q3bq0ZM2b8aQwAAAAAAAAAuNWoHrQAAAAAAAAAUJfUqBW0AAAAAADg3NuxY4cOHTpkdBpVokmTJmrbtq3RaVSJXbt2qbCw0Og0ztrWrVu9/q/NgoODK2xqj8o5nU560J4iCrQAAAAAANRhhYWFiouLU1lZmdGpVAmTyaTMzEwFBwcbncpZ2bVrl26++SYVF5cYnUqVSU5ONjqFsxYUFKg333yLIu1fyMrKkt1uV35+vmfMbDYrMTFRMTExBmZWM1GgBQAAAACgDgsODlZGRka1r6DdunWrkpOTZbPZ1LFjx2o7T5MmTWp9cVY6XjgvLi5R3LWd1SqkgdHpQNLugiPKWLxZhYWFFGj/RFZWlmw2m6KiovToo48qNDRUeXl5SktLk81mU3JyMkXaE1CgBQAAAACgjjuXLQE6duyo8PDwc3a+2q5VSAO1b9PY6DSAU+J0OmW32xUVFaWUlBT5+x/f/ioiIkIpKSlKSkqS3W5XdHQ07Q7KYZMwAAAAAAAAAGfN4XAoPz9fo0eP9hRn3fz9/RUfH6/8/Hw5HA6DMqyZWEELAAAAALXEzkN7jU4B/8NzAQAVFRQUSJJCQ0MrnbdYLF5xOI4CLQD4AHZ3rZnY4RUAUNXeyFlodAoAAJxUSEiIJCkvL08REREV5nNzc73icBwFWgCo5Xbt2qWbbr5JJezuWuMEBgXqLXZ4BQBUoVsjh6tNk/OMTgM6voKWgjkAeLNarTKbzUpLS/PqQStJZWVlSk9Pl9lsltVqNTDLmocCLQDUcoWFhSopLlHnGyxq0LK+0engf47sOarN7+aywysAoEq1aXKeOgSbjU4DAIBKmUwmJSYmymazKSkpSfHx8bJYLMrNzVV6erqys7OVnJzMBmEnoEALAD6iQcv6aty2kdFpAAAAAADqsJiYGCUnJ8tutyshIcEzbjablZycrJiYGAOzq5ko0AIAAAAAAACoMjExMYqOjpbD4VBBQYFCQkJktVpZOXsSFGgBAAAAAAAAVCmTyaTIyEij06gV/P86BAAAAAAAAABQHVhBCwAAAAAAAKBKOZ1OWhycIgq0AAAAAAAAAKpMVlaW7Ha78vPzPWNms1mJiYlsElYJCrQAAAC10K5du1RYWGh0Gmdt69atXv/XdsHBwWrdurXRaQAAABgmKytLNptNUVFRevTRRxUaGqq8vDylpaXJZrMpOTmZIu0JKNACAADUMrt27dLNN92s4pJio1OpMsnJyUanUCWCAoP05ltvUqQFAAB1ktPplN1uV1RUlFJSUuTvf3z7q4iICKWkpCgpKUn2/8/encfVmP7/A3/drUrL0aLFLjNFlhihLJElW5YJYxmyjCVkxjbWbBGGhlG2MJgsY50QgwljN1knYzCI+GiRVIoW6vz+8HV+mmKY6T7X6fR6Ph7zkHNdn9Pr4245531f1/tavhzNmjVju4M3sEBLREREVMKkpaUhJzcHTWp4wczIQnQc+j9Ps57g3O1DSEtLY4GWiIiISqWYmBgkJCRg5syZquLsazo6Ovj888/h5+eHmJgY1K9fX1BKzcMCLREREVEJZWZkAQuT8qJjEBEREREBAFJSUgAA1apVK3K8evXqBebRKyzQEhEREREREWkw9h3XPOw5TlQ0S0tLAMDdu3fh7OxcaDw2NrbAPHqFBVoiIiIiIiIiDZWUlIS+ffsiNzdXdJRiow19xw0MDLBlyxYWaYn+pm7durCzs0N4eHiBHrQAkJ+fj02bNsHOzg5169YVmFLzsEBLREREREREpKHS0tKQm5sLR0dHGBsbi45DAJ4/f46bN2+y5zhREXR1dTFq1CgEBARg6tSp+Pzzz1G9enXExsZi06ZNOHPmDAIDA3lA2N+wQKuFuP1FM3ELDBERERER/VvGxsYwMTERHYOI6B95eHggMDAQy5cvh5+fn+pxOzs7BAYGwsPDQ2A6zcQCrZZ5tf2lH3Jzc0RHKTbasP0FAAwMDLFly2YWaYmIiIiIiIhIq3l4eKBZs2aIiYlBSkoKLC0tUbduXa6cfQsWaLXMq+0vObCo2QP6Za1Fx6H/8+JZMp5c38ktMERERERERESkEeLj45GRkSHr5zA2Nla1Z7l9+7Zsn8fU1BT29vayPb/cWKDVUvplrWFgWnK/MImIiIiIiIiISB5paWno06cP8vPzRUcpFrq6uoiIiIBCoRAd5V9hgZaIiIiIiIiIiKgUUSgU2Lp1q+wraOPi4hAYGIiAgABUqVJFts9jampaYouzAAu0REREREREREREpY46WwJUqVIFjo6Oavt8JY2O6ABEREREREREREREpRVX0BIREZVwj7KzRUegN/B6EBERERHRh2CBloiIqITbeu+e6AhERERERET0L7FAS0REVML1qVoV5cuUER2D/s+j7GwWzYmIiIiI6L2xQEtERFTClS9TBhWNjUXHICIiIiIion+Bh4QRERERERERERERCcICLREREREREREREZEgLNASERERERERERERCcICLREREREREREREZEgLNASERERERERERERCcICLREREREREREREZEgeqIDEBERERERERFR0R6lZImOQP+H14LkwgItEREREREREZGG2rrvtugIRCQzFmiJiIiIiIiIiDRUH+8aKG9pJDoG4dUKWhbMSQ4s0BIREREREZUQiZnJoiPQ/+G1IHUpb2mEirYmomMQkYxYoCUi0hJZyeyHpEl4PYiIqDgpFAoYGhpi46WfREehNxgaGkKhUKjlcz1//lwtn4f+Ga8FERU3FmiJiLTE7Z13RUcgIiIimdjY2GDz5s1IS0sTHeU/i4uLQ2BgIAICAlClShXRcf4ThUIBGxsbtXyumzdvquXzEBGR+rFAS0SkJWr0qAYja/am0hRZyVksmhMRUbGysbFRWzFQHapUqQJHR0fRMUoMR0dHGBsbi45BeLWClgVzIipOLNASEWkJI2sjmNiXFR2DiIiIiGRgbGwMExP2ISUi0kY6ogMQERERERERERERlVYs0BIREREREREREREJwgItERERERERERERkSAs0BIREREREREREREJwkPCiIiIiEqop1lPREegN/B6EBEREdG/wQItERERUQl17vYh0RGIiIiIiOg/YoGWSIskJSUhLS1NdIz/LC4ursCfJZ1CoYCNjY3oGESkhZrU8IKZkYXoGPR/nmY9YdGciIiIiD4YC7REWiIpKQn9+vVFTk6u6CjFJjAwUHSEYmFoaIDNm7ewSEtExc7MyAIWJuVFxyAiIiIiov+ABVoiLZGWloacnFwMbVAedqYGouPQ/0nIyMWaS4+QlpbGAi0RERERERERFcICLZGWsTM1QBWFoegYRERERERERET0HnREByAiIiIiIiIiIiIqrbiCloiIqIR7lJ0tOgK9gdeDiIiIiIg+BAu0REREJZRCoYChgQG23rsnOgr9jaGBARQKhegYRERERERUArBAS0REVELZ2Nhg85YtSEtLEx3lP4uLi0NgYCACAgJQpUoV0XH+M4VCwYMBiYiIiIjovbBAS0REVILZ2NhoVSGwSpUqcHR0FB2DiIiIiIhIbXhIGBEREREREREREZEgLNASERERERERERERCcIWB1rqxbNk0RHoDbweRERERERERERUFBZotdST6ztFRyAiIiIiIiIiIqJ/wAKtlrKo2QP6Za1Fx6D/8+JZMovmREREVCySkpKQlpYmOsZ/FhcXV+DPkk6hUGjVoY1ERESkPizQain9stYwMLUXHYOIiIiIilFSUhL69u2L3Nxc0VGKTWBgoOgIxcLAwABbtmxhkZaIiIg+GAu0REREREQlRFpaGnJzc1HH1gBlDXjer6Z4lpuPq4m5SEtLY4GWiIiIPhgLtEREREREJUxZAx2YlWGBloiIiEgb8FUdERERERERERERkSBcQUtEREREREREpKEepWSJjkD/h9eC5MICLRERERERERGRhlEoFDA0NMDWfbdFR6E3GBoaQKFQiI5BWoYFWiIiLZGVnC06Ar2B14OIiIiI/gsbGxts3rwFaWlpoqP8Z3FxcQgMDERAQACqVKkiOs5/olAoeCAkFTsWaImISjiFQgEDQwPc3hkrOgr9jQHvrhMRERHRf2BjY6NVxcAqVarA0dFRdAwijcMCLRFRCWdjY4MtvLOukXh3nYiIiIiIiP4JC7RERFqAd9aJiIiIiIiISiYWaImIiIiIiIg03PPnz0VHoP/Da0HqkJSUpDW7JN/8sySTc4ckC7REREREJdTTrCeiI9AbeD2ISA4KhQIGBga4efOm6Cj0BgMDnjVA8klKSkK/fv2Qk5MjOkqxCQwMFB3hPzM0NMTmzZtlKdKyQEtERERUwigUChgaGOLc7UOio9DfGBoY8g07ERUrGxsbbNnC8wY0Dc8aIDmlpaUhJycHDXsOgam1reg4BCAjOREXdqxDWloaC7RERERE9OrN+uYtm/lmXQPxDTsRyYHnDRCVTqbWtihXoeS/PqJ/xgItERERUQnEN+tERERERNpBowq0cXFxWLduHX7//XfcunUL1atXR2RkZKF5O3bswNq1axEfH49q1aph7NixaNWqVYE5GRkZmD9/PqKiovDixQs0b94c06dPR/ny5QvMu3TpEhYuXIjr16/D0tISffr0wdChQyFJkmqOUqnEmjVrsGXLFjx58gQ1a9bElClT4OLiUuC5kpKSMHfuXJw6dQr6+vpo27YtpkyZAhMTk+L7RyL6BwkZuaIj0Bt4PYiIiIiIiIjoXTSqQHvr1i0cP34c9erVQ35+PpRKZaE5+/fvR0BAAEaMGIEmTZrgwIEDGD16NDZv3lygYPrVV1/h9u3bmDVrFgwNDbF06VIMHToUu3btgp7eq//bcXFxGDJkCJo2bYqvvvoKN2/exOLFi6Grq4shQ4aonmvNmjVYtmwZJkyYAEdHR2zevBmDBw/Gnj17UKlSJQDAixcv8MUXXwAAgoODkZ2djYULF2L8+PFYvXq1jP9qRAWtufRIdAQiIiIiIiIiInpPGlWg9fT0RJs2bQAAkydPxh9//FFozrJly9CpUyd89dVXAIAmTZrgr7/+wvLly7FmzRoAwOXLl3Hq1CmsW7cOzZo1AwBUq1YNHTt2xOHDh9GxY0cAwLp161CuXDl8++23MDAwgJubG548eYJVq1ahf//+MDAwQE5ODlavXo3Bgwdj4MCBAIBPPvkE7du3x7p16zBr1iwAwKFDh3Dr1i0cOHAA1atXBwCYmZlhyJAhiImJQd26deX6ZyMqYGiD8rAzNRAdg/5PQkYui+ZERERERERE9FYaVaDV0dF55/iDBw9w7949TJw4scDjHTt2xDfffIPc3FwYGBjgxIkTMDMzQ9OmTVVzqlevjpo1a+LEiROqAu2JEyfQtm1bGBgYFHiu1atX4/Lly2jcuDEuXbqEzMxMdOjQQTXHwMAAbdu2xS+//KJ67MSJE3B0dFQVZwGgadOmUCgUOH78OAu0pDZ2pgaoojAUHYOIiIiIiIiIiN7DuyuiGiY2NhbAq9Wwb3JwcMCLFy/w4MED1bxq1aoV6CMLvCrSvn6O58+fIyEhoUBB9fUcSZJU817/+fd5Dg4OiI+PR3Z2tmre3+dIkoRq1aqpnoOIiIiIiIiIiIjoTRq1gvafpKenA3jVOuBNr//+evzp06cwNTUt9L83NzdXtU3IyMgo8rkMDAxgZGRU4LkMDAxgaFhwRaKZmRmUSiXS09NRpkyZd37O18/1bymVSjx//vy95r4uGJNmys7Ofu9r+W+emzSXnNdem7z+Oua/V+nDa1968dp/GP6+12z8On4//L4vvXjtSy9e+w/D3/ea60O+hpVKZaHFo29Togq0pdWLFy9w/fr195r7ehUxaaa7d+/i5cuXsjw3r71mk/Paa5PXX8f89yp9eO1LL177D8Pf95qNX8fvh9/3pRevfenFa/9h+Ptec33o1/CbbVXfpUQVaM3NzQG8Wv1qbW2tevzp06cFxs3MzJCYmFjof5+enq6a83q16+uVtK/l5uYiKyurwHPl5uYiJyenwCrap0+fQpKkAvMyMzOL/Jx2dnb/7v/w/9HX10eNGjXea66eXom6pKVOtWrV8NFHH8ny3Lz2mk3Oa69NXn8d89+r9OG1L7147T8Mf99rNn4dvx9+35devPalF6/9h+Hve831IV/Dt2/ffu/nLVFX/HWP17/3e42NjYW+vj4qVaqkmnf27NlCS4nv3r2Ljz/+GABgbGwMOzu7Qv1h7969C6VSqXr+13/evXsXTk5OBT6nvb09ypQpo5r3119/FXgupVKJu3fvFjis7N+QJAnGxsbvNfd1HtJMZcqUee9r+W+emzSXnNdem7z+Oua/V+nDa1968dp/GP6+12z8On4//L4vvXjtSy9e+w/D3/ea60O+ht+3vQFQwg4Jq1SpEqpWrYqDBw8WePzAgQNwc3NTLRtu0aIF0tPTcfbsWdWcu3fv4s8//0SLFi1Uj7Vo0QJHjhzBixcvCjyXmZkZ6tevDwBo0KABTExM8PPPP6vmvHjxAocPHy70XDdu3MC9e/dUj509exZpaWnw8PAonn8AIiIiIiIiIiIi0ioatYI2KysLx48fBwA8fPgQmZmZqmJso0aNYGFhAX9/f0yYMAGVK1dG48aNceDAAcTExGDTpk2q56lfvz6aNWuGqVOnYtKkSTA0NMSSJUvg6OiIdu3aqeYNGTIE+/btw/jx49GnTx/89ddfWLduHcaOHasq9hoaGmL48OEICQmBhYUFPv74Y2zduhVpaWkYMmSI6rm8vLywevVq+Pv7Y9y4ccjKysI333yDli1bom7duur45yMiIiIiIiIiIqISRqMKtCkpKfjyyy8LPPb67z/88AMaN26Mzp07IysrC2vWrEFYWBiqVauG0NBQ1YrX15YuXYr58+djxowZePnyJZo1a4bp06cX6ONRpUoVrFu3DgsWLMCwYcNgYWGBMWPGYPDgwQWea+jQoVAqlfj+++/x5MkT1KxZE+vWrVO1VABe9Yldu3Yt5s6di3HjxkFPTw9t27bF1KlTi/ufiYiIiIiIiIiIiLSERhVoK1asiJs3b/7jvJ49e6Jnz57vnGNqaoqgoCAEBQW9c16DBg2wffv2d86RJAnDhw/H8OHD3znPxsYGISEh75xDRERERERERERE9FqJ6kFLREREREREREREpE00agUtFZ8Xz5JFR6A38HoQEREREREREVFRWKDVMgqFAgYGhnhyfafoKPQ3BgaGUCgUomMQERGRFniWmy86Ar2B14OIiIj+CxZotYyNjQ22bNmMtLQ00VH+s7i4OAQGBiIgIABVqlQRHec/UygUsLGxER2DiIiItMDVxFzREYiIiIiomLBAq4VsbGy0qhBYpUoVODo6io5BREREpDHq2BqgrAGPk9AUz3LzWTQnIiKif40FWiIiIiKiEqasgQ7MyrBAS0RERKQNWKAlIiIiIiIiIiLSMBnJCaIj0P+R+1qwQEtERERERERERKRhLuz4XnQEUhMWaImIiIiIiIiIiDRMw56DYWptJzoG4dUKWjkL5izQEmmZhAweUKFJeD2IiIiIiIjo3zC1tkO5ClVExyA1YIGWSEsoFAoYGhpgzaVHoqPQ3xgaGkChUIiOQURERET0VvHx8cjIyJD1c8TFxRX4Uy6mpqawt7eX9XMQERUnFmiJtISNjQ02b96CtLQ00VH+s7i4OAQGBiIgIABVqpT8u4UKhQI2NjaiYxARERERFSktLQ19+vRBfn6+Wj5fYGCgrM+vq6uLiIgILpIgohKDBVoiLWJjY6NVhcAqVarA0dFRdAwiIiIiIq2mUCiwdetW2VfQqoupqSmLs0RUorBAS0RERERERFTKsSUAEZE4OqIDEBEREREREREREZVWLNASERERERERERERCcICLREREREREREREZEgLNASERERERERERERCcICLREREREREREREZEgLNASERERERERERERCcICLREREREREREREZEgLNASERERERERERERCaInOgAREREREREREREVlJGcKDoC/R+5rwULtERERERERERERBpCoVDA0NAQF3asEx2F3mBoaAiFQiHLc7NAS0REREREREREpCFsbGywefNmpKWliY7yn8XFxSEwMBABAQGoUqWK6Dj/iUKhgI2NjSzPzQItERERERERERGRBrGxsZGtGChClSpV4OjoKDqGxmKBloiIiIiohHmWmy86Ar2B14OIiIj+CxZoiYiIiIhKCIVCAQMDA1xNzBUdhf7GwMBAtr50REREpN1YoCUiIiIiKiFsbGywZcsW9qTTQHL2pSMiIiLtxgItEREREVEJwp50RERERNpFR3QAIiIiIiIiIiIiotKKBVoiIiIiIiIiIiIiQVigJSIiIiIiIiIiIhKEBVoiIiIiIiIiIiIiQVigJSIiIiIiIiIiIhKEBVoiIiIiIiIiIiIiQVigJSIiIiIiIiIiIhKEBVoiIiIiIiIiIiIiQVigJSIiIiIiIiIiIhJET3QAIiIiIiIiIiISIz4+HhkZGbJ+jri4uAJ/ysXU1BT29vayfg4iObBAS0RERERERERUCqWlpaFPnz7Iz89Xy+cLDAyU9fl1dXUREREBhUIh6+chKm4s0BIRERERERERlUIKhQJbt26VfQWtupiamrI4SyUSC7RERERERERERKUUWwIQicdDwoiIiIiIiIiIiIgEYYGWiIiIiIiIiIiISBAWaImIiIiIiIiIiIgEYYGWiIiIiIiIiIiISBAeEkb/Wnx8vKwnPcbFxRX4Uy6mpqZsik5EREREREREpYrcdR2AtZ33xQIt/StpaWno06cP8vPzZf9cgYGBsj6/rq4uIiIioFAoZP08RERERERERESaQJ11HYC1nX/CAi39KwqFAlu3bpX9Tos6mJqalthvYCIiIiIiIiKiD6VNdR2g5Nd2WKClf60kLx0nIiIiIiIiIirNWNfRHDwkjIiIiIiIiIiIiEgQFmiJiIiIiIiIiIiIBGGLAyIiIiIqEk/2JSIiIiKSHwu0RERERFQIT/YlIiIiIlIPFmiJiIiIqBCe7EtEREREpB4s0BIRERFRkdgSgIiIiIhIfjwkjIiIiIiIiIiIiEgQFmiJiIiIiIiIiIiIBGGBloiIiIiIiIiIiEgQ9qAlIiIiIiIiAEB8fLzshwPGxcUV+FMupqam7KVNREQlAgu0REREREREhLS0NPTp0wf5+flq+XyBgYGyPr+uri4iIiKgUChk/TxERET/FQu0REREREREBIVCga1bt8q2gvbixYvYsWMHHj9+rHrMysoKPXv2xCeffFLsn8/U1JTFWSIiKhFYoCUiIiIiIiIAkK0lwPHjx7Fq1Sq4u7tj7ty5qFatGu7evYvw8HCsWrUKgYGB8PDwkOVzExERaToeEkZERERERESyycvLw/Lly+Hu7o6goCA4OzvD2NgYzs7OCAoKgru7O5YvX468vDzRUYmIiITgCloiIiIiIiqAB0VRcYqJiUFCQgJmzpwJHZ2Ca4R0dHTw+eefw8/PDzExMahfv76glEREROKwQEtERERERCo8KIqKW0pKCgCgWrVqRY5Xr169wDwiIqLShgVaIiIiIiJSkfugKHXjQVHiWVpaAgDu3r0LZ2fnQuOxsbEF5hEREZU2LNASEREREVEBbAlAxalu3bqws7NDeHg4goKCCrQ5yM/Px6ZNm2BnZ4e6desKTElERCQODwkjIiIiIiIi2ejq6mLUqFE4c+YMpk6dij/++APPnz/HH3/8galTp+LMmTMYNWoUdHV1RUclIiISgitoieiDyX1wCA8N0Vy89qUXrz0REf0XHh4eCAwMxPLly+Hn56d63M7ODoGBgfDw8BCYjoiISCxJqVQqRYegt7t69SoAoE6dOoKTEL2SlpaGrl27qu3gEDnx0JAPw2tfevHaExFRccnLy0NMTAxSUlJgaWmJunXrcuUsERFppQ+p6bFAq+FYoCVNJPdKOnXhSroPx2tfevHaExERERERvb8PqemxxQERfTAWN0ovXvvSi9eeiIiIiIhIHjwkjIiIiIiIiIiIiEgQFmiJiIiIiIiIiIiIBGGBloiIiIiIiIiIiEgQFmiJiIiIiIiIiIiIBGGBloiIiIiIiIiIiEgQFmiJiIiIiIiIiIiIBGGBloiIiIiIiIiIiEgQFmiJiIiIiIiIiIiIBGGBloiIiIiIiIiIiEgQFmiJiIiIiIiIiIiIBGGBtpjduXMHgwYNgouLC5o2bYpvvvkGubm5omMRERERERERERGRBtITHUCbpKenw9fXF1WrVkVISAiSkpKwYMECZGdnY8aMGaLjERERERERERERkYZhgbYY/fjjj3j27BlCQ0OhUCgAAHl5eZg9ezaGDx8OGxsbsQGJiIiIiIiIiIhIo7DFQTE6ceIE3NzcVMVZAOjQoQPy8/Nx+vRpccGIiIiIiIiIiIhII7FAW4xiY2NRvXr1Ao+ZmZnB2toasbGxglIRERERERERERGRpmKLg2L09OlTmJmZFXrc3Nwc6enp//p5lUolnj9//l+iERERERERERERkZoolUpIkvRec1mgLQFevHiB69evi45BRERERERERERE78nAwOC95rFAW4zMzMyQkZFR6PH09HSYm5v/q+d88eIFAEBfX/8/ZSMiIiIiIiIiIiL1ePHihaqu909YoC1G1atXL9RrNiMjA8nJyYV6076v10uh33dJNBEREREREREREYklSRJbHIjQokULrFq1qkAv2oMHD0JHRwdNmzb9V89Zv3794oxIREREREREREREGkRSKpVK0SG0RXp6Ojp16oRq1aph+PDhSEpKwoIFC+Dt7Y0ZM2aIjkdEREREREREREQahgXaYnbnzh0EBgbi8uXLKFu2LLp27YqxY8e+d1NgIiIiIiIiIiIiKj1YoCUiIiIiIiIiIiISREd0ACIiIiIiIiIiIqLSigVaIiIiIiIiIiIiIkFYoCUiIiIiIiIiIiIShAVaIiIiIiIiIiIiIkFYoCUiIiIiIiIiIiIShAVaIiIiIiIiIiIiIkFYoCUiIiIiIiIiIiIShAVaIiIiIiIiIiIiIkFYoCUiIiIiIiIiIiIShAVaItJIFy9exI4dOxAbGys6ChERFZPz58/j2bNnRY49e/YM58+fV3MiIiKSW3p6Oi5cuIB9+/YhPT0dAJCTk4P8/HzByYiouPXq1Qs7dux46+s9ejtJqVQqRYcgei02NhaHDx9GYmIicnJyCoxJkoSgoCBByUhO48ePh4GBAebPnw8A2Lp1K2bPng0AMDAwwOrVq+Hm5iYyIsnA09MTkiQVOaajowNTU1M4OTmhX79+cHZ2VnM6ktupU6dw6NCht/6837hxo6BkJKeaNWti27ZtqFu3bqGxP/74Az179sT169cFJCO5/fHHH8jIyFD9Pk9PT8eiRYtw584duLu7Y9SoUdDR4doRbXHt2rUPms/f89pJqVRiyZIlCA8PR1ZWFiRJws6dO+Hs7IyhQ4eiXr16GD16tOiYJAMnJ6e3vs6XJEn1Ot/X1xeenp5qTkdy+uqrr3D06FHo6uqiffv28PHxQcOGDUXHKhH0RAcgei0iIgJTp06FoaEh7O3toa+vX2D8bT/gqeS7ePEivv76a9Xfw8LC0LNnT0yePBmzZs1CaGgoC7RaqHXr1oiKikJmZibc3NxgYWGBJ0+e4OzZszAxMYGjoyMuXLiAvXv3IiwsDO7u7qIjUzFZu3YtFi9ejAoVKsDBwQGmpqaiI5GavGtdQFZWFsqUKaPGNKRO8+fPh5ubm+r3eVBQEKKiotC0aVN8//330NHRwahRowSnpOLi4+PzXq/dlUolJEnijRkttXTpUmzatAmTJk2Cm5sbvLy8VGOenp7YsWMHC7Ra6uuvv0Z4eDgMDAzg6ekJCwsLpKSk4NixY8jJyUH37t0RHR2NUaNGYfHixejUqZPoyFRMli5divT0dOzduxc//fQTPv/8c1SpUgU+Pj7o1q0bypcvLzqixmKBljTGypUr4eXlhaCgIBgZGYmOQ2r05MkT1Q/qW7duISEhAQMGDEDZsmXRvXt3fPnll4ITkhwqVKgAe3t7rFmzBsbGxqrHnz17hmHDhqF69eqYM2cOhg0bhmXLlrFAq0W2bNmCzz//HNOnTxcdhdTgypUruHz5surv+/btw8WLFwvMycnJwZEjR1C9enV1xyM1uX37NoYNGwYAyM7OxqFDhxAQEAAfHx9s3rwZP/zwAwu0WuSHH34QHYE0wE8//YRx48ahd+/eyMvLKzBWuXJlPHjwQFAyklt6ejpq166NZcuWFbhZM2nSJPj7+yM7OxubN2/G2LFjsWbNGhZotYy5uTn69++P/v3748aNG9i5cye+//57LFu2DM2aNUOPHj3g6enJnTN/wwItaYxHjx5h1qxZLM6WQgqFAg8fPkTDhg1x8uRJWFtb46OPPgIA5OXlsT+Vltq4cSNmzJhRoDgLAGXLlsWQIUMwa9YsDB06FH369MGkSZMEpSQ5pKWloXXr1qJjkJqcOnUKoaGhAF7thgkPDy80R09PDw4ODpg5c6a645GaZGdnq17jXbp0Cbm5uaqfA46OjkhMTBQZj4pZo0aN3ntuVlaWjElIpLS0NDg4OBQ5lpeXh5cvX6o5EanLzp07MX/+/EIr6SVJQq9evTBp0iRMmjQJnTt3xtixYwWlJHWwtbVFpUqVYGVlhbS0NNy7dw/+/v6oUKECFi9eDBcXF9ERNQYLtKQxGjZsiL/++otb2UuhFi1aYPHixbhx4wZ++ukndO3aVTV269YtVKxYUWA6kktqaioyMzOLHMvIyMDTp08BvLoDS9qlVatWuHjxIn/elxKjR49WbWF1cnLC9u3bi+xBS9qtUqVKOHHiBBo1aoR9+/bB2dkZCoUCAJCSkgITExOxAUmt8vLycPLkSezbtw9Hjx4tsMqetEfVqlVx+vTpIn/fR0dHqxZkkPbJyspCQkJCkWPx8fGq8weMjY0LtTYk7XDy5Ens2rULR48eRdmyZdGlSxd89913cHBwwP379zF79mxMnToVBw4cEB1VY7BASxpj3LhxmDhxIgwNDdG0adMiexK+fiFP2mXSpEnIy8vDqVOn4OHhAX9/f9XYL7/8gubNmwtMR3Jp3LgxgoODUaFCBTRo0ED1+IULF/Dtt9+iSZMmAIC7d++iQoUKomJSMXnzwBgfHx/MmjULOTk5cHd3h5mZWaH5PDBGO924cUN0BBJk4MCBmD59Onbu3In09HR88803qrHo6Gg4OjoKTEfqcvHiRURGRuLgwYNIS0uDhYUFevXqJToWyWTgwIEICAiAnp4e2rdvDwBITEzElStXEB4erjogmLSPp6cngoODYWxsjFatWsHExASZmZk4cuQIgoOD0aZNGwDAzZs3UaVKFcFpqTgtXboUe/bsQWJiIho1aoT58+ejbdu2MDAwUM2pXLkyRo0ahX79+glMqnkk5btOayBSIycnJ9XHbztUgAcIEGmPpKQk+Pn54fr16zAzM0O5cuWQmpqKp0+fombNmli5ciVsbGywfft2GBgYoFu3bqIj03/w99N833z58ffHeWCMdsvLy8Pvv/+OxMRE5ObmFhrn97r2On/+PK5evYpatWqpbsIBQEhICOrUqYOWLVuKC0eyuXXrFiIjI7Fv3z4kJCRAX18fL168wJQpU9CvXz/o6uqKjkgyWr9+PUJCQpCVlaX63W9kZIQxY8Zg0KBBgtORXDIzMzF58mRERUVBkiTo6enh5cuXUCqVaNu2LebPnw8TExMcPnwYxsbGaNasmejIVEyaNWuG7t27o2fPnqhcufJb56WlpeHYsWPo3r27GtNpNhZoSWPs3r37H0975TcvkfY5fvw4rl69iuTkZFhbW6NOnTrw8PAQHYuKWXR09AfN/5D+hVRyXLt2Df7+/khISEBRL0FZnCfSDomJiaqi7F9//QVdXV00adIEnTt3RuPGjdGqVSuEh4fD1dVVdFRSg2fPnuHy5ctITU2Fubk56tevX+RuSdI+d+7cQUxMDJKTk1G+fHnUrl0bNWrUEB2LZPTy5Uvo6XGz/r/BAi0RCeHt7Y3g4GB8/PHH8Pb2/sf5+/btU0MqIiKSU8+ePZGTk4Pp06ejRo0aRfad45t27cXV06VHzZo1AbxqV9O9e3d06NABFhYWAF71mXd1dWWBloiI6A0sa5PGSU9PR0xMDNLT02Fubo66devykCAtVLt2bdVpzs7Ozv+4epq0V1JSEpKSklSHBbyJb9y0040bN5CUlFTkSunjx4/DxsamQNsb0h63b9/G0qVLuUK6FHqf1dMs0GoPMzMzpKen48GDB7h58yY+/vhjVYGWSo8TJ07g6dOn6Ny5MwAgISEBU6dOxZ07d+Du7o4ZM2bA2NhYcEqSC2/KlU5/b2v2JkmSYGpqCicnJ/j6+sLT01PN6TQbC7SkMZRKJRYtWoRNmzYV+AFuYGCA/v37Y+LEiQLTUXF781CABQsWCExCojx48AATJ07E77//DgCF3rBzq7P2CgoKQoMGDYos0MbExODSpUtYv369gGQkt6pVq+LZs2eiY5AAs2bNgomJCTZu3PjW1dOkPU6fPo1Tp05h37592LdvH3bs2AEbGxt07NiRbYxKkWXLlqFDhw6qv8+ZMwd37txBp06dsHfvXixbtgyTJ08WmJDkwptypdfXX3+N8PBwGBgYwNPTExYWFkhJScGxY8eQk5OD7t27Izo6GqNGjcLixYvRqVMn0ZE1Bgu0pDFWrVqFjRs34osvvkCHDh1gZWWFx48f4+eff8batWthZmaG4cOHi45JapKVlYVHjx6hcuXKXF2rpaZPn46kpCQEBQXBwcGhwMmepN1u3LiBL774osgxFxcXbNq0Sc2JSF2mTJmCefPmwdHREQ4ODqLjkBpx9XTpoqenh5YtW6Jly5bIysrCL7/8gsjISPzwww9Yv349JEnCzz//DDs7O1SsWFF0XJJJXFycakdMZmYmTp48icWLF6N9+/b46KOPEBoaygKtluJNudIrPT0dtWvXxrJlywq8j580aRL8/f2RnZ2NzZs3Y+zYsVizZg0LtG9ggZY0xo4dO+Dn54fRo0erHrOysoKTkxP09fWxbds2Fmi11Lp165CVlaW69hcuXICfnx8yMzNRsWJFrFu37p0nQFLJFBMTg4ULF6Jdu3aio5Ca5ebm4sWLF28dK6rdBWmHwMBAJCcnw9vbG+XLly/Ub1aSJOzdu1dQOpITV0+XXkZGRujSpQu6dOmC1NRUHDhwAPv378fWrVvx448/4pNPPkF4eLjomCSDly9fQkdHBwBw/vx5AEDz5s0BAJUqVcLjx4+FZSN58aZc6bVz507Mnz+/0CIrSZLQq1cvTJo0CZMmTULnzp0xduxYQSk1k47oAESvJScno0GDBkWO1a9fH8nJyWpOROryetvba/Pnz0eNGjWwYsUKlCtXDt9++63AdCQXGxsb1Yt2Kl1q1qyJPXv2FDm2Z88e9p/VYs7OzmjVqhW6du0KNzc31K5du8B/zs7OoiOSTKZMmYLVq1fjzp07oqOQQOXKlUO/fv2wZcsWHDlyBF9++SXS0tJExyKZVK9eHXv37sXz58+xbds21K9fH2XLlgXw6r2fQqEQG5Bkw5typVdWVhYSEhKKHIuPj1ctxDA2NubK6r/hClrSGBUqVMCvv/4Kd3f3QmPHjx9HhQoVBKQidUhMTESVKlUAvDow6tq1a9i0aRMaNmyIvLw8zJo1S2xAksXrbS0NGzbkC/RSZvjw4fDz88OwYcPw6aefonz58nj06BF2796NU6dOYcWKFaIjkkzYc7z04upp+jt7e3sMHz6cO+S02MiRI/Hll18iIiICurq6WLVqlWrs5MmTqFWrlsB0JCe2NCq9PD09ERwcDGNjY7Rq1QomJibIzMzEkSNHEBwcjDZt2gAAbt68qaoB0Css0JLGGDhwIGbNmoUnT56gffv2sLS0REpKCg4ePIj9+/ezSKfFDA0NkZmZCQA4e/YsjI2NUb9+fQCAqakpMjIyRMYjmfz0009ITEyEp6cnatasWeSb9ZUrVwpKR3Jq2bIlgoOD8c033+Crr76CJElQKpWwtbXF4sWL0bJlS9ERSQ2USiUePXoES0tL6OnxJam2c3Z2Zk95olKmdevW+Pnnn/Hnn3/C0dERVatWVY25uLjA0dFRXDiSFW/KlV6zZs3C5MmTMXHiREiSBD09Pbx8+RJKpRJt27bFjBkzALy6STdu3DjBaTULXw2TxujduzdevHiBFStWIDIyUvWG3cLCAtOmTcNnn30mOiLJpG7duggLC4OOjg7WrVuHFi1aQFdXFwBw//79Au0PSHs8e/asQG9hboMqHV6+fImbN2+iSZMm+PXXXxEbG4u0tDQoFApUr15ddDxSg5MnTyIkJAR//vkn8vLysHPnTjg7OyMgIACurq7o0qWL6IgkA66eJiqdKlWqhEqVKhV6nO/ttBtvypVeJiYmCA0NxZ07dxATE4Pk5GSUL18etWvXRo0aNVTzeA5JYZJSqVSKDkH0pvz8fMTGxiI9PR0KhQLVqlVjn0otd/v2bQwfPhwPHz6Evb091q9fr9ruMHjwYFhbW2PhwoWCUxJRccjPz1fdlCmqpQ1pt8jISEycOBEdOnSAm5sbAgICsGvXLjg7OyMsLAxnzpzBhg0bRMckmWVnZ+Pp06cwMzNDmTJlRMchIpnFxcXh3r17RR4CyiINEdErXEFLGkdHR6fAnRXSfjVq1MCRI0eQmpqKcuXKFRibNGkSrK2tBSUjouKmo6ODihUrIj09XXQUEmDFihXw9fXF5MmTkZeXh4CAANXYRx99hI0bNwpMR3I7duwYQkNDcf36dSiVSkiShJo1a2LMmDHw8PAQHY+IillmZiZGjRqF6OhoAK9a2wAosLLy+vXrQrIRkXxevHiBnTt34urVq0hMTMSMGTNQtWpVHDhwgH2J34EFWhJq/fr18Pb2hpWVFdavX//OuZIkYeDAgeoJRmq1detWeHt7FyrOAmBvKi3D73kCgBEjRmDFihVo0KABW5iUMg8ePHhrIc7IyIg9x7VYVFQU/P39Ua9ePUyePBlWVlZITk7GwYMH4efnh2XLlqkODiEi7bBo0SI8fvwYmzdvRt++fREaGgpzc3Ps3bsX586dQ3BwsOiIVIzmzp2LwYMHw97eHnPnzv3H+dOnT1dDKlK3Bw8eYODAgUhNTUWtWrVw8eJFVSu78+fP4+TJk5g/f77glJqJBVoSauHChfjkk09gZWX1j1vYWazRXgsWLMDChQvRtm1b9OzZE40aNRIdiWTC73kCgIMHDyI1NRVt2rSBo6MjrKysCozzgDjtZW1tjdjYWLi5uRUau3nzJuzt7QWkInUIDQ1Fp06dsHjx4gKP+/r6YsKECQgNDWWBVotMmTLlg+bzzbp2OnnyJMaOHYt69eoBAMqXL4+6devC1dUVCxYswPr167FkyRLBKam4HD16FD169IC9vT2OHj36zrmSJLFAq6Xmzp0LCwsL7NixA2ZmZqhdu7ZqzNXVFd9++63AdJqNBVoS6saNG0V+TKXLyZMnsW/fPuzatQsDBgxApUqV4OPjg+7du3N1nZbh9zwBrw6Eq1atWoG/U+nQuXNnhISEoHr16qqbcZIk4a+//sLatWvRp08fwQlJLrGxsZgwYUKRY127dsWoUaPUnIjk9Pdt60lJSUhNTYW5uTksLS2RkpKC9PR0lCtXDra2toJSktyePHkCOzs76OrqwsjICGlpaaoxDw8P+Pv7iwtHxe7Nouw/FWhJe0VHRyM4OBgWFhbIy8srMGZtbY3k5GRByTQfC7SkMc6fP49atWqhbNmyhcaeP3+Oa9euwdXVVUAykpuZmRn69euHfv364caNG9i1axc2btyIkJAQNG3aFD4+PvD09IS+vr7oqFRMcnJysGjRInTp0gV169YVHYfULDw8XHQEEmT06NG4desWBg0aBIVCAQAYOnQonjx5gpYtW2LYsGFiA5JszM3NcffuXTRr1qzQ2N27d2Fubi4gFcklIiJC9fGJEycwa9YsLFmyBE2aNFE9fvbsWUybNg1fffWV+gOSWtja2iI1NRUAULVqVRw9ehQtWrQAAFy+fBmGhoYi4xGRDHR1dVX9pv/u8ePHMDY2VnOikoMFWtIYAwYMwLZt24os1sTGxmLAgAFsIl8KODk5Ydq0afjiiy8wYcIEnDhxAidOnEC5cuXQp08fDBs2jCc+awFDQ0Ps2rWLJ/cSlTIGBgZYuXIlzp07hzNnzqhW1Lm7u8Pd3V10PJJRx44d8e2336JMmTLw8vKCmZkZMjIycPDgQSxduhS9evUSHZFksmjRIowZM6ZAcRYA3Nzc4O/vj0WLFvGQOC3VtGlTnDlzBm3btlUdEBkTEwN9fX3ExMRg0KBBoiNSMTp8+PAHzef7AO3k6uqK9evXo0WLFtDR0QHwareUUqnE9u3bi2xzRa+wQEsa4213WQAgKyuLRblSQKlU4sSJE9i1axeOHTsGMzMzDBkyBG3btsXx48exadMm3Lp1CyEhIaKjUjGoX78+rly5wp7DpVR+fj7OnTuHu3fvIjc3t9A437RptyZNmhQq1pB2Gz9+POLj4xEQEIAZM2ZAT08PL1++hFKpRLt27TBu3DjREUkmcXFxqhXzf2dubo779++rNxCpzYQJE5CVlQUA6NatG8qWLYuDBw8iJycHAQEB6N27t+CEVJzGjBnz3nMlSeLiKy01YcIE9OnTB506dYKnpyckScLmzZtx69YtxMXFYceOHaIjaixJ+a6qGJHMrly5gsuXLwN4dXhQ//79Cx0QkpOTgyNHjiA/Px+7du0SEZNkdv/+fezatQsRERF49OgR3N3d0atXL7Ru3Rp6ev//PtKRI0cwbtw4/P777wLTUnG5cuWK6he4h4cHLC0tIUlSgTlve0NHJVtycjL69++Pe/fuqe6oAyhw/fmiXbtlZmYiMTEROTk5hcacnZ0FJCJ1uXnzJi5cuICnT5/C3Nwcn3zyCRwdHUXHIhl9+umnKFOmDNasWVOglVlmZia++OIL5ObmYvfu3QITElFxePjw4QfNr1ChgkxJSLQHDx4gNDQUp0+fRlpaGszNzeHm5oYxY8agcuXKouNpLBZoSajQ0FCEhoYCQIE36W/S09ODg4MDZs6ciQYNGqg7IqmBk5MTbGxs8Omnn6JHjx5v/WV99+5dzJgxg/0rtYSTk5Pq478XZl9jkU47jR8/Hg8fPsR3330HDw8PbN++HVZWVti7dy8iIiIQFhbGF29aKikpCVOnTsWZM2cKjSmVSq6oIdJCly5dwhdffAEdHR00btxYdUjYb7/9hry8PKxduxaffPKJ6Jgko7t37yImJgbJyckoX7486tSpU+CwUCIiYoGWNIiTkxO2b9/OA4NKoWPHjsHDw0PVo4ZKh927d7+1MPta9+7d1ZSG1KlFixaYPn062rRpg1q1ahX42b9y5UpcvHgRa9euFZyS5DBw4EDcu3cPQ4cORdWqVYs8/JFtT7THtWvX4ODggDJlyuDatWv/OJ+rp7XX48ePsWHDBlWRztraGnXr1oWvry+sra1FxyOZPHv2DDNmzMDPP/+M/Px8GBoaIicnBzo6Omjfvj0CAwOLPCCatMeJEydw9epVJCYmws/PD/b29jh//jwqV64MGxsb0fFIBgMGDMDMmTPh4OBQaOzu3buYOXMmfvjhBwHJNB970JLGuHHjhugIJEirVq1ERyABPv30U9ERSJCMjAxYWFhAR0cHJiYmSElJUY25uLggLCxMYDqS0++//45FixahTZs2oqOQGvj4+KhuwPj4+Lz1phxXT2s/KysrTJgwQXQMUrO5c+fi2LFjCAwMhJeXF0xMTJCZmYmDBw8iKCgIc+fOxfz580XHJBk8efIEI0eOxO+//w47OzskJCSgd+/esLe3x65du2BkZISZM2eKjkkyiI6OxrNnz4ocy8zMxIULF9ScqORggZY0Tk5ODh48eMC+dFpu7ty5HzR/+vTpMiUh0dLT03Hr1i0kJCSgRYsWMDc3R05ODvT19bmqWktVrFgRjx49AgDUqFEDe/bsUd2oiYqKYu9hLValShW8fPlSdAxSkx9++EG1gmbjxo3/uGuCiLTLoUOHMGHCBPj4+KgeMzExQY8ePZCTk4Nvv/2WBVotNW/ePKSmpiIyMhJVqlRB7dq1VWNubm5YuXKlwHQkyuXLl2FhYSE6hsZigZY0Rm5uLmbNmoW9e/ciLy+vyDlcWaE9jh49+t5zJUligVYL5efnY+nSpQgPD0dWVhYkScLOnTthbm6O0aNHo169ehg9erTomCSDli1b4vTp0+jYsSP8/PwwatQouLm5QU9PD48fP+YqKy02adIkLFiwAI6Ojuw/WAq82a6icePGApOQSNnZ2VixYgUOHTqExMRE5ObmFprD1/jaydDQEBUrVixyrFKlSgUOAybtcvz4cQQGBsLBwaHQe3s7OzskJSUJSkZyWL16NVavXg3g1Xt3X1/fQjdlc3NzkZeXh759+4qIWCLwJyJpjOXLl+P06dNYsGABJkyYgBkzZsDY2Bh79+7F/fv3ERAQIDoiFaMPKdCSdvruu++wadMmTJo0CW5ubvDy8lKNeXp6YseOHSzQaqnx48erPvbw8MCWLVtw5MgRZGdnw93dHR4eHgLTkZzc3Nzg7u6OTp06oXz58jA1NS0wLkkS9u7dKygdyalmzZrYtm1bkWcN/PHHH+jZsyeLdFpq9uzZiIyMROfOneHg4FBk72nSTp9++im2bt2K5s2bFyjWKJVKbNmyhe2utFheXh6MjY2LHHv69Cl/DmiZ+vXrY/DgwVAqlVi+fDk6deoEW1vbAnP09fXh4ODA9obvwAItaYyDBw9i9OjR6NChAyZMmIC6deuidu3a6NatGyZNmoSjR4/yTTuRFvnpp58wbtw49O7du9Cd9cqVK+PBgweCkpG61a1blwdElhKLFi3C+vXr4ezsjKpVq8LAwEB0JFKTd51LnJeXB11dXTWmIXU6duwYJk2ahM8//1x0FFKD9evXqz5WKBS4du0a2rVrh1atWsHS0hIpKSk4duwYcnNz0bBhQ4FJSU5169bFrl27inz/vn//fjRo0EBAKpJLo0aNVLtmJElCz549eQjcv8ACLWmMxMREVKtWDbq6ujA0NMTTp09VY126dMG4ceMwe/ZsgQlJbnFxcbh3716R/YfbtWsnIBHJKS0trcjTPYFXb9bZp1L78WTf0mf79u0YM2YMRo4cKToKqUFycrKq3zQAxMbGFirE5uTkYNeuXbC3t1d3PFITXV1dVK1aVXQMUpOFCxcW+XhRp7YHBwfjiy++kDsSCfDVV19hwIAB6NevH7y8vCBJEqKiorB69WocP34cW7ZsER2RZMIdkP8eC7SkMaytrVVF2YoVK+K3336Du7s7AODevXsCk5HcMjMzMWrUKERHRwP4/6ts3twKxW2P2qdq1ao4ffo03NzcCo1FR0fjo48+EpCK1IEn+5Ze+vr6qFevnugYpCbbtm1DaGgoJEmCJEmYMmVKoTlKpRK6urr8ntdiffr0wZ49e9CsWTPRUUgNbty4IToCaYD69evjhx9+QHBwMBYuXAilUolVq1bBxcUFGzZs4OHfWi4uLg67d+9+6+KrVatWCUil+VigJY3RqFEjXLhwAZ6enujZsye++eYbxMbGQl9fH1FRUejcubPoiCSTRYsW4fHjx9i8eTP69u2L0NBQmJubY+/evTh37hyCg4NFRyQZDBw4EAEBAdDT00P79u0BvFpJf+XKFYSHh/NUXy3Gk31Lr549e2Lv3r1o2rSp6CikBt27d0ejRo2gVCrh6+uLGTNmoEaNGgXm6Ovro2rVqihXrpyglCS3MmXK4OLFi+jduzfc3NxgZmZWYFySJAwcOFBMOCKSTf369bFp0yZkZ2cjPT0dZmZmMDIyEh2LZBYTE4P+/fvD3t4e9+7dg6OjIzIyMvDw4UPY2tqicuXKoiNqLEn5roZQRGqUnJyM1NRUfPzxxwCADRs24ODBg8jJyYG7uztGjRr11kbjVLJ5enpi7Nix6NixI5ydnbF9+3ZVP8oFCxYgKSkJS5YsEZyS5LB+/XqEhIQgKytLtXLayMgIY8aMwaBBgwSnI7k0bNgQgYGB6NChA/Ly8uDs7Ixdu3bB2dkZ0dHRGD58OC5fviw6JslgzZo12LJlC2xsbFioKWWio6NRq1YtmJiYiI5Caubk5PTOcUmSuFNKy+Xk5ODBgwdFrqTjSkoi7dK/f39UqFAB8+bNK/Aa/9KlSxg/fjzmzJmD5s2bi46pkbiCljSGtbU1rK2tVX8fOHAg36SVEk+ePIGdnR10dXVhZGSEtLQ01ZiHhwf8/f3FhSNZDRo0CL169cKlS5eQlpYGc3Nz1K9fv9DJ7qRdeLJv6fV6R0RCQgKuXLlSaJwFWu31+vAQKn245b30ys3NxaxZs7B3795CB8K+xuK89iiqjc27cLecdrp58yaGDRsGHR0dAFDdmGnQoAFGjx6N4OBgFmjfggVa0hhTpkxB9erVMXTo0EJjDx48wIoVK/hDXEvZ2toiNTUVwKu+pEePHkWLFi0AAJcvX4ahoaHIeCSzsmXL8pd0KcOTfUsvFmpKt4iICGzbtu2tPekuXbokIBURyWX58uU4ffo0FixYgAkTJmDGjBkwNjbG3r17cf/+fQQEBIiOSMXo78X2pKQkpKamwtzcHJaWlkhJSUF6ejrKlSsHW1tbQSlJbpIkQV9fH5IkwdLSEvHx8arX9ra2tjxf6B10RAcgeu2nn37CkiVLMGzYMGRkZBQYe/LkCSIiIsQEI9k1bdoUZ86cAQD4+vrixx9/xKefforPPvsMISEh6Nq1q+CEJJcnT55g8eLF8PX1hZeXF27dugUA2LhxY5Gr60g7fPXVVzh27Bj69euHzZs3q072HTNmDI4ePcpV80RaaM+ePQgICMBHH32E1NRUdOjQAV5eXtDX14elpSUGDx4sOiLJLCcnB7dv38a1a9cK/Ufa6eDBgxg9ejQ6dOgA4NUN2m7duuH777/HJ598gqNHjwpOSMUpIiJC9d+4ceNgZGSEDRs24LfffsOBAwfw22+/Yf369TAyMsJXX30lOi7JxMHBAQ8ePAAAuLi44Pvvv8dff/2F2NhYhIWFoVKlSoITai4WaEmjzJo1C3fu3EGPHj1w584d0XFITSZMmKAqyHTr1g0hISGoVq0arK2tERAQgAkTJghOSHK4du0avLy8cODAAdja2uL+/fvIzc0F8OqO+4YNG8QGJNm8PtlXkqQCJ/smJyfzZN9S4MWLF9i6dSumTp2KwYMHq1ZSHDhwgL/7tdj69esxcuRIzJw5EwDQt29fzJ8/H0eOHIGFhQXKli0rOCHJJTc3F1OnTsUnn3wCb29v9OjRo9B/pJ0SExNRrVo16OrqwtDQEE+fPlWNdenSBQcPHhSYjuS0aNEijBkzBk2aNCnwuJubG/z9/bFo0SJByUhuvXr1wqNHjwAA48aNQ0pKCrp27YpOnTrh6tWrmDRpkuCEmostDkijODk5YefOnRgzZgx69eqFhQsXok2bNqJjkcyMjIwKnOjZtm1btG3bVmAiUof58+fDxcUFK1asgCRJ2LNnj2qsXr16+PnnnwWmI7nxZN/S6cGDBxg4cCBSU1NRq1YtXLx4Ec+ePQMAnD9/HidPnmQ7Iy0VFxeHBg0aQFdXF7q6usjMzAQAmJiYYOjQoQgKCuLhkFqK29xLL2tra1VRtmLFivjtt9/g7u4OANzmrOXi4uKgUCiKHDM3N8f9+/fVG4jUplu3bqqPHRwccODAAVy5cgXZ2dlwcXGBpaWluHAajitoSeOUK1cO69evh7e3N8aMGYOQkBDV6e6k/VJSUhAfH1/oP9I+V69eRf/+/VU9it5kYWGBlJQUQclIncqUKQMbGxsAr17M8+e9dps7dy4sLCwQFRWFDRs2FLjerq6uOH/+vMB0JCcTExPVLgkbGxvcvn1bNZaXl6fqRU/ah9vcS69GjRrhwoULAICePXtizZo18Pf3x7hx47Bw4UK0bt1acEKSS40aNRAWFqa6CftaZmYmwsLCUKNGDUHJSE45OTkYMWJEgddzZcuWRdOmTdG6dWsWZ/8BV9CSRtLT08OsWbPg5OSEuXPn4vDhw6IjkYxSU1NV1/nly5cFxpRKJSRJ4gmvWsjIyEi1gurv4uPj33rXnUq+devWISsrC6NHjwYAXLhwAX5+fsjMzETFihWxbt06VK5cWXBKkkN0dDSCg4NhYWFR6ERva2trJCcnC0pGcqtduzZu3ryJ5s2bw9PTE8uXL4dSqYSenh7CwsLg4uIiOiLJ5J+2uY8bNw6zZ88WmJDkMnbsWNXNl4EDBwJ4VbDPyclB//79MWrUKIHpSE7Tp0/HF198AQ8PDzRu3Fh1SNhvv/2GvLw8rF27VnREkoGhoSHOnz+v+n6nD8MCLWkMe3t7GBgYFHisd+/eqFGjBg+M0XLTp0/H+fPnMXz4cDg4OEBfX190JFKDZs2aYeXKlXBzc4OZmRmAV6d+Zmdn44cffoCHh4fghCSXHTt2YMiQIaq/z58/HzVq1MCwYcOwcuVKfPvtt1i6dKm4gCQbXV3dt66Sfvz4MYyNjdWciNRl+PDhqh0xY8aMwcOHDxEUFIT8/HzUqVMHc+bMEZyQ5MJt7qWXtbU1rK2tVX8fOHAgCzelRIMGDXD48GFs2LABMTExiI2NhbW1NXr37g1fX98CXxekXZo2bYrTp08X6j9M/4wFWtIYb9ve1LBhQ/zyyy9IT09XcyJSl99++w3Tp08v0K+GtN/EiRPRp08feHl5oXHjxpAkCUuXLsXt27chSRJPd9ViiYmJqFKlCoBXB8Jdu3YNmzZtQsOGDZGXl4dZs2aJDUiycXV1xfr169GiRQvo6LzqtCVJEpRKJbZv3w43NzfBCUkuLi4uqlWyZmZmWLlyJXJzc5GbmwsTExOx4UhWr7e5e3p6omfPnvjmm28QGxsLfX19REVFoXPnzqIjkkxat26N5cuXw8nJqdDYX3/9BT8/Pxw5ckRAMlIHKysrHvZcCvn4+GDGjBl49uwZPDw8YGlpWaidHQ8ELhoLtFQimJiY8MW7FjMzM0O5cuVExyA1s7GxQUREBDZs2IAzZ86gcuXKSEtLg7e3NwYNGsQWB1rM0NBQ1d7i7NmzMDY2Rv369QEApqamyMjIEBmPZDRhwgT06dMHnTp1gqenJyRJwubNm3Hr1i3ExcVhx44doiOSDHJycuDu7o5FixbB09NT9biBgUGh3VOkfbjNvfR6+PChqvf032VnZyMxMVHNiUjd0tPTERMTg/T0dCgUCtSpUwfm5uaiY5GMhg8fDgDYsmULtmzZUqA4y/aF78YCLQnl7e2N4OBgfPzxx/D29n7nXEmSsHfvXjUlI3UaMmQIwsPD0bRpU+jp8cdSaWJmZoYxY8ZgzJgxoqOQGtWtWxdhYWHQ0dHBunXr0KJFC+jq6gIA7t+/rzo0jLSPg4MDdu3ahdDQUERGRkJXVxe//vor3NzcsHjxYvYe1lKGhoYwMjJSfZ9T6cJt7qVLTk4OsrKyVO1sMjMzkZaWVmhOVFQUypcvLyAhqYNSqcSiRYuwadOmAkV6AwMD9O/fHxMnThSYjuS0cePGQitm6f2wEkJC1a5dG0ZGRgBeLXPnN3LpFBsbizt37qBt27ZwdXVV9SN90/Tp0wUkIyI5TJo0CcOHD8eIESNgb2+PsWPHqsZ+/vln1Wpa0k6VKlXCwoULRccgNevWrRt27tzJ/uJEWm7NmjVYvnw5gFcLbN7sOf93rw8LJe2zatUqbNy4EV988QU6dOgAKysrPH78GD///DPWrl0LMzMz1UpL0i6NGzcWHaHEkpRvO6mBiEhN3tzuWBRJktifSgtlZ2djxYoVOHToEBITE4vcAsftL9otNTW1UHuTmzdvwtraGhYWFoJSEZEcwsLCEB4eDoVCgebNm8PKyqrAjXlJkriqkkgL3LhxA9evX4dSqcTUqVPh5+dXaHeEvr4+HBwcULNmTUEpSW6enp749NNPiyzCh4aGYvfu3W89g4ZKtpo1a2Lbtm2oW7duobE//vgDPXv25Hu8t+AKWiISjr+cS6fZs2cjMjISnTt3hoODA/T19UVHIjUrV64clEolHj16BEtLS+jp6cHR0VF0LJLRgAED3jqmo6MDU1NT1KxZEz4+Pmx1oWW+/fZbAEBycjJu3bpVaJwFWiLt4OTkpDoUTJIktGzZkmdNlELJyclo0KBBkWP169fH6tWr1ZyI1OVda0Dz8vLY7ugdWKAloebOnftB87nNvfS5d+8eIiMjuQVKCx07dgyTJk3C559/LjoKCXDy5EmEhITgzz//RH5+Pnbs2AFnZ2cEBATA1dUVXbp0ER2RZGBqaopr164hOTkZjo6OsLS0REpKimrldOXKlbF+/XqsW7cOP/zwA0/51SI3btwQHYGI1Kx79+6iI5AgFSpUwK+//gp3d/dCY8ePH0eFChUEpCK5JCcn49GjR6q/x8bGFirE5uTkYNeuXbC3t1d3vBKDBVoS6kNWTkqSxAJtKZGcnIz9+/dj3759uHbtGvT19Vmg1UK6urqoWrWq6BgkQGRkJCZOnIgOHTqgZ8+eCAgIUI1VqlQJu3fvZoFWS7Vv3x7379/H5s2bC7w5+9///gc/Pz90794dISEhGDRoEL799lusW7dOYFoiIvqvzp8/j23btuHevXvIyckpNL5v3z4BqUhuAwcOxKxZs/DkyRO0b99edUP24MGD2L9/P2bNmiU6IhWjbdu2ITQ0FJIkQZIkTJkypdAcpVIJXV1dzJw5U0DCkoE9aIlII2RmZuLw4cPYt28foqOjkZ+fD0dHR/j4+KBz587cGqWFQkNDERcXh0WLFomOQmrWsWNHtGjRApMnT0ZeXh6cnZ2xa9cuODs749ixY5g+fTpOnz4tOibJwMvLC+PHj0e7du0KjR08eBDBwcH45ZdfEBkZiZkzZ+LixYsCUpJcXrx4gZ07d+Lq1atITEzEjBkzULVqVRw4cACOjo5wcHAQHZGIitHJkycxfPhwuLm54fTp02jRogWys7Nx6dIl2NrawtXVFfPnzxcdk2QSHh6OFStWIDU1FZIkQalUwsLCAiNHjuQOOi3z8OFDPHz4EEqlEr6+vpgxYwZq1KhRYI6+vj6qVq3K9/XvwBW0RCTMixcvcPz4cezduxfHjx9HTk4OKlWqhP79+2Pjxo2YNm0aXF1dRcckmZQpUwYXL15E79694ebmBjMzswLj7EeovR48ePDWk9yNjIyQkZGh5kSkLgkJCQUOhnqTJElISkoCAJQvXx55eXnqjEYye/DgAQYOHIjU1FTUqlULFy9exLNnzwC8WmF38uRJFmq0lJOT0zu/701NTeHk5ARfX99/PDiWSpaQkBD4+vpiwoQJcHZ2xpdffglnZ2c8fPgQQ4YMQZMmTURHJBn1798f/fr1Q2xsLNLT06FQKFCtWjXo6OiIjkbFrEKFCqqdUa9bVJUtW1ZwqpKHBVrSOHFxcW/dAlPUihsqmaZPn45ffvkFT58+haWlJXr27Alvb2/Uq1cPGRkZ2LBhg+iIJLPFixcDAOLj43HlypVC4yzQai9ra2vExsbCzc2t0NjNmzfZm0qL1alTB8uWLUPt2rVhZ2enevzhw4cICQlRnfj78OFDHhKmZebOnQsLCwvs2LEDZmZmqF27tmrM1dVVdYgYaZ+vv/4a4eHhMDAwgKenJywsLJCSkoJjx44hJycH3bt3R3R0NEaNGoXFixejU6dOoiNTMblz5w7Gjh0LHR0dSJKErKwsAK+KOf7+/ggJCUHXrl0FpyQ56ejoFFpJSdqtUaNGBf5+7Ngx3LlzB1ZWVmjbti0Lt+/AAi1pjMzMTIwaNQrR0dEA/v/pf2/ecb9+/bqQbFT8du7cCUmS4O7ujjlz5rBRfCnEA2NKr86dOyMkJATVq1dXvYiTJAl//fUX1q5diz59+ghOSHKZPXs2Bg0ahLZt2+Ljjz9GuXLlkJqaips3b8LS0hLfffcdAODx48fo1auX4LRUnKKjoxEcHAwLC4tCq6Otra2RnJwsKBnJLT09HbVr18ayZcsKvK6fNGkS/P39kZ2djc2bN2Ps2LFYs2YNC7RaxNDQEPn5+ZAkCdbW1rh//z4aNmwIAChbtiwSExMFJ6TiFBER8UHzu3XrJksOUr+NGzfi119/xfr161WP5eXlYdCgQTh//ryqthMSEoJt27bByspKVFSNxgItaYxFixbh8ePH2Lx5M/r27YvQ0FCYm5tj7969OHfuHIKDg0VHpGI0efJk7Nu3D6dPn0bbtm3RsGFDeHt7w8vL663b4IhIO4wePRq3bt3CoEGDoFAoAABDhw7FkydP0LJlSwwbNkxsQJJNjRo1EBUVhZ07d+KPP/5AcnIyHB0d0aNHD/j4+MDQ0BDAq68H0i66urp429EXjx8/hrGxsZoTkbrs3LkT8+fPL/T6TpIk9OrVC5MmTcKkSZPQuXNnjB07VlBKkoOTkxPu3r2Lpk2bws3NDatWrUK5cuWgp6eHpUuX4uOPPxYdkYrR5MmTVd/n/3TUkSRJLNBqkUOHDqFWrVoFHtu6dSuio6Px6aefYuDAgbh79y5mzpyJNWvWFHmIGLFASxrk5MmTGDt2LOrVqwfgVf+5unXrwtXVFQsWLMD69euxZMkSwSmpuAwcOBADBw7EvXv3sG/fPkRGRiIgIABz5sxBo0aNIEkS8vPzRcekYnbt2jU4ODigTJkyuHbt2j/Od3Z2VkMqUjcDAwOsXLkS586dw5kzZ5Camgpzc3O4u7vD3d1ddDySmaGhIfr16yc6BqmZq6sr1q9fjxYtWqj6D74+NGb79u1Ftjwh7ZCVlYWEhIQix+Lj41VtzYyNjaGvr6/OaCQzX19f/O9//wMAjBs3DiNGjICfnx8AwNbWFqGhoSLjUTEzMDCAnp4e2rZti86dO8PFxUV0JFKTe/fuFTr47eeff4aVlRUCAwOhq6uLjz/+GA8fPsSOHTtYoH0LFmhJYzx58gR2dnbQ1dWFkZER0tLSVGMeHh7w9/cXF45kU7VqVfj7+8Pf3x8xMTGIjIzEgQMHoFQq4efnBy8vL3Tr1g2NGzcWHZWKgY+PD7Zv3466devCx8fnraullUolJEliWxMt16RJk0IHhKSnpyM8PByjR48WlIqI5DBhwgT06dMHnTp1gqenJyRJwubNm3Hr1i3ExcVhx44doiOSTDw9PREcHAxjY2O0atUKJiYmyMzMxJEjRxAcHIw2bdoAeNWDvEqVKoLTUnF680BQGxsb7N69G3FxccjOzkb16tVhYGAgMB0Vt7Nnz+KXX37B/v374efnB1tbW3Tu3BmdO3dmH1otl5mZCWtra9Xfc3Nz8fvvv6NDhw7Q1dVVPV6rVi22NnkHFmhJY9ja2iI1NRXAq6Ld0aNH0aJFCwDA5cuXVdseSXvVrVsXdevWxZQpU3Du3Dns3bsXUVFRiIiIYKFOS/zwww9wcHBQfUylz+PHjxEfH48KFSrA0tJS9XhSUhLWrVuHHTt24MWLFyzQarGIiAhs27btrQeCXrp0SUAqkpuDgwN27dqF0NBQREZGQldXF7/++ivc3NywePFiVK5cWXREksmsWbMwefJkTJw4EZIkQU9PDy9fvoRSqUTbtm0xY8YMAIC9vT3GjRsnOC3JSZIkVK1aVXQMkknZsmXRrVs3dOvWDU+ePMHPP/+MAwcOYPXq1fjoo4/QuXNneHt7FzgklLSDnZ0d7t69C1dXVwCvXsu9fPmy0IFhL1++5I2Zd5CU/9QchEhNAgMDkZ+fj5kzZyIiIgKTJ09GrVq1oK+vj5iYGAwaNAhff/216JikZrm5ufj111/Rrl070VGI6D9IT0/HxIkTcfLkSQCvTvXt3bs3pk2bhqVLl2LDhg3Iy8tDx44dMXLkSFSrVk1wYpLDnj17MH36dHTv3h3bt2+Hj48P8vPzcfToUZiZmaFr164szhNpqTt37iAmJgbJyckoX748ateuzVV1WuzSpUvYsmULrly5gsePH0OSJFhZWaFBgwbo168f6tatKzoiqUliYiI2bNiA8PBwtGrViq0ttFBQUBCioqKwaNEiWFtbY9q0afj9999x7NixAgsyVqxYgSNHjmDXrl0C02ouFmhJY2RlZSErKwsWFhYAgF9++QUHDx5ETk4O3N3d0bt3b1XPMiIiKlnmzp2LH3/8EZ9++ilq1qyJhw8f4scff4STkxMuXLiAVq1a4euvv2ZhVst169YNXl5eGDZsGJydnbFr1y44OzsjMzMTQ4YMQfv27TFo0CDRMUlmiYmJePToEWxsbGBjYyM6DhEVs7Vr1+Lbb7+Fvr4+nJ2dYWdnB6VSicTERPzxxx94+fIlvv76awwcOFB0VJJRRkYGDh8+jP379+O3335DxYoVMWzYMPj4+IiORsUsLS0NAwYMwK1btwC8Wi0/ZcoU9O/fXzUnLy8P7du3R/v27TF+/HhRUTUaC7RERCSEk5PTW3vQSpIEU1NTODk5wdfXF56enmpOR8WtXbt26NKlS4HVkceOHYOfnx969eqFOXPmCExH6lK/fn2sWrUKjRs3hrOzM77//ntVj/GoqCgEBQXh6NGjglOSXLZt24aVK1ciKSlJ1Wu8fPny8PPzQ+/evUXHIxnl5eXh999/R2JiInJzcwuN8zR37RETE4PPPvsM3t7emDZtGszNzQuMp6WlYd68eThw4AC2b9/OA2G1THZ2No4ePYrIyEicPHkSlpaW6NChAzp37sxrreXy8vIQHR2N9PR01KxZs1BP8fT0dJw7dw716tWDra2toJSajT1oiYhIiK+//hrh4eEwMDCAp6cnLCwskJKSgmPHjiEnJwfdu3dHdHQ0Ro0ahcWLF6NTp06iI9N/EB8fX+iwv9cHhHXp0kVEJBLAxMREVZyxsbHB7du3VV8XeXl5ql70pH1Wr16NJUuWoGvXrvDy8oKVlRUeP36MgwcPYvbs2UhPT8fw4cNFxyQZXLt2Df7+/khISEBRa4MkSWKBVov8+OOPqF27Nr755psixxUKBb755hvcu3cPW7Zswbx589SckOQyfvx4HD16FEZGRvDy8sL69evRsGFD0bFITXR1deHm5vbWcXNzc3h5eakxUcnDAi1pjHetpnuNB0URaY/09HTUrl0by5YtK/C9P2nSJPj7+yM7OxubN2/G2LFjsWbNGhZoS7iXL18WOuzx9SEBRkZGIiKRALVr18bNmzfRvHlzeHp6Yvny5VAqldDT00NYWBhcXFxERySZhIeHY8iQIZg4cWKBxz09PWFpaYnw8HAWaLXUrFmzYGJigo0bN6JGjRrQ19cXHYlkdPnyZfj6+r5zjiRJ8PHxwcaNG9WUitRh//79KFu2LJydnZGQkIC1a9di7dq1Rc6VJAkrV65Uc0IizcYCLWmMyZMnFyrQPn36FKdPn8ajR48wYMAAQcmISA47d+7E/PnzC33fS5KEXr16YdKkSZg0aRI6d+6MsWPHCkpJxSkyMhIXL15U/T0/Px+SJGHfvn2Ijo5WPS5JEvvSaanhw4cjPj4eADBmzBg8fPgQQUFByM/PR506ddjqQos9e/YM7u7uRY41a9YMP/74o5oTkbrcvn0bS5cuLXSaN2mnpKSk9+onX61aNSQlJakhEamLq6srgFdtDojow7FASxrjbW/G/f398fXXXyM9PV29gUiIrKws5OTkFHpcoVCoPwzJKisrCwkJCUWOxcfHq74OjI2NudpGS/zwww9FPr5hw4YCf2eBVnu5uLioVsmamZlh5cqVyM3NRW5uLkxMTMSGI1k1a9YMZ86cQdOmTQuNnT59+p3bIqlkq1q1Kp49eyY6BqnJ8+fP32tnTJkyZZCVlaWGRKQu4eHhoiMQlWgs0FKJ0KVLF3z99df48ssvRUchGSiVSqxYsQLbtm1DcnJykXPY3kL7eHp6Ijg4GMbGxmjVqhVMTEyQmZmJI0eOIDg4GG3atAEA3Lx5s1CTeSp5bty4IToCaSgDAwNVuwvSXj169MDMmTPx5MkTtG7dGpaWlkhJSUFUVBTOnTuH2bNn49q1a6r5PExGe0yZMgXz5s2Do6MjHBwcRMchNcjMzERaWto752RkZKgnDBFRCSEpi+rUTqRhwsPDsXz5cpw7d050FJLB+vXrsWLFCnzxxRdYsmQJ/Pz8oKuri/379+PFixcYMWIEevToITomFbPMzExMnjwZUVFRkCQJenp6ePnyJZRKJdq2bYv58+fDxMQEhw8fhrGxMZo1ayY6MhEVg1OnTuHQoUNITEwstGNCkiT2JNRSTk5OBf4uSVKBA6Net7tRKpWQJIk3ZrWIt7c3kpOT8fTpU5QvXx6mpqYFxiVJwt69ewWlo+L2PueKAPxeJyL6O66gJY2xfv36Qo+9ePECd+7cwcGDB9G5c2cBqUgddu7cCX9/f/Tr1w9LlixBmzZt4OzsjJEjR8LPzw/3798XHZFkYGJigtDQUNy5cwcxMTFITk5G+fLlUbt2bdSoUUM1r127dgJTElFxWrt2LRYvXowKFSrAwcGhUKGGtNfbWpyQ9nN2dn6vgh1ph/nz54uOQERqFhER8UHzu3XrJkuOko4raElj/H1lBfBq26OtrS28vLwwcuRInvStpVxcXLBmzRq4urqidu3aWLNmjaoX3fHjxzFt2jScOnVKcEoiIvqvPD094enpienTp4uOQkRERETFoKhdMgCK3CkDsH3h23AFLWkM9icsvRQKBZ4/fw4AsLe3x59//qkq0KampvIkUC2Wl5eH33//HYmJicjNzS00zrurRNolLS0NrVu3Fh2DBEhISMDFixeRmJgIALC1tUXDhg1ha2srOBkRERH9F+fPn1d9HBcXhy+//BJdu3aFl5cXrKys8PjxYxw8eBB79+7F0qVLxQXVcCzQEpFwDRo0wNWrV+Hh4YHOnTsjNDQUjx8/hp6eHrZv386TnbXUtWvX4O/vj4SEBBS1mUOSJBZoibRMq1atcPHiRf5cL0VSUlIwe/ZsREVFIT8/v8CYjo4O2rVrh4CAAFhaWgpKSHKYO3cuBg8eDHt7e8ydO/cf53NVPRFRyfVmy6rg4GB89tlnGDZsmOoxS0tLODo6okyZMli8eDHPG3gLFmhJY5w4cQJPnz5V9ZpNSEjA1KlTcefOHbi7u2PGjBkwNjYWnJLkMHr0aCQlJQEARowYgadPnyIyMhI5OTlwd3dHQECA4IQkh1mzZsHExAQbN25EjRo1oK+vLzoSEcnMx8cHs2bNUv18NzMzKzTH2dlZQDKSQ3p6Ovr27YuEhAT4+PjA09MTdnZ2AF69zjt27BgiIiJw48YNbN++vcivByqZjh49ih49esDe3h5Hjx5951xJkligJdICoaGhHzR/9OjRMiUhkS5fvowvvviiyDFnZ2esXLlSzYlKDvagJY3Ro0cPdOjQAUOGDAEA+Pn54dq1a+jUqRP27t0Lb29vTJ48WXBKIiou9evXx9KlS+Hh4SE6CqnBm1uf3oerq6tMSUikt/UoA3iitzZauHAh9uzZg02bNqF69epFzrl79y769++PLl264Ouvv1ZzQiIiKi5/f+324sULVas6Q0ND5OTkAADKlCkDAwMDREdHqz0jyc/T0xNubm6YN29eobEpU6bgt99++8cbd6UVV9CSxoiLi1O9ccvMzMTJkyexePFitG/fHh999BFCQ0NZoNVSAwYMwMyZM+Hg4FBo7O7du5g5cyZPf9ZCVatWxbNnz0THIDXp378/JElStbMoqjD3JhbptBN/lpcuv/zyC0aOHPnW4iwAVKtWDcOHD8fGjRtZoCUiKsHevBl/9epVfPXVVxg5ciS8vLxgYmKCzMxMHDx4ECtXrsSSJUsEJiU5jRgxAjNmzMD9+/fRpk0bWFpaIiUlBVFRUTh//jzmzJkjOqLGYoGWNMbLly+ho6MD4P//cG/evDkAoFKlSnj8+LGwbCSv6OjotxbqMjMzceHCBTUnInWYMmUK5s2bB0dHxyKL86RdIiIiVB+npKRg2rRpaNy4caHDA6Kjo4u8407aoVGjRqIjkBolJSUVWjVdlJo1a+LRo0dqSESipKen48SJE0hMTFStonsTtzoTaZfAwEAMGTIEPj4+qsdMTEzQo0cP5OTkYM6cOdi5c6fAhCSXXr16wdraGqtWrcKiRYvw8uVL6OnpoVatWlixYgU8PT1FR9RYLNCSxqhevTr27t2LevXqYdu2bahfvz7Kli0LAEhOToZCoRAbkIS4fPkyLCwsRMcgGQQGBiI5ORne3t4oX758gebywKsVlnv37hWUjorbm0WaMWPGoGPHjoVWy3l6emLhwoXYunUrmjZtqu6IRFTMzM3NkZiY+I/zEhIS2H9Wi506dQpjxozB8+fPUaZMmUI95yVJYoFWi3h6ehbaFfMuR44ckTENiXLjxg1UrFixyLFKlSrh1q1bak5E6tSqVSu0atUK+fn5ePLkCSwsLFSL8ejtWKAljTFy5Eh8+eWXiIiIgK6uLlatWqUaO3nyJGrVqiUwHRW31atXY/Xq1QBevTD39fUt9GIuNzcXeXl56Nu3r4iIJDNnZ+cPegFP2uPkyZNvPUiiWbNmfKOu5SIiIrBt2zbcu3evyJV0ly5dEpCK5NC4cWOsW7cObdu2haGhYZFzsrOzsX79ejRp0kTN6UhdFi5ciDp16iAoKAgVKlQQHYdk1rp16wKv7w4dOoTMzEy4u7urtjqfOXMGpqam8PLyEpiU5FShQgX8+OOPaN68eaG2Vlu2bIG9vb3AdKQuOjo6sLKyEh2jxGCBljRG69at8fPPP+PPP/+Eo6MjqlatqhpzcXGBo6OjuHBU7OrXr4/BgwdDqVRi+fLl6NSpE2xtbQvM0dfXh4ODA1q1aiUoJclpwYIFoiOQIGXLlsXZs2eLXCV7+vRp1e4J0j579uxBQEAAunfvjsuXL8PHxwf5+fk4evQozMzM0LVrV9ERqRiNGjUKPj4+6NGjB/z8/NCyZUsYGxsDAJ4/f45ff/0VK1euxMOHDxEcHCw4LcnlwYMHmDx5MouzpcS0adNUH69duxZ2dnZYu3YtTExMVI9nZGRg6NChsLS0FBGR1GD8+PH48ssv0a5dO7Rq1UpVnD927Bji4+Px3XffiY5IMjp16hQOHTpUZFsbSZKwceNGQck0Gwu0pFEqVaqESpUqFXr8s88+E5CG5NSoUSNVL0JJktCzZ0/Y2NgITkVE6tC3b18sW7YMKSkpaN26dYHDA/bs2QN/f3/REUkm69evx8iRIzFs2DBs374dffv2hbOzMzIzMzFkyBAW57VM9erVERYWhnHjxmH8+PEAoGpl8PTpUyiVSpQvXx5hYWGoVq2ayKgko1q1aiEhIUF0DBIgPDwcM2fOLFCcBQBTU1MMHToUs2fPxrBhwwSlIzm1adMGO3fuRFhYGI4cOYLk5GRYW1ujbt26WLZsGWrWrCk6Islk7dq1WLx4MSpUqAAHB4dCbezo7VigJaEOHz6MJk2awMzMDIcPH/7H+e3atVNDKlI3bmcuPTp27IglS5aoVsQrlUrMmDEDI0eOhJ2dnWpeTEwM+vbtiz/++ENUVJLRyJEjYWZmhrCwMPz000+QJAlKpRLW1taYOnUq+vfvLzoiySQuLg4NGjSArq4udHV1kZmZCeDVwSFDhw5FUFAQBg0aJDglFSdXV1dERUXh559/xvnz55GUlAQAsLGxgaurKzp06PDW9gekHWbNmoWJEyfCxsYGbm5u0NPjW9DSIj09HRkZGUWOZWRk4OnTp2pOROpUs2ZNLFmyRHQMUrMtW7bg888/x/Tp00VHKXH425GEGjNmDLZv3466detizJgx75wrSRKuX7+upmSkbnFxcdi9e/dbexK+2ZOYSq7Y2NgC1zc/Px87d+5E7969CxRolUol8vLyREQkNfn888/Rt29fJCYmqlZV2Nra8gABLWdiYoLc3FwArwp0t2/fRuPGjQEAeXl5SE1NFRmPZGJoaIhu3bqhW7duoqOQAJ999hlevnyJYcOGQUdHp1BBXpIkXLx4UVA6klOTJk2wePFi2NnZqXbOAcBvv/2G4OBg9p4m0kJpaWlo3bq16BglEgu0JNSRI0dQvnx51cdUOsXExKB///6wt7fHvXv34OjoiIyMDDx8+BC2traoXLmy6IgkI6VSKToCCaKjowN7e3seFFGK1K5dGzdv3kTz5s3h6emJ5cuXQ6lUQk9PD2FhYXBxcREdkYiK2ZAhQ0RHIEHmzJkDPz8/+Pr6wtTUFOXKlUNqaioyMjJQs2ZNzJ49W3REkkl+fj527Njxzj6kUVFRgtKRnFq1aoWLFy/Czc1NdJQShwVaEiokJARdunSBm5sbDw4oxRYtWoQOHTpg3rx5cHZ2Vv156dIljB8/HkOHDhUdkYiKWWxsLA4fPvzWF+1BQUGCkpGchg8fjvj4eACvdtE8fPgQQUFByM/PR506dTBnzhzBCYmoOOXm5uLjjz9GzZo1izxngrRb+fLlsWvXLpw4cQIxMTEF+pC2aNFCdDyS0aJFi7B+/Xq4urqicePG0NfXFx2J1MTHxwezZs1CTk4O3N3dVb3n3+Ts7CwgmeZjgZaEOnHiBPbs2QNLS0t07NgR3t7eqFOnjuhYpGY3b95UbXsDoCrWNGjQAKNHj0ZwcDCaN28uMiIRFaOIiAhMnToVhoaGsLe3L/SiXZIkQclIbi4uLqpVsmZmZli5ciVyc3ORm5tb6BAZIir5DAwMMH78eKxdu5YF2lKsRYsWLMiWMvv27YO/vz9GjRolOgqp2eDBgwEAa9aswZo1awq8rlcqlWxd+Q4s0JJQp06dwpkzZxAZGYndu3cjPDwclStXhre3Nzp37oyqVauKjkhqIEkS9PX1IUkSLC0tER8fjwYNGgAAbG1tce/ePbEBqVj99ttvSExMBPBq+5MkSfjtt9/w8OFD1Rxec+22cuVKeHl5ISgoCEZGRqLjkGAGBgYwMDAQHYOIZFK9enUkJCSIjkECJSUlISkpqchzJlxdXQUkIrnl5uaq3s9R6fLDDz+IjlBiSUo2/yMNkZubi2PHjmH//v04fvw4cnNzUatWLXTp0gUdO3aEtbW16Igkk759+6J79+7o2bMnRo0ahYSEBCxYsAB6enqYPXs2njx5gn379omOScXAycnpvefy7qr2ql+/PlasWMHeVKVEaGjoe8+VJImrbYi0zPHjxxEUFITFixdzp1wp8+DBA0ycOBG///47gMLnDvC1nvYKDAyEjo4Opk2bJjoKUYnBAi1ppGfPnuHw4cPYv38/zp07B6VSicaNG+P7778XHY1kEBERgfj4eIwcORJ37tzB4MGD8ejRIwCAkZERli1bhmbNmglOScXhzVWy74O9qbXT0KFD0axZM/j6+oqOQmrg5OQEQ0NDGBoa/uOhgJIkITo6Wk3JSG6v+w2/Lx4YqJ28vb3x6NEjPH36FAqFAlZWVgXGJUnC3r17BaUjOfn6+uL+/fsYM2YMHBwcitwt8SE376nk2Lt3L5YuXQoXF5e39iFt166dgGREmosFWtJod+/excaNG7Ft2zYA4B3WUuLZs2e4fPkycnJy4OLiAktLS9GRiKgYXb9+HRMnTsTnn3+Opk2bwtTUtNAchUKh/mAkCw8PD6SkpKB58+bw9vaGp6cnypQpIzoWqYGTk9MH9ZTm6zztNHny5H/8Opg/f76a0pA61a9fHwsXLmQhrhT6p8I7V09rt4iICGzbtg337t0rsrXJpUuXBKTSfCzQksZJSkrCgQMHsG/fPly/fh0GBgbw8PBAly5d0KZNG9HxiIjoP3rzRfvb3rTzRbt2uXDhAiIjI3Ho0CHk5OSgdevW6Ny5M5o1awZdXV3R8UgmUVFRqo+fP3+O4OBgVK5cGe3atYOlpSUeP36Mw4cP48GDB5gwYQK8vb0FpiWi4ta+fXtMmDCB7+FKoffZNcedctppz549mD59Orp3747t27fDx8cH+fn5OHr0KMzMzNC1a1eMHj1adEyNxAItaYT09HQcPHgQkZGRuHjxIiRJQuPGjeHt7Y22bdvyZGct9r///Q87duzAlStX8PjxY0iSBCsrKzRo0AA9evTgdkciLbR79+5/XE3VvXt3NaUhdcrLy8OpU6ewf/9+HDlyBPr6+vDy8kLPnj1Ru3Zt0fFIRtOnT0deXl6RKyWnTJkCgKsoibTNoUOH8P3332P16tXcGUNUSnTr1g1eXl4YNmwYnJ2dsWvXLjg7OyMzMxNDhgxB+/btMWjQINExNRILtCTUvn37sH//fpw+fRovXrxAnTp14O3tjY4dOxbqT0XaZ9++fZg2bRpyc3NhY2MDOzs7KJVKJCYmIikpCYaGhpg/fz46duwoOioRERWznJwcfPfdd9iwYQM8PT0/6DAxKnkaNmyI7777Dk2bNi00durUKYwdOxbnz58XkIzU4enTpzh06BDu3r2L3NzcQuPTp08XkIrkNmLECFy/fh0ZGRmoWbNmoZZGkiRh5cqVgtKRumRlZRW5zZ1Fe+1Uv359rFq1Co0bN4azszO+//57NG7cGMCrnTVBQUE4evSo4JSaSU90ACrdJk6ciGrVqmHEiBHw9vZG5cqVRUciNblz5w6mTp2KTz75BAEBAXBwcCgwfuvWLQQGBmLy5MmoWbMmqlWrJigpEREVpzt37mD//v3Yv38//ve//8HNzQ09evQQHYtkpquriz///LPIAu2ff/4JHR0dAalIHe7du4fevXsjNzcXWVlZsLCwQHp6Ol6+fAlzc3OYmJiwQKulnj17VuD93bNnzwSmIXVSKpVYsWIFtm3bhuTk5CLnsJ2VdjIxMVHdiLOxscHt27dVBdq8vDykpqaKjKfRWKAloV4vd6fSZ8uWLahUqRLCwsKKPNH1o48+wtq1a9GtWzds3ryZL9yJtMz58+ffeXjAvn37BKQiuTx8+BD79+9HZGQkbt26BRcXFwwYMADt27fnQZClRJcuXbBs2TLk5OSgTZs2sLCwwJMnT/DLL78gLCwMvXv3Fh2RZLJgwQLUq1cP3333HVxcXBAWFgYnJyccOHAAS5YswXfffSc6IskkPDxcdAQSZMOGDdiwYQO++OILLFmyBH5+ftDV1cX+/fvx4sULjBgxQnREkknt2rVx8+ZNNG/eHJ6enli+fDmUSiX09PQQFhYGFxcX0RE1Fgu0JBSLs6VXdHQ0evXqVWRx9jUDAwP06tULu3fvVmMyEoFbn0qXkydPYvjw4XBzc8Mff/yBFi1aIDs7G5cuXYKtrS1cXV1FR6Ri1Lt3b/z+++9wcnJCly5d0KlTJ9jZ2YmORWo2adIk6OnpYe3atVi+fLnqcUNDQ/Tr1w/jx48XmI7kFBMTg3nz5qle87148QK6urrw9vZGamoq5s6dix9//FFwSiIqTjt37oS/vz/69euHJUuWoE2bNnB2dsbIkSPh5+eH+/fvi45IMhk+fDji4+MBAGPGjMHDhw8RFBSE/Px81KlTB3PmzBGcUHOxQEtEQiQkJMDR0fEf5zk6Or7XKaBU8nDrU+kVEhICX19fTJgwAc7Ozvjyyy/h7OyMhw8fYsiQIWjSpInoiFSMrly5AmNjY7x8+RJ79uzBnj173jpXkiTs3btXjelIXfT09DBp0iSMGDECf/31F5KTk2FtbY2PP/4Y5ubmouORjHJzc2FiYgIdHR2Ym5vj0aNHqrGPPvoIN27cEJiO5Jafn49z5869tf8wDwvSTg8fPkTNmjWhq6sLPT09PH36FACgo6ODvn37Ytq0aRg3bpzglCQHFxcX1SpZMzMzrFy5Erm5uarfBfR2LNASkRDPnj1D2bJl/3GesbExnj9/roZEpG7c+lR63blzB2PHjoWOjg4kSUJWVhYAoEKFCvD390dISAi6du0qOCUVl27dukGSJNExSEOYm5tzlXwpU7VqVTx8+BCurq6oVasWtmzZAnd3d+jp6WHbtm0oX7686Igkk+TkZPTv3x/37t2DJEl4fT75m78TWKDVTgqFQvUezt7eHn/++Sfc3NwAAKmpqcjOzhYZj9TMwMDgnTtn6RUWaIlIiNcv0Kj04tan0svQ0BD5+fmQJAnW1ta4f/8+GjZsCAAoW7YsEhMTBSek4rRgwQLREUhDpKen48SJE0hMTCzU1kaSJIwaNUpQMpJTp06dVKtkv/zySwwZMgSNGjVSFez4M0J7LViwAAqFAsePH4eHhwe2b98OKysr7N27FxEREQgLCxMdkWTSoEEDXL16FR4eHujcuTNCQ0Px+PFj6OnpYfv27apiLRH9fyzQEpEwvr6+/7iqioVc7cWtT6WXk5MT7t69i6ZNm8LNzQ2rVq1CuXLloKenh6VLl+Ljjz8WHZGIitmpU6cwZswYPH/+HGXKlIG+vn6BcRZotdebKyRdXFwQGRmJEydOICcnB02aNOHPfC12/vx5TJ8+HdbW1qrH7O3tMWLECCiVSsyZMwdr164VmJDkMnr0aCQlJQEARowYgadPnyIyMhI5OTlwd3dHQECA4IREmocFWhLq/PnzHzSfW+K0x+jRo0VHIMG49an08vX1xf/+9z8AwLhx4zBixAj4+fkBAGxtbREaGioyHhHJYOHChahTpw6CgoJQoUIF0XFIIDs7O3z22WeiY5AaZGRkwMLCAjo6OjAxMUFKSopqzMXFhStotVj16tVRvXp1AK+2t0+fPh3Tp08XnIpIs7FAS0L179//rf2IlEplodWVPDBIe7BAS9z6VHp5eHioPraxscHu3bsRFxeH7OxsVK9enT2qiLTQgwcPMHnyZBZnS6kXL15g586duHr1KhITEzFjxgxUrVoVBw4cgKOjIxwcHERHJBlUrFhRdShcjRo1sGfPHrRq1QoAEBUVBYVCITAdEZFmYYGWhIqIiFB9nJKSgmnTpqFx48bw8vKClZUVHj9+jIMHDyI6Ohrz5s0TF5SIih23PtFrkiShatWqomMQkYxq1aqFhIQE0TFIgAcPHmDgwIFITU1FrVq1cPHiRTx79gzAq910J0+exPz58wWnJDm0bNkSp0+fRseOHeHn54dRo0bBzc0Nenp6ePz4MSZMmCA6IhEVswEDBmDmzJlF3ni7e/cuZs6ciR9++EFAMs0nKdngkTTEmDFjULFiRXz99deFxhYuXIgHDx5w2ysRERFRCfTXX39h4sSJmDBhgqpAQ6XD8OHD8eTJE6xevRpmZmaoXbs2du3aBWdnZxw4cADffvstoqKiRMckNbh69SqioqKQnZ0Nd3f3AjtqiEg7ODk5Yfv27ahbt26hsatXr+Kzzz7Dn3/+KSCZ5uMrI9IYJ0+efGsBtlmzZtwST6RleHeViKj0+Oyzz/Dy5UsMGzYMOjo6MDQ0LDAuSRIuXrwoKB3JKTo6GsHBwbCwsEBeXl6BMWtrayQnJwtKRupWp04d1KlTR3QMIhLk8uXLsLCwEB1DY7FASxqjbNmyOHv2LJo2bVpo7PTp0yhbtqyAVEQkl+joaNUWx7/LzMzEhQsX1JyIiOQwZcqUD5rPrc7aafDgwYXOFqDSQVdXF2/btPn48WMYGxurORERERWn1atXY/Xq1QBe3XD19fUt9Ds/NzcXeXl56Nu3r4iIJQILtKQx+vbti2XLliElJQWtW7eGpaUlUlJSEBUVhT179sDf3190RCJSE95dJdIefz/gMykpCampqTA3N1f9rk9PT0e5cuVga2srKCXJja/jSi9XV1esX78eLVq0gI6ODgCoDgnmoaBE2i09PR23bt1CQkICWrRoAXNzc+Tk5EBfX1/184BKvvr162Pw4MFQKpVYvnw5OnXqVOg1nb6+PhwcHFQHBVJh7EFLGmXTpk0ICwvDo0ePVC/crK2tMWzYMPTv3190PCL6j968u5qVlYUyZcq88+4qDwrTfkqlEo8ePYKlpSV7UpYCJ06cwKxZsxAUFIQmTZqoHj979iymTZuGmTNnsichkZa5c+cO+vTpA4VCAU9PT2zcuBGffvopbt26hbi4OOzYsQOVK1cWHZOIipFSqcSSJUsQHh6OrKwsSJKEnTt3wtnZGUOHDkW9evXYwlBLhYaGomfPnrCxsREdpcRhgZY0Tn5+PhITE5GcnAxra2vY2try7hqRloiOjkZ0dLTq7mqPHj3eeXdVV1dXUFKS28mTJxESEoI///wT+fn52LFjB5ydnREQEABXV1d06dJFdESSgbe3N4YMGYJu3boVGvvpp5+wbt06REZGqj8YqUVcXBx2796Ne/fuIScnp9D4qlWrBKQidXh92O/p06eRlpYGc3NzuLm5YcyYMSzOEmmh18XZr7/+Gm5ubvDy8lIdDrh161bs2LEDu3fvFh2TSKNwqQppHB0dHdjb28Pe3l50FCIqZo0aNUKjRo0AvNreyLurpVNkZCQmTpyIDh06oGfPngVWSleqVAm7d+9mgVZLxcXFQaFQFDlmbm6O+/fvqzcQqU1MTAz69+8Pe3t73Lt3D46OjsjIyMDDhw9ha2vLIp2Wq1SpEhYuXFjo8fT0dFy6dAkNGjQQkIqI5PLTTz9h3Lhx6N27d6HDAStXrowHDx4ISkZye73w4tChQ0hMTCx0Q1aSJERFRQlKp9lYoCWNEhsbi8OHD7/1GzkoKEhQMiIqbtzWVHqtWLECvr6+mDx5MvLy8goUaD/66CNs3LhRYDqSU40aNRAWFgZXV9cCh39mZmYiLCwMNWrUEJiO5LRo0SJ06NAB8+bNg7Ozs+rPS5cuYfz48Rg6dKjoiCTAuXPn8NVXXxXqVU0l1/nz5z9ovqurq0xJSKS0tDQ4ODgUOZaXl4eXL1+qORGpy6JFi7B+/Xq4urqicePG0NfXFx2pxGCBljRGREQEpk6dCkNDQ9jb2xf6RubJv0Tah9tdS6cHDx68tc+okZERMjIy1JyI1GX69On44osv4OHhgcaNG6sOCfvtt9+Ql5eHtWvXio5IMrl58yaGDRumalv1+md+gwYNMHr0aAQHB6N58+YiIxJRMejfv7/qLBGg4Hs4pVJZ6D0di/PaqWrVqjh9+nSRhwBGR0fjo48+EpCK1GHfvn3w9/fHqFGjREcpcVigJY2xcuVKeHl5ISgoCEZGRqLjEJHMuN219LK2tkZsbGyRL9pv3rzJFjdarEGDBjh8+DA2bNiAmJgYxMbGwtraGr1794avry+sra1FRySZSJIEfX19SJIES0tLxMfHq7a129ra4t69e2IDElGxiIiIUH2ckpKCadOmoXHjxvDy8oKVlRUeP36MgwcPIjo6GvPmzRMXlGQ1cOBABAQEQE9PD+3btwcAJCYm4sqVKwgPD8f8+fMFJyS55Obmsm3Nv8QCLWmMR48eYdasWSzOEpUS3O5aenXu3BkhISGoXr16gZ7Ef/31F9auXYs+ffoITkhysrKywoQJE0THIDVzcHDAgwcP0KRJE7i4uOD777/Hxx9/DD09PYSFhaFSpUqiIxJRMXByclJ9PGbMGHTs2BFff/11gTmenp5YuHAhtm7diqZNm6o7IqnBp59+ivT0dISEhGD16tUAgFGjRsHIyAhfffUVOnbsKDghycXb2xtHjx4tciEGvRsLtKQxGjZsiL/++ovfyESlBLe7ll6jR4/GrVu3MGjQINWBUUOHDsWTJ0/QsmVLDBs2TGxAIip2vXr1Qnx8PABg3LhxGDx4MLp27QrgVWuTZcuWiYxHRDI4efIkQkNDixxr1qwZzyPQUkqlEunp6ejXrx969eqFy5cvIzU1Febm5qhfvz5MTU1FRyQZ1atXD0uXLkVKSgrc3d1hZmZWaE67du0EJNN8LNCSxhg3bhwmTpwIQ0NDNG3atMgf3G87+ZmISh5udy29DAwMsHLlSpw7dw5nzpxRvWh3d3eHu7u76Hgko+zsbKxYsUJ1sm9ubm6hOexHqJ26deum+tjBwQEHDhzAlStXkJ2dDRcXF1haWooLR8XO29v7veZlZmbKnIREKlu2LM6ePVvkKtnTp08XOCyStMeLFy/g7u6OFStWoGXLlmjWrJnoSKRGr1fMx8fH48CBA4XGJUnia723YIGWNEb37t0BALNmzXrrgWD8RibSHtzuSk2aNEGTJk1ExyA1mj17NiIjI9G5c2c4ODjwZN9SrGzZstzarMWcnZ15wC+hb9++WLZsGVJSUtC6dWvVwZBRUVHYs2cP/P39RUckGRgYGMDW1hZ5eXmio5AAR44cER2hxJKUr49XJBJs9+7d//hC7nURl4hKvoiICMTHx2PkyJG4c+cOBg8ejEePHgH4/9tdecddO509exbx8fHw8fEpNLZ7927Y29uzcKulmjRpgtGjR+Pzzz8XHYWIiNRg06ZNCAsLw6NHjyBJEpRKJaytrTFs2DD0799fdDySydq1a3H8+HGsXbsWhoaGouMQlQgs0BIRkUZ49uwZLl++jJycHG531XKfffYZWrduXWSv2bVr1yIqKgo//vijgGQkt6ZNm2LhwoW8+UJEVIrk5+cjMTERycnJsLa2hq2treoMAtJOgYGBOHToEPLy8tCoUSNYWVkVWow1ffp0QelIHU6cOIGrV68iMTERfn5+sLe3x/nz51G5cmXY2NiIjqeRWKAlIiIitWrQoAFCQ0OL7Dd79uxZ+Pv748KFCwKSkdxCQ0MRFxeHRYsWiY5CREREMvH09HznuCRJ3AqvpZ48eYKRI0fi999/h52dHRISErBz5044Oztj8uTJMDIywsyZM0XH1EjsQUsa5fz589i2bRvu3bunOtH9Tfv27ROQioiK2//+9z/s2LEDV65cwePHjyFJEqysrNCgQQP06NED9vb2oiOSjCRJQkZGRpFj6enp7FmmxcqUKYOLFy+id+/ecHNzK3SyryRJGDhwoJhwRERUrEJDQ985LkkSRo0apaY0pE5Hjx4VHYEEmTdvHlJTUxEZGYkqVaqgdu3aqjE3NzesXLlSYDrNxgItaYyTJ09i+PDhcHNzwx9//IEWLVogOzsbly5dgq2tLVxdXUVHJKJisG/fPkybNg25ubmwsbGBnZ0dlEol7t69i3PnzmHdunWYP38+OnbsKDoqyaRevXrYvHkz2rVrV2C7m1KpxJYtW1CvXj2B6UhOixcvBvDqZN8rV64UGmeBVnudOHECzZs358FRRKXIxo0bCz32/Plz5OXloUyZMjAwMGCBlkjLHD9+HIGBgXBwcCi06MLOzg5JSUmCkmk+FmhJY4SEhMDX1xcTJkyAs7MzvvzySzg7O+Phw4cYMmQID4wh0gJ37tzB1KlT8cknnyAgIAAODg4Fxm/duoXAwEBMnjwZNWvWRLVq1QQlJTn5+/tjwIAB6NKlC7p37w5ra2s8evQIERERuHfvHsLDw0VHJJncuHFDdAQSZNiwYbC1tUX37t3x6aefolKlSqIjEZHMzp8/X+ixly9f4uzZs1i0aBG++eYbAalIHSIiIv5xTrdu3WTPQeqXl5cHY2PjIseePn0KfX19NScqOdiDljTGJ598gtDQUDRp0gS1atVCeHg4GjZsCADYv38/QkJCcPDgQcEpiei/CAwMxNmzZxEREQEDA4Mi5+Tm5qJbt25wd3fn4QFa7OLFi1i0aBFiYmKQn58PHR0duLi4kM1H9AAARFpJREFUYPz48fjkk09ExyOiYnbnzh3s3LkT+/btw5MnT9CwYUP07NkTXl5eb/19QNpHqVTi0aNHsLS0hJ4e1wqVZjt37sTOnTt5KKiWcnJyKvLxN3dRXL9+XV1xSI18fX1hbm6OZcuWIS8vD87Ozti1axecnZ0xduxYZGVlYdWqVaJjaiT+ViSNYWhoiPz8fEiSBGtra9y/f19VoC1btiwSExMFJySi/yo6Ohq9evV655txAwMD9OrVC7t371ZjMlK3Tz75BD/++COys7ORnp4OMzMzGBkZiY5FapKTk4MHDx4U2W/e2dlZQCKSm4ODAyZNmoQJEybg119/xa5duzBlyhTMmTMHnTt3ho+PT4E+daRdTp48iZCQEPz555/Iz8/Hjh074OzsjICAALi6uqJLly6iI5Ka2dracleFFitq9XR6ejpOnTqFzZs3q1oekfb56quvMGDAAPTr1w9eXl6QJAlRUVFYvXo1jh8/ji1btoiOqLFYoCWN4eTkhLt376Jp06Zwc3PDqlWrUK5cOejp6WHp/2vv3uNqvh8/gL8+XanQSitdDAeVjApRi9yVaiIykcxlE802t9nK5D4m10SujbnkknQxNjZ2tdhc+mJmKZdUipLuqfP7w8P57axcZp3Pp06v5+PxfTw6n/e7zuubxel13p/3e/VqtG/fXuqIRPQfZWZmwtra+rnzrK2tkZGRIUIiklqjRo3QqFEjqWOQSMrLyxEWFob4+PinHgbHFTXqTVNTE/369UO/fv2QnZ2NmTNnYs+ePdi7dy/atWuHwMBA+Pr6Sh2TalFiYiJmzZoFDw8PjBgxAnPnzlWMWVlZITY2lgVtA3Pr1i1s3ryZW52osSZNmtR47a233kJZWRk+//xzbNmyRYJkpGoODg7YsWMHwsPDsWzZMsjlcmzcuBH29vaIjo7mG/HPwIKW6ozAwEDcvn0bADB9+nRMnjwZQUFBAB6/w/q8U0CJqO4rKiqCvr7+c+fp6emhuLhYhEQklR9//BHHjh1DVlZWtVWUgiDUeLAI1X/r16/HTz/9hM8++wwzZ87Ep59+Cj09PcTHx+PmzZtKxQ2pryfbHcTHx6OgoADu7u4YMGAATp06hXnz5uHChQtYsGCB1DGplkRGRiIwMBBz5sxBZWWl0s95u3bt+Pe9GnNwcKh2MOCjR49QUVGBRo0a8fe7Bqpdu3ZYvXq11DFIhRwcHPDll1/yTrl/iQUt1Rlubm6Kj01NTREbG4sbN26gtLQUbdq04f5kRGqA254TAGzZsgUrVqyAhYUFZDJZjassSD0dPXoUwcHB8PDwwMyZM9GpUyd07NgRPj4++Oijj/Dtt98qvR4g9VFUVISkpCQcPHgQFy9eRKtWrTBhwgT4+PjAyMgIAODp6QkXFxfMnz+fBa0auXXr1lN/rhs3boyHDx+KnIjEMn78+GoFrY6ODszMzNCrVy8YGhpKE4wkU1JSgn379uHVV1+VOgqJgHfK/TssaKnOEgQBrVq1kjoGEdWywMDAai/W/4lFrnrbvXs3xowZw0PgGqCsrCy0bt0ampqa0NXVRUFBgWLszTffxPTp0zF//nwJE5KqvPHGGwCAgQMHYtasWYpzBv6pQ4cOeOWVV8SMRipmYmKC69evw9nZudrY1atXYW5uLkEqEsN7770ndQSSiLe3d7VrFRUVyM7ORmlpKZYtWyZBKhLL+fPncfToUWRmZtZ4p9yGDRskSla3saAlIiLRBAcHSx2B6oD8/Hz069dP6hgkARMTE0Upa2lpiV9//RUuLi4AgPT0dAmTkarNnDkTb775Jpo2bfrMee3bt8e3334rUioSg5eXF9atW4c2bdrAyckJwONf0P/8809s2bIFo0aNkjghqdqDBw9w8eJFPHjwAM2aNUOnTp3QrFkzqWORCtnZ2T119fTAgQMhk8kkSkaq9sUXX2Dp0qUwNjaGlZUVtLW1pY5Ub7CgJSIi0bCgJQDo06cPfvvttxpXU5F6c3JywtmzZ9G3b1+MGDECy5cvx/Xr16GtrY3jx4/Dy8tL6oikIvn5+SgpKamxoL179y727dvHfyPUVHBwMK5du4a3335bcUv7pEmTcP/+ffTu3RvvvPOOtAFJZeRyOT7//HN8+eWXKC8vV1zX0dFBQEAAZs2aJWE6UqXPPvtM6ggkkW3btmHMmDH45JNPoKGhIXWceoUFLREREYnK19cXYWFhKCsrg4uLS42FDU94VU8ffvgh8vLyAADjxo0D8Hhf2rKyMgQEBGDq1KkSpiNVWr9+PXr16gVTU9NqY3fv3sX69etZ0KopHR0dbNiwAadPn8bPP/+MvLw8NGvWDC4uLooV9KSeNm7ciC+++AITJ06Eh4cHmjdvjtzcXHz11VfYsmULmjZtinfffVfqmKQCY8eOxbx582pcKZuWloZ58+Zhx44dEiQjVSspKUG/fv1Yzr4EFrREREQkqvHjxwMANm/ejM2bNyvdAieXyyEIAq5cuSJVPFIhExMTmJiYKB6PGzdOUdSSenvW3uI5OTnP3fqA6r8ePXqgR48eUscgEe3fvx9BQUFKb740b94cNjY20NbWRkxMDAtaNZWcnIyioqIaxwoLC3H27FmRE5FYPDw88P333/NOuZfAgpaIiIhExRUTRA1DYmIiEhMTATzec3TZsmVo0qSJ0pzy8nL873//g6OjoxQRSUTZ2dnIzs6udmAMAHTr1k2CRKRqOTk5T/3ZdnBwQFRUlMiJqC44d+4cjIyMpI5BKhISEoKQkBDMmDEDzs7ONb4BO3DgQAmS1X0saElS27dvf+G5giBwlQ0RkRp4ckgMEam3iooKxQoquVyOkpKSarc86ujoYMiQIZg4caIUEUkEt27dwqxZs3DhwgUA1VdT864J9WVhYYGTJ0/WuJXFqVOnYGFhIUEqUpWoqChF6S4IAgIDA6sdFFZeXo7Kykr4+/tLEZFEcP36dfz+++/IyMhAUlJStXH+nf90gvxZ9xsRqZiNjc0Lz+UPMhGReklNTUVKSgqysrLg6+sLExMT3LhxA8bGxjAwMJA6HhHVooCAAISFhfHk7gYoMDAQN2/exLRp0yCTyaCjo1Ntzr/5nYDqj7179yIsLAxeXl5wd3eHsbEx7t27h6NHjyIpKQlhYWEYOXKk1DGpliQnJyM5ORlyuRzr16/H8OHDYWZmpjRHW1sbMpkMffr0gaampkRJSZWGDRuGiooKzJgxA61atYK2tna1OXxzpmYsaImIiEhUJSUlCA0NxZEjR6ChoYGqqiocOHAAdnZ2mDZtGiwtLTF79mypYxIRUS1wcHDAsmXLeEtrA7Vz505ERkYiLy8PgiBALpfDyMgIU6ZMwZgxY6SORyoSERGBESNG1HgwJKm3zp07Y926dejVq5fUUeodbnFAREREolq2bBlOnz6NzZs3o2vXrrC3t1eMubm5ITo6mgUtkRrYvn07vL290bx58+dua8WtrNSXqakpT/NuwAICAjB69Ghcv34dDx48gKGhIVq3bs3/JtTcuHHjUFxcXOPY3bt3oa+vD319fZFTkRhsbW1x7949qWPUSyxoqc7666+/cO3aNbzyyivo1q0bb4EgIlITx44dw+zZs+Hq6orKykqlMQsLC2RkZEiUjMSSlpaGixcvIicnByYmJnj99dfRpk0bqWNRLVu2bBm6dOmC5s2bY9myZc+cy4JWfX344YeKN+QMDQ2ljkMS0NDQQNu2baWOQSIKDQ2Fvr4+Fi9eXG1s3bp1KC4uRnh4uATJSNXmzZuHOXPmwMTEBD169ICWFmvHF8XvFElKLpdjy5Yt+Oabb/Do0SO4u7tj0qRJCAkJwaFDhxTz2rZtiy+++IKnPRIRqYHi4mKYmJjUOFZSUiJyGhJTUVERPv30U3z11VeoqqqCrq4uysrKoKGhAXd3dyxcuJAratTIH3/8UePH1LAcOnQIWVlZ6Nu3L2xtbdGkSROlcUEQsGHDBonSUW3jIdAEAGfPnsW8efNqHHNzc8P8+fNFTkRi8ff3x6NHjzBp0iRoaGhAV1dXaVwQBPz2228SpavbWNCSpLZu3YqVK1eiX79+0NfXx4YNG3D16lV8//33+Oijj9CmTRv8+eef2LhxIyIjIxEaGip1ZCIi+o+sra3x9ddfw9XVtdrYyZMn0bFjRwlSkRgWLVqE7777DgsXLsSgQYNgYGCAwsJCHD16FEuWLMGiRYuwdOlSqWMSUS0qKipCy5YtlR6T+nreavm/Y0Grvh48ePDUN1wbN26M/Px8cQORaMaPHw9BEKSOUS+xoCVJxcbGYsqUKXjvvfcAAAMHDkRwcDBCQkIUm8b36tULWlpa2LVrFwtaIiI1MGXKFEyZMgUlJSVwd3eHIAi4ePEiEhMTcfDgQWzevFnqiKQix44dw8yZM+Hr66u4ZmBggOHDh6OsrAwrV65kQatGLl269K/m29nZqSgJSWnnzp1SRyARcbU8AYCVlRV+/vlnuLi4VBv75ZdfYGFhIUEqEsOTbof+PRa0JKnbt2+je/fuisc9evSAXC6v9gK9Y8eOyMzMFDseERGpQO/evbFy5UosX74cCQkJAID58+fDzMwMK1asgLOzs8QJSVV0dXVhaWlZ45iVlRX3KVMzvr6+L7SKRi6XQxAEXLlyRYRURESkaiNGjEB4eDiaNWsGX19fGBkZ4f79+4iNjUV0dDSmT58udUQSQWZmJjIzM2FjYwM9PT2p49R5fBVMkiovL0ejRo0Uj598rKOjozRPW1u72kEyRERUf7m7u8Pd3R1paWnIy8tDs2bNIJPJpI5FKjZs2DDs2bMHPXv2VCru5HI5du/ejWHDhkmYjmrbjh07pI5AEtm+fTu8vb3RvHnz5+5Jytvc1Ut6ejqmT5+O999/H25ubjXOOXXqFNasWYM1a9bAyspK5IQkhnHjxuHmzZtYuXIlVq5cCU1NTcXv82+99RbGjx8vcUJSpZiYGERERCAnJweCIODAgQOws7PD1KlT4eTkhMDAQKkj1kksaKlO4p4lREQNQ+vWrdG6dWupY5BImjVrhsuXL2PgwIHo06cPjI2Nce/ePXz33XcoLy9Hly5dFGUOS5v6z8nJSeoIJJFly5ahS5cuaN68+XP3JOXPunrZtm0b9PT0nlrOAo8PidqyZQu2bt2KsLAw8cKRaARBwLx58xAYGIhffvkFDx48gKGhIXr06IFWrVpJHY9UKDo6GitWrMDbb78NZ2dnpTLeyckJR48eZUH7FIJcLpdLHYIaLhsbGzRu3FipkC0uLq52TS6Xo7S0lLe+ERHVU1xNRcDjf/dfFG95JyKqf/r164fg4GAMHTr0mfPi4uIQERGB48ePi5SMiMTQv39/DBs2DFOmTEFlZSXs7Oxw8OBB2NnZ4fvvv8fs2bNx+vRpqWPWSVxBS5IKDg6WOgIREYmAq6kI4OExDV1cXBxiYmKQnp6OsrKyauO///67BKmIqDZlZ2e/0LYFlpaWyM7OFiERSaWiogIHDhxASkoKsrKy8Omnn6JVq1Y4cuQIrK2tubWVmsrOzoaDg0ONY9ra2iguLhY5Uf3BgpYkxYKWiKhh+Hsxx5KOqOE5fPgw5s6di6FDh+LcuXPw9fVFVVUVvv32WzRt2hRDhgyROiKpUGVlJS5cuICsrCyUl5dXG/fx8RE/FKmEvr4+8vLynjsvPz+fhwapsVu3bmHcuHHIy8tDhw4d8Ntvv6GoqAgAcObMGfzwww9YunSpxClJFczNzZGSklLjob8XLlzgFhfPwIKWiIiIiFTm0qVLkMlkaNSoES5duvTc+XZ2diKkIrFt374dU6ZMwTvvvIN9+/bB398fdnZ2KCwsxIQJE6Cvry91RFKRS5cu4b333kNmZiZq2l1PEAQWtGqkY8eOOHLkCAYMGPDMeUlJSejYsaNIqUhsixYtgpGREfbv34+mTZsq/Vl369YNK1eulDAdqZKfnx8iIiLwyiuvYODAgQCAR48e4eTJk9i6dSs++OADaQPWYSxoiYiISFRHjhzBnTt3MHHixGpjW7ZsgYWFBTw8PCRIRqrg6+uLffv2oVOnTvD19X3qQaByuZz7zqqxGzduwNHREZqamtDU1ERhYSEAwMDAAJMmTcKSJUvw9ttvS5ySVCEsLAwGBgb44osv0LZtW2hra0sdiVTI398fU6dOhUwmQ1BQEDQ1NZXGq6qqEBkZiaNHj2L9+vUSpSRVS05ORnh4OIyMjFBZWak0ZmJigpycHImSkapNmDABmZmZ+PTTTzFv3jwAwKhRowA8/vth9OjRUsar01jQEhERkag2bdqEYcOG1TjWuHFjbN68mQWtGtmxY4din7kdO3ZInIakYmBgoLi13dTUFH/99Re6d+8O4PHt7y9ySzTVT3/99RdWr14NJycnqaOQCPr164eJEyciIiICe/fuhbOzM8zNzQEAmZmZ+OWXX5Cbm4sJEyagb9++EqclVdHU1KxxxTwA5ObmcnsLNRcaGorAwED89NNPyM/PR7NmzeDs7MztDZ6DBS0RERGJKj09He3atatxTCaTIS0tTeREpEp/L2VY0DRcHTt2xNWrV9GzZ0/07dsX69evh1wuh5aWFjZt2gR7e3upI5KKtGrVSrH3JDUMM2fORLdu3bBt2zYcO3ZM8eaMrq4uHB0dsWjRIri5uUmcklSpW7du2L59O3r16gUNDQ0Aj7czkcvl2LdvX437k5J6sbKywltvvSV1jHqFBS0RERGJSldXF/fu3atxLCcnB1pafHnSENy7dw9lZWXVrj9ZaUXq5d1338WdO3cAANOmTUNGRgaWLFmCqqoqvP7661iwYIHECUlVPv74YyxevJintjcwbm5ucHNzQ2VlJfLz8wEAhoaG1bY8IPU0c+ZMjBo1Cp6enujbty8EQcCuXbtw7do13LhxA/v375c6IqnImTNnnjomCAKaNGmC1q1bQ0dHR8RU9YMgf9q6cyIiIiIVCA4Oxs2bN7F3716lW9yKi4sxatQoWFpacl86NZWXl4dFixbh66+/xqNHj5TGuAdtw1NeXo7y8nIYGBhIHYVqmbe3t9LjnJwcFBQU4NVXX0WTJk2UxgRBQHx8vJjxiEgEt27dQkRERLXb3KdNm4aWLVtKHY9UxMbGRum8gSev7/6uUaNGGDlyJGbPnq1YYU1cQUtEREQi+/DDD/HWW29hwIABGDRoEF599VXcvXsXx44dQ0VFBU/2VWOhoaE4c+YM3n33XchkMh4W1MDp6OhwBY2asrOze+qBgETUMFhZWWHZsmVSxyCRbd++HSEhIXBxcUG/fv1gbGyMe/fu4ZtvvsHp06cxa9YsXL16FVu3boWenh6mTZsmdeQ6gytoiYiISHQ3btzA2rVr8euvvyI/Px+GhoZwdnZGcHAwXnvtNanjkYp07doVoaGh8PHxkToKiezjjz9+7pylS5eKkISIiFRt7NixmDdvXo3bmqSlpWHevHk8OFRNffDBB2jZsiWmT59ebWzlypW4fv06IiIisGrVKiQmJuLEiRMSpKybuIKWiIiIRPfaa68hPDxc6hgksqZNm+KVV16ROgZJoKatKwoKCpCZmYlXXnkFpqamEqQiIiJVSE5OfurhgIWFhTh79qzIiUgsp06deupWZd27d8fOnTsVH2/dulXMaHUeC1oiIiKSVEFBAdLT02FiYoIWLVpIHYdUaMKECdi5cyfeeOMNHgbXwMTFxdV4PTU1FdOnT8dHH30kbiASzccff4ySkhKsXr262tiHH34IAwMDLFy4UPxgRCSJc+fOwcjISOoYpCL6+vr49ddf4eLiUm3s119/hb6+PgCgoqJC8TE9xlfGREREpHLff/89zpw5gxkzZihdX7t2LTZt2oTKykoAwIABA7BixQruS6lGFi1apPQ4NTUVAwYMQLdu3dC0adNq80NDQ8WKRnWATCbDpEmTsHTpUhw+fFjqOKQCP//881ML+IEDB2L58uUiJyIiVYiKikJUVBSAx4f/BQYGVtuLury8HJWVlfD395ciIongrbfewvr163H//n306dMHRkZGuH//Pk6cOIHY2FgEBwcDAH7//XfY2NhInLZuYUFLREREKrd79240atRI6dq3336LyMhIdOjQAcOGDUNaWhr27NmDPXv2IDAwUKKkVNu+/fZbpcdPflmr6fZGQRBY0DZATZo0wc2bN6WOQSpy//79p25tYmhoiNzcXJETEZEqODg4YPz48ZDL5Vi/fj08PT1hZmamNEdbWxsymQx9+vSRKCWpWnBwMJo2bYrNmzdj//79EAQBcrkczZs3xyeffIKAgAAAwJtvvomRI0dKnLZuYUFLREREKnflyhV88MEHStcOHjyIxo0bY+vWrYpf3rW0tBAXF8eCVo38s6Clhik/P7/atYqKCqSmpmLlypVo166d+KFIFKamprh48SKcnZ2rjV28eBEmJiYSpCKi2ubk5AQnJycAj99wHTFiBPcXb6DGjh2LMWPGICsrCzk5OTAxMYGZmRk0NDQUc2o6QK6hY0FLREREKpeXlwcLCwvFY7lcjtOnT6N79+5KK6tcXV1x6NAhKSISkQr16NGj2q2uwOO/C1q0aPHUA0Wo/vP09MTGjRthZWWFwYMHK65/9dVX2LhxI8aOHSthOiJShSe3sVPDpaGhAXNzc5ibm0sdpd5gQUtEREQq98orr+DevXuKx1evXkVRURG6dOmiNE9XV1exHy2pn++//x4FBQXw8vICAGRmZuKTTz5BamoqXFxc8Omnn0JPT0/ilKQKS5YsqVbQ6urqwtTUFJ07d+ahcWps6tSp+OOPPzB9+nSEhITg1Vdfxd27d1FaWopevXph6tSpUkckolowefJkzJkzB61atcLkyZOfOVcQBGzYsEGkZCS2qqoqnD59GmlpaSgvL1caEwQB48aNkyZYHcdXQkRERKRynTt3xs6dO9GvXz/o6Ohgz549EAQBffv2VZp37do13g6nxtauXQsPDw/F4wULFiA1NRWenp6Ij4/H2rVrMWfOHAkTkqoMGzZM6ggkER0dHURFReGnn37C6dOnkZ+fD0NDQ7i4uNS47QER1U9FRUWKN9mLiookTkNSycnJQUBAANLT0xX7zwJQepOWBW3NBPmT7xYRERGRiqSmpmLEiBEQBAEGBgbIzs6Gt7c3Pv/8c6V5/v7+kMlkWLhwoURJSZW6deuG1atX44033kBhYSF69OiBFStWwN3dHbGxsYiIiOCetWrq7t27OHv2LLKysiAIAkxNTdGlSxe+IUNERKRGZsyYgYyMDKxZswZubm7Yt28fmjdvjvj4eMTFxWHTpk1o2bKl1DHrJK6gJSIiIpWTyWQ4fPgwDhw4gIcPH8LOzg5Dhw5VmnPv3j3Y2tpiyJAhEqUkVXv06JHigIgzZ84AAHr27AkAsLKy4mnuaigvLw+LFi3C0aNHq21foqmpiV69emHhwoVo3rw5ACA3N1fxMamfkpISlJWVVbtuaGgofhgiIqp1Z86cQWhoqNIBkObm5pg8eTLkcjkWLFiALVu2SJiw7mJBS0RERKKwsrLChx9++NRxY2NjzJ07V8REJLY2bdogPj4enTt3RkxMDBwcHKCvrw/g8S1xLGnUy8OHDzFmzBjcunULw4YNQ9++fdGiRQsAj/cf/u677xAXFwdfX1/ExcUhNzcX7777LldRqxm5XI7IyEjExMQgJyenxjlXrlwRORURqdr169fx9ddfIysrq8Y3ZpYuXSpBKlK1hw8fwsjICBoaGjAwMFA6g8Le3h6bNm2SMF3dxoKWiIiIiEQxZcoUvP/++4iLi4OmpiY2btyoGPvhhx/QoUMHCdNRbdu4cSPy8vIQFxeHNm3aKI3Z2NigT58+ePvttxEQEICpU6fir7/+gkwmkygtqUp0dDSio6MxceJErFq1CkFBQdDU1ERSUhIqKiqee5gQEdU/cXFx+OSTT6Crqwtzc3Noa2srjf/z0EhSH5aWlrh79y4AoG3btjh8+DD69OkDADh+/DjfjH8G7kFLRERERKK5desWLl++DGtra7Rq1UpxPSYmBtbW1rC3t5csG9WuAQMGIDAwEGPGjHnmvJ07d2Lx4sXw8/PD3Llzq/0iT/Wbp6cnRo4cidGjR8POzg4HDx6EnZ0dqqqqEBQUBGtra0yfPl3qmERUiwYNGoQOHTpgyZIlaNy4sdRxSETh4eG4f/8+Fi9ejFOnTmHq1Klo0qQJtLS0kJubi5kzZ2LChAlSx6yTuIKWiIiIiFSurKwM77//PiZMmIBBgwZVGx85cqQEqUiVsrKyYGNj89x5tra20NDQwIIFC0RIRWLLyMiAra0tNDU1oaWlhYKCAgCAhoYG/P39ERISwoKWSM3cvXsXYWFhLGcboBkzZig+dnNzw+7du3HixAmUlpbCxcUFbm5uEqar21jQEhEREZHK6erq4syZMxg3bpzUUUgkzZo1Q1ZW1nPnZWZmwsjISIREJAVDQ0MUFxcDeHxQzOXLl+Hs7Azg8SFypaWlUsYjIhXo2rUr/vzzT8XPOjVcnTp1QqdOnaSOUS+woCUiIiIiUbzxxhv46aef0KNHD6mjkAi6d++OrVu3YsCAAdDV1a1xTmlpKbZv347u3buLnI7E4ujoiJSUFLi5ucHLywsRERHIzc2FlpYW9u3bxwKHSE3k5+crPp4+fTpmzZoFXV1dvPHGG2jSpEm1+dyLVL1lZ2cjOzu7xgPiunXrJkGiuo970BIREZFkSkpKanzhxhft6unUqVP49NNP0a9fP7i5ucHY2LjaQSF2dnYSpaPadv36dfj6+sLS0hJBQUHo3bs39PT0AADFxcU4efIkNmzYgIyMDBw4cKDaQWKkHq5fv47s7Gw4OzujvLwcy5cvx7Fjx1BWVgYXFxfMnTsXxsbGUsckov/IxsZG6d/0J1XT0w4Eu3Lliii5SFy3bt3CrFmzcOHCBQD//9/BE4Ig8M/+KVjQEhERkajkcjkiIyMRExODnJycGufwhZt6+ud+pP/8RY4v2tXPmTNnMH36dOTm5gIAmjZtCgAoKCiAXC6HqakpwsPD0bVrVyljEhHRfxQbG/vUMrYmQ4cOVWEakkpgYCBu3ryJadOmQSaTQUdHp9qcF9mfviFiQUtERESi2r59OyIjIzFx4kSsWrUKQUFB0NTURFJSEioqKjB58mQMHz5c6pikAsnJyc+d4+TkJEISElNZWRm++uornDlzBtnZ2QAAMzMzdOvWDe7u7k/d/oCIiIjqFwcHByxbtgwDBw6UOkq9w4KWiIiIROXp6YmRI0di9OjRsLOzw8GDB2FnZ4eqqioEBQXB2tqaJ3oTEdVjH3/88QvPFQQBS5YsUWEaIhJbZmYm7t+/X+O2RZcuXYKxsTHMzMwkSEaq5u7ujpkzZ6J///5SR6l3eEgYERERiSojIwO2trbQ1NSElpYWCgoKAAAaGhrw9/dHSEgIC1o1l5qaipSUFGRlZcHX1xcmJia4ceMGjI2NYWBgIHU8IvqPDh06BH19fbRs2bLa/oP/9G9uiSai+iEsLAyvvfZajQVtYmIi0tPTsWHDBgmSkap9+OGH2Lx5M7p27cozJf4lFrREREQkKkNDQxQXFwMAzM3NcfnyZcUp3nl5eSgtLZUyHqlQSUkJQkNDceTIEWhoaKCqqgo9e/aEiYkJwsPDYWlpidmzZ0sdk4j+I3t7e1y4cAGVlZXw8vKCp6cnLCwspI5FRCK5cOECRo4cWeNY9+7dERcXJ24gEs2hQ4eQlZWFvn37wtbWFk2aNFEaFwSB5fxTsKAlIiIiUTk6OiIlJQVubm7w8vJCREQEcnNzoaWlhX379inKWlI/y5Ytw+nTpxUrK+zt7RVjbm5uiI6OZkFLpAb27t2LO3fuICkpCYmJiVi1ahXs7e3h5eUFDw8PGBkZSR2RiFSouLgYWlo1102CIKCoqEjkRCSWoqIitGzZUukxvRgWtERERCSq4OBgxUFBkydPRkFBARITE1FWVgYXFxfMnTtX4oSkKseOHcPs2bPh6uqKyspKpTELCwtkZGRIlIyIapu5uTkmTZqESZMm4a+//kJiYiJ27NiBpUuXokePHggICICbm5vUMYlIBWQyGY4fP45evXpVGztx4gRat24tQSoSw86dO6WOUG+xoCUiIiJRtWnTBm3atAEA6OjoIDQ0FKGhoRKnIjEUFxfDxMSkxrGSkhKR0xCRWNq2bYsPPvgAQUFBWLNmDaKjo9GoUSMWtERqKjAwEHPmzIGGhgZ8fX3x6quv4u7du4iNjcX+/ft5MCBRDVjQEhERkajGjh2LefPmQSaTVRtLS0vDvHnzsGPHDgmSkapZW1vj66+/hqura7WxkydPomPHjhKkIrGVlJSgrKys2nUeJqKeKisr8eOPP+LIkSM4ceIENDU1MXz4cAwfPlzqaESkIj4+PsjNzcX69esRExOjuN6oUSPMmDEDQ4cOlTAdqVpVVRVOnz6NtLQ0lJeXVxt/++23JUhV97GgJSIiIlElJyc/dT+qwsJCnD17VuREJJYpU6ZgypQpKCkpgbu7OwRBwMWLF5GYmIiDBw9i8+bNUkckFZHL5YiMjERMTAxycnJqnHPlyhWRU5EqnTlzBomJiTh69CjKy8vRr18/rFixAq6urk/dm5KI6j+5XI4HDx5g7NixeOutt3Du3Dnk5+fD0NAQDg4OMDAwkDoiqVBOTg4CAgKQnp4OQRAgl8sBPN57+AkWtDXjv4xERERUZ5w7d46Hx6ix3r17Y+XKlVi+fDkSEhIAAPPnz4eZmRlWrFjBA+LUWHR0NKKjozFx4kSsWrUKQUFB0NTURFJSEioqKjB58mSpI1ItcnNzQ15eHnr16oWwsDD07dsXurq6UsciIhFUVFTAxcUFkZGR6N27N3r27Cl1JBLRZ599BkNDQ5w6dQpubm7Yt28fmjdvjvj4eMTFxWHTpk1SR6yzWNASERGRykVFRSEqKgrA43fQAwMDld5JB4Dy8nJUVlbC399fiogkEnd3d7i7uyMtLQ15eXlo1qxZjdtdkHo5cOAA3nvvPYwePRqrVq1C//79YWdnhylTpiAoKAg3b96UOiLVouzsbGhpaeGnn37Czz///My5giDgt99+EykZEamajo4OzMzMqh0GSg3DmTNnEBoaqnTmgLm5OSZPngy5XI4FCxZgy5YtEiasu1jQEhERkco5ODhg/PjxkMvlWL9+PTw9PWFmZqY0R1tbGzKZDH369JEoJYmpdevWPMW5AcnIyICtrS00NTWhpaWFgoICAICGhgb8/f0REhKC6dOnS5ySaktwcLDUEYhIQv7+/oiOjoarqytXzzcwDx8+hJGRETQ0NGBgYIB79+4pxuzt7bmC9hlY0BIREZHKOTk5wcnJCcDj1VIjRoyAqampxKlIDBEREf9qPosd9WRoaIji4mIAj1fSXL58WbGlRV5eHkpLS6WMR7WMP8dEDVtmZibS0tLQu3dvODk5oXnz5tXunAoNDZUoHamSpaUl7t69CwBo27YtDh8+rFh8cfz4cR4I+gwsaImIiEhU/MW9Yfniiy+UHldUVCjKOF1dXZSVlQF4fLKzjo4O//tQU46OjkhJSYGbmxu8vLwQERGB3NxcaGlpYd++fdx/mIhIjXz33XfQ0dEBAKSkpFQbFwSBBa2a6t27N3766ScMHjwYQUFBmDp1KpydnaGlpYXc3FzMnDlT6oh1liB/cqQaERERkUhu3LiB2NhYpKenKwq6v9u4caMEqUjVUlJS8MEHH2DKlCkYNGgQDAwMUFhYiKNHj2LDhg1YtWoVOnXqJHVMUoHr168jOzsbzs7OKC8vx/Lly3Hs2DGUlZXBxcUFc+fOhbGxsdQxiYiIqBalpKTg+PHjKC0thYuLC9zc3KSOVGexoCUiIiJRXbx4EQEBATA3N0d6ejqsra3x8OFDZGRkwMzMDC1btsSOHTukjkkq4OfnBx8fnxoPgtu1axcOHTqEAwcOSJCMiIiIxJCeno7ExETeMUP0DxpSByAiIqKG5fPPP4eHhwcSExMhl8uxePFinDhxArt374YgCJg0aZLUEUlF/vjjD1haWtY4ZmVlhWvXromciMQyduxYpKam1jiWlpaGsWPHipyIiIjEkpOTg+joaPj6+sLd3R1RUVFSRyKqc7gHLREREYnq6tWreOedd6Ch8fh94idbHDg6OiI4OBjh4eHo2bOnlBFJRSwsLLB371707NlT6bAQuVyO3bt3w9zcXMJ0pErJyckoKiqqcaywsBBnz54VOREREalSYWEhvv76ayQkJCA5ORlVVVWwtrZGSEgIvLy8pI5HtcjW1vZfzb9y5YqKktRvLGiJiIhIVIIgQFtbG4IgwNjYGHfu3IGjoyMAwMzMDOnp6dIGJJWZMWMG3n//fQwcOBB9+vSBsbEx7t27h++++w537tzBmjVrpI5IEjh37hyMjIykjkFERP9RRUUFTp06hfj4eJw6dQplZWWwsrJCQEAAvvjiC4SEhKBbt25Sx6RaJpfLoa+vj/79+6NDhw5Sx6m3WNASERGRqGQyGW7duoUePXrA3t4e27ZtQ/v27aGlpYVNmzbByspK6oikIv3798eBAwewadMmnDhxAjk5OTAxMUGnTp2wdu3af70Cg+q2qKgoxW2sgiAgMDBQaeU0AJSXl6OysrLGfYmJiKj+CA0NxTfffIOCggIYGxtjxIgR8Pb2RufOnfHw4UNER0dLHZFUZMGCBUhKSkJCQgIuXrwIT09PeHt747XXXpM6Wr3CQ8KIiIhIVHFxcbhz5w6mTJmC1NRUjB8/Hnfv3gUANG7cGGvXroWrq6vEKYnov0pOTkZycjLkcjnWr1+P4cOHw8zMTGmOtrY2ZDIZ+vTpA01NTYmSEhHRf2VjYwNBEODi4oIFCxbAwsJCMfbw4UN069YNO3fu5ApaNZaTk4OkpCQkJSXhf//7Hzp06ABvb294eHjA1NRU6nh1HgtaIiIiklRRURHOnTuHsrIy2Nvbw9jYWOpIRFTLIiIiMGLECP6CRkSkpqKjo5GQkIBLly5BQ0MDXbt2hbe3NwYNGgRBEFjQNjA3b95UlLVpaWkIDAzE7NmzpY5Vp7GgJSIiIiLR3LhxA7GxsUhPT1ccEPd3GzdulCAVERER1Yb09HQkJCQgMTERN27cgLa2NpycnPDzzz8jOjoa3bt3lzoiiaCkpATHjx9HYmIifvjhB3h7e2PZsmVSx6rTWNASERGRaG7fvo39+/fj/PnzyM3NhSAIaN68ORwdHTF8+HCYm5tLHZFU6OLFiwgICIC5uTnS09NhbW2Nhw8fIiMjA2ZmZmjZsiV27NghdUxSEZbzREQNy8WLF5GYmIgjR44gNzcXenp6GDRoEHx8fFjUqqHy8nJ8//33SExMxMmTJ2FgYAB3d3d4enrCwcFB6nh1HgtaIiIiEkVCQgJCQkJQXl4OU1NTtGjRAnK5HFlZWcjOzoauri6WLl2KwYMHSx2VVCQgIAAWFhZYvHgx7OzscPDgQdjZ2eH333/HjBkzsGDBAvTs2VPqmKQCLOeJiBouuVyO06dPIz4+HsePH0dhYSGuXLkidSyqJT/++COSkpJw/PhxCIKA/v37w8vLCz169ICGhobU8eoNFrRERESkcqmpqfDx8UGXLl0wd+5cyGQypfFr165h4cKFOH/+PA4fPozWrVtLlJRUycnJCeHh4XB1dYWtrS12794NR0dHAMDBgwexc+dOxMXFSRuSVILlPBERAY9XWZ48eRIDBw6UOgrVEhsbG+jr66Nfv37o1asXdHR0njmff/Y105I6ABEREam/3bt3w8rKCps2barxRVu7du2wZcsW+Pj4YNeuXQgNDZUgJamaIAjQ1taGIAgwNjbGnTt3FAWtmZkZ0tPTpQ1IKnP16lW88847ipU0T7Y4cHR0RHBwMMLDw1nQEhE1ADo6Oizo1FBRURHi4+ORkJCAZ60DFQSBq6efggUtERERqVxycjL8/Pye+Y66jo4O/Pz8EBsbK2IyEpNMJsOtW7fQo0cP2NvbY9u2bWjfvj20tLSwadMmWFlZSR2RVITlPBERkXo6ceKE1BHUAgtaIiIiUrnMzExYW1s/d561tTUyMjJESERS8PPzw507dwAA06dPx/jx4zFkyBAAQOPGjbF27Vop45EKsZwnIiJSTxYWFlJHUAssaImIiEjlioqKoK+v/9x5enp6KC4uFiERScHHx0fxsUwmw5EjR3D+/HmUlpbC3t4exsbG0oUjlWI5T0RERPR0LGiJiIhI5XgmKdVEX18fb7zxhtQxSAQ1lfPnzp1DWVkZy3kiIiJq8AQ5f2MiIiIiFbOxsUHjxo0hCMIz58nlcpSWlvLwADV2//59bNu2DSkpKcjKykJERATatWuHL774Ap07d4a9vb3UEYmIiKiWlJSUKA6G/DtDQ0PxwxDVYVxBS0RERCoXHBwsdQSqAy5duoRx48ahSZMm6NatG5KTk1FeXg4AyM7ORnR0NFavXi1tSKp1t2/fxv79+3H+/Hnk5uZCEAQ0b94cjo6OGD58OMzNzaWOSEREtUgulyMyMhIxMTHIycmpcQ7fjCdSxoKWiIiIVI4FLQHA0qVLYW9vj8jISAiCgMOHDyvGOnfujK+++krCdKQKCQkJCAkJQXl5OUxNTdGiRQvI5XKkpaXh9OnT2Lp1K5YuXYrBgwdLHZWIiGpJdHQ0oqOjMXHiRKxatQpBQUHQ1NREUlISKioqMHnyZKkjEtU5LGiJiIiISBQpKSlYt24dtLW1UVlZqTRmZGSEe/fuSZSMVCE1NRWffPIJunTpgrlz50ImkymNX7t2DQsXLsScOXNga2uL1q1bS5SUiIhq04EDB/Dee+9h9OjRWLVqFfr37w87OztMmTIFQUFBuHnzptQRSQTc3uLf0ZA6ABERERE1DI0bN0ZhYWGNY3fu3OELdjWze/duWFlZYdOmTdXKWQBo164dtmzZAktLS+zatUuChEREpAoZGRmwtbWFpqYmtLS0UFBQAADQ0NCAv78/YmNjJU5IqiKXy7F+/Xr06tULjo6OcHZ2rvY/qhkLWiIiIiIShaurKzZs2IC8vDzFNUEQUFpaih07dsDNzU3CdFTbkpOT4efnBx0dnafO0dHRgZ+fH5KTk0VMRkREqmRoaIji4mIAgLm5OS5fvqwYy8vLQ2lpqVTRSMWebG8xevRoyOVyTJ48GVOnTkWrVq1gYWGBhQsXSh2xzuIWB0REREQkilmzZmHUqFEYNGgQunfvDkEQsHr1avz1118AgA8++EDagFSrMjMzYW1t/dx51tbWyMjIECERERGJwdHRESkpKXBzc4OXlxciIiKQm5sLLS0t7Nu3j6so1Ri3t3h5XEFLRERERKIwNTVFXFwcxowZg5ycHLRs2RL5+fnw9vZGbGwsjI2NpY5ItaioqAj6+vrPnaenp6dYaUVERPVfcHAwunTpAgCYPHkyfH19kZiYiJiYGDg7OyMsLEzagKQy3N7i5XEFLRERERGJpmnTppg2bRqmTZumdD0rKwsJCQnw9vaWKBnVNrlcLnUEIiKSQJs2bdCmTRsAj7eyCQ0NRWhoqMSpSAw1bW/xZMU0t7d4Nha0RERERCS5CxcuYPbs2Sxo1UxgYCAEQXjmHBa5RETqZezYsZg3b16NB0SmpaVh3rx52LFjhwTJSNW4vcXLY0FLRERERES1Ljg4WOoIREQkgeTkZBQVFdU4VlhYiLNnz4qciMQSHByM7OxsAI+3tygoKEBiYiLKysrg4uKCuXPnSpyw7mJBS0REREREtY4FLRER/dO5c+dgZGQkdQxSEW5v8fJY0BIRERERERER0UuLiopCVFQUAEAQhBq3uCkvL0dlZSX8/f2liEgi4PYWL48FLRERERERERERvTQHBweMHz8ecrkc69evh6enJ8zMzJTmaGtrQyaToU+fPhKlJFXj9hYvjwUtEREREamMg4PDcw+JAoDKykoR0hAREZEqODk5wcnJCcDjFbQjRoyAqampxKmoLuH2Fs/GgpaIiIiIVGb8+PEvVNASERGReuAe5A0Lt7eoHYJcLpdLHYKIiIiIiIiIiNTDjRs3EBsbi/T0dJSVlVUb37hxowSpSBWSk5ORnJys2N5i+PDhz9zeQlNTU6KkdRtX0BIRERERERERUa24ePEiAgICYG5ujvT0dFhbW+Phw4fIyMiAmZkZWrZsKXVEqkXc3qJ2cAUtERERERERERHVioCAAFhYWGDx4sWws7PDwYMHYWdnh99//x0zZszAggUL0LNnT6ljEtUpXEFLRERERERERES14urVq3jnnXegoaEBAIotDhwdHREcHIzw8HAWtGqM21u8HBa0RERERERERERUKwRBgLa2NgRBgLGxMe7cuQNHR0cAgJmZGdLT06UNSCrD7S1enobUAYiIiIiIiIiISD3IZDLcunULAGBvb49t27bhzz//xPXr17Fp0yZYWVlJnJBU5fPPP4eHhwcSExMhl8uxePFinDhxArt374YgCJg0aZLUEessFrRERERERERERFQr/Pz8kJOTAwCYPn067t27hyFDhsDT0xMpKSn46KOPJE5IqnL16lV4eno+c3sLqhm3OCAiIiIiIiIiolrh4+Oj+Fgmk+HIkSM4d+4cysrKYG9vD2NjY+nCkUpxe4uXx4KWiIiIiIiIiIhUQl9fH66urlLHIBE82d6iR48eiu0t2rdvDy0tLW5v8RwsaImIiIiIiIiI6D+7ffs29u/fj/PnzyM3NxeCIKB58+ZwdHTE8OHDYW5uLnVEUiE/Pz/cuXMHwOPtLcaPH48hQ4YAABo3boy1a9dKGa9OE+RyuVzqEEREREREREREVH8lJCQgJCQE5eXlMDU1RYsWLSCXy5GVlYXs7Gzo6upi6dKlGDx4sNRRSSRFRUXc3uIFsaAlIiIiIiIiIqKXlpqaCh8fH3Tp0gVz586FTCZTGr927RoWLlyI8+fP4/Dhw2jdurVESYnqJha0RERERERERET00hYuXIhffvkFcXFx0NHRqXFOeXk5fHx84OLigtDQUJETkqpxe4v/RkPqAEREREREREREVH8lJyfDz8/vqeUsAOjo6MDPzw/JyckiJiMxJCQkYPDgwYiKikJ6ejqaNGkCfX19pKWlITIyEh4eHjhy5IjUMes0HhJGREREREREREQvLTMzE9bW1s+dZ21tjYyMDBESkVhSU1PxySefPHd7izlz5sDW1pbbWzwFV9ASEREREREREdFLKyoqgr6+/nPn6enpobi4WIREJJbdu3fDysoKmzZtqlbOAkC7du2wZcsWWFpaYteuXRIkrB9Y0BIRERERERER0Uvj8UYNF7e3qB3c4oCIiIiIiIiIiP6TwMBACILwzDksctUPt7eoHSxoiYiIiIiIiIjopQUHB0sdgSTC7S1qBwtaIiIiIiIiIiJ6aSxoGy6uiq4dLGiJiIiIiIiIiIjopXB7i/+OBS0RERERERERERH9a1w9XTsEOStsIiIiIiIiIiIiIkloSB2AiIiIiIiIiIiIqKFiQUtEREREREREREQkERa0RERERERERERERBJhQUtEREREREREREQkERa0RERERERERERERBJhQUtEREREam/dunWwtrbG/fv3pY5CRERERKSEBS0RERER1RuxsbGwtrZGSkqKJM//66+/Ijg4GG+88QY6duwIZ2dnTJ48GV9//fW//lolJSVYt24dfv31VxUkJSIiIqL6ggUtEREREdELWLt2LcaOHYtr165h5MiRCAsLw4QJE1BUVIT33nsPCQkJ/+rrlZSUICIiAsnJySpKTERERET1gZbUAYiIiIiI6rqjR49i/fr1GDRoEMLDw6Gtra0YmzhxIn744Qc8evRIwoSqVVJSgsaNG0sdg4iIiEgtcQUtEREREdVrv/zyC/z9/WFvb4+uXbsiKCgIqampNc7Ny8vD+++/D0dHR3Tv3h2LFi1CWVnZc59jzZo1MDQ0xJIlS5TK2Sd69uyJPn36AADKy8uxZs0aDBs2DF26dIG9vT38/f1x+vRpxfzbt2/D2dkZABAREQFra2tYW1tj3bp1ijmpqamYNm0anJyc8Prrr2PYsGE4ceJEtef+448/MGbMGHTq1Am9evVCZGQkDh48CGtra9y+fVtp7q5du+Dp6YmOHTvC1dUV8+fPR0FBgdKcgIAAeHl54X//+x9Gjx6Nzp07Y+XKlfjoo4/QvXt3VFRUVMswfvx4DBo06LnfRyIiIiKqjitoiYiIiKje+vnnnzFp0iRYWloiODgYpaWl+PLLLzFq1CjExsbC0tJSaf4HH3wACwsLzJgxA+fPn8fOnTtRUFCA5cuXP/U50tPTcf36dfj6+sLAwOC5mQoLC7F//354eXlhxIgRKCoqwoEDBzBx4kTs378ftra2MDIyQlhYGMLCwjBgwAAMGDAAAGBtbQ0AuHbtGkaNGgVTU1NMmjQJenp6+OqrrzB16lSsW7dOMT87OxuBgYEAgHfeeQd6enrYv38/dHR0quVat24dIiIi4OLiglGjRiEtLQ179uxBSkoK9uzZo1Q85+fnY9KkSfD09MSbb74JY2Nj6OnpIS4uDj/++KOijAaAnJwcnD59GlOnTn3u94aIiIiIqmNBS0RERET11vLly9GsWTPExMTA0NAQANC/f38MHToU69atw7Jly5TmW1paYsOGDQCA0aNHw8DAALt378b48eNhY2NT43M8WY3bvn37F8rUrFkzfPvtt0olqZ+fHzw8PLBz504sWbIEenp6GDRoEMLCwmBtbY0hQ4YofY3FixejRYsWOHjwoOLr+Pv7Y9SoUVixYoWioN28eTMePHiAQ4cOwdbWFgAwbNiwaqtZ79+/j6ioKLi6umLz5s3Q0Hh8I12bNm2wYMECxMfHw9fXVzE/JycH8+fPx1tvvaW4VlVVBTMzM8THxysVtElJSaiqqsKbb775Qt8fIiIiIlLGLQ6IiIiIqF66e/curly5gqFDhyrKWQCwsbGBi4sLTp06Ve1zRo8erfR4zJgxAIDvv//+qc9TWFgIANDX13+hXJqamopStaqqCvn5+Xj06BE6duyIy5cvP/fz8/Pzcfr0aXh4eKCwsBD379/H/fv3kZeXB1dXV6SnpyM7OxsA8MMPP8De3l5RzgKAoaEhvL29lb7mzz//jIqKCowdO1ZRzgLAiBEjYGBgUO17paOjg2HDhild09DQgLe3N7799lvF9wQA4uPj4eDgACsrqxf6/hARERGRMq6gJSIiIqJ66c6dOwCA1q1bVxuTyWT48ccfUVxcDD09PcX11157TWley5YtoaGhUW2v1r97sq1BUVHRC2c7dOgQtm3bhrS0NKU9W/+55UJNbt68CblcjjVr1mDNmjU1zrl37x5MTU2RkZEBe3v7auMtW7ZUevzke9WmTRul6zo6OrCyskJGRobSdVNT0xq3SfDx8cHmzZtx/Phx+Pj44Pr167h06RLmz5//3P9fRERERFQzFrRERERE1GAJgvDcOU9KzT///POFvubhw4cxZ84c9O/fHxMmTICxsTE0NTURFRWFW7duPffzq6qqADw+eKtnz541zvlnAVvbGjVqVOP1tm3bws7ODvHx8fDx8UF8fDy0tbXh4eGh0jxERERE6owFLRERERHVS+bm5gCAtLS0amPXr1/HK6+8orR6FgBu3LihdCv+jRs3UFVV9cyVra1bt0br1q1x4sQJFBUVPXerg2PHjsHKygoRERFKBfDatWuV5j2tHH6ST1tbGy4uLs98LgsLC9y4caPa9Zs3byo9fvK9un79utL///Lycty+ffu5z/N3Pj4++Oyzz3D37l0kJiaid+/eaNas2Qt/PhEREREp4x60RERERFQvvfrqq7C1tUVcXBwKCgoU1//880/89NNPcHNzq/Y5u3btUnr85ZdfAgB69er1zOeaNm0a8vPzERoaikePHlUb//HHH/Hdd98BeLwHLQDI5XLF+IULF3D+/Hmlz2ncuDEAKGUHAGNjYzg5OSEmJgZ3796t9lz3799XfOzq6orz58/jypUrimv5+flISEhQ+hwXFxdoa2tj586dSrkOHDiAhw8f1vi9ehovLy8IgoDFixfj1q1bPByMiIiI6D/iCloiIiIiqrdmz56NSZMmYeTIkRg+fDhKS0vx5ZdfokmTJggODq42//bt25g8eTJ69uyJ8+fPIz4+Hl5eXrCxsXnm8wwePBhXr17Fxo0bcfnyZXh5ecHc3Bz5+fn44Ycf8MsvvyA8PBwA0Lt3b3z99deYOnUqevfujdu3b2Pv3r1o27YtiouLFV+zUaNGaNu2Lb766iu0atUKhoaGaNeuHdq3b4958+bB398f3t7e8PPzg5WVFXJzc3H+/HlkZWUhPj4eADBx4kTEx8fj7bffxpgxY6Cnp4f9+/ejRYsWyM/PV6zSNTIywrvvvouIiAhMnDgRffv2RVpaGnbv3o3XX3/9X5WsRkZG6NmzJ44ePYqmTZuid+/eL/y5RERERFQdC1oiIiIiqjeerP58skrVxcUFW7Zswdq1a7F27VpoaWmhW7dumDVrltKt/E+sXr0aa9asQXh4OLS0tDBmzBjMnj37hZ77ww8/RI8ePbBz507s2bMHDx48QNOmTdG5c2dERkaiX79+AIBhw4YhNzcXMTEx+PHHH9G2bVt8/vnnOHr0KJKTk5W+5qJFi7Bw4UIsXboUFRUVCA4ORvv27dG2bVscPHgQEREROHToEPLz82FkZIQOHTpg6tSpis9v0aIFduzYgUWLFiEqKgpGRkYYPXo0GjdujEWLFkFXV1cx97333oORkRG+/PJLLF26FM2aNYOfnx+mT58ObW3tf/XnMGTIEHz33Xfw8PCo8TAxIiIiInpxgvzv9zgREREREdVhO3bswOLFi/HNN9+o/KCs+mzx4sWIiYnBuXPnFGV2bTp+/DimTp2KXbt2oWvXrrX+9YmIiIgaEu5BS0RERET1RkpKCvT09BSHXhFQWlqq9DgvLw/x8fHo0qWLSspZANi/fz+srKzQpUsXlXx9IiIiooaEWxwQERERUZ137NgxJCcnIyEhASNGjICWFl/GPjFy5Eg4OTlBJpMhNzcXBw8eRGFhIaZMmVLrz5WUlISrV6/i5MmTCAkJUexxS0REREQvj1scEBEREVGd17dvXxQVFWHAgAH45JNPoKenJ3WkOmPlypU4duwYsrKyIAgCOnTogODgYLi4uNT6c1lbW0NPTw+DBw/G/PnzWZQTERER1QIWtEREREREREREREQS4R60RERERERERERERBJhQUtEREREREREREQkERa0RERERERERERERBJhQUtEREREREREREQkERa0RERERERERERERBJhQUtEREREREREREQkERa0RERERERERERERBJhQUtEREREREREREQkERa0RERERERERERERBL5P7YrXJ6US2lUAAAAAElFTkSuQmCC\n"},"metadata":{}},{"output_type":"stream","name":"stderr","text":[":4: FutureWarning: \n","\n","Passing `palette` without assigning `hue` is deprecated and will be removed in v0.14.0. Assign the `x` variable to `hue` and set `legend=False` for the same effect.\n","\n"," sns.boxplot(\n"]},{"output_type":"display_data","data":{"text/plain":["
"],"image/png":"iVBORw0KGgoAAAANSUhEUgAABWgAAAMQCAYAAAC60ozSAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAACWBklEQVR4nOzde1yUdfr/8ffMAIoKiDpQKaxaAYZ4AIvMQ1YaauZpa6U2xbLSDuYBv3SyXdvNDqx00E6eStBNXUt3lcxDh7V03dlNsswarcRALZwSAZEEhvn94Y9ZRtA8APcAr+fj0cOZ+3NxzzWjk/KeD9dtcrlcLgEAAAAAAAAA6p3Z6AYAAAAAAAAAoKkioAUAAAAAAAAAgxDQAgAAAAAAAIBBCGgBAAAAAAAAwCAEtAAAAAAAAABgEAJaAAAAAAAAADAIAS0AAAAAAAAAGISAFgAAAAAAAAAMQkALAAAAAAAAAAYhoAUAAGjAxo4dq7FjxxrdxgU5cOCAIiMjtXr16jp/rNWrVysyMlIHDhxwH7v++us1ceLEOn9sSbLZbIqMjJTNZquXx6uqPp+nkcaOHathw4YZ3QYAAMBZI6AFAACoR3v27NFDDz2k6667TjExMerXr5/uvPNOLV261OjWak1kZKT7vyuuuEJXXXWVRo8eraeeekrffvttrT3OX//613oJdc+HN/dWV37++WdFRkbqqaeeqrb21FNPKTIyUnPnzq22lpKSoujoaJWUlNRHmzUqLCxU3759lZiYKJfLVW19586dioqK0nPPPWdAdwAAoLHzMboBAACApiIrK0vjxo3TJZdcoltvvVVWq1U//PCDPv/8c2VkZDT4nbBV9enTRyNGjJDL5dKxY8dkt9v197//XcuXL9eMGTN05513umvbt2+vL774Qj4+5/ZP0+XLlys4OFijR48+668ZMWKEbrrpJvn5+Z3TY52r0/V25ZVX6osvvpCvr2+dPr4R2rZtq44dOyorK6vaWlZWlnx8fE671qVLF/n7+9dHmzUKDAzUY489pmnTpulvf/ubxowZ414rLy/XH//4R11yySV66KGHDOsRAAA0XgS0AAAA9eT1119XQECA3n77bQUGBnqs/fzzzwZ19T/l5eWqqKiolfCyY8eOGjFihMex5ORk3XfffXr22WfVuXNnXXvttZIkk8mkZs2aXfBjnsnx48fVokULWSwWWSyWOn2sMzGbzXX+XI0UGxurf/zjHyouLlbLli0lnXzt9+zZo8GDB+vDDz+U0+l0/x4cPnxYubm5uuGGGy74sSt/j8/X0KFDtWbNGqWlpemGG25Qu3btJEkZGRmy2+1asGBBvYTIF/o8AABAw8OIAwAAgHqSk5Ojyy67rFo4K53cfVjVO++8o3Hjxql3797q2rWrhg4dqrfeeutXH6O0tFQvvfSSRo8erbi4OPXo0UO33367/v3vf3vUVc59Xbx4sZYsWaKBAwcqJiZGX3zxhXr06FHjj6n/+OOP6tKli+bPn3+Oz/yk4OBgPf/88/Lx8dFrr71WrZeqIwEcDoceffRR9e/fX127dlXfvn113333uWfHXn/99frmm2/0n//8xz1OoXIHcuWc2f/85z+aNWuWevfu7Q6Da5pBW2nr1q0aMWKEYmJiNHToUG3atMljfd68eYqMjKz2daee80y9nW4G7XvvvafRo0erW7duio+P14wZM5SXl+dR88gjj6hnz57Ky8vT/fffr549e+rqq6/Wc889J6fTeXa/Cb/yPHNzcxUZGaklS5ZU+7qsrCxFRkYqMzPztOeOi4uT0+nU559/7j72+eefq7y8XBMmTNDx48f19ddfe5yz8uvO57XIycnRPffco549e2rGjBlnfM7du3fX9OnTVV5eftq6P/7xjyotLdUzzzwjSfrhhx80b948DR061P1naMuWLbr99tvVo0cP9ezZU/fee6+++eYbj/PY7XY98sgjuuGGGxQTE6M+ffro0UcfVX5+vkdd5Z+pb7/9VsnJybryyit1++23n7Y/AADQOBHQAgAA1JP27dtr9+7d2rt376/WLl++XO3bt9fEiRP1yCOP6OKLL9aTTz6pv/71r2f8umPHjmnVqlW66qqrNGPGDD344IM6cuSI7r77bo9grNLq1au1bNky/e53v9PDDz+sSy65RAMHDtR7771XLfTLzMyUy+XSzTfffG5PvIpLLrlEV155pT7//HMdO3bstHWTJ0/W5s2bNXr0aP3xj3/U2LFjVVxcrB9++EGS9Nhjj+miiy5S586dlZqaqtTUVE2aNMnjHE8++aS+++47PfDAA7rnnnvO2Nf+/fs1bdo09e/fX8nJybJYLJoyZYq2bdt2zs/xbHqravXq1Zo6darMZrOmT5+u3/3ud9q8ebNuu+02FRYWetQ6nU5NmDBBrVu3VkpKiq666iq98cYbWrly5Vn19mvPMywsTLGxsVq7dm21r123bp1atmx5xt2ulUHrjh073MeysrLUsWNHXXHFFbrooos8xhycGtCey2tRGfq2bdtWDz/8sG688cYae/roo4903333afDgwfrLX/5yxlEaHTp00OTJk5WZmalt27bpqaeeko+Pjx577DFJ0t///ndNnDhRLVq00IwZM3T//ffr22+/1e233+4R+v/rX/9Sbm6uRo8erSeeeEJDhw7V+vXrde+999Y443bKlCkqKSnRtGnTdOutt562PwAA0Dgx4gAAAKCe3HXXXbrnnns0cuRIdevWTXFxcerdu7fi4+OrzSRdtmyZmjdv7r5/xx13aMKECXrzzTf1+9///rSPERQUpA8//NBjTMHvfvc7DRkyREuXLtXTTz/tUf/jjz9q8+bNatOmjfvYyJEjtW7dOm3btk39+/d3H1+7dq2uvPJKXXLJJef9GkjS5Zdfru3bt+vAgQOKioqqtl5YWKjPPvtMKSkpmjBhgvv4xIkT3bcHDhyoF198UcHBwdVGKVQKCgrSkiVLzmqkwf79+zVv3jx3yHfLLbdo8ODBmjNnjvr06XNOz+9seqtUVlamOXPmKCIiQn/961/d4w/i4uI0ceJELVmyxGPu6YkTJzRkyBA98MADkqTbbrtNo0aN0ttvv31WOy/P5nmOHDlSf/jDH/Tdd9/p0ksvdff53nvv6cYbbzzjj/l36tRJbdu2rRbQxsbGSpJ69uypHTt2aNy4cZJOBrkdO3ZU27Ztz/m1KC0t1eDBg5WcnHzafjZt2qTp06dr1KhRevLJJ2U2//r+lKSkJK1bt07Tp0/X0aNH9ac//UlWq1XFxcWaPXu2br31Vv35z392148aNUqDBw/W/Pnz3cdvv/123XXXXR7n7dGjh6ZPn64dO3aoV69eHmtRUVFKS0v71d4AAEDjxA5aAACAetKnTx+tWLFC119/vex2uxYtWqQJEyaof//++uCDDzxqq4azRUVFOnLkiK666irl5uaqqKjotI9hsVjc4WxFRYWOHj2q8vJyde3aVV999VW1+htvvNEjnJWka665RiEhIVq3bp372N69e7Vnzx4NHz78vJ57VZXzNYuLi2tcb968uXx9ffWf//xHBQUF5/04v/vd78563mxISIgGDRrkvt+qVSuNHDlSX331lRwOx3n38Gu+/PJL/fzzz7rttts8ZtMOGDBAnTt31j//+c9qX3Pbbbd53I+Li6txZENNzuZ5DhkyRM2aNfP4/d+6davy8/PP6vc/NjZWn3/+uZxOpyoqKvT555+7A9rY2Fj3rtmSkhLZ7Xb3Wm28FlVlZmZq2rRpGjNmjP70pz+dVTgrST4+PvrTn/6ko0ePqkePHvrd734n6eSu2MLCQt100006cuSI+z+z2azu3bt7jK2o+v49ceKEjhw5ou7du0uSdu/eXe0xExMTz6o3AADQOLGDFgAAoB5169ZNL7/8skpLS2W32/X+++9ryZIlmjJliv7+97/rsssuk3RyZ+G8efO0c+dOlZSUeJyjqKhIAQEBp32MNWvW6I033lB2drbKysrcxzt06FCttqZjZrNZN998s5YvX66SkhL5+/tr3bp1atasmQYPHny+T93t+PHjkuS+iNSp/Pz8NGPGDD333HPq06ePunfvrgEDBmjkyJGyWq1n/Tg1PbfT+c1vfiOTyeRxrGPHjpKkgwcPntPjnotDhw5JOrnz9FSdO3f22IkqSc2aNasWqAcFBZ11kH02zzMwMFDXXXedMjMzNXXqVEknxxuEhobq6quv/tXHiIuL0+bNm/X111/Lx8dHRUVFHjtoDx8+rAMHDujAgQMqLy93jzc419fCx8dHF110UY09HDhwQP/3f/+nwYMH64knnvjVnk/VrVs3SVJ0dLT79dq/f7+kkztsa9KqVSv37aNHj+rll1/W+vXrq10AsKYPWM7lzyoAAGh8CGgBAAAM4Ofnp27duqlbt27q2LGjHn30UW3YsEEPPvigcnJyNH78eHXu3Nk9f9bX11dbtmzRkiVLVFFRcdrz/uMf/9AjjzyigQMHuudzWiwWzZ8/X7m5udXqq+70q2rkyJFavHix3n//fQ0bNkyZmZkaMGDAGYPhs/XNN9/IYrGcMZQaP368rr/+er3//vvaunWrXnrpJS1YsEDp6em64oorzupxqu7CrA2nBpuVzuUCXRfqbHcEX6iRI0dqw4YNysrKUkREhD788EPddtttZ7ULteocWl9fX7Vu3VqdO3eWJHXp0kX+/v7asWOHe9dv1QuEnQs/P7/T9mO1WmW1WrVlyxbt2rVLMTEx5/UYVVXOjk1NTa0xsK/6ezN16lR99tlnmjBhgrp06aIWLVqooqJCd999d40zaGv7zyoAAGhYCGgBAAAM1rVrV0nS4cOHJUkffvihSktL9dprr3nMe636I9Sns3HjRoWFhenll1/2CBTnzp17Tj1FREToiiuu0Lp163TRRRfp0KFDmjlz5jmdoyaHDh3Sf//7X/Xo0cNjx2FNwsPDddddd+muu+7S/v37NXLkSL3xxhuaM2eOpNMHpufj+++/l8vl8jhn5Y7J9u3bS5ICAwMlnZyRW3m78jmd6mx7q/z9zc7OVu/evT3WsrOzL3je76nO5nlKUr9+/dSmTRutW7dO3bt3V0lJya/O0610xRVXuENYPz8/9ejRw/14Pj4+iomJUVZWlg4cOKC2bdu6d8zW5mvRrFkzzZ8/X0lJSbr77ru1bNkyXX755Wf99TUJCwuTJLVt21bXXHPNaesKCgq0fft2TZ48WQ8++KD7eOXrDAAAcCpm0AIAANSTf//73zXuntuyZYskuXcZVu7Eq1pbVFSkd95551cfo6av/fzzz7Vz585z7nfEiBHatm2b0tPT1bp1a48Lhp2Po0ePavr06XI6nZo0adJp60pKSnTixAmPY+Hh4WrZsqVKS0vdx/z9/VVYWHhBPVU6fPiwNm/e7L5/7Ngx/f3vf1eXLl3cuyXDw8MlSf/973/ddcePH9ff//73auc72966du2qtm3basWKFR7PbcuWLfruu+80YMCA83xGNTub5ymdDFJvuukmvffee1q9erUiIiJqvKBbTXx8fNStWzdlZWUpKytLPXv29Fjv2bOnPv30U4/ZtFLtvxYBAQFatGiR2rZtqzvvvFM5OTnn9PWn6tevn1q1aqX58+d7jA6pdOTIEUmn3+Wcnp5+QY8PAAAaL3bQAgAA1JOnnnpKJSUlGjRokDp37qyysjJlZWXpvffeU/v27TV69GhJJy8m5uvrq0mTJikxMVHFxcVatWqV2rZt+6sXrBowYIA2bdqkBx54QAMGDNCBAwe0YsUKXXbZZe7Zr2dr2LBh+stf/qLNmzfrtttuk6+v71l/7f79+/WPf/xDLpdLxcXFstvt2rBhg44fP65HHnnkjGHv/v37NX78eA0ePFiXXXaZLBaL3n//ff3000+66aab3HXR0dFavny5Xn31Vf3mN79RmzZtqu28PFsdO3bU448/rl27dqlt27Z655139PPPP+uZZ55x1/Tp00eXXHKJHn/8ce3bt08Wi0XvvPOOgoODq+2iPdvefH19NWPGDD366KO64447dNNNN+nnn39WRkaG2rdvr/Hjx5/X87mQ51lp5MiRWrp0qWw2m2bMmHFOjxMXF+fe8V01hJVOBrTz589311Wqi9eiTZs2evPNN3Xbbbdp/PjxWr58uUJDQ8/5PNLJGbOzZs1SSkqKRo8eraFDh6pNmzY6dOiQtmzZotjYWP3hD39Qq1atdOWVV2rRokUqKytTaGiotm3bdtYXcgMAAE0PAS0AAEA9SUlJ0YYNG7RlyxatXLlSZWVluuSSS3T77bfrvvvuc//YfOfOnTV37ly9+OKLeu6559SuXTvddtttatOmjR577LEzPsbo0aP1008/aeXKldq6dasuu+wy/eUvf9GGDRv0n//855z6bdeunfr06aMtW7ac9Y+3V9q2bZu2bdsms9msVq1aqUOHDho5cqTGjBnjvhDa6Vx00UW66aabtH37dq1du1YWi0WdO3fWiy++qISEBHfdAw88oEOHDmnRokUqLi7WVVdddUEB7RNPPKHU1FRlZ2erQ4cOeuGFF9SvXz93ja+vr15++WU9+eSTeumll2S1WpWUlKTAwEA9+uijHuc7l95Gjx6t5s2ba+HChZozZ45atGihgQMH6v/+7/88RinUhrN5npW6du2qyy+/XN99952GDx9+To9TGbxWjjSoqmfPnjKZTHK5XNXmz9bFaxEaGqolS5bo9ttv15133qlly5ZVu9Da2br55psVEhKiBQsWaPHixSotLVVoaKh69erl/oBFktLS0vTnP/9Zb731llwul/r06aOFCxfW+DoDAACYXDX9nB0AAACgk0Hj3r17PX4sHk3HyJEjFRQUxI/nAwAA1CFm0AIAAKBGhw8fPq/ds2gcdu3apa+//lojR440uhUAAIBGjREHAAAA8JCbm6usrCy9/fbb8vHx0ZgxY4xuCfVo79692r17t9544w1ZrVYNHTrU6JYAAAAaNXbQAgAAwMN///tfpaSk6MCBA3r22WdltVqNbgn1aOPGjXr00UdVXl6u559/Xs2aNTO6JQAAgEaNGbQAAAAAAAAAYBB20AIAAAAAAACAQQhoAQAAAAAAAMAgXCTMy3322WdyuVzy9fU1uhUAAAAAAAAAZ6GsrEwmk0k9e/b81VoCWi/ncrnEmGAAAAAAAACg4TiXPI+A1stV7pyNiYkxuBMAAAAAAAAAZ2PXrl1nXcsMWgAAAAAAAAAwCAEtAAAAAAAAABiEgBYAAAAAAAAADEJACwAAAAAAAAAGIaAFAAAAAAAAAIMQ0AIAAAAAAACAQQhoAQAAAAAAAMAgBLQAAAAAAAAAYBACWgAAAAAAAAAwCAEtAAAAAAAAABiEgBYAAAAAAAAADEJACwAAAAAAAAAGIaAFAAAAAAAAAIMQ0AIAAAAAAACAQQhoAQAAAAAAAMAgBLQAAAAAAAAAYBACWgAAAAAAAAAwCAEtAAAAAAAAABiEgBYAAAAAAAAADEJACwAAAAAAAAAGIaAFAAAAAAAAAIMQ0AIAAAAAAACAQQhoAQAAAAAAAMAgBLQAAAAAAAAAYBACWgAAAAAAAAAwiI/RDQCozul0ym63Kz8/X8HBwYqKipLFYjG6LQAAAAAAcJb43h5ni4AW8DI2m03p6elyOBzuY1arVUlJSYqPjzewMwAAAAAAcDb43h7nghEHgBex2WxKS0tTeHi4Zs+erYyMDM2ePVvh4eFKS0uTzWYzukUAAAAAAHAGfG+Pc0VAC3gJp9Op9PR0xcbGKiUlRREREfL391dERIRSUlIUGxurjIwMOZ1Oo1sFAAAAAAA1qPq9fXJyssrKyrRjxw6VlZUpOTmZ7+1RI0YcAF7CbrfL4XBo6tSpMps9Pzsxm80aNWqUZs6cKbvdrujoaIO6BAAAAAAAp1P5vf2gQYM0ZcqUaiMOBg0apB07dvC9PTwQ0AJeIj8/X5IUFhZW43p4eLhHHQAAAAAA8C6V37O/9dZbiouL09SpUxUWFqbc3FytXr1ab731lkcdIDHiAPAawcHBkqTc3Nwa13NycjzqAAAAAACAdwkMDJQkRUZG1ji+MDIy0qMOkAhoAa8RFRUlq9Wq1atXq6KiwmOtoqJCa9asUUhIiKKiogzqEAAAAAAAnInJZPL49VzX0TQR0AJewmKxKCkpSVlZWUpNTdWePXtUUlKiPXv2KDU1VVlZWRo3bpwsFovRrQIAAAAAgBoUFBRIkvt7+VO/t9+zZ49HHSAxgxbwKvHx8UpOTlZ6erpmzpzpPh4SEqLk5GTFx8cb2B0AAAAAADiTyrGEt912mzZv3lzte/vExEQtX76c8YXwQEALeJn4+Hj16tVLdrtd+fn5Cg4OVlRUFDtnAQAAAADwcpXjC/fs2aO5c+dqz5497u/tIyMjNWfOHMYXohpGHABeyGKxKDo6Wn379lV0dDThLAAAAAAADUDV8YVz5syRj4+P4uLi5OPjozlz5jC+EDUyuVwul9FN4PR27dolSYqJiTG4EwAAAAAAAJwNm82m9PR0ORwO97GQkBCNGzeO8YVNxLlkeow4AAAAAAAAAGoR4wtxLghoAQAAAAAAgFp26NAhPfnkk3K5XDKZTEpLS1NYWJjRbcELEdACAAAAAAAAtejWW2/1uO9yuTR9+nRJ0qpVq4xoCV6Mi4QBAAAAAAAAtaRqOGuxWDRq1CiP0QanhrcAO2gBAAAAAACAWpCbm+u+/cILL6hDhw6SpNtvv10HDhzQtGnT3HWMO0AldtACAAAAAAAAtSA5OVnSyZ2zleFspQ4dOrh30lbWARIBLQAAAAAAAFArXC6XJGn48OE1rt90000edYBEQAsAAAAAAADUCpPJJElau3ZtjevvvvuuRx0gEdACAAAAAAAAtSItLU2S5HQ6deDAAY+1AwcOyOl0etQBEhcJAwAAAAAAAGpF1Qt/TZs2TRaLRTfddJPeffdddzh7ah3ADloAAAAAAACglqxatcp92+l0au3atR7hbNV1QGIHLQAAAAAAAFCrVq1apdzcXCUnJ8vlcslkMiktLY2ds6gRAS0AAAAAAABQy8LCwvS3v/3N6DbQADDiAAAAAAAAAAAMQkALAAAAAAAAAAYhoAUAAAAAAAAAgxDQAgAAAAAAAIBBCGgBAAAAAAAAwCAEtAAAAAAAAABgEAJaAAAAAAAAADAIAS0AAAAAAAAAGISAFgAAAAAAAAAMQkALAAAAAAAAAAYhoAUAAAAAAAAAgxDQAgAAAAAAAIBBCGgBAAAAAAAAwCA+RjcAAEBT53Q6ZbfblZ+fr+DgYEVFRclisRjdFgAAAACgHhDQAgBgIJvNpvT0dDkcDvcxq9WqpKQkxcfHG9gZAAAAAKA+MOIAAACD2Gw2paWlKTw8XLNnz1ZGRoZmz56t8PBwpaWlyWazGd0iAAAAAKCOEdACAGAAp9Op9PR0xcbGKiUlRREREfL391dERIRSUlIUGxurjIwMOZ1Oo1sFAAAAANQhAloAAAxgt9vlcDg0evRomc2efx2bzWaNGjVKhw8flt1uN6hDAAAAAEB9IKAFAMAA+fn5kqSwsLAa18PDwz3qAAAAAACNEwEtAAAGCA4OliTl5ubWuJ6Tk+NRBwAAAABonAhoAQAwQFRUlKxWq1avXq2KigqPtYqKCq1Zs0YhISGKiooyqEMAAAAAF6KsrEyZmZlavHixMjMzVVZWZnRL8FI+RjcAAEBTZLFYlJSUpLS0NKWmpmrUqFEKDw9XTk6O1qxZo6ysLCUnJ8tisRjdKgAAAIBztHTpUmVmZnpsxli6dKmGDRumsWPHGtgZvJHJ5XK5jG4Cp7dr1y5JUkxMjMGdAADqgs1mU3p6uhwOh/tYSEiIxo0bp/j4eAM7AwAAAHA+li5dqrVr1yooKEiJiYmKi4vTjh07tGLFChUUFGj48OGEtE3AuWR6BLRejoAWABq/srIybdy4UXl5eQoNDVVCQoJ8fX2NbgsAAADAOSorK9Mdd9yhgIAAvf766/Lx+d8Pr5eXl2vSpEkqKirSsmXL+Dd/I3cumR4jDgAAMFBNO2jXr1+vpKQkdtACAAAADczGjRtVUVGhxMREj3BWknx8fDRmzBgtWLBAGzdu1LBhwwzqEt6Gi4QBAGAQm82mtLQ0hYeHa/bs2crIyNDs2bMVHh6utLQ02Ww2o1sEAAAAcA7y8vIkSXFxcTWuVx6vrAMkAloAAAzhdDqVnp6u2NhYpaSkKCIiQv7+/oqIiFBKSopiY2OVkZEhp9NpdKsAAAAAzlJoaKgkaceOHSorK1NmZqYWL16szMxMlZWVaceOHR51gMSIAwAADGG32+VwODR16lSZzZ6fl5rNZo0aNUozZ86U3W5XdHS0QV0CAAAAOBcJCQlaunSp3nzzTS1cuFAVFRXutaVLl8rHx0dms1kJCQkGdglvww5aAAAMkJ+fL0kKCwurcT08PNyjDgAAAID38/X1VadOnVRaWiqXy6V+/fopNTVV/fr1k8vlUmlpqTp16sQFwuCBHbSAF3I6nbLb7crPz1dwcLCioqJksViMbgtALQoODpYk5ebmKiIiotp6Tk6ORx0AAAAA71dWVqbs7Gz5+fmprKxMn3zyiT755BNJkslkkp+fn7Kzs1VWVkZICzcCWsDL1HRFd6vVyhXdgUYmKipKVqtVq1evVkpKiseYg4qKCq1Zs0YhISGKiooysEsAAAAA52Ljxo2qqKjQnXfeqWuvvVYbN25UXl6eQkNDlZCQoH/+859asGCBNm7cqGHDhhndLrwEAS3gRSqv6B4bG6upU6cqLCxMubm5Wr16tdLS0pScnExICzQSFotFSUlJSktLU2pqqkaNGqXw8HDl5ORozZo1ysrKUnJyMrvnAQAAgAYkLy9PkhQXFydfX99qIWxcXJxHHSAR0AJe49Qrulfupqu8ontqaqoyMjLUq1cvAhugkYiPj1dycrLS09M1c+ZM9/GQkBA+kAEAAAAaoNDQUEnSjh07NHDgwGrrO3bs8KgDJAJawGtwRXegaYqPj1evXr2YOw0AAAA0AgkJCVq6dKlWrFihAQMGyMfnf9FbeXm5Vq5cKbPZrISEBAO7hLchoAW8BFd0B5oui8XCBy8AAABAI1A51mDt2rWaNGmSxowZo7i4OO3YsUMrV65UQUGBhg8fzgXC4IGAFvASXNEdAAAAAICGb+zYsZKkzMxMLViwwH3cbDZr+PDh7nWgEgEt4CW4ojsAAAAAAI3D2LFjlZiYqI0bNyovL0+hoaFKSEhg5yxqREALeAmu6A4AAAAAQONROe4A+DUml8vlMroJnN6uXbskSTExMQZ3gvpis9mUnp4uh8PhPhYSEqJx48ZxRXcAAAAAAIAG4FwyPXbQAl6GK7oDAND4OZ1O/q4Hmhje9wCA0yGgBbwQV3QHAKDxqumnZaxWq5KSkvhpGaCR4n0PADgT86+XAAAAAKgNNptNaWlpCg8P1+zZs5WRkaHZs2crPDxcaWlpstlsRrcIoJbxvgcA/Bpm0Ho5ZtACAAA0Dk6nU5MnT1Z4eLhSUlJkNv9vr0RFRYVSU1OVm5uruXPn8mPPQCPB+x4Amq5zyfTYQQsAAADUA7vdLofDodGjR3uENJJkNps1atQoHT58WHa73aAOAdQ23vcAgLNBQAsAAADUg/z8fElSWFhYjevh4eEedQAaPt73AICzQUALAAAA1IPg4GBJUm5ubo3rOTk5HnUAGj7e9wCAs+G1AW1xcbH69++vyMhI98yGSqtWrVJCQoJiYmI0fPhwffTRR9W+vqioSI899piuuuoq9ezZUw899JAOHz5crS4rK0tjxoxRt27ddN1112nBggU6dSyvy+XSggULNGDAAHXr1k1jxozRzp07q50rLy9PkydPVs+ePXXVVVfp8ccf17Fjxy7shQAAAECjEBUVJavVqtWrV6uiosJjraKiQmvWrFFISIiioqIM6hBAbeN9DwA4G14b0L766qtyOp3Vjr/77rt64oknNGTIEC1cuFA9evTQgw8+WC0wnTp1qrZt26ZZs2Zpzpw5ys7O1j333KPy8nJ3zffff68JEybIarVq/vz5SkpK0ty5c/XGG294nGvhwoWaO3euxo8fr/nz58tqtequu+7y+BS0rKxMd999t/bv36+0tDTNmjVLW7duVXJycu2+MAAAAGiQLBaLkpKSlJWVpdTUVO3Zs0clJSXas2ePUlNTlZWVpXHjxnGhIKAR4X0PNG1Op1O7d+/W1q1btXv37hpzLkCSTK5Tt4t6ge+++0633HKLHn74Yf3xj3/U22+/7b7iWUJCgrp27aq0tDR3fWJiogICArRw4UJJ0meffabExEQtXrxYffv2lSTt27dPQ4cO1fPPP6+hQ4dKkv7whz9o69at2rBhg/z8/CRJzz//vJYvX65t27bJz89PJ06c0DXXXKPf//73mj59uiSptLRUgwcPVv/+/TVr1ixJUmZmpmbMmKH169erc+fOkqStW7dqwoQJWrVqlbp163Zer8W5XPENAAAA3s9msyk9PV0Oh8N9LCQkROPGjVN8fLyBnQGoK7zvgabHZrPpzTff1M8//+w+1rZtW915552875uIc8n0fOq6mfPx1FNPKTExUZ06dfI4npubq/379+v//u//PI4PHTpUqampKi0tlZ+fnz7++GMFBgaqT58+7prOnTurS5cu+vjjj90B7ccff6xBgwa5w9nKc82fP1+fffaZ4uPjlZWVpWPHjmnIkCHuGj8/Pw0aNEibN292H/v4448VGRnpDmclqU+fPmrdurW2bNly3gEtAAAAGpf4+Hj16tVLdrtd+fn5Cg4OVlRUFDvogEaM9z3QtNhsNs2ZM6fa8Z9//llz5szRjBkzCGnhwetGHGzYsEF79+7VAw88UG1t3759klQtuL300ktVVlbmHjmwb98+derUSSaTyaOuc+fO7nMcP35cP/zwg0egWlljMpncdZW/nlp36aWX6tChQ/rll1/cdafWmEwmderUyX0OAAAAQDr5Y8/R0dHq27evoqOjCWmAJoD3PdA0OJ1OvfLKK5KkoKAgTZw4UQsWLNDEiRMVFBQkSXrllVcYdwAPXrWDtqSkRM8++6ymTZumVq1aVVsvKCiQJAUGBnocr7xfuV5YWKiAgIBqXx8UFKQvv/xS0smLiNV0Lj8/P/n7+3ucy8/PT82aNav2mC6XSwUFBWrevPkZH7PyXOfL5XLp+PHjF3QOAAAAAAAA1K1du3appKRELVu21PPPPy8fn5PR2zXXXKOrrrpKDz30kIqLi/Xpp58yzrKRc7lc1TaPno5XBbSvvfaa2rZtq9/+9rdGt+JVysrK9PXXXxvdBgAAAAAAAM7gvffekyT17t1b33zzTbX1q6++Wh988IHee+89d3iLxqvqWNUz8Zo/CQcPHtQbb7yhV155xb27tXLX6PHjx1VcXOzeCl5UVCSr1er+2sLCQklyrwcGBurHH3+s9hgFBQXumsrdrpWPVam0tFQlJSUe5yotLdWJEyc8dtEWFhbKZDJ51B07dqzGx7z44ovP9eXw4Ovrq8suu+yCzgEAAAAAAIC6tWnTJkknLwzVpUuXauslJSX64IMP1KxZsxrX0Xh8++23Z13rNQHtgQMHVFZWpnvvvbfa2rhx49S9e3elpaVJqj7vdd++ffL19VVYWJikk/Nit2/fXm0rcXZ2tiIiIiRJLVq00MUXX1xtPmx2drZcLpf7/JW/ZmdnKyoqyuMxL7nkEjVv3txdt3fvXo9zuVwuZWdne1ys7HyYTCa1aNHigs4BAAAAAACAuhUdHa2srCy98847uvrqq2U2/+/yTxUVFVqzZo27jqyncTvb8QaSF10krEuXLsrIyPD479FHH5UkPfnkk/rjH/+osLAwdezYURs2bPD42vXr16t3797ubcP9+/dXQUGBtm/f7q7Jzs7WV199pf79+7uP9e/fXx988IHKyso8zhUYGKiePXtKkmJjY9WqVSv3FnXp5MiBTZs2VTuX3W7X/v373ce2b9+uo0eP6tprr62FVwgAAAAAAADebMiQITKZTMrJydGzzz6rPXv2qKSkRHv27NGzzz6rnJwcmUwmDRkyxOhW4UW8ZgdtYGCg4uPja1yLjo5WdHS0JGny5MmaMWOGwsPDFR8fr/Xr1+uLL77QsmXL3PU9e/ZU37599dhjj+nhhx9Ws2bN9MILLygyMlI33niju27ChAlat26dkpOTddttt2nv3r1avHixpk2b5g57mzVrpokTJ2revHlq06aNIiIitHz5ch09elQTJkxwnyshIUHz58/X5MmTNX36dJWUlCg1NVUDBgxQt27d6uIlAwAAAAAAgBfx9fXVzTffrLVr12rnzp367LPP3GuVOypvvvlm+fr6GtUivJDXBLRna9iwYSopKdHChQu1YMECderUSS+//LJ7x2ulF198Uc8884z+8Ic/qLy8XH379tXMmTM9BjD/5je/0eLFi/Xss8/q3nvvVZs2bfTQQw/prrvu8jjXPffcI5fLpTfeeENHjhxRly5dtHjxYvdIBenkG3DRokV66qmnNH36dPn4+GjQoEF67LHH6vYFAQAAAAAAgNcYO3asJCkzM1Mul8t93GQy6eabb3avA5VMrqp/UuB1du3aJenkcGkAAAAAQMPkdDplt9uVn5+v4OBgRUVFyWKxGN0WgDpUVlamjRs3Ki8vT6GhoUpISGDnbBNyLpleg9tBCwAAAABAQ2Kz2ZSeni6Hw+E+ZrValZSUdNpRfwAaPl9fXw0bNszoNtAAeM1FwgAAAAAAaGxsNpvS0tIUHh6u2bNnKyMjQ7Nnz1Z4eLjS0tJks9mMbhEAYDACWgAAAAAA6oDT6VR6erpiY2OVkpKiiIgI+fv7KyIiQikpKYqNjVVGRoacTqfRrQIADERACwAAAABAHbDb7XI4HBo9erTMZs9vv81ms0aNGqXDhw/Lbrcb1CEAwBsQ0AIAAAAAUAfy8/MlSWFhYTWuh4eHe9QBAJomAloAAAAAAOpAcHCwJCk3N7fG9ZycHI86AEDTREALAAAAAEAdiIqKktVq1erVq1VRUeGxVlFRoTVr1igkJERRUVEGdQgA8AYEtAAAAAAA1AGLxaKkpCRlZWUpNTVVe/bsUUlJifbs2aPU1FRlZWVp3LhxslgsRrcKADCQyeVyuYxuAqe3a9cuSVJMTIzBnQAAAAAAzofNZlN6erocDof7WEhIiMaNG6f4+HgDOwNQl5xOp+x2u/Lz8xUcHKyoqCg+kGlCziXT86nrZgAAAAAAaMri4+PVq1cvghqgCanpgxmr1aqkpCQ+mEE1BLQAAAAAANSxY8eO6ZVXXlFhYaECAwP1zDPPKCgoyOi2ANQBm82mtLQ0de/eXe3atVNRUZECAgLUrFkzpaWlKTk5mZAWHghoAQAAAACoQ0lJSTp+/Lj7vsPh0N13360WLVooPT3dwM4A1Dan06n09HT5+/tr586d1dZbtGihjIwM9erVi130cOMiYQAAAAAA1JFTw9mqjh8/rqSkpHruCEBdstvtcjgcOn78uEwmk/r376+//OUv6t+/v0wmk44fP67Dhw/Lbrcb3Sq8CAEtAAAAAAB1oKCgwB3Odu/eXbNnz1ZGRoZmz56t7t27SzoZ0hYUFBjZJoBa9OOPP0qSTCaTlixZouuvv14HDhzQ9ddfryVLlshkMnnUAZJkcrlcLqObwOmdyxXfAAAAAADe47777tNPP/2k5s2bKz09XWbz//ZIVVRUaNy4cTpx4oTatWun1157zcBOAdSWmTNnas+ePerYsaOKi4urXSSsRYsW+v777xUZGamnnnrKwE5R184l02MGLQAAAAAAdaByZ+wtt9ziEc5Kktls1m9/+1u99dZb7KAFGpHKXfP79+9Xjx49dOWVV6q0tFR+fn46dOiQey7t6UafoGkioAUAAAAAoA40b95cZWVl+uijjzRixIhq6//85z/ddQAah5CQEOXm5kqSdu7cWeOFwirrgErMoAUAAADqmdPp1O7du7V161bt3r1bTqfT6JYA1IGJEydKkg4ePKjCwkKPtcLCQh06dMijDkDDN2jQIPftynmzNd2vWgewgxYAAACoRzabTenp6dVm0iUlJSk+Pt7AzgDUtl69erlvT5gwQe3bt9dtt92m5cuX6+DBgzXWAWjYioqK3LddLpdiYmIUHR2t3bt3u2eSnloHsIMWAAAAqCc2m01paWkKDw/3uJp7eHi40tLSZLPZjG4RQC2yWCyaMWOG+/7Bgwc1Z84cj3B2xowZslgsRrQHoA58++23kqTWrVtLOnmhqBUrVrjD2crjlXWAREALAAAA1Aun06n09HTFxsYqJSVFERER8vf3V0REhFJSUhQbG6uMjAzGHQCNTHx8vGbMmKG2bdt6HG/btq1mzJjBznmgkQoLC9OSJUt05ZVXKiwsTFdeeaWWLFmisLAwo1uDF2LEAQAAAFAP7Ha7HA6Hpk6dWuPV3EeNGqWZM2fKbrcrOjraoC4B1IX4+Hj16tVLdrtd+fn5Cg4OVlRUFDtngUbooosuknRy5+y8efM0atQohYeHKycnR/PmzXPvpK2sAyQCWgAAAKBe5OfnS9Jpd86Eh4d71AFoXCwWCx++AE1AQkKCli5dqubNm2v//v2aOXOme61du3Zq0aKFfvnlFyUkJBjYJbwNAS0AAABQD4KDgyVJubm5ioiIqLaek5PjUQegcSkrK9PGjRuVl5en0NBQJSQkyNfX1+i2ANQyX19fDRs2TGvXrnXfDg0NVV5enj755BMdP35cw4cP5/0PDwS0AAAAQD2IioqS1WrV6tWrNW3aNG3evNkd1AwaNEhr1qxRSEiIoqKijG4VQC1bunSpMjMzVVFR4XFs2LBhGjt2rIGdAagLle/rzMxMZWZmuo+bzWYNHz6c9z2qMblcLpfRTeD0KmeTxMTEGNwJAAAALpTNZtOcOXNOu84Fg4DGZ+nSpVq7dq2CgoKUmJiouLg47dixQytWrFBBQQFhDdCIsXO+aTuXTM/8qxUAAAAAasXevXslSSaTyeN45f3KdQCNQ1lZmTIzMxUUFKRXX31VF198sXbv3q2LL75Yr776qoKCgpSZmamysjKjWwVQBypHHEyYMEHDhg0jnMVpMeIAAAAAqAenBjXffPON+2rul19+ue6//35lZmYqMTGRb+CARmLjxo2qqKhQfHy8pk6dKofD4V6zWq266qqrtHnzZm3cuFHDhg0zsFMAdcHpdMput7v/vo+KipLFYjG6LXghAloAAACgHlQGNYmJifLz86t2NfcxY8ZowYIFBDVAI5KXlydJ2rRpk+Li4jR8+HD5+fmptLRUO3fu1ObNmz3qADQeNptN6enp1T6YSUpKYpwRqiGgBQAAAOpBZQATFxdX43rlcYIaoPEICQmRdDKU+f7777Vjxw73Wrt27dSuXTv99NNP7joAjYPNZlNaWppiY2M1depUhYWFKTc3V6tXr1ZaWpqSk5MJaeGBGbQAAABAPQgNDZUkj4CmqsrjlXUAGr6wsDBJksPhUFhYmGbPnq2MjAzNnj1bYWFh+umnnzzqADR8TqdT6enpio2NVUpKiiIiIuTv76+IiAilpKQoNjZWGRkZcjqdRrcKL0JACwAAANSDhIQEmc1mrVixQuXl5R5r5eXlWrlypcxmsxISEgzqEEBtKywsdN/es2ePHn/8cY0bN06PP/649uzZU2MdgIbNbrfL4XBo9OjRMps9Yzez2axRo0bp8OHDstvtBnUIb0RACwAAANSDyis5FxQUaNKkSdq8ebOOHDmizZs3a9KkSSooKOAKz0AjUzV4PX78uMda1fsEtEDjkZ+fL+n0O+PDw8M96gCJGbQAAABAvRk7dqwkKTMzUwsWLHAfN5vNGj58uHsdQOMQGBjocd9sNqtTp07Kzs5WRUXFaesANFzBwcGSpNzcXEVERFRbz8nJ8agDJAJaAAAAoF6NHTtWiYmJ2rhxo/Ly8hQaGqqEhAR2zgKN0IkTJ9y3r7jiCt1+++0KDw9XTk6O3nrrLX311VfV6gA0bFFRUbJarVq9erVSUlI8xhxUVFRozZo1CgkJUVRUlIFdwtuYXC6Xy+gmcHq7du2SJMXExBjcCQAAAADgXIwZM8a9U9ZqtcrhcLjXQkJCdPjwYUknd9auXLnSkB4B1D6bzaa0tDTFxsZq1KhR7g9m1qxZo6ysLCUnJys+Pt7oNlHHziXTYwctAAAAAAB1oOoYg7CwMN18881q1qyZTpw4oZ07d7oD2qp1ABq++Ph4JScnKz09XTNnznQfDwkJIZxFjQhoAQAAAACoA2azWRUVFTKbzcrNzVVWVpZ7LSQkxGMdQOMSHx+vXr16yW63Kz8/X8HBwYqKipLFYjG6NXghAloAAAAAAOrA888/r6lTp6qiokKPPPKIvvjiC/fs6W7duik5OdldB6DxsVgsio6ONroNNAAEtAAAAAAA1IH27du7b1eGsb9WB6DxcDqd7KDFWSGgBQAAAACgjsyYMUNz5sw54zqAxsdmsyk9Pd3j4oBWq1VJSUnMoEU1DLoBAAAAAKAOOJ1OpaenKy4uTs8//7x71qzZbNbzzz+vuLg4ZWRkyOl0GtwpgNpks9mUlpam8PBwzZ49WxkZGZo9e7bCw8OVlpYmm81mdIvwMgS0AAAAAADUAbvdLofDodGjRyssLEwrV67UqlWrtHLlSoWFhWnUqFE6fPiw7Ha70a0CqCWVH8zExsZq2rRp2rt3r9566y3t3btX06ZNU2xsLB/MoBpGHAAAAAAAUAfy8/MlSWFhYTWuh4eHe9QBaPgqP5iJjIzUuHHjVFFR4V5bunSprrnmGvcHM1xADJUIaAEAAAAAqAPBwcGSpNzcXEVERFRbz8nJ8agD0PBVfuCydetWBQUFKTExUXFxcdqxY4dWrFihrVu3etQBEiMOAAAAAACoE1FRUbJarVq9erXHLjpJqqio0Jo1axQSEqKoqCiDOgRQ2wICAiRJLVu21Ouvv66BAwcqODhYAwcO1Ouvv66WLVt61AESO2gBAAAAAKgTFotFSUlJSktLU2pqqnr06CE/Pz+VlpZq586dysrKUnJysiwWi9GtAqgl33//vSSpXbt2cjqd2rBhg/Ly8hQaGqpBgwapbdu2Ki4u1vfff6/u3bsb3C28BQEtAAAAAAB1JD4+XjfffLPWrl2rHTt2eKwNHz5c8fHxBnUGoC44HA5JJ4PaO+64w2MtPT29Wh0gMeIAAAAAAIA6Y7PZtHbt2hrX1q5dK5vNVs8dAahLoaGhtVqHpoGAFgAAAACAOuB0OjVnzhz3/VatWumee+5Rq1at3MfmzJkjp9NpRHsA6sANN9zgvt2iRQv17t1b1113nXr37q0WLVrUWAcw4gAAAAAAgDrwySefuG+/9tprateunSTpxhtv1E8//aT77rvPXTdgwAAjWgRQyzZt2uS+XVJSou3bt7vvm0wmj7oRI0bUa2/wXuygBQAAAACgDsyfP1/SyZ2zleFspXbt2rmv5l5ZB6Dh++9//+u+7XK5PNaq3q9aBxDQAgAAAABQB8rLyyVJ119/fY3r1157rUcdgIavMoTt0KGDli1bpqSkJA0ePFhJSUlatmyZ2rdv71EHSIw4AAAAAACgTjRr1kwnTpxQZmamfv/738ts/t8eqYqKCm3YsMFdB6BxCA8P1969e+VwOGSxWDRs2DD3Wnl5uRwOh7sOqERACwAAAABAHXjhhRd0//33q6KiQrNmzdI111wjPz8/lZaW6l//+pcqKircdQAah6ioKL3//vs6ceKEJk2apDFjxiguLk47duzQypUrVVpa6q4DKhHQAgAAAABQB6xWq8xmsyoqKvT111/r66+/rlZjNptltVoN6A5AXag6b7qgoEALFiz41TqAGbQAAAAAANSR6dOnX9A6gIYlKipKVqtVoaGhNa6HhoYqJCSEHbTwQEALAAAAAEAdcDqdSk9PV2hoqEwmk8eayWRSaGioMjIy5HQ6DeoQQG2zWCxKSkrS4cOHFRsbqyFDhmjgwIEaMmSIYmNjdfjwYY0bN04Wi8XoVuFFGHEAAAAAAEAdsNvt7gsCBQUFKTEx0T2LcsWKFcrLy3PXRUdHG9kqgFoUHx+v5ORkpaenKysry308JCREycnJio+PN7A7eCMCWgAAAAAA6kBlOBsYGKhXXnlF3377rXbv3q2LL75Yr7zyiu6//34VFha66wA0HvHx8erVq5fsdrvy8/MVHBysqKgods6iRgS0AAAAAADUgW+//VbSyZmU06ZN8whirVarIiMj9d///lfffvutBgwYYFCXAOqKxWJhdzzOCgEtAAAAUM+cTic7aoAm5D//+Y9iYmLk7++vY8eOqVWrVgoKCtJ///tfo1sDAHgBAloAAACgHtlsNqWnp1fbSZeUlMRMOqCRCQkJcd/etWuX+/aRI0dOWwcAaHrMRjcAAAAANBU2m01paWkKDw/X7NmzlZGRodmzZys8PFxpaWmy2WxGtwigFv3mN7+p1ToAQOPEDloAAACgHjidTqWnpys2NlYpKSkym0/ulYiIiFBKSopSU1OVkZGhXr16Me4AaCTy8vLctwMCAnTttdcqNDRUeXl52rJli4qKiqrVAQCaHnbQAgAAAPXAbrfL4XBo9OjR7nC2ktls1qhRo3T48GHZ7XaDOgRQ2zZs2CBJat26tYqLi5WZmanFixcrMzNTxcXFat26tUcdAKBpYgctAAAAUA/y8/MlSWFhYTWuh4eHe9QBaPiKi4slnZwx+8orr2jTpk3Ky8tTaGiobrzxRs2aNUtHjx511wEAmiYCWgAAAKAeBAcHS5Jyc3N16aWXym63Kz8/X8HBwYqKilJOTo5HHYCGz2q16siRI9q7d6+ef/55jRo1SjfccINycnL0/PPP65tvvnHXAWh8Tpw4oaVLl+qHH37QxRdfrLFjx6pZs2ZGtwUvZHK5XC6jm8DpVV7pMyYmxuBOAAAAcCGcTqcmT56sgIAAFRUVyeFwuNesVqsCAgJ07NgxzZ07lxm0QCNRXFys8ePHS5KCgoJUUFDgXmvdurWOHj0qSVqyZIlatmxpQIcA6spzzz2nTz/9tNrxXr166eGHHzagI9S3c8n0mEELAAAA1AOLxaLevXtr3759Ki0t1cSJE7VgwQJNnDhRpaWl2rdvn66++mrCWaARadmypUJDQyXJI5yV5A5nQ0NDCWeBRuZ04awkffrpp3ruuefquSN4O0YcAAAAAPXA6XRq+/btuvTSS1VQUKD58+e716xWqy699FL9+9//1u23305ICzQiY8eO1Zw5c864DqDxOHHihDuc7dGjh2699VaFhYUpNzdXq1at0s6dO/Xpp5/qxIkTjDuAGztoAQAAgHpgt9vlcDh011136eWXX9asWbM0ZcoUzZo1S/PmzdOdd96pw4cPy263G90qgFridDqVnp6uuLg4LVq0SGFhYWrZsqXCwsK0aNEixcXFKSMjQ06n0+hWAdSS9PR0SSd3xz/66KOKiIiQv7+/IiIi9Oijj7p31VfWARIBLQAAAFAv8vPzJUlhYWGyWCyKjo5W3759FR0dLYvFovDwcI86AA1f5QczkZGReuSRR5Sbm6vi4mLl5ubqkUceUUREBB/MAI3Mvn37JEm///3v5XK5tHv3bm3dulW7d++Wy+VSYmKiRx0gMeIAAAAAqBfBwcGSpNzcXEVERFRbz8nJ8agD0PBVfuDy1ltvyc/Pz2OtsLBQy5cv96gD0PBVzpTesmWLli5dWu2ioGFhYR51gERACwAAANSLqKgoWa1WrV69WikpKTKb//fDbBUVFVqzZo1CQkIUFRVlYJcAalNQUJD7dkxMjEaPHu2eRbl69Wrt2LGjWh2Ahm3YsGH64osvtGPHDsXGxmrq1Knu9/0777yjrKwsdx1QiYAWAAAAqAcWi0VJSUlKS0tTamqqRo0apfDwcOXk5GjNmjXKyspScnIyFwgDGpHK2bItW7bUlClT9MEHH+iTTz5RaGiopkyZovvuu0/FxcXMoAUaka5du7pvf/755zpx4oSCg4OVn5/vMc6kah1AQAsAAADUk/j4eCUnJys9PV0zZ850Hw8JCVFycrLi4+MN7A5AbasMY4qLizVu3DiPtaoXCLLb7erRo0d9tgagjuzdu9d92+l0avfu3aeti46Orq+24OUIaAEAAIB6FB8fr169eslutys/P1/BwcGKiopi5yzQyJlMJrlcrtPeB9A4nO1MaWZPoyoCWgAAAKCeWSwWds0ATUBkZKSkk+/5JUuW6LvvvnN/MHPppZdq/Pjxcjqd7joADV9AQID7ds+ePRUbGys/Pz+VlpYqKytLn332WbU6wPzrJQAAAAAA4FwdOHBA0skfc37hhRfk4+OjuLg4+fj46IUXXnDPnq2sA9DwZWdnS5L8/f01ffp0lZeXKzs7W+Xl5Zo+fbr8/f096gCJHbQAAAAAANSJw4cPu29/+eWX7qu3S5Kfn1+NdQAatm+++UaSVFJSorFjx3qsVZ09XVkHSOygBQAAAACgToSGhkqSunfvrvLyco+18vJydevWzaMOQMPXvHlz922TyeSxVvV+1TqAHbQAAAAAANSBhIQEZWRk6PPPP5ePj48qKirca2azWV988YVMJpMSEhIM7BJAbbrmmmv08ccfS5KWLFmi7Oxs9+zpTp06KSkpyV0HVGIHLQAAAAAAdcBsNsvX19d9f8SIEXrppZc0YsQI9zFfX1+ZzXxrDjQWBw8edN9+6KGHdOjQIV1xxRU6dOiQHnrooRrrAHbQAgAAAABQB3bv3q3S0lIFBweroKBA//jHP/SPf/xD0snwNjg4WPn5+dq9e7d73AGAhs3hcLhvFxQUaMGCBb9aB/AxHQAAAAAAdeCrr76SJE2ePFlvvPGGIiMj1aZNG0VGRuqNN97Qgw8+6FEHoOGrnCl94403KigoyGOtdevWGjRokEcdILGDFgAAAACAOrVy5Urt2bPHff/IkSMaP368IiIiDOwKQF1ISEjQ0qVL9cEHH8jpdHqsHT16VB9++KHMZjOzp+GBHbQAAAAAANSB6OhoSfIIZ6vau3evRx2Ahs/X11cBAQHucDYwMFCdOnVSYGCgJMnpdCogIMBjPjXADloAAAAAAOrAZZddVqt1ALxfSUmJCgoK3PcLCwtVWFjoUVNQUKCSkhL5+/vXd3vwUuygBQAAAACgDvz1r3+t1ToA3m/evHm1WoemgR20AAAAAADUgX379tVqHQDvd+jQIfftHj166NZbb1VYWJhyc3O1atUq7dy5s1odwA5aAAAAAADqwDfffFOrdQC834kTJyRJzZo106OPPqqIiAj5+/srIiJCjz76qJo1a+ZRB0gEtAAAAAAA1AuTyaSOHTvKZDIZ3QqAOtKqVStJJwPY0tJSj7XS0lJ3MFtZB0iMOAAAAAAAoF64XC7t37/f6DYA1KHAwED37XHjxqlr166Kjo7W7t279eWXX9ZYBxDQAgAAAAAAALVg2LBh+uKLLySd/FBm165d2rVrV411QCVGHAAAAAAAUE/atGljdAsA6lC3bt3k4/O//ZBt2rRRSEiIx3vfx8dH3bp1M6I9eCl20AIAAAAAUE+OHDlidAsA6liLFi1UWFgoqeb3fMuWLeu7JXg5dtACXsjpdGr37t3aunWrdu/eLafTaXRLAAAAAM5Rly5d3LeTk5M91qrer1oHoGGz2+0qLCxUv379ql0Q0GQyqV+/fiooKJDdbjeoQ3gjdtACXsZmsyk9PV0Oh8N9zGq1KikpSfHx8QZ2BgAAaovT6ZTdbld+fr6Cg4MVFRUli8VidFsAalm7du3ct9PS0jzWqt6vWgegYcvPz5ckffLJJ9XWXC6X+3hlHSAR0AJexWazKS0tTbGxsZo6darCwsKUm5ur1atXKy0tTcnJyYS0AAA0cHwYCzQd1157bY0hTU11ABqHoKCgWq1D08CIA8BLOJ1OpaenKzY2VikpKYqIiJC/v78iIiKUkpKi2NhYZWRkMO4AAIAGrPLD2PDwcM2ePVsZGRmaPXu2wsPDlZaWJpvNZnSLAGrRFVdcUat1ALxfRUVFrdahaSCgBbyE3W6Xw+HQ6NGjZTZ7vjXNZrNGjRqlw4cPM6cGAIAGig9jgabns88+q9U6AN7v008/9bjftWtX9evXT127dj1jHZo2AlrAS1TOnwkLC6txPTw83KMOAAA0LHwYCzQ9r7zyivt2mzZtPNaq3q9aB6Bh27Rpk8f9L7/8Up988om+/PLLM9ahaWMGLeAlgoODJUm5ubmKiIiotp6Tk+NRBwAAGhY+jAWanuPHj0uS/Pz89Oqrr1a7OODYsWNVVlbmrgPQ8FUdXRAYGKjo6Gg1a9ZMJ06c0O7du1VYWFitDiCgBbxEVFSUrFarVq9erZSUFI+dNRUVFVqzZo1CQkIUFRVlYJcAAOB88WEs0HQ5nU6ZTCZFR0e7j1VUVDDSBGiETCaTXC6XpJMf0mzfvt295uPj41EHVGLEAeAlLBaLkpKSlJWVpdTUVO3Zs0clJSXas2ePUlNTlZWVpXHjxslisRjdKgAAOA9VP4w9ddcMH8YCjZOfn5+kkwHt008/7fFv/Kefftr9/4LKOgANX9UPYsrLyz3Wqt6vWgeYXJWxPrzSrl27JEkxMTEGd4L6YrPZlJ6eLofD4T4WEhKicePGKT4+3sDOAADAhbLZbEpLS1NsbKxGjRql8PBw5eTkaM2aNcrKylJycjJ/3wONiMPh0P333/+rda+++qqsVms9dASgri1YsECbN2/+1bpBgwbp3nvvrYeOYJRzyfQYcQB4mfj4ePXq1avafCp2zgIA0PDFx8crOTlZ6enpmjlzpvt4SEgI4SzQCFmtVpnN5jPOmjSbzYSzQCNy6oVAL7QOTQMBLeCFLBYLP+4AAEAjxYexQNMybNgwrV279ozrABqPyy67TBs3bpSfn59KS0urrVcev+yyywzoDt6KgBYAAACoZ3wYCzQNZWVl7nC2VatWKi4ulsvlkslkUsuWLXXs2DGtXbtWiYmJ8vX1NbhbALWhckd8aWmpAgMDdcUVV6h58+b65Zdf9NVXX6mwsNCjDpAIaAEAAAAAqBPvvvuupJMfylSGs5LkcrlUXFwsi8Uip9Opd999VyNHjjSwUwC1pfKioGazWQ6HQ//+97/da2azWaGhoXK5XFwUFB4IaAEAAAAAqAOffvqpJMnpdCooKEiJiYmKi4vTjh07tGLFChUUFLjrCGiBxsFisSgpKUlpaWnq0aOHLrroIpWVlcnX11c//vijdu7cqeTkZEYbwQMBLQAAAFDPnE4nM2iBJqByx2yzZs30+uuvy8fn5LfgAwcO1IABAzR+/HidOHHCXQegcah6UdDPPvvMfZyLguJ0CGgBAACAemSz2ZSeni6Hw+E+ZrValZSUxDdsQCPTqlUrSSc/lKlJ5fHKOgD/k5eXp+LiYqPbOG9Wq1XTp09Xdna2ioqKFBAQoE6dOslsNmvfvn1Gt3feWrZsqdDQUKPbaHQIaAEAAIB6YrPZlJaWptjYWE2dOlVhYWHKzc3V6tWrlZaWxq4a4DQaalBTeeGv8vJyTZgwQYMHD1aXLl309ddfa8OGDSovL3fXNcTAhqAGdaWwsFCTJ09md7kXMpvNWrhwoQIDA41upVExufjT7tV27dolSYqJiTG4EwAAAFwIp9OpyZMnKzw8XCkpKTKbze61iooKpaamKjc3V3PnzmXcAVBFYWGh7r77boIaL0RQg7rUUD+YOdXBgwc1d+5cPfTQQ2rfvr3R7VwwPpg5e+eS6bGDFgAAAKgHdrtdDodDU6dO9QhnpZMhx6hRozRz5kzZ7XZFR0cb1CXgfQIDAzVv3rwGGdSUl5friSeekMViUXl5uUfIbDabZbFY5HQ69ec//9k9n7YhadmyJeEs6kxjCwHbt2+vzp07G90GvFTD+xsAAAAAaIDy8/MlSWFhYTWuh4eHe9QB+J+GHNQMGzZMa9euVWBgoH7zm99o165diomJ0ffff6/CwkINHz5cERERRrcJADCQ+ddLAAAAAFyo4OBgSVJubm6N6zk5OR51ABqHsWPHavjw4Tp27Jj7x1137dqlY8eOafjw4Ro7dqzBHQIAjEZACwAAANSDqKgoWa1WrV69WidOnFBmZqYWL16szMxMnThxQmvWrFFISIiioqKMbhVALRs7dqyWLVumYcOGSTq5q3bZsmWEswAASYw4AAAAAOqFxWJRUlKS5syZozvuuMNjLT09XZI0Y8YMLhAGNFK+vr7q16+fMjMz1a9fP/n6+hrdEgDAS7CDFgAAAKgne/fulSSZTCaP45X3K9cBAADQdLCDFgAAAKgHZWVlyszMVFBQkF599VV98803ys/PV3BwsC6//HLdf//9yszMVGJiIjvrAAAAmhB20AIAAAD1YOPGjaqoqFBiYqL8/PwUHR2tvn37Kjo6Wn5+fhozZowqKiq0ceNGo1sFAABAPSKgBQAAAOpBXl6eJCkuLq7G9crjlXUAAABoGghoAQAAgHoQGhoqSdqxY0eN65XHK+sAAADQNBDQAgAAAPUgISFBZrNZK1asUHl5ucdaeXm5Vq5cKbPZrISEBIM6BAAAgBEIaAEAAIB64Ovrq2HDhqmgoECTJk3S5s2bdeTIEW3evFmTJk1SQUGBhg0bxgXCAAAAmhgfoxsAAAAAmoqxY8dKkjIzM7VgwQL3cbPZrOHDh7vXAQAA0HQQ0AIAAAD1aOzYsUpMTNTGjRuVl5en0NBQJSQksHMWAACgiSKgBQAAAOpZ5bgDAAAAgBm0AAAAAAAAAGAQrwpot2zZojvuuENXX321unbtqhtuuEHPPPOMioqKPOo+/PBDDR8+XDExMUpISNA777xT7VylpaV67rnn1KdPH/Xo0UN33nmn9u3bV63uu+++05133qkePXqoT58+Sk1NVWlpabW6VatWKSEhQTExMRo+fLg++uijajVFRUV67LHHdNVVV6lnz5566KGHdPjw4Qt4RQAAAAAAAAA0Zl4V0B49elTdunXTk08+qcWLF+vOO+/U3//+d02ZMsVd8+mnn+rBBx9Ujx49tHDhQg0ZMkSPP/64NmzY4HGup556SqtWrdK0adM0b948lZaWavz48R5hb0FBgZKSklRWVqZ58+Zp2rRp+tvf/qZnn33W41zvvvuunnjiCQ0ZMkQLFy5Ujx499OCDD2rnzp0edVOnTtW2bds0a9YszZkzR9nZ2brnnntUXl5e+y8WGjWn06ndu3dr69at2r17t5xOp9EtAQCAWlRUVKTp06dr/Pjxmj59erUNCQAAAGg6vGoG7YgRIzzux8fHy8/PT0888YT7AgqvvfaaunXrpj/96U+SpKuvvlq5ubmaO3euBg8eLEn68ccf9fbbb+uPf/yjbrnlFklSTEyMrrvuOq1YsUL33HOPJGnFihUqLi7Wyy+/rNatW0s6GYw9+eSTmjhxokJDQyVJc+fO1U033aSpU6e6H3Pv3r165ZVXtHDhQknSZ599pq1bt2rx4sXq27evJKlTp04aOnSoNm3apKFDh9bdC4dGxWazKT09XQ6Hw33MarUqKSlJ8fHxBnYGAABqw913362CggL3/eLiYt11110KCgrSokWLDOwMAAAARvCqHbQ1qQxOy8rKVFpaKpvN5g5iKw0dOlTfffedDhw4IEnaunWrKioqPOpat26tPn366OOPP3Yf+/jjj9W7d2/3Y0jSkCFDVFFRoW3btkmScnNztX//fg0ZMqTaY27fvt09DuHjjz9WYGCg+vTp467p3LmzunTp4vGYwJnYbDalpaUpPDxcs2fPVkZGhmbPnq3w8HClpaXJZrMZ3SIAALgAp4azVRUUFOjuu++u544AAABgNK8MaJ1Op06cOKHdu3frlVde0fXXX68OHTooJydHZWVl6ty5s0f9pZdeKknuGbP79u1T27ZtFRQUVK2u6hzaffv2VTtXYGCgrFarx7mkk7thTz1XWVmZcnNz3XWdOnWSyWTyqOvcuXONs2+BUzmdTqWnpys2NlYpKSmKiIiQv7+/IiIilJKSotjYWGVkZDDuAACABqqoqMgdznbr1s3jw9hu3bpJOhnSMu4AAACgafGqEQeVrrvuOuXl5UmS+vXrp7S0NEly/4M2MDDQo77yfuV6YWGhAgICqp03MDDQY8dCYWFhtXNJUlBQkLvuQh8zKChIX3755Rmf769xuVw6fvz4BZ0D3u/rr7+Ww+HQpEmT9Msvv1RbHzp0qP785z9r586d6tKliwEdAgCACzFz5kxJkr+/v6ZMmaJvvvlG//rXv9S6dWtNmTJFDz74oEpKSjRz5kw988wzBncLoC5U/jv/l19+4Xs8oIngfd90uVyuahs5T8crA9oFCxaopKRE3377rV577TVNmjRJb775ptFtGaasrExff/210W2gjn311VeSTs6hq+n3+8SJEx51AACgYamcL3/ppZdq+vTpHhsHgoKC1LlzZ+3evVsOh4N/+wGN1I8//ihJys7OVklJicHdAKgPvO+bNj8/v7Oq88qANioqSpLUs2dPxcTEaMSIEdq8ebMuu+wySar2Y1+FhYWS5B5pEBgYqGPHjlU7b2FhocfYg8DAwBp/hKygoMBdV/lrUVGRrFbrGR+z8k13unOdL19fX/dzR+O2du1atWzZssbf72+//VaSdMUVV7CDFgCABqhVq1bKz8/Xl19+qR49eujmm29Whw4ddODAAa1bt047d+501/F3PdA4+fv7Szo5Qq9jx47GNgOgXvC+b7oqc5yz4ZUBbVWRkZHy9fVVTk6Orr/+evn6+mrfvn3q16+fu6ZyxmvlPNnOnTvrp59+qhaOnjpztqb5sEVFRXI4HB7nqulr9+3bJ19fX4WFhbnrtm/fXm37cnZ2tiIiIi7oNTCZTGrRosUFnQPer0ePHrJarVq/fr1SUlJkNv9vRHRFRYXWr1+vkJAQ9ejRQxaLxcBOAQDA+Rg/frxeeOEFSdLkyZPdI7PatGmjjh07asKECe46/u0HNE7Nmzd3/8r7HGgaeN83XWc73kDy0ouEVfX555+rrKxMHTp0kJ+fn+Lj47Vx40aPmvXr1+vSSy9Vhw4dJEl9+/aV2WzWpk2b3DUFBQXaunWr+vfv7z7Wv39//etf/3LvhpWkDRs2yGw2q0+fPpKksLAwdezYURs2bKj2mL1793ZvVe7fv78KCgq0fft2d012dra++uorj8cETsdisSgpKUlZWVlKTU3Vnj17VFJSoj179ig1NVVZWVkaN24c4SwAAA1Uq1at3LcnTJigRx99VDt37tSjjz7qDmdPrQMAAEDj51U7aB988EF17dpVkZGRat68uex2uxYvXqzIyEgNHDhQknTfffdp3LhxmjVrloYMGSKbzabMzEz3bgRJuuiii3TLLbcoNTVVZrNZoaGhmj9/vgICApSYmOiuS0xM1NKlS/XAAw9o4sSJysvLU2pqqhITExUaGuqumzx5smbMmKHw8HDFx8dr/fr1+uKLL7Rs2TJ3Tc+ePdW3b1899thjevjhh9WsWTO98MILioyM1I033lgPrx4ag/j4eCUnJys9Pd19IRFJCgkJUXJysuLj4w3sDgAAXIiqmwKkkz/2Nnv27F+tAwAAQOPmVQFtt27dtH79ei1YsEAul0vt27fXrbfeqgkTJrh3qvbq1Uvz5s3Tiy++qLfffluXXHKJnnrqKQ0ZMsTjXDNnzlTLli2Vlpam4uJixcbG6s0331RAQIC7JigoSOnp6frzn/+sBx54QC1bttQtt9yiadOmeZxr2LBhKikp0cKFC7VgwQJ16tRJL7/8snr27OlR9+KLL+qZZ57RH/7wB5WXl6tv376aOXOmfHy86mWGl4uPj1evXr1kt9uVn5+v4OBgRUVFsXMWAIAGLjg4WJJ0++23a/369Tp69KjH2pAhQ/TWW2+56wAAANA0mFwul8voJnB6u3btkiTFxMQY3AkAAAAuhNPp1OTJkxUeHq7k5GTt3bvX/WFsRESE0tLSlJubq7lz5/LBLNBI7du3Tw8//LCee+45j2ucAGi8eN83XeeS6Xn9DFoAAACgMag6bz4tLU0+Pj6Ki4uTj4+P0tLSmDcPAADQRPGz9wAAAEA9Yd48AAAATkVACwAAANQj5s0DAACgKgJaAAAAoJ5ZLBZFR0cb3QYAAAC8ADNoAQAAAAAAAMAgBLQAAAAAAAAAYBACWgAAAAAAAAAwCAEtAAAAAAAAABiEgBYAAAAAAAAADEJACwAAAAAAAAAGIaAFAAAAAAAAAIMQ0AIAAAAAAACAQQhoAQAAAAAAAMAgBLQAAAAAAAAAYBACWgAAAAAAAAAwCAEtAAAAAAAAABiEgBYAAAAAAAAADEJACwAAAAAAAAAGIaAFAAAAAAAAAIMQ0AIAAAAAAACAQQhoAQAAAAAAAMAgBLQAAAAAAAAAYBACWgAAAAAAAAAwCAEtAAAAAAAAABiEgBYAAAAAAAAADEJACwAAAAAAAAAGIaAFAAAAAAAAAIP4GN0AAAAXKi8vT8XFxUa3gSpatmyp0NBQo9sAAAAAAK9HQAsAaNAKCws1efJkuVwuo1tBFWazWQsXLlRgYKDRrQAAAACAVyOgBQA0aIGBgZo3b16D30F78OBBzZ07Vw899JDat29vdDsXrGXLloSzqFPsnPc+7JwHAAA4PwS0AIAGrzEFAu3bt1fnzp2NbgPwauyc907snAcAADg/BLQAAABoUNg5753YOQ8AAHB+CGgBAADQ4LBzHgAAAI2F2egGAAAAAAAAAKCpIqAFAAAAAAAAAIMQ0AIAAAAAAACAQQhoAQAAAAAAAMAgBLQAAAAAAAAAYBACWgAAAAAAAAAwCAEtAAAAAAAAABiEgBYAAAAAAAAADEJACwAAAAAAAAAGIaAFAAAAAAAAAIMQ0AIAAAAAAACAQQhoAQAAAAAAAMAgBLQAAAAAAAAAYBACWgAAAAAAAAAwCAEtAAAAAAAAABiEgBYAAAAAAAAADEJACwAAAAAAAAAGIaAFAAAAAAAAAIMQ0AIAAAAAAACAQQhoAQAAAAAAAMAgBLQAAAAAAAAAYBACWgAAAAAAAAAwCAEtAAAAAAAAABiEgBYAAAAAAAAADEJACwAAAAAAAAAGIaAFAAAAAAAAAIMQ0AIAAAAAAACAQQhoAQAAAAAAAMAgBLQAAAAAAAAAYBACWgAAAAAAAAAwCAEtAAAAAAAAABiEgBYAAAAAAAAADOJzvl+4YMECjRgxQqGhobXZD3DB8vLyVFxcbHQbqKJly5b8vwIAAAAAAKAG5x3Qvvjii3rxxRfVq1cvjRgxQgkJCWrVqlVt9gacs8LCQk2ePFkul8voVlCF2WzWwoULFRgYaHQrAAAAAAAAXuW8A9qPPvpI69at07p16/T444/rz3/+s6677jqNGDFC/fr1k8Viqc0+gbMSGBioefPmNYodtAcPHtTcuXP10EMPqX379ka3c0FatmxJOAsAAAAAAFCD8w5oQ0NDdffdd+vuu+/W3r17tW7dOr377rt67733FBwcrKFDh2r48OHq3r17bfYL/KrG9qP07du3V+fOnY1uAwAAAAAAAHWgVi4SFhERoeTkZH344YdatmyZevXqpbfeekuJiYlKSEjQq6++qp9//rk2HgoAAAAAAAAAGo1aCWgl6cSJE3r33Xe1aNEiffTRR7JYLOrfv78uv/xyvfrqqxo4cKA2b95cWw8HAAAAAAAAAA3eeY84kCSXy6Vt27Zp3bp1ev/991VcXKwrrrhCM2bM0M0336y2bdtKkg4fPqzk5GQ9++yzGjRoUK00DgAAAAAAAAAN3XkHtE8//bTWr1+vn3/+WVarVYmJiRo5cqQuv/zyarUhISG65ZZb9PDDD19QswAAAAAAAADQmJx3QLtq1SoNHDhQI0eO1DXXXCOTyXTG+ri4OD3zzDPn+3AAAAAAAAAA0OicV0BbVlamRYsWqX379rrooovO6ms6dOigDh06nM/DAQAAAAAAAECjdF4XCTObzRo3bpw2bdpU2/0AAAAAAAAAQJNxXgGtxWLRJZdcotLS0truBwAAAAAAAACajPMKaCXpjjvu0N/+9jcdPXq0FtsBAAAAAAAAgKbjvC8SVlFRIT8/Pw0aNEgJCQlq3769mjdv7lFjMpk0fvz4C+0RAAAAAAAAABql8w5on3vuOfftt99+u8YaAloAAAAAAAAAOL3zDmg/+OCD2uwDAAAAAAAAAJqc8w5o27dvX5t9AAAAAAAAAECTc94XCQMAAAAAAAAAXJjz3kErSXa7XcuWLdNXX32loqIiVVRUeKybTCa9//77F9QgAAAAAAAAADRW572D1maz6dZbb9U///lPhYSEKDc3V2FhYQoJCdGhQ4fUokULXXnllbXZKwAAAAAAAAA0Kucd0M6dO1dhYWHasGGDnn76aUnSxIkTtXz5cq1YsUJ5eXkaPHhwrTUKAAAAAAAAAI3NeQe0X331lW655Ra1atVKFotFktwjDrp3764xY8bopZdeqp0uAQAAAAAAAKAROu+A1mKxqGXLlpKkwMBA+fj46Oeff3avh4WF6bvvvrvwDgEAAAAAAACgkTrvgDY8PFz79++XdPJiYJ07d/a4INg///lPtWvX7oIbBAAAAAAAAIDG6rwD2muvvVbvvvuuysvLJUl33nmnNm3apBtvvFE33nijPvzwQ40ZM6bWGgUAAAAAAACAxsbnfL/w/vvv17hx49zzZ0eNGiWz2axNmzbJYrFo0qRJGj16dK01CgAAAAAAAACNzXkHtL6+vgoODvY4NmLECI0YMeKCmwIAAAAAAACApuC8RxwAAAAAAAAAAC7MWe+gHTdu3Dmf3GQyKT09/Zy/DgAAAAAAAACagrMOaF0u1zmf/Hy+BgAAAAAAAACairMOaJcuXVqXfQAAAAAAAABAk8MMWgAAAAAAAAAwyFnvoD2TY8eO6dixY6qoqKi2dskll9TGQwAAAAAAAABAo3NBAe1bb72lJUuWKDc397Q1X3/99YU8BAAAAAAAAAA0Wuc94mD58uX605/+pPDwcE2dOlUul0tJSUm699571a5dO0VFRWn27Nm12SsAAAAAAAAANCrnHdAuW7ZMffv21aJFi/S73/1OknTttddq2rRpWr9+vYqLi3X06NHa6hMAAAAAAAAAGp3zDmhzcnJ03XXXSZJ8fX0lSWVlZZKkgIAA3XLLLXrrrbdqoUUAAAAAAAAAaJzOO6ANCAiQ0+mUJLVq1Ur+/v768ccf3estW7bUTz/9dOEdAgAAAAAAAEAjdd4B7eWXXy673e6+3717dy1fvlx5eXn64YcftHLlSnXs2LE2egQAAAAAAACARum8A9rhw4frm2++UWlpqSRp8uTJ+u677zRgwABdf/31ys7O1tSpU2urTwAAAAAAAABodHzO9wt/+9vf6re//a37flxcnN599119+OGHslgs6tOnjzp16lQrTQIAAAAAAABAY3TeO2hP9d1332nt2rXKzs6W0+mU1WqtrVMDAAAAAAAAQKN0Tjtoly1bpqVLl2r58uVq06aN+/iHH36oKVOmqKysTJJkMpm0bNkyrVy50qMOAAAAAAAAAPA/57SD9sMPP1RYWJhH6FpeXq6ZM2fKYrHomWee0bp16zR9+nQdOnRIr7/+eq03DAAAAAAAAACNxTkFtN9++6169Ojhccxms+nIkSNKSkrSqFGjdPnll+uee+7R4MGDtWXLltrsFQAAAAAAAAAalXMKaI8ePaqLLrrI49j27dtlMpk0aNAgj+OxsbH64YcfLrxDAAAAAAAAAGikzimgbdeunX766SePY59++qmaN2+uqKgoj+N+fn7y9fW98A4BAAAAAAAAoJE6p4C2a9euWrNmjY4dOyZJ+uabb7Rr1y7169dPPj6e1xvbt29ftd22AAAAAAAAAID/8fn1kv954IEHdMsttyghIUGXXXaZdu/eLZPJpHvvvbda7ebNm3X11VfXWqMAAAAAAAAA0Nic0w7ayMhIpaenKzo6WocPH1b37t21YMECde3a1aPOZrPJ399fgwcPrtVmAQAAAAAAAKAxOacdtNLJi38tWLDgjDXx8fFat27deTcFAAAAAAAAAE3BOe2gBQAAAAAAAADUHgJaAAAAAAAAADAIAS0AAAAAAAAAGISAFgAAAAAAAAAMQkALAAAAAAAAAAYhoAUAAAAAAAAAgxDQAgAAAAAAAIBBCGgBAAAAAAAAwCAEtAAAAAAAAABgEAJaAAAAAAAAADAIAS0AAAAAAAAAGISAFgAAAAAAAAAMQkALAAAAAAAAAAYhoAUAAAAAAAAAgxDQAgAAAAAAAIBBCGgBAAAAAAAAwCAEtAAAAAAAAABgEK8KaN977z3dd9996t+/v3r06KERI0bo7bfflsvl8qhbtWqVEhISFBMTo+HDh+ujjz6qdq6ioiI99thjuuqqq9SzZ0899NBDOnz4cLW6rKwsjRkzRt26ddN1112nBQsWVHs8l8ulBQsWaMCAAerWrZvGjBmjnTt3VjtXXl6eJk+erJ49e+qqq67S448/rmPHjl3YiwIAAAAAAACg0fKqgHbJkiXy9/fXI488otdee039+/fXE088oVdeecVd8+677+qJJ57QkCFDtHDhQvXo0UMPPvhgtcB06tSp2rZtm2bNmqU5c+YoOztb99xzj8rLy90133//vSZMmCCr1ar58+crKSlJc+fO1RtvvOFxroULF2ru3LkaP3685s+fL6vVqrvuuku5ubnumrKyMt19993av3+/0tLSNGvWLG3dulXJycl182IBAAAAAAAAaPB8jG6gqtdee01t2rRx3+/du7eOHj2qN998U/fff7/MZrPmzp2rm266SVOnTpUkXX311dq7d69eeeUVLVy4UJL02WefaevWrVq8eLH69u0rSerUqZOGDh2qTZs2aejQoZKkxYsXKzg4WM8//7z8/PzUu3dvHTlyRK+//rrGjh0rPz8/nThxQvPnz9ddd92l8ePHS5Li4uI0ePBgLV68WLNmzZIkbdy4Ud98843Wr1+vzp07S5ICAwM1YcIEffHFF+rWrVs9vIIAAAAAAAAAGhKv2kFbNZyt1KVLFx07dkzHjx9Xbm6u9u/fryFDhnjUDB06VNu3b1dpaakk6eOPP1ZgYKD69OnjruncubO6dOmijz/+2H3s448/1g033CA/Pz+PcxUWFuqzzz6TdHIEwrFjxzwe08/PT4MGDap2rsjISHc4K0l9+vRR69attWXLlvN9SQAAAAAAAAA0Yl4V0NZkx44dCg0NVatWrbRv3z5JJ3fDVnXppZeqrKzMPXJg37596tSpk0wmk0dd586d3ec4fvy4fvjhB49AtbLGZDK56yp/PbXu0ksv1aFDh/TLL7+4606tMZlM6tSpk/scAAAAAAAAAFCVV404ONWnn36q9evX6+GHH5YkFRQUSDo5OqCqyvuV64WFhQoICKh2vqCgIH355ZeSTl5ErKZz+fn5yd/f3+Ncfn5+atasWbXHdLlcKigoUPPmzc/4mJXnOl8ul0vHjx+/oHOg4akM/3/55Rd+/4EmgPc80PTwvgeaHt73QNPD+77pcrlc1TaPno7XBrQ//vijpk2bpvj4eI0bN87odgxVVlamr7/+2ug2UM9+/PFHSVJ2drZKSkoM7gZAXeM9DzQ9vO+Bpof3PdD08L5v2qqOVT0TrwxoCwsLdc8996h169aaN2+ezOaTkxiCgoIkndz9arVaPeqrrgcGBrrfAFUVFBS4ayp3u1bupK1UWlqqkpISj3OVlpbqxIkTHrtoCwsLZTKZPOqOHTtW42NefPHF5/Eq/I+vr68uu+yyCzoHGh5/f39JJ0d6dOzY0dhmANQ53vNA08P7Hmh6eN8DTQ/v+6br22+/Petarwtof/nlF02cOFFFRUVauXKlx9iAyhmvp8573bdvn3x9fRUWFuau2759e7WtxNnZ2YqIiJAktWjRQhdffHG1+bDZ2dlyuVzu81f+mp2draioKI/HvOSSS9S8eXN33d69ez3O5XK5lJ2d7XGxsvNhMpnUokWLCzoHGp7KP1vNmzfn9x9oAnjPA00P73ug6eF9DzQ9vO+brrMdbyB52UXCysvLNXXqVO3bt0+LFi1SaGiox3pYWJg6duyoDRs2eBxfv369evfu7d423L9/fxUUFGj79u3umuzsbH311Vfq37+/+1j//v31wQcfqKyszONcgYGB6tmzpyQpNjZWrVq10nvvveeuKSsr06ZNm6qdy263a//+/e5j27dv19GjR3XttddewKsCAAAAAAAAoLHyqh20Tz75pD766CM98sgjOnbsmHbu3Oleu+KKK+Tn56fJkydrxowZCg8PV3x8vNavX68vvvhCy5Ytc9f27NlTffv21WOPPaaHH35YzZo10wsvvKDIyEjdeOON7roJEyZo3bp1Sk5O1m233aa9e/dq8eLFmjZtmjvsbdasmSZOnKh58+apTZs2ioiI0PLly3X06FFNmDDBfa6EhATNnz9fkydP1vTp01VSUqLU1FQNGDBA3bp1q/sXDwAAAAAAAECD41UB7bZt2yRJzz77bLW1Dz74QB06dNCwYcNUUlKihQsXasGCBerUqZNefvll947XSi+++KKeeeYZ/eEPf1B5ebn69u2rmTNnysfnf0/5N7/5jRYvXqxnn31W9957r9q0aaOHHnpId911l8e57rnnHrlcLr3xxhs6cuSIunTposWLF7tHKkgn58QuWrRITz31lKZPny4fHx8NGjRIjz32WG2+RAAAAABw1hwOR7XrbsA4Bw8e9PgV3iMgIMDjWjcAUJ+8KqD98MMPz6ru1ltv1a233nrGmoCAAD399NN6+umnz1gXGxurv/3tb2esMZlMmjhxoiZOnHjGutDQUM2bN++MNQAAAABQHxwOh6ZOmaLSKiPd4B3mzp1rdAs4hZ+vr1586SVCWgCG8KqAFgAAAABQO4qKilRaVqahrVurjQ/f+gGnc6S8XOuPHlVRUREBLQBD8Lc0AAAAADRibXx8FPr/r7EBAAC8j9noBgAAAAAAAACgqSKgBQAAAAAAAACDENACAAAAAAAAgEEIaAEAAAAAAADAIAS0AAAAAAAAAGAQH6MbAAAAAAAAQO1wOBwqKioyug38fwcPHvT4Fd4jICBAVqvV6DYkEdACAAAAAAA0Cg6HQ1OnTFVpWanRreAUc+fONboFnMLP108vvvSiV4S0BLQAAAAAAACNQFFRkUrLStXFGq8WvoFGtwN4reNlhfraYVNRUREBLQAAAAAAAGpXC99ABTRrY3QbAM4SFwkDAAAAAAAAAIMQ0AIAAAAAAACAQQhoAQAAAAAAAMAgBLQAAAAAAAAAYBACWgAAAAAAAAAwCAEtAAAAAAAAABiEgBYAAAAAAAAADEJACwAAAAAAAAAGIaAFAAAAAAAAAIMQ0AIAAAAAAACAQQhoAQAAAAAAAMAgPkY3AAAAgPrhcDhUVFRkdBv4/w4ePOjxK7xHQECArFar0W0AAIAmgoAWAACgCXA4HJoydYrKSsuMbgWnmDt3rtEt4BS+fr566cWXCGkBAEC9IKAFAABoAoqKilRWWibrwDbybeNrdDuA1yo7UibH+0dUVFREQAsAAOoFAS0AAEAT4tvGV82sfka3AQAAAOD/4yJhAAAAAAAAAGAQAloAAAAAAAAAMAgBLQAAAAAAAAAYhIAWAAAAAAAAAAzCRcIAoIlyOBwqKioyug38fwcPHvT4Fd4jICCAK7kDAAAAqDMEtADQBDkcDk2dOkWlpWVGt4JTzJ071+gWcAo/P1+9+OJLhLQAAAAA6gQBLQA0QUVFRSotLdOtlzaT1d9kdDuA13KUuLTquxMqKioioAUAAABQJwhoAaAJs/qb1L6lxeg2AC/mNLoBAAAAAI0cFwkDAAAAAAAAAIMQ0AIAAAAAAACAQQhoAQAAAAAAAMAgBLQAAAAAAAAAYBACWgAAAAAAAAAwCAEtAAAAAAAAABiEgBYAAAAAAAAADEJACwAAAAAAAAAGIaAFAAAAAAAAAIMQ0AIAAAAAAACAQQhoAQAAAAAAAMAgPkY3AO/gcDhUVFRkdBuo4uDBgx6/wjsEBATIarUa3QYAAAAAAGgkCGghh8OhKVOmqqys1OhWUIO5c+ca3QKq8PX100svvUhICwAAAAAAagUBLVRUVKSyslJZLhkok18bo9sBvJar9IjKDr2voqIiAloAAAAAAFArCGjhZvJrI5M/oRMAAAAAAABQX7hIGAAAAAAAAAAYhIAWAAAAAAAAAAxCQAsAAAAAAAAABiGgBQAAAAAAAACDENACAAAAAAAAgEEIaAEAAAAAAADAIAS0AAAAAAAAAGAQAloAAAAAAAAAMAgBLQAAAAAAAAAYhIAWAAAAAAAAAAxCQAsAAAAAAAAABiGgBQAAAAAAAACDENACAAAAAAAAgEEIaAEAAAAAAADAIAS0AAAAAAAAAGAQAloAAAAAAAAAMIiP0Q0AAAAAAOrOz+XlRrcAeDXeIwCMRkALAAAAAI3Ye0ePGt0CAAA4AwJaAAAAAGjEhrRurbY+fOsHnM7P5eV8kAHAUPwtDQAAAACNWFsfH4X6+RndBgAAOA0uEgYAAAAAAAAABiGgBQAAAAAAAACDENACAAAAAAAAgEGYQQsAAAAAANCIHC8tNLoFwKt523uEgBYAAAAAAKAR+fonm9EtADgHBLQAAAAAAACNSJd28WrhF2h0G4DXOl5a6FUfZBDQAgAAAAAANCIt/AIV0KyN0W0AOEtcJAwAAAAAAAAADEJACwAAAAAAAAAGYcQBAABAE1KaX2Z0C4BX4z0CAADqGwEtAABAE/LT5iNGtwAAAACgCgJaAACAJqTdoDbyC/Y1ug3Aa5Xml/FBBgAAqFcEtAAAAE2IX7Cvmln9jG4DAAAAwP/HRcIAAAAAAAAAwCAEtAAAAAAAAABgEAJaAAAAAAAAADAIAS0AAAAAAAAAGISAFgAAAAAAAAAM4mN0AwAA4zhKKoxuAfBqvEcAAAAA1DUCWgBowlZ9V2p0CwAAAAAANGkEtADQhN16qZ+s/ky7AU7HUVLBBxkAAAAA6hQBLQA0YVZ/s9q3tBjdBgAAAAAATRbbpgAAAAAAAADAIAS0AAAAAAAAAGAQAloAAAAAAAAAMAgBLQAAAAAAAAAYhIAWAAAAAAAAAAxCQAsAAAAAAAAABiGgBQAAAAAAAACDENDi/7V379Fd1/f9wJ9BEhVIRFzkWBAFO8EbE7wgxbvYClo37TyOqfWCyHoUJ2pXr8yqrWi9UBAnINa6emndmVtdkdp6nFaL9iAo2qFYQeZAqZOfhEuUIN/fH5bvSBGrkOQTk8fjHE7I5/PO+/P6fE9eCXnyzvsDAAAAABREQAsAAAAAUBABLQAAAABAQQS0AAAAAAAFEdACAAAAABREQAsAAAAAUBABLQAAAABAQQS0AAAAAAAFEdACAAAAABREQAsAAAAAUBABLQAAAABAQQS0AAAAAAAFEdACAAAAABREQAsAAAAAUBABLQAAAABAQQS0AAAAAAAFEdACAAAAABSkY9EFAAAA0HyWr1tXdAnQqukRoGgCWgAAgDaouro6VZWVmfHee0WXAq1eVWVlqquriy4DaKcEtAAAAG1QbW1tJnz/+1m5cmXRpfAHS5YsycSJE3PhhRemR48eRZfDRqqrq1NbW1t0GUA7JaAFAABoo2pra4VOrVCPHj3Sp0+fossAoJUQ0AIAtCMNyxuKLgFaNT0CALQ0AS0AQDtQXV2dyqrKvPPL5UWXAq1eZZW9KAGAliOgBQBoB2pra/P9CfaibE3sRdl62YsSAGhJAloAgHbCXpStk70oAQDatw5FFwAAAAAA0F5ZQUtZ6YP/V3QJ0KrpEQAAAKCpCWgp+/CtXxRdAgAAAAC0KwJayrbZ5dhUbLtj0WVAq1X64P/5jwwAAACgSQloKavYdsdUbO/BIQAAAADQUjwkDAAAAACgIAJaAAAAAICC2OIAAAAAoA1Z01BXdAnQqrW2HhHQAgAAALQB1dXVqaqsyvx3niu6FGj1qiqrUl1dXXQZSQS0AAAAAG1CbW1tJnx/QlauXFl0KfzBkiVLMnHixFx44YXp0aNH0eWwkerq6tTW1hZdRpJWFtAuXrw406dPz4svvpjXXnstffr0yX/8x39sMu6hhx7KXXfdlaVLl6Z3794ZO3ZsjjrqqEZjVq5cmRtuuCG//OUv09DQkMMOOyxXXXVVdt5550bj5syZkxtvvDHz58/PTjvtlBEjRmTUqFGpqKgojymVSpk2bVruv//+LF++PHvttVcuv/zy7L///o3mWrZsWa6//vo8/fTTqayszLHHHpvLL788Xbp0aboXCQAAAGAzamtrW03oxP/p0aNH+vTpU3QZtFKt6iFhr732Wp588snstttu2WOPPT52zM9+9rNcffXVGTZsWKZNm5b9998/F1xwQV544YVG4y666KI888wzueaaa3LzzTdn0aJFGTVqVNatW1ces3jx4owcOTK1tbWZMmVKzjzzzEycODF33313o7mmTZuWiRMn5qyzzsqUKVNSW1ubc845J2+++WZ5TENDQ84999y88cYbueWWW3LNNdfk6aefziWXXNJ0LxAAAAAA0Ka0qhW0Rx99dIYOHZokueyyy/Lyyy9vMmbixIk5/vjjc9FFFyVJDjnkkCxYsCCTJ0/OtGnTkiRz587N008/nenTp+fQQw9NkvTu3TvDhw/PY489luHDhydJpk+fnh133DG33nprqqqqMnjw4Cxfvjx33nlnzjjjjFRVVeWDDz7IlClTcs455+Sss85KkhxwwAE57rjjMn369FxzzTVJkp///Od57bXXMmPGjPL/iNTU1GTkyJGZN29e+vfv31wvGwAAAADwOdWqVtB26PDJ5bz55pt54403MmzYsEbHhw8fnlmzZmXt2rVJkqeeeio1NTUZMmRIeUyfPn2y11575amnniofe+qpp3LMMcekqqqq0Vx1dXWZO3duko+2QFi1alWja1ZVVeXYY4/dZK6+ffs2Wq4+ZMiQdO3aNU8++eRneRkAAAAAgHaiVQW0f8rChQuTfLQadmN77LFHGhoaylsOLFy4ML179260j2zyUUi7YY41a9bkrbfe2mT/jz59+qSioqI8bsPbPx63xx57ZOnSpXn//ffL4/54TEVFRXr37l2eAwAAAABgY61qi4M/ZcWKFUk+2jpgYxve33C+rq4u1dXVm3z8DjvsUN42YcMTDf94rqqqqmy//faN5qqqqsq22267yTVLpVJWrFiR7bbb7hOvuWGuLVUqlbJmzZqtmuOTbAiZgU/n/fffb9aebAn6Hj6bttD3tD4bvhb7/IL2Q99D+6Pv269SqbTJ4tHN+VwFtO1VQ0ND5s+f32zzv/322802N7RFixYtSn19fdFlbBV9D59NW+h7Wp8NX4t9fkH7oe+h/dH37dvG26p+ks9VQLvDDjsk+Wj1a21tbfl4XV1do/M1NTUfGz6sWLGiPGbDatcNK2k3WLt2berr6xvNtXbt2nzwwQeNVtHW1dWloqKi0bhVq1Z97DV32WWXLbvhP6isrMwXv/jFrZrjk2y//fbNNje0Rb17987uu+9edBlbRd/DZ9MW+p7WZ8PXYp9f0H7oe2h/9H379bvf/e5Tj/1cBbQb9nj94/1eFy5cmMrKyuy6667lcbNmzdpkKfGiRYuy5557Jkk6deqUXXbZZZP9YRctWpRSqVSef8PbRYsWpV+/fo2u+YUvfCHbbbddedyCBQsazVUqlbJo0aJGDyvbEhUVFenUqdNWzfFJNtwD8Olst912zdqTLUHfw2fTFvqe1mfD12KfX9B+6Htof/R9+/VptzdIPmcPCdt1112z++67Z+bMmY2Oz5gxI4MHDy4vGz788MOzYsWKzJo1qzxm0aJF+a//+q8cfvjh5WOHH354Hn/88TQ0NDSaq6amJgMGDEiSDBw4MF26dMmjjz5aHtPQ0JDHHntsk7leeeWVvPHGG+Vjs2bNynvvvZcjjjiiaV4AAAAAAKBNaVUraOvr6/Pkk08mSZYsWZJVq1aVw9iDDz443bp1y5gxY3LppZemV69eGTRoUGbMmJF58+blRz/6UXmeAQMG5NBDD80VV1yRb33rW9l2221z2223pW/fvvnyl79cHjdy5Mg88sgjueSSSzJixIgsWLAg06dPz9ixY8th77bbbpvRo0dn0qRJ6datW/bcc8888MADee+99zJy5MjyXF/5ylcyZcqUjBkzJhdffHHq6+tz00035cgjj0z//v1b4uUDAAAAAD5nWlVA++677+bv//7vGx3b8P69996bQYMG5YQTTkh9fX2mTZuWqVOnpnfv3rn99tvLK143mDBhQm644YaMGzcu69aty6GHHpqrrroqHTv+3y3vtttumT59esaPH5/zzjsv3bp1y4UXXphzzjmn0VyjRo1KqVTK3XffneXLl2evvfbK9OnTy1sqJB/tE3vXXXfl+uuvz8UXX5yOHTvm2GOPzRVXXNHULxMAAAAA0Ea0qoC2Z8+eefXVV//kuFNOOSWnnHLKJ46prq7Od7/73Xz3u9/9xHEDBw7MT37yk08cU1FRkdGjR2f06NGfOK579+6ZNGnSJ44BAAAAANjgc7UHLQAAAABAWyKgBQAAAAAoiIAWAAAAAKAgAloAAAAAgIIIaAEAAAAACtKx6AJoPUprlxddArRqegQAAABoagJaUl1dncrKqjQs/WXRpUCrV1lZlerq6qLLAAAAANoIAS2pra3N978/IStXriy6FDayZMmSTJw4MRdeeGF69OhRdDn8QXV1dWpra4suo8m8U19K8mHRZUCr9VGPAAAANB8BLUk+CmnbUujUlvTo0SN9+vQpugzamOrq6lRVVeah1z8ouhRo9aqqKq2cBwAAmo2AFqAdqq2tzYQJ37dyvhWxar71amsr5wEAgNZFQAvQTlk53zpZNQ8AANC+dCi6AAAAAACA9kpACwAAAABQEAEtAAAAAEBBBLQAAAAAAAUR0AIAAAAAFERACwAAAABQEAEtAAAAAEBBBLQAAAAAAAUR0AIAAAAAFERACwAAAABQEAEtAAAAAEBBBLQAAAAAAAUR0AIAAAAAFERACwAAAABQEAEtAAAAAEBBBLQAAAAAAAUR0AIAAAAAFERACwAAAABQEAEtAAAAAEBBBLQAAAAAAAUR0AIAAAAAFERACwAAAABQEAEtAAAAAEBBBLQAAAAAAAUR0AIAAAAAFERACwAAAABQEAEtAAAAAEBBBLQAAAAAAAUR0AIAAAAAFERACwAAAABQEAEtAAAAAEBBBLQAAAAAAAUR0AIAAAAAFERACwAAAABQEAEtAAAAAEBBBLQAAAAAAAUR0AIAAAAAFERACwAAAABQEAEtAAAAAEBBBLQAAAAAAAUR0AIAAAAAFERACwAAAABQEAEtAAAAAEBBBLQAAAAAAAUR0AIAAAAAFERACwAAAABQEAEtAAAAAEBBBLQAAAAAAAUR0AIAAAAAFERACwAAAABQEAEtAAAAAEBBBLQAAAAAAAUR0AIAAAAAFERACwAAAABQEAEtAAAAAEBBBLQAAAAAAAUR0AIAAAAAFERACwAAAABQEAEtAAAAAEBBBLQAAAAAAAXpWHQB0NSWLVuW1atXF13GVluyZEmjt59nnTt3Tvfu3YsuAwAAAKDVEdDSptTV1WXMmDEplUpFl9JkJk6cWHQJW61Dhw6ZNm1aampqii4FAAAAoFUR0NKm1NTUZNKkSW1iBW1b0rlzZ+EsAAAAwMcQ0NLm+FV6AAAAAD4vPCQMAAAAAKAgAloAAAAAgIIIaAEAAAAACiKgBQAAAAAoiIAWAAAAAKAgAloAAAAAgIIIaAEAAAAACiKgBQAAAAAoiIAWAAAAAKAgAloAAAAAgIIIaAEAAAAACiKgBQAAAAAoiIAWAAAAAKAgAloAAAAAgIIIaAEAAAAACiKgBQAAAAAoiIAWAAAAAKAgAloAAAAAgIIIaAEAAAAACiKgBQAAAAAoiIAWAAAAAKAgAloAAAAAgIIIaAEAAAAACiKgBQAAAAAoiIAWAAAAAKAgAloAAAAAgIIIaAEAAAAACtKx6AIAAAAAYGPLli3L6tWriy5jqy1ZsqTR28+7zp07p3v37kWX0eYIaAEAAABoNerq6jJmzJiUSqWiS2kyEydOLLqEJtGhQ4dMmzYtNTU1RZfSpghoAQAAAGg1ampqMmnSpDaxgrat6dy5s3C2GQhoAQAAAGhV/Bo97YmHhAEAAAAAFERACwAAAABQEAEtAAAAAEBB7EELwOfesmXLPvcPEFiyZEmjt593nTt3tm8YzUrftz76nubUFno+0fcAfLyKUqlUKroINu+ll15Kkuy3334FVwLQOtXV1eXcc8+Nb2etS4cOHTJt2jRPeKVZ6PvWSd/TXPR866XvATbvs2R6AtpWTkAL8Ke1lVU1bYkVNTQ3fd/66Huak55vnfQ9wOZ9lkzPFgcAfO75wQDaH30P7YueB6At85AwAAAAAICCCGgBAAAAAAoioAUAAAAAKIiAFgAAAACgIAJaAAAAAICCCGgBAAAAAAoioAUAAAAAKIiAFgAAAACgIAJaAAAAAICCCGgBAAAAAAoioAUAAAAAKIiAFgAAAACgIAJaAAAAAICCCGgBAAAAAAoioAUAAAAAKIiAFgAAAACgIAJaAAAAAICCCGgBAAAAAAoioAUAAAAAKIiAFgAAAACgIALaJvb666/n7LPPzv77758hQ4bkpptuytq1a4suCwAAAABohToWXUBbsmLFipx55pnZfffdM2nSpCxbtizjx4/P+++/n3HjxhVdHgAAAADQyghom9CDDz6Y1atX5/bbb0/Xrl2TJB9++GG+/e1vZ/To0enevXuxBQIAAAAArYotDprQU089lcGDB5fD2SQZNmxY1q9fn2eeeaa4wgAAAACAVklA24QWLlyYPn36NDpWU1OT2traLFy4sKCqAAAAAIDWyhYHTaiuri41NTWbHN9hhx2yYsWKLZ63VCplzZo1W1MaAAAAANBCSqVSKioqPtVYAe3nQENDQ+bPn190GQAAAADAp1RVVfWpxglom1BNTU1Wrly5yfEVK1Zkhx122KI5GxoakiSVlZVbVRsAAAAA0DIaGhrKud6fIqBtQn369Nlkr9mVK1fmnXfe2WRv2k9rw1LoT7skGgAAAAAoVkVFhS0OinD44YfnzjvvbLQX7cyZM9OhQ4cMGTJki+YcMGBAU5YIAAAAALQiFaVSqVR0EW3FihUrcvzxx6d3794ZPXp0li1blvHjx+erX/1qxo0bV3R5AAAAAEArI6BtYq+//nquu+66zJ07N507d85f/uVfZuzYsZ96U2AAAAAAoP0Q0AIAAAAAFKRD0QUAAAAAALRXAloAAAAAgIIIaAEAAAAACiKgBQAAAAAoiIAWAAAAAKAgAloAAAAAgIIIaAEAAAAACiKgBQAAAAAoSMeiC4C25tFHH81Pf/rT/Pa3v01dXV122223nHHGGfna176WioqK8riHHnood911V5YuXZrevXtn7NixOeqoo8rn582blwceeCCzZ8/O73//+3Tv3j1f+cpX8o1vfCOdOnVqdM05c+bkxhtvzPz587PTTjtlxIgRGTVqVKPrAc2npfv+pZdeyv33358XXnghixYtyhFHHJEpU6a06D1De9fSff/ggw/msccey6uvvpr6+vp88YtfzHnnnZehQ4e26H1De9bSff/www/ngQceyBtvvJH6+vp84QtfyIknnphRo0alqqqqRe8d2qsifr7f4O23386wYcOyZs2azJo1K926dWv2+6U4AlpoYvfcc0969OiRyy67LDvuuGN+/etf5+qrr87bb7+dCy64IEnys5/9LFdffXX+7u/+LoccckhmzJiRCy64IPfdd1/233//JB99I1i8eHHOPffc7L777vnd736XiRMn5sUXX8y9995bvt7ixYszcuTIDBkyJBdddFFeffXV3Hzzzdlmm20ycuTIIl4CaHdauu/nzJmT2bNnp3///vnggw+KuGVo91q67++8884ceuihGTFiRDp16pSZM2fm/PPPz/jx43PSSScV8RJAu9PSfb9ixYocdthhOe+889KlS5fMmzcvt99+e95+++1cd911RbwE0O60dN9vbPz48enUqVPWrFnTUrdLkUpAk3r33Xc3OXbVVVeVBg4cWPrwww9LpVKp9OUvf7l08cUXNxpz6qmnls4999xPnOenP/1pac899yy99NJL5WNXX3116aijjip98MEH5WO33HJL6cADD2x0DGg+Ld33G+YslUql008/vXTeeedt9T0An01L9/3HjTv77LNLJ5xwwhbfA/DZtHTff5xbb7211L9//9K6deu25BaAz6iovv/1r39dOvjgg0vTp08v7bnnnh/78bQt9qCFJvZxv3aw1157ZdWqVVmzZk3efPPNvPHGGxk2bFijMcOHD8+sWbOydu3azc6z9957J0l+//vfl4899dRTOeaYYxr9mtPw4cNTV1eXuXPnNsk9AZ+spfu+QwffvqFoLd33m7vexmOA5tXSff9xunbtmnXr1mX9+vVbehvAZ1BE3zc0NOS6667LmDFj0rVr1ya6E1o7P+FBC3j++efTvXv3dOnSJQsXLkyS9O7du9GYPfbYIw0NDXnzzTc/cZ4k6dOnT5JkzZo1eeutt8rvb9CnT59UVFSUrwW0vObqe6D1aum+f/75531tgIK1RN+vW7cu9fX1mT17dn74wx9mxIgRqaysbMK7AD6L5u77e++9N9tss01GjBjRxJXTmtmDFprZ7NmzM2PGjHzrW99K8tFeUklSU1PTaNyG9zec/2PLly/PpEmTcswxx2T33XdPkqxcufJj56qqqsr222+/2bmA5tWcfQ+0Ti3d94888kjmzp2byZMnN0H1wJZoib5ft25d9tlnn/L7J510Uq644oqmugXgM2ruvl+2bFkmT56cyZMnZ5tttmmGO6C1EtBCM3r77bczduzYDBo0KF//+te3eJ6GhoZcfPHFSZJrrrmmiaoDmoO+h/anpfv+lVdeyT/+4z/m5JNPztChQ7f4esCWa6m+79ixY/7lX/4lH3zwQV5++eX80z/9Uy6//PLceOONW3xNYMu0RN/fdNNNGTJkSAYPHrw1pfI5JKCFZlJXV5dRo0ala9eumTRpUnnPyB122CHJR6tfa2trG43f+PwGpVIpV1xxRebNm5f7778/O++8c/lcdXV1ea6NrV27NvX19ZvMBTSvluh7oHVp6b5fsmRJRo0alf79++faa69tjlsC/oSW7vv99tsvSXLggQemZ8+eOf/883P66aeXjwPNryX6fu7cufn5z3+en/zkJ+WPr6+vT5KsXr0622+/fbbffvvmu0kKJaCFZvD+++9n9OjRWblyZX784x+Xg9Tk//aXWbhwYaO9ZhYuXJjKysrsuuuujea68cYb8+ijj2batGnp169fo3OdOnXKLrvsssles4sWLUqpVLIvHbSglup7oPVo6b5fvnx5Ro4cmZ122im33367PSihAEV/v993332TJP/93/8toIUW0lJ9v2jRojQ0NOSkk07apIahQ4dm+PDhue2225ry1mhFPCQMmti6dety0UUXZeHChbnrrrvSvXv3Rud33XXX7L777pk5c2aj4zNmzMjgwYNTVVVVPjZ16tTcc889GT9+/GZ/xeHwww/P448/noaGhkZz1dTUZMCAAU14Z8DmtHTfA8Vr6b5fvXp1Ro0alYaGhkydOjVdunRp+psCPlFr+H6/4aFCfxz6AM2jJfv+sMMOy7333tvoz6hRo5IkkydPzvnnn98Md0hrYQUtNLFvf/vbeeKJJ3LZZZdl1apVeeGFF8rn9t5771RVVWXMmDG59NJL06tXrwwaNCgzZszIvHnz8qMf/ag89pFHHsktt9ySE088MT179mw0T69evdKtW7ckyciRI/PII4/kkksuyYgRI7JgwYJMnz49Y8eObfTNAGg+Ld33y5cvz29+85vy31evXl3+R+ERRxzhV5+gBbR0348ZMyavvPJKvvOd72Tp0qVZunRpedz+++/f3LcLpOX7/rTTTsuxxx6bPn36pEOHDnnxxRdz991357DDDkv//v1b6rahXWvJvq+trW20TULy0dZGSTJw4MDy1wbapopSqVQqughoS44++ujyF9E/9vjjj6dnz55JkoceeijTpk3L0qVL07t371x88cU56qijymMvu+yyPPzwwx87zw033JCTTz65/P6cOXMyfvz4zJ8/P926dctpp52WUaNGpaKiognvDNiclu775557brMPJtj4ekDzaem+79u372ZrefXVV7f0NoDPoKX7/oYbbsivfvWrLF26NB07dkzPnj3zV3/1V/nbv/1bCzGghRTx8/3G/vVf/zWXX355Zs2aJaBt4wS0AAAAAAAFsQctAAAAAEBBBLQAAAAAAAUR0AIAAAAAFERACwAAAABQEAEtAAAAAEBBBLQAAAAAAAUR0AIAAAAAFERACwAAAABQEAEtAAA0o759++baa68tugwAAFopAS0AAG3SjBkz0rdv3/ziF7/Y5NyJJ56Yvn375tlnn93k3JFHHpm/+Zu/aYkSN2vu3Lnp169fbrnllo89P3Xq1PTt2zf/+Z//2bKFAQDQ5AS0AAC0SQcccECS5Pnnn290fNWqVXnttdfSsWPHzJkzp9G5t956K2+99VYGDhzYYnV+nAEDBuTUU0/ND37wg7z22muNzi1ZsiR33HFHjjvuuBx55JHFFAgAQJMR0AIA0CZ17949PXv23CSgnTt3bkqlUo477rhNzm14f0O4u6VKpVLef//9rZrj0ksvTdeuXTNu3LiUSqXy8euuuy4dO3bMlVdeuVXzf1r19fUtch0AgPZKQAsAQJt1wAEHZP78+Y3C0jlz5uTP//zPc9hhh+XFF1/M+vXrG52rqKgor6Bdt25dJk+enKFDh2bffffN0UcfnVtvvTVr165tdJ2jjz46o0ePzq9+9aucfPLJ6d+/fx588MHN1nXHHXekX79++ed//ufNjqmurs6VV16ZOXPm5KGHHkqS/OIXv8gTTzyRSy65JDvvvHPWr1+fe+65J8cff3z222+/fOlLX8q4ceOyYsWKRnP98pe/zHnnnZdDDz00++67b4YOHZrJkyfnww8/bDTujDPOyAknnJCXX345p512Wv7iL/4it9566594lQEA2BoCWgAA2qwDDjggDQ0NefHFF8vH5syZkwEDBmTgwIFZuXJlFixY0Ohcnz59suOOOyZJrrrqqkycODF77713Lr/88hx00EGZMmVKxo4du8m1Fi1alEsuuSRDhgzJlVdemb322utja7rtttsyceLEXHvttTnjjDM+sf5hw4blyCOPzM0335w333wz3/nOdzJgwIDyHrnjxo3L9773vQwcODBXXnllTj755DzyyCMZOXJkGhoayvM8/PDD6dSpU84+++xceeWV2WeffTJx4sTcfPPNm1zzvffey6hRo7LXXnvliiuuyKBBgz6xRgAAtk7HogsAAIDmsvE+tIMGDcq6desyb968nHTSSenVq1f+7M/+LM8//3z69euXVatWZcGCBfna176WJHnllVfy8MMP55RTTsn111+fJDnttNPSrVu33H333Xn22WdzyCGHlK+1ePHi3HXXXTnssMM2W8+NN96Ye+65JzfccENOOumkT3UP48aNywknnJC//uu/zurVqzN16tRUVFRk9uzZeeihh3LzzTfnq1/9ann8oEGDcu6552bmzJnl47fccku222678pgRI0Zk3LhxeeCBBzJ27NhUVVWVz73zzjv59re/XfiD0gAA2gsraAEAaLP22GOPdO3atby37CuvvJI1a9ZkwIABST56GNeGB4W98MIL+fDDD8uh7pNPPpkkOfvssxvNec455zQ6v0HPnj03G86WSqVce+21uffee/O9733vU4ezSdKjR4+cf/75ee+993LWWWdlzz33TJLMnDkz1dXVGTJkSJYvX17+s88++6RTp0557rnnynNsHM6uWrUqy5cvz4EHHpj6+vosXLiw0fWqqqpy8sknf+r6AADYOlbQAgDQZlVUVGTAgAGZPXt21q9fnzlz5mSnnXbKbrvtluSjgPa+++5LknJQuyGgXbJkSTp06JBevXo1mrO2tjY1NTVZsmRJo+M9e/bcbB3/9m//ljVr1uSaa67JCSec8JnvY7/99kuS7LvvvuVjixcvzsqVKzN48OCP/Zh33323/PfXXnstEyZMyLPPPptVq1Y1Grdy5cpG73fv3r3RiloAAJqXgBYAgDbtgAMOyBNPPJEFCxaU95/dYMCAAbnpppuybNmyPP/889l5552z6667Nvr4ioqKT3WdjVep/rGBAwfmlVdeyX333Zdhw4ala9euW3QvG1u/fn122mmnj91HNkm6deuWJKmrq8vpp5+eLl265MILL0yvXr2y7bbb5re//W1uvvnmRg9J+1P3AQBA0xPQAgDQpm28D+2cOXNy5plnls/tu+++qaqqynPPPZd58+bl8MMPL5/r0aNH1q9fn8WLF2ePPfYoH//f//3f1NXVpUePHp+6ht122y3f/OY38/Wvfz3nnntu7rnnnnTp0mWr7qtXr16ZNWtWBg4c+Imh6m9+85u89957uf3223PQQQeVj//P//zPVl0fAICmYQ9aAADatH333TfbbrttHnnkkSxbtqzRCtqqqqrss88+uf/++7NmzZpymJskRxxxRJLkhz/8YaP5fvCDHzQ6/2n169cvU6dOzeuvv55vfOMbef/997f0lpIkw4YNy4cffpg77rhjk3Pr1q1LXV1dkqRDh4/+yV8qlcrn165dm/vvv3+rrg8AQNOwghYAgDatqqoq++23X2bPnp2qqqpG+7gmH21zcPfddydJo4C2X79+Oemkk/LjH/84dXV1Oeigg/LSSy/l4YcfztChQ3PIIYd85lr233//3HHHHTnvvPNy4YUXZvLkyamsrNyi+zr44INz6qmnZsqUKZk/f36GDBmSysrKvPHGG5k5c2auvPLKHHfccRkwYEB22GGHXHbZZTnjjDNSUVGRf//3f28U2AIAUBwraAEAaPM2BK/77LPPJg/AGjhwYJKkc+fO6devX6Nz119/fcaMGZOXXnopN9xwQ5599tmMHj06t9122xbXMnjw4EyYMCHPPPNM/uEf/mGTPWA/i2uvvTbXXXdd3n333dx222255ZZb8uyzz+bEE08s39eOO+6YO++8M7W1tZkwYUKmT5+eL33pS/nmN7+5xdcFAKDpVJT81zkAAAAAQCGsoAUAAAAAKIiAFgAAAACgIAJaAAAAAICCCGgBAAAAAAoioAUAAAAAKIiAFgAAAACgIAJaAAAAAICCCGgBAAAAAAoioAUAAAAAKIiAFgAAAACgIAJaAAAAAICCCGgBAAAAAAoioAUAAAAAKMj/BwjYKJGzSna6AAAAAElFTkSuQmCC\n"},"metadata":{}},{"output_type":"stream","name":"stderr","text":[":4: FutureWarning: \n","\n","Passing `palette` without assigning `hue` is deprecated and will be removed in v0.14.0. Assign the `x` variable to `hue` and set `legend=False` for the same effect.\n","\n"," sns.boxplot(\n"]},{"output_type":"display_data","data":{"text/plain":["
"],"image/png":"iVBORw0KGgoAAAANSUhEUgAABWgAAAMQCAYAAAC60ozSAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAACwgElEQVR4nOzde1yUdf7//yczgBKCYQ5YCqXpOK6HFMnJNCvTLLMUt02zhDYr3S1bDcMs2q3d/LaSlGknTxVgHj4VlpJptrWVrU2tWJk1mKegVMREQESBmfn94Y9rncDygF4cHvfbrZsz1/s11/Xi4IRP3tf7HeDz+XwCAAAAAAAAAJx1FrMbAAAAAAAAAICmioAWAAAAAAAAAExCQAsAAAAAAAAAJiGgBQAAAAAAAACTENACAAAAAAAAgEkIaAEAAAAAAADAJAS0AAAAAAAAAGASAloAAAAAAAAAMAkBLQAAAAAAAACYhIAWAACgjowdO1Zjx441u43T8uOPP6pz587Kyso649fKyspS586d9eOPPxrHBg4cqPHjx5/xa0uSy+VS586d5XK5zsr1jnU2P86GysyvT1MycOBAPfTQQ2a3AQBAkxZodgMAAABmyc3N1fPPP69NmzZp3759Ovfcc9WxY0cNHDiwwQet1Tp37mw8tlqtatGihdq1a6fY2FiNHj1aHTt2rJPrvPbaawoJCdHIkSPr5Hx1qT73dib9+OOPuuaaa447npSUpHvuuecsdtQ0uVwuJSQk6Nlnn9V1111ndjsAAKAeIqAFAABNUk5OjhISEnTBBRfoD3/4g2w2m3bv3q2vvvpKGRkZjSaglaR+/fpp+PDh8vl8OnjwoNxut9566y0tWbJEU6ZM0R//+Eejtm3btvr6668VGHhyPyYuWbJEERERJxWCDh8+XDfccIOCg4NP6lon63i9XXrppfr6668VFBR0Rq9vtmHDhmnAgAE1jv/ud78zoZsT11S+PgAAAAS0AACgSXrppZcUFhamN954Q+Hh4X5jP//8s0ld/U9VVZW8Xm+dhJcXXXSRhg8f7ncsKSlJf/rTn/TPf/5THTp00JVXXilJCggIULNmzU77mr/m0KFDOuecc2S1WmW1Ws/otX6NxWI54x9rffC73/2uxte/Pjty5IiCgoKazNcHAACANWgBAECTlJeXp44dO9YIZyXpvPPO83v+5ptvKiEhQX379lW3bt00dOhQLV68+DevUVFRoWeffVYjR45U79691bNnT40ZM0afffaZX131uq8LFy7Uq6++qkGDBql79+76+uuv1bNnTz3xxBM1zr1nzx516dJFc+fOPcmP/KiIiAg9/fTTCgwM1Isvvlijl2PXoC0sLNS0adM0YMAAdevWTf3799ef/vQnY+3YgQMH6vvvv9fnn3+uzp07q3PnzsYM5Op1Zj///HM99thj6tu3rxEG17YGbbV169Zp+PDh6t69u4YOHar33nvPb3zOnDl+yzdU++U5f623461x+u6772rkyJHq0aOHnE6npkyZooKCAr+ahx56SL169VJBQYH+/Oc/q1evXrrssss0Y8YMeTyeE/si/MbHmZ+fr86dO+vVV1+t8bqcnBx17txZ2dnZJ3yt41m/fr0cDoeeffZZv+MrV65U586d/b7XO3furL///e9asWKFhgwZou7du2vkyJH64osvapy3oKBA06ZN0+WXX65u3brphhtu0BtvvOFXU/01eOedd/TMM8/oiiuu0CWXXKKDBw8e9+vz1Vdfady4cerdu7cuueQS3X777dqwYYNfTfX3xw8//KCHHnpIcXFx6t27t6ZNm6by8vIavb799tu6+eabdckll+jSSy/VbbfdpnXr1vnVfPTRRxozZox69uypXr166Z577tH3339/Yp/kE1BSUqLp06fryiuvVLdu3TR48GDNmzdPXq9XklRZWak+ffpo2rRpNV578OBBde/eXTNmzDCOVVRUaPbs2Ro8eLC6deumK6+8UqmpqaqoqKizngEAQN1gBi0AAGiS2rZtq40bN2rLli2y2+2/WrtkyRJ16tRJAwcOVGBgoD788EM9/vjj8vl8uu222477uoMHD+r111/XsGHD9Ic//EFlZWV64403dNddd+n1119Xly5d/OqzsrJ05MgR3XLLLQoODtYFF1ygQYMG6d1339W0adP8ZptmZ2fL5/PpxhtvPOXPwQUXXKBLL71ULpdLBw8eVIsWLWqtmzhxorZu3arbb79dbdu21f79+/Xpp59q9+7dateunR5++GH94x//0DnnnKMJEyZIklq3bu13jscff1ytWrXSvffeq0OHDv1qXzt37tTkyZM1evRoxcfH680339Rf/vIXLViwQP369Tupj/FEejtWVlaWpk2bpu7du+uBBx7Qzz//rIyMDOXk5Oitt97yC/Q9Ho/GjRunHj16KDk5WevXr9fLL7+s6OhojRkz5jd7+62PMzo6WrGxsVqxYoXuuOMOv9euXLlSoaGhv7rGbLXy8nLt37+/xvHw8HAFBgaqb9++GjNmjObNm6dBgwapa9eu2rt3r5544gldfvnluvXWW/1e98UXX2jVqlUaO3asgoODtWTJEuN7uvrv0r59+3TLLbcoICBAt912m1q1aqWPP/5YjzzyiA4ePFjj43nhhRcUFBSkcePGqaKi4rjLGqxfv1533323unXrpvvuu08BAQHKyspSYmKiFi9erB49evjVT5o0Se3atdMDDzygb7/9Vq+//rpatWqlBx980Kh57rnnNGfOHPXq1Uv333+/goKC9NVXX+mzzz5T//79JUlvvfWWHnroIfXv319TpkxReXm5lixZojFjxmj58uVq167db34dfk15ebluv/12FRQUaPTo0Tr//PO1ceNGPf300yosLNQjjzyioKAgDRo0SGvXrtXjjz/uN7v+/fffV0VFhYYOHSpJ8nq9+tOf/qQNGzbolltu0cUXX6wtW7YoPT1dO3fu1AsvvHBa/QIAgDrmAwAAaILWrVvn69Kli69Lly6+UaNG+VJTU32ffPKJr6KiokZteXl5jWN33nmn75prrvE7dvvtt/tuv/1243lVVZXvyJEjfjXFxcW+yy+/3Ddt2jTjWH5+vs9ut/tiY2N9P//8s1/9J5984rPb7b6PPvrI7/iNN97od63jsdvtvscff/y440888YTPbrf7vvvuO79e3nzzTaNfu93uW7Bgwa9e54Ybbqi1nzfffNNnt9t9t956q6+qqqrWsfz8fOPY1Vdf7bPb7b41a9YYx0pLS339+vXzjRgxwjg2e/Zsn91uP+71jj3n8Xr77LPPfHa73ffZZ5/5fD6fr6Kiwte3b1/fsGHDfIcPHzbqPvzwQ5/dbvc9++yzxrGpU6f67Ha777nnnvM754gRI3zx8fE1P0G/cKIf59KlS312u923detW41hFRYXP6XT6pk6d+qvXqP5aHu+/jRs3GrWHDh3yDR482HfDDTf4jhw54rvnnnt8sbGxvp9++snvnNWv3bRpk3Hsp59+8nXv3t137733GscefvhhX79+/Xz79+/3e/3kyZN9vXv3Nv5OVX8Nrrnmmhp/z3759fF6vb5rr73Wd+edd/q8Xq9RV15e7hs4cKDvj3/8o3Gs+vvj2L9nPp/Pd++99/r69OljPN+5c6fP4XD47r33Xp/H4/Grrb7GwYMHfXFxcb6UlBS/8cLCQl/v3r1rHP+l6o/j3XffPW7N888/7+vZs6dvx44dfsdnzpzp69Kli2/Xrl0+n+9/7wcffPCBX93dd9/t93701ltv+RwOh++LL77wq1uyZInPbrf7NmzYYBy7+uqrf/N7CQAAnFkscQAAAJqkfv36aenSpRo4cKDcbrcWLFigcePGacCAAfrXv/7lV9u8eXPjcWlpqfbv368+ffooPz9fpaWlx72G1Wo1Zrl5vV4dOHBAVVVV6tatm7799tsa9ddee61atWrld+zyyy9XZGSkVq5caRzbsmWLcnNzddNNN53Sx36sc845R5JUVlZW63jz5s0VFBSkzz//XMXFxad8nVtuueWE15uNjIzU4MGDjectWrTQiBEj9O2336qwsPCUe/gt33zzjX7++WfdeuutfmufXnXVVerQoYP+/e9/13jNL2eX9u7du9YlG2pzIh/n9ddfr2bNmvl9/detW6eioqIT/vqPGjVKr7zySo3/OnbsaNSEhIToySef1LZt23Tbbbfp3//+t6ZNm6YLLrigxvl69eqlbt26Gc8vuOACXXPNNVq3bp08Ho98Pp/ee+89DRw4UD6fT/v37zf+69+/v0pLS7V582a/c44YMcLv71ltvvvuO+3cuVM33nijioqKjHMeOnRIffv21RdffGEsB1Bt9OjRfs/j4uJ04MABHTx4UNLRmader1f33nuvLBb/fxoFBARIkv7zn/+opKREN9xwg9/HYrFYdMkll9RYguFUrF69Wr1791Z4eLjfNS6//HJ5PB5jCYnLLrtMERERWrVqlfHa4uJi/ec//zFmz1af7+KLL1aHDh38znfZZZdJUp30DAAA6g5LHAAAgCarR48eeu6551RRUSG32633339fr776qv7yl7/orbfeMgKsDRs2aM6cOfryyy9rrF9ZWlqqsLCw415j+fLlevnll7Vjxw5VVlYax2u7Jbq2YxaLRTfeeKOWLFmi8vJyhYSEaOXKlWrWrJmuu+66U/3QDdXLDYSGhtY6HhwcrClTpmjGjBnq16+fLrnkEl111VUaMWKEbDbbCV/nZG4Bv/DCC41wrNpFF10kSfrpp59O6ronY9euXZKk9u3b1xjr0KFDjXVOmzVrViNQb9my5QkH2SfycYaHh+vqq69Wdna2Jk2aJOno8gZRUVFG2HYi17n88st/s65379669dZb9dprr6l///66+eabj3u+X7rooouMpRQsFotKSkq0bNkyLVu2rNZz/HLJhRP5/ti5c6ckaerUqcetKS0tVcuWLY3nvwyYq5eoKC4uVosWLZSXlyeLxaKLL774N6+bmJhY6/jxlgY5GT/88INyc3PVt2/fWserP1+BgYG69tprlZ2drYqKCgUHB+u9995TZWWlX0D7ww8/aNu2bcc9X33YCBEAAPwPAS0AAGjygoOD1aNHD/Xo0UMXXXSRpk2bptWrV+u+++5TXl6e7rjjDnXo0EEPPfSQzj//fAUFBemjjz7Sq6++WmPG3rHefvttPfTQQxo0aJDGjRun8847T1arVXPnzlV+fn6N+uPNIBwxYoQWLlyo999/X8OGDVN2drauuuqqXw2GT9T3338vq9X6qwHZHXfcoYEDB+r999/XunXr9Oyzz2revHlKT0/X7373uxO6zrEzUuvCL4PNaiezQdfpOtEZwadrxIgRWr16tXJycmS32/XBBx/o1ltvrTHj83RVVFTo888/l3R0g7LqXwicrOq/EzfddJPi4+NrrfnlBm+/NXtWknw+nyQpOTm5xvrN1apnhFc73ueo+lwnoro2NTW11l8O1MX3gdfrVb9+/XTXXXfVOl4d3EvSDTfcoGXLlunjjz/WoEGDtHr1anXo0EEOh8PvfHa7vdYNxSSpTZs2p90zAACoOwS0AAAAx6i+dXvv3r2SpA8++EAVFRV68cUX/WbjncgtwmvWrFF0dLSee+45v0Bx9uzZJ9WT3W7X7373O61cuVJt2rTRrl27lJKSclLnqM2uXbv0xRdfqGfPnr85CzAmJkZ33nmn7rzzTu3cuVMjRozQyy+/rJkzZ0o6fmB6Kn744Qf5fD6/c1bPYmzbtq2k/82ELCkp8du4q3oW7LFOtLfqr++OHTtqzDzcsWNHrbf7n44T+Tgl6YorrlCrVq20cuVKXXLJJSovL9fw4cPrtBfp6Pfltm3bNHXqVM2cOVNpaWm1fp/98MMPNY7t3LlTISEhxozi0NBQeb3eE5q5e6Kio6MlHZ2xWlfnjYmJkdfr1bZt244b+lZf97zzzqvTj+eXfRw6dOiEzn/ppZfKZrNp1apVio2N1WeffWZsgHfs+dxut/r27VunfzcBAMCZwRq0AACgSfrss89qnUX30UcfSTp6S7v0v9lxx9aWlpbqzTff/M1r1Pbar776Sl9++eVJ9zt8+HB9+umnSk9P17nnnqsBAwac9DmOdeDAAT3wwAPyeDw1wp1jlZeX68iRI37HYmJiFBoaqoqKCuNYSEiISkpKTqunanv37tXatWuN5wcPHtRbb72lLl26GDMYY2JiJMlYm1M6ulzDW2+9VeN8J9pbt27ddN5552np0qV+H9tHH32kbdu26aqrrjrFj6h2J/JxSkdva7/hhhv07rvvKisrS3a73W+2ZF346quv9PLLLysxMVF33nmnxo0bp0WLFhkzao+1ceNGvzVkd+/erX/961/q16+frFarrFarhgwZojVr1mjLli01Xv/L5Q1OVLdu3RQTE6OXX3651jWTT+W8gwYNksVi0fPPP19jNnz139srrrhCLVq00Ny5c/2WKTmd6/7S9ddfr40bN+qTTz6pMVZSUqKqqirjucVi0XXXXacPP/xQK1asUFVVld/yBtXnKygo0P/93//VON/hw4eNpU0AAED9wAxaAADQJD3xxBMqLy/X4MGD1aFDB1VWVionJ0fvvvuu2rZtq5EjR0o6uplYUFCQJkyYoNGjR6usrEyvv/66zjvvvN/csOqqq67Se++9p3vvvVdXXXWVfvzxRy1dulQdO3Y86YBk2LBheuqpp7R27VrdeuutCgoKOuHX7ty5U2+//bZ8Pp/Kysrkdru1evVqHTp0SA899NCvhr07d+7UHXfcoeuuu04dO3aU1WrV+++/r3379umGG24w6rp27aolS5bohRde0IUXXqhWrVodd/3L33LRRRfpkUce0aZNm3TeeefpzTff1M8//6wnn3zSqOnXr58uuOACPfLII9q+fbusVqvefPNNRURE1JhFe6K9BQUFacqUKZo2bZpuv/123XDDDfr555+VkZGhtm3b6o477jilj+d0Ps5qI0aMUGZmplwul6ZMmXJS1/n222/19ttv1zgeExOjXr166ciRI5o6daouvPBCTZ48WZI0ceJEffjhh5o2bZpWrlzpt3SA3W7XuHHjNHbsWAUHB2vJkiXGa6olJSXJ5XLplltu0R/+8Ad17NhRxcXF2rx5s9avX19r8PtbLBaLnnjiCd19990aNmyYRo4cqaioKBUUFMjlcqlFixZ66aWXTuqcF154oSZMmKAXXnhBY8aM0bXXXqvg4GBt2rRJkZGRSkpKUosWLfTYY48pOTlZI0eO1NChQ9WqVSvt2rVLH330kWJjY/XXv/71N6/13nvvafv27TWOx8fHa9y4cfrggw80YcIExcfHq2vXriovL9eWLVu0Zs0a/etf//Jb7/j6669XZmamZs+eLbvdXmMN3eHDh+vdd9/V3/72N7lcLsXGxsrj8Wj79u1avXq1FixYoO7du5/U5woAAJw5BLQAAKBJSk5O1urVq/XRRx9p2bJlqqys1AUXXKAxY8boT3/6k3HbfIcOHTR79mzNmjVLM2bMUOvWrXXrrbeqVatWevjhh3/1GiNHjtS+ffu0bNkyrVu3Th07dtRTTz2l1atXn3RA1bp1a/Xr108fffTRSd/e/umnn+rTTz+VxWJRixYt1K5dO40YMUKjRo0yNkI7njZt2uiGG27Q+vXrtWLFClmtVnXo0EGzZs3SkCFDjLp7771Xu3bt0oIFC1RWVqY+ffqcVkD76KOPKjU1VTt27FC7du30zDPP6IorrjBqgoKC9Nxzz+nxxx/Xs88+K5vNpsTERIWHh9dYd/Nkehs5cqSaN2+u+fPna+bMmTrnnHM0aNAgPfjgg35LKdSFE/k4q3Xr1k2dOnXStm3bdNNNN53UdbKzs5WdnV3jeHx8vHr16qWnn35aeXl5Wrp0qbFWcHBwsP75z39q1KhRSk1N1WOPPWa87tJLL1XPnj31/PPPa9euXerYsaOefPJJv1m9rVu31uuvv67nn39ea9eu1ZIlS3TuueeqY8eOJx0wH8vpdGrZsmV64YUXtGjRIh06dEg2m009evTQqFGjTumcf/nLX9SuXTstWrRIzzzzjEJCQtS5c2e/v2c33nijIiMjNW/ePC1cuFAVFRWKiopSXFyc8cuc3/LOO+/UerxPnz46//zzlZmZqblz52r16tV666231KJFC1100UWaOHFijfWmY2Njdf7552v37t01Zs9KMmYFv/rqq3r77be1du1ahYSEqF27dho7dmytG+EBAADzBPhOZoV8AAAAmObee+/Vli1b/G6LR9MxYsQItWzZUunp6ab10LlzZ912220nNGMUAAAAJ4Y1aAEAABqAvXv3ntLsWTQOmzZt0nfffacRI0aY3QoAAADqGEscAAAA1GP5+fnKycnRG2+8ocDAwFO+jRsN05YtW7R582a9/PLLstlstd7ODgAAgIaNGbQAAAD12BdffKHk5GT9+OOP+uc//ymbzWZ2SziL1qxZo2nTpqmqqkpPP/20sUYsAAAAGg/WoAUAAAAAAAAAkzCDFgAAAAAAAABMQkALAAAAAAAAACZhk7B6buPGjfL5fAoKCjK7FQAAAAAAAAAnoLKyUgEBAerVq9dv1hLQ1nM+n08sEwwAAAAAAAA0HCeT5xHQ1nPVM2e7d+9ucicAAAAAAAAATsSmTZtOuJY1aAEAAAAAAADAJAS0AAAAAAAAAGASAloAAAAAAAAAMAkBLQAAAAAAAACYhIAWAAAAAAAAAExCQAsAAAAAAAAAJiGgBQAAAAAAAACTENACAAAAAAAAgEkIaAEAAAAAAADAJAS0AAAAAAAAAGASAloAAAAAAAAAMAkBLQAAAAAAAACYhIAWAAAAAAAAAExCQAsAAAAAAAAAJiGgBQAAAAAAAACTENACAAAAAAAAgEkIaAEAAAAAAADAJAS0AAAAAAAAAGASAloAAAAAAAAAMAkBLQAAAAAAAACYhIAWAAAAAAAAAExCQAsAAAAAAAAAJiGgBQAAAAAAAACTENACAAAAAAAAgEkIaAEAAAAAAADAJIFmNwAAAAAAODs8Ho/cbreKiooUEREhh8Mhq9VqdlsAcEbwnoeGgoAWAAAAAJoAl8ul9PR0FRYWGsdsNpsSExPldDpN7AwA6h7veWhIWOIAAAAAABo5l8ultLQ0xcTEaPr06crIyND06dMVExOjtLQ0uVwus1sEgDrDex4amgCfz+czuwkc36ZNmyRJ3bt3N7kTNBXcAgIAANC4eDweTZw4UTExMUpOTpbF8r95Ol6vV6mpqcrPz9fs2bP5uQ9Ag8d7HuqLk8n0WOIAgIFbQAAAABoft9utwsJCTZo0yS+okCSLxaL4+HilpKTI7Xara9euJnUJAHWD9zw0RCxxAEASt4AAAAA0VkVFRZKk6OjoWsdjYmL86gCgIeM9Dw0RAS0AeTwepaenKzY2VsnJybLb7QoJCZHdbldycrJiY2OVkZEhj8djdqsAAAA4SREREZKk/Pz8Wsfz8vL86gCgIeM9Dw0RAS0A4xaQkSNHHvcWkL1798rtdpvUIQAAAE6Vw+GQzWZTVlaWvF6v35jX69Xy5csVGRkph8NhUocAUHd4z0NDREALgFtAAAAAGjGr1arExETl5OQoNTVVubm5Ki8vV25urlJTU5WTk6OEhAQ2ywHQKPCeh4aITcIA+N0CYrfba4xzCwgAAEDD5nQ6lZSUpPT0dKWkpBjHIyMjlZSUxIawABoV3vPQ0BDQAvC7BSQ5OdlvmQNuAQEAAGgcnE6n4uLi5Ha7VVRUpIiICDkcDmaRAWiUeM9DQ0JAC8C4BSQtLU2pqamKj49XTEyM8vLytHz5cuXk5CgpKYn/kQEAADRwVqtVXbt2NbsNADgreM9DQxHg8/l8ZjeB49u0aZMkqXv37iZ3gqbA5XIpPT1dhYWFxrHIyEglJCRwCwgAAAAAAMAJOplMjxm0AAzcAgIAAAAAAHB2EdAC8MMtIAAAAI1XaWmp/va3v2n//v1q1aqVHn/8cYWFhZndFgCcEUVFRXrwwQdVVlam0NBQPfXUU2x+jXqJJQ7qOZY4AAAAAFAX7rrrLhUXF9c43rJlSy1YsMCEjgDgzLnttttUUVFR43hwcLBee+01EzpCU3MymZ7lNysAAAAAAA3aseFsp06d9Oijj6pTp06SpOLiYt11111mtgcAderYcNZms2ny5Mmy2WySpIqKCt12221mtgfUwBIHAAAAANCIlZaWGuHsK6+8ohYtWkiSevTooYMHD+qPf/yjiouLVVpaynIHABq8oqIiI5ydP3++zj33XEnS5ZdfrgMHDujuu+9WRUWFse8KUB8wgxYAAAAAGrG//e1vko7OnK0OZ6u1aNFCHTt29KsDgIbswQcflHR05mx1OFvt3HPPVevWrf3qgPqAgBYAAAAAGrH9+/dLkkaPHl3r+KhRo/zqAKAhKysrkyTdfvvttY6PGTPGrw6oDwhoAQAAAKARa9WqlSRp6dKltY4vW7bMrw4AGrLQ0FBJ0qJFi2odX7x4sV8dUB8Q0AIAAABAI/b4449Lkr7//nsdPHjQb+zgwYPaunWrXx0ANGRPPfWUJKmwsFAHDhzwGztw4ID27dvnVwfUB2wSBgAAAACNWFhYmFq2bKni4mL98Y9/VMeOHTVq1CgtW7bMCGdbtmzJBmEAGoWIiAgFBweroqJCd999t1q3bq0xY8Zo8eLFRjgbHBzMBmGoVwJ8Pp/P7CZwfJs2bZIkde/e3eROAAAAADRkd911l4qLi2scb9mypRYsWGBCRwBw5tx2222qqKiocTw4OFivvfaaCR2hqTmZTI+Atp4joAUAAABQV0pLS/W3v/1N+/fvV6tWrfT4448zcxZAo1VUVKQHH3xQZWVlCg0N1VNPPcXMWZw1BLSNCAEtAAAAAAAA0LCcTKbHJmEAAAAAAAAAYBICWgAAAAAAAAAwCQEtAAAAAAAAAJiEgBYAAAAAAAAATEJACwAAAAAAAAAmIaAFAAAAAAAAAJMQ0AIAAAAAAACASQhoAQAAAAAAAMAkBLQAAAAAAAAAYBICWgAAAAAAAAAwCQEtAAAAAAAAAJiEgBYAAAAAAAAATEJACwAAAAAAAAAmCTS7AQAAAAAAAKCueTweud1uFRUVKSIiQg6HQ1ar1ey2gBoIaAEAAAAAANCouFwupaenq7Cw0Dhms9mUmJgop9NpYmdATSxxAAAAAAAAgEbD5XIpLS1NMTExmj59ujIyMjR9+nTFxMQoLS1NLpfL7BYBPwS0AAAAAAAAaBQ8Ho/S09MVGxur5ORk2e12hYSEyG63Kzk5WbGxscrIyJDH4zG7VcBAQAsAAAAAAIBGwe12q7CwUCNHjpTF4h97WSwWxcfHa+/evXK73SZ1CNREQAsAAAAAAIBGoaioSJIUHR1d63hMTIxfHVAfENACAAAAAACgUYiIiJAk5efn1zqel5fnVwfUBwS0AAAAANBEVFZWKjs7WwsXLlR2drYqKyvNbgkA6pTD4ZDNZlNWVpa8Xq/fmNfr1fLlyxUZGSmHw2FSh0BNgWY3AAAAAAA48zIzM5Wdne0XWGRmZmrYsGEaO3asiZ0BQN2xWq1KTExUWlqaUlNTFR8fr5iYGOXl5Wn58uXKyclRUlKSrFar2a0ChgCfz+czuwkc36ZNmyRJ3bt3N7kTAAAAAA1VZmamVqxYoZYtW2r06NHq3bu3NmzYoKVLl6q4uFg33XQTIS2ARsXlcik9PV2FhYXGscjISCUkJMjpdJrYGZqKk8n0CGjrOQJanG0ej0dut1tFRUWKiIiQw+HgN4sAAAANWGVlpW6//XaFhYXppZdeUmDg/26krKqq0oQJE1RaWqpFixYpKCjIxE4BoG7x71uY6WQyPZY4AGCo7TeMNptNiYmJ/IYRAACggVqzZo28Xq9Gjx7tF85KUmBgoEaNGqV58+ZpzZo1GjZsmEldAkDds1qt6tq1q9ltAL+JTcIASDoazqalpSkmJkbTp09XRkaGpk+frpiYGKWlpcnlcpndIgAAAE5BQUGBJKl37961jlcfr64DAABnFwEtAHk8HqWnpys2NlbJycmy2+0KCQmR3W5XcnKyYmNjlZGRIY/HY3arAAAAOElRUVGSpA0bNqiyslLZ2dlauHChsrOzVVlZqQ0bNvjVAQCAs4slDgDI7XarsLBQkyZNksXi/3sbi8Wi+Ph4paSkyO12c3sIAABAAzNkyBBlZmbqlVde0fz58+X1eo2xzMxMBQYGymKxaMiQISZ2CQBA08UMWgAqKiqSJEVHR9c6HhMT41cHAACAhiMoKEjt27dXRUWFfD6frrjiCqWmpuqKK66Qz+dTRUWF2rdvzwZhAACYhBm0ABQRESFJys/Pl91urzGel5fnVwcAAICGo7KyUjt27FBwcLAqKir0ySef6JNPPjHGg4ODtWPHDlVWVhLSAgBgAmbQApDD4ZDNZlNWVpbfLW+S5PV6tXz5ckVGRsrhcJjUIQAAAE7VmjVr5PV6deWVV8pms/mN2Ww2XXnllfJ6vVqzZo1JHQIA0LQR0AKQ1WpVYmKicnJylJqaqtzcXJWXlys3N1epqanKyclRQkKCrFar2a0CAADgJBUUFEiS3n//fcXExGj69OnKyMjQ9OnTFRMTo/fff9+vDgAAnF0scQBAkuR0OpWUlKT09HSlpKQYxyMjI5WUlCSn02lidwAAADhV1bNmY2JilJycbGwKa7fblZycrAcffFB5eXk1ZtcCAICzg4AWgMHpdCouLk5ut1tFRUWKiIiQw+Fg5iwAAEADduGFF0qS9u3bJ6/XawS00tHlrH7++We/OgAAcHYR0ALwY7Va1bVrV7PbAAAAQB0pLS2VJJWVlWnChAkaNWqUevfurQ0bNmjZsmUqKyvzqwMAAGcXAS0AAAAANGIRERGSpP79++s///mP5s2bZ4xZLBb1799f69atM+oAAMDZRUALAAAAAI2Yw+GQzWZTeXm5MjIytHbtWhUUFCgqKkqDBw/WM888o8jISDkcDrNbBQCgSbL8dgkAAAAAoKGyWq1KTExUTk6OnnnmGXXq1EljxoxRp06d9MwzzygnJ0cJCQnsOwAAgEkCfD6fz+wmcHybNm2SJHXv3t3kTgAAAAA0ZC6XS+np6SosLDSORUZGKiEhQU6n08TOAABofE4m02OJAwAAAABoApxOp2JjY7VmzRpjiYMhQ4YoKCjI7NYA4IzweDxyu90qKipSRESEHA4HdwugXiKgBQAAAIAmoLYZtKtWrVJiYiIzaAE0OrW959lsNt7zUC+xBi0AAAAANHIul0tpaWmKiYnR9OnTlZGRoenTpysmJkZpaWlyuVxmtwgAdYb3PDQ0rEFbz7EGLQAAAIDT4fF4NHHiRMXExCg5OVkWy//m6Xi9XqWmpio/P1+zZ8/m1l8ADR7veagvTibTYwYtAAAAADRibrdbhYWFGjlypF9QIUkWi0Xx8fHau3ev3G63SR0CQN3hPQ8NEQEtAAAAADRiRUVFkqTo6Ohax2NiYvzqAKAh4z0PDREBLQAAAAA0YhEREZKk/Pz8Wsfz8vL86gCgIeM9Dw1RvQ1oy8rKNGDAAHXu3NlYs6Ha66+/riFDhqh79+666aab9OGHH9Z4fWlpqR5++GH16dNHvXr10v3336+9e/fWqMvJydGoUaPUo0cPXX311Zo3b55+uSyvz+fTvHnzdNVVV6lHjx4aNWqUvvzyyxrnKigo0MSJE9WrVy/16dNHjzzyiA4ePHh6nwgAAAAAOA0Oh0M2m01ZWVnyer1+Y16vV8uXL1dkZKQcDodJHQJA3eE9Dw1RvQ1oX3jhBXk8nhrH33nnHT366KO6/vrrNX/+fPXs2VP33XdfjcB00qRJ+vTTT/XYY49p5syZ2rFjh+6++25VVVUZNT/88IPGjRsnm82muXPnKjExUbNnz9bLL7/sd6758+dr9uzZuuOOOzR37lzZbDbdeeedfr+Nqays1F133aWdO3cqLS1Njz32mNatW6ekpKS6/cQAAAAAwEmwWq1KTExUTk6OUlNTlZubq/LycuXm5io1NVU5OTlKSEhgsxwAjcIv3/NWr16tDz74QKtXr+Y9D/VWgO+X00XrgW3btunmm2/W1KlT9be//U1vvPGGsePZkCFD1K1bN6WlpRn1o0ePVlhYmObPny9J2rhxo0aPHq2FCxeqf//+kqTt27dr6NChevrppzV06FBJ0l//+letW7dOq1evVnBwsCTp6aef1pIlS/Tpp58qODhYR44c0eWXX67bbrtNDzzwgCSpoqJC1113nQYMGKDHHntMkpSdna0pU6Zo1apV6tChgyRp3bp1GjdunF5//XX16NHjlD4XJ7PjGwAAAAAcj8vlUnp6ugoLC41jNptNiYmJcjqdJnYGAHUvMzNT2dnZfrNoLRaLhg0bprFjx5rYGZqKk8n06uUM2ieeeEKjR49W+/bt/Y7n5+dr586duv766/2ODx06VOvXr1dFRYUk6eOPP1Z4eLj69etn1HTo0EFdunTRxx9/bBz7+OOPdc011xjhbPW5SkpKtHHjRklHl0A4ePCg3zWDg4M1ePDgGufq3LmzEc5KUr9+/XTuuefqo48+Op1PBwAAAACcti1btmjfvn1+x/bt26ctW7aY1BEAnBkul0srV65Uz549NW7cOP3pT3/SuHHj1LNnT61cuVIul8vsFgE/9S6gXb16tbZs2aJ77723xtj27dslqUZwe/HFF6uystJYcmD79u1q3769AgIC/Oo6dOhgnOPQoUPavXu3X6BaXRMQEGDUVf/5y7qLL75Yu3bt0uHDh426X9YEBASoffv2xjkAAAAAwAyZmZlasWKFwsPDNX78eM2bN0/jx49XeHi4VqxYoczMTLNbBIA64fF4lJ6ertjYWE2dOlXXXXedBg4cqOuuu05Tp05VbGysMjIyal1WEzBLoNkNHKu8vFz//Oc/NXnyZLVo0aLGeHFxsSQpPDzc73j18+rxkpIShYWF1Xh9y5Yt9c0330g6uolYbecKDg5WSEiI37mCg4PVrFmzGtf0+XwqLi5W8+bNf/Wa1ec6VT6fT4cOHTqtcwAAAABomqqqqpSdna3w8HA9/fTTCgw8+s/Ayy+/XH369NHkyZOVnZ2t4cOHG2MA0FB99913Kiws1IQJE4xJdccaOnSo/vGPf+jLL79Uly5dTOgQTYXP56sxefR46tX/fV988UWdd955+v3vf292K/VKZWWlvvvuO7PbAAAAANAAff755/J6vbr88sv1/fff1xi//PLLtXr1ar322mvq06ePCR0CQN359ttvJUllZWW1ZilHjhzxqwPOpGOXVf019Sag/emnn/Tyyy/r+eefN2a3Vs8aPXTokMrKytSyZUtJR2e/2mw247UlJSWSZIyHh4drz549Na5RXFxs1FTPdq2+VrWKigqVl5f7nauiokJHjhzxm0VbUlKigIAAv7qDBw/Wes3zzz//ZD8dfoKCgtSxY8fTOgcAAACApumLL76QJF1//fU699xza4y3adNGq1evVkBAALPJADQKK1asUGhoaK1ZytatWyVJv/vd73jPwxlV/b12IupNQPvjjz+qsrJS99xzT42xhIQEXXLJJUpLS5NUc73X7du3KygoSNHR0ZKOrhe7fv36GlOJd+zYIbvdLkk655xzdP7559dYH3bHjh3y+XzG+av/3LFjhxwOh981L7jgAjVv3tyo++Xi+j6fTzt27PDbrOxUBAQE6JxzzjmtcwAAAABomtq1ayfp6GyxQYMG1Rj/9NNPjTr+3QGgoevZs6dsNptWrVql5ORkWSz/237J6/Vq1apVioyMVM+ePWW1Wk3sFI3diS5vINWjTcK6dOmijIwMv/+mTZsmSXr88cf1t7/9TdHR0brooou0evVqv9euWrVKffv2NaYNDxgwQMXFxVq/fr1Rs2PHDn377bcaMGCAcWzAgAH617/+pcrKSr9zhYeHq1evXpKk2NhYtWjRQu+++65RU1lZqffee6/Gudxut3bu3GkcW79+vQ4cOKArr7yyDj5DAAAAAHDyhgwZIovFoqVLl6qqqspvrKqqSsuWLZPFYtGQIUNM6hAA6o7ValViYqJycnKUmpqq3NxclZeXKzc3V6mpqcrJyVFCQgLhLOqVejODNjw8XE6ns9axrl27qmvXrpKkiRMnasqUKYqJiZHT6dSqVav09ddfa9GiRUZ9r1691L9/fz388MOaOnWqmjVrpmeeeUadO3fWtddea9SNGzdOK1euVFJSkm699VZt2bJFCxcu1OTJk42wt1mzZho/frzmzJmjVq1ayW63a8mSJTpw4IDGjRtnnGvIkCGaO3euJk6cqAceeEDl5eVKTU3VVVddpR49epyJTxkAAAAA/KagoCANGzZMK1as0IQJEzRq1Cj17t1bGzZs0LJly1RcXKybbrpJQUFBZrcKAHXC6XQqKSlJ6enpSklJMY5HRkYqKSnpuPkTYJYAn8/nM7uJ43G5XEpISNAbb7yh7t27G8dff/11zZ8/X7t27VL79u31wAMP6Oqrr/Z7bWlpqZ588kmtXbtWVVVV6t+/v1JSUhQVFeVXl5OTo3/+85/67rvv1KpVK9122226++67/aYh+3w+zZs3T4sXL9b+/fvVpUsXTZs2zZhlW62goEBPPPGE1q1bp8DAQA0ePFgPP/ywWrRoccqfg02bNkmS38cPAAAAACcrMzNT2dnZ8nq9xjGLxaJhw4Zp7NixJnYGAGeGx+OR2+1WUVGRIiIi5HA4mDmLs+ZkMr16HdCCgBYAAABA3Tly5IgyMzO1e/dunX/++Ro7dqzfZsgAAKBunEymV2+WOAAAAAAAnDkul0vp6ekqLCyUJH399dfKyclRYmIit/sCAGCierNJGAAAAADgzHC5XEpLS1NMTIymT5+ujIwMTZ8+XTExMUpLS5PL5TK7RQAAmiwCWgAAAABoxDwej9LT0xUbG6vk5GTZ7XaFhITIbrcrOTlZsbGxysjIkMfjMbtVAACaJAJaAAAAAGjE3G63CgsLNXLkSFks/v8EtFgsio+P1969e+V2u03qEACApo2AFgAAAAAasaKiIklSdHR0reMxMTF+dQAA4OwioAUAAACARiwiIkKSlJ+fX+t4Xl6eXx0AADi7CGgBAAAAoBFzOByy2WzKysqS1+v1G/N6vVq+fLkiIyPlcDhM6hAAgKaNgBYAAAAAGjGr1arExETl5OQoNTVVubm5Ki8vV25urlJTU5WTk6OEhARZrVazWwUAoEkK8Pl8PrObwPFt2rRJktS9e3eTOwEAAADQkLlcLqWnp6uwsNA4FhkZqYSEBDmdThM7AwCg8TmZTI8ZtAAAAADQRPxyfs4vlzwAAABnHwEtAD8ej0ebN2/WunXrtHnzZnk8HrNbAgAAwGlyuVxKS0tTmzZtFBoaqsDAQIWGhqpNmzZKS0uTy+Uyu0UAqHOVlZXKzs7WwoULlZ2drcrKSrNbAmoVaHYDAOqP2m57s9lsSkxM5LY3AACABsrj8Sg9PV2S9M033xjHq6qq9M033yggIEAZGRmKi4tjHVoAjUZmZqays7P97hTIzMzUsGHDNHbsWBM7A2piBi0ASf+bVRETE6Pp06crIyND06dPV0xMDLMqAAAAGjC3263CwsIayxtU8/l82rt3r9xu91nuDADOjMzMTK1YsUJhYWEaP3685s2bp/HjxyssLEwrVqxQZmam2S0CfphBC8CYVREbG6vk5GRZLEd/d2O325WcnKzU1FRmVQAAADRQO3bsMB736NFDl156qYKDg1VRUaEvvvhCX3/9tVHXtWtXs9oEgDpRvaxBy5Yt9dJLLykw8Gj0NWjQIF111VWaMGGCsrOzNXr0aAUFBZncLXAUM2gBGLMqRo4caYSz1SwWi+Lj45lVAQAA0EC9/vrrkiSr1apdu3Zp4cKFevHFF7Vw4ULt2rXL+Pmvug4AGrI1a9bI6/Vq9OjRRjhbLTAwUKNGjZLX69WaNWtM6hCoiRm0AFRUVCRJio6OlsfjkdvtVlFRkSIiIuRwOBQTE+NXBwAAgIbjyJEjko7eNRUdHa3hw4cbM2hzcnK0b98+vzoAaMgKCgokSb179651vPp4dR1QHxDQAlBERIQkafXq1Vq7dm2NTcIGDx7sVwcAAICGIzg4WOXl5ZKkzZs3a+PGjX5jtT0GgIYqKipKkrRhwwYNGjSoxviGDRv86oD6gCUOAMjhcCg8PFyLFy9WdHS03yZh0dHRWrx4sVq2bCmHw2F2qwAAADhJQ4cONR5XVFT4jR37/Ng6AGiohgwZIovFoqVLl6qqqspvrKqqSsuWLZPFYtGQIUNM6hCoiYAWgJ+AgABjh1+fz6eAgADjMQAAABqeNm3a1GkdANRnQUFBGjZsmIqLizVhwgStXbtW+/fv19q1azVhwgQVFxdr2LBhbBCGeoUlDgDI7XarpKREY8aM0dq1a5WSkmKMRUZG6tZbb9WSJUvkdrvZ2RcAAKCBOXjwYJ3WAUB9N3bsWElSdna25s2bZxy3WCy66aabjHGgviCgBWBs/nXdddfppptuqrFJWEVFhZYsWcImYQAAAA1QixYtJEkhISFq3ry53890rVq1Unl5ucrLy406AGgMxo4dq9GjR2vNmjUqKChQVFSUhgwZwsxZ1EsEtACMzb/y8/Nlt9trzJLNy8vzqwMAAEDDUT0ztry8XF26dFF8fLyaNWumI0eO6Msvv1ROTo5fHQA0FtXLHQD1HQEtADkcDtlsNmVlZSk5OVkWy/+Wp/Z6vVq+fLkiIyPZJAwAAKABCg8PlyS1b99eeXl5RiArSTabTe3bt9eOHTuMOgAAcHYR0AKQ1WpVYmKi0tLSNGPGDPXs2dNvVsXGjRuVlJQkq9VqdqsAAAA4Seedd54kaceOHYqNjVWfPn1UUVGh4OBg7dmzxwhsq+sAAMDZRUALQJLkdDp14403Kjs7229WhcVi0Y033iin02lidwAAADhV1XdLWSwWv5/zqkVFRcnn83G3FAAAJiGgBSBJcrlcWrlypWJjY9WzZ08FBweroqJCX375pVauXCm73U5ICwAA0ABZrVb17dtXK1asqHW8oKBAN910E3dLAQBgEgJaAPJ4PEpPT1dsbGyNNWivvfZapaamKiMjQ3FxcfzgDgAA0MB4PB6tXbtWkhQQECCfz2eMVT9fu3atxowZw896AACYwPLbJQAaO7fbrcLCQo0cOVI+n0+bN2/WunXrtHnzZvl8PsXHx2vv3r1yu91mtwoAAICT9M0336i8vFzNmzdXRESE31hERISaN2+u8vJyffPNNyZ1CABA08YMWgAqKiqSdPT2tlmzZqmwsNAYs9lsuvXWW/3qAAAA0HB8/PHHkqTDhw+ra9euio+P91vOasOGDUbdJZdcYmarAAA0SQS0AIyZFLNnz1bv3r01adIkRUdHKz8/X1lZWZo9e7ZfHQAAABqOQ4cOSTq6GdgPP/xgBLKS1Lp1a0VFRamgoMCoAwAAZxcBLQDZ7XZZLBaFhYVpypQpCgwMNI5PmTJFEyZMUGlpqex2u8mdAgAA4GS1atVK0tG7pWJjYzV58mTjl/FvvvmmcnJy/OoAAMDZRUALQFu2bJHX61VJSYlmzpyp+Ph4xcTEKC8vT8uXL1dJSYl8Pp+2bNmirl27mt0uAAAATsLFF19sPD506JBSUlLk8/kUEBCgzp0711oHAADOHgJaAMbasvfdd5+WLl2qlJQUYywyMlL33Xef5syZwxq0AAAADdCxSxccu+mrz+fze84SBwAAmIOAFoCxtmybNm00Z84cud1uFRUVKSIiQg6HQ1u3bvWrAwAAQMMRHh5ep3UAAKBuEdACkMPhkM1mU1ZWlpKTk/2WMfB6vVq+fLkiIyPlcDhM7BIAAACn4siRI8Zjh8Oh9u3bq7KyUkFBQdqxY4cxi/bYOgAAcPZYzG4AgPmsVqsSExOVk5Oj1NRU5ebmqry8XLm5uUpNTVVOTo4SEhJktVrNbhUAAAAnacGCBcbjn3/+We+++67ef/99vfvuu9q/f3+tdQAA4OxhBi0ASZLT6VRSUpLS09NrrEGblJQkp9NpYncAAAA4VV6v13gcHR2tG2+8Uc2aNdORI0f05Zdfau/evTXqAADA2UNAC8DgdDoVFxdXYw1aZs4CAAA0XBaLRV6vVxaLRfn5+crJyTHGIiMj/cYBAMDZR0ALwI/VavVbgxYAAAAN29NPP61JkybJ6/XqoYce0tdff62CggJFRUWpR48eSkpKMuoAAMDZR0ALAAAAAI1Y27ZtjcfVYexv1QEAgLOHe1gAAAAAoJGbMmXKaY0DAIAzh4AWAAAAABoxj8ejefPmSZI6deqkgIAASVJAQIA6deokSZo/f748Ho9pPQIA0JSxxAEAAAAANGKbN29WSUmJOnfurEcffVRr16411qAdPHiw/vGPfyg3N1ebN29Wjx49zG4XAIAmh4AWAAAAABqxb7/9VpLUqlUrJSQkyOv1GmOZmZnq06ePUUdACwDA2UdACwAAAABNwPr169WyZUuNHj1avXv31oYNG7R06VJ99tlnZrcGAECTRkALAAAAAI1Y586dJUlWq1UvvPCCgoODJUmDBg3SgAEDlJCQII/HY9QBAICzi4AWAAAAABqx/Px8SUc3C5s5c6batGmjyspKBQUFac+ePcbmYPn5+erVq5eZrQJAnfJ4PHK73SoqKlJERIQcDoesVqvZbQE1ENACAAAAQCNWWFhoPN64ceMJ1QFAQ+dyuZSenu733maz2ZSYmCin02liZ0BNFrMbAAAAAACcOVFRUXVaBwD1ncvl0syZM2v84qmwsFAzZ86Uy+UyqTOgdgS0AAAAANCIXXPNNX7Pg4OD5XA4jLVoj1cHAA2Rx+PRCy+8IEkKDw/X+PHjNW/ePI0fP17h4eGSpBdeeMFY3gWoDwhoAQAAAKARy8rK8nteUVEht9utioqKX60DgIbom2++0aFDhxQaGqq5c+dq0KBBioiI0KBBgzR37lyFhobq0KFD+uabb8xuFTAQ0AIAAABAI7ZixYo6rQOA+uyjjz6SJI0aNUqBgf5bLwUGBuoPf/iDXx1QH7BJGAAAAAA0Yl6vV5J07rnn6rnnntPatWtVUFCgqKgoDR48WH/+859VUlJi1AFAQ3b48GFJUmRkZK3j1cer64D6gIAWAAAAABqxoKAgVVZW6sCBA7JarRo2bJgxVlVVpZKSEqMOABo6h8OhL774QkuWLFGvXr1ksfzv5nGv16ulS5cadUB9wRIHAAAAANCI3XLLLcbjhIQEpaena/Xq1UpPT1dCQkKtdQDQUF1//fUKCAjQDz/8oBkzZig3N1fl5eXKzc3VjBkzlJeXp4CAAF1//fVmtwoYmEELAAAAAI1Yp06djMeVlZXKzs7+zToAaKiCgoJ04403asWKFdq4caNycnKMsYCAAEnSjTfeyF0DqFeYQQsAAAAAjZjD4VB4ePiv1oSHh3O7L4BGY+zYsbrppptqHbvppps0duzYs9wR8OuYQQsAAAAATYTD4dC2bdtUVVWlwMBAXXzxxXK73casMgBoLMaOHavRo0drzZo1xsaIQ4YMYeYs6iUCWgAAAABoxNxut0pKSjRmzBitXbtWlZWVko4ud7B//36NGTNGixcvltvtVteuXU3uFgDqTlBQkN/GiEB9RUALAAAAAI1YUVGRJOm6667TsGHDaswmq6qq0uLFi406AABwdhHQAr+ioKBAZWVlZrcBE4SGhioqKsrsNgAAAE5bRESEJGn16tVau3atCgsLjbFVq1Zp8ODBfnUAAODsIqAFjqOkpEQTJ06Uz+czuxWYwGKxaP78+b+5oQaAhs/j8cjtdquoqEgRERFyOByyWq1mtwUAdaZ6k7DFixerR48eat26tUpLSxUWFqagoCAtXrxYLVu2ZJMwAABMQkALHEd4eLjmzJnTJGfQ/vTTT5o9e7buv/9+tW3b1ux2TBEaGko4CzQBLpdL6enpfrPJbDabEhMT5XQ6TewMAM6Mr7/+utbjTEoAAMA8BLTAr2jqt7i3bdtWHTp0MLsNADgjXC6X0tLSFBsbq0mTJik6Olr5+fnKyspSWlqakpKSCGkBNArVm4T9mpKSEjYJAwDAJAS0AACgyfF4PEpPT1dsbKySk5NlsVgkSXa7XcnJyUpNTVVGRobi4uJY7gBAg7d7925JUkBAgF555RXt3LnTWNbloosu0h//+Ef5fD7t3r2bgBYAABNYzG4AAADgbHO73SosLNTIkSONcLaaxWJRfHy89u7dK7fbbVKHAFB3/v3vf0uSLrnkEoWGhqpr167q37+/unbtqtDQUPXo0cOvDgAAnF0EtAAAoMkpKiqSJEVHR9c6HhMT41cHAA3ZoUOHJEmHDx+W1+v1G/N6vTp8+LBfHQAAOLtY4gAAADQ5ERERkqT8/HzZ7fYa43l5eX51ANCQtWnTRvn5+XK73XryySd15MgRlZaWKiwsTM2aNVNubq5RBwAAzj5m0AIAgCbH4XDIZrMpKyur1tlky5cvV2RkpBwOh0kdAkDdmThxovH4yy+/1Hfffacff/xR3333nb788sta6wAAwNlDQAsAAJocq9WqxMRE5eTkKDU1Vbm5uSovL1dubq5SU1OVk5OjhIQENggD0CiEhIQoODj4V2uCg4MVEhJyljoCAADHYokDAADQJDmdTiUlJSk9PV0pKSnG8cjISCUlJcnpdJrYHQDUnfLyclVUVPxqTUVFhcrLywlpAQAwAQEtAABospxOp+Li4uR2u1VUVKSIiAg5HA5mzgJoVGbNmiVJCgwM1Ny5c5WamqrCwkLZbDYlJydr/Pjxqqqq0qxZszRt2jRzmwUAoAkioAUAAE2a1WpV165dzW4DAM6Y7du3S5Li4uI0depU7du3T5K0f/9+TZ06Vb1795bL5TLqAADA2UVACwAAAACNWFBQkCTps88+qzG2b98+I7CtrgMAAGcXm4QBAAAAQCM2cOBA43FYWJjGjx+vefPmafz48QoLC6u1DgAAnD3MoAUAAACARqx9+/bG49LSUr399tv64IMPVFpaqtLS0lrrAKAx8Hg87DWABoGAFgAAAAAasf/85z9+z/fs2aM9e/bUWte7d++z1RYAnFEul0vp6ekqLCw0jtlsNiUmJsrpdJrYGVATSxwAAAAAQCN2+PDhOq0DgPrO5XIpLS1NMTExmj59ujIyMjR9+nTFxMQoLS1NLpfL7BYBP8ygBQAAAIBG7OKLL9bnn38uSerRo4fatWuniooKBQcH68cff9TXX39t1AFAQ+fxeJSenq7Y2FglJyfLYjk6N9Futys5OVmpqanKyMhQXFwcyx2g3mAGLQAAAAA0Ynv37jUeWywW+Xw+SZLP5zOCi1/WAUBD5Xa7VVhYqJEjR/q9x0lH3wPj4+O1d+9eud1ukzoEamIGLQAAAAA0Yjt37jQef/nll/ryyy9/sw4AGqqioiJJUnR0dK3jMTExfnVAfcAMWgAAAABoxEJDQ+u0DgDqs4iICElSfn5+reN5eXl+dUB9QEALAAAAAI3YddddZzxu1aqV39ixz4+tA4CGyuFwyGazKSsrS16v12/M6/Vq+fLlioyMlMPhMKlDoCYCWgAAAABoxHbv3m08Lioq0hVXXKEZM2boiiuu8LvF99g6AGiorFarEhMTlZOTo9TUVOXm5qq8vFy5ublKTU1VTk6OEhIS2CAM9Qpr0AIAAABAI3bs5l8+n0+ffPKJPvnkk1+tA4CGzOl0KikpSenp6UpJSTGOR0ZGKikpSU6n08TugJoIaAEAAACgCejTp4++/fZbHTx40DgWFhYmh8OhL774wsTOAKDuOZ1OxcXFye12q6ioSBEREXI4HMycRb1EQAsAAAAAjVinTp20Zs0aff755zXGSktLjXC2U6dOZ7s1ADijrFarunbtanYbwG9iDVoAAAAAaMRat25dp3UAAKBuEdACAAAAQCPWrl27Oq0DAAB1i4AWAAAAABqxxx9/vE7rAABA3SKgBQAAAIBGLD8/v07rAABA3SKgBQAAAAAAAACTENACAAAAQBMSGhqqHj16KDQ01OxWAACApECzGwAAAAAAnD1lZWX6+uuvzW4DAM44j8cjt9utoqIiRUREyOFwyGq1mt0WUAMBLQAAAAAAABoVl8ul9PR0FRYWGsdsNpsSExPldDpN7AyoiSUOAAAAAKARCww8sXk5J1oHAPWdy+VSWlqaYmJiNH36dGVkZGj69OmKiYlRWlqaXC6X2S0CfghoAQAAAKARO9HbebntF0Bj4PF4lJ6ertjYWCUnJ8tutyskJER2u13JycmKjY1VRkaGPB6P2a0CBgJaAAAAAGjEHA5HndYBQH3mdrtVWFiokSNHyufzafPmzVq3bp02b94sn8+n+Ph47d27V2632+xWAQP3sAAAAABAIxYeHl6ndQBQnxUVFUmS9uzZo1mzZtVYg3b06NF+dUB9QEALAAAAAI3YlVdeqU8++eSE6gCgoYuIiJAkPffcc4qNjdWkSZMUHR2t/Px8ZWVl6bnnnvOrA+oDljgAAAAAgEbsd7/7XZ3WAUB9ZrfbZbFYFB4erilTpvitQTtlyhSFh4fLYrHIbreb3SpgIKAFAAAAgEbs3//+d53WAUB9tmXLFnm9XhUXF2vmzJnKzc1VeXm5cnNzNXPmTBUXF8vr9WrLli1mtwoYCGgBAAAAoBGbN29endYBQH1Wvbbs/fffr7y8PKWkpCghIUEpKSnKz8/X/fff71cH1AesQQsAAAAATUR4eLi6du2q5s2b6/Dhw9q8ebNKSkrMbgsA6kz12rJRUVGaM2eO3G63ioqKFBERIYfDoa1bt/rVAfUBAS0AAAAANBGBgYFav3698bxVq1YmdgMAdc/hcMhmsykrK0vJycnq2rWrMeb1erV8+XJFRkbK4XCY2CXgjyUOAAAAAKARCwgIMB4fPnxY48eP19y5czV+/HgdPny41joAaKisVqsSExOVk5Oj1NRUvzVoU1NTlZOTo4SEBFmtVrNbBQzMoAUAAACARqxfv35at26dJOnQoUOaO3fucesAoDFwOp1KSkpSenq6UlJSjOORkZFKSkqS0+k0sTugJgJaAAAAAGjEQkND67QOABoCp9OpuLi4GmvQMnMW9REBLQAAAAA0Yh07dtSaNWtOqA4AGhOr1eq3Bi1QX7EGLQAAAAA0Yie6Uzk7mgMAYA4CWgAAAABoxLZt21andQAAoG4R0AIAAABAI5aTk1OndQAAoG4R0AIAAABAI+b1euu0DgAA1C0CWgAAAABoxA4ePFindQAAoG4R0AIAAABAI1ZYWFindQAAoG4R0AIAAABAI8YSBwAA1G8EtAAAAADQiIWEhNRpHQAAqFsEtAAAAADQiF1wwQV+z8PDw9W+fXuFh4f/ah0AADg7CGgBAAAAoBGLjIz0e15SUqIdO3aopKTkV+sAAMDZEWh2AwAAAACAM4clDgA0VZWVlVqzZo0KCgoUFRWlIUOGKCgoyOy2gBoIaAEAAACgEbNYTuzGyROtA4CGIDMzU9nZ2X4bIGZmZmrYsGEaO3asiZ0BNRHQAgAAAEAjFhAQUKd1AFDfZWZmasWKFWrZsqVGjx6t3r17a8OGDVq6dKlWrFghSYS0qFf4FSkAAAAANGKtW7eu0zoAqM8qKyuVnZ2tli1b6vnnn9f555+vzZs36/zzz9fzzz+vli1bKjs7W5WVlWa3ChiYQQsAAAAAjdhrr71mPA4ICNANN9ygqKgoFRQU6J133pHP5zPqRowYYVKXAFA31qxZI6/XK6fTqcmTJ6uwsNAYs9ls6tOnj9auXas1a9Zo2LBhJnYK/A8BLQAAAAA0IdnZ2cZjljUA0NgUFBRIkt577z317t1bkyZNUnR0tPLz85WVlaW1a9f61QH1AQEtAAAAADQRvXr1UlRUlCorKxUUFKSCggLl5OSY3RYA1BmbzSZJiomJUXJysrEBot1uV3Jysh588EHl5eUZdUB9QEALAAAAoEkqKChQWVmZ2W2cVVu3bvULZFu2bOk3vn379rPd0lkXGhqqqKgos9sAcIZceOGFkqT9+/fL6/UaAa0keb1e7d+/368OqA8IaAEAAAA0OSUlJZo4caKx/mpTUVJS4ve8uLjY7/nUqVPPZjumsFgsmj9/vsLDw81uBcAZUFpaKkk6ePCgJkyYoFGjRql3797asGGDli1bpoMHD/rVAfUBAS0AAACAJic8PFxz5sxpMjNoTyR4nTFjxlnoxHyhoaGEs0AjFhERIUm64oor9Omnn2revHnGmMViUf/+/bVu3TqjDqgPCGgBAAAANElN6Tb3119/XX/4wx9+dRwAGgOHwyGbzaZDhw4pMzNT7733ngoKChQVFaVrr71WTz/9tCIjI+VwOMxuFTBYfrsEAAAAANDQvf7663r66af9jj399NOEswAaFavVqsTEROXk5Ojpp59Wp06dNGbMGHXq1ElPP/20cnJylJCQIKvVanargIEZtAAAAADQRERHR2vGjBmaOnWqZsyYoejoaLNbAoA653Q6lZSUpPT0dKWkpBjHIyMjlZSUJKfTaWJ3QE31KqD96KOPNH/+fG3dulUHDx5UVFSUBg0apPvuu09hYWFG3QcffKBZs2Zpx44duuCCC3TPPffo97//vd+5Kioq9Mwzz2jFihUqKytTr1699Oijj6pDhw5+ddu2bdMTTzyhjRs3KjQ0VMOHD9ekSZMUHBzsV/f6669rwYIF2rVrl9q3b6/Jkyfr6quv9qspLS3Vk08+qffff1+VlZW64oorlJKSosjIyDr+TAEAAAAAAOB4nE6n4uLi5Ha7VVRUpIiICDkcDmbOol6qVwHtgQMH1KNHD40dO1bnnnuuvv/+e82ZM0fff/+9Xn75ZUnSf//7X9133326+eab9fDDD+uzzz7TI488otDQUF133XXGuZ544gmtWrVKDz30kKKiovTSSy/pjjvu0DvvvGOEvcXFxUpMTNRFF12kOXPmqKCgQP/85z91+PBh/fWvfzXO9c477+jRRx/VhAkTdNlll2nVqlW677779Nprr6lnz55G3aRJk7R161Y99thjatasmWbNmqW7775bb775pgID69WnGgAA/P+OHDmizMxM7d69W+eff77Gjh2rZs2amd0WAAAATlNJSYmeeeYZlZWVKTQ0VE899RSbg6Feqlep4fDhw/2eO51OBQcH69FHHzUWdH7xxRfVo0cP/f3vf5ckXXbZZcrPz9fs2bONgHbPnj1644039Le//U0333yzJKl79+66+uqrtXTpUt19992SpKVLl6qsrEzPPfeczj33XEmSx+PR448/rvHjxxubBsyePVs33HCDJk2aZFxzy5Ytev755zV//nxJ0saNG7Vu3TotXLhQ/fv3lyS1b99eQ4cO1XvvvaehQ4eeuU8cAAA4JTNmzNB///tf4/nXX3+tNWvWKC4u7oR2PAcAAED9dNttt6miosJ4XlxcrHvuuUfBwcF67bXXTOwMqKnebxJWHZxWVlaqoqJCLpfLb6asJA0dOlTbtm3Tjz/+KElat26dvF6vX925556rfv366eOPPzaOffzxx+rbt69xDUm6/vrr5fV69emnn0qS8vPztXPnTl1//fU1rrl+/XrjL/vHH3+s8PBw9evXz6jp0KGDunTp4ndNAABQP1SHs4GBgRoxYoRmz56tESNGKDAwUP/97381Y8YMs1sEAADAKTg2nLXZbJo8ebJsNpuko0ti3nbbbWa2B9RQr2bQVvN4PKqqqtLWrVv1/PPPa+DAgWrXrp22bt2qysrKGuvIXnzxxZKk7du3q127dtq+fbvOO+88tWzZskbdG2+8YTzfvn17jbVrw8PDZbPZtH37dqNGOjob9pfnqqysVH5+vi6++GJt375d7du3V0BAgF9dhw4djHMAAID64ciRI0Y4m56ebqw9f9ttt+kPf/iDEhMT9d///ldHjhxhuQMAAIAGpKioyAhn58+fb0zKu/zyy3XgwAHdfffdqqioMNalBeqDehnQXn311SooKJAkXXHFFUpLS5N0dDq6dDREPVb18+rxkpISv03Fjq2rrqmu++W5JKlly5ZG3eles2XLlvrmm29+9eP9LT6fT4cOHTqtcwAn4/Dhw8affO8BaIzS09MlSUOGDFFVVZWqqqr8xocMGaJ33nlHL7/8shITE81oEQDOGH7WA9CYTZkyRdLRmbPBwcF+73PBwcFq3bq19u3bpylTpmjOnDlmtYkmwOfz1ZjIeTz1MqCdN2+eysvLtXXrVr344ouaMGGCXnnlFbPbMk1lZaW+++47s9tAE7Jnzx5J0o4dO1ReXm5yNwBQ96rvbmnbtm2t/4+94IILjDr+HwygseFnPQCNWVlZmSSpb9++2rx5s/Lz841NwqKjo+V0OvXOO++orKyMn/NwxlXfqfdb6mVA63A4JEm9evVS9+7dNXz4cK1du1YdO3aUJJWWlvrVl5SUSJKxpEF4eLgOHjxY47wlJSV+yx6Eh4fXOJd0dFZsdV31n6WlpcZ6Jce7ZvUPOsc716kKCgoyPnbgbAgJCZF0dGmPiy66yNxmAOAM6NChg3bu3KmffvrJb/34av/3f/9n1HXp0uVstwcAZxQ/6wFozEJDQ1VSUqIPP/xQ//nPf7Rv3z5jrHXr1jpy5IhRx895OJO2bt16wrX1MqA9VufOnRUUFKS8vDwNHDhQQUFB2r59u6644gqjpnoWTPXatB06dNC+fftqhKPbt2/3W7+2tvVhS0tLVVhY6Heu2l67fft2BQUFKTo62qhbv359jenLO3bskN1uP63PQUBAgM4555zTOgdwMpo3b278yfcegMbozjvv1AcffKA1a9ZozJgxfr/Zrqio0Jo1a4w61qAF0Njwsx6AxmzmzJm65557VFpaqgsvvFCTJ09WdHS08vPztWTJEmMZypkzZ/IeiDPqRJc3kCTLGeyjTnz11VeqrKxUu3btFBwcLKfTafyjqdqqVat08cUXq127dpKk/v37y2Kx6L333jNqiouLtW7dOg0YMMA4NmDAAP3nP/8xZsNK0urVq2WxWIzZNNHR0brooou0evXqGtfs27ev8Q+6AQMGqLi4WOvXrzdqduzYoW+//dbvmgAAwHzNmjVTXFycqqqqlJiYqEWLFmnXrl1atGiREhMTVVVVpbi4OMJZAACABubYPYS++eYbPfroo7rzzjv16KOP+u0RVNueRIBZ6tUM2vvuu0/dunVT586d1bx5c7ndbi1cuFCdO3fWoEGDJEl/+tOflJCQoMcee0zXX3+9XC6XsrOz9cwzzxjnadOmjW6++WalpqbKYrEoKipKc+fOVVhYmEaPHm3UjR49WpmZmbr33ns1fvx4FRQUKDU1VaNHj1ZUVJRRN3HiRE2ZMkUxMTFyOp1atWqVvv76ay1atMio6dWrl/r376+HH35YU6dOVbNmzfTMM8+oc+fOuvbaa8/CZw8AAJyMqVOnasaMGfrvf/+rt99+W2+//bYxFhcXp6lTp5rYHQAAAE6F2+32e+71euX1emut69q169lqC/hV9Sqg7dGjh1atWqV58+bJ5/Opbdu2+sMf/qBx48YZM1Xj4uI0Z84czZo1S2+88YYuuOACPfHEE7r++uv9zpWSkqLQ0FClpaWprKxMsbGxeuWVVxQWFmbUtGzZUunp6frHP/6he++9V6Ghobr55ps1efJkv3MNGzZM5eXlmj9/vubNm6f27dvrueeeU69evfzqZs2apSeffFJ//etfVVVVpf79+yslJUWBgfXq0wwAAP5/U6dO1ZEjR5SZmandu3fr/PPP19ixY5k5CwAA0EAVFRX5PbdYLAoICJDP5/MLan9ZB5gpwOfz+cxuAse3adMmSVL37t1N7gRNyfbt242ZZceuvQwAAICGj5/1ADRmX3zxhVJTUyVJr7zyilq0aGGMHTx4UH/84x8lScnJybr00ktN6RFNw8lkevV+DVoAAIAzyePxaPPmzVq3bp02b94sj8djdksAAAA4RYsXL5YkhYaG1tgE7JxzzjGOVdcB9QH33gMAgCbL5XIpPT1dhYWFxjGbzabExEQ5nU4TOwMAAMCpqF66oKysTKmpqYqPj1dMTIzy8vK0fPlyHTp0yK8OqA8IaAEAQJPkcrmUlpam2NhYTZo0SdHR0crPz1dWVpbS0tKUlJRESAsAANDAtGrVSmVlZTr//POVl5enlJQUYywyMlJt2rTRnj171KpVKxO7BPwR0AIAgCbH4/EoPT1dsbGxSk5OlsVydNUnu92u5ORkpaamKiMjQ3FxcbJarSZ3CwAAgBP1+OOP684779Tu3bu1cOFC5efnq6ioSBEREYqOjta4ceOMOqC+YA1aAADQ5LjdbhUWFmrkyJFGOFvNYrEoPj5ee/fuldvtNqlDAAAAnIqwsDC1bNlSkjRu3DgtWrRILVq00KJFi4xwtmXLlgoLCzOzTcAPAS0AAGhyqtcci46OrnU8JibGrw4AAAANx4IFC4yQduvWrZo+fbq2bt0q6Wg4u2DBAjPbA2pgiQMAANDkRERESJLy8/Nlt9trjOfl5fnVAQAAoGFZsGCBioqK9OCDD6qsrEyhoaF66qmn+PkO9RIzaAEAQJPjcDhks9mUlZUlr9frN+b1erV8+XJFRkbK4XCY1CEAAABOR2ZmpiZMmKDi4mJVVVWpuLhYEyZMUGZmptmtATUQ0AIAgCbHarUqMTFROTk5Sk1NVW5ursrLy5Wbm6vU1FTl5OQoISGBDcIAAAAaoMzMTK1YsUJhYWEaP3685s2bp/HjxyssLEwrVqwgpEW9wxIHAACgSXI6nUpKSlJ6erpSUlKM45GRkUpKSpLT6TSxOwAAAJyKyspKZWdnq2XLlnrppZcUGHg0+ho0aJCuuuoqTZgwQdnZ2Ro9erSCgoJM7hY4ioAWAAA0WU6nU3FxcXK73SoqKlJERIQcDgczZwEAABqoNWvWyOv1avTo0QoICNDmzZv9fs4bNWqU5s2bpzVr1mjYsGFmtwtIIqAFAABNnNVqVdeuXc1uAwAAAHWgoKBAkhQQEKCJEyeqsLDQGLPZbBo5cqRfHVAfENACAAAAAACgUYiKipIkvfTSS+rdu7cmTZqk6Oho5efnKysrS3PnzvWrA+oDNgkDAAAAAABAozB48GBJUmBgoB544AHZ7XaFhITIbrfrgQceMNakra4D6gMCWgAAAAAAADQKW7dulSRVVVXpz3/+s9auXav9+/dr7dq1+vOf/6yqqiq/OqA+YIkDAADQpHk8HjYJAwAAaCSKiookSUOHDtXq1as1b948Y8xisWjo0KFatWqVUQfUBwS0AACgyXK5XEpPT6+xeURiYqKcTqeJnQEAAOBURERESJL69eun22+/XWvWrFFBQYGioqI0ZMgQbd++XatWrTLqgPqAJQ4AAECT5HK5lJaWppiYGE2fPl0ZGRmaPn26YmJilJaWJpfLZXaLAAAAOEkOh0M2m01ZWVkKCAhQ+/bt1blzZ7Vv314BAQFavny5IiMj5XA4zG4VMDCDFgAANDkej0fp6emKjY1VcnKyLJajv7O22+1KTk5WamqqMjIyFBcXx3IHAAAADYjValViYqJmzpypxMREVVRUGGPBwcGqqKjQlClT+BkP9QozaAEAQJPjdrtVWFiokSNHGuFsNYvFovj4eO3du1dut9ukDgEAAHC6jg1na3sO1BcEtAAAoMmp3hQiOjq61vGYmBi/OgAAADQMHo9Hs2bNMp736NFDY8aMUY8ePYxjs2bNksfjMaE7oHYscQAAAJqc6k0h8vPzZbfba4zn5eX51QEAAKBh+Oqrr1RVVSVJyszMVPPmzSVJ8fHxOnz4sMaOHauqqip99dVXio2NNbNVwMAMWgAA0OQcu3mE1+v1G/N6vWweAQAA0EAtW7ZMktSvXz8jnK3WvHlz9e3b168OqA8IaAEAQJNTvXlETk6OUlNTlZubq/LycuXm5io1NVU5OTlKSEhg8wgAAIAGprS0VJLUq1cveTwebd68WevWrdPmzZvl8XjUq1cvvzqgPmCJAwAA0CQ5nU4lJSUpPT1dKSkpxvHIyEglJSXJ6XSa2B0AAABOxYUXXqjCwkK9+uqrWrp0qfbt22eMtW7dWocPHzbqgPqCgBYAADRZTqdTcXFxcrvdKioqUkREhBwOBzNnAQAAGqj7779fCQkJOnjwoAICAtS3b181a9ZMR44c0TfffKODBw8adUB9QUALAACaNKvVqq5du5rdBgAAAOpAcHCwAgMDVVVVpdLSUq1fv75GTWBgoIKDg03oDqgda9ACAAAAAACgUXC73aqqqvrVmqqqKrnd7rPUEfDbCGgBAAAAAADQKBQWFkqSwsPD9fLLL+vSSy9VdHS0Lr30Ur388ssKDw/3qwPqA5Y4AAAAAAAAQKOwdetWSdLAgQMVFham5ORkv/Grr75ab7/9trZu3aqrrrrKhA6BmphBCwAAAAAAgEZl27Zt8nq9fse8Xq+2b99uUkfA8RHQAgAAAAAAoFFo06aNJGnTpk1KTU1Vbm6uysvLlZubq9TUVG3atMmvDqgPWOIAAAAAAAAAjcKQIUOUmZmp5s2ba9u2bUpJSTHGIiIidM455+jw4cMaMmSIiV0C/phBCwAAAAAAgEYhKChIw4YN06FDh3TgwAG/saKiIh06dEjDhg1TUFCQOQ0CtSCgBQAAAAAAQKOxefPm0xoHzjaWOAAAAAAAAECjUF5erm3btikgIEAvv/yy/v3vf6ugoEBRUVG66qqrdOedd2rbtm0qLy9XSEiI2e0CkphBCwAAAAAAgEZizpw5kqQrrrhCISEhat++vTp37qz27dsrJCRE/fv396sD6gNm0AIAAAAAAKBR2LNnjyTpoosu0sSJE1VYWGiM2Ww2XXfddfrkk0+MOqA+IKAFAAAAAABAo9CmTRvl5+crIyNDvXv31qRJkxQdHa38/HxlZWUpMzPTqAPqC5Y4AAAAAAAAQKNw7733Go/vv/9+2e12hYSEyG636/7776+1DjAbM2gBAAAAAADQKOzcudN4fMcdd6h///4aNmyYsrOztW7dOr+6rl27mtAhUBMBLQAAAAAAABqFoqIiSVL79u21Y8cOffLJJ/rkk0+M8erj1XVAfcASBwAAAAAAAGgUIiIiJEl33XWXMjIydOmllyo6OlqXXnqpMjIyNG7cOL86oD5gBi0AAAAAAAAaBYfDIZvNpqysLCUnJys5OdkY83q9Wr58uSIjI+VwOEzsEvDHDFoAAAAAAAA0ClarVYmJicrJyVFqaqpyc3NVXl6u3NxcpaamKicnRwkJCbJarWa3ChiYQQsAAAAAAIBGw+l0KikpSenp6UpJSTGOR0ZGKikpSU6n08TugJoIaAEAAAAAABq5goIClZWVmd3GWWOz2fTAAw9ox44dKi0tVVhYmNq3by+LxaLt27eb3d5ZFRoaqqioKLPbwK8goAUAAE2ax+OR2+1WUVGRIiIi5HA4uOUNAAA0KiUlJZo4caJ8Pp/ZrcAEFotF8+fPV3h4uNmt4DgIaAEAQJPlcrmUnp6uwsJC45jNZlNiYiK3vgEAgEYjPDxcc+bMaVIzaKv99NNPmj17tu6//361bdvW7HZMERoaSjhbzxHQAgCAJsnlciktLU2xsbGaNGmSoqOjlZ+fr6ysLKWlpbE+GQAAaFSa+i3ubdu2VYcOHcxuA6iVxewGAAAAzjaPx6P09HTFxsYqOTlZdrtdISEhstvtSk5OVmxsrDIyMuTxeMxuFQAAAEAjR0ALAACaHLfbrcLCQo0cOVI+n0+bN2/WunXrtHnzZvl8PsXHx2vv3r1yu91mtwoAAACgkWOJAwAA0OQUFRVJOrqb8axZs2qsQXvrrbf61QEAAADAmUJACwAAmpyIiAhJ0uzZs9W7d+8aa9DOnj3brw4AAAAAzhSWOAAAAE2O3W6XxWJRy5YtNWXKFL81aKdMmaKWLVvKYrHIbreb3SoAAACARo4ZtAAAoMnZsmWLvF6vSkpK9NRTTykqKkqVlZUKCgpSQUGBSkpK5PP5tGXLFnXt2tXsdgEAAAA0YgS0AACgyaleW7Znz57KycmpMd6rVy9t3LiRNWgBAAAAnHEEtAAAoMmpXlt248aNCgsLU7du3dS8eXMdPnxY33zzjTZu3OhXBwAAAABnCgEtAABocjp27ChJslgsat68udavX2+M2Ww2lZWVyev1GnUAAAAAcKawSRgAAGhy1q5dK0nyer2qqKjQ+PHjNW/ePI0fP14VFRXyer1+dQAAAABwpjCDFgAANDl79uyRJF144YUqKSnR3LlzjbFWrVrpwgsv1A8//GDUAQAAAMCZQkALAACarMOHD9fYCGz//v0KCgoyqSMAAAAATQ1LHAAAgCanU6dOkqSCgoJax6uPV9cBAAAAwJlCQAsAAJqcsLAwv+eXXHKJ/vGPf+iSSy751ToAAAAAqGsscQAAAJqczz//3O/5V199pa+++qrWutjY2LPVFgAAAIAm6JQD2nnz5mn48OGKioqqy34AAADOuI0bNxqPY2NjFRUVpcrKSgUFBamgoEA5OTk16gAAAADgTDjlgHbWrFmaNWuW4uLiNHz4cA0ZMkQtWrSoy94AAADOqB49eig/P98IZCUpMjJS3bt316ZNm0zsDAAAAEBTccoB7YcffqiVK1dq5cqVeuSRR/SPf/xDV199tYYPH64rrrhCVqu1LvsEAACoMz179tQHH3ygTZs2KSMjQ9u2bVNRUZEiIiJ08cUXKyEhwagDAAAAgDPplDcJi4qK0l133aW3335bK1as0NixY/XVV19pwoQJ6t+/v/7xj3/UupYbAACA2e68805Jks/n0x133KGNGzeqQ4cO2rhxo+644w75fD6/OgAAAAA4U045oD2W3W5XUlKSPvjgAy1atEhxcXFavHixRo8erSFDhuiFF17Qzz//XBeXAgAAOG3NmjVTXFycJMnj8ejtt9/WX/7yF7399tvyeDySpLi4ODVr1szMNgEAAAA0AXUS0ErSkSNH9M4772jBggX68MMPZbVaNWDAAHXq1EkvvPCCBg0apLVr19bV5QAAAE7L1KlTjZD2l+Li4jR16tSz3BEAAACApuiU16CVjt4W+Omnn2rlypV6//33VVZWpt/97neaMmWKbrzxRp133nmSpL179yopKUn//Oc/NXjw4DppHAAA4HRNnTpVR44cUWZmpnbv3q3zzz9fY8eOZeYsAAAAgLPmlAPa//f//p9WrVqln3/+WTabTaNHj9aIESPUqVOnGrWRkZG6+eabmYkCAADqnWbNmumuu+4yuw0AAAAATdQpB7Svv/66Bg0apBEjRujyyy9XQEDAr9b37t1bTz755KleDgAAAAAAAAAanVMKaCsrK7VgwQK1bdtWbdq0OaHXtGvXTu3atTuVywEAAAAAAABAo3RKm4RZLBYlJCTovffeq+t+AAAAAAAAAKDJOKUZtFarVRdccIEqKirquh8AAICzyuPxyO12q6ioSBEREXI4HLJarWa3BQAAAKCJOOU1aG+//Xa99tpruvnmm3XuuefWYUsAAABnh8vlUnp6ugoLC41jNptNiYmJcjqdJnYGAAAAoKk45YDW6/UqODhYgwcP1pAhQ9S2bVs1b97cryYgIEB33HHH6fYIAABQ51wul9LS0hQbG6tJkyYpOjpa+fn5ysrKUlpampKSkghpAQAAAJxxpxzQzpgxw3j8xhtv1FpDQAsAAOojj8ej9PR0xcbGKjk5WRbL0WX57Xa7kpOTlZqaqoyMDMXFxbHcAQAAAIAz6pQD2n/961912QcAAMBZ43a7VVhYqEmTJhnhbDWLxaL4+HilpKTI7Xara9euJnUJAAAAoCk45YC2bdu2ddkHAADAWVNUVCRJio6OrnU8JibGrw4AAAAAzhTLb5cAAAA0LhEREZKk/Pz8Wsfz8vL86gAAAADgTDnlGbTS0dsDFy1apG+//ValpaXyer1+4wEBAXr//fdPq0EAAIC65nA4ZLPZlJWV5bcGrXR0I9Tly5crMjJSDofDxC4BAAAANAWnHNC6XC7dddddatmypbp166Zvv/1Wl112mY4cOaIvv/xSHTt2VLdu3eqyV5igsLBQpaWlZreBs+ynn37y+xNNS1hYmGw2m9ltAGeU1WpVYmKi0tLSlJqaqvj4eMXExCgvL0/Lly9XTk6OkpKS2CAMAAAAwBl3ygHt7NmzFR0drf/7v/9TRUWFLr/8co0fP159+/bVV199pbvvvltTpkypy15xlhUWFuovf5mkysoKs1uBSWbPnm12CzBBUFCwnn12FiEtGj2n06mkpCSlp6crJSXFOB4ZGamkpCQ5nU4TuwMAAADQVJxyQPvtt99q4sSJatGihYqLiyXJWOLgkksu0ahRo/Tss8/qyiuvrJtOcdaVlpaqsrJC1gsGKSC4ldntADgLfBX7VbnrfZWWlhLQosnw+Xx+z3+5ZBMAAAAAnEmnHNBarVaFhoZKksLDwxUYGKiff/7ZGI+Ojta2bdtOv0OYLiC4lQJCCGoAAI2Ly+VSWlqaYmNjNXnyZEVHRys/P19ZWVlKS0tjFi0AAACAs8Ly2yW1i4mJ0c6dOyUd3QysQ4cOfhuC/fvf/1br1q1Pu0EAAIC65vF4lJ6ertjYWCUnJ8tutyskJER2u13JycmKjY1VRkaGPB6P2a0CAAAAaOROOaC98sor9c4776iqqkqS9Mc//lHvvfeerr32Wl177bX64IMPNGrUqDprFAAAoK643W4VFhZq5MiRslj8fxyyWCyKj4/X3r175Xa7TeoQAAAAQFNxyksc/PnPf1ZCQoKxu3F8fLwsFovee+89Wa1WTZgwQSNHjqyzRgEAAOpKUVGRpKNLMtUmJibGrw4AAAAAzpRTDmiDgoIUERHhd2z48OEaPnz4aTcFAABwJlX/DJOfny+73V5jPC8vz68OAAAAAM6UU17iAAAAoKFyOByy2WzKysqS1+v1G/N6vVq+fLkiIyPlcDhM6hAAAABAU3HCM2gTEhJO+uQBAQFKT08/6dcBAACcSVarVYmJiUpLS1Nqaqri4+MVExOjvLw8LV++XDk5OUpKSjKWcgIAAACAM+WEA1qfz3fSJz+V1wAAAJwNTqdTSUlJSk9PV0pKinE8MjJSSUlJcjqdJnYHAAAAoKk44YA2MzPzTPYBAABw1jmdTsXFxcntdquoqEgRERFyOBzMnAUAAABw1pzyJmEAAACNgdVqVdeuXc1uAwAAAEATVScB7cGDB3Xw4MEam2xI0gUXXFAXlwAAAAAAAACARue0AtrFixfr1VdfVX5+/nFrvvvuu9O5BAAAwBnl8XhY4gAAAACAaU45oF2yZIn+/ve/q3///vr973+vZ555RnfccYeaNWumrKwstW7dWmPHjq3LXgEAAOqUy+VSenq6CgsLjWM2m02JiYlsEgYAAADgrLCc6gsXLVqk/v37a8GCBbrlllskSVdeeaUmT56sVatWqaysTAcOHKirPgEAAOqUy+VSWlqaYmJiNH36dGVkZGj69OmKiYlRWlqaXC6X2S0CAAAAaAJOOaDNy8vT1VdfLUkKCgqSJFVWVkqSwsLCdPPNN2vx4sV10CIAAEDd8ng8Sk9PV2xsrJKTk2W32xUSEiK73a7k5GTFxsYqIyNDHo/H7FYBAAAANHKnHNCGhYUZ/2hp0aKFQkJCtGfPHmM8NDRU+/btO/0OAQAA6pjb7VZhYaFGjhwpi8X/xyGLxaL4+Hjt3btXbrfbpA4BAAAANBWnHNB26tTJ7x8tl1xyiZYsWaKCggLt3r1by5Yt00UXXVQXPQIAANSpoqIiSVJ0dHSt4zExMX51AAAAAHCmnHJAe9NNN+n7779XRUWFJGnixInatm2brrrqKg0cOFA7duzQpEmT6qpPAACAOhMRESFJys/Pr3U8Ly/Prw4AAAAAzpTAU33h73//e/3+9783nvfu3VvvvPOOPvjgA1mtVvXr10/t27evkyYBAADqksPhkM1mU1ZWlpKTk/2WOfB6vVq+fLkiIyPlcDhM7BIAAABAU3DKM2h/adu2bVqxYoV27Nghj8cjm81WV6cGAACoU1arVYmJicrJyVFqaqpyc3NVXl6u3NxcpaamKicnRwkJCbJarWa3CgAAAKCRO6kZtIsWLVJmZqaWLFmiVq1aGcc/+OAD/eUvf1FlZaUkKSAgQIsWLdKyZcv86gAAAOoLp9OppKQkpaenKyUlxTgeGRmppKQkOZ1OE7sDAAAA0FScVED7wQcfKDo62i90raqqUkpKiqxWq/7+97+rW7du+ve//61Zs2bppZde0sMPP1znTQMAANQFp9OpuLg4ud1uFRUVKSIiQg6Hg5mzAAAAAM6akwpot27dqltuucXvmMvl0v79+zV+/HjFx8dLkjp16iS3262PPvqIgBYAgAaioKBAZWVlZrdhipCQEIWEhEiSfvjhB5O7OftCQ0MVFRVldhsAAABAk3RSAe2BAwfUpk0bv2Pr169XQECABg8e7Hc8NjZWa9euPf0OAQDAGVdSUqKJEyfK5/OZ3QpMYLFYNH/+fIWHh5vdCgAAANDknFRA27p1a+3bt8/v2H//+181b968xi7HwcHBCgoKOv0OAQDAGRceHq45c+Y02Rm0P/30k2bPnq37779fbdu2Nbudsy40NJRwFgAAADDJSQW03bp10/Lly3X77berRYsW+v7777Vp0yZdc801Cgz0P9X27dtrzLYFAAD1F7e4S23btlWHDh3MbgMAAABAE3JSAe29996rm2++WUOGDFHHjh21efNmBQQE6J577qlRu3btWl122WV11igAAAAAAAAANDaWkynu3Lmz0tPT1bVrV+3du1eXXHKJ5s2bp27duvnVuVwuhYSE6LrrrqvTZgEAAAAAAACgMTmpGbTS0c2/5s2b96s1TqdTK1euPOWmAAAAAAAAAKApOKkZtAAAAAAAAACAukNACwAAAAAAAAAmIaAFAAAAAAAAAJMQ0AIAAAAAAACASQhoAQAAAAAAAMAkBLQAAAAAAAAAYBICWgAAAAAAAAAwCQEtAAAAAAAAAJiEgBYAAAAAAAAATEJACwAAAAAAAAAmIaAFAAAAAAAAAJMQ0AIAAAAAAACASQhoAQAAAAAAAMAkBLQAAAAAAAAAYBICWgAAAAAAAAAwCQEtAAAAAAAAAJiEgBYAAAAAAAAATFKvAtp3331Xf/rTnzRgwAD17NlTw4cP1xtvvCGfz+dX9/rrr2vIkCHq3r27brrpJn344Yc1zlVaWqqHH35Yffr0Ua9evXT//fdr7969NepycnI0atQo9ejRQ1dffbXmzZtX43o+n0/z5s3TVVddpR49emjUqFH68ssva5yroKBAEydOVK9evdSnTx898sgjOnjw4Ol9UgAAAAAAAAA0WvUqoH311VcVEhKihx56SC+++KIGDBigRx99VM8//7xR88477+jRRx/V9ddfr/nz56tnz5667777agSmkyZN0qeffqrHHntMM2fO1I4dO3T33XerqqrKqPnhhx80btw42Ww2zZ07V4mJiZo9e7Zefvllv3PNnz9fs2fP1h133KG5c+fKZrPpzjvvVH5+vlFTWVmpu+66Szt37lRaWpoee+wxrVu3TklJSWfmkwUAAAAAAACgwQs0u4Fjvfjii2rVqpXxvG/fvjpw4IBeeeUV/fnPf5bFYtHs2bN1ww03aNKkSZKkyy67TFu2bNHzzz+v+fPnS5I2btyodevWaeHCherfv78kqX379ho6dKjee+89DR06VJK0cOFCRURE6Omnn1ZwcLD69u2r/fv366WXXtLYsWMVHBysI0eOaO7cubrzzjt1xx13SJJ69+6t6667TgsXLtRjjz0mSVqzZo2+//57rVq1Sh06dJAkhYeHa9y4cfr666/Vo0ePs/AZBAAAAAAAANCQ1KsZtMeGs9W6dOmigwcP6tChQ8rPz9fOnTt1/fXX+9UMHTpU69evV0VFhSTp448/Vnh4uPr162fUdOjQQV26dNHHH39sHPv44491zTXXKDg42O9cJSUl2rhxo6SjSyAcPHjQ75rBwcEaPHhwjXN17tzZCGclqV+/fjr33HP10UcfneqnBAAAAAAAAEAjVq8C2tps2LBBUVFRatGihbZv3y7p6GzYY1188cWqrKw0lhzYvn272rdvr4CAAL+6Dh06GOc4dOiQdu/e7ReoVtcEBAQYddV//rLu4osv1q5du3T48GGj7pc1AQEBat++vXEOAAAAAAAAADhWvVri4Jf++9//atWqVZo6daokqbi4WNLRpQOOVf28erykpERhYWE1zteyZUt98803ko5uIlbbuYKDgxUSEuJ3ruDgYDVr1qzGNX0+n4qLi9W8efNfvWb1uU6Vz+fToUOHTuscp6I6fAbQ9Bw+fNiU9x3ALNX/z+N7H03Nzz//bPxcjKZj165dko5OMuFn/qYnLCxM5513ntltAGcNP+fBLD6fr8bk0eOptwHtnj17NHnyZDmdTiUkJJjdjqkqKyv13XffnfXr7tmz56xfE/j/2rvzeKvKen/gH4ZzZPAcED2hojJoogQkeFORQZyYLeMnippDIqImOJY4RNokmRODiiJqZQOZNqg4pCmVkbd702ulpimYUSrKdBAQkPP7g3v29XhQcYiFnPf79eJ13Gs9+1nfvdxn7XU++1nPYtMwd+7crFixougyYKOp/czz3qchWbJkSaZPn17nJro0LNddd13RJVCApk2bZvTo0WnVqlXRpcBG4TyPIr15WtV3skkGtEuXLs3o0aPTunXrTJkyJY0br5uJofYDpLq6OlVVVXXav3l9ZWXlesPFJUuWlNrUjnZ964iBVatWZcWKFXX6WrVqVV5//fU6o2iXLl2aRo0a1Wm3bNmy9W5zu+22ex974f+UlZVll112+UB9vB/Nmzff6NsENg0dO3ZMhw4dii4DNprazzzvfRqSefPmZc2aNak6qE3K2pQVXQ6wEaxeuDoL7l+Ybbfd1ucdDYbzPIryt7/9bYPbbnIB7cqVKzNmzJhUV1dn5syZdaYNqJ3j9a3zvT733HMpKyvLjjvuWGo3Z86cekOJ586dm1133TVJ0qJFi2y33Xb15oedO3duampqSv3X/pw7d2522223Otvcfvvt06xZs1K7p59+uk5fNTU1mTt3bp2blb0fjRo1SosWLT5QH+9H7WsDGp5mzZoVctyBotR+5nnv05DUvu/L2pRli6oNG90BbB583tGQOM+jKBs6vUGyid0kbM2aNTnjjDPy3HPP5YYbbkjbtm3rrN9xxx3ToUOH3HPPPXWWz5o1K7169SoNG+7Xr1+WLFmSOXPmlNrMnTs3TzzxRPr161da1q9fvzzwwANZvXp1nb4qKyvTo0ePJEnPnj2z5ZZb5u677y61Wb16de677756fT311FOZN29eadmcOXOyePHi7Lfffh9grwAAAAAAm6tNagTtxRdfnAcffDDjx4/PsmXL8thjj5XWdenSJeXl5Rk7dmzOOeec7LTTTtl7770za9asPP7447nllltKbXv06JE+ffrk/PPPz7nnnpstttgiV155ZTp37pwBAwaU2o0aNSp33HFHzj777Bx55JF5+umnM2PGjJx55pmlsHeLLbbImDFjMmXKlLRp0ya77rprfvjDH2bx4sUZNWpUqa+BAwfmuuuuy9ixY3PWWWdlxYoVufTSS9O/f/90797937/zAAAAAICPnE0qoH344YeTJBMnTqy37oEHHsgOO+yQYcOGZcWKFZk+fXquv/76dOzYMVOnTi2NeK111VVX5ZJLLsmECROyZs2a9OnTJxdeeGGaNv2/l9y+ffvMmDEjEydOzEknnZQ2bdpk3LhxOeGEE+r0NXr06NTU1OTGG2/MwoULs/vuu2fGjBmlKRWSdfPE3nDDDfn617+es846K02bNs3BBx+c888//8PcRYWoeX1R0SUAG4nfdwAAANi4NqmA9le/+tUGtRsxYkRGjBjxjm0qKiryzW9+M9/85jffsV3Pnj3z4x//+B3bNGrUKGPGjMmYMWPesV3btm0zZcqUd2zzUfTGv35ZdAkAAAAAsFnapAJaNk1Ntjs4jbbYqugygI2g5vVFvpQBAACAjUhAy7tqtMVWadS8qugyAAAAAGCz07joAgAAAAAAGioBLQAAAABAQQS0AAAAAAAFEdACAAAAABREQAsAAAAAUBABLQAAAABAQQS0AAAAAAAFEdACAAAAABREQAsAAAAAUBABLQAAAABAQQS0AAAAAAAFEdACAAAAABREQAsAAAAAUBABLQAAAABAQQS0AAAAAAAFEdACAAAAABREQAsAAAAAUBABLQAAAABAQQS0AAAAAAAFEdACAAAAABREQAsAAAAAUBABLQAAAABAQQS0AAAAAAAFEdACAAAAABREQAsAAAAAUBABLQAAAABAQQS0AAAAAAAFEdACAAAAABREQAsAAAAAUBABLQAAAABAQQS0AAAAAAAFEdACAAAAABREQAsAAAAAUBABLQAAAABAQQS0AAAAAAAFEdACAAAAABREQAsAAAAAUBABLQAAAABAQQS0AAAAAAAFEdACAAAAABREQAsAAAAAUBABLQAAAABAQQS0AAAAAAAFEdACAAAAABREQAsAAAAAUJCmRRcAAAAA8O+2YMGCVFdXF10GG9n8+fPr/KRhqaioSFVVVdFlvCsBLQAAALBZW7BgQc44/fSsWr266FIoyOTJk4sugQKUl5XlqkmTNvmQVkALAAAAbNaqq6uzavXqDGndOm2aikKgIVi4Zk1mLV6c6upqAS0AAADApqBN06ZpW15edBkAdbhJGAAAAABAQYygBQCABmzVIvMxQkPh9x1g0ySgBQCABuyVXy4sugQAgAZNQAsAAA3YNge3SflWZUWXAWwEqxat9qUMwCZIQAsAAA1Y+VZl2aLKDXMAAIriJmEAAAAAAAUR0AIAAAAAFERACwAAAABQEAEtAAAAAEBBBLQAAAAAAAUR0AIAAAAAFERACwAAAABQEAEtAAAAAEBBBLQAAAAAAAVpWnQBbPpqVi0sugRgI/H7DgAAABuXgJa3VVFRkbKy8qz+5/1FlwJsRGVl5amoqCi6DAAAAGgQBLS8raqqqkyadFWqq6uLLoWNbP78+Zk8eXLGjRuXdu3aFV0OG1lFRUWqqqqKLgMAAAAaBAEt76iqqkpQ04C1a9cunTp1KroMAAAAgM2Wm4QBAAAAABREQAsAAAAAUBABLQAAAABAQQS0AAAAAAAFEdACAAAAABREQAsAAAAAUBABLQAAAABAQQS0AAAAAAAFEdACAAAAABREQAsAAAAAUBABLQAAAABAQQS0AAAAAAAFEdACAAAAABREQAsAAAAAUBABLQAAAABAQQS0AAAAAAAFEdACAAAAABREQAsAAAAAUBABLQAAAABAQQS0AAAAAAAFEdACAAAAABREQAsAAAAAUBABLQAAAABAQQS0AAAAAAAFEdACAAAAABSkadEFAMCmZMGCBamuri66DDay+fPn1/lJw1JRUZGqqqqiywAAoIES0ALA/1qwYEHOOOP0rFq1uuhSKMjkyZOLLoEClJeX5aqrJglpAQAohIAWAP5XdXV1Vq1anRE7b5Gq5o2KLgfYCBasqMmtz76e6upqAS0AAIUQ0ALAW1Q1b5R2LZsUXQawUbxRdAEAADRwAloAAGjAVi80rQs0FH7fATZNAloAAGiAKioqUlZelgX3Lyy6FGAjKisvS0VFRdFlAPAmAloAAGiAqqqqMumqSamuri66FDay+fPnZ/LkyRk3blzatWtXdDlsZBUVFebcBtjECGgBAKCBqqqqEtQ0YO3atUunTp2KLgMAGjwBLQAAANAgvLpmTdElABvJR+n3XUALAAAANAh3L15cdAkA9QhoAQAAgAZhcOvW2bqpKAQaglfXrPnIfCnjqAQAAAA0CFs3bZq25eVFlwFQR+OiCwAAAAAAaKgEtAAAAAAABRHQAgAAAAAUREALAAAAAFAQAS0AAAAAQEEEtAAAAAAABRHQAgAAAAAUREALAAAAAFAQAS0AAAAAQEEEtAAAAAAABRHQAgAAAAAUREALAAAAAFAQAS0AAAAAQEEEtAAAAAAABRHQAgAAAAAUREALAAAAAFAQAS0AAAAAQEEEtAAAAAAABRHQAgAAAAAUREALAAAAAFAQAS0AAAAAQEEEtAAAAAAABRHQAgAAAAAUREALAAAAAFAQAS0AAAAAQEEEtAAAAAAABRHQAgAAAAAUZJMKaJ9//vlMmDAhn/nMZ9KlS5cMGzZsve1uvfXWDBw4MN26dcunP/3pPPjgg/XaVFdX5/zzz89ee+2VHj16ZNy4cXn55ZfrtfvjH/+YI444It27d8/++++f66+/PjU1NXXa1NTU5Prrr0///v3TvXv3HHHEEXnsscfq9fXSSy9l7Nix6dGjR/baa69ccMEFWbZs2fvbGQAAAADAZm+TCmifeeaZzJ49O+3bt8/OO++83jZ33XVXvvzlL2fw4MGZPn169thjj5x22mn1AtMzzjgjDz/8cC666KJcdtllmTt3bkaPHp01a9aU2jz//PMZNWpUqqqqct111+W4447L5MmTc+ONN9bpa/r06Zk8eXKOP/74XHfddamqqsoJJ5yQF154odRm9erVOfHEEzNv3rxcfvnlueiii/Lb3/42Z5999oe3gwAAAACAzUrTogt4swMOOCAHHXRQkmT8+PH585//XK/N5MmTM3To0JxxxhlJkn322SdPP/10rr766kyfPj1J8uijj+a3v/1tZsyYkT59+iRJOnbsmCFDhuS+++7LkCFDkiQzZszIVlttlSuuuCLl5eXp1atXFi5cmGnTpuWYY45JeXl5Xn/99Vx33XU54YQTcvzxxydJ9txzzwwaNCgzZszIRRddlCS5995788wzz2TWrFnp1KlTkqSysjKjRo3K448/nu7du/+7dhsAAAAA8BG1SY2gbdz4nct54YUXMm/evAwePLjO8iFDhmTOnDlZtWpVkuTXv/51Kisr07t371KbTp06Zffdd8+vf/3r0rJf//rXOfDAA1NeXl6nr6VLl+bRRx9Nsm4KhGXLltXZZnl5eQ4++OB6fXXu3LkUziZJ796907p168yePfu97AYAAAAAoIHYpALad/Pcc88lWTca9s123nnnrF69ujTlwHPPPZeOHTumUaNGddp16tSp1Mfy5cvzr3/9q06gWtumUaNGpXa1P9/abuedd84///nPrFy5stTurW0aNWqUjh07lvoAAAAAAHizTWqKg3ezZMmSJOumDniz2se165cuXZqKiop6z2/VqlVp2oTq6ur19lVeXp7mzZvX6au8vDxbbLFFvW3W1NRkyZIladas2Ttus7av96umpibLly//QH3Ae1H7xcPKlSu992hQat/7QMPjM4+GxLkeDZHzPGi4ivq8q6mpqTd49O18pALahmr16tV58skniy6DBuTFF19MksydOzcrVqwouBrYeGrf+0DD4zOPhsS5Hg2R8zxouIr8vHvztKrv5CMV0LZq1SrJutGvVVVVpeVLly6ts76ysnK9B98lS5aU2tSOdq0dSVtr1apVWbFiRZ2+Vq1alddff73OKNqlS5emUaNGddotW7Zsvdvcbrvt3t8L/l9lZWXZZZddPlAf8F40b948ybrpRDp06FBsMbAR1b73gYbHZx4NiXM9GiLnedBwFfV597e//W2D236kAtraOV7fOt/rc889l7Kysuy4446ldnPmzKk3lHju3LnZddddkyQtWrTIdtttV29+2Llz56ampqbUf+3PuXPnZrfddquzze233z7NmjUrtXv66afr9FVTU5O5c+fWuVnZ+9GoUaO0aNHiA/UB70Xt+7pZs2beezQote99oOHxmUdD4lyPhsh5HjRcRX3ebej0BslH7CZhO+64Yzp06JB77rmnzvJZs2alV69epWHD/fr1y5IlSzJnzpxSm7lz5+aJJ55Iv379Ssv69euXBx54IKtXr67TV2VlZXr06JEk6dmzZ7bccsvcfffdpTarV6/OfffdV6+vp556KvPmzSstmzNnThYvXpz99tvvw9kBAAAAAMBmZZMaQbtixYrMnj07STJ//vwsW7asFMbutddeadOmTcaOHZtzzjknO+20U/bee+/MmjUrjz/+eG655ZZSPz169EifPn1y/vnn59xzz80WW2yRK6+8Mp07d86AAQNK7UaNGpU77rgjZ599do488sg8/fTTmTFjRs4888xS2LvFFltkzJgxmTJlStq0aZNdd901P/zhD7N48eKMGjWq1NfAgQNz3XXXZezYsTnrrLOyYsWKXHrppenfv3+6d+++MXYfAAAAAPARs0kFtK+++mpOP/30OstqH3/3u9/N3nvvnWHDhmXFihWZPn16rr/++nTs2DFTp04tjXitddVVV+WSSy7JhAkTsmbNmvTp0ycXXnhhmjb9v5fcvn37zJgxIxMnTsxJJ52UNm3aZNy4cTnhhBPq9DV69OjU1NTkxhtvzMKFC7P77rtnxowZpSkVknXzxN5www35+te/nrPOOitNmzbNwQcfnPPPP//D3k0AAAAAwGZikwpod9hhh/z1r39913YjRozIiBEj3rFNRUVFvvnNb+ab3/zmO7br2bNnfvzjH79jm0aNGmXMmDEZM2bMO7Zr27ZtpkyZ8o5tAAAAAABqbVIBLQAAAMC/y8I1a4ouAdhIPkq/7wJaAAAAYLNWUVGR8rKyzFq8uOhSgI2ovKwsFRUVRZfxrgS0AAAAwGatqqoqV02alOrq6qJLYSObP39+Jk+enHHjxqVdu3ZFl8NGVlFRkaqqqqLLeFcCWgAAAGCzV1VV9ZEIavj3aNeuXTp16lR0GbBeAloAeIsFK9YWXQKwkfh9BwCgaAJaAHiLW59dVXQJAAAANBACWgB4ixE7l6eqeeOiywA2ggUr1vpSBgCAQgloAeAtqpo3TruWTYouAwAAgAbA8CAAAAAAgIIIaAEAAAAACiKgBQAAAAAoiIAWAAAAAKAgAloAAAAAgIIIaAEAAAAACiKgBQAAAAAoiIAWAAAAAKAgAloAAAAAgIIIaAEAAAAACiKgBQAAAAAoiIAWAAAAAKAgAloAAAAAgIIIaAEAAAAACiKgBQAAAAAoiIAWAAAAAKAgAloAAAAAgIIIaAEAAAAACiKgBQAAAAAoiIAWAAAAAKAgAloAAAAAgIIIaAEAAAAACiKgBQAAAAAoiIAWAAAAAKAgAloAAAAAgIIIaAEAAAAACiKgBQAAAAAoiIAWAAAAAKAgTYsuAAA2NQtW1CR5o+gygI1g3e87AAAUR0ALAP+roqIi5eVlufXZ14suBdiIysvLUlFRUXQZAAA0UAJaAPhfVVVVueqqSamuri66FDay+fPnZ/LkyRk3blzatWtXdDlsZBUVFamqqiq6DAAAGigBLQC8SVVVlaCmAWvXrl06depUdBkAAEAD4iZhAAAAAAAFEdACAAAAABREQAsAAAAAUBABLQAAAABAQQS0AAAAAAAFEdACAAAAABREQAsAAAAAUBABLQAAAABAQQS0AAAAAAAFEdACAAAAABREQAsAAAAAUBABLQAAAABAQQS0AAAAAAAFEdACAAAAABREQAsAAAAAUBABLQAAAABAQQS0AAAAAAAFEdACAAAAABSkadEFwKbspZdeymuvvVZ0GRvd/Pnz6/xsiFq2bJm2bdsWXQYAAACwmRPQwttYunRpxo4dm5qamqJLKczkyZOLLqEwjRs3zvTp01NZWVl0KQAAAMBmTEALb6OysjJTpkxpkCNoWTeCVjgLAAAA/LsJaOEduMQdAAAAgH8nNwkDAAAAACiIgBYAAAAAoCACWgAAAACAgghoAQAAAAAKIqAFAAAAACiIgBYAAAAAoCACWgAAAACAgghoAQAAAAAKIqAFAAAAACiIgBYAAAAAoCACWgAAAACAgghoAQAAAAAKIqAFAAAAACiIgBYAAAAAoCACWgAAAACAgghoAQAAAAAKIqAFAAAAACiIgBYAAAAAoCACWgAAAACAgghoAQAAAAAKIqAFAAAAACiIgBYAAAAAoCACWgAAAACAgghoAQAAAAAKIqAFAAAAACiIgBYAAAAAoCACWgAAAACAgghoAQAAAAAKIqAFAAAAACiIgBYAAAAAoCACWgAAAACAgghoAQAAAAAKIqAFAAAAACiIgBYAAAAAoCACWgAAAACAgghoAQAAAAAKIqAFAAAAACiIgBYAAAAAoCACWgAAAACAgghoAQAAAAAK0rToAgAAAIrw0ksv5bXXXiu6jI1u/vz5dX42NC1btkzbtm2LLgMASgS0AABAg7N06dKMHTs2NTU1RZdSmMmTJxddQiEaN26c6dOnp7KysuhSACCJgBYAAGiAKisrM2XKlAY5graha9mypXAWgE2KgBYAAGiQXOYOAGwK3CQMAAAAAKAgAloAAAAAgIIIaAEAAAAACmIOWgAgSfLSSy812JvlzJ8/v87PhqZly5bm4gSAzVxDPddr6Od5iXO9j4JGNTU1NUUXwdv705/+lCTp1q1bwZUAsDlbunRpTjzxxDgtaJgaN26c6dOnu6s5AGymnOs1bM71ivFeMj0B7SZOQAvAxtJQR1VgVAUANATO9Rou53rFeC+ZnikOAIAkcdIGALAZc64Hmy43CQMAAAAAKIiAFgAAAACgIAJaAAAAAICCCGgBAAAAAAoioAUAAAAAKIiAFgAAAACgIAJaAAAAAICCCGgBAAAAAAoioAUAAAAAKIiAFgAAAACgIAJaAAAAAICCCGgBAAAAAAoioAUAAAAAKIiAFgAAAACgIAJaAAAAAICCCGgBAAAAAAoioAUAAAAAKIiAFgAAAACgIAJaAAAAAICCCGgBAAAAAAoioP2QPfvss/n85z+fPfbYI717986ll16aVatWFV0WAAAAALAJalp0AZuTJUuW5LjjjkuHDh0yZcqUvPTSS5k4cWJWrlyZCRMmFF0eAAAAALCJEdB+iH70ox/ltddey9SpU9O6deskyRtvvJGLL744Y8aMSdu2bYstEAAAAADYpJji4EP061//Or169SqFs0kyePDgrF27Ng8//HBxhQEAAAAAmyQB7YfoueeeS6dOneosq6ysTFVVVZ577rmCqgIAAAAANlWmOPgQLV26NJWVlfWWt2rVKkuWLHnf/dbU1GT58uUfpDQAAAAAYCOpqalJo0aNNqitgPYjYPXq1XnyySeLLgMAAAAA2EDl5eUb1E5A+yGqrKxMdXV1veVLlixJq1at3lefq1evTpKUlZV9oNoAAAAAgI1j9erVpVzv3QhoP0SdOnWqN9dsdXV1FixYUG9u2g1VOxR6Q4dEAwAAAADFatSokSkOitCvX79Mmzatzly099xzTxo3bpzevXu/rz579OjxYZYIAAAAAGxCGtXU1NQUXcTmYsmSJRk6dGg6duyYMWPG5KWXXsrEiRNzyCGHZMKECUWXBwAAAABsYgS0H7Jnn302X/va1/Loo4+mZcuW+cxnPpMzzzxzgycFBgAAAAAaDgEtAAAAAEBBGhddAAAAAABAQyWgBQAAAAAoiIAWAAAAAKAgAloAAAAAgIIIaAEAAAAACiKgBQAAAAAoiIAWAAAAAKAgAloAAAAAgIIIaGETMmXKlHTu3Hm9/66//vqiy1uvm2++ObNnz663/IADDshXv/rVAioCNlUf1jHuySefzJQpU7JixYp/Y7XrHHPMMRkzZsy/fTtvZ8qUKenRo0dh2weK94tf/CKHHXZY9txzz/Ts2TODBw/OBRdckFdfffXfsr2ij3vA5qf2HLBv375Zu3ZtvfUjR45M586dM378+FL7DTn/OfXUU3PMMce8a7vOnTtnxowZ773wD4njKhuiadEFAHU1a9Ys3/nOd+ot32677Qqo5t1997vfTf/+/bPffvvVWT516tRUVlYWVBWwqfowjnFPPvlkpk6dmqOPPjrNmzf/MMsD2KRMnz49l19+eY4//viMGzcuNTU1eeaZZ3LHHXfk5ZdfztZbb/2hb/MrX/lKGjc2jgf4cJWVlWXRokX5wx/+kL333ru0fP78+XnsscfSokWL0rIRI0bU+/sSNncCWtjENG7cOHvssUfRZXxgXbp0KboEYBO0sY9xK1euTLNmzTba9gA+TN/73vfy2c9+tjSqLEn222+/nHjiiesdhfZh2GWXXT6Ufhx/gTcrKytLr169ctddd9UJaO+66658/OMfr/PF0Lbbbpttt922iDKhML4ahY+Q+++/P507d86DDz5YWrZ48eL07ds3Z511VmnZs88+m1NOOSV77rln9thjj5x00kn5+9//XqevtWvX5qabbsrgwYPTtWvX9O7dO+PGjUt1dXWSZPz48Rk2bFid5yxdujSdO3fO7bffnmTdNAbz58/P97///dJlym9eVzvFwe23354uXbrklVdeqdPf4sWL07Vr1/zoRz8qLXv00Udz7LHHZo899siee+6Zs88++992CR+w6encuXOmT5+eKVOmZN99983ee++d8847L8uXL0+y7nhy3nnnJUl69eqVzp0754ADDiit69y5cx599NF8/vOfzx577JFLL700Y8eOzciRI+tt6wc/+EG6deuWxYsXv6ca3+0Y+3aXsd1yyy3p3r176ThbU1OTGTNmZODAgenatWsOPPDA3Hzzze+pFmDztnTp0nzsYx9b77q3jnK9/fbbc8ghh6Rbt27p27dvrrzyyrzxxht11nfu3DlPPPFETjzxxOyxxx4ZMGBAfvazn9XpZ33HsD/84Q8ZOXJkunfvXjouv/nY+Y9//KN0HnjhhRdm7733zogRIz7Yiwc2O8OGDcu9996b1atXl5bdeeed9f7uXN8UB88++2w+97nPpVu3bjnooIPy05/+9APV8tBDD2XEiBHp3r179tlnn3zlK18pnW8uX748e+yxx3qnRRg3blyOOOKI0uOlS5fmoosuSp8+fdK1a9cMHz48v/3tbz9QbTRMAlrYBK1Zs6bevyQ56KCDcuihh+bCCy/MwoULkyQXX3xxknWXoyXJCy+8kJEjR2bJkiWZOHFiLrvssixcuDDHH398Vq1aVdrG1772tXz7299O//79M23atEyYMCEtW7YsfShtiKlTp6aqqioDBw7MzJkzM3PmzPTv379eu4MPPjhNmjTJPffcU2f5fffdlyQZNGhQknXh7DHHHJOKiopceeWV+drXvpY//elPOfXUUze4JmDT93bHuFrf//73M2/evEycODFf+MIXcscdd+Saa65JkvTv3z+nnHJKkuSGG27IzJkzM3Xq1DrPP/vss7PPPvtk2rRp+cxnPpMRI0bk0UcfzXPPPVen3W233ZaDDz44rVu33uDaN+QYO3To0Dz88MP1gt8777wz++23XyoqKpIk3/jGNzJ58uQceuihuf766/PZz342l112WX74wx9ucD3A5u0Tn/hEfvSjH+XWW2/NggUL3rbdTTfdlAsvvDB9+vTJtGnTMnr06Hz3u9/NlVdeWa/tOeeckz59+uTqq6/O7rvvnvHjx+fZZ599277//Oc/5/Of/3xatmyZSZMm5ZxzzsmDDz6Y0aNH1wmAk+SKK65ITU1NLr/88nzxi198/y8c2Cztv//+WbVqVR5++OEkyd/+9rf89a9/zZAhQ97xea+//npOOOGEvPLKK7n00ktz9tln5/rrr8+f/vSn91XHPffck1NOOSW77rprpk6dmi9+8Yv55S9/mQsuuCBJ0qJFixxwwAG566676jxv2bJleeihh0qB8qpVq/L5z38+Dz30UM4444xce+212XnnnTNmzJj89a9/fV+10XCZ4gA2McuXL88nPvGJesu///3v5z/+4z9y4YUX5pBDDsmECRMyaNCgzJo1KzfccENatWqVZF1o2qpVq9x0003ZYostkiQ9e/bMgQcemFtvvTVHH3105s6dmx/+8Ic588wz64yQGDhw4HuqtUuXLikvL88222zzjpcsV1RUZL/99sudd96Zz33uc6Xld955Z3r37l0KRy6//PJ07do1U6dOTaNGjZIku+66a4YNG5bZs2ebhwg2A+92jEuSqqqqXH755UmSfv365Yknnsi9996bc845J23atMlOO+2UZF1w0aZNm3p9jRw5MieddFLp8dq1a7P99tvntttuKwUGTz/9dP785z/XufpgQ2zIMXbgwIH5+te/nvvuuy+HH354kv+bX+2qq65Kkvz973/PLbfckosvvrg0CmPffffNypUrc/XVV+eII44wBySQr3zlKznttNNy4YUXJkl22GGH7L///jn++OOzww47JFkXGEyePDknnnhi6ZjWu3fvlJWVZeLEiRk1alS22mqrUp9HH310jj766CRJjx49Mnv27Nx7771v+4X4tGnTUlVVlWnTpqWsrCzJunnDR40aldmzZ5euYkiS3XbbLd/4xjc+/B0BbBaaN29eCj779++fO++8Mz169MiOO+74js+7/fbb8/LLL+fuu+9Ohw4dkqz7W3TQoEGlxxuqpqYml156aYYMGVLneFVVVZWTTjopp556aj7+8Y9n6NChOfXUUzNv3rzSNu6///6sWbMmgwcPTpLccccdeeqpp/Lzn/+8ND1M37598/zzz+eaa67JpEmT3lNtNGzO/GET06xZs/zkJz+p92/33XdPsi7svOSSS3L//ffnvPPOy5FHHpm+ffuWnv/www/ngAMOSJMmTUoj0yorK9OlS5f8+c9/TpL8/ve/T01NTQ477LCN9rqGDh2axx57LP/85z+TJC+//HL+8Ic/ZOjQoUmSFStW5I9//GMGDRqUN954o1R7hw4dst12273vb0eBTcu7HeOSdUHlm+2888558cUXN3gbbx3J37hx4/y///f/8vOf/7w0Wve2225Lu3bt0qtXrySpc9x564jeN9uQY+xWW22Vfffdt86oi1mzZqVFixbZf//9kyS/+93vkiQDBgyos9199903CxYsyL/+9a8Nfr3A5mvXXXfNnXfemeuvvz7HHntsKioq8r3vfS+f/vSn8+STTyZZdwXS8uXLM2jQoHrHk5UrV+aZZ56p02efPn1K/92iRYtsv/3273iM/a//+q8ceOCBpXC2to/Kysr893//d52267uSCuDNhg0blgceeCArV67MrFmzSn8PvpPHH388H//4x+uEse3bt89uu+1Wp92bj4FvHeFfa+7cuZk/f34GDx5cp/1ee+2Vxo0bl87n+vbtm8rKyjrnc7Xz526zzTZJ1p0X7rrrrunQoUO946+/X3mvjKCFTUzjxo3TrVu3d2yz5557Zvvtt8/8+fPrjEhNkkWLFuU73/nOeu+SXntivXjx4jRt2vTfcufft7P//vunefPmueuuuzJ69Ojcfffd2WKLLXLQQQclWTd3zxtvvJFLLrkkl1xySb3nCytg87Ahx7jKyso6j8vKyupM0fJuak+a3+ywww7LNddck9mzZ6dfv375xS9+kaOOOqo0SvXggw/O/PnzS+0feOCB0ui0N9uQY2yy7kup8ePHZ8GCBamqqspdd92Vgw8+uDTqdtGiRampqck+++yz3tfwr3/9K+3atdvg1wxsvsrLy7PffvuVriT6zW9+kzFjxuTqq6/O1KlTs2jRoiTJZz/72fU+/63nULXTrNR6t2Ps0qVL13vOuPXWW2fJkiX1lgG8kz59+qSsrCyTJk3KP/7xj9Jo1Hfy8ssvv+1x6PXXX0+ybi7sAw88sLSuXbt2+dWvflXvObXHzC984Qvr3VbtMbO8vDwDBgzIrFmz8oUvfCGLFi3K7373u9J9Vmr7euKJJ9Z7dViTJk3e9XXBmwlo4SNo8uTJWbRoUTp06JCLL7443/3ud0tTArRq1Sr77bdfjjrqqHrPa9myZZKkdevWWbNmTV599dW3PZEuLy+vM3l7knon4e9Fs2bNctBBB2XWrFkZPXp0Zs2alf333z8tWrRIsu6PhUaNGmXMmDGl0PbN3nxpHsB7te2226Zv37657bbb8sYbb2TRokUZPnx4af21115bJ6B4u5vybMgxNkkOPPDAlJeX5+67706fPn3y5JNP1plOoVWrVmnUqFF+8IMf1Al2a3Xs2PF9vU5g89e3b9/stttupXlj3zzN1fruer6+L5vei1atWq33hq2vvvpqadu1as9HAd5OWVlZBgwYkJtvvjm9evVa7xfrb/Wxj30sf/nLX+otf/XVV7PllluW2vzkJz8prSsvL19vX7XT602YMCHdu3df77ZqDRs2LD/5yU/y1FNP5bHHHkvjxo0zYMCA0vpWrVqlc+fOpnbhQyGghY+YP/7xj5kxY0YuuuiidOnSJSNHjsx3vvOdHH/88UnW3dX8mWeeSZcuXd72W7t99tknjRo1ym233VZnnsY323bbbfPiiy/mtddeK4UOtZO5v1lZWVnpW8t3M2zYsJx00kn5zW9+k8ceeyyjR48urWvRokX22GOPPPfcc+86ug5o2GoDzfcyqjZJRowYkdNPPz0LFy5Mr1696oxQ7dy58wb1sSHH2CTZcsst079//9x1111ZsmRJ2rRpU2fqhtqpFRYvXlxn/kaAN3vllVfqhRcrV67Mv/71r9J8hz169Ejz5s3z4osv5uCDD/7Qa9hzzz3zwAMPZPz48WnadN2fjw8//HCWLl2aPffc80PfHrD5GzFiRF599dXSXP3vplu3bvnZz36W559/Pu3bt0+SPP/883nqqadK9zAoLy/foL8jO3XqlG233TYvvPBCaT7ut7PXXnuVroR67LHH0q9fvzpXIey7776ZPXt2Pvaxj6Vt27Yb9Frg7QhoYROzdu3aPPbYY/WWb7311tl6661z7rnnpk+fPqWbypx88sm54oor0rdv3+y8884ZN25cDjvssIwaNSqHH354ttlmm7zyyiv5z//8z/zHf/xHhg0blo4dO2bkyJGZNGlSlixZkl69emXlypV56KGHMnbs2LRt2zYDBgzI5MmTc/755+fwww/PM888U+cbyVqdOnXK73//+zz88MOprKzMDjvs8LajXffdd9+0bt06559/fiorK9OvX78667/0pS/luOOOyxlnnJGhQ4emsrIyL774Yn73u99l+PDh2XvvvT/4DgYK9U7HuHe7QUStnXfeOcm6G4sddNBBadas2QYFrP37989WW22VRx99NFdcccV7qrvWhhxjaw0bNiynnXZa5s+fn0GDBpWCjWTdCNmjjz46X/rSlzJq1Kh88pOfzOrVqzNv3rw88sgjueaaa95XfcDm5ZBDDsn++++fPn365GMf+1heeuml3HLLLVm0aFGOO+64JOumhRk3bly+/e1v58UXX8xee+2VJk2a5IUXXsgDDzyQKVOmpHnz5u+7hpNPPjkjR47MmDFjcswxx+SVV17J5Zdfnu7du7uBK/C+dO/e/T2d6wwfPjzXXnttxowZk9NPPz3JuqtKN2T07Vs1atQo48ePzznnnJPly5enf//+ad68ef75z39m9uzZOfPMM0tXMjVp0iSDBg3KT3/607z66qv1zh8PPfTQ/OhHP8qxxx6bE044IR06dEh1dXWeeOKJrF69OmefffZ7ro+GS0ALm5iVK1eWwtc3O+yww9KkSZMsXbq0ziUUp5xySh566KF86UtfysyZM9O+ffvceuutueqqq3LxxRdn+fLlqaqqyqc+9ak6AcaECROyww475NZbb813vvOdtG7dOp/61KdKo2V32WWXTJw4Mddcc01OPfXU7Lnnnrnsssvymc98pk5dZ511Vi666KKMHTs2r732Wi655JI6lw2/WVlZWQYOHJiZM2fmsMMOq3fZSc+ePfODH/wgU6ZMyXnnnZfVq1dn2223zT777FP6phT4aHunY9yGXh7WpUuXjB07NrfeemtuuOGGbLfdduudY+ytmjZtmgMOOCD33HPP+x5ltqHH2CTZb7/9UlFRkQULFqz3BhgXXnhhOnbsmJkzZ+bqq69Oy5Yt07FjxwwaNOh91QZsfk477bQ8+OCDmThxYhYuXJitttoqnTt3zs0331xnDusTTjghbdu2zU033ZRbbrklTZs2zU477ZT+/fuvdxqV96Jr16658cYbc8UVV2Ts2LFp0aJFDjjggJx77rnmWAQ2imbNmuXGG2/MRRddlC9+8Ytp27ZtTj311DzwwAOprq5+z/0NHjw4lZWVmTZtWu64444k6+as7du3b73Qd9iwYfne975X52avtcrLy/Pd7343U6ZMybRp07JgwYK0bt06Xbp0We90WPBOGtXU1NQUXQQAwL/b2rVrc9BBB2X//ffPl7/85aLLAQAASGIELQCwmVu1alWeeuqp3HvvvXnxxRffdb4xAACAjUlACwBs1l5++eWMGDEibdq0yZe//OV06tSp6JIAAABKTHEAAAAAAFCQxkUXAAAAAADQUAloAQAAAAAKIqAFAAAAACiIgBYAAAAAoCACWgAAAACAgghoAQDgXUyZMiWdO3cuuozN2j/+8Y907tw5t99+e9GlAABsVAJaAAD+7W6//fZ07tz5bf899thjRZfYINQGzQsXLiy6FAAA/lfTogsAAKDhGDduXHbYYYd6y3faaacCqtlwp5xySk466aSiywAAYDMkoAUAYKPp169funXrVnQZG2z58uVp0aJFmjZtmqZNnToDAPDhM8UBAACbjMmTJ2e33XbLnDlz6iz/8pe/nK5du+app55KkjzyyCPp3LlzZs2alSuuuCK9e/fOHnvskZNPPjn/+te/6vX7P//zPxk1alT23HPPfPKTn8znPve5/Pd//3edNrWX///tb3/L2WefnU996lM56qij6qx7q5///OcZPnx4unfvnr322itnnnlmve0fc8wxGTZsWP72t7/lmGOOySc/+cn07ds306dPr9ff66+/nilTpmTgwIHp1q1b+vTpk9NOOy1///vfS23Wrl2bm2++OUOHDk23bt2y7777ZsKECVmyZMkG7uV39+yzz2bcuHHZa6+90q1btwwfPjwPPPBAaf2f/vSndO7cOT/96U/rPfc3v/lNOnfunAcffLC07KWXXsp5552XfffdN127ds3QoUPzk5/85EOrFwDgo0xACwDARrNs2bIsXLiwzr9FixaV1p9yyinZfffdc8EFF2TZsmVJ1gV+P/7xj3Pqqadmt912q9Pftddem4ceeiijR4/OMccck9/97nc5/vjjs3LlylKbOXPm5Oijj85rr72W0047LWeeeWaWLl2a4447Lo8//ni9Gk8//fSsWLEiZ555ZkaMGPG2r+Xaa6/Nueeem/bt22f8+PE59thjS9taunRpnbZLlizJiSeemN122y3nnntuOnXqlMsuuyyzZ88utXnjjTcyZsyYTJ06NZ/4xCdKfVZXV+fpp58utZswYUK+/e1vp2fPnrngggsyfPjw3HHHHRk1alRWr169gf8n3t4zzzyTI444Is8++2xGjx6d8ePHp0WLFvnCF76QX/7yl0mSbt26Zccdd8zdd99d7/mzZs1Kq1at0qdPnyTJK6+8ksMPP7y0by644ILstNNOueCCC3LzzTd/4HoBAD7qXKcFAMBGc/zxx9dbVl5enj/96U9JkrKysnzrW9/K8OHDM3HixHzpS1/KBRdckK5du653DtglS5Zk1qxZ2XLLLZMkXbp0yRlnnJEf//jHOfbYY1NTU5OLLrooe++9d2644YY0atQoSTJy5MgMHTo0V111VW688cY6fe622265/PLL3/F1zJ8/P1OmTMkZZ5yRk08+ubR8wIAB+exnP5sf/OAHdZa//PLL+da3vpVDDz00SXLYYYflgAMOyG233Zb99tsvSfKzn/0sc+bMyXnnnVdnP5100kmpqalJkvzXf/1Xbr311lx22WU55JBDSm323nvvnHjiibnnnnvqLH8/vvGNb2S77bbLbbfdlvLy8iTJUUcdlSOPPDKXXXZZDj744CTJkCFDcuONN2bJkiVp1apVkmTVqlW5//77c/DBB6esrCxJcuWVV+aNN97IHXfcka222ipJcuSRR+ass87K1KlTM3LkyDRr1uwD1QwA8FFmBC0AABvNhAkTctNNN9X599ZL/XfdddeMGzcut956a0aNGpVFixblW9/61nrngD300ENL4WySDBo0KFVVVaWRqU8++WTmzZuXQw45JIsWLSqN2l2+fHl69eqVP/zhD1m7dm2dPkeOHPmur+OXv/xl1q5dm8GDB9cZDbzNNtukffv2eeSRR+q0b9GiRT7zmc+UHpeXl6dbt2554YUXSsvuu+++bLXVVvnc5z5Xb3u1wfI999yTioqK9O7du852P/GJT6RFixb1tvteLV68OL///e8zePDgOqOdFy1alD59+mTevHl56aWXkqwLaFevXp377ruv9PyHH344S5cuzZAhQ5IkNTU1ue+++3LAAQekpqamTs19+vRJdXV1/vKXv3ygmgEAPuqMoAUAYKPp3r37Bt0kbNSoUbnrrrvy+OOP56yzzsouu+yy3nbt27ev87hRo0Zp37595s+fnySZN29ekuTcc899221VV1eXRoAmyQ477PCu9c2bNy81NTUZMGDAete/NUzedtttSyFrrVatWuWvf/1r6fHf//73dOzY8R1vRvb888+nuro6vXr1Wu/6V1999V1rfyd///vfU1NTk0mTJmXSpElvu422bdtmt912S6dOnXL33XeXpoKYNWtWttpqq+yzzz5JkoULF2bp0qWZOXNmZs6cud7+Fi5c+IFqBgD4qBPQAgCwyXnhhRfy/PPPJ0md+Vffq9qpAb70pS9l9913X2+bFi1a1Hm8xRZbvGu/a9euTaNGjTJ9+vQ0adLkXftcX5v3Y+3atdl6661z2WWXrXd9mzZtPnD/SXLCCSekb9++622z0047lf57yJAhmTZtWhYuXJgtt9wyv/rVrzJ06NBSyFzb36c//el89rOfXW9/67v5GgBAQyKgBQBgk7J27dqMHz8+W265ZY477rhMmzYtAwcOXO9o1doQt1ZNTU2ef/75Uui34447Jkm23HLL7Lvvvh9ajTvttFNqamqyww47pGPHjh9an//zP/+T1atXl+ZvXV+bOXPmpGfPnv+WeVtr91dZWdkG7a8hQ4Zk6tSpue+++7LNNttk2bJlGTp0aGl9mzZt0rJly6xdu/ZD3f8AAJsTc9ACALBJuemmm/Loo4/mq1/9ak4//fT06NEjF1100Xovhf/Zz36WZcuWlR7fc889WbBgQfr165ck6dq1a3baaafceOONee211+o9//1eXj9gwIA0adIkU6dOLY3SrVVTU5NFixa9rz4XLVqU73//+/XW1W5j8ODBeeONN3LNNdfUa7NmzZosXbr0PW/3zbbeeuvstddemTlzZl5++eV669+6v3beeefsuuuumTVrVmbNmpWqqqp86lOfKq1v0qRJBg4cmHvvvXe9I6FNbwAAYAQtAAAb0a9//es899xz9Zb37NkzO+64Y5599tlMmjQpw4cPzwEHHJAkmThxYg499NBcfPHF9eZFbdWqVY466qgMHz48r776ar7zne+kffv2Ofzww5MkjRs3zte//vWMHj06w4YNy/Dhw9O2bdu89NJLeeSRR7Lllltm2rRp7/l17LTTTjnjjDNy+eWXZ/78+TnooIPSsmXL/OMf/8j999+fww8/PKNGjXpPfR566KH52c9+lksuuSSPP/549txzz6xYsSJz5szJkUcemYMOOih77bVXjjjiiFx33XV58skn07t375SVlWXevHm55557csEFF2TQoEHvuq2bb7653gjcxo0b5+STT85XvvKVHHXUUTnkkENy+OGHZ8cdd8wrr7ySxx57LC+++GJ+8Ytf1HnekCFDMnny5GyxxRY57LDD0rhx3TEgZ599dh555JEcfvjhGTFiRHbZZZcsWbIkf/nLXzJnzpz853/+53vaTwAAmxsBLQAAG83kyZPXu/ySSy7J9ttvn3PPPTdbbbVVzj///NK6Dh065Kyzzso3vvGNzJo1K0OGDCmtO/nkk/PXv/41119/fV577bX06tUrX/nKV9K8efNSm7333jszZ87MNddck1tuuSXLly9PVVVVunfvniOOOOJ9v5aTTjopHTp0yM0335yrr746ybqbgfXu3bsULr8XTZo0yfTp03PttdfmzjvvzH333ZfWrVunZ8+edeZp/epXv5quXbvmRz/6Ua688so0adIk7dq1y6c//en07Nlzg7Z13XXXrXf7J598cnbZZZfcdtttmTp1an76059m8eLFadOmTbp06ZIvfOEL9Z43ZMiQXHXVVVmxYkUGDx5cb/0222yTW2+9NVdffXV++ctf5oc//GFat26dXXbZJeecc8572EMAAJunRjVvvSYLAAA2cY888kiOPfbYTJo0aYNGjAIAwKbKHLQAAAAAAAUR0AIAAAAAFERACwAAAABQEHPQAgAAAAAUxAhaAAAAAICCCGgBAAAAAAoioAUAAAAAKIiAFgAAAACgIAJaAAAAAICCCGgBAAAAAAoioAUAAAAAKIiAFgAAAACgIAJaAAAAAICC/H8vUctq7e07bwAAAABJRU5ErkJggg==\n"},"metadata":{}},{"output_type":"stream","name":"stderr","text":[":4: FutureWarning: \n","\n","Passing `palette` without assigning `hue` is deprecated and will be removed in v0.14.0. Assign the `x` variable to `hue` and set `legend=False` for the same effect.\n","\n"," sns.boxplot(\n"]},{"output_type":"display_data","data":{"text/plain":["
"],"image/png":"iVBORw0KGgoAAAANSUhEUgAABWgAAAMQCAYAAAC60ozSAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAACTGklEQVR4nOzde1yUZf7/8fcMDIoKiAqUCikmYCoecCVXc7XVUCNP2yYdEMtabUvztNrBWtvVrVwp0yxFcUP9rpqlpeSxo6vr0iaestASDNRC8gCoKAMzvz/8MesEmiJw48zr+Xj0YOa+PnPfnxnFoTfXXJfJbrfbBQAAAAAAAACocWajGwAAAAAAAAAAd0VACwAAAAAAAAAGIaAFAAAAAAAAAIMQ0AIAAAAAAACAQQhoAQAAAAAAAMAgBLQAAAAAAAAAYBACWgAAAAAAAAAwCAEtAAAAAAAAABiEgBYAAAAAAAAADEJACwAAUIvEx8crPj7e6Dauy5EjRxQeHq7Vq1dX+7VWr16t8PBwHTlyxHHszjvv1KhRo6r92pKUlpam8PBwpaWl1cj1LlWTz9NI8fHxio2NNbqN63LnnXfq6aefNroNAABQSxHQAgAAXIcDBw5o7Nix6t27t9q3b6877rhDDz/8sJYuXWp0a1UmPDzc8d9tt92mrl27aujQoZo+fbq+++67KrvO//3f/9VIqFsZtbm36nLixAmFh4dr+vTp5camT5+u8PBwzZkzp9zY5MmT1bZtWxUVFdVEm7/ok08+0UMPPaRu3bqpQ4cO+u1vf6unnnpKW7durdT55s+fr48++qjc8fT0dM2dO1cFBQXX2zIAAHAznkY3AAAAcKNKT0/X8OHD1bRpU/3+979XQECAfvjhB+3Zs0dLliy54WfCXqp79+4aNGiQ7Ha7zpw5o4yMDL3//vtavny5Jk2apIcffthR26xZM+3du1eentf2o+by5cvl7++voUOHXvVjBg0apLvvvlteXl7XdK1rdbnefvWrX2nv3r2yWCzVen0jNG7cWC1atFB6enq5sfT0dHl6el52rE2bNvL29q6JNq8oOTlZM2fOVNeuXTVq1CjVrVtX33//vXbs2KH169erZ8+e13zOBQsWKCYmRn369HE6vmvXLr3xxhsaMmSIfH19ncY2btwok8l0Xc8FAAC4LgJaAACASpo/f758fHz07rvvlgtkTpw4YVBX/1NSUiKbzVYl4WWLFi00aNAgp2MTJ07U448/rpdfflmhoaH6zW9+I0kymUyqU6fOdV/zSs6dO6d69erJw8NDHh4e1XqtKzGbzdX+XI3UuXNnffDBBzp79qzq168v6eJrf+DAAfXr10+ffPKJSktLHX8Gx48fV05Ojn77299e97XL/owrq6SkRG+++aa6d++uxYsXlxuvye/R6v4FAgAAuLGxxAEAAEAlZWdn69Zbby0XzkoXZx9e6r333tPw4cPVrVs3tWvXTgMGDNA///nPX7xGcXGxXn/9dQ0dOlRRUVHq2LGjHnjgAf3nP/9xqitb9zU5OVlvv/22+vTpo/bt22vv3r3q2LFjhR9T//HHH9WmTRstWLDgGp/5Rf7+/nr11Vfl6empt956q1wvly4JkJeXp2eeeUY9e/ZUu3bt1KNHDz3++OOOtWPvvPNOffvtt/riiy8cyymUzUAuW2f2iy++0LRp09StWzdHGFzRGrRltm3bpkGDBql9+/YaMGCANm/e7DQ+d+5chYeHl3vcz895pd4utwbthg0bNHToUEVGRio6OlqTJk1Sbm6uU83TTz+tTp06KTc3V3/84x/VqVMn3X777XrllVdUWlp6dX8Iv/A8c3JyFB4errfffrvc49LT0xUeHq7U1NTLnjsqKkqlpaXas2eP49iePXtUUlKikSNH6ty5c/rmm2+czln2uMq8FtnZ2XrsscfUqVMnTZo06YrPuUOHDpowYYJKSkoqrDl16pTOnDmjzp07Vzj+8+/R4uJizZkzR3379lW7du30m9/8RjNnzlRxcbGjJjw8XOfOndOaNWscfxeefvppzZ07VzNnzpQk/fa3v3WMXfp36NI1aMv+ju3cuVMvvfSSbr/9dnXs2FFPPPGETp486dSXzWbT3Llz1aNHD3Xo0EHx8fH67rvvWNcWAAAXwgxaAACASmrWrJl27dqlgwcPKiws7Iq1y5cvV+vWrXXnnXfK09NTn376qV588UXZ7XY9+OCDl33cmTNntGrVKsXGxur3v/+9zp49q3fffVePPvqoVq1apTZt2jjVr169WhcuXNB9990nLy8vNW3aVH369NGGDRv0zDPPOM02TU1Nld1u1z333FPp16Bp06b61a9+pbS0NJ05c0YNGjSosG7MmDH67rvv9NBDD6lZs2Y6efKktm/frh9++EHNmzfXs88+q7/+9a+qV6+eRo8eLUlq0qSJ0zlefPFFNWrUSE888YTOnTt3xb4OHz6s8ePHKy4uTkOGDNF7772np556SosWLVL37t2v6TleTW+XWr16tZ555hm1b99eEyZM0IkTJ7RkyRKlp6fr/fffdwr0S0tLNXLkSEVGRmry5MnasWOHFi9erODgYD3wwAO/2NsvPc/g4GB17txZa9eu1YgRI5weu27dOtWvX/+Ks13LgtadO3fq17/+taSLIWyLFi1022236aabblJ6erratWvnGLv0cdfyWpSFvlFRUZoyZYrq1q1bYU+ffvqpxo4dqwEDBuhvf/vbZWdQN27cWHXr1nWsQduwYcPLPk+bzabHH39cO3fu1H333adWrVrp4MGDSklJ0eHDh/Xmm29KkmbOnKmpU6cqMjJS9913nyQpJCRE3t7eOnz4sFJTU/XMM8/I399fktSoUaPLXlO6uJavr6+vnnzySR09elQpKSn6y1/+otmzZztqEhMTtWjRIvXu3Vt33HGHMjIyNHLkSF24cOGK5wYAADcOAloAAIBKeuSRR/TYY49p8ODBioyMVFRUlLp166bo6Ohya5IuW7bMKXB66KGHNHLkSP3jH/+4YkDr5+enTz75xOkj0vfdd5/69++vpUuX6m9/+5tT/Y8//qgtW7Y4BUODBw/WunXrtH37dqc1N9euXatf/epXatq0aaVfA0lq3bq1duzYoSNHjigiIqLceEFBgXbt2qXJkydr5MiRjuOjRo1y3O7Tp49mz54tf3//cksplPHz89Pbb799VUsaHD58WHPnztVdd90lSbr33nvVr18/zZo165oD2qvprYzVatWsWbMUFham//u//3MsfxAVFaVRo0bp7bff1tixYx31Fy5cUP/+/fXEE09Iku6//34NGTJE77777lUHtL/0PAcPHqwXXnhBhw4dUqtWrRx9btiwQXfdddcV14pt2bKlGjdurJ07dzqOpaenO2aldurUSTt37tTw4cMlXQxyW7RoocaNG1/za1FcXKx+/fpp4sSJl+1n8+bNmjBhgoYMGaIXX3xRZvPlPxBoNps1cuRIzZs3T71791aXLl0UFRWlO+64Q23btnWqXbdunf79739r6dKl6tKli+N469at9ec//9nxnAcNGqRp06YpODi43N+F2267TampqerTp4+aN29+2b4u1bBhQy1evNixPq3NZtPSpUtVWFgoHx8f/fTTT44Z8fPmzXM87o033tDcuXOv6hoAAKD2Y4kDAACASurevbtWrFihO++8UxkZGVq0aJFGjhypnj176uOPP3aqvTScLSws1MmTJ9W1a1fl5OSosLDwstfw8PBwhLM2m02nT59WSUmJ2rVrp6+//rpc/V133VVu1t6vf/1rBQYGat26dY5jBw8e1IEDBzRw4MBKPfdLla0Tevbs2QrH69atK4vFoi+++EL5+fmVvs5999131evNBgYGqm/fvo77DRo00ODBg/X1118rLy+v0j38kq+++konTpzQ/fff77Q2ba9evRQaGqrPPvus3GPuv/9+p/tRUVEVLtlQkat5nv3791edOnWc/vy3bdumU6dOXdWff+fOnbVnzx6VlpbKZrNpz549joC2c+fOjlmzRUVFysjIcIxVxWtxqdTUVI0fP17Dhg3TX/7ylyuGs2XGjh2rxMREtWnTRtu2bdNrr72moUOHasiQITp06JCjbuPGjWrVqpVCQ0N18uRJx3+33367JJVbwqKq3HfffU6bh3Xp0kWlpaU6evSoJGnHjh0qKSkpF9Y/9NBD1dIPAAAwBjNoAQAArkNkZKTeeOMNFRcXKyMjQx999JHefvttPfXUU3r//fd16623Sro4s3Du3LnavXu3ioqKnM5RNlvuctasWaPFixcrKytLVqvVcbyiWXoVHTObzbrnnnu0fPlyFRUVydvbW+vWrVOdOnXUr1+/yj51h7LlBso2kfo5Ly8vTZo0Sa+88oq6d++uDh06qFevXho8eLACAgKu+jpXOytRkm655Ran4Eu6uNGZJB09evSarnstjh07JunizNOfCw0NdZqJKkl16tQpF6j7+flddZB9Nc/T19dXvXv3VmpqqsaNGyfp4ozRoKAgRwB5JVFRUdqyZYu++eYbeXp6qrCw0GkG7fHjx3XkyBEdOXJEJSUljuUNrvW18PT01E033VRhD0eOHNGf/vQn9evXT88///wv9nyp2NhYxcbG6syZM9qzZ49Wr16t1NRUjR49WqmpqapTp46+//57HTp0SN26davwHNW1odjPZ6+XLflQUFAg6X+vYUhIiFNdw4YN5efnVy09AQCAmkdACwAAUAW8vLwUGRmpyMhItWjRQs8884w2btyoJ598UtnZ2RoxYoRCQ0P19NNP6+abb5bFYtHnn3+ut99+Wzab7bLn/eCDD/T000+rT58+GjlypBo3biwPDw8tWLBAOTk55eovt27n4MGDlZycrI8++kixsbFKTU1Vr169rhgMX61vv/1WHh4eVwxQR4wYoTvvvFMfffSRtm3bptdff11JSUlKSUnRbbfddlXXuXQWZlX4ebBZ5lo26LpeVzsj+HoNHjxYGzduVHp6usLCwvTJJ5/o/vvvv6pZqJeuQ2uxWNSwYUOFhoZKktq0aSNvb2/t3LnTMev30g3CroWXl9dl+wkICFBAQIA+//xz7du3T+3bt7/m8zdo0EDdu3dX9+7dZbFYtGbNGu3Zs0ddu3aVzWZTWFiYnnnmmQofe7ng+Hpd7vna7fZquR4AAKidCGgBAACqWNmGScePH5ckffLJJyouLtZbb73lNGPuaj42vWnTJgUHB+uNN95wChTnzJlzTT2FhYXptttu07p163TTTTfp2LFjmjp16jWdoyLHjh3Tf//7X3Xs2PGyG4SVCQkJ0SOPPKJHHnlEhw8f1uDBg7V48WLNmjVL0uUD08r4/vvvZbfbnc55+PBhSRc3d5OcZyteullV2azFS11tb2V/vllZWeVmY2ZlZV33er8/dzXPU5LuuOMONWrUSOvWrVOHDh1UVFT0i+vplrntttscIayXl5c6duzouJ6np6fat2+v9PR0HTlyRI0bN3bMmK3K16JOnTpasGCBEhIS9Oijj2rZsmVq3br1VT/+59q1a6c1a9Y4loEICQlRRkaGunXrVum/h1X597dM2WuUnZ2t4OBgx/FTp05d13IhAACgdmENWgAAgEr6z3/+U+FMt88//1ySHLMMy2ZJXlpbWFio99577xevUdFj9+zZo927d19zv4MGDdL27duVkpKihg0bOm0YVhmnT5/WhAkTVFpaqtGjR1+2rqioqNyO8yEhIapfv76Ki4sdx7y9vR0f7b5ex48f15YtWxz3z5w5o/fff19t2rRxLG9Q9rHx//73v466c+fO6f333y93vqvtrV27dmrcuLFWrFjh9Nw+//xzHTp0SL169arkM6rY1TxP6WKQevfdd2vDhg1avXq1wsLCKtzQrSKenp6KjIxUenq60tPT1alTJ6fxTp066csvv3Ram1aq+tfCx8dHixYtUuPGjfXwww8rOzv7ivVFRUXatWtXhWNbt26V9L/lF/r376/c3Fy988475WrPnz/vWMZDurjmckV/F8o2W7vSmtLXqlu3bvL09NTy5cudjv/f//1flV0DAAAYjxm0AAAAlTR9+nQVFRWpb9++Cg0NldVqVXp6ujZs2KBmzZpp6NChkuT4SPXo0aMVFxens2fPatWqVWrcuPEvbljVq1cvbd68WU888YR69eqlI0eOaMWKFbr11ludQqOrERsbq7///e/asmWL7r//flkslqt+7OHDh/XBBx/Ibrfr7NmzysjI0MaNG3Xu3Dk9/fTTVwx7Dx8+rBEjRqhfv3669dZb5eHhoY8++kg//fST7r77bkdd27ZttXz5cr355pu65ZZb1KhRo8uuCfpLWrRooeeee0779u1T48aN9d577+nEiRN66aWXHDXdu3dX06ZN9dxzzykzM1MeHh5677335O/vX24W7dX2ZrFYNGnSJD3zzDN66KGHdPfdd+vEiRNasmSJmjVrphEjRlTq+VzP8ywzePBgLV26VGlpaZo0adI1XScqKsox4/vSEFa6GNAuWLDAUVemOl6LRo0a6R//+Ifuv/9+jRgxQsuXL1dQUFCFtUVFRYqLi1PHjh11xx136KabblJhYaE++ugjffnll+rTp49jeY1BgwZpw4YN+vOf/6y0tDR17txZpaWlyszM1MaNG7Vo0SLHsgpt27bVjh079I9//EOBgYFq3ry5OnTooLZt20qSXnvtNQ0YMEAWi0W9e/d2bKJXGU2aNNHw4cO1ePFijR49WnfccYcOHDigrVu3yt/fv1pm7QIAgJpHQAsAAFBJkydP1saNG/X5559r5cqVslqtatq0qR544AE9/vjjjo/Nh4aGas6cOZo9e7ZeeeUVNWnSRPfff78aNWqkZ5999orXGDp0qH766SetXLlS27Zt06233qq///3v2rhxo7744otr6rdJkybq3r27Pv/886v+eHuZ7du3a/v27TKbzWrQoIGaN2+uwYMHa9iwYY6N0C7npptu0t13360dO3Zo7dq18vDwUGhoqGbPnq2YmBhH3RNPPKFjx45p0aJFOnv2rLp27XpdAe3zzz+vmTNnKisrS82bN9drr72mO+64w1FjsVj0xhtv6MUXX9Trr7+ugIAAJSQkyNfXt9xapNfS29ChQ1W3bl0tXLhQs2bNUr169dSnTx/96U9/clpKoSpczfMs065dO7Vu3VqHDh3SwIEDr+k6ZcFr2ZIGl+rUqZNMJpPsdnu59Wer47UICgrS22+/rQceeEAPP/ywli1bVm6jNeniEhbTp0/XZ599ptWrVysvL08eHh5q2bKlJk+erPj4eEet2WzWvHnz9Pbbb+uDDz7Qli1b5O3trebNmys+Pt5po7Onn35aL7zwgmbPnq3z589ryJAh6tChgyIjI/XUU09pxYoV+te//iWbzaaPP/74ugJaSZo0aZLq1q2rVatWaceOHerYsaOSk5P1wAMPyMvL67rODQAAageTnRXoAQAA3MYTTzyhgwcPOn0sHu5j8ODB8vPzU0pKitGt4DoUFBToV7/6lcaNG6fHH3/c6HYAAMB1Yg1aAAAAN3H8+PFKzZ6Fa9i3b5+++eYbDR482OhWcA3Onz9f7lhZwN61a9eabgcAAFQDljgAAABwcTk5OUpPT9e7774rT09PDRs2zOiWUIMOHjyo/fv3a/HixQoICNCAAQOMbgnXYP369VqzZo169uypevXqKT09XampqerRo0e5JSUAAMCNiYAWAADAxf33v//VM888o6ZNm+rll19WQECA0S2hBm3atEnz5s1Ty5Yt9eqrr6pOnTpGt4RrEB4eLg8PD8f6x40bN9bw4cM1btw4o1sDAABVhDVoAQAAAAAAAMAgrEELAAAAAAAAAAYhoAUAAAAAAAAAg7AGbS23a9cu2e12WSwWo1sBAAAAAAAAcBWsVqtMJpM6der0i7UEtLWc3W4XywQDAAAAAAAAN45ryfMIaGu5spmz7du3N7gTAAAAAAAAAFdj3759V13LGrQAAAAAAAAAYBACWgAAAAAAAAAwCAEtAAAAAAAAABiEgBYAAAAAAAAADEJACwAAAAAAAAAGIaAFAAAAAAAAAIMQ0AIAAAAAAACAQQhoAQAAAAAAAMAgBLQAAAAAAAAAYBACWgAAAAAAAAAwCAEtAAAAAAAAABiEgBYAAAAAAAAADEJACwAAAAAAAAAGIaAFAAAAAAAAAIMQ0AIAAAAAAACAQQhoAQAAAAAAAMAgBLQAAAAAAAAAYBACWgAAAAAAAAAwCAEtAAAAAAAAABiEgBYAAAAAAAAADEJACwAAAAAAAAAGIaAFAAAAAAAAAIMQ0AIAAAAAAACAQQhoAQAAAAAAAMAgBLQAAAAAAAAAYBBPoxsAgOpmtVq1adMm5ebmKigoSDExMbJYLEa3BQAAAAAAQEALwLUtXbpUqampstlsTsdiY2MVHx9vYGcAAAAAAAAEtABc2NKlS7V27Vr5+fkpLi5OUVFR2rlzp1asWKG1a9dKEiEtAAAAAAAwFGvQAnBJVqtVqamp8vPz0/z589WnTx/5+/urT58+mj9/vvz8/JSamiqr1Wp0qwAAN1RaWqr9+/dr27Zt2r9/v0pLS41uCQAAAAZhBi0Al7Rp0ybZbDbFxcXJ09P5nzpPT08NGzZMSUlJ2rRpk2JjYw3qEgDgjtLS0pSSkqK8vDzHsYCAACUkJCg6OtrAzgAAAGAEZtACcEm5ubmSpKioqArHy46X1QEAUBPS0tKUmJiokJAQzZgxQ0uWLNGMGTMUEhKixMREpaWlGd0iAAAAahgBLQCXFBQUJEnauXNnheNlx8vqAACobqWlpUpJSVHnzp01efJkhYWFydvbW2FhYZo8ebI6d+6sJUuWsNwBAACAmyGgBeCSYmJiZDabtWLFCpWUlDiNlZSUaOXKlTKbzYqJiTGoQwCAu8nIyFBeXp6GDh0qs9n5x3Cz2awhQ4bo+PHjysjIMKhDAAAAGIGAFoBLslgsio2NVX5+vkaPHq0tW7bo5MmT2rJli0aPHq38/HzFxsbKYrEY3SoAwE2cOnVKkhQcHFzheEhIiFMdAAAA3AObhAFwWfHx8ZKk1NRUJSUlOY6bzWYNHDjQMQ4AQE3w9/eXJOXk5CgsLKzceHZ2tlMdAAAA3AMBLQCXFh8fr7i4OG3atEm5ubkKCgpSTEwMM2cBADUuIiJCAQEBWr16tSZPnuy0zIHNZtOaNWsUGBioiIgIA7sEAABATSOgBeDyypY7AADASB4eHkpISFBiYqJmzpypIUOGKCQkRNnZ2VqzZo3S09M1ceJEeXh4GN0qAAAAapDJbrfbjW4Cl7dv3z5JUvv27Q3uBAAAAFUhLS1NKSkpysvLcxwLDAzU8OHDFR0dbWBnAAAAqCrXkukxgxYAAACoQdHR0erSpYsyMjJ06tQp+fv7KyIigpmzAAAAboqAFoDLy8nJ0cSJE2W322UymZSYmHjZHbQBAKgJHh4eatu2rdFtAAAAoBYgoAXg0n7/+9873bfb7ZowYYIkadWqVUa0BAAAAAAA4GD+5RIAuDFdGs56eHhoyJAhTh8f/Xl4CwAAAAAAUNOYQQvAJeXk5Dhuv/baa2revLkk6YEHHtCRI0c0fvx4Rx3LHQAAAAAAAKMwgxaAS5o4caKkizNny8LZMs2bN3fMpC2rAwAAAAAAMAIBLQCXZLfbJUkDBw6scPzuu+92qgMAAAAAADACAS0Al2QymSRJa9eurXD8ww8/dKoDAAAAAAAwAgEtAJeUmJgoSSotLdWRI0ecxo4cOaLS0lKnOgAAAAAAACOwSRgAl3Tpxl/jx4+Xh4eH7r77bn344YeOcPbndQAAAAAAADWNGbQAXNaqVasct0tLS7V27VqncPbScQAAAAAAACMwgxaAS1u1apVycnI0ceJE2e12mUwmJSYmMnMWAAAAAADUCgS0AFxecHCw3nnnHaPbAAAAAAAAKIclDgAAAAAAAADAIAS0AAAAAAAAAGAQAloAAAAAAAAAMAgBLQAAAAAAAAAYhIAWAAAAAAAAAAxCQAsAAAAAAAAABiGgBQAAAAAAAACDENACAAAAAAAAgEEIaAEAAAAAAADAIAS0AAAAAAAAAGAQAloAAAAAAAAAMAgBLQAAAAAAAAAYhIAWAAAAAAAAAAziaXQDAAAAAAAAMFZpaakyMjJ06tQp+fv7KyIiQh4eHka3BbgFAloAAAAAAAA3lpaWppSUFOXl5TmOBQQEKCEhQdHR0QZ2BrgHljgAAAAAAABwU2lpaUpMTFRISIhmzJihJUuWaMaMGQoJCVFiYqLS0tKMbhFweQS0AAAAAAAAbqi0tFQpKSnq3LmzJk+erLCwMHl7eyssLEyTJ09W586dtWTJEpWWlhrdKuDSCGgBAAAAAADcUEZGhvLy8jR06FCZzc4Rkdls1pAhQ3T8+HFlZGQY1CHgHghoAQAAAAAA3NCpU6ckScHBwRWOh4SEONUBqB4EtAAAAAAAAG7I399fkpSTk1PheHZ2tlMdgOpBQAsAAADUMKvVqtTUVCUnJys1NVVWq9XolgAAbigiIkIBAQFavXq1bDab05jNZtOaNWsUGBioiIgIgzoE3IOn0Q0AAAAA7mTp0qVKTU11+h/hpUuXKjY2VvHx8QZ2BgBwNx4eHkpISFBiYqJmzpypIUOGKCQkRNnZ2VqzZo3S09M1ceJEeXh4GN0q4NJMdrvdbnQTuLx9+/ZJktq3b29wJwAAALheS5cu1dq1a+Xn56e4uDhFRUVp586dWrFihfLz8zVw4EBCWgBAjUtLS1NKSory8vIcxwIDAzV8+HBFR0cb2Blw47qWTI+AtpYjoAUAAHANVqtVDz30kHx8fPTmm2/q22+/1alTp+Tv76/WrVvrj3/8owoLC7Vs2TJZLBaj2wUAuJnS0lJlZGQ43psiIiKYOQtch2vJ9FjiAAAAAKgBmzZtks1mU9euXTVu3DinWUoBAQHq2rWrtmzZok2bNik2NtbATgEA7sjDw0Nt27Y1ug3ALRHQAgAAADUgNzdXkvTRRx+pc+fOGjdunIKDg5WTk6PVq1fro48+cqoDAACAezAb3QAAVDd2ygYA1AYBAQGSpJCQEE2ePFlhYWHy9vZWWFiYJk+erODgYKc6AAAAuAdm0AJwaeyUDQCoLW655RZJ0k8//SSbzSaz+X9zJWw2m06cOOFUBwAAAPdAQAvAZV1pp+y1a9dKEiEtAKDGFBYWSpLOnj2r0aNHa9iwYY73ppUrV+rs2bNOdQAAAHAPBLQAXFLZsgZ+fn6aP3++PD0v/nPXp08f9erVS6NHj1Zqaqri4uLYKRsAUCP8/f0lST169ND27duVlJTkGDOZTOrRo4e2bdvmqAMAAIB7YA1aAC6pbKfsuLg4RzhbxtPTU8OGDZPNZtOmTZsM6hAA4G4iIiIUEBCgY8eOqUmTJk5jTZo00bFjxxQYGKiIiAiDOgQAAIARCGgBuKSyHbCjoqIqHC87zk7ZAICa4uHhoW7duikzM1PFxcUaNWqUkpKSNGrUKBUXFyszM1O33367PDw8jG4VAAAANYglDgC4pKCgIEnSzp071adPn3LjO3fudKoDAKC6lZaWaseOHWrVqpXy8/O1YMECx1hAQIBatWql//znP3rggQcIaQEAANwIAS0AlxQTE6OlS5dqxYoV6tWrl9MyByUlJVq5cqXMZrNiYmIM7BIA4E4yMjKUl5encePGqVWrVsrIyNCpU6fk7++viIgIfffdd5o6daoyMjLUtm1bo9sFAABADSGgBeCSLBaLYmNjtXbt2gp3ys7Pz9fAgQPZIAwAUGNOnTolSQoODpaHh0e5EDYkJMSpDgAAAO6BgBaAy4qPj5ckpaamOu2UbTabNXDgQMc4AAA1wd/fX5KUk5OjsLCwcuPZ2dlOdQAAAHAPBLQAXFp8fLzi4uK0adMm5ebmKigoSDExMcycBQDUuIiICAUEBGj16tWaPHmyzOb/7ddrs9m0Zs0aBQYGKiIiwsAuAQAAUNMIaAG4vLLlDgAAMJKHh4cSEhKUmJiomTNnasiQIQoJCVF2drbWrFmj9PR0TZw4kQ3CAAAA3IzJbrfbjW4Cl7dv3z5JUvv27Q3uBAAAAFUhLS1NKSkpysvLcxwLDAzU8OHDFR0dbWBnAAAAqCrXkukxgxaAyystLS23UzazkwAARomOjlbnzp1ZfgcAAACSCGgBuLiKZikFBAQoISGBWUoAAENU9N60fv163psAAADclPmXSwDgxpSWlqbExESFhIRoxowZWrJkiWbMmKGQkBAlJiYqLS3N6BYBAG6G9yYAAAD8HGvQ1nKsQQtUTmlpqcaMGaOQkJAKd8qeOXOmcnJyNGfOHJY7AADUCN6bAAAA3Me1ZHrMoAXgkjIyMpSXl6ehQ4c6/Q+wJJnNZg0ZMkTHjx9XRkaGQR0CANwN700AAACoCAEtAJd06tQpSVJwcHCF4yEhIU51AABUN96bAAAAUBECWgAuyd/fX5KUk5NT4Xh2drZTHQAA1Y33JgAAAFSk1ga0Z8+eVc+ePRUeHu5Ys6HMqlWrFBMTo/bt22vgwIH69NNPyz2+sLBQzz77rLp27apOnTpp7NixOn78eLm69PR0DRs2TJGRkerdu7eSkpL082V57Xa7kpKS1KtXL0VGRmrYsGHavXt3uXPl5uZqzJgx6tSpk7p27arnnntOZ86cub4XAkClREREKCAgQKtXr5bNZnMas9lsWrNmjQIDAxUREWFQhwAAd8N7EwAAACpSawPaN998U6WlpeWOf/jhh3r++efVv39/LVy4UB07dtSTTz5ZLjAdN26ctm/frmnTpmnWrFnKysrSY489ppKSEkfN999/r5EjRyogIEALFixQQkKC5syZo8WLFzuda+HChZozZ45GjBihBQsWKCAgQI888ojT7Aer1apHH31Uhw8fVmJioqZNm6Zt27Zp4sSJVfvCALgqHh4eSkhIUHp6umbOnKmNGzfqk08+0caNGzVz5kylp6dr+PDhbMICAKgxP39vOnDggIqKinTgwAHemwAAANyYyf7z6aK1wKFDh3TvvfdqypQp+vOf/6x3333XseNZTEyM2rVrp8TEREd9XFycfHx8tHDhQknSrl27FBcXp+TkZPXo0UOSlJmZqQEDBujVV1/VgAEDJEkvvPCCtm3bpo0bN8rLy0uS9Oqrr2r58uXavn27vLy8dOHCBf3617/Wgw8+qAkTJkiSiouL1a9fP/Xs2VPTpk2TJKWmpmrSpElav369QkNDJUnbtm3TyJEjtWrVKkVGRlbqtbiWHd8AlLd06VKlpqY6zVQym82KjY1VfHy8gZ0BANxVWlqaUlJSlJeX5zgWGBio4cOHKzo62sDOAAAAUFWuJdPzrO5mKmP69OmKi4tTy5YtnY7n5OTo8OHD+tOf/uR0fMCAAZo5c6aKi4vl5eWlrVu3ytfXV927d3fUhIaGqk2bNtq6dasjoN26dav69u3rCGfLzrVgwQLt2rVL0dHRSk9P15kzZ9S/f39HjZeXl/r27astW7Y4jm3dulXh4eGOcFaSunfvroYNG+rzzz+vdEALoPLS0tK0du3acsdtNpvWrl2rsLAw/kcYAFDjoqOj1aVLF2VkZOjUqVPy9/dXREQEM2cBAADcVK1b4mDjxo06ePCgnnjiiXJjmZmZklQuuG3VqpWsVqtjyYHMzEy1bNlSJpPJqS40NNRxjnPnzumHH35wClTLakwmk6Ou7OvP61q1aqVjx47p/Pnzjrqf15hMJrVs2dJxDgA1p7S0VPPmzZMk+fn5adSoUUpKStKoUaPk5+cnSZo3b16FS6kAAFDdPDw81LZtW/Xo0UNt27YlnAUAAHBjtWoGbVFRkV5++WWNHz9eDRo0KDeen58vSfL19XU6Xna/bLygoEA+Pj7lHu/n56evvvpK0sVNxCo6l5eXl7y9vZ3O5eXlpTp16pS7pt1uV35+vurWrXvFa5adq7LsdrvOnTt3XecA3M2+fftUVFSk+vXr69VXX5Wn58V/7n7961+ra9euGjt2rM6ePasvv/ySJUQAAAAAAECVstvt5SaPXk6tCmjfeustNW7cWL/73e+MbqVWsVqt+uabb4xuA7ihbNiwQZLUrVs3ffvtt+XGb7/9dn388cfasGGDI7wFAAAAAACoKpcuq3oltSaVOHr0qBYvXqx58+Y5ZreWzRo9d+6czp496/hYcmFhoQICAhyPLSgokCTHuK+vr3788cdy18jPz3fUlM12LbtWmeLiYhUVFTmdq7i4WBcuXHCaRVtQUCCTyeRUd+bMmQqvefPNN1/ry+HEYrHo1ltvva5zAO5m8+bNki4uxt2mTZty40VFRfr4449Vp06dCscBAAAAAAAq67vvvrvq2loT0B45ckRWq1V/+MMfyo0NHz5cHTp0UGJioqTy671mZmbKYrEoODhY0sX1Ynfs2FFuKnFWVpbCwsIkSfXq1dPNN99cbn3YrKws2e12x/nLvmZlZSkiIsLpmk2bNlXdunUddQcPHnQ6l91uV1ZWltNmZZVhMplUr1696zoH4G7atm2r9PR0vffee7r99ttlNv9vyW2bzaY1a9Y46vj+AgAAAAAAVelqlzeQatEmYW3atNGSJUuc/nvmmWckSS+++KL+/Oc/Kzg4WC1atNDGjRudHrt+/Xp169bNMW24Z8+eys/P144dOxw1WVlZ+vrrr9WzZ0/HsZ49e+rjjz+W1Wp1Opevr686deokSercubMaNGjg+Li0dHHJgc2bN5c7V0ZGhg4fPuw4tmPHDp0+fVq/+c1vquAVAnAt+vfvL5PJpOzsbL388ss6cOCAioqKdODAAb388svKzs6WyWRS//79jW4VAAAAAAC4sVozg9bX11fR0dEVjrVt21Zt27aVJI0ZM0aTJk1SSEiIoqOjtX79eu3du1fLli1z1Hfq1Ek9evTQs88+qylTpqhOnTp67bXXFB4errvuustRN3LkSK1bt04TJ07U/fffr4MHDyo5OVnjx493hL116tTRqFGjNHfuXDVq1EhhYWFavny5Tp8+rZEjRzrOFRMTowULFmjMmDGaMGGCioqKNHPmTPXq1UuRkZHV8ZIBuAKLxaJ77rlHa9eu1e7du7Vr1y7HWNlvse655x5ZLBajWgQAAAAAAKg9Ae3Vio2NVVFRkRYuXKikpCS1bNlSb7zxhmPGa5nZs2frpZde0gsvvKCSkhL16NFDU6dOddoM6JZbblFycrJefvll/eEPf1CjRo00duxYPfLII07neuyxx2S327V48WKdPHlSbdq0UXJysmNJBeliGLRo0SJNnz5dEyZMkKenp/r27atnn322el8QAJcVHx8vSUpNTZXdbnccN5lMuueeexzjAAAAAAAARjHZL00tUOvs27dP0sWNjgBUzoULF7R06VL98MMPuvnmmxUfH++06R8AAAAAAEBVupZM74abQQsA1yItLU0pKSnKy8uTJO3du1fp6elKSEi47LIqAAAAAAAANaXWbBIGAFUtLS1NiYmJCgkJ0YwZM7RkyRLNmDFDISEhSkxMVFpamtEtAgAAAAAAN0dAC8AllZaWKiUlRZ07d9bkyZMVFhYmb29vhYWFafLkyercubOWLFmi0tJSo1sFAAAAAABujIAWgEvKyMhQXl6ehg4dKrPZ+Z86s9msIUOG6Pjx48rIyDCoQwAAAAAAAAJaAC7q1KlTkqTg4OAKx0NCQpzqAAAAAAAAjEBAC8Al+fv7S5JycnIqHM/OznaqAwAAAAAAMAIBLQCXFBERoYCAAK1evVo2m81pzGazac2aNQoMDFRERIRBHQIAAAAAABDQAnBRHh4eSkhIUHp6umbOnKkDBw6oqKhIBw4c0MyZM5Wenq7hw4fLw8PD6FYBAAAAAIAbM9ntdrvRTeDy9u3bJ0lq3769wZ0AN6a0tDSlpKQoLy/PcSwwMFDDhw9XdHS0gZ0BAAAAAABXdS2ZHjNoAbi8n/8e6udLHgAAAAAAABiFgBaAy0pLS1NiYqICAwNlsVhkMplksVgUGBioxMREpaWlGd0iAMBNlZaWav/+/dq2bZv279+v0tJSo1sCAACAQTyNbgAAqkNpaalSUlJkt9v19ddfO45brVbH/SVLlqhLly6sQwsAqFEVLb8TEBCghIQElt8BAABwQ8ygBeCSMjIynP7HtyLHjx9XRkZGDXUEAMD/Pt0REhKiGTNmaMmSJZoxY4ZCQkL4dAcAAICbYgYtAJf03XffOW63a9dO0dHR8vLyUnFxsdLS0vTVV1856tq2bWtUmwAAN1L26Y7OnTtr8uTJMpsvzpUICwvT5MmTNXPmTD7dAQAA4IaYQQvAJa1cuVKSZDKZ9OOPPyo5OVlvvfWWkpOT9eOPP8pkMjnVAQBQ3co+3TF06FBHOFvGbDZryJAhfLoDAADADTGDFoBLslqtkiS73a7mzZura9euKi4ulpeXl44dO6affvrJqQ4AgOp26tQpSVJwcHCF4yEhIU51AAAAcA8EtABckqenp0pKSiRJu3fv1u7duy9bBwBATfD395ck5eTkKCwsrNx4dna2Ux0AAADcA0scAHBJ99xzT5XWAQBwvSIiIhQQEKDVq1erpKRE+/fv17Zt27R//36VlJRozZo1CgwMVEREhNGtAgAAoAYxdQyAS7rpppuc7tetW1ddu3bVF198ofPnz1+2DgCA6uLh4aGEhATNmjVLCQkJKi4udoyVbWQ5adIkNggDAABwM8ygBeCSMjMzne6fP39eW7dudQpnK6oDAAAAAACoScygBeDSQkJCdObMGZ08edJxrFGjRmrQoIFjrT8AAGpCaWmpUlJSFBUVpYkTJ+rgwYM6deqU/P39FRYWpsTERC1ZskRdunRhFi0AAIAbIaAF4JLKli7Izs5W586dNXjwYNWpU0cXLlzQ7t27lZ6e7lQHAEB1y8jIUF5ensaNGyeLxaK2bds6jQ8ZMkRTp05VRkZGuTEAAAC4LgJaAC4pJiZGS5cuVd26dfX99987AllJatKkierVq6fz588rJibGwC4BAO7k1KlTkqTg4OAKx0NCQpzqAAAA4B4IaAG4JIvFotjYWK1du9ZxOygoSLm5ufrXv/6lc+fOaeDAgbJYLEa3CgBwE/7+/pKknJwctWzZUps2bVJubq6CgoIUExPjWHqnrA4AAADugYAWgMuKj4+XJKWmpio1NdVx3Gw2a+DAgY5xAABqQkREhAICAjRnzhzl5uY6jaWkpCgoKEiBgYGKiIgwqEMAgDsrLS1VRkaGY330iIgI1kQHaggBLQCXFh8fr7i4uHKzlJg5CwCoaR4eHrrlllv05ZdfVjiem5vLBmEAAEOkpaUpJSVFeXl5jmMBAQFKSEhQdHS0gZ0B7oGAFoDLM5vNatmypRo2bCh/f3+ZzWajWwIAuCGr1aqdO3dKkry8vFRcXOwYK7u/c+dOWa1WfpEIAKgxaWlpSkxMVOfOnTVu3DgFBwcrJydHq1evVmJioiZOnEhIC1QzAloALo3fBAMAaosNGzbIbrfrlltu0YwZM7RlyxbHpzv69u2rZ599VtnZ2dqwYYMGDhxodLsAADdQWlqqlJQUde7cWZMnT3ZMZgkLC9PkyZM1c+ZMLVmyhE94ANWMgBaAy7r0N8EDBw50zE7avXs3vwkGANS4jIwMSVLnzp01fvx4p18erl+/Xt27d1d2drYyMjIIaAEANSIjI0N5eXkaN25cuU8ams1mDRkyRFOnTlVGRobatm1rUJeA6yOgBeCSyn4THBoaqu+//97xkVJJatKkiUJDQ/lNMACgRtWtW1eStGbNGkVFRZX7GOn777/vVAcAQHU7deqUJCk4OLjC8ZCQEKc6ANWDhRgBuKSy3wQfOnTI8VHSJUuWaMaMGbrlllt06NAhHT9+3DGbCQCA6nbHHXdIurhZ2IQJExQWFiZvb2+FhYVpwoQJjl8YltUBAFDd/P39JUk5OTkVjmdnZzvVAagezKAF4JJOnDghSerYsaMefPBBTZo0STabTWazWbNmzVJpaal2797tqAMAoLp5el780bu0tFSPP/644uLiFBUVpZ07d2rFihUqLS11qgMAoLpFREQoICBAq1evdlqDVpJsNpvWrFmjwMBARUREGNgl4Pr46Q+ASyooKJAk7d69W7t373Yct9lsmjBhQrk6AACqW35+vuN2QUGBkpKSfrEOAIDq5OHhoYSEBCUmJmrmzJkaMmSIQkJClJ2drTVr1ig9PV0TJ05kWTigmrHEAQCX5Ovr63TfYrHovvvuk8ViuWIdAADVpezjoQ888IACAgKcxgICAnT//fc71QEAUBOio6M1ceJEZWdna+rUqRo+fLimTp2qnJwcNlYGaggzaAG4pAsXLjhu33bbbXrggQcUEhKiyMhI/fOf/9TXX39drg4AgOpU9jHSAwcOaM6cOTpw4IBOnTolf39/hYeHa9asWXyMFABgiOjoaHXp0kUZGRmO96aIiAhmzgI1xGS32+1GN4HL27dvnySpffv2BncC3FiGDRsmm80m6eKspLy8PMdYYGCgjh8/Lkkym81auXKlIT0CANxPWlqaEhMT1blz58t+jJSZSgAAADe+a8n0mEELwCWVhbOSFBwcrHvuuUd16tTRhQsXtHv3bkdAe2kdAADVrexjpCkpKZo6darjeGBgIOEsAACAmyKgBeCSzGazbDabzGazcnJylJ6e7hgLDAx0GgcAoCbxMVIAAABcioAWgEt69dVXNW7cONlsNj399NPau3evcnNzFRQUpMjISE2cONFRBwBATfPw8FDbtm2NbgMAAAC1AAEtAJfUrFkzx+2yMPaX6gAAAAAAAGoan+0F4LImTZp0XeMAAAAAAADVjYAWgEsqLS1VUlKSJKl169YymUySJJPJpNatW0uSFi5cqNLSUsN6BAAAAAAAYIkDAC5p//79KigoUHh4uJ5//nlt2bLFsQZt37599de//lUHDhzQ/v37FRkZaXS7AAAAAADATRHQAnBJX3/9tSSpUaNGGj58uGw2m2Ns6dKl6tq1q6OOgBYAAAAAABiFgBaAS9uxY4f8/PwUFxenqKgo7dy5UytWrNB//vMfo1sDAAAAAAAgoAXgmsLDwyVJHh4eevPNN+Xl5SVJ6tOnj3r27Knhw4ertLTUUQcAAAAAAGAEAloALiknJ0fSxc3CZs2aJS8vL505c0YNGjRQcXGxY3OwnJwcderUychWAQAAAACAGyOgBeCS8vLyHLd37dp1VXUAANQUq9WqTZs2OTawjImJkcViMbotAAAAGICAFoBLCgoKqtI6AACqytKlS5WamlpuA8vY2FjFx8cb2BkAAACMYDa6AQCoDr1793a67+XlpYiICMdatJerAwCgOi1dulRr166Vj4+PRo0apaSkJI0aNUo+Pj5au3atli5danSLAAAAqGEEtABc0qJFi5zuFxcXKyMjQ8XFxVesAwCgulitVqWmpsrPz0/z589Xnz595O/vrz59+mj+/Pny8/NTamqqrFar0a0CAACgBhHQAnBJ27Ztq9I6AACu16ZNm2Sz2RQXFydPT+eVxjw9PTVs2DDZbDZt2rTJoA4BAABgBNagBeDSGjRooPnz52vLli2OjVj69u2rUaNG6ezZs0a3BwBwI7m5uZKkqKioCsfLjpfVAQAAwD0Q0AJwSRaLRVarVWfOnJHJZFJsbKxjrLi42BHOsmM2AKCmlG1MuXPnTvXp06fc+M6dO53qAAAA4B5Y4gCAS7rvvvsctx988EEtW7ZMx44d07Jly/Tggw9WWAcAQHWKiYmR2WzWihUrVFxcrP3792vbtm3av3+/iouLtXLlSpnNZsXExBjdKgAAAGoQM2gBuKTWrVs73f/ggw/0wQcf/GIdAADVxWKxKDY2VmvXrtVDDz0ku93uGDOZTLLb7Ro4cCCf7gAAAHAzzKAF4JIiIiIUEBBwxZrAwEBFRETUUEcAAEhhYWGS5BTOXnq/bBwAAADug4AWgEvy8PBQQkLCFWuGDx8uDw+PGuoIAODuSktLlZKSoqioKC1btkwJCQnq16+fEhIStGzZMkVFRWnJkiUqLS01ulUAAADUIAJaAC7r4MGDki5+bPRSZffLxgEAqAkZGRnKy8vT0KFDVadOHcXGxmrkyJGKjY1VnTp1NGTIEB0/flwZGRlGtwoAAIAaREALwCVZrValpqbKz89PKSkpTrOUUlJS5Ofnp9TUVFmtVqNbBQC4iVOnTkmSgoODKxwPCQlxqgMAAIB7YJMwAC5p06ZNstlsio6O1sSJE5WXl+cYW79+vbp27aotW7Zo06ZNio2NNbBTAIC78Pf3lyTl5ORUuNZsdna2Ux0AAADcAwEtAJeUm5srSdq8ebM6dOigJk2aqLCwUD4+PvLy8tKWLVuc6gAAqG5lG1iuXr1a48eP15YtW5Sbm6ugoCD17dtXa9asYQNLAAAAN0RAC8AlBQQESJIsFov27NlTbtxischqtTrqAACobmUbWM6aNUsPPfSQ01hKSookadKkSWxgCQAA4GZYgxaAS7rlllskybHGbM+ePfX3v/9dPXv2dDpeVgcAQE1gA0sAAAD8HDNoAbikS9ec9fHxUUREhHx9fRUREaFdu3apsLCwXB0AANXp0g0s33zzTX377bc6deqU/P391bp1a/3xj39Uamqq4uLiZLFYjG4XAAAANYSAFoBL+uyzzyRdXOrgxIkTSkpKcoyZzWY1adJEP/30kz777DP16dPHoC4BAO6kbAPLuLg4eXl5qW3btk7jw4YNU1JSEhtYAgAAuBkCWgAu6dy5c5Kkxo0ba/bs2dq8ebNjI5a77rpLf/nLX/TTTz856gAAqG5lG1NGRUVVOF52nA0sAQAA3AsBLQCXdNNNNyknJ0cZGRn6+9//rgsXLqiwsFDff/+99uzZowMHDjjqAACoCUFBQZKknTt3VvjpjZ07dzrVAQAAwD2wSRgAlzRmzBjH7d27d+ubb77RkSNH9M0332j37t0V1gEAUJ1iYmJkNpu1YsUKlZSUOI2VlJRo5cqVMpvNiomJMahDAAAAGIGAFoBL8vb2lpeX1xVrvLy85O3tXUMdAQDcncViUWxsrPLz8zV69Ght2bJFJ0+e1JYtWzR69Gjl5+crNjaWDcIAAADcDEscAHBJRUVFKi4uvmJNcXGxioqKCGkBADUmPj5ekpSamlpuA8uBAwc6xgEAAOA+mEELwCXNnj1bkuTp6ank5GSFh4erUaNGCg8PV3Jysjw9PZ3qAACoKfHx8Vq2bJkSEhLUr18/JSQkaNmyZYSzAAAAbooZtABcUmZmpiSpS5cumjJlin766SdJ0smTJzVlyhRFRUUpLS3NUQcAQE0qW+4AAAAAIKAF4JLK1u/7z3/+U27sp59+cgS2rPMHAAAAAACMxBIHAFzSnXfe6bjt4+OjUaNGKSkpSaNGjZKPj0+FdQAAAAAAADWNGbQAXFLLli0dtwsLC7Vlyxbt2bNHx48fV2FhYYV1AADUFKvVqk2bNik3N1dBQUGKiYnhUx0AAABuioAWgEv697//7XQ/MzOzwvVm//3vfysqKqqm2gIAQEuXLlVqaqpsNpvTsdjYWDYKAwAAcEMEtABc0vnz56u0DgCAqrB06VKtXbtWfn5+iouLU1RUlHbu3KkVK1Zo7dq1kkRICwAA4GYIaAG4pFtvvVVffPGFJKlDhw5q1qyZiouL5eXlpaNHj2rPnj2OOgAAaoLValVqaqr8/Pw0f/58eXpe/FG8T58+6tWrl0aPHq3U1FTFxcWx3AEAAIAbYZMwAC7PZDLJbrdLkux2u0wmk8EdAQDc0aZNm2Sz2RQXF+cIZ8t4enpq2LBhstls2rRpk0EdAgAAwAjMoAXgkr777jvH7d27d2v37t2/WAcAQHXKzc2VpMuufV52vKwOAAAA7oEZtABcUt26dau0DgCA6xUUFCRJ2rlzZ4XjZcfL6gAAAOAeCGgBuKRf//rXjtsVfYy0ojoAAKpTTEyMzGazVqxYoZKSEqexkpISrVy5UmazWTExMQZ1CAAAACMQ0AJwSTk5OY7bdrtdgwYN0pw5czRo0CDHerQ/rwMAoDpZLBbFxsYqPz9fo0eP1pYtW3Ty5Elt2bJFo0ePVn5+vmJjY9kgDAAAwM2wBi0Al3Tw4EHH7dLSUn3wwQf64IMPrlgHAEB1i4+PlySlpqYqKSnJcdxsNmvgwIGOcQAAALgPAloALunChQuSLm64cuDAAZ05c8Yx5uPjo9atWys9Pd1RBwBATYmPj1dcXJw2bdqk3NxcBQUFKSYmhpmzAAAAboqAFoBLCg0N1d69eyvciKWwsFDp6emOOgAAalrZcgcAAAAAa9ACcEmRkZFVWgcAAAAAAFAdCGgBuKTmzZtXaR0AAAAAAEB1IKAF4JKee+65Kq0DAAAAAACoDqxBC8Al5eXlVWkdAABV6cKFC1q6dKl++OEH3XzzzYqPj1edOnWMbgsAAAAGIKAFAAAAatArr7yiL7/80nF/79692rRpk7p06aIpU6YY2BkAAACMwBIHANxCnTp1dMcddzA7CQBgqLJw1tPTUz169FBCQoJ69OghT09Pffnll3rllVeMbhEAAAA1jBm0ANzChQsX9K9//cvoNgAAbuzChQv68ssv5eHhIV9fX23btk3btm2TJDVq1Ej5+fn68ssvdeHCBX6hCAAA4EaYQQsAAADUgKVLl0qSSktL1bJlS82YMUNLlizRjBkz1LJlS5WWljrVAQAAwD0Q0AIAAAA14IcffpAk3XbbbZo8ebLCwsLk7e2tsLAwTZ48WbfddptTHQAAANwDSxwAcElms1k2m+2q6gAAqAllyxY0adJEdrtd+/fv16lTp+Tv76+IiAg1btzYqQ4AAADugYAWgEvq3Lmz0w7ZV6oDAKAmdOnSRf/973+1fft27d27V6dPn3aMNWzYUIWFhY46AAAAuA8CWgAu6WpnxjKDFgBQU4KCgiRdXIP20nBWktP9sjoAAAC4B5IJAC4pIiKiSusAALheYWFhVVoHAAAA10BAC8Al3XXXXVVaBwDA9fr666+rtA4AAACugYAWgEv69NNPq7QOAIDrdel7jsVicRq79D7vTQAAAO6FgBaAS0pOTq7SOgAArtf3338vSapbt66sVqvTmNVqVd26dZ3qAAAA4B7YJAyASzObzVq2bJk2bdqk3NxcBQUFKSYmRg8++KDsdrvR7QEA3IjJZJIknT9/Xn5+furZs6eCgoKUm5urrVu3Kj8/36kOAAAA7oGAFoBLs9ls8vDwUGxsrNMxwlkAQE0LDg5WTk6OJKmwsFDr1q1zjJnNZqc6AAAAuA+WOADgkjw8PBy3n3/+eR04cEBFRUU6cOCAnn/++QrrAACoTvXq1XPcttlsTmOX3r+0DgAAAK6PGbQAXNLrr7+uJ598UpJ08OBBTZ069bJ1AADUhEtnyVZFHQAAAFwDP/0BcElBQUG/uIafyWRSUFBQDXUEAHB3V7u2LGvQAgAAuBcCWgAu65133rns/+SaTCa98847NdwRAMCd3XrrrVVaBwAAANfAEgcAXNo777yj3NxcjR8/XlarVRaLRa+99hozZwEANa5x48ZO9yMjI9W2bVvt379fe/fuvWwdAAAAXBsBLVCL5ebm6uzZs0a34RKmT5/uuH327FllZmYa2I3rqF+/PmE3AFwlq9Uq6eKnOOx2u/bu3esUzJYdL6sDAACAeyCgBWqpgoICjRkzRna73ehWgMsym81auHChfH19jW4FAGq97du3S5Lsdrs6duwoLy8vnTt3TvXq1VNxcbF2797tqOvcubOBnQIAAKAmEdACtZSvr6/mzp3LDNoqcvToUc2ZM0djx45Vs2bNjG7HZdSvX59wFgCu0vnz5yVJ0dHR+uKLL5x+CWsymdS1a1d98cUXjjoAAAC4BwJaoBbjo+NVr1mzZgoNDTW6DQCAGwoPD9cXX3yhtLS0cmN2u11ffPGFow4AAADuw2x0AwAAAIA7iImJcdz28PDQ4MGD9frrr2vw4MHy8PCosA4AAACujxm0AAAAQA345ptvHLdLS0v1/vvv6/3336+wrmPHjjXXGAAAAAzFDFoAAACgBvzrX/+SJDVu3LjC8bLjZXUAAABwD8ygBQAAAGpA2eZfJ06ckI+Pj9q1a6e6devq/Pnz+uqrr3TixAmnOgAAALgHAloAAACgBrRu3VpffPGFzGaz5s+fLy8vL8dYcXGx4uPjZbPZ1Lp1awO7BAAAQE0joAUAAABqkM1m09/+9jcdPXpURUVF8vb2VrNmzWSz2YxuDQAAAAYgoAUAAABqQNkSBpK0f/9+x+0LFy7o9OnTFdYBAADA9bFJGAAAAFADgoKCqrQOAAAAroEZtAAAAEAN6Natm1JSUiRJ8+bN0xdffKHc3FwFBQWpa9eueuKJJxx1AAAAcB/MoAUAAABqwPPPP++4/cwzz+jEiRNq1qyZTpw4oWeeeabCOgAAALg+ZtACAAAANaCgoECSFBoaqszMTKWmpjqNt2zZUllZWY46AAAAuAdm0AIAAAA1wNfXV5KUmZmpyMhIBQYGqn79+goMDFRkZKSysrKc6gAAAOAeCGgBAACAGjBjxgzH7b179+r48eM6e/asjh8/rr1791ZYBwAAANdHQAsAAADUgGPHjlVpHQAAAFwDAS0AAABQA3744YcqrQMAAIBrIKAFAAAAasCnn34qSTKbzeXWmfX19ZXZbHaqAwAAgHvwNLoBAAAAwB3k5uZKkmw2mwoKCpzGLr1fVgcAAAD3wAxaAAAAoAZYLBbHbQ8PDw0ePFhz5szR4MGD5eHhUWEdAAAAXF+tCmg///xzPfTQQ7r99tvVrl07/fa3v9VLL72kwsJCp7pPPvlEAwcOVPv27RUTE6P33nuv3LmKi4v1yiuvqHv37urYsaMefvhhZWZmlqs7dOiQHn74YXXs2FHdu3fXzJkzVVxcXK5u1apViomJUfv27TVw4MAKP3pWWFioZ599Vl27dlWnTp00duxYHT9+/DpeEQAAALiKdu3aOW43aNBA77//vsaOHav3339fPj4+FdYBAADA9dWqgPb06dOKjIzUiy++qOTkZD388MN6//339dRTTzlqvvzySz355JPq2LGjFi5cqP79++u5557Txo0bnc41ffp0rVq1SuPHj9fcuXNVXFysESNGOIW9+fn5SkhIkNVq1dy5czV+/Hi98847evnll53O9eGHH+r5559X//79tXDhQnXs2FFPPvmkdu/e7VQ3btw4bd++XdOmTdOsWbOUlZWlxx57TCUlJVX/YgEAAOCGYrVaHbfz8/Odxk6fPl1hHQAAAFxfrVqDdtCgQU73o6Oj5eXlpeeff165ubkKCgrSW2+9pcjISP3lL3+RJN1+++3KycnRnDlz1K9fP0nSjz/+qHfffVd//vOfde+990qS2rdvr969e2vFihV67LHHJEkrVqzQ2bNn9cYbb6hhw4aSpNLSUr344osaNWqUgoKCJElz5szR3XffrXHjxjmuefDgQc2bN08LFy6UJO3atUvbtm1TcnKyevToIUlq2bKlBgwYoM2bN2vAgAHV98IBAACg1qvoU1rXUwcAAADXUKtm0FakLDi1Wq0qLi5WWlqaI4gtM2DAAB06dEhHjhyRJG3btk02m82prmHDhurevbu2bt3qOLZ161Z169bNcQ1J6t+/v2w2m7Zv3y5JysnJ0eHDh9W/f/9y19yxY4fjB+itW7fK19dX3bt3d9SEhoaqTZs2TtcEAACAe4qIiKjSOgAAALiGWhnQlpaW6sKFC9q/f7/mzZunO++8U82bN1d2drasVqtCQ0Od6lu1aiVJjjVmMzMz1bhxY/n5+ZWru3Qd2szMzHLn8vX1VUBAgNO5pIuzYX9+LqvVqpycHEddy5YtZTKZnOpCQ0MrXPsWAAAA7qVTp06O2/Xq1VO3bt3Uq1cvdevWTfXq1auwDgAAAK6vVi1xUKZ3797Kzc2VJN1xxx1KTEyU9L+1unx9fZ3qy+6XjRcUFDhttHBp3aXrfRUUFJQ7lyT5+fk56q73mn5+fvrqq6+u+Hx/id1u17lz567rHIC7O3/+vOMr308AACNMmjTJcfvcuXPasWPHZev+8Y9/1FRbAAAAqAZ2u73cRM7LqZUBbVJSkoqKivTdd9/prbfe0ujRo936h1Sr1apvvvnG6DaAG9qPP/4oScrKylJRUZHB3QAA3JHNZrvqOn72AwAAuPF5eXldVV2tDGjL1t3q1KmT2rdvr0GDBmnLli269dZbJUmFhYVO9QUFBZLkWNLA19dXZ86cKXfegoICp2UPfH19y51Lujgrtqyu7GthYaECAgKueM2yAOhy56osi8XieO4AKsfb21vSxeVKWrRoYWwzAAC3ZDKZZLfbne7fcsst+v7778sdb9OmjREtAgAAoIp89913V11bKwPaS4WHh8tisSg7O1t33nmnLBaLMjMzdccddzhqytZ4LVtPNjQ0VD/99FO5cPTna85WtD5sYWGh8vLynM5V0WMzMzNlsVgUHBzsqNuxY0e56ctZWVkKCwu7rtfAZDI5rUsG4NrVrVvX8ZXvJwCAEX73u9/p3XfflSRNnTpVHTp0cIzt2bNH06dPd9TxXgUAAHBju9rlDaRauknYpfbs2SOr1armzZvLy8tL0dHR2rRpk1PN+vXr1apVKzVv3lyS1KNHD5nNZm3evNlRk5+fr23btqlnz56OYz179tS///1vx2xYSdq4caPMZrO6d+8uSQoODlaLFi20cePGctfs1q2bY6pyz549lZ+f77SWWFZWlr7++munawIAAMA9rV692nF7+vTpevDBB/Xee+/pwQcfdISzP68DAACA66tVM2iffPJJtWvXTuHh4apbt64yMjKUnJys8PBw9enTR5L0+OOPa/jw4Zo2bZr69++vtLQ0paam6rXXXnOc56abbtK9996rmTNnymw2KygoSAsWLJCPj4/i4uIcdXFxcVq6dKmeeOIJjRo1Srm5uZo5c6bi4uIUFBTkqBszZowmTZqkkJAQRUdHa/369dq7d6+WLVvmqOnUqZN69OihZ599VlOmTFGdOnX02muvKTw8XHfddVcNvHoAAACozX6+Bm1xcbFWrFjxi3UAAABwbbUqoI2MjNT69euVlJQku92uZs2a6fe//71GjhzpmKnapUsXzZ07V7Nnz9a7776rpk2bavr06erfv7/TuaZOnar69esrMTFRZ8+eVefOnfWPf/xDPj4+jho/Pz+lpKTor3/9q5544gnVr19f9957r8aPH+90rtjYWBUVFWnhwoVKSkpSy5Yt9cYbb6hTp05OdbNnz9ZLL72kF154QSUlJerRo4emTp0qT89a9TIDAADAAGazWTabTWazWT4+PsrPz3eMNWzYUAUFBY5xAAAAuA+T/dIdCVDr7Nu3T5LUvn17gzsBbmyZmZmaMmWKXnnlFaf1pAEA1yY3N1dnz541uo0b0rFjx/T6669Lkv70pz8pPz9fhYWF8vHxkZ+fn/7+979Lkp566ik1bdrUyFZvaPXr13f6NBwAAIARriXTY2onAAAArkpBQYHGjBkjfr9//crC2IqUhbioHLPZrIULF8rX19foVgAAAK4KAS0AAACuiq+vr+bOncsM2us0ZcqUy4698sorNdiJa6pfvz7hLAAAuKEQ0AIAAOCq8dHx67dq1SodPXpU48ePl91ul8lk0muvvaZmzZoZ3RoAAAAMwA4EAAAAQA1r1qyZXn75ZUnSyy+/TDgLAADgxghoAQAAAAAAAMAgBLQAAAAAAAAAYBACWgAAAAAAAAAwCAEtAAAAAAAAABiEgBYAAAAAAAAADEJACwAAAAAAAAAGIaAFAAAAAAAAAIMQ0AIAAAAAAACAQQhoAQAAAAAAAMAgBLQAAAAAAAAAYBACWgAAAAAAAAAwCAEtAAAAAAAAABiEgBYAAAAAAAAADEJACwAAAAAAAAAGIaAFAAAAAAAAAIMQ0AIAAAAAAACAQQhoAQAAAAAAAMAgBLQAAAAAAAAAYBACWgAAAAAAAAAwCAEtAAAAAAAAABiEgBYAAAAAAAAADEJACwAAAAAAAAAGIaAFAAAAAAAAAIMQ0AIAAAAAAACAQQhoAQAAAAAAAMAgBLQAAAAAAAAAYBACWgAAAAAAAAAwCAEtAAAAAAAAABiEgBYAAAAAAAAADEJACwAAAAAAAAAGIaAFAAAAAAAAAIMQ0AIAAAAAAACAQQhoAQAAAAAAAMAgBLQAAAAAAAAAYBACWgAAAAAAAAAwCAEtAAAAAAAAABiEgBYAAAAAAAAADEJACwAAAAAAAAAGIaAFAAAAAAAAAIMQ0AIAAAAAAACAQQhoAQAAAAAAAMAgBLQAAAAAAAAAYBACWgAAAAAAAAAwCAEtAAAAAAAAABiEgBYAAAAAAAAADEJACwAAAAAAAAAGIaAFAAAAAAAAAIN4Gt0AAAAAAABAZeXm5urs2bNGtwFcVv369RUUFGR0G6jFCGgBAAAAAMANqaCgQGPGjJHdbje6FeCyzGazFi5cKF9fX6NbQS1FQAsAAAAAAG5Ivr6+mjt3LjNoq8jRo0c1Z84cjR07Vs2aNTO6HZdRv359wllcEQEtAAAAAAC4YfHR8arXrFkzhYaGGt0G4DbYJAwAAAAAAAAADEJACwAAAAAAAAAGIaAFAAAAAAAAAIMQ0AIAAAAAAACAQQhoAQAAAAAAAMAgBLQAAAAAAAAAYBACWgAAAAAAAAAwCAEtAAAAAAAAABiEgBYAAAAAAAAADEJACwAAAAAAAAAGqXRAm5SUpNzc3KrsBQAAAAAAAADcSqUD2tmzZ6t3794aPny43nvvPZ05c6Yq+wIAAAAAAAAAl1fpgPbTTz/VhAkTlJ+fr+eee049evTQ+PHj9dlnn6m0tLQqewQAAAAAAAAAl+RZ2QcGBQXp0Ucf1aOPPqqDBw9q3bp1+vDDD7Vhwwb5+/trwIABGjhwoDp06FCV/QIAAAAAAACAy6iSTcLCwsI0ceJEffLJJ1q2bJm6dOmif/7zn4qLi1NMTIzefPNNnThxoiouBQAAAAAAAAAuo0oCWkm6cOGCPvzwQy1atEiffvqpPDw81LNnT7Vu3Vpvvvmm+vTpoy1btlTV5QAAAAAAAADghlfpJQ4kyW63a/v27Vq3bp0++ugjnT17VrfddpsmTZqke+65R40bN5YkHT9+XBMnTtTLL7+svn37VknjAAAAAAAAAHCjq3RA+7e//U3r16/XiRMnFBAQoLi4OA0ePFitW7cuVxsYGKh7771XU6ZMua5mAQAAAAAAAMCVVDqgXbVqlfr06aPBgwfr17/+tUwm0xXro6Ki9NJLL1X2cgAAAAAAAADgcioV0FqtVi1atEjNmjXTTTfddFWPad68uZo3b16ZywEAAAAAAACAS6rUJmFms1nDhw/X5s2bq7ofAAAAAAAAAHAblQpoPTw81LRpUxUXF1d1PwAAAAAAAADgNioV0ErSQw89pHfeeUenT5+uwnYAAAAAAAAAwH1UepMwm80mLy8v9e3bVzExMWrWrJnq1q3rVGMymTRixIjr7REAAAAAAAAAXFKlA9pXXnnFcfvdd9+tsIaAFgAAAAAAAAAur9IB7ccff1yVfQAAAAAAAACA26l0QNusWbOq7AMAAAAAAAAA3E6lNwkDAAAAAAAAAFyfSs+glaSMjAwtW7ZMX3/9tQoLC2Wz2ZzGTSaTPvroo+tqEAAAAAAAAABcVaVn0Kalpen3v/+9PvvsMwUGBionJ0fBwcEKDAzUsWPHVK9ePf3qV7+qyl4BAAAAAAAAwKVUOqCdM2eOgoODtXHjRv3tb3+TJI0aNUrLly/XihUrlJubq379+lVZowAAAAAAAADgaiod0H799de699571aBBA3l4eEiSY4mDDh06aNiwYXr99derpksAAAAAAAAAcEGVDmg9PDxUv359SZKvr688PT114sQJx3hwcLAOHTp0/R0CAAAAAAAAgIuqdEAbEhKiw4cPS7q4GVhoaKjThmCfffaZmjRpct0NAgAAAAAAAICrqnRA+5vf/EYffvihSkpKJEkPP/ywNm/erLvuukt33XWXPvnkEw0bNqzKGgUAAAAAAAAAV+NZ2Qf+8Y9/1PDhwx3rzw4ZMkRms1mbN2+Wh4eHRo8eraFDh1ZZowAAAAAAAADgaiod0FosFvn7+zsdGzRokAYNGnTdTQEAAAAAAACAO6j0EgcAAAAAAAAAgOtz1TNohw8ffs0nN5lMSklJuebHAQAAAAAAAIA7uOqA1m63X/PJK/MYAAAAAAAAAHAXVx3QLl26tDr7AAAAAAAAAAC3wxq0AAAAAAAAAGCQq55BeyVnzpzRmTNnZLPZyo01bdq0Ki4BAAAAAAAAAC7nugLaf/7zn3r77beVk5Nz2Zpvvvnmei4BAAAAAAAAAC6r0kscLF++XH/5y18UEhKicePGyW63KyEhQX/4wx/UpEkTRUREaMaMGVXZKwAAAAAAAAC4lEoHtMuWLVOPHj20aNEi3XfffZKk3/zmNxo/frzWr1+vs2fP6vTp01XVJwAAAAAAAAC4nEoHtNnZ2erdu7ckyWKxSJKsVqskycfHR/fee6/++c9/VkGLAAAAAAAAAOCaKh3Q+vj4qLS0VJLUoEEDeXt768cff3SM169fXz/99NP1dwgAAAAAAAAALqrSAW3r1q2VkZHhuN+hQwctX75cubm5+uGHH7Ry5Uq1aNGiKnoEAAAAAAAAAJdU6YB24MCB+vbbb1VcXCxJGjNmjA4dOqRevXrpzjvvVFZWlsaNG1dVfQIAAAAAAACAy/Gs7AN/97vf6Xe/+53jflRUlD788EN98skn8vDwUPfu3dWyZcsqaRIAAAAAAAAAXFGlZ9D+3KFDh7R27VplZWWptLRUAQEBVXVqAAAAAAAAAHBJ1zSDdtmyZVq6dKmWL1+uRo0aOY5/8skneuqpp2S1WiVJJpNJy5Yt08qVK53qAAAAAAAAAAD/c00zaD/55BMFBwc7ha4lJSWaOnWqPDw89NJLL2ndunWaMGGCjh07pvnz51d5wwAAAAAAAADgKq4poP3uu+/UsWNHp2NpaWk6efKkEhISNGTIELVu3VqPPfaY+vXrp88//7wqewUAAAAAAAAAl3JNAe3p06d10003OR3bsWOHTCaT+vbt63S8c+fO+uGHH66/QwAAAAAAAABwUdcU0DZp0kQ//fST07Evv/xSdevWVUREhNNxLy8vWSyW6+8QAAAAAAAAAFzUNQW07dq105o1a3TmzBlJ0rfffqt9+/bpjjvukKen835jmZmZ5WbbAgAAAAAAAAD+x/OXS/7niSee0L333quYmBjdeuut2r9/v0wmk/7whz+Uq92yZYtuv/32KmsUAAAAAAAAAFzNNc2gDQ8PV0pKitq2bavjx4+rQ4cOSkpKUrt27Zzq0tLS5O3trX79+lVpswAAAAAAAADgSq5pBq10cfOvpKSkK9ZER0dr3bp1lW4KAAAAAAAAANzBNc2gBQAAAAAAAABUHQJaAAAAAAAAADAIAS0AAAAAAAAAGISAFgAAAAAAAAAMQkALAAAAAAAAAAYhoAUAAAAAAAAAgxDQAgAAAAAAAIBBCGgBAAAAAAAAwCAEtAAAAAAAAABgEAJaAAAAAAAAADAIAS0AAAAAAAAAGISAFgAAAAAAAAAMQkALAAAAAAAAAAYhoAUAAAAAAAAAgxDQAgAAAAAAAIBBCGgBAAAAAAAAwCAEtAAAAAAAAABgkFoV0G7YsEGPP/64evbsqY4dO2rQoEF69913ZbfbnepWrVqlmJgYtW/fXgMHDtSnn35a7lyFhYV69tln1bVrV3Xq1Eljx47V8ePHy9Wlp6dr2LBhioyMVO/evZWUlFTuena7XUlJSerVq5ciIyM1bNgw7d69u9y5cnNzNWbMGHXq1Eldu3bVc889pzNnzlzfiwIAAAAAAADAZdWqgPbtt9+Wt7e3nn76ab311lvq2bOnnn/+ec2bN89R8+GHH+r5559X//79tXDhQnXs2FFPPvlkucB03Lhx2r59u6ZNm6ZZs2YpKytLjz32mEpKShw133//vUaOHKmAgAAtWLBACQkJmjNnjhYvXux0roULF2rOnDkaMWKEFixYoICAAD3yyCPKyclx1FitVj366KM6fPiwEhMTNW3aNG3btk0TJ06snhcLAAAAAAAAwA3P0+gGLvXWW2+pUaNGjvvdunXT6dOn9Y9//EN//OMfZTabNWfOHN19990aN26cJOn222/XwYMHNW/ePC1cuFCStGvXLm3btk3Jycnq0aOHJKlly5YaMGCANm/erAEDBkiSkpOT5e/vr1dffVVeXl7q1q2bTp48qfnz5ys+Pl5eXl66cOGCFixYoEceeUQjRoyQJEVFRalfv35KTk7WtGnTJEmbNm3St99+q/Xr1ys0NFSS5Ovrq5EjR2rv3r2KjIysgVcQAAAAAAAAwI2kVs2gvTScLdOmTRudOXNG586dU05Ojg4fPqz+/fs71QwYMEA7duxQcXGxJGnr1q3y9fVV9+7dHTWhoaFq06aNtm7d6ji2detW/fa3v5WXl5fTuQoKCrRr1y5JF5dAOHPmjNM1vby81Ldv33LnCg8Pd4SzktS9e3c1bNhQn3/+eWVfEgAAAAAAAAAurFYFtBXZuXOngoKC1KBBA2VmZkq6OBv2Uq1atZLVanUsOZCZmamWLVvKZDI51YWGhjrOce7cOf3www9OgWpZjclkctSVff15XatWrXTs2DGdP3/eUffzGpPJpJYtWzrOAQAAAAAAAACXqlVLHPzcl19+qfXr12vKlCmSpPz8fEkXlw64VNn9svGCggL5+PiUO5+fn5+++uorSRc3EavoXF5eXvL29nY6l5eXl+rUqVPumna7Xfn5+apbt+4Vr1l2rsqy2+06d+7cdZ0DcHdlv0w5f/48308AgFqB9yYAQG3DexNQdex2e7nJo5dTawPaH3/8UePHj1d0dLSGDx9udDuGslqt+uabb4xuA7ih/fjjj5KkrKwsFRUVGdwNAAC8NwEAah/em4CqdemyqldSKwPagoICPfbYY2rYsKHmzp0rs/niSgx+fn6SLs5+DQgIcKq/dNzX19fxj8ql8vPzHTVls13LZtKWKS4uVlFRkdO5iouLdeHCBadZtAUFBTKZTE51Z86cqfCaN998cyVehf+xWCy69dZbr+scgLvz9vaWdHGJlBYtWhjbDAAA4r0JAFD78N4EVJ3vvvvuqmtrXUB7/vx5jRo1SoWFhVq5cqXTsgFla7z+fL3XzMxMWSwWBQcHO+p27NhRbipxVlaWwsLCJEn16tXTzTffXG592KysLNntdsf5y75mZWUpIiLC6ZpNmzZV3bp1HXUHDx50OpfdbldWVpbTZmWVYTKZVK9eves6B+Duyr5X69aty/cTAKBW4L0JAFDb8N4EVJ2rXd5AqmWbhJWUlGjcuHHKzMzUokWLFBQU5DQeHBysFi1aaOPGjU7H169fr27dujmmDffs2VP5+fnasWOHoyYrK0tff/21evbs6TjWs2dPffzxx7JarU7n8vX1VadOnSRJnTt3VoMGDbRhwwZHjdVq1ebNm8udKyMjQ4cPH3Yc27Fjh06fPq3f/OY31/GqAAAAAAAAAHBVtWoG7YsvvqhPP/1UTz/9tM6cOaPdu3c7xm677TZ5eXlpzJgxmjRpkkJCQhQdHa3169dr7969WrZsmaO2U6dO6tGjh5599llNmTJFderU0Wuvvabw8HDdddddjrqRI0dq3bp1mjhxou6//34dPHhQycnJGj9+vCPsrVOnjkaNGqW5c+eqUaNGCgsL0/Lly3X69GmNHDnSca6YmBgtWLBAY8aM0YQJE1RUVKSZM2eqV69eioyMrP4XDwAAAAAAAMANp1YFtNu3b5ckvfzyy+XGPv74YzVv3lyxsbEqKirSwoULlZSUpJYtW+qNN95wzHgtM3v2bL300kt64YUXVFJSoh49emjq1Kny9PzfU77llluUnJysl19+WX/4wx/UqFEjjR07Vo888ojTuR577DHZ7XYtXrxYJ0+eVJs2bZScnOxYUkG6uE7sokWLNH36dE2YMEGenp7q27evnn322ap8iWq1vLy8cmv6ArXF0aNHnb4CtZGPj4/TGusAAAAAANdnstvtdqObwOXt27dPktS+fXuDO7myvLw8PfXUOFmtxUa3AgA3LIvFS6+/PpuQFnATmZmZmjJlil555RWn/RUAADAK701A1bmWTK9WzaDFjauwsFBWa7E8mvaRyauR0e0AwA3HXnxS1mMfqbCwkIAWAAAAANwIAS2qlMmrkUzeBAsAAAAAAADA1TAb3QAAAAAAAAAAuCsCWgAAAAAAAAAwCAEtAAAAAAAAABiEgBYAAAAAAAAADEJACwAAAAAAAAAGIaAFAAAAAAAAAIMQ0AIAAAAAAACAQQhoAQAAAAAAAMAgBLQAAAAAAAAAYBACWgAAAAAAAAAwCAEtAAAAAAAAABjE0+gGAAAAqkteXp4KCwuNbgOo0NGjR52+ArWVj4+PAgICjG4DAACXRUALAABcUl5ensaNe0rFxVajWwGuaM6cOUa3AFyRl5dFs2e/TkgLAEA1IaAFAAAuqbCwUMXFVv2+VR0FeJuMbgcAbkh5RXatOnRBhYWFBLQAAFQTAloAAODSArxNalbfw+g2AOAGVWp0AwAAuDw2CQMAAAAAAAAAgxDQAgAAAAAAAIBBCGgBAAAAAAAAwCAEtAAAAAAAAABgEAJaAAAAAAAAADAIAS0AAAAAAAAAGISAFgAAAAAAAAAMQkALAAAAAAAAAAYhoAUAAAAAAAAAgxDQAgAAAAAAAIBBCGgBAAAAAAAAwCAEtAAAAAAAAABgEAJaAAAAAAAAADAIAS0AAAAAAAAAGISAFgAAAAAAAAAMQkALAAAAAAAAAAYhoAUAAAAAAAAAgxDQAgAAAAAAAIBBCGgBAAAAAAAAwCAEtAAAAAAAAABgEAJaAAAAAAAAADAIAS0AAAAAAAAAGISAFgAAAAAAAAAMQkALAAAAAAAAAAYhoAUAAAAAAAAAgxDQAgAAAAAAAIBBCGgBAAAAAAAAwCAEtAAAAAAAAABgEAJaAAAAAAAAADAIAS0AAAAAAAAAGISAFgAAAAAAAAAMQkALAAAAAAAAAAbxNLoBAAAAAADcRV5engoLC41uA6jQ0aNHnb4CtZWPj48CAgKMbqPKENACAAAAAFAD8vLy9NS4p2QtthrdCnBFc+bMMboF4IosXha9Pvt1lwlpCWgBAAAAAKgBhYWFshZbFdCnkSyNLEa3AwA3JOtJq/I+OqnCwkICWgAAAAAAcO0sjSyqE+BldBsAgFqCTcIAAAAAAAAAwCAEtAAAAAAAAABgEAJaAAAAAAAAADAIAS0AAAAAAAAAGISAFgAAAAAAAAAMQkALAAAAAAAAAAYhoAUAAAAAAAAAgxDQAgAAAAAAAIBBCGgBAAAAAAAAwCAEtAAAAAAAAABgEAJaAAAAAAAAADAIAS0AAAAAAAAAGISAFgAAAAAAAAAMQkALAAAAAAAAAAbxNLoBuBb7hVNGtwAANyT+/QQAAAAA90RAiypV+sMWo1sAAMBJXpHN6BYA4IbFv6EAAFQ/AlpUKY+b+8pUx9/oNgDghmO/cIpfclWTVYeKjW4BAAAAAC6LgBZVylTHXybvAKPbAADA4fetvBTgzbL7AFAZeUU2ftEFAEA1I6AFAAAuLcDbrGb1PYxuAwAAAAAqxHQSAAAAAAAAADAIAS0AAAAAAAAAGISAFgAAAAAAAAAMQkALAAAAAAAAAAYhoAUAAAAAAAAAgxDQAgAAAAAAAIBBCGgBAAAAAAAAwCAEtAAAAAAAAABgEAJaAAAAAAAAADAIAS0AAAAAAAAAGISAFgAAAAAAAAAMQkALAAAAAAAAAAYhoAUAAAAAAAAAgxDQAgAAAAAAAIBBCGgBAAAAAAAAwCAEtAAAAAAAAABgEAJaAAAAAAAAADAIAS0AAAAAAAAAGISAFgAAAAAAAAAMQkALAAAAAAAAAAYhoAUAAAAAAAAAgxDQAgAAAAAAAIBBCGgBAAAAAAAAwCAEtAAAAAAAAABgEAJaAAAAAAAAADAIAS0AAAAAAAAAGISAFgAAAAAAAAAMQkALAAAAAAAAAAYhoAUAAAAAAAAAgxDQAgAAAAAAAIBBCGgBAAAAAAAAwCAEtAAAAAAAAABgEAJaAAAAAAAAADAIAS0AAAAAAAAAGISAFgAAAAAAAAAMQkALAAAAAAAAAAYhoAUAAAAAAAAAgxDQAgAAAAAAAIBBCGgBAAAAAAAAwCAEtAAAAAAAAABgEAJaAAAAAAAAADCIp9ENAAAAAADgTopPWY1uAQBuWK74bygBLQAAAAAANeinLSeNbgEAUIsQ0AIAAAAAUIOa9G0kL3+L0W0AwA2p+JTV5X7RRUALAAAAAEAN8vK3qE6Al9FtAABqCTYJAwAAAAAAAACDENACAAAAAAAAgEEIaAEAAAAAAADAIAS0AAAAAAAAAGAQNglDlbIXu9YuegBQU/j3s/rkFdkllRrdBgDckC7+GwoAAKoTAS2qhI+PjywWL1mPfWR0KwBww7JYvOTj42N0Gy7Dx8dHXl4WrTp0wehWAOCG5uVl4f0JAIBqRECLKhEQEKDXX5+twsJCo1sBKnT06FHNmTNHY8eOVbNmzYxuB6iQj4+PAgICjG7DZQQEBGj27Nd5b0KtxXsTbhS8PwEAUL0IaFFlAgIC+MENtV6zZs0UGhpqdBsAagjvTbgR8N4EAADg3tgkDAAAAAAAAAAMQkALAAAAAAAAAAYhoAUAAAAAAAAAgxDQAgAAAAAAAIBBCGgBAAAAAAAAwCAEtAAAAAAAAABgEAJaAAAAAAAAADAIAS0AAAAAAAAAGKRWBbTff/+9XnjhBQ0aNEi33XabYmNjK6xbtWqVYmJi1L59ew0cOFCffvppuZrCwkI9++yz6tq1qzp16qSxY8fq+PHj5erS09M1bNgwRUZGqnfv3kpKSpLdbneqsdvtSkpKUq9evRQZGalhw4Zp9+7d5c6Vm5urMWPGqFOnTuratauee+45nTlzpnIvBgAAAAAAAACXV6sC2m+//Vaff/65brnlFrVq1arCmg8//FDPP/+8+vfvr4ULF6pjx4568sknywWm48aN0/bt2zVt2jTNmjVLWVlZeuyxx1RSUuKo+f777zVy5EgFBARowYIFSkhI0Jw5c7R48WKncy1cuFBz5szRiBEjtGDBAgUEBOiRRx5RTk6Oo8ZqterRRx/V4cOHlZiYqGnTpmnbtm2aOHFi1b1AAAAAAAAAAFyKp9ENXOrOO+9Unz59JElPP/20vvrqq3I1c+bM0d13361x48ZJkm6//XYdPHhQ8+bN08KFCyVJu3bt0rZt25ScnKwePXpIklq2bKkBAwZo8+bNGjBggCQpOTlZ/v7+evXVV+Xl5aVu3brp5MmTmj9/vuLj4+Xl5aULFy5owYIFeuSRRzRixAhJUlRUlPr166fk5GRNmzZNkrRp0yZ9++23Wr9+vUJDQyVJvr6+GjlypPbu3avIyMjqetkAAAAAAAAA3KBq1Qxas/nK7eTk5Ojw4cPq37+/0/EBAwZox44dKi4uliRt3bpVvr6+6t69u6MmNDRUbdq00datWx3Htm7dqt/+9rfy8vJyOldBQYF27dol6eISCGfOnHG6ppeXl/r27VvuXOHh4Y5wVpK6d++uhg0b6vPPP7+WlwEAAAAAAACAm6hVAe0vyczMlHRxNuylWrVqJavV6lhyIDMzUy1btpTJZHKqCw0NdZzj3Llz+uGHH5wC1bIak8nkqCv7+vO6Vq1a6dixYzp//ryj7uc1JpNJLVu2dJwDAAAAAAAAAC5Vq5Y4+CX5+fmSLi4dcKmy+2XjBQUF8vHxKfd4Pz8/x7IJhYWFFZ7Ly8tL3t7eTufy8vJSnTp1yl3TbrcrPz9fdevWveI1y85VWXa7XefOnbuucwDuruyXKefPn+f7CQBQK/DeBLifsu97AMD1q+0/Q9nt9nKTRy/nhgpo3ZXVatU333xjdBvADe3HH3+UJGVlZamoqMjgbgAA4L0JcEdl3/cAgOt3I/wMdemyqldyQwW0fn5+ki7Ofg0ICHAcLygocBr39fWt8I0vPz/fUVM227VsJm2Z4uJiFRUVOZ2ruLhYFy5ccJpFW1BQIJPJ5FR35syZCq958803V+4J/38Wi0W33nrrdZ0DcHfe3t6SLi6R0qJFC2ObAQBAvDcB7qjs+x4AcP1q+89Q33333VXX3lABbdkarz9f7zUzM1MWi0XBwcGOuh07dpSbSpyVlaWwsDBJUr169XTzzTeXWx82KytLdrvdcf6yr1lZWYqIiHC6ZtOmTVW3bl1H3cGDB53OZbfblZWV5bRZWWWYTCbVq1fvus4BuLuy79W6devy/QQAqBV4bwLcT9n3PQDg+tX2n6GudnkD6QbbJCw4OFgtWrTQxo0bnY6vX79e3bp1c0wb7tmzp/Lz87Vjxw5HTVZWlr7++mv17NnTcaxnz//X3r1HaVXX+wN/cxswEAgEQhQVk6G4HGZAQS7e0tDQTDqiWEiCSZaSgqmoeUwtbhYoaGkhipfEQ6BRJmqWdiytlBOeFG1hWqKAiTEgV2F+f7h4fk6AoqEb8PVaa5bsvb97789+1nK+87yfvT/PIfnlL3+Z9evX1zhW48aNU1FRkSSprKxMo0aN8otf/KI0Zv369bnvvvs2O9aCBQvy/PPPl9b97ne/yz//+c8ceuih2+cFAAAAAAB2KTvUHbSrV6/OQw89lCRZtGhRVq5cWQpjDzrooDRr1ixnn312zjvvvLRt2zY9evTIPffck/nz5+fWW28tHaeioiJ9+vTJRRddlAsuuCD169fPxIkTU15enk9/+tOlccOGDcucOXMyatSoDBo0KM8++2ymTp2ac889txT21q9fP8OHD8/kyZPTrFmztG/fPj/+8Y/zz3/+M8OGDSsdq1+/frn++utz9tlnZ+TIkVm9enXGjx+fww47LF26dPkgXj4AAAAAYCezQwW0r776ar7+9a/XWLdpefr06enRo0eOPfbYrF69Oj/84Q9zww03ZL/99suUKVNKd7xuMmnSpIwZMyaXXnpp3njjjfTp0yeXXHJJ6tb9/5e8zz77ZOrUqRk7dmzOOOOMNGvWLCNGjMjQoUNrHOvLX/5yqqurc+ONN2bZsmX5xCc+kalTp5ZaKiRv9on90Y9+lCuvvDIjR45M3bp1c9RRR+Wiiy7a3i8TAAAAALCL2KEC2r322ivPPPPMO4478cQTc+KJJ77tmN133z3f+c538p3vfOdtx1VWVubOO+982zG1atXK8OHDM3z48Lcd16pVq0yePPltxwAAAAAAbLJT9aAFAAAAANiVCGgBAAAAAAoioAUAAAAAKIiAFgAAAACgIAJaAAAAAICCCGgBAAAAAAoioAUAAAAAKIiAFgAAAACgIAJaAAAAAICC1C26AAAAAPgwWb9sfdElAOy0dsXfoQJaAAAA+ADsvvvuqVdWL688sKzoUgB2avXK6mX33XcvuoztRkALAAAAH4AWLVrk6klXZ8WKFUWXAlu0aNGiXHPNNRkxYkTatGlTdDmwVbvvvntatGhRdBnbjYAWAAAAPiAtWrTYpUIFdk1t2rRJu3btii4DPjR8SRgAAAAAQEEEtAAAAAAABRHQAgAAAAAUREALAAAAAFAQAS0AAAAAQEEEtAAAAAAABRHQAgAAAAAUREALAAAAAFAQAS0AAAAAQEEEtAAAAAAABRHQAgAAAAAUREALAAAAAFAQAS0AAAAAQEEEtAAAAAAABRHQAgAAAAAUREALAAAAAFAQAS0AAAAAQEEEtAAAAAAABRHQAgAAAAAUREALAAAAAFAQAS0AAAAAQEEEtAAAAAAABRHQAgAAAAAUREALAAAAAFAQAS0AAAAAQEEEtAAAAAAABRHQAgAAAAAUREALAAAAAFAQAS0AAAAAQEEEtAAAAAAABRHQAgAAAAAUREALAAAAAFAQAS0AAAAAQEEEtAAAAAAABRHQAgAAAAAUREALAAAAAFAQAS0AAAAAQEEEtAAAAAAABRHQAgAAAAAUREALAAAAAFAQAS0AAAAAQEEEtAAAAAAABRHQAgAAAAAUREALAAAAAFAQAS0AAAAAQEEEtAAAAAAABRHQAgAAAAAUREALAAAAAFAQAS0AAAAAQEEEtAAAAAAABRHQAgAAAAAUREALAAAAAFAQAS0AAAAAQEEEtAAAAAAABRHQAgAAAAAUREALAAAAAFAQAS0AAAAAQEEEtAAAAAAABRHQAgAAAAAUREALAAAAAFAQAS0AAAAAQEEEtAAAAAAABRHQAgAAAAAUREALAAAAAFAQAS0AAAAAQEEEtAAAAAAABRHQAgAAAAAUREALAAAAAFAQAS0AAAAAQEEEtAAAAAAABRHQAgAAAAAUREALAAAAAFAQAS0AAAAAQEEEtAAAAAAABRHQAgAAAAAUREALAAAAAFAQAS0AAAAAQEEEtAAAAAAABRHQAgAAAAAUREALAAAAAFAQAS0AAAAAQEEEtAAAAAAABRHQAgAAAAAUREALAAAAAFAQAS0AAAAAQEEEtAAAAAAABRHQAgAAAAAUREALAAAAAFAQAS0AAAAAQEEEtAAAAAAABRHQAgAAAAAUREALAAAAAFAQAS0AAAAAQEEEtAAAAAAABRHQAgAAAAAUREALAAAAAFCQukUXAGzdkiVL8vrrrxddxi5h0aJFNf7L9tGwYcO0atWq6DKAD5C5afsxN70/zE3w4WNu2n7MTe8PcxPvpFZ1dXV10UWwdU8++WSSpHPnzgVXwgetqqoqp59+evwvyo6sdu3a+eEPf5jGjRsXXQrwATA3sTMwN8GHi7mJnYG56cPp3WR6AtodnID2w80nwezofBIMHz7mJnZ05ib48DE3saMzN304vZtMT4sD2IH5BQ7AjsbcBMCOxtwE7Ox8SRgAAAAAQEEEtAAAAAAABRHQAgAAAAAUREALAAAAAFAQAS0AAAAAQEEEtAAAAAAABRHQAgAAAAAUREALAAAAAFAQAS0AAAAAQEEEtAAAAAAABRHQAgAAAAAUREALAAAAAFAQAS0AAAAAQEEEtAAAAAAABRHQAgAAAAAUREALAAAAAFAQAS0AAAAAQEEEtAAAAAAABRHQAgAAAAAUREALAAAAAFAQAe12tnDhwpx22mnp2rVrevfunfHjx2fdunVFlwUAAAAA7IDqFl3ArmT58uUZMmRI9t1330yePDlLlizJ2LFjs2bNmlx66aVFlwcAAAAA7GAEtNvRHXfckddffz1TpkxJ06ZNkyQbNmzIt771rQwfPjytWrUqtkAAAAAAYIeixcF29PDDD+fggw8uhbNJcswxx2Tjxo155JFHiisMAAAAANghCWi3o+eeey7t2rWrsa5x48Zp0aJFnnvuuYKqAgAAAAB2VFocbEdVVVVp3LjxZuubNGmS5cuXv+fjVldXZ9WqVf9OaQAAAADAB6S6ujq1atXaprEC2p3A+vXr8/TTTxddBgAAAACwjcrKyrZpnIB2O2rcuHFWrFix2frly5enSZMm7+mY69evT5LUq1fv36oNAAAAAPhgrF+/vpTrvRMB7XbUrl27zXrNrlixIq+88spmvWm31aZbobf1lmgAAAAAoFi1atXS4qAIhxxySH7wgx/U6EV77733pnbt2undu/d7OmZFRcX2LBEAAAAA2IHUqq6uri66iF3F8uXL079//+y3334ZPnx4lixZkrFjx+a4447LpZdeWnR5AAAAAMAORkC7nS1cuDBXXHFF5s2bl4YNG+b444/Pueeeu81NgQEAAACADw8BLQAAAABAQWoXXQAAAAAAwIeVgBYAAAAAoCACWgAAAACAgghoAQAAAAAKIqAFAAAAACiIgBYAAAAAoCACWgAAAACAgghoAQAAAAAKIqAF3neTJ09ORUVF0WUAwDuaPHlyysvLSz89evTIoEGD8tBDDxVd2mZuuummHbIuAN5/b/ce692+/3rxxRdTXl6ee++99z3XU15enqlTp77tmKeffjrl5eV57LHH3vN5YFcloAUAgLdo0KBBZsyYkRkzZuSKK67I2rVr85WvfCVPPPFE0aXVMH36dAEtADuEGTNm5Ljjjiu6DNhp1S26AIAdxYYNG7Jx48bUq1ev6FIAKFDt2rXTtWvX0vJ//Md/5NBDD81dd92VysrK4goDgB3MmjVr0qBBgxrzJvDuuYMW+EBtenzm7rvvzuWXX54DDzwwffr0ybhx4/LGG2+84/7l5eW54YYbMn78+PTs2TMVFRW58MILs3Llyhrjqqqqctlll6VPnz7p1KlTBgwYkP/5n/+pMWbw4MEZPnx4Zs+enX79+qVz585ZsGBBqqqqcskll6Rv377p3LlzDj300Jx77rk19n3mmWcybNiwdO3aNd26dcuIESPy0ksvbVbrD3/4w0yePDm9evVKjx49Mnr06Kxateo9vnoAFKFVq1Zp1qxZjd/z8+bNy6mnnlqaB0aNGpVXX321tH3TfHfXXXfl0ksvTffu3XPwwQdn2rRpSZKf//zn6devXyorK3PWWWelqqqqxjkXLVqUESNGpFu3bunatWuGDRuWZ555prT9iCOOyKJFi3LbbbeV2jHMmjWrtH3WrFk57rjj0rlz5/Tt2zcTJ07Mhg0b3q+XCIAd1IABAzJq1KjN1k+YMCF9+vSpMTesXr06F110Ubp165aDDjooY8aMqfEebdasWSkvL8+8efNy2mmnpWvXrhk/fnySLbc4uO6669K7d+9UVFTkrLPOqjFPAjW5gxYoxKRJk/KpT30qkyZNyrx58zJ58uS0bds2gwYNesd9b7nllnTs2DHjxo3Liy++mKuuuipr167NxIkTkyTr1q3LaaedlldffTXnnHNOWrVqlZ/+9KcZPnx46Y+KTf7v//4vixYtyte//vU0btw4rVu3zpgxY/Kb3/wmo0aNSps2bfLKK6/k4YcfLu3z8ssv54tf/GL23nvvTJgwoXTuL37xi/npT3+aRo0alcbedttt6datW8aOHZvnn38+48ePT/PmzXPeeedtx1cTgPfT66+/nuXLl2evvfZK8mY4O3jw4Bx66KGZOHFiVq9enUmTJuWrX/1qZsyYUWPfSZMm5dOf/nSuvvrqPPDAAxk7dmyWLVuW3//+9/nGN76RlStX5sorr8yECRNyxRVXJElWrlyZwYMHp3bt2vnWt76V+vXr5/vf/35pnmndunWmTJmSM844I5WVlRk6dGiSpG3btkmSadOmZcKECRkyZEguvPDCLFy4sBTQmn8Adi1busll48aNpX+feOKJGTt2bFasWJHdd989yZtPDt5999054YQTUqdOndLY733ve+nTp08mTZqUp556Ktdcc03q1au32dwxatSonHTSSRk+fHh22223LdZ166235uqrr87QoUPTq1ev/Pa3v83FF1+8PS4ZdkkCWqAQXbp0ySWXXJIk6d27dx577LHMnTt3mwLasrKyXHvttaU/JurXr59LLrkkZ511Vvbff//MmTMnCxYsyN13352Pf/zjSZK+ffvmhRdeyHXXXZerr766dKzly5dn5syZad26dWndk08+mWOPPTYnnHBCaV3//v1L/77pppvyxhtv5MYbb0zTpk2TJJ/4xCfSv3//zJ49O4MHDy6NbdGiRb773e8mSQ455JA89dRTmTt3rjfIADu4TW94ly5dmgkTJqRhw4Y59dRTkyTf/e5306lTp0yZMiW1atVKkrRv3z7HHntsHnrooRx66KGl43Tt2jUXXXRRkqRnz5657777cuutt+bBBx/MRz/60SRvPpUxc+bMUkA7a9asvPTSS/n5z3+e/fffP0ly4IEH5vDDD8/NN9+cCy+8MJ/85CdTVlaWPfbYo8ZjpStXrsw111yT008/PSNHjkzy5jxbr169jB07NsOGDSudF4Cd26pVq9KxY8ctbvvIRz6SJDnuuOMybty4zJkzJ6ecckqS5KGHHsorr7ySz3/+8zX2adu2bcaMGZPkzfdPa9asybRp0/LlL385TZo0KY07+eSTc8YZZ2y1rg0bNuT666/P8ccfnwsuuKB0vFdffTV33333e79g2IVpcQAUok+fPjWW999//yxevLi0/MYbb5R+/vWRzMMPP7zGJ71HH310qqur8+STTyZJHnnkkbRv3z777rtvjeP06tWrNGaT9u3b1whnk+STn/xkZs+enalTp+bZZ5/drPY//vGP6dGjRymc3VR/hw4d8vjjj9cY26tXr7e9TgB2PJve8Hbs2DGHH3545s6dm/Hjx6ddu3ZZvXp1nnjiiRx99NHZsGFDaY7Zd99907p1683mmd69e5f+XadOney9997p0KFDjZB03333TVVVVV5//fUkb84zBxxwQCmcTZKmTZumV69em80z/2revHlZtWpVjj766M3mwDVr1uQvf/nL9niJANgBNGjQIDNnztzsZ+DAgaUxjRo1yjHHHJOf/OQnpXWzZs1K9+7ds++++9Y43lFHHVVjuV+/flm9evVm74kOO+ywt61r8eLFWbp06RaPB2yZO2iBQmx6vGaTevXqZd26dUne7Nv3qU99qrStTZs2efDBB0vLzZs3r7Fvo0aNUr9+/SxdujRJ8tprr+Wpp57a4qfJbw12k2SPPfbYbMw3v/nNNGnSJNOmTcv48ePTunXrnHHGGaVPnKuqqvKJT3xis/2aN2+e5cuX11jXuHHjrV4nADumBg0a5NZbb011dXWef/75fPe7380FF1yQOXPmpLq6Ohs2bMiYMWNKdxm91csvv1xjeUvz3aa7mt66LknWrl2bhg0bpqqqaovzU/Pmzd8xYH3ttdeSpMZTIG9XHwA7r9q1a6dz586brf/1r39dY3ngwIE5+eSTs2DBgrRs2TK//vWvc/nll2+2X7NmzWosb5qLXnnllS2u35pN47d2PGBzAlpgh9OyZcvMnDmztFxWVlZj+782l1+5cmXWrl2bli1bJkmaNGmS8vLyfPvb337Hc216NPWtdt9991x88cW5+OKL88wzz2T69On51re+lfbt26d79+5p0qTJFhvcv/rqq5t9Cg3Azuetb3i7dOmS/fbbLwMHDsy1116bCy64ILVq1crw4cNz5JFHbrbv9mgf0KRJk/z1r3/dbP2rr75a4xHTre2bJFOmTMnHPvaxzbZv6qMLwIdHRUVFDjjggPzkJz/JnnvumbKyshx99NGbjVu2bFmN5X/84x9J3mzb9m5sGr+14wGbE9ACO5yysrItfhK8ya9+9auMHj26dDfsvffem1q1apX26dWrVx566KG0bNkyrVq1+rdqKS8vz+jRozNz5swsXLgw3bt3T7du3XLnnXdm+fLlpTfCzz33XJ555pnN+jgBsPPr3Llz+vfvn1mzZuWss85K165d89xzz73tXPXv6NatW+bOnZvnnnsu7dq1S/Jmz/Tf/va3Oemkk0rj6tWrl7Vr19bYt6KiIrvttlsWL1682aOlAHx4nXjiifn+97+f5s2b5zOf+cxmT3Mkyf33358vfelLpeW5c+dmt912S/v27d/VuT72sY+lRYsWuf/++2vMRXPnzn3P9cOuTkAL7HTWrVuXr33taxk0aFBefPHFXHXVVenXr1+pV9/nPve53HHHHTn11FMzdOjQ7LvvvlmxYkWeeuqprF+/PqNGjXrb45988sk56qijcsABB6ROnTq56667Uq9evXTv3j1J8qUvfSmzZs3K0KFDc+aZZ2bt2rWZNGlSWrduvdVHSgHYuX31q1/NPffck5tvvjnnn39+hgwZknPOOSf9+/dP48aNs3jx4vz2t7/NgAED0qNHj3/rXAMGDMhNN92U4cOH55xzzkn9+vXz/e9/P3Xr1s2QIUNK49q1a5dHH300jzzySBo3bpy99torH/3oRzNixIhMmDAhixcvzkEHHZQ6derk73//e375y19m8uTJW/3GbQB2Xccff3yuuuqqvPbaa1t90vBvf/tbRo8enc985jN56qmncsMNN2TIkCHv+PTGv6pTp07OOOOMfPvb307z5s3Tu3fvPPLII3nssce2x6XALklAC+x0Bg8enGXLluX888/PunXrctRRR+XSSy8tbS8rK8v06dMzefLk/OAHP8grr7ySpk2b5pOf/GSpj+zbqayszF133ZUXX3wxtWvXTvv27fODH/ygFAC3bt06t9xyS8aPH5/zzjsvtWvXTu/evXPhhRemUaNG79t1A1Ccdu3a5TOf+Ux+/OMfZ/jw4bn99tszefLkjB49OuvXr8/HPvax9OzZM/vss8+/fa5GjRrllltuydixY/PNb34zGzduTGVlZW699dYaX2w5cuTIXHbZZTn77LPz+uuvZ8yYMRkwYECGDh2aVq1aZdq0abn11ltTt27dtG3bNocddlip3y0AHy5NmzbNQQcdlMWLF6dr165bHHPuuefm97//fb7+9a+nTp06OeWUU3Luuee+p/MNHjw4VVVVuf322/PjH/84Bx98cK688sqcfvrp/8ZVwK6rVnV1dXXRRQBsq/Ly8px//vkZNmxY0aUAAADsFFauXJm+ffvm7LPPztChQ4suB/gX7qAFAAAA2AWtXLkyCxcuzO23355atWplwIABRZcEbIGAFgAAAGAX9Oc//zmnnnpqWrdunXHjxqVp06ZFlwRsgRYHAAAAAAAFqV10AQAAAAAAH1YCWgAAAACAgghoAQAAAAAKIqAFAAAAACiIgBYAAAAAoCACWgAAeBfKy8tz+eWXF13Ge/biiy+mvLw8s2bNKroUAAAioAUAYCdxzz33pLy8PPfff/9m2z772c+mvLw8jz766GbbDjvssJx88skfRInvaN26dbn55pvzuc99LpWVlenevXv69++fb37zm1m4cOG7Pt6SJUsyefLkPP3005ttmzNnTm666abtUDUAAO8nAS0AADuFbt26JUkef/zxGutXrlyZv/zlL6lbt26eeOKJGttefvnlvPzyy6msrPzA6nw7I0aMyLhx43LAAQdk1KhROfvss9O9e/c8/PDD+dOf/vSuj7d06dJMmTJliwHtz372s0yfPn2z9W3atMn8+fNz/PHHv6drAABg+6pbdAEAALAtWrVqlb322muzgHbevHmprq7O0Ucfvdm2Tcubwt33qrq6OmvXrk2DBg3e8zHmz5+fX/3qVzn33HPzla98pca2DRs2pKqq6t+qcVvVqlUr9evX/0DOBQDAO3MHLQAAO41u3brl6aefzpo1a0rrnnjiiRxwwAHp27dv/vSnP2Xjxo01ttWqVat0B+0bb7yRa6+9NkceeWQ6deqUI444It/73veybt26Guc54ogjMnz48PzmN7/JgAED0qVLl9xxxx1breu6665Lhw4dcsstt2x1zN///vck2eLdvHXq1MlHP/rRGuuWLFmS0aNHp1evXunUqVP69++fmTNnlrY/9thj+c///M8kyejRo1NeXl7qLTt48OD8+te/zqJFi0rrjzjiiCRb7kF74YUXpqKiIkuWLMlXv/rVVFRUpGfPnhk3blw2bNhQo67XXnst3/jGN0otGi644IIsWLBAX1sAgPfIHbQAAOw0unXrlrvvvjt/+tOf0qNHjyRvhrAVFRWprKzMihUr8uyzz6ZDhw6lbe3atSuFn5dccklmz56dfv365bTTTsv8+fNz/fXXZ+HChbn22mtrnOuvf/1rRo0alZNOOikDBw7Mfvvtt8WaJk6cmOuvvz6XX355Bg4cuNXa99xzzyRv9oatrKxM3bpb/1P8H//4RwYOHJhatWrlC1/4Qpo1a5aHH344F198cVauXJkvfelL2X///TNixIhcc801Oemkk0p3CVdWVqZVq1ZZsWJFFi9enNGjRydJGjZs+Lav7YYNGzJs2LB06dIl559/fn73u9/lxhtvzN57751TTjklSbJx48aceeaZmT9/fgYNGpR27drll7/8ZS644IK3PTYAAFsnoAUAYKfx1j60PXr0yBtvvJH58+fnhBNOSNu2bbPHHnvk8ccfT4cOHbJy5co8++yz+fznP58kWbBgQWbPnp0TTzwxV155ZZKUws8bb7wxjz76aHr27Fk61wsvvJAf/ehH6du371brGTduXG666aaMGTMmJ5xwwtvW3rVr1xx00EG588478+CDD6Znz56prKzM4YcfXgpvN5k4cWI2bNiQOXPmlMLlQYMGZeTIkZkyZUpOPvnk7LHHHjnkkENyzTXXpGvXrjV6yu69996ZPn16qqqqtrnX7Nq1a3PMMcfka1/7Wul8J5xwQmbOnFkKaB944IHMmzcvF110UYYMGVIad9ppp23TOQAA2JwWBwAA7DT233//NG3atNRbdsGCBVm1alUqKiqSJBUVFaUvCvvf//3fbNiwoRTqPvTQQ0myWZg4dOjQGts32WuvvbYazlZXV+fyyy/P9OnTM2HChHcMZ5M3e79OnTo155xzTho3bpyf/exnufzyy3P44YfnnHPOKfWgra6uzn333Zcjjjgi1dXVWbZsWemnT58+WbFiRf785z9v0+v1bg0aNKjGcrdu3fLiiy+Wln/zm9+kXr16Ne4Url27dr7whS+8L/UAAHwYuIMWAICdRq1atVJRUZE//vGP2bhxY5544ok0b948++yzT5I3A9rbbrstSUpB7aaAdtGiRaldu3batm1b45gtWrRI48aNs2jRohrr99prr63Wcdddd2XVqlW57LLLcuyxx25z/WVlZTnzzDNz5plnZunSpfnDH/6Q6dOn5xe/+EXq1q2bq666KsuWLUtVVVVmzJiRGTNmbPE4y5Yt2+Zzbqv69eunWbNmNdY1adIky5cvLy2/9NJLadGiRXbbbbca4/71NQUAYNsJaAEA2Kl069Ytv/rVr/Lss8+W+s9uUlFRkfHjx2fJkiV5/PHH07Jly+y999419q9Vq9Y2nadBgwZb3VZZWZkFCxbktttuyzHHHJOmTZu+6+to2bJl+vfvn09/+tM59thjc++992bs2LGlLzn77Gc/u9U7c8vLy9/1+d5JnTp1tvsxAQB4Z1ocAACwU3lrH9onnngilZWVpW2dOnVKWVlZHnvsscyfP7/GtjZt2mTjxo154YUXahzvH//4R6qqqtKmTZttrmGfffbJ1KlTs3Tp0px++ulZuXLle76eevXqpby8POvXr89rr72WZs2apWHDhtm4cWN69eq1xZ/mzZsnefuweVuD6Hdjzz33zCuvvJLVq1fXWP+3v/1tu58LAODDQkALAMBOpVOnTqlfv37mzJmTJUuW1LiDtqysLB07dsztt9+eVatWlcLcJDn00EOTJDfffHON402bNq3G9m3VoUOH3HDDDVm4cGHOPPPMrFmz5m3HP//883nppZc2W19VVZV58+alSZMmadasWerUqZN+/fpl7ty5efbZZzcb/9b2BptaDWzqX/tWu+22W1asWPGurumd9OnTJ+vXr8+dd95ZWrdx48ZSWwkAAN49LQ4AANiplJWVpXPnzvnjH/+YsrKydOrUqcb2ioqK3HjjjUlSI6Dt0KFDTjjhhMyYMSNVVVU58MAD8+STT2b27Nk58sgj07Nnz3ddS9euXXPdddfljDPOyIgRI3LttdemXr16Wxy7YMGCnHfeeenbt2+6d++eJk2aZMmSJbnrrruydOnSXHTRRaU2A6NGjcpjjz2WgQMH5sQTT8zHP/7xLF++PH/+85/zu9/9Lr///e+TvNn7tXHjxrnjjjvSsGHDfOQjH0mXLl2y9957p2PHjrnnnnsyZsyYdO7cOR/5yEdyxBFHvOtrfKsjjzwyXbp0ybhx4/K3v/0t7dq1y4MPPljqU/t+3LULALCrcwctAAA7nU3Ba8eOHVNWVlZj26a2Bg0bNkyHDh1qbLvyyitz9tln58knn8yYMWPy6KOPZvjw4Zk4ceJ7ruXggw/OpEmT8sgjj+T8888v9ZD9VwceeGBGjBiRlStXZtq0afmv//qv3Hzzzdlzzz1zzTXXZMiQIaWxe+yxR/77v/87AwYMyP33358rrrgi06dPz/Lly3PeeeeVxtWrVy9jx45NnTp1ctlll2XkyJH5wx/+kCQ55ZRTcuyxx2bWrFkZNWpUrrzyyvd8jZvUqVMn119/fY455pjMnj07EydOTMuWLXPppZcmefOLxgAAeHdqVVdXVxddBAAAsPN64IEH8rWvfS233357jbuWAQB4Z+6gBQAAttm/9trdsGFDbrnlljRq1CgdO3YsqCoAgJ2XHrQAAMA2u+KKK7JmzZpUVFRk3bp1ue+++zJv3ryMHDkyDRo0KLo8AICdjhYHAADANpszZ06mTZuWF154IWvXrs0+++yTQYMG5Ytf/GLRpQEA7JQEtAAAAAAABdGDFgAAAACgIAJaAAAAAICCCGgBAAAAAAoioAUAAAAAKIiAFgAAAACgIAJaAAAAAICCCGgBAAAAAAoioAUAAAAAKIiAFgAAAACgIP8PZqcHj2e6XQkAAAAASUVORK5CYII=\n"},"metadata":{}},{"output_type":"stream","name":"stderr","text":[":4: FutureWarning: \n","\n","Passing `palette` without assigning `hue` is deprecated and will be removed in v0.14.0. Assign the `x` variable to `hue` and set `legend=False` for the same effect.\n","\n"," sns.boxplot(\n"]},{"output_type":"display_data","data":{"text/plain":["
"],"image/png":"iVBORw0KGgoAAAANSUhEUgAABWgAAAMQCAYAAAC60ozSAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAAB+KUlEQVR4nOz9e5xWZb0//r8GmOEMgg6kCArqgCUo4JbcIB5S8UCedqb2CTTJtJ0aHr6e0ra1rcwtaqilIBbi9pCpbcUTaqXpNirRNBVRwcRDiKKcdYbh/v3hb+7tBBpyWjg8n48Hj7nXWu+51vu+Yc0Mr7nua1WUSqVSAAAAAABY75oV3QAAAAAAwMZKQAsAAAAAUBABLQAAAABAQQS0AAAAAAAFEdACAAAAABREQAsAAAAAUBABLQAAAABAQQS0AAAAAAAFEdACAAAAABREQAsAUJARI0ZkxIgRRbexRl599dX07t07t9122zo/12233ZbevXvn1VdfLe/ba6+9cvzxx6/zcyfJ1KlT07t370ydOnW9nO/D1ufzZP27/PLL07t376LbAAAK0qLoBgAAPi2ef/75XHnllXn66afz1ltvZZNNNsm2226bvfba61MftDb4cEjUvHnztGvXLltuuWUGDBiQI488Mttuu+1aOc9///d/p3Xr1jnssMPWynhr04bc2/qwaNGi/OIXv8iUKVMye/bs1NfXp0ePHtl9990zcuTIdO3ategWPzUWL16cCRMmZMqUKXn11VfTsmXLfOYzn8m//Mu/5LjjjvNaAgBJkopSqVQqugkAgA3dtGnTMnLkyGyxxRY55JBDUl1dnTfeeCN/+ctf8sorr+T+++//xGM2hLqTJk1a2+2utt69e2fw4ME5+OCDUyqVsmjRokyfPj333ntvli5dmtNPPz1f+9rXyvWlUim1tbVp0aJFmjdvvsrnGT58eDp16vSJnnt9fX2WLVuWqqqqVFRUJPlgZul2222Xq6++etWf5Gr2tnz58tTV1aWysjLNmq3fN6Kti+e5MrNnz84xxxyTN954I/vtt18GDhyYysrKPP/885k8eXI22WST3Hfffeu0h6airq4uX/7ylzNz5swccsgh2X777bNkyZK88MIL+e1vf5uf/OQnGTRoUJJk2bJlqa+vT8uWLQvuGgAoghm0AACr4Kqrrkr79u3zq1/9Kh06dGh07O233y6oq/+zbNmyLF++PFVVVWs81tZbb52DDz640b7TTjst3/zmN3PhhRemV69e2X333ZMkFRUV6zxUWrJkSdq0aZPmzZt/ohB4bWvWrFmTDtCWLVuWE088MW+//Xauu+667Lzzzo2On3LKKRk/fnxB3X36PPDAA3n22Wdz8cUX54tf/GKjY++//37q6urK2y1atEiLFv5rBgAbK2vQAgCsgldeeSXbbrvtCuFskmy66aaNtm+99daMHDkyu+66a3bYYYcccMABueGGG/7pOWpra/OTn/wkhx12WAYOHJiddtopX/nKV/KHP/yhUV3Duq8TJkzIL37xi+y9997p27dvnnrqqey000654IILVhj773//e7bffvvVnoHZqVOnXHLJJWnRokV+9rOfrdDLh9egnTt3bs4+++wMHTo0O+ywQ4YMGZJvfvOb5bVj99prr7zwwgv54x//mN69e6d3797l2cQN68z+8Y9/zPnnn59dd921HAavbA3aBo888kgOPvjg9O3bNwcccECmTJnS6PhHrfH5j2N+XG8ftQbtPffck8MOOyz9+vXLoEGDcvrpp2fOnDmNas4666z0798/c+bMyb//+7+nf//++fznP58f//jHqa+vX7W/hH/yPGfPnp3evXvnF7/4xQqfN23atPTu3TuTJ0/+yLGnTJmS6dOn54QTTlghnE2Sdu3a5ZRTTlnt5/7666/n+OOPT//+/bPbbrvlv//7v5N8sHTIyJEjs9NOO2XPPffMnXfe2ejzG/6O/vSnP+W73/1uBg0alAEDBuSMM87I/PnzG9U+8MAD+cY3vpEhQ4Zkhx12yN57750rr7xyhdd4xIgRGT58eF588cWMGDEiO+64Y3bbbbdGAfTixYvX6HqaPXt2kmTAgAErHGvZsmXatWtX3v7Hf59nnXVW+d/fP/65/PLLy3W1tbUZO3Zs9tlnn+ywww7Zfffdc9FFF6W2tvYj+wIANjx+TQsAsAq6deuWJ554IjNmzEhNTc3H1t54443Zbrvtstdee6VFixb57W9/m+9973splUr5f//v/33k5y1atCi33HJLhg8fnsMPPzyLFy/Or371q3z961/PLbfcku23375R/W233Zb3338/X/7yl1NVVZUtttgie++9d+65556cffbZjWabTp48OaVSaYWZfJ/EFltskX/5l3/J1KlTs2jRokYB04eddNJJefHFF/PVr3413bp1y7x58/Loo4/mjTfeyJZbbplzzjkn//mf/5k2bdrkhBNOSJJsttlmjcb43ve+l86dO+db3/pWlixZ8rF9vfzyyznllFNy5JFH5tBDD82tt96ab3/727nmmmsyePDgT/QcV6W3D7vtttty9tlnp2/fvjn11FPLs0+nTZuWX//6140C/fr6+owaNSr9+vXLGWeckcceeyzXXnttunfvnq985Sv/tLd/9jy7d++eAQMG5I477sgxxxzT6HPvvPPOtG3bNl/4whc+cvwHH3wwSVaYPb22nvtxxx2XnXfeOaeffnruvPPOfP/730/r1q1z6aWX5otf/GL23Xff3HTTTTnzzDOz0047pXv37o3O9/3vfz8dOnTIiSeemFmzZuXGG2/M66+/nkmTJpWXvLj99tvTpk2bfO1rX0ubNm3yhz/8IWPHjs2iRYty5plnNhpv/vz5+frXv5599tkn+++/f+67775cfPHFqampye677562bduu0fW0xRZbJEl+/etf59///d/LPa6KI444Irvuumujfb///e9z5513pnPnzkk+WHLjm9/8Zh5//PF8+ctfzjbbbJMZM2Zk4sSJefnll/PTn/50lc8HABSsBADAP/XII4+Utt9++9L2229fOuKII0oXXXRR6fe//32ptrZ2hdqlS5eusO/YY48tfeELX2i076tf/Wrpq1/9anl72bJlpffff79Rzfz580v/+q//Wjr77LPL+2bPnl2qqakpDRgwoPT22283qv/9739fqqmpKT300EON9n/xi19sdK6PUlNTU/re9773kccvuOCCUk1NTem5555r1Mutt95a7rempqZ0zTXXfOx5DjzwwJX2c+utt5ZqampKRx11VGnZsmUrPTZ79uzyvj333LNUU1NTuu+++8r7Fi5cWBo8eHDpkEMOKe8bO3Zsqaam5iPP9+ExP6q3P/zhD6WamprSH/7wh1KpVCrV1taWdt1119Lw4cNL7733Xrnut7/9bammpqb0k5/8pLzvzDPPLNXU1JSuuOKKRmMecsghpUMPPXTFF+gfrOrzvOmmm0o1NTWlF198sbyvtra2NGjQoNKZZ575sec45JBDSgMHDvynvTSM+Umf+1VXXVXeN3/+/FK/fv1KvXv3Lt11113l/S+99FKppqamNHbs2PK+hr+jQw89tNH1Nn78+FJNTU3pgQceKO9b2bV33nnnlXbcccdG19ZXv/rVUk1NTen2228v73v//fdLgwcPLp100knlfWtyPS1durQ0bNiwUk1NTWnPPfcsnXXWWaVbbrml9NZbb61Q+1H/Phu8/PLLpYEDB5a+9rWvla+LX//616U+ffqU/vSnPzWqvfHGG0s1NTWlxx9//GP7AwA2HJY4AABYBYMHD85NN92UvfbaK9OnT88111yTUaNGZejQoeWZhw1atWpVfrxw4cLMmzcvu+yyS2bPnp2FCxd+5DmaN29eXkN2+fLleffdd7Ns2bLssMMOefbZZ1eo33fffcuz6Rr867/+a7p06dLobeIzZszI888/n4MOOmi1nvuHtWnTJskHb/9emVatWqWysjJ//OMfV3j7+Sfx5S9/eZXXm+3SpUv22Wef8na7du1yyCGH5Nlnn83cuXNXu4d/5q9//WvefvvtHHXUUY3Wpt1jjz3Sq1ev/O53v1vhc4466qhG2wMHDlzpkg0rsyrPc//990/Lli0b/f0/8sgjeeedd/7p3/+iRYvStm3bVepldZ774YcfXn7coUOH9OzZM61bt87+++9f3t+rV6906NChvDzAhx1xxBGprKwsbx911FFp0aJFHnroofK+D197ixYtyrx587Lzzjtn6dKlmTlzZqPx2rRp02i2cFVVVfr27dvo3GtyPbVq1Sq33HJLRo0aleSDGcff+c53MmTIkPznf/7nKi9DsGTJkpx44onp0KFDxowZU74u7r333myzzTbp1atX5s2bV/7z+c9/PklWWIoDANhwWeIAAGAV9evXL1dccUVqa2szffr0PPDAA/nFL36Rb3/72/n1r3+dbbfdNkny+OOP5/LLL8+TTz6ZpUuXNhpj4cKFad++/Uee4/bbb8+1116bWbNmNbqJ0JZbbrlC7cr2NWvWLF/84hdz4403ZunSpWndunXuvPPOtGzZMvvtt9/qPvWyhuUGPirIq6qqyumnn54f//jHGTx4cHbcccfsscceOeSQQ1JdXb3K51nZc/soW2211QpvH996662TJK+99tonOu8n8frrrydJevbsucKxXr165fHHH2+0r2XLlisE6h07dlzlIHtVnmeHDh2y5557ZvLkyRk9enSSD5Y36Nq1azm4+yjt2rVbaTC6Mmvjubdv3z6f+cxnVnhO7du3z4IFC1YYd6uttmq03bZt21RXV+e1114r73vhhRdy2WWX5Q9/+EMWLVrUqP4ffzmysnN37Ngxzz//fHl7Ta+n9u3b54wzzsgZZ5yR1157rbysxfXXX7/SNX1X5rzzzssrr7ySm266KZ06dSrv/9vf/paXXnpphaUQGmwINy8EAFaNgBYA4BOqqqpKv3790q9fv2y99dY5++yzc++99+bEE0/MK6+8kmOOOSa9evXKWWedlc033zyVlZV56KGH8otf/CLLly//yHH/53/+J2eddVb23nvvjBo1KptuummaN2+eq6++eqXB2YdnC37YIYcckgkTJuSBBx7I8OHDM3ny5Oyxxx4fGwyvqhdeeCHNmzf/2AD1mGOOyV577ZUHHnggjzzySH7yk59k3LhxmThxYj772c+u0nk+PCtzbfio9T8/yQ261tSqzgheU4ccckjuvffeTJs2LTU1NfnNb36To446Ks2affyb53r16pVnn302b7zxRjbffPO12tNHPfeP2l8qlT7xORYsWJCvfvWradeuXU4++eT06NEjLVu2zDPPPJOLL754hWtvVf8+1tb11K1bt3zpS1/KPvvsk7333jt33nnnPw1oJ06cmMmTJ+e//uu/VliDevny5ampqcnZZ5+90s/9zGc+84n6AwCKI6AFAFgDO+ywQ5LkzTffTJL85je/SW1tbX72s5+VbxKUrNrbje+777507949V1xxRaNAcezYsZ+op5qamnz2s5/NnXfemc985jN5/fXXc+65536iMVbm9ddfz5/+9KfstNNOH3mDsAY9evTIsccem2OPPTYvv/xyDjnkkFx77bW5+OKLk3x0YLo6/va3v6VUKjUa8+WXX07yQSiWpHzDqgULFjS6eVXDTNAPW9XeGv5+Z82atcIsxlmzZjX6+18bVuV5Jsluu+2Wzp07584778yOO+6YpUuXrtKNvxpm3t5xxx05/vjjP7Z2fT/35IPn/+FZwIsXL87cuXMzdOjQJMkf//jHvPvuu7niiivyL//yL+W6VV1C4qOs7eupY8eO6d69e1544YWPrfvzn/+ciy66KEcfffRKl1Po0aNHpk+fnl133XWtXk8AwPpnDVoAgFXwhz/8YaWz+hrWv+zVq1eS/5uV9+HahQsX5tZbb/2n51jZ5/7lL3/Jk08++Yn7Pfjgg/Poo49m4sSJ2WSTTcoh1up69913c+qpp6a+vj4nnHDCR9YtXbo077//fqN9PXr0SNu2bRutudm6deuVvo19dbz55pu5//77y9uLFi3Kr3/962y//fbl5Q169OiRJPnTn/5UrluyZEl+/etfrzDeqva2ww47ZNNNN81NN93U6Lk99NBDeemll7LHHnus5jNauVV5nknSokWLHHjggbnnnnty2223paamJn369Pmn4w8bNiw1NTW56qqr8sQTT6xwfNGiRbn00kuTrP/nniQ333xzo2U/brzxxixbtqz8b7thhvCHr5/a2trccMMNa3zu1bmepk+fnnnz5q2w/7XXXstLL7200uUhGrz55psZPXp0BgwYkDPOOGOlNfvvv3/mzJmTX/7ylysce++998rLkQAAGz4zaAEAVsEFF1yQpUuXZp999kmvXr1SV1eXadOm5Z577km3bt1y2GGHJfngZmKVlZU54YQTcuSRR2bx4sW55ZZbsummm/7TG1btsccemTJlSr71rW9ljz32yKuvvpqbbrop22677ScOW4YPH57/+q//yv3335+jjjqq0c2V/pmXX345//M//5NSqZTFixdn+vTpuffee7NkyZKcddZZHxtOvfzyyznmmGOy3377Zdttt03z5s3zwAMP5K233sqBBx5Yrvvc5z6XG2+8MT/96U+z1VZbpXPnzh+5luY/s/XWW+c73/lOnn766Wy66aa59dZb8/bbb+dHP/pRuWbw4MHZYost8p3vfCczZ85M8+bNc+utt6ZTp04rzKJd1d4qKytz+umn5+yzz85Xv/rVHHjggXn77bdz3XXXpVu3bjnmmGNW6/msyfNscMghh2TSpEmZOnVqTj/99FUav7KyMldccUW+9rWv5atf/Wr222+/DBgwIJWVlXnhhRcyefLkdOjQIaeccsp6f+5JUldXl2OOOSb7779/Zs2alRtuuCEDBw7MF77whSRJ//7907Fjx5x11lkZMWJEKioqyv+O19TqXE+PPvpoLr/88uy1117Zcccd06ZNm7z66qu59dZbU1tbm5NOOukjP/eCCy7IvHnz8vWvfz133XVXo2O9e/dOnz59cvDBB+eee+7Jf/zHf2Tq1KkZMGBA6uvrM3PmzNx777255ppr0rdv3zV+7gDAuiegBQBYBWeccUbuvffePPTQQ+WZfFtssUW+8pWv5Jvf/Gb5bfO9evXK2LFjc9lll+XHP/5xNttssxx11FHp3LlzzjnnnI89x2GHHZa33norN998cx555JFsu+22+a//+q/ce++9+eMf//iJ+t1ss80yePDgPPTQQ6v09vYPe/TRR/Poo4+mWbNmadeuXbbccssccsghOeKII8o3Qvson/nMZ3LggQfmscceyx133JHmzZunV69eueyyyzJs2LBy3be+9a28/vrrueaaa7J48eLssssuaxTQnnfeebnooosya9asbLnllrn00kuz2267lWsawsfvfe97+clPfpLq6uocffTR6dChwwpreH6S3g477LC0atUq48ePz8UXX5w2bdpk7733zv/3//1/jZZSWBtW5Xk22GGHHbLddtvlpZdeWunb4z/KVlttlV//+tf5xS9+kfvvvz8PPvhgli9fnq222iqHH354RowYUa5dn889Sb773e/mzjvvzNixY1NXV5cDDzww5557bvnt/Z06dcpVV12VH//4x7nsssvSoUOHHHTQQdl1110zatSoNTr36lxP++67bxYvXpxHH300f/jDHzJ//vx06NAh/fr1y9e+9rWPvWnbO++8k/r6+pWG7yeeeGL69OmTZs2a5corr8wvfvGL/M///E/uv//+tG7dOltuuWVGjBjxsTN0AYANS0VpbfxKGQCADc63vvWtzJgxo9Hb4tl4HHLIIenYsWMmTpxYdCtr5LbbbsvZZ5+dX/3qV4XOCHU9AQDrijVoAQCaoDfffHO1Zs/SNDz99NN57rnncsghhxTdSpPgegIA1iVLHAAANCGzZ8/OtGnT8qtf/SotWrTIEUccUXRLrEczZszIM888k2uvvTbV1dU54IADim7pU831BACsD2bQAgA0IX/6059yxhln5NVXX82FF16Y6urqoltiPbrvvvty9tlnZ9myZbnkkkvSsmXLolv6VHM9AQDrgzVoAQAAAAAKYgYtAAAAAEBBBLQAAAAAAAVxk7AN3BNPPJFSqZTKysqiWwEAAAAAVkFdXV0qKirSv3//f1oroN3AlUqlWCYYAAAAAD49PkmeJ6DdwDXMnO3bt2/BnQAAAAAAq+Lpp59e5Vpr0AIAAAAAFERACwAAAABQEAEtAAAAAEBBBLQAAAAAAAUR0AIAAAAAFERACwAAAABQEAEtAAAAAEBBBLQAAAAAAAUR0AIAAAAAFERACwAAAABQEAEtAAAAAEBBBLQAAAAAAAUR0AIAAAAAFERACwAAAABQEAEtAAAAAEBBBLQAAAAAAAUR0AIAAAAAFERACwAAAABQEAEtAAAAAEBBBLQAAAAAAAUR0AIAAAAAFERACwAAAABQEAEtAAAAAEBBBLQAAAAAAAUR0AIAAAAAFKRF0Q0ArGt1dXW57777MmfOnHTt2jXDhg1LZWVl0W0BAAAACGiBpm3SpEmZPHlyli9f3mjf8OHDM2LEiAI7AwAAABDQAk3YpEmTcscdd6Rjx4458sgjM3DgwDz++OO56aabcscddySJkBYAAAAolDVogSaprq4ukydPTseOHXPllVdm8803zzPPPJPNN988V155ZTp27JjJkyenrq6u6FYBAACAjZgZtECTdN9992X58uUZNGhQTjnllMydO7d8rLq6Orvsskvuv//+3HfffRk+fHiBnQIAAAAbMwEt0CTNmTMnSTJlypQMHDgwo0ePTvfu3TN79uzcdtttuf/++xvVAQAAABTBEgdAk1RdXZ0k6dGjR84444zU1NSkdevWqampyRlnnJEePXo0qgMAAAAogoAWaJK22mqrJMm8efOyfPnyRseWL1+eefPmNaoDAAAAKIKAFmiSFi5cmCRZtGhRTjjhhNx///2ZN29e7r///pxwwglZtGhRozoAAACAIliDFmiSOnXqlCTZbbfd8uijj2bcuHHlY82aNcuQIUPyyCOPlOsAAAAAiiCgBZqkPn36pLq6OkuWLMmkSZMyZcqUzJkzJ127ds2+++6bSy65JF26dEmfPn2KbhUAAADYiFniAGiSmjdvnqOPPjrTpk3LJZdcku222y5f+cpXst122+WSSy7JtGnTMnLkyDRv3rzoVgEAAICNWEWpVCoV3QQf7emnn06S9O3bt+BO4NNp6tSpmThxYubOnVve16VLl4wcOTKDBg0qsDMAAACgqfokmZ4lDoAmbdCgQdl5550zffr0vPPOO+nUqVP69Olj5iwAAACwQRDQAk3e66+/nu9973splUqpqKjImDFj0r1796LbAgAAABDQAk3b4Ycf3mi7VCrl1FNPTZLccsstRbQEAAAAUOYmYUCT9eFwtnnz5jn00EMbLW3wj+EtAAAAwPpmBi3QJM2ePbv8+NJLL82WW26ZJPnKV76SV199Naecckq5znIHAAAAQFHMoAWapNNOOy3JBzNnG8LZBltuuWV5Jm1DHQAAAEARBLRAk1QqlZIkBx100EqPH3jggY3qAAAAAIogoAWapIqKiiTJHXfcsdLjd911V6M6AAAAgCIIaIEmacyYMUmS+vr6vPrqq42Ovfrqq6mvr29UBwAAAFAENwkDmqQP3/jrlFNOSfPmzXPggQfmrrvuKoez/1gHAAAAsL6ZQQs0Wbfcckv5cX19fe64445G4eyHjwMAAAAUwQxaoEm75ZZbMnv27Jx22mkplUqpqKjImDFjzJwFAAAANggCWqDJ6969e375y18W3QYAAADACixxAAAAAABQEAEtAAAAAEBBBLQAAAAAAAUR0AIAAAAAFERACwAAAABQEAEtAAAAAEBBBLQAAAAAAAUR0AIAAAAAFERACwAAAABQEAEtAAAAAEBBBLQAAAAAAAUR0AIAAAAAFERACwAAAABQkBZFNwAAABub+vr6TJ8+Pe+88046deqUPn36pHnz5kW3BQBAAQS0AACwHk2dOjUTJ07M3Llzy/uqq6tz9NFHZ9CgQQV2BgBAESxxAAAA68nUqVMzZsyY9OjRIz/4wQ9y3XXX5Qc/+EF69OiRMWPGZOrUqUW3CADAeiagBQCA9aC+vj4TJ07MgAEDcsYZZ6SmpiatW7dOTU1NzjjjjAwYMCDXXXdd6uvri24VAID1SEALAADrwfTp0zN37twcdthhadas8Y/hzZo1y6GHHpo333wz06dPL6hDAACKIKAFAID14J133kmSdO/efaXHe/To0agOAICNg4AWAADWg06dOiVJZs+evdLjr7zySqM6AAA2DgJaoMmrq6vL5MmTM2HChEyePDl1dXVFtwTARqhPnz6prq7ObbfdluXLlzc6tnz58tx+++3p0qVL+vTpU1CHAAAUoUXRDQCsS5MmTcrkyZMb/Ud40qRJGT58eEaMGFFgZwBsbJo3b56jjz46Y8aMyUUXXZRDDz00PXr0yCuvvJLbb78906ZNy2mnnZbmzZsX3SoAAOtRRalUKhXdBB/t6aefTpL07du34E7g02fSpEm544470rFjxxx55JEZOHBgHn/88dx0002ZP39+DjroICEtAOvd1KlTM3HixMydO7e8r0uXLhk5cmQGDRpUYGcAAKwtnyTTE9Bu4AS0sHrq6ury1a9+Ne3bt89VV12VFi3+7w0Dy5YtywknnJCFCxfm+uuvT2VlZYGdArAxqq+vz/Tp0/POO++kU6dO6dOnj5mzABTK9yZYuz5JpmeJA6BJuu+++7J8+fIceeSRjcLZJGnRokWOOOKIjBs3Lvfdd1+GDx9eUJcAbKyaN2+ez33uc0W3AQBJVv7ujurq6hx99NHe3QHrgZuEAU3SnDlzkiQDBw5c6fGG/Q11AAAAG6OpU6dmzJgx6dGjR37wgx/kuuuuyw9+8IP06NEjY8aMydSpU4tuEZo8AS3QJHXt2jVJ8vjjj6euri6TJ0/OhAkTMnny5NTV1eXxxx9vVAcAALCxqa+vz8SJEzNgwICcccYZqampSevWrVNTU5MzzjgjAwYMyHXXXZf6+vqiW4UmzRIHQJM0bNiwTJo0KT//+c8zfvz4LF++vHxs0qRJadGiRZo1a5Zhw4YV2CUAAEBxpk+fnrlz52b06NFp1qzxHL5mzZrl0EMPzbnnnpvp06dbmgfWITNogSapsrIyPXv2TG1tbUqlUnbbbbdcdNFF2W233VIqlVJbW5uePXu6QRgAALDReuedd5Ik3bt3X+nxHj16NKoD1g0zaIEmqa6uLrNmzUpVVVXq6ury+9//Pr///e+TJBUVFamqqsqsWbNSV1cnpAVgvXOnbAA2BJ06dUqSzJ49OzU1NSscf+WVVxrVAeuGgBZoku67774sX748X/va17L77rvnvvvuy5w5c9K1a9cMGzYsv/vd7zJu3Ljcd999GT58eNHtArARcadsADYUffr0SXV1dW677bacccYZjZY5WL58eW6//fZ06dIlffr0KbBLaPoEtECTNGfOnCTJwIEDU1lZuUIIO3DgwEZ1ALA+NNwpe8CAARk9enS6d++e2bNn57bbbsuYMWNy2mmnCWkBWG+aN2+eo48+OmPGjMlFF12UQw89ND169Mgrr7yS22+/PdOmTctpp53mXR6wjglogSapa9euSZLHH388e++99wrHH3/88UZ1ALCu/eOdshtmKTXcKfuiiy7Kddddl5133tl/hAFYbwYNGpTTTjstEydOzLnnnlve36VLF784hPVEQAs0ScOGDcukSZNy0003ZY899kiLFv/35W7ZsmW5+eab06xZswwbNqzALgHYmLhTNgAbqkGDBmXnnXe2PjoUREALNEkNyxrccccdOeGEE3LEEUdk4MCBefzxx3PzzTdn/vz5Oeigg9wgDID1xp2yAdiQNW/e3C8IoSACWqDJGjFiRJJk8uTJGTduXHl/s2bNctBBB5WPA8D64E7ZAACsjIAWaNJGjBiRI488Mvfdd1/mzJmTrl27ZtiwYWbOArDeuVM2AAArI6AFmryG5Q4AoEjulA0AwMpUlEqlUtFN8NGefvrpJEnfvn0L7gQAgLVh6tSpmThxYubOnVve16VLl4wcOdKdsgEAmohPkumZQQsAAOvRoEGDstNOO2XSpEl54403svnmm2fEiBFp2bJl0a0BAFAAAS0AAKxHkyZNyuTJk7N8+fIkyVNPPZX7778/w4cPdwNLAICNkIAWAADWk0mTJuWOO+5Ix44dc+SRR2bgwIF5/PHHc9NNN+WOO+5IEiEtAMBGptk/LwEAANZUXV1dJk+enI4dO+aqq67K3nvvnU6dOmXvvffOVVddlY4dO2by5Mmpq6srulUAANYjAS0AAKwH9913X5YvX54jjzwyLVo0fiNbixYtcsQRR2T58uW57777CuoQAIAiCGgBAGA9mDNnTpJk4MCBKz3esL+hDgCAjYOAFgAA1oOuXbsmSR5//PGVHm/Y31AHAMDGYYMNaBcvXpyhQ4emd+/eefrppxsdu+WWWzJs2LD07ds3Bx10UH7729+u8PkLFy7MOeeck1122SX9+/fPySefnDfffHOFumnTpuWII45Iv379sueee2bcuHEplUqNakqlUsaNG5c99tgj/fr1yxFHHJEnn3xyhbHmzJmTk046Kf37988uu+yS73znO1m0aNGavRAAADQJw4YNS7NmzXLTTTdl2bJljY4tW7YsN998c5o1a5Zhw4YV1CEAAEXYYAPan/70p6mvr19h/1133ZXzzjsv+++/f8aPH5+ddtopJ5544gqB6ejRo/Poo4/m/PPPz8UXX5xZs2bluOOOa/TD8N/+9reMGjUq1dXVufrqq3P00Udn7NixufbaaxuNNX78+IwdOzbHHHNMrr766lRXV+fYY4/N7NmzyzV1dXX5+te/npdffjljxozJ+eefn0ceeSSnnXba2n1hgE+svr4+zzzzTB555JE888wzK/3aAgDrWmVlZYYPH5758+fnhBNOyP3335958+bl/vvvzwknnJD58+dn+PDhqaysLLpVAADWoxb/vGT9e+mll3LDDTfkzDPPzH/8x380OjZ27NgceOCBGT16dJLk85//fGbMmJErr7wy48ePT5I88cQTeeSRRzJhwoQMGTIkSdKzZ88ccMABmTJlSg444IAkyYQJE9KpU6dccsklqaqqyq677pp58+blqquuyogRI1JVVZX3338/V199dY499tgcc8wxST5YH2y//fbLhAkTcv755yf54KYPL7zwQu6+++706tUrSdKhQ4eMGjUqTz31VPr167eOXzVgZaZOnZqf//znefvtt8v7Nt1003zta1/LoEGDCuwMgI3RiBEjkiSTJ0/OuHHjyvubNWuWgw46qHwcAICNxwY5g/aCCy7IkUcemZ49ezbaP3v27Lz88svZf//9G+0/4IAD8thjj6W2tjZJ8vDDD6dDhw4ZPHhwuaZXr17Zfvvt8/DDD5f3Pfzww/nCF76QqqqqRmMtWLAgTzzxRJIPlkBYtGhRo3NWVVVln332WWGs3r17l8PZJBk8eHA22WSTPPTQQ2vycgCraerUqbn44osbhbNJ8vbbb+fiiy/O1KlTC+oMgI3ZiBEjcv311+foo4/Ofvvtl6OPPjrXX3+9cBYAYCO1wQW09957b2bMmJFvfetbKxybOXNmkqwQ3G6zzTapq6srLzkwc+bM9OzZMxUVFY3qevXqVR5jyZIleeONNxoFqg01FRUV5bqGj/9Yt8022+T111/Pe++9V677x5qKior07NmzPAaw/tTX1+fKK69MknTs2DHHH398xo0bl+OPPz4dO3ZMklx55ZWWOwCgEA3LHYwaNcqyBgAAG7kNaomDpUuX5sILL8wpp5ySdu3arXB8/vz5ST5YOuDDGrYbji9YsCDt27df4fM7duyYv/71r0k+uInYysaqqqpK69atG41VVVWVli1brnDOUqmU+fPnp1WrVh97zoaxVlepVMqSJUvWaAzY2Dz99NNZunRp2rZtm0suuSQtWnzw5e5f//Vfs8suu+Tkk0/O4sWL8+c//zl9+/YtuFsAAACgKSmVSitMHv0oG1RA+7Of/Sybbrpp/u3f/q3oVjYodXV1ee6554puAz5V7rnnniTJrrvumhdeeGGF45///Ofz4IMP5p577imHtwAAAABry4eXVf04G0wq8dprr+Xaa6/NlVdeWZ7d2jBrdMmSJVm8eHH5bckLFy5MdXV1+XMXLFiQJOXjHTp0yN///vcVzjF//vxyTcNs14ZzNaitrc3SpUsbjVVbW5v333+/0SzaBQsWpKKiolHdokWLVnrOzTff/JO+HI1UVlZm2223XaMxYGMzZcqUJEnfvn2z/fbbr3B86dKlefDBB9OyZcuVHgcAAABYXS+++OIq124wAe2rr76aurq6fOMb31jh2MiRI7PjjjtmzJgxSVZc73XmzJmprKxM9+7dk3ywXuxjjz22wlTiWbNmpaamJknSpk2bbL755iusDztr1qyUSqXy+A0fZ82alT59+jQ65xZbbJFWrVqV62bMmNForFKplFmzZjW6WdnqqKioSJs2bdZoDNjYfO5zn8u0adNy66235vOf/3yaNfu/JbeXL1+e22+/vVzn+gIAAADWplVd3iDZgG4Stv322+e6665r9Ofss89Oknzve9/Lf/zHf6R79+7Zeuutc++99zb63Lvvvju77rpredrw0KFDM3/+/Dz22GPlmlmzZuXZZ5/N0KFDy/uGDh2aBx98MHV1dY3G6tChQ/r3758kGTBgQNq1a1d+u3TywZIDU6ZMWWGs6dOn5+WXXy7ve+yxx/Luu+9m9913XwuvEPBJ7L///qmoqMgrr7ySCy+8MM8//3yWLl2a559/PhdeeGFeeeWVVFRUZP/99y+6VQAAAGAjtsHMoO3QoUMGDRq00mOf+9zn8rnPfS5JctJJJ+X0009Pjx49MmjQoNx999156qmncv3115fr+/fvnyFDhuScc87JmWeemZYtW+bSSy9N7969s++++5brRo0alTvvvDOnnXZajjrqqMyYMSMTJkzIKaecUg57W7ZsmeOPPz6XX355OnfunJqamtx444159913M2rUqPJYw4YNy9VXX52TTjopp556apYuXZqLLrooe+yxR/r167cuXjLgY1RWVuaLX/xi7rjjjjz55JN54oknyscafov1xS9+0V2zAQAAgEJtMAHtqho+fHiWLl2a8ePHZ9y4cenZs2euuOKK8ozXBpdddll+9KMf5bvf/W6WLVuWIUOG5Nxzz210M6CtttoqEyZMyIUXXphvfOMb6dy5c04++eQce+yxjcY67rjjUiqVcu2112bevHnZfvvtM2HChPKSCskHYdA111yTCy64IKeeempatGiRffbZJ+ecc866fUGAjzRixIgkyeTJk1Mqlcr7Kyoq8sUvfrF8HAAAAKAoFaUPpxZscJ5++ukkH9zoCFg977//fiZNmpQ33ngjm2++eUaMGNHopn8AAAAAa9MnyfQ+dTNoAT6JqVOnZuLEiZk7d26S5Kmnnsq0adNy9NFHf+SyKgAAAADrywZzkzCAtW3q1KkZM2ZMevTokR/84Ae57rrr8oMf/CA9evTImDFjMnXq1KJbBAAAADZyAlqgSaqvr8/EiRMzYMCAnHHGGampqUnr1q1TU1OTM844IwMGDMh1112X+vr6olsFAAAANmICWqBJmj59eubOnZvDDjsszZo1/lLXrFmzHHrooXnzzTczffr0gjoEAAAAENACTdQ777yTJOnevftKj/fo0aNRHQAAAEARBLRAk9SpU6ckyezZs1d6/JVXXmlUBwAAAFAEAS3QJPXp0yfV1dW57bbbsnz58kbHli9fnttvvz1dunRJnz59CuoQAAAAQEALNFHNmzfP0UcfnWnTpuWiiy7K888/n6VLl+b555/PRRddlGnTpmXkyJFp3rx50a0CAAAAG7GKUqlUKroJPtrTTz+dJOnbt2/BncCn09SpUzNx4sTMnTu3vK9Lly4ZOXJkBg0aVGBnAAAAQFP1STI9M2iBJu8ffw/1j0seAAAAABRFQAs0WVOnTs2YMWNSXV1dXsqgefPmqa6uzpgxYzJ16tSCOwQAAAA2dgJaoEmqr6/PxIkTUyqV8txzz6W+vr68/7nnnkupVMp1111X3g8AAABQBAEt0CRNnz690bqzK/Pmm29m+vTp66kjAAAAgBW1KLoBgHVhxowZ5cc77LBDBg0alKqqqtTW1mbq1Kn561//Wq773Oc+V1SbAAAAwEZOQAs0STfddFP58d///vdMmDChvL3ZZps1qjv00EPXa28AAAAADQS0QJO0fPny8uMtt9wyu+yyS2pra1NVVZXXX389b7311gp1AAAAAOubgBZokpo1a1YOX5988sk8+eSTH1kHAAAAUBTJBNAkffGLX1yrdQCwNtXX1+eZZ57JI488kmeeeSb19fVFtwQAQEHMoAWapC222KLRdlVVVXbeeef8+c9/Tm1t7UfWAcC6NnXq1EycODFz584t76uurs7RRx+dQYMGFdgZAABFMIMWaJJmzpzZaLu2tjb/+7//2yicXVkdAKxLU6dOzZgxY9KjR4/84Ac/yHXXXZcf/OAH6dGjR8aMGZOpU6cW3SIAAOuZgBZo0nr06JHOnTs32te5c+f06NGjoI4A2FjV19dn4sSJGTBgQM4444zU1NSkdevWqampyRlnnJEBAwbkuuuus9wBAMBGRkALNEmf+cxnkiSvvPJKtt566xx77LH55je/mWOPPTZbb711XnnllUZ1ALCuTZ8+PXPnzs1hhx22wk0qmzVrlkMPPTRvvvlmpk+fXlCHAAAUwRq0QJM0bNiwTJo0Ka1atcrf/va3TJs2rXxss802S5s2bfLee+9l2LBhBXYJwMbknXfeSZJ07959pccb3t3RUAcAwMbBDFqgSaqsrMzw4cOzZMmS1NbWZvvtty//ef/997NkyZIMHz48lZWVRbcKwEaiU6dOSZLZs2ev9HjDuzsa6gAA2DgIaIEma8SIEdlmm22ycOHCPPfcc+U/CxcuzDbbbJMRI0YU3SIAG5E+ffqkuro6t912W+rq6vLMM8/kkUceyTPPPJO6urrcfvvt6dKlS/r06VN0qwAArEeWOACarEmTJuWll15KRUVFSqVSeX9FRUVeeumlTJo0SUgLwHrTvHnzHH300bn44otzzDHHpLa2tnysqqoqtbW1Of3009O8efMCuwQAYH0T0AJNUl1dXe68884kSf/+/dO/f//yf36feOKJTJs2LXfeeWeOPPJIyxwAAAAAhRHQAk3SPffck1KplOrq6rzyyisr3CRss802y1tvvZV77rknBx10UIGdArCxqK+vz8SJEzNw4MCcfvrpef755/POO++kU6dO6d27dy6++OJcd9112Xnnnc2iBQDYiFiDFmiSpk+fniSZO3duFixY0OjYggUL8tZbbzWqA4B1bfr06Zk7d24OO+ywtGjRIp/73OcyZMiQfO5zn0uLFi1y6KGH5s033/S9CQBgIyOgBZqkVq1alR9/eP3Zf9z+cB0ArEvvvPNOkqR79+4rPd6jR49GdQAAbBwscQA0SQ3/yU2SHXbYIV/60pfSvXv3zJ49O7/61a/yxBNPrFAHAOtSp06dkiSzZ89OTU3NCsdfeeWVRnUAAGwcBLRAk7RkyZLy4+nTp+c73/lOebt169YrrQOAdalPnz6prq7ObbfdljPOOCPNmv3fm9mWL1+e22+/PV26dEmfPn0K7BIAgPXNEgdAk/T222+XHy9durTRsQ9vf7gOANal5s2b5+ijj860adNy0UUX5fnnn8/SpUvz/PPP56KLLsq0adMycuRINwgDANjImEELNEmbbbbZWq0DgLVh0KBBOe200zJx4sSce+655f1dunTJaaedlkGDBhXYHQAARRDQAk1S586dy4/79OmTf/3Xf03Lli3z/vvv53//93/Ld8j+cB0ArA+DBg3KzjvvnOnTp+edd95Jp06d0qdPHzNnAQA2UhWlf7y9ORuUp59+OknSt2/fgjuBT5cjjjgiy5cvT5JUVVWltra2fOzD282aNcvNN99cSI8AAABA0/RJMj1r0AJNUkM4myT/+HuoD29/uA4AAABgfRPQAk1Sw52xmzVrlk022aTRsU6dOjU6DgAAAFAUa9ACTdIll1yS0aNHZ/ny5TnrrLPy1FNPZc6cOenatWv69euX0047rVwHAAAAUBQBLdAkdevWrfy4IYz9Z3UAAAAA65v39gJN1umnn75GxwEAAADWNQEt0CTV19dn3LhxSZLtttsuFRUVSZKKiopst912SZLx48envr6+sB4BAAAALHEANEnPPPNMFixYkN69e+e8887L/fffX16Ddp999sl//ud/5vnnn88zzzyTfv36Fd0uAAAAsJES0AJN0rPPPpsk6dy5c0aOHJnly5eXj02aNCm77LJLuU5ACwAAABRFQAs0aY899lg6duyYI488MgMHDszjjz+em266KX/4wx+Kbg0AAABAQAs0Tb17906SNG/ePD/96U9TVVWVJNl7770zdOjQjBw5MvX19eU6AAAAgCIIaIEmafbs2Uk+uFnYxRdfnKqqqixatCjt2rVLbW1t+eZgs2fPTv/+/YtsFQAAANiICWiBJmnu3Lnlx0888cQq1QEAAACsb82KbgBgXejatetarQMAAABYFwS0QJO05557Ntpu3rx5tt122zRv3vxj6wAAAADWJwEt0CSNGzeu0XZ9fX1efPHF8tqzH1UHAAAAsD4JaIEm6X//93/Xah0AAADAuuAmYUCT1rZt21x99dW5//77M2fOnHTt2jX77LNPvvGNb2TJkiVFtwcAAABs5AS0QJPUrFmzLF++PIsXL05FRUWGDx9ePlZbW1sOZ5s180YCAAAAoDgCWqBJ+vKXv5ybbropSfL//t//y+DBg9OrV6/MnDkzjz76aKM6AAAAgKIIaIEmqU+fPo22H3300UbB7EfVAQAAAKxP3tsLNEl9+vRJhw4dPramQ4cOAloAAACgUAJaYKNVUVFRdAsAAADARk5ACzRJ06dPz4IFC5KsGMQ2bM+fPz/Tp09f770BAAAANLAGLdAkzZ07N8kHyxhcccUVefDBBzNnzpx07do1X/jCF3LiiSdmwYIF5ToAAACAIghogSbpxRdfTPLBWrSnnXZaoyD27rvvTu/evfOnP/0pL774YvbYY4+CugQAAAA2dgJaoEn74x//mL59+6Z169ZZtGhR2rVrl44dO+ZPf/pT0a0BAAAACGiBpqlLly7lx08//XT58bx58z6yDgAAAGB9c5MwoEnaaqut1modAAAAwLpgBi3QJM2ZM6f8uH379tl9993TtWvXzJkzJw899FAWLly4Qh0AAADA+iagBZqke++9N0myySabZMGCBZk8eXL5WLNmzbLJJpvk3Xffzb333pt99923qDYBPnXmzJmTxYsXF90GfKS2bduma9euRbcBALDKBLRAk9QQHnTp0iVXXnllpkyZkjlz5qRr167Zd999c/755+fdd98VMgB8AgsWLMhJJ52UUqlUdCvwkZo1a5bx48enQ4cORbcCALBKBLRAk1RdXZ158+ZlxowZ+a//+q+8//77WbhwYf72t7/lL3/5S1544YVyHQCrpkOHDrn88sv9cmstee211zJ27NicfPLJ6datW9HtNBlt27YVzgIAnyoCWqBJOvvss3PMMcckSZ588smPrQNg1Xnr+NrXrVu39OrVq+g2AAAoSLOiGwBYF9q2bZsWLT7+d1AtWrRI27Zt11NHAAAAACsS0AJN0tKlS7Ns2bKPrVm2bFmWLl26njoCAAAAWJGAFmiSLrvssiQfzJIdP358unfvnrZt26Z79+4ZP358eXZtQx0AAABAEQS0QJM0c+bMJMnOO++cc845J7Nnz87ixYsze/bsnHPOORk4cGCjOgAAAIAiuEkY0CRVVlYmSf7whz+kqqqq0bH58+dn6tSpjeoAAAAAiiCgBZqkvfbaKzfffHOS5LOf/WwOP/zwdO/ePbNnz84tt9ySJ598slwHAAAAUBQBLdAkbbPNNuXHTz75ZP72t7+lqqoqtbW1eeedd1ZaBwAAALC+WYMWaJKef/75RtvvvPNO5syZ0yicXVkdAAAAwPokoAUAAAAAKIglDoAm6cNLF/Tt2zfdu3dPbW1tqqqqMnv27Dz99NMr1AEAAACsb2bQAk3SAw88UH7cokWLlEqlJEmpVEqLFi1WWgcAAACwvplBCzRJr776avnxE088sUp1AAAAAOubGbRAk9SuXbu1WgcAAACwLghogSbpsMMOKz/+8JIG/7j94ToAAACA9U1ACzRJb7zxRvnxsmXLsuOOO+b73/9+dtxxxyxbtmyldQAAAADrmzVogSZpxowZjbb/8pe/5C9/+cs/rQMAAABYn8ygBZqk999/P0kycODAtGnTptGxtm3bZsCAAY3qAAAAAIogoAWapF69eiVJHn/88SxZsqTRscWLF2fatGmN6gAAAACKIKAFmqR+/fqt1ToAAACAdUFACzRJW2655VqtAwAAAFgXBLRAk/Sd73xnrdYBAAAArAsCWqBJmjt37lqtAwAAAFgXBLQAAAAAAAUR0AIbhYqKimy99dapqKgouhUAAACAshZFNwCwPpRKpbz88stFtwEAAADQiBm0AAAAAAAFEdACAAAAABREQAsAAAAAUBABLdAk9ejRY63WAQAAAKwLAlqgSWrTps1arQMAAABYFwS0QJM0cODAtVoHAAAAsC4IaIEmqXv37mu1DgAAAGBdENACTdK99967VusAAAAA1gUBLdAkPfnkk2u1DgAAAGBdaFF0AwDrWvv27dO9e/eUSqVUVFRk9uzZWbhwYdFtAQAAAAhogaZvyZIlefbZZ8vbzZs3L7AbAAAAgP9jiQOgyauvr//YbQAAAICiCGiBJmnw4MFrtQ4AAABgXRDQAk1Su3bt1modAAAAwLogoAWapG233Xat1gEAAACsCwJaoEnq1KnTWq0DAAAAWBcEtECT9NJLL63VOgAAAIB1QUALNEnTpk1bq3UAAAAA64KAFmiSli9fvlbrAAAAANYFAS3QJC1atGit1gEAAACsCwJaoEmaO3fuWq0DAAAAWBcEtECTZIkDAAAA4NNAQAs0Sa1atVqrdQAAAADrgoAWaJI6derUaLtDhw7p2bNnOnTo8LF1AAAAAOtTi6IbAFgX2rZt22h7wYIFWbBgwT+tAwAAAFifzKAFmqR27dqt1ToAAACAdUFACzRJm2666VqtAwAAAFgXBLRAk9Ss2ap9eVvVOgAAAIB1QTIBNElt2rRZq3UAAAAA64KAFmiSbr/99rVaBwAAALAuCGgBAAAAAArSougGANa15s2bZ/vtt88mm2ySd999N88991zq6+uLbgsAAABAQAs0fa1atcpf//rX8nbbtm2zePHiAjsCAAAA+IAlDoAmqbKysvy4IYzdZpttGm3/Yx0AAADA+iagBZqkNm3arLDvpZdeWqU6AAAAgPXFEgewAZszZ4634q+mQYMGZcqUKatUN3PmzPXQUdPUtm3bdO3ateg2AAAA4FNLQAsbqAULFuSkk05KqVQqupUmbcqUKasU5LJyzZo1y/jx49OhQ4eiWwEAAIBPJQEtbKA6dOiQyy+/3AzaNXD33XfnoYce+sjju+++ew444ID12FHT07ZtW+EsAAAArIENKqB96KGHMn78+Lz44otZtGhRunbtmr333jsnnnhi2rdvX677zW9+k8suuyyzZs3KFltskW984xv5t3/7t0Zj1dbW5tJLL80dd9yRxYsXp3///jnvvPPSq1evRnUvvfRSLrjggjzxxBNp27ZtDj744IwePTpVVVWN6m655ZZcc801ef3119OzZ8+ccsop2XPPPRvVLFy4MD/60Y/ywAMPpK6uLrvttlvOPffcdOnSZS2/UmwsvHV8zZx44onp2LFj7rjjjhWOHXTQQRkxYkQBXQEAAAD8nw3qJmHvvvtu+vXrl+9973uZMGFCvva1r+XXv/51vv3tb5dr/vznP+fEE0/MTjvtlPHjx2f//ffPd77zndx7772Nxrrgggtyyy235JRTTsnll1+e2traHHPMMVm4cGG5Zv78+Tn66KNTV1eXyy+/PKecckp++ctf5sILL2w01l133ZXzzjsv+++/f8aPH5+ddtopJ554Yp588slGdaNHj86jjz6a888/PxdffHFmzZqV4447LsuWLVv7LxawSkaMGJEbbrghw4cPT5IMHz48N9xwg3AWAAAA2CBsUDNoDz744EbbgwYNSlVVVc4777zMmTMnXbt2zc9+9rP069cv3//+95Mkn//85zN79uyMHTs2++23X5Lk73//e371q1/lP/7jP/KlL30pSdK3b9/sueeeuemmm3LcccclSW666aYsXrw4V1xxRTbZZJMkSX19fb73ve/l+OOPL89eHDt2bA488MCMHj26fM4ZM2bkyiuvzPjx45MkTzzxRB555JFMmDAhQ4YMSZL07NkzBxxwQKZMmeJt1FCgysrK7Lbbbpk8eXJ22223VFZWFt0SAAAAQJINbAbtyjQEp3V1damtrc3UqVPLQWyDAw44IC+99FJeffXVJMkjjzyS5cuXN6rbZJNNMnjw4Dz88MPlfQ8//HB23XXX8jmSZP/998/y5cvz6KOPJklmz56dl19+Ofvvv/8K53zsscdSW1tbHqtDhw4ZPHhwuaZXr17ZfvvtG50TAAAAAKDBBhnQ1tfX5/33388zzzyTK6+8MnvttVe23HLLvPLKK6mrq1thHdltttkmSTJz5szyx0033TQdO3Zcoa6hpqHuH8fq0KFDqqurG42VfDAb9h/Hqqury+zZs8t1PXv2TEVFRaO6Xr16NTonAAAAAECDDWqJgwZ77rln5syZkyTZbbfdMmbMmCQfrBmbZIU7hjdsNxxfsGBBo5uKfbiuoaahbmV3H+/YsWO5bk3P2bFjx/z1r3/92Of7z5RKpSxZsmSNxoCN3XvvvVf+6HoCYEPgexMAQNNVKpVWmMj5UTbIgHbcuHFZunRpXnzxxfzsZz/LCSeckJ///OdFt1WYurq6PPfcc0W3AZ9qf//735Mks2bNytKlSwvuBgB8bwIAaOqqqqpWqW6DDGj79OmTJOnfv3/69u2bgw8+OPfff3+23XbbJMnChQsb1S9YsCBJyksadOjQIYsWLVph3AULFjRa9qBDhw4rjJV8MCu2oa7h48KFC1NdXf2x52z4IfujxlpdlZWV5ecOrJ7WrVsn+WC5kq233rrYZgAgvjcBADRlL7744irXbpAB7Yf17t07lZWVeeWVV7LXXnulsrIyM2fOzG677VauaVjjtWE92V69euWtt95aIRz9xzVnV7Y+7MKFCzN37txGY63sc2fOnJnKysp07969XPfYY4+tMH151qxZqampWaPXoKKiIm3atFmjMWBj16pVq/JH1xMAGwLfmwAAmq5VXd4g2UBvEvZhf/nLX1JXV5ctt9wyVVVVGTRoUO67775GNXfffXe22WabbLnllkmSIUOGpFmzZpkyZUq5Zv78+XnkkUcydOjQ8r6hQ4fmf//3f8uzYZPk3nvvTbNmzTJ48OAkSffu3bP11lvn3nvvXeGcu+66a3mq8tChQzN//vw89thj5ZpZs2bl2WefbXROAAAAAIAGG9QM2hNPPDE77LBDevfunVatWmX69OmZMGFCevfunb333jtJ8s1vfjMjR47M+eefn/333z9Tp07N5MmTc+mll5bH+cxnPpMvfelLueiii9KsWbN07do1V199ddq3b58jjzyyXHfkkUdm0qRJ+da3vpXjjz8+c+bMyUUXXZQjjzwyXbt2LdeddNJJOf3009OjR48MGjQod999d5566qlcf/315Zr+/ftnyJAhOeecc3LmmWemZcuWufTSS9O7d+/su+++6+HVAwAAAAA+bTaogLZfv365++67M27cuJRKpXTr1i2HH354Ro0aVZ6puvPOO+fyyy/PZZddll/96lfZYostcsEFF2T//fdvNNa5556btm3bZsyYMVm8eHEGDBiQn//852nfvn25pmPHjpk4cWL+8z//M9/61rfStm3bfOlLX8opp5zSaKzhw4dn6dKlGT9+fMaNG5eePXvmiiuuSP/+/RvVXXbZZfnRj36U7373u1m2bFmGDBmSc889Ny1abFAvMwAAAACwgagolUqlopvgoz399NNJkr59+xbcCXy6zZw5M2eeeWZ+/OMfN1pPGgCK4nsTAEDT9UkyvQ1+DVoAAAAAgKZKQAsAAAAAUBABLQAAAABAQQS0AAAAAAAFEdACAAAAABREQAsAAAAAUBABLQAAAABAQQS0AAAAAAAFEdACAAAAABREQAsAAAAAUBABLQAAAABAQQS0AAAAAAAFEdACAAAAABREQAsAAAAAUBABLQAAAABAQQS0AAAAAAAFEdACAAAAABREQAsAAAAAUBABLQAAAABAQQS0AAAAAAAFEdACAAAAABREQAsAAAAAUBABLQAAAABAQQS0AAAAAAAFEdACAAAAABREQAsAAAAAUBABLQAAAABAQQS0AAAAAAAFEdACAAAAABREQAsAAAAAUBABLQAAAABAQQS0AAAAAAAFEdACAAAAABREQAsAAAAAUBABLQAAAABAQQS0AAAAAAAFEdACAAAAABREQAsAAAAAUBABLQAAAABAQQS0AAAAAAAFEdACAAAAABREQAsAAAAAUBABLQAAAABAQQS0AAAAAAAFEdACAAAAABREQAsAAAAAUBABLQAAAABAQQS0AAAAAAAFEdACAAAAABREQAsAAAAAUBABLQAAAABAQQS0AAAAAAAFEdACAAAAABREQAsAAAAAUBABLQAAAABAQQS0AAAAAAAFEdACAAAAABSkRdENAAAAAKyuOXPmZPHixUW3AR+pbdu26dq1a9FtsAET0AIAAACfSgsWLMhJJ52UUqlUdCvwkZo1a5bx48enQ4cORbfCBkpACwAAAHwqdejQIZdffrkZtGvJa6+9lrFjx+bkk09Ot27dim6nyWjbtq1wlo8loAUAAAA+tbx1fO3r1q1bevXqVXQbsNFwkzAAAAAAgIIIaAEAAAAACiKgBQAAAAAoiIAWAAAAAKAgqx3Qjhs3LnPmzFmbvQAAAAAAbFRWO6C97LLLsueee2bkyJG59dZbs2jRorXZFwAAAABAk7faAe1vf/vbnHrqqZk/f36+853vZMiQITnllFPyu9/9LvX19WuzRwAAAACAJqnF6n5i165d8/Wvfz1f//rXM2PGjNx555256667cs8996RTp0454IADctBBB2XHHXdcm/0CAAAAADQZa+UmYTU1NTnttNPym9/8Jtdff3123nnn3HDDDTnyyCMzbNiw/PSnP83bb7+9Nk4FAAAAANBkrJWANknef//93HXXXbnmmmvy29/+Ns2bN8/QoUOz3Xbb5ac//Wn23nvv3H///WvrdAAAAAAAn3qrvcRBkpRKpTz66KO5884788ADD2Tx4sX57Gc/m9NPPz1f/OIXs+mmmyZJ3nzzzZx22mm58MILs88++6yVxgEAAAAAPu1WO6D94Q9/mLvvvjtvv/12qqurc+SRR+aQQw7Jdtttt0Jtly5d8qUvfSlnnnnmGjULAAAAANCUrHZAe8stt2TvvffOIYcckn/9139NRUXFx9YPHDgwP/rRj1b3dAAAAAAATc5qBbR1dXW55ppr0q1bt3zmM59Zpc/Zcssts+WWW67O6QAAAAAAmqTVuklYs2bNMnLkyEyZMmVt9wMAAAAAsNFYrYC2efPm2WKLLVJbW7u2+wEAAAAA2GisVkCbJF/96lfzy1/+Mu++++5abAcAAAAAYOOx2jcJW758eaqqqrLPPvtk2LBh6datW1q1atWopqKiIsccc8ya9ggAAAAA0CStdkD74x//uPz4V7/61UprBLQAAAAAAB9ttQPaBx98cG32AQAAAACw0VntgLZbt25rsw8AAAAAgI3Oat8kDAAAAACANbPaM2iTZPr06bn++uvz7LPPZuHChVm+fHmj4xUVFXnggQfWqEEAAAAAgKZqtWfQTp06NYcffnh+97vfpUuXLpk9e3a6d++eLl265PXXX0+bNm3yL//yL2uzVwAAAACAJmW1A9qxY8eme/fuuffee/PDH/4wSXL88cfnxhtvzE033ZQ5c+Zkv/32W2uNAgAAAAA0Nasd0D777LP50pe+lHbt2qV58+ZJUl7iYMcdd8wRRxyRn/zkJ2unSwAAAACAJmi1A9rmzZunbdu2SZIOHTqkRYsWefvtt8vHu3fvnpdeemnNOwQAAAAAaKJWO6Dt0aNHXn755SQf3AysV69ejW4I9rvf/S6bbbbZGjcIAAAAANBUrXZAu/vuu+euu+7KsmXLkiRf+9rXMmXKlOy7777Zd99985vf/CZHHHHEWmsUAAAAAKCpabG6n/jv//7vGTlyZHn92UMPPTTNmjXLlClT0rx585xwwgk57LDD1lqjAAAAAABNzWoHtJWVlenUqVOjfQcffHAOPvjgNW4KAAAAAGBjsNpLHAAAAAAAsGZWeQbtyJEjP/HgFRUVmThx4if+PAAAAACAjcEqB7SlUukTD746nwMAAAAAsLFY5YB20qRJ67IPAAAAAICNjjVoAQAAAAAKssozaD/OokWLsmjRoixfvnyFY1tsscXaOAUAAAAAQJOzRgHtDTfckF/84heZPXv2R9Y899xza3IKAAAAAIAma7WXOLjxxhvz/e9/Pz169Mjo0aNTKpVy9NFH5xvf+EY222yz9OnTJz/4wQ/WZq8AAAAAAE3Kage0119/fYYMGZJrrrkmX/7yl5Mku+++e0455ZTcfffdWbx4cd5999211ScAAAAAQJOz2gHtK6+8kj333DNJUllZmSSpq6tLkrRv3z5f+tKXcsMNN6yFFgEAAAAAmqbVDmjbt2+f+vr6JEm7du3SunXr/P3vfy8fb9u2bd5666017xAAAAAAoIla7YB2u+22y/Tp08vbO+64Y2688cbMmTMnb7zxRm6++eZsvfXWa6NHAAAAAIAmabUD2oMOOigvvPBCamtrkyQnnXRSXnrppeyxxx7Za6+9MmvWrIwePXpt9QkAAAAA0OS0WN1P/Ld/+7f827/9W3l74MCBueuuu/Kb3/wmzZs3z+DBg9OzZ8+10iQAAAAAQFO02jNo/9FLL72UO+64I7NmzUp9fX2qq6vX1tAAAAAAAE3SJ5pBe/3112fSpEm58cYb07lz5/L+3/zmN/n2t7+durq6JElFRUWuv/763HzzzY3qAAAAAAD4P59oBu1vfvObdO/evVHoumzZspx77rlp3rx5fvSjH+XOO+/Mqaeemtdffz1XXXXVWm8YAAAAAKCp+EQB7Ysvvpiddtqp0b6pU6dm3rx5Ofroo3PooYdmu+22y3HHHZf99tsvDz300NrsFQAAAACgSflEAe27776bz3zmM432PfbYY6moqMg+++zTaP+AAQPyxhtvrHmHAAAAAABN1CcKaDfbbLO89dZbjfb9+c9/TqtWrdKnT59G+6uqqlJZWbnmHQIAAAAANFGfKKDdYYcdcvvtt2fRokVJkhdeeCFPP/10dtttt7Ro0fh+YzNnzlxhti0AAAAAAP+nxT8v+T/f+ta38qUvfSnDhg3Ltttum2eeeSYVFRX5xje+sULt/fffn89//vNrrVEAAAAAgKbmE82g7d27dyZOnJjPfe5zefPNN7Pjjjtm3Lhx2WGHHRrVTZ06Na1bt85+++23VpsFAAAAAGhKPtEM2uSDm3+NGzfuY2sGDRqUO++8c7WbAgAAAADYGHyiGbQAAAAAAKw9AloAAAAAgIIIaAEAAAAACiKgBQAAAAAoyCe+SRgAwKfF3Llzs3DhwqLbgJV67bXXGn2EDVX79u1TXV1ddBsA0GQJaAGAJmnu3LkZPfrbqa2tK7oV+Fhjx44tugX4WFVVlbnssp8IaQFgHRHQAgBN0sKFC1NbW5fDt2mZ6tYVRbcD8Kk0d2kpt7z0fhYuXCigBYB1REALADRp1a0r0q1t86LbAPiUqi+6AQBo8twkDAAAAACgIAJaAAAAAICCCGgBAAAAAAoioAUAAAAAKIiAFgAAAACgIAJaAAAAAICCCGgBAAAAAAoioAUAAAAAKIiAFgAAAACgIBtUQHvPPffkm9/8ZoYOHZqddtopBx98cH71q1+lVCo1qrvlllsybNiw9O3bNwcddFB++9vfrjDWwoULc84552SXXXZJ//79c/LJJ+fNN99coW7atGk54ogj0q9fv+y5554ZN27cCucrlUoZN25c9thjj/Tr1y9HHHFEnnzyyRXGmjNnTk466aT0798/u+yyS77zne9k0aJFa/aiAAAAAABN1gYV0P7iF79I69atc9ZZZ+VnP/tZhg4dmvPOOy9XXnllueauu+7Keeedl/333z/jx4/PTjvtlBNPPHGFwHT06NF59NFHc/755+fiiy/OrFmzctxxx2XZsmXlmr/97W8ZNWpUqqurc/XVV+foo4/O2LFjc+211zYaa/z48Rk7dmyOOeaYXH311amurs6xxx6b2bNnl2vq6ury9a9/PS+//HLGjBmT888/P4888khOO+20dfNiAQAAAACfei2KbuDDfvazn6Vz587l7V133TXvvvtufv7zn+ff//3f06xZs4wdOzYHHnhgRo8enST5/Oc/nxkzZuTKK6/M+PHjkyRPPPFEHnnkkUyYMCFDhgxJkvTs2TMHHHBApkyZkgMOOCBJMmHChHTq1CmXXHJJqqqqsuuuu2bevHm56qqrMmLEiFRVVeX999/P1VdfnWOPPTbHHHNMkmTgwIHZb7/9MmHChJx//vlJkvvuuy8vvPBC7r777vTq1StJ0qFDh4waNSpPPfVU+vXrtx5eQQAAAADg02SDmkH74XC2wfbbb59FixZlyZIlmT17dl5++eXsv//+jWoOOOCAPPbYY6mtrU2SPPzww+nQoUMGDx5crunVq1e23377PPzww+V9Dz/8cL7whS+kqqqq0VgLFizIE088keSDJRAWLVrU6JxVVVXZZ599Vhird+/e5XA2SQYPHpxNNtkkDz300Oq+JAAAAABAE7ZBBbQr8/jjj6dr165p165dZs6cmeSD2bAfts0226Surq685MDMmTPTs2fPVFRUNKrr1atXeYwlS5bkjTfeaBSoNtRUVFSU6xo+/mPdNttsk9dffz3vvfdeue4fayoqKtKzZ8/yGAAAAAAAH7ZBLXHwj/785z/n7rvvzplnnpkkmT9/fpIPlg74sIbthuMLFixI+/btVxivY8eO+etf/5rkg5uIrWysqqqqtG7dutFYVVVVadmy5QrnLJVKmT9/flq1avWx52wYa3WVSqUsWbJkjcaAjV3DL1Pee+891xNsJBquewDWnJ+hYOPg/02w9pRKpRUmj36UDTag/fvf/55TTjklgwYNysiRI4tup1B1dXV57rnnim4DPtX+/ve/J0lmzZqVpUuXFtwNsD40XPcArDk/Q8HGwf+bYO368LKqH2eDDGgXLFiQ4447Lptsskkuv/zyNGv2wUoMHTt2TPLB7Nfq6upG9R8+3qFDh5X+p2z+/PnlmobZrg0zaRvU1tZm6dKljcaqra3N+++/32gW7YIFC1JRUdGobtGiRSs95+abb74ar8L/qayszLbbbrtGY8DGrnXr1kk+WCJl6623LrYZYL1ouO4BWHN+hoKNg/83wdrz4osvrnLtBhfQvvfeezn++OOzcOHC3HzzzY2WDWhY4/Uf13udOXNmKisr071793LdY489tsJU4lmzZqWmpiZJ0qZNm2y++eYrrA87a9aslEql8vgNH2fNmpU+ffo0OucWW2yRVq1aletmzJjRaKxSqZRZs2Y1ulnZ6qioqEibNm3WaAzY2DVcq61atXI9wUai4boHYM35GQo2Dv7fBGvPqi5vkGxgNwlbtmxZRo8enZkzZ+aaa65J165dGx3v3r17tt5669x7772N9t99993Zddddy9OGhw4dmvnz5+exxx4r18yaNSvPPvtshg4dWt43dOjQPPjgg6mrq2s0VocOHdK/f/8kyYABA9KuXbvcc8895Zq6urpMmTJlhbGmT5+el19+ubzvsccey7vvvpvdd999DV4VAAAAAKCp2qBm0H7ve9/Lb3/725x11llZtGhRnnzyyfKxz372s6mqqspJJ52U008/PT169MigQYNy991356mnnsr1119fru3fv3+GDBmSc845J2eeeWZatmyZSy+9NL17986+++5brhs1alTuvPPOnHbaaTnqqKMyY8aMTJgwIaeccko57G3ZsmWOP/74XH755encuXNqampy44035t13382oUaPKYw0bNixXX311TjrppJx66qlZunRpLrroouyxxx7p16/fun/xAAAAAIBPnQ0qoH300UeTJBdeeOEKxx588MFsueWWGT58eJYuXZrx48dn3Lhx6dmzZ6644oryjNcGl112WX70ox/lu9/9bpYtW5YhQ4bk3HPPTYsW//eUt9pqq0yYMCEXXnhhvvGNb6Rz5845+eSTc+yxxzYa67jjjkupVMq1116befPmZfvtt8+ECRPKSyokH6wTe8011+SCCy7IqaeemhYtWmSfffbJOeecszZfIgAAAACgCdmgAtrf/OY3q1R3+OGH5/DDD//Ymvbt2+eHP/xhfvjDH35s3YABA/LLX/7yY2sqKipy/PHH5/jjj//Yuq5du+byyy//2BoAAAAAgAYb1Bq0AAAAAAAbEwEtAAAAAEBBBLQAAAAAAAUR0AIAAAAAFERACwAAAABQEAEtAAAAAEBBBLQAAAAAAAVpUXQDNB1z587NwoULi24DVuq1115r9BE2RO3bt091dXXRbQAAALAeCWhZK+bOnZtvf3t06upqi24FPtbYsWOLbgE+UmVlVX7yk8uEtAAAABsRAS1rxcKFC1NXV5vmW+ydiqrORbcD8KlTqp2XutcfyMKFCwW0AAAAGxEBLWtVRVXnVLQWLAAAAADAqnCTMAAAAACAgghoAQAAAAAKIqAFAAAAACiIgBYAAAAAoCACWgAAAACAgghoAQAAAAAKIqAFAAAAACiIgBYAAAAAoCACWgAAAACAgghoAQAAAAAKIqAFAAAAACiIgBYAAAAAoCACWgAAAACAgghoAQAAAAAKIqAFAAAAACiIgBYAAAAAoCACWgAAAACAgghoAQAAAAAKIqAFAAAAACiIgBYAAAAAoCACWgAAAACAgghoAQAAAAAKIqAFAAAAACiIgBYAAAAAoCACWgAAAACAgghoAQAAAAAKIqAFAAAAACiIgBYAAAAAoCACWgAAAACAgghoAQAAAAAKIqAFAAAAACiIgBYAAAAAoCACWgAAAACAgghoAQAAAAAKIqAFAAAAACiIgBYAAAAAoCACWgAAAACAgghoAQAAAAAKIqAFAAAAACiIgBYAAAAAoCACWgAAAACAgghoAQAAAAAKIqAFAAAAACiIgBYAAAAAoCACWgAAAACAgghoAQAAAAAKIqAFAAAAACiIgBYAAAAAoCACWgAAAACAgghoAQAAAAAKIqAFAAAAACiIgBYAAAAAoCACWgAAAACAgghoAQAAAAAK0qLoBgAA1qW5S5cX3QLAp5avoQCw7gloAYAm7ZaXaotuAQAA4CMJaFmrSu+/U3QLAJ9Kvn6uO4dvU5Xq1lZ1Algdc5cu94suAFjHBLSsVfVv3F90CwDQSHXrZunWtnnRbQAAAKyUgJa1qvnm+6SiZaei2wD41Cm9/45fcgEAAGyEBLSsVRUtO6WidXXRbQAAAADAp4IF2QAAAAAACiKgBQAAAAAoiIAWAAAAAKAgAloAAAAAgIIIaAEAAAAACiKgBQAAAAAoiIAWAAAAAKAgAloAAAAAgIIIaAEAAAAACtKi6AYAAABgYzF37twsXLiw6DZgpV577bVGH2FD1b59+1RXVxfdxlojoAUAAID1YO7cufn26G+nrrau6FbgY40dO7boFuBjVVZV5ieX/aTJhLQCWgAAAFgPFi5cmLraulTv3TmVnSuLbgfgU6luXl3mPjAvCxcuFNACAAAAn1xl58q0rK4qug0ANhBuEgYAAAAAUBABLQAAAABAQQS0AAAAAAAFEdACAAAAABREQAsAAAAAUBABLQAAAABAQQS0AAAAAAAFEdACAAAAABREQAsAAAAAUBABLQAAAABAQQS0AAAAAAAFEdACAAAAABREQAsAAAAAUBABLQAAAABAQQS0AAAAAAAFEdACAAAAABREQAsAAAAAUBABLQAAAABAQQS0AAAAAAAFEdACAAAAABREQAsAAAAAUBABLQAAAABAQQS0AAAAAAAFEdACAAAAABREQAsAAAAAUBABLQAAAABAQQS0AAAAAAAFEdACAAAAABSkRdENAACsS3OXlpLUF90GwKfSB19DAYB1SUALADRJ7du3T1VVZW556f2iWwH4VKuqqkz79u2LbgMAmiwBLQDQJFVXV+eyy36ShQsXFt0KrNRrr72WsWPH5uSTT063bt2Kbgc+Uvv27VNdXV10GwDQZAloAYAmq7q6WqjABq9bt27p1atX0W0AAFAQNwkDAAAAACiIgBYAAAAAoCACWgAAAACAgghoAQAAAAAKIqAFAAAAAChIi6IboGkp1c4rugWATyVfPwEAADZOAlrWivbt26eysip1rz9QdCsAn1qVlVVp37590W0AAACwHgloWSuqq6vzk59cloULFxbdCqzUa6+9lrFjx+bkk09Ot27dim4HVqp9+/aprq4uug0AAADWIwEta011dbVggQ1et27d0qtXr6LbAAAAAEjiJmEAAAAAAIUR0AIAAAAAFERACwAAAABQEAEtAAAAAEBBBLQAAAAAAAUR0AIAAAAAFKRF0Q0AAADAxqT2nbqiWwD41GqKX0MFtAAAALAevXX/vKJbAGADskEFtH/7298yYcKE/OUvf8kLL7yQXr16ZfLkySvU3XLLLbnmmmvy+uuvp2fPnjnllFOy5557NqpZuHBhfvSjH+WBBx5IXV1ddtttt5x77rnp0qVLo7pp06blxz/+cZ577rlsuummOeqoo3LccceloqKiXFMqlTJ+/PjccMMNmTdvXrbffvucffbZ2WmnnRqNNWfOnFxwwQV55JFHUllZmX322Sdnn3122rVrt/ZeJAAAAD7VNtunc6o6VRbdBsCnUu07dU3uF10bVED7wgsv5KGHHsqOO+6Y5cuXp1QqrVBz11135bzzzssJJ5yQz3/+87n77rtz4okn5r//+78bBaajR4/Oiy++mPPPPz8tW7bMZZddluOOOy633nprWrT44Gn/7W9/y6hRozJ48OCMHj06zz//fC6++OI0b948o0aNKo81fvz4jB07Nqeffnp69+6d//7v/86xxx6b//mf/0n37t2TJHV1dfn617+eJBkzZkzee++9/PjHP85pp52Wq6++eh2+agAAAHyaVHWqTMvqqqLbAGADsUEFtHvttVf23nvvJMlZZ52Vv/71ryvUjB07NgceeGBGjx6dJPn85z+fGTNm5Morr8z48eOTJE888UQeeeSRTJgwIUOGDEmS9OzZMwcccECmTJmSAw44IEkyYcKEdOrUKZdcckmqqqqy6667Zt68ebnqqqsyYsSIVFVV5f3338/VV1+dY489Nsccc0ySZODAgdlvv/0yYcKEnH/++UmS++67Ly+88ELuvvvu9OrVK0nSoUOHjBo1Kk899VT69eu3rl42AAAAAOBTqlnRDXxYs2Yf387s2bPz8ssvZ//992+0/4ADDshjjz2W2traJMnDDz+cDh06ZPDgweWaXr16Zfvtt8/DDz9c3vfwww/nC1/4QqqqqhqNtWDBgjzxxBNJPlgCYdGiRY3OWVVVlX322WeFsXr37l0OZ5Nk8ODB2WSTTfLQQw99kpcBAAAAANhIbFAB7T8zc+bMJB/Mhv2wbbbZJnV1dZk9e3a5rmfPno3WkU0+CGkbxliyZEneeOONRoFqQ01FRUW5ruHjP9Zts802ef311/Pee++V6/6xpqKiIj179iyPAQAAAADwYRvUEgf/zPz585N8sHTAhzVsNxxfsGBB2rdvv8Lnd+zYsbxswsKFC1c6VlVVVVq3bt1orKqqqrRs2XKFc5ZKpcyfPz+tWrX62HM2jLW6SqVSlixZskZjwMau4Zcp7733nusJgA2C702w8Wm47gFYcxv6z1ClUmmFyaMf5VMV0G6s6urq8txzzxXdBnyq/f3vf0+SzJo1K0uXLi24GwDwvQk2Rg3XPQBr7tPwM9SHl1X9OJ+qgLZjx45JPpj9Wl1dXd6/YMGCRsc7dOiw0m988+fPL9c0zHZtmEnboLa2NkuXLm00Vm1tbd5///1Gs2gXLFiQioqKRnWLFi1a6Tk333zz1XvC/3+VlZXZdttt12gM2Ni1bt06yQdLpGy99dbFNgMA8b0JNkYN1z0Aa25D/xnqxRdfXOXaT1VA27DG6z+u9zpz5sxUVlame/fu5brHHntshanEs2bNSk1NTZKkTZs22XzzzVdYH3bWrFkplUrl8Rs+zpo1K3369Gl0zi222CKtWrUq182YMaPRWKVSKbNmzWp0s7LVUVFRkTZt2qzRGLCxa7hWW7Vq5XoCYIPgexNsfBquewDW3Ib+M9SqLm+QfMpuEta9e/dsvfXWuffeexvtv/vuu7PrrruWpw0PHTo08+fPz2OPPVaumTVrVp599tkMHTq0vG/o0KF58MEHU1dX12isDh06pH///kmSAQMGpF27drnnnnvKNXV1dZkyZcoKY02fPj0vv/xyed9jjz2Wd999N7vvvvvaeQEAAAAAgCZlg5pBu3Tp0jz00ENJktdeey2LFi0qh7G77LJLOnfunJNOOimnn356evTokUGDBuXuu+/OU089leuvv748Tv/+/TNkyJCcc845OfPMM9OyZctceuml6d27d/bdd99y3ahRo3LnnXfmtNNOy1FHHZUZM2ZkwoQJOeWUU8phb8uWLXP88cfn8ssvT+fOnVNTU5Mbb7wx7777bkaNGlUea9iwYbn66qtz0kkn5dRTT83SpUtz0UUXZY899ki/fv3Wx8sHAAAAAHzKbFAB7dtvv51vf/vbjfY1bF933XUZNGhQhg8fnqVLl2b8+PEZN25cevbsmSuuuKI847XBZZddlh/96Ef57ne/m2XLlmXIkCE599xz06LF/z3lrbbaKhMmTMiFF16Yb3zjG+ncuXNOPvnkHHvssY3GOu6441IqlXLttddm3rx52X777TNhwoTykgrJB+vEXnPNNbngggty6qmnpkWLFtlnn31yzjnnrO2XCQAAAABoIjaogHbLLbfM888//0/rDj/88Bx++OEfW9O+ffv88Ic/zA9/+MOPrRswYEB++ctffmxNRUVFjj/++Bx//PEfW9e1a9dcfvnlH1sDAAAAANDgU7UGLQAAAABAUyKgBQAAAAAoiIAWAAAAAKAgAloAAAAAgIIIaAEAAAAACiKgBQAAAAAoiIAWAAAAAKAgAloAAAAAgIIIaAEAAAAACiKgBQAAAAAoiIAWAAAAAKAgAloAAAAAgIIIaAEAAAAACiKgBQAAAAAoiIAWAAAAAKAgAloAAAAAgIIIaAEAAAAACiKgBQAAAAAoiIAWAAAAAKAgAloAAAAAgIIIaAEAAAAACiKgBQAAAAAoiIAWAAAAAKAgAloAAAAAgIIIaAEAAAAACiKgBQAAAAAoiIAWAAAAAKAgAloAAAAAgIIIaAEAAAAACiKgBQAAAAAoiIAWAAAAAKAgAloAAAAAgIIIaAEAAAAACiKgBQAAAAAoiIAWAAAAAKAgAloAAAAAgIIIaAEAAAAACiKgBQAAAAAoiIAWAAAAAKAgAloAAAAAgIIIaAEAAAAACiKgBQAAAAAoiIAWAAAAAKAgAloAAAAAgIIIaAEAAAAACiKgBQAAAAAoiIAWAAAAAKAgLYpuAAAAADYmdfPqim4B4FOrKX4NFdACAADAetC+fftUVlVm7gPzim4F4FOtsqoy7du3L7qNtUZACwAAAOtBdXV1fnLZT7Jw4cKiW4GVeu211zJ27NicfPLJ6datW9HtwEdq3759qquri25jrRHQAgAAwHpSXV3dpEIFmqZu3bqlV69eRbcBGw03CQMAAAAAKIiAFgAAAACgIAJaAAAAAICCCGgBAAAAAAoioAUAAAAAKIiAFgAAAACgIAJaAAAAAICCCGgBAAAAAAoioAUAAAAAKIiAFgAAAACgIAJaAAAAAICCCGgBAAAAAAoioAUAAAAAKIiAFgAAAACgIAJaAAAAAICCCGgBAAAAAAoioAUAAAAAKIiAFgAAAACgIAJaAAAAAICCCGgBAAAAAAoioAUAAAAAKIiAFgAAAACgIAJaAAAAAICCCGgBAAAAAAoioAUAAAAAKIiAFgAAAACgIAJaAAAAAICCCGgBAAAAAAoioAUAAAAAKIiAFgAAAACgIAJa+P+1d+9BWpWFH8C/iy2m4KLIJRXvyFIpQo5xl7iUg9wExVBCNJkgJRjNGTEV85c6jFaWgJWAqGRK6oDcBMUgHFLDBtNBMkVHgSkQcLjoICvs7w+HHddVMyXPAp/PzA77Puc57/med2bnDN8573MAAAAAoCAKWgAAAACAgihoAQAAAAAKoqAFAAAAACiIghYAAAAAoCAKWgAAAACAgihoAQAAAAAKoqAFAAAAACiIghYAAAAAoCAKWgAAAACAgihoAQAAAAAKoqAFAAAAACiIghYAAAAAoCAKWgAAAACAgihoAQAAAAAKoqAFAAAAACiIghYAAAAAoCAKWgAAAACAgihoAQAAAAAKoqAFAAAAACjIl4oOAAAAAPBZrVu3Lm+//XbRMfYJa9eurfYve0a9evXStGnTomNQiyloAQAAgL3Sli1b8qMf/SiVlZVFR9mn3H777UVH2KfUqVMnkyZNSllZWdFRqKUUtAAAAMBeqaysLOPHj3cHLbVavXr1lLN8IgUtAAAAsNfy1XFgb+chYQAAAAAABVHQAgAAAAAUREELAAAAAFAQBS0AAAAAQEE8JAxqsXXr1nka6R6ydu3aav+yZ9SrV89DGWA/49q057g2/W+4NgEAe5uSysrKyqJD8PFeeOGFJMkpp5xScBK+aFu2bMmwYcPiT5TarE6dOpk0aVLKysqKjgJ8AVyb2Bu4NgEAtcF/0+kpaGs5Be3+zV1K1HbuUoL9j2sTtZ1rEwBQG/w3nZ4lDqAW858LAGob1yYAANizPCQMAAAAAKAgCloAAAAAgIIoaAEAAAAACqKgBQAAAAAoiIIWAAAAAKAgCloAAAAAgIIoaAEAAAAACqKgBQAAAAAoiIIWAAAAAKAgCloAAAAAgIIoaAEAAAAACqKgBQAAAAAoiIIWAAAAAKAgCloAAAAAgIIoaAEAAAAACqKgBQAAAAAoiIIWAAAAAKAgCloAAAAAgIIoaAEAAAAACqKgBQAAAAAoiIJ2D1u1alUuvvjitG7dOh07dswtt9ySHTt2FB0LAAAAAKiFvlR0gH3J5s2bM3To0Bx33HEZP3581q1bl3HjxmX79u0ZO3Zs0fEAAAAAgFpGQbsHPfDAA3n77bczYcKEHHrooUmSnTt35oYbbsjw4cPTtGnTYgMCAAAAALWKJQ72oCVLlqR9+/ZV5WyS9OzZM7t27crSpUuLCwYAAAAA1EoK2j3o1VdfzQknnFBtrKysLI0bN86rr75aUCoAAAAAoLayxMEetGXLlpSVldUYb9CgQTZv3vyZ37eysjLvvPPO54kGAAAAAHxBKisrU1JS8qnmKmj3AhUVFVm5cmXRMQAAAACAT6lu3bqfap6Cdg8qKyvL1q1ba4xv3rw5DRo0+EzvWVFRkSQpLS39XNkAAAAAgC9GRUVFVa/3nyho96ATTjihxlqzW7duzZtvvlljbdpPa/et0J/2lmgAAAAAoFglJSWWOCjCGWeckd/+9rfV1qKdP39+6tSpk44dO36m92zTps2ejAgAAAAA1CIllZWVlUWH2Fds3rw5vXr1yvHHH5/hw4dn3bp1GTduXPr06ZOxY8cWHQ8AAAAAqGUUtHvYqlWr8rOf/SzLly9PvXr10q9fv1x++eWfelFgAAAAAGD/oaAFAAAAAChInaIDAAAAAADsrxS0AAAAAAAFUdACAAAAABREQQsAAAAAUBAFLQAAAABAQRS0AAAAAAAFUdACAAAAABREQQsAAAAAUBAFLbBPGj9+fMrLy9O5c+fs2rWrxvZBgwalvLw8Y8aMKSAdAPu78ePHp02bNkXHAIAqs2bNyrnnnpvTTjst3/jGN9KzZ89cc8012bhxY9HRYJ/3paIDAPyvlJaW5q233sqyZcvStm3bqvG1a9fmueeey8EHH1xgOgAAgNph0qRJ+cUvfpGLLrooo0aNSmVlZV5++eXMnj0769evz+GHH150RNinKWiBfVZpaWnat2+fuXPnVito586dm5NOOil16vgSAQAAwLRp09K/f/9q3zDs0qVLhg0b9pHfSAT2LO0EsE/r3bt3FixYkIqKiqqxOXPmpHfv3gWmAgAAqD22bNmSJk2afOQ2N7bA/56/MmCf1rVr1+zYsSNLly5Nkrzyyit56aWXctZZZxWcDAAAoHb4+te/ngceeCAPPvhg3nzzzaLjwH5HQQvs0w466KB069Ytc+fOTfL+3bNt2rTJ0UcfXXAyAACA2uH6669PgwYNcu2116ZTp07p3r17brzxxqxZs6boaLBfUNAC+7zevXvniSeeyPbt2zNv3rz06tWr6EgAAAC1RosWLTJnzpzceeedufDCC3PIIYdk2rRp6du3b1auXFl0PNjnKWiBfV6nTp1SWlqaX//611mzZk169uxZdCQAAIBapW7duunSpUuuueaazJw5M5MnT8727dszceLEoqPBPk9BC+zzSktL853vfCd333132rVrl0aNGhUdCQAAoFbr3LlzWrZsmVWrVhUdBfZ5Xyo6AMAXYeDAgdm4cWPOO++8oqMAAADUKhs2bKhxI8v27dvzr3/9K82bNy8oFew/FLTAfqFVq1a54447io4BAFV27tyZ+fPn1xhv1apVjjzyyAISAbC/6tOnT7p27ZpOnTqlSZMmWbduXX7/+9/nrbfeytChQ4uOB/s8BS0AABTg3XffzejRo2uM33LLLenXr18BiQDYX40cOTKLFi3KuHHjsmnTphx22GEpLy+vWiYO+N8qqaysrCw6BAAAAADA/shDwgAAAAAACqKgBQAAAAAoiIIWAAAAAKAgCloAAAAAgIIoaAEAAAAACqKgBQAAAAAoiIIWAAAAAKAgCloAAAAAgIIoaAEAgCpDhgzJkCFDio4BALDf+FLRAQAA4OO88cYbmTx5cpYuXZr169entLQ0LVq0SM+ePfPd7343X/7yl4uOuNdYs2ZNJk6cmGXLlmXdunUpKyvLcccdl7Zt22bUqFFFxwMA2G+VVFZWVhYdAgAAPmzx4sUZPXp06tatm379+qVFixapqKjI3/72tzz22GPp379/fvaznxUdc6/w+uuv59xzz82BBx6Yc845J82aNcv69evz4osvZsmSJXnhhReq5u7YsSNJUrdu3aLiAgDsV9xBCwBArbN69epcfvnlOfLII3PPPfekSZMmVdsGDx6c119/PYsXLy4u4F7m7rvvzjvvvJOZM2fmqKOOqrZt48aN1V4rZgEAvljWoAUAoNaZPHly3nnnndx0003Vytndjj322AwdOrTq9XvvvZeJEyemR48eOfnkk9OtW7f88pe/rLobdLdu3bpl+PDheeaZZzJgwIC0atUqffr0yTPPPJMkeeyxx9KnT5+ccsopGTBgQF588cVq+48ZMyZt2rTJ6tWrc8kll6R169bp1KlTJkyYkA9/MW3KlCkZNGhQ2rZtm1atWmXAgAGZP39+jXMpLy/P//3f/2XhwoXp3bt3Tj755PTq1StLliypmvP000+nvLw8jz/+eI39Z8+enfLy8ixfvvxjP8833ngjTZs2rVHOJsnhhx9e7fWH16Dt1q1bysvLP/Jn9+eWJOvWrcvVV1+dDh06VJ3DQw899LGZAAB4nyUOAACodc4444zUrVs3Cxcu/FTzx4wZkxkzZuTMM89M27Zt8/zzz2fmzJnp0aNHJk6cWDWvW7duqVu3brZt25ZBgwalfv36ueuuu7J169bccMMNue2223L++ecnSe688840bNgw8+fPT506daqOM2/evBxxxBE59dRTc+qpp+bJJ5/MokWLcumll2b06NFVx+rSpUu6deuW5s2bp6KiInPnzs3zzz+f3/3ud/nWt75VNa+8vDwtW7bMxo0bc8EFF6RevXqZNm1aNmzYkEWLFuWwww5LZWVlunbtmlatWuX222+vdu4/+MEP8tprr31kebvb2LFj89BDD2XKlClp3779J36Wu8vZadOmJUkWLlyYt99+u9qce+65JytXrszMmTNTXl6eDRs25JxzzklJSUkGDhyYhg0bZsmSJfnTn/6Uq6++OhdddNEnHhMAYH9miQMAAGqVbdu2Zd26denevfunmv+Pf/wjM2bMyMCBA3PjjTcmeX8ZhIYNG+auu+7K008/nXbt2lXNf+211/LAAw+kTZs2SZLmzZvnkksuyXXXXZdHH300Rx55ZJKkQYMGGTt2bJYtW5a2bdtW7f/uu++mc+fOufbaa5MkF1xwQUaMGJFJkyZlyJAhadiwYZJkwYIF1R5iNnjw4AwYMCBTp06tVtAmyapVqzJv3rwcc8wxSZK2bdumX79+mTt3br73ve+lpKQkffv2zdSpU7N169YccsghSZJNmzZl6dKlGTFixCd+RkOGDMkjjzySiy66KF/96ldz+umnp23btunYsWMOOuigT9y3R48e1V4/+uijWbFiRUaNGpXy8vIkyW233ZadO3dm9uzZOeyww5Ik559/fq644opMmDAhgwYN8kA3AICPYYkDAABqlW3btiVJ6tWr96nm//nPf06SXHzxxdXGv//971fbvlvz5s2rytkkOfXUU5Mk7dq1qypnPzi+evXqGsccPHhw1e8lJSUZPHhwKioq8tRTT1WNf7CQ3Lx5c7Zu3ZrTTjutxrIJSdKhQ4eqcjZJWrZsmfr161c7dr9+/bJjx45qyyTMmzcv7733Xvr27VvjPT/opJNOysyZM9O3b9+sXbs29957by677LJ06NAhf/zjHz9x3w965ZVX8pOf/CTdu3fPpZdemiSprKzMY489lm7duqWysjKbNm2q+unUqVO2bt2aFStWfOpjAADsb9xBCwBArVK/fv0kqfG1+o+zdu3a1KlTp1rBmSSNGzdOWVlZ1q5dW238iCOOqPZ6992oX/nKVz4yx5YtW6qN16lTJ0cffXS1seOPP74qy26LFi3Kb37zm6xcubLaWrglJSU1zuHDmZL37+D94LFPPPHEnHLKKZk9e3YGDhyY5P31Z1u3bp1jjz22xv4fdvzxx+fWW2/Nzp0788orr2Tx4sWZPHlyrrvuujRr1iwdOnT4xP23bduWkSNHpmnTprnllluqzmPTpk3ZsmVLpk+fnunTp3/kvps2bfqP+QAA9lcKWgAAapX69eunSZMmefnll/+r/T6q+PwoBxxwwH81/lke2fDss8/mhz/8YU4//fRcf/31ady4cUpLS/Pwww9nzpw5n/nYZ599dm666ab8+9//zo4dO/Lcc89l7Nix/1W2Aw44oOohX61bt86FF16Y2bNn/8eCdsyYMVm/fn0efPDBqvI6SXbt2pUk6du3b/r37/+R++5eCgEAgJoUtAAA1Dpdu3bN9OnTs3z58mrLEXyUo446Krt27crrr7+eE088sWp8w4YN2bJlS4466qg9mm3Xrl1ZvXp11V2zyfvr2u7Okry//uyBBx6YKVOmpG7dulXzHn744c917LPOOivjxo3LnDlzsn379pSWlqZnz56f+f1OPvnkJMn69es/cd6dd96ZhQsXZsKECdU+4yRp2LBh6tWrl127dv3HkhcAgJqsQQsAQK0zbNiwHHzwwbn22muzYcOGGtvfeOON3HPPPUmSLl26JEnV692mTp1abfuedN9991X9XllZmfvuuy+lpaVp3759kvfvUi0pKcnOnTur5q1ZsyZPPPHE5zpuw4YN07lz58yaNSuzZ89Op06dqh5K9kmeffbZVFRU1BjfvT7vB8vmD/vLX/6SX/3qVxkxYkSNB4Yl75/rmWeemQULFuSf//xnje2WNwAA+GTuoAUAoNY55phj8vOf/zyXX355zjrrrPTr1y8tWrTIjh07snz58syfPz8DBgxI8v4Dtfr375/p06dny5YtOf300/PCCy9kxowZ6dGjR9q1a7dHsx144IF58sknc9VVV6VVq1Z58skns3jx4owYMaKqLO3SpUumTp2aYcOGpXfv3tm4cWP+8Ic/5JhjjslLL730uY5/9tlnZ9SoUUmS0aNHf6p9Jk2alBUrVuTb3/521XIDL774YmbOnJlDDz00Q4cO/dh9r7jiijRs2DDHHXdcHnnkkWrbOnbsmEaNGuXHP/5xnnnmmZx33nkZOHBgmjdvns2bN2fFihV56qmn8te//vUzni0AwL5PQQsAQK3UvXv3zJo1K1OmTMkTTzyR+++/P3Xr1k15eXnGjBmT8847r2rujTfemGbNmmXGjBlZuHBhGjVqlOHDh2fkyJF7PNcBBxyQyZMn56c//WluvfXW1KtXLyNHjsxll11WNad9+/a56aabMmnSpNx8881p1qxZrrzyyqxdu/ZzF7Rdu3ZNgwYNsmvXrnTv3v1T7TN8+PDMmTMny5Yty+zZs7N9+/Y0btw4vXr1yqWXXlrjoWcf9NZbbyVJrrrqqhrb7r333jRq1CiNGjXKgw8+mIkTJ+bxxx/P/fffn0MPPTTNmzfPlVde+dlOFABgP1FS+VmeegAAAPuhMWPGZMGCBVm+fHlhGd5777107tw5Xbt2zc0331xYDgAA9gxr0AIAwF5k4cKF2bRpU84+++yiowAAsAdY4gAAAPYCf//73/PSSy/ljjvuyNe+9rV885vfLDoSAAB7gIIWAAD2Avfff39mzZqVli1bZty4cUXHAQBgD7EGLQAAAABAQaxBCwAAAABQEAUtAAAAAEBBFLQAAAAAAAVR0AIAAAAAFERBCwAAAABQEAUtAAAAAEBBFLQAAAAAAAVR0AIAAAAAFERBCwAAAABQkP8HQWH+gbYjUEsAAAAASUVORK5CYII=\n"},"metadata":{}},{"output_type":"stream","name":"stderr","text":[":4: FutureWarning: \n","\n","Passing `palette` without assigning `hue` is deprecated and will be removed in v0.14.0. Assign the `x` variable to `hue` and set `legend=False` for the same effect.\n","\n"," sns.boxplot(\n"]},{"output_type":"display_data","data":{"text/plain":["
"],"image/png":"iVBORw0KGgoAAAANSUhEUgAABWgAAAMQCAYAAAC60ozSAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAACK7klEQVR4nOzdebxVZb0/8M/hcA6iDIIeSREUVMAEFOmKBuGQ86y3UivRNIdKTcWr5VB6r6VRDqFWgFiopWZWV3HOStOISpxKcQIVJ8SJWc6Bs39/8GNftweV4cjCw/v9evk6e6313c/67nU2W/3w7GdVlUqlUgAAAAAAWOVaFd0AAAAAAMCaSkALAAAAAFAQAS0AAAAAQEEEtAAAAAAABRHQAgAAAAAUREALAAAAAFAQAS0AAAAAQEEEtAAAAAAABRHQAgAAAAAUREALALCCDj/88Bx++OFFt7FSXnzxxfTu3Tu//e1vP/Jz/fa3v03v3r3z4osvlvftsssuOe644z7ycyfJxIkT07t370ycOHGVnO/dVuXrXN307t07l112WdFtAACstloX3QAAwKry5JNP5oorrshjjz2W119/Peuuu24233zz7LLLLh/7oHWJ3r17lx9XV1enXbt22XjjjbPtttvm0EMPzeabb94s5/nlL3+Ztm3b5uCDD26W8ZrT6tzbR+nFF1/MZz/72fc9Pnz48Bx77LGrsKM116RJk/LAAw/kiCOOSIcOHd63buLEiRk2bNgyjfnkk082V3sAwGpGQAsArBEmTZqUYcOGZaONNsrnP//51NXV5ZVXXskjjzySq6++usUEtEkyePDgHHDAASmVSpkzZ04mT56c3//+97nuuuty2mmn5Stf+Uq5tmvXrnn00UfTuvXy/Wfhddddl06dOi1XCHrAAQdkn332SW1t7XKda3m9X2//8R//kUcffTQ1NTUf6fmLtu+++2bo0KFN9n/yk58soJs100MPPZTLL788Bx100AcGtJtttllGjBhRse/iiy/O2muvneOPP/6jbhMAWE0IaAGANcLPfvaztG/fPr/5zW+aBCZvvPFGQV39n4ULF6axsbFZwstNN900BxxwQMW+4cOH52tf+1ouvPDC9OzZMzvuuGOSpKqqKm3atFnpc36QefPmZe211051dXWqq6s/0nN9kFatWn3kr3V18MlPfrLJ75/V0/rrr9/kdzVmzJh06tTJ7xAA1iDWoAUA1ggvvPBCNt9886XOZltvvfUqtm+66aYMGzYsO+ywQ/r27Zu99947v/rVrz70HPX19fnxj3+cgw8+OAMHDsw222yTL37xi/nb3/5WUbdk3dexY8fmF7/4RXbdddf069cvjz76aLbZZpucf/75TcZ+9dVXs+WWW2bUqFHL+coX69SpUy6++OK0bt06P/3pT5v08u41aGfMmJFvf/vbGTp0aPr27ZshQ4bka1/7Wnnt2F122SVPP/10/v73v6d3797p3bt3eQbyknVm//73v+fcc8/NDjvsUA6Dl7YG7RL3339/DjjggPTr1y9777137rrrrorjl112WcXyDUu8d8wP6u391qC9/fbbc/DBB6d///4ZNGhQTjvttEyfPr2i5lvf+lYGDBiQ6dOn5+tf/3oGDBiQ7bffPj/4wQ+yaNGiZfslfMjrnDZtWnr37p1f/OIXTZ43adKk9O7dO+PHj1/mc32QJWviTpw4sfza99tvv/K1ueuuu7LffvulX79+Ofjgg/P4449XPH/J9Zg2bVqOPvrobLPNNhkyZEguv/zylEqlDz3/448/nq9+9avZdtttM2DAgBxxxBF5+OGHy8eX51oseW9MnTo1p512WgYOHJjtt98+l156aUqlUl555ZV87Wtfy7bbbpvBgwfnqquuajJmfX19Ro4cmd122y19+/bNjjvumBEjRqS+vr6irnfv3vnv//7v/OEPf8i+++6bvn37Zp999sl9991XrrnsssvKs2I/+9nPlt+HS3vff5hSqZRddtklX/va15ocW7BgQQYOHJjvfOc7Sf7v/X3bbbfl4osvzuDBg7PNNtvk+OOPzyuvvNLk+Y888kiOPvroDBw4MFtvvXW+/OUv58EHH1zuHgGAlSegBQDWCF27ds2///3vPPXUUx9ae91116Vr16457rjj8q1vfSsbbrhhzjvvvPzyl7/8wOfNmTMnN954Y7bbbrucdtppOeGEE/Lmm2/mq1/9ap544okm9b/97W9z7bXX5gtf+ELOOOOMbLTRRtl1111z++23Nwn9xo8fn1KplP3222/5Xvi7bLTRRvmP//iPPPLII5kzZ8771p144om5++67c/DBB+e73/1uDj/88MydO7cc8px55pn5xCc+kZ49e2bEiBEZMWJEk69jn3feeXn22WfzjW98I8ccc8wH9vXcc8/llFNOydChQzN8+PBUV1fnm9/8Zh544IHlfo3L0tu7/fa3v83JJ5+cVq1a5dRTT80XvvCF3H333TnssMMya9asitpFixbl6KOPzrrrrpvTTz892223Xa666qrccMMNy9Tbh73Obt26Zdttt83NN9/c5Lm33HJL1llnnQ9cY3aJ+fPn580332zyz8KFCyvqnn/++QwfPjy77LJLTj311MycOTPHH398br755lxwwQXZb7/9cuKJJ+aFF17IySefnMbGxibX46tf/WrWW2+9/Nd//Vf69u2byy67LCNHjvzA/p5++ul86UtfyuTJk/PVr361HP4ffvjheeSRR1b4WpxyyikplUoZPnx4tt566/z0pz/NuHHj8pWvfCVdunTJaaedlu7du+cHP/hB/vGPf5Sf19jYmK997Wu56qqrsvPOO+ecc87JrrvumnHjxuXkk09ucv4HH3ww5557bvbee+/813/9VxYsWJCTTjopb731VpJkt912y7777psk+fa3v11+H3bu3PkDr8vSVFVVZb/99stf/vKXvP322xXH/vjHP2bOnDnZf//9K/b/9Kc/zZ///Occc8wxOfzww/PXv/41Rx55ZN55551yzYQJE/KlL30pc+fOzQknnJBTTjkls2bNyhFHHJFHH310ufsEAFZSCQBgDXD//feXttxyy9KWW25ZOuSQQ0ojRowo/eUvfynV19c3qZ0/f36TfUcddVTps5/9bMW+L3/5y6Uvf/nL5e2FCxeWFixYUFEzc+bM0qc//enSt7/97fK+adOmlXr16lXadtttS2+88UZF/V/+8pdSr169Svfee2/F/v3226/iXO+nV69epfPOO+99j59//vmlXr16lZ544omKXm666aZyv7169SpdeeWVH3ieffbZZ6n93HTTTaVevXqVDjvssNLChQuXemzatGnlfTvvvHOpV69epTvvvLO8b/bs2aXBgweXDjzwwPK+kSNHlnr16vW+53v3mO/X29/+9rdSr169Sn/7299KpVKpVF9fX9phhx1K++67b+mdd94p1/3pT38q9erVq/TjH/+4vO+MM84o9erVq3T55ZdXjHnggQeWDjrooKYX6D2W9XVef/31pV69epWeeeaZ8r76+vrSoEGDSmecccYHnmPJ7/L9/nnooYea9DNp0qTyviXvvf79+5deeumlJj0tuW7vvh7/8z//U97X2NhYOvbYY0tbbbVVxfu6V69epZEjR5a3v/71r5e22mqr0gsvvFDeN3369NKAAQNKX/rSl5b7Wix5b5xzzjnlfQsXLiwNHTq01Lt379KoUaPK+2fOnFnq379/xfN///vfl/r06VP6xz/+UXE9r7vuulKvXr1KDz74YMVr2WqrrUrPP/98ed8TTzxR6tWrV+maa64p77vyyiubvC+X1Xvfv1OmTCn16tWr9Ktf/aqi7vjjjy/tvPPOpcbGxlKp9H/v78985jOl2bNnl+tuu+22Uq9evUrjxo0rlUqLf0+777576aijjio/t1Ra/Lm3yy67lL7yla8sd88AwMoxgxYAWCMMHjw4119/fXbZZZdMnjw5V155ZY4++ugMHTo099xzT0XtWmutVX48e/bsvPnmm9luu+0ybdq0zJ49+33PUV1dXV5DtrGxMW+//XYWLlyYvn37NvmKeJLsvvvuTWbVffrTn84GG2yQW265pbzvqaeeypNPPtlkptyKWHvttZMkc+fOXerxtdZaKzU1Nfn73/+emTNnrvB5vvCFLyzzerMbbLBBdtttt/J2u3btcuCBB+bxxx/PjBkzVriHD/Ovf/0rb7zxRg477LCKtWl32mmn9OzZM3/+85+bPOewww6r2B44cOAyf3V9WV7nXnvtlTZt2lT8/u+///689dZby/z7P+SQQ/Lzn/+8yT+bb755Rd3mm2+eAQMGlLe33nrrJMn222+fjTbaqMn+adOmNTnXl770pfLjqqqqfOlLX0pDQ0MmTJiw1N4WLVqUBx54ILvuumu6detW3r/BBhtk3333zYMPPlie3b281+Jzn/tc+XF1dXX69u2bUqlUsb9Dhw7p0aNHxWu54447stlmm6Vnz54VM4633377JGmyJManP/3pdO/evbzdp0+ftGvXbqnXpzn06NEjW2+9dcV1ePvtt/OXv/wl++23X6qqqirqDzzwwLRr1668veeee6auri733ntvkuSJJ57Ic889l/322y9vvfVW+fXOmzcvO+ywQ/7xj380mS0NAHy03CQMAFhj9O/fP5dffnnq6+szefLk/OEPf8gvfvGLfPOb38zvf//7coD14IMP5rLLLsvDDz+c+fPnV4wxe/bstG/f/n3P8bvf/S5XXXVVpk6dmoaGhvL+jTfeuEnt0va1atUq++23X6677rrMnz8/bdu2zS233JI2bdpkzz33XNGXXjZv3rwkyTrrrLPU47W1tTnttNPygx/8IIMHD87WW2+dnXbaKQceeGDq6uqW+TxLe23vZ5NNNmkSMm266aZJkpdeemm5zrs8Xn755SSLA7D36tmzZ5P1ONu0adMkUO/YseMyB9nL8jo7dOiQnXfeOePHjy9/vf6WW25Jly5dyoHhspzn05/+9IfWbbjhhhXbS97Xn/jEJyr2Lwn73rvkQ6tWrSpC1uT/ruVLL7201HO++eabmT9//lKv+WabbZbGxsa88sor2WKLLZb7Wrw7VF7yepb2O2vfvn3FcgHPP/98nn322eywww5L7fm9NxF873VLFr8P3nt9mtMBBxyQ//mf/8lLL72Url275o477khDQ8NSbyS2ySabVGxXVVVlk002Kf9OnnvuuSTJGWec8b7nmz17djp27Nh8LwAA+EACWgBgjVNbW5v+/funf//+2XTTTfPtb387d9xxR0444YS88MILOfLII9OzZ8/y+rM1NTW5995784tf/OIDZ5b97//+b771rW9l1113zdFHH5311lsv1dXVGTVq1FJn1717pu67HXjggRk7dmz5RkTjx4/PTjvt9IHB8LJ6+umnU11d/YEB6pFHHplddtklf/jDH3L//ffnxz/+cUaPHp1x48blk5/85DKd590zUpvDe4PNJZbnBl0ra1lnBK+sAw88MHfccUcmTZqUXr165Y9//GMOO+ywtGrVvF9+e7/X8377S8tw86/mtjzXYmn7luW1NDY2plevXvn2t7+91Nr3BtZFXJ999tknF1xwQW655ZbyOsF9+/ZNz549l3usJX2efvrp2XLLLZdas2SmPQCwaghoAYA1Wt++fZMkr732WpLFN96pr6/PT3/604oZee/9mvPS3HnnnenWrVsuv/zyikDxw26a9F69evXKJz/5ydxyyy35xCc+kZdffjlnn332co2xNC+//HL+8Y9/ZJtttqn4CvTSdO/ePUcddVSOOuqoPPfccznwwANz1VVX5Uc/+lGS9w9MV8Tzzz+fUqlUMeaSWX5du3ZNsvir6cniWZxLHi95Te+1rL0t+f1OnTq1yezJqVOnNpmRubKW5XUmyWc+85l07tw5t9xyS7beeuvMnz9/qTMli9bY2Jhp06ZVzIadOnVqksrX826dO3dO27Zty3XvNmXKlLRq1apihuqquBbdu3fP5MmTs8MOOzTb+7o5/3wkybrrrpuddtopt9xyS/bbb79MmjQpZ5555lJrn3/++YrtUqmU559/Pr17906S8qzndu3aLdNMawDgo2cNWgBgjfC3v/1tqTPclqzLuGQm2pLZce+unT17dm666aYPPcfSnvvII4/k4YcfXu5+DzjggDzwwAMZN25c1l133QwdOnS5x3i3t99+O6eeemoWLVqU448//n3r5s+fnwULFlTs6969e9ZZZ53U19eX97Vt27bZvtL92muv5e677y5vz5kzJ7///e+z5ZZblpc3WLLm5z/+8Y9y3bx58/L73/++yXjL2lvfvn2z3nrr5frrr694bffee2+effbZ7LTTTiv4ipZuWV5nkrRu3Tr77LNPbr/99vz2t79Nr1690qdPn2btpbn88pe/LD8ulUr55S9/mZqamvddLqC6ujqDBw/OPffcU7F27+uvv57x48dn4MCBFX95sCquxV577ZXp06fn17/+dZNj77zzTnlZkOXRtm3bJPnANauX1wEHHJBnnnkmI0aMSHV1dfbZZ5+l1v3+978vr+ObLF5jd8aMGeXPkL59+6Z79+656qqrlroW9ZtvvtlsPQMAy8YMWgBgjXD++edn/vz52W233dKzZ880NDRk0qRJuf3229O1a9ccfPDBSRbfTKympibHH398Dj300MydOzc33nhj1ltvvQ+9YdVOO+2Uu+66K9/4xjey00475cUXX8z111+fzTfffLlDnn333Tc//OEPc/fdd+ewww5LTU3NMj/3ueeey//+7/+mVCpl7ty5mTx5cu64447Mmzcv3/rWtz4w7H3uuedy5JFHZs8998zmm2+e6urq/OEPf8jrr79eEQhttdVWue666/KTn/wkm2yySTp37vy+odyH2XTTTXPWWWflsccey3rrrZebbropb7zxRi644IJyzeDBg7PRRhvlrLPOypQpU1JdXZ2bbropnTp1ajKLdll7q6mpyWmnnZZvf/vb+fKXv5x99tknb7zxRq6++up07do1Rx555Aq9npV5nUsceOCBueaaazJx4sScdtppy3Wexx9/PP/7v//bZH/37t0rbgq2stq0aZO//OUvOeOMM9K/f//85S9/yZ///Occf/zxTdZ9fbeTTz45f/3rX/PFL34xX/ziF1NdXZ0bbrgh9fX1+a//+q8m9StzLZbFAQcckNtvvz3f/e53M3HixGy77bZZtGhRpkyZkjvuuCNXXnll+vXrt1xjbrXVVkmSSy65JHvvvXdqamqy8847r9TSATvuuGPWXXfd3HHHHRk6dGjWW2+9pdZ17NgxX/ziF3PwwQfnjTfeyLhx47LJJpvkC1/4QpLFS0Gcf/75OeaYY7Lvvvvm4IMPTpcuXTJ9+vRMnDgx7dq1y89+9rMV7hMAWH4CWgBgjXD66afnjjvuyL333psbbrghDQ0N2WijjfLFL34xX/va18pfm+/Zs2dGjhyZSy+9ND/4wQ+y/vrr57DDDkvnzp3f9yvFSxx88MF5/fXXc8MNN+T+++/P5ptvnh/+8Ie544478ve//325+l1//fUzePDg3Hvvvcv9le4HHnggDzzwQFq1apV27dpl4403zoEHHphDDjmkfCO09/OJT3wi++yzTyZMmJCbb7451dXV6dmzZy699NLsscce5bpvfOMbefnll3PllVdm7ty52W677VYqoD3nnHMyYsSITJ06NRtvvHEuueSSfOYznynX1NTU5PLLL895552XH//4x6mrq8sRRxyRDh06NFk7dHl6O/jgg7PWWmtlzJgx+dGPfpS11147u+66a/7rv/6rYimF5rAsr3OJvn37Zosttsizzz6b/ffff7nOM378+IwfP77J/oMOOqhZA9rq6upceeWVOffcc/PDH/4w66yzTk444YR84xvf+MDnbbHFFvnlL3+Ziy66KKNGjUqpVEr//v3zwx/+MFtvvXWT+pW5FsuiVatWueKKK/KLX/wi//u//5u77747bdu2zcYbb5zDDz98qTc0+zD9+/fPN7/5zVx//fX5y1/+ksbGxtxzzz0rFdDW1tZm7733zq9+9asP/Ew4/vjj8+STT2b06NGZO3dudthhh3z3u98tz+pNkkGDBuWGG27IT37yk1x77bWZN29e6urq0r9//xxyyCEr3CMAsGKqSkWs9g8AwIf6xje+kaeeeqria/GsOQ488MB07Ngx48aNK7qVJr71rW/lzjvvzEMPPbRKzrc6X4tV6fvf/35+85vf5IEHHqgIXJPF62QPGzYsP/7xj7PnnnsW1CEAsCKsQQsAsBp67bXXVmj2LC3DY489lieeeCIHHnhg0a0UzrVYbMGCBbn55puzxx57NAlnAYCPN0scAACsRqZNm5ZJkyblN7/5TVq3bu3rxmuYp556Kv/+979z1VVXpa6uLnvvvXfRLRXGtVjsjTfeyF//+tfceeedefvttzNs2LCiWwIAmpkZtAAAq5F//OMfOf300/Piiy/mwgsvTF1dXdEtsQrdeeed+fa3v52FCxfm4osvTps2bYpuqTCuxWLPPPNMTjvttEyaNClnn312ttxyy6JbAgCamTVoAQAAAAAKYgYtAAAAAEBBBLQAAAAAAAVxk7DV3EMPPZRSqZSampqiWwEAAAAAlkFDQ0OqqqoyYMCAD60V0K7mSqVSLBMMAAAAAB8fy5PnCWhXc0tmzvbr16/gTgAAAACAZfHYY48tc601aAEAAAAACiKgBQAAAAAoiIAWAAAAAKAgAloAAAAAgIIIaAEAAAAACiKgBQAAAAAoiIAWAAAAAKAgAloAAAAAgIIIaAEAAAAACiKgBQAAAAAoiIAWAAAAAKAgAloAAAAAgIIIaAEAAAAACiKgBQAAAAAoiIAWAAAAAKAgAloAAAAAgIIIaAEAAAAACiKgBQAAAAAoiIAWAAAAAKAgAloAAAAAgIIIaAEAAAAACiKgBQAAAAAoiIAWAAAAAKAgAloAAAAAgIIIaAEAAAAACtK66AaA1UtDQ0PuvPPOTJ8+PV26dMkee+yRmpqaotsCAAAAaJEEtEDZNddck/Hjx6exsbFi37777pvDDz+8wM4AAAAAWiYBLZBkcRB78803p2PHjjn00EMzcODAPPjgg7n++utz8803J4mQFgAAAKCZWYMWSENDQ8aPH5+OHTvmiiuuyIYbbph///vf2XDDDXPFFVekY8eOGT9+fBoaGopuFQAAAKBFMYMWyJ133pnGxsYMGjQop5xySmbMmFE+VldXl+222y5333137rzzzuy7774FdgoAAADQsghogUyfPj1Jctddd2XgwIE5+eST061bt0ybNi2//e1vc/fdd1fUAQAAANA8LHEApK6uLknSvXv3nH766enVq1fatm2bXr165fTTT0/37t0r6gAAAABoHgJaIJtsskmS5M0330xjY2PFscbGxrz55psVdQAAAAA0DwEtkNmzZydJ5syZk+OPPz5333133nzzzdx99905/vjjM2fOnIo6AAAAAJqHNWiBdOrUKUnymc98Jg888EBGjx5dPtaqVasMGTIk999/f7kOAAAAgOYhoAXSp0+f1NXVZd68ebnmmmty1113Zfr06enSpUt23333XHzxxdlggw3Sp0+folsFAAAAaFEscQCkuro6RxxxRCZNmpSLL744W2yxRb74xS9miy22yMUXX5xJkyZl2LBhqa6uLrpVAAAAgBalqlQqlYpugvf32GOPJUn69etXcCesCSZOnJhx48ZlxowZ5X0bbLBBhg0blkGDBhXYGQAAAMDHx/JkepY4AMoGDRqUT33qU5k8eXLeeuutdOrUKX369DFzFgAAAOAjIqAFKrz88ss577zzUiqVUlVVlYsuuijdunUrui0AAACAFklAC5R9/vOfr9gulUo59dRTkyQ33nhjES0BAAAAtGhuEgYkqQxnq6urc9BBB1UsbfDe8BYAAACAlWcGLZBp06aVH19yySXZeOONkyRf/OIX8+KLL+aUU04p11nuAAAAAKD5mEELZPjw4UkWz5xdEs4usfHGG5dn0i6pAwAAAKB5CGiBlEqlJMn++++/1OP77LNPRR0AAAAAzUNAC6SqqipJcvPNNy/1+K233lpRBwAAAEDzENACueiii5IkixYtyosvvlhx7MUXX8yiRYsq6gAAAABoHm4SBlTc+OuUU05JdXV19tlnn9x6663lcPa9dQAAAACsPDNogSTJjTfeWH68aNGi3HzzzRXh7LuPAwAAANA8zKAFym688cZMmzYtw4cPT6lUSlVVVS666CIzZwEAAAA+IgJaoEK3bt3y61//uug2AAAAANYIljgAAAAAACiIgBYAAAAAoCACWgAAAACAgghoAQAAAAAKIqAFAAAAACiIgBYAAAAAoCACWgAAAACAgghoAQAAAAAKIqAFAAAAACiIgBYAAAAAoCACWgAAAACAgghoAQAAAAAKIqAFAAAAAChI66IbAFYvixYtyuTJk/PWW2+lU6dO6dOnT6qrq4tuCwAAAKBFEtACZRMnTsy4ceMyY8aM8r66urocccQRGTRoUIGdAQAAALRMljgAkiwOZy+66KJ079493/ve93L11Vfne9/7Xrp3756LLrooEydOLLpFAAAAgBZHQAtk0aJFGTduXLbddtucfvrp6dWrV9q2bZtevXrl9NNPz7bbbpurr746ixYtKrpVAAAAgBZFQAtk8uTJmTFjRg4++OC0alX5sdCqVascdNBBee211zJ58uSCOgQAAABomQS0QN56660kSbdu3ZZ6vHv37hV1AAAAADQPAS2QTp06JUmmTZu21OMvvPBCRR0AAAAAzUNAC6RPnz6pq6vLb3/72yxYsCDjx4/P2LFjM378+CxYsCC/+93vssEGG6RPnz5FtwoAAADQorQuugGgeNXV1TniiCPyox/9KF/+8pcrjo0bNy5Jctppp6W6urqI9gAAAABaLDNogSTJU089lSSpqqqq2L9ke8lxAAAAAJqPGbRAGhoaMn78+HTs2DE/+clP8vTTT+ett95Kp06dssUWW+TrX/96xo8fn0MPPTQ1NTVFtwvQrBYtWpTJkyeXP/f69OnjGwMAAMAqI6AFcuedd6axsTGHHnpoamtrs9VWW1UcP+SQQzJ69Ojceeed2XfffQvqEqD5TZw4MePGjcuMGTPK++rq6nLEEUdk0KBBBXYGAACsKSxxAGT69OlJkoEDBy71+JL9S+oAWoKJEyfmoosuSvfu3fO9730vV199db73ve+le/fuueiiizJx4sSiWwQAANYAAlogXbp0SZI8+OCD5eUOxo4dm/Hjx6ehoSEPPvhgRR3Ax92iRYsybty4bLvttjn99NPTq1evtG3bNr169crpp5+ebbfdNldffXUWLVpUdKsAAEALZ4kDIHvssUeuueaa/PznP8+YMWPS2NhYPnbNNdekdevWadWqVfbYY48CuwRoPpMnT86MGTNy8sknp1Wryr+vbtWqVQ466KCcffbZmTx5cpNlXwAAAJqTGbRAampq0qNHj9TX16dUKuUzn/lMRowYkc985jMplUqpr69Pjx493CAMaDHeeuutJEm3bt2Werx79+4VdQAAAB8VM2iBNDQ0ZOrUqamtrU19fX3+8pe/5C9/+Uv5eG1tbaZOnZqGhgYhLdAidOrUKUkybdq09OrVq8nxF154oaIOAADgo2IGLZA777wzjY2N2XHHHVNXV1dxrK6uLjvuuGMaGxtz5513FtQhQPPq06dP6urq8tvf/rZiWZckaWxszO9+97tssMEG6dOnT0EdAgAAawoBLZDp06cnSf7whz8s9W7mf/jDHyrqAD7uqqurc8QRR2TSpEkZMWJEnnzyycyfPz9PPvlkRowYkUmTJmXYsGGprq4uulUAAKCFs8QBUJ41271795x++unlG+YsuZv5f/3Xf+WFF15oMrsW4ONs0KBBGT58eMaNG5ezzz67vH+DDTbI8OHDM2jQoAK7AwAA1hQCWiCbbLJJkuT1119PY2NjxR3NGxsb88Ybb1TUAbQUgwYNyqc+9alMnjw5b731Vjp16pQ+ffqYOQsAAKwyAlogs2fPTpLMnTs3xx9/fA455JAMHDgwDz74YG644YbMnTu3og6gJamurs5WW21VdBsAAMAaSkALlO9SPmTIkPz1r3/N6NGjy8datWqVIUOG5P7773c3cwAAAIBmJqAFyncznz9/fq6++urcfffdmT59erp06ZLddtstl1xyibuZAwAAAHwEWn14CdDSvftu5pdcckm22GKLfPGLX8wWW2yRSy65xN3MAQAAAD4iVaVSqVR0E7y/xx57LEnSr1+/gjthTTBx4sSMGzcuM2bMKO/bYIMNMmzYMHczBwAAAFhGy5PpWeIAKBs0aFC22WabXHPNNXnllVey4YYb5vDDD0+bNm2Kbg0AAACgRRLQAmXXXHNNxo8fn8bGxiTJo48+mrvvvjv77rtvDj/88IK7AwAAAGh5BLRAksXh7M0335yOHTvm0EMPzcCBA/Pggw/m+uuvz80335wkQloAAACAZuYmYUAaGhoyfvz4dOzYMT/72c+y6667plOnTtl1113zs5/9LB07dsz48ePT0NBQdKsAAAAALYqAFsidd96ZxsbGHHrooWndunJifevWrXPIIYeksbExd955Z0EdAgAAALRMAlog06dPT5IMHDhwqceX7F9SBwAAAEDzENAC6dKlS5LkwQcfXOrxJfuX1AEAAADQPFbbgHbu3LkZOnRoevfunccee6zi2I033pg99tgj/fr1y/77758//elPTZ4/e/bsnHnmmdluu+0yYMCAnHTSSXnttdea1E2aNCmHHHJI+vfvn5133jmjR49OqVSqqCmVShk9enR22mmn9O/fP4ccckgefvjhJmNNnz49J554YgYMGJDtttsuZ511VubMmbNyFwJWgT322COtWrXK9ddfn4ULF1YcW7hwYW644Ya0atUqe+yxR0EdAgAAALRMq21A+5Of/CSLFi1qsv/WW2/NOeeck7322itjxozJNttskxNOOKFJYHryySfngQceyLnnnpsf/ehHmTp1ao455piK8On555/P0Ucfnbq6uowaNSpHHHFERo4cmauuuqpirDFjxmTkyJE58sgjM2rUqNTV1eWoo47KtGnTyjUNDQ356le/mueeey4XXXRRzj333Nx///0ZPnx4814Y+AjU1NRk3333zcyZM3P88cdn3LhxueOOOzJu3Lgcf/zxmTlzZvbdd9/U1NQU3SoAAABAi9L6w0tWvWeffTa/+tWvcsYZZ+S73/1uxbGRI0dmn332ycknn5wk2X777fPUU0/liiuuyJgxY5IkDz30UO6///6MHTs2Q4YMSZL06NEje++9d+66667svffeSZKxY8emU6dOufjii1NbW5sddtghb775Zn72s5/l8MMPT21tbRYsWJBRo0blqKOOypFHHplk8Xqce+65Z8aOHZtzzz03yeKbLD399NO57bbb0rNnzyRJhw4dcvTRR+fRRx9N//79P+KrBivn8MMPz8svv5x//vOfGT9+fMWxT33qUzn88MML6gwAAACg5VotZ9Cef/75OfTQQ9OjR4+K/dOmTctzzz2Xvfbaq2L/3nvvnQkTJqS+vj5Jct9996VDhw4ZPHhwuaZnz57Zcsstc99995X33XffffnsZz+b2trairFmzZqVhx56KMniJRDmzJlTcc7a2trstttuTcbq3bt3OZxNksGDB2fdddfNvffeuzKXA1aJiRMn5p///OdSj/3zn//MxIkTV3FHAAAAAC3fahfQ3nHHHXnqqafyjW98o8mxKVOmJEmT4HazzTZLQ0NDecmBKVOmpEePHqmqqqqo69mzZ3mMefPm5ZVXXqkIVJfUVFVVleuW/Hxv3WabbZaXX34577zzTrnuvTVVVVXp0aNHeQxYXS1atChXXHFFkqRjx4457rjjMnr06Bx33HHp2LFjkuSKK65Y6rIjAAAAAKy41WqJg/nz5+fCCy/MKaecknbt2jU5PnPmzCSLlw54tyXbS47PmjUr7du3b/L8jh075l//+leSxTcRW9pYtbW1adu2bcVYtbW1adOmTZNzlkqlzJw5M2uttdYHnnPJWCuqVCpl3rx5KzUGfJDHHnss8+fPzzrrrJOLL744rVsv/mj49Kc/ne222y4nnXRS5s6dm3/+85/p169fwd0CAAAArN5KpVKTyaPvZ7UKaH/6059mvfXWy3/+538W3cpqpaGhIU888UTRbdCC3X777UmSHXbYIU8//XST49tvv33uueee3H777eXwFgAAAID39+5lVT/IapO0vPTSS7nqqqtyxRVXlGe3Lpk1Om/evMydO7f8VevZs2enrq6u/NxZs2YlSfl4hw4d8uqrrzY5x8yZM8s1S2a7LjnXEvX19Zk/f37FWPX19VmwYEHFLNpZs2alqqqqom7OnDlLPeeGG264vJejQk1NTTbffPOVGgM+yF133ZUk6devX7bccssmx+fPn5977rknbdq0WepxAAAAAP7PM888s8y1q01A++KLL6ahoSHHHntsk2PDhg3L1ltvnYsuuihJ0/Vep0yZkpqamnTr1i3J4vViJ0yY0GQq8dSpU9OrV68kydprr50NN9ywyfqwU6dOTalUKo+/5OfUqVPTp0+finNutNFGWWuttcp1Tz31VMVYpVIpU6dOrbhZ2YqoqqrK2muvvVJjwAfZaqutMmnSpNx0003Zfvvt06rV/y1P3djYmN/97nflOu9FAAAAgA+2rMsbJKvRTcK23HLLXH311RX/fPvb306SnHfeefnud7+bbt26ZdNNN80dd9xR8dzbbrstO+ywQ3na8NChQzNz5sxMmDChXDN16tQ8/vjjGTp0aHnf0KFDc88996ShoaFirA4dOmTAgAFJkm233Tbt2rUrfwU8WbzkwF133dVkrMmTJ+e5554r75swYULefvvt7Ljjjs1wheCjs9dee6WqqiovvPBCLrzwwjz55JOZP39+nnzyyVx44YV54YUXUlVVlb322qvoVgEAAABalNVmBm2HDh0yaNCgpR7baqutstVWWyVJTjzxxJx22mnp3r17Bg0alNtuuy2PPvporr322nL9gAEDMmTIkJx55pk544wz0qZNm1xyySXp3bt3dt9993Ld0UcfnVtuuSXDhw/PYYcdlqeeeipjx47NKaecUg5727Rpk+OOOy6XXXZZOnfunF69euW6667L22+/naOPPro81h577JFRo0blxBNPzKmnnpr58+dnxIgR2WmnndK/f/+P4pJBs6mpqcl+++2Xm2++OQ8//HAeeuih8rElf+Oz3377paampqgWAQAAAFqk1SagXVb77rtv5s+fnzFjxmT06NHp0aNHLr/88vKM1yUuvfTSXHDBBfnOd76ThQsXZsiQITn77LMrbnC0ySabZOzYsbnwwgtz7LHHpnPnzjnppJNy1FFHVYx1zDHHpFQq5aqrrsqbb76ZLbfcMmPHji0vqZAsDriuvPLKnH/++Tn11FPTunXr7LbbbjnzzDM/2gsCzeTwww9PkowfPz6lUqm8v6qqKvvtt1/5OAAAAADNp6r07iSG1c5jjz2WZPHNm2BVWLBgQa655pq88sor2XDDDXP44YdX3CAPAAAAgA+2PJnex24GLfDRmThxYsaNG5cZM2YkSR599NFMmjQpRxxxxPsuQQIAAADAilttbhIGFGvixIm56KKL0r1793zve9/L1Vdfne9973vp3r17LrrookycOLHoFgEAAABaHAEtkEWLFmXcuHHZdtttc/rpp6dXr15p27ZtevXqldNPPz3bbrttrr766ixatKjoVgEAAABaFAEtkMmTJ2fGjBk5+OCD06pV5cdCq1atctBBB+W1117L5MmTC+oQAAAAoGUS0AJ56623kiTdunVb6vHu3btX1AEAAADQPAS0QDp16pQkmTZt2lKPv/DCCxV1AAAAADQPAS2QPn36pK6uLr/97W/T2NhYcayxsTG/+93vssEGG6RPnz4FdQgAAADQMglogVRXV+eII47IpEmTMmLEiDz55JOZP39+nnzyyYwYMSKTJk3KsGHDUl1dXXSrAAAAAC1KValUKhXdBO/vscceS5L069ev4E5YE0ycODHjxo3LjBkzyvs22GCDDBs2LIMGDSqwMwAAAICPj+XJ9MygBSq89+9s3rvkAQAAAADNR0ALJFk8e/aiiy5KXV1deSmD6urq1NXV5aKLLsrEiRML7hAAAACg5RHQAlm0aFHGjRuXUqmUJ554IosWLSrvf+KJJ1IqlXL11VeX9wMAAADQPAS0QCZPnlyx7uzSvPbaa5k8efIq6ggAAABgzdC66AaA4j311FPlx3379s2gQYNSW1ub+vr6TJw4Mf/617/KdVtttVVRbQIAAAC0OAJaINdff3358auvvpqxY8eWt9dff/2KuoMOOmiV9gYAAADQkglogTQ2NpYfb7zxxtluu+1SX1+f2travPzyy3n99deb1AEAAACw8gS0QFq1alUOXx9++OE8/PDD71sHAAAAQPORtgDZb7/9mrUOAAAAgGUjoAWy0UYbNWsdAAAAAMtGQAtkypQpzVoHAAAAwLIR0AIplUpJkrZt26ZTp04Vxzp16pS2bdtW1AEAAADQPNwkDEhVVVWSZP78+dlyyy1z0EEHpU2bNlmwYEEefvjhTJo0qaIOAAAAgOYhoAWyxRZb5M4770zbtm3z/PPPlwPZJFl//fXTtm3bzJ8/P1tssUWBXQIAAAC0PAJaIOuvv36SxTNoW7dunS233LJ87MUXX8z8+fMr6gAAAABoHgJaIH369EldXV3mzp2b2bNn54knnqg4vvbaa6ddu3bp06dPQR0CAAAAtExuEgakuro6m2yySebNm7fU4/PmzUv37t1TXV29ijsDAAAAaNkEtEAaGhryz3/+M0nTG4Et2f7nP/+ZhoaGVd4bAAAAQEsmoAVy6623Jklqa2vTqVOnimOdOnVKbW1tRR0AAAAAzUNAC5Rnz9bX12fOnDkVx+bMmZP6+vqKOgAAAACah4AWqFAqlT5wGwAAAIDm07roBoDidevWLU8++WSSpG/fvvnc5z6Xbt26Zdq0afnNb36Thx56qFwHAAAAQPMR0AJp165d+fETTzyRs846q7y91lprLbUOAAAAgJVniQMgb775ZvnxO++8U3Hs3dvvrgMAAABg5Qlogay//vrNWgcAAADAsrHEAZDOnTuXH/fu3Ts9e/ZMQ0NDampqMmXKlPL6tO+uAwAAAGDlCWiBXHXVVeXHU6dOLQeySVJbW1tRt8cee6zS3gAAAABaMkscAGlsbCw/LpVKFcfevf3uOgAAAABWnoAWSKtWrco/11133YpjnTp1qjgOAAAAQPOxxAGQiy++OCeffHIaGxvzrW99K48++mimT5+eLl26pH///hk+fHi5DgAAAIDmI6AF0rVr1/LjJWHsh9UBAAAAsPJ8XxlIkpx22mkrdRwAAACA5SegBbJo0aKMHj06SbLFFlukqqoqSVJVVZUtttgiSTJmzJgsWrSosB4BAAAAWiJLHAD597//nVmzZqV3794555xzcvfdd5fXoN1tt93yP//zP3nyySfz73//O/379y+6XQAAAIAWQ0AL5PHHH0+SdO7cOcOGDUtjY2P52DXXXJPtttuuXCegBQAAAGg+AlqgbMKECenYsWMOPfTQDBw4MA8++GCuv/76/O1vfyu6NQAAAIAWSUALpHfv3kmS6urq/OQnP0ltbW2SZNddd83QoUMzbNiwLFq0qFwHAAAAQPMQ0AKZNm1aksU3C/vRj36U2trazJkzJ+3atUt9fX355mDTpk3LgAEDimwVAAAAoEUR0AKZMWNG+fFDDz20THUAAAAArLxWRTcAFK9Lly7NWgcAAADAshHQAtl5550rtqurq7P55punurr6A+sAAAAAWDkCWiCjR4+u2F60aFGeeeaZ8tqz71cHAAAAwMoR0AL561//2qx1AAAAACwbNwkDytZZZ52MGjUqd999d6ZPn54uXbpkt912y7HHHpt58+YV3R4AAABAiyOgBdKqVas0NjZm7ty5qaqqyr777ls+Vl9fXw5nW7Uy6R4AAACgOQlogXzhC1/I9ddfnyT50pe+lMGDB6dnz56ZMmVKHnjggYo6AAAAAJqPgBZInz59KrYfeOCBimD2/eoAAAAAWDm+rwykT58+6dChwwfWdOjQQUALAAAA0MwEtMAyqaqqKroFAAAAgBZHQAtk8uTJmTVrVpKmQeyS7ZkzZ2by5MmrvDcAAACAlswatEBmzJiRZPEyBpdffnnuueeeTJ8+PV26dMlnP/vZnHDCCZk1a1a5DgAAAIDmIaAF8swzzyRZvBbt8OHDK4LY2267Lb17984//vGPPPPMM9lpp50K6hIAAACg5RHQAmV///vf07dv31RVVWXu3LlZZ511ssEGG+Qf//hH0a0BAAAAtEgCWiAbbLBB+fG//vWv8uO5c+fmtddeW2odAAAAACvPTcKAbLLJJs1aBwAAAMCyMYMWyCuvvFJ+3K5du+y0007p0qVLpk+fnj//+c+ZM2dOuW7rrbcuqk0AAACAFkdAC+Tmm29OsjicnTdvXsaPH18+1qpVq7Rr1y5z5szJzTffnD333LOoNgEAAABaHAEtkHnz5iVJPvGJT+S8887LXXfdlenTp6dLly7Zfffd853vfCdz5swp1wEAAADQPAS0QDp37py5c+fmmWeeyQ9/+MMsWLAgs2fPzvPPP59HHnkkzz77bLkOAAAAgOYjoAVy3nnn5aijjkqSPPzwwx9YBwAAAEDzaVV0A0Dx2rdvn1atPvjjoFWrVmnfvv0q6ggAAABgzSCgBTJ//vw0NjZ+YE1jY2Pmz5+/ijoCAAAAWDMIaIFceumlSZLWrVtn1KhRqaurS5s2bVJXV5dRo0aldevWFXUAAAAANA8BLZApU6YkST71qU/lrLPOyowZM7JgwYLMmDEjZ511VgYOHFhRBwAAAEDzcJMwIDU1NUmSv/3tb02Ovf7663n99dcr6gAAAABoHmbQAtlll13Kj9u3b5/jjjsuo0ePznHHHVdxY7B31wEAAACw8sygBdKjR4/y49mzZ+fXv/51fv/736e+vj6zZ89eah0AAAAAK88MWiB//etfK7bfeuutTJ8+PW+99dYH1gEAAACwcgS0QN55551mrQMAAABg2VjiAEiPHj3y97//PUnSr1+/dOvWLfX19amtrc20adPy2GOPlesAAAAAaD5m0AJ5+umny4+rq6tTKpWSJKVSKdXV1UutAwAAAGDlmUEL5MUXXyw/fvjhh/Pwww9/aB0AAAAAK88MWiDt2rVr1joAAAAAlo2AFsjBBx9cfvzuJQ3eu/3uOgAAAABWnoAWyCuvvFJ+vGjRomy99db57//+72y99dZZtGjRUusAAAAAWHnWoAXy1FNPVWw/8sgjeeSRRz60DgAAAICVYwYtkAULFiRJBg4cmLXXXrvi2DrrrJNtt922og4AAACA5iGgBdKzZ88kyYMPPph58+ZVHJs7d24mTZpUUQcAAABA8xDQAunfv3+z1gEAAACwbAS0QDbeeONmrQMAAABg2QhogZx11lnNWgcAAADAshHQApkxY0az1gEAAACwbAS0AAAAAAAFEdACTVRVVWXTTTdNVVVV0a0AAAAAtGiti24AWP2USqU899xzRbcBAAAA0OKZQQsAAAAAUBABLQAAAABAQQS0AAAAAAAFEdAC6d69e7PWAQAAALBsBLRA1l577WatAwAAAGDZCGiBDBw4sFnrAAAAAFg2AlogXbt2bdY6AAAAAJaNgBbITTfd1Kx1AAAAACwbAS2QZ599tlnrAAAAAFg2rYtuAFi9tG/fPt26dUupVEpVVVWmTZuW2bNnF90WAAAAQIskoAUqzJ07N48//nh5u1UrE+0BAAAAPiqSF6BCY2PjB24DAAAA0HwEtEAGDx7crHUAAAAALBsBLZB27do1ax0AAAAAy0ZAC2TzzTdv1joAAAAAlo2AFkinTp2atQ4AAACAZSOgBfLss882ax0AAAAAy0ZAC2TSpEnNWgcAAADAshHQAmlsbGzWOgAAAACWjYAWyJw5c5q1DgAAAIBlI6AFMmPGjGatAwAAAGDZCGgBSxwAAAAAFERAC2SttdZq1joAAAAAlo2AFkinTp0qtjt06JAePXqkQ4cOH1gHAAAAwMppXXQDQPHWWWediu1Zs2Zl1qxZH1oHAAAAwMoxgxZIu3btmrUOAAAAgGUjoAWy3nrrNWsdAAAAAMtGQAukVatl+yhY1joAAAAAlo20BcgWW2yRJKmtrU1VVVXFsaqqqtTW1lbUAQAAANA83CQMPsD06dMzd+7cotv4yNXX15d/rr322tlss83Spk2bLFiwIM8++2zmzZtXPj5lypQiW11l1llnnXTp0qXoNgAAAIAWTkAL72PWrFk58cQTUyqVim5llZo3b14ee+yxpR4bPXr0Ku6mOK1atcqYMWPSoUOHolsBAAAAWjABLbyPDh065LLLLlsjZtAmyb/+9a9ce+216d27d9q0aZNHHnkkW2+9dRYsWJAnn3wyX/7yl9O3b9+i21xl1llnHeEsAAAA8JET0MIHWJO+4t6zZ8906dIl48aNy4wZM5IkjzzySDbYYIMMHz48gwYNKrhDAAAAgJZHQAuUDRo0KJ/61Kfyxz/+MaNHj86xxx6bXXbZJdXV1UW3BgAAANAitSq6AWD1Ul1dnc022yxJstlmmwlnAQAAAD5CAloAAAAAgIIIaAEAAAAACiKgBQAAAAAoyGoV0N5777358pe/nO233z59+/bNZz/72VxwwQWZPXt2Rd0f//jH7L///unXr1/22GOP3HTTTU3Gqq+vzw9+8IMMHjw422yzTb7yla9kypQpTeqeffbZfOUrX8k222yTwYMHZ8SIEamvr29Sd+ONN2aPPfZIv379sv/+++dPf/pTk5rZs2fnzDPPzHbbbZcBAwbkpJNOymuvvbYSVwQAAAAAaMlWq4D27bffTv/+/XPeeedl7Nix+cpXvpLf//73+eY3v1mu+ec//5kTTjgh22yzTcaMGZO99torZ511Vu64446Ksc4///zceOONOeWUU3LZZZelvr4+Rx55ZEXYO3PmzBxxxBFpaGjIZZddllNOOSW//vWvc+GFF1aMdeutt+acc87JXnvtlTFjxmSbbbbJCSeckIcffrii7uSTT84DDzyQc889Nz/60Y8yderUHHPMMVm4cGHzXywAAAAA4GOvddENvNsBBxxQsT1o0KDU1tbmnHPOyfTp09OlS5f89Kc/Tf/+/fPf//3fSZLtt98+06ZNy8iRI7PnnnsmSV599dX85je/yXe/+9187nOfS5L069cvO++8c66//vocc8wxSZLrr78+c+fOzeWXX5511103SbJo0aKcd955Oe6449KlS5ckyciRI7PPPvvk5JNPLp/zqaeeyhVXXJExY8YkSR566KHcf//9GTt2bIYMGZIk6dGjR/bee+/cdddd2XvvvT+6CwcAAAAAfCytVjNol2ZJcNrQ0JD6+vpMnDixHMQusffee+fZZ5/Niy++mCS5//7709jYWFG37rrrZvDgwbnvvvvK++67777ssMMO5XMkyV577ZXGxsY88MADSZJp06blueeey1577dXknBMmTCgvh3DfffelQ4cOGTx4cLmmZ8+e2XLLLSvOCQAAAACwxGoZ0C5atCgLFizIv//971xxxRXZZZddsvHGG+eFF15IQ0NDevbsWVG/2WabJUl5jdkpU6ZkvfXWS8eOHZvUvXsd2ilTpjQZq0OHDqmrq6sYK1k8G/a9YzU0NGTatGnluh49eqSqqqqirmfPnktd+xYAAAAAYLVa4mCJnXfeOdOnT0+SfOYzn8lFF12UZPGascniEPXdlmwvOT5r1qy0b9++ybgdOnQo1yype+9YSdKxY8dy3cqes2PHjvnXv/71ga/3w5RKpcybN2+lxoDl8c4775R/eu/BmuO1117zZ34Ntfbaa2eDDTYoug0AAGgxSqVSk4mc72e1DGhHjx6d+fPn55lnnslPf/rTHH/88fn5z39edFuFaWhoyBNPPFF0G6xBXn311STJ1KlTM3/+/IK7AVaFefPm5bLLLkupVCq6FQpQVVWVE088MWuvvXbRrQAAQItRW1u7THWrZUDbp0+fJMmAAQPSr1+/HHDAAbn77ruz+eabJ0lmz55dUT9r1qwkKS9p0KFDh8yZM6fJuLNmzapY9qBDhw5NxkoWz4pdUrfk5+zZs1NXV/eB51wSar3fWCuqpqam/NphVWjbtm2SxUt7bLrppsU2A6wyI0aMWGNn0L788ssZNWpUjjvuuGy00UZFt7PKmUELAADN65lnnlnm2tUyoH233r17p6amJi+88EJ22WWX1NTUZMqUKfnMZz5TrlmyxuuS9WR79uyZ119/vUk4+t41Z5e2Puzs2bMzY8aMirGW9twpU6akpqYm3bp1K9dNmDChyfTlqVOnplevXit1DaqqqsxoYZVaa621yj+992DNsSb/hcySz72ePXs2WZ8eAABgeS3r8gbJanqTsHd75JFH0tDQkI033ji1tbUZNGhQ7rzzzoqa2267LZtttlk23njjJMmQIUPSqlWr3HXXXeWamTNn5v7778/QoUPL+4YOHZq//vWv5dmwSXLHHXekVatWGTx4cJKkW7du2XTTTXPHHXc0OecOO+xQnqo8dOjQzJw5MxMmTCjXTJ06NY8//njFOQEAAAAAllitZtCecMIJ6du3b3r37p211lorkydPztixY9O7d+/suuuuSZKvfe1rGTZsWM4999zstddemThxYsaPH59LLrmkPM4nPvGJfO5zn8uIESPSqlWrdOnSJaNGjUr79u1z6KGHlusOPfTQXHPNNfnGN76R4447LtOnT8+IESNy6KGHpkuXLuW6E088Maeddlq6d++eQYMG5bbbbsujjz6aa6+9tlwzYMCADBkyJGeeeWbOOOOMtGnTJpdcckl69+6d3XfffRVcPQAAAADg42a1Cmj79++f2267LaNHj06pVErXrl3z+c9/PkcffXR5puqnPvWpXHbZZbn00kvzm9/8JhtttFHOP//87LXXXhVjnX322VlnnXVy0UUXZe7cudl2223z85//PO3bty/XdOzYMePGjcv//M//5Bvf+EbWWWedfO5zn8spp5xSMda+++6b+fPnZ8yYMRk9enR69OiRyy+/PAMGDKiou/TSS3PBBRfkO9/5ThYuXJghQ4bk7LPPTuvWq9VlBgAAAABWE1Ult2terT322GNJkn79+hXcCWuSKVOm5IwzzsgPfvADazECawSfewAAQHNankxvtV+DFgAAAACgpRLQAgAAAAAUREALAAAAAFAQAS0AAAAAQEEEtAAAAAAABRHQAgAAAAAUREALAAAAAFAQAS0AAAAAQEEEtAAAAAAABRHQAgAAAAAUREALAAAAAFAQAS0AAAAAQEEEtAAAAAAABRHQAgAAAAAUREALAAAAAFAQAS0AAAAAQEEEtAAAAAAABRHQAgAAAAAUREALAAAAAFAQAS0AAAAAQEEEtAAAAAAABRHQAgAAAAAUREALAAAAAFAQAS0AAAAAQEEEtAAAAAAABRHQAgAAAAAUREALAAAAAFAQAS0AAAAAQEEEtAAAAAAABRHQAgAAAAAUREALAAAAAFAQAS0AAAAAQEEEtAAAAAAABRHQAgAAAAAUREALAAAAAFAQAS0AAAAAQEEEtAAAAAAABRHQAgAAAAAUREALAAAAAFAQAS0AAAAAQEEEtAAAAAAABRHQAgAAAAAUREALAAAAAFAQAS0AAAAAQEEEtAAAAAAABRHQAgAAAAAUREALAAAAAFAQAS0AAAAAQEEEtAAAAAAABRHQAgAAAAAUREALAAAAAFAQAS0AAAAAQEEEtAAAAAAABRHQAgAAAAAUREALAAAAAFAQAS0AAAAAQEEEtAAAAAAABRHQAgAAAAAUREALAAAAAFAQAS0AAAAAQEEEtAAAAAAABRHQAgAAAAAUREALAAAAAFAQAS0AAAAAQEEEtAAAAAAABVnhgHb06NGZPn16c/YCAAAAALBGWeGA9tJLL83OO++cYcOG5aabbsqcOXOasy8AAAAAgBZvhQPaP/3pTzn11FMzc+bMnHXWWRkyZEhOOeWU/PnPf86iRYuas0cAAAAAgBap9Yo+sUuXLvnqV7+ar371q3nqqadyyy235NZbb83tt9+eTp06Ze+9987++++frbfeujn7BQAAAABoMZrlJmG9evXK8OHD88c//jHXXnttPvWpT+VXv/pVDj300Oyxxx75yU9+kjfeeKM5TgUAAAAA0GI0S0CbJAsWLMitt96aK6+8Mn/6059SXV2doUOHZosttshPfvKT7Lrrrrn77rub63QAAAAAAB97K7zEQZKUSqU88MADueWWW/KHP/whc+fOzSc/+cmcdtpp2W+//bLeeuslSV577bUMHz48F154YXbbbbdmaRwAAAAA4ONuhQPa73//+7ntttvyxhtvpK6uLoceemgOPPDAbLHFFk1qN9hgg3zuc5/LGWecsVLNAgAAAAC0JCsc0N54443Zddddc+CBB+bTn/50qqqqPrB+4MCBueCCC1b0dAAAAAAALc4KBbQNDQ258sor07Vr13ziE59YpudsvPHG2XjjjVfkdAAAAAAALdIK3SSsVatWGTZsWO66667m7gcAAAAAYI2xQgFtdXV1Ntpoo9TX1zd3PwAAAAAAa4wVCmiT5Mtf/nJ+/etf5+23327GdgAAAAAA1hwrfJOwxsbG1NbWZrfddssee+yRrl27Zq211qqoqaqqypFHHrmyPQIAAAAAtEgrHND+4Ac/KD/+zW9+s9QaAS0AAAAAwPtb4YD2nnvuac4+AAAAAADWOCsc0Hbt2rU5+wAAAAAAWOOs8E3CAAAAAABYOSs8gzZJJk+enGuvvTaPP/54Zs+encbGxorjVVVV+cMf/rBSDQIAAAAAtFQrPIN24sSJ+fznP58///nP2WCDDTJt2rR069YtG2ywQV5++eWsvfba+Y//+I/m7BUAAAAAoEVZ4YB25MiR6datW+644458//vfT5Icd9xxue6663L99ddn+vTp2XPPPZutUQAAAACAlmaFA9rHH388n/vc59KuXbtUV1cnSXmJg6233jqHHHJIfvzjHzdPlwAAAAAALdAKB7TV1dVZZ511kiQdOnRI69at88Ybb5SPd+vWLc8+++zKdwgAAAAA0EKtcEDbvXv3PPfcc0kW3wysZ8+eFTcE+/Of/5z1119/pRsEAAAAAGipVjig3XHHHXPrrbdm4cKFSZKvfOUrueuuu7L77rtn9913zx//+McccsghzdYoAAAAAEBL03pFn/j1r389w4YNK68/e9BBB6VVq1a56667Ul1dneOPPz4HH3xwszUKAAAAANDSrHBAW1NTk06dOlXsO+CAA3LAAQesdFMAAAAAAGuCFV7iAAAAAACAlbPMM2iHDRu23INXVVVl3Lhxy/08AAAAAIA1wTIHtKVSabkHX5HnAAAAAACsKZY5oL3mmms+yj4AAAAAANY41qAFAAAAACjIMs+g/SBz5szJnDlz0tjY2OTYRhtt1BynAAAAAABocVYqoP3Vr36VX/ziF5k2bdr71jzxxBMrcwoAAAAAgBZrhZc4uO666/Lf//3f6d69e04++eSUSqUcccQROfbYY7P++uunT58++d73vtecvQIAAAAAtCgrHNBee+21GTJkSK688sp84QtfSJLsuOOOOeWUU3Lbbbdl7ty5efvtt5urTwAAAACAFmeFA9oXXnghO++8c5KkpqYmSdLQ0JAkad++fT73uc/lV7/6VTO0CAAAAADQMq1wQNu+ffssWrQoSdKuXbu0bds2r776avn4Ouusk9dff33lOwQAAAAAaKFWOKDdYostMnny5PL21ltvneuuuy7Tp0/PK6+8khtuuCGbbrppc/QIAAAAANAirXBAu//+++fpp59OfX19kuTEE0/Ms88+m5122im77LJLpk6dmpNPPrm5+gQAAAAAaHFar+gT//M//zP/+Z//Wd4eOHBgbr311vzxj39MdXV1Bg8enB49ejRLkwAAAAAALdEKz6B9r2effTY333xzpk6dmkWLFqWurq65hgYAAAAAaJGWawbttddem2uuuSbXXXddOnfuXN7/xz/+Md/85jfT0NCQJKmqqsq1116bG264oaIOAAAAAID/s1wzaP/4xz+mW7duFaHrwoULc/bZZ6e6ujoXXHBBbrnllpx66ql5+eWX87Of/azZGwYAAAAAaCmWK6B95plnss0221TsmzhxYt58880cccQROeigg7LFFlvkmGOOyZ577pl77723OXsFAAAAAGhRliugffvtt/OJT3yiYt+ECRNSVVWV3XbbrWL/tttum1deeWXlOwQAAAAAaKGWK6Bdf/318/rrr1fs++c//5m11lorffr0qdhfW1ubmpqale8QAAAAAKCFWq6Atm/fvvnd736XOXPmJEmefvrpPPbYY/nMZz6T1q0r7zc2ZcqUJrNtAQAAAAD4P60/vOT/fOMb38jnPve57LHHHtl8883z73//O1VVVTn22GOb1N59993Zfvvtm61RAAAAAICWZrlm0Pbu3Tvjxo3LVlttlddeey1bb711Ro8enb59+1bUTZw4MW3bts2ee+7ZrM0CAAAAALQkyzWDNll886/Ro0d/YM2gQYNyyy23rHBTAAAAAABrguWaQQsAAAAAQPMR0AIAAAAAFERACwAAAABQEAEtAAAAAEBBBLQAAAAAAAUR0AIAAAAAFERACwAAAABQEAEtAAAAAEBBBLQAAAAAAAUR0AIAAAAAFERACwAAAABQEAEtAAAAAEBBBLQAAAAAAAUR0AIAAAAAFERACwAAAABQEAEtAAAAAEBBBLQAAAAAAAVZrQLa22+/PV/72tcydOjQbLPNNjnggAPym9/8JqVSqaLuxhtvzB577JF+/fpl//33z5/+9KcmY82ePTtnnnlmtttuuwwYMCAnnXRSXnvttSZ1kyZNyiGHHJL+/ftn5513zujRo5ucr1QqZfTo0dlpp53Sv3//HHLIIXn44YebjDV9+vSceOKJGTBgQLbbbrucddZZmTNnzspdFAAAAACgxVqtAtpf/OIXadu2bb71rW/lpz/9aYYOHZpzzjknV1xxRbnm1ltvzTnnnJO99torY8aMyTbbbJMTTjihSWB68skn54EHHsi5556bH/3oR5k6dWqOOeaYLFy4sFzz/PPP5+ijj05dXV1GjRqVI444IiNHjsxVV11VMdaYMWMycuTIHHnkkRk1alTq6upy1FFHZdq0aeWahoaGfPWrX81zzz2Xiy66KOeee27uv//+DB8+/KO5WAAAAADAx17roht4t5/+9Kfp3LlzeXuHHXbI22+/nZ///Of5+te/nlatWmXkyJHZZ599cvLJJydJtt9++zz11FO54oorMmbMmCTJQw89lPvvvz9jx47NkCFDkiQ9evTI3nvvnbvuuit77713kmTs2LHp1KlTLr744tTW1maHHXbIm2++mZ/97Gc5/PDDU1tbmwULFmTUqFE56qijcuSRRyZJBg4cmD333DNjx47NueeemyS588478/TTT+e2225Lz549kyQdOnTI0UcfnUcffTT9+/dfBVcQAAAAAPg4Wa1m0L47nF1iyy23zJw5czJv3rxMmzYtzz33XPbaa6+Kmr333jsTJkxIfX19kuS+++5Lhw4dMnjw4HJNz549s+WWW+a+++4r77vvvvvy2c9+NrW1tRVjzZo1Kw899FCSxUsgzJkzp+KctbW12W233ZqM1bt373I4mySDBw/Ouuuum3vvvXdFLwkAAAAA0IKtVgHt0jz44IPp0qVL2rVrlylTpiRZPBv23TbbbLM0NDSUlxyYMmVKevTokaqqqoq6nj17lseYN29eXnnllYpAdUlNVVVVuW7Jz/fWbbbZZnn55ZfzzjvvlOveW1NVVZUePXqUxwAAAAAAeLfVaomD9/rnP/+Z2267LWeccUaSZObMmUkWLx3wbku2lxyfNWtW2rdv32S8jh075l//+leSxTcRW9pYtbW1adu2bcVYtbW1adOmTZNzlkqlzJw5M2uttdYHnnPJWCuqVCpl3rx5KzUGLI8lf/HwzjvveO8BawSfewAAQHMqlUpNJo++n9U2oH311VdzyimnZNCgQRk2bFjR7RSqoaEhTzzxRNFtsAZ59dVXkyRTp07N/PnzC+4G4KPncw8AAGhu715W9YOslgHtrFmzcswxx2TdddfNZZddllatFq/E0LFjxySLZ7/W1dVV1L/7eIcOHcr/o/VuM2fOLNcsme26ZCbtEvX19Zk/f37FWPX19VmwYEHFLNpZs2alqqqqom7OnDlLPeeGG264Alfh/9TU1GTzzTdfqTFgebRt2zbJ4uVENt1002KbAVgFfO4BAADN6Zlnnlnm2tUuoH3nnXdy3HHHZfbs2bnhhhsqlg1Yssbre9d7nTJlSmpqatKtW7dy3YQJE5pMJZ46dWp69eqVJFl77bWz4YYbNlkfdurUqSmVSuXxl/ycOnVq+vTpU3HOjTbaKGuttVa57qmnnqoYq1QqZerUqRU3K1sRVVVVWXvttVdqDFgeS97Xa621lvcesEbwuQcAADSnZV3eIFnNbhK2cOHCnHzyyZkyZUquvPLKdOnSpeJ4t27dsummm+aOO+6o2H/bbbdlhx12KE8bHjp0aGbOnJkJEyaUa6ZOnZrHH388Q4cOLe8bOnRo7rnnnjQ0NFSM1aFDhwwYMCBJsu2226Zdu3a5/fbbyzUNDQ256667mow1efLkPPfcc+V9EyZMyNtvv50dd9xxJa4KAAAAANBSrVYzaM8777z86U9/yre+9a3MmTMnDz/8cPnYJz/5ydTW1ubEE0/Maaedlu7du2fQoEG57bbb8uijj+baa68t1w4YMCBDhgzJmWeemTPOOCNt2rTJJZdckt69e2f33Xcv1x199NG55ZZbMnz48Bx22GF56qmnMnbs2JxyyinlsLdNmzY57rjjctlll6Vz587p1atXrrvuurz99ts5+uijy2PtscceGTVqVE488cSceuqpmT9/fkaMGJGddtop/fv3/+gvHgAAAADwsbNaBbQPPPBAkuTCCy9scuyee+7JxhtvnH333Tfz58/PmDFjMnr06PTo0SOXX355ecbrEpdeemkuuOCCfOc738nChQszZMiQnH322Wnd+v9e8iabbJKxY8fmwgsvzLHHHpvOnTvnpJNOylFHHVUx1jHHHJNSqZSrrroqb775ZrbccsuMHTu2vKRCsnid2CuvvDLnn39+Tj311LRu3Tq77bZbzjzzzOa8RAAAAABAC1JVKpVKRTfB+3vssceSJP369Su4E9YkU6ZMyRlnnJEf/OAHFes9A7RUPvcAAIDmtDyZ3mq1Bi0AAAAAwJpEQAsAAAAAUBABLQAAAABAQQS0AAAAAAAFEdACAAAAABSkddENsHqbMWNGZs+eXXQbrGIvvfRSxU/WLO3bt09dXV3RbQAAAMAaQUDL+5oxY0a++c2T09BQX3QrFGTkyJFFt0ABampq8+MfXyqkBQAAgFVAQMv7mj17dhoa6lO90a6pqu1cdDvAKlCqfzMNL/8hs2fPFtACAADAKiCg5UNV1XZOVVtBDQAAAAA0NzcJAwAAAAAoiIAWAAAAAKAgAloAAAAAgIIIaAEAAAAACiKgBQAAAAAoiIAWAAAAAKAgAloAAAAAgIIIaAEAAAAACiKgBQAAAAAoiIAWAAAAAKAgAloAAAAAgIIIaAEAAAAACiKgBQAAAAAoSOuiGwCA1cmMGTMye/bsottgFXvppZcqfrJmad++ferq6opuAwCANZSAFgD+vxkzZuTkk7+Z+vqGoluhICNHjiy6BQpQW1uTSy/9sZAWAIBCCGgB4P+bPXt26usb8vnN2qSubVXR7QCrwIz5pdz47ILMnj1bQAsAQCEEtADwHnVtq9J1neqi2wBWiUVFNwAAwBrOTcIAAAAAAAoioAUAAAAAKIiAFgAAAACgIAJaAAAAAICCCGgBAAAAAAoioAUAAAAAKIiAFgAAAACgIAJaAAAAAICCCGgBAAAAAAoioAUAAAAAKIiAFgAAAACgIAJaAAAAAICCCGgBAAAAAAoioAUAAAAAKIiAFgAAAACgIAJaAAAAAICCCGgBAAAAAAoioAUAAAAAKIiAFgAAAACgIAJaAAAAAICCCGgBAAAAAAoioAUAAAAAKIiAFgAAAACgIAJaAAAAAICCCGgBAAAAAAoioAUAAAAAKIiAFgAAAACgIAJaAAAAAICCCGgBAAAAAAoioAUAAAAAKIiAFgAAAACgIAJaAAAAAICCCGgBAAAAAAoioAUAAAAAKIiAFgAAAACgIAJaAAAAAICCCGgBAAAAAAoioAUAAAAAKIiAFgAAAACgIAJaAAAAAICCCGgBAAAAAArSuugGWP2VFrxVdAvAKuLPOwAAAKxaAlo+1KJX7i66BQAAAABokQS0fKjqDXdLVZtORbcBrAKlBW/5SxkAAABYhQS0fKiqNp1S1bau6DYAAAAAoMVxkzAAAAAAgIIIaAEAAAAACiKgBQAAAAAoiIAWAAAAAKAgAloAAAAAgIIIaAEAAAAACiKgBQAAAAAoiIAWAAAAAKAgAloAAAAAgIIIaAEAAAAACiKgBQAAAAAoiIAWAAAAAKAgAloAAAAAgIIIaAEAAAAACiKgBQAAAAAoiIAWAAAAAKAgAloAAAAAgIIIaAEAAAAACiKgBQAAAAAoSOuiGwAAACjC9OnTM3fu3KLbYBVbZ5110qVLl6LbAIAyAS0AALDGmTVrVk488cSUSqWiW2EVa9WqVcaMGZMOHToU3QoAJBHQAgAAa6AOHTrksssuWyNn0L700ksZOXJkTjrppHTt2rXodla5ddZZRzgLwGpFQAsAAKyR1vSvuXft2jU9e/Ysug0AWOO5SRgAAAAAQEEEtAAAAAAABRHQAgAAAAAUREALAAAAAFAQAS0AAAAAQEEEtAAAAAAABRHQAgAAAAAUREALAAAAAFAQAS0AAAAAQEEEtAAAAAAABRHQAgAAAAAUREALAAAAAFAQAS0AAAAAQEEEtAAAAAAABRHQAgAAAAAUREALAAAAAFAQAS0AAAAAQEEEtAAAAAAABRHQAgAAAAAUREALAAAAAFAQAS0AAAAAQEEEtAAAAAAABRHQAgAAAAAUREALAAAAAFAQAS0AAAAAQEEEtAAAAAAABRHQAgAAAAAUpHXRDbD6K9W/WXQLwCrizzsAAACsWgJa3lf79u1TU1Obhpf/UHQrwCpUU1Ob9u3bF90GAAAArBEEtLyvurq6/PjHl2b27NlFt8Iq9tJLL2XkyJE56aST0rVr16LbYRVr37596urqim4DAAAA1ggCWj5QXV2doGYN1rVr1/Ts2bPoNgAAAABaLDcJAwAAAAAoiIAWAAAAAKAgAloAAAAAgIIIaAEAAAAACiKgBQAAAAAoiIAWAAAAAKAgAloAAAAAgIIIaAEAAAAACrJaBbTPP/98vvOd7+SAAw7IJz/5yey7775Lrbvxxhuzxx57pF+/ftl///3zpz/9qUnN7Nmzc+aZZ2a77bbLgAEDctJJJ+W1115rUjdp0qQccsgh6d+/f3beeeeMHj06pVKpoqZUKmX06NHZaaed0r9//xxyyCF5+OGHm4w1ffr0nHjiiRkwYEC22267nHXWWZkzZ86KXQwAAAAAoMVbrQLap59+Ovfee2822WSTbLbZZkutufXWW3POOedkr732ypgxY7LNNtvkhBNOaBKYnnzyyXnggQdy7rnn5kc/+lGmTp2aY445JgsXLizXPP/88zn66KNTV1eXUaNG5YgjjsjIkSNz1VVXVYw1ZsyYjBw5MkceeWRGjRqVurq6HHXUUZk2bVq5pqGhIV/96lfz3HPP5aKLLsq5556b+++/P8OHD2++CwQAAAAAtCiti27g3XbZZZfsuuuuSZJvfetb+de//tWkZuTIkdlnn31y8sknJ0m23377PPXUU7niiisyZsyYJMlDDz2U+++/P2PHjs2QIUOSJD169Mjee++du+66K3vvvXeSZOzYsenUqVMuvvji1NbWZocddsibb76Zn/3sZzn88MNTW1ubBQsWZNSoUTnqqKNy5JFHJkkGDhyYPffcM2PHjs25556bJLnzzjvz9NNP57bbbkvPnj2TJB06dMjRRx+dRx99NP379/+oLhsAAAAA8DG1Ws2gbdXqg9uZNm1annvuuey1114V+/fee+9MmDAh9fX1SZL77rsvHTp0yODBg8s1PXv2zJZbbpn77ruvvO++++7LZz/72dTW1laMNWvWrDz00ENJFi+BMGfOnIpz1tbWZrfddmsyVu/evcvhbJIMHjw46667bu69997luQwAAAAAwBpitZpB+2GmTJmSZPFs2HfbbLPN0tDQkGnTpmWzzTbLlClT0qNHj1RVVVXU9ezZszzGvHnz8sorr1QEqktqqqqqMmXKlAwaNKhc/966zTbbLOPGjcs777yTtdZaK1OmTGlSU1VVlR49epTHAACA1cmMGTMye/bsottgFXvppZcqfrJmad++ferq6opuA4B3+VgFtDNnzkyyeOmAd1uyveT4rFmz0r59+ybP79ixY3nZhCX/IfresWpra9O2bduKsWpra9OmTZsm5yyVSpk5c2bWWmutDzznkrFWVKlUyrx581ZqDFge77zzTvmn9x5rkiXv/RnzGwvuBFhVlvx5XxP/nffGG2/kjG+dkYb6hqJboSAjR44sugUKUFNbkx9c+IOst956RbfCKvbaa6+tcf+uY7G11147G2ywQdFtrHFKpVKTyaPv52MV0K6pGhoa8sQTTxTdBmuQV199NUkyderUzJ8/v+BuYNVZ8t6/8dn6gjsBVrU18d95r776ahrqG1K3a+fUdK4puh1gFWh4syEz/vBmHn300XziE58ouh1WoXnz5uWyyy5LqVQquhUKUFVVlRNPPDFrr7120a2scd69rOoH+VgFtB07dkyyePbru7+SMWvWrIrjHTp0KP9P9rvNnDmzXLNktut7v9JVX1+f+fPnV4xVX1+fBQsWVMyinTVrVqqqqirq5syZs9Rzbrjhhiv2gv+/mpqabL755is1BiyPtm3bJlm8nMimm25abDOwCi15739+s9rUtV2tlmkHPiIz5jfmxmfr18h/5y35zKvpXJM2dcv2Pw9Ay7AmfuaRjBgxYo2cQfvyyy9n1KhROe6447LRRhsV3U4hzKAtxjPPPLPMtR+rgHbJGq/vXe91ypQpqampSbdu3cp1EyZMaDKVeOrUqenVq1eSxW/ODTfcsMn6sFOnTk2pVCqPv+Tn1KlT06dPn4pzbrTRRllrrbXKdU899VTFWKVSKVOnTq24WdmKqKqq8rccrFJL3tdrrbWW9x5rlCXv/bq2rdJ1neqCuwFWpTXx33lLPvOANc+a+JlH1thQ/t25zXvvHQQfpWVd3iBJPlbTg7p165ZNN900d9xxR8X+2267LTvssEN52vDQoUMzc+bMTJgwoVwzderUPP744xk6dGh539ChQ3PPPfekoaGhYqwOHTpkwIABSZJtt9027dq1y+23316uaWhoyF133dVkrMmTJ+e5554r75swYULefvvt7Ljjjs1zAQAAAACAFmW1mkE7f/783HvvvUkW31F0zpw55TB2u+22S+fOnXPiiSfmtNNOS/fu3TNo0KDcdtttefTRR3PttdeWxxkwYECGDBmSM888M2eccUbatGmTSy65JL17987uu+9erjv66KNzyy23ZPjw4TnssMPy1FNPZezYsTnllFPKYW+bNm1y3HHH5bLLLkvnzp3Tq1evXHfddXn77bdz9NFHl8faY489MmrUqJx44ok59dRTM3/+/IwYMSI77bRT+vfvvyouHwAAAADwMbNaBbRvvPFGvvnNb1bsW7J99dVXZ9CgQdl3330zf/78jBkzJqNHj06PHj1y+eWXl2e8LnHppZfmggsuyHe+850sXLgwQ4YMydlnn53Wrf/vJW+yySYZO3ZsLrzwwhx77LHp3LlzTjrppBx11FEVYx1zzDEplUq56qqr8uabb2bLLbfM2LFjy0sqJIvXib3yyitz/vnn59RTT03r1q2z22675cwzz2zuywQAAAAAtBCrVUC78cYb58knn/zQus9//vP5/Oc//4E17du3z/e///18//vf/8C6bbfdNr/+9a8/sKaqqirHHXdcjjvuuA+s69KlSy677LIPrAEAAAAAWOJjtQYtAAAAAEBLIqAFAAAAACiIgBYAAAAAoCACWgAAAACAgghoAQAAAAAKIqAFAAAAACiIgBYAAAAAoCACWgAAAACAgghoAQAAAAAKIqAFAAAAACiIgBYAAAAAoCACWgAAAACAgghoAQAAAAAKIqAFAAAAACiIgBYAAAAAoCACWgAAAACAgghoAQAAAAAKIqAFAAAAACiIgBYAAAAAoCACWgAAAACAgghoAQAAAAAKIqAFAAAAACiIgBYAAAAAoCACWgAAAACAgghoAQAAAAAKIqAFAAAAACiIgBYAAAAAoCACWgAAAACAgghoAQAAAAAKIqAFAAAAACiIgBYAAAAAoCACWgAAAACAgghoAQAAAAAKIqAFAAAAACiIgBYAAAAAoCACWgAAAACAgrQuugEAAACAj9qMGTMye/bsottgFXvppZcqfrJmad++ferq6opu40MJaAEAAIAWbcaMGTn5m99MfUND0a1QkJEjRxbdAgWoranJpT/+8Wof0gpoAQAAgBZt9uzZqW9oyN7rrpvOrUUhsCZ4c+HC3Pb225k9e7aAFgAAAGB10Ll163SprS26DYAKbhIGAAAAAFAQAS0AAAAAQEEEtAAAAAAABRHQAgAAAAAUREALAAAAAFAQAS0AAAAAQEEEtAAAAAAABRHQAgAAAAAUREALAAAAAFAQAS0AAAAAQEEEtAAAAAAABRHQAgAAAAAUREALAAAAAFCQ1kU3AAAAFKf+rYaiWwBWEX/eAVZPAloAAFiDvX73m0W3AACwRhPQAgDAGmz93TqntlNN0W0Aq0D9Ww3+UgZgNSSgBQCANVhtp5q0qastug0AgDWWm4QBAAAAABTEDFoAAABgjfDGwoVFtwCsIh+nP+8CWgAAAGCNcPvbbxfdAkATAloAAABgjbDXuutmvdaiEFgTvLFw4cfmL2V8KgEAAABrhPVat06XWjdGBFYvbhIGAAAAAFAQAS0AAAAAQEEEtAAAAAAABbEGLQC8x4z5pSSLim4DWAUW/3kHAIDiCGgB4P9r3759amtrcuOzC4puBViFamtr0r59+6LbAABgDSWgBYD/r66uLpde+uPMnj276FZYxV566aWMHDkyJ510Urp27Vp0O6xi7du3T11dXdFtAACwhhLQAsC71NXVCWrWYF27dk3Pnj2LbgMAAFiDuEkYAAAAAEBBBLQAAAAAAAUR0AIAAAAAFMQatAAAsAZreLOh6BaAVcSfd4DVk4AWAADWQO3bt09NbU1m/OHNolsBVqGa2pq0b9++6DYAeBcBLQAArIHq6ury40t/nNmzZxfdCqvYSy+9lJEjR+akk05K165di26HVax9+/apq6srug0A3kVACwAAa6i6ujpBzRqsa9eu6dmzZ9FtAMAaT0ALAAAArBHeXLiw6BaAVeTj9OddQAsAAAC0aO3bt09tTU1ue/vtolsBVqHamo/HutsCWgAAAKBFq6ury6U/tu72msi622u2j8u62wJaAAAAoMWz7vaazbrbrM5aFd0AAAAAAMCaSkALAAAAAFAQAS0AAAAAQEEEtAAAAAAABRHQAgAAAAAUREALAAAAAFAQAS0AAAAAQEEEtAAAAAAABRHQAgAAAAAUREALAAAAAFAQAS0AAAAAQEEEtAAAAAAABRHQAgAAAAAUREALAAD/r737j6+x/v84/txmM8OG/E5sEwfZxkR+Ts2vmNoSIiY/ypBYQ6hPC9VnyPLjbFL7JFTyI5L5MEQoiVuNbmr1rSa0xciPjfzY2Pn+4bbr4zjbGqZr7HG/3dxy3ud9XdfrHLfbu+t6nvf1vgAAAACTENACAAAAAAAAgEkIaAEAAAAAAADAJAS0AAAAAAAAAGASAloAAAAAAAAAMAkBLQAAAAAAAACYhIAWAAAAAAAAAExCQAsAAAAAAAAAJiljdgEAAKBkyMjI0F9//WV2GaZIT0+3+29pU758edWoUcPsMgAAAIBSiYAWAAAoKytLzz33nGw2m9mlmGrevHlml2AKZ2dnJSQkyNPT0+xSAAAAgFKHgBYAAMjT01NWq7XUzqAt7cqXL084i1KptN45wF0D3DUAAChZCGgBAIAkcbEKoFThzgHuGuCHKQBASUFACwAAAKDU4c6B0ou7BgAAJQ0BLQAAAIBSiTsHAABASeBsdgEAAAAAAAAAUFoR0AIAAAAAAACASVjiACgET/YtnU/2lXi6LwAAAIA7C9e3XN+i5HKylebHlt4G9u/fL0ny8/MzuZLSJysrS08//XSpfrJvacbTfQEAAADcKbi+Ld24vjXH9WR6BLQlHAGtuUrrL4zgF0YAAAAAdxaub0svrm/NcT2ZHkscAIVgAAMAAAAA3Am4vgVKLh4SBgAAAAAAAAAmIaAFAAAAAAAAAJMQ0AIAAAAAAACASQhoAQAAAAAAAMAkBLQAAAAAAAAAYBICWgAAAAAAAAAwCQEtAAAAAAAAAJiEgBYAAAAAAAAATEJACwAAAAAAAAAmIaAFAAAAAAAAAJMQ0AIAAAAAAACASQhoAQAAAAAAAMAkBLQAAAAAAAAAYBICWgAAAAAAAAAwCQEtAAAAAAAAAJiEgBYAAAAAAAAATEJACwAAAAAAAAAmIaAFAAAAAAAAAJMQ0AIAAAAAAACASQhoAQAAAAAAAMAkBLTFLDU1VUOGDFGzZs3Url07zZw5U9nZ2WaXBQAAAAAAAKAEKmN2AXeSzMxMPfXUU/L29pbValVGRoamT5+uCxcuKDo62uzyAAAAAAAAAJQwBLTFaNmyZfrrr78UFxenSpUqSZIuX76sqVOnKiIiQjVq1DC3QAAAAAAAAAAlCkscFKMdO3aoTZs2RjgrSd27d1dubq527txpXmEAAAAAAAAASiQC2mJ04MAB+fr62rV5enqqWrVqOnDggElVAQAAAAAAACipWOKgGGVlZcnT09Oh3cvLS5mZmTe8X5vNpnPnzt1MaQAAAAAAAAD+ITabTU5OTkXqS0B7G8jJydGPP/5odhkAAAAAAAAAisjNza1I/Qhoi5Gnp6fOnDnj0J6ZmSkvL68b2mdOTo4kydXV9aZqAwAAAAAAAPDPyMnJMXK9v0NAW4x8fX0d1po9c+aMjh8/7rA2bVHlTYUu6pRoAAAAAAAAAOZycnJiiQMzBAUFacGCBXZr0SYlJcnZ2Vnt2rW7oX02b968OEsEAAAAAAAAUII42Ww2m9lF3CkyMzMVEhIiHx8fRUREKCMjQ9OnT9cjjzyi6Ohos8sDAAAAAAAAUMIQ0Baz1NRUvfrqq9q7d6/Kly+v0NBQPf/880VeFBgAAAAAAABA6UFACwAAAAAAAAAmcTa7AAAAAAAAAAAorQhoAQAAAAAAAMAkBLQAAAAAAAAAYBICWgAAAAAAAAAwCQEtAAAAAAAAAJiEgBYAAAAAAAAATEJACwAAAAAAAAAmIaAFAAAAAAAAAJMQ0AIlmNVqlcVicfjTs2fPIm2flpYmi8WipKQkoy04OFjTpk0rdLusrCxZrVb9+uuvf7s/ALgVtmzZoqFDh6pVq1Zq2rSpgoODFR0drd9++63Yj2W1WpWcnFzs+/07q1evVmJi4j9+XADmuvb8rnXr1ho0aJC++eabm953WlqarFarMjIyitS/oHEoPDxcERERN10PgNLtZq9nb5bFYtG77777jxwLuFllzC4AQOHc3d21ePFih7ZbKSsrS3FxcWrQoIHuvfdeo7169epavny5vL29b+nxAZRus2bNUkJCgrp166ZXX31VVapU0eHDh7Vq1So9//zzWrNmTbEeLy4uTh4eHgoMDCzW/f6dTz75RB4eHnrkkUf+0eMCMN/V53dHjx7V/PnzNXjwYK1evVoNGza84f2mp6crLi5ODz74oGrUqPG3/Qsah1555RU5OzOXB8DNM+N6FrgdEdACJZyzs7OaNWtmdhmSJDc3txJTC4A70/bt25WQkKBRo0Zp7NixRnvLli31+OOP6/PPPzettgsXLnBBAaBYXHt+5+/vr+DgYC1btkzR0dHXvT+bzaacnJxiq+/qH+gB4GYU9XqW8yyUdvwsCtym8luq4LPPPpPFYlFaWtoN7zctLU2dOnWSJI0dO9a4DSUtLa3QJRMWLVqkjh07qnnz5po0aZKys7P1448/ql+/fmrWrJl69+6t//u//7M7ls1m07vvvqtu3bqpadOm6tSpkxYtWnTDtQO4/S1cuFBVq1bVqFGj8n3/oYcekiRdvHhRMTExat++vfz8/BQaGqrNmzfb9Z00aZJ69uyp3bt3KywszBiLvv/+e6OPxWKRJM2cOdMY73bv3m2898477+iNN95Qu3bt1KZNG0nS3r17NWLECLVv317NmjVTaGhovrN6s7Ky9OqrryooKMhYpiE2NlbSlduH9+zZo23bthnHtVqtN/flAbht1a5dW1WqVFFaWpoWLlyoxx9/XC1atFCbNm0UERHhsLxL3vi2fft2Pfroo/Lz89PWrVs1aNAgSVLv3r2NsaUghY1D1y5xYLVa1bx5c6WkpOiJJ56Qv7+/HnvsMaWkpOjixYt65ZVX1LJlSwUFBeV7Lrd3714NGjRIzZo1U4sWLTRu3DidOHGiGL45ALergs6zinqNmJqaqpEjR6pFixZq1qyZhg8frsOHDxd6zG3btmnIkCFq06aNAgMD1adPH+3YscOuz+rVq2WxWJSSkqKnn35azZo1U9euXfM919u2bZv69eungIAAtWzZUuHh4UpJSTHez8rK0pQpU9S+fXs1bdpUvXr10pdffnn9XxZKBWbQAreBS5cu2b12cXG5ZceqXr264uLiNHr0aEVFRemBBx4w2o8dO5bvNlu2bFGDBg00bdo0/f7775o+fbpcXV21b98+DR48WFWrVtWsWbM0duxYrV+/3rhl7vXXX9fKlSs1YsQIBQQEKDk5WbNmzVLZsmXVv3//W/YZAZRMly5dUnJysrp27SpXV9dC+44fP15ffPGFIiMj5evrq08//VTPPfec4uPjjR+ZJOn48eN67bXXNHz4cFWsWFGxsbEaPXq0Nm/eLFdXVy1fvlxPPPGEwsPDjfXQrp45tmTJEgUEBOj11183xuI//vhDgYGB6t+/v9zc3JScnKx//etfstlseuyxxyRJ2dnZeuqpp5Senq5nn31WDRs21NGjR/Xtt99KunL78IQJE+Tu7q6JEydKkmrWrFl8XyaA28rZs2d1+vRpVa9eXUePHtXAgQNVu3ZtnT17VsuWLVO/fv20ceNGVapUydjm2LFjeu211zRy5EjVqlVLlStXVnR0tKZNm6aYmBj5+voWeszrHYdycnI0ceJEu3O70aNHKzAwUHfddZfmzJmjLVu2KCYmRv7+/sayMXv37lV4eLg6duyo2bNn6/z585ozZ45GjRql5cuX3/yXB6DEK+h6Nr/zrKJcI/7+++/q16+fGjRooOnTp8vJyUkLFizQ4MGDlZSUJDc3t3zrSEtL00MPPaShQ4fK2dlZO3bs0PDhw7V48WLjujfP+PHj1bdvXw0ZMkQrVqzQpEmT5Ofnp/r160uS1q9fr6ioKHXq1EmxsbFydXVVcnKyMjIy1KRJE2VnZ2vIkCE6ceKEIiMjVaNGDa1du1YRERFGCAxcjYAWKOHOnTun++67z65t5syZt+x4bm5uaty4sSSpXr16RV7SYP78+cb/CPfs2aMVK1YoISFBQUFBkqTc3FyNGDFCP//8sxo1aqTDhw/rgw8+0NSpU/XEE09Iktq2basLFy4oPj5eTzzxBGufAaXM6dOnlZ2drdq1axfa76efftKmTZs0depU9evXT5IUFBSk9PR0h4A2MzNTH3zwgRo0aCBJKleunAYNGqTvvvtO999/vzHG1apVK9/xzsvLS3FxcXJycjLaQkJCjL/bbDa1bNlSGRkZWr58uRHQrlmzRikpKVq2bJmaN29u9M97/95771WFChXk4eHB0jFAKZUXRhw9elQzZszQ5cuX1a1bN3Xo0MHoc/nyZWNm2caNG41zJunK+JaQkKCAgAC7Nklq0KCB/Pz8Cj3+9Y5DOTk5Gj9+vDp27Cjpf+d2AQEBmjx5siSpdevWSkpKUlJSkhHQxsbGqmnTpnZjacOGDY0ZwHn7A3BnKux69trzrKJeI8bFxcnLy0vvvfeeypYtK0kKDAxUp06dtHLlSg0YMCDfWgYOHGj8PTc3Vw888IB+/fVXrVixwiGgHTBggLGf5s2ba/v27dq4caNGjRolm82mGTNmqF27doqPjze2uXo8S0xM1E8//aRPP/3U+PG/Q4cOOnTokObPn6+5c+de/5eJOxoBLVDCubu764MPPrBru+eee4plQLfZbLp8+bLx2snJ6YZm57Zs2dLuV0pvb285OzurdevWdm2SdOTIETVq1EhfffWVJKlr1652v6i2bdtWCQkJOnLkiO6+++7rrgXA7e/qMDQ/ebNQH374Ybv27t27KyYmRufOnZOHh4ekK7P/88JZ6X+zY4v6hPOgoCCHejIzM2W1WrVlyxZlZGQY4+jVM9t27dql+vXr24WzAJDn2sDCy8tL0dHR6tChg/bt26e5c+cqJSVFp0+fNvocPHjQbh+VKlWyC2cLc/nyZdlsNuN1mTLXfxno7Oxs3IIs/e/crm3btkabi4uL6tatq6NHj0qSzp8/r+TkZL3wwgt255ze3t6qVauW9u/fT0AL3OEKup6VHM+zinqNuHPnTvXo0UMuLi5GP09PTzVp0sRuKatrHT16VLNnz9ZXX32l48ePG+PitQGyJLVv3974u4eHh2rXrm2MbQcOHNDRo0eNuw/ys3PnTjVs2FDe3t4On2Xt2rUFbofSi4AWKOGcnZ3/dgbEjdqzZ4+xVpkktWrVSu+///5178fT09Putaurq9zd3e1C27zblS9evChJOnXqlGw2m12IezUCWqD0qVSpksqWLas//vij0H6ZmZlydXW1C0QlqWrVqrLZbDpz5owR0OY3Pkn/G4v+zl133eXQNmnSJO3du1fPPvusMQPto48+0oYNG4w+ebcqA0B+8gILJycnVa5cWbVq1ZKzs7P++OMPDR06VE2bNtXUqVNVvXp1ubq6KiIiwmHcqlq1apGP16VLF6Wnpxuvt2zZojp16lx3zfmd21WsWNGun6urq1FrVlaWLl++rJiYGMXExDjs88iRI9dVA4DbT2HXs9eeZxX1GvHUqVNavHixFi9e7NCnoGWycnNzNXLkSJ05c0ZjxoxRvXr1VK5cOc2bNy/fsSi/sS07O1uSjB/PCjvXO3XqlFJSUvINf2/lkoW4fRHQArcpNzc3h6f15t3WVlT33XefPv74Y+N1+fLli6W2ovDy8pKTk5OWLl2a7/9EfXx8/rFaAJQMZcqUUWBgoL7++mtdunSpwBleXl5eysnJUWZmpry8vIz2P//8U05OTg4n1Dfj2tmzFy9e1LZt2zRp0iSFh4cb7UuXLrXrV6lSJYcHIwJAnoICiy+++ELnzp1TXFyc8QPTpUuX8j3H+7u7Da721ltvGcGCVHioUJwqVqwoJycnRUREqHPnzg7vV65c+R+pA0DJdO04VtRrRC8vL3Xs2FFPPvmkQ5+CrmkPHTqklJQUxcfH241HFy5cuO668yYJFPSMlrwaLRaLXn/99eveP0onAlrgNlWzZk2lpqbate3cufO69lGhQoV8Lw6ud4bZjci7Re706dMKDg6+ZccBcHsZMmSIhg8frgULFmj06NEO72/fvl0tWrSQJCUlJdmtx5iUlKQmTZoYs2eL6urZXn8nOztbubm5dhcNZ8+e1datW+36tW3bVuvXr9d3331X4C3I13NcAKXDhQsX5OTkZPcD1YYNGxwesFOQgs7hCnoYza0eh/LWtz1w4MAtuyMMwJ2jqNeIbdq00S+//KImTZoUeTZq3lh39Tlcenq69u7dayzZUlS+vr6qWbOmVq9erR49euTbp23bttq+fbuqV6+uGjVqXNf+UToR0AK3qW7dumnKlCmKi4szFi3ft29fsey7WrVq8vT01H//+1/VqVNHbm5uxf6USR8fHw0YMEAvvPCChg0bpoCAAOXk5OjgwYPavXu35s+fX6zHA3B76Nixo55++mlZrVb9+uuvCgkJUeXKlZWWlqZVq1bpzJkzWrNmjbp27arp06frwoUL8vHx0dq1a7V3794bGjt8fX21ZcsW3X///SpXrpx8fHxUoUKFfPtWrFhRfn5+SkhIUJUqVVSmTBm98847qlChgk6ePGn0Cw0N1dKlSzV8+HCNHj1aDRo0UEZGhr755hu9+uqrxnHXrFmjrVu3qlq1apzAAzBu6508ebL69eunX375Re+9957Dci0F8fb2louLi1atWqUyZcrIxcWl0GD0nxiHXnjhBT311FOKjIxUSEiIPD09dfToUX311Vfq1auXw4N5AJReRb1GHDNmjHr37q1hw4apb9++qlq1qv7880/t2bNH999/v3r27Omw77xQNTY2Vrm5uTp37pzmzZt3Q3cUODk5aeLEiYqKitJzzz2n0NBQubm5ad++ffLz89NDDz2ksLAwLVu2TIMGDdLQoUPl7e2tM2fOKCUlRTk5ORo3btxNf1+4sxDQArepPn366PDhw/roo4+0aNEi9ejRQ1FRUcUy0Ds7OysmJkZvvvmmBg8erOzsbG3ZsqUYqrb3r3/9Sz4+Plq+fLni4+NVvnx5+fj4ODz4B0DpMmHCBDVv3lwffvihXnzxRZ0/f17Vq1dX+/btNWzYMEnSG2+8oTfffFMJCQk6ffq0fH19NW/evBuakR8dHa1///vfeuaZZ3ThwgUtWbKk0MAgNjZW0dHRmjRpkipVqqTw8HCdO3dOCxcuNPq4ublp0aJFmj17tt5++22dPn1aNWvWVEhIiNHnmWee0eHDhzVx4kRlZWVp9OjReu655667fgB3DovFopiYGMXFxSkiIkKNGzfW3LlzFRkZWaTtq1SpoujoaP3nP//R2rVrdenSpUKXW/knxqHAwEAtXbpUVqtVkydPVk5OjmrWrKnWrVurXr16xXosALe/olwj1qtXTytXrtScOXM0depUnTt3TtWqVVPLli0LnFjk5uYmq9WqadOmaezYsapVq5ZGjhypr7/+utAHixWkR48ecnd314IFCxQVFaWyZcuqSZMm6tKli3G8JUuWyGq1asGCBTp+/LgqVaqkJk2a5Ls0A+Bku/pxngAAAAAAAACAf4yz2QUAAAAAAAAAQGlFQAsAAAAAAAAAJiGgBQAAAAAAAACTENACAAAAAAAAgEkIaAEAAAAAAADAJAS0AAAAAAAAAGASAloAAAAAAAAAMAkBLQAAAAAAAACYhIAWAAAApcbu3btlsVi0e/dus0sBAAAAJEllzC4AAAAAd6bVq1dr8uTJBb6/fPlyNWvW7J8rqBRLTEzUiRMnNHjw4EL7Wa1WxcXF/e3+WrVqpffff7+YqgMAACjdCGgBAABwS40ZM0Z16tRxaK9bt64J1ZRO69at0y+//PK3AW2XLl3s/l3OnTunKVOmqEuXLurSpYvRXrVq1VtVKgAAQKlDQAsAAIBbKigoSH5+fmaXgSJo1KiRGjVqZLw+efKkpkyZIovFotDQUBMrAwAAuHOxBi0AAABMlZaWJovFonfffVcffvihOnXqpICAAA0dOlRHjhyRzWZTfHy8goKC5O/vr5EjR+r06dN2+wgODlZERIS+/PJLhYaGys/PTz169NCmTZuKVMOGDRvUq1cv+fv764EHHtD48eOVkZFhvL9q1SpZLBalpKQ4bLtgwQI1btzY6B8eHq6ePXvqp59+0sCBAxUQEKAuXbooKSlJkrRnzx716dNH/v7+6tatm7766iuHfWZkZGjy5Mlq27atmjZtqpCQEH388cd2ffLW012/fr3eeustIwh/6qmndOjQIaNfeHi4tm3bpvT0dFksFlksFgUHBxfpe7nW77//LovFokWLFjm8l5ycLIvFonXr1km6slyCxWJRamqqxo4dq8DAQD3wwAN67bXXdPHiRYftP/30U+PfoFWrVnr++ed15MiRG6oTAADgdkJACwAAgFvq7NmzOnnypN2fU6dOOfRLTEzU0qVLFR4eriFDhmjPnj2KjIzUnDlz9MUXX+iZZ55R37599fnnn2vGjBkO2x88eFDPP/+8goKCNG7cOLm4uGjs2LHauXNnofWtXr1akZGRcnZ2VlRUlPr27avNmzerf//+ysrKkiR169ZN7u7uSkxMzLfuVq1aqUaNGkZbZmamRowYIX9/f02YMEFubm6KiorS+vXrFRUVpY4dO2rcuHE6f/68xowZo7Nnzxrb/vnnn+rbt6927dqlAQMG6KWXXlLdunX10ksv5RuMJiQkaPPmzRo6dKgiIiL03Xffafz48cb7I0aMUOPGjVW5cmXNnDlTM2fO1Isvvljod1KQe+65R4GBgVq7dm2+30P58uXVqVMnu/bIyEhdvHhR48aNU1BQkN5//329/PLLdn3eeustTZw4UfXq1dOkSZM0aNAg4/Pn/RsAAADcqVjiAAAAALdUfuueurm5af/+/XZtGRkZ2rRpkypWrChJys3N1dtvv60LFy5o1apVKlPmyqnrqVOnlJiYqKlTp8rNzc3Y/uDBg7JarerataskqXfv3nr44Yc1a9YstWvXLt/acnJyNGvWLDVs2FAffvihypYtK0lq0aKFIiIitGjRIo0ZM0YVKlRQ586dtW7dOk2YMEHOzlfmOaSkpOjXX3/VsGHD7PZ77NgxxcbGqmfPnpKktm3bqnv37ho3bpyWLVumgIAASVL9+vU1bNgwbdq0Sb169ZIkzZ49W5cvX1ZiYqIqV64sSerfv7+ioqIUFxenfv36yd3d3TjWxYsXtWbNGuO78PT01Ouvv66ff/5ZDRs2VLt27bRkyRJlZWUVyzIFYWFhio6OVmpqqurXr298jxs2bFDXrl1Vrlw5u/516tTRW2+9JUkaMGCAKlSooKVLl2ro0KFq1KiR0tPTZbVaFRkZqREjRhjbde3aVY899piWLl1q1w4AAHCnYQYtAAAAbqno6Gi99957dn8SEhIc+j388MNGOCtJ/v7+kqRHH33UCGfz2nNycuyWIJCk6tWr2z3IqkKFCgoLC1NKSoqOHz+eb23ff/+9Tpw4of79+xvhrCQ9+OCD8vX11bZt24y20NBQHTt2TLt37zbaEhMT5e7uboTCeTw8PBQSEmK89vX1laenp+rXr2+Es5KMv//++++SJJvNpk2bNik4OFg2m81u1nH79u115swZ/fDDD3bH6tWrl11Qff/999vts7h1795dZcuWtZtN/OWXX+rUqVN69NFHHfoPGDDA7vXAgQMlSTt27JAkbd68Wbm5uerevbvd561atarq1atn930DAADciZhBCwAAgFvK39+/SA8Jq1Wrlt3rvLC2oPbMzEzdc889Rnu9evXk5ORk19fb21uSlJ6ermrVqjkc848//pAk+fj4OLzn6+urb7/91njdrl07VatWTWvXrlWbNm2Um5urdevWqVOnTqpQoYLdtjVr1nSopWLFiqpZs2a+nyXvNv6TJ08qKytLy5cv1/Llyx1qyutztdq1a9u99vT0tNtncfP09NRDDz2kdevWKTIyUtKVoLpGjRpq3bq1Q/969erZva5bt66cnZ2VlpYm6crMZ5vN5hBy57k6nAcAALgTcbYDAACAEsHFxSXf9rzlBK5ls9luZTkOXFxc9Mgjj2jFihWaMmWKkpOTdezYsXxnjRb0WQpqz/ssubm5kq7MGn7sscfy7WuxWOxem/H9hIWFKSkpScnJyWrYsKG2bt2q/v37F1jL1a4NrnNzc+Xk5KSEhIR8vx8PD49iqxsAAKAkIqAFAADAHeHQoUOy2Wx2AeDBgwclSXfffXe+2+TNPv3tt9/Upk0bu/d+++03h9mpoaGhWrhwobZu3aodO3aoSpUqat++fbF9hipVqqh8+fLKzc1V27Zti22/14aiN6tDhw6qUqWKEhMTFRAQoPPnzxe4vu2hQ4fsZjofOnRIubm5qlOnjqQrM2ptNpvq1KmT70xmAACAOx1r0AIAAOCOcOzYMW3evNl4ffbsWa1Zs0aNGzfOd3kDSWratKnuuusuLVu2TNnZ2Ub79u3blZqaqgcffNCuf6NGjWSxWPTxxx9r06ZNCgkJKdZb8F1cXNStWzdt3LhRP//8s8P71y5vUFTlypXTmTNnbrY8Q5kyZRQSEqINGzZo9erVatiwoRo1apRv3w8//NDu9QcffCBJCgoKknTlYWAuLi6Ki4tzmPVrs9l06tSpYqsbAACgJGIGLQAAAG6pHTt26MCBAw7tgYGBdjMrb5a3t7deeukl7d+/X3fddZdWrVqlEydOKCYmpsBtXF1dNX78eE2ePFkDBw5USEiITpw4oSVLlujuu+/W4MGDHbYJCwvTjBkzJCnf5Q1u1rhx47R792717dtXffr00b333qvMzEz98MMP2rVrl/bs2XPd+7zvvvu0fv16xcTEyM/PTx4eHgoODr6pOsPCwvT+++9r9+7dGj9+fIH90tLSNGLECHXo0EH79u3T2rVr1bNnTyPQrVu3riIjIxUbG6v09HR17txZ5cuXV1pamj777DP17dtXw4YNu6laAQAASjICWgAAANxS8+bNy7c9Jiam2APal19+WTNnztRvv/2mOnXqaPbs2erQoUOh2/Xq1Uvu7u5KSEjQrFmz5OHhoc6dO2vChAnGA7eu9sgjj2jWrFm655575O/vX2z156latapWrlyp+Ph4bd68WR999JEqVaqke++9t9AgtDBPPvmkfvzxR61evVqLFi3S3XfffdMBbdOmTdWgQQOlpqYWGlTPmTNHc+fOVWxsrMqUKaOBAwfqhRdesOszfPhweXt7a9GiRYqPj5d05UFr7dq1u+k6AQAASjon2z/9dAUAAACgmAUHB6tBgwZ6++23b/mxTp48qQ4dOmjUqFF69tlnb/nxSrKwsDB5eXlp8eLFDu9ZrVbFxcVp165dqlKlignVAQAA3B5YgxYAAAC4Dp988okuX75c4EOxSov9+/frxx9/VFhYmNmlAAAA3NZY4gAAAAAogl27dik1NVULFixQ586dVadOHbNLMsXPP/+sH374QQsXLlS1atXUo0cPs0sCAAC4rRHQAgAAAEUwf/587d27V82bN9fLL79sdjmm2bhxo+Lj4+Xj46M333xTZcuWNbskAACA2xpr0AIAAAAAAACASViDFgAAAAAAAABMQkALAAAAAAAAACYhoAUAAAAAAAAAkxDQAgAAAAAAAIBJCGgBAAAAAAAAwCQEtAAAAAAAAABgEgJaAAAAAAAAADAJAS0AAAAAAAAAmISAFgAAAAAAAABM8v/s0EHTq2vgAQAAAABJRU5ErkJggg==\n"},"metadata":{}}]},{"cell_type":"markdown","source":["# **ENCODING**"],"metadata":{"id":"fFvjwE-QFdYL"}},{"cell_type":"markdown","source":["## ORDINAL: Work year, Experience Level, Employment type, Work Setting, Company size"],"metadata":{"id":"uR4UiubctFeE"}},{"cell_type":"code","source":["from sklearn.preprocessing import OrdinalEncoder\n","\n","# Define mappings\n","experience_levels = ['Entry-level', 'Mid-level', 'Senior', 'Executive']\n","employment_types = ['Freelance', 'Part-time', 'Full-time', 'Contract']\n","work_settings = ['Remote', 'Hybrid', 'In-person']\n","company_sizes = ['S', 'M', 'L']\n","\n","# Create the encoder instance\n","ordinal_encoder = OrdinalEncoder(categories=[sorted(usd_salary_df['work_year'].unique()), experience_levels, employment_types, work_settings, company_sizes])\n","\n","# Select the columns to encode\n","ordinal_cols = ['work_year', 'experience_level', 'employment_type', 'work_setting', 'company_size']\n","usd_salary_df[ordinal_cols] = ordinal_encoder.fit_transform(usd_salary_df[ordinal_cols])\n","\n","# Check the transformation\n","print(usd_salary_df[ordinal_cols].head())\n"],"metadata":{"colab":{"base_uri":"https://localhost:8080/"},"id":"JcI2zrMUzhk1","executionInfo":{"status":"ok","timestamp":1714691870480,"user_tz":300,"elapsed":210,"user":{"displayName":"Jenny O","userId":"07622373657144372939"}},"outputId":"ca5a5060-2a6f-4815-dbaf-a70ef9e4284e"},"execution_count":null,"outputs":[{"output_type":"stream","name":"stdout","text":[" work_year experience_level employment_type work_setting company_size\n","1 4.0 3.0 2.0 2.0 1.0\n","2 4.0 3.0 2.0 2.0 1.0\n","7 4.0 0.0 2.0 0.0 1.0\n","8 4.0 0.0 2.0 0.0 1.0\n","9 4.0 2.0 2.0 2.0 1.0\n"]}]},{"cell_type":"markdown","source":["## ONE-HOT ENCODING: Job Category"],"metadata":{"id":"GwnBRI9q97Mj"}},{"cell_type":"code","source":["# Apply one-hot encoding to 'job_category'\n","job_category_one_hot = pd.get_dummies(usd_salary_df['job_category'], prefix='category')\n","\n","# Concatenate the new columns to the original DataFrame\n","usd_salary_df = pd.concat([usd_salary_df, job_category_one_hot], axis=1)\n","\n","# drop the original 'job_category' column\n","usd_salary_df.drop('job_category', axis=1, inplace=True)\n","\n","# Check the DataFrame with new one-hot encoded columns\n","print(usd_salary_df.head())\n"],"metadata":{"colab":{"base_uri":"https://localhost:8080/"},"id":"Fx6gRaSp-TGM","executionInfo":{"status":"ok","timestamp":1714691870481,"user_tz":300,"elapsed":9,"user":{"displayName":"Jenny O","userId":"07622373657144372939"}},"outputId":"eb2eb213-ac04-479b-ceaf-2c7025d7e155"},"execution_count":null,"outputs":[{"output_type":"stream","name":"stdout","text":[" work_year experience_level employment_type salary work_setting \\\n","1 4.0 3.0 2.0 230000.0 2.0 \n","2 4.0 3.0 2.0 176900.0 2.0 \n","7 4.0 0.0 2.0 50000.0 0.0 \n","8 4.0 0.0 2.0 40000.0 0.0 \n","9 4.0 2.0 2.0 276000.0 2.0 \n","\n"," company_size category_BI and Visualization category_Cloud and Database \\\n","1 1.0 True False \n","2 1.0 True False \n","7 1.0 False False \n","8 1.0 False False \n","9 1.0 False False \n","\n"," category_Data Analysis category_Data Architecture and Modeling \\\n","1 False False \n","2 False False \n","7 True False \n","8 True False \n","9 False False \n","\n"," category_Data Engineering category_Data Management and Strategy \\\n","1 False False \n","2 False False \n","7 False False \n","8 False False \n","9 True False \n","\n"," category_Data Quality and Operations category_Data Science and Research \\\n","1 False False \n","2 False False \n","7 False False \n","8 False False \n","9 False False \n","\n"," category_Leadership and Management category_Machine Learning and AI \n","1 False False \n","2 False False \n","7 False False \n","8 False False \n","9 False False \n"]}]},{"cell_type":"markdown","source":["## Correlation Analysis"],"metadata":{"id":"3TnvtrIwa5kY"}},{"cell_type":"code","source":["import seaborn as sns\n","import matplotlib.pyplot as plt\n","\n","# Calculate the correlation Matrix\n","corr_matrix = usd_salary_df.corr()\n","\n","# Print the correlation with target column to see the numerical values\n","print(corr_matrix['salary'].sort_values(ascending=False))\n","\n","# Set up the matplotlib figure\n","plt.figure(figsize=(10,8))\n","\n","# Draw the heatmap\n","sns.heatmap(corr_matrix, annot=True, fmt=\".2f\", cmap='coolwarm', cbar=True)\n","\n","# Add labels and title for clarity\n","plt.title('Correlation Matrix Heatmap')\n","plt.show()"],"metadata":{"colab":{"base_uri":"https://localhost:8080/","height":1000},"id":"wKgWHRSBbIKN","executionInfo":{"status":"ok","timestamp":1714691872239,"user_tz":300,"elapsed":1765,"user":{"displayName":"Jenny O","userId":"07622373657144372939"}},"outputId":"b5f6310f-73d3-4775-83f3-1186fba4a385"},"execution_count":null,"outputs":[{"output_type":"stream","name":"stdout","text":["salary 1.000000\n","experience_level 0.336828\n","category_Machine Learning and AI 0.239611\n","category_Data Science and Research 0.159244\n","work_setting 0.047011\n","company_size 0.042575\n","employment_type 0.028643\n","work_year 0.019330\n","category_Data Architecture and Modeling 0.012728\n","category_Cloud and Database -0.006587\n","category_Data Engineering -0.026469\n","category_Leadership and Management -0.042647\n","category_Data Quality and Operations -0.064502\n","category_BI and Visualization -0.083977\n","category_Data Management and Strategy -0.087297\n","category_Data Analysis -0.309971\n","Name: salary, dtype: float64\n"]},{"output_type":"display_data","data":{"text/plain":["
"],"image/png":"iVBORw0KGgoAAAANSUhEUgAABEYAAAPhCAYAAAD0BqrNAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOydd1hUR9uH792ld5AqIGABRKoNe1cwajRqosYSozGm+JpuSX3fFDXRxMSSajfRGBV7772goqAiKgKiVOm97X5/LCysuwuYWMjn3NfFdbFzZub8zrTnnOfMzJEoFAoFAoFAIBAIBAKBQCAQCARPIdInLUAgEAgEAoFAIBAIBAKB4EkhHCMCgUAgEAgEAoFAIBAInlqEY0QgEAgEAoFAIBAIBALBU4twjAgEAoFAIBAIBAKBQCB4ahGOEYFAIBAIBAKBQCAQCARPLcIxIhAIBAKBQCAQCAQCgeCpRThGBAKBQCAQCAQCgUAgEDy1CMeIQCAQCAQCgUAgEAgEgqcW4RgRCAQCgUAgEAgEAoFA8NQiHCMCgUAgEAgEOggLC8PLy4s7d+48tDzv3LmDl5cXYWFhDy3Pfztjx45l7NixT1qGQCAQCJ5ShGNEIBAIBALBY+X27dt8+umn9O7dGz8/P1q3bs3IkSNZuXIlxcXFT1reQ2Pbtm2sWLHiSctQY8aMGXh5edG6dWutZR0fH4+XlxdeXl4sXbr0gfNPTU1l4cKFREdHPwy5fxsvLy8+//xzrceqnF1RUVGP7PwNpRwEAoFAUD/0nrQAgUAgEAgETw+HDx/mrbfewsDAgMGDB+Pp6UlZWRnnz59n7ty53Lx5ky+++OJJy3wobN++nRs3bjB+/Hi1cGdnZyIjI9HTezK3YXp6ehQXF3Pw4EGeeeYZtWPbtm3D0NCQkpKSv5V3WloaixYtwtnZmZYtW9Y73d9xwjRk/m45CAQCgeDJIBwjAoFAIBAIHguJiYm88847NG7cmJUrV2Jvb686Nnr0aBISEjh8+PA/Po9CoaCkpAQjIyONYyUlJejr6yOVPrlJsxKJBENDwyd2fgMDA1q3bs2OHTs0HCPbt2+nR48e7Nmz57FoKSoqwtjYGAMDg8dyPoFAIBAItCGW0ggEAoFAIHgsLFmyhMLCQr766is1p0gVbm5uvPTSS6rf5eXlLF68mD59+uDr60uvXr347rvvKC0tVUvXq1cvJk+ezLFjxxg6dCj+/v78+eefnDlzBi8vL3bs2MH8+fPp2rUrAQEB5OfnA3Dp0iUmTpxImzZtCAgIYMyYMZw/f77O69i/fz+vvvoqXbp0wdfXlz59+rB48WIqKipUccaOHcvhw4e5e/euamlKr169AN17jJw6dYoXX3yRwMBA2rZty+uvv05sbKxanIULF+Ll5UVCQgIzZsygbdu2tGnThpkzZ1JUVFSn9ioGDhzI0aNHyc3NVYVFRkYSHx/PwIEDNeJnZ2fz9ddfM2jQIIKCgmjdujWvvPIK165dU8U5c+YMw4cPB2DmzJmq6666zrFjxzJw4EAuX77M6NGjCQgI4LvvvlMdq7nHyPTp0/Hz89O4/okTJ9KuXTtSU1Prfa31JTY2lqlTp9K+fXv8/PwYOnQoBw4ceGTlcO3aNcaMGUNAQAB9+/Zl9+7dAJw9e5bnn38ef39/QkJCOHnypJqGu3fv8t///peQkBD8/f0JDg5m6tSpGvvgVC0ZCg8P59NPPyU4OJjWrVszbdo0cnJyHnr5CQQCwb8ZMWNEIBAIBALBY+HQoUO4urrSunXresX/+OOP2bRpEyEhIbz88stERkbyyy+/EBsby+LFi9XixsXF8d577zFixAheeOEFPDw8VMd+/PFH9PX1mThxIqWlpejr63Pq1CkmTZqEr68vU6ZMQSKREBYWxksvvcSaNWvw9/fXqWvTpk2YmJjw8ssvY2JiwunTp1mwYAH5+flMnz4dgNdee428vDxSUlKYOXMmAKampjrzPHnyJJMmTcLFxYUpU6ZQXFzM77//zqhRowgLC8PFxUUt/ttvv42LiwvvvvsuV69eZf369djY2PDBBx/Uq2z79u3LZ599xt69e1UP8du3b6dp06b4+PhoxE9MTGT//v2Ehobi4uLCvXv3WLduHWPGjGHHjh04ODjQrFkzpk6dyoIFCxgxYgRt2rQBUKvv7OxsJk2axIABA3j22Wdp1KiRVn0fffQRp0+fZvr06axbtw6ZTMaff/7J8ePH+eabb3BwcKjzGktKSsjMzNQILyws1Ai7ceMGo0aNwsHBgUmTJmFiYsKuXbt48803WbhwIX379n2o5ZCTk8Nrr73GM888Q2hoKGvXruXdd99FLpcza9YsRo4cycCBA1m6dClTp07l8OHDmJmZARAVFUVERAQDBgzA0dGRu3fvsnbtWsaNG8eOHTswNjZWu7bPP/8cCwsLpkyZQlxcHGvXriUpKYnVq1cjkUjqLEeBQCB4KlAIBAKBQCAQPGLy8vIUnp6eitdff71e8aOjoxWenp6Kjz76SC18zpw5Ck9PT8WpU6dUYT179lR4enoqjh49qhb39OnTCk9PT0Xv3r0VRUVFqnC5XK7o16+fYsKECQq5XK4KLyoqUvTq1Uvx8ssvq8I2btyo8PT0VCQmJqrFu59PPvlEERAQoCgpKVGFvfrqq4qePXtqxE1MTFR4enoqNm7cqAobPHiwomPHjoqsrCy1MvD29lZMmzZNFbZgwQKFp6enYubMmWp5vvnmm4r27dtrnOt+pk+frggMDFQoFArFf/7zH8VLL72kUCgUioqKCkXnzp0VCxcuVOlbsmSJKl1JSYmioqJC4zp8fX0VixYtUoVFRkZqXFsVY8aMUXh6eirWrl2r9diYMWPUwo4dO6bw9PRU/Pjjj4rbt28rAgMDFW+88Uad16hQKBSenp51/kVGRqriv/TSS4qBAweq1Z9cLleMGDFC0a9fv0dSDtu2bVOFxcbGKjw9PRXe3t6KixcvapRBzXy0tb+IiAiFp6enYtOmTaqwqrb73HPPKUpLS1Xhv/32m8LT01Oxf/9+neUnEAgETxtiKY1AIBAIBIJHTtXyldpmTdTkyJEjALz88stq4RMmTFA7XoWLiwtdu3bVmteQIUPU9huJjo4mPj6eQYMGkZWVRWZmJpmZmRQWFtKxY0fCw8ORy+U6tdXMKz8/n8zMTNq2bUtRURG3bt2q1/XVJC0tjejoaJ577jmsrKxU4d7e3nTq1EnjWgFGjhyp9rtt27ZkZ2eryrk+DBo0iLNnz5Kens7p06dJT09n0KBBWuMaGBio9mWpqKggKysLExMTPDw8uHr1ar3PaWBgwNChQ+sVt0uXLowYMYLFixfzn//8B0NDQ51fmtFG7969Wb58ucbfxIkT1eJlZ2dz+vRp+vfvr6rPzMxMsrKy6NKlC/Hx8aqlOw+rHExMTBgwYIDqd9OmTbGwsKBZs2YEBASowqv+T0xMVIXVbH9lZWVkZWXRpEkTLCwstGoYMWIE+vr6qt+jRo1CT09Pa7sSCASCpxWxlEYgEAgEAsEjp2oZQEFBQb3i3717F6lUSpMmTdTC7ezssLCw4O7du2rh9y81qe1YfHw8gGrZizby8vKwtLTUeuzGjRt8//33nD59WsMRkZeXpzNPXSQlJQGoLf+polmzZhw/fpzCwkJMTExU4Y0bN1aLZ2FhASiXaFSVdV10794dU1NTdu7cybVr1/Dz88PNzU1jrwoAuVzOqlWrWLNmDXfu3FHbT6WmM6cuHBwcHmij1enTp3Pw4EGio6P59ttvdS690YajoyOdOnXSCE9JSVH7ffv2bRQKBT/88AM//PCD1rwyMjJwcHB4aOXg6OiosYzF3NwcR0dHjTBAbS+Y4uJifvnlF8LCwkhNTUWhUKiOaWt/bm5uar9NTU2xs7PT6EMCgUDwNCMcIwKBQCAQCB45ZmZm2Nvbc+PGjQdKV989ELR9gUbXsaoHyWnTpun8lGpNJ0RNcnNzGTNmDGZmZkydOpUmTZpgaGjIlStXmDdvXq0zTR4mur6qU/MhuS4MDAzo27cvmzdvJjExkSlTpuiM+/PPP/PDDz8wbNgw3nrrLSwtLZFKpcyaNeuBzllbPWkjOjqajIwMAK5fv/5AaetLVZ1NmDBB56yjKgfdwyoHmUz2QOE18/7iiy9U++EEBgZibm6ORCLhnXfeeSANAoFAIKhGOEYEAoFAIBA8Fnr27Mm6deuIiIggKCio1rjOzs7I5XISEhJo1qyZKvzevXvk5ubi7Oz8t3W4uroCSmeNthkFtXH27Fmys7NZtGgR7dq1U4Vrm2VRX6dO1eyPuLg4jWO3bt3C2tpap6PmnzJo0CA2btyIVCpVW9pxP3v27CE4OJhZs2aphefm5mJtba36/TA38ywsLGTmzJk0b96coKAglixZQp8+fWrdGPfvUNUe9PX162wPT6IctGkYMmQIM2bMUIWVlJTonK2UkJBAhw4dVL8LCgpIT0+nW7duj0yjQCAQ/NsQe4wIBAKBQCB4LLzyyiuYmJjw8ccfc+/ePY3jt2/fZuXKlYBymQeg+l3F8uXL1Y7/HXx9fWnSpAnLli3TurRH25dMqqiaqVHzzXxpaSlr1qzRiGtsbFyvpTX29va0bNmSzZs3qy2ZuH79OidOnPhH11oXwcHBvPXWW3zyySfY2dnpjCeTyTRmI+zatUvjs7lVX0SpeR1/l3nz5pGcnMycOXOYMWMGzs7OzJgxQ+Nzzf+URo0a0b59e9atW0daWprG8Zrt4UmUw/1om1WyevVqtWU9NVm3bh1lZWWq32vXrqW8vFw4RgQCgaAGYsaIQCAQCASCx0KTJk2YN28e77zzDs888wyDBw/G09OT0tJSIiIi2L17t2pjTm9vb5577jnWrVtHbm4u7dq1Iyoqik2bNtGnTx+1N+APilQq5csvv2TSpEkMHDiQoUOH4uDgQGpqKmfOnMHMzIyff/5Za9qgoCAsLS2ZMWMGY8eORSKRsGXLFq1LGFq1asXOnTuZPXs2fn5+mJiY0KtXL635Tps2jUmTJjFixAiGDx+u+lyvubl5rUtc/ilSqZQ33nijzng9evRg8eLFzJw5k6CgIK5fv862bdtUsy2qqNoE9M8//8TU1BQTExP8/f014tXFqVOnWLNmDVOmTKFVq1YAzJ49m7Fjx/L9998zbdq0B8qvLj777DNefPFFBg0axAsvvICrqyv37t3j4sWLpKSksHXrVuDxl4M2evTowZYtWzAzM6N58+ZcvHiRkydP6tzjpKysjPHjx9O/f3/i4uJYs2YNbdq0oXfv3v9Yi0AgEPx/QThGBAKBQCAQPDZ69+7N1q1bWbp0KQcOHGDt2rUYGBjg5eXFjBkzeOGFF1Rxv/zyS1xcXNi0aRP79+/H1taWyZMnPxRHQXBwMOvWrePHH3/k999/p7CwEDs7O/z9/RkxYoTOdNbW1vz88898/fXXfP/991hYWPDss8/SsWNHja+dvPjii0RHRxMWFsaKFStwdnbW6Rjp1KkTS5YsYcGCBSxYsAA9PT3atWvHBx988FAepv8pr732GkVFRWzbto2dO3fi4+PDL7/8wrfffqsWT19fnzlz5vDdd9/x3//+l/LycmbPnv1A15Cfn89HH32Ej48Pr732miq8bdu2jBs3juXLl9OvXz8CAwMf1uXRvHlzNm7cyKJFi9i0aRPZ2dnY2Njg4+PDm2++qYr3OMtBFx999BFSqZRt27ZRUlJC69atWb58Oa+88orW+J9++inbtm1jwYIFlJWVMWDAAD7++ONHutxHIBAI/m1IFGKXJoFAIBAIBAKB4P8VYWFhzJw5kw0bNuDn5/ek5QgEAkGDRuwxIhAIBAKBQCAQCAQCgeCpRThGBAKBQCAQCAQCgUAgEDw0EhIS+PTTTxk8eDA+Pj4MHDiwXukUCgW//vorPXr0UC1vvXjx4qMVi3CMCAQCgUAgEAgEAoFAIHiI3LhxgyNHjuDm5kazZs3qne63335jwYIFjB8/nl9++QU7OzsmTJhAYmLiI1Qr9hgRCAQCgUAgEAgEAoFA8BCRy+WqT9zPmDGDy5cvs3379lrTlJSU0KlTJ0aPHs27774LQGlpKaGhoXTr1o3//ve/j0yvmDEiEAgEAoFAIBAIBAKB4KFR5RR5EC5cuEB+fj79+/dXhRkYGNC3b1+OHj36MOVpIBwjAoFAIBAIBAKBQCAQCJ4ot27dAqBp06Zq4c2aNSMpKYni4uJHdm69R5azQCAQCAQCgUAgEAgEgn8lvXv3rvX4gQMHHur5cnNzMTAwwNDQUC3cwsIChUJBTk4ORkZGD/WcVQjHiEAgEDxCduh7PWkJOjn246UnLUEnHm6Pxuj9U2SyJ61ANy2d8p+0BJ3sPK3/pCXoxM/b4ElL0EpOvuRJS9BJcUnD3Z5OT6/hllt2TsWTlqCVRtYNd2Arr2i4bc3EqOG2tQr5k1agHVkDXqswodeTVqCbJ3ov2c3lyZ37MSMcIwKBQCAQCAQCgUAgEAjUeNgzQurCwsKC0tJSSkpK1GaN5ObmIpFIsLS0fGTnFo4RgUAgEAgEAoFAIBAIGiAS/YY7O+lhU7W3SFxcHN7e3qrwW7du0bhx40e2jAbE5qsCgUAgEAgEAoFAIBAInjCtW7fGzMyMXbt2qcLKysrYu3cv3bp1e6TnFjNGBAKBQCAQCAQCgUAgEDw0ioqKOHLkCAB3794lPz+f3bt3A9C+fXtsbGx46aWXSEpKYt++fQAYGhoyefJkFi5ciI2NDZ6enqxdu5bs7GwmTpz4SPUKx4hAIBAIBAKBQCAQCAQNEGkD3lS6NjIyMnjrrbfUwqp+r1q1iuDgYORyORUV6htTT5o0CYVCwbJly8jMzKRly5YsXboUV1fXR6pXOEYEAoFAIBAIBAKBQCAQPDRcXFyIiYmpNc7q1as1wiQSCZMnT2by5MmPSppWhGNEIBAIBAKBQCAQCASCBohEX2wL+jgQpSwQCAQCgUAgEAgEAoHgqUU4RgQCgUAgEAgEAoFAIBA8tYilNAKBQCAQCAQCgUAgEDRA/q2br/7bEDNGBAKBQCAQCAQCgUAgEDy1iBkjAoHgkRMWFsbMmTM5deoUNjY2T1rOE0NmakLT9yZi1T4Aq3Z+GNhYcWniDO6s2lSv9HqW5rSc8wEOg/siMzEiJzyKq9PmkBtxVSOu/cBeeH46BbOWzSlNyyBxZRg3v/oRxX2fRNOGkQH0b69HK3cZBnqQmC5nx+lykjIUdaZ1sZPQxlOGq50Up0YSZFIJM34r1ohnaQptvWR4u8qwtZQgV0BqpoKDEeXcTJKrxS0vK+Xkzh+IPruF4qJc7Bp70Xng27h5d65TT152KkfCZpFw7QQKhRzXFsF0H/ohVrbqn3y7dGwNt6+fJiUhkrysZHzaP0fo2Dm15l1eVsqJ7T9w5ewWSgpzsXP2osugt3FvWT9dhzbMIj5aqauJZzA9h6vrys1MJurURm5dPkxWWgJSqRTbxp506P867t6das2/rKyUzWt/5uThHRQW5OHi1pyhL75Bq8AOtaZLvhvP4T0buXX9Mgm3rlFeVso3v2zD1r6xRtziokLC1vzI+VMHyMvJws7BmT4DR9Iz9Pk6r78KIwMIbaeHTxMp+npw556CXWfr2dZsJbRuIcPFToKjjbKtfbSsRGvc9t5SmjpJcbWTYmUm4cKNCjYeK9eIV15WysFNC4g8tYWiglwcXL3oPfQtmrWqu05zs1LZvXY2sZeVderuHUzoqJnY2FfXacTxMDYv/VBnHsNenYt/x0FadTXEPnA/JUW5nNo+l1uX91NeWox9Ez86D5qOnUureqXPTI3lxNbZJMddQCbTx61ldzo/OwNjs2q7kZV2i+izG0m8foLcjNvoG5hi6+xD+5Ap2Lv66dZWmMvxbXOJjdxHeVkxDk386Dp4Bvau9dSWEsvRzbNIvnUBqZ4+7j7d6TpkJiZm6jYtfO9PpCRcIiUhkqL8DNqHTKFD///ozNdQH3oHSvB0lqCvB0kZcOCinJSsesmikQX0DZLiagsVcriZrGB/hILCGl2hq6+Ebr6634VuPgMp2cr/y8tKObXzB6LDq9tapwH1a2v52akcDpvF7ZgTKORyXGppa4k31NtayJgHb2snts4lNmq/qj67PDu9/vWZGsuxzbOr67Nld7oOUW9rAOH7fiZVrT7fJDhUsz7Ly0o5vv0HrpzZQnGlPej67Nt41NMeHFivbg96D/8QK7vqcisrLWbfus9JjoskNysZhUKOla0r/p2GEdT9RWQyfZ35l5eVcmLHD1yttFW2jR/cVtUcPzRsVVYyl09u5NaValvVqLEnHUNfx60WW9WQy6yhIdEXM0YeB2LGiEAgEDwmDGyt8fxkCmbeTcmLrP3zZRpIJLTb+iuNRw4k4cffuTZzLgZ2NnTYvxqT5m5qUe1CutF242LKsvO48vYXpGzdT4sPX6fVD5/UfRpgfIgBgc1lnLpazs6z5ZgZS3h1oAGNLOo2zN6uMtp5yQDIzNX9cOvjJqN7gB4ZuQr2nCvn4IVyDPThlQEGtPGUqcXd8/sMLhxcgXe7QfQc9hESqYxNP73K3dhztWopLSlg/YJx3LkZTvt+k+nYfyppd6L564cxFBWoP3WE719C4vUzNHJsjlRav3cGu1bP4NyBFfi0G0Sv5z9CIpGxcfGr3LlZh67iAtZ9P47EG+EEh0ym84CppCZG8+d3YyjKr9Z1M/IAZ/f+hrWdG12efZuO/d+gtLiA9QteJurUxlrPsXTBf9m79Xc6duvPqInvI5XK+P7LqVy/GlFrutiYSPbv+JPiogIau3jojCevqOC7z6dwePcG2nXqy6iJ7+Ho7MbqX+awfcOyWs9RhQQY11cf/6ZSTkdXsPtcOaZGMLG/fr3amqerlDaeytuYzLzaHSnd/PRo5iQlLVtBhVx33E1LZ3Bq7wr8Ogyi/4sfIpVI+X3+ZBKun681/5LiAlZ8PY74mHC6DpxMjyH/IeV2NMvnjKWwRp26ebZj6KRvNP6c3HyQSmV4+Gh3XDXUPlAThVzOjqWTuR6xA7/Oo+k48H2K8jPZ/NM4stPj60yfn53C5h/HkHPvNh36v01gj5dJiD7C1l8nUFFeqop39cx6os+sx97Fl06DphPQbTzZ6XFsXDiSxOsndWrb+turXD+/nYCuY+g86AOK8jPZuGhsvbTlZaewYeFocu7dpuOAd2jdcwLxV4+w+ceX1bQBnNr5PamJl7FzaVlnvgAjuklp1UTC+RsKDl5UYGoEY3pJsTarO625MYytjHsoUsHpGAXNnSS82EOKtMYdfkyigi2n5Bp/OQUKikoUpOVUx937xwwuHFqBd9tB9BiqHNc2/1zPtrZwHHdjw2nXdzIdn5lK+t1o1i/QbGvnDvzztrbt18lcv7AD/y6j6TzofYryMglbXP+2tnHhmMr6fJugHi8TH32EzT9N0KjP0zu/J/V23fW5c9UMwvcr7UHv55V9dMOi+tmDtfOV9qBj6GS6DFTagzXz1e1BeVkx95Ju0tS3G92HvEvPodOwd/HmwIbZ7Fgxo9Zz7F49g/MHVtCy7SB6Dv8IqVRG2I/10/bXD8rxIzhkMp0GKMePdfdpu3npAGf3/YaVnRtdBr1Nh/5vUFZcwPqFtduqhlxmgqcTMWNEIBA8MioqKpDL5XVH/BdQXFyMkZHRP8qjJDmN/S6dKUm9h2UbX7qcrv3htiZOw0Kx6dSa8yOmkhK2B4Dk9bvocXUPnp/+h4vj3lfFbfn1NHKjYjjbf4Jqhkh5bgHNZ0wmbuEqCmJu6TyPb1Mp7o5Sft9fyuU4Zd1F3arg/RcM6dtGjz8PldWq83R0OYcvlVNeAc920sPOSrv/PTZZzpw1JWpvNU9HV/DWUAP6ttFjXeXzTXJ8JDEXdtBtyDTa9p4IgE/7IaycNZCjW+Yx6t0/dWq5dGwN2enxvPj+ehzd/AHw8OnKytmDOH9gOV2efVcV94W3VmNu3RiJRMLC94JqvcYqXdfO7aD7c9No31epq1XwEJZ/OZAjm+Yx+gPduiKOriErLZ4x09bj5F6pq1VXln85iPADy+k2WKmriWcwk786pPZGOqDrKFbOGsyJbQvw6zhMa/63rl/m7PE9vPDSW4QOGQdA5x4D+OStF1i/agEfzVmuU1tgu+4s+r03xsam7N68ittx2h14508f5Oa1S7z85qd07TMYgJ6hz7P4m2lsW7+Ebn2GYGFV++ywVh5S3BykrDlYxpX4yrYWJ+fdYQb0DpLx1xHNGR01ORNdwdHICsorYFAHPewsdcddsrOU7ALl/5+ONdAa586tSC6f2Um/Fz6gc39lnQZ0HsKPHw9i319zeeVj3XUafnAtGakJvPrJepybKmcttPDvxo8fD+Lk7uX0Ga6sUxt7V7UZJKB8q7lj9f/waBmMuaWdRt4NtQ/cT2zkHlLiIwgZ+z3NAkIBaB7QnzVfhxK+dyF9R39ba/rzB36hvLSI59/eiLm1coaSvas/236dwLVzm2jVYQQALYIG0L7fFPQNTVVpW7YfytpvBhC+dxEePppvm29c2k1yXAT9x/9Ai8DQynz6s/qrEE7vWkjouNq1ndv3M+WlRYx6P0ylzaGJP5t/epnos5vw7TRCFXf8JwewaORCUX4mv33csdZ8W7pKcLWTsPF4BdfuKMOiExW8NkBKNz8JW07V7vDr7CPBQA+W7ZWTW6gMS8pQMLqnjAAPCRGxyvRpOZCWo56XuQlYmEi4eEuBXKF0RKYkKNta18HqbW3V7IEc2zKPkfVoa6Peq25r7j5dWTV7EOcPLqfLoOq29vzU6ra26P0Hb2s3L+0hOT6C/i99T/Oq+gzsz+pZoZzZvZCQsXXU535lWxv53ka1+tzy8wSN+nzpk/1Y2LhQlJ/Fkk+012dSfCTR53bQY+g0givtgW+HISz9YiCHNs1jbD3swbjp1fagaauuLP1iEGf3L6f7EGW5GZtaMW76X2ppg7qNwtDYnAuHf6fX8BmY6Rg/rp1X2qp2fapt1YovB3J08zxefF+3tovHlNpGT1uPU43xY8VXgzh3YDlda9iqV7+8z1Z1GcWq2YM5uV27rWrIZdYQEXuMPB7EjBGB4Cnk3LlzeHl5cfv2bVXYa6+9hpeXFzdu3FCFvfvuu7z66qsAZGdnM3PmTIKDg/H392fkyJGEh4er5Tt27FgmT57Mpk2bCAkJwc/Pj2vXrmnVsHHjRnx9fVm/fn2deufMmUOPHj00nCxHjhzBy8uLmzdvqsLCwsIYNGgQfn5+dO3alfnz51NRY/lIWloaM2fOpHfv3vj7+9OvXz++++47SkvV3xJ5eXnx66+/MnfuXDp37kzHjrXf4NYHeWkZJan3/lZax6EhFKekk7Jpryqs9F4WSRt24fBsb6QGyimhZi2bYd6qBYlL/lJbNpPw8xokUilOQ0NqPY+fh4y8QgVX4qrLuqAYIm9V4OMmRVaH1cgvgvK6V+uQlqU+1RuU08BjEuVYmUnQr5w0cuPibiRSGX41blT19A3x6zic5LgI8rKSdZ7jesQeHJr4qW7SAWwcm9HEsyMxEbvU4lrYOCOR1P/GI+aCUldAF01dSXER5GbWrsvRzU91QwfQyLEZbl4diblQrcu2cQuNafp6+gY09e1OXnYKpcX5WvM/d+oAUqmM7v2GqsL0DQzp2mcwsTGRZN5L0anNzNwSY2NTncdV1xCtnHnSvms/tfDgLv0oKy0h4uzhOvPwdZeSV6jganx1WyssVjpHWjapu60VFNevrQEqp0htXD23B6lURpse1XWqr29IUNdhJMZeJCdDd51ePbcHZw8/lVMEwM6pKR4tO3AlfHet5425eIiS4gL8O2guoYGG2wfuJzZyD8bmtjT1q24TxmY2NAsIJe7yQY038fdzK2ovbi17qB5UAVw9O2Fl507speoytHfxVXOKABiZWuPUtA1ZabFa8755aQ8m5rY096/WZmJmQ4vA/ty6fIDyOrTdvLQX91bq2pp4KbXduHhfOTZyqTWvmni7Qn6RQuUUASgsgejbCjydJXX2AS9XCTeSFCqnCEB8KmTkKmjpWntdtmoiQSKRcDm+2mFyXUdb8+0wnOT42tvajYta2pqDsq1df8htrao+m/mrt7XmgaHcqkdbu3lpL+4+uupTvb9a2NRdn1X2IPA+e+DfaThJt2q3BzEX9uCkwx5cu7BLZ7oqLBs5A8qlRdq4HqHU5t/5vvGjU6WtqmP8cHTzUzlFamqrj63yaKXbVjXkMhM8vQjHiEDwFOLv74+hoaHKsSGXyzl//rxaGEB4eDht27aloqKCSZMmcejQId5//31++OEHTExMePnll7l8+bJa3pcvX2bp0qW89dZb/Prrrzg5OWmcf/Xq1Xz22Wd8/fXXPP983fsRPP/88yQnJ3PixAm18I0bNxIYGEjz5s0BWL58OR9//DFdunTh559/ZtKkSaxatYr58+er0mRlZWFlZcXMmTNZsmQJr7zyCps2beKzzz7TOO+qVauIj4/nq6++Yu7cuXXqfJRYBrZU7iWiUH/rlxMehZ6pCaaeymUPFoE+AGSfj1KLV5KcRlFiMhaBtU8HbtxIwt17cu5/T5mYrsBAX4Kt5aN9a2FmIqG0TKF64E27E421vTuGxurzyqtuvtPuRGvNRyGXcy8pBscmvhrHHN38yLl3W6djoT6k3YnGRouuqhu12nSl39Wuy8ndj+z0unUV5Kajb2CMnoGx1uO342JwaNwEYxN1bR4tfCuPX681//pQXlaGVCpDT099jbaBoXJWVUKsdodoTZxsJCRlaLa1O+nyx9LW7ic5IZpGju4Y3VenLk2VdZqSqL1O5XI5qYkxNHbXrFPnpv5kpt2mpEh3nUae2oa+gREt2/TVeryh9oH7uZcUjZ2zDxKp+q2lvas/5WVFZKfH6Uybn5NKUX4G9q6aWu1d/Um/q7mP0v0U5t3D2NRa67H0O9HYuWhqc3Dzo7y0iOy0WrRlK7U5aNHm4OZPuo7yrw+O1hKte4kkZYKBngQbc91pzY3BzEhCcqa29AoctBeFCl83CTkFCm6nV4el34nG2u7vtzWHx9TW0u/qqM8m/pSXFpFVj/rU1tYcmvhzrx5t7X5SE/++PUi7G4Ojm257UHJfuVWUl1KYn0luZjLXL+7j7L5lWNg4Y23nppFH1blrGz90td8qW6WrTrPrUaeFueno6bBVDbnMBE8vYimNQPAUYmBggL+/P+fOnWPYsGHExMRQVFTE0KFDCQ8P58UXXyQhIYG0tDTatWvH4cOHiYyMZMmSJXTt2hWALl260K9fP3755RcWLlyoyjsnJ4cNGzZodYgA/PLLLyxatIgffviB3r1710tvs2bNaNOmDRs3blSdPysri4MHD/Lpp58CkJ+fz4IFC3jllVd4913lNMrOnTujr6/PnDlzmDhxItbW1nh5eTF9+nRV3q1bt8bY2JgZM2bw6aefYmxcbcAtLS1ZtGjRP3qz9bAwdLIj87jmutvi5LTK4/bkXb6OkaNyWmhJcrpG3JKUdIwa29d6HnMTCXEpmsuf8gqVj68WphJSs+reGPPv0MhCgq+7lKg4OQqUU0YKctMxtdCc6loVVpCTpjWv4sJsKspLMdUyTbYqbX5OGjZG9VjIr4WCnHTteVtW562Non+oKystgRsX9+EZFIpUKtMaJyfzHlbWthrhlpVh2ZmabeNBcWzshlxeQWxMFJ4+1VPhq/YwycrUfv01MTeREJ+q2ZbyiqqOQ2o9N6B8GOTnpGudVl0Vlpulo04LcigvL8XMSjOteWVYXnaaxgMAQGF+NjcvH8M7qI/W49Bw+4A2nU5N2+rWmZtGIycvrWkLc5XXYKLlOk0s7CgpzKGivBSZnvZlUEm3zpGScJG2vV/XkX86zs20aVOOhwU5adg21q6toBZtphZ2FBdmU15eip4ObbVhZgS30zX7QH6RMszcGNJzNA6r0gLka+5tTX4RmBgqZ5xUaFnNamsBDtYSTkarHyzI1TGu1ahDbajaWi3t9GG2Nd31Wa2zrvrUpbW4jramNc86xo6/Yw9UabPTMHSsLreYiH1sW1a9LMnRzZdnxs5CKtP+SJefk46ZtmutkX9t2rRdV007V6utuqTbVjXkMmuIiM1XHw9ixohA8JTStm1b1eyQ8PBwfH196datm1qYsbExvr6+nDt3DjMzM5VTAkBfX5++ffty/rz6poSenp46nSLff/89P//8M7/88ku9nSJVvPDCCxw4cIDs7GwAtm3bhr6+Ps888wwAERERFBYWEhoaSnl5ueqvU6dOFBcXq5YIKRQKVqxYwTPPPIO/vz+tWrXi/fffp7y8nMTERLVzduvWrUE4RQBkxkbISzSnB8uLSyuPGwIgNVbeLWuLW1FcojquC32Z9uUJVWH62p/F/zH6MhjdW5+ycth1tnofk/KyYq03qDJ9Q9VxbZSXKdfpaEurp0qr/Qsm9aFMhy69unSV1q2rrFS7rrLSIrYueQs9fSO6D3lPp7bS0mL09DXz168MK9WR/4PQoVsoxiZmLF/0OVcunuZeWhKH94ZxaPf6ep9DXwbaPpJUXqGoPP54+15ZabHWh9u62kt5qbKutabVq6xTHWmvnttDRXmZ1i/RqPJvoH3gfirKipHJtOjUq/tcKq1a0uvp1X6dhXkZ7PvjfSxsXAjqOVFH/jrKsDKsXtpqqd+KUu3a6kJPZx+oPq4zbeUz3d9J7+uu7FtX4tWdMuWldbQ1HddZWxnVp/4flLr7xN+rz7r61IPqUfV/XeVWOU4+yLjj5hXMiKnLGTzpBwK7jkQq06e0pOjBtf2T8aOqTmuxVduWKm1Vt8HabVVDLjPB08u/x1UmEAgeKu3bt+enn34iNTWVc+fO0bZtW9q2bcu9e/eIj4/n3LlzBAQEoK+vT25uLo0aNdLIw9bWlpycHI0wXezZswdPT0/atGnzwHpDQ0P56quv2Lp1K+PGjSMsLIyQkBDMzJRvBbKylK+Wn3vuOa3pk5OV61VXrlzJ119/zSuvvEJwcDAWFhZERUXx+eefU1Kibky1XfOToqKoGKmh5o2A1Mig8rhSu7xIeTOhLa7MyFB1XKKvj9l9s1sLiqGsQvvNdFVYWT33dHgQJBIY1Vsfe2sJy3eXkVcIVa1IT99I63rxisobHz197Y6eqhskbWnLVWkN/7ZmfR26yuvSZVC3Ln0DTV1yeQXblr5DRspNhr35G2ZWDjq1GRgYUV6mmX9ZZZiBlvwfFEtrW6Z+OJ8lP3zCt/97EwBjE1NefGUaSxd8hpFRdeOSgM62JtPa1pQPbWUVj2Zmki70DYy07jVRV3vRM1DWtda05ZV1qiNt5OltGJta0sKvq9bjyvM2rD5QUV5KYW62WpiRmQ0yfSMqKrToLK/7XCqtWtKXl+u+zrKSQnYue42ykgIGvvIHUpk+BbnqM6KMzWx0l2FlWL201VK/MoPaHc5SCRjpQ1mNaIUlSgeG9j5QmX8t42155d7Efyd9KzcJadnqX6MBZVuuta3puM7ayqg+9a+LivJSCvKy1cJqrc96tOtatdbRp3TnqcMeVPV/XeVWORY/yLhjamGLqYXSQnq3DuXUrp/5a8HLTPrfXq0zMHRq+yfjR1Wd6rBV25dV2qo3dNuqhlxmDRGx+erjQThGBIKnlMDAQPT19QkPD1ctqbGysqJFixaEh4cTHh7OkCFDAOWSkoyMDI087t27h6Wl+qcgapth8eOPP/Kf//yH//znPyxevBh9/fp/Q97IyIhBgwYRFhZGmzZtiI6O5uOPP1Ydr9KxaNEiHB0dNdK7uCg3UNu9eze9evXivfeq32LExmrfsK+hzBYB5dIYQ0dNA27kZF95XDnttDhF+VBg6GRH8R31TTYNHe3IDo8EwLpjEB+PUb/x+HptCXmFCsyNNa/b3EQZllvw8B9Wh3XVw7uJlHWHyohNUp/abWphR35OqkaaqocfU0vtS4OMTKyQ6RlQkKO5bKQqrZmOtPXB1NKO/GwtunJqz9v4b+ra88fHxF4+zMDx83Dzqn0jYEsbW7IyNKch52QpN/61snk4N4JerVrz9U9buXP7JiXFRbi6e6qW6Tg0rl67bW4iY+Yo9RvVuX9VtTXNfKvC8go1jz1KzCztyNNSp/mVdWVhraNOTS3R0zMgP1uzTvMqw8ytNNNmZyRx+/p52nR/AZme7rGwofWBpLgI1i8YpxY25sP9mFrYUZir+1xVy1a0YVJ5TFv6wtx0DE0sNd4uV5SXsnvlf8hIjmHgpCU0cvLk7s0zbPn5JbV44z85gImFnYbDRKmtcllFLeVgWou2gtx0jEys6lxG42gNzwUDVHsxFm2rIL9YuU8I9+20Y1Y5BufV8lK7agmNmZbnRzNjKCxRaF1G42ILVqYSDl7SPGhqoWNcq6MOVW2tlvr/u21tw0L1tvbSJ/trqc+625pq+ZTO+tRsa3Whyx7k/wN7oEqrZeyoiVfrEI5unc/NyAMEdh2pcVzXuFZQR/5V2vK1jR+1XNfeSls1YPw8mtRiqxpymQmeXoRjRCB4SjExMcHHx4d169aRnZ2tmsXRrl07tm7dyp07d2jbVrmGt02bNixdupTjx4/TpUsXAMrLy9m/f/8Dzf7w8PBg+fLljBs3jvfee4/58+cj0/a6SwcvvPACf/zxB7Nnz8bd3V2lDyAoKAhjY2NSUlLo21f7Joag/Ozu/Q6Zbdu21VvDkyL30jWsu7RRTq+osQGrVXt/ygsKKbgeVxlPuWGZVRs/csKrN2A1dLLH2NWJ20uUn67LjbzGkh3qb1zyihQkZSjwcJRy/626q51yU9R7OQ/XMdK/vR5tvfTYdrKMS7GaN+p2Lt4k3jhDSVG+2h4MyfGXALB30b6ZrEQqxbaxJym3L2scS0mIxNLWFYN/sN7d3sWb29f/ni47HbqS4rTrOhz2NZdPhdFr+Ie0bDewTm1N3D25FnWOosJ8tQ1Yb11XnrOJh2fdF1hPpDIZTTyq1/JfjTwDgE9Ae1VYQXEFy3art7X8IkjOVODuoKWt2UsfSVurC8cm3sRfO0NxUb7aBqx3binr1NFVe51KpVLsXTxJites07u3LmFt56p1/5Co0ztQKBS1LqOBhtcH7Jy9GfTqMrUwE3M7bBt7kxR3HoVcrrYpZtrtS+jpG2Nl56EzTzNLB4xNbUhL1NSalhiJbWP1a1TI5Rz4cwZ3bp6m39j5ODdTtrdGjb0Z8rr656hNLOywc/Ym6ZamtpSESPQMjLGyr0WblQPGZjakatGWmhCJrbO3zrRVZOTClrOQX1A9hSO/SLmHjqsWP6VzIygtV5CZpzvPvCIoKFbgpOWr2I1tJKRma0/n6yZBoVBwJUGzf9k5a29rKQn1a2upWtpacnwklo3+flsb/JpmW9NVn6kJl9AzMMa6HvWpra2l3o7E1rn2Dcq14aDLHsTVwx44e5KSoL3crGxdMayj3KpmSZQUaW8sds612yq7v1unumzV6TB6Dv+Qlm1rt1UNucwETy9ijxGB4Cmmbdu2nD17Fm9vb9WSlKowfX19goKUmyr26NEDf39/PvjgAzZs2MDhw4eZPHkyaWlpTJ48+YHO6eXlxbJlyzh58iTTp0/X+ARvbXh7e+Pn50d4eDjDhg1TO2ZhYcHUqVOZO3cuc+fO5ciRIxw/fpy1a9fyyiuvUFSkfPXWqVMn9u/fz++//87x48eZNm0aCQkJD3QNjxpDRztMvZoi0av2XSeH7cbI0Q7H56o/T6jfyBqnYaGkbT+EvFS5L0f+1ZvkR8fi+soLUOOG0W3yKBRyOSlhyk8RlmfncjNJrvZXXgGX4yowN5HQyqM6rYkh+DeVEX1brvYG0sZcgo35359V081fRvcAPQ5GlHPiivY5356BoSjkFUSdXKcKKy8r5cqZMBzdAzC3Vu5nk5uZRGaK+syfFoEhpN6OIuV2tYMoM/UWt6+fxjMw9G/rBvAMUuq6dFxdV9SpMJzcA7CwqdaVcZ8uz9YhpCREkZKgqcurtbqus/uWEL5/GR1CXqNNL/U34bpo06k3cnkFR/aGqcLKyko5fnArTT19sbFVzqjKSE8m+Y7urzc8KLk5WezatBIX9xb4+AerwivkEJukUPsrr4Ar8XLMTST4uKu3NV93KdcS729r1PqFjodBq7YhyOUVnD+sXqcRxzbh0jQAy0bKOs3OSCI9+ZZaWp+2IdyNi+JuXHWd3ku+RVz0GVq1097Wos5sx7JRY5q0qN253ND6gJGJJa6endT+9PQNaeofQlHePW5FVX9SvKggi9jIPbi36qn2Fj7n3m1y7t1Wy7epfz8Sog+Tl139mc47N06RnR5PM391rcc2f8nNizvpNvRTmtX4PLCRiSVNvDqp/enpG9I8IJTCvHvcjKyhLT+Tmxd349Gqp9qMj+x7t8m+T1tz/37EXzms9rnaxOtKbS3qUY4l5XAnQ/kp3aq/CjlEJyowM5bgXeOLsMYG4O0q4cZd9RkfVmbKv5pcS1TQorEEc5PqMHcH5UbW125rOj6kEmjZREJiOmqf+K2iRW1tze2+tpZ6X1sL0N7WEm+cpkXQ329r2uqzWUAIhXn3iFWrzyxuXtqDRz3aWjP/fsRf1V6fzQMeXKtXa2W5Xfwb9sArKITkhCiSa9iDjJRbJMSo24PC/EwUCs06vXRCua+Ttq9PKfNXaos8oa7t8ulKbda12KqgWmxVkKatOndgGcEhr9GmZ922qiGXWUNEIpM8sb+nCTFjRCB4imnfvj1Lly5Vm3nRrl07AHx9fTEyUs7Rlclk/Prrr3zzzTfMnTuXwsJCWrVqxbJly/D1fXDD0qpVK5YsWcLLL7/Mp59+yhdffFHvZSt9+/bl6tWrqmU+NZkwYQIODg4sX76c33//HT09PZo0aUKPHj1Us0TefPNNsrKyWLBgAQAhISF8/PHHvPbaaw98HX8HtzdGo29pofo6jP2Anhg5Kx9U4xevpjw3H6+v3sV13FAONu9FUcJdAJI37iHrdAQBS2Zj1rI5ZRlZuE0eBTIZ1z9fqHaO6Bnf0HbTTwTvWkbSXzswb+WJ+xujSVy2nvxr6g909xMVJychVc7z3fRxsCqnoBg6+MiQSGDf+XK1uJMGKG8+v/6zem8WKzNo3UI5C8jFVvnA2ytI+TsrT0HETeWdfit3Kc8E65OeIyctW05gc3U/fakEikrByT0Az6BQjm/9jsK8DKzs3Lh6ZhO5GXfp9+JXqvi7V0/nzs2zvLswRhUW2PVFok6uZ/PPk2nTawIymR7nD63AxLwRbXpNUDtfbNRB0u8qPzErl5dxLymG07t/BKCZXy/s7nsr3NgjAK/WoRzbotRlbe/G5dNKXaFjqnXtXDmdxBtn+eDHal1B3V4k8sR6Nv44mXZ9JiCV6XHuwApMzRvRrne1rusX93Fk01ys7d2xcWzKlTNb1DS4t+ysWjddk2aefrTt1IeNvy8iNycLeydXTh7aTkZaEi+/+akq3pIfPiPmynmWbareQLmwII8DO5U3qjeilW/uDuxch4mpOSam5vR+ZoQq7pyPJtHMyw8HJ1dysjM4sjeMkuIi3vroe6TSut+7XI6XcztNzrCuethbVVBYrCC4pbKtHbig7iibEKpsa/PWV888sTKFwObKttXYVjl+9AhQ/s7OV3Cxxgwkb1cpjjbKODKp8jOpVXHLZZBTCC7NAmjVLpT9G+dTkJeJjX0TLp7YTHbGXQZP+FKV16bfphMfE87/lld/krh9r1FcOLqeP75/jU6hyrZ2as8KTC0a0SnkZY1rT71zndTEGLo8M6nOsa+h9oH7aeYfQqRbAAf/+pDM1FiMTa25fHItcnkF7fpNUYu79ZfxAIz96KAqrHXvycRe2s2Wn17Cv+tYykoKuXh4GTZOnrRsP1QV79LRlVw+uQYHt0D09I2JOb9VLW/PwL7oG5qohTUPDMHxSCD7184kM+UmxmbWRB5XausQ+h+1uJsWK7W9/Fm1trZ9X+PGpd2ELR5HYLdxlJYUcuHQUho5edIyWN1JHx2+mbysJNVGpUm3wjm7V1mOjb0GYmblrIp77Y6CO/cUDAyWYmupoKgEWjeXIJXA0cvqD3Sjeyr71OJt1e36RLSClk0kjOkpJfy6AgM96OAtITVbwaU4zQfCpk7Kr9VcTtD+QsLJPYAWgaGc2PYdhfkZWNm6cfWssq31HVXd1vb8rmxr7yyobmsBXV8k6tR6tvyibGtSqR4XDle2tZ6abe1eUmVbq1C2tTN7lGXU1LfuttY8IIRLbgHs/1PZ1oxMrYk6oazP4FD1trbpx/EAjP+0Rn32mczNS7vZ9ONLBHQdS1lpIRcOLaORkyc+wUPV0l8L30JeVhJlZcqXK0mx5wjf+xMAgZ0HY9nIWWUPjm6utAd2SnuQk3GX/mOry237CqU9mP5TDXvQ/UUunVjPhsWTaV9pD8Ir7UH7PtXlduXMVi4e+5MWAX2wsnWltKSAuKvHiY8+QXO/nrh5a1+24uShHD+qbJWVnRtXKsePkNE1bNWq6dy5cZb3F6vbqqgT6wn7aTJteyvHj3MHldra1rBVNy7u4+hmpa1q5NiUq2fVbZWbt6atashlJnh6EY4RgeAppkePHsTExKiF2dnZaYQBWFtbM3v27FrzW716tdbwoUOHMnSo+s1GYGAgERERD6gYjh49Srdu3bC3176GdMCAAQwYMEBnelNTU63Xcf81ayuDh0HTdyZg4l79etBpaAhOQ0MAuLtmK+W5+doTyuWcHfQqLb+ehseUsUiNDck5F8WlV2aqltFUkbbzMOefn0KLT6bQ6vtPKE3P5OacX7jx5eI69SkUsGJ3Kc8E69HJVw99GdxJV7D+SGm9ljbYmEvp11Z9qVLV71tJciJuKh9snWyUN/l2llJG9tRcz701XOkYAQgd+w0nbL4nOnwrxYU52Db2YshrP+PSvF2tWgyMzHhh6moOh83izJ6fUCjkuLYIpvvQmZiYq88/v3FxL1fPblL9TrtzlbQ7VwEwt3LUeqP+zEvfcNzme66eVeqyc/Zi6Bs/49qibl0j317NwQ2zOLVLqatJi2B6DlfXlX5H+eCQlRbPzpXTNPIZ8fYqrY4RgElvfc6mNT9x6sgOCvLzcHVrwVsffY9Xq9a1aissyGPTmp/UwvZs+R2ARnZOao4R92YtOXdyP1mZ6Rgbm9IqMJgho17H3tGF+qBQwMq9ZfRvp0dHH5myrd1TsPFoGfdy625r1uYS+rZRv42p+n0rWa7mGGnlLlU57EDpSGlc6bg7c0NBTuXb8+cmfY1l2A9cOrmV4oIcHFy9GP3WT7h71V6nhsZmjJ++it1rZ3N0m7JO3b3aEzpqJqYWmmsdIk8pl+/5d6h7aRQ03D5QE6lUxoCJv3Jq+1yijq+mvKwEe1dfeo2chbV90zqv0dzKiSFvrObE1jmc3vEdMj19mrTsTudB09VmANxLUi4XTE24SGrCRY18XJsf0HCMSKUynp38K8e3fsOlY0ptDq5+9H1xNtYO9dBm7cSwKb9zbPMcTmz/FplMH3ef7nQdMkNjf5GrpzdyN/as6vedG2e4c0O5xKyffZCaY0ShgHVH5PQOlNDOU4KeDJIzYfsZea3LaKrIK4TVB+T0CZLSM0BChRxuJik4EKF9fxFfNwkVFQqiE3X3r9Cx33Byh7KtlVS2tcGT69fWnv/Pao5sqm5rLs2D6aGlrd28pLutmdWzrQ169VdObJ1boz596TOqnm3N2omhb67m+JY5nNzxnao+uwyerrG/yNUzG7gbG676fefmGe7cVNanh3cbLBsp63Pg+G84tvV7rpxR9lF7Zy+GvVm3PTA0MmPUO0p7cHLXT6CQ4+oZTO/77IFL8zbcvRVB9LkdFOTeQyrTw8beg17DZ9Kmx5haz/HMS99wfJu6rXru9frZqhFvr+bQxlmc3l09fvQcpq4t7W7ttuqFt7TbqoZcZg0N6VM2c+NJIVFom2MkEAgEDYyoqCjOnz/P7NmzWb58OZ06dXrSkurFDn2vuiM9IY79eOlJS9CJh9uDfRXgcfEAW+I8dlo66XCqNQB2nq7/RsuPGz/vB9to8XGRk99wb4SLSxruraNeA/56Q3bOI/is10OgkXXDHdjKH/PXqR4EE6OG29a0OcYaArIGvInDhF5PWoFujgfU/lLjUdLl0oUndu7HjZgxIhAInjjl5eU6j0kkEmQyGcOHD8fc3Jw33njjX+MUEQgEAoFAIBAI/gkSacN1wv1/QjhGBALBE6dVq1Y6jzk7O3Pw4MFHtrRFIBAIBAKBQCAQPN0Ix4hAIHjibNiwQecxA4OGOc1dIBAIBAKBQCAQ/P9AOEYEAsETx8/P70lLEAgEAoFAIBAIGhyShrw5y/8jRCkLBAKBQCAQCAQCgUAgeGoRM0YEAoFAIBAIBAKBQCBogIjP9T4exIwRgUAgEAgEAoFAIBAIBE8twjEiEAgEAoFAIBAIBAKB4KlFLKURCAQCgUAgEAgEAoGgASKRiqU0jwMxY0QgEAgEAoFAIBAIBALBU4uYMSIQCAQCgUAgEAgEAkEDRGy++ngQM0YEAoFAIBAIBAKBQCAQPLWIGSMCgUDwCDn246UnLUEnXd8IeNISdJK2N+ZJS9BKb5foJy1BJ39Gej1pCTpxcmy4b7tS7j1pBdoxNHjSCnRz9UrWk5agkx5drZ+0BJ1YmzfM95FxdyqetASdmJk2zDIT/D3MTeRPWkItNNy2JhEzRh4LDbcFCAQCgUAgEAgEAoFAIBA8YoRjRCAQCAQCgUAgEAgEAsFTi1hKIxAIBAKBQCAQCAQCQQNEIhVzGR4HopQFAoFAIBAIBAKBQCAQPLWIGSMCgUAgEAgEAoFAIBA0QCRSsfnq40DMGBEIBAKBQCAQCAQCgUDw1CIcIwKBQCAQCAQCgUAgEAieWsRSGoFAIBAIBAKBQCAQCBogUplYSvM4EDNGBAKBQCAQCAQCgUAgEDy1iBkjAoFAIBAIBAKBQCAQNEDE5quPBzFjRCAQCAQCgUAgEAgEAsFTi5gxIhD8P2Xs2LGYmJjwyy+/PGkpf5snfQ0LFy5k2bJlREREPPS8jQygf3s9WrnLMNCDxHQ5O06Xk5ShqDOti52ENp4yXO2kODWSIJNKmPFbsUY8S1No6yXD21WGraUEuQJSMxUcjCjnZpJcLa7M1ISm703Eqn0AVu38MLCx4tLEGdxZtale16NnaU7LOR/gMLgvMhMjcsKjuDptDrkRVzXi2g/sheenUzBr2ZzStAwSV4Zx86sfUVRUaM27vKyUY9t+4MqZLRQX5mLn7EW3Z9/Gw6dznbryslI5sH4WcdEnUCjkNPEMps/zH2Jl56qKU1ZazL4/PycpPpK8zGTkCjlWtq74dxpG6x4vIpPpa827tKyMlb+vYf+hw+TnF9DU3Y3xY0fTJiiwVk3HT55m+67dxCUkkJebh6WlJS29PBn74kg83N10pktKTuaVN6ZSVlbGovnz8GrRvM7rBygpyiV89zwSruynvKwYOxc/2j8zDVvnVvVKn50Wy+kdc0hNuIBUpo+rVzeCn5mBsZmNKk5e1l3+mttHa/oeI+bh12GgTm0nts4lNkqpzaGJH12enY69a/20ZabGcmzzbJJvXUCqp497y+50HaKuDSB838+kJlwiJSGSovwM2oe8SXDof3TmW1KUy6kdc4m7vJ/y0mLsm/jRaeB07FzqpysrNZYTW2eTHH8BmUwft5bd6TRIXVdBTiqndswj7U4UhblpSCQyrOzcadXpRbzaDAG0vyEsLszl+Na5xEbuo6ysGMcmfnQbMqP+ZZYSy5FNs0iqLDMPn+50e24mJveVmUIu5/yhpUQeX0tBbjrWdu607TsZ7zba6xLA2FDCsJ7GBHoaYKAnIT65nPUHC0lM1d63a+LuJKOjnyEejfVwsZMhk0mYPCdTa1xzEwlDe5jg20wfIwMJKRkV7DpVxIWYMrV45WWlHNq8gEsnlWOHg4sXvYa+RbNWdY8duVmp7F47m9gryrHDwzuYkJEzsbGvHjsijoexZdmHOvMYOmku/h0HaT1WpS3yVLW2ns/VX9uePzW1WdcY16rIz7nHoS0LuHHpMIX52ZhZ2uLRsiODX/6qzvMY6kPvQAmezhL09SApAw5clJOSVWdSABpZQN8gKa62UCGHm8kK9kcoKCypjtPVV0I3X93vaf86riBZy/lKinI5tX0ut2r00c6D6t9HM6v6aFx1H+38rHofzUq7RfTZjSReP0Fuxm30DUyxdfahfcgU7F391PIrLyvl+HZ1O9X12bfxaFkPO5WttFPxNexU7+Fa7NS6z0mOiyQ3KxlFDTsV1F23narSdmLHD1w9u4WSwlxsG3vRZdDbuNdT26ENs0i4ptTm2iKYnsM/xMq2WltuVjKXT27k1pXDZKUlIJVKadTYk46hr+Pm3alWXQfCFnDx5FaKCnJxdPWiz7CpNPetRx/ITGXnmjncvHIChVyOR8tgnnlxhlr/BCguzOPwtp+JPr+fnMxUTC1saNaqI72GvIlVo8Z1nqehIJGKuQyPA4lCoaj7LlwgEPzruHnzJlKplKZNmz5pKX+b/w+OEW0OCwkweZABTo0kHI0sp6AYOvrIsDSVsHBTKRm5tQ/LfVrr0SNQRkqmAkN9sLOSaj1PRx8Z/YP1uBovJz5VjkwCQS1kuNhJWX+kDJM+vqq4xm7O9Lp5kMKEuxTF3aFRj+D6O0YkEjoeXoOFvxe3vl1KaUYWbpNfxMjViePBQym8maCKahfSjXZbfyHjyFmS1m3H3NcT99dHc3vJX1ye8l9VvLS9Mar/tyx5l5gLe2jbexw29u5EndpEcnwUo95diWvztjpllRYXsHzWUEqK8mjf52WkMn3OHViBAgUTPtqMsZk1AEUF2axf9Cquzdti2cgZiVTKndgIrpzdik/bATw78VtVnr1dolX/f/XNtxw7cZKhgwfh3NiJvfsPEnPjJvNmfYFvKx+dulavXcft24k0a9YUSwtzMrOy2bNvP5lZWfww92uaNfXQmu6Tz7/iYmQUxcXFWh0jf0Z6aaRRyOVs/3UMmSkx+HWdgJGJFdFn1lKQk8LgNzdgaeuuUydAQU4KmxcORd/InFadxlBWWkjUseWYWTnx7OvrkOkZANWOkab+A3D16qaWh4N7Gxwau2jVtnHhaO4lxRDUcwLGZtZEHV9LXnYyI9/biJVd7drys1NYO+85DI3NCeg6htKSQiIOL8fcyokX3vlLpQ1g4TvemJjbYevsxe1rx9UcI+Xlmro2/ziae8kxBHafgLGpNZdPrSU/O5nhb9VP1/rvn8PAyBy/LmMoKynk0hFlmQ2bWq0rIymG41u+xNG9NWZWTsjl5dy5fpL4qwcJ6vUq3Qe/p7XM/lrwIvfuxtCm10SMzay5dHwN+VnJjHo/DGv72rXlZaew5pshGBibE9htLGUlhZw/tAxzaydGvbtercyOb/uWc/t/xbfjCzg08eNW1AHirh6m/0vfUSTtqJG3BHh/jDku9nrsO1NEfpGC7kGGWFvImLUih7QsuUaamgzsYkz/jkbcTavA0ECCYyOZVseIkQF8ON4SC1MpB88Vk1sgp423AZ5N9FmyNR/TRqaquBt+fper5/fSoe84bOzduHhiE0nxl3npg5W4ebbRqaWkuIBf/jeUkqJ8Ooa8jEymx6m9K0Gh4LX/bcKkcuzITEskMVbTPpzeu4KUxBje/fYw5pZ2qvCad9wbf1FqC+4zjkYO6tqatNCtrbS4gF8+r9TW72WkMj1O71Nqm/zfam0AOZnJLJv9IgCtuz2PhZUDedlp3I2LZNTUn1Tx4u5or5txvaU4WMHpa0pnRpsWEixMYOkeOVn5OiUCYG4ME0OklJRB+HUFBvrQwUtCbiEs2ydHXnlKe0uwt9J0Avbwl2CgB0v2gfw+k6iQy9n0Y+XY0WMCRqbWXD6p7KPPv12/PvrXfGUf9e+iHNcuHl6OmbUTw2v00RPbvuba2Y009euHfRM/SovyuXJ6HXlZdxn4ym/4BFU/wG9dWmmneo3D2t6dqNObSImPYtQ7K3Gpw06tmK1up8IPrAAUvPyhFjvVotJOSaTcvaW0Uy3bqNspUDqiqti+7F2uR+yhdU+ltiunN5GSEMULb9WtbfXXSm1teyu1nT+4AhQKxs2s1nbh8O8c3TyX5gF9cG7aGrm8nKtntpCaeIWQMbPw6zhMlaeVWbWwdT++x5Vze+nUT9kHLhzfxN24y0yYsQL3Ovrnj58Oo7gony6h45HK9Di5ZxUKFEz5IkzVB+RyOb98PpL0pFja9x6JrYM7GWm3OXtgLYbGZrw1eweGxtXjxfMdGq7zIfKZHk/s3P47Dz+xcz9uxIwRgeD/GcXFxRgZGdG8ef3eJgseP75Npbg7Svl9fymX45Q3CVG3Knj/BUP6ttHjz0NltaY/HV3O4UvllFfAs530sLPSbsxjk+XMWVOi9nbudHQFbw01oG8bPU7UiFuSnMZ+l86UpN7Dso0vXU5vrPf1OA0LxaZTa86PmEpK2B4AktfvosfVPXh++h8ujntfFbfl19PIjYrhbP8Jqhki5bkFNJ8xmbiFqyiIuaWWd1JcJNHndtBz6DSC+00EwLfDEJZ8PpDDYfMYO+1PnbouHFlDVlo8L81Yj5O7PwDNfLuy5PNBnN2/nO5D3gXA2NSKcdP/Uksb1G0UhsbmXDj8O72Gz8CsxsMNwLWY6xw+eoxXJ4zn+aFDAOjbqyeT3pzKb8tX8sO8r3XqGjtqhEbYM/36Mmr8RLbt3M3bU17XOB5+PoLzFyJ4Ydhz/LFuvc687yfu8h7SbkfQa9T3ePiFAODh158N3/Xnwv5F9Bw5r9b0Fw//QllZEYOnbMDMSvl2zc7Fj93LJnLjwma827+gFt/W2YfmQc/WS9vNS3tIjo+g/0vf0zwwFIAWgf1ZPSuUM7sXEjL221rTn9v/C+WlRYx8byPm1kptDk382fLzBKLPbsK3U3U5v/TJfixsXCjKz2LJJ5oP9TWJjdpDSkIE/cZ+TzN/pa5mAf1Z800o4XsX0nd07bouHFTqGv5WDV2u/mz7bQIx5zbh00Gpq1FjLwa/vlotrV/nMexc9hpRx3+n66C3kUplasdvXNpNclwEA17+gRZVZRbUn5VfhnB610L6v1S7tvC9P1NWWsSo98OwsFFqc3TzJ+zHl7l6dhN+lWWWn53KhUPLCeg6mp7DPwXAt+PzbFg4hmNbvqHN4A1I7tPW2tuA5i76/LIpTzVz41x0KZ9PtmRQF2OWbiuoVduRC8XsOV1EWTmM7GuCYyOZ1njdAo1wsJHx3dpcYhLKK9OWMH2cBc/3MmF3pPJB+s6tSC6f3UnfFz6gc6hy7AjoPIQfPxnEvvVzeeUj3WNH+KG1ZKYmMOmT9Th7KGcGNPfrxo+fDOLknuX0GaYcO2zsXTXeUJeVFrNj9f/waBms5hSpyd0qbc9/QKcqbZ2G8OOnSm0TP6xb2ysfV2tr4deNHz8dxKk9y+ldqQ1g+6rPkEplTPpkvZrDpD60dJXgaidh4/EKrt1RhkUnKnhtgJRufhK2nKrdgd/ZR+nYWLZXTm6hMiwpQ8HonjICPCRExCrTp+VAWo56XuYmYGEi4eItBXKFptMkNnIPKfERhIz9nmYByn7QPKA/a76uXx89f0DZR59/u7qP2rv6s+3XCVw7t4lWlX20RdAA2vebgr5h9cNzy/ZDWfvNAML3LlI5RpLilXaqx9BpBPettlNLvxjIoU3zGPuB7vqMOKq0U+OmV9uppq26svSLf26nAJLjI7l2fgfdn5tGuz5Kba2Ch7Diy4Ec3TyPF9/Xre3iMaW20dPW4+Sm1Obh05UVXw3i3IHldB2s1NbEM5hXvzykNussoMsoVs0ezMntC9QcI1XciY0k6sxOQkd8QJdnJgAQ2HkwCz96lj3r5jH5k7U6dZ09sJaM1ARe++wvXJoq+4CnfzcWfvQsx3etoN/z71Se4xJ346IYOPZjOvQZrUpv6+jBpqUfEXvlJD5t++o8j+Dpo+G6xgSCBkpERATjxo0jMDCQNm3a8N5775GRkQHAG2+8Qe/evcnPr36VsmPHDry8vDh69CgAYWFheHl5cfHiRcaNG0dAQAC9evViw4YND3QugDt37uDl5UVYWBgff/wxwcHBPP/884BytsXkyZPV8ouNjeX111+nTZs2BAYG8uqrr3L79m21OF5eXvz2228sXLiQTp06ERwczMyZMyksLFSLl5qayrRp0+jUqRP+/v6EhoaycuVKtThhYWEMGjQIPz8/unbtyvz586nQsVyivtR1DdquG+D333/H39+fvLw8ABQKBUuXLiUkJARfX1969+7NihUr/pG2+uLnISOvUMGVuOo3JwXFEHmrAh83KbI6Rub8IiivRzGmZalPWQblW6SYRDlWZhJkZtU3e/LSMkpS7z3IZahwHBpCcUo6KZv2qsJK72WRtGEXDs/2RmqgnOJr1rIZ5q1akLjkL7VlMwk/r0EileI0NEQj75gLu5FIZQR2rX7I1dM3JKDzcO7eiiA3M1mnrpgLe3By81PdbAI0cmyGu3dHos/vqvO6LBs5A8op2/dz7MRJpFIpz4T2U4UZGBgQ2rcPV6/FkJaeXmf+NbGyssTQ0JCCAs2Hx/Lycn76bQnPPTsQJyfHB8o3/vJejM1scW9VffNnbGaDh18ot6MPUlFeWkf6fTTx6qFyigA4N++Epa07cVHay7CstLDOfEHpGDExt6WZf3UZGpvZ0DwwlFuX69Z289Je3H16qB5sAJp4dcLKzp0bF3erxbWw0ZyxootbkXswNrOlqe99uvxDib9St65bUXtxa6muy8WzE5Z27ty8tLuWlErMbZwpLytCXq7pIL1xUVlmzWuUmYmZDS2C+hN7+QDl9Sgzj1Y9VE4RUJaZtb071yOq6zM2aj/yijL8u7yoCpNIJPh1HkV+dgo56Zc18m7tpU9OvpyIGstZ8osUnI8uJaCFAXra/Rwq8goVlJXXHgeguaseuQVylVMEQAGcv1aKpZkUewtl2NVze5BIZbTpXj126Osb0rrrMO7EXiSnlrHj6rk9NPbwUzkeAOycmtK0ZQeuhNdehzEXD1FaXIB/B+1LaACuntfUpqdvSFCXemg7r6nNtkrbuWpt95JvcTPqKJ1CJ2JiZk15WQkVWtqULrxdlfVX5RQBKCyB6NsKPJ0lddopL1cJN5IUKqcIQHwqZOQqaOla+0aSrZpIkEgkXI7X7nyJjdyDsbktTf3U+2izgFDi6jF2aOujrp7KsSO2Rh+1d/FVc4oAGJla49S0DVlpsaowlZ3qol6f/p2Gk/Q37ZSbV0euXfhndgrgeoRSm39ndW1+nYaTFBdBbpZubdcj9uDo5qdyitTUFlNDm23jFhpL8fT0DfBo1Z287BRKizWnF10+twepVEbbntXOdX0DQ9p0G0bizYtkZ+jWdTl8L84efiqnCIBd46Y09enA5bPV9VdcpDyvmaWtWnpzK6UDSc/ASOc5GhoSqeSJ/T1NCMeIQPAAREREMHbsWMzNzZk/fz5ffPEFUVFRvPHGGwB88cUXFBYWMmvWLEDpPPjf//7HyJEj6dZNfXr5u+++S+fOnVm0aBHBwcF89NFHKudJfc5Vk++++w6FQsG3337LBx98oFV7YmIiI0eOJCcnhzlz5jBv3jwyMzMZP348paXqNxF//PEH8fHxzJkzhzfffJNt27bx448/qo5nZWUxYsQIzp49yzvvvMMvv/zC+PHjSU1NVcVZvnw5H3/8MV26dOHnn39m0qRJrFq1ivnz5z9gqT/YNQwYMIATJ06QnZ2tlnb79u10794dc3NzAL766isWLFjAkCFD+PXXX3nuueeYN28ea9fqfkvxsGjcSMLde3Luv+VLTFdgoC/B1vLRGiIzEwmlZQoqCoseSn6WgS2Ve4nctzIzJzwKPVMTTD2VS0MsApXLS7LPR6nFK0lOoygxGYvAlhp5pyZGY2PvjqGxmVp41U1k6p1ojTSgnGqddjcGRzdfjWNO7n5kp9+m5L6btYryUgrzM8nNTCYmYh9n9y3DwsYZazvNfT9u3orDxbkxpiYmauFeni0AiL0Vp1VXTfLz88nOySEuPp7vFiyisLCQoAB/jXhhW7aRl5/PiyNf0JJL7WQkX6VR45Ya65PtXP0oLysi5168zrQFOakUF2Rgq2XNvq2LHxlJmmUfcWAxq/7bhhWfBbJl8fPcuXFCI04V6XejsXPx0dDm0MSf8tIistJ0l2F+dipF+RnYu2rWr0MTf+7d1dzbpr7cS9Kuy76JP+VlRWSn16IrR6nLzkWLLld/7iVp6iovK6aoIIvczDtcO7eJa+GbcGwSqPWmPf1ONPZatDk28aO8tIjsOsqsMD8Dhybayyy9Rl9KvxuNvoEJNg7N1M9T+YCUn3FdIw9XBz1up5ZrjGvxyeUYGkiwt6nDM1JP9GQSyso1H5hLy5Rh1pVDRcrtaBo5uGN039jh7OGvOq4NuVxOamIMjd01y8nZw5+stNuUFOleRxJ1eht6Bka0bK37TXSVtvvHtbq0Kaq0aRnXGt+n7dbVkwCYWTRi1dzxfPVaAF+9Hsgf8yeRfe+ORvr7cbSWaN1LJCkTDPQk2JjrTmtuDGZGEpK1bBGTlKnAoY7JK75uEnIKFNzW4V++lxSNnbOWPupa/z6qbeywd/UnvR5jR2HePYxNqy+iLjuV9ojs1PWLtdupqnNba9FW1ZfTa9GWfjdG63jh6OZH9r3bWh0eNSnMTUfPwBg9A2ONY8kJ0TRy1OyfVc6OlNvXtOYpl8tJvRODs4emXXJp6kdm2m1KipQvGJw9fDEwNOHAxgXEXj1NbmYqcdfOsmfdPJw9/GjWqvbZg4KnD7GURiB4AL799lt8fX1ZtGgREony4dXT05OBAwdy5MgRunfvzueff86UKVPo1asXf/75J1ZWVkyfPl0jr8GDB6tmNnTt2pXExEQWL16scqDU51xVeHt789VXtW+ktmjRIiwtLVm+fDmGhoYAtG7dmt69e7N+/XpGj66eZmhnZ8e33yqnonbr1o2rV6+yZ88e3n9fuSRixYoVZGRksGvXLlxclG9iO3asNjD5+fksWLCAV155hXffVU617Ny5M/r6+syZM4eJEydibf1g03rrew0hISF8+eWX7N27lxdeUD5I3r17l4sXL/L9998DcPv2bX7//Xf+97//MWKE8i1Kp06dKC4uZvHixYwYMQLpI9zoytxEQlyK5pruvELljb2FqYTUrEez/VMjCwm+7lKi4uSoFnn/Qwyd7Mg8fk4jvDg5rfK4PXmXr2PkqHxLU5KsebdbkpKOUWN7jfD83HSt04PNLJRh+dlpWjUVFWZTUV5aZ1pDx+qbspiIfWxdWj0N3dHNl2fGzUIq0zSVmZlZ2Ghpw41slG/NMjLr3p1w6vvTSbxzFwBjYyNGj3ie0H7qG5hmZmXxx59/8erE8RpOmPpQmHcPR3fNNeQm5soyKMxNw8bRU0daZT0Zm2uWoYm5HSVFOVSUlyLTM0AikeDcojNuPn0wtXAgNzORyydWsHfFq/QZuxjvoJ6a+eem49xMU5tpZf0U5KZh21hz35SqYzXj3p++uLBa24NSkJuOk4fuMivITaORk3ZdhZW6TLToMjG3o0SLrshjqziz6zvVb+fmHek1YpZObdrLTNl38nP+SZllU15eip6eAQU56ZiYN1LZnprxAEoLNfuwpZmUG4maUz5y8pVjmZWZlKT0fzZjECA1s4KW7nrYWEjJzK0ew5q7KvupSWXR5uWkq94M16RqTMjTNXYUKOtI2zIYM6vqtPc/aAIU5mdz8/IxvIP6aD1eRV52utb8za3qp81My3VV5ZeXo9SWkarc22nbqk9xdvdj+GvzyclI4sjWxaz6dgKv/3cL+oaaD6yqazWC2+madii/SBlmbgzpObrTAuRrbn1FfhGYGCpnnFRoMUG2FuBgLeFktG77VJCbjlPT2seOv9VHLbT30Zok3TpHSsJF2vauXvJYkKPDTlWG5efUbqdMa0urxU5tW3afnRqr3U4pz52usnk1MbX8+zbUtMZ12Rhpb+dZaQncuLQPz6BQjSWBUNkHtLXjyrDcWvpAeVlpnWntjD0wNbdmxBvfsnn5pyz/+mVVvBZ+XRg55XtkOsqsISKVPV0zN54U/54WIRA8YYqKirhw4QLTpk1TWw7i7u6Ok5MTUVFRdO/enb59+zJkyBDeeecdKioq+OOPPzDR8kDTt6/626R+/frxzTffUFFRQWlpab3OVUWPHj3q1H/ixAmeeeYZZDIZ5ZW7DVpYWODj48Ply+rTojt1Ut9FvFmzZuzYsUP1+9SpU3To0EHlFLmfiIgICgsLCQ0NVZ2rKt/i4mJu3LhB+/bt69T8d67B2tqaTp06sWPHDpVjZOfOnZiYmNCzp/Lh7ORJ5Zu0fv36aej77bffSE5OxtnZ+YH11Rd9mfalMFVh+g/nxarW847urU9ZOew6W0bgQ8pXZmyEvERz6rK8uLTyuNKJJTVW3i1ri1tRXIKeheYNVnlpsdYbVD19ZZ7lZVruvIHyUuUaIm1pZaq06uuM3LyCGfnWcooLc0mIOUXanRjKSrTPqikpLUFfX/MrAAaVy4ZKS0s0jt3P+2/9h4LCIlJSU9iz7yAlpaXI5XI1p9yS5atwdHSgf7+/tw66oqwYqbYy0Kssg3Lt5VeVFkAmqyV9mbJ+zKwaE/ryErU4LYKeZeP3gzi78xutjpGqtBp566gf9bT1qV/t+ddFRR26Kh6yrhZBA7B38aWoIJOE6MMU5mXobtc6tOnpG6id/0G1qfpTaTF6ega6z1NZ7xUVmucx0IPyCs0H6bLKMP2HdMd5/FIJ3YIMeXWIGX8dKCS3QE5bbwOCPJV6ZZXjZ11jR5mOPlpV9jL9WtLqKOer5/ZQUV6GXy3LaKrOUVv+uuqxrFKbXq11qExbWqJcw2JmYceLb/2iml1hYe3Ixl/fI+rMdlp3e16nRj0ZaFv5WmWnalsapVdZ13Wl1+YY8XVXPgBe0bGMBir7aK3jUj36gZb0enq1jx2FeRns++N9LGxcCOo5sUaetfeXstLa7VSt9anFTo2YupziolwSrp0i7W4MpTrsVK3a6rKhtY0Xeupt7X7KSovYtvQt9PSN6KZlE2llnBL09DRtaM2xSHu6+vSB6rSm5jY4ubUkuM9oHJybk5xwjWM7lxK25CNGTfle6zkETy/CMSIQ1JPc3FwqKiqYPXs2s2fP1jienFy9HnLgwIFs3rwZPz8/goKCtObXqFEjtd+2traUlZWRlZVFRUVFvc+lLS9tZGVlsXLlSo19QACNBzwLCwuN4zWX22RnZ9OiRYtazwXw3HPPaT1+v/76Ut9rGDBgADNmzCA9PR07Ozt27NhB3759VbNMsrKyUCgUdOjQQae+h+UYMbvvhVxBMZRVaL+prAor++cvVTWQSGBUb33srSUs311GXmHdaepLRVExUkPNmxSpkUHlceXNk7xIebOiLa7MyFB1vCZ6BkZa14tX3bTp6WtfI6xnUPkApyVthSqtoVq4qYUtphbKtcjebUI5uetn1v3wMq9+vlfjrZmhgSFlZZrr9UtLlWEGBoYax+7Hp6W36v8e3boy8bUpAEyeqHyzdfVaDPsPHeabrz6vcwZTWVmZaoZHFUamNsj0jZBrK4Pyqhty3WusZZVlW1FRS3od5Q9gaGJFizbPEXnkN9LuXFHNagDlfgB6+trrVlf91KTqWO3pa18/XlFeWjmzpDrMyExZZrXlK3vIusytnTG3Vo43LYIGcnjDJ2z95WVemPqHqh1D7WVWXlaqdv4H1abqT5XLd3Sep1zpELRtZIOFafUbzLxCBaXlymUu96NfGVaf/UPqw930CpZuzWd0iCnTxyptVU6+nL/2FzI61LT6wbuOsUNfRx+tqp+KslrS6ijnqNPbMDa1pIVf11qvQU/fqNb8ddWjfqU2bXvJVNehMm3V9bVqF6q25MSnXSiblk4n8WYErbs9j1QCpvd1lcISpQNDVoudqm2fq6r3DX8nfSs3CWnZCtJyKpeN5OapHVf10VrHpXr0Ay3py2sZ18pKCtm57DXKSgoY+MofanuP1NZfAPR17GVRVVe11mdtdqp1KKd2/cxfC15m0v807VSt2uqyobWNF+Xqba0mcnkF25e9Q0bKTYa98RtmVg5a89c3MKRcy543949Fmunq0weUcTLTElk6ZzzDX51Dq3bK/Whatu6NlZ0zYb/N5Pqlo3gGdNPIR/D0IhwjAkE9MTc3RyKRMHnyZPr06aNxvGppSGFhIZ9//jne3t5cvnyZjRs3MmyY5o7cGRkZODhUG4x79+6hr6+PtbU1JSUl9TpXFfdPd9aGpaUl3bt358UXX9Q4ZmpqqiWFbqysrEhL0z7NsepcoFz64uiouVmkrpkmdVHfa+jduzcGBgbs2rWLLl26EB0drVrSU5WPRCJhzZo1Wt/6e3ho/1zq3+HjMerG/eu1JeQVKjA31qwzcxNlWG7Bw19GM6yrHt5NpKw7VEZs0sNZQlNFSXI6ho6aN2RGTvaVx5VtpThF+eBu6GRH8Z0UtbiGjnZkh0dq5GFmYUdedqpGeH6uMi8zK83lNwDGJlbI9AzIz9Gc8l9X2iq8W4dwdMt8blw6QFC3kWrHbGysuVdjI+QqMjKVi+ob2TzYUjFzMzMCA/w4ePioyjGyZPlKfFv54OhgT0rl/j25lQ8JmZmZpKWlY2+vLPer0ddYO1v97e8LH+zHxNxWw2EC1ctkTCx0l0HV0pEiHekNjS3rnJFhaqns/+u+VR8DX/pkPyYWdhTkauZdFWZai7aqY7rSG5nUrS05PoJNi19SCxs9cz+mFna1llltuqrKs1CLrsK8dAzroauZXwjRZ9az/IveauEvf3oAU51lpuxjZpb/pMysVG9hTS3tSLx5BoVCoWZfCnLTCQoKYvWSd9TSf/hTNjn5cizNNMe1qrDs/Ic37lyIKePSjWxc7GVIpXA7pQLPJspb2tzKl+fmlnbkZmkZOyrHBHNdY4epso7ytI0d2brTZmckkXDjPG26v4BMy5vwmphbadeWV0v+NbVV6VBLW3VdlW2gKg9TC/UXJ1KpDGNTK4oLlZt12lrAyM7qHoxF2yrIL1buE8J9u8aYVdquvFq2qKpaQmOm5dnWzBgKSxRaZ4u42IKVqYSDl5QH0xMvsnfFeLU4Yz6s7KN/c+yotY/mau+jFeWl7F75HzKSYxg4aQmNnNSXH5pa2pGvzU5V1omuflllpwq0tbWc+tkpr9YhHN06n5uRBwjsOlLjuJmldhtaUEf+tdnQglqua+8fHxN7+TADxs+jiZfuPTyUfUDzPrKqD1jU0gf09A1U8WpLe+H4JsrLSvAK7KEWr2XlDMaEGxf+NY6Rp20T1CeFcIwIBPXExMSEwMBAbt26hZ+fn854c+bMITc3lz/++IMlS5Ywa9YsOnbsSOPGjdXi7du3Dx8fH9XvvXv30qpVK2QyWb3P9SB07NiRGzdu4OPjg0zba5wHzGvZsmUkJSVpXBdAUFAQxsbGpKSkaCwZ+qfnrc81mJmZ0aNHD3bs2EFOTg42NjZqy4Oq9kPJzs6mV69eD02fNpbsUH+rkVekIClDgYejlPtvOV3tlJui3st5uI6R/u31aOulx7aTZVyKfbhOEYDcS9ew7tJGOS2lxgasVu39KS8opOB6XGU85SZvVm38yAmv3oDV0MkeY1cnbi9R/xQhgL2rNwnXz1BSlK+2Zj8p7hIADi6aG7YCSKRS7Jw9SUnQ/HpGUlwkVrauGOpYG11F1XT5kqI8jWPNmnpwMTKKgsJCtb0/rl2/rjr+oJSWlFJQWP1VmrT0dFLT0hk7UfMrS59+MQtTUxM2r1sDQNOmHoROWKoWx9jMFhunlqTGn0chl6u9NU5PjERP3xhLW3edekwtHTAyteHenSsax+7dicLGSXvZ1yQvU7nJY8jY7zAytVKFm5jbYefsTdItTW2pCZfQMzDG2l53GZpZOWBsZkNaomb9pt6OxNa5bm22jb0Z/Noy5DXeXJuY29GosTfJ2nTdvoSevjFWdrXoqiyz9DtadCVGYtu4bl1Vbz3b93sNl+bBqnBTCzvsXLy5G6upLSUhEj0DY6zqUWapt7WXmZ1z9QwmO+eWXD61nszUWBo5Vn/6PSX+EteuXePLHyMwta7emDUnX86dtAqau+hpjGsejfUoKVWQlvlwp8JVyCEhpTrPlu5KZ0RqtvK3YxNv4q6dobgoX22Dxzu3LlUe114XUqkUBxdPkuI1y+lO3CWs7Vy17h9y+cwOUChq/RpNFQ6uSm33j2t342rXJqnSpmVcu3tLXZuTm3Jzyvv3K1Fu3pmFibnSeZuVD38cUq+b/CJIzQJXLV8bdm4EpeUKMjWHRRV5RVBQrMDJRvNYYxuJqo7ux9dNgkKh4EpC5Ua6jl4MenWZWhwTcztsG3uTFKfZD9Lq2UeNTbWPHWla+qhCLufAnzO4c/M0/cbOx7mZ5jJgBxdvbmuxU8mV9Wn/N+xUcnz97FR5LXYKwM5Zh7Z4pTa7WrTZNvbUOl4kx0diaeuKwX3aDod9zeXTYfQc/iEt2w6sVbdTk5bERZ/V6J+Jt5QvSBybeGtNV9U/78Zp2qXE2MjKPqB8UZafkwEokMvV23dF5TTB+8MFAvFVGoHgAZg2bRqHDx/m7bffZt++fZw5c4YtW7Ywffp0zpw5w9GjR1m3bh2fffYZ9vb2vPfee9jb2zNjxgwU932xY8uWLfzyyy8cO3aMmTNnEh4ervbFmbrO9aBMnTqVhIQEJk6cyM6dOzl79iw7d+7kv//9L9u3b3+gvMaPH0+jRo0YM2YM69ev5/Tp06xfv565c+cCyqU4U6dOZe7cucydO5cjR45w/Phx1q5dyyuvvEJR0d/7GsqDXMPAgQO5ePEi69atIzQ0FD29aj+wh4cHo0ePZtq0afz000+cPHmSI0eOsHLlSq1f/fkn3EySq/2VV8DluArMTSS08qgegk0Mwb+pjOjbcrU3aTbmEmzM//6bgm7+MroH6HEwopwTV/75TYChox2mXk2R1CjP5LDdGDna4fhc9acT9RtZ4zQslLTth5BXLi/Jv3qT/OhYXF95AWrczLpNHoVCLiclTPMzmN6tQ1HIK7h4bJ0qrLyslKiTYTT2CMDCxgmAnMwkMlJi70sbQnJCFMkJ1U6YjJRbJMScxrtNqCqsMD9To38CXDq+HkDrFwO6du6EXC5n5+4anyguK2PPvoN4e3lib6d8okhLS+d2ovoXILLu+2ISQEpqKhGXIvFsXv0Q+vaUN/jvRzPU/oYMGgDAqxPGM/P96llQ5mZmODfvpPanp2+Ih28/ivLvEX9lnypucUEWcVF7cPXuofZmNDfjNrkZ6p/vdm/Vl9sxh8nPrl7+lnTzFDn34vHwq/68clG+5ucnCnJSuX4+DBtHLzxbP0MTr06qPz19Q5oFhFCYd4/YyL018sni5qU9eLTqqaYt595tcu6pa2vm34/4q4fJq/G5ycTrp8hOj6d5QCh1YWRiSROvTrh4Vv/p6RvSzC+Eovx73LpcQ1dBFrGRe3D3qVtXU79+JESrl9mdG6fISY+nmX+1Lm1lBhAdvgEkEnzaD9Uos+YBoRTm3eOmWpllcuPibpq26qm27j773m2y79PWPKAfcVfUy+x2zCmy0uJpEVitralfb6QyfSKPr1GFKRQKok7+iVxizO1sF64llKv+yivgQuXncoO8qmdLmBpLaO1tQOTNUrWlE7ZWUmytHt4tqL21lG5BRkTeLCWvcraCT5sQFPIKzh9RHzsuHt+Ec9MALCvHjuyMJNKTb6nl59M2hKS4KO7GVY8d95JvERd9Bp+22ttW1OntWDZqTJMWberU69O2ftpyMpK4d5+2lm2U2pLia2hLuUXcNXVt7l7BmFo0Iur0NrV9Ki6e2IRCXkFTn86AculmfKr6X4UcohMVmBlL8K4xwdPYALxdJdy4qz7jw8pM+VeTa4kKWjSWYF5jizV3B+UG4Ndua463Ugm0bCIhMR3VJ34NjS1x9eyk9qenb0hT/xCK8u5xK0pLH63H2NHUX9lH8+7ro9n39VGAY5u/5ObFnXQb+inNanweuCZeVXbq+H126lQYTu7VdipXi53yCtJtp7xa18NOnai0U1q+HqPMX6kt8oS6tsunK7VZ69bmGRRCSkIUKTW0Zabe4vb103gFqZfT2X1LOHdgGcEhr9Gmp/pMPG20atcPubyCc4eqX4iUl5UScSwMl2b+WDWq0T+TbmmkvRsXxd24aqdNenIccdFn8G1fbZdsHd1RKBRqn/AFiDyt3DOvsVvdjuqGgkQqfWJ/TxNixohA8AC0bt2aNWvWsHDhQmbOnElZWRmOjo506NABV1dXRowYwYABA3jmmWcAMDQ05JtvvmHkyJGsXLmS8ePHq/L69ttv+e6771i8eDGNGjXiiy++UNtQtbZzublp/yxbbbi5ubF+/Xq+//57/ve//1FYWIidnR3t2rXDy0v77u26sLa2Zu3atXz77bfMmzePoqIinJ2d1Za4TJgwAQcHB5YvX87vv/+Onp4eTZo0oUePHlqXrzzsa6j6NG96ejoDBgzQyOvjjz/Gw8ODdevWsXjxYkxNTfHw8CA0tO4Hqn9KVJychFQ5z3fTx8GqnIJi6OAjQyKBfefVF+JPGqC8wfv6z+obWyszaN1COWPGxVZptHoFKX9n5SmIuKm8Y23lLuWZYH3Sc+SkZcsJbK5u4AzsG1GaVr0cxO2N0ehbWqi+DmM/oCdGzsqlEPGLV1Oem4/XV+/iOm4oB5v3oihB+UWV5I17yDodQcCS2Zi1bE5ZRhZuk0eBTMb1zxeqnTN6xje03fQTwbuWkfTXDsxbeeL+xmgSl60n/5r6zQ9AY48AvFuHcmTzdxTmZWBt70bUqU3kZNyl/7jqLzFtXz6dxBtnmfFzjCosqPuLXDy+nvWLJhPcdwJSmR7h+1dgat6I9n0mqOJdObOViKN/4hnYBytbV0qKC4i7epz46BM09++Ju7fmdOCWXp5069KJpStXk52dTePGTuw9cIjUtDTee2uKKt7X331P5OUr7Nu+WRX26pS3CArwp5mHB+ZmZtxNSmLXvgOUV1Qwcfw4Vby2rTX3J8ovUM4o8ffzxatFc43j9+PuG4Kd6yqObfyQ7LSbGJpaE316LQpFBa37/Ect7q6lyiU8I6YdUIUF9JhM3OU97FwynladxlJeWkjksWVYO3ri2WaoKl747nnkZt6mcbOOmFjYkZ+VxLWz6ygvLaTDwA+1amseEMIltwD2//khmamxGJlaE3ViLXJ5BcGhU9TibvpxPADjPz1YXT59JnPz0m42/fgSAV3HUlZayIVDy2jk5IlP8FC19NfCt5CXlURZmdIpmxR7jvC9Pyl1BD2r2uMDoKl/CA7HAjj014dkVeq6fHItCnkFbfup69r2q1LXmA+rdbXpPZlbkbvZ8vNL+HdR6rp4eBk2jp54t6vWdf7Az6TEX6CJV1fMrJ0oKczhVtRe0hKj8Os8Bistn99sERhCxJFA9q6ZSUbKTYxNrYk8rtTWob96fW5crNQ28bNqbe37vsaNi7vZsGgcQd3HUVpSyPmDS7F18sSnQ/VyJ3MrR4K6j+P8waVUVJTj2MSP2Mj93I09R+jYeRRr+crE+ZhSet8t56VnzHCyLSK/UEH31oZIJRK2HVd3hr8zSvmt149+qv6siY2FlA6+yvHOzVF5e/pMJ+VajIwcOWeuVM++++wVSy5cKyUztwJbSxndWhtSUCznj90FBAZZAeDSLACftqEc2DifgtxMbOybcOnkZrIz7vLsy1+q8tq0ZDoJMeH8d1n150Hb9RzF+aPrWfPDa3QKUY4dp/auwMyiEZ1Cqr9uUUXqneuk3omhyzOT6rW01aVppbaw+RTk3adtfA1tS5XaPluqru3CMaW2jiETkNXQ1rGGNj19A/o+/wGbl85g+ddj8O/4LDkZyZzZv5omLdrSsk3tszmv3VFw556CgcFSbC0VFJVA6+YSpBI4eln9AX10T6VtWbyt2ltyIlpByyYSxvSUEn5dgYEedPCWkJqt4FKc5gN+Uyfl12ouJ9Q9q7GZfwiRbgEc/Es5dhhX9lG5vIJ29/XRrb+MB2DsR9X9oHXvycRe2s2Wn17Cv+tYykoq+6iTJy3bV/fRS0dXcvnkGhzcAtHTNybm/Fa1vP2D+2JgaEJjjwC8WodytMpO2blx+XSlnRpbw06tUNqp6T+p26lLJ9azYfFk2veptFMHtNupi8f+pEWA0k6VltSwU349cdNipwCcPALwDArl2BalNis7N66c2URuxl1CRldr27lqOndunOX9xTW0dXuRqBPrCftpMm17K9vauYNKbW17V2u7cXEfRzfPxdrenUaOTbl6douaBjfvzqp9UapwbRaAb7tQ9m6YT35eBo3s3Yg4vpmse0kMmVDdBzb8OoP4a+F8ubL6s8LBvV7k3OENrPruNbr0fxmZTI8Tu1diatGILqHVfaB11yEc37WMLSs+IzkhGnvn5iQlXOX8kQ3YOzenZRvNpeqCpxuJQpv7USAQPDLCwsKYOXMmp06dwsZGyzxTwf8rZvymfWd1YwN4JlgPH3cZ+jK4k65gx5ky7t5TH5Knj1RublbTMdLUScqrA7XvU3ArSc6vlct3+rTWo08b3f7vU73Hknn0rOp3zxsHMHHXvv9LlSPEf+lsDccIgJ6VBS2/nobjs32QGhuScy6K6OnfkHNecxquw7O9afHJFMy8m1GansmdVZu48eViFDW+EJS2t/rmrLyshKNbv+fKmW0UF+Zg7+xF12ffommr6g0O//h2rIZjBCA3K4UD62cRf/UECoUcV89g+jw/E2v76ofO5IQozuxZQlJ8JAW595DK9LBx8KBV+2dp23OM2mcQe7tU35yVlpay4vc1HDh0hLz8fJq6u/PSmBdp16baofHejI80HCOr/ljLmXPnSU5OobCoCCtLS/x8W/HiC8PwcHfXWv5V7Nl/gHnfL2TR/HkajpE/I7U7OEuKcji7ay4JVw9QUVaCrYsv7ftPw85F/Q3jum+Ue1rUdIwAZKXe4MzOr0mNv4BUpo+rd3eC+0/D2Lz6Rjf20g6unfmT7PRblBTlYmhkjoN7GwJ7voatcytMtOypA1BcmMOJrXO5dXk/5WUlOLj60vnZaTg0UV9CuOJz5ZK3mo4RgIzkGxzfMoekuAvIZPq4+3Sny+DpmJir34SHLRrL3dhwrRqefW0lzs2C1cJKCnM4uWMu8ZW67F196ThwGvau6rp+n6XUVdMxApCZcoOT2+aQHHcBqZ4+bt7d6TRIXVfi9RNEHV/NvbtXKSrIQqZnQCMnL1q2H45X2+cwMtT+pq64MIdjW74hNqqyzJr40W2wZpkt/Z9SW03HSFWZHdk8h6Rb55HJ9PHw6U7XITM0HlwUcjnhB34j6uQ6CnPSsLJzp13fV/Fu+ywXL2qf7WJiKGFYL2MCWxigrychPqWcjQcL1Za8AHz1unIfqpqOEc8merz3ovrG31XE3C7juzXVSwUmPmtKc2c9zE2l5BcpiLxRyrbjReQVKujRtXp/n7KyEg5t+oHIU9soKsjBwdWLXs9Npblv9dix/OuxGo4RgJzMFPb8OZvYKydQyOW4e7cnZORMGjloOqz2b/iW4zt/4/XPt+DgovtFQ8077vKyEg5u+oGo09Xaeg5R17bim7EajhGA3CptV2toGzETGy3aLp/ZwfFdv3Ev+RZGJhb4tA2h99B31JZVxN3R7oww0ofegRI8XSToySA5Ew5EyEm+72vkbw7SdIyAcv+SPkFSXO2Us1BuJik4EKGgQMvHTIZ0lODtIuH7LXKKa6xANTPV3Q9ObZ9LXI0+2mmQZh9d/ZWyH9R0jICyj57YquyjMj19mrTsTuf7+uiBP2cQc26z1vMDvPblASwbKW1meVkJx7Z+z5Wz1Xaqy7Nv0dSnuj7XfDdWwzECSjt1cMMs4q6egEo71Xu4Fju1dwnJNe2UvQetgp+lTY8xGp/rrTmjp7yshOPbvic6XKnNztmLzgPfwqOGtj+/H6vhGAHIy0rh0MZZxEdX2tAWwfQcpq7txI6FnNq5SGc5vfDWKpp4KsdYK7NqYWWlJRwIW8DFk1spLszFwcWLPsOm0sKviyrOktnjNBwjoOyfO9fM4eZlpS4P7/Y88+IMjf6Zm5nK/k0LiIs+S25WKiZmVngF9KDv8+9gaq6+F9jzHRru7Ihrz2ufrfQ48F6/t+5I/08QjhGB4DEjHCNPF7ocIw2Brm8EPGkJOqnpGGlI1HSMNDR0OUYaArocIw2B8vK64zwJDA0abpnpcow0BGo6RhoaDfWOW5djpCGgyzHSEDA3bbh9VNvmtg2Bmo6RhoZwjGjnaXKMiKU0AoHgiVBRUaF1vWwVNfcEEQgEAoFAIBAIBIJHhXjyEAgeM0OHDmXo0KF1R/x/Tt++fbl7967O4zExDXPGgEAgEAgEAoFA8LgQn+t9PAjHiEAgeCL89NNPlJaW1h1RIBAIBAKBQCAQCB4hwjEiEAieCA/6JRyBQCAQCAQCgeBpQ8wYeTw03F1mBAKBQCAQCAQCgUAgEAgeMcIxIhAIBAKBQCAQCAQCgeCpRSylEQgEAoFAIBAIBAKBoAEikYq5DI8DUcoCgUAgEAgEAoFAIBAInlrEjBGBQCAQCAQCgUAgEAgaIFKZ2Hz1cSBmjAgEAoFAIBAIBAKBQCB4ahGOEYFAIBAIBAKBQCAQCARPLWIpjUAgEAgEAoFAIBAIBA0QiVQspXkciBkjAoFAIBAIBAKBQCAQCJ5axIwRgUAgeIR4uBk9aQk6Sdsb86Ql6MS+n9eTlqCV/XsabpmZGCuetIR/JaYmDfNNXHn5k1agm8BAmyctQSfZeU9agW4q5A2zj9pYyZ60hH8lRSVPWoFuFIqG2day88U7+b+D+Fzv40GUskAgEAgEAoFAIBAIBIKnFjFjRCAQCAQCgUAgEAgEggaI2GPk8SBmjAgEAoFAIBAIBAKBQCB4ahGOEYFAIBAIBAKBQCAQCARPLWIpjUAgEAgEAoFAIBAIBA0QsZTm8SBmjAgEAoFAIBAIBAKBQCB4ahEzRgQCgUAgEAgEAoFAIGiA/Fs/1xsbG8uXX35JREQEpqamDB48mLfffhsDA4Na02VlZTF//nyOHj1KdnY2Li4ujB49mlGjRj1SvcIxIhAIBAKBQCAQCAQCgeChkJOTw0svvYS7uzsLFy4kNTWVOXPmUFxczKefflpr2rfeeotbt27x7rvv4uTkxNGjR/nvf/+LTCbjhRdeeGSahWNEIBAIBAKBQCAQCAQCwUPhzz//pKCggEWLFmFlZQVARUUF//vf/5g8eTIODg5a06Wnp3PmzBlmz57N0KFDAejYsSNRUVHs2LHjkTpG/p3zcgQCgUAgEAgEAoFAIPh/jkQqeWJ/f5ejR4/SsWNHlVMEoH///sjlck6cOKEzXXl5OQDm5uZq4WZmZigUir+tpz6IGSMCgUAgEAgEAoFAIBAI1Ojdu3etxw8cOKA1/NatWwwbNkwtzMLCAjs7O27duqUzPycnJ7p06cLPP/+Mh4cHjo6OHD16lBMnTjBv3rwHv4AHQDhGBIIGxMKFC1m2bBkRERFPWsojY8WKFXh4eNC9e/d6p7lz5w6bNm3ihRde0Dn17t9AeVkpJ3f+QPTZLRQX5WLX2IvOA9/GzbtznWnzslM5EjaLhGsnUCjkuLYIpvvQD7GydVWLd+nYGm5fP01KQiR5Wcn4tH+O0LFz6qXt2LYfuHJmC8WFudg5e9Ht2bfx8KmHtqxUDqyfRVy0UlsTz2D6PP8hVnbV2spKi9n35+ckxUeSl5mMXCHHytYV/07DaN3jRWQyfa15y0xNaPreRKzaB2DVzg8DGysuTZzBnVWb6tQFoGdpTss5H+AwuC8yEyNywqO4Om0OuRFXNeLaD+yF56dTMGvZnNK0DBJXhnHzqx9RVFToLLPj29XLrOuzb+PRsn71eWD9LOJrlFnv4VrKbN3nJMdFkpuVjKJGmQV1111m91NSlMuJrXOJjdpPeVkxDk386PLsdOxdW9UrfWZqLMc2zyb51gWkevq4t+xO1yEzMDazUYsXvu9nUhMukZIQSVF+Bu1D3iQ49D//Km3lZaWc2PEDV89uoaQwF9vGXnQZ9Dbu9azTQxvU+2jP4Zp99OJRZR9Njlf20VbBz9F/XO19tLy8lFM7f+BauHLssG3sRadn6jd25GencmTTLBJiToBcjkuLYLo/9yGW9+kCuHxqPecPLSM34w7mVk4Edh9LYLexdZ6jiuLCXI5vnUts5D7KyopxbOJHtyEz6l+fKbEc2TSLpMr69PDpTrfnZmJyX30q5HLOH1pK5PG1FOSmY23nTtu+k/FuM1At3r+h3BpcH2jAZdaQtdWkpDCX49uU/aCqTrsOfrB+cHTzrOo69elO1yHa+8GFQ0uJOqHsB1Z27rTtMxmv+/qBSldDa2uPeLzNzUrm8smN3LpymKy0BKRSKY0ae9Ix9HXcvDvV65obCv/GzVdzc3OxsLDQCLe0tCQnJ6fWtAsXLuSdd95hwIABAMhkMj7++GNCQkIeidYq/n2lLBAI/tWsWrWKI0eOPFCau3fvsmjRItLS0h6RqsfDnt9ncOHgCrzbDaLnsI+QSGVs+ulV7saeqzVdaUkB6xeM487NcNr3m0zH/lNJuxPNXz+MoaggSy1u+P4lJF4/QyPH5kil9fd971g5g/D9K/BpP4g+L3yEVCpj/aJXSbxZh7biAtbMH8ftG+F0DJ1Ml4FTSUuM5o/vxlCUX62tvKyYe8k3adaqG92HvEuvYdOwd/HmwIbZ7FgxQ2f+BrbWeH4yBTPvpuRFxtT7egCQSGi39VcajxxIwo+/c23mXAzsbOiwfzUmzd3UotqFdKPtxsWUZedx5e0vSNm6nxYfvk6rHz7Rmf3OVZVl1m4QvZ9X1ueGRa9ypx5ltnb+OBJrlFlqYjRr5msps6SbNPVVllnPofUrs5oo5HK2/TqZ6xd24N9lNJ0HvU9RXiZhi8eRnR5fZ/r87BQ2LhxDzr3bdBzwNkE9XiY++gibf5pARXmpWtzTO78n9fZl7Fxa/mu17V49g/MHVtCy7SB6Dlf2g7Af61enf/2g7KPBIZPpNEDZR9fdV6cAZ/ct4fb1MzRyqn8f3fvHDCIOrcC77SB6DP0IqUTGll/qN3ZsWDSOuzfDad93Mh36TyX9TjTrF2qOHZEn/mT/nx/TyLEFPYZ9gpNHIIc3fkn4/l/rpVEhl7Pl11eJOb+dgK5j6PrsBxTmZ7Jh4Viy0uLrTJ+XncL6BaPJvnebTgPfoU3PCcRdPULYjy9r1OeJHfM5vnUeTbw602PYJ5hbN2b3qveIubDjX1VuDbEPNOQya8jaqlDI5Wz97VWuV/aDzoM+oCg/k42LxtarTvOyU9iwcHRlnb5D654TiL96hM1a+sHJHfM5sW0erl6d6V7ZD/asfo/r9/WDKl0Nra096vH25qUDnN33G1Z2bnQZ9DYd+r9BWXEB6xe+TNSpjXVes0DJgQMHav172CgUCmbOnEl8fDzffvstq1atYtKkScyaNYsdOzTb9sNEzBgRCASCx0ByfCQxF3bQbcg02vaeCIBP+yGsnDWQo1vmMerdP3WmvXRsDdnp8bz4/noc3fwB8PDpysrZgzh/YDldnn1XFfeFt1Zjbt0YiUTCwveC6qUtKS6S6HM76Dl0GsH9lNp8OwxhyecDORw2j7HTdGu7cGQNWWnxvDRjPU7uSm3NfLuy5PNBnN2/nO5DlNqMTa0YN/0vtbRB3UZhaGzOhcO/02v4DMws7TTyL0lOY79LZ0pS72HZxpcup+t/M+M0LBSbTq05P2IqKWF7AEhev4seV/fg+el/uDjufVXcll9PIzcqhrP9J6hmiJTnFtB8xmTiFq6iIEZ92mdSvLLMegydRnDf6jJb+sVADm2ax9gPdJdZxFFlmY2bXl1mTVt1ZekXD6fManLz0h6S4yPo/9L3NA8MBaBFYH9WzwrlzO6FhIz9ttb05/b/QnlpESPf24i5dWMAHJr4s+XnCUSf3YRvpxGquC99sh8LGxeK8rNY8knHWvNtiNqS4yO5dn4H3Z+bRrs+yjptFTyEFV8O5Ojmebz4vu46vXhMWaejp63HqUYfXfHVIM4dWE7XwdV9dMTbq7GwUfbRH96pu4+mJERy/cIOug6eRpteSl0t2w1h9ZyBHN86jxHv6NYVeVw5dox8t3rscPfpyuo5g7hwcDmdByl1lZcWc3LHfDx8ejBwwgIA/Dq9gEIu5+yen/DrNAIjE8tadd64tJvkuAgGvPwDLarqM6g/K78M4fSuhfR/qfb6DN/7M2WlRYx6PwwLG2V9Orr5E/bjy1w9uwm/yvrMz07lwqHlBHQdTc/hyi8b+HZ8ng0Lx3Bsyze0CAxFKpX9K8qtofWBhlxmDVlbTar6Qf/x6v1g9VfKfhA6ro463fcz5ZX9oGadbv7pZbU6zc9OJeLwcvy7jKZHZT9o1eF5Ni4cw/Gt39AsIASpVKbKt6G1tccx3jbxDObVLw+pzbQJ6DKKVbMHc3L7Avw6DtOaf4NE8vf3+nhSWFhYkJeXpxGek5ODpaXufnT48GF2797N1q1b8fLyAiA4OJiMjAzmzJmjmkXyKBAzRgSCGkRERDBu3DgCAwNp06YN7733HhkZGYByOYeXlxebN2/m008/pW3btnTs2JHly5cDsGPHDkJCQmjdujVTpkwhNzdXle+ZM2fw8vLiyJEjTJkyhcDAQNX6ubq4e/cuU6dOpU2bNgQGBjJx4kRiYqrfnM+ZM4cePXogl8vV0h05cgQvLy9u3rwJQK9evfj8889ZsWIF3bt3JygoiBkzZlBaWkp0dDQjR44kMDCQ4cOHq+UPSu/t0qVLCQkJwdfXl969e7NixQq1OAsXLiQoKIiYmBhGjRpFQEAAAwcO5NixY6o4vXr14u7du/zxxx94eXnh5eVFWFhYrdd/5swZxo0bB8Dw4cNV6crKyujcuTPz58/XSPP2228zfPhwVfr6ln1sbCyvv/66qqxfffVVbt++Xau++nLj4m4kUpnq5h5AT98Qv47DSY6LIC8rWWfa6xF7cGjip7qhA7BxbEYTz47EROxSi2th44zkAQ1ozAWltsCu6toCOg/n7q0IcjN1a4u5sAcnNz/VAz5AI8dmuHt3JPr8Lp3pqrBs5Awop/hqQ15aRknqvfpeihqOQ0MoTkknZdNeVVjpvSySNuzC4dn/Y++8w6K41j/+2aX3Ir2jCFhA7L0XMDHRGGOMLdHcxNz0di25SW66JpqoUVONxpiisfeKvTcUFMSCgEjvvSy7vz8Gdll2F1ATJT/P53n2Uc6cc+Y77ykz884pg5GbSlNRrNu0wqZda24u/VNr2kzSd78jk8txH607dFNtsz7aNgvtNYbUO7SZb1BPLp+7e5vV5dqFXVjaONEqdJg6zMLakYCwCBIu7tP50qebfjd+bQeoH4QBfIJ6Ye/sx9XzO7Xi2jp6NaqnOWu7EiWVaWjvem201xhSb0RR2EgbdfMNUT+kg6ZM4+uVqV2L22ujtX1H+3p9R7seY0hLbLjvuHpeT9/h2grvwJ5cOa/RdfPqScpL8gntM14rfWjfCVRVlnLj0oEm6JTKM6BOeVpaO9K643CuX4xE0YTy9G83QO0UAak8HVz8uFKnn7sesxdldZWWVplMRkjvpyjOTyftRlSNnuZvt+bWBpqzzZqztrrUlqlOOwgbTkIT24FfO0NlqtGacFFqByEG2kF64nm9uppLXbsX/a2TR2ud6UfGJqb4t+tPUX46leXFjeoU3DktW7bUWUukqKiIrKwsWrZsaTDdtWvXMDIyIjAwUCu8TZs2ZGZmUlZW9rfoBeEYEQjUREVFMWnSJGxsbJg/fz4ff/wxMTExvPjii1rxFixYgLm5OQsXLiQiIoI5c+aoh3r95z//4f333+fEiRPMnTtX5xzvvfce3t7eLFq0iEceeYT58+fzxx9/GNRUXFzMpEmTiI2N5cMPP2Tu3Lnk5eUxceJE0tKkm8YTTzxBWlqazgrP69atIywsjICAAHVYZGQkR44c4aOPPuKtt95i69atfPzxx0yfPp0nnniChQsXUlFRwWuvvablaPn000/5+uuvGTVqFD/88AOPPfYY8+bN09FeVVXF22+/zejRo1m8eDGOjo68+uqr5OVJQxsXL16Ms7Mz4eHhrF69mtWrVzNgwIAGy6Vdu3bq/c5nz56tTmdiYsJjjz3Gxo0btbTm5+cTGRmpdow01fY3b95k3LhxFBQUMGfOHObNm0dubi7PPPMMlZUNPzA0hcyUOBxc/DCzsNYKr31Qy0yJ05tOpVSSnRqPm097nWNuviEUZCff9c0942Ycjnq01b64ZzSgLfNWPG6+utrc/ULIz0qmop62akUlpcW5FOamER+1h1N7lmHr6ImDs69OHneLXVgbaS2RequYF5yOwdjKEqtAfwBsw9oCkH82RiteRVomZTfTsA3THQ7cmM0aKs+7sdmV87dns6xbcTh7tdWZn+zqE4qisoy8zBsG0xbnZ1BWnIOLt65WV59Qsm/prtNyOzQ3bY210awGyjTrVjyuBtpo/l220ayUOByc/TAzr6fLp0bXrYb7Dlc9NnLz0e47smrsVf8aXL3bIZPJDV57fZ0uesrTzScERWUZ+Y2UZ2lxjl4buvqEap0/61YcJqaWOLq20j6Pr7Y9/gl2a25toDnbrDlrq69Tb5n6Nq0dlBXn6NXq6luvHaTobweu6v5Ku/ybW127n/1taWEWxqYWGJta3LZuQdPp168fx44d0/pQvHPnTuRyOb17G15HxtPTk+rqap2PtJcuXaJFixZYWPx95Sam0ggENXz55Ze0b9+exYsXq7/mBQYGMmLECA4ePEirVtLNJywsjHfeeQeAHj16sHv3bn799Vf27duHg4MDAPHx8axdu5aPP/5Y6xw9evRgxowZAPTt25ecnBy+/fZbnnzySeR6FlZav349qampbNu2TX3+rl27MnDgQFasWMHMmTNp1aoVnTt3Zt26dfTt2xeAvLw89u3bp3Yo1OWbb77B1NQUgFOnTvHnn3/y448/0q9fPwCUSiUvvPACV65cITg4mOTkZH799Vc+/PBDnnxS8uz36tWL8vJylixZoqW91jFSu7Cqv78/gwcP5tChQ4wcOZK2bdtiamqKk5MTYWFhTSoXa2trtXOndevWhISEqI898cQTLF26lMOHD6vPuWXLFuRyOSNGaC8+1pjtFy9ejJ2dHcuXL8fMzAyATp06MXjwYNasWcOECROapNcQJYVZWNnqTnuoDSsp0L9+SnlpPtWKSqz0TJmoTVtckIljvYfF26G4MEvvlAzr2vzz9Wsrq9HWWFozN422+Kg9bP5JM63Azbc9D03+DLnRX387MnN3JveI7lzl8rTMmuMuFF28grmbpLUiLUsnbkV6FuYeLjrhJQUGbGanKRN9lDVQnuq0emy2ZVk9m01qms1KC7PwbNVFJ1xd7wozcfII0pu2pDBTK2799OWlBVQrKjEyNm1Uxz9BW3FBlrreauVnd+ftwMru7tuowb6jkbp2O31HSWEWMrkRljYttOIZGZtibmVPcWHj6zuVGCxPF/W57rw881EoKjE2NqWkIAtLmxY6o27qXlOtnuZut+bWBpqzzZqztroYLlOpHZQ0oR1YNqUdFGZh0UA7KKmntbnVtfvV3+ZlJnH1wh4CO0ZoTTVq7tzNtrn3i3HjxrFy5Upeeuklpk2bRkZGBl988QXjxo3T2kjh6aefJjU1lT179gCSQ8XDw4NXX32Vl156CRcXF44cOcKGDRt45ZWGF3S/W8SIEYEAKCsr49y5c0RERFBdXY1CoUChUODn54e7uzsxMZovyXW9nEZGRnh7exMcHKx2igD4+flRWFhISUmJ1nmGDh2q9Xd4eDgZGRmkp6fr1XXmzBlat26tdooA2Nvb06tXL86ePasOGzt2LJGRkeTn5wOSc8DExISHHnpIK7+uXbuqnSK1OuVyOT169NAKA9QjUo4dOwbAsGHD1HZRKBT06tWLrKwsdTwAuVxOz56a+aReXl6Ym5uTkZGh9/ruFl9fX7p168a6dZp1J9avX094eDjW1to3xcZsf/ToUQYNGoSRkZH6Gm1tbWnbti0XL168a62KqnK9Dw1GJmbq4/rTVUjx9KQ1VqetuDttlfq1GTemrdKwNiMD2nyDujPuteWMem4hHfuNw8jIhKqKv2dYpJGFOcoK3dE+yvLKmuOSRrmFuRSuJ251eYX6eF0MlaexsZRnVWXDNjO+jfL0DerOk68uZ+RzCwnrOw65kQmVTbRZ4/XOcN1pqO41Vm//idoMlundtNGa+lBb7ndCY3Xtr+g7FJXlBnc5MjY2a5ItDdvPVOtcd6y1pk011R7/BLv9Y9pAM7BZc9bWFJ21YXfcDmqus7rJ7UD7PP+YuvY39rdVlWVs+ek1jE3M6TfyrdvSK7h97OzsWLFiBUZGRrz00kt8+eWXjBkzhpkztRePVyqVVNeZxmxtbc3PP/9M27ZtmTdvHv/+9785ePAgM2fOZNq0aX+rZjFiRCBA2lKqurqa2bNnM3v2bJ3jdV/+bWxstI6ZmJhgaWmpEwZQUVGBlZWVOtzRUXuuo5OTEwBZWVl4eHhQn8LCQnWcurRo0YKrV6+q/46IiODTTz9l8+bNTJ482aBzoP62WSYmJpibm2s5S+pqB2n0iUql0nKe1CUtLQ1PT2nNg/p51eZXm9ffwdixY5k5cya5ublkZmYSGxur0+lC47bPy8tjxYoVrFixQidtrU3uBmMTc71zeKtrbvLGJrov31J4zcOQnrQKdVqzu9Nmql+bojFtpoa1VRvQZmXrhJWtZPvgzhEc2/EdqxdO4fmPdje6kOjtUl1WjtxM9+FJbm5ac1zSqCyTHsD0xTUyN1Mfr4uh8lQopDxNTBu2mb555obKU8tmnSI4vuM7/vx6Cs99qLFZtaKSksJ8rXQW1o5NqHeG605Dda+xeqsVV1FJean21nzNRZt2nnfYDhpqozX1obbc74TG6tpf0XcYm5pTXV2lNx+FokLrHLdbnoqqSq1z3bHWmjbVVHs0J7vV2qxaqZnW949qA/eprjVnbdWKSkpLbqNfU9xlO6i5TqNG2kHtVEyVspqSwqzGdTW3uvY39bdKZTVbl71BTvo1Hn/xR6ztXXXiNGf+idv1ArRq1UpnTcL6rFy5UifM19eXBQsW/D2iGkA4RgQCJGeHTCZj2rRpDBkyROd43dEgd0Nubq7W39nZ0qKSzs76Xwjt7Oy4cUN33mdOTo7Wis7m5uY88sgjrF+/ns6dOxMXF8e77777l2i2s7NDJpPx+++/63UQ+Pv7/yXnuVOGDRvGxx9/zObNm0lJScHHx4du3brpxGvM9nZ2dvTv35/x48frpK3r3LpTrGydKS7QHTlT++BiZac7XQPA3NIeo5rh44bSWhtI21SsbZ0pytfVVlybv73+/C1qtBXr0dZY2lqCO4VzaNN8rl6IpGO/cbcrvUEq0rIwc9NtW+buLjXHpaG65emSVjN3Z8pTtEdvmbk5k386WicPKztnivXZrKDhMrFooDzVaRuxWVCncA5tns+16EjC+ko2u5UQxR/zJ2vFe/q9vVjaOqvrSV3U9c7W8LnUQ78NpDe3tGvS0Om0xCg2LHm6WWqri7Wd/nZQ0ki5NNQOShqpD03BYN/RSN6303dY2TqjUlZTWpSjNY2gWlFJeUk+1nXKIvVGFOsWa9e1Ke9HYmWwPDMb1Cmdv7HytFePsrKyc+bmtZOoVCqtaQT6rqm52E2fzZpjG2hONmvu2vSV6TPvRTZQpjXTUZrQDkqb0g5snUnR0w4SYw8CEH3kN6KP/AY0z7p2r/vb3b+9y/WLB3j4mXn4BDW+a5rgwUQ4RgQCwNLSkrCwMBISErTWsKhLSkrKXZ9nz549WlM6du3ahYuLC25ubnrjd+7cmV27dpGQkKBewbmgoIBjx46p1/uoZezYsfz222/Mnj0bPz8/unTRnUt6J9ROjcnPz2fQoEF3nd+djCCpP4qlLqampowcOZI1a9aQnZ3NM888o3fHh8Zs37NnT65evUrbtm0xMvrr5506ewVz8+pJKsqKtRYbS0u8AICLl+4CnyB9JXDyCCQ9WXc6T3pSNHZO3pjexfoiAC7ewSRd0dWWekPS5tqANmfPQNKTdLWl3ojG3slbZ6G8+lTVfB2qKNPd0u1uKbxwGYc+naVt7uoswGrfLRRFSSklV27UxJMWebPvHELBac20OTN3Fyy83Uleqr1lLoCrVzDJemyWdqPx8jRks7TEptlMocdmLp7BjHxhmVY8SxtnnD2DSU04i0qp1PrilJF0AWNTCxxcDDs2re1dsbB2JPOmrtaM5GicPPVfY32cPJqvtro4exoo05o26txIG83Q00bTEu++jTp7BXPz2kkqyou16kZ6Uo0uA9cqk8txcg8kQ4+N0pOisWuh0VWbR0byRfzb9VfHy7h5EZVKibNXsEaPZzCjX1yulZ+VrTPOXsHcuq5bnulJ0RibWmDfhPLUZ8OM5GicPeuevw0Xj68hN+M6Ldw0i4unJ2rboznZrdZmdUeMNMs20Ixs1ty1OXsGM+rf2u3A0tZwmd5WO9BXpknRONVpB06ebbh0QrcdKCpLAegzciYt3KVdPZplXbuH/e2B9Z9z8cR6Bo55hzZdRuikEwhq+WeOyxEI/gamT5/OgQMHeP3119mzZw8nT55k06ZNzJgxg5MnT/4l5zhx4gSff/45R44c4fPPP2fTpk288MILehdeBRg9ejQeHh5MmzaNbdu2sXfvXqZOnYqxsTFPP639BTY4OJiQkBBOnz7N44//dXuz+/v7M2HCBKZPn863337LsWPHOHjwICtWrNDZsacptGzZkhMnTnD06FFiYmLUO9Y0hJ+fH0ZGRqxbt47z589rrfkCklPo2rVrFBUVMXr0aL15NGb7V199laSkJJ599lm2b9/OqVOn2L59Ox988AFbt2697eusT2BYBCplNTHHVqvDFFWVXDq5Hje/Dtg4uANQmJtKbvp1rbStw8LJSI4hPVlz3bkZCSRfOUFgWMRdawvuJGk7f1hbW8yx9Xj4d8DWUdJWkJtKTj1twZ3CSUuKIS1Joy0nPYGk+BMEd9ZoKy3ORVVvdxiAC0fWAOjdpeV2MHNzxiqoJTJjjb8/bf1OzN2ccXtMsz2hSQsH3B+PIHPrfpSV0pDp4thrFMddx/tfY6FOW/Sd9hQqpZL09dpbEQIE1drsSD2bHV+Pu5/GZoV6bBbU0bDNgjo1wWZHa2xWZ1V+cys7fIJ6af2MTcxo1SGc0qJsrkdrtiwuK87j2oVd+LcbqPWVryA7mYJs7e2pW4UOIzH2gNZWmDevHCc/K5GADk2re+aWzVdbXYI6SmUafVS7TC+eqClTB8NlGtgxnPSkGNKTdNtoUMe7a6MBHSRdF+v2HYpKYk+ux823Xt+Roa0roKbvyKjXd9y8eoLWdfoO79Y9MLe0J/qo9k5j0Uf+wNjUAv+2A9RhhsozoEMEpUXZXNMqz1yunt9Jy3YDtdbVyc9OJr9eeQZ0GMaNS9rlmRx/nLzMRC2tLUMGIzcyIfrI7+owlUpFzLFVWNu54u7fsdnZ7Z/SBpqTzZq7ttttB9fO78S/Ke0gdBiJl/SXqb52EFOvHVw+sxkrO1c69JvUrOvavepvT+1ZypnIZXQPf4HOA7Wfm/9JyOSy+/Z7kBAjRgSCGjp16sTvv//OokWLmDVrFlVVVbi5udGjRw98fX1RKBR3fY6PPvqI1atX88cff2BlZcVrr73W4G4n1tbWrFy5kjlz5vDee++hVCrp1KkTv/76K+7u7jrxhw4dSmxsLKNGjbprrXV599138ff3Z/Xq1SxZsgQrKyv8/f2JiLj9m+Gbb77JBx98wCuvvEJJSQmzZ8826MyoxdHRkffff5+lS5eyefNmFAqF1jZeAQEB+Pn54ePjo7XSdV0as72vry9r1qxhwYIFfPjhh5SWluLs7EzXrl0JCtK/Uvvt4O7XgcCOERzZ/BWlRTnYO/sSe3IDhTm3GDb+U3W8nStnkHLtFG8u0lxfWN/xxBxbw8bvptF50FSMjIw5u/9nLG1a0HnQVK3zXI/ZR9atywAolVVkp8ZzYuc3ALQKGaT15bUWD/8OBHeK4OBGSZuDiy8xxzdQkHOL4ZM12rYun8HNq6eY+Z1GW8f+4zl/ZA1rFk+j+9CpyI2MOb33Z6xsWtBtiEbbpZObiTq0isCwIdg7eVNRXsKN2CMkxh0lIHQgfsGGh7b6vjgBEztb9e4wLg8PxNxTGumTuGQlisJigj59E+/Jo9kXMIiypFsApK3bRd6JKDosnY11mwCqcvLwnfYUGBlx5aNFWueIm/kFXTZ8S/cdy0j9cxs27QLxe3ECN5etofhygl6bBXWK4FCtzZx9uXiixmaT6tjsZ8lmM77VttmFo2tYu2Qa3YbU2CxSv83OH15F6w6SzSor6tgsZCC+DdisloAO4Vzw7cDeVe+Qm3EdcysHYo7+gVJZTfeIl7XibvjmGQCeeX+fOqzLkGlcu7CTDd88TYe+k6iqLOXc/mW0cA+kbXftdnv59CaK8lKpqpIWhk29fobTu78FIKjLo9g6ejZLbSE9R2LXwhN3f6mNHt6kaaOXatpo+ARNmW7/ZQYpV0/x9pI6ZdpvPDFH17D+22l0GSy10TP7pDLtMli3jWamaNpoVmo8x3dIbTQgVLeNuvt1oHVYBEe31Ok7Tm2gMPcWQ57S6Nr12wxuXTvF6ws1ujr0Gc/F42vY9P00Og2S6lpUTd/RqU7fYWxqTs+HXmX/2o/YtvxVfIP7cuv6GS6f2Uyvh9/A3MqexmgdFk7UwTB2/z6LnPRrWFg5EH3kD1TKanoM195JYN2SZwB49n+a8uw29AWunt/J2sWT6dh/MpUVpZzd9xNO7oG07aFx9tvYu9Gx/2TO7vuJ6moFbj4hXI/ey63rZ4iYNE+908Q/wW7NpQ207TYSW0fPZm2z5qytLgFh4bgdDGPvH7PITb+GhbXUDpTKanpEaLeDDTXtYEqddtBl6AtcvbCT9UsmE9ZPagfn9v9EC/dA2nTXbgdh/Sdzbt9PKKsVuPiEkBCzl9SEM4TXaQdqXc2krt3L/vbq+T0c2jgXBxc/Wri1JPbUJi2dvsG91et3CQQAMpW+z1ECgeAv5eTJk0yePJm1a9canKrzVzBhwgRsbGz47rvv/rZzNEeSk5MZNmwYCxcuJDw8XOvYvbK9Ib7XfJxBUVXB0W0LuHx6C+WlBTh5BNF7xGv4temrjvPnwkk6jhGAorx0Dqz/jKTLR1GplHi37k7/0bNwcPbVirdz5UxiT23QqyV8wmza9dA8wJjWWTJGUVXBoc0LuHRS0ubiGUTfR1+jZTuNtt++nKTjGAEozEsncs1nJMbWaAvszpAnZuHgotGWlhTDyV1LSU2MpqQwG7mRMY6u/rTr9ihdBk7U2XrWZZjGGTXwaiSWfl56r6nWERL602wdxwiAsb0tbT6fjtujQ5BbmFFwJoa4GV9QcFZ3GK7ro4Np/d7LWAe3ojIrl5RfNnD1kyWo6jhFM3Zprl1RVcHhzQu4dEpjsz6PvkbLthqb/f7VJB3HSK3N9q39jBuxR6HGZoPH6LHZ7qWk1bWZiz/tuj9K5wG6Nist1387Ly8t4OjmuSRc3IuiqgJX7/b0fnQ6rj7a7eHnj6SpcnUfhgFy0q5yZNMcUm+cw8jIBL+2/ekzcgaWNtoPlOsXT+LW9dN6NTz20gq8Aro3S21jX/sFn0BJm6KqgiNbFhBX00adPaU26l+nTFctmKTzoA5SG92/7jMS4zRtdODj2mUKsOOXmVw6qb+NRkycTfueUhut64tXVFVwfPsC4s5soaKm7+j5kHbfsWbRJJ0XQoCi/HQObdD0HV4B3en/2Czs6/UdADHH/uTc/mUU5qRg7eBOh74T6Nj/ab3TE/VRXlrA4U1fcD2mpjx9Qug3Urc8f/pQKs+6jhGQyvPgxjmkJpzFyMgE/7b96Ttqps7Li0qp5HTkj8QcW01pQSb2zn50Hfo8wV0e1YrX3OxWdypNXZvd7zbw+Mu/4N1a0waak83q0ty06SlOQCrTI5u/IKG2HXiH0EdPO1he0w6m6GkHhzfOIfXGWXWZ9h01U6dMVUolZyJ/5OKx1ZQUSu2gyxCpHeh7vWsOde1e9rdHty3i+PbFenXU1wLwnO4Sg82G9P9MvG/ndpv76307971GOEYEgnvA3/1yHhMTw9mzZ5k9ezbLly+nV69ef/k5miN5eXncuHGDJUuWcOPGDXbv3o2xsfbLYnNyjDQ3TO9+s52/jbqOkeZEXcdIc8OQY0TQMGamzXOo8F8wSFHQzNDnGGkOGD1gw+X/KpppcQLodYw0B5prfwvCMWKIB8kxIqbSCAT/DxgzZgw2Nja8+OKL/ziniEql0tq/vD5yudzgGiz79+/nnXfewdfXl7lz5+o4RQQCgUAgEAgEgn8yD9paH/cLMWJEIBDcV9avX8+sWbMMHn/55Zd55ZVXDB5v7ogRI3eGGDFy+4gRI3dGc/2CKUaM/P9DjBj5/0UzLU5AjBi5E5rziJGMGZPu27ldP1953859rxGfVwUCwX1l4MCBrF271uBxFxf9e9kLBAKBQCAQCAQCwV+BcIwIBIL7ioODAw4ODvdbhkAgEAgEAoFA0OwQU2nuDfon7gsEAoFAIBAIBAKBQCAQPACIESMCgUAgEAgEAoFAIBA0RwxsQiD4axFWFggEAoFAIBAIBAKBQPDAIhwjAoFAIBAIBAKBQCAQCB5YxFQagUAgEAgEAoFAIBAImiEymVh89V4gRowIBAKBQCAQCAQCgUAgeGARI0YEAoFAIBAIBAKBQCBohsjE4qv3BGFlgUAgEAgEAoFAIBAIBA8sYsSIQCAQ/I0YGd1vBYYZ7BV3vyUYZO+u+PstQS+u4UH3W4JBciObp80AVKr7rcAwN25W3W8JenFqYXK/JRhk+7qL91uCQR4d2/5+SzBIReX9VqCfnMLm2QYATEya7zfcnm2baYECZ6+a3W8JeundOud+S2gAp/stwCAyuVhj5F7QfHsbgUAgEAgEAoFAIBAIBIK/GeEYEQgEAoFAIBAIBAKBQPDAIqbSCAQCgUAgEAgEAoFA0BwRi6/eE4SVBQKBQCAQCAQCgUAgEDywiBEjAoFAIBAIBAKBQCAQNEPE4qv3BjFiRCAQCAQCgUAgEAgEAsEDi3CMCAQCgUAgEAgEAoFAIHhgEVNpBAKBQCAQCAQCgUAgaIbIZGIsw71AWFkgEAgEAoFAIBAIBALBA4sYMSIQCAQCgUAgEAgEAkFzRCy+ek8QI0YEAoFAIBAIBAKBQCAQPLCIESMCgUBwj1BUVXJ060IundpERWkhzp5B9Hnkdfza9G40bVF+BvvXfkZi3FFUKiU+gd0ZOOYd7J281XEKc9OIOb6OhIsHyMtMQi6X4+QRSI/h/8YvuFeD+VdWVbHi19/Zu/8AxcUltPTz5ZlJE+jcMazBdEeOnWDrjp3cSEqiqLAIOzs72gQFMmn8OPz9fA2mS01L418vvkpVVRWL588jqHWAwbiKqkqObF3IpZObKK+xW99HX8e/iXaLXKNtt8Fj3sHeWWO3qspy9qz+iLQb0RTmpaFSKbF38ia01+N07D8eIyMTvXkbWVnS8q1nse/WAfuuIZg62nPh2Zmk/LKhUV0AxnY2tJnzH1xHDsXI0pyC0zHETp9DYVSsTlyXEYMIfP9lrNsEUJmZw80V67n26TeoqqsN2uzgpoXEnJBs5uIVxIBRr9OybeM2K8zLYM/qz0iIlWzmF9SdoU++g0MdmwF88lyQ3vQDR79F7+HPG8xfUVXJoc11tHkG0f82tO39U6PNN6g7Q8fqaqvLzatn+GXuBADe+PI4ljaOjZ7HzASGdjIi2FuGiTHcylax+1w16bmNJgXAyRbCuxjh4yyjWglXbqnYfbaa0grteNYWMCDUiJbuMqzNoagM4lOUHI5RGsy7orSQI1vmcj16D4qqclx9Qug7ciYu3u2apC03/TqHNn5GWsI55MYm+LXtT99Rs7C01rbL6d3fkp50gfSkaMqKc+gW/jI9hr/SYN5WFnKmjnGjZydbzEzlXLlRytI/07meXN6orvC+DgzsYY+XuxnWFnJy8hXEXCnh982ZZOZUacV9aIAjHYKtCPS3wKWFKXuP5jF/+S2dPBVVlRzbvpC4U5soLyvE2SOI3iNexze4aX3HwfWfkXRZqmverbvTf7R2nwtw4fDvJF85QXpSNEV5abTt9hgRk+Y0mn8tFWWFHN82lxsX96KoLMfFJ4ReI2bg7NW08szLuM7RzbNJSzyHkZEJvm360+uRmVjUKc+SggyOb5tHZkoMpYWZyGRG2Dv70a7XeII6jzKY971qBw7WMKSjEf5uMoyNIC1Xxf4LShIzVA1qG9RBRpCnDGNjSMuBvReUZOQ1TVsLGxjSUY63E1Qr4VqaisjzKh1tAPZW0D9Ehp+rDFNjqZ3G3VRRWaf7raqqZMuqbzh5aBulJYV4+rTm0adeom2Hng3qSL+VyKHda0i8GkPyjcsoqir55JttOLl46o1fXlbCtrU/cO74Hgpys7CytadlYAemvPIxpmYWDZ6roqyQUzvmkRgr1TVn7xB6PDQdJ88m1rXM65zYOof0JKmueQf1o8fD2nWtPteitrD/z+kYm1oy5cOzWseqqir589elHNm/k+LiInz8Anhy0nOEduzWoI5Txw5w7HAkCVcuk5+fQwsnFzp17c3occ9gZW1jMF16Wgr/eXESVVWVfDp/Ka1at2nSdTcHZHIxluFeIKwsEAj+kZw8eZKgoCBiYmLut5Qms2PlTM5E/kzbro8w6In/IpMZsW7J86RcO9NgusryElYvmMzNq6fpHj6N3g+/SsbNOFZ9NZGyYs1T4LXoSE7t/hEHZ1/6PPo6PYe/SGV5CWu+nkLM8XUNnmPu/K9Zt3Ezgwf058Xnn0Uul/PfDz7m4iXdl/S63EhKwsbamscefYRXXpzGiIciuJaQwCtv/YfrCTcMpvv2x2UYGRk1mHct23+Zyem9kt0GP/FfZHIj1i5umt3+mC/ZrWfENPqMkOz2+3xtuymqyslOvUbL9v3oP+pNBo6ejotXMJFrZ7Pt55kG8zd1ciDwvZexDm5JUXR8k65FjUxG180/4DFuBEnf/MrlWXMxdXakx96VWAZoO5Scw/vRZd0SqvKLuPT6x6Rv3kvrd/5Nu4XvGcx+8/KZnNz7M+27P8Kwcf9FLjdi1dfPk3y1cZv9Om8yyVdO0/uhafR/9FXSb8bxy9yJlBbrvnH4t+3NyGe/0PoFhg5s8Bxbfp7JyT2StqFPSuW5+uvnudkEbb99WaNt+DT6PfIqGclxrJynXxuASqlk16pPMDGzbDDv+owfaESIn4zT8Ur2nlNiZS7jmSHGOBp+5lZjYwnPDDPG0UZG5Hklx2KVBHrKmDTYmLrPtibG8Gy4McHeMqITlOw4U821W0q6BcqZNET/dyuVUsnmH5/nytmtdOg7kd6P/Iey4lzWLZ5EflZio9qK8tNZu2gCBdnJ9Hz4DToNnEpi7EE2fjOFakWlVtzj2xeQcfMizl5Ne3mQyeCD13zp392OLftyWLY2HTsbY+b8xx8PF9NG07fyMScju5J1O7NY8msq+0/k06W9NQvebYWjnbY9xkQ4ERpsRXJqBQqF4ZfnXb/O5Ny+nwnu+ggDH5fq2oZvn+fW9UbqWkUJa76eTMq103QbNo2ew18lMyWOPxdOpKxEu66d3ruUm1dO0sItALn89r43qpRKtv80jatR22jfawI9H36bsuJcNn03uUnlWZyfzsZvJ1KQk0z34a/Tof8UkuIOsuWHqVrlWV6ST0lBOq1Cwun58HS6RbyGpY0z+1fP4uTO+QbzvxftwNYSno0wxsdFxrFYJZFRSkyNZUwcbISPi+HpA2P7yWnnI+PMNRX7L6iwNIeJA+U4WDdBmwVMGiTFPRCj4mS8igB3GU/1l1P//dPFHqYOk+NiL+NkvIrdUSpik1VY1/NBrFj8Pnu3/kq3vsMZO+U/yOVyFn/2CtfiohrUknDlAvt3/EF5eSnunv4Nxi0rKWLee1M4tm8TXXtH8NRz/2XQ8PEoKiuoqqpqMK1KqWTXihe4dmEbbXtMoNvwtygrzmHrj09TkJ3YYFqA4oJ0tv4wicKcZLoOe52QvlO4GX+I7cue1ek7aqmqKOHkznkYm+rvf7+d/ynbN66i94BhPP3868jlcj7/4G0uX7rQoJYfF39B6s0k+gwcxjPPv06HTj3YtXUd7709jcoKPZ6tGlb++DXyJj53CB5MxIgRgUAguAekJUZz+cw2+j82nW5DnwWgXfdRLP9kBAc3zGPCf1YZTBt16HfyMhOZOH0N7n6hAPi368vyTx7hdORy+o18EwCfwO5M+3S/1pffDn2fYsVnIzm65WtCej6uN//L8Vc4cOgwz099hidGjwJg6KCBPPfSq/y4fAUL531uUNukp57UCXto2FCeeuZZtmzfyesv/1vn+OmzUZw9F8XYxx/jt9VrDOYNkJoYTdyZbQwYPZ3uNXZr32MUP308gv0b5jGpCXabPENjt5bt+vLTx49wau9y+o+S7GZhZc/kGX9qpe3Y7ynMLGw4d+BXBo2ZibWds07+FWmZ7PXqTUVGNnad29PnRMPOp7q4Px6BY69OnH3yVdLX7wIgbc0OBsTuIvD9Vzg/+W113DafT6cwJp5Tw6eqR4goCksImDmNG4t+oSQ+QSvvWzeiiT29jcFjptMzXLJZaM9RfP+/EexbN49nZhq22ZkDv5ObmcjUd9bg4S/ZrFX7vnz/wSOc2L2cQaPf1IrfwtWPkB4jm3zddbX1GKbR9sMHI4hsRNvZGm1T3lmDh59G2w8fPsLJPcsZ+NibOmnOHV5NYW4aYX3GcDrylyZpbOsjw8dFzp+HFMQlSy/dl5KUvPyoMQNCjVh/VP8onVr6tpNjagw/bFdQWFpz3TkqJg8xJqyljHPXpDyDvGTYW8v4fb+Cq7dqX+5VlFVC/1AjnGwhu1A776sXdpJ2I4rhzyykdVgEAK07Dmflp+Gc2LGIiMlfNqjtzJ7vUFSW8dTb67Fx8ADA1SeUjd9OIe7UBtr30rTnZ96LxLaFF2XFufz4bsNfvQF6d7albYAVn32bzNGzkvDDpwv48dNAJox0Ye6PKQ2m/+a3NJ2wE+cLWfheAIN72bNmR7Y6fMYXN8jKlV4E1y7W77hJS4wm/tw2+o2aTpfBUl1r220UKz4bwaFN83jqTcN17cLh38nPSmT822tw863pc9v2ZcXsRzgbuZw+j2rq2tjXVmLj4IFMJmPRWx0bvMb6XI/ZRXpSFMMmLaBVqFSerToM5/cvIji9exFDJzRcnuf2fY+isowxr63TlKd3KFt+nEr8mQ207SGVZwuPIEb+e6VW2pDeE9m+7AVijvxKUM+XkMu1XxjvVTvo006OuSl8u1VBTk19P3tNOk94ZyN+3qs7eqqNtwxvJxnrj1ZzuaZaxd1UMe0hOf3ay9h0wrCzDKBXW2kEzLI9SrW21FwV4wcYEeon43yCJv2j3eXkFMFv+5Uo6l1yz7bSvzeuxnDm6E5GT3qDYSOfBqBH/0f46M0xrF85n+mfGe57OnQZQKcVQzC3sGL3phXcTDTsZN/w+9fkZqXxzhercHLVjCgJf2xKg9cLkHBxFxlJUQwev4CWIeEAtAwZzp9fDufs3sUMGjevwfTn939PVWUZj728Fmt7qa65eIew/adnuXJuI226jdVJE7X/O0zMrPBo2Z3E2EitY9fiYzl2aC8Tpr7EI6PHA9BvUAT/eWkSvy3/ho/nfW9Qy+szP6FdaCetsJYBQXwz/xOOHNjFoPBHddJcOHuSC+dO8cjj49mwekWD1yp4cBEjRgQCwQONSqWislL/146/kvhzO5HJjejQR/PiYWxiRkjPMaTeiKIwV/eloJYrUbtw8w1Rv9wDtHBrhW9QT+LP7VCHOXm01hkOb2xiSsv2/SnKT6eyvFhv/oePHkMul/NQxDB1mKmpKRFDhxB7OZ7MrKzbulZ7ezvMzMwoKSnROaZQKPj2x6U89ugI3N3dGs2r1m5h9ewW2msMqQkN2y3+3C7cDdjtch27GcKuhfTgWVFWqPe4srKKioxsvccaw210OOXpWaRv2K0Oq8zOI3XtDlwfHYzcVJq+Y92mFTbtWnNz6Z9a02aSvvsdmVyO++hwnbwvn5Vs1qmfts3C+owh5XoUBQ3Y7PLZXXj4haidIgBO7q3wD+5J3Bn9NquqLEdRZfgrnT5tHftqa+vQZwy3GinPuHO7cPcLUTtFGtNWVpLPwY0L6DfyVcwtbJukD6Ctr5ziMpX6ZRCgtAJik5UEecswauTJqY2PnCu3VOoXLoAb6SqyC1W089UkNjORvoYXl2mnL6r5u/5LGMC1C7uwtHEiIFTTVi2tHWkdNpyEi5EoDHy51aTfjV+7AeqXaACfoF7YO/tx9by2DW1beDWYV336dLYjr6CKY+c07aWwuJrDZwroEWaLsfHtLx6YkS05P6wstV/aa50iDXH1vFTXQnrp9rlpN6Ioymu4z3X1CVE7RQAc3VrhE9iT+Kh6dnL0RCa7s4URE6J3YWHtRMv2mvK0sHYkIDSCxEv7DH6JV6eP2Y1vG+3y9ArshZ2zH9cu7Gz0/DaOniiqylBW69rzXrUDHxc56bkqtVMEpLofn6LEo4VM7wiQYC8oLlOpnSK12i7fVNHas3FtwV4yrqVqa0vMgJxCFW28NWXZ0g1c7GUcvig5RYyNpJFR9Tl3Yi9yuRF9h2o+PpiYmtF70CgSrkSTm51uUIuVjR3mFlYNCwZKSwo5vn8zfYY8jpOrJ4qqKqqqmv7scuPibiysnfBvN1QdZmHtSMvQCJJiG69riZf24BM8QO0UAfAM6IWdkx8J0br9b0F2IjFHVtDjoRnI5LqjNE4e3Y9cbsTgCI1j3dTUjIFDR3D18kWyszIMaqnvFAHo2rMfALduJukcUygUrPhxAcMffQJXd/1TlJo7Mrnsvv0eJIRjRCAQ3BeuXr3Kc889R/fu3enQoQPh4eH8+OOPAERFRfHCCy/Qp08fwsLCGDlyJBs3bmw0z2XLlvH444/TuXNnevbsybRp07hxQ3s6x8yZMxkxYgQHDx7k0UcfJSQkhMjISHr37s38+bpDil9//XXGjBlz19ebmRKHo4sfZhbaT3m1L+2ZKXF606mUSrJuxePm017nmLtfCPlZyQYdHrWUFGZhYmqBsan++cfXEm7g5emBlaX2cNegwNYADU6JqaW4uJj8ggJuJCby1deLKS0tpWOHUJ146zdtoai4mPHjdL8u6SPj5p3bLfNWPG6+hu1WUc9u1YpKSotzKcxN48r5PZzaswxbR08cnA2vlXKn2IW1kdYSUWl/2Sw4HYOxlSVWgdKQatsw6ZNk/lntKWMVaZmU3UzDNkz3a3l6chwtXHVtVuvsyLhp2GYZKfG4++nazMM/hDw9NrtwbAOfvxzGnBdD+e79h7h4cktDl03GTQPaasozvQFtmSnxuOsrTwPaDm5aiLWdM536jWtQU33cHGSk5ep+cb6VrcLUWEaLBnwsNhZgbSEjNUd/ejdHzUNmUqYSpVJFRBc5nk4ybCwhwENG3/Zy4pKV5Ov6FclKicPZq63OfHNX3xAUlWXkZxpuq8X5GZQV5+DqrWtDV99Qsgy0pabS0seca8nl9as0V26UYW4mx9O18ek0ADZWRtjZGBHga84bU6SXmPNxDfdx+shMicNBT99R6+xoqO/ITtXf57r5hlCQ3Xif21SyU/WXp4tPKIqqMvKzGijPAqk8nb30lKd3KNmputMgFVXllJXkUZibwuUzG7h8egNuPmEYm5jrxL1X7cDICKr0OAGrFNK/7g66L2auDjLS9cyeS80BU2NZg1N9rC3AylxGmr70uSpcHTR/+7lK565WwpShcqaPMeI/j8sZ1VOGeZ3qfPPGZVw8fLGw1K5rfgFS2aQ0MAqkqVyLO09VZQXObt58P+9tXp3Qg1fHd+eL/z7NzRuXG02fkxqLk0cbnbrm7BWCoqqswek0JbV1Tc9aJM5eIeSk6ral41tn49GyOz7B/fXmmZhwBXdPbywttZ1CrQKle15SwtXGLkmL/Dxp4RsbWzudYzs2raakuIjHxj1zW3kKHjzEVBqBQHBfeOGFF3BycuLTTz/F2tqa5ORk0tOlryqpqal06tSJp556ClNTU86dO8e7776LSqXiscceM5hneno6EydOxMPDg+LiYlatWsW4cePYtWsX9vb26niZmZl88skn/Pvf/8bd3R0PDw8ee+wxNm7cyGuvvYa85sEhPz+fyMhI/vvf/9719ZYUZGGlZzpGbVhxQabedGWl+VQrKvWntdWkdTTXP7E6LzOJq+f3ENgxQmeodC25uXk4OjjohLdwlEaf5OQ2vprdq2/P4GaKtPihhYU5E558gohhQ7TPk5fHb6v+5Plnn9FxwhiipCBL7zQW67uwmzptfiZmbhq7xUftYcsyzRB5N9/2PDTpM+RGf/2t0szdmdwjuusclKdl1hx3oejiFczdJK0VabqjdirSszD3cNEJL27EZkX5BmxWItmsQXvXsZlXq4607TIceycvivIzOXPgdzYufZuKsiI6Dxiv9xyNaSv+i7RlpFzm3KHVjHvlB4P13hA2FpCsR0btSA4bCxmZ+fqH6ltb1I4C0T1eXKbC0kyOkVx60cougK0nqxnayYh/RWjq2PnrSjafqKaFo+63q9LCLDxbddEJt7KV6kFJQSZOHvoXxS0plC7K0lZ/X1Jemo9CUYmxcdMcGPVxtDPm0pVSnfDcAmk0Qgt7E5JuNT6y6Jd5QZiaSNdeUKTgu99TOR+rx0vUCCWFWeo+si61YSUG+o7yu+xzb1eju79ueVra1GgszKSFu/7yLG2gPC1tnKkoLaBaUYlRnfKMPvwLJ3d8pf7bM6Ang578DH2TYu5VO8gpVOHjLC1qWqnQxKtdX8Raz63C2hySs/TkXa6qOT9kFeiVhrV5rQ7dY8VlYGkmU2tztJE0PNZLTkKaimNxSlztZfRsI8PGUsa1mkFHhXnZ2Nk76eRn6yCF5efe3qhLfWSmSSMhNv6+CGdXL5555WPKSovZtuZ75n/4PP+bvw47B926UEtpUTZujdQ1R7dAA2mztOJqpbd1pqJMu64lXz5AytVjPP6q4YXI83JzsHdooRPu4Nii5vjtjcbcvO5X5HIjuvfWXuMqPy+H9at+ZsKzL+s4Yf5RyMRYhnuBcIwIBIJ7Tm5uLikpKfz3v/9l0KBBAPTo0UN9/OGHH1b/X6VS0bVrVzIyMli9enWDjpF33nlH/f/q6mp69+5Nz5492bVrF08+qRlOXVBQwI8//kiHDh3UYU888QRLly7l8OHD9O8vfeHYsmULcrmcESNG3PU1V1WVaz2g1mJsYgZIX/L0oaiUXiQaSltVqf9lo6qyjM1LX8PYxJz+o94yqK2isgITE92dV0xrpnNUGsi/Lm+/9golpWWkZ6Sza88+KiorUSqVaicTwNLlv+Dm5srwYUMbyEkbhSG7Gddee8N20/eSp7G59nX5BnXnyVeXU15WSNLl42TeiqeyQs/T81+AkYU5ygrdocvK8sqa45JGuYX0FK8vbnV5Bca2ui9nd1rXqqpur67VXw8krM/jLP3kcfZvmE9or9GYmOp+ha6qvMN2UNVAedbWhTrluXvVp7Rq34+W7froza8hjI1AUa370lU7tcW4AT+LiZF2XEPpq2uWTSgsldZduHZLSX6JCl8XGd2C5ZRWyInSHRFusD3UhjU0pUnRUPnW2LC6svyOHSOmpnKqFLrrQVRWSbY0NWnakOz/LUjCxESGt7sZA3vYY252Zy8EBm3VxLrWcD1t2tSxxqhuRGP1HZZn3Wuse7x1x4dx8WpPWUkuSXEHKC3KQVFVjsxMN/971Q7OXFES5GXMmL5G7DtfTaUCugbK8agZVWKi5zx125C+vPWlqa9NX/rasNr8TWvektJyYfNJyRbxKSqqFDCwg5ycQjl5JUoqKysw1nMPNTFt+D51O1SUS/cimUzG6//7AXMLyWPk7R/MF+9M5sDO1Yx86mWD6auryjEyaqiuGdZY21bkevse7bpWrajk+NY5tOn+JA6uhnebqzTw3GFiaqo+3lSOHNjN/t1beeTxCbh7au8a9fvyb3Bx82DQsEeanJ/gwUU4RgQCwT3HwcEBT09PvvrqKwoKCujZsydubpr1JgoKCli0aBGRkZFkZGRQXbO2Qt1RH/o4f/48CxcuJDY2lvz8fHV4YmKiVjx7e3stpwiAr68v3bp1Y926dWrHyPr16wkPD8fa+u6/DJqYmOudw6t+4dMzlBnAuObBqqG0tQ9fdVEqq9ny0xvkpF/j8Zd+xNre1aA2M1MzvSvaV1ZKYaZ68q9P2zbB6v8P6NeXZ1+QHtCmPSstChd7OZ69+w/wxacfaTlLGsPYkN0UtdfesN30rbmgsbn2dVnZOmFlK33hC+4UwfEd3/Hn11N47sPdekcq3A3VZeXIzXQfMuU147OryySNyrKaB1I9cY3MzdTH63Kndc3E5M7qmlqPsSldBk5gx6//Iy3pIj6tdb9OmpjeYTswaaA8a+tCTZzY09tJuR7F8x80PK1HLpNefKzqnLK0gpq1BHRf4o0beNmrpaqBl8b66b2dZYwfaMTSndXqKQvxKSoqqqBnsIKLCbla02ksrB0NtofasPp1Wuv8DZVvjQ2NDLSnushl4GCr/fhYUKSgslKJibFu2651iNQ6SBojOl666LMXizlxvohvPgygrFzJ1v1N3CO2BoO2amJda7ieNt4nap1TUUl5aQHl5RobmFs7YtSIRqM7LE9D12jj4ImNgzQ9qXXHERxY+x47lj3P6Fc2ql9w4d62g2upKrafqmZIRznTHpZelHMKVey7oGRoJymyvjaqbx2R2rz1Tc2pr01f+tqwWm21cS8la9fdS8kqBnYAOyvJMWJqaoZCzz201pFs6D51O9T2vaGd+6mdIgAtA0NxcvEkIV7ayUVRVUVJcQGlRZp7hrlVTV2rbqiuGdZYW4+Uevse7boWc3QFFaX5dB5i2EkD0nOFvueOqpo135ry3AEQd/E83389mw6dujNusvY28VcvX+Tw/l28++nC23ruEDy4CMeIQCC458hkMn766Sfmz5/PRx99RGlpKe3atWPWrFl07dqVmTNnEhUVxUsvvURAQADW1tb88ccf7NhheMHM1NRUpk6dSvv27fnwww9xcXHBxMSEadOmUVFv+zYnJ90hrwBjx45l5syZ5ObmkpmZSWxsLDNnGt6u9XawsnOmOF93MbGSAmmIqrWd7pQIAAtLe4yMTdXxtNIWGk6767d3uX7xACOemYdvUMM7Sjg6OpCdk6MTnpMrvYi0cNSdZtMQNtbWhHUIYd+BQ2rHyNLlK2jfri1uri6kZ0h2KCwsAqixdxYuLvqnGumzW/Fd2E2d1l5/2lqCOoVzaPN8rkVHEtb39tapaIyKtCzM3HSv19zdpea4NIa9PF3SaubuTHmK9gJ+Zm7O5J+O1snD2s6ZogZsZmPgui2sJJsV34XN7BzdJd0l+sexN6bNUP63oy1y7Re06RyOkZEJ+dnS6ozlNQvoFualU11dhY29K862EB4GoPlquWBDFUVl6GzFCdLUAoAiPdMD1FrKaofyywDteNYWMkorVOqv0p1byykuR2cdh/gUJRbl5/nyrcla4c+8F4mlrbO63deldpqMlYH2AJrpNqV602dhbmnfpNEibg7w61fBWmFTZsSTW6DAwV73sdLRruZlN7/xBVPrk55VSUJyOQN62N+2Y8TK1pniAj19bs31G7KV+R32uQ2ReiOKNV9rl+eEWXuxsnVWT1OoS21YbZnpw7KB8iwtysLM0k7vaJK6tAoJx0aVxIxx2s7/e9kOAE5fUXL+uhJXBxnVShXpedCxleSU6R8ip3+IJu6SLdUUl4O1uZ68zfUvaKylrbxWh+4xawu0tEnXIaOkXPs8JTV51DqObB2c9E6XKcyTpoPYO969Y702Dxt73eknNnaOlBZLfdz1+PPM/+A5rePjpu/F0saJMgN1BRqpazVTaPTW1cIszCykulZZXsT5fd/RpsdTVFWUUFUhOTkVlaWgUlGUd4uC/HLs7B1wcGxBbo7udJm8XOlZxMFR/3NaXZISrjLv45l4+7bkjVmfYFRv2utvy78huF0HnF09yMyQ5j0VFUr3pvzcHLIz03FyaXwR+ObAg7YI6v1COEYEAsF9wd/fn6+//pqqqiqioqL46quveOGFFzh06BAHDhxg5syZTJo0SR3/999/bzC/w4cPU1payuLFi7G1lVaFUygUFBTovqAZ2kFg2LBhfPzxx2zevJmUlBR8fHzo1q3bXVylBhevYJKvnKSirFhrMcC0xAs1x/VvOSmTy3H2CCQ9+aLOsdQb0dg5eWNab677gfWfc/H4egaNeYc2XRufBtSqpT/no2MoKS3VWvvj8pUr6uO3S2VFJSWlms/dmVlZZGRmMenZaTpx3//4M6ysLNm4WreMXQ3Z7UYT7OYZSHqSrt3SEqOxd/LGrJE1Amq/DleUFTUY704ovHAZhz6dpS0O6qxWad8tFEVJKSVXbtTEkxa1s+8cQsFpzQKsZu4uWHi7k7xUe5thAFfvYBLjdW12K+FCzXHDNnPxDCQtUddmt25EY+/cuM3ysm4CYGnjqPe4IW2pNeXp1pg2PeWZmqBdnoV5aVw6tZVLp7bqxP3pk8dw8Qrmufc3kVcCey5AWpZmYYPiMkjPk6a01MfTSU6lQnv3jPoUlUFJuQqPFvrSy0iv4wSxMpdGX9RHLpcRHBzM6+8vJ7HOe4ilrTPOnsGkJpxFpVRqLaKYnhSNsakF9i6G26q1vSsW1o5k3NS1YUZSNE6ewXpS6ZJTCP/9UntR0LwCBTdultOutWX9Kk2QvwXlFUpuZdzZ7l+mpjJM7mBHG2evYG5evbM+18lAn5uepL/PbVSLZzCPv7ScykqNYSxtnGnhEUyanvLMSL6AsYkF9s4NlKedK+ZWjmSl6CnPm9E4eei/vrooqiq4fPky85Yex8Wvqzr8XraDWqqqISVbE97SXU6VQsXG40qtESDF5ZCRD9563ps9WkClQkVuA112cY02dz3+fg9HGZn5mr9rF3i1qefgqXUOVSmkMG+/IK5cPENZabHWAqw3rkp9tpef/nVibgefljULcefoLvySn5eFm4ef+lyvvf8dV29pHL4W1k60cG9DeqJuXcu6GY2xiQV2Tn4Gz21VW9duXdI5lpUSQ4uaulZRVkhVZSnRh34i+tBPOnFXfTGEaz368va7c/Bt2ZpL0VGUlpZorf1x7Yp0Dt+WrRuwBqSnpTD7f29ha2/PzA/maY2iqSU7K4PszHRefVZ3Af25H8/A0sqaZat3NXgewYOFGFckEAjuKyYmJnTr1o3nn3+e4uJibt68iVKp1Jp7WlxczL59+xrMp7y8HJlMhrGxxt+7Y8cOFApFA6m0MTU1ZeTIkaxZs4YtW7YwevToO96GsT6BHSNQKau5cGS1OkxRVUnM8fW4+3XAtuZLe2FuKjnp17XTdgonPSmG9CTNi3FuRgLJV04Q1ClCK+6pPUs5vXcZPcJfoPOgp5ukrW/vXiiVSrbvrLN1bFUVu/bsIzgoEBdn6WtRZmYWyTdTtNLm1ZmyVEt6RgZRF6IJDNDML3795Rf54L8ztX6jHpHWknl+6jPMevtNnXwAgjpJdjt/B3YL6hhOWlIMaXXslpOeQFK8tt1Ki3NR1d9KA7hwdA2A3t0pbgczN2esgloiq1M309bvxNzNGbfHNNt0mrRwwP3xCDK37kdZM42pOPYaxXHX8f7XWKjzMOs77SlUSiXp63W35GzTWbLZuUPaNrtwbD2e/h3UozoKclLJTrteL204qYkxpCZq2yzx8gnadtbYrKRI9+t9RXkxp/auwNLaAXdf3d0LQJqipFJWE3VYV5uHv6Y89WkL7hxOmj5t8Sdo00Wjbcy/l+j82nZ5CIBHp3zO0LGzAGmhx7R8aQvR2l+1EuKSlVhbyGjjo2n7FmbQ1kfGlRTtL90O1uhsJxqXrCTQU4Ztned0fzcZTrYyYusMyc8tVGFtIcPXVbuPCfGTYWdnh7N/L3yCND9jEzMCOkRQWpTNtWhNWy0rzuXa+Z34txuoNeIjPzuZ/OxkrbwDQoeReOmA1la1N68cJz8rkdZh2n2JISoUcD6uROtXpVBx5GwBDnYm9Oqk2a7E1tqIPl3sOHmhEIVCc+1uzqa4OWu0yuVgban7SBrob4GfpzlXE29/rZ/AMKmuxRzTrmuXTq7Hza8DNg6aviO3Xt/ROiycjOQY0pN1+9zAJtqpLuaWdvgG98IrUPMzNjGjVUg4ZcXZJFysU54leVyP3oVf24FaIz4KspMpqFeeLUOGkRR3gOJ8TXmmXD1OQVYirUI1OsuK9Y+2iTu9lsKiItJLXe5bO9CHl5OMNt4yoq4puZoqbaVb+6tWStvyWlvICK6zo7SFKQR7S9vw1tVmbyX96hKfoiLAQ6Z2cAD4uUALWxlxNzXartxSoahW0cFfu412aCn9nVsseWw69RiKUlnN4T3r1HGqqio5tn8T/q1DcHSSRiXkZqWRfqvxXd704ebph5dfIBfOHKC4ULMgeuz5Y+Rlp9Omg7ROm5W1LW1Ce+AZ0Ev9MzYxwz9kGGXF2dy4tEedtrwkj4SYXfi0GaBV1wpzkinM0a5r/u2HknxZu67dunacguxE/EOkbeMtrBwZOnGRzs+9ZXeMjM0YOnERI5+QPnh17z0QpbKayJ2btGx2cM92AoLa4uQsTf/NzkzX2YI3Py+Hz957A5lMxqyP5mNrp39U63MvT+et/87W+kU8IjlJJk59mZff/l8Trd8MkMvv3+8BQowYEQgE95zLly/z+eef89BDD+Ht7U1xcTHff/89np6etG7dmpCQEH788UccHR0xNjbmhx9+wNramtxcw0OpaxdvnTVrFuPGjePq1assX75cPXqkqYwdO5YVK1ZgZGTE6NGj7+o66+Lh34GgThEc3vQVpUU5OLj4cvHEBgpzbhEx8VN1vO0rZnDz6in+841me7+O/cYTfXQN676ZRtchU5EbGXMm8mesbFrQdfBUdbwr5/dwcMNcHFz8cHRryaWTm7Q0+LXprV5Doy5tggLp16cXP61YSX5+Ph4e7uyO3E9GZiZvvaaZJ/z5VwuIvniJPVs3qsOef/k1OnYIpZW/PzbW1txKTWXHnkgU1dU8+4xm6HiXTh11zltcIo0oCQ1pT1Br/Yu01drt0MYauzlLdivIucXwSRq7bf1ZstuMb+vYrf94Lhxdw9ol0+hWY7fTNXbrNkRjt0snN3P+8CpadxiCvZM3lRUl3Ig9QmLcUQJCBuIbbHgqku+LEzCxs1XvDuPy8EDMPaWH4MQlK1EUFhP06Zt4Tx7NvoBBlCVJO/ekrdtF3okoOiydjXWbAKpy8vCd9hQYGXHlo0Va54ib+QVdNnxL9x3LSP1zGzbtAvF7cQI3l62h+HKCjibPlh1o0zmC/Rs0dS36mGSzEU9rbLZp2QySr5zi3R81Nus8cDxRh9ew+utp9AiXbHZyz89Y27ag+zCNzc7s/40rUXtp3WEgto4eFBdkcuHoegpyUxk59QuDQ/jV2tZ/RUmhpC3m+AYKsm8xYrJG2+blkrb//lBH24DxnD+8hj8XTaP7sKkY1Wizsm1B96EabUEdtXdDAs0Wxa3a9zM4mqWW2GQVN7OUjOxphLOdktIKaTFIuQwORGsvXjB5iPQYtXCjxgF7+KKStj5ynh5qzMnLSkyNoVdbORl5Ks5f17yxnbqiJKyVnKcGGHEqXklBCfi6yAjxl3M9VUlGge4DaUBYOG4Hw9j7xyxy069hYe1A9JE/UCqr6RHxilbcDUueAWDK/zRO5S5DX+DqhZ2sXzKZsH6Tqawo5dz+n2jhHkib7o9rpY87vZGivFQUNQtHpiac5tTubwCoKg/GxFx76P3RM4XEDSnl9Sme+LibUVhczUMDHZHL4bdN2l+5P3vLD4CpM6VRaRZmcn7+IojDpwtJSi2nvEKJn5c5Q3s7UFJWzaqt2kP4u3Wwwd9LWtPA2EiGn5c5Tz4sOXAtrCG3GNz9OhDYMYIjm6V2YO/sS+xJqc8dNl5T13aunEHKtVO8uUhT18L6jifm2Bo2fjeNzoOkunZ2/89Y2rSg86CpWlqux+wj65a0XapSWUV2ajwndkp2ahUyCOcGRuK0DA3H9XAH9v/5DnkZ1zG3cuDisT9QKavpMkx7jYYtPzwDwMR3NOXZefA0EqJ3sum7pwntM4mqylLOH1iGo1sgwV0196+zkd+RnngOn6C+WDu4U1FaQELMbjJvxhDSeyI2jj462u5VO7CzgjF9jbiSoqK4TIWzvYwureVk5EPkeaXe3Tgup6hIyVbxcDc5TrYqSiuhc4AMuQwOXdR2uowfKKX/ZqvmnEdjVQR7y5gwUM6ZqypMjKFHkLTLTvQNTfqScilu/xA54/rLuXJLhas9hLWUcSlJqZ5O5B8YQqeeQ9n4+yKKCnNxcfPm+IEt5GSlMfnFD9T5LV/0Lldjz/Ld2vPqsLKSIvbvkBayvn5ZCj+wYzWWVjZYWNkwcLhmGucTz/yHhR+9wNx3p9B36OOUlRYTufVXXD186TdsrI6d6uLfPhwX7184tPYd8jOvYW7pQOzJP1Cpquk8RLvv2LZUmgL71IxIdVjYgGkkxOxi24/P0K73JBSVpUQfkupaUGeprhmbWuDXTrf/TYyNJCslBr92Q2gdJD3HtQ5qR48+g1i14jsK8/Nw9fDiUOQOsjLTmPbaLHXaJV99QtzFKFZtPaoOm/3+m2Smp/LI4xOIj40mPlYzpdTO3oHQjtJI3w6duutoKSmRhhO1CQmjVevGR1UJHiyEY0QgENxznJ2dcXJy4vvvvycjIwMbGxu6dOnC3LlzMTIy4ssvv+T9999n5syZ2NvbM2nSJEpLS1m2bJnBPIOCgpg9ezaLFy9m2rRptGnThoULF/L666/flraAgAD8/Pzw8fHB1dXwgqV3wkNPf8ERxwXEntpMeWkBzp5BjH7xO7xbd20wnam5NeNeX8m+tZ9xfMe3qFRKfFp3Z+CYWVoveVkp0sN5XmYi21dM18nnydd/0esYAZjx5uv8/Ovv7N1/kKLiYlr6+fHx++8S2l7/l/9aHhkewckzZzlzNorSsjLs7ezo3DGM8WMfx9/PrxGLNI0Rz3zB4c0LuHRSspuLZxCPv9S43czMrXnqDclux3Z8Cyol3oHdGVzPbl4BnbmVEEXcmW2UFGYjNzLG0cWfQWNm0XnAxAbP0fKNqVj6aT5buo8Ox3209PXs1u+bURQW60+oVHLqkedp8/l0/F+ehNzCjIIzMVz41yz1NJpaMrcf4OwTL9P6vZdpt+A9KrNyuTbne65+ssSgrpHPfsGBjQuIObGZspICXL2CePLl7/ANbNxmk95eyZ4/P+PItm9RKZX4BnVn6JOzsKpjM++ATqRcj+L8kbWUFudjamaBh18oI57+FP82Da9p8+jULzi4SdJWXlqAi1cQY1/5Dp8maJv49kr2rP6Mo9tq2kFQd4aO1dZ2t6hU8Pt+aRvd7kFyjI0hNUfFxmPKBqcP1FJYCj/vUTCssxGDO8qproarqSp2n63W+pKdUwg/7FAwsIMRof5yrM2lKQjHYqvZf0GJvb3uC6FcbsSj037gyOYvuHB4JYqqCly9Qxg6fjYOri0b1Wbj4M7jL//K4Y1zOLr1S4yMTPBr25++o2bqrC8Se2Idt66fUv+dcvUkKVdPAuAR8qGOY0Spgg8WJjL1CTceGdwCM1M5VxLLmL8spdFpNBWVKnYdziM02IrenW0xNZWRm6/g4Kl8Vm3NIjNHe32S3p1sGdJb85U4wNeCAF/p8//+i5JjBCBi0hccdVxA3Gmprjl5BDHqhe/wCmi8zx376koOrP+Mk7ukuubdujv9R8/ScaxdPb+b2FOabUkzU2LJTIkFwMberUHHiFxuxMPP/sCxbXOJOSKVp4t3ewY9+RkOLo2Xp7W9OyP/vZJjW+ZwYvtXyI1N8A3uT69HZmg5J33b9KcwJ5nLp9dRVpKHkbEpLdyDGDj2M4K6PEZhke5qpfeqHVRUSdNbugbJsTCFolI4eVnJ4YtKKhWgZ+MSVCr485CSQWEyugTKMDaSdo7ZclLZ4DSaWorK4Nd9SoaEyRkQKqNaCddTVUSeV+nsVnM0VkV5pZIurWUMDZNRXOMsOXJJRfc679VTXvmEzauWcPLgNkpLCvH0bc1Ls76mddvODWopKSlk8yrtvnzvll8AcHR213KMBLXvyivvLmHzqm/Y9MdiTE3N6dB1IKMnva53Kkld5HIjIqZ8z8ntc7l47Feqqypw9mpP/zGzG5yyVYu1vTsjnv+FE9s+5/TOr5AbmeAT3J/uD01vdC0bQ7z45rv8+asrh/fvoqS4CB+/Vkx/fy5t2oc1mC7pxjUAtqz7TedYm/Yd1Y6R/0/8VaOXBQ0jU+kbPywQCAQPKMnJyQwbNoyFCxcSHh5+1/ktjWw8zv1imE/c/ZZgkL03m+eXHNfwu58r/neRGxnfeKT7RHN+0rhx8/YXBb0XOLXQ80bYTNi+Tnddi+bCo2Pvburb30lZefNsCAWFTZ9yeq8xMWm+Q/l7tr2zdXPuBWev3t7OSfeKwSG3t4jyvaRj68YXfL1fFC18676d2+a1L+/bue81YsSIQCAQAHl5edy4cYMlS5bg4eHB4MGD77ckgUAgEAgEAoFAcA8QjhGBQCAA9u/fzzvvvIOvry9z587VWsRVIBAIBAKBQCC4Lzxgi6DeL8STv0AgEACjR4/+SxdbFQgEAoFAIBAIBP8MhGNEIBAIBAKBQCAQCASCZohMLhZfvReIcTkCgUAgEAgEAoFAIBAIHliEY0QgEAgEAoFAIBAIBALBA4uYSiMQCAQCgUAgEAgEAkFzRCbGMtwLhJUFAoFAIBAIBAKBQCAQPLCIESMCgUAgEAgEAoFAIBA0R8Tiq/cEMWJEIBAIBAKBQCAQCAQCwQOLcIwIBAKBQCAQCAQCgUAgeGARU2kEAoFAIBAIBAKBQCBohsjE4qv3BGFlgUAgEAgEAoFAIBAIBA8sYsSIQCAQ/I20cS++3xIMsio66H5LMIilhep+S9BLbmT8/ZZgEMfBzbc8m7PdvD1M7rcEveQXNc82ANB7aJv7LcEgxaXN127mZs1zAUUXp+bZBpo7N7Is7rcEg1g0U2kxqU73W4JBOra+3woaQCy+ek8QI0YEAoFAIBAIBAKBQCAQPLCIESMCgUAgEAgEAoFAIBA0Q2RyMZbhXiCsLBAIBAKBQCAQCAQCgeCBRThGBAKBQCAQCAQCgUAgEDywiKk0AoFAIBAIBAKBQCAQNEdkYvHVe4EYMSIQCAQCgUAgEAgEAoHggUWMGBEIBAKBQCAQCAQCgaA5IhZfvScIKwsEAoFAIBAIBAKBQCB4YBGOEYFAIBAIBAKBQCAQCAQPLGIqjUAgEAgEAoFAIBAIBM0RsfjqPUGMGBEIBAKBQCAQCAQCgUDwwCJGjAgEAr2sX7+eWbNmcfz4cRwdHe+bjri4OPbu3cu//vUvLCwsGg1vLrr1UVVVycY/vuPYgW2UlhTh5RvA6PEv0i6sR4Pp0m4lcmDXOhKuXCQp4TKKqkq++H4LTi4eOnHLy0pZ//s3nD0eSVFBHs6ungwZMY6BEU80WWdFWSGnd84j6dJeFFXlOHuF0O2h6Th5tmtS+vzM65zYNoeMpHPIjUzwDupH94dmYmGtKY+ivFv8OXeI3vQDnpxHSI8RenUd3TyX6zGSLlefEPo8OgMX76bpys24zuGNs0lLOIfc2AS/Nv3pO0pbF8DpPd+RkXSB9KRoyopz6Bb+Et0jXtHJT1FVycFNC4k5sYny0kJcvIIYMOp1Wrbt3aiWwrwM9qz+jITYo6hUSvyCujP0yXdwcPbWivfJc0F60w8c/Ra9hz9vMH8jK0tavvUs9t06YN81BFNHey48O5OUXzY0qg3A2M6GNnP+g+vIoRhZmlNwOobY6XMojIrViesyYhCB77+MdZsAKjNzuLliPdc+/QZVdbXevJuz3RRVlRzZupBLJyVtzp5B9H30dfzbNK6tKD+DyDWfkRgnafMJ7M7gMe9gX0dbVWU5e1Z/RNqNaArz0lCplNg7eRPa63E69h+PkZFJo+epKCvkxLa5JF7ai6KyHBfvEHqMmIGzV9PaQV7GdY5tmU164jmMjEzwadOfniO020FJQQYnts8j62YMpYWZyORG2Dn70a7neAI7jzKYt5kJDOogI8hThrExpOXA3gtKMvKaJI0WNjCkoxxvJ6hWwrU0FZHnVZRWaOL0bSejb3vD3/X+OKQiNVc3vKKskJPbNXZz9g6h54gZTe7X8jKuc3yrxm7ewbp2q8/VqC3sX/UfjE0tmfrxOb1xKkoLObJlLtej96j7tb4jZza9X0u/zqGNn2n6tbb96TtqFpb1dKmUSs7t/4mYo39QUpiFvbMfXYZMI6izbl9bS3lpIUc2S9qqqspx8wmh36jb03Zww2ek1mjzb9uffo/p13Z2/09EH5G0OTj70WXoNILraVMoKjm+fSGXT2+ivKwQJ48gej30Or7BjbfP4vwMDm74jKT4o6BU4tW6O/0fewc7J2+duBePr+Hs/mUU5qRgY+9OWP9JhPWb1GD+/4i+4x7VtdO7vyVd6x76Mj2G67+HHtpc517gGUT/27gX7P1Tcy/wDerO0LG694K63Lx6hl/mTgDgjS+PY2nTvJ4RG0ImFl+9JwjHiEAgaNbExcWxePFiJkyYoOMY0Rc+YMAAVq9eja2t7f2Q2yA/ff0BZ4/vZeiI8bh4+HB03xYWfPIq//noewLbdjSY7np8NHu3rcLDyx8PL3+Sb8Trjaesruarj14m8Vosg4aPxdXDm4tRx1n5/RxKiosYMWZqoxpVSiW7V7xAbno8IX2nYm5pT9zJP9i+9GlGvrQWOye/BtOXFKSz7YdJmJjb0GXY61RVlhJzeDl5GVd59N+rMTI21YrfMvRhvIP6aYW5+ITp1bXlh2lkp8bTceBULKwdiDnyB+uXTGbcW+uwd25YV3F+OusWTcTMwoaeD79OZUUpUQeWk5N2hbFv/Kml68T2BVjaOOPs1Ybky0cM5rl5+Uwun9tFt8GTcXT1I/rYBlZ9/TwT31qBT+suBtNVlpfw67zJVJQV0fuhaRgZmXBy78/8Mnciz72/EUtrB634/m17E9pzpFaYm3fbBq/X1MmBwPdepjTpFkXR8bQY0L3B+FrIZHTd/AO2oUEkfPkTlTl5+E4bT4+9KznSfTSl15LUUZ3D+9Fl3RJyDp7i0usfY9M+kNbv/BszlxZcfPkDvdk3Z7tt/2Um8ed20WXQZBxc/Ig5sYG1i5/nqTdW4BXQsLY/5kvaekZMQ25kwunIn/l9/kSmvLMRixptiqpyslOv0bJ9P+xaeCKTybmVEEXk2tmk3ojm0We/bFCfSqlkx7Jp5KTF06H/VMytHIg9/gdbvp/M46+uw64J7WDzdxMxNbehW4TUPqMPLic37QqPvaJpB+Wl+ZQUpNMyNBxre3eU1QpSrh7jwJ+zyM+6QYeBr+vNf2w/Oa52cCJeRVkFdAqQMXGgnGW7leQVNygNGwuYNEhOeRUciFFhagzdg2S42MlYvleJUinFu5yiIrdYqZN+QIgMU2NI1+OEUSmV7FxeY7d+2nYb/eq6Rvu14vx0tnxfx24VpUQfWk5e+hVGvfynTr8GUFVRwsntczE2tTSYr0qpZPOPz5N9K55Og57F3MqBmKO/s27xJJ56e32j/VpRfjprF02o6dfeoKqylHP7l5GTeoUn31yjpevYtvmcjfyBdj3H4uoTQkJMJLtWvoVMJiO488N6tW36QdLWedCzWFg7cOHI76xdJGlzcGlc25qvJ2BqYUOvEW9QVVHK2f3LyE67wlP1tB3dNp8ze3+gfR1tO3+RtAV10mjb/dtMrp3fRccBk7F39iP25AY2ff88j7+8As9WDbTPihLWLp5MZVkR3YZOQy43IerAz6xZNJEJ0zdiYaXpO6KPrmLfn/8joEM4nQZMITXhDAfWfUJVZRldhxh2qv4T+o57VdeOb1+ApW3j99AtP8/k8tlddBsi2Sz62AZW19wLvBu5F/z2Zc29YLhks1N7f2blvIn86z3de0Ht9e9a9QkmZpZUVZQ2eK2CBxfhGBEIBFpUV1ejVOo+dP5TcHR0bHYjRQASrlzk1JFdjH36NSJGTQag94CHee+1saz55Wv+O2e5wbRhXfuz+NfBWFhYsXPjLwYdI2dP7OPa5QtMeel9+g6RXggHRjzBki+ms2XNUvoNGYWtfcO2uXFxF5nJUQx6agH+IeEA+IcMZ+1Xwzm3dzEDx81rMP35A99TVVXGyJfXYm0vjWhx9gph57JnuXpuI8HdxmrFd/JsS0DHRxvME+DahV2kJUYx/OkFBIRFANA6bDgrP4vg5M5FhE9q+KHwzN7vUVSWMe6tddg4SLpcfULZ9N1U4k5toH2vJ9Vxn35vL7aOXpQV57H0vZ5687t1I5rY09sYPGY6PcOfBSC05yi+/98I9q2bxzMzVxnWcuB3cjMTmfrOGjz8QwFo1b4v33/wCCd2L2fQ6De14rdw9SOkx0h9WRmkIi2TvV69qcjIxq5ze/qcWNfktO6PR+DYqxNnn3yV9PW7AEhbs4MBsbsIfP8Vzk9+Wx23zefTKYyJ59TwqeoRIorCEgJmTuPGol8oiU/Qyrs52y01MZq4M9sYMHo63YdK2tr3GMVPH49g/4Z5TPqPYW1Rh34nLzORyTPW4O4naWvZri8/ffwIp/Yup/8oSZuFlT2TZ/yplbZjv6cws7Dh3IFfGTRmJtZ2zgbPkxCzi4ykKIZOXEDLUKkdtAodzqq5EZzZs4jB4xtuB1H7pXYw+lVNO3DxDmXbj1OJP7OBtj2kdtDCPYhHX1iplbZ974nsWP4CF4/+Skj/V5DLjbSOt/GW4e0kY/3Rai6nSGFxN1VMe0hOv/YyNp1QNaitV1sZJsawbI+Swpr3ltRcFeMHGBHqJ+N8gpQ+qwCyCrTzsrEAW0spjlKlOxe/1m5DJmjs1jJ0OKvn1djtqYbtdn7/91RVljH6lXVY19jN2TuU7UuncuXsBtp0f1Inzbl932FiZoVHq+4kXorUm+/VCztJuxHF8GcW0rq2X+s4nJWfhnNixyIiJjfSr+35DkVlGU+9vV6rX9v47RStfq04P4OoA8sJ7TOBAWPeB6BdjydYt2giRzZ/QWDHCJ3yrNX28BRtbSs+kbQNf7phbad3f0dVjTZbR0mbm28o67+ZQuypDYTU0XZu/3I69J3AwBpt7Xs+wdpFEzm86Qtah0na0pOiuXJuG31HTqfzIKl9tuk6ipVzRnBk8zyefMNw+4w+8jv5WYmMe3MNbr5S+/Rr25eVcx7h3L7l9H5Eap+KynKObZuPf9sBjJj6NQAhvcaiUio5tetbQno9ibmlnU7+/4S+417VNYBn3ovEtoUXZcW5/Phu4/fQHsM094IfPhhBZCP3grM194Ip76zBw09zL/jhw0c4uWc5Ax97UyfNucOrKcxNI6zPGE5H/tLgtTZLZGLEyL1AWFkg+Idw5swZgoKCSE5OVoe98MILBAUFcfXqVXXYm2++yfPPS1818vPzmTVrFt27dyc0NJRx48Zx+vRprXwnTZrEtGnT2LBhA+Hh4YSEhHD58mW9GtatW0f79u1Zs2ZNkzRHRkYyevRoOnbsSJcuXRg9ejQHDx7UirN+/XoeeeQRQkJC6Nu3L/Pnz6e65gWrdloMQM+ePQkKCmLQoEEGw2vTBAUFkZsrjaVOSUkhKCiITZs28dFHH9G1a1f69OnD559/jkKh0NKyZ88etQ3Gjh3LpUuX6NKlC4sWLWrS9TbEmeORyOVG9B82Wh1mYmpG3yEjuR4fTW52usG01jZ2WFhYNXqOK3FRAHTrO0wrvHufYVRVVhB16kCjeSRe3I2FtRN+7YaqwyysHfEPiSA5bh/VispG0u/BJ2iA2ikC4BnQCzsnP27E7NCbpqqytNF8r13YhaWNE61CNddmYe1IQFgECRcb13Xtwm782g5QP9AB+AT1wt7Zj6vnd2rFtXX0ajAvgMtndyKTG9Gpn+Zh0NjEjLA+Y0i5HkVBbloDaXfh4ReifrkHcHJvhX9wT+LOGLJROYqqCr3H9KGsrKIiI7vJ8eviNjqc8vQs0jfsVodVZueRunYHro8ORm4qDdm2btMKm3atubn0T61pM0nf/Y5MLsd9dLhO3s3ZbvHnJG1hfbS1hfYaQ2pCFIUNaIs/twt33xD1iw1AC7dW+Ab15PI5/drqYtfCE5CmezREQswuLKyd8G+v3Q5ahUaQeKnxdnAjZjc+bbTbgVdrqX0mRO9sIKWEjYMniqoylNVVOseCvaC4TKV2igCUVsDlmypae8owauSJM9hLxrVUldopApCYATmFKtp4N7zwYDtfGTKZjEtJ+p0vNwzYrWVIBElNsdvF3fgGD1A7RaBhuxVkJxJz+Gd6jpip43CoS22/FlCnX7O0dqR12HASLkaiaEq/1s5Qv6apdwkX96KsriKkz3h1mEwmI6T3UxTnp5N2I0on76vnDWjrOJzrTdTm326A2ilSq83BxY8rURpt12MkbaGNaLt6XmqfdV/AjU3MaNdjDGmJURTlGW6fV8/vwtUnRO0UAXB0bYV3YE+u1LHTzasnKS/J19ICENp3AlWVpdy4dEBv/v+EvuNe1TUA2xZNv4d27Kttsw59xnCrEZvFnduFu1+I2ikCDd8LykryObhxAf1Gvoq5RfMbTSxoPgjHiEDwDyE0NBQzMzO1Y0OpVHL27FmtMIDTp0/TpUsXqquree6559i/fz9vv/02CxcuxNLSkilTpnDx4kWtvC9evMhPP/3Ea6+9xg8//IC7u7vO+VeuXMn//vc/Pv/8c554ovH1KpKTk3nttddo3bo1ixcvZv78+QwfPpyCggJ1nOXLl/Puu+/Sp08fvvvuO5577jl++eUX5s+fD0jTYv79738DsHTpUlavXs3ixYsNhjfEggULkMvlLFiwgHHjxrFs2TItB09sbCyvvfYaAQEBLF68mFGjRvHGG29QWdnww0JTSb4Rj6uHDxaW1lrh/q3b1xy/ctfnUFRVIZcbYWysPdfY1MwcgKTr+h1edclJi6WFRxud+azO3iEoqsooyE40mLakIIPykhyc9Kx14OQVQk5qnE54VOQSfvmgMz//L4xNS54g5epRvXln3YrD2autji5Xn1AUlWXkZd4wqKs4P4Oy4hxcvNvrHHP1CSX7lu66GY2RnhxHC1c/zCy0y7P2pT3jpu61gjScNyMlHnc/XS0e/iHkZSVTUa495+DCsQ18/nIYc14M5bv3H+LiyS23rfd2sAtrI60lotJ+ySw4HYOxlSVWgf4A2IZJ01Lyz8ZoxatIy6TsZhq2YW108m7Odsu4GYeji6622heWzBTD2jJvxePmq6vN3S+EfD3aqhWVlBbnUpibxpXzezi1Zxm2jp44OPs2qDH7VhxOnrrtwMU7FEVVGflZhttBSYHUDpy9dHW6+ISSnarbDhRV5ZSV5FGUm0L8mQ3En9mAq08YxibmOnFdHWR6p7Gk5oCpsQxHG8PXZW0BVuYy0vSlz1XhqjsyXot2vjIKSlQkZ+k/np3asN0KmmA3Jz12c/bWb7djW2bj0ao7PsH9G9SdlWKgX/MNQVFZRn4T+jVXff2abyhZdeprVkocJqaWOLq20okHUv+qT5uLHm1uPk3TVlqcg6uP/j5XS9st/drc6mnLSonDwdkPM3Pt9unmY/gaQGqf2anxeu3k5hNCQXYylTXtM6vmXlBft6t3O2QyuZbuuvwT+o57VdeaSsZNA/eCGpulN3AvyEyJx12fzQzcCw5uWoi1nTOd+o27bZ2CBwsxlUYg+IdgampKaGgoZ86c4fHHHyc+Pp6ysjJGjx7N6dOnGT9+PElJSWRmZtK1a1cOHDhAdHQ0S5cupW/fvgD06dOHYcOG8f3332uNgigoKGDt2rV6HSIA33//PYsXL2bhwoUMHjy4SXpjY2Opqqrivffew9pauvHV6gAoLi7m66+/5l//+hdvvikNe+zduzcmJibMmTOHZ599FkdHR3x8fABo166d1hQZQ+GGCA0N5d1331Wf5+TJk+zatYunnnpKfY1eXl4sWrQIec2Dg5WVFdOnT2/S9TZGQW429g5OOuF2NWH5uQae6G8DNw9flMpqrsfHaK1ZciVW+uKWl5vZaB6lRdm4+enO7bW0kYbolhZm4ugWaCCtdA0WNrrDeS1tnKkoK6BaUYmRsSkymQzP1r3xbTsEK1tXCnNvcvHoz+z++XmGTFpCcMeB2nkXZumdQ25lK52rpDATJw/9C26WFGZqxa2fvrxUo6upFBdk6R22XBtWlK/f1mUl+VQrKhtMW5yfiZmb1Ga8WnWkbZfh2Dt5UZSfyZkDv7Nx6dtUlBXRecB4nTz+Cszcnck9ckYnvDwts+a4C0UXr2DuJumtSNOtuxXpWZh7uOiEN2e7lTSirbjAgLZSSZtVE7UBxEftYcsyzXBvN9/2PDTpM+RGDT+WlRZl4d6y4fbZwl1/OyitaQeWhtqnnnYQc+QXTu34Sv23Z0BPBoz9TG/+1uaQnKU7YqO4XAqztpCmwRhKC1BcpnusuAwszaQRJ9V6Znk62YKrvYzjcYangJYWZeHur8dudfoPR0N2K8rUils/fX27JccdIOXKUca8vtGgHnXeBvs1qe2UFDTer+nTJfVr+SgUlRgbm1JSmIWFTQtk9bb8rO0T9dXtkka0FTdBm+E+t462giwsm6CtpDBLf36NtM/yBtpn3XM4mltTUpiFTG6EpU0LrXhGxqaYW9lTXKj/HP+IvuMe1bWm0ti9oPgvuhdkpFzm3KHVjHvlhwZHbzV75GK73nuBcIwIBP8gunTpwtatWwFpZEj79u3p168fH3zwgTrMwsKC9u3b89VXX2Ftba3ljDAxMWHo0KHqPGoJDAw06BRZsGABW7Zs4fvvv6dXr15N1hoUFISRkRFvv/02Y8eOpWvXrtjYaD4ZRkVFUVpaSkREhNaUll69elFeXs7Vq1fp1q1bk8/XGH369NH6u1WrVpw4cUL9d0xMDEOGDFE7RYAmO4GaQmVlOcYmug8NJjVhlZVNnyZhiB79Itj8548sX/wRE5+fgauHDxfPn2D/zjVNPkd1VTlyPQ83RsZmACgU5Q2mBTAyaiB9VTlGxqZY23sQMWWpVpzWHR9l3YJHOLX9Cx3HSG06nXxNavM1fG21xxpOrz9/Q1QZiG9cJz/96QxrqU1bVaec6s+zDuvzOEs/eZz9G+YT2ms0Jqa6X+7vFiMLc5QVuiOllOWVNcclnXIL6dz64laXV2Bsa60T3pztZqgOGBvX5q9fm6LmvPpeCowN1E/foO48+epyyssKSbp8nMxb8VRW6PEK1KP6btqBooF2YKy/HQSEPYyzV3vKi3NJijtAWXEOiqpyjPVUO2Mj/Y4LRc0sK5MG3klqj+lLXxtmKP92vtILw0UD02igAbvVXHe1ogn9h55+zbie3aoVlRzfOpu2PZ7EwTXAYJ6avA3pMtU6d4O6Gqiz1ZXlGBubNlq39bU7g2lM7lJbbV29TW13cg1N1lITR1FZbnB3F2NjswbO0fz7jntV15pKVeWd3Qtqtei1Wa2961zL7lWf0qp9P1q266MTXyCoj5hKIxD8g+jWrRs3b94kIyODM2fO0KVLF7p06UJ2djaJiYmcOXOGDh06YGJiQmFhIS1atNDJw8nJSWs6S22YIXbt2kVgYCCdO3e+La3+/v589913FBUV8fLLL9OzZ09eeOEFUlNTAcjLk8ZMP/bYY7Rr1079GzZMmv+almZ4fumdUNcpA5KTqO40maysLJ2RJ9bW1piZmf0l5zc1NUdRpfsCWVUTZmp69+exc3Di1Xfmo1BU8uWHLzF92iOsWbGA8f+SRr2Ym2t271FUVVFalKX1UyqrMTIxR6lnrnHti4OxvjeiGoxqhtdXVzeQXs8Q/FrMLO1p1fFRCrJvkJlyiZLCLEoKJV3GJuZ61wGorn1IMjFsv9pjDae/PQeDiQE9ikbyM2lAS21akwbqgpGxKV0GTqC8tJC0pIsG490N1WXlyM10Hzrl5qY1xyWdyjLpwVVfXCNzM/XxujRnuxmqY7UOBUNOKGPTWqdhQ9elrc3K1gm/Nr0I7hRB+PgPCWg/gD+/nkJxgTT6plpRabB93nE7MG6gHRhonzYOnni17kVAxxEMHj8PG0cvdi1/HjOjCqzMUf9kMskBom8dEeMap0eV/t2btY7pS18bpjCQvp2vjMx8FVkFd2A3tbOoCf2Hnn5NUc9uMUdWUF6ST+eh2luTqlQqSouy1H1ao/1aTdid9mtqJ1hNnW2sbquUyiZrq72P3bG22rraRG21tm1qvDvSUhPH2NScaj3r59Sex/A5mlffUVxw/+paUzExvbN7gdpx0pC9a+LEnt5OyvUohjwx47a0NUdkMvl9+90N169fZ8qUKYSFhdG7d2+++OKLJk9Rz8jIYMaMGfTo0YPQ0FCGDx/O5s2b70pPY4gRIwLBP4iwsDBMTEw4ffq0ekqNvb09rVu35vTp05w+fZpRo0YBYGdnR05Ojk4e2dnZ2Nlpr6pefwhrXb755hteeeUVXnnlFZYsWYKJif6vKfro168f/fr1o7i4mEOHDjF79mxmzZrFihUr1BoWL16Mm5ubTlovr8YX7/orcXZ2Vi/YWktxcTEVFXc/kgPAztGJvBzdoaEFedICmfaOhleTvx2C2nXi8283k5J8jYryMrz9AtXTdFw9NHOQr8Vf4I/Z07TSjv3PXixtnNRTYupSG2Zpqzs9opbaIfplBtKbWdg1OiqjdlHH1V8+rg57+r29WNo6U1Kom29tmFUDutRDhQ2kN7dsXFd9rO2cKcrP0AmvfTi1sdevx8LKHiNjU3U8fWmtDaStxc5RGt1VXmJgXsJdUpGWhZmbbn00d3epOS7V4/J0Sa+ZuzPlKdqLB5u5OZN/Olonj+ZsNys7Z4ob0GZtZ0CbpaSt5C60BXUK59Dm+VyLjiSs7zhuJUTxx/zJWnHGz9yLpY0zpXrqcZPaZ80xQ+3brAntoGVoOLYk8dYY7S1ol2ypprgcrM1lgPbIDSlM/zSZWoprfGjWFrrHrC2gtEKld7SIlxPYW8nYf0E6mHXzPLuWP6MV56kZNXbTd91N6D8sbVy04tZPX2u3yrIioiK/pW3P8VSVF1NVs85BVUUpKmU1v37SVyvtM+9FNtCv1UxFMVDn6mrWp0vq1+zVX9WtbJ1JuXYSlUqldb+vPfeFw79y4fCv6vAp70di1Yg2Q+2hrjbDfW4dbXbO3GxAW+15rGydKS7QbZ8ljbRP8wbap75zqJTVlBblaE2nqVZUUl6Sj7WBetLc+457WdeaSmP3AkPXfTv3gsi1X9CmczhGRibkZ0urQpfXLFJbmJdOdXUVNvaut6Vb0HQKCgp4+umn8fPzY9GiRWRkZDBnzhzKy8t5//33G0ybmZnJk08+ib+/Px9//DHW1tZcvXr1L1v3zxDCMSIQ/IOwtLSkbdu2rF69mvz8fPUojq5du7J582ZSUlLo0kWaQ9q5c2d++uknjhw5op5GolAo2Lt3722N/vD392f58uVMnjyZt956i/nz52NkdHvzNK2trXnooYeIjo5WT+Pp2LEjFhYWpKenM3ToUINpax0x9TtDQ+F3SkhICAcOHGDmzJnq6TR79+79S/IG8PEL5HLMGcpKi7UWYE24In299vHXv27HnSA3MsLHXzNXODb6JABtO2imJnn7BRIx9SetdBbWTji6tyEj8SwqpVJrkbasm9EYm1hg5+Rn8LxWdq6YWzmSnXJJ51h2SgyO7rqLcdZHpZQ+C4dP+gpzK3tAcrg4ewaTmqCrKyPpAsamFji4+BvM09reFQtrRzJv6o4UyEiOxsmzcV31cfUOJjH+JBVlxVqLx91KuFBzXH+eMrkcF89A0hJ1tdy6EY29s7fO4oL1ycu6CYClzd+zLXXhhcs49OksDQOoswCrfbdQFCWllFy5URNPWhzPvnMIBac1C7Caubtg4e1O8lLtrSWhedvN1SuY5Cu62tJuSNpcvAxrc/YMJF3PSJS0xGjsnRrXVvuVtKKsSDqXZzAPP7dMK46FjTNOHsGk3dDTDpIvYGxigb2z4XZQ2z6zUnR1ZiZH08Kj8XZQXVXB5cuXmb/8BK7+XdXhxeWQkQ/eegYferSASoWK3CLD+RaXQUm5Cnc9i6x6OMrIzNefrr2vDJVKxaVkqZ46uAXx0L907dbCI5h0PXbLvCnZza4JdsvWY7esm9G0qOnXKsoKqKos5cLBpVw4uFQnLoCbX0d6DH8VkNZrMNSvpSdFY2xqgX0T+rUMff1aUjROnsHqv50823DpxBpyM67Twi2gTjypbvcbNQsnD809yMrWGWevYG5dv0ttyfr7XOc62pw923DxuK629MQL6uMAzl7B3Lx2koryYq32lJ6kHa8+MrkcJ/dAvXZKT4rGroU3pjX51eaRkXwR/3aahXMzbl5EpVLi7BWskwc0v77jyVeXU1Fn4Mu9rGtNxdC9ILXGZm6N3Qv02Cw1QdtmhXlpXDq1lUunturE/emTx3DxCua59zfdtnZB01i1ahUlJSUsXrwYe3t7AKqrq/nwww+ZNm0arq6GnVJz587Fzc2NpUuXqt85evbUv/XzX4mYSiMQ/MPo0qULp06dIjg4WL2oaW2YiYkJHTtKi24OGDCA0NBQ/vOf/7B27VoOHDjAtGnTyMzMZNq0aQ2dQoegoCCWLVvGsWPHmDFjBkql4UXualm1ahUzZ85k27ZtnDp1ivXr17N582Z1x2Zra8urr77K3LlzmTt3LgcPHuTIkSP88ccf/Otf/6KsTPq82KqVtFL9b7/9xoULF4iPj28w/E6ZNm0aKSkpvPLKKxw8eJA//viDJUuWYGZm1uCImqbSuddglMpqDu5erw6rqqrkyL7NtAxsj6OTNGomJyuNtBTDq8PfLoUFeezYsAIvv9a0De2uDreytsUzoJfWz9jEDP/2wygrzibx0h513PKSPG7E7MI7eIDWF+XCnGQKc5K1zufXbijJ8QcoztdMhUq9dpyC7ET8QzTbt5YVa4/OAWn3h+sXtuHoFkRgp4fwCeqFT5Ckq1WHcEqLsrkevbtOHnlcu7AL/3YDtXQVZCdTkK2tq1XoMBJjD2ht6XjzynHysxIJ6BDRJFvWpU3nCFTKas4dWq0OU1RVcuHYejz9O6hHJxTkpJKddr1e2nBSE2NITdQ4E3LSE0i8fIK2nTVaSop0bVRRXsypvSuwtHbA3Vd395/bxczNGauglsiMNd9J0tbvxNzNGbfHNNs6mrRwwP3xCDK37kdZKT1xF8deozjuOt7/Ggt1HrR9pz2FSqkkfb3uNqbN2W5BnSRt549oa4s5vh53vw7Y1mgrzE0lJ11bW1DHcNKSvzk6yQABAABJREFUYkhL0taWFH+CoE4abaXFuahUumthXDgqrQPkVrMbhrmVHV6te2n9jE3M8A8Jp6w4mxsX67SDkjwSYnbh27ZeO8hJpqBe+2wZMozkOO32mXJVap+tQjQ69bVPgMun1lJYVERGmQuJGah/1UppW15rCxnBdQb7WZhCsLe0DW/dER/2VtKvLvEpKgI8ZNjUGTXi5wItbGXE3dS1mVwm5X0zC/UWv2YW+u3WUo/dymvs5tNmYKP9mn/IMJIua9vtVk2/1jJUspuFdQuGTV6s8/No1R0jYzOGTV5Mv1GztPq1gA4RlBZlc02rX8vl2vmd+LcbqPUVPj87mfx6/VpA6DASL+nv11qHacqzZchg5EYmxBz5XR2mUqmIOboKKztXwvpPUutqTNvV8ztp2RRtHYZxo5625Pjj5GXq1xZdX9uxVVjbueLu37EmP6l9XjxWp30qKok9uR433w7YOGjaZ26GdvsMCAsnIzmGjGRN+8zNSODm1RNaWrxb98Dc0p7oo39opY8+8gfGphb4tx2APppb3+HXpleTy/OvrmtNJbjGZlGHde8FHv4am+m7FwR3DidN370g/gRtumi0jPn3Ep1f2y4PAfDolM8ZOnbWbeu+b8hl9+93hxw6dIiePXuqnSIAw4cPR6lUcvSo/h0IQRqtvWPHDsaPH3/bH2LvFjFiRCD4h9GtWzd++ukn9cgQkEaMALRv3x5zc2leppGRET/88ANffPEFc+fOpbS0lHbt2rFs2TLat9fd5qwx2rVrx9KlS5kyZQrvv/8+H3/8cYMOg6CgIPbv38/s2bPJz8/H2dmZhx9+mNdee00dZ+rUqbi6urJ8+XJ+/fVXjI2N8fHxYcCAAeoRIW3btuWVV15hzZo1LF26FHd3d/bt22cw/E5p27YtCxYs4Msvv+Tll1+mdevWzJkzh8mTJ+usT3IntAoMoUuvIaz7dTGFBXm4uHtzbP9WcjJTmfKSZkjh0oX/I/7SWZZtOKsOKy0pInK79PBwNU76mhK5fTWWVjZYWtkw+KEn1XHn/Pc5WgWF4OruTUF+Dgd3r6eivIzX/rtAa2FZQ/i1D8fZ+xcOr3uH/MxrmFk5EHfiD1SqajoN0Z43v+OnKQA8OT1SHdZhwDRuXNzF9qXP0K7XJBSVpUQfXoaDWyCBnUer453eOY/C3GQ8WvXE0taZ4rxULp9ajaKylB4j3tHRFdAhnAu+Hdi76h1yM65jbuVAzNE/UCqr6R7xslbcDd88A8Az72vqQ5ch07h2YScbvnmaDn0nUVVZyrn9y2jhHkjb7qO10l8+vYmivFSqqiTnXOr1M5ze/a2UT/+R2LfwxLNlB9p0jmD/hq8oLcrBwcWX6GMbKMi5xYinP1XntWnZDJKvnOLdHzWOu84DxxN1eA2rv55Gj/CpyI2MObnnZ6xtW9B92FR1vDP7f+NK1F5adxiIraMHxQWZXDi6noLcVEZO/aLRaQ++L07AxM5WvTuMy8MDMfeUHHCJS1aiKCwm6NM38Z48mn0BgyhLugVA2rpd5J2IosPS2Vi3CaAqJw/faU+BkRFXPlqkdY64mV/QZcO3dN+xjNQ/t2HTLhC/Fydwc9kaii8n6Ghqznbz8O9AUKcIDm2s0ebsy8UTkrbhkzTatv48g5tXTzHjW422jv3Hc+HoGtYumUa3IZK205E/Y2XTgm5DNNoundzM+cOraN1hCPZO3lRWlHAj9giJcUcJCBmIb3DDX8RahoYTc6QDB/58h7yadnDp+B+olNV0GardDrb+8AwAE2Zp2kHHQdNIiN7Jlu+fJqTPJKoqSrlwcBmOboEEddW0g3P7viMj8RzeQX2xtnenorSAhIu7yboZQ/veE7Ftobs16OUUFSnZKh7uJsfJVkVpJXQOkCGXwaGL2i904wdKfdE3WzXekqOxKoK9ZUwYKOfMVRUmxtAjSFo/JPqG7gthSzdpt5pLyY076v1DwnHx6cDBNe+QlynZLbbWbsPq2e1HyW7jZ9ax20DJblt/eJr2vaX+I7rWbl0kuxmbWuDXbojOuRMv7SXzZgx+7YZgbqZ9zwwIC8ftYBh7/5hFbvo1LKwdiD4i9Ws9IrT72w1LJF1T/lenXxv6Alcv7GT9ksmE9ZtMZUUp5/b/RAv3QNp010xHtLF3I6z/ZM7t+wlltQIXnxASYvaSmnCG8Enz9O7W0TosnKiDYez+fRY56dewsJK0qZTV9BiurW1djbZn62jrNvQFrp7fydrFk+nYX9J2dt9POLkH0raHtraO/Sdzdt9PVFcrcPMJ4Xr0Xm5dP0NEHW3ufh1oHRbB0S1S+7R39iX21AYKc28x5ClN+9z12wxuXTvF6ws17bNDn/FcPL6GTd9Po9MgqX1G7f8ZS5sWdBqkaZ/Gpub0fOhV9q/9iG3LX8U3uC+3rp/h8pnN9Hr4DfUoxvr8E/qOe1XXAOJOb6QoLxVFzaKzqQmnObX7GymfviOxq3sPXf8VJYXSvSDm+AYKsm8xYrLGZpuXS/eC//5Q514wYDznD6/hz0XT6D5sKkY19wIr2xZ0H6qxWVBH3fZYuyV8q/b9/rZRl//faGwjgsjISL3hCQkJPP64dt2wtbXF2dmZhATd54NaLl26RFVVFcbGxkycOJGoqCjs7e0ZNWoUr7/++m1N6b9dZCp97keBQCAQcPz4cZ555hlWrlx5xzvkHI0tVv+/qrKCDb9/y/FD2ykpLsLbtzWPjX+B9h01u/18/u7zOo6R7MxUpk97RG/+LZzdmfuDZpjoqmVfEXXqAHm5WVhYWNEurDujnvo3Lm66a7YcjbPUCQNpSPipHXNJio2kuqoCJ6/2dBs+HWcvbYfa6i+km2VdxwhAXsZVTm7/nIzEc8iNTPAO7k/34dOxsNGMs79+YRuXT64iPyuBirJCzMxtcPXrTNjAF3DybIelha7Trby0gKOb55JwcS+KqgpcvdvT+9HpuPqEaMX7+aNBgLZjBCAn7SpHNs0h9cY5jIxM8Gvbnz4jZ2Bpoz3+f/3iSdy6flqvbSa+/Qt+QdLIG0VVBQc2LuDiyS2UlRTg6hVE/5Gv0aq9Zi2BX+ZO0nnBByjMTWfPn5+REHsUlVKJb1B3hj45C0cXzQtnQuxRju/6iaxbVygtzsfUzAIPv1B6RvwL/za6D8GOg7W3Whx4NRJLP/1r9dQ6QkJ/mq3jGAEwtrelzefTcXt0CHILMwrOxBA34wsKzuoOX3Z9dDCt33sZ6+BWVGblkvLLBq5+sgRVnd2mciM119/c7FalkYmiqoLDmxdw6dQWyksLcPEMos+jr9GyrUbb719N0nm5AWnO+r61n3Ej9iiolHgHdmfwmFk41NGWlhTDyd1LSUuMpqQwG7mRMY4u/rTr/iidB0zU2nIzv0j/41lFaQEnts0l8ZLUDpy929Pz4ek4e2u3g99mS+2grmMEIDf9Kse3ziH9xjnkxib4BPen5wjtdpBy5SgxR1eSfSuW8pI8jIxNaeEeRHC3MQR2foyKCv3azE1gUJiMQE8ZxkaQlguR55Wk52nHe3GErmMEpK13h4TJ8XKWRqFcT1UReV5FiZ6lnkb2kBHsJWPhZiXldWZUmpnpdwBXlBZwYrtkt+oau/V4eDrOXtp2+32OZLe6jpFau53YOof0RI3dejys23/U58CfM0mI2c3Uj8/pOEZA6teObP6ChJjafi2EPiN1+7XlH0q66r6sgtSvHd44h9QbZ9X9Wt9RM3V0qZRKzkT+yMVjqykpzMTe2Y8uQ54nuMujBj8Kl5cWcHjTF1yv1eYTQj892n6q0fasHm0HN84hNUHS5l+jzcpWV9vpyB+JObaa0gJJW9ehkra6KKoqOL59AXFntlBRWoCTRxA9H3oNvzaa9rlm0SQdxwhAUX46hzZ8RtLlo6hUSrwCutP/sVnYO+s6+WKO/cm5/csozEnB2sGdDn0n0LH/0zofg+quO92c+g6AMj1t5l7VtXWLJnHr+ildAcDEt37Bt8499OCmBcScqLFZ7b2gncZmK+dN0nGM1Npsz2rJZiqVEp+g7gwdq30v0MehzYs4vHUxb3x5XMcxMrm/gUTNgPI/5923cz/8/Y4GjxtyjLRr147XXnuN559/Xit8xIgRdOzYkY8//lhvum3btvHmm29iZWXF2LFjGTBgANHR0Xz99ddMmTKFt956684upAkIx4hAIBDU8MEHH6iH/V27do1vvvkGFxcX1q1b16TRFvqo6xhpbhhyjDQH9DlGmgN21s1TF+g6RpoTdR0jzY26jpHmhCHHSHOgvLzxURr3C0OOkeaAPsdIc+AuRss/0OjZkKvZoM8x0hywab6PHcIxYgDzsW/fUbo7dYxs2bKFt99+m6FDh7J48WJ1+Pz581m2bBmnT59Wj47/qxFTaQQCwR2hUBh+m5DJZPd8XuBfQWFhIR9//DH5+flYW1vTt29fZsyYccdOEYFAIBAIBAKB4K74C9a6u9fY2tpSVKS76nZBQYHO7pj10wH06NFDK7xnz5589913JCUlERT093wIEo4RgUBwR7RrZ3jhR09Pz7ta7+N+8dVXX91vCQKBQCAQCAQCwT+ali1b6qwlUlRURFZWFi1btjSYLiAgwOAxgIqKv284lHCMCASCO2Lt2rUGj5maNuPxpQKBQCAQCAQCgeBvo1+/fnz33XcUFhaqR4Hs3LkTuVxO7969Dabz9PQkMDCQY8eOMXHiRHX4sWPHMDc3b9RxcjcIx4hAILgjQkJCGo8kEAgEAoFAIBAI7px/4JTucePGsXLlSl566SWmTZtGRkYGX3zxBePGjcPV1VUd7+mnnyY1NZU9e/aow9544w1efPFFPv30UwYMGEBMTAzLli3j2WefxdLy71uoRjhGBAKBQCAQCAQCgUAgEPwl2NnZsWLFCj7++GNeeuklrKysGDNmDG+88YZWPKVSSXV1tVbYoEGD+Oqrr/jmm2/4448/cHFx4ZVXXtFZyPWvRjhGBAKBQCAQCAQCgUAgaI7I/nkjRgBatWrFzz//3GCclStX6g1/6KGHeOihh/4GVYb5Z1pZIBAIBAKBQCAQCAQCgeAvQDhGBAKBQCAQCAQCgUAgEDywiKk0AoFAIBAIBAKBQCAQNEfksvut4IFAjBgRCAQCgUAgEAgEAoFA8MAiRowIBAKBQCAQCAQCgUDQHPmHLr76T0NYWSAQCAQCgUAgEAgEAsEDixgxIhAIBH8j20+Y3G8JBnF3E3NWbxeV6n4rMExuZPz9lmAQx8FB91uCQVQnL91vCXqprGq+j2gVFfdbgWHMTO+3AsOUlSnvtwS9WFg03++kSmXz7XTdrJtneQLkFzXPMi0sar42A6P7LcAwMvG8di9onq1GIBAIBAKBQCAQCAQCgeAeIBwjAoFAIBAIBAKBQCAQCB5Ymu84TYFAIBAIBAKBQCAQCB5k5GIsw71AWFkgEAgEAoFAIBAIBALBA4sYMSIQCAQCgUAgEAgEAkFzRCy+ek8QI0YEAoFAIBAIBAKBQCAQPLAIx4hAIBAIBAKBQCAQCASCBxYxlUYgEAgEAoFAIBAIBILmiEyMZbgXCCsLBAKBQCAQCAQCgUAgeGARI0YEAoFAIBAIBAKBQCBojojteu8JwsoCgUAgEAgEAoFAIBAIHljEiBGBQPD/kkWLFrFs2TKioqLutxS9mJtCRFdj2vrIMTGGlGwVO04pSM1RNZrWy0lGp9ZGeDnLcHOUYSSX8d9lFXrjdguW09JdjrezHHtrGeeuVrPusKLB/CvKCjm6eS7XY/aiqCrH1SeEPo/OwMW7XZOuLTfjOoc3ziYt4RxyYxP82vSn76iZWFg7asU7vec7MpIukJ4UTVlxDt3CX6J7xCv/GF2KqkoObV5IzIlNlJcW4uIZRP9Rr9Oybe9GtRTmZbD3z89IiD2KSqXEN6g7Q8e+g4Ozt8E0N6+e4Ze5EwB448vjWNo4GoyrqKrk4KY62ryCGHAb2vas1mjzC+rO0Cd1tX3yXJDe9ANHv0Xv4c8bzN/IypKWbz2LfbcO2HcNwdTRngvPziTllw2NagMwtrOhzZz/4DpyKEaW5hScjiF2+hwKo2J14rqMGETg+y9j3SaAyswcbq5Yz7VPv0FVXa03b0VVJTvXLOLs4S2UlhTi4RNIxNhXCQrt1aCmzNQbHN+7mqRrMdxKjEVRVcl/v96No7OnVrySonxOHVhP7LkDZNxKoLpagYuHP/0emkzHnsMN5q+oquT49oXEnd5EeVkhzh5B9Hr4dXyDGy/P4vwMDqz/jOT4o6iUSrxad6f/6Hewd9KtaxePr+HsvmUU5KRg4+BOWL9JdOw/qdFz1GJmAgNDZQR5yjA2hrRciDyvJCO/aelb2MCQMDleTlCthOtpKvZeUFGmp3uzt4J+7WX4ucowNYaiMoi7qSIqUX/eza3/qKvr1I55JMbuRVFZjrN3CD0emo6TZ9N05WVe58TWOaQnncPIyATvoH70eFhXV12uRW1h/5/TMTa1ZMqHZw1rKy3kyJa5XI/eo7ZZ35Ezm26z9Osc2viZxmZt+9N31Cws62lTKZWc2/8TMUf/oKQwC3tnP7oMmUZQ5xGGtZUVcnTLXBJqy9M7hN4jZ+Di1fTyPLJxNmk3ziE3krT1Galtt7yMBGJPreNm/FEKcpIxMbXC2ast3SJextU7RCs/RVUle9Yt4tzRzZSVFOLuHciwMa/ROqThviMr7QYnIldz83o0qUlS3zH9qz06fUctsef2sXf9EjJTr2Nl60iXvo8xaNS/MTJq/JWuoqyQE9vmknhJqmsu3iH0GDED5ybaLC/jOse2zCY9UaprPm3603OEts1KCjI4sX0eWTdjKC3MRCY3ws7Zj3Y9xxPYeZTBvJtD39GsEdv13hPEiBGBQPD/kieeeIIVK1bcbxl6kQGTh5oQ2lLOibhqdp5RYGUOzw43oYVt4ze/QG85nQOl7ju3qOGbeb8QY1q5y8nMV1GtbPzGr1Iq2fLDNK6c20Zonwn0fuRtyopyWb9kMvlZiY2mL85PZ92iiRRkJ9Pz4dfpOGAKiXEH2fjtVKoVlVpxT2xfQEbyRZy92vwjdW35eSYn9/xM++6PMPTJ/yKTG7H66+e5efVMg+kqy0v47cvJJF85Te/h0+j3yKtkJMexct5ESovzDF7/rlWfYGJm2ei1AmxePpOTeyVtw8b9F7nciFVfP09yE7T9Oq9G20PT6P/oq6TfjOOXufq1+bftzchnv9D6BYYObPAcpv/H3nmHR1V0Dfy3u+md9IRUIAkthRpa6JAgYKFZKAK+imJHVFDRV18VBQuKCoggxYb0Jr1Jr4GEFiCV9JCQbHqy2f3+2GSTm91NAhbi5/yeZx/ItHvumXLvPXNmxrkFgXOew6ZtKwpj4pp0PzpkMrpt+RbPR0aQ/M0PXJ09HzMXR3rsXY1VG19JUpfIvnRd/zWV+YVceul/ZG7ZS8Abz9DhizlGi/950Rsc+m0VnfuM4MHHZyGTK/hu3jMkXDX+8QiQdP08h3f+SHlZMa6erYymS75+nh1rvsDSxp7BD01j2MMvYGZmwQ9fzmTn2q+M5tv94yzOHVhB264j6T/qTWQyBZsWP0VafCP1WV7M2oWTSIs/Tbch0+h53wvkpF1h7ZcTKC2W1mfM0V/Y8/NbOLoHMGDMHDz8wji4/n1O7/m2wWvUZVyEnA4+Ms7e0HAgRoOVOYwfIKeFTeN5bS1hQnXaQxc1nLymobWHjEf7yvW8yF0dYMoQOa4OMk5d07AnWsPlFA22lobLbo7jR41cu1Y+zY0L22nfYzzdh71CaVEu25Y+TsGtJshVkMm2byeizE2h29CXCI6Yws243/lt+RN6ctVQWV7MyZ2fYGLW8FiiUavZsvQprp3dRmjEBHqPfJXSojzWfzWxSTorzM9k3cLx1Tp7mc4DppJ0+RCbvpmiJ9ux7Z9zdOsneAf1pt/oOdi28GTX6le4dm67Udm2Lp3G9er67DViJqVFeWy8g/rc8JW2Pnvc9xKdBkwh6fIhNi+W1uelk2u5fGItrt4d6X3/64T1m0x+diLrvniEm9eOScpc++0bHN65kk69RjBywmxkcgXff/o0SXENjx3J189zbPcPlJcV49LA2AEQd+F3Vi94HgsrO+6f+CYdOg9i/+YlbFn1QaP3rFGr2bF8GjfOb6dDr/GED59JaXEeW5dMoqCJOtuyeALK3BS6R71ESL8ppFw5xPalUp2VleRTXJBJq5BIeox4jW6RL2Jl68LBX2dzaufnRstvrmOH4N+F8BgRCAT/L3F3d8fd3f1ei2GQDv5yfN3k/LS/kktJagBiE9XMGG3GoE4Kfj3UsEfHyStV/B5ThaoKRvYwwcXeeNrvfqsgv1j7/7cnmjUq240Lu8hIimbY4wtoExYFQEDYMFZ/GMXJnQuJnPhpg/nP7F2CqqKUR15Zj20LTwDcfELYvHgqV05tpGOvh3VpH5+zFztHL0qLbvPdnJ7/KLnSEmO4fHo7g8a8Ro+hTwAQ0vNBvv3vCPat/4TJs34xKsvZgz+Rl53ElDfW4ukXAkDrjhF8++5ITu75ngEPzdDLc+7wGpR5GYT1GcPpfasavNe6svWMrJVtyTsj2N+IbGeqZZv6xlo8/WtlW/LfkZzY/T0DR0llc3LzI7jHAw3KU5/yjGz2evWmPOsW9l060ufE+ibn9RgdhWOvzpx9+AUyN+wCIGPtDvpf3kXg289zftJMXdp2H7+GMjaOU8Om6jxEVMpi2syaRuLCVRTHJUjKTrkRw/njOxgxfiYDRkwBoGvEA8x/7QG2/fQZL7z3o1G5OnYZQMiyE1hYWnNg2/ekJ181mM7Nqw2zPt+Bo4unLqz3kEdZ/METHNi6jAEjp2JuIf1gzUyOIe7cdiIeeI2ug7T12b77g6yaO4LDmz/hkRnG6/PC4Z/Iz0ni0VfW4u6rrU+/9hGsmjuSs/u/p89IbX2qKso4uu1z/Dv0Z+QTXwIQ3GscGo2ak7sWEdz7YSysGhhogLZeMrycZWw4VkVcqjbsyk0N04bJieggY8vJhg2zvdrJMDWB7/eqUZZowzJyNTzaX0GIn4zzCbX5R3aXk1sIPx1Uo6rn/GNro29cbm7jRw0JF3eRlRzNoMcW0Co4EoBWwcP49dNhnN37FQMf+aTB/OcPLKGyopSHnluHjYNWLlfvYH5b9gTXzm2iXfdxenmiDyzG1Nwaz1bhJF3eZ7Ts6xd2kpEYzbDJXxBQo7NOw1j9QSQndiwkalIjOtuzGFVFKY/O3CDR2aZFUyQ6K8rPIvrg94T0GU//MW8D0KHHWNYvnMCRLfNoFRKJXK6QlH0jZheZSdFEPb6ANqG19fnD3Durz4dnGKjP0xvp2FMrW2Cn4XSPfA4zc2td3nbho/jp4+Gc2vUVPXv3AOBmfAwXTvzGfY/MpO/wqQB07vMAC2bfz2+/fMr0d34yKkv7zgMIXnISc0trft++nAwjYwfA9p/n4+4dyBOvL9V5iJhb2nBw67f0jpzYoFE2IVbb1oZMWECrEK3OWocM45f5UZzZs5BBjzWss+gDWp2NeqFWZ67eIWxfOpW4Mxtp30OrMyePIO5/erUkb8feE9jx/dNcPPoDIf2f16vP5jJ2hPg3eBnBvwDhMSIQNBOio6OZOnUqnTt3plOnTowdO5ajR48CkJ+fz+zZswkPDyckJIRHHnmE06dPS/JPnDiRadOmsW3bNoYOHUpoaChPP/00BQUFpKWl8cQTT9CpUyeGDx/OyZMnJXkHDhzIe++9x3fffUdERAShoaE888wzZGdnS9J98sknjBw5kk6dOhEREcGMGTP00tTIsXPnTiIjI+nUqROTJk0iJSVFl2bUqFG88sorejqYP38+ffr0ocqIm3tdMjMzefHFF+nVqxfBwcEMHDiQDz/8UBe/cOFCOnXqJJErKChI7zdxYq2buFKp5L///S99+vShY8eOjBo1iiNHjjQqy53S0U9OYYmGy9VGEYCSMq1xpJ2PHEUjI3NxGXoPdGPUGEWayo0Lu7CydaZ1yFBdmKWNI23Coki4uN/oLGRt/t34te+ve3EC8AnqhYOLH9fP75SktXP0+sfKdfXsTmRyBZ0iaj+ITEzNCe0zhrSEaJR5GUbzXjm3Cw+/YJ1RBMDZozX+bXty5cwOvfSlxfkc2rSAvg+8gIWlXZNl69xXKltYnzGkxkdT0IBsV8/uwtMvWGcUaUw2gMqKMlSVhpdyGUJdUUl51q0mp6+L+6hIyjJzyNy4WxdWces26et24Hb/IORmpgDYtGuNbYcAbn73q2TZTPLin5DJ5XiMitQr+8LJ3cjlCnoOHKsLMzUzJ7z/aJKvn+d2rnG9Wdk4YGFpbTS+BidXL4lRBEAmk9Gx6yBUlRXkZafq5bl2Xlufwb2k9dmxxxgykqIpvG1cruvnd+HmE6wzigA4urXGJ7An16Jr6/Pm9ZOUFecT2ucxSf7QiPFUVpSQeOlgo/fW1huKSjW6DxuA0nK4elNDQEtZo+NakJeMGxka3YcNQFI25Co1tPWuNXa0cgdXBxlHLmk/bEwUjXuZN7fxo4bEi7uxtHHGv8MQiVytQqJIvty4XEmX9uDTtr/OKALQsk0v7J39SIjR768Ft5KIPbKSHve9jqzex2l9anTWpo7OrGwcCQgbRsLFfaiaorMOxnRWK1vCxb2oqyoJrtP2ZDIZwb0fpSg/k8yk83plx9fUZ3C9+gyNIvFS43qLj9GvT+9ArWw36tSnq3dHiVEEwNK6BR7+XcjLiteFxZ7Sjh3dB9YaokzNzOnabzQpN86T38jYYd6EsSMr7QbZafF0HzBOsmym5+BH0Wg0xJ7a3UBurWHE0sYZ/45SnbUOiSKpCTpLjN2NTzupzrwCatrazgZyarFt0RJVZSnqqkq9uOY8djQbZPJ79/sX8e+6W4GgmXL27FkmTpxIRUUF77//PgsXLmTQoEGkp6dTVVXFk08+yYEDB5g5cyZffPEFVlZWTJkyhYsXL0rKuXz5MqtWreK1117j3Xff5cyZM8yZM4cXXniB/v37s3DhQhwdHXn++ecpLpZ+Me/Zs4e9e/fy3//+l//+97/ExMTw/PPSddG5ublMmzaNJUuW8Oabb5KWlsbEiRNRqaQeDleuXGHZsmXMnDmTuXPnkpKSwquvvqqLHzt2LHv37qWwsFAXVlVVxebNm3nooYdQKBp+YQN47bXXiIuL46233uK7777jhRdeQK1WG03/zjvvsGbNGt3vyy+/xMzMDH9/7RRBRUUFU6ZM4eDBg7z00kssWrSI1q1bM23aNOLi7tDdvxE8HGWk56qpPweSmqPGzFSGs/29e1LnpF3Bxas9snr+p24+IagqSrmdnWg0b1F+FqVFubh6d9SLc/MJ4Vaa/h4Q/1S5sm5ewcnND3NLqZ9vjbEj8+YVg/k0ajXZqXF4+OrL4uEfzO2cFMrLiiThhzZ/gY29C537PtIk2TJTjMhWbezIakC2rNQ4PPz0ZfM0ItuFYxv5+LkwPpoewuK37+Piya1NkvFusQ9rp91LRCPtPQWnYzGxtsI6UNuf7cLaA5B/NlaSrjwjm9KbGdiF6S9zSEu6iouHLxZWUr15t9HuJZCeZHwm949SWKA1FFnbttCLy0m9QgsX/fqsMXZkpxqvz1vpcbj56Nenu28wBbdSqKiuz+xUbR+on9bNuwMymdzoNSRpHWQG9wNIzwMzExmOtsbz2liCtYWMjDz9uIw8De4OtX/7uWnHxyo1TB4s59XRCmaOkvNADxkWRpzimtv4UUNu+mWcPdvpyeXiFYyqsrTB5TTFBVq5XAzsReLiFUxuun6dHd82F89W4fi07deobDmpRnTmG4yqopT8JujMzZDOfEPIqdOeclKvYGpmhaNba710ADkG9JuTdgWXln9NfRq6Xn1KCm9haV3bV9OTr+Ds7otFvT7q3bp67GjAC6SppCdpdeblL61vuxau2Du6k57ccB+9lXYFZwM6c/UOQVVZSn6OcZ3p2pqXvs5cfUK4la6vM1VlGaXFtynMSyXuzEbizmzEzScME1MLvbTNeewQ/LsQS2kEgmbA/Pnz8fX1ZeXKlTqjQJ8+fQDYt28fMTExOm+OmrihQ4eyZMkSFi5cqCunqKiIxYsX4+io3QgrLi6O5cuX89///pdHH30UAFdXV0aOHMnx48cZPHiwLm9xcTFLly7F1lb7BHJ3d2fy5MkcPnxYd925c+fq0ldVVdGpUyf69u3LiRMndPICFBYWsmnTJp0cJSUlzJ49m8zMTNzd3Rk5ciQff/wxW7du5bHHtLNEhw4dIicnh9GjRzdJZ7GxscyYMYP77rtPF/bggw8aTd+mTRvd/8vLy/nf//5Hq1atmD17NgBbt27l6tWrbN68WZc2IiKC5ORkvvnmG7744osmydUUbK1kJGXpu4YWltbEQ5bhrSb+ckqUObRs3VUv3NrOBYBiZTbOnoY33SxWZkvS1s9fVlJAlaoChcmdv4E0N7mKCnKwsdcvryasKD9bLw603h9VqopG85q7a1+ws1Kvcu73NTzy/Ld67sd3K1vhnySbV+tOtO86DAdnLwrzszlz8Cc2fTeT8tJCuvR/TK+MPwNzDxfyjujvq1GWkV0d70rhxWtYuGvlLc/I0UtbnpmDhaerXnhhfg62Dvr3bufgDIDytn5ZfwYlRfmc3L+eVm27YNdC//rFyhysDdRJ3bZviLISbX0aa/cARQXZOFrYUKzMQSZXYGXrJEmnMDHDwtqB4gLD16iLjQXczNEf14pLNbr4nALjeUHrDVefojKwNNfOGlepoUX1UpkHe8pJyNRw/IoaVwcZPdvJsLOSsemUfhnNbfzQyVV4C3d/fbmsbGvlcnQPNJI3R5JWkt/OhfJSqVwpVw+Sev0Yo19o2ibHxnWm7TvFBY3rzMqozvJRqSowMTGjWJmDpa0TsnpT97q6MdD2SpQ5eLYyoLem1Gehcdms7Fwob6Q+0xPOkJl8nm6Dn9GFGRs7asKMjbl3QmF+jqTM+tdp7BolhTl4GNJZdfspUWbj5GFYZyU19Wmordka1lnskVWc2vGZ7u+WbXrSf9yHevmh+YwdzZp/jGvLPxthGBEI7jGlpaVcuHCBGTNmGPSUOHPmDDY2NjrjBICpqSlDhgxh27ZtkrRt27bVGSMA/Pz8AOjVq5deWGZmpiRveHi4zigC0LNnTxwcHLhw4YLu2ocOHWLRokVcv36doqLameOkpCSJYaS+HDWGhhrDiI2NDcOGDWP9+vU6w8iGDRvo2rWrTr7GaN++PcuXL0ehUNC7d298fX0bz1TNm2++SWpqKuvXr8fSUrvj1tGjRwkMDMTPz0/iAdOrVy+2bNnS5LKbgqkCDK0WUlVpquNloOdP8vegqiwz+EKoMDWvjje+ZKImruH8hsv/p8lVWWE4vUmd8hqSxcRQXhNt3so697L7lw9o3bEvrTr00UtvVDYj99KYbJUN6Kkmb2VFrWz19yoJ6zOa794fzYGNnxPSaxSmZvozg38UhaUF6nJ9l291WUV1vFZOuaX22obSVpWVY2Knv6NfZUU5Jqb6926qu3fDevsjqNVqfvzqdUpLlDw0+Q2DaVRG2pqu7RqRq8F2byLtN6rKMhQKU4PlmJiaG20zknQK7ceHnhzq2viG8oLhJYI1YTXlm1W/uWbkwdbqvQfi0jRUVsGAEDleThpSc+uV0czGjxqqKstQKIyXW9WA3mvqRN5g/WrlqlJVcHzbR7QLf5gWbm300hsr33DbMauOvzud1YxzVRVlmJiYGb2OLp2B6xjNY2o8Tw1VTZDNWPklhbns/mEmdo5edBr4hC68srLc8JhuYNy8WyobenaYmlFeWqQXXpeqP9IHVE0ZS6TltwkbjotXR8qK8ki+cpDSolxUlWWYGtjktLmMHQKBMIwIBPcYpVKJWq3G1VV/BrMm3snJSS/c2dmZggKpCd3OTrr/gKmp9kW3rsHDzEz74Covlz4EDV3D0dGRnBztLEVMTAzTp09n0KBBPPnkkzg5aWd4xo0bp1eWMTnqphs3bhyPPPIIV69exdXVlYMHD/Lee+8Z0IBhPv/8cz7//HMWLFjAu+++i7+/PzNmzGDo0KEN5lu6dCm//fYby5Ytw8urdi347du3uXz5Mh066LslN2VpjzFs6r0EFJdBZRUYKtJEoZ0RqKz6640i6qpKipXS9mNp44iJqYXBtcY1L5M1L3qG0L2UNpi/4Y/lKlUFZSXNT676mJoZlkfVSHk644ShvNUvnzUf4pdP/0ZqfDRP/ffOlqeYGtFVY7KZNqCnmrymZsb1rDAxo+uA8ez44R0yki/iE6A/O/lHqSotQ26u/3Iur/aDrqo+m1FdWv3RaCCtwsJcF18XUzNzVJX6916pu/c/39CzccUHXL1whEenz8XTt63BNCZG2pqu7RqRq8F2r5L2GxNTC6oMrP0Hbd3XbTNyGVjXu2RJufYjxNBeACbVYQ3ti1T3A0Yvf70Pn5p/L6dIx8nLKRp6t63AknyKlbXhzWH8qBnXystrZbawdkRhakFVlfFyFQ2UW3NNdYP1q00Te3Ql5SX5dBn8nEHZipWFkrAGdVYddrc6031kV7dbY9epSadWV1GsrPXWakg2nUGmAdkUTZDNUH1Wlpew7bunqSgrZvTzP1bvPaL9cjc1NTc8pjdh3Gwqpg09OyordOOTSlVBaVEBJYW1nVHX1u62D5g0ZSyR6sy2RUtsW2iPHG7TaQSH1s1h1/dP8fCMLZJrNZexY0AIAoEwjAgE9xpbW1vkcrneJqY12Nvbk5ubqxd+69Yt7O0bPiXgTjB0jby8PFxctK6Te/fuxcbGhgULFiCvXqOalpZ219fr1KkTAQEBrF+/Hk9PT8zMzIiKimpyfldXV+bOnYtarebixYssWrSIl19+mZ07d+Lt7W0wz6FDh/jss894/fXX6dlTelqAvb09QUFBfPBB48fe3QmzH5W+bMz/tZzCEsNHw9WEFZbox/3Z3Eo7z4afn5CEPT5nL1Z2LpKX0BpqwmrcqA2hc7E2kt/Cyr7RWdWMpGg2fv14s5OrPjb2LhTmZ+mFFxVor2HjYFgeS2sHFCZmunQN5d23bh7tukSiUJiSf0u7K11ZqfaLT3k7k6qqSmwd3O5YNts/QTZj2Dt6aOUsNuL3/Acpz8jB3F3fndvCw7U6XjuOlmVq5TX3cKEsVeodZ+7uQv7pGL0ybB1cUN7W15syX7v/h6FlLn+EXeu+4dieXxj+6Mt0jbjfaDprOxeKDNRnY23fwkpbnw31Gxt7V901NOoqSgpzJctpqlQVlBXnY21few13B7i/u/Qr5JttVRSVgY2lvrebtaXW4FvUgNNJTVx9gwtoXeVLyzW6GeXCUg0go7hMep3iMu0m5i9MmiQJbw7jh6Fx7ZHX9mJl60ypgXJrlsk0JJduCUShgfzKHMwttXJVlBVyfv9i2vV4lMryYirLtfuLqSpKQKMh8dIeDvwyU5J/8px9DeisemmRfeM6KzGqMwed54O1nQupN06i0Wgky2lqrh179Edij9aeCDXpLW19Giq7pCn1aWtcthJlDuYG6rNKVcFvK54nNyOO+5/6DicP6fImY2NH7fKXhsfNplC7LCcHBycPvet4tdLuZ5J8/TxLP5wsiX9s1l6sbI3orGZJVkNtraY+DbW1QsM6q0+rkEjsSGbGaOmpW81l7Gj21D93WPCXIAwjAsE9xsrKirCwMDZv3szUqVP1vBO6dOnCsmXLOHLkiG65ikqlYu/evXTp0uVPk+PkyZMUFhbqvEuOHz9Ofn4+oaGhAJSVlWFqaip5cdm69Y9ttDh27FgWLVqEk5MT9913H1ZWVo1nqodcLickJISXXnqJ/fv3k5ycbNAwkpCQwCuvvMLIkSOZPHmyXnyvXr04dOgQrq6uuLnpf2zeLct3SmdYikq1G4L5ucmp/xrg7SqnolLDrYK/3mPEwTWIB55eLgmzsnXBpWVb0hPOolGrJZu0ZSVfwMTMkhauxs+zs3Fww9LGkeybF/XislJicG6pv+FlfZw92zZLuerj5t2WpLiTlJcWSTbFTE+8AIC7t+EyZXI5ri0DyUjWlyU9IQYHZ2/MLbTlKW9ncOnUNi6d2qaXdtn7D+Hq1ZYn397cZNnSEi5UxzciW5K+bGmJMTi41MpmjNs5NwGwsnVsMN3dorxwlRZ9umjXW9fZgNWhewiq4hKKryVWp9NuROjQJZiC07UbsJp7uGLp7UHKd7/qld3Sry3xl09RVlIk2YA15YbWiOLpZ9ij4244svsndq//mr7DJjLw/v80mNalZVtuXtevz8xkbX26ehmvT2fPQLJS9OszIykGeydvzKrr06W6jKyUi/h3qN2YMyvlIhqNGpeWtfd+qxB+Piidwi0qg6x88HbWl8PTESpUGvIK9eN0+UuhuEyDh4Fm4+Eo3Zgxs3r/JVsr6Qhqa6ldxvnqe8u5ll6bvjmMHzXjWmVlrbyWNs44ebQjM0lfrpybMZiYWmLv7Ge0TGt7NyysHclJu6QXl5Mai5OnVq7yUiWVFSXE/L6MmN+X6aU98MtM3P060WPYC7owKzvjOstMjsHEzBKHJugsy5DOkmNwrtOenFu249KJteRlxePk3qZOOm377vPALIkhwsrWBeeWbckwJFvKH69Pl3r1qVGr2fvTLFKvnyBq0ue0bNNdL5+nb1sSrpyirLRIsgHrzfgYXfwfpaaM1MRLeLeudW9Q3s6mIC+T7gO0p2l5+ATxxOvfkZlXqxdLWxecPduSkWigD6RcwMTUEgcX4zrTtbVUfZ1lp8To2lpDVFWWc/XqVT7//gTu/t104c1l7BAIQJxKIxA0C1555RWSkpKYPHkyO3bs4NixYyxdupR169bRv39/QkJCePXVV1m3bh0HDx5k2rRpZGdnM23atD9NBmtra5588kn27dvHpk2bePXVVwkJCdHtL9K7d29ycnL43//+x/Hjx/nmm2/YuLFpm7gZ44EHHqC4uJgbN24wZsyYJucrLCxk3Lhx/Pjjjxw7doxDhw4xf/587OzsaN++vcE8zzzzDBYWFowePZrz58/rfjdu3AC0G7f6+/szadIk1qxZw8mTJ9m7dy9ffvkln3766V3fY3y6RvJTVcGlJDW2VjLa+9UOwVbm2mN8r95US9baOtrS4I7sd4uZhR0+Qb0kPxNTc1qHRlJSeIv4mNqj/0qLbnPjwi78OwyQzAoV3Eqh4FaKpNzWIUNJunxQcoTozWvHyc9Jok1o4x5BFlb2zVKu+rTtHIVGXUX04TW6MFVlBReObcDTPxS7as+Jgtx0bmXES/N2iSQjKZb0pNoP9tzMBJLiTtCua60sY575Wu/Xvqt2s+H7p3zMkHGzDcrWrotWtnO/68vW0j9U59VhSLZ2XSJJNyTb1RO071IrW3Gh/hEA5WVFnNq7EiubFnj46i9Ju1PM3V2wDmqFzKR2Didjw04s3F1wf6h2yZypUws8RkeRve0A6grtcpCiyzcouhKP93/GSWbafKc9ikatJnOD/vGSIeFDUaurOL5/rS5MVVnB6UMb8WkTQovqWdrbt9LJSku46/uKPr6DTSvm0rn3CO6f+Hqj6QPCtPUZe0xan5dObsDdNxTbFlq5lHnpkiNEAQJCI8lKiSUzpbY+87ISuHn9BAGdauvTJ6AHFlYOXDjysyT/hSM/Y2JmSasO/XVhFSrtUZh1f1VqiEvVYGMpI6jOabWWZtDWW8aNdI1kXHOw1v7qEpeqoY2HTPKR4usKTnYyrqbWfsRcT9egqtIQ4ifdjDC0lQx7e3vsvJrf+FEzrrVsU/szMTXHP3gopUW3SLy0R5e2rPg2CbG78GnXXyKXMjcFZa5ULv+OQ0i5epCi/Fq50m4cp+BWEv7B2iOpLa0dGTJhod7Po1U4ChNzhkxYSN8HZ+vprE1oFCWFt7gh0VkeN87vxL/DAMleF/m3Usivp7M2IUNJumRYZwFhtTprFTwIucKU2CM/6cI0Gg2xR3/B2t6NkIiJeAf20v1MTM1pE1Jdn7HS+oy/sAv/9n9uff6+8X2un/+NfqPflhz3XJeO3bRjx6n9tQZXVWUFZ37fiHfrEJ2HR/6tdLLT727scPMKwMWzFacO/IpaXWuYPLHvF+3xxt20sllZ2xPQsRdeAbU/bVuL1La1i3V0Vt3WfOvrLDeFgnptrVXwUFKuSNta6nVtW2sdXKuz0iIDx8MAV0+tQ1lYSHaZa7McO5o7Gpnsnv3+TQiPEYGgGdC1a1dWrVrFggULmD17NnK5nICAAF566SUUCgXffvst8+bNY/78+ZSUlNChQweWL19Ox476R6fdLUOGDMHd3Z133nkHpVJJr169ePfdd3Xx/fr1Y+bMmfzwww9s2LCBzp07s2TJEiIjI+/6mg4ODnTv3p3MzEzCwsKanM/c3JzAwEBWr15NRkYGFhYWdOzYkWXLlkk2fa1LUlISAJPquVl3796d1atXY2ZmxqpVq1i4cCGLFy8mJycHBwcH2rdvr9sg9s/iYpKalGw1oyNMcHWooqRMQ3g7BTIZ7DsnnYmdGqV9Wflkba3niYM1hLXRehZ5OmsfWv1DtX/nF2k4H1/7FtHWW467ozaNQg7uLWS6tLdKILfeTEyb0Egu+Iay95c3yMuKx8K6BbFHf0atriI8Sro+feM3kwGY/PZ+XVjXwdO4cWEnG795nNCIiVRWlHDuwHKcPAJpHz5Kkv/q6c0U3k6nslJ7HE96/BlO714EQFDX+7FzbNns5Ora9wHsnVrSslUo7bpEcWDDZxQrc2nh6kvs8Y0U3EpjxKTa5Vhbvn+dlGunePPb2iOfu/R/jPOH1/LrwmmED52KQmHCyT0rsLZzInzIVF26oE61p0bVUHPUbuuOfY16Zehk2/gZJYVa2WKObaQgN40Rj9fKtnm5Vra3ltaRbcBjRB9ey5ovp9Ejciryatls7JwIH1or25kDP3Itei8BoQOwc/SkqCCbC0c3UJCXzgNT5zXqVu07fTym9na602Fchw/AoqU7AElfr0alLCLogxl4TxrF/jYDKU3WLtvLWL+L2yeiCf1uLjbt2lCZexvfaY+CQsG19xZKrnFl1jy6blxE+I7lpP+6HdsOgfhNH8/N5Wspuqr/ceLbJoTQ8Eh++2UBRQW5OLv7cOb3zeTlpDPuqf/p0v38zRvEXznNpz/XztSXlhRyZKfW3T/pWjQAR3b9hKWVLZbWtvSJHA9ovU9+/mY21rYOBHTswbkjUm8gv8AwnNykHm8efqEEhEVxdOtnlBTl4uDsy+VTG1HmpjHk0dr63PXD66TeOMXLX9bWZ2jEY8QeX8vmJdPoMnAqcrkJ5w6uwMrWiS4DauvTxMyCXsNfYP/a99i2/AV820aQlnCGq2e20HvEy1hYOzRUnQBcTdWQdkvD8G5ynO00lJZD5zYy5DI4fEnqBfdof62xatH22rHq2BUNbb1ljO8v5/R1DWYmEB4kIztfQ0xibf7iMm3avh3lPNJXzrU0Da4OENZKxqVkNdkF+i/yzWX88Aseqdt3AcC/YySu3qv4fd0b5GffwMKqBZdP/oxGU0WXwc9Lyt3+3RSt7l7fpwsL6z+NhNhdbF86mQ69J6KqKCHm9+U4ugcS1EUrl4mZJX4d9MeSpMv7yEmNxa/DYCwt9edJ24RF4n4ojL0/zyYv8waWNi2IOaLVWY8oqWwbv9bqbMo7dXQ25GmuX9jJhq8nEdZ3EhXlJZw7sAwnj0DahdeePmfr4E5Yv0mc278MdZUKV59gEmL3kp5whsiJnxg8jat1aCRuv4ey75c3yMuMx9Kmtj6716vPTYu0sj0+p1a2LoO09bnpm8cJ6TuRyvISoqvrs1332vo8f2glsUd/wt0vDFNTS+LOSDdidx0wEDMLK3zahBLcPZKdaxdQpMzDyc2Hc0c2c/tWOqP/874u/Zols0m8epqPVtceb1tWUsjR3dqxI/n6OQCO7/kRCys7LK1t6TVkvC7tfY/MZNXnz7Ls4/8Q2uM+MlOvc3zPT3TrNwbXltLjjuvTKiSS2COhHPz1DW5X94FLx39Go66i6xCpzrZ9q9XZ+Nm1Ous0cBoJMTvZuuRxgvtodXbhUHVb61ars3P7F5OVdA7voAhsHDwoLykg4eJucm7G0rH3BOyc9DfKby5jRwdf4S/wb0em0Wj+ep9tgUDQrBk4cCD9+/fn7bff/luvW1RUREREBM8//zxTp05tPMM/kDeXG97p3cIMhnUzoZ2vHFMFpN7SsPOUirRc6ZA8c6y+YcTfXcZ/7jP84ZmQoWbZjtpNFEdHmNA5wPDmsXsvaLhqYJuYspICjm6ZT8LFvagqy3Hz7kjv+1/DzSdYkm7FewMB6QcEQG7GdY5s/oj0xHMoFKb4te9Hnwdex8pW6iu74auJpMWfNijbQ8+uxKtNeLOTa8Irq/AN0sqlqizn0OYFxJ7YSllJAa5eQfR74EVad6g9QWr1JxP1DCOg3SNkz5oPSbx8FI1GjU9QOEPGzcbRteHTlX7fspDD277i5U+P6xlG6k7sqCrLObhpARdPbqW0uAC3Gtk61sq2av5EPcMIgDIvkz2/fkjC5aNo1Gp8g8IZ8rBUtoTLRzm+axk5adcoKcrHzNwST78Qekb9B/920v17ABwHSY+BHHB9H1Z+XnrpAJ0hJGTZXD3DCICJgx3tPn4N9/sHI7c0p+BMLFden0fBWX03b7f7BxEw5zls2ramIieP1FUbuf7+12jqnDylOVlr4KisKGfn2oWcPbKV0mIlHj6BRI19nrahtacCffPeZD3DSF5OGh+8YHg2uYWzJ28t1HoEnDq0kTWL3zKYDuDhp9+ne7+HAEjNqZ27UlWWc2z7Aq6c2Up5SQHOnkH0Gv4ifu1q63PtlxP1DCMAhbczObTxQ5KvatuaV5tw+o+ajYOLfluLPfYrZ/cvR5mbik0LD8IixtOp/+N6R6neLjC8G6KFKQwIlRHYUoaJQnv6w/4Lap0Lew3PDNf/uAFwtoNBYXK8nLUzyfEZGvad11BiYBjt0kZGlzYyHKy17vgXkzUcuaTB2trwx01zGD+GP7kSz1bSpRjlpQWc/G0+SZf3UVVZjotXR8Lvew0XL+nEx88fDwKkhhGAvKzrnNj+MVlJ55ArTPFp24/w+17Tk6s+B9fOJvHibqa8e9agYQS0OjuyZR4JsTU6C6bPA/o6+/5drc7qGkZAq7PDmz4iPfGsTmcRD87Sk02jVnNm31IuHltDsTIbBxc/ug5+irZd70etNvyZUlZSwLGttfXpWlOf3lLZVv5PK1tdwwhAbqa2PjOq69O3nX597v15FldPbzKiQXjtsz04umgNXZUV5exZ/yXRR7dSWqLE3TuIoaOfJzCkduxY8sHjeoaRvJw05s0YYrB8B2dPZn2+VxJ26cxe9m76hpz0BKxtHekS8SCDHnwGhYn0VKnEDP06LS8p4MT2+SRd0urMxbsjPYe/hks9nf04V6uzuoYRgLzM6xzf9hGZieeQm2jbWs8RUp2lXjtK7NHV3Eq7TFnxbRQmZjh5BNG2+xgCuzxERYXh+mwOY8frY+9+o/2/mtIDPzae6C/CcsD4xhP9P0EYRgQCwd9uGCkqKiI+Pp6ffvqJPXv2sH//fhwcHP6Wa//dGDOMNAc83O/8eMl/O3bWzdettDl7vNY3jDQn6hpGmhN1DSPNDWOGkeaArU3znfUtK2uer9zGDCPNAWOGkeaAl4uBM2abCYYMI82B8vLmq7PZ44RhxBD/JsNI833qCgSC/7dcunSJSZMm4eHhwccff6xnFFGr1ajVxh+eCoVCbwZTIBAIBAKBQCAQCO4GYRgRCATs37+/8UR/IuHh4cTFxRmNf+ONNxrc2HXVqlWEh4cbjRcIBAKBQCAQCP5fIGueHkD/3xCGEYFA0Ox47rnnGD/euOuev7/xY+UEAoFAIBAIBAKB4E4QhhGBQNDs8PLywsvL8MaMAoFAIBAIBALBv4V/27G59wrhlyMQCAQCgUAgEAgEAoHgX4swjAgEAoFAIBAIBAKBQCD41yKW0ggEAoFAIBAIBAKBQNAcEZuv/i0ILQsEAoFAIBAIBAKBQCD41yI8RgQCgUAgEAgEAoFAIGiOiM1X/xaEx4hAIBAIBAKBQCAQCASCfy3CMCIQCAQCgUAgEAgEAoHgX4tYSiMQCAQCgUAgEAgEAkFzRC58Gf4OhJYFAoFAIBAIBAKBQCAQ/GsRHiMCgUDwFxLc1uxei2CUzFv3WgLjWFs1z43GEm9W3msRjOLtaXqvRTCK5uSley2CUWThHe61CAap2hJ3r0UwSlmZ+l6LYBQzs+Y755d3u3mOHx7mzfc51Zw5dLL0XotgFE9Pq3stgkEqKprv2AGKey2AUTRi89W/heb79BAIBAKBQCAQCAQCgUAg+IsRHiMCgUAgEAgEAoFAIBA0R2TCl+HvQGhZIBAIBAKBQCAQCAQCwb8WYRgRCAQCgUAgEAgEAoFA8K9FLKURCAQCgUAgEAgEAoGgGaIRS2n+FoSWBQKBQCAQCAQCgUAgEPxrER4jAoFAIBAIBAKBQCAQNEfEcb1/C8JjRCAQCAQCgUAgEAgEAsG/FmEYEQgEAoFAIBAIBAKBQPCvRSylEQgEAoFAIBAIBAKBoBkiNl/9exBaFggEAoFAIBAIBAKBQPCvRXiM/EvZsGEDpqamjBw58l6L8pcSFBQk+dvJyYmQkBBefvllSdzChQtZvnw50dHRf7eIEqZPn05hYSGrV682GP/000+TkJDA7t27DcavXr2a999/nz179vDNN99w8eJFtm3b9leKbJANGzYwe/Zsjh8/jqOjI6mpqQwaNIgvvviCqKioP+06J0+eJDo6mqeffloS3lzqsz6qygr2b/ySmOObKS1W4uYdxKBRL9K6Q+9G8ypvZ7Hz57nEXzyKRqPGr204UY/OxtHVW5cm+sgGNi17w2gZo5+aT0jPxvt8eamS49vnk3hxL6qKMlx9guk14nVcvDo06T5vZ8VzdMtcMpLOoVCY4tuuH71GzsLSxlGXprggi+PbPyE7NZYSZTYymQIHFz869HqMoC4PArUbjakqKzi6/Qsun9pMeYkSZ88g+ox8Cb92jeutMD+LA+s+JPmqVm/eAeEMGPMGDs7eknTnf/+JlGsnyEiKofB2Bh3CH2LYpI+adL8A5qYwpLOCtt4yTE0g7ZaG3eeqyMxrWn5nO4jsqsDHRUaVGq6ladh9toqScmk6G0voH6KglYcMGwsoLIW4VDWHY9WSdKrKCo5s+4JLJzdTVqLEpWUQEfe/hH8TdbZv7YckXdHqzCcwnEFj3sDBpVZnlRVl7FnzHhmJMShvZ6DRqHFw9iak12g69XsMhcLUaPmqygp2rl3I2cNbKSlW4ukTSNS4FwgK6dWgXNnpiRzfu4bkG7GkJV1GVVnBm1/uxtGlpSRdcWE+pw5u4PK5g2SlJVBVpcLV05++902iU89hRstXWFvR6pUncOgeikO3YMwcHbjwxCxSV21sVGcAJva2tPvoVdweGILCyoKC07Fcfu0jlNGX9dK6jhhI4NvPYdOuDRXZudxcuYEbH3yDpqqq0euUlyg5snU+8TF7UFWW4eYTTMQDs3D1blr/zMuM5/dNH5KRcA65iSl+7fsR8eBsrOr0T4DTuxeRmXyBzOQYSoty6R75HD2GPd9g2RamMKSLgnY+MkwVkJarYdeZKjKa2g/sIaqrAh9XbT+4nqph5xn9fuBoC4M7K2jlLkOhgIw8Dfuj1SRlaYyWXV6q5ORv80m6pB3XXLyD6TnidZxbNn1cO75tLpnV45p32370HCEd1+pzPXorB355FRMzK6b+75zBNBZmENXNhA6+ckxNIDVHw2+nVKTnGr+XGrycZXQOVODtIsPdUYZCLuONZeUG04a3ldPKU463ixwHGxlnr1Wx/rCqwfLLS5Uc3TqfhNi92rbmHUzvB17HtYnPgryseI5smktG4jnkCm1b6/OAVGe3sxK4fGo9N+OOUpCbgqmZNS5e7eke9Rxu3sH/SNkszWBkb3NCWptgagIpWVVsPlJBao7aaJ4afNzkdG9riq+7HE8nOQqFjJcWFhlMu+B5G4PhW4+VcyVDP7y8VMnpnZ+QfEmrMxevYLrf91qT+0B+djwntn9EVrJWZ95BfQm/T6qzwttp/Dp/sMH8/R/+BM9Aw++Af9cztIUNDO6kwN9dhkn12HHgQsNjR7NAbL76tyA8Rv6lbNy48Z58MN8LJk6cyJo1a/jll1+YM2cOmZmZPPHEEyiVynst2h0zYsQIkpOTiYmJMRi/fft2wsLC8PHxYfr06XzyySd/s4SGcXV1Zc2aNfTo0eNPLffUqVMsWbJEL3zs2LGsXLnyT73Wn8HGZbM4vnsFwT1GMuyxN5DL5Pzw+TSSr51tMF95WTErPp5EUtxpIkZMo/+Dz5OZcoXvP5pISdFtXTrfwG6MenKe3s/Dtz1yuQL/9o3rX6NW89uyaVyP3k7HXuPpOXwmpUV5bF48ifycpEbzF+VnsmnRBApyUwgf9hKh/aaQfOUQW7+dSpWqQpeurDif4oJMWgdH0nP4a3SPehErWxcOrJnNyZ2fS8rcuXoWZ/etoF3XkQwY8yZyuYIN3zxF6o0zDcpSUVbMr19MIvXGacIjp9Fr+Atkp15hzecTKK2jN4BTe74j5dpJnDzaIJff+ZzBYwMUBPvJOB2nZu85NdYWMiYPNsHRtvG8tlYweagJjrYy9p1Xc+yymsCWMiYOMkFe5yltagJPRJrQ1ltGTIKaHWequJGmpnugnImDpTL/tmoWp/euoH23kQwa+yYyuYJ1XzVNZz9/Pomb10/TM2oafUa8QNbNK/xUT2eqyjJupd+gVce+9HtwBgNGvYarV1v2rZvL9hWzGrzGz4ve4NBvq+jcZwQPPj4LmVzBd/OeIeFqw/0g6fp5Du/8kfKyYlw9WxlNl3z9PDvWfIGljT2DH5rGsIdfwMzMgh++nMnOtV8ZzWfm3ILAOc9h07YVhTFxDcqih0xGty3f4vnICJK/+YGrs+dj5uJIj72rsWrjK0nqEtmXruu/pjK/kEsv/Y/MLXsJeOMZOnwxp9HLaNRqtix9imtntxEaMYHeI1+ltCiP9V9NbFL/LMzPZN3C8RTcSqHn8JfpPGAqSZcPsembKZL+CXD8twVk3byIi1e7pqkAGD9IQbC/jFNX1eyp6QdDm9YP7KxgamR1P4hWc+ySmgAvGZOGmKCQS9P9Z5gJPq4yjl5Ss++cGjMTGZOGKPB1NfzxoFGr2fn9NG6c306HnuMJv28mZUV5bF0yiYJbSY3KVpSfydYlE1DmptA96iVC+k7h5tVD/PbdVD291VBZXszJ3+ZjYmZltFwZ8PhQU0Jbyzl+pYqdp1VYW8J/7jPFya7xD6EgbzldA+VoNJCnbPjDrm+ICa095GTd1lClbvwjUKNWs3XpNK6f205In/H0GqF9Fmz8uunPgg1fTaDgVgo97nuJTgOmkHT5EJsXS3V26eRaLp9Yi6t3R3rf/zph/SaTn53Iui8e4ea1Y/842WTAkyMt6RJowuGYCrYercDGUsZzoyxxtm+8Ttv7mtCjgwkaDeQ2UqcAV1NUrN5dJvldStQ3sGrUanavfJr4C9tp13M83aJeobQ4l9++e7xJfaC4IJPt305EmZtC16EvERwxhZtxv7Pz+ycM9oFWIcPpN/Zjyc/VJ8xo+X/HM9TOCp6I0o4dxy6r2RetHTsmDNIaYwUC4TEiaHaUlZVhYWHxp5Xn4eFBWFiY7m9/f38eeOABoqOj6dev3592nb+DQYMGYWVlxbZt2wgJCZHEpaamEh0dzVtvvQWAj4/PvRDRIGZmZpI6+Ktxd3fH3d39b7teU0hNiOHiyd8YOu5Veg97AoDQ3g/yzVsj2fPrfP7z1i9G857e/zO5Wck8NWctLVtpZ6kCQvryzVsjObbzewaPmQGAo6u3xIMEtDP721e/i3+7cGztXRqVMz52F5nJ0QyduIDWIdqZndahw/hpXhSndy9kyPhPG8x/bv8SVBWljHlxPbYtPAFw8w5h69KpxJ3ZSPseDwPg5BnEA89IPaOCe0/gt+VPE3vkBwY89BJyuYKMpBiunt1Ov4deo9tgrd46hD/IivdH8PumT3hspnG9nT/8E7ezkxj/2lo8fLX9xb99BCs+GMmZfd8T8cAMXdqHX1qNnaMnMpmML17u1Kie6tLeR4aPq5xff1dxJUX7InspWc1z95vQP0TBhqMNewFEdJBjZgLf/qZCWaINS8vVMGmwCWGtZJy7oS0zyEuGg42Mnw6ouJ5W88KsobQC+oUocLSBvCJIT4rhypnt9B/1GuFDtDrr2ONBlv1vBAc2fsLEV43rLPp3rc4mvb4WDz+tzlp1iGDZ/0Zyau/39HtQqzNLawcmvf6rJG+nvo9ibmnLuYM/MHDMLGwMtLeUGzGcP76DEeNnMmDEFAC6RjzA/NceYNtPn/HCez8ala1jlwGELDuBhaU1B7Z9T3ryVYPp3LzaMOvzHTi6eOrCeg95lMUfPMGBrcsYMHIq5hb6H6vlGdns9epNedYt7Lt0pM+J9UZlqY/H6Cgce3Xm7MMvkLlhFwAZa3fQ//IuAt9+nvOTZurStvv4NZSxcZwaNlXnIaJSFtNm1jQSF66iOC7B6HWuX9hJRmI0wyZ/QUCYtn8GdBrG6g8iObFjIVGTGu6fZ/YsRlVRyqMzN9T2T58QNi2awpVTG+nY62Fd2slz9mHn5EVpUR5L3+rZqA7a+2r7wZqDKi5X94OLSWpeeNCEAWEK1h9upB8Eaz0mlmxXUVCsDUvL1fD4EBPCWss4e11bZkRHORZm8PUWFbnV8xtnr6t57kETorop+PmwftkJsbvISo5m8PgFtKoe11qFDGPNJ1Gc2bOQQY82rLfzB5ZQWVHKqOfXY1OtNxfvEH77birXzm6kXfjDennO7V+Mqbk1nq3DSbq0z2C5Hf3l+LrJ+WlfJReTtN4EsYlqZowxY3BnBWsONuzRcfJKFYdiqlBVwcieJrg4GE+79LcK8qsdD96ZZNZguQA3YnaRmRRN1OMLaBNa3dbChvHD3ChO7lxI5MRG2tpe7bPg4RnrJW1t8+KpXDm9kY49tToL7DSc7pHPYWZurcvbLnwUP308nFO7vsI7UN+TrLnIFjZ8qV7ZoW1MaOWp4PvfSrkQr23z0dcreXOiNcPCzVi927BHTw1HYivZd7aCyioY3c8M1xYN11VOvpqzcfrtxNNT+nfixV1kp0Qz8NEF+AdHAuAfPIx1nw3j3N6vGPBIwxNp5w8uobKylAeeW4eNQ3Uf8Apm5/InuH5uE227j5Okd27Znjad7tcrp7RUfxz4u56hfTpox45F2+qMHTe014nsomjwGvccscfI34LQ8j+Q6Ohopk6dSufOnenUqRNjx47l6NGjuvhPPvmEkSNH0qlTJyIiIpgxYwbZ2dm6+IkTJ3Lq1CkOHjxIUFAQQUFBLFy4UBd/8OBBxo4dS0hICD169OCdd96hpKREIsP169cZP348wcHBDB06lC1btjB9+nQmTpwoSXf69GkeeeQRQkJCCA8PZ/bs2eTn5+viU1NTCQoKYsOGDbz11luEh4czduxYVq9eTWhoKEVFUvfB+Ph4goKCOHTo0F3rz9pa+4CrrKy8o3wlJSW89957REZGEhoaysCBA3n77bcpLCyUpBs4cCDvvfceP/74IwMGDKBLly5Mnz6dvDypP2B8fDwTJkwgODiYwYMHs3Fj4+7alpaWDBo0iB07dqBWS10yt2/fjkKh4L777gNg1qxZjBgxQhevVCp56623iIiIIDg4mH79+vHyyy/r4hcuXEinTvofhF27dtVrH1OmTKFnz5507tyZsWPH8vvvvzcod00979y5E9Autalpe/V/qampAGzatIlHH32U7t27061bNyZOnCjxlFm4cCFfffUVJSUlurw17c/QvaSlpfHCCy/QpUsXwsLCeOKJJ4iLk84KN7Xu7obLZ3Yhlyvo0r/2BdrU1JxOEaO5GX+eglwDfq918rb0D9YZRQBcPFrh364Hl07vbPC6cecPUF5WTEiPpi2bS4jZhaWNM606DtWFWdo40iYkiqRL+43Ojuryx+7Gt11/3csmgFdgL+xd/LhxoWFZAWwdW6KqLKVKpe2f16J3IpMrCOldqzcTU3OCe40hPTEa5W3jersWvQt332CdUQTAyb01vkE9iTu3Q5LW3qklsrt0VW3vK6eoVKN7oQMoKYfLKWqCvGWS2W5DtPORcy1No3uhA0jM1HBLqaGDb21mc1OtfEWl0vyF1X9XVQ8Jcee0OgvrI9VZSK8xpCdEo8wzrrO4c7vw8A3WGUWgVmdX6+nMEPZO2mUt5aWGPfIunNyNXK6g58CxujBTM3PC+48m+fp5bjfQD6xsHLCwtDYar5PX1UtiFAGQyWR07DoIVWUFedmpBvOpKyopz7rVaPmGcB8VSVlmDpkba5c5Vty6Tfq6HbjdPwi5mXZpkU271th2CODmd79Kls0kL/4JmVyOx6jIBq9z48IurGydaRNS2z+tbBwJCBtGwsV9qBrpnzcu7Mavg7R/+gT1wsHFj+vnpfVr5+TV+I3Xob2vnEID/eBSspq2Xo33g/Y+cq6lanRGEYCEDA23CjR08KvN7OMmJyNPo/uwAaisgribajydZDgYaCKJsdpxzb/euNYqOIrkJoxriRd349u2v84oAuAV0At7Zz8SYvTHtYJbScQeXkHPEbOQy41/cHX0k1NYouFSUu3zvLhMaxxp5yNvVGdFZaBqfPUVgM4o0lTiq9ta6+B6z4LQKBKboLP4mN34tZe2Ne9AbVu7cb5WZ67eHSWGBwBL6xZ4+HchLyv+HydbaBsFymI1MfG1FVNcBudvqOjYyqTxOi3VUNnEOq3BVAEmjXzXJ13cjaWNM34dhujCLG0c8Q+OIuVK4zpLurgHn6D+OqMIQMs22j6QGGv42VBZUdJoufD3PUN9XOVk1hs7VFXa5aieTsJjRCAMI/84zp49y8SJE6moqOD9999n4cKFDBo0iPT0dF2a3Nxcpk2bxpIlS3jzzTdJS0tj4sSJqFRai/I777xD+/bt6dy5M2vWrGHNmjWMHat9Sd25cyfPPPMMgYGBfPXVV7z66qvs2bOHN998U1d+WVkZU6dOJT8/n/nz5zNjxgyWLl3KpUuXJLJevHiRKVOmYG1tzRdffMHMmTM5cOAATz75JFX11lF/9tlnaDQaPv30U1599VXuv/9+NBqN3nKfdevW4ebmRp8+fZqsM7VajUqlorKyktTUVObPn0+LFi0IDw9vchk1911VVcXLL7/M0qVLefHFFzl9+jTTp0/XS7t//37279/P22+/zZtvvsnp06f53//+p4svLy9n6tSp3Lp1i3nz5vHKK6/w7bffEhsb26gcI0eOJDs7m5MnT0rCt23bRq9evXBycjKYb+7cuRw8eJAZM2awbNkyXnvtNczMGp81qk9qaioDBgxg3rx5LFy4kM6dO/PUU0/pydMQ/fv317W9ml9oaCiOjo7Y29vrrvPggw/yxRdf8Mknn+Dh4cH48eNJTEwEtMtlxowZg4WFha6Md955x+D1ioqKmDhxIpcvX+bdd99l/vz53L59mwkTJpCRIf0Qa6zu7paM5Cs4ufthYSldE+zVSvsBmnnzisF8arWarJtxePp11Itr2SqEvOwUykuNv/HGHN+KqZkF7boMMZqmLrfSr+Di1R6ZXPp4cPUJQVVZSn5OotG8RQVZlBbl4uKlL6ubdwi30vX3WlBVllFafBtlXipXz2zk6umNuPuEYWqm9RrLTr1CC1c/zOvpzb3a2JGTalhvGrWanLQ43Hz0ZXH3DSb/VgoVZXf4pWAE9xYyMvL0XZ7TbmkwM5HhZGc8r60l2FjKDO4nkHZLg7tj7ctacrYatVpDVFc5LZ1l2FpBG08ZER3lXElRU1D9Uph18wqOBnRWY+zIbkBn2WlxuPvq68zDL5j8nBTK6+msSlVBSVEeyrwMrp3fw6k9y7FzbEkLF1+9MgDSkq7i4uGLhZVUNu82WqNfepJhL5A/g8ICrdHD2rbFn162fVg77V4iGmk9FpyOxcTaCutAfwDswtoDkH9WOtaXZ2RTejMDu7CGl63kpBrun26+wagqSsnPbqB/5mv7p5u3gf7pG2K0LzUVD0cZGbka6rfktFsazEz/WD/wqNMPTOSgMuBIUVkd5uagH3cr/QrOLQ2Ma97aca2ggXGtuHpcczYwrrkYGdeObZ2LZ+twfNo27JXq4SQjPVetp7ObOWrMTGVNWnrxV5GTdgUXAzpz8wlBVVHK7Sa0NVdDbc0nhJw0fZ3Vp6TwFpbWhvtqc5bNy0VBao5+nSZnVWFuKsO1xZ/76dW9rSkfP2PNJ9NtmDXeis6BhhcD5GZcxsmznZ7OXLyDtX2ggeU0xQVZlBXn4mxg/xZnr2By0/XHjuh9X7Pqv11Y8U4Ym78eS+r1o3ppavi7nqEKBQaNTpUNO2YJ/kWIpTT/MObPn4+vry8rV65EodCah+sbCebOnav7f1VVFZ06daJv376cOHGCPn360KZNG2xsbLCyspIsb9BoNMybN4/77ruPDz74QBfu4uLCU089xfTp0wkICGD9+vXk5uby888/4+WlnVHq2LEjQ4cOlSzfWLx4MS4uLixevBhTU+1smYeHB0888QSHDh1i4MCBurRt27aVXBMgMjKS9evX88gjjwCgUqnYsmULY8aM0d17U/jkk08ke204ODjw1VdfYWvbhIWLdXB0dOTdd9/V/a1SqfDy8uKxxx4jMTERf39/XZxGo2HRokU6w0NaWhpLlixBrVYjl8vZsGED2dnZ7NixAz8/PwDat29PVFSU7m9j9O7dG0dHR7Zv307Pnlr35mvXrnHt2jWeeOIJo/liY2MZMWIEDz30kC5s+PDhd6QDgAkTJuj+r1arCQ8P58aNG/z6669NNjY5Ojri6Fi7WdeyZcu4dOkS33//va5ennvuOcl1evfuTUxMDBs3bmTGjBm65TJyubzRZTobNmwgPT2d7du307p1awC6devGgAEDWLlyJbNm1e6J0Fjd3S1FBTkGlxbUhClvZ+vFAZQWF6BSVWDjoJ/XtjqsMD9b7yMYoKQonxsXD9O202CD8YYoVubg4d9VL9zK1qU6PhsnjyC9eIASpfYerOz0ZbWydaG8pIAqVQUKk1qDXMzhVZzc8Znu75ZtejLw4Q91fxcV5GBjoDzrar0V5RvRW0k+VaoKgzrX5S3IxtGiaXppCFtLSDEgRo0nh62ljOx8w2vFbSxrvED044tKNViZa2eNq9RwqwC2naxiSGcF/4mqfXyfj1ez5UQVXh7a9lncSFsrKmhYZ9YN5c3Pxty9Vmdx0XvYurx2SZK7b0fum/ghcoXh14vC/Bxdu62LnYMzAMrbOQbz/VFKivI5uX89rdp2wa5F40vK7hRzDxfyjujv31KWkV0d70rhxWtYuGuvXZ6hf5/lmTlYeLo2eJ0SZQ4tW+v3T2s7bb7igmycPQ33z+IG+qe1nQtlJfmoVBWYmNy5wRy0GwMnZ+mH6/qBlfF+YGslq06rH19Yvx8oNfi6yjAzgYo6HzQ1ewTYWOqXX1JoZFyzqx3XHI2Na4UNjGt2+uNaypWDpF47ypiXNhksry62VjKSMg3cc7WR084Ksm7rRf8tlChz8GzVsM6MtrU71Fl90hPOkJl8nm6Dn/nHyWZnJSM+Tb9OlcXaMHtrGRm5BrPeMQnpVZy/oSJXqcbeWkafYFMmRVpgaVZGYj1H15LCW7j7GX+2lyizcXQPNHidkkLteGVpa+TZXlqrM5lMRsuA3vi2H4y1nRvKvJtcPLqC3SueYvDEr3HxjdAr4+96huYqNfi4GB87mjMasfnq34IwjPyDKC0t5cKFC8yYMaNBw8ChQ4dYtGgR169flyxFSUpKatDTIjExkbS0NN544w2ddwlA9+7dkcvlXLx4kYCAAC5evEhgYKDOKALg5eVF27ZtJeWdOXOGESNG6IwioDXi2NnZcfbsWYlhpH///nryjBs3jgkTJnD9+nUCAgI4dOgQubm5jB492ug9GGLSpEncf792nWNeXh4//fQT06dPZ/Xq1XoyN8amTZtYsWIFycnJkuVFSUlJEsNIt27dJN4YrVu3prKyktzcXFxcXIiJiSEgIEBiBPH19W2SPCYmJkRFRbF9+3befvttzMzM2L59O5aWlgwZYtwroH379mzcuBEXFxciIiIIDDT8AGyMzMxMPv/8c44dO0ZOTg6a6hnSDh2atqt5fX7//Xc++eQT3njjDbp3764Lj4+P57PPPiM6Oprc3Nq3iKSkpDu+xpkzZwgICNAZRUBrIOvVqxdnz0o3fGys7u6Wyooygx8cJqbmAKgqDa87VlWUadMZymuizVtpJO/lM7uoUlU26SSaGqoqywy+ECqq5awyci2ovYeG8qvqlR/QaTiuXh0pLc4j+cpBSgpzUVWW1SnTsDwmdcq7U1lq9KaqaHitd1MxUYCqSv+lrMbFvSEXZ1OFNK2x/DXLZJQl2rXTN9LU5BdrPxC7t5VTUi7namZ1PmM6q2kvFUZ0Vq2PO2mnvkHhPPzC95SVKkm+epzstDgqykv18tdQWVGOial++aamDcv2R1Cr1fz41euUlih5aLLxU5v+CApLC9Tl+i7j6rKK6njt/ckttZ5QhtJWlZVjYtewoc5Y3daEGRtH6sY11DaqjIxTTcFUASoDm3rWtGPTBvpBTR8xdChP3fxVajgdp6attwlj+yrYd76KykroFiTXucKbGLBfGx3Xau5b1QS9KRoYS6rLr1JVcHzbXNr3eJgWbm2MllmDVmcGrlk9npiYyEDP9+DvobGxt6FnQVVTxl8j5ZcU5rL7h5nYOXrRaaDhyZ7mItvNNP3yTU0aHs9N/8Qvry/XS8fak5dVvPKwJcN7mrN4h0bStqoqy5A30AdUKuNjb1X1c9ZQH1DU05mNgydRU76TpAnodD/rF4zk1G/zGP6MvmHk73qGnrmmJsjLhDERCvafr6JCBd0C5Xg6CqODQIswjPyDUCqVqNVqXF2NzyjFxMQwffp0Bg0axJNPPomTkxMymYxx48ZRXt7wR8Dt29ppiWeffdZgfM2Sg+zsbMlsfw2Ojo6SayiVSoPLOpycnCgoKNALq0+3bt3w9/dn3bp1zJ49m/Xr19OtW7c73lTU3d2d4ODavRl69uxJ3759+eabb/jyyy+bXM6ePXt4/fXXefjhh3n55ZdxcHAgJyeHZ599Vk+3dnZSv7+aD+2adNnZ2UZ101g9gfZ0mp9++onDhw8zaNAgtm3bxsCBA3X7pxhizpw52Nvb8/333zNv3jw8PDx46qmneOyxxxq9Xg1qtZpnnnmGwsJCXnjhBXx9fbG0tOTLL7/UW5LSFBITE3nllVd48MEHJfvTFBUVMXXqVBwdHZk1axaenp6Ym5vz1ltvNUk/9VEqlTg7O+uFOzk5cf36dUlYY3V3t5iaWRhc/1/z0l3zQlcfk+olJQbzVr/MmxrJG3NiK5bW9gQE67+IqFQVlCil/dDCxhGFqYXBNcG6l0kj16p7Dw3lNzGVbqxs26Ilti20+1IEdBrBwXVz2PrtVJ54ZyemZhaYGJFHZaS8pshSozcTM+P3Ygi5DKzrXa6kXPvyZaLQf7EyaeCFrYbKBl786uf3dpHx2AAF3+2s0rkdx6VqKK+EfiFyMpWQX4JxndW0FzMjOjOreUFueju1tnPG2k7bt9p2juL4jsX8+uUUnnx3t0GvFVMzc1SV+uXXGPeMyfZH2LjiA65eOMKj0+fi6XtnxvCmUlVahtxc/6NBbmFWHa+9P3Wp9gPDUFqFhbkuXoXWe6suljaORuu2JszYOFI3rqG2oWiC/uUysKmXrLhc25ZN5Mb7QUP7JtS0cUNzPvXz30jXsP1kFYM7y3lmhHbiJVepYf95Nf2Dq7h1K5+SOlt/WVg3MK7V3LdJE/RW1cBYUj0OxR5ZSVlxPl2GSI81NjUxwcocyut4sxSX1ejM0D3Lqsv/640i6qpKius9Cxpqa6omPAsUTRl/DYzdleUlbPvuaSrKihn9/I8oFKZ31A/+TtksLKyxtZLuv1dUqqFS1fB4/lcu26hSw8FzJQzpVIa1XE1GdbXW9AF1A33AxMR431dU68NQH6hqQGc1mFs5ENDlIa4cW4G8MhtL29rvmL/zGXojXcNvp6oY3EnOtOF1xo4LaoZ0FpuvCoRh5B+Fra0tcrlcspFqffbu3YuNjQ0LFizQuf2npRkwaRvAwcEBgLffflvvxBNAZ5BxdXXlyhX99YR5eXmSD3N7e3vJTH8Nubm5un0kajC26eHYsWP57rvvmDJlCocOHdJbbnM3mJmZ4e3trfdB3Bg7d+6kXbt2vPfee7qwU6dO3ZUMrq6uenuygFY3NjaNu/Z37tyZli1bsn37dpycnEhNTZXsA2MIW1tb3nzzTd58803i4uJYtWoV7777LoGBgXTt2hVzc3O9DWkrKyslnjHJyclcvnyZr7/+msGDa8+pLyu781newsJCpk+fjp+fn2SJEsD58+fJzMxkyZIlEi+awsLCuzptxt7eXrc3SV0MtcW/Cht7Fwrz9f3Miwq0L312LQwbPC2t7TExMaMoX9/1vrA6zNZBP29+bjop187Spd84FCamevE3b0Sz8uPHJWHjZ+/F2s5F5zZbl5qwGpd9Q1hVx5UoDec3t7I36p5cQ+vgSK6cXEvqjdP4t48wqrfiar3ZGLh3AEsrBxQmZjr9Gsxr3/Cyhfq4OcATg6S6XLCxksJSw+77ttVhhpYH1FDj/qt1B5ams7GUUVKu0XmLdAmQU1SG3lrsuFQ1/UMVuNprDSPW9i4UNdDWjN13jc6KDeisqBF91xDUOZLft3zOjZh9hEU8ohdv6+CC8ra+bMp87f4ff/Yyl13rvuHYnl8Y/ujLdI3QPyHhz6I8Iwdzd33ZLTxcq+O1z+2yTK0ezT1cKEvNlKQ1d3ch/7R2g+kkC1j2ttTDc/KcfVjZueh9KELtMhnrBtq0dQP9s1iZg4WVQ5O8RdxbwENR0n7w+fpKihrrByXG+0FNnK2BfmBbrx8AnIpTEx2vxs1BRpVaQ+Zt6NxGRnR0NK8/OUmS/9HX92Jla2RcUzZhXLNtYFxT1o5rFaWFRO9bRPuej1FZVkRl9X48leUlhIWF8swwGVD7wT5vTTmFJRpsDZzmWxOmLNGP+7PJTTvPxl+knhmT3tqLlZ2L0XuGhnVm3USd1aVKVcFvK54nNyOO+5/6DiePQFJvnGTTN9LnVHORzaMFPHufdDLqvRXFKEs02Fnrv9PWhBUU/7XGrsuXonn3+SclYeNe3YuVrXODz3arBvuAdmwrNZLf3LLxZ7u1vTudOnVizpSWkvC/8xkKcPqamvPxatxa1I4dnVoLjxGBFmEY+QdRsyfI5s2bmTp1qsHlNGVlZZiamkoMDVu3btVLZ2pqqjcD3qpVK9zd3bl58ybjx483KkfHjh3ZtGkTN2/exNtbezRoamoqV69epUuXLrp0Xbp0Yd++fcyaNQsTE21TO3r0KEqlUpKuIR566CE+//xzZs6ciYWFBVFRUU3K1xDl5eWkpKRIllU0hRrd1sWQbptCcHAwmzZtIjk5GV9f7SaFycnJXL16la5d9deA1kcmkzFixAhWrVqFhYUFDg4OREToewUYIygoiNmzZ7Nu3Tri4+Pp2rUrbm5uVFZWkpKSovPKOXHihGSj3Jo2U1cPaWlpREdHN7o3Sl3UajWvvPIKhYWFrFixQm8T2BpDS93rnDt3jrS0NAICAnRhpqamVFQ0vuN5ly5d2LVrFwkJCbRq1QqAgoICjh07xsMP6x+z+Ffg7tOWpKsnKSstkmzAmppwQRvvbXjTRblcjqtXIOlJF/Xi0hIu0MLF2+D+IbEntqPRaIwuo3H3bsvIJ5dLwqxsXXDybEtGwlk0arVkk7aslAuYmFri4OJfvygdNvZuWFg7kpOqL2vWzRicPRveWBJqZ/zKS7VTvi4t25Jy7STlpUWS+8xI0urNxctwmTK5HGfPQLJS9GXJSIrB3tkbszvcXyS3EFbtlU73FZVC5m3tkpb6tHSWU6GS7oBfn8JSKC7TGNwRv6WzjMw6RhBrC+1sfX3k1YE1w76blxGdJWp15tqAzlxaBpKZbFhnDs7emDeis/r1p3dPfm2Jv3yKspIiyQasKTe0BgFPvz/Po+PI7p/Yvf5r+g6byMD7//OnlWsI5YWrtOjTRVsJdTZgdegegqq4hOJridXptJMKDl2CKThduwGruYcrlt4epHynPQLZswIefOZ7yTWs7FxwadmWdAP9MzM5BhMzSxxcG+ifDm5Y2jiSddNA/0yOwbll03Sfq4SVewz0gzwNPm4y6n+etHSWU1HZeD8oKm1aP6ihUgWpt2rDW3nIcbMN4oFpyyXeKZbV41pmor7esm9qxzX7BsY16+px7ZaBcS3nZgxOHtr+VF5aQGVFCRcOfceFQ9KlBLl2dkyePBmnlmG076PdsL2oVGvk9HOT6+nM20Wrs1sFf73HiL1rEA88rf8scG5p+FmQmXIBEzNLWjShrWUbamspMbi0lI5BGrWavT/NIvX6CaImfU7LNtpltc6ebZutbLeU8M0m6VIWZYmGtBw1rTz169TXTUF5pYbs2wbWTv2JBAW14/vvv2fveTW51cOwpY0zjh7tyErS11nOzRhtH3D2M1pmbR/Qn9C7lRqLo0fjz/bCvFRSrl7luy23MLNy0IX/nc/QGiqr9MeOSpUGUxNhIPm3I/xy/mG88sorJCUlMXnyZHbs2MGxY8dYunQp69atA7Qbc+bk5PC///2P48eP88033xg8BrZVq1ZcvHiR/fv3ExsbS1ZWFjKZjFmzZrF69Wrefvtt9u/fz/Hjx1m/fj0vvPCCbsZ99OjRODs78/TTT7Nz50527tzJ008/jbOzs8Qg8/TTT5OTk8O0adM4ePAg69atY+bMmYSEhNCvX8M7tdfg6OjIoEGDOH36NMOHD8fC4s7drDMyMjh//jznz59n//79TJ8+nfz8fN2mrk2lV69exMTE8PXXX3Ps2DHmzp3L8ePH71gegFGjRuHs7My0adPYsWMHO3bs0OmwqYwYMYLS0lI2bNhAVFSUntGmPo888gjLli3j999/5+jRo7z77ruYmprqDDF9+/bFysqKt956i8OHD7N27VrmzZuHuXntDFeN8ezTTz/lwIEDbN++nalTpza4vMsQS5cu5dChQ0ydOlVSP+fPn6eiooKwsDCsrKx49913OXLkCOvXr2fGjBm4ublJymndujUqlYqVK1cSExNDQkKCweuNGjUKT09Ppk2bxvbt29m7dy9Tp07FxMSExx9/3GCeP5sOXSNRq6s4e3CNLkxVWUH04Y14tQrF3skD0Hp65GRI76N910jSEmNJS6z9kLqVkUDilZN06GbYWBh7chv2Tp74BBg2Qlpa2+MV2EvyMzE1p3VwJKVFt0i4WHvsaGnxbeJjduHXfoBkVqjgVgoFt1Ik5bYKHkrylYMU5dcurUq9fpyCnCRah9TKWlpk+AjkK6fXgUyGm7d2z5qgTlFo1FXEHJXq7eKJDXj4hWLXQqs3ZV46uZnS4xMDO0WSmRxLZnKt3vKyEki5doKgTnduZK1QaY8ArPurUsOVFDU2ljLa+dSOf5bm0N5HxrVU6WxVCxvtT3LPKWoCW8qwqzNz7O8uw9lOxuU6xxfmKTXYWMrwdZO+vAX7af/Oq95SKqizVmfnj0h1Fnu8WmeOxnUW1CmSjORYMuroLDczgeS4EwR1rtVZSVGebn+hulw4uhYAdwOnAQGEhA9Fra7i+P61EtlOH9qIT5sQWlT3g9u30slKM9yfm0L08R1sWjGXzr1HcP/E1++6HEOYu7tgHdQKmUnt3FLGhp1YuLvg/lDt8aGmTi3wGB1F9rYDqCu03nhFl29QdCUe7/+MgzofJ77THkWjVpO5QXtUqJVae4xu3Z+JqTltQqMoKbzFjZg6/bMojxvnd+LfYYDE4yP/Vgr59fpnm5ChJF06SGGdY65vXjtOfk4SAWFN6xPlKu0xunV/KjVcSlFjW68fWJlDB18ZcU3tB14G+oG9jEvJDRsIvF20103IscWtVS+8Amp/JqbmtKoe1xLrjGtlxbdJiN2FTzvpuKbMTUGZK9Wbf/BQkq9Kx7W0G8cpuJVEq+pxzdLGiaGTvtL7ebYOp7ikHNuA8RRb9CY+XUN8ugZVFVxMVGNrJZMcR2xlDsH+cq7eVEt05mir/f3ZmFnY4R3YS/IzMTWnTUgkJYW3iI+t29ZuE39hF/5NeBa0DhlK0mXDba1NqLSt/b7xfa6f/41+o9+mdZ2jqC2s7JutbOUquHazSvJTVcGFeBV21nJCWtdOXlpbQFgbEy4lqiR16mQnw8nu7j7G6y/rBDA3haheToR06omVey9attH+TEzN8e84lNKiWyRd2qNLX1Z8m8TYXXi37d9oH/DrMISUOGkfSK/uA/7BtceMG3q2Fxdkce3sBkysPEhT2t+zZ6ghvJxltPOWEX3jrzVY/VE0yO7Z79+E8Bj5h9G1a1dWrVrFggULmD17NnK5nICAAF566SUA+vXrx8yZM/nhhx/YsGEDnTt3ZsmSJURGRkrKefLJJ0lJSeH1119HqVTy3HPP8fzzzzNs2DDs7OxYvHixzhuiZcuWRERE6D7aLSwsWL58Oe+88w4zZ87Ezc2N6dOns2nTJslJLx07dmT58uV89tlnPP/881hZWTFw4EBef/31OzpVZsiQIezcuZMxY8bclc5Wr17N6tWrAe3+Ea1bt9ZbCtIUHnnkEVJTU/nhhx9YtmwZffr04dNPP2XcuHF3LFONDv/73//y6quv6nS4b98+CgsNz7TWJzAwkKCgIOLi4hg5svHNNTt37symTZtITU1FLpcTGBjI4sWLdZ4zLVq04Msvv+Tjjz/m2WefpV27dsybN0+y94eZmRkLFy7kvffe48UXX8TDw4NnnnmGEydOcPGi/uyLMWqMbB9//LFe3L59+/Dy8uKLL75g3rx5kuU2330nnYUbMGAAjz32GN9++y25ubl069ZNV9d1sbGxYfXq1Xz00UfMmTMHtVpN586d+eGHH/Dw8Giy3H8Er9ahdOgWxd71n1NcmIejqw/nj24iPzeNB6a+r0u3cenrJMWd5t3va48t7T7wUc79vpYfFzxNr6ipKBQmHN+1Ams7J3pFTtG7VlbqNbJuxtHnvieNLlMzRquQSNwOh3Lg1ze4nRWPhXULLh77GY26iq5Dn5Ok3frtZAAmvLFfF9Zl0DQSYnayefHjhPSZSGVFCecPLsfRPZC23Ubp0p3dt5jMpHP4BEVg08KD8pICEmJ3k30zluDeE2jhqvWk8vAPJbBTFIc3f0ZJYS4OLr5cOrkRZW4akeNrl9b9tup1Uq+fYubXcbqwTn0fI/boWjYsmkbXQVq9ndm/AmtbJ7oOmiq5l/jY/WSnanWuVleSkx7H8R3fANAmZCAuDcymX07RcDNHzQM9FbjYqykp127oJpfBwRjp4uhJg7WP3S821c64H76opr2PnMeHmHDyqhozE+jVXk7WbQ3n42tf1k5dUxPWWs6j/RWcilNTUAy+rjKC/eXEp6vJUWo/rjz9QwnqHMXvm7Q6a+Hiy8UTGynITWPYxFqdbVvxOjevn+L1RXV01u8xLhxdy7qvp9F98FTkChNO79PqrPvgWp1dOrmF84d/ISB0MA7O3lSUF5N4+QhJV47SJngAvm17GtSVb5sQQsMj+e2XBRQV5OLs7sOZ3zeTl5POuKdqj8X++Zs3iL9ymk9/rp2hLC0p5MjOHwFIuhYNwJFdP2FpZYultS19IrWejik3Yvj5m9lY2zoQ0LEH545Ij333CwzDyc3bsHzTx2Nqb6c7HcZ1+AAsWmqX7yV9vRqVsoigD2bgPWkU+9sMpDRZu1Q1Y/0ubp+IJvS7udi0a0Nl7m18pz0KCgXX3lsoucaVWfPounER4TuWk/7rdmw7BOI3fTw3l6+l6GrDxqA2YZG4Hwpj78+zycu8gaVNC2KO/IxaXUWPKOm+Fhu/ngzAlHdq+2fXIU9z/cJONnw9ibC+k6goL+HcgWU4eQTSLly6sfmV05sovJ2u2wA6PeE0p3Zr+4RLq+FY23tK0l9O1vaDB3srcHGo7QcyGRy4IO0Hjw/V9oMFG2r7we+xatr7ypk8tE4/6CAn87ZG8tFibw3j+iqIS9VQVKrBxUFG10A5Wbdh7zk1Flb6c37+wZG4+oRyaO0b3M7WjmuXjxse17Yt1ertsVm1eus0QDuubfv2cTr21o5rMYe041pQV+24ZmJmiV8H/feKpEt7yb4Zi1+HweTmSj0cLyapSclWMzrCBFeHKorLNfRop0Amg73npDp7Ypj2w3X+r7VlONhApzba96mWztqxfkCY9u/bRRrO19FbW285HtWz6go5uDvKdGlzitF5F9TQOjQSt99D2ffLG+RlxmNp04LYo9q21j1KqrNNi7Q6e3yO9Flw48JONn3zOCF9J1JZXkL0geXatta99llw/tBKYo/+hLtfGKamlsSd2SIpu1XwYEzNpeuNmots2PbCxFS6BuT8DRX9Mqp4dLAF7o4VFJVp6BNsilwOO09K6//Zh7R531tZu2aqha2MrkHa/uHtqq2fIV21E1+3CzWcidP2mYgQM4JbKbiYWMXtIjX2VjLC25viYCvjx93lqDVST1y/jpG4eK/i8Po3yM++gbl1C66c+BmNporOg6Vjx45l2veKh1/bpwsL7T+NxIu7+O27yXToNRFVRQkxh5fTwj2QwC61Oju98xOUeSl4tu6JlZ0LRbfTuXpqDaqKEnqMMLz59d/1DLW3hjERCq7VHTsC5GTlw77zarq3beb7jAj+cmQaQ1M+AsEdkp+fz+DBg5k8ebLkmNU/g9dee40rV67c9bIVgeBe8sux2iG2srKc/Ru+IOb4VsqKC3DzDmLgQy/Qps7mqN9/NFHPMAJQkJfJzp/nEn/pKBqNGr+g7kQ9OhsnN1+9a+5Z+ylHflvK9Pc24+Zt+MhCgMxbhsPLSwo4tn0+SRf3oqosx9W7Iz1HvIard7Ak3Q8fak+WqmsYAcjLvM6xrR+RkXgOuYkpvm370Wvk61jZ1npE3bx2lNgjq7mVdpnS4tsoTMxw8giiXfcxBHV9CBvr2o8bVWU5R7Yu4MrprZSVFODSMojeI17Ev32t3n5ZMFHPMAJQeDuTA+s/JOmKVm/eAeEMGD1bZ3ipYceqWVw6qe9dBxA1YS4de2pf/NIzKw2msTCDIZ0VtPWSYWIC6bkadp9V6+0H8uKD+i91AC72MLSLAh9XGVVVcD1dw+6zVRTX277HyQ4GhCrwcpZhY6F1I76coubABTUebrVeY6rKcg5vWcClU1qdubYMos/9L9Kqjs5++myinmEEQHk7k/3rPiTx8lHQqPEODGfQGKnOMpJjObn7OzKSYihW3kKuMMHR1Z8O4ffTpf8EveN6XR1q77eyopydaxdy9shWSouVePgEEjX2edqG1u6p8c17k/UMI3k5aXzwwlAM0cLZk7cWamdCTx3ayJrFbxlMB/Dw0+/TvV/tseWy8NoTtQZc34eVn5ehbDpDSMiyuXqGEQATBzvaffwa7vcPRm5pTsGZWK68Po+Cs/pGY7f7BxEw5zls2ramIieP1FUbuf7+12jqnAiXtCVOLx9AWUkBR7bMIyFW2z/dvIPp88BruPlI++f372r7Z13DCEBuxnUOb/qI9MSzKBSm+LXvR8SDsyT9E2D9womkxRveR2vAhOW4+XbXC7cw07bjtt4yTBXaE5R2n1WTnivtBy+N0jeMgLYfRHVT4OMio0oN19I07Doj7QcWZvBgL20fsDTX7sNxKVnN7zFqKlRgZ2d4zq+8pIATv80n6dJeqirLcfHuSI/hr+HiJdXbTx9p9VbXMALace3Eto/ITNKOaz5t+9Fj+Ot6eqvPwV9nkRC7m6n/O6dnGKm5n2HdTWjvK8dUoXXx33FKRdotqc5eHadvGPF3l/HkcMN7OyRkqPnut9rxanSECV0CDX/47bmg4WqqfnhZSQHHts4noc6zoPf9r+FW71mw8n9andU1PgDkZl7nyGbts0ChMMW3XT/6PCDV2d6fZ3H19CaDcoF2TxE7R/0+2Rxk6zdpK1Z2nnrhluZwf29zgluZYGoCN7PUbD5azs1sqVfC249rDT51DSNtWip4bpSBDTeAG6lVfLVRu3wn0FvBwM6meDjJsbaQUVEJKVlV7DtXyfXUKjw99TevKS8t4NSO+SRf3kdVZTnOXh3pPuw1XLykHn5r5g0CpIYRgNtZ1zn528dkJZ1DrjDFu20/woe9hmUdncVf2M7Vk7+Qn5NAeakScwtb3Py6EDbgaZxbdqC01PBOqn/HM9TCDB7oqaClswxLM+2x2JeS1Ry+qB073pnQsOf1vSQ/en/jif4iHDoNbDzR/xOEYURwV3z77bc4OzvTsmVLcnJyWL58OYmJifz2229/2gx8XFwcV65c4a233uKdd95h7Nixf0q5AsHfSV3DSHPDmGGkOWBt1TzdN40ZRpoD3p7N96WurmGkuVHXMNKcMGYYaQ5k5zTffmDMMNIcMGQYaQ54uN/dEc3/duITiu+1CEYxZBhpDhgzjDQHhGHEMP8mw0jzfXoImjVyuZxFixaRlZWFQqEgNDSUlStX/qnLEp555hny8vJ48MEHGT1a6uKr0Wgkm4Iakk8uF1voCAQCgUAgEAgEgn8w4rjevwVhGBHcFf/5z3/4z3/+2l3+9+83bh09deoUkyZNMhr/0EMP8dFHH/0VYgkEAoFAIBAIBAKB4P8RwjAi+EfSoUMH3Uk8hmjRosXfKI1AIBAIBAKBQCAQCP6pCMOI4B+JjY0NwcHBjScUCAQCgUAgEAgEgn8omjs8YVBwd4gFSwKBQCAQCAQCgUAgEAj+tQjDiEAgEAgEAoFAIBAIBM0QjUx+z35/hPj4eKZMmUJYWBi9e/dm3rx5VFTc2elcK1asICgoiGnTpv0hWZqCWEojEAgEAoFAIBAIBAKB4E+hoKCAxx9/HD8/PxYuXEhWVhYfffQRZWVlvP32200qIycnh6+//honJ6e/WFotwjAiEAgEAoFAIBAIBAKB4E/hl19+obi4mK+++goHBwcAqqqqePfdd5k2bRpubm6NljF//nwGDhxIenr6XyytFrGURiAQCAQCgUAgEAgEguaITHbvfnfJ77//Ts+ePXVGEYBhw4ahVqs5evRoo/nPnDnD3r17eeWVV+5ahjtFGEYEAoFAIBAIBAKBQCAQ/CkkJCTQqlUrSZidnR0uLi4kJCQ0mLeqqor//e9/PP3007i6uv6VYkoQS2kEAoFAIBAIBAKBQCBohvzRTVD/CIMGDWowft++fQbDlUoldnZ2euH29vYUFBQ0WOZPP/1EaWkpkydPbrKcfwbCMCIQCAQCgUAgEAgEAoHgnpKbm8uXX37Jxx9/jJmZ2d96bWEYEQgEgr+QgqK7X5/5V2P+9z5v7giV6l5LYBhnJ9N7LYJR8gs191oEo1RUNt/XjaotcfdaBIP43R90r0Uwimbz1XstglFkf2BN/F+Nh3vzHHRNFM1XZ80Zfz/rey2CUUxMmmedWlk2T7maOxrund6MeYQ0hp2dHYWFhXrhBQUF2NvbG833xRdfEBQURNeuXVEqlQCoVCpUKhVKpRIrKytMTP6ad4rm+6YiEAgEAoFAIBAIBAKB4B9Fq1at9PYSKSwsJCcnR2/vkbokJiZy+vRpunXrphfXrVs3li5dSt++ff90eUEYRgQCgUAgEAgEAoFAIBD8SfTt25fFixdL9hrZuXMncrmc3r17G833xhtv6DxFavjwww+xsLBgxowZBAX9dd6UwjAiEAgEAoFAIBAIBAJBM+Rebr56tzzyyCOsXr2aZ599lmnTppGVlcW8efN45JFHcHNz06V7/PHHSU9PZ8+ePQC0a9dOryw7OzusrKwIDw//S2X+52lZIBAIBAKBQCAQCAQCQbPE3t6elStXolAoePbZZ/n0008ZM2YMs2bNkqRTq9VUVVXdIymlCI8RgUAgEAgEAoFAIBAImiPNeFPphmjdujUrVqxoMM3q1asbLacpaf4MhMeIQCAQCAQCgUAgEAgEgn8twjAiEAgEAoFAIBAIBAKB4F+LWEojEAgEAoFAIBAIBAJBM0QjfBn+FoSWBQKBQCAQCAQCgUAgEPxrER4jAoFAIBAIBAKBQCAQNEM0/9DNV/9pCI8RgUAgEAgEAoFAIBAIBP9ahMfI/3M2bNiAqakpI0eOvNei/OXk5eXx7bffcuDAAdLT0zE1NaV9+/Y88MADjBo1CoVCwcKFC1m+fDnR0dF/m1zTp0+nsLDwbztqyhBKpZJu3boxd+5cRo0aZTTdwIEDSUtLA8DExAQ7OzvatGnDoEGDGDduHFZWVnd87RUrVuDv70+/fv3uOO+9qK+/ElVlBcd++4IrpzZTVqrExTOI3iNewrdt70bzFuZncWjDhyRfPYpGo8Y7IJx+o97Awdlbku7C4Z9IuXaCzOQYCm9n0L77Q0RN/OiO5CwrUXJky3ziY/ZQWVmGu08wfR+chat3hyblz8uM59DGD0lPOIfcxBT/9v3o+9BsrGwcJek0ajVnDywj5sjPFCtzaOHiR9ch02jbZYQknUpVwfHfvuDqaa3enD2D6HVf0/RWlJ/FoY0fkhx3FNRqvALC6ffQG9jX0xvAxeNrOXtgOcrcVGwdPAjrN5GwvhObdM/lJUqObNXqTFVZhptPMBEP3JnOft/0IRnVOvNr34+IB/V1dnr3IjKTL5CZHENpUS7dI5+jx7DnG5atVMmJ7fNJurQXVUUZrt7B9BjxOi5eTZPtdlY8x7bOJTPpHAqFKT7t+tFzxCws68hWXJDFid8+IedmLCXKbGRyBfYufnTo+RiBXR4Eame7VJXa+rxyurYf9Bre9Po8uOFDUuKOoqmpTwP9AKrrc/9yCnJTsW3hQVjfiXTq98+sT4W1Fa1eeQKH7qE4dAvGzNGBC0/MInXVxibJY2JvS7uPXsXtgSEorCwoOB3L5dc+Qhl9WS+t64iBBL79HDbt2lCRncvNlRu48cE3aKqqGr1OeamSo1vmEx+7V6e3Pve/3nS9ZcVzeNPcWr2160fEg9K2BnB6z2KyJHp7lvCoRvpBM6tTnVylSo5unU9Cjc68g+n9wOu4NrF/5mXFc2TTXDISzyFXaOXq84BUZ7ezErh8aj03445SkJuCqZk1Ll7t6R71HG7ewUbLbm7Pgn+KbOWlSo5vm0/Cxeox1yeY3iObPubmZcVzdIu2ThUKU3zb9aP3/fXqNDuBK6fWc/PaUZTVdercsj3dI5/D1UidNtc+AM177GgOaGTCl+HvQGj5/zkbN25k27Zt91qMv5zk5GQeeughtm3bxrhx41i6dCkLFiwgJCSEuXPncuDAgXst4j+GyMhI1qxZw6pVq3jvvfcICgpiwYIFPPTQQ2RmZt5xeatWreLQoUN/gaT/PHb9MItz+1fQtttIBox+E5lcwcZFT5EWf6bBfBXlxaz9chKpN07Tfeg0eg57gezUK/z6xQRKi29L0p7e+x03r53Eyb0Ncvmd2741ajWbv32KuLPbCI2YQMT9r1JSlMe6hRO5nZ3UaP7C/EzWfjme/Fsp9BrxMl0GTCXx8iE2fDOFKlWFJO3R7Z9zZMsn+AT1pv/oOdi28GTnqleIO7ddkm73j7OIPrCCtl1H0n/Um8hlCjYvaZre1n01ibQbp+k+ZBo9hr1ATuoV1i7U11vM0V/Y+8tbOLkH0H/0HDz8wzi4/n1O7/22STrbsvQprlXrrPfIVyktymP9VxPJz2maztYtHE/BrRR6Dn+ZzgOmknT5EJsM6Oz4bwvIunkRF692jZZbI9uO5dO4cX47HXqNJ3z4TEqL89i6ZBIFTZCtKD+TLYsnoMxNoXvUS4T0m0LKlUNsXzpVIltZST7FBZm0Comkx4jX6Bb5Ila2Lhz8dTandn4uKXP3j7M4V6c+ZTIFmxY3sR8snERa/Gm6DZlGz/teICftCmu/NFyfe35+C0f3AAaMmYOHX3V97vln1qeZcwsC5zyHTdtWFMbENSqDBJmMblu+xfORESR/8wNXZ8/HzMWRHntXY9XGV5LUJbIvXdd/TWV+IZde+h+ZW/YS8MYzdPhiTqOX0ajVbP12GtfObSekz3h6j5xJaWEeG76e1CS9FeVnsn7hhGq9vUSn/lNIunKITYum6untxG8LyEq5s37Q3Oq0Rq6tS6dxvVpnvUbMpLQoj413oLMNX2l11uO+l+g0YApJlw+xebFUZ5dOruXyibW4enek9/2vE9ZvMvnZiaz74hFuXjtmVLbm9iz4p8i2fdk0rkVvJ7j3eHpW1+mmRU2v003fVNfpsJcI6z+F5CuH2PKttE4vn1zLlZNrcfXqSK+RrxPadzL5OYmsX2i4TptrH6iRrbmOHYJ/F8JjRHDPKCsrw8LC4k8pa+bMmVRVVbF+/Xrc3Nx04X379mXChAkUFhb+Kdf5N+Ds7ExYWJju7yFDhjBq1Cgee+wxZs+ezffff3/vhPsHk5EUQ9y57fR98DW6DnoCgPbdH2TlhyP4ffMnPDrjF6N5Lxz+ifycJB6buRZ33xAA/NtHsHLuSM7u+54+98/QpR334mpsW3gik8lY+EqnO5bz+oWdZCRGM3zKFwSERQEQ0GkYK9+P5MSOhQx7/NMG85/evZjKilIenbkBO0dPANx9Q9jwzRQun9pIcK+HAe3M/7kD3xMaMZ4BY94GoGPPsaxbOIHDm+cREBaFXK4gMzmGa+e2E/HAa3QZqNVbu24PsvqjERzZ8gkPv2xcbzFHtHp7ZEat3vzaR7D6o5Gc2/89vUdq9aaqKOPY9s/xb9+fEVO/BCC41zg0ajWndi0iuNfDWFjZN6qzYZOlOlv9gVZnUZMa1tmZPYtRVevMtoVWZ24+IWxaNIUrpzbSsVpnAJPn7MPOyYvSojyWvtWzwXIBEmJ3kZUczZAJC2gVopWtdcgwfpkfxZk9Cxn0WMOyRR9YgqqilFEvrNfJ5uodwvalU4k7s5H2PbSyOXkEcf/TUq+4jr0nsOP7p7l49Af6PfCSrj7jquuzbj9YNXcEhzd/wiNN6AePviKtz1VzR3J2//f0qVOfR7d9jn+H/ox8ok59atSc3LWI4N7/vPosz8hmr1dvyrNuYd+lI31OrG9Qhrp4jI7CsVdnzj78ApkbdgGQsXYH/S/vIvDt5zk/aaYubbuPX0MZG8epYVN1HiIqZTFtZk0jceEqiuMSjF7nxoVdZCRFM+zxBbSp0VvYMFZ/GMXJnQuJnNiI3vZq29ojr6yX6G3z4ql6ent8zl7sHL0oLbrNd3Ma7wfNsU4BbsTsIjMpmqjHF9AmtFZnP8y9M509PMOAzk5vpGNPrVyBnYbTPfI5zMytdXnbhY/ip4+Hc2rXV/i30/fWam7PguYom2+HSD3Z4qvrNHLiAlpX12mb0GH89HEUp3cvZMj4hmU7u09bp2Nfko65W7+dytUzG+lQPeYGdBpO96HPYVq3TruP4ud5wzm9+yv820vrtLn2AWjeY4fg34XwGGnGREdHM3XqVDp37kynTp0YO3YsR48e1cV/8sknjBw5kk6dOhEREcGMGTPIzs7WxU+cOJFTp05x8OBBgoKCCAoKYuHChbr4gwcPMnbsWEJCQujRowfvvPMOJSUlEhmuX7/O+PHjCQ4OZujQoWzZsoXp06czcaLUHfn06dM88sgjhISEEB4ezuzZs8nPz9fFp6amEhQUxIYNG3jrrbcIDw9n7NixrF69mtDQUIqKiiTlxcfHExQU1CRPgzNnzhATE8O0adMkRpEaPD09CQoKMpo/LS2NF154gS5duhAWFsYTTzxBXJx0Ri4oKIhly5ZJwlasWKFXbnx8PBMmTCA4OJjBgwezcWPT3Jyjo6N5+umn6dOnD2FhYTzwwANs2rRJkubkyZMEBQVx9OhRXnnlFTp16sSAAQNYunSpXnm//vorAwcOJDQ0lMcff5zk5OQmyWGM9u3b89hjj3Hs2DESErQvxiUlJbz33ntERkYSGhrKwIEDefvttyVGqJqlOT/++KOuDW7YsAGATZs28eijj9K9e3e6devGxIkTiYmJMXj9mJgYxowZQ3BwMMOGDdPzADp48CBTpkyhZ8+edO7cmbFjx/L7779L0iiVSt566y0iIiIIDg6mX79+vPzyy5I0mZmZzJw5k/DwcEJCQhg/fjwXL178Q7qr4fr5ncjkCt0LF4CJqTnBPceQkRhN4e0Mo3mvRe/CzSdY9zEI4OjeGp/AnsRF75CktXNsiewPbNJ1/fwurGydaRMyVBdmZeNIQKdhxF/ch6re7Et9blzYjX+H/rqXTQCfoF60cPXjWh1Z42P3oq6qJKTPY7owmUxGcO9HKcrPJCMxuloerd461tNbhx5jyEhqWG/XzxvQm1trvAN7cu18rSw3r5+krDhfIgtASMR4KitKSLx0sJF7NqKzsGEkNFFnfh36617oQKszBxc/rp+vV79OXg2WVZ+E2F1Y2jjj37FWNksbR1qHRJF0ab/ebFp9EmN349NOKptXQC/snf1IiNnZ6PVtW7REVVmKWlUJwDUj/aDjH6hPn8CekrZVU5+h9eoz9B9cn+qKSsqzbjUpbX3cR0VSlplD5sbdurCKW7dJX7cDt/sHITczBcCmXWtsOwRw87tfJctmkhf/hEwux2NUZIPXqdFb6xBpW2sTFkXCxcbb2o0Lu/Frb0xv0rZm53hn/aA51ilAfI3OguvpLDSKxCb0z/gYfZ15B2rlulFHZ67eHSVGEQBL6xZ4+HchLyveYNnN7VnQHGXLSj6vV3Z8zC4sbZ1pVa9OW4dGkdiEfpAQuxvfdobrNP5CnTr16igxigBYWLfAo1UXbmfr12lz7QN1ZWuOY0dzQYPsnv3+TQjDSDPl7NmzTJw4kYqKCt5//30WLlzIoEGDSE9P16XJzc1l2rRpLFmyhDfffJO0tDQmTpyISqUC4J133qF9+/Z07tyZNWvWsGbNGsaOHQvAzp07eeaZZwgMDOSrr77i1VdfZc+ePbz55pu68svKypg6dSr5+fnMnz+fGTNmsHTpUi5duiSR9eLFi0yZMgVra2u++OILZs6cyYEDB3jyySepqrcm+bPPPkOj0fDpp5/y6quvcv/996PRaPSW+6xbtw43Nzf69OnTqK5OnToFQERExB1oWEtRURETJ07k8uXLvPvuu8yfP5/bt28zYcIEMjKMv6Abory8nKlTp3Lr1i3mzZvHK6+8wrfffktsbGyjedPT0+ncuTMffPABixYtYujQobz11lsGDSvvvPMOfn5+fP311wwYMIBPPvlEYgQ4cOAAc+bMITw8nK+++oqePXvy4osv3tG9GKKmLi5cuABo20dVVRUvv/wyS5cu5cUXX+T06dNMnz5dl+err77CxcVFtzxnzZo19O/fH9Aayx588EG++OILPvnkEzw8PBg/fjyJiYmS61ZWVvLyyy/z0EMP8dVXX+Hr68tzzz0nMV6lpqYyYMAA5s2bx8KFC+ncuTNPPfUUJ0+e1KWZO3cuBw8eZMaMGSxbtozXXnsNMzMzXXxBQQGPPfYYV69eZc6cOSxcuBBLS0sef/xxcnNz/7D+slOv0MLVD3NLG0l4zUdeduoVg/k0ajW30uNw9+moF+fuG0zBrRQqyooM5Lw7clKv4OrVHplc+nhw9wlGVVFKfnaikZza2bWSolzcDMjq5hNCTp17zEm7gqmZFY5uraXXqdZHTtoVnTwtXPwwt6inNx9puvrU6M3N24DefKR6y0m7XC2jNK2bdwdkMrlEbkPkpF7BxYDO3HybprPSolyDcrr5hjR67ca4lXYF55b6srl6h6CqLCU/x7hsxQVa2Vy89GVz9QnhVrr+/hSqyjJKi29TmJdK3JmNxJ3ZiJtPGCZmWu9AXX3eZT8w1Lbq94Ps1Ibr09g1amjO9Xk32Ie10+4lotFIwgtOx2JibYV1oD8AdmHtAcg/K31mlWdkU3ozA7uwhl3Pc9KM6M0nBFVFKbeboDdXQ3rzCeFWmn5buxOaa53mpF3BxUD//DN0ltMEnZUU3sLSuoVh2ZrZs6B5yqav41vphuu0KWNuUYHxOnX1/mN12lz7ADTvsUPw70IspWmmzJ8/H19fX1auXIlCoXXTq28kmDt3ru7/VVVVdOrUib59+3LixAn69OlDmzZtsLGxwcrKSrI0QqPRMG/ePO677z4++OADXbiLiwtPPfUU06dPJyAggPXr15Obm8vPP/+Ml5fWwtqxY0eGDh2Kj4+PLt/ixYtxcXFh8eLFmJpqZ548PDx44oknOHToEAMHDtSlbdu2reSaoN3TYv369TzyyCMAqFQqtmzZwpgxY3T33hBZWVmA1jPkTtmwYQPp6els376d1q21D75u3boxYMAAVq5cyaxZs+6orOzsbHbs2IGfnx+g9bSIiorS/W2M4cOH6/6v0Wjo1q0bWVlZrFmzhoceekiSdujQoTz/vHajqJ49e3Lw4EF27dpF3759AVi0aBFdu3bVtY+IiAjKy8v55ptvmnwvhnB3dwcgJycHAEdHR959911dvEqlwsvLi8cee4zExET8/f1p3749ZmZmestzAJ577jnd/9VqNb179yYmJoaNGzcyY0bt0pDKykqeeeYZxowZA2j7wdChQ1myZAmfffYZABMmTJCUFR4ezo0bN/j1118JDw8HIDY2lhEjRkj0WVfvK1euRKlUsnbtWpycnACtfiMjI3WGlD9CsTIHazsXvfCasOKCbL040O7dUKWqwNreeN6igmwc6xkO/oicLVt3NXAtV921nD0Ne2AVK7MlctWXtawkH5WqAhMTM4oLcrCyddLzbql7TzXyGCzPXpquPneit2JlDjK5AitbJ0k6hYkZFtYOFCkNX6OGkkZ0VtwEnVk1QWd3Q0lhDh6t9GWzsnWplj0bJw/DspXUyGarL5uVrQvlJQVUqSpQ1JEt9sgqTu34TPd3yzY96T/uQ93fxcqcBuuk2IiudfXZQB9qan0a62s1NOf6vBvMPVzIO6K/f0tZRnZ1vCuFF69h4a6VuTwjRy9teWYOFp6uDV7HuN5q6/buxw79tnYnNNc6LVHm4GmofzZFZ4XG5bKyM9w/65KecIbM5PN0G/yM4fKb2bOgOcpmaLwqVhoec+vmaXTM/YN12nWQfp021z7QsGz3fuxoLojNV/8ehGGkGVJaWsqFCxeYMWNGg4aBQ4cOsWjRIq5fvy5ZipKUlNSgp0ViYiJpaWm88cYbOu8SgO7duyOXy7l48SIBAQFcvHiRwMBAnVEEwMvLi7Zt20rKO3PmDCNGjNAZRUD78WpnZ8fZs2clhpEab4G6jBs3jgkTJnD9+nUCAgI4dOgQubm5jB492ug9/FmcOXOGgIAAnVEEwMHBgV69enH27Nk7KismJoaAgACJEcTX11dPX4YoKChg4cKF7Nu3j6ysLJ2njYODg17aunUrk8lo3bq1blPUqqoqLl26xKuvvirJExkZ+YcNI5rq2ca6LwibNm1ixYoVJCcnS5ZhJSUl4e/v32B58fHxfPbZZ0RHR0s8MpKSkvTSDhkyRPd/hULB4MGD2bt3ry4sMzOTzz//nGPHjpGTk6OTtUOH2t3M27dvz8aNG3FxcSEiIoLAwEDJNY4ePUp4eDj29va6fiGXy+nWrVuTvH4aQ1VZZvDBrDA118UbzleuTWcgr4kub/kflq/2eoblNDE1a/RaTZK1ogwTEzPj1zGR6qOp6e5Kluo0qooyFApTvXQ11zF2jdprGalbkz+os+p7rKrW2d1Q1Wi7a0A2lXHZFHX0Xze+TdhwXLw6UlaUR/KVg5QW5Ur0p6poRJ6KO6/PWlnKa2UyVp+m/+z6vBsUlhaoy/Vd0dVlFdXxWrnkllqvHkNpq8rKMbFr2Pja+Bh3d3qrO0be7cdNc61T4+NtdbkNyFXVBLmMlV9SmMvuH2Zi5+hFp+q9m5ou2715FjRH2QzVT1VlGQpF4+NUg7IZyN+UOt3zY3WdDtCv0+baBxqUrRmMHYJ/F8Iw0gxRKpWo1WpcXY3PzsTExDB9+nQGDRrEk08+iZOT1qI9btw4yssb/ki6fVu7e/+zzz5rML5mCUl2djaOjo568Y6OjpJrKJVK3Qx7XZycnCgoKNALq0+3bt3w9/dn3bp1zJ49m/Xr19OtWzeJV0pD1OwrkpGRga+vbyOppSiVSpydnQ3Kfv369TsqKzs726geGquTWbNmER0dzbPPPqvz9Pn555/ZsWOHXlpbW1vJ36amprp9PfLy8lCpVHr1Zuge75QazxwXF61Vfs+ePbz++us8/PDDvPzyyzg4OJCTk8Ozzz7b6P0WFRUxdepUHB0dmTVrFp6enpibm/PWW2/p5TU1NcXeXrpRopOTk85zRa1W88wzz1BYWMgLL7yAr68vlpaWfPnll5LlUHPmzMHe3p7vv/+eefPm4eHhwVNPPcVjj2nXDt++fZvz589LjCk1NLUtNoSJqYXBdbI1L1YmpoY3Ita9IBvIq9LlNb9jeapUFZQUSfunpY2jUTlVlRWNXqtJslYvqTB6HZVUH01Nd1eyVKcxMbOgqqrSYDkqVbnuGlWqCkqKm66zmrC71lmNYcKs8U2qq1QVlBTmS8IsrB1RNNruGpDNxLhsVUb0b9uiJbYtWgLQptMIDq2bw/alU5ny1k5MzCy0um5IHiP32pCeamUx18lktD4rpfVZVlJAlbo2vrnU559JVWkZcnP9jwK5hVl1vFYudan2A9RQWoWFuS5ehXZWvC4N6q0pba2h+m1kjJSkVVVQXqpsumx/U53WtDW1unY5U8PjbXW5DcilaIJchnRWWV7Ctu+epqKsmNHP/4hCYXpH9fl3Pws0arVEvuYkm1pdRUkd2SxsqsfcqsbHqQZlM5C/sTr9bfnTVJYXM2zKCirLS1BXlerim0MfqMlfWpwvCWsuY4dAAMIw0iyxtbVFLpdLNlKtz969e7GxsWHBggXIq9fkpaWlNan8Gi+Et99+m5CQEL34GoOMq6srV67orxvMy8vD2rp2wyd7e3uDezDk5ubqfdAa2xRy7NixfPfdd0yZMoVDhw7pLbdpiO7duwNw5MiROzaM2Nvb6+1pAfqym5mZUVkpfdFWKqUvX66urnr7r9SUZWNjfKatvLycgwcPMmvWLMmmtj/99FOT76MGR0dHTExMyMvLk4TfunV3m/bV5fDhwwC6JTE7d+6kXbt2vPfee7o0Nfu9NMb58+fJzMxkyZIlEo+awsJC3ZKdGiorKykoKJDUR25urs5Ak5yczOXLl/n6668ZPHiwLk1ZmXSWydbWljfffJM333yTuLg4Vq1axbvvvktgYCBdu3bF3t6eiIgIg/ux1N2L5G6xtnOhqCBLL7zmhc/a3rAh1MLKAUW1S6+xvDZG8jZEemI0a7+cJAmb8vY+rO1c9F6StdfKbvRaOpdcg/lzsLBy0M0oWdu7cPPGSTQajWRcqH9PRvVW0PC934nerO1c0KirKCnMlSy/qFJVUFacj031faUnRrP+K6nOJs/Zh1UjOjNWt9pra+NKmqCzhshIjGbD11LZHpu1FytbF4NllxRqw6zsjMtWE1eTtn5+cyv7RmfhWoVEcvXUWlLjT+PXLkJbn/kN9AMj8ujq04ieoOn1WVMf6YnRrFvYPOvzz6Q8Iwdzd303cwsP1+p47X2VZWplNvdwoSxVejS7ubsL+ae1m2MnWcDyd6R7ej0+Z28Demu4buvGGR87Gm9rABlJ0Wz8+nFJWHOoU0P9c9JbWp0Z7J9N0ZmtcblKlIb7Z5Wqgt9WPE9uRhz3P/UdTh6BpN44yaZvpDprTs+CC4d/4MLhH5qlbBeP/sjFoz/qwie8sRdrI3XalH5g1UBba6hOd67U1umIJ7+jsqyIFQukHtfNoQ+A4X7QXMaO5o7mD2yqL2g6wjDSDKnZE2Tz5s1MnTrV4HKasrIyTE1NJQP11q1b9dKZmprqzcC3atUKd3d3bt68yfjx443K0bFjRzZt2sTNmzfx9vYGtJtcXr16lS5duujSdenShX379jFr1ixMTLRN6ujRoyiVSkm6hnjooYf4/PPPmTlzJhYWFkRFRTUpH0DXrl0JCQlh8eLFDBkyRM/TJiMjA6VSafBkmi5durBr1y4SEhJo1aoVoF3WcuzYMR5+uPbUBHd3d+Ljpbt8Hzt2TPJ3cHAwmzZtIjk5WWegSU5O5urVq3Ttqr92soaKigrUarVkKVJRURH79+9vogZqUSgUtG/fnj179jB58mRd+K5du+64rLpcuXKFn3/+mT59+uiWCtW0wbo0tQ3WGC3q5j937hxpaWkEBATolbFnzx7dHiNVVVXs3buX0NBQAF3ZdctKS0sjOjra6N4uQUFBzJ49m3Xr1hEfH0/Xrl3p1asXW7ZsoXXr1lhZWTWkjrvCxastN6+fpLy0SLLxZEaSdjNbVy/DGxvK5HKcPQPJTNE/HSczOQZ7Z2/M7mJ/EZeWbRk1XXr0srWdCy5ebUmLP4tGrZZshJaZHIOJmSUOrsaXSNk4uGFp40iWAVmzUmJwaVlrBHNp2Y6Lx9eSlxWPk3ub2utU68OlpVYfLl5tuXnjJOVlRZINWDOTpenqI5PLcfYIJOumEb051eqtpoyslIv4d+hXK/PNi2g0aly82lana8uDz0h1ZmXngkvLtqQn/EGdGZDz/9g77/CoirWB/7al9x5IhYRASKOGXoUAgiJFUTqiUeyIAha8elVsKAoKKHJFvCJKLxo6SK8hCR1CSSC997a73x8n2WSzu0lQlNzP+T1PHuWcmdn3vFPOmXfeeSf9ZjwudXTWEC4t23L/Eyv0rlnauuLSoi2p1w1lS0+KQ6myxMHVtGzW9u5YWDuRectQtoykeJxbNByME2pX7MpLJa8215bG+0FNfTbWD4y1rdQb9erTy0R9JlXXZ8va+hz1zH/Q1PEYaS71eTcpiLuIY69OIJPpBWB16BpGVXEJxZevV6eTFkIcOoWSf6J2+6C5pxuW3p4kLf8ZgBYV8OBT+m3Nyta03tJvxqE0s8SxCXrLMKa3pHhcTPTz+ri0aJ591KV67NDW0b+VrSsuLduSakyupD+vs/pjo1ajYdePc7h15ShDJn1GywBpUcmlRfN+F/QZOReXFrVbX5uTbD1GzMHZs1Y2q+oxN8XImJvRhDHXxt4dS2vjdZqRHI9LC8M63f3THG5dPcrgiZ/RsnVXykryGfHkChSK2vlBc+gDIPWD5jp2CAQgTqVptrz88svcuHGDKVOm8Ntvv3H48GG++eYb1q5dC0DPnj3JzMzk3//+N0eOHOGrr74yeoJJq1atOHv2LHv27CEhIYH09HRkMhlz5sxh1apVzJs3jz179nDkyBHWrVvH888/r/OgGD16NC4uLjz11FPExMQQExPDU089hYuLi55B5qmnniIzM5Po6Gj27dvH2rVrmTVrFmFhYfTt29dAJmM4OTkxcOBATpw4wf3334+FxZ25vX3yySfIZDJGjx7NihUrOHbsGAcOHODTTz9l+PDhJCcnG803atQoWrRoQXR0NNu2bWPXrl1MmzYNpVLJ5Mm1KyhRUVHExMTw/fffc+DAAV555RXd1pK6Zbm4uBAdHc1vv/3Gb7/9ptNXQ9ja2hIaGso333xDTEyMToaGvEwa4qmnnuLkyZPMnTuXAwcOsHTpUjZt2tTk/FlZWZw5c4bTp0+za9cu3n33XR599FE8PDx4//3aIIo9evQgPj6eL7/8ksOHDzN//nyOHDliUF6rVq04evQohw4dIiEhgdzcXCIiIrCysuLtt9/m4MGDrFu3jpkzZxo9blmlUrFkyRL++9//sn//fp555hnS0tJ48skndeV7eHiwYMEC9u7dy7Zt25g2bZqBgWzcuHF8++23/P777xw6dIi3334blUqlM1pNmTIFmUzGhAkT2LhxI8ePHycmJoYPP/yQ7777rsn6M0WbiCFoNWoSDq/RXauqrODcsfV4+IVj6+gJQEFOCjlp+ka4wIgo0pMSSEuqnazkpF8j6fJR2kQ03YhYFwsre3yCeuj9KVXmBIQPoaQwi6vxtUd7lhblcOVMDK3a99dbFcrLSiIvK0mv3IDwwVw/t0/v2NWkS0fIzbhBYB1ZW4UORK5QEX+w1jNKq9WScPgnbOzd8fTvUF2epLezdfVWVcH5Y+vx8K2nt3rHTgZU6y29nt6SrxzVk8U7sBsWVg7EH1qtlz/+4GqUZpb4B/f7Qzq7eiYG/6boLGwwN+rpLPnyEfIy9XXWEBZW9ngF9tD7U6rM8Q+NorQoi+tn68hWnMu1hO34BvfXW0nLz04iP1tftlahg0m6sI+ivFrZbl05Qn7WDVqH1spWWqTvpVbDxeNrQSbD3VvaohbYUD9opD4Dw433g+QrRwnsUCuLT3V9xh3Ur8+46vps1b6fTme+zbQ+/yjmHq5YB7VCpqxd90pdH4OFhyseDw3WXVM5O+I5eggZW/eiqZC8IYvOX6XoQiLe0x+GOpMT3+hH0Wo0pK2Xjr200mC0H7QOj6KkMItEPb3lcjVuO/7t67W1rCTy6+mtddhgbpw3rreA8Kb3g+bYR2vk8m5T+6dUmRMQVq2zBH2dJcZtx79+//yTOvt9w7tcOfMrfUfP0zsWtbm/CyL6Tmy2soX1nmhQp63CoigtzOJagv6Ymxi/Hb8m9INWYYO5eWEfhfXG3LzMG7QO06/TAxvf5eqZX+kzap7uyGcLK3u82zS/PlAjW3MdO5o74rjevwfhMdJM6dy5M99//z0LFy5k7ty5yOVyAgMDefHFFwHo27cvs2bN4ocffmD9+vV07NiRZcuWERUVpVfOE088QVJSErNnz6agoIBnn32W5557jqFDh2JnZ8fSpUt1q/wtW7akd+/euom8hYUFK1as4K233mLWrFm4u7szY8YMNm7cqBfnIiQkhBUrVvDpp5/y3HPPYWVlxYABA5g9e3aTTpWpYdCgQcTExOg8A+4EX19fNmzYwDfffMPq1atJTU3FzMyM4OBgXnvtNfr37280n42NDatWreKDDz7gzTffRKPR0LFjR3744Qc8PT116WbMmEF2djZffvklMpmMRx55hEmTJvHBBx/o0tTo61//+hevvPKKTl+7d+/WxQAxxYIFC5g3bx5z5szBwcGBiRMnUlJSwooVKxrMZ4yBAwfy9ttvs3TpUrZt20Z4eDgLFy7UHdXcGNu3b2f79u0olUpsbW0JDAzkpZdeYuzYsXqeFOPGjePWrVv88MMPfPvtt/Tq1YsFCxbw8MMP65U3c+ZM/vWvf/Hcc89RXFzM/PnzGTVqFJ9//jkfffQRM2bMwM/Pj7fffpvly5cbyKNSqfj00095++23uXz5Ml5eXnzxxRe6LThmZmYsWrSId955hxdeeAFPT0+efvppjh49ytmztSsIHTt2ZOPGjdy6dQu5XE6bNm1YunSpLvCuo6Mja9asYeHChXzyySfk5eXh7OxMeHi4XvDXP4qnXzhtOgzh4OZPKSnMxsHVl/PHNlCQfZvBj9VuHYtZNZtbV48zc1HtccQRvR8j4fAvbFwaTacB01AolJza+x1Wts50GjBN73cSE/aQefsiABpNJVkplzga8xUArUMH6K2GGSMwIorY/RHs+HEu2WlXsbR2JP7garQaNd2GPqeXdt2XUwB4/K1a76aug57iypkY1i6eRIe+k6goL+HUnm9x8WxDcLda915bBw869J3EqT3folZX4eETSmL8Lm4nnmTIxE+QyxU6vQVGDOHQljp6O76Bgpzb3Pdord62/3c2t68e58XPa/UW3usxzh75hU3Louk4YBpyhZLYar11rKM3pZkF3Yc9z96177DtP8/j27Y3txNPcvHkZnrc/xIW1g4N6iwgIgqP/RHsWj2XnLSrWNpIOtNo1HQboq+zDdU6m1pHZ50HPcWVuBjWfzmJiD6Szk7v/RZnzza0i9R3ib5wYiOFuSm6IKUp105wfIdUv63CH9DF96ihVVgUCQfD2ffza+SmJ2Jh7ci5I1J9dh70rF7arV9Lso2fWytbhwHRXIuPYcuyyYT2mkhleQlx+1fg5NGGoC6jdOlO71lK+o3TeAf1xsbBk/KSfK6d3UFmcgIhPSfg4Cp50enVZ1E2Di7V9Zl9m0F16/MHqR+89EWd+uz9GAnV9dlpwDTkciWn91X3g/769dnj/ufZ88s7bF1RXZ/XpPrsOfx/pz7tlOBUGx8d3xnjUdnb6U6Hcbu/PxYtpa2HN75cRVVBEUHvzcR70ij2BAyg9Ka0vTZ13XZyj8YSvnw+Nu0CqMzOxTf6UVAouPzOIn155nxE5w1LiPxtBSk/b8O2fRv8ZownecUvFF281rDewqOI8w1n10+vkVPd1hIOSXqLHKLf1jZ8Jeltyrw6ersvmqtxMWz4ajLhvSdSWVHC6b0rcPZsQ3DkKL38F09sojA3hcpKKY5CSuJJTuxYAkDbLg9i56TfD5pLnbbp+ICebK3Do3D/PZzdP71GTloilja1OutaT2cbl0hyTX6zVq5OAyWdbfxqMmF9pP4ZW62zdl1rdXZm/0oSDv2Ih18EKpUll05u1iu7TcQgVOb6npLN7V3wvyJb67Ao4n3D2fOz1A8srR05e1iq0y6D9et08zJJtomv18rWcWA0iXExbFoymbDeUp2e2bcCp3p1Gvf7Ss4e/hF33wiUKksunWq4TptLHwjq9IBh/2wmY8ft8Adp2VJfNsE/C5lWW+9ge4GgAfLy8rjvvvuYMmWK3nGrd4NXX32VCxcuGN2OIRD8r7KsdgGEqspyDm1byMUTWygrycelRRA9h7+AX7va/fo/fz7RwDACUJibxr7173Pz4iG0Wg3egZH0HTUXR1f9uDoxq+Zw/rih9xhA1Pj5tO9W+5FQdwtBXcpK8jmw6SMSE3ZRVVmOu08ofR58FXefUL10374tnThV94MTIDv1Cvs3fkDKtVMoFCr8g/vSe+QcrO30vae0Gg0ndn9DwuE1lORn4ODqR5dBT9K28wN66aoqyzny60IunNxCebXeug/T19sviyYaGEYACvPS+H1Drd68AiLp+9Bc3US9LgmHf+b03hUUZN/CxtGT8N7j6dB3sp6HnMbEG7OsJJ+Dmz/iWo3OvEPpZURn/6nW2VQjOjuw8QNSrks686vWmZWtvs7WLZrI7UTjsXxGRK+kRetIg+vlJfkc3fYxN85Jsrl6h9D9/ldx9daX7b/zJdnqGkYActKucGTrB6RdP41cqcKnbV+6D5+tJ9uty4dIOLSKrNvnKSvORaE0w9kziLZdx9Cm00NYW9Z6IFRVlnN4m3599ri/Xn1+MdHAMAJSP9hfrz77jTJdn6f21NZnRO/xdOg32SDWldpIP2gO9TkjBQLqhErqf2U3Vn5eRtPWGELCvp1vYBgBUDrY0e7DV/F44D7klubkn0zgwuyPyD9l6H7u/sBAAt98Fpu2ranIzOHW9xu48u6XaOucYnd900WjcpSV5HNo88dcO1ujtxB6PmCot+/ekfRWd3IDkt4ObvqAlOundXrr9eBsA72tXzyR24knjMow6pnv8Qo07AfNoU5HzliJV4C+bGUl+RzeUqsztxqd1eufK/8tyVXXMAKQnSbpLLVaZ77tDHW2a/UcLp7YaFQmkOJ22Dsbtq3m9i5obrJVVBp/IZSV5HNk68dcr1OnPUa8ilu9Ol31niRbXcMISGPuoc3VdapU4dOuLz1H6Nfp7p/mcOnkRpP6mfLmbuzq1Wlz6AMPPWPYB2pku9djx/fff09kpKFszYHkK+fv2W97Bwbfs9/+uxGGEUGDfP3117i4uNCyZUsyMzNZsWIF169f59dff9XzqPgzXLp0iQsXLvDGG2/w1ltvNdmzQSD4X6CuYaS5YcowIjCNKcNIc6C8ovkKZ2XRfN1xjRlGmgN+DxjGxWoumDKMNAdMBXlvDmia6QCiVDRfnTVnTBlGmgNKZfOs0+Y87Xx2WPPUGQjDyN+F2EojaBC5XM6SJUtIT09HoVAQHh7OypUr75pRBODpp58mJyeHkSNHMnq0vjueVqtFrVY3KJ+8zl5ogUAgEAgEAoFAIBAI7gRhGBE0yPTp05k+ffpf+hsNnb5y/PhxJk2aZPL+Qw89pBfnQyAQCAQCgUAgEAj+v/BPC4J6rxCGEUGzpn379rqTeIzh6Oj4N0ojEAgEAoFAIBAIBIL/bwjDiKBZY2NjQ2hoaOMJBQKBQCAQCAQCgeD/GVqZCBvwdyC0LBAIBAKBQCAQCAQCgeAfizCMCAQCgUAgEAgEAoFAIPjHIrbSCAQCgUAgEAgEAoFA0AwRwVf/HoTHiEAgEAgEAoFAIBAIBIJ/LMJjRCAQCAQCgUAgEAgEgmaICL769yC0LBAIBAKBQCAQCAQCgeAfizCMCAQCgUAgEAgEAoFAIPjHIrbSCAQCgUAgEAgEAoFA0AwRwVf/HoTHiEAgEAgEAoFAIBAIBIJ/LMJjRCAQCP5Cysq191oEk5w/l3uvRTBJRITTvRbBKL+uO3uvRTBJz0Ht7rUIJikvv9cSmKasTHOvRTCKdtPFey2CSfwfbHuvRTDJ6e/P3WsRTHLlfOa9FsEo4Z087rUIJpE144XyPVsv3GsRTBLRM+Bei2CU7MySey2CaYY53GsJTKJtzh3h/xHCY0QgEAgEAoFAIBAIBALBPxbhMSIQCAQCgUAgEAgEAkEzRKsVHiN/B8JjRCAQCAQCgUAgEAgEAsE/FmEYEQgEAoFAIBAIBAKBQPCPRWylEQgEAoFAIBAIBAKBoBmiFb4MfwtCywKBQCAQCAQCgUAgEAj+sQiPEYFAIBAIBAKBQCAQCJohWkTw1b8D4TEiEAgEAoFAIBAIBAKB4B+LMIwIBAKBQCAQCAQCgUAg+McittIIBAKBQCAQCAQCgUDQDBFbaf4ehMeIQCAQCAQCgUAgEAgEgn8swmNE8D/D+vXrUalUjBgx4l6L8pcSFBSk+3+VSoWDgwNBQUEMGTKEkSNHolKp7rjMRYsW0bNnTzp27Hg3RaWyspJevXqRn5/Pnj17aNGixV0tvy7r169n7ty5HDlyBCcnp7tS5q1btxg4cCCff/45Q4YMuStlNpXy0gKObP2Ya2d3UVVRhptPKD1HzMbVq32T8uekJ3Jo83xSr59GoVDh264vPR+Yg6VNrW5yM65x4fg6ki8foiA7CZWZNS4tg+ka9Sxu3qEmy7Y0lzG6vyURbcwwU8q4kVrFL3tKSE5XNyqXn6eC7qHm+LdQ4uWqQKGQEf1BjtG0tlYyRvWzIqS1CgszGWnZan47UsrpS5VG05eVFHBw88ckxu+ksrIMD59Q+oycg5t3E3WWlsj+De+Tcu00cqUK/+C+9HloLlY2+u1Jq9Fwau+3xB9cTXFBJo6ufnQeFE3bTsNNlm1tKWfaGA+6d7TD3EzO5eslLP85jcSkskbliurtSP9uDnh5mmNjKSc7r4qEy8X8uDmDjGx9XQzr50R4W2va+Fvi5mzGrkO5fPaf2w2Wb66CAeEyglrKUCohNRt2xWlIz21UNACcbeG+DnK8XUCtgaupWnaf0VJSXpumd3sZvUNMr7V8v1vN7WzjsvUPqyNbDuw+oyE97w5ki5DjVS1bYqqWXXFaSssN0zpYQ58QGX7uMsyUUFgKF5K17DhpmNZCBYM6KWjnI0OlgNvZWrafVJNqvCkb4GIPQzor8HGTodbAlVtaYk6q9XQG4GQL93VU0MpDhkIBqTla9sRquJGuNVl2eWkBhzZ/TGLCLqoqy3D3CaXXA7Ob3g/SEzmwcT6p1f3Ar11feo/UHzsATuxcSvrNONJuxlNalE3XqGeIHPKcQXkKaytavfw4Dl3DcegSipmTA3GPz+HW9xuaJI/S3pZ2H7yC+4ODUFhZkH8igfOvfkBB7HmDtG7DB9Bm3rPYtAugIiOb5JXrufreV2jVjY9N5iqprQR5yVApISVby85YDWlN7AcudjCooxwfl+o6TZHy169TGwvoGyrH30OGjYXUzi7f1nLwnMZouVYWMh4ZbEenYHPMVTISb1WyOqaAm6lVDcojk0HPCEs6B1vg66nCxlJGZq6aowll/HaoiMo62VVKmDTcntZeKpzsFchlkJGr5vdTJew+XmLyN8pLCzj268fcOCe9p1y9Q+k+fDYuLZvW1nLTEzmydT5pN6T3lHfbvnQfbtjW6nIldgt7f3oFpZkV0/59ukHZjm6rlc3NO5Ruw5v+Ds1NT+TwllrZfNoZylacn87RXz8hMzmBkoIMZHIF9q5+tO/+GG06jTRZtrWlnKlj3Onewbb6fVDKt7+kN/F94EC/SPva90F+FQmXSli9JdPgfQAwqJcDowY74+6iIiunks17cti6x3ijtjCDqE4Kgn3lqBRwK0vLbyfUpOaYHm9qaOkio2OAHC8XGR5OMhRyGW98V2EyfadAOT3bK3C0hfxiOHpezdGLxvsASN8dD/W1ICJQJX13pFWxbm8ZyRmN921fDwXdQ8zw91TQsvq74+mP80zqYGh36XccbOQUlmi5eLOSbYcbr5t7ifAY+XsQHiOC/xk2bNjA1q1b77UYfwsTJ05kzZo1fPfdd7z22mu4ubnxr3/9i/Hjx1NUVHTH5S1evJjY2Ni7LufBgwfJy8tDq9X+T9aNm5sba9asoVu3bn/r72o1GrZ9G83l2G2E9hxP9+GzKC3KYeOSSeRl3mg0f1FeGhu/mkB+VhLdhr5IRL+p3Lywn81fT0NdVfuhcv7YL1w49gtuXiH0GDGb8D5TyMu8zrpF40i+fNho2TLg2bE2dAk2Z9+pMtbvK8HWSsbLj9nh5tj4KyOktRm9ws1BC5l5pj+CLMzglQl2dAgy48CZctbtLaGsQkv0Q7Z0CTYzqrNNXz/JpVNbCe89gd4PvEJJUQ5rF00kN6NxnRXmpfHLF+PJy0qix/CX6NR/GtfP72f9V1P1dAZwaNtnHNz8CT5BPek3+k1sHVsQ8/3LXDq9zWjZMhn86wVf+kbas2VPNivWpmFvq+SDV/xp4Wb4LPVp7WNBelYF62Iy+fKHFPYezaNziA0L32iNk73++sWYIS6EtbUmKaWcqqrGP2YBHu4jp72PjJNXteyN02JlARP6y3G0aTyvrSVMHCCl3Zeg5dglLQGeMh7tK0depzlcvKVl01GNwV9+sZbSci2pJiafD/eWZDt1VcveeC1W5jD+DmSreY79Z7Ucu6yltaeMR/voywbg5gBTB8lxc5Bx/LKWnbFazidpsbU0LFcGjB+oINRfxvGLGnae1mBtIWPKYCVOto3LZWcF06KUONnK2B2r4fA5DYFeMiYNUqKQ66ebPlSJj5uMQ+c07D6twUwpY9IgBb5uxj+CtRoNW76O5vLpbYT1Gk/PEbMoLcxh/ZdNHzvWLZLGju73v0iHflO5cWE/G5dMM+gHR39dSHrSWVy92jVYppmLI23efBabtq0ojL/UqAx6yGR02fw1LcYN5+ZXP3Bx7seYuTrRbdcqrAJ89ZK6RvWh87ovqcwr5NyL/yZt8y4CX3ua9p+/2aSferSvghBfGSevaNh9RqrTSQMVODWxrUlpZeyJ13DkoobAFjLG91fotTWVEqYOUhDkJSPhupaYUxqupmrpEihjwgAFsnrVKpPBzAlOdA+zYNexEn7aXoidjZzXpjnj7qRoUCYzlYwnRzlgZyVnz4kS/vtrAdduVTJqgA0vT3QySNvSTUnc5XJ+2VnI6u2FJKVV8thQO54c7WC0fK1GQ8x/orl6Zhvtu48nctgsyopy2LJsEvlZNxrVWVFeGluWTaAgO4muQ14krM9Uki/u59flhm2thsryYo79+jFKM6sGy9ZqNPy2olq2HuOJvH8WpcXVsjWxH2xeWke2vlNJurCfbd/oy1ZWkkdxfhqtwqLoNvxVukS9gJWtK/t+nsvxmM+Mli2TwVvP+9C3qz1b9+bwn7Xp2NspmD/Lt0nvg1beFqRnV7I+Jouv/pvGvqP5dA6x4bPX/Q3eB0P6OPDC5BYkpZSzbHUaF6+V8tSjnowe4mwoFzBxoJKwVnKOXlCz/ZQaawt4fIgS5yaMa0FecjoFSo09p7DhtF3ayHmop5KMPC3bjqpJztAwvJvSpPFcBjwz2pou7czYH1vOht9LsbWS89I4G1wdmvDd0UpFzzAztEBWvunvDhnwwsM29Ikw58yVSn7eXcrJixV0DDLjlfFNUILg/z3CY0QguAuUlZVhYWFx18rz9PQkIiJC9+9hw4YxdOhQoqOj+eCDD3j33Xfv2m/9GbZu3YqdnR3e3t5s2bKFJ5988l6LdEeYmZnp6fnvIjF+O2k3YomauJDW4ZKnSkD4UH78cAgndixi0PgFDeY/tXsZVRWljH1xHbaOkpeOm3cYW76exsWTG2jf7REAAjvcT9fBz6Iyt9blbdd1FKs/up8TOxbTtv+XBmV3bGtGgJeKZRsKdZ4bJy9U8E60PSN6WfLtluIGZdt/uoztR0uprIJxg6zwcDb+cd8nwgJ3JwWfri7g0s2q6rzlzJ5kx9gBVvx0CDR15v1X4mJIvR7L/VM/JzBiSPXzDWXlu1Ec/W0RQyc3rLMTO5ZSWVHKo7PWY+ck6czDN4z1X03l/PENhPaQdFaUl87pvf8hvPd4+o+ZB0BI97GsXTSBA5s+wj3kC2Qy/Wfq2cmO4ABr3l+SxKFTBQAcOJHPN++1YfyDbnz8za0GZfvqv6kG146eKeDzNwMY2MOBX37L0l2f/dF1MnOkelm7uOEJK0A7bxneLjLWH1JzsVqMC8laoofJ6RMiY9PRho0rPYKl1fUVOzUUVC8sp+RoeayfgjA/GWeuSfkz8yEzX78sW0uws5LSaIx8q7b1kuHlImP9YTWX6so2VE7v9jI2H2tEtnaSbP/ZVStbaraWR+vJBjCiq5zsQvhxn4aqRhYgg31l+LjJWbOvivNJUhlnb2h4fqSS/hEK1h1ouIDeoXJUSli2rYr86u5yO1vL5EFKIlrLOHVFKrN3iBwLM/hycxXZUrPh1BUNz45UMqSLgvXHDMu+Gred1BuxDJ28kICafhAxlFXvD+FYzCKiJjbcD07uksaOcS/Xjh3uPmFsWjqNC8c3EFLdDwAmv7kLOycvSotyWf5md5NllqdmsMurJ+XpWdh3CqHX0XUNylAXz9FDcOrRkVOPPE/a+u0ApP7yG/3Ob6fNvOc4M2mWLm27D1+lIOESx4dO03mIVBUUEzAnmuuLvqf40jWTvxPsLcPbVcbag2ouJEv6P5+kZsZwBX1D5Ww4YnoyBdCrvRwzJSzfrq7tB9kaJgxQEO4vIzZRKjOopQwHGxmr96u5mlLT/rSUlcvpEyrHx0Op5wnSpb0FbXzNWPRTLifOSSvWx8+W8dGLrowaaMuSX/JMylSl1vLO11lcTa71Ith3qpTMPDWjB9rSvpUZ565Jk/ziUi3vfK3vsrX3BJSWaRnUzZozt7UGni/XEraTfjOW+8YvpFWY1NZahQ1lzSdDOLlzEQMfbbitndm7jMqKUkY9tw6b6rbm6h3Gr8uncfnUBtpFPmKQ5/SepajMrWnROpIb53abLLtGtkETamVrHTaUnz6ulu2xhmWL3Sv1g1HP679Dt30zjUsnNxBc/Q519gzigadW6eUN6TmB3/7zFGcP/YBf5GAT7wMr5i9J5tBpyYJw4GQBX78bwGMPuPLJ8oY9/Jb8mGZw7UhsIZ+/2YoB3e1ZGyPVo5lKxsSRbhyPL2T+UmkA3X4gD5kMxt3vyoL1VZTVsT+195Pj6y5n9d5Kzt2U2mbCdQ0vjVIxoIOCX35veFw7dlHN7wlqqtQwPFKBq73xd7tSIXnBXUzW8NM+qa2fvCIZjPqFK9hxWEZJuf7Y3iFIReuWSr7eVEzsZak9n7pYydvTbRnR04IV20x7NQH8fqacHcfLqKyCRwZamjQq+rdQ4Oep5KddJeyPrVVOeo6GSUMbNsbda4THyN+D8BgR/C3ExsYybdo0OnbsSIcOHRg7diyHDh3S3f/kk08YMWIEHTp0oHfv3sycOZOMjAzd/YkTJ3L8+HH27dtHUFAQQUFBLFq0SHd/3759jB07lrCwMLp168Zbb71FSYn+QHrlyhXGjx9PaGgogwcPZvPmzcyYMYOJEyfqpTtx4gTjxo0jLCyMyMhI5s6dS15enu7+rVu3CAoKYv369bzxxhtERkYyduxYVq1aRXh4uIFHR2JiIkFBQezfv/9P6bBPnz4MHjyYjRs36n4jIyODuXPnMnDgQMLCwhg8eDCffvopFRW1A37N1pyPPvpIp7tjx6Qv7hUrVjB69Gg6depE9+7diY6O5vr1602Sp6SkhD179hAVFcWoUaO4fPkyly7prxauX7+eoKAgzp8/z/Tp04mIiNA9Q1327dvH1KlT6d69Ox07dmTs2LH8/vvvDf7+qFGjePnllw2uf/zxx/Tq1Qt19Yfz119/zaBBgwgNDaVbt25MmTKF5ORkoLYuY2JidPl3797NqFGj6NChA507d2bUqFF/uu7qkxi/HUtbF1qFDtZds7RxonX4EK6f3WNyNa2Gawk78G3XT/dBB+DdpgcOrn4kxtU+i5tXiJ5RBMDC2hHPVp3IzUg0WnbHIBX5RRpi62xnKSrVcupCBeGBZigbXsSksESr58JtigBvJQXFGp1RBEALnLpYgb2NnBb1PK2vnNmOla0LAWG1OrOycSKww1ASz+6mqhGdXY3bgX/7fjqjCIBPUA8c3fy4HPub7lpiwi406krCej2muyaTyQjt+ShFeWmUFVw2KLtXJ3ty8ys5fLpAd62gSM2Bk/l0i7BDqbzzD5r0LEn/1lb6Cq8xijSVtl5S/V2sY5spKYeLyVoCW8r0PBiM55dxNUWrmwwC3EiH7AIt7bwbfq72vjJkMpnuI9ygbG9Jtkt1ZCu9A9mCvGRcTa0nW4YkW9s6srXyADcHGQfPSUYRpQKDlfu6BPvKKSzVciGpVu6Scjh3U0Nbr8blCvaRc/mWVmcUAbiWqiUrX0t7v9rMPu5yUnO0OqMIQKUaLiVraOEsw97Id/rVOKkftA7THzsCIoZwrQljx9W4HfgF648dPkHS2HHlTIxeWjsnr4YftBpNRSXl6VmNJzSCx6goytIySduwQ3etIiuXlLW/4f7AQORm0tZRm3atsW0fSPLyn/W2zdxc+iMyuRzPUVEN/k47HxlFpVqdUQSkOj2fpKVNE+q0rbeMK/X6wfV0LdkFWoJ9ahtTtbgUl+m3+cLqf1dU6l/v0t6CvEI1J8/XuvEXlmg4draUjm3NGxxv1Wr0jCI1nLogldXCtfG1z8xcSZcWRnboXk/YjqWNC/4h+m2tVegQbp5rvK1dP7sD37b9dEYRAK/AHti7+HEtPsYgfX7WDRIOfEf34XOQyxt+0VwzIVvrsCHcaIpsCTvwqfcObUi2+tg6tqSqshStxvBl17OTLbn5VRyOrXWrkN4HBXSLsP1D74OaLTR13wdhQdbY2yr5da++O962vblYWsgJ8tJv1O19ZRSWajl/U78PnL2hoZ23vNE+UFxGo0ZlgFYeMqwtZBy/qJ/42EUN5ioZIa0N22XHNiryizWcuVzvu+NSJWEBqrv23WFhJum+oFi/H+YXNWwYFfxzEIYRwV/OqVOnmDhxIhUVFbz77rssWrSIgQMHkpKSokuTnZ1NdHQ0y5Yt4/XXX+f27dtMnDiRqipppHvrrbcIDg6mY8eOrFmzhjVr1jB27FgAYmJiePrpp2nTpg2LFy/mlVdeYefOnbz++uu68svKypg2bRp5eXl8/PHHzJw5k2+++YZz587pyXr27FmmTp2KtbU1n3/+ObNmzWLv3r088cQTuol2DZ9++ilarZYFCxbwyiuv8MADDxjdUrJ27Vrc3d3p1avXn9Zlr169qKys5Px5ae91bm4uDg4OzJ07l+XLlzN9+nQ2bNjAW2+9pcuzZs0aoHZ7zpo1a2jfXtqDm5aWxoQJE/jqq69499130Wg0jBs3Ts8QZIpdu3ZRUlLC8OHDGTp0KEql0uR2mlmzZtGrVy++/PJL2rVrx5w5c0hMrJ2Y37p1i/79+/PRRx+xaNEiOnbsyJNPPqkz4Bhj7Nix7Nq1i8LC2o8PtVrNpk2beOihh1AoFGzcuJHPP/+cMWPGsHz5ct59913atWtHcbFxr4ekpCReeOEFAgMDWbx4MZ999hlDhw4lPz+/UX3cCVkpF3BtGYysnr+/m3cYVZWl5GWaNk4V5adTWpSNm3eIwT037zAybxvuy69PSWEWltaORu95uytJSq+i/lT2RmoV5mYy3Bpx724qSoWMSiNbQWomDq52+tczb13AzctQZx4+oVRVlJKX0YDO8tIpKcrG3cdQZ+4+YWTeulD7O7cvoDKzwsm9tf7v+IYBUF5k+DutfCy4mlSGtt7jXL5eioW5nJbujbtPA9haK7C3VRDga8FLU1sCcObCnW+dq4u7o8xoDIWUbDBTyhrcGmJjCdYWMqPbYFJytLgbb0I62vvKyC/WkpRpQjYHmdFYIik5dyCbkZgfqTlaPBxq/+3nLn0MqzUw5T45r4xWMGuUnAe7ybAwUjWeTjJSs7UGfeB2lhYzlQxnO8M8Ndhago2ljJRsw7Z9O0uLp1PtpEgphyojH/M1H/hu9ob3Mm9fwNVIP3D3CaOqopTcRvqBqbHD3SeMrCaMHXcb+4h2UiyRep0n/0QCSmsrrNv4A2AXEQxA3qkEvXTlqRmUJqdiF9Gw95S7o4zUXMM6ScnWYqaUNbiVwNYSbCxkpBiJw3A7W4uHY22dJmVo0Wi0RHVU0NJZyhvgKaNXsJyLyRpSs/S/I3w9VdxMrTQYO67dqsTcTI6Hy507dtvbSG2jsMRwsqdQgI2VDCc7OZ3amTOslzWZuVXkGnklZqVcwKWB91R+A++p4ur3lIuXYVtz9Q4jK8WwrR3eMp8WrSPxadu3sUck63bDsjX0Dq2RzdWIbG4+xmWrqiyjtDiXwpxbXDq5gUsnN+DuE4FcYW6QtrW3BYlJpYbvgxt//H3w4hTJgBN3obaiWvlIXspXbpbq5bt6sxS1Rn+sAfB0lpNiZFy7VT2uudjdHY8ET2epnNv1xsCUbKlveLsZfkN4uytITlcb+e5QS98dTdjG2xRupqspq9AyopcFQT5K7G1kBHopeKifJTcaiekj+GcgttII/nI+/vhjfH19WblyJQqFNCDWNxLMnz9f9/9qtZoOHTrQp08fjh49Sq9evQgICMDGxgYrKyu9rQ9arZaPPvqIYcOG8d577+muu7q68uSTTzJjxgwCAwNZt24d2dnZrF69Gi8vaRUsJCSEwYMH4+Pjo8u3dOlSXF1dWbp0qS7IqaenJ48//jj79+9nwIABurRt27bV+02AqKgo1q1bx7hx4wCoqqpi8+bNjBkzRvfsfwYPDw8AsrKk1bmgoCBmz56tu9+xY0csLS2ZM2cO8+bNw9LSUqev+ttzAF577TXd/6vVanr27En37t3Zvn07jzxi6OZal61bt+Lu7k7Xrl2Ry+V069aNrVu3MnPmTGT1lmPHjx/P+PHjAejQoQP79+9n+/btzJgxA4AJEybo0mo0GiIjI7l69So///wzkZGRRn9/xIgRfPjhh2zZsoXHHpNW9/fv309mZiajR48GID4+nqCgIKKjo3X57rvvPpPPdP78eSorK3nzzTexsZE2nvfu3btBPfwRigsy8WzV2eC6tZ1r9f0MnD2DDO4DlBRInlRW1WnrYmXnSnlJPuqqChRK4x9fKddOknbzDJ0HPm30vr2NnCvJhh8I+UXSJ4uDjZyUzCYsGzVCeo6adn5KnOzk5BTUfsAHeEuvJet6O9OKCzJp2dqYztwAKMrPwKWFcZ0VV+vM2ojOrO1cKSvJo6qqAqXSjOL8TKxsnQ3acE3eqgrDmbiTvZJzlw1dfXPypdUvZwcVN28biQZaj+8/CcJMJX0A5hdWsfTHFM6cb3jrUmPYWEBSpuGErqh6BdvGUtoGYyovQFGp4b2iUrAyl1ba1UYW21zsJMPHkQumV+JsLCDZiGzFpVrd/cZkKzYSL6+oTArkVyObo41UlyO7y7mWpuXIBQ1uDjK6t5NhZyXjm1/1ZbSxhJvphuUWVuvB1kpGRp5xLxhbK1l1WsP7haVarMzlOrmyCrT4ukmBYCvqdDmf6vgi9fsAQInJflA7dvzxftDw2PFXYO7pSs5Bw+i3ZakZ1ffdKDx7GQsPSebyVEMrW3laJhYt3Br8HVsLSMowvF7Ttm0sZWTkG69TG0v9tHr5y/T7QVYBbDuh4b4OcqYNrv3EjrumYctxw77gYCPn0g3D63mF0jVHWzm3jLTFhri/lw0lZRrirxiOOZ2DLXjm4VqL5rVbFSzfmI+zl4tB2pLCTDz9DduaVZ225mTqPVV4Z++ppAv7uHX5EGNe3Nj4A9bIZuQdamUr/V5JU96htkZkszX+Dk04+D3Hf/tU9++WAd3p9/D7HD+YZ1CGo72Ks1cM3we5eVInd3ZQNul9sPLjQP33wepUztQxjDjZK1GrteQX6r+Pq9RQWKTGzkr/HWZrCTfTjIxLJdI1WyuaHPS6IWwtZag1WoOxWa2RPFRqDHd1sbM29d0h9QN7GzkpWX/eq6O4VMu3W4oZH2XFi4/UBhc6d72SbzYVs/BFhz/9G38VWq3YSvN3IAwjgr+U0tJS4uLimDlzZoOGgf3797NkyRKuXLmitxXlxo0bDXpaXL9+ndu3b/Paa6/pvEsA3WT97NmzBAYGcvbsWdq0aaMzigB4eXnRtm1bvfJOnjzJ8OHD9U5+6dWrF3Z2dpw6dUrPMNKvXz8DeR5++GEmTJjAlStXCAwMZP/+/WRnZ+sm6n8Wbb0lCK1Wy8qVK/n555+5desW5eW1L9vk5GTatGnTYHlnzpzh888/5/z583peIjdu3GgwX05ODocOHWLixInIq1dsRowYwezZszl16hSdO+t/sNStQysrK1q0aEFaWu0+2rS0ND777DMOHz5MZmam7jlrPFuMYWNjw9ChQ1m3bp3OMLJ+/Xo6d+6Mn58fAMHBwfz444/Mnz+fQYMGER4e3uCpPkFBQSgUCmbNmsXDDz9Mly5dsLW9+wG51JVlKBSGkw+FUlp9qqo0/dFUc89YfqUuf5nRyU1JYTY7/zsLOycvOvR/nCtXDd2NzZTS3vX6VFZfU92lt8bBuHL6dDDnyZE2/Ly7hIJiDZ3bmtGhjSS3st63k6lnUqrMqu83QWdG81frrKIMpdLM9O9U61arMaIzMzmVVYYfbTXeL2aqpn3QvLXwJiqVDG9Pc/p3c8DC/M+vkikVxg0XNS7RqgbstTX3jOWvuWaq/Pa+0jOfNbGNpkHZ6pTdUF4w7tpdc62mfLPqNpuaA1uq45Zcuq2lUg39w+S08pRxLbVWTpUCqjSGcjdFZzVyGTskpW5+tQZOXNLQ1lvJ2D4Kdp9RU1kJXYLktKheca3fB8B0P1Co7mDsaDC/8fL/KhSWFmjKDfuUpjo4gsJSkktuKVmJjKVVl5WjtGs4gmpjbe3P1mnd8gtLpdXxqyka8ovB201G1zYySsrlXNZ3UsVMJTMaRLnGm07VxLGjhhF9rAkJMOe7zfmUlBmWe+FaBR/+JxsrSznBrczw8VBhbuI31KbaWvVYqK66O+8pdVUFR7bOJ7jbIzi6BzT+kA3J1pR+UNVAPzDxDg2IuB9XrxDKinK4eWEfpUXZVFUaP8XEzExGZaWh7iuqG1uNsaMx3vo8CTOVHG9PM/pF2mNhpp/PzMy41yVI7x5lvQFEGtcM0+rGpbv0bleZ6Gs1v6UyspVI+u4wLZvZH9h+ZIrCEi3J6Wr2ny4nJVuNt5uCQV0smNjMY4wI/h6EYUTwl1JQUIBGo8HNzfRqTnx8PDNmzGDgwIE88cQTODtLq7UPP/yw3kTfGLm5ko/3M888Y/R+aqoU1DAjI8PoEa9OTk56v1FQUICzs2E0b2dnZ4PtFMbSdenSBX9/f9auXcvcuXNZt24dXbp00fNK+TOkp0tLR66u0krHypUr+fDDD5k+fTqRkZHY2dmRkJDAO++806juUlJSmDZtGiEhIbz99tu4ubmhUqmIjo5uNO9vv/1GVVUVffv2paBA2iAfGRmJmZkZW7ZsMTCM1DcuqFQqXRwUjUbD008/TWFhIc8//zy+vr5YWlryxRdf6OrPFA8//DDjxo3j4sWLuLm5sW/fPt555x3d/VGjRlFcXMzPP//Md999h62tLSNHjmTWrFlGg+X6+/uzdOlSli1bxrPPPotcLqdXr17MmzfvDx1FXFFRQUlBnt41CxsnFCoL1GojH/jVH2w1k3Vj1Nwzlr9Kl9/w2SrLS/h1xVNUlhczfPp/Mbewxs5af396YYmWiippm0t9VNXXmrKPtynczlTz7eYixkdZM3uitDchv0jD6ph8hkZWkpEJxdWxFyxtnFCqLIzuG6+qlK41SWdG81frzMyiOq2J36kqR6VS4ezshKNd7aszv7CKigoNKiOz2BqDSP24AqaIvyStBp46W8TRM4V89XYApWUatu5t/IxYpUJm4GFQUi59WBrbO14z2atswPmn5p6x/DXXTO05b+8reVVk5oNcDlb1qqdB2Ropu+49Y8aT+kaTmv+eT9Kvh4vJWvqHQWtPGRnV2yyKy6XnVsoN+0BTdFbzW8bWAernv5qiZdsxNfd1lPP0cMlgm12gZc8ZDf1C1WRl5en6ADTcD9SVdzB2NJj/7gURbwrq0jLk5oYTVHn1Hid19bnLmlJpEmosrcLCXHdfplLdWT+ovvZn67QmjZcLjOsjZ8XO2qOdL93WUlklo3d7Obt9VaRnS4kLijXVE1gj4231NWMTbFNEhlgweqAt+06WsOeE8WCVBcUaXUDWE+fKGNHHmpfG2/D1tkxK6zQLC+vq95SxtqIzLNyd91TCwZWUFefRaZDhUdDqqgoqyvS/vRqUrSn9QNlAPzDxDrV1bImto7S9MaDDcPavfZPt/3mSgC6fIatj/CkoVFNRoTVq0DKrbmwVlU3zfEi4JNXhqbNw9EwhX/6rNWXlGrZWxxSpqNAaNTIoFWBuJoMirc7bqbisZlwz/B3duHSX3u2VJvpazW9ptVrsrGvlrv3uMC1bRRNPYGsMF3s5Lz1iw8rfSnRBXuOvVpGdr2HyMOtGct9bRPDVvwdhGBH8pdja2iKXy/UCqdZn165d2NjYsHDhQp33we3bDUftrsHBwQGAefPmERYWZnC/xiDj5ubGhQsXDO7n5ORgbV07GNrb25OdnW2QLjs7G3t7/Q3f9V3taxg7dizLly9n6tSp7N+/32C7zZ/hwIEDmJmZ6TwpYmJiGDBggF4Q0rqxOxorq6SkhMWLF2NnJ01Mq6qqmhRPoyaWyJQpUwzuxcTE8MYbbzTomVGXmzdvcv78eb788ku9bS5lZY2fKd+hQwfdVqkWLVpgZmbGkCFDdPflcjmTJ09m8uTJpKens23bNhYsWICjo6NJY1qfPn3o06cPRUVF/P7778yfP5+5c+eycuXKJj1PXWJjY/nunUl61ya8tgtrO1dKCgxdwourr9VsDzGGVfU9Y/lLCjIxt7I3WAlTV1UQs/I5slMvMfyJ5Th7tsHTCZ4brh8k4rUleeQXabC3MWzbNdfy7mKQstOXKom7koeXm3TkZVKaGmt1HO+9/JReuqnzdmNt56rTT11qtgfY2JvWWY0+jefPxMLKAWW1zqztXUm+egytVqvXx4sLMunQoQOrVr2hL9vsS+TkV+HoYPg6dbKvnuzm3VnAVIC0zAquJZXRr5tDkwwj7QKseOFB/S/LL7eoKSqT4iNQb/e2dM349oAaiqq7YM3HtV5+Sygp1xpdGfRyAQdrGXvjpJtezjBhgL5sX22tls3SUDZrS5ne7zckm7HtJjYWUFpHNmlbi8wgIKZDtZNBrxAFvUIk+T5bV0lRqfFnrjnat8b13Bg6t3Qjz2VrKTPQ2fFLGmITNbg7SO7nabnQMUBGbGwsL0/THzsmv7kLK5P9oPGxo/F+YDh2/NWUp2Zi7mG4pcHC0636vtS/y9Ikmc09XSm7pX9qh7mHK3kn4gFw7N6BmQ/p98UvNldRWGa6HYMU6NEUtdttjOS30O8HnQLkFJVhEPumoET6Znhjeu2WlZkLMsgr0uBgaziLrLmWW9i08bZ9azOeHO1A3OVyvtvS9JhYJ86V4WN3gW/m6be1R2fvwsrWlZJC4+8ZaOQ9Zdu091RFaSGxu5cQ3P0xKsuKqCyTPIYry0tAq+X62R3sWT1LL/9jc6plM1Z2tbxWTXmHGnu2QuPv0Pq0CovCjpusWhiqd33anCvk5lcaHKsL6N4R2Xl3boFIy6yU3geR9jrDSE5+FQqFDHtbhd52mpA2VtjbKrG3hWBfaVz7ZG0FhaVSfJn66Lb/NXzwS5MpLNWikEuG+rrbaRTVBvIObWo9QwFeX1ZAQbHG6Babmmt3KzhqtxAzVEpISNR/J8dfFfFFBBLCMCL4S6mJCbJp0yamTZtmdDtNWVkZKpVKbxKyZcsWg3QqlcrAk6FVq1Z4eHiQnJysi2FhjJCQEDZu3EhycjLe3t6AFPDz4sWLdOrUSZeuU6dO7N69mzlz5qBUSt3j0KFDFBQU6KVriIceeojPPvtM55VQd6L+Z/j999/ZuXMnY8eOxcpKcvmr0V1dmqq7srIyZDKZ7jmh1hOkIW7fvk1sbCzjxo1j2LBhevcuXLjA/PnzOXDggN62o4aokavuc9T8Rs2WmIYYO3YsS5YswdnZmWHDhul0Ux93d3emTZvG1q1buXbN9LGONdjY2DBs2DDi4+NNBpVtjLZt2zLiyRV616xsXXFp0ZaU66fQajR6weMykuJQqixxcPU3LZe9O5bWTmQknzW4l5Ecj0sL/SCEWo2G3T/N4dbVowye+BktW3cFpL3wn60u0EubX6ThVoaaAC8l9ad1/i2UlFdoycj58/FF6qLWwM202jJ7dA3mob7/YU+8tHoPUvwDV6+23E401FnazXiUZpY4uDWgMwd3LG2cSE8y1Fl6UjyuLWu31Lm2bMfZI7+Qk56Is0etW3fajTguXrzIrHf2YW7tq7uem1/F9eQy2gdaIZPpx5AM8rekrFzD7fSGT0gwhZmZzOiKoDGuJ5fy4z79uikqk/aMexuGD6CFs7QKl1NoeE+Xv1Q6XcPTSJDVFk4yMvKM5wvxlaHVajlX7aGRkQer70Q2pzuQzdAREE8n/aCuNcFnpQlAnRMZqj/aT19Rk3BDqys3LUeLj7vMoA+0dJFTUal/ikx9CkulSXbNdpi6tHSRkWYkgGdllRQAsYZWnnLcbYMY88wKPU8GK1tXXFu2JeWaYT9IvxmH0swSxyb0A2NjR3pSPC4tGz/++W5TEHcRx16dqN95HLqGUVVcQvHl69XppIUNh06h5J+oDcBq7umGpbcnSct/ltLFX+SHPfXaWimk52rxcTVSJ84yKqq0ZDfQ1gqr21oLJ0NjV0tnGel1grpaW4ARZyNyC6U0MYeLiLskDWz5RWqSUitp42tmMHa09jKjvEJDWlbjE7ZWXipeeNSR67crWbwm1+jR2KZQqWS0bduWl+at4FJtPHwsbV1xbtGWNGPvqWTpPWXfwHvK2t4dC2snsm4ZtrXM5HicPaW2Vl6aT2VFCXH7lxO3f7lB2j2rZ+Hu24HOg2u9SSyr36GpRmRLb8I7tEa2TCOyZSTF49yi8X6grizn4sWLzJy3DUuH2iCuuflVXEsu/wvfB7XPei1ZGsACfS05ebZ2C3rNt/Tv8WoSU6XGUDOu+RoZ17xcZFRUaskquDteGanVY1xLZxmXb9eW2cJZhlwuI+ZoKZeSavtoQbGGZBPfHX6eCum7I/fuGEbsrGUgMzyV7C6EABT8P0EYRgR/OS+//DJTpkxhypQpPPbYY9jb23Pu3DkcHR0ZM2YMPXv2ZOXKlfz73/9m0KBBxMbGsmnTJoNyWrVqxcaNG9mzZw+urq64ubnh7u7OnDlzmDVrFiUlJfTr1w9LS0tSUlLYv38/L730Ev7+/owePZqlS5fy1FNP8dxz0gt28eLFuLi46BlknnrqKcaNG0d0dDQTJ04kKyuLBQsWEBYWRt++jUdKB2l7zsCBA4mJieGRRx4xumWjMVJTUzlz5gxVVVVkZmZy4MABNm3aRHh4uF6w1R49evD999/zww8/4Ofnx+bNm7l586ZR3e3evZvOnTtjaWmJv78/3bp1A2Du3LmMGzeOK1eu8J///EfnPWKKGiPB9OnTdUamGjp16sTXX3/N1q1bm2wYqTFuLViwAI1GQ0lJCV988UWD26/q8uCDD/LJJ5+Qm5tr4J0zb9487OzsiIiIwM7OjtOnT3Px4kUeffRRo2X99NNPnDlzht69e+Pq6sqtW7fYvHkzPXv2bJIs9bG3t8e7TQ+D663CokiM3861hB20DpcMZ6XFuSTGb8evfX+91ar8rCSpLBefOvkHc+nkRgrzUrF18ATg1pUj5GXeIKz3FL3fOrDxXa6e+ZW+Y96mdZ3jgcsr4eJNw4/u0xcr6NTWjA5BKk5XH9lrbSmjY1sz4q9W6G1vcHGQPtKy8u7OR4ubo5whvdy4kuyIs58ZdTerBYQP4cqZ7VyN30FgRLXOinK4ciaGVu376zw+APKqdeZQR2cB4YO5cHwjhbmp2DpKOku6dITcjBt06DtFl65V6ED2b5hP/MEf6T9mHiC5/iYc/gmNzJLzNx2RyfQDoh48lU+vzvb06GjHoVPSrNnORkGvzvYciyvQiyHg4SrJmZYpfRzL5WBlIaeo3gkSbfwt8Wtpwb5jeU3SXVGJhhtGgjReTNbSzltOWy90R/ZamknHj15N0fdecKh2nsur83iXbmkJ9ZNha6nVBR/1cwNnOxnHLxvWu1wmlZ2cie5o07JK6Rjd+ly6JckW5IXuyN4/K5tvtWwnrtRmvpKiZZBaS5ifjPjrtXXRrvqY1ROXtXqnyJxL0tDeT0k7H5lu+42VubQ96NItfbkcq71OcuscHnQhSUN4azl2VrU68PeQ4WLfcDBaAG9XGe18ZJy8bItngOHY0To8iqtx20mM30GArh/kcjVuO/5NGDtahw3m4gn9fpB8WRo7Iur0g78Ccw9XlPa2lCQmoa02wKeuj8FzzBA8HhpM2vrtAKicHfEcPYSMrXvRVEhjUNH5qxRdSMR7+sPc/Ponamb/vtGPotVoSFsvHbFalVfA9XQjsTWStQT7yGnnLdMd2WtpJrWBK7ebUKfJWsL9ZXp16ucuw9lOxtFLtZmzC6WtWb5uMm5m1MoR2FIaK48mlHHtVu1q9YlzZXQNsaRzsAUnzkkTXRsrGV1DLIi9VK433ro5SrO3jNzaiy1clbw8wYmsPDWf/pBjcjuEjZWMIiOeTv06WWFvb42Tbw+86u0kaBUaxfWE7Vw/u4NWYVJbKyvO5VrCdnza6be1gmyprdk517Y1/9DBXD61kaK8VGyq31O3rx4hP+sGodXvKUsbZwZPWmwg19lDq0i/eYaBjy3Ays4Vd59wvfv+oVFcqydbabVsvsH1+kG1bPZ1ZGtlRLZbVyTZ6r5DS4tysLQxtL5ePL6WgsJCzl6zwMxS/31w6FQBvTrb0aODLYdOSxY3OxsFvTrZcTyusN77QFoQSsuU2oRcDpYWcorrvw/8LPBracH+47XeQPEXiykoqmJYP0c9w0j/bvaUlWs4cFattz3q7A0NIX5Kgn1rj1C3MocQPzkXb2n0+kDNiWANGadNcS1VS0mZlq5tFVy+XdsgI9tKhuWdJyoM4t/EXqqkU5AZEW1Uui0u1pYyOgWpSEisvGvfHek5GuQyGZ2CzDh6rlY5nds2zcP5XiK20vw9CMOI4C+nc+fOfP/99yxcuJC5c+cil8sJDAzkxRdfBKBv377MmjWLH374gfXr19OxY0eWLVtGVFSUXjlPPPEESUlJzJ49m4KCAp599lmee+45hg4dip2dHUuXLtV5S7Rs2ZLevXvj4iItR1pYWLBixQreeustZs2ahbu7OzNmzGDjxo168S9CQkJYsWIFn376Kc899xxWVlYMGDCA2bNn39GpMoMGDSImJoYxY8b8IZ2tWrWKVatWoVKpcHBwICgoiLfffpuRI0fqeXg888wz5Obm8sUXXwDSqThvvPEGTz2lvxVh3rx5vP/++zzxxBOUlZXx/fffExkZyfz581m8eDHR0dG0a9eOzz//XFcvpti6dSsdO3Y0MIoAKJVKhg8fzs8//2zySNz6mJmZsWjRIt555x1eeOEFPD09efrppzl69Chnzxqu6NTHwcGBrl27kpaWZnDqTocOHfj555/55ZdfKC0txdvbm7lz5+qOeq5PUFAQe/fuZf78+eTl5eHq6sr999/PCy+80KRnaSqtw6KI9w1nz8+vkZOeiKW1I2cPr0ajUdNl8LN6aTcvmwLAxNf36K51HBhNYlwMm5ZMJqz3RCrLSzizbwVOnm1o13WULl3c7ys5e/hH3H0jUKosuXRqs17ZakVnFCp9//BTlyoYeLuKycNs8HQppahES9+O5shlMrYc1N938dKjUt95fUntx5qTnZxuIdJHqa+H1FaH9ZCMg9n5Go7V+Rh5a7o9py9WkFOgxsVeQZ+O5hSXafhvTDF+AfquzIERUcTuj2DHj3PJTruKpbUj8QdXo9Wo6TZUf2/6ui8lnT3+Vq3Oug56iitnYli7eBId+k6ioryEU3u+xcWzDcHdaoMj2zp40KHvJE7t+Ra1ugoPn1AS43dxO/EkQyZ+wtUbhuPAoZMFXLivhBentsTH05yCIjXD+jshl8N/N+lbBN5/2Q+AaXMuA2BpLue7j4I4cKKAmylllJVr8POyYFBPR4pL1fy0Vd/du2u4Lf5e1fFQFDL8vCx45P7qEzuMnDBz8ZaWW1la7u8qx8VOS0kFdAqQIZfB72f1P04f6y99cH61tfaD89B5LW29ZYzvL+fkFS0qJXQLkuKH1DUy1NDKQzql41xS4x+tF29puZ2l5f4ukmyl5dI2ErkMDpzTL/vRfpJsS7bVlnv4QrVs/eScuKLFTAmRRmQrLpPS9gmRM66PnMu3tbg5QEQrGeduagyO1j1/U0typoaRPRW4OmgoKYcubeTIZLA3Tt8bYXL1ySML19dOAH5P0BDsK2fKYCXHLmowU0KP9nLScrXEXq2V394aHu6j4NItLUWlWlwdZHRuIyc9F3ad1mDvYOhaHhAeRZxvOLt+ksYOC2tHEg5JY0fkEP2xY8NXUwCYMq+2H3S+L5qrcTFs+Goy4b0nUllRwum9K3D2bENw5Ci9/BdPbKIwN4XKSqnfpySe5MSOJZLsSnCqMwn3nTEelb2d7nQYt/v7Y9FSOkXtxperqCooIui9mXhPGsWegAGU3pS2y6au207u0VjCl8/Hpl0Aldm5+EY/CgoFl99ZpCfPhTkf0XnDEiJ/W0HKz9uwbd8GvxnjSV7xC0UXG/YCvJAs9YMRkXJc7KQ67RwoRy6D/Qn6bXVCf6mPL9pSW9eHzmsI9lEwcYCC45c0mKmge1s56Xla4q7Vtp+TlzVE+Mt4pI+cE5e15BdLJw+F+MlJTNXoGUUAjp8rIyqpgukP2dPCVUlRiYaBXa2Qy2D9Hv1Z6eyp0gT95U+lMcHCTMYrk5ywtpTx66FSIoL0F2Eycqq4miz9Xs9wS/p3seb0hTIycquwMJMTGmhOaIA5py+WkZxlGJPDPzQKN59w9v/yGrkZUls7f0QaczvXe09t/WYKAI/NqW1rHfpHcy0+hq1fTyakp9TW4vevwMmjDUGdpbamNLPEr73hSXE3zu0iIzkBv/b3Gazug7S4kHAwnH0/v0ZudT84VyPboHqyfS3JNn5uHdkGSLJtWTaZ0F7SOzSuRrYutf3g9J6lpN84jXdQb2wcPCkvyefa2R1kJicQ0nMC5QpPA9kOnSrgYmIJL0xtgXeLbAqK1Nzfz1F6H2zWH8/fmyl5Hz4+9ypQ/T74sA0HTuaTlFIuvQ9aWnBfT4fq90GWLm9FpZYfNmUyY7wnc6K9OH2uiPaBVgzo7sDKDRmUVjjo/da5mxqSMjSM6qXEzUFNcZlkrJDJYE+s/rg2NUoyFCxYW9teHawhorU0JrV0kSqlX5j077wiOHNN6kdVatgVq+aB7krG9VNy5bYGP3cZEa0V7DxVZTQo8OnLlVxLqWLSUCs8ncsoKtXSN8IcmUzG1kP6eypffFiyXL7xda3rnpOdjMjgmu8Oqf8O7Sa16ewCDcfPS89x9GwFg7qY89hgS7zdFaRmqfF2V9AzzIyUTDUtXIXryD8dmbb+MRcCwT+EvLw87rvvPqZMmcKzzz7beIY74NVXX+XChQtGt7UI7i5FRUX07t2b5557jmnTpt1rcQz4fIvxIbasJJ8jWz/m+tldVFWW4+YdQo8Rr+Lmrb9nedV7kudNXcMIQE7aFQ5t/oDU66dRKFX4tOtLzxGzsbKt3Zuw+6c5XDq50aRskWPWY2lr+GFnZS5j9ABLIgLNUCll3EirYt2eEr0tLwDvPS3F3alrGGnjo+Tlx4x7HV1KquTTH2s/9h9/wJqAlkpsreUUlWqJv1LBloOlFJZoiYgwXKUrK8nnwKaPSEyQdObuE0qfB1/F3UdfZ9++LemsrmEEIDv1Cvs3fkDKtVMoFCr8g/vSe+QcrO3093NoNRpO7P6GhMNrKMnPwMHVjy6DnqRt5wfYuta4sc7GSs60sR50i7DD3EzO5RulfPtzKldv6n/UrfhAOimqxjCiVMiYOsadsLbWuDubYWYmIyevijMXivhpayYZ2foTqZemtuS+nkb2tgBbjml0W0LqYqGCAREy2rSUoVRI8Q92n9HotpjUMGO4oWEEpKN374uQ4+UqbX1KTNGy+4xWt9WpLg92k9HWS8bnmzWU1VmtNBGSCQsV9A/Xl21PnKFsT99vaBipkW1ghBwvl2rZUiXZSozI1ilARqcAGQ7W0laesze1HDynpaTU0IhjYQaDOylo6y1DpYDb2Vp2nDI0orw4ytAwAuBqD0O6KPBxlaHWwOXbWrafVOvtubcwg5E9FHi5yLA0lzwRzt3U8Hu8hooqcHUxvnZVVpLPoc0fc6167HD3DqHnA4b94Lt3pH5Q1zACUj84uOkDUq6fRqFQ4Rfcl14P6o8dAOsXT+R24gmjMsxIgYA6z9L/ym6s/LyMpq0xhIR9O9/AMAKgdLCj3Yev4vHAfcgtzck/mcCF2R+Rf8qwr7k/MJDAN5/Fpm1rKjJzuPX9Bq68+6XOAwXg9PfnDPKB1Nbu6yAnyEtqaynZsOuM2iAeyHMjDA0jAK52MKijHO/qOr2aomVnrMbgWFJnW2nC2NJZho2FtBXnfLKW/QkaLiQYxrWwspAxLsqOTu0sMFPBtduV/BRTyPUU/b6/YKZkAK0xjLg4KPj0ZdOelQdOl/DNBmls9m+hYlhva1p7qbCzVqDRaEnNUnM4rpSdx4oJ7eBhtIzyknyO/voxN87tQl1Zjqt3CN3ufxVXL/229uMHUluraxgB6T11dOsHpN04jVypwqdtX7rdb9jW6rPv5zlcS9jBtH+fNjl2lJfkc3SbJFtVtWzd738V13rv0P/Ol2Sraxipke3I1g9Iu14rW/fh+rLdunyIhEOryLp9nrLiXBRKM5w9g2jbdQxtOj3E3m0XjcpmbSVn2hh3ukXYYm4m58qNUr79Jd3gffDtfGm7Zo1hRKlAeh8EWePmrMLMTE5OXiVnLhSzZluWwfsAIKq3AyMHOePhoiIzt4qte3LYvDuHiJ6GJ/xYmMGQzgra+ch149pvJ9QG49rLYwwNI/4eMh4fYtyz4nqahm9j9MfAzoFyeoYocLSB/GI4elHNkfMasjONBzOxMpcxqp8F4QEqVEoZN9PUrNtXSlK6fj9890np+6KuYSTQW8nMccZPprqcVMVna2o9auxtZIzoaUGQjxJ7GznFZVoSEivZdKCMT561N1pGcyDh6h2e230XCQ1wv2e//XcjDCOCfwxff/01Li4utGzZkszMTFasWMH169f59ddf8fQ0nBz+ES5dusSFCxd44403eOutt0x6Jgj+PEVFRSQmJvLjjz+yc+dO9uzZowvG25wwZRhpDpw/l9t4onuEMcNIc8CUYaQ50HPQ3x8joqmYmtw0B8rK7l5A4buJKcNIc8D/wbaNJ7pHmDKMNAeunDc0jDQHwjsZN4w0B5rz2LFnq2FQ/+aCMcNIc8CUYaQ5sOQVh3stgkmEYeTvofm+dQWCu4xcLmfJkiWkp6ejUCgIDw9n5cqVd80oAvD000+Tk5PDyJEjGT16tN49rVaLWm06cKVcLtedyiNonHPnzjFp0iQ8PT358MMPm6VRRCAQCAQCgUAg+DNotc3YQvj/CGEYEfxjmD59OtOnT/9Lf2PPnj0m7x0/fpxJkyaZvP/QQw/xwQcf/BVi/b8kMjKSS5cu3WsxBAKBQCAQCAQCwf84wjAiEPxNtG/fnrVr15q87+hoPG6AQCAQCAQCgUAgEAj+OoRhRCD4m7CxsSE0NLTxhAKBQCAQCAQCgUAAaMRxvX8LIqCBQCAQCAQCgUAgEAgEgn8swmNEIBAIBAKBQCAQCASCZohWeIz8LQiPEYFAIBAIBAKBQCAQCAT/WIRhRCAQCAQCgUAgEAgEAsE/FrGVRiAQCAQCgUAgEAgEgmaIViu20vwdCI8RgUAgEAgEAoFAIBAIBP9YhMeIQCAQCAQCgUAgEAgEzRARfPXvQXiMCAQCgUAgEAgEAoFAIPjHIjxGBAKB4C9EqWy+Vv5+vR3vtQgmySu81xIY54GHQ+61CCYpKtHeaxFMYm52ryUwjZlZ81wjksma79hx+vtz91oEk3Sc1P5ei2CSyuUJ91oEo5ip7rUEpmnG3YD2XfzvtQgmcbBrnlM8c3Obey3C/yQixsjfQ/P8GhAIBAKBQCAQCAQCgUAg+BsQhhGBQCAQCAQCgUAgEAgE/1iap5+VQCAQCAQCgUAgEAgE/3BE8NW/B+ExIhAIBAKBQCAQCAQCgeAfi/AYEQgEAoFAIBAIBAKBoBnyvxp8NTExkXfffZfY2Fisra158MEHefHFFzEzMx2RPSMjg++++45Dhw6RlJSEra0tXbp0YebMmbRs2fIvlVcYRgQCgUAgEAgEAoFAIBDcFfLz85k8eTJ+fn4sWrSI9PR0PvjgA8rKypg3b57JfOfOnWPnzp2MHj2a8PBwcnNzWbJkCWPHjmXr1q04OTn9ZTILw4hAIBAIBAKBQCAQCASCu8JPP/1EcXExixcvxsHBAQC1Ws3bb79NdHQ07u7uRvN16tSJ3377DaWy1kzRsWNH+vXrx8aNG5k2bdpfJrOIMSIQCAQCgUAgEAgEAkEzRHMP//4ov//+O927d9cZRQCGDh2KRqPh0KFDJvPZ2dnpGUUAPDw8cHJyIiMj409I1DjCMCIQCAQCgUAgEAgEAoHgrnDt2jVatWqld83Ozg5XV1euXbt2R2Vdv36d7OxsWrdufTdFNEBspREIBAKBQCAQCAQCgaAZci+Drw4cOLDB+7t37zZ6vaCgADs7O4Pr9vb25OfnN/n3tVot7777Lm5ubtx///1NzvdHEIYRgUAgEAgEAoFAIBAIBM2KRYsWcfToUZYvX46VldVf+lv33DCyfv16VCoVI0aMuNei/KUEBQXp/l+lUuHg4EBQUBBDhgxh5MiRqFSqOy5z0aJF9OzZk44dO95NUamsrKRXr17k5+ezZ88eWrRocdfKHjBgAP369WswGvGxY8eYNGkSa9euJTQ0FPjrnrWGv7r85sZ3333H/PnzuXTpksk0NfUA8Ouvvxq4r3322WcsXbqUli1bsmfPnj8t065du3jmmWfYvXs3Xl5eTc43Z84czp49y9atWwFpTJk7dy5Hjhz5SyNX/1nKSwo4uOVjEuN3UlVZhrtPKL0fnIObd/sm5c9JS+T3je+Teu00cqUKv+C+9B45Fysb/Wc+sWMJaTfjSLsZT2lRNl2jnqXb0OcMyquqrGDvxi+IO7yJspIC3L2CGDDqBVq379moLAW56cSsnk/iuUNotRr820YSNW4uTm7eujSxB9ezacVrJssY9cTHhHU3/h6oqqrgyK+fc/HEJspKC3BpEUSPYS/i27Zx2Yry0tm/4X1uXjoEGg1egZH0feg17F28DdKePfILp/auoCD7FrYOnkT0nUhEn4kmy66qrODwr59z4bgkl2uLIHoOb5pchXnp7F//PjcvSjrzDoyk76jXcKgnV9yBH0m6fJS0m/EU5qYS3PUhhkz8oNHy61JeWsCxXz/mxrldVFWU4eodSvfhs3Fp2bS2lpueyJGt80m7cRqFQoV32750Hz4HSxvT/etK7Bb2/vQKSjMrpv37dIOyHdr8MYkJu3T9oNcDs5veD9ITObBxfm0/aNeX3iMNZTuxcynpev3gGSKHGPaDunI1W501s7GjLuYquC9CTpCXDJUSUrK17IzVkJbbJNFwsYNBHeX4uMhQa+BKipS/pFw/nY0F9A2V4+8hw8YCCkvh8m0tB8/p74hXWFvR6uXHcegajkOXUMycHIh7fA63vt/QJHmU9ra0++AV3B8chMLKgvwTCZx/9QMKYs8bpHUbPoA2857Fpl0AFRnZJK9cz9X3vkKrVjf4GxYqGNxZQTsfOSoF3M7SEnNSTWqOtkkyutjD0C5KfNwknV2+pSHmhNpAZ062MKijklaeMhQKSM3WsueMmutppn+nvLSAQ1s+5lpN//QOpeeDs3Hzanr/PLhxPqnXTyNXSG2t14P6/SA3/Rrnj68j+dIh8rOTUJlZ4+oVTNchz+LuHdqwbM1w7ACwMINhkSra+ykwU0JypoatRypJyW68Tr1cZXRuo8TbTY6nswyFXMbsr0sN0tlby+gSpKCtjwJnexlaLaTlaNgTW8XV28YjQ5SXFnD8t0+4cb52XOs27NWmj2sZiRzd+gFpN6vHtaA+dLu/4XHtauwW9v78KkozK6a+fcpkur9j7OgTIqdv6P9mFAkt985jxJRHSGPY2dlRWFhocD0/Px97e/smlfHzzz/z5Zdf8t5779G9e/c/JMedcM9bx4YNG3QTmv/vTJw4kTVr1vDdd9/x2muv4ebmxr/+9S/Gjx9PUVHRHZe3ePFiYmNj77qcBw8eJC8vD61We0/qpn379qxZs0ZvIv5XPevfVf7/MlZWVvz6668G17dt2/aXW27/CP369WPNmjVG3feaC1qNhs3fPMnlU1sJ7z2BniNeobQoh3WLJ5KXeaPR/IV5aaxdNJ78rCS63/8SHftP48b5/Wz8airqqgq9tEd+XUh68llcvdo1WObGb+dwZMd3hHUfwZBHX0Mml/PfhdHcvGz6QwagvKyY7z6axM3LJ+g9PJr+I58jNekC3304kZKi2i8a3zZdeOiJjwz+PH2DkckV+Ad3M/kbO/47h9i939G28wj6jXoduUzBpmVPcjvxZIOyVZQXs3bxJG5fPUHXQdF0G/o8mbcu8MuiCZQW639txR/6iV0/vYGzRyD9Rr+Jp38E+9a9y4ldX5ssf/sPczi95zvadhlB/9GvI5Mr2LCkaXL98sUkbl09QdfB0XQf+jwZty7w8+eGcp3YtZzky8dw9ghALr/ztQytRkPMf6K5emYb7buPJ3LYLMqKctiybBL5WTcazV+Ul8aWZRMoyE6i65AXCeszleSL+/l1+TSDtlZDZXkxx379GKVZw+ODVqNhy9fRXD69jbBe4+k5YhalhTms/3JSk/pBUV4a6xZNqO4HL9Kh31RuXNjPxiWGsh39dSHpSY33gxq5mrPOmtvYUZdH+yoI8ZVx8oqG3Wc0WFvImDRQgZNN43ltLalOK2NPvIYjFzUEtpAxvr8CeZ2vVZUSpg5SEOQlI+G6lphTGq6maukSKGPCAAXIaicQZi6OtHnzWWzatqIw3vRCgFFkMrps/poW44Zz86sfuDj3Y8xcnei2axVWAb56SV2j+tB53ZdU5hVy7sV/k7Z5F4GvPU37z99s+CeACfcpCfWXc+yimh2n1FhbwtQoJU62jYtoZwWPD1HhZCtj12k1h8+paeMlZ/JgJQq5fronhqnwcZdx6JyaXafVmKlg0iAlvu7GJ1xajYYt30Rzpbp/9hg+i9KiHDbcQf9cv1jqn92GvUiH/lO5cX4/m5bq94Nzx37h/NFfcPMOoecDs4noO4W8jOus/XwcyZcPm5atGY4dINXp1CFmRAQoOHKuil+PVWJjISN6hDnOdo1Pbtv6KOjSVgFAToFpQ0qwn5y+EUqyCjTsOFHJ7tOVmKtkPHG/OZ3bKAzSazUatq98iqtx2wjuNp6uQ1+mtCibrd9Mbtq4lp/G1q8nUpCdRJfBLxLaeyrJl37n1xWPNzyuxXzS6LgGf8/YcfGWho1H1AZ/+cVaSsubZogUNJ1WrVoZxBIpLCwkMzPTIPaIMXbu3Mm//vUvnn/+ecaMGfNXianHPfcYac6UlZVhYWFx18rz9PQkIiJC9+9hw4YxdOhQoqOj+eCDD3j33Xfv2m/9GbZu3YqdnR3e3t5s2bKFJ598stE8d1NXNjY2enr6X+Rut517ycCBA9m6dSvPPVe7QhIXF0dKSgpDhw5tdgYlJyenZu0pAnAlLobU67EMnfI5gRFDAAjsMJRV70Vx9LdFDJm0oMH8J3cupaqilEdnrcfWUfLocvcJY+OSqVw4voGQHo/o0k55czd2zl6UFuXwzRvGre23rsVz9vivDHr4FXoOeRyA8J4j+erNEez85WOmv/6TSVlO7F1NTvpNnnjzF1r6S6t7AaF9+OrNERze/h/uGz0TACc3bz0PEoDKijK2rXob/3aR2Nq7Gi0/7WY8l09vo/eDr9JpgCRbuy4jWfXBcA5u/oRHXjItW/zBH8nLvMG4mb/g4RsGgF9wb1Z9MILTe/5DzxGSbFUVZRze9hn+wf0YPu0LAEJ7PIxWo+H49iWE9ngECyv91Y3UG/FcOr2NPiNfpfNASa7griNZ+f5wft/0CY/ONC1X3AFJrsdm1crlH9yblfNHcGr3f+j1wExd2odfWIWtYwtkMhmLXu5gskxTXEvYTvrNWO4bv5BWYVJbaxU2lDWfDOHkzkUMfLThtnZm7zIqK0oZ9dw6bKrbmqt3GL8un8blUxtoF/mIQZ7Te5aiMremRetIbpwzvdJ0NW47qTdiGTp5IQE1/SBiKKveH8KxmEVETWykH+xaRlVFKeNeXqfXDzYtnWbQDya/uQs7Jy9Ki3JZ/mbDq07NWWfNbeyoS7C3DG9XGWsPqrmQLE0yziepmTFcQd9QORuONHy+Qa/2csyUsHy7moIS6VpKtoYJAxSE+8uITZTKDGopw8FGxur9aq6m1ExmtJSVy+kTKscuvC0FZy4AUJ6awS6vnpSnZ2HfKYReR9c1+hw1eI4eglOPjpx65HnS1m8HIPWX3+h3fjtt5j3HmUmzdGnbffgqBQmXOD50ms5DpKqgmIA50Vxf9D3Fl4wHGgz2lePjJuenfZWcvyk9y9kbGl54SMWACAVrDzTsbdInVIFKCUu3VpJfLF27laVlymAVEa3lnLoi6bx3qAILM1i8qZLsAomJhu4AAQAASURBVCndqcsanhupYmgXBeuOGpZ9NX47aTdiGTJ5IQHhtf3zh/l31j8fmWmkf57YQEh3qa216XA/XaOexczculafkaP48cP7Ob59MT5BPQxla6ZjB0BoKwV+Hgp+2FlOwnVJ//HX1Mx6xIJBnZX8tKeywfxHz1ex70wVVWp4sKcKVwfja9jXUjTM/2+ZnkfE0fNqXhxtzqDOSpbvqJf+rDSuDXxsIa1CowBoFTqUnxcM5dSuxQwY90mDctWMaw89uxYbB0lnbt6h/Prt41w+vZF2XR82yBO7t3pcaxXJjfOmx7W/a+zIyIOMPH0DiJ2V9BebqKVjwL3zyvj/SJ8+fVi6dKlerJGYmBjkcjk9ezbsWXvs2DFmzpzJ2LFjeeaZZ/4OcYE/6TESGxvLtGnT6NixIx06dGDs2LF6x+988sknjBgxgg4dOtC7d29mzpypd8zOxIkTOX78OPv27SMoKIigoCAWLVqku79v3z7Gjh1LWFgY3bp146233qKkpERPhitXrjB+/HhCQ0MZPHgwmzdvZsaMGUycqO/+fOLECcaNG0dYWBiRkZHMnTuXvLw83f1bt24RFBTE+vXreeONN4iMjGTs2LGsWrWK8PBwA4+OxMREgoKC2L9//59RIX369GHw4MFs3LhR9xsZGRnMnTuXgQMHEhYWxuDBg/n000+pqKi1yNZszfnoo490ujt27BgAK1asYPTo0XTq1Inu3bsTHR3N9evXmyRPSUkJe/bsISoqilGjRnH58mWD7Rbr168nKCiI2NhYpk6dSkREBB999BEA6enpvPrqq/To0YOwsDCGDBnCypUrDX7nv//9L/3796dTp07MmDGDnJwc3b1jx44RFBREQkJCo8+q1Wr59ttviYqKIiQkhIEDB/Ldd98Z/F5iYiLPPvssXbt2JTw8nAceeEDnDWOq/Jo2ERMTo1fWe++9x4ABA5qkj7S0NGbNmkVkZCRhYWGMHz+es2fPNloPTanDOXPmMHz4cI4dO8bIkSOJiIhgzJgxBuUXFRXx6quv0qFDB7p168ZHH32EuhHX3roMHTqUpKQkzp07p7u2ZcsWunfvbtQAcfv2bZ5//nk6depEREQEjz/+uEEbqqys5L333qNr16506tSJ1157jeLiYoOyKioq+PTTT+nfvz8hISEMHTqULVu2NChvTX3UtKmaety0aRPvvPMOXbp0oVevXnz44YdUVVXp5d25cydRUVGEhoby8MMPc+7cOTp37qw3Lt0NrsZtx8rWhYCwwbprVjZOBEYM5drZ3VSZWH2pzb8Dv/b9dB90AD5BPXBw9ePKmd/00to5N74t6fzJ7cjkCjr1rf0YVKnM6dh7NLcSz5Cfk9pg3hb+oTqjCICrZytatevGuRMxJvMBXDqzl4qyYsK6md5KeeVMDDK5Qu9DVakyp323MaTeiKUw17RsV85sx90nVGd8AHByb413m+5crqOn5CvHKCvOI6zXY3r5w3qPp7KihOvn9pmUK7SeXKHdx5B6vWG5LscakcujNT5tunMptl79ObVEJvvjH2vXE7ZjaeOCf0htW7O0caJV6BBunttjcqVPl//sDnzb9tNN8AG8Antg7+LHtXjD+s3PukHCge/oPnwOcrnhqmVdavpB6zB92QIihnDtbOOyXY3bgV+wqX6gL5udU9O35/0v6Ky5jB11aecjo6hUq5vYAJSUw/kkLW28ZHoeDMZo6y3jSopWN7EBuJ6uJbtAS7BPHS+Q6p3HxWX6E5zC6n+rS2tnipqKSsrTs+7oOWrwGBVFWVomaRtqZ5gVWbmkrP0N9wcGIq8WxKZda2zbB5K8/Ge9bTM3l/6ITC7Hc1SUyd9o7yejsFTLhZv6Ojt7Q0Nbb3mjOgv2lXP5lkZnFAG4lqolK19LiF9tZl83Gak5Wp1RBKBSDZduaWjhLMfeyIJ+Yk3/DK3XP8OHcL0J/SAx3rB/ereR2trVOv3TzTtEzygCYGntiKd/J3LSE42W3VzHDoBQfzmFJVrOXq+dzBeXQcI1Ne19FY3WaVEpVDXhEy09V2uwXUqtgYvJahxs5KjqLX1fP7tDGtfaD9Jds7RxolXYEG6eb1xnN87txKdtP51RBKBlQM249ptB+vysGyQcXEm3YbORNTKu/V1jhzHa+8qQyWQk3PgzB9P+9Wi1snv290cZN24c1tbWPPPMMxw8eJB169bx0UcfMW7cONzd3XXpJk+ezKBBte0yMTGRZ555Bj8/Px588EHOnDmj+0tKSvpTemyMP2wYOXXqFBMnTqSiooJ3332XRYsWMXDgQFJSUnRpsrOziY6OZtmyZbz++uvcvn2biRMn6iYjb731FsHBwXTs2JE1a9awZs0axo4dC0gWpaeffpo2bdqwePFiXnnlFXbu3Mnrr7+uK7+srIxp06aRl5fHxx9/zMyZM/nmm2/0JnAAZ8+eZerUqVhbW/P5558za9Ys9u7dyxNPPGEwQfz000/RarUsWLCAV155hQceeMDolpK1a9fi7u5Or169/qgKdfTq1YvKykrOn5f2rObm5uLg4MDcuXNZvnw506dPZ8OGDbz11lu6PGvWrAFqt+esWbOG9u2lPYJpaWlMmDCBr776infffReNRsO4ceP0DEGm2LVrFyUlJQwfPpyhQ4eiVCpNbqd5+eWX6datG0uXLuXBBx8kNzeXRx55hOPHj/PSSy+xbNkypkyZQnp6ul6+PXv2sGfPHubNm8frr7/OiRMn+Pe//21Spoae9b333uOLL75g5MiRfP311zz00EN88sknrF69Wpf/xo0bPPLII9y8eZPXX3+dJUuWMGrUKF1bbaj8O6G+PvLz83nssce4ePEib775JosWLcLS0pLJkyeTnZ3dYFlNrcPMzEzeffddHn/8cRYuXEh5eTnPPvsslZW1KxKvvfYaO3fuZNasWXz44YckJiYaNVaZws3NjS5duujagUajISYmxmhk6KKiIiZOnMj58+d5++23+fjjj8nNzWXChAmkptZOFD/99FNWr16tk1uj0bBggeEKzwsvvMCaNWuYOnUqy5Yto3fv3rzyyit/yCC5cOFC5HI5CxcuZNy4caxYsYJffvlFd//8+fO88MILBAQEsHjxYkaOHMlLL72kZ5C8W2TeuoCrVzAyuf4Q7O4bSlVFKXkZpg2ZRXnplBZl4+4dYnDP3TeMzFsX7lietKQLOLv7YWGp77Pa0j9Md98YGo2G9ORLtPAzlKWlfxi5GUmUl5reJphwdAtKMwvadRxkMk3mrQs4uvphbqEvm4ePJFvmbeOyaTUaslIuGdWTh08o+VlJVJQVVZchjb3uPvpp3b3bI5PJjeo049YFHN38MK+nsxpjR4aJeqiRy8PHiFy++nLdDbJSLuDS0rCtuXmHUVVZSn6m6bZWnC+1NRcvQ1ldvcPISjGMs3B4y3xatI7Ep23fRmXLvG2iH/iEUVVRSm4T+oGbsX7gE0bWbUPZmkqz1lkzGzv0ynCUkZpr6I6ekq3FTCnDuYGtIbaWYGMhI8VIXI3b2Vo8HGs/zpMytGg0WqI6KmjpLOUN8JTRK1jOxWSNSe+MO8U+op0US0SrL1P+iQSU1lZYt/EHwC4iGIC8Uwl66cpTMyhNTsUuwvQWDE8nOanZWuo/9e0sLWYqWYNbL2ytwMZSRkqWoc5uZWnwdKrNq1TIqLcOAEBl9TU3I9v9M29fwNVIP7gb/TOzCf2zpDALS2tHo/ea69gB0MJFzu0sjUGdJmdoMFPJcLX/a70SbC1lVFRqDeo7O+U8Li3aGejM1StUGtca2E5TM665GolF4uoVSnaK4dhxZOt8WrRq2rj2d40dxgj1lZNfrCUps1ExBXeIvb09K1euRKFQ8Mwzz7BgwQLGjBnDnDlz9NJpNBq9+XhcXByFhYVcvnyZRx99lEceeUT399VXX/2lMv/hrTQff/wxvr6+ugcGDIwE8+fP1/2/Wq2mQ4cO9OnTh6NHj9KrVy8CAgKwsbHByspKb+uEVqvlo48+YtiwYbz33nu6666urjz55JPMmDGDwMBA1q1bR3Z2NqtXr9YFawwJCWHw4MH4+Pjo8i1duhRXV1eWLl2qC3Lq6enJ448/zv79+/VW/9u2bav3mwBRUVGsW7eOcePGAVBVVcXmzZsZM2aM7tn/DB4eHgBkZUmrGkFBQcyePVt3v2PHjlhaWjJnzhzmzZuHpaWlTl/1t+eANBGuQa1W07NnT7p378727dt55BFDF966bN26FXd3d7p27YpcLqdbt25s3bqVmTNnGqxajhs3Tm+bzWeffUZ2dja//fabrj6MBcrRarUsWbIEMzMzQPIwWLZsGRqNBrnc0FZn6lmTkpL44YcfePvtt3XP1aNHD8rKyvjyyy955JFHkMvlLFq0CJVKxerVq7GxsdGla6z8phiSGtLHF198QUFBAb/88gvOzs46fURFRfHtt9/y6quvmiyrqXWYn5/PDz/8QGBgIACWlpZMmjSJuLg4OnfuzNWrV9mxYwfvvvuubn9er169GDx4MHfC8OHD+eqrr3j11Vc5duwYBQUFDB48mAsX9F+G69evJyUlhW3btulixHTp0oX+/fuzcuVK5syZQ15eHj/++CNPPPEE0dHRAPTu3ZsJEyboGdGOHj3Knj17+Pbbb3VjS8+ePcnMzGTRokX07dv4y7YuYWFhvPHGG7pyjh07xvbt23n00UcBWLZsGV5eXixatEjXDq2trRuspz9KSUEmLVt3NrhubecGQHF+Bi4tggzuAxQXSF53VnaGW0+s7VwpK8mjqqoCpdKsyfIU5mdi62BYnk319pbCvAyDewClxfmoqyqMboOxcajNW994AFBSlMfVswdo2+E+o/drKC7IxNrYs1b/ZlG+cdnKSvJQV1Xo0unltavN62RhQ3FBJjK5AitbZ710CqUZFtYOFBUY/oZJuaqvFd8Fue4GJYWZePobtrWa9lNckIGTp/G2VlJouq1Z2blSXiLVv6K6rSVd2Mety4cY8+LGpslmsh/UytZYPzBVB2X1ZLsT/jd1dm/GjrrYWkCSkWZfVB030sZSRka+8X38Npb6afXyl4GVubRqrNZAVgFsO6Hhvg5ypg2u/YyNu6Zhy3ENd77hzDjmnq7kHDSMF1SWmlF9343Cs5ex8JD0WZ5qOLMqT8vEooWbyd+wsYQb6YY6KSyVrtlZSe7/xrC1lFWnNbxXVApWFnV1psXXTYaZEirqTJh93KQybIzs/C0pyKRFq4b7gcm2dof9oD4p106SdvMMXe572uj95jp2ANhaybieauh9UFBSXafWMtKMGAHuBs52MkL8FcRfU6Ott/ZdUpiFh7FxzbbOuObRxmi5JYWZemn18tu5Ul5ab1y7uI9bVw4z+vmmBTn+u8aO+rjaSUaZw+ebt7cI3Nvgq3+G1q1bG/Xkr8uqVav0/j1q1ChGjRr1F0plmj/kMVJaWkpcXBwjR45s0DCwf/9+xo0bR6dOnQgODqZPnz6AtILfENevX+f27dsMHTqUqqoq3V/NZL1mq8DZs2dp06aN3gkWXl5etG3bVq+8kydPMnDgQL2TX3r16oWdnR2nTukHFuzXr5+BPA8//DDx8fFcuXJF91zZ2dmMHj26wedoKtp6qxFarZbvvvuOYcOGERYWRvv27Zk1axZVVVUkJyc3Wt6ZM2eYOnUqkZGRBAcHEx4eTklJSaN6z8nJ4dChQwwbNkw3MRwxYgQpKSkGegJDXR05coRu3bo1eqJIly5ddEYRkDpNZWVlo14U9Tl8WArKNXjwYL120qNHDzIzM3UeCkePHiUqKkpnFPmrqK+PQ4cOERkZib29vU42uVxOly5ddNuETNHUOnRzc9MZRQACAgIAdAaGhIQEtFqtnouaQqHgvvvuu6NnGzx4MFlZWZw6dYqtW7fSt29fo/o8efIkgYGBeoFzHRwc6NGjh64NXb58mbKyMj2Zan6jLocOHcLBwYFu3boZ1O+FCxfuaDsQGBpuW7duTVpamu7fCQkJ9OvXT88419jZ7X+Uqsoyox9dNdeqKssN7tXmLddLWxel0hwAdUXZnclTYVwepUoqr7LCuDxVldLvKFQN5DXxLOdPbkddVUloA9toan6joWetkcEwXwN6UpnrpamqKEOhMH4ymFJpbvQ3TNah6u7JdTdQm2xr1W2lqgltTdG4/tVVFRzZOp/gbo/g6B7QJNka1+Ef6weN1UFj/E/q7B6NHXplKIxPPqqqr6kaWEdSVt8zNqzXbCtQ1slfWCqtJm8/pebn39UcuaghxE/GwPC7d6aAwtICTbmhx6CmrKL6vqQzuaVkVTCWVl1WrrtvDJWi6c9sLG/dtMby16Q5cUmNpbmMh/sq8XCS4WwHQ7soaOEsTbaMfcqbHHur+5e6gbambkJbM9U/Swqz2fHDLOycvOhQHVeqqbLd67EDJJ03VCcN1emfQaWA8feZUVkFvx03jGOiriwzOi4pdPVp+plr9CFvYFzUH9c+oF1k08e1v3PsqEvNdrOEm83fMCL4e/hDHiMFBQVoNBrc3ExbwePj45kxYwYDBw7kiSeewNnZGZlMxsMPP0x5ecMffbm5UlR+U8FWaia8GRkZRmMcODk56f1GQUGBbsW+Ls7OzuTn5xtcq0+XLl3w9/dn7dq1zJ07l3Xr1tGlSxc9r5Q/Q80k1tVVssSuXLmSDz/8kOnTpxMZGYmdnR0JCQm88847jeouJSWFadOmERISwttvv42bmxsqlYro6OhG8/72229UVVXRt29fCgqkjaiRkZGYmZmxZcsWOnfWtzS7uLjo/TsvL09vkm6K+qeF1BhJGpOvPrm5uWi1Wrp1M36aRWpqKi1btiQvL6/Btnq3qK+P3Nxczpw5Y3RbTkNt507qsL4ua4x/NekyMzNRqVQGx2IZa+cN4eDgQK9evdiwYYPOA8UYBQUFBnqo+b0aw2JmZqZRGYzpLy8vz+S2pszMTJ23VVOwtdX3xVSpVHrbZDIzMw3GExsbG8zNzZv8G/WpqKiguEB/jLG0cUKpsjC6n7fmWs2HpzF0H6VG8ldVT9gUZncW+FdpZlyemg9IlZlxeZQq6XfUlQ3kNfEsCUe3YGltT2Bo74ZlM6GrmmetkcEwXwN6qizXS6M0s0CtNh4Qr6qq3OhvmKzDyrsn152grqqgpDBP75qFtRMKk22tZnLQhLamblz/CQdXUlacR6dBhsdYqqsqKC67g37QBD00pMfG6qCuXGUl+VTUqfpmpbPyAr1rzWXskMvAul6yknJpEmIsFoCy+lplA7bsmgmMsQm6sp4BwMsFxvWRs2KnmtTq8GSXbmupqJTRJ0TO7+1aU3TBeGyKO0FdWobc3HAiKLcwq74v6UxTWj1pNJJWYWGOprQMmUqFmZO9nmdGcbmkk6Y8szEqG5j01VyrSXPltpatx6oY1FHBjBHSd0J2gZbdsWr6h2nIysyjuE5za6it6QwLDbQ1RRPamrH+WVlewtblT1FRVszo5/6LQqGiuEDfE6c5jB0g9YMab4UaissknTdUJ02JH3KnyGTw2H1muDvK+GZLMZmZuTg71bZH3bhmZFzSGbEaeOYafWgaGBd149qhlZSX5NHpvmcN0t7rsaM+Ib4yMvK0Jr2yBP88/pBhxNbWFrlcrhdItT67du3CxsZGt68fpC0TTcHBwQGAefPmERYWZnC/ZpLr5uZm4MoPkueDtXVtICd7e3uj3gjZ2dkGE0ZTQe7Gjh3L8uXLmTp1Kvv37zfYbvNnOHDgAGZmZroJYExMDAMGDODll1/WpUlMbNpL/sCBA5SUlLB48WLdpLmqqsrAAGSMmhgSU6ZMMbgXExPDG2+8oed1Ux8HB4cG28Tdxt7eHplMxo8//mhULn9//z8lV82EuG68DkBnNGqKfL179+aFF14wuFfXY6Y+f6YO6+Pq6kplZaXBmeF36p0DcP/99/Pqq69iZWVl1LMKpGc2Fui3bl+rMQBmZ2frBV+q2UpWtywnJye+/tr4cal3++QZV1dXvSDAIMVMuVODXV1iY2P5dt4kvWtT3tyNlZ2rwcce1HHxtTdtyKtxmS8xmj8TCyuHO3aFt7V3pSA33eB6Ub70G7YOxuWxtLZHoTSjMN9QlqI803nzslO4eeUUnfo+jEJpekwBybW5KN9QtuLq37QxoSsLKwcUSjNdOr28Bfp5re1c0WrUlBRm622nUVdVUFach42d4W+YlKu6bFN1eCdy3Qkp12P55Qv9tvbo7F1Y2brq3KDrUtN+rI08Ww1WtqbbWklBJuZWUv1XlBYSu3sJwd0fo7KsiMrqGCmV5SWg1XL97A72rJ6ll3/ym7sa6AeNy6bbOmKyH9g36gqfeiOWDV9O1rvWnHXWXMYOD0d4aIj+5+MXm6soLDOcKEJdV3fT2wdqXeaN5LeAknKtbkW5U4CcojJ0RpEaLt/W0jdUhmP3DnfFMFKemom5h+HWAQtPt+r7ks7L0iR9mnu6UnYrTS+tuYcreSficezege67V1HXV/PTtRUUldZuialLzbW6wSTrU7PdxtaEzkvKtHqr8Mcvaoi9qsHDUUaVGtJytXQMkBMbG8usx/XHjklvSP3TVDuGRvpnE/tBXdRVFfz63XNkp17igSeX4+zZhltXj7HxK/0+2hzGDgBPR5gxVF/5H/xYRmGJFlsrwzq1q75WUHz3t9GM7qOirY+cn/ZUcuLUaQ79/ITe/XGv7sLK1oVSY/VR2JRxzVUvrV7+gkzMLavHtbJCzuxZSrtuj1JZXkxluRQVuKpCGtcczbKYer/+7/ydY0ddvF3AwUbG7jN/gaXqL0AjThP+W/hDhpGamCCbNm1i2rRpRrfTlJWVoVKp9AwNxk6TUKlUBhOPVq1a4eHhQXJyMuPHjzcpR0hICBs3biQ5ORlvb+kYyFu3bnHx4kU6deqkS9epUyd2797NnDlzUCqlRz506BAFBQV66RrioYce4rPPPmPWrFlYWFgwZMiQJuVrjN9//52dO3cyduxYrKyksOA1uqtLU3VXVlaGTCbTPSfUeoI0xO3bt4mNjWXcuHEMGzZM796FCxeYP38+Bw4c0IvHUp/u3buzYsUKUlJSaNGihcl0fwRjz1oTvyQvL69RubZv386sWbNMbqcxVr6zszMqlUrPKFVRUcGJEyeaJHOPHj3YvHkzrVu31tVtU/ijdWiM0FDppJCdO3fqYoyo1Wp27dp1x2UNHDhQd1KSKS+KTp06sX37dq5du6Y7ozw/P5/Dhw/rYqO0adMGCwsLdu7cSXBwsC7vjh36Z8v16NGD5cuXo1KpDLbH/RWEhoayb98+5syZozPm/hE91aVt27aMfPo/etes7FxxbdmWlGun0Go0eoHQ0m7GozSzxMHN32SZNg7uWNo4kZ5seLpR+s14XFreua48fNpy/eIxykqL9AKw3roWV33fePBAuVyOu1cbUm4YynLrehyOrt5G44ecPbYNtNoGT6OpwdWrLclXj1FeVqQXgDXtpiSba0vjssnkclw82xjVU9rNeOydvTGrLq+mjPSks/i3r41dk558Fq1Wg6uXoU5dvdqSfOUY5aVFes+YekOSy82rAblatCEtyYRcLrVy3QmuLdsybPoKvWuWtq44t2hL2nXDtpaRHIdSZYm9q+m2Zm3vjoW1E1m3DGXNTI7H2VN6xvLSfCorSojbv5y4/csN0u5ZPQsPvw5EDqn1jLCyNd0P0m/GoTSzxLEJ/SDDWD9IisfFRLuoi0uLtjz41ApdAEpofjrrNvR53bXmMnZkF8APe/QnE0Wl0ikZPq6GE8KWzjIqqrRkF5ous7BUOmWmhZMM6oWtbOksI71OTAZrC2nluT4112TKP/Rpa0BB3EUce3WSluPrbHl26BpGVXEJxZevV6eTFugcOoWSf6J2m6y5pxuW3p4kLf+ZgviLHI2awsWXv9HdLyqF1Bwtvu4y6j+1l6sUQDO7wPRsqLBEmjC2cDFUhpeL3Ggci8oqSM6svd66hQx32yBGP7NCb1XdytYVl5ZtSTXW1pL+fP+sP25rNRp2/TiHW1eOMmTSZ7QM6ArU9tG6NIexA6RYN99s0/9uLCzVkpKtxd9DblCn3m5yKiq1ZJqIlfFHGRappEuQks2HK4hLVGPvGkSPMUtxsK+dR1jauODs2Y60G4Y6y0yOl8Y1Fz+Tv1EzrmXePmdwL/NWAs4tasa1AiorSoj//Vvif//WIO1X/7qf80cnEN6/1pvk7xw76hLiJ0er1XL2prA4CGr5w2+Pl19+mSlTpjBlyhQee+wx7O3tOXfuHI6OjowZM4aePXuycuVK/v3vfzNo0CBiY2PZtGmTQTmtWrVi48aN7NmzB1dXV9zc3HB3d2fOnDnMmjWLkpIS+vXrh6WlJSkpKezfv5+XXnoJf39/Ro8ezdKlS3nqqad47jnpg2vx4sW4uLjoGWSeeuopxo0bR3R0NBMnTiQrK4sFCxYQFhbW5ACOTk5ODBw4kJiYGB555BEsLO7MVR2krR1nzpyhqqqKzMxMDhw4wKZNmwgPD9cLttqjRw++//57fvjhB/z8/Ni8eTM3b940qrvdu3fTuXNnLC0t8ff3120rmTt3LuPGjePKlSv85z//MdhyUZ8ab5Hp06frjEw1dOrUia+//pqtW7c2aICYMmUKmzZtYsKECTz99NN4e3uTnJzMjRs3eOWVV5qsJ2MYe1Z/f3/Gjx/Pq6++yuOPP054eDiVlZXcuHGDY8eO6SIXP/vss+zbt4/HHnuM6dOn4+rqSmJiIqWlpTzxxBMmy7exsWHQoEH897//xdfXF0dHR3744Qe0Wm2Tjs+cMmUKW7ZsYcKECUyaNIkWLVqQk5NDXFwc7u7uRj1zgD9ch8YICAhg0KBBvP/++5SXl+Pl5cWPP/5o4AXTFKysrFi8eHGDaUaNGsV3331HdHQ0L774Iubm5ixZsgSlUsnkydKqj4ODA+PGjeObb77BwsKC4OBgtm3bZnAEV8+ePenfvz/Tp09n+vTpBAUFUVpaytWrV7l58+Zd9doCiI6OZsyYMTz33HM8/PDDpKSksGLFCszNzf/wcan29vb4BPUwuB4QPoSrcdu5Gr+DwAjJyFpalMPVMzH4t++vt2qblyXpxcGldvtVQNhgLpzYSGFuKraOngAkXz5CXuYNOvSbcsdyBneK4nDMCk7tX0PPIdKe7qrKCs4c3EDLVuHYO0m/kZedQmVFGa6erWrzdo5i19oF3L6eoDuyNyv1GtcvHKNH1DSjv5dwdCv2zi3wCWzcMB0QPoRTe1Zw9vAaOlXvN6+qquD8sfV4+Ibrnr8gJ4WqylKc3Gvj2wRERHFoywLSkxJw95Fky0m/RvKVo3TqXyubd2A3LKwciD+0Ws8wEn9wNUozS/yD+xnI1SZiCKd2ryDh8Bo6D6zV2blj6/HwqydXRSlOHrVyBUZEcXDzAtKSEvCoI1fS5aN0HmBcZ41hYWWPV6BhW2sVGsX1hO1cP7uDVmFSWysrzuVawnZ82vXXWxktyJbamp1zbVvzDx3M5VMbKcpLxcZBeqbbV4+Qn3WD0N5TALC0cWbwJMOx4eyhVaTfPMPAxxZg7+SKh2+43v3W4VFcjdtOYvwOAnT9IJercdvxb68vW351P7Cv0w9ahw3mool+ENF3SpN05hPUg/qhIZqLzhyc3PDw09dZcxg7yqsg1chJKBeStQT7yGnnLdMdu2lpJh3FeeW2/qqtY7XtL7dIP3+4vww7q1pPCT936WSWo5dqM2cXQmtPGb5uMm5m1MrR3lea7BWcufNTRcw9XFHa21KSmIS2ehEidX0MnmOG4PHQYNLWbwdA5eyI5+ghZGzdi6Z6D1bR+asUXUjEe/rD3Pz6J9BIsvpGP4pWoyFtfQxVeQVk7znCtcf09Xb+poYQPyXtfGWcr56gWZlLz3LplkZfZ9W7QXPrTBLPJ2mIaC3Hzkqt01krDxku9jIOn294JdzbVUY7HzknLtni2drIeyosisS47SQm7CAgvLZ/JsZtxz/47vbP3ze8y5Uzv9Jv7Nt6R/DW9NH63OuxA6R+kHzb0BUh4ZqasFYKQvzlJFQf2WtlDqGtFFxIUuvVqZOt9G2RU/jHJud9wpT0DVexJ7aSQ2el+jazsMPNtxuuLvoLWP6hg7l+djvXz+2kVah0hHTtuNav8XEtZBCXT28yOq6F9JK+7yytnRg0YZGBnGcP/0BG0hkiH3iPCgsXrtcLOPx3jR01yGUQ7CMjKbNhr6zmxP9q8NX/Nf6wYaRz5858//33LFy4kLlz5yKXywkMDOTFF18EoG/fvsyaNYsffviB9evX07FjR5YtW0ZUlP557k888QRJSUnMnj2bgoICnn32WZ577jmGDh2KnZ0dS5cu1XlLtGzZkt69e+tiEVhYWLBixQreeustZs2ahbu7OzNmzGDjxo168QRCQkJYsWIFn376Kc899xxWVlYMGDCA2bNn39GpMoMGDSImJka38n6nrFq1ilWrVqFSqXBwcCAoKIi3336bkSNH6nkHPPPMM+Tm5vLFF18A0qk4b7zxBk899ZReefPmzeP999/niSeeoKysjO+//57IyEjmz5/P4sWLiY6Opl27dnz++ee6ejHF1q1b6dixo4FRBECpVDJ8+HB+/vlniouLTZbh6OjI6tWrWbBgAZ988gmlpaW0bNmSxx577A60ZBxTz/rGG2/g7+/PmjVr+PLLL7G2tsbf31/Po8fPz4+ffvqJBQsW8Pbbb6NWq/Hz89M7QcZU+W+++SZvvvkm7777LtbW1jz++OP4+/uze/fuRmV2dHRkzZo1LFy4kE8++YS8vDycnZ0JDw83CDxal6CgoD9Uh6Z4//33eeedd/jkk08wMzPjoYceomvXrnz00Ud/qLyGsLGxYdWqVXzwwQe8+eabaDQaOnbsyA8//ICnp6cu3csvv4xarWb58uVoNBoGDRrEyy+/bHACzBdffMHXX3/N6tWruX37Nra2tgQGBv4l0aqDg4NZuHAhCxYs4NlnnyUwMJAPPviASZMmGcQn+bMEREThsT+CXavnkpN2FUsbR+IPrkajUdOtzqo6wIYvpwAw9a09umudBz3FlbgY1n85iYg+k6goL+H03m9x9mxDu0j9oNDSJCiFquqgiinXTnB8h2Q07NbvARxcWuLVOpzgzkPYve4zigtycHLzIe7wRvKyb/PA1Np4MhuWz+bmpRP8a8VF3bUu/R/l1O+/8OPnT9EjahpyhZIjO77Dxs6ZHlFTDZ49/dZl0m9dotewJ5pkcPL0CycwYgiHtnxKSWE2Dq6+nD++gYKc29z3aK1xbPt/Z3P76nFe/PyS7lp4r8c4e+QXNi2LpuMASbbYvd9hZetMxzoGCKWZBd2HPc/ete+w7T/P49u2N7cTT3Lx5GZ63P8SFtYORuVq02EIBzfXkevYBgqybzP4sVq5YlbN5tbV48xcVCtXRO/HSDj8CxuXRtNpwDQUCiWnquXqVM8wkpiwh8zbkr41mkqyUi5xNEaqv9ahA3BtZJXfPzQKN59w9v/yGrkZiVhYO3L+yGq0GjWdB+vvAd/6zRQAHptT29Y69I/mWnwMW7+eTEjPidJq4P4VOHm0IajzqGr9WeLX3jCg841zu8hITsCv/X0YCb9AQHgUcb7h7PrpNXLSJdkSDkn9IHKIvmwbvpJkmzKvTj+4L5qrcTFs+Goy4b0l2U7vXYGzZxuCI/XHiIsnNlGYm0JlpeR3nZJ4khM7lkg6Cn8AW8eWzU5nFuaG/aO5jB0ebYZj46DvGXohWcutLC0jIuW42GkoKYfOgXLkMtifoD85mdBf+vZatKV28n7ovIZgHwUTByg4fkmDmQq6t5WTnqcl7lrtROrkZQ0R/jIe6SPnxGUt+cXSiSshfnISUzXkHY/X+y3fGeNR2dvpTodxu78/Fi2l+FQ3vlxFVUERQe/NxHvSKPYEDKD0prTtO3XddnKPxhK+fD427QKozM7FN/pRUCi4/I7+5O/CnI/ovGEJkb+tIOXnbdi2b4PfjPEkr/iFooumjw8+d1NDcoaGh3oqcbNXU1wOXYPkyGSwp56L/5TBkgfAZ+tqFzZ+j1fT3lfO1CgVRy+oMVNCzxAFaTnStpka7K3hkb5KLiZrKCoFNwcZnYPkpOdq2XVajb2DYYCH1uFRuP8ezu6fXiMnLRFLm9r+2bVe/9y4ZAoAk9+sbWudBkr9c+NXkwnrM5HK8hJiq/tnu661/fPM/pUkHPoRD78IVCpLLp3crC9H2H2ozPW9bpvL2GHnFYWVnX4/SLiu5ma6hrF9zXBzrKK4TEv3YCVyGew4qe/5+8RwaWD8cHWt54mDjYyOgVL/8HKR6mVAB2mOkFukJfaK1C7a+8m5v5uKzDwNGblaOgToz2dySqX4HTX4h0Th5v09v699jbyMq1hYOXL+2Gq0WjWd7tMfO7Ytl97dj86u/daN6BfNtYTtbPtmCu17TqSqooT436vHtf9j77zDo6i6Bv7b3Wx6JxWSkNBCOj1A6C00BRQURRCwRBFfG1L8fEVfCwiKKKgUQREVkV5EQDpEeksCAUJCICG997r7/THJJpvdTQIK5H25v+fxMczcO3P23DlnZs6ce27nBvza5f2kJ0p+rbhUN1Bxv3xHNa1dZZibyIiK/++YRiO4f8jUdZdE+S8nJyeHQYMGMXnyZKZP1y3883eYOXMm0dHReqe1CASC/z2OHz/O5MmTWbt2Ld26dburY3z9h/7tJUW5HNu+gLjIfVSUl+LsHkCvUTM1mQ3VfP+BlKVV++UGIDM5hqNb55N04ywKhRJP3770Hj0bcyvtIrablkzkduwpvTI8O3MNXu2DAWn1mINbviTi+A6KC3NxdvdmwJh/0ca/pjjq959O1AmMAORmpbDn13nEXgpHrVLh2b4boePn0My5pc459238nGO7VvLyf7bh7KZ/OUWAnPyal8KK8lKO71pM9JkdlBbl4tDcmx7DX8PTp0a2DUsm6gRGAPJzUjiy5RNuXglHrVbh1iaYvmPmYOuoK1vkX79x7uBq8jITsbRzJaj3BDr2fVYrgFN7RfGK8lLCf1/MldM7KKmSK2Sktly/fTlRJzACkJ+dwqHNNXK5tw2m72NzsKsj1+61s7l8Sv+Sh6ET5uHXveYhvqBI/+28tCiXE7sWEn9pH5XlpTi6+9N9xEwc3bSvtV/mS9da7Zd8gKyUGE7snE9K/DnkRko82vel+4hZOtdaXQ79Npu4yL1M/fCc3sAISHYQvn0hcVHVduBPyKO6dvDDfyTZar/cgGQHx7bNJ+nGOY0d9BqlK9vmpRO5Hat/GuTIF9fQvHWw1ramoDN9gRFoGr5j0LPf4+Kl6xNNlTCooxxvNxlGCkjKhH0XKnXqgbz6iO7LDUjLZw7uJMfdUUalCq4nqfnzvIrCOgtmNLOCfoFyWjSTYWkqpdNfTlBzOFJF4ATtgt39Y/Zj7ql/tbzqQEjgqnk6gREAI1trfD6dicujg5CbmZB7JpLoWQvIPas7DcP50YG0/fd0LNu3piw9i8QftxDz0deaDBSAk9/prkhnagyhnRW095CjVMDtTDV7zlSSlKltz288rhsYAXC0lTGsiwIPJ0ln1xJV7D5TqaUzU2MYE2KEm4MMMxPpK/mleBWHIyopqwBHB/21nkqKcvlrR419OlXbp7v2tbbmQ+laqx0YAchMkewzuco+W/ro2ue+dbO5cnqr3vNLx9yHtb3u+DUF3xHyxEoc3bvqbDczhuHdlfh5KlAqICFdxe8nyrldJ9Nq1lNSVkftwEgrVzlhj+ifrhybVMmKnVKK26DORgzubLhG1/ojKhK0S7dRWpzLyV0Lib+8X/Jrbv4ED5+Jo5u/Vrt1n0or8tUOjABkpcZw4vdPSY0/h1wh+bXg4TMb9msb5nAjai9TPjirNzAC9893AIzpKcfHTcairZWU1MoY/PdT/8w0vHvBoSg96xHfJ/r56yng8j/Kf31gZMWKFTg4ONCiRQvS09NZvXo1N27cYNeuXVpfqP8OV69eJTo6mnfffZe5c+cybty4f+S4AoGgafH+++/To0cPbG1tuX79Ot988w1OTk5s2rRJaxnfO8FQYKQpYG/ddN1/7cBIU+IuL4P7gqHASFPAUGCkKaBnldUmgaHASFMgK+fOa17dLzpN0r+SWVNAX2CkKWAoMNIUuMuZrPeFhMS7X9b3XlN3Kk1TwVBgpCkgAiP6eZgCI033Cmgkcrmcb7/9ltTUVBQKBUFBQaxZs+YfC4oAvPzyy2RlZTF69Ggef1w71VStVlOpb/HsWvLd7QuVQCC4v+Tl5fHhhx+Sk5ODpaUlvXv3ZtasWcKGBQKBQCAQCASC/2H+6wMj1YUZ7yUHDhwwuO/UqVNMmjTJ4P4xY8Ywf/78eyGWQCD4h1m0aNGDFkEgEAgEAoFAINDw3z2/47+H//rAyIPGz8+PjRs3GtxvZ2d3H6URCAQCgUAgEAgEAoFAcCeIwMjfxNLSkoCAgIYbCgQCgUAgEAgEAoFAcAeoxHK99wUxcV4gEAgEAoFAIBAIBALBQ4sIjAgEAoFAIBAIBAKBQCB4aBFTaQQCgUAgEAgEAoFAIGiCqNViKs39QGSMCAQCgUAgEAgEAoFAIHhoERkjAoFAIBAIBAKBQCAQNEHEcr33B5ExIhAIBAKBQCAQCAQCgeChRQRGBAKBQCAQCAQCgUAgEDy0iKk0AoFAIBAIBAKBQCAQNEHUiOKr9wORMSIQCAQCgUAgEAgEAoHgoUVkjAgEAsE9JCe38kGLYBA7q6YbG69UNc1KY6VlD1oCw5iaNN0vSsXFqgctgkGysssftAh6cXUxftAiGCTmcvqDFsEg5d9FPmgRDBL8fMCDFkEvl36NftAiGEShaLp+LXzHqQctgkF6juj2oEXQS2pS7oMWoR5cHrQABmmij0T/czTdp2KBQCAQCAQCgUAgEAgEgnuMyBgRCAQCgUAgEAgEAoGgCaJWN93Mqf8lRMaIQCAQCAQCgUAgEAgEgocWERgRCAQCgUAgEAgEAoFA8NAiptIIBAKBQCAQCAQCgUDQBFGL4qv3BZExIhAIBAKBQCAQCAQCgeChRWSMCAQCgUAgEAgEAoFA0ARRIYqv3g9ExohAIBAIBAKBQCAQCASChxYRGBEIBAKBQCAQCAQCgUDw0CKm0ggEAoFAIBAIBAKBQNAEEcVX7w8iY0QgEAgEAoFAIBAIBALBQ4vIGBHcFZs3b0apVPLII488aFHuKd7e3pq/lUoltra2eHt7M3ToUEaPHo1SqbzjYy5ZsoSQkBA6der0j8g4e/ZstmzZonffokWLGDFixD9yntpMnDgRc3Nzli9f/o8f+++yZMkSVq9ezfnz5x+0KPViooSBHWS0ayFDaQRJmbD/goqU7Mb1b2YNgzvKcXeAShVcT1az77yaotKaNr39ZfTxNxz/3ntRTUa+9HdFeRkHt35FxPFtlBTl4ezmTf8xr9HaL6RBWfKyU9nz6zxiL4WjVqvwah9M6Pg52Dm667QtyM3g4LaviLl4iKKCHCxtHPDy6cGoKR83eJ7S4jzCty8kNnIfFeUlOHsE0OvRWTi5+zXYFyArNZajW+eRHHcOuZEST5++9B49GzNLe612p/9cRurNi6TcjKC4IJNuoa8QPPTVBmU7/vtCbkTto6KsBCePAHqOnIWjW+Nky06NJXz7PJLjz6FQKGnp05eej2jLVpibyvHfPyMtMZKivDRkMgW2jp749Xwa786jwUBxttKiPI7tWEhsxJ8avfUeNbvxekuJ5cjWT2r05tuX3qPnYF5Hb2qVinMHVxEZvo7CvHRsHT3pMigM784jDR67tDiPU398RvxlSW+O7gF0Hz4ThxaN1FtaLCd2ziflpqQ3d+8+dB+hO6a1uX5+Bwd/m4mRsTlTPjirt42pMQztaoRfSzlKI0hMV7PrVAVJmQ1/tnNzkNGpnQJ3Rxku9jIUchnvrCrV2za4vZxWzeW4O8qxtZRx9lolm45W1Hv80uI8wncsJK7aDtwDCBk1C6dGXmtZqbEc2zqP5BvnkCuk8ew1Sltn2alxXD61iYSr4eRm3kJpbIGjmy/dhk7H2T3A4LHNTWU8OcSazr4mmChlxCaWs253HjeT6/9NMhmEdDCji68pLV2VWJrJSM+u5ERkCX+EF1Beq7vSCCaNtKG1mxJ7GwVyGaRlV3LkbBH7TxUZPIepEoZ0UeDjIUepgNsZanafqSQ5q3GfYh1sYFhXIzycZFSq4Fqiit2nK7V8LoC9FQzuZEQrVxkKBSRnqjlwoZIbKTXnUViY0+qt57DtFoRt1wCM7W25+NxsEn/Ufy+vi5GNFT7z38Z51GAU5qbkno7k8sz55J2/rNPWaeQA2r03HUufNpSlZZKwZjPXP/4GdWVlg+cpLc7j9O7PuHlJutYc3QLodgf2mZMWy4nf55N6U7rW3L37EDxc+1rLz77NbwsH6e3f78nPaNdJv/8oLc7j5K6FxF+q8R09Rs5qvO9IjeX4znmkVPlc9/Z96TGyft8Rc34HB399GyNjc6Z+eM5gO0sLBdMmt6J3DwdMTRREX8tn6epYrsUWNCjXI0NcGNLfmZYtzLG0NCIjq5Tzkbl8vy6elDTti83CXMGkJ1rSp0cznJqZkJ1bzpkL2Xz/6029xzY1hhHdlfh5KTA2goQ0FTuPl3M7o2EbcHeS0dnbCA8nOa72MhQKGTOXFeu0M1LA6F5KPJzl2FjIkMshM1fN6asVHL9k+JqTfIcVnXxMMVFC3O1y1u3Ob5zvCDKji68JHrV8x8moEv4IL9TyHfbWcvp0MiOonQnOzYxQqSAxrYLthwu4HFfWoA4eJGq1KL56PxCBEcFdsWXLFszNzf/nAyMgBQFGjhxJRUUFaWlpHD16lPfff58NGzawevVqLC0t7+h4S5cuxdzc/B8LjAC4u7vz2Wef6Wxv2bLlP3aO2sydOxe5vGkmnI0bN46+ffs+aDEa5Mk+cpxt4cQVKZjRua2MZwbIWbVHRXYDz05WZjBxgJzScjgYocZYCd29ZTjZyFj9pwqVSmp3NUFNdr5Kp3+/QBnGRpBV6zzbVs/m8tm9BA+aRDPnllwI38IvX4bx7Ntr8Gjb2aAsZSWFrFk4idLiAnqPCEOuMOLEn2v44dOJhL2/BXNLO03b3KxkVs97GoDO/cZjbetMfk4at29ENKgvtUrFjhVhZCRdpWP/qZhZ2hF5bB2bv57E+Lc2YevoWW//gpwUNi15BhMzK3qMeJ2y0iLOH/qezORrPPHGbyiMjDVtT+xajLmVI45uPty6cqxRsu1aFUZG8lU69J2KmYUdUcfXsW3ZJMa+1jjZtn77DMamVgQPe53y0iIuHpZke/xfNbKVFOZQmJtC64BQLG1dUakqSLz2FwfXzyEn/Qa9H31Lr2zbV75Ixu2rdBrwHKYWdkSG/8KmpRN5asbmBmXLz0lh45IJVXp7g/KyIs4dXE1m0jWefHODlt7++v0Lzu5fgV+PJ3D2CCAucj971r6FTCbD3WeYXtn2rHmJzOSrBPaeiqmFLZdPrGPnymcZM30jNg4N6C03hZ0rJmJsYkXXIa9TXlZE5NHvyUqNYfS09VqyVVNeWsjJ3Z9hZGxu8Lgy4NkhSlzsZRyNrKSoRE2wj4Lnhyv5els5mXn1v0R4u8vp0k5OSpaarDw1jraGH2j7BBphooSEdDVWhkXSoFap2LEyjMwqOzC1sCMqfB1bvp7Ek2827lrbvPQZTEyt6D5c0tn5g9K1Nu71mmvt0skNRJ/cROvAIfiHPEVZcQGXjq9n45fjefTFlUArnWPLZPDmM/Z4uBixK7yQ/EIVA4PNeWdqM977NoPULMMvRcZKGS8+Zsv1W2UcOF1EfkElbdyNeWyAJb6tjJn/fZZW2xZORly8VkpGTiUqNbT1UPL0MGtauxvzh56YuAx4ZpARznYywi9VUlQC3drLmRJqxLKd5WTl1693a3N4bqiSkjLYd64SEyX09FPgbCdjxe8VVKpq2r0wXIlKDeGXKimrgI5t5EwabMQPe2ve0Iwd7Gj37+kU3bxNfsRVmvULrl+AOoruun0F1oHexH2+irLMbFqGPU33fWs5FvwYRddrXoodQ/vQZdPXZB4+xaXXP8TKvx1t33kZE6dmRE1/v97TqFUq9q55iayUqwT0noqpuS3RJ9ex67tnGfVKw/ZZmJvC7ysmojS1okst+8xOjeHRl3Xts1XgCNy9+2htc/LoYFC23d+HkZl8laA+kh1cPr6OHcsn8di/NjXsO3JS2LFc8rndhko+N+LI92SnXGP09N8M+45dC+v1HSDZwYL3AmjjZcm6zQnk5pUzZkRzlnwSxHOvnyMxWTeYUJt2rS1JTi0h/GQm+QUVuDqb8kioKz272jP5X2fJzCrTnOeLDwPxdLdgy64kEpKKcHM1Y8zw5nTrZM+SbSpKy2vJBUwdboxrMzmHL1RQWKKmh58RYY+a8NWmUjJy6/dr7T0UdGuvICVTTVa+Yb+mNAJnezlXblWSna9GrYaWznIe6anEw0nO4rX6dfbmM3a4OxvxR3gh+UVqBnYzY84Ue+Yuy2zQd7zwmA3XE8o4eLqIvEIVbdyVjOlf7TtqvjZ1am/K8F6WnLtSwrELJcjl0KuDGbMm2/Pdltx6f7/g4UAERgT/c5SUlGBqavqPHc/V1ZUOHTpo/j18+HCGDRtGWFgY8+fP56OPPvrHznW3mJqaasl4r2nTps19O1djKSsrw8jICBcXF1xcXB60OPXi4y7D3VHGpmOVXEmUtkUnqHlphJw+ATK2Ha//ASXEVwpsrN6rIq/qA2lSppoJ/RUEeck4Hyv1T8uFtDoPO1bmYG0u40KcGlXVF4jbcRFEndrF4HFv03PocwAE9RzNN+89wp8bFvLcO78alOX0wXVkpd7k+Xc30MJL+pLcNqAP37z3CMf3fM/Ax9/UtN3541zkcgUv/HuDVsCkMVy/uIfk+PMMe3YxbToMlc7TYRhrPxnKyd1LCJ34eb39z+xbTkVZMePf2oSVXXMAnD0C2bZsKtGntuDf80lN22f/vQ9rezeKC7L57t89GpQtNnIPKTfPM2TiYloHSrK1DhrGLwuGcnrvEgZPqF+2cwck2ca+Vks290B2rJzK1TNb8O0uydasuTejXtZ+qgwIeYZdq18i8thPhIx8HblcobU/5uJukm+cZ9jkL2lbrbeOw1j7cSgn/ljC0EkN6O3PZVSUFfPUjM1aetv67RQtvRXkpHL+0PcE9ppAv7HvAeDXfRybljzDse0LeNJ7iI5scVF7SL15noFPL6ZVQCgArQKG8dvnwzi7bykDxusGe2tz4eByysuKGTN9I5a2kmxO7gHsWvUc185txafbEzp9zh9chtLEguatgom/vF/vcf295LR0lvPL/nKi4qU33sgbKt4ca8ygTgrWH6r/C+bJ6EoOR1RSUQmP9DDC0dZw25W7ysipClDOnaT7MlaX6xF7SIk/z9BnF9MmqMYOfpp3Z3bw5Jt67OD0Fvx7SOPZruMIuoVOx9jEQtPXJ/gxfvl0BKf2LMWj6yKdY3f1M6VdS2OW/JrN6UslAJyKKmHB6448NtCKbzfkGJSrolLNf1ZkcD2h5k3u0Nli0nMqeXygFX6tjLlU9UW3sFjNf1ZkavU/eBqKS9QM7m7B0egyCkq0j+/bUo6Hk5xfD5Vz+abkE6PiVbw2RsmADgo2Hq0/e6JPgAKlESzbWU5uobQtMUPN5CFKOrSWczZGuk56BygwNYal28rJzJPanb2m4tXRSoZ1VVAdsylNTmOfWwilqRnYdPan14lN9Z6/Nq6PD8W+ZyfOPvkvUjbvASB5wx/0u7yHdu+9yoVJMzRtfT6dSV7kVU4Nm6rJEKnIK6TN7DBuLPmRwqtxBs9zI2oPabfOM+CpxXhV2adXwDA2LhrGuX1L6d+QfR5aTnl5MaNq2aejWwC7Vz9HzLmttK9jnw4tfGnT8dFG6SAuUvIdgyYsplWVz20VOIz1nw3lzJ9LGPhU/XZQ7Tsee3UTllV24OgeyK7vpnLt7BZ8gp/U6XPuQJXvaB1M/CX9vgOgf4gjgb42vDvvEof+ygDgwLF01i3vynMTWvLBZ1fqle3zb6/rbDt6IoNVizszbIAzP21MAMDP2xrfdtYs+jaGzbuSNG1vJRbxzuvtadOilEvxNR9GAlor8HRRsHZvKZFx0vaI2ErefsqUwV2MWLe/nPo4fqmCg+crqKiEUb2UONrq/zhWXApfb9HObDlxuZKSMggJMMLGUk5ugfYHm66+prT1kHzHmctS31NRxXz6miNjBliybKPhoEVFpZoPV2Zq+Y7DZ4vJyKnksQFW+LYy1mSDRN8o481FaRQU1TwXHTxdxIfTHBgz4M4+ct5vVKLGyH2haX7yFdxTzp8/z9SpU+nUqRMdO3Zk3LhxhIeHa/Z/9tlnPPLII3Ts2JHevXvz5ptvkpaWptk/ceJETp06xaFDh/D29sbb25slS5Zo9h86dIhx48YRGBhI9+7dmTt3LkVF2umtMTExTJgwgYCAAIYMGcL27duZNm0aEydO1Gp3+vRpxo8fT2BgIMHBwcyZM4ecnBzN/sTERLy9vdm8eTPvvvsuwcHBjBs3jrVr1xIUFERBgfan99jYWLy9vTl8+PDf0mGfPn0YMmQIW7du1ZwjLS2NOXPmMHDgQAIDAxkyZAiLFi2irKwmPa96as6CBQs0ujt58iQAq1ev5vHHH6dz58706NGDsLAwbty48bfkrKZaT9u2beM///kPXbt2pVevXnz66adUVGg/5P/555+EhoYSEBDAE088waVLl+jSpYvWGE+cOJGwsDDNv5csWULHjh25evUqTz31FEFBQYwcOZKjR4/qyLJ582YeeeQRAgIC6N27N1988QWVdVJ6U1JSmDFjBsHBwQQGBjJhwgSioqK02gwYMID//Oc/rFy5kv79+xMYGEhOTo5GlmpOnjyJt7c34eHhvPXWW3Ts2JH+/fuzcuVKHdl+/fVX+vfvT1BQEFOmTOHy5cua6+ufpL07FBSrNUERgKJSiL6lpl0LGYoGPLO3u4yYJLUmKAIQnwqZeWp83OtPt/TzkCGTyYiKr7nLXj67B5lcQee+NQ+DRkoTOvZ6nMTYC+RmJRs83uWze2juFaAJigA4uLailU93Lp3ZrdmWkRzH9cgj9Bz6HOaWdlSUl1JZUf+DWG2uX9yDuZUDrQOHaLaZWdrTpsNQ4qIOUFlRfxrs9Yt78fTtp3kZBPDw7omtoycxF3ZrtbW2d2u0XABxEXsws3SglX8d2QKHEn+pYdniIvfS0kdbNrd2PbFx9OT6xd319JSwsm9BRXkxKj36rNZbm1p6M7e0p22HYcRF7aeiMXrzM6S3P2p+Q9Q+VJXlBPR6WrNNJpMREPIUBTkppN26oHPsG1F7MbN0wMtvsGabmaU9rQKHcvNyw3qLv/QnHu37aV66AFq06YmNgydxEX/otM/NiCfy2Bq6D5+FrE6Qpjb+nnLyi9RaLxWFJVJwxMdD3qB9FpRARcOzFAA0QZHGElttBwF1rrWgodxoxLUWG6FrB+7tpPG8XssOnNz9tYIiAGYWdrh6dSYrNVbvsbv6mZKTX8mZyzVRifwiFSejiunU3gQjwyqnshKtF5tqzkZLx2ru2PB3vPRsSemmeuJLfp4y8ovVRN+s8XtFpVJwpL17w2Pq21LOtUSVJigCEJesJiNXjb9nTeeWTjKSs9SaoAhAeSVcTVTRvJkc8zZSFqeqrJzS1IwGf5M+XB4LpSQlnZQtezXbyjKySdr4B86PDkRuLE3xtfRpjZVfWxK++01r2szNZb8gk8txfSy03vPEV9mnZx379AoYyq3oRthn1J94eOu3zxuRuvYJUF5W1OBxAW5ESj7Xq47PbRUwlJuNsIMbUXtp2b6fJigC4Na22nfo+tzcjHgij/5Aj5GzdQK8dekX4kBmdhmHj9eMb05eOQeOpdMr2AGl0Z1PiUhOk+zA0qLGDizMJTmycrR/a2a29O/yOj4ooJXk16LitP1aRGwlfp6Khv1aceP9mj6y8yXbMzfV/f1d/UzIya/kbHRNQCW/SM2pqJK79x1VAZbavuN2eoVWUASk33TxWinNbOofV8HDgQiMPGScPXuWiRMnUlZWxkcffcSSJUsYOHAgSUk10ebMzEzCwsJYvnw5//d//8ft27eZOHGi5gV67ty5+Pr60qlTJ9avX8/69esZN24cALt37+bll1+mXbt2LF26lLfffps///yT//u//9Mcv6SkhKlTp5KTk8PChQt58803WblyJZcuXdKSNSoqiilTpmBhYcGXX37JjBkzOHjwIC+88ILOi/SiRYtQq9V8/vnnvP322zz66KOo1Wp27typ1W7jxo04OzvTq1evv63LXr16UV5ezuXL0pze7OxsbG1tmTNnDt999x3PP/88W7ZsYe7cuZo+69evB6TAQrXu/Pyk+bApKSk888wzfPPNN3z00UeoVCrGjx+vFQiqj4qKCp3/6rJ48WLkcjmLFy9m/PjxrF69mg0bNmj2X758mddee402bdqwdOlSRo8ezRtvvKEV3DFEeXk5M2bM4LHHHmPp0qXY29vzr3/9i+zsmjTG77//nnfffZdevXqxbNkyXnjhBX788Ue++OILTZvc3Fyefvpprly5wr///W+WLFmCmZkZzz77LJmZ2l8J9+7dy6FDh/i///s/vvnmG8zNDae4zp07F09PT77++mv69+/PZ599xpEjRzT79+/fz9y5cwkJCWHp0qX06NGD119/vcHffTe42Mn01hJJygJjIxn2Vob7WpmBpamM5CzdfUlZapwbSMTwbykjt1DNrfSabSm3omnm7ImJmfYXkxZegZr9+lCrVKQmXKV5S3+dfc29AslOu0VpsfTmF3f5LwAsrZvx48LJfPxSEB+/3IGfv3iBnIxEnf51Sb8djaObL7I6U7icPQKpKCsmO81wELEgJ5Xigkyc3HXldPYIJOO27rz8OyEjSb9sTh6BVJQXk5Nej2y5kmyObnpkcw8kI0lXtoryEooLs8nLSuTKmS1cOb0FF48OGBnrZsqlJxrQW8sAKsqKyWmE3pz16a1lIOmJNddFemI0SmNz7J1b67QDSUd1yUy6jENzHx3ZHN0CqCgvJjcj3qBshdV601NPwNEtgEw95zu+cx7NWwXj0b7+qXauzWQkZaqo+4EuIV2FsVKGg82Dm+udfjsaxxb3xg7SG2EHRfkZmFnodzItXZXcTC7XWT0hLrEcE2M5Lg53nqRsYyn9zvwi3SmBCgVYmsuwt5bT2ceE4b0sSM+u0DstxtVeTnKmWmdMb2eoMVbKaGZteEytzMHSTEaSnjoMiRkqXO1r+hopZOi59WrqHNh0alz9i/qw6eAj1RKpo+jc05EYWZhj0c4LAOsOvgDknI3UaleanEZxQjLWHXzqPU9m8mWa6bNP98bZZ0lhJg566t44GLDP8/u/5sf3O/PD3A5s+3ociTHhOm2qyUiKxkGPHTi5Sz43tx6fW+07HPT4XEcDPvevHfNo3rph3wHQtpUl12Lzdezg8rV8zEwVuLdoxJw5wNrKCFsbJd5tLHnnNemj2pmLOZr9V67nU1RcyfPPeNIp0BYHe2M6+Nvw8uRWXL6Wx/VEbZtp4SDndoYev5Ym+bX6pvzdDQo5mJuCjYUMP085fYKMyMpX6Z0W4+Gq5GZyha7vuF3lO5rdhe+wkq6NAj2+Q6etpZzSsobbCf73EVNpHjIWLlxIy5YtWbNmDQqFFB2tGySYN2+e5u/Kyko6duxInz59OHHiBL169aJNmzZYWlpibm6uNX1DrVazYMEChg8fzscf1xRSdHR05MUXX2TatGm0bduWTZs2kZmZybp163Bzk77M+vv7M2TIEDw8PDT9li1bhqOjI8uWLdMUOXV1deW5557j8OHDDBgwQNO2ffv2WucECA0NZdOmTYwfPx6QAgfbt29n7Nixmt/+d6ierpGRIX0V8Pb2ZtasWZr9nTp1wszMjNmzZ/Pee+9hZmam0Vfd6TkA77zzjubvyspKQkJC6NGjB3v27OHJJ3XTOmsTExOjCbDU5vDhw1rTSgIDA3n33XcBCAkJ4eTJk+zZs4ennnoKgOXLl+Pm5saSJUs0NUQsLCyYOXNmg/qoDoxU1/fw8vJi4MCBHDlyhFGjRlFQUMBXX33F888/z5tvvqmRQalUMn/+fJ577jns7OxYs2YNeXl5bNiwgWbNmgHQo0cPQkNDWbVqlZYs5eXlrFy5st6ASDVDhgzh1Vdf1Rzv0KFD7Nmzhz59pDnN3377Ld27d9dMjerduzcVFRV8+eWXDR77TrE0hVvpug/ZBcXSNiszSDeQOWpZ9e5bN1Vc6g/mJlLGSaWee7yDNTjbyfgrWntnfk46VjaOOu2tbB2r9qfp7AMoLsylsqIMS1s9fauOl5+bhomZJZmp0rz3HT++RwvPAMa+9AW5mUkc3v41P34+lZff34bSxEz/jwaK8tJp0bqLznYLa+k8hXlpODT31tlfva9227r9S4qk36FvXnljKMxLx9VLVzZzqxrZmrnql62oSjZzPbKZWzlSqke2iKM/cvKPmqkMLdr0YMCTnxg4viG9OUmy5TasN32ySXrLoaKiDCMjYwrz0jGzaoZMJtNpV/t3asmWn4FLA3qzd2mn/3flp2u11epv7Uhpsbbebl05RGLMXzz+r4aLW1qZy4hP0bXP/KoMLWtzSG1kkeR/mqK8dJq30qOzxthBfj3XmrX+a602SXFnSLl5ga6DXta739ZSztV4XceTU1XnyM5KTmKq3q4GGdHLkqISFRExusVru/ia8soTNUGauMQyvtuai5GVjU5bSzOIT9UzplU+19oc0nL0y2BlJqtqq7uvoFj6Al7tczPy1LR0kqY6ltUKkHg4Sccwbe5s6Kc2GhNXR7KOndHZXpKcVrXfifyoa5i6SONcmpyu07Y0JR3T5k71nqcoPwMXT8P2WdQI+zTTZ59W2vYpk8lo0TaElr6DsLB2Ji8rgajwH9j7w4sMmvg1Xn799R5fr8+tZQf2hnzuHdrBrehDJF4LZ+zrW/Uery7N7Ey4GKV7A6+uDeJgb0zczUKd/XXZ8kMPTIyl57CcvHK+WB7DmQs1jic3r4K5Cy4za3o7vvo4SLP95Nks3p1/iY4DtfVjZS4jLknXPvOLqm1ARkojCxE3Bn8vBRMG1/iShDQVGw6VaWqg1UbyHbof4HLypSCKrbWcRP2PIQYZ3svCoO+ojZO9gi6+ppy+VEJIB8PPIA8asVzv/UEERh4iiouLuXjxIm+++Wa9gYHDhw/z7bffEhMTozUVJT4+vt5Mixs3bnD79m3eeecdrWyFbt26IZfLiYqKom3btkRFRdGuXTtNUATAzc2N9u3bax3vzJkzjBw5Umvll169emFtbc3Zs2e1AiP9+vXTkeeJJ57gmWeeISYmhrZt23L48GEyMzN5/PHHDf6GO0Fdx0up1WrWrFnDb7/9RmJiIqWlNc44ISGBdu30P0BUc+HCBb788ksuX76slSUSHx/foCweHh4sWqQ757s6sFBN3fFr3bo1J06c0Pw7MjKSQYMGaRVWHThwYIPnB5DL5fToUVOPwc3NDVNTU1JTpSfh8+fPU1RUxNChQ7Wuj549e1JSUkJMTAzdunUjPDyc4OBgbGxsNO3kcjldu3YlMlL7y1dwcHCjgiJ1f7tMJqN169akpKQAUiAqOjpaJwA0cODAexIYMVJI6Z91qU5TrS9t1KjKazfUX19gxN9Teji/FK997VaUl6BQ6r4MGSlNqvbrf7AoLy+pkqmevmVS37JS6a3S0tqRp19brvnSZ23nwqYVbxF5cied+ozTex6NjHrOo2hAxtr76u+v//iNobIB2Sr/YdnadhyBk5s/xYVZ3Iw+RFF+JhXleiJlevpqjl217W71ZmRU9dvKSjAyMjZ4Hk07PfJVlpegUNSnN/2/SZJN2ifX+9u09VZZUcbxnfPxCX4SO+eG6yMpFVChx34qKiW7MTKSgc531/uDQT034lqrbMR4Gjp+UX4me3+agbW9Gx0HPMfF87ppGcZKGRUVunopr9qmVN7ZF+lH+ljg38aEH7bnUlSie9zouDI+/T4TczM5vq2M8XBRYqKUoS/bX/k3fK5Sod1WX39llc89fbWS9u5KnuhrxL7zlZRXqOnmraB5M+m3K8z+fv0zhZkpqlLdl0hVSVnVfmks5VXn0te2sqQUI+v6aypUlpfUb18Vhu2z2nb12neda83StjlDp3yn1aZtx0fZtPgRTu1aoDcwYtDnVvubikb4NT2y1bUDyXfMw7d743wHgImxnHI9DqSsXNpmYtK4ZP0Z70diYiynpZs5Q/o7YWaqe5Hm5JZzLa6ATb8nceNWIW29LHn6cXfeea09f2jPPjbo16qzmZT/8BthbFIlK3aUYmYCbVoocG0mBQz1YayU6bWvatmM73D60cg+Fvi3NmHNDv2+o+a8MP1JW8rK1fz2Z36TDowI7g8iMPIQkZeXh0qlwsnJ8FeCiIgIpk2bxsCBA3nhhRdo1kz6AvjEE09ovejro3rKxCuvvKJ3f3KyVKcgLS0Ne3vd5dDs7e21zpGXl6fzYg/Sy35ubq7Otrp07doVLy8vNm7cyJw5c9i0aRNdu3bVykr5O1S/8Ds6Sl8d1qxZw6effsrzzz9PcHAw1tbWREZG8p///KdB3SUlJTF16lT8/f354IMPcHJyQqlUEhYW1mBfABMTEwICDC+hWI2VlfYcDaVSqTVNJj09XWdsLC0tMTExafDYpqamGBtrP2golUqN/NXXx5gxY/T2r74+srOzuXDhgt4MmLpjp2/cDaHvt+fnSw/3WVlZVFRU6Pz2Ozm+ISzqPAcXlUoP0/pik0b1PIBXUx1Tupv+fi1lpOWoSavzMctIaUplue7Dc/UDZPVLV12UStMqmerpayz1VVb936/rUK30Z9+uQ9myahYJ18/Tqc84KivKKC7MpbDWe5eZpb0ko57zVDYgY+199fdv+IWlsqKMojxt5Zla2qNoQDbFPyyblV0LrOxaANC240gObfw325dPYdy/ftY6V716q9p2t3qrqHrxUFRN3zF0nup2KrVK8xUZwNSiSm+V9enN8JhU60Sl97dp6y0yfA2lRTl0HjRdq53SyAhzEyir9SxcWCLNzTfS8+5ipJBV/aZ7HxRRVZZTWOdaq288KxpxrSkaMZ767KC8tIid371EWUkhj7/6M6amFthYan/xzitUUVaurgoaaVNdU6G8vPF6C/Y35fGBVhw6U8SB0/qX4M0rVGkKsp6+VMIjfSyYOdme1bsrKKz1zl5YKo3p3frc8nqCJ9XbqtvE3Faz82QFgzspmPaI9FEnM0/N/vOVhHYxoqLQ8HLCjaWyuAS5ie5LvbyquEplcZXNFVcFD/W0VZiaaPZXgJZtQo191mtfRobts9p29dp3PddaNSbmtrTtPIaIwytJT7yEhU3Nc6vGd9QjW3WARB8av6ZHtrp2EHlsDSWFOXQerLtcu1wG9rZKrW05eeWUlqlQ6nEgxkppW2lp46ZsnI/MAeDE2SyOnsxg7dIuFBVXsvl3aep7c2dTvvokiI++uMLhqiKvx05mkppRwjuvtSe5pJTrt6Vz1efXqgMi5XqmgP0dCorRnD8yTkX/jka8MNKE5GQj8gtrdKDxHXrsq1q2sjvwud38TXl8gCWHzxZx4LThFYBkMpg2zpbmjkZ8vjZbk9nWVFEjluu9H4jAyEOElZUVcrlcq5BqXfbt24elpaWmFgXA7du3G3V8W1tbAN577z0CAwN19lcHZJycnIiO1p1fmpWVhYVFTbE3GxsbnZoSINVAsbHRTpWtm75dzbhx4/juu++YMmUKhw8f1plu83c4evQoxsbGmhf43bt3M2DAAN56q2bJzNhY/UXq9B2rqKiIpUuXYm1tDUhTf+oGgO41jo6OZGVpF68oKChoVHCmIarHbOnSpXpXjanOILKxsaF379689tprOm3qBl4MjfudYm9vj5GRkc5v13f93Smvj9a+2y/dUUlBiVQnpO5XZ8t6UrarqZ5CY6nnmdLSDIpK1XqzRdwcwNZCxoGLujutbB3Jy9bNcc/PSa/arz+YamZhg8LImIIc3VTt/NyqvlUPtNXHsLDWDjbJ5QrMLGwpKZKqFSZcP8+ahc9qtXn23/swt3akME/3PNXbqqeG6EMzbcRAf1Nzm0ZliyTHn2fL19qyTZizDwtrR50XC6h52ahPNvOqfUV6ZCvKT8ekEbK1Dggl+uQGfvhQO7tr8r/316O3qulFNg3rTZ9skt5sNdlCFtaOJF4/iVqt1rLL6nNfPv4zl4//rNk+fuY+zK0cKDbwu2ufXx+adH59es9Lx8RM0ltZST4XDizDp/tTlJcWUl4qvdBXlBXRoUMQ00bIgZqXqAXrS8kv0r90bvW2vL//btsgmbcvsOXX57S2TXpXsgO910pj7MCqnmstT/+1VllRxq4fXiUz+SqPvvgdzVzb4WoHr8zSnhLy5udp5BSosLXSffOq3qZv6XB9+LU25sXHbbl4rZQfdjT+Hnj6UgnjBlvzyijt37BoYxkFxTVTYmpTva2+Mc2vNcWxLpZmUFSi7XNPXVFx/roKFzvpK3hKtppObSQdFF77+wXVS5PTMXHRnQZi6upUtV+y7ZIUaZxNXB0pSUzRamvi4kjOaWmZ9HhTWDdPe5ncJ96W7LM+v2beCPssNtC/2j7rw8JGek7YskQ7y/epWfswtzLgcxthB+aNtIOy4nzO7/8W3x5PU15SQHmJlEFdXloEajV2ynS2r+2p1X/scyfIzC6lmb3ub6velpHVcM22uiSllHAtroAh/Zw1gZFhg1wwVsr565T2c0pOrlSI9OlBNX5t3s8l5BepsbbQYwPm1TZwbwO+kXGVDAtW8vErDlrb31qUXuU7dCMj1dty8u7Adzxmw8WYUn7YkVdv26mjrAlqZ8LyTblE37jzMRH8byICIw8R1TVBtm3bxtSpU/VOpykpKUGpVGo92O7YsUOnXe1MgGpatWqFi4sLCQkJTJgwwaAc/v7+bN26lYSEBNzd3QFp1ZQrV67QuXNnTbvOnTuzf/9+Zs+ejVHV/IHw8HDy8vK02tXHmDFj+OKLL5gxYwampqYMHTq0Uf0a4siRI/z555+MGzdOM5WjWne1aazuSkpKkMlkmt8J8Mcff+gtoHovCQgI4NChQ8yePVsTGNu3b98/cuyOHTtiZmZGSkoKgwcPNtiuZ8+ebN++ndatWzd6mszfRaFQ4OPjw/79+3n22ZoX33/it/98UPtTZEGxVJ/AXfe5lhbNpC8j+ooHVpNfDIUlalx1k65obi8jNUd/P/+WMtRqNZdu6j78OLu358aVk5QWF2gVYL194yIALh76i/TJ5HKc3dqRdDNKZ9/tuIvYObprjufaUgog1q1XUllRRlFBNuZWdhpZJr61mrxaH6TNrRxxbNGepLizqFUqrYyT1JsXMTI2w87JS/8PByxtnTGztCctQVfO1FsROLSovwhhNQ7N2/PIC6u1tplbOdKseXuS9cl26yJGSjNsHeuRzcYZUwt70hP1yJYQgUPzhmWrzhboMvgl3NoE18hmbVhvKTcjMDI2w7YRekvVp7ebETi0qJn+6NDCh0snNpCVGkszlza12knXUPDwWTRzrZlOaGbpQDNXH1LidWVLT4jASGmGjYOnQdksqvV2+5LOvvTESJpV6a20OI/ysiIijqwi4sgqrXaZ1tZMnjyZZi064NtrGiDZZ3KWGk9nOXVDl+6OcsrKpZVI7jU2Tt6Mekn3WnNoof9aS7n19+3AsY4dqFUq9v0ym8SYEwyd9AUt2nQDICMPPv1e+2Ust6CSW8nltGtpjEymPR++tZsxpWUqUjIavp+1clPy2lN23LhdztL12XrrERiieqrOmauVRN2s6Vg9pi2dZTpj6uYoo6xcTWae4THNL5LqPzV30H2pdHOQk5Ktb/oQJNSqI9W6uYyyCjXZf51r/A8yQN7FK9j16kxdRdt2C6SisEgTfMm7KH2Asu0cQO7pmmmoJq5OmLm7cuu73wBoXgZDp2rbhpmlA/auPqT+TfvMSNS1z4zESOxdG/Zr+VlSUe6BTy/CxNy2RrYqn5tyQ1e2tATJ59rU43NrZNO1g/SECJq5VvuOXMrLirh4+DsuHv5Op+3Xc0cQvv1RLBxqlhjOyi7jelwhgX42Onbg186K4pJKEm7fXWTVxFiOUlnzW+1tlchkIFfIoFZGxc1E6fgXrldwKlp6/sgvUpOUocbLVdeveThJfi095976tersj0NnijgZVZPSJfmOCtq1VOrxHUrJd2Q2znf8a7wt8UnlfL0+p17f8eQQK/p0MuenXXmciDQ8JUzw8CECIw8Zb731FpMnT2by5Mk8/fTT2NjYcOnSJezs7Bg7diwhISGsWbOGDz/8kMGDB3P+/Hm2bdumc5xWrVqxdetWDhw4gKOjI05OTjg7OzN79mxmzJhBUVER/fr1w8zMjKSkJA4fPswbb7yBl5cXjz/+OMuWLeOll17SFMNcunQpDg4OWgGZl156ifHjxxMWFsbEiRPJyMjg888/JzAwUFPgsyHs7e0ZOHAgu3fv5sknn8TU9M7n9yYnJ3PhwgUqKipIT0/n6NGjbNu2jaCgIK1iqz179uTHH3/kp59+wtPTk+3bt3Pz5k29utu/fz9dunTBzMwMLy8vunfvDsCcOXMYP348MTExfP/995rskYYoKSnhwoULOttdXV1xdm58sbewsDDGjh3Lq6++yhNPPEFSUhKrV6/GxMTkb2dnWFtb869//YuFCxeSkpJCt27dUCgUJCQksH//fs3qM5MnT2bHjh0888wzTJo0iebNm5OVlcXFixdxdnZm8uTJf0sOQ7z88stMmzaNd999l6FDh3L58mW2bt0KoFVz5U6J11NsMDpBjY+HnPZuaJbsNTOG9u4yYm5rf320rYpT1F7W80qCmkAvGVbmak1BSE9naGYt49RV3acBuQx8PGQkpOv/MurbJZTje1Zz9vB6eg6VvlJXlJdx4dgWWrQKwsbeFYDczCTKy0pwcG2l6evTOZT9mz4nKT6S5p7SdK6MlDhuXDlJz9Cpmnae3sFYWDcj8sQOeo8I06QzXwjfglpVSSvfEEkPFja08u1JVp2PPa2DQrl+cQ+xEXtp00EKcBYXZHP94h68/PprfX3MzbgFgI1DzdSr1oFDuHJ6K/nZyVjZSb8n4dpxctLj6dB3sq5S9GBqboNbu54621sHhBIXsYe4qL20DqySrTCb2Ig9ePo2LFurgCFcO7uVgpxkLG0l2RJjjpObHk9Q7xrZiguyMLPUjYhFn94IMhm+3R7D1rGl1r42QUO5fnEP1yP20lajtyyuX9iNl19/rfowOVWy2daSrU3gEKIN6K1jvxrZWgUM5OjWeUQe+4V+Y98DpLpLkeG/YmHjjH/IRJ1lLr0ChnAjag83Lv1JqwBp6dCSwmziIvfg4dNPS295mZJs1s1qZPPyH8y1c9u09Hb7+nFyM+Lx7yUFOM0s7Bn8TM1S49VE/fUTabcuYNn6aQqxIzap5mk86oaKAC8Ffp5yoqqKiZqbQICXnCsJKi37rF5Bqr5g5t1gbGqNq6futdYmMJTYi3uIjdxLm6AaO4i9uAevRlxrd2IHR7Z8RMyFXfQb94HWMtmlFWimsNTm9KUSuvmbaQoZgrRqTDd/U85fLdWaruJkJ10Ladk1G5s7GvHWM/Zk5FSy6Kcsg6n9luYynSU3Afp1lgLpkfEqbtQpnnv5pgp/TyN8Wsq4XBUcNjcBv5ZyriZqj6ld1Zhm1xrTy7dUdGgtx9q8UuNDW7lIKxT9dbn+NUzdHWX4eMg5fVVFRd6drc9s4uKIkY0VRbG3UFd9KEnevBvXsUNxGTOElM17AFA2s8P18aGk7TyIqkzKGCi4fJ2C6Fjcn3+Cmyt+pfpNsWXYU6hVKlI2S8vSmqukZXTr4uU/hPioPcRf+hOvWvZ5I3IP7u0btk9Pv8HEnNe2z6Qq+/QLqfkAoc+vFeamcu3sZuxdvGkdNFxHtlYBodyI3MONqL20qvK5Nb6jf8O+Q4/PrfYdAVU+18yyGUMmLdU5d1T4WlJvXqD76E84dTAR5e0crf0Hw9Pp38uRvj0cOFQ1xcXG2oj+vRwJP5WpqbkD0NxFeiZNSqmqySIHczMj8gu1L36ftla08rRk3+GaB4qE28XI5TIG9HLkj/0123t2kbIyL91QaaaygJSxEdhagX8rOZFVS/aam0JAawWXb1Zq+7WqVZqy6gkYGsLcFIr0xBq6tZdeOU9EluhkaJy+XEI3f1M6+5hwpmqZXUtzGV39Guc7XB0UvDnBrsp3ZNc7LWhYiDnDe1mw/XABf564D+l//xAqUXz1viACIw8ZXbp04ccff2Tx4sXMmTMHuVxO27ZtNcuS9u3blxkzZvDTTz+xefNmOnXqxPLlywkN1V7v/oUXXuDWrVvMmjWLvLw8pk+fzquvvsqwYcOwtrZm2bJlmmyJFi1a0Lt3bxwcpPQ5U1NTVq9ezdy5c5kxYwbOzs5MmzaNrVu3atWB8Pf3Z/Xq1SxatIhXX30Vc3NzBgwYwKxZs+5oVZnBgweze/duxo4de1c6W7t2LWvXrkWpVGJra4u3tzcffPABo0eP1srweOWVV8jOzuarr74CpFVx3n33XV566SWt47333nt88sknvPDCC5SUlPDjjz8SHBzMvHnzWLp0KWFhYfj4+PDll182ernYhIQEvSvXvPbaa0ybNq3Rv9XX15fFixfz+eefM336dNq2bcv8+fOZNGmSTo2Ou2Hq1Kk4Ozvz/fff89NPP2FkZISHhwf9+vXTZNvY2dmxfv16Fi9ezGeffUZOTg7NmjUjKCio3kyTv8vAgQN5//33Wb58Odu3bycoKIj333+fqVOnYmlZf5G6O+VKoprEDDUjg+U42KgpLoVObWTIZXAkSvvuN6G/FJT5ekfNU0t4tBofDxnP9Jdz+poaYyPo3l5Gao6aizd0756tXKXVamp/Ra2NW6sgfLsMZf/mLyjMz8LeyYOLf20lJ/M2j07+SNNuy6pZ3Lx6mrmrrmi2de3/FOeObuCXL1+iR+hUFAojju/9AUvrZvQInaJpZ6Q0ZvC4t9m6ajbff/oMgT0eJTczmZP71uLRtgs+nesf2zZBoVxsGcS+X98hKzUWUws7IsPXoVJVEjxUu3bElm8mAzD5vQOabV0GhXH94m62fPMsQb0nUl5WxLmDq2nm2g7f4Me0+l85vY387CTKy6U5TUmxZzi991tJjo6Paup7aPQbGIrz0SAO/vYO2VWyRf21DrWqki5DtGXbsUKS7Zl3amTrPDCMuIjdbFv2LIG9JNkuHFqNvUs72netke3s/mWkxJ/Dw7s3lnaulBblEhe5l7SESAJCntEJigC06RCKy+EO7Fs3h6yU65hZ2hFxTNJb96Ha8+a3fC3JNmVuLb0NfomYi7vZ/PUkOvSZRFlpEecOrqKZazt8gmtS3K1sXejQdxLnDqxCVVmBk0cAcZH7SIo7Q+jEz3SCIgBe/qE4uf/IkY3vkJN2HVNzOy6fXIdaXUnnQdqy/f6ddC09NWu/ZluHfmHERe7h95WT8QuZSEVZERFHJL15d5b0ZmRshqffIJ1zx1/eT3piJJ5+g8jKLtfaFxWv4laaisd7G+FkW0lhqZruPgpkMth3Tvsl+Llh0gvYwt9qHvRtLaFjG+n3tqjKMujfQfp3doGaC9dr7LC9uxzX6sKccnCxl2naphdCZp2AS+ugUJyPBLH/13fISonFzLLGDrrVsYOt304G4Nl/a19r1y/uZus3zxLYZyLlpUWcr7IDn24119qFw2uIDP8FF88OKJVmXD2zXevYlRUBKIy055aculRC6K0ynh9jQ3NHIwqKVAzsZo5cBpsPaP+QWVOkF+G3FknTGUyNZbw9yR4LMxm7wovp4K39ESMtq4LrCdI4hQSZ0b+rBeeiS0jLrsDUWE5AWxMC2phw7koJN1J0A9mXbqpISFMxJsQIJ5tKCkuhm7ccmQwOXNAe08lDpHvRF5tqrosjEZX4tZQzJVTJiehKjI0gxF9BSpY0baYaGwt4sq8RVxJUFBSDk62MLt5yUrPV7DtXScda52k5bQJKG2vN6jBOI/pj2kKaPhL/9Voq8grw/vhN3Cc9xoE2Ayi+KU1rTt60h+wT5wn6bh6WPm0oz8ymZdhToFBw7T/aQcDo2QvosuVbgv9YTdJvv2Pl1w7PaRNIWL2BgitxOnqqjad/KI7uP3J0k2SfJhZ2RJ+Q7LNTHfv8Y5Vkn0/OrLHPoH5h3Ijaw67vJuPXs8o+j67GzqUd7TrXXGund39GXtYtmrfugbm1IwXZSVw5tZ6KsiK6j3wHfXgFhOLkEcThDe+QnSb53MvH9fvcnSsnA/D07Bo76Nhf8rk7VzyLf4jkcyMOV/mOLg34jkv7SEuQfMf5E0d09h/6K52oK3m885o3nh4W5OaVM2Z4c+RyGat+iddq++VH0moy454/CYCZmYJN33fnwNE0btwqoqS0klYtLRg+yIXCwgp++PWWpu+u/SmMH+PG26+0o10rS27cKqJda0tGDnEl7mYhUTe07SAirpJeKSqe6GeMs10FhSVqevgZIZfBn6e1IwkvPiL5tfk/12Q321rK6NRO8k1ujtKxB3SSnoFz8tWci5HsqFNbBd19jbgUX0lWnhoTpYx27nLauSu4HF+pd9rK6UslXE+QfEcLp0LyC2t8x5YD2sHEmZMl3zHjC32+o4QO7bTry6RmVxJb5Ts6+5gwPtSalIwKktMr6Bn494shC/63kKnrLq0hEDwAcnJyGDRoEJMnT2b69OkNd7gDZs6cSXR0tN5pLYKGOX78OJMnT2bt2rV069btQYtzX9mwYQPvvvsu+/fv11pF6U74+Ff9XxNNlTCwg4x2bjKMFJCcBfvPq0iuswzoK4/oBkZAWnp3UEc57o7SagjXk9TsP6+mUE85mNE9ZLR3k7F4m4qSWs8kXm41D04V5aUc2PIlkSd2UFyYi7O7N/1H/4s2/r01bX5YMFEnMAKQl5XCnl/nEXs5HLVKhWf7boQ+OQd7Z90X9aiTv3Psj5VkJMdham6Nb5dQBj72htYUHkAnYwSgpCiX8O0LiYvaR0V5Kc7u/oQ8OhNnD+3Cwz/8R1qxqnZgBCAzOYZj2+aTdOMcCoUST9++9Bo1C3Mr7TnPm5dO5HbsaV0BgEdfWkOL1sE620uLcvnr94XEV8nm5O5Pj5EzcXLXlu2nTyTZagdGALJSYvhrx3ySb5xDbqSkZfu+9HxEW7aEa+FEHltLxu3LFBdmozAyppmrNz7dxuLdZQzGxvozm0qKcjm2fQFxkdV6C6DXKF29ff+BJFvtwEi13o5unU/SjbMavfUePVtHb2qVijP7VxL113oK89KwdfSky6AXad/lUYqL9QflSotzOblrIfGX91NZXoqjmz/Bw2fi6Oav1W7dp1L9lNqBEYCs1BhO/P4pqfHnkCuUeLTvS/DwmTqy1eXQhjnciNrLlA/O6gRGAEyNYVg3I3xbylEqIDFDzR+nKridof3I9PYTuoERLxcZL4zQXz8hLlnFd7tqzvd4byM6t9Mf6P/zolqTUVabkqJc/tpRYwdO1XZQ51pb86E0nrUDIwCZKZIdJFfZQUsfXTvYt242V05v1SsXQIcR6zCxcNXZbm4qY3yoNZ19TDFWQtztcn7dnc+NJG0df/6mNJewOjDiYKtg0VuG60IcPVfEyi1SvRGv5kqG97agtZsSawsFKpWa5IxK/rpYzJ8nC/Fopb9otqkxhHZW0N5DGtPbmWr2nKkkKVN7TN94XDcwAuBoK2NYFwUeTjIqVXAtUcXuM5VahV5NjWFMiBFuDjLMTKQMvUvxKg5HVFJWAcHP14xR/5j9mHvqv69UB0ICV83TCYwAGNla4/PpTFweHYTczITcM5FEz1pA7lnd6SHOjw6k7b+nY9m+NWXpWST+uIWYj77WZKAAXPpVt+4bSPZ56o+F3KyyTwc3f7oN07XP9Qsk+6wdGAHITo3h5K4a+3Rv35fgYTMxq3WtxV78nSsnfyUnPY7S4jxMTK1w9uxMh/4v4dDCD4VCf7ZqaVEuJ3YtJP7SPsl3uPvTfcRMHN207eCX+ZId1A6MgORzT+ycT0q85HM92vel+wjd+0FdDv02m7jIvUz98BxbVukGRgCsLIyYNrUVvbs7YGIs50pMPktXx3L1uvZL/obvpHtJdWDEyEjGtMmt6BRoi4uTKSbGcjKyyjhzMZs162+SkqZ9g3ewN+b5CZ50CrTFoZkJeXnl/HU6k+Vrb+DXu5OOXGbGMKKHEj9PBUojSEhX8fvxchLTtW1g9gQpuFA7MNKquZyXHtVf1DY2qZLl2yUf6OYoo28HIzyc5FiayVCpIT1HzfmYCsIjK0m+rb9ukOQ7rOjUvtp3VPDrnjzik7SDNp+9IfmO6sCIg61C40/0cfR8Md9V+Y7R/S0Z0/+f/dB1v9hw4sEVhx3X/e6zpv/bEIERwQNhxYoVODg40KJFC9LT01m9ejU3btxg165duLrqPmzdDVevXiU6Opp3332XuXPnMm6c4aVABTW8//779OjRA1tbW65fv84333yDk5MTmzZt+ltTSpo6OTk5LF26lO7du2NhYUFkZCTLli2je/fufPPNN3d9XEOBkaZA7cBIU0NfYKQpcJ/L/twRd7oc6v3EUGCkKaAvMNIUcHW5u+Wj7wenT6Q03OgB4dnm768mdq+oHRhpShgKjDQFDAVGmgKGAiNNgZ4jmuaHrNSk+7uowJ2w5j+6CwM0FURg5P4gptIIHghyuZxvv/2W1NRUFAoFQUFBrFmz5h8LioBUMyIrK4vRo0fz+OPaVc3VajWVlYZfWOVy+f90EKA+8vLy+PDDD8nJycHS0pLevXsza9as/3l9GBkZkZCQwM6dO8nPz8fOzo5Ro0YxY8aMBy2aQCAQCAQCgeAhRaQx3B9EYETwQHj++ed5/vnn7+k5Dhw4YHDfqVOnmDRpksH9Y8aMYf78+fdCrCbPokWLHrQIDwRLS0uWL1/+oMUQCAQCgUAgEAgE9xkRGBE8lPj5+bFx40aD++3s7O6jNAKBQCAQCAQCgUAgeFCIwIjgocTS0pKAgKY511cgEAgEAoFAIBAIAFTqpltr53+J/+2iAQKBQCAQCAQCgUAgEAgE9SAyRgQCgUAgEAgEAoFAIGiCiOKr9weRMSIQCAQCgUAgEAgEAoHgoUUERgQCgUAgEAgEAoFAIBA8tIipNAKBQCAQCAQCgUAgEDRBxFSa+4PIGBEIBAKBQCAQCAQCgUDw0CIyRgQCgUAgEAgEAoFAIGiCqETGyH1BZIwIBAKBQCAQCAQCgUAgeGgRGSMCgUBwD2lmp3jQIhjkRmLlgxbBIPa2TVNvmXnlD1oEgzg5KB+0CAYxM2u632FcTYwftAh6MVLIHrQIBgnq7PKgRTCIcdM1Ay79Gv2gRdCL33ifBy2CQeK3X33QIhhk+DO9HrQIBrEwb5o+19nF9EGL8F+JWt107wf/SzRNqxEIBAKBQCAQCAQCgUAguA+IwIhAIBAIBAKBQCAQCASChxYxlUYgEAgEAoFAIBAIBIImiFiu9/4gMkYEAoFAIBAIBAKBQCAQPLSIjBGBQCAQCAQCgUAgEAiaIGK53vuDyBgRCAQCgUAgEAgEAoFA8NAiAiMCgUAgEAgEAoFAIBAIHlrEVBqBQCAQCAQCgUAgEAiaIKL46v1BZIwIBAKBQCAQCAQCgUAgeGgRGSMCgUAgEAgEAoFAIBA0QUTGyP1BZIwIBAKBQCAQCAQCgUAgeGh5IBkjmzdvRqlU8sgjjzyI0983vL29NX8rlUpsbW3x9vZm6NChjB49GqVSecfHXLJkCSEhIXTq1OkfkXH27Nls2bKFoKAgfvvtN619arWafv36kZKSwvTp03n11Vf/kXMKJP7psfw7fPzxx+zfv58DBw7U2+7w4cOsXLmSmJgYSktLcXR0JCgoiFdeeQUvLy/g3tl3U9LX3VJRXsbxXV8SfXobJcV5ODb3pueI12nZPqTBvgU5qRza/Am3roajVqlwaxtM38fewdbBXavdxaO/kBBzgpSbEeRnJ+PbbQyhz8y/IzlNlDCwg4x2LWQojSApE/ZfUJGS3bj+zaxhcEc57g5QqYLryWr2nVdTVFrTpre/jD7+hmPzW05ASo70d0WFpLcrVXpzaO5Nz+GN19vhLZ9w82o4VOttzDvY1NEbQNTxDZw9uJq8zESsbF3p0HciHfpMbNRvNlHC4E4K2rtLOrudoWbvuUpSshrVHQdrCO2iwMNRRqUKrt1Ws/dspZbOAOwsYVBHBV4uMowUkJyl5uBFFfGphj8nlRTlcWz7QmIj/qS8vAQXjwD6jJ6Nk7tfo2TLSonl8JZPSIo7h9xIiZdvX/qMmYO5pb1WO7VKxdmDq4g4to7CvHTsHD3pMjiM9p1HGjx2aVEex3ZIslWUl+DsEUDvUXcm25Gtn5BcJZunb196j9Yv27mDq4gMl2SzdfSky6AwvA3IVlqcR/iOhcRF7pPkcg8gZNQsnNwaKVdqLMe2ziP5xjnkCkmuXqNmY1ZLruzUOC6f2kTC1XByM2+hNLbA0c2XbkOn4+weYPDYTXo8i/M4uWsh8Zf2UVFWgqN7AD1GzsKhReNky06N5fjOeaTEn0OhUOLevi89RmrrrS4x53dw8Ne3MTI2Z+qH5+qVrSmOaWlxHqd3f8bNS5Jcjm4BdBs+s9E6y0mL5cTv80m9Kcnl7t2H4OHacuVn3+a3hYP09u/35GfUPpPCwpxWbz2HbbcgbLsGYGxvy8XnZpP445ZGyWNkY4XP/LdxHjUYhbkpuacjuTxzPnnnL+u0dRo5gHbvTcfSpw1laZkkrNnM9Y+/QV1Z2eB57pfvOL33W1JuXiTlZgTFBZl0C51O92H1Pw+bKGFAkAzvFjKMjCA5E/ZdVJHa2HuoFQyqcw/df0Gtcz8AsLWAvgEyPJ1lGBtBfjFEJ6g5E6vbtrQ4j+M7FxIXJdmnk0cAIY/MwvEObCB8u2QDCoWSlj59CXm0jg2kxRF9ahMJ18LJq7IBhxa+dAudjlM9fq0p+46mgFiu9/7wQDJGtmzZws6dOx/Eqe87EydOZP369fzwww+88847ODk58f777zNhwgQKCgru+HhLly7l/Pnz/6iM5ubmXLx4kYSEBK3tZ86cITMzE2Nj43/0fAKJezGW95Jdu3bx4osv4ubmxqeffsrXX3/NxIkTuX37NrGxNXfge2Xf/2360sfen2dz7uAPtO/yCP0e+z9kMgVbl73I7dgz9fYrKy1kw5JJ3I49TdfBYfQY/i/Sb0ez4atnKC7UftI6s/87Eq6dpJlLG+Tyu4t9P9lHjp+HjLMxag5cUGNhCs8MkGNn2XBfKzOYWNX2YISaE1fVtHGV8XQ/OfJad5yrCWq2HVfp/JdbqKa4VE1abk3bvT/P5nwtvcllCrYtb5zeNi6dxO3rp+k2OIzuw/5FemI0G5bo6i0i/Ff2/fouzVza0u/xf+Pq1YFDmz7i9L4VjdLZ0/0VBHjKOH1Vxb5zKixMZUweZIS9VSN0Zg6ThxhhbyVj/wUVf11W0a6FjIkDjbR0Zm0Ozw01wsNJxl+XVew/r8LYSMYzAxV4OMn0HlutUrFtxYtcPbuToN7P0PvRtykqyGLjkolkp8U3KFt+TgobvppATsYteo58g879p3Lj8mE2fzOFyooyrbbhv3/Bse2f4eEdQr/H/42VXXN2//gWV8/9blC27Stf5FqVbCGPvE1xQRablk4kJ71xsm1cMoHcjFv0GPEGnfpPJf7yYbbqke2v378gfMdnuHuH0LdKtj1r3+KaHtnUKhU7VoYRc+53AntNoOfIGRQXZLHl60mNkqsgJ4XNS58hN+MW3Ye/Tsf+U4i/fJhty6ZqyXXp5AYun9iAk7s/IY/OokPfyeSk3WDjl+NJuPaXQZ015fHc/X0Y1y/8jl+PCQQPn0FJQRY7lk8iN6Nxetux/BnyMm/RbejrBPaZQsKVw+z6bqqObNWUlxZyctdCjIzN6z12Ux1TtUrF3jUvEXvxd3x6TKDr0LcoLsxk13fPNkpnhbkp/L5iInmZt+gy5HUCek8h4eoRdn//nF6dtQocQd9xn2r95+TRQauNsYMd7f49Hcv2rciPuNqgDFrIZHTdvoLm40dy85ufuDJnIcaO9nTftxbzNi21mjqG9qHLpq8pz8nn0usfkrJ9H23feRm/L//d4Gnup+84vmsxqQlROLr5NFoNT1TdQ89cV3PwohpzU3im/53fQw9FqjlZdQ99qq/2PRTAyRamDpHjZCvj5FU1e8+ruXxLjaWZ7nHVKhW/rwrj2vnfCQiZQI8qG9j6beNtYOs3VTYw7HU69JvCzejDbF+hbQOXT24g+uQGnNz86fnILIL6TCYn/QabltTv15qq7xA8XIgaI3UoKSnB1NT0Hzueq6srHTp00Px7+PDhDBs2jLCwMObPn89HH330j53rbmnRogUKhYJdu3YRFham2b5z50569erFmTP1v3wIHg7Wrl1LcHAw8+fXZB+EhIQwadIkVCrVHR+vsrISlUp1V5lT/42k3Izg6rnf6T1qJl0GPgeAb7fR/DhvJEe3fcb4N3812Pfi0V/ISY/nqbc24NIyEABP3978OO8Rzh74nl6PvKlpO+5fa7Gya45MJmPpjI53LKePuwx3RxmbjlVyJVHaFp2g5qURcvoEyNh2vP7PFiG+0ler1XtV5BVJ25Iy1UzoryDIS8b5WKl/Wi6k5Wofy8ocrM1lXIhTo1JLL/opNyO4VqW3zgMkvfl0Hc3a+SM5tv0znnzDsN4ijkl6G/+mtt7Wzn+Ecwe+J6RKbxVlJfz1+xd4+fZj5NSvAAjo+QRqlYpTe74loOeTmJrbGDyPr4cMDyc5vx2pIPqW9Jsu3VQx/VEj+gUq2Bxe/9fP3n5yjI1gxa4Kjc5uZ6qZNMiIDq1knLsuHbOXnxxTY/h2ZwWZeVK7s9el84R2VrDttO6xYy7uJvnGeUZM+ZK2HYYC0LbjMNZ8FMqJP5Yw7NnP65Xt9N5llJcV89SMzVjbNwfApWUgm7+ZwuVTWwjo+SQgZeacO/g9Qb0n0H/sewD49xjHxiXPcHTbAloHDUUuV+iVbdhkbdnWfizJNnRS/bKd+XMZFVWyWdlJsjl7BLL12ylEn9qCfy3Zzh/6nsBeE+hXJZtf93FsWvIMx7YvoFVgqJZs1yP2kBJ/nqHPLqZNUJVcHYbx07yhnNy9hNCJDci1bzkVZcU8+eYmLbm2LZtK9Okt+PeQ5GrXcQTdQqdjbGKh6esT/Bi/fDqCU3uW4uWjmxHVVMZzfPtQnfGMi9xD6s3zDJqwmFaBkmytAoex/rOhnPlzCQOfql+2CweXU15WzGOvbsKySm+O7oHs+m4q185uwSf4SZ0+5w4sQ2liQfPWwcRf2m/w2E1lTIe/0EPruDei9pB26zwDnlqMV0AoAF4Bw9i4aBjn9i2l//jP6tfZoeWUlxczavpGLG2rdOYWwO7VzxFzbivtuz2h1d6hhS9tOj5a7zFLk9PY5xZCaWoGNp396XViU73ta+P6+FDse3bi7JP/ImXzHgCSN/xBv8t7aPfeq1yYNEPT1ufTmeRFXuXUsKmaDJGKvELazA7jxpIfKbwaZ/A898t3AEz+936sm7lRXJDFynd7GDpkze9yl+HuIGNzuPY9NGy4nD7+MradqP8e2tNXyjpc/Wete2iWmqf7KQj0lO6P1TwaLCczH34+qKKizm3Gwlw7WB5bZQOhExfTusoG2gQN45dPh3J67xIGT6hfZ2f3SzYw7vUaG3ByD2THiqlcObMFv+6Sztp2HEG3IdNR1raBbo+xbsEITu9dyqMv99Q5dlP2HYKHizvOGDl//jxTp06lU6dOdOzYkXHjxhEeHq7Z/9lnn/HII4/QsWNHevfuzZtvvklaWppm/8SJEzl16hSHDh3C29sbb29vlixZotl/6NAhxo0bR2BgIN27d2fu3LkUFRVpyRATE8OECRMICAhgyJAhbN++nWnTpjFxonbK8+nTpxk/fjyBgYEEBwczZ84ccnJyNPsTExPx9vZm8+bNvPvuuwQHBzNu3DjWrl1LUFCQTkZHbGws3t7eHD58+E7VpkWfPn0YMmQIW7du1ZwjLS2NOXPmMHDgQAIDAxkyZAiLFi2irKwm0lk9NWfBggUa3Z08eRKA1atX8/jjj9O5c2d69OhBWFgYN27caLRMI0aM0PrKX1FRwZ49exg5Ujdl9vz587z00kv06tWLDh06MGrUKLZu3arV5uTJk3h7exMeHs5bb71Fx44d6d+/PytXrrzjY0Hjxzw2NpaXX36Zzp0706FDB1588UVu3bql1cbb25sVK1bwxRdf0KNHD7p06cKCBQtQq9UcP36cUaNG0bFjR5599lmSk5O1+paVlbFo0SL69++Pv78/w4YNY8eOHVptZs+ezciRIzl58iSjR4+mQ4cOjB07lqioKC0ZQP9Y6qMhuwLJtsLCwti9ezehoaF07NiRSZMm6fz+1NRUXnrpJYKCgujdu7fOmBgiLy8PR0dHvfvkVZ8x6rPvavm2bNlCaGgoAQEBXLly5W9f+2q1mlWrVhEaGoq/vz8DBw7khx9+0JHxzz//1Jz3iSee4NKlS3Tp0kUj3722+2sXdiOTKzQvHgBGShP8u48lOf48+dnJBvvGXNiDs0eA5uUewN65NR7tenDt/B9aba3tWyCT6c8eaAzt3aGgWK15oAMoKoXoW2ratZChaOCu4e0uIyZJrXmgA4hPhcw8NT7u9cvl5yFDJpMRFV/z4BdTpTf/Onrz+xt6c2/Xg2sXavSWEHOSksIcAns9rdU/sPcEysuKuHHpUL1y+7aUU1Cs1gRFQNLZ5VsqvN0b1pmPh5xrt7V1diNFTUaeGr+WNZ09nOSkZKk1QRGAikq4mqiieTMZNno+fMVc2IO5lQNtAodotplb2tO24zBio/ZTYeBrWjXXL+7Fy6+f5iUawMO7J3ZOnlrXXmzkPlSV5Vo6lMlkBIQ8RUFOCinxutle1y8akK3DMOIaKZunXz/NQ3q1bLaOnsTUGt+4KEm2AIOyXdA6bmyVXK0DauQys7SnTdBQblw6YPALpKZ/xF48fbXlcm8nyXX9wm7NNid3f60XaAAzCztcvTqTlaonD56mM55pNy/oHPtG5B7MLB3w8tfWW6uAodxshN5uRO2lZft+mhcbALe2PbFx8CQuYrdO+9yMeCKP/kCPkbN1gjR1aapjGh+1FzNLBzz9BmvJ5RUwlFvRDcsVH/UnHt79NEERgBZtJJ3diPxDb5/ysqJ6j6sqK6c0NaPe8xrC5bFQSlLSSdmyV7OtLCObpI1/4PzoQOTG0ocQS5/WWPm1JeG737Smzdxc9gsyuRzXx0LrPc/98h0A1s3cGv7htWjvpv8eeiVBTdtG3EPbu8m43oh7aCsXcLKVcTRKCooYKaC+W39sxB7MrBxoVccGWgcN5UZUw9daXOReWvrot4HYi7VswM1fKygCYGphh2urzmSn6fdrTdl3NBXU6gf338PEHQVGzp49y8SJEykrK+Ojjz5iyZIlDBw4kKSkJE2bzMxMwsLCWL58Of/3f//H7du3mThxIhUVFQDMnTsXX19fOnXqxPr161m/fj3jxo0DYPfu3bz88su0a9eOpUuX8vbbb/Pnn3/yf//3f5rjl5SUMHXqVHJycli4cCFvvvkmK1eu5NKlS1qyRkVFMWXKFCwsLPjyyy+ZMWMGBw8e5IUXXqCyztzFRYsWoVar+fzzz3n77bd59NFHUavVOtMBNm7ciLOzM7169boTtemlV69elJeXc/myNOcyOzsbW1tb5syZw3fffcfzzz/Pli1bmDt3rqbP+vXrgZrpOevXr8fPT5p7l5KSwjPPPMM333zDRx99hEqlYvz48VqBoPoYMWIEMTExXL9+HYDw8HBKS0sZMGCATtukpCQ6derExx9/zLfffsuQIUN499132bJFd/7p3Llz8fT05Ouvv6Z///589tlnHDly5I6O1dgxT0hIYPz48eTm5jJ//nw+++wzsrKymDx5stZLNsDPP/9MUlISCxYsYPLkyaxatYpPP/2UTz75hLCwMBYsWEB8fLzWtQfw2muvsX79eqZMmcLy5cvp3bs3b7/9ts5Lc3p6Oh999BHPPfccixcvprS0lOnTp1NeXg7UP5b6aMiuqomOjmbVqlXMmDGDefPmcevWLd5++22tNtOmTSMqKor333+fuXPnsm/fPvbs2WPw3NX4+fmxd+9evv/+exITE/W2qc++QbLLVatW8dprr7FixQpcXV3/9rX/8ccf89VXXzF69GhWrFjBmDFj+Oyzz1i3bp2m/+XLl3nttddo06YNS5cuZfTo0bzxxhta18W9tvv0xGjsHD0xMdPOpa1+aU9LjNbbT61SkZF0FWcPf519Li0DyM24RVnJnU/LM4SLnUxvLZGkLDA2ktU7NcTKDCxNZSTrqauRlKXG2a7+c/u3lJFbqOZWes02jd5M6+jNQ9Jb+u0G9OauR28e2npLvy354bo6dnb3QyaTk25gbDTHs5ORnKX79HA7Q42xkYxm1ob7WpmBpZmMpEz9/V3sa550FQoo15N8Ul7lBhz1nCc9MRonN19kdXKwXTwCqCgrJifNcAC9ICeVooJMvdees0egll7Sb0ejNDbH3rm19nmqrm99OkxPjMZRj2zOLRsnW3FBpt7xdW5ZR7ZE/bI5V8t2W7v2QfrtaBxb6JHLI5CKsmKyGyGXkz65PAJ1zqWPovwMzCz0G0tTGc+MJN3fkZEUjYMevTm5B1JRXkxuumHZCnMlvTm46crm6B6o93x/7ZhH89bBeLTva/C4tX9PUxzTzOTLNGvuoyOXo3uApLN6phEU5qZSUpiJg576EA5uAWQm6drc+f1f8+P7nflhbge2fT2OxJhwnTZ/B5sOPlItkTpvU7mnIzGyMMeinVSLzLqDLwA5ZyO12pUmp1GckIx1h/qnrdwv33E3OBu6h2Y2fA+1NAMLUxnJeu/B2vdQT2fp3lCpgimD5cwcq+Dtx+WM7iHDVM8M+Iwk/TZQbZ859dhnQa5hG3By//t+rSn7DsHDxR1NpVm4cCEtW7ZkzZo1KBRShK3uy8K8efM0f1dWVtKxY0f69OnDiRMn6NWrF23atMHS0hJzc3OtKSZqtZoFCxYwfPhwPv74Y812R0dHXnzxRaZNm0bbtm3ZtGkTmZmZrFu3Djc3KYrr7+/PkCFD8PDw0PRbtmwZjo6OLFu2TJOq7+rqynPPPcfhw4e1Xvjbt2+vdU6A0NBQNm3axPjx4wEpg2L79u2MHTtW89v/Di4uLgBkZEhReW9vb2bNmqXZ36lTJ8zMzJg9ezbvvfceZmZmGn3VnZ4D8M4772j+rqysJCQkhB49erBnzx6efFI3hawuLVq0oEOHDuzcuZPXX3+dnTt3MmDAAMzNdT9BjhgxQvO3Wq2ma9eupKamsn79esaMGaPVdsiQIZqirT169ODQoUPs2bOHPn36NPpYjR3zpUuXYmNjw/fff4+JiYlGjwMHDmTDhg1MmDBB09bJyYmFCxcC0Lt3bw4cOMAPP/zA77//TuvW0oNgamoqH374IXl5eVhbW3PixAkOHDjAqlWrNNd9SEgI6enpLFmyhL59axxsbm4uP/30E23btgXAzMyMSZMmcfHiRbp06VLvWOqjIbuqJj8/n61bt2JvLxWbKioqYs6cOaSkpODi4sKRI0eIiorihx9+oEcPKSU0ODiYvn37YmtrW68Mb731FtevX2f+/PnMnz8fR0dH+vXrxzPPPEP79u0BDNp3bb1s3LgRV1dXzTYHB4e7vvZv3brFTz/9xAcffKC5znv27ElJSQlff/01Tz75JHK5nOXLl+Pm5saSJUs02S0WFhbMnDlTcywbG5t7aveFeelY2Ohm3FhYO1btT9PZB1BSlENlRZmmnb6+Bblp2NcJHNwtlqZwK133Jb2gWNpmZQbpuTq7NX0BCkp09xUUg7mJ9LWsUs/MKwdr6YHyr2jtnYV56fp/u03Nb9eHRm/16Lxab4V56cjkCsytmmm1UxgZY2phS4GBsanGygxu6WmSX1y9X0Zajv7PLpZm0sNttX5rU1CsxtxErtFZZp4aD0dpqlJZrZhodX0RCz2zQAvz0mnRuovOdgtrJ+kcuWk4NPfW2S/1Tatqq1+HJUU5VFSUYWRkTGFuOuZWzXSylWrrui5FDchW2AjZzBsjW146ZvXIVlhHtqK8dJq30pXLvJatGpQr37Bc5taOlBblUllRhsJIf+2upLgzpNy8QNdBL+s/fhMZzyI9NlGUn46rV/16s3fVL1vRHertVvQhEq+FM/b1rXqPp3P8JjqmRfkZuHjqkcuqRs/2Lu30/6Z8KYJsZqVHLitHSotr5JLJZLRoG0JL30FYWDuTl5VAVPgP7P3hRQZN/JrGlbdsGBNXR7KO6U6/LklOq9rvRH7UNUxdJJlLk9N12pampGPa3Kne89wv33E3GLyHlkjbLBtzDy3W3Vf3HmpvJdnmmJ5y4pLV/BWtwtlWRg8fGVbmMjYf1+5fmJeOqx4bqP0M0syQfdajszuxgS4D9fu1puw7mgp3MWNdcBc0OmOkuLiYixcvMnr06HpfEA4fPsz48ePp3Lkzvr6+mhfg+Pj4eo9/48YNbt++zbBhw6ioqND8161bN+RyuWYaQlRUFO3atdO8IAO4ublpXsyqOXPmDAMHDtSqX9CrVy+sra05e/asVtt+/frpyPPEE08QERFBTEyM5ndlZmby+OOP1/s7Gou6TjRdrVbzww8/MHz4cAIDA/Hz82PGjBlUVFToFEXVx4ULF5gyZQrBwcH4+voSFBREUVFRg3qvzciRI9m1axclJSXs379fK2hRm9zcXD766CP69++Pn58ffn5+rF+/Xu/Undov7TKZjNatW5OSknJHx2rsmIeHhzNgwAAUCoXm+rG2tsbX11drGgtIL8+18fLywsnJSRMUAfD09ATQyBseHo6trS3du3fXukZ79uxJdHS0ViaSk5OTJigCUsAApGDL3dBYu2rfvr0mKFL7vNW/ISIiAisrK01QBMDKykpHH/pwdnZm48aN/Pjjj7zwwgu4ubmxadMmxo4d2+hpJu3atdMKisDfu/b/+ksq5DVkyBCdMUlPT9dMhYqMjKRfv36aoAjAwIEDdY53L+2+oqxE70ODQmmi2a+3X7lUhl5vXyMTrTb/BEYK0LcgQPX8ZaN64kNGVaH2u+nv7yk95F2K1/aNFeX69Wak+e13rjcjpbbeKspKUCj017oxMjIxeA5NGwVUVOo+CDdGZ0qFdtv6+p+5psLMRMbY3gpc7MDeCkI7y2lelVWiL0XboP6UxlX7DV87jdJh1XXb0DhV6tGhoT7V2+5atupzNlo27fMY1pn+9rWpbIRchq6novxM9v40A2t7NzpW1dOpS1MZT33nqTQ4nlV6q2iEbIqG9VZZUcbxnfPw7f4kds5tDB5T+/hNc0wry0uQ1+fbKwz7nmqb0qczRR25LG2bM3TKd/gEj8fDpz/+IZMYM30zphb2nNq1wOA57hSFmSmqUt1pD6qSsqr9klxyMykCoK9tZUmpZr8h7pfvuBuMFPqD/9X+XNmI+4G+/tXbqu8HxlX32+Qs2H5SzdVEOBKl5kikGncHGe4OdfqXlzRwrfwz9lmXovxM/vy5ygb66/drTdl3CP4esbGxTJkyhQ4dOhASEsKCBQt0svj1oVarWbFiBf369SMwMJAnn3ySCxcu3HN5G50xkpeXh0qlwsnJcBQ3IiKCadOmMXDgQF544QWaNZO+NjzxxBOUltb/4J6dLeWNvfLKK3r3V7/gpKWlab34VWNvb691jry8PJo1a6bTrlmzZuTm5upsq0vXrl3x8vJi48aNzJkzh02bNtG1a1etDIW/Q/ULcnXNhjVr1vDpp5/y/PPPExwcjLW1NZGRkfznP/9pUHdJSUlMnToVf39/PvjgA5ycnFAqlYSFhTXYtzZDhw7lk08+4csvv0SpVNK7d2+97WbPns358+d55ZVXNBkC69at448/dOezWllp5wwqlUry8/Pv6FiNHfPs7GzWrFnDmjVrdNrWLfBpbW2ts1/fNkBzjuzsbHJycgxOeUlPT9dkAjV0rDvhTuyqofMa0qU+G9CHXC4nODiY4OBgQJqi8swzz7B48WKtjBlDODg46Gz7O9d+dnY2arWa7t27692fnJxMixYtSE9P1/ndlpaWmsyiau6l3RsZm+qdJ1v90G1krP9BUPPgrq9v1cNCdZs7QS7TzTAoKpUe3vTFvo3qeYGvpnpm193092spZVWk1fmSZqTUr7cKzW+/c71VP0hVtzEyNqWyslzvcSoqSjXnqE9nRgrdyd2N0Vl5PcGTuv2vJ6nZdaqSQR3lhI2QbDszT82Biyr6+leSmZFLYa36I2aW9ob1Vy5tq+/aaZQOq67bhsZJpVJRmFfzdbg+2aq33bVsVedUNCBbadVUKpWqUiNb/TqrOm49cikaIZe+a7a8tIid371EWUkhj7/6MwqFUktfDct2f8dTrarUZCwAmFrYozA4ntUvoo2QrbJhvUUeW0NJYQ6dB+sumVpZUUZhsbYTaQpjOnraD5SXFlFSWqjZX60zVX2+3chwgEBRdU59OqtswD8CmJjb0rbzGCIOryRHAbYNr5DbIJXFJchNdF9Q5VVzOyqLq/xBsfSiqq+twtREs78C7sgO/mnfUR/13kP1BKmr/bm+6ZDVVO/T1796W/X9oLrtpVvaQfmIuFL8mxdghpqiqvuBqWWVfdZ7rfwz9qn1e0qL2LX6JcpLCxn5/M/IFUoK87XHs6n4DsE/T25uLs8++yyenp4sWbKE1NRU5s+fT0lJCe+99169fVeuXMlXX33FjBkz8Pb25ueff2bq1Kls27YNd3f3eyZzowMjVlZWyOVynYKPtdm3bx+WlpYsXrxY82X29u3bjTp+dRr/e++9R2BgoM7+6oCMk5MT0dG68/+ysrKwsKgp9mNjY0NmZqZOu8zMTGxstFcXMFSocNy4cXz33XdMmTKFw4cP60y3+TscPXoUY2NjzUv27t27GTBgAG+99ZamTe0lUBs6VlFREUuXLtW8GFdUVOgEgBrCwcGB7t2788MPPzB27Fi9q4WUlpZy6NAhZs+erVX49Jdffrmjc93Jse5kzPv27cvTTz+t07Z2u7vFxsYGe3t7VqzQv3ynvoDDP8Hfsau6ODk5kZWlWwBCn600Bl9fX0JCQhqdMaLP1v7OtW9jY4NMJuOXX37Re716eUnzmR0dHXV+d0FBgd7Ay72yewtrRwpydDOGqh/6qlOA62JqbouiajqAob6WNvWnHevDxRYeHaL9Nr50RyUFJVKdENB+2Kqe8lE9PUQf1VNoLPU8U1qaQVGpWu+XMDcHsLWQceCi7k4La0cKcvXoLbf+367RW27DerOwdqx60cvUmk5TWVFGSWEOllVj42IHYaHa19niLeXkF6N3eUSrqm35eqbJVFM9hUbSr67O6+rs9DUVF2JVONvJqFSpScmGjq1lnD9/njemTNLqP+W9/VhYOxq4dtK0dKAPTVq6gWvP1NxWk25uYeNIwvWTqNVqLTuv7htx7Ccijv2k2T753/sxb0A2i0bIVtQY2awdSdQjW/xlyW9Fhv9MZPjPAEx6dx/m1o56j1vUgK0CWFgZlqsoLx0TcxudL6OVFWXs+uFVMpOv8uiL39HMtR2J10+y9Ztntdo1pfG8dPxnLh3/WbP9qVn7MLdy1AqW1P7dtc+vD/NG6q2sOJ/z+7/Ft8fTlJcUUF4V3CovLQK1mhtRezmwboZW/6YwpmUlBfy2SDvz8Im392Fu5aBfZ1XbzOvVmfRhrdhAfxMzXbl0fpuN9DGn6B8KjJQmp2PiojulwdTVqWq/dJ2WpEgym7g6UpKYotXWxMWRnNMRAMSbwqr3tKfs30/fUR8udjAmWPse+nV991DT6mmTho+puYfquZ/UvYdK9w4ZhSXa57lx7QK9Zk/W2vbMO/uwMGADDT2DQM11eKc2sHuNZAMjX5D82u3rJ9m2TNuvNRXfkZ+VSGameaM/FN5v/huLoP76668UFhaydOlSzXt+ZWUlH3zwAWFhYTg7O+vtV1payvLly5k6dSqTJ08GoHPnzgwdOpRVq1bx/vvv3zOZGx0Yqa4ZsG3bNqZOnap3Ok1JSQlKpVLrJlp3xQ6QvmLXfSFp1aoVLi4uJCQkaNWCqIu/vz9bt24lISFBEzFKTEzkypUrdO7cWdOuc+fO7N+/n9mzZ2NUld8dHh5OXl6eVrv6GDNmDF988QUzZszA1NSUoUOHNqpfQxw5coQ///yTcePGaWp4VOuuNo3VXUlJCTKZTPM7Af744w+dwpyNYeLEiZiammoVzKxNWVmZzhKrBQUFHDhw4I7P1dhjNXbMe/ToQUxMDL6+vv9IHZi69OzZk++++w6lUqkzjedu0DeW+misXTWGgIAA8vPzOX78uGY6TX5+Pn/99VeDNUYyMjJ0Mj5UKhU3b97U2t7Y31XN37n2q39DTk6O3kLB1QQEBGiCcNXBpX379ulte6/s3rFFexJiTlJaXKBVgDXl5kUAnNz0F5uTyeU4NG9H6q0onX3J8RHYNHPH+C7qi2Tkw88HtZ+EC4ohNRvc9Sw+1KIZlFWoycrX3VdNfjEUlqhx1RMjbG4vIzVHfz//ljLUajWXbure+R3d2pNw/SSlJQVaBVir9ebYoh69ubYjNUFXbyk3tfVWfYzUW1F4+dVkPqUmRKFWq3B0k+w9Iw9+3KftVwuKISVbTUsn3aBfCwc5ZRXaq8jUpVpnzZvp6y8jRU9R1/JKSMyo2d7KVY6zpTdPvPq9VnaKhbUjjm7tuR17FrVKpVXYLuVmBEbGZtg6eRmUzdLWGTNLe73XXuqtCBxb1PhBxxY+RB3fQFZqLM1calKUU+Klceo1ag4OzWtqJZhbO+LYoj1JcX9TNj3jm3ozAodasjm08OHSCV3ZKsqKqmSbTTNXSTZzK0ccWrQnWZ9cty5iZGyGXSPkStMn160InetVrVKx75fZJMacYOikL2jRppskc/P2PDbte622TWk8u4+crVX7wszKkWbN25NyQ1e2tISLGCnNsHE0LJuFjTOmFvZkJOrKlp4QQTNXSW+lxbmUlxVx8fB3XDz8nU7bA+tm4OLZkeChNV+Em8KYlhTlMuql1ZSW1ditmaUD9q4+pMbrypWeECHpzMHToFw1Oruksy8jMRJ71/oLmALkZ0mF1C3/gaAIQN7FK9j16iwtj1LrTc62WyAVhUUUXrtR1U762GXbOYDc0zUFWE1cnTBzd+XWd78B0LwMRr+sbQf303fUR2Ye/HKozj20BFJz0JnGAtC8EffQgup7qJ4apc3tZaTl1Py7usCrVZ2guoeXN99//z2Xbqm5WvUNzdzKEYfm7UnSZ5+3JPu0rcc+LW2cMbPQbwNpCRE4NNe1gf2/zibx+gmGTPyCFq0lv9aseXuGP79aq21T8R3rPh1E2pmBfPPNNwbPJbgzjhw5Qo8ePbTeL4YNG8bcuXMJDw/nscce09vv3LlzFBQUMGzYMM02Y2NjBg8ezJ9//nlPZb6j4qtvvfUWkydPZvLkyTz99NPY2Nhw6dIl7OzsGDt2LCEhIaxZs4YPP/yQwYMHc/78ebZt26ZznFatWrF161YOHDiAo6MjTk5OODs7M3v2bGbMmEFRURH9+vXDzMyMpKQkDh8+zBtvvIGXlxePP/44y5Yt46WXXtIU9Vy6dCkODg5aL44vvfQS48ePJywsjIkTJ5KRkcHnn39OYGBgo1L+QcoAGDhwILt37+bJJ5/E1LTh1Lq6JCcnc+HCBSoqKkhPT+fo0aNs27aNoKAgrYKTPXv25Mcff+Snn37C09OT7du3c/PmTb26279/P126dMHMzAwvLy/NNII5c+Ywfvx4YmJi+P7773WmVTSG/v37079/f4P7raysCAgIYOXKldjb22NkZMSKFSuwtLTUm4lQH409VmPH/F//+hdjx47lueee44knnsDBwYGMjAxOnTpFly5d9C49fCeEhITQv39/nn/+eZ5//nm8vb0pLi7m+vXr3Lx5844zC/SNpaWl7gtuY+2qMfTp0wc/Pz/efvttZsyYgZWVlUbnDfH888/j6elJ//79adGiBdnZ2WzatImrV69qFf81ZN+G+DvXvpeXFxMmTGDmzJk899xzBAUFUV5eTnx8PCdPntTc4MLCwhg7diyvvvoqTzzxBElJSaxevRoTExOdLJZ/wu710bbDUM4eWE3kX+vpMlCaZ1tRXsalk5txaRmElZ1UeyUvK4mK8mKt1SDaBoVybMfnpNyKxMUjAICs1DgSYk7QecDUu5KnrAK9le+jE9T4eMhp74ZmuUEzY2jvLiPmtnb2gm3VZZNTa1GcKwlqAr1kWJmrya9abtDTGZpZyzh1VTcjRC4DHw8ZCeloLU9YTZsgSW9Rf62nc9Uc/YqKMi43Qm9tOoQSvuNzUm9F4lxXb/1r9Obetjum5rZEhK/TCoxEHFuHkbEZXr79NDqrHZDQ6OyWCr+WRvh4yDRL9pqZgK+HjGuJ2jqzq9JZdoF2/6BWcqzNa3Tg5SLDwVrGiej6K665OcjwcZdx5poVzdvo1gpqEzSUmAt7uB6xl7YdpCBfcUEWMRd208qvv9aX0ZwMaWlvWwePWv2HEH1qK/nZyRpd37p6nOy0eDr2naxp1ypgIIe3zCPi2C/0HyulyKrVaiL/+hVLG2c69J2osyxim6ChXL+oK9v1C7vxaoxsgUOIPq0tW8K14+Skx9Oxn7ZsR7fOI/LYL/SrJduVM9uxsHEmsLe2bG0CQ4m9uIfYyL20CaqWK5vYi3vw8u2v9WU0t0oum1pytQ4cwhUDcnWopTOAI1s+IubCLvqN+4DWtZYeNTW3wcO76Y6nf4jueLYKCOVG5B5uRO2lVaAkW0lhNnGRe/Dw0dZbXqYkm3WzGtm8AoZw7exWCnKSsbSVZLt9/Ti5GfEE9JZkM7NsxpBJS3X0EhW+ltSbFxj49OdY2zni0jJIW28PeExNzW1wb9eT4jpf9738hxAftYf4S3/iFRCq0dmNyD24t+/XoM48/QYTc36bls6SqnTmF1LzZb64IAszS+2IdWFuKtfObsbexRvruKs6Om0IExdHjGysKIq9hbrqQ1zy5t24jh2Ky5ghpGyWVrtTNrPD9fGhpO08iKpMmrJYcPk6BdGxuD//BDdX/KqpLNky7CnUKhUpm6UlVs1VGLSD++E76qO0AtL0PPZeSVDj467/Hno9qc49tCqZOadmhhVXE9UEeMqwMlNrMjQ9naruoddqOl+7rWZwRzVBXjIibtRcV8H+tvT07cmtCjXutZKlWwWGEhuxh7jIvbSutoHCbGIj9uDp17ANtAocwtUzW8nPScaq6lpLjJF0FthbW2dHt37E9Qu76Dv2A60lsk3NbXBrqzueTcV3PD/yzrNv7xcPMmNEX02+2uzfv1/v9ri4OJ0afdbW1jg6OhIXF2fweNX7WrVqpbW9devWrFmzhpKSkn/s2bwudxQY6dKlCz/++COLFy9mzpw5yOVy2rZty+uvvw5A3759mTFjBj/99BObN2+mU6dOLF++nNBQ7fXIX3jhBW7dusWsWbPIy8tj+vTpvPrqqwwbNgxra2uWLVum+WLcokULevfurfkibWpqyurVq5k7dy4zZszA2dmZadOmsXXrVq16Fv7+/qxevZpFixbx6quvYm5uzoABA5g1a9YdZRMMHjyY3bt3M3bs2DtRlYa1a9eydu1alEoltra2eHt788EHHzB69GitDI9XXnmF7OxsvvrqK0BaFefdd9/lpZde0jree++9xyeffMILL7xASUkJP/74I8HBwcybN4+lS5cSFhaGj48PX375pWZc/mk+//xz3nvvPWbPno2trS0TJ06kqKiI1atXN9z5Lo7V2DFv2bIlGzZsYPHixXzwwQcUFRXh6OhI165d8fbWX836Tvnqq69YsWIF69at4/bt21hZWdG2bVuDUc/6MDSWdWmsXTUGmUzGN998w9y5c3nvvfewtrbWBA4NObZqXnjhBf744w++/PJL0tPTsbKyolWrVixZsoQhQ4ZotdNn34b4u9f+u+++i5eXF+vXr+frr7/GwsICLy8vrUwPX19fFi9ezOeff8706dNp27Yt8+fPZ9KkSTp1cODv270+XD2DaNthKOE7FlFUkImtQ0sun9pCXuZtBj9VE1Tb89MsEq+f4o2vah5Ug3o/TeTxDWxbHkbnAVORy404d+gHzK2aab3gA8RGHiAj6QoAqspyMpKucnKPFCBq5T9A66uwPq4kqknMUDMyWI6DjZriUujURoZcJhV2q82E/tKXna931DyshUer8fGQ8Ux/OaevqTE2gu7tZaTmqLl4Q/fO3spVqrQfdVN/AEBLb/mZ2DpW6S3rNoNq6+3nWdy+forXv6ylt15PE1Wlt04DpiJXGHH+oKS3TrUCSkbGpvQY/i8ObvwPv3//L1q2783t2DNcObOdniPewNTCtl6dXb6lJiFdxageChxtVBSVQtd2cuQyOBSh/UVx0iDJ73+5tSbz5GiUCl8POc8ONuLkFRXGRtDTV05qtpoLsTV6sbGAsb0VXEtUU1CsxtFWRpe2clJzYP8FFba2uve2th1COX+4A3t/mUNmynXMLOyIOLYOtaqS7sO07XLT15MBeG5uTdZet8EvEXNhNxuXTqJj30mUlRZx9sAqHFzb4du95oHHytaFjn0ncfbAKiorK3DxCCA2Yh+3Y88wdOJnOi/RIAWuXA53YN+6OWSlXMfMUpJNpaqk+1Bt2bZUyTallmxdBr9EzMXdbP56Eh36SLKdO7iKZq7t8AnWlq1D30mcO7AKVWUFTh4BxEXuIynuDKF6ZGsdFIrzkSD2//oOWSmxmFnaERkuydVt6HSttlu/leR69t81cnUeGMb1i7vZ+s2zBPaZSHlpEecPrpbk6lZzr7hweA2R4b/g4tkBpdKMq2e2ax27XYfBKE20V4ZryuPpFRCKk0cQhze8Q3ZaLKYWdlw+LsnWZYi23naulGR7enaNbB37hxEXsZudK57FP2Qi5WVFRBxejb1LO7y7SHozMjbD02+QzrnjL+0jLSEST79BGOupo9xUxtS13UCUxjVj6ukfiqP7jxzd9A45adcxsbAj+sQ61OpKOg3SHs8/Vk0B4MmZNffqoH5h3Ijaw67vJuPXcyIVZUVEHF2NnUs72nWukev07s/Iy7pF89Y9MLd2pCA7iSun1lNRVkT3ke/AX9rTG1pOm4DSxlqzOozTiP6YtpCm3cR/vZaKvAK8P34T90mPcaDNAIpvSqkJyZv2kH3iPEHfzcPSpw3lmdm0DHsKFAqu/WeJ1jmiZy+gy5ZvCf5jNUm//Y6VXzs8p00gYfUGCq4YfmmC++c7gKoASpKmMHFS3GlO7ZXuqS3aj8TStoVW++p76Ihuchys1RSVQWcD99Cnq+6h3+ysdQ+9rKa9u4wJ/eWciVGjNILu3lINrtoBkMISqW3fADnj+8q5dluNsy10aCXj0k0VqbnaH31aB4YS0TKIA7+9Q1ZqLGYWdkT9Jemsax373L5c0tnE/6vRWaeBYcRe3M22b58lsLdkAxcOrca+jg1cPLKGqL9+wbllB4yUZlw9q20DHr6DtGwAmo7vCArSX1pBcHdUr+pZFxsbm3rLPeTl5WFsbKxTB9Da2hq1Wk1ubu49C4zI1HWXR/kvJCcnh0GDBjF58mSmT5/ecIc7YObMmURHR9/11AXBveFejrng4eD48eNMnjyZtWvX0q1bN619/6TdL9tT83dFeSl//b6Y6DM7KC3KxaG5Nz1HvIanT02h4w1fTdQJjADkZ6dweMsn3LwSjlqtwq1NMP0em4OtY0utdnt+ms3lU1v0yjJkwjz8gmseYDKz9edPmyphYAcZ7dxkGCmkqvf7z6t0MkxeeUQ3MALS0ruDOspxd5Qq6V9PUrP/vJpCPTOsRveQ0d5NxuJtKkpq1U6zr/WSX1FeyvFd2nrrMbyO3pZM1AmMAOTnpHCkjt76jtHVG0DkX79x7uBq8jITsbRzJaj3BDr2fVYrqygtQ3+RVlNjGNxJQXs3GUZGkJSpZu9ZFcl1psK8Nlo3MALgaANDOivwcJJRWQkxSWr2nq2ksFahf1NjGNVDQQsHGWbGkF8El26qOBqloqwCnBz0r6xTUpTL0W0LiI3cR0V5Kc4eAfQZNVOTRVPNqg+k6Wi1X6QBMpNjOLx1PklxZ1EolHj59qX36NlYWGvni6tVKk7vX0nkX+spyk3D1tGTroNfpH2XR1EZeNIoKcrl2PYFxFXL5h5ALz2yfV8l2xQ9sh3dOp+kG5JsnlWymVvpynZm/0qi/lpPYZ4kW5dBVbLpEa6kKJe/diwkLkqSy8ndn5BHZ+Lsri3Xmg8luWq/RANkpsRwbNt8km+cQ6FQ0tKnL71GzdKSa9+62Vw5vVW/YpBqitg0c9PZ3hTGs6hE/4CWFuVyYtdC4i/to7K8FEd3f7qPmImjm7Zsv8yXZKv9cgOQlRLDiZ3zSYk/h9xIiUf7vnQfMUtnPOty6LfZxEXuZeqH5/QGRqr19qDH9Im392Flp/0iXVqcy6k/FnLz8n4qy0txcPOn27CZOLr5a7Vbv0D6als7MAKQnRrDyV2fkhp/DrlCiXv7vgQPm4lZLbliL/7OlZO/kpMeR2lxHiamVjh7dqZD/5dwaOGH33jtqRD9Y/Zj7ql77QGaQEjgqnk6gREAI1trfD6dicujg5CbmZB7JpLoWQvIPas71cH50YG0/fd0LNu3piw9i8QftxDz0deaDBSA+O36s1nul+/YtGQit2NP6ZUhdMoPuHh109luqoQBHWS0a1HrHnpBpZn+Us20kbqBEai6h3aQ41Z1D41NUrP/gv57aOc2Mrq0lWFrIU3liYxXc+ySGjMz3QquJUW5HN+5kBu1bKDnIzNxqmMDaz+WdFY7MAKSfYZvr7IBIyUePn0JeUTbBvb/OpurZ7bq1RdINUWs7HWvrabgO94a3XQDI1/rrm9x33hlWMNt9OHn58drr73Giy++qLV95MiRdOzYkQ8//FBvv2+//ZZvvvmGyMhIre27d+/mtdde48iRI/Vmov8d/isDIytWrMDBwUGz2sTq1au5ceMGu3bt0lkK9G65evUq0dHRvPvuu8ydO9dgzQ3B/eF+jLngf5v3339fM9fx+vXrfPPNNzg5ObFp0yZN3ZF7Yfe1AyNNDUOBkaaAvZ7sh6aAocBIU8BQYKQpYCgw0hTQFxhpCuhb6aipYCgw0hQwFBhpCtSdStNUqBsYaUoYCow0BXLzmu491MJcz9I2TYD6Vml70IjAiH7uNjDSo0cPxo4dq7W4AkDv3r0ZNWoUM2bM0Nvv559/5j//+Q8RERFaWSO//fYb7733HhcuXGgaU2maCnK5nG+//ZbU1FQUCgVBQUGsWbPmH31Bfvnll8nKymL06NE686PUajWVlYYtWy6Xa160BP8M92PMBf/b5OXl8eGHH5KTk4OlpSW9e/dm1qxZWrZan90LBAKBQCAQCASChmnVqpVOLZH8/HzS09N16ofU7Qdw48YNrcUu4uLiaN68+T0LisB/aWCkuvjlvaS+VVZOnTrFpEmTDO4fM2YM8+fPvxdiPbTcjzEX/G+zaNGiBtvczepKAoFAIBAIBALBveLBTvC4u0yaPn36sGzZMq1aI7t370YulxMSEmKwX6dOnbC0tOSPP/7QBEbKy8vZu3cvffr0uStZGst/ZWDkQePn58fGjRsN7rez07POlkAgEAgEAoFAIBAIBP/jjB8/nrVr1/LKK68QFhZGamoqCxYsYPz48Vo1Qp599lmSkpI0S/GamJgQFhbGkiVLsLe3p127dqxbt46cnByee+65eyqzCIzcBZaWlgQEBDTcUCAQCAQCgUAgEAgEgrvkv68iqLT6zJo1a/jwww955ZVXsLCwYOzYsbzxxhta7VQqlU6JihdeeAG1Ws3q1avJysrCx8eHVatW4e7ufk9lFoERgUAgEAgEAoFAIBAIBP8YrVu35ocffqi3zdq1a3W2yWQywsLCCAsLu0eS6UdUCBUIBAKBQCAQCAQCgUDw0CIyRgQCgUAgEAgEAoFAIGiCqFQPWoKHA5ExIhAIBAKBQCAQCAQCgeChRWSMCAQCgUAgEAgEAoFA0AT5byy++t+IyBgRCAQCgUAgEAgEAoFA8NAiAiMCgUAgEAgEAoFAIBAIHlrEVBqBQCAQCAQCgUAgEAiaICoxlea+IDJGBAKBQCAQCAQCgUAgEDy0iIwRgUAguIdUVDbdML+lhYiN3ylKpdDZ3aASn7v+p5DJHrQEhmnKsikUTVO4+O1XH7QIBvF81PtBi2CQqHXRD1oEg8ib6K1KJpadvStE8dX7QxM1G4FAIBAIBAKBQCAQCASCe4/IGBEIBAKBQCAQCAQCgaAJon6gWZdNM9PtXiAyRgQCgUAgEAgEAoFAIBA8tIjAiEAgEAgEAoFAIBAIBIKHFjGVRiAQCAQCgUAgEAgEgiaIqF9+fxAZIwKBQCAQCAQCgUAgEAgeWkTGiEAgEAgEAoFAIBAIBE0QsVzv/UFkjAgEAoFAIBAIBAKBQCB4aBGBEYFAIBAIBAKBQCAQCAQPLWIqjUAgEAgEAoFAIBAIBE0Qlai+el8QGSMCgUAgEAgEAoFAIBAIHloeioyRzZs3o1QqeeSRRx60KPcUb29vzd9KpRJbW1u8vb0ZOnQoo0ePRqlU3vExlyxZQkhICJ06dfrH5KysrGTdunVs2rSJuLg4lEol/v7+PP/88/Tq1esfO09dJk6ciLm5OcuXLwek37Z69WrOnz8PQGJiIlu2bOGJJ57A2dn5nsnxTzJq1Ch8fHyYP39+ve3q6tzIyAh/f3+mTp1K375975O0d44h2607lv+NlBbnEb59IbGR+6goL8HZI4Bej87Cyd2vUf2zUmM5unUeyXHnkBsp8fTpS+/RszGztNdqd/rPZaTevEjKzQiKCzLpFvoKwUNfbVC24zsXEhe1j4qyEpw8Agh5ZBaObo2XLXz7PJJvnEOhUNLSpy8hj2rLlp0WR/SpTSRcCycv8xZKYwscWvjSLXQ6Tu4BWserqCjj+K4vuXJ6GyXFeTg096bn8Ndp2T6kQVkKclI5vOUTbl4NB5UKt7bB9B3zDjYO7jpto45v4OzB1eRlJmJl60qHvhPp0Gdio36ziRIGBMnwbiHDyAiSM2HfRRWp2Y3qTjMrGNRRjrsDVKrgerKa/RfUFJXqtrW1gL4BMjydZRgbQX4xRCeoibhV0+a/QWdQZQc7FhJXbQfuAYSMmoXTHVxrx7ZK15pcocTTty+9RtW51lLjuHxqEwlXw8mtutYc3XzpNnQ6znWutaYuF0BJUR7Hti8kNuJPystLcPEIoM/o2Y33HSmxHN7yCUlVvsPLty99xszBvI7vUKtUnD24iohj6yjMS8fO0ZMug8No33mkwWOXFudx4veFxF+q8h3uAXQf2XjfkZ0ay1875pESL/kOD5++9BiprbfC3FRO7PqM9IRIivLSkMkV2Dh64tfjadp1Hg3IDMrWFH1uaXEeJ3fV6MzRPYAeI2fh0KLxOju+s0Zn7u11dVaXmPM7OPjr2xgZmzP1w3OGZSvK49gO6Vqr1lnvUXd2rR3Z+kmNznz70nu07rV2eu+3pGjpbDrdh+nqTGFhTqu3nsO2WxC2XQMwtrfl4nOzSfxxS6PkMbKxwmf+2ziPGozC3JTc05FcnjmfvPOXddo6jRxAu/emY+nThrK0TBLWbOb6x9+grqxs8DylxXmc3v0Zty7/P3vnHR5V8TXgd3ez6Y2QCgkkIRBKCr33FrqIgiAGBEsQURGR9kOwgwICgtIUQRREqtRQBekdktBJB9JI78lm9/tjk01udlNQlPg57/Ps8yRzZ+4990y5d849c0bb1uxdfWnbf1q16zQtMZxz++aTEK0dP9y8u9J2wAzMLEr1lpn6gC0Lexss3/2Fhfi00++nNXlcq8ljR01ABF/9Z/hPeIzs2LGDPXv2PG0x/hECAwPZvHkz69atY9asWTg6OvLhhx8yevRosrKyHvt8y5cv1xkOngRqtZq33nqL+fPn0759e1auXMmXX36JlZUVr7zyCj/99NMTu1ZVDB8+nPXr1+v+f/DgAcuXLycxMfEfk+GfwJDOFyxYgLW1Na+//jpr16592iJWSEV9d+7cuUyfPv0pSPRk0KjV7F4dxJ3Le/HrPJpOg6eSm5nC9m/GkJYUVWX5rLR4ti17ifRHMXQYOJkW3ccRdfM4O1eMp0hVIMl7dt8SEmLCcHBtUm3Z9n4fxJ0re/HtNJoOg6aSm5XCzhXVl23nt1rZ2vefTPPu44i+eZxdq6Wy3Ti3hZvntuDo6kPHwdPx7/oyaUmRbFs2ktg7pyXnPPjzDK78vo7GrQfTfdj/kMsU/LbqdR6EX6xUloL8bLYuH8ODexdo2yeI9v3fJun+TbYse4ncbKnFIuTULxz+ZTa1nRvS/bkPcPFozrFtn3Lh8Opq6W1EVznN6sm4eE/D79c0mJvCSz3k1LKsuqyVGQT21OY9Fqrh3G0NXi4yRnWTIy/3lHa0hfF95Tjayjh3W8PBKxpuxGiwNJPm+zfoTKNWs3tNEHeL+0HH4ra24zH6wfblxW1twGRa9BhH1I3j/LZS2taun9vCjbNbcHTzodOQ6TTv9jJpiZFsXarf1mqyXCWy/bb6dW5f2oN/l5foMuR9crJS2LoskNTEqmXLTItny9ejSXsUQ8dB79Kqx3gibxxn+7fj9MaOU3sXc3LXQup5d6L7cx9gVasOwT++x+3LeyuUbf/aIO5d3UuzjqNpN3Aqudkp7F41hvRq6m3XypfISI6hbb/J+HUbR8zN4+xdI9VbXk4a2enxePoF0H7QNNoEvIO5lQPHfp3J+eDFFcpWE8dcjVpN8A/FOuswmnYDppKXVayzR9WTa/eqMjrrOo7YW8fZ952+XCUU5mdzbt8CjIzNq5Rt15rXuVPc1joNfp/crBS2LQ+sls4y0+LZumx0sc7epWWP8UTdOM5OA23tzL4lJMRWrTNj+1o0+mASlo09yQy5XaUMEmQy2uxaTZ2Rg4j+9iduzVyAsYMd7Q9vwNyrviSrQ0BXWm/7hsK0TK5P/oT4XYdpOOsNmi39oMrLaNRqDv04gYiQvTRpP5rW/d4jLzuZ/d+PrVadZqfHs29NIBnJMbTqMxnfzuOIvf0HB9a+YrBOPf0G0nX4F5Kfo1tzg3LV5HGtpo4dgv8W/wmPkZpMXl4epqamT+x8Li4uNG/eXPf/gAED6N+/P0FBQcyfP59PP/30iV3rz/DTTz9x5MgR5s2bx7Bhw3TpPXv2ZPr06cybN4+2bdvSqFGjv10WZ2dnnJ2d//brPG2q0vnChQvp0KEDTZpUb+L8V3kSbd7Ly+sJSfN0uHftAHFRV+g/dglezfsB0LB5fzZ83o9zwcsICFxUafmLh1ehKshl5HvbsKpVBwCnen78tnI8N8/vwKfjC7q8Yz84jLWdK7lZqXz3QYcqZQsPOUB81BUCApfQwF8rm5d/fzZ+0Y8LB5fRZ3Tlsl06opVt+ORS2Rzd/Ni9ejy3Lu6gWXutbA1bDKRt30koTSx0ZZu0HcamLwdy4eByGjTTejbER4dw5/JeujwzjVY9X9HmazOUDfMHcXLXQl5495cKZQk5uZG0pChGTtmCc30/ANybdmHD/MFcPvoDnQZPAUBVkMfpvYvxaNqdQeO/BsC34wg0ajXnD6zAt+MLmJrbVHidJm4y3OxlbD9VxK372rSbsRqCBsjp6iPjt7OVf+rp2FSG0gjWHlKTkaNNe5ii4cXuCvzcZVyNKC0/pJ2c5Ez4+Xc1qnIfLmsVi/hv0BnAveK21m/sErz8S/vBT/Merx+8MMVAP7iwA58O2rbWqMVA2gZMwrhsW2s3jI1fDOT8geW4NepYI+XyaKLv3XP3WjBxkVcYOG4pDUvGjhb9Wf9pAGf3L6P/2Mplu3BwJYUFuYyauh1rO61szvX92P7tOG6c34Fv8diRlZbA5d9/wL/LaHo8PwcAnw7D2brsJU789iWjmgQglysk544IPUBC9BX6vLQETz+tbA38+vPLgn5cPLSMXi9WLtuV37V6G/a2dOzYu2Y8ty/uoGnx2FHbxZshEzZIyvp0eon9P0wg7NRPdBr0jp5sNXXMLdFZ79GlOvP068/mhcU6G1W5XFd/X0VhQS7D3tqGZbFcDm5+7PtuPHcu7aBJuxf0ylw+uhKliQV1GrQj6vqRCs9d0tb6vyxtaxs+07a1fmOq0NmhlaiK21pZne1cMU5PZy9/cATr2q7kZqWwZnbFOsuPS+SwayfyEx5h08qHzme3VSpDWVye64ddx5ZceuFt4rcfACBuy3663zhAozlvcXXMVF3eJl9MIyP0Nuf7j9d5iKgysvGaEUTksh/Jvh1R4XUirx8gMeYKPUYtwcMnAAAP3/5s+6o/V44sp/sLCyuV89qxVRQW5jLkza1Y2mr1Zu/qy4EfXuHu5Z00bjtCkr92naZ4NR9S5f3XlHFtyBsd9c5dU8aOoqLJKBQKvfPXBITHyD9DjfcYuXLlCuPHj6dly5a0aNGC4cOHc+rUKd3xhQsXMnjwYFq0aEGXLl2YMmWK5It/YGAg58+f59ixY3h7e+Pt7c2yZct0x48dO8bw4cPx8/Ojffv2zJ07l5ycHIkMd+/eZfTo0fj6+tK3b1927drFxIkTCQyUugtfuHCBkSNH4ufnR7t27Zg5cyZpaWm64/fv38fb25vt27cze/Zs2rVrx/Dhw9mwYQP+/v56Hh3h4eF4e3tz/Pjxv6TDrl270rdvX3bu3Km7RmJiIjNnzqRXr174+fnRt29fvvrqKwoKSi2rJUtzvvzyS53uzp07B8DatWt57rnnaNWqFR06dCAoKIjIyMgqZVm/fj0eHh4MHTpU79jbb78NIPEa6dmzJx9//LEk3+HDh/H29ub+/fu6tKragSGWLVtGixYtADh37hxjxowB4Pnnn9fdb2FhIZ06dWLxYn1L8uTJk3n++ecrPH91dAxaPa9Zs4Zly5bRsWNHXdsp3w4vX77MsGHD8PX1ZdCgQdVuF1XpXCaTsWFD6YMiMDCQoKAgdu7cSe/evfHz8yMwMJCICOmLgEaj4fvvvycgIAAfHx969erFunXrJHlKdBwSEsILL7yAr68vP//8M/DX+m6JjGWpbv/77bff+Pjjj2nTpg2dO3fmiy++QKVS6fLFx8fzzjvv0LFjR3x9fenZsyeff/55tXRdXe5dO4C5lT0N/Prq0sws7fBq3o+IsKMVfukrLX8Q96bddS8AAPW8O2Lr4M7dq8GSvNZ2ro8lW3jIAcys7PH0lcrWwL8fkdWQLSL0IPWbSGVza6SVLfxaqWyOrj4SowiAqUUtXDxbkZoYrku7ezUYmVwheYk2UprQrP3zxEVdITM1rkJZ7l49gFM9X90EH8DOqQFujTpw5+p+XVrs3XPkZafh1/lFSXm/LqMpLMgh8vqxSu+5sStk5Wp0RhGAnHy4FauhYV0ZiiqetI1dZdx7qNEZRQCiEiA5Q0MTt1LXXk9ncLSVcSJMaxQxUoDMgOfvv0FnAOEl/aBcW/Py70fk9arbWniIfj8oaWv3yvQDRzcfyUs6gJlFLVw8WpGSEE55aqpcoK0fcyt7vMqMHeaWdjRs0Z/wsCOoqjF2eDTrrjOKgHbsqOXozp0rpfUbHnoYdVGhpH5lMhm+nUaRlRZPQvRVvXNHhB7AzNIeD59yY4dfP6KqobfI0IPUKzd2uDbsiI29OxEhwZWU1GJVqy6qwlzUqkID910zx9zICnTm6duP6OroLOwg9Rt31xlFoHKdpT+KIvTEOjoMmqFnPCpPic702lrz/kRUs625N6tIZ/slea1rV09n6oJC8hMeVStveZyHBZAXn0T8joO6tIJHqTzcuh+nIb2QG2uXm1s2aYBVs4bEfverZNlM9MqNyORyXIYFVHqdqLCDmFna4960jy7NzMIOD99+xNysuk6jrh/Czbu7zigCUNerI9b27kSG7TdYprAgp+pxqQaPazVl7Cgs1B87BP8tarRh5NKlSwQGBlJQUMCnn37KsmXL6NWrFw8fPtTlSU5OJigoiFWrVvG///2PBw8eEBgYqJvozJ07l6ZNm9KyZUs2b97M5s2bGT58OADBwcG88cYbNGrUiOXLl/P+++9z6NAh/ve//+nOn5eXx/jx40lLS2PBggVMmTKFNWvWcP36dYmsYWFhjBs3DgsLC5YuXcrUqVP5/fffee211ygqtx7xq6++QqPRsGjRIt5//32GDBmCRqPRWzKwdetWnJycnkjcjc6dO1NYWMiNG9p1lKmpqdja2jJz5ky+++47Xn31VXbs2MHcuXN1ZTZv3gyULs/ZvHkzzZpp1/rFx8fz0ksv8e233/Lpp5+iVqsZOXKkZCJanri4OO7fv0/37t2Rl/cPB+rWrSsxvjwOVbWDqmjWrBlz5mi/is2bN093v0qlkmeffZadO3eiVqt1+dPS0jhy5EilhpHq6LiEn3/+maioKObPn8+bb77J7t27+fbbb3XHk5KSeOWVVzA2NmbJkiW88sorfPTRRyQkJFR6X9XV+cWLUvf669evs2rVKt577z2++OILEhMTefXVVyVGnc8++4yvv/6aoUOHsnr1ap599lkWLlzIpk2bJOcqLCzkvffeY8iQIaxZs4ZOnbRfQf9K3y3P4/S/JUuWIJfLWbJkCSNHjmTt2rVs2bJFd3zatGncvn2b2bNn89133/H2229L6v5JkPTgJg6uTZGVqxOnen6oCnJJTazYyJiVlkBuVjKObj56x5zq+fHogf5a6cfh0cObONTVl83RzQ9VYS5pSZXIll6xbI5ufiRVQ7aczEeYWdTS/Z90/ya1HNwxMZWuSXGup524Jz24afA8GrWaRw9v42RAFud6vqQ/iqEgL6v4HFq5nOpJ8zq5NUMmk5N03/A1dPlqyYg3EEvkYTIYG8mws6q4rKUZWJjKiDNUPkWDU6kqcHfSWkGK1DCuj5xpzyt4/zk5QzvIMDUuzfdv0FmJHIba2pPoB3+mrdV0uUBbt44Gxg7ner6oCnJJq0K2nKxkvTrTyVamzpIe3ERpbI6dUwPpdYoNZskP9e/j0YOb2P/JsSO7eOxwcDUwdtTz45GB66kK88jNTiUz5T63L+7g9sUdONVrjpGxvkdiTR1zHz2sXGfp1dCZvQGdObgZ1tnp3fOo06Ad9RpXHVss6X4FOqtfvbaWm5VscCxxqu9XrfHhSWPTvIk2lki5T+/pF0IxsjDHopEHANbNmwKQdilUki8/LpHc2Dism1fuXZsSd4PadZro6c3B1Vdbp5Usp8lOTyAvO9lgLBIHV19SHurr7crRb9jwUSvWf9icXd8O58HdU3p5oGaPazVl7HiSHvyCfyc1einNggULqF+/PuvXr9e5NpU3EsybN0/3d1FRES1atKBr166cPXuWzp074+XlhaWlJebm5pIlJhqNhi+//JIBAwbw2Wef6dIdHBx4/fXXmThxIg0bNmTbtm0kJyezadMmXF21Fm0fHx/69u1LvXr1dOVWrlyJg4MDK1eu1AU5dXFx4ZVXXuH48eP07NlTl7dx48aSawIEBASwbds2Ro4cCYBKpWLXrl08//zzT8Stq2TJyKNHWku7t7e3JEZDy5YtMTMzY8aMGcyZMwczMzOdvsovzwGYNWuW7u+ioiI6depEhw4dOHDgAC+8oO+6Cegm8S4uLhXK6eLiIvEIqi5VtYOqsLS01C3PaNiwIb6+pQGihg8fznfffceJEyd0gUp3796NXC5n0KCKg9BVR8clODg4sGiR1lWwa9eu3LhxgwMHDjB1qta1c/369chkMtasWYOVlXaW5ezszMsvv1zpfVVX5ydOnJCkJScn89NPP+Hu7g5A06ZN6devH9u3b2fkyJHExMTw008/8dFHH+nqu2PHjuTl5fHNN9/wwgsv6AwxhYWFvPvuuwwYMEByjT/bdw3xOP3Pz8+P2bNnA9CpUyfOnTvHgQMHGDVqFAChoaFMmTJFIq8hb5u/Qk5GEnUbtNZLt7B2ACA7IxH7Ot56x0uOlc1bvnxeTjpFqgIURsZ6x6tDdkYSLp6Vy1bbxbBsOcWymRuQzdzagfwqZHsYcZH46Ku07vWGRB6D92qjTctKN+wZlpeTRpGqQJfP0L1kpSdiZ2pJdkYSMrkCc6vaknwKI2NMLWzJyqjc+8zSFGKS9P1cs/K0aZZmkJRecVmArFz9Y1m5YG6i9TgpUoOdldYw8mxHORFxGk7fVONkK6NDExlW5jL2FNs3/w06A20/qGOgrZlXpx9kPpm21qb3G3rHaqpc2mtXNHY4Atr6+fNjRxoqVQFGRsZkpydhblUbWTmXpLLjQHlyMg2PHeZW2jI51Rk7rAzozcqw3kJP/sj5/V/p/q/r1YHuIwx799XUMTcnMwkXj8rbml1FOnvMthZz8xj375zi+ck7qydbFW0tuxptzZBs5dvaP4WJiwMpJ/VjLOXFJRYfdyQz7A6mzlqZ8+OS9PLmxydhWsex0uvkZD7CyV1fb2Yl/SAzETtnw8vFczO116ywH+SW1qlMJqOuVyfqN+2NubUTmamxhJ1ax8H1r9P7pW/wbtFDKlcNHtdq8thRU1CLtTT/CDXWMJKbm8u1a9eYMmVKpYaB48ePs2LFCu7evStZihIVFVXphDgyMpIHDx4wa9YsiVdB27ZtkcvlhIWF0bBhQ8LCwmjUqJHOKALg6upK48aNJee7ePEigwYNkuz80rlzZ6ytrbl06ZJkYta9e3c9eUaMGMFLL73E3bt3adiwIcePHyc5OZnnnnuuwnt4HDTlOpRGo2H9+vX8+uuv3L9/n/z80q0PYmNjq4zxcfXqVZYuXcqNGzckXiJRUVF/WdbyL2LV4c+2g+pQv3592rZty7Zt23SGke3btxMQEIClZcWRFR9Hxx07StdcNmjQgL17SwPcXbt2jXbt2umMIgAdOnTA1tb2L91bRTRs2FBnFAGtDho3bsy1a9cYOXIkp09rA2j17dtX0n86duzImjVriIuLo27durp0QzvfPMk6e5z+V/7cDRo04OzZs7r/mzZtytq1a1EoFHTq1In69aVB2Z4EqsI8gy8QCqVJ8XEDW5HoymqPVV7e8PmrQ1FhHgqFgXMbPYZsBsobGVUuW05mMod+noq1nSsterxS5pyG85c9X6WyGCpbTs+qgjwUCsO7dhkZmVR4DV0ehdZwoSdDsbOSshLbdskxQ+VL0krOb1z8xI5LgV3ntGP67fsaClXQw19O3drwIPnfobMSOSq7VlElba2oMlmr0dYO/lTc1nq+one8pspVuWzGxcf/3Nihq9+CPIyMjKvRhvSvU/RXxjVVJeNaBXrzaj4QB1cf8rJSiL55jNys5Erads0ccyvUWfE9F6mezHhbpCrgzJ55NG3/ArWcqhejq0KdGf3FtlZyb8Vt7Z9CYWaKOl9/SYY6r6D4uFYuuZnWWm0ob1FePkbWlUfUruoZWlTJ2KhSaY/Jq9EPLG3rEDDuO0ker+ZD2L50MOf3f6lnGKnJ41pNHjsE/y1qrGEkIyMDtVqNo2PFltmQkBAmTpxIr169eO2116hdW/t1Y8SIEZJJqCFSU7V+y2+++abB43Fx2jXYiYmJ2Nnpb3lmZ2cnuUZGRga1a9fWy1e7dm3S09P10srTpk0bPDw82Lp1KzNnzmTbtm20adNG4pXyVyjxHHBw0FpU169fzxdffMGrr75Ku3btsLa2JjQ0lI8//rhK3T18+JDx48fj4+PDRx99hKOjI0qlkqCgoErLlnitlOjWEHFxcZXWuSH+SjuoLiNGjGDGjBmkpKSQmJjIjRs3mDFjRqVlHkfH1tbWkv+VSqVk2UpSUpLBCbqhtlmWkm2Hq9J5+SC0FbXlpCTt14zU1FQ0Gg3t27ev8JwlhhEzMzMsLKTrTZ90nT1O/ytrXAJ9XS9evJjFixezZMkSPvroIzw8PJgyZQp9+/blcSkoKCA7I02SZmZph5HS1OCa2ZKXj5IXFUPoXmIqLV+1O2iRqoCcTKluTC3tUChNKSoycG7VY8hmoLxKVbFshfk57Fs7gcL8bAa9+rMk9khFuqrsfBJZDJUtp2cjY1OKigyvLVap8nXXkMvAotzlcvK1BhBDcUSMio0ehZXs7lhyzFD5krQSA0tJ3usxUkP39RgNPfzB2VZrGKlJOis5X3ZmmiRPZf1AN6mqpK0pKpO1ira257sJFORlM3TiOgrzcyjMLw3uUhPkeu6tn1EolGRnSL9YVy5bQfG5/9zYoavf4mUoVbUhjbqInMxS+UwtiseOPzuuGVUyrlWgN6tadbGqpX3OeLUYxPGtH7Bn9Tief+snSR3VhDG3SFVAXk46BWW6TKU60032nsx4G3pyPXnZabTqo78FbpGqgOz8DElapTpT/cW2VnJvBpY8/Z0U5eYhN9GfPMuL1yEW5WrlUucWGycM5FWYmuiOq0DSB6BMnVbyDFVU0laMjIqNMo/RD8piYm5Lg+ZDCDu5lsT713XePTVpXMuqSGdPeezYu2Y8s14KrrHLaTRPdkW3oAJqrGHEysoKuVxeaQDNw4cPY2lpqYsZANotV6tDyZf2OXPm4Ofnp3e8ZHLu6OjIzZv6a/pSUlIkkz0bGxuSk5P18iUnJ2NjI43MX5FHRMmSjXHjxnH8+HG95TZ/hRMnTmBsbKyLERIcHEzPnj157733dHnCww0HRTJ0rpycHJYvX66b0KtUKr0JaHmcnZ1xc3Pjjz/+YPr06Xp6ePjwIbdv3+bZZ5/VpRkbG+sFQyp/nb/SDqpL3759+eSTT9i1axf379+nXr16tG3bttIyf0XH5XFwcDDYvlJSUiot5+Ligqura5U6f+aZZyTpFbXlEk8pGxsbZDIZGzdulHhplODh4aH721B7f9J19jj9ryocHR2ZN28earWasLAwVqxYwbvvvktwcDBubm6Pda4rV66wdu4YSdrYDw5jbu2gN+kBdGklLzOG0LkxV1De1NymWl8u46KusOObsZK0l2YdxsLagZw/KZt58TFD5XMykjAxIFuRqoDg9W+RHHebQa99R20XqbeahbUDWen6sXSy07XXsLQxLI+puS2K4iUBFd1LSVkLa4fiiV6yZGlIkaqAvOw0LIvvy7kWPNNW6v7xze4isvLA0lQGSA0W2jTDy2RKyCr+SFV+u92StJx8jc5zJCtXA8jIzpNeJ7v4HCbFXbEm6QzgYeQVti2X9oMxs7X9oKK2or1GJf3A6s+1tX3rtG1tyOvfUZCXxa9fSb0ya4JctV0acf/eOXZ+K+2f4+YcwaLCsUP7rlRR3ZaVu+Kxw1b3Bd/CxoHYe+fQaDSSMbyk7PXTP3P99M+69BdnHMbcqgK9lSwPqM7YkWm4vCG9lcfTL4Bb57ew/tPekvSaMOYaGm9HTS/WmaF7rs54W822VpCbyZUjK2ja4UUK87IoLI4TVJifAxoNkWEHObppqqT8yx8cqURnxUuLqtHWKnqWlG1r/xT5cUmYOOsvtzB1cSw+rr2vvHitzCYuDuTdj5fkNXF2IO1CCABRpvDL/K6S48OnHsbcyl63JKYspctkKtZb6XKbCvqBWdVtTV1ssC47ttXkca0mjR0XLlygS5culeYV/P+mxhpGSuIK/Pbbb4wfP97gcpq8vDyUSqXkob179269fEqlUu8rtKenJ87OzsTGxjJ69OgK5fDx8WHnzp3ExsbqJkX379/n1q1btGrVSpevVatWHDlyhBkzZmBkpFXrqVOnyMjIkOSrjGeffZbFixczdepUTE1N6devX7XKVcUff/zBoUOHGD58OObm2n3rS3RXlurqLi8vD5lMprtPgP3791cr0OnYsWP59NNP+e233/TiNixbtoyioiJGjBihS3N2dtYzJpSPQVLddlAVJfow5LFgbGzMM888w5YtW3j06BEvv/xylUt+qqvj6uDn58emTZvIzMzUeTycOXOm0mC3JYwdO5bPPvusQp1rNBq9HZbu3r1LdHS0zkslOjqaW7du6eKJdOig3U4vLS1NskyluvyVvmuIJ9H/yiOXy/Hz82Py5MkcPXqU6OjoxzaMNG7cmGcmrJWkmVs54FC3MQ8jLqFRqyXBxhKir2FkbEYtR4/yp9JhaeuEmaUdibFhescSYkKwr1u9bZft6zRm8Ov6stnXaczDSH3ZEmOuYaQ0w9ahEtlsnDCzMCxbYmwI9nWksmnUao78MoP7987SN3AxdRvoGxsdXBsTe+8c+XlZkmCi8dHXtMcruF+ZXI69SyMSDMgSHx2CTW03jIvPV3KOhJgwPJqVLvtKiA1Do1Hj4Ko1CD7KgI3HpO4fWXmQkAZu9voy1KkNBSoNKZkGRdSWz4XsPA0uBmLS1bGTkZhWRu7iAK1WZlIjjFWxUaXYI7xG6Uyb13A/sK/bmDgD/SA+5q/3g/L3qFGrObxxBvfvnqXfmMXU9WpLXk56jZQLtP1z2MQfJHktrB1wcG3Mg3ADskWHYGRshm01ZEuIqUi2snXWhLAzW0hJCKe2c+nSi/gobRvqMHiGJE6CWfHYEWdg7EioxthhYeOEqYUdSfcNjB0xIdSuU/W4VvJ1uXXvCTo9Qs0Yc+3raPtAYZnXJDMrB2rXaUy8ofE2Vqszm2ro7JEBnSXFhlDbRStXfm46hQU5XDv+HdeOf6eX9+imqTi7t6B9/7d1aebWFevssdqaIZ1Fh2Bfpq39U2Rcu0Wtzq20W3mVWV5u29YPVXYO2Xcii/NpP4batvIl/UJpAFYTF0fM3FyI+e5XAOoUQMC47yXXMLO0x86lCQlRhuo0RFun9u4Vyqir0wfX9Y4l3Q/FzqXqtqbRaJ9RAYFfYWphC9SscW3ga9IxtyaNHZmZlTysBf8JavSuNO+99x5RUVG8/PLL7N+/n9OnT7NmzRq2bt0KaAMnJiUl8cknn3DmzBm+/fZbduzYoXceT09PwsLCOHr0KKGhoSQkJCCTyZgxYwYbNmxgzpw5HD16lDNnzrBt2zbefvtt3dazzz33HPb29kyYMIHg4GCCg4OZMGEC9vb2kkndhAkTSEpKIigoiGPHjrF161amTp2Kn5+fwfgKhrCzs6NXr15cuHCBgQMH/il3rri4OK5evcrFixfZv38/s2bN4o033sDf318SCLRjx44cPnyYn376iZMnTzJt2jSio6MN6u7IkSOcP3+e0NBQsrKydMsnZs6cyZkzZ/jxxx/56quv9JaDGGL06NH06tWL2bNn88UXX3DmzBmOHTvG22+/zfbt25k0aZLEgycgIIBLly6xfPlyTp06xeeff87Vq1cl56xuO6gKd3d3FAoF27Zt4+rVq4SGSiOSjxgxgnv37pGZmcmwYcOqPF91dVwdxo4di0aj4bXXXuPIkSPs2LGD//3vf9WKMfLSSy9VqvOpU6fSpIn0wVG7dm0mTJjA/v372b9/P0FBQTg5Oenu28PDg9GjRzNt2jRWrFjB6dOnOX78OOvXr2fixIlVyvRX+q4hnkT/A+1DccSIEfz888+6e1qwYAHW1tY0bdq02ucpwcbGhnreHSU/I6UJDfwDyMl8RHhI6baBuVmp3Lt2AI9mPSRfN9IfxZD+KEZy3gZ+fYm6cUyy7WrsnTOkJUXh5V89g6qpuQ1ujTpKfkZKEzz9AsjNfEREaBnZslMJDzmAezVk8/TrS/TNY2Smlcp2/65WtgZ+UtlO7PyUe1f30XXYHMkWgmXx8u+HRl1E2OnNujSVqoAb57bjXN8fq1rawMIZKQ/1tgL0ah5AQkwoCTGlfTklIYLYu2dp2LxUFreG7TE1tyXklHRHpZCTmzAyNsOjaXcAClTabXTL/orU2m15Lc1kNC6z46SZMTR2027DWzZ+iK2F9leW2/c1eNWR6QwcAO6OUNtaxs3Y0hf4Ow80qIo0+HtIjbL+ntr/Yx/VPJ1BxW3Ny6+4H4RK+0H4tQN4NH2y/eCPHZ9y9+o+uj03R7dla02Vq0Q2Q2OHl38/cjIfcU8ydqRw92owns16SL7Cpz2KIa2cbF7+fYm8LpUt5vYZUhOjJPXr6dsLuUJJyMmNujSNRkPo6V+wtHHCp1Mgrg076n5GShM8fAPIzXpEZJh07IgIPUD98npLjiE9udzY4duXmJvHyCo3dqQ/iqKBb6lsuVmGPSVvnd8KMhlN2j5b48bckvosrzNPAzrLK9ZZvSZSuTKSY8gopzMP375E35Lq7ME9rc48i8dbM8va9B2zXO9Xp0E7FEYm9B2znK5DZ1a7rd27GoxHddqaX1+irhvWWdm29ndg4uyAhbcnsjIf8OK2B2Pq7IDzs6X9TFm7Fi7P9SNxz++oi9c5Zd24R9bNcNxeHQFlJun1g0ahUauJ367d/tVcrd1Gt+zPSGmCe7O+5GY9IurGIV3ZvOxUosIO4Na4e5V16t6sD7G3pXX6MPwMGY+i8PAp3So4N1u/H2SnJxB+bS+1nL1p2GJAjRzXyvaBmjZ2lHjV10Q0Gs1T+/2XqLEeIwCtW7fmxx9/ZMmSJcycORO5XE7Dhg2ZPHkyoA3oOHXqVH766Se2b99Oy5YtWbVqFQEB0j3GX3vtNWJiYpg+fToZGRlMmjSJt956i/79+2Ntbc3KlSt1X6vr1q1Lly5dsLfXfv4zNTVl7dq1zJ07l6lTp+Lk5MTEiRPZuXOnJFaBj48Pa9eu5auvvuKtt97C3Nycnj17Mn369MfaVaZPnz4EBwdXug1sZWzYsIENGzagVCqxtbXF29ubjz76iKFDh0o8PN58801SU1P5+uuvAa0BYvbs2UyYMEFyvjlz5vD555/z2muvkZeXx48//ki7du2YN28ey5cvJygoiCZNmrB06VJdvVSGXC7n66+/ZtOmTWzbto2ff/5Z5xHwxRdf6Hk0DB8+nJiYGDZt2sS6desYMGAAU6ZMkSxPqW47qAo7OzvmzJnDd999x65du1CpVNy+fVt33MvLC3d3d+rVq6eL3VEZ1dVxdXB0dGTNmjV8+umnvPPOO9SrV485c+awePHiKsvK5XKWLVvGxo0b2bZtGxs3bsTIyIhmzZqxevVqg4aDZs2a0bdvXxYsWEBSUhL+/v589NFHGBuXPpxmz56Nh4cHmzdv5ptvvsHCwgIPD49qeTr91b5bnifV/0xMTGjUqBEbNmwgLi4OU1NTfHx8+P7776uM5/I4ePkHcK2+P4d/mUVKQjimFrUIPbUJtbqIdv0mSfLu+PZlAF6ec1SX1rp3EPeuBbPj27H4dwmksCCHy7+vpbZLI5q2kxrtbl34jczUhxQWatdzPAy/yIWDKwBo2GIIVnZ1Jfkb+AUQUt+fo79qZTOzqEXYaa1sbfpKZdu1Sitb4P9KZWvZK4jwa8H8tmIsfl0CKczP4eqxtdi5NKJJ21LZrv2xnrDTG3Gq3xwjpRm3L+2SnLtxiz4oTcxxcfenYfN+nNr9FTmZydg61OfG+R1kpDyg96jS5YYHfp7Og3vnmby0tM/6d36RsDNb+G1VEC17jkeuMOLK7+swt6pNy57jdfmMjE3pMOBtft/6MXt/eJv6jbvwIPwity7uouPAd3Vf3Sri1n0N9x9pGNhWjr21hpwCaOUlQy6DP8KkLxUv9tC+aH+7p9RacuqGhsZuMkb3kHPxrgalEbT3lpGYpiEksrR8dp42bzdfOSO7ybnzQIOTLTT3lHE9Wk1Shvbc/wadATTwD8DpD3+O/DKLlPhwzCxL+0Hbcv1g54qXARj7QWlba9VL2w92fjsWv67atnaluB+UbWtXj68n9NRGnN2bo1SacfuitK15+vZGaWJe4+Rq1LyPRC6Ahs0DuHK8OQc3ziQ5/h5mFrUIObkJjbqI9v2lY+O2b7SyvTK3VLa2fSZw92owW5ePoUW3MRTk53Dp6PfYuzSiaftS13srW2dadBvDpaPfU1SkwrmeL+Ehh3kQfpF+gQuRy/XHVU+/AEJP+nPs11mkFo9r189oZWvdR6q3Pau1so2eWSpbi55BRIQEs3vVWHw7a/V27fha7Jwb4d2mVG+Xj64kIeoybt5dsLR1IT8nnYiwgyTFhuLT6SVsHfTjcdWUMdfDf4gutgGAh28AjvX8Ob5lFqmJWrlulOis3Hi7Z41WrhdnlNFZD63O9qwei08nrVwhJTprrZXLyNgM92bS5UUAUdcPkxgbinuz3pia6HvAejUPwPl4cw5vmklK/D3MLLVtTa0uon0/aVvbUdzWxpVpa637TODutWC2fzOG5l21be3y799r+0E76RK2mxd2kpn6EFWBdl3gw4gLnD/4LQDWRmBXxtOm/sTRKG2sdbvDOA7sgWldbZy0qG82oMrIwvuzKbiNGcZRr57kRmuX6cZtO0Dq2Sv4fzcPyyZeFCanUj9oFCgU3Pl4mVSeGV/SescK2u1fy8Nf92LVrBHuE0cTu3YLWbci9HRVFnefABxO/8iJbbNIS7yHqXktbp7bhEZTRMteUr0Frx0HwIj3j+jS/LoFERl2gP3fv0yzjto6DT2xllpOjWjYqrStXQxeSEZKDHU8O2Bu7UBm6kNuX9iMqiCH9gNnUZ6aMq65Ne2N0lg6rtWUsePvCLYv+Hch0/zXTEFPgLS0NHr37s3LL7/MpEmTqi7wGEybNo2bN2/+6SUX/0bCw8MZMWIE/fr1e6JxVZ40MTEx9O3bl6VLlz620eXfRGBgIObm5qxateppi/L/guX7DA+xeTnpnNq1gIiww6gK83Fy86HTkGk41fOV5Fv3sXapUtmXdIDkuLuc/G0+DyMvo1AocW/ajc7PTMfcSrqmY/vyQB6EXzAowzMT1lPXq51B2c7sWUBksWyObj50HDwNRzepbBs+08pW1jACkBJ/l1O75hMXeRmFkZJ6TbrRabBUtiO/zOD2xZ0G5QJtPAWb2loXDFVhPmf2LeHmxd3k56RjX8ebDgPewb1J6VrgLcsC9Sb5AJlp8fyx43Oib51Co1Hj6tWObs/ONDh5Cj39K5d/X0tG8n0sa7ng32U0LbqNlXgHpqYbjqRqqoSezWU0qivDSKHdOebIVbVu+UsJEwfpG0YA7K2hd3M5rg5aL5TwhxqOXNWQbWAlWSsvGa0byrC10C7lCY3ScPK6Bhvr0slqTdIZgKqo4n5wendpP3As6Qfl2tr6T7RtreyLOkByvLYfxBX3g/pN9PvB4U0zuHVhp8Hrg3b9vbWdqyStJshVtg+Ul+3Eb18SHlo8dtTzpesz+mPH9x9pZStrGAHt2HF853weRlxCoVDi0bQbXYbOwMJaOnZo1GouHFlD6OnN5KQnYuvgTps+r9O49RBy8w3XZ35OOmf3LiDqulY2BzcfOgychkM5vf08Tytb2ckNaMeOM3vmEx95GbmRknqNu9FhkFRv9++cIvTUBh49uEFedioKI2Nqu3jTuO3zNGr1LCbGhpe51oQxd9Dr66nTQDrm5uekc3afVmdFxTprP3AaDq5SuTbO18pV1jBSorOze+YTH1Wqs/YD9eUqz7FfZxARepDxn1w2aBgBrc5O7vqSiJK25uZLZwNt7YfitjbOQFs7sXM+DyMv6XTWZegMPdm2LQvkQfh5gzJMfAheZTYM6XH3CObu+v0C0BlC/L6fp2cYATCytabJF9NwHtIbuZkJ6RdDuTn9S9Iv6S/DcBrSi4YfTMKycQMKklK4/+MO7n76DZoyy8bDNunHIATt8qUL+xcQffMIRYX52Lv60LbfNOxdfST5fl3QC5AaRgBSE+5yft8XJERfRq5Q4ubdjbYDpmFmWaq38Gt7uX3+F9KSIsjPzcDE1Aon91b4d5+Afd1mmJvp12lNGNdenHEYKzv9+qsJY8d7Q2vuQoq5PxoOdv5P8NEYwzvQ/X9EGEaqwerVq7G3t6du3bokJSWxdu1aIiMj2bdvHy4uLk/kGrdv3+bmzZvMnj2buXPnMnz48Cdy3n8LR48eZeLEibz99tvVWorxT5KamkpkZCTffPMNkZGRHDx4UOJ98/8NYRh5slRkGKkJFFWyW8rTxlj5+Nt2/xNUZBipCdSyqb531D9NRYYRQcUYKWpmHwAqNIzUBIxr8Du8gR1gawQVGUZqAu5DvJ+2CBVSkWGkJmDIMFITKKw6HOFTY8ozNVNnIAwj/xT/f2d3TxC5XM6KFStISEhAoVDg7+/P+vXrn5hRBOCNN94gJSWFoUOH8txzUhdDjUZDUSUzGLlcrtvZ499Kz549uXXr1tMWwyC///47s2bNon79+ixYsOD/tVFEIBAIBAKBQCAQ1ByEH8M/g/AY+Rdw7tw5xowZU+HxZ599lvnz5/+DEgkEguoiPEb+HMJj5PERHiP/vxAeI38O4THy+AiPkT+H8Bh5fITHyJ9jzvqnN3h8PPaf3Vr7aSI+ff8LaNasmW4nHkPUqmVgn0eBQCAQCAQCgUAgEAgEVSIMI/8CLC0t8fX1rTqjQCAQCAQCgUAgEAj+36CuuU56/6/4dwemEAgEAoFAIBAIBAKBQCD4CwiPEYFAIBAIBAKBQCAQCGogGuEy8o8gPEYEAoFAIBAIBAKBQCAQ/GcRhhGBQCAQCAQCgUAgEAgE/1nEUhqBQCAQCAQCgUAgEAhqIBqxkuYfQXiMCAQCgUAgEAgEAoFAIPjPIjxGBAKBQCAQCAQCgUAgqIGoRfDVfwThMSIQCAQCgUAgEAgEAoHgP4vwGBEIBIK/EXNT2dMW4V9Jbv7TlsAwHZoWPG0RKiQyyexpi1Ahzpbqpy1ChRw/l/u0RTCIh7vF0xahQo7uufm0RaiQZm08nrYIFXJq9/mnLYJBBrzU+WmLUCFhm2puW/MZ1eRpi1Ah++ade9oiGOR+eMLTFqFCpjzj/bRFqBCNCDLyjyA8RgQCgUAgEAgEAoFAIBD8ZxGGEYFAIBAIBAKBQCAQCAT/WcRSGoFAIBAIBAKBQCAQCGogmpq7GvX/FcJjRCAQCAQCgUAgEAgEAsF/FuExIhAIBAKBQCAQCAQCQQ1ELYKv/iMIjxGBQCAQCAQCgUAgEAgE/1mEYUQgEAgEAoFAIBAIBALBfxaxlEYgEAgEAoFAIBAIBIIaiEYspflHEB4jAoFAIBAIBAKBQCAQCP6zCI8RgUAgEAgEAoFAIBAIaiBqtfAY+ScQHiMCgUAgEAgEAoFAIBAI/rMIjxFg+/btKJVKBg8e/LRF+Vvx9vbW/a1UKrG1tcXb25t+/foxdOhQlErlY59z2bJldOrUiZYtWz4RGVUqFZs2bWLLli3ExsZiZGSEi4sLrVu3ZsaMGRgbG1dbrrVr13LlypUnItf/JyZOnEhmZiYbNmyoMM+yZctYvny57n9bW1s8PT2ZMGEC3bp1+yfE/McJDAzE3NycVatW/W3XUBUWcHLPUq6f+428nAwc6nrTZchkPJp0qrJsZloCR7Z8TtTNU2g0auo1akev52dh6+Cmy1NYkMehzR8TFxlCRmocGo0aW3s3/Do+R4tuL6JQVNzHa7JsJeTnZHBy9wLCQw6hKszDqZ4vXZ6ZgaNbsyrLAqTEh/PHzs+Ji7iM3EiJe9NudBk6E3NLO0k+jVrN5d+/J/TUJrIzkrB1cKd17yC8Ww2S5CssLGD3L99y7o+95GRnULdeQ4aMepOm/h0qlSP+QRR/HNxC1N1QYiJvoSos4NNv92LvWNdg/rzcbPZuXc3lM4dIT0nCwtoWz0b+jHvrE4xNzAyWqcn1qSos4NC2ZVw+tYvc7Axc3BrR9/l3aOjbsVK5kuIiOXtkM7HhITyMvoGqsIBpXx3CzsGw3m5cPsrh7d+Q+DAcC2s7Wnd5lp5D30ChqPrVx8wYBncywa+BEUojiEko4reTBdxPUldZtp6TnLaNldR3llOnthyFQsbkZVkG8y55y9Jg+u7T+UQkGz5/fm4GZ/YsICLsMKqCPBzr+dJp8HQcXKvZDxLCObVrHnGRl1EolNRv0o1OQ2ZgVqYfpCZGcPP8NmLvnCIjOQalsQX2dZvSNmASjm6+FZ7bwkzOuOed6NDCChNjOXcic/l+SwLhMXlVyhXQxZbu7WxwdTHB0kxOcrqK0Ns5bNqdRGJyoV7+Pp1tGda3Nk72Sh6lFLLraAp7jqZWeH5TYxjQTkkzdwXGRhCbpGbPmUIeJlf9JdbVQUbrRka4OcpxqS1DIZcxfXWuXj4bCxltvBU0rqegto0MjQbiU9QcvaLi3gPDbcfSQsHElz3p0sEeUxMFN+9ksnxtOHfCDbeZsgzu60zfHk7Ur2uOpaURj1LyuRKazg+boohPzJfktTBXMGZEfbp2qI1jbRNS0wu5eDWVH36JrvD8Jkro6S/Du64MIyOIS4bD19QkVKxmCbWtoHcLOW72UKSGe3EajlzVkJOvn9fWArr5ynB3kmFsBJm5cDNWw8kbhs+dn5vBheCFxNw4jKowD3tXX9r2n4Z93er1g7TEcM7tm09C9GXkCiVu3l1pO2AGZhal/SAz9QFbFvY2WL77CwvxKfO/wsIcz/dewbatP7ZtfDG2s+XaKzO4/+OOasljZGNFk/nv4/RMHxTmpqRfCOXGtPlkXNFXgOOgnjSaMwnLJl4UJCYTu3479z77Fk1RUaXXMDORMbSrKf4NlRgrZUTHqdh+LI/YxMrLAdR3VtDexxh3ZwV1HRQoFDLeXJiml699M2MC+5tXeJ6v1uZw/EKmXrqFmZyxzzrQvrklJsZy7kblsXZbIhGxBhpLGWQy6NHOmg4trPB0NcHSQkFCciEnLmaw81AqhSpp/7axUjB2qAOtfC0wM5FzP76ArQeSOX256v72NBEhRv4ZhGEE2LFjB+bm5v/vDSOgnfwNGjQIlUpFYmIiJ06c4MMPP2TLli2sXbsWS0vDL2kVsXz5cszNzZ+YYeTTTz9l+/btvP7667Rs2ZLc3Fxu3rzJrl27yMvLq7ZhZPjw4f9vJ/D/FKampqxfvx6AxMREVq5cyYQJE/j555+fWH3/19j34wxuXz5A655jqOXoTujZHWxd/jqj3l2Pq1frCssV5GWzafEY8nMz6dAvCLlCyYUj69i4+CXGzdqJmWUtAFSFeTx6eA9Pn67Y1K6LTCbnQcQVjmydx8PIEIa8suhfKRtojRW71rzOowe3adnzFUwtahF6aiPblgcyaup2bB3cKy2fmRbP1mWjMTGzosPAdyksyOHy72tJfniHF6ZsQWFUOrac3ruYS0dW06zDCJzq+RIReoQDG95DJpPR1LWnLt/65XO4fPYwvQa+iKNLPc78vovln7/FlA/X4NWkRYWyRNy5xu/7N+Hi6olLXQ9io25XmDc3O5NFc18hNTmRLr2H4eBcj6yMVO7dvExhYWGFhpGaXJ9bVs8i9MJBOgcEUtupPpdO7OSHRRN4feYPuHu3qrBc9N2rnD74E451G+BQx5O46FsV5r197Q82LHkLj8ZtGRL4P+Jj73D0t1VkZaTw7Li5FZYDkAGvDTajrr2co1cKyM6FTr5GTBpmxsJfcniUXvkbatP6RrRvZsTDR2qSMzQ41pJVmv9WjIoLt1SStAdJasys9fNq1Gr2fh/Eo4e3adF9PKYWtQg7vYmdK8YwfPK2KvtBVlo8O799CWNTK9r3n0xhQQ5Xj/1Acvwdnn/7V10/uHFuC7fOb8PTty8+HUdRkJvF9bOb2bZsJINeXQPU0ju3TAZz366Hh6sp2w8+IiOziAE9ajFvan0mfxrJw8SCSmXzdDMlIbmQ89cyycpR42SvJKBLLdr6WfLWRxGkpJfqqF9XWyYF1uHUpQx2HkqmWUNzJoxywcRYzi0DBiUZMK6fMS615fxxTUV2noYOTY0IGmzC19vzSc6ovE4b11PQprGC+BQNKRkaHGwN12lTdzndmhtxPaqIS3fUyOXQsqERrw00YcuxAk4Z0NmXc3zx8rBk0/ZY0jMKeXZgHZZ97s8rky9zP07f+FKWRg0siUvI49S5ZDKzVLg4mTI4wIWObex4+e1LJKcU6K6z+BM/3N0s2LHvIbEPc3B1MePZAXVo29KOH49DgUr//CO6ynGygbO3NeTmQ0svGS/1kLP2oJrUKuaRVmYQ2FNOXiEcC9VgbATtvGU42sj44bAadRk7kaMtvNRDTmYunLutIbcAbMzBqoL5tUat5tCPE0iJv41v5/GYWNhy69wm9n8/liETt2Jj716pbNnp8exbE4jS1IpWfSajKsgh9OQPpMbfZfAbmyXPAwBPv4G4eneVpDm6NZf8b2xfi0YfTCIn+gGZIbep3b1d5Qoqi0xGm12rsfbzJmLR9xQkp1I/6EXaH97AyXbDyLlXarxyCOhK623fkHz8PNcnf4KVTyMaznoDE8fahE36sOJLAG8Ms8DVQcHhC3lk5Wro2tyEd16w5IsNmSSlVW70beappKOvMQ+SiniUrsbJTmEw3937KtbtzdZL79nKhLqOCq7dzjF0+3zwpivudU3YcTiFzKwi+ne15bN33ZgyL5q4JH3DaAkmxjLeGevCrYhcgk+kkZZZRGNPM0YNssff24LZS2J1ec1M5cyfWg9bKwW7f08lLaOITi2tmP5aXRatfVjp/Qv+GwjDSA0nLy8PU1PTJ3Y+FxcXmjdvrvt/wIAB9O/fn6CgIObPn8+nn376xK71uOTm5rJ161YmTJjApEmTdOm9evVi0qRJjxWR2dnZGWdn579DzP8Mcrlc0lb8/f3p1q0bO3fu/FcZRp50H/qzPIwK4ebFvXQfNo12fV4BwKf9UL7/ZBC/71hI4Pu/VFj2yh8bSU2MYsz0Lbi4+wHg2awL338ymPOHf6Db0CkAmFnYMmb6r5KyLbqOwsTMisvHfqLn8zOwtHH4V8lWwt1rwcRFXqH/y0tp2LwfAA1b9GfDZwGc3b+MfmMqN6xcPLQSVUEuo6Zux6pWHQCc6vmxc8U4bp7fgU/HFwDISkvgyrEf8Os8mu7PzwGgWfvhbFv2Eid3fcmQgd2QKxRE3g3l4qlghgW+S99nxgLQvttgPp7yPNs3LGba5z9WKIt/6+60XN8bUzMLDv62vlLDyI6NX5OSFMesL3/B3qnUMyLg2XEVlqnJ9RkbHsK1s/sYMHIqXQeOB6Bl52dYMnMI+35ZxMS5GyuUrWnLHviuOoeJmQV/7F1bqWFk76YFOLs14pXpa3QeIiZmlhzbvZpOAYE41vGssKy/lxGedRT8sC+Xa+HaL6lX7hbyv0AL+rczZsPByr9gngwt5MilAgqL4LluxjjWqtygn5Sm5tJt/VmphwHDSHjIAeKjrhAQuIQG/tp+4OXfn41f9OPCwWX0GV15P7h0ZBWqglyGT96m6weObn7sXj2eWxd30Ky9th80bDGQtn0noTSx0JVt0nYYm74cyIWDy7Gq94HeuTu1sqaplznzVsRy6rL2i/CJixms/tSLF4c4sPC7B5XKtmJjvF7amSuZLP3Ak54dbNgarLV4GCtlBA515HxIJvNW3gfgwIk0ZDIYOdCBL37JJ7ecDcbXU4G7s4KfDuUTGqmdAIZEFDH1BVP6tDbil6MVT7wAzt5QceyqClURPNNJiYOt4ZXoEQ/VzPs5T+IRcfZGEZOfM6FPayOWlsvfo5MDfk1tmD3vOsdOPwLg6MkkNq1qwyuj6/PRworbOMCiFff00k6cfcT3S1rRv6cTP23VTgqbeVvTtJE1X624y/Z9pRPAmPs5zJrcGHenIu6Uq54mbjLc7GVsP1XELa2auRmrIWiAnK4+Mn47W/k7WcemMpRGsPaQmoziufDDFA0vdlfg5y7jakRp+SHt5CRnws+/q1GVc15QKPSNUJHXD5AYc4Ueo5bg4RMAgIdvf7Z91Z8rR5bT/YWFlcp27dgqCgtzGfLmVixttf3A3tWXAz+8wt3LO2ncdoQkf+06TfFqPqTSc+bHJXLYtRP5CY+waeVD57PbKs1fFpfn+mHXsSWXXnib+O0HAIjbsp/uNw7QaM5bXB0zVZe3yRfTyAi9zfn+43UeIqqMbLxmBBG57Eeyb0cYvEYLbyUN6hrx3a5srtzRtvfLtwuZ+4oVAzuZsm6vvsGiLCeu5nPofB6FKhjRy6xCw0hyuprkdKmRRWkEL/Q2506MirQMfe+Uji2saNLAjC9WP+D0Fa3F7eSlTFZ85MGowfZ8tTauQrlUKg3TF0RzK6LUK+3QqXQSkwt5cbA9/o3NuXZLe2/9uthQx9GY2UtiCS020Oz/I40vp9Vj3HOOld6/4L/Bvz7GyJUrVxg/fjwtW7akRYsWDB8+nFOnSm3yCxcuZPDgwbRo0YIuXbowZcoUEhMTdccDAwM5f/48x44dw9vbG29vb5YtW6Y7fuzYMYYPH46fnx/t27dn7ty55ORIB4+7d+8yevRofH196du3L7t27WLixIkEBgZK8l24cIGRI0fi5+dHu3btmDlzJmlpabrj9+/fx9vbm+3btzN79mzatWvH8OHD2bBhA/7+/mRlSc3z4eHheHt7c/z48b+kw65du9K3b1927typu0ZiYiIzZ86kV69e+Pn50bdvX7766isKCkrfNkqW5nz55Zc63Z07dw6AtWvX8txzz9GqVSs6dOhAUFAQkZGRlcqRm5tLYWEhjo6GByeZrPThqFar+eGHH+jfvz8+Pj506tSJt99+m8xM7cvYsmXLaNFC+sU2IyODDz/8kM6dO+Pj48OwYcM4efKkJE9gYCBBQUEEBwcTEBBAixYtGDNmDDExMZJ8BQUFLF68mF69euHj40PXrl2ZMWOGJM+VK1cYM2YMzZs3p1WrVrz33nskJ1fgG11MTk4OH3/8MQEBAfj7+9OzZ0/mzJmju68Sevbsyccff8zPP/9Mjx49aNWqFRMnTiQlJUWSLzw8nJdeeglfX1969+7Njh3Vc+k0hJOTE3Z2djx8KLWqV+c+V69eTZ8+ffD19aV9+/a8/PLLxMaWWvELCgr46quv6NGjBz4+PvTv35/du3frXWfChAl07tyZ5s2b88wzz7Bz505JnnPnzuHt7c2xY8d4++23admyJe+88w6grf9PPvmErl274uPjQ8+ePVm0SH8SUVXd/1luXw5GJlfQvPMLujQjpQl+HZ/nYcQVMlIqfvDfvnwAl/q+uokqQG3nBtT37sCty/urvLZNbe2EOj83418nWwn3rh3A3MoeL7++ujRzSzsaNu9PRNgRVKrKv0bfu3YQ92bddZNBgHreHbF1cOfu1VI5I8IOoy4qxLfzi7o0mUyGb6dRZKXFE3EnBIDLZw8jlyvo0uc5XT6lsQmdeg4l4k4IKY/0J3klWFjZYGpmUeHxEnKyMzjz+y46934Oe6e6qAoLKSys/D6hZtdn6PmDyOUK2vYsnXgojU1o3e05Yu5dJS25YtnMLW0xqYbeEh7cI/FBOG17jJAsm+nQexQajYbQ8wcrLe/vpSAjW01IeOkLfHYeXL2nwsfTCEUVb05ZuRoKq/ZMl6BUgJHheYaE8JADmFnZ4+lb2g/MLO1o4N+PyLCjFFXRDyJCD1K/ibQfuDXS9oPwa8G6NEdXH4lRBMDUohYunq1ITQw3eO5OraxITVdx+krp8yojq4gTFzNo39wKI6PKPWcMUbKExsK8VDl+3hbYWBmx73fpeo69v6diZiqncT19Rfp6yMnM0RAWWTphy86D0IgimtVXVKNO0ZuwGyIhVX+ZSJEabsUWYWspx8xMKlv3TvYkpxZw/MwjXVpaRiFHTybRuZ09yj+hs7hE7QTR0qK07ZfoLyVN2j6SU7X/G7q3xq7atlxiFAHIyYdbsRoa1pVVqbPGrjLuPdTojCIAUQmQnKGhiVvpfXk6g6OtjBNhWqOIkULrQVAZUWEHMbO0x71pH12amYUdHr79iLlZdT+Iun4IN+/uOqMIQF2vjljbuxMZZnicKyzIqfS86oJC8hMeVXi8MpyHBZAXn0T8jtKxqeBRKg+37sdpSC/kxtqliZZNGmDVrCGx3/0qWTYTvXIjMrkcl2EBFV6jRSMlGdlqrt4pNQJm5Wq4fLsQPy9lleNPZo6GQgNeRdXBt4ESMxMZF24a1l/Hlpakpqs4c7V0npORVcTJS5m087OsdOxQFSExipRw9qp2HHJ1LjVMN/UyJy1TpTOKgHaJyqlLmdjZ1GxfAY1a89R+/yVqdiuogkuXLjF27FiaN2/Op59+irW1NWFhYZKJW3JyMkFBQTg6OpKSksIPP/xAYGAge/fuxcjIiLlz5/L+++9jamrK9OnTAXSeBsHBwbz77rsMGzaMt956i6SkJBYtWkRGRgaLFy8GtF+jx48fj7W1NQsWLADgm2++ISMjg3r16unkCAsLY9y4cbRr146lS5fy6NEjFi1axL179/jll19QKEpHpK+++opu3bqxaNEi1Go1/v7+LFiwgD179jBy5Ehdvq1bt+Lk5ETnzp3/si47d+5McHAwN27coG3btqSmpmJra8vMmTOxtrYmKiqKZcuWkZSUxLx58wDYvHkzL7zwgm55DoCXlxcA8fHxvPTSS9SpU4esrCx++eUXRo4cyYEDB7C1tTUog52dHXXq1GHFihVYWFjQuXNnbGxsDOb95JNP2Lx5M2PHjqVTp05kZ2dz7NgxcnJysLKy0stfUFDAuHHjSE5OZvLkyTg5ObFr1y6CgoLYvn27JP7KzZs3SUlJYerUqRQVFTF//nzef/99Nm/erMvz1ltvcfbsWYKCgmjevDkpKSkcPFj6QLty5QqBgYF069aNxYsXk5uby5IlS5g4caLkPOXJy8ujqKiId999Fzs7O+Li4li5ciUTJ07Uiwly9OhRoqOjmTNnDqmpqcybN49PPvlE1zbz8/MZP348ZmZmfPnllwB8/fXXZGVl4e7uXqEMFZGdnU16ejqurq6PdZ87d+5k6dKlvP322zRv3pzMzEwuXbpEdnapq+U777zD5cuXefPNN2nQoAHHjx/n/fffx9raWrck6uHDh7Rs2ZJRo0ZhbGzM5cuXmT17NhqNhmeffVYi6wcffMCQIUP45ptvkMvlFBQUMHbsWB48eMCbb75Jo0aNiI+P59KlS5Jy1an7P0tC7E3sHN0xMZMuVyuZgCbev4m1nYteOY1aTeKD2/h1fE7vmIu7L1E3T5Kfl4WJael5i1QF5OdloSrIJz4mjPOH1mJtV5daDvX/dbKVkHT/Jg6uTZHJpW/jTvV9CTuzmbTESOzreBssm5WWQG5WMk5uPnrHnOr7EX3jD8l1lMbm2Dk10MsHEBt5C68mLYiNvIVjnfqYmUt15u6lvcb9qNvY2f81r7V7N69SWJCPg7MbqxZO5dr539Fo1Hg08mPUqzNx82hssFxNrs+H0Texd66PaTnZ3Br4Fh+/hW1tfdkeh4dRNwFw9ZDGGrCu5YiNnTMPo29WWt7VQcH9JDXlXwejE4ro6KPEsZacuOSqY41Ul7aNlXTyVSKXyYhPUXPwQgGX7xiegTx6eBOHuvr9wNHNjxtnfyUtKZLaLhX0g3RtP3A00A8c3fyIvlX1R5aczEeYWegvowFo4GZKeEyu3lr4O1G59O9Wi7pOxkQ/qNxsNV83AAEAAElEQVTbBsDKQoFcDg52SkYN0nodXbtZ+rzwrKf1ALwbLV1mci86lyK1hjr2Mq6Uc6SoYy/nwSP9Oo1NVNOuiREONjLiU/++CYCVmYyCQg35+VILRENPS+6EZ+rp7MadTJ7pVwe3uuZEROsvSyiPtZURcrkMJwcTxo3U9r2L19J0x2/dyyQnt4hXX3InI0tFzP0cXOuY8cbLnty4k0Fkgr7B0amWjHgDsUQeJkOLBjLsrCAp3bA8lmZgYSojzoBOH6ZoaOBSOtF1d9L+XaSGcX3kuNjJUBVpuPNAQ/Alw0bGlLgb1K7TRK8fOLj6cvvCr6Q/isLOuZFB2bLTE8jLTjYYi8TB1Zf7t//QS79y9BsuBC8AmQz7Os1o1WcydRtWHa+putg0b6KNJVKuIaRfCKX+ayOxaORBZtgdrJs3BSDtUqgkX35cIrmxcVg3b1LhNVwdFcQmFOn1gai4Ijr7y3CsJefhoyc3rpWlTRNjCgo1EqNMWTzdTAmPzdPrB3ej8ujXxZa6jkqiH1b9UaAsttbaKW5GVmkDUhrJKCjQb5P5BtIE/03+1YaRBQsWUL9+fdavX68zLJQ3EpRM4gGKiopo0aIFXbt25ezZs3Tu3BkvLy8sLS0xNzeXLBvQaDR8+eWXDBgwgM8++0yX7uDgwOuvv87EiRNp2LAh27ZtIzk5mU2bNukmjD4+PvTt21diGFm5ciUODg6sXLlSF+TUxcWFV155hePHj9OzZ+m69caNG0uuCRAQEMC2bdt0hhGVSsWuXbt4/vnnJUaVP0uJMejRI62129vbW2coAmjZsiVmZmbMmDGDOXPmYGZmptNX+eU5ALNmzdL9XVRURKdOnejQoQMHDhzghRdeoCLmz5/PlClTmDJlCjKZDE9PT3r16sW4ceOws9MGxIqMjGTTpk28++67BAUF6coGBFRsKd+9eze3bt3it99+0xlvunTpQnR0NN9++y1Ll5Y6uGZmZrJz507d9XJycpg5cybx8fE4Oztz6tQpjh07xqJFi3QGIUDy96JFi/Dx8WH58uU6T5dGjRoxaNAgjh8/XmH8Ezs7Oz766CPd/yqVCldXV1588UUiIyPx8PDQHdNoNKxYsUIXd+XBgwesWrUKtVqNXC5n+/btJCYmsn//fp0hpGnTpvTr16/ahhGVSvtynpiYyIIFC7CwsGDMmDGPdZ8hISF4e3tL6qp379JgZmfPnuXo0aN8//33uv7bqVMnkpKSWLZsmU5XAwcOlNx7mzZtSEhIYPPmzXqGkZ49e/L+++/r/v/111+5ceMGv/zyi8STqHy5qur+r5CdnmRwaUFJWlZ6ot4xgNycNIpUBVhUVjYtERPn0onm7SuH2L12iu5/5/o+DAj8HHkFQSdrsmwl5GQkUbeBfmwMC2vH4ntIrNAwkp2hld/cWl9OC2sH8nLSUKkKMDIyJjsjCTOr2hIPtZJ8AGmpSQBkpD7CxtZe73zWtbRpaSlJld5PdUiM064r37lxGQ5Orrz81ifk5mSxd8sqFn/0OnMXb8Omlv491eT6zExLwspW//wlaZlphmV7HDLTkiTnLH+dqq5hbS4j/IH+i3JGtjbNxkJGXOXOf9Um4mERV++pSM5QY2Mho7OvkjEBppgZ5/HQQAyH7IwkXDwN9QOH4uOJFRpGcirpB+bWDuTnpFOkKtCLr1DCw4iLxEdfpXWvN0g3MEepZaMk7K6+O35qmvY5UtvWqFqGkfULGmKs1E540zNVrNwUx9UyhhE7GyOKijSkZ0pnzKoiyMwqwtpc/+uylbmMyDj9SV9GjrZOrS3+PsNIbWsZPh4KQiKKJHE1AGrXMuFamL51oSQ2iL2dcbUMIzvWdcDEWKuztIxCFq+6y8WrpVaN9AwVc7+8wfRJjfj6M39d+rlLKcyef50ez+sHPrY0hZgkfZ1k5WnTLM0qMYwUr17NMhAiJSsXzE20HidFarCz0tbXsx3lRMRpOH1TjZOtjA5NZFiZy9h4TF+GnMxHOLnr9wMzK4fi44kVGkZyM7Xjg7mVgX5g5UB+bmk/kMlk1PXqRP2mvTG3diIzNZawU+s4uP51er/0Dfomxj+HiYsDKScv6qXnxSUWH3ckM+wOps5amfPj9J8v+fFJmNapeDmIjYWce/f1Da4Z2dpGaWP59xhGzE1lNHE3IuReIfkVrFirZW3EdUNjR3FcITsbo8c2jAzra0d2bhGXr5f2nwcJBfg1NsfBzoiklFJdNPUyHKurJqEW0Vf/Ef61hpHc3FyuXbvGlClTKjUMHD9+nBUrVnD37l3JUpSoqKhKPS0iIyN58OABs2bN0k0OAdq2bYtcLicsLIyGDRsSFhZGo0aNJF/RXV1dadxY+iXv4sWLDBo0SLLzS+fOnbG2tubSpUsSw0j37t315BkxYgQvvfQSd+/epWHDhhw/fpzk5GSee07/y96foXz8Do1Gw/r16/n111+5f/8++fmlLzOxsbE0amT4gVPC1atXWbp0KTdu3JAsF4qKiqq0XLt27Th06BB//PEHZ86c4ezZs6xevZrt27ezfft2nJycOHv2LBqNhueff77a93fq1CkaNWqEu7u7pD47duzIrl27JHkbN26smxiD1AvG2dmZM2fOYGZmJpmolyU3N5fLly8zbdo0isq4Orq7u+Pi4kJoaGilgWF37tzJunXriI6OlizbioqKkhhG2rRpIwlG26BBAwoLC0lOTsbBwYGQkBAaNmwoMYLUr19fr21WRE5ODs2alX5RUSgUfPvtt3h6ej7WfTZt2pSNGzcyb948+vTpg7+/v6QfnDp1CltbW9q3b69XNx9++CFFRUUoFArS09NZtmwZR44cISEhQXdNQx5I5fvQmTNnaNCggd7yqvJUVfd/BVVhnsEJh5GRCaDd5cNguYL84nwGyipNis8tnWzU927HC2//QF5uBtG3zpD44DYF+RUH8avJslUlY0la+etIy+ZL8krkLL7HooI8jIyMq62LgoJ8jAzs5KU0rlxnj0N+nlYvMpmMyXNXY2qmjUTo5tGYL2eN4VjwZp4ZNUmvXE2uz8LC/ErPX1hQ9cS5KgoLK7sPY/JzK48aqTQyvLSgJE35BN+cvt4m1dW5Gyree8GMgR1MWHtEO3EsS1FhHgqFoX5guH7KousHBsob6cobbjs5mckc+nkq1nautOjxCscO6C8xNDaWUVio//JeoNLeRImxoyrmLo3BWCnHzcWY7u1sMDWWljM2luntNKG7VqEGpZH+dZSKyuu0OsuY/gxKBYzubUyhCvaf158VmhjLKVTpT0YLCrVpJibV09nUD0MxMZZT39Wcvj0cMTPVv6G09ELuRGSxbe9DImOyaehhyYvPuTHrncacMRD+xUih3/6gTD+oRGclxwyVL0krOb9xcX+KS4Fd57T1evu+dtlGD3859R01RJezZVbVD4oKKx5/VSrtMbnB54m0H1ja1iFg3HeSPF7Nh7B96WDO7/+S/hVe5fFQmJmiztef+KvzCoqPa+WSm2ktTobyFuXlY2Rd8QYKFY1rJctj/syyrerQopESpVHFy2ig4j5dUJxmbFy9flDC8/3saN7EghWbEsjOLW2EB0+lE9DFlmmv1uH7rYna4KutrGjf/PE2nhD8/+VfaxjJyMhArVZXGI8CICQkhIkTJ9KrVy9ee+01atfWfgUcMWKEZKJviNRUraX9zTffNHg8Lk67DjoxMVEykSrBzs5Oco2MjAxq166tl6927dqkp6frpZWnTZs2eHh4sHXrVmbOnMm2bdto06aNxCvlr5CQkABoPWIA1q9fzxdffMGrr75Ku3btsLa2JjQ0lI8//rhK3T18+JDx48fj4+PDRx99hKOjI0qlkqCgoCrLApibm9OvXz/69dMGltuyZQuzZ89m7dq1urgsRkZGBvVUEampqdy4cUMy0S+hvGHN2loa8a5kEl8ie1paGg4ODnpflEvIyMigqKiIefPmSTyWSihpO4Y4dOgQ06dP54UXXuDdd9/F1taWpKQk3nzzTT3dlZezxEhSki8xMbHCNledejA1NeWnn35Co9EQFRXFokWLmD59Ort378bR0bHa9zls2DCys7P59ddfWbduHVZWVgwdOpSpU6diampKamoqaWlpBusGICkpCWdnZ2bMmMGVK1d48803dZ5emzZtYv9+/fXA5e87LS2t0rGihKrq/q9gpDQ1uD5ZpdKeW2lsOECsUfFE21AMjZKJTsmksgQLa3ssrLWeC41b9uPM/pX8+vU4XvvooEFPgpokW5GqgNzsdPLKnNLM0q5CGUvSyl9Hen8mkryG7lFRfI/V1YWxsQmqQv2JTsnEviKdPQ4lRha/Vl11RhEAz0Z+2DvWJeL2NYPlalJ96t2T0qTS85fc819BqazsPgp09y+TaSdlVmU8DLJytRMyQxPlkrQ/u86+OhSp4WRIIUM7yzGXpZFQJlSLqaUdCqUpRUWG+oHh+imLrh8YKK/SlddvG4X5OexbO4HC/GwGvfozJqYW2FpLFZSRWURBgQalUv+5aFxsqCiZ7FdFyfr/S2HaOAHffNiAvHw1e4pjihQUaCqcxBkrZWg0GizLfADOzoPCosrrtDrxQx4XmQxe7G2MUy0Z64IL0GjAzrbUmJqWUUh+gdqgIafEiJSfXz2dXQlNA+DspRROnHvEhuWtycktYvte7dLyOk6mfP25P58uvsXx4iCvJ88lE5eYx+x3G5N+uojoMk4IOflanRiKI6LrB5XorOSYofIlaSU6L8l7PUY6Mb4eo6FTkwIs5anklAmzZmpRdT9QGGjHOvmNio0LBp8nFfeDEkzMbWnY8llC/lhDmgJsn0DbKcrNQ26ib6iRmxoXH9fKpc4tNuoYyKswNUGdm4dMqcTYzkbiOZVZybhWYuityNj4V2nTxJisXDXXI1Uo5FQ8dhjo08bFaQUF1fdk6dzKitGD7Tl0Ko3gP9Ikx6If5PPV2oe88aITX7yvXXKWkq7i+y2JvPGi2LBB8C82jFhZWSGXyyWBVMtz+PBhLC0tWbJkCfLidYgPHlQeFb2Ekq/Qc+bMwc/PT+94ySTL0dGRmzf11yunpKRgYVG6ZtPGxsZg4M3k5GS9OBoVTbiHDx/Od999x7hx4zh+/Ljecpu/wokTJzA2NtZNToODg+nZsyfvvfeeLk94uOGAa4bOlZOTw/Lly3UTTZVKpWcAqi7Dhw9n4cKFuuvb2tqiUqlITk6utnHExsYGb2/vJ6KzEmOFRqMxWFdWVlbIZDKCgoIkS0ZKqFXL8Pps0Oq9SZMmfPzxx7q08+fP/yk5HR0duX79ul56cnJytbZllsvl+Ppq1/37+fnh4eHBiBEj+Oabb/joo4+qfZ9yuZyxY8cyduxYEhIS2Lt3L4sWLaJWrVq8+eab2NjYYGdnx+rVqw3KUWJkPHbsGDNmzJAENd640fAOFuXrxdbWltu3K97545/AwsaBrLQEvfSsdO3bqKWNYcONmbktCiNjstP1XWd1ZW0rN/p4twzgj12LuRdyhOZdRuodr0myPYi4wqbFYyR5Xv7gCObWDmRn6F+nZJmMRQUyQulymxyD5ZMwNbfVeRdYWDtw/945vf5dcm3b4qUr1rXsDS6XyUjVTjps7SreYae6lJzDylZ/nLOysSMny3CA05pUn3py2zqQkaovW+nyl7++M0DpspwkvXglmWlJuHpqx7XaltCliYIBLUqf1R+vyyYjR4O1hf7YXpKWnv33ujSnZmm4cuUKX7wr7QcvzTqMhbVDhe0YStu6Icwr6Qc5GUmYmNvoeYsUqQoIXv8WyXG3GfTad9R2aYSLHfy0SLpcZ/yMu6SmFxoMYFjLVpuWnPb4FqX4pEIiYvLo3s5GZxhJSVehUMiwsVJIltMYKcDKUoGPtQwfj1I55m/MIzNHIzGAlVAyecz4G+r0ua5KGteT88vRQorU8EGgGQSWLll5/pWzJKfmU9tOf5JbkvYo5fGWDwA8jM/jTkQWfbs76Qwj/Xs7Y6yUc/q89D301Dnt/0M7Sier3+wuIisPLE1lUC4qhTbN8DKZErKKHTbKGqh05c0gJ1+j8xzJytUAMrLzpNfJztPGMXvvFWk/GD71MOZW9rolMWUpXSZTcT8oXW5joB9kJmFipt8PymNho51E5zwhw0h+XBImzvrPDFMXx+Lj2udcXrxWZhMXB/LuSwN8mzg7kHYhhFodWtDhyAbKvpV9sDqD9Gw1Nhb6lirr4rT0rCe/jKaWlYwGrgpOXStArYaGbkZMnuIlyfPa/8JJzVBRy9DYUZxWdqvuyvBvbM7ksc5cDMvm2436zxmA01eyOB+ShburKXI5RMTk4dOogn2haxD/tSCoT4t/rWGkJCbIb7/9xvjx4w0up8nLy0OpVEpebsvvdAHar8Llvwh7enri7OxMbGwso0ePrlAOHx8fdu7cSWxsLG5uboB2d5lbt27RqlUrXb5WrVpx5MgRZsyYgZGRVu2nTp0iIyNDkq8ynn32WRYvXqz70l7iUfFX+eOPPzh06BDDhw/H3Fw7OJTorizV1V1eXh4ymUx3nwD79++XLJMwRGFhITk5OXqGouTkZDIzM3XeLO3bt0cmk7Ft2zZef/31at1jx44dOX78OI6Ojjg5OVWrTGXnWrNmDfv372fAgAF6x0vaZkREhM6wUF2qq/fq4Ovry86dO4mOjqZ+fa1lPDo6mlu3btG6tf7a3Oqcb+DAgWzfvp1Jkybh4ODw2Pfp5OTE+PHj2bNnDxER2i3lOnbsyHfffYdSqaxwmU9mZiZqtVqim6ysLI4ePVqt63bs2JF9+/Zx7do1/P39qy7wN+Dk2piYO+fIz82SBMWMi9R+9Xd0NRw0TSaX41C3EfHRYXrH4qJCsLV3kwTDNETJ1/j83EyDx2uSbI51G/PC2z9I1iKbWzvgULcxDyMuoVGrJQH34qNDMDI2w9bRg4qwtHXCzNKOhFh9OROiQ7CvW9ru7Os24frZLaQkhFPb2atMPq0uXN21E0I3d2/uhF0kNydLEoA18m6oJN9foZ5ncaC9ZP0PAGmpSTjXcTdYribVZ3nq1G9MxM3z5OVmSQKwxoaH6I7/VUrOcT/yOm4NSj9sZKQmkp4ST9sewwFIz4GTt4oIuVU6+czI0fAgSY1nHTnlp4T1nRTkF2pITP17AhSWUNtGTuPGjRn73lpSyqjR3MoB+zqNeRip3w8SY65hpDTD1qGSfmDjhJmFHYkG+kFibAj2daTtQqNWc+SXGdy/d5a+gYup26AtAI8y4H9fRUvypqariIjNp1lDc2QyaQxJbw8z8vLVPEh4/Ek+aN3sy3pVRMRqZ90N65txMax0WZSXuxkKuYzfrxZy70FpHWXmaniYrMHDWb9O3RzlFBRqSEp/spOOAe2MaONtxK7TBVwLL8LMGNbszef6mdLtd1NSC7gXkY1fMxs9nTVrZEVuXhGxDyrfQrUiTIzlKMssXbKzVSKTgVwhgzKeAYriL/LXo9VciyxNz8qDhDRw0w+jRJ3a2iUOKYa7uLZ8LmTnaXAx8B2ojp2MxLTS/0sCvFqZSWvHyky7vHXynO+5WbqJHWaW9ti5NCEhykA/iA3BSGmGjb17hbJZ2DhhamHHowf6H46S7odi51JxANMSMlO1W/VYPiFPo4xrt6jVuRXlG4JtWz9U2Tlk34kszqf9EGvbypf0C6UBWE1cHDFzcyHmu1/JCLnF2YCXOf/K8tLzZ6u5n1iEl6uRXh9wd/n7xrXWTYyRy0qX0dxPLGLO0lhJntSMIiJj82nqZabXDxq5m2rHjsTKt9MuyTszqC73YvJZ8N1DvXg+ZVEVwb3o0uVW/o2r3u1M8N/gX71d73vvvUdUVBQvv/wy+/fv5/Tp06xZs4atW7cCpQEcP/nkE86cOcO3335rcLtST09PwsLCOHr0KKGhoSQkJCCTyZgxYwYbNmxgzpw5HD16lDNnzrBt2zbefvtt3dazzz33HPb29kyYMIHg4GCCg4OZMGEC9vb2EoPMhAkTSEpKIigoiGPHjrF161amTp2Kn59fpfEmymJnZ0evXr24cOECAwcOxNT08V214+LiuHr1KhcvXmT//v3MmjWLN954A39/f0mw1Y4dO3L48GF++uknTp48ybRp04iOjtY7n6enJ0eOHOH8+fOEhoaSlZVF+/btAZg5cyZnzpzhxx9/5KuvvtJbplCezMxMevfuzaeffsrhw4e5cOECO3bs4OWXX0YulzNq1CgAPDw8GDlyJEuXLmXBggWcPHmSw4cPM3v2bN2SoPIMHToUDw8PxowZw+bNmzl37hyHDx/m66+/Nrhla2V07NiRbt26MWvWLFauXMmZM2fYv38/kydP1uWZNm0ax44dY/LkyRw6dIhz587x22+/MX36dN2WxhWdOyQkhG+++YbTp08zb948zpw581jylTBs2DDs7e0JCgpi//797N+/X9c2/ywTJ06kqKiI9evXA9W7zzlz5rBw4UIOHz7M+fPnWblyJbdu3dK1k06dOtGjRw9effVV1q1bx5kzZzh69CirV6/mf//7H6D1wvH19WXNmjUEBwdz+PBhxo8fXy3PF4BnnnmGpk2b8vrrr7NhwwbOnj3Lb7/9xgcffPCndfG4eLfsh0ZdxNWTpTvcqAoLCD2zHRd3f90uIRkpD0mOl3pnebcIIC46lLjo0heh5PgIom+fxbtlqYE0JytFL14QwLVTWwBwrmc4VFxNks3Uwgb3Jh2p5136M1Ka4OXfj5zMR9wLKd39KTcrhXtXg/Fo1kMSTyLtUQxpj6QxELz8+hJ1/RiZqaVL2WLvnCEtKYqGzUvl9PTthVyhJPRkqTeSRqMh9NQvWNg40cBba1hr2b4PanURJw5t0+UrLCzg9O+/4dHQV7cjTUpSHPEPKt+qvCKc67rj6t6IaxePkZVRGkjxxtXTpD6Kp4l/e4PlalJ9lsenTV/U6iLOH/1VItvFP3bg1sBP5+GR9ughiQ8jDCumCpxcG+JQx5Pzv/+KWl06czl75Bft1stttFvdFhZBUgbciS3S/VRFcC1chbWFHL8GpR9cLEyhuZcR1yNVkrgJta1l1Lb+c2vzLQw8wk2U0M1ficLYGqs6HXFrVPozUprg6RdAbuYjIkLL9IPsVMJDDuDerIfkS3f6oxjSy/UDT7++RN88RmZaaT+4f1fbDxr4ST+2nNj5Kfeu7qPrsDk0KLM9cH6hdpeYsr9ClYZTlzKoZWNExxalO8NZWyro3Mqa89cyUZWZkDs7KHF2KDV0y+VgYa7/StrI3RT3uqbcK7MDTcitbDKyVAzoLp11D+hWi7x8Ncevqbj3QK37qYq02/Jamcvw8Si9hrkJ+HoquBlTJKlTOyuZLiDon6GrnxHd/JUcvVLIqTBt+8stgHsP1Fy8lqb7FRRq+P1UErVrGdOtQ+lz2cbaiB6dHTh1PlmyvKGOsyl1nEsbjUIOVhb63zebNLTC092S2/dKLRexD3KRy2X07Cz1SujTVeuRcOeBdivdkp92i2ENlmYyGpeG0MPMGBq7abfhLaszWwvtryy372vwqiPDqozXiLujts/cjC29rzsPNKiKNPh7SHXu7ynDxsYGc+eO1PUq/RkpTXBv1pfcrEdE3Tiky5+XnUpU2AHcGneX9IOM5BgykqX9wL1ZH2JvHyOrTD94GH6GjEdRePiUBvLPzU4pr16y0xO4c2k7tZy9sf4ThhETZwcsvD2Rlfl4GLc9GFNnB5yfLe1nytq1cHmuH4l7fkddoDUMZN24R9bNcNxeHaHtNMXUDxqFRq0mfnswqrQMko+e4XaMSvdTFcGVO4VYW8hp3qi031mYyWjprSQ0vFCynMzeRo69zV+fIrZubExKhprwB8X9IF/DtVs5kl+hSsPpK5nUsjGiQ5lYH1YWCjq1suJCaJZ07LBX4mwv/YDo6mzMB2/WJTGlkE++vU+BgVhHFeHioKRfFxvOh1Qee+ppI7br/Wf413qMALRu3Zoff/yRJUuWMHPmTORyOQ0bNtRNULt168bUqVP56aef2L59Oy1btmTVqlV6u5e89tprxMTEMH36dDIyMpg0aRJvvfUW/fv3x9rampUrV+q+2tetW5cuXbroJpempqasXbuWuXPnMnXqVJycnJg4cSI7d+6UbBvr4+PD2rVr+eqrr3jrrbcwNzenZ8+eTJ8+/bF2lenTpw/BwcGPFXi0LBs2bGDDhg0olUpsbW3x9vbmo48+YujQoRIPjzfffJPU1FS+/vprQLvjy+zZs5kwYYLkfHPmzOHzzz/ntddeIy8vjx9//JF27doxb948li9fTlBQEE2aNGHp0qUSw4EhLC0tee211zhx4gTBwcGkp6djb2+Pr68v8+fPl8SgmDNnDq6urmzZsoX169dja2tLmzZtJMuXymJsbMyPP/7IsmXLWLlyJUlJSdja2tK0aVNefPHFx9bjsmXLWL58OZs3b2b58uXUrl2bTp1Kt25r2bIlGzduZNmyZcycOZPCwkKcnZ1p3769znvDECNHjuT+/fv89NNPul1aFi1axIgRIx5bxpK2+eGHH/L+++/r2uaRI0fIzKzkU08leHp6MmDAADZt2kRQUFC17rNFixb8+uuvbNmyhdzcXNzc3Jg5cybDhw/Xnffrr79m9erVbNq0iQcPHmBlZUXDhg0ZNmyYLs+iRYuYM2cOM2bMwNbWlsDAQHJycli7dm2VchsbG7Nu3ToWL17MqlWrSEtLw9nZucIAun8HdTz88W7Zjz92fkVOZjK1HOoTdnYH6ckP6B9YusRrz7rpxN49z/QVpUt/WnR7kWuntrD1myDa9h6PXGHEhSPrsLCqTdve43X5rp/bxdUTv9DQvze29m4U5GcTeeMkUTdP4eXbg/qNO/zrZCvBq3kAzsebc3jTTFLi72FmWYuQk5tQq4to3+8tSd4d37wMwLi5pR5FrftM4O61YLZ/M4bmXcdQkJ/D5d+/p7ZLI5q0Kw1ibWXrTPNuY7h89HvURSoc6/kSEXqYhxEXCQhciLx4vPZo5EvLDn3YuXEZmRkpODq7cebYbpKT4hgz8UPd+X5YNpu7Ny6xcutVXVpudia/7/8FgPBb2vRj+zdjbmGFmYUVPfqXLkEZ/vL7LP14Agtmj6NLn+fIzcniyJ6fcKpTn659DY8LNbk+63n549s2gOAtS8jKSKG2Uz0un/yN1EcPee7VT3X5Nq+aSeStC8zfcEOXlpeTyamDPwMQffcyAGcO/YypuTVmFlZ07FPq3Tlg5FR+XPwm33/xKv7tBxB//y5nDm2kTbfncawr3Yq5PFfvqegWV8So3qY42xWQlaehs68SuRyCz0m9Ht58Vjvr+3h96Zf9WlYyWntrn6dujtr20qe19kU+NVPDxdta78kufsb4eioIiywiNUuNjbmMdk2V2FrJ+PlgPmqNfryQBn4BhNT35+ivs0hJCMfMohZhp7X9oE1faSDeXateBiDwf6X9oGWvIMKvBfPbirH4dQmkMD+Hq8fWYufSiCZtS8fba3+sJ+z0RpzqN8dIacbtS9Ig5eoiN+QKqWXn1KUMboXn8M64OrjVSSYjq4iB3Wshl8PPu6TLFj6bon0+vDJTu6+umYmcdV804sTFdGIe5pOXr8a9rim9O9mSnVvEL3se6coWFGr46bckJo52YUaQK5evZ9GsoTk9O9iyfkciuflWlCc0sojoBDXDuxnjWEtFdp6GDk2NkMvg4EWpN+trg7ST6i82lXrD2lrKaNlQW5eu9toJY88W2jpOzdJw5a524tfMXc7A9kqS0tQkpmpo4SV9v7thqyQ1rfTr97HTSYTdymDWO96417MgPaOQZwfUQS6X8f3GKEnZpZ9qjbLDX9V+dDAzU7Dth/YcPZFIZEwOeflFeNa3YEBvZ7KzVaz7pdQYsO9IPCOfdeX9NxvRyNOSyJgcGjWwZFBfFyKis7n9QN9Kd+u+hvuPNAxsK8feWkNOAbTykiGXwR9h0snSiz20Ovl2T6m15NQNDY3dZIzuIefiXQ1KI2jvLSMxTUNIGe+U7Dxt3m6+ckZ2k3PngQYnW2juKeN6tNrglsHuPgE4nP6RE9tmkZZ4D1PzWtw8twmNpoiWvaTPg+C14wAY8f4RXZpftyAiww6w//uXadYxkMKCHEJPrKWWUyMatirtBxeDF5KREkMdzw6YWzuQmfqQ2xc2oyrIof3AWXB6rORa9SeORmljrdsdxnFgD0zrao3kUd9sQJWRhfdnU3AbM4yjXj3JjdYu74/bdoDUs1fw/24elk28KExOpX7QKFAouPPxMsk1bs74ktY7VtBu/1oe/roXq2aNcJ84mti1W8i6VbEx+cqdQiIeqnipnznOtfPIytXQtbkJMpmMvaekwWrfHqE1UMxZU7pc085aRtum2r5Rz0nbrvu1145RKRlqzt+QenW42MtxdVRw4FzVgchPX87kVkQub49xwc0lhYysIvp3s0Uug01l+j7Ax5O13vmvz9beq5mJjA/fcsXCXMGOQ6m09pF+MItPKuB2ZKkMy+e4c+pyJkkpKpzslfTrYktmjpoVGxNo6yeCsP7XkWkMffIR/CXS0tLo3bs3L7/8MpMm6e8Y8FeYNm0aN2/e/NPLKwQCwT/L2jKrfVSF+ZzYtYTr53eTl5OOY11vOg95B8+mXXR5Nn4VqDdZBchIjefo1s+JvHEKNGrcGrWj1/MzqeVYamiLiw7l3MHviIsKITvjEXKFEXaOHjRrN4RW3V+qdEvcmiZbroF4t3k56Zzc9SURoYdRFebj5OZL52em4VRPupTrh4+0u3yVNYwAJMfd5cTO+TyMvIRCocS9aTe6DJ2BuZXUi0qjVnPxyBrCTm8mOyMRWwd3Wvd+ncath9DUtfTLdWFBPrt++YZzf+wjJzuDuvUbMmTkmzRrXhpHYNGcV/QMI48SHzB7omGjnJ2DC5+vkAYUvhlyll2/fMv9qNsYG5vi07ILwwInY1NLKndkUumn2ZpWn7XK+JwXFuRzaNvXXDm1m9ycDJzdvOn73Fs08ivdKW7VZ2P1DCMpSQ/4ckofg3qzta/DjMWHJWnXLx7m8M5vSXoYgYWVHa26DKXX0DdQGEm/Nh4/px8swcwEhnQywdfTCKURxCao+e1UPrGJUv/sOWO1y0/LGka86iqYNMzw9o/37hexfIf2eo3cFPRsqcSlthwLUxkFhRCTUMSRy4XcvV+Eh7thQ39eTjpn9iwgMkzbDxzdfOg4eBqObtJ+sOEzbT8oaxgBSIm/y6ld84mLvIzCSEm9Jt3oNHi6pB8c+WUGty/uNHh9APe2q1Ca6sdxsDCXM/55J9o3t8LEWM7dqFy+35IgcVsH+H6edplaiWHESAHjnnfCz9sCx9pKjI3lpKQVcvVmNpv3PiIxWd+VPqCLLUP71MbZXklSqoo9R1PYdSSFZm0MLycyM4YB7ZU0c1egVEBskpq9Zwt58Ej6Gjx9lHayV9Yw4ukiJ2iw4cC24Q+LWL1HazDr3cqIPq30d6sq4a2ZV7lSbnteKwsjJo73pEt7e0yM5dy6m8nyteHcvif9gr3lu3ZAqWHEyEjGxJc9aelni7OjKSbGch6lFHDxWirrN0cTnygdRO3tjHl1tDst/Wyxr21CRkYhpy8ks2pDJJ2GGPY+M1VCz+YyGtWVYaTQ7hxz5Kq+sWLiIH3DCIC9NfRuLsfVQeuFEv5Qw5GrGrINjO+tvGS0bijD1kK7lCc0SsPJ6xpkcsPeO/m56VzYv4Dom0coKszH3tWHtv2mYe8q9Vb7dUEvQGoYAUhNuMv5fV+QEH0ZuUKJm3c32g6YhpllaT8Iv7aX2+d/IS0pgvzcDExMrXByb4V/9wnY122Gzyjpspsed49g7u6KIUoMIX7fz9MzjAAY2VrT5ItpOA/pjdzMhPSLodyc/iXpl/SXvjkN6UXDDyZh2bgBBUkp3P9xB3c//QZNmSXr++bpeyebmch4tpsp/l5KlEoZ0fFF7DiWS0yC1PXl49e0Ht5lDSMN3YyY/IJhw8GdWBVLN0vb65AupgS0M+WzdRmSbYDvhxv27LYwlzNumAPt/C0xVsq5G53Hum2J3IuRNpbVn2p3RiwxjDjaGbHms4qN3UfOpPP1j6XxWN4b70KTBmbYWinIyC7ifEg2m/Y8Ij2ziN9W/PUlsH8XbyxIe2rXXvG+7VO79j+NMIw8AVavXo29vT1169YlKSmJtWvXEhkZyb59+3Bxcan6BNXg9u3b3Lx5k9mzZzN37lzJ13aBQFBzWVu9MCiCchgyjNQEyhpGahplDSM1jVpPajH+34Ahw0hNoCLDSE3g0C79oPM1hYoMIzWBU7v/XDD1v5sBL3WuOtNTQqH4e7aRfRKUN4zUJAwZRmoCFRlGagLCMGKY/5Jh5F+9lKamIJfLWbFiBQkJCSgUCvz9/Vm/fv0TM4oAvPHGG6SkpDB06FCee+45yTGNRkNRUcUvnXK5XLcrj0AgEAgEAoFAIBAIBIJShGHkCfDqq6/y6quv/q3XqGz3jfPnzzNmzJgKjz/77LPMnz//7xBLIBAIBAKBQCAQCAR/E/+1IKhPC2EY+X9As2bNdDvxGKJWLQP7pQkEAoFAIBAIBAKBQCAQhpH/D1haWuLr61t1RoFAIBAIBAKBQCAQ/GsQIUH/GUTgCYFAIBAIBAKBQCAQCARPjaNHjzJkyBB8fX0JCAhg27ZtVZYJCQlh5syZ9OnTB39/f/r27cuiRYvIycmpsmx5hMeIQCAQCAQCgUAgEAgEgqfCxYsXmTRpEs8//zyzZs3i7Nmz/O9//8PCwoJ+/fpVWG7//v1ER0fz6quv4u7uzr179/j666+5du0aP/7442PJIAwjAoFAIBAIBAKBQCAQ1EDU/4HgqytWrMDPz4+PP/4YgPbt2xMbG8vXX39dqWHktddew87OTvd/u3btsLa2ZurUqYSFheHj41NtGcRSGoFAIBAIBAKBQCAQCAT/OAUFBZw7d07PADJgwADCw8O5f/9+hWXLGkVKaNq0KQCJiYmPJYfwGBEIBAKBQCAQCAQCgaAG8v89+GpMTAyFhYV4enpK0hs0aABAREQErq6u1T7fpUuXAPTOVxXCMCIQCAQCgUAgEAgEAoFAQq9evSo9fuTIkb98jfT0dACsra0l6SX/lxyvDikpKSxbtoxevXrh7u7+WHIIw4hAIBAIBAKBQCAQCASCJ0JmZma1lrK4ubk9sWsWFhYyZcoUAD788MPHLi8MIwKBQCAQCAQCgUAgENRANE8x+Oqf9QgJDg5m9uzZVebbt28fNjY2gNaYUpaMjAwA3fHK0Gg0zJo1i5CQEDZu3Iijo+NjyywMIwKBQCAQCAQCgUAgEAieCMOHD2f48OHVyltQUIBSqSQiIoIuXbro0iMiIoDqxQr54osv2L9/P2vWrKFx48Z/SmZhGBEIBIK/kSL105bg30lNDTR26a7J0xahQszMnrYEFZOWWXM3watTx/xpi2AQIyPZ0xahQpp38nraIlSIrXXNfbXtOLDt0xbBIBbmNbd/ymuuaOybd+5pi1AhA2a2e9oiGOTMmtCnLcK/kqfpMfJPYGxsTLt27Thw4ABjx47Vpe/bt48GDRpUGXh19erVrFu3joULF9KhQ4c/LUcNHm4EAoFAIBAIBAKBQCAQ/H/mjTfe4OrVq3z44YecO3eOr7/+mj179vDWW29J8jVt2pRZs2bp/t+9ezeLFi1i8ODBuLq6cvXqVd0vJSXlsWSouWZ1gUAgEAgEAoFAIBAI/sOoa6gX7ZOkdevWLFu2jCVLlrB161bq1KnDp59+Sv/+/SX5ioqKUKtL3bFPnToFwK5du9i1a5ck77x58xg2bFi1ZRCGEYFAIBAIBAKBQCAQCARPjV69elW5PfDt27cl/8+fP5/58+c/keuLpTQCgUAgEAgEAoFAIBAI/rMIjxGBQCAQCAQCgUAgEAhqIP/fg6/WFITHiEAgEAgEAoFAIBAIBIL/LMJjRCAQCAQCgUAgEAgEghqI5j8QfLUmIDxGBAKBQCAQCAQCgUAgEPxnEYYRgUAgEAgEAoFAIBAIBP9ZxFIagUAgEAgEAoFAIBAIaiBqEXz1H0F4jAgEAoFAIBAIBAKBQCD4z/L/zmNk+/btKJVKBg8e/LRF+Vvx9vZm2rRpvPLKK0/l+uvWrWPevHncvn37H7ne9u3bmTlzJmfOnMHOzq7CfIGBgZibm7Nq1ap/RK6/wuHDh3nzzTc5cuQIrq6uBvPcv3+fXr16AbBmzRq6du0qOf7rr7/ywQcfAPxjdfFf4dy5c1y5coUJEyY8sXOqCgs4tXcpN87/Rn5OBvZ1vOk8eDLuTTpVWTYzLYHft35O9K1TaDRq3Bq2o8fzs7C1d9PlyUiNI+z0NiKuHyM1MRq5XE7tOo3o0O8N6jfu+K+VrYT83AxO7VpAeOhhVIV5ONXzpfOQ6Ti6NatW+ZSEcE7snEdcxGXkRkrcm3Sjy9AZmFlKx5QLh1aSEH2N+OgQcrOSaRvwJu36vVWlbOf3LyTqxmFUBXk4uPnSfsA07OtWT7bUxHDO7plPfPRlFAolbt5daT9QX7ay3Luym99/nYaRsTnjPrpUsWw5GZzcvYDwkEM6vXV5Zkb19RYfzh87Py/VW9NudBk6E/Pyeju4gniJ3ibRvn/Veju7dwFR17V6c3Tzpf2g6Ti4VlNvCeGc3j2P+Cit3uo16UaHQVK9ZacncHbfQpJiQ8nJSEQmV2Dj4E6zDi/SqNXQCuW6ELyQ6Ovatubg6kvbx6jPtMRwzu6dT0L0ZeTF9dlugFSuzNQH/Lqgt8Hy3V9YiF8Hw+8xNbk+TY0hoJWCpvXlKBVw/5GG/ReKiEup+mtnXXsZLb3kuNrLcLaToZDLmL2uoML8rRrK6dRMQS0rSM+GszeKOHtLXWH+mtpHTY1hYHslzTwUGBtBbKKaPWcKefCoap25Ocpo5W1EPUc5LnYyFAoZ01bm6uUzUsDQzkrqOcmxsZAhl0NyuoYLt1WcuV5U4fnzczM4s2cBEWHF/bOeL50GV79/piSEc2rXPOIitTqr36QbnYZIdZaaGMHN89uIvXOKjOQYlMYW2NdtStuASTi6+VYq26ndC4goeR64+dLpmek4PoZsJ3dqZZMrtP2g8zPlZEuI4Mb5bcTePkV6sWwOrk1p228STpXIZmYiY2hXU/wbKjFWyoiOU7H9WB6xiRXruoT6zgra+xjj7qygroMChULGmwvT9PK1b2ZMYH/zCs9zJWQwDzftRmFhjud7r2Db1h/bNr4Y29ly7ZUZ3P9xR5WyABjZWNFk/vs4PdMHhbkp6RdCuTFtPhlXbujldRzUk0ZzJmHZxIuCxGRi12/n3mffoimq+r5r8thRExDb9f4z/L/zGNmxYwd79ux52mIInhJz585l+vTpT1uMJ465uTn79u3TS9+zZw/m5hU/GAV/nvPnzz9xA1vwhhlcOrKOJq0H0+P5/yGXK9j+7evcv3ex0nIFedn8unQM9+9doF1AEB0Hvk3i/ZtsXvwSuVmpunz3rh3h/KE12DrUp/PgybTvP5HCvGy2LBtH6Jlt/1rZADRqNbtXB3Hn8l78Oo+m0+Cp5GamsP2bMaQlRVVZPistnm3LXiL9UQwdBk6mRfdxRN08zs4V4ylSSV+gzu5bQkJMGA6uTao8b4lsB9ZP4N61vTRtP5q2/d8jNyuZPWvGkv6oGrKlx7NndSAZyTG06TsZ3y7jiL39B/vWvqInWwmF+dmcC16IkXHl/V+jVrNrzevcubQH/y4v0Wnw++RmpbBteWC19JaZFs/WZaOL9fYuLXuMJ+rGcXZ+O05PtjP7lpAQ+3h62782iHtX99Ks42jaDZxKbnYKu1eNIb2adbpr5UtkJMfQtt9k/LqNI+bmcfaukdZpXk4a2enxePoF0H7QNNoEvIO5lQPHfp3J+eDFBuU6uH4C4df20qTDaNr0e4/c7GT2fVe9+sxOj2dvcX22LlOfwT8Yrk9Pv4F0G/6F5OdYr3mFOqup9SkDAnsZ4ecp5+zNIg5cKsLCFF7pZ0Rtq6rLe7vKadVQ+1qakll53jaN5DzbyYjENA17zxYRm6hmUHsjuvgYfq2tqX1UBowfYEzzhgpOh6nYe7YQCzMZQUNMsLeRVSlX43oK2jZWgAZSMiueOCmNwMlOzq2YIoLPF7L3TCFxyWoGd1TyQg+lwTIatZq93wdx58pefDuNpsOgqeRmpbBzRfXH3J3fasfc9v0n07z7OKJvHmfXamn/vHFuCzfPbcHR1YeOg6fj3/Vl0pIi2bZsJLF3Tlco2+41Qdwtfh50LJZtx2M8D7YvL5ZtwGRa9BhH1I3j/LZSKtv1c1u4cXYLjm4+dBoynebdXiYtMZKtSyuWTQa8McyCNk2M+eNKPjuP52JlLuedFyxxsK162tXMU0lHX2M0wKP0iifrd++rWLc3W+8XE6+iSK0h+egZAIzta9Hog0lYNvYkM+QxP6DJZLTZtZo6IwcR/e1P3Jq5AGMHO9of3oC5V31JVoeArrTe9g2FaZlcn/wJ8bsO03DWGzRb+kHVl6Hmjh2C/xb/7zxGajJ5eXmYmpo+bTFqFEVFRajVapRKww/mx8XLy+uJnKem0atXLw4dOsRHH32EiYkJAImJiVy4cIFBgwaxa9eupyyhoCriokK4dWkv3Z6dRpveWk+vZu2Gsu7TQfyxcyEvTv2lwrJXT2wkNTGK0dO24FLfDwCPpl1Y99lgLh75gS7PTAGgXqN2vP7p75Ivv/6dR/HjvGc4vedrfDs896+TrYR71w4QF3WF/mOX4NW8HwANm/dnw+f9OBe8jIDARZWWv3h4FaqCXEa+tw2rWnUAcKrnx28rx3Pz/A58Or6gyzv2g8NY27mSm5XKdx90qPS8ABFhB0iIvkKvF5fg6RsAgKdvf35d1J9Lh5fTc+TCSstf/X0VhQW5PDtpK5a2Wtkc3XzZ9/0r3Lm8kyZtR+iVufL7SpQmFtTxbEfUjSMVnvvutWDiIq/Q/+WlNCzRW4v+bPgsgLP7l9FvTBV6O7QSVUEuo6Zul+ht54pxenp7+YMjWNd2JTcrhTWzq6G3UK3e+ry0BE8/rWwN/Przy4J+XDy0jF4vVi7bld+1dTrs7dI6dXTzY++a8dy+uIOm7bWy1XbxZsiEDZKyPp1eYv8PEwg79RMter2NXK7QHYsMO0BizBV6jlqCR3F9evj2Z+tX/bl8eDk9qqrPY6soLMzlmTL16eDqS/DaV7h7eSeNy9Wnfd2meLUYUpW6gJpdn83c5dR3krPp90KuR2sn6aGRat4dpqRnCwVb/qj8q/G5W0X8EVqEqggGtVPgYKMwmM9IAb1bKrgVq+aXYyrtfd0FmQy6+yu4E6chv1Bapqb2Ud8GCtydFWw4mE9ohHYSHBJexPujTOnT2ohNRwoNlivhzHUVv19RoSqCZzorK5x45+bDNzvyJWlnbxSRVwCdfI24GKkhR3qY8JADxEddISBwCQ38tW3Ny78/G7/ox4WDy+gzuvK2dumItn8Onyztn7tXj+fWxR00K+6fDVsMpG3fSShNLHRlm7QdxqYvB3Lh4HKDHoX3imXrN3YJXv6lz4Of5j3e8+CFKQaeBxd24NNBK1ujFgNpGzAJ47KytRvGxi8Gcv7Acpr1XqF37hbeShrUNeK7XdlcuaOtv8u3C5n7ihUDO5mybm9OpbKduJrPofN5FKpgRC8znOwM94PkdDXJ5QwnSiN4obc5d2JU5Cc8AiA/LpHDrp3IT3iETSsfOp+t+kNECS7P9cOuY0suvfA28dsPABC3ZT/dbxyg0Zy3uDpmaqlevphGRuhtzvcfr/MQUWVk4zUjiMhlP5J9O6LC69SUsaMmI7br/WeoUeaxK1euMH78eFq2bEmLFi0YPnw4p06d0h1fuHAhgwcPpkWLFnTp0oUpU6aQmJioOx4YGMj58+c5duwY3t7eeHt7s2zZMt3xY8eOMXz4cPz8/Gjfvj1z584lJ0c6QN29e5fRo0fj6+tL37592bVrFxMnTiQwMFCS78KFC4wcORI/Pz/atWvHzJkzSUtL0x2/f/8+3t7ebN++ndmzZ9OuXTuGDx/Ohg0b8Pf3JysrS3K+8PBwvL29OX78+JNQJaBdfjJ48GB8fX3p0qULixcvpqiMO1tiYiIzZ86kV69e+Pn50bdvX7766isKCqRfP7Kyspg2bRotWrSgffv2fPnll5LzlJCRkcGHH35I586d8fHxYdiwYZw8eVKSJzAwkKCgIHbs2EFAQAC+vr7cunWLjIwMZs+eTZcuXfD19aVbt268++67eteIj4/n1VdfpXnz5vTt25edO3caPH8Jy5Yto0WLFoSEhPD888/j6+tL//79+f3336vU386dOxk1ahRt27alTZs2BAYGEhISIslTcv7bt28zatQo/P39GTRoECdOnJDkKyws5LPPPqNt27a0atWKWbNmkZ2dXaUMJXTt2hWZTCZpH/v27aNevXo0a6bvNlpVX4FSXQUHBxMQEECLFi0YM2YMMTExj30ujUbD8uXL6dSpEy1atODtt9/m9OnTeHt7c+7cOUm+77//noCAAHx8fOjVqxfr1q0zqNMbN27wwgsv4Ofnx7PPPsuNGzfIz89n7ty5tGnThq5du+qVBe04MmbMGJo3b06rVq147733SE5O1h0v6Zu//fYbH3/8MW3atKFz58588cUXqFQqnQzLly8nJydHN5aUHwMelztXgpHJFfh1Kp14GClN8O34PA8jr5CRGldJ2QM41/fVGR4Aajs3oL53B25f3q9Ls6/TUM8d3khpjEezbmSmxVOQJx13/g2ylXDv2gHMrexp4NdXl2ZmaYdX835EhB2t8KttafmDuDftrnsJBqjn3RFbB3fuXg2W5LW2M7y0rSIiww5iZmmPR7M+Etk8/foRfaNq2aKuH6Je4+66CRdAXa+O2Ni7ExGyXy9/+qMoQk+up/2A6cjklb/MlejNq4zezC3taNi8PxFhR1BVR2/NKtKbVDbr2o+nt4jQA1q9+UjrtIFfP6KuV623yNCD1Gsilc21YYnegispqcWqVl1Uhbmoi6STz6ji+nQvV58evv2IuVmN+gw7RD1vw/UZGapfnwCFBTlVnhdqdn02qy8jM1fDjejSF/icfAiLUtPETY6iijfO7DxQVe1xj6ezDAtTGedvSTOfu6XGRCnj/9g77/CoirYP37ub3nshCSQE0knoEDqEKqB0UaS/iGID6YoiFkCKghTp0l4Q6VWqUoz0GjqEhJJOei+7+/2xySab3RQUk3yvc1+Xl+ScmTm/M+Xsmec880xdJ+08NXWMNqgrJT1Lyc1HxRPczByVccTfXVZhnWVkV67OyiK50MvEUMe3qfAbRzA2t6Nug1LjM6g7EZV45j4KO0qdUuPTzUvV18KvF49PB9cADaMIgJGpNc51m5AcH66z7PCi34NS2uoFdSeiEs+O8BvavwdF2h6W+D1wcAvQMIoAGJta4+zRhKQ43doaeemTlqng2v3i50pGtpIr9/IJrKePXgXz7/QsJfkF5acpiwae+hgbSrh4p/j+FXn5aiPJi+LUrxs5sQnE7j6qPpb3PJnoHb/i+GoIUgNVxzHz9cTcvz5P1/yisWzm8YotSKRSnPt1K/c6NeXZIRDUGMPI5cuXGTp0KHl5eXz99dcsWbKEkJAQoqOj1WkSExMZO3YsK1eu5NNPPyUqKoqhQ4eqJzMzZ87Ez8+Pxo0bs23bNrZt28bAgQMBOHz4MO+++y5eXl4sXbqUyZMnc+zYMT799FN1+Tk5OYwaNYqUlBTmz5/Pxx9/zOrVq7l165aG1ps3bzJy5EhMTU1ZvHgxkyZN4vfff2fMmDFaBoPvvvsOpVLJwoULmTx5Mq+++ipKpVJruc+OHTtwdHSkTZs2L6U+f/rpJ2bMmEGbNm1YsWIFY8aMYePGjXz/fbHbcHJyMlZWVkyfPp01a9bwn//8h927dzNz5kyNsj755BOOHTvGpEmT+PbbbwkPD2fDhg0aafLy8hg5ciQnT55k/Pjx/Pjjj3h6ejJ27Fit2Bc3b95k7dq1fPTRR6xatQpnZ2fmzJnDyZMn+fjjj1m7di1TpkzBwMBA674mTZpEmzZtWLZsGb6+vkybNo3wcN0/TkXk5+czYcIE+vbty9KlS6lTpw7vv/9+hTE5nj17Rp8+fVi8eDELFizA2dmZIUOGEBERoVX+pEmT6NevH0uXLsXGxoYPP/yQ5OTiZQTfffcdW7duZfTo0SxatAiFQsHCheV/0SiJgYEBXbp00eg3Bw4coFevXjrTVzRWirhz5w5r165l0qRJzJkzhydPnjB58uQXLmvTpk0sXbqUvn37smTJEmrXrs2MGTO0dH3zzTf88MMP9OnTh1WrVtG3b18WLFjA1q1btep06tSpDBo0iCVLllBQUMD777/Pp59+ipGREYsWLaJz587MmTOHK1euqPNdvXqVoUOHYm5uzvfff89XX31FWFgY48aN09KyaNEipFIpixYtYvDgwaxbt47t27cDMHDgQAYMGICRkZH6WVJ6XLwo8c/uYO3gjqGxmcZxp0KDQsKzOzrzKRUKEqLu4Vg7QOucU50GpDx/UqFRISstAT0DY/QMjP/faSsiIeoO9q5+SKSaP1uOtQMpyMsmOT6ijJyQkRJHdkYiDm7aOh1rB/I8Snut9IuQGH0bu1q+WtrsXRtQkJ9drqt+ZqpKm72OOAf2rg1IjNau+7MH5lCrbgtq+7SvUFvCszLqrU4DCvKySalEvTnqqrc6gWX2i8ryPOoOdi7a2hzcAinIzyYloWxt6npz1dbmUDuQ59HabVqQn0N2ZjLpSc+4d2k39y7txrF2Q/T0NT05E2NuY6urPd0q1545mYnY6YhzYFdGe149sYyNXzRh/cyG7F02kGcPQrXSFFGT29PZVkp0opLS3zWfPVdioC/BzuLlTDycbVXlRCVqXik6UYlCocTRSvs6NXWMuthJiXqu0Kqzp/EKDPQl2Ou4l7+DTAomRmBpKsHfXUq7ID2S0hWk6PhO8zz6DvZ/cXxmpJb9zHVwCyShEs/crPTnGJta6zyXEKVb28v4Pfi72lwdZDyNk2u1aWSMHEN9CQ7W/9zUq5mvAXn5Sg2jzN/BsqGvKpZIKW+F1Ith6JmaYOrlAYBFQz8AUi6HaaTLjYkn+2kMFg3LX45XU54dAkGNWUozf/586tSpw4YNG5DJVObU0kaCOXPmqP8tl8tp1KgR7dq149y5c7Rp04Z69ephZmaGiYkJDRs2VKdVKpXMmzePV155hW+++UZ93N7enrfffptx48ZRv359du7cSWJiIlu3blUHwwwICKBr167Url1bnW/FihXY29uzYsUK9RIQZ2dnRo8ezalTp+jUqZM6rY+Pj8Y1Abp168bOnTsZPHgwAAUFBezbt48BAwao7/3vkJGRwQ8//MB//vMfPv5Y5cbeunVr9PX1mTt3LqNHj8ba2hpvb2+NeByNGzfG2NiYadOm8fnnn2NsbMzDhw85evQoX3/9NQMGDABU7dK1a1eNa+7fv5+7d++yd+9e9XKWtm3b8vjxY5YvX87ixYvVaVNTU9mxYwfOzs7qY2FhYfTq1Yu+ffuqj/Xs2VPr3oYMGcKQIUMAaNSoEadOneLIkSM6J75F5Ofn8+6772rpX7lyJd99912Z+d5//331vxUKBa1bt+bGjRvs3r1bXa9F5U+aNIn27VUvQB4eHoSEhHD69Glee+01UlJS2LJlC2PGjFF7s7Rt25a33nqLuLi4Mq9fml69ejFu3DgyMzNJTEwkLCyM+fPn6/QyqmisFJGens6ePXvUAW2zsrKYPn06sbGxODk5VaosuVzOqlWr6NevH5MmTVLXcXJyMjt27FDnffLkCZs3b2bWrFm8/rrKM6FVq1bk5OSwbNkyXn/9daSFLzml61ShUPDOO+8QFBTE9OnTAWjZsiWHDx/m8OHDNG7cGICFCxcSEBDA0qVLkUhUP4BeXl706tWLU6dOqcsDCAwMVBtvWrduzfnz5zly5AhvvPEGTk5OODk5IZVKNZ4lf4eM1ATMLOy1jptaqo5lpMRrnQPIzkpBXpCHmWU5eVPjsTEy0zoPkBz/mAfXj+HVqLvGcoH/L9qKyEpLwMWzqfZ1CnVnpsVjV8tbZ97MtHiNtKXz52SlIi/IQ6anbYytDFnpz3Hy0NZmYl6szcbJq4y8CRppNfJb2JObrantyd2TPHvwJ/0/rFzgvLLrzUGlLbXiejMps95SKCjIQ+8v11sCznXLrrestHhsnXVryyrSpqvezO3J1dGmYX9s5MKvxc98l3rBdBg0W4eu5zi5l6+rovY0LktXifaUSCS41G9NHb/OmFo4kpb0lJuh6zm6/m06D12Gb+NOWmXU5PY0N4bHsdqTi/Qs1TFzE4hL+UtFl7qOBLlCSWaO5nG5QvWV2VTHiuWaOkbNTSQ8itaOI1FUZxYmEmIrEXyysgR4yBjSpbh9n8Yr2H4yD5mxoVbazDTd47PkM7fC8amjr5lY6B6fJYl+dInYx9doGvJuGeUnUEvXs6MyvwfpL0dbs866tVmaSnn4TNvlIy1T1c6WZlKin7/8QJ8mRhJ83fW48TBfaynZX8XQ2Z6kP7TjjOXExBeedyD95n2MnFR1mRuToJU2NzYBo1oO5V6npjw7zMr/PlOtKBU1Ozjs/wo1wmMkOzub69ev06dPn3INA6dOnWLw4ME0adIEPz8/9Q4dkZGR5ZYfERFBVFQUPXr0oKCgQP1f8+bNkUql3Lx5E1B5Mnh5eWnsEOLq6oqPj49GeZcuXSIkJEQjLkabNm2wsLDg8mXNqOMdOnTQ0jNo0CBu3LjBgwcP1PeVmJhI//7lr7GvLFevXiUrK4vu3btr3G/RJLToukqlkvXr1/PKK68QGBiIv78/kyZNoqCggKdPnwIqg4VSqaRLl2L3U5lMRufOmpH0Q0ND8fLywt3dXeuaYWGaFmQvLy8NowiAn58fu3fvZu3atdy/f7/Meys5qTcxMaFWrVrExsZWWCe69F+/fr3cPOHh4bz33nu0atUKX19f/P39iYiI0OpvUqmU4ODi9deurq4YGRmpjR73798nJydHQwOgZVyqiJYtW2Jqasrx48c5cOAA/v7+eHh46Exb2bHi4+OjsctPkVGrZJ1WVFZsbCwJCQkaBkFAvZtOEX/++af6vkv3kYSEBGJiipdrlK5Td3d3QGVIKUImk1G7dm211uzsbK5cuUL37t2Ry+Xq8t3d3XF2dtbqh6UNr56enpXqS3+VgvwcnS9aevqG6vO686kWfuvMq1eYNy9X6xxAfl42+9d+hJ6+Ee1em/j/UltFGmVqjbqvU5FOWQX3WBnk+TnIZGWXLS+n7KLrSnVp09PUJi/I4+yBufi2eB1rx8rFUyqz3gqP/dV6K2pfed7frLe/2qYF5bSpnu42rdewJz3HrCPkjQXUa9hLZ5oiXeW2R0HZ91zU1jr7QyldZla16D5yDb4tBlPbtyMBrYfR9/1dGJnacOHQPJ3l1+T21JdBgY539yIXd/2X9ClOX6aayOiiQI7OpQo1dYyWVWdFSyleVp0VER4tZ9X+XDYdzeXsLVWQToMyrlFmnem9wDNXR369MsZnEVnpiRz77yQsbFxp1FH3zosV/WbJy9Emr8zvVjnajm4u1NZJtzZ9Pd3LOorb9J9ZstHISx99Pc1lNH8XmbERilzt8hQ5eYXnVfUlNVZZI3Wllefkqs+XRU15dggENcJjJC0tDYVCgYND2RbFGzduMG7cOEJCQhgzZgy2trZIJBIGDRpEbm7ZD0BAvaThvffe03m+aEIWHx+vcytYGxsbjWukpaVha2urlc7W1pbU1FStY6Vp1qwZHh4e7Nixg+nTp7Nz506aNWum4ZXydyi635LeFyUput8NGzbw7bff8p///IcWLVpgYWFBWFgYX375pfp+ExIS0NfXx9LSstz7Sk5O5vbt2zrjXZQ2dtnZ2Wml+eyzz7C0tOSnn35i3rx5ODs78/bbb/Pmm29qpDM31wxPra+vrxUTpTRl6U9I0LZsF5GRkcGoUaOwsbFh2rRp1KpVC0NDQ2bMmKHV34yMjLSW/ejr62vUYdE1S6KrHspDJpPRo0cPDh48SFRUVJmGtBcZKxYWFlq6AXW6ypRVdH+lx46uPqJUKmnZsqVO3TExMbi4uADadVqkS1f7F+lIS0tDLpczZ84cDS+XkuWX5K/0pb+Dnr6RznXPRS+Qpd35i/MVvujpyls4OdQz0P7ap1DIObBuAomxD+k/bjVmVo7/L7TJC/LIyUwlN7/465GxmU2ZGuVqjdrXqYxOeQX3qJG2II+s9BSNY0amNsj0jZDLyy5bVk7ZRddV6NJWoKktLHQDuVkpNOn8vo60eWSmaYbjL7feCo/91XpTGyYM/ma9/dU21SunTQt0t6m5tQvm1qpnTL1GvTj5y6fsXzmcXm//Vz1BLtJVbnvolX3PRW2tsz+UoaskhiZW1G/SlxunVhP39BZmlsXvRTWlPaUS7S+rmTmQLwc9HZ/bigwVfzVuQmny5ZQZc0CpyCMhIZWsEju01IQxqq+nh4mhZr2VV2dFE8GXVWdFZGTDwyjVzDDskYKOjfQY0U3Cml8TyC7xemBkVk6dFbzAM1dH/oJyxkF+bhaH1r1Dfm4mvf7zX6QyfTLTNN/VyhsHaoNMOdpklfndKkPbgTXvkJeTSf8P/ouRkSkWJmkaadKzVfFBdBnnitv0n1my0czXgIxsBbciXl6nkWfnIDXUNiBJjQwKz6vqS5FdaDzUkVZmZKg+L9HXr7HPjopiv1Q3YqlP1VAjDCPm5uZIpVKtgI4lOX78OGZmZuq4AABRUVGVKt/KygqAzz//nMDAQK3zRQYZBwcH7tzRXiualJSEqWlx8CVLS0uNYI5FJCYmak3Ai9z5SzNw4EDWrFnDyJEjOXXqlNZym79DkYalS5eql0OUpMgj5vDhw3Tq1ImJE4u/1paO12Fvb09+fj6pqaka91b6/i0tLfH29q7UfeiqE3Nzcz799FM+/fRT7t27x8aNG5k1axZeXl40bartLvkilKXf3l7bjbKIa9euERsby8qVKzU8htLT03XWaXkUXScxMRFHx+IJ4PPnLx4Mq2fPnuqlRK+88orONH9nrPyVsoruLykpSeO4rj4ikUjYsmWLzl2IyvJ+qSzm5uZIJBLGjh2r5dEEYG2tez1wVWFmaU96ivbSqcxU1UufmZVuw7CxiRUyPQMyUrUNeeq8ltp5j/53BuE3T9JzxAJqe5e/o0RN0hb16Cq/LB6mcWz4Z8cxsbDXekEG1MeKlhLoQr3MoIz8RiaWlVpGExN5ld3LhmscGzzlOCbmdmTrKLvIBb88berlGek68qclYGis0paXk86131bg2/IN8nMzyc9VBQUoyMsCpZKIW8f4/edJGvlHfHainHorXF6ko32KKNKdVWa9WVVq2UVMxFV2LdNs0zenHcfE3F5n2eqlC+XVW5E2XfWWnoBhJdrUysGDe5d28suCYm++QZNV7VlWuRXqKmzP7LJ0GVesy9RS9RuzbWE/jeM1pT2drOHd7prpFuzIIz0bzEx0/L4XHksvfzOOSpOerUQmlWBqhIZLvEwK925fZeTwmjdGGzYMYlxPKVA8K5zz3xzSs5RYmJZdZ2lZ/+xkKOyRHBuu8+OnmuPzrU+OY2qhe3xW5plrUk5fy0rTPT7lBXkc3vABiTH36DVmDbbOXkQ9PM/eFZrtOWyG6vegrLIr0mZq/te0HVqv0vbq2yptztbw3iua7/yfrUojNVOBpan27Nui8FhqxstfEmFtLsHTVUbo9Txe5oqL3JgEDJ2035WNnB0Kz6ueOzmxqro0dLYn55mm562hkz0pF1UbF1gHN2La6zXz2WFSti1N8C+iRhhGimKC7N27l1GjRulcTpOTk4O+vr7GpHr//v1a6Up+QS6ibt26ODk58fTpU/WkUhcBAQHs2bOHp0+f4ubmBqgCcN69e5cmTZqo0zVp0oQTJ04wbdo09PRUVRgaGkpaWppGuvLo27cv33//PZMmTcLIyIju3btXKl9laNSoEcbGxsTGxmot3yhJUZ2WpHSdNmjQAIBjx46pY3TI5XKOHz+uka5Vq1acOnUKBwcHjcn/X8Hb25vp06ezY8cOwsPD/7ZhBHTrDwoKKjN9To7qiVmyfq5cuUJUVBT169d/oWt7eXlhZGTEsWPH8PPzUx8/evRoObl006hRI3r16oWtrW2ZBprKjpXKUJmynJycsLe358SJExoGidJ9pGhpTEpKitaym5dB0XPk0aNH6n77d3jZHiT2Lj48uX+e3OwMjSCnMZGqJV32rrqDk0mkUuxqeRH35KbWuZjIG1jauWFQKobHyV3fcvPcLjoO+ATfproD9NZUbQ6uPgz84CfySniMmJjbY+/iQ/SjyygVCo2Ae3GPr6NnYIy1Q9mGNTMrR4zNbIh/qq0z7skN7FzKDwxXhF0tH14ZvVbjmLGZHbbOvsRGamtLeHoDPX1jLO3cyyzT1NIRI1MbEqJuaZ1LeBaGbS2VttzsNPLzsrhxei03Tq/VSvv7z5Nwcm9Eyx4fqo+ZWJRdb7GPb6BnYIxVJeotTle9Pb6BnYuPjlza2Ln40HPMOo1jxub22NXyISZCR5s+uY6evjFW9mVrU9fbM21t8U9uqOutPEwtVL9VQR3ewbluM5UuMztsnH2J+5vt+fyZdns+fxaGjXPFutKTngHQfdj3GJlaqY/XlPZMTIOfjmgGMcjIhtgkJXUcJUhAI4iiq52EvHwlz9NeziQ/pjDmhouthPtRxWXWspXg6+vLO9PW8qTEnLcmjNFECwtGjBiBTa0gfIJVMdHSs5REP1fi4SzVqrPaDlLy8pUkpPyzhhF9PdWS2olfrON+8V4HmBSOz2gd4zO+EuPTzNIRY1Pdz9z4pzewKzU+lQoFJ36exrOH5+g69HtcPJsDYFvLh9fe0Xx2mJjbY+fiQ4yucfDk7/8e2Ltoazu+ZRrPHpyj+7Dvcamn0vY8DX74RTO4eFqmgmfxcuq56mm1qbuzjNx8JfHJL98w0tTXAKnk5S6jAUi7fhfrNk1U+9mWCMBq1TyQgswsMu9HFKZTfVS2atKA1IvFy5YNnR0wdnPmyZpfVOlu3K2xzw6pVOxKI6ghhhGAiRMnMmLECEaMGMGbb76JpaUlt27dwtramgEDBtC6dWs2bNjAV199RZcuXbh69Sp79+7VKqdu3brs2bOH3377DXt7e/VEfdq0aUyaNImsrCw6dOiAsbEx0dHRnDp1igkTJuDh4UH//v1ZsWIF77zzDh988AGg8rqws7PTmBi+8847DB48mLFjxzJ06FCeP3/OwoULCQwM1AjuWB42NjaEhIRw+PBhXn/9dYyMKnZfLc39+/c5fFhzS0ITExPatWvHhx9+yPz584mNjaV58+bIZDKePn3KiRMnWLJkCcbGxrRq1YqNGzeyefNm3N3d2bdvH48fP9Yor169enTp0oXZs2eTm5uLq6srW7ZsIT9f88HWp08ffv75Z4YNG8aoUaNwd3cnPT2d27dvk5+fr+GVoovBgwfTpUsX6tevj0wmY8+ePejr678Uo4i+vj4//vijWv/WrVuJjY1l2bJlZeZp2LAhJiYmzJo1i7fffpu4uDiWLFnyl4w+VlZWDB48mNWrV2NkZISfnx8HDx7U2ha3MkgkEubPn19umsqOlcpQmbJkMhlvv/02s2fPxs7OjhYtWnD+/HnOnj0LoPY08fDwYMiQIUyZMoXRo0cTFBREfn4+kZGRnD9/nuXLl/8ljSWZMmUKw4cPZ/z48fTs2RMLCwtiY2P5888/6devHy1atKh0WZ6enhQUFLBhwwYaNWqEmZkZdevW/cvavBt159KJddwI3Uazzqq1yQX5edw8twtn9yAsrFVxd9KSosnPy8bWyVOd16tRN87sXUjs4zCc6qiMPklxj3hy/xzNQkZpXOfCsTVcOrGOFt3eoUlHzS9t/x+0GZlYUsenFbl5mi9CnkHdeHj9COE3jlKvocqQnJ2RzMPrR/Dw76jxhS/1uWpsWdoVL0/0DOzK3Yt7SE+Owbzwfp7eP0tKQiQN24+oVD0ZmVjiUq+V1nGPBl2JuHmEiFvHqNtAtS1hTmYyj8KOUNu3g4a2tESVNgvbYm0eAV24f2UvGSkxmFmptEU9PEvq80gC2qjqydjUhi5vFW8/X8TNPzcT/+QanQYvwNrOESd3TYNvvaDuPLx+hIc3jlJfXW9JPLx2GA//jhoeAimF9WZVot7qBXblThn11qhD5evNtb6ueuvGo7AjRNw8St3AQm2F9VbHr1SbFtabZYl6q9ugK/cv79Got2cPVPUW2LZYW3ZGEsaltooGCL9+CCQSvJr0wcK2TrGugK5E3jxC5K1jeJRoz4iwI7j5VNye7v5deHBVsz2jC9vTv3Vxv9elKzM1jvuXd2Hj5I1XY22vwJrQnrkFEBOnPVG5GakgwF0PvzoSbhVuu2liCAHuUu4+U2is7bcpXMmYlK5VTIU8ilGSlaOkuY+M+1HFPvYtfKQYm1igb9cKF80P+TVijJp5vklagZV6KQuoPDYCPWUE1JUSVrhlr4kRNPCUcfuxXLPOCnfmSPoLk0QTI8jSETajuY8elpZG2NZphVupGNl1A7sRfuMIj8KO4hlUPD7DbxzBvRLP3LqBXbl3aQ/pKTGYlxifKQma4xPgzJ6veXjtEO0HzNLYgtfIxBI3L+1nR73AboRfP0J42FHqBRX/HoRfP4JH6WfH3/w9OL37ax5cO0SHgbM0tovPLYB7T7TXeFy9n09jbwMaeulztXB3GFNjCY299QkLz9eIZWFnqXo/ep7694wlTX0MSEpTEB711wNlGDrZo2dpTlb4E5SFuw7G7DqM84DuOPXtSuyuIwDo21rj3L878Qd+R5Gnur+M2w/JuBOO238G8XjVzxS5rdQZ+wZKhYLYXaq5SkFKGuExNfPZkZev2gGnpqJU/rNGUoGKGmMYadq0KRs3bmTRokVMnz4dqVRK/fr1GT9+PADt27dn0qRJbN68mV27dtG4cWNWrlxJt26ae2OPGTOGJ0+eMHXqVNLS0nj//ff54IMP6NGjBxYWFqxYsUL9xdvFxYW2bduqYz0YGRmxbt06Zs6cyaRJk3B0dGTcuHHs2bNHIx5BQEAA69at47vvvuODDz7AxMSETp06MXXq1BfaVaZLly4cPnxY7cnwouzZs4c9e/ZoHKtduzbHjh1j1KhRODo68tNPP7F582b09PSoXbs2HTp0UHtBvPfeeyQnJ/PDDz8Aqt1yZsyYwTvvvKNR5uzZs/nyyy9ZsGABBgYG9O3bl+bNmzNvXnFwOAMDAzZu3MiSJUtYsWIFCQkJWFlZ4efnpxUnRBeNGzdmz549PHv2DKlUipeXFytWrMDT07PCvBWhr6/Pd999x6xZs7h//z6urq788MMPWkF1S2JnZ8fixYuZN28e48aNw93dnVmzZrFmzZq/pGHixInI5XLWrFmDQqGgS5cuTJw4kSlTpvzV2yqTyo6Vl1nW0KFDSUtLY8uWLWzatIng4GAmT57MhAkTNMbOjBkz8PDwYNu2bSxbtgxTU1M8PDxemsdU48aN2bJlC0uWLGH69Onk5+fj5OREy5YtqVOnTsUFlKBjx468+eabrFq1isTERJo1a8amTZv+sjZnjyC8GnXnzN7vyEpPxMq+DrfO7yYtMYpuQ4qXoB3aOJVnDy4waVnxdtKN2r1JWOh2dv04lqYho5DJ9Lj023pMzW1pWsL48ODaMU7vmY+1gzu2TnW5fUHTiFXHpzWmFtqxbWqytiLqBXXjep0gjv/8CUlx4RiZWhMWuhWFQk6L7prr+XcvHwHAiM9/Ux9r2nksD68fZvfy4QS1HUp+XhZXfl+HrbMXfi00lyzcvbiX9ORo8vOzAYgOv8TFoz8C4N6gtzpORREeAd1wcNvI6R2fkBL/ECMTa26f34pSKadJ5w800h5cMxKAN6aeUB9r2GEsj8KOcHD1CPxbD6UgL4sbp9dh4+SFdxOVNj0DY9z9tZeIRd4+QcKzMNz9O2NsrO2+Xa9hN5xONeT41ukkxT7E2MyaG3+o6q1ld01tu5ep6m3kzBL11uUdHlw/zK5lw2jYbhh5uVlc+X0tts5e+LbQjHOkmnBHU1AYwDP60UUuHFUZPOsGvapVb3UDuxH2RxAnf/mE5MI2vXV2K0qFnKZdNNv0wCqVtiHTi7U16jSWRzcOs3/lcBq0GUp+bhbXTxXWW7PiNr3y2wriIq/g5t0WMytncrNSeXTzKAlPwwho/ZaGUQTAPaAb9m4bObNT1Z6GptbcOadqz8al2vPXtar2fH1KcXsGdRhLxM0jHFozAv9Whe15Zh3WTl54NSnWdfHwAtKSnlDLMxgTC3sykqO5e2EbBXlZtOz1CbqoKe1p4/4Kppa1NNLfeqzgSbyCfm30cLCSk5mjmnBIJPDbVc0J28huqveQhTuKP7JYmUJDT1UfdrFTTVA6BKr+TsmAa4WGgwI5HL8q59VgPQZ30ONBlAJ3RwkNPWUcu1xATr72OKgpYzQ+XtOj+cYjOW1iFQzqYICjdQGZOUqC/fWQSuDYRc1J99u9VZP9uf8tLsPKTEJjL9V7p6u96r47NVa92qekK7nyQFXvjevLaOmnx61IOUlpSgz1JXi5SfFyk3E7Us6zRO068wzsxo06Qfz2i+qZa2xqzc0/VX2tWVfN8blv5QgAhn5a3Ncah4wl/Pph9v44nMC2qvF57eQ6bJy98G1ePA6un97AzT+34FinIXr6xty7vE+j7HqBndE3NNHUFtQNx9NBnPj5E5JiwzE2K/49aF7q92DPjyptwz8r1tYkRPV7sGf5cALbqbRdLfw9KKnt2qkNhIVuwcm9Ifr6xty7pKlNbtAcmb5m0Iyr9/N5FF3AW91NcLLNISNbSbuGhkgkEg6GalqnPhykskZ9vro4VomNhYTmfqq2ru2oatvuLVXrPJLSFFy4rflh0tlOiquDjCPnyw4gXGfcEPQtLdS7wzj07IiRi8rrOHLZJgrSMvD+5mPchvXjt3qdyH6sWjIds/MIyeeuErRmDma+9chPTKbO2DdAJuP+l5pGwDvT5tF094+0+HUd0b8cxNzfC/dxQ3i6bjsZdx+VqQ1qzrOjS5MaMy0WVBMSpTBBlUtKSgqdO3dmxIgRGtu3vgymTJnCnTt3/vIyB0HFLFmyhHXr1nH16tXqlvKvY9GiRfz000+cP3/+L3lE/a+wusSKooL8XP7Yv4g7F/eTk5WKvYs3rXt9hIdfW3WanxcN1TI+AKQnx/L7ztlE3glFqVTgVr8FHftPx9qheFIXenAJZw8tLVPLoI82UttLt9dMTdNW2mMEICcrldB983l08zgF+bk4ugXQ+tUpONbWXDq1/kvVUq2ShhGAxJgH/LF3LtERV5DJ9HH3a0+b16ZiYq5pkNm1dChR4Rd16uw5ZgO16jbXOp6bncr5Q/OJvH0CeX4u9q4BtHhlCvauARrptn6r2q2p5KQLICnuAecOfktc5BWkMn1q+7SnxStTtLSV5uT26UTcPMrIWZd1GkZAVW9/7JvHo7CiemtAm9e06+2nWap6KzmRBlW9ndkzl+iIy+p6a9tnmpa2nUuGEhV+QaeG3mM3UMtTu+/lZqVy7uB8Im+ptNm7BRDccwr2bpra/jtHpa2kYQQgKfYBZw/MJTbiClI9Vb0F99Js02f3QwkL3cTzqNvkZCYj0zPA1tkbn+YD8GrSF7mOj6y52alc+HU+jwvb0841gOY9tNtz2zxVe5Y0jAAkxz3g/KHi9nTzaU+LHlMwLqEr/PpB7p7/mZSER+Rmp2FoZI6jexMadnwHOxd/TE1qbnu2f3MdDnWaaR03MoDuTWX41paiL4OoRCW/XpQTnag5nicO0J7ceDhJGN1dO/4UQESsgrWHNQ0FTetLaR0gw9oMUjPh3F05Z28rsLLQPbmpCWO0tGEEwNgAegbr4+8uQ18PniYoOHg2n2cJmnU2bYhqclzSMFK3lpR3XtUdHCE8Ws7KfaqlFa72Eto31KO2gxQzYwkKJSSkKLn6oIDQMDnOtXT/RudkpXL2wHwiCp+5Dm4BtOo9BYdS43PTN6q+VtIwAqrxGbpvLjERV5Dp6VPbtz2te2uOzxM/T+PepT06rw+qmCIWNq5ax3OyUvlzf/HvgUPR70EpbRu+UmkraRgBSIxV/R7EFP4e1PHV/j04vnUady+Wra314N0Ym9fSOm5sKKFveyOC6umjry/hcayc3SezeRKn+bD5cowqAH5Jw0h9Nz3Gv657i/v7TwtYvE1z+c6rbY3o1sKIb9anaWwD/Mr04udtxwcnMHHXrkNAbQgJXDtHyzACoGdlge+3U3B6tTNSY0NSL4VxZ+o8Ui9rL0VyfDWE+p+9j5mPJ3kJSTzbuJsHXy9Te6AAnF0dppUPasaz4+sRf22r8qpg4ISIarv29u//XgzA/08Iw0gpVq1ahZ2dHS4uLiQkJLBu3ToiIiI4dOiQ1hazf5V79+5x584dZsyYwcyZMxk4cOBLKVegjTCMVA3h4eHs27ePRo0aoa+vz4ULF1i7di1vvPEGn376aXXLq1ZKGkYElUeXYaQmkJNTM3UBZRpGagI1tT0BCv6hXSL+LmUZRmoCMXH/3A5ef5eyDCM1AV2GkZqAi0vN/XghrbnDgLt3UitOVE2UNIzUJMoyjNQEhGFEN/8mw0jN/fWoJqRSKT/++CNxcXHIZDKCgoLYsGHDSzOKALz77rskJSXRp08frS1XlUolcl2fr0rok9bkXwnBvxIjIyOuXr3K1q1byczMxNHRkdGjR6tj9QgEAoFAIBAIBIIXRym2660ShMdIDeP8+fMMGzaszPN9+/Zl7ty5VahIIBD8HYTHyF+jpnoYCI+Rv0ZNbU8QHiN/BeEx8tcQHiMvTk3+Fig8Rl4c4THy1xjwUflxWv5Jdiz+6xsP/H+j5v56/Evx9/dnx44dZZ63trauQjUCgUAgEAgEAoFAIBD8byMMIzUMMzMzGjRoUHFCgUAgEAgEAoFAIBD8T6NQ/r0tnQWVowY7qAkEAoFAIBAIBAKBQCAQ/LMIjxGBQCAQCAQCgUAgEAhqICL4atUgPEYEAoFAIBAIBAKBQCAQ/GsRhhGBQCAQCAQCgUAgEAgE/1rEUhqBQCAQCAQCgUAgEAhqIGIpTdUgPEYEAoFAIBAIBAKBQCAQ/GsRHiMCgUAgEAgEAoFAIBDUQJRK4TFSFQiPEYFAIBAIBAKBQCAQCAT/WoTHiEAgEPyDyGqw+dncRFHdEsokJaNmVlzr+onVLaFMwqLtqltCmaSl19y+lpdXM7WZGEuqW0KZJCZkVbeEMjE0NKtuCWUSF51a3RJ04uhkVN0SykRSM4cnAM/C46pbQpmcXR1W3RJ0EjymQXVLKJsR96pbQZkoFDV4IPwPUTPfPAUCgUAgEAgEAoFAIBAIqgBhGBEIBAKBQCAQCAQCgUDwr0UspREIBAKBQCAQCAQCgaAGIrbrrRqEx4hAIBAIBAKBQCAQCASCfy3CY0QgEAgEAoFAIBAIBIIaiFIpgq9WBcJjRCAQCAQCgUAgEAgEAsG/FmEYEQgEAoFAIBAIBAKBQPCvRSylEQgEAoFAIBAIBAKBoAYigq9WDcJjRCAQCAQCgUAgEAgEAsG/FuExIhAIBAKBQCAQCAQCQQ1EeIxUDcJjRCAQCAQCgUAgEAgEAsG/FuEx8g+ya9cu9PX16d27d3VL+Ufx9vYG4IsvvuCNN97QOBcaGsqoUaMAOHHiBK6uri/tus+ePSMkJITFixfTvXv3MtMtWbKEdevWcfXq1Zd27Zehqyawa9cupk+fztmzZ7GxsaluOS+F48eP895771W6v61fv545c+bQv39/Zs+erXV+6NChmJiYsHLlyr+trSA/jz8OLObW+b3kZKVh7+JN21fH4+HbusK86SlxnNg+m8g7oSiVCmp7tSBkwCdY2bup0+Tn5XBs25fERNwgLTkGpVKBlZ0bga3606j9m8hk+uVqO7HrB679uY/szDSc3Lzp3P9D6gVUrC0tKY5DW+by8FYoSoUCD98WvPLmNGwc3DTS5WSlc3L/Cu5cPk5qUhymFjZ4+gfTqc97WNnWKldb6MHF3L6wl9ysNOxqedOm93jcK1lvv++YzeO7qnpzq9+CjgM+wcquWFtacgw3/9zJo1snSY5/jFQqxbaWF8Hd36WOT6syy87Pz+OXzWv44/fDZGSkU9u9Hq8PHUNgo+blarrw50n+PHOCR/fvkpKSiK2dA42btabf4BGYmpmXmS825hmTxw0lPz+Pb75fg2d93zLTFuTncXrfYsLOqfqag4s37fuMp65fJdozOY7jv8zm0W1VndXxbkGXQZ9gbe9WZp6nDy6xcf4QACYsPIuJeeWeJ4b60DFQgreLBD09iEmCE9cUxKVUKju25tC5oRRXO5ArIDxGyfHrSrJztdNamUK7AAnujhIM9CA9G+48VXL8im5dXRrL8HGToK8HUc+VHL0iJzapcrrsLKBbUxm17SXIFXA/SsnRy3KySumyNoPOjWR4OEnQk0FMkpLfryuIjCv762Budhqh++YTHnacgvwcHGs3oM2rU3Fw86+UtqS4cM7smUPMoytI9fRx921P2z7TMDbTbLOLx1YQ9/g6sY9vkJ2RSPNu79Gi+wfllm1sKKFveyMa1tfHQE9CZGwBO3/P4Wm8vEJddZxkBAcY4OEsw8Vehkwm4d35KTrTGhlAj2DVdazMpKRnKbn7OJ+Df+aUWb6hvqqveLuq2jQ6UcmxqwpikyuUBqjatEtjKbXtVG36IFqVv2SbtguQ0r5B2d8cv16jz4Mn+RrHTIwkvN7VnMa+Rhjqw6OofLYeTudxTEG5eiQSaB1kTFM/Q2o762NmLCEhWc75mzn8GppJfonsNhZS2jU2JsjLEEdbPRQKeBZfwL5TGdx+lFfmNXKz0zh/aD6Rt45TkJeDvVsDgntNxc6lcn0tOS6cswfmEBt5BZlMHzef9gT30u5rJXlwdT+//zwZPQMTRn2lY3CW0HbuYLE2B7cGtOw1FXvXymv7c3+xttq+2toyU+M4d2gBCU/DyEqLRyKVYWnvjn/wm3g16VNm2abGUob3tadlQzMMDaQ8iMxh3c54Hj3V8WAqgUQCHVtYENzInLquhpiZyohLzOfMpTT2HEsmv0DzuWBpLmN4H3uaNDDF2FDKs9g8dhxJ5M8rGTrLNzKAbk1k+NWRoi+DZ8+V/HpRTkxSxd4ILnYSGteT4monwclGgkwqYcb6svtOk/pSWvvLsDaH1Ew4d1vOubuaW87KTE2oO3E0Vs2DsGrWAAMbK66Pnsazjbsr1AOgZ2mO79zJOL7WBZmJEakXw7g9ZS5pV29rpXXo1Qmvz9/HzLceefGJPN2wi4ffLEcpr/jZVBNQiO16qwThMfIPsnv3bg4cOFDdMqoEExMTDh06pHX8wIEDmJiYVIOiYgYOHMiGDRuqVUNNpUOHDmzbtg0LC4vqllJt7Nu3D4Bjx46Rl1f2j/zL4NDGaVw8vh6/Zr0JGfgpEqmMHUvf5tnDS+Xmy8vJZOv3w3j64CLB3cfSpteHxD29w5bv3yI7o/itviA/h+fRD6kb0I72fT6mY78pOLj6cGLHHA6un1buNXaunk7okQ0EBfem55BPkEilbPzuHSLvXy43X25OJmvnDifi3kXa93qbTn3fJ+bxHdbMGUZWCW0KhYKf5o3mwomf8W3SmV5vfUpgy57cunCEVV+9SW52ZpnXOLxpGpdPrMe3aW86DvgUqVTGruWVq7dfFg/j2cOLtOg2llY9PyT+2R22laq3h9dPcOHYaqzs69Cm93ha9hhHfk4m25eMJOzszjLL//H7bzi052dad+jK8LfHI5VK+faLSdy9db1cXauXziP66WPadOzKiLfHE9S4JUcO7OSzSWPJyy37xXnT6h+QymTlll3E/vXTOH9sPQEtetPldVVf2/bD2zx9UHGd/XfhMJ7cv0jrHmNp1/tD4p7cYdOCtzTasyRKhYIjP3+NvuGLP+sHtZXiX1vC5YdKfr+hxMQQhnSUYm1WcV5zY3irMO2pm0rO31fi6SzhjXZSpKXebhysYGQXKQ5WEi7cV3LsqpLbT5SYG+su+82OMhq4S7h4T8HxKwpMjSSM6KyHTdl2q2JdJjCiqx425hJOXFPw520FXi4ShoboaeiyMIHR3fWo7SDhz9sKTlxVYKAn4a0QGbUdJDrLVioU7F81lvtXDhLYZgite08iOz2JXcuGkZIQWaG2jJRYdi55i9TnTwjuOZ5GHUYSeecUe34chbxA8/l37tAi4p7cxN61bANcSSTAe/1NaeZrwKmruew+nY25iZQJg82wt6r4dTOgrj6tAw1QAs9Ty54ESICPBpnRrqEh1x7k88uJbC7dzaOxtwGTh5hjUMYnvzfaywioI+HSAwUnrqnadFiIDJtK9jVVWgm/3VBw9q6C+rUkDOko02jTu88U7Dkr1/ovNVNJdq6SR1GaRhGJBD5+y5qWDYw4cT6TbUczsDCVMn2kDY425Y91A30JY/pZYm4q5feLWfz313QeReXTt6MZE4daa6Rt7GPEK23MiEuSs/NEBntPZWBsKGHqCBvaNtI9CJQKBYd/GsvDawfxDx5Ci1cmkZORxP6Vw0h9HllhnWWkxLJ/5VukJT6heffxBLYbydO7pzi0RruvFZGfm8n5Q/PRMyj/WaJUKPh1XaG2VkNo0XMS2ZmF2io5DvatKKGt/Uie3DnFwdWa2nKyUshMjaVuYDda9ppCs24fYWJuz8lfpnPh8Pc6y5ZI4LP3XGnXzIKDp1LYsDsBS3MZ30xww9m+7I8TAIYGEj4a7oyFmYzDZ1JYsz2eB5E5vNHLjpnva37oMTaSMndSbYIbmXHkTArrdyWQnaNg6hgX2jXTflBJgKEhegTWlXLujpwjl+WYGqmeQbaVeK55u0ppUl/V2ZPSy0/bzEtK39Z6xKcoOXhOztN4Bb1a6tE2QPM5YGBnjddn72PmU5f0G/cqFqFxQxKa7VtFrcG9eLx8M3enz8fA3oaWxzdhUq+ORlL7bu1ounMZ+Snp3Br/FbH7jlP/k3fxX/zZi11T8D+P8Bj5l5KTk4ORkdFLKy8kJISDBw8SFxeHo6MjAHl5eRw7dozOnTurJ5/VgZOTE05OTtV2/armRdrWxsbmf8ZT5K8QERHBrVu3aNWqFX/++ScnT56ka9eu/8i1oiNvcOfSQTr0m0KLLqMBCGjZh7Vf9eL33QsYOvnnMvNePb2F5PhIhk3djrN7IAB1/duy9qveXDj+E+37fAyAsakVw6b+opG3Ubs3MDQ258rJzXQaMA0zS3ut8p+F3yDs/CG6vz6ZNq+oPLwatn6NJZ++ypFtCxj72dYytV04sZXEuMe8M/MXXOs2AMArsB1LPn2VP35dT9eBEwqvcZ2oiDB6DZ1By85D1PntnDzYvfZTwm/9iV/TLlrlx0Te4O7lg7TvO4VmnVX15t+iD+u/7sXpPQt4c1LZ9XbtjKrehkzZjnMdVb15+LVl/Te9uXTiJ9q+pqq32l4tePvr3zEp8aUwqM0bbJzzGn8e+IEGwf21yn547zZ/nj7OkFHv0bvfmwC069Sdye8N5b8/LeerBWV7GI2f9jX+gY01jtWt583y77/mj5NH6NTtVa081y+f5/qVC/Tu/ya7t5Vv6I2KuMHtiwcJGTCFll1VdRYY3IdVX/TixM4FjJhWdp1dPrmFpPhIRn6ynVqFfc0zoC2rZvXm/LGf6Nj3Y608V85sIy0phoZtBnDxxMZytZXEx1WCq52EXX/KufdMdezOUyVje0hp6y9h3/nyv2K28lV9+f/puIK0LNWxmEQlb3SQEegu4dqj4vy9m0tJTIctJxUUVPCB0K+2hNoOUn45XcCdJ6oybj1W8P6renQIlLErtPwC2vpLMdCDVYcK1LqiEpUM66xHw7oSrjxUldnGX4qRAfx4oIDENFW6yw9V1+nWRMau89plP7x+hJjIq/QYvoh6DVUeifUb9mDT7O6cP7yEbkMXlqvt0vGVFORlM3jiTsytVV5ajrUD2btiFHcu7Cag1evqtMM/O46FjSvZGcms+Sy4/EoDGnnr4+mix6q9mVy9rzIAXL6bz6z/mNO7tRHrDmaVm//0tVyOXsghvwBeDzEu0zDgUUuGu7MePx/P4tTV4klsXJKCYT1M8HBScu+ZZt/xc5PgZi9hxx9y7jxVnbv9RM64XjLaN5Cy+2z5X2PbFLbpmiNydZtGJyp4q5OMIA8JV8NVZcanQHyK5rUtTFT/XQ1XUvrjdDM/I+rXNmDJz8lcuq0yil64mc23H9nTt5MZK3aklqmpQK7kq9WJPHxabGw5dTmb5yly+nUyx6+ugdob5E5EHh9/F09GVrG23y9m8dU4O/p2MmP979rlPwo7Qtzjq3Qesoi6gaq+VjewB9sWdOfSsSWEvFF+X7v2+0ry87Lp98FOzAr7mr1bIIfWjOL+5d34tnhdK8+V31agb2hKLc8WRN46UWbZRdq6vFWszTOwBz/PL9T2Zvnarv6uGgf9PiweBw5ugRxcPYp7l3bj11KlzdbZm1ff2aSRN6D1W/z60zvcDN2MZ+seSCSa/bRVI3N8PY35dlUUf15VeW78cTmdH2d58EZvO75bF1OmroICJVPnP+buo2LPp2OhqcQn5vNmbzuCfEy4flfVAbu3taSWgwEzFj0l7J7q2K+nU5g3pTYj+zuweK8CeYlu7e8upY6jlK2/53PrsaofhEUomNBPn06NZGw/Xf5z7fxdOafD5BTIoVcLGfaWusenngw6N5Zx96mCn0+q3JYuPVAZjDoEyThpZUFBiuqBlxsTz3HX1uTGPceySQBtzpX9IaI0zv27Y9OqMZdf/5DYXUcAiNn+Kx1uH8Hr8w+4NmySOq3vt1NIC7vHhR6j1B4iBWmZ1Js2loglG8m896jS1xX8byM8Rsrg6tWrjBo1isaNG9OoUSMGDhxIaGio+vyCBQvo3bs3jRo1om3btnz88cfEx8erzw8dOpQLFy5w8uRJvL298fb2ZsmSJerzJ0+eZODAgQQGBtKyZUtmzpxJVpbmS8ODBw8YMmQIDRo0oGvXruzbt49x48YxdOhQjXQXL15k8ODBBAYG0qJFC6ZPn05KSor6/LNnz/D29mbXrl3MmDGDFi1aMHDgQDZt2kRQUBAZGZoud+Hh4Xh7e3Pq1KlK15evry/u7u4aXiOnTp1CqVTSoUMHrfTr1q2jf//+NGnShODgYMaOHUtERIRWuoraASA3N5cvv/ySZs2a0aZNG7799lsKCop9SJcsWUKjRo3Uf58/fx5vb29CQ0OZOHEijRo1omPHjqxevVrn9YcNG0bDhg1p0qQJEydOJDExsdL1UhZKpZK1a9fSrVs3AgICCAkJYf369RppwsPDmTBhAu3btycoKIhXXnmFdevWoVAU/9KV1bagWuK0evVqlixZQqtWrdR9o2Q/27VrF97e3iQlJWmUt3fv3nLrFFQeFt26daNBgwYMGjSIW7du0bRpU41+ros9e/bwxhtv0Lx5c5o1a8bQoUO5ceOGRpqiNrt37x5vvPEGQUFB9OrVizNnzmiky8/P55tvvqF58+Y0adKETz75hMzMsj0PSnPgwAEkEglffvkldnZ27N+/v9J5X5R7Vw4jkcpo2Kb4ZVBP35DAVgOIfnSVtKSyX5buXTmCc50GaqMIgK2TJ3W8g7l75dcKr21p6wKoXI91cfPSEaRSGU07DlIf0zcwpEm7/jx9eI2UxLK13bx4FBePBmqjCIB9rbrU9WvJzQuH1cdyslXPGTNLO4385lYqQ42egW5j3v2rqnoLbK1Zbw1aDSA64ippyWVru3/1CE51GqiNIlBcb/dK1JtdrfoaRhHVNQzw8G9PekoseTnabsnnQ39HKpUR0v019TEDA0M6dunFg7s3eZ4QV6au0kYRgGbB7QCIevpY61xBQQEbVi+ix6sDcXR2KbPcIu5eVtVZo7aadRbUZgBRFfS1O1eO4OzeQG0UAbBz9sTDJ5g7l7T7WnZmCqf2LKLdax9iZPxinmc+bpCRrVQbRQCyc+HuUyX1XSTIKnhD8XaV8DBGqZ6oAkTGQ2KaEh+3Yo+Luk7gYCXhj1sqo4ieTPWSXhZ+daRkZCvVRhGArFy4/USBt1vFunxrS7kfpakrIlbJ8zQl/nWKM9d2kBKbpFQbRQAK5HDvmYJathIsdXw0f3j9CCbmdngGFhtwjc1sqNewO49u/lbml/ji/Edx9+ugngwC1PZuhZW9Ow+uHdZIa2HzYktfG3vpk5qp4Nr94ol6RraSy/fyCaynj14Fzk7pWUqN5R9lYWSgary0TE0DRGqG6rdRl+HLt7ZE1aZPS7epEi/XitvUx03Cg+hSbRqnJDFNiV/tcjoT4F9HgkQiISxS2/jSzN+QlHQ5l+8Ue4qlZym5cDOHxj6G5daZXI6GUaSIy4UGllr2xd8+oxIKNIwioKqn6/dzsbWUoa/jM2lE2BGMzezwCNDsa3UbdOfxrYr7WsTNo9Tx6aA2igC41m+FpZ07j24c1kqf+jySsDPrCe41Dam0/M7yqAxtnoHdiayMtrCj1PbVHAflaSuNubULBfnZKBXaHbZVYzOSUws4e634dyMtQ84fl9NpEWiGnl7Z/aVAjoZRpIhz11QuGq5OBupjfvVMSEkvUBtFAJRKCL2cjo2lHu6OmtfxryMhPVvJ7ceaY+BmpAJfN2mFYyAzR/fYKk1dJwmmRhIu3NVMfP6uAkN9CY6vdFAfU+Tlkxv3vOJCdeDUrxs5sQnE7j6qPpb3PJnoHb/i+GoIUgOVd46Zryfm/vV5uuYXjWUzj1dsQSKV4tyv21+6flWjVCir7b9/E8IwooPLly8zdOhQ8vLy+Prrr1myZAkhISFER0er0yQmJjJ27FhWrlzJp59+SlRUFEOHDlVPHmfOnImfnx+NGzdm27ZtbNu2TT1hPXz4MO+++y5eXl4sXbqUyZMnc+zYMT799FN1+Tk5OYwaNYqUlBTmz5/Pxx9/zOrVq7l165aG1ps3bzJy5EhMTU1ZvHgxkyZN4vfff2fMmDHIS32a+O6771AqlSxcuJDJkyfz6quvolQqtZb77NixA0dHR9q0afNC9dazZ0+Nsg4cOECXLl0wNDTUShsbG8tbb73F8uXL+frrr1EoFAwePFjDoFOZdgBYtGgRUqmURYsWMXjwYNatW8f27dsr1Dtz5kzc3d1ZtmwZHTt2ZMGCBZw+fVp9/urVqwwdOhRzc3O+//57vvrqK8LCwhg3btwL1YsuvvnmG3744Qf69OnDqlWr6Nu3LwsWLGDr1uIv8/Hx8Xh4eDBz5kxWrVrFoEGDWLZsGcuXL9cqr3TbFvHf//6XyMhI5s6dy3vvvcf+/ft15i9NRXV6+/ZtPvroI+rVq8fSpUvp06cPEyZMqNRSlGfPntGnTx8WL17MggULcHZ2ZsiQIVqGsfz8fCZNmkS/fv1YunQpNjY2fPjhhyQnF7vzf/fdd2zdupXRo0ezaNEiFAoFCxeW/6WoJAcOHKBp06a4ubnRo0cPTp48SXp6BT6if5G4p3ewcXDH0FjTb7vI2BH/7I7OfEqFgvioezjVCdA65+zegJSEJ+SWmrjLC/LIykgiLSmG+9eOceHYOixsXLC2r6NVBkDM4zvYOrljVEpbkbEj9sldnfkUCgVxz+7h4qG9ptu1bgOS4p+ol8i4eARgYGjCiZ0/EH77HGlJcUTcvcCRbQtw8WiAp7/uL9Lxz+5graPenAqNHQnl1FtC1D0ca2vXm1OdBqQ8f6LT4FGSrLQE9AyM0TPQdjWPfHQfZxc3TExMNY57evkB8PjRg3LLLk1Ksso4aW5hqXXu173byMxIp+/gEZUqK+7pHWwdteusyNgR+7ScvvbsHs66+ppHA5J19LVTexdjZmlP43aDK6WtJI5WEp2xRKKTwEBPUu6yFTNjMDWSEKMj5kdMkhInq+K/iyYIcgWM6Cxlcn8Zk/pJea2lBCMD7fxO1hKda+6jnisx0JNgW479x9wYzIwlRCfqzu9kUzxZkckgX8dEo8g44KDdFUiIuoO9qx+SUmuFHGsHUpCXTXK89geGIjJS4sjOSMTBTbt9HWsH8jxKe13+i+DmKONpnJzSdx4ZI8fQQIKD9ct55XwcJycnT0nvNkZ419bD0kxCfVcZfTsYExlTwKNY7bp3tJYQk6x9PDqxsE3L6WvmxmBmJCFaV59IVOJkXb5hpEEdKamZSp4kaJ+r7azP45gClKWKfhSVj6GBFCfbF3fstjRX1XNGVsUxCSzNpOTmKSjQYZB6Hn0HOxftvubgFkhBfjapCWX3tcxUVV+zc9Xua/ZugTyP1u5rf+6fQy3PFtT2aV+h7udR5WtLqYQ2ex3aHGrr1laQn0N2ZjLpSc+4d2k39y7txrF2Q6Qy7ffbum5GhD/N0WrTB5E5GBlKcXEofzmNLqwsVP0gLaP4gaGvJyEvT7tP5hYec7HT7JfOtlKiE5Va4/PZcyUG+hLsLMrvx5XF2VZVTlSpZ2B0ohKFQolFw8otzasIy4a+qlgipSo69WIYeqYmmHp5AGDRUPWbnHI5TCNdbkw82U9jXpoewf8GYimNDubPn0+dOnXYsGEDssL13KWNBHPmzFH/Wy6X06hRI9q1a8e5c+do06YN9erVw8zMDBMTExo2bKhOq1QqmTdvHq+88grffPON+ri9vT1vv/0248aNo379+uzcuZPExES2bt2qDiAZEBBA165dqV27tjrfihUrsLe3Z8WKFejrqx62zs7OjB49mlOnTtGpUyd1Wh8fH41rAnTr1o2dO3cyeLDqpbagoIB9+/YxYMAA9b1Xll69erFkyRKePHmCra0tJ0+eZNmyZeTkaFu/P/nkE436a926NcHBwRw5coTXX1d95axMOwAEBgYyY8YMAFq3bs358+c5cuSIViDY0nTt2pUPPlAFkgsODubkyZMcOXKEdu1UX24XLlxIQEAAS5cuRVL4edHLy4tevXpx6tQp2rev+MdbF0+ePGHz5s3MmjVLfa+tWrUiJyeHZcuW8frrryOVSgkODiY4WDVZVCqVNGnShJycHDZv3sz777+vUaautgVVvyoyFLRr147bt29z5MgRJk2apJW2JBXV6cqVK3F1dWXJkiVIC19MTE1NmTJlSoX3X1K7QqGgdevW3Lhxg927d/Pxx8Vu+kWGkaJ69vDwICQkhNOnT/Paa6+RkpLCli1bGDNmDGPHjgWgbdu2vPXWW8TFlf21vogbN24QGRnJyJEjAVX/3bRpE0eOHGHAgAEV5n9RMlMTdC5jKTqWkRqvdQ4gOysFeUEepuXlTYnH0Kl4Enzv6jH2ryuuS6c6AbwydDZSme5HfnpKgtpzoyRFx9JSytCWmUpBfl6Fee2NPTA1t+b1cQvZ89Pn/PTtSHW6+g3aMPj9RcjK0JaRmoCZhXb5piXuXae2wnrTVeemJercxkh3gIHk+Mc8uH4Mr0bddX69TE5KxMraVuu4tY1t4fkX+wq2b+dmpFIZLVp31DiekpzIrp/XM2T0+1pGmLLIqKivldmeZdeZrr4W9+wuV05vY/AHqyr8wqsLMyN4mqD9Yp+ZrVSfTyhjJYFZoYNRpo5Ymxk5qiCgMqnKGGJtpnp+9wmW8ihWydk7ChysJAT7SrAwkbD2sOYE0twYnuioovTsovMSreUSal3GqmtlZGufz8hWYmIoVetKTFNS214VCDavxMS0KL6IqQ4nqqy0BFw8m2odNy0cI5lp8djV8tapLTMtXiNt6fw5WanIC/KQ6emwFlUCC1MpD55qz7CLPDkszaREP//7AQQzs5Ws3Z/JkG4mjH+9ePzeishn9d5MbB21x7S5ke42zShsUzNjCfGpZbWpZlqN/DlgUqKvlcbeQmWU+fO27vu2MpNyL1L7g0JKumoCbGUh5Znu4Vomr7QxJStHwY0H5Qf6dLCR0dTPiIu3clCi3dmy0hNw9tDuayYl+pqNs+6+lpUer5G2dP7cUn3tyZ2TPLsfyoDxe8rVrKGtrg5t5qrrZaXFY1uWtsJxUJS2dP7S2gDC/tjIhV+/U//tUi+YDoNmc/mc9ocUaws9bj3QXjaWnKoaGzaWejyOfrF4Zv262pCZLefKrWKP2Ki4PAJ9TLC30SMhqXjc+dVTdVhzE01Dh7kxPNZhNEwv9CQyN6HSQa/Lw9xYglyh1Ho2yxUqDxVDZ4e/fxHA0NmepD+0Y2blxMQXnncg/eZ9jJxU7Zwbo22ZzI1NwKjWy9HzT6NU/P1np6BihMdIKbKzs7l+/Tp9+vQp1zBw6tQpBg8eTJMmTfDz81NPpiMjI8stPyIigqioKHr06EFBQYH6v+bNmyOVSrl58yag8gTx8vLS2FXD1dUVHx8fjfIuXbpESEiI2igCKuOBhYUFly9rBk3UtaRl0KBB3LhxgwcPHqjvKzExkf79tdfUV4S7uzv+/v4cOHCA48ePY2pqqp7Yl+batWuMHDmSFi1a4OfnR1BQEFlZWer6q2w7FN1vSTw9PYmNja1Qb8l8EolEI192djZXrlyhe/fuyOVydTu5u7vj7OxMWFhYWcVWyJ9//gmoDDMl+0CrVq1ISEggJkbl5p6bm8sPP/xAly5daNCgAf7+/nz//fckJCRoLRfR1bagMriU5K/Uja58YWFhdOjQQW0UAVWcmcoQHh7Oe++9R6tWrfD19cXf35+IiAitsVNkHCrC1dUVIyMjtdHj/v375OTk0KWLZlyKysYIOXDgAPr6+uqdgxo2bIibm9s/tpymID9H54RDT0/1xSk/T/duCgV5uYXpdOTVNywsW/MFuI53C17/8CdeG7OYhm0HI5Xpk5er462+kPy8XPT0tL9iqcsvQ1uR5nK1lchram6Dcx1fOg8Yz5CPltKpz/tE3rvMrjWfauUvosx6U997GfVWWCfl1XlR3WrfVzb7136Enr4R7V6bqDNNXl6uxnO3CH0DA/X5yvLHyaP8fvQAPfsOxtlFc+eXLT8tx8GpFp26Vn53s/y8v1dnOtuzqJ+W6GtHf/4Gz4B21PV/Me9CdZky3ZPJAkXx+fLygm7X7qJjRWmKgnHGJMH+80ruRcGZW0pO31TiaifBw0lzAqEnU8VvqKhcXei/gK5L9xUYG0oY0FaGkzXYmEO3JlJqFXqV6Ol4QytrPMjKeBZo5i17TMgq6BuVwUCv/Ps2KGcJwYuSnqXkaZycvaez+XF3BgdCs6nnosfQHrqDdlbU1/Qr0dd0bV5RUZ8IcFc1Ythj3ZMaA32Jzjor8hp60Trr1c6UAE9Dth9LJyunbBd4A314/3Ur8vKV/HJMt5ekvKy+VvgskBdUoq/Jynn+FvY1eUEeZw/Mwa/l61g71iuzzEppq8w4KChnHOjpHgf1Gvak55h1hLyxgHoNe+lMU4SBgURr9xiAvMJjBgYvNvUa0N2Ghr6mbNzznMzs4n50NDQVhQKm/KcWPnWNcLLTp383G1o2VBkGS/dpfVlxfy9JUf/TtZzqr6BfxlgrupbM+OXEN5QZG6HI1TYwKXLyCs+r2lJaeD1daeU5uerzAgEIjxEt0tLSUCgUODiUbUG8ceMG48aNIyQkhDFjxmBra4tEImHQoEHklrOjAKBeBvDee+/pPF80KY6Pj9cZFNPGxkbjGmlpadjaan+1tLW1JTU1VetYaZo1a4aHhwc7duxg+vTp7Ny5k2bNmml4pbwIvXr1YufOndSqVYsePXroNGpER0czatQoAgICmDVrFg4ODujr6zN27Fj1vVWmHYowN9f0gdXX16/Ukg5d+YqWUaSlpSGXy5kzZ46Gd1ARRe30V0hOTkapVNKyZUud52NiYnBxcWH+/Pls376d9957j4CAAMzNzTlx4gQ//vgjubm5mJoWfz3W1baA1m4zf6duSuZLSEjQ6p9mZmY6l02VJCMjg1GjRmFjY8O0adOoVasWhoaGzJgxQ2vsGBkZYWCg+eKir6+vTpeQoLL+l753OzvNGBa6UCgUHDp0SG2QTEtTLfIPCQlh48aNGkGEXxZ6+kY61z0XvaTplxFjQ8+g8EVNV96iiay+Zr2bWthhaqGqB5/G3Tn76wp++WEkY2Yd1ekNoG9gSEGB9lp1dfllaCvSXK62wjRJ8U9ZO3cEA96ei38zlfHKt3EIVvYu7Fo9nfvXT+MV1E6rnDLrTX3vZdSbftHLe9l1XlS3JVEo5BxYN4HE2If0H7caMyvd/cDAwJD8fO06yy8cJwY6ytbFnZvXWPnDHIIat2DwsLc1zj24e5Mzvx9hxjeLNYyQFaFv8PfqTGd7FvXTwjS3Lx7iWfhV3v6iYkOiVKLt/ZCVW/iSrOO2igwC5a1nL29CWtpoUvT/2080Jyt3nyrpGAiezsUeIEW69GTaE9LyjDFF5L+ArofRSg5dkNO5kZSxPVVGtsQ0Jb9dV9A+QM7z5ylklog/YmxmU+Z4kJfxLNC4fjljQl5B3yiJVAIWppr1k56lJK+g/PvO0zFZ/CvYWUqZ8LoZG37NUgd5vfGwgMRUBcNfMeVxolxju+PK9DVdS5qKKGovXd9oKuoTAXVUfet5mmoMWJoVi0jLVJCXr9RZZ0WT1Beps+YBRvTvZMapy1n8drFsQ7hEAuMGWlHLXo+Fm5JJSsnFLl3za7qRqQ2ysvqa2rBQib4mL+f5W9jXwv7YQE5mCk26aG8FLS/IIy9H8122XG2VGQd65YyDAt3jwNzaBXNrVXyneo16cWrHZxz56W28gn9AWsL4k5YuJy9Pib4Og1aRkSsvr/Jf/ts0MWdIbzuOhaZw+HSKxrnHUbl8ty6ad9905NvJqmWySakF/LQznrGDnVAqi72dMnNUfVyXsbWo/1Umvk9lyC9jrBVdS579142vJZFn5yA11DZuSQvXR8oL92xXFF5PV1qZkaH6vEAAwjCihbm5OVKpVCOQammOHz+OmZmZOg4DQFRUVKXKt7KyAuDzzz8nMDBQ63yRIcDBwYE7d7TXgSclJWlMiC0tLXUGA01MTMTSUnOBsqSMaHMDBw5kzZo1jBw5klOnTulcklFZXnnlFebNm8ejR4/473//qzPNmTNnyMrKYunSpeqJe0FBgYYhpzLt8E9ibm6ORCJh7NixdO7cWeu8tbW1jlyVw9LSEolEwpYtW3R+cfbwUK2LPHz4MK+//jpvv108WSorIG5ZbftPYW9vrw7YWkRGRkaFhsFr164RGxvLypUrNbyf0tPTX3jnIHt71QQ/MTFRw4jx/HnFSxjOnTtHQkICCQkJNGvWTOv8oUOH1EtsXhamlvZkpGgv8clIVb2QmlnqNgIam1gh0zMgM1XbDVSd16p8A6J3426c3vc9D2+coGFb7VgQ5lb2pCVrj7X0FFX5FmWUb2xqiZ6+gTpdeXmv/LGbgvxcvBt20Ejn20i1dOTxgys6DSNmlvak66i3zAruvajeMnTUW2Y5dX70vzMIv3mSniMWUNu77J04rG1sSUrU7mvJSYmF5ys20D1+9IAFX03DrU5dJkz/Wms50X9/Wo6PfxD2jrWIj1MZY9PTVM/JlKREnsfHYuegPW7KqrOK+ouxadl1VjrviR3z8G3SDZlMn5TnquipOYXBfdOSY5HL8zEvNCrZW8Bb7TRnf8sPyMnIKVp6ojn5My1ajlLO+2rROV3LTcyMIDtXqf5qmZ6tBCRklvqCblW44qK1v4zW/ip9i3bnk55dPKEoSdHWvuk6lsmodRUtA9JxX2bGErJK6AK4eF/BtXAFjtYq9/PYZGjkKeHq1atMHDVMI//wz45jYmFPZpqOPl14zNSi7GdB0bmy8huZWFZqGY2zNYzrofl+8enKNNIyFRoT/yKKjhUtqfm7tAwwQF8PwsI1DZM3Hqpmdv1aafa1H/YVkJ6ju02Ll8mU16aaaTXyG6HVpkW42YGVmYQT1+S42am2Bobi9pn4XQIpGQqszLUtI0XHUtIqV2f+nga83c+S6w9yWb9fd5DtIka9ZkGQlyErd6ZyJyKP9MSbbP56vEaaN6Yex8Tcnqx07b6SVYm+ZmLuoJG2dH7Dwr6Wl53O1RM/4hf8Jvk5GeQXxjDKz80CpZKIm0f5bavm0t83pxVq01V2oV6T8rQVntN5b+nF2sqjbmA3LHjMpgV+GsfHfBpOcloB1pba06uiY0mplbNABPmYMH64E5duZrJ8i+7lwX9ezeDCjQzcXY2QSuHRkxx6dVS9nzbzltHMW9WPFuzIUz3XTLTfFYuW3KSXv2lUpUnPViKTSjA10lzqKJOCiSHEx7yc9/rcmAQMnbQ/9BgVLtXJLbxOTqyqnQ2d7cl5pukxbehkT8pFzeD/NZV/WxDU6kIYRkpRFBNk7969jBo1SqfHQ05ODvr6+hqTUV3u9yW/bhdRt25dnJycePr0KUOGDNHKU0RAQAB79uzh6dOnuLmpXKufPXvG3bt3adKkiTpdkyZNOHHiBNOmTUNPT9WcoaGhpKWlaaQrj759+/L9998zadIkjIyM1EsL/gpOTk4MHz6cpKQkGjfW3nkBVPUnkUjUegF+/fVXjV1PKtMO/yRF13/06BENGjSoOMMLULQ8JCUlRSMGTGlyczVd9eVyOQcPHnypWv4qDRo04OTJk0ybNk1tHDx+/HiF+YrizZS8rytXrhAVFUX9+vVfSIOXlxdGRkYcO3YMP7/il5OjR4+Wk0vF/v37MTExYfny5Vpf4mfPns3+/ftfumHE0dWHJ/fPk5udoREUMybiOgAOrroDgEmkUuxdvIh9fFPrXEzkDazs3DAsI05GEUWeArnZul2mnWv7EnHnAjnZGRoBWJ8+Ur0wONX20ZlPKpXi6OpFVMQtrXNPw29gbe+GobHKkJuRmggoUSg0P63K5apxX/p4EfYuZdRbpKre7MupN7taXsQ90V1vlnZuGJSqt5O7vuXmuV10HPAJvk176Sy3iDp163PrxlWysjI1Yn88vH9Lfb48YmOeMWfmRCysrJj2xQKMjLWXADxPiON5fCwfjtaOeTP/q6mYmJqxbtsRrXOObj5E3tOus+jCvubkVnadObh4EaOjr0U/0uxrackx3LpwgFsXDmilXft1XxxcfRjz+V4AkjNh60nN9s3IUa1nd9NhP6plo/pSnlROHOSMbMjMUeKsY7dxZxvNoK6xhfGaVROAEp4EhS/tVx7KuRmpVJcbm6ykjoP2BMLFTkpegeYuMqVJL9RVy1ZXfgmxOgJ45stVARCLqOssxdHMmwHvrdPwZDAxt8fexYfoR5dRKhQagSfjHl9Hz8AYawePMrWZWTlibGZD/FPt9o17cgM7l8oFIXyeBot/0QzCm5ap4Gm8nHquepQ2Cbk7y8jNUxKf/HIMIxamEpBo7yxU9Jpw87GCa+HFCjKyIS5ZFc+lNC62ElWbltPX1G1qo23scrGVEKcjqCuoltEolUpuPlaSlw+bf5MT9aT4A1BqhpwnMQV41dFHItGMIenpqk9unoLYxIon0XVd9flwsBWR0fks25ZCeaEIXu9qTrvGJmw+lMa5MNUAMLWqxyv/WaeRztjcHttaPsRGaPe1+KfX0dM3xtK+7L5maumIkakNz59p97WEpzewdVb1tdzsVPLzsrh+ag3XT63RSvvb1kk41mlE067F3iTG5vbY1fIhRoe2uCcqbVaV0JagQ1v8kxvY1qp4HMjzc7l79y4Tv/gVU+viIK7JaXIinubiV89Yq0293I3IyVUQFa/taVgaL3cjpo914eGTXOaviS63TQvk8PBxsQXCzlr1frXzTL56F6WMbIhNUlLHUaI1Pl3tJOTlq3bNehkUBa52sZVwP6q4zFq2EqRSCWnXdQdzf1HSrt/Fuk0TSle0VfNACjKzyLwfUZhO9ZHZqkkDUi8WL4M3dHbA2M2ZJ2t+eSl6BP8bCMOIDiZOnMiIESMYMWIEb775JpaWlty6dQtra2sGDBhA69at2bBhA1999RVdunTh6tWr7N27V6ucunXrsmfPHn777Tfs7e1xcHDA0dGRadOmMWnSJLKysujQoQPGxsZER0dz6tQpJkyYgIeHB/3792fFihW888476gChS5cuxc7OTsMg88477zB48GDGjh3L0KFDef78OQsXLiQwMLDSwUFtbGwICQlReygYGf299XbTp08v93zREpLp06czePBgHjx4wE8//aS17KOidvinmTJlCsOHD2f8+PH07NkTCwsLYmNj+fPPP+nXrx8tWrQoN//169e1jtnZ2dG0aVOGDBnClClTGD16NEFBQeTn5xMZGcn58+fVu8a0atWK7du3U69ePaytrdmyZUullsFUBWPHjmXAgAF88MEHDBo0iOjoaNatW4ehoWG53isNGzbExMSEWbNm8fbbbxMXF8eSJUv+0rIVKysrBg8ezOrVqzEyMsLPz4+DBw/y5MmTcvPl5uZy7NgxunbtqjMGTv/+/fnmm2949OgRdevWfWFdZeHduDsXjq/j2h/baNFlNAAF+XmEnd2Fs3sQFjbOAKQlRZOfl42tk2dx3kbdOLVnITGPw3CuozLUJcY+4vG9czTvPEqdLisjCWNTa602uB6q2lHISccOLQD+zbryx6/ruPT7L7R5ZZRa29Uzu3D1DMTKVqUtJTGa/Nwc7GvV1ch79JfviIq4iYuHqvyEmAgi7pyndY9i45Kdk7tqknDhMI3b9lUfv3FOZeyrVUf3y6h3o+5cOrGOG6HbaNa5uN5uniusN+uy682rUTfO7F1I7OMwnArrLSnuEU/un6NZyCiN61w4toZLJ9bRots7NOk4XKeWkrRo3ZEDu7Zy4vBeevd7E4D8/DxOHTtEPW8/7OxVffp5fCy5ubm4uBXvCJSSnMjszyYgkUiY/uX3WFjq9kAb8/4U8koZ12/duMzh/Tt4a9T71CpRZkl8Gnfn3NF1XD2zjZZdi+vs+p+7qOVR3NdSE1V1ZudcXGc+Tbrx+66FREeGUcu9uK9F3jtHy67FdTbg3WVa17198SC3Lx3i1ZHfYm5d7MmSVwBROj4S3numxNdNircr6i17jQ1UW6M+jNb8Cm9VaHtKydTM38BdgrmxUh0YtY4D2FpIuPigOPODaCVd5EoC3SXciCh+gfYt3Gb18gOlxi4yd54o8K+jh29tiXrLXmND8Kst4f4zTV3WhXan5BJ2gjtPFATVlWJhgnpi4uGk2vXh3J3yjQOudhJ83SRcum+Oc71WWuc9g7rx8PoRwm8cpV5D1UeM7IxkHl4/god/R40v3anPVc9CS7vipbGegV25e3EP6ckxmBeOnaf3z5KSEEnD9iPK1VZEbgHcfaw9Yb96L58m3gY09NJXL3ExNZbQxFufsPB8jeUmdlaqyezzlBc3lsQlKZBKJDTxNuDcreLfxKY+qgnhvWdKIuI0J3l3nirxqy3F102i3rLX2EDVBx5EVaJNnyoJ8pBotKm7owRbCwnn7mnfg1Si6i9PEorTR8QpefhI8zf84u0cmgcY0cTXkEuF2+yamUho5m/E1Xu5GnXmYK2y/MQnFx90tpPx8RBrnqfI+W5zcrnLIXq0NuGVNqbsO5XBsXPF7gF6Bua41teO7VG3QTciwo4QcfModQNVfS0nM5lHYUeo7avZ19ISVX3Nwra4r3k06Mr9y3vISInBzErV16IeniX1eSQN2o4AwNjMlq7Dlmpd+2boJuIeXyPkzYWYWNjjWDtI47xHg248KqUtu1BbHb9S46BQm2UJbXV1aHv2QKUtsFAbQHZGEsZm2tbXuxd2kJaezu0IIwziNF0t/ryaTusm5gQ3NOPPq6pOZG4qo3UTcy6GZVBQYnmUk52qz8Y+LzaWuDoZ8Nl7LsQn5fPV8mfk5VfeYOFsr09IsAUXbmRwNVzT6+VmpIIAdz386ki4Vbhlr4mhyoB395lCYwwU7QhWnnG6LB7FKMnKUdLcR8b9qOIO2cJHSl6+kvhDJ1+4TEMne/QszckKf4Ky8CNqzK7DOA/ojlPfrsTuUn0g0Le1xrl/d+IP/I4iT1WnGbcfknEnHLf/DOLxqp8psjLVGfsGSoWC2F0Vb89cE1AqRfDVqkAYRnTQtGlTNm7cyKJFi5g+fTpSqZT69eszfvx4ANq3b8+kSZPYvHkzu3btonHjxqxcuZJu3TT3wh4zZgxPnjxh6tSppKWl8f777/PBBx/Qo0cPLCwsWLFihdrTxMXFhbZt26rjIxgZGbFu3TpmzpzJpEmTcHR0ZNy4cezZs0cj/kNAQADr1q3ju+++44MPPsDExIROnToxderUF/Ky6NKlC4cPH64Sg4O3tzdz5sxh6dKljB07Fl9fXxYvXqyu3yIqaod/msaNG7NlyxaWLFnC9OnTyc/Px8nJiZYtW1Knju4JSUnWrVundSw4OJj169czY8YMPDw82LZtG8uWLcPU1BQPDw8Nb53PPvuMmTNn8tVXX2FsbEzfvn3p0qWLereY6sTPz49FixaxcOFC3n//ferXr8/cuXMZNmyYVnySktjZ2bF48WLmzZvHuHHjcHd3Z9asWaxZo/2lqDJMnDgRuVzOmjVrUCgUdOnShYkTJ5a7O07Rlrx9+vTReb5Xr17MmzeP/fv389FHH/0lXbqo5RGEd+PunN7zHVnpiVjb1+Hmud2kJkbRY2jx8rUD66fy9MEFpv54T32sUfs3uR66nR3LxtK88yikMj0unliPqbmthmHk1vl9XDvzM/WDOmNl50ZebiYRt/8g8k4o9Rp0pI6P7qUhbp5BBDTrztEd35ORnoitQx2u/rGH5OfR9Bn1tTrdjlXTiLx7ka83FC/za9HpTS6d3MHG796hTY+RyGR6hB7egKmFLW26FxtGGrftwx+/rmPv+pnEPL6Dg0s9oh/f5vKpHTi41MO3ifaSNQBnjyC8GnXnzF5VvVnZ1+HW+d2kJUbRbUhxvR3aOJVnDy4waVmJemv3JmGh29n141iahoxCJtPj0m+qemtawjDy4NoxTu+Zj7WDO7ZOdbl9QdPQXcentTpmSxH1vf1p2aYTP29YQVpKMo61XDl94lcS4mMY+1GxcXjZd19z5+ZVfj4Qqj425/OPiY+Npnf/Idy7fYN7t4tdeS2trAls1ByAoMbaxtfMTNWbqm+DhnjW121McqkbhG+T7vy+6zsy0xKxdqhD2NndpD6Potew4jrb99NUnty/wKeriuusSYc3uXZmO78sGUuLrqo6O39sPaYWtrToUlxn3o202yuucBtgz4B2mJjrcOUoxd1nSqKeK+nZTIqdhZLsXGhcT4JUogqOWpI3Oqgm0j8eLH45/POOEh83CUM6SLn4QImBHrTwVsV0KGkAycxRpW0XIGVwOyn3o5Q4WEHDuhJuPVZoba17+4mSpwkKXguWYW+pICsXmnlJkUrg5A1Nz5dhnVWvUYv3FE8AztxU4FdbyvAuepy/q8BAD1r5SYlLVnItvFi/pSkMaCvj/jMlGdlK7K0kNK0vJS4FTlxTYG6hvSylXlA3rtcJ4vjPn5AUF46RqTVhoVtRKOS06K65W9nu5SMAGPH5b+pjTTuP5eH1w+xePpygtkPJz8viyu/rsHX2wq9FP832ubiX9ORo8vNVVqfo8EtcPPojABKLjhibO2ukv3I/n0fRBQzrYYKzbQ4Z2UraN1QZyw+Eaq6LGj9IZX2YsarY/cbGQkILP9Vkro6T6v2lR0tVPIjENAUXbqsmOudu5tGlmSFvdjXGzVFGzHM5bo4yWgcaEJ0g5+4z7YnknadKnj1X0ruFFDsLVZs2ra9q01NhmhOOtzqqrr1kf3Fbh95W4FdbxtBOMi7cU2CgD8E+UuJSlFx/pH09T2cJJoYSbkaWE7wEuHgrh4dP8/hPX0tcHDJJz1QQ0twEqQR2/6bplTNlhGpMTfpetTTAyEDC5GE2mBpLOBSaQ0Mvzbgacclywp+q6qyJryGDu1kQ+7yAmIQCWgVqfgBTGKpisZTEo0E3HGoHcWr7JyTHq/ra7bNbUSrkNO2q2dcOrB4BwJvTivtao45jeXTjMAdWDSegtaqv3Ti1DhsnL7ybqvqanoEx7v7az5LIW8eJfxqGu39nLc8gUC1lCfsjiJO/fEJy4Ti4VaStSyltq1Tahkwvoa2TStv+lcNp0GYo+blZXC/S1qx4HFz5bQVxkVdw826LmZUzuVmpPLp5lISnYQS0fosCw1pa2v68ks7dR9l8OMwZN+ck0jLk9GhvhVQCWw9oLr/8crzKI/ztGY8A1W5aX3zgiqmJjN3HkmkaoOnVGJuQx72I4rG09HN3Qq+kk5BUgKOdPt3bWpGepeDHLXG4+GgG8r71WMGTeAX92ujhYCUnM0dlrJBI4Lermv10ZDeVwWbhjmKDjZUpNPRUPZOKtgLuEKj6OyUDrj1SjaMCORy/KufVYD0Gd9DjQZQCd0cJDT1lHLtcQH6yZsyYOuOGoG9pod4dxqFnR4xcVIb1yGWbKEjLwPubj3Eb1o/f6nUi+7EqdEHMziMkn7tK0Jo5mPnWIz8xmTpj3wCZjPtfLtG4xp1p82i6+0da/LqO6F8OYu7vhfu4ITxdt52Mu4+02lDw70WiVJbeaVtQU0lJSaFz586MGDFCa7vWv8uUKVO4c+fOP7Yjh+B/n7NnzzJixAg2bdpE8+bNq1tOjWFd8bsYBfm5nNm3iFsX9pOTlYqDizdtXv2Iun5t1Wm2fDdUyzACqrgNv+2YTcTtUFAqcPNqQciA6Vg7FBvpYh6Hcf7oGmIib5CZ9hypTA8bBw/8W7xKkw5vaW3Xa25SPCHIz8vlxK4fuPbnPnKy0nB09aZz/w+p36B4x5E1c4ZpGUYAUpNiObRlLg9vhqJUKvDwac4rb07D1lHTgJiWFMfx3T8QcecCaclxmJhZ4R3UgS4DJ2Bqruk1kZJRPCksyM/lj/2LuHNRVW/2Lt607vURHiXq7edFQ7UMIwDpybH8vnM2kXdU2tzqt6Bjf816Cz24hLOHtL9aFjHoo43U9lIZKZrWKX6xzcvL5ZfNq/nj96NkZqRT292TQW+NIahJsUFj1rT3tQwjg3u1LvNavgGNmDm3bC0njx9kxaLZfPP9Gi3DSFh0sfGmID+XU3sXEXausK+5etP+tY/w9C+us00LhmoZRkDV145tU/U1pVJBbe8WdBk0HRuH8g3Cp/ct4cyBpUxYeFbLMBIVp3uCaKQPHYMkeLlI0JOpdo757bpCvfyliHd7ahtGAOwsIKShFFc71U4I4TFKTlxTak3yAJrUk9CkngQrU9VSnpuPlfxxS0lOrvaXOCMD6NJYho+rBD09iE5UcvSyQu0mXsRHfbQNIwD2ltC1iYzaDhLkcpXXytHLco0190YG8FqwDBc7CcYGqjX+tx4rOHNTQV4B2Nro/naVk5VK6L75PLp5nIL8XBzdAmj96hQca2su+1z/pWqpZknDCEBizAP+2DuX6IgryGT6uPu1p81rUzEx1zT+7Vo6lKjwizo1NHplOda1tJfrmhhK6NfBiKB6+ujrSXgcK2fnyWyelGr/r99WeYiWNIzUd9Pj48G6lwXef1LA99uKDQWWZhJ6tzbCu7YelmZSMnOUhIXns/dMDpa2ure1NtKHzo2keLuq+lp0Ihy/JidGM1wWH/TWNoyAKlZOl8ZS3OwlyBWq4LnHrip0bhndt5UUX1cJ3+2Rk1PCSeThHe24RCZGEgZ3M6exjxEG+vAoqoCfj6QRGa3ZpxZMUMVTKDKM2FnJWPixdoyFIs5czWbNbtUktE9HM/p2LHvJ5bY/lDzTEZ4rNyuVc4fmE3nrOPL8XOzdAmjZcwr2rpp9bctcVV8raRgBSIp9wLkDc4mNvIJUT5/aPu1p2VO7r5Xm5C/TeBR2lFFfXdFpGFFrO6jSVlCoLbjnFOzdNLX9d45KW0nDSJG2swfmEhtRrC24l6a2Z/dDCQvdxPOo2+RkJiPTM8DW2Ruf5gPwatKX00ce6NRmaiJlZD97WgSZYaAv5cHjHNbvjOfhE80H06qvVd6XRYYRBxs9Vn/jqVVeESfOpvLDxuI4GRNHOePraYyVuYy0TDkXbmSy9cBzUtPlNGihvZzIyAC6N5XhW1uKvgyiEpX8elGuZRyeOEDbMOLhJGF0d+24eAARsQrWHtbsr03rS2kdIMPaDFIz4dxdOWdvKwgeo9k+HR+cwMTdFV0UGUIC187RMowA6FlZ4PvtFJxe7YzU2JDUS2HcmTqP1Mvay6QcXw2h/mfvY+bjSV5CEs827ubB18vUHigAPfPvaeWrKXQcdL7arv37L+V7yP8vIQwjNZhVq1ZhZ2eHi4sLCQkJrFu3joiICA4dOoSzs3PFBVSCe/fucefOHWbMmMHMmTMZOHDgSylX8L/PF198QXBwMFZWVjx8+JDly5fj4ODAzp07X2gHjf911v1WcZrqoqRhpKZR0jBSkyhpGKlplDSM1DTKMozUBF5kl4iqpCzDSE3g1q3UihNVE7Vcy4+5VJ3oMozUBAIbv9xd2F4mVRxb/oU4dfh+dUsoE12GkZpAacNITUIYRnTzbzKM1NxfXQFSqZQff/yRuLg4ZDIZQUFBbNiw4aUZRQDeffddkpKS6NOnD/3799c4p1QqkcvLfpmVSqViAvwvJi0tja+++oqUlBTMzMxo27YtU6dOFX1CIBAIBAKBQCAQ/L9CGEZqMP/5z3/4z3/+849e47ffyv6cfeHCBYYNG1bm+b59+zJ37tx/Qpbg/wHfffdddUsQCAQCgUAgEAj+p1GWtzWR4KUhDCOCMvH392fHjh1lnre21r2TgkAgEAgEAoFAIBAIBP9fEIYRQZmYmZnRoEHNXQsoEAgEAoFAIBAIBP/LKBUiJGhVIIIBCAQCgUAgEAgEAoFAIPjXIgwjAoFAIBAIBAKBQCAQCP61iKU0AoFAIBAIBAKBQCAQ1ECUShF8tSoQHiMCgUAgEAgEAoFAIBAI/rUIjxGBQCAQCAQCgUAgEAhqICL4atUgPEYEAoFAIBAIBAKBQCAQ/GsRhhGBQCAQCAQCgUAgEAgE/1rEUhqBQCAQCAQCgUAgEAhqIEqFCL5aFQiPEYFAIBAIBAKBQCAQCAT/WiRKpVJEcxEIBAKBQCAQCAQCgUDwr0R4jAgEAoFAIBAIBAKBQCD41yIMIwKBQCAQCAQCgUAgEAj+tQjDiEAgEAgEAoFAIBAIBIJ/LcIwIhAIBAKBQCAQCAQCgeBfizCMCAQCgUAgEAgEAoFAIPjXIgwjAoFAIBAIBAKBQCAQCP61CMOIQCAQCAQCgUAgEAgEgn8twjAiEAgEAoFAIBAIBAKB4F+LMIwIBAKBQCAQCAQCgUAg+NciDCMCgUAgEAgEAoFAIBAI/rUIw4hAIBAIBAKBQCAQCASCfy3CMCIQCAQCgUAgEAgEAoHgX4swjAgEAoFAIBAIBAKBQCD41yIMIwKBQCAQCAQCgeCFOH36NEqlsrplCAQCwUtBohRPNIFAIBAIBIK/RGJiIrm5uVrHa9WqVQ1qVCQlJbFu3TrCwsKIjY1l6dKl1K9fnw0bNhAUFETDhg2rRdfp06dJS0ujV69eAMTExPDJJ58QHh5Oq1at+PzzzzExMalyXUuXLi3znFQqxdzcHF9fX5o2bVqFqlTs2bOnzHMSiQRzc3N8fHyqpb/5+Pjg5ORE37596devH25ublWu4UV49uwZT548wc/PDysrq2rVEhcXR1xcnM5nR7NmzapBEQwbNoyZM2fi6empdS4iIoKZM2eycePGalAmEFQNetUtQCAQCASa5Obm0qpVK+bPn0+nTp2qW87/O/Lz89mxY4d6Uvj555/j7u7OoUOH8Pb21vnSVxUMGjSIgQMH8sorr2BqalotGnRRkyeFAA8ePGD58uXq9ty2bRv+/v58//33NG7cmPbt21e5puTkZL7++muOHj1KQUGBxjmlUolEIuHOnTtVrgvg1q1bjBgxAnNzc5o1a8aFCxfIy8sDVJOx9evXs2jRomrR9sMPP9CjRw/1319++SXh4eH07NmTffv28cMPPzBt2rQq17Vhwwby8/PJyckBwNDQUD1hNTIyoqCgALlcjp+fH6tXr8bGxqbKtE2bNg2JRAKg4Z1R8phEIqFz587MmzcPY2PjKtN28OBBduzYwfbt21m5ciVNmzZl4MCBdOvWDQMDgyrToYu5c+cil8v59NNPATh27BgTJkygoKAAS0tL1q5dS0BAQJXrevr0KZMnT+b69esAWh431fnsuHDhApmZmTrPZWRkcOnSpSrV884771Q6rUQi4ccff/wH1Qj+DQjDiEAgENQwDA0NMTY2RiaTVbcUNY0aNVK/iFeERCLh8uXL/7Ai3Tx9+pQRI0aQnJyMn58fly9fVr/oXbx4kTNnzjBnzpxq0VarVi2++uorZs+eTffu3enfv3+1GRtKUpMnhaGhoYwdOxZ/f3969+6t8eKrp6fH1q1bq8UwMmPGDC5evMjYsWPx9PREX1+/yjWUxZw5c2jYsCHLly9HIpGwd+9e9bmgoCB+/fXXatP2+PFjfHx8ANVE68yZMyxYsIDu3btTv359li5dWm2GkQkTJvDee+8REhKCqakpmZmZHDt2jOXLl/Ptt9+Sk5PD5MmTmTdvHnPnzq0ybbt372b8+PH06dOHkJAQbG1tSUxM5NixY+zdu5dZs2bx7Nkz5s6dy8KFC5kxY0aVafP09GTq1KlMmjSJkydPsnPnTqZPn86XX35Jr1696N+/f7UYH0BlCPnwww/Vf3/33Xe0b9+ejz76iHnz5rFo0SLWrFlT5bpmzJhBXFwcs2fPxtPTs9oNSJXl6tWrVfrsB8o00ggE/xTCMCIQCAQ1kD59+rBjx45qmfTpYtSoUZU2jFQnX3/9NTY2Nmzfvh0LCwuNl/JmzZrx3XffVZu2RYsWkZqayr59+9i9ezdvvfUWderUoX///vTp0wcHB4dq0VWTJ4ULFy7klVdeYd68eRQUFGgYRnx9fdm+fXuVaSnJ+fPnmTFjBn369KmW65dHWFgYS5YsQV9fH7lcrnHOxsaGxMTEalIGBQUFSKWq8HYXL14EoG3btgC4ubnx/PnzatH15ZdfMnLkSF599VX1MVNTU/r06UN2djazZ89m+/btvPvuuyxbtqxKtS1YsICBAwfyn//8R33M1tYWLy8vDAwMWLFiBRs2bCA5OZnNmzdXqWGkCJlMRkhICCEhIcTFxTFp0iS2bt3Kzz//TP369Rk+fDj9+/evUk0JCQnq5UVPnjwhIiKC+fPn4+XlxdChQ5k6dWqV6inixo0bfPvtt3Tt2rVarl+alStXsnLlSkD1UWP48OFav/V5eXnI5XLefPPNKtW2adOmKr2eQCAMIwKBQFADsbCw4Nq1a/Tu3Zu2bdtiZ2en8bIikUgYMWJElen54IMPquxaf4cLFy6wcOFCbGxstCaF9vb2JCQkVJMyFZaWlgwdOpShQ4dy9+5dduzYwbp16/jhhx9o06YNAwYMoFOnTurJY1VQkyeFDx48YOLEiQBaL+sWFhYkJydXqZ6S17a2tq6Wa1eEsbExGRkZOs9FR0dXa2yFunXrsm/fPoKCgti2bRuNGjVSLytLSEioNm23b99m3LhxOs+5uLhw//59AOrXr096enpVSuPy5cuMGjVK5zk/Pz/1mAwMDCQpKakqpWkQHh7Ojh072LdvH2lpaXTv3p0uXbpw6tQpZs6cyfXr1/nyyy+rTI+5ubnaCBgaGoqlpaXaUG5gYKAztkdV4OjoWKXP94po1KgRo0aNQqlUsmzZMnr27ImTk5NGGn19fTw9PenYsWM1qSyfyMhI9u/f///mPUVQcxGGEYFAIKiBFHk2JCQk8ODBA63zVW0YKYuYmBhiYmLw8fGplqCJpZHJZGXukvD8+fMaobEIJycn3NzcsLOzIyUlhcjISD744ANcXFxYsGBBlQXIrMmTQktLS+Lj43Wei4yMxN7evkr1FDF69Gg2bdpE69at0dOrWa9Sbdq04ccffyQ4OBgLCwtA9bzIyclh48aN1eqFNm7cOD766CP27NmDTCZjxYoV6nNnzpzBz8+vWnTVqlWLHTt20K5dO61zv/zyi9rzICUlpcoNYjY2Nhw5coTWrVtrnTt8+LB6eUNmZqa6vauKzMxMDh48yM6dO7lx4wbu7u6MHj2aPn36qHX17NmTVq1aMWvWrCo1jDRt2pQffviBxMRE1q5dS+fOndXnHj16hLOzc5VpKcmECRNYvXo1TZs2rfYAsADNmzenefPmgOo5MXDgQBwdHatZVcUkJCRw8OBB9u/fz61bt9DX1xeGEcHfpmb9mgsEAoEAgLt371a3hHLZtm0bS5cuJSEhAYlEwo4dO/D39+e9996jefPmDB8+vFp0NWvWjJ9++ol27dqpv8pJJBKUSiW//PILwcHB1aKrJGfOnGHnzp389ttvmJqa8uqrr7J48WI8PT158uQJs2bN4pNPPuHQoUNVoqcmTwo7d+7MkiVLCAoKok6dOoCqPRMSEli7di3dunWrUj1FPHr0iPDwcLp06UKzZs10TkirY0kDwOTJk3njjTfo1q0bLVq0QCKRsGjRIh4+fIhEImH8+PHVogsgJCSEX3/9ldu3b+Pt7Y27u7v6XMOGDfH29q4WXRMnTmT8+PF069aNjh07YmNjQ1JSEr///jvPnj1j8eLFAJw9e7bKdwx5++23+eKLL3j27JmGthMnTnDu3DlmzZoFwLlz5wgMDKxSbUXGmq5duzJ58uQyYyb5+flV+bPjk08+YfLkySxYsAB/f38mTJigPrdv374qje9UOohobGwsnTp1wtfXF3Nzc41z1RlE9P3336+W61aWjIwMjh49yv79+7lw4QIKhQJvb28+/fRT9U5XAsHfQWzXKxAIBIIXYv369SxYsICRI0cSHBzMqFGj2LlzJ/7+/mzYsIHDhw+zdevWatEWHh7OG2+8gZWVFZ06dWLDhg3069ePBw8e8PjxY7Zv307t2rWrRduiRYvYu3cvsbGxNG/enEGDBtGlSxet4HtXrlxhyJAhVbYzwbFjxxg/fjyurq5lTgo7d+7MrFmzSEtLY+HChVWiCyA9PZ0RI0Zw7949vLy8uH37Nj4+Pjx9+hQPDw82bNhQLTv8VLRblEQi4cSJE1WkRpu0tDTWr1/Pn3/+SXJyMpaWlgQHBzNy5Mga8ZW6JnL79m1WrlzJzZs3SUhIwN7engYNGjB27Fh8fX2rVduJEydYsWIFd+7coaCgAD09PXx9fXn33XfVfTE1NRU9Pb0qHQ+bN2/m1VdfrXJPlb9LRkYGBgYGVRb4dOjQoS+UvrpiaygUCrZv386RI0eIjY3VWm4kkUg4fvx4lWrKz8/n1KlT7Nu3j1OnTpGbm4ubmxshISFs2LCBjRs3Vtv2xoL/PYRhRCAQCGowubm5PH36VOd6aH9//2pQpPqK369fP8aNG4dcLsff319tGDl9+jRTpkzh3Llz1aINVDvTLF26lNDQUFJSUtSTwg8//LDajCKgWuLQt29fBg4cWK6OlJQUfv/9d/r27Vtl2mrypDA/P599+/ZpTPJbtWrFa6+99v9mR4d/M0ePHqVly5ZYWFhw9OjRCtPXlKCUNRGFQkFSUhI2NjY1Kk6F4H+Db7/9lp9++olmzZpRr149nbttffLJJ1WmZ8aMGRw7doy0tDRsbW3p3r07vXv3JigoiPT0dJo1a8amTZuEYUTw0hCGEYFAIKiB5OXl8cUXX7Bv3z6tIKJFVJVHQWkaNGjAqlWrCA4O1jKMnD17lrFjx3Ljxo1q0VZTycvL47fffsPf3x83N7fqliP4l3H58mUePXpEkyZNqFu3bpVe28fHh19++YXAwED1Vr1lIZFIqu25Jnhxli5dWuY5qVSKubk5vr6+1bIteUXeD0C1enXVRNq0acMbb7zBe++9V91SANWzQyKR0KpVK7788ktcXFzU54RhRPBPIGKMCAQCQQ1k2bJlhIaGMnfuXCZNmsTnn3+OiYkJ+/bt48mTJ3z22WfVpq1WrVqEhYXpjNdx/fp1jbgB1UlsbCzx8fE4OjpWezA5AwMDJk+ezJo1a4Rh5AUYNmwYdevWZfr06RgaGmqcCw8PZ9asWWzcuLFatMXFxbF+/XquXLlCSkoKVlZWNGnShOHDh1drf5s4cSIGBgbMmTMHgK1bt6rjUBgYGLBy5coqjbVz4sQJdZDcmjoRrYlLCEryxx9/lKttw4YN1aJrw4YN5Ofnk5OTA4ChoaFan5GREQUFBcjlcvz8/Fi9erU6IGtVMH/+fLX3Q4sWLXR6P1QH33//PcnJyToD0X7++efY2try0UcfVYMylQG/cePG1XJtXUybNo39+/cTGhpKly5daNq0Kb1796Zbt25au5QJBC8DYRgRCASCGsjhw4d5//336dGjB5MmTSIwMJCAgAD69OnD1KlT+e2336ptd4lBgwaxdOlSrK2t1W7vBQUFnDx5krVr11ZrcEdQBYb98ccfiYuLQ6lUIpFIcHBw4N1332Xw4MHVpqtu3brExMRU2/XLoiZPCi9cuMC1a9e4ceMGy5Yt09hJIiMjg4sXL1aLrvv37/PWW2+Rn59P69at8fHxITExkZ9//pmdO3eyefNm6tevXy3aLl++zJQpU9R/r1q1ioEDBzJt2jS++OILli5dWqWGkZJfeUv+uyZRUyfRAGvWrGHBggW4uLjg6empFayzOtmwYQMTJkzgvffeIyQkBFNTUzIzMzl27BjLly/n22+/JScnh8mTJzNv3jzmzp1bZdqKtm+tKd4PRRw4cKDM3VOaNGnCsmXLqs0w0rt3b3777bcaEaQcYMSIEYwYMUK9He+BAwf47LPP+PLLL2nevDkSiQSFQlHdMgX/QwjDiEAgENRAYmNj8fDwQCaTYWhoSFpamvrcq6++yscff6z+ClzVjB49mpiYGD7//HNmzpwJwBtvvAHAm2++yZAhQ6pFF8DKlSv5/vvvee211+jWrRt2dnY8f/6cw4cPM2vWLFJTUxk7dmy1aPv444+ZPXs2np6eNGjQoFo06KImTwoBFixYwMqVK+nXrx+LFi2iRYsW1S2Jb7/9Fjc3N9atW4elpaX6eGpqKqNGjeLbb79lzZo11aItKSkJBwcHAB48eEBMTAzDhg3D1NSUvn37VtukCyAqKoqMjAz17jN5eXmsXbuW8PBwWrVqRb9+/apFV02dRANs2bKFt956q9p2OSqPL7/8kpEjR/Lqq6+qj5mamtKnTx+ys7OZPXs227dv591332XZsmVVqq2meT8UER8fX+ZWwU5OTsTGxlaxomKCgoJYtGgRiYmJtGrVSmdQ3eqIAeTu7s4HH3zABx98wI0bNzhw4ACHDh1CqVTy7rvv0q1bN/r06VMjfhsE/78RhhGBQCCogdjb26uNIa6urpw/f55WrVoBEBkZWY3KVMyYMYPhw4dr7XpR3ctoNm3axOjRo5k8ebLG8U6dOmFra8umTZuqzTCyYMECUlJSGDRoEFZWVtjZ2Wmcl0gk7Nu3r8p11eRJIagmC1u3buWTTz5h9OjRTJkyhWHDhlWrpitXrjB//nwNowiApaUl7777rlb/q0qsrKyIioqiadOmnDlzBnt7e7X3ilwur9YvrJ999hk+Pj5qj5b58+ezdetWvLy8OHz4MNnZ2dViWK2pk2hQBWMOCQmpbhk6uX37NuPGjdN5zsXFhfv37wNQv3590tPTq1JajfN+KMLGxoYHDx7onMQ/ePBA65lSlRSNy+joaJ3bxdeEGECBgYEEBgYyffp0zp07x759+zh+/Dh79uypdm2C//8Iw4hAIBDUQJo3b86lS5fo1KkTAwcOZN68eTx69Ah9fX2OHz9Or169qk1bRkYGZmZmuLm58frrr1ebDl1kZmaqDUiladOmDT///HMVKyrG39+fgICAart+WdTkSWERBgYGLFiwAG9vb+bOncudO3eqdNee0shkMvLy8nSey8vLQyaTVbGiYtq1a8eCBQu4e/cuu3fv5rXXXlOfe/DgAa6urtWm7c6dO7z11luAavndnj17mDRpEiNGjGDFihX8/PPP1WIYqamTaICOHTty+fLlGqmtVq1a7Nixg3bt2mmd++WXX6hVqxagMu5YW1tXqbaa6v3QuXNnlixZop7gF1G0XLBHjx5VrqmImhoDSBcSiYTg4GCCg4OZNWsWJ0+erG5Jgv8BhGFEIBAIaiATJkwgOTkZUK2zBVXckdzcXIYOHVqtX/dbt25Nhw4d6NWrF+3bt69RW6a2adOGP//8k9atW2udCw0NrdbJRVWur38RavKksDRjxozBy8uLSZMm8ccff1SbjlatWrFo0SJ8fX3x8PBQH4+MjGTx4sVlGueqgqlTpyKXy/njjz9o3769RjyDY8eO0bZt22rTlpmZqY6Rcf36dTIyMnjllVcAVXyFFStWVIuumjqJBujfvz9ffPEFubm5ZWqrrq3bJ06cyPjx4+nWrRsdO3bExsaGpKQkfv/9d549e8bixYsBOHv2bJXvHFJTvR/Gjx/PlStXeP311/H09MTBwYH4+HjCw8Px9fVlwoQJVa6piJoaA6giDAwMxDbfgpeC2K5XIBAIBC/E5s2bOXjwINeuXcPU1JQuXbrQq1cvgoODkUql1art1KlTzJw5k+DgYEJCQrC1tSUxMZHjx49z7tw5Zs2apbGEpbomFDWJffv2sWjRIho2bFjjJoVDhw7liy++wNPTU+P4o0ePePfdd3ny5Em1TG6io6N56623iI2NpX79+tjZ2ZGYmMj9+/dxdnZm8+bNZcYR+DfTtWtXBg4cyJgxY5g7dy6hoaHs378fgOPHjzNjxgzOnTtX5bpq8jbCpbWV3I2jKLh0dS4huH37NitXruTmzZskJCRgb29PgwYNGDt2LL6+vtWmKyoqqsI01WUIyMvLY8+ePZw7d069o1VwcDCvvfZajfjQcPr0acLCwoiNjeXdd9+lVq1aXLx4kdq1a1f7Dm8CwT+JMIwIBAJBDSY1NVUdQLFdu3ZYWlqSm5uLvr5+tRshoqOjOXjwIIcOHeLOnTvY2trSvXt3evbsWW1LM3RNIkr+zBVNKqprQpGWlsaRI0eIiIjQuRSjOgIs1uRJYU0mMzOTnTt3cvnyZdLS0rC0tKRJkyb069cPU1PT6pZXI1m1ahU//PAD3t7e3Llzh+nTpzN06FAAFi5cyJUrV/jvf/9b5bpq8iT6woULFaZp3rx5FSgR/F1yc3P56KOPGD16dJV70FSGpKQkxo0bx/Xr13F2diYmJoYdO3bg7+/PtGnTMDY2VgdcFwj+FxGGEYFAIKiBKBQKFi1axKZNm8jOzkYikahfUMaMGUNQUBDvv/9+dctUExERwcGDB9m2bRuJiYncvn27WnScP39e44tqRVTlhCIyMpLBgweTl5dHdnY2NjY2pKamUlBQgKWlJWZmZtWyxrsmTwoFf42LFy+ybds2IiMjtbZfBtReGtXBnj17CAsLw8/Pj379+qnH6+eff07jxo3p06dPtWkT/HViYmKIiYnBx8cHExOT6pYDqAzgp06d4vLly6SmpmJpaUnTpk1p167dC/1OvEyKtuRt2bJltVy/PCZOnMjNmzdZvnw5derUISAggJ07d+Lv78/evXv58ccfOXz4cHXLFAj+MUSMEYFAIKiBLF68mM2bNzN16lSCg4Pp1q2b+lynTp3Yvn17jTGMJCYmEhoayh9//EFCQoI6hkB1UJO365s7dy5BQUEsXryYhg0bsmrVKnx8fDh06BDff/+9ej1+VVPTjB6NGzdm48aNBAQE0KhRowonMFeuXKkiZf8/OHPmDGPHjiU4OJibN2/Srl07cnJyuHLlCk5OTtX6pVqpVNKnTx+dxo8vv/yySrWkpKRgYWGBVColJSWlwvRWVlb/uKb/j2zbto2lS5eSkJCgYcB/7733aN68OcOHD68WXampqbz99ttcv34dCwsL9bLK1atXq5+/upYN/tO0bt2a0NDQGmkYOXXqFF999RWenp7I5XKNc87OzsTFxVWTMoGgahCGEYFAIKiB7N69m48//pjBgwdrvaDUrl2bp0+fVpMyFUVLQg4dOsSFCxfQ19enQ4cOLF26VOcOBVXFoEGDGDhwIK+88kqNW85w48YNvvnmG/Ua8vz8fGQyGb179yY5OZmvv/66ynbNqcmTwlGjRmFvb6/+d3V92S3NixhsJBIJly9frkJ1xSxZsoThw4czadIk/P39+eijj/D39ycqKorRo0dX64Ssffv29O3blwEDBuDm5lZtOgCCg4PZtm0bgYGBtGzZssJ+VpXLyf6/GAfXr1/PggULGDlyJMHBwYwaNUp9rnnz5hw+fLjaDCPffvstT548Ye3atRrBuENDQ5k8eTLffvst33zzTZXr6t+/P59//jmZmZm0b98eW1tbrfatrthXcrm8TG+ftLQ09PX1q1RPdHT0C6Uv2gVJIPirCMOIQCAQ1EBSUlK0Ak4WIZfLKSgoqGJFxbzzzjuEhoaiVCpp3bo1c+bMISQkpEYYImrVqsVXX33F7Nmz6d69O/3796dp06bVLQtQBdwzMzNDKpViaWlJfHy8+lz9+vW5e/dulWmpyZPCkp5QJXdUqW5qqsGmNOHh4UyYMAGpVIpEIiE7OxtQeQZ98MEHLFmyRGML36qkd+/e7Nq1i1WrVtG0aVP69+9P9+7dMTIyqnIts2fPVhtnZs+eXaPa8/9LX9u8eTPjxo1j3LhxWgZ8Dw8PIiIiqkkZ/Pbbb0yePFlrh7LWrVvz8ccfs2DBgmoxjIwdOxaALVu2sGXLlhoVTDcwMJCdO3fSvn17rXMHDx6s8thhnTp1eqG+L2JhCf4uwjAiEAgENRB3d/cyt5e9cOEC9evXrwZVKjIzM5nxf+zdeVhN69sH8O9qkJSiuUyRoYFUFIWiQcgcjrGUgwYcQ8mQ+YgoJ4RkKLNSJJkzD8eRUMg8pkkppVm13z96Wz/b3qFzjvUsnedzXef61V7retf3pba97vU89+3rC3t7e94tLw8KCkJ+fj5iY2Nx5MgRjB8/Hq1atYKjoyOGDh0KNTU1Ytm0tbWRlpYGU1NT6OvrY//+/bCwsICUlBQiIiI4zcbnm8Jvefv2Ld68eQN9fX1Of/74WrD5koyMDKqqqsAwDFRVVfHmzRu2OCgnJ4fMzExi2by9vTFnzhxcvHgRR44cga+vL37//XcMGDAAI0aMgKGhIWdZhg0bxn49fPhwzq77PWp+1gQCASZMmIBGjRrxYlrJl7KysmBsbCz2mLS0NIqLizlO9D8lJSVCE8g+p6qqyhYMubZ7924i1/0eM2fOhJOTE8aNGwd7e3swDIP4+Hhs3boVly5dwv79+znNExwczH5dXFyMwMBAtGzZEn379oWysjJycnJw5swZpKamwsvLi9NsVP1Em69SFEXx0OHDh7Fo0SJMnjwZ/fr1w9ChQ7Fp0yZkZmZizZo1WLVqFQYMGEA6Ju89evQIUVFRiIuLQ2FhIXr27IkRI0bA2tqa86k+YWFhyMrKwrx583D37l1MmjSJbawrEAiwevVqDB48mNNMfLd69WpUVlZi4cKFAICzZ89i1qxZbMPaHTt2oGPHjpzncnJywpIlS8Su6nr58iWWLFlC7AbI1dUV1tbWGD9+PHx8fHDnzh3Mnz8fUlJSCAwMRIMGDRAZGUkk25dyc3MRGxuLqKgoPH/+HG3btoWjoyOGDx9OpP8D35SXl8PIyAibN29G7969SccRYW9vD0dHR0yZMgWVlZUwMDBgm3WGhITgxIkTiI2NJZJt9OjRaNy4MUJCQiApKcm+XlVVhSlTpqCoqAgHDhwgko3P7ty5g8DAQNy5cweVlZVgGAZGRkaYO3durUUwLvj6+qKyshKrVq0SOTZ//nwAEHuMouqCrhihKIrioeHDhyM/Px8bN27E1q1bAQCenp6QlZXFzJkziRdFPn36hKioKNy7dw+ZmZlYvHgxtLW1ceLECXTo0KHWbUBc09DQQIsWLaCiooIPHz7g1atXmD59Opo1a4aAgAAYGRlxlsXFxYX92sjICHFxcbh8+TLKysrQvXt3tG/fnrMsn7OxscGmTZvEju198uQJ3N3diUzLAaoLITNmzGC/X7duHaysrPDbb79hzZo1CAoKwvbt2znPdfPmTRQVFYk9VlhYiFu3bnGc6H+cnZ3x9u1bAMDs2bPh5uYGd3d3ANW/D58/hSUtJycHGRkZeP/+PaSlpaGmpoYNGzYgODgY/v7+sLGx+WHXHjRo0HefyzAMkRv8Bg0aQENDQ2SbCl+MGjUKwcHBaNq0Kfr27QsAqKiowMWLF7Fjxw7MnDmTWLY5c+bA1dUVdnZ2sLGxgYqKCt6/f4/4+Hjk5ORg586dxLLxmbGxMfbu3YvS0lLk5+dDQUEBsrKypGPh1KlTtTYod3BwwKxZs2hhhPrHaGGEoiiKp1xcXDBq1CjcuXMHeXl5UFRUhLGxMdGpLwCQmpqKiRMnIi8vD/r6+khMTGRvEhMSEnDlyhXiH1CuXLmC6OhonD9/HnJychg8eDDWr18PHR0dvHnzBsuWLcOCBQtw4sQJYhk1NTXxyy+/ELt+jbS0NJSXl4s9VlpaSnTrRXZ2NttQ782bN3j58iXWrl2L9u3bY8KECfDx8SGWrTZ37tyBkpISset/3h9AXV0dhw8fxuvXr1FaWoo2bdoQ35JRWFiIuLg4REdH4/79+2jbti3c3d0xZMgQKCoqorCwECtWrMDKlSt/aGHEwMDgp9hCNnbsWISHh6Nnz56QkZEhHUfIpEmTkJGRgcWLF2PJkiUAgDFjxgCozj1u3Dhi2UxNTXHgwAGEhIQgLi4OBQUFUFRURJcuXeDm5kaswSlQPbL6a+O0+TBpq2HDhkR6/9RGUlISKSkpIj1jACAlJYXzFaBU/UQLIxRFUTz0/Plz6OjoQE5ODj179iQdR8jvv/8OJSUlHDp0CAoKCkJbGUxNTbFu3Tpi2YKCgnD06FFkZmbCzMwMq1atgp2dndDNYMuWLeHp6cnJh/YHDx7U6XyuPqyXlZWhpKQENbtpCwsLRabTlJWVIT4+nmhflsaNG+P9+/cAqqdJKCoqsj9vDRo0EHtT8aNs3bqVXb3FMAycnZ1FbqzLy8tRWVmJsWPHcpbrWxiGgba2NukYAKp7jMTHxwMA+vfvj4ULF4qs2pKXl8fYsWNx9OjRH5pl9erVP/T//r8lIyMDL1++RO/evWFmZgYVFRWRnztfX19C6aqv7ezsjOvXr7MFfHNzc178zHXs2JFXK6QA4OjRo1i0aBGGDRuGO3fuwNHREVVVVTh//jwUFBSINUaucffuXZw6dQoZGRki768Mw2DLli1Ecg0ePBgbNmxAWVkZbG1toaSkhNzcXJw9exahoaEYPXo0kVxU/UILIxRFUTzk4OAAIyMjjBgxAgMGDKh1hB4JN2/eRGBgIJSUlESWeKuqqiI7O5tQMiAqKgrDhg3DyJEj0bJly1rPa9OmDfz8/H54HkdHx+96Ks31NIJt27Zh06ZNAKo/7E6aNKnWcz9vOsq1rl27YsOGDXj//j127NgBW1tb9tiLFy+gqanJWRZjY2O4urpCIBBg06ZNcHBwgIaGhtA50tLS0NHRQZ8+fTjLJc7Tp08REhKC5ORkZGdnQ1VVFZ07d8aUKVOIbdkCqgu+Pj4+GDhwIOTl5Ws9r23btsR6tAgEArx79w7KysqQkiL/MfnChQtsYffevXsixxmGIVYYSUhIgL6+Plq0aCGy+q24uBgPHjyAqakpkWx8FRYWBg8PD0yZMgWRkZEYO3YsDAwMUFhYiEmTJhGd7rZr1y6sWrUKysrKaNGiBefjeb/Gx8cHUlJS2L59O/tvF1DdbHrcuHGYM2cOwXRUfUGbr1IURfHQpUuXcPjwYZw/fx7S0tLo168fRowYwfm4PHG6du3K7v//suHeyZMnsXz5cvz5559EslVUVPDiZqbGzZs363S+mZnZD0oi7NGjR3j48CEEAgEWLFgAd3d3kUJSzU2+np4eJ5nEycrKgre3N+7duwcDAwMEBQWxkyZ++eUXdOjQAcuXL+c8V3BwMEaOHAl1dXXOr/0tFy9exLRp06ChoQFbW1soKyuzvRUyMzMRHBzMy0aepF25cgUbN25ESkoKKisrERUVBQMDAyxatAimpqa0MbIYenp67NjvL92/fx8jR47kdISqm5sb5s2bB21tbbi5uX31XFKrH4yNjRESEoJu3brBwMAAO3fuRLdu3QAA8fHx8PPzw/nz5znPBVRvw7Ozs8OCBQt4uzUlPz8fT548YQu+7du3h6KiIulYVD3Bn0+PFEVRFMvKygpWVlb48OEDO3p27Nix0NbWxogRIzB06NBaRxH+aKampggLC4OlpSX74almskpkZKTYEcNc6dSpE68+qHNV6KgrXV1dttkqwzDo3bs3mjZtSjiVKHV19VpXDuzYsUOkX0ZCQgIMDAx++AorkqtovmXNmjXo1asXNm3aJHRzM3fuXHh4eGDNmjWcFka+3KL1LSRGgMfFxcHb2xv9+/fHyJEjsWjRIvZYixYtcPjwYVoYEeNrz1ZLSko471FRVFTErmKsrTkyafLy8mxPJ3V1dTx79owtjFRWViIvL49YtpKSEtjY2PC2KAIAioqKdBUS9cPQwghFURSPNWnSBE5OTnByckJKSgpWrVqFwMBABAUFoVevXnB2dkb37t05zeTl5YUxY8bAwcEB1tbWYBgG+/btw9OnT/H69WscOnSI0zyf+9oH9crKSqGxjVS14OBg6OnpiS2MkJ5K8zVfbsWorKyEk5MT+6T/R3v9+jUOHz5cawPFkJCQH55BnLdv32LevHkiNzcSEhIYO3Ys50Wd7t2716nJKZeFyxqbN2+Gs7Mz5s2bh8rKSqHCSLt27bBr1y7OM30uNzcXO3fuZKeABQcHs7k6d+7M6XStu3fv4s6dO+z3x44dQ2JiotA5ZWVlOHfuHNq0acNZLgDYs2eP2K/5pGPHjnj8+DF69eoFa2trbNq0CQKBAFJSUggNDeX07/JL/fv3x+XLl4k+3Pia/Px8XL58GZmZmWL7n3h6ehJKRtUXtDBCURTFcwUFBYiNjcXhw4eRkpKCTp06wc7ODpcvX4aLiws8PT05vdnR0dFBdHQ0goODERcXB0lJSVy8eBHm5uYICAj4am+PHyE7Oxvv3r1jv3/x4oVIAaSsrAzR0dHshBNS+DiNgM9TaeqKq93BycnJmDBhArS0tPDq1St06NABHz9+RFpaGjQ0NDj/Hfhchw4d2HG9X3r79i3atWvHaR4/Pz/eT39JTU0VmubzOVlZWXz8+JHjRP/z4MEDTJw4EY0bN4apqSlu3rzJ/r5mZWUhPDwcQUFBnOW5evUq29CUYRixBQgpKSno6Oiwk2pI+Np2t3fv3iEyMpLIyq+pU6ciPT0dADBjxgykpaXBz88PVVVV6NSpE5GtgTUWLlyIhQsXYs6cOTA3N4eCgoLIOTVjmbl29epVzJgxA8XFxWjYsKFI/xNaGKH+DbQwQlEUxVPXrl1DdHQ0zp07BxkZGQwaNAh+fn7sFogpU6YgPDwcmzdv5vwDXosWLeDv78/pNWsTERGB4OBgMAwDhmEwf/58kXMEAgEkJSWJflDn0zSCn2UqDV+tXbsW/fv3x8qVK2FgYMD+7+3btzFnzhxMnjyZWLbFixdj9uzZkJWVha2tLRo3boyPHz/i7NmzCAsLQ2BgIKd5hg8fzun1/g5VVVW8ePFC7JPyx48fEy2orlq1CkZGRti8eTMYhhGa1tO5c2ecPHmS0zzTpk1j/73R1dVFZGSk2K2LpG3atAmWlpa1FkY2bdpEpDBiZGTErgpRUFDAli1bUF5ejvLy8q82JObCixcvcPv2baSlpeH48eMix7lsEP4lf39/dOrUCX5+fmjWrBmRDFT9RwsjFEVRPNSnTx9kZmbCxMQEy5YtQ//+/SEjIyNyXteuXVFQUEAgIX8MGzYMZmZmEAgEcHZ2xuLFi9G2bVuhc6SlpaGtrU20jwafphH8LFNp+Orx48eYMmUKu12lZvWPiYkJpk2bhsDAQPTq1YuzPMbGxkKrMj59+oQFCxZgwYIFkJKSQkVFBYDqJ/kTJ04ksjKJzwYOHIiNGzeiTZs2bF8ghmHw5MkTbN++HWPGjCGW7d69e9i4cSOkpaVFpoApKSmx46xJePToEbFrf8vXVo9lZ2eLXQ3Btc8nIJEuigDAggUL0KhRI4SEhEBbW5tXU2lSU1Mxb948WhShfihaGKEoiuKhmik0Ojo6Xz2vY8eOnHw4/VaH/89x3e2/WbNm7Iel3bt3w8DA4LuKDDVjV3/55Reoqqr+6Jh4/fo1TExMICkpCUlJSRQWFgKo7pUxefJk+Pn5wcXF5YfnAABbW1s0a9aM91Np+IphGEhLS4NhGCgrKyM9PZ2dGKWhoYFXr15xmsfV1ZX321VqJCQkfHU72bFjxzjPNG3aNDx9+hQuLi5s89fJkycjNzcXvXv3xpQpUzjPVENWVpZ9r/hSeno6kWa1XyorK0NqaqrYv08u+v3UiIuLQ1xcHIDq31F/f380btxY6Jzy8nLcv3+f6IS32iYg+fr6wszMjFij3+fPn2Pjxo2wtLQkcv2v0dfXR0ZGBukYVD1HCyMURVE85OPj893nVlVVwc7ODiEhIT+sfwBfO/x/qS5TYKqqqrBp0yb06dOHk8IIn6YRfDmVxsrKCkpKSpxd/2eno6OD1NRUdO/eHUZGRti5cyfat2/PNlBs0aIFp3mmT5/O6fX+ritXrmDq1KkwNzfH/fv3YWlpidLSUty+fRsaGhrEpk00aNAAW7ZswY0bN3D9+nXk5eVBUVERFhYWsLCwIJKpRs+ePbFlyxahng8Mw6C0tBS7d++utTcKF8rLy7F06VLExsaKrGapweXWi0+fPrH/VgkEApSUlIg0IW7QoAGGDBmCX3/9lbNcn/vaBKSWLVsSnYCkp6dHdAXS1yxduhTe3t5QV1eHubk5pKToLSz176M/VRRFUT85gUDw1Qaa/wa+dvj/p7hq1gnwdxrBsGHDAFR3/H/69CkyMjJgaWkJRUVFlJWVQVpamtfjG0kYNWoU20Bx9uzZcHV1ZXvEyMrKYsOGDSTj8dbGjRvh7OwMLy8vGBgY4LfffoOBgQHS0tIwadIkzidsfal79+7EM3zJ29sbY8aMgb29Pbp16waGYRAUFIRnz56BYRjMnDmTWLZNmzbh2rVrWL16Nby8vLB48WI0atQIsbGxePPmjdBNPxeGDRvGvp9NmDABS5cu/eaqS67xeQLSkiVLMG/ePKiqqqJ79+68Kj788ssvqKioYLcwfrm1mGEYkelIFFVX/PmJpyiKouqdyspKdOzYkbMRqnzG12kEAoEAf/zxB/bs2YOSkhIwDIOoqCgoKipi2rRp6Ny5M7E+IwKB4Lu3iEhISGDYsGGc9JEZOnQo+7WOjg5OnDiBu3fvorS0FEZGRlBWVv7hGb6Gr6OEnz9/jlmzZkFCQgIMw6CkpARA9Xa46dOnY+PGjZw1Ia75XfxepBqwqqurIyYmBuHh4bh+/TpatmyJDx8+YNCgQUJbf0g4deoUpk2bhv79+8PLywuGhobo2LEjhg4dCh8fH5w/f57Yiha+FvP5PAFp7NixqKiowOTJk3lXfPiZtgtSPy9aGKEoiqJ+KC5XZfCZuGkExcXFSE1NRfv27Yl96AsKCsLevXvh4+MDc3Nz2Nvbs8esra1x6NAhYoURKysrDBs2DI6Ojt8cgcswDFatWsVJrvT0dCgoKLANE+Xk5NCjRw8A1cv509PTid1I83mUsIyMDKqqqsAwDFRVVfHmzRt07doVQPWfIZejoa2trev0O0dqGgdQ/X4xY8YMzJgxg1gGcTIzM9G6dWtISkpCRkZGqBH44MGDMXv2bCxbtoxYvqqqKty4cQMvX74UWVHJMAwmTpzIeSY+T0Dic/HhZ9kuSP3caGGEoiiKojiwY8cOlJSUsEWGW7duwd3dHYWFhWjevDl27NhB5Kb1yJEjmD17NkaPHi3SJ6Bly5ZITU3lPFONQYMG4fDhwwgNDUXXrl3h6OiIfv36oWHDhsQyAdU31SoqKggKCmJv7GukpKRg9OjRxG6k+TxKWFdXFy9fvkSPHj1gbm6OkJAQNG3aFFJSUggKCkL79u05yxIcHMx+XVxcjMDAQLRs2RJ9+/aFsrIycnJycObMGaSmpsLLy4uzXLXh41Y3VVVVthjSvHlz/PXXX2xPFq4bEH8pOzsb48ePx+vXr8EwDFug//zGn0RhhM8TkGjxgfqvo4URiqIoiuLAoUOHhMbirlq1Cm3btsWUKVOwZcsWrFu3DkFBQZzn+vDhQ6378CsrK9lRryR4e3tjzpw5uHjxIo4cOQJfX1/8/vvvGDBgAEaMGAFDQ0Ni2Zo1a4aJEydi/vz5GDduHLEcX+LbKOHPOTs74+3btwCqe7O4ubnB3d0dQPU0n8+LFT+ara0t+7Wvry8sLCxEVhw5OTlh/vz5uH79OgYNGsRZts/xeaubmZkZbt26BWtra4wcORJr1qzBixcvIC0tjfj4eAwcOJBILgBYvXo1mjZtyjaojYyMhIqKCmJjYxETE4PQ0FAiufg8AelzGRkZyMjIgK6uLho1akQ6DgD+bhGk6g9aGKEoiqoH+Lr8lfqfzMxMtGrVCgCQlZWFBw8eYO/evejatSsqKyuxdOlSIrm0tbVx7do1sUu7b968+cMmHX0vCQkJWFtbw9raGrm5uYiNjUVUVBQOHTqEtm3bwtHREcOHD2cndnBl4cKFSEhIwMqVK5GSkoKlS5dCWlqa0wzi8G2U8Oc+762grq6Ow4cP4/Xr1ygtLUWbNm3QoEEDIrlOnTqF9evXiz3m4OCAWbNmcbZN60t83uo2a9YsdppWzeqLU6dOoaysDBMmTICnpyeRXED1WGhfX1+hiWNaWlpwc3ODQCDA8uXLsX37ds5z8XkCEgBEREQgODgY2dnZbBHOwMAAnp6eMDMzg7OzM5FcfN4iSNUftM08RVFUPUD7eFSLiYmpdezthw8fEBMTw34vKSmJVatWoXnz5pxkk5GRQWFhIQDgzz//RKNGjWBsbAwAaNy4MbGmexMnTkRYWBiCgoLw9OlTANVFnH379mHPnj1ElpvXJicnBxkZGXj//j2kpaWhpqaGDRs2wNraGufOneM8z6RJkxASEoKzZ89iwoQJyM7O5jzDl2pGCQNgRwk/efIEL168IDJK+GsYhoG2tjZ0dXWJFUWA6veClJQUscdSUlKITmX6fKvbl+9VJLe6VVRU4N27d1BRUWFfmzhxIg4ePIgjR47A29ub6EqDjx8/QklJCRISEpCXlxcaQ2tkZER8gkn37t0xe/ZsrFixAl5eXrwoioSHh2PFihUYOnQodu7cKfS5wszMDKdOnSKWrWaLYFxcHAQCAVauXIlz585h//79YBiG6BZBqv6gK0YoiqJ4KDo6Go6OjmKPCQQCLFmyhJ1iIikpiUePHnEZj7fmz5+PiIgIsZNJ3r59i/nz5wtNFKkZ7cgFQ0NDhIaGQkJCAjt27IClpSUkJSUBAG/evIG6ujpnWT43fPhw5OfnY+PGjdi6dSsAwNPTE7Kyspg5cyYGDBhAJFeNwsJCxMXFITo6Gvfv30fbtm3h7u6OIUOGQFFREYWFhVixYgVWrlwJGxsbzvNZWloiIiICHh4eGD58uNB2KRL4Pkr4xYsXOHPmDDIzM0WWwzMMAz8/P84zDR48GBs2bEBZWRlsbW2hpKSE3NxcnD17FqGhoRg9ejTnmWrwdaubhIQEfvnlF4SGhvLipv5LzZs3x7t37wAAbdu2xdGjR9GnTx8AQHx8PLFpPmlpaSgsLESHDh0AAOXl5dixYweeP38OCwsLDB8+nEguANi7dy88PDzg4eEh0m+qdevWePnyJaFk/N4iSNUftDBCURTFQ0uWLEGjRo3Qv39/odcFAgHmzp2L8+fPExvvWhcMw0BLS4uzp8FfWzlTUFAAOTk5TnKI4+Pjg6lTp8LNzQ1aWlqYNWsWe+zkyZPs6hESXFxcMGrUKNy5c4dd2m1sbIzGjRsTywRU9xiJj48HAPTv3x8LFy5kJ/vUkJeXx9ixY3H06FECCau1bt0ahw4dwuzZs7F69WqiW9v4PEo4JiYGCxYsgIyMDLS0tES2HpH6c/Px8YGUlBS2b9+OTZs2sa/LyMhg3LhxmDNnDpFcAH+3uklISKB58+bIz88ncv1vsbKywrVr1zBgwAC4u7vD09MT5ubmkJKSQk5ODrGGuosWLYKuri7mzp0LoHolxIEDB9C+fXucOnUKJSUlxHoWZWVl1frvkLS0NIqLizlO9D983iJI1R+0MEJRFMVDy5Ytg4+PD2RlZdG7d28A1U8HZ82ahT///BM7d+4kGxDfNyVBQkIC58+f/6E5Ll26hCtXrrDf79y5U2h5N1D9dOnGjRvQ09P7oVm+pm3btjh37hzy8vJEVrT4+PgI7YUnQU5ODj179iSa4UvPnz+Hj48PBg4cyI7GFadt27bYvXs3Z7lWrVolsiVFXl4eW7duRWhoKNEP6TExMbCysmJ/xj4fJVyznezz4gmXtmzZAnt7e/j5+UFWVpZIBnGkpKTg4+MDNzc3PH78GDk5OVBVVUX79u2hqKhINNvEiROxaNEiSElJoV+/fgCqt7rdvXsXe/bsIdb7BADc3NywefNmmJiYEFvxVpvPCx9WVlY4cOAA4uPjUVpaCgsLC6F+N1x6+PAhxo8fD6B6O1JMTAy8vLwwceJEhISE4ODBg8QKI1paWrh3757YIlxSUhK0tbW5D/X/arYIdu/end0i2L59e0hJSfFuiyD186KFEYqiKB5ydHREcXExfvvtN2zduhUmJiaYPn06kpKSsGvXLujr6xPLxrcpCa9evWKLLwzD4NatWyIrVKSlpdGuXTvMnj2bs1y1EbfNp2ZZNQmXL19GQUEBO0EiIyMDCxYsYJd2L168mFivgMOHD3/XeXJycuzoSy7UtgWLYRhMnTqVsxzi1HU7GZfevXuHpUuX8qoo8jlFRUVOf46+B5+3up06dQp5eXmwtbVFhw4dRArSDMNgy5YtnOcqKyvD/v370aNHD3YEdKdOndCpUyfOs3ypqKiIXYmXlJSEwsJC9u+wS5cuRCerjBo1CsHBwWjatCn69u0LoLp4c/HiRezYsQMzZ84kmo3PWwSp+oEWRiiKonhqwoQJKC4uhoeHB9q3b4/U1FTs3r2b/aBHCt+mJDg7O7Od8q2trbF582bo6upydv2f3YYNG4S2bC1fvhzPnz+Hg4MDYmNjsWHDBsybN49gwuol3llZWWJHNJqamnKS4cyZM+jevTsUFBRw5syZr57LMAzs7Ow4yfUlPm8n69q1K548eSL2iTRpWVlZCA8Px+3bt/Hhwwc0adIEXbp0gbOzM/HVEDVb3Wqy8WWrW1FREVq3bi30PR/IyMggKCgIBgYGpKOI0NDQwN27d2FqaoqzZ8+ibdu2UFNTA1C9CrNhw4bEsk2aNAkZGRlYvHgxlixZAgAYM2YMAGDs2LFEx5LzeYsgVX/QwghFURRPfPjwQeS1X375BWlpaThz5gy2bNkCNTU19jxSzeM+n5LwZYM2klMSAPzwbTv10evXr9lCUmFhIa5cuYKAgAD069cP7dq1Q3BwMLHCSGpqKry9vZGUlARA9KafYRg8fPiQkywzZsxAZGQkDA0NMWPGjK+ey2Uu4OfZTjZ79mx4e3tDRkYGPXr0EHtjT+J97cmTJxg/fjw+ffqEHj16QFdXF+/fv8fBgwcRHR2NvXv3Eh9bLScnx7vmknv27CEdoVZ6enp49uwZ71YAjRgxAuvXr8epU6fw8OFDzJ8/nz2WlJRUa6Ndrvj6+sLZ2RnXrl1ji3Dm5uZEt9GI8/kWQYr6t9DCCEVRFE9079691uaDAoEAY8eOFXqNyxuvz/F1SkKN/Px8XL58udapF56enoSS8VNFRQXbEyYhIQEA2BuwFi1aICcnh1g2X19fZGVlwc/PDzo6OkRHup47d47tA0NiNPDX/CzbyWq2IC1durTW9zoS72v+/v5o0aIFdu7cKdRTJD8/H66urvD398f27ds5z/V5Dj6+pwUHB2PkyJFiV9S8e/cOkZGRnK4e/NyCBQvg7e0NJSUlWFlZ8Wb71pQpU6CmpoZ79+5h7NixQlNo8vPzMXLkSILpqrVo0YLoJCaKIoUWRiiKonjCz8+P6DSL78XXKQkAcPXqVcyYMQPFxcVo2LCh2KkXtDAirE2bNoiNjUXnzp0REREBY2NjdrtFdnY2sZVJAJCcnAx/f392vztJzZo1E/s1H/ws28n4+h53+/ZtrF27VqTRqqKiItzd3eHt7U0oGb/f0zZt2gRLS8taCyObNm0iVhhxdnbGp0+f2OlfDRs2FPrZYxgGiYmJRLINHTpUbJ8f0pPmagrj4jAMg8aNG6N169ZEC9QU9SPRwghFURRP1Dw5qqiowOPHj6GpqQklJSXCqUTxeUqCv78/OnXqBD8/P97dvPKVh4cHfvvtN8TExEBSUlKo+d+VK1eINvpVV1dnV7OQJm6r29eQKijxeTvZ50/HxSkpKeEoiTBJSUmUl5eLPVZeXg5JSUmOE/0Pn9/TvtbPJjs7GwoKChymEebq6srLIlyNy5cv4969e8jMzIS7uzu0tLSQkJCAli1bEutpM2HCBKE/M4FAIPJn2LBhQ/zyyy+YO3cub96bKerfQgsjFEVRPCMhIYFffvkFoaGhsLCwIB1HBJ+nJKSmpmLevHm8u4HgMxsbG5w8eRIpKSno0KGD0F5yIyMjohNzZs2ahW3btqFr165EV64AX9/qJg6prW41Xr9+jVevXoltWMuHFTg1KisrceXKFRw7dgznz5/HnTt3OM9gYWGBoKAg6OnpCTUTffXqFdavX0/0fZhv72lxcXGIi4sDUL2KwN/fX6RXTHl5Oe7fvw8TExMSEQEA06dPJ3btr8nNzYWHhweSkpKgqamJjIwMjB49GlpaWoiOjoasrCzb+JRrYWFhWLhwISwsLGBjYwNlZWW8f/8eZ8+exY0bN+Dt7Y3Hjx9jx44daNSo0Td7LVHUz4YWRiiKonhGQkICzZs3R35+PukotaqZknDnzh3k5eXxZkqCvr4+MjIyiGb4GbVo0QItWrQQef2XX34R+r6qqgp2dnYICQnhZMvUkSNHkJmZCWtra+jp6Yn8fHE5DpSv20C+VFhYCE9PT9y8eRPA/57qf56ddNEGABITExEXF4dTp07hw4cPUFJSwqhRo4hkmTdvHsaPHw8HBwe0a9cOKioqeP/+PZ48eQJNTU2hBplc49t72qdPn9jpMwKBACUlJSIrBxo0aIAhQ4bg119/JRFRREZGBjIyMqCrq0ts9HiNlStXIi8vD3FxcWjVqhU6duzIHjM3Nycy3rhGREQEBg4cKNKHqE+fPli3bh2OHz+O4OBgCAQCHD16lBZGqHqHFkYoiqJ4yM3NDZs3b4aJiQnxUZG1kZOTQ8+ePUnHELJ06VJ4e3tDXV0d5ubmkJKi/8z9mwQCAdLS0mrddvBvKyoqQsuWLYW+J+Vb20D4Yu3atcjJycG+ffswduxYBAcHQ1FREbGxsbhx4wYCAwOJZXv69Cni4uJw7NgxZGRkQFpaGp8+fcL8+fMxbtw4YltWtLS0cOzYMURHRyMxMREFBQXQ1taGo6Mjhg8fTnTEMd/e04YNG8Y20Z0wYQKWLl1KfJJKbSIiIhAcHIzs7GwwDIOoqCgYGBjA09MTZmZmbF8eLl26dAkrVqyAjo6OyFQ3TU1NZGVlcZ6pxqVLl7Bp0yaxx7p168ZOIerWrRt27NjBZTQEBwfXekxCQgKNGzeGnp4eunbtymEqqr6hnxgpiqJ46NSpU8jLy4OtrS06dOggMnqTyyflX9qzZw+ysrLg5eUlciwgIACampoYN24cgWTVKxwqKiowZcoUSEhIQEZGRug4yYZ7VN3xeRwoX125cgWzZs1C586dAQBqamowNDSEqakpVq9ejbCwMPzxxx+c5cnMzGSLIU+ePIGkpCS6d++OGTNmoFu3bujTpw/09PSI9vEAqgu9Tk5OcHJyIprjS3x+T+Pz72d4eDgCAgLg4uICc3NzuLq6ssfMzMxw6tQpIoWRysrKWletFBQUiDTX5ZKcnBz++usvsVvH/vrrL7ZA+OnTJ86Lhbt27cKnT59QWloKAJCRkWG3CTZs2BAVFRWorKyEvr4+tm3bxsv+bBT/0cIIRVEUDxUVFQntdSf5pPxL+/fvh4uLi9hj2traCAsLI1YY4XvDPar+SEhIQERERK19PI4dO0YgVXUPA01NTUhKSkJWVlaoaayVlRXnvRf69OkDADAwMICvry/69+/P3rR8/PiR0yw/I769p71+/RrPnz+HtbW10OtXrlzBH3/8gRcvXkBFRQUTJ07E+PHjCaUE9u7dCw8PD3h4eIiszGjdujVevnxJJJehoSGio6NhZWUlcuz48eNE+7KMHj0amzZtQm5uLvr06QMlJSXk5ubi3LlzOHz4MDth6Pbt25xPvdq1axdmzZoFT09P2NjYQE5ODkVFRTh79iw2b94Mf39/lJaWwtvbG2vWrMHq1as5zUfVD7QwQlEUxUN8fhKXnp6OVq1aiT3WokULpKWlcZzof/jacI/6+6qqqnDjxg28fPlS7Bae2op0P9KVK1cwdepUmJub4/79+7C0tERpaSlu374NDQ0NmJqacp6phoaGBvLy8gBUFyrPnz8PS0tLAMCdO3dEVhz8aAoKCsjPz0dqaioeP36M9u3b8+Jpro2NzXefyzAM4uPjf2Ca2vHtPS04OBjp6elChZHHjx/Dw8MDDRo0gKWlJV69eoWVK1dCQ0MDtra2RHJmZWXB2NhY7DFpaWkUFxdznKjazJkz4eTkhHHjxsHe3p792dq6dSsuXbqE/fv3E8kFANOmTYOCggK2bduGQ4cOgWEYCAQCqKioYMGCBZgwYQIAYPDgwSL9p3605cuXw8XFBYMHD2Zfk5OTw9ChQ1FSUgI/Pz8cOnQI7u7utW4HoqhvoYURiqIoqk7k5eXx9u1bdOvWTeRYamoqGjZsSCCVKD413KP+nuzsbEyYMAGvXr1iP6QDwo1ESRRGNm7cCGdnZ3h5ecHAwAC//fYbDAwMkJaWhkmTJqF79+6cZ6rRo0cPXL9+HXZ2dnB2dsa8efOQnJwMaWlpJCcnc/7nde3aNVy9ehXHjh3DsWPHcOjQIairq2PAgAFin5pzJS0tDXJycuyTcer7JCUliWw32rt3L6qqqrBv3z7o6upCIBDA3d0du3btIlYY0dLSwr1792Bubi5yLCkpSWj6FpeMjY2xe/duBAYGwt/fHwKBACEhITAyMkJ4eDgMDAyI5Krh5OSE8ePHIzMzE9nZ2VBVVYWGhoZQg10SPWVSUlLg4eEh9lizZs3w5MkTAEC7du3oSjTqb6OFEYqiKJ5KSUlBSEgIbt++jQ8fPqBJkybo0qULpk6dCn19fWK5evTogU2bNsHCwgKamprs65mZmdi8eTP7dJoUPjbcq0+4XNa/evVqNGnSBJcuXYKVlRUiIyOhoqKC2NhYxMTEIDQ0lLMsn3v+/DlmzZoFCQkJMAyDkpISANUf0KdPn46NGzdiyJAhRLJ5eXmxeYYOHQo5OTmcOnUKZWVlWLRoEUaPHs1pHikpKfTu3Ru9e/dGSUkJzp49i7i4OOzevRthYWFgGAYnT56EpqYmmjdvzlmuqVOn4sSJEzh58iTMzc0xcOBA2NnZEW20WsPNzQ3z5s2DtrY23Nzcvnou1/2msrOzRW6ML168CENDQ3Z7BcMwGDFiBJYuXcpZri+NGjUKwcHBaNq0KTueuqKiAhcvXsSOHTswc+ZMYtmMjY2xd+9elJaWIj8/HwoKCpCVlQVQPVVKXl6eWDagupmplpYWtLS0iOb4nJaWFqKiosR+voiMjGSzfvjwAU2bNuU6HlVP0MIIRVEUD926dQsuLi5QVVWFg4MDlJWV8f79e5w9exajR4/Gzp07iXVfnzNnDn755Rf069cP3bt3h5qaGt69e4cbN25ASUkJc+bMIZIL4G/DvfqkZtUGFxISEuDr6wtVVVX2NS0tLbi5uUEgEGD58uXYvn07Z3lqyMjIoKqqCgzDQFVVFW/evGF/H+Xk5JCZmcl5phqysrLsTRYA2NnZwc7Ojliez8nKymLw4MEYPHgw8vLycOLECRw/fhwHDhzAwYMH0aVLF862Ec6aNQuzZs1CcnIyjh07hoCAACxduhSWlpYYPHgwLC0t0aBBA06yfKmoqIjti8Gn/lJA9c/+51va0tLSkJ2dzU6qqdGkSROiT+4nTZqEjIwMLF68GEuWLAEAjBkzBgAwduxYYn2wPtewYUN2heX79++xa9cuHDhwAAkJCcQyfW3rIsMwmDhxIpFcc+bMwcyZM2Fvby/U/+TChQt4+/Yt1q9fDwD4888/iW5lpH5utDBCURTFQwEBATAzM8PWrVuFxjPOnTsXU6ZMQWBgIA4cOEAkm7q6OmJiYhAWFoYbN27g1atXaNKkCVxcXDBx4kQ0adKESC6Avw33+Cw6OhqOjo5ijwkEAixZsgTLly8HAEhKSuLRo0ecZfv48SOUlJQgISEBeXl5vH//nj1mZGREbMWIrq4uXr58iR49esDc3BwhISFo2rQppKSkEBQUhPbt2xPJBQCvXr3C3bt3kZOTA4ZhoKKiAmNjY6Gxx3zQtGlTjBs3DuPGjUN6ejqOHTuGuLg4znMYGhrC0NAQCxYswI0bN3D8+HEsWLAAAoEAbm5umDRpEueZPi8O8a3fVLt27XD69Gl2G9TZs2fBMAx69eoldF56errINDWu+fr6wsnJCdevX8eHDx+gqKgIc3NzItto7t69iyNHjiAjIwMtWrTAhAkToK2tjZycHGzatAmHDx9GRUUFBgwYwHm2Gt+zdZFUYcTOzg6HDh3C1q1bcfbsWXabT6dOnRAUFAQ9PT0AYItgFPV30MIIRVEUDz18+BAbNmwQKooA1TemTk5OmDFjBqFk1Zo0aYJZs2YRzSAOXxvu8dmSJUvQqFEj9O/fX+h1gUCAuXPn4vz582xhhGvNmzfHu3fvAABt27bF0aNH2Skn8fHxxIpwzs7OePv2LQBg9uzZcHNzg7u7O4Dq5qfBwcGcZ8rKysKCBQtw/fp1kVU9NTeuK1euFFp9wxdaWlqYOnUqpk6dSiwDwzAwNzdnm9MePnwYSUlJxPLw1a+//oqpU6ciPT0dqqqqOH36NAwMDESe0l+4cIF4vwwAaNmyJfGi4KVLl+Du7g6BQAAlJSVcv34dcXFxWLNmDXx8fFBQUAAHBwd4eHgITaPjGl+3LtbQ19dnV4ZQ1I9ACyMURVE8JCsrK/R0/HM5OTlCS+Wp/+Frwz0+W7ZsGXx8fCArK4vevXsDACorKzFr1iz8+eef2LlzJ7FsvXv3xrVr1zBgwAC4u7vD09MT5ubmkJKSQk5ODry8vIjk+rxpqLq6Og4fPozXr1+jtLQUbdq04XwLRklJCZycnPDu3Tu4urqiZ8+e0NDQgEAgQFZWFi5fvoyDBw9i4sSJiI6O5k2DZL54+PAh4uLicPLkSWRnZ6Nnz55Ys2ZNnSbX/ChfK7JJSEigcePG0NPT42xrpZWVFdatW4e9e/fi4cOH6N+/P2bPni10zvv37/Hq1StMnjyZk0y1+fTpE44cOYKkpCR2hYGRkRGGDh0KaWlpznJs3boVenp62Lx5M9TV1VFUVARfX194enpCVVUV27dvR8eOHTnLUxu+bl2kKK7QwghFURQP9enTBwEBAdDQ0ICFhQX7+vXr17Fu3TqhUYlcKy0txebNm3H69GlkZmaKHaH68OFDAsn43XCPrxwdHVFcXIzffvsNW7duhYmJCaZPn46kpCTs2rWLaKPfz/vVWFlZYf/+/YiPj0dZWRksLCyITjX5HMMwRItukZGRePfuHQ4cOMA2wKzRpk0bmJubY/DgwRg7diyioqIwfvx4Qkn54+XLlzh+/DiOHz/O9ohxd3dH3759oaioSDoea9euXfj06RNKS0sBVPf4KCsrA1Ddo6KiogKVlZXQ19fHtm3bOJmwM2DAgK9u+VBWVsaRI0d+eI6vefnyJX799Vd2MpmysjIePnyII0eOYMuWLdi+fTvatGnDSZbnz59j5cqVUFdXB1Ddh8jb2xsnT57EnDlzeFEUAfi7dRGo7n1y6NAh9nNHze9ADZIjtan6gxZGKIqieGjevHl49uwZXF1d0bhxY7bRWGFhITp16gQfHx9i2ZYtW4a4uDgMHDgQOjo6nD55+5afoeEeH02YMAHFxcXw8PBA+/btkZqait27dxPtlSFOTT8I0r5nq8y0adM4SFLt3LlzGDFihEhR5HN6enoYMWIEzpw5QwsjAPr37w85OTnY2Nhg7ty5UFNTAwC8ffuW3Sb1OVLbQnbt2oVZs2bB09MTNjY2kJOTQ1FREc6ePYvNmzfD398fpaWl8Pb2xpo1a7B69WoiOflm8eLFkJaWxqlTp4S20rx+/Rpubm5YunQpdu/ezUmW/Px89uerRk2RpFWrVpxk+B583boIAGvXrkVYWBhMTU3RrVs3Xn3uoOoPWhihKIriIUVFRURERODChQu4desWPn78CEVFRXTp0gW9e/eGhIQEsWwXLlyAj48Pb2+ufH194ezsjGvXrhFvuMdXHz58EHntl19+QVpaGs6cOYMtW7ZATU2NPY/kB2IAuHbtmshy+M9XUnFt165dIq8VFxejsrISDRs2RIMGDTgtjDx79gxOTk7fPK979+44fvw4B4l+DkVFRYiNjcWxY8dqPUcgEIBhGGKr4JYvXw4XFxcMHjyYfU1OTg5Dhw5FSUkJ/Pz8cOjQIbi7u2PTpk1EMvJRcnIy1qxZI9JfpFWrVpgxYwbmzZtHKJkwSUlJ0hFYfN26CADHjh3D9OnT4enpSSwDVf/RwghFURQPubm5wdTUFF27doWXlxevPjxJSkryvsjQokULjB49mnQM3urevbvQpIHPCQQCjB07Vug1UjeF2dnZmD59Ou7evQtFRUV2bPWGDRtgZGSEjRs3EmkmKm6cZkVFBf7880+sXbsWa9as4TRPQUEBlJWVv3mekpISCgoKOEjEf1ytFvinUlJS4OHhIfZYs2bN8OTJEwDV02JIjsflGzU1tVrf42qmNXHJ2dlZbJ5x48YJvc4wDBITE7mMxhK3dfHcuXMoLS0lvnWxvLwcJiYmxK5P/TfQwghFURQPNWrUCLt27cLatWshKysLIyMjdOnSBaampjA2Nua8uePnxowZg6NHj6Jnz57EMnzL48ePxe5DBsD2Hvkv8/Pzq/WmgU+WLFmCt2/fIjw8HN27d2df//PPP+Ht7Y2lS5fy5im5lJQUevXqhaysLCxduhQHDx7k7NoVFRXfVTyVkJAQGWPNtYKCApw+fRovX74U25/I19eXkxxmZmacXOef0tLSQlRUFCwtLUWORUZGQktLC0D1KrCmTZtyHY+3PD09sX79eujp6aFFixbs66mpqdi4cSOnK7q4vNa/iS9bFwFg0KBBOH/+vNjG6hT1b2EEX850oyiKonjj9evXSEhIQGJiIhISEpCWlgYpKSl06tQJ+/fvJ5Jp+/bt2L9/P9TU1GBubg4FoFi8KwAApelJREFUBQWh4wzDYOLEiUSyPXnyBDNnzsTLly9FRpYCILokno8qKirw+PFjaGpqctK0sa6MjIywdOlSDB06VORYTEwMli5dirt373Ke62uuXr2KadOmcZpLV1cX/fr1++ZT8JycHJw+fZrY78CrV68wevRolJeXo6SkBEpKSsjPz0dFRQUUFRUhLy+Pc+fOEcnGV2fPnsXMmTPRvHlz9OnTh+03deHCBbx9+xbr16+Hra0tli1bhoKCAgQGBpKOzAtubm548OABcnNz0a5dO3a12dOnT6GsrCzUVJphGGzZsoVgWn7JyspCVlaW2AcLX45l5kpsbCyCgoLYbZRffu4A6EMP6p+jhRGKoqifwJs3b/DXX3/h2LFjuHnzJtEb/K81eATIFh9GjhyJ0tJSzJkzB9ra2mIbtDVr1oxAMn6qqqqCoaEhQkNDifbsqI2lpSWWLVvGNgD83Pnz57FkyRJcuXKFQDLxUlNT4evri9zc3K/2rfi31XVK1fnz539Qkq+rGfu5fv16GBkZITo6Grq6ujhx4gT++OMPbNiwgTcTOvgkJSUFW7duxf3799k+O506dcLUqVOhp6dHOh4vTZgwoU7n79mz5wcl+XmkpqbC29sbSUlJACDycIF+7qDqO7qVhqIoioeeP3+OhIQE9r+cnBy0bdsWpqamGDNmDLGnNgDw6NEjYtf+lmfPnmH9+vVil51ToiQkJNC8eXPk5+eTjiKWs7MzQkNDYWZmBjk5Ofb1wsJCbNu27bsajv4IxsbGIluRKioq8OnTJzRs2PC7ptb8m0gVOuoqOTkZK1euZLcCfvr0CZKSkhg0aBDy8vLw+++/c7oF6Wehr6+P9evXk44BoLoIV5dteKRWANFCR935+voiKysLfn5+0NHRIbpl90t0JRnFBVoYoSiK4iEHBwc0bNgQQ4cOxdKlS9GlSxcoKiqSjsV7urq6yM3NJR3jp+Lm5obNmzfDxMSEHSHJF+np6UhLS4OVlRW6devGLof/66+/ICcnh6ysLPz+++/s+Vz1p3B1dRW5OWzQoAE0NDRgaWlJfIoPX5WXl0NeXh4SEhJQVFRkR4MC1c1D+Vx0parZ2NgI/eyfPn0ahYWFsLCwYH8/r1+/jsaNG8Pe3p5gUqqukpOT4e/vz8stKXSlJ8UFWhihKIriod69e+P27duIiorC48ePcffuXZiamsLExEToyTkpnz59QlRUFO7du4fMzEwsXrwY2traOHHiBDp06AAdHR0iuRYvXgwfHx+oqqqiW7dukJKi/8x9y6lTp5CXlwdbW1t06NBBpE8Fyf33Fy5cgJSUFBQUFISWSdfsL/98pQTDMJwVRqZPn87JdeobbW1tpKWlwdTUFPr6+ti/fz8sLCwgJSWFiIgIqKmpkY7IO1VVVTh06BBOnz4ttqE0wzCIj4/nLM/ChQvZr7dv3w5NTU1s374d8vLy7OsfP37E5MmTv2tS0o/w6NEj7N27FwkJCcjKygIAqKurw8zMDOPGjfvmtoz/KnV1dUhISJCOwfrw4QMUFBQgISEhdsT8l2hBmvqn6CdGiqIoHgoJCYFAIMDjx4/Z7TTR0dHIz89Hhw4dYGZmBh8fHyLZUlNTMXHiROTl5UFfXx+JiYkoKioCUD3G9MqVK1i1ahWRbDo6OjAyMsKvv/4KCQkJyMjICB0nOQqRr4qKitC6dWuh7/niZ9kiAgCJiYl48eIFunTpgjZt2pCOw0sODg7sqpDffvsNkyZNgpmZGRiGgUAgwOrVqwkn5J+1a9ciLCwMpqam6Natm9i+SaTs2bMHS5YsESqKAEDjxo0xefJkLFu2DFOmTOE0U3h4OAICAgAA7du3Z6enpaen48iRIzhy5Ai8vLyINQjns1mzZmHbtm3o2rUrL4oM5ubmiIiIgKGh4VdHzNegPUaof4oWRiiKoniKYRjo6upCV1cX9vb2SEhIwMGDB5GQkICUlBRihZHff/8dSkpKOHToEBQUFISaJZqammLdunVEcgHV413j4uJgZ2eH1q1b8+omgq/oXvy6mzNnDho0aMAWAA8cOIBly5YBqN5Ss3XrVjpWUgwXFxf2ayMjI8TFxeHKlSsoLS1F9+7d0b59e86y6Orq1qlXBqmbrmPHjmH69Onw9PQkcv2vyc/Px8ePH8Ue+/jxIwoKCjjNc+nSJaxevRpDhw7FjBkz2FHGNTIyMrBhwwb4+/tDR0cHvXr14jQf3x05cgSZmZmwtraGnp4eGjduLHSc69WDfn5+7Kjln2XEPPVzo4URiqIoHkpNTcWtW7eQkJCAW7duITU1FVJSUtDX12efspJy8+ZNBAYGQklJCZWVlULHVFVVkZ2dTShZ9X73efPmYdy4ccQyUP+ukpIS/Pnnn8jIyEB5ebnQMVKjoRMTEzF37lz2+9DQUIwcORLz5s3D0qVLERwcTAsjYiQkJEBfX5/dDqipqYlRo0YBqF6plJCQwFlj6Xnz5rE3WpWVldi1axekpaVha2sLZWVl5OTkID4+HhUVFURXF5SXl8PExITY9b+me/fuCAgIgKamptC/SX/99RcCAwPRvXt3TvOEhYWhb9++ta480tTUxKpVq1BUVIQdO3ZwVhipa5Po3bt3/6AkX1dUVISWLVsKfU/SsGHD2K+HDx9OMAn1X0ELIxRFUTxkZ2cHGRkZGBoawsHBAWZmZjAyMoKsrCzpaJCUlBQZ41cjJycHjRo14jjR/ygoKLBPmKjvl5KSgpCQENy+fRsfPnxAkyZN0KVLF0ydOhX6+vrEct28eRPTp0+vdWoOqcJIbm4u2w/j6dOnyMjIgJOTE+Tk5DBs2DD89ttvnGf6GTg5ObFL47/08uVLODk5cbYy4/Ofm7Vr10JPTw+bN28W6rHg4+MDDw8PoSaxXBs0aBDOnz/Py0Lb8uXL4e7uDmdnZzRu3BhNmzZFXl4ePn78CD09PXYVFVfu37/PbqP5GkdHR3h5eXGQqJq8vLzQaod79+4hJycHurq6bMPaR48esWOYSaGrB6n/OloYoSiK4qG9e/fC0NCQV+PyapiamiIsLAyWlpbsTURNj4DIyEiiH+BdXFywd+9etqEj9W23bt2Ci4sLVFVV4eDgwH5QP3v2LEaPHo2dO3eia9euRLItX74cHTp0wKJFi6Ctrc2brVFNmjRBWloaunbtiitXrkBVVRXt2rUDUL36oKqqitM8MTExdTp/6NChPyTHt9RWUAWqVwY1bNiQwzT/c+TIEaxevVqk8aSEhATGjBmDefPmEdu62LlzZwQFBeH9+/ewsLBgGw9/jtQUETU1NURHR+Py5ctITk5GdnY2VFVVYWhoSGRkekVFxXf9DMnIyKCiooKDRNU2b97Mfh0TE4OXL19i7969QqszXr9+DXd3d9jY2HCW62dSWlqKzZs3s02Iv1w9CNAeI9Q/Rz81UhRF8RCpG9Hv4eXlhTFjxsDBwQHW1tZgGAb79u3D06dP8fr1axw6dIhYtjdv3uDJkyews7ODqamp2JsIriaX/CwCAgJgZmaGrVu3ChWT5s6diylTpiAwMBAHDhwgki0tLQ0LFixgiw58YWlpiYCAADx69AhHjhzBkCFD2GNPnz5F8+bNOc0zb948oe9rnk5/Xoj4/Ik1l4WRu3fv4s6dO+z3x44dE2mAXFZWhnPnzhFrWltaWoq0tDSxx9LS0kQmwXCpZstWeno6Tpw4IXKcYRjiN4SWlpZECiFfatOmDa5cufLNLTyXL18WajjNpc2bN2POnDlCRREAaNWqFaZPn45169YJbSHhWlVVFW7cuIGXL1+KLT583ieIS8uWLUNcXBwGDhwIHR0d3hTJqfqFFkYoiqKoOtHR0UF0dDSCg4MRFxcHSUlJXLx4Eebm5ggICBD5wMelCxcusE99b926JXKcy5GuP4uHDx9iw4YNIitsJCUl4eTkhBkzZhBKBpiYmODly5ewsLAglkEcHx8fVFZW4urVq7CyshIa33v27FnOmzomJCSwX79+/Rq//fYbhgwZAnt7e6ioqCAnJwenTp1CbGwsgoKCOM129epVBAcHA6j+/RO3XF9KSgo6OjpYsmQJp9lq2NraIiAgAA0bNoStrS0aN26Mjx8/4uzZs1i3bh1sbW2J5AKAc+fOEbv298rKykJWVpbYAhJXPWOA6j4U/v7+aNeuXa3Fv5iYGOzZs0ekmMiVzMzMWpuIMgzDjhcmITs7GxMmTMCrV6/YVaA1uWqQKoxcuHABPj4+GD9+PJHrU/8NjOBr6xopiqIoiqrXunfvjrlz54ptbhcdHY21a9fixo0bBJJVP63/7bffMGrUKJibm4tMSQDAi7GSfOLi4gJzc3OxY1K3bt2K69evY9euXQSSVU+CiYyMFNtjhKTCwkIsWLAAZ8+eBVBdqKmoqIBAIICdnR1WrVolMpKWqm4S7u3tjaSkJACiW6W4Xs1SVVWFadOm4fz582jTpg2srKzYyTTp6em4cuUKnj9/DmtrawQHBxOZcjJ+/Hjk5uZi69atQv2wUlNTMWXKFKioqBDr9TFnzhykpaVh/fr1sLKyQmRkJFRUVBAbG4uYmBiEhoYSe/DRo0cP+Pv7s+OXKepHoCtGKIqiqHrj+fPn0NHRIR3jp9KnTx8EBARAQ0NDaGXG9evXsW7dOlhbWxPLpqCgAC0tLSxevLjWmxjS2wj45s6dO/j111/FHjMwMOB03OaXHj16ROzaXyMvL48NGzbg+fPnbK8MNTU1dOrUicj7yYkTJ9CjRw8oKiqyr2VlZUFFRQWSkpJCrx05cgRubm6cZwSqtyVmZWXBz88POjo6xHtiSUhIYNOmTdizZw92796NsLAwoePNmzfHggULMH78eGKjX5ctWwZXV1f069cP7dq1Y3s6PX36FMrKyuzqKhISEhLg6+sLVVVV9jUtLS24ublBIBBg+fLl2L59O5FsY8aMwdGjR2lhhPqhaGGEoiiK+iY3NzfMmzcP2tra3/wQzjAMsZsvBwcHGBkZYcSIERgwYADRCTk/i3nz5uHZs2dwdXVF48aNoaSkhNzcXBQWFqJTp07Emk4CgLe3N27fvg0XFxe0bt2a6L7yQYMGITAwEO3bt8egQYO+ef6xY8c4SCVKSUmJvbH+0vHjx6GkpEQglbCysjKkpqaK3XphYGBAIFE1HR0dXhRW58yZIzS9p7KyEr1790ZUVJTQn09mZibWr19PrDCSnJwMf39/Ys1fxWEYBk5OTnByckJmZia7NUVdXR0aGhqE01X/jJ09exbR0dFsEU5PTw+//PILhg8fDhkZGWLZPn78CCUlJUhISEBeXh7v379njxkZGSE0NJRYtoYNGyIxMRGjR4+Gubm5SP8wUhPKqPqFFkYoiqKobyoqKkJlZSX7NV9t3boVhw8fxrJly+Dn54d+/fphxIgRMDExIR2NtxQVFREREYELFy7g1q1b+PjxIxQVFdGlSxf07t1bZFIHl27cuIFly5YJNTclpWPHjuy4bAMDA2JPnL/Fzc0Nixcvxps3b2Bra8s+kY6Pj0dCQgKWL19OLFt5eTmWLl2K2NhY9v3kS6RWAFVWViIpKanWiRdcNqwVt8udjzvf1dXVib4/fIuGhgYviiFfatCgAcaMGYMxY8aQjiKkefPm7Gjqtm3b4ujRo+jTpw8AID4+nui2xZoxzOnp6bh7967IcVoYof4NtDBCURRFfdPne55J7X/+HlZWVrCyssKHDx8QGxuLI0eOYOzYsdDW1saIESMwdOhQqKiokI7JK25ubjA1NUXXrl3h5eUltFSfNHV1dbF9RUjw8PBgewKsXr2acJrajRo1CqqqqggJCcHatWtRUVEBKSkp6OvrY/PmzUS3Rm3atAnXrl3D6tWr4eXlhcWLF6NRo0aIjY3FmzdvsGjRIiK5Hjx4gOnTpyMjI0NsAYJhGGIjjvls1qxZ2LZtG7p27Up7/fwN79+/F7tqqqYvCtd69+6Na9euYcCAAXB3d4enpyfMzc0hJSWFnJwceHl5EckF8HcbHlW/0OarFEVR1HcrKyvDyJEjMXfu3J9mr29KSgpWrVqFW7duQVJSEr169YKzs/M3Rzr+V8yePRu3bt3Cu3fvICsrCyMjI3Tp0gWmpqYwNjYm2jfg+PHj2LNnD7Zu3SrUb4EEXV1dGBsbY+DAgejfvz8vtqR8S1VVFXJzc9nl8aTZ29vj119/xfDhw2FgYICoqCh07NgRQPWkn4YNG2LZsmWc5xo5ciTKysrg6+uLtm3bit2yxWWB7ssmtZWVlTAwMEB0dLTQVpqkpCSMHj2a2CobNzc3PHz4EB8/foSenp7InxHJbZV8lZeXh99//x1nzpxBRUWF0DGBQMCL8cs17t27h/j4eJSWlsLCwgJWVlZEcvyMnzuonxNdMUJRFEV9NxkZGWRlZfHiJutbCgoKEBsbi8OHDyMlJQWdOnWCnZ0dLl++DBcXF3h6emLatGmkYxK3bt06ANVjXhMSEpCYmIiYmBhs2rQJUlJS6NSpE/bv308k27Fjx5Ceno4+ffoQv/FauHAhjh8/jhUrVmDVqlWwsLDAoEGDYGtry26x4RsJCQlerZDKzMxE69atISkpCRkZGRQUFLDHBg8ejNmzZxMpjDx79gxBQUEwMzPj/Np1wbftW0VFRUJTSvi8zZIvfH19kZCQgKlTp0JHR4do36Rv6dSpEzp16kQ6xk/1uYP6udHCCEVRFFUnffv2xcmTJ4UmmPDJtWvXEB0djXPnzkFGRgaDBg2Cn58fdHV1AQBTpkxBeHg4Nm/eTAsjn2nVqhVatWoFMzMzmJiY4NixY7h58ybu3LlDLFNRURFatWol9D0pEyZMwIQJE5CWloa4uDjExcXB29sbsrKysLGxwaBBg9CzZ09ebEW6evUqTp8+jczMTJGl+gzDEBvXq6qqyhZDmjdvjr/++ot9H3n16hWRTACgra3Nu5t6Ly8vkUacs2bNElrBJW4bBpf4vK2Sr/766y/4+vrSrVl1xPfPHVT9QAsjFEVRVJ2YmJhg3bp1mDp1KiwtLaGioiLyJJPUlII+ffogMzMTJiYmWLZsGfr37y+2y3/Xrl2Fnlb/lz1//hwJCQnsfzk5OWjbti1MTU0xZswYmJqaEsvGxxuvZs2aYerUqZg6dSqePHmC48eP4/jx44iLi0PTpk3Rr18/DBw4EF26dCGSb/v27QgICECzZs2go6PDmx4tAGBmZoZbt27B2toaI0eOxJo1a/DixQtIS0sjPj4eAwcOJJJr/vz5WLlyJTp06MCLqTTDhg0Tea1my9GXSP2cUX+PgoICmjZtSjoGS09Pr07nk9rmw+fPHVT9QXuMUBRFUXVSs/KiNiT3SPv7+2PEiBG8uLn5Wejq6qJhw4YYOnQoLC0t0aVLF+L9PH5GSUlJiIyMxOHDh8EwDFJSUojksLa2hrW1NXx9fYlc/2uys7ORl5eH9u3bAwDCw8Nx6tQplJWVwcLCAp6enkRGbA8aNAjZ2dkoKCiAmpqa2C1bsbGxnOf6GVRVVeHGjRt4+fKl2Gk+Li4unGWZP39+nc5ftWrVD0pSu3379uHChQsICQmBlBT559O6urqQk5ODra0t9PX1v3m+s7MzB6lE8flzB1V/kP+NpCiKon4q586dIx2hVj4+PqQj/HR69+6N27dvIyoqCo8fP8bdu3dhamoKExMTyMnJkY6HlJQUhISE4Pbt2/jw4QOaNGmCLl26YOrUqd/1Qf5Hq6iowJUrVxAXF4fz589DIBCwN/4kfPjwATY2NsSu/zWqqqpQVVVlv584cSIvRmzyefwyn2VnZ2PChAl49eoVGIZhJ/p8/mfJZWHkyxvjrKws5OXlQVFRkR1bnZ+fj6ZNmxIb4/vixQs8f/4cdnZ2MDU1hYKCgsg5XBY1ly9fjuPHj+PYsWNITk6Gg4MDBg0aJLSFkQ/4/LmDqj/oihGKoiiqXsnKykJ4eLjIjbSzszPU1dVJx+MlgUCAx48fs9tpEhMTkZ+fjw4dOsDMzIxYwenWrVtwcXGBqqoq7Ozs2Jubs2fPIicnBzt37kTXrl2JZPvrr79w/PhxnD59Gvn5+WjWrBkGDhyIgQMHol27dkQyAcCcOXPQunVrXvbPKS4uRkpKCrKzs8EwDFRUVNCxY0c0bNiQdDTqb5gzZw7S0tKwfv16WFlZITIyEioqKoiNjUVMTAxCQ0OFmrNy6fLly1i6dCn8/PyEJpD9+eefWLhwIZYsWUJkysq3xmUzDEOkCJCdnc1uC7x//z709fUxaNAg9O/fn/67Sf1n0MIIRVEU9bdcvnwZ9+7dQ2ZmJtzd3aGlpYWEhAS0bNmS2AepJ0+eYPz48fj06RN69OjB3khfv34d0tLS2Lt3L9Gb1p/Bu3fvkJCQgIMHDyIhIYHoEuXRo0dDTk4OW7duFVp2XllZiSlTpqC4uBgHDhzgLM/9+/cRFxeHkydP4t27d0I9RUxMTDjL8TXXr1/H0qVLYW9vDwsLC7FPpD8f+cqF4uJirF69GjExMfj06ZPQyoIGDRpg+PDhmDt3Lm+n+1DiWVpawtfXl92G8fmI4S1btiAxMRHbt28nkm3QoEGYNGmS2CanR44cwY4dOxAXF8d9sJ/Amzdv2CLJy5cv4ezsjLlz55KOxSopKRHbeLhJkybch6HqFbqVhqIoiqqT3NxceHh4ICkpCZqamsjIyMDo0aOhpaWF6OhoyMrKYsmSJUSy+fv7o0WLFti5c6dQn4z8/Hy4urrC39+f2Ad1vkpNTcWtW7eQkJCAW7duITU1FVJSUtDX18ekSZOIjjB9+PAhNmzYILIXX1JSEk5OTpgxYwZnWezt7fHmzRt2Cs3AgQN5M4Xmc66urgCAbdu2Ydu2bULbGgQCAeeFroqKCri4uODevXvo27cvevToAU1NTQgEAmRmZuLKlSuIiIjA48ePsXfvXmIjOQsKCnD69Olae2XwsWcLaR8/foSSkhIkJCQgLy+P9+/fs8eMjIwQGhpKLNvr169rvVFWVFTEmzdvuA30E1FVVUXz5s3RrFkzvHjxQujvlRSBQIDNmzcjIiIC2dnZYs+hPUaof4oWRiiKoqg6WblyJfLy8hAXF4dWrVoJTUswNzfHli1biGW7ffs21q5dK9I8VFFREe7u7vD29iaUjL/s7OwgIyMDQ0NDODg4wMzMDEZGRrx4ei8rK1vrh/KcnBxOM7Zu3RozZsyAjY0Nr7d+7N69m3QEITExMXjw4AFCQ0PRs2dPkeMjR47E5cuX4eHhgaNHj4qdyPKjvXr1CqNHj0Z5eTlKSkqgpKSE/Px8VFRUQFFREfLy8rQwIkbz5s3x7t07AEDbtm1x9OhR9OnTBwAQHx9P9Al+27ZtERoaClNTU6FeSYWFhQgNDUXbtm2JZQOqCzevXr0Su/KBxHSV8vJyXL58GXFxcbh48SLk5eXRr18/7Nu3D8bGxpzn+VJ4eDjCw8Px66+/4o8//oC7uzskJSVx/PhxfPr0CW5ubqQjUvUALYxQFEVRdXLp0iWsWLECOjo6qKysFDqmqamJrKwsQsmqVxKIe9oLVH/w49vTfT7Yu3cvDA0N0aBBA9JRRPTp0wcBAQHQ0NCAhYUF+/r169exbt26b+7X/zeFhIRwdq1/guQKH3FOnTqFIUOGiC2K1LC0tMSQIUNw4sQJIoWR1atXo3Pnzli/fj270kFXVxcnTpzAH3/8gfXr13Oe6WfQu3dvXLt2DQMGDIC7uzs8PT1hbm4OKSkp5OTkwMvLi1g2X19f/Prrr7CyskK3bt3YbZV//fUXKisria0cLCwshKenJ27evAkAYhvWcrny4erVqzh+/Dji4+PBMAxsbW2xefNmdO/endjqLXGioqIwffp0jBs3Dn/88QdsbW1hYGAADw8PuLu70xVA1L+CFkYoiqKoOqmsrKx1pGZBQQGkpaU5TvQ/FhYWCAoKgp6eHlq3bs2+/urVK6xfv17o5pqqRqp56feYN28enj17hkmTJkFeXh5KSkrIzc1FYWEhOnXqRKcQ/QQeP36MESNGfPO8Xr16YeXKlRwkEpWcnIyVK1eyxcFPnz5BUlISgwYNQl5eHn7//XccPHiQSDaAv9t85syZw35tZWWFAwcOID4+HqWlpbCwsCDS3LSGiYkJzpw5g/DwcCQnJ+PFixdQVVXF6NGj4ezsLDQdiUtr165FTk4O9u3bh7FjxyI4OBiKioqIjY3FjRs3EBgYyGmeX3/9FXJycrCxsYGlpSUaNGiAwsJCxMfHiz2fxGoWAEhLS4Oenh4kJSUhJSWFgoICAICEhATGjh2LhQsXYvbs2USyUfUHLYxQFEVRdWJoaIjo6GixH3qPHz9OtAnlvHnzMH78eDg4OKBdu3ZQUVHB+/fv8eTJE2hqamL+/PnEslF1p6ioiIiICFy4cAGJiYkoKCiAoqIiunTpgt69e/PqiSafxMTEICIiotal+rdv3+Ysy4cPH6CmpvbN81RVVfHhw4cfH0iM8vJyyMvLQ0JCAoqKiuz2EABo164dHj16RCQX8HNt8+nUqRM6depEOgZLRUWF6KoVca5cuYJZs2ahc+fOAAA1NTUYGhrC1NQUq1evRlhYGP744w9OMxUVFSE2NhbHjh3D12ZykGzE3aRJExQXFwMAtLS0kJKSAnNzcwBAXl4eSktLieSi6hdaGKEoiqLqZObMmXBycsK4ceNgb28PhmEQHx+PrVu34tKlS9i/fz+xbFpaWjh27Biio6PZG2ltbW04Ojpi+PDhQnvNKf77888/kZ6eDkdHR9jY2AgdO3z4MLS0tIRGcVLA0aNHsWjRIgwbNgx37tyBo6MjqqqqcP78eSgoKGDIkCGc5vn06ZNI81xxpKSkUFFRwUEiUdra2khLS4OpqSn09fWxf/9+WFhYQEpKChEREd9V2PlR6Daf+iU3NxeampqQlJSErKysUDHQysoK06dP5zQPidHAf4eJiQnu3bsHKysrDBw4EMHBwcjJyYGUlBQiIyPZIglF/RO0MEJRFEXVibGxMXbv3o3AwED4+/tDIBAgJCQERkZGCA8P53wU6Jfk5OTg5OQEJycnojmofy4oKEikIFIjNzcXkZGRRLc48FFYWBg8PDwwZcoUREZGYuzYsTAwMEBhYSEmTZpEpDgYFxeHxMTEr56Tnp7OURpRDg4O7KqQ3377jZ3GxDAMBAIBVq9eTSwb37f58FVpaSk2b96M06dPIzMzU+wWJBKrHzQ0NJCXlweguiB3/vx5WFpaAgDu3LkDGRkZTvM0a9aM0+v9XdOmTWP7l7m5uaGgoABxcXEoKyuDhYUFFi1aRDghVR/QwghFURRVZ8bGxti7dy9KS0uRn58PBQUFXkwxoeqXp0+f4rfffhN7zMDA4KdpiMql169fw8TEBJKSkpCUlERhYSEAQF5eHpMnT4afnx9cXFw4zfS9k3I+b0DJpc//PIyMjBAXF4crV66gtLQU3bt3R/v27YnkAvi9zYfPli1bhri4OAwcOBA6OjpEe199rkePHrh+/Trs7Ozg7OyMefPmITk5GdLS0khOTub8d/Nn0aZNG7Rp0wYA0KBBA/j6+vJmCxlVf9DCCEVRFPW3ycjIQFpamuj4UmNj4+++oWIY5ptPrin+YBgGHz9+FHssPz9fZCrSj1TXFUikxubKy8uzT8fV1dXx7NkzdOvWDUB14+Sap9Vc+Rlv3DU1NTFq1CjSMQDwe5sPn124cAE+Pj4YP3486ShCvLy8UFJSAgAYOnQo5OTkcOrUKZSVlWHRokUYPXo04YT8l5GRgYyMDOjq6tbaCJ6i/g5aGKEoiqLq7OrVqwgODsaDBw9QUVEBKSkpGBgYwNPTE7169eI0i6urK7EnzdSP1blzZ+zbtw99+/YV+jsWCATYv38/28CQC/Ly8kIZ7t27h5ycHOjq6rKjQB89egRVVVWiDSg7duyIx48fo1evXrC2tsamTZsgEAggJSWF0NBQGBkZEctWFwKBAAsWLMD06dOhpaVFOg4xfN7mk5CQAH19fbHbs4qKipCSkgJTU1MCyapHt2traxO59tfIysoKra60s7ODnZ0dwUQ/j4iICAQHByM7OxsMwyAqKor93GFmZgZnZ2fSEamfHCP4WvthiqIoivpCdHQ0fH190bVrV/Tt25e9KTx9+jQSExOxYsWK7xrPSVHfcufOHTg5OUFbWxvDhg2Dqqoq3r17h5iYGLx69Qp79uwhcqMfExOD0NBQhISEoGXLluzrr1+/hru7OyZPnoxhw4ZxngsA7t69i/T0dAwYMAAFBQXw8fHBpUuXUFVVhU6dOmHdunVo0aIFkWx1UVlZiY4dO7I3P1S1jIwM3mzz0dPTQ0REBAwNDUWO3b9/HyNHjiQ2xSQ4OBivX7/G2rVriVyf+neFh4cjICAALi4uMDc3h6urK6Kjo2FgYIBdu3bh1KlTOHDgAOmY1E+OrhihKIqi6mTTpk0YNmwY/Pz8hF6fMGEC5s+fj82bN/OiMJKZmYl3795BTU0NGhoapONQf4OxsTHCw8Oxdu1aBAQEoKqqChISEmyjX1KrHzZv3ow5c+YIFUUAoFWrVpg+fTrWrVtHrDBiZGTE/rkoKChgy5YtKC8vZ3tV/EzoszvRVRmfb/MpKipCQkICsVUZX/v7KSkpIbrFsmHDhkhMTMTo0aNhbm4OBQUFoeMMw2DixIlkwlF1tnfvXnh4eMDDw0NkC2Xr1q3x8uVLQsmo+oQWRiiKoqg6yc3NhYODg9hjDg4OOHnyJMeJhEVERGDLli1sB3sAUFNTg7u7O92//RPq0qULDh48yKtGv5mZmbVu32IYRuhnjw8aNGjATjWhfi5OTk61rsp4+fIlnJycOF2VcffuXdy5c4f9/tixYyJ9m8rKynDu3Dm2WSYJAQEBAKqnHd29e1fkOC2MVKvrNChS29qysrJgbGws9pi0tDSKi4s5TkTVR7QwQlEURdVJ586d8eDBA/To0UPkWEpKCtH+Clu3bsUff/yBIUOGwN7eHioqKsjJycGpU6ewbNky5OfnY+rUqcTyUX9fw4YNiT6B/pyhoSGCgoKgp6cntC0lNTUV69ev57T3CVW/8W1VRk1/KaC6uLBnzx6Rc6SkpKCjo4MlS5Zwmu1zP2PTXxKsra3r1KOL1NYoLS0t3Lt3D+bm5iLHkpKSeNlPhvr50MIIRVEUVSezZ8/G7NmzUV5eDltbWygpKSE3Nxdnz55FTEwM1q1bhw8fPrDnN2nShLNse/bswaRJk+Dt7S30urW1NZSVlbFnzx5aGKH+sWXLlsHV1RX9+vVDu3bt2D47T58+hbKyMnvjSP08cnNzsXPnTty7dw+ZmZkIDg5Gu3btsGvXLnTu3JnTbVt8XpUxbdo0TJs2DQCgq6uLyMhIsatZqJ/D5+9VxcXFCAwMRMuWLdn+YTk5OThz5gxSU1Ph5eVFLOeoUaMQHByMpk2bom/fvgCAiooKXLx4ETt27MDMmTOJZaPqD9p8laIoiqoTXV1d9usvJ4V8+RrA7RMmY2NjBAcHi13Ncu3aNUybNk3ohoOi/q7y8nJER0cjOTkZ2dnZUFVVhaGhIYYPHw4ZGRnS8X56lZWVMDAwYBss/kgPHjzAxIkT0bhxY5iamiI2NpZt+rpmzRqkp6cjKCjoh2b4XHBwsNCqDHEf1T9flWFiYsJZtp9NWVkZUlNTUVZWJnKMZFPfy5cvs0U4d3d3aGlpISEhAS1btoS6ujqRTL6+vqisrMSqVatEjs2fPx8AxB7jyu+//459+/aBYRi23xQAjB07Fr6+vsRyUfUHXTFCURRF1Ymfnx9vx+P27NkT169fr7UwIm4ZLkX9HQ0aNMCYMWMwZswY0lGof2jVqlUwMjLC5s2bwTAMjh49yh7r3Lkz532TfqZVGZWVlUhKSkJmZibKy8tFjg8dOpT7UKguXC5duhSxsbEizTprkNgWkpubCw8PDyQlJUFTUxMZGRkYPXo0tLS0EB0dDVlZWWJbkE6dOoX169eLPebg4IBZs2YRLYz4+vrC2dkZ169fR15eHhQVFWFubk630VD/GloYoSiKoupk+PDhpCPUasSIEViyZAlyc3NhY2PDbnGIj4/HjRs3sGzZMjx48IA9n44Bpf6p9+/fi30aTapJIZ9dvnwZvXr1+q7CqqSkJHbv3o3WrVv/8Fz37t3Dxo0bIS0tLXITraSkhPfv3//wDLXhc6+MBw8eYPr06cjIyBC7qoVhGGKFkU2bNuHatWtYvXo1vLy8sHjxYjRq1AixsbF48+YNFi1aRCTXypUrkZeXh7i4OLRq1QodO3Zkj5mbm2PLli1EcgHVv3MpKSm19g+rWaFBUosWLfDLL78IvXbr1i1s3rwZO3fuJJSKqi9oYYSiKIqqk6tXr6Jnz561Ht+9ezecnJw4TPQ/Nf1Djhw5giNHjogsQ3dzcwNQve2HYRhijeSon1teXh5+//13nDlzBhUVFULHSPxs1fX3bffu3T8oyddNmTIFGhoaGDZsGIYPHy7UuFYcMzMzTnLJysqisLBQ7LH09HRO+yTVho9bQpYuXQp5eXns2rULbdu2hbS0NJEc4pw6dQrTpk1D//794eXlBUNDQ3Ts2BFDhw6Fj48Pzp8/DysrK85zXbp0CStWrICOjo5IEU5TU5PoRKvBgwdjw4YNKCsrE+kfFhoaytupbu/fv8eff/5JOgZVD9DCCEVRFFUnv/76K8aOHYu5c+cKTUTIzMyEj48PEhMTiRVGSN3wUf8tvr6+SEhIwNSpU6Gjo0P8hlBeXl5oFca9e/eQk5MDXV1ddtXUo0ePoKqqSnRq1PHjxxEVFYVDhw5h69at6Nq1K0aOHAl7e3ui44R79uyJLVu2wNzcHAoKCgCqVzuUlpZi9+7dRG6ga/B1SwgAPHv2DEFBQZwVsOoiMzMTrVu3hqSkJGRkZFBQUMAeGzx4MGbPno1ly5ZxnquyshKNGjUSe6ygoIDoe4mPjw+kpKSwfft2bNq0iX1dRkYG48aNw5w5c4hloygu0MIIRVEUVSeBgYFYvnw5rl27hrVr18LQ0BBHjhzBypUroaamhoMHDxLLxscP6FT989dff8HX15fYNoEvbd68mf06JiYGL1++xN69e9GyZUv29devX8Pd3R02NjYkIgIAdHR04OPjAy8vL1y8eBHR0dGYP38+li9fjoEDB8LR0VFoawFXvL29MWbMGNjb26Nbt25gGAZBQUF49uwZGIYhOvGCr1tCAEBbWxtFRUXErv81qqqqbDGkefPm+Ouvv2BhYQEAePXqFbFchoaGiI6OFltsO378ONFGulJSUvDx8YGbmxuePHnCNpVu3749FBUVieWiKK7QqTQURVFUnWVlZWHhwoW4ceMG9PX1cf/+fUyYMAFz5swh+uT3cyUlJWKXnfNhWTz1c7O2tsaSJUuIriSoTd++fTFnzhzY29uLHDt58iTWrVuHs2fPEkgmXlZWFry8vJCQkACGYdCuXTs4OzvD0dGR0xwFBQUIDw8Xaezo4uJC9D3D3t4ev/76K4YPHw4DAwNERUWxxSMfHx80bNiQyMoHALh58yZWrlyJdevWQUdHh0iG2ixYsABNmjTB3LlzER4ejjVr1sDGxgbS0tKIj4/HwIED4efnx3muO3fuwMnJCYaGhrC3t8eqVavg5uaG58+f49KlS9i/fz/tfVVHp0+fxsyZM+nWWOofoytGKIqiqDpTV1fHmDFjcPPmTSQnJ0NPTw+TJ08mXhQpLCzEmjVrcPr0aaGl05+jH56of2rSpEnYs2cPevToASkpfn2UyszMrLW5KcMwRHsYfO758+eIiopCbGwsCgoK0K9fP9jZ2eHSpUtYsmQJkpKSsHz58h+eo6ysDGvXrsXgwYMxY8YMzJgx44dfsy74uiUEAFasWIHs7GwMGjQIampqaNy4sdBxhmEQGxtLJNusWbOQl5cHAJg4cSKA6r4jZWVlmDBhAjw9PYnkMjY2xu7duxEYGAh/f38IBAKEhITAyMgI4eHhxIsi+fn5uHz5MjIzM0UeLDAMw+mf25kzZ77rvLt37/7YINR/Br/+NacoiqJ4r7i4GH5+foiOjsbQoUPh4ODALoVfunQp+vXrRyzb/PnzcePGDYwYMQKtW7cm3vuBqp9evHiB58+fw87ODqampmxfis/5+voSSFa9VD8oKAh6enpCzU1TU1Oxfv16dO7cmUguACgqKsLx48cRHR2N5ORkaGtrY9KkSRg6dCiUlJQAVI8FtbCwwLJlyzgpjMjIyCA6Ohp9+/b94df6O/i6JQSobvrK19HtqqqqUFVVZb+fOHEiWyAhzdjYGHv37kVpaSny8/OhoKAAWVlZ0rFw9epVzJgxA8XFxWjYsKHIv59cF0bqUqTk688h9XOhW2koiqKoOrG1tUVxcTGWL18OW1tbANXbVlatWoXIyEgMHDgQAQEBRLJ16dIFS5YsweDBg4lcn/pvsLa2/upxhmFw7tw5jtIIe/78OVxdXZGTk4N27dqxzVefPn0KZWVlhIWFEdv2YGRkBIFAAHt7e4waNQpdu3YVe96TJ0/g5uaG8+fPc5LL1dUV3bt3x5QpUzi5Xl3wdUsIVf8MGjQISkpK8PPzQ7NmzUjHQVpaWp3O50Nm6udGCyMURVFUnXh6emLFihXsE97PXb58Gb6+vrh8+TKBZEC/fv3g4+ODPn36ELk+RfFBeXk5uyqjpoGioaEhhg8fDhkZGWK59u7di8GDB4tdYUPS3bt34eXlhTFjxsDKygrKysoiT6BJ9RnJzs5GXl4e2rdvDwAIDw9nt4RYWFjA09Oz1iknXBIIBHj37h2UlZV5t72MT+bPn4+SkhIEBQWJHJs1axbk5eWxYsUK7oOhunC5adMm9OjRg8j1KYo0WhihKIqi/pbLly/j3r17yMzMhLu7O7S0tJCQkIDmzZtDU1OTSKbjx49jz549CA0N5d3NF0X9l5WVlWHkyJGYO3cuevbsSTqOEF1dXfbr2pbk095E4l25cgUbN25ESkoKKisrERUVBQMDAyxatAimpqZ09d4XrKys4OPjgwEDBogcO3nyJNasWYMLFy4QSAaMHTsWw4cPx4gRI4hcn6JIoyVdiqIoqk5yc3Ph4eGBpKQkaGpqIiMjA6NHj4aWlhaio6PRqFEjLF68mEg2BwcHPH78GL1794aenp7YZoBbtmwhko2qf16/fo1Xr16JnX7E154VpMjIyCArKwsSEhKko4jw8/PjbY+C4uJipKSkIDs7GwzDQEVFBR07dkTDhg1JR0NcXBy8vb3Rv39/jBw5Umh0cIsWLXD48GFaGPlCbm4umjZtKvZYkyZNkJOTw3Gi/1m6dCm8vb2hrq4Oc3NzuvKH+s+hP/EURVFUnaxcuRJ5eXmIi4tDq1at2NGRAGBubk608BAeHo7Q0FCoqKigsrISRUVFxLJQ9VdhYSE8PT1x8+ZNANXbCADh1QakVhjo6up+8yafVLa+ffvi5MmTbPNQvhg+fDjpCCKKi4uxevVqxMTE4NOnT0I/Yw0aNMDw4cMxd+5cok07N2/eDGdnZ8ybNw+VlZVChZF27dph165dxLLxlbq6OpKTk2Fubi5yLDk5WahhLNd++eUXVFRUYMqUKZCQkBDZdscwDBITEwmlo6gfjxZGKIqiqDq5dOkSVqxYAR0dHVRWVgod09TUJDoONDQ0FOPGjcPChQt5+WSaqh/Wrl2LnJwc7Nu3D2PHjkVwcDAUFRURGxuLGzduIDAwkFi2efPmiRRGCgoKcO3aNbx79w5OTk6EkgEmJiZYt24dpk6dCktLS6ioqIhkpSttgIqKCri4uODevXvo27cvevToAU1NTQgEAmRmZuLKlSuIiIjA48ePsXfvXmLvdampqbCyshJ7TFZWFh8/fuQ40f+MGjUKI0eOxIABAyAnJ0csx5ccHBwQEhKCFi1aCG2nOXnyJEJCQoj+frq6uvJ25RRFcYEWRiiKoqg6qaysrLXZX0FBAdERuZ8+fYKtrS0tilA/1JUrVzBr1ix29K2amhoMDQ1hamqK1atXIywsDH/88QeRbLWNJJ0+fTrmzp2L/Px8bgN9Zv78+QCqi6uXLl0SOc4wDJHVLNbW1t+8IeRyylBMTAwePHiA0NBQsf1YRo4cicuXL8PDwwNHjx7FsGHDOMv2OVVVVbx48ULs6ofHjx9DS0uLQKpqWlpaWLFiBfz8/NCvXz84OjrWOgWJS56ennj06BFmz56NhQsXQk1NDe/evUNpaSksLS05HYf7penTpxO7NkXxAS2MUBRFUXViaGiI6OhosU8Kjx8/DhMTEwKpqg0YMACXLl0S+0Gdov4tubm50NTUhKSkJGRlZfHhwwf2mJWVFW9vMAYPHoy5c+fit99+I3J9UiOMv8XGxkbsKpuarVJ2dnac5jl16hSGDBny1Sa1lpaWGDJkCE6cOEGsMDJw4EBs3LgRbdq0gZmZGYDq4taTJ0+wfft2jBkzhkguAAgKCkJ+fj5iY2Nx5MgRjB8/Hq1atYKjoyOGDh0KNTU1IrkaNGiArVu34tq1a7hx4wY+fPiAJk2awMLCgv679R1qa/resmVLqKurk45H/eRoYYSiKIqqk5kzZ8LJyQnjxo2Dvb09GIZBfHw8tm7dikuXLmH//v3EspmYmGD9+vXIzs6Gubm52Mk0dKk+9U9paGggLy8PAKCtrY3z58/D0tISAHDnzh2iI3G/5uXLl6iqqiJ2/WbNmhG79tcsXLhQ7Ovl5eXw9PRE8+bNOc3z+PHj75oM0qtXL6xcuZKDROJNmzYNT58+hYuLCzvOePLkycjNzUXv3r0xZcoUYtkAQFFRERMmTMCECRPw6NEjREVFYefOndiwYQN69uyJESNGwNramsgKwx49evByLO7r169x+PDhWptKh4SEEEj17abvsrKyWLJkCZFsVP1BCyMURVFUnRgbG2P37t0IDAyEv78/BAIBQkJCYGRkhPDwcBgYGBDL5uPjAwBIT0/H8ePHRY6TWqpP1S89evTA9evXYWdnxzafTE5OhrS0NJKTk+Hi4kIsW1hYmMhrnz59wvPnz3Hq1CkMHDiQQKr/EQgEuHTpEhITE5Gfnw9FRUV07doVlpaWvOtv0KBBA4wfPx5LlizBhAkTOLvuhw8fvmtFg6qqqtBqJa41aNAAW7ZswY0bN3D9+nXk5eVBUVERFhYWvGuwq6GhgRYtWkBFRQUfPnzAq1evMH36dDRr1gwBAQEwMjLiNE9WVhaysrLEFh9MTU05zVIjOTkZEyZMgJaWFl69eoUOHTrg48ePSEtLg4aGBlq2bEkkF8Dvpu9U/UELIxRFUVSdGRsbY+/evSgtLUV+fj4UFBSITkeowdel+lT94uXlhZKSEgDA0KFDIScnh1OnTqGsrAyLFi3C6NGjiWXz9/cXea1BgwbQ0NCAk5MTPDw8CKSqlp+fjylTpiApKQkKCgpQVlbG+/fvsW3bNhgZGSE0NFTsKi+S8vLyOJ9u9enTp+8alSolJYWKigoOEn1d9+7d0b17d9IxxLpy5Qqio6Nx/vx5yMnJYfDgwVi/fj10dHTw5s0bLFu2DAsWLMCJEyc4yZOamgpvb28kJSUB+N9Eqxoki/dr165F//79sXLlShgYGLD/e/v2bcyZMweTJ08mkgvgd9N3qv6ghRGKoijqb2vYsCEaNmxIOgarZqn+1/YhU9Q/JSsrK1QItLOz47wPRW0ePXpEOkKt/P398ebNG+zYsUNoG8G1a9fg7e0Nf39/IltDzpw5I/JazSqbffv2Ebnpj4uL++Zo1PT0dI7SfF1hYSEyMzPFrn4gtYIwKCgIR48eRWZmJszMzLBq1SrY2dmhQYMG7DktW7aEp6cnxo0bx1kuX19fZGVlwc/PDzo6OkJ5SHv8+DE7qhcA+/dpYmKCadOmITAwEL169SKSjc9N36n6gxZGKIqiqHqD7kOmKP46f/48vL29RXor9OjRA7Nnz0ZAQACRwsiMGTPEvi4lJYW+ffvC19eX40TA7t27v+s8ktuPsrKysGDBAly/fl3kmEAgILr6ISoqCsOGDcPIkSO/WhBv06YN/Pz8OMuVnJwMf39/Xva6YhgG0tLSYBgGysrKSE9PZ5upa2ho4NWrV8Sy8bnpO1V/0MIIRVEUVW/QfcgUVX3DGh4ejtu3b7NTL7p06QJnZ2eikxtKSkqgoqIi9piqqiq7PYlr4rbgycjIQFlZmUjhgc+rfj7n4+ODV69ewdfXF9ra2rx6an/x4sXv2o7UpEkTTqf6qKur83acvI6ODlJTU9G9e3cYGRlh586daN++PaSkpBAaGooWLVoQy8bnpu9U/cHP30yKoiiK+hsuXbqEmTNnQkdHR+SGhu5Dpv4Lnjx5gkGDBuHgwYNQVVVF9+7doaqqioMHD2Lw4MF4+vQpsWx6enrYu3evSI+Aqqoq7NmzB/r6+kRypaeno0mTJmjWrBn7n4qKChiGQXFxMRISEojkqiuBQID58+dztsUmKSkJvr6+GDduHHr06AEzMzOR/0jp1KkTkpOTxR67f/8+9PT0OE5UbdasWdi2bRvRprm1GTVqFLKzswEAs2fPxvv37zFkyBA4ODjg3r17bHNzEmqavjMMI9T0PTs7m3jTd6r+oCtGKIqiqHqD7kOm/uv8/f3RokUL7Ny5E4qKiuzr+fn5cHV1hb+/P7Zv304k25w5c+Dq6go7OzvY2NhARUUF79+/R3x8PHJycrBz504iuZycnBAREQFDQ0ORYy9evICTk9NPMc2qqqoKMTExGD9+PLS0tH749Vq1asWL5q/ifNnU9HOVlZWQlJTkMM3/HDlyBJmZmbC2toaenh4aN24sdJxhGGIrG4cOHcp+raOjgxMnTuDu3bsoLS2FkZERlJWVieSqwdem71T9QQsjFEVRVL1B9yFT/3W3b9/G2rVrhYoiAKCoqAh3d3d4e3sTSlY9hvTAgQMICQlBXFwcCgoKoKioiC5dusDNzY3YU9+v3USXlJTwqsH0t3zt/5d/m4+PD1avXo0OHTqgdevWnF23NtnZ2Xj37h37/YsXL0QKIGVlZYiOjuakcCROUVGRUM8Trice1YWcnJxIPyA+4FvTd6r+oIURiqIoqt6g+5Cp/zpJSUmUl5eLPVZeXk7sSXmNjh07Ijg4mGgGALh79y7u3LnDfn/s2DGRKTBlZWU4d+4c2rRpw3W8n4K5uTksLCzg4OAANTU1sasfYmNjOcsTERGB4OBgMAwDhmEwf/58kXMEAgEkJSWJNeHes2cPkevWB1evXsXp06fFTkBiGAa7du0ilIyqL2hhhKIoiqo3avYhBwYGCu1DNjIyovuQqX/E2Nj4uxtxMgzzzVGrP4qFhQWCgoKgp6cn9BT/1atXWL9+PSwsLIjk4purV6+yBRqGYcTesEpJSUFHR4dOsqrF2rVrERYWBgMDA2hraxMfPTts2DCYmZlBIBDA2dkZixcvRtu2bYXOkZaWhra2Npo2bUooJfV3bN++HQEBAWjWrBl0dHREinAU9W9gBFyuuaMoiqIojtB9yNS/aePGjXWaUDJt2rQfmKZ26enpGD9+PDIzM9GuXTu2j8eTJ0+gqamJvXv3QlNTk0g2JyenWo9JSEigcePG0NPTg6OjI6fTc3R1dREREYHOnTtzds0fobKyEgYGBoiOjuakCGxqagoXFxd4eHj88GvV1c2bN6Gvrw95eXnSUUQ8ffoUmzdvxr1795CZmYmIiAgYGBjgjz/+gImJiditoP911tbWsLa2JjI6m/rvoCtGKIqiqHqJ7kOm/k3Tp08nHeG7aGlp4dixY4iOjkZiYiIKCgqgra0NR0dHDB8+HHJycsSyNW7cGA8ePEB2djY6dOgAZWVlvH//Ho8fP4aqqipatmyJsLAw7NixA7t37+ZshdfPMh6Xb6SlpXlbTCI5Eedrrl27hqlTp8LAwACDBg0SarQqJSWFAwcO0MKIGB8+fICNjQ3pGFQ9RwsjFEVRFEVR9YicnBycnJy+ukKDhH79+uHNmzfYt28fmjVrxr7+9u1buLu7Y9iwYdi4cSNcXFywbt067Nixg5NcJ06cQHp6On799VeRYzt27ICWlhb69+/PSZafyciRIxEbG8ubBp0mJibYvXs3Onbs+M2tb6S2uwUGBmLAgAFYs2YNKioqhAojenp6OHToEOeZfgZ9+vRBYmIizM3NSUeh6jFaGKEoiqIoivoOhYWFuH37NioqKmBmZgZ5eXk8efIEmzZtwrNnz9C0aVOMGTMGDg4OpKPyUnBwMObMmSNUFAGA5s2bw9PTE4GBgRg2bBhcXV057euxdetWODo6ij3WsGFDbNu2jVhh5PLly+jVq9d3beOSlJTE7t27OZsQIy8vj5s3b2L06NEwNzeHgoKC0HGGYTBx4kROsgCAq6srVFVV2a/rsvWNK0+fPsWcOXMAQCSfgoIC8vLySMRiPX36FCEhIUhOTkZ2djZUVVXRuXNnTJ06Fe3atSOWy9HREUuXLkVZWRksLCxEftYA0B5i1D9GCyMURVEURVHf8OTJE0yaNAnZ2dkAAGVlZaxfvx4eHh6QlJREixYt8OzZM3h5eUFWVhbW1tacZftZGsNmZGTUmpNhGGRlZQEA1NTUUFlZyVmu169f13rTp6Ojg5cvX3KW5UtTpkyBhoYGhg0bhuHDh6NFixZfPZ/LLSSBgYEAqv9e7969K3Kc68LI5319+Lr1TVFRUWik8OdevXrFFnZIuHjxIqZNmwYNDQ3Y2tqyW93i4+MxbNgwBAcHo3fv3kSyubq6AgC2bduGbdu2Cb2PCAQCMAyDhw8fEslG1R+0MEJRFEVRFPUN69atg4qKCrZt2wY5OTmsXbsW06ZNg4mJCTZs2IAGDRqgrKwMHh4e2LZtG6eFEb4+Hf9Sp06dsGHDBnTs2FGoAWxaWho2btwIQ0ND9nsum6/KyMjg/fv3Yo9lZ2dDSorcx+Xjx48jKioKhw4dwtatW9G1a1eMHDkS9vb2xKfA0N4sdWdra4uNGzeic+fOaNWqFYDqAlJ2djZ27NgBe3t7YtnWrFmDXr16YdOmTZCQkGBfnzt3Ljw8PLBmzRpihZHdu3cTuS7130Kn0lAURVEURX1Djx49sHjxYvbG5e3bt7C1tUVoaCgsLS3Z8y5cuIB58+bhr7/+IhWVt549ewYXFxfk5eWhffv2aNq0KfLy8vD48WMoKysjLCwMOjo62LZtGyQkJDBp0iROck2bNg1v3rzBwYMH0ahRI/b14uJijBkzBs2bN8emTZs4yVKbyspKXLx4EdHR0bh8+TJkZWUxcOBAODo6omPHjkSz8YWbm9t3n8swjFB/D658/PgREydOxOPHj9G+fXukpKRAV1cXqampaN26NXbt2kWsQbKhoSGCg4OF3s9qXL58GdOmTUNycjKBZBTFDbpihKIoiqIo6hvev38PDQ0N9vuar5WVlYXOU1JSQkFBAafZBAIBLly4gBYtWtS6JeTJkyd4+/Yt+vTpQ2x1Sdu2bREfH4+oqCjcv3+fnU4zYsQIODo6QkZGBgAwefJkTnPNmjULo0ePhp2dHezt7aGmpoZ3797h9OnT+PTpE9atW8dpHnEkJSVhY2MDGxsbZGVlwcvLCwcOHMDBgwfRrl07ODs719on5Uf69OkToqKi2NGzixcvhra2Nk6cOIEOHTpAR0eHsyxFRUWcXevvaty4MQ4ePIjY2Fhcv34dTZo0gaKiIsaNG4chQ4YQXQXUoUMHvH37Vuyxt2/fEu0xQlFcoIURiqIoiqKo7/B5QYFPW1eio6OxevVqxMXF1XqOgoIC5s6dC19fXwwdOpS7cF+QkZHBuHHjiF1fHB0dHURFRWHDhg04c+YMPnz4gCZNmsDCwgLTpk1jtzyQ9vz5c0RFRSE2NhYFBQXo168f7OzscOnSJSxZsgRJSUlYvnw5Z3lSU1MxceJE5OXlQV9fH4mJiWxxIiEhAVeuXMGqVas4y7Nnzx7OrvVPSEtLw9HRkUgh62sWL16M2bNnQ1ZWFra2tmjcuDE+fvyIs2fPIiwsjO0pw5W6TBkCgNu3b3OUjKqvaGGEoiiKoijqO8TFxbGNS6uqqsAwDI4dO4abN2+y56Snp3Oe6+jRoxg9erTQipYvaWhoYOzYsYiOjiZaGAGqb/BrVhg4OjpCVVUVr1+/hrKyMuTl5YlkatWqFec3ft+jqKgIx48fR3R0NJKTk6GtrY1JkyZh6NChUFJSAgA4ODjAwsICy5Yt47Qw8vvvv0NJSQmHDh2CgoKC0JYeU1NTXqy0ob6fk5MTKioqsGDBAixYsABSUlKoqKgAAEhJSQk10uWiifPPMGWIql9oYYSiKIqiKOo7iGsAGB4eLvIa1x/gU1JSMHXq1G+eZ2Zmhv3793OQSLySkhL4+vrixIkTkJCQQFVVFXr16gVVVVUEBgaiefPmmDt3LrF8QPWElYyMDOjq6gr1GyGlR48eEAgEsLe3h7e3N7p27Sr2PH19fTRt2pTTbDdv3kRgYCCUlJREpgipqqqyE5xIqaqqwo0bN/Dy5UuUl5eLHHdxceEkR11WPpCcGsW34sPPMGWIql9oYYSiKIqiKOob+DyB49OnT9/Vm6BBgwZibxC54u/vjxs3bmDbtm3o2rUrjIyM2GNWVlYIDw8nVhiJiIhAcHAwsrOzwTAMoqKiYGBgAE9PT5iZmcHZ2ZlILi8vLwwePBgKCgpfPa99+/Y4f/48R6mqSUpKorYZDjk5OUQLS9nZ2ZgwYQJevXoFhmHYnJ/f+HNVGPlZVj7Q4gP1X0cLIxRFURRFUT+IQCDAggULMH36dGhpaf2Qa2hqaiIlJQVmZmZfPe/BgwdCY3K5dvr0acydOxc9e/YUWWHQrFkzpKWlEckVHh6OgIAAuLi4wNzcHK6uruwxMzMznDp1ikhhpKysDJGRkdDW1kbPnj05v/63mJqaIiwsDJaWlux415oiRGRkJMzNzYllW716NZo0aYJLly7BysoKkZGRUFFRQWxsLGJiYhAaGspZFrry4Z+rqqrCoUOHcPr0aWRmZqKsrEzknHPnzhFIRtUntDBCURRFURT1g1RVVSEmJgbjx4//YYWRPn36YOfOnXBwcGCfTH8pOzsbYWFhcHBw+CEZvkdxcXGt+UpKSjhO8z979+6Fh4cHPDw8RAo2rVu3xsuXL4nkkpGRQVZWFlt04BsvLy+MGTMGDg4OsLa2BsMw2LdvH54+fYrXr1/j0KFDxLIlJCTA19dX6OdNS0sLbm5uEAgEWL58ObZv3855rsLCQhQXF0NNTU3k2Lt37yAnJ8fpuF43NzfMmzcP2tra3xx3TGrEMQCsXbsWYWFhMDU1Rbdu3SAtLU0kB1W/0cIIRVEURVHUD1TbdoN/y5QpU3Dy5EkMHz4cbm5u6NWrFzQ1NcEwDDIyMnDlyhVs3boVEhISnI/C/VyHDh1w5swZsasfLl68KNS8k0tZWVkwNjYWe0xaWhrFxcUcJ/qfvn374uTJk7CwsCCWoTY6OjqIjo5GcHAw4uLiICkpiYsXL8Lc3BwBAQFo2bIlsWwfP36EkpISJCQkIC8vj/fv37PHjIyMOF0x8jlfX1/Iyclh5cqVIsc2btyI4uJiTpsAFxUVscVAPo87PnbsGKZPnw5PT0/SUah6jBZGKIqiKIqifmJKSkrYvXs3vLy8sGLFCpEeBgKBAIaGhggICGAnmZBQsyqjpKQE/fr1A8MwSE5ORlxcHKKjo7Ft2zYiubS0tHDv3j2xWz+SkpKgra3Nfaj/Z2JignXr1mHq1KmwtLSEioqKyN9v3759CaUDWrRoAX9/f2LXr03z5s3x7t07AEDbtm1x9OhR9OnTBwAQHx+PJk2aEMl169YtLFmyROwxKysrLFu2jNM8n4845vO44/LycpiYmJCOQdVztDBCURRFURT1k2vVqhUOHTqEW7duISEhAVlZWQAAdXV1mJmZoUuXLoQTAr1798a6deuwZs0aHDt2DACwbNkyaGhoICAggFhPilGjRiE4OBhNmzZliwwVFRW4ePEiduzYgZkzZxLJBQDz588HAFy6dAmXLl0SOc4wDB4+fMh1LN7r3bs3rl27hgEDBsDd3R2enp4wNzeHlJQUcnJy4OXlRSRXfn5+rVtlZGVl8eHDB24D/SQGDRqE8+fPE+1bQ9V/jOBHr++kKIqiKIr6j6qsrISBgQGio6NhYGBAOo4QLhrD1ubly5fIy8uDoqIidHR0OL22OL///jv27dsHhmFQVVXF9vUYO3YsfH19ieX6noa0zZo14yCJKCcnp1qPSUhIoHHjxtDT04OjoyPU1dU5TCbq3r17iI+PR2lpKSwsLGBlZUUkx4ABA2BtbS22MBMQEID4+HicOnWKQLJqL168wJkzZ2ptcLpq1SrOspw5c4b9uqysDH/88QeMjIxgYWEhdkoTyZVTVP1ACyMURVEURVE/CJ8LI5WVlejYsSM7mvZHCw4OxsiRI8XeJL979w6RkZFCEzy4lpqaiuvXr7MFG3Nzc6LbaPjO09MTDx48QHZ2Njp06ABlZWW8f/8ejx8/hqqqKlq2bImHDx+iqqoKu3fv5t3PPwlhYWEIDAzEb7/9BkdHRygpKSE3NxeHDx9GUFAQZs+eLTQViUsxMTFYsGABZGRkoKWlJdLglGEYHDlyhLM8urq6330uXTlF/RtoYYSiKIqiKOoH4XthhMtsenp6iIiIgKGhocix+/fvY+TIkURubhISEqCvry92i0NxcTEePHgAU1NTznPVEAgEuHTpEhITE5Gfnw9FRUV07doVlpaWIv1GuHTs2DGEhoYiJCREaNXK27dv4e7uDldXV1hbW8PFxQVNmzbFjh07OMuWnp7+zXO4XiUFgJ2Ic/DgQQCApKQk2/x09OjRtfYf4YK9vT309fXh5+cHWVlZYjlq1HV8N6mVU1T9QXuMUBRFURRF1cHly5fRq1ev77oplZSUxO7du9G6dWsOkvHb157FZWdni10ezwUnJ6daCzYvXryAk5MTsafR+fn5mDJlCpKSkqCgoMCuyti2bRs7XYXUn1twcDDmzJkjckPavHlzeHp6IjAwEMOGDYOrqyvnN/w144O/hsTfKcMwWLJkCZydnXHjxg18+PABTZo0Qffu3YmvTnr37h2WLl3Ki6IIQAsdFPdoYYSiKIqiKKoOpkyZAg0NDQwbNgzDhw9HixYtvnq+mZkZR8n4Jy4uDnFxcQCqbwr9/f3RuHFjoXPKy8tx//59YlMnvlawKSkpQcOGDTlMI8zf3x9v3rzBjh070KNHD/b1a9euwdvbG/7+/mJHv3IhIyOj1uIDwzBsA2A1NTV2VQRXgoODRV4rKCjA1atXcffuXWLNV2toa2sTL4R8qWvXrnjy5AkvG5z++eefSE9Ph6Ojo8ixw4cPQ0tLC927dyeQjKpPaGGEoiiKoiiqDo4fP46oqCgcOnQIW7duRdeuXTFy5EjY29ujQYMGpOPxyqdPn1BUVASgugBRUlLCNjat0aBBAwwZMgS//vorZ7nu3r2LO3fusN8fO3YMiYmJQueUlZXh3LlzaNOmDWe5vnT+/Hl4e3sLFUUAoEePHpg9ezYCAgKIFUY6deqEDRs2oGPHjtDU1GRfT0tLw8aNG9kVOGlpaZw3X7W1tRX7+vDhw7Fq1SrcvHkTAwYM4CTLp0+fUFZWBnl5eaHXs7OzsXPnTjx//hyqqqoYPXo0OnXqxEmmGp9PwZk9eza8vb0hIyODHj16iBQwARAbcxwUFAQbGxuxx3JzcxEZGcluT6Kov4v2GKEoiqIoivobKisrcfHiRURHR+Py5cuQlZXFwIED4ejoiI4dO5KO901c9xiZMGECli5dyospNMHBweyqAoZhxK4akZKSgo6ODpYsWUJsNUvnzp2xYcMGsVNULl26hBkzZiApKYlAMuDZs2dwcXFBXl4e2rdvj6ZNmyIvLw+PHz+GsrIywsLCoKOjg23btkFCQgKTJk0ikvNL169fx8yZM3Hz5k1OrrdixQpcvXoVp0+fZl/Ly8vDoEGDkJOTA0VFRRQWFkJSUhIRERHQ09PjJBdQ3eD081U/Nb8Hta0EIrWlzMTEBMHBwbCwsBA59ueff2L69Om4desWgWRUfUJXjFAURVEURf0NkpKSsLGxgY2NDbKysuDl5YUDBw7g4MGDaNeuHZydncUu/f6v2rNnD+kIrGnTprETcHR1dREZGSm2xwhpenp62Lt3L3r27AlJSUn29aqqKuzZswf6+vrEsrVt2xbx8fGIiorC/fv32ek0I0aMgKOjI2RkZAAAkydPJpZRnNu3b3O6suvWrVsYMmSI0GthYWHIycnBihUrMHLkSLx//x4TJ07E1q1bERQUxFk2Pz8/og18vxfDMPj48aPYY/n5+Zxv1aLqJ1oYoSiKoiiK+pueP3+OqKgoxMbGoqCgAP369YOdnR0uXbqEJUuWICkpCcuXL+csD98bw1ZVVeHGjRt4+fIlysvLhY4xDIOJEydylqXGo0ePOL/m95ozZw5cXV1hZ2cHGxsbqKio4P3794iPj0dOTg527txJNJ+MjAzGjRtHNIM4v//+u8hr5eXlePHiBRITEzkdiZuRkSGyCuTcuXNo3bo1Ro4cCQBQVlaGq6srNm7cyFkuoHpr0c+gc+fO2LdvH/r27SuywmX//v3o3LkzwXRUfUG30lAURVEURdVBUVERjh8/jujoaCQnJ0NbWxsjR47E0KFDoaSkxJ4XExODZcuWCfWy+NF0dXXr1BiWS9nZ2Rg/fjxev34ttH3l8xsdrpbqP3jwADo6OmjYsCEePHjwzfNJjlq+f/8+QkJCkJiYiIKCAigqKqJLly5wc3Pj3QhovrC2thZ5TUZGBhoaGrC3t8fIkSOFVuD8SMbGxti8eTPb1LSgoADdunUTGc9769YtTJo0idjWKHESExPx4sULdOnShWivnTt37sDJyQna2toYNmwYVFVV8e7dO8TExODVq1fYs2cPjIyMiOWj6ge6YoSiKIqiKKoOevToAYFAAHt7e3h7e6Nr165iz9PX10fTpk05zcbnxrCrV69G06ZNsXv3blhZWSEyMhIqKiqIjY1FTEwMQkNDOcvi6OjIbp9xdHSsdYWNQCAAwzDEeisAQMeOHcVOWeGDmJgYRERE4NWrVygrKxM5fvv2bQKpqpvW8kXLli1x9+5dtjBy9epVABCZ/vLhwwdio5eB6tVJDRo0wKpVqwAABw4cwLJlywBUN0jeunUrsYk1xsbGCA8Px9q1axEQEICqqipISEjAyMgI4eHhtChC/SvoihGKoiiKoqg62Lt3LwYPHkz0JuZb+NgY1tLSEr6+vrC1tYW+vr5QX48tW7YgMTER27dv5yTLzZs3YWBgADk5ue9qwvlfHrlcm6NHj8LX1xfDhg1DZGQkHB0dUVVVhfPnz0NBQQFDhgxh+7j8l+3ZsweBgYGYOnUqVFRUsGXLFpSXlyM+Pl5oFPTKlSvx5MkT/F979x5VZZn3j/+9NyiaHETYHqmRPHEURHTkIKiIMGrqlrCeR0XB8gCaTwKevpTgZI8okgdsCCRJPBIYAhom+YjmxMSQJ5xizPGQIEcJTDcg7P37w597REClxvu+gfdrrday+7rW2u9BaM394fp8rs8++0yUnOPGjcPKlSu1t/WMHz8erq6uWL16NcLDw1FcXIx9+/aJku1xtbW1qK6uhqGhIbp37y52HOpAeGKEiIiI6DnV1dUhOTkZAwcOhKurq9hxWiXFwbB3795Fr169IJfLoa+vj8rKSu2avb29oCdGHi90SLno4efn1+qaXC6HgYEBLC0t4ePjI/iVuLt370ZgYCAWLlyI5ORk/Pd//zesra3x66+/YsGCBejRo4egeR756aefkJSUhO+++w4lJSWQyWTo06cPRo0aBV9fX8GvxP3v//5vXL16FTt37kRDQwP69++P6OjoJkWRmpoaHDlyBAsXLhQ02+Pu3LmD3r17AwCuXLmC27dvw8/PDz169IBSqcTy5ctFy/a4bt26NfnaEf2nsDBCRERE9Jz09PRQWloKuVwudpRnktpgWDMzM5SVlQF4eKPJkSNHMH78eABAdnY2evbsKViW1lRWVrbYEtK/f38R0gAGBga4fPmy9sYXExMTVFZWorCwEAqFAq+88gp2796NhIQE7NmzR9CZIzdu3ICDgwN0dHSgo6ODX3/9FQCgr6+Pt99+Gx9++CH8/f0FywMA+/bt07aCDB06FC4uLgCA4uJiHD58GCkpKVi6dCkCAwMBALGxsVi8ePELzaSjo4Pw8HCsXr0a9+/fbzKH6JGXXnoJx48fh76+/gvN8jQ9e/ZEUVERHB0dcebMGSgUCgwZMgTAwxNoarVatGzAw+LR8ePHWxzcDABhYWEipKKOhIURIiIiojaYNGkSvvzySzg7O4sdpZmWBsMuWLCgyWDYKVOmwNnZGREREYIWRsaNG4ezZ89i8uTJWLJkCYKCguDk5ARdXV1UVFQgJCREsCyPq6qqwgcffICvvvoKDQ0NTdbEnjHi7e2NmzdvYt++fRgwYID2+a1bt7BkyRIolUrs2LED/v7+iI6ORkJCgmDZ9PX1tS+offr0wU8//YQ//vGPAB6+SFdVVQmWBQDOnj2LP//5z5gxYwbeeeedZsWs27dvY/v27dixYwfMzMyQl5eH1NTUF14YeeRpJx10dXUFn0f0JDc3N0RFReHHH3/EF1980eSK4StXrsDMzEy0bNevX8ebb76J+vp6qFQq9OrVC9XV1WhoaICRkRH09fVZGKHfjYURIiIiojZwcHBAdHQ0Fi1aBDc3N5iamjYb3jlp0iRRskl5MGxwcLD2z+7u7jhw4ACys7NRW1sLZ2dnuLu7C5rnkbCwMOTl5WHRokUYNGgQunTpIkqOlsTExCA4OLhJUQR4ePomKCgIW7ZsgVKpREBAQJMbToRgY2ODwsJCjB07FhMmTMDOnTuh0Wigq6uLuLg4wQdi7tq1C5MmTcLGjRtbXO/Xrx/+93//F/fu3cOqVaugr6+PnTt3CppRylatWoXGxkZ88803cHd3x7Jly7RrJ06cwNixY0XLtnHjRtjZ2WHbtm3atjsLCwscO3YMH330EbZt2yZaNuo4WBghIiIiaoM1a9YAAHJycpCTk9NsXcwTBiEhIc81GHbo0KGi39xha2sr+LyHlvztb39DWFgYZsyYIXaUZm7fvt3qjTkymQylpaUAgN69e6OxsVHIaFi0aBGKi4sBAO+88w6Kiorw4YcfQq1Ww9bWVtDTSMDDa403b978zH0+Pj44ceIEkpOTYW5uLkAy6WtoaMDNmzcREhICExOTZusHDhwQIdW/Xbx4ERs2bNDerPXgwQPo6Ojgtdde0574OnjwoKgZqf1jYYSIiIioDb7++muxI7RI6oNhv/32WxQXF7c49PXw4cPo378/xowZI3guQ0ND0dsYWmNra4vt27fDxsYG/fr10z4vKirCjh07tLf6FBUVCT581d7eXnsqxNDQUHvbSn19vSizMh48ePBcQzn19PSgp6fHoshj5HI53njjDcTFxUmyRfDR95RcLoeRkZF2VhEADBkyBD/++KOI6aijYGGEiIiIqA2ebGuQCqkPht26dSs8PDxaXLtz5w6Sk5NF+a3vggULkJSUBBcXF+jqSuv/GkdERMDf3x+enp4YOnQojI2NUVVVhcLCQpiYmGhbCCoqKjBr1iyR0wJdu3bV/lZfaK+++irOnDnzzOLa6dOn8eqrrwqUqn2Qy+UwMzNDdXW12FFaNHDgQBQVFWHUqFGwsrLC/v374ezsDF1dXRw6dEh7mw7R7yGt//oTERERtQMajQY5OTnIz89HdXU1jIyM4OjoCDc3t1ZbH4Qg5cGwV65cafXKT2tra8TGxgqW5YMPPmjy71evXoWnpydGjRrVYhuSWIMdBw8ejOzsbKSkpKCgoEB7O83rr78OHx8f6OnpAQDefvttUfJ98803OH78OEpKSprd5iOTyfDZZ58JlmXmzJmIjIzEkCFDWm2LSktLQ1JSElavXi1YrvZi8eLF+Pjjj+Hg4CD46aNnmTJlivZUyPLly7FgwQKMHj0aMpkMGo2m1bkyRG0h02g0GrFDEBEREbUX1dXVWLhwIS5cuABDQ0PtFao1NTXawYDPmvHxonzxxReIjo6GlZWV5AbDjhw5Eh9++CG8vLyarWVlZWHNmjU4d+6cIFkmTJjw3HtlMplk26fEtGvXLkRFRWHAgAGtDq0VcripWq3G0qVLcfLkSbz66qtwd3fX3kxTXFyMM2fO4OrVq5gwYQJ27Ngh2skqqV47u3jxYhQUFKC6uhrDhg2Dqalpk3WZTIa//OUvomR70u3bt3H69GnU1dVhzJgxGDp0qNiRqANgYYSIiIioDdauXYv/+7//Q1RUFFxcXLTPz549i9DQUIwfPx4bNmwQJZuFhcVT18UcDBsQEICGhgZ89tlnTYo1Go0G8+bNg1wuR2JioijZpO7q1au4dOkSSkpK4OPjA4VCgRs3bsDExESUeR7Aw+LShAkTJHVNqkajQVJSEvbs2YNbt241WXv55Zcxb948zJ49W7RTXc9z7axYRbi5c+c+c09SUpIASYjEwcIIERERURuMGTMGoaGhLQ4RTUlJQVRUFHJzc0VI9nAI57OINSPl3Llz8PPzw8CBA6FUKqFQKFBWVoa0tDRcv34dSUlJgl/xKnUqlQphYWE4duwY5HI51Go1UlJSYG1tjXfeeQdmZmZYuXKlKNkcHBywc+dOODk5ifL5z1JSUqK9tadv376SaA9ZvHgxNBqN9trZ1NTUJtfOPhq0S9DeePS8Hp0OIvqtOGOEiIiIqA1UKlWzY+aPKBQKqFQqgRP9m1QHwwLAiBEjkJiYiM2bNyMqKgpqtRpyuRz29vZITEwUrSiSlJSE0tJShISENFuLiopCv379MHv2bBGSAZGRkcjNzUV8fDwcHR2bfI3c3d2RmJgoWmFk/PjxyM/Pl2xhpG/fvujbt6/YMZrgtbPPr7VBzU/SaDSinoSjjoOFESIiIqI2sLS0xN69e+Hq6godHR3tc7VajaSkJFhZWYmYTrqDYYGHc0YOHjyI2tpaVFdXw9DQEN27dxc10/79++Hv79/i2sCBA7F7927RCiPHjx/HypUr4erqisbGxiZrAwYMeK4TQi+Kj48PwsPDUVdXB2dn5xbn6lhbW4uQTLqkfu3slStX8PHHH2vbtg4dOgRra2t89NFHcHBwgLu7u2BZNBoNevTogYkTJ8Ld3V20246o82BhhIiIiKgNgoODERAQAE9PT3h4eMDU1BSVlZXIzs5GRUUFPv30U9GytTYYNj4+XvTBsI/r1q0bunXrJnYMAA+P7P/hD39oce3ll18Wtfhw//59KBSKFtfEPJkEPJwZAwDx8fGIj49vNjeGv8VvTsrXzp49exaLFi2CtbU1XnvttSaDVnV1dXHgwAFBCyOffvopMjMzceLECZw8eRITJ07Ea6+9BicnJ9ELvNQxsTBCRERE1AajRo3CgQMHEBsbi8zMTNTU1MDIyAgjR47E4sWLRf0teWRkJG7evImEhIQWB8NGRkaKNhhWqvT19XHr1i388Y9/bLb2888/i1rAGTZsGL766iu4uro2Wzt16pSo8yj27Nkj2me3V1K+dnbLli2YPHkyNm3ahIaGhiaFEUtLS3z++eeC5nF2doazszPCw8ORk5ODo0ePIjAwEPr6+vD29sbUqVM5k4j+o1gYISIiImojGxsbxMTEiB2jmZMnTyI0NLRJUQQAXFxcsGLFCkRFRbEw8gQXFxfs3LkTzs7O6Nevn/Z5SUkJPv74Y7i5uYmWLTAwEIGBgVCpVPD29oZMJsPFixeRmZmJ1NRUxMfHi5Zt9OjRon12e/V4y5a9vT0yMzNx5swZ1NbWin7t7JUrVxAcHAwAzU5kGBoaoqqqSoxY6Nq1Kzw9PeHp6Yn79+8jOzsbmZmZmD17Nl577TVRi0nUsbAwQkRERNRBSHkwrFQFBwfjjTfegLe3N8aMGYPevXujrKwMubm56NWrl/ZlUQzjxo1DdHQ0Nm3ahIyMDABAREQE+vbti6ioKMkOPqWW5eXlwcrKCj169AAA9OvXD7NmzQIA3Lt3D3l5eRg1apQo2Z6cefK469evt9rSJaTKykoUFxejuLgYarUaxsbGYkeiDoSFESIiIqI28PPza3VNLpfDwMAAlpaW8PHxEfyKUKkPhpWiPn36IC0tDbt370Zubi6uX7+Onj17wt/fH/Pnz0fPnj1Fzeft7Q1vb29cu3YNVVVVMDIywqBBg0TN9EhaWhoOHTqE69evo66urtn6999/L0Kqh2pqanD8+HFcu3YN9fX1zdbDwsIEz+Tn54dDhw5h+PDhzdauXbsGPz8/0eayTJw4ETt27ICdnZ125o5MJkN5eTkSEhLg5eUlSq6ysjIcO3YMmZmZKCgogLW1NXx8fDB58mRJXMFMHQcLI0RERERtYGBggMuXL6O8vBzDhg3TDjgtLCyEQqHAK6+8gt27dyMhIQF79uwRdOaIlAfDSlFdXR02b96MadOm4d133xU7TjMxMTHw9fVFnz59YG5uDnNzc+1aWVkZkpOTsXTpUlGyHTlyBO+99x6USiXOnTsHHx8fqNVqnDx5EoaGhpg+fboouYCHJxzefPNN1NfXQ6VSoVevXqiurkZDQwOMjIygr68vSmFEo9G0uqZSqUSdZxMcHIxLly5h2rRp2paetWvX4ueff4a5ubng32eHDh3C0aNHkZ+fj4EDB2Ly5MnYsmVLq4OSiX4vmeZpP6FERERE1ERGRgbi4uIQGxuLAQMGaJ/funULS5YsQUBAACZMmAB/f38YGxsjISFB0HwFBQWIjY1Ffn6+pAbDStWIESPwySefSHJmhqWlZasnDAoKCuDr6yvaCYMZM2bAy8sLCxcuhLW1NVJTU2FtbY1ff/0VCxYsgLe3d6vXIL9oixcvhkajwbZt22Bvb4/U1FRYWFjg2LFj+Oijj7B9+3bBBteeP38e586dA/BwOPLcuXPRv3//Jnvq6urw9ddfQ61WIzU1VZBcLXnw4AHS09Px17/+VXs6ydnZGdOnTxf8ulwLCwv06NEDHh4esLS0fOpemUyG+fPnCxOMOiyeGCEiIiJqg5iYGAQHBzcpigCAmZkZgoKCsGXLFiiVSgQEBGDdunWC55PqYFipGjFiBM6fPy/JwsjTfn9ZXl4u6tXLN27cgIODA3R0dKCjo4Nff/0VwMNbft5++218+OGHohVGLl68iA0bNmhf5h88eAAdHR289tprqKqqwgcffICDBw8KkuWbb77R/jzKZDIkJSU126Orq4tBgwaJ8t+Lx3Xp0gU+Pj7w8fERNccj9+7dQ3p6OtLT05+6j4UR+k9gYYSIiIioDW7fvt3s1oZHZDIZSktLAQC9e/dGY2OjkNHoN3jnnXcQEhICHR0duLu7w8TEpNnfr5BzRjIzM5GZmQng4fdTZGQkDAwMmuypr69HQUEBHBwcBMv1JH19fe3sjj59+uCnn37SXnnc2Ngo2i0mwMOvj76+PuRyebOhokOGDNFemSuEpUuXattQLCwskJyc3OIJIGpKyL8jIoCFESIiIqI2sbW11R7Ff/x616KiIuzYsUP70lNUVCT4cEApD4aVqjfffBMAsHnzZkRFRbW4R8h2lQcPHuDevXsAHp4YUalUkMvlTfZ07doV06dPx1tvvSVYrifZ2NigsLAQY8eOxYQJE7Bz505oNBro6uoiLi4O9vb2omUbOHAgioqKMGrUKFhZWWH//v1wdnaGrq4uDh06hN69e4uSS2ov+xYWFq0WeVsiVttWW2g0GqxduxbLli1r1rJE9DScMUJERETUBj/99BP8/f1RVVWFoUOHwtjYGFVVVSgsLISJiQl2796NQYMGIT4+HnK5HAsWLBAsW1BQ0DMHw/7www9Qq9WCD4aVqsOHDz/z5VCpVAqUpqm5c+ciPDxcMrfQPO78+fMoLi7G5MmTUVNTg1WrViEnJwdqtRq2traIjo7Gyy+/LEq23bt3o7S0FKtXr8b58+exYMECqFQqyGQyaDQabNy4EdOmTRMlG/BwpsjPP//c4k0+Qv5MJiYmar/3Gxsb8dlnn6FLly6YOHEiTExMUFFRgezsbDQ0NGD+/PmitUa1RWNjI2xsbJCSksL/vlGbsDBCRERE1EZ1dXVISUlBQUEBysvLoVAoYGtrCx8fH+jp6YmWS+qDYdsjlUqF7t27ix2jXaivr9e2sUjJ7du3cebMGdTW1mLMmDHaW1eEVl9fj/DwcKSnp7faZifWqYzNmzfj6tWr+Pjjj5ucUFKr1QgMDIS5uTlWrVolSra2aGxsbDIMmOh5sTBCRERE1EF4eXkhODgYkyZNaraWlZWFLVu24MSJE8jMzMS6deuQn58vQkrpa2xsxJkzZ5CRkYGTJ09qbxURg1qtRm5uLq5du6ad6fEIh062LC8vD1ZWVujRo0eztXv37uEf//gHRo0aJXiujz76CGlpaQgNDUVISAjef/99vPTSS0hPT8fNmzfx3nvvwd3dXfBcAODs7IyNGzfCzc2t2VpOTg5Wr16Nb7/9VoRkbcPCCP1WnDFCRERE9BtcvXoVly5dQklJCXx8fKBQKHDjxg2YmJiI9htzDob9ffLz85GZmYmsrCz88ssv6NWrF2bNmiVanvLycsyZMwc3btzQtoEAaPJ3LGRhpC23HclkMgQFBb3ANK3z8/Nr9Zrja9euwc/PT5STGVlZWVi6dCn+9Kc/ISQkBMOHD4eNjQ1mzJiBVatW4eTJk6IVRmpra1FUVNTiWlFRUYttP0QdCQsjRERERG2gUqkQFhaGY8eOQS6XQ61WY+zYsVAoFNiyZQvMzMywcuVKUbJJeTCsVF25cgWZmZnIyMjA7du30aVLFzx48ABr1qzB7NmzoaOjI1q2jRs3wtjYGHv27IG7uzuSk5NhamqK9PR0pKWlIS4uTtA8MTEx0NPTg56e3lOvEgbELYw8LZtKpUK3bt0ETPNvJSUlMDc3h46ODvT09FBTU6NdmzZtGlasWIGIiAhRsk2cOBFRUVHo1q0bJk6cCAMDA9y9excnTpxAdHQ0Jk6cKEouIqGwMEJERETUBpGRkcjNzUV8fDwcHR2b3L7h7u6OxMRE0QojERER8Pf3h6enZ4uDYbdt2wYAqKioEPUkhNhKSkq0xZB//vOf0NHRwZgxY/DOO+/gj3/8I8aPHw9LS0tRiyLAw5aQsLAwKBQK7bP+/ftj8eLF0Gg0WL9+PXbt2iVYnj59+qCyshIjR47Ea6+9hgkTJohWZHjS+fPnm7Q8ZWRkNGsVq6urw9dff41XX31V6HgAAIVCoS2GmJmZ4W9/+xucnZ0BANevXxcl0yPvv/8+amtrsXbtWqxduxa6urpoaGiARqOBp6cn3n//fVHzEb1oLIwQERERtcHx48excuVKuLq6NmtHGTBgQKvH0YUwePBgZGdnNxkMO2zYMLz++utNBsO+/fbbomWUgvHjxwN4eANIWFgY/vSnP6FXr14AgLt374oZrYm7d++iV69ekMvl0NfXR2VlpXbN3t5e8BMjOTk5+Pvf/47MzEz8+c9/RlhYGDw8PDB16lS4urqKWkj65ptvtK0+MpkMSUlJzfbo6upi0KBBWLdundDxAACjR4/G3//+d0yYMAG+vr7YtGkT/vWvf6FLly7Izs7G1KlTRckFAPr6+ti+fbu2RbCsrAy9e/eGra2tJG9FIvpPY2GEiIiIqA3u37/f5Df4j1OpVAKnaU5PTw+zZ88WO4akGRoaorq6Gj///DMKCwsxdOhQbWFESszMzFBWVgbgYdHryJEj2qJOdnY2evbsKXgmR0dHODo64r333sM333yDo0ePYsWKFejSpQu8vLzg6+sLGxsbwXMtXboUS5cuBQBYWFggOTm5xRkjYnr33XdRVVUF4N+zYbKyslBXV4e5c+eK1nr0uEGDBkmuEHL69GmMHTv2mddqA4COjg727NkDc3NzAZJRR8LCCBEREVEbDBs2DF999RVcXV2brZ06dUqUl8InSXEwrJScPXsW33zzDTIyMpCRkYHPP/8cffr0weTJk0UbftmScePG4ezZs5g8eTKWLFmCoKAgODk5QVdXFxUVFQgJCREtm46ODtzd3eHu7o66ujps27YNiYmJqKysbNOQ1hfhxx9/FPXzW6NQKJoUVefPny+5W4Xq6urw888/tzhsVaxbXhYuXIi+fftCqVRi5syZePnll5+6f/To0QIlo46E1/USERERtcGpU6cQGBiIKVOmwNvbG0uXLsX777+PmzdvIikpCfHx8XBychIlW0uDYVNSUmBtbY133nlH1MGwUqVSqbRXGP/1r3/Vtkf913/9FwICAmBmZiZywn+7dOkSsrOzUVtbC2dnZ9GLOFevXsXRo0dx9OhR3Lp1C2PGjMHcuXMxbtw4UXM9IrWX/Pv37+Mf//gHysvLIZPJYGpqChsbG0nMaamvr0d4eDjS09NbvbFKjJt8gIffZykpKcjIyMCdO3fg6OgIX19feHl5oWvXrqJkoo6HhREiIiKiNsrKysKmTZtQXFysfda3b1+sXr0a3t7eouUKDw/HiRMnEBkZqR0Mm5qaCmtra6SmpiIxMREZGRmi5ZO6qqoqHDt2DEePHsW5c+cgk8kwcuTIFudVdFZFRUU4evQoMjMzceXKFdjb22Pq1Knw9vaGiYmJ2PEASO8l//79+9i4cSPS0tLw4MGDJtcud+3aFTNnzsTKlSvRvXt3wTI96aOPPkJaWhpCQ0MREhKC999/Hy+99BLS09Nx8+ZNvPfee6IX4hobG3Hq1Cmkpqbi9OnT6N69O6ZOnQofHx9JnNSj9o2FESIiIqLf6Nq1a6iqqoKRkZEk+vKdnJywcuVKKJVKNDY2agsi1tbWyM3NRWBgIL7//nuxY7YLxcXFyMjI0N5eI4Zvv/0WxcXF8PHxabZ2+PBh9O/fH2PGjBEsz5tvvokLFy7AwsICU6ZMwZQpU5pcCy0VUnrJb2howOzZs3Hp0iVMmjQJLi4u6NevHzQaDUpKSnDmzBlkZ2fD3t4ee/fuhVwuFyTXk7y8vPDWW29h5syZsLa2RkpKirbYsGrVKnTr1k20q4RbUlpaipCQEOTl5UEmk2HIkCGYN29eiz8rRM+DM0aIiIiI2iAmJga+vr7o06cPzM3Nmwz5KysrQ3JysnYIpNCkPhi2Penfvz8WLVqERYsWiZZh69at8PDwaHHtzp07SE5OxsGDBwXLc/78ebz00ktoaGjAkSNHcOTIkVb3ymQypKenC5btcVlZWVi6dCn+9Kc/ISQkBMOHD4eNjQ1mzJiBVatW4eTJk4IVRtLS0nD58mXExcW1OJfI19cXp0+fRmBgII4cOQKlUilIrieVlJTA3NwcOjo60NPT014rDADTpk3DihUrJFEYedRWk56ejpqaGnh7e8PT0xM5OTlYt24dLly4gPXr14sdk9ohcUqSRERERO3Uzp07UVpa2uJaWVkZdu7cKXCif3s0GLYlUhkMS8/vypUrrf6dWVtb46effhI0z4wZM+Dl5QUbG5tn/iPWoE7g2S/5WVlZgmXJysrC9OnTWyyKPOLm5obp06fj2LFjguV6kkKh0H6dzMzM8Le//U27dv36dZFSPXTv3j0kJyfjjTfewNSpU3Hq1CksWLAAOTk52Lp1K6ZMmYJNmzbhgw8+YKsg/WY8MUJERETUBk/rQi4vL4ehoaGAaZoKDAxEYGAgVCoVvL29IZPJcPHiRWRmZiI1NRXx8fGiZaO2k8lkuHv3botr1dXVrc7PeFE2btwo6Of9Vi295Ds7OwMQ/iW/sLAQr7/++jP3jR07Fhs2bBAgUctGjx6Nv//975gwYQJ8fX2xadMm/Otf/0KXLl2QnZ2NqVOnipbNxcUFGo0GXl5eCA0NhaOjY4v7rKysYGxsLHA66ihYGCEiIiJ6hszMTGRmZgJ4+LIaGRkJAwODJnvq6+tRUFAABwcHMSICeHi9a3R0NDZt2qT9zWlERAT69u2LqKgo0W7Lod/Gzs4O+/btw6RJkyCTybTPNRoN9u/fDzs7OxHTSZeUXvJ/+eUX9O7d+5n7FAoFfvnllxcfqBXvvvsuqqqqAEB7hXBWVhbq6uowd+5cBAUFiZYtJCQE06ZNe2bReejQoTh58qRAqaijYWGEiIiI6BkePHiAe/fuAXj4UqpSqZoNSezatSumT5+Ot956S4yIWt7e3vD29pbcYFhqu2XLlsHPzw/Tpk2DUqmEQqFAWVkZ0tLScP36dd6W0wopveQ/ePAAurrPfuXS1dVFQ0ODAIlaplAomswnmj9/vvZrJ6a6ujokJydj4MCBT21HIvq9eCsNERERURvMnTsX4eHhkiw2PD4Y9kliD4al3yY/Px+bN2/GxYsXoVarIZfLYW9vj+DgYIwcOVLsePQMFhYW8PPze+btPcXFxdi7d6+g1wi3pLq6GleuXMHt27fh5uYGIyMj1NXVoUuXLqLdmPPHP/4RH330kbYdiuhFYGGEiIiIqIOwtLTEoUOHMHz48GZrBQUF8PX1Ff3FS4pqampw/PhxXLt2DfX19c3Ww8LCREjVVG1tLaqrq2FoaIju3buLHUfS7t+/j3/84x8oLy+HTCaDqakpbGxs0K1bN8GzWFhYPPdemUwm2s+nWq3G1q1bkZSUBJVKBZlMhpSUFFhbW+Ptt9+GnZ2daEXV9957DwDw5z//WZTPp86BrTREREREbaRWq5Gbm9vii7RMJhPtCLqUB8NK1fXr1/Hmm2+ivr4eKpUKvXr1QnV1NRoaGmBkZAR9fX1JFEa6desmyot9e3L//n1s3LgRaWlpePDggfbnQSaToWvXrpg5cyZWrlwpaGHpxx9/FOyzfo9t27Zh7969WLVqFZycnODl5aVdmzBhAj7//HPRCiMODg6Ijo7GokWL4ObmBlNT0yYzdwBg0qRJomSjjoOFESIiIqI2KC8vx5w5c3Djxg3IZLImL1+PCFkYaS+DYaVq48aNsLOzw7Zt22Bvb4+4uDhYWFjg2LFj+Oijj7Bt2zaxI9JzaGhogL+/Py5duoRJkybBxcUF/fr1g0ajQUlJCc6cOYNDhw6hsLAQe/fuFa0t5HlpNBqsXbsWy5YtQ//+/V/4533xxRdYsWIF3nzzzWa3Hb3yyiv4+eefX3iG1qxZswYAkJOTg5ycnGbrYp60oY6DhREiIiKiNti4cSOMjY2xZ88euLu7Izk5GaampkhPT0daWhri4uIEzdOeBsNK0cWLF7FhwwZ07doVwMOvp46ODl577TVUVVXhgw8+wMGDB0VOKU1SakFKS0vD5cuXERcX1+KQTl9fX5w+fRqBgYE4cuQIlEqlYNl+C7VajbS0NMyZM0eQwsgvv/zS6tykxsZGUQfDfv3116J9NnUeLIwQERERtUFeXh7CwsKa3ODQv39/LF68GBqNBuvXr8euXbsEy6NUKrUveVIeDCtV9fX10NfXh1wuh5GREcrKyrRrQ4YMaTetEEKTWgtSVlYWpk+f/tSbS9zc3DB9+nQcO3ZM8oUR4Omtcf9pAwcOxNmzZ1u80vu7777DkCFDBMvypAEDBoj22dR5SPsMGREREZHE3L17F7169YJcLoe+vj4qKyu1a/b29sjPzxctW1JSEosibTRw4EAUFRUBAKysrLB//378+uuvqK2txaFDh9C7d2+RE0rToxakv/71r9BoNIiLi8OFCxewefNm9OjRQ/AWpMLCQowdO/aZ+8aOHctiVwvmz5+P3bt3Y+vWrbhy5QoAoKSkBPv27UNSUpLoV/dqNBqcOnUKW7Zswfvvv48tW7YgJydH0OIRdWw8MUJERETUBmZmZtpTBYMHD8aRI0cwfvx4AEB2djZ69uwpYjrpDoaVqilTpmhflJcvX44FCxZg9OjR2vkxGzduFDmhNEmtBemXX355riKWQqHAL7/88uIDtTMzZ85EdXU1duzYgU8++QQAEBQUhO7du+N//ud/MHnyZNGyVVdXY+HChbhw4QIMDQ1hYmKCyspKxMfHa+cCcbA0/V4sjBARERG1wbhx43D27FlMnjwZS5YsQVBQEJycnKCrq4uKigqEhISIlk1qg2HbA39/f+2f7e3tkZmZiTNnzqC2thZjxozB0KFDRUwnXVJrQXrw4AF0dZ/9aqOrqyvqvAwp8/f3x6xZs3Du3DlUVVXByMgII0aMaDbMWWiRkZG4efMmEhIS4OLion1+9uxZhIaGIjIyEhs2bBAxIXUELIwQERERtUFwcLD2z+7u7jhw4ACys7NRW1sLZ2dnuLu7i5ZNaoNh24O8vDxYWVmhR48eAIB+/fph1qxZAIB79+4hLy8Po0aNEjOiJD1qQRo1apS2BcnZ2Rm6urqitSBlZmY+s5WtuLhYoDTtU48ePZrNaTlz5gw++OADHD9+XJRMJ0+eRGhoaJOiCAC4uLhgxYoViIqKYmGEfjcWRoiIiIh+B1tbW9ja2oodA4D0BsO2B35+fjh06BCGDx/ebO3atWvw8/PjVaAtkGIL0p49e55r3+MnqOjZ7t+/j5s3b4r2+SqVCqampi2uKRQKqFQqgRNRR8TCCBEREVEbfPvttyguLoaPj0+ztcOHD6N///4YM2aMCMmePRiWJ0aae9rwRpVKhW7dugmYpv2QWgtSexioevr0aYwdO/a5CjM6OjrYs2cPzM3NBUgmbZaWlti7dy9cXV2ho6Ojfa5Wq5GUlAQrKysR01FHwcIIERERURts3boVHh4eLa7duXMHycnJgg6dfJzUB8NKxfnz53Hu3Dntv2dkZDRrwairq8PXX3+NV199Veh47UJHaUHSaDRYu3Ytli1bhv79+7/Qz1q4cCH69u0LpVKJmTNn4uWXX37q/tGjR7/QPO1FcHAwAgIC4OnpCQ8PD5iamqKyshLZ2dmoqKjAp59+KnZE6gBYGCEiIiJqgytXrmD58uUtrllbWyM2NlbgRP8m5cGwUvLNN98gJiYGwMO2iqSkpGZ7dHV1MWjQIKxbt07oeO1CR2lBUqvVSEtLw5w5c154YeTo0aNISUnB559/jk8++QSOjo7w9fWFl5eX9nYfam7UqFE4cOAAYmNjkZmZiZqaGhgZGWHkyJFYvHgxrK2txY5IHQALI0RERERtIJPJcPfu3RbXqqur0djYKHCif5PyYFgpWbp0KZYuXQoAsLCwQHJycosv+NS6jtSC9LT/Lf9JgwYNwqpVqxASEoJTp04hNTUVa9aswfr16zF16lT4+PjAxsZGkCwAsHv37ufa989//vMFJ3k2GxsbbTGT6EWQaYT6LwERERFRBxAQEICGhgZ89tlnTWYFaDQazJs3D3K5HImJieIFJHpBHm9BioyMxNy5c5udsnjUgqRWq5GamipGzDZpbGyEtbU1UlNTRTl5UFpaipCQEOTl5UEmk2HIkCGYN29eizOM/tMsLCyee69MJmsXJ4CIfiueGCEiIiJqg2XLlsHPzw/Tpk2DUqmEQqFAWVkZ0tLScP369RbbMoQi5cGwUldXV4eff/4ZdXV1zdZ4VP8htiD951y9ehUpKSlIT09HTU0NvL294enpiZycHKxbtw4XLlzA+vXrX2iG9jCwFnjYttUauVwOAwMDWFpawsfHB3369BEwGXUkPDFCRERE1Eb5+fnYvHkzLl68CLVaDblcDnt7ewQHB2PkyJGi5XrjjTfg4eGBhQsXNlvbtWsXsrOzRRsMK1X19fUIDw9Henp6q21Q/E15cx2lBUnIEyP37t3D0aNHkZqaiosXL2LgwIHw9fXFjBkz0KtXL+2+tLQ0RERENBkQLCVCDqwFgKCgIFy+fBnl5eUYNmwYTExMUFlZicLCQigUCrzyyiv44YcfoFarsWfPHhYy6TfhiREiIiKiNho5ciQOHjyI2tpaVFdXw9DQEN27dxc7lqQHw0rVzp07cfbsWWzcuBEhISF4//338dJLLyE9PR03b97Ee++9J3ZESWovpw2kxMXFBRqNBl5eXggNDYWjo2OL+6ysrGBsbCxwuucn5MBaAPD29sbNmzexb98+DBgwQPv81q1bWLJkCZRKJXbs2AF/f39ER0cjISHhhWeijkcudgAiIiKi9qpbt27o06ePJIoigLQHw0pVVlYWli5dij/96U8AgOHDh2PGjBn49NNPMXLkSJw8eVLkhNJWV1eHn376CZcvX272DzUVEhKCM2fOYNOmTa0WRQBg6NChkv++E7LpICYmBsuWLWtSFAEeXk8eFBSEjz/+GEZGRggICMD58+cFy0UdC0+MEBEREXUQdnZ22LdvHyZNmtRsMOz+/fthZ2cnYjppKikpgbm5OXR0dKCnp4eamhrt2rRp07BixQpERESImFCapNyCdPr0aYwdO7bJz0BrdHR0sGfPHpibm7/QTHV1dUhOTsbAgQPh6ur6Qj+ro7l9+3arf5cymQylpaUAgN69e7P4S78ZT4wQERERdRDLli3DuXPnMG3aNHz66afIyMhAQkICpk2bhnPnzuF//ud/xI4oOQqFQlsMMTMzw9/+9jft2vXr10VKJX2PtyBpNBq89957+N///V84OTlhwIABorZtLVy4EOPHj8e2bdvw888/P3P/6NGj8dJLL73QTHp6eigtLYVcztevtrK1tcX27dtx+/btJs+LioqwY8cO7ZyboqIiDl+l34wnRoiIiIg6iBEjRiAxMRGbN29GVFRUk8GwiYmJsLe3Fzui5IwePRp///vfMWHCBPj6+mLTpk3417/+hS5duiA7OxtTp04VO6IkPd6CFBISguHDh8PGxgYzZszAqlWrcPLkSbi7u4uS7ejRo0hJScHnn3+OTz75BI6OjvD19YWXlxe6du0qSiYAmDRpEr788ks4OzuLlqE9ioiIgL+/Pzw9PTF06FAYGxujqqoKhYWFMDExwbZt2wAAFRUVmDVrlshpqb3irTREREREHZDUBsNKVXl5OaqqqjB06FAAQGJiIrKyslBXVwdnZ2cEBQW98NME7ZGdnR0SEhLg6OgIOzs7/OUvf9G+8J89exYrVqxocvpGDI2NjTh16hRSU1Nx+vRpdO/eHVOnToWPjw9sbGwEz/PFF18gOjoaVlZWcHNzg6mpabMWkUmTJgmeq62EvMnnkbq6OqSkpKCgoADl5eVQKBSwtbWFj48P9PT0BMlAHRsLI0RERERE1CYTJ07E2rVrMWHCBEyZMgUTJ07Eu+++CwDYt28ftm/fLnph5HGlpaUICQlBXl4eZDIZhgwZgnnz5sHHx0ewDBYWFk9dl8lk7eJqaDEKI0QvGltpiIiIiKjTun//Pv7xj3+gvLwcMpkMpqamsLGxQbdu3cSOJmntpQXp6tWrSElJQXp6OmpqauDt7Q1PT0/k5ORg3bp1uHDhAtavXy9Ilq+//lqQz/ktpDiw9klXr17FpUuXUFJSAh8fHygUCty4cQMmJibQ19cXNAt1PDwxQkRERESdzv3797Fx40akpaXhwYMH2utHZTIZunbtipkzZ2LlypVsQ2qFlFuQ7t27h6NHjyI1NRUXL17EwIED4evrixkzZqBXr17afWlpaYiIiMC5c+dEySklFhYW6Nu3L5RKJWbOnImXX35Z7EhaKpUKYWFhOHbsGORyOdRqNVJSUmBtbY133nkHZmZmWLlypdgxqZ1jYYSIiIiIOpWGhgbMnj0bly5dwqRJk+Di4oJ+/fpBo9GgpKQEZ86cQXZ2Nuzt7bF3717eJNLO2NvbQ6PRwMvLC7NmzYKjo2OL+/75z39i8eLFOHnypGDZNBoNcnJykJ+fj+rqahgZGcHR0RFubm7PdVrjRXl0siYjIwN37tyRzMBaAAgPD8eJEycQGRkJR0dH2Nvba9t4UlNTkZiYiIyMDFEzUvvHwggRERERdSopKSkIDw9HbGwsXF1dW9xz+vRpBAYG4s9//jOUSqXACaVPyi1Ie/fuxbRp02BoaCh2lCaqq6uxcOFCXLhwAYaGhjAxMUFlZSVqampgb2+PuLg40TNLbWAtADg5OWHlypVQKpXN5pvk5uYiMDAQ33//vSjZqOPgjBEiIiIi6lSysrIwffr0VosiAODm5obp06fj2LFjLIw8RuotSHV1dUhOTsbAgQOf+vcrhsjISNy8eRMJCQlwcXHRPj979ixCQ0MRGRmJDRs2iJjw4fwQDw8PeHh4aAfWHjhwAAcPHhRlYC3w8HtOoVC0uKZSqQTNQh0XCyNERERE1KkUFhbi9ddff+a+sWPHiv6iKiUNDQ3w9/d/agvSoUOHUFhYKFoLkp6eHkpLSyXZ/nTy5EmEhoY2KYoAgIuLC1asWIGoqChJfL9JaWAtAAwbNgxfffVVi4WuU6dOiXaShToWFkaIiIiIqFP55Zdf0Lt372fuUygU+OWXX158oHYiLS0Nly9fRlxcXIsvqb6+vtoWpCNHjoh20mbSpEn48ssv4ezsLMrnt0alUsHU1LTFNYVCIerph5YG1i5YsKDJwNopU6bA2dkZERERghZGAgMDERgYCJVKBW9vb8hkMly8eBGZmZlITU1FfHy8YFmo42JhhIiIiIg6lQcPHkBX99n/N1hXVxcNDQ0CJGof2ksLkoODA6Kjo7Fo0SK4ubnB1NS02WDTSZMmCZ7L0tISe/fuhaurK3R0dLTP1Wo1kpKSYGVlJXimR1xcXLQDa0NDQ1sdWGtlZQVjY2NBs40bNw7R0dHYtGmTdshqREQE+vbti6ioKDg5OQmahzomDl8lIiIiok7FwsICfn5+6Nev31P3FRcXY+/evfjhhx8ESiZtY8eOxf/7f/8P3t7eT92XlZWFDRs24MyZMwIla8rCwuKp6zKZTJS/07y8PAQEBEChUMDDwwOmpqaorKxEdnY2Kioq8Omnn7ZakHjRpDqw9knXrl1DVVUVjIyMMGjQILHjUAfCEyNERERE1Ons2bPnufaJeYWq1LSXFqSvv/5atM9+mlGjRuHAgQOIjY1FZmYmampqYGRkhJEjR2Lx4sWwtrYWJZeUB9YCQExMDHx9fdGnTx+Ym5vD3Nxcu1ZWVobk5GQsXbpUxITUEbAwQkRERESdyo8//ih2hHapvbQgDRgwQLTPfhYbGxvExMSIHaMJKQ+sBYCdO3fCzc0Nffr0abZWVlaGnTt3sjBCvxsLI0REREREz0Gj0WDt2rVYtmwZ+vfvL3YcUWRmZiI/P/+pe4qLiwVK0zqNRoOcnBzk5+ejuroaRkZGcHR0hJubG08BtUCqA2sB4GmTH8rLyyXf/kPtA2eMEBERERE9h8bGRtjY2CAlJUW0tgcxPWt2x+PEmuMBANXV1Vi4cCEuXLgAQ0NDmJiYoLKyEjU1NbC3t0dcXJwoL9N+fn6trsnlchgYGMDS0hI+Pj4tno54kb744gtER0fDyspKEgNrMzMzkZmZCQDIycmBg4MDDAwMmuypr69HQUEBHBwcEBsbK1g26ph4YoSIiIiI6Dl15t8ptpcWpMjISNy8eRMJCQlwcXHRPj979ixCQ0MRGRmJDRs2CJ7LwMAAly9fRnl5OYYNG6Yt2BQWFkKhUOCVV17B7t27kZCQgD179ghafFuzZg2Ah0WInJycZutCF7oePHiAe/fuAXj4M6dSqZq1+nTt2hXTp0/HW2+9JVgu6rh4YoSIiIiI6Dk0NjbC2toaqampnfLEyG8ldAvSmDFjEBoaCh8fn2ZrKSkpiIqKQm5u7gvP8aSMjAzExcUhNja2yRyUW7duYcmSJQgICMCECRPg7+8PY2NjJCQkCJatqKjomXvEmt0yd+5chIeH8xYaeqGkOWGHiIiIiIg6BLVajbS0NFRVVQnyeSqVCqampi2uKRQKqFQqQXI8KSYmBsuWLWtWYDAzM0NQUBA+/vhjGBkZISAgAOfPnxc024ABA575j1iSkpJYFKEXjq00RERERET0Qgl5SN3S0hJ79+6Fq6srdHR0tM/VajWSkpJgZWUlWJbH3b59u9XBrzKZDKWlpQCA3r17o7GxUchoAKQ9sFatViM3NxfXrl1DfX19kzWZTIb58+eLE4w6DBZGiIiIiIiowwgODkZAQAA8PT3h4eEBU1NTVFZWIjs7GxUVFfj0009FyWVra4vt27fDxsYG/fr10z4vKirCjh07MHz4cO2/Cz18tbWBtfHx8aIOrAUe3jwzZ84c3LhxAzKZTFtke7xYw8II/V4sjBARERERUYcxatQoHDhwALGxscjMzERNTQ2MjIwwcuRILF68WLT5MBEREfD394enpyeGDh0KY2NjVFVVobCwECYmJti2bRsAoKKiArNmzRI0m1QH1gLAxo0bYWxsjD179sDd3R3JyckwNTVFeno60tLSEBcXJ0ou6lg4fJWIiIiIOq3Tp09j7Nixz90q8N1338HGxgYvvfTSC07WcXBo7b/V1dUhJSUFBQUFKC8vh0KhgK2tLXx8fKCnpydaLqkOrAUANzc3hIWFYeLEibCyskJycrL2dM1f/vIX5OfnY9euXaJko46DJ0aIiIiIqNNauHAh+vbtC6VSiZkzZ+Lll19+6v7Ro0cLlIw6Ij09PcyePVvsGM1IdWAtANy9exe9evWCXC6Hvr4+KisrtWuP2nyIfi8WRoiIiIio0zp69ChSUlLw+eef45NPPoGjoyN8fX3h5eWFrl27ih2PfgM/P79W1+RyOQwMDGBpaQkfHx/BZ3kAwNWrV3Hp0iWUlJTAx8cHCoUCN27cgImJCfT19QXPA0h3YC3w8NaesrIyAMDgwYNx5MgRjB8/HgCQnZ2Nnj17ipaNOg620hARERFRp9fY2IhTp04hNTUVp0+fRvfu3TF16lT4+PjAxsZG7HiSI+UWpKCgIFy+fBnl5eUYNmyYdpBoYWEhFAoFXnnlFfzwww9Qq9XYs2ePYO09KpUKYWFhOHbsGORyOdRqNVJSUmBtbY133nkHZmZmWLlypSBZnpSXl4eAgAAoFIpWB9Y6OjqKkm3Lli24c+cONmzYgJycHAQFBcHAwAC6urqoqKhASEgIFixYIEo26jhYGCEiIiIiekxpaSlCQkKQl5cHmUyGIUOGYN68eS3OX+isLCws2tSCJKSMjAzExcUhNjYWAwYM0D6/desWlixZgoCAAEyYMAH+/v4wNjZGQkKCILnCw8Nx4sQJREZGwtHREfb29tq5K6mpqUhMTERGRoYgWVpSUFCA2NhY5OfnS2ZgbUsuXbqE7Oxs1NbWwtnZGe7u7mJHog6AhREiIiIiIjxscUhJSUF6ejpqamrg4eEBT09P5OTk4NixY5g5cybWr18vdkxJePS1ysjIwJ07dyTVguTl5YXg4GBMmjSp2VpWVha2bNmCEydOIDMzE+vWrUN+fr4guZycnLBy5UoolcpmA2lzc3MRGBiI77//XpAsRNSUXOwARERERERiuXfvHpKTk/HGG29g6tSpOHXqFBYsWICcnBxs3boVU6ZMwaZNm/DBBx+I+tt8qRk0aBBWrVqFnJwc7NixA/r6+lizZg1cXFwQERGBgoIC0bLdvn271RYfmUyG0tJSAEDv3r3R2NgoWK779+9DoVC0uCbmcFOp+/bbb5Gamtri2uHDh0W7LYc6Fg5fJSIiIqJOy8XFBRqNBl5eXggNDW11joKVlRWMjY0FTid9Ojo68PDwgIeHh7YF6cCBAzh48KBoLUi2trbYvn07bGxs0K9fP+3zoqIi7NixQ3vVa1FRkaDDV4cNG4avvvoKrq6uzdZOnTol6iwbKQ+s3bp1Kzw8PFpcu3PnDpKTk3Hw4EFBM1HHw8IIEREREXVaISEhmDZtGgwNDZ+6b+jQoTh58qRAqdqXJ1uQvL29tS1I69atw4ULFwRtQYqIiIC/vz88PT0xdOhQGBsbo6qqCoWFhTAxMcG2bdsAABUVFZg1a5ZguQIDAxEYGAiVSgVvb2/IZDJcvHgRmZmZSE1NRXx8vGBZnmRgYPDMgbW7d+9GQkKCoANrAeDKlStYvnx5i2vW1taIjY0VLAt1XJwxQkRERESdUl1dHXx9fbFy5coWf4tPrbt37x6OHj2K1NRUXLx4EQMHDoSvry9mzJiBXr16afelpaUhIiIC586dEzRfXV0dUlJSUFBQgPLycigUCtja2sLHxwd6enqCZnlcVlYWNm3ahOLiYu2zvn37YvXq1fD29hYtl1QH1gLAyJEj8eGHH8LLy6vZWlZWFtasWSP49xd1PDwxQkRERESdkp6eHkpLSyGXc+xeW0m9BUlPTw+zZ88W/HOfxdvbG97e3rh27RqqqqpgZGSEQYMGiR0LMTExCA4OblIUAQAzMzMEBQVhy5YtUCqVCAgIwLp16wTNZmdnh3379mHSpElNZsdoNBrs378fdnZ2guahjomFESIiIiLqtCZNmoQvv/wSzs7OYkdpV9pDC9LVq1dx6dIllJSUwMfHBwqFAjdu3ICJiQn09fUFzxMTEwNfX1/06dMH5ubmMDc3166VlZUhOTkZS5cuFTwXIN2BtQCwbNky+Pn5Ydq0aVAqlVAoFCgrK0NaWhquX7+OpKQkQfNQx8TCCBERERF1Wg4ODoiOjsaiRYvg5uYGU1PTZi+ILV372pnV1dUhOTkZAwcOlGQLkkqlQlhYGI4dOwa5XA61Wo2xY8dCoVBgy5YtMDMzw8qVKwXPtXPnTri5ubU4vLSsrAw7d+4UrTAi1YG1ADBixAgkJiZi8+bNiIqKglqthlwuh729PRITE2Fvby9oHuqYWBghIiIiok5rzZo1AICcnBzk5OQ0W5fJZPjhhx+EjiVpUm9BioyMRG5uLuLj4+Ho6Njkxdnd3R2JiYmiFEaeNtqxvLz8madvXiSpDqx9ZOTIkTh48CBqa2tRXV0NQ0NDdO/eXfAc1HGxMEJEREREndbXX38tdoR2ScotSMePH9cO1H2y7WPAgAEoKioSLEtmZiYyMzMBPCyyRUZGwsDAoMme+vp6FBQUwMHBQbBcTxo8eDCys7ObDKwdNmwYXn/99SYDa99++23RMgJAt27d0K1bN1EzUMfEwggRERERdVpPDpuk5yPlFqT79+9DoVC0uKZSqQTN8uDBA9y7dw/AwxMjKpWq2Umbrl27Yvr06XjrrbcEzfYkqQ6sJRICCyNERERE1KlpNBrk5OQgPz8f1dXVMDIygqOjI9zc3FodSNnZSbkFadiwYfjqq69anH9y6tQp2NjYCJZFqVRCqVQCAObOnYvw8HBJ3ELTGqkNrCUSCgsjRERERNRpVVdXY+HChbhw4QIMDQ1hYmKCyspKxMfHw97eHnFxcaLOfpAqKbcgBQYGIjAwECqVCt7e3pDJZLh48SIyMzORmpqK+Ph4UXJJ+fYUqQ6sJRKKTPO0KUBERERERB3Y2rVr8X//93+IioqCi4uL9vnZs2cRGhqK8ePHY8OGDSImpN8iKysLmzZtQnFxsfZZ3759sXr1anh7e4uWS61WIzc3F9euXUN9fX2TNZlMhvnz54uSKzw8HCdOnEBkZKR2YG1qaiqsra2RmpqKxMREZGRkiJKNSAgsjBARERFRpzVmzBiEhobCx8en2VpKSgqioqKQm5srQjLpaw8tSNeuXUNVVRWMjIxEb2EpLy/HnDlzcOPGDchkMu0tNY9/rcRqP3JycsLKlSuhVCrR2NioLYhYW1sjNzcXgYGB+P7770XJRiQEad6xRUREREQkAJVKBVNT0xbXFAqF4MM624vq6mq8+eabWLx4MQ4dOoS8vDwcOnQIixYtwn/913+hpqZGtGwxMTEoLS0FAJibm8PBwUFbFCkrK0NMTIwouTZu3AhjY2Pk5ORAo9EgOTkZJ0+exPLly/GHP/wBx48fFyUXIK2BtURiYGGEiIiIiDotS0tL7N27t9m1rmq1GklJSbCyshIpmbRFRkbi5s2bSEhIwHfffYcvv/wS3333HRISEnDz5k1ERkaKlm3nzp3awsiTysrKsHPnToETPZSXl4eAgIAmBYj+/ftj8eLFmD59OtavXy9KLuDfA2tbIvTAWiIxcPgqEREREXVawcHBCAgIgKenJzw8PGBqaorKykpkZ2ejoqICn376qdgRJenkyZMIDQ1tMpcFAFxcXLBixQpERUWJNpvlaZMCysvLRRume/fuXfTq1QtyuRz6+vqorKzUrj0a9CsWqQ6sJRIKCyNERERE1GmNGjUKBw4cQGxsLDIzM1FTUwMjIyOMHDkSixcvhrW1tdgRJUlqLUiZmZnIzMwE8HBmR2RkJAwMDJrsqa+vR0FBARwcHATN9oiZmRnKysoAAIMHD8aRI0cwfvx4AEB2djZ69uwpSi4AGDduHKKjo7Fp0ybtkNWIiAj07dsXUVFRcHJyEi0bkRBYGCEiIiKiTs3Gxka0uRPt1aMWJFdXV+jo6Gifi9WC9ODBA9y7dw/AwxMjKpUKcnnTqQFdu3bF9OnT8dZbbwma7ZFx48bh7NmzmDx5MpYsWYKgoCA4OTlBV1cXFRUVCAkJESXXI97e3vD29pbUwFoiofBWGiIiIiIiapPH52W01oLk6OgoSra5c+ciPDxc8i/1ly5dQnZ2Nmpra+Hs7Ax3d3fRssTExMDX1xd9+vRptlZWVobk5GQsXbpUhGREwmBhhIiIiIg6LT8/v1bX5HI5DAwMYGlpCR8fnxZfGjuzgoICxMbGIj8/ny1I7ZylpSUOHTqE4cOHN1srKCiAr6+vaFcJEwmBrTRERERE1GkZGBjg8uXLKC8vx7Bhw2BiYoLKykoUFhZCoVDglVdewe7du5GQkIA9e/bwhf8xUm5BUqvVyM3NxbVr11BfX99kTSaTYf78+YJn+vbbb1FcXAwfH59ma4cPH0b//v0xZswYwXMB0h1YSyQUFkaIiIiIqNPy9vbGzZs3sW/fPgwYMED7/NatW1iyZAmUSiV27NgBf39/REdHIyEhQcS09DzKy8sxZ84c3LhxAzKZTPvSL5PJtHvEKIxs3boVHh4eLa7duXMHycnJOHjwoGB52sPAWiKhsDBCRERERJ1WTEwMgoODmxRFgIc3iAQFBWHLli1QKpUICAjAunXrREopPVJuQdq4cSOMjY2xZ88euLu7Izk5GaampkhPT0daWppo1+JeuXIFy5cvb3HN2toasbGxguZpDwNriYTCwggRERERdVq3b99ucpLgcTKZDKWlpQCA3r17o7GxUchokiblFqS8vDyEhYVBoVBon/Xv3x+LFy+GRqPB+vXrsWvXLsHyPCKTyXD37t0W16qrqwX//lIqlVAqlQDaz8BaohdF/uwtREREREQdk62tLbZv347bt283eV5UVIQdO3Zoh1EWFRVx+OpjvL29YWBggK+++gqHDx9GfHw8Dh8+jOPHj8PAwABKpRLZ2dn4wx/+gOjoaEGz3b17F7169YJcLoe+vj4qKyu1a/b29sjPzxc0zyN2dnbYt29fs3keGo0G+/fvh52dnSi5ACApKYlFEerUeGKEiIiIiDqtiIgI+Pv7w9PTE0OHDoWxsTGqqqpQWFgIExMTbNu2DQBQUVGBWbNmiZxWOqTcgmRmZoaysjIAwODBg3HkyBGMHz8eAJCdnY2ePXsKmueRZcuWwc/PD9OmTYNSqYRCoUBZWRnS0tJw/fp1JCUliZLrESkOrCUSCgsjRERERNRpDR48GNnZ2UhJSUFBQYG2NeT111+Hj48P9PT0AABvv/22yEmlRcotSOPGjcPZs2cxefJkLFmyBEFBQXBycoKuri4qKioQEhIiaJ5HRowYgcTERGzevBlRUVFQq9WQy+Wwt7dHYmIi7O3tRckFSHdgLZFQZJqn3c1ERERERET0hNmzZ6OmpgZxcXHo16+f9nlRUREWLVqEnj17Yu/evfjiiy8QGxuL48ePi5b10qVLyM7ORm1tLZydneHu7i5alkdqa2tRXV0NQ0NDdO/eXew4CA4ORlFREbZt29bqwNpXXnlF7JhELwwLI0RERETU6V29ehWXLl1CSUkJfHx8oFAocOPGDZiYmEBfX1/seJLz008/wd/fH1VVVS22IO3evRuDBg1CfHw85HI5FixYIHZkego3NzeEhYVh4sSJsLKyQnJysna+zl/+8hfk5+eLMrCWSChspSEiIiKiTkulUiEsLAzHjh2DXC6HWq3G2LFjoVAosGXLFpiZmWHlypVix5QcKbcgffvttyguLoaPj0+ztcOHD6N///4YM2aM4Lmk7FkDa8W64phIKCyMEBEREVGnFRkZidzcXMTHx8PR0bHJnAd3d3ckJiayMNIKPT09zJ49W+wYzWzduhUeHh4trt25cwfJyck4ePCgwKmkTaoDa4mEwut6iYiIiKjTOn78OEJCQuDq6oouXbo0WRswYACKiopEStY+XL16FWlpaYiNjUV5eTkA4MaNG/j1119Fy3TlyhXY2Ni0uGZtbY2ffvpJ4ETS92hgLQAsWbIE2dnZcHJywtixY7F//37MmTNH5IRELxZPjBARERFRp3X//n0oFIoW11QqlcBp2g8ptyDJZDLcvXu3xbXq6mrBb8lpD4KDg7V/dnd3x4EDByQ3sJboReKJESIiIiLqtIYNG4avvvqqxbVTp061evKgs3u8BSk/Px+P3+fg7u6OM2fOiJbNzs4O+/btw5N3TGg0Guzfvx92dnYiJWs/bG1t8e6772LNmjUsilCnwBMjRERERNRpBQYGIjAwECqVCt7e3pDJZLh48SIyMzORmpqK+Ph4sSNK0vHjx7Fy5Uq4uro2O4EhdgvSsmXL4Ofnh2nTpkGpVEKhUKCsrAxpaWm4fv06kpKSRMsmVRxYS50dT4wQERERUac1btw4REdHIz8/H0FBQdBoNIiIiMCXX36JqKgoODk5iR1RkqTcgjRixAgkJiaiR48eiIqKQmhoKLZs2QIDAwMkJiY2GbBLD23durXJTTSPu3PnDrZu3SpsICKB8cQIEREREXVq3t7e8Pb2xrVr11BVVQUjIyMMGjRI7FiS9qgFydXVtdmaFFqQRo4ciYMHD6K2thbV1dUwNDRE9+7dRc0kZVeuXMHy5ctbXLO2tkZsbKzAiYiExcIIEREREXVaMTEx8PX1RZ8+fWBubg5zc3PtWllZGZKTk7F06VIRE0pTe2lB6tatG7p16yZ2DMnjwFrq7GSaJ6cSERERERF1EpaWljh06BCGDx/ebK2goAC+vr744YcfREgmfVlZWdi0aROKi4u1z/r27YvVq1fD29tbxGTUVgEBAWhoaMBnn30GmUymfa7RaDBv3jzI5XIkJiaKF5DoBeOJESIiIiLqtJ72O8Ly8nIYGhoKmKZ9YQtSx8GBtdTZ8cQIEREREXUqmZmZyMzMBADk5OTAwcEBBgYGTfbU19ejoKAADg4OnK/QgsdbkJ7EFqT2KT8/H5s3b8bFixehVqshl8thb2+P4OBgjBw5Uux4RC8UCyNERERE1Kl88cUXOHz4MAAgLy8PVlZW6NGjR5M9Xbt2xauvvoq33nqrxZf/zo4tSB0XB9ZSZ8RWGiIiIiLqVJRKJZRKJQBg7ty5CA8PZwtIG7EFqePiwFrqjFgYISIiIqJOi7MTnt/jLUgymQyRkZFPbUEiImovWBghIiIiok5NrVYjNzcX165dQ319fZM1mUyG+fPnixNMYh48eIB79+4BeHhiRKVSQS6XN9nTtWtXTJ8+HW+99ZYYEYmIfhPOGCEiIiKiTqu8vBxz5szBjRs3IJPJtC0ij19ZylkZzbEFiYg6EvmztxARERERdUwbN26EsbExcnJyoNFokJycjJMnT2L58uX4wx/+gOPHj4sdUZKSkpJYFCGiDoOtNERERETUaeXl5SEsLAwKhUL7rH///li8eDE0Gg3Wr1+PXbt2iZhQutiCREQdBQsjRERERNRp3b17F7169YJcLoe+vj4qKyu1a/b29oiLixMxnXQ9TwsSCyNE1F6wlYaIiIiIOi0zMzOUlZUBAAYPHowjR45o17Kzs9GzZ0+RkkkbW5CIqCNhYYSIiIiIOq1x48bh7NmzAIAlS5YgOzsbTk5OGDt2LPbv3485c+aInFCa8vLyEBAQ0GIL0vTp07F+/XoR0xERtQ1baYiIiIio0woODtb+2d3dHQcOHEB2djZqa2vh7OwMd3d3EdNJF1uQiKgjYWGEiIiIiOj/Z2trC1tbW7FjSF5LLUjjx48HwBYkImp/2EpDRERERJ3Wt99+i9TU1BbXDh8+jNzcXIETtQ9sQSKijkSmeTRCmoiIiIiok3njjTfg4eGBhQsXNlvbtWsXsrOzcfDgQRGStS+XLl1iCxIRtVtspSEiIiKiTuvKlStYvnx5i2vW1taIjY0VOFH7xBYkImrP2EpDRERERJ2WTCbD3bt3W1yrrq5GY2OjwInaB7YgEVFHwsIIEREREXVadnZ22LdvH57sLtdoNNi/fz/s7OxESiZtW7dubXITzePu3LmDrVu3ChuIiOh3YCsNEREREXVay5Ytg5+fH6ZNmwalUgmFQoGysjKkpaXh+vXrSEpKEjuiJLEFiYg6EhZGiIiIiKjTGjFiBBITE7F582ZERUVBrVZDLpfD3t4eiYmJsLe3FzuiJLEFiYg6Et5KQ0REREQEoLa2FtXV1TA0NET37t3FjiNpAQEBaGhowGeffQaZTKZ9rtFoMG/ePMjlciQmJooXkIioDVgYISIiIiKiNjl37hz8/PwwcODAVluQeNqGiNoLFkaIiIiIiKjN8vPzsXnzZly8eLFJC1JwcDBGjhwpdjwioufGwggREREREf1mbEEiovaOhREiIiIiIiIi6rTkYgcgIiIiIiIiIhILCyNERERERERE1GmxMEJEREREREREnRYLI0RERERERETUabEwQkRERERERESdFgsjRERERERERNRpsTBCRERERERERJ0WCyNERERERERE1Gn9f8qTrE1wEoxjAAAAAElFTkSuQmCC\n"},"metadata":{}}]},{"cell_type":"markdown","source":["# **BUILDING MODELS**"],"metadata":{"id":"q5JqpntQhnqF"}},{"cell_type":"markdown","source":["# Ridge Regression"],"metadata":{"id":"ovF_GCLE-17b"}},{"cell_type":"markdown","source":["## 1st Iteration:\n","Steps:\n","Prepare Data: Split the data into training and testing sets.\n","\n","Train Model: Ridge regression model.\n","\n","Evaluate Model: Assess its performance using metrics"],"metadata":{"id":"ngLWr8IN_iHV"}},{"cell_type":"code","source":["from sklearn.model_selection import train_test_split\n","from sklearn.linear_model import Ridge\n","from sklearn.metrics import mean_squared_error, r2_score\n","\n","# Split data into features and target\n","X = usd_salary_df.drop('salary', axis=1)\n","y = usd_salary_df['salary']\n","\n","# Split data into training and testing sets\n","X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)\n","\n","# Initialize and train the Ridge regression model\n","ridge_model = Ridge(alpha=1.0)\n","ridge_model.fit(X_train, y_train)\n","\n","# Predict on the test set\n","y_pred = ridge_model.predict(X_test)\n","\n","# Evaluate the model\n","rmse = np.sqrt(mean_squared_error(y_test, y_pred))\n","r2 = r2_score(y_test, y_pred)\n","\n","print(\"RMSE:\", rmse)\n","print(\"R^2 Score:\", r2)"],"metadata":{"colab":{"base_uri":"https://localhost:8080/"},"id":"CEitdAUt_L6c","executionInfo":{"status":"ok","timestamp":1714691872420,"user_tz":300,"elapsed":212,"user":{"displayName":"Jenny O","userId":"07622373657144372939"}},"outputId":"77184d52-5737-4567-cda2-d11c53d3505c"},"execution_count":null,"outputs":[{"output_type":"stream","name":"stdout","text":["RMSE: 53059.83424031529\n","R^2 Score: 0.2498462266201683\n"]}]},{"cell_type":"markdown","source":["## 2nd Iteration: Handling Outliers in Salary\n","Steps:\n","Modify Data: Replace outliers in the salary column.\n","\n","Train and Evaluate Model: Using the same steps as the first iteration."],"metadata":{"id":"ILnGyF4sA9oa"}},{"cell_type":"code","source":["# Replace outliers in the salary column\n","usd_salary_df['salary'] = usd_salary_df['salary'].apply(lambda x: min(x, 310000))\n","\n","# Re-split the data (this step is necessary as the target has changed)\n","X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)\n","\n","# Re-train the Ridge model\n","ridge_model.fit(X_train, y_train)\n","\n","# Re-predict and re-evaluate\n","y_pred = ridge_model.predict(X_test)\n","rmse = np.sqrt(mean_squared_error(y_test, y_pred))\n","r2 = r2_score(y_test, y_pred)\n","\n","print(\"RMSE with Outlier Adjustment:\", rmse)\n","print(\"R^2 Score with Outlier Adjustment:\", r2)"],"metadata":{"colab":{"base_uri":"https://localhost:8080/"},"id":"zScSW3DnA6lG","executionInfo":{"status":"ok","timestamp":1714691872420,"user_tz":300,"elapsed":10,"user":{"displayName":"Jenny O","userId":"07622373657144372939"}},"outputId":"8097c7ab-1d3f-4fc5-8980-7e788598e885"},"execution_count":null,"outputs":[{"output_type":"stream","name":"stdout","text":["RMSE with Outlier Adjustment: 53059.83424031529\n","R^2 Score with Outlier Adjustment: 0.2498462266201683\n"]}]},{"cell_type":"markdown","source":["## 3rd Iteration: Feature Importance and Model Simplification\n","\n","Steps:\n","Identify Feature Importance: Using model coefficients.\n","\n","Select Top 3 Features: Based on the largest coefficients.\n","\n","Rebuild and Train Model: Using only top features.\n","\n","Evaluate Model Performance."],"metadata":{"id":"sGmnRmc6Cb-6"}},{"cell_type":"code","source":["# Plotting feature importance for Ridge regression\n","feature_importance_ridge = pd.Series(index=X_train.columns, data=ridge_model.coef_).sort_values(ascending=False)\n","feature_importance_ridge.plot(kind='bar', figsize=(10, 6))\n","plt.title('Feature Importance in Ridge Regression')\n","plt.ylabel('Coefficient Magnitude')\n","plt.show()\n","\n","\n","# Filter to get only features with a positive impact\n","positive_feature_importance_ridge = feature_importance_ridge[feature_importance_ridge > 0]\n","\n","# Get the top 3 features with the highest positive impact\n","top_3_positive_features_ridge = positive_feature_importance_ridge.nlargest(3).index\n","print(\"Top 3 features with positive impact from Ridge Regression:\", top_3_positive_features_ridge)\n","\n","\n","# Split the dataset with only the top 3 features\n","X_top3 = X[top_3_positive_features_ridge]\n","\n","# Split the data into training and testing sets with only the top 3 features\n","X_train_top3, X_test_top3, y_train, y_test = train_test_split(X_top3, y, test_size=0.2, random_state=42)\n","\n","# Initialize the Ridge regression model\n","ridge_model_top3 = Ridge(alpha=1.0)\n","\n","# Train the model using the top 3 positive features\n","ridge_model_top3.fit(X_train_top3, y_train)\n","\n","# Predict on the test set using the top 3 positive features\n","y_pred_top3 = ridge_model_top3.predict(X_test_top3)\n","\n","# Evaluate the model\n","rmse_top3 = np.sqrt(mean_squared_error(y_test, y_pred_top3))\n","r2_top3 = r2_score(y_test, y_pred_top3)\n","\n","print(\"RMSE with Top 3 Positive Features:\", rmse_top3)\n","print(\"R^2 Score with Top 3 Positive Features:\", r2_top3)"],"metadata":{"colab":{"base_uri":"https://localhost:8080/","height":909},"id":"8Td5GvOGC10P","executionInfo":{"status":"ok","timestamp":1714691873691,"user_tz":300,"elapsed":766,"user":{"displayName":"Jenny O","userId":"07622373657144372939"}},"outputId":"a2697508-3a4f-4a1f-e240-77d086fa8750"},"execution_count":null,"outputs":[{"output_type":"display_data","data":{"text/plain":["
"],"image/png":"iVBORw0KGgoAAAANSUhEUgAAA3wAAANHCAYAAABtqV9MAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOzde3zP9f//8ft7bAzbNGkSsk2bQw5zns0KoaGSklNYk5ZElD4OyaEkRMRUzCpS5NCBjBw6iERnFTltY4gcsg1jm71+f/jt/fW24b33Tu+9ul0vly7zfr0e7+fr8XjvvbXH+/l6PV8WwzAMAQAAAABMx6W4EwAAAAAAFA4aPgAAAAAwKRo+AAAAADApGj4AAAAAMCkaPgAAAAAwKRo+AAAAADApGj4AAAAAMCkaPgAAAAAwKRo+AAAAADApGj4AAEq4wMBAzZkzx+mPP2fOHAUGBhZBRriW4n6vACh6NHwAcAMff/yxAgMDc/1v+vTphXLMn3/+WXPmzFFKSkqhjJ8f2a/H77//XtypOOyDDz7Qxx9/XNxpOK1Ro0bZvM/vvPNOdezYUW+88YYuXrxY3Ok5pG3btjY1NWrUSA8//LA+/fTT4k4NAApV6eJOAABKiqFDh6patWo22wICAgrlWL/88ouio6P14IMPytPTs1CO8V+2ZMkS3XTTTerWrVtxp1Igdu7cqVKlShXomG5ubpo0aZIk6ezZs9q0aZPefPNNHTp0SDNmzCj04xeGOnXq6LHHHpMknThxQsuXL9fIkSOVnp6uRx55pJizKxol5XsFoODQ8AGAncLCwlS/fv3iTiNfzp8/r3LlyhV3GsUmLS1N7u7uxZ1GgStTpkyBj1m6dGk98MAD1se9e/dWz549tWbNGo0ePVo333xzoR6/MPj4+NjU1K1bN7Vr107vvfdekTd8xfWzWFK+VwAKDqd0AkAB+eabb9S7d281atRIQUFBeuKJJ7Rv3z6bmL/++kujRo1Su3btVL9+fYWEhGj06NH6999/rTFz5szRtGnTJEnt2rWznoJ2+PBhHT58WIGBgbmejnj1tTnZ10vt379fzz33nJo1a6bevXtb93/22Wfq1q2bGjRooObNm2v48OH6+++/Hap91KhRCgoK0tGjRxUVFaWgoCC1bt1aH3zwgSRpz5496tevnxo1aqQ2bdpo9erVNs/PPk30hx9+0Lhx49SiRQs1btxY//vf/5ScnJzjeB988IE6d+6sO++8U6GhoZo4cWKO01/79u2rLl266I8//lCfPn3UsGFDvf7662rbtq327dunHTt2WF/bvn37SpLOnDmjqVOn6r777lNQUJAaN26sxx9/XH/99ZfN2Nu3b1dgYKDi4uL01ltvWT8M6N+/vw4ePJgj399++00DBw5Us2bN1KhRI913331auHChTcyBAwc0dOhQNW/eXPXr11e3bt20adMmu17/a33vDx48qFGjRqlp06Zq0qSJRo8erbS0NLvGvJrFYlHjxo1lGIaSkpKue3xJ+vHHH/XQQw+pfv36uueee7R06dJcx71w4YImTZqkFi1aKCgoSE8++aSOHz+e65jHjx/X6NGj1apVK915553q3LmzVqxY4VA9kuTt7S0/Pz8dOnTIZntWVpbee+89de7cWfXr11erVq00bty4HO/FrKwszZkzR6GhoWrYsKH69u2r/fv3q23btho1apQ1Lvv9vWPHDk2YMEHBwcG66667rPvt+d1x4sQJjR49WmFhYdb3/aBBg3T48GFrzO+//64BAwaoRYsWatCggdq2bavRo0fbjJPb67pr1y49/vjjaty4sYKCgtS/f3/9+uuvNjHZNfz000969dVX1bJlSzVq1EiDBw/W6dOn7X/RARQ5ZvgAwE5nz57N8YeNt7e3JOnTTz/VqFGjFBoaqhEjRigtLU1LlixR79699cknn1hPBf3uu++UlJSkbt26qXLlytq3b5+WLVum/fv3a9myZbJYLGrfvr0SExP1+eefa/To0brpppusx3LkD6tnnnlGt99+u4YPHy7DMCRJb731lt544w2Fh4fr4Ycf1unTp7V48WL16dNHn376qUOnkV66dEkDBw5U06ZNNWLECK1evVovvfSS3N3dNXPmTN13333q0KGDli5dqpEjR6pRo0aqXr26zRgvvfSSPD099fTTTyshIUFLlizR0aNH9f7778tisUi63MxER0erVatW6tWrlzXu999/15IlS+Tq6mod78yZMxo4cKA6d+6s+++/X5UqVVKLFi308ssvq1y5cnryySclyTpblZSUpI0bN+ree+9VtWrVdPLkSX300Ud69NFHtWbNGvn4+NjkGxMTI4vFosjISJ09e1YLFizQiBEjtHz5cmvM1q1bFRUVpVtuuUX9+vXTzTffrAMHDujrr79W//79JUn79u1Tr1695OPjo4EDB6pcuXJau3atBg8erDlz5qh9+/Z5/n5I0rBhw1StWjU9++yz2rVrl5YvXy5vb289//zzDo135MgRSbrh+2PPnj0aMGCAvL29NWTIEGVmZmrOnDmqVKlSjthRo0Zp7dq1euCBB9SwYUP98MMPeuKJJ3LEnTx5Uo888ogsFov69Okjb29vbd68WS+88ILOnj2riIiIPNeTmZmp48ePy8vLy2b7uHHj9Mknn6hbt27q27evDh8+rA8++EC7du2yeY/NmDFDCxYsUJs2bdS6dWv99ddfGjBgwDWvc5w4caK8vb01ePBgnT9/XpL9vzuGDBmi/fv369FHH9Vtt92m06dPa+vWrfr7779VrVo1nTp1SgMGDNBNN92kJ554Qp6enjp8+LA2bNhw3ddg37596tOnj8qXL6/HH39cpUuX1kcffaS+fftq8eLFatiwoU38pEmTrD+jR44c0cKFC/XSSy9p1qxZeX79ARQRAwBwXStXrjQCAgJy/c8wDOPs2bNG06ZNjbFjx9o878SJE0aTJk1stqelpeUY//PPPzcCAgKMH374wbptwYIFRkBAgJGUlGQTm5SUZAQEBBgrV67MMU5AQIAxe/Zs6+PZs2cbAQEBxrPPPmsTd/jwYaNOnTrGW2+9ZbN9z549Rt26dXNsv9brsXPnTuu2kSNHGgEBAcbbb79t3ZacnGw0aNDACAwMNNasWWPdfuDAgRy5Zo/54IMPGunp6dbtMTExRkBAgLFx40bDMAzj1KlTRr169YzIyEjj0qVL1rjFixcbAQEBxooVK6zbHn30USMgIMBYsmRJjho6d+5sPProozm2X7x40WZcw7j8mt95551GdHS0ddv3339vBAQEGOHh4cbFixet2xcuXGgEBAQYe/bsMQzDMDIzM422bdsabdq0MZKTk23GzcrKsv67f//+RpcuXWzGysrKMnr06GF06NAhR55Xu9b3fvTo0TZxgwcPNpo3b37D8UaOHGk0atTIOHXqlHHq1Cnj4MGDRmxsrBEYGGh06dLFJvfcjv/UU08Z9evXN44cOWLdtn//fqNOnTrWnxvDMIw//vjDCAgIMF555RWb8UaNGpVjzDFjxhghISHG6dOnbWKHDx9uNGnSJNefrSu1adPGiIyMtNa0Z88e4/nnnzcCAgKMiRMnWuN++OEHIyAgwFi1apXN8zdv3myz/cSJE0bdunWNp556yiZuzpw5RkBAgDFy5Ejrtuz3d69evYzMzEzrdnt/dyQnJxsBAQHGggULrlnfhg0bcvxc5ia371W9evWMQ4cOWbcdP37cCAoKMvr06ZOjhoiICJvv/+TJk406deoYKSkp1z0ugOLDKZ0AYKdx48bp3XfftflPujxrl5KSos6dO+v06dPW/1xcXNSwYUNt377dOkbZsmWt/7548aJOnz5t/QT9zz//LJS8e/bsafN4w4YNysrKUnh4uE2+N998s26//XabfPOqe/fu1n97enrK19dX7u7uCg8Pt2738/OTp6dnjtMCJalHjx42M3S9evVS6dKl9c0330i6/FpnZGSoX79+cnH5v/+Fde/eXRUqVLDGZXNzc8vTwixubm7WcS9duqR///1X5cqVk6+vr3bt2pUjvlu3bnJzc7M+btq0qSRZa9u1a5cOHz6sfv365ZgVy56xPHPmjL7//nuFh4dbZ5FPnz6tf//9V6GhoUpMTNTx48ftruFKV3/vmzZtqjNnzujs2bM3fO758+cVHBys4OBgtW/fXlOnTlXjxo315ptvWnPPzaVLl7Rlyxbdc889qlq1qnW7v7+/QkNDbWK//fZbSbI51ViSHn30UZvHhmFo/fr1atu2rQzDsHnfhoaGKjU11a6fny1btlhruu+++6ynNf/vf/+zxqxbt04eHh4KCQmxOU69evVUrlw568/Htm3blJmZecPcr/TII4/YLJhi7++OsmXLytXVVTt27Mj1FGdJ8vDwkCR9/fXXysjIuOFrIV3+Xm3dulX33HOPzWz7Lbfcoi5duuinn37K8V7JnmXN1rRpU126dMk6+wvA+XBKJwDYqUGDBrku2pKYmChJ1tPzrlahQgXrv8+cOaPo6GjFxcXp1KlTNnGpqakFl+wVrl5ZNDExUYZhqEOHDrnGly7t2P8aypQpYz3FNZuHh4eqVKmSo0Hw8PDI9ZYTt99+u83j8uXLq3LlytY/Jo8ePSrpctN4JTc3N1WvXj3HH50+Pj42DdmNZGVladGiRfrwww91+PBhXbp0ybqvYsWKOeKvbGik/zvVMbu27Mbvequ5Hjp0SIZh6I033tAbb7yRa8ypU6dynE5qj2vll5ycbPO+zE2ZMmX09ttvS5KOHTumBQsW6NSpUzdc9OP06dO6cOFCju+lJPn6+to05UePHpWLi0uO9+jVzz19+rRSUlL00Ucf6aOPPrrmcW+kYcOGGjZsmC5duqR9+/bprbfeUkpKis2HDAcPHlRqaqqCg4NzHSP75zb7vVijRg2b/RUrVsxximi23H4WpRv/7nBzc9OIESM0depUhYSEqGHDhrr77rvVtWtXVa5cWZLUvHlzdezYUdHR0XrvvffUvHlz3XPPPbrvvvuu+TNw+vRppaWlydfXN8c+f39/ZWVl6e+//9Ydd9xh3X6j9zwA50PDBwD5ZPz/6+KmTZtm/ePrSld+oj9s2DD98ssvGjBggOrUqaNy5copKytLjz/+uHWc67nWzMqVjcnVrv4DPSsrSxaLRTExMbkuz+7oyoHXWur9WtvtqTe/rpxRtcfbb7+tN954Qw899JCeeeYZeXl5ycXFRZMnT8413ytnGa+Ul9qysrIkSZGRkWrdunWuMVc3FfbKT36lSpVSq1atrI9DQ0MVHh6ucePGWRvBopL9Gt1///168MEHc42x54buN910k7Wm1q1by8/PT1FRUVq0aJH1dg1ZWVmqVKnSNe+xefWHGnlx9c9iXn53REREqG3bttq4caO2bNmiN954Q/Pnz9fChQtVt25dWSwWzZ49W7/++qu++uorffvttxozZozeffddffTRRypfvrzDeV+pIN7zAIoWDR8A5FP2qVCVKlWy+QP5asnJydq2bZuGDBmip59+2ro9+1P+K12rscueObj60/Ts2QZ71KhRQ4ZhqFq1arl+sl+cDh48qJYtW1ofnzt3TidOnFBYWJik/5tdiI+PtzkFLT09XYcPH77u63+la72+X3zxhVq0aKHJkyfbbE9JSbEunpMX2Tnu3bv3mrllx7i6utqdf3G45ZZbFBERoejoaP36669q1KhRrnHe3t4qW7ZsrquVJiQk2DyuWrWqsrKydPjwYdWsWdO6/ernent7q3z58srKyirQ1+juu+9W8+bN9fbbb6tHjx4qV66catSooW3btqlx48bX/cAg+7146NAhm/fiv//+e83TLq9m7++ObDVq1FBkZKQiIyOVmJiorl276p133rFpThs1aqRGjRpp+PDhWr16tUaMGKG4uDib062zeXt7y93dPcf3Rbr8M+bi4qJbb73VrloAOC+u4QOAfGrdurUqVKigefPm5XrtTPapZtea6bp6eX5J1nvFXX2aZ4UKFXTTTTfpxx9/tNn+4Ycf2p1vhw4dVKpUKUVHR+f4VN4wDJtbRBS1jz76yOY1XLJkiTIzM60NX6tWreTq6qr333/fJvcVK1YoNTXVZqn763F3d8/1FLRSpUrleE3Wrl3r8DV09erVU7Vq1bRo0aIcx8s+TqVKldS8eXN99NFH+ueff3KM4UxL3j/66KNyd3fX/PnzrxlTqlQphYaGauPGjTYfRBw4cEBbtmyxic2+pu/q9+/ixYtzjNmxY0d98cUX2rt3b45j5uc1evzxx3XmzBktW7ZMkhQeHq5Lly7pzTffzBGbmZlp/T4GBwerdOnSWrJkiU1M9q1I7GHv7460tLQcK3/WqFFD5cuXV3p6uqTLHyhd/d6tU6eOJFljrlaqVCmFhIRo06ZNNrd3OHnypD7//HM1adLkhqf+AnB+zPABQD5VqFBBEyZM0P/+9z9169ZNnTp1kre3t44ePapvvvlGjRs31rhx41ShQgU1a9ZMCxYsUEZGhnx8fLR161abP7Sy1atXT5I0c+ZMderUSa6urmrTpo3KlSun7t27a/78+XrhhRd055136scff8z1E/prqVGjhoYNG6YZM2boyJEjuueee1S+fHkdPnxYGzdu1COPPKIBAwYU2OuTFxkZGYqIiFB4eLgSEhL04YcfqkmTJmrXrp2kyzMSUVFRio6O1uOPP662bdta4+rXr6/777/fruPUq1dPS5Ys0Ztvvqnbb79d3t7eCg4O1t133625c+dq9OjRCgoK0t69e7V69eoct4+wl4uLiyZMmKBBgwapa9eu1ttxxMfHa//+/YqNjZUkjR8/Xr1799Z9992nRx55RNWrV9fJkyf166+/6tixY1q1apVDxy9oN910k7p166YPP/xQBw4ckL+/f65xQ4YM0bfffqs+ffqoV69eunTpkhYvXqxatWppz5491rg777xTHTt21MKFC3XmzBnrbRmyZ72vnIl97rnntH37dj3yyCPq3r27atWqpeTkZP3555/atm2bduzY4VBNd911lwICAvTee++pT58+at68uXr06KF58+Zp9+7dCgkJkaurqxITE7Vu3Tq98MILuvfee3XzzTerX79+euedd/Tkk0+qdevW2rNnjzZv3qybbrrpugvbZLP3d0diYqIiIiJ07733qlatWipVqpQ2btyokydPqnPnzpKkTz75REuWLNE999yjGjVq6Ny5c1q2bJkqVKhg/cAkN8OGDdN3332n3r17q3fv3ipVqpQ++ugjpaenO3z7DgDOhYYPAArAfffdp1tuuUXz589XbGys0tPT5ePjo6ZNm9qsEjljxgy9/PLL+vDDD2UYhkJCQhQTE5Pj2q0GDRromWee0dKlS/Xtt98qKytLmzZtUrly5aw3Ov7iiy+0du1ahYWFacGCBddcZCI3TzzxhGrWrKn33ntPc+fOlSRVqVJFISEhatu2bcG8KA4YN26cVq9erdmzZysjI0OdO3fW2LFjbf54HjJkiLy9vbV48WK9+uqr8vLy0iOPPKJnn33WZvGN6xk8eLCOHj2qBQsW6Ny5c2revLmCg4P15JNPKi0tTatXr1ZcXJzq1q2refPmacaMGQ7X1Lp1ay1cuFBz587VO++8I8MwVL16dT3yyCPWmFq1amnlypWKjo7WJ598ojNnzsjb21t169bV4MGDHT52YXjssce0dOlSxcTEaMqUKbnG1K5dW7GxsXr11Vc1e/ZsValSRUOGDNGJEydsGj5Jmjp1qm6++WatWbNGGzZsUKtWrTRz5kzde++9NouN3HzzzVq+fLnmzp2rDRs2aMmSJapYsaJq1aqlESNG5KumyMhIjRo1SqtXr1a3bt300ksv6c4779TSpUs1c+ZMlSpVSrfddpvuv/9+NW7c2Pq8ESNGqGzZslq+fLm2bdumRo0aKTY2Vr1797Z7sSB7fndUqVJFnTt31rZt27Rq1SqVKlVKfn5+mjVrljp27Cjp8qItv//+u+Li4nTy5El5eHioQYMGmj59+nU/sLjjjjv0wQcfaMaMGZo3b54Mw1CDBg302muv5bgHH4CSyWJwlS0AoJh9/PHHGj16tFasWJHrSqj4b9m9e7e6du2q1157ze5ZW2eRkpKiZs2aadiwYRo0aFBxpwMAXMMHAACKz4ULF3JsW7hwoVxcXNSsWbNiyMh+18pdujzjBgDOgFM6AQBAsVmwYIH++OMPtWzZUqVKldLmzZu1efNm9ejRw+lXiIyLi9Mnn3yisLAwlStXTj///LM+//xzhYaGqkmTJsWdHgBIouEDAADFKCgoSFu3btWbb76p8+fP69Zbb9WQIUP05JNPFndqNxQYGKhSpUpZrwWtVKmS+vXrp2HDhhV3agBgxTV8AAAAAGBSXMMHAAAAACZFwwcAAAAAJsU1fCXIL7/8IsMw7L7PFAAAAABzysjIkMViUVBQ0HXjSvwM38cff6zAwMAc/02fPt0mbvny5erYsaPq16+v+++/X1999VWOsVJTUzVmzBg1b95cQUFBGjp0qP75558ccT///LN69OihBg0aqE2bNpo/f76uvhTSMAzNnz9fd999txo0aKAePXro119/zVethmHkOE5hMAxD6enpRXKswmamWiTqcWZmqkWiHmdmplok6nFmZqpFoh5nZqZapKKrx97ewDQzfAsWLJCHh4f1sY+Pj/Xfa9as0Ysvvqgnn3xSLVu2VFxcnJ5++ml98MEHatSokTVu2LBh2r9/vyZMmKAyZcpo1qxZGjhwoFauXKnSpS+/VAcPHtSAAQMUEhKiYcOGac+ePZo+fbpKlSqlAQMGWMeKiYnR7NmzNWLECAUGBuqDDz5QZGSkPvvsM1WvXt2hGrNn9gr7psTnz5/X7t27VatWLZUrV65Qj1XYzFSLRD3OzEy1SNTjzMxUi0Q9zsxMtUjU48zMVItUdPX8/vvvdsWZpuGrV6+evL29c903e/Zsde7c2bpMcsuWLbV3717NnTtXMTExki6fLrllyxbFxsYqNDRUkuTr66tOnTpp/fr16tSpkyQpNjZWN910k15//XW5ubkpODhYp0+f1ttvv62+ffvKzc1NFy9e1Lx58xQZGamIiAhJUpMmTXTvvfcqNjZWEyZMKNTXAgAAAAAkE5zSeSNJSUlKTExUeHi4zfZOnTpp27ZtSk9PlyRt3rxZnp6eCgkJscb4+fmpTp062rx5s3Xb5s2b1a5dO7m5udmMlZKSol9++UXS5VM+z549a3NMNzc3tW/f3mYsAAAAAChMpmn4unTpojp16qhdu3aaN2+eLl26JEmKj4+XdHm27kr+/v7KyMhQUlKSNc7X11cWi8Umzs/PzzrG+fPn9ffff8vPzy9HjMViscZlf706zt/fX0ePHtWFCxcKomQAAAAAuK4Sf0pn5cqVNWTIEDVs2FAWi0VffvmlZs2apePHj2vcuHFKTk6WJHl6eto8L/tx9v6UlBSbawCzeXl56Y8//pB0eVGX3MZyc3OTu7u7zVhubm4qU6ZMjmMahqHk5GSVLVvWoXoNw9D58+cdeq690tLSbL6WZGaqRaIeZ2amWiTqcWZmqkWiHmdmplok6nFmZqpFKrp6DMPIMVmVmxLf8LVu3VqtW7e2Pg4NDVWZMmW0cOFCPfnkk8WYWeHIyMjQ7t27i+RYiYmJRXKcomCmWiTqcWZmqkWiHmdmplok6nFmZqpFoh5nZqZapKKp58rLzK6lxDd8uQkPD9c777yj3bt3y8vLS9Ll2bnKlStbY1JSUiTJut/T01PHjh3LMVZycrI1JnsGMHumL1t6errS0tJsxkpPT9fFixdtZvlSUlJksViscY5wdXVVrVq1HH6+PdLS0pSYmKiaNWvK3d29UI9V2MxUi0Q9zsxMtUjU48zMVItEPc7MTLVI1OPMzFSLVHT17N+/3644UzZ8V8q+ji4+Pt7mmrr4+Hi5urpab5Hg5+enbdu25ZgaTUhIUEBAgCSpXLlyuvXWW63X6F0ZYxiGdfzsrwkJCapdu7bNMatWrerw6ZySZLFYimy5Wnd3d1MsjSuZqxaJepyZmWqRqMeZmakWiXqcmZlqkajHmZmpFqnw67HndE7JRIu2XCkuLk6lSpVS3bp1Vb16ddWsWVPr1q3LERMcHGydBg0LC1NycrK2bdtmjUlISNCuXbsUFhZm3RYWFqZNmzYpIyPDZixPT0/rXe4bN26sChUqaO3atdaYjIwMrV+/3mYsAAAAAChMJX6Gb8CAAWrRooUCAwMlSZs2bdKyZcvUr18/6ymcQ4YM0YgRI1SjRg21aNFCcXFx2rlzpxYvXmwdJygoSKGhoRozZoxGjhypMmXKaObMmQoMDFSHDh1sjrd69Wo999xz6tWrl/bu3avY2FgNHz7c2jyWKVNGUVFRmjNnjry9vRUQEKAlS5bozJkzNjdnBwAAAIDCVOIbPl9fX61cuVLHjh1TVlaWatasqTFjxqhv377WmC5duigtLU0xMTGaP3++fH19FR0dbZ2RyzZr1iy9+uqrGjdunDIzMxUaGqqxY8eqdOn/e5luv/12xcbGasqUKXriiSfk7e2toUOHKjIy0masgQMHyjAMvfPOOzp9+rTq1Kmj2NhY6ymkAAAAAFDYSnzDN3bsWLviunfvru7du183xsPDQ5MnT9bkyZOvG9e4cWMtW7bsujEWi0VRUVGKioqyKz8AAAAAKGimvIYPAAAAAEDDBwAAAACmRcMHAAAAACZFwwcAAAAAJkXDBwAAAAAmRcMHAAAAACZFwwcAAAAAJkXDhxwsFovc3d1lsViKOxUAAAAA+VDib7yOG8vKMuTiYn/z5u7urrp16xb6cQAAAAAULhq+/wAXF4umf/CTDh9PLbRjVPPx0Ig+TQptfAAAAAB5R8P3H3H4eKoOHEku7jQAAAAAFCGu4QMAAAAAk6LhAwAAAACTouEDAAAAAJOi4QMAAAAAk6LhAwAAAACTouEDAAAAAJOi4QMAAAAAk6LhAwAAAACTouEDAAAAAJOi4QMAAAAAk6LhAwAAAACTouEDAAAAAJOi4QMAAAAAk6LhAwAAAACTouEDAAAAAJOi4QMAAAAAk6LhAwAAAACTouEDAAAAAJOi4QMAAAAAk6LhAwAAAACTouEDAAAAAJOi4QMAAAAAk6LhAwAAAACTouEDAAAAAJOi4QMAAAAAk6LhAwAAAACTouEDAAAAAJOi4QMAAAAAkzJVw3fu3DmFhYUpMDBQv//+u82+5cuXq2PHjqpfv77uv/9+ffXVVzmen5qaqjFjxqh58+YKCgrS0KFD9c8//+SI+/nnn9WjRw81aNBAbdq00fz582UYhk2MYRiaP3++7r77bjVo0EA9evTQr7/+WqD1AgAAAMD1mKrhe/PNN3Xp0qUc29esWaMXX3xR4eHhiomJUaNGjfT000/naMCGDRumrVu3asKECZo+fboSEhI0cOBAZWZmWmMOHjyoAQMGqHLlypo3b5769++v2bNn65133rEZKyYmRrNnz1ZERITmzZunypUrKzIyUklJSYVSOwAAAABczTQN34EDB/Thhx9qyJAhOfbNnj1bnTt31rBhw9SyZUu99NJLql+/vubOnWuN+eWXX7Rlyxa98sor6tSpk9q1a6c33nhDe/bs0fr1661xsbGxuummm/T6668rODhYERERioyM1Ntvv6309HRJ0sWLFzVv3jxFRkYqIiJCwcHBev3111WxYkXFxsYW/osBAAAAADJRwzdp0iT17NlTvr6+NtuTkpKUmJio8PBwm+2dOnXStm3brE3a5s2b5enpqZCQEGuMn5+f6tSpo82bN1u3bd68We3atZObm5vNWCkpKfrll18kXT7l8+zZszbHdHNzU/v27W3GAgAAAIDCZIqGb926ddq7d68GDx6cY198fLwk5WgE/f39lZGRYT3FMj4+Xr6+vrJYLDZxfn5+1jHOnz+vv//+W35+fjliLBaLNS7769Vx/v7+Onr0qC5cuOBoqQAAAABgt9LFnUB+paWlacqUKRo+fLgqVKiQY39ycrIkydPT02Z79uPs/SkpKfLw8MjxfC8vL/3xxx+SLi/qkttYbm5ucnd3txnLzc1NZcqUyXFMwzCUnJyssmXL5rlW6fJiMOfPn7c73mKxyN3d3aFjOSItLS3HAjbFKS0tzeZrSUc9zstMtUjU48zMVItEPc7MTLVI1OPMzFSLVHT1GIaRY7IqNyW+4XvrrbdUqVIlPfTQQ8WdSpHIyMjQ7t277Y53d3dX3bp1CzEjWwkJCU75w5qYmFjcKRQo6nFeZqpFoh5nZqZaJOpxZmaqRaIeZ2amWqSiqefKy8yupUQ3fEeOHNE777yjuXPnWmffsme/zp8/r3PnzsnLy0vS5dm5ypUrW5+bkpIiSdb9np6eOnbsWI5jJCcnW2OyZwCzj5UtPT1daWlpNmOlp6fr4sWLNrN8KSkpslgs1jhHuLq6qlatWnbH29P1FyRfX1+nm+FLTExUzZo1i3Sms7BQj/MyUy0S9TgzM9UiUY8zM1MtEvU4MzPVIhVdPfv377crrkQ3fIcPH1ZGRoaeeOKJHPv69eunhg0basaMGZIuX1d35TV18fHxcnV1VfXq1SVdvt5u27ZtOaZGExISFBAQIEkqV66cbr31Vus1elfGGIZhHT/7a0JCgmrXrm1zzKpVqzp8Oqd0uYErV66cw88vbM76Q+ru7u7Ur1teUY/zMlMtEvU4MzPVIlGPMzNTLRL1ODMz1SIVfj32TuyU6EVb6tSpo0WLFtn8N3r0aEnSxIkTNX78eFWvXl01a9bUunXrbJ4bFxen4OBg6zRoWFiYkpOTtW3bNmtMQkKCdu3apbCwMOu2sLAwbdq0SRkZGTZjeXp6KigoSJLUuHFjVahQQWvXrrXGZGRkaP369TZjAQAAAEBhKtEzfJ6enmrRokWu++rVq6d69epJkoYMGaIRI0aoRo0aatGiheLi4rRz504tXrzYGh8UFKTQ0FCNGTNGI0eOVJkyZTRz5kwFBgaqQ4cO1rgBAwZo9erVeu6559SrVy/t3btXsbGxGj58uLV5LFOmjKKiojRnzhx5e3srICBAS5Ys0ZkzZzRgwIBCfEUAAAAA4P+U6IbPXl26dFFaWppiYmI0f/58+fr6Kjo62jojl23WrFl69dVXNW7cOGVmZio0NFRjx45V6dL/9zLdfvvtio2N1ZQpU/TEE0/I29tbQ4cOVWRkpM1YAwcOlGEYeuedd3T69GnVqVNHsbGx1lNIAQAAAKCwma7ha9Gihfbs2ZNje/fu3dW9e/frPtfDw0OTJ0/W5MmTrxvXuHFjLVu27LoxFotFUVFRioqKunHSAAAAAFAISvQ1fAAAAACAa6PhAwAAAACTouEDAAAAAJOi4QMAAAAAk6LhAwAAAACTouEDAAAAAJOi4QMAAAAAk6LhAwAAAACTouEDAAAAAJOi4QMAAAAAk6LhAwAAAACTouEDAAAAAJOi4QMAAAAAk6LhAwAAAACTouEDAAAAAJOi4QMAAAAAk6LhAwAAAACTouEDAAAAAJOi4QMAAAAAk6LhAwAAAACTouEDAAAAAJOi4QMAAAAAk6LhAwAAAACTouEDAAAAAJOi4QMAAAAAk6LhAwAAAACTouEDAAAAAJOi4QMAAAAAk6LhAwAAAACTouEDAAAAAJOi4QMAAAAAk6LhAwAAAACTouEDAAAAAJOi4QMAAAAAk6LhAwAAAACTouEDAAAAAJOi4QMAAAAAk6LhAwAAAACTouEDAAAAAJMq0Q3fN998o0cffVQtW7bUnXfeqXbt2unVV19VamqqTdyXX36p+++/X/Xr11fHjh21cuXKHGOlp6dr6tSpCgkJUaNGjfTYY48pPj4+R9yBAwf02GOPqVGjRgoJCdG0adOUnp6eI2758uXq2LGj6tevr/vvv19fffVVwRUOAAAAAHYo0Q3fmTNn1KBBA02cOFGxsbF67LHH9Omnn+qZZ56xxvz44496+umn1ahRI8XExCg8PFwvvPCC1q1bZzPWpEmTtHz5cg0fPlxz5sxRenq6IiIibJrH5ORk9e/fXxkZGZozZ46GDx+uZcuWacqUKTZjrVmzRi+++KLCw8MVExOjRo0a6emnn9avv/5aqK8HAAAAAFypdHEnkB8PPPCAzeMWLVrIzc1NL774oo4fPy4fHx+99dZbatCggV566SVJUsuWLZWUlKTZs2fr3nvvlSQdO3ZMK1as0Pjx4/Xwww9LkurXr682bdpo6dKlGjhwoCRp6dKlOnfunKKjo1WxYkVJ0qVLlzRx4kRFRUXJx8dHkjR79mx17txZw4YNsx5z7969mjt3rmJiYgr7ZQEAAAAASSV8hi832Y1YRkaG0tPTtX37dmtjl61Tp046cOCADh8+LEnasmWLsrKybOIqVqyokJAQbd682bpt8+bNCg4Oth5DksLDw5WVlaWtW7dKkpKSkpSYmKjw8PAcx9y2bVuup38CAAAAQGEo0TN82S5duqTMzEzt379fc+fOVdu2bVWtWjXt379fGRkZ8vPzs4n39/eXJMXHx6tatWqKj49XpUqV5OXllSNuxYoV1sfx8fF66KGHbGI8PT1VuXJl6/V+2V99fX1zjJWRkaGkpCTr8R1hGIbOnz9vd7zFYpG7u7vDx8urtLQ0GYZRZMe7kbS0NJuvJR31OC8z1SJRjzMzUy0S9TgzM9UiUY8zM1MtUtHVYxiGLBbLDeNM0fC1adNGx48flyS1bt1aM2bMkHT5mjvpclN2pezH2ftTUlLk4eGRY1xPT09rTHbc1WNJkpeXlzXO3mM6KiMjQ7t377Y73t3dXXXr1s3XMfMiISHBKX9YExMTizuFAkU9zstMtUjU48zMVItEPc7MTLVI1OPMzFSLVDT1uLm53TDGFA3f/PnzlZaWpv379+utt97Sk08+qXfffbe40yoUrq6uqlWrlt3x9nT9BcnX19fpZvgSExNVs2bNIp3pLCzU47zMVItEPc7MTLVI1OPMzFSLRD3OzEy1SEVXz/79++2KM0XDV7t2bUlSUFCQ6tevrwceeEAbNmywNkZX36YhJSVFkqyncHp6eurs2bM5xk1JSbE5zdPT0zPHWNLlWbvsuOyvqampqly58jWP6SiLxaJy5crla4zC5Kw/pO7u7k79uuUV9TgvM9UiUY8zM1MtEvU4MzPVIlGPMzNTLVLh12PvxI7pFm0JDAyUq6urDh06pBo1asjV1TXH/fSyH2df2+fn56eTJ0/mON0yPj7e5vo/Pz+/HGOlpqbqxIkTNmNdeYwrx3J1dVX16tULoEoAAAAAuDHTNXy//fabMjIyVK1aNbm5ualFixb64osvbGLi4uLk7++vatWqSZJCQ0Pl4uKi9evXW2OSk5O1ZcsWhYWFWbeFhYXpu+++s87WSdK6devk4uKikJAQSVL16tVVs2bNHPf5i4uLU3BwsF3n2QIAAABAQSjRp3Q+/fTTuvPOOxUYGKiyZcvqr7/+UmxsrAIDA3XPPfdIkgYNGqR+/fppwoQJCg8P1/bt2/X5559r5syZ1nGqVKmihx9+WNOmTZOLi4t8fHw0b948eXh4qGfPnta4nj176v3339fgwYMVFRWl48ePa9q0aerZs6f1HnySNGTIEI0YMUI1atRQixYtFBcXp507d2rx4sVF9+IAAAAA+M8r0Q1fgwYNFBcXp/nz58swDN12223q3r27BgwYYJ1Ja9q0qebMmaNZs2ZpxYoVqlq1qiZNmpTjPnljx45V+fLlNWPGDJ07d06NGzfWu+++a7N6p5eXlxYuXKiXX35ZgwcPVvny5fXwww9r+PDhNmN16dJFaWlpiomJ0fz58+Xr66vo6GgFBQUV/osCAAAAAP9fiW74nnjiCT3xxBM3jGvXrp3atWt33Rg3NzeNHDlSI0eOvG6cv7+/3nvvvRses3v37urevfsN4wAAAACgsJjuGj4AAAAAwGU0fAAAAABgUjR8AAAAAGBSNHwwNYvFInd3d7tvTAkAAACYSYletAX/PVlZhlxc7G/e3N3dVbdu3UI/DgAAAOCMaPhQori4WDT9g590+HhqoR2jmo+HRvRpUmjjAwAAAEWFhg8lzuHjqTpwJLm40wAAAACcHtfwAQAAAIBJ0fABJQiL0AAAACAvOKUTKEYsQgMAAIDCRMMHFCMWoQEAAEBhouEDihmL0AAAAKCwcA0fAAAAAJgUDR8AAAAAmBQNHwAAAACYFA0fAAAAAJgUDR8AAAAAmBQNHwAAAACYFA0fAAAAAJgUDR8AAAAAmBQNHwAAAACYFA0fAAAAAJgUDR8AAAAAmBQNHwAAAACYFA0fAAAAAJhU6fw8+fjx4/rhhx906tQpdezYUVWqVNGlS5eUmpoqDw8PlSpVqqDyBAAAAADkkUMNn2EYmjJlij744ANlZmbKYrEoICBAVapU0fnz59W2bVsNHTpUERERBZwuAAAAAMBeDp3SuWDBAi1atEiRkZF69913ZRiGdZ+Hh4c6dOig9evXF1iSAAAAAIC8c6jhW758ubp27apnn31WtWvXzrE/MDBQiYmJ+c0NAAAAAJAPDjV8f//9t4KCgq65393dXWfPnnU4KQAAAABA/jnU8FWqVEl///33Nff/+eefuvXWWx1OCgAAAACQfw41fO3bt9fSpUuVlJRk3WaxWCRJW7Zs0SeffKJ77723YDIEAAAAADjEoVU6hw4dqu3bt+uBBx5Q06ZNZbFYFBMTozfeeEO//vqr6tSpoyeffLKgcwUAAAAA5IFDM3weHh5atmyZHn/8cR0/flxlypTRDz/8oNTUVA0ePFgffvih3N3dCzpXAAAAAEAeOHzj9bJly+qpp57SU089VZD5AAAAAAAKiEMzfAAAAAAA52fXDN/o0aPzPLDFYtHkyZPz/DwAAAAAQMGwq+Hbvn17jm0XLlzQ6dOnJUleXl6SpOTkZEmSt7c31/ABAAAAQDGz65TOL7/80ua/+fPnq3Tp0oqKitJ3332n7du3a/v27fruu+8UFRUlV1dXzZ8/v7BzlyStXbtWgwYNUlhYmBo1aqQHHnhAK1askGEYNnHLly9Xx44dVb9+fd1///366quvcoyVmpqqMWPGqHnz5goKCtLQoUP1zz//5Ij7+eef1aNHDzVo0EBt2rTR/PnzcxzPMAzNnz9fd999txo0aKAePXro119/LdDaAQAAAOB6HLqG7+WXX1ZYWJiGDx8ub29v63Zvb28NHz5crVu31ssvv1xgSV7Pe++9J3d3d40aNUpvvfWWwsLC9OKLL2ru3LnWmDVr1ujFF19UeHi4YmJi1KhRIz399NM5GrBhw4Zp69atmjBhgqZPn66EhAQNHDhQmZmZ1piDBw9qwIABqly5subNm6f+/ftr9uzZeuedd2zGiomJ0ezZsxUREaF58+apcuXKioyMtLl3IQAAAAAUJodW6fztt9/UsWPHa+6vU6eO1qxZ43BSefHWW2/ZNJ3BwcE6c+aM3n33XT311FNycXHR7Nmz1blzZw0bNkyS1LJlS+3du1dz585VTEyMJOmXX37Rli1bFBsbq9DQUEmSr6+vOnXqpPXr16tTp06SpNjYWN100016/fXX5ebmpuDgYJ0+fVpvv/22+vbtKzc3N128eFHz5s1TZGSkIiIiJElNmjTRvffeq9jYWE2YMKFIXhsAAAAA/20OzfB5eXlp8+bN19y/efNmeXh4OJxUXlzZ7GWrU6eOzp49q/PnzyspKUmJiYkKDw+3ienUqZO2bdum9PR0a86enp4KCQmxxvj5+alOnTo2tW7evFnt2rWTm5ubzVgpKSn65ZdfJF0+5fPs2bM2x3Rzc1P79u2v+7oBAAAAQEFyqOHr0aOHvv76aw0aNEjfffedDh8+rMOHD2vr1q168skntXnzZvXs2bOgc7XbTz/9JB8fH1WoUEHx8fGSLs/WXcnf318ZGRnWUyzj4+Pl6+sri8ViE+fn52cd4/z58/r777/l5+eXI8ZisVjjsr9eHefv76+jR4/qwoULBVQpAAAAAFybQ6d0PvXUU0pPT1dsbKy+/vprm32lSpXSE088UWw3ZP/xxx8VFxenkSNHSvq/lUM9PT1t4rIfZ+9PSUnJdVbSy8tLf/zxh6TLi7rkNpabm5vc3d1txnJzc1OZMmVyHNMwDCUnJ6ts2bIO1WcYhs6fP293vMViKdIVU9PS0nIsYFNQzFSLZL56HJGWlmbztSQzUy0S9TgzM9UiUY8zM1MtEvU4MzPVIhVdPYZh5Jisyo1DDZ90eYGTfv36adu2bTpy5Igk6bbbblNwcHCup1kWhWPHjmn48OFq0aKF+vXrVyw5FLaMjAzt3r3b7nh3d3fVrVu3EDOylZCQUGhvbjPVIpmvnvxITEws7hQKjJlqkajHmZmpFol6nJmZapGox5mZqRapaOq58jKza3G44ZMuXz/XuXPn/AxRYFJSUjRw4EBVrFhRc+bMkYvL5bNVs+8RmJqaqsqVK9vEX7nf09NTx44dyzFucnKyNSZ7BjB7pi9benq60tLSbMZKT0/XxYsXbWb5UlJSZLFYrHGOcHV1Va1ateyOt6frL0i+vr6FOsNXlAqzFsl89TgiLS1NiYmJqlmzZom/d6eZapGox5mZqRaJepyZmWqRqMeZmakWqejq2b9/v11xDjV8R48etSuuatWqjgyfZxcuXFBUVJRSU1P10Ucf2ZyamX0dXXx8vM01dfHx8XJ1dVX16tWtcdu2bcsxNZqQkKCAgABJUrly5XTrrbdar9G7MsYwDOv42V8TEhJUu3Ztm2NWrVrV4dM5pctNQrly5Rx+fmEzww9pNjPVIjl3Pe7u7k79vs4LM9UiUY8zM1MtEvU4MzPVIlGPMzNTLVLh12Pv5IFDDV/btm3tOkBeTj10VGZmpoYNG6b4+Hh98MEH8vHxsdlfvXp11axZU+vWrdM999xj3R4XF6fg4GDrNGhYWJjefPNNbdu2Ta1atZJ0uWHbtWuXHn/8cevzwsLCtGnTJj3//PNydXW1juXp6amgoCBJUuPGjVWhQgWtXbvW2vBlZGRo/fr1CgsLK7wXAwAAAACu4FDDN3ny5BwN36VLl3TkyBF99tln8vb2Vp8+fQokwRuZOHGivvrqK40aNUpnz561uZl63bp15ebmpiFDhmjEiBGqUaOGWrRoobi4OO3cuVOLFy+2xgYFBSk0NFRjxozRyJEjVaZMGc2cOVOBgYHq0KGDNW7AgAFavXq1nnvuOfXq1Ut79+5VbGyshg8fbm0ey5Qpo6ioKM2ZM0fe3t4KCAjQkiVLdObMGQ0YMKBIXhcAAAAAcKjh69at2zX3DRw4UI888kiO69wKy9atWyVJU6ZMybFv06ZNqlatmrp06aK0tDTFxMRo/vz58vX1VXR0tHVGLtusWbP06quvaty4ccrMzFRoaKjGjh2r0qX/72W6/fbbFRsbqylTpuiJJ56Qt7e3hg4dqsjISJuxBg4cKMMw9M477+j06dOqU6eOYmNjraeQAgAAAEBhy9eiLbkpV66cunXrpvfee69IVsr88ssv7Yrr3r27unfvft0YDw8PTZ48WZMnT75uXOPGjbVs2bLrxlgsFkVFRSkqKsqu/AAAAACgoDl04/UbycrK0smTJwtjaAAAAACAnQp0hu/s2bP64YcfFBsbW6T3FwMAAAAA5ORQw1e7du1rrtJpGIaqVq2q8ePH5ysxAAAAAED+ONTwDR48ONeGz8vLSzVq1FBISIjNQicAAAAAgKLnUFc2ZMiQgs4DAAAAAFDAHFq0pV+/ftq2bds193///fdFskInAAAAAODaHGr4duzYcd1VOE+fPq0ffvjB4aQA/DdYLBa5u7tf85pgAAAA5I/DF9pd7w+0gwcPqnz58o4ODaCEysoy5OJif/Pm7u6e5xV983oMAACA/zK7G75PPvlEn3zyifXxW2+9levNx1NTU7Vnzx6FhYUVTIYASgwXF4umf/CTDh9PLZTxq/l4aESfJoUyNgAAgBnZ3fClpaXp33//tT4+d+6cXFxynhFarlw59ezZU4MHDy6YDAGUKIePp+rAkeTiTgMAAADKQ8PXu3dv9e7dW5LUtm1bvfDCC2rXrl2hJQYAAAAAyB+HruH78ssvCzoPAAAAAEABs6vhO3r0qCSpatWqNo9vJDseAAAAAFD07Gr42rZtK4vFot9++01ubm7Wxzeye/fufCcIAAAAAHCMXQ3f5MmTZbFY5OrqavMYAAAAAOC87Gr4unXrdt3HAAAAAADnk/O+CgAAAAAAU3BolU5JSk5O1ueff67Dhw8rOTlZhmHY7LdYLJo8eXK+EwQAAAAAOMahhu/bb7/V0KFDlZaWpgoVKsjT0zNHDNf4AQAAAEDxcqjhmzp1qipXrqw5c+YoMDCwoHMCAAAAABQAh67hO3jwoPr27UuzBwAAAABOzKGGr2bNmjp37lxB5wIAAAAAKEAONXzPPPOMPvzwQx0+fLig8wEAAAAAFBCHruH7/vvv5e3trU6dOqlVq1a69dZbVapUqRxxY8eOzXeCAAAAAADHONTwLV682Prvr7/+OtcYi8VCwwcAAAAAxcihhu+vv/4q6DwAAAAAAAXMoWv4AAAAAADOj4YPAAAAAEzKoVM6a9euLYvFct2YMmXKyMfHRy1atNDjjz+uGjVqOJQgAJQEFotF7u7uN/zdCAAAUJQcavgGDx6sTZs2af/+/WrdurVuv/12SVJiYqK2bNmigIAAtWjRQocOHdLHH3+sNWvW6IMPPlDt2rULNHkAKCxZWYZcXOxv3tzd3VW3bt1CPw4AAEBeONTw3XLLLfr333+1du1aVa9e3WbfwYMH1bdvX9WqVUsjR45UYmKievTooddff13z588vkKQBoLC5uFg0/YOfdPh4aqEdo5qPh0b0aVJo4wMAADjU8MXGxqpPnz45mj1Juv3229WnTx/Nnz9fDz30kGrWrKmePXvqww8/zHeyAFCUDh9P1YEjycWdBgAAgMMcWrTl2LFjud5oPVupUqX0999/Wx9Xq1ZN6enpjhwKAAAAAOAghxq+WrVqacmSJTp58mSOfSdOnNCSJUtUq1Yt67akpCTdfPPNjmcJAAAAAMgzh07pHDlypAYOHKj27dvrnnvusS7acvDgQW3cuFGZmZmaPHmyJOnixYv6+OOPFRYWVnBZAwAAAABuyKGGr0WLFlq6dKlmz56tDRs26MKFC5Iu34ohODhYQ4YMUb169azbtmzZUnAZAwAAAADs4lDDJ0l169bV22+/raysLJ06dUqSVKlSJbm4cC93AAAAAHAGDjd82VxcXFS5cuWCyAUAAAAAUIDy1fD99NNP2rVrl1JTU5WVlWWzz2KxaPDgwflKDgAAAADgOIcavjNnzigqKko7d+6UYRiyWCwyDEOSrP8uqobv4MGDio2N1W+//aZ9+/bJz89Pn3/+eY645cuXa8GCBTp69Kh8fX01fPhwtWnTxiYmNTVVr776qjZu3KiMjAy1bt1aY8eO1S233GIT9/PPP2vq1KnavXu3KlWqpF69emngwIGyWCzWGMMwFBMTow8//FCnT59WnTp1NHr0aDVq1KhQXgcAAAAAuJpDF9xNmzZNe/bs0YwZM7Rx40YZhqHY2Fh98cUX6tmzp+rUqaNvv/22oHPN1b59+/TNN9/o9ttvl7+/f64xa9as0Ysvvqjw8HDFxMSoUaNGevrpp/Xrr7/axA0bNkxbt27VhAkTNH36dCUkJGjgwIHKzMy0xhw8eFADBgxQ5cqVNW/ePPXv31+zZ8/WO++8YzNWTEyMZs+erYiICM2bN0+VK1dWZGSkkpKSCvw1AICCZrFY5O7ubvNBVklmtnoAALCXQw3f5s2b1aNHD3Xq1Enly5e/PJCLi26//XaNHz9et912m/W2DIWtbdu2+uabbzR79mzryqBXmz17tjp37qxhw4apZcuWeumll1S/fn3NnTvXGvPLL79oy5YteuWVV9SpUye1a9dOb7zxhvbs2aP169db42JjY3XTTTfp9ddfV3BwsCIiIhQZGam3337benP5ixcvat68eYqMjFRERISCg4P1+uuvq2LFioqNjS3cFwQAcpGVZeQp3t3dXXXr1pW7u3uhHsdRRVFPUdUCAEBhcuiUzpSUFOuN1bMbvnPnzln3h4SEaObMmQWQ3o3daFXQpKQkJSYm6vnnn7fZ3qlTJ02bNk3p6elyc3PT5s2b5enpqZCQEGuMn5+f6tSpo82bN6tTp06SLje77du3l5ubm81Y8+bN0y+//KIWLVro559/1tmzZxUeHm6NcXNzU/v27bVhw4aCKBsA8sTFxaLpH/ykw8dTC+0Y1Xw8NKJPk0Ib/0qFXU9R1gIAQGFyqOG75ZZbdPLkSUmXG5lKlSrpr7/+0j333CNJOn78uNOcNhMfHy9J8vX1tdnu7++vjIwMJSUlyd/fX/Hx8fL19c2Rt5+fn3WM8+fP6++//5afn1+OGIvFovj4eLVo0cIaf3Wcv7+/Fi5cqAsXLqhs2bIFWicA3Mjh46k6cCS5uNMoMGarBwCAwuBQw9esWTN99913GjRokCQpPDxcsbGxKlWqlLKysrRw4UK1bt26QBN1VHLy5T8GPD09bbZnP87en5KSIg8PjxzP9/Ly0h9//CHp8qIuuY3l5uYmd3d3m7Hc3NxUpkyZHMc0DEPJyckON3yGYej8+fN2x2dft1JU0tLSrAv4FDQz1SJRT36YqRaJevLKTO81R6Slpdl8Lemox3mZqRaJepyZmWqRiq6e7IUyb8Shhi8iIkLfffed9XTIIUOGaP/+/XrjjTckXW4Ix44d68jQuIGMjAzt3r3b7vjs61aKSkJCQqG9uc1Ui0Q9+WGmWiTqySszvdfyIzExsbhTKFDU47zMVItEPc7MTLVIRVPPlZeZXYtDDV9gYKACAwOtj728vPTee+8pJSVFLi4uqlChgiPDFgovLy9Jl2fnrrxBfEpKis1+T09PHTt2LMfzk5OTrTHZM4DZM33Z0tPTlZaWZjNWenq6Ll68aDPLl5KSIovFYo1zhKurq/X6SXsU9am1vr6+hTrDV5QKsxaJevLDTLVI1JNXZnqvOSItLU2JiYmqWbNmkc7cFhbqcV5mqkWiHmdmplqkoqtn//79dsXl68brV7v6VEdnkH0dXXx8vM01dfHx8XJ1dVX16tWtcdu2bcsxNZqQkKCAgABJUrly5XTrrbdar9G7MsYwDOv42V8TEhJUu3Ztm2NWrVo1X9fvWSwWlStXzuHnFzYz/JBmM1MtkrnqMVMtEvU4M2euxd3d3an/f5BX1OO8zFSLRD3OzEy1SIVfj70fgNrd8P355595TuJat0koStWrV1fNmjW1bt0666IykhQXF6fg4GDrNGhYWJjefPNNbdu2Ta1atZJ0uWHbtWuXHn/8cevzwsLCtGnTJj3//PNydXW1juXp6amgoCBJUuPGjVWhQgWtXbvW2vBlZGRo/fr1CgsLK5K6AQAAAMDuhu+hhx6yu4vMniXLy7VmjkpLS9M333wjSTpy5IjOnj2rdevWSZKaN28ub29vDRkyRCNGjFCNGjXUokULxcXFaefOnVq8eLF1nKCgIIWGhmrMmDEaOXKkypQpo5kzZyowMFAdOnSwxg0YMECrV6/Wc889p169emnv3r2KjY3V8OHDrc1jmTJlFBUVpTlz5sjb21sBAQFasmSJzpw5owEDBhT6awIAAAAAUh5P6SxTpozuuusuhYaGqnTpAj0b1GGnTp3SM888Y7Mt+/GiRYvUokULdenSRWlpaYqJidH8+fPl6+ur6Oho64xctlmzZunVV1/VuHHjlJmZqdDQUI0dO9am1ttvv12xsbGaMmWKnnjiCXl7e2vo0KGKjIy0GWvgwIEyDEPvvPOOTp8+rTp16ig2NtZ6CikAAAAAFDa7u7aXXnpJq1ev1oYNG7Rjxw517NhRXbp0UdOmTQszvxuqVq2a9uzZc8O47t27q3v37teN8fDw0OTJkzV58uTrxjVu3FjLli27bozFYlFUVJSioqJumBsAAAAAFAa7G75HHnlEjzzyiI4fP67Vq1drzZo1Wrp0qapWrarOnTurc+fONguUAAAAAACKl0ten+Dj46PHH39cn3zyidasWaP77rtPa9eu1YMPPqj77rtP3377bWHkCQAAAADIozw3fFfy9/fX8OHDFR0drWbNmmnfvn367bffCio3AAAAAEA+OLzySlJSktasWaM1a9Zo//79ql69ugYNGqRu3boVZH4AAAAAAAflqeE7deqU4uLi9Pnnn+u3337TzTffrPDwcL3yyitq0KBBYeUIAAAAAHCA3Q1fZGSktm/frnLlyql9+/Z65pln1LJlS7m45OusUAAAAABAIbG74fvuu+9UtmxZ1a9fX6dPn9aiRYu0aNGia8ZbLBa99dZbBZIkAAAAACDv7G74qlatKklKTEy0K95isTiUEAAAAACgYNjd8H355ZeFmQcAAAAAoIBxAR4AAAAAmBQNHwAAAACYFA0fAAAAAJgUDR8AAAAAmBQNHwAAAACYFA0fAAAAAJiUQw1fu3bttGnTpmvu/+qrr9SuXTuHkwIAAAAA5J9DDd+RI0d0/vz5a+4/f/68jh496nBSAAAAAID8c/iUTovFcs19v//+uzw9PR0dGgAAAABQAErbG7hw4UItWrRI0uVmb/LkyZo5c2aOuLNnzyolJUVdunQpuCwBAAAAAHlmd8NXqVIl3XHHHZIun9Lp4+MjHx+fHHHlypVTvXr11Lt374LLEgAAAACQZ3Y3fF26dLHO2vXt21dPPfWUgoODCy0xAACQk8Vikbu7+3UvrQAAIJvdDd+V3n///YLOAwCA/6SsLEMuLvY3b+7u7qpbt26hHwcAYA4ONXzZ9u/fr6SkJCUnJ+e6v2vXrvkZHgAA03NxsWj6Bz/p8PHUQjtGNR8PjejTpNDGBwA4L4cavkOHDun555/Xzp07ZRhGrjEWi4WGDwAAOxw+nqoDR3L/8BQAgPxwqOEbN26c9u7dqzFjxqhp06bcggEAAAAAnJBDDd/PP/+sqKgo9e3bt6DzAQAAAAAUEIduvH7TTTfJw8OjoHMBAAAAABQghxq+nj17atWqVbp06VJB5wMAAP5DuM0EABQuh07prFmzprKysvTAAw/ooYceUpUqVVSqVKkccR06dMh3ggAAoOTgNhMA4FwcaviGDx9u/ffUqVNzjbFYLNq9e7djWQEAgBKJ20wAgHNxqOFbtGhRQecBAABMgttMAIDzcKjha968eUHnAQAAAAAoYA41fNnS09P1559/6tSpU2rcuLG8vb0LKi8AAAAAQD45tEqndPm0ztDQUPXu3VtDhgzRnj17JEmnT59WixYttGLFigJLEgAAAACQdw41fCtXrtTkyZPVunVrvfLKKzIMw7rP29tbLVu2VFxcXIElCQAAAADIO4cavnfffVft2rXTjBkz1KZNmxz769Wrp3379uU7OQAAAACA4xxq+A4ePKiwsLBr7q9YsaLOnDnjaE4AAAAlEjeSB+BsHFq0xdPTU//+++819+/fv1+VK1d2OCkAAABnwI3kAZR0DjV8YWFhWrZsmXr37p1j3759+7R8+XI99NBD+U4OAACgOHEjeQAlnUMN37Bhw/TII4+oS5cuatOmjSwWiz799FOtXLlS69evV+XKlfXUU08VdK4lzoEDBzRp0iT98ssvKl++vB544AENGzZMbm5uxZ0aAACwEzeSB1CSOXQNn4+Pjz7++GO1bt1aa9eulWEY+uyzz/TVV1+pc+fOWrZs2X/+nnzJycnq37+/MjIyNGfOHA0fPlzLli3TlClTijs1AAAAAP8RDt94vVKlSnrllVf0yiuv6PTp08rKypK3t7dcXBy+tZ+pLF26VOfOnVN0dLQqVqwoSbp06ZImTpyoqKgo+fj4FG+CAAAAAEyvQLozb29v3XzzzTR7V9i8ebOCg4OtzZ4khYeHKysrS1u3bi2+xAAAAAD8Z9g1wxcdHS2LxaJBgwbJxcVF0dHRN3yOxWLR4MGD851gSRUfH59j4RpPT09VrlxZ8fHxDo9rGIbOnz9vd3z28tDVfDwcPqY9ssdPS0uTYRiFcgwz1SJRjyPMVItEPY7ivZZ31OMYM9aTF+np6XJ3d1d6enqen1uYdWSjHuetx0y1SM5bj2EYdo1vMewYtXbt2rJYLPrtt9/k5uam2rVr33hgi0W7d++2L1sTqlevnp555hk98cQTNtu7dOmioKAgvfzyy3ke8/fff1d6enqenuPq6qq6deupdOlSeT5eXmVmXtKuXX8qIyOjUMY3Uy0S9TjKTLVI1OMI3muOoZ68M1M9ZqpFop784L2WN85ej5ubm+rXr3/dGLsaPuRdYTV8hmGoVq1aeXpeXj9ZuHjxoo4ePaqqVauqTJkyeXqus31i5My1SNTjaD1mqkWiHkfwXuN7I1FPXmTPVhbVLSaKavaVevKmKOoxUy2Sc9ezf/9+WSyWGzZ8Di/aguvz9PRUamrON0VycrK8vLwcHtdisahcuXL5Se2GDMNQWlqa3Nzc5O7uXqjHKmxmqkWiHmdmplok6nFmZqpFop6iVlS3mCiq2qnHMUVRj5lqkZyzHns/kHJolZWkpCR9+eWX19z/5Zdf6vDhw44MbRp+fn45rtVLTU3ViRMn5OfnV0xZAQAAAPgvcajhmzZtmt5///1r7v/ggw80Y8YMh5Myg7CwMH333XdKSUmxblu3bp1cXFwUEhJSjJkBAAAA+K9wqOH75Zdf1KpVq2vuDw4O1o8//uhwUmbQs2dPlS9fXoMHD9aWLVu0cuVKTZs2TT179uQefAAAAACKhEMNX0pKisqXL3/N/eXKldOZM2cczckUvLy8tHDhQpUqVUqDBw/WjBkz9PDDD2vUqFHFnRoAAACA/wiHFm259dZb9fPPP6t379657v/pp59UpUqVfCVmBv7+/nrvvfeKOw0AAAAA/1EOzfB16dJFa9as0aJFi5SVlWXdfunSJS1cuFBxcXHq0qVLgSUJAAAAAMg7h2b4oqKi9NNPP2ny5Ml6++235evrK0lKSEjQ6dOn1bx5cw0aNKhAEwUAAAAA5I1DDZ+bm5veeecdffLJJ9qwYYMOHTokSWrQoIE6dOigrl27ysXFoclDAAAAAEABcfjG6y4uLnrooYf00EMPFWQ+AAAAAIACwjQcAAAAAJiUXTN8ffv2lYuLi2JjY1W6dGn169fvhs+xWCxauHBhvhMEAAAAADjG7lM6r1yN0zCMG8bbEwMAAAAAKDx2NXzvv//+dR8DAAAAAJyPXQ1f8+bN9fLLL6tjx46SpOjoaHXo0EEBAQGFmhwAAAAKTjUfjxI9PoC8s6vhO3/+vNLS0qyPo6Ojdfvtt9PwAQAAlBBZWYZG9GlSJMdxcbEU+nEA2Meuhq969epat26dmjRpogoVKkiS0tLSdObMmes+r2LFivnNDwAAAAUgr01YWlqaEhIS5OvrK3d390I7DoDCZVfDFxUVpTFjxuibb76RdHkFzvHjx2v8+PHXfd7u3bvznyEAAACKnGEYSktLYyE+oISzq+Hr2rWrGjRooB07dujkyZOKjo5W+/btFRgYWNj5AQAAAAAcZFfDd/bsWd1+++3y8/OTJH388cfq2rWr2rVrV6jJAQAAAAAc52JPULNmzRQXF2d93KJFC918882FlhQAAAAAIP/savhcXV2Vnp5uffzpp5/q0KFDhZYUAAAAACD/7Dql08/PT8uXL9dtt90mDw8PGYahI0eO6M8//7zu8+rVq1cgSQIAAAAA8s6uhu/ZZ5/V8OHD9dhjj0m6vErnG2+8oTfeeCPXeMMwZLFYWKUTAAAAAIqRXQ1fWFiYNm3apN9//12nTp3SqFGj9MgjjygoKKiw8wMAAAAAOMiuhk+6fBP11q1bS5JWrlyp8PBwBQcHF1piAAAAAID8sbvhu9L7779f0HkAAAAAAAqYXat05ubo0aMaN26cOnbsqObNm+uHH36QJJ0+fVqTJk3Srl27CixJAAAAAEDeOdTw7d+/Xw8++KDWrl2ratWqKTU1VZmZmZIkb29v/fTTT1q8eHGBJgoAAAAAyBuHTul87bXX5OHhoWXLlkmSWrVqZbP/rrvu0tq1a/OfHQAAAADAYQ7N8P3www/q1auXvL29ZbFYcuyvWrWqjh8/nu/kAAAAAACOc6jhMwxDZcuWveb+06dPy83NzeGkAAAAAAD551DDV7duXX3zzTe57svMzNSaNWvUsGHDfCUGAAAAAMgfhxq+J554Qt9++63Gjx+vffv2SZJOnTql7777TpGRkYqPj9cTTzxRoIkCAAAAAPLGoUVb7rrrLr366quaPHmydeGW559/XoZhqEKFCpo6daqaNWtWoIkCAAAAAPLGoYZPkrp27aoOHTpo69atOnjwoLKyslSjRg2FhoaqQoUKBZkjAAAAAMABDjd8klSuXDm1b9++oHIBAAAAABSgfDV8O3bs0Ndff62jR49Kunw7hrvvvlvNmzcvkOQAAAAAAI5zqOFLT0/Xc889p40bN8owDHl6ekqSUlJS9O6776p9+/aaMWOGXF1dCzRZAAAAAID9HFqlc+7cudqwYYMee+wxbdmyRTt27NCOHTu0detWRUZGav369Zo7d25B5woAAAAAyAOHGr7Vq1frwQcf1P/+9z/dfPPN1u2VKlXS888/r65du2rVqlUFliQAAAAAIO8cavhOnDihBg0aXHN/gwYNdOLECYeTAgAAAADkn0MNX5UqVbRjx45r7v/hhx9UpUoVh5MCAAAAAOSfQw1f165dtXbtWo0bN07x8fG6dOmSsrKyFB8fr/Hjx2vdunV68MEHCzpXAAAAAEAeOLRK55NPPqmkpCQtW7ZMy5cvl4vL5b4xKytLhmHowQcf1JNPPlmgiQIAAAAA8sahhq9UqVKaMmWKIiIitHnzZh05ckSSdNtttyksLEy1a9cu0CSvZevWrfr444/122+/KSkpSX369NG4ceNyxKWnp2vmzJlatWqVzp07p6CgIL344ovy8/OziTtw4IAmTZqkX375ReXLl9cDDzygYcOGyc3NzSZu+fLlWrBggY4ePSpfX18NHz5cbdq0sYlJTU3Vq6++qo0bNyojI0OtW7fW2LFjdcsttxT8CwEAAAAAucjXjddr165dZM1dbr799lv99ddfatasmZKTk68ZN2nSJMXFxWnUqFHy8fHR22+/rYiICK1Zs0YeHh6SpOTkZPXv3181a9bUnDlzdPz4cU2ZMkUXLlywaSLXrFmjF198UU8++aRatmypuLg4Pf300/rggw/UqFEja9ywYcO0f/9+TZgwQWXKlNGsWbM0cOBArVy5UqVL5+tlBwAAAAC72N15XLx4Ua+88oruuOMO9e3b95pxixYt0oEDBzR27NhCv/H6//73P40aNUqStH379lxjjh07phUrVmj8+PF6+OGHJUn169dXmzZttHTpUg0cOFCStHTpUp07d07R0dGqWLGiJOnSpUuaOHGioqKi5OPjI0maPXu2OnfurGHDhkmSWrZsqb1792ru3LmKiYmRJP3yyy/asmWLYmNjFRoaKkny9fVVp06dtH79enXq1KlQXg8AAAAAuJLdi7Z89NFH+uSTT3T33XdfN+7uu+/Wxx9/rOXLl+c3txvKvnbwerZs2aKsrCzde++91m0VK1ZUSEiINm/ebN22efNmBQcHW5s9SQoPD1dWVpa2bt0qSUpKSlJiYqLCw8NtjtGpUydt27ZN6enp1rE8PT0VEhJijfHz81OdOnVsjgkAAAAAhcnuGb61a9eqQ4cOql69+nXjatSooXvvvVdr1qxR7969851gfsXHx6tSpUry8vKy2e7v768VK1bYxD300EM2MZ6enqpcubLi4+OtMdLl2bqrx8rIyFBSUpL8/f0VHx8vX19fWSwWmzg/Pz/rGI4yDEPnz5/P1xg3kpaWZvO1JDNTLRL1ODMz1SJRjzMzUy0S9TgzZ67FYrHI3d29yI6XlpYmwzAKbXwz1WOmWiTnrscwjBz9Rm7sbvj27t2r++67z67YoKAgffXVV/YOXahSUlKs1+ldydPT0+a6v5SUFHl6euaI8/LyssZlf706Lvtx9v5rHdPLy0t//PGHg5VclpGRod27d+drDHslJiYWyXGKgplqkajHmZmpFol6nJmZapGox5k5Yy3u7u6qW7dukR0vISGhUBtfM9Vjplok56/n6sUlc2N3w5eRkWH3NXmurq7W0xvzIjU1Vf/8888N46pXr25XcWbk6uqqWrVqFeox0tLSlJiYqJo1axbpJxqFwUy1SNTjzMxUi0Q9zsxMtUjU48ycuRZ7ZjUKkq+vb6HPIhWlwqzHTLVIzl3P/v377Yqzu+G75ZZbtG/fPrti9+3b59DtB9atW6exY8feMC4uLk7+/v52jenp6amzZ8/m2J6SkmJzmqenp6dSU1NzxCUnJ1vjsr+mpqaqcuXKNmNdud/T01PHjh277liOslgsKleuXL7GsJe7u3uRHauwmakWiXqcmZlqkajHmZmpFol6nJmZanGUszW8+WWmesxUi5S3euxtRu1u+Fq1aqXPPvtMUVFRqlSp0jXjTp06pc8++0wdO3a0d2ir7t27q3v37nl+3vX4+fnp5MmTOZqt+Ph4m/vw5XZ9XWpqqk6cOGGNy/569XPj4+Pl6upqvb7Rz89P27Zty3FebUJCggICAgq0PgAAAAC4FrtX6Rw4cKAuXryo/v3767fffss15rffflNERIQuXryoxx9/vMCSzI/Q0FC5uLho/fr11m3JycnasmWLwsLCrNvCwsL03XffWWfrpMszji4uLtbVNqtXr66aNWtq3bp1NseIi4tTcHCw9TTTsLAwJScna9u2bdaYhIQE7dq1y+aYAAAAcFw1Hw/53+ZVaP9V88m5JgNQ0tg9w1e9enXNmjVLzz77rHr27Knq1asrICBA5cuX17lz57Rv3z4dOnRIZcuW1euvv64aNWoUZt6SpCNHjuj333+XdPk880OHDlmbsezbMFSpUkUPP/ywpk2bJhcXF/n4+GjevHny8PBQz549rWP17NlT77//vgYPHqyoqCgdP35c06ZNU8+ePa334JOkIUOGaMSIEapRo4ZatGihuLg47dy5U4sXL7bGBAUFKTQ0VGPGjNHIkSNVpkwZzZw5U4GBgerQoUOhvy4AAABml5VlaESfJkVyHBeXor2OCyhIdjd80uV77K1atUoxMTH6+uuvtXHjRuu+W265Rd27d9fAgQNveOuGgrJ9+3aNHj3a+vjbb7/Vt99+K0nas2ePdfvYsWNVvnx5zZgxQ+fOnVPjxo317rvv2qyk6eXlpYULF+rll1/W4MGDVb58eT388MMaPny4zTG7dOmitLQ0xcTEaP78+fL19VV0dLSCgoJs4mbNmqVXX31V48aNU2ZmpkJDQzV27FiVLp2nlxwAAAC5yGsTlpaWpoSEBPn6+ubpOimaPZR0ee4+qlWrpokTJ0qSzp49q3Pnzql8+fKqUKFCgSd3I926dVO3bt1uGOfm5qaRI0dq5MiR143z9/fXe++9d8Px7LnW0MPDQ5MnT9bkyZNvOB4AAAAKl2EYhX7PNsAZ5Wu6qUKFCsXS6AEAAAAAbszuRVsAAAAAACULDR8AAAAAmBQNHwAAAACYFA0fAAAAAJgUDR8AAAAAmBQNHwAAAACYFA0fAAAAAJgUDR8AAAAAmBQNHwAAAACYFA0fAAAAAJgUDR8AAAAAmBQNHwAAAACYFA0fAAAAAJgUDR8AAAAAmBQNHwAAAACYFA0fAAAAAJgUDR8AAAAAmBQNHwAAAACYFA0fAAAAAJgUDR8AAAAAmBQNHwAAAACYFA0fAAAAAJgUDR8AAAAAmBQNHwAAAACYFA0fAAAAAJgUDR8AAAAAmBQNHwAAAACYFA0fAAAAAJgUDR8AAAAAmBQNHwAAAACYFA0fAAAAAJgUDR8AAAAAmBQNHwAAAACYFA0fAAAAAJgUDR8AAAAAmBQNHwAAAACYFA0fAAAAAJhUiW34Ll26pJiYGPXp00ctWrRQ8+bN1bdvX/344485YtPT0zV16lSFhISoUaNGeuyxxxQfH58j7sCBA3rsscfUqFEjhYSEaNq0aUpPT88Rt3z5cnXs2FH169fX/fffr6+++ipHTGpqqsaMGaPmzZsrKChIQ4cO1T///FMwxQMAAACAHUpsw3fhwgXNnz9f9erV09SpUzV9+nR5eXmpX79+2rZtm03spEmTtHz5cg0fPlxz5sxRenq6IiIilJqaao1JTk5W//79lZGRoTlz5mj48OFatmyZpkyZYjPWmjVr9OKLLyo8PFwxMTFq1KiRnn76af366682ccOGDdPWrVs1YcIETZ8+XQkJCRo4cKAyMzML7TUBAAAAgCuVLu4EHFW2bFlt3LhRXl5e1m0hISHq0qWLFi5cqODgYEnSsWPHtGLFCo0fP14PP/ywJKl+/fpq06aNli5dqoEDB0qSli5dqnPnzik6OloVK1aUdHkWceLEiYqKipKPj48kafbs2ercubOGDRsmSWrZsqX27t2ruXPnKiYmRpL0yy+/aMuWLYqNjVVoaKgkydfXV506ddL69evVqVOnQn99AAAAAKDEzvCVKlXKptnL3hYYGGhz6uSWLVuUlZWle++917qtYsWKCgkJ0ebNm63bNm/erODgYGuzJ0nh4eHKysrS1q1bJUlJSUlKTExUeHi4zXE7deqkbdu2WU//3Lx5szw9PRUSEmKN8fPzU506dWyOCQAAAACFqcQ2fLnJzMzUb7/9Jj8/P+u2+Ph4VapUKUdz6O/vb3MdX3x8vM3zJMnT01OVK1e2xmV/9fX1zTFWRkaGkpKSrHG+vr6yWCw2cX5+frleOwgAAAAAhaHEntKZmwULFuj48eOKiIiwbktJSZGHh0eOWE9PTyUnJ9vEeXp65ojz8vKyxmV/vTou+3H2/msd08vLS3/88Uceq7JlGIbOnz+frzFuJC0tzeZrSWamWiTqcWZmqkWiHmdmplok6nFmZqpFcu56LBaL3N3di+x4aWlpMgyjUMY2Uy2Sc9djGEaOCabcOFXDl5qaatdKltWrV5ebm5vNtq1bt2rOnDl66qmndOeddxZWisUuIyNDu3fvLpJjJSYmFslxioKZapGox5mZqRaJepyZmWqRqMeZmakWyTnrcXd3V926dYvseAkJCYXW+JqpFsn567m6J8qNUzV869at09ixY28YFxcXJ39/f+vjP//8U0OGDFGXLl309NNP28R6enrq7NmzOcZISUmxOc3T09PTZtXObMnJyda47K+pqamqXLmyzVhX7vf09NSxY8euO5ajXF1dVatWrXyNcSNpaWlKTExUzZo1i/QTjcJgplok6nFmZqpFoh5nZqZaJOpxZmaqRXLueuyZpSlIvr6+hTrDV5QKsxbJuevZv3+/XXFO1fB1795d3bt3z9NzDh48qIEDByooKEiTJk3Ksd/Pz08nT57M0Wxdfc1ebtfXpaam6sSJE9a47K9XPzc+Pl6urq6qXr26NW7btm05plkTEhIUEBCQp/quZrFYVK5cuXyNYS93d/ciO1ZhM1MtEvU4MzPVIlGPMzNTLRL1ODMz1SKZrx5HOFvDmx9mqkXKWz32NqMletGWf/75R5GRkbr11ls1e/Zsubq65ogJDQ2Vi4uL1q9fb92WnJysLVu2KCwszLotLCxM3333nXW2Tro84+ji4mJdbbN69eqqWbOm1q1bZ3OMuLg4BQcHW6dUw8LClJycbHM/wISEBO3atcvmmAAAAABQmJxqhi8vLly4oIEDB+rff//VCy+8oH379ln3ubm5Wc+1rVKlih5++GFNmzZNLi4u8vHx0bx58+Th4aGePXtan9OzZ0+9//77Gjx4sKKionT8+HFNmzZNPXv2tN6DT5KGDBmiESNGqEaNGmrRooXi4uK0c+dOLV682BoTFBSk0NBQjRkzRiNHjlSZMmU0c+ZMBQYGqkOHDkXw6gAAAABACW74Tp48qb/++kuSNGjQIJt9t912m7788kvr47Fjx6p8+fKaMWOGzp07p8aNG+vdd9+1WUnTy8tLCxcu1Msvv6zBgwerfPnyevjhhzV8+HCbsbt06aK0tDTFxMRo/vz58vX1VXR0tIKCgmziZs2apVdffVXjxo1TZmamQkNDNXbsWJUuXWJfcgAAAAAlTIntPqpVq6Y9e/bYFevm5qaRI0dq5MiR143z9/fXe++9d8Px7LnW0MPDQ5MnT9bkyZPtyhEAAAAAClqJvoYPAAAAAHBtNHwAAAAAYFIl9pROAAAAwEyq+XjcOMiJx4dzouEDAAAAillWlqERfZoUyXFcXIr2ZuIoXpzSCQAAABSzvDZhaWlp2rVrl9LS0gr1OCj5aPgAAACAEsYwDKWlpckwjOJOBU6Ohg8AAAAATIqGDwAAAABMioYPAAAAAEyKhg8AAAAATIqGDwAAAABMioYPAAAAAEyKhg8AAAAATIqGDwAAAABMioYPAAAAAEyKhg8AAAAATIqGDwAAAABMioYPAAAAAEyKhg8AAAAATIqGDwAAAABMioYPAAAAAEyKhg8AAAAATIqGDwAAAABMioYPAAAAAEyKhg8AAAAATIqGDwAAAABMioYPAAAAAEyKhg8AAAAATIqGDwAAAABMioYPAAAAAEyKhg8AAAAATIqGDwAAAABMioYPAAAAAEyKhg8AAAAATIqGDwAAAABMioYPAAAAAEyKhg8AAAAATIqGDwAAAABMioYPAAAAAEyqRDd8CxYsUNeuXdW0aVM1atRI9913nxYvXizDMGziDMPQ/Pnzdffdd6tBgwbq0aOHfv311xzjHT9+XEOGDFFQUJCaN2+uF154QWfPns0R9+WXX+r+++9X/fr11bFjR61cuTJHTHp6uqZOnaqQkBA1atRIjz32mOLj4wusdgAAAAC4kRLd8KWmpqpTp0567bXX9Oabb+ruu+/WpEmTNG/ePJu4mJgYzZ49WxEREZo3b54qV66syMhIJSUlWWMyMjL0+OOPKzExUTNmzNCECRO0ZcsWPffcczZj/fjjj3r66afVqFEjxcTEKDw8XC+88ILWrVtnEzdp0iQtX75cw4cP15w5c5Senq6IiAilpqYW3gsCAAAAAFcoXdwJ5Mfw4cNtHrdq1UpHjx7VJ598oieffFKSdPHiRc2bN0+RkZGKiIiQJDVp0kT33nuvYmNjNWHCBEnSF198oX379ikuLk5+fn6SJE9PTw0YMEA7d+5UgwYNJElvvfWWGjRooJdeekmS1LJlSyUlJWn27Nm69957JUnHjh3TihUrNH78eD388MOSpPr166tNmzZaunSpBg4cWKivCwAAAABIJXyGLzc33XSTMjIyrI9//vlnnT17VuHh4dZtbm5uat++vTZv3mzdtnnzZgUGBlqbPUkKCQlRxYoV9c0330i6fJrm9u3brY1dtk6dOunAgQM6fPiwJGnLli3KysqyiatYsaJCQkJsjgkAAAAAhckUDV9mZqbOnj2rr7/+Wp9++qn69etn3Zd93dyVjZwk+fv76+jRo7pw4YI17uoYi8UiX19f6xiHDh1SRkZGrmNdeaz4+HhVqlRJXl5eOeK4jg8AAABAUSnRp3RK0sGDB9WhQwfr40GDBllP3ZSklJQUubm5qUyZMjbP8/T0lGEYSk5OVtmyZZWSkiIPD48c43t5eSk5OVmSrF89PT1zjHXl/muN5enpaY1xlGEYOn/+fL7GuJG0tDSbryWZmWqRqMeZmakWiXqcmZlqkajHmZmpFol6iorFYpG7u3uRHS8tLS3Hgo0FyZnrMQxDFovlhnFO1fClpqbqn3/+uWFc9erV5ebmJkm69dZbtWLFCp0/f14//vijYmJi5OLioqFDhxZ2usUiIyNDu3fvLpJjJSYmFslxioKZapGox5mZqRaJepyZmWqRqMeZmakWiXoKm7u7u+rWrVtkx0tISCjUptfZ68nuia7HqRq+devWaezYsTeMi4uLs55G6ebmpvr160uSWrRooQoVKmjq1Knq1auXKleuLE9PT6Wnp+vixYs2s3wpKSmyWCzW0y49PT1zvQVDcnKybr31Vkmyxl690mZKSorN/muNlZKSkuM0z7xydXVVrVq18jXGjaSlpSkxMVE1a9Ys0k80CoOZapGox5mZqRaJepyZmWqRqMeZmakWiXqKij0zTgXJ19e30Gf4ilJe6tm/f79dcU7V8HXv3l3du3fP1xj16tXTpUuXdOTIEVWuXNl6vV1CQoJq165tjYuPj1fVqlVVtmxZSZev8du7d6/NWIZhKCEhQSEhIZKkGjVqyNXVVfHx8WrdurXNWNljZH89efKkkpOTbRq83K4TzCuLxaJy5crlawx7ubu7F9mxCpuZapGox5mZqRaJepyZmWqRqMeZmakWiXrMxpma3YKQl3rsbUZNsWjLlX7++WdZLBZVq1ZNktS4cWNVqFBBa9eutcZkZGRo/fr1CgsLs24LCwvTX3/9ZTMtvm3bNp05c0Z33XWXpMuziS1atNAXX3xhc8zsGcfsY4aGhsrFxUXr16+3xiQnJ2vLli02xwQAAACAwuRUM3x5kZqaqoEDB+r+++/X7bffrszMTG3fvl2LFi1Sjx49dPPNN0uSypQpo6ioKM2ZM0fe3t4KCAjQkiVLdObMGQ0YMMA6XseOHTVv3jwNGTJEzz77rNLS0jRt2jTdfffd1nvwSZcXhenXr58mTJig8PBwbd++XZ9//rlmzpxpjalSpYoefvhhTZs2TS4uLvLx8dG8efPk4eGhnj17Ft2LBAAAAOA/rcQ2fGXKlJGvr6/ee+89HT9+XGXLllWNGjU0ceJEde3a1SZ24MCBMgxD77zzjk6fPq06deooNjZW1atXt8a4urpqwYIFmjRpkp599lmVLl1a7du315gxY2zGatq0qebMmaNZs2ZpxYoVqlq1qiZNmmRznz9JGjt2rMqXL68ZM2bo3Llzaty4sd59991cV+8EAAAAzKSaT+H+zVvY45tJiW343Nzc9Oqrr9oVa7FYFBUVpaioqOvG+fj4aM6cOTccr127dmrXrt0N8xs5cqRGjhxpV44AAACAGWRlGRrRp0mRHMfFpWgXVSmJTHcNHwAAAIDik9cmLC0tTbt27crz7RVo9uxDwwcAAACg2BiGUeg3UP8vo+EDAAAAAJOi4QMAAAAAk6LhAwAAAACTouEDAAAAAJOi4QMAAAAAk6LhAwAAAACTouEDAAAAAJOi4QMAAAAAk6LhAwAAAACTouEDAAAAAJOi4QMAAAAAkypd3AkAAAAAgDOr5uNRYsen4QMAAACAa8jKMjSiT5MiOY6Li6XAx+WUTgAAAAC4hrw2YWlpadq1a5fS0tIK9Th2j1soowIAAADAf5BhGEpLS5NhGMWdiiQaPgAAAAAwLRo+AAAAADApGj4AAAAAMCkaPgAAAAAwKRo+AAAAADApGj4AAAAAMCkaPgAAAAAwKRo+AAAAADApGj4AAAAAMCkaPgAAAAAwKRo+AAAAADApGj4AAAAAMCkaPgAAAAAwKRo+AAAAADApGj4AAAAAMCkaPgAAAAAwKRo+AAAAADApi2EYRnEnAfv8/PPPMgxDbm5uhXocwzCUkZEhV1dXWSyWQj1WYTNTLRL1ODMz1SJRjzMzUy0S9TgzM9UiUY8zM1MtUtHVk56eLovFosaNG183rnShZYACV1Q/ABaLpdCbyqJiplok6nFmZqpFoh5nZqZaJOpxZmaqRaIeZ2amWqSiq8disdjVHzDDBwAAAAAmxTV8AAAAAGBSNHwAAAAAYFI0fAAAAABgUjR8AAAAAGBSNHwAAAAAYFI0fAAAAABgUjR8AAAAAGBSNHwAAAAAYFI0fAAAAABgUjR8AAAAAGBSNHwAAAAAYFI0fAAAAABgUjR8AAAAAIrE5s2bZRhGcafxn2IxeMVhMsePH9fx48d18eLFHPuaNWtWDBnBbKKjo6+5z8XFRR4eHqpTp46aNm1ahFkh26effnrNfRaLRR4eHqpdu7aqVq1adElBktSvXz+NHz9e/v7+OfYlJCRo/PjxWrRoUTFkBkk6ffq03nnnHf3+++86duyYoqOjdccdd2jhwoVq2LChGjVqVNwpOuTUqVO5/k1Qkn4HbN68WSkpKerSpYsk6e+//9aYMWN04MABtWrVSuPGjVO5cuWKOUv71K5dW1WqVNGDDz6obt26qXr16sWdUoE7fPiwDh06pLp166pixYrFnY5KF3cCKHpPPvmk3bEWi0VvvfVWIWZTcJKSkvT888/rt99+k6Qcnx5ZLBbt3r27OFLDFTIyMrRixQrrHxTjxo1TzZo1FRcXp8DAwFz/EHQ2CxcuVEZGhi5cuCBJKlOmjPWPibJlyyozM1OXLl1S3bp1FRMTI29v7+JM12779u3Tm2++af3efPTRR6pXr55mzpypxo0b66677iruFO0yatQoWSwWSba/B67cZrFYdM8992jatGlyd3cvljztcfHiRbVq1Uqvvfaa2rZtW9zp5NuOHTt07ty5XPedPXtWP/74YxFnlD9m+vDnzz//VEREhDw8PNSsWTPt2LFD6enpki5/kPree+9p1qxZxZtkHvz777+aNGmS1q9fr8zMTJt92b8DStLfBLNnz1Z4eLj18UsvvaQDBw6oc+fOWrVqlWbPnq1Ro0YVY4b2W7NmjVasWKHly5dr3rx5atq0qbp3766OHTvKzc2tuNPLsylTpujSpUt64YUXJEkbNmzQ8OHDlZmZKS8vL8XGxurOO+8s1hxp+P6DrvU/25Ju7NixOn78uCZPnix/f/8S+UtDkoKCgqx/mN6IxWLRTz/9VMgZFZykpCRFRETo33//Vd26dfXTTz9Z348//PCDvv32W7366qvFnOWNLVy4UMOHD9fgwYPVrl07lS9fXufOndOGDRv05ptvaurUqbpw4YKef/55TZs2TVOmTCnulG9o69atioqKUr169XTffffZfNBTunRpLVmypMQ0fJ988omGDRumrl27ql27dqpUqZJOnTqlDRs26LPPPtPEiRN1+PBhTZkyRTNmzNDYsWOLO+VrKlOmjNzd3VWqVKniTqXQ/fLLLyXmw5FsZvrw59VXX1WjRo305ptvymKx6LPPPrPua9iwodauXVuM2eXd2LFj9cMPPygqKkr+/v5ydXUt7pTy5eDBg6pdu7akyx+OfPvtt5o+fbruvfde3XHHHYqOji4xDZ+/v79GjhypESNG6Ouvv9bKlSs1evRovfTSS+rSpYseeuihYm+Q8mLDhg0aOnSo9fHrr7+uu+66S88884ymTZumWbNmacGCBcWYIQ3ff9L7779f3CkUip07d2rq1Knq0KFDcaeSL5GRkXY3fCXNpEmT5O3treXLl8vT09PmF3qzZs30+uuvF2N29nvppZf02GOP6f7777duK1++vLp27aq0tDRNnjxZy5cv16BBgzR37txizNR+M2bMUKdOnTRt2jRlZmbaNHx16tTR8uXLizG7vJk+fbq6d++uxx9/3LqtUqVKCggIkJubm95++20tXLhQ//77rxYvXuzUDZ8kde3aVStWrCgxDffV5s2bp3nz5km6/CFV//79c/yOS09P16VLl9S7d+/iSNFhZvrw5/fff9ecOXPk6uqqS5cu2ezz9vbWqVOniikzx2zfvl1jx45V165dizuVApGZmSkXl8tLb/zwww+SpNatW0uSqlevrpMnTxZbbo4qVaqU2rVrp3bt2un48eMaMWKElixZoqVLl+qOO+5Q//799dBDDxV3mjd04sQJ6+nBhw4dUkJCgl577TUFBASob9++GjlyZDFnSMOH60hMTNTq1as1ZMiQ4k7FLj4+PtZfhiVZSXm9HbFjxw7NmDFD3t7eOf6gqFy5sk6cOFFMmeXNrl279NRTT+W677bbbtPevXslSXfccYdSU1OLMjWH7du3T88995wk5fhj3NPTU//++29xpOWQn376SZGRkbnuq1u3rrUJb9CggU6fPl2UqTnE09NTv/76q+677z61bt1aN998s833yGKxKCIiovgSvIGgoCBFRkbKMAzNnTtXnTt3VpUqVWxiXF1d5e/vrzZt2hRTlo4x04c/7u7uOnv2bK77jh496hTXIeWFp6enbrrppuJOo8D4+flp1apVatiwoT766CMFBQWpfPnyki43HCXt+5PtwIEDWrFihVatWqWUlBTde++9at++vb755huNHz9ev/32m1566aXiTvO6PDw8rB+IbN26VV5eXtYPtN3c3HK9frSo0fDBxokTJ7RmzRqtXr1af/75p1xdXUtMAzJ8+HDFxMSoadOmJfYX3/X8/fff+vvvv1W7du0Sc2H21UqVKnXNlblOnjxZYuqqWrWqVqxYobCwsBz7li1bZv2k78yZMyXmDw4vLy/9888/ue5LTExU5cqVizgjx3l7e+uLL75QSEhIjn3r1q2znlZ37tw5eXp6FnV6eZY9833ixAnt27cvx35nb/iaN2+u5s2bS7qca/fu3eXj41PMWRUMM334ExoaqrfeekvBwcHWnwuLxaILFy5o0aJFJW6GecCAAXr//fcVEhKi0qVL/p+7Tz31lJ555hl9+umnKlWqlN5++23rvm+//VZ169Ytxuzy5ty5c1qzZo1WrlypnTt3qmbNmhowYIC6du1q/f3cuXNntWrVShMnTnT6hq9p06aaPXu2Tp06pdjYWN1zzz3WffHx8br11luLMbvLSv5PAPLt7NmzWr9+vVavXq0dO3YoKytLgYGBeuGFF6yrQTmrqxegOXbsmNq2bas6derIw8PDZl9JWoDmSh999JGio6N14sQJWSwWrVixQvXq1dPgwYPVvHlz9e/fv7hTtFuzZs307rvvKiwszDoba7FYZBiGli1bpuDg4GLO0D7PPfechg0bpo4dO6pNmzby9vbW6dOn9dVXX+nw4cN64403JEnbtm0rMSvD3nPPPZozZ44aNmyo22+/XdLl782JEycUGxurjh07FnOG9nviiSc0YcIEHT582Ob7s2nTJn3//feaOHGiJOn7779XgwYNijnbG/vrr7+KO4UC8/TTTxd3CgXKTB/+PP/88+rVq5c6duyoFi1ayGKxaNasWdq/f78sFouGDRtW3CnmSXx8vA4cOKD27durWbNmuX644+ync1+pXbt2Wrt2rXbt2qXAwEDVrFnTuq9Ro0YKDAwsvuTyKPvDuA4dOuj555+/5qJGdevWdfqfG0kaM2aMnn/+eU2fPl316tXT8OHDrftWrVrlFIs2cVuG/6iMjAx98803WrVqlb755htdvHhR1atXV7t27bRw4UItWrSoRPyh2rdv3zzFl7TrF9977z1Nnz5djz32mIKDgxUZGamVK1eqXr16WrhwodatW6clS5YUd5p2O3DggHr16qWKFSuqbdu2Wrhwobp166Z9+/bp4MGDWr58uWrUqFHcadpl165dmjdvnv744w+dOHFClStXVv369RUVFaU6deoUd3p5lpqaqoiICO3Zs0cBAQHatWuXateuraSkJPn6+mrhwoXW04dKgk2bNuntt9/W7t27lZmZqdKlS6tOnToaNGiQdbXL5ORklS5dukTVVdJlZWVp+fLl+uKLL3Ts2LEcpzpZLBZt3LixmLLLuw0bNmjYsGGqVq3aNT/8ueeeezRx4kSlpKRoxowZxZ3ydaWkpOi9997Td999p3///VdeXl4KDg7WY489VuLOnLnRqrYWi0WbNm0qomxwpcWLF+v+++8vEWdY5NfZs2fl5uZW7AsJ0vD9B40dO1YbNmxQSkqKKlWqpHvvvVf33XefGjZsqNTUVDVr1kzvv/9+iWj4zO6ee+5Rt27d9NRTT+nSpUuqV6+eteHbvHmz/ve//+n7778v7jTzJCkpSdHR0dq6davOnDlj/YNi6NChJabZM6uMjAytWrXK5o+9Vq1a6YEHHij2/1k5KisrS6dPn5a3t3eJv8b34sWLSkpKyvV6kHr16hVDRnk3depUvfvuu2rWrJlq1aqV68qJY8aMKYbMHGe2D3/gPNavX6+WLVvK09NT69evv2F8SV+0DoWHhu8/qHbt2rJYLGrVqpVeeukl3XbbbdZ9NHzOpX79+po/f76Cg4NzNHzbtm1TVFSUdu7cWdxpAihE6enpmjBhglatWpVjsaNsJeV+YqGhoerVq5cGDx5c3KnADj/99JPi4+PVpEkT+fn5FXc6/zm1a9fWsmXL1KBBA+stGa6lJN1X0Ez3r5RufOaCpGKfTeYavv+gUaNGafXq1dq6davat2+vpk2b6r777lPHjh1L9O0AZs6cqX///TfXi3vHjRunSpUq6ZlnnimGzBxXtWpV/f7777le2/bbb7/ZnMNf0hw7dkz//POPfHx8StwCDmY7LU2S+vXrJz8/P40ePVplypSx2XfgwAFNnDhRixYtKqbs8m7Lli3X/f4sXLiwmDLLu7lz52rr1q2aMmWKRowYoXHjxqlcuXJatWqVDh06pBdffLG4U7Rbenq6GjduXNxpIBfPPfec3NzcrPdCXbJkifV6Vzc3N82bN6/EXGedLfuG8T///LPOnDmjihUrqkmTJurfv3+J+P/Opk2brAtmFXfDUJDMdP9KSXrttdesZy60aNHCKe/5SMP3HxQREaGIiAjrbRc+//xzvfjii3rppZfUvHlzWSwWZWVlFXeaefb5559fc0XRJk2aaO7cuSWu4XvkkUcUHR2tm266yXqqRmZmpr7++mvFxsaWuIvopcuL0Lz11ls6fvy4DMOQxWLRLbfcokGDBqlnz57FnZ5dSsIv97zasWOHfv31V+3cuVNz5861WVXs7Nmz1vs+lQQLFizQ9OnTddttt8nf3z/HAk4lzbp16/T0008rPDxcI0aMUIMGDXTnnXeqa9euGjlypL788ssSs4Lifffdpy+//LLENQ7XYqYPf3766Sf973//sz6eP3++unfvrlGjRmnChAmKjo4uUd+3vXv36tFHH1VGRoZCQkJUu3ZtnTp1SkuXLtXKlSu1ePFi3XHHHcWd5nVdeQbWlf8u6cx0/0pJ1luYOfOZCzR8/2E1a9bUkCFDNGTIEO3cuVOff/654uLiZBiGBg0apI4dO6pr165q0aJFcadql3/++eeaS99WqVJFx44dK+KM8m/AgAH6+++/NW7cOI0fP16S1KtXL0lS79691adPn+JML8/mzZunmTNn6oEHHlDHjh1188036+TJk1q3bp0mTpyo5ORkRUVFFXeaN1QSfrk7Yvr06Zo3b566deumWbNmlZif/at9+OGHevTRR0vUCnzXc+zYMfn6+qpUqVIqU6aMUlJSrPvuv/9+Pfvss9aZGGfXsGFDzZo1S6dOnVKrVq1yXbShJF2HZKYPf06fPq1bbrlF0uX7cv7999/q16+fypcvrwcffLDEfWA6depUVa9eXe+88468vLys25OTkxUZGampU6dqwYIFxZhh3hw5ckRnz561rsaZnp6u2NhYHThwQK1atVK3bt2KOUP7men+lVLJOHOBhg+SLt+AuEGDBho9erS+//57rVq1Shs3btSnn35aYs4J9/b21r59+3L9I3Xfvn02v/BLkrFjx6p///45Vk0riadzvv/++xowYICef/55m+1t27ZVpUqV9P7775eIhq8k/HJ3RJUqVbRkyRKNGTNGAwYM0P/+9z/169evuNPKszNnzqhdu3bFnUaBqVy5srXJq1atmrZv365WrVpJunyPxJIkewbp6NGjiouLy7G/JF2HJJnrw5+KFSvqyJEjatq0qb799ltVrlzZOgN26dKlEnfmz88//6zXXnstx//7vby8NGjQoBz/H3J2L774omrXrm39GXrttde0ZMkSBQQEaN26dUpLSysxHwKb6f6VUsk4c4GGDzYsFouCg4MVHBysiRMn6uuvvy7ulOyWfR+x7OY1W/YpauHh4cWYnWPOnj2rChUqqHr16urRo0dxp5Nv586ds/6herXQ0FAtXbq0iDNyTEn45e4oNzc3TZ8+XYGBgZoyZYp2796tBx98sLjTypM2bdrop59+Ms33p3nz5vrxxx/Vtm1bde/eXdOmTVN8fLxcXV21ceNGp79f6pXMdB2SZK4Pf8LCwjR9+nT99ddf+uSTT/TAAw9Y9+3bt0/VqlUrxuzyrlSpUkpPT891X3p6ukqVKlXEGeXP7t279eijj0q6fGnHp59+qhEjRigiIkJvv/22li5dWmIaPjPdv1IqGWcu0PDhmtzc3Ir9DZoXw4YN088//6wePXrI399ft9xyi/755x8dOHBAderUsbkRZkkREhKiu+++W126dNFdd91VYpfGzxYaGqrvvvvOetPVK23durXE/IFeEn6559fAgQMVEBCgESNGaMuWLcWdTp489NBDmjBhgi5evHjN709JuY2BJA0fPlz//vuvpMvXYEuXr+u7ePGi+vbtW6Jml8x0HZJkrg9/Ro4cqUuXLmnLli266667bK6J37Bhg1q3bl2M2eVdq1atNOv/sXfm4VTt3x9/b0MSUYZCk9JgKCEUFUVSaSTNiCZDM6Ku23hTiq5KhQYqDUTJ0Cil6XaTikq3WcmUWWQI5/eHn/11Okehss8+9ut5eu45+7P/eLvnnL33Wp+13svXFyoqKujduzd5PC0tDbt37240+cirlJWVkf3IycnJKC0txYQJEwDU+RT4+/tTKa9ZODs7Y+XKlTA1NW10fiUA/PPPP7RwjKdD5QIzloGBr6iqqkJkZCTu3btHOnLp6enRdo5YSEgIYmNj8fjxY4iJicHExAQTJ06Enp4eLWeKJSQkYMOGDdDT04OxsTGkpaWRn5+PuLg43Lt3D5s2bYKMjAx5Pq8+lPOTPXY9VlZW2LhxI5SUlNiOv337Fg4ODvjw4QNt/qZvP5+G7sP1RkF0+Vv4lZs3b+LJkyfIzs6Gg4MDFBQUkJiYiJ49e9LCPbGeqKgo+Pr6QkNDg2+TP3QlMzMT8+bNQ3Z2Nvr16wcZGRnk5+fj5cuXkJeXR0hISKN9/7zI2LFjYWlpiUWLFmH79u24c+cOoqOjAQBxcXHw8PCg1VxefppfmZGR8cNzqE52MQEfA19QWVmJFStWYMGCBbTIBjWXzMxMxMbG4sKFC3j+/DmkpaUxbtw4mJmZ0aqciNuDeMNLUP2DOa8/lNPh4t6WuX///g/P0dXVbQUlv5bi4mLSTMPAwACSkpKorKyEsLAwbRJABQUFcHR0RHJyMuTl5ZGVlYXw8HCoqanB3d0doqKipEEVHeDH5A8/UVZWhoiICCQlJaGkpASSkpIYMmQIzM3NISYmRrW8ZhEYGIg9e/ZgwIABeP78OdauXQsrKysAgI+PDx4+fIgTJ05QrJKBV2ECPga+oX70wrBhw6iW8lt59+4dYmNjERoaivz8fKSmplItqcn8+++/zZr1SMeHcgaGX01tbS18fX1x/PhxlJeXgyAIMkhatGgRBg8ejKVLl1Its0k4Ozvj6dOn2L9/P3r16oWBAwciIiICampqOH/+PA4cOIBLly5RLbPJ8FvyJzExEaGhoUhLS+M6PLp+R4mBGiIjI/HkyROoqqrC3NycvJ+uX78eWlpamDp1KrUCW0BWVhaysrKgrKyMDh06UC2nxbBYLCQkJCApKQnFxcWQlJSEtrY2DAwMeGLGNdPDx8A3DB8+HHfu3OHrgC8/Px937tzB7du3kZubS7v5YnS1+QfqmsclJCQgICCAoqKiH57fqVOn367pZ9HS0sKxY8cwcOBAaGpq/vCm9PDhw1ZSxtCQ3bt3IyQkBG5ubtDT04OpqSm5ZmRkhDNnztAm4EtISMCWLVugpKSEmpoatjV5eXnk5ORQpKxl0CmY+xG3bt3CkiVLoKenh6dPn8LAwAAVFRV4+PAh5OTk+LJ6hk6wWCxMnTqVa1C3efPm1hf0k4SGhsLPzw+5ublsSSwnJyfo6urCxsaGaolNpri4GIsXL0ZycjIkJCTIdpWDBw9CQ0MDgYGBXMu9WxMm4GuDZGZmNuv8erckXsfCwgLr169HWVkZDA0NIS0tzfEAy6s9Yd+jpKQEly9fxoULF3D//n0ICwtj1KhR8PPz4+pwxcvMmDEDlpaWmDBhAu3KafT09BAaGgp1dXUMGzbsh8ERHcq47OzsICsrS77mhSxkS+Hn4PXcuXNYvXo1Zs2axREk9ezZE+np6RQpaz41NTWNZvFLSkpoMceOH5M/ALB3717Y2NjAxcUFampqWLFiBdTU1JCRkYEFCxbQIpnanOsAQRBISkpqRXU/h6GhIaZNm4bp06ejR48eVMv5KYKDg+Ht7Q1bW1vo6enBzs6OXNPV1cWlS5doFfB5eXnhw4cPOHz4MJsp3Z07d+Dq6govLy9s3bqVQoVMwNcmMTIyataDHR0eXAGQ89tOnjyJkydP8oVRg729Pe7cuQMWi4Xhw4dj27ZtMDY2pl2wVI+CggK2bNkCT09PjBs3DhYWFtDW1qZaVpPw9PQkb7Kenp60Do7qabgr1NCRj47wU/D6LUVFRRxmOvXU1NSgurq6lRW1HHV1dURERMDQ0JBjLTY2lhY9yfyY/AGAN2/eYNWqVRAQEABBECgvLwdQt4u5bNky7N27l21UAy/Cz9eBSZMm4ezZswgMDIS2tjYsLCwwbtw4tG/fnmppzSYkJASOjo5wdHTkSGL17t0b7969o0hZy4iPj4erqyuHA/nw4cOxevVqeHt7MwEfQ+vj5+dHvv7y5Qt8fHzQs2dPjB07FtLS0sjLy8OVK1eQnp4OFxcXCpU2j2PHjlEt4ZdTVlYGDw8PmJqa0iZL/D18fX1RXFyMqKgonDt3DvPmzUOvXr1gYWGBqVOnokuXLlRLbJSGs+jMzc0pVNJ6fPz4ER8+fICqqirPf//qg1cWiwUrKyt06NCBls683FBUVGx0bMn9+/fJ4dh0YOXKlbC2tsbcuXNhamoKgiAQFxeHgIAAJCQk4OTJk1RL/CH8mPwBABEREdTW1oIgCMjKyuLDhw9kQk5MTAzZ2dkUK/wx/JTE+hZXV1c4Ozvjxo0bOHfuHDw8PPDXX39hwoQJmD59Otv8YV4nJycHmpqaXNeEhYXx5cuXVlb0c5SXl7M5jDdEVlaWTJ5QCouhTfPHH3+w3N3dua65u7s3usbA8Ct4/vw5a8uWLayhQ4ey1NTUWEuWLGFdvXqVVVNTQ7W0Nse2bdtYf/31F/n+ypUrLDU1NdaAAQNYurq6rCdPnlCorulUVlayVFRUWNevX6dayi8jIiKCpaqqyvr7779Zz58/Zw0YMIAVFxfHCgkJYamrq7NiY2OpltgsHj58yJo7dy5LVVWVNWDAAJaysjJr1qxZrIcPH1ItrU1ja2vLOn78OIvFYrHWrFnDMjExYcXHx7Nu3rzJmjJlCsvS0pJihc3DysqK9fr1a65rb9++ZVlZWbWyol9Lfn4+KygoiGVmZsZSVlZmTZw4kRUUFMQqLi6mWtoPGTt2LCsgIIDFYrFY1dXVrAEDBrCePn3KYrFYrAMHDrAmTZpEpbxmM3PmTNbChQtZ1dXVbMdrampYCxYsYM2aNYsiZf+D2eFr41y6dIkccPktZmZmWLVqFbZt29bKqhga8vXrV4SHh5Mzq9avXw9FRUVcuHABAwYMaLTUiw7IycmhR48ekJGRQVFREdLS0rBs2TJ069YN3t7e0NDQoFoiyaRJk5p8LkEQiIqK+o1qfj1Xr17F8uXLyfe7du2CoaEhVqxYgR07dsDX1xeHDh2iUGHTaNeuHeTk5DjKhOiMubk5iouLsXfvXgQEBAAAnJycICoqipUrV5LDl+mCpqYmQkJCUFFRgeLiYkhISEBUVJRqWS3C2NgY+/bt4zqe4eXLl3BwcMC1a9coUNZ8bGxs8PHjRwDA6tWrYW9vDwcHBwB11+qG1UF04P79+ygrK+O6VlpaigcPHrSyol9LXl4esrKykJ+fD2FhYXTp0gV79uyBn58fvLy8YGxsTLXERpkxYwb8/PzQuXNnck5ldXU1bty4gcOHD2PlypXUCmwmzs7OsLOzg4mJCYyNjcmZj3FxccjLy8ORI0eolsiUdLZ1BAUFkZqaylF3DNQNxaTLbKd6IiMjv2spTSejBgBIT0/H/PnzUVhYCFVVVSQlJZE3sMTERNy6dYuWAfmtW7cQERGB+Ph4iImJYfLkydi9ezeUlJTw4cMHbNq0CevWrcOFCxeolkqipqbGN6Vb3MjNzSUNmj58+IB3795h586d6N+/P6ysrODm5kaxwqYzZ84cBAcHY8SIERAREaFazi/B1tYWM2bMwKNHj1BYWAhJSUloamrSzqm3Ie3bt6dl/1FDMjIyUFVVxXWtoqKCFmWQ9TTsq+zatSvOnj2L9+/fo6KiAn369OGbEmkAePToEaSkpKiW0WxKS0sRExODiIgIPH36FH379oWDgwOmTJkCSUlJlJaWYsuWLdi6dStPB3wLFixAVlYW1q9fT87dnD17NoC66/fcuXOplNdsdHR0cOrUKfj7+yMmJoZt5qO9vT1PGAYyAV8bZ/LkydizZw8qKysxZswYSElJoaCgAFevXkVgYCBmzZpFtcQmc/78efz555+YNm0aHj16BAsLC9TW1iI+Ph4SEhI832zOjb/++gtSUlI4c+YMJCQkMHDgQHJNR0cHu3btolBd8/H19cX58+eRnZ0NXV1dbNu2DSYmJmwPEj179oSTkxPPXfC3b99OtYTfSseOHZGfnw+gzllMUlKS/L61a9eOawKFV8nKysK7d+8watQo6OrqQkZGhiNY9/DwoEhd83nz5g2UlJQgJiaGESNGUC3np3n8+DEuXbqErKwsju8VQRA4cOAARcqaRmVlJcrLy8H6/zHGpaWlHG6dlZWViIuL4+m+5B9BEAQUFRWpltEsAgICyF1wgiBgY2PD8duvqqpCTU0N5syZQ4XEFuPq6oq4uDgAwPjx4/HHH39wVMGIi4tjzpw5OH/+PAUKm4eHhwdsbGxw9+5dMomlp6dHu+9cPQMHDuTpXXAm4GvjuLm5QUhICIcOHcK+ffvI4yIiIpg7dy6cnZ0pVNc8goKC4OjoiMWLFyMsLAxz5syBmpoaSktLsWDBAlo6W96/fx8+Pj6QkpLiKFGTlZVFbm4uRcpaRnh4OKZNmwZLS0v07Nmz0fP69OkDT0/PVlTWclgsFj59+gRpaWkICdH3kqqtrY09e/YgPz8fhw8fxpgxY8i1t2/fQl5enkJ1zeP69etkEuHJkycc6wRB0CrgMzMzg4aGBqZPn44JEybQejjx0aNHsW3bNkhLS6NHjx60GMPwLQcPHiTvlwRBYMGCBY2eS5f5iPW8evUK/v7+SElJQW5uLmRlZTF48GAsXrwY/fv3p1reD9HU1ISdnR1YLBb27dsHMzMzyMnJsZ0jLCwMJSUljB49miKVLePNmzdwc3PDxIkTIS4u3uh5ffv25XkTu8TERKiqqqJHjx6YOXMm29qXL1/w7NkzZu7jL4Zg1aeoGNo0xcXFePnyJXmB79+/PyQlJamW1Sw0NTXh7++PoUOHQk1NDUeOHCEHfcfFxcHT0xPx8fEUq2we2traZC1+TU0N1NTUEBERATU1NVy8eBGbN2/GP//8Q7XMJlNdXU3roKght27dwt69e5GamoqamhpyaOyff/4JHR0dTJ48mWqJzSInJweurq548uQJ1NTU4OvrS7qOzZw5EwMGDKDlcF9+ICEhAWfPnkV8fDyEhYUxbtw4TJ8+nRYjDL7F0NAQJiYmWLduHe1aBur577//8Pz5c7BYLKxbtw4ODg4cCaz6oEJFRYUilc3nxo0bWLp0KeTk5DBmzBhyeHRcXByys7Ph5+eHUaNGUS2zyfj5+cHS0hJdu3alWgrDN6ioqJCjTb7l6dOnsLS05PlxJvb29nB3d4eioiLs7e2/ey4vVC7wx5MXw08jKSlJ+2yKuLg42UvRtWtXvH79mgz4ampqUFhYSKW8FqGjo4OgoCAYGBiQD0cEQYDFYiEsLIyrTTsvM2jQINpf5AEgJiYGrq6uGD9+PCwtLfHnn3+Saz169MDZs2dpF/B17dq10azw4cOHOfp3EhMToaamRuvdJrpgaGgIQ0NDFBUVkSNN5syZA0VFRUyfPh1Tp05t1BKc1ygvL4exsTFtgz0AUFZWJk1aCILAqFGj0LlzZ4pV/Tw7duzAyJEjsW/fPrbPZ82aNXB0dMSOHTtoFfDRbXeVG9+WCv8IXh+fU8/39prKy8tp0dtbVlZGVl41Zg7ESzABHwOKi4tx8+ZNZGdnc+2ncHJyokhZ8xg4cCBevHiBkSNHwsjICPv27QOLxYKQkBACAwN5yvGxqbi4uGD27NkwMzODkZERCILAiRMn8OrVK7x//x5nzpyhWmKz+N5FvqamBoKCgq2opuXs378fNjY2cHd3R01NDVvA169fPxw9epRCdb+eb8uHampqYG1tTe5q8iIFBQU4cuQI6W7r5+dHfjaDBw+m5fWgU6dOsLa2hrW1NVJTU7Ft2zb4+PjA19cXI0eOhI2NDYYNG0a1zO8yfvx43Lx5k3bJqsbw8/ODiooK14CPbi6dHz9+hLu7O0cwLiAggDlz5tAygHr//j3Onj3bqJGbv78/BaqazrBhw5plFsbLCdPHjx/j0aNH5Pvo6GgkJSWxnVNZWYlr166hT58+rS2v2Rw/fpzra16FCfjaOLdv38by5cvx5csXtG/fnqOfgk4B35IlS5CZmQkAWL58OTIyMuDp6Yna2loMGjSIluVoSkpKiIiIgJ+fH2JiYiAoKIgbN25AT08P3t7e3+2D4xVyc3Px6dMn8v3bt285ArvKykpERESQLpG8Tnp6OpujXUNERUXx+fPnVlbU+vByN8CzZ88wf/58dOzYETo6Orh//z65+5+Tk4Pg4GD4+vpSK7KFlJSUICoqCmfPnkVqaioGDRoEExMT3Lx5E7a2tnBycuLpB/M//vgDf/zxB5ydnaGnpwcJCQmOc+pt2ukAP7l0DhgwgBzL8C0fP35Ev379WlnRz5GSkgIrKysoKCggLS0NAwYMwOfPn5GRkQE5OTla3D89PT35xh369u3bpKkJQRBcgyQhISEoKSmRzp104Xvlw58+fUJYWBjl12Um4GvjeHl5YdCgQfD09ES3bt2olvNTaGhokFl7CQkJHDhwAFVVVaiqqvpugzOv06NHD3h5eVEto8WEhobCz88PBEGAIAisXbuW4xwWiwVBQUHaXORlZWXx9u1brrsUL168oE3gyq9s27YNGhoa2L9/PwiCYHOsGzx4MC5evEihupZx584dRERE4Nq1axAREcGkSZPg6elJlhYuXrwYwcHB2L9/P+UPFt/j7du3ePjwITIyMhAbG8uxThAET+9SAPzr0rl+/XqsXr0aoqKiGDNmDDp27IjPnz/j6tWrCAoKgo+PD9USm8XOnTsxfvx4bN26FWpqauR/Hz58CGdnZyxatIhqiT/E3Nycagm/jKVLl5LXJmVlZYSFhXFt76Aj+/btg4GBQaMB3759+yi/LjMBXxsnPT0d7u7utA/2vqWhcyKdgz1+YNq0adDV1QWLxYKNjQ3Wr1+Pvn37sp0jLCwMRUVF2vTBTJw4EXv37kWfPn2gq6sLoO5B9eXLlzh06BA5T4iBGp48eYK9e/dCWFiYw91WSkqKHD9BF0aPHo3s7GxoaWlh06ZNGD9+PNf5gtra2igpKaFAYdNZt24dOnToAH9/fygqKjIunRSjqanJtoP09etXrFu3DuvWrYOQkBCqq6sB1O28zJ8/n1azbF+8eIHFixeTJar1JZ1aWlpYunQpfHx8MHLkSColtln+++8/qiX8Ur5X8ZKbm8u1kqG1YQK+No6qqiqysrKolvHLaMw50cPDA7q6urQw0viR21NDeMH56Ud069aNTCgcO3YMampqTRqRUW+rPXPmTMjKyv5umc1i6dKlePXqFWxtbckm+UWLFqGgoACjRo3C4sWLqRXYxhEVFUVpaSnXtczMTNoYG9RT78qppKT03fMGDhzI8w9Sb968wd69e2FgYEC1lBYzZswYdOvWjS9cOu3s7PimZPBbCIKAsLAwCIKAtLQ0MjMzSWdbOTk5pKWlUSuwBSQmJiI0NLTRnsTo6GgKVLWcyspKpKenc/1beLU/vJ6YmBjExMQAqPuueXl5oWPHjmznVFVV4enTpzzhqMwEfG2cjRs3wtXVFV27doWenh6tLfO/55zYs2dP2jgn0sHtqaXU74Y1hdraWuzbtw+jR4/muYCvXbt2OHDgAO7du8c2NFZfXx/6+vpUy2vzjBgxAgcOHGDrESMIAhUVFTh27Fij/Ze8ipubW5PPra2thYmJCfz9/Xmy50pFRYV2O6zf8q1Lp6GhIaSkpChW1TKWLVtGtYTfhpKSEtLT0zFs2DBoaGjgyJEj6N+/P2nk1qNHD6olNotbt25hyZIl0NPTw9OnT2FgYICKigo8fPgQcnJytHJar6qqwsaNGxEVFcVRhVEPr5d2f/36lXxeY7FYKC8v5zA8ateuHaZMmYKFCxdSIZEN+j7dM/wSZs6cierqarLs4dsyIYIgOFyUeBV+cU6kg9tTa8HLxiBAnYMar7sitkVcXV0xe/ZsmJqaYujQoSAIAr6+vnj9+jUIgsDKlSuplvjbYLFY3zUSoZoNGzbA3d0dsrKyGDZsGK2TjEBdyTpQ53b96tUrZGVlwcDAAJKSkqisrISwsDCtR1DQmRkzZpBGbqtXr4adnR2mTJkCoK4KYM+ePVTKazZ79+6FjY0NXFxcoKamhhUrVkBNTQ0ZGRlYsGABre5F+/btw507d7B9+3a4uLhg/fr16NChA6KiovDhwwe25zdeZdq0aeTv38rKChs3bvxhFQaV0PtKy/DT8FM5R1t3TqypqcHAgQN52iqfztQ/ODQVuhm3sFisJl8LBAQEMG3aNJ7tuezatSsiIyMRHByMu3fvomfPnigqKsKkSZPYynAZWp85c+aguroaixYton2SEaj73fz99984fvw4ysvLQRAEwsPDISkpiaVLl2Lw4ME838fXELqPMWjI1KlTyddKSkq4cOECHj9+jIqKCmhoaEBaWpo6cS3gzZs3WLVqFQQEBEAQBMrLywHUtU0sW7YMe/fuJQNaXufSpUtYunQpxo8fDxcXF6irq2PgwIGYOnUq3NzcEB8fT6tKDDok6pmAr43DT+UcjHMi7++I0Zn6OYhNhdfLUb7F0NAQ06ZNg4WFxQ/tygmCwLZt21pJWcuQkJDA8uXLsXz5cqqlMDSAn5KMAODr64uQkBC4ublBT08Ppqam5JqRkRHOnDlDm4CPH8YYNCQzMxMSEhKkcZuYmBiGDx8OoK4cLzMzk1bPBSIiIqitrQVBEJCVlcWHDx+gra0NoO5vo9MIkOzsbPTu3RuCgoIQERFhM5uaPHkyVq9ejU2bNlGosPnU1tbi3r17ePfuHUeFBUEQmD9/PjXC/h8m4GPgGxjnRIbfSf38IAD48uULfHx80LNnT4wdOxbS0tLIy8vDlStXkJ6eDhcXFwqVtoxJkybh7NmzCAwMhLa2NiwsLDBu3Di0b9+eamkthimz4z34KckIAOfOncPq1asxa9Ysjl6knj17Ij09nSJlzYcfxhg0xMjICDIyMvD19SUDo3pSU1Mxa9YsWiXmlJWV8e7dOwwfPhx6enrw9/dH586dISQkBF9fX/Tv359qiU1GVlaWDPK6d++Of//9l+x/p6OZTm5uLubNm4f379+DIAgy+d4wucUEfAyUwy8lHIxzIsPvZMyYMeRrDw8P6Ovrc+xyWVtbY+3atbh79y4mTZrU2hJ/CldXVzg7O+PGjRs4d+4cPDw88Ndff2HChAmYPn06reYl8VuZHb+SlZWFrKwsKCsro0OHDlTLaRFFRUWN9u3U1NSQYw3oAD+OMejWrRvmz5+PtWvXYu7cuVTL+SlsbGzw8eNHAHU9ifb29nBwcABQ5zraMCnJ6+jq6uLBgwcwMjKCpaUlduzYgbdv30JYWBhxcXGYOHEi1RKbxfbt29G5c2fSFCwsLAwyMjKIiopCZGQkAgMDqZbIBHxtHX4q4WCcExlai0uXLmH37t1c18zMzLBq1SqeL3nkhoCAAIyMjGBkZISCggJERUUhPDwcZ86cQd++fWFhYQFzc3OemCn0PfipzK4l8HrJZGhoKPz8/JCbm0sG42pqanBycoKuri5sbGyolthkFBUVcefOHa6tBPfv3+dJp9TG4McxBn/88QcSExOxdetWpKamYuPGjbSc/QiAraeta9euOHv2LN6/f4+Kigr06dMH7dq1o1Bd81i1ahUKCwsB/G/n69KlS6isrISVlRWcnJwoVNd8EhMT4eHhweYorqCgAHt7e7BYLGzevBmHDh2iUCHA1LS0cepLOGJiYsBisbB161Zcu3YNJ0+eBEEQtCvhAOqcE1evXo0tW7bAxcWFCfZ4iMjISPIi/y1FRUWIjIwk3wsKCmLbtm3o3r17K6lrOoKCgkhNTeW6lpqayhflgnl5ecjKykJ+fj6EhYXRpUsX7NmzB0ZGRrh27RrV8r5LwzK7b78/dCuzawm83MsbHByMLVu2YOrUqThy5AibVl1dXVy6dIlCdc1n/vz5CAoKgq+vL169egWgrj/pxIkTOH78OOVlXM2hfowBAHKMwcuXL/H27VtajjGoZ8GCBfD398fVq1dhZWWF3NxcqiX9EgiCgKKiIpSVlWkV7FVXV+PTp0+QkZEhj82fPx+nT5/GuXPn4OrqSrsd/8+fP0NKSgoCAgIQFxdnGz2joaHBE0ZUzA5fG4efSjgyMjJQWlqKAQMGAKib83L48GG8efMG+vr6MDc3p1ghw9q1axEaGsrV3fHjx49Yu3Ytm7NaveUxrzF58mTs2bMHlZWVGDNmDKSkpFBQUICrV68iMDAQs2bNolpiiygtLUVMTAwiIiLw9OlT9O3bFw4ODpgyZQokJSVRWlqKLVu2YOvWrTA2NqZabqPwU5kdAERERMDCwoLrGovFwoYNG7B582YAdckIXh6+HhISAkdHRzg6OnL0vPXu3Rvv3r2jSFnLMDc3R3FxMfbu3YuAgAAAgJOTE0RFRbFy5UpMmDCBYoVNh9/GGDTEwMAAoaGhcHR0hLm5ORYsWEC1pBbx9u1bXLlyBdnZ2RwtOARBwNPTkyJlTUdAQAAzZ85EYGAg3yTku3fvjk+fPgEA+vbti/Pnz2P06NEAgLi4OJ5whmYCvjYOP5Vw/Pnnn1BWVsaaNWsA1O1enjp1Cv3798elS5dQXl5O+xr+70EQBBQUFHg60/e9nYeSkhKIiYm1opqW4+bmBiEhIRw6dAj79u0jj4uIiGDu3LlwdnamUF3LcHV1RVxcHABg/Pjx+OOPP6ChocF2jri4OObMmYPz589ToLDp8FOZHVA3u65Dhw4YP34823EWi4U1a9YgPj6eDPh4nZycHGhqanJdExYWxpcvX1pZ0c9ja2uLGTNm4NGjR2QrgaamJjp27Ei1tGbBb2MMvqV37944c+YMVq9eje3bt/N86fO3REZGYt26dRAREYGCggJHaSpd/h4BAQF0794dxcXFVEv5ZRgaGuLOnTuYMGECHBwc4OTkBD09PQgJCSEvL48njNyYgK+NU1/CMWzYMLKEo3///hASEqJdCcfz588xb948AHUlA5GRkXBxccH8+fPh7++P06dP0zbga4rboICAAOLj4ylWyklCQgJu3bpFvj9y5AhbKQdQt7N87949qKiotLa8FiEkJAQ3NzfY29vjxYsXyMvLg6ysLPr37w9JSUmq5bWIN2/ewM3NDRMnTiRtzLnRt29fHDt2rBWVNZ/58+fjzz//hJCQEMaNGwegrszu8ePHOH78OO36Kzdt2gQ3NzeIiopi1KhRAOp2KletWoV//vkHR44coVZgM1BQUMCTJ0+4BuPJyclQVFRsfVG/ADExMYwYMYJqGT9FZGQkDA0NyQqMhmMM6kvuGwaFvM62bds4nmHExcUREBCAwMBAWiW0AeDAgQMwNTWFp6cnREVFqZbzU9jb22P//v3Q0tJC165dqZbz0zQM6AwNDXHq1CnExcWhoqIC+vr6PDFTkAn42jj8VMJRVlZGZlSTk5NRWlpKltMMGTKENm6jDeEHt8G0tDQyECUIAg8ePODYhRQWFka/fv2wevVqKiS2GElJSXIECN05e/Zsk84TExPj+b+Zn8rsAMDCwgJfvnzBihUrEBAQAC0tLSxbtgzJyck4evQoVFVVqZbYZGbMmAE/Pz907twZY8eOBVCXoLtx4wYOHz6MlStXUiuwmdy8eRMlJSWkq2BWVhbWrVtHthKsX7+eNv1IzS2553UaawkgCAJLlixpZTU/z6dPn7Bx40baB3tAnUFLYWEhxowZgwEDBnAkgQmCwIEDByhS1zwqKytx8uRJDB8+nByNMWjQIAwaNIhiZewwAV8bh59KOOTk5PD48WPo6Ojg6tWr6Nu3L7p06QKgboeMjvPE+MFt0MbGhnTdMzIywv79+6GsrEyxqp8nJycHwcHBePjwIYqKitCpUycMGTIENjY2tM5Y5uTkICcnh+uIFh0dHQoUtYz6Mrv6z4euZXb1WFlZ4cuXL3B0dET//v2Rnp6OY8eO0Wr2FlBnoJGVlYX169djw4YNAEDOSJ0zZw7tqjD27NnDVmq7efNmvHnzBmZmZoiKisKePXvg7u5OocKmww8l91euXMGwYcMgISGBK1eufPdcgiBgYmLSSsp+Hm1tbbx8+ZLr7jjdKCsrQ+/evdne0xURERH4+vpCTU2NainfhQn4GNhoWMJBN6ZPn47du3fj0qVLeP78OdauXUuuJScnN2riwMvw01BfADxZctoSXr58iXnz5uHr168YPnw4lJWVkZ+fj9OnTyMiIgIhISG06xNLT0+Hq6srkpOTAXA+/BEEQashxUDd9YwuplPfUlRUxHFs5syZyMjIwJUrV3DgwAF06dKFPI8XTAGaioeHB2xsbHDnzh0yGNfT06NlOef79+/JBFZpaSlu3boFb29vjBs3Dv369YOfnx9PB3z8VnK/fPlyhIWFQV1dHcuXL//uuXS7pq1evRqurq4QERHB8OHDuSav6HIdOH78ONUSfikqKip4/fo1T1e/MAEfA9+wePFidOnSBU+ePMGcOXPYXDmLi4thaWlJobqWwW9ug0DdZ3Hz5s1GXcboMH/Hy8sLPXr0wJEjR9h69oqLi2FnZwcvLy/KZ+40Fw8PD+Tk5MDT0xNKSko8bf7TFOj+PRs2bFijJgwsFgtz5sxhO0anB1cA6NGjB23dbBtSXV1N9lEnJiYCAJlk6NGjB/Ly8ijT1hT4reT+2rVr5Cw0Xh8f01zqS1Q3btzY6LWBLtcBPz8/WFpacq2G+fTpE8LCwni+eqkh69atg6urK6SkpGBoaMiTZbdMwMfAV0ydOpVrjwFdHOy+hd/cBm/fvo3ly5fjy5cvaN++PVeXMV5/EAeAhw8fYufOnRwGLZKSknBwcICrqytFylpOSkoKvLy8yL4qOsMP3zNPT0/auO41h/qgiBsEQaBjx47o3bs3bRIOffr0QVRUFAYPHozQ0FBoamqSpY+5ubk8v+PCbyX33bp14/qaH+Cna8K+fftgYGDQaMC3b98+WgV8NjY2+Pr1K1atWgUAaN++PdtnRRAE5bP4mICPge+4efMmnjx5guzsbDg4OEBBQQGJiYno2bMn7Xqr+M1t0MvLC4MGDYKnpyetb8aCgoKoqqriulZVVQVBQcFWVvTzdO3alS8GxgP88T2rr1Corq7GixcvIC8vDykpKYpV/TxWVlZsD0IsFovjIbZ9+/aYOXMm1qxZw/PfSUdHR6xYsQKRkZEQFBRkMwe7desWrQx1+KHknlsp9Pfg9YC8IT+aJVxeXt5KSn6e7/WL5ubmQkJCohXV/Dx2dnY8H4wzAR8D31BQUABHR0ckJydDXl4eWVlZmDVrFhQUFBAREQFRUVHSJIAu8JvbYHp6Otzd3Wn7EF6Pvr4+fH19oaKiwtZ4npaWht27d9NymOyqVatw8OBBaGtr0+ohiBv88j0D+G9IcVBQEP744w/o6+vD2NgY0tLSyM/Px9WrV3Hv3j24urrixYsXOHz4MDp06PDDPiyqMTY2xsWLF5GamooBAwaw9SFqaGhgwIAB1IlrIe/fv0daWhpX4yZerwD4Xik0N+hSAtkYNTU1uHXrFqKjoxEfH49Hjx5RLalRYmJiEBMTA6Bux8vLy4ujD7GqqgpPnz4l50HThWXLllEt4YcwAR8D37B161YUFhYiJiYGvXr1wsCBA8k1PT092lj8fgu/DPUFAFVVVWRlZVEt46dxd3fHvHnzYGZmhn79+kFGRgb5+fl4+fIl5OXl2QyD6MK5c+eQnZ0NIyMjqKiocHy/6GSTzS/fM4D/hhSHhoZi4sSJHP1go0ePxq5duxAbGws/Pz+wWCycP3+e5wM+oK5Xj9vM2pkzZ7K9r62thYmJCfz9/XmyHL+0tBROTk64f/8+gP/twjQMoHg9QOKnssfvkZSUhJiYGFy6dAlFRUWQkpLCjBkzqJb1Xb5+/Uq6cbJYLJSXl3Ps4Ldr1w5TpkzBwoULqZD4S8jKykJWVhaUlZV5aiQLE/C1cfz8/BpdExAQQMeOHaGiogJtbe1WVNUyEhISsGXLFigpKXE4WsrLyyMnJ4ciZT8PPwz1BeqazV1dXdG1a1fo6elBSIielyAFBQVER0cjIiICSUlJKCkpgaKiIiwsLGBubk4L+/JvKSsrQ8+ePdne0xV++Z7Vw09DihMSErBv3z6ua0OHDiXd+4YOHYrDhw+3prTfDovFQkZGRqPl4FSzc+dO5OXl4cSJE5gzZw78/PwgKSmJqKgo3Lt3Dz4+PlRL/CE/KnukM69evUJMTAyio6ORlZUFYWFhfP36FWvXrsXcuXN5vpVg2rRppPGMlZUVNm7cSEv39MYIDQ2Fn58fcnNzyZnJampqcHJygq6uLtkrSxX0vgsy/DRHjx7F169fUVFRAaBunkh9GUf79u1RXV2NmpoaqKqq4uDBgzzdQ1JTU9NoNqWkpITDuIEOHD9+HDk5OXBxceFY8/b2hry8PK3mVs2cORPV1dVYvHgxBAQEICIiwrbOC43NTUVMTAzW1tawtramWsovgZ9ssvnpewbw15BiMTEx/Pvvv1zLU//9918yWfL161daJk7ozK1bt7Bq1SoMHjwYANClSxeoq6tDR0cH27dvR1BQEP7++2+KVbYtsrOzySDv5cuXEBQUxLBhw7B8+XIMHToUo0ePhoqKCs8He9/CT/cbAAgODoa3tzdsbW2hp6cHOzs7ck1XVxeXLl1iAj4Gajl69ChWrVoFJycnGBsbQ0xMDGVlZbh69Sr2798PLy8vVFRUwNXVFTt27MD27dupltwo6urqiIiIgKGhIcdabGws7WrCAeDkyZOwtbXluqaoqIigoCBaBXx0aGxmoD/89j3jpyHFs2bNwr59+1BQUIDRo0dDSkoKBQUFuHbtGs6ePUs68z18+JDWbpF0pKCgAPLy8hAUFISoqCibAYqhoSEt+pS+JTExEaGhoY32JEZHR1OgqumMHj0aAKCmpgYPDw+MHz+eTLx//vyZSmnN5v3793jz5g2MjIzYjt+6dQt///033r59CxkZGcyfPx/z5s2jSGXLCAkJgaOjIxwdHTkqzHr37o13795RpOx/MAFfG2fz5s2wtbXF5MmTyWNiYmKYOnUqysvL4enpiTNnzsDBwaHRMhxeYeXKlbC2tsbcuXNhamoKgiAQFxeHgIAAJCQk4OTJk1RLbDaZmZno1asX17UePXogIyOjlRX9HHR8YKjH2Ni4yefWf/foRm1tLe7du4d3795xLTtrLPnAa9D5e8YNfsqGL126FBISEjh48CDOnDkDgiDAYrEgIyODdevWwcrKCgAwefJkjh44ht+LnJwcCgsLAdQlFOPj42FgYAAAePToEcdOOa9z69YtLFmyBHp6enj69CkMDAxQUVGBhw8fQk5ODjo6OlRL/CESEhIoLi5Geno6Xrx4gf79+/N0pdX38PPzQ2ZmJlvA9+LFCzg6OqJdu3YwMDBAWloatm7dCjk5OYwZM4ZCtc0jJycHmpqaXNeEhYXx5cuXVlbECRPwtXFSU1Ph6OjIda1bt254+fIlAKBfv348n03S1NTEsWPH4OPjAy8vL7BYLPj7+0NDQwPBwcFQU1OjWmKzERcXx8ePHzF06FCOtfT0dLRv354CVb8GXm1sboyMjAyIiYmRuxL8Rm5uLqysrJCWlkY+hAPshg10CfgYeBtra2vMmzcP2dnZyM3NhaysLOTk5NgMHPipt4cuDB8+HHfv3oWJiQlsbGzg7u6OlJQUCAsLIyUlhXa//71798LGxgYuLi5QU1PDihUroKamhoyMDCxYsADDhg2jWuIPuXPnDm7fvo3o6GhER0fjzJkz6Nq1KyZMmMC1momXSU5O5miBCAkJQW1tLU6cOAFlZWWwWCw4ODjg6NGjtAr4FBQU8OTJE64zk5OTk9nce6mCCfjaOAoKCggPDyezeA0JCwuDgoICgLrZNp07d25tec1GU1MTISEhqKioQHFxMSQkJCAqKgqgzoFMXFycYoXNY/jw4di3bx/09fUhLy9PHs/Ozsb+/fu5fm68Dq83NjfGkiVLcOHCBVy8eBF6enqYOHEiTExM+KbPaPv27ejUqRMSEhJgaGiIsLAwyMjIICoqCpGRkQgMDKRa4next7eHu7s7FBUVYW9v/91z6dTzVk9qair8/f3x8OFDFBUVoVOnThgyZAiWLFlCq1lv9QgICEBBQYG8x7QVeLnU2MXFhZzlNnXqVIiJieHSpUuorKzEn3/+iVmzZlGssHm8efMGq1atgoCAAAiCIP+2bt26YdmyZdi7dy+mTJlCscrvIyQkhFGjRmHUqFEoLy/H1atXERMTg2PHjiEoKAgEQeDixYuQl5dH9+7dqZb7XXJzczkSOTdu3IC6ujpZvk0QBKZPn46NGzdSoLDlzJgxA35+fujcuTM5uqS6uho3btzA4cOHsXLlSmoFggn42jzOzs5YuXIlTE1N2foprl+/jo8fP2L37t0AgH/++YcW5Q/1tG/fntz9ys/Px9GjR3Hq1CkkJiZSrKx5ODs7Y+bMmRg3bhyGDRuGLl264NOnT7h37x6kpKTg7OxMtcRmQYfG5sZYtWoVVq1ahZSUFERHR8Pb2xsbN26EgYEBJk+eDAMDA7Rr145qmS0mMTERHh4ekJWVJY8pKCjA3t4eLBYLmzdvxqFDhyhU+H3KysrI3gk697hx48GDB7C1tYWsrCzMzMzYZtfNmjULR44coYWTcj3fKx0mCALz58+nRlgr8L2B01QjKipKJkgBwMTEBCYmJhQq+jlERERQW1sLgiAgKyuLDx8+kL8TMTExZGdnU6yweYiKimLy5MmYPHkyCgsLceHCBcTGxuLUqVM4ffo0hgwZwtPl3yIiImy/94yMDOTm5pLOnfV06tSJ5yvKvmXBggXIysrC+vXryXnPs2fPBgDMmTOHJ7wWmICvjWNiYoIzZ84gICAAV69eJctrBg0aRA6WBsDTA8sfP36Mc+fOISsrCz169ICVlRUUFRWRl5eHffv24ezZs6iurqbdkHIA6Nq1KyIjIxEUFIR79+4hLS0NnTp1gq2tLebPn0+7Adl0aGz+Eerq6lBXV8e6detw7949xMbGYt26dWCxWLC3t8eCBQuoltgiPn/+DCkpKQgICEBcXBz5+fnkmoaGBs/v8DV80OHlh56W4O3tDV1dXQQEBLCNmFizZg0WL14MHx8fnDp1ikKFTacppcN0CvgiIiJgYWHBdY3FYmHDhg3YvHkzAEBQUBD//fdfa8prFmlpaXj8+DHy8vJAEARkZGSgqanJNq6FTigrK+Pdu3cYPnw49PT04O/vj86dO0NISAi+vr7o378/1RJbTOfOnTF37lzMnTsXmZmZiI6OJoea8yr9+vXD5cuXyVLUq1evgiAIjBw5ku28zMxMDidiOuDh4QFra2vcvXsXRUVFkJSUhJ6eHk+UcwJMwMeAuiHF9Tt5dCMhIQEODg5gsViQkpLC3bt3ERMTgx07dsDNzQ0lJSUwMzODo6Mjm8sdnejUqRNWrVpFtYxfAh0am5sKQRDQ09MjjQzOnj2L5ORkilW1nO7du+PTp08AgL59++L8+fOkQ1xcXBztkgv8xPPnz7Fnzx6OeYKCgoKwtramxXDyeuheOvwtGzZsQIcOHTB+/Hi24ywWC2vWrEF8fDwZ8PEqOTk5WLduHe7evcuxA1n/QL5161a23X86YGNjg48fPwIAVq9eDXt7ezg4OACoM6j53hxiOqGgoIAlS5ZgyZIlVEv5LgsXLsSSJUuQmZkJWVlZXL58GWpqahzVY9evX6el5wIA9OzZk2cTJEzAx0BrAgICoKKigv3796Nr164oKyuDh4cHnJycICsri0OHDmHgwIFUy2T4f+jQ2NwUnj9/jpiYGFy8eBG5ubkYMWIEduzY0SwnT15j1KhRuHPnDiZMmAAHBwc4OTmRQ8vz8vK4zoLkVb73ICcgIICOHTtCRUWFNmWQoqKibDuuDcnLy2Mrw+N16F46/C2bNm2Cm5sbREVFMWrUKAB1M2FXrVqFf/75B0eOHKFW4A8oLy+HtbU1Pn36BDs7O4wYMQJycnJgsVjIycnBzZs3cfr0acyfPx8RERG0MgpraGrStWtXnD17Fu/fv0dFRQX69OlD6xJ8OmJoaIhdu3YhJCQEz58/x/jx47F69Wq2c/Lz85GWloZFixZRpLLlfP36FefOnUNycjJZLaehoYGpU6fyxBxoJuBr49TW1uLMmTO4fPkysrOzOebU8Lq9/Js3b7B161Z07doVQF1dvqurKy5evAhnZ2faB3sVFRXYv38/+flws8p//vw5BcpaBh0amxvj3bt3iI2NRWxsLNkL4uDggLFjx0JSUpJqeT9Nw35QQ0NDnDx5EnFxcaisrIS+vj6tHOGOHj2Kr1+/oqKiAkBd70j9ta19+/aorq5GTU0NVFVVcfDgQZ53XR09ejS8vb0hJyfHNrD87t272LVrF8dcK16G7qXD32JhYYEvX75gxYoVCAgIgJaWFpYtW4bk5GQcPXqU5w11wsLC8OnTJ5w6dYpj7mGfPn2gp6eHyZMnY86cOQgPD6fdfLSGEARBm6QivzJhwoTvttdIS0vj3Llzrajo1/Du3TssXLiQdB6XlpbG8+fPce7cORw4cACHDh1Cnz59KNXIBHxtnJ07dyIoKAg6OjoYOnQoT2QhmkNxcTG6dOnCdqw++Gtsfh2d2LRpE2JiYjBx4kQoKSnR7vP5Fjo0NjfG+PHjISYmBmNjY6xZs4b83n38+JEsG2oIXUtS6qnvVaQjR48exapVq+Dk5ARjY2OIiYmhrKwMV69exf79++Hl5YWKigq4urpix44d2L59O9WSv4u7uztev34NOzs7dOzYkTTXKi0txaBBg+Dm5ka1xCbDj6XDVlZW+PLlCxwdHdG/f3+kp6fj2LFjtOgRu3btGqZPn/7dIfcqKiqYPn06rly5QquAryklm0uXLm0FJQz8zvr16yEsLIxLly6xlXS+f/8e9vb22LhxI44dO0ahQibga/NER0dj2bJlcHJyolrKL0dQUJBqCT/N9evX4ebmRqub7I/w8PCAjY0N7ty5w5ONzd+jrKwMUVFRiI6ObvQcFosFgiBotfPakDt37nCUpDTcVaIDmzdvhq2tLSZPnkweExMTw9SpU1FeXg5PT0+cOXMGDg4O2LdvH4VKm4akpCRCQ0Nx/fp1PHjwAJ8/f4akpCSGDBmCUaNGsc2v43X4oXS4qKiI49jMmTORkZGBK1eu4MCBA+jSpQt5Hi8Hsa9fv+aYjcaNYcOGITY2thUU/TqOHj3KcezLly+oqalB+/bt0a5dOybgY/glpKSkYMeOHRz9e7169cLy5cvh7u5OkbL/wQR8bZyqqipoaWlRLeOnsLGx4TrbaO7cuWzHCYJAUlJSa0r7aQQFBWkRCDWXHj160G6mE9XZud9Nbm4uli1bhsePH0NSUpK0/t+zZw80NDSwd+9e2pg2pKamwtHRketat27d8PLlSwB1rnF0sP+2t7eHjo4OtLW14eLiQutkFrfS4WvXrqGiooI2pcPDhg1rdJ4ei8XCnDlz2I7xcvKnpKQE0tLSPzxPSkoKJSUlraDo18FtDFN1dTX++ecf7Ny5Ezt27KBAFQM/0qVLl0avCfWOt1TDBHxtnEmTJiE+Pp6riQYd4Pfs3OzZs3H+/HmMGDGCaim/lBcvXnDtGQVA9vbxGrq6ulRL+K1s2LABHz9+RHBwMIYNG0Ye/+eff+Dq6oqNGzfSYjcMqDMBCQ8Ph4GBAcdaWFgYOey7qKgInTt3bm15zaZDhw44evQodu7cCVFRUWhoaGDIkCHQ0dGBpqYmrc0n6Fg67OnpydMD1JtDdXV1kxIIAgICHKN06IiQkBBGjhyJnJwcbNy4EadPn6ZaUrMoKSnB5cuXuc6wBOoqaBhaHycnJ+zevRsqKiro0aMHeTw9PR179+7liWdVgsXLU0AZfjtRUVHw9fUly7YkJCQ4zuHVB/C2wKFDh3Dy5El06dIFenp6HJ8P3YYUv3z5EitXrsS7d++4DiCmcykk3dHQ0MDGjRsxdepUjrXIyEhs3LgRjx8/bnVdLeHq1atYuXIlunfvjtGjR5M9b9evX8fHjx+xe/dujBkzBps2bUJJSQl8fHyoltwk3r9/j8TERCQlJSExMREZGRkQEhLCoEGDcPLkSarlNYucnBzk5ORwTfp8a9POq1RXV+PFixeQl5fneeOfxlBWVsa4ceN+uAORl5eHy5cv8831+fbt21i6dCltrmlA3ZzEWbNmoaqqCuXl5ZCSkkJxcTGqq6shKSkJcXFxXLt2jWqZbRJ7e3s8e/YMBQUF6NevH1kh8+rVK0hLS7OZNxEEgQMHDrS6Ribga+N8r1EbYB7AqYbfPh9LS0tUVFTA2dkZioqKXE1ounXrRoEyBgMDA2zatIk00GhIfHw8NmzYgFu3blGgrGWkpqYiICAAT58+JfsRBw0ahCVLlkBFRYVqeT/Fhw8f8O+//yI6Ohr379+n1XUgPT0drq6u5MxKbnPf6PK31NbWQl1dHYGBgbTrc62nuQ6v8fHxv0lJ65Geng4PDw8UFBR8tx+b16gfXbJ7925oaGggIiICysrKuHDhAv7++2/s2bOH9s7kdMXKyqpZ5x8/fvw3KWkcpqSzjcNkg3ib//77j2oJv5TXr19j9+7dXEvtGKjFxsYGgYGB0NXVhZiYGHm8tLQUBw8ebJKxAy+hqqqK3bt3Uy3jl/DmzRskJiaS//Ly8tC3b1/o6Ohg9uzZtNkRA+pKznJycuDp6QklJSVal6MKCAige/fuKC4uplpKi+GHAK4xNDU1OUpvq6ur8fXrV7Rv3552g9dTUlKwdetW8jfz9etXCAoKYtKkSSgsLMRff/3F0yWqRkZGzSqFptPzKRUBXHNhAr42DrObwtCaKCsro6CggGoZDFzIzMxERkYGDA0NMXToULIk5d9//4WYmBhycnLw119/keczvSKth5mZGdq3b4+pU6di48aNGDJkCG1nP6akpMDLy4tvWgXs7e2xf/9+aGlpkSOBGHgDOzs7jgCjXbt2kJOTg4GBAU+7p3KjqqoK4uLiEBAQgKSkJDneBKgzoOL1BLGxsTHb53H58mWUlpZCX1+fvN/cvXsXHTt2hKmpKYVK+RMm4GuDFBUVQUJCAgICAlztpb+FbhdFfuPr168IDw/HkydPkJ2djfXr10NRUREXLlzAgAEDoKSkRLXEJrN+/Xq4ublBVlYWQ4cOhZAQcwniFa5fvw4hISFISEiwldTV94023AkgCIKnA77a2lqcOXMGly9f5moORBAE4uLiKFLXfEaNGoWHDx8iPDwcL168wOPHj6GjowMtLS223Vg60LVrV1qNkfgRly5dQmFhIcaMGYMBAwZw9MJR1a/DACxbtoxqCb8URUVFZGRkQEdHB6qqqjh58iT09fUhJCSE0NBQjpnEvMYff/xBvj506BDk5eVx6NAhiIuLk8c/f/6MRYsWNck5llf477//EBISgsTEROTk5ACou87p6upi7ty5P2zNaS2Yp602iJ6eHkJDQ6Gurv5de+l66NJPwY+kp6dj/vz5KCwshKqqKpKSklBWVgagznL61q1b2LZtG8Uqm46SkhI0NDSwcOFCCAgIQEREhG2djqMz+AV+Ku3auXMngoKCoKOjg6FDh3LtFaUT/v7+YLFYePHiBVnWGRERgeLiYgwYMAC6urq0Gb6+atUqHDx4ENra2nyRTCwrK0Pv3r3Z3jPwLklJSXj79i2GDBmCPn36UC2nWZiZmZG7eCtWrMCCBQugq6sLgiDAYrGwfft2ihU2nePHj2PDhg1swR4AdOzYEYsWLcKmTZuwePFiitQ1neDgYHh7ewMA+vfvTzqqZ2Zm4ty5czh37hxcXFx4wlyPCfjaIJ6enqRtLD/ZS/Mjf/31F6SkpHDmzBlISEiwNWTr6Ohg165dFKprPhs2bEBMTAxMTEzQu3dvWj2IKysrN+u3wiRKqCM6OhrLli2Dk5MT1VJ+GQRBQFlZGcrKyjA1NUViYiJOnz6NxMREpKam0ibgO3fuHLKzs2FkZAQVFRV07NiRbZ1uO2J06N1pqzg7O6Ndu3ZkUvTUqVPYtGkTgLrSzoCAAFqNpLK1tSVfa2hoICYmBrdu3UJFRQWGDRuG/v37U6iueRQXFzc6A/Xz58+0mPmYkJCA7du3Y+rUqVi+fDk57qeerKws7NmzB15eXlBSUsLIkSMpUloHE/C1QaZNm0a+Njc3p1DJz9NcIwm6Dc++f/8+fHx8ICUlxTEDSVZWFrm5uRQpaxmXL1+Gu7s75s6dS7WUZuPu7k4GfDU1NTh69CiEhYUxZswYSEtLIy8vD3FxcaiuruaJbF5LKC8vxz///IOsrCyOGU90GgFSVVUFLS0tqmX8MtLT0/HgwQMkJibiwYMHSE9Ph5CQEFRVVcksP10oKytDz5492d4zMPwOkpKSsGbNGvJ9YGAgLC0t4e7ujo0bN8LPz49WAV9iYiJUVVXJMm55eXnMmDEDQN3vKDExkTYGTsOGDYO3tzfk5eXZrl///vsvfHx82GbB8ipBQUEYO3Zsozur8vLy2LZtG8rKynD48GEm4GNg+BnExcXZdl2ePHmCvLw8KCsrk03A//33H2nJTjcEBQW5zqsD6uYidejQoZUV/RwSEhJsQ0npRMNgZ+fOnVBRUcH+/fvZ+pHc3Nzg6OjI1kxPF+7fv49ly5Y16jhIp4Bv0qRJiI+Pp9XD3PcwMTGBiIgI1NXVYWZmBl1dXWhoaEBUVJRqac2GH3fEUlNT4e/vj4cPH6KoqAidOnXCkCFDsGTJErb5WwytS0FBAdnX9urVK2RlZcHa2hpiYmKYNm0aVqxYQbHC5mFtbU2243zLu3fvYG1tTZvKks2bN8PBwQE2Njbo2LEjOnfujMLCQnz+/BkqKirkTiwv8/TpU7Kc83tYWFjAxcWlFRR9Hybga+NUVFRg//79pLnBt1l9gLdL0/bv30++joyMxLt37xASEsKWQX7//j0cHBxgbGxMhcSfQkdHB0FBQTAwMCADi/p6/bCwMNo90Nra2iIkJIRsNKcr586dw/bt2znMJwQEBDB79my4u7vTpsSuns2bN2PAgAH4888/G52RSBcGDx4MX19f5OfnQ19fnzSeaQidXCJDQkKgrq5O6xEG/MqDBw9ga2sLWVlZmJmZkYnGq1evYtasWThy5Ai0tbWpltkokZGRzTp/6tSpv0XH76BTp07IyMiAtrY2bt26BVlZWfTr1w9AXZVGbW0txQqbx/fGZpeXl6N9+/atqObn6NKlCyIiInDz5k2kpKSQs1LV1dVpM7apurq6Sf/PRUREUF1d3QqKvg99n7gYfgmbNm1CTEwMJk6cCCUlJVo/5O3fvx/Ozs5swR4A9OrVC8uWLcOuXbvYylnpgIuLC2bPng0zMzNyhs2JEyfw6tUrvH//HmfOnKFaYrP48OEDXr58CRMTE+jo6HB9EOdl98d6KioqkJGRwXUtIyODwxWSDmRkZGDdunXkAxGdqS/jyszMxIULFzjW6TTcGwBPBwwtoba2Fvfu3cO7d++4Jhkb9irxOt7e3tDV1UVAQABbEmvNmjVYvHgxfHx8cOrUKQoVfh93d3e29/UVMw2Di4ZVNHQK+AwMDODt7Y3//vsP586dw5QpU8i1V69eoXv37hSqaxqPHz/Go0ePyPfR0dEcxmaVlZW4du0a7UxogLrPiC4B3rf06dMHt27d+mH56c2bN9mMnaiCCfjaONevX4ebmxvmzZtHtZSfJjs7u1FTDYIgSLtcOqGkpISIiAj4+fkhJiYGgoKCuHHjBvT09ODt7c0R3PI6169fJ3fFHjx4wLHO63b/9YwZMwbe3t5o3749xowZg44dO+Lz58+4evUqdu3ahTFjxlAtsdloaWnh3bt30NfXp1rKT0Ongb1tjdzcXFhZWSEtLY2sVgDYgwo6BXzPnz/Hnj17OCoWBAUFYW1tjeXLl1OkrGkkJiaSr9+/f48VK1ZgypQpMDU1hYyMDPLy8nDp0iVERUXB19eXOqEtwM3NDTU1Nbh9+zYMDQ3ZxjRcvXqV8p6qpnD79m1yQDxBEFxLooWEhKCkpIQNGza0tryfJicnBzk5OVyTpLzej2hubg4vLy/069ev0URIZGQkjh8/zpFYoQKC9b09Yga+Z/jw4fDy8iKtZOnMvHnzUFBQgICAALY+sfT0dCxevBgyMjJ82T/C0PqUlpZi3bp1uHr1KoC6G251dTVYLBZMTEywbds2DrtpXicjIwMrVqzAjBkzoKenx+GeCDAzORl+HmdnZ2RkZGD37t0wNDREWFgYZGRkEBUVhcjISAQGBtIqkTVs2DCsWbOGqwFaREQEdu7ciXv37lGgrPnY2tpCT0+Pqx1+QEAA7t69i6NHj1KgjAGoc4oOCwvj2sNHN9LT0+Hq6ork5GQAnOWqdKjCqK2txdKlSxEfH48+ffrA0NCQdOrMzMzErVu38ObNGxgZGcHPz49yR3xmh6+NM3v2bJw/f54vAr5NmzbBzs4O48aNQ79+/cheilevXkFaWprMkjFQx5s3b2g1KL4xxMXFsWfPHrx584bsP+jSpQsGDRpE279PQkICCgoKWL9+faM3Jl6+AV+4cAHDhw+HpKQkeSwnJwcyMjIQFBRkO3bu3DnY29tTIbPNk5iYCA8PD8jKypLHFBQUYG9vDxaLhc2bN+PQoUMUKmweo0ePhre3N+Tk5Nh2x+/evYtdu3bByMiIQnXN49GjR1i4cCHXNTU1NVqNy+BH6mfw8QMeHh7IycmBp6cnlJSUaNmfLCAggH379uH48eM4duwYgoKC2Na7d++OdevWYd68eZQHewAT8LV52rdvj6SkJMyaNQt6enocPVV0cuZTUlLC1atXERERQT6Eq6ioYObMmTA3N+cY8s2r2Nvbw93dHYqKij98KKXbzCozMzNoaGhg+vTpmDBhAu1cRr9FSUmJtgHet7i6uuLhw4ewtbWl3YxEoG7nqKGDXU1NDUaNGoXw8HCoqamR52VnZ2P37t1MwEcRnz9/hpSUFAQEBCAuLo78/HxyTUNDA4GBgRSqaz7u7u54/fo17Ozs0LFjR0hJSaGgoAClpaUYNGgQrcybpKSkyMTJt8TGxkJKSooCVc1j0qRJ8PHxQf/+/TFp0qQfnh8dHd0Kqn4tlZWVSE9P51oG2fBax8ukpKTAy8uLVuZZ3CAIAtbW1rC2tkZ2djbZOtS1a1fIyclRrI4dJuBr49RbymZmZuLx48cc63QK+IC6YaqzZ8/G7NmzqZbSYsrKysiZe/w2oyogIABnz57Fpk2b4OnpiXHjxmH69Om0nJlWU1OD5OTkRt1t6WRuAAD37t3Dpk2b2IwN6AS37gSmY4H36N69Ozm2pG/fvjh//jxGjx4NAIiLi6Nd2bCkpCRCQ0Nx/fp1PHjwAJ8/f4akpCSGDBmCUaNGcTj58jL29vZYv349Pnz4QM4Xzc/PR1xcHBITE7F582aqJf6QgQMHkuNK1NTUeGJn5VdRVVWFjRs3IioqimMubz28XIXRkK5du9Lqt9EU5OTkeC7IawgT8LVx+KlEoCH5+flcs1/19dW8TMM+Q37rOTQ0NIShoSGKiooQFRWFc+fOYc6cOVBUVMT06dMxdepUyMjIUC3zhzx79gzLli1DVlYW16CCIAjaBXxdu3bl2rfHwPArGTVqFO7cuYMJEybAwcEBTk5O0NPTg5CQEPLy8nhiXlVzsLe3h46ODrS1teHi4sJWPkw3ZsyYAVlZWfj7+2Pnzp2orq6GkJAQVFVVsX//flqUpzo6OpI9/I0NxKYr+/btw507d7B9+3a4uLhg/fr16NChA6KiovDhwwf8+eefVEtsMqtWrcLBgwehra1NuyQPXWFMW9owlZWVsLS0xJo1a/iih6+wsBB//fUXrly5wjHzhMVi0aIJuCH89vk0RmpqKrZt24YHDx5AUFAQI0eOhI2NzQ+tjqnE0tISlZWV8PDwQN++fbmWP9IteIqNjcXx48cREBDA1gdHF741NKipqYGamhoiIiLYypySk5Mxa9YsWl0L+JknT54gLi4OFRUV0NfXh6GhIdWSmsXq1avx4MEDfPr0CaKiotDQ0MCQIUOgo6MDTU1NWvYmAXWGFAUFBWT5LV1QVlaGpqYmJk6ciPHjx9OiDLWpmJqaYuHChTA3N4eamhrCw8MxcOBAAHWOpO3bt6fFwHKgLlHy/PlzctD6t/dLurWr0AFmh68NIyIigpycHFpdzL+Hh4cHEhMTsWTJEtrPFAT47/P5lpKSEkRFReHs2bNITU3FoEGDYGJigps3b8LW1hZOTk5YunQp1TK58vr1a/j6+kJXV5dqKb+M6OhoZGZmYvTo0Xx1A+anki5+ZNCgQRg0aBDVMlrMrl27ANSNNEhMTERSUhIiIyOxb98+CAkJYdCgQTh58iTFKpuPgIAALaotvuWPP/5AbGwstmzZgm3btkFfXx+TJk3CmDFjyFJPupKdnY3evXtDUFAQIiIiKCkpIdcmT56M1atX0ybgKysrY3Pj5bf2FV6ECfjaOGPHjsXFixf5YvbWv//+Cw8PD9qV0n0Pfvp86rlz5w4iIiJw7do1iIiIYNKkSfD09ISysjIAYPHixQgODsb+/ft5NuBTVFTkuxtUWVkZevXqxfaebri4uHCYM61atYptl4VbqTcDw8/Sq1cv9OrVC7q6utDS0kJ0dDTu37/PNjSbDty+fRuXL19GdnY2x2+FIAieH8tgZWUFKysrZGRkICYmBjExMXB1dYWoqCiMjY0xadIkjBgxgpalt7KysmSQ1717d/z777/ks0FaWhqFypoPv7Wr0AEm4GvjaGlpYdeuXViyZAkMDAwgIyPDkRGni4uShIQEOnfuTLWMXwo/fT5AnYV5dnY2tLS0sGnTJowfP56re6q2tjZb9pLXWLt2LbZu3YoBAwbwjUsn3W/A06ZN4zhWX+70LUOGDPndchgaoKKi0qzz6VRu++bNGyQmJpL/8vLy0LdvX+jo6GD27Nk8Pzy6IYcOHYK3tze6desGJSUl2pWlN6Rbt25YsmQJlixZgpcvXyI2NhaxsbGIiYlB586dMW7cOEycOJFW1wJdXV08ePAARkZGsLS0xI4dO/D27VsICwsjLi4OEydOpFoiAw/D9PC1cep3VRqDTn1vJ06cwPXr1+Hv7w8hIf7IZfDT5wMAXl5emD59Ou2DpEmTJiE3NxclJSXo0qUL1/LHqKgoitQxMPAWysrKEBMTw5gxY6CqqvrD821sbFpB1a9BWVkZ7du3x9SpU2FgYIAhQ4bQsgcWAIyMjGBkZAQPDw+qpfw2kpOTERYWhrNnz4IgCKSmplItqcnk5uaisLAQ/fv3BwAEBwfj0qVLqKyshL6+PpycnGg16qi2thb37t3Du3fvuDpd29raUqCq6axdu7ZZ52/btu03KWka/PFUzNBirl27RrWEX8bbt2/x5s0bmJiYQEdHh2OmIADa3cj46fMBQKuZVN+D3+y+60lNTYW/vz8ePnyIoqIidOrUCUOGDMGSJUua9KDOwMCNzZs3IzY2FtHR0UhJSYGZmRkmTZrEVkJMV0aNGoWHDx8iPDwcL168wOPHj6GjowMtLS2IiYlRLa9ZFBUVwdjYmGoZv4Xq6mrcunULMTExiI+PB4vFIgMnuiArKwtZWVny/fz582k1Nqshubm5sLKyQlpaGgiCIN2uG95XeT3g+zbZnpOTg8LCQkhKSpIjTYqLi9G5c2eeGNfA7PAx8A0/sowmCILvAig6kpOTg+DgYI6gwsbGBl27dqVaXpvlwYMHsLW1haysLExMTMgb1tWrV5GXl4cjR45AW1ubapkMNCY3N5csrXv69ClUVVUxadIkjB8/nta/fRaLhRcvXpBlnUlJSSguLsaAAQOgq6tLm0SXs7MzevfuzbO90y3h33//RWxsLC5fvozi4mJ069YNEydOxMSJE9GvXz+q5TWLL1++IDU1Fbm5uSAIAjIyMhg4cCDat29PtbRm4+zsjIyMDOzevRuGhoYICwuDjIwMoqKiEBkZicDAQDZTF17n5s2b2LhxIzw9Pdkcxv/55x/88ccf2LBhA+UOxEzAx0BSXl7O1dCAmZFCPTdv3sSTJ0+QnZ0NBwcHKCgoIDExET179qTVg9LLly8xb948fP36FcOHDyeDirt370JYWBghISG0uwnzC7NmzYKYmBgCAgLYSqJramqwePFifPnyBadOnaJQIQM/8eHDBzL4e/fuHWxsbLBmzRqqZf00nz59QmJiIk6fPo3ExERald3fvXsXGzduhKmpKfT19blWyTQcccKrPH36FDExMbh48SI+ffrE1rOnpaVFtbxm8+XLF2zfvh2RkZH4+vUr225Yu3btYG5ujjVr1tDKhdTAwAAeHh5kmXfDkToHDhxAUlISDh06RLHKpjNp0iQsWLCAq2nguXPncPjwYcTExLS+sAYwJZ1tHBaLhf379yM0NBS5ublcz6HLzYofKSgogKOjI5KTkyEvL4+srCzMmjULCgoKiIiIgKioKDZs2EC1zCbj5eWFHj164MiRI2x9LsXFxbCzs4OXlxdtLvIlJSW4fPlyo/0HdCsffv78Ofbs2cPR/yooKAhra2ssX76cImUM/IisrCy6d++Obt264e3bt8jPz6daUotIT0/HgwcPkJiYiAcPHiA9PZ0cVr5gwQJajW6xs7MDABw8eBAHDx5kK6+jyyxbU1NTfPjwgXTlnDhxIm1dOYG6UlRbW1s8efIEY8eOxfDhwyEvLw8Wi4Xs7GzcunULoaGhePHiBUJCQmgzxunz58/kjEdxcXG237+GhgYCAwMpVNd83r9/3+jmiKSkJD58+NC6grjABHxtnODgYAQHB2PhwoX4+++/4eDgAEFBQcTGxuLr16+wt7enWmKzef/+PdLS0rjuVtLJ0RIAtm7disLCQsTExKBXr15sroN6enq0m4v28OFD7Ny5k8PUQFJSEg4ODnB1daVIWfNIS0vDrFmzUFVVhfLyckhJSaG4uBjV1dWQlJSEuLg47QI+UVHRRh+68/LyaJU9ZuBNqqqqcPPmTcTExODGjRsQFxfHuHHjcOLECWhqalItr0WYmJhAREQE6urqMDMzg66uLjQ0NGj5ezl27BjVEn6a3r17Y/ny5TA2NqZlqeO3REZG4tmzZwgMDMSIESM41i0tLXHz5k04Ojri/PnzXN2KeZHu3bvj06dPAIC+ffvi/PnzGD16NAAgLi6OdpVlffv2RWBgIHR0dNh6d0tLSxEYGIi+fftSqK4OJuBr44SHh2PZsmWYO3cu/v77b4wZMwZqampwdHSEg4MDT2QlmkppaSmcnJxw//59AODaBMzr2clvSUhIwJYtW6CkpISamhq2NXl5eeTk5FCkrGUICgpy3Q0D6h4G6ZKF3b59OwYPHozdu3eT2UhlZWVcuHABf//9N3bv3k21xGYzevRoeHt7Q05Ojm3u4927d7Fr164f9sgyMDTG7du3ERsbi7i4OBAEgTFjxmD//v0YNmwYbXYkGiMkJATq6upssx7pCp12IxvD39+fagm/lEuXLmHKlClcg716DAwMMGXKFFy4cIE2Ad+oUaNw584dTJgwAQ4ODnBycoKenh6EhISQl5cHFxcXqiU2Cw8PDyxcuBCGhoYYOnQo2a7y77//oqamhicql5iAr42TkZEBFRUVCAoKQkhIiJx9JiAggDlz5uCPP/7A6tWrKVbZNHbu3Im8vDycOHECc+bMgZ+fHyQlJREVFYV79+7Bx8eHaonNpqamplGb5ZKSEggLC7eyop9DX18fvr6+UFFRQe/evcnjaWlp2L17N20GzKekpGDr1q3kQ97Xr18hKCiISZMmobCwEH/99RdOnz5Nscrm4e7ujtevX2PBggUQFxeHlJQUCgoKUFpaikGDBtHGeKIefiu5pTMLFy6EmJgYjI2NYWBggHbt2qG0tBRxcXFcz6dTJQZjZMTwO3nx4gWmT5/+w/NGjhyJrVu3toKiX4OzszP52tDQEKdOnUJcXBwqKiqgr69PucFJc9HS0sKVK1cQHByMlJQUvH37FrKyspg1axZsbGzY3FWpggn42jidOnXCly9fAAAKCgpITU2Fnp4eAKCwsBAVFRVUymsWt27dwqpVqzB48GAAQJcuXaCurg4dHR1s374dQUFB+PvvvylW2TzU1dURERHB9eIXGxtLuwZ0d3d3zJs3D2ZmZujXrx9kZGSQn5+Ply9fQl5evtlzbaiiqqoK4uLiEBAQgKSkJFmaAgD9+vXDf//9R6G6liEpKYnQ0FBcv34dSUlJKCkpgaSkJIYMGYJRo0bRaieGH0tu6U5ZWRmioqIQHR2N73nF0aFPjJ+JjIxEaGhoo20RDx8+pEBV26WoqAhdunT54XmysrIoKir6/YJ+E4MGDcKgQYOolvFTyMjI8PTOJBPwtXG0tLTw5MkTGBoaYuLEifDz80NeXh6EhIQQFhZGBn90oKCgAPLy8hAUFISoqCjbxc/Q0BDLli2jTlwLWblyJaytrTF37lyYmpqCIAjExcUhICAACQkJOHnyJNUSm4WCggKio6MRERFBBhWKioqwsLCAubk5beZWKSoqIiMjAzo6OlBVVcXJkyehr68PISEhhIaGNukGzWv8888/yMzMhIWFBccsrrNnz0JBQYHNbpqX4ceSWzrDjMOhB+fPn8eff/6JadOm4dGjR7CwsEBtbS3i4+MhISGBKVOmUC2xzfH161cOIy1uCAkJobq6uhUUMdAVJuBr4yxdupTsA7O3t0dJSQliYmJQWVkJfX19/PnnnxQrbDpycnIoLCwEUPdAHh8fDwMDAwDAo0ePICIiQqW8FqGpqYljx47Bx8cHXl5eYLFY8Pf3h4aGBoKDg2lhkf0tYmJisLa2hrW1NdVSWoyZmRm5i7dixQrSja9+gOz27dspVth8fH19Gx26XFBQgLCwMNqUqfJjyS2d6datG9USGJpAUFAQHB0dsXjxYoSFhWHOnDlQU1NDaWkpFixYQJuEHL8RExODpKSk756TmZnZSmoYuFFRUYH9+/fj8uXLyM7O5tpGQHXlAhPwtXH69OmDPn36AADatWsHDw8P2pY6DR8+HHfv3oWJiQlsbGzg7u6OlJQUCAsLIyUlBba2tlRLbBGampoICQlBRUUFiouLISEhQUsHOH6i4XdJQ0MDMTExuHXrFioqKjBs2DD079+fQnUt49WrV1ixYgXXNTU1NVqZIfBjyS0Dw+/m/fv30NLSgqCgIAQFBVFaWgoAEBcXx6JFi+Dp6Unb+yidaap7akODOobWZdOmTYiJicHEiROhpKTEk/4KTMDHQJKVlYWsrCwoKys3ahTCy7i4uKC8vBwAMHXqVIiJieHSpUuorKzEn3/+iVmzZlGs8OcQERGBsLAw7aymNTU1m3wjIgjih5lMXkReXh4zZsygWsZPQRAEPn/+zHWtuLiYwyWWl+HHklsGht+NuLg4uTPRtWtXvH79GkOHDgVQZyBWX0HDyzS3coTXR1EwySl6cP36dbi5uWHevHlUS2kUJuBjQGhoKPz8/JCbmwuCIBAeHg41NTU4OTlBV1cXNjY2VEtsEqKiomw7XyYmJjAxMaFQ0a/h9u3b8PPzw7Nnz1BdXQ0hISHy8xk5ciTV8n6InZ0dk3mkAYMHD8aJEycwduxYjoHLJ0+eJM2Q6AA/ltwyMPxuBg4ciBcvXmDkyJEwMjLCvn37wGKxICQkhMDAQGhoaFAt8YeIi4uzXb+ePHmCvLw8KCsrk1b5//33H2RlZWlvEvI9WCwW1q1bh2XLlkFBQYFqORwkJiZCVVWVa5lwWVkZUlNToaOjQ4GyliEoKAhFRUWqZXwXgvU9uywGvic4OBje3t6wtbWFnp4e7OzsEBERATU1NRw9ehSXLl3CqVOnqJbZZomIiICHhwe0tbUxduxY8oZ1+fJlJCUlYcuWLU2ybGZg+BGPHj2CtbU1FBUVMW3aNMjKyuLTp0+IjIxEWloajh8/TosHPm5kZWXRvuSWgeF38/jxY2RmZmLChAkoKSmBm5sbEhISUFtbi0GDBmHXrl3o0aMH1TKbTGRkJAIDA+Hv74+ePXuSx9+/fw8HBwcsWrSINnPrmktNTQ0GDhxIJvB5DRUVFYSGhkJdXZ1j7enTp7C0tKS85605+Pn54f3799i5cyfVUhqF2eFr44SEhMDR0RGOjo4cJVu9e/fGu3fvKFLGAAD79u3DtGnT4OnpyXbcysoKa9euxf79+2kb8GVnZ+PTp0/o0qUL5OTkqJbT5tHU1ERwcDB27twJb29v1NbWQkBAgDQIolOw9232uGHJbVlZGRITE2mVPWZgaA00NDTI37mEhAQOHDiAqqoqsieWbuzfvx/Ozs5swR4A9OrVC8uWLcOuXbv4NuAD8N3xJ1TzPW3l5eW0a11p3749kpKSMGvWLOjp6UFCQoJtnSAIzJ8/nxpx/w8T8LVxcnJyoKmpyXVNWFiYnNHHQA0FBQUwMzPjumZmZoaLFy+2sqKfJzQ0FAcOHCDdYYG6mYkODg6077OkO0OGDMHp06dpbxBkbW3daPb43bt3sLa2plX2mO4010GQF0vQ2irt2rUj3W7pRnZ2dqPtBARBsN2DGH4/jx8/xqNHj8j30dHRHD37lZWVuHbtGmkmSBe8vb0B1F3rHj9+zLHOBHwMlKOgoIAnT55wnbeXnJzM8zXJ/M7gwYPx7NkzDB8+nGMtNTWVdj0IAQEB+PvvvzFlyhSYmppCRkYGeXl5uHTpEjZt2oTi4mIsWbKEapltnvbt29Muw9oQfsse0x0jI6Nm9fEywTjDr0BdXR2+vr5QUVFhK0VNT0/H7t27adWXzA/U+xEAdQHQ8ePHOc4REhKCkpISNmzY0Nryfgo6mOswAV8bZ8aMGfDz80Pnzp0xduxYAEB1dTVu3LiBw4cPY+XKldQKbOOsXr0aq1evRlVVFcaMGQMpKSkUFBTg6tWriIyMxK5du9gGzHfq1IkyrU3h+PHjWLBgAVxdXdmOGxkZQVpaGsePH6dNwFdQUIAjR47gyZMnyM7Ohp+fH/r164ejR49i8ODBtCqB5Af4OXtMd+of8gDgy5cv8PHxQc+ePcm+5Ly8PFy5cgXp6elwcXGhUCkDP7Fp0ybY2dlh3Lhx6NevH9kD/+rVK0hLS7N9Lxl+P0uXLsXSpUsBAMrKyggLC+NahcHwe2BMWxjw119/4cSJEyAIguzbAYA5c+bQcibfzZs3yYdwBwcHKCgoIDExET179kTXrl2pltcslJWVydffOid+ewzg/cy4pqYm/Pz8uO5Y3rlzB0uXLmV7aOdVnj17hvnz56Njx47Q0dFBVFQU2Ry/Y8cOZGZmwtfXl2qZbQo/Pz+27DG3W1vD7LGWllZrS2QA4OHhgZqaGmzbto1jbe3atQDAdY2BoSVUVVUhIiICKSkpyM3NhaysLNTV1WFubg4RERGq5f02ampqoKamRprwMbQOlZWVSE9PR2VlJcca1Z8Ds8PHAA8PD9jY2ODu3bsoLCyEpKQk9PT0aFfOWVBQAEdHRyQnJ0NeXh5ZWVmYNWsWFBQUEBERAVFRUdqVCXh6evLVSIMRI0bg7t27jQZ83EqLeZFt27ZBQ0MD+/fvB0EQOH/+PLk2ePBgWvZW0h0me0wPLl26hN27d3NdMzMzw6pVq5iAj+GX0a5dO8yePRuzZ8+mWgrDN9TU1CA5ORnZ2dnk/MeGTJ06tfVFtZCqqips3LgRUVFRjc6spTohzwR8DACAHj16YObMmWzHHjx4gP379+PIkSMUqWoeW7duRWFhIWJiYtCrVy8MHDiQXNPT08OBAwcoVNcyzM3NqZbwS5k+fTo2bNiAgoICGBsbkyU2cXFxuHfvHjZt2oRnz56R51OdEWuMJ0+eYO/evRAWFua4uEtJSSE/P58iZQwAPfop2iqCgoJITU1ttC+5vsKEgeFXkp+fz3XXhU4GQTdv3sTIkSOblAQWFBTEsWPH0Lt371ZQ1nyePXuGZcuWISsri2s1BkEQtAr49u3bhzt37mD79u1wcXHB+vXr0aFDB0RFReHDhw/4888/qZbIBHwMjZOfn49//vmHahlNJiEhAVu2bIGSkhLHQ7i8vDwtHblu376NESNGNLp+7NgxWFtbt6Kin6O+P+/cuXM4d+4cR+mdvb09gLqSVYIgKM+INYaoqChKS0u5rmVmZvJ8L2VbgZfLa9oqkydPxp49e1BZWcnRlxwYGMg49bYyzb1/HDt27Dcp+fUUFhbir7/+wpUrV1BdXc22xuv3GG4sXrwYcnJymDZtGszNzX84E1FXV7eVlDWfjRs3QlxcHEePHkXfvn0hLCxMtaSf4tKlS1i6dCnGjx8PFxcXqKurY+DAgZg6dSrc3NwQHx8PQ0NDSjUyAR8D31BTU4MOHTpwXSspKaHlBWXhwoWYM2cO1qxZw+YsmJ2dDTc3NyQlJdEq4KPTw8L3GDFiBA4cOMA2b4cgCFRUVODYsWOUX9jbOnQor2mruLm5QUhICIcOHcK+ffvI4yIiIpg7dy6cnZ0pVNf2EBcXZ9sxevLkCfLy8qCsrExWYPz333+QlZWlnSu0h4cHEhMTsWTJEigpKdHyGaAhsbGxCA8Px5kzZxAQEABtbW1YWlrC1NSUdqMzXr9+DV9fX54OSptDdnY2evfuDUFBQYiIiKCkpIRcmzx5MlavXo1NmzZRqJAJ+Bj4CHV1dURERHB92I6NjaWlSYOPjw82b96MO3fuYOfOnVBXV8e5c+ewdetWdOnSBadPn6ZaYrPgl4u7q6srZs+eDVNTUwwdOhQEQcDX1xevX78GQRCMuy3F0KG8pq0iJCQENzc32Nvb4+XLl6SRRv/+/SEpKUm1vDbH/v37ydeRkZF49+4dQkJC2IaVv3//Hg4ODjA2NqZCYov5999/4eHhQavSwO+hpKQENzc3uLi44MaNG4iIiMDatWuxefNmTJw4ERYWFmytLLyMoqIiysrKqJbxy5CVlSWDvO7du+Pff/+Fvr4+ACAtLY1CZf+DcelkaJTLly9j5cqVtMmEP3r0CNbW1lBXV4epqSm2bdsGe3t7vHnzBgkJCTh58iQty7hycnLwxx9/4N69e1BVVcXTp09hZWUFZ2dn2mX1GlJeXs611I4u5ZAlJSUIDg7mMDuytbWlzd/Ar5iammLhwoUwNzeHmpoawsPDyQchNzc3tG/fnvJsKwMDrzF27Fg4OzvD1NSUY+3ixYvYtWsXrl69SoGylmFkZIQNGzbwdcVFTk4OXFxckJiYCIIg0K9fP9jY2MDCwoJqad/l/v372Lp1K3bt2gUlJSWq5fw069atQ6dOnbBmzRoEBwdjx44dMDY2hrCwMOLi4jBx4kR4enpSqpHZ4WuDXLlypUnnPX78+PcK+cVoamri2LFj8PHxgZeXF1gsFvz9/aGhoYHg4GBaBnsA0LVrV8yePRv3799HSkoKVFRUsGjRIloGe6WlpdixYwcuX77MVvLQEF5PMFRWVmLnzp2YPHkyli9fjuXLl1MtieEb6FBe05YpLi7GzZs3kZ2dzZH0IQgCTk5OFClr22RnZzdqCEIQBO364BcsWIDjx49j+PDhEBLir8fdN2/eIDw8HFFRUSgpKcG4ceNgYmKChIQEbNiwAcnJydi8eTPVMhtly5YtyM3NxaRJk9ClSxd07NiRbZ0gCERFRVGkrvmsWrUKhYWFAID58+cDqOvrq6yshJWVFU9c0/jrF8DQJJrzgEq3kQCampoICQlBRUUFiouLISEhAVFRUapltZgvX77A09MTERERmDp1KszMzMjyjY0bN2LcuHFUS2wWa9euxb179zB9+nT07t2blj0VIiIiiIiIwNixY6mWwtAIdCivaavcvn0by5cvx5cvX9C+fXuOawAT8FGHuro6fH19oaKiwmYIkp6ejt27d2Pw4MEUqms+b9++xZs3b2BiYgIdHR2y37ohdJo1XFZWhtjYWHKuoKKiIhYsWICpU6dCSkoKQN1oE319fWzatImnAz41NTXaPV9+D1lZWcjKypLv58+fTwZ+vAJT0tkGycjIaNb53bp1+01KGH7EmDFj8OXLF2zevBljxowBUFcKuW3bNoSFhWHixInw9vamWGXTGTJkCDZs2IDJkydTLeWnsLOzw7Bhw7B48WKqpTBwgQ7lNW2VSZMmQUpKCp6ensy9hcd48+YN7OzskJeXh379+pGmLa9evYK0tDSCgoJoVX5nZGT03XWCIHDt2rVWUvPzaGhogMViwdTUFDNmzIC2tjbX816+fAl7e3vEx8e3skIGXoYJ+Bj4hrVr16K8vBy+vr4ca6tWrYK4uDi2bNnS+sJ+AicnJ2zZsoXM3jXk5s2b8PDwwM2bNylQ1jLGjRsHNzc3jB49mmopP8Xjx4/h4uKC2bNnw9DQENLS0hzZSqaPjzpyc3NRWFiI/v37AwCCg4PJ8hp9fX04OTk16ujL8HvR0NDAvn37uM7hY6Ceqqoqcgep3lBHXV0d5ubmEBERoVpemyYkJASTJ0/mulNJZ1gsFj59+gRpaWm+K73lJZiAj4FvMDQ0hJubGyZMmMCxdvHiRezYsQPXr1+nQNnPc/PmTTx58gTZ2dlwcHCAgoICEhMT0b17d8jLy1Mtr8nExsbi+PHjCAwMpPVNS1lZmXzdWFkKr/ciMjBQwZw5c2Bubo7p06dTLYWBgTZUVlbC0tISa9as+e5sXjpx69Yt7N27F6mpqaipqUF4eDjU1NTw559/QkdHh/aVQLwGE0oz8A0FBQXo3Lkz17VOnTohLy+vlRX9PAUFBXB0dERycjLk5eWRlZWFWbNmQUFBAREREejQoQPWr19PtcwmY2ZmhhcvXmDUqFFQUVHh2qh94MABitQ1HU9PT77qP+A3vnz5gtTUVOTm5oIgCMjIyGDgwIFssywZqGHjxo1wdXVF165doaenx2T0GX4779+/R1paGldXaLr0YouIiCAnJwcCAgJUS/klxMTEwNXVFePHj4elpSXbqJwePXrg7NmzTMD3i2GutAx8Q9euXZGSkgI9PT2OtZSUFLaGWrqwdetWFBYWIiYmBr169WKbsaOnp0eL4KghwcHBCAwMhIyMDGpqamg7h8fc3JxqCQxc+PLlC7Zv347IyEh8/foV9QUsBEGgXbt2MDc3x5o1a2ht5ER3Zs6cierqaixevBgCAgIcZYIEQSApKYkidW0bZWXlHyay6FS5UFpaCicnJ9y/fx8A2K4H9dDp7xk7diwuXrxIGlDRmf3798PGxgbu7u6oqalhC/j69euHo0ePUqiOP2ECPga+wczMDP7+/ujRowdbWefFixfh7+8Pa2trCtW1jISEBGzZsgVKSkqoqalhW5OXl6edTXZgYCDmzp2LP/74g28ylQy8QXV1NWxtbfHkyROMHTsWw4cPh7y8PFgsFrKzs3Hr1i2EhobixYsXCAkJYb5/FGFnZ8fsjvMo7u7uHJ9NSUkJ7ty5g0+fPtHuHrpz507k5eXhxIkTmDNnDvz8/CApKYmoqCjcu3cPPj4+VEtsFlpaWti1axeWLFkCAwMDyMjIcHxedNmxTE9Pb3Q+oqioKD5//tzKin6OGTNmwNLSEhMmTICYmBjVcrjCBHwMfIOTkxP+++8/rF69Gn/88Qe6dOmCT58+oaKiAgYGBrS0+q6pqWnUXKKkpIR2Yw2+fv2KMWPG0P5h28jI6IcPrXRyf+MHIiMj8ezZMwQGBnLtcbG0tMTNmzfh6OiI8+fPY9q0aRSoZFi2bBnVEhgaoTEb+WXLlmHNmjUoLi5uXUE/ya1bt7Bq1SpynESXLl2grq4OHR0dbN++HUFBQfj7778pVtl01q5dC6AuEZyQkMCxThAEbXYsZWVl8fbtW64VWS9evICCggIFqlqOgoICtmzZAk9PT4wbNw4WFhaNuqhSBRPwMQBo3BSkZ8+e6Nq1K9XymkS7du0QEBCAO3fu4N69eygqKkKnTp2gr6/P9aJCB9TV1REREcE1ExYbGwstLS0KVLWcCRMmICEhgbafRz3GxsZcM+H1pUMmJiZUyGrTXLp0CVOmTPmuoYGBgQGmTJmCCxcuMAEfA0MzmDx5MtasWYMVK1ZQLaXJFBQUQF5eHoKCghAVFUVRURG5ZmhoSLvkAz8lESdOnIi9e/eiT58+0NXVBVAXsL58+RKHDh3C7NmzKVbYPHx9fVFcXIyoqCicO3cO8+bNQ69evWBhYYGpU6eiS5cuVEtkAr62zo9MQURFRbFhwwaqZTaL4cOH843l98qVK2FtbY25c+fC1NQUBEEgLi4OAQEBSEhIwMmTJ6mW2Cy0tLSwe/du5ObmQk9Pj6tTJx1KUv744w+ux6uqquDk5ITu3bu3siKGFy9eNMn5ceTIkdi6dWsrKGJojPfv3+Ps2bONGmn4+/tToIrhe7x79w61tbVUy2gWcnJyKCwsBAAoKioiPj4eBgYGAIBHjx7RbswEP82tXLp0KV69egVbW1tyhNGiRYtQUFCAUaNG0XLGraSkJKysrGBlZYX//vsP4eHhOHLkCPbs2YMRI0Zg+vTpMDIyoqzCiQn42jj8ZgoCADk5OcjJyeH6IKGjo0OBopajqamJY8eOwcfHB15eXmCxWPD394eGhgaCg4OhpqZGtcRm4ebmBgDIzMxEbGwsxzqdSlK40a5dO8ybNw8bNmyAlZUV1XLaFEVFRU3KosrKyrJl+hlal5SUFFhZWUFBQQFpaWkYMGAAPn/+jIyMDMjJyaFnz55US2yzBAUFcRz7+vUr3rx5g0uXLmHixIkUqGo5w4cPx927d2FiYkIahKSkpEBYWBgpKSmwtbWlWmKzYbFYSEhIQFJSEoqLiyEpKQltbW0YGBjQqje2Xbt2OHDgAO7du4e7d++isLAQkpKS0NfX5wtTGjk5OfTo0QMyMjIoKipCWloali1bhm7dusHb2xsaGhqtrokJ+No4/GQKkp6eDldXVyQnJwP4nyNXPXQNJjQ1NRESEoKKigoUFxdDQkKCti6D/FSS0hiFhYW0dR+lM1+/fm2Sxb+QkBCqq6tbQREDN3bu3Inx48dj69atUFNTI//78OFDODs7Y9GiRVRLbLN4eXlxHGvXrh3k5ORgbW0NR0dHClS1HBcXF5SXlwMApk6dCjExMVy6dAmVlZX4888/MWvWLIoVNo/i4mIsXrwYycnJkJCQgLS0NPLz83Hw4EFoaGjQcr7tsGHDMGzYMKpl/DJu3bqFiIgIxMfHQ0xMDJMnT8bu3buhpKSEDx8+YNOmTVi3bh0uXLjQ6tqYgK+Nw0+mIB4eHsjJyYGnpyeUlJTQrl07qiX9Utq3b0/7OWL1JSnf6xmlA1euXOE4Vp8JP3HiBF/dwOhETEzMDy39MzMzW0kNAzdevHhBjmQAQFZiaGlpYenSpfDx8cHIkSOplNhm+e+//6iW8EsRFRVlS46amJjQur/ay8sLHz58wOHDh9naVu7cuQNXV1d4eXnRrly9tLQU2dnZXCuy6FTB5Ovri/PnzyM7Oxu6urrYtm0bTExM2J5De/bsCScnJ8ydO5cSjUzA18bhJ1OQlJQUeHl50aIHrK3CLz2jy5cv53pcSEgIY8eOhYeHRysrYgCAY8eONek8OpU+8RsEQUBYWBgEQUBaWhqZmZnkfUZOTg5paWnUCmRg4FHi4+Ph6urK4VEwfPhwrF69Gt7e3rQJ+HJycrBu3TrcvXuXY43FYtGuIis8PBzTpk2DpaXldxPXffr0gaenZysq+x9MwNfG4SdTkK5du9Le7p/f4ZeeUW6lqSIiIpCWlmaCCYrgt90JfkVJSQnp6ekYNmwYNDQ0cOTIEfTv3x9CQkIIDAxEjx49qJbYpsnJyUFwcDAePnxIOl0PGTIENjY2tHHs5lfKy8shIyPDdU1WVpYsX6UDbm5uSEtLg4eHBxQVFWlVTcaNGzduNKmloFOnTpQ5RDNPx22celMQgiDYTEFyc3NpZwqyatUqHDx4kDFk4GESEhKwcuVKKCkpcQRGdOoZzczMRKdOndCtWzfyX/0Q3C9fviAxMZFqiQxNhMViYe3atUypZysxY8YM5ObmAgBWr16N/Px8TJkyBWZmZnjy5Alp7MTQ+rx8+RKTJk3C6dOnISsri2HDhkFWVhanT5/G5MmT8erVK6oltmlUVFQQEhLC4bdQW1uL48ePQ1VVlSJlzSc5ORkeHh6YO3cuhg8fDl1dXY5/dGLQoEFISUnhuvb06VOoqKi0siJOmB0+Br4xBTl37hyys7NhZGQEFRUVdOzYkW2dIAja7CDxK/zSM2ptbY3Q0FCoq6tzrL19+xbW1ta0Kkdpy9TW1iIyMhLz5s2j3bBfOjJ16lTytZKSEi5cuIDHjx+joqICGhoakJaWpk5cG8fLyws9evTAkSNHICkpSR4vLi6GnZ0dvLy8cOjQIQoVtm2cnZ1hZ2cHExMTGBsbQ0ZGBvn5+YiLi0NeXh6OHDlCtcQm06tXL74yz/rWJLAhNTU1EBQUbEU13GECPgYSupuClJWVsdVOM06JvAe/9Ix+7+JeXl5O699RW+R7nyfD70VMTIxv5qbSnYcPH2Lnzp1swR5QN1/MwcEBrq6uFCljAOrGSp06dQr+/v6IiYlBSUkJJCUlMWTIENjb29OqIsvNzQ3bt2/HgAED0Lt3b6rltIjc3Fx8+vSJfP/27VuOwK6yshIRERE8kUxkAj4G3L59G5cvX+bqlEQQBI4ePUqRsuZx/PhxqiUw/AA694w+fvwYjx49It9HR0dzOEJWVlbi2rVr6NOnT2vLY2BgYPgpBAUFUVVVxXWtqqqKJ3Yp2joDBw6En58f1TJ+Gj09Pejr68PMzAxdunThWpEVFRVFkbqmERoaCj8/PxAEAYIgsHbtWo5zWCwWBAUFecKMjgn42jiHDh2Ct7c3unXrBiUlJY4fHQPDr4TOg+Rv375N3mgJguCaYBASEoKSkhJPXNwZGBgYmoO+vj58fX2hoqLCtuuSlpaG3bt302IgtqamZpONswiC+OEYF4bfw86dOxEUFAQ1NTUoKirScozWtGnToKurCxaLBRsbG6xfvx59+/ZlO0dYWBiKioro3LkzRSr/B8FialnaNEZGRjAyMuIbG/lXr15h//795Iy30NBQqKmp4e+//4aWlhbXUkIGaqBzz6iysjJCQ0MxePBgqqUw/CQ1NTVQU1NDREQETyccGBh+N5mZmZg3bx6ys7PRr18/skfs5cuXkJeXR0hICOTl5amW+V327t3bLKfkpUuX/kY1vxZra+tG1wQEBNCxY0eoqKjAwsKC5x1VdXR0YGtrC0dHR6ql/BLu378PVVVViIuLUy2lUZgdvjZOUVERjI2NqZbxS7hz5w6WLFkCNTU1TJo0ic2gRUhICKdOnWICPh6Czj2jzAgABgYGfkNBQQHR0dGIiIhAUlISSkpKoKioCAsLC5ibm0NMTIxqiT9k2bJlVEv4bXTs2BHPnj1Dbm4uBgwYAGlpaeTn5+PFixeQlZVFz549ERQUhMOHD+PYsWM8ncASFhbmq4QpHVxFmYCvjTN69GgkJSVBT0+Paik/jY+PDyZMmIAdO3agurqaLeBTUVHBmTNnKFTHwE9cuHABmZmZWLhwIcfa4cOHoaCggPHjx1OgjIGBgaHliImJwdra+ru7SQzUMG7cOHz48AEnTpxAt27dyOMfP36Eg4MDpk2bhr1798LW1ha7du3C4cOHKVT7fSwtLREVFUVrwyYtLS0cO3YMAwcO/GEpMS+UDzMBXxvHwsICGzduRGVlJfT19SEhIcFxDi9niRry6tUrODs7AwDHD09CQgKFhYVUyGLgQwICAmBhYcF1rX379jh48CAT8FHIzZs3MXLkyCaVdgkKCuLYsWO0dYqjI69evYK/vz9SUlKQm5sLWVlZDB48GEuWLEG/fv2olsdAc0pLS/Hw4UNUV1dDV1cX4uLiePnyJfbt24fXr1+jc+fOmD17NszMzKiW2iz8/Pzg7OzMFuwBQPfu3eHk5AQfHx9MmzYNdnZ2PN9HLi4ujvv372PWrFnQ09PjePYkCALz58+nRlwTsbOzg6ysLPm6OaXEVMAEfG0cOzs7AMDBgwdx8OBBti8si8UCQRC0mScmKSnJZpHbkLS0NPKHycDws7x//77RB1MlJSW8e/eulRUxNGTx4sWQk5PDtGnTYG5ujh49enz3fDqU4/ALN27cwNKlSyEnJ4cxY8aQZWlxcXGYNm0a/Pz8MGrUKKplthn4zeTk5cuXWLBgAXJzcwEA0tLS2L17NxwdHSEoKIgePXrg9evXcHFxgaioKIyMjChW3HSysrIa/awIgkBOTg4AoEuXLhzD2XkNHx8fAHV/0+PHjznW6RDwNez/pEMpMRPwtXGOHTtGtYRfxpgxY7B3714MHjwYvXr1AlB30cjNzcXhw4dhampKsUIGfkFERAT5+flc13JzcyEkxFxaqSQ2Nhbh4eE4c+YMAgICoK2tDUtLS5iamtLSDY6f2LFjB0aOHIl9+/ZBQECAPL5mzRo4Ojpix44dTMDXitBhZ6I57Nq1CzIyMjh48CDExMSwc+dOLF26FFpaWtizZw/atWuHyspKODo64uDBg7QK+AYNGoQ9e/Zg4MCBbOY5GRkZ2Lt3L9TV1cn3vG7awvTBtz6MSycD3/D582fMnz8fL168QP/+/ZGamgplZWWkp6ejd+/eOHr0KC2azhl4n6VLl+LDhw84ffo0OnToQB7/8uULZs+eje7du2Pfvn0UKmQA6hw4b9y4gYiICNy8eROioqKYOHEiLCwsMHDgQKrltUnU1dXh5+cHAwMDjrWbN29i6dKlSElJoUAZAz8wfPhwrF+/nkzwfvz4EWPGjEFgYCDbd+769etwd3fHv//+S5XUZvP69WvY2tqisLAQ/fv3R+fOnVFYWIgXL15AWloaQUFBUFJSwsGDByEgIIAFCxZQLZmvsbe3b/K5BEGw+UpQAZOGZuAbOnbsiNOnTyMqKgp3795Fp06dICkpiblz52LKlClMZp/hl7Fq1SrMmjULJiYmMDU1RZcuXfDp0ydcvnwZX79+xa5du6iWyIC6/jxjY2MYGxsjJycHLi4uOHXqFE6fPo1+/frBxsam0V5Mht/DgAED8PHjR65rHz9+ZHr4WhkWi4Xr16+j2FU0lQAAXsVJREFUR48ejf6/f/nyJT5+/IjRo0fz/G5gfn4+5OTkyPf1r6WlpdnOk5KSQklJSatq+1n69u2LuLg4hIeH4+nTp6Rb5/Tp02FhYQEREREAwKJFiyhW2jS+fv2K8PBwcozW+vXroaioiAsXLmDAgAFQUlKiWuJ3KSsro1pCs2ACvjZIc5yFAODhw4etpOznERYWhoWFBfMQx/BbUVJSQnh4OPbs2YMrV66gqKgInTp1gr6+PpYuXUqWFDNQz5s3bxAeHo6oqCiUlJRg3LhxMDExQUJCAjZs2IDk5GRs3ryZaplthvXr12P16tUQFRXFmDFj0LFjR3z+/BlXr15FUFAQ2dvD0DpERERg+/btiImJafQcCQkJrFmzBh4eHpg6dWrriWshDZ9peD1AbS4iIiKYO3cu1TJ+mvT0dMyfPx+FhYVQVVVFUlISGUAlJibi1q1b2LZtG8Uqv8/x48epltAsmICvDUI3ZyEGBl6kV69ezMMpj1JWVobY2FhEREQgJSUFioqKWLBgAaZOnQopKSkAgJmZGfT19bFp0yYm4GtFrK2tUV1djXXr1mHdunUQEhJCdXU1gLp5qQ2NGuhgEkJ3zp8/j1mzZrHtin2LnJwc5syZg4iICFoEfDExMeT3pra2FgRBIDo6Gvfv3yfPyczMpEreT/PmzRtyV8zCwgKysrJ4//49pKWleXrwd0P++usvSElJ4cyZM5CQkGArsdfR0WGqZH4DTMDXBqGbs9D3oNscFAb+IysrC1lZWVBWVmbr52OgjuHDh4PFYsHU1BSurq7Q1tbmep6qqio6d+7cyuraNkySkbdITU3FkiVLfnierq4uTp482QqKfh5uZnTBwcEcx+j2PSwvL4eHhwcuXLgAAQEB1NbWYuTIkZCVlYWPjw+6d++ONWvWUC2zSdy/fx8+Pj6QkpLicBSVlZUlXVbpRG1tLe7du4d3796hqqqKY93W1pYCVf+DCfgYaA2zW8lAFaGhofDz80Nubi4IgkB4eDjU1NTg5OQEXV1d2NjYUC2xzeLi4oLJkydznSvakP79+yM+Pr6VVDEA9E8y8htfv35tUn97u3btuD7E8hr87P7o5eWFe/fu4eDBg9DW1oaGhga5ZmhoiODgYNoEfIKCgmjMMzIvL492ydPc3FxYWVkhLS0NBEGQf1vDZ1Im4GOglNraWpw5cwaXL19GdnY2KisrOc65du0aBcqaBj/tVjLQh+DgYHh7e8PW1hZ6enrkPEugLhN+6dIlJuCjiMrKSoSFhUFRUREjRoygWg4DA08jLy+P1NTUH86ifPbsGdsoAH6DxWJh3bp1WLZsGRQUFKiWw5XLly9jzZo1GDFiBMeuWLdu3ZCRkUGRsuajo6ODoKAgGBgYkONZ6gOlsLAw6OnpUayweWzfvh2dOnVCQkICDA0NERYWBhkZGURFRSEyMhKBgYFUS2QCvrbOzp07ERQUBB0dHQwdOhTCwsJUS2oxpaWl+PLlC7p06cKx9unTJ4iJiTFjGRh+CSEhIXB0dISjoyPHjbd3797M4HUKERERQU5ODtuMNwZqsbe3h7u7OxQVFX9oZc4L9uVtidGjR+PIkSMwMzMjq2W+JTc3F0FBQTAzM2tlda1HbW0tIiMjMW/ePJ4N+L58+dLoZ1ReXt7Kan4OFxcXzJ49G2ZmZjAyMgJBEDhx4gRevXqF9+/f48yZM1RLbBaJiYnw8PBg+3wUFBRgb28PFouFzZs349ChQxQqZAK+Nk90dDSWLVsGJycnqqX8NB4eHhATE8PWrVs51vbu3YsvX74wJhsMv4ScnBxoampyXRMWFsaXL19aWRFDQ8aOHYuLFy9CX1+faikMqDPRqU+M0M3KnN9ZvHgxLl68CHNzc9jb22PkyJGQl5cHQRDIysrCrVu3EBAQAAEBAdrY/bcUXh9LPWDAAFy5coVr5cKNGzdoNVtUSUkJERER8PPzQ0xMDAQFBXHjxg3o6enB29sbPXv2pFpis/j8+TOkpKQgICAAcXFx5Ofnk2saGhrMDh8D9VRVVUFLS4tqGb+EBw8eYMOGDVzXDA0NsWnTplZWxMCvKCgo4MmTJ1zLTpKTk6GoqNj6ohhItLS0sGvXLixZsgQGBgaQkZHh6O8dO3YsReraHg3ty+lmZc7vSElJ4dixY3BxccGWLVs4ficsFgvq6urw9vYmHW4ZqKG+qqS8vBzjxo0DQRBISUlBTEwMIiIicPDgQaolNosePXrAy8uLahm/hO7du+PTp08A6uYlnj9/HqNHjwYAxMXFoVOnThSqq4MJ+No4kyZNQnx8PO3qpblRXFzcaMmmqKgoioqKWlcQA98yY8YM+Pn5oXPnzmTgUF1djRs3buDw4cNYuXIltQLbOGvXrgUAJCQkICEhgWOdIAg8f/68tWUxMPAkvXr1wpkzZ/DgwQMkJiYiJycHANC1a1fo6upiyJAhFCtkAIBRo0Zh165d2LFjB6KjowEAmzZtgpycHLy9vfniOY6ujBo1Cnfu3MGECRPg4OAAJycn6OnpQUhICHl5eXBxcaFaIggWr+9hM/xyrly5Qr6urKzE33//DQ0NDejr63N1taNLJnzChAkwMjLi+sPy9vZGXFwcLl26RIEyBn7kr7/+wokTJ0AQBGpra8mesTlz5sDDw4NidW2bppgXdOvWrRWUMHDj7du3uHLlSqNGYbw+cJmBHiYnzaGmpgZqamqIiIiAmpoa1XJ+yLt371BYWAhJSUkoKSlRLafZWFtbN7omICCAjh07QkVFBRYWFujatWsrKvs1PHnyBHFxcaioqIC+vj4MDQ2plsQEfG0RZWXlJp9Lp0x4UFAQfHx8sGLFClhYWEBKSgoFBQU4e/YsfH19sXr1ajY3RQaGnyU9PR13794lb7x6enpMOScDw3eIjIzEunXrICIiAgUFBQ6jMIIgcO7cOYrUMTSVmpoaDBw4kBxHQ3foEPD5+fnB0tKSawD06dMnhIWFsTmX8zJOTk549uwZcnNzMWDAAEhLSyM/Px8vXryArKwsevbsiefPn6O2thbHjh3j2c+ETjABXxukuda9dMmE1zshnT59GkDdnJd6o4BZs2Y12t/HwNBcEhMToaqqyrWE+MuXL3j27Bl0dHQoUMZQD4vFQkJCApKSklBcXAxJSUloa2vDwMCAmddJIaamplBVVYWnpydERUWplsPQQugQIDUHOvw9KioqCA0Nhbq6Osfa06dPYWlpSZsEfXR0NAIDA+Hv78/2jPnx40c4ODjAzs4ORkZGsLW1RefOnXH48GEK1f6YzMzMH55D9U4408PXBqFLANdcCILAhg0bYGNjg3v37qGoqAidOnXCsGHDmF0Xhl+KtbV1ozfet2/fwtramjY3Xn6kuLgYixcvRnJyMiQkJMjs8cGDB0nHtB8NZWf4PXz69AkbN25kgj2G387NmzcxcuTIJiV4BAUFcezYMfTu3bsVlLWM7+3P5Obm0uqa5ufnB2dnZ47n0e7du8PJyQk+Pj6YNm0a7OzsaJGsrx8t8T2ofiZgAr42zj///IPMzExYWFhwrJ09exYKCgoYNmwYBcpajqKiIhPgMfxWvnfjLS8vR/v27VtRDcO3eHl54cOHDzh8+DCGDx9OHr9z5w5cXV3h5eXFdXwLw+9HW1sbL1++ZAwmGH47ixcvhpycHKZNmwZzc3P06NHju+f/aPg8FcTExCAmJgZAXVLby8sLHTt2ZDunqqoKT58+pZXjelZWVqMBEkEQpHFQly5dOGbd8iJ+fn4cx0pKSnD79m08fvyYJ0xbmICvjePr6wtjY2OuawUFBQgLCyNLJHmRr1+/orKyEuLi4mzHc3NzceTIEbx58waysrKYNWsWBg0aRJFKBn7g8ePHePToEfk+OjoaSUlJbOdUVlbi2rVr6NOnT2vLY2hAfHw8XF1d2YI9ABg+fDhWr14Nb29vJuBrRRo6JK9evRqurq4QERHB8OHDOR5eAfCEhTkD/YmNjUV4eDjOnDmDgIAAaGtrw9LSEqampmjXrh3V8prE169fydmVLBYL5eXlpEFYPe3atcOUKVOwcOFCKiS2iEGDBmHPnj0YOHAg5OXlyeMZGRnYu3cvWT2TkZFBC9OWMWPGcD1ubm6Obdu24f79+5gwYUIrq2KH6eFr42hpacHPz4/rgOJ//vkHy5Ytw4MHDyhQ1jS2bNmC27dv4/Lly+SxwsJCTJo0CXl5eZCUlERpaSkEBQURGhoKFRUVCtUy0Bk/Pz8yi0cQBNddPiEhISgpKWHDhg20yrbyG4MHD8aePXu4OqMlJCRg+fLlSE5OpkBZ20RZWZktm1//22ksw0916RPDj6FDz1s9NTU1uHHjBiIiInDz5k2Iiopi4sSJsLCwoNWwcisrK2zcuJGWrpzf8vr1a9ja2qKwsBD9+/dH586dUVhYiBcvXkBaWhpBQUFQUlLCwYMHISAggAULFlAtucXcvXsXK1euxP379ynVwezwtXEIgsDnz5+5rhUXF/P8VvqDBw8wZcoUtmNBQUHIy8vDli1bYGlpifz8fMyfPx8BAQHw9fWlRigD7Vm6dCnpgKasrIywsDCuPXwM1KOiooKQkBCMGDECgoKC5PHa2locP34cqqqqFKpre3h6ejJGOQyUISgoCGNjYxgbGyMnJwcuLi44deoUTp8+jX79+sHGxoZrWwuvcfz4caol/DL69u2LuLg4hIeH4+nTp6Rb5/Tp02FhYQEREREAwKJFiyhW+vM8fPiQJ3aUmYCvjTN48GCcOHECY8eO5cjAnjx5EoMHD6ZQ3Y/Jysri2LW7du0aevfuDUtLSwCAtLQ07OzssHfvXiokMvAh//33H9USGL6Ds7Mz7OzsYGJiAmNjY8jIyCA/Px9xcXHIy8vDkSNHqJbYpjA3N6daAkMT4DeTk4a8efMG4eHhiIqKQklJCcaNGwcTExMkJCRgw4YNSE5OxubNm6mW+UNqa2tx7949vHv3DlVVVWxrBEFg/vz51AhrASIiIpg7dy7VMn4Jf/31F8exqqoqvH37FklJSTwxEowp6WzjPHr0CNbW1lBUVMS0adMgKyuLT58+ITIyEmlpaTh+/Dg0NDSoltkompqa2L9/P2kAUFJSgqFDh3KMYXjw4AEWLFjAlHExtJhnz55BSUkJ7du3x7Nnz354Pq+XOfE7T58+hb+/P5KSklBSUgJJSUkMGTIE9vb2zGfDYyQlJeHt27cYMmQI0/9KIcrKys0yOeF1ysrKEBsbi4iICKSkpEBRURGWlpaYOnUqpKSkyPMiIyOxadMmth5tXiQ3Nxfz5s3D+/fv2doKGgboTDk0NRgZGXEcExERgZycHExNTWFpaclWbUIFzA5fG0dTUxPBwcHYuXMnvL29UVtbCwEBAWhoaCA4OJingz0A6NmzJx4/fkwGfLdv3wYADge4oqIiWlkWM/AeFhYWZBmnhYVFo1lwFosFgiCYGy/FDBw4kKtzGgO1ODs7o127dti2bRsA4NSpU9i0aROAOvOJgIAAxsGTIvjB5KQhw4cPB4vFgqmpKVxdXaGtrc31PFVVVXTu3LmV1TWf7du3o3Pnzjh27BgMDQ0RFhYGGRkZREVFITIyEoGBgVRLbBaRkZEIDQ1FWloaKisrOdYfPnxIgaqWER8fT7WEH8Ls8DGQVFRUoLi4GBISErSZkXT8+HH4+PhgyZIlkJGRwYEDB1BVVYW4uDg2a/ytW7fi5cuXOHr0KIVqGejM/fv3oaamBjExsSY1X/OixTcDA9WMGjUKa9asIR3rRo8ejREjRsDd3R0bN25EZmYmTpw4QbHKtg2/mJyEhIRg8uTJfJPsNTAwgIeHB8aMGQNVVVW2PvIDBw4gKSkJhw4dolhl0zh//jw8PDwwbdo0hIWFwcLCArW1tYiPj4eEhASmTJlC9swz/BqYHT4Gkvbt29NufticOXPw5s0b7Nu3D9XV1VBQUMCuXbvY/o6SkhKcP38eixcvplApA91pGMAxwRxvY21t3eiagIAAOnbsCBUVFVhYWNDC8pufKCgoQJcuXQAAr169QlZWFqytrSEmJoZp06ZhxYoVFCtk4AeTk8rKSoSFhUFRUREjRoygWs4v4fPn/2vvzsOiLtf/gb9nQNFkkWVcqSQ3VkFAExBQEZjUwHHCOl8VBU0RUL/J4vKjBMsOKJILFoEogSuBIYyGOnJE48iJQypixVGPS4KsIhgO68zvD79OEoOCyXxmuV/X1XXZPJ/rOu+uozj353nu+3kEAwMDsNlsaGtro66uTrpmY2OjVDt8+/fvR2BgIJYvX4709HT8z//8DywsLPD7779j6dKlGDRoENMRe+zGjRtIS0vDjz/+iMrKSrBYLAwdOhSTJk2Cj4+PwlwJRgUfQWNjI06dOiWzCRgAIiIiGEjVMxoaGoiMjMT69evx+PHjTufyn3rttddw6tSpLnf1EfIq1NXVyTyOMmLECAbSEADQ0dHBtWvXpJPfDA0NUVdXh7KyMnA4HLzxxhvYv38/kpOTkZqaSj19cjR48GCUl5fD3t4eFy5cAIfDwdixYwE82VkSi8UMJySA8g850dLSQlVVVZc765SZsbExqqurATyZcnn8+HFMnz4dACAUCpXq/so7d+7A1tYWGhoa0NDQwO+//w4A0NbWxocffojPP/8cfn5+DKd8sYMHD0qPp48bN05692tFRQWOHTuGjIwMBAcHIzAwEACQkJCAgIAARrJSwafmbt++jQ8++ACtra0QiUQwMDBAQ0MD2tvboaenB21tbYUu+J563u6kpqamUpzPJ8qjvr4en332GU6fPo329vZOa9TDxzwul4u7d+/i4MGDGDlypPTze/fuYeXKleDxeNi9ezf8/PwQFxeH5ORkBtOqFxcXF8TGxuLXX3/Fd9991+lanevXr8PY2JjBdOpN1pCTpUuXdhpyMnv2bDg6OiIqKkqhCz4A8PDwwPfffy/znmFlNG3aNBQUFGDWrFlYuXIlgoKC4ODgAE1NTdTW1iI0NJTpiD2mra0t3WAYOnQobty4gbfffhvAkxc/9fX1TMbrkYKCAnz66aeYO3cuVq9e3eUl7/3797Fr1y7s3r0bxsbGKCoqQmZmJhV8hBnR0dGwtrbGzp07pUcCTE1NcfLkSXzxxRfYuXMn0xEJUTgREREoKirCihUrMHr0aPTr14/pSOQZ8fHxCAkJ6VTsAU/ekAcFBWH79u3g8Xjw9/fvNM2X9L1169aho6MDP/zwA1xdXbFq1Srp2pkzZ+Ds7MxgOvWmakNObG1tERcXhxUrVsDFxQVGRkZdhm15eHgwlK73QkJCpL92dXXF4cOHIRQK0dzcDEdHR7i6ujKYrncsLS1RVlYGZ2dnzJgxA3v27IFEIoGmpiYSExMVfmAgAOzduxceHh6Ijo6WuT58+HD8/e9/R1NTE9atWwdtbW3s2bNHzin/QAWfmispKcGWLVukE7ja2tqgoaGBd999V7qLceTIEYZTEqJY/vWvfyEiIgJz585lOgqR4f79+91OUWWxWKiqqgIADBkyBB0dHfKMptba29tx9+5dhIaGwtDQsMv64cOHGUhFngoNDe3RkJNx48YpxVTCDRs2AADy8/ORn5/fZV3ZT2JYWVkpTH9Yb61YsQIVFRUAgNWrV6O8vByff/45xGIxrKysFH73GHhy9c+2bdte+Byfz8eZM2eQnp7O6L2VVPCpudbWVmhra4PNZkNPT096PhwAxo4dSxdMEyKDrq6uUrzhVldWVlbYtWsXLC0tMXz4cOnn5eXl2L17t3SyXXl5OQ1tkSM2m433338fiYmJKnPMTlWo4pCTs2fPMh3hlbp48SIqKipkDsw5duwYRowYgSlTpjCQrPdsbGyku3i6urrSCetPv5Mqg7a2th4NOtTS0oKWlhajxR5ABZ/aGzVqFMrLyzFp0iSYm5vj0KFDcHR0hKamJo4ePSqdpkYI+cPSpUuRlpYGJycnaGrSj1FFExUVBT8/P7i7u2PcuHHQ19dHfX09ysrKYGhoKD2qXltbi/nz5zOcVn2w2WwYGxujoaGB6SjkT1RxyMmfj3Qrux07dsDNzU3m2oMHD5Cenq7UJ7L69++vVPc9vvXWW7hw4cILi+zz58/jrbfeklOq7tE3FTU3e/Zs6S7emjVrsHTpUkyePBksFgsSiaTbs8mEqJvPPvus07/fvHkT7u7umDRpkswjUMow7EhVjRkzBkKhEBkZGSgtLZVO63zvvffA5/OhpaUFAPjwww8ZTqp+AgIC8OWXX8LW1pZ2VxWMqg05AZ4M0crPz0dxcTEaGhqgp6cHe3t7uLi4dHvsW1Fdv36922tLLCwskJCQIOdEf80PP/yAU6dOobKyssukaxaLpfD3Js+bNw8xMTEYO3Zst+0dWVlZSEtLw/r16+UbTga6eJ10cv/+fZw/fx4tLS2YMmUKxo0bx3SkXlHmKyaIYpsxY0aPn2WxWCp3nIiQVyEgIAClpaVoaGjA+PHjYWRk1GmdxWLhq6++Yiidevvuu+8QFxcHc3NzlRhy0tDQgOXLl+PKlSvQ1dWVXs/S2NgoHVKnTJey29nZ4fPPP4enp2eXtdzcXGzYsAGXLl1iIFnv7d27F7GxsRg5cmS3g8+YHHDSE2KxGMHBwcjLy8Nbb70FV1dX6aTOiooKXLhwATdv3sSMGTOwe/duxnfPqeAjKqMnV0zQl3BC1MfNmzdx9epVVFZWgs/ng8Ph4M6dOzA0NFSaPhFVs2jRohc+k5aWJock5M9MTU2fu65sQ042btyIf/zjH4iNjZXejwY8GacfFhaG6dOnY8uWLQwm7B1/f3+0t7fjm2++6VSISyQSLF68GGw2GykpKcwF7IUZM2ZgxowZSv8SXiKRIC0tDampqbh3716ntddffx2LFy/GggULFGI3mQo+NfR0MlJPKcsF0gEBAZBIJNIrJjIzMztdMfF0iAMhRLWJRCJERETg5MmTYLPZEIvFyMjIgIWFBVavXg1jY2OEh4czHZMQhVJeXv7CZ5SpL27KlCkICwuTOeQkIyMDsbGxKCwsZCDZy7l06RJ8fX0xatQo8Hg8cDgcVFdXIysrC7dv30ZaWppSXGcAPLkyY8+ePXBwcGA6yitTWVkpnQA9bNgwhTuyTj18aqi7pt8/U7YLpOmKCSIvaWlpqKqqknnRbWxsLIYPH44FCxYwkIwAQExMDAoLC5GUlAR7e/tOX4JcXV2RkpJCBR8hf6JMxVxPiESiLkeGn+JwOBCJRHJO9NdMnDgRKSkp2LZtG2JjYyEWi8Fms2FjY4OUlBSlKfYAYPr06SguLlapgm/YsGEYNmwY0zG6RQWfGpJIJBg0aBBmzpwJV1dXpZqK9Dx0xQSRl0OHDsHPz0/m2qhRo7B//34q+Bh06tQphIeHY+rUqV3u2Rs5cmSPdjJI37l+/Tq+/PJL6XHbo0ePwsLCAl988QVsbW2V6gJpVaNKQ07MzMxw4MABTJ06FRoaGtLPxWIx0tLSYG5uzmC6l2NnZ4cjR46gubkZDQ0N0NXVxcCBA5mO1Wt8Ph+RkZFoaWmBo6OjzF5KCwsLBpKpLir41NC+ffsgEAhw5swZ5OXlYebMmXj33Xfh4OCgdD/Qn0VXTBB5qaiowJtvvilz7fXXX6eCgmGPHz8Gh8ORuaZsb/VVTUFBAVasWAELCwu8++67nQa0aGpq4vDhw1TwMaS7ISdJSUlKOeQkJCQE/v7+cHd3h5ubG4yMjFBXVwehUIja2lrs27eP6YgvbcCAAT26A05R+fv7AwCSkpKQlJTUpSdRmU6XKQsq+NSQo6MjHB0dERkZifz8fJw4cQKBgYHQ1tYGl8vFnDlzlOpowFN0xQSRF21tbdy7dw9vv/12l7XffvtNqf8iVgXjx4/H6dOnZV4gfe7cOerlZdD27dsxa9YsbN26Fe3t7Z0KPjMzM3z77bcMplNvMTExuHv3LpKTk2UOOYmJiVGqISeTJk3C4cOHkZCQAIFAgMbGRujp6cHOzg4BAQG0g8Sg1NRUpiOoHSr41Fj//v3h7u4Od3d3PH78GEKhEAKBAAsWLMC7776rdAXSs0fsbGxsIBAIcOHCBTQ3NyvlFRNEcTk5OWHPnj1wdHTE8OHDpZ9XVlbiyy+/hIuLC4PpSGBgIAIDAyESicDlcsFisVBSUgKBQIDMzEwkJSUxHVFtXb9+HSEhIQDQ5USJrq4u6uvrmYhFAOTl5SEsLKxTsQc8+Xm3du1axMbGKlXBBwCWlpaIj49nOgb5k8mTJzMdQe1QwUcAAHV1daioqEBFRQXEYjH09fWZjtRrRUVFMDc3x6BBgwAAw4cPx/z58wEATU1NKCoqwqRJk5iMSFRESEgI3n//fXC5XEyZMgVDhgxBdXU1CgsLYWBgIP1CS5gxbdo0xMXFYevWrcjJyQEAREVFYdiwYYiNjVWpQQHK5s/91c+6fft2t0dxSd9TtSEnhJA/UMGnxqqrq3Hy5EkIBAKUlpbCwsICfD4fs2bNUrhxsj3h6+uLo0ePYsKECV3Wbt26BV9fXzoTTl6JoUOHIisrC/v370dhYSFu376NwYMHw8/PD0uWLMHgwYOZjqj2uFwuuFwubt26hfr6eujp6WH06NFMx1J7M2fOxO7du2FtbS3tg2WxWKipqUFycrLMS6WJfKjakBNfX99u19hsNnR0dGBmZgY+n6+U33mUXVZWFo4ePYrbt2+jpaWly/pPP/3EQKqX19jYiFOnTuHWrVtobW3tss70nYNU8Kmho0eP4sSJEyguLsaoUaMwa9YsbN++vdshFMrieVdKikQi6qsir0RLSwu2bdsGLy8vfPTRR0zHITLEx8fDx8cHQ4cOhYmJCUxMTKRr1dXVSE9PR3BwMIMJ1VdISAiuXr0KLy8v6TH7jRs34rfffoOJiQn9/8IgVRtyoqOjg2vXrqGmpgbjx4+XDqEpKysDh8PBG2+8gf379yM5ORmpqanU0ydHx48fx8cffwwej4dLly6Bz+dDLBYjLy8Purq68Pb2Zjpir9y+fRsffPABWltbIRKJYGBggIaGBrS3t0NPTw/a2tqMF3x08boaMjU1xaBBg+Dm5gYzM7PnPstisbBkyRL5BHsJly9fxqVLlwA8aThftGhRl4viW1pacPbsWYjFYmRmZjIRk6iYiRMn4uuvv6Y+BAVlZmbW7W5/aWkpfHx8aLefQW1tbcjOzsY///lP6e6ro6MjvL29VeaaIGVVWlqKhIQEFBcXK/2Qk5ycHCQmJiIhIaHTHYP37t3DypUr4e/vjxkzZsDPzw/6+vpITk5mMK16mTt3Ljw9PbF8+XJYWFggMzMTFhYW+P3337F06VJwudxurz5SRAEBAZBIJNi5cydsbGyQmZkJU1NTnDx5El988QV27drF+LAw2uFTU01NTcjOzkZ2dvZzn1P0gu+HH36QNmSzWCykpaV1eUZTUxOjR4/Gpk2b5B2PqKiJEyfi8uXLVPApqOe9x6ypqVGq0fKqqF+/fuDz+eDz+UxHIX+iSkNO4uPjERIS0uVCeWNjYwQFBWH79u3g8Xjw9/en7wdydufOHdja2kJDQwMaGhr4/fffATyZgP3hhx/i888/V6qCr6SkBFu2bJG+sGpra4OGhgbeffdd1NfX47PPPsORI0cYzUgFnxpSpQvIg4ODpUeATE1NkZ6eLvOtPiGv0urVqxEaGgoNDQ24urrC0NCwy8RB6uOTL4FAAIFAAODJy5+YmBjo6Oh0eqa1tRWlpaWwtbVlIiIhRI7u37/f7d3CLBYLVVVVAIAhQ4ago6NDntHUnra2trTPbejQobhx44b0mqOOjg6lm9bb2toKbW1tsNnsLoOpxo4dqxDfu6ngIz0mkUiwceNGrFq1qsuxSUWgCH+giHr44IMPAADbtm1DbGyszGfoyKB8tbW1oampCcCTn1UikQhsNrvTM/3794e3tzeWLVvGRES1ZWpq2u0Xb1nozw4zVG3IiZWVlfQo3bPX55SXl2P37t3Sl8Pl5eVK8d+jSiwtLVFWVgZnZ2fMmDEDe/bsgUQigaamJhITE5XuLuhRo0ahvLwckyZNgrm5OQ4dOgRHR0doamri6NGjGDJkCNMRqYeP9FxHRwcsLS2RkZGh0Gf5W1pa8Ntvv8mc+qTIuYnyOHbs2Au/wPJ4PDmlIX+2aNEiREZG0lROBZGSkiL989LR0YFvvvkG/fr1w8yZM2FoaIja2loIhUK0t7djyZIlSnWUS5UEBQW9cMjJL7/8ArFYrBRDTm7cuAE/Pz/U19dj3Lhx0NfXR319PcrKymBoaIj9+/dj9OjRSEpKApvNxtKlS5mOrDYuX76MiooKzJo1C42NjVi3bh3y8/MhFothZWWFuLg4vP7660zH7LH9+/ejqqoK69evx+XLl7F06VKIRCKwWCxIJBJER0fDy8uL0YxU8JEe6+jo6NRcq2haW1sRGRmJ7Ozsbo9n0JtjIg8ikQgDBw5kOgYhCmfbtm24efMmvvzyy047sGKxGIGBgTAxMcG6desYTKi+VHHISUtLCzIyMlBaWoqamhpwOBxYWVmBz+dDS0uL6XjkGa2trdKjkcru/v37uHDhApqbmzFlyhTpRGImUcFHekzRC74vvvgCWVlZCAsLQ2hoKD755BO89tpryM7Oxt27d/Hxxx/D1dWV6ZhERXV0dODChQvIyclBXl6edHosYYZYLEZhYaHMO5EUfRiVKnN0dER0dDRcXFy6rOXn52P9+vW4ePEiA8mIp6cnQkJC4OHh0WUtNzcX27dvx5kzZyAQCLBp0yYUFxczkJIQxVNUVARzc3MMGjSoy1pTUxN+/vlnTJo0iYFkf6AePqIycnNzERwcjHfeeQehoaGYMGECLC0tMXfuXKxbtw55eXlU8JFXrri4GAKBALm5uXj48CEMDAwwf/58pmOptZqaGixcuBB37tyRHqkB0OkYLhV8zGhubkZ5ebnMtfLycplH8Yl8qOqQk5s3b+Lq1auorKwEn88Hh8PBnTt3YGhoqBK7ScqiN9NfWSwWgoKC+jDNq+Xr69vtVUC3bt2Cr68v4yfMqOAjKqOyshImJibQ0NCAlpYWGhsbpWteXl5Yu3YtoqKiGExIVMX169chEAiQk5OD+/fvo1+/fmhra8OGDRuwYMECaGhoMB1RrUVHR0NfXx+pqalwdXVFeno6jIyMkJ2djaysLCQmJjIdUW3NnDkTsbGxGDBgAGbOnAkdHR08evQIZ86cQVxcHGbOnMl0RLWlakNORCIRIiIicPLkSbDZbIjFYjg7O4PD4WD79u0wNjZGeHg40zHVRnx8PLS0tKClpfXcq3MA5Sv4nvffIxKJMGDAADmmkY0KPqIyOByOtMgzNjbGv/71Lzg6OgIAbt++zWAyogoqKyulRd5//vMfaGhoYMqUKVi9ejXefvttTJ8+HWZmZlTsKYCioiJERESAw+FIPxsxYoT0ctzNmzdj7969DCZUX5988gmam5uxceNGbNy4EZqammhvb4dEIoG7uzs++eQTpiOqraioKPj5+cHd3V3mkJOdO3cCAGpra5XiFENMTAwKCwuRlJQEe3v7TpMfXV1dkZKSQgWfHA0dOhR1dXWws7PDu+++ixkzZihEIfSyLl++3Kl1Iycnp8sx55aWFpw9exZvvfWWvON1QQUfURmTJ0/Gv//9b8yYMQM+Pj7YunUr/vvf/6Jfv34QCoWYM2cO0xGJEps+fTqAJ5NeIyIi8M4778DAwAAA8OjRIyajkT959OgRDAwMwGazoa2tjbq6OumajY0N7fAxSFtbG7t27ZIes6uursaQIUNgZWVFU1UZNmbMGAiFwk5DTsaPH4/33nuv05CTDz/8kOGkPXPq1CmEh4dj6tSpXY6gjhw5stujxaRv5Ofn49///jcEAgE+/fRTREREwM3NDXPmzMHUqVOV7mXpDz/8ID2mymKxkJaW1uUZTU1NjB49Gps2bZJ3vK5ZmA5AmHX+/Hk4Ozv36I4kDQ0NpKamwsTERA7Jeu+jjz6SXtb5tD8nNzcXLS0tWLRokVIdDyCKR1dXFw0NDfjtt99QVlaGcePGSQs+oliMjY2lF9+OGTMGx48flxbsQqEQgwcPZjAdAYDRo0dTgaeAtLS0sGDBAqZjvBKPHz/utMv/LJFIJOc0BADs7e1hb2+Pjz/+GD/88ANOnDiBtWvXol+/fvD09ISPjw8sLS2ZjtkjwcHBCA4OBvDkrtH09HSZPXyKggo+Nbd8+XIMGzYMPB4P8+bNe+G9J5MnT5ZTst7jcDidfrgvWbKEBjOQV6agoAA//PADcnJykJOTg2+//RZDhw7FrFmzaBiQgpk2bRoKCgowa9YsrFy5EkFBQXBwcICmpiZqa2sRGhrKdES1R/elKi5VGXIyfvx4nD59GlOnTu2ydu7cOaUpLFSRhoYGXF1d4erqipaWFuzcuRMpKSmoq6vr1XAXRfHrr78yHeGF6FoGNXfz5k1kZGQgJycHDx48gL29PXx8fODp6Yn+/fszHa9XHj9+jJ9//hk1NTVgsVgwMjKCpaWlUp8RJ4pJJBJJx5P/85//lB4X+tvf/gZ/f38YGxsznJA86+rVqxAKhWhuboajoyMV6Ayi+1IVl6whJxkZGbCwsMDq1auVbsjJuXPnEBgYiNmzZ4PL5SI4OBiffPIJ7t69i7S0NCQlJcHBwYHpmGrr5s2bOHHiBE6cOIF79+5hypQpWLRoEaZNm8Z0tJemyC+yqOAjAJ7cIXbu3DlkZmbi/PnzGDhwIObMmQM+n6/wb8EeP36M6OhoZGVloa2trdMI9v79+2PevHkIDw+ni7BJn6ivr8fJkydx4sQJXLp0CSwWC3Z2djLP8xOi7ui+VMUVGRmJM2fOICYmRjrk5Om9u5mZmUhJSUFOTg7TMXslNzcXW7duRUVFhfSzYcOGYf369eByuQwmU0/l5eU4ceIEBAIBrl+/DhsbG8yZMwdcLheGhoZMx3tpyvAiiwo+0kVVVRVCQ0NRVFQEFouFsWPHYvHixeDz+UxH66K9vR0LFizA1atX4eHhAScnJwwfPhwSiQSVlZW4cOEChEIhbGxscODAAbDZbKYjExVWUVGBnJwc6TRPwoyLFy+ioqJC5s+sY8eOYcSIEZgyZQoDyYinpyeWLVuGefPmwcLCAhkZGdKXiuvWrcOAAQPo+hyGODg4IDw8HDweDx0dHdJCz8LCAoWFhQgMDMRPP/3EdMyXcuvWLdTX10NPT496RxnywQcf4MqVKzA1NcXs2bMxe/bsTtd/KDNleJFFPXxE6unxzuzsbDQ2NoLL5cLd3R35+fnYtGkTrly5gs2bNzMds5OsrCxcu3YNiYmJMs/p+/j44Pz58wgMDMTx48fB4/EYSEnUxYgRI7BixQqsWLGC6ShqbceOHXBzc5O59uDBA6Snp+PIkSNyTkUAui9VkanakJP4+Hj4+Phg6NChMDEx6TRwrrq6Gunp6dKhG6TvXb58Ga+99hra29tx/PhxHD9+vNtnWSwWsrOz5Zjur8nNzUVwcDDeeecdhIaGYsKECbC0tMTcuXOxbt065OXlMV7w0XaHmmtqakJ6ejref/99zJkzB+fOncPSpUuRn5+PHTt2YPbs2di6dSs+++wzhdyxyM3Nhbe3t8xi7ykXFxd4e3vj5MmTckxGCGHK9evXuz2KbmFhgRs3bsg5EXlK1n2pT9F9qcx6OuREFmUccrJnzx5UVVXJXKuursaePXvknEi9zZ07F56enrC0tHzhP0z3u/XWi15k5ebmMpjuCdrhU3NOTk6QSCTw9PREWFgY7O3tZT5nbm4OfX19Oad7sbKyMrz33nsvfM7Z2RlbtmyRQyJCCNNYLFa3dyM2NDR022NB+h7dl6q4AgMDERgYCJFIBC6XCxaLhZKSEggEAmRmZiIpKYnpiL3yvI6lmpoa6OrqyjENiY6OZjpCn5H1IsvR0RGA4rzIooJPzYWGhsLLy+uFP/jGjRuHvLw8OaXquYcPH2LIkCEvfI7D4eDhw4d9H4gQwjhra2scPHgQHh4ene4YlUgkOHToEKytrRlMp97ovlTFNW3aNMTFxWHr1q3SEz1RUVEYNmwYYmNjlWKipUAggEAgAPDkxU9MTAx0dHQ6PdPa2orS0lLY2toyEZGoIGV4kUUFnxpraWlBeno6Ro0a9dwjkYqsra0Nmpov/m2sqamJ9vZ2OSQihDBt1apV8PX1hZeXF3g8HjgcDqqrq5GVlYXbt2/TBFUG0X2pio3L5YLL5SrtkJO2tjY0NTUBePKCRyQSdRnW1r9/f3h7e2PZsmVMRCQqSBleZNGUTjX39ttv44svvpBuPSsbU1NT+Pr6vnDSU0VFBQ4cOMD4WFxCiHwUFxdj27ZtKCkpgVgsBpvNho2NDUJCQmBnZ8d0PLXX0NCA69ev4/79+3BxcYGenh5aWlrQr18/mqbMkGeHnPyZMg45WbRoESIjI5WqYCWkr1DBp+Y+/vhjAMCnn37KcJKXY2pq2uNnWSwWFXzklWlsbMSpU6dw69YttLa2dlmPiIhgIBX5s+bmZjQ0NEBXV5fu4lQAYrEYO3bsQFpaGkQiEVgslvRy7w8//BDW1tZKVVSoEjMzMxw9ehQTJkzoslZaWgofHx/6O5QQGR4/foyff/4ZNTU1YLFYMDIygqWlJQYMGMB0NCk60qnmbG1tERcXhxUrVsDFxQVGRkadel4AwMPDg6F0L/brr78yHYGoodu3b+ODDz5Aa2srRCIRDAwM0NDQgPb2dujp6UFbW5sKPgUxYMAAhfpLV93t3LkTBw4cwLp16+Dg4ABPT0/p2owZM/Dtt99SwccQVRxyIhaLUVhYKPPFHIvFouPE5C95/PgxoqOjkZWVhba2NumfIRaLhf79+2PevHkIDw9XiJeNVPCpuQ0bNgAA8vPzkZ+f32VdVXfFJBIJNm7ciFWrVmHEiBFMxyFKJjo6GtbW1ti5cydsbGyQmJgIU1NTnDx5El988QV27tzJdERCFNJ3332HtWvX4oMPPugyLfWNN97Ab7/9xlAy9aTKQ05qamqwcOFC3LlzBywWq9OX8aeo4CMvq729HX5+frh69So8PDzg5OSE4cOHQyKRoLKyEhcuXMDRo0dRVlaGAwcOMH5UnQo+NXf27FmmIzBCLBYjKysLCxcupIKP9FpJSQm2bNmC/v37A3gyKEBDQwPvvvsu6uvr8dlnn9HF3oTI8PDhw257qjo6Omi4lpyp8pCT6Oho6OvrIzU1Fa6urkhPT4eRkRGys7ORlZWFxMREpiOqNWVvi8jKysK1a9eQmJgoc/Chj48Pzp8/j8DAQBw/fhw8Ho+BlH+ggk/NjRw5kukIjKH2VfKyWltboa2tDTabDT09PVRXV0vXxo4dS0eNCenGqFGjUFBQIHPE/48//oixY8cykEp98Xg86RdRVRtyUlRUhIiIiE5TYUeMGIGAgABIJBJs3rwZe/fuZTCh+lKFtojc3Fx4e3s/d8q9i4sLvL29cfLkScYLPhqFRSCRSHDu3Dls374dn3zyCbZv3478/HwqiAjpxqhRo1BeXg4AMDc3x6FDh/D777+jubkZR48e7dHdkISooyVLlmD//v3YsWMHrl+/DgCorKzEwYMHkZaWRkfsGJSWlqYyxR4APHr0CAYGBmCz2dDW1kZdXZ10zcbGBsXFxQymU29P2yL++c9/QiKRIDExEVeuXMG2bdswaNAgpWiLKCsrg7Oz8wufc3Z2VoiXwLTDp+YaGhqwfPlyXLlyBbq6ujA0NERdXR2SkpKkvUnK2KhNSF+aPXu29Af4mjVrsHTpUkyePFnaJxIdHc1wQkIU07x589DQ0IDdu3fj66+/BgAEBQVh4MCB+N///V/MmjWL4YTqTZWGnBgbG0tPX4wZMwbHjx/H9OnTAQBCoRCDBw9mMJ16U4W2iIcPH/bo5S6Hw8HDhw/7PtALUMGn5mJiYnD37l0kJyfDyclJ+nlBQQHCwsIQExODLVu2MJiQEMXj5+cn/bWNjQ0EAgEuXLiA5uZmTJkyBePGjWMwHSGKzc/PD/Pnz8elS5ekl3tPnDixy7AQIl+qNuRk2rRpKCgowKxZs7By5UoEBQXBwcEBmpqaqK2tRWhoKNMR1ZYqtEW0tbVBU/PFZZSmpqZC9CZTwafm8vLyEBYW1qnYAwAnJyesXbsWsbGxVPAR8idFRUUwNzfHoEGDAADDhw/H/PnzAQBNTU0oKirCpEmTmIxIiEIbNGhQl96XCxcu4LPPPsOpU6cYSqXeVG3ISUhIiPTXrq6uOHz4MIRCIZqbm+Ho6AhXV1cG06m3p20RkyZNkrZFODo6QlNTU6naIgQCwQuPBldUVMgpzfNRwafmRCIRjIyMZK5xOByIRCI5JyJE8fn6+nZ7QfGtW7fg6+urkteZENKXHj9+jLt37zIdQ22p+pATKysrWFlZMR2DQHXaIlJTU3v03J/vt2YCFXxqzszMDAcOHMDUqVOhoaEh/VwsFiMtLQ3m5uYMpuud8+fPw9nZuUd/sDQ0NJCamgoTExM5JCOq5nkDjUQiEV30TQhROi8acqJsO3wXL15ERUUF+Hx+l7Vjx45hxIgRmDJlCgPJiCq0RSjDsdNnUcGn5kJCQuDv7w93d3e4ubnByMgIdXV1EAqFqK2txb59+5iO2GPLly/HsGHDwOPxMG/ePLz++uvPfX7y5MlySkZUweXLl3Hp0iXpv+fk5HQ5ytHS0oKzZ8/irbfeknc8Qgj5S1RtyMmOHTvg5uYmc+3BgwdIT09X+MEgqkqd2yIkEgk2btyIVatWyfUeaCr41NykSZNw+PBhJCQkQCAQoLGxEXp6erCzs0NAQAAsLCyYjthjJ06cQEZGBr799lt8/fXXsLe3h4+PDzw9PaWToAh5WT/88APi4+MBPDmekZaW1uUZTU1NjB49Gps2bZJ3PEII+UtUbcjJ9evXsWbNGplrFhYWSEhIkHMi8pQ6t0WIxWJkZWVh4cKFVPAR+bK0tJR+kVVmo0ePxrp16xAaGopz584hMzMTGzZswObNmzFnzhzw+XxYWloyHZMoqeDgYAQHBwMATE1NkZ6eLvMvK0JIZ/v37+/Rc//5z3/6OAl5HlUbcsJisfDo0SOZaw0NDejo6JBzIvKUurdFMHHPNUtCt2sTFVZVVYXQ0FAUFRWBxWJh7NixWLx4scwz/YQQQl49U1PTHj/LYrFU9s0+kS9/f3+0t7fjm2++6dTbL5FIsHjxYrDZbKSkpDAXUM082xYRExODRYsWddnhetoWIRaLkZmZyUTMPtfR0QELCwtkZmbK9RQd7fCpOV9f327X2Gw2dHR0YGZmBj6fj6FDh8ox2V9z8+ZNZGRkIDs7G42NjeByuXB3d0d+fj42bdqEK1euYPPmzUzHJEqupaUFv/32G1paWrqsKdNxaEL6krINN1BXqjbkZNWqVfD19YWXlxd4PB44HA6qq6uRlZWF27dvyzyWT/oOtUUwi3b41FxQUBCuXbuGmpoajB8/HoaGhqirq0NZWRk4HA7eeOMN/PLLLxCLxUhNTVXoL7FNTU04ceIEMjMzUVJSglGjRsHHxwdz586FgYGB9LmsrCxERUV1GsBBSG+0trYiMjIS2dnZ3R4Lol0KQv4apoYbqKv3338fbm5uWL58eZe1vXv3QigUKt2Qk+LiYmzbtg0lJSUQi8Vgs9mwsbFBSEgI7OzsmI6nttS5LYJ2+AgjuFwu7t69i4MHD2LkyJHSz+/du4eVK1eCx+Nh9+7d8PPzQ1xcHJKTkxlM+3xOTk6QSCTw9PREWFgY7O3tZT5nbm4OfX19OacjqmTPnj0oKChAdHQ0QkND8cknn+C1115DdnY27t69i48//pjpiIQoPaaGG6grVRxyYmdnhyNHjqC5uRkNDQ3Q1dXFwIEDmY6l9mjXX/7YTAcgzIqPj8eqVas6FXvAk/HMQUFB+PLLL6Gnpwd/f39cvnyZmZA9FBoaigsXLmDr1q3dFnsAMG7cOOTl5ckxGVE1ubm5CA4OxjvvvAMAmDBhAubOnYt9+/bBzs6Ofn8R8orQIST5UeUhJwMGDMDQoUOp2FMwLS0tuHHjBq5du9blH/Jq0Q6fmrt//363F5WzWCxUVVUBAIYMGaLQP+xbWlqQnp6OUaNGYerUqUzHISqusrISJiYm0NDQgJaWFhobG6VrXl5eWLt2LaKiohhMSAghvWNtbY2DBw/Cw8Ojy5CTQ4cOwdramsF0RJWoWlvE+fPn4ezs3O336WdpaGggNTUVJiYmckj2B9rhU3NWVlbYtWsX7t+/3+nz8vJy7N69W3q+ury8XKGHtmhpaaGqqgpsNv2WJn2Pw+FIizxjY2P861//kq7dvn2boVSEEPLyVq1ahUuXLsHLywv79u1DTk4OkpOT4eXlhUuXLuF///d/mY5IVMSzbRESiQQff/wx/v73v8PBwQEjR45UuuPDy5cvx/Tp07Fz50789ttvL3x+8uTJeO211+SQ7A+0w6fmoqKi4OfnB3d3d4wbNw76+vqor69HWVkZDA0NsXPnTgBAbW0t5s+fz3Da5/Pw8MD3338PR0dHpqMQFTd58mT8+9//xowZM+Dj44OtW7fiv//9L/r16wehUIg5c+YwHZEQQnpl4sSJSElJwbZt2xAbG9tpyElKSgpsbGyYjkhUxLNtEaGhoZgwYQIsLS0xd+5crFu3Dnl5eUp17+OJEyeQkZGBb7/9Fl9//TXs7e3h4+MDT09P9O/fn+l4AGhKJ8GT45AZGRkoLS1FTU0NOBwOrKyswOfzoaWlxXS8Hvvuu+8QFxcHc3NzuLi4wMjIqMv2uoeHB0PpiCqpqalBfX09xo0bBwBISUlBbm4uWlpa4OjoiKCgILm/vSNE1TA1zY6AhpyQPmVtbY3k5GTY29vD2toaX331lfRlfUFBAdauXdvp5Iyy6OjowLlz55CZmYnz589j4MCBmDNnDvh8PiwtLRnNRgUfURkvutyXLvQlhBDlQQUfIapp5syZ2LhxI2bMmIHZs2dj5syZ+OijjwAABw8exK5du5Sy4HtWVVUVQkNDUVRUBBaLhbFjx2Lx4sUy77mUBzrSSQA8uaj86tWrqKysBJ/PB4fDwZ07d2BoaAhtbW2m4/XI2bNnmY5A1MTjx4/x888/o6amBiwWC0ZGRrC0tMSAAQOYjkaIQlOG4QaEkL6lym0RN2/eREZGBrKzs9HY2Agulwt3d3fk5+dj06ZNuHLlCjZv3iz3XLTDp+ZEIhEiIiJw8uRJsNlsiMViZGRkwMLCAqtXr4axsTHCw8OZjkmIQnj8+DGio6ORlZWFtrY26ch4FouF/v37Y968eQgPD6cjUIR0w9TUFMOGDQOPx8O8efPw+uuvMx2JECJnqtYW0dTUhBMnTiAzMxMlJSUYNWoUfHx8MHfuXBgYGEify8rKQlRUFC5duiT3jFTwqbnIyEicOXMGMTExsLe3h42NjfT4TGZmJlJSUpCTk8N0zB6TSCTIz89HcXExGhoaoKenB3t7e7i4uPTojTIh3Wlvb8eCBQtw9epVeHh4wMnJCcOHD4dEIkFlZSUuXLgAoVAIGxsbHDhwgCbGEiLD07ffOTk5ePDggUIONyCEkN6wsbGBRCKBp6cn5s+f3+1d0P/5z38QEBDAyF29VPCpOQcHB4SHh4PH43XplygsLERgYCB++uknpmP2SENDA5YvX44rV65AV1cXhoaGqKurQ2NjI2xsbJCYmAhdXV2mYxIllZGRgcjISCQkJHR71+P58+cRGBiITz/9FDweT84JCVEeijzcgBDSt1StLeLAgQPw8vJS6O+Y1MOn5h4/fgwOhyNzTSQSyTnNXxMTE4O7d+8iOTkZTk5O0s8LCgoQFhaGmJgYbNmyhcGERJnl5ubC29u722IPAFxcXODt7Y2TJ09SwUfIc2hoaMDNzQ1ubm7S4QaHDx/GkSNHGB9uQAjpG6rYFtHS0oL09HSMGjXqud8PmEYFn5obP348Tp8+LfM36blz55TqTWteXh7CwsI6FXsA4OTkhLVr1yI2NpYKPvLSysrK8N57773wOWdnZ/p9RkgPKOpwA0LIq9fe3g4/P7/ntkUcPXoUZWVlStUWoaWlhaqqKoXPSwWfmgsMDERgYCBEIhG4XC5YLBZKSkogEAiQmZmJpKQkpiP2mEgkgpGRkcw1DoejdDuWRLE8fPgQQ4YMeeFzHA4HDx8+7PtAhCghWcMNli5d2mm4wezZs+Ho6IioqCgq+AhREVlZWbh27RoSExNlbjL4+PhI2yKOHz+uVKdkPDw88P3330vvElREVPCpuWnTpiEuLg5bt26VDmeJiorCsGHDEBsbCwcHB4YT9pyZmRkOHDiAqVOnQkNDQ/q5WCxGWloazM3NGUxHlF1bWxs0NV/8I1NTUxPt7e1ySESI8nFycpIONwgLC+t2uIG5uTn09fXlnI4Q0ldUuS3C1tYWcXFxWLFiBVxcXGBkZNRlUKCHhwdD6Z6goS1E6tatW6ivr4eenh5Gjx7NdJxeKyoqgr+/PzgcDtzc3GBkZIS6ujoIhULU1tZi37593X65IORFTE1N4evri+HDhz/3uYqKChw4cAC//PKLnJIRojyUYbgBIeTVc3Z2xv/7f/8PXC73uc/l5uZiy5YtuHDhgpyS/XWmpqbPXWexWIx/J6AdPjUXHx8PHx8fDB06FCYmJp0uuK2urkZ6ejqCg4MZTNhzkyZNwuHDh5GQkACBQIDGxkbo6enBzs4OAQEBsLCwYDoiUXKpqak9eo6uACGkK2UZbkAIefVUuS3i7NmzTEd4ISr41NyePXvg4uKCoUOHdlmrrq7Gnj17lKbgAwBLS0vEx8czHYOooF9//ZXpCIQoNWUZbkAIefVUuS1i5MiRTEd4ISr41NzzTvTW1NTQsRtC/iKJRIKNGzdi1apVGDFiBNNxCGGUMgw3IIT0DYFAgOLi4uc+U1FRIac0r5ZEIkF+fj6Ki4vR0NAAPT092Nvbw8XFRSFO/VAPnxoSCAQQCAQAgPz8fNja2kJHR6fTM62trSgtLYWtrS0SEhKYiNlrvr6+3a6x2Wzo6OjAzMwMfD5f5o4mIX2ho6MDlpaWyMjIoGPFRO199913iIuLg7m5ucIONyCEvHov6nN7liL0vPVGQ0MDli9fjitXrkBXVxeGhoaoq6tDY2MjbGxskJiYyPgGCu3wqaG2tjY0NTUBePJGQiQSdTli079/f3h7e2PZsmVMRHwpOjo6uHbtGmpqajB+/HjpH7iysjJwOBy88cYb2L9/P5KTk5Gamkpfvonc0Hs1Qp7YsGEDgCcvG/Pz87usK9sXPUJIz6hyW0RMTAzu3r2L5OTkTndBFxQUICwsDDExMYzfz0s7fGpu0aJFiIyMVMqpnH+Wk5ODxMREJCQkdDpPfe/ePaxcuRL+/v6YMWMG/Pz8oK+vj+TkZAbTEnXR0dEBCwsLZGZm0ksGovbKy8tf+Iwy9MMQQuRDGdoipkyZgrCwMPD5/C5rGRkZiI2NRWFhIQPJ/kCd02ouLS1NJYo94MnE0VWrVnX5smBsbIygoCB8+eWX0NPTg7+/Py5fvsxMSEIIUWMjR4584T+EEPKUWCxGVlYW6uvrmY7SLZFIBCMjI5lrHA4HIpFIzom6oiOdBGKxGIWFhbh16xZaW1s7rbFYLCxZsoSZYL10//79bhtjWSwWqqqqAABDhgxBR0eHPKMRQgj5P4o+3IAQolgU/TCimZkZDhw4gKlTp0JDQ0P6uVgsRlpaGszNzRlM9wQVfGqupqYGCxcuxJ07d8BisaR/qJ79S1dZCj4rKyvs2rULlpaWnS7HLi8vx+7duzFhwgTpv9PQFkIIkb/uhhskJSUpzHADQgjpjZCQEPj7+8Pd3R1ubm4wMjJCXV0dhEIhamtrsW/fPqYjUsGn7qKjo6Gvr4/U1FS4uroiPT0dRkZGyM7ORlZWFhITE5mO2GNRUVHw8/ODu7s7xo0bB319fdTX16OsrAyGhobYuXMnAKC2thbz589nOC0hhKgfZRhuQAghvTFp0iQcPnwYCQkJEAgEaGxshJ6eHuzs7BAQEKAQ/fs0tEXNubi4ICIiAjNnzoS5uTnS09OlO2FfffUViouLsXfvXoZT9lxLSwsyMjJQWlqKmpoacDgcWFlZgc/nQ0tLi+l4REWcP38ezs7OPT5+9uOPP8LS0hKvvfZaHycjRLEpw3ADQojioMFnrwbt8Km5R48ewcDAAGw2G9ra2qirq5OuPT1eo0y0tLSwYMECpmMQFbd8+XIMGzYMPB4P8+bNw+uvv/7c5ydPniynZIQoNmUYbkAIIaqGCj41Z2xsjOrqagDAmDFjcPz4cUyfPh0AIBQKMXjwYAbTvZybN2/i6tWrqKysBJ/PB4fDwZ07d2BoaAhtbW2m4xEVcOLECWRkZODbb7/F119/DXt7e/j4+MDT0xP9+/dnOh4hCksZhhsQQkhv+Pr6drvGZrOho6MDMzMz8Pl8xmZI0JFONbd9+3Y8ePAAW7ZsQX5+PoKCgqCjowNNTU3U1tYiNDQUS5cuZTpmj4hEIkRERODkyZNgs9kQi8XIyMiAhYUFVq9eDWNjY4SHhzMdk6iQjo4OnDt3DpmZmTh//jwGDhyIOXPmgM/nw9LSkul4hCicoqIi+Pv7g8PhdDvcwN7enumYhJA+pGptEUFBQbh27Rpqamowfvx46TCqsrIycDgcvPHGG/jll18gFouRmprKyNFUKvhIJ1evXoVQKERzczMcHR3h6urKdKQei4yMxJkzZxATEwN7e3vY2NhIz3xnZmYiJSUFOTk5TMckKqqqqgqhoaEoKioCi8XC2LFjsXjxYpm9SoSos9LSUiQkJKC4uFghhxsQQvqWqalpr9oiFF1OTg4SExORkJDQ6S7Re/fuYeXKlfD398eMGTPg5+cHfX19JCcnyz0jFXxEZTg4OCA8PBw8Hq9Lk29hYSECAwPx008/MR2TqJibN28iIyMD2dnZaGxshJubG9zd3ZGfn4+TJ09i3rx52Lx5M9MxCSGEEIXw9O/NnJwcPHjwQOnbIjw9PRESEgIPD48ua7m5udi+fTvOnDkDgUCATZs2obi4WO4Z2XL/XyQK5eLFi8jMzJS5duzYMaWalvb48WNwOByZazQIgLxKTU1NSE9Px/vvv485c+bg3LlzWLp0KfLz87Fjxw7Mnj0bW7duxWeffUa7yoQQQsgzRo8ejXXr1iE/Px+7d++GtrY2NmzYACcnJ0RFRaG0tJTpiL1y//79bo+nslgsVFVVAQCGDBmCjo4OeUaToqEtam7Hjh1wc3OTufbgwQOkp6fjyJEjck71csaPH4/Tp09j6tSpXdbOnTtHPVXklXFycoJEIoGnpyfCwsK67TkyNzeHvr6+nNMRoriUYbgBIUQ+NDQ04ObmBjc3N2lbxOHDh3HkyBGlaouwsrLCrl27YGlpieHDh0s/Ly8vx+7du6XXnZWXlzP2c40KPjV3/fp1rFmzRuaahYUFEhIS5Jzo5QUGBiIwMBAikQhcLhcsFgslJSUQCATIzMxEUlIS0xGJiggNDYWXlxd0dXWf+9y4ceOQl5cnp1SEKD4dHZ0XDjfYv38/kpOTGRtuQAiRnz+3RXC5XGlbxKZNm3DlyhWFb4uIioqCn58f3N3dMW7cOOjr66O+vh5lZWUwNDTEzp07AQC1tbWYP38+Ixmph0/N2dnZ4fPPP4enp2eXtdzcXGzYsAGXLl1iINnLyc3NxdatW1FRUSH9bNiwYVi/fj24XC6DyYiqaGlpgY+PD8LDw2XuJhNCuqcMww0IIX2rqakJJ06cQGZmJkpKSjBq1Cj4+Phg7ty5MDAwkD6XlZWFqKgopfge2tLSgoyMDJSWlqKmpgYcDgdWVlbg8/nQ0tJiOh7t8Kk7a2trHDx4EB4eHp3OH0skEhw6dAjW1tYMpus9LpcLLpeLW7duob6+Hnp6ehg9ejTTsYgK0dLSQlVVFdhsaoEmpLfi4+MREhLSqdgDntwJGxQUhO3bt4PH48Hf3x+bNm1iKCUhpC+pYluElpYWFixYwHSMblHBp+ZWrVoFX19feHl5gcfjgcPhoLq6GllZWbh9+zbS0tKYjthj8fHx8PHxwdChQ2FiYgITExPpWnV1NdLT0xEcHMxgQqIqPDw88P3338PR0ZHpKIQoFWUYbkAI6Vuq2hZx8+ZNXL16FZWVleDz+eBwOLhz5w4MDQ2hra3NaDYq+NTcxIkTkZKSgm3btiE2NhZisRhsNhs2NjZISUmBjY0N0xF7bM+ePXBxcZHZEFtdXY09e/ZQwUdeCVtbW8TFxWHFihVwcXGBkZFRly+xssYzE6LulGG4ASGk77S0tCA9PR2jRo1SmbYIkUiEiIgInDx5Emw2G2KxGM7OzuBwONi+fTuMjY0RHh7OaEYq+Ajs7Oxw5MgRNDc3o6GhAbq6uhg4cCDTsXrtee2oNTU1L3yTREhPbdiwAQCQn5+P/Pz8LussFgu//PKLvGMRovCUYbgBIaTvqGJbRExMDAoLC5GUlAR7e/tOmyWurq5ISUmhgo8ojgEDBmDAgAFMx+gVgUAAgUAA4MmX7JiYGOjo6HR6prW1FaWlpbC1tWUiIlFBZ8+eZToCIUppzJgxEAqFnYYbjB8/Hu+9916n4QYffvghw0kJIX1F1doiTp06JR3k9uej6CNHjkR5eTlDyf5ABR9Ram1tbWhqagLwZIdPJBJ1eWvUv39/eHt7Y9myZUxEJCrozwMnCCE9p+jDDQghfUvV2iIeP34MDocjc00kEsk5jWxU8BGlxuPxwOPxAACLFi1CZGQkTeUkciGRSJCfn4/i4mI0NDRAT08P9vb2cHFx6XYoBSHkCUUebkAI6Vuq1hYxfvx4nD59WmZP4rlz52BpaclAqs6o4CMqQ5kmihLl1tDQgOXLl+PKlSvQ1dWVXh6dlJQEGxsbJCYmUs8oITIow3ADQkjfUrW2iMDAQAQGBkIkEoHL5YLFYqGkpAQCgQCZmZlISkpiOiJdvE5Ui1gsRmFhIW7duoXW1tZOaywWC0uWLGEmGFEpGzduxD/+8Q/ExsbCyclJ+nlBQQHCwsIwffp0bNmyhcGEhCimyMhInDlzBjExMdLhBpmZmbCwsEBmZiZSUlKQk5PDdExCCOmV3NxcbN26FRUVFdLPhg0bhvXr14PL5TKY7Akq+IjKqKmpwcKFC3Hnzh2wWCzp1M5nj9cp0xEBorimTJmCsLAw8Pn8LmsZGRmIjY1FYWEhA8kIUWwODg4IDw8Hj8dDR0eHtNCzsLBAYWEhAgMD8dNPPzEdkxDSx1S1LeLWrVuor6+Hnp6eQrUYqc5MVKL2oqOjoa+vj/z8fEgkEqSnpyMvLw9r1qzBm2++iVOnTjEdkagIkUgEIyMjmWscDkdhmrQJUTTKMNyAENK3Ghoa8MEHHyAgIABHjx5FUVERjh49ihUrVuBvf/sbGhsbmY7YK/Hx8aiqqgIAmJiYwNbWVlrsVVdXIz4+nsl4AKjgIyqkqKgI/v7+nb5MjBgxAgEBAfD29sbmzZsZTEdUiZmZGQ4cONBl/LJYLEZaWhrMzc0ZSkaIYns63EAWRRluQAjpWzExMbh79y6Sk5Px448/4vvvv8ePP/6I5ORk3L17FzExMUxH7JU9e/ZIC74/q66uxp49e+ScqCsa2kJUxqNHj2BgYAA2mw1tbW3U1dVJ154O0iDkVQgJCYG/vz/c3d3h5uYGIyMj1NXVQSgUora2Fvv27WM6IiEKSRmGGxBC+lZeXh7CwsI69cADgJOTE9auXYvY2Fil6oN/XndcTU2NQgxxo4KPqAxjY2NUV1cDeHK57/HjxzF9+nQAgFAoxODBgxlMR1TJpEmTcPjwYSQkJEAgEKCxsRF6enqws7NDQEAALCwsmI5IiEKaNm0a4uLisHXrVulwlqioKAwbNgyxsbFwcHBgOCEhpK+pQluEQCCAQCAA8GRWRExMDHR0dDo909raitLSUtja2jIRsRMq+IjKmDZtGgoKCjBr1iysXLkSQUFBcHBwgKamJmpraxEaGsp0RKJCLC0tFeJcPiHKhsvlgsvlKuxwA0JI33raFjF16lRoaGhIP1emtoi2tjY0NTUBeLLDJxKJwGZ37pTr378/vL29sWzZMiYidkJTOonKunr1KoRCIZqbm+Ho6AhXV1emIxFCiFqLj4+Hj48Phg4d2mWturoa6enpCA4OZiAZIURenp250F1bhL29PdMxe2zRokWIjIxU6BdXVPARQkgv+fr6drvGZrOho6MDMzMz8Pl8mV9sCVFXZmZmOHr0KCZMmNBlrbS0FD4+PnR9DiFqoLS0FAkJCSguLqa2CDmgI51EZVy8eBEVFRUy70Y7duwYRowYgSlTpjCQjKgaHR0dXLt2DTU1NRg/fjwMDQ1RV1eHsrIycDgcvPHGG9i/fz+Sk5ORmppKf3kR8n+UYbgBIaTvqVpbhFgsRmFhIW7duoXW1tZOaywWC0uWLGEm2P+hgo+ojB07dsDNzU3m2oMHD5Ceno4jR47IORVRRVwuF3fv3sXBgwcxcuRI6ef37t3DypUrwePxsHv3bvj5+SEuLg7JyckMpiWEWco23IAQQnqjpqYGCxcuxJ07d8BisaQvtp69QJ4KPkJekevXr2PNmjUy1ywsLJCQkCDnRERVxcfHIyQkpFOxBzyZFBsUFITt27eDx+PB398fmzZtYiglIYpB2YYbEEL6lqq1RURHR0NfXx+pqalwdXVFeno6jIyMkJ2djaysLIW4FowKPqIyWCwWHj16JHOtoaGhyyXZhLys+/fvd3pz9ywWiyW9gHXIkCH0+46oPR6PBx6PB0A5hhsQQvqWqrVFFBUVISIiAhwOR/rZiBEjEBAQAIlEgs2bN2Pv3r0MJgTYL36EEOVgbW2NgwcPdukRkUgkOHToEKytrRlKRlSNlZUVdu3ahfv373f6vLy8HLt375YOpCgvL1eKt5OEyEtaWhoVe4SoOS6XCx0dHZw+fRrHjh1DUlISjh07hlOnTkFHRwc8Hg9CoRBvvvkm4uLimI77Qo8ePYKBgQHYbDa0tbVRV1cnXbOxsUFxcTGD6Z6gHT6iMlatWgVfX194eXmBx+OBw+GguroaWVlZuH37NtLS0piOSFREVFQU/Pz84O7ujnHjxkFfXx/19fUoKyuDoaEhdu7cCQCora3F/PnzGU5LiGJR9OEGhJC+pWptEcbGxqiurgYAjBkzBsePH8f06dMBAEKhEIMHD2Yw3RNU8BGVMXHiRKSkpGDbtm2IjY2FWCwGm82GjY0NUlJSYGNjw3REoiLGjBkDoVCIjIwMlJaWSo+lvPfee+Dz+dDS0gIAfPjhhwwnJUSxKMNwA0JI31K1tohp06ahoKAAs2bNwsqVKxEUFAQHBwdoamqitrYWoaGhTEeke/iIampubkZDQwN0dXUxcOBApuMQQggBEBISgvLycuzcubPb4QZvvPEG0zEJIX1owYIFaGxsRGJiIoYPHy79vLy8HCtWrMDgwYNx4MABfPfdd0hISMCpU6cYTNt7V69ehVAoRHNzMxwdHeHq6sp0JCr4CCHkZd28eRNXr15FZWUl+Hw+OBwO7ty5A0NDQ2hrazMdjxCF4+LigoiICMycORPm5uZIT0+X9rx+9dVXKC4uZny4ASGkb924cQN+fn6or6+X2Raxf/9+jB49GklJSWCz2Vi6dCnTkZUeHekkhJBeEolEiIiIwMmTJ8FmsyEWi+Hs7AwOh4Pt27fD2NgY4eHhTMckROG8aLiBIowvJ4T0LVVri7h48SIqKirA5/O7rB07dgwjRozAlClTGEj2Byr4CCGkl2JiYlBYWIikpCTY29t36g91dXVFSkoKFXyEyKAMww0IIX1PS0sLCxYsYDrGK7Fjxw64ubnJXHvw4AHS09Nx5MgROafqjK5lIISQXjp16hRCQ0MxdepU9OvXr9PayJEjUV5ezlAyQhTb0+EGALBy5UoIhUI4ODjA2dkZhw4dwsKFCxlOSAiRl5s3byIrKwsJCQmoqakBANy5cwe///47w8l65/r167C0tJS5ZmFhgRs3bsg5UVe0w0cIIb30+PHjThesPkskEsk5DSHKIyQkRPprV1dXHD58WOGGGxBC+paqtUWwWCw8evRI5lpDQ4NCTBqlHT5CCOml8ePH4/Tp0zLXzp071+2bPkJIZ1ZWVvjoo4+wYcMGKvYIURPPtkUUFxfj2fmRrq6uuHDhAoPpes/a2hoHDx7En+dgSiQSHDp0CNbW1gwl+wPt8BFCSC8FBgYiMDAQIpEIXC4XLBYLJSUlEAgEyMzMRFJSEtMRCVFIyjDcgBDSt06dOoXw8HBMnTq1y+6XMrZFrFq1Cr6+vvDy8gKPxwOHw0F1dTWysrJw+/ZtpKWlMR2RdvgIIaS3pk2bhri4OBQXFyMoKAgSiQRRUVH4/vvvERsbCwcHB6YjEqKQduzY0Wky57MePHiAHTt2yDcQIUTuVK0tYuLEiUhJScGgQYMQGxuLsLAwbN++HTo6OkhJSek02I0ptMNHCCEvgcvlgsvl4tatW6ivr4eenh5Gjx7NdCxCFNr169exZs0amWsWFhZISEiQcyJCiLw9bYuYOnVqlzVlbYuws7PDkSNH0NzcjIaGBujq6mLgwIFMx5Kigo8QQnopPj4ePj4+GDp0KExMTGBiYiJdq66uRnp6OoKDgxlMSIhiUobhBoSQvqXKbREDBgzAgAEDmI7RBUvy5w5DQgghz2VmZoajR49iwoQJXdZKS0vh4+ODX375hYFkhCg2f39/tLe345tvvgGLxZJ+LpFIsHjxYrDZbKSkpDAXkBAiF7m5udi6dSsqKiqknw0bNgzr168Hl8tlMJlqoh0+Qgjppee9J6upqYGurq4c0xCiPJRhuAEhpO9RW4R80Q4fIYT0gEAggEAgAADk5+fD1tYWOjo6nZ5pbW1FaWkpbG1tqReJkG4UFxdj27ZtKCkpgVgsBpvNho2NDUJCQmBnZ8d0PEJIH3u2LeLPqC2ib1DBRwghPfDdd9/h2LFjAICioiKYm5tj0KBBnZ7p378/3nrrLSxbtkzmX2SEkD8o6nADQkjforYI+aMjnYQQ0gM8Hg88Hg8AsGjRIkRGRtLxE0L+AkUdbkAI6VvUFiF/VPARQkgvUZ8RIYQQ0nPPtkWwWCzExMQ8ty2CvFpU8BFCyEsQi8UoLCzErVu30Nra2mmNxWJhyZIlzAQjhBBCFExbWxuampoAPNnhE4lEYLPZnZ7p378/vL29sWzZMiYiqjTq4SOEkF6qqanBwoULcefOHbBYLOnxlGfHzFP/ASGEENIVtUXIH/vFjxBCCHlWdHQ09PX1kZ+fD4lEgvT0dOTl5WHNmjV48803cerUKaYjEkIIIQopLS2Nij05oyOdhBDSS0VFRYiIiACHw5F+NmLECAQEBEAikWDz5s3Yu3cvgwkJIYQQxUVtEfJFBR8hhPTSo0ePYGBgADabDW1tbdTV1UnXbGxskJiYyGA6QgghRHH1pC2CCr5Xi450EkJILxkbG6O6uhoAMGbMGBw/fly6JhQKMXjwYIaSEUIIIYqN2iLkjwo+QgjppWnTpqGgoAAAsHLlSgiFQjg4OMDZ2RmHDh3CwoULGU5ICCGEKKaioiL4+/vLbIvw9vbG5s2bGUynmuhIJyGE9FJISIj0166urjh8+DCEQiGam5vh6OgIV1dXBtMRQgghiovaIuSPCj5CCPmLrKysYGVlxXQMQgghROHJaouYPn06AGqL6Ct0pJMQQnrp4sWLyMzMlLl27NgxFBYWyjkRIYQQohyoLUL+6OJ1Qgjppffffx9ubm5Yvnx5l7W9e/dCKBTiyJEjDCQjhBBClMvVq1epLaKP0ZFOQgjppevXr2PNmjUy1ywsLJCQkCDnRIQQQohyoraIvkdHOgkhpJdYLBYePXokc62hoQEdHR1yTkQIIYQoB2qLkD8q+AghpJesra1x8OBB/PlEvEQiwaFDh2Btbc1QMkIIIUSx7dixo9Nkzmc9ePAAO3bskG8gNUBHOgkhpJdWrVoFX19feHl5gcfjgcPhoLq6GllZWbh9+zbS0tKYjkgIIYQoJGqLkD8q+AghpJcmTpyIlJQUbNu2DbGxsRCLxWCz2bCxsUFKSgpsbGyYjkgIIYQoJGqLkD+a0kkIIX9Bc3MzGhoaoKuri4EDBzIdhxBCCFFo/v7+aG9vxzfffAMWiyX9XCKRYPHixWCz2UhJSWEuoAqigo8QQgghhBAiF5cuXYKvry9GjRrVbVsEnZR5tajgI4QQQgghhMhNcXExtm3bhpKSkk5tESEhIbCzs2M6nsqhgo8QQgghhBAid9QWIR9U8BFCCCGEEEKIiqJ7+AghhBBCCCFERVHBRwghhBBCCCEqigo+QgghhBBCCFFRVPARQgghhBBCiIqigo8QQgghhBBCVBQVfIQQQgghhBCioqjgI4QQQgghhBAVRQUfIYQQQgghhKio/w9ZrTTf4VX9dAAAAABJRU5ErkJggg==\n"},"metadata":{}},{"output_type":"stream","name":"stdout","text":["Top 3 features with positive impact from Ridge Regression: Index(['category_Machine Learning and AI',\n"," 'category_Data Science and Research', 'experience_level'],\n"," dtype='object')\n","RMSE with Top 3 Positive Features: 54160.19601462955\n","R^2 Score with Top 3 Positive Features: 0.2184100340321904\n"]}]},{"cell_type":"markdown","source":["# LASSO REGRESSION"],"metadata":{"id":"NFn5KxA_DzQA"}},{"cell_type":"markdown","source":["## 1st Iteration:\n","Steps:\n","\n","Prepare Data: Split the data into training and testing sets.\n","\n","Train Model: Use a LASSO regression model.\n","\n","Evaluate Model: Assess its performance using evaluation metrics"],"metadata":{"id":"MkwvtsrCECtV"}},{"cell_type":"code","source":["from sklearn.linear_model import Lasso\n","from sklearn.metrics import mean_squared_error, r2_score\n","\n","# Split data into features and target\n","X = usd_salary_df.drop('salary', axis=1)\n","y = usd_salary_df['salary']\n","\n","# Split data into training and testing sets\n","X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)\n","\n","# Initialize and train the LASSO regression model\n","lasso_model = Lasso(alpha=10, max_iter=15000)\n","lasso_model.fit(X_train, y_train)\n","\n","# Predict on the test set\n","y_pred = lasso_model.predict(X_test)\n","\n","# Evaluate the model\n","rmse = np.sqrt(mean_squared_error(y_test, y_pred))\n","r2 = r2_score(y_test, y_pred)\n","\n","print(\"RMSE:\", rmse)\n","print(\"R^2 Score:\", r2)\n"],"metadata":{"colab":{"base_uri":"https://localhost:8080/"},"id":"tv02t9AeEe_C","executionInfo":{"status":"ok","timestamp":1714691874066,"user_tz":300,"elapsed":166,"user":{"displayName":"Jenny O","userId":"07622373657144372939"}},"outputId":"6139de60-15b7-4f5b-9f08-d10b57d53eb1"},"execution_count":null,"outputs":[{"output_type":"stream","name":"stdout","text":["RMSE: 50540.560299716315\n","R^2 Score: 0.26220267260895525\n"]}]},{"cell_type":"markdown","source":["## 2nd Iteration: Handling Outliers in Salary\n","Steps:\n","\n","Modify Data: Replace outliers in the salary column.\n","\n","Train and Evaluate Model: Using the same steps as the first iteration."],"metadata":{"id":"AnaOMl1oFdlz"}},{"cell_type":"code","source":["# Replace outliers in the salary column\n","usd_salary_df['salary'] = usd_salary_df['salary'].apply(lambda x: min(x, 310000))\n","\n","# Re-split the data (this step is necessary as the target has changed)\n","X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)\n","\n","# Re-train the LASSO model\n","lasso_model.fit(X_train, y_train)\n","\n","# Re-predict and re-evaluate\n","y_pred = lasso_model.predict(X_test)\n","rmse = np.sqrt(mean_squared_error(y_test, y_pred))\n","r2 = r2_score(y_test, y_pred)\n","\n","print(\"RMSE with Outlier Adjustment:\", rmse)\n","print(\"R^2 Score with Outlier Adjustment:\", r2)"],"metadata":{"colab":{"base_uri":"https://localhost:8080/"},"id":"obMbd7XNGCIu","executionInfo":{"status":"ok","timestamp":1714691874259,"user_tz":300,"elapsed":9,"user":{"displayName":"Jenny O","userId":"07622373657144372939"}},"outputId":"4502c4fb-a377-46e0-a4d4-fdc3bf341975"},"execution_count":null,"outputs":[{"output_type":"stream","name":"stdout","text":["RMSE with Outlier Adjustment: 50540.560299716315\n","R^2 Score with Outlier Adjustment: 0.26220267260895525\n"]}]},{"cell_type":"markdown","source":["## 3rd Iteration: Feature Importance and Model Simplification\n","Steps:\n","\n","Identify Feature Importance: Using model coefficients from the LASSO model.\n","\n","Select Top 3 Features: Based on the largest positive coefficients.\n","\n","Rebuild and Train Model: Using only top features.\n","\n","Evaluate Model Performance."],"metadata":{"id":"cL_XRWGOQzWR"}},{"cell_type":"code","source":["\n","# Get feature importances (coefficients) from the LASSO model\n","feature_importance_df = pd.DataFrame({\n"," 'Feature': X_train.columns,\n"," 'Coefficient': lasso_model.coef_\n","})\n","\n","# Sorting the DataFrame based on coefficient values for better visualization\n","sorted_feature_importance_df = feature_importance_df.sort_values('Coefficient', ascending=False)\n","\n","# Creating the bar chart for all coefficients\n","plt.figure(figsize=(10, 6))\n","plt.barh(sorted_feature_importance_df['Feature'], sorted_feature_importance_df['Coefficient'], color='dodgerblue')\n","plt.xlabel('Coefficient Value')\n","plt.ylabel('Features')\n","plt.title('Feature Importance in LASSO Regression')\n","plt.show()\n","\n","# Filter to get only features with a positive impact\n","positive_feature_importance = feature_importance_df[feature_importance_df['Coefficient'] > 0]\n","top_3_positive_features = positive_feature_importance.nlargest(3, 'Coefficient')['Feature']\n","print(\"Top 3 features with positive impact from LASSO Regression:\", top_3_positive_features)\n","\n","# Train a new model using only the top 3 features\n","X_train_top3 = X_train[top_3_positive_features]\n","X_test_top3 = X_test[top_3_positive_features]\n","\n","lasso_model_top3 = Lasso(alpha=0.01, max_iter=10000)\n","lasso_model_top3.fit(X_train_top3, y_train)\n","\n","# Predict on the test set using the top 3 positive features\n","y_pred_top3 = lasso_model_top3.predict(X_test_top3)\n","\n","# Evaluate the model\n","rmse_top3 = np.sqrt(mean_squared_error(y_test, y_pred_top3))\n","r2_top3 = r2_score(y_test, y_pred_top3)\n","\n","print(\"RMSE with Top 3 Features:\", rmse_top3)\n","print(\"R² Score with Top 3 Features:\", r2_top3)"],"metadata":{"colab":{"base_uri":"https://localhost:8080/","height":534},"id":"tZAf-J7WRN9Q","executionInfo":{"status":"ok","timestamp":1714691875698,"user_tz":300,"elapsed":811,"user":{"displayName":"Jenny O","userId":"07622373657144372939"}},"outputId":"398ab9cb-1ca9-40db-f888-2e183c634de7"},"execution_count":null,"outputs":[{"output_type":"display_data","data":{"text/plain":["
"],"image/png":"iVBORw0KGgoAAAANSUhEUgAABIEAAAIsCAYAAABlZLnLAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOzdeVxO6f/48dddopqEqGyDLGVpt2QpS8j+GSKyZMmSyTZo0IxhGDOMnTK2GYSxlyQz+Qw+YsxgjGbINhhbsjSFNIWW+/dHv87X7S4VLej9fDx6jM657uu87/c5p+l+d13XUanVajVCCCGEEEIIIYQQ4p2mU9wBCCGEEEIIIYQQQojCJ0UgIYQQQgghhBBCiBJAikBCCCGEEEIIIYQQJYAUgYQQQgghhBBCCCFKACkCCSGEEEIIIYQQQpQAUgQSQgghhBBCCCGEKAGkCCSEEEIIIYQQQghRAkgRSAghhBBCCCGEEKIEkCKQEEIIIYQQQgghRAkgRSAhhBBCCCHeYlZWVgQEBBR3GOItFxAQgJWVVXGHIYQoZFIEEkIIIYR4iZCQEKysrLL9WrhwYaEc8/Tp0wQEBJCYmFgo/b+OrHycPXu2uEN5Zd9//z0hISHFHcYba9q0aTg4OOS5fWJiIjY2NlhZWXH16tUc2x06dIhBgwbRokUL7OzsaN++PRMmTODIkSMa7RISEpgzZw6dO3fG1taWFi1a0KdPHxYsWMC///6r1e///vc/hg8fjpOTEzY2NnTq1Imvv/6aBw8e5Cn+F+/xhg0b4uLiwrRp07h3716e8yCEEG+DUsUdgBBCCCHE22D8+PFUr15dY5ulpWWhHCsqKorAwEB69eqFsbFxoRyjJNu6dSsVKlTA3d29uEMpEGfOnEFXV7fYjh8REYFKpcLU1JSwsDAmTpyo1ea7775j/vz5NGvWDB8fH/T19blx4wa//vorP/zwA61btwbg4cOH9O7dm6SkJHr37k3t2rV5+PAhly5dYuvWrfTv35/33ntP6ffrr79m3bp11K9fnxEjRlC+fHnOnTvH5s2b2bdvHxs2bKB27dp5eh9Z9/izZ8/4448/2L17N7///jvh4eGUKVOmYJL1Bvvwww8ZNWpUcYchhChkUgQSQgghhMiD1q1bY2NjU9xhvJbk5GQMDQ2LO4xik5KSgoGBQXGHUeCKu0ARFhZGmzZtqFq1KuHh4VpFoLS0NL755htatWrFunXrtF4fHx+v/HvXrl3ExsaydetWHB0dNdolJSWhp6enfB8eHs66devo2rUrCxcuVAphHh4euLu7M3jwYCZMmMDu3bspVSr3jz3P3+MeHh5UqFCBtWvXcvDgQbp27Zr3hLwmtVrN06dP0dfXL7JjApQqVSpPeRJCvN1kOpgQQgghRAGIjIxkwIAB2Nvb4+DgwKhRo7h8+bJGm4sXLzJt2jTat2+PjY0NrVq1wt/fX2PaSkBAAPPnzwegffv2yhSVmJgYYmJisLKyynYq04vrwmSt73HlyhUmT55M06ZNGTBggLJ/z549uLu7Y2trS7NmzZg4cSJ37tx5pfeeNX0oNjYWHx8fHBwccHFx4fvvvwfg0qVLDB48GHt7e9q1a8fevXs1Xp81Hee3335jxowZODk54ejoyJQpU3j06JHW8b7//nu6deuGtbU1zs7OzJo1S2vqnJeXF927dyc6OpqBAwdiZ2fH4sWLcXV15fLly5w8eVLJrZeXF5A5CuXrr7+mR48eODg44OjoyIgRI7h48aJG3ydOnMDKyooffviBlStXKsWDIUOGcOPGDa14//zzT0aOHEnTpk2xt7enR48eBAUFabS5evUq48ePp1mzZtjY2ODu7s7BgwfzlP+czv2NGzeYNm0aTZo0oXHjxvj7+5OSkpKnPvMqNjaWU6dO0bVrV7p160ZMTAynT5/WaPPgwQOSkpK0ijpZKlasqPz75s2b6OrqYm9vr9XOyMhIo+AVGBhIuXLl+OKLL7RGQtna2jJixAj++usv9u/f/0rvrUmTJgDcunVLY3tez9XFixcZNGgQtra2tG7dmm+++Ybg4GDlfs7i6uqKj48PR48eVe7Jbdu2AZlT7b788kvatGmDtbU1HTt2ZM2aNWRkZGgca9++fbi7uyvX7YvXWGpqKoGBgbi5uWFjY4OTkxP9+/fn2LFjSpvs1gRKS0tjxYoVdOjQAWtra1xdXVm8eDHPnj3TaJf1Hk6dOkWfPn2wsbGhffv2hIaG5iPjQoiiIKVeIYQQQog8SEpKIiEhQWObiYkJAKGhoUybNg1nZ2f8/PxISUlh69atDBgwgN27dyvTyH755Rdu3bqFu7s7pqamXL58mR07dnDlyhV27NiBSqWiY8eOXL9+nfDwcPz9/alQoYJyrBePnxcTJkygZs2aTJw4EbVaDcDKlStZtmwZXbp0oU+fPiQkJLB582YGDhxIaGjoK01BS09PZ+TIkTRp0gQ/Pz/27t3L7NmzMTAwYMmSJfTo0QM3Nze2bdvG1KlTsbe35/3339foY/bs2RgbGzN27FiuXbvG1q1biY2NZdOmTahUKiDzg2pgYCAtW7akf//+SruzZ8+ydetWjZEiDx8+ZOTIkXTr1o3//Oc/VKxYEScnJ7744gsMDQ0ZPXo0AJUqVQIyP+wfOHCAzp07U716df755x+2b9/OoEGD2LdvH+bm5hrxrl27FpVKhbe3N0lJSXz77bf4+fmxc+dOpc2xY8fw8fHBzMyMwYMHU6lSJa5evcrhw4cZMmQIAJcvX6Z///6Ym5szcuRIDA0N+fHHHxkzZgwBAQF07Ngx3+cD4KOPPqJ69epMmjSJ8+fPs3PnTkxMTPj4449fqb/shIeHY2BgQLt27dDX16dGjRrs3btXo+BTsWJF9PX1lTWBypcvn2N/1apVIz09nT179tCrV68c212/fp1r167h7u6OkZFRtm169uxJQEAA//vf/+jWrVu+39vt27cBNO6HvJ6re/fuKed31KhRGBoasnPnTkqXLp3tsa5du8bkyZPp168fffv2xcLCgpSUFAYNGsS9e/fw9PSkSpUqREVFsXjxYuLi4vj000+BzGts0qRJtGjRAj8/PwD+/vtvTp8+rcQQGBjI6tWr8fDwwNbWlqSkJKKjozl37hytWrXKMQfTp09n9+7ddOrUiWHDhnHmzBlWr17N1atXWbFihUbbGzduMGHCBPr06UOvXr0IDg5m2rRpNGrUiHr16uU7/0KIQqIWQgghhBA5Cg4OVltaWmb7pVar1UlJSeomTZqop0+frvG6uLg4dePGjTW2p6SkaPUfHh6utrS0VP/222/Ktm+//VZtaWmpvnXrlkbbW7duqS0tLdXBwcFa/VhaWqqXL1+ufL98+XK1paWletKkSRrtYmJi1A0aNFCvXLlSY/ulS5fUDRs21NqeUz7OnDmjbJs6dara0tJSvWrVKmXbo0eP1La2tmorKyv1vn37lO1Xr17VijWrz169eqmfPXumbF+7dq3a0tJSfeDAAbVarVbHx8erGzVqpPb29lanp6cr7TZv3qy2tLRU79q1S9k2aNAgtaWlpXrr1q1a76Fbt27qQYMGaW1/+vSpRr9qdWbOra2t1YGBgcq248ePqy0tLdVdunRRP336VNkeFBSktrS0VF+6dEmtVqvVaWlpaldXV3W7du3Ujx490ug3IyND+feQIUPU3bt31+grIyND3a9fP7Wbm5tWnC/K6dz7+/trtBszZoy6WbNmufY3depUtb29fa7t1Gq1unv37urJkycr3y9evFjt5OSkTk1N1Wi3bNkytaWlpdre3l49YsQI9cqVK9XR0dFa/cXFxambN2+utrS0VHfu3Fk9Y8YM9d69e9WJiYka7X766Se1paWlev369S+Nz9HRUd2rV6+Xtsm6/n755Rd1fHy8+s6dO+qIiAh18+bN1dbW1uo7d+4obfN6rr744gu1lZWV+vz588q2Bw8eqJs1a6Z1b7dr105taWmpPnLkiEZcK1asUNvb26uvXbumsX3hwoXqBg0aqGNjY9VqtVo9Z84ctaOjozotLS3H9/if//xHPWrUqJfmIeu6yXLhwgW1paWl+tNPP9VoN2/ePLWlpaX6119/1XoPz/8ci4+PV1tbW6vnzZv30uMKIYqWTAcTQgghhMiDGTNmsH79eo0vyBzdk5iYSLdu3UhISFC+dHR0sLOz48SJE0ofz6/x8fTpUxISErCzswPg3LlzhRK3p6enxvc//fQTGRkZdOnSRSPeSpUqUbNmTY1488vDw0P5t7GxMRYWFhgYGNClSxdle+3atTE2NtaaYgPQr18/jZE8/fv3p1SpUkRGRgKZuU5NTWXw4MHo6Pzfr7EeHh4YGRkp7bKULl06X4s/ly5dWuk3PT2dBw8eYGhoiIWFBefPn9dq7+7urjGy48XpQ+fPnycmJobBgwdrja7KGtn08OFDjh8/TpcuXZTRZgkJCTx48ABnZ2euX7/+yk+oevHcN2nShIcPH5KUlPRK/b3o4sWL/PXXX3Tv3l3Z1q1bNx48eMDPP/+s0Xb8+PEsWrSIBg0a8PPPP7NkyRLc3d3p1auXxhPFKlWqxJ49e/D09CQxMZFt27YxefJkWrRowYoVK5TRbFlPCXt+kejsvPfee3l+v0OHDqVFixa0adOG8ePHY2BgwMqVK6lcuTKQv3N19OhR7O3tadCggdJ/+fLl6dGjR7bHrl69Oi4uLhrbIiIiaNy4McbGxhr3asuWLUlPT+e3334DMu+1lJQUjaldLzI2Nuby5ctcv349T7kAlPtp2LBhGtu9vb019mepW7eucg9A5uhFCwuLbO91IUTxkelgQgghhBB5YGtrm+3C0FkfqrKmXbzo+akqDx8+JDAwkB9++EFjMVyAx48fF1ywz3nxiWbXr19HrVbj5uaWbftXXRi2TJkyyvS4LGXLlqVy5cpKweP57S+u4QNQs2ZNje/fe+89TE1NlWk5sbGxAFpPeypdujTvv/++0i6Lubl5jtNvspORkcHGjRvZsmULMTExpKenK/uym8JUtWpVje+zCj1Z7y3rw+/LniJ38+ZN1Go1y5YtY9myZdm2iY+P15qKlhc5xffo0aMcp1DlR1hYGIaGhrz//vvKWkhlypShWrVq7N27l7Zt22q07969O927dycpKYk///yTkJAQwsPDGT16tMYTuMzMzJg1axaff/45169f5+eff2bt2rUsX74cMzMzPDw8lOJPdo+Mf96///6rsebQy8yYMQMLCwseP35McHAwv/32m8b1k59zdfv27WzXNapRo0a2r3vxPoXM6VWXLl2iRYsW2b4ma3rogAED+PHHHxk5ciTm5ua0atWKLl26KE9cg8winK+vL506dcLS0hJnZ2c++OAD6tevn2M+bt++jY6OjlbMpqamGBsba91vVapU0eqjXLly2a7rJYQoPlIEEkIIIYR4DVkjE+bPn4+pqanW/ucXrP3oo4+Iiopi+PDhNGjQAENDQzIyMhgxYoTSz8u8WEzJ8nyx4kUvPjkqIyMDlUrF2rVrs32s+Ks+PSynR5TntD0v7/d15ffpSqtWrWLZsmX07t2bCRMmUK5cOXR0dPjqq6+yjff50UjPy897y1rg19vbW2skSJacCge5KYj4cqJWq9m3bx/JycnZPjkrISGBf//9N9uROkZGRrRq1YpWrVqhp6fH7t27+fPPP2nWrJlGO5VKhYWFBRYWFrRt2xY3NzfCwsLw8PCgTp06QOai4zm5ffs2SUlJStvcPF/o7dChAwMGDGDy5MlERETw3nvvFeq5yu5azcjIoFWrVowYMSLb19SqVQvIXHMpNDSUn3/+mSNHjnDkyBFCQkLo2bMnX3/9NQBNmzblp59+4uDBgxw7doxdu3YRFBTErFmzNEbwZSennzsvyuleF0K8WaQIJIQQQgjxGrIWN65YsSItW7bMsd2jR4/49ddfGTduHGPHjlW2Zzc9I6cPXeXKlQPQGkWTNUImL2rUqIFaraZ69epYWFjk+XVF4caNGzRv3lz5/t9//yUuLk4Z0ZA1suXvv//WWFT62bNnxMTEvDT/z8spv/v378fJyYmvvvpKY3tiYqKyQHd+ZMX4119/5RhbVhs9Pb08x/8mOHnyJHfv3mX8+PFaRZbExEQ+++wzDhw4wAcffPDSfqytrdm9ezdxcXEvbff+++9jbGystLOwsKBWrVocPHiQpKSkbEc2ZT2Zql27dvl4Z5l0dXWZNGkSgwcP5vvvv2fUqFH5OlfVqlXL9klxN2/ezHMMNWrUIDk5OU/XRenSpXF1dcXV1ZWMjAw+//xztm/fjq+vrzLCrnz58vTu3ZvevXvz77//MmjQIAICAnIsAlWrVo2MjAxu3LihcY7/+ecfEhMTqVatWp7fixDizSFrAgkhhBBCvAYXFxeMjIxYvXo1qampWvuzpmzk9FfyFx8VDmBgYABoTxEzMjKiQoUKnDp1SmP7li1b8hyvm5sburq6BAYGao0IUavVGo+rL2rbt2/XyOHWrVtJS0tTikAtW7ZET0+PTZs2acS+a9cuHj9+TJs2bfJ0HAMDg2yno+nq6mrl5Mcff3zlNXkaNWpE9erV2bhxo9bxso5TsWJFmjVrxvbt27l//75WH6/yRLiikDUVbMSIEXTu3Fnjq2/fvtSqVYu9e/cCkJKSQlRUVLb9HDlyBEApSP75558kJydrtTtz5gwPHz7UKFyOGTOGR48eMXPmTK3RcNHR0Xz77bdYWlrmOPUxN05OTtja2hIUFMTTp0/zda6cnZ35448/uHDhgrLt4cOHSk7yokuXLkRFRXH06FGtfYmJiaSlpQFo3bM6OjrKo96zHuX+Ypv33nuPGjVqaD3q/XlZ99OLP6Oy1kPL6/0mhHizyEggIYQQQojXYGRkxOeff86UKVNwd3ena9eumJiYEBsbS2RkJI6OjsyYMQMjIyOaNm3Kt99+S2pqKubm5hw7doyYmBitPhs1agTAkiVL6Nq1K3p6erRr1w5DQ0M8PDxYs2YNn376KdbW1pw6dYpr167lOd4aNWrw0UcfsWjRIm7fvk2HDh147733iImJ4cCBA/Tt25fhw4cXWH7yIzU1laFDh9KlSxeuXbvGli1baNy4Me3btwcyF5r18fEhMDCQESNG4OrqqrSzsbHhP//5T56O06hRI7Zu3co333xDzZo1MTExoUWLFrRt25YVK1bg7++Pg4MDf/31F3v37tV6lH1e6ejo8Pnnn/Phhx/Ss2dP3N3dMTU15e+//+bKlSt89913AMycOZMBAwbQo0cP+vbty/vvv88///zDH3/8wd27dwkLC3ul47+O1NRUvvnmG63t5cqVw8PDg//+97+0bNlSa7phFldXVzZu3Eh8fDwqlQpPT0/s7e1xcXGhcuXKPH78mAMHDnDq1Ck6dOhAw4YNAdizZw979+6lQ4cOWFtbo6enx9WrVwkODqZMmTKMHj1aOcZ//vMfzp49y8aNG7l69So9evTA2NiY8+fPExwcTPny5Vm2bJnGYuP5NXz4cCZMmEBISAj9+/fP87kaMWIEYWFhDBs2jEGDBimPiK9SpQoPHz7M0xSr4cOHc+jQIUaPHk2vXr1o1KgRKSkp/PXXX+zfv5+DBw9iYmLC9OnTefToEc2bN8fc3JzY2Fg2b95MgwYNlBE83bp1o1mzZjRq1Ijy5ctz9uxZ9u/fz6BBg3I8fv369enVqxfbt28nMTGRpk2bcvbsWXbv3k2HDh00Ru0JId4eUgQSQgghhHhNPXr0wMzMjDVr1vDdd9/x7NkzzM3NadKkicbTqRYtWsQXX3zBli1bUKvVtGrVirVr12qtL2Jra8uECRPYtm0bR48eJSMjg4MHD2JoaMiYMWNISEhg//79/Pjjj7Ru3Zpvv/02x8VjszNq1Chq1arFhg0bWLFiBQCVK1emVatWuLq6FkxSXsGMGTPYu3cvy5cvJzU1lW7dujF9+nSND8zjxo3DxMSEzZs3M3fuXMqVK0ffvn2ZNGlSnj/sjxkzhtjYWL799lv+/fdfmjVrRosWLRg9ejQpKSns3buXH374gYYNG7J69WoWLVr0yu/JxcWFoKAgVqxYwbp161Cr1bz//vv07dtXaVO3bl2Cg4MJDAxk9+7dPHz4EBMTExo2bMiYMWNe+divIzU1NdvFj2vUqIGpqSmJiYkvnWbVrl071q1bx759+xgwYABz5szh8OHDhISEEBcXh66uLhYWFkyZMgUvLy/ldf369UNfX5/jx49z6NAhkpKSqFChAq1atcLHx0cpFmX59NNPcXJyYsuWLaxevZqUlBSqVKnCwIEDGTlypNZi5fnl5uZGjRo1WLduHX379s3zuapSpQobN25kzpw5rF69GhMTEwYOHIiBgQFz5szJsXj2PAMDAzZt2sTq1auJiIggNDQUIyMjatWqxbhx4yhbtiyQWQzbsWMHW7ZsITExEVNTU7p06cK4ceOUdaG8vLw4dOgQx44d49mzZ1StWpWPPvoo14LvnDlzqF69Ort37+bAgQNUqlQJHx8fjSmtQoi3i0pdFKvyCSGEEEIIkYOQkBD8/f3ZtWtXtk9gE+Jd8eWXX7J9+3aioqJkIWUhRLGQNYGEEEIIIYQQooA9efJE4/sHDx4QFhZG48aNpQAkhCg2Mh1MCCGEEEIIIQpYv379aNasGXXq1OGff/4hODiYpKQkfH19izs0IUQJJkUgIYQQQgghhChgbdq0Yf/+/ezYsQOVSkXDhg358ssvadq0aXGHJoQowWRNICGEEEIIIYQQQogSQNYEEkIIIYQQQgghhCgBpAgkhBBCCCGEEEIIUQLImkBCCPGWioqKQq1Wo6enV9yhCCGEEEIIIYpRamoqKpUKBweHl7aTkUBCCPGWUqvVyLJuBUOtVvPs2TPJZyGTPBcNyXPRkDwXDclz0ZA8Fw3Jc+EryTnO62cDGQkkhBBvqawRQDY2NsUcydsvOTmZCxcuULduXQwNDYs7nHeW5LloSJ6LhuS5aEiei4bkuWhIngtfSc7x2bNn89RORgIJIYQQQgghhBBClABSBBJCCCGEEEIIIYQoAaQIJIQQQgghhBBCCFECSBFICCGEEEIIIYQQogSQIpAQQgghhBBCCCFECSBFICGEEEIIIYQQQogSQIpAQgghhBBCCCGEECWAFIGEEEIIIYQQQgghSgApAgkhhBBCCCGEEEKUAFIEEkIIIYQQQgghhCgBpAgkhBBCCCGEEEIIUQJIEUgIIYQQQgghhBCiBJAikBBCCCGEEEIIIUQJIEUgIYQQQgghhBBCiBJAikBCCCGEEEIIIYQQJYAUgYQQQgghhBBCCCFKACkCCSGEEEIIIYQQQpQAUgQSQgghhBBCCCGEKAGkCCSEEKLEU6lUGBgYoFKpijuUd5rkuWhInouGSqVCT0+vuMMQQggh8qVUcQcghBDi3ZCeAbpv6Z8WDAwMaNiwYXGH8c6TPBcNyXPRMDAwoEEja9KePS3uUIQQQog8kyKQEEKIAqGrAxMi4EpCcUcihBCFr64JLOusQ1pxByKEEELkgxSBhBBCFJgrCRAdV9xRCCGEEEIIIbLzlg7cF0IIIYQQQgghhBD5IUUgIYQQQgghhBBCiBJAikBCCCGEEEIIIYQQJYAUgV5TSEgIe/fuLe4wCp2VlZXyZW1tjbOzM8OHD2fnzp2kpqa+Up8BAQGcPn26QONMT09n8+bN9OrVCzs7O5o0acLQoUP5+eefC/Q4L/Ly8sLHx0f5PiAgAAcHB+X7mJgYAgICuHfvXqHGUZA++OADpk2blmu7F3PeuHFjhgwZQmRkZBFE+epyundfPJdCCCGEEEII8a6QItBr2r17N+Hh4cUdRpHw8vJi+/btbNiwgU8++QQzMzM+//xzBg4cSFJSUr77CwwMJCoqqsDiy8jIYNy4ccybN4/mzZuzatUq5s+fT9myZRk+fDibN28usGPlxsPDg6CgIOX727dvExgYyP3794sshqKQXc4XLFiAsbExo0aNYt26dcUdYo5yundnzpzJ1KlTiyEiIYQQQgghhChc8nSwd9iTJ0/Q19cvsP6qVKmCvb298n3Xrl3p0qULPj4+zJs3jzlz5hTYsV7F5s2bOXjwIHPnzsXd3V3Z7urqytSpU5k7dy7NmjXD0tKy0GOpXLkylStXLvTjFLfccr5w4UJatGhBgwYNiiSegrjm69atW0DRCCGEEEIIIcSbpUSPBIqKisLb2xtHR0ccHBzw8PDg2LFjyv6FCxfSo0cPHBwccHFxYdKkSRojOby8vDh58iSHDx9WpkoFBAQo+w8fPoyHhwe2trY0b96cmTNnkpycrBHD5cuXGThwIDY2Nri5uREWFoavry9eXl4a7X777Tc8PT2xtbXFyckJf39/Hj58qOyPiYnBysqKkJAQpk+fjpOTEx4eHmzatAk7OzutkTpXr17FysrqtafstG7dGjc3N0JDQ5Vj3L9/H39/f9q3b4+trS1ubm4sXryYZ8+eKa+zsrICYP78+UruTpw4AcC6devo3bs3jRs3pkWLFvj4+HDt2rVcYwkKCsLCwoKePXtq7Rs/fjyAxmggV1dXZs+erdHuwIEDWFlZERMTo2zL7TrIzvPTwU6cOMHgwYMB6NOnj/J+U1NTadWqFUuWLNF6/UcffUSfPn1y7D8vOYbMPK9du5aAgABatmypXDsvXoenT5/G3d0dGxsbunfvnufrIrecq1QqNm3apGzLmmoVGhpKhw4dsLW1xcvLi7///lvjtWq1mu+++45OnTphbW1N+/bt2bBhg0abrByfOXOGfv36YWNjw/fffw+83r2b3XSwvN5/e/bsYfbs2TRt2hRnZ2e+/vpr0tLSlHZ3795lwoQJtGzZEhsbG1xdXfnqq6/ylGshhBBCCCGEeF0ldiTQ77//zpAhQ7C3t2fOnDkYGxsTHR1NbGys0iY+Ph4fHx/MzMxISEhg/fr1eHl5sW/fPkqVKsXMmTP5+OOP0dfXV6aPZI3+iIiIYOLEibi7uzNu3Dji4uJYtGgRiYmJyof+J0+e4O3tjbGxMQsWLABgxYoVJCYmUqNGDSWO6Ohohg0bhpOTE8uWLeOff/5h0aJFXLlyhW3btqGrq6u0Xbx4MW3atGHRokVkZGRgZ2fHggULCA8Px9PTU2m3a9cuzM3NcXZ2fu1cOjs7ExERwfnz52nWrBkPHjygfPny+Pv7Y2xszPXr1wkICCAuLo65c+cCsH37dvr164eXlxfdu3cH/m8Ext27dxk0aBBVq1YlKSmJbdu24enpyf79+ylfvny2Mdy5c4eYmBiGDRuGjo52bbNatWoahab8yO06yE2jRo2YMWMGs2fPZu7cudSuXRsAPT09evXqRWhoKBMmTFDifvjwIQcPHuTTTz/Nsc+85DjL999/T+PGjZk3bx7Xr19n/vz5VKxYET8/PwDi4uIYPnw4VlZWLF26lMTERGbNmkVycvJLR/DkNeenTp3S2H7u3Dlu3rzJ5MmTAVi6dCkjRowgIiKC0qVLA/Dll1+yc+dORo8ejZ2dHadPn2bhwoWUKVOG/v37K32lpqYyefJkhg4dysSJE5Xr43Xu3Rfl5/5bunQp7du3Z+nSpURFRREQEECNGjWUmKdMmcL9+/eZPn06FStW5M6dO0RHR+eYYyGEEEIIIYQoSCW2CLRgwQJq1qxJUFCQ8iHuxYLI8x+m09PTcXBwoHXr1hw/fhxnZ2fq1q2LkZERhoaGGtOk1Go18+fPp2vXrnz55ZfKdlNTU0aNGoWvry/16tUjODiY+Ph4tm7dSvXq1QGwtrbGzc1Nowi0atUqTE1NWbVqFXp6ekDm1Kzhw4cTGRmJq6ur0rZ+/foaxwTo1KkTwcHBShEoLS2NsLAw+vTpo/EB9lVlfXj+559/gMzRJ8+vqeLo6IiBgQHTpk1jxowZGBgYKPl6cYoZwCeffKL8Oz09nVatWtGiRQv2799Pv379so0ha8HlKlWq5BhnlSpVNEZ65VVu10FujIyMlAJXvXr1sLGxUfZ5eHjw7bffcvToUdq0aQPA3r170dHRUYpj2clLjrOYmpqyaNEiIHPk1vnz59m/f79SBAoKCkKlUrF27VrKli0LZJ7ToUOHvvR95TXnR48e1dgWHx/P5s2bqVWrFgANGzakc+fOhISE4Onpyc2bN9m8eTOzZs1SznfLli158uQJK1asoF+/fkrRKTU1lYkTJ9K1a1eNY7zqvZud/Nx/tra2TJ8+HYBWrVpx4sQJ9u/frxSBzp49y6RJkzTizW4UVX6o1WqtkV3FQaVSaVx3QghRUjx9+hS1Wl3cYbyzUlJSNP4rCofkuWhIngtfSc6xWq1GpVLl2q5EFoFSUlL4888/mTRp0kuLIJGRkaxcuZLLly9rTKe6fv36Sz/8X7t2jdu3b/PJJ59oTAVp1qwZOjo6REdHU69ePaKjo7G0tFQKQADVq1enfv36Gv2dOnWK7t27Kx9AIbNgZWxszO+//67xIbRt27Za8fTt25dBgwZx+fJl6tWrR2RkJPHx8fTu3TvH95AfL/7io1arCQoKYseOHcTExPD06VNl361bt3Jdk+ePP/5g2bJlnD9/XmPKzfXr11871rzcFC961esgL2rWrEmzZs0IDg5WikAhISF06tQJIyOjHF+Xnxy3bNlS47V16tRh3759yvd//vknTk5OSgEIoEWLFjmOunpd9erVUwpAkJmD+vXr8+eff+Lp6ckvv/wCgJubm8b907JlS9auXcudO3eoVq2asj0rb88ryHOWn/vvxb7r1KnD8ePHle8bNmzIunXr0NXVpVWrVtSsWTNfsWQnNTWVCxcuvHY/r8vAwICGDRsWdxhCCFHkYmNjS+SHjaJWEL8HitxJnouG5LnwldQcZ82seJkSWQRKTEwkIyMDMzOzHNucOXMGX19f2rdvz8iRI6lYsSIqlYq+fftqfODOzoMHDwAYM2ZMtvvv3LkDZK7rYmJiorXfxMRE4xiJiYlUrFhRq13FihV59OiR1rYXNW3aFAsLC3bt2oW/vz/BwcE0bdpUY7TR68gaEWJqagpkjiz5+uuvGTFiBE5OThgbG3P27Flmz56da+5iY2Px9vbG2tqaWbNmYWZmhp6eHj4+Pi99bdZopKzcZufOnTsvPefZeZ3rIK/69u3LtGnTSEhI4P79+5w/fz7XR7PnJ8fGxsYa3+vp6WmsHRQXF5dtMSK7a/N55ubmQO45f3GaVU7XclxcHJB5/6jVapo3b55jn1lFIAMDA9577z2N/QV9zvJz/z1fSAPtXC9ZsoQlS5awdOlSZs2ahYWFBZMmTcLNzS3fcT1/jDdhMetXKbAKIcS7oGrVqnn6pVu8mpSUFK5fv06tWrVkxGkhkjwXDclz4SvJOb5y5Uqe2pXIIlDZsmXR0dF56eK+Bw4cwMjIiKVLlypTT27fvp2n/rNGUMyYMQNbW1ut/VmFCDMzs2z/gp+QkKDxwbZcuXLEx8drtYuPj6dcuXIa23L6IJY17WjYsGFERkZqTRl7HUePHqV06dI0atQIyFwPydXVVVnzBTIXos5rX8nJyQQGBirFi7S0NK0P2y+qXLky77//PkeOHGHq1KlaeYiNjeXSpUv06tVL2Va6dGlSU1M12r14nNe5DvLKzc2NL774grCwMGJiYqhRowbNmjV76WteJ8cvMjU1zfb6SkhIeOnrqlSpQvXq1XPN+QcffKCxPadrOWsEXLly5VCpVGzZskVj9E0WCwsL5d/ZXe8Ffc7yc//lxszMjLlz55KRkUF0dDQrV65k4sSJRERE8P77779SfCqVCkNDw1d6rRBCiNdXpkyZEvdBozgYGBjI/++KgOS5aEieC19JzHFe/yhbIp8OlrUOyJ49e0hPT8+2zZMnT9DT09NI5N69e7Xa6enpaY0uqF27NpUrV+bWrVvY2NhofWWNoLC2tubSpUvcunVLeW1MTAwXL17U6K9x48YcPHhQY2rMsWPHSExMpHHjxnl6z7169eLx48f4+fmhr69P586d8/S63Bw5coSffvqJXr16KTdZVu6el9fcPXnyBJVKpbHg8o8//qjx3nMyZMgQrl69yp49e7T2BQQEkJ6eTt++fZVtlStX1iqcvLhmUF6vg9xk5SO7kSilS5fmgw8+YOfOnezduxd3d/dcb+C85jgvbG1tOXHiBI8fP1a2/frrrxpT8XKSW87VarXWk+4uX77MjRs3lO9v3LjBxYsXsbOzAzKnokHmAtnZ3T8vmyYHr3fvZqcg7r8X6ejoYGtry0cffURaWppGPoQQQgghhBCisJTIkUCA8kShoUOHMmDAAMqVK8e5c+eoUKECffr0oVWrVgQFBfHFF1/QsWNHoqKisv2gW7t2bUJDQzl06BCmpqaYmZlhbm7OtGnT8PPzIzk5mbZt22JgYEBsbCyRkZFMnDgRCwsLevfuzapVqxg9ejTjxo0DIDAwkEqVKml8gB09ejSenp74+Pjg5eWlPJ3I1tY22/VQsmNiYkL79u2JiIigX79+6Ovr5ztnd+7c4Y8//iAtLY24uDiOHj3Knj17sLOz01ikuGXLlmzcuFFZ/DcsLCzbD7m1a9fm4MGDNGnSBAMDAywsLJQpQP7+/nh6enL58mXWr1+vNaUpOwMHDuTXX39l+vTpXLp0idatW/P06VNCQkLYv38/48aN0xiZ1alTJz7//HMCAwNxcHAgMjKSP/74Q6PPvF4HualVqxa6uroEBwdTqlQpdHV1NRaI7tu3r7JIubu7e6795TXHeTFkyBC2bNnCyJEjGTlyJImJiQQEBORpTaBBgwZx/PjxHHM+depUrSeMVaxYkdGjRzN+/HgAli1bhrm5ufK+LSwsGDhwIFOmTGH48OHY2dmRmprK9evXOXHiBN98881LY3rde/dFBXH/ATx+/Jjhw4fzwQcfYGFhQWpqKps2bcLY2FjW0hFCCCGEEEIUiRJbBGrSpAkbN25k6dKl+Pv7o6OjQ7169fjoo4+AzMVm/fz82Lx5MyEhITg6OrJ69Wo6deqk0c/IkSO5efMmU6dOJTExkbFjxzJu3Di6dOmCsbExq1atUkYhVKtWDRcXFypVqgSAvr4+69atY+bMmfj5+WFubo6vry+hoaEaa4tYW1uzbt06Fi9ezLhx4zA0NMTV1ZWpU6fm6+leHTt2JCIigj59+rxSzjZt2sSmTZvQ09OjfPnyWFlZMWvWLHr27KkxcmfMmDE8ePCA5cuXA5nFlunTpzN69GiN/mbMmMFXX33FyJEjefLkCRs3bsTJyYm5c+cSGBiIj48PDRo0YNmyZcp5eRkdHR2WL1/O1q1bCQ4O5vvvv1dGenz99ddaT2Hy8PDg5s2bbN26lQ0bNtC1a1cmTZqkMcUqr9dBbkxMTJgxYwbffvstYWFhpKWlcenSJWV/3bp1qVWrFjVq1Mi2EPGivOY4L8zMzFi7di1z5sxhwoQJ1KhRgxkzZrBkyZJcX6ujo0NAQABbtmwhODiYLVu2UKpUKRo1asSaNWuyLZI0atQINzc3FixYQFxcHHZ2dsyaNUtjPYXp06djYWHB9u3bWbFiBe+99x4WFhZ5GsH2uvfuiwrq/itTpgyWlpZs2rSJO3fuoK+vj7W1Nd99912u6y8JIYQQQgghREFQqeWZlm+Uhw8f0qFDB4YOHcrYsWMLtO8pU6Zw4cKFV5429Da6evUqffv2pXPnzgW6DlJBu3nzJm5ubixbtizfBaa3iZeXF4aGhqxevbq4Q3knnD17FkBjVFlx67YFouOKOwohhCh81qawb0DmIqSyJlDhSU5O5sKFCzRo0KDEre9RlCTPRUPyXPhKco7z+tmgxI4EelOsWbOGSpUqUa1aNeLi4li3bh3p6ekF9vh2gEuXLnHhwgV++OEHZs6cWWD9vg3q1KnDggUL8PX1pVq1avj6+hZ3SBoePHjAtWvXWLFiBVWrVqV9+/bFHZIQQgghhBBCiHeUFIGKmY6ODitXruTevXvo6upiZ2dHUFAQVapUKbBjfPjhhyQkJNCzZ0+t4pJarc5xceys+LKesPS2cnV11Vps+03xv//9j08++YSaNWuyYMECjWl1QgghhBBCCCFEQZJPnMVsxIgRjBgxolCPcejQoRz3nTx5ksGDB+e4v1evXsybN68wwhKAu7t7nhaCflds2rSpuEMQQgghhBBCiBJLikAlXKNGjdi1a1eO+ytUqFCE0Qgh3nZ1ZY1rIUQJIT/vhBBCvI2kCFTCGRkZvVGLygoh3l7pGbAs9we4CSHEOyM1PaO4QxBCCCHy5e1e7EUIIcQbQ/ct/j9KSkoK58+fJyUlpbhDeadJnouG5LlopKSkcOFcNPKgXSGEEG+Tt/hXdiGEEKJgqNVqUlJS5MNcIZM8Fw3Jc9FQq9WkpqYWdxhCCCFEvkgRSAghhBBCCCGEEKIEkCKQEEIIIYQQQgghRAkgRSAhhBAlnkqlwsDAAJVKVdyhvNMkz0VD8lw0VCoVenp6xR2GEEIIkS/ydDAhhBBvrPSMollw2sDAgIYNGxb+gUo4yXPRkDwXDQMDAxo0sibt2dPiDkUIIYTIMykCCSGEeGPp6sCECLiSUNyRCCGEpromsKyzDmnFHYgQQgiRD1IEEkII8Ua7kgDRccUdhRBCCCGEEG8/WRNICCGEEEIIIYQQogSQIpAQQgghhBBCCCFECfBOFoFCQkLYu3dvcYdR6KysrJQva2trnJ2dGT58ODt37iQ1NfWV+gwICOD06dMFFuO0adOwsrKib9++WvvUajVt2rTBysqKgICAAjumyFTQ5/J1fPnll7i6uubaLjIykkGDBuHk5IS9vT0dO3bEz8+Pa9euKW0K6/5+k/IlhBBCCCGEEIXhnVwTaPfu3RgaGtKjR4/iDqXQeXl50b17d9LS0rh//z5Hjx7l888/Z+fOnaxbtw4jI6N89RcYGIihoSGOjo4FFqOhoSF//vknt27d4v3331e2nzp1ivj4eEqXLl1gxxL/pzDOZWH64YcfmDhxIr169WLEiBHo6elx9epVfvzxR65evYqFhQVQePf325YvIYQQQgghhMivd7II9CZ78uQJ+vr6BdZflSpVsLe3V77v2rUrXbp0wcfHh3nz5jFnzpwCO9arqlatGrq6uvzwww/4+Pgo28PDw3F2dubUqVPFGJ14U2zatAknJyfmzZunbGvVqhWDBw8mIyMj3/2lp6eTkZGBnp5eQYYphBBCCCGEEG+tN246WFRUFN7e3jg6OuLg4ICHhwfHjh1T9i9cuJAePXrg4OCAi4sLkyZN4v79+8p+Ly8vTp48yeHDh5WpUs9PNTp8+DAeHh7Y2trSvHlzZs6cSXJyskYMly9fZuDAgdjY2ODm5kZYWBi+vr54eXlptPvtt9/w9PTE1tYWJycn/P39efjwobI/JiYGKysrQkJCmD59Ok5OTnh4eLBp0ybs7OxISkrS6O/q1atYWVkRGRn5Wjls3bo1bm5uhIaGKse4f/8+/v7+tG/fHltbW9zc3Fi8eDHPnj1TXmdlZQXA/PnzldydOHECgHXr1tG7d28aN25MixYt8PHx0Ziik5tu3boRHh6ufJ+Wlsb+/fvp3r27VtuoqChGjx6Ns7Mz9vb2fPDBB4SGhmq0OXHiBFZWVhw7dozJkyfj4OBAu3btWLt2bb77gryf86tXr/Lhhx/SuHFj7O3tGTVqFDdv3tRoY2VlxZo1a1iyZAktWrSgSZMmzJ8/H7Vaza+//soHH3yAg4MDQ4YM4c6dOxqvffbsGYsXL6Zdu3ZYW1vTpUsXralP06ZNo3v37pw4cYKePXtib29Pnz59iI6O1ogBsj+X2cntvoLMe8vHx4eIiAg6deqEg4MDgwcP1nr/9+7dY/To0djZ2eHi4qJ1TnKSmJiIqalptvt0dHSUGHK6v7Pi2717N506dcLGxoaLFy++9rWvVqv57rvv6NSpE9bW1rRv354NGzZoxfjTTz8px+3bty/nzp2jSZMmSnyFfd8LIYQQQgghRG7eqJFAv//+O0OGDMHe3p45c+ZgbGxMdHQ0sbGxSpv4+Hh8fHwwMzMjISGB9evX4+Xlxb59+yhVqhQzZ87k448/Rl9fn6lTpwJQuXJlACIiIpg4cSLu7u6MGzeOuLg4Fi1aRGJiIkuWLAEyR+p4e3tjbGzMggULAFixYgWJiYnUqFFDiSM6Opphw4bh5OTEsmXL+Oeff1i0aBFXrlxh27Zt6OrqKm0XL15MmzZtWLRoERkZGdjZ2bFgwQLCw8Px9PRU2u3atQtzc3OcnZ1fO5fOzs5ERERw/vx5mjVrxoMHDyhfvjz+/v4YGxtz/fp1AgICiIuLY+7cuQBs376dfv36KVPMAOrWrQvA3bt3GTRoEFWrViUpKYlt27bh6enJ/v37KV++fK7xdOvWjcWLF3PlyhXq1q3LsWPHePr0Ka6urnz++ecabWNjY3F0dKR///6ULl2a06dPM336dNRqNb169dJoO3PmTD744ANWrFjBgQMHWLhwIVZWVrRu3TrPfeX1nN+6dQtPT0/q1avHvHnzUKlUrFq1iqFDhxIREaExre3777+nWbNmzJ8/nz///JOAgAAyMjI4duwYH374IXp6esyZM4dPP/2UdevWKa+bMGECp0+fZsyYMdSpU4fIyEg+/vhjjI2NadOmjdIuLi6OOXPmMGrUKMqWLcuiRYsYO3YsP/30E3p6ei89l9nJ7b7KcuHCBRISEvDz8yM9PZ158+bx8ccfs337dqWNr68v9+7d4/PPP6ds2bKsXbuWO3fuaPSTnUaNGvHjjz+yfv16OnbsSPXq1bXavOz+hsz78vbt20yYMAFjY2OqVKlCfHz8a137X375JTt37lQKW6dPn2bhwoWUKVOG/v37A3D+/HkmTJhAu3bt+OSTT7h9+zYTJ07UKDT95z//KfT7XgghhBBCCCFe5o0qAi1YsICaNWsSFBSkFFFe/GCU9aENMqd7ODg40Lp1a44fP46zszN169bFyMgIQ0NDjWlSarWa+fPn07VrV7788ktlu6mpKaNGjcLX15d69eoRHBxMfHw8W7duVT6EWltb4+bmplEQWLVqFaampqxatUqZblKlShWGDx9OZGSkxiK49evX1zgmQKdOnQgODlY+DKalpREWFkafPn00CkivKuuD8T///ANkjnTI+tAM4OjoiIGBAdOmTWPGjBkYGBgo+XpxihnAJ598ovw7PT2dVq1a0aJFC/bv30+/fv1yjadatWrY29sTHh7ORx99RHh4OK6urhgaGmq17datm/JvtVpN06ZNuXfvHtu3b9cqArm5uTFu3DgAWrRoweHDh9m/f79SBMpLX3k954GBgZQrV47169dTpkwZJY/t27dn586dDBw4UGlrZmamFJRcXFw4dOgQGzZsYN++fdSpUwfIHDHzxRdfkJiYiLGxMcePH+fQoUN89913ynXfqlUr4uLiCAgI0CgCPXr0iM2bN1OvXj0ADAwMGDx4MH/++SdNmjR56bnMTm73VZbHjx8TGhqKiYkJAMnJyfj7+3P37l0qV67MkSNHiI6OZsOGDbRo0QIAJycn2rRpk2uxcPLkyVy5coV58+Yxb948TE1Nadu2LYMGDaJ+/foAOd7fz+dl165dVKlSRdlWqVKlV772b968yebNm5k1a5Zynbds2ZInT56wYsUK+vXrh46ODqtXr6Z69eoEBAQoo5bee+89pkyZovRVrly5Qrnv1Wq11mjGd4VKpcLAwKC4wxBCiJd6+vQparW6uMN4Z6WkpGj8VxQOyXPRkDwXvpKcY7VajUqlyrXdG1MESklJ4c8//2TSpEkv/TAUGRnJypUruXz5ssa0iuvXr7/0L+nXrl3j9u3bfPLJJ6SlpSnbmzVrho6ODtHR0dSrV4/o6GgsLS01RiFUr15d+RCa5dSpU3Tv3l1jvRFnZ2eMjY35/fffNYpAbdu21Yqnb9++DBo0iMuXL1OvXj0iIyOJj4+nd+/eOb6H/HjxlxG1Wk1QUBA7duwgJiaGp0+fKvtu3bqFpaXlS/v7448/WLZsGefPn9eY8nb9+vU8x9S9e3c2btzI6NGjOXjwIAsXLsy23aNHjwgICODgwYPcu3eP9PR0gGyLCM+fc5VKRZ06dbh7926++srrOT927Bhdu3ZFV1dXuYaMjY1p2LChxlQsyCwUPM/CwoJ//vlHKQAB1KpVC8gcZWVsbMyxY8coX748zZs317hGW7Zsyeeff056erpyb5iZmSkFIPi/USv37t3TylFe5PW+ql+/vlIAev64WUWgM2fOULZsWaUABFC2bFlatmzJ+fPnXxqDubk5u3bt4rfffuPo0aOcOnWK4OBgQkNDWbFihUYRLCeWlpYaBSB4vWv/l19+ATKLjS+ek6wRTtWqVePs2bN06NBBKQABtG/fXqu/wrjvU1NTuXDhwiu//k1mYGBAw4YNizsMIYR4qdjY2BL5YaOo5ed3TvHqJM9FQ/Jc+EpqjvPy0KU3pgiUmJhIRkYGZmZmObY5c+YMvr6+tG/fnpEjR1KxYkVUKhV9+/bV+GCXnQcPHgAwZsyYbPdnrc1y//59jQ+5WUxMTDSOkZiYSMWKFbXaVaxYkUePHmlte1HTpk2xsLBg165d+Pv7ExwcTNOmTTVGnryOrGJA1horQUFBfP3114wYMQInJyeMjY05e/Yss2fPzjV3sbGxeHt7Y21tzaxZszAzM0NPTw8fH59cX/u8zp0789VXX7Fs2TL09PRwcXHJtt20adOIiopizJgxysiPrVu38uOPP2q1LVu2rMb3enp6PH78OF995fWcP3jwgKCgIIKCgrTavrj4sLGxsdb+7LYByjEePHjAw4cPadSokVb/kDkFLGuEV2595Ud+7qvcjptTLrO7B7Kjo6ODk5MTTk5OQOY0q0GDBrF06dI8FYEqVaqkte11rv0HDx6gVqtp3rx5tvuzikBxcXFa79vIyEgZMZalMO57PT29l071e5vl5S8ZQghR3KpWrSpPOi1EKSkpXL9+nVq1asno0EIkeS4akufCV5JzfOXKlTy1e2OKQGXLlkVHR0drMdrnHThwACMjI5YuXar8xf327dt56j9r5MeMGTOwtbXV2p9VfDIzM8v2r+oJCQm89957yvflypUjPj5eq118fDzlypXT2JbTBxkPDw++/fZbhg0bRmRkpNaUsddx9OhRSpcurRQUIiIicHV1ZfLkyUqbq1ev5rmv5ORkAgMDlSJAWlqaVrErN5UqVaJ58+Zs2LCBPn36ZPvUpqdPn3L48GGmTZumsSjzli1b8nWs/PSVn3Pepk0bBgwYoNX2+Xavqly5cpiYmLBmzZps92dXXCkIr3NfvShrTaEXZXev5EXDhg1p1apVnhdNzu5ee51rv1y5cqhUKrZs2ZLt9Zr12HpTU1Ot952UlJRtkamg73uVSpXttEohhBBFo0yZMiXug0ZxMDAwkP/fFQHJc9GQPBe+kpjjvP4B9Y15OljWGh979uxRpuy86MmTJ+jp6Wm8uRefnASZfxl/8cNX7dq1qVy5Mrdu3cLGxkbry9zcHMhcC+bSpUvcunVLeW1MTAwXL17U6K9x48YcPHhQY4rIsWPHSExMpHHjxnl6z7169eLx48f4+fmhr69P586d8/S63Bw5coSffvqJXr16KRd+Vu6el9fcPXnyBJVKpbGw748//qjx3vPKy8uLdu3a4eHhke3+Z8+eaT3WOykpiUOHDuX7WHntK6/nvEWLFly+fJmGDRtqXT+1a9fOd3wvatmyJQkJCejp6WV7jeb3r4zZncvs5PW+ygsbGxseP37Mr7/+qmx7/PixMq3qZbLWr3peRkYGN27c0Bjhk9f3leV1rv2saW0PHz7M9pwYGRkBme/78OHDGo+yP3DgQLbxFNZ9L4QQQgghhBC5eWNGAkHmwrBDhw5l6NChDBgwgHLlynHu3DkqVKhAnz59aNWqFUFBQXzxxRd07NiRqKgo9uzZo9VP7dq1CQ0N5dChQ5iammJmZoa5uTnTpk3Dz8+P5ORk2rZti4GBAbGxsURGRjJx4kQsLCzo3bs3q1atYvTo0cqCw4GBgVSqVEnjQ/Lo0aPx9PTEx8cHLy8v5elgtra2eZq2ApkjO9q3b09ERAT9+vVDX18/3zm7c+cOf/zxB2lpacTFxXH06FH27NmDnZ2dxmK4LVu2ZOPGjWzevJlatWoRFhbGjRs3ss3dwYMHadKkCQYGBlhYWChTYfz9/fH09OTy5cusX79ea2pQXrRr14527drluL9s2bLY2Niwdu1aTExMKFWqFGvWrMHIyCjbESYvk9e+8nrOx48fT58+fRg+fDh9+/alUqVK/PPPP5w8eZImTZpk+7j7/GjVqhXt2rVjxIgRjBgxAisrK1JSUrhy5Qo3btzI94iR7M5lVtHixePm5b7Ki9atW9OoUSM+/vhj/Pz8KFu2rJLz3IwYMYJatWrRrl07qlWrxoMHDwgODubSpUsaC5PndH/n5HWufQsLCwYOHMiUKVMYPnw4dnZ2pKamcv36dU6cOME333wDgI+PD3369GHcuHH07duX2NhY1q1bR5kyZbQq8gVx3wshhBBCCCHEq3hjRgIBNGnShI0bN6JSqfD392fs2LEcOHCAatWqAdCmTRv8/Pw4ePAgH374IadOnWL16tVa/YwcORJHR0emTp1Knz592LFjBwBdunRhzZo1XLt2jcmTJ+Pr68v69eupVq2aMtJAX1+fdevWUa5cOfz8/FiwYAHDhg2jZs2aGuvPWFtbs27dOv7991/GjRvHggULaNu2LWvXrs3XU346duwIQJ8+fV4pZ5s2baJfv34MHTqUL7/8knv37jFr1iw2b96sMUVpzJgx9OjRg+XLlzNp0iTKlCnD9OnTtfqbMWMGarWakSNH0qdPH86dO4eVlRVz587l3Llz+Pj4sG/fPpYtW6a1Hk9BWbRoETVq1GDatGnMmTOHTp060bNnz0LrK6/nvGbNmuzcuZPy5csza9Yshg8fzsKFC0lJScHKyuo13vH/Wb58OZ6enmzdupWRI0fy6aef8vPPP9O0adN895XducxOXu+rvFCpVHzzzTc0atSIGTNmMHPmTFxdXenUqVOurx05ciRpaWksW7aMYcOGMXPmTJKSkggICGDIkCEa7bK7v3PyOtc+wPTp0/noo4/44YcfGDVqFFOmTOHHH3+kWbNmymsbNmzI0qVLuXLlCmPHjmXnzp3MmzeP9PT0bO+T173vhRBCCCGEEOJVqNTyTMtcPXz4kA4dOjB06FDGjh1boH1PmTKFCxcuvPL0G1E4CvOci5Lh119/ZejQoWzatEmjYAQFd9+fPXsWyJyO9i7rtgWi44o7CiGE0GRtCvsGZC5CKmsCFZ7k5GQuXLhAgwYNStz6HkVJ8lw0JM+FryTnOK+fDd6o6WBvijVr1lCpUiXlqT/r1q0jPT29wB7fDnDp0iUuXLjADz/8wMyZMwusX/FqiuKci3fb559/TosWLShfvjxXrlzhm2++oWHDhjRp0kRpI/e9EEIIIYQQojhJESgbOjo6rFy5knv37qGrq4udnR1BQUFUqVKlwI7x4YcfkpCQQM+ePbUKDWq1OsfFsbPiy3qKkygYRXHOxbstMTGRL774gocPH2JkZISLiwtTp07VuFdfdt8LIYQQQgghRGGTIlA2shbmLUwve9rVyZMnGTx4cI77e/Xqxbx58wojrBKrKM65eLctXrw41zav8pQ7IYQQQgghhCgoUgR6AzVq1Ihdu3bluL9ChQpFGI0QQhSvuibFHYEQQmiTn01CCCHeRlIEegMZGRm98wu9CiFEXqRnwLLOxR2FEEJkLzU9o7hDEEIIIfJFFpYRQgjxxtItov9LpaSkcP78eVJSUormgCWU5LloSJ6LRkpKChfORSMP2hVCCPE2kSKQEEKIEk+tVpOSkiIf5gqZ5LloSJ6LhlqtJjU1tbjDEEIIIfJFikBCCCGEEEIIIYQQJYAUgYQQQgghhBBCCCFKACkCCSGEEKJIqFQqDAwMUKlUxR3KO03yXDRUKhV6enrFHYYQQgiRL/J0MCGEEOIdkp5RdAtq55eBgQENGzYs7jDeeZLnomFgYECDRtakPXta3KEIIYQQeSZFICGEEOIdoqsDEyLgSkJxRyLEu62uCSzrrENacQcihBBC5IMUgYQQQoh3zJUEiI4r7iiEEEIIIcSb5g0dMC6EEEIIIYQQQgghCpIUgYQQQgghhBBCCCFKACkCCSGEEEIIIYQQQpQAUgQS4v8LCQlh7969xR1GobOyslK+rK2tcXZ2Zvjw4ezcuZPU1NRX6jMgIIDTp08XcKSQmpqKk5MT9evXJzY2tsD7f15ISAhWVlYkJBTcaroxMTFYWVkRERFRYH0KIYQQQgghxKuSIpAQ/9/u3bsJDw8v7jCKhJeXF9u3b2fDhg188sknmJmZ8fnnnzNw4ECSkpLy3V9gYCBRUVEFHufPP//Mw4cPUavVb+W5MTMzY/v27TRv3ry4QxFCCCGEEEIIKQIJ8TZ48uRJgfZXpUoV7O3tadKkCV27dmXu3LmsXLmSs2fPMm/evAI91usIDw/H2NiYRo0avZWjtEqXLo29vT3ly5cv7lCEEEIIIYQQQopA4t0QFRWFt7c3jo6OODg44OHhwbFjx5T9CxcupEePHjg4OODi4sKkSZO4f/++st/Ly4uTJ09y+PBhZapUQECAsv/w4cN4eHhga2tL8+bNmTlzJsnJyRoxXL58mYEDB2JjY4ObmxthYWH4+vri5eWl0e63337D09MTW1tbnJyc8Pf35+HDh8r+rClEISEhTJ8+HScnJzw8PNi0aRN2dnZaI3WuXr2KlZUVkZGRr5XD1q1b4+bmRmhoqHKM+/fv4+/vT/v27bG1tcXNzY3Fixfz7Nkz5XVWVlYAzJ8/X8ndiRMnAFi3bh29e/emcePGtGjRAh8fH65du5aneJKTkzl06BCdOnXC3d2dv/76i0uXLmm0yZrCdf78eUaMGIG9vb3yHp53+PBhhg0bRosWLXB0dMTDw4MjR4689Pju7u5MnjxZa/uCBQtwdnYmPT0dgDVr1tCxY0dsbGxo3rw5Q4cO5datW0D208EOHjyIu7s7Dg4ONGnSBHd399c+d0IIIYQQQgiRF6WKOwAhXtfvv//OkCFDsLe3Z86cORgbGxMdHa2xhkx8fDw+Pj6YmZmRkJDA+vXr8fLyYt++fZQqVYqZM2fy8ccfo6+vz9SpUwGoXLkyABEREUycOBF3d3fGjRtHXFwcixYtIjExkSVLlgCZI3W8vb0xNjZmwYIFAKxYsYLExERq1KihxBEdHc2wYcNwcnJi2bJl/PPPPyxatIgrV66wbds2dHV1lbaLFy+mTZs2LFq0iIyMDOzs7FiwYAHh4eF4enoq7Xbt2oW5uTnOzs6vnUtnZ2ciIiI4f/48zZo148GDB5QvXx5/f3+MjY25fv06AQEBxMXFMXfuXAC2b99Ov3798PLyonv37gDUrVsXgLt37zJo0CCqVq1KUlIS27Ztw9PTk/379+c6OubAgQMkJyfTvXt36tWrx9y5cwkPD1eKTs/z8/Ojb9++DBs2jB07djBt2jRsbGyoU6cOkFmMadeuHd7e3ujo6HDkyBFGjRpFUFAQTk5O2R7fw8ODefPm8fjxY8qWLQtAeno6e/bsoVevXujq6hIaGsqyZcsYP3489vb2PH78mN9//51///032z5v3rzJhAkT6NatG5MnTyYjI4OLFy/y6NGj3E9ODtRqtVZBUuRfSkqKxn/fViqVCgMDg+IOQ4gS5enTp6jV6uIO4531rvx8ftNJnouG5LnwleQcq9VqVCpVru2kCCTeegsWLKBmzZoEBQUpRZQXCyJZBQvI/CDv4OBA69atOX78OM7OztStWxcjIyMMDQ2xt7dX2qrVaubPn0/Xrl358ssvle2mpqaMGjUKX19f6tWrR3BwMPHx8WzdupXq1asDYG1tjZubm0YRaNWqVZiamrJq1Sr09PSAzKlZw4cPJzIyEldXV6Vt/fr1NY4J0KlTJ4KDg5UiUFpaGmFhYfTp00ejgPSqsgpf//zzD5A5yierKAbg6OiIgYEB06ZNY8aMGRgYGCj5yppi9rxPPvlE+Xd6ejqtWrWiRYsW7N+/n379+r00lvDwcMzNzWnWrBk6Ojo0b96c8PBwJk2apPXDbeDAgQwcOBAABwcHIiMj2b9/P76+vgAMGjRIaZuRkYGTkxNXrlxhx44dORaBevTowddff83evXsZMGAAAJGRkcTFxdG7d28Azpw5g5WVFT4+PsrrOnTokON7On/+PKmpqXz22WcYGRkB4OLi8tI85CY1NZULFy68Vh/i/1y/fr24Q3gtBgYGNGzYsLjDEKJEiY2NLZEfNora2/7z+W0heS4akufCV1JzXLp06VzbSBFIvNVSUlL4888/mTRp0kuLIJGRkaxcuZLLly9rTKe6fv36S0fQXLt2jdu3b/PJJ5+QlpambM8qTERHR1OvXj2io6OxtLRUCkAA1atXp379+hr9nTp1iu7duysFIMgsWBkbG/P7779rFIHatm2rFU/fvn0ZNGgQly9fpl69ekRGRhIfH68UJV7Xi3/JVKvVBAUFsWPHDmJiYnj69Kmy79atW1haWr60vz/++INly5Zx/vx5jSlvuf1QTkhI4NixY3h5eaGjkzlrtUePHkydOpXff/+dJk2aaLR//hwaGhpStWpV7t69q2y7e/cuS5Ys4ZdffiEuLk55n40aNcoxBiMjI7p06UJwcLBSBAoJCaFJkybUqlULgIYNG7Jlyxbmzp1Lx44dsbOz0zi3L7KyskJXV1cZudS0aVNllNGr0tPTU0ZeiVeXkpLC9evXqVWr1ls9kiYvf/0RQhSsqlWr5umXbvFq3pWfz286yXPRkDwXvpKc4ytXruSpnRSBxFstMTGRjIwMzMzMcmxz5swZfH19ad++PSNHjqRixYqoVCr69u2rUdTIzoMHDwAYM2ZMtvvv3LkDZK6dY2JiorXfxMRE4xiJiYlUrFhRq13FihW1pgRl165p06ZYWFiwa9cu/P39CQ4OpmnTphqjjV7HvXv3gMyRTgBBQUF8/fXXjBgxAicnJ4yNjTl79iyzZ8/ONXexsbF4e3tjbW3NrFmzMDMzQ09PDx8fn1xf++OPP5KWlkabNm1ITEwEwMnJidKlS7N3716tItCLhRQ9PT1l3aKMjAw+/PBDHj9+zPjx46lZsyYGBgYsX75cOX856du3L56enly8eBEzMzMOHz7M7Nmzlf3u7u78+++/7Nixgw0bNlC2bFl69uyJn58f+vr6Wv1ZWFiwatUqVq9ezdixY9HR0cHZ2ZkZM2ZQtWrVl8aSE5VKhaGh4Su9VmgzMDCQfAoh8qVMmTIl7oNGcZCfz0VD8lw0JM+FryTmOK9/DJQikHirlS1bFh0dHY1Fnl904MABjIyMWLp0qTKq5Pbt23nqP2vdmhkzZmBra6u1P6v4ZGZmlu2UnISEBN577z3l+3LlyhEfH6/VLj4+nnLlymlsy+km9vDw4Ntvv2XYsGFERkZqTRl7HUePHqV06dLKCJmIiAhcXV01Fki+evVqnvtKTk4mMDAQY2NjIHP6Wl7Wv8l6HPzQoUO19kVERDB9+vSXjrh53o0bNzh//jwrVqzQmKqVlyeuOTg4KNP9sv7S27lzZ2W/jo4OQ4YMYciQIdy7d499+/axaNEiKlSokGPhsHXr1rRu3ZqkpCSOHDnC3Llz8ff3JygoKE/vRwghhBBCCCFelTwdTLzVstbw2bNnj/K0phc9efIEPT09jaJKdo8b19PT0xqhUrt2bSpXrsytW7ewsbHR+jI3Nwcy1/+5dOmS8lQoyFyM+OLFixr9NW7cmIMHD2pMLTt27BiJiYk0btw4T++5V69ePH78WBlt8nxR4nUcOXKEn376iV69eilV86zcPS+vuXvy5AkqlYpSpf6v1pw1wudlbt++TVRUFJ6enmzcuFHjK+tJakePHs3z+8qK6/n3kXWMvPDw8GDv3r3s2rWLrl275vgXBXNzc7y9vbGysuLvv//OtV8jIyO6du1Kt27d8lxYE0IIIYQQQojXISOBxFtv8uTJDB06lKFDhzJgwADKlSvHuXPnqFChAn369KFVq1YEBQXxxRdf0LFjR6KiotizZ49WP7Vr1yY0NJRDhw5hamqKmZkZ5ubmTJs2DT8/P5KTk2nbti0GBgbExsYSGRnJxIkTsbCwoHfv3qxatYrRo0czbtw4AAIDA6lUqZJG8Wn06NF4enri4+ODl5eX8nQwW1tb2rRpk6f3a2JiQvv27YmIiKBfv37ZTjvKzZ07d/jjjz9IS0sjLi6Oo0ePsmfPHuzs7DQWgm7ZsiUbN25k8+bN1KpVi7CwMG7cuJFt7g4ePEiTJk0wMDDAwsKC5s2bA+Dv74+npyeXL19m/fr1yqignGSNAhoxYgTvv/++xr7GjRuzZs0awsPDNdZPepmsQl7WU9aSk5NZvnz5S6cQPu+DDz5g4cKFPHjwQGvU1YwZMzA2Nsbe3h5jY2NOnz7NxYsX6d+/f7Z9bdu2jT/++AMXFxdMTU2JiYkhLCyMVq1a5SkWIYQQQgghhHgdUgQSb70mTZqwceNGli5dir+/Pzo6OtSrV4+PPvoIgDZt2uDn58fmzZsJCQnB0dGR1atX06lTJ41+Ro4cyc2bN5k6dSqJiYmMHTuWcePG0aVLF4yNjVm1apUyCqZatWq4uLhQqVIlAPT19Vm3bh0zZ87Ez88Pc3NzfH19CQ0N1VivxtramnXr1rF48WLGjRuHoaEhrq6uTJ06NV9P9+rYsSMRERH06dPnlXK2adMmNm3ahJ6eHuXLl8fKyopZs2bRs2dPjZE7Y8aM4cGDByxfvhzIfDrZ9OnTGT16tEZ/M2bM4KuvvmLkyJE8efKEjRs34uTkxNy5cwkMDMTHx4cGDRqwbNky5bzkJDw8HEdHR60CEECpUqXo3r07O3bsyPEx7C8qXbo0AQEBzJ49mwkTJlClShU+/PBDjh8/TnR0dK6vL1++PM2aNePu3btaTz9zcHBgx44d7Ny5k5SUFN5//338/f3x8PDIti8rKyv+97//MXfuXB4+fIipqSndunVjwoQJeXovQgghhBBCCPE6VOoXHwckhCgQDx8+pEOHDgwdOpSxY8cWaN9TpkzhwoUL2U7NEgUrKSkJFxcXxo0bh7e3d3GHo+Hs2bMA2NjYFHMkb7/k5GQuXLhAgwYN3olFBLttgei44o5CiHebtSnsG5D5JBpZGLrwvGs/n99UkueiIXkufCU5x3n9bCAjgYQoIGvWrKFSpUpUq1aNuLg41q1bR3p6eoE9vh3g0qVLXLhwgR9++IGZM2cWWL9CW1JSElevXmXLli2oVCrc3d2LOyQhhBBCCCGEeC1SBBKigOjo6LBy5Uru3buHrq4udnZ2BAUFUaVKlQI7xocffkhCQgI9e/bUKi6p1eocF8fOii/r6Wgid+fOnWPw4MFUqVKFr7/+WnlSnBBCCCGEEEK8raQIJEQBGTFiBCNGjCjUYxw6dCjHfSdPnmTw4ME57u/Vqxfz5s0rjLDeSU5OTly6dKm4wxBCCCGEEEKIAiNFICHeEY0aNWLXrl057q9QoUIRRiOEKE51TYo7AiHefXKfCSGEeBtJEUiId4SRkZEsECyEID0DlnUu7iiEKBlS0zOKOwQhhBAiX2SBECGEEOIdovsG/589JSWF8+fPk5KSUtyhvNMkz0UjJSWFC+eikQftCiGEeJu8wb8qCiGEEOJdolarSUlJkQ/NhUzyXDTUajWpqanFHYYQQgiRL1IEEkIIIYQQQgghhCgBpAgkhBBCCPEOUalUGBgYoFKpijuUd5pKpUJPT6+4wxBCCCHyRRaGFkIIIYQoZOkZRbdek4GBAQ0bNiyag5VgBgYGNGhkTdqzp8UdihBCCJFnUgQSQgghhChkujowIQKuJBR3JKKg1DWBZZ11SCvuQIQQQoh8kCKQEEIIIUQRuJIA0XHFHYUQQgghSjJZE0gIIYQQQgghhBCiBJAikBBCCCGEEEIIIUQJIEUgIYQQQgghhBBCiBJAikCiwIWEhLB3797iDqPQWVlZaXy1bNmS0aNHc+nSJY12AQEBODg4FFOU/8fX1xcvL68c948ePRo3N7cc92/atAkrKytu3rzJtGnT6N69e2GEmauQkBCsrKxISMhcXTUmJgYrKysiIiIK9DgnTpxg1apVWtvflPMphBBCCCGEEPklRSBR4Hbv3k14eHhxh1EkvLy82L59O9u2beOzzz7j7t27DB8+nMTExOIOLd+6d+/OjRs3OHPmTLb79+3bh729PTVq1MDX15eFCxcWcYTZMzMzY/v27TRv3rxA+z158iSrV6/W2u7h4UFQUFCBHksIIYQQQgghioI8HUyUKE+ePEFfX7/A+qtSpQr29vbK9xYWFnzwwQdERUXRpk2bAjtOUWjfvj2GhoaEh4dja2ursS8mJoaoqCimT58OQI0aNYojxGyVLl1a4xwUtsqVK1O5cuUiO54QQgghhBBCFBQZCSQ0REVF4e3tjaOjIw4ODnh4eHDs2DFl/8KFC+nRowcODg64uLgwadIk7t+/r+z38vLi5MmTHD58WJkmFRAQoOw/fPgwHh4e2Nra0rx5c2bOnElycrJGDJcvX2bgwIHY2Njg5uZGWFhYtlOZfvvtNzw9PbG1tcXJyQl/f38ePnyo7M+aJhQSEsL06dNxcnLCw8ODTZs2YWdnR1JSkkZ/V69excrKisjIyFfO33vvvQdAampqvl6XnJzM7Nmz6dSpE3Z2dri6ujJjxgweP36s0c7V1ZXZs2fz/fff065dOxo3boyvr68yNer59zJo0CBsbGzo0KEDu3fvzjUGAwMD2rdvz48//khGRobGvn379qGrq0vXrl0BtKaDJSYmMn36dFxcXLCxsaFNmzZMnDhR2Z/TFKomTZpoXR/Dhg2jRYsWODo64uHhwZEjR14a94vTwbKmi2X3FRMTA0BoaCj9+/enWbNmNG3aFC8vL40RUAEBAQQGBpKcnKy8Nuv6y+693L59m/Hjx9O4cWPs7e0ZPny41rTAvJ47IYQQQgghhCgsMhJIKH7//XeGDBmCvb09c+bMwdjYmOjoaGJjY5U28fHx+Pj4YGZmRkJCAuvXr8fLy4t9+/ZRqlQpZs6cyccff4y+vj5Tp04FUEZNREREMHHiRNzd3Rk3bhxxcXEsWrSIxMRElixZAmSO1PH29sbY2JgFCxYAsGLFChITEzVGn0RHRzNs2DCcnJxYtmwZ//zzD4sWLeLKlSts27YNXV1dpe3ixYtp06YNixYtIiMjAzs7OxYsWEB4eDienp5Ku127dmFubo6zs3Oec5aRkUFaWhpqtZp79+6xYMECKlSogJOTU75y/+TJE9LT05k4cSImJibcuXOHVatW4evry6ZNmzTaHjp0iBs3bjBjxgwePHjA3Llz+eKLL5QcPn36FG9vbwwMDJg/fz4Ay5cvJykpiVq1ar00jh49erB3715OnDhBixYtlO3h4eG0bNmSihUrZvu6uXPncvToUSZPnky1atWIi4vLtXiTnZiYGNq1a4e3tzc6OjocOXKEUaNGERQUlOectm3blu3bt2ts++qrr7h16xblypVTjtOzZ09q1KjBs2fP2LdvHwMHDiQsLAwLCws8PDy4e/cu4eHhytQvIyOjbI+XlJSEl5cXOjo6zJo1izJlyrBy5UoGDRpEWFgYVapUUdrmdu6EEEIIIYQQojBJEUgoFixYQM2aNQkKClKKKC8WRObOnav8Oz09HQcHB1q3bs3x48dxdnambt26GBkZYWhoqDFFR61WM3/+fLp27cqXX36pbDc1NWXUqFH4+vpSr149goODiY+PZ+vWrVSvXh0Aa2tr3NzcNIpAq1atwtTUlFWrVqGnpwdkTs0aPnw4kZGRuLq6Km3r16+vcUyATp06ERwcrBSB0tLSCAsLo0+fPhoFpNwsXLhQY22c8uXLExgYSNmyZfPcB4CJiQmzZs1Svk9LS6N69eoMGDCAa9euYWFhoexTq9WsXLmS0qVLA5mjUFavXk1GRgY6OjqEhIRw//59fvzxR6Xo07BhQzp37pxrEahVq1aYmJiwb98+pQj0119/8ddffzF8+PAcX3f27Fm6d+9Or169lG3dunXLVw4ABg0apPw7IyMDJycnrly5wo4dO/JcBDIxMcHExET5/rvvvuPcuXOsX79eOS9jx47VOE6rVq04c+YMu3fvZtKkScqULx0dnVynmoWEhBAbG8u+ffuoU6cOAE2bNqVdu3YEBQUxbdo0pW1u5+5VqNVqrdF0Iv9SUlI0/isKR0nNs0qlwsDAoLjDEIXk6dOnqNXq4g7jnVVSf24UNclz0ZA8F76SnGO1Wo1Kpcq1nRSBBJB5k/z5559MmjTppUWQyMhIVq5cyeXLlzWmU12/fv2lI2iuXbvG7du3+eSTT0hLS1O2N2vWDB0dHaKjo6lXrx7R0dFYWloqBSCA6tWrU79+fY3+Tp06Rffu3ZUCEGQWrIyNjfn99981ikBt27bViqdv374MGjSIy5cvU69ePSIjI4mPj6d37945vofsDB48mP/85z8AJCQksGXLFmX0zosx5yY0NJQNGzZw48YNjQ/1169f1ygCNW3aVCkiANSpU4fU1FTi4+MxNTXlzJkz1KtXT6PgU7NmzTzFU6pUKTp37sy+ffuYMWMGpUuXZt++fRgYGNCxY8ccX9ewYUN2796NqakpLi4uWFpa5uu9Z7l79y5Llizhl19+IS4uTvmlulGjRq/U35EjR1i4cCGffPIJzZo1U7ZfvXqVxYsXExUVRXx8vLL9+vXr+T7GqVOnqFevnlIAgsxiYMuWLfn999812uZ27l5FamoqFy5ceKXXCm2vcg2I/CtpeTYwMKBhw4bFHYYoJLGxsSXyw0ZRK2k/N4qL5LloSJ4LX0nN8fOfNXIiRSABZK7pkpGRgZmZWY5tzpw5g6+vL+3bt2fkyJFUrFgRlUpF3759efr06Uv7f/DgAQBjxozJdv+dO3cAuH//vsYojiwmJiYax0hMTMx2alLFihV59OiR1rYXNW3aFAsLC3bt2oW/vz/BwcE0bdo03wseV65cGRsbG+X7Fi1a0Lp1a7755huWL1+e535++uknpk6dSr9+/Zg4cSLly5cnLi6OMWPGaOXW2NhY4/usGz2r3f3793PMTW7nCTKfErZlyxaOHj1K+/btCQ8Px9XVVVnvKDufffYZ5cqVY/369cyfP58qVaowatQoBgwYkOvxsmRkZPDhhx/y+PFjxo8fT82aNTEwMGD58uXK9ZEf165dY/LkyfTs2VNjPamkpCS8vb0xMTFh2rRpVK1alTJlyjB9+vQ85edFiYmJVKpUSWt7xYoVuXz5ssa23M7dq9DT06Nu3bqv/HqRKSUlhevXr1OrVi0ZsVGISmqe8/JXOfH2qlq1ap5+6RavpqT+3ChqkueiIXkufCU5x1euXMlTOykCCQDKli2Ljo6OxiLPLzpw4ABGRkYsXbpUmbpy+/btPPVfvnx5AGbMmKH15ClAKT6ZmZllO6ohISFBowhRrlw5jREcWeLj45V1X7Lk9Mu3h4cH3377LcOGDSMyMlJrytirKF26NO+//77Wh//cRERE0KBBA2bPnq1sO3ny5CvFYGZmxrlz57S2x8fH57iuzfMcHR2pVq0a+/bto2LFisTExPDpp5++9DVly5bl008/5dNPP+XSpUts3LiRWbNmYWlpSZMmTShTpozWYtmpqakaI55u3LjB+fPnWbFiBR06dFC2P3nyJNeYX/T48WN8fX2pVauWxjQ7gD/++IO7d++yevVqjdFRjx8/fqWnfpUrV45r165pbc/uWiwMKpUKQ0PDQj9OSWFgYCD5LAKSZ/EuKVOmTIn7oFEc5OdG0ZA8Fw3Jc+EriTnO6x+d5OlgAkBZw2fPnj2kp6dn2+bJkyfo6elpXFx79+7Vaqenp6c1sqF27dpUrlyZW7duYWNjo/Vlbm4OZK7/c+nSJW7duqW8NiYmhosXL2r017hxYw4ePKgxtezYsWMkJibSuHHjPL3nXr168fjxY/z8/NDX16dz5855et3LPH36lJs3b1KhQoV8vS4rt8/LLrd5YWNjw+XLl7lx44ay7caNG1o5zIlKpaJ79+4cOnSIHTt2UL58eVxcXPJ8fCsrK/z9/YHMaVcA5ubmpKamcvPmTaXd8ePHNa61rGvm+Tzcvn2bqKioPB8bMkcUTZ48mcePHxMYGKj119msotLzxzl9+rRWQVNPT49nz57lerzGjRvz119/8ffffyvbHj16xC+//JLna1EIIYQQQgghioKMBBKKyZMnM3ToUIYOHcqAAQMoV64c586do0KFCvTp04dWrVoRFBTEF198QceOHYmKimLPnj1a/dSuXZvQ0FAOHTqEqakpZmZmmJubM23aNPz8/EhOTqZt27YYGBgQGxtLZGQkEydOxMLCgt69e7Nq1SpGjx7NuHHjAAgMDKRSpUoaxafRo0fj6emJj48PXl5eytPBbG1tadOmTZ7er4mJCe3btyciIoJ+/fqhr6+f75zduXOHP/74A8gcrfT999/z8OFDjaeO5UXLli2ZPXs2K1aswMHBgcjISH799dd8xwPg7u7OypUr8fHxYcKECUDm08Gym7KUk+7du7N69WpCQkLo16+fVoHqRZ6ennTs2JF69eqhq6tLaGgoenp6NGnSBIDWrVtjaGjI9OnTGTlyJHfv3mXjxo2UKVNG6SOrUJj1FLfk5GSWL1/+0imK2Vm7di2RkZFMnTqVO3fuaEwla9iwIfb29hgaGjJr1ixGjRrFvXv3CAgIUAqRWerUqUNaWhpBQUE4ODhgZGRE7dq1tY7n7u7Ohg0b8PHx4aOPPlKeDlaqVCmGDBmSr9iFEEIIIYQQojBJEUgomjRpwsaNG1m6dCn+/v7o6OhQr149PvroIwDatGmDn58fmzdvJiQkBEdHR1avXk2nTp00+hk5ciQ3b95k6tSpJCYmMnbsWMaNG0eXLl0wNjZm1apVyiiXatWq4eLiohQo9PX1WbduHTNnzsTPzw9zc3N8fX0JDQ3VeOKWtbU169atY/HixYwbNw5DQ0NcXV2ZOnVqvp7u1bFjRyIiIujTp88r5WzTpk3KI9yNjY2pU6eO1nSmvPD09CQmJobNmzfz3Xff4ezszKJFi+jbt2++Y8rK4eeff87HH3+s5PDgwYM8fvw4T31YWlpiZWXFpUuX6NGjR67tHR0dCQ0NJSYmBh0dHSwtLVm1apWyWHKFChVYvnw5X3/9NWPGjKFBgwbMnz9fY62e0qVLExAQwOzZs5kwYQJVqlThww8/5Pjx40RHR+f5/WdNzfr666+19h08eJDq1auzbNky5s+frzFl7Ntvv9Vo265dOwYMGMCaNWuIj4+nadOmyrl+npGREZs2bWLevHl89tlnZGRk4OjoyObNmzUeDy+EEEIIIYQQxU2llmdaijfcw4cP6dChA0OHDtV4tHdBmDJlChcuXHjlqVdCFKezZ88CaCxOLl5NcnIyFy5coEGDBiVu/nhRKul57rYFouOKOwpRUKxNYd+AzEVIZU2gwlPSf24UFclz0ZA8F76SnOO8fjaQkUDijbNmzRoqVapEtWrViIuLY926daSnp+f78e0vc+nSJS5cuMAPP/zAzJkzC6xfIYQQQgghhBDiTSVFIPHG0dHRYeXKldy7dw9dXV3s7OwICgoq0Kk1H374IQkJCfTs2VOruKRWq3NcHDsrvqynowkhhBBCCCGEEG8LKQKJN86IESMYMWJEoR7j0KFDOe47efIkgwcPznF/r169mDdvXmGEJYQQQgghhBBCFBopAgnxgkaNGrFr164c9+f38e9CCCEEQF2T4o5AFCQ5n0IIId5GUgQS4gVGRkay0K4QQogClZ4ByzoXdxSioKWmZxR3CEIIIUS+yMImQgghhBCFTLcIf+NKSUnh/PnzpKSkFN1BS6CUlBQunItGHrQrhBDibSJFICGEEEKId4harSYlJUWKE4VMrVaTmppa3GEIIYQQ+SJFICGEEEIIIYQQQogSQIpAQgghhBBCCCGEECWAFIGEEEIIIYQQQgghSgApAgkhhBBCCPEKqlSpUtwhCCGEEPkiRSAhhBBCCCHySaVSUbVqVVQqVXGHIoQQQuSZFIGEEEIIIYQQQgghSgApAgkhhBBCCCGEEEKUAFIEEkIIIYQQQgghhCgBpAiUDyEhIezdu7e4wyh0VlZWfPfdd8V2/A0bNmBlZVVkxwsJCcHKyoqEhISXtvPy8sLHx6eIono9Bw4cwMrKipiYmBzbxMTEYGVlhZWVFUeOHNHav2PHDmW/KFgnTpxg1apVxR2GEEIIIYQQooSRIlA+7N69m/Dw8OIOQxSTmTNnMnXq1OIOo8AZGhryww8/aG0PDw/H0NCwGCJ69508eZLVq1cXdxhCCCGEEEKIEkaKQO+IJ0+eFHcIb5z09HRSU1MLrL+6detSu3btAuvvTdG+fXt++uknnj59qmy7f/8+v/32Gx06dCjGyIQQQgghhBBCFKQSUwSKiorC29sbR0dHHBwc8PDw4NixY8r+hQsX0qNHDxwcHHBxcWHSpEncv39f2e/l5cXJkyc5fPiwMkUmICBA2X/48GE8PDywtbWlefPmzJw5k+TkZI0YLl++zMCBA7GxscHNzY2wsDB8fX3x8vLSaPfbb7/h6emJra0tTk5O+Pv78/DhQ2V/1jSekJAQpk+fjpOTEx4eHmzatAk7OzuSkpI0+rt69SpWVlZERkYWRCqBzClUPXr0wMbGBhcXF5YsWUJ6erqy//79+/j7+9O+fXtsbW1xc3Nj8eLFPHv2TKOfpKQkpkyZgoODA82bN2f+/Pka/WRJTEzk888/x9nZGWtra9zd3fn555812mRN19q9ezedOnXCxsaGixcvkpiYyPTp03FxccHGxoY2bdowceJErWPcvXuXESNGYG9vj5ubG6Ghodn2nyUgIAAHBwfOnDlDnz59sLGxoUuXLvzvf//LNX+hoaH079+fZs2a0bRpU7y8vDhz5oxGm6z+L126RP/+/bGzs6N79+4cPXpUo11qaipffvklzZo1o3HjxnzyySf8+++/ucaQpXXr1qhUKo3r44cffqBGjRo0atRIq31u9wr8X64iIiLo1KkTDg4ODB48mJs3b+a7L7VaTWBgIK1atcLBwYHx48fzyy+/YGVlxYkTJzTafffdd3Tq1Alra2vat2/Phg0bss3p+fPn6devH7a2tvTq1Yvz58/z9OlTZs6cSdOmTWndurXWayHz58jgwYOxt7encePGTJ48mfj4eGV/1r25Z88eZs+eTdOmTXF2dubrr78mLS1NiSEwMJDk5GTlZ8mLPwOEEEIIIYQQojCUKu4AisLvv//OkCFDsLe3Z86cORgbGxMdHU1sbKzSJj4+Hh8fH8zMzEhISGD9+vV4eXmxb98+SpUqxcyZM/n444/R19dXpgRVrlwZgIiICCZOnIi7uzvjxo0jLi6ORYsWkZiYyJIlS4DMkTre3t4YGxuzYMECAFasWEFiYiI1atRQ4oiOjmbYsGE4OTmxbNky/vnnHxYtWsSVK1fYtm0burq6StvFixfTpk0bFi1aREZGBnZ2dixYsIDw8HA8PT2Vdrt27cLc3BxnZ+cCyef69etZsGABQ4YMYdq0aVy9elUpAvn5+QHw4MEDypcvj7+/P8bGxly/fp2AgADi4uKYO3eu0tcnn3zC0aNH8fPzo3r16mzZskVryt2zZ88YNmwY8fHxfPTRR5ibmxMWFoaPj4+yns/z+bt9+zYTJkzA2NiYKlWqMHfuXI4ePcrkyZOpVq0acXFx2a6B4+fnR9++fRk2bBg7duxg2rRp2NjYUKdOnRxzkZqaysSJE/H29qZ69eps3bqVsWPHasX1opiYGHr27EmNGjV49uwZ+/btY+DAgYSFhWFhYaHRv5+fH4MHD8bX15e1a9cyfvx4Dh06RIUKFYDM62Dr1q2MGzeOhg0bsm/fPhYtWpTLWfw/pUuXpmPHjoSHh+Pm5gZkTgXr3r17tu1zu1eyXLhwgYSEBPz8/EhPT2fevHl8/PHHbN++PV99bdq0icDAQEaMGEHz5s05fvw406dP14rryy+/ZOfOnYwePRo7OztOnz7NwoULKVOmDP3799fI6dSpUxk6dCiVKlVi4cKFjB07FkdHRypWrMjSpUs5ePAgc+fOxdbWFkdHRyCzAOTl5UWbNm1YsmQJKSkpLF26FF9fX433BLB06VLat2/P0qVLiYqKIiAggBo1atC/f388PDy4e/cu4eHhBAUFAWBkZJTn8yWEEEIIIYQQr6pEFIEWLFhAzZo1CQoKUoooLxZEni9MpKen4+DgQOvWrTl+/DjOzs7UrVsXIyMjDA0Nsbe3V9qq1Wrmz59P165d+fLLL5XtpqamjBo1Cl9fX+rVq0dwcDDx8fFs3bqV6tWrA2BtbY2bm5tGEWjVqlWYmpqyatUq9PT0AKhSpQrDhw8nMjISV1dXpW39+vU1jgnQqVMngoODlSJQWloaYWFh9OnTR6OA9KqSkpJYvnw5I0aMYNKkSQC0atUKPT095s2bx/Dhw6lQoQJWVlYa6+c4OjpiYGDAtGnTmDFjBgYGBly5coX//ve/zJkzhz59+gCZ5yWrEJFl7969XLx4kT179lC3bl0AXFxcuHHjBt988w3Lli1T2j569Ihdu3ZRpUoVZdvZs2fp3r07vXr1UrZ169ZN670NHDiQgQMHAuDg4EBkZCT79+/H19c3x3ykpqby4YcfasW/evVqFi9enOPrxo4dq/w7IyODVq1acebMGXbv3q3kNat/Pz8/2rRpA4CFhQXt27fnyJEjfPDBBzx8+JAtW7YwcuRIZZSSi4sLgwYN4t69ezke/0Xdu3fH19eXf//9l/j4eM6ePcuCBQuyHT2W272S5fHjx4SGhmJiYgJAcnIy/v7+3L17Vymg5tZXeno6a9aswd3dXSkwOjs78+DBA3bt2qW89ubNm2zevJlZs2bRr18/AFq2bMmTJ09YsWIF/fr1Q0dHJ9ucZmRkKIUjf39/AJo3b05ERAQRERFKEWjRokVYW1sTGBiISqUCwNLSku7duxMZGan0B2Bra6sUqlq1asWJEyfYv38//fv3p3LlylSuXBkdHR2NnyWvSq1Wa406FPmXkpKi8V9ROCTPRUPyXDSePXuGgYEBT58+Ra1WF3c47yy5nouG5LloSJ4LX0nOsVqtVj6nvMw7XwRKSUnhzz//ZNKkSS8tgkRGRrJy5UouX76sMZ3q+vXrLx1Bc+3aNW7fvs0nn3yiTPcAaNasGTo6OkRHR1OvXj2io6OxtLRUCkAA1atXp379+hr9nTp1iu7duysFIMj80GtsbMzvv/+uUQRq27atVjx9+/Zl0KBBXL58mXr16hEZGUl8fDy9e/fO8T3kR1RUFMnJyXTu3Fnj/WZ94L58+TLNmjVDrVYTFBTEjh07iImJ0Vhv5tatW1haWnL27FnUajUdO3ZU9unq6tKhQweNqTjHjh3D0tKSWrVqaR0zLCxMIz5LS0uNAhBAw4YN2b17N6ampri4uGBpaZnte3v+PBsaGlK1alXu3r2ba06yi//AgQMvfc3Vq1dZvHgxUVFRGtOJrl+/rtFOR0eHFi1aKN9Xr14dfX19pcDz119/8eTJE40YANzc3Pjtt99yjT1L8+bNee+99zhw4AC3b9+mUaNGWFhYZFsEyuu9Ur9+faUABCgFvOeLQLn1dffuXeLi4jSue8hcx+j5ItAvv/yivO8Xr5G1a9dy584dqlWrBmjntFatWkrbLLq6utSoUUM5/ykpKZw+fZopU6ZoTFesVasWVapU4ezZsxpFoBd/ZtSpU4fjx49r5bIgpKamcuHChULpuyR68R4UhUPyXDQkz4XLwMCA8uXLExsbWyI/bBQ1uZ6LhuS5aEieC19JzXHp0qVzbfPOF4ESExPJyMjAzMwsxzZnzpzB19eX9u3bM3LkSCpWrIhKpaJv374axYvsPHjwAIAxY8Zku//OnTtA5ho5z38gzmJiYqJxjMTERCpWrKjVrmLFijx69Ehr24uaNm2KhYUFu3btwt/fn+DgYJo2baox2uh1ZL3f50fVPC/r/QYFBfH1118zYsQInJycMDY25uzZs8yePVt5v3Fxcejp6VGuXLmXvq8HDx5w/vz5bNenebGwV6lSJa02n332GeXKlWP9+vXMnz+fKlWqMGrUKAYMGKDRrmzZshrf6+npaa1h9KKc4o+Li8vxNUlJSXh7e2NiYsK0adOoWrUqZcqUYfr06VrXm76+vtaNrKenp5HDrGM+L7s8vIyuri5dunRh37593L59O8eiYX7uFWNjY624AaVdXvrKen8v3jvZXSNqtZrmzZtnG/fzRaAXc5oVV3bnPyuOxMRE0tPTmTt3rsbopef7f96rXEuvSk9PTymwiVeXkpLC9evXqVWrFgYGBsUdzjtL8lw0JM9FI+vnetWqVfP0S7d4NXI9Fw3Jc9GQPBe+kpzjK1eu5KndO18EKlu2LDo6OlqLzT7vwIEDGBkZsXTpUmXKyO3bt/PUf/ny5QGYMWMGtra2Wvuzik9mZmbZ/rU+ISGB9957T/m+XLlyGiNDssTHx2sVG3Ia6uXh4cG3337LsGHDiIyM1Joy9jqyYggMDFRGczwva6RTREQErq6uTJ48Wdl39epVjbampqakpqby6NEjjff24vsvV64cVlZWeXof2eWkbNmyfPrpp3z66adcunSJjRs3MmvWLCwtLWnSpEmufb5MTvGbmprm+Jo//viDu3fvsnr1ao2RYI8fP842py+TdZz4+HjMzc2V7f/880+++oHMKXJZ0+G6du2abZvXuVdepa+s95eQkKCxPbtrRKVSsWXLFo1RdFmeX2fpVZQtWxaVSoWPj0+2T0zLWp+pOKhUKgwNDYvt+O8aAwMDyWcRkDwXDclz4cr6naNMmTIl7oNGcZDruWhInouG5LnwlcQc52UqGJSAIlDWGj579uzB29s72ylhT548QU9PTyNpe/fu1Wr3/MiALLVr16Zy5crcunVL+QCdHWtra0JDQ7l16xbvv/8+kLk48MWLF2ncuLHSrnHjxhw8eJBp06YpC+MeO3aMxMREjXYv06tXL5YsWYKfnx/6+vp07tw5T6/LCwcHBwwMDLh7967WFKTnZeX0eS/m1MbGBoCffvpJWVMnPT1daypVy5YtiYyMxMzMTKPQ8SqsrKzw9/dn165dXL169bWLQJB9/HZ2djm2f/LkCYBGfk6fPs3t27epV69evo5taWmJvr4+P/30Ew0bNlS2//e//81XP5B5brt3707FihVzLEbl9V7Ji7z0VblyZUxNTTl48KBG8eXFayRretfDhw+1po4VhKyfI3///bdy3b6OwhwZJIQQQgghhBA5eeeLQACTJ09m6NChDB06lAEDBlCuXDnOnTtHhQoV6NOnD61atSIoKIgvvviCjh07EhUVxZ49e7T6qV27NqGhoRw6dAhTU1OlKDFt2jT8/PxITk6mbdu2GBgYEBsbS2RkJBMnTsTCwoLevXuzatUqRo8ezbhx44DM0TSVKlXS+BA8evRoPD098fHxwcvLS3k6mK2trcaaIy9jYmJC+/btiYiIoF+/fujr6+c7Z3/99RcREREa2wwNDWndujXjx49nwYIF3L17l2bNmqGrq8utW7c4ePAgAQEBGBgY0LJlSzZu3MjmzZupVasWYWFh3LhxQ6O/unXr0rFjR7766iuePn2qPB0sNTVVo13Pnj3Ztm0bgwcPxtvbm1q1avH48WPOnz9Pamqqxmij7Hh6etKxY0fq1auHrq4uoaGh6OnpFUgBSE9Pj5UrVyrxb926lbt377JixYocX2Nvb4+hoSGzZs1i1KhR3Lt3j4CAgFcqcJUvXx5PT0/Wrl2Lvr6+8nSwFx/FnhcqlUp5cl1O8nqv5EVe+tLV1WXUqFF89dVXVKpUCScnJ06cOMGvv/4KoIwgsrCwYODAgUyZMoXhw4djZ2dHamoq169f58SJE3zzzTevFOPzpkyZwpAhQ/joo4/o1q0bxsbG3L17l19++QV3d3ecnJzy3FedOnVIS0sjKCgIBwcHjIyMqF279mvHKIQQQgghhBAvUyKKQE2aNGHjxo0sXboUf39/dHR0qFevHh999BEAbdq0wc/Pj82bNxMSEoKjoyOrV6+mU6dOGv2MHDmSmzdvMnXqVBITExk7dizjxo2jS5cuGBsbs2rVKmUkQ7Vq1XBxcVHWZtHX12fdunXMnDkTPz8/zM3N8fX1JTQ0VGP9EGtra9atW8fixYsZN24choaGuLq6MnXq1Hw93atjx45EREQoI1TyKzQ0lNDQUI1tNWrU4KeffsLb2xtzc3PWr1/P5s2bKVWqFDVq1KBt27bK6JYxY8bw4MEDli9fDmQ+tWz69OmMHj1ao8+vvvqK2bNns3DhQkqXLk2vXr1o1qwZ8+fPV9qULl2ajRs3EhAQwKpVq4iLi6N8+fI0bNhQa12f7Dg6OhIaGkpMTAw6OjpYWlqyatWqlz76Pa/09PRYvHgxs2bN4q+//qJ69eosX75ca8Hv51WqVIlly5Yxf/58fH19qVWrFrNmzeLbb799pRgmT55Meno63377LRkZGXTs2JHJkyczZcqUV31bOcrrvVKQfXl5eZGYmMiWLVvYtGkTLVq04OOPP2bixIka98706dOxsLBg+/btrFixgvfeew8LC4sCGwnn6OjIli1bCAgIwN/fn9TUVCpXrkzz5s2pWbNmvvpq164dAwYMYM2aNcTHx9O0aVM2bdpUIHEKIYQQQgghRE5UanmmZbF5+PAhHTp0YOjQoRqPDC8IU6ZM4cKFC688VUfkLiAggHXr1hEVFVXcoZQ4S5cuZf369Zw4ceKVRrq9K86ePQtQIFPUSrrk5GQuXLhAgwYNStz88aIkeS4akueikZKSgoGBgfJfUTjkei4akueiIXkufCU5x3n9bFAiRgK9KdasWUOlSpWoVq0acXFxrFu3jvT09AJ7fDvApUuXuHDhAj/88AMzZ84ssH6FKC5Xr14lLCwMBwcH9PT0OHnyJN999x39+/cv0QUgIYQQQgghhMgvKQIVIR0dHVauXMm9e/fQ1dXFzs6OoKAgqlSpUmDH+PDDD0lISKBnz55axSW1Wk16evpL48taY0WIN4W+vj5RUVFs3bqVf//9F3Nzc4YPH66srSWEEEIIIYQQIm+kCFSERowYwYgRIwr1GIcOHcpx38mTJxk8eHCO+3v16sW8efMKI6x30rhx46QQUQSqVavGxo0bizsMIYQQQgghhHjrSRGoBGnUqBG7du3KcX+FChWKMBohhBBCCCGEEEIUJSkClSBGRkaygKwQQgghRAFQq9XExsZSvnz54g5FCCGEyDNZAEYIIYQQQohXcOfOneIOQQghhMgXKQIJIYQQQgghhBBClABSBBJCCCGEEEIIIYQoAaQIJIQQQgghhBBCCFECSBFICCGEEEIIIYQQogSQIpAQQgghhBCvoEqVKsUdghBCCJEvUgQSQgghhBAin1QqFVWrVkWlUhV3KEIIIUSeSRFICCGEEEIIIYQQogSQIpAQQgghhBBCCCFECSBFICGEEEIIIYQQQogSQIpAQgghhBBCCCGEECWAFIHEawkJCWHv3r3FHUaRSEhIYN68eXTq1AkbGxscHR0ZNGgQO3fuJD09HYCAgAAcHByKNC5fX1+8vLyK9JgvSkxMxMrKipCQkJe2c3V1xcrKCisrKxo1akSLFi3w8vJiw4YNJCcnv9KxN2zYQGRk5Cu9tjjOlxBCCCGEEEIUl1LFHYB4u+3evRtDQ0N69OhR3KEUqhs3bjB48GDS09MZNmwYjRo14tmzZxw/fpy5c+dSoUIFOnToUNxhvhU6deqEt7c36enpJCQkcOLECZYuXcrWrVsJCgqicuXK+epv48aNtG3bljZt2hRSxEIIIYQQQgjxbpAikHhnPXnyBH19/QLpy8/Pj/T0dIKDgzE3N1e2t27dmkGDBvH48eMCOU5JUKlSJezt7ZXvO3bsiLu7OwMGDMDf35/169cXX3BCCCGEEEII8Q6T6WAlWFRUFN7e3jg6OuLg4ICHhwfHjh1T9i9cuJAePXrg4OCAi4sLkyZN4v79+8p+Ly8vTp48yeHDh5UpPgEBAcr+w4cP4+Hhga2tLc2bN2fmzJlaU34uX77MwIEDsbGxwc3NjbCwsGynN/322294enpia2uLk5MT/v7+PHz4UNkfExOjTEeaPn06Tk5OeHh4sGnTJuzs7EhKStLo7+rVq1hZWeVpGtGpU6c4c+YMPj4+GgWgLFWrVsXKyirH19++fZvx48fTuHFj7O3tGT58OJcuXdJoY2VlxXfffaexbcOGDVr9Xr16lUGDBmFjY0OHDh3YvXt3rvFD5rkePXo0zs7O2Nvb88EHHxAaGqrR5sSJE1hZWXHs2DEmT56Mg4MD7dq1Y+3atVr97dixA1dXV+zs7BgyZAg3btzIUxw5adiwIQMGDOCXX37h77//BiA5OZnZs2fTqVMn7OzscHV1ZcaMGRoFN1dXV27fvs3333+vXINZU9JCQ0Pp378/zZo1o2nTpnh5eXHmzJlsj3/mzBn69OmDjY0NXbp04X//+5/G/sOHDzNs2DBatGiBo6MjHh4eHDlyRKNNYmIi06dPx8XFBRsbG9q0acPEiRM12ty9exc/Pz+cnJywtbVl4MCBREdHv1buhBBCCCGEECKvZCRQCfX7778zZMgQ7O3tmTNnDsbGxkRHRxMbG6u0iY+Px8fHBzMzMxISEli/fj1eXl7s27ePUqVKMXPmTD7++GP09fWZOnUqgDKVJyIigokTJ+Lu7s64ceOIi4tj0aJFJCYmsmTJEiBzpI63tzfGxsYsWLAAgBUrVpCYmEiNGjWUOKKjoxk2bBhOTk4sW7aMf/75h0WLFnHlyhW2bduGrq6u0nbx4sW0adOGRYsWkZGRgZ2dHQsWLCA8PBxPT0+l3a5duzA3N8fZ2TnXXJ08eRIAFxeXfOc5KSkJLy8vdHR0mDVrFmXKlGHlypUMGjSIsLAwqlSpkue+nj59ire3NwYGBsyfPx+A5cuXk5SURK1atV762tjYWBwdHenfvz+lS5fm9OnTTJ8+HbVaTa9evTTazpw5kw8++IAVK1Zw4MABFi5ciJWVFa1btwbgf//7H5999hnu7u507dqVc+fOMWHChPwlJhvOzs589913/Pnnn9SuXZsnT56Qnp7OxIkTMTEx4c6dO6xatQpfX182bdoEQGBgIKNGjcLR0RFvb28A5dqJiYmhZ8+e1KhRg2fPnrFv3z4GDhxIWFgYFhYWynFTU1OZOHEi3t7eVK9ena1btzJ27FhCQkKUIlxMTAzt2rXD29sbHR0djhw5wqhRowgKCsLJyQmAuXPncvToUSZPnky1atWIi4vTKBQ9evSIAQMGYGhoyGeffUbZsmXZtGkTQ4YM4b///S8VK1Z8pbyp1epXXk9J/J+UlBSN/4rCIXkuGpLnovHs2TMMDAx4+vQparW6uMN5Z8n1XDQkz0VD8lz4SnKO1Wo1KpUq13ZSBCqhFixYQM2aNQkKClKKKC8WRObOnav8Oz09HQcHB1q3bs3x48dxdnambt26GBkZYWhoqDG9R61WM3/+fLp27cqXX36pbDc1NWXUqFH4+vpSr149goODiY+PZ+vWrVSvXh0Aa2tr3NzcNIpA/4+9Ow+rMf3/AP4+5aSTNlHWQcghrSpps0UZy2/sGkTWiMYWypjsE7KXnQhjGTTWGcby1RiGwWRGNL4xsmRLi6STtvP7w9XzdZzSaTsZvV/X5dJ5nvu5n8/zOafD+Zz7vp8NGzbA2NgYGzZsgFgsBgDUq1cPo0aNQnR0NDp37iy0bdmypcI5gbdr0Bw8eFAoAuXm5uLIkSPo37+/QgGpKM+ePQPwdsRPSUVFReHx48c4fvw4mjVrBgBwcHBAp06dEBkZicDAwBL19fz5c/z0009C0cfc3BzdunUrtgjUo0cP4We5XA4HBwc8e/YM+/btUyoCeXh4wN/fHwDg5OSEc+fO4eTJk0IRaP369bC3txdeH25ubnjz5g3WrVun8rUUpqCAmJSUBAAwMjLCvHnzhP25ublo2LAhBg8ejHv37sHU1BTm5ubQ0tJSmmIGABMnThR+zs/Ph4uLC/766y/88MMPmDp1qrAvJycH48ePR//+/QG8/T3w8PDAxo0bsWLFCgDA0KFDFfpydHTEnTt38P333wtFoBs3bqBnz54K+Xw375GRkUhPT8f+/fuFgo+TkxM8PT2xdetWzJgxo1R5y8nJQVxcXKmOJWUJCQmVHUKVwDyrB/NcsSQSCQwNDfH48eMq+WFD3fh6Vg/mWT2Y54pXVXOspaVVbBsWgaogmUyGP//8E1OnTv1gESQ6Ohrr169HfHy8wnSqhISED46guXfvHhITEzFr1izk5uYK29u2bQsNDQ3ExsbCzMwMsbGxaNGihVAAAoCGDRuiZcuWCv1dvXoVPXv2FApAwNsP6vr6+rh27ZpCEahjx45K8QwcOBBDhw5FfHw8zMzMEB0djeTkZPTr16/IaygvV69ehZmZmVAAAgBDQ0M4Ozvj2rVrJerrr7/+gpmZmULBp3Hjxkr5KszLly8RFhaGM2fO4NmzZ8LdzAwNDZXavvvcikQiNGvWDE+fPgXwthh48+ZNTJ8+XeEYT0/PMheBCr5Ffbd6fejQIWzfvh33799XGO2SkJCgMJqnMHfv3sWKFSsQExOD5ORkhWPf17VrV+FnTU1NdOnSBadPnxa2PX36FCtXrsTFixeRlJQkxNq6dWuhjbm5OX744QcYGxvDzc0NLVq0UDjHhQsX4OjoCAMDA+H3QkNDAw4ODrhx48YHr+VDxGIxmjdvXurj6S2ZTIaEhAQ0adIEEomkssP5ZDHP6sE8q0d2djaAt18SqfKfbiodvp7Vg3lWD+a54lXlHN+5c0eldiwCVUHp6enIz8+HiYlJkW3++usv+Pn5wd3dHWPGjEGtWrUgEokwcOBAvHnz5oP9p6amAgAmTJhQ6P4nT54AAJ4/fw4jIyOl/UZGRgrnSE9PL3SqTK1atfDy5Uulbe9zcHCAqakpDhw4gKCgIBw8eBAODg4Ko40+pGAdoCdPnqBx48YqHfNu7LVr1y409vj4+BL19fz58yLzUNxzEhgYiJiYGEyYMEEYwbVnzx789NNPSm319PQUHovFYmEdnpSUFOTm5io9b4VdY0kVjLgyNjYGAJw6dQozZ87EoEGDMGXKFBgaGiIpKQkTJkwo9nozMjIwcuRIGBkZITAwEPXr10f16tUxe/ZspWPFYjEMDAwUttWqVUsYkZSfn4/x48fj1atX+Oqrr9C4cWNIJBKsWbNGeC0DwDfffAMDAwNs27YNS5cuRb169TB27FgMHjwYwNvfi+vXrysUjgqo+losjEgkgo6OTqmPJ0USiYT5VAPmWT2Y54pV8KVF9erVq9wHjcrA17N6MM/qwTxXvKqYY1WmggEsAlVJenp60NDQUFjk+X2nT5+Grq4uVq1aBQ2Nt+uHJyYmqtR/weiS4OBgWFlZKe0vKD6ZmJgUOo0lJSUFNWrUEB4bGBgojOQokJycrPThvagX/oABA7BlyxaMGDEC0dHRSlPGPqRt27YAgF9//bXERSADAwPcu3dPafv7sWtpaSEnJ0ehTXp6usJjExMT3Lx5s9C+dHV1i4zhzZs3OHfuHAIDAxUW3N69e7fK11HAyMgI1apVQ0pKisL2Fy9elLiv950/fx4AhGldJ06cQKtWrTB//nyhTcH6TMW5fv06nj59io0bNyqMlHr16pXSLehzcnLw8uVLhecjOTlZKEbdv38ft27dwtq1a9GlSxehTVZWlkI/enp6+Prrr/H111/j9u3b2LFjB+bNm4cWLVrA3t4eBgYGcHNzK3T9JH6DTERERERE6sC7g1VBBWv4HD58WJgW9L6srCyIxWKFosrRo0eV2onFYqWRFU2bNkXdunXx8OFDWFpaKv0pGFljYWGB27dv4+HDh8Kxjx49wt9//63Qn52dHc6cOaMwtezChQtIT0+HnZ2dStfcp08fvHr1CgEBAdDW1ka3bt1UOg4A7O3tYWVlhQ0bNhRaOHvy5InS3b7ejf2///2vcMcr4O3UrIsXLyrEXrduXdy9e1fh2IsXLyo8trS0RHx8vMKduO7fv6+Ur/dlZ2cjPz9fYTpdRkYGzp49+8HjCqOpqQlzc3OcOnVKYfvJkydL3Ne74uLisGfPHri6ugrT3Qpeg+9S9TVYUKB59/g//vijyELmu9eTl5eH06dPw9raGgCEvt/tKzExETExMUVej1QqRVBQEAAIz6uzszPu3r2LZs2aKf1OfOjuckREREREROWFI4GqqGnTpsHHxwc+Pj4YPHgwDAwMcPPmTdSsWRP9+/eHi4sLIiMjsWDBAnTt2hUxMTE4fPiwUj9NmzbFoUOHcPbsWRgbG8PExAR16tRBYGAgAgICkJmZiY4dO0IikeDx48eIjo7GlClTYGpqin79+mHDhg0YN26csBBxeHg4ateurVB8GjduHLy8vODr6wtvb2/h7mBWVlbo0KGDStdrZGQEd3d3nDhxAoMGDYK2tnaJ8rVs2TJ4e3ujX79+GDFiBFq3bo3s7GxcuXIF3333HZYsWVLoB/m+ffti+/bt8PX1xeTJk4W7g1WrVg3Dhw8X2nl6eiIyMhKWlpYwNTXFkSNHhOlR7/a1fv16+Pr6CqNJ1qxZU+xULD09PVhaWmLz5s3CSJ5NmzZBV1dXaUSPKsaNGwc/Pz8EBQUJdwcr7LVRlBcvXuD69evIz89HSkoKLl26hAMHDqBu3br49ttvhXbOzs6YP38+1q5dC1tbW0RHR+O3335T6q9p06a4dOkSLly4AH19fTRs2BA2NjbQ0dHBvHnzMHbsWDx79gxhYWFCAfJdYrEY69evx5s3b4S7gz19+hRr164V+q9bt65wx7nMzEysWbNGaTqll5cXunbtCjMzM2hqauLQoUMQi8Wwt7cHAPj4+ODo0aMYOnQohg0bhvr16yMlJQV//vkn6tSpAx8fH5VzSEREREREVBocCVRF2dvbY8eOHRCJRAgKCsLEiRNx+vRpNGjQAADQoUMHBAQE4MyZMxg/fjyuXr2KjRs3KvUzZswYtGnTBjNnzkT//v3x/fffAwA+//xzbNq0Cffu3cO0adPg5+eHbdu2oUGDBkLRQltbGxERETAwMEBAQABCQ0MxYsQING7cWGFdGgsLC0REROD169fw9/dHaGgoOnbsiM2bN6t0d68CBYv/FtwFqiQaN26MH374AT169MCePXswatQoTJo0CX/88QdmzZqFTp06FXqcrq4udu7ciZYtW+Kbb75BQEAADAwMsGvXLoXbw/v5+aFnz55Yu3Ytpk+fjvr162PYsGEKfRXkq1atWpg+fTqWLVuG0aNHw9LSstj4ly9fjkaNGiEwMBALFy6Ep6cnevfuXeI8AIC7uzvmzZuH3377DRMmTMCFCxewatUqlY8/efIkBg0aBG9vb8yePRu3b9/GlClTEBUVpVCk8fLywsiRI7Fr1y5MnDgRT548wfLly5X6mzp1KurWrQt/f3/0798f//nPf1C7dm2sXr0aKSkp8PPzQ2RkJObNm1fodD6xWIwVK1bg4MGDmDBhAhISErBmzRphGpmWlhbCwsKgpaWFSZMmYc2aNRg/frwwTbBAmzZtcOjQIUyaNAlfffUVHj16hA0bNgiLgtesWRP79u1Dq1atsGzZMowcORIhISFITEwsdNokERERERFReRPJC25zQ/QRSEtLQ5cuXeDj46Nwi+/yMGPGDMTFxRU6pYjo36jgrmKqFALpwzIzMxEXF4dWrVpVuUUE1Yl5Vg/mWT1kMhkkEonwN1UMvp7Vg3lWD+a54lXlHKv62YDTwahSbdq0CbVr10aDBg2QlJSEiIgI5OXllevt22/fvo24uDj8+OOPmDNnTrn1S0RERERERPRvwiIQVSoNDQ2sX78ez549g6amJqytrREZGakwVaqsxo8fj5SUFPTu3VupuCSXy4tcHLsgvoK7oxERERERERH9m7EIRJVq9OjRGD16dIWe40N3wfr999+V1t55V58+fbB48eKKCIuIiIiIiIhIrVgEoiqtdevWOHDgQJH7a9asqcZoiIiIiIiIiCoOi0BUpenq6nJRXSIiIioxuVyOx48fw9DQsLJDISIiUhkXOyEiIiIiKoUnT55UdghEREQlwiIQEREREREREVEVwCIQEREREREREVEVwCIQEREREREREVEVwCIQEREREVEpiMViiESiyg6DiIhIZbw7GBERERFRCYlEIrRqbQGxpurfqeblAyVoTkREVO5YBCIiIiIiKgWxpgYmnQDupBTftrkRsLpbxcdERET0ISwCERERERGV0p0UIDapsqMgIiJSDQekEhERERERERFVASwCERERERERERFVASwCEZHaRUVFQSqVIiVFhUUUKlBcXBzCwsIgk8lU2v6xxE1ERERERFQaLAIRUZUVFxeH8PDwQotAhW3v2LEj9u3bB319fXWGSUREREREVC7KtDB0RkYGXr16hXr16gnbnj17hr179yI7Oxuenp6wsrIqc5BE9GnIy8tDfn5+ZYdRakZGRjAyMqrsMIiIiIiIiEqlTCOBgoODMWnSJOFxRkYGBg0ahPXr12Pbtm0YMmQILl++XOYgiahiXb16FVKpFA8ePBC2jRs3DlKpFPHx8cK2qVOnYuzYsQCAtLQ0BAUFwdHREVZWVvDy8sKVK1cU+vX29oavry9++OEHeHp6wtLSEn///XehMRw8eBAWFhbYv3+/SjGfOXMGffv2ha2tLezt7dG3b19ER0crtImKikKvXr1gaWkJNzc3rFy5Enl5ecK+oKAgAICTkxOkUik6d+5c5PaCY96dDvbo0SNIpVIcPnwY8+fPh4ODA1xdXbFkyRLk5uYqxHLq1CkhBwMHDsTNmzdhb2+PsLAwla6XiIiIiIiorMo0EujatWsYNGiQ8Pjw4cN4/vw59u7di+bNm8PHxwfr16+Ho6NjmQMloopjZWWF6tWr48qVK2jUqBHy8/Nx7do1YZuZmRkA4MqVK/D29kZeXh7GjBmDhw8fIiAgALVr18bOnTsxYsQI7N27FxYWFkLfsbGxSExMxKRJk6Cvr4969eopFJYAYOfOnViyZAmWLFmCHj16FBvvgwcPMGnSJPTo0QPTpk1Dfn4+/v77b7x8+VJos23bNoSGhmL48OEIDAzE3bt3hSJQQEAAOnbsiPHjx2P9+vXYsmUL9PT0oKWlhbp16xa6/UNWrVoFd3d3rFq1CjExMQgLC0OjRo3w5ZdfAgBu3bqFSZMmoVOnTpg1axYSExMxZcoUZGdnq/wcERERERERlVWZikCpqamoU6eO8Pjs2bOws7ODjY0NAKB3794IDw8vU4BEVPG0tLRgZWWFq1evol+/frh9+zZkMhn69u2LK1euYPDgwbh//z6eP38OBwcHnDt3Dn/99Re2bNkCNzc3AICrqys8PDywceNGhdEtL1++xIEDBxSmjb5r48aNCA8Px+rVq+Hu7q5SvLdu3UJOTg6++eYb6OrqAoAQB/B2VOKaNWswevRoTJ06FQDg4uICsViMxYsXY9SoUTAyMkKjRo0AAK1bt1aY5lXU9qJYWVlh9uzZwnkuX76MkydPCkWgjRs3omHDhggLC4OGxtsBmDVq1MCMGTNUut4PkcvlyMzMLHM/VV3B+k/vrwNF5Yt5Vg/mWT2ys7MhkUhKfJxMJoNcLq+AiD5NfD2rB/OsHsxzxavKOZbL5RCJRMW2K1MRSF9fHy9evAAAZGVl4dq1axg3bpywX1NTE1lZWWU5BRGpib29PY4dOwbg7YgfCwsLtG/fHnPnzhW2SSQSWFhYYMWKFdDV1VUovIjFYnTt2lXoo0CLFi2KLACtWrUKR48excaNG+Hs7KxyrFKpFJqamggICMDAgQPh4OAAPT09YX9MTAwyMzPRrVs3hWlZzs7OyMrKQnx8PNq2bavy+Yrj6uqq8LhZs2a4dOmS8PjGjRvo0qWLUAACoHLBqzg5OTmIi4srl74ISEhIqOwQqgTmWT2Y54olkUhgaGhY4uPu3btXJT+clBVfz+rBPKsH81zxqmqOi5vBAJSxCGRra4vdu3ejadOmOH/+PN68eaPwwSYhIUFhpBARfbzatm2L9evX49mzZ7h69Srs7e1hb2+PFy9eICEhAVevXoW1tTXEYjHS09NRq1YtpT5q166tMCWrYFtRTp48iRYtWsDOzq5EsZqammLDhg3YuHEjJk6cCA0NDbi6uiI4OBj169dHamoqAKBPnz6FHv/kyZMSna847xaggLcFsXeneiUlJSmNKNLV1UX16tXLfG6xWIzmzZuXuZ+qTiaTISEhAU2aNCnVN/ukGuZZPZhn9SjtlF5TU1OOBCoBvp7Vg3lWD+a54lXlHN+5c0eldmUqAgUEBGDkyJHw9/cHAIwYMUJYOyQvLw8nTpxQGClARB8vGxsbiMViXLlyRZgWZmhoCDMzM1y5cgVXrlxB7969AQAGBgZITk5W6uPFixcwMDBQ2PahIYnr1q2Dv78//P39sXbtWojFYpXjbd++Pdq3b4+MjAz88ssvCAkJQVBQECIjI4UYwsPDUbduXaVjGzZsqPJ5yoOxsbGwmHSBjIwMvHnzpsx9i0Qi6OjolLkfeksikTCfasA8qwfzXLFUGXJfmKr2oaS88PWsHsyzejDPFa8q5ljVf5fKdHewxo0b48SJEzh06BBOnz6NmTNnCvtkMhm++eYbhelhRPTx0tHRgbm5Ofbt24e0tDRhdI6DgwOOHDmCR48ewd7eHgBgZ2eHjIwM/Prrr8Lxubm5OH36dIlG9ZiammLbtm34888/MW3aNOHOXSWhq6uL7t27o0ePHrh79y6At6MUJRIJnj59CktLS6U/NWvWBACh6PT+t7lFbS8tS0tLnDt3Dvn5+cK206dPl0vfREREREREqirTSCDg7Yelli1bKm3X1dVFly5dyto9EamRvb09tm7ditatWwsLLtvb2+O7776DWCyGra0tAKBjx46wsrLC9OnTMW3aNOHuYM+fP8eaNWtKdE6pVIqIiAgMHz4cM2fOxNKlSxXWzinM3r17cf36dbi5ucHY2BiPHj3CkSNH4OLiAuDtemVfffUVQkND8fTpU7Rt2xaampp4+PAhzpw5g7CwMEgkEjRr1gwA8N1336FLly7Q1taGVCotcntp+fr6on///vD398fAgQPx+PFjREREoHr16qX+JpmIiIiIiKikyjQSCHg7pWHTpk0YNWoUevfujb/++gsAkJaWhm3btuH+/ftlDpKI1KNgseSCET/A25FAAGBhYQFtbW0Abxd937RpEzp27IjQ0FD4+/vj9evXiIiIULg9vKpat26NLVu24MyZMwgODi52rQSpVIrU1FSEhIRg5MiRCAsLQ48ePTBnzhyhzciRIxESEoLLly/jq6++wqRJk/D999/D0tJSGOljbm4Of39/HDlyBF5eXhg/fvwHt5eWubk5Vq1ahTt37mDixInYv38/Fi9ejLy8PKX1hIiIiIiIiCqKSF6GlemePn2KoUOH4unTp2jcuDH++ecfREREwMnJCQDg6ekJNzc34dbJRET01m+//QYfHx/s3Lmz1Hcqu3HjBoC3082obDIzMxEXF4dWrVpVufnj6sQ8qwfzrB4ymQwSiQQ9dgOxScW3tzAGjg+u+Lg+NXw9qwfzrB7Mc8WryjlW9bNBmaaDLV26FK9fv8ahQ4dgZGSkdIvnLl264Ny5c2U5BRHRJ2Hu3LlwcnKCoaEh7ty5g3Xr1sHc3Fxh1BUREREREVFFKlMR6MKFCxg+fDiaN28u3JL5XZ999lm534qZiD59ubm5Re4TiUTQ1NRUYzTlIz09HQsWLEBaWhp0dXXh5uaGmTNnFrv+ERERERERUXkpUxEoKysLRkZGRe5//fp1WbonoiqqdevWRe5r0KABzp49q8ZoyseKFSsqOwQiIiIiIqriylQEatasGa5cuQIvL69C958+fRrm5uZlOQURVUEHDhwocp+WlpYaIyEiIvqw5kV/H1qqdkRERBWpTEWg4cOHIzAwEFKpFJ9//jkAQC6X4/79+wgPD8f169cRFhZWLoESUdXBhY6JiOjfICcvH6u7qT6tNy8f0OQsYCIiqkRlKgJ98cUXePz4MVavXo1Vq1YBAEaPHg25XA4NDQ1MmTIFXbp0KY84iYiIiIg+GnK5HHE3Y2FmZgaJRKLSMSwAERFRZStTEQgAxo8fjy+++AI///wz7t+/j/z8fDRq1AgeHh747LPPyiNGIiIiIqKPTk5ODuRyeWWHQUREpLJSF4FkMhmGDBmCAQMG4Msvv4SPj085hkVEREREREREROWp1INSJRIJHj16BJFIVJ7xEBERERERERFRBSjTzGQ3Nzf8+uuv5RULEREREdG/hlgs5heiRET0r1KmIpCfnx8SEhIwffp0XL16Fc+ePUNaWprSHyIiIiKiT4lIJEKr1hYqLwqtTnn5lR0BERF9rMq0MHSPHj0AAHfu3MGxY8eKbBcXF1eW0xARERERfXTEmhqYdAK4k1LZkfxPcyNgdbfKjoKIiD5WZSoCTZgwgUNgiYiIiKjKupMCxCZVdhRERESqKVMRyN/fv7ziICIiIiIiIiKiClSmNYGIiIiIiIiIiOjfoUwjgcLDw4ttIxKJMGHChLKchoiIiIiIiIiIyqjCikAikQhyuZxFICKqUFFRUQgKCsJvv/0GIyOjyg6HiIiIiIjoo1WmItDff/+ttC0/Px+JiYnYvXs3rly5gs2bN5flFEREREREREREVA7KfU0gDQ0NfPbZZ5g5cyYaN26MhQsXlvcpiIiQl5eHnJycyg6jXGRlZVV2CEREREREVAVU6MLQDg4OiI6OrshTENFH5urVq5BKpXjw4IGwbdy4cZBKpYiPjxe2TZ06FWPHjgUApKWlISgoCI6OjrCysoKXlxeuXLmi0K+3tzd8fX3xww8/wNPTE5aWloWORgSAgwcPwsLCAvv37y823sWLF6Njx47Iz89X2B4dHQ2pVIo7d+4I26KiotCrVy9YWlrCzc0NK1euRF5enrD/+fPnCAoKgru7O6ysrODh4YEVK1YgOztboW+pVIpNmzYhNDQULi4ucHJyKjZOIiIiIiKisirTdLDixMbGQkODNyAjqkqsrKxQvXp1XLlyBY0aNUJ+fj6uXbsmbDMzMwMAXLlyBd7e3sjLy8OYMWPw8OFDBAQEoHbt2ti5cydGjBiBvXv3wsLCQug7NjYWiYmJmDRpEvT19VGvXj2FwhIA7Ny5E0uWLMGSJUvQo0ePYuMdMGAAtm3bhgsXLsDNzU3YfvDgQdjY2KB58+YAgG3btiE0NBTDhw9HYGAg7t69KxSBAgICAACpqakwNDREUFAQ9PX1kZCQgLCwMCQlJSEkJEThvDt27IC1tTUWLVqE3Nzc0iUbgFwuR2ZmZqmPp7dkMpnC31QxmGf1YJ7VIzs7GxKJpLLDKJJMJoNcLq/sMMqMr2f1YJ7Vg3mueFU5xwVrMhenTEWgQ4cOFbo9PT0dV69exc8//4wBAwaU5RRE9C+jpaUFKysrXL16Ff369cPt27chk8nQt29fXLlyBYMHD8b9+/fx/PlzODg44Ny5c/jrr7+wZcsWoQjj6uoKDw8PbNy4EWFhYULfL1++xIEDB1CvXr1Cz71x40aEh4dj9erVcHd3VyneZs2awc7ODgcPHhTOn5qairNnzyI4OBgAkJGRgTVr1mD06NGYOnUqAMDFxQVisRiLFy/GqFGjULNmTUilUsycOVPou02bNpBIJAgMDERwcLDChwUDAwOEh4er9Eb9ITk5OYiLiytTH/Q/CQkJlR1ClcA8qwfzXLEkEgkMDQ0rO4wi3bt375P6EMTXs3owz+rBPFe8qppjLS2tYtuUqQgUGBhY5L6aNWti7NixvDMYURVkb2+PY8eOAXg74sfCwgLt27fH3LlzhW0SiQQWFhZYsWIFdHV1FUbhiMVidO3aVeijQIsWLYosAK1atQpHjx7Fxo0b4ezsXKJ4Bw4ciG+++QZpaWkwNDTE0aNHIRaL0b17dwBATEwMMjMz0a1bN4VRO87OzsjKykJ8fDzatm0LuVyOyMhIfP/993j06BHevHkjtH348CFatGghPG7fvn2ZC0DA21wVjFai0pPJZEhISECTJk0+6m/2/+2YZ/VgntXj/am+HxtTU9NPZiQQX88Vj3lWD+a54lXlHL+7jMWHlKkIdObMGaVtIpEI+vr60NXVLUvXRPQv1rZtW6xfvx7Pnj3D1atXYW9vD3t7e7x48QIJCQm4evUqrK2tIRaLkZ6ejlq1ain1Ubt2bbx8+VJpW1FOnjyJFi1awM7OrsTxduvWDYsWLcKRI0cwbNgwREVFwdPTU3gfS01NBQD06dOn0OOfPHkCAIiMjMSSJUswevRoODo6Ql9fHzdu3MD8+fMVCkIACr3m0hCJRNDR0SmXvujtN/vMZ8VjntWDea5Y5VHIr0if2ocfvp7Vg3lWD+a54lXFHKv671KZikAikQhGRkbQ1tYudH9WVhZSUlJQv379spyGiP5lbGxsIBaLceXKFWFamKGhIczMzHDlyhVcuXIFvXv3BvB2WlRycrJSHy9evICBgYHCtg+9sa1btw7+/v7w9/fH2rVrIRaLVY5XW1sbvXr1QlRUFOzs7BAXF4fZs2cL+wviCA8PR926dZWOb9iwIQDgxIkT6Ny5M6ZNmybsu3v3bqHn/Ng/PBARERER0aenTKs2u7u749SpU0XuP3v2rMrrchDRp0NHRwfm5ubYt28f0tLShNE5Dg4OOHLkCB49egR7e3sAgJ2dHTIyMvDrr78Kx+fm5uL06dMlGtVjamqKbdu24c8//8S0adMU7tqlioEDByIuLg4hISFo0qSJEB8A2NraQiKR4OnTp7C0tFT6U7NmTQBvC9/vF5+OHj1aojiIiIiIiIgqSpmKQMXNM87JyeHdwYiqKHt7e/z+++9o2bKlMK2qYJtYLIatrS0AoGPHjrCyssL06dNx4MABnDt3Dr6+vnj+/Dl8fX1LdE6pVIqIiAhcvHgRM2fOVLrt+4e0bNkSlpaWuHLlCvr166ewT19fH1999RVCQ0MRGhqK6Oho/Prrr9izZw9Gjx4tLLzp7OyM06dPY9euXfj1118xY8YM3L9/v0TXQEREREREVFFKPB0sIyMD6enpwuO0tDQ8fvxYqV16ejp+/PFHGBsbly1CIvpXatu2LbZu3aowosbBwQEAYGFhIUwj1dTUxKZNm7B06VKEhoYiMzMTrVu3RkREhMLt4VXVunVrbNmyBSNGjEBwcDAWLFig8tSrrl274tatW8JUtXeNHDkSderUwbZt27Br1y5Uq1YNjRo1QseOHYXRPxMmTEBqairWrFkDAPD09MTs2bMxbty4El8HERERERFReRPJS3jbgPDwcKxdu1altnK5HJMnT+YHICL6VxgyZAj09PSwYcOGyg5FJTdu3AAAWFpaVnIk/36ZmZmIi4tDq1atqtwigurEPKsH86weMpkMEokEPXYDsUmVHc3/WBgDxwdXdhTlh69n9WCe1YN5rnhVOceqfjYo8UggFxcX6OjoQC6XIzQ0FD169EDr1q0V2ohEIkgkErRu3ZofTojoo3fjxg1cu3YNV69exbZt2yo7HCIiIiIiogpR4iKQra2tsJaHTCaDh4cHWrRoUe6BERGVh9zc3CL3iUQiaGpqon///tDT04Ofnx+cnZ3VGB0REREREZH6lOkW8RMnTiyvOIiIKsT7IxXf1aBBA5w9exa3b99WY0RERERERESVo0xFoALXrl3DrVu38OrVK6W78YhEIkyYMKE8TkNEVGIHDhwocp+WlpYaIyEiok9Rc6PKjkDRxxYPERF9XMpUBEpLS4Ovry/++usvyOVyiEQi4bbxBT+zCERElYnrkhERUUXJycvH6m4alR2Gkrx8QPPjC4uIiD4CZfrnYenSpbh9+zaWL1+O06dPQy6XY+vWrTh58iS8vLzQqlUrnD9/vrxiJSIiIiL6KMjlcsTdjIVMJqvsUJSwAEREREUp0z8Rv/zyCwYNGoTu3bujRo0abzvU0EDjxo0xZ84cNGjQAN9++225BEpERERE9DHJyckRRsETERH9G5SpCJSeno7mzZsDgFAEev36tbDfxcUFv/76a1lOQURERERERERE5aBMRSATExO8ePECwNsFVmvVqoW///5b2P/s2TOIRKKyRUhERERE9BESi8X8vy4REf2rlGlhaAcHB1y8eBHjx48HAHz++efYunUrNDU1kZ+fj8jISLi5uZVLoEREREREHwuRSIRWrS0g5gI8heLi1EREH6cyFYF8fHxw8eJFZGdnQ0tLC/7+/rhz5w5Wr14N4G2RaPbs2eUSKBERERHRx0SsqYFJJ4A7KZUdyceluRGwultlR0FERIUpUxFIKpVCKpUKjw0MDLB9+3akp6dDQ0MDurq6ZQ6QiIiIiOhjdScFiE2q7CiIiIhUU6YiUFH09fUrolsiIiIiIiIiIiqlMs/Uffz4MYKDg+Hp6Ym2bdviypUrAICUlBQsXLgQt27dKnOQRERERERERERUNmUqAt25cwd9+vTBTz/9hIYNG+LVq1fIzc0FABgZGeHatWvYtWtXuQRKRERERERERESlV6bpYKGhodDT08P3338PAHB2dlbY36FDB/z0009lOQVVUVFRURCLxejVq1dlh1Kh3l1TSywWw9DQEFKpFN26dUPv3r0hFotL3GdYWBhcXFzQpk2bcokxMDAQP/zwQ6H7VqxYgR49epTLed7l7e0NHR0dbNy4sdz7LquwsDBEREQgJiamskMhIiIiIiIqkTIVga5cuYIJEybAyMgIqampSvvr16+PZ8+eleUUVEX98MMP0NHR+eSLQMDbgkfPnj2Rm5uL58+f4/z585g7dy7279+PiIiIEi+wHh4eDh0dnXIrAgHAZ599hmXLliltb9y4cbmd411z5syBhsbHeV/ZAQMGoEOHDpUdBhERERERUYmVqQgkl8uhra1d5P6UlBRoaWmV5RREH52srKwPvu5Lql69erCxsREed+/eHZ9//jl8fX2xePFiLFy4sNzOVVra2toKMVa05s2bq+1cqsrOzka1atVQt25d1K1bt7LDISIiIiIiKrEyfdVubm6O6OjoQvfl5ubi+PHjsLa2Lssp6F8oJiYGI0eORJs2bWBra4sBAwbgwoULwv5ly5ahV69esLW1hZubG6ZOnYrnz58L+729vfH777/j3LlzkEqlkEqlCAsLE/afO3cOAwYMgJWVFdq1a4c5c+YgMzNTIYb4+HgMGTIElpaW8PDwwJEjR+Dn5wdvb2+FdleuXIGXlxesrKzg6OiIoKAgpKWlCfsfPXoEqVSKqKgozJ49G46OjhgwYAB27twJa2trZGRkKPR39+5dSKXSIn8vVNW+fXt4eHjg0KFDwjmeP3+OoKAguLu7w8rKCh4eHlixYgWys7OF4wqmly1dulTI3eXLlwEAERER6NevH+zs7ODk5ARfX1/cu3evTHEWKMjT4cOHMX/+fDg4OMDV1RVLliwR1gkrcOrUKXh6esLS0hIDBw7EzZs3YW9vr/Ace3t7w9fXV3gcFhYGW1tb3L59G19++SWsra3Rs2dPnD9/XimWqKgo9OrVC5aWlnBzc8PKlSuRl5en0Obp06cICAiAo6MjrKysMGTIEMTGxiq06dy5M+bPn4/NmzejU6dOsLKyQlpamhBLgcuXL0MqleLChQuYNm0abG1t0alTJ2zevFkptr1796JTp06wtrbGiBEjcOvWLeH1RUREREREVNHKVAQaO3Yszp8/jzlz5iA+Ph4AkJycjIsXL2LkyJH4559/MHbs2HIJlP4drl27Bm9vb2RnZ2PhwoUICwuDu7s7Hj9+LLRJTk6Gr68vNm7ciK+//hqJiYnw9vYWigVz5syBubk52rRpg3379mHfvn0YMGAAAODEiRMYP348WrRogfDwcEyfPh2nTp3C119/LfSflZWFkSNHIi0tDaGhoZg6dSo2b96MmzdvKsQaGxuLESNGoEaNGli9ejUCAgLwn//8B2PGjFEqGqxYsQJyuRzLly/H9OnT8X//93+Qy+U4duyYQrsDBw6gTp06cHV1LXMuXV1dkZOTI9xhLzU1FYaGhggKCsKWLVswevRo/PDDD5gzZ45wzL59+wC8LaIU5K5169YA3hY+hg4dinXr1mHhwoXIz8+Hl5eXQtHrQ3Jzc5X+vG/VqlXQ0NDAqlWr4OXlhYiICOzfv1/Yf+vWLUyaNAnNmzdHeHg4evfujSlTpigUsoqSk5ODgIAA9O3bF+Hh4TAyMsJXX32lMBV127ZtmD17NlxdXbFhwwaMGTMGO3bswMqVK4U2L1++xODBg/H333/jm2++QVhYGCQSCYYPH47k5GSFc/788884d+4cvv76a6xbtw46OjpFxjdnzhw0adIEa9euRadOnbBs2TL88ssvwv4zZ85gzpw5cHFxQXh4OJycnDB58uRir5uIiIiIiKi8lGk6WIcOHRASEoJvv/1WWBx6+vTpkMvl0NXVxZIlS+Dg4FAugdK/Q2hoKBo3bozIyEhoamoCgFJBJCQkRPg5Ly8Ptra2aN++PS5dugRXV1c0b94curq60NHRUZiCJJfLsXTpUnTv3h2LFi0SthsbG2Ps2LHw8/ODmZkZDh48iOTkZOzZswcNGzYEAFhYWMDDwwONGjUSjtuwYQOMjY2xYcMGYQHmevXqYdSoUYiOjkbnzp2Fti1btlQ4JwB4enri4MGD8PLyAvC2SHLkyBH0799fuPayKJhy9OLFCwBvR/nMnDlT2N+mTRtIJBIEBgYiODgYEolEyNf7U8wAYNasWcLPeXl5cHFxgZOTE06ePIlBgwZ9MJb4+HihmPSu6OhohalRVlZWmD17NgDAxcUFly9fxsmTJ/Hll18CADZu3IiGDRsiLCxMWPOnRo0amDFjRrH5KCgCFazHY2pqCnd3d/zyyy/44osvkJGRgTVr1mD06NGYOnWqEINYLMbixYsxatQo1KxZE5GRkUhPT8f+/ftRq1YtAICTkxM8PT2xdetWhVhycnKwefPmDxZ/Cnh4eMDf31/o79y5czh58iTat28PAFi/fj3atWsnTO9zc3NDbm4uVq9eXWzfHyKXy5VGwlHJyWQyhb+pYjDP6sE8q0d2djYkEkllh/FRk8lkkMvlZe7j3b+pYjDP6sE8V7yqnGO5XA6RSFRsuxIXgVasWIHu3bujZcuWAIDevXvDw8MDFy9eREJCAvLz89GoUSO4urqWeEFb+neTyWT4888/MXXq1A8WQaKjo7F+/XrEx8crTKdKSEj44Aiae/fuITExEbNmzVIYhdK2bVtoaGggNjYWZmZmiI2NRYsWLYQCEAA0bNhQeM0WuHr1Knr27KlwBy5XV1fo6+vj2rVrCkWgjh07KsUzcOBADB06FPHx8TAzM0N0dDSSk5PRr1+/Iq+hJN7/T5NcLkdkZCS+//57PHr0CG/evBH2PXz4EC1atPhgf9evX8fq1atx69YthdE/CQkJxcbSqFEjrFixQml7QRGlwPvPX7NmzXDp0iXh8Y0bN9ClSxeFRZ/d3d2LPT8AaGhowMnJSXjcsGFDaGtrC4vPx8TEIDMzE926dVN4fTg7OyMrKwvx8fFo27YtLly4AEdHRxgYGAjtNDQ04ODggBs3biic09HRUaUC0PvXLhKJ0KxZMzx9+hTA26JbXFycUrHL3d29zEWgnJwcxMXFlakP+h9Vfh+o7Jhn9WCeK5ZEIoGhoWFlh/FRu3fvXrl9EOPrWT2YZ/VgniteVc2xKmsyl7gItGnTJpiZmQkfqFNTU+Hs7IyIiAiMHj265FHSJyM9PR35+fkwMTEpss1ff/0FPz8/uLu7Y8yYMahVqxZEIhEGDhyoUNQoTMG0nwkTJhS6/8mTJwDerp1jZGSktN/IyEjhHOnp6UpFDOBtYePly5dK297n4OAAU1NTHDhwAEFBQTh48CAcHBwURhuVRUFxw9jYGAAQGRmJJUuWYPTo0XB0dIS+vj5u3LiB+fPnF5u7x48fY+TIkbCwsMC8efNgYmICsVgMX1/fYo8FgOrVq8PS0rLYdnp6egqPxWKxwlSvpKQkpedGV1cX1atXL7ZvbW1tpTc1sVgsxF/w+ujTp0+hxxe8PlJTU3H9+vVCRza9/9wV9rwXpbBrf/XqFYC3i+Tn5uYqXXtJ+i+KWCz+KBfS/reRyWRISEhAkyZN+M1+BWKe1YN5Vg9VpjJXdaampuUyEoiv54rHPKsH81zxqnKO79y5o1K7Mk0HK1DWN3f6NOjp6UFDQ0Nhkef3nT59Grq6usLaMQCQmJioUv8F37YFBwfDyspKaX9B8cnExKTQkREpKSmoUaOG8NjAwEBpDRjg7ZpFBgYGCtuKGlY3YMAAbNmyBSNGjEB0dLTSlLGyOH/+PLS0tIRixYkTJ9C5c2dMmzZNaHP37l2V+8rMzER4eDj09fUBvJ2+9n6xq6IZGxsjJSVFYVtGRoZKhajiFDxn4eHhhd69q2BkmIGBAdzc3DBp0iSlNu8XmVQZTqkKIyMjVKtWTenaC3v9lZRIJFJ5tBIVTyKRMJ9qwDyrB/Ncscrr34hPWXl+AOPrWT2YZ/VgniteVcyxqv8ulWlhaKJ3Fazhc/jwYaWFlQtkZWVBLBYrvECPHj2q1O7dER4FmjZtirp16+Lhw4ewtLRU+lOnTh0Ab9f/uX37Nh4+fCgc++jRI/z9998K/dnZ2eHMmTMKU4cuXLiA9PR02NnZqXTNffr0watXrxAQEABtbW1069ZNpeOK88svv+DUqVPo06eP8OZVkLt3qZq7rKwsiEQiVKv2v7rvTz/9VOjizhXJ0tIS586dQ35+vrDt9OnT5dK3ra0tJBIJnj59Wujro2bNmgDeTg+7e/cumjVrptSm4O5q5U1TUxOtWrXCmTNnFLaX17UTERERERGpolxGAhEVmDZtGnx8fODj44PBgwfDwMAAN2/eRM2aNdG/f3+4uLggMjISCxYsQNeuXRETE4PDhw8r9dO0aVMcOnQIZ8+ehbGxMUxMTFCnTh0EBgYiICAAmZmZ6NixIyQSCR4/fozo6GhMmTIFpqam6NevHzZs2IBx48YJC/WGh4ejdu3aCsWncePGwcvLC76+vvD29saLFy+wfPlyWFlZCYsPF8fIyAju7u44ceIEBg0aBG1t7RLn7MmTJ7h+/Tpyc3ORlJSE8+fP4/Dhw7C2tlZYCNrZ2Rk7duzArl270KRJExw5cgT3798vNHdnzpyBvb09JBIJTE1N0a5dOwBAUFAQvLy8EB8fj23btgmjgoqTlZWF69evK22vV6+eUHxTha+vL/r37w9/f38MHDgQjx8/RkREBKpXr17mb1T19fXx1VdfITQ0FE+fPkXbtm2hqamJhw8f4syZM8JdwHx8fHD06FEMHToUw4YNQ/369ZGSkoI///wTderUgY+PT5niKMr48ePh5+eH2bNno1u3brh16xYOHToEAAprJBEREREREVWUUhWBEhMThdttF6x5cf/+/SI/UBa29gZ9muzt7bFjxw6sWrUKQUFB0NDQgJmZmXAr7A4dOiAgIAC7du1CVFQU2rRpg40bN8LT01OhnzFjxuDBgweYOXMm0tPTMXHiRPj7++Pzzz+Hvr4+NmzYIIyCadCgAdzc3FC7dm0Ab9eOiYiIwJw5cxAQEIA6derAz88Phw4dUli3xcLCAhEREVixYgX8/f2ho6ODzp07Y+bMmSW6u1fXrl1x4sQJ9O/fv1Q527lzJ3bu3AmxWAxDQ0NIpVLMmzcPvXv3Vhi5M2HCBKSmpmLNmjUA3t6dbPbs2Rg3bpxCf8HBwfj2228xZswYZGVlYceOHXB0dERISAjCw8Ph6+uLVq1aYfXq1Srfovzhw4eF3kFs0qRJ8PPzU/lazc3NsWrVKixfvhwTJ06EmZkZFi9ejGHDhimtqVMaI0eORJ06dbBt2zbs2rUL1apVQ6NGjdCxY0dhFFXNmjWxb98+rFq1CsuWLUNaWhpq1aoFa2trdO3atcwxFMXd3R1z587Fxo0bceTIEVhbW2Pu3LkYOXIkF9EnIiIiIiK1EMlLuKBPy5Ytlb6xL+pWZAXbeecaqmxpaWno0qULfHx8MHHixHLte8aMGYiLiyt0ahYV77fffoOPjw927tyJtm3bVnY4arV//37Mnj0bZ86cUbibnaoK7mamyqLd9GGZmZmIi4tDq1atqtz8cXVintWDeVYPmUwGiUSCHruB2KTKjubjYmEMHB9cPn3x9awezLN6MM8VryrnWNXPBiUeCRQSElK6iIjUaNOmTahduzYaNGiApKQkREREIC8vr9xu3w4At2/fRlxcHH788UfMmTOn3Pr91M2dOxdOTk4wNDTEnTt3sG7dOpibm8Pe3r6yQ6tQaWlpCA8PR7t27VCjRg3cuHEDGzZsgLu7e6kKQERERERERCVV4iJQUbdfJvqYaGhoYP369Xj27Bk0NTVhbW2NyMhI1KtXr9zOMX78eKSkpKB3795KxSW5XF7k4tgF8VXVdWDS09OxYMECpKWlQVdXF25ubpg5c+Ynn49q1arh4cOHOHbsGF69eoWaNWviiy++QEBAQGWHRkREREREVQQXhqZP0ujRozF69OgKPcfZs2eL3Pf7779j2LBhRe7v06cPFi9eXBFhffRWrFhR2SFUCl1dXWzcuLGywyAiIiIioiqMRSCiCtC6dWscOHCgyP0FtysnIiKif7fmRpUdwceHOSEi+nixCERUAXR1dblYLxER0ScuJy8fq7t92tOZSysvH9BkaoiIPjp8ayYiIiIiKiG5XI64m7GQyWSVHcpHiQUgIqKPE9+eiYiIiIhKIScnB3K5vLLDICIiUhmLQEREREREREREVQCLQEREREREREREVQCLQEREREREpSAWiyESiSo7DCIiIpXx7mBERERERCUkEonQqrUFxFwBudzwjmJERBWPRSAiIiIiolIQa2pg0gngTkplR/Lv19wIWN2tsqMgIvr0sQhERERERFRKd1KA2KTKjoKIiEg1HHBJRERERERERFQFsAhERERERERERFQFfPJFoKioKBw9erSyw6hwUqlU+GNhYQFXV1eMGjUK+/fvR05OTqn6DAsLwx9//FHOkQI5OTlwdHREy5Yt8fjx43Ltu3Pnzpg/f/4H21y+fBlSqRQ3btwQtlXUtaqr/4/N9u3bIZVKP9im4HmQSqW4e/eu0v6VK1dCKpWic+fO5RLT6dOnIZVK8ejRoxIdFxgYiJ49ewqPo6KiIJVKkZLCBSCIiIiIiOjf5ZMvAv3www84duxYZYehFt7e3ti3bx+2b9+OWbNmwcTEBHPnzsWQIUOQkZFR4v7Cw8MRExNT7nH++uuvSEtLg1wur5TnpnXr1ti3bx+aNWsmbKuoa1VX//9mOjo6+PHHH5W2Hz9+HDo6OpUQ0Yd17NgR+/btg76+fmWHQkREREREVCKffBHoY5aVlVWu/dWrVw82Njawt7dH9+7dERISgvXr1+PGjRtYvHhxuZ6rLI4dOwZ9fX20bt1a5VFa5ZkrXV1d2NjYfJQFBlWV92unMrm7uysVA//88088fvy43EYBlScjIyPY2NigWjWuq09ERERERP8uH3URKCYmBiNHjkSbNm1ga2uLAQMG4MKFC8L+ZcuWoVevXrC1tYWbmxumTp2K58+fC/u9vb3x+++/49y5c8K0k7CwMGH/uXPnMGDAAFhZWaFdu3aYM2cOMjMzFWKIj4/HkCFDYGlpCQ8PDxw5cgR+fn7w9vZWaHflyhV4eXnBysoKjo6OCAoKQlpamrD/0aNHkEqliIqKwuzZs+Ho6IgBAwZg586dsLa2Vhqpc/fuXUilUkRHR5cph+3bt4eHhwcOHToknOP58+cICgqCu7s7rKys4OHhgRUrViA7O1s4rmAqz9KlS4XcXb58GQAQERGBfv36wc7ODk5OTvD19cW9e/dUiiczMxNnz56Fp6cn+vbti//+97+4ffu2QpuC6TYxMTEYMWIEbGxssHTpUgDAs2fPMGPGDDg7O8PKygrdunVDZGSk0nm+++47dOrUCXZ2dvDz81OYuvP+dLAPXatcLsfWrVvh6ekJCwsLuLu7Y/v27Urnu3v3LiZOnIi2bdvC2toa//d//ycUNorqv+A1ceLECYW+Fi1apFD8+FA+nj59ioCAADg6OsLKygpDhgxBbGxssc+DKs9hwTSoy5cvo3fv3rCxsUH//v2V+s/IyMCMGTNga2uLdu3aYenSpcjLyys2hgKff/45Hjx4gJs3bwrbjh49CicnJxgZGSm1T0xMxFdffQU7OzvY2Nhg1KhRSq+hnJwcLFq0CG3btoWdnR1mzZqF169fK/WVnZ2NFStWoFOnTrCwsMDnn39ebGHy/elgBc/j4cOHMX/+fDg4OMDV1RVLlixBbm6uwrGnTp2Cp6cnLC0tMXDgQNy8eRP29vYK70tEREREREQV5aP9KvvatWsYPnw4bGxssHDhQujr6yM2NlZhDZnk5GT4+vrCxMQEKSkp2LZtG7y9vXH8+HFUq1YNc+bMwfTp06GtrY2ZM2cCAOrWrQsAOHHiBKZMmYK+ffvC398fSUlJWL58OdLT07Fy5UoAb0dbjBw5Evr6+ggNDQUArF27Funp6WjUqJEQR2xsLEaMGAFHR0esXr0aL168wPLly3Hnzh3s3bsXmpqaQtsVK1agQ4cOWL58OfLz82FtbY3Q0FAcO3YMXl5eQrsDBw6gTp06cHV1LXMuXV1dceLECdy6dQtt27ZFamoqDA0NERQUBH19fSQkJCAsLAxJSUkICQkBAOzbtw+DBg2Ct7e3sB5K8+bNAbwtPAwdOhT169dHRkYG9u7dCy8vL5w8eRKGhoYfjOX06dPIzMxEz549YWZmhpCQEBw7dqzQ9WOmTZuGQYMGwdfXFxKJBKmpqRg0aBAAYMqUKWjYsCHu37+PBw8eKBx39uxZ3L9/H8HBwUhNTUVISAgWLFggPK/v+9C1Llq0CPv378e4ceNgbW2NP/74A8uWLUP16tXx5ZdfAgASEhIwaNAg1KtXD19//TWMjY3x3//+V3itFtX/u0VCVbyfj5cvX2Lw4MHQ0dHBN998Az09PezcuRPDhw/Hzz//jFq1ahXZl6rPYVJSEhYuXIixY8dCT08Py5cvx8SJE3Hq1CmIxWIAwKxZs3D+/HkEBASgYcOG2L17d4mm+ZmYmMDBwQHHjh1D69atkZ+fjxMnTmDq1KmIi4tTaJuRkQFvb29oaGhg3rx5qF69OtavX4+hQ4fiyJEjqFevHoC3v2d79uyBv78/zM3Ncfz4cSxfvlzp3JMmTcIff/yBCRMmoFmzZoiOjsb06dOhr6+PDh06qHwNALBq1Sq4u7tj1apViImJQVhYGBo1aiS8Tm7duoVJkyahU6dOmDVrFhITEzFlyhSF4isREREREVFF+miLQKGhoWjcuDEiIyOFIsr7BZGCggUA5OXlwdbWFu3bt8elS5fg6uqK5s2bQ1dXFzo6OrCxsRHayuVyLF26FN27d8eiRYuE7cbGxhg7diz8/PxgZmaGgwcPIjk5GXv27EHDhg0BABYWFvDw8FAoAm3YsAHGxsbYsGGD8MG4Xr16GDVqFKKjoxVGdbRs2VLhnADg6emJgwcPCkWg3NxcHDlyBP3791coIJVWQeHrxYsXAN6OTCkoigFAmzZtIJFIEBgYiODgYEgkEiFfBVPM3jVr1izh57y8PLi4uMDJyQknT54UijRFOXbsGOrUqYO2bdtCQ0MD7dq1w7FjxzB16lSIRCKFtl5eXhg7dqzweOXKlUhOTsZPP/0kPB9OTk5K55DL5Vi/fj20tLQAvB05snHjRuTn50NDQ3nwW1HX+uDBA+zatQvz5s0TrsvZ2RlZWVlYu3YtBg0aBA0NDYSFhUEsFmPPnj3Q1dUV2hXXf0mLQO/nY82aNUhPT8f+/fuFgo+TkxM8PT2xdetWzJgxo8i+VH0OX758iV27dsHMzAwAIJFIMGzYMPz555+wt7fHnTt38PPPP2PhwoXo378/gLe/px4eHiW6tp49e2LdunWYMWMGLl++jPT0dHh4eCgVgaKiovD48WMcP35cWNPJwcEBnTp1QmRkJAIDA5GWlobdu3djzJgx8PX1BQC4ublh6NChePbsmdDXpUuXcPbsWWzdulV4b3FxcUFSUhLCwsJKXASysrLC7NmzhX4uX76MkydPCkWgjRs3omHDhggLCxNehzVq1Pjg86QKuVyuNIKRSk4mkyn8TRWDeVYP5lk9srOzIZFIKjuMT45MJoNcLld4/O7fVDGYZ/VgniteVc6xXC5X+kxdmI+yCCSTyfDnn39i6tSpHyyCREdHY/369YiPj1eYTpWQkPDBETT37t1DYmIiZs2apTBdo6AwERsbCzMzM8TGxqJFixZCwQEAGjZsiJYtWyr0d/XqVfTs2VMoAAFvPwjr6+vj2rVrCkWgjh07KsUzcOBADB06FPHx8TAzM0N0dDSSk5PRr1+/Iq+hJN79h7TgcWRkJL7//ns8evQIb968EfY9fPgQLVq0+GB/169fx+rVq3Hr1i2FQkZCQsIHj0tJScGFCxeEkRwA0KtXL8ycORPXrl2Dvb29Qvv3c/Xbb7+hXbt2Cs9HYRwcHIQCEAA0a9YMOTk5SE5OhrGx8QePfdfFixcBAB4eHgqvE2dnZ2zevBlPnjxBgwYNcOnSJXh6egoFoIryfj4uXLgAR0dHGBgYCPFpaGjAwcFB4c5nhVH1OTQxMREKQMD/RkgVFFNu3LgBuVyOrl27Cm00NTXRpUuXQqfNFcXDwwPz58/HtWvXcOzYMXTo0KHQfF69ehVmZmYKi3obGhrC2dkZ165dAwD897//RVZWlkJMBee4cuWK8PjChQswNDREu3btlJ7fuXPnIi8vr0RF2Pffc5o1a4ZLly4Jj2/cuIEuXbooFCLd3d1V7r8oOTk5SsUyKr3i3seofDDP6sE8VyyJRFLsCGgquXv37hX64Y2vZ/VgntWDea54VTXH734OLspHWQRKT09Hfn4+TExMimzz119/wc/PD+7u7hgzZgxq1aoFkUiEgQMHKhQ1CpOamgoAmDBhQqH7nzx5AuDt2jmFrUliZGSkcI709PRCp97UqlULL1++VNr2PgcHB5iamuLAgQMICgrCwYMH4eDgoDDaqCwKPrAXFEAiIyOxZMkSjB49Go6OjtDX18eNGzcwf/78YnP3+PFjjBw5EhYWFpg3bx5MTEwgFovh6+tb7LE//fQTcnNz0aFDB6SnpwMAHB0doaWlhaNHjyoVgWrXrq3wOC0tTaEgUZT379pU8ItQXHzvS01NhVwuR7t27QrdX1AESktL++Brtby8n4/U1FRcv34drVu3Vmr7oddOSZ7D93NZUOgsaJeUlASxWAwDAwOFdh+ailYYQ0NDuLq64ocffhBGFhUmPT1dKQ8F54uPjxdiKiyGwvKXlpZWaP4K+ikYRacKPT09hcdisVhhqldSUpLS+4muri6qV6+u8jkKIxaLheIclZ5MJkNCQgKaNGnCb/YrEPOsHsyzenA6b8UwNTVVGgnE13PFY57Vg3mueFU5x3fu3FGp3UdZBNLT04OGhobCIs/vO336NHR1dbFq1Srhm/XExESV+i/41iY4OBhWVlZK+ws+0JuYmBT6DXtKSgpq1KghPDYwMEBycrJSu+TkZKUPx0UNzxowYAC2bNmCESNGIDo6WmnKWFmcP38eWlpawofdEydOoHPnzpg2bZrQ5u7duyr3lZmZifDwcKFAkJubq1TsKkzBOjE+Pj5K+06cOIHZs2crjKZ6n6Gh4QdfE+XNwMAAIpEIu3fvLjQuU1PTMsVV8OE/JydHYXtBgUyV+Nzc3DBp0iSlfR+qAJflOXyfsbExcnJy8PLlS4XXemG/D8Xp0aMHZsyYAR0dnUJHzAFvr7mwRcjf/V0rKHYmJyejTp06QpuC6ZDv9mVkZIRNmzYVeq7CCsBlYWxsrLBAOfB2jaOSFiffJxKJ/tV3uvvYSCQS5lMNmGf1YJ4rlipD7qnkivrQxtezejDP6sE8V7yqmGNV/136KO8OVrCGz+HDh4u8y1BWVhbEYrHChRZ2Vx+xWKz0Iatp06aoW7cuHj58CEtLS6U/BR8cLSwscPv2bTx8+FA49tGjR/j7778V+rOzs8OZM2cUppRcuHAB6enpsLOzU+ma+/Tpg1evXiEgIADa2tro1q2bSscV55dffsGpU6fQp08f4ZegIHfvUjV3WVlZEIlECrfHLhjh8yGJiYmIiYmBl5cXduzYofCn4E5q58+f/2AfTk5OuHTpksLi4OWlsGstWG8oLS2t0NdJwXSlgrV03r/DW3H916pVC2KxWKEAl52drTBl6UOcnZ1x9+5dNGvWTCm2whbaLlDa57AwlpaWAN7e9apAXl4eTp8+XeK+3N3d4e7uDl9f3yJHx9jZ2eG///0v/vnnH2Hby5cvcfHiReF3rUWLFtDW1laICQB+/vlnhcfOzs5ISUmBWCwu9PlVZShlSVhaWuLcuXPIz88XtpUmT0RERERERKX1UY4EAt7eCcnHxwc+Pj4YPHgwDAwMcPPmTdSsWRP9+/eHi4sLIiMjsWDBAnTt2hUxMTE4fPiwUj9NmzbFoUOHcPbsWRgbG8PExAR16tRBYGAgAgICkJmZiY4dO0IikeDx48eIjo7GlClTYGpqin79+mHDhg0YN24c/P39AQDh4eGoXbu2QvFp3Lhx8PLygq+vL7y9vYW7g1lZWam8uKyRkRHc3d1x4sQJDBo0CNra2iXO2ZMnT3D9+nXk5uYiKSkJ58+fx+HDh2Ftba2wELSzszN27NiBXbt2oUmTJjhy5Aju379faO7OnDkDe3t7SCQSmJqaClOjgoKC4OXlhfj4eGzbtk1p2tD7CkYBjR49Gp999pnCPjs7O2zatAnHjh1TWD/pfT4+Pjh8+DCGDh2K8ePH47PPPsPDhw+RkJCA6dOnq5ynwhR2raamphgyZAhmzJiBUaNGwdraGjk5OUhISMDly5exbt06AMDEiRNx7tw5DB48GKNHj4axsTHu3r0LmUyGMWPGFNm/rq4uunbtiu+++w6NGzdGzZo1sWvXLpUX9PLx8cHRo0cxdOhQDBs2DPXr10dKSgr+/PNP1KlTp9ARVwBK/RwWpnnz5ujatSu+/fZbvHnzRrg72Pujm1Sho6OD8PDwD7bp27cvtm/fDl9fX0yePFm4O1i1atUwfPhwAG9HZnl5eWHz5s3Q1tYW7g72/l3kXFxc0KlTJ4wePRqjR4+GVCqFTCbDnTt3cP/+/XIdjQcAvr6+6N+/P/z9/TFw4EA8fvwYERERqF69Or9NJiIiIiIitfgoRwIBgL29PXbs2AGRSISgoCBMnDgRp0+fRoMGDQAAHTp0QEBAAM6cOYPx48fj6tWr2Lhxo1I/Y8aMQZs2bTBz5kz0798f33//PQDg888/x6ZNm3Dv3j1MmzYNfn5+2LZtGxo0aCCsHaKtrY2IiAgYGBggICAAoaGhGDFiBBo3bqyw/oeFhQUiIiLw+vVr+Pv7IzQ0FB07dsTmzZtLtLBswUK2BXdZKqmdO3di0KBB8PHxwaJFi/Ds2TPMmzcPu3btUpi+NmHCBPTq1Qtr1qzB1KlTUb16deGuRu8KDg6GXC7HmDFj0L9/f9y8eRNSqRQhISG4efMmfH19cfz4caxevVppPZT3HTt2DG3atFEqAAFAtWrV0LNnT5w9exavX78uso+aNWtiz549aNOmDZYtW4axY8ciIiKiROu2FKWwawWA2bNnY/Lkyfjxxx8xduxYzJgxAz/99BPatm0rHNukSRPs3bsXDRo0wLx58zB+/HgcOHBAeK1+qP9vvvkGbdu2xcKFCxEcHAw3Nzd06dJFpZhr1qyJffv2oVWrVli2bBlGjhyJkJAQJCYmFjrNsUBpn8OifPvtt+jcuTOWLVuGGTNmwNTUVCjIlDddXV3s3LkTLVu2xDfffIOAgAAYGBhg165dwu3hgbdFZC8vL2zZsgWTJ08Wtr1vzZo18PLywp49ezBmzBh8/fXX+PXXX+Hg4FDusZubm2PVqlW4c+cOJk6ciP3792Px4sXIy8srde6JiIiIiIhKQiR//9ZR9EFpaWno0qULfHx8MHHixHLte8aMGYiLiyt0ahYRfXp+++03+Pj4YOfOnQqFRVUV3AWuYFoelV5mZibi4uLQqlWrKjd/XJ2YZ/VgntVDJpNBIpGgx24gNqmyo/n3szAGjg9W3s7Xs3owz+rBPFe8qpxjVT8bfLTTwT4WmzZtQu3atdGgQQMkJSUhIiICeXl55Xb7dgC4ffs24uLi8OOPP2LOnDnl1i8RfVzmzp0LJycnGBoa4s6dO1i3bh3Mzc2V7oxHRERERERUEVgEKoaGhgbWr1+PZ8+eQVNTE9bW1oiMjFSYelJW48ePR0pKCnr37q1UXJLL5UUujl0QX8Hd0Yjo45aeno4FCxYgLS0Nurq6cHNzw8yZM/k7TEREREREasEiUDEKFo2tSGfPni1y3++//45hw4YVub9Pnz5YvHhxRYRFROVsxYoVlR0CERERERFVYSwCfeRat26NAwcOFLm/Zs2aaoyGiIiIiN7V3KiyI/g0MI9EROrBItBHTldXl4u+EhEREX2EcvLysbobp/SWl7x8QJPpJCKqUHybJSIiIiIqIblcjribsZDJZJUdyieDBSAioorHt1oiIiIiolLIycmBXC6v7DCIiIhUxiIQEREREREREVEVwCIQEREREREREVEVwCIQEREREVEpiMViiESiyg7jkyYSiSCRSJhnIqJywruDERERERGVkEgkQqvWFhBzNeMKJZFIYG5uLjzmHcSIiMqGRSAiIiIiolIQa2pg0gngTkplR1I1NDcCVner7CiIiP7dWAQiIiIiIiqlOylAbFJlR0FERKQaDqYkIiIiIiIiIqoCWAQiIiIiIiIiIqoCWAQiIiIiIiIiIqoCWAQiIiqhsLAw2NraVnYYREREREREJcKFoYmISmjAgAHo0KFDZYdBRERERERUIiwCERGVUN26dVG3bt3KDoOIiIiIiKhEOB2MqAqIiYnByJEj0aZNG9ja2mLAgAG4cOECACAtLQ1BQUFwdHSElZUVvLy8cOXKFYXjvb294evri2PHjsHDwwPW1tYYN24cXr58icTERIwaNQq2trbo0aMHLl++rHBs586dMX/+fGzZsgVubm6wtrbG+PHj8fz5c4V2y5YtQ69evWBraws3NzdMnTpVqU1BHCdOnICnpydsbW0xbNgwPHjwQGjTt29fTJs2TSkHoaGhcHV1RV5eXrH5evr0KSZNmgRnZ2dYWlqic+fO+Pbbb4X9708H8/b2hlQqVfrj7e0ttElPT8fcuXPh6uoKCwsL9O3bF7/++muxsRAREREREZUXjgQi+sRdu3YNw4cPh42NDRYuXAh9fX3Exsbi8ePHyMvLw5gxY/Dw4UMEBASgdu3a2LlzJ0aMGIG9e/fCwsJC6OfWrVtITU3FjBkzkJGRgYULF+Kbb75BYmIievfujREjRmDjxo3w9/fHf/7zH9SoUUM49tSpU2jQoAHmzp2L9PR0LFu2DP7+/ti3b5/QJjk5Gb6+vjAxMUFKSgq2bdsGb29vHD9+HNWq/e+tKi4uDikpKQgICEBeXh4WL16M6dOnC30NGDAAixcvxqtXr6CnpwcAyMvLw+HDh9GnTx9oamoWm7MZM2bg+fPnmD17NmrVqoUnT54gNja2yPZz5sxBRkaG8PjZs2cICAiAqakpACA7OxsjRoxAcnIyJk+ejDp16uDIkSPw9fVFVFQUpFJpsTEVRS6XIzMzs9TH01symUzhb6oYzLN6MM/qkZ2dDYlEUtlhVEkymQxyubyyw/ik8H1DPZjnileVcyyXyyESiYptxyIQ0ScuNDQUjRs3RmRkpFAAcXV1BQCcOXMGf/31lzBKp2Cfh4cHNm7ciLCwMKGfjIwMbNiwAUZGRgCA27dvIyIiAnPnzsWXX34JADAxMUGvXr3w22+/oUuXLsKxr1+/xubNm4WiTN26deHj44Pz588L5w0JCRHa5+XlwdbWFu3bt8elS5eEeAHg1atXOHTokBBHZmYmgoKC8PTpU9StWxe9evXCkiVLcPToUQwePBgAEB0djaSkJPTr10+lnN24cQNTp05F9+7dhW29e/cusn3z5s2Fn9+8eYMFCxagadOmCAoKAgAcPXoUf//9Nw4fPiy0dXNzw/3797Fu3TqsXr1apbgKk5OTg7i4uFIfT4oSEhIqO4QqgXlWD+a5YkkkEhgaGlZ2GFXSvXv3quQHPHXg+4Z6MM8Vr6rmWEtLq9g2LAIRfcJkMhn+/PNPTJ06tdARMFevXoWurq5QiAEAsViMrl274tixYwptW7ZsKRReAKBJkyYAAGdnZ6VtT58+VTjW0dFRKAABgJOTEwwNDfHnn38K546Ojsb69esRHx+vMKomISFBoQj0fhwFRZWCIpCuri4+//xzHDx4UCgCRUVFwd7eXoivOObm5oiIiICmpiZcXFzQuHFjlY4DgK+//hqPHj3CwYMHhW+IL1y4gBYtWqBJkybIzc0V2jo7O+PIkSMq910YsVisUISi0pHJZEhISECTJk34zX4FYp7Vg3lWj+zs7MoOocoyNTXlSKByxvcN9WCeK15VzvGdO3dUasciENEnLD09Hfn5+TAxMSlyf61atZS2165dGy9fvlTYpq+vr/BYLBYDgEJxp6Dy/ObNG4W2hZ3DyMgISUlJAIC//voLfn5+cHd3x5gxY1CrVi2IRCIMHDhQqa+i4ni33cCBA+Hl5YW///4bJiYmOHfuHObPn19IBgq3cuVKrFy5EqtWrcK8efNgamqKqVOnwsPD44PHbd68GT/++CO2bt2Khg0bCttTU1Nx69YttG7dWukYVaanfYhIJIKOjk6Z+qD/kUgkzKcaMM/qwTxXLFWG3FPFqGof7NSJ7xvqwTxXvKqYY1X/XWIRiOgTpqenBw0NDaUFlgsYGBggOTlZafuLFy9gYGBQbnEUdo6UlBQYGxsDAE6fPg1dXV2sWrUKGhpv16tPTEws9flsbW1hZmaGgwcPon79+tDS0kK3bt1UPt7ExAQhISHIz89HbGws1q9fjylTpuDEiRP47LPPCj0mOjoaK1aswMyZM+Hk5KSwz8DAAFKpFIsWLSr1NREREREREZUV7w5G9AnT0dGBjY0NDh8+XOhdsezs7JCRkaFwl6rc3FycPn0adnZ25RbH5cuX8erVK+Hxb7/9hrS0NFhbWwMAsrKyIBaLFarXR48eLdM5BwwYgKNHj+LAgQPo3r17qb4J0NDQgJWVFSZPnozc3Fzcv3+/0Hb//PMPpk2bhl69esHHx0dpv7OzMx4+fAgTExNYWloq/SEiIiIiIlIHjgQi+sRNmzYNPj4+8PHxweDBg2FgYICbN2+iZs2a6NOnD6ysrDB9+nRMmzZNuDvY8+fPsWbNmnKLoUaNGhgzZgzGjBmDV69eYdmyZbCyshLWA3JxcUFkZCQWLFiArl27IiYmBocPHy7TOb/44gssW7YMqampJRqB8+rVK4waNQpffPEFTE1NkZOTg507d0JfXx/m5uaFHjN+/Hhoa2ujX79+uH79urBdV1cXzZs3R+/evbF3714MGzYMI0eORJMmTfDq1SvcunULOTk5hd7SnoiIiIiIqLyxCET0ibO3t8eOHTuwatUqBAUFQUNDA2ZmZpg8eTI0NTWxadMmLF26FKGhocjMzETr1q0RERGhcHv4suratSvq1q2LOXPmID09Hc7Ozpg3b56wv0OHDggICMCuXbsQFRWFNm3aYOPGjfD09Cz1OQ0NDdG2bVs8ffoUNjY2Kh9XvXp1tGjRAjt37sSTJ0+gra0NCwsLbN26VWFB6ncV3H1g2LBhCtvbtm2LnTt3QktLCzt27EBYWBg2bNiApKQkGBoawtzcXFi8moiIiIiIqKKJ5Fxan4gqUOfOndGxY0cEBwer9bwZGRlwc3ODv78/Ro4cqdZzq8uNGzcAgFPKykFmZibi4uLQqlWrKreIoDoxz+rBPKuHTCaDRCJBj91AbFJlR1M1WBgDx/ndSYXg+4Z6MM8VryrnWNXPBhwJRESflIyMDNy9exe7d++GSCRC3759KzskIiIiIiKijwKLQET0Sbl58yaGDRuGevXqYcmSJTA0NFTYn5+fj/z8/CKP19TU5G1/iYiIiIjok8QiEBFVqLNnz6r1fI6Ojrh9+3aR+2fNmoUffvihyP07duyAo6NjRYRGRERERERUqVgEIqIqZeLEiRgyZEiR+01NTdUYDRER/ds1L/yeAVQBmGsiorJjEYiIqpSGDRuiYcOGlR0GERF9AnLy8rG6m0Zlh1Gl5OUDmkw5EVGp8S2UiIiIiKiE5HI54m7GQiaTVXYonzSZTIZbt24JeWYBiIiobPg2SkRERERUCjk5OZDL5ZUdxidNLpdDJpMxz0RE5YRFICIiIiIiIiKiKoBFICIiIiKiUhCLxRCJRJUdxidNJBJBIpEwz0RE5YQLQxMRERERlZBIJEKr1hYQc5GaCiWRSGBubl6h5+Bi00RUlbAIRERERERUCmJNDUw6AdxJqexIqLSaGwGru1V2FERE6sMiEBERERFRKd1JAWKTKjsKIiIi1XDgIxERERERERFRFcAiEBERERERERFRFcAiEBERERERERFRFcAiEFEVEhYWBltb28oOo0Jt374d0dHRJTrm0aNHCAsLw7NnzyooKiIiIiIiosrHIhARfVJ27NhR4iJQYmIiwsPD8fz58wqKioiIiIiIqPKxCEREREREREREVAWwCESkRjExMRg2bBhsbGxgZ2eHadOmITk5GcDbKUlSqRSHDh1CcHAw7O3t4eTkhG3btgEAjh8/Dk9PT7Rp0wYTJ05Eenq60O/ly5chlUoRHR2NiRMnwsbGBq6urtiwYUOxMSUmJuKrr76CnZ0dbGxsMGrUKNy+fVvYv3jxYnTs2BH5+fkKx0VHR0MqleLOnTsAgM6dO2P+/PnYvn07OnToAFtbWwQGBiI7OxtxcXHw8vKCjY0N+vfvr9A/AMjlcmzduhWenp6wsLCAu7s7tm/frtCmYCrb7du38eWXX8La2ho9e/bE+fPnhTadO3dGYmIivvvuO0ilUkilUkRFRX3w+i9fvoxhw4YBAPr37y8cl5OTAxcXF6xcuVLpmMmTJ6N///7C8arm/u7duxg/fryQ67Fjx+LBgwcfjI+IiIiIiKi8sAhEpCYxMTHw9vaGnp4eVq5ciQULFuDGjRvw8/NTaLdq1Spoa2tj9erV6NatGxYvXozly5djx44dmD59OoKDg3Hp0iWEhoYqneObb77BZ599hrCwMPTq1QsrV67Enj17iowpIyMD3t7euHXrFubNm4fQ0FCkpqZi6NChePLkCQBgwIABePLkCS5cuKBw7MGDB2FjY4PmzZsL286cOYNff/0V8+fPx7Rp03Ds2DEsWLAAM2bMwIABA7B69Wq8efMGkyZNUigqLVq0CGvWrEHv3r2xadMm9OnTB8uWLVOKPScnBwEBAejbty/Cw8NhZGSEr776CqmpqQCA8PBwGBsbw9PTE/v27cO+ffvQsWPHDz4vrVu3RnBwMAAgJCREOE4sFqNPnz44dOiQQqxpaWk4c+aMUARSNfcPHz6El5cXXr58icWLF2PZsmVISUmBj48PsrOzPxgjERERERFReahW2QEQVRXLly+HhYUFwsPDIRKJAAAtWrRAz549ER0djWbNmgEAbGxsMGvWLABAu3bt8PPPP2PXrl04e/YsatasCQC4ffs2Dhw4gAULFiico127dpg5cyYAwM3NDcnJyVi/fj0GDRoEDQ3lmm9UVBQeP36M48ePC+d3cHBAp06dEBkZicDAQDRr1gx2dnY4ePAg3NzcAACpqak4e/asUDx517p166ClpQUA+P333/H9999j8+bNaN++PQAgPz8f48aNw3//+1+0bNkSDx48wK5duzBv3jwMGjQIAODs7IysrCysXbtWIfaCIlCHDh0AAKampnB3d8cvv/yCL774Aubm5tDS0kLt2rVhY2Oj0vOiq6srFLLMzMxgaWkp7BswYAC2bNmC8+fPC+c8evQoNDQ00LNnzxLlPjw8HAYGBti2bRuqV68OAGjTpg3c3d2xf/9+DBkyRKV43yeXy5GZmVmqY+l/ZDKZwt9UMZhn9WCe1SM7OxsSiaSyw6ByIpPJIJfLKzuMSsP3DfVgniteVc6xXC4XPmd+CItARGogk8nwxx9/YMaMGcjLyxO2N2nSBPXq1cONGzeEIoyLi4uwX1NTE5999hlEIpFQACo4Lj09Ha9fv0aNGjWE7V27dlU4r6enJw4fPoynT5+ifv36SnFdvXoVZmZmwrkBwNDQEM7Ozrh27ZqwbeDAgfjmm2+QlpYGQ0NDHD16FGKxGN27d1foz8HBQSgAFcSpoaGBdu3aKWwDgCdPnqBly5a4ePEiAMDDwwO5ublCO2dnZ2zevBlPnjxBgwYNAAAaGhpwcnIS2jRs2BDa2toVdlevxo0bo23btjh48KBQBIqKioKnpyd0dXUV2haX+wsXLqB79+7Q1NQUrlNfXx/m5uaIjY0tdYw5OTmIi4sr9fGkKCEhobJDqBKYZ/VgniuWRCKBoaFhZYdB5eTevXtV8kPj+/i+oR7Mc8Wrqjl+97NYUVgEIlKD9PR05OXlISQkBCEhIUr7C6ZeAYCenp7CPrFYDB0dHaVtAPDmzRuFIpCRkZFCu9q1awMAkpKSCi0CpaenC23eVatWLcTHxwuPu3XrhkWLFuHIkSMYNmxYkYUQfX19pTi1tbUV3ozejR14O6pILpcrFIre9W4R6P2+Cvor6KsiDBw4EIGBgUhJScHz589x69YtBAYGKrUrLvepqamIjIxEZGSk0rEFOSkNsVisMCWPSkcmkyEhIQFNmjThN/sViHlWD+ZZPTiV99Niampa5UcC8X2j4jHPFa8q57hgrdbisAhEpAZ6enoQiUTw9fVFly5dlPa/O8qnLFJSUhQev3jxAgBgbGxcaHsDAwPcu3dPaXtycjIMDAyEx9ra2ujVqxeioqJgZ2eHuLg4zJ49u1xiNjAwgEgkwu7duwsthpiampbLeUrLw8MDCxYswJEjR/Do0SM0atQIbdu2VWpXXO4NDAzQoUMHDB48WOnYdwt5JSUSiZSKhFR6EomE+VQD5lk9mOeKpcqQe/r3qGofFovC9w31YJ4rXlXMsar/LrEIRKQGOjo6sLGxwT///KOw5sy7Hj16VObznDp1SmFa0smTJ2FiYoK6desW2t7Ozg4nT57EP//8g6ZNmwIAXr58iYsXLwrr8xQYOHAgvvvuO4SEhKBJkyawt7cvc7wAhOldaWlp6Ny5c5n7K83IoPdHJ71LS0sLX3zxBfbv348XL17Ax8en0DfY4nLv5OSE+Ph4mJubQ1NTs0TxERERERERlQcWgYjUZMaMGRg+fDgmT56MHj16QF9fH0+fPsXFixfRt29fYcpTWVy6dAlLliyBi4sLLly4gMOHDyM4OLjQRaEBoG/fvti+fTt8fX0xefJkVK9eHevXr0e1atUwfPhwhbYtW7aEpaUlrly5gmnTppU51gKmpqYYMmQIZsyYgVGjRsHa2ho5OTlISEjA5cuXsW7duhL117RpU1y6dAkXLlyAvr4+GjZsWOxIqyZNmkBTUxMHDx5EtWrVoKmpqVCsGzhwICIjI6GpqYm+ffsW2kdxuf/qq6/Qv39/jBo1CgMHDkTt2rXx4sUL/P7777C3t1daaJqIiIiIiKi8sQhEpCZt2rTB7t27ERYWhqCgIOTk5KBu3bpo164dGjdurLAocmnNnz8f+/btw549e1CjRg1MmjTpg3ed0tXVxc6dO7F48WJ88803yM/PR5s2bbBr1y7Uq1dPqX3Xrl1x69Yt9O7du8yxvmv27NkwNTXFvn37sHbtWtSoUQOmpqbo1q1bifuaOnUq5s6dC39/f7x+/RohISFFFm4KGBkZITg4GFu2bMGRI0eQm5uL27dvC/ubN2+OJk2aoFGjRqhTp06hfRSX+8aNG2P//v1YtWoV5s2bh8zMTBgbG8PBwQFSqbTE10lERERERFRSInlVXgGN6BNx+fJlDBs2DAcOHChyull5GDJkCPT09LBhw4YKO8fH6MGDB/Dw8MDq1avh6empsE9duS/MjRs3AEDt5/0UZWZmIi4uDq1atapy88fViXlWD+ZZPWQyGSQSCXrsBmKTKjsaKi0LY+C48nJ9VQ7fN9SDea54VTnHqn424EggIirWjRs3cO3aNVy9ehXbtm2r7HDUJjU1Fffu3cPatWtRv359uLu7V3ZIREREREREpcYiEBEVq3///tDT04Ofnx+cnZ0rO5wSkcvlyMvLK3K/hoZGkWsm/ec//8GsWbPQuHFjhIaGolo1vmUSEREREdG/Fz/REH0CHB0dFdawKW8V2XdF++GHHxAUFFTk/okTJ8Lf37/QfX379i12PaGKzj0REREREVF5YRGIiD5pnTp1woEDB4rcb2JiosZoiIjoU9PcqLIjoLLg80dEVQ2LQET0SatZs2axt4gnIiIqjZy8fKzuVviUYvr3yMsHNPk0ElEVwbc7IiIiIqISksvliLsZC5lMVtmhfNJkMhlu3bpVoXlmAYiIqhK+5RERERERlUJOTg7kcnllh/FJk8vlkMlkzDMRUTlhEYiIiIiIiIiIqApgEYiIiIiIiIiIqApgEYiIiIiIqBTEYjFEIlFlh/FJE4lEkEgkzHMFY56Jqg7eHYyIiIiIqIREIhFatbaAmKsKVyiJRAJzc/PKDuOT9zHmmXdtI6oYLAIREREREZWCWFMDk04Ad1IqOxKiT0tzI2B1t8qOgujTxCIQEREREVEp3UkBYpMqOwoiIiLVcIAdEREREREREVEVwCIQEREREREREVEVwOlgahAVFQWxWIxevXpVdigVSiqVCj+LxWIYGhpCKpWiW7du6N27N8RicYn7DAsLg4uLC9q0aVMuMebm5mLPnj3Yv38/Hj58iGrVqqFevXqwt7dHYGAgtLS0VI4rIiICMTEx5RLXp8TPzw+vXr3Czp07i2wTFhaG8PBw4bGhoSGaNm2KcePGoUOHDuoIU+28vb2ho6ODjRs3VnYoRERERERURbEIpAY//PADdHR0PvkiEPD2g27Pnj2Rm5uL58+f4/z585g7dy7279+PiIgI6Orqlqi/8PBw6OjolFsRaOHChYiKisLYsWPRpk0byGQyxMXF4ciRI8jKylK5CDRgwIBPtlihLtra2oiMjAQAPH/+HBs2bMC4cePw3XffldvzTURERERERP/DIlAVl5WVBW1t7XLrr169erCxsREed+/eHZ9//jl8fX2xePFiLFy4sNzOVVIymQwHDhzAuHHjMHHiRGG7u7s7Jk6cCLlcrnJfdevWRd26dSsizCpDQ0ND4bVibW2NDh064NChQ/+qIlB5/w4RERERERFVFK4JVIyYmBiMHDkSbdq0ga2tLQYMGIALFy4I+5ctW4ZevXrB1tYWbm5umDp1Kp4/fy7s9/b2xu+//45z585BKpVCKpUiLCxM2H/u3DkMGDAAVlZWaNeuHebMmYPMzEyFGOLj4zFkyBBYWlrCw8MDR44cgZ+fH7y9vRXaXblyBV5eXrCysoKjoyOCgoKQlpYm7H/06BGkUimioqIwe/ZsODo6YsCAAdi5cyesra2RkZGh0N/du3chlUoRHR1dphy2b98eHh4eOHTokHCO58+fIygoCO7u7rCysoKHhwdWrFiB7Oxs4biC6WVLly4Vcnf58mUAQEREBPr16wc7Ozs4OTnB19cX9+7d+2AcMpkMOTk5MDExKXS/SCQSfs7Pz8e2bdvw+eefw8LCAi4uLvjqq6/w6tUrAG+nM9na2iocn56ejrlz58LV1RUWFhbo27cvfv31V4U23t7e8PX1xYkTJ+Dp6QlbW1sMGzYMDx48UGiXnZ2NlStXwt3dHRYWFmjfvj0CAwMV2sTExGDYsGGwsbGBnZ0dpk2bhuTk5A/mIDMzE/Pnz4enpyesra3RuXNnBAcHC9dVoHPnzpg/fz6+++47dOrUCXZ2dvDz80NKiuI9cO/evYuhQ4fC0tISXbp0wQ8//PDB839InTp1YGRkhMePH5f4Ojdt2oSuXbvC0tIS7dq1g4+PDx4+fCjsz87OxooVK9CpUydYWFjg888/x9GjR5XOM27cOLi6usLGxgZffPEFDh06pNDm8uXLkEqlOHfuHL766iu0adMGkyZNAvD2+V+wYAHat28PCwsLdO7cGcuXL1e6zuKeeyIiIiIioorCkUAfcO3aNQwfPhw2NjZYuHAh9PX1ERsbq/AhNTk5Gb6+vjAxMUFKSgq2bdsGb29vHD9+HNWqVcOcOXMwffp0aGtrY+bMmQAgjCA5ceIEpkyZgr59+8Lf3x9JSUlYvnw50tPTsXLlSgBvRxmMHDkS+vr6CA0NBQCsXbsW6enpaNSokRBHbGwsRowYAUdHR6xevRovXrzA8uXLcefOHezduxeamppC2xUrVqBDhw5Yvnw58vPzYW1tjdDQUBw7dgxeXl5CuwMHDqBOnTpwdXUtcy5dXV1x4sQJ3Lp1C23btkVqaioMDQ0RFBQEfX19JCQkICwsDElJSQgJCQEA7Nu3D4MGDRKmmAFA8+bNAQBPnz7F0KFDUb9+fWRkZGDv3r3w8vLCyZMnYWhoWGgMRkZGqF+/PtavX48aNWrA1dUVBgYGhbZdsGAB9u3bh+HDh8PFxQWvX7/GuXPnkJmZCT09PaX22dnZGDFiBJKTkzF58mTUqVMHR44cga+vL6KiohTWS4qLi0NKSgoCAgKQl5eHxYsXY/r06di3b5/Qxt/fH5cuXYKvry9sbGyQkpKCn3/+WdgfExMDb29vdOjQAStXroRMJsOqVavg5+en0M/7srKykJeXhylTpsDIyAhPnjzBhg0b4Ofnp7SGz9mzZ3H//n0EBwcjNTUVISEhWLBggfDafPPmDUaOHAmJRIKlS5cCANasWYOMjAw0adKkyBiK8vr1a7x8+RINGzYs0XUeOnQIq1evxldffQUbGxu8evUK165dw+vXr4V+Jk2ahD/++AMTJkxAs2bNEB0djenTp0NfX1+Y1vf48WO0adMGX375JbS0tPDHH39g9uzZkMvl6NOnj0Ks33zzDf7v//4Pa9euhYaGBrKzszF8+HAkJiZiwoQJaNGiBZ4+fYpr164pHKfKc09ERERERFRRWAT6gNDQUDRu3BiRkZFCEeX9gkhBwQIA8vLyYGtri/bt2+PSpUtwdXVF8+bNoaurCx0dHYWpL3K5HEuXLkX37t2xaNEiYbuxsTHGjh0LPz8/mJmZ4eDBg0hOTsaePXuED8cWFhbw8PBQKAJt2LABxsbG2LBhg7AAc7169TBq1ChER0ejc+fOQtuWLVsqnBMAPD09cfDgQaEIlJubiyNHjqB///4KBaTSKih8vXjxAsDbUT4FRTEAaNOmDSQSCQIDAxEcHAyJRCLk6/0pZgAwa9Ys4ee8vDy4uLjAyckJJ0+exKBBg4qMY/HixZg6dSqmTp0KkUiEpk2bwt3dHSNGjICRkREA4N69e9izZw+mTJkCX19f4VhPT88i+z169Cj+/vtvHD58WChUubm54f79+1i3bh1Wr14ttH316hUOHToknC8zMxNBQUF4+vQp6tatiwsXLuDcuXNYvny5UPwCoPDz8uXLYWFhgfDwcGEEU4sWLdCzZ09ER0cXuV6RkZER5s2bJzzOzc1Fw4YNMXjwYNy7dw+mpqbCPrlcjvXr1wvrJCUmJmLjxo3Iz8+HhoYGoqKi8Pz5c/z0009C0cfc3BzdunVTuQiUm5sL4O3IsNDQUNSoUQPDhg0r0XX+9ddfkEqlCs9Vly5dhJ8vXbqEs2fPYuvWrcLvr4uLC5KSkhAWFibkqkePHgrX7uDggGfPnmHfvn1KRaDOnTtj+vTpwuPvv/8et27dwt69exVGiL1/XHHPfWnI5XKl0YNUcjKZTOFvqhjMs3owz+qRnZ0NiURS2WEQfdJkMlmJlmz42PH9ueJV5RzL5XKF2S1FYRGoCDKZDH/++SemTp36wSJIdHQ01q9fj/j4eIXpVAkJCR8cQXPv3j0kJiZi1qxZwgdhAGjbti00NDQQGxsLMzMzxMbGokWLFgqjIxo2bIiWLVsq9Hf16lX07NlT4Q5crq6u0NfXx7Vr1xSKQB07dlSKZ+DAgRg6dCji4+NhZmaG6OhoJCcno1+/fkVeQ0m8/+Ytl8sRGRmJ77//Ho8ePcKbN2+EfQ8fPkSLFi0+2N/169exevVq3Lp1S2HKW0JCwgePc3R0xKlTp/DLL7/gt99+w6VLl7Bp0yZERUUhKioKderUwaVLlyCXy9G/f3+Vr+/ChQto0aIFmjRpovB8Ojs748iRIwptW7ZsKRQBAMXRTXXr1sVvv/0GiUSiUJR4l0wmwx9//IEZM2YgLy9P2N6kSRPUq1cPN27c+OCi1YcOHcL27dtx//59heJBQkKCQhHIwcFBYaHsZs2aIScnB8nJyTA2NsZff/0FMzMzhYJP48aNlV6bRcnMzETr1q2Fx5qamli3bh2aNm1aous0NzfH7t27ERISgq5du8La2lrh9+DChQswNDREu3btlJ6buXPnIi8vD5qamnj58iXCwsJw5swZPHv2TDhnYSPL3v8d+u2339CsWTOlKYLvK+65L42cnBzExcWV6lhSVtx7CJUP5lk9mOeKJZFIihx9TETl4969e5/kh3m+P1e8qppjVW50xCJQEdLT05Gfn1/k+jEA8Ndff8HPzw/u7u4YM2YMatWqBZFIhIEDByoUNQqTmpoKAJgwYUKh+588eQLg7QiJdz80FjAyMlI4R3p6OmrVqqXUrlatWnj58qXStvc5ODjA1NQUBw4cQFBQEA4ePAgHBweF0UZl8ezZMwBvRzoBQGRkJJYsWYLRo0fD0dER+vr6uHHjBubPn19s7h4/foyRI0fCwsIC8+bNg4mJCcRiMXx9fYs9FgB0dHTQrVs3dOvWDQCwf/9+zJ49GxEREcI6StWqVSs0T0VJTU3FrVu3FIoaBd4vIurr6ys8LihYFMSelpYGY2PjIqu46enpyMvLQ0hIiMJItAIFr53CnDp1CjNnzsSgQYMwZcoUGBoaIikpCRMmTFDK3ftxFryhFLR7/vx5ka85VZ4HbW1t7Nq1C3K5HAkJCVi+fDlmzpyJo0ePwsTEROXr7Nu3L16/fo3vv/8e27dvh56eHnr37o2AgABoa2sjNTUVaWlphT43AJCUlIS6desiMDAQMTExmDBhgjCCb8+ePfjpp58KvcZ3paWlffC9okBxz31piMVioZhEpSeTyZCQkIAmTZrwm/0KxDyrB/OsHu+uY0hEFcPU1PSTGwnE9+eKVZVzfOfOHZXasQhUBD09PWhoaCgs8vy+06dPQ1dXF6tWrYKGxts1thMTE1Xqv+Cbo+DgYFhZWSntL/hAaWJiUui3/CkpKahRo4bw2MDAoNBFgZOTk5XWvSmquDBgwABs2bIFI0aMQHR0tNKUsbI4f/48tLS0hA/iJ06cQOfOnTFt2jShzd27d1XuKzMzE+Hh4cKH6tzcXKVil6oGDBiAZcuWCec3NDREbm4ukpOTVS4EGRgYQCqVlkvOCgozRQ3n09PTg0gkgq+vr8K0pwI1a9Yssu8TJ06gVatWmD9/vrDt999/L1WcJiYmuHnzptL25ORk6OrqFnu8hoYGLC0tAQBWVlYwNTXFwIEDsXbtWsybN0/l69TQ0MDw4cMxfPhwPHv2DMePH8fy5ctRs2ZNTJgwAQYGBjAyMsKmTZsKjaOgoHru3DkEBgYqLLi+e/fuQo95/3kxNDTE7du3i73miiASiaCjo1Mp5/4USSQS5lMNmGf1YJ4rlipD7omobD7VD/F8f654VTHHqv67xLuDFaFgDZ/Dhw8rTEV5V1ZWFsRisUKy37/jEPD2m/r3v+lv2rQp6tati4cPH8LS0lLpT506dQC8Xf/n9u3bCnc6evToEf7++2+F/uzs7HDmzBmF6S4XLlxAeno67OzsVLrmPn364NWrV8IIioKRMmX1yy+/4NSpU+jTp4/wi1iQu3epmrusrCyIRCJUq/a/GuZPP/2kcO2FycnJKbRQlJycjFevXgmjlNq1aweRSISDBw+qdoF4O7Xo4cOHMDExKfT5LAlnZ2fIZLJCR6AA/3tt/vPPP4We692pg+9TNe+qsLS0RHx8PO7fvy9su3//vtJrsyT99ejRA1FRUUhKSirVddapUwcjR46EVCrFP//8A+BtPlNSUiAWiwvtR0tLC9nZ2cjPz1fITUZGBs6ePatS7M7Ozrh79y7+/PPPUl07ERERERGROnAk0AdMmzYNPj4+8PHxweDBg2FgYICbN2+iZs2a6N+/P1xcXBAZGYkFCxaga9euiImJweHDh5X6adq0KQ4dOoSzZ8/C2NgYJiYmqFOnDgIDAxEQEIDMzEx07NgREokEjx8/RnR0NKZMmQJTU1P069cPGzZswLhx4+Dv7w8ACA8PR+3atRWKT+PGjYOXlxd8fX3h7e0t3B3Mysrqg+vDvMvIyAju7u44ceIEBg0aBG1t7RLn7MmTJ7h+/Tpyc3ORlJSE8+fP4/Dhw7C2tlZYCNrZ2Rk7duzArl270KRJExw5ckShmPBu7s6cOQN7e3tIJBKYmpqiXbt2AICgoCB4eXkhPj4e27ZtU5pq875Xr17B09MTX3zxBdq1awcDAwM8evQIERER0NDQwJdffgng7bBTLy8vrF69Gi9fvoSTkxOysrJw7tw5+Pv7CwW6d/Xu3Rt79+7FsGHDMHLkSDRp0gSvXr3CrVu3kJOTozDiqTjOzs7o0KEDZs2ahQcPHsDa2hppaWk4efIkVq1aBQCYMWMGhg8fjsmTJ6NHjx7Q19fH06dPcfHiRfTt2xeOjo5F9j1//nysXbsWtra2iI6Oxm+//aZybO/q27cv1q9fD19fX+E26WvWrEHt2rVL1R8A+Pn54ccff0RkZCQCAgJUus7g4GDo6+vDxsYG+vr6+OOPP/D3338Lz6eLiws6deqE0aNHY/To0ZBKpZDJZLhz5w7u37+PRYsWQU9PD5aWlti8eTOMjIxQrVo1bNq0Cbq6ukhJSSk27i+++AK7d+/G2LFjMXHiRJiZmeHZs2e4evUqFixYUOp8EBERERERlScWgT7A3t4eO3bswKpVqxAUFAQNDQ2YmZlh8uTJAIAOHTogICAAu3btQlRUFNq0aYONGzcq3UVqzJgxePDgAWbOnIn09HRMnDgR/v7++Pzzz6Gvr48NGzYIozEaNGgANzc34YO0trY2IiIiMGfOHAQEBKBOnTrw8/PDoUOHFG5VbmFhgYiICKxYsQL+/v7Q0dFB586dMXPmzBLd3atr1644ceJEiRZFftfOnTuxc+dOiMViGBoaQiqVYt68eejdu7fCyJ0JEyYgNTUVa9asAfD2zluzZ8/GuHHjFPoLDg7Gt99+izFjxiArKws7jRa19QAAPcRJREFUduyAo6MjQkJCEB4eDl9fX7Rq1QqrV68Wnpei6OrqYsyYMTh//jxOnDiBly9fonbt2rC0tMTixYsV1owJDg5Gw4YNsX//fkRGRsLQ0BAODg4KU/DepaWlhR07diAsLAwbNmxAUlISDA0NYW5ujsGDB5c4j2FhYQgPD8e+ffsQHh6OWrVqwcXFRdjfpk0b7N69G2FhYQgKCkJOTg7q1q2Ldu3aoXHjxkX26+XlhUePHmHXrl3C3bKWL1+OgQMHljjGgtfm3LlzMX36dOG1eebMGbx69arE/QFvi37du3fHnj174Ovrq9J12tra4vvvv8f+/fshk8nw2WefISgoCAMGDBD6XbNmDTZt2oQ9e/YgMTERenp6MDMzQ9++fYU2y5cvR3BwMAIDA2FoaAhvb29kZmYiIiKi2Li1tLSwfft2rFy5Ehs3bkRaWhrq1q1b5OLeRERERERElUEk/5RW2qoi0tLS0KVLF/j4+GDixInl2veMGTMQFxdX6ilCRKQ+N27cAIASTzkkZZmZmYiLi0OrVq2q3PxxdWKe1YN5Vg+ZTPb2bp67gdikyo6G6NNiYQwcL/n3qB89vj9XvKqcY1U/G3Ak0L/Apk2bULt2bTRo0ABJSUmIiIhAXl5eud2+HQBu376NuLg4/Pjjj5gzZ0659UtEREREREREHwcWgf4FNDQ0sH79ejx79gyampqwtrZGZGQk6tWrV27nGD9+PFJSUtC7d2+l4pJcLi9yceyC+ArujkZEREREREREHycWgf4FCha0rUgfugvS77//jmHDhhW5v0+fPli8eHFFhEVERERERERE5YRFICpW69atceDAgSL316xZU43REBEREX08mhtVdgREnx7+XhFVHBaBqFi6urpceJaIiIjoPTl5+VjdjVPiiSpCXj6gyV8vonLHXysiIiIiohKSy+WIuxkLmUxW2aF80mQyGW7dusU8V7CPMc8sABFVDP5qERERERGVQk5ODuRyeWWH8UmTy+WQyWTMcwVjnomqDhaBiIiIiIiIiIiqABaBiIiIiIiIiIiqABaBiIiIiIhKQSwWQyQSVXYYnzSRSASJRMI8VzDmmajq4N3BiIiIiIhKSCQSoVVrC4i5em2FkkgkMDc3r+wwPnlVKc+86xhVdSwCERERERGVglhTA5NOAHdSKjsSIlJFcyNgdbfKjoKocrEIRERERERUSndSgNikyo6CiIhINRwIR0RERERERERUBbAIRERERERERERUBbAIRERERERERERUBbAIRESl4u3tDV9f38oOo0wq+xrCwsJga2tbaecnIiIiIqKqhQtDE1GpzJkzBxoarCMTERERERH9W7AIREQlkpWVBW1tbTRv3ryyQyEiIiIiIqIS4Nf4RB+ZmJgYDBs2DDY2NrCzs8O0adOQnJwMAPDz84O7uzsyMjKE9sePH4dUKsUvv/wCAIiKioJUKsX169cxbNgwWFtbo3Pnzjhw4ECJzgUAjx49glQqRVRUFGbPng1HR0cMGDAAQOFTqe7evYvx48fDzs4ONjY2GDt2LB48eKDQRiqVYvPmzQgLC4OzszMcHR0RFBSEzMxMhXbPnj3DjBkz4OzsDCsrK3Tr1g2RkZEKbaKiotCrVy9YWlrCzc0NK1euRF5eXklTXqJrKGoK2a5du2BlZYVXr14BAORyObZu3QpPT09YWFjA3d0d27dvL1NsREREREREZcEiENFHJCYmBt7e3tDT08PKlSuxYMEC3LhxA35+fgCABQsWIDMzE99++y2At4WSefPmwcvLC+3bt1foa+rUqXBxcUF4eDgcHR3x9ddfC4UiVc71rhUrVkAul2P58uWYPn16obE/fPgQXl5eePnyJRYvXoxly5YhJSUFPj4+yM7OVmj73XffISEhAYsXL8aECRNw9OhRrFu3TtifmpqKQYMG4ffff8eUKVOwceNG+Pj44NmzZ0Kbbdu2Yfbs2XB1dcWGDRswZswY7NixAytXrixh1kt2DT169MCFCxeQlpamcOyxY8fQoUMH6OnpAQAWLVqENWvWoHfv3ti0aRP69OmDZcuWYc+ePaWOj4iIiIiIqCw4HYzoI7J8+XJYWFggPDwcIpEIANCiRQv07NkT0dHR6NChA+bPn4+JEyeic+fO2Lt3LwwNDTFz5kylvr744gthxIqbmxsePnyItWvXCsUiVc5VoGXLlli0aNEHYw8PD4eBgQG2bduG6tWrAwDatGkDd3d37N+/H0OGDBHaGhsbY/ny5QCA9u3b49atWzh58iQCAgIAANu3b0dycjJ++uknNGzYEADg5OQkHJ+RkYE1a9Zg9OjRmDp1KgDAxcUFYrEYixcvxqhRo1CzZk1V016ia/D09MTChQvx888/Y+DAgQCAxMREXL9+HatWrQIAPHjwALt27cK8efMwaNAgAICzszOysrKwdu1aDBo0qNzWU5LL5UqjqKjkZDKZwt9UMZhn9WCe1SM7OxsSiaSywyCiUpDJZJDL5ZVy3nf/pvJXlXMsl8uFz3UfwiIQ0UdCJpPhjz/+wIwZMxSmNDVp0gT16tXDjRs30KFDB3Tt2hW9e/fGlClTkJeXh++++w46OjpK/XXt2lXhsYeHB5YuXYq8vDxkZ2erdK4CHTt2LDb+CxcuoHv37tDU1ERubi4AQF9fH+bm5oiNjVVo6+zsrPC4WbNmOH78uPD4t99+Q7t27YQC0PtiYmKQmZmJbt26Cecq6DcrKwvx8fFo27ZtsTGX5hpq1qwJZ2dnHD9+XCgC/fjjj9DR0UGnTp0AABcvXgTwNufvx7d582Y8efIEDRo0KHF8hcnJyUFcXFy59EVAQkJCZYdQJTDP6sE8VyyJRAJDQ8PKDoOISuHevXuVWiTg+3PFq6o51tLSKrYNi0BEH4n09HTk5eUhJCQEISEhSvufPHki/NyzZ08cOnQIlpaWRd5ivFatWgqPa9eujZycHKSmpiIvL0/lcxXWV2FSU1MRGRmptG4PAIjFYoXH+vr6SvvfnTKWlpYGMzOzD54LAPr06VPo/vfjV5Wq19CjRw8EBgYiKSkJxsbGOH78OLp27SqMHkpNTYVcLke7du2KjK+8ikBisZiLdJcDmUyGhIQENGnShN/sVyDmWT2YZ/V4f6ozEf17mJqaVtpIIL4/V6yqnOM7d+6o1I5FIKKPhJ6eHkQiEXx9fdGlSxel/QXTmzIzMzF//ny0bNkSsbGxOHjwIPr166fUPjk5GXXq1BEev3jxAmKxGDVr1sSbN29UOlcBVYYVGhgYoEOHDhg8eLDSvho1ahR7/LsMDQ3x/PnzD54LeDt9q27dukr7ixpBVBxVr8Hd3R1aWlr46aef4Orqiri4OGFaWkE/IpEIu3fvViqAAW//41FeRCJRoSPBqHQkEgnzqQbMs3owzxVLlX8biejjVNnFAb4/V7yqmGNV/11iEYjoI6GjowMbGxv8888/sLS0LLLd4sWLkZ6eju+++w5btmzBt99+CycnJ9SvX1+h3alTp2Bubi48/vnnn9G6dWtoamqqfK6ScHJyQnx8PMzNzf+/vTuPqyn//wD+utEqIWIsZcJ0R5s2JSVLdmHGiCxZMmRsI3wpYxhj/JjIMmnIOmaMpm+WUNkpM4Qx9mXGViJTg+SW9jq/P3rc83Xd6MatJvf1fDw86Hw+53M+531Ox+3d5/M5qFWr1lu3tXnzZjx8+FDpvADA3t4e+vr6SEtLU5r29rbHVeUcDA0N0aVLF8TGxuLZs2cwNjZWmOImX78oMzMT3bp1U1v/iIiIiIiI3gaTQET/IrNnz8bo0aMxffp09OvXD0ZGRkhLS8OpU6cwaNAg5OfnIzIyEitXrkTjxo0xc+ZM/PrrrwgMDMTWrVsVsr979uyBnp4eLC0tERcXh99//x3r169X+VguLi4V6vu0adMwePBgjBs3DkOGDEGjRo3w+PFjnD17Fk5OTvDy8lK5rTFjxmDPnj0YOXIkPvvsM5iamuL+/ftITk7Gf/7zHxgZGWHatGlYtmwZ0tLS4OzsjFq1auH+/fs4evQoQkND3+g3PBU5By8vL0yZMgWpqano3bs3atf+3+PU3NwcI0aMwOzZszFu3Di0a9cOhYWFSE5OxpkzZxTehEZERERERFRVmAQi+hdxcHDA9u3bERoaiqCgIBQWFuK9995Dhw4dYGpqiqFDh6Jfv37o27cvAEBXVxfBwcHw8fHB1q1bMWbMGLGtkJAQrFixAmFhYWjYsCEWLVqksNjz647VsmXLCve9ZcuWiIqKwqpVq7Bw4ULk5OTAxMQE7du3h1QqrVBbDRo0QEREBEJCQrB8+XLk5uaiefPmCtO0/Pz80KRJE2zZsgXbtm1D7dq1YWZmhi5dupQ5BUvd5yB/HfyjR4/Qr18/pbbmzZsHc3NzREZGIiwsDHXq1IG5uTl69+79Rn0jIiIiIiJ6WxKhOlbEIqJKs2vXLgQFBSExMRHGxsbV3R2qRFeuXAEAtU3p02Q5OTm4ceMG2rZtq3Hzx6sS41w1GOeqkZubC319ffTbDlx9VN29ISJVWJsAscpLP1YZPp8rnybHWNWfDbSqojNERERERERERFS9OB2MiN5JxcXFr33154tr+BAREREREWkC/hRE9I4ZNGgQBg0aVN3dqHY9evRAamrqK8v/+uuvKuwNERERERFR9WMSiIjeSWvXrkVBQUF1d4OIiN5xbbj8HlGNwe9XIiaBiOgdVdE3khEREVVUYXEJVvfmEptENUlxCVCL37akwXj7ExERERFVkCAIuHHtKnJzc6u7K++03NxcXL9+nXGuZJoUZyaASNPxW4CIiIiI6A0UFha+9iUE9PYEQUBubi7jXMkYZyLNwSQQEREREREREZEGYBKIiIiIiIiIiEgDMAlERERERPQGtLW1IZFIqrsb7zSJRAJ9fX3GuZIxzlWDca58jHH5+HYwIiIiIqIKkkgkaGtlDW2uMlup9PX1YWlpWd3deOcxzlWDca58VR3jmvi2OSaBiIiIiIjegHYtLXx+ALidUd09ISKiqtbGGFjdu7p7UXFMAhERERERvaHbGcDVR9XdCyIiItXUsIFLRERERERERET0JpgEIiIiIiIiIiLSAEwC1VC7du3Cvn37qrsblU4qlUIqlSIiIkKp7OTJk2L5gwcP1HrcBw8eQCqV4sCBA6+tFxoaCnt7e7Ue+3VU7de/wa5duyCVSpGR8e4slHDkyJEK3W8//PADpFIp5s6dW2a5r68v/P391dlFIiIiIiKiV2ISqIbavXs3YmJiqrsbVcLAwABxcXFK22NiYmBgYFANPfofb29vbN26tVr78G/VpUsXREZGwsjIqLq7Um327t0LADh8+DAKCgqquTdERERERKTpmAQitcvLy1Nre56enjh37hzS09PFbQUFBTh8+DC6d++u1mNV1HvvvQdbW9tq7UNVqsi1NTY2hp2dHWrX1sz155OSknDt2jV07NgRMpkM8fHx1d0lIiIiIiLScEwCVYMLFy7Az88PDg4OsLe3h7e3N06ePCmWL1++HP3794e9vT06deqEGTNm4J9//hHLfX19cfbsWcTHx4vToUJDQ8Xy+Ph4eHt7w9bWFh06dMCCBQuQk5Oj0Idbt25hxIgRsLGxQc+ePbF3715MmjQJvr6+CvV+//13+Pj4wNbWFi4uLggKCkJmZqZYLp+etGvXLsybNw8uLi7w9vbGTz/9hHbt2iE7O1uhvTt37kAqlSIhIUHleLVt2xbvv/++wmighIQECIKALl26KNXfvHkzPvnkEzg6OsLV1RX+/v5ISkpSqlfedQCA/Px8fP3112jfvj3c3d3x7bffoqioSCx/eTrYmTNnIJVKcfLkScycORP29vbo2rUrNmzYUObxR40aBTs7Ozg6OmLmzJl48uSJynF5FUEQsGnTJvTq1QvW1tbw9PTEDz/8oFDnzp07CAgIQOfOndGuXTv07dsXmzdvRklJiVjnVdcWKJ2mt2HDBoSGhqJjx47ivfHiffbydDB5e3v27HltTIHSkTO9evWCjY0NhgwZgmvXrsHJyUnhPi9LdHQ0hg0bBmdnZ7Rv3x6+vr64fPmyQh35Nfvrr78wbNgwtGvXDl5eXvj1118V6hUWFmLx4sVwdnaGo6Mj5s6di+fPn6t2EVA6Uk0ikeDrr79Go0aNNGL6JhERERER/btp5q/oq9Eff/yB0aNHw87ODt988w2MjIxw9epVPHz4UKzz5MkT+Pv7o3HjxsjIyMCWLVvg6+uL2NhY1K5dGwsWLMB//vMf6OnpYc6cOQBKR6QAwIEDBxAQEIBBgwZh6tSpePToEUJCQiCTybBy5UoApaM5/Pz8YGRkhGXLlgEAwsLCIJPJYGZmJvbj6tWrGDt2LFxcXLB69Wo8fvwYISEhuH37Nn755RfUqlVLrLtixQp07twZISEhKCkpQbt27bBs2TLExMTAx8dHrLdjxw40adIE7u7uFYpbv379EBMTg7FjxwIo/QG7R48e0NXVVaqblpaGkSNHolmzZsjOzsYvv/wCHx8fHDx4EPXr11f5OgDAqlWr4OnpiVWrVuHChQsIDQ2FmZkZhg0b9tr+LliwAAMHDkRYWBiOHDmC5cuXQyqVwsPDA0BpAsjX1xedO3fGypUrkZubi1WrVmHSpEmIjIysUGxetnjxYkRFRWHixIlo164dzp8/j+XLl0NXV1fs9z///ANzc3P0798fderUwY0bNxAaGoqcnBxMmTJFob2Xr63czz//DEdHRyxduhTJyckIDg5Gw4YNMWvWrNf2r7yYXr9+HZ9//jm6du2KuXPnIjU1FQEBASpNp3rw4AE++ugjmJmZoaCgALGxsRgxYgT27t0Lc3NzsV5hYSFmzZqFUaNGYdKkSdiwYQOmTZuGY8eOoUGDBuJ5R0REYOrUqbC0tERsbCxCQkJUuwgovUednJxgamqKPn36IDIyEllZWahbt67KbRAREREREakTk0BVbNmyZWjZsiW2bt0qJlFeTogsWbJE/HdxcTHs7e3h4eGB06dPw93dHW3atIGhoSEMDAxgZ2cn1hUEAcHBwejbty8WL14sbjcxMcGECRMwadIkfPDBB9i5cyeePHmCiIgItGjRAgBgbW2Nnj17KiSB1q1bBxMTE6xbtw7a2toAgKZNm2LcuHFISEhAt27dxLoffvihwjEBoFevXti5c6eYBCoqKsLevXsxePBghQSSKry8vBAaGoqUlBQ0bNgQ8fHxCAsLK3N60ouL8BYXF8PNzQ2urq44ePAghg4dCkC16wAAtra2mDdvHgDAzc0NZ86cwcGDB8tNAvXs2RNTp04FALi6uiI+Ph4HDx4Uk0AhISGwtrbGmjVrIJFIAAAWFhbw8vJCQkICOnfuXKH4yKWkpGDbtm1YuHCheK4dO3ZEXl4ewsLCMHToUGhpacHV1RWurq4ASu8bR0dH5OXlYdu2bUpJoLKuLVB6X8mTIh4eHrh+/ToOHjxYbhKovJiGh4ejRYsWCA0NhZZW6WDFOnXqYPbs2eWe/4t9LykpgZubGy5fvozdu3djxowZYpk8CSSPs7m5OTw9PXHixAkMHDgQmZmZ2L59O8aPHy8u3NypUyeMHDlSYVriq1y+fBnJycli0tLLyws//fQTDh48iMGDB5e7f0UIgqA00o8qLjc3V+FvqhyMc9VgnKtGQUEB9PX1q7sbRERUzXJzcyEIQnV3A4IgiD9bvg6TQFUoNzcXly5dwowZM16bBElISMDatWtx69YthelUycnJrx1Bk5SUhNTUVMydO1dheo2zszO0tLRw9epVfPDBB7h69SosLCzEBBAAtGjRAh9++KFCe+fOnYOXl5eYAAJKEyVGRkb4448/FJJAZU3LGjJkCEaOHIlbt27hgw8+QEJCAp48eYJPPvnklefwKu+//z6srKwQExOD5s2bo06dOnB1dcXx48eV6l68eBGrV6/G9evXFaauJScnA1D9OsjP90WtW7fG6dOny+3vi/tJJBK0bt0aaWlp4vHPnz+P2bNno7i4WOEcmzZtiitXrrxxEujUqVMASpNQL94DHTt2xIYNG/D333+jefPmyM/PR3h4OPbt24e///4bhYWFYt3nz5+jTp064tdlXVt5my9q3bo1YmNjy+1jeTG9cuUKunfvLiaAgNJ1oVRx584drFixAhcuXFCYWie/9nLyRJhcixYtoKenJyZ4bt68iby8PPTo0UNhv549e+L3338vtx8xMTHQ1tZG7969AQB2dnYwNTXFvn371J4EKiwsxI0bN9TapiZ7+V6hysE4Vw3GuXLp6+uLI4yJiEhzJSUl/Wt+8aKjo1NuHSaBqpBMJkNJSQkaN278yjqXL1/GpEmT4OnpifHjx6Nhw4aQSCQYMmQI8vPzX9v+06dPAQCTJ08us/zvv/8GUDoVyNjYWKnc2NhY4RgymQwNGzZUqtewYUM8e/ZMadvL2rdvD3Nzc+zYsQNBQUHYuXMn2rdvrzDaqCK8vLywc+dONGvWDH369CkzgfPw4UP4+fnB2toaCxcuROPGjaGtrQ1/f3/x3FS5DnIvT93R1tZWaVpSWftlZWWJxy8uLsaSJUsURn3Jya/Tm3j69CkEQUCHDh3KLJcngZYtW4aoqChMnjwZ1tbWqFu3Lo4ePYq1a9ciPz9fIQlU1rUFoPTWr7eJzYv7PXr0SOn+NDQ0LHPq34uys7Ph5+cHY2NjBAYGolmzZtDV1cW8efOUvnf09PSUHpDa2tpivUePHgFQPvdGjRqVe34lJSWIi4sTk68ymQxAaSLrxx9/RHp6Opo0aVJuO6rS1tZGmzZt1NaepsrNzUVycjLef/99/ma/EjHOVYNxrhp86yMREQGlswr+DSOBbt++rVI9JoGqUN26daGlpaWwyPPLjhw5AkNDQ6xatUocCZGamqpS+/LfRs2fP7/MN1bJkx6NGzcuc+RARkaGwg//9erVK3Oh4idPnqBevXoK21417Mzb2xsbN27E2LFjkZCQUOa0IlX17dsXwcHBuHv3Ln7++ecy6/z666/IycnBmjVrxCRFUVGRQtJKletQmerWrQuJRAJ/f/8y324mX5PmTdSrVw8SiQTbt29XGMElJ18X58CBAxg6dCgmTJgglr1qsW5VhhSqk4mJibiYtFx2dna5SdCLFy8iLS0N4eHhCqPasrKyxDWzKtIHoPRefzFh8/jx43L3PX36NB49eoRHjx6hffv2SuVxcXHiNDF1kEgkMDAwUFt7mk5fX5/xrAKMc9VgnCtXVf//SERE/07/ll+4qPr/EpNAVUi+hs+ePXvg5+dX5kiWvLw8aGtrK1zAst4q9OKoBblWrVrhvffew/379zFixIhX9sPa2hrR0dG4f/8+TE1NAZQuqPvnn3/C0dFRrOfo6IijR48iMDBQfM33yZMnIZPJFOq9zscff4yVK1di1qxZ0NPTE6fHvIn33nsPo0ePRkZGBhwcHMqsk5eXB4lEovBa8v379ytMjVLlOlQm+fHv3r0LGxsbtbYtn+KUmZmpMF3vZfn5+QpJouLiYpWmclUFGxsbxMfHIzAwUEyEHjlypNz95OtDvXhe58+fR2pqKj744IMK9cHCwgJ6eno4fPgwLC0txe2HDh0qd999+/bBwMAA33//vcKUNgD4v//7P+zbt0+tSSAiIiIiIiJVMQlUxWbOnIkxY8ZgzJgxGD58OOrVq4dr166hQYMGGDx4MNzc3LB161YsWrQIPXr0wIULF7Bnzx6ldlq1aoXo6GgcO3YMJiYmaNy4MZo0aYLAwEDMmjULOTk56NKlC/T19fHw4UMkJCQgICAA5ubm+OSTT7Bu3TpMnDhRXLx4zZo1aNSokULyaeLEifDx8YG/vz98fX3Ft4PZ2tqqvGaNsbExPD09xZEnenp6bxW/oKCg15bLp0EFBQXBx8cHt27dwpYtW5SmLpV3HSrb7NmzMXr0aEyfPh39+vWDkZER0tLScOrUKQwaNAguLi6v3f/SpUtK2xo1agQnJyeMGDECs2fPxrhx49CuXTsUFhYiOTkZZ86cwffffw+gdD2fqKgotGnTBg0aNMD27dv/NcPa/f39MXjwYEydOhVDhgzBw4cPsXnzZujq6r42u21nZwcDAwMsXLgQEyZMQHp6OkJDQ99o6lX9+vXh4+ODDRs2QE9PT3w7WEpKymv3y8/Px+HDh9GzZ0+FNYfkPvnkEyxevBh3795Fq1atKtwvIiIiIiKit6FVfhVSJycnJ/z444+QSCQICgrClClTcOTIETRv3hwA0LlzZ8yaNQtHjx7FZ599hnPnziE8PFypnfHjx8PBwQFz5szB4MGD8d///hcA0KdPH6xfvx5JSUmYOXMmJk2ahC1btqB58+bieiZ6enrYvHkz6tWrh1mzZmHZsmUYO3YsWrZsqbBei7W1NTZv3oznz59j6tSpWLZsGbp06YINGzZUaPSMfHHdqkiuSKVSLFmyBNeuXYO/vz9iY2OxevVqpXVoyrsOlc3BwQHbt29HTk4OgoKCMGHCBHz//ffQ09NDy5Yty91/8+bN+PzzzxX+rFmzBgAwb948TJ8+HXFxcZgwYQJmz56N/fv3w9nZWdz/yy+/RPv27bFo0SJ88cUXsLCwwMSJEyvtfCvC0tISq1atwu3btzFlyhRERUVh6dKlKC4ufu3r1Rs1aoTVq1cjIyMDkyZNwtatW7Fw4UKV4lmWmTNnwsfHBxs3bsT06dPFba8THx+PrKwsfPTRR2WWyxdaL2t0HxERERERUWWTCP+GFYyo2mVmZqJ79+4YM2aM0ivC39bs2bNx48YN/uBLbywxMRFjxozBTz/9pJDM0nRXrlwBALVPK9REOTk5uHHjBtq2bcs1VCoR41w1GOeqkZubC319ffTbDlx9VN29ISKiqmZtAsQOr+5e/I+qPxtwOpiGWr9+PRo1aoTmzZvj0aNH2Lx5M4qLi9/o9e2v8tdff+HGjRuIi4vDggUL1NYuvfu++uoruLq6on79+rh9+za+//57WFpawsnJqbq7RkREREREVGMxCaShtLS0sHbtWqSnp6NWrVpo164dtm7diqZNm6rtGJ999hkyMjLw0UcfKSWXBEFAcXHxa/v38qK6pDlkMhkWLVqEzMxMGBoaolOnTpgzZw7vCSIiIiIiorfAJJCG+vTTT/Hpp59W6jGOHTv2yrKzZ89i1KhRryz/+OOPsXTp0sroFtUAK1asqO4uEBERERERvXOYBKJqYWVlhR07dryyvEGDBlXYGyIiIqI308a4untARETVoaY+/5kEomphaGjIxWyJiIioRissLsHq3pyqTESkqYpLgFo17L+BGtZdIiIiIqLqJwgCbly7itzc3OruyjstNzcX169fZ5wrGeNcNRjnylfVMa5pCSCASSAiIiIiojdSWFgIQRCquxvvNEEQkJubyzhXMsa5ajDOlY8xLh+TQEREREREREREGoBJICIiIiIiIiIiDcAkEBERERERERGRBmASiIiIiIiIiIhIAzAJRERERERERESkAZgEIiIiIiIiIiLSAEwCERERERERERFpACaBiIiIiIiIiIg0AJNAREREREREREQagEkgIiIiIiIiIiINwCQQEREREREREZEGYBKIiIiIiIiIiEgDMAlERERERERERKQBmAQiIiIiIiIiItIATAIREREREREREWkAJoGIiIiIiIiIiDQAk0BERERERERERBpAIgiCUN2dICKiijt//jwEQYCOjk51d6XGEwQBhYWF0NbWhkQiqe7uvLMY56rBOFcNxrlqMM5Vg3GuGoxz5dPkGBcUFEAikcDBweG19WpXUX+IiEjNNO0/tsokkUiYTKsCjHPVYJyrBuNcNRjnqsE4Vw3GufJpcowlEolKPx9wJBARERERERERkQbgmkBERERERERERBqASSAiIiIiIiIiIg3AJBARERERERERkQZgEoiIiIiIiIiISAMwCUREREREREREpAGYBCIiIiIiIiIi0gBMAhERERERERERaQAmgYiIiIiIiIiINACTQEREREREREREGoBJICIiIiIiIiIiDcAkEBERERERERGRBmASiIiIiIiIiIhIAzAJRERENd7GjRvx0UcfwcnJCXZ2dujfvz+2bdsGQRAU6gmCgPXr16NLly6wtbXF0KFDcfHiRaX20tPTMXXqVNjb28PZ2RlffPEFsrOzleodO3YMAwYMgI2NDXr16oWdO3cq1SkoKMC3334LNzc32NnZYezYsbh7967azr2qFBcXY8OGDRgxYgRcXFzg7OwMX19fnDt3Tqmuqud8584djB07FnZ2dnBzc0NwcDAKCgqU6kVFRaFXr16wsbHBgAEDcPz4caU6WVlZmDt3LpydnWFvb49p06bhn3/+Uc/JV7GTJ09i5syZ6N69O6RSKb7++usy6zHO1UPVeGqae/fuYf78+Rg4cCAsLS3h5eVVZj113mfnz5/H0KFDYWtri65du2L9+vVv/NyvKfbv34/PPvsMHh4esLOzw8CBA7Fjxw6l82ac305CQgJGjhyJDh06wNraGp6enliyZAmysrIU6qnzc4A6n9U10fPnz+Hh4QGpVIorV64olPF+VjOBiIiohluxYoUQHh4uHDt2TDh58qSwfPlyQSqVCmvXrlWoFx4eLlhZWQlbtmwRTp06JUyePFmwt7cXUlJSxDoFBQWCl5eX4OXlJRw9elSIjY0VPDw8hAkTJii09fvvvwtt27YVvvzySyExMVFYuXKlIJVKhf379yvU+/LLLwVHR0chKipKOHHihDB8+HChU6dOgkwmq7yAVILs7GzByclJWLx4sXD8+HEhISFBmDx5stC2bVvh1KlTCnVVOefMzEzBzc1NGDFihHDixAkhKipKcHR0FBYuXKjQVkxMjCCVSoWVK1cKiYmJwpdffilYWloKFy5cUKjn5+cneHh4CLGxscKRI0cELy8vYcCAAUJhYWGlxaSyLFmyROjbt68QGBgoODk5KcVEjnGueqrGUxMdPnxY8PDwEKZOnSp4eXkJ/fr1U6qjzvssOTlZsLOzEyZPniycOnVK2LJli2BlZSVs3LhRoS1Vnvs1yZAhQ4SAgAAhNjZWOHXqlLB8+XLhww8/FEJDQ8U6jPPbi46OFr799lvhwIEDwunTp4WffvpJcHZ2FsaOHSvWUefnAHU/q2ui4OBgoWPHjoKFhYVw+fJlcTvvZ/VjEoiIiN5JM2bMEHr27Cl+nZeXJzg4OAghISHitvz8fKFr167CggULxG379u0TpFKpcOfOHXHbr7/+KlhYWAiXLl0St/n5+QlDhw5VOmafPn3Er//++2+hbdu2wi+//CJue/r0qWBnZyesX79eLedZVYqKioTMzEylbb179xb8/f3Fbaqe87p16wQ7Ozvh6dOn4rZffvlFaNu2rZCWliZu69mzpzBjxgyF4w4dOlT49NNPxa/Pnz8vWFhYCL/++qu47c6dO4JUKhViY2Pf/KSrSXFxsfjvrl27lplgYJyrh6rx1EQv3rdz5swpMwmkzvvsyy+/FLp27Srk5+eL20JCQgQnJydxm6rP/ZrkyZMnStvmzZsnODg4iNeAca4ckZGRgoWFhfi9rs7PAep8VtdEt2/fFuzs7ISIiAilJBDvZ/XjdDAiInonNWjQAIWFheLX58+fR3Z2Nvr06SNu09HRQY8ePXDixAlx24kTJyCVStGqVStxm5ubG+rXr4+EhAQApUO7z5w5g969eyscs2/fvrhz5w4ePHgAAPjtt99QUlKiUK9+/fpwc3NTOGZNUKtWLdSrV09pm1QqVRhureo5nzhxAq6urqhfv764rU+fPigpKcHJkycBAPfv30dycrLCNQNK45yYmCgOkz9x4gSMjIzg5uYm1mnVqhXatm1b4+IMAFpa5X88Y5yrhyrx1FTl3bfqvs9OnDgBT09P6OjoKLQlk8lw4cIFAKo/92sSY2NjpW1t27ZFdnY2cnJyGOdKJP++LywsVPvnAHU+q2uib775Bj4+PjA3N1fYzvu5cjAJRERE74yioiJkZ2cjPj4e0dHRGDVqlFgmn3//YnIHAFq3bo2HDx8iLy9PrPdyHYlEAnNzc7GNlJQUFBYWltnWi8e6e/cuGjZsqJQ8ad26dY1cF+hlRUVFuHTpkkIcVD3nsuJsZGQEExMThfgBUPpQ2Lp1axQWFuL+/ftiPXNzc0gkEoV6rVq1eifiXBbGuXqoEk8qmzrvs5ycHPz9999K16JVq1aQSCRK93Z5z/2a7o8//kCTJk1gaGjIOKtZcXEx8vPzce3aNYSFhaFbt25o0aKF2j8HqPNZXdMcOHAAN2/exOTJk5XKeD9XDiaBiIjonXDv3j1YWVnB0dER/v7+GDlyJMaMGSOWy2Qy6OjoQFdXV2E/IyMjCIKAZ8+eifXq1q2r1H69evXEOvK/jYyMlNp6sfxVbRkZGYl1arKNGzciPT1dKc6qnLNMJlOKH6DeOL/Y1ruGca4eqsSTyqbO+0y+OO/Lbeno6EBfX1+hLVWe+zXZuXPnEBcXBz8/PwCMs7p17doVtra2GDRoEExMTBASEgJA/Z8D1Pmsrklyc3OxdOlSBAQEwNDQUKmc93PlqF3dHSAiInpZVlaWSm8cMjU1FYf0Nm3aFDt27EBOTg7OnTuHDRs2QEtLC9OmTavs7tZYbxJnuZMnTyI0NBSTJk2CtbV1ZXXxnfA2cSYiepW0tDQEBATAxcVFYeQrqc/69euRm5uL27dvY+3atZg4cSK2bNlS3d16Z6xduxYNGzbEJ598Ut1d0ShMAhER0b/OgQMHMG/evHLrxcXFiUOvdXR0YGNjAwBwcXGBoaEhvv32WwwbNgwmJiYwMjJCQUEB8vPzFX67I5PJIJFIxKHaRkZGZb4O/tmzZ2jatCkAiHVfflWsTCZTKH9VWzKZTGloeHV4kzgDwLVr1zB16lR4eXlhypQpCnVVPWcjIyOl+AGlcZbXezHOJiYmCm29WG5kZIS0tLTXtlWd3jTOr8M4Vw9V4kllU+d9Jv+N/8vXoqCgALm5uQptqfLcr4lkMhnGjx+P+vXrIzQ0VFyTiXFWrw8//BAAYG9vDxsbGwwcOBCHDx9GmzZtAKjvc4A6n9U1RWpqKjZv3oywsDDx3HNycsS/nz9/zvu5kjAJRERE/zre3t7w9vZ+qzasrKxQXFyM1NRUmJiYiHO7k5KSxA91QOnc72bNmkFPTw9A6RzwmzdvKrQlCAKSkpLEBQfNzMygra2Nu3fvolOnTgptyduQ//348WOlHxDLmvtfHd4kzvfu3cP48eNhb2+Pb775Rqlc1XMuax2ZrKwsPHr0SCF+Ze179+5daGtrw9TUVKyXmJgIQRAU1gNISkqChYVFhc6vMqjjfn4Z41w9VIknlU2d95mBgQGaNm2qdC2SkpIgCILSvV3ec7+mycvLg7+/P7KyshAZGakwDYZxrjxSqRTa2tpISUlBt27d1Po5QJ3P6priwYMHKCwsxIQJE5TKRo0ahXbt2onT73g/qxfXBCIionfS+fPnIZFI0KJFCwCAg4MDDA0NsX//frFOYWEhDh06BA8PD3Gbh4cH/vzzTyQnJ4vbEhMTkZmZic6dOwMoHXXk4uKCgwcPKhxTPpJDfkx3d3doaWnh0KFDYp1nz57ht99+UzhmTfHPP//Az88PTZs2xXfffQdtbW2lOqqes4eHB06dOiX+Ng8oHTGjpaUlJttMTU3x/vvv48CBAwrHiIuLg6urqzh1ysPDA8+ePUNiYqJYJykpCdevX6+RcVYF41w9VIknlU3d95mHhweOHj2q8BbIuLg4GBkZwd7eHoDqz/2apKioCNOnT8fdu3exceNGNGnSRKGcca48ly5dQmFhIVq0aKH2zwHqfFbXFG3btsWPP/6o8CcoKAgAsHDhQixYsID3cyXhSCAiIqrRsrKyMH78eAwYMAAtW7ZEUVERzpw5gx9//BFDhw5Fo0aNAAC6urrw9/dHaGgojI2NYWFhgYiICGRmZmLcuHFie7169UJ4eDimTp2KGTNmIDc3F8HBwejSpQtsbW3Fep999hlGjRqFr776Cn369MGZM2cQExODlStXinXee+89DB48GMHBwdDS0kKTJk0QHh6OunXrwsfHp+qCpAZ5eXkYP348nj59ii+++AK3bt0Sy3R0dGBpaQlA9XP28fHBTz/9hMmTJ8Pf3x/p6ekIDg6Gj4+Pwg81U6dOxaxZs2BmZgYXFxfExcXh8uXL2LZtm1jH3t4e7u7umDt3LubMmQNdXV2sXLkSUqkUPXv2rILoqFdqaiquXLkCoHTRzJSUFPEDsPw1w4xz9VA1npooNzcXCQkJAErv4ezsbPG+dXZ2hrGxsVrvs3HjxmHfvn2YOXMmhg0bhps3b2LTpk0ICAgQfzBU9blfkyxcuBDHjx9HYGAgsrOzcfHiRbHM0tISOjo6jLMaTJkyBdbW1pBKpdDT08Off/6JTZs2QSqVonv37gDU+zlAnc/qmsLIyAguLi5llllZWcHKygqAev9/0tT7WYlARERUg+Xn5wuBgYFCjx49BFtbW8HZ2VkYPHiwsGPHDqGoqEihbklJibBu3TrBw8NDsLa2Fry9vYXz588rtZmWliZMmTJFsLOzE5ycnISgoCAhKytLqd6RI0cELy8vwcrKSujRo4cQFRVVZv+WLl0quLq6Cra2tsKYMWOE27dvqy8AVeT+/fuChYVFmX+6du2qUFfVc759+7YwevRowdbWVnB1dRWWLl0q5OfnK9X773//K/To0UOwsrISvLy8hGPHjinVkclkQlBQkODk5CTY2dkJU6ZMEdLS0tQXgCq0c+fOV8b6RYxz9VA1nprmdc+I06dPi/XUeZ/98ccfgre3t2BtbS14eHgI4eHhQklJiUIdVZ/7NUXXrl1fGef79++L9RjntxMeHi4MHDhQsLe3F+zs7IR+/foJq1atUvosoM7PAep8VtdUp0+fFiwsLITLly8rbOf9rF4SQRCE6k5EERERERERERFR5eKaQEREREREREREGoBJICIiIiIiIiIiDcAkEBERERERERGRBmASiIiIiIiIiIhIAzAJRERERERERESkAZgEIiIiIiIiIiLSAEwCERERERERERFpACaBiIiIiIgq4MSJExg4cCBsbGwglUohk8kAANHR0ejduzesrKzg5OQEAPD19YWvr2+FjyGVShEaGqrWfv/bBAYGolu3btXdDSIijcIkEBERERHVOCkpKZg/fz48PT1hY2MDBwcH+Pj4YOvWrcjLy6u04z59+hTTp0+Hnp4e5s+fj+DgYOjr6+POnTsICgqCmZkZFi1ahK+//rrS+qAu+/btww8//FBuvWvXrkEqlWLlypWvrJOcnAypVIolS5aosYdERKRutau7A0REREREFREfH4/PP/8cOjo6GDhwICwsLFBYWIg//vgDy5Ytw+3bt7Fo0aJKOfaVK1fw/PlzfP755+jYsaO4/ezZsygpKcEXX3yBli1bits3bdr0Rse5fPkyatWq9db9fZ2YmBjcunULY8aMeW09KysrtGrVCrGxsQgICHhlWwAwYMAAdXeTiIjUiEkgIiIiIqox7t+/j4CAADRr1gxbt25F48aNxbIRI0bg3r17iI+Pr7TjZ2RkAADq1q2rsP3JkydlbtfR0Xmj4+jq6r7RfpWlf//+WL16NS5evAg7Ozul8piYGLRq1QpWVlZV3zkiIlIZp4MRERERUY2xceNG5OTkYPHixQoJILmWLVti9OjR4tdFRUUICwtD9+7dYW1tjW7dumHFihUoKChQ2jchIQHDhw+HnZ0d7O3tMWHCBNy6dUss9/X1xZw5cwAAgwcPhlQqFde1ka/f4+rqqrCeT1lrAuXn5yM0NBS9evWCjY0N3N3dMWXKFKSkpIh1yloTKD09HUFBQejYsSOsra3Rr18/7NixQ6HOmTNnIJVKERcXh7Vr18LDwwM2NjYYPXo07t27p3Au8fHxSE1NhVQqhVQqfe36PP379wfwvxE/L7p69SqSkpLEOkeOHMGECRPg7u4Oa2trdO/eHWFhYSguLn5l+y/2/cyZMwrbHzx4AKlUil27dilsv3PnDqZNmwZnZ2fY2Nhg0KBBOHr06GuPQUSk6TgSiIiIiIhqjOPHj8PU1BQODg4q1Z83bx52796NXr16YezYsbh8+TLCw8Nx584dhIWFifWio6MRGBgId3d3zJo1C7m5uYiIiMDw4cOxe/dutGjRAhMnToS5uTkiIyMxbdo0tGjRAmZmZujevTuio6Nx+PBhfPXVVzAwMIBUKi2zP8XFxfD390diYiL69euHUaNG4fnz5zh58iRu3rwJMzOzMvd7/PgxhgwZAolEghEjRsDY2BgnTpzAF198gezsbKUpXRs2bIBEIoGfnx+ys7OxceNGzJo1C1FRUQCAiRMnIisrC2lpaQgKCgIA1KlT55VxNDU1hb29Pfbv34+goCCFqWryxJA8CbR7924YGBhg7NixMDAwwOnTp/Hdd98hOztbTKK9rVu3bmHYsGFo0qQJxo8fDwMDA+zfvx+TJ09GaGgoevTooZbjEBG9a5gEIiIiIqIaITs7G+np6fD09FSp/p9//ondu3fD29sb33zzDQCICZTNmzfj9OnT6NChA54/f47FixfD29tbYS2hjz/+GL1790Z4eDgWLVoENzc3pKenIzIyUhxhI3fjxg0cPnwYvXr1grGx8Sv7FB0djcTERAQFBSkkbiZMmABBEF6538qVK1FcXIx9+/ahQYMGAIBhw4ZhxowZWLNmDXx8fKCnpyfWz8/PR3R0tDgdzcjICIsXL8bNmzdhYWEBNzc3/Pjjj5DJZBg4cKBK8ezfvz++/vprJCYmwt3dHQBQUlKCuLg42Nvbw9TUFAAQEhKi0Jdhw4Zh/vz5iIiIQEBAwBtPkXvR4sWL0bRpU+zcuVNsb/jw4Rg2bBiWL1/OJBAR0StwOhgRERER1QjZ2dkAXj9i5UUJCQkAgLFjxyps9/PzUyg/deoUZDIZ+vXrh4yMDPGPlpYW2rVrpzQ96W0cOnQIDRo0wMiRI5XKJBJJmfsIgoBDhw6hW7duEARBoY/u7u7IysrCtWvXFPYZNGiQQrJF/sr6+/fvv3Hf+/btC21tbYUpYWfPnkV6ero4CgiAQgIoOzsbGRkZcHJyQm5uLu7evfvGx5fLzMzE6dOn0adPH7H9jIwMPH36FO7u7khOTkZ6evpbH4eI6F3EkUBEREREVCMYGhoCAJ4/f65S/dTUVGhpaSlNsTIxMYGRkRFSU1MBlL7eHIDCWkJlHVcdUlJSYG5ujtq1Vf8YnpGRAZlMhsjISERGRr6yzouaNWum8LWRkREAQCaTVbDH/9OgQQO4u7vj8OHDWLhwIXR1dRETE4PatWujT58+Yr1bt25h1apVOH36tJi4k8vKynrj48ulpKRAEASsXr0aq1evLrPOkydP0KRJk7c+FhHRu4ZJICIiIiKqEQwNDdG4cWOFxZpV8aoRNnLyaVjBwcEwMTFRKq/sV7WXp6SkBEDp69c//vjjMuu8vAaRllbZA/5fN+VMFQMGDMDx48dx/PhxdOvWDYcOHYKbm5s4BU4mk2HkyJEwNDTEtGnTYGZmBl1dXVy7dg3Lly8Xz6Usr7pOL+8j/9rPzw+dOnUqc59Xra1ERKTpmAQiIiIiohqja9euiIyMxIULF2Bvb//aus2bN0dJSQnu3buH1q1bi9sfP34MmUyG5s2bA4C4lk3Dhg3RsWPHyus8SpMTly5dQmFhIbS1tVXax9jYGHXq1EFJSYla+1decqws3bp1Q506dcQRQM+ePVOYCnb27FlkZmZizZo1aN++vbj9wYMH5bYtH6308mgh+YgtOfn10tbWrvTrRUT0ruGaQERERERUY3z66acwMDDAvHnz8PjxY6XylJQUbN26FQDQuXNnABC/ltuyZYtCeadOnWBoaIjw8HAUFhYqtfnyVKu30bNnTzx9+hQ///yzUtmrRunUqlULvXr1wsGDB3Hz5k219U9fX7/C07P09PTQo0cPJCQkICIiAgYGBgoLdctHIL14LgUFBdi+fXu5bTdv3hy1atXC77//rrA9IiJC4euGDRvC2dkZkZGR+Oeff5TaUef1IiJ613AkEBERERHVGGZmZli+fDkCAgLQt29fDBw4EBYWFigoKMCFCxdw4MABDBo0CADw4Ycf4uOPP0ZkZCRkMhnat2+PK1euYPfu3ejevTs6dOgAoHSa2VdffYXZs2dj0KBB6Nu3L4yNjfHw4UMkJCTAwcEB8+fPV0v/P/roI0RHR2PJkiW4fPkyHB0dkZubi8TERAwbNgzdu3cvc7+ZM2fizJkzGDJkCLy9vdGmTRs8e/YM165dQ2JiIs6ePVvhvlhZWSEuLg5LliyBjY0NDAwM0K1bt3L3GzBgAKKjo/Hbb7+hf//+MDAwEMvs7e1Rr149BAYGwtfXFxKJBHv27FFpGlrdunXRu3dvbNu2DRKJBKampoiPj8eTJ0+U6i5YsADDhw9H//79MWTIEJiamuLx48e4ePEi0tLSsHfv3ooFg4hIQzAJREREREQ1iqenJ/bu3YtNmzbh6NGjiIiIgI6ODqRSKQIDAzFkyBCx7jfffIMWLVpg9+7dOHLkCBo1agR/f39MmTJFoc3+/fujcePGWL9+PTZt2oSCggI0adIETk5OYlJJHWrVqoUNGzZg7dq1iImJwaFDh1C/fn04ODgorevzokaNGiEqKgphYWE4fPgwIiIiUL9+fbRp0wazZs16o74MHz4cN27cwK5du/DDDz+gefPmKiWBOnToABMTEzx69EhhKhhQunj0unXr8O2332LVqlUwMjLCgAED4OrqinHjxpXb9rx581BUVIRffvkFOjo66N27N2bPng0vLy+Fem3atMHOnTuxZs0a7N69G5mZmTA2NoalpSUmT55csUAQEWkQifC2q8MREREREREREdG/HtcEIiIiIiIiIiLSAEwCERERERERERFpACaBiIiIiIiIiIg0AJNAREREREREREQagEkgIiIiIiIiIiINwCQQEREREREREZEGYBKIiIiIiIiIiEgDMAlERERERERERKQBmAQiIiIiIiIiItIATAIREREREREREWkAJoGIiIiIiIiIiDQAk0BERERERERERBqASSAiIiIiIiIiIg3w/9fvZCOvyJhpAAAAAElFTkSuQmCC\n"},"metadata":{}},{"output_type":"stream","name":"stdout","text":["Top 3 features with positive impact from LASSO Regression: 14 category_Machine Learning and AI\n","1 experience_level\n","12 category_Data Science and Research\n","Name: Feature, dtype: object\n","RMSE with Top 3 Features: 51675.35321658346\n","R² Score with Top 3 Features: 0.22869902409319398\n"]}]},{"cell_type":"markdown","source":["# RANDOM FOREST REGRESSION"],"metadata":{"id":"ENOBf9U7Sekj"}},{"cell_type":"markdown","source":["## 1st Iteration:\n","Steps:\n","\n","Prepare Data: Split the data into training and testing sets.\n","\n","Train Model: Use a Random Forest regression model.\n","\n","Evaluate Model: Assess its performance using evaluation metrics"],"metadata":{"id":"cQvKKkOJSp_O"}},{"cell_type":"code","source":["from sklearn.ensemble import RandomForestRegressor\n","from sklearn.metrics import mean_squared_error, r2_score\n","\n","# Split data into features and target\n","X = usd_salary_df.drop('salary', axis=1)\n","y = usd_salary_df['salary']\n","\n","# Split data into training and testing sets\n","X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)\n","\n","# Initialize and train the Random Forest regression model\n","random_forest_model = RandomForestRegressor(n_estimators=1000, random_state=42)\n","random_forest_model.fit(X_train, y_train)\n","\n","# Predict on the test set\n","y_pred = random_forest_model.predict(X_test)\n","\n","# Evaluate the model\n","rmse = np.sqrt(mean_squared_error(y_test, y_pred))\n","r2 = r2_score(y_test, y_pred)\n","\n","print(\"RMSE:\", rmse)\n","print(\"R^2 Score:\", r2)"],"metadata":{"colab":{"base_uri":"https://localhost:8080/"},"id":"gIXGyeocTAfi","executionInfo":{"status":"ok","timestamp":1714691883896,"user_tz":300,"elapsed":7753,"user":{"displayName":"Jenny O","userId":"07622373657144372939"}},"outputId":"1ef526ac-7b28-4dab-8866-f0bf49d0b482"},"execution_count":null,"outputs":[{"output_type":"stream","name":"stdout","text":["RMSE: 50654.62167388542\n","R^2 Score: 0.2588687508126324\n"]}]},{"cell_type":"markdown","source":["## 2nd Iteration: Handling Outliers in Salary\n","Steps:\n","\n","Modify Data: Replace outliers in the salary column.\n","\n","Train and Evaluate Model: Using the same steps as the first iteration."],"metadata":{"id":"qFbP5APOUhzI"}},{"cell_type":"code","source":["# Replace outliers in the salary column\n","usd_salary_df['salary'] = usd_salary_df['salary'].apply(lambda x: min(x, 310000))\n","\n","# Re-split the data (this step is necessary as the target has changed)\n","X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)\n","\n","# Re-train the Random Forest model\n","random_forest_model.fit(X_train, y_train)\n","\n","# Re-predict and re-evaluate\n","y_pred = random_forest_model.predict(X_test)\n","rmse = np.sqrt(mean_squared_error(y_test, y_pred))\n","r2 = r2_score(y_test, y_pred)\n","\n","print(\"RMSE with Outlier Adjustment:\", rmse)\n","print(\"R^2 Score with Outlier Adjustment:\", r2)\n"],"metadata":{"colab":{"base_uri":"https://localhost:8080/"},"id":"ULOlZWtwVAfi","executionInfo":{"status":"ok","timestamp":1714691890697,"user_tz":300,"elapsed":6821,"user":{"displayName":"Jenny O","userId":"07622373657144372939"}},"outputId":"31fcbc73-4ff7-47c5-fc49-d0b1f7749caa"},"execution_count":null,"outputs":[{"output_type":"stream","name":"stdout","text":["RMSE with Outlier Adjustment: 50654.62167388542\n","R^2 Score with Outlier Adjustment: 0.2588687508126324\n"]}]},{"cell_type":"markdown","source":["## 3rd Iteration: Feature Importance and Model Simplification\n","Steps:\n","\n","Identify Feature Importance: Using model feature importances.\n","\n","Select Top 3 Features: Based on the highest importances.\n","\n","Rebuild and Train Model: Using only top features.\n","\n","Evaluate Model Performance."],"metadata":{"id":"ZOULVBWeVbom"}},{"cell_type":"code","source":["# Display feature importance from the Random Forest model\n","feature_importances = pd.Series(random_forest_model.feature_importances_, index=X_train.columns).sort_values(ascending=False)\n","\n","# Plot the feature importances\n","plt.figure(figsize=(10, 6))\n","feature_importances.plot(kind='bar')\n","plt.title('Feature Importance in Random Forest Regression')\n","plt.ylabel('Importance Score')\n","plt.xlabel('Features')\n","plt.show()\n","\n","# Select the top 3 features\n","top_3_features = feature_importances.nlargest(3).index\n","print(\"Top 3 features:\", top_3_features)\n","\n","# Train a new model with the top 3 features\n","X_train_top3 = X_train[top_3_features]\n","X_test_top3 = X_test[top_3_features]\n","\n","random_forest_top3 = RandomForestRegressor(n_estimators=100, random_state=42)\n","random_forest_top3.fit(X_train_top3, y_train)\n","\n","y_pred_top3 = random_forest_top3.predict(X_test_top3)\n","rmse_top3 = np.sqrt(mean_squared_error(y_test, y_pred_top3))\n","r2_top3 = r2_score(y_test, y_pred_top3)\n","\n","print(\"RMSE with Top 3 Features:\", rmse_top3)\n","print(\"R^2 Score with Top 3 Features:\", r2_top3)\n"],"metadata":{"colab":{"base_uri":"https://localhost:8080/","height":957},"id":"oQrPwrR8VtGe","executionInfo":{"status":"ok","timestamp":1714691891978,"user_tz":300,"elapsed":1300,"user":{"displayName":"Jenny O","userId":"07622373657144372939"}},"outputId":"973ab5e1-69c8-44ba-9e78-a8c31b376444"},"execution_count":null,"outputs":[{"output_type":"display_data","data":{"text/plain":["
"],"image/png":"iVBORw0KGgoAAAANSUhEUgAAA2EAAANeCAYAAACbIAZHAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOzdeVhUdf//8degYLiAUqblkoqCguFOoSbmkpGZ+77gllTkmt4ueZua5ZKmBeaSmua+m6ZZmnea2mJqamml4r6QuQAqKsL5/eGP+ToCCiPM1vNxXV3JOWfOvN8zZ5bXnHM+x2QYhiEAAAAAgE242bsAAAAAAPg3IYQBAAAAgA0RwgAAAADAhghhAAAAAGBDhDAAAAAAsCFCGAAAAADYECEMAAAAAGyIEAYAAAAANkQIAwAAAAAbIoQBAJyWv7+/oqKi7F1GjqtXr56GDBli7zLwLxMVFSV/f397lwG4JEIYgAytWrVK/v7+6f43ceLEHLnPPXv2KCoqSvHx8Tmy/oeR+ngcOHDA3qVYbeHChVq1apW9y3BYQ4YMsdjOK1asqEaNGumjjz7SzZs37V2ew7j3cbr7v23bttm7vDRiY2MVFRWlQ4cOZWr5e9/7AgIC9Nxzz2nIkCGKjY3N4WoB/BvktncBABxfnz59VLx4cYtpfn5+OXJfe/fuVXR0tJo3by4vL68cuY9/s8WLF6tQoUJq0aKFvUvJFvv371euXLmydZ0eHh4aM2aMJOnq1av69ttv9cknn+jkyZOaNGlStt6XM7v7cbpb+fLl7VDN/f3999+Kjo5WsWLFVKFChUzfLvW979atW/r111+1evVq7d69W19++aXy5MmTgxU7htdff129evWydxmASyKEAXigOnXq6Omnn7Z3GQ/l+vXryps3r73LsJvExER5enrau4xslxNfhHPnzq2mTZua/+7QoYPatWun9evXa+jQoXrsscey/T6d0b2PU3ZylO317ve+1q1bq1ChQvr000/17bff6qWXXrJZHYZh6ObNm3rkkUdsdp/Snec4d26+KgI5gcMRATy0rVu3qkOHDqpcubKqVKmiXr166fDhwxbL/PHHHxoyZIjq16+vp59+WrVq1dLQoUN1+fJl8zJRUVGaMGGCJKl+/frmQ4FOnz6t06dPy9/fP91D6e49Lyj1PIYjR47orbfeUo0aNdShQwfz/C+++EItWrRQUFCQgoOD1b9/f507d86q3ocMGaIqVaro7NmzioiIUJUqVfTcc89p4cKFkqQ///xTXbp0UeXKlfX8889r3bp1FrdPPexp165dGjFihJ555hlVrVpV//nPfxQXF5fm/hYuXKjGjRurYsWKql27tkaNGpXm0M3OnTvr5Zdf1m+//aaOHTuqUqVK+vDDD1WvXj0dPnxYP//8s/mx7dy5syTpypUrGj9+vJo0aaIqVaqoatWq6tmzp/744w+Ldf/000/y9/fXhg0bNG3aNPOX1PDwcJ04cSJNvfv27dOrr76qGjVqqHLlymrSpInmzZtnsczRo0fVp08fBQcH6+mnn1aLFi307bffZurxz+i5P3HihIYMGaLq1aurWrVqGjp0qBITEzO1znuZTCZVrVpVhmHo1KlT5ulnzpzRyJEj1ahRIwUFBemZZ55Rnz59dPr0aYvbpz7Hu3fv1tixY/Xss8+qcuXKioyM1KVLlyyWNQxDn3zyierUqaNKlSqpc+fOaV5LqU6dOmV+3CpVqqQ2bdrou+++s1jm7ucrOjpazz33nKpUqaI+ffooISFBt27d0nvvvaeQkBBVqVJFQ4cO1a1bt6x6nNLzMNurJN26dUsff/yxGjZsqIoVKyo0NFQTJkxIU+OOHTvUvn17Va9eXVWqVFGjRo3M6/jpp5/UqlUrSdLQoUPN2741h+VWr15dkiy2Aynz2/Aff/yhTp06KSgoSHXq1NEnn3yilStXmt/nUtWrV08RERH6/vvvze9VS5YskSTFx8frvffeU2hoqCpWrKiGDRtq5syZSklJsbiv9evXq0WLFubX872vvaSkJEVHR+uFF17Q008/rWeeeUbt27fXjh07zMukd07Y7du3NXXqVDVo0EAVK1ZUvXr19OGHH6Z5TlJ7+OWXX9SqVSs9/fTTql+/vtasWZOFRxxwXfy8AeCBrl69mubLoo+PjyRpzZo1GjJkiGrXrq2BAwcqMTFRixcvVocOHbR69WrzYYw7d+7UqVOn1KJFCxUuXFiHDx/WsmXLdOTIES1btkwmk0kNGzbU8ePH9eWXX2ro0KEqVKiQ+b7uvf/M6Nu3r5566in1799fhmFIkqZNm6aPPvpIYWFhatWqlS5duqQFCxaoY8eOWrNmjVWHQCYnJ+vVV19V9erVNXDgQK1bt06jR4+Wp6enJk+erCZNmuiFF17QkiVLNHjwYFWuXFklSpSwWMfo0aPl5eWlN998U8eOHdPixYt19uxZzZ8/XyaTSdKdL0TR0dGqWbOm2rdvb17uwIEDWrx4sdzd3c3ru3Llil599VU1btxYr7zyih599FE988wzevfdd5U3b1699tprkmTeq3Pq1Clt3rxZL774oooXL65//vlHS5cuVadOnbR+/XoVKVLEot5PP/1UJpNJ3bt319WrVzVr1iwNHDhQy5cvNy+zY8cORURE6PHHH1eXLl302GOP6ejRo/ruu+8UHh4uSTp8+LDat2+vIkWK6NVXX1XevHn11VdfKTIyUlFRUWrYsGGWnw9J6tevn4oXL64BAwbo4MGDWr58uXx8fDRo0CCr1nfmzBlJstg+Dhw4oL1796px48YqWrSozpw5o8WLF6tLly5av359mj05Y8aMMT/HZ86c0bx58zR69GhNmTLFvMxHH32kadOmKTQ0VKGhofr999/VvXt3JSUlWazrn3/+Ubt27ZSYmKjOnTurUKFCWr16tV5//XVzaLnbzJkz9cgjj6hXr146ceKEFixYoNy5c8tkMik+Pl5vvvmm9u3bp1WrVqlYsWJ68803M/W43Pu6dHd3V4ECBSQ9/PaakpKi119/Xbt371abNm3k6+urv/76S/PmzdPx48f1ySefSLqzDUVERMjf3199+vSRh4eHTpw4oT179kiSfH191adPH3388cdq27atqlWrJkmqWrVqpnq8W3rbQWa34djYWPN236tXL+XNm1fLly+Xh4dHuvd17NgxvfXWW2rbtq3atGmj0qVLKzExUZ06dVJsbKzatWunJ554Qnv37tWHH36oCxcu6O2335Z057U3YMAAhYSEaODAgZKkmJgY7dmzx1xDdHS0ZsyYodatWysoKEhXr17Vb7/9pt9//121atXK8DEYPny4Vq9erUaNGqlbt27av3+/ZsyYoaNHj2rq1KkWy544cUJ9+/ZVq1at1Lx5c61cuVJDhgxRYGCgypUrl+XHH3ApBgBkYOXKlYafn1+6/xmGYVy9etWoXr26MXz4cIvbXbhwwahWrZrF9MTExDTr//LLLw0/Pz9j165d5mmzZs0y/Pz8jFOnTlkse+rUKcPPz89YuXJlmvX4+fkZH3/8sfnvjz/+2PDz8zMGDBhgsdzp06eNChUqGNOmTbOY/ueffxoBAQFppmf0eOzfv988bfDgwYafn58xffp087S4uDgjKCjI8Pf3N9avX2+efvTo0TS1pq6zefPmxq1bt8zTP/30U8PPz8/YvHmzYRiGcfHiRSMwMNDo3r27kZycbF5uwYIFhp+fn7FixQrztE6dOhl+fn7G4sWL0/TQuHFjo1OnTmmm37x502K9hnHnMa9YsaIRHR1tnvbjjz8afn5+RlhYmHHz5k3z9Hnz5hl+fn7Gn3/+aRiGYdy+fduoV6+e8fzzzxtxcXEW601JSTH/Ozw83Hj55Zct1pWSkmK0bdvWeOGFF9LUea+MnvuhQ4daLBcZGWkEBwc/cH2DBw82KleubFy8eNG4ePGiceLECWP27NmGv7+/8fLLL1vUnt42vXfvXsPPz89YvXq1eVrqc9y1a1eL27///vtGhQoVjPj4eMMw/u857tWrl8VyH374oeHn52cMHjzYPO29995L89q5evWq+TFPfS5Tn6+XX37ZYvsaMGCA4e/vb/Ts2dOi/rZt2xrPP/98ph6n9N4XUret7Nhe16xZY5QvX96iR8MwjMWLFxt+fn7G7t27DcMwjM8++8zw8/MzLl68mGG9+/fvz/D9Iz2pz9nOnTuNixcvGufOnTM2btxoPPvss0bFihWNc+fOmZfN7Db87rvvGv7+/sbBgwfN0y5fvmwEBwenec97/vnnDT8/P2Pbtm0WdU2dOtWoXLmycezYMYvpEydONCpUqGCcPXvWMAzDGDNmjFG1alXj9u3bGfb4yiuvGL169brv45D6ekp16NAhw8/Pz3j77bctlhs3bpzh5+dn/PDDD2l6uPv5u3jxolGxYkVj3Lhx971f4N+AwxEBPNCIESP02WefWfwn3dm7FR8fr8aNG+vSpUvm/9zc3FSpUiX99NNP5nXcfS7DzZs3denSJVWqVEmS9Pvvv+dI3e3atbP4e9OmTUpJSVFYWJhFvY899pieeuopi3qzqnXr1uZ/e3l5qXTp0vL09FRYWJh5epkyZeTl5ZXmUCZJatu2rcWegfbt2yt37tzaunWrpDuPdVJSkrp06SI3t/97627durXy589vXi6Vh4dHlgbf8PDwMK83OTlZly9fVt68eVW6dGkdPHgwzfItWrSw+AX/3sO0Dh48qNOnT6tLly5p9i6m7tm7cuWKfvzxR4WFhZn3tl66dEmXL19W7dq1dfz4catHorv3ua9evbquXLmiq1evPvC2169fV0hIiEJCQtSwYUONHz9eVatW1SeffGKuXbLcppOSknT58mWVLFlSXl5e6T5mbdq0sbh99erVlZycbN67kvocd+rUyWK51D0Xd9u6dauCgoLMj7sk5cuXT23bttWZM2d05MgRi+WbNm1qsX0FBQXJMAy1bNnSYrmgoCCdO3dOt2/ffuDjlCdPnjTvC4MHD7bo5WG2140bN8rX11dlypSxeL0+++yzkmR+vaZuX99++22aQ/IeVteuXRUSEqLQ0FD16dNHnp6emjZtmooWLSopa9vw999/r8qVK1sMDFKwYEE1adIk3fsuXry4nnvuuTSPSbVq1eTl5WXxmNSsWVPJycnatWuX+TFJTEy0OLTwXl5eXjp8+LCOHz+e6ccj9Xnr1q2bxfTu3btbzE9VtmxZi23Ux8dHpUuXTvc9EPi34XBEAA8UFBSU7sAcqR/e6X1JlKT8+fOb/33lyhVFR0drw4YNunjxosVyCQkJ2VfsXe4d0fH48eMyDEMvvPBCustbewJ6njx5zIdnpipQoICKFi1q8WU6dXp6w+8/9dRTFn/ny5dPhQsXNn9BP3v2rKQ7Qe5uHh4eKlGihHm5VEWKFMnwMKf0pKSk6PPPP9eiRYt0+vRpJScnm+cVLFgwzfJPPvmkxd+pX4RTe0v9knW/UTRPnjwpwzD00Ucf6aOPPkp3mYsXL6Y5FDIzMqovLi7OYrtMT548eTR9+nRJ0vnz5zVr1ixdvHgxzSAgN27c0IwZM7Rq1SrFxsaaD3mV0t+mH/SYpT7HpUqVsljOx8dH3t7eFtPOnj1r/hHjbqnbx9mzZy0e+3vvO/WQwSeeeCLN9JSUFCUkJJgPB85Irly5VLNmzXTnZcf2euLECR09elQhISHp3kfq+8hLL72k5cuXa/jw4Zo0aZI5PL/44osWAdAaI0aMUOnSpZWQkKCVK1dq165dFnVmZRs+c+aMKleunGZ+yZIl073dve9f0p3H5M8//8zwMUk9PLRDhw766quv9Oqrr6pIkSKqVauWwsLCVKdOHfOyffr00RtvvKFGjRrJz89PtWvXVtOmTe87uuWZM2fk5uaWpubChQvLy8srzfN67/YlSd7e3ume7wr82xDCAFgt9UvnhAkTVLhw4TTz7x46vF+/ftq7d6969OihChUqKG/evEpJSVHPnj0tvrxm5N4wk+rusHCve780p6SkyGQy6dNPP013WHNrR0/MaIj0jKZnpt+HldVR1KZPn66PPvpILVu2VN++feXt7S03Nze9//776dab0ZfbrPSWuteie/fuaX7xT5XRF9QHeZj67g0XtWvXVlhYmEaMGGEOZ5L07rvvatWqVQoPD1flypVVoEABmUwmi3MQs6umh5XRfduzprult72mpKTIz89PQ4cOTfc2qXujHnnkES1cuFA//fSTvvvuO33//ffasGGDli5dqjlz5jzUJQzu/gGqQYMG6tChg9566y1t3LhR+fLly9FtOKPHpFatWurZs2e6t0kN8I8++qjWrFmj7du3a9u2bdq2bZtWrVqlZs2aafz48ZKkGjVqaNOmTfr222+1Y8cOrVixQvPmzdOoUaMs9uynJ6P343tl9+UjAFdCCANgtdTBJR599NEMfxGX7ux9+OGHH9S7d2+LE/7TOwwmow/31D0B9+5FSv3FPTNKliwpwzBUvHhxlS5dOtO3s4UTJ06YD7OSpGvXrunChQvmX65T92TExMRYDOpx69YtnT59+r6P/90yeny//vprPfPMM3r//fctpsfHxz9wj0h6Umv866+/MqwtdRl3d/dM128Pjz/+uLp27aro6Gj9+uuv5r0ZX3/9tZo1a6YhQ4aYl71586bVe3ZTn+Pjx49bPMeXLl1Ks+fgySef1LFjx9KsIyYmxmJd9pId22vJkiX1xx9/KCQk5IFf+t3c3MyHkA4dOlTTp0/X5MmT9dNPP6lmzZqZDg33kytXLg0YMEBdunTRwoUL1atXryxtw8WKFUt3BNGTJ09muoaSJUvq+vXrmXr8PDw8VK9ePdWrV08pKSkaOXKkli5dqjfeeMO8571gwYJq2bKlWrZsqWvXrqlTp06KiorKMIQVK1ZMKSkpOnHihHx9fc3T//nnH8XHx6tYsWKZ7gX4t+OcMABWe+6555Q/f37NmDEjzeht0v8dGpPRr6H3DlUuyTyi3L1fZPPnz69ChQrpl19+sZi+aNGiTNf7wgsvKFeuXIqOjk7zS79hGBbD5dva0qVLLR7DxYsX6/bt2+YQVrNmTbm7u2v+/PkWta9YsUIJCQkKDQ3N1P14enqmezhkrly50jwmX331ldXnZAUGBqp48eL6/PPP09xf6v08+uijCg4O1tKlS/X333+nWYc1I2LmlE6dOsnT01MzZ840T0tvu54/f/59987eT+pzvGDBAovnIr3XSWhoqPbv36+9e/eap12/fl3Lli1TsWLFVLZsWatqyC7Zsb2GhYUpNjZWy5YtSzPvxo0bun79uqQ7hzrfK/W8q9Rh01PfV9Lb9rPimWeeUVBQkObNm6ebN29maRuuXbu2fv31Vx06dMg87cqVK2kuW3E/YWFh2rt3r77//vs08+Lj483n8t37Xubm5mYeaj71Mbl3mXz58qlkyZL3vURB6vN27zaZep5wZt+HALAnDMBDyJ8/v0aOHKn//Oc/atGihV566SX5+Pjo7Nmz2rp1q6pWraoRI0Yof/78qlGjhmbNmqWkpCQVKVJEO3bsSHM9JenOl3dJmjx5sl566SW5u7vr+eefV968edW6dWvNnDlTb7/9tipWrKhffvkl3b0BGSlZsqT69eunSZMm6cyZM2rQoIHy5cun06dPa/PmzWrTpo169OiRbY9PViQlJalr164KCwvTsWPHtGjRIlWrVk3169eXdOe8oIiICEVHR6tnz56qV6+eebmnn35ar7zySqbuJzAwUIsXL9Ynn3yip556Sj4+PgoJCVHdunU1depUDR06VFWqVNFff/2ldevWpRlKP7Pc3Nw0cuRIvf7662rWrJn50gQxMTE6cuSIZs+eLUl655131KFDBzVp0kRt2rRRiRIl9M8//+jXX3/V+fPntXbtWqvuP7sVKlRILVq00KJFi3T06FH5+vqqbt26+uKLL5Q/f36VLVtWv/76q3bu3JnuOXSZ4ePjo+7du2vGjBmKiIhQaGioDh48qG3btqXZG9mrVy+tX79er776qjp37ixvb2+tWbNGp0+fVlRU1EOfC/WwsmN7bdq0qb766iu98847+umnn1S1alUlJycrJiZGGzdu1KxZs/T0009r6tSp+uWXXxQaGqpixYrp4sWLWrRokYoWLWoejj51wJQlS5YoX758yps3r4KCgqzavnv06KG+fftq1apVat++faa34Z49e2rt2rXq1q2bOnXqZB6i/oknntCVK1cytbeuR48e2rJli1577TU1b95cgYGBSkxM1F9//aWvv/5a3377rXx8fDR8+HDFxcXp2WefVZEiRXT27FktWLBAFSpUMO/Baty4sYKDgxUYGKiCBQvqwIED+vrrr9WpU6cM7798+fJq3ry5li5dqvj4eNWoUUMHDhzQ6tWr1aBBA4u9+QDujxAG4KE0adJEjz/+uGbOnKnZs2fr1q1bKlKkiKpXr24x2tmkSZP07rvvatGiRTIMQ7Vq1dKnn36a5jyKoKAg9e3bV0uWLNH333+vlJQUffvtt8qbN6/54rZff/21vvrqK9WpU0ezZs3K8CT19PTq1UulSpXS3Llzzde0KVq0qGrVqqV69eplz4NihREjRmjdunX6+OOPlZSUpMaNG2v48OEWX8x69+4tHx8fLViwQGPHjpW3t7fatGmjAQMGWIx8dz+RkZE6e/asZs2apWvXrik4OFghISF67bXXlJiYqHXr1mnDhg0KCAjQjBkzNGnSJKt7eu655zRv3jxNnTpVc+bMkWEYKlGihNq0aWNepmzZslq5cqWio6O1evVqXblyRT4+PgoICFBkZKTV950TunXrpiVLlujTTz/VuHHj9Pbbb8vNzU3r1q3TzZs3VbVqVX322WcZnq+TGf369ZOHh4eWLFmin376SUFBQZozZ44iIiIslnvssce0ZMkSffDBB1qwYIFu3rwpf39/TZ8+XXXr1n3ITrPHw26vbm5umjp1qubOnasvvvhCmzZtkqenp4oXL67OnTubDymuV6+ezpw5o5UrV+ry5csqVKiQgoOD1bt3b/MAJO7u7ho3bpw+/PBDjRw5Urdv39bYsWOtCmEvvPCCSpYsqTlz5qhNmzaZ3oafeOIJff755xozZoxmzJghHx8fdezYUZ6enhozZkyac1jT4+npqfnz52vGjBnauHGj1qxZo/z586tUqVIW/b7yyitatmyZFi1apPj4eBUuXFhhYWHq3bu3OaB37txZW7Zs0Y4dO3Tr1i09+eST6tev3wN/iBozZoyKFy+u1atXa/PmzXrssccUERGR6WvLAbjDZNj67FsAgNmqVas0dOhQrVixIt0RKAG4tvfee09Lly7V3r17GcgC+BfhnDAAAAAbuHHjhsXfly9f1tq1a1WtWjUCGPAvw+GIAAAANtC2bVsFBwfL19dX//zzj1auXKmrV6/qjTfesHdpAGyMEAYAAGADoaGh+vrrr7Vs2TKZTCYFBATovffeU40aNexdGgAb45wwAAAAALAhzgkDAAAAABvicMSHtHfvXhmGkenhoQEAAAC4pqSkJJlMJlWpUuW+y7En7CEZhqGcPqLTMAzdunUrx+/HVujHcblSLxL9ODJX6kWiH0fmSr1I9OPIXKkXiX4e5n4ycx/sCXtIqXvAcvL6PtevX9ehQ4dUtmxZ5c2bN8fux1box3G5Ui8S/TgyV+pFoh9H5kq9SPTjyFypF4l+rHXgwIFMLceeMAAAAACwIUIYAAAAANgQIQwAAAAAbIgQBgAAAAA2RAgDAAAAABsihAEAAACADRHCAAAAAMCGCGEAAAAAYEOEMAAAAACwIUIYAAAAANgQIQwAAAAAbIgQBgAAAAA2RAgDAAAAABsihAEAAACADRHCAAAAAMCGCGEAAAAAYEOEMAAAAACwIUIYAAAAANgQIQwAAAAAbIgQ5gRMJpM8PT1lMpnsXQoAAACAh5Tb3gX8W6WkGHJzy1yo8vT0VEBAQI7eBwAAAADbIITZiZubSRMX7tbp2IQcWX/xIgU0sGO1HFk3AAAAAOsRwuzodGyCjp6Js3cZAAAAAGyIc8IAAAAAwIYIYQAAAABgQ4QwAAAAALAhQhgAAAAA2BAhDAAAAABsiBAGAAAAADZECAMAAAAAGyKEAQAAAIANEcIAAAAAwIYIYQAAAABgQ4QwAAAAALAhQhgAAAAA2BAhDAAAAABsiBAGAAAAADZECAMAAAAAGyKEAQAAAIANEcIAAAAAwIYIYQAAAABgQ4QwAAAAALAhQhgAAAAA2BAhDAAAAABsiBAGAAAAADZECIPNmUwmeXp6ymQy2bsUAAAAwOYcLoQdPXpU3bp1U+XKlVWrVi1NmDBBt27deuDtBg4cqBdeeEGVK1dWjRo11LFjR23fvj3NcgkJCRo2bJiCg4NVpUoV9enTR3///XdOtPKvkZJiZGl5T09PBQQEyNPTM0fvBwAAAHBEue1dwN3i4uIUHh6uUqVKKSoqSrGxsRo3bpxu3LihESNG3Pe2SUlJ6tq1q0qVKqWbN29qxYoV6tWrlz7//HNVr17dvFy/fv105MgRjRw5Unny5NGUKVP06quvauXKlcqd26EeDqfh5mbSxIW7dTo2Icfuo3iRAhrYsVqOrR8AAACwFYdKHUuWLNG1a9cUHR2tggULSpKSk5M1atQoRUREqEiRIhne9qOPPrL4u06dOqpfv76++OILcwjbu3evtm/frtmzZ6t27dqSpNKlS+ull17SN998o5deeilnGvsXOB2boKNn4uxdBgAAAODwHOpwxG3btikkJMQcwCQpLCxMKSkp2rFjR5bWlStXLhUoUEBJSUkW6/fy8lKtWrXM08qUKaMKFSpo27ZtD10/AAAAADyIQ+0Ji4mJUcuWLS2meXl5qXDhwoqJiXng7Q3DUHJyshISErRq1SqdOHFCo0ePtlh/6dKl0wwIUaZMmUyt/373e/369UwvnzowhS0kJibKMHLuXCpb9iLlfD/WSExMtPi/M3OlXiT6cWSu1ItEP47MlXqR6MeRuVIvEv1YyzCMTA0+51AhLD4+Xl5eXmmme3t7Ky7uwYe6rVixQsOHD5ck5c2bV5MnT1aVKlUs1l+gQIF01//bb79ZXXdSUpIOHTqU6eVTB6awhWPHjuXoxmbLXqSc7+dhHD9+3N4lZBtX6kWiH0fmSr1I9OPIXKkXiX4cmSv1ItGPNTw8PB64jEOFsIdVv359lS9fXpcvX9bGjRvVr18/RUdHKzQ0NEfv193dXWXLls308rYcmr106dI5vifMlnK6H2skJibq+PHjKlWqlE33CuYEV+pFoh9H5kq9SPTjyFypF4l+HJkr9SLRj7WOHDmSqeUcKoR5eXkpISHtCHtxcXHy9vZ+4O19fHzk4+Mj6c7AHHFxcfrggw/MIczLy0vnz5+3ev0ZMZlMyps3r9W3z0mu8KK5myP34+np6bDbQVa5Ui8S/TgyV+pFoh9H5kq9SPTjyFypF4l+siqzOygcamCO9M7NSkhI0IULF1SmTJksry8wMFAnTpywWP+xY8fS7Ek5duyYVesHAAAAgKxyqBBWp04d7dy5U/Hx8eZpGzdulJubm8WIhpm1e/dulShRwmL9cXFx+uGHH8zTjh07poMHD6pOnToPVzwAAAAAZIJDHY7Yrl07zZ8/X5GRkYqIiFBsbKwmTJigdu3aWVwjLDw8XGfPntWmTZskSd99953WrFmjunXr6oknnlBcXJy+/PJLbd++XR9++KH5dlWqVFHt2rU1bNgwDR48WHny5NHkyZPl7++vF154web9AgAAAPj3cagQ5u3trXnz5undd99VZGSk8uXLp1atWql///4Wy6WkpCg5Odn8d4kSJXTr1i1NmjRJly9fVqFCheTv76/58+crODjY4rZTpkzR2LFjNWLECN2+fVu1a9fW8OHDlTu3Qz0UAAAAAFyUwyUPX19fzZ07977LzJ8/P81tPvnkk0ytv0CBAnr//ff1/vvvW1siAAAAAFjNoc4JAwAAAABXRwgDAAAAABsihAEAAACADRHCAAAAAMCGCGEAAAAAYEOEMAAAAACwIUIYAAAAANgQIQwAAAAAbIgQBgAAAAA2RAgDAAAAABsihAEAAACADRHCAAAAAMCGCGEAAAAAYEOEMAAAAACwIUIYAAAAANgQIQwAAAAAbIgQBgAAAAA2RAgDAAAAABsihAEAAACADRHCAAAAAMCGCGEAAAAAYEOEMAAAAACwIUIYAAAAANgQIQwAAAAAbIgQBgAAAAA2RAgDAAAAABsihAEAAACADRHCAAAAAMCGCGEAAAAAYEOEMAAAAACwIUIYAAAAANgQIQwAAAAAbIgQBgAAAAA2RAgDAAAAABsihAEAAACADRHCAAAAAMCGCGEAAAAAYEOEMAAAAACwIUIYAAAAANgQIQwAAAAAbIgQBgAAAAA2RAgDAAAAABsihAEAAACADRHCAAAAAMCGCGEAAAAAYEOEMAAAAACwIUIYAAAAANgQIQwAAAAAbIgQBgAAAAA2RAgDAAAAABsihAEAAACADRHCAAAAAMCGCGEAAAAAYEOEMAAAAACwIUIYAAAAANhQbnsXcK+jR49qzJgx2rt3r/Lly6emTZuqX79+8vDwyPA2f//9t+bOnasdO3bo5MmTKlCggGrUqKEBAwaoWLFi5uV++ukndenSJc3tX3rpJU2ePDlH+gEAAACAuzlUCIuLi1N4eLhKlSqlqKgoxcbGaty4cbpx44ZGjBiR4e1+//13bdq0SS1btlSlSpV0+fJlTZs2Ta1bt9aXX34pHx8fi+XHjh2rMmXKmP8uVKhQjvUEAAAAAHdzqBC2ZMkSXbt2TdHR0SpYsKAkKTk5WaNGjVJERISKFCmS7u2qVaumr776Srlz/187VatWVd26dbVmzRp1797dYvly5crp6aefzrE+AAAAACAjDnVO2LZt2xQSEmIOYJIUFhamlJQU7dixI8PbeXl5WQQwSSpatKh8fHz0999/51S5AAAAAJBlDrUnLCYmRi1btrSY5uXlpcKFCysmJiZL6zp27JguXrwoX1/fNPN69eqlK1euqHDhwmrcuLH69u2rRx55xOq6DcPQ9evXM728yWSSp6en1feXFYmJiTIMI8fWb8tepJzvxxqJiYkW/3dmrtSLRD+OzJV6kejHkblSLxL9ODJX6kWiH2sZhiGTyfTA5RwqhMXHx8vLyyvNdG9vb8XFxWV6PYZhaMyYMXr88cfVuHFj8/QCBQqoZ8+eqlGjhvLkyaMff/xRc+bMUUxMjGbMmGF13UlJSTp06FCml/f09FRAQIDV95cVx44dy9GNzZa9SDnfz8M4fvy4vUvINq7Ui0Q/jsyVepHox5G5Ui8S/TgyV+pFoh9r3G9AwVQOFcKyS1RUlH788UfNmjVLefPmNU8PCAiwCAwhISF6/PHHNXr0aO3fv19BQUFW3Z+7u7vKli2b6eUzk46zS+nSpXN8T5gt5XQ/1khMTNTx48dVqlQpm+4VzAmu1ItEP47MlXqR6MeRuVIvEv04MlfqRaIfax05ciRTyzlUCPPy8lJCQkKa6XFxcfL29s7UOpYtW6apU6fqvffeU0hIyAOXDwsL0+jRo/Xbb79ZHcJMJpNF2HMkrvCiuZsj9+Pp6emw20FWuVIvEv04MlfqRaIfR+ZKvUj048hcqReJfrIqszsoHGpgjjJlyqQ59yshIUEXLlywGFI+I5s2bdLIkSPVp08ftWrVKqfKBAAAAACrOVQIq1Onjnbu3Kn4+HjztI0bN8rNzU21atW6721/+uknDRgwQK1bt1ZkZGSm73P9+vWSxJD1AAAAAGzCoQ5HbNeunebPn6/IyEhFREQoNjZWEyZMULt27SyuERYeHq6zZ89q06ZNkqSjR48qMjJSpUqVUtOmTfXrr7+al/Xx8VHJkiUlSQMHDtRTTz2lgIAA88Acc+fOVYMGDQhhAAAAAGzCoUKYt7e35s2bp3fffVeRkZHKly+fWrVqpf79+1ssl5KSouTkZPPf+/btU0JCghISEtS+fXuLZZs3b65x48ZJunOR5nXr1mnOnDlKSkpSsWLF9Nprr6lXr1453xwAAAAAyMFCmCT5+vpq7ty5911m/vz5Fn+3aNFCLVq0eOC6IyIiFBER8TDlAQAAAMBDcahzwgAAAADA1RHCAAAAAMCGCGEAAAAAYEOEMAAAAACwIUIYAAAAANgQIQwAAAAAbIgQBgAAAAA2RAgDAAAAABsihAEAAACADRHCAAAAAMCGCGEAAAAAYEOEMAAAAACwIUIYAAAAANgQIQwAAAAAbIgQBgAAAAA2RAgDAAAAABsihAEAAACADRHCAAAAAMCGCGEAAAAAYEOEMAAAAACwIUIYAAAAANgQIQwAAAAAbIgQBgAAAAA2RAgDAAAAABsihAEAAACADRHCAAAAAMCGCGEAAAAAYEOEMAAAAACwIUIYAAAAANgQIQwAAAAAbIgQBgAAAAA2RAgDAAAAABuyOoSdPXtWI0aMUKNGjRQcHKxdu3ZJki5duqQxY8bo4MGD2VYkAAAAALgKq0LYkSNH1Lx5c3311VcqXry4EhISdPv2bUmSj4+Pdu/erQULFmRroQAAAADgCnJbc6MPPvhABQoU0LJlyyRJNWvWtJgfGhqqr7766uGrAwAAAAAXY9WesF27dql9+/by8fGRyWRKM//JJ59UbGzsQxcHAAAAAK7GqhBmGIYeeeSRDOdfunRJHh4eVhcFAAAAAK7KqhAWEBCgrVu3pjvv9u3bWr9+vSpVqvRQhQEAAACAK7IqhPXq1Uvff/+93nnnHR0+fFiSdPHiRe3cuVPdu3dXTEyMevXqla2FAgAAAIArsGpgjtDQUI0dO1bvv/++eXCOQYMGyTAM5c+fX+PHj1eNGjWytVAAAAAAcAVWhTBJatasmV544QXt3LlTx48fV0pKikqWLKnatWsrf/782VkjAAAAALiMLIewxMRE1a1bV6+++qp69uypBg0a5ERdAAAAAOCSsnxOmKenp3LlyiVPT8+cqAcAAAAAXJpVA3O88MIL+vrrr2UYRnbXAwAAAAAuzapzwho3bqxRo0apS5cuat26tYoVK5budcMCAwMfukAAAAAAcCVWhbDOnTub//3LL7+kmW8Yhkwmkw4dOmR9ZQAAAADggqwKYWPHjs3uOgAAAADgX8GqENa8efPsrgMAAAAA/hWsvk5YqmvXrun8+fOSpKJFiypfvnwPXRQAAAAAuCqrQ9j+/fv1wQcfaM+ePUpJSZEkubm5qVq1aho0aJCefvrpbCsSAAAAAFyFVSFs37596ty5s9zd3dWqVSv5+vpKko4ePar169erU6dOmj9/voKCgrK1WAAAAABwdlaFsMmTJ6tIkSJatGiRChcubDGvd+/eat++vSZPnqzPPvssW4oEAAAAAFdh1cWa9+3bp7Zt26YJYJL02GOPqU2bNvr1118ftjYAAAAAcDlWhTA3NzclJydnOD8lJUVublatGgAAAABcmlVJqUqVKlq4cKHOnDmTZt7Zs2e1aNEiVa1a9aGLAwAAAABXY9U5YQMGDFDHjh0VFhamhg0bqlSpUpKkY8eO6dtvv1WuXLn01ltvZWedAAAAAOASrAphAQEBWr58uSZPnqwtW7YoMTFRkuTp6annnntO/fr1U9myZa0q6OjRoxozZoz27t2rfPnyqWnTpurXr588PDwyvM3ff/+tuXPnaseOHTp58qQKFCigGjVqaMCAASpWrJjFsrGxsRozZoy2b98ud3d3NWzYUEOHDlX+/PmtqhcAAAAAssLq64SVLVtWU6dOVUpKii5duiRJ8vHxeahzweLi4hQeHq5SpUopKipKsbGxGjdunG7cuKERI0ZkeLvff/9dmzZtUsuWLVWpUiVdvnxZ06ZNU+vWrfXll1/Kx8dHkpSUlKSePXtKkiZNmqQbN25o/PjxeuuttzRjxgyr6wYAAACAzLI6hKVyc3PTY489lh21aMmSJbp27Zqio6NVsGBBSVJycrJGjRqliIgIFSlSJN3bVatWTV999ZVy5/6/dqpWraq6detqzZo16t69uyTp66+/1uHDh7VhwwaVKVNGkuTl5aUePXpo//79XNcMAAAAQI6zarfV5MmT1bRp0wznN2vWTNHR0Vle77Zt2xQSEmIOYJIUFhamlJQU7dixI8PbeXl5WQQwSSpatKh8fHz0999/W6zf39/fHMAkqVatWipYsKC2bt2a5XoBAAAAIKus2hP29ddfq2HDhhnODw0N1YYNG/Tmm29mab0xMTFq2bKlxTQvLy8VLlxYMTExWVrXsWPHdPHiRfn6+lqs/+4AJkkmk0mlS5fO8vrvZhiGrl+/nunlTSaTPD09rb6/rEhMTJRhGDm2flv2IuV8P9ZIPScy9f/OzJV6kejHkblSLxL9ODJX6kWiH0fmSr1I9GMtwzBkMpkeuJxVIezcuXMqWbJkhvOLFy+us2fPZnm98fHx8vLySjPd29tbcXFxmV6PYRgaM2aMHn/8cTVu3Nhi/QUKFHjo9d8rKSlJhw4dyvTynp6eCggIsPr+suLYsWM5urHZshcp5/t5GMePH7d3CdnGlXqR6MeRuVIvEv04MlfqRaIfR+ZKvUj0Y437DSiYyqoQljdv3nSvEZbq9OnTypMnjzWrzhZRUVH68ccfNWvWLOXNmzfH78/d3T1Lo0FmJh1nl9KlS+f4njBbyul+rJGYmKjjx4+rVKlSNt0rmBNcqReJfhyZK/Ui0Y8jc6VeJPpxZK7Ui0Q/1jpy5EimlrMqhAUHB2vp0qVq3759msEyzp07p6VLl+qZZ57J8nq9vLyUkJCQZnpcXJy8vb0ztY5ly5Zp6tSpeu+99xQSEpJm/VevXk13/U888USW601lMplsEvas4Qovmrs5cj+enp4Oux1klSv1ItGPI3OlXiT6cWSu1ItEP47MlXqR6CerMruDwqoQ1rdvX7Vu3VqNGzdWq1atzHuBDh8+rJUrV8owDPXt2zfL6y1Tpkyac7MSEhJ04cKFNOdypWfTpk0aOXKk+vTpo1atWqW7/r/++stimmEYOnbsmGrVqpXlegEAAAAgq6wKYWXKlNHChQs1ZswYzZ0712JejRo19Pbbb1sMiJFZderU0fTp0y3ODdu4caPc3NweGJJ++uknDRgwQK1bt1ZkZGSG61+7dq15V6Qk/fDDD7py5YpCQ0OzXC8AAAAAZJXV1wkrX768FixYoEuXLun06dOS7gzIkXphZGu0a9dO8+fPV2RkpCIiIhQbG6sJEyaoXbt2Foc9hoeH6+zZs9q0aZMk6ejRo4qMjFSpUqXUtGlT/frrr+ZlfXx8zIOINGrUSDNmzFDv3r01YMAAJSYmasKECapbty7XCAMAAABgEw99sWYfH5+HCl538/b21rx58/Tuu+8qMjJS+fLlU6tWrdS/f3+L5VJSUpScnGz+e9++fUpISFBCQoLat29vsWzz5s01btw4SXcG0Jg1a5bGjBmjAQMGKHfu3GrYsKGGDRuWLfUDAAAAwINkOoRduHBBx48fV0BAgPLly2eenpSUpE8++UTr1q0zn7v15ptvqn79+lYV5Ovrm+YQx3vNnz/f4u8WLVqoRYsWmVp/kSJFFBUVZVVtAAAAAPCw3DK74MyZM9W3b1+5u7tbTB8/frymTZum+Ph4lS1bVseOHVOfPn20a9eubC8WAAAAAJxdpkPYrl279Pzzz1tcfOzSpUtatGiRypYtq82bN2vlypVav369ChUqpDlz5uRIwQAAAADgzDIdws6dO6dy5cpZTPvf//6nlJQUde/e3TyaYbFixdSyZUvt378/eysFAAAAABeQ6RB269atNBc2++WXX2QymdJcFLlEiRKKi4vLngoBAAAAwIVkOoQVL15chw4dspj2008/6cknn9QTTzxhMf369esqWLBgthQIAAAAAK4k0yGsYcOGWrNmjTZs2KBz585p2rRpOnv2rMLCwtIsu2/fPhUvXjxbCwUAAAAAV5DpIep79uyp//3vfxowYIBMJpMMw1Dp0qX12muvWSx3+fJlbdmyRT169Mj2YgEAAADA2WU6hOXNm1fLly/Xpk2bdOrUKRUrVkwNGjRQnjx5LJaLjY1V79691ahRo2wvFgAAAACcXaZDmCTlzp073cMP71a+fHmVL1/+oYoCAAAAAFeV6XPCAAAAAAAPjxAGAAAAADZECAMAAAAAGyKEAQAAAIANEcIAAAAAwIYeOoT9/fff+uOPP3T9+vXsqAcAAAAAXJrVIWzz5s168cUXFRoaqubNm2vfvn2SpEuXLqlZs2bavHlzthUJAAAAAK7CqhC2ZcsW9e7dW4UKFVJkZKQMwzDP8/HxUZEiRbRy5cpsKxIAAAAAXIVVIWzq1KmqXr26Fi9erI4dO6aZX7lyZR06dOihiwMAAAAAV2NVCDt8+LDCwsIynP/YY4/p4sWLVhcFAAAAAK7KqhDm6empxMTEDOefOnVKBQsWtLYmAAAAAHBZVoWwZ555RmvWrNHt27fTzLtw4YKWLVum2rVrP3RxAAAAAOBqrAph/fr10/nz59WqVSstXbpUJpNJ27dv1+TJk9WkSRMZhqHIyMjsrhUAAAAAnJ5VIaxMmTJatGiRChYsqI8++kiGYWj27NmaMWOG/Pz8tGjRIhUvXjy7awUAAAAAp5fb2huWK1dOc+fOVVxcnE6cOCHDMFSiRAn5+PhkZ30AAAAA4FKsDmGpvL29FRQUlB21AAAAAIDLs+pwxM8//1w9evTIcH7Pnj21aNEiq4sCAAAAAFdlVQhbsWKFfH19M5xftmxZLVu2zOqiAAAAAMBVWRXCTp06dd8QVqZMGZ08edLqogAAAADAVVkVwtzd3XXhwoUM5//9999yc7Nq1QAAAADg0qxKSpUqVdLq1at19erVNPMSEhK0atUqVapU6aGLAwAAAABXY9XoiG+++aY6deqkZs2aKTw8XGXLlpUkHT58WPPmzdOFCxc0adKkbC0UAAAAAFyBVSGsUqVKmj59ukaMGKH33ntPJpNJkmQYhooXL65p06apSpUq2VooAAAAALgCq68TVqtWLW3atEkHDx40D8JRsmRJBQYGmkMZAAAAAMDSQ12s2c3NTRUrVlTFihWzqx4AAAAAcGkPFcKOHDmiU6dOKS4uLt35zZo1e5jVAwAAAIDLsSqEnTx5UoMGDdL+/ftlGEa6y5hMJkIYAAAAANzDqhA2YsQI/fXXXxo2bJiqV68uLy+v7K4LAAAAAFySVSFsz549ioiIUOfOnbO7HgAAAABwaVZdrLlQoUIqUKBAdtcCAAAAAC7PqhDWrl07rV27VsnJydldDwAAAAC4NKsORyxVqpRSUlLUtGlTtWzZUkWLFlWuXLnSLPfCCy88dIEAAAAA4EqsCmH9+/c3/3v8+PHpLmMymXTo0CHrqgIAAAAAF2VVCPv888+zuw4AAAAA+FewKoQFBwdndx0AAAAA8K9g1cAcAAAAAADrWLUnTJIuXLigFStW6ODBg0pISFBKSorFfJPJpHnz5j10gQAAAADgSqwKYX/88Ye6dOmiGzduqHTp0vrrr79UtmxZxcfHKzY2ViVLllTRokWzu1YAAAAAcHpWHY44adIk5c2bVxs3btRnn30mwzA0bNgwbd26VZMnT1ZcXJwGDhyY3bUCAAAAgNOzKoTt2bNHbdu21ZNPPik3tzurMAxDkhQWFqYmTZpowoQJ2VclAAAAALgIq0JYSkqKHnvsMUmSl5eXcuXKpStXrpjn+/v76/fff8+WAgEAAADAlVgVwooXL67Tp0/fWYGbm4oXL64ffvjBPH/Pnj0qUKBA9lQIAAAAAC7EqoE5ateurY0bN6p///6SpPbt22vcuHE6deqUDMPQzz//rG7dumVroQAAAADgCqwKYa+99poaN26spKQkubu7Kzw8XNevX9c333wjNzc3vfHGG4qIiMjuWgEAAADA6VkVwry9veXt7W3+22Qy6Y033tAbb7yRbYUBAAAAgCuy6pywLl26WJwDdq8ff/xRXbp0sbooAAAAAHBVVoWwn3/+Wf/880+G8y9duqRdu3ZZVdDRo0fVrVs3Va5cWbVq1dKECRN069atB95u4cKFioiI0LPPPit/f39t3LgxzTI//fST/P390/yXem4bAAAAAOQ0qw5HlO4cgpiREydOKF++fFleZ1xcnMLDw1WqVClFRUUpNjZW48aN040bNzRixIj73vaLL76QJIWGhmrNmjX3XXbs2LEqU6aM+e9ChQpluVYAAAAAsEamQ9jq1au1evVq89/Tpk3TsmXL0iyXkJCgP//8U3Xq1MlyMUuWLNG1a9cUHR2tggULSpKSk5M1atQoRUREqEiRIve9rZubm06fPv3AEFauXDk9/fTTWa4PAAAAAB5Wpg9HTExM1OXLl3X58mVJ0rVr18x/3/2fh4eH2rVrp/feey/LxWzbtk0hISHmACZJYWFhSklJ0Y4dO+7fiJtVR1YCAAAAgE1lek9Yhw4d1KFDB0lSvXr19Pbbb6t+/frZWkxMTIxatmxpMc3Ly0uFCxdWTExMtt1Pr169dOXKFRUuXFiNGzdW37599cgjj1i9PsMwdP369UwvbzKZ5OnpafX9ZUViYqIMw8ix9duyFynn+7FGYmKixf+dmSv1ItGPI3OlXiT6cWSu1ItEP47MlXqR6MdahmHc97StVFk+J+zGjRtq0KBBplaeVfHx8fLy8koz3dvbW3FxcQ+9/gIFCqhnz56qUaOG8uTJox9//FFz5sxRTEyMZsyYYfV6k5KSdOjQoUwv7+npqYCAAKvvLyuOHTuWoxubLXuRcr6fh3H8+HF7l5BtXKkXiX4cmSv1ItGPI3OlXiT6cWSu1ItEP9bw8PB44DJZDmGPPPKIli1bpnLlyllVlD0FBARYBIaQkBA9/vjjGj16tPbv36+goCCr1uvu7q6yZctmevmcCLAZKV26dI7vCbOlnO7HGomJiTp+/LhKlSpl072COcGVepHox5G5Ui8S/TgyV+pFoh9H5kq9SPRjrSNHjmRqOatGRwwMDNRff/1lzU3vy8vLSwkJCWmmx8XFWVwcOjuFhYVp9OjR+u2336wOYSaTSXnz5s3myrKHK7xo7ubI/Xh6ejrsdpBVrtSLRD+OzJV6kejHkblSLxL9ODJX6kWin6zK7A4Kq0azGDZsmDZs2KDly5fr9u3b1qwiXWXKlElz7ldCQoIuXLhgMaQ8AAAAADgrq/aEDRkyRCaTSSNGjNCYMWNUpEgR5cmTx2IZk8mktWvXZmm9derU0fTp0y3ODdu4caPc3NxUq1Yta0p9oPXr10sSQ9YDAAAAsAmrQljBggVVsGBBlS5dOluLadeunebPn6/IyEhFREQoNjZWEyZMULt27SyuERYeHq6zZ89q06ZN5mkHDhzQmTNndOnSJUnSvn37JEk+Pj4KDg6WJA0cOFBPPfWUAgICzANzzJ07Vw0aNCCEAQAAALAJq0LY/Pnzs7sOSXdGQZw3b57effddRUZGKl++fGrVqpX69+9vsVxKSoqSk5Mtpi1cuNDiYtJz5syRJAUHB5vrLVeunNatW6c5c+YoKSlJxYoV02uvvaZevXrlSD8AAAAAcC+rQlhO8vX11dy5c++7THohcNy4cRo3btx9bxcREaGIiIiHKQ8AAAAAHorVISw5OVlr167Vd999p7Nnz0qSnnzyST3//PNq0qSJcuXKlW1FAgAAAICrsCqEJSQkqEePHjpw4IDy5cunEiVKSJJ27typb775RosXL9bs2bOVP3/+bC0WAAAAAJydVSFs8uTJ+v333zV8+HC1adNG7u7ukqSkpCQtX75c7733niZPnqz//ve/2VosAAAAADg7q64TtmnTJrVv314dO3Y0BzBJcnd3V4cOHdS+fXt9/fXX2VYkAAAAALgKq0LYlStX7js8fenSpRUXF2d1UQAAAADgqqwKYU899ZS2bNmS4fwtW7aoZMmSVhcFAAAAAK7KqhDWvn177dixQ6+++qq2b9+u06dP6/Tp0/r+++/Vq1cv7dy5Ux07dszuWgEAAADA6Vk1MEfHjh116dIlzZw5U9u3b7dcYe7cioyMVIcOHbKlQAAAAABwJVZfJ6x3797q2LGjdu7cab5OWLFixRQSEiIfH59sKxAAAAAAXInVIUySfHx89PLLL2dXLQAAAADg8h4qhP3vf//T1q1bdebMGUl39oSFhobq+eefz5biAAAAAMDVWBXC4uPjFRkZqV9++UW5cuVS4cKFJUk//PCDli5dqurVq2vq1Kny8vLK1mIBAAAAwNlZNTrie++9p927d2vgwIH6+eef9b///U//+9//9PPPP+utt97S7t279d5772V3rQAAAADg9KzaE7Z582Z16NBBPXr0sJieN29e9ezZU+fOndOaNWuyoz4AAAAAcClW7QnLnTu3SpcuneH8MmXKKHfuhzrdDAAAAABcklUhrFGjRtq4caOSk5PTzLt9+7a++uorvfjiiw9dHAAAAAC4Gqt2V73yyisaPXq02rVrpzZt2uipp56SJJ04cUJLly5VUlKSmjRpot9//93idoGBgQ9fMQAAAAA4MatCWKdOncz/PnDggEwmkyTJMAzz9M6dO5v/bRiGTCaTDh06ZG2dAAAAAOASrAphY8eOze46AAAAAOBfwaoQ1rx58+yuAwAAAAD+FawamAMAAAAAYB2rx5E/c+aMVq9erdOnTysuLs7ifDBJMplMmjZt2kMXCAAAAACuxKoQ9uWXX2rIkCG6ffu2vLy8lD9//jTLpA7WAQAAAAD4P1aFsA8//FClS5fWxx9/fN+LNgMAAAAALFl1Ttjly5fVrl07AhgAAAAAZJFVISwoKEjnzp3L7loAAAAAwOVZFcKGDRumtWvXauPGjdldDwAAAAC4NKvOCfP391f//v01YMAAvf322ypatKjc3CzznMlk0tq1a7OlSAAAAABwFVaFsIULF2rMmDHKkyePSpYsme7oiAAAAACAtKwKYTNmzFCVKlU0Y8YMFShQILtrAgAAAACXZdU5YQkJCWrSpAkBDAAAAACyyKoQFhwcrL/++iu7awEAAAAAl2dVCBs5cqR27dqlTz/9VJcvX87umgAAAADAZVl1TthLL70kwzD04Ycf6sMPP1SePHnSHR1x9+7d2VIkAAAAALgKq0JYo0aNZDKZsrsWAAAAAHB5VoWwcePGZXcdAAAAAPCvYNU5YQAAAAAA62R6T9jvv/+e5ZUHBgZm+TYAAAAA4MoyHcJatmyZ6fPADMOQyWTSoUOHrC4MAAAAAFxRpkPY2LFjc7IOAAAAAPhXyHQIa968eU7WAQAAAAD/CgzMAQAAAAA2RAgDAAAAABsihAEAAACADRHCAAAAAMCGCGEAAAAAYEOEMAAAAACwIUIYAAAAANgQIQwAAAAAbIgQBgAAAAA2RAgDAAAAABsihAEAAACADRHCAAAAAMCGCGEAAAAAYEOEMAAAAACwIYcLYUePHlW3bt1UuXJl1apVSxMmTNCtW7ceeLuFCxcqIiJCzz77rPz9/bVx48Z0l4uNjVXv3r1VpUoVBQcH6+2339bVq1ezuw0AAAAASJdDhbC4uDiFh4crKSlJUVFR6t+/v5YtW6Zx48Y98LZffPGFLl++rNDQ0AyXSUpKUs+ePXX8+HFNmjRJI0eO1Pbt2/XWW29lZxsAAAAAkKHc9i7gbkuWLNG1a9cUHR2tggULSpKSk5M1atQoRUREqEiRIve9rZubm06fPq01a9aku8zXX3+tw4cPa8OGDSpTpowkycvLSz169ND+/fsVFBSU3S0BAAAAgAWH2hO2bds2hYSEmAOYJIWFhSklJUU7duy4723d3B7cyrZt2+Tv728OYJJUq1YtFSxYUFu3brW6bvy7mUwmeXp6ymQy2bsUAAAAOAGH2hMWExOjli1bWkzz8vJS4cKFFRMTky3rvzuASXe+QJcuXfqh1m8Yhq5fv57p5VO/tNtCYmKiDMPIsfXbshfJNv145MmjXJkI9ak8PT0VEBCQ5ftKTknRrZs3c7SfrEpMTLT4v7OjH8flSr1I9OPIXKkXiX4cmSv1ItGPtQzDyNQP8w4VwuLj4+Xl5ZVmure3t+Li4rJl/QUKFMj29SclJenQoUOZXt7aL+3WOHbsWI5ubLbsRbJdPxMX7tbp2IQcu5/iRQpoYMdqOd6PtY4fP27vErIV/TguV+pFoh9H5kq9SPTjyFypF4l+rOHh4fHAZRwqhDkrd3d3lS1bNtPL2/KwtdKlS+f4niNbslU/p2MTdPTMwwf/B8npfrIqMTFRx48fV6lSpWy6hzOn0I/jcqVeJPpxZK7Ui0Q/jsyVepHox1pHjhzJ1HIOFcK8vLyUkJB270NcXJy8vb2zZf3pDUcfFxenJ554wur1mkwm5c2b92FKyzGu8KK5G/3Yhqenp8Nu09agH8flSr1I9OPIXKkXiX4cmSv1ItFPVmV2B4VDDcxRpkyZNOdmJSQk6MKFC2nO5cqu9RuGoWPHjmXL+gEAAADgQRwqhNWpU0c7d+5UfHy8edrGjRvl5uamWrVqZcv6//jjD4tjQX/44QdduXLlvtcXAwAAAIDs4lCHI7Zr107z589XZGSkIiIiFBsbqwkTJqhdu3YW1wgLDw/X2bNntWnTJvO0AwcO6MyZM7p06ZIkad++fZIkHx8fBQcHS5IaNWqkGTNmqHfv3howYIASExM1YcIE1a1bl2uEAQAAALAJhwph3t7emjdvnt59911FRkYqX758atWqlfr372+xXEpKipKTky2mLVy4UKtXrzb/PWfOHElScHCw5s+fL+nOABqzZs3SmDFjNGDAAOXOnVsNGzbUsGHDcrgzAAAAALjDoUKYJPn6+mru3Ln3XSY1VN1t3LhxGjdu3APXX6RIEUVFRVlbHgAAAAA8FIc6JwwAAAAAXB0hDAAAAABsiBAGAAAAADZECAMAAAAAGyKEAQAAAIANEcIAAAAAwIYIYQAAAABgQ4QwAAAAALAhQhgAAAAA2BAhDAAAAABsiBAGAAAAADZECAMAAAAAGyKEAQAAAIANEcIAAAAAwIYIYQAAAABgQ4QwAAAAALAhQhgAAAAA2BAhDAAAAABsiBAGAAAAADZECAMAAAAAGyKEAQAAAIANEcIAAAAAwIYIYQAAAABgQ4QwAAAAALAhQhgAAAAA2BAhDAAAAABsiBAGAAAAADZECAMAAAAAGyKEAQAAAIANEcIAAAAAwIYIYQAAAABgQ4QwAAAAALAhQhgAAAAA2BAhDAAAAABsiBAGwMxkMsnT01Mmk8nepQAAALis3PYuAEDOSkkx5OaWuVDl6empgICAHL0PAACAfztCGODi3NxMmrhwt07HJuTI+osXKaCBHavlyLoBAABcESEM+Bc4HZugo2fi7F2GzXF4JQAAcESEMABOI6uHPXJ4JQAAcESEMABOI6cPrZQ4vBIAAOQ8QhgAp/JvPbQSAAC4DoaoBwAAAAAbIoQBAAAAgA0RwgAAAADAhghhAAAAAGBDhDAAAAAAsCFCGAAAAADYECEMAAAAAGyIEAYAAAAANkQIAwAAAAAbIoQBAAAAgA0RwgAAAADAhghhAAAAAGBDhDAAAAAAsCFCGAAAAADYkMOFsKNHj6pbt26qXLmyatWqpQkTJujWrVsPvJ1hGJo5c6bq1q2roKAgtW3bVr/++qvFMj/99JP8/f3T/Ne/f/8c6gYAAAAALOW2dwF3i4uLU3h4uEqVKqWoqCjFxsZq3LhxunHjhkaMGHHf23766af6+OOPNXDgQPn7+2vhwoXq3r27vvjiC5UoUcJi2bFjx6pMmTLmvwsVKpQj/QAAAADAvRwqhC1ZskTXrl1TdHS0ChYsKElKTk7WqFGjFBERoSJFiqR7u5s3b2rGjBnq3r27unbtKkmqVq2aXnzxRc2ePVsjR460WL5cuXJ6+umnc7ATAAAAAEifQx2OuG3bNoWEhJgDmCSFhYUpJSVFO3bsyPB2e/bs0dWrVxUWFmae5uHhoYYNG2rbtm05WTIAAAAAZIlD7QmLiYlRy5YtLaZ5eXmpcOHCiomJue/tJFkcYihJvr6+mjdvnm7cuKFHHnnEPL1Xr166cuWKChcurMaNG6tv374W87PKMAxdv34908ubTCZ5enpafX9ZkZiYKMMwcmz9tuxFop+sYluzXk73Y43ExESL/zszV+pFoh9H5kq9SPTjyFypF4l+rGUYhkwm0wOXc6gQFh8fLy8vrzTTvb29FRcXd9/beXh4KE+ePBbTvby8ZBiG4uLi9Mgjj6hAgQLq2bOnatSooTx58ujHH3/UnDlzFBMToxkzZlhdd1JSkg4dOpTp5T09PRUQEGD1/WXFsWPHcnRjs2UvEv1kFdua9XK6n4dx/Phxe5eQbVypF4l+HJkr9SLRjyNzpV4k+rGGh4fHA5dxqBCW0wICAiy+xIWEhOjxxx/X6NGjtX//fgUFBVm1Xnd3d5UtWzbTy2cmHWeX0qVL5/jeCVuin6xhW7NeTvdjjcTERB0/flylSpWy6V7BnOBKvUj048hcqReJfhyZK/Ui0Y+1jhw5kqnlHCqEeXl5KSEhIc30uLg4eXt73/d2t27d0s2bNy32hsXHx8tkMt33tmFhYRo9erR+++03q0OYyWRS3rx5rbptTnOFF83d6MdxuVIvkmP34+np6bDvOVnlSr1I9OPIXKkXiX4cmSv1ItFPVmX2R2OHGpijTJkyac79SkhI0IULF9Kc73Xv7aQ7hw/dLSYmRk8++eRDne8FAAAAANnJoUJYnTp1tHPnTsXHx5unbdy4UW5ubqpVq1aGt6tatary58+vr776yjwtKSlJ33zzjerUqXPf+1y/fr0kMWQ9AIeXOjiJrQ/NBAAA2cuhDkds166d5s+fr8jISEVERCg2NlYTJkxQu3btLK4RFh4errNnz2rTpk2SpDx58igiIkJRUVHy8fGRn5+fFi9erCtXrqhHjx7m2w0cOFBPPfWUAgICzANzzJ07Vw0aNCCEAbC5lBRDbm6ZD1TWDk6S1fsBAAA5y6FCmLe3t+bNm6d3331XkZGRypcvn1q1aqX+/ftbLJeSkqLk5GSLaa+++qoMw9CcOXN06dIlVahQQbNnz1aJEiXMy5QrV07r1q3TnDlzlJSUpGLFium1115Tr169bNIfANzNzc2kiQt363Rs2nNhs0vxIgU0sGO1HFs/AADIOocKYdKda3vNnTv3vsvMnz8/zTSTyaSIiAhFRERkeLsHzQcAWzsdm6CjZzK+BAcAAHA9DnVOGAAAAAC4OkIYAAAAANgQIQwAAAAAbIgQBgAAAAA2RAgDAAAAABsihAEAAACADRHCAAAAAMCGCGEAAAAAYEOEMAAAAACwIUIYAAAAANgQIQwAAAAAbIgQBgAAAAA2RAgDAAAAABsihAEAAACADRHCAAAAAMCGCGEAAJszmUzy9PSUyWSydykAANhcbnsXAABwDSkphtzcMheqPD09FRAQkKP3AQCAoyKEAQCyhZubSRMX7tbp2IQcWX/xIgU0sGO1HFk3AAC2RAgDAGSb07EJOnomzt5lAADg0DgnDAAAAABsiBAGAAAAADZECAMAAAAAGyKEAQAAAIANEcIAAAAAwIYIYQAAAABgQ4QwAAAAALAhQhgAAAAA2BAhDAAAAABsiBAGAAAAADZECAMAAAAAGyKEAQAAAIANEcIAAAAAwIYIYQAAAABgQ4QwAAAAALAhQhgAAAAA2BAhDAAAAABsiBAGAAAAADZECAMAAAAAGyKEAQAAAIANEcIAAAAAwIYIYQAAAABgQ4QwAAAAALAhQhgAAAAA2BAhDAAAAABsiBAGAMBDMplM8vT0lMlksncpAAAnkNveBQAA4GhSUgy5uWU+UHl6eiogICDH7wcA4BoIYQAA3MPNzaSJC3frdGxCjt1H8SIFNLBjtRxb/8NwpT17rtQLANdBCAMAIB2nYxN09EycvcvIFq62Zy8r9+PovQD4dyKEAQDg4lxtz15O98NeSttxtX6AzCKEAQDwL+BKe/Yk1+nn37yXUnL8foCcQggDAACwE/ZSZp0j76kEMosQBgAAYEeuslcvlav1A+QErhMGAAAAPCTOb0NWsCcMAAAASAcjcSKnEMIAAACAdDASJ3v2corDhbCjR49qzJgx2rt3r/Lly6emTZuqX79+8vDwuO/tDMPQp59+qkWLFunSpUuqUKGChg4dqsqVK1ssFxsbqzFjxmj79u1yd3dXw4YNNXToUOXPnz8HuwIAAIAzcpVz3Bi50rE4VAiLi4tTeHi4SpUqpaioKMXGxmrcuHG6ceOGRowYcd/bfvrpp/r44481cOBA+fv7a+HCherevbu++OILlShRQpKUlJSknj17SpImTZqkGzduaPz48Xrrrbc0Y8aMHO8PAAAAsAdGrnQsDhXClixZomvXrik6OloFCxaUJCUnJ2vUqFGKiIhQkSJF0r3dzZs3NWPGDHXv3l1du3aVJFWrVk0vvviiZs+erZEjR0qSvv76ax0+fFgbNmxQmTJlJEleXl7q0aOH9u/fr6CgoJxuEQAAALALV9mr5wocanTEbdu2KSQkxBzAJCksLEwpKSnasWNHhrfbs2ePrl69qrCwMPM0Dw8PNWzYUNu2bbNYv7+/vzmASVKtWrVUsGBBbd26NXubAQAAAIB0mAzDMOxdRKqQkBC1bNlSAwcOtJj+3HPPqWnTpmmmp1q4cKFGjx6t/fv3K0+ePObpy5Yt04gRI/Trr7/qkUceUatWrVSiRAlNnjzZ4vbt2rXTE088kWZ6ZuzZs0eGYcjd3T1LtzOZTIq7eku3k1OyfJ+ZkTuXm7zze8gWT29O9yLRz8NgW8sa+rEe21rW0I/12Nayhn6sx7aWNbbsJ6sMw1BycrJy5cqVo4ONJCUlyWQyqWrVqvddzqEOR4yPj5eXl1ea6d7e3oqLy3jXaXx8vDw8PCwCmHTnUEPDMBQXF6dHHnlE8fHxKlCgQJbXfz+pT6I1T6Z3/vsPNpIdbDWijS16kejHWmxrWUc/1mFbyzr6sQ7bWtbRj3XY1rLOEUdUNJlMcnPL+YMATSZTpvp3qBDmjKpUqWLvEgAAAAA4EYc6J8zLy0sJCWlHbImLi5O3t/d9b3fr1i3dvHnTYnp8fLxMJpP5tl5eXrp69WqW1w8AAAAA2cWhQliZMmUUExNjMS0hIUEXLlywGEwjvdtJ0rFjxyymx8TE6Mknn9QjjzyS4foNw9CxY8fuu34AAAAAyC4OFcLq1KmjnTt3Kj4+3jxt48aNcnNzU61atTK8XdWqVZU/f3599dVX5mlJSUn65ptvVKdOHYv1//HHHzp+/Lh52g8//KArV64oNDQ0e5sBAAAAgHQ41OiIcXFxaty4sUqXLq2IiAjzxZqbNGlicbHm8PBwnT17Vps2bTJPmzlzpqKiojRw4ED5+flp8eLF2r59e5qLNbdo0UKSNGDAACUmJmrChAny9/fnYs0AAAAAbMKhQpgkHT16VO+++6727t2rfPnyqWnTpurfv788PP5vNJfOnTvrzJkz2rJli3maYRiaOXOmFi1apEuXLqlChQoaOnRomoEzYmNjNWbMGG3fvl25c+dWw4YNNWzYMOXPn99mPQIAAAD493K4EAYAAAAArsyhzgkDAAAAAFdHCAMAAAAAGyKEAQAAAIANEcIAAAAAwIYIYQAAAABgQ4QwAAAAALAhQhgAAAAA2BAhDACAf7Ft27aJS4YCgG1xsWbkqG3btik+Pl4vv/yyJOncuXMaNmyYjh49qpo1a2rEiBHKmzevnauEK4mNjVVsbKxu3ryZZl6NGjXsUBFc2cWLF9Pd1p588kk7VGOd8uXLq2jRomrevLlatGihEiVK2Lukh7JmzZoM55lMJhUoUEDly5d3qufIlZ0+fVonT55UQECAChYsaO9ysqRLly5655135Ovrm2besWPH9M477+jzzz+3Q2VZFx0dneE8Nzc3FShQQBUqVFD16tVtWNXDuXTpkubMmaMDBw7o/Pnzio6OVrly5TRv3jxVqlRJlStXtmt9ue1673B5H3/8scLCwsx/jx49WkePHlXjxo21du1affzxxxoyZIgdK3yw1157LdPLmkwmTZs2LQeryT43b95UzZo19cEHH6hevXr2LuehnTp1SoMGDdK+ffskKc0v+yaTSYcOHbJHaVZztQ/Fw4cP65NPPjF/IC5dulSBgYGaPHmyqlatqtDQUHuXmCmXL1/WmDFj9M033+j27dsW8wzDcLptbf369VqxYoWWL1+uGTNmqHr16mrdurUaNWokDw8Pe5eXZUOGDJHJZJJk+T5w9zSTyaQGDRpowoQJ8vT0tEudWZGUlKQVK1aYXzsjRoxQqVKltGHDBvn7+6cbAhzRuHHjlJycrLfffluStGnTJvXv31+3b9+Wt7e3Zs+erYoVK9q5ysz7+eefde3atXTnXb16Vb/88ouNK7LevHnzlJSUpBs3bkiS8uTJY/6B6ZFHHtHt27eVnJysgIAAffrpp/Lx8bFnuQ/0+++/q2vXripQoIBq1Kihn3/+Wbdu3ZJ058fauXPnasqUKXatkRDmIKpUqWL+gHgQk8mk3bt353BF2ePEiRMqX768pDtvSN9//70mTpyoF198UeXKlVN0dLTDh7CM3mCdXZ48eeTp6alcuXLZu5RsMXz4cMXGxur999+Xr6+vU355vJcrfSju2LFDERERCgwMVJMmTSx+rMidO7cWL17sNCFs+PDh2rVrlyIiIuTr6yt3d3d7l/RQfH19NXjwYA0cOFDfffedVq5cqaFDh2r06NF6+eWX1bJlS6f6Yrx69Wr169dPzZo1U/369fXoo4/q4sWL2rRpk7744guNGjVKp0+f1rhx4zRp0iQNHz7c3iXf16lTp9S1a1ddvnxZAQEB2r17t/lzadeuXfr+++81duxYO1eZOZs2bVKfPn3Mf3/44YcKDQ1V3759NWHCBE2ZMkWzZs2yY4XZZ+/evQ79nnyvefPmqX///oqMjFT9+vWVL18+Xbt2TZs2bdInn3yi8ePH68aNGxo0aJAmTJigcePG2bvk+xo7dqwqV66sTz75RCaTSV988YV5XqVKlfTVV1/Zsbo7CGEOonv37pkOYc7k9u3bcnO7c+rhrl27JEnPPfecJKlEiRL6559/7FZbZs2fP9/eJeSYZs2aacWKFU7z5fd+9u/fr/Hjx+uFF16wdynZxpU+FCdNmqSXXnpJEyZM0O3bty1CWIUKFbR8+XI7Vpc1P/30k4YPH65mzZrZu5RslStXLtWvX1/169dXbGysBg4cqMWLF2vJkiUqV66cwsPD1bJlS3uX+UATJ05U69at1bNnT/O0Rx99VH5+fvLw8ND06dM1b948Xb58WQsWLHD4EDZmzBj5+Pho+fLl8vLysgjENWrU0IcffmjH6rLmwoUL5sNAT548qWPHjumDDz6Qn5+fOnfurMGDB9u5wgebMWOGZsyYIenOj+Lh4eFpvr/dunVLycnJ6tChgz1KtMro0aPVrVs3vfLKK+Zp+fLlU7NmzZSYmKj3339fy5cv1+uvv66pU6fasdLMOXDggKKiouTu7q7k5GSLeT4+Prp48aKdKvs/hDAH0bt3b3uXkCPKlCmjtWvXqlKlSlq6dKmqVKmifPnySbrzZuxsx3/fz/Hjx7Vu3Tqnei69vLz066+/qkmTJnruuef02GOPWXyYmEwmde3a1X4FZkGRIkXMgd9VuNKH4uHDh/XWW29JUpovLF5eXrp8+bI9yrKKl5eXChUqZO8ycsTRo0e1YsUKrV27VvHx8XrxxRfVsGFDbd26Ve+884727dun0aNH27vM+9q9e7e6d++e7ryAgADzayUoKEiXLl2yZWlW+fnnnzVp0iT5+Pik+TJZuHBhXbhwwU6VZV2BAgXMX3537Nghb29vc6j08PBI9/xKR1OlShV1795dhmFo6tSpaty4sYoWLWqxjLu7u3x9ffX888/bqcqsO3jwoN5444105xUrVkx//fWXJKlcuXJKSEiwZWlW8fT01NWrV9Odd/bsWYf4/kkIc3Dnzp3TuXPnVL58eaccwOKNN95Q3759tWbNGuXKlUvTp083z/v+++8VEBBgx+oe3oULF7R+/XqtW7dOv//+u9zd3Z0qhKX+gnrhwgUdPnw4zXxnCmH9+/fXp59+qurVqzvEm2t2cKUPRW9vb/3999/pzjt+/LgKFy5s44qs16NHD82fP1+1atVS7tzO/zF67do1rV+/XitXrtT+/ftVqlQp9ejRQ82aNTMfTtW4cWPVrFlTo0aNcvgQ5uPjo6+//lq1atVKM2/jxo3mnq5duyYvLy9bl5dluXLlynD0yn/++cepvhtUr15dH3/8sS5evKjZs2erQYMG5nkxMTF64okn7Fhd5gQHBys4OFjSnc/I1q1bq0iRInau6uE9+eSTWrFiherUqZNm3rJly8x7MK9cueIUP0LVrl1b06ZNU0hIiPl1bjKZdOPGDX3++ecOcQSQ8396uKilS5cqOjpaFy5ckMlk0ooVKxQYGKjIyEgFBwcrPDzc3iVmSv369fXVV1/p4MGD8vf3V6lSpczzKleuLH9/f/sVZ6WrV6/qm2++0bp16/Tzzz8rJSVF/v7+evvtt82jQDqLP/74w94lPJR7B005f/686tWrpwoVKqhAgQIW85xp0JRUrvSh2KBBA0VFRalSpUp66qmnJN15Ti5cuKDZs2erUaNGdq4w82JiYnT06FE1bNhQNWrUSPeLvKMf4na31LDywgsvaNCgQRkO9BIQEODw25kk9erVSyNHjtTp06f1/PPPy8fHR5cuXdK3336rH3/8UaNGjZIk/fjjjwoKCrJztQ9Wo0YNffbZZ6pTp455b7/JZJJhGFq2bJlCQkLsXGHmDRs2TIMGDdLEiRMVGBio/v37m+etXbvWaQYZSvXmm2/au4Rs89Zbb6lfv35q1KiRxevmf//7n06fPq2PPvpIkvTDDz84xUjDgwYNUvv27dWoUSM988wzMplMmjJlio4cOSKTyaR+/frZu0SGqHdEc+fO1cSJE9WtWzeFhISoe/fuWrlypQIDAzVv3jxt3LhRixcvtneZ/ypJSUnaunWr1q5dq61bt+rmzZsqUaKE6tevr3nz5unzzz93ijclV9O5c+csLe9s5/dt2rRJ/fr1U/HixTP8UGzQoIFGjRql+Ph4TZo0yd4lZyghIUFdu3bVn3/+KT8/Px08eFDly5fXqVOnVLp0ac2bN898qLKje9BooiaTSd9++62Nqnl4CxYs0CuvvOIUe4Uy69tvv9X06dN16NAh3b59W7lz51aFChX0+uuvm5+/uLg45c6d2+G3u6NHj6p9+/YqWLCg6tWrp3nz5qlFixY6fPiwTpw4oeXLl6tkyZL2LvOhXb16VR4eHk41qFJKSoqWL1+ur7/+WufPn09zOKXJZNLmzZvtVF3WHTx4UDNmzNBvv/2mCxcuqHDhwnr66acVERGhChUq2Lu8LIuPj9fcuXO1c+dOXb58Wd7e3goJCVG3bt0c4ogZQpgDatCggVq0aKE33nhDycnJCgwMNIewbdu26T//+Y9+/PFHe5eZoW+++UbPPvusvLy89M033zxweUcfSGH48OHatGmT4uPj9eijj+rFF19UkyZNVKlSJSUkJKhGjRqaP3++U4ewmzdv6tSpU+kejx8YGGiHipDKlT4Uk5KStHbtWosPxJo1a6pp06ZO9cULziMlJUWXLl2Sj4+PU58zeurUKUVHR2vHjh26cuWK+ctknz59XCKAOavx48frs88+U40aNVS2bNl0R0odNmyYHSqDMyCEOaCnn35aM2fOVEhISJoQ9sMPPygiIkL79++3d5kZKl++vJYtW6agoCDz8PQZcYbr6ZQvX14mk0k1a9bU6NGjVaxYMfM8Zw9ht27d0siRI7V27do0J3yncvTnB8DDcbXr0cFxPWjPkSSn2otcu3ZttW/fXpGRkfYuBZmwe/duxcTEqFq1aipTpoy9y+GcMEf05JNP6sCBA+ke571v3z6L86oc0bfffms+yd6Z3kwzMmTIEK1bt047duxQw4YNVb16dTVp0kSNGjVy+ssKTJ06VTt27NC4ceM0cOBAjRgxQnnz5tXatWt18uRJ/fe//7V3iZk2efJkXb58Od1BA0aMGKFHH31Uffv2tUNlkKQuXbqoTJkyGjp0qPLkyWMx7+jRoxo1apQ+//xzO1WXdakX+9yzZ4+uXLmiggULqlq1agoPD3e6k/Rd6Xp0qbZv337fQ8TmzZtnp8oezvnz5/X333+rSJEiTredSdIHH3xg3nP0zDPPOP019m7duqWqVavau4xs4WqHVr711lvy8PAwX0Nv8eLF5vNBPTw8NGPGDLufT0kIc0Bt2rRRdHS0ChUqZD5U7/bt2/ruu+80e/ZshziZ8H7u3lN097+dVdeuXdW1a1fzEPRffvml/vvf/2r06NEKDg6WyWRSSkqKvcu0ysaNG/Xmm28qLCxMAwcOVFBQkCpWrKhmzZpp8ODB2rJli0OMIJQZX375ZYYjU1arVk1Tp051uhDmSh+KP//8s3799Vft379fU6dOtRgF7erVq+brCDqDv/76S506dVJSUpJq1aql8uXL6+LFi1qyZIlWrlypBQsWqFy5cvYuM9Nc6Xp0kjRr1ixNnDhRxYoVk6+vb5pBepzR0qVLNW3aNMXGxsowDJlMJj3++ON6/fXX1a5dO3uXl2mpl3FxlT1HTZo00ZYtW+z+ZT47uFpA3r17t/7zn/+Y/545c6Zat26tIUOGaOTIkYqOjrb780YIc0A9evTQuXPnNGLECL3zzjuSpPbt20uSOnTooI4dO9qzvCw5c+aMrl69ah4F8datW5o9e7aOHj2qmjVrqkWLFnauMPNKlSql3r17q3fv3tq/f7++/PJLbdiwQYZh6PXXX1ejRo3UrFkzPfPMM/YuNdPOnz+v0qVLK1euXMqTJ4/i4+PN81555RUNGDDA/MuRo/v7778zHN64aNGiOn/+vI0reniu9qE4ceJEzZgxQy1atNCUKVOc6rVyt/Hjx6tEiRKaM2eOvL29zdPj4uLUvXt3jR8/XrNmzbJjhVnjStejk6RFixapU6dOTjVC5f3MmDFDkydPVtOmTdWoUSM99thj+ueff7Rx40aNGjVKcXFxioiIsHeZmeJKe44kqVKlSpoyZYouXryomjVrpju4jaOf957K1QLypUuX9Pjjj0u6c53Kc+fOqUuXLsqXL5+aN2/uED/KEsIc1PDhwxUeHp5mRBdHPxTxXv/9739Vvnx5868RH3zwgRYvXiw/Pz9t3LhRiYmJThUqUwUFBSkoKEhDhw7Vjz/+qLVr12rz5s1as2aNU51DVbhwYXPwKl68uH766SfVrFlT0p1rNzkTHx8fHT58ON0v9ocPH7b4suwsXO1DsWjRolq8eLGGDRumHj166D//+Y+6dOli77KybM+ePfrggw/SbFPe3t56/fXXNWjQIDtVZh1Xuh6ddOeSDfXr17d3Gdlm/vz56tGjR5rtql69enr00Uc1f/58pwlhrrTnSJL5u83Zs2e1YcOGNPOd4bz3VK4WkAsWLKgzZ86oevXq+v7771W4cGHzEQrJyckOcQQTIcwBXb16Vfnz51eJEiXUtm1be5fzUA4dOqROnTpJunNI5Zo1azRw4EB17dpV06dP15IlS5wyhKUymUwKCQlRSEiIRo0ape+++87eJWVJcHCwfvnlF9WrV0+tW7fWhAkTFBMTI3d3d23evNmprnuWeh2q1ICcKvXwt7CwMDtWZx1X+1CU7hyLP3HiRPn7+2vcuHE6dOiQmjdvbu+ysiRXrly6detWuvNu3bqlXLly2biih+NK16OTpOeff167d+92mS/6165dM/84dq/atWtryZIlNq7Ieq6050hyjfPeU7laQK5Tp44mTpyoP/74Q6tXr1bTpk3N8w4fPqzixYvbsbo7CGEOqFatWqpbt65efvllhYaGOvXQzdeuXTMfj79v3z5dvXpVL730kqQ75+lMnz7dnuVlKw8PD6f68JCk/v376/Lly5LunPsm3TlP7ObNm+rcubNT7YHp16+f9uzZo7Zt28rX11ePP/64/v77bx09elQVKlSwuCios3C1D8W7vfrqq/Lz89PAgQO1fft2e5eTJTVr1tSUKVNUoUIFlS5d2jz9+PHj+uijjzL8wuyoXO0irS1bttTIkSN18+bNDL/oO9OlN2rXrq2dO3eaL6p9tx07djjV+4Mr7TmSXOO891SuFpAHDx6s5ORkbd++XaGhoRbnjG/atEnPPfecHau7gyHqHdCCBQu0fv16/frrr8qXL58aNmyol19+WSEhIU53nZMXXnhBrVu31quvvqpx48Zpx44dWrdunSRp8+bNGj58uENf8wzO5datW1qzZo1+/PFH84h1ISEhTnsdqrVr12rKlCmqXLmy038odu7cWSNHjpSvr6/F9JiYGL3++us6efKk03z5Onv2rDp16qTz58+rXLlyeuyxx3Tx4kX99ddfeuKJJ7RgwYIMz090VK50Pbp7L41y9yi2qYNaOMu2Jklbt27VO++8o5CQENWvX1+PPvqoLl68qM2bN+vHH3/UqFGj9Nhjj5mXd+SAeebMmQcu44zBZtu2bTpw4IDOnz+v119/XU8++aR27dqlkiVLOs0olq5wSSFnQwhzYGfPntX69eu1YcMGHTp0yHyh4MaNGzvNIUozZ87Uxx9/LH9/fx06dEhDhw5V586dJUmTJk3Snj17tHDhQjtXibi4OPOJq3Xq1JG3t7du3rwpd3d3pwj+N2/eVN++fdWjRw+n+KU+s/hQdFzXrl3TypUrtXv3bsXHx8vb21vVqlVTixYtlC9fPnuX96/2888/P3CZ4OBgG1SSPdILlXd/dUsNmc4YMJ3dpUuX9MYbb2jfvn164okndO7cOa1YsUKBgYEaMmSIPD09zQOsOTpXDciOjBDmJI4dO6b169dr6dKlunjxog4ePGjvkjJtzZo1OnDggAICAtSiRQvzB8aIESNUtWpVNWvWzL4F/oulpKRoypQpmj9/vhITE2UymcwfIK+++qoqVaqkN998095lZkrqMPTPPvusvUvJNnwowtbOnTunc+fOqXz58sqbN6+9y4Gkn376KUvXpHT0gGkYhrZu3ardu3crLi5O3t7eql69uurUqeN0195866239Ntvv+mTTz7RU089pYoVK2rlypUKDAzUF198oWnTpmnjxo32LvNfa9euXVq6dKmOHz+e7oXBU4/MshfOCXMCFy9e1I4dO7R9+3ZduHDBqa55YhiGmjVrlm7QSu+iurCtjz76SAsWLNDgwYMVEhKiRo0amefVq1dPy5cvd5oQVqtWLe3YscOlQpizB6yqVavq888/V8WKFVWlSpUHfsHas2ePjSrDvZYuXaro6GhduHDB4seYyMhIBQcHKzw83N4l/ms566Uc0hMXF6devXpp37598vLyMh9a+emnn6py5cqaOXNmuoddO6qtW7fq3Xffla+vr5KTky3mPfHEE4qNjbVTZZlz5coVeXl5yc3NTVeuXHng8gULFszxmrLL999/r4iICIWEhOi3335TnTp1dOPGDe3Zs0dFixZ1iKNmCGEOKj4+Xl9//bU2bNign3/+We7u7qpbt66io6PTHcHKUYWGhqp58+Zq1aqVSpQoYe9yrHL27NksLZ86kpgzWL16tQYMGKB27dql+QApWbKkTp06ZafKsq5ly5YaMWKErl27ptDQUD366KNpvvQ78rkSqVzpQ7F79+4qXLiw+d/O9iv33bISKE0mk3bv3m3D6h7O3LlzNXHiRHXr1k0hISHq3r27eV5wcLA2btzo8CHMlQN/mzZt1Lp1a7300ktOf6jr+PHjdfLkSc2ePdtioJEdO3Zo0KBBGj9+vN577z07Vpg1ycnJGe4xjo+Pd/hrO4aEhGjp0qUKCgrSs88++8DXjTMd6hoVFaXw8HANHDhQgYGB6tu3rwIDA3XmzBn16NHDIX6wJYQ5oNdee007duyQYRiqVauWxo4dq/r16zvlm2+TJk20atUqzZw5U9WrV1fLli314osv6pFHHrF3aZlWr169LH15dKY3qStXrqQZKCFVcnKybt++beOKrJd6nZxFixZp0aJFTnsyvit9KN69F/XukamckSsFynstWLBAb7zxht544400P8aULl1ax44ds1NlmefKz8+TTz6pd999V++//75efPFFtWzZUtWrV7d3WVbZsmWLBg0alGakx1q1amnAgAGaOHGiU4WwoKAgrVy5UqGhoWnmrV+/3uHP33///ffNP5C///77LvW6OXr0qPr37y83NzeZTCYlJiZKunOESe/evRUVFWUxbL09EMIc0LVr1zR8+HA1atTIoX/lzoxBgwbprbfe0nfffafVq1dr+PDhGjNmjF566SW1atXK4npOjio6Otr87+vXr2vSpEkqWbKkXnjhBT366KP6559/9M033+jUqVMaOHCgHSvNulKlSmU4xPHPP/9svrChM/j888/tXUK2cOUPxXudPn1aJ0+eVEBAgMO/17lSoLxXbGysqlSpku48d3d3Xb9+3cYVZV3q82MYhjp37qy8efM65Yio6ZkyZYri4uK0du1arV69Wp06ddJTTz2lli1bqlmzZnr88cftXWKmJSYmWozkeLfChQubvyg7i379+qlLly7q2LGjGjVqJJPJpM2bN2vGjBnaunWrFi1aZO8S7+vuazS2aNHCjpVkvzx58iglJUUmk0mFCxfWyZMnzT9e5MuXT+fPn7dzhZIMwIYuXrxofPbZZ0bjxo2N8uXLGy+//LLx2WefGXFxcfYuLVPefvttY8iQIenOGzJkSIbzHNXKlSuNgIAAY/LkycahQ4cMf39/Y/PmzcaCBQuMoKAgY/369fYuES5i7NixxpgxY8x/f/PNN0ZgYKDh7+9vBAcHGwcOHLBjdVnTuXNn48iRI+nOi4mJMTp37mzjih7OCy+8YMyYMcMwDMO4ffu24e/vb/z222+GYRjGtGnTjCZNmtizvCy5efOmUaFCBeN///ufvUvJMYcOHTLeffdd45lnnjECAwONiIgIY9OmTUZycrK9S3ugtm3bGj179jRu375tMT05Odno0aOH0a5dOztVZr09e/YYHTt2NAICAgx/f3+jfPnyRrt27Yw9e/bYu7R/tW7duhnz5883DMMw/vOf/xgNGzY0tmzZYmzbts1o2rSp0bp1aztXaBjsCXNQSUlJWrFihfm6EyNGjFCpUqW0YcMG+fv7Z3gImaP7559/dO7cOV28eFHu7u56/PHH9fHHHys6Olrjx49X/fr17V3ifW3cuNF84dJ7NW7cWP3799fYsWNtXJX1WrRoobi4OEVFRWnGjBmSpMjISHl6eqpfv37mC2vDPurXr6+pU6emO1T9X3/9pddff13ffvutHSrLuk2bNqlPnz7mvz/88EOFhoaqb9++mjBhgqZMmaJZs2bZscLM+/nnn3Xt2rV05129elW//PKLjSt6OG3atFF0dLQKFSpkvu7c7du39d1332n27Nnq16+ffQvMAg8PDxUtWjTNYZWupGjRoipRooQee+wxXblyRcePH1fv3r1VrFgxTZw4UZUrV7Z3iRl666231L17dzVs2FD169c3X2Nv8+bN+ueffzRnzhx7l5hlVapU0YIFC3Tjxg3FxcXJy8tLnp6e9i4rU5o0aZLpZU0mk9auXZuD1WSv8PBwnT59WpI0YMAAvfbaa3r99dcl3XkN3X2Uk70QwhzQqVOn1LVrV12+fFkBAQHavXu3+QN/165d+v77753qi/7Vq1f15ZdfauXKlfrtt99UtmxZvf7662ratKm8vb119epVvfvuu3rvvfccPoTlypVLBw8eTHM8u3TnYqfOcE2te3Xr1k1t2rTR3r17dfnyZXl7e6tKlSpONQpnqjVr1tx3OFpnOhlfujNE/a1bt9Kdd+PGDcc4nCKTLly4YB605uTJkzp27Jg++OAD+fn5qXPnzho8eLCdK8wee/fulY+Pj73LyJIePXro3LlzGjFihPmaRu3bt5ckdejQQR07drRneVnWoUMHzZ07V7Vr11aePHnsXU62+f7777Vy5Upt2bJF+fLl0yuvvKKPPvpIvr6+OnnypEaNGqVhw4Zpw4YN9i41QzVq1NDixYs1ffp0ffnllxbX2HvttdecYvCkjDzyyCNOdb67dGewKlc95P3u8/SKFCmiVatW6cSJE7px44bKlCnjEIcrE8Ic0JgxY+Tj46Ply5fLy8tLFStWNM+rUaOGPvzwQztWlzWDBg3S5s2bJUlhYWF6++230/xKlz9/fnXo0EFffPGFHSrMmldeeUUff/yxbt68qQYNGsjHx0eXLl3Spk2bNHPmTLVr187eJWbJ0aNH5evrq3z58ql27dr2LuehfPHFF/rvf/+r5s2ba+/evWrZsqVSUlK0ZcsWeXl52f0E3My6efOmEhMTzRdjvXr1appREm/evKnNmzc71bkgBQoU0MWLFyXdGQnN29vb/N7m4eGRbmh2JDNmzDDvLTaZTAoPD0/z5eXWrVtKTk5Whw4d7FHiQxk+fLjCw8O1c+dO848xISEhKlWqlL1Ly7Jz587p2LFjqlu3roKDg/XYY4+lea6GDx9up+qybsqUKfriiy90/vx5BQcHa+zYsWrYsKHFl8iSJUsqMjLSKQJzxYoVHWIvRHb59ddftXHjRp07dy7N+5jJZNK0adPsVNmDjRs3zt4l2IzJZHK49zNCmAP6+eefNWnSJPn4+KQ5pKJw4cK6cOGCnSrLuqNHj2rw4MF6+eWXlT9//gyXK1u2rFMMrDB48GDlzp1bs2bN0tSpU83T8+TJo44dO+qtt96yY3VZ17hxY1WuXFmtWrXSSy+95NQXZ/3ss8/0xhtvqFevXlq2bJk6dOigwMBAXb16VT169HCa0UU//fRT87ZlMpnUo0ePDJd1lmu4SVL16tX18ccf6+LFi5o9e7YaNGhgnhcTE6MnnnjCjtU9WJUqVdS9e3cZhqGpU6eqcePGKlq0qMUy7u7u8vX11fPPP2+nKq2za9cuBQQEqESJEmrbtq3FvOvXr+v33393iGvqZNb//vc/c0A5cOBAmvkmk8mpQtiKFSvUvHlztW7dWiVLlsxwuTJlyuj999+3YWWYN2+exo4dq0cffVQlSpRw+CHpM8swDP3999969NFHlTu380aFw4cPa/r06dq/f78uXLigwoULq1KlSurVq5f8/PzsXZ5MRurPrXAY1atXN58flZycrMDAQPMV2L/66iuNHj1aP/zwg73L/FeLi4vTX3/9ZX5R+/n5ydvb295lZdnWrVu1atUqbdmyRe7u7nrxxRfVqlUrhx9WNz1VqlTR9OnT9cwzzygwMFBz5swxX+R08+bNev/997VlyxY7V/lgf/zxhw4dOiTDMDRs2DC9/vrrab54pX7Zr1Chgp2qzLrY2FgNGjRIBw4cUGBgoKZMmWIeJa1t27by9/d3mgu4R0dHq3Xr1ipSpIi9S8kWFSpUMF8W4V6//fabWrdu7dCXQnB1t2/fduovwq+99pqGDBmiUqVK6bXXXrvvso6+5+heoaGhatiwoYYNG+aUpyPc6/vvv1dUVJQOHjyo5ORk80Xb//vf/6pGjRp65ZVX7F1ipn333Xd68803VbRoUTVo0MB8YfDNmzfr/Pnzio6OVt26de1ao/O+ql1YjRo19Nlnn6lOnTrmF7XJZJJhGFq2bFm6w4k7ksxcYPZujj40dXq8vb2d6pfhjISGhio0NFRXrlwxD3/coUMHlSpVSq1atVKzZs0yHE7Y0eTPn998/lSRIkV05MgRcwhLTk7W5cuX7VleppUvX948EIfJZFLdunVVqFAhO1f18IoUKZLh3u7Zs2enOT5/165dCgwMdMi9s860BzIz7vdbbGJiotOd5+Jqnn76aacOydeuXTMf1ZPRgDbOKjExUfXr13eJAPbll19q0KBBCgsLU+vWrfXf//7XPK9EiRJatWqVU4WwCRMm6LnnntPUqVMtnp///Oc/euONNzRhwgRCGNIaOHCg2rdvr8aNG5svFLxw4UIdPnxYJ06c0PLly+1d4n1l5gKzd3PkD4/0xMXFadu2bTp//ny6x39HRkbaqTLrFSxYUF26dFGXLl108OBBjR07VpMmTdKUKVP03HPPKTw83CGuLn8/FStW1J9//qnnnntO9erV09SpU2UYhnLnzq2ZM2c69IhhGYmOjlaFChXSDWHONjri/dx7qHJycrK6dOli/hXWEZ04cUKrVq3KcBCY6dOn26GqzPv111+1d+9e89/r1q3T7t27LZa5efOmvv32W5UpU8bW5T20S5cuac6cOeYRhqOjo1WuXDnNmzdPlSpVcqr3g/uF5OTkZOXKlcuG1WTd/Pnz0/23KwgLC9O2bdsc/sfxzPjkk08UHh6uIUOGKDk52SKEpb52nMnp06c1ZMiQNAHZzc1NHTp0cIgf0whhDsjX11crV65UdHS0vvzyS+XKlUvfffedQkJCNHHixPseE+4IXPkCs9u3b1efPn10/fp1PfLII2mO/3bWECZJ8fHxWrt2rVatWqWDBw/q6aefVsOGDbVt2zZ169ZNkZGRDvGmlZGIiAidPXtWktSnTx+dOXNG77//vlJSUvT00087zaFud3Ol0RGzypGPlN+/f786d+6sJ598UsePH5e/v78SEhJ05swZFS1a1OHfo6U772WpgyOYTKZ0vxznzp1bvr6+5hETncXvv/+url27qkCBAqpRo4Z+/vln8+soNjZWc+fO1ZQpU+xb5ANcuHBBf//9t/nvmJiYNGHr5s2bWrlypXnUUWdwv0N5//77by1btsyhP2fu9fbbb+vtt9/WW2+9pZCQEHl5eaVZJvWyD47u1KlTFiMK3s3T01MJCQk2rujh+Pv7m4eov9fp06dVrlw5G1eUDjtdnwxwSi+//LLRpUsX4/Tp0/YuJdts377d6N+/vxEUFGTUqFHDGD16tHHo0CGLZT777DOjRo0adqrQejdv3jQSEhLsXUaW3Lhxw7h8+bJx6dIlw9/f39ixY4dx+fJli//Onz9vTJo0yahbt669y80R914w2NF06tTJGDx4cJo6d+/ebdStW9fYtm2bnSvMGn9/f2Pfvn32LiPbdOzY0ejZs6dx69YtIykpyeI52rhxo1O8bqKioswX/s3oP39/fyMgIMBYunSpvcvNtPLly2e4rR04cMAoX768jSt6OIcOHTLq1atn+Pv7p/ufM/Xz/PPPGwsWLDAMI+178Ny5c41GjRrZs7ws279/v9GgQQNj1apVRnx8vGEYhhEfH2+sXLnSaNCggUO857EnDMiCU6dOaciQISpWrJi9S8kWzz//vM6fP6+qVatq1KhRCgsLS/e6OtWrV1d8fLwdKrSOcdfITvcbldMRueroiK7kzz//VK9evcyHuaQejli1alW9+eabmjRpkp577jl7lpglf/zxh71LyFYHDhxQVFSU3N3d04ww7OPjY75UgiNr3ry5goODZRiGwsPDNWLECJUtW9ZiGXd3d5UqVcqpzhk17rOH+8KFC+nuSXJkw4YNU968eTV9+nSVKlXKqUdHfPnllxUVFaUyZcooODhY0p3PoL/++kuzZs0yXzvQkVWpUsXiSKykpCQNGzZMw4YNU+7cuXX79m1Jd/byd+3a1e7XDiWEOYgHjRh0N2cbPWjXrl33vYDuunXr7FCVdQICAnTu3Dl7l5FtUkdD9PX1ve9yFStWdIovahmN7DR8+HAFBwc7xUnFDRo0ULFixVxudERXYjKZ5O7uLpPJpEcffVRnz541jyhatGhRHT9+3L4FWunmzZs6depUuu/TjnpuXno8PT119erVdOedPXvWKQaDKlasmPnHvs8//1yBgYGZusyG8f8vodC2bVsVLlw4p8vMlC+//FJffvmlpDuvnfHjx6tAgQIWy9y6dUu//fab043Me/ToUUVFRalOnTr2LuWhvfnmmzp8+LC6detmfo28+uqrunTpkurWratevXrZt8BM6N69u1OdDkMIcxCuNmJQqu+//14REREKCQnRb7/9pjp16ujGjRvas2ePihYt6nQjDI4cOVKDBg1SkSJFFBIS4tTDBkt3rnuWWSkpKWrYsKGmT5/uGMdS3+N+IzuVLFnSaUZ2und0xNDQUPn4+Ni5KtzN19dXp06d0rPPPqvKlStrzpw58vPzMw8CU6JECXuXmCW3bt3SyJEjtXbt2jR7jlI50wBKtWvX1rRp0yzO0TGZTLpx44Y+//zzDM97cVSpeyUyIyUlRVOnTtXzzz/vMCEsKSnJ/B3HMAwlJiamGSzBw8NDTZs2Vc+ePe1RotUqVKjgFHtWM8PDw0PTpk3Tjz/+aHHR9po1a6pmzZr2Li9Tevfube8SssS5v0G6EFcbMShVVFSUwsPDNXDgQAUGBqpv374KDAzUmTNn1KNHD4cfce9ebdu21e3bt82HIt176J7JZEozwpirMAzjvgNF2Jurjewk3TkkSbozIufhw4d17tw51alTR97e3rp586bc3d1dYmhkZ9OmTRvzIDADBgxQ9+7d1bRpU0l39sJ8/PHH9iwvy6ZOnaodO3Zo3LhxGjhwoEaMGKG8efNq7dq1OnnypMVryRkMGjRI7du3V6NGjfTMM8/IZDJpypQpOnLkiEwmk/r162fvEnPU/Q75s4fmzZub38s6d+6skSNHPvDoC2fxzjvvaMiQISpcuLCeffZZp/9hVrozwrWzfTdzVs6/tfzLJScnq2LFig47lPPRo0fVv39/ubm5yWQyKTExUdKdQy169+6tqKgo85cXZ+Bsu7r/TVxtZCfpzpepyZMna/78+UpMTJTJZNKKFSvk7e2tN998U5UqVXKa88IMw8j0a8fNzU3Nmzd32HNdmjVrZv63r6+vNmzYoF9//VU3btxQ5cqV9eijj9qvOCts3LhRb775psLCwjRw4EAFBQWpYsWKatasmQYPHqwtW7Y41d6jIkWKaM2aNZo7d6527typkiVL6sqVK2rSpInFoVawPVf7wblDhw66ffu2Xn31Vaf8YTb1x6TMcqaROCXHv5QIIcwFONqvXnfLkyePUlJSZDKZVLhwYZ08eVLVq1eXJOXLl8/phth2tl3d/yaFCxdWTExMutdr+fPPP53uw0OSpkyZogULFmjw4MEKCQlRo0aNzPPq1aun5cuXO00ICw0NVfPmzdWyZcsHDuFuMpk0duxYG1WWdWfPnpWXl5d50Jd8+fKpVq1aku4cenX27Fmn2t7Onz+v0qVLK1euXMqTJ4/FIDyvvPKKBgwYoFGjRtmxwqzz8vJSnz591KdPH3uXgnukpKToxx9/1LFjx9IcWWEymdS1a1f7FGYFZ/9hNvVatJnlTIclO8OlRAhhyFHly5fXsWPHVKtWLYWEhGj69OkqVKiQcufOrf/H3pnH1ZT/f/x125tStJcQWVpIUqlQtAjZk7GWMmjBDJUwDcWIKGtCoZStFGkhJBIGCWWZCRFp3xTty/394df5uu6NQp17rvN8PDzm3vM5f7zu3O455/15v9+v965duzBw4ECyJdLwCLzg7PQ5Z8+exapVqzB79my2Xp3evXsjNzeXJGUdZ/LkyThz5gyCgoKgq6sLa2trjB8/HiIiImRL6zCmpqaQkZHBrl27iE2lVp4+fYrZs2dT6mFFVlaWCLyUlZVx584dogeEqiYjAF3Gy42UlJRg/vz5eP36NRgMBrGJ/GkgQKUgjOobs62zAgGgpqYG/v7+6N27N8aNGwdpaWmUlpbi0qVLyM3NhZubG4lKO8727dsxYcIEbN68GZqamsR/79+/D1dXVyxevJhsiXQQRtO52NnZEcPyVq1aBUdHRzg5OQH46CL26QWAKnB7evtnhRecnT7n3bt3bfZONDc3E3a7VMDd3R2urq64du0azp49C09PT/z999+YOHEiZs6cCS0tLbIldoiePXti4cKFWLt2LebNm0e2nO9CX18f9+7dg6mpKWxsbLBt2za8fPkSgoKCSEpKwqRJk8iW2CF4qYyX19i6dSt69OhBGKRERkZCRkYGsbGxiImJQVBQENkSv5mCggIUFBRATU0Nv/zyC9ly2oW5uTnx2tPTE0ZGRmxVCLa2tli7di1u3bqFyZMnd7XEb4YKo0ToIIymU/m0j0BeXh5nzpzB69evUVdXh379+kFISIhEdR2HCuntzoSbyy54wdnpc1RUVHDz5k2OJZZ3797lSpfKL8HHxwdTU1OYmpqivLwcsbGxiIqKwunTp9G/f39YW1tjxowZlJgV9OeffyItLQ2bN2/G06dP4eXlRdkZQStXrkRFRQWA/2UhEhMTUV9fjwULFsDFxYVEdR2Hl8p4eY20tDR4enqyODcqKSnB0dERTCYTGzduxKFDh0hU2HEiIiIQEBCAkpISIuDX1NSEi4sL9PX1YWdnR7bEdpGYmIjdu3dzXLOyssLKlSu5ukz8c6gwSoTOx9N0KQwGAyoqKlBTU6NcAAb8L70dHx8PJpOJzZs348qVKzhx4gQYDAZXpLc7E27uP2zFwMAAq1atwqZNm+Dm5kbZAAz4+EAcEhKCXbt24fnz5wA+9u8cP34c4eHhlCrb+ZzS0lIUFBSgrKwMgoKCkJOTw549e2BqaoorV66QLa9dLFq0CAcOHMDly5exYMEClJSUkC2pwzQ1NaG4uBgyMjLEsYULF+LUqVM4e/Ys3N3dKbOr38qnZbzKysosa1Qr4wWAmJgYIkj+nHfv3iEmJoZ4z8/Pjy1btrB9bm7h/fv3kJKSAh8fH8TFxVns3bW1tbnaxIIToaGh2LRpE6ZNm4YjR46w3CP19fWRmJhIorqOwc/Pj6dPn3Jce/r0KeVKeFtHiQAgRok8e/YML1++5JpRInQmjKbTefnyJS5duoTCwkK28j0GgwEfHx+SlHUcKqS3O0J0dDSsra05rjGZTGzYsAEbN24E8PECzc0Dm/Py8vDhwwcMGjQIwMfZR4cPH0Z2djaMjIwwY8YMkhV2nBkzZqCyshJ79+7FwYMHAQAuLi4QFRXFH3/8gYkTJ5KssGN8+PAB8fHxiI6OxuPHj9G/f384OTlh6tSpkJSUxIcPH7Bp0yZs3rwZZmZmZMttF8bGxoiIiICzszNmzJiBRYsWkS2pQ/Dx8eHXX39FUFAQpTcsPoWXyngBYO3atYiIiODoFvr27VusXbuWxbGz1Q6eG1FWVkZxcTEAoH///jh37hzGjh0LAEhKSqKcc+WxY8fg7OwMZ2dntr7dvn374tWrVyQp6zhTpkzBnj17UF9fD3Nzc0hJSaG8vByXL19GUFAQZs+eTbbEDkGFUSJ0EEZxGAwGlJSUuDarFBMTg3Xr1kFYWBhKSkps5TrcXN7GCSqktzvChg0b8Msvv2DChAksx5lMJlavXo3k5GQiCON2/vrrL6ipqWH16tUAPmYtT548iYEDByIxMRG1tbWU7N2xt7fHrFmz8ODBA6LEctiwYejWrRvZ0jqEu7s7kpKSAAATJkzAn3/+CW1tbZZzxMXFMXfuXJw7d44Ehd9O3759cfr0aaxatQpbt26l1HWNj48PysrKqKysJFvKD4PXyni/VIFQVVUFMTGxLlTzfZiYmODmzZuYOHEinJyc4OLiAkNDQwgICKC0tJRy5g9FRUUYNmwYxzVBQUHU1NR0saJvx8PDAwICAjh06BD27dtHHBcWFsa8efPg6upKorqOQ4VRInQQxsW0x9mJj48PycnJJCttm/3798PS0hI+Pj4QFRUlW85305reNjAwINLbAwcOhICAANektzuCt7c3PDw8ICoqijFjxgD4uFO8cuVK/PPPPzhy5Ai5AjvAv//+i/nz5wP4WGIVExMDNzc3LFy4EAcOHMCpU6coGYQBHy3QR40aRbaM7yI7OxseHh6YNGkSYe3Oif79+yMsLKwLlXWcLVu2sP3WxcXFcfDgQQQFBVFuM8bR0RGBgYHQ0dGBvLw82XK+m4ULF+Kvv/6CgIAAxo8fD+BjGe/Dhw8RHh5Oib6WlJQUpKamEu+PHDnCUjIKfKzEuH37NtTV1bta3jfzaZBlYmKCkydPIikpCXV1dTAyMqLUPDrgYz/bo0ePOAb8GRkZUFFR6XpR34iAgAA8PDzg6OiIrKwslJaWQlZWFgMHDoSkpCTZ8jpMTEwMTExMiAzyp6NEWst4Pw3UyIAOwrgQXnJ2Ki4uhpeXF08EYAA10tsdwdraGjU1Nfj9999x8OBB6OjoYPny5cjIyMDRo0ehoaFBtsR2U11dTWSHMjIy8OHDB6Jcb/jw4ZR0rbx+/TqqqqoId7qCggKsW7eOKLFcv349Zfp1zpw5067zxMTEiBED3Epb5V4MBgNLly7tYjXfT2JiIioqKmBubo5BgwaxPewzGAzs37+fJHUdhxfKeHNycogNVgaDgXv37rFVvAgKCmLAgAFYtWoVGRI7TH19PU6cOIGRI0cS42mGDBmCIUOGkKzs25k1axYCAgLQo0cPjBs3DsDHTcBr167h8OHD+OOPP8gV+A1ISkpy/TW4PXS0jJcM6CCMC+ElZyddXV08e/aM4y4RFaFCerujLFiwADU1NXB2dsbAgQORm5uLsLAwys1wU1BQwMOHD6Gnp4fLly+jf//+kJOTA/Axq0zFeVR79uxhKRXduHEjsrOzYWVlhdjYWOzZswdr1qwhUWHHKSoqQlFREcfxDnp6eiQoah+XLl2CgYEBJCQkcOnSpS+ey2AwYGFh0UXKvp/q6mr07duX5T3VaS3jvX//Pt69e0e5Ml47OzvCVc/U1BSBgYFQU1MjWdX3ISwsjF27dkFTU5NsKT+MRYsWoaCgAOvXr8eGDRsAgJhJOXfuXMpVXxQVFSE0NJT43XTv3h3Dhw+HnZ0d5bLkVCjjpYMwLoSXBrSuWrUK7u7uEBYWxsiRIzneAKnWiPspn6a3qcK7d+/Yjv3666/Iy8vDpUuXsH//fsjJyRHnUeX7mTlzJnbv3o3ExET8+++/WLt2LbGWkZHRZqM+N/P69WviwevDhw9ITU2Fn58fxo8fjwEDBiAgIIAyQVhubi7c3d2RkZEBgP0GyWAwuHrA8YoVKxAZGQktLS2sWLHii+dy+2f5nPDwcLIldApiYmKUMkpqC25uOego6urqePHiBU9kWlrx9PSEnZ0dbt68SQT8hoaGlCpFBIBnz55h/vz5aGxsxMiRI6GmpoaysjKcOnUK0dHROHbsGNf3U1KtjJcOwrgQXnJ2ai3b8fLyarNZnUoPK7yAgYFBm98Fk8nE3LlzWY5R5ftZsmQJ5OTk8OjRI8ydO5fFDbGyshI2NjYkqvs2mpqaiP7PtLQ0ACAeKnv16oXS0lLStHUUT09PFBUVwcfHB6qqqlxrJtQWV65cIWYbUcVCv70EBATAxsaG4053cXExIiMjKVN90UplZSWuX7/episv1Waf8crnWbduHdzd3SElJQUTExOeaVXo1asX5dwDP8fX1xe9evXCkSNHWHrAKisr4eDgAF9fX66f4Ua1Ml46CONCeMnZycfHh1JOYT8DvPydTJs2jWONN1UcHj+nX79+iI2NxdChQxEREYFhw4YRJRQlJSWUyVICHwed+/r6En0TVKNnz54cX/MC+/btg7GxcZtB2L59+ygVhN24cQMrVqxATU0NREREOLryUiVoAXjr89jZ2aGxsRErV64EAIiIiLDcjxgMBqVmhbVujnGCwWCgW7du6Nu3LyU2ne7fv4/t27ezmXBISkrCyckJ7u7uJClrP1Qr46WDMC6EF5ydWvnabKba2touUkLTSut30tTUhKysLCgqKkJKSopkVT+O69ev49GjRygsLISTkxOUlJSQlpaG3r17U66m3dnZGb///jtiYmLAz8/PYi6SmppKKeMUeXl5yg37/BROZbxfgkoB8pd6J0pKSiAhIdGFar4fX19fDBkyBD4+PjwRMPPS53FwcOCpTcAFCxawfB4mk8n2+URERPDrr79i9erVXH0N5OfnR0NDA8e1hoYG8PPzd7Gi74MKZbx0EMaF8IKz05dobm5Gamoq4uLikJycjAcPHpAt6aeE14a0lpeXw9nZGRkZGVBUVERBQQFmz54NJSUlREdHQ1RUlGicpgpmZma4cOECnj59ikGDBrH0GGhraxODqanAypUrERwcDF1dXUoFKK18qYyXE9xexhsfH4/4+HgAH3fsfX192Xp2Gxoa8PjxY2IWIlXIzc3FmjVrKB+wtMJLn2f58uVkS/ihhISE4M8//4SRkRHMzMwgLS2NsrIyXL58Gbdv34a7uzuysrJw+PBh/PLLL1/tJyUTIyMj7Nq1C+rq6ixGPTk5Odi9ezdlnxNev36NnJwcjmZQZFdm0EEYl8IrA1o/JT09HfHx8UhMTMS7d+8gJSWFWbNmkS3rp4XXhrRu3rwZFRUViI+PR58+fTB48GBizdDQkFIW25/Sq1cvjvPnfv31V5b3LS0tsLCwwIEDB7iyZPns2bMoLCyEqakp1NXV2a5l3G6DzmtlvI2NjYQLIpPJRG1tLdsuvZCQEKZOnYrffvuNDInfjIaGBgoKCsiW8cPgtc/TSkFBAQoKCqCmpkaZURufExERgUmTJrH1F40dOxY7duxAQkICAgICwGQyce7cOa4OwtasWYP58+fDysoKAwYMgIyMDMrKyvDs2TMoKiqymF1RgQ8fPsDFxQV3794F8L+M/6fXcbI3y+ggjIvhhQGtz58/R3x8POLi4lBQUABBQUE0NjZi7dq1mDdvHuXS2wEBAW2u8fHxoVu3blBXV4eurm4Xqvp2eGlIa0pKCjZt2gRVVVU2V1FFRUUUFRWRpKxrYDKZyMvLa7OchGyqq6vRu3dvlvdU4mul1VRj+vTphHHSggUL4OXlRUkHUU54eXnB3d0d8vLyMDQ0hIAAtR91eO3zREREICAgACUlJcQcVE1NTbi4uEBfX5/o6aECKSkp2LdvH8e1ESNGEM6jI0aMwOHDh7tSWodRUlJCXFwcoqOjkZ6ejqqqKqioqMDa2hozZszgCkv3jrB9+3aUlpbi+PHjmDt3LgICAiApKYnY2Fjcvn0b/v7+ZEukgzBuJDw8HEVFRSyT5Vvx8/ODoqIiV8+eKCwsJAKvZ8+egZ+fHwYGBlixYgVGjBiBsWPHQl1dnXIBGAAcPXoUjY2NqKurA/Bx7klriltERARNTU1obm6GhoYGgoODub7XipeGtDY3N7e5m1pVVcXWzE7TtfCqDTovwGvfza+//oqmpiYsWbIEfHx8EBYWZlmnmvkDL32e0NBQ+Pn5wd7eHoaGhnBwcCDW9PX1kZiYSKkgTExMDHfu3OFYqnfnzh0icGlsbKREECMmJgZbW1vY2tqSLeW7SU1NxcqVKzF06FAAgJycHLS0tKCnp4etW7ciJCQEO3fuJFUjHYRxISdOnIC9vT3HNRUVFYSEhHB1EDZ27FgAgKamJjw9PTFhwgQiGHn//j2Z0r6bo0ePYuXKlXBxcYGZmRnExMRQXV2Ny5cvIzAwEL6+vqirq4O7uzu2bduGrVu3ki35i/DSkFYtLS1ER0fDxMSEbS0hIYFyfS003E1aWhoiIiLa7DWIi4sjQVX7ef36NbKzs2FqaspyPDU1FTt37sTLly8hIyODhQsXYv78+SSp/DZ4zfyBlz7PsWPH4OzsDGdnZ7aKhb59++LVq1ckKfs2Zs+ejX379qG8vBxjx46FlJQUysvLceXKFZw5c4ZwFb1//z5Xu/TxIuXl5VBUVAQ/Pz9ERUVZzJVMTEy4oj+RDsK4kPz8fPTp04fjWq9evZCXl9fFijqGhIQEKisrkZubi6ysLAwcOJDrM0LtZePGjbC3t8eUKVOIY2JiYpg2bRpqa2vh4+OD06dPw8nJqc0SBW6Cl3bA//jjD9ja2mLevHmwtLQEg8FAUlISDh48iJSUFJw4cYJsiT89LS0tuH37Nl69esWxbLKtzSduIzU1FUuXLoWhoSEeP34MY2Nj1NXV4f79+1BQUICenh7ZEr9KQEAA8vPzWYKwrKwsODs7Q0hICMbGxsjJycHmzZuhoKAAc3NzEtV2DG54uPqR8NLnKSoqwrBhwziuCQoKoqamposVfR/Lli2DhIQEgoODcfr0aTAYDDCZTMjIyGDdunVYsGABAGDKlClsfbzcgJmZWbvPbb2nUgUFBQVUVFQA+JjASE5OhrGxMQDgwYMHbBllMqCDMC5EXFwcb9++xYgRI9jWcnNzISIiQoKq9nPz5k3cuHEDcXFxiIuLw+nTpyEvL4+JEydyzFJQiadPn8LZ2ZnjWs+ePfHs2TMAwIABAyif9aMaw4YNQ1hYGPz9/eHr6wsmk4kDBw5AW1sboaGh0NTUJFviT01JSQkWLFiAnJwc4kEFYG2SpkoQtnfvXtjZ2cHNzQ2ampr4/fffoampiby8PCxatAgGBgZkS/wqGRkZbCVHx44dQ0tLC44fPw41NTUwmUw4OTnh6NGjlArCeBmqm1koKSnh0aNHHOegZmRksDjAUgVbW1vMnz8fhYWFKCkpgaysLBQUFFiMbri13zIvLw9iYmJEFo+XGDlyJG7dugULCwvY2dlhzZo1yMzMhKCgIDIzM7nifkMHYVzIyJEjsW/fPhgZGUFRUZE4XlhYiMDAQCKS51YEBAQwZswYjBkzBrW1tbh8+TLi4+MRFhaGkJAQMBgMXLhwAYqKilBWViZbbodQUlJCVFQUx+8gMjISSkpKAD7OFOrRo0dXy/smnj59igMHDuD+/ft49+4dunfvjuHDh2Pp0qWUmkMFfAzEjh07hrq6OlRWVkJCQgKioqIAPjoliYuLk6ywc+HmkqWtW7eie/fuSElJgYmJCSIjIyEjI4PY2FjExMQgKCiIbIntJjs7GytXrgQfHx8YDAYx77Bnz55Yvnw59u7di6lTp5Ks8suUlJSwPRheu3YNWlpaRNkUg8HAzJkz4eXlRYLCjuHo6Ig1a9ZARUUFjo6OXzyXSr2urfCKmcWsWbMQEBCAHj16EPbgTU1NuHbtGg4fPow//viDXIHfCB8fH5SUlIhnAKqwdOlSnD9/HhcuXIChoSEmTZoECwsLSvSvfQ03Nzfi2jxt2jSIiYkhMTER9fX1+OuvvzB79mySFdJBGFfi6uqKX3/9FePHj4eBgQHk5ORQXFyM27dvQ0pKCq6urmRLbDeioqKYMmUKpkyZgoqKCpw/fx4JCQk4efIkTp06heHDh1OqJM7V1RV//PEHLC0tWeq/r169irdv32L37t0AgH/++YcSJUn37t2Dvb09ZGVlYWVlxTLjZPbs2Thy5AhlnB4/RUREhMgYl5WV4ejRozh58iTS0tJIVta5fGnoLtmkpaXB09MTsrKyxDElJSU4OjqCyWRi48aNOHToEIkK24+wsDBaWlrAYDAgKyuLN2/eEL8TMTExFBYWkqzw6wgLC7OUhObl5aGkpIRwTGyle/fulMjqV1dXEz1GVO5t5QQvmVksWrQIBQUFWL9+PTG3cc6cOQCAuXPncnW/e1t8qcyawWBg4cKF5AhrBytXrsTKlSuRmZmJuLg4+Pn5wcvLC8bGxpgyZQqMjY0hJCREtsxvQlRUlNiEBQALCwtYWFiQqIgdOgjjQuTl5RETE4OQkBDcvn0bOTk56N69O+zt7bFw4UJKDjoFgB49emDevHmYN28e8vPzERcXRwwLpQoWFhY4ffo0Dh48iMuXLxOlB0OGDCGGHAKgzFBgPz8/6Ovr4+DBgyy2x6tXr8aSJUvg7++PkydPkqjw6zx8+BBnz55FQUEBevXqhQULFkBFRQWlpaXYt28fzpw5g6amJkoOOY+Ojoa1tTXHNSaTiQ0bNmDjxo0AAH5+fvz3339dKa9DvH//HlJSUuDj44O4uDjKysqINW1tbUplwtTU1PDq1SuMHDkShoaGOHDgAHr06AEBAQHs2rULAwcOJFviVxkwYAAuXrxIlIhfvnwZDAYDo0ePZjkvPz+fzTWVG/l0M49KG3vtgdfMLDw9PWFra4tbt27h3bt3kJSUhKGhISVLEdtTZs3NQVgrWlpa0NLSwrp163D79m0kJCRg3bp1YDKZcHR0xKJFi8iW2GFycnLw8OFDlJaWgsFgQEZGBsOGDWMZlUI2dBDGpXTv3h0rV64kW0anoaSkhKVLl2Lp0qVkS+kwGhoaRMaL6vz777/Ys2cP29wZfn5+2NracvVgSeDjjBYnJycwmUxISUnh1q1biI+Px7Zt2+Dh4YGqqipYWVnB2dmZxQWSKmzYsAG//PILJkyYwHKcyWRi9erVSE5OJoIwbkdZWRnFxcUAgP79++PcuXOEk2pSUhKlNpfs7Ozw9u1bAMCqVavg6OgIJycnAB+bwb80T5Bb+O2337B06VLk5+dDVlYWFy9ehKamJlsG/+rVq3Q/JcnwmpkFAPTu3ZurHoa/FV4qswY+Bo+GhoaEacWZM2eQkZFBsqqOUVRUhHXr1uHWrVts1SGtG02bN29mqcogCzoIo6H5iREVFWXJSHxKaWkpSyqfGzl48CDU1dURGBgIeXl5VFdXw9PTEy4uLpCVlcWhQ4cwePBgsmV+M97e3vDw8ICoqCjGjBkD4OM8tJUrV+Kff/7BkSNHyBXYAcaMGYObN29i4sSJcHJygouLCzF4trS0lONcRG7lU4MheXl5nDlzBq9fv0ZdXR369etHifIdExMT7NixA8eOHcO///6LCRMmYNWqVSznlJWVIScnB4sXLyZJ5bfxpSCYj48P3bp1g7q6OmVKrXnNzKKxsRFnz55FRkYGUU2ira2NadOmUW6eIy+VWf/777+Ij4/HhQsXUFJSglGjRmHbtm0dclAkm9raWtja2qK4uBgODg4YNWoUFBQUwGQyUVRUhOvXr+PUqVNYuHAhoqOjSTe6o4MwLqSurg6BgYG4ePEiCgsLOVo5//vvvyQoo2lpacHp06eJ7+bz+UBUs3AdO3Ys/Pz8oKCgwDJs8tatW9ixYwfbDCFuIzs7G5s3b4a8vDyAj/047u7uuHDhAlxdXSkdgAGAtbU1ampq8Pvvv+PgwYPQ0dHB8uXLkZGRgaNHj1LKOOXTXlYTExOcOHECSUlJqK+vh5GREaWdUxkMBuUehAFg4sSJXyzTlZaWxtmzZ7tQ0Y/h6NGjaGxsRF1dHYCP/W+t12oRERE0NTWhubkZGhoaCA4O5npXOF4ys3j16hV+++03wuFRWloa//77L86ePYv9+/fj0KFD6NevH9ky2w3Vy6xfvXqFhIQEJCQkEL2tTk5OGDduHCQlJcmW12EiIyNRXFyMkydPss1l69evHwwNDTFlyhTMnTsXUVFRpM9ApIMwLsTb2xvx8fGYNGkSVFVVKbczxMts374dISEh0NPTw4gRIyj/3axZswYvXryAg4MDunXrRhiNfPjwAUOGDIGHhwfZEr9IZWUl5OTkWI61BmRtzdqjGgsWLEBNTQ2cnZ0xcOBA5ObmIiwsjBJ9R1+itQeBirSn3LB1SCtN13P06FGsXLkSLi4uMDMzg5iYGKqrq3H58mUEBgbC19cXdXV1cHd3x7Zt27B161ayJX8RXjKzWL9+PQQFBZGYmMhSjvj69Ws4OjrCy8sLYWFhJCrsGFQvs54wYQLExMRgZmaG1atXE/fTt2/fEiXXn8LtpclXrlzBzJkzvzgYW11dHTNnzsSlS5foIIyGnatXr8LDw4P0Pw4aduLi4rB8+XK4uLiQLeWHICkpiYiICFy9ehX37t3D+/fvISkpieHDh2PMmDEsc06oBj8/P9kSvol3796xHfv111+Rl5eHS5cuYf/+/ZCTkyPO4/ab/OfcvHmTrQzp0ywsFTh69CjbsZqaGjQ3N0NERARCQkJ0EEYiGzduhL29PaZMmUIcExMTw7Rp01BbWwsfHx+cPn0aTk5O2LdvH4lK24+npyfs7Oxw8+ZNSptZZGZmYtu2bWz9YH369MGKFSuwZs0akpR9G7xQZl1dXY3Y2FjExcW1eQ6TyQSDweD6KqwXL16wzT/khIGBARISErpA0ZehgzAuhJ+fn3IX1p+FhoYG6OjokC3jh+Ho6Ag9PT3o6urCzc2NkoGLnZ0dx/lY8+bNYznOYDCQnp7eldK+CQMDgzbnfTGZTMydO5flGLffFFspKSnB8uXL8fDhQ0hKShLjEPbs2QNtbW3s3buXKxql2wOnUQdNTU34559/sH37dmzbto0EVTStPH36FM7OzhzXevbsiWfPngH46BBJBfv9Vnr16sUVs42+Bzk5uTavb60OdlSCU5n1lStXUFdXR4kyayplHdtDVVUVpKWlv3qelJQUqqqqukDRl6GDMC5kzpw5OHfuHEaNGkW2lB9CVVUVLl68yHGGBvBxh48qTJ48GcnJyRwbpKnIL7/8gqNHj2L79u0QFRWFtrY2hg8fDj09PQwbNozrDQZ4Mdvg4+PD1UOXv5UNGzbg7du3CA0NhYGBAXH8n3/+gbu7O7y8vCiTleCEgIAARo8ejaKiInh5eeHUqVNkS/ppUVJSQlRUFIyNjdnWIiMjiYG67969Q48ePbpa3jeTlZXFsRcZANErxu24uLhg9+7dUFdXR69evYjjubm52Lt3L+Wv6VQrs9bX1ydbwg+lqampXZvJfHx8bOMeyIDB5Obpnj8phw4dwokTJyAnJwdDQ0NISEiwrHP78L9PycnJwezZs9HQ0IDa2lpISUmhsrISTU1NkJSUhLi4OK5cuUK2zHYTGxuLXbt2ESVUn383AHVuhp/y+vVrpKWlIT09HWlpacjLy4OAgACGDBmCEydOkC3vp6SpqQlZWVlQVFTkeuOA9qCtrQ0vLy9MmzaNbS0mJgZeXl54+PBhl+v60dy4cQPLli3jic9CVS5fvow//vgDysrKGDt2LNHrevXqVbx9+xa7d++Gubk5vL29UVVVBX9/f7Ilf5Fnz57hjz/+wKtXrzgOZKdCmVgrjo6OePLkCcrLyzFgwAAiI/78+XNIS0uzmA0xGAzs37+fRLXtp6ioCEVFRRwD5M/HPtB0Hmpqahg/fvxXM6qlpaW4ePEi6b8bOgjjQr7UUAhQ74LLZDKxe/duaGtrIzo6Gmpqajh//jx27tyJPXv2UMrBjpe+G068efMGd+7cQVxcHO7evUv5z0NlWlpaoKWlhaCgIMr1THHC2NgY3t7eRNP6pyQnJ2PDhg1ITU0lQdmPIzc3F56enigvL/9ifwVN5/P06VMcPHgQjx8/JvoPhwwZgqVLl0JdXZ1seR3CxsYGdXV1cHV1hYqKCkdDqJ49e5KgrOMsWLCgQ+dz++Dt3NxcuLu7E7O0OM2lou+hXUdHHZ2Tk5M7SUn7oMsRuZD//vuPbAk/jMzMTGzevJkoa2tsbAQ/Pz8mT56MiooK/P3335Qq26FS1q49ZGdnIy0tjfhXWlqK/v37Q09PD3PmzKF38EiEj48PysrKqKysJFvKD8HOzg5BQUHQ19eHmJgYcfzDhw8IDg5uVzM1tzBs2DC2ktGmpiY0NjZCRESEEsOaTU1NO1T2SrVrn4aGBnbv3k22jB/CixcvsHv3bo7llVSD24OqjuLp6YmioiL4+PhAVVWV60v4eR2yg6qOQgdhNJ1KQ0MDxMXFwcfHB0lJScLKFfjYFE21gJMqu43txcrKCiIiIpg2bRq8vLwwfPhwSs4G4VUcHR0RGBgIHR0dwnqfquTn5yMvLw8mJiYYMWIEUYZ0584diImJoaioCH///TdxPjf3ijo4OLAFMEJCQlBQUICxsTElHCvNzMxYPsPFixfx4cMHGBkZEd/NrVu30K1bN1haWpKolEZNTQ3l5eVky6DhQGZmJnx9fSnZhkBDPnQQxqU0NjYiKioKjx49QmFhIdavXw8VFRWcP38egwYNgqqqKtkS24WKigry8vKgp6cHDQ0NnDhxAkZGRhAQEEBERATbjCdu5N27d5CQkAAfHx9H+/DPocIDWCtjxozB/fv3ERUVhaysLDx8+BB6enrQ0dFhyVbQkENiYiIqKipgbm6OQYMGsdW5U6ln4urVqxAQEICEhARLeU5rX+WnO5gMBoOrg7Dly5eTLeG7+fPPP4nXhw4dgqKiIg4dOgRxcXHi+Pv377F48eJ2uY1xEy0tLTh9+jQuXrzI0ciCwWAgKSmJJHUdZ/369fDw8ICsrCxGjBgBAQFqPrr9999/OHbsGNLS0lBUVATg41xHfX19zJs376vl/tyIvLw8pUe50JALNX/JPE5ubi4WLlyIiooKaGhoID09HdXV1QA+WiOnpqZiy5YtJKtsH1ZWVkS26/fff8eiRYugr68PBoMBJpPJ9UMyAcDQ0BARERHQ0tL6on14K1Sq/z5w4ACYTCaysrKIksTo6GhUVlZi0KBB0NfX5/qBzbxMdXU1+vbty/KeqlCtTKSjpKen4+XLlxg+fDj69etHtpwOER4ejg0bNrAEYADQrVs3LF68GN7e3liyZAlJ6jrO9u3bERISAj09PYwYMYJjDxWVUFVVhba2Nn777Tfw8fFBWFiYZZ0K4zdCQ0Ph5+cHABg4cCDh/pyfn4+zZ8/i7NmzcHNzo4zpWCsrV65EcHAwdHV1KbUBS8Md0EEYF/L3339DSkoKp0+fhoSEBItxhZ6eHnbs2EGiuo5hb29PvNbW1kZ8fDxSU1NRV1cHAwMDDBw4kER17cPHx4ew0uVF+3AGgwE1NTWoqanB0tISaWlpOHXqFNLS0vD06VM6CCMRXuuf4BVcXV0hJCREbIadPHkS3t7eAD6WJR48eJBSYywqKyvbnJf1/v17rpin0xHi4uKwfPlyuLi4kC3lh7BhwwbEx8fDwsICffv2pVxQmZKSgq1bt2LatGlYsWIFMSKglYKCAuzZswe+vr5QVVXF6NGjSVLacc6ePYvCwkKYmppCXV0d3bp1Y1nn9moFNTW1Dj3TUGmTmQrQQRgXcvfuXfj7+0NKSoptjoGsrCxKSkpIUtZx0tLSoKGhQZS2KSoqYtasWQA+7uqnpaVxvfnD9OnTidczZswgUcmPJzc3F/fu3UNaWhru3buH3NxcCAgIQENDg8hacjMdNXPgtcGUVKO2thb//PMPCgoK2GYGUmn0Rnp6OlavXk28DwoKgo2NDdasWQMvLy8EBARQKggzMDCAn58fFBUVWX7zd+7cgb+/P8tcNyrQ0NAAHR0dsmX8MC5evIg1a9Zg3rx5ZEv5JkJCQjBu3Lg2K18UFRWxZcsWVFdX4/Dhw5QKwqqrq9G7d2+W91RizZo1RBDW3NyMo0ePQlBQEObm5pCWlkZpaSmSkpLQ1NREmeszlaCDMC6En5+f4ywQ4ONsg19++aWLFX07tra2RCnf57x69Qq2trb0zgqJWFhYQFhYGFpaWrCysoK+vj60tbUhKipKtrR2IS4uzrKL9+jRI5SWlkJNTY0wF/jvv/8Ie2oq8vTpUxw4cAD379/Hu3fv0L17dwwfPhxLly5lmanD7dy9exfLly9v0+2RSkFYeXk50c/6/PlzFBQUwNbWFmJiYpg+fTp+//13khV2jI0bN8LJyQl2dnbo1q0bevTogYqKCrx//x7q6upElo8qTJ48GcnJyZQKhL+EhIQEy2BjqvH48WOiFPFLWFtbw83NrQsU/TioXq3w6TV3+/btUFdXR2BgIEufm4eHB5ydnVmM1Wh+DHQQxoXo6ekhJCQExsbGxA+htYcqMjKSUjeWL42hq62thYiISBeq+X7q6uoQGBhINHx/vpsPUCtdf+zYMWhpaVHWVjcwMJB4HRMTg1evXuHYsWMsO5OvX7+Gk5MTzMzMyJD4Xdy7dw/29vaQlZWFlZUVEVhevnwZs2fPxpEjR6Crq0u2zHaxceNGDBo0CH/99Vebs46oQvfu3ZGXlwddXV2kpqZCVlYWAwYMAPBxN7mlpYVkhR1DTk4O0dHRuH79OjIzM4m5WlpaWpS0RR86dCh27dqFsrIyGBkZEeYvn0IlNzt7e3scO3aMMLWiGk1NTe261wsLC6OpqakLFNFw4uzZs9i6dSub0QgfHx/mzJmDNWvWcH17QkxMTIfOnzZtWqfoaC/U+zX/BLi5uWHOnDmwsrIiZrkcP34cz58/x+vXr3H69GmyJX6Rhw8f4sGDB8T7uLg4tqbh+vp6XLlyhXIN7N7e3oiPj8ekSZOgqqpK6QdJAJR5gG8PgYGBcHV1ZQnAAKBPnz5Yvnw5duzYwVJaSgX8/Pygr6+PgwcPsjx8rV69GkuWLIG/vz9OnjxJosL2k5eXh3Xr1hHBCpUxNjaGn58f/vvvP5w9exZTp04l1p4/fw5lZWUS1X07xsbGlAy6Pqe1VDQ/Px/nz59nW6faAN03b97g2bNnsLCwgJ6eHsegkpvdRPv164fU1NSvlrVev36dxYiIKrS0tOD27dt49eoVx43ZT3vjuZm6ujrk5eVxXMvLy2NzGeVG1qxZw/K+tVLm04TAp9UzdBBGw4aqqiqio6MREBCA+Ph48PPz49q1azA0NISfnx/bQya3cePGDWJYKYPB4JiuFxAQgKqqKjZs2NDV8r6Lq1evwsPDA/PnzydbCs1nFBYWttlgzGAwCEtkKvHvv/9iz549bLvf/Pz8sLW1xYoVK0hS1nF0dHTw6tUrGBkZkS3lu/Hw8EBzczNu3LgBExMTFsv6y5cvU6qn5VOKiopQVFTE8WGL23t3P4Vqg6W/xtWrV4nsxL1799jWuX2kw4wZM+Dr64sBAwa0+dAbExOD8PBwtodobqekpAQLFixATk4OUbEEsD7oUyUIMzc3h5+fH0RERGBubo5u3brh/fv3uHz5Mnbs2AFzc3OyJX6VtLQ04vXr16/x+++/Y+rUqbC0tISMjAxKS0uRmJiI2NhY7Nq1izyh/w+D+aV6MRqa70RNTQ2RkZEce8KoyMiRI+Hr60vY69JwD/Pnz0d5eTkOHjzI0j+Rm5uLJUuWQEZGhnL1+wYGBli9ejVHQ5jo6Ghs374dt2/fJkFZx8nLy8Pvv/+OWbNmwdDQkM1FDKDWjD1eIjc3F+7u7sjIyADAXkZOtcwRDXfR0tKCZcuWITk5Gf369YOJiQnhkJifn4/U1FRkZ2fD1NQUAQEBlHIgdnV1RV5eHnbv3g0TExNERkZCRkYGsbGxiImJQVBQENdvnLfy4cMHrFu3DpcvXwbwcbO8qakJTCYTFhYW2LJlC9sYC27G3t4ehoaGHMdrHDx4ELdu3cLRo0dJUPY/6EwYTafSOiOMV5gzZw7OnTtHB2FciLe3NxwcHDB+/HgMGDCA6J96/vw5pKWliewslRg7diz8/PygoKDAkkG6desWduzYAVNTUxLVdQwJCQkoKSlh/fr1bT5k0Q/65ODp6YmioiL4+PhAVVWVkj2i58+fx8iRIyEpKUkcKyoqgoyMDPj5+VmOnT17Fo6OjmTI/Cays7OhqqpKtoxvho+PD/v27UN4eDjCwsIQEhLCsq6srIx169Zh/vz5lArAgI+ZF09PT8jKyhLHlJSU4OjoCCaTiY0bN+LQoUMkKmw/4uLi2LNnD7Kzs4neUDk5OQwZMoSSf38PHjzAb7/9xnFNU1OTK0YH0EEYl+Do6Ig1a9ZARUXlqzcHbp87wYn6+nrk5uZyLHPR1NQkQdG3ISIigvT0dMyePRuGhoZstflUcnjjNVRVVXH58mVER0cTNxB1dXX8+uuvmDFjBtuAUyqwZs0avHjxAg4ODujWrRukpKRQXl6ODx8+YMiQIVzfJP0p7u7uuH//Puzt7Sk562jy5Mnw9/fHwIEDMXny5K+eHxcX1wWqfgyZmZnw9fWllFnF57i6urI48TY3N2PMmDGIiopiuccUFhZi9+7dlArCrKysoK2tjZkzZ2LixImUckhuhcFgwNbWFra2tigsLCTKw+Xl5aGgoECyum/n/fv3kJKSAh8fH8TFxVFWVkasaWtrIygoiER134aqqiolg67PkZKSIjZnPichIQFSUlIkqGKFDsK4hOrqamImGNXmTHyJhoYGeHl5ITY2lm3mWStU2v1utdnNz8/Hw4cP2dbpIIxchISEMGfOHMyZM4dsKT8ESUlJRERE4OrVq7h37x7ev38PSUlJDB8+HGPGjGFzseJmbt++DW9vbxYTCyoxePBgYnSDpqYm5Xbsv4S8vDyl/pY4wamzgle6LQ4ePIgzZ87A29sbPj4+GD9+PGbOnEnZWWgKCgqUDrw+RVlZmbBu79+/P86dO4exY8cCAJKSkihXYt3c3IyMjIw23Z/JNrLoCI6Ojli/fj3evHlDzD0rKytDUlIS0tLSsHHjRrIl0kEYt/BprwrV+la+xL59+3Dz5k1s3boVbm5uWL9+PX755RfExsbizZs3+Ouvv8iW2CF4rbySVykrK+OYdW3tQ6AKjo6O0NPTg66uLtzc3FjKqqiGvLw8xz4wquDs7Ez0GrY1dJaqrFy5EsHBwdDV1aXcQ+PPgImJCUxMTPDu3TvExsbi7NmzmDt3LlRUVDBz5kxMmzYNMjIyZMv8KRkzZgxu3ryJiRMnwsnJCS4uLjA0NISAgABKS0spNffsyZMnWL58OQoKCjhuYDAYDEoFYbNmzYKsrCwOHDiA7du3o6mpCQICAtDQ0EBgYCBXlPPTxhxcRn19PWxsbLB69Wqe6DuytLTEb7/9hhkzZkBTUxNRUVEYPHgwgI8OYyIiIpQZBMpr3w2vUVFRgb///huXLl1imzXDZDIpaS6watUq3Lt3D8XFxRAVFYW2tjaGDx8OPT09DBs2jFK9OwkJCQgPD8fBgwdZ+naogpqaGoYNG4ZJkyZhwoQJXFHK8qNwdHTEv//+Swxn/jxYpkIJ/OcmUM3NzdDU1ER0dDRLOWJGRgZmz55NuWvB5zx9+hRbtmzBvXv3wM/Pj9GjR8POzu6rNvA0ncujR4+QlJSEuro6GBkZwcTEhGxJ7cbGxgb19fXw9PRE//79OZaMU3UjraWlBeXl5UTpKLdAZ8K4DGFhYRQVFXHVH8n3UFhYiL59+4Kfnx/CwsKoqqoi1qZMmYJVq1ZRJgjjte+G1/D09ERaWhqWLl3KEzPcAGDHjh0APlrtpqWlIT09HTExMdi3bx8EBAQwZMgQnDhxgmSV7SMuLg75+fkYO3YsJR/0//zzTyQkJGDTpk3YsmULjIyMMHnyZJibmxNlilSlurqaxcGNl0riealsFACqqqoQGxuLM2fO4OnTpxgyZAgsLCxw/fp12Nvbw8XFBcuWLSNb5k/LkCFDMGTIELJlfBMvXrzArl27oK+vT7aUHw4fHx9XZovpIIwLGTduHC5cuMAT83RkZWWJwEtZWRl37twhPldOTg6Jyr4NXvpueI07d+7A09OTUuUS7aVPnz7o06cP9PX1oaOjg7i4ONy9e5dlKDq3U11djT59+rC8pxILFizAggULkJeXh/j4eMTHx8Pd3R2ioqIwMzPD5MmTMWrUKEqWjPJKCbybmxubAc/KlStZMsZUGDjLiZs3byI6OhpXrlyBsLAwJk+eDB8fH6ipqQEAlixZgtDQUAQGBtJBGM03oaKiQrnr8te4ceMGLl68iMLCQrbfPoPBoC3qadjR0dHBjh07sHTpUhgbG0NGRoZtN48qLlb6+vq4d+8eTE1NYWNjg23btuHly5cQFBREUlISJk2aRLbEDsFL3w2vISEhgR49epAt44eSnZ2NtLQ04l9paSn69+8PPT09zJkzh1IDdHnlQb9nz55YunQpli5dimfPniEhIQEJCQmIj49Hjx49MH78eEyaNAnDhw8nW+pPxfTp09mOtZa+fw7VvpuxY8eisLAQOjo68Pb2xoQJEzi6verq6rJUm9B0Durq6h06nyqlr2vXrsXmzZsxaNAgnnBHPHToEPz8/NCzZ0+oqqpyZSkl3RPGhbTubLUFlXpbSkpKUFFRgYEDBwIAQkNDkZiYiPr6ehgZGcHFxYVSdru89N3wGsePH8fVq1dx4MABCAjwxv6SmpoaREREMG3aNBgbG2P48OGU7Kf6GcjIyEBkZCTOnDkDBoOBp0+fki2pQ7S0tOD27dt49eoVR1c0e3t7ElTRAICvry9mzpxJ2QfjtWvXduj8LVu2dJKSH4OamhrExMRgbm4ODQ2Nr55vZ2fXBaq+n8mTJ6OkpARVVVWQk5PjWDIeGxtLkrqOY2pqClNTU3h6epItpU1440mFx7hy5QrZEn4YsrKyLEMMFy5cSGkLd176bniNly9fIjs7GxYWFtDT02Ob4QaAqy/GnBgzZgzu37+PqKgoZGVl4eHDh9DT04OOjg7ExMTIltdhnj59igMHDuD+/ft49+4dunfvjuHDh2Pp0qXtepjhRpqampCamor4+HgkJyeDyWQSm05UoaSkBAsWLEBOTg4YDAbhjPZplp8OwsiDSvMAOfH5xmRRUREqKiogKSlJ2IZXVlaiR48elLCu37hxIxISEhAXF4fMzExYWVlh8uTJLOXWVITXRm+8e/cOZmZmZMv4InQmjKZTqampwdOnT1FSUgIGgwEZGRkMHjwYIiIiZEuj4TG+ZjfLYDAoGUQzmUxkZWURJYnp6emorKzEoEGDoK+vT5kHtHv37sHe3h6ysrKwsLAgHr4uX76M0tJSHDlyBLq6umTLbDd37txBQkICLl68iMrKSvTs2ROTJk3CpEmTMGDAALLldQhXV1fk5eVh9+7dMDExQWRkJGRkZBAbG4uYmBgEBQWxGHfQdD1FRUUIDQ1l28Cws7ODvLw82fLazfXr1+Hl5QUfHx8WJ8d//vkHf/75JzZs2EAZR8GSkhKiHPnx48fQ0NDA5MmTMWHCBEp9J7yKq6sr+vbty9U9knQQxsVcv34djx49QmFhIZycnKCkpIS0tDT07t2b63/gNTU12Lp1K2JiYtDY2MiysyokJIQZM2Zg9erVlHYVq62t5djkTc/ZoeksiouLkZaWhlOnTiEtLY1S5a+zZ8+GmJgYDh48yFIu2tzcjCVLlqCmpgYnT54kUeHXefz4MeLj43HhwgUUFxez9IBRdXAuABgbG8PT05Mor/rU6n3//v1IT0/HoUOHSFb58/Ls2TPMnz8fjY2NGDlyJLGBcevWLQgKCuLYsWOUCfwnT56MRYsWcTRQOnv2LA4fPoz4+PiuF/advHnzhgjIXr16BTs7O6xevZpsWT81t27dgpeXFywtLWFkZMSxOubT8RVkQJcjciHl5eVwdnZGRkYGFBUVUVBQgNmzZ0NJSQnR0dEQFRXFhg0byJbZJk1NTbC3t8ejR48wbtw4jBw5EoqKimAymSgsLERqaioiIiKQlZWFY8eOUcrynclkIjAwEBERESgpKeF4DlUeimm4n9zcXNy7dw9paWm4d+8ecnNziWGTixYtopSV8L///os9e/aw9evx8/PD1tYWK1asIElZ+7C0tMSbN28IN8RJkyZR1g3xc96/f0/MzxEXF0dZWRmxpq2tjaCgIBLV0fj6+qJXr144cuQIS09oZWUlHBwc4OvrS5kg+fXr121uVEpKSuLNmzddK+gHISsrC2VlZfTs2RMvX75k+Q1RiaqqKly8eLHN3lAqlfQ7ODgAAIKDgxEcHMxSaskts0PpIIwL2bx5MyoqKhAfH48+ffqwODwZGhpy9SwdAIiJicGTJ08QFBTEcaixjY0Nrl+/DmdnZ5w7d46jqxW3EhoaitDQUPz222/YuXMnnJycwM/Pj4SEBDQ2NsLR0ZFsiT89r1+/Rk5ODscsJdWcKy0sLCAsLAwtLS1YWVlBX18f2tralMwgi4qKtvlgUlpayvWfqW/fvlixYgXMzMx4rpxaWVkZxcXFAID+/fvj3LlzGDt2LAAgKSmJzu6TzP3797F9+3Y2Ux5JSUk4OTnB3d2dJGUdp3///ggKCoKenh5LX+uHDx8QFBSE/v37k6iuYzQ0NOD69euIj4/HtWvXIC4ujvHjx+P48eMYNmwY2fI6TE5ODmbPno2GhgbU1tZCSkoKlZWVaGpqgqSkJMTFxSkVhIWFhZEt4avQQRgXkpKSgk2bNkFVVRXNzc0sa4qKiigqKiJJWftITEzE1KlTOQZgrRgbG2Pq1Kk4f/48pYKwqKgoLF++HPPmzcPOnTthbm4OTU1NODs7w8nJibK7eLzAhw8f4OLigrt37wIAR3MBsne9OsqxY8egpaXFMueIqowdOxZ+fn5QUFBgmbN369Yt7Nix46s9fWRz4MABsiV0GmPGjMHNmzcxceJEODk5wcXFBYaGhhAQEEBpaSnc3NzIlvhTw8/PzzErAXwMBKiUjfX09MRvv/0GExMTjBgxgiitvHPnDpqbmymR0btx4wYSEhKQlJQEBoMBc3NzBAYGwsDAgFKVPZ+zdetWDB06FLt37yYy4Gpqajh//jx27tyJ3bt3ky2xQ1ChUoQOwriQ5ubmNm3bq6qqICgo2MWKOkZWVhZmzpz51fNGjx6NzZs3d4GiH0deXh7U1dXBz88PAQEBYiYLHx8f5s6diz///BOrVq0iWeXPyfbt21FaWorjx49j7ty5CAgIgKSkJGJjY3H79m34+/uTLbHDUMmo4musWbMGL168wKJFiyAuLg4pKSmUl5fjw4cPGDJkCGUMRngRV1dX4rWJiQlOnjyJpKQk1NXVwcjIiDJGCZ/CS2VVRkZG2LVrF9TV1dG3b1/ieE5ODnbv3s2yqcHt6Ojo4NKlSwgNDUVmZiZevnwJWVlZzJ49G3Z2dixuytzKb7/9BjExMZiZmcHY2BhCQkL48OEDkpKSOJ5PlQqMzMxMbN68mdj0a2xsBD8/PyZPnoyKigr8/fffOHXqFMkqeQs6CONCtLS0EB0dzfHGl5CQwPUN4O/evYOcnNxXz5OVlcW7d+86X9APpHv37qipqQEAKCkp4enTpzA0NAQAVFRUoK6ujkx5PzWpqalYuXIlhg4dCgCQk5ODlpYW9PT0sHXrVoSEhGDnzp0kq/x5kZSUREREBK5evYr09HRUVVVBUlISw4cPx5gxYyi9g8xrDBkyBEOGDCFbxjfDa2VVa9aswfz582FlZYUBAwZARkYGZWVlePbsGRQVFTs8h4tsZGRkKJ9dra6uRmxsLOLi4vAlfztu6DtqLw0NDRAXFwcfHx8kJSWJEmUAGDBgAP777z8S1X0bMTExiIiIaLNF4f79+ySo+h90EMaF/PHHH7C1tcW8efNgaWkJBoOBpKQkHDx4ECkpKThx4gTZEr9IY2Nju4blCggIoKmpqQsU/Th0dHTw6NEjmJiYYNKkSQgICEBpaSkEBAQQGRlJBGQ0XU95eTkUFRXBz88PUVFRlgDfxMQEy5cvJ08cDf755x/k5+fD2tqabXbLmTNnoKSkxGJZTUPzrfBaWZWSkhLi4uIQHR1NbGCoqKjA2toaM2bMoOTMQCpDxVEn7UFFRQV5eXnQ09ODhoYGTpw4ASMjIwgICCAiIqJdm+vcxLlz5/DXX39h+vTpePDgAaytrdHS0oLk5GRISEhg6tSpZEukgzBuZNiwYQgLC4O/vz98fX3BZDJx4MABaGtrIzQ0lHRLzfYQHx+P9PT0L56Tn5/fRWp+HMuWLSN68hwdHVFVVYX4+HjU19fDyMgIf/31F8kKf14UFBRQUVEB4OPNJDk5GcbGxgCABw8eQFhYmEx5Pz27du1qc3BmeXk5IiMj6VIXmh8CL5ZViYmJwdbWFra2tmRL+S7q6uoQGBiIixcvorCwkGOpKLdnjnr27Em2hE7BysqKyHb9/vvvhANv6wD3rVu3kqywY4SEhMDZ2RlLlixBZGQk5s6dC01NTXz48AGLFi3iis0LOgjjUoYNG4Zjx46hrq4OlZWVkJCQ4Hr3sE9prysN1aaz9+vXD/369QMACAkJwdPTk1JlLbzMyJEjcevWLVhYWMDOzg5r1qxBZmYmBAUFkZmZCXt7e7Il/tQ8f/4cv//+O8c1TU1Nnja+oOlaeLGsilfw9vZGfHw8Jk2aBFVVVa7vcf+Z+PQeqa2tjfj4eKSmpqKurg4GBgYYOHAgieo6zuvXr6GjowN+fn7w8/Pjw4cPAABxcXEsXrwYPj4+pD8X0EEYlyMsLAxBQUFKWSL/LDe4goICFBQUQE1NrU0jFZquw83NDbW1tQCAadOmQUxMDImJiaivr8dff/2F2bNnk6zw54bBYOD9+/cc1yorK9mcYLmNjmYgqGCPzKvwQlnVsGHD2r1JyWAwvlp5wi1cvXoVHh4emD9/PtlSaL6CoqIiZs2aRbaMb0ZcXJzItMrLy+PFixcYMWIEgI8GeK2VM2RCB2Fcyo0bNxAQEIAnT56gqakJAgIC0NTUhIuLC0aPHk22vE6ByWRi3bp1WL58OZSUlMiW0yYREREICAhASUkJGAwGoqKiiO9GX18fdnZ2ZEv8KREVFWXJFltYWMDCwoJERTSfMnToUBw/fhzjxo1jG5p54sQJwlCFWxEXF2fR/ejRI5SWlkJNTY2w2f7vv/8gKytLOVOLtLQ0aGhocCzPqa6uxtOnT6Gnp0eCsm+DF8qqHBwcKFcp0h74+fmhoqJCtgyan4DBgwcjKysLo0ePhqmpKfbt2wcmkwkBAQEEBQVBW1ubbIlgML9k60JDCtHR0fD09ISuri7GjRtH3OAvXryI9PR0bNq0qV0W8FSjubkZgwcPJoIabiQ0NBR+fn6wt7eHoaEhHBwcEB0dDU1NTRw9ehSJiYk4efIk2TJpaLiOBw8ewNbWFioqKpg+fTpkZWVRXFyMmJgY5OTkIDw8nCtuiu0hJiYGQUFBOHDgAHr37k0cf/36NZycnLB48WJKzT9UV1dHREQEtLS02NYeP34MGxsbru/T+RIFBQWULqviJQICAvD69Wts376dbCk0PM7Dhw+Rn5+PiRMnoqqqCh4eHkhJSUFLSwuGDBmCHTt2oFevXqRqpDNhXMi+ffswffp0+Pj4sBxfsGAB1q5di8DAQJ4MwgB80eqVGzh27BicnZ3h7OzMVj7Vt29fvHr1iiRlNDTczbBhwxAaGort27fDz88PLS0t4OPjIwyHqBKAAUBgYCBcXV1ZAjAA6NOnD5YvX44dO3ZQKgj70nW3traWUuXwAHtm79OyqurqaqSlpVEqs/cphYWFKC4uhpycHBQUFMiW02FERESQnp6O2bNnw9DQEBISEizrDAYDCxcuJEccDU+hra1N3FckJCSwf/9+NDQ0ED2j3AAdhHEh5eXlsLKy4rhmZWWFCxcudLEimlaKioowbNgwjmuCgoLEDDEaGhp2hg8fjlOnTlHWcKiVwsLCNkvFGAwG4aDKzTx8+BAPHjwg3sfFxbH1FdXX1+PKlSuEGRFVsLW1bTOz9+rVK9ja2lIusxcREYH9+/ez/G3JycnBycmJUv2ufn5+AD66Iz98+JBtnQpBWEednbm5veJnQ0hIiHBN5QboIIwLGTp0KJ48eYKRI0eyrT19+pRy/Qa8hJKSEh49esRxHlhGRgZd605D0w5EREQol135FC0tLezatQvq6uos5Sy5ubnYvXs31/e3Af/rOwY+PviGh4eznSMgIABVVVVs2LChq+V9F7yW2Tt48CB27tyJqVOnwtLSEjIyMigtLUViYiK8vb1RWVmJpUuXki2zXfCCcZepqWmH+vWoFvDTdB10EMaFrFq1CqtWrUJDQwPMzc0hJSWF8vJyXL58GTExMdixYwfLINru3buTpvVnY9asWQgICECPHj0wbtw4AEBTUxOuXbuGw4cP448//iBXIA0NTafj7e0NBwcHjB8/HgMGDCD6dp8/fw5paWkiuOFmli1bhmXLlgEA1NTUEBkZyTFzRBV4ObMXHh6ORYsWwd3dneW4qakppKWlER4eTpkgjBf49PddU1MDf39/9O7dm+jhLy0txaVLl5Cbmws3NzcSlXac8vJyHDlyBI8ePUJhYSECAgIwYMAAHD16FEOHDqVU2TgVoI05uBA1NTXi9ecuYp8fA3hnl6W5uRmampqE0QW38vfff+P48eNgMBhEXwsAzJ07l54ZxgVcv36duIE4OTlBSUkJaWlp6N27N+Tl5cmWR8MjNDQ0IDo6GpmZmSgpKYGsrCy0tLQwY8YMejA4CQQEBLBk9jg92nya2dPR0elqid/MsGHDEBAQwLE65ubNm1i2bBlLAEoF6uvrkZubi/r6erY1br7/f46npyeam5uxZcsWtrW1a9cCAMc1buTJkydYuHAhunXrBj09PcTGxhJGadu2bUN+fj527dpFtkyegs6EcSE+Pj48aU3LK3h6esLOzg63bt1CRUUFJCUlYWhoSJcikkx5eTmcnZ2RkZEBRUVFFBQUYPbs2VBSUkJ0dDRERUUpV1ZFw70ICQlhzpw5mDNnDtlSfgjNzc3IyMhAYWEhMVvnU6ZNm9b1ojoAr2X2PmXUqFG4detWm0EYp/J4bqWhoQFeXl6IjY1tczYglTaWExMTsXv3bo5rVlZWWLlyJWWCsC1btkBbWxuBgYFgMBg4d+4csTZ06FDaj6AToIMwLmTGjBlkS/hhXL9+HaNHj25XUMnPz4+wsDD07du3C5R9H7169cKvv/7KcuzevXsIDAzEkSNHSFL1c7N582ZUVFQgPj4effr0weDBg4k1Q0ND7N+/n0R1NLxKWVkZx918KjXjP3nyBMuXL0dBQQHHDBKDweD6IOxTeKHv6FNmzpyJDRs2oLy8HGZmZkT5a1JSEm7fvg1vb288efKEOJ+bM0n79u3DzZs3sXXrVri5uWH9+vX45ZdfEBsbizdv3uCvv/4iW2KH4Ofnx9OnT9vs4W+tlKECjx49wt69eyEoKMgWIEtJSaGsrIwkZbwLHYRxITdu3MCoUaPaXA8LC4OtrW0XKvp2lixZAgUFBUyfPh0zZsz46kwGfX39LlL24ykrK8M///xDtoyflpSUFGzatAmqqqpsNxBFRUVKONbRUIOKigr8/fffuHTpEpqamljWmEwmGAwGpXbzvby8IC4ujqNHj6J///4QFBQkW9IPgVdK3lr7vc6ePYuzZ8+ylVs6OjoCoMbfXmJiIpYtW4YJEybAzc0NWlpaGDx4MKZNmwYPDw8kJyfDxMSEbJntZsqUKdizZw/q6+vZeviDgoIo5VwpKiqKDx8+cFzLz8+nhP9AR5+Nw8LCOklJ+6CDMC7kt99+w9y5c7F69WoWF6fCwkJ4eHggPT2dMkFYQkICoqKicPr0aRw8eBC6urqwsbGBpaUlV9mE0lCf5uZm/PLLLxzXqqqqeObBkoZ8PD09kZaWhqVLl0JVVZXyf1svXrzArl27KL0J9im8VvJG9oPij6SwsBB9+/YFPz8/hIWFUVVVRaxNmTIFq1atgre3N4kKO4aHhwcEBARw6NAh7Nu3jzguLCyMefPmwdXVlUR1HWPUqFHYv38/y/w2BoOBuro6hIWFUSI4FhcXZ6m8evToEUpLS6GmpkZkkP/77z/IyspyhdM4HYRxIf7+/ti4cSNu3ryJ7du3Q0tLC2fPnsXmzZshJyeHU6dOkS2x3aiqqsLDwwNubm64du0aoqOjsXbtWmzcuBGTJk2CtbU1S9kYDc23oqWlhejoaI43ioSEBEo14tNwN3fu3IGnpyelSvS+hIqKCqqrq8mW8cPgtZI3XgmOAUBWVpYIvJSVlXHnzh0YGRkBAHJyckhU9m0ICAjAw8MDjo6OePbsGWHSM3DgQEhKSpItr0O4u7tjzpw5sLS0xIgRI8BgMLBr1y68ePECDAaDEu7PgYGBxOuYmBi8evUKx44dQ+/evYnjr1+/hpOTE8zMzMiQyALtjsilFBUV4c8//8Tt27ehoaGBx48fY8GCBXB1daV8BqmoqAhubm5IS0sDg8HAgAEDYGdnB2tra7KlfRcXL17EH3/8QakdVl7iwYMHsLW1hZaWFiwtLbFlyxY4OjoiOzsbKSkpOHHiBKVKkGi4F1NTU2zYsIESO8Pt4e7du9i8eTN27NgBVVVVsuV8N5aWlvjtt98wY8YMaGpqIioqitjs8/DwgIiICKWyLZ9SW1vLsbySCqViALBu3Tp0794dq1evRmhoKLZt2wYzMzMICgoiKSkJkyZNgo+PD9kyf1qqqqoQGhrKZjxmb29Pmb+xVsaNGwdXV1dYWlqyrV24cAE7duzA5cuXSVD2P+hMGJciLy+POXPm4O7du8jMzIS6ujoWL15M6QAsOzsbUVFRiI2NRVVVFcaPHw8LCwukpKRgw4YNyMjIwMaNG8mWycalS5fadd7Dhw87VwjNFxk2bBjCwsLg7+8PX19fMJlMHDhwANra2ggNDaUDMJofxqJFixAeHo6RI0dCQID6t9FNmzahpKQEkydPhpycHLp168ayzmAwEBsbS5K6jsNrJW8fPnzAtm3bcPHiRZbP8ilU2fxbuXIlKioqAAALFy4E8LFPrL6+HgsWLICLiwuJ6r6NyspKXL9+HYWFhWwBMoPBoMRnqq+vx/bt2zFlyhSsWLECK1asIFvSd1NYWNimKRyDweCKPnHq3z14kJqaGvj4+CA6OhrTpk2DlZUVUb7n5eWF8ePHky2x3VRXVyMhIYGYp6OiooJFixZh2rRpkJKSAvDRxtXIyAje3t5cGYR15GJEjxYgl2HDhuHYsWOoq6tDZWUlJCQkICoqSrYsGh7j5cuXyM7OhoWFBfT09Ij+iU+h0sxATU1Nnrp28VrJ29q1a3H79m3MnDkTffv2pXQPoqysLGRlZYn3CxcuJIIxKnLjxg2sWLECNTU1EBERYftuqBKECQsLIzo6GuPGjSNbyg9DS0sLu3btgrq6OospXG5uLnbv3o2hQ4eSqO4jdDkiF2Jubo6amhps3LgR5ubmAD6WIGzZsgWRkZGYNGkS/Pz8SFbZPrS1tcFkMmFpaYlZs2ZBV1eX43nPnj2Do6MjkpOTu1jh18nLy+vQ+T179uwkJTQ0NNyAqanpF9cZDAauXLnSRWpoPofXSt6GDx+ODRs2YMqUKWRLofmMyZMnQ0pKCj4+PpS/9zs4OMDAwABLliwhW8oPITs7Gw4ODigtLcWAAQMIY47nz59DWloaISEhpJdf00EYF+Li4oJNmzYRmaJPuX79Ojw9PXH9+nUSlHWcY8eOYcqUKRx3imlofiRr165FbW0tdu3axba2cuVKiIuLY9OmTV0vjIaGQjCZTBQXF0NaWpqypZYlJSWoqKjAwIEDAQChoaFEyZuRkRFcXFzadFLlRsaPHw8PDw+MHTuWbCk0n6GtrY19+/ZxnBNGNR4+fAg3NzfMmTMHJiYmkJaWZsuQU60vrKGhgajEajVN0dLSwowZMyAsLEy2PDoI42auX7+OR48eobCwEE5OTlBSUkJaWhqUlZWhqKhItryvUl9fDxsbG6xevfqLc89oaH4EJiYm8PDwwMSJE9nWLly4gG3btuHq1askKKOh4X5SU1Oxd+9ePH36FM3NzYiKioKmpib++usv6Onp0VkYEklISEB4eDiCgoLoDU0uY+7cuZgxYwZmzpxJtpTvRk1NjXjdVnkyVXoPqQI1t7l4nPLycjg7OyMjIwOKioooKCjA7NmzoaSkhOjoaPzyyy9Yv3492TK/irCwMIqKiig1MZ6GupSXl6NHjx4c17p3747S0tIuVkTD67x+/Ro5OTkc3eqo1FsRHx8Pd3d3TJgwATY2NiwW7r169cKZM2coFYTV1NTg6dOnKCkpAYPBgIyMDAYPHswyd5NKWFlZISsrC2PGjIG6ujpH45T9+/eTpO7nxsvLC+7u7pCXl4ehoSFls8cA4OPjw1O9oVSAun8tPMzmzZtRUVGB+Ph49OnTh2WOlqGhIaUutuPGjcOFCxeIpmgams5CXl4emZmZMDQ0ZFvLzMxkaQanofkePnz4ABcXF9y9exfAxxI+gHX3mEo7xoGBgbCzs8OaNWvQ3NzMEoQNGDAAR48eJVFd+6mpqcHWrVsRExODxsZGlu9FSEgIM2bMwOrVqyln1hMaGoqgoCDIyMigubmZp2a6UZ1ff/0VTU1NWLJkCfj4+NhK3BgMBtLT00lS1zFmzJhBtoQfipqa2leDSrKv03QQxoWkpKRg06ZNUFVVRXNzM8uaoqIiV9hqthcdHR3s2LEDS5cuhbGxMWRkZNh+FFTaMabhXqysrHDgwAH06tWLpSTxwoULOHDgAGxtbUlUR8NLbN++HaWlpTh+/Djmzp2LgIAASEpKIjY2Frdv34a/vz/ZEjtEbm5umzPPREVF8f79+y5W1HGamppgb2+PR48eYdy4cRg5ciQUFRXBZDJRWFiI1NRUREREICsrC8eOHaNUhUZQUBDmzZuHP//8k1K6OTFr1izY2Nhg4sSJEBMTI1vOd+Pg4EBnj7iUNWvWsH03VVVVuHnzJoqLi7nimYAOwriQ5ubmNpuGq6qqKGVPu3btWgAfA8uUlBS2dQaDQfpOBA1v4OLigv/++w+rVq3Cn3/+CTk5ORQXF6Ourg7GxsaUsAmmoQapqalYuXIlYXEsJycHLS0t6OnpYevWrQgJCcHOnTtJVtl+ZGVl8fLlS45Z5KysLCgpKZGgqmPExMTgyZMnCAoK4tiDbGNjg+vXr8PZ2Rnnzp3D9OnTSVD5bTQ2NsLc3JzyARgAKCkpYdOmTfDx8cH48eNhbW3dpmsyFVi+fDnZEn4YpqamXw0oqeT62tbog+XLl2P16tWorKzsWkEcoIMwLkRLSwvR0dEcdyYTEhKgo6NDgqpvg0o/2I7QlmlK7969IS8vT7a8nxIhISEcPHgQN2/exO3bt/Hu3Tt0794dRkZGHB8uaWi+lfLycigqKoKfnx+ioqJ49+4dsWZiYkK5B7NJkyZh79696NevH/T19QF83CB79uwZDh06hDlz5pCs8OskJiZi6tSpXzSBMjY2xtSpU3H+/HlKBWETJ05ESkoKT1zHdu3ahcrKSsTGxuLs2bOYP38++vTpA2tra0ybNg1ycnJkS/xpMTMz45g5ai27trCwIENWpzBlyhSsXr0av//+O6k66CCMC/njjz9ga2uLefPmwdLSEgwGA0lJSTh48CBSUlJw4sQJsiW2G6rPzficr5mmiIqKYsOGDWTL/KkZOXIkT9gF03AvCgoKqKioAACoqKggOTkZxsbGAIAHDx5whfVxR1i2bBmeP38Oe3t7woJ68eLFKC8vx5gxYygxNygrK6tdDnWjR4/G5s2bu0DRj0NHRwe7d+9GSUkJDA0NOTokUqmsX1JSEgsWLMCCBQvw33//ISoqCkeOHMGePXswatQozJw5E6amppTJ/L1+/Rpnzpxp06TnwIEDJKjqOH/++SfH4w0NDXBxcYGysnIXK+o8Xr16hZaWFrJl0EEYNzJs2DCEhYXB398fvr6+YDKZOHDgALS1tREaGgpNTU2yJXYIJpOJlJQUpKeno7KyEpKSktDV1YWxsTHlaql5yTSFVykqKkJRURHHm6Genh4Jimh4jZEjR+LWrVuwsLAgDC0yMzMhKCiIzMxM2Nvbky2xQwgJCWH//v24ffs2bt26hYqKCkhKSsLIyIgypkrv3r1rVxZFVlaWJXNJBTw8PAAA+fn5SEhIYFunclm/goICevXqBRkZGbx79w45OTlYvnw5evbsCT8/P2hra5Mt8YtkZmZiwYIFUFJSQk5ODgYNGoT3798jLy8PCgoK6N27N9kSvxshISHMnz8fGzZswIIFC8iW025CQkLYjjU2NiI7OxuJiYmYNGkSCapYoYMwLmXYsGE4duwY6urqUFlZCQkJCco5OgFAZWUllixZgoyMDEhISBATy4ODg6GtrU25uSe8ZJrCa+Tm5sLd3R0ZGRkA/udY1wqVH1RouAs3NzfU1tYCAKZNmwYxMTFiGPBff/2F2bNnk6zw2zAwMICBgQHZMr6JxsbGdtmDCwgIoKmpqQsU/Th4saw/NTUV0dHRSE5OhpiYGKZMmYLdu3dDVVUVb968gbe3N9atW4fz58+TLfWLbN++HRMmTMDmzZuhqalJ/Pf+/ftwdXXF4sWLyZb4Q6ioqKCcK6evry/bMSEhISgoKMDW1hbOzs4kqGKFDsK4HBEREcrONgE+/gjevHmDw4cPs5SI3bx5E+7u7vD19aVUaQgvmabwGp6enigqKoKPjw9UVVUhJCREtiQaHkVUVJRlU8zCwoIn+iU+fPiAwsJCjllkKlRgxMfHf9UOPD8/v4vU/Dhay/q/1ItMFXbt2oVz586hsLAQ+vr62LJlCywsLFiu171794aLiwvmzZtHotL2kZWVRdjTAyB+Ozo6Oli2bBn8/f0xevRoMiW2m0uXLrEda80cHT9+nHIbNP/99x/ZEr4KHYTRdCrJyclwd3dn69EZOXIkVq1aBT8/P0oFYbxkmsJrZGZmwtfXl1K9ETQ03EBRURHWrVuHW7dusa0xmUzKZJHDwsLadR7VyuB5qRc5KioK06dPh42NzReDx379+sHHx6cLlX0bDAYDgoKCYDAYkJaWRn5+PvEcoKCggJycHHIFdoAVK1ZwPC4gIIBx48bB09OzixXxPnQQRtOp1NbWQkZGhuOarKwsUdJDFXjJNIXXkJeXp0wjNw0NN+Hh4YGcnBx4enpCRUWFkhl9Kux6fyu81It87dq1dpWNdu/enRIOlqqqqsjNzYWBgQG0tbVx5MgRDBw4EAICAggKCkKvXr3IlthuOJW9CgsLQ1pamnIbF60UFRUhNDQU9+/fJxyThw8fDjs7O65wsqafWGg6FXV1dRw7doytf6qlpQXh4eHQ0NAgSdm30WqawmAwWExTSkpKKGmawkusXLkSwcHBlGu6p6Ehm4yMDHh6emLevHkYOXIk9PX12f7xKkwmE2vXruXqMsWUlBT88ccfUFVVZXsYplov8pAhQ5CZmclx7fHjx1BXV+9iRd/HrFmzUFJSAgBYtWoVysrKMHXqVFhZWeHRo0eEqQoVyM/PR/fu3dGzZ0/in4yMDBgMBmpqapCWlka2xA7x7NkzTJ48GadOnYKsrCwMDAwgKyuLU6dOYcqUKXj+/DnZEulMGE3n4urqCgcHB1hYWMDMzAwyMjIoKytDUlISSktLceTIEbIldhheMU3hNc6ePYvCwkKYmppCXV0d3bp1Y1lnMBiU2jGmoekq+vTpQzmzih9FS0sLYmJiMH/+fK4dSs1LvcifGyZ9SnNzM/j5+btQzfczbdo04rWqqirOnz+Phw8foq6uDtra2pCWliZPXAextbVFREQEtLS02NZevnwJW1tbSpQlt+Lr64tevXrhyJEjkJSUJI5XVlbCwcEBvr6+OHToEIkK6SCMppPR09PDyZMnceDAAcTHx6OqqgqSkpIYPnw4HB0dKZ05orppCq9RXV3N0mNANScnGhqy8PDwwNatWzFo0CD07duXbDldzpcCA26A6r3IJSUlKC4uJt6/fPmSLdiqr69HdHQ01wbC7UVMTIyycyq/9Duora2l3PPO/fv3sX37dpYADPg4p87JyQnu7u4kKfsfdBBG0+kMHjwYAQEBZMv4Ydy4cQMXL17k6CLGYDBw9OhRkpT93ISHh5MtgYaGkhgaGsLIyAhWVlaQk5PjmEWOjY0lSR0N1XuRIyIiEBAQAAaDAQaDgbVr17Kdw2Qywc/PTxmDEV7h4cOHePDgAfE+Li6OzWG0vr4eV65cQb9+/bpa3nfBz8+PhoYGjmsNDQ1ckXWlgzAamg5w6NAh+Pn5oWfPnlBVVWV7WKGhoeFNhg0b1u7mdAaD8VWrdG5i+/btCAkJgaamJlRUVOjxDlxGay+yv78/Sy+ytrY2JXqRp0+fDn19fTCZTNjZ2WH9+vXo378/yzmCgoJQUVFBjx49SFL5c3Ljxg1ik5zBYHDczBQQEICqqirlAmQjIyPs2rUL6urqLBn+nJwc7N69mysG0TOY3J6Hp6E0tra2ba7x8fGhW7duUFdXh7W1NVc41XwNU1NTmJqa0latXMrz588RGBhIzNKJiIiApqYmdu7cCR0dHY7lPDQ07WHv3r0dcghbtmxZJ6r5sejp6cHe3p4rhpd2Nc3NzdDU1ER0dDTXBzMAKN+LfPfuXWhoaEBcXJxsKTSfoaamhoiICAwdOpRsKT+E/Px8zJ8/H4WFhRgwYADhSfDs2TMoKiri2LFjUFRUJFUjnQmj6VS6deuGJ0+eoKSkBIMGDYK0tDTKysqQlZUFWVlZ9O7dGyEhITh8+DDCwsK4/ib47t07mJmZkS2DhgM3b97E0qVLoampicmTJ7OYcAgICODkyZN0EEbzzSxfvpxsCZ2GoKAgzzx48TpU70XmZadNqsNrYx6UlJQQFxeH6OhopKeno6qqCioqKrC2tsaMGTMgJiZGtkQ6CKPpXMaPH483b97g+PHj6NmzJ3H87du3cHJywvTp07F3717Y29tjx44dOHz4MIlqv87YsWORnp4OQ0NDsqXQfIa/vz8mTpyIbdu2oampiSUIU1dXx+nTp0lUR0PDvdjY2CA2NpayhgI03I2Ojg7CwsIwePDgr5b1Uq2Ul5c4f/488vPz8dtvv7GtHT58GEpKSpgwYQIJyr4dMTEx2NrafrEqi0zoIIymUwkICICrqytLAAYAysrKcHFxgb+/P6ZPnw4HBwdK1BtbW1vDy8sL9fX1MDIygoSEBNs53J7N41WeP38OV1dXAGC7yUtISKCiooIMWTQ8xIcPH3D//n00NTVBX18f4uLiePbsGfbt24cXL16gR48emDNnDqysrMiW2iHExcVx9+5dzJ49G4aGhmzXNQaDgYULF5Ij7hu4fv06Ro8e3a7yUX5+foSFhf2UrpBdhYODA2RlZYnXVB382xbPnz/HgQMHkJmZiZKSEsjKymLo0KFYunQpBgwYQLa8dnPw4EFYW1tzXBMREUFwcDDlgjBuhw7CaDqVgoKCNi+4DAaDGDIpJyfHNtCZG3FwcAAABAcHIzg4mOWzMZlMMBgMSs3R4CUkJSVZbJA/JScnh3gIoKH5Fp49e4ZFixYRg1mlpaWxe/duODs7g5+fH7169cKLFy/g5uYGUVFRmJqakqy4/fj7+wP4eL1++PAh2zrVgrAlS5ZAQUEB06dPx4wZM9CrV68vnk+XyHUun/ZH8lpZ77Vr17Bs2TIoKCjA3NycaLlISkrC9OnTERAQgDFjxpAts128fv26zaBRVVUVr1696mJFHYdqBkp0EEbTqQwZMgR79uzB4MGDWRog8/LysHfvXmIoYF5eHiWMOcLCwsiWQNMG5ubm2Lt3L4YOHYo+ffoA+HiRLSkpweHDh2FpaUmyQhoqs2PHDsjIyCA4OBhiYmLYvn07li1bBh0dHezZswdCQkKor6+Hs7MzgoODKRWE8VovSEJCAqKionD69GkcPHgQurq6sLGxgaWlJe38SPND2bZtG0aPHo19+/aBj4+POL569Wo4Oztj27ZtlAnChIWFUVZWxnGtpKQEAgLcHzJQLdNKuyPSdCovXryAvb09KioqMHDgQPTo0QMVFRXIysqCtLQ0QkJCoKqqiuDgYPDx8WHRokVkS6ahKO/fv8fChQuRlZWFgQMH4unTp1BTU0Nubi769u2Lo0ePckUjLg01GTlyJNavX08E82/fvoW5uTmCgoJgbGxMnHf16lWsWbMGd+7cIUsqzf/T3NyMa9euITo6GtevX4eoqCgmTZoEa2trDB48mGx5Pw2Ojo7tPpfBYLD083I7WlpaCAgIYLkGtHL9+nUsW7YMmZmZJCjrOMuWLcObN29w6tQp/PLLL8TxmpoazJkzB8rKyti3bx+JCnkP7g9raShN//79kZSUhKioKDx+/JhwSZw5cyasra0hLCwMAFi8eDHJSmmoTrdu3XDq1CnExsbi1q1b6N69OyQlJTFv3jxMnTqV3gGn+S7KysqgoKBAvG99LS0tzXKelJQUqqqqulTbj6CxsRFRUVHEeIf169dDRUUF58+fx6BBg6Cqqkq2xA7Dz88PMzMzmJmZoaioCG5ubjh58iROnTqFAQMGwM7Ors0eGJofR3V1NdkSOo1Bgwbh7du3HNfevn1LqZ6wlStXYvbs2bCwsIClpSXk5ORQXFyMixcvorGxETt27CBb4ldhMpm4evUqevXq1eb/+2fPnuHt27cYO3Ys6VkzOgij6XSEhYUxb948smV8Mx1xdgKA+/fvd5Eyms8RFBSEtbU1/WBF0yl8+tsn++b9I8nNzcXChQtRUVEBDQ0NpKenEw/OaWlpSE1NxZYtW0hW+W1kZ2cjKioKsbGxqKqqwvjx42FhYYGUlBRs2LABGRkZ2LhxI9kyeRpOA4B5hfXr12PVqlUQFRWFubk5unXrhvfv3+Py5csICQkh+i2pgKqqKqKiorBnzx5cunQJ7969Q/fu3WFkZIRly5YRZf7cTHR0NLZu3Yr4+Pg2z5GQkMDq1avh6emJadOmdZ04DtBBGE2XkJ2dTeywWltbQ1ZWFq9fv4a0tDTXD23kdWcnGhqa9hEfH080cre0tIDBYCAuLg53794lzsnPzydL3jfz999/Q0pKCqdPn4aEhARLqZ6enh4ldsA/pbq6GgkJCYiOjkZmZiZUVFSwaNEiTJs2DVJSUgAAKysrGBkZwdvbmw7CaL4ZW1tbNDU1Yd26dVi3bh0EBATQ1NQE4ON8yk8NbbjBCOJr9OnTh1KB4+ecO3cOs2fPZqla+BwFBQXMnTsX0dHRdBBGw9vU1tbC09MT58+fBx8fH1paWjB69GjIysrC398fysrKWL16NdkyvwgvOztRHXr+DE1XwsmYJzQ0lO0Y1TZq7t69C39/f0hJSbG51MrKyhKOkFRh5MiRYDKZsLS0hLu7O3R1dTmep6GhgR49enSxOpqWlhbcvn0br169QkNDA9u6vb09Caq+DV7dmC0oKEBBQQHU1NRY+sO4nadPn2Lp0qVfPU9fXx8nTpzoAkVfhg7CaDoVX19f3L59G8HBwdDV1YW2tjaxZmJigtDQUK4Pwmi4FzpLSdNV8JqD4Kfw8/OjLY+u0tJSSj2EAYCbmxumTJnCcY7jpwwcOBDJycldpIoG+Oiyt2DBAuTk5IDBYBB/d59eu6kUhPHaxmxERAQCAgJQUlICBoOBqKgoaGpqwsXFBfr6+rCzsyNb4hdpbGxsV/+3kJAQxw2AroYOwmg6lYsXL2L16tUYNWoU2w5rz549kZeXR5Kyb6OlpQWnT5/GxYsXUVhYiPr6erZzrly5QoKynxM6S0nD7TCZTKxbtw7Lly+HkpIS2XI4oqenh5CQEBgbGxM2260PyJGRkTA0NCRZYfupr69HZGQkVFRUMGrUKLLl0HzG1q1b0b17d6SkpMDExASRkZGQkZFBbGwsYmJiEBQURLbEn5bQ0FD4+fnB3t4ehoaGxFxU4GPmKDExkeuDMEVFRTx9+vSrs/+ePHnCMjaJLOggjKZTqampaXNIbm1tbRer+X62b9+OkJAQ6OnpYcSIERAUFCRbEs3/8+HDB9TU1EBOTo5trbi4GGJiYrRFPU2X09LSgpiYGMyfP59rgzA3NzfMmTMHVlZWMDU1BYPBwPHjx/H8+XO8fv0ap0+fJltiuxEWFkZRURHLzCYa7iEtLQ2enp4szwVKSkpwdHQEk8nExo0bcejQIRIVfh1HR0esWbMGKioqX7Xfp5Ll/rFjx+Ds7AxnZ2e2TfO+fftSYljz2LFjceTIEVhZWbX57FlSUoKQkBBYWVl1sTp26CCMplMZNGgQLl26xHFH8tq1a5Sb1RIXF4fly5fDxcWFbCk0n+Hp6QkxMTFs3ryZbW3v3r2oqamhdMMxDXXh9nGcqqqqiI6ORkBAAOLj48HPz49r167B0NAQfn5+6N27N9kSO8S4ceNw4cIFGBkZkS2F5jPev38PKSkp8PHxQVxcnGU4sLa2NiUyYdXV1USQwkv2+0VFRRg2bBjHNUFBQdTU1HSxoo6zZMkSXLhwATNmzICjoyNGjx4NRUVFMBgMFBQUIDU1FQcPHgQfHx9XjEaigzCaTqV1V6W2thbjx48Hg8FAZmYm4uPjER0djeDgYLIldoiGhgbo6OiQLYOGA/fu3cOGDRs4rpmYmMDb27uLFdHQUIdevXrB19eXbBk/BB0dHezYsQNLly6FsbExZGRk2PpFx40bR5K6nxtlZWUUFxcD+DhH9Ny5cxg7diwAICkpCd27dydRXfv41HKfl+z3lZSU8OjRI47lxxkZGVBRUel6UR1ESkoKYWFhcHNzw6ZNm9h+90wmE1paWvDz8yOcUsmEDsJoOpUxY8Zgx44d2LZtG+Li4gAA3t7eUFBQgJ+fH6V6DQBg8uTJSE5Oppzun4HKyso2yw1FRUXx7t27rhVEQ0NDCmvXrgUApKSkICUlhW2dwWDg33//7WpZNPj4THDz5k1MnDgRTk5OcHFxgaGhIQQEBFBaWgo3NzeyJf60zJo1CwEBAejRowexSdHU1IRr167h8OHD+OOPP8gV2E769OmD06dP4969e0hLS0NRUREAQF5eHvr6+hg+fDjJCv8Hg8ntdRI0PMOrV69QUVEBSUlJqKqqki2n3Vy6dIl4XV9fj507d0JbWxtGRkYc3bfoHVZymDhxIkxNTTnexP38/JCUlITExEQSlNH8zDQ3N0NTUxPR0dHQ1NQkWw5HbG1t21zj4+NDt27doK6uDmtra8jLy3ehsm+jPYZPPXv27AIlNF/j0aNHSEpKQl1dHYyMjGBiYkK2pA7z8uVLXLp0qU2zLioNOv/7779x/PhxMBgMtLS0EL2Vc+fOhaenJ8nqOg+yDJToIIymUwkICICNjQ3HG3dxcTEiIyNZHO64ETU1tXafS++wkkdISAj8/f3x+++/w9raGlJSUigvL8eZM2ewa9curFq1isXtiYamK6BCEObi4oInT56gpKQEgwYNgrS0NMrKypCVlQVZWVn07t0b//77L1paWhAWFsa1n4OGpquJiYnBunXrICwsDCUlJTazLgaDgbNnz5Kk7tvIzc3FrVu3iE1zQ0NDSpQifg/Nzc0YPHgwYcnfVdBBGE2noq6ujoiICGhpabGtPX78GDY2NlwftHTURp/eYSWHVmetU6dOAfg4+6i1eXr27Nlt9ovR0HQmVAjC4uLiEBQUhAMHDrBcv96+fQsnJyc4ODjA1NQU9vb26NGjBw4fPkyi2vbBZDKRkpKC9PR0VFZWQlJSErq6ujA2NqbnCZJIfn7+V8/hVhdRTlhaWkJDQwM+Pj4QFRUlW853kZaWBg0NDY5l/TU1NXjy5An09PRIUNb5kHWdpnvCaDqVL8X4JSUlXx2myQ3QQRU1YDAY2LBhA+zs7HD79m28e/cO3bt3h4GBAc/v4tF0LdevX8fo0aPb9TDPz8+PsLAw9O3btwuUfRsBAQFwdXVlu9YpKyvDxcUF/v7+mD59OhwcHCixmVFZWYklS5YgIyMDEhISRGYvODiYcOCjwr2HF2kdgfAluH1j9lOKi4vh5eVF+QAM+FiW3Nam+cuXL2Fra0up74YK0EEYzQ8nPj4e8fHxAD4+GPv6+qJbt24s5zQ0NODx48eUcxr8559/kJ+fD2tra7a1M2fOQElJCQYGBiQoo2lFRUWFDrpoOpUlS5ZAQUEB06dPx4wZM9CrV68vnv+1waFkU1BQ0OaDMYPBIBrb5eTk2OYHcSO+vr548+YNDh8+jJEjRxLHb968CXd3d/j6+nIcZUHT+QQEBLAdq6qqwo0bN/Dw4UPKGXPo6uri2bNnPGHW9aVN89raWoiIiHShmp8DOgij+eE0NjYSszOYTCZqa2vZBmcKCQlh6tSp+O2338iQ+M3s2rULZmZmHNfKy8sRGRlJlMPRdD6NjY2or6+HuLg4y/GSkhIcOXIE2dnZkJWVxezZszFkyBCSVNLwGgkJCYiKisLp06dx8OBB6OrqwsbGBpaWlhASEiJbXocZMmQI9uzZg8GDB0NRUZE4npeXh7179xI743l5eZQw5khOToa7uztLAAYAI0eOxKpVq+Dn50cHYSRhbm7O8fiMGTOwZcsW3L17FxMnTuxiVR3jU6fdVatWwd3dHcLCwhg5ciTbhjMArrbdf/jwIR48eEC8j4uLQ3p6Oss59fX1uHLlCvr169fV8ngeuieMplNZsGABvLy8KOWG+CV0dHQQEBDAcQjoP//8g+XLl+PevXskKPs52bRpE27cuIGLFy8SxyoqKjB58mSUlpZCUlISHz58AD8/PyIiIqCurk6iWhpeo7m5GdeuXUN0dDSuX78OUVFRTJo0CdbW1pQaRP/ixQvY29ujoqICAwcORI8ePVBRUYGsrCxIS0sjJCQEqqqqCA4OBh8fHxYtWkS25C8ydOhQ7Nmzh6PTXkpKClasWIGMjAwSlNF8iVu3buGPP/7A3bt3yZbyRdTU1Fgyx62P0W1lk7m5hC8gIIDITjIYDI7ZMAEBAaiqqmLDhg2Uq15qL3RPGA1PwkuDDIGPF6n3799zXKusrKREqQ4vce/ePUydOpXlWEhICEpLS7Fp0ybY2NigrKwMCxcuxMGDB7Fr1y5yhNLwJPz8/DAzM4OZmRmKiorg5uaGkydP4tSpUxgwYADs7Ow4li5zG/3790dSUhKioqLw+PFjwiVx5syZsLa2hrCwMABg8eLFJCttH+rq6jh27BhGjRoFfn5+4nhLSwvCw8OhoaFBojqatrh//z4lMsk+Pj48Y+6ybNkywqFaTU0NkZGRHHvCaDoHOgij6XRaWlpw+/ZtvHr1Cg0NDSxrDAYDCxcuJEfYNzB06FAcP34c48aNY9sJO3HiBIYOHUqiup+PgoICtuzWlStX0LdvX9jY2AAApKWl4eDggL1795IhkYbHyc7ORlRUFGJjY1FVVYXx48fDwsICKSkp2LBhAzIyMrBx40ayZX4VYWFhzJs3j2wZPwRXV1c4ODjAwsICZmZmkJGRQVlZGZKSklBaWoojR46QLfGn5e+//2Y71tDQgJcvXyI9PZ0SY0RmzJhBtoRO4b///iNbwg+FCgZKdDkiTadSUlKC+fPn4/Xr1yyp7k9/FNycqv+cBw8ewNbWFioqKpg+fTpkZWVRXFyMmJgY5OTkIDw8HNra2mTL/GkYNmwYAgMDiaboqqoqjBgxgs2S/t69e1i0aBFdgkTzQ6iurkZCQgKio6ORmZkJFRUV2NjYYNq0aZCSkiLOi4mJgbe3N0vPBU3X8PjxYxw4cADp6emoqqqCpKQkhg8fDkdHR64dFfAzYGpqynZMWFgYCgoKsLS0hI2NDUv2koqkp6fj5cuXGD58ONf3UT158gSqqqoQERHBkydPvno+lX47ampqHTJQIgM6E0bTqWzduhU9evRAWFgYTExMEBkZCRkZGcTGxiImJgZBQUFkS+wQw4YNQ2hoKLZv3w4/Pz9iory2tjZCQ0PpAKyL6d27Nx4+fEgEYTdu3AAANqeqd+/e0ZbUND+MkSNHgslkwtLSEu7u7tDV1eV4noaGBnr06NHF6r6NmJgYREREICcnB/X19Wzr9+/fJ0HVtzN48GCOTnw05JKcnEy2hB+Kq6srhISEsGXLFgDAyZMn4e3tDeCjAdnBgwe52jnR2tqaKEG0trZuM2vEZDLBYDAotWlOBQMlOhNG06kYGxvD09MT5ubm0NDQYKk33r9/P9LT03Ho0CGSVX4bdXV1qKyshISEBE/MCKEi4eHh8Pf3x9KlSyEjI4P9+/ejoaEBSUlJLHa6mzdvxrNnz3D06FES1dLwCseOHcOUKVN4JrA/d+4cPD09MX36dERGRsLa2hotLS1ITk6GhIQEpk6dSvSN0NDQ/I8xY8Zg9erVhKPj2LFjMWrUKKxZswZeXl7Iz8/H8ePHSVbZNnfv3oWmpibExMTaZYjC7eM2OMHNBkp0JoymU3n//j2kpKTAx8cHcXFxlJWVEWutQzOpioiICD03g2Tmzp2L7Oxs7Nu3D01NTVBSUsKOHTtYvpeqqiqcO3cOS5YsIVEpDa9QX1+PyMhIqKioYNSoUWTL+SGEhITA2dkZS5YsQWRkJObOnQtNTU18+PABixYtgpiYGNkSO4StrW2ba3x8fOjWrRvU1dVhbW1NCct9XuHFixcIDw/H3bt3UVhYCAaDAXl5eejp6cHGxoaSY0TKy8shJycHAHj+/DkKCgpga2sLMTExTJ8+Hb///jvJCr/Mp0EVFQOs9sDNBkp0EEbTqSgrK6O4uBjARweuc+fOYezYsQCApKQkrp6f0RZVVVW4ePEiR6MRAPD09CRB1c8JPz8/vLy8sGbNGtTU1LD047Tyyy+/4OLFi2yzxGhovgVhYWEUFRWxzT6kMq9fv4aOjg74+fnBz8+PDx8+AADExcWxePFi+Pj4wN7enmSV7adbt2548uQJ4fIoLS2NsrIyZGVlQVZWFr1790ZISAgOHz6MsLAwSvW5UJXjx48TJXsDBw4kZrjl5+fjzJkziIqKwrJly+Ds7AwAOHDgABwdHUnT2166d++OvLw86OrqIjU1FbKyshgwYACAjxmYlpYWkhV+G2VlZRzLkpWUlEhQ8/1wq4ESHYTRdCpjxozBzZs3MXHiRDg5OcHFxQWGhoYQEBBAaWkp3NzcyJbYIXJycjB79mw0NDSgtrYWUlJSqKysRFNTEyQlJSEuLk4HYSTwpaykgIAAZfpyaKjBuHHjcOHCBY7zAqmIuLg4saEkLy+PFy9eYMSIEQA+PkhWVFSQKa/DjB8/Hm/evMHx48fRs2dP4vjbt2/h5OSE6dOnY+/evbC3t8eOHTtw+PBhEtXyPjdv3sSmTZswbdo0rFixgu1BvqCgAHv27MHevXuhrKyMtLQ0REdHUyIIMzY2hp+fH/777z+cPXuWZWTK8+fPoaysTKK6jlFRUYG///4bly5dQlNTE8saFXvCOBkoLVq0iMVAycrKCkZGRvD29qaDMBrew9XVlXhtYmKCkydPIikpCXV1dTAyMuI4TJOb2bp1K4YOHYrdu3cT5ZRqamo4f/48du7cid27d5MtkYaGppPR0dHBjh07sHTpUhgbG0NGRoatoX3cuHEkqes4gwcPRlZWFkaPHg1TU1Ps27cPTCYTAgICCAoKopzhUEBAAFxdXVkCMOBjZYaLiwv8/f0xffp0ODg4sLio0nQOhw4dwrhx47B161aO64qKitiyZQuqq6vh4eEBcXFx7Nu3r4tVfhseHh5obm7GjRs3YGJiguXLlxNrly9fxujRo0lU1zE8PT2RlpaGpUuXQlVVFYKCgmRL+i6oYKBEB2E0XcqQIUMoWffdSmZmJjZv3kw46zQ2NoKfnx+TJ08mdpFOnTpFskoaGprOZO3atQCAlJQUpKSksK1Tbcd46dKlyM/PBwCsWLECeXl58PHxQUtLC4YMGUKJOWefUlBQ0KbLG4PBQFFREQBATk4Ozc3NXSntp+Tx48fYvn37V8+ztrbG5cuXERkZ2eXzmr6FpqYmvHnzBm5ubpCWlmZbP3nyJAmqvp07d+7A09MT06ZNI1vKD8HNza1dBkoDBw4kzbWTDsJoOpV//vkH+fn5HJsez5w5AyUlJRgYGJCg7NtoaGiAuLg4+Pj4ICkpSfS7AcCAAQN4btghDQ0NO1euXCFbwg9FW1ubyHZJSEgQLqOt1zuqMWTIEOzZsweDBw+GoqIicTwvLw979+4lHHrz8vJoY44uoLGxsV0mVsLCwhAWFqZEAAZ8NHn59ddfERQUxBOlyRISEjxTuk8VAyU6CKPpVHbt2gUzMzOOa+Xl5YiMjKRU5khFRQV5eXnQ09ODhoYGTpw4ASMjIwgICCAiIoJwSaKhoeFdPi9z40WEhIS4ZpZOR/H29oa9vT0sLCwwcOBA9OjRAxUVFcjKyoK0tDRRNl5aWopZs2aRrJb36devH1JTU7+64Xr9+nWuH278KXx8fFBWVkZlZSXZUn4IixYtQnh4OEaOHAkBAWqHB1QxUKL2/2UaFfJ9ggAATd1JREFUruf58+dtWrRqamriwIEDXazo+7CysiKyXb///jsWLVoEfX19MBgMMJnMNmveaWhoeAsmk4mUlBSkp6ejsrISkpKS0NXVhbGxcZulcNzMjRs3cPHiRRQWFrK5ojEYDErN2Ovfvz+SkpIQFRWFx48fEy6JM2fOhLW1NYSFhQEAixcvJlnpz8GMGTPg6+uLAQMGtFnqFhMTg/DwcKxZs6ZrxX0njo6OCAwMhI6ODiWzqn///TfL++zsbFhYWEBPT49jGR+VjMeoYKBED2um6VSGDx8OHx8fWFpasq0lJiZi7dq1ePDgAQnKfgwFBQW4fv066uvrYWBggIEDB5It6aeGHh9A0xVUVlZiyZIlyMjIgISEBGGBXlVVRRj2UGmQ86FDh+Dn54eePXu22ZBPFaMEGu6jpaUFy5YtQ3JyMvr16wcTExPCITE/Px+pqanIzs6Gqakp9u7dy/XZi09xdHTE48ePUVlZiUGDBkFGRoZlncFgYP/+/SSp+zqmpqbtPpfBYFCqFPvs2bPYsWMHNDQ0uNZAiQ7CaDoVBwcHNDU14ejRoyx//EwmE3Z2duDj40NoaCh5Aml4hvaMD6DSDYSGe1m3bh2uXr0KPz8/Yt4R8NGK293dHWPHjsXmzZtJVNgxTE1NYWpqynObFNnZ2Xj06BEKCwthbW0NWVlZvH79GtLS0pTsdaMyTCYT4eHhCAsLw9u3b1nWevXqBTs7O8ybN49yWeQFCxZ89Zzw8PAuUELzOWpqal9c5wYDJToIo+lUHjx4AFtbW6ioqGD69OmQlZVFcXExYmJikJOTg/DwcK63P251DWsvVB1mSHUcHR3BZDKJ8QHR0dEs4wNaG/VpaL4XAwMDuLu7czQcioqKgp+fH27fvk2Csm9DR0cH+/btg6GhIdlSfgi1tbXw9PTE+fPnwcfHh5aWFkRFRUFTUxMrVqyAsrIyVq9eTbbMn5bCwkLCoVJBQYGSZXw03E9eXt5XzyG7v5fuCaPpVIYNG4bQ0FBs374dfn5+aGlpAR8fH7S1tREaGsr1ARiANo1FPoeKwwx5CXp8AE1XUVtby1Z21IqsrCxqa2u7WNH3MXbsWKSnp/NMEObr64vbt28jODgYurq6LPcZExMThIaG0kEYiSgoKEBBQYFsGTSfER4ejqKiIri5ubGt+fn5QVFREfPmzSNB2bdBdoDVHuggjKbTGT58OE6dOoW6ujpUVlZCQkICoqKiZMtqN0wmE2JiYjA3N4eJiQllHcN4HXp8AE1Xoa6ujmPHjmHUqFHg5+cnjre0tCA8PBwaGhokqus41tbW8PLyQn19PYyMjDj2s2lqapKg7Nu4ePEiVq9ejVGjRrHNAevZs2e7dshpaNrL8+fPERgYSJS+RkREQFNTEzt37oSOjg5MTEzIltguTpw4AXt7e45rKioqCAkJoVQQBnC/gRIdhNF0GSIiIu2aFcJtHDlyBPHx8bh8+TKSk5Nhbm6OyZMnw9DQkCt+xDQfoccH0HQVrq6ucHBwgIWFBczMzCAjI4OysjIkJSWhtLQUR44cIVtih3BwcAAABAcHIzg4mK1/l2oZ/pqaGsjKynJco1qWkoa7uXnzJpYuXQpNTU1MnjyZxYRDQEAAJ0+epEwQlp+fjz59+nBc69WrF+U2L9oyUAoODuYaAyU6CKOh+QpGRkYwMjKCl5cXUlJSkJCQAGdnZ4iLi2P8+PGYNGkSJcoqeR16fABNV6Gnp4eTJ0/iwIEDiI+PR1VVFSQlJTF8+HA4OjpSKmsEAGFhYWRL+KEMGjQIly5d4jik9dq1a3RvKM0Pw9/fHxMnTsS2bdvQ1NTEEoSpq6vj9OnTJKrrGOLi4nj79i1GjBjBtpabm0u5TXRfX1+8efMGhw8f5mig5OvrS7qBEh2E0dC0EyEhIVhYWMDCwgI1NTVISkpCfHw85s2bh8mTJ9MP+STzaRmFtrY24uPjkZqairq6Onp8AM0PZ/DgwQgICCBbxg9BX1+fbAk/FGdnZzg7O6O2thbjx48Hg8FAZmYm4uPjER0djeDgYLIl0vAIz58/h6urKwCwVcZISEigoqKCDFnfxMiRI7Fv3z4YGRlBUVGROF5YWIjAwEAYGxuTqK7jJCcnw93dnSUAAz5+zlWrVsHPz48OwmhoqEhZWRny8/ORn5+PlpYW9OjRg2xJPz1paWnQ0NCAmJgYAEBRURGzZs0CAFRXVyMtLQ16enpkSqShoekCxowZgx07dmDbtm2Ii4sDAHh7e0NBQQF+fn48Y0BCQz6f9x9/Sk5OTptlsdyIq6srfv31V4wfPx4GBgaQk5NDcXExbt++DSkpKSLYpApUMFCigzAamnZSXFyM8+fPIz4+Ho8fP4ampiasra0xceJE2mKXC7C1tUVERAS0tLTY1l69egVbW1tK9bXQcC+2trZtrvHx8aFbt25QV1eHtbU1Za4NMTExiIiIQE5ODurr69nW79+/T4Kqb2f8+PEYP348Xr16hYqKCkhKSkJVVZVsWTQAqqqqcPHiRbx69QoNDQ1s61SaV2dubo69e/di6NChRD8Vg8FASUkJDh8+DEtLS5IVth95eXnExMQgJCQEt2/fRk5ODrp37w57e3ssXLgQ3bt3J1tih6CCgRIdhNHQfIWIiAgkJCQgPT0dKioqmDhxIvz9/dtsYKUhhy+NPKytraVcPTsN99KtWzc8efIEJSUlGDRoENHwnZWVBVlZWfTu3RshISE4fPgwwsLCuL5H7Ny5c/jrr78wffp0PHjwANbW1mhpaUFycjIkJCQwdepUsiV2iICAANjY2EBeXh59+/ZF3759ibXi4mJERkZi2bJlJCr8ecnJycHs2bPR0NCA2tpaSElJobKyEk1NTZCUlIS4uDilgjBXV1c8evQIU6ZMIUre161bh9zcXPTt25cyf2f19fXYvn07pkyZgpUrV5It54dABQMlelgzDc1XUFNTg5iYGMzMzKCurv7FcxkMBhYuXNg1wmjw8OFDPHjwAMDHJtwFCxawDcuur6/HlStX0NLSgujoaDJk0vAYcXFxCAoKwoEDB1hm0bx9+xZOTk5wcHCAqakp7O3t0aNHDxw+fJhEtV9n2rRpsLS0xJIlS6CpqYno6Ghoamriw4cPWLRoEcaPH9+mdTU3oq6u3mZW/PHjx7CxsaGz4iTh6OgIJpOJ3bt3Q1tbG9HR0VBTU8P58+exc+dO7Nmzh3LGKY2NjYiNjcWtW7eIrKuRkRGmTp1KqZE2w4YNw8GDB3mqR/Tx48c4cOAA0tPTudJAic6E0dC0g+rqasTGxiI2NvaL59FBWNdy48YNwhyBwWAgPDyc7RwBAQGoqqpiw4YNXS2PhkcJCAiAq6sr2zBQZWVluLi4wN/fH9OnT4eDgwMl/u5ev34NHR0d8PPzg5+fHx8+fADw0S1t8eLF8PHxoVQQ9qW95ZKSEtJtqX9mMjMzsXnzZiI4aWxsBD8/PyZPnoyKigr8/fffOHXqFMkqO4agoCCsra1hbW1NtpTvYtiwYXj48CFPBWHcbqBEB2E0NF+BHvLLvSxbtowo91BTU0NkZCTH3W8amh9JQUFBmzMCGQwGioqKAABycnJsw4K5EXFxcaI3R15eHi9evCBsqpubmynh8BYfH4/4+HgAH78DX19fdOvWjeWchoYGPH78GDo6OmRIpMHH70BcXBx8fHxsphYDBgyg77cksmLFCri5uYGfnx8mJiaQlpZmu85RrS+M26GDMBqaToLJZGLdunVYvnw5W4kczY+HvnnTdBVDhgwhyqY+tXLOy8vD3r17iY2AvLw8ShhzDB48GFlZWRg9ejRMTU2xb98+MJlMCAgIICgoiBJzEBsbG1FdXQ3g47W3trYWfHx8LOcICQlh6tSp+O2338iQSANARUUFeXl50NPTg4aGBk6cOAEjIyMICAggIiICcnJyZEv8Kmpqam1uwnCCKqWvs2fPBgBs374dfn5+HM+hymcBqGGgRPeE0dB0Es3NzRg8eDCioqK4ovb4Z6G+vh65ubkcHd7o74HmR/DixQvY29ujoqICAwcORI8ePVBRUYGsrCxIS0sjJCQEqqqqCA4OBh8fHxYtWkS25C/y8OFD5OfnY+LEiaiqqoKHhwdSUlLQ0tKCIUOGYMeOHejVqxfZMtvNggUL4OXlRbshciEhISEoKirCmjVr8PDhQyxatAi1tbVgMBhgMpnYunUrpkyZQrbMLxIaGkoEYc3NzTh69CgEBQVhbm4OaWlplJaWIikpCU1NTVi4cCFlSnnPnDnz1eBy+vTpXaTm+3FxcfmqgdK///6LlpYW0gyU6CCMhqaTaG5uZmlyp+lcGhoa4OXlhdjY2DZLwKi0i0fD3dTX1yMqKgqPHz9GSUkJZGVlMWTIEFhbW0NYWJhsed9NQ0MDUTpGQ9NZFBQUIDU1FXV1dTAwMCAcBqnC9u3bkZ2djcDAQJbMa0tLC5ydndG3b194eHiQqPDHUVtbC1FRUbJltBsqGCjRQRgNTSdBB2Fdy86dOxETEwN3d3e4ublh/fr1+OWXXxAbG4s3b97gr7/+gomJCdkyaWhouoCWlhbcvn2b4ywq2kCJPNLS0qChoQExMTG2terqajx9+hR6enokKPs2jIyMsHXrVhgbG7OtpaSkYM2aNfjnn39IUPZjaG5uRmpqKuLi4pCcnEy4EVMBS0tLuLq6Yty4cWxriYmJ8Pf3x+XLlxEfH48NGzYgPT29yzXSPWE0NDQ8QWJiIpYtW4YJEybAzc0NWlpaGDx4MKZNmwYPDw8kJyfTQRjNDyU7OxuPHj1CYWEhrK2tISsri9evX0NaWprrM0gdcQxjMBhwcXHpRDU/lpKSEsyfPx+vX78mytwAsJRa0UEYOdja2rY5PuDVq1ewtbWlVMVCXV0d8vLyOK7l5eVxLIunAunp6YiPj0diYiLevXsHKSkpzJo1i2xZHYIKBkp0EEZDQ8MTFBYWom/fvuDn54ewsDCqqqqItSlTpmDVqlXw9vYmUSENr1BbWwtPT0+cP38efHx8aGlpwejRoyErKwt/f38oKytj9erVZMv8IgEBARAWFoawsPAXLd0B6gVhW7duRY8ePRAWFgYTExNERkZCRkYGsbGxiImJQVBQENkSf1q+9LdWW1sLERGRLlTz/Zibm8PPzw8iIiIwNzdHt27d8P79e1y+fBk7duyAubk52RLbzfPnzxEfH4+4uDgUFBRAUFAQjY2NWLt2LebNmwd+fn6yJXYIKhgo0UEYDQ0NTyArK0sEXsrKyrhz5w6MjIwAADk5OSQqo+E1fH19cfv2bQQHB0NXV5fFPdDExAShoaFcH4TJy8ujrKwMw4cPx+TJk2Fqakq5B+C2SEtLg6enJ2RlZYljSkpKxKDgjRs34tChQyQq/Ll4+PAhSxlbXFwcW+lXfX09rly5gn79+nW1vO9i/fr1qKurw7p167Bu3ToICAigqakJTCYTFhYWWL9+PdkSv0hhYSEReD179gz8/PwwMDDAihUrMGLECIwdOxbq6uqUC8AAwNvbG/b29rCwsOBooLR7924AQGlpKWlZPjoIo6Gh4Qn09fVx7949mJqawsbGBtu2bcPLly8hKCiIpKQkTJo0iWyJNDzCxYsXsXr1aowaNYqtjKVnz55tlidxEykpKbh37x7i4+OxadMmeHp6wszMDJMmTcKoUaMo+dDVyvv37yElJQU+Pj6Ii4ujrKyMWNPW1qYzYV3MjRs3iPJXBoOB8PBwtnMEBASgqqpKieHmnyIuLo49e/YQpcnFxcWQk5PDkCFDKOHOOXbsWAAfnYM9PT0xYcIESElJAfj4O6Iy/fv3R1JSEouB0qBBgzBz5kwWA6XFixeTppEOwmhoOsD169cxevTods0I4efnR1hYGPr27dsFymhWrlxJDJVt7fdITExEfX09FixYQKlyKhrupqamhiXL8im1tbVdrObb0dXVha6uLv766y/cuHEDCQkJWLVqFQQFBWFpaQkbGxsMHjyYbJkdRllZmRgC3L9/f5w7d4542ExKSqIHznYxy5Ytw7JlywB8nLEVGRnJsSeMyqiqqlIi6PocCQkJVFZWIjc3F1lZWRg4cCARhPECwsLCmDdvHtky2oQOwmhoOsCSJUugoKCA6dOnY8aMGV+dnaOvr99FymhkZWVZHowXLlxIN9/TdAqDBg3CpUuXMGrUKLa1a9euUS5w4efnh4mJCUxMTFBfX4/du3cjNDQUZWVlHTLw4BbGjBmDmzdvYuLEiXBycoKLiwsMDQ0hICCA0tJSuLm5kS3xp+W///4jW0KnQNX5lDdv3sSNGzcQFxeHuLg4nD59GvLy8pg4cSLPGFlxs4ESbVFPQ9MBsrOzERUVhbi4OJSXl0NXVxc2NjawtLSEkJAQ2fJ+ampqavD06VOUlJSAwWBARkYGgwcP5pk+Fxru4dq1a3B2doaVlRXGjx+PZcuWYf369Xjz5g3Cw8MRHBwMQ0NDsmV2iOzsbCQkJCAhIQFv376FgYEBFixYgDFjxpAt7bt59OgRkpKSUFdXByMjI555uKQyVA1aPoeX5lPW1tYSlu23bt0iPs+cOXPg4OAAZWVlkhV2DE4GSlFRUdDU1MSKFSu4wkCJDsJoaL6B5uZmXLt2DdHR0bh+/TpERUUxadIkWFtbU24XnOrU1NRg69atiImJQWNjI4sdtZCQEGbMmIHVq1dTasgkDfeTmJiIbdu2IT8/nzimoKCANWvWYPz48SQqaz95eXlISEhAfHw8nj9/Dm1tbUyaNAnjx4+HtLQ02fJoeBBeCloA3p1PWVFRgfPnzyMhIQEPHjwAg8HA8OHDOfbzcSteXl64fPkyfH19CQOl1rmt0dHRCA0NRVxcHKka6SCMhuY7KSoqgpubG9LS0sBgMDBgwP+1d+9hUdZ5/8DfM5inOIQwHsl0LVEOMgr2iAioJEzZgiNhbRoGmiLIWnIoWzfF8nlE0cXEDUGSBE8TGCqZFrqiy8rGoom4xZqPhwQVBATTEZSZ3x8+zk8CD6M498w979d1eV16f+/gvdYy85n78/18X8D06dMRHBwsdDTRu3XrFqZOnYrjx4/D398fXl5e6NOnD7RaLS5evIhDhw6hoKAAcrkc2dnZkEqlQkcmkTl9+jTq6+thY2NjUntC3njjDRw7dgxDhgzBxIkTMXHixFZjnE3Z4cOHUVVV1e7P4O3bt6Nv374YNWqUAMlIbEVLQEAAZs6cicmTJ8PZ2Rk5OTm6D2Lff/99dO3a1eSPRqmqqsKuXbt0UxRNhaenJ+Lj46FUKtHS0qIrvpydnVFcXIzIyEgcOXJE0IzcE0b0iO60Ju7cuRONjY1QKBSYMGECCgsLsWjRIhw7dgxLliwROqao5eXl4cSJE0hLS2t3f05ISAgOHjyIyMhI7NixA0qlUoCUJDYpKSkICQlBr169MHDgwFbDd6qrq6FSqXSDCIzVDz/8gO7du+PWrVvYsWMHduzYcc97JRIJdu7cacB0jyc5ORl+fn7trtXV1UGlUmHr1q0GTkXA7SfIc+fOxcsvv4zY2FgMGzYMLi4umDRpEt5//33s37/fpIowczifsm/fvpg9ezZmz54tdBS9mMIAJX4sTKSHa9euQaVS4fXXX8err76KAwcOYMaMGSgsLERycjImTpyI5cuX45NPPjGpT4xM1Z49exAUFNRuAXaHj48PgoKCsHv3bgMmIzFbu3YtLl261O5adXU11q5da+BE+ps0aRICAgLg4uLywF+mtEcHuH3o7L3awp2dnfHzzz8bOBHd8aCiZc+ePQKm019751PewfMphXVngFJ7jGWAEp+EEenBy8sLWq0WAQEBiIuLg4eHR7v3OTk5wdbW1sDpzE9FRQVee+21B97n7e2NpUuXGiARmYP7dfHX1NTA2tragGkezbJly4SO8MRIJJJ7nnHU0NBwz71I9OS1V7SMHj0agGkWLTyf0nhFRkYiMjISarUaCoUCEokEZWVlyM/PR25uLtLT04WOyCKMSB+xsbEIDAx84JuswYMHY//+/QZKZb6uXLmCnj17PvA+mUyGK1euPPlAJFr5+fnIz88HcPtNfmJiIqysrFrd09zcjPLycowYMUKIiPR/3NzcsGnTJvj7+7c601Gr1WLz5s1wc3MTMJ15E1vRwvMpjdfYsWOxatUqLF++XNeZlJCQgN69eyMpKckoJtiyCCN6SE1NTVCpVBgwYMB929/IcG7evIlOnR78Y6xTp064deuWARKRWN28eRPXrl0DcPvNvFqtbjPopXPnzggKCsLMmTOFiEj/Jzo6GqGhoQgMDIRSqYRMJkN1dTXy8vJw5swZk5rwJjZiK1p4PqVxUygUUCgURjtAidMRifTwX//1X/jLX/6ia58gYQ0ZMgShoaEPnOpWVVWF7Oxskxp9TMbrrbfewuLFi43qxZxaKy0txYoVK1BWVgaNRgOpVAq5XI6YmBi4u7sLHY9EpqGhASdPnsSFCxfg4+MDGxsbNDU14amnnuJUXoHcPUDpt4xlgBKLMCI9/PnPfwYAfPzxxwInIeB2EfawJBIJizAiM3Pjxg00NDTA2tqaZwUagevXr+Pf//43ampqIJFIYG9vDxcXF3Tt2lXoaI9Eo9EgOTkZWVlZUKvVkEgkugOB33nnHbi5uQn+Rl8fjY2N2Lt3L06fPo3m5uY26wsXLhQg1aMZOnQotm3bhmHDhrVZKy8vR0hIiODvCdiOSKSHESNGYNWqVZg9ezZ8fHxgb2/fas8BAPj7+wuUzvz89NNPQkcgM6XRaFBcXNzumxWJRMKWJCPRtWtXk32DLybXr1/HsmXLkJeXh5s3b+qG20gkEnTu3BmTJ09GfHy8yRXKq1evRnZ2Nt5//314enoiICBAtzZ+/Hh8+eWXJlOEnTlzBm+88Qaam5uhVqvRo0cPNDQ04NatW7CxsYGlpaVJFWGmMECJRRiRHhYsWAAAKCwsRGFhYZt1Pm0xDVqtFh9++CGio6PRt29foeOQiampqcG0adNw9uxZSCSSVm8o72ARRnTbrVu3EBYWhuPHj8Pf3x9eXl7o06cPtFotLl68iEOHDmHbtm2oqKhAdna2SbXvffXVV5g/fz7eeOONNlM3+/fvj19++UWgZPpbtmwZ3NzcsHr1asjlcqSlpWHIkCHYvXs3/vKXv2D16tVCR3wgUxugxCKMSA/79u0TOgJ1AI1Gg7y8PEybNo1FGOlt2bJlsLW1xcaNG+Hr6wuVSgV7e3vs3LkTeXl5SEtLEzqi3sTUhkTGJS8vDydOnEBaWlq7Q61CQkJw8OBBREZGYseOHVAqlQKkfDRXrly5597QlpYWkxoIVVZWhqVLl6Jz584Abg8jsrCwwO9//3vU19fjk08+MfpDzk1tgBKLMCI99OvXT+gI1EG4HZYeVUlJCRYuXNhqKlrfvn0REREBrVaLJUuWYP369QIm1I/Y2pDIuOzZswdBQUH3nSrs4+ODoKAg7N6926SKsAEDBqCoqKjdcefff/89XnjhBQFSPZrm5mZYWlpCKpXCxsYG1dXVurUXXnjBJNr/lUql7r8fUxigZDrPfImMhFarxYEDB7By5Up89NFHWLlyJQoLC/mmnshMXL16FT169IBUKoWlpSVqa2t1a3K5HKWlpQKm09+dNqR//OMf0Gq1SEtLw7Fjx7BixQo8/fTTJtGGRMaroqIC3t7eD7zP29vbJN7o3+3tt9/Ghg0bkJycjJMnTwIALl68iE2bNiErK8uk2pIHDBiAyspKAICTkxM2b96MX3/9FTdu3MC2bdse6kxOY5KVlWXUBRjAJ2FEemloaMCsWbNw7NgxWFtbw87ODrW1tUhPT9f1UBvDZk8ienIcHBx0nxI///zz2LFjB8aNGwcAKCgowDPPPCNgOv2JoQ2JjNeVK1ce6g28TCbDlStXnnygDjR58mQ0NDRgzZo1WLduHQAgKioK3bp1w7vvvotXXnlF4IQPb+LEiboieN68eZgxYwZefPFF3b7XZcuWCZxQf8Y+QIlFGJEeEhMTce7cOWRkZMDLy0t3vaioCHFxcUhMTMTSpUsFTEhET9rYsWNRVFSEV155BXPmzEFUVBQ8PT3RqVMnXL58GbGxsUJH1IsY2pDIeN28eROdOj347WanTp1Mag/VHWFhYZgyZQqOHj2qOxB4+PDhbQZCGLuwsDDd7+VyOfLz83Ho0CHcuHEDo0aNwuDBgwVMpz9TGKDEIoxID/v370dcXFyrAgwAvLy8MH/+fCQlJbEIIxK5mJgY3e99fX2xZcsWFBQU4MaNGxg9ejR8fX0FTKe/O21II0eO1LUhjR49Gp06dTLJNiQyPvn5+Q9s062qqjJQmo739NNPt9nzdujQIXzyySfYu3evQKn0U1JSAicnJzz99NMAgD59+mDKlCkAgGvXrqGkpAQjR44UMqJeTGGAEoswIj2o1WrY29u3uyaTyaBWqw2ciIiE5urqCldXV6FjPDIxtiGRcdm4ceND3ffbczdN2fXr13Hu3DmhYzy00NDQex5ufPr0aYSGhprUETymMECJRRiRHoYOHYrs7GyMGTMGFhYWuusajQZZWVlwcnISMJ15O3jwILy9vR/qRdzCwgIbN27EwIEDDZCMxObw4cOoqqpCcHBwm7Xt27ejb9++GDVqlADJHo3Y2pDIuLCd1TTcb7iYWq02uUPPHzRAiU/CiExMTEwMwsPDMWHCBPj5+cHe3h61tbUoKCjA5cuX8fnnnwsd0WzNmjULvXv3hlKpxOTJk/Hss8/e9/4XX3zRQMlIbJKTk+Hn59fuWl1dHVQqlUkNshBbGxKJg1arxYcffojo6Gie5/iE/PDDDzh69Kjuz7t27WrTNtrU1IR9+/bhd7/7naHjPRZTGKDEIoxIDyNHjsSWLVuQmpqK/Px8NDY2wsbGBu7u7oiIiICzs7PQEc3W119/jZycHHz55ZdYt24dPDw8EBISgoCAAN3UN6KOcPLkScybN6/dNWdnZ6Smpho40eMRWxsSiYNGo0FeXh6mTZvGIuwJ+fvf/46UlBQAt1tBs7Ky2tzTqVMnDBo0CIsWLTJ0vMdiCgOUWIQR6cnFxUX3Q4uMx6BBg/D+++8jNjYWBw4cQG5uLhYsWIAlS5bg1VdfRXBwMFxcXISOSSIgkUhw9erVdtcaGhrQ0tJi4ESPR2xtSCQexnj+5oYNGx7qvv/85z9POMnjmzt3LubOnQsAGDJkCFQqVbsfxpgiUxigJNEa43/hREQd4NKlS4iNjUVJSQkkEgleeOEFTJ8+vd29PEQPKzw8HLdu3cIXX3zRag+iVqvF9OnTIZVKkZmZKVzAh3B3G1JiYiLeeuutNk8b7rQhaTQa5ObmChGTzFhLSwucnZ2Rm5trVF0mQ4YMeeh7JRIJnyLTPfFJGJEeQkND77kmlUphZWWFoUOHIjg4GL169TJgMrrbqVOnkJOTg507d6KxsREKhQITJkxAYWEhFi1ahGPHjmHJkiVCxyQTFR0djdDQUAQGBkKpVEImk6G6uhp5eXk4c+ZMuy09xkbMbUhET5LYB400NTXhl19+QVNTU5s1YyqGH8QUBijxSRiRHqKionDixAnU1NTA0dERdnZ2qK2tRUVFBWQyGfr3748ff/wRGo0GGzduNKkfWKbu2rVr+Prrr5Gbm4uysjIMGDAAISEhmDRpEnr06KG7Ly8vDwkJCa02IxPpq7S0FCtWrEBZWRk0Gg2kUinkcjliYmLg7u4udDy9iK0NicTBWJ+EPSpjHzTS3NyMxYsXY+fOnfdsqTalp3qvv/46/Pz8MGvWrDZr69evR0FBgeADlPgkjEgPCoUC586dw6ZNm9CvXz/d9fPnz2POnDlQKpVYs2YNwsLCsGrVKmRkZAiY1rx4eXlBq9UiICAAcXFx8PDwaPc+Jycn2NraGjgdiY27uzu2bt2KGzduoKGhAdbW1ujWrZvQsR6J2D/ZJzIGxj5oZO3atSgqKsKyZcsQGxuLjz76CN27d8fOnTtx7tw5/PnPfxY6ol5MYYCSVOgARKYkJSUF0dHRrQow4PYo1KioKPz1r3+FjY0NwsPD8cMPPwgT0kzFxsbi0KFDWL58+T0LMAAYPHgw9u/fb8BkJGZdu3ZFr169TLYAu1tTUxN+/vlnnDhxos0vInp8xtx8tmfPHsydOxcvv/wyAGDYsGGYNGkSPv/8c7i7u5vc66YpDFDikzAiPVy4cOGehwFLJBJcunQJANCzZ0+j+D+4uWhqaoJKpcKAAQMwZswYoeMQmRSxtSGR8Tp48CC8vb3v+Tp6NwsLC2zcuBEDBw40QDK6ePEiBg4cCAsLC3Tp0gWNjY26tcDAQMyfPx8JCQkCJtSPm5sbNm3aBH9//zYDlDZv3gw3NzcB093GJ2FEenB1dcWnn36KCxcutLpeWVmJNWvW6PZUVFZWcjCHAXXp0gWXLl2CVMofaUT6ursNSavV4s9//jP+53/+B56enujXr59RtO2QOMyaNQvjxo3D6tWr8csvvzzw/hdffBHdu3c3QDKSyWS6wsvBwQH//Oc/dWtnzpwRKNWji46OxtGjRxEYGIjPP/8cu3btQkZGBgIDA3H06FG8++67QkfkkzAifSQkJCAsLAwTJkzA4MGDYWtri/r6elRUVMDOzg6rV68GAFy+fBlTpkwROK158ff3xzfffIPRo0cLHYXIpNzdhhQbG4thw4bBxcUFkyZNwvvvv4/9+/cbxZk6ZPq+/vpr5OTk4Msvv8S6devg4eGBkJAQBAQEoHPnzkLHM2svvvgi/vWvf2H8+PEICQnB8uXL8b//+7946qmnUFBQgFdffVXoiHoZPnw4MjMzsWLFCiQlJbUaoJSZmQm5XC50RE5HJNJXU1MTcnJyUF5ejpqaGshkMri6uiI4OBhdunQROp7Z+uqrr7Bq1So4OTnBx8cH9vb2bVpe/P39BUpHZLzc3NyQkZEBDw8PuLm54bPPPtN9mFFUVIT58+e3+lSc6HG1tLTgwIEDyM3NxcGDB9GtWze8+uqrCA4OhouLi9Dxnghjn/ZYU1OD+vp6DB48GACQmZmJPXv2oKmpCaNHj0ZUVJTJPpU01gFKLMKISBQedIAmD80kat9LL72EDz/8EOPHj8fEiRPx0ksv4b333gMAbNq0CZ9++imLMHpiLl26hNjYWJSUlEAikeCFF17A9OnT2z3fyZQZexFGhsd2RKJHcOrUKRw/fhwXL15EcHAwZDIZzp49Czs7O1haWgodzyzt27dP6AhEJklsbUhkGk6dOoWcnBzs3LkTjY2NUCgUmDBhAgoLC7Fo0SIcO3YMS5YsETrmfYlp0Mj169fx73//GzU1NZBIJLC3t4eLiwu6du0qdDTR4pMwIj2o1WosXLgQu3fvhlQqhUajQU5ODpydnfHHP/4RDg4OiI+PFzomEdFDE3MbEhmXa9eu4euvv0Zubi7KysowYMAAhISEYNKkSejRo4fuvry8PCQkJODo0aMCpn2wIUOGoHfv3lAqlZg8eTKeffZZoSPp7fr161i2bBny8vJw8+ZN3Rh9iUSCzp07Y/LkyYiPjzeqNj6xYBFGpIfFixfju+++Q2JiIjw8PCCXy3WtBbm5ucjMzMSuXbuEjmm2tFotCgsLUVpaioaGBtjY2MDDwwM+Pj4P9UklERE9OXK5HFqtFgEBAZgyZco9z3T8z3/+g4iICKM/m+rO07xdu3ahrq7O5AaN3Lp1C1OnTsXx48fh7+8PLy8v9OnTB1qtFhcvXsShQ4dQUFAAuVyO7OxsTiDuYCzCiPTg6emJ+Ph4KJXKNv3dxcXFiIyMxJEjR4SOaZYaGhowa9YsHDt2DNbW1rCzs0NtbS0aGxshl8uRlpYGa2troWMSGR22IZGhZGdnIzAwUHQ/i0110EhOTg4WL16M1NTUe56xefDgQURGRuLjjz+GUqk0cEJx454wIj1cv34dMpms3TW1Wm3gNHS3xMREnDt3DhkZGfDy8tJdLyoqQlxcHBITE7F06VIBExIZF7YhkSE1NTVBpVJhwIAB93zDb6osLCzg5+cHPz8/3aCRLVu2YOvWrUY9aGTPnj0ICgq6778PHx8fBAUFYffu3SzCOhiLMCI9ODo64ttvv233B9aBAweM+hMvsdu/fz/i4uJaFWAA4OXlhfnz5yMpKYlFGNH/uXXrFsLCwu7bhrRt2zZUVFSwDYk6RJcuXXDp0iXR/rdkioNGKioq8Nprrz3wPm9vb75+PgEswoj0EBkZicjISKjVaigUCkgkEpSVlSE/Px+5ublIT08XOqLZUqvVsLe3b3dNJpPxSSXRXfLy8nDixAmkpaW1+6FSSEiIrg1px44d/AScOoS/vz+++eYb3Tl0pq69QSMzZsxoNWhk4sSJGD16NBISEoyuCLty5Qp69uz5wPtkMhmuXLny5AOZGRZhRHoYO3YsVq1aheXLl+sGcCQkJKB3795ISkqCp6enwAnN19ChQ5GdnY0xY8bAwsJCd12j0SArKwtOTk4CpiMyLmxDIiGMGDECq1atwuzZs+Hj4wN7e/s2Q5P8/f0FSqc/Ly8v3aCRuLi4ew4acXJygq2trYHTPdjNmzfRqdODS4FOnTrh1q1bBkhkXjiYg+gRnT59GvX19bCxscGgQYOEjmP2SkpKEB4eDplMBj8/P9jb26O2thYFBQW4fPkyPv/883u+QBKZG29vb/zpT3+CQqG473179uzB0qVLcejQIQMlIzEbMmTIfdclEgl+/PFHA6V5fKY+aGTIkCEIDQ1Fnz597ntfVVUVsrOzTerfjSngkzAiPaSkpCAkJAS9evXCwIEDWx26WF1dDZVKhblz5wqY0HyNHDkSW7ZsQWpqKvLz89HY2AgbGxu4u7sjIiICzs7OQkckMhpsQyIh7Nu3T+gIHUYsg0Y2btz4UPfxmJeOxyKMSA9r166Fj48PevXq1Waturoaa9euZREmIBcXF6SkpAgdg8josQ2JhNCvXz+hI3QYMQwa+emnn4SOYNZYhBHp4X7duzU1NSbbkkBE5ic/Px+lpaX3vaeqqspAachcaLVaFBYWorS0FA0NDbCxsYGHhwd8fHxM7mmL2AaNPCytVosPP/wQ0dHR6Nu3r9BxTBb3hBE9QH5+PvLz8wEAhYWFGDFiBKysrFrd09zcjPLycowYMQKpqalCxDR7oaGh91yTSqWwsrLC0KFDERwc3O6TTCJz8qC9OXcztX06ZLwaGhowa9YsHDt2DNbW1rCzs0NtbS0aGxshl8uRlpZmUh9mfvXVV1i1ahWcnJxEMWjkYbW0tMDFxQU5OTls9X8MfBJG9AA3b97EtWvXANz+9EetVrdpP+jcuTOCgoIwc+ZMISISACsrK5w4cQI1NTVwdHTUvbhXVFRAJpOhf//+2LBhAzIyMrBx40a+cJBZYxsSCSExMRHnzp1DRkZGqzMdi4qKEBcXh8TERJM6j2rBggUAbn9AW1hY2GZdzB9g8BnO4+OTMCI9vPXWW1i8eDGnIRqhXbt2IS0tDampqa32HZw/fx5z5sxBeHg4xo8fj7CwMNja2iIjI0PAtESmiW1I9DhGjRqFuLg4BAcHt1nLyclBUlISiouLBUj2aCorKx94j5j2wd3R0tICZ2dn5Obm8gPNx2C6uwmJBJCVlcUCzEilpKQgOjq6zQueg4MDoqKi8Ne//hU2NjYIDw/HDz/8IExIIhOn0WiQl5eH+vp6oaOQCVKr1bC3t293TSaTQa1WGzjR4+nXr98DfxHdC9sRifSk0WhQXFyM06dPo7m5udWaRCLB22+/LUwwM3fhwoV7buqWSCS4dOkSAKBnz55oaWkxZDQiUWEDDT2qoUOHIjs7G2PGjIGFhYXuukajQVZWFpycnARM92jENGiEDItFGJEeampqMG3aNJw9exYSiUT3ZuTuH7QswoTh6uqKTz/9FC4uLq0OnqysrMSaNWswbNgw3Z85mIOIyPBiYmIQHh6OCRMmwM/PD/b29qitrUVBQQEuX76Mzz//XOiIernXoJH09HSTHDRChsUijEgPy5Ytg62tLTZu3AhfX1+oVCrY29tj586dyMvLQ1pamtARzVZCQgLCwsIwYcIEDB48GLa2tqivr0dFRQXs7OywevVqAMDly5cxZcoUgdMSEZmfkSNHYsuWLUhNTUV+fj4aGxthY2MDd3d3REREmNz+IrENGiHD4mAOIj34+Phg4cKFeOmll+Dk5ASVSqV7wvLZZ5+htLQU69evFzil+WpqakJOTg7Ky8tRU1MDmUwGV1dXBAcHo0uXLkLHIzJ53JBP9P+JadDIwYMH4e3t/dAtlN9//z1cXFzQvXv3J5xMvPgkjEgPV69eRY8ePSCVSmFpaYna2lrd2p3WAxJOly5dMHXqVKFjEBGRGRDToJFZs2ahd+/eUCqVmDx5Mp599tn73v/iiy8aKJl4sQgj0oODgwOqq6sBAM8//zx27NiBcePGAQAKCgrwzDPPCJiOAODUqVM4fvw4Ll68iODgYMhkMpw9exZ2dnawtLQUOh4RkdkKDQ2955pUKoWVlRWGDh2K4OBgk9i7K6ZBI19//TVycnLw5ZdfYt26dfDw8EBISAgCAgLQuXNnoeOJEtsRifSwcuVK1NXVYenSpSgsLERUVBSsrKzQqVMnXL58GbGxsZgxY4bQMc2SWq3GwoULsXv3bkilUmg0GuTk5MDZ2Rl//OMf4eDggPj4eKFjEhkdtiGRoURFReHEiROoqamBo6OjbpBFRUUFZDIZ+vfvjx9//BEajQYbN240+pbXkpIShIeHQyaT3XPQiIeHh9Ax9dLS0oIDBw4gNzcXBw8eRLdu3fDqq68iODgYLi4uQscTFRZhRI/h+PHjKCgowI0bNzB69Gj4+voKHclsLV68GN999x0SExPh4eEBuVyu27eSm5uLzMxM7Nq1S+iYREZnyJAherUhET2qXbt2IS0tDampqa3O0Dp//jzmzJmD8PBwjB8/HmFhYbC1tUVGRoaAaR9OeXk5UlNTUVpaavKDRn7r0qVLiI2NRUlJCSQSCV544QVMnz693T1wpD8WYUQkCp6enoiPj4dSqWwzPKC4uBiRkZE4cuSI0DGJjM6pU6eQk5ODXbt2oa6ujm1I9MQEBAQgJiYG/v7+bdb27NmDlStX4rvvvkN+fj4WLVqE0tJSAVLSnZ8JO3fuRGNjI/z8/DBhwgQUFhZi9+7dmDx5MpYsWSJ0TJMnFToAkSk5fPgwcnNz213bvn27yUxBEqPr169DJpO1u2ZKm6OJDG3QoEF4//33UVhYiDVr1sDS0hILFiyAl5cXEhISUF5eLnREEokLFy7cs+1VIpHg0qVLAICePXuipaXFkNHM3rVr16BSqfD666/j1VdfxYEDBzBjxgwUFhYiOTkZEydOxPLly/HJJ5+wq6SDcDAHkR6Sk5Ph5+fX7lpdXR1UKhW2bt1q4FQEAI6Ojvj2228xZsyYNmsHDhxgLzvRA1hYWMDPzw9+fn66NqQtW7Zg69atbEOiDuHq6opPP/0ULi4u6NOnj+56ZWUl1qxZozvypbKy0iQGc4hp0IiXlxe0Wi0CAgIQFxd3z71sTk5OsLW1NXA6cWIRRqSHkydPYt68ee2uOTs7IzU11cCJ6I7IyEhERkZCrVZDoVBAIpGgrKwM+fn5yM3NRXp6utARiYzeb9uQFAqFrg1p0aJFOHbsGNuQ6JElJCQgLCwMEyZMwODBg2Fra4v6+npUVFTAzs4Oq1evBgBcvnwZU6ZMETjtg1lZWT1w0MiGDRuQkZFh9INGYmNjERgYCGtr6/veN3jwYOzfv99AqcSNe8KI9ODu7o7//u//RkBAQJu1PXv2YMGCBTh69KgAyQi4/e9g+fLlqKqq0l3r3bs3PvjgAygUCgGTERmva9eu4euvv0Zubi7KysowYMAAhISEYNKkSejRo4fuvry8PCQkJPBnHD2WpqYm5OTkoLy8HDU1NZDJZHB1dUVwcDC6dOkidDy9iGXQSFNTE0JCQhAfH99uNwk9GXwSRqQHNzc3bNq0Cf7+/q362rVaLTZv3gw3NzcB05FCoYBCocDp06dRX18PGxsbDBo0SOhYREaNbUhkSF26dMHUqVOFjtEhUlJSEBMT06oAA26fKRoVFYWVK1dCqVQiPDwcixYtEijlg3Xp0gWXLl2CVMpREYbEIoxID9HR0QgNDUVgYCCUSiVkMhmqq6uRl5eHM2fOICsrS+iIZislJQUhISHo1asXBg4ciIEDB+rWqquroVKpMHfuXAETEhkntiGRoZ06dQrHjx/HxYsXERwcDJlMhrNnz8LOzg6WlpZCx3toYho04u/vj2+++QajR48WOorZYBFGpIfhw4cjMzMTK1asQFJSEjQaDaRSKeRyOTIzMyGXy4WOaLbWrl0LHx+fdjc/V1dXY+3atSzCiH6jqakJKpUKAwYMYBsSPXFqtRoLFy7E7t27IZVKodFo4O3tDZlMhpUrV8LBwQHx8fFCx3xoYho0MmLECKxatQqzZ8+Gj48P7O3t2xSY7R0tQI+ORRiRntzd3bF161bcuHEDDQ0NsLa2Rrdu3YSOZfbut721pqbmgZ/yE5kjtiGRISUmJqK4uBjp6enw8PBo9cGlr68vMjMzTaoIE9OgkQULFgAACgsLUVhY2GZdIpHgxx9/NHQsUWMRRvSIunbtiq5duwodw6zl5+cjPz8fwO0XiMTERFhZWbW6p7m5GeXl5RgxYoQQEYmMHtuQyFD27t2rG/7w2/a8fv36obKyUqBkj+b5559HQUFBq0Ejjo6OeO2111oNGnnnnXcETvpg+/btEzqC2WERRkQm6+bNm7h27RqA20/C1Gp1m0/0O3fujKCgIMycOVOIiERGj21IZCjXr1+HTCZrd02tVhs4TccQy6CR3w4XoSePRRgRmSylUgmlUgkAeOutt7B48WJOQyTSE9uQyFAcHR3x7bfftrv/8MCBA3BxcREg1eMTy6ARrVaLwsJClJaWoqGhATY2NvDw8ICPj889B5DQo2MRRkSiwMmURI+GbUhkKJGRkYiMjIRarYZCoYBEIkFZWRny8/ORm5uL9PR0oSPqRUyDRhoaGjBr1iwcO3YM1tbWuoOn09PTIZfLkZaWxr3VHYyHNRORaGg0GhQXF+P06dNobm5utSaRSPD2228LE4yIiAAAe/bswfLly1FVVaW71rt3b3zwwQdQKBQCJtPf4sWL8d133yExMVE3aCQ3NxfOzs7Izc1FZmYmdu3aJXTMh/Lhhx/ib3/7G5KSkuDl5aW7XlRUhLi4OIwbNw5Lly4VMKH4sAgjIlGoqanBtGnTcPbsWUgkEt20xLtbKNhSRdQ+tiGRoZ0+fRr19fWwsbEx2TZyT09PxMfHQ6lUoqWlRVd8OTs7o7i4GJGRkThy5IjQMR/KqFGjEBcXh+Dg4DZrOTk5SEpKQnFxsQDJxIszaYlIFJYtWwZbW1sUFhZCq9VCpVJh//79mDdvHp577jns3btX6IhERqmhoQFvvPEGIiIisG3bNpSUlGDbtm2YPXs2/vCHP6CxsVHoiCQSKSkpugOMBw4ciBEjRugKsOrqaqSkpAgZT29iGjSiVqthb2/f7ppMJjO5/z2mgEUYEYlCSUkJwsPDW70g9u3bFxEREQgKCsKSJUsETEdkvBITE3Hu3DlkZGTg+++/xzfffIPvv/8eGRkZOHfuHBITE4WOSCKxdu1aXRH2W9XV1Vi7dq2BEz2eO4NG2mNqg0aGDh2K7OzsNkcHaDQaZGVlwcnJSaBk4sXBHEQkClevXkWPHj0glUphaWmJ2tpa3dqdTcVE1Nb+/fsRFxfXah8IAHh5eWH+/PlISkriXhDqEPfbAVNTU2Nygx/ENGgkJiYG4eHhmDBhAvz8/GBvb4/a2loUFBTg8uXL+Pzzz4WOKDoswohIFBwcHFBdXQ3g9gGaO3bswLhx4wAABQUFeOaZZwRMR2S82IZET1J+fj7y8/MB3N6jm5iYCCsrq1b3NDc3o7y8HCNGjBAi4iMbO3YsVq1aheXLl+sGcCQkJKB3795ISkqCp6enwAkf3siRI7FlyxakpqYiPz8fjY2NsLGxgbu7OyIiIuDs7Cx0RNFhEUZEojB27FgUFRXhlVdewZw5cxAVFQVPT0906tQJly9fRmxsrNARiYzSnTakMWPGwMLCQnedbUjUEW7evIlr164BuP0kTK1WQyptvRumc+fOCAoKwsyZM4WI+FgUCgUUCoUoBo24uLiY3L48U8bpiEQkSsePH0dBQQFu3LiB0aNHw9fXV+hIREbp7v2U92pD8vDwEDomicBbb72FxYsXm2yR8lspKSkICQlBr1692qxVV1dDpVJh7ty5AiQjU8AijIiIyMyVl5cjNTUVpaWlbEMiekhDhw7Ftm3bMGzYsDZr5eXlCAkJMZmjUUJDQ++5JpVKYWVlhaFDhyI4OLjdopP0x3ZEIhKFw4cPo6qqqt0zTrZv346+ffti1KhRAiQjMn5sQyJD0Wg0KC4uxunTp9Hc3NxqTSKR4O233xYm2CMQ06ARKysrnDhxAjU1NXB0dISdnR1qa2tRUVEBmUyG/v37Y8OGDcjIyMDGjRv54UwHYBFGRKKQnJwMPz+/dtfq6uqgUqmwdetWA6ciIqI7ampqMG3aNJw9exYSiURXxNx9ILixF2FiHTSiUChw7tw5bNq0Cf369dNdP3/+PObMmQOlUok1a9YgLCwMq1atQkZGhoBpxYFFGBGJwsmTJzFv3rx215ydnZGammrgRESmgW1IZCjLli2Dra0tNm7cCF9fX6hUKtjb22Pnzp3Iy8sziaNExDpoJCUlBTExMa0KMOD25OGoqCisXLkSSqUS4eHhWLRokUApxYVFGBGJgkQiwdWrV9tda2hoaHMAJRHdxjYkMpSSkhIsXLgQMplMd61v376IiIiAVqvFkiVLsH79egETPphSqYRSqQQgrkEjFy5caPVE8m4SiUR3yHbPnj35etpBpA++hYjI+Lm5uWHTpk1tevS1Wi02b94MNzc3gZIRGTeFQgErKyt8++232L59O9LT07F9+3bs3bsXVlZWUCqVKCgowHPPPYdVq1YJHZdM2NWrV9GjRw9IpVJYWlqitrZWtyaXy1FaWipgOv1lZWWJogADAFdXV3z66ae4cOFCq+uVlZVYs2aNbvhIZWUln4h3ED4JIyJRiI6ORmhoKAIDA6FUKiGTyVBdXY28vDycOXMGWVlZQkckMkpsQyJDcXBwQHV1NQDg+eefx44dOzBu3DgAQEFBAZ555hkB0z0asQwaSUhIQFhYGCZMmIDBgwfD1tYW9fX1qKiogJ2dHVavXg0AuHz5MqZMmSJwWnFgEUZEojB8+HBkZmZixYoVSEpKgkajgVQqhVwuR2ZmJuRyudARiYwS25DIUMaOHYuioiK88sormDNnDqKiouDp6YlOnTrh8uXLiI2NFTqiXsQwaOSO559/HgUFBcjJyUF5ebmuPfm1115DcHAwunTpAgB45513BE4qHjwnjIhE58aNG2hoaIC1tTW6desmdBwiozZ16lQ0NjYiLS0Nffr00V2vrKzE7Nmz8cwzzyA7OxtfffUVUlNTsXfvXgHTkpgcP34cBQUFuHHjBkaPHg1fX1+hI+klJiYGlZWVWL169T0HjfTv31/omGSkWIQRERGZsZ9//hlhYWGor69vtw1pw4YNGDRoENLT0yGVSjFjxgyhIxMZBR8fHyxcuBAvvfQSnJycoFKpdHunPvvsM5SWlhr9oJHfOnXqFI4fP46LFy8iODgYMpkMZ8+ehZ2dHSwtLYWOJypsRyQiIjJjbEMiQzl8+DCqqqoQHBzcZm379u3o27cvRo0aJUCyR/OgQSOmMHL/DrVajYULF2L37t2QSqXQaDTw9vaGTCbDypUr4eDggPj4eKFjigqLMCIiIjPXpUsXTJ06VegYJHLJycnw8/Nrd62urg4qlQpbt241cKpHJ6ZBI4mJiSguLkZ6ejo8PDxa7aP29fVFZmYmi7AOxhH1REREhFOnTiEvLw+pqamoqakBAJw9exa//vqrwMlILE6ePAkXF5d215ydnfHzzz8bONHjuTNoBADmzJmDgoICeHp6wtvbG5s3b8a0adMETvjw9u7di9jYWIwZMwZPPfVUq7V+/fqhsrJSoGTixSdhREREZoxtSGQoEokEV69ebXetoaHB5KZvxsTE6H7v6+uLLVu2mOygkevXr7c6RPtuarXawGnMA5+EERERmbG725BKS0tbHXju6+uLQ4cOCZiOxMTNzQ2bNm3Cb2fCabVabN68GW5ubgIl6xiurq547733sGDBApMqwADA0dER3377bbtrBw4cuOcTTHp0fBJGRERkxvbu3Yv4+HiMGTOmzZMItiFRR4qOjkZoaCgCAwOhVCohk8lQXV2NvLw8nDlzBllZWUJH1IuYBo1ERkYiMjISarUaCoUCEokEZWVlyM/PR25uLtLT04WOKDp8EkZERGTG2IZEhjJ8+HBkZmbi6aefRlJSEuLi4rBy5UpYWVkhMzOz1TAIU5CcnNxqIuLd6urqkJycbNhAj2Hs2LFYtWoVSktLERUVBa1Wi4SEBHzzzTdISkqCp6en0BFFh0/CiIiIzNidNqQxY8a0WWMbEnU0d3d3bN26FTdu3EBDQwOsra3RrVs3oWM9kpMnT2LevHntrjk7OyM1NdXAiR6PQqGAQqHA6dOnUV9fDxsbGwwaNEjoWKLFIoyIiMiMsQ2JhNC1a1d07dpV6BiPRUyDRlJSUhASEoJevXph4MCBGDhwoG6turoaKpUKc+fOFTCh+Ei0v90dSURERGZlz549WL58OaqqqnTXevfujQ8++AAKhULAZETGKzw8HLdu3cIXX3wBiUSiu67VajF9+nRIpVJkZmYKF1APQ4cOxbZt2zBs2LA2a+Xl5QgJCcGPP/4oQDLx4pMwIiIiM8c2JCL9iWnQyP2eydTU1MDa2tqAacwDn4QRERGZsbvbkH6LbUhE91daWooVK1agrKwMGo0GUqkUcrkcMTExcHd3FzrefeXn5yM/Px8AUFhYiBEjRsDKyqrVPc3NzSgvL8eIESNMbo+bsWMRRkREZMbYhkT0+Exx0MhXX32F7du3AwBKSkrg5OSEp59+utU9nTt3xu9+9zvMnDmz3Q9q6NGxHZGIiMiMsQ2J6PGZ4qARpVIJpVIJAHjrrbewePFitiEbEIswIiIiM3N3G5JEIkFiYuJ925CISNxMaf+aWLAIIyIiMjM3b97EtWvXANx+EqZWqyGVSlvd07lzZwQFBWHmzJlCRCQiA9NoNCguLsbp06fR3Nzcak0ikeDtt98WJphIcU8YERGRGWMbEhHV1NRg2rRpOHv2LCQSia5N+e7R+9wb2rGkD76FiIiIxCorK4sFGJGZW7ZsGWxtbVFYWAitVguVSoX9+/dj3rx5eO6557B3716hI4oO2xGJiIjMHNuQiMxbSUkJFi5cCJlMprvWt29fREREQKvVYsmSJVi/fr2ACcWHRRgREZEZe5g2JBZhROJ29epV9OjRA1KpFJaWlqitrdWtyeVypKWlCZhOnNiOSEREZMbYhkREDg4OqK6uBgA8//zz2LFjh26toKAAzzzzjEDJxItFGBERkRkrKSlBeHh4u21IQUFBWLJkiYDpiMgQxo4di6KiIgDAnDlzUFBQAE9PT3h7e2Pz5s2YNm2awAnFh+2IREREZoxtSEQUExOj+72vry+2bNmCgoIC3LhxA6NHj4avr6+A6cSJRRgREZEZa68Nady4cQDYhkRkrlxdXeHq6ip0DFFjOyIREZEZYxsSER0+fBi5ubntrm3fvh3FxcUGTiR+PKyZiIiIdI4fP842JCIz8/rrr8PPzw+zZs1qs7Z+/XoUFBRg69atAiQTL7YjEhERkQ7bkIjMz8mTJzFv3rx215ydnZGammrgROLHdkQiIiIzxjYkIpJIJLh69Wq7aw0NDWhpaTFwIvFjEUZERGTGkpOTW01EvFtdXR2Sk5MNG4iIDM7NzQ2bNm3Cb3cpabVabN68GW5ubgIlEy+2IxIREZkxtiERUXR0NEJDQxEYGAilUgmZTIbq6mrk5eXhzJkzyMrKEjqi6LAIIyIiMmNsQyKi4cOHIzMzEytWrEBSUhI0Gg2kUinkcjkyMzMhl8uFjig6nI5IRERkxsLDw3Hr1i188cUXkEgkuutarRbTp0+HVCpFZmamcAGJyKBu3LiBhoYGWFtbo1u3bkLHES0WYURERGbs6NGjCA0NxYABA+7ZhsRPwYmIOhaLMCIiIjNXWlqKFStWoKysrFUbUkxMDNzd3YWOR0QkOizCiIiICADbkIiIDIVFGBERERERkQHxnDAiIiIiIiIDYhFGRERERERkQCzCiIiIiIiIDIhFGBERERERkQGxCCMiIiIiIjIgFmFERGTStm/fDkdHx3Z/JSUldfj3O3LkCNasWYPGxsYO/9pERGQeOgkdgIiIqCP88Y9/hIODQ6trgwcP7vDvc/ToUaSkpECpVMLa2rrDvz4REYkfizAiIhIFHx8fuLq6Ch3jkV2/fh3du3cXOgYRERkA2xGJiEj0CgsL8eabb0Iul2P48OGYNWsWTp482eqen376CR988AH8/Pzg6uoKLy8vLFiwAPX19bp71qxZg+XLlwMA/Pz8dG2P58+fx/nz5+Ho6Ijt27e3+f6Ojo5Ys2ZNq6/j6OiIn3/+GTExMRg5ciTefPNN3fqOHTswefJkDBs2DC+++CLee+89XLhwodXXPHPmDKKjo+Hl5QVXV1f4+Pjgvffew9WrVzvk74yIiJ4cPgkjIiJR+PXXX1FXV9fqWo8ePZCXl4cPPvgAY8aMQWxsLNRqNbZs2YI333wTX331la6F8R//+Ad++eUXTJ48GTKZDCdPnoRKpcLPP/8MlUoFiUSCCRMm4MyZM8jPz8eCBQtga2ur+z6//d4PY968eXjuuefw3nvvQavVAgA+++wzrF69Gi+//DJee+011NXVITs7G1OnTkVeXh6sra3R3NyMGTNmoLm5GdOmTYO9vT0uXbqEAwcOoLGxEVZWVo/5t0lERE8SizAiIhKFt99+u821I0eOYOnSpQgJCcHHH3+su65UKqFQKLBu3Trd9TfffBPh4eGt/nm5XI758+ejtLQUHh4eGDJkCJycnJCfn4+XXnqp1R60RynChgwZgpUrV+r+XFlZiTVr1uDdd99FRESE7rq/vz+USiU2b96MiIgInDp1CufPn8fq1auhUCh0982dO1fvDEREZHgswoiISBQ++ugjDBw4sNW1f/zjH2hsbMTEiRNbFUlSqRRubm745z//qbvWtWtX3e+bmppw7do1uLm5AQBOnDgBDw+PDs/8xhtvtPrzd999B41Gg5dffrlVXnt7ezz33HP45z//iYiICFhaWgIA/v73v8PX1xfdunXr8GxERPTksAgjIiJRGDZsWJvBHOnp6QCA6dOnt/vP3ClmAODKlStISUnB7t27UVtb2+q+J7XP6rfTHM+cOQOtVgt/f/927+/U6fbL9rPPPouwsDBs2LABu3btgoeHB8aPH4/AwEC2IhIRmQAWYUREJFp39lktX74cMpmszbqFhYXu9++++y6OHj2KGTNmYOjQoejevTs0Gg1mzpyp+zr3I5FI2r3e0tJyz3+mS5curf6s0WggkUiQnp7eKtsdd09P/OCDD6BUKrFv3z4UFRXhk08+wbp166BSqdC7d+8H5iUiIuGwCCMiItF69tlnAQB2dnYYPXr0Pe9raGjA4cOHER0d3Wpf1ZkzZ9rce69iy8bGBgDaHOJcVVX10Hn79+8PrVYLBweHNq2V7bkznTEyMhJHjhzBH/7wB2zZsgXvvffeQ39PIiIyPI6oJyIi0fL29oalpSXWrVuHmzdvtlm/s++qvadOAPDFF1+0uXZn/9VvWxQtLS1ha2uLf/3rX62ub968+aHz+vv7w8LCAikpKW2evmm1Wt24/F9//RW3bt1qtT548GBIpVI0Nzc/9PcjIiJh8EkYERGJlqWlJRYvXoz4+HhMnjwZr7zyCnr06IGqqioUFhZixIgR+Oijj2BpaYmRI0di/fr1uHnzJnr16oWioiKcP3++zdd0dnYGAPzlL3/BK6+8gqeeegrjxo1D9+7dERISgrS0NPzpT3+Ci4sL/vWvf+H06dMPnbd///549913sXLlSlRWVuKll17C008/jfPnz6OgoABTpkzBjBkzUFxcjCVLlkChUGDAgAFoaWnBjh07YGFhgYCAgA77+yMioieDRRgREYna73//e/Ts2RNpaWnIyMhAc3MzevXqBQ8PD0yePFl338qVK/Hxxx9j8+bN0Gq18PLyQnp6Ory9vVt9vWHDhmHevHnYunUrDh06BI1Gg3379qF79+6IiopCXV0d9u7di2+++QY+Pj5Yv349PD09HzrvrFmzMGDAAGRmZmLt2rUAgN69e8PLywvjx48HcLsNccyYMfjb3/6GS5cuoVu3bnB0dER6ejrkcvnj/6UREdETJdE+zG5jIiIiIiIi6hDcE0ZERERERGRALMKIiIiIiIgMiEUYERERERGRAbEIIyIiIiIiMiAWYURERERERAbEIoyIiIiIiMiAWIQREREREREZEIswIiIiIiIiA2IRRkREREREZEAswoiIiIiIiAyIRRgREREREZEBsQgjIiIiIiIyoP8H0T5pRgDxzKkAAAAASUVORK5CYII=\n"},"metadata":{}},{"output_type":"stream","name":"stdout","text":["Top 3 features: Index(['experience_level', 'category_Data Analysis',\n"," 'category_Machine Learning and AI'],\n"," dtype='object')\n","RMSE with Top 3 Features: 51472.08975251387\n","R^2 Score with Top 3 Features: 0.2347548692505219\n"]}]},{"cell_type":"markdown","source":["# Gradient BOOSTING REGRESSION MODEL"],"metadata":{"id":"j7jMRrCgWpBT"}},{"cell_type":"markdown","source":["## 1st Iteration:\n","Steps:\n","\n","Prepare Data: Split the data into training and testing sets, using salary as the target variable.\n","\n","Train Model: Use a GBM regression model.\n","\n","Evaluate Model: Assess its performance using RMSE and R²."],"metadata":{"id":"ERmRQk7VXBFo"}},{"cell_type":"code","source":["from sklearn.ensemble import GradientBoostingRegressor\n","from sklearn.metrics import mean_squared_error, r2_score\n","\n","# Split data into features and target\n","X = usd_salary_df.drop('salary', axis=1)\n","y = usd_salary_df['salary']\n","\n","# Split data into training and testing sets\n","X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)\n","\n","# Initialize and train the GBM regression model\n","gbm_model = GradientBoostingRegressor(random_state=42)\n","gbm_model.fit(X_train, y_train)\n","\n","# Predict on the test set\n","y_pred = gbm_model.predict(X_test)\n","\n","# Evaluate the model\n","rmse = np.sqrt(mean_squared_error(y_test, y_pred))\n","r2 = r2_score(y_test, y_pred)\n","\n","print(\"Root Mean Squared Error:\", rmse)\n","print(\"R² Score:\", r2)\n"],"metadata":{"colab":{"base_uri":"https://localhost:8080/"},"id":"dU1c7cBsXPb8","executionInfo":{"status":"ok","timestamp":1714691892559,"user_tz":300,"elapsed":583,"user":{"displayName":"Jenny O","userId":"07622373657144372939"}},"outputId":"994c8d91-4970-46d5-d6e8-826f67ad9549"},"execution_count":null,"outputs":[{"output_type":"stream","name":"stdout","text":["Root Mean Squared Error: 50341.34819642685\n","R² Score: 0.2680074555352997\n"]}]},{"cell_type":"markdown","source":["## 2nd Iteration: Handling Outliers in Salary\n","Steps:\n","\n","Modify Data: Replace outliers in the salary column.\n","\n","Train and Evaluate Model: Using the same steps as the first iteration."],"metadata":{"id":"jYEuGWd9YM6U"}},{"cell_type":"code","source":["# Replace outliers in the salary column\n","usd_salary_df.loc[usd_salary_df['salary'] > 310000, 'salary'] = 310000\n","y = usd_salary_df['salary']\n","\n","# Re-split the data (since the target has changed)\n","X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)\n","\n","# Re-train the GBM model\n","gbm_model.fit(X_train, y_train)\n","\n","# Re-predict and re-evaluate\n","y_pred = gbm_model.predict(X_test)\n","rmse = np.sqrt(mean_squared_error(y_test, y_pred))\n","r2 = r2_score(y_test, y_pred)\n","\n","print(\"RMSE with Outlier Adjustment:\", rmse)\n","print(\"R² Score with Outlier Adjustment:\", r2)"],"metadata":{"colab":{"base_uri":"https://localhost:8080/"},"id":"rRIBY1DPYbfa","executionInfo":{"status":"ok","timestamp":1714691893010,"user_tz":300,"elapsed":457,"user":{"displayName":"Jenny O","userId":"07622373657144372939"}},"outputId":"1c656b02-ed38-4337-f0a5-aef7f5374085"},"execution_count":null,"outputs":[{"output_type":"stream","name":"stdout","text":["RMSE with Outlier Adjustment: 50341.34819642685\n","R² Score with Outlier Adjustment: 0.2680074555352997\n"]}]},{"cell_type":"markdown","source":["## 3rd Iteration: Feature Importance and Model Simplification\n","Steps:\n","\n","Identify Feature Importance: Using model feature importances.\n","\n","Select Top 3 Features: Based on the highest importances.\n","\n","Rebuild and Train Model: Using only top features.\n","\n","Evaluate Model Performance."],"metadata":{"id":"iLZY8X02YuqH"}},{"cell_type":"code","source":["# Display feature importance from the GBM model\n","feature_importances = pd.Series(gbm_model.feature_importances_, index=X_train.columns)\n","\n","# Plot the feature importances for visual inspection\n","import matplotlib.pyplot as plt\n","plt.figure(figsize=(12, 8))\n","feature_importances.sort_values(ascending=True).plot(kind='barh')\n","plt.title('Feature Importance in GBM Regression')\n","plt.xlabel('Importance Score')\n","plt.ylabel('Features')\n","plt.show()\n","\n","# Select top 3 features based on importance\n","top_3_features = feature_importances.nlargest(3).index\n","print(\"Top 3 features:\", top_3_features)\n","\n","# Train a new model with the top 3 features\n","X_train_top3 = X_train[top_3_features]\n","X_test_top3 = X_test[top_3_features]\n","\n","gbm_model_top3 = GradientBoostingRegressor(random_state=42)\n","gbm_model_top3.fit(X_train_top3, y_train)\n","\n","# Predict and evaluate with top 3 features\n","y_pred_top3 = gbm_model_top3.predict(X_test_top3)\n","rmse_top3 = np.sqrt(mean_squared_error(y_test, y_pred_top3))\n","r2_top3 = r2_score(y_test, y_pred_top3)\n","\n","print(\"RMSE with Top 3 Features:\", rmse_top3)\n","print(\"R² Score with Top 3 Features:\", r2_top3)\n"],"metadata":{"colab":{"base_uri":"https://localhost:8080/","height":564},"id":"O2LzXXRLZB7z","executionInfo":{"status":"ok","timestamp":1714691893837,"user_tz":300,"elapsed":830,"user":{"displayName":"Jenny O","userId":"07622373657144372939"}},"outputId":"0b4c9ebb-d1e7-4f17-a199-cf457e6c7c77"},"execution_count":null,"outputs":[{"output_type":"display_data","data":{"text/plain":["
"],"image/png":"iVBORw0KGgoAAAANSUhEUgAABSoAAALGCAYAAABCja/JAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOzdeXxN1/7/8VdCQiIJYi5Fqhwlo4SYqdTMLSGkiJmosUgRX6WoUjOJGtrS1DylxpZbeqWttopqUdqLChI1hQgSQnJ+f/jl3JwMJKZjeD8fD486e6+z1mfv/aF8rLW2ldFoNCIiIiIiIiIiIiJiQdaWDkBEREREREREREREhUoRERERERERERGxOBUqRURERERERERExOJUqBQRERERERERERGLU6FSRERERERERERELE6FShEREREREREREbE4FSpFRERERERERETE4lSoFBEREREREREREYtToVJEREREREREREQsToVKERERERGRDAwGA2FhYZYOQyysUaNGjBo1ytJhiIi8MFSoFBEREZEnLjIyEoPBkOWP6dOnP5Yxf/31V8LCwkhISHgs/T+MtPtx6NAhS4fywJYvX05kZKSlw3jq7du3jyFDhlCvXj1cXV3x9vYmICCA8PBwLl26ZNY2KCjI7NeGq6srjRo14r333uOff/4xa5v+19S+ffsyjWs0GmnQoAEGg4Hg4OD7xplxbHd3d1q3bs3nn39Oamrqw90EERGRbOS1dAAiIiIi8uIaPHgwZcqUMTtWqVKlxzLWgQMHCA8Pp23btjg5OT2WMV5kK1eupHDhwvj7+1s6lEfi4MGD5MmT55H2OWfOHD7++GNefvll/P39KVOmDMnJyRw+fJglS5awYcMGduzYYfadkiVLMmzYMABu377NiRMnWLVqFT/88ANfffUVdnZ2Zu3z5cvHli1b8PHxMTv+yy+/cO7cOWxtbXMcb/qxr1y5wpYtW5g8eTJXrlxh6NChD3ILnjnbtm3DysrK0mGIiLwwVKgUEREREYupX78+bm5ulg7joSQmJmJvb2/pMCwmKSkpU7HseZAvX75H2t9XX33Fxx9/TPPmzZk6dWqmguHo0aP5/PPPM33P0dGRN9980+xYmTJlmDBhAr/++it16tQxO9egQQO2bdvGmDFjyJv3f3/d27JlC1WrViU+Pj7HMWcc+6233qJ58+YsXbqUwYMHP/JC7r3cunULGxsbrK2f7KLA3BR2RUTk4Wnpt4iIiIg8taKioujUqROenp54eXnRt29fjh07Ztbmzz//ZNSoUfj5+eHm5kadOnUIDQ3lypUrpjZhYWFMnToVAD8/P9Ny1piYGGJiYjAYDFkuW864T2FYWBgGg4Hjx48zfPhwqlevTqdOnUznN27ciL+/P+7u7tSoUYOhQ4dmWqKbU6NGjcLLy4uzZ88SHByMl5cX9erVY/ny5QD89ddfdO3aFU9PT15//XU2b95s9v20pcB79+5l7Nix+Pr6Uq1aNUaMGMHVq1czjbd8+XJatmyJq6srdevWZfz48ZmWyQcFBdGqVSsOHz5M586d8fDwYObMmTRq1Ihjx47xyy+/mO5tUFAQAPHx8Xz00Ue0bt0aLy8vqlWrRu/evfnzzz/N+t6zZw8Gg4GvvvqK+fPnm4rY3bp149SpU5ni/f333+nTpw/Vq1fH09OT1q1bExERYdbmxIkTDB48mBo1auDm5oa/vz87d+7M0f3P7tmfOnWKUaNG4ePjg7e3N6GhoSQlJd23vzlz5lC4cGEmTZqUZfHL0dGRQYMG5Si2okWLAmRZKGzZsiXx8fHs3r3bdCw5OZnt27fTunXrHPWfnXz58uHq6sqNGzeIi4szO5fT3F++fDl+fn64u7vTvn179u3bR1BQkClf4H+5sHXrVmbNmkW9evXw8PDg+vXrwN1n36tXL7y9vfHw8KBLly7s37/fbJzr168zadIkGjVqhKurK7Vq1aJHjx788ccfpjbR0dEMGjSIOnXq4ObmRv369Rk6dCjXrl0ztclqj8ozZ86Y8srDw4MOHTqwa9cusza5zWcREblLMypFRERExGKuX7/O5cuXzY45OzsDsGHDBkaNGkXdunUJCQkhKSmJlStX0qlTJ7788kvTkvEff/yRM2fO4O/vT7FixTh27Bhr1qzh+PHjrFmzBisrKxo3bkx0dDRbtmwhNDSUwoULm8bKOH5ODBkyhHLlyjF06FCMRiMA8+fPZ86cOTRv3pz27dtz+fJlli1bRufOndmwYcMDLTdPSUmhT58++Pj4EBISwubNm5kwYQJ2dnbMmjWL1q1b06RJE1atWsXIkSPx9PTk5ZdfNutjwoQJODk5MXDgQE6ePMnKlSs5e/YsS5cuNS1pDQsLIzw8nNq1a/PWW2+Z2h06dIiVK1diY2Nj6i8+Pp4+ffrQsmVL/vWvf1GkSBF8fX2ZOHEi9vb29OvXD/hfMe3MmTPs2LGDZs2aUaZMGS5dusTq1avp0qULW7dupUSJEmbxfvLJJ1hZWdGzZ0+uX7/Op59+SkhICGvXrjW12b17N8HBwRQvXpyuXbtStGhRTpw4wa5du+jWrRsAx44d46233qJEiRL06dMHe3t7vv76awYMGEBYWBiNGzfO9fMAeOeddyhTpgzDhg3jyJEjrF27FmdnZ959991sv3Py5Emio6MJCAigQIECuRovJSXFlKN37tzhxIkThIWFUa5cOapVq5apfenSpfH09GTr1q00aNAAgO+++45r167RokULli5dmqvxM4qNjcXKysosn3Oa+ytWrGDChAn4+PjQvXt3YmNjGTBgAE5OTpQsWTLTWB9//DE2Njb06tWL5ORkbGxs+Omnn+jTpw+urq4MHDgQKysrIiMj6datGytWrMDd3R2AcePGsX37drp06UKFChWIj49n//79nDhxgqpVq5KcnGzqt0uXLhQtWpTz58+za9cuEhIScHR0zPL6L126RGBgIElJSQQFBVG4cGG+/PJL3n77bebOnZspr3KSzyIi8j8qVIqIiIiIxXTv3j3Tsb/++osbN24wadIkAgICmDhxoulc27ZtadasGQsXLjQd79SpEz179jTrw9PTk2HDhrF//358fHyoXLkyVapUYcuWLbzxxhtm+2I+SKGycuXKzJgxw/Q5NjaWsLAw3nnnHVOhDqBJkya0bduWFStWmB3PqVu3bvGvf/3L9PKT1q1bU69ePUaPHs3MmTNp0aIFALVr16Z58+Zs2LAh06w8GxsbPv/8c1Ox8aWXXmLatGl8++23+Pn5cfnyZRYuXEjdunX55JNPTEtrX3nlFSZMmMCmTZto166dqb+LFy8yfvx4AgMDzcaZPXs2hQsXzrRM2WAwsH37drMlu2+++SbNmzdn3bp1DBgwINM1b9iwwTTr0MnJiUmTJvHf//6XSpUqkZKSwtixYylevHimAnBa0Rhg0qRJlCpVivXr15v66tSpE2+99RbTp09/4ELla6+9xocffmj6HB8fz7p16+5ZqPz7778BqFixotlxo9FoNvM37XrTL9n++++/qVWrllmbChUq8Nlnn2W7LLl169bMmDGDmzdvkj9/fjZv3kz16tUzFYXvJ32RNO06Dx8+TMOGDcmfPz+Q89xPTk5mzpw5uLm5ERERYbpGg8HAqFGjsixU3rp1i/Xr15vGMhqNvP/++/j6+vLpp5+aCu2BgYG0bNmS2bNns3jxYuDubOwOHTqYzYbs06eP6ecnTpwgJiaGOXPm0KxZM9PxgQMH3vOeLFq0iEuXLrF8+XLTPqABAQH861//YvLkyfj5+Znl+v3yWUREzGnpt4iIiIhYzNixY1myZInZD7g7SzIhIYGWLVty+fJl0w9ra2s8PDzYs2ePqY+0IgbcLQpcvnwZDw8PALNlno9SxiLdN998Q2pqKs2bNzeLt2jRopQrV84s3twKCAgw/dzJyQkXFxfs7Oxo3ry56fgrr7yCk5MTZ86cyfT9jh07ms2IfOutt8ibNy9RUVHA3Xt9+/ZtunbtalZgCQgIwMHBwdQuja2tba5emGNra2vqNyUlhStXrmBvb4+LiwtHjhzJ1N7f39+sAJdWDEq7tiNHjhATE0PXrl0zzVJNK1zFx8fz888/07x5c9Os3cuXL3PlyhXq1q1LdHQ058+fz/E1pJfx2fv4+BAfH29alpyVtHMZ9zK9du0atWrVMvtx9OhRszalS5c2/dr45JNPGD16NNeuXaNPnz7ZFtmbN2/OrVu3+M9//sP169fZtWvXAy37TiuS1qpVi+bNm/PZZ5/RqFEjJk+ebGqT09w/fPgw8fHxdOjQwawQ27p1awoWLJjl+G3atDH79X306FGio6Np3bo1V65cMY2VmJhIrVq12Lt3r+mN5E5OTvz+++/ZPmcHBwcAfvjhhxwt3U8TFRWFu7u72cuKChQoQMeOHYmNjeX48eNm7e+XzyIiYk4zKkVERETEYtzd3bN8mU50dDSAaRlvRmlFBrhblAoPD+err77KtG9e+r3mHqWMbyqPjo7GaDTSpEmTLNunL8zkRr58+UxL4dM4OjpSsmTJTG8idnR0zLSnJEC5cuXMPhcoUIBixYoRGxsLwNmzZ4G7xc70bG1tefnll03t0pQoUSJXLxhJTU3liy++YMWKFcTExJCSkmI6V6hQoUztX3rpJbPPacXItGtLK/Dcazba6dOnMRqNzJkzhzlz5mTZJi4uLtczDO8V39WrV83yMr205d6JiYlmx+3t7U3F+R9++IHPPvss03ft7e2pXbu26XP9+vXx9vamXbt2LFq0KNP+iXB3S4NatWqxZcsWbt68SUpKCk2bNs3FVd5VunRpPvjgA1JTUzl9+jQLFizgypUrZi8aymnup+VZ2bJlM50vXbp0lt/N6tcZwMiRI7ON+dq1axQsWJCQkBBGjRpFw4YNqVq1Kg0aNKBNmzamrRFefvllevTowZIlS9i8eTM+Pj40atSIf/3rX9ku+067jrR/CEkv7dfP2bNnzXLzfvksIiLmVKgUERERkadO2hLeqVOnUqxYsUzn079E5J133uHAgQP06tWL1157DXt7e1JTU+ndu7fZUuDsZCz4pUlfUMso4xuhU1NTsbKy4pNPPsnyBScP+lbw7N6qnN3xnFzvw0o/wy0nFixYwJw5c2jXrh1DhgyhYMGCWFtb8+GHH2YZb3Zvdc7NtaXNquvZsyf16tXLsk3GgllOPUh8aUWsjC+Cyps3r6kIee7cuRzH4OrqiqOjI3v37s22TatWrXjvvfe4dOkS9evXf6A9UjMWSatVq4a/vz+zZs1izJgxwOPLfcica2n3eMSIEbz22mvZxgzQokULfHx8+Oabb9i9ezefffYZn3zyCWFhYaa9O0eNGkXbtm3ZuXMnu3fv5oMPPmDhwoWsWbMmy6XoD+JR5LOIyItEhUoREREReeqkzXoqUqSIWaEko6tXr/LTTz8xaNAgs73l0mZepZddQTJt2WnGGU5pM8ByomzZshiNRsqUKYOLi0uOv/cknDp1ipo1a5o+37hxg4sXL1K/fn3gfzO+/v77b7MX8SQnJxMTE3PP+59edvd3+/bt+Pr6mu3rCHfvd9pLjXIjLcb//ve/2caW1sbGxibH8T9Or7zyCuXLl2fHjh2MHj36oYp3aVJSUjLN0EyvcePGjBs3jt9++41Zs2Y99Hhwd2/Wf/3rX6xatYqePXvy0ksv5Tj30/Ls9OnTZvl4584dYmNjMRgM9x0/7bk6ODjk6LkWL16czp0707lzZ+Li4mjbti0LFiwwFSoB01vq+/fvz6+//spbb73FypUrGTp0aLbXcfLkyUzH0/YhzTiDUkREckd7VIqIiIjIU6devXo4ODiwcOFCbt++nel82t582c0sjIiIyHTMzs4OyLwc3MHBgcKFC7Nv3z6z4ytWrMhxvE2aNCFPnjyEh4dnmimV1QtTnqTVq1eb3cOVK1dy584dU6Gydu3a2NjYsHTpUrPY161bx7Vr18yKOvdiZ2eX5XLWPHnyZLonX3/99QPvEVm1alXKlCnDF198kWm8tHGKFClCjRo1WL16NRcuXMjUx4O8QOlhDRw4kCtXrvDee+9lmdO5mWH3888/k5iYSOXKlbNtU6BAAd5//30GDRpEo0aNHijmrPTu3Zs7d+6YlqznNPddXV0pVKgQa9as4c6dO6Y2mzdv5urVqzka29XVlbJly7J48WJu3LiR6Xzac01JScn067xIkSIUL16c5ORk4O6+oenjgLvbCVhbW5vaZKVBgwYcPHiQAwcOmI4lJiayZs0aSpcuzauvvpqjaxERkaxpRqWIiIiIPHUcHBx4//33GTFiBP7+/rRo0QJnZ2fOnj1LVFQU1apVY+zYsTg4OFC9enU+/fRTbt++TYkSJdi9ezcxMTGZ+qxatSoAs2bNokWLFtjY2PD6669jb29PQEAAixYt4v/+7/9wdXVl3759Wc6ayk7ZsmV55513mDFjBrGxsbzxxhsUKFCAmJgYduzYQYcOHejVq9cjuz+5cfv2bbp3707z5s05efIkK1aswNvbGz8/P+DufobBwcGEh4fTu3dvGjVqZGrn5ubGv/71rxyNU7VqVVauXMnHH39MuXLlTPskNmzYkHnz5hEaGoqXlxf//e9/2bx5s9nszdywtrbm/fff5+2336ZNmzb4+/tTrFgx/v77b44fP27a53HcuHF06tSJ1q1b06FDB15++WUuXbrEb7/9xrlz59i0adMDjf+gWrduzbFjx1i4cCEHDx6kRYsWlClThqSkJI4dO8aWLVsoUKBAphfLXLt2jY0bNwJ3C3AnT55k5cqV5M+fn759+95zzLZt2z7y63j11Vdp0KAB69ato3///jnOfVtbWwYNGsTEiRPp1q0bzZs3JzY2lsjIyBwvw7e2tuaDDz6gT58+tGrVCn9/f0qUKMH58+fZs2cPDg4OLFiwgBs3btCgQQOaNm1K5cqVsbe358cff+TQoUOmPT1//vlnJkyYQLNmzShfvjwpKSls3LiRPHny3HM/z759+7J161b69OlDUFAQBQsWZMOGDcTExBAWFpbtUm8REckZFSpFRERE5KnUunVrihcvzqJFi/jss89ITk6mRIkS+Pj4mL11esaMGUycOJEVK1ZgNBqpU6cOn3zySaa9Cd3d3RkyZAirVq3i+++/JzU1lZ07d2Jvb8+AAQO4fPky27dv5+uvv6Z+/fp8+umn1KpVK8fx9u3bl/Lly/P5558zb948AEqWLEmdOnUe6Yy23Bo7diybN29m7ty53L59m5YtWzJmzBizpdqDBg3C2dmZZcuWMXnyZAoWLEiHDh0YNmyY2RvD72XAgAGcPXuWTz/9lBs3blCjRg1q1apFv379SEpKYvPmzXz11VdUqVKFhQsXMmPGjAe+pnr16hEREcG8efNYvHgxRqORl19+mQ4dOpjavPrqq6xfv57w8HC+/PJL4uPjcXZ2pkqVKgwYMOCBx34Yw4YNo27duixbtoz169cTHx9Pvnz5KF++PD179iQwMDDTnqznzp1jxIgRwN3l9QULFqR69eoMHDgw230aH7devXqxa9culi1bxqBBg3Kc+126dMFoNLJkyRI++ugjKleuzPz58/nggw8y7fuaHV9fX1avXs3HH3/MsmXLSExMpFixYri7u9OxY0fg7t6Wb731Frt37+bf//43RqORsmXLmorXcHfJd926dfnPf/7D+fPnsbOzw2Aw8Mknn+Dp6Znt+EWLFmXVqlVMmzaNZcuWcevWLQwGAwsWLKBhw4YPdkNFRMTEyqhdfEVEREREnjuRkZGEhoaybt26LN+sLvI0SE1NpVatWjRu3JgPPvjA0uGIiIiFaV66iIiIiIiIPHa3bt3KtI/lhg0biI+Pp0aNGhaKSkREniZa+i0iIiIiIiKP3W+//cbkyZNp1qwZhQoV4siRI6xbt45KlSrRrFkzS4cnIiJPARUqRURERERE5LErXbo0JUuWZOnSpVy9epWCBQvy5ptvEhISgq2traXDExGRp4D2qBQRERERERERERGL0x6VIiIiIiIiIiIiYnEqVIqIiIiIiIiIiIjFaY9KEZFn1IEDBzAajdjY2Fg6FBEREREREXkB3L59GysrK7y8vB5L/5pRKSLyjDIajaYfIkajkeTkZOWDAMoHyUw5IekpHyQj5YSkp3yQjNLnxOP+O6hmVIqIPKNsbGxITk7m1Vdfxd7e3tLhiIUlJiZy9OhR5YMAygfJTDkh6SkfJCPlhKSnfJCM0ufEiRMnHutYmlEpIiIiIiIiIiIiFqdCpYiIiIiIiIiIiFicCpUiIiIiIiIiIiJicSpUioiIiIiIiIiIiMWpUCkiIiIiIiIiIiIWp0KliIiIiIiIiIiIWJwKlSIiIiIiIiIiImJxKlSKiIiIiIiIiIiIxalQKSLyjLOysrJ0CPIUsLKyws7OTvkggPJBMlNOSHrKB8lIOSHpKR/EkqyMRqPR0kGIiEjuHTp0CAA3NzcLRyIiIiIiIiIPIjXViLX1010UTkxM5OjRo7z22mucOHECeHx/D837WHoVEZEnZvry/cScv2bpMERERERERCQXypRwJKSzt6XDeKqoUCki8oyLOX+NE7FXLR2GiIiIiIiIyEPRHpUiIiIiIiIiIiJicSpUisgDCQoKIjg42NJhPBRLX0NYWBheXl4WG19ERERERETkaaKl3yLyQMaNG4e1tf6tQ0REREREREQeDRUqRSRXbt68Sf78+Xn11VctHYqIiIiIiIiIPEc0HUrkKXPgwAG6du2Kp6cn3t7eDB8+nLi4OAD69++Pn58f169fN7XfunUrBoOB7777DoDIyEgMBgO//fYbXbt2xcPDg0aNGrFu3bpcjQUQExODwWAgMjKSMWPG4OvrS0BAAJD1sukTJ07w9ttv4+3tjaenJ3379uX06dNmbQwGA5988glhYWHUrl0bX19fQkNDSUxMNGt3/vx5RowYQe3atXF3d6dZs2ZERESYtYmMjKR169a4ublRr149Zs2aRUpKSm5vea6uIbvl4suWLcPd3Z1r1+6+fdtoNPLZZ5/RtGlTXF1d8fPz4/PPP3+o2ERERERERESeZypUijxFDhw4QFBQEI6OjsyaNYuJEydy6NAh+vfvD8DEiRNJTEzkww8/BO4W88aPH09gYCD169c362vYsGHUqVOH8PBwfH19+b//+z9TMTMnY6U3c+ZMjEYjM2bM4N13380y9jNnzhAYGMjVq1eZMmUK06dP5/Lly3Tv3p3k5GSztsuXLyc6OpopU6YwYMAANm/ezMcff2w6f+XKFTp27Mgvv/zC0KFDWbhwId27d+f8+fOmNkuWLGHMmDHUrVuXBQsW0KdPH7744gtmzZqVy7ueu2to2bIlu3fvJj4+3uy7W7ZsoUGDBjg6OgIwadIk5s6dS5s2bVi0aBFt27Zl+vTprFy58oHjExEREREREXmeaem3yFNkxowZuLq6Eh4ejpWVFQCVKlWiVatWREVF0aBBAyZMmMDAgQNp1KgRq1atolChQowcOTJTX2+++aZp5l+9evU4c+YM8+bNMxU0czJWmsqVKzNp0qR7xh4eHk7BggVZsmQJ+fLlA6BatWr4+fmxdu1aOnfubGpbrFgxZsyYAUD9+vU5cuQI27dvJyQkBIDPP/+cuLg4vv76a8qUKQNArVq1TN+/fv06c+fOpXfv3gwbNgyAOnXqYGNjw5QpU+jVqxeFCxfO6W3P1TU0bdqUDz74gH//+9906NABgNjYWH777Tdmz54NwOnTp1m2bBnjx4+nY8eOANSuXZubN28yb948OnbsqP09RUREREREBICkpCSMRqOlw8hWUlKS6b9Go9FUQ3gcVKgUeUokJSXx66+/MmLECLPly+XLl6dUqVIcOnSIBg0a0LhxY9q0acPQoUNJSUlh+fLl2NvbZ+qvcePGZp+bNGnC1KlTSUlJITk5OUdjpWnYsOF949+9ezctWrQgT5483LlzBwAnJyeqVKnC4cOHzdrWrl3b7HOFChXYunWr6fNPP/1EzZo1TUXKjA4cOEBiYiLNmjUzjZXW782bNzl27Bg1atS4b8wPcg2FCxemdu3abN261VSo/Oqrr7C3t+f1118H4McffwTu3vOM8X3yySf8888/lC5dOtfxiYiIiIiIyPPn5MmTpmLg0yw6OhoAW1vbxzaGCpUiT4mEhARSUlKYPHkykydPznT+n3/+Mf28VatWbNiwATc3N7y8vLLsr0iRImafixYtyu3bt7ly5QopKSk5HiurvrJy5coVIiIiMu0jCWBjY2P22cnJKdP59MvD4+PjqVix4j3HAmjbtm2W5zPGn1M5vYaWLVsyatQoLl68SLFixdi6dSuNGzc2zcK8cuUKRqORmjVrZhufCpUiIiIiIiIC4OLi8tTPqIyOjqZ8+fLExsY+1rFUqBR5Sjg6OmJlZUVwcDBvvPFGpvNpS5kTExOZMGEClStX5vDhw6xfv5527dplah8XF0eJEiVMny9duoSNjQ2FCxfm1q1bORorTU6mdRcsWJAGDRrQqVOnTOcKFChw3++nV6hQIS5cuHDPseDuUu2SJUtmOp/dTMz7yek1+Pn5YWtry9dff03dunU5evSoaQl6Wj9WVlasWLEiU5EW7v5PSERERERERATAzs7O0iHkiJ2d3WNd9g0qVIo8Nezt7fH09OTvv//Gzc0t23ZTpkwhISGB5cuX8+mnn/Lhhx9Sq1YtXnrpJbN233zzDVWqVDF9/ve//03VqlXJkydPjsfKjVq1anHs2DGqVKlCnjx5HrqvxYsXc/bs2UzXBeDl5YWdnR3nzp3LtMT9YcfNyTU4ODjQsGFDtm7dytWrV3F2djZbzp62n2Z8fDyNGjV6ZPGJiIiIiIiIPM9UqBR5iowYMYJu3brxzjvv0LJlS5ycnDh37hw//vgj/v7+3Lp1i9WrVzNr1iyKFy/O8OHD+f777xk1ahQRERFm/7KxceNG8ufPT5UqVfjqq6/Yu3cvixYtyvFYvr6+uYp98ODBtG/fnl69etGhQweKFi3KpUuX+OWXX/Dx8aFVq1Y57qt79+5s3LiRLl268Pbbb/Pyyy9z5swZoqOjeffdd3FycmLw4MFMmzaNc+fOUaNGDfLkycOZM2fYuXMnYWFhD/QvUrm5hlatWjFw4EBiY2Np1qwZefP+77dTFxcXOnfuzIgRI+jVqxceHh7cvn2b6Oho9uzZY/aGcxERERERERG5S4VKkadItWrVWLFiBWFhYYSGhnL79m1KlixJzZo1efnll+nYsSMtW7akRYsWAOTLl4+pU6cSGBhIREQE3bt3N/U1Y8YMZs6cybx58yhSpAgTJ040e0HOvcYqV65crmMvV64ca9euZfbs2YwfP57ExESKFStG9erVMRgMueqrcOHCrFy5khkzZjB9+nSSkpIoXbq02ZLsnj17UqJECZYsWcKyZcvImzcvZcuWpWHDhlkut37U19CgQQMcHR25ePEiLVu2zNTXmDFjcHFxYfXq1cybN48CBQrg4uJCs2bNHig2ERERERERkeedlfFp3q1TRHItMjKS0NBQfvrpJ5ydnS0djjxGhw4dAuCzb+I4EXvVwtGIiIiIiIhIblQoXZDZwxpaOoz7SkxM5OjRo7z22mucOHEC4JFtI5eR9WPpVURERERERERERCQXtPRbRJ5LKSkp3GvCePo9JUVERERERETE8vQ3dZHnjL+/P/7+/pYOw+IaN25MbGxstuf/+uuvJxjN41WmhKOlQxAREREREZFc0t/lMlOhUkSeS/Pnzyc5OdnSYTwRIZ29LR2CiIiIiIiIPIDUVCPW1laWDuOpoUKliDyXcvum8WdVcnIySUlJ2NnZWToUsbCkpCROnjyJi4uL8kGUD5KJckLSUz5IRsoJSU/58GSpSGlOL9MREXnG3WsvTnlxGI1GkpKSlA8CKB8kM+WEpKd8kIyUE5Ke8kEsSYVKERERERERERERsTgVKkVERERERERERMTiVKgUERERERERERERi1OhUkRERERERERERCxOhUoRERERERERERGxOBUqRURERERERERExOJUqBQRERERERERERGLU6FSRERERERERERELE6FShEREREREREREbE4FSpFRERERERERETE4lSoFBEREREREREREYtToVJEREREREREREQsToVKERERERERERERsTgVKkVERERERERERMTiVKgUERERERERERERi1OhUkRERERERERERCxOhUoRERERERERERGxOBUqRUSecVZWVpYOQZ4CVlZW2NnZKR8EUD5IZsoJSU/5IBkpJyQ95YNYkpXRaDRaOggREcm9Q4cOAeDm5mbhSERERERERCQnUlONWFs/W0XgxMREjh49ymuvvcaJEyeAx/f30LyPpVcREXlipi/fT8z5a5YOQ0RERERERO6hTAlHQjp7WzqMp5oKlSIiz7iY89c4EXvV0mGIiIiIiIiIPBTtUSkiIiIiIiIiIiIWp0KlyP8XGRnJ5s2bLR3GY2cwGEw/XF1dqVu3Lr169WLt2rXcvn37gfoMCwvj119/fcSRwu3bt/H19aVy5cqcPXv2kfefXmRkJAaDgcuXLz+yPmNiYjAYDGzbtu2R9SkiIiIiIiLyvFKhUuT/+/LLL9myZYulw3gigoKCWL16NZ9//jmjR4+mePHivP/++3Tu3Jnr16/nur/w8HAOHDjwyOP84YcfiI+Px2g0PpPPpnjx4qxevZqaNWtaOhQRERERERGRp54KlSLPgJs3bz7S/kqVKoWnpyc+Pj60aNGCyZMnM3/+fA4dOsSUKVMe6VgPY8uWLTg5OVG1atVncrarra0tnp6eFCpUyNKhiIiIiIiIiDz1VKiU58KBAwfo2bMn1apVw8vLi4CAAHbv3m06P336dFq3bo2Xlxf16tVj2LBhXLhwwXQ+KCiIX375hV27dpmWRYeFhZnO79q1i4CAANzd3alZsybjxo0jMTHRLIZjx47RuXNn3NzcaNKkCZs2baJ///4EBQWZtdu7dy+BgYG4u7vj6+tLaGgo8fHxpvNpy4UjIyMZM2YMvr6+BAQEsHTpUjw8PDLNeDxx4gQGg4GoqKiHuof169enSZMmbNiwwTTGhQsXCA0Nxc/PD3d3d5o0acLMmTNJTk42fc9gMAAwdepU073bs2cPAIsXL6Zdu3Z4e3tTq1YtgoODOXnyZI7iSUxM5Ntvv6Vp06b4+/vz3//+l7/++susTdpy7SNHjtC7d288PT1N15Derl276NGjB7Vq1aJatWoEBATw3Xff3XN8f39/hg8fnun4tGnTqFu3LikpKQAsWrSIxo0b4+bmRs2aNenevTtnzpwBsl76vXPnTvz9/fHy8sLHxwd/f/+HfnYiIiIiIiIizwO99Vueefv376dbt254enrywQcf4OTkxOHDh832NIyLiyM4OJjixYtz+fJllixZQlBQEFu3biVv3ryMGzeOd999l/z58zNy5EgASpYsCcC2bdsYOnQo/v7+DBo0iIsXLzJjxgwSEhKYNWsWcHfGY8+ePXFycmLatGkAzJs3j4SEBMqWLWuK4/Dhw/To0QNfX1/mzJnDpUuXmDFjBsePH2fVqlXkyZPH1HbmzJk0aNCAGTNmkJqaioeHB9OmTWPLli0EBgaa2q1bt44SJUpQt27dh76XdevWZdu2bRw5coQaNWpw5coVChUqRGhoKE5OTkRHRxMWFsbFixeZPHkyAKtXr6Zjx44EBQXRqlUrAF599VUAzp07R5cuXXjppZe4fv06q1atIjAwkO3bt993luGOHTtITEykVatWVKxYkcmTJ7NlyxZTYTS9kJAQOnToQI8ePVizZg2jRo3Czc2NChUqAHcLhq+//jo9e/bE2tqa7777jr59+xIREYGvr2+W4wcEBDBlyhSuXbuGo6MjACkpKWzcuJG2bduSJ08eNmzYwJw5cxg8eDCenp5cu3aN/fv3c+PGjSz7PH36NEOGDKFly5YMHz6c1NRU/vzzT65e1Ru7RURERERERFSolGfetGnTKFeuHBEREaZCX8aiXVpRDe4Wm7y8vKhfvz4///wzdevW5dVXX8XBwQF7e3s8PT1NbY1GI1OnTqVFixZMmjTJdLxYsWL07duX/v37U7FiRdavX09cXBwrV66kTJkyALi6utKkSROzQuWCBQsoVqwYCxYswMbGBri7DLtXr15ERUXRqFEjU9vKlSubjQnQtGlT1q9fbypU3rlzh02bNtG+fXuzIueDSivOXrp0Cbg7WzKtcAtQrVo17OzsGDVqFGPHjsXOzs50v9KWk6c3evRo089TUlKoU6cOtWrVYvv27XTs2PGesWzZsoUSJUpQo0YNrK2tqVmzJlu2bGHYsGFYWVmZte3cuTOdO3cGwMvLi6ioKLZv307//v0B6NKli6ltamoqvr6+HD9+nDVr1mRbqGzdujUfffQRmzdvplOnTgBERUVx8eJF2rVrB8DBgwcxGAwEBwebvvfGG29ke01Hjhzh9u3bvPfeezg4OABQr169e94HEREREREReb4kJSVhNBotHUaOJSUlmf5rNBoz/Z38UVKhUp5pSUlJ/P777wwbNuyehbqoqCjmz5/PsWPHzJZOR0dH33Mm4smTJ4mNjWX06NHcuXPHdDyteHb48GEqVqzI4cOHqVSpkqlICVCmTBkqV65s1t++ffto1aqVqUgJd4uqTk5O7N+/36xQ2bBhw0zxdOjQgS5dunDs2DEqVqxIVFQUcXFxpsLZw8r4G6XRaCQiIoI1a9YQExPDrVu3TOfOnDlDpUqV7tnfb7/9xpw5czhy5IjZ8vbo6Oh7fu/y5cvs3r2boKAgrK3v7lDRunVrRo4cyf79+/Hx8TFrn/4Z2tvb89JLL3Hu3DnTsXPnzjFr1ix+/PFHLl68aLrOqlWrZhuDg4MDzZs3Z/369aZCZWRkJD4+PpQvXx6AKlWqsGLFCiZPnkzjxo3x8PAwe7YZGQwG8uTJY5oBWr16ddNsTREREREREXkxnDx50lT8e5ak/V3e1tb2sY2hQqU80xISEkhNTaV48eLZtjl48CD9+/fHz8+PPn36UKRIEaysrOjQoYNZ4S0rV65cAWDAgAFZnv/nn3+Au3s5Ojs7Zzrv7OxsNkZCQgJFihTJ1K5IkSKZlv9m1a569eq4uLiwbt06QkNDWb9+PdWrVzebtfkwzp8/D9ydMQoQERHBRx99RO/evfH19cXJyYlDhw4xYcKE+967s2fP0rNnT1xdXRk/fjzFixfHxsaG4ODg+37366+/5s6dOzRo0ICEhAQAfH19sbW1ZfPmzZkKlRmLfTY2NqZ9NFNTU3n77be5du0agwcPply5ctjZ2TF37lzT88tOhw4dCAwM5M8//6R48eLs2rWLCRMmmM77+/tz48YN1qxZw+eff46joyNt2rQhJCSE/PnzZ+rPxcWFBQsWsHDhQgYOHIi1tTV169Zl7NixvPTSS/eMRURERERERJ4PLi4uz9yMyujoaMqXL09sbOxjHUuFSnmmOTo6Ym1tbfZinIx27NiBg4MDs2fPNs3Oy+kvrLR9FMeOHYu7u3um82kF0uLFi3P06NFM5y9fvkyBAgVMnwsWLEhcXFymdnFxcRQsWNDsWHZTqQMCAvj000/p0aMHUVFRmZaHP4zvv/8eW1tb00zDbdu20ahRI7OXypw4cSLHfSUmJhIeHo6TkxNwd6l6TvZj3LJlCwDdu3fPdG7btm2MGTPmnjMX0zt16hRHjhxh3rx5Zsuyc/ImdS8vL9PS/pdeeglbW1uaNWtmOm9tbU23bt3o1q0b58+fZ+vWrcyYMYPChQtnW9yuX78+9evX5/r163z33XdMnjyZ0NBQIiIicnQ9IiIiIiIi8myzs7OzdAgPxM7O7rEu+wa99VuecWl7Sm7cuNH0FuaMbt68iY2Njdkvps2bN2dqZ2Njk2mm3yuvvELJkiU5c+YMbm5umX6UKFECuLsf5V9//WV62zPcfYHLn3/+adaft7c3O3fuNFtGvnv3bhISEvD29s7RNbdt25Zr166ZZu2lL5w9jO+++45vvvmGtm3bYm9vD/zv3qWX03t38+ZNrKysyJv3f/8ekjZT8l5iY2M5cOAAgYGBfPHFF2Y/0t6Q/v333+f4utLiSn8daWPkREBAAJs3b2bdunW0aNHCdG8yKlGiBD179sRgMPD333/ft18HBwdatGhBy5Ytc1z8FREREREREXmeaUalPPOGDx9O9+7d6d69O506daJgwYL88ccfFC5cmPbt21OnTh0iIiKYOHEijRs35sCBA2zcuDFTP6+88gobNmzg22+/pVixYhQvXpwSJUowatQoQkJCSExMpGHDhtjZ2XH27FmioqIYOnQoLi4utGvXjgULFtCvXz8GDRoEQHh4OEWLFjUrkPbr14/AwECCg4MJCgoyvfXb3d2dBg0a5Oh6nZ2d8fPzY9u2bXTs2DHLJcb3888///Dbb79x584dLl68yPfff8/GjRvx8PAwe3lO7dq1+eKLL1i2bBnly5dn06ZNnDp1Kst7t3PnTnx8fLCzs8PFxYWaNWsCEBoaSmBgIMeOHWPJkiWm2ZXZSZtN2bt3b15++WWzc97e3ixatIgtW7aY7ed5L2nF5rS3pycmJjJ37tx7bheQ3ptvvsn06dO5cuVKptmrY8eOxcnJCU9PT5ycnPj111/5888/eeutt7Lsa9WqVfz222/Uq1ePYsWKERMTw6ZNm6hTp06OYhERERERERF5nqlQKc88Hx8fvvjiC2bPnk1oaCjW1tZUrFiRd955B4AGDRoQEhLCsmXLiIyMpFq1aixcuJCmTZua9dOnTx9Onz7NyJEjSUhIYODAgQwaNIjmzZvj5OTEggULTLMJS5cuTb169ShatCgA+fPnZ/HixYwbN46QkBBKlChB//792bBhg9n+ia6urixevJiZM2cyaNAg7O3tadSoESNHjszVW7sbN27Mtm3baN++/QPds6VLl7J06VJsbGwoVKgQBoOB8ePH06ZNG7MZkAMGDODKlSvMnTsXuPvW8TFjxtCvXz+z/saOHcuHH35Inz59uHnzJl988QW+vr5MnjyZ8PBwgoODee2115gzZ47puWRny5YtVKtWLVOREiBv3ry0atWKNWvWcOPGjRxdq62tLWFhYUyYMIEhQ4ZQqlQp3n77bX7++WcOHz583+8XKlSIGjVqcO7cuUxvNffy8mLNmjWsXbuWpKQkXn75ZUJDQwkICMiyL4PBwH/+8x8mT55MfHw8xYoVo2XLlgwZMiRH1yIiIiIiIiLyPLMyPku7d4o8Q+Lj43njjTfo3r07AwcOfKR9jxgxgqNHj2a5DFserevXr1OvXj0GDRpEz549LR2OmUOHDgHw2TdxnIi9/96fIiIiIiIiYjkVShdk9rCGlg4j1xITEzl69CivvfaaaesyNze3xzKWZlSKPCKLFi2iaNGilC5dmosXL7J48WJSUlJo167dIxvjr7/+4ujRo3z11VeMGzfukfUrmV2/fp0TJ06wYsUKrKys8Pf3t3RIIiIiIiIiIs81FSpFHhFra2vmz5/P+fPnyZMnDx4eHkRERFCqVKlHNsbbb7/N5cuXadOmTaYCqNFozPaFQmnxpb31XO7vjz/+oGvXrpQqVYqPPvrI9AZ4EREREREREXk8tPRb5DmxZ88eunbtmu35tm3bMmXKlCcYkTxuaUu/tx9MJub8NQtHIyIiIiIiIvdSpoQjIZ29LR1Grmnpt4jkWtWqVVm3bl225wsXLvwEo5En6Vn8H52IiIiIiMiLKDXViLW1laXDeGqpUCnynHBwcHhs/6IhT6/k5GSSkpKws7OzdChiYUlJSZw8eRIXFxflgygfJBPlhKSnfJCMlBOSnvLh8VKR8t60YZ2IyDNOO3gI3M2DpKQk5YMAygfJTDkh6SkfJCPlhKSnfBBLUqFSRERERERERERELE6FShEREREREREREbE4FSpFRERERERERETE4lSoFBEREREREREREYtToVJEREREREREREQsToVKERERERERERERsTgVKkVERERERERERMTiVKgUERERERERERERi1OhUkRERERERERERCxOhUoRERERERERERGxOBUqRURERERERERExOJUqBQRERERERERERGLU6FSRERERERERERELE6FShEREREREREREbE4FSpFRERERERERETE4lSoFBEREREREREREYtToVJEREREREREREQsToVKEZFnnJWVlaVDkKeAlZUVdnZ2ygcBlA+SmXJCREREngV5LR2AiIg8OFtbW+zs7CwdhjwF7OzsqFKliqXDkKeE8kEyyi4nUlONWFureCkiIiJPBxUqRUSecdOX7yfm/DVLhyEiIs+YMiUcCensbekwRERERExUqBQRecbFnL/Gidirlg5DRERERERE5KFoj0oRERERERERERGxOBUqn1GRkZFs3rzZ0mE8dgaDAYPBwMqVKzOd2717t+l8TEzMIx03JiYGg8HAtm3b7tkuLCwMLy+vRzr2veQ0rqdBZGQkBoOBy5cvWzqUR2bHjh25yrfPP/8cg8HA6NGjszwfFBREcHDwowxRRERERERE5JmlQuUz6ssvv2TLli2WDuOJsLe356uvvsp0fMuWLdjb21sgov8JCAggIiLCojE8rRo2bMjq1atxcnKydCgWs2nTJgC++eYbkpOTLRyNiIiIiIiIyNNNhUp55G7evPlI+/Pz82Pfvn2cP3/edCw5OZlvvvmGN95445GOlVslS5bE3d3dojE8Sbl5ts7Oznh6epI374u5Fe7Jkyf5448/qF27NgkJCezatcvSIYmIiIiIiIg81VSotIADBw7Qs2dPqlWrhpeXFwEBAezevdt0fvr06bRu3RovLy/q1avHsGHDuHDhgul8UFAQv/zyC7t27TItfQ4LCzOd37VrFwEBAbi7u1OzZk3GjRtHYmKiWQzHjh2jc+fOuLm50aRJEzZt2kT//v0JCgoya7d3714CAwNxd3fH19eX0NBQ4uPjTefTliJHRkYyZswYfH19CQgIYOnSpXh4eHD9+nWz/k6cOIHBYCAqKirH9+u1116jfPnyZrMqo6KiMBqNNGzYMFP7xYsX065dO7y9valVqxbBwcGcPHkyU7v7PQeAW7duMWHCBKpXr07dunX56KOPuHPnjul8xqXfe/bswWAwsHv3boYPH46Xlxevv/46n3zySZbjd+3aFU9PT7y9vRk+fDhxcXE5vi/ZMRqNfPbZZzRt2hRXV1f8/Pz4/PPPzdqcOHGCoUOH0qBBAzw8PGjRogWLFy8mNTXV1Ca7Zwt3l+R/8sknhIWFUbt2bVNupM+zjEu/0/rbuHHjPe8p3J2B2LRpU9zc3OjQoQN//PEHPj4+ZnmelQ0bNvDWW29Ro0YNqlevTlBQEAcPHjRrk/bM/vrrL9566y08PDxo1aoV33//vVm727dvM2nSJGrUqIG3tzejR4/mxo0bOXsI3J3xa2VlxYQJEyhatOgLsVWDiIiIiIiIyMN4Mac6WdD+/fvp1q0bnp6efPDBBzg5OXH48GHOnj1rahMXF0dwcDDFixfn8uXLLFmyhKCgILZu3UrevHkZN24c7777Lvnz52fkyJHA3Zl9ANu2bWPo0KH4+/szaNAgLl68yIwZM0hISGDWrFnA3VlxPXv2xMnJiWnTpgEwb948EhISKFu2rCmOw4cP06NHD3x9fZkzZw6XLl1ixowZHD9+nFWrVpEnTx5T25kzZ9KgQQNmzJhBamoqHh4eTJs2jS1bthAYGGhqt27dOkqUKEHdunVzdd9atmzJli1b6NGjB3C3CNS4cWPy5cuXqe25c+fo0qULL730EtevX2fVqlUEBgayfft2ChUqlOPnADB79mz8/PyYPXs2Bw4cICwsjLJly/LWW2/dM95x48bx5ptvMm/ePHbs2MH06dMxGAzUr18fuFukDAoKokGDBsyaNYukpCRmz55N//79Wb16da7uTUaTJk1i7dq19OvXDw8PD3799VemT59Ovnz5THFfuHABFxcXWrduTYECBTh69ChhYWEkJiYycOBAs/4yPts0y5cvx9vbmylTphAdHc3UqVMpUqQIISEh94zvfvf0yJEjDBkyhNdff53Ro0cTGxvL0KFDc7R0OiYmhjZt2lC2bFmSk5PZunUrnTt3ZtOmTbi4uJja3b59m5CQELp27Ur//v355JNPGDx4MN9++y2FCxc2XffKlSsZNGgQVapUYevWrcyYMSNnD4G7Oerj48PLL79M8+bNWb16NdeuXcPR0THHfYiIiIiIiIi8SFSofMKmTZtGuXLliIiIMBX6MhbtJk+ebPp5SkoKXl5e1K9fn59//pm6devy6quv4uDggL29PZ6enqa2RqORqVOn0qJFCyZNmmQ6XqxYMfr27Uv//v2pWLEi69evJy4ujpUrV1KmTBkAXF1dadKkiVmhcsGCBRQrVowFCxZgY2MDQKlSpejVqxdRUVE0atTI1LZy5cpmYwI0bdqU9evXmwqVd+7cYdOmTbRv396syJkTrVq1IiwsjNOnT1OkSBF27drFvHnzslyKnP7FJSkpKdSpU4datWqxfft2OnbsCOTsOQC4u7szZswYAOrUqcOePXvYvn37fQuVTZo0YdCgQQDUqlWLXbt2sX37dlOhcsaMGbi6uhIeHo6VlRUAlSpVolWrVkRFRdGgQYNc3Z80p0+fZtmyZYwfP950rbVr1+bmzZvMmzePjh07Ym1tTa1atahVqxZwN2+8vb25efMmy5Yty1SozOrZwt28Sivc1a9fnyNHjrB9+/b7Firvd08XLlxImTJlCAsLw9r67qTvAgUKMGLEiPtef/rYU1NTqVOnDgcPHuTLL79k2LBhpnNphcq0++zi4oKfnx/fffcdb775JvHx8axYsYI+ffqYXnZTr149unTpYrYFQXYOHjxIdHS0qbDeqlUrli5dyvbt22nfvv19vy8iIvIkJSUlYTQaLR2GPEFJSUlm/xVRTkh6ygfJKH1OGI1GUx3jcVCh8glKSkri999/Z9iwYfcs1EVFRTF//nyOHTtmtnQ6Ojr6njMRT548SWxsLKNHjzZbSlujRg2sra05fPgwFStW5PDhw1SqVMlUpAQoU6YMlStXNutv3759tGrVylSkhLvFPCcnJ/bv329WqMxqCXaHDh3o0qULx44do2LFikRFRREXF0e7du2yvYbslC9fnqpVq7JlyxZKly5NgQIFqFWrFv/5z38ytf3tt9+YM2cOR44cMVumHh0dDeT8OaRdb3oVKlTg559/vm+86b9nZWVFhQoVOHfunGn8X3/9lREjRpCSkmJ2jaVKleLQoUMPXKj88ccfgbuF0vQ5ULt2bT755BP++ecfSpcuza1bt1i4cCGbN2/mn3/+4fbt26a2N27coECBAqbPWT3btD7Tq1ChAlu3br1vjPe7p4cOHeKNN94wFSnh7j6lOXHixAlmzpzJgQMHzJbRpz37NGnF2jRlypQhf/78piLkf//7X27evEnjxo3NvtekSRP27t173zi2bNmCjY0NzZo1A8DT05OXX36ZzZs3q1ApIiJPnZMnT+ovoy+ojH9GElFOSHrKB8koLSdsbW0f2xgqVD5BCQkJpKamUrx48WzbHDx4kP79++Pn50efPn0oUqQIVlZWdOjQgVu3bt2z/ytXrgAwYMCALM//888/wN1lv87OzpnOOzs7m42RkJBAkSJFMrUrUqQIV69ezXQso+rVq+Pi4sK6desIDQ1l/fr1VK9e3WzWZm60atWK9evX89JLL9G8efMsi4xnz56lZ8+euLq6Mn78eIoXL46NjQ3BwcGma8vJc0iTcZmujY1NjpYgZ/W9a9eumcZPSUlh8uTJZrNn06Q9pwdx5coVjEYjNWvWzPJ8WqFy2rRprF27lgEDBuDq6oqjoyM7d+5k/vz53Lp1y6xQmdWzBTK9zfth7k367128eDFTfjo4OGS5zD+969ev07NnT5ydnRk1ahQvvfQS+fLlY8yYMZl+7eTPnz/Tb6w2NjamdhcvXgQyX3vRokXve32pqal89dVXpn8gSEhIAO4WW7/44gvOnz9PiRIl7tuPiIjIk+Li4qIZlS+YpKQkoqOjKV++PHZ2dpYOR54CyglJT/kgGaXPidjY2Mc6lgqVT5CjoyPW1tZmL8bJaMeOHTg4ODB79mzTjLKcJkHa/otjx47N8k3UaYW54sWLc/To0UznL1++bFagKliwYJYvd4mLi6NgwYJmx7Kb9hsQEMCnn35Kjx49iIqKynIJcU61aNGCqVOn8vfff7N8+fIs23z//fckJiYSHh5uKqTduXPHrLCak+fwODk6OmJlZUVwcHCWby1P2yPxQRQsWBArKytWrFhhNhM2Tdo+jdu2baNjx4707dvXdC67Fxw9zindWSlWrJjpBTxprl+/ft9C/W+//ca5c+dYuHCh2ezga9eumfZwzU0McDfX0xcVL126dN/v/vzzz1y8eJGLFy9SvXr1TOe/+uor05JwERGRp4H+EvrisrOzw97e3tJhyFNEOSHpKR8kIzs7u8deI1Ch8glK21Ny48aN9OzZM8sZgTdv3sTGxsbswWf1tuD0s7/SvPLKK5QsWZIzZ87QuXPnbONwdXVlw4YNnDlzhpdffhm4+xKSP//8E29vb1M7b29vdu7cyahRo8ib926q7N69m4SEBLN299K2bVtmzZpFSEgI+fPnNy2FfRAlS5akW7duXL58mWrVqmXZ5ubNm1hZWZniBfj666/NlkHn5Dk8Tmnj//3337i5uT3SvtOWM8fHx5stzc/o1q1bZoXMlJSUHC3bfhLc3NzYtWsXo0aNMhXrd+zYcd/vpe1Xmv66fv31V2JjY6lYsWKuYqhUqRL58+fnm2++oUqVKqbj//73v+/73c2bN2Nvb8/HH39stnwd4MMPP2Tz5s0qVIqIiIiIiIhkQYXKJ2z48OF0796d7t2706lTJwoWLMgff/xB4cKFad++PXXq1CEiIoKJEyfSuHFjDhw4wMaNGzP188orr7Bhwwa+/fZbihUrRvHixSlRogSjRo0iJCSExMREGjZsiJ2dHWfPniUqKoqhQ4fi4uJCu3btWLBgAf369TO98CU8PJyiRYuaFUj79etHYGAgwcHBBAUFmd767e7unuM9FJ2dnfHz8zPN4MufP/9D3b/Q0NB7nk9b8hwaGkpgYCDHjh1jyZIlmZYp3+85PG4jRoygW7duvPPOO7Rs2RInJyfOnTvHjz/+iL+/P76+vvf8/u+//57pWNGiRfHx8aFz586MGDGCXr164eHhwe3bt4mOjmbPnj18/PHHwN39JdeuXcurr75K4cKFWbFiRY6WbT8JwcHBtG/fnkGDBtGhQwfOnj3L4sWLyZcv3z3/5cbT0xN7e3vGjx9P3759OX/+PGFhYQ+0zLpQoUIEBgbyySefkD9/ftNbv0+fPn3P7926dYtvvvmGJk2amO2BmaZdu3ZMmjSJv//+m1deeSXXcYmIiIiIiIg8z6zv30QeJR8fH7744gusrKwIDQ1l4MCB7Nixg9KlSwPQoEEDQkJC2LlzJ2+//Tb79u1j4cKFmfrp06cP1apVY+TIkbRv3541a9YA0Lx5cxYtWsTJkycZPnw4/fv3Z8mSJZQuXdq0v17+/PlZvHgxBQsWJCQkhGnTptGjRw/KlStntn+gq6srixcv5saNGwwaNIhp06bRsGFDPvnkk1zNQkx7IcmTKAAaDAYmT57MH3/8QXBwMFu3bmXOnDmZ9kW833N43KpVq8aKFStITEwkNDSUvn378vHHH5M/f37KlSt33+8vXryYIUOGmP0IDw8HYMyYMbzzzjt89dVX9O3blxEjRvD1119To0YN0/ffe+89qlevzsSJE/m///s/KlWqRL9+/R7b9eZGlSpVmD17NsePH2fgwIGsXbuWKVOmkJKSkuk5ple0aFHmzJnD5cuX6d+/PxEREYwfPz5H9zMrw4cPJzAwkE8//ZR33nnHdOxedu3axbVr12jTpk2W59NeTpXVLGkRERERERGRF52VUTtnC3eXCr/xxht0796dgQMHPtK+R4wYwdGjR1WckQf2008/0b17d5YuXWpWcH3RHTp0CIDPvonjROzV+7QWERExV6F0QWYPa2jpMMQCEhMTOXr0KK+99pr2nxNAOSHmlA+SUfqcOHHiBMAj38oujZZ+v6AWLVpE0aJFKV26NBcvXmTx4sWkpKTQrl27RzbGX3/9xdGjR/nqq68YN27cI+tXnn/vv/8+tWrVolChQhw/fpyPP/6YKlWq4OPjY+nQREREREREROQxUaHyBWVtbc38+fM5f/48efLkwcPDg4iICEqVKvXIxnj77be5fPkybdq0yVQANRqNpKSk3DO+jC8ikRdHQkICEydOJD4+HgcHB+rVq8fIkSOVEyIiIiIiIiLPMRUqX1C9e/emd+/ej3WMb7/9Nttzv/zyC127ds32fNu2bZkyZcrjCEueATNnzrR0CM+UMiWy37tTREQkO/r/h4iIiDxtVKgUi6hatSrr1q3L9nzhwoWfYDQiz7aQzt6WDkFERJ5RqalGrK2tLB2GiIiICKBCpViIg4PDY9t4VeRFkpycTFJSEnZ2dpYORSwsKSmJkydP4uLionwQ5YNkkl1OqEgpIiIiTxNt+CYi8owzGo2WDkGeAkajkaSkJOWDAMoHyUw5ISIiIs8CFSpFRERERERERETE4lSoFBEREREREREREYtToVJEREREREREREQsToVKERERERERERERsTgVKkVERERERERERMTiVKgUERERERERERERi1OhUkRERERERERERCxOhUoRERERERERERGxOBUqRURERERERERExOJUqBQRERERERERERGLU6FSRERERERERERELE6FShEREREREREREbE4FSpFRERERERERETE4lSoFBEREREREREREYtToVJEREREREREREQsToVKERERERERERERsTgVKkVERERERERERMTiVKgUEXnGWVlZWToEeQpYWVlhZ2enfBARERERkWdWXksHICIiD87W1hY7OztLhyFPATs7O6pUqWLpMEhNNWJtrWKpiIiIiIjkngqVIiLPuOnL9xNz/pqlwxChTAlHQjp7WzoMERERERF5RqlQKSLyjIs5f40TsVctHYaIiIiIiIjIQ9EelSIiIiIiIiIiImJxmlH5BERGRmJjY0Pr1q0tHcpjZTAYTD+3sbGhUKFCGAwGmjVrRps2bbCxscl1n2FhYdSpU4dq1ao9khjv3LnDypUrWbt2LWfOnCFv3ryUKlUKHx8fRo0aha2tbY7jWrx4MQcOHHgkcT1P+vfvz7Vr11i6dGm2bcLCwggPDzd9LlSoEK+88gr9+vWjQYMGTyLMJy4oKAh7e3sWLlxo6VBEREREREREnkoqVD4BX375Jfb29s99oRLuFmNatWrFnTt3uHDhAt9//z3vv/8+a9euZfHixTg4OOSqv/DwcOzt7R9ZofKDDz4gMjKSvn37Uq1aNZKSkjh69CibNm3i5s2bOS5UBgQEPLcFtSclf/78REREAHDhwgUWLFhAv379WL58+SN73iIiIiIiIiLy7FCh8gV38+ZN8ufP/8j6K1WqFJ6enqbPLVq0oHnz5gQHBzNlyhQ++OCDRzZWbiUlJbFu3Tr69evHwIEDTcf9/PwYOHAgRqMxx32VLFmSkiVLPo4wXxjW1tZmueLh4UGDBg3YsGHDM1WofNS/hkREREREREReVNqj8j4OHDhAz549qVatGl5eXgQEBLB7927T+enTp9O6dWu8vLyoV68ew4YN48KFC6bzQUFB/PLLL+zatQuDwYDBYCAsLMx0fteuXQQEBODu7k7NmjUZN24ciYmJZjEcO3aMzp074+bmRpMmTdi0aRP9+/cnKCjIrN3evXsJDAzE3d0dX19fQkNDiY+PN52PiYnBYDAQGRnJmDFj8PX1JSAggKVLl+Lh4cH169fN+jtx4gQGg4GoqKiHuof169enSZMmbNiwwTTGhQsXCA0Nxc/PD3d3d5o0acLMmTNJTk42fS9tKfnUqVNN927Pnj0ALF68mHbt2uHt7U2tWrUIDg7m5MmT94wjKSmJ27dvU7x48SzPW1lZmX6emprKkiVLaN68Oa6urtSpU4fBgwdz7drdNyuHhYXh5eVl9v2EhATef/996tati6urK/7+/vzwww9mbYKCgggODmbbtm00bdoULy8vunbtyunTp83aJScnM2vWLPz8/HB1daV+/fqMGjXKrM2BAwfo2rUrnp6eeHt7M3z4cOLi4u55DxITE5kwYQJNmzbFw8ODRo0aMXbsWNN1pWnUqBETJkxg+fLlvP7663h7e9O/f38uX75s1u7EiRN06dIFNzc33njjDb788st7jn8vJUqUwNnZmbNnz+b6OhctWkTjxo1xc3OjZs2adO/enTNnzpjOJycnM3PmTF5//XVcXV1p3rw5mzdvzjROv379qFu3Lp6enrz55pts2LDBrM2ePXswGAzs2rWLwYMHU61aNYYMGQLcff4TJ06kfv36uLq60qhRI2bMmJHpOu/37EVEREREREReVJpReQ/79++nW7dueHp68sEHH+Dk5MThw4fNCilxcXEEBwdTvHhxLl++zJIlSwgKCmLr1q3kzZuXcePG8e6775I/f35GjhwJYJqJt23bNoYOHYq/vz+DBg3i4sWLzJgxg4SEBGbNmgXcna3Vs2dPnJycmDZtGgDz5s0jISGBsmXLmuI4fPgwPXr0wNfXlzlz5nDp0iVmzJjB8ePHWbVqFXny5DG1nTlzJg0aNGDGjBmkpqbi4eHBtGnT2LJlC4GBgaZ269ato0SJEtStW/eh72XdunXZtm0bR44coUaNGly5coVChQoRGhqKk5MT0dHRhIWFcfHiRSZPngzA6tWr6dixo2k5OcCrr74KwLlz5+jSpQsvvfQS169fZ9WqVQQGBrJ9+3YKFSqUZQzOzs689NJLzJ8/nwIFClC3bl0KFiyYZduJEyeyevVqunXrRp06dbhx4wa7du0iMTERR0fHTO2Tk5Pp0aMHcXFxvPPOO5QoUYJNmzYRHBxMZGSk2f6dR48e5fLly4SEhJCSksKUKVN49913Wb16tanNoEGD+PnnnwkODsbT05PLly/z73//23T+wIEDBAUF0aBBA2bNmkVSUhKzZ8+mf//+Zv1kdPPmTVJSUhg6dCjOzs78888/LFiwgP79+2faU/Lbb7/l1KlTjB07litXrjB58mQmTpxoys1bt27Rs2dP7OzsmDp1KgBz587l+vXrlC9fPtsYsnPjxg2uXr1KmTJlcnWdGzZsYM6cOQwePBhPT0+uXbvG/v37uXHjhqmfIUOG8OuvvzJgwAAqVKhAVFQU7777Lk5OTqYl/GfPnqVatWq89dZb2Nra8uuvvzJmzBiMRiNt27Y1i/W9997jX//6F/PmzcPa2prk5GS6detGbGwsAwYMoFKlSpw7d479+/ebfS8nz15ERERERETkRaVC5T1MmzaNcuXKERERYSr0ZSzapRXVAFJSUvDy8qJ+/fr8/PPP1K1bl1dffRUHBwfs7e3NlrkajUamTp1KixYtmDRpkul4sWLF6Nu3L/3796dixYqsX7+euLg4Vq5caSrguLq60qRJE7NC5YIFCyhWrBgLFiwwvbSmVKlS9OrVi6ioKBo1amRqW7lyZbMxAZo2bcr69etNhco7d+6wadMm2rdvb1bkfFBpxdlLly4Bd2dLphVuAapVq4adnR2jRo1i7Nix2NnZme5XxuXkAKNHjzb9PCUlhTp16lCrVi22b99Ox44ds41jypQpDBs2jGHDhmFlZcUrr7yCn58fPXr0wNnZGYCTJ0+ycuVKhg4dSnBwsOm7TZs2zbbfzZs38+eff7Jx40ZTMbVevXqcOnWKjz/+mDlz5pjaXrt2jQ0bNpjGS0xMJDQ0lHPnzlGyZEl2797Nrl27mDFjhqlAC5j9fMaMGbi6uhIeHm6aCVqpUiVatWpFVFRUtvtnOjs7M378eNPnO3fuUKZMGTp16sTJkydxcXExnTMajcyfP9+0b2dsbCwLFy4kNTUVa2trIiMjuXDhAl9//bWpMFmlShWaNWuW40LlnTt3gLszbKdNm0aBAgXo2rVrrq7z4MGDGAwGs2f1xhtvmH7+888/8+233/LZZ5+Zfv3WqVOHixcvEhYWZrpXLVu2NLv26tWrc/78eVavXp2pUNmoUSPeffdd0+c1a9Zw5MgRVq1aZTbTNuP37vfsRZ4XSUlJudpOQx69pKQks/+KKCckPeWDZKSckPSUD5JR+pwwGo1mK1IfNRUqs5GUlMTvv//OsGHD7lmoi4qKYv78+Rw7dsxs6XR0dPQ9ZyKePHmS2NhYRo8ebSrWANSoUQNra2sOHz5MxYoVOXz4MJUqVTKbZVamTBkqV65s1t++ffto1aqV2Zu169ati5OTE/v37zcrVDZs2DBTPB06dKBLly4cO3aMihUrEhUVRVxcHO3atcv2GnIj419YjUYjERERrFmzhpiYGG7dumU6d+bMGSpVqnTP/n777TfmzJnDkSNHzJa3R0dH3/N7vr6+fPPNN3z33Xf89NNP/PzzzyxatIjIyEgiIyMpUaIEP//8M0ajkfbt2+f4+nbv3k2lSpUoX7682fOsXbs2mzZtMmtbuXJlU6EKzGeJlixZkp9++gk7Ozuzwll6SUlJ/Prrr4wYMYKUlBTT8fLly1OqVCkOHTp0zxf9bNiwgc8//5xTp06ZbTMQHR1tVqisXr262cuFKlSowO3bt4mLi6NYsWIcPHiQihUrmhUly5Urlyk3s5OYmEjVqlVNn/PkycPHH3/MK6+8kqvrrFKlCitWrGDy5Mk0btwYDw8Ps18Hu3fvplChQtSsWTPTs3n//fdJSUkhT548XL16lbCwMHbu3Mn58+dNY2Y1Qzfjr6GffvqJChUqZNoOIKP7PXuR58XJkyf1B9unxP3+vygvHuWEpKd8kIyUE5Ke8kEySsuJnL6I+EGoUJmNhIQEUlNTs93PEODgwYP0798fPz8/+vTpQ5EiRbCysqJDhw5mhbesXLlyBYABAwZkef6ff/4B7s40S1/YSOPs7Gw2RkJCAkWKFMnUrkiRIly9ejXTsYyqV6+Oi4sL69atIzQ0lPXr11O9enWzWZsP4/z588DdGaMAERERfPTRR/Tu3RtfX1+cnJw4dOgQEyZMuO+9O3v2LD179sTV1ZXx48dTvHhxbGxsCA4Ovu93Aezt7WnWrBnNmjUDYO3atYwZM4bFixeb9vXMmzdvlvcpO1euXOHIkSNmhbc0GQvdTk5OZp/TimppscfHx1OsWLFs/4UiISGBlJQUJk+ebDajN01a7mTlm2++YeTIkXTs2JGhQ4dSqFAhLl68yIABAzLdu4xxpv1GlNbuwoUL2eZcTp5D/vz5WbZsGUajkejoaGbMmMHIkSPZvHkzxYsXz/F1+vv7c+PGDdasWcPnn3+Oo6Mjbdq0ISQkhPz583PlyhXi4+OzfDYAFy9epGTJkowaNYoDBw4wYMAA00zolStX8vXXX2d5jenFx8ff8/eKNPd79iLPCxcXF82otLCkpCSio6MpX748dnZ2lg5HngLKCUlP+SAZKSckPeWDZJQ+J2JjYx/rWCpUZsPR0RFra2uzF+NktGPHDhwcHJg9ezbW1nffS5TTB5Y2S2vs2LG4u7tnOp9W9ChevDhHjx7NdP7y5csUKFDA9LlgwYJZvkglLi4u0z6M2RXAAgIC+PTTT+nRowdRUVGZloc/jO+//x5bW1tTsWjbtm00atSI4cOHm9qcOHEix30lJiYSHh5uKvzcuXMnU0E2pwICApg+fbpp/EKFCnHnzh3i4uJyXKwsWLAgBoPhkdyztOJhdtOpHR0dsbKyIjg42GyJc5rChQtn2/e2bdt47bXXmDBhgunYL7/88kBxFi9enD/++CPT8bi4OBwcHO77fWtra9zc3ABwd3fHxcWFDh06MG/ePMaPH5/j67S2tqZbt25069aN8+fPs3XrVmbMmEHhwoUZMGAABQsWxNnZmUWLFmUZR1rRf9euXYwaNcrsJVUrVqzI8jsZn0uhQoX466+/7nvNIi8K/YH26WFnZ4e9vb2lw5CniHJC0lM+SEbKCUlP+SAZ2dnZPdZl36C3fmcrbU/JjRs3mi07Te/mzZvY2NiYPaSMbxKGu7OmMs6YeuWVVyhZsiRnzpzBzc0t048SJUoAd/ej/Ouvv8zeYBwTE8Off/5p1p+3tzc7d+40W9q6e/duEhIS8Pb2ztE1t23blmvXrplmoqXNOHxY3333Hd988w1t27Y1/SaXdu/Sy+m9u3nzJlZWVuTN+786+9dff2127Vm5fft2lsXMuLg4rl27ZprtWbNmTaysrFi/fn3OLpC7y4jPnDlD8eLFs3yeuVG7dm2SkpKynMkH/8vNv//+O8ux0m8TkFFO73tOuLm5cezYMU6dOmU6durUqUy5mZv+WrZsSWRkJBcvXnyg6yxRogQ9e/bEYDDw999/A3fv5+XLl7GxscmyH1tbW5KTk0lNTTW7N9evX+fbb7/NUey1a9fmxIkT/P777w907SIiIiIiIiKiGZX3NHz4cLp370737t3p1KkTBQsW5I8//qBw4cK0b9+eOnXqEBERwcSJE2ncuDEHDhxg48aNmfp55ZVX2LBhA99++y3FihWjePHilChRglGjRhESEkJiYiINGzbEzs6Os2fPEhUVxdChQ3FxcaFdu3YsWLCAfv36MWjQIADCw8MpWrSoWYG0X79+BAYGEhwcTFBQkOmt3+7u7vfcrzA9Z2dn/Pz82LZtGx07diR//vy5vmf//PMPv/32G3fu3OHixYt8//33bNy4EQ8PD7OX59SuXZsvvviCZcuWUb58eTZt2mRW8Ep/73bu3ImPjw92dna4uLhQs2ZNAEJDQwkMDOTYsWMsWbIk07LajK5du0bTpk158803qVmzJgULFiQmJobFixdjbW3NW2+9BdxdshgYGMicOXO4evUqtWrV4ubNm+zatYtBgwaZisjptWnThlWrVtG1a1d69uxJ+fLluXbtGkeOHOH27dtmM0fvp3bt2jRo0IDRo0dz+vRpPDw8iI+PZ/v27cyePRuAESNG0K1bN9555x1atmyJk5MT586d48cff8Tf3x9fX99s+54wYQLz5s3Dy8uLqKgofvrppxzHlp6/vz/z588nODiYIUOGAHff+l20aNEH6g+gf//+fPXVV0RERBASEpKj6xw7dixOTk54enri5OTEr7/+yp9//ml6nnXq1OH111+nd+/e9O7dG4PBQFJSEsePH+fUqVNMmjQJR0dH3Nzc+OSTT3B2diZv3rwsWrQIBwcHLl++fN+433zzTVasWEHfvn0ZOHAgFStW5Pz58+zbt4+JEyc+8P0QEREREREReZGoUHkPPj4+fPHFF8yePZvQ0FCsra2pWLEi77zzDgANGjQgJCSEZcuWERkZSbVq1Vi4cGGmt0P36dOH06dPM3LkSBISEhg4cCCDBg2iefPmODk5sWDBAtOsttKlS1OvXj1TsSd//vwsXryYcePGERISQokSJejfvz8bNmzA0dHRNIarqyuLFy9m5syZDBo0CHt7exo1asTIkSNz9dbuxo0bs23btly9SCa9pUuXsnTpUmxsbChUqBAGg4Hx48fTpk0bsxmQAwYM4MqVK8ydOxe4+0btMWPG0K9fP7P+xo4dy4cffkifPn24efMmX3zxBb6+vkyePJnw8HCCg4N57bXXmDNnjum5ZMfBwYE+ffrw/fffs23bNq5evUrRokVxc3NjypQpZnsYjh07ljJlyrB27VoiIiIoVKgQ1atXN1tun56trS1ffPEFYWFhLFiwgIsXL1KoUCGqVKlCp06dcn0fw8LCCA8PZ/Xq1YSHh1OkSBHq1KljOl+tWjVWrFhBWFgYoaGh3L59m5IlS1KzZk3KlSuXbb+BgYHExMSwbNky01uwZ8yYQYcOHXIdY1puvv/++7z77rum3Ny5cyfXrl3LdX9wtzDdokULVq5cSXBwcI6u08vLizVr1rB27VqSkpJ4+eWXCQ0NJSAgwNTv3LlzWbRoEStXriQ2NhZHR0cqVqyIv7+/qc2MGTMYO3Yso0aNolChQgQFBZGYmMjixYvvG7etrS2ff/45s2bNYuHChcTHx1OyZMlsX4gkIiIiIiIiIplZGbXb/TMnPj6eN954g+7duzNw4MBH2veIESM4evToAy8HFpEn59ChQwB89k0cJ2IfbI9WkUepQumCzB7W0NJhCJCYmMjRo0d57bXXtLeUAMoJMad8kIyUE5Ke8kEySp8Tae/3yO02dzmlGZXPgEWLFlG0aFFKly7NxYsXWbx4MSkpKbRr1+6RjfHXX39x9OhRvvrqK8aNG/fI+hUREREREREREckJFSqfAdbW1syfP5/z58+TJ08ePDw8iIiIoFSpUo9sjLfffpvLly/Tpk2bTAVQo9GY7QuF0uJLe+u5iIiIiIiIiIjIg1Ch8hmQ9hKQx+lebzf+5Zdf6Nq1a7bn27Zty5QpUx5HWCKSA2VKON6/kcgToFwUEREREZGHoUKl3FfVqlVZt25dtucLFy78BKMRkYxCOntbOgQRk9RUI9bWVpYOQ0REREREnkEqVMp9OTg4PLZNUkXk4SQnJ5OUlISdnZ2lQxELS0pK4uTJk7i4uFg0H1SkFBERERGRB6WNBUVEnnFGo9HSIchTwGg0kpSUpHwQEREREZFnlgqVIiIiIiIiIiIiYnEqVIqIiIiIiIiIiIjFqVApIiIiIiIiIiIiFqdCpYiIiIiIiIiIiFicCpUiIiIiIiIiIiJicSpUioiIiIiIiIiIiMWpUCkiIiIiIiIiIiIWp0KliIiIiIiIiIiIWJwKlSIiIiIiIiIiImJxKlSKiIiIiIiIiIiIxalQKSIiIiIiIiIiIhanQqWIiIiIiIiIiIhYnAqVIiIiIiIiIiIiYnEqVIqIiIiIiIiIiIjFqVApIiIiIiIiIiIiFqdCpYiIiIiIiIiIiFicCpUiIiIiIiIiIiJicSpUiog846ysrCwdgoiIiIiIiMhDU6FSROQZZmtri52dnaXDeOqkphotHYKIiIiIiIjkUl5LByAiIg9n+vL9xJy/ZukwnhplSjgS0tnb0mGIiIiIiIhILqlQKSLyjIs5f40TsVctHYaIiIiIiIjIQ9HSbxEREREREREREbE4FSpF5JkWGRmJwWDg8uXLlg5FRERERERERB6CCpUiIiIiIiIiIiJicSpUisgzKSUlhdu3b1s6jEfi5s2blg5BRERERERExOJUqBSRR2rfvn0YDAZOnz5tOtavXz8MBgPHjh0zHRs2bBh9+/YFID4+ntDQUHx9fXF3dycwMJC9e/ea9RsUFERwcDBffvklTZs2xc3NjT///DPLGNavX4+rqytr1669b7xTpkyhYcOGpKammh2PiorCYDBw/Phx07HIyEhat26Nm5sb9erVY9asWaSkpJjOX7hwgdDQUPz8/HB3d6dJkybMnDmT5ORks74NBgOLFi1i2rRp1KlTh1q1at03ThEREREREZHnnd76LSKPlLu7O/ny5WPv3r2ULVuW1NRU9u/fbzpWsWJFAPbu3UtQUBApKSn06dOHM2fOEBISQtGiRVm6dCk9evRg1apVuLq6mvo+fPgwsbGxDBkyBCcnJ0qVKmVW/ARYunQpH330ER999BEtW7a8b7wBAQEsWbKE3bt3U69ePdPx9evX4+npyauvvgrAkiVLmDZtGt26dWPUqFGcOHHCVKgMCQkB4MqVKxQqVIjQ0FCcnJyIjo4mLCyMixcvMnnyZLNxv/jiCzw8PJg0aRJ37tx5sJstIiIiIiIi8hxRoVJEHilbW1vc3d3Zt28f7dq146+//iIpKQl/f3/27t1Lp06dOHXqFBcuXKB69ers2rWLgwcP8umnn5oKhXXr1qVJkyYsXLiQsLAwU99Xr15l3bp1lCpVKsuxFy5cSHh4OHPmzMHPzy9H8VaoUAFvb2/Wr19vGv/KlSt8++23jB07FoDr168zd+5cevfuzbBhwwCoU6cONjY2TJkyhV69elG4cGEMBgMjR4409V2tWjXs7OwYNWoUY8eOxc7OznSuYMGChIeHY2VllYu7K7mRlJSE0Wi0dBhPTFJSktl/5cWmfJCMlBOSnvJBMlJOSHrKB8kofU4YjcbH+vdYFSpF5JHz8fFhy5YtwN2Zk66urtSvX5/333/fdMzOzg5XV1dmzpyJg4OD2WxGGxsbGjdubOojTaVKlbItUs6ePZvNmzezcOFCateunat4O3TowHvvvUd8fDyFChVi8+bN2NjY0KJFCwAOHDhAYmIizZo1M5v9WLt2bW7evMmxY8eoUaMGRqORiIgI1qxZQ0xMDLdu3TK1PXPmDJUqVTJ9rl+/voqUj9nJkydfyD9cRUdHWzoEeYooHyQj5YSkp3yQjJQTkp7yQTJKywlbW9vHNoYKlSLyyNWoUYP58+dz/vx59u3bh4+PDz4+Ply6dIno6Gj27duHh4cHNjY2JCQkUKRIkUx9FC1alKtXr2Y6lp3t27dTqVIlvL29cx1vs2bNmDRpEps2baJr165ERkbStGlTHBwcgLszLAHatm2b5ff/+ecfACIiIvjoo4/o3bs3vr6+ODk5cejQISZMmGBWtASyvGZ5tFxcXF64GZXR0dGUL1/ebPauvJiUD5KRckLSUz5IRsoJSU/5IBmlz4nY2NjHOpYKlSLyyHl6emJjY8PevXtNS8ALFSpExYoV2bt3L3v37qVNmzbA3SXQcXFxmfq4dOkSBQsWNDt2rxmIH3/8MYMGDWLQoEHMmzcPGxubHMebP39+WrduTWRkJN7e3hw9epQxY8aYzqfFER4eTsmSJTN9v0yZMgBs27aNRo0aMXz4cNO5EydOZDmmZlM+fi/qH6rs7Oywt7e3dBjylFA+SEbKCUlP+SAZKSckPeWDZGRnZ/fY/y6rt36LyCNnb29PlSpVWL16NfHx8aZZjtWrV2fTpk3ExMTg4+MDgLe3N9evX+eHH34wff/OnTvs2LEjV7MjXVxcWLJkCb///jvDhw83ext3TnTo0IGjR48yefJkypcvb4oPwMvLCzs7O86dO4ebm1umH4ULFwbg5s2bmQqkmzdvzlUcIiIiIiIiIi8qFSpF5LHw8fHhl19+oXLlyqYl1GnHbGxs8PLyAqBhw4a4u7vz7rvvsm7dOnbt2kVwcDAXLlwgODg4V2MaDAYWL17Mjz/+yMiRI0lNTc3xdytXroybmxt79+6lXbt2ZuecnJwYPHgw06ZNY9q0aURFRfHDDz+wcuVKevfubdoHsXbt2uzYsYNly5bxww8/MGLECE6dOpWraxARERERERF5UalQKSKPRY0aNQDMZiZWr14dAFdXV/Lnzw9Anjx5WLRoEQ0bNmTatGkMGjSIGzdusHjxYlxdXXM9btWqVfn000/ZuXMnY8eOzdUehY0bNyZPnjymZenp9ezZk8mTJ7Nnzx4GDx7MkCFDWLNmDW5ubqZZlAMGDKB169bMnTuXYcOGkS9fPrMl5CIiIiIiIiKSPe1RKSKPRcOGDfnrr7/MjhUrVizTMYDChQszefLke/a3dOnSLI/7+/vj7+9vdszT05MDBw7kMmL47rvvqF+/PsWLF8/yfMuWLWnZsmW23y9QoECW15HxmrO6ByIiIiIiIiIvOhUqReSFd+jQIfbv38++fftYsmSJpcMREREREREReSGpUCkiz7U7d+5ke87Kyoo8efLQvn17HB0d6d+/P7Vr136C0YmIiIiIiIhIGhUqReS5VrVq1WzPlS5dmm+//faZX4pdpoSjpUN4quh+iIiIiIiIPJtUqBSR59q6deuyPWdra/sEI3l8Qjp7WzqEp05qqhFraytLhyEiIiIiIiK5oEKliDzX3NzcLB3CY5WcnExSUhJ2dnaWDuWpoiKliIiIiIjIs8fa0gGIiMjDMRqNlg5BRERERERE5KGpUCkiIiIiIiIiIiIWp0KliIiIiIiIiIiIWJwKlSIiIiIiIiIiImJxKlSKiIiIiIiIiIiIxalQKSIiIiIiIiIiIhanQqWIiIiIiIiIiIhYnAqVIiIiIiIiIiIiYnEqVIqIiIiIiIiIiIjFqVApIiIiIiIiIiIiFqdCpYiIiIiIiIiIiFicCpUiIiIiIiIiIiJicSpUioiIiIiIiIiIiMWpUCkiIiIiIiIiIiIWp0KliIiIiIiIiIiIWJwKlSIiIiIiIiIiImJxKlSKiIiIiIiIiIiIxalQKSIiIiIiIiIiIhanQqWIyDPOysrK0iGIiIiIiIiIPDQVKkVEnmG2trbY2dlZOoxHJjXVaOkQRERERERExELyWjoAERF5ONOX7yfm/DVLh/HQypRwJKSzt6XDEBEREREREQtRoVJE5BkXc/4aJ2KvWjoMERERERERkYeipd8iIiIiIiIiIiJicSpUisgTFxkZicFg4PLlyxaN4+jRo4SFhZGUlJSj409L3CIiIiIiIiLPIxUqReSFdfToUcLDw7MsVGZ1vGHDhqxevRonJ6cnGaaIiIiIiIjIC0F7VIrIE5OSkkJqaqqlw3hgzs7OODs7WzoMERERERERkeeSZlSKCPv27cNgMHD69GnTsX79+mEwGDh27Jjp2LBhw+jbty8A8fHxhIaG4uvri7u7O4GBgezdu9es36CgIIKDg/nyyy9p2rQpbm5u/Pnnn1nGsH79elxdXVm7dm2OYt65cyf+/v54eXnh4+ODv78/UVFRZm0iIyNp3bo1bm5u1KtXj1mzZpGSkmI6FxoaCkCtWrUwGAw0atQo2+Np30m/9DsmJgaDwcDGjRuZMGEC1atXp27dunz00UfcuXPHLJZvvvnGdA86dOjAH3/8gY+PD2FhYTm6XhEREREREZHnnWZUigju7u7ky5ePvXv3UrZsWVJTU9m/f7/pWMWKFQHYu3cvQUFBpKSk0KdPH86cOUNISAhFixZl6dKl9OjRg1WrVuHq6mrq+/Dhw8TGxjJkyBCcnJwoVaqUWfETYOnSpXz00Ud89NFHtGzZ8r7xnj59miFDhtCyZUuGDx9Oamoqf/75J1ev/u/N10uWLGHatGl069aNUaNGceLECVOhMiQkhIYNG/L2228zf/58Pv30UxwdHbG1taVkyZJZHr+X2bNn4+fnx+zZszlw4ABhYWGULVuWt956C4AjR44wZMgQXn/9dUaPHk1sbCxDhw4lOTk5x89IRERERERE5HmnQqWIYGtri7u7O/v27aNdu3b89ddfJCUl4e/vz969e+nUqROnTp3iwoULVK9enV27dnHw4EE+/fRT6tWrB0DdunVp0qQJCxcuNJslePXqVdatW0epUqWyHHvhwoWEh4czZ84c/Pz8chTvkSNHuH37Nu+99x4ODg4ApjgArl+/zty5c+nduzfDhg0DoE6dOtjY2DBlyhR69eqFs7MzZcuWBaBq1apmS7qzO54dd3d3xowZYxpnz549bN++3VSoXLhwIWXKlCEsLAxr67sT2QsUKMCIESNydL0vmqSkJIxGo6XDeOak7amacW9VeTEpHyQj5YSkp3yQjJQTkp7yQTJKnxNGoxErK6vHNpYKlSICgI+PD1u2bAHuzpx0dXWlfv36vP/++6ZjdnZ2uLq6MnPmTBwcHMyKgzY2NjRu3NjUR5pKlSplW6ScPXs2mzdvZuHChdSuXTvHsRoMBvLkyUNISAgdOnSgevXqODo6ms4fOHCAxMREmjVrZrYEu3bt2ty8eZNjx45Ro0aNHI93P3Xr1jX7XKFCBX7++WfT50OHDvHGG2+YipRAjouyL6KTJ0/qD0UPITo62tIhyFNE+SAZKSckPeWDZKSckPSUD5JRWk7cb9Xhw1ChUkQAqFGjBvPnz+f8+fPs27cPHx8ffHx8uHTpEtHR0ezbtw8PDw9sbGxISEigSJEimfooWrSo2fLrtGPZ2b59O5UqVcLb2ztXsbq4uLBgwQIWLlzIwIEDsba2pm7duowdO5aXXnqJK1euANC2bdssv//PP//karz7SV8khbtF2/TLui9evJhpZqaDgwP58uV7pHE8L1xcXDSj8gEkJSURHR1N+fLlsbOzs3Q4YmHKB8lIOSHpKR8kI+WEpKd8kIzS50RsbOxjHUuFShEBwNPTExsbG/bu3WtaAl6oUCEqVqzI3r172bt3L23atAGgYMGCxMXFZerj0qVLFCxY0OzYvaaEf/zxxwwaNIhBgwYxb948bGxschxv/fr1qV+/PtevX+e7775j8uTJhIaGEhERYYohPDyckiVLZvpumTJlcjzOo1CsWDHTC3jSXL9+nVu3bj3ROJ4V+sPQw7Gzs8Pe3t7SYchTQvkgGSknJD3lg2SknJD0lA+SkZ2d3WNd9g1667eI/H/29vZUqVKF1atXEx8fb5rlWL16dTZt2kRMTAw+Pj4AeHt7c/36dX744QfT9+/cucOOHTtyNTvSxcWFJUuW8PvvvzN8+HDTG7lzw8HBgRYtWtCyZUtOnDgBgJeXF3Z2dpw7dw43N7dMPwoXLgxgKoxmfKlNdscflJubG7t27SI1NdV0bMeOHY+kbxEREREREZHnhWZUioiJj48Pn332GVWrVjW9pMbHx4fly5djY2ODl5cXAA0bNsTd3Z13332X4cOHm976feHCBebOnZurMQ0GA4sXL6Zbt26MHDmSqVOnmu3lmJVVq1bx22+/Ua9ePYoVK0ZMTAybNm2iTp06ADg5OTF48GCmTZvGuXPnqFGjBnny5OHMmTPs3LmTsLAw7OzsqFChAgDLly/njTfeIH/+/BgMhmyPP6jg4GDat2/PoEGD6NChA2fPnmXx4sXky5fvsf9rlIiIiIiIiMizQjMqRcQk7QUzaTMn4e6MSgBXV1fy588PQJ48eVi0aBENGzZk2rRpDBo0iBs3brB48WJcXV1zPW7VqlX59NNP2blzJ2PHjr3v/oQGg4ErV64wefJkevbsSVhYGC1btmTcuHGmNj179mTy5Mns2bOHwYMHM2TIENasWYObm5tpxmSVKlUYNGgQmzZtIjAwkLfffvuexx9UlSpVmD17NsePH2fgwIGsXbuWKVOmkJKSkml/SxEREREREZEXlZVRbywQEXnifvrpJ7p3787SpUsf+A3khw4dAuCzb+I4EXv1Pq2ffhVKF2T2sIaWDuOZlZiYyNGjR3nttde0l5AoHyQT5YSkp3yQjJQTkp7yQTJKnxNpW665ubk9lrG09FtE5Al4//33qVWrFoUKFeL48eN8/PHHVKlSxWz2qoiIiIiIiMiLTIVKEXnq3LlzJ9tzVlZW5MmT5wlG82gkJCQwceJE4uPjcXBwoF69eowcOfK++3GKiIiIiIiIvChUqBSRp07VqlWzPVe6dGm+/fbbJxjNozFz5szH1neZEs/HPpfPy3WIiIiIiIjIg1GhUkSeOuvWrcv2nK2t7ROM5NkQ0tnb0iE8MqmpRqyt9SZ0ERERERGRF5EKlSLy1Hlcm/I+j5KTk0lKSsLOzs7SoTwSKlKKiIiIiIi8uLQ5mojIM85oNFo6BBEREREREZGHpkKliIiIiIiIiIiIWJwKlSIiIiIiIiIiImJxKlSKiIiIiIiIiIiIxalQKSIiIiIiIiIiIhanQqWIiIiIiIiIiIhYnAqVIiIiIiIiIiIiYnEqVIqIiIiIiIiIiIjFqVApIiIiIiIiIiIiFqdCpYiIiIiIiIiIiFicCpUiIiIiIiIiIiJicSpUioiIiIiIiIiIiMWpUCkiIiIiIiIiIiIWp0KliIiIiIiIiIiIWJwKlSIiIiIiIiIiImJxKlSKiIiIiIiIiIiIxalQKSIiIiIiIiIiIhanQqWIiIiIiIiIiIhYnAqVIiLPOCsrK0uHICIiIiIiIvLQVKgUEXmG2draYmdnZ+kwHlhqqtHSIYiIiIiIiMhTIq+lAxARkYczffl+Ys5fs3QYuVamhCMhnb0tHYaIiIiIiIg8JVSoFBF5xsWcv8aJ2KuWDkNERERERETkoWjpt4iIiIiIiIiIiFicCpXyyEVGRrJ582ZLh/HYGQwGsx+1a9emX79+/PXXX2btwsLC8PLyslCU/9O/f3+CgoKyPd+vXz+aNGmS7fmlS5diMBg4ffo0o0aNolWrVo8jzPuKjIzEYDBw+fJlAGJiYjAYDGzbtu2RjrNnzx4WLFiQ6fjT8jxFREREREREnjcqVMoj9+WXX7JlyxZLh/FEBAUFsXr1alatWsV7773HuXPn6NWrFwkJCZYOLddatWrFqVOnOHjwYJbnt27diqenJ2XLlqV///5Mnz79CUeYteLFi7N69Wpq1qz5SPv95ZdfWLhwYabjAQEBREREPNKxRERERERERER7VMoL5ubNm+TPn/+R9VeqVCk8PT1Nn11cXHjzzTc5cOAADRo0eGTjPAl+fn7Y29uzZcsW3N3dzc7FxMRw4MABxowZA0DZsmUtEWKWbG1tzZ7B41ayZElKliz5xMYTEREREREReVFoRqWYOXDgAD179qRatWp4eXkREBDA7t27TeenT59O69at8fLyol69egwbNowLFy6YzgcFBfHLL7+wa9cu05LosLAw0/ldu3YREBCAu7s7NWvWZNy4cSQmJprFcOzYMTp37oybmxtNmjRh06ZNWS5b3rt3L4GBgbi7u+Pr60toaCjx8fGm82lLgiMjIxkzZgy+vr4EBASwdOlSPDw8uH79ull/J06cwGAwEBUV9cD3r0CBAgDcvn07V99LTExkwoQJNG3aFA8PDxo1asTYsWO5ds38Tc6NGjViwoQJLF++nNdffx1vb2/69+9vWgad/lq6dOmCm5sbb7zxBl9++eV9Y7Czs8PPz4+vv/6a1NRUs3Nbt24lT548tGjRAiDT0u+EhATGjBlDvXr1cHNzo0GDBgwdOtR0Prvl0j4+Ppnyo0ePHtSqVYtq1aoREBDAd999d8+4My79TlsantWPmJgYADZs2MBbb71FjRo1qF69OkFBQWYzScPCwggPDycxMdH03bT8y+paYmNjGTx4MN7e3nh6etKrV69MWwDk9NmJiIiIiIiIvKg0o1JM9u/fT7du3fD09OSDDz7AycmJw4cPc/bsWVObuLg4goODKV68OJcvX2bJkiUEBQWxdetW8ubNy7hx43j33XfJnz8/I0eOBDDNPtu2bRtDhw7F39+fQYMGcfHiRWbMmEFCQgKzZs0C7s547NmzJ05OTkybNg2AefPmkZCQYDaL7/Dhw/To0QNfX1/mzJnDpUuXmDFjBsePH2fVqlXkyZPH1HbmzJk0aNCAGTNmkJqaioeHB9OmTWPLli0EBgaa2q1bt44SJUpQt27dHN+z1NRU7ty5g9Fo5Pz580ybNo3ChQvj6+ubq3t/8+ZNUlJSGDp0KM7Ozvzzzz8sWLCA/v37s3TpUrO23377LadOnWLs2LFcuXKFyZMnM3HiRNM9vHXrFj179sTOzo6pU6cCMHfuXK5fv0758uXvGUfr1q3ZvHkze/bsoVatWqbjW7ZsoXbt2hQpUiTL702ePJnvv/+e4cOHU7p0aS5evHjfAmNWYmJieP311+nZsyfW1tZ899139O3bl4iIiBzf04YNG7J69WqzYx9++CFnzpyhYMGCpnHatGlD2bJlSU5OZuvWrXTu3JlNmzbh4uJCQEAA586dY8uWLaZl3g4ODlmOd/36dYKCgrC2tmb8+PHky5eP+fPn06VLFzZt2kSpUqVMbe/37EREREREREReZCpUism0adMoV64cERERpkJfxqLd5MmTTT9PSUnBy8uL+vXr8/PPP1O3bl1effVVHBwcsLe3N1uOazQamTp1Ki1atGDSpEmm48WKFaNv377079+fihUrsn79euLi4li5ciVlypQBwNXVlSZNmpgVKhcsWECxYsVYsGABNjY2wN1l2L169SIqKopGjRqZ2lauXNlsTICmTZuyfv16U6Hyzp07bNq0ifbt25sVOe9n+vTpZns1FipUiPDwcBwdHXPcB4CzszPjx483fb5z5w5lypShU6dOnDx5EhcXF9M5o9HI/PnzsbW1Be7O5lu4cCGpqalYW1sTGRnJhQsX+Prrr02FySpVqtCsWbP7Firr1KmDs7MzW7duNRUq//vf//Lf//6XXr16Zfu9Q4cO0apVK9q2bWs61rJly1zdA4AuXbqYfp6amoqvry/Hjx9nzZo1OS5UOjs74+zsbPr82Wef8ccff7BkyRLTcxk4cKDZOHXq1OHgwYN8+eWXDBs2zLS829ra+r7LyiMjIzl79ixbt26lQoUKAFSvXp3XX3+diIgIRo0aZWp7v2f3okpKSsJoNFo6jGdeUlKS2X/lxaZ8kIyUE5Ke8kEyUk5IesoHySh9ThiNRqysrB7bWCpUCnA32X7//XeGDRt2z0JdVFQU8+fP59ixY2ZLp6Ojo+85E/HkyZPExsYyevRo7ty5Yzpeo0YNrK2tOXz4MBUrVuTw4cNUqlTJVKQEKFOmDJUrVzbrb9++fbRq1cpUpIS7RVUnJyf2799vVqhs2LBhpng6dOhAly5dOHbsGBUrViQqKoq4uDjatWuX7TVkpWvXrvzrX/8C4PLly6xYscI0CzJjzPezYcMGPv/8c06dOmW2HD46OtqsUFm9enVToQugQoUK3L59m7i4OIoVK8bBgwepWLGiWVGyXLlyOYonb968NGvWjK1btzJ27FhsbW3ZunUrdnZ2NG7cONvvValShS+//JJixYpRr149KlWqlKtrT3Pu3DlmzZrFjz/+yMWLF03Fq6pVqz5Qf9999x3Tp09n9OjR1KhRw3T8xIkTzJw5kwMHDhAXF2c6Hh0dnesx9u3bR8WKFU1FSrhbsK5duzb79+83a3u/Z/eiOnnypP4Q9Ag9SB7L80v5IBkpJyQ95YNkpJyQ9JQPklFaTqT/e+2jpkKlAHf3GExNTaV48eLZtjl48CD9+/fHz8+PPn36UKRIEaysrOjQoQO3bt26Z/9XrlwBYMCAAVme/+effwC4cOGC2Wy4NM7OzmZjJCQkZLkMuUiRIly9ejXTsYyqV6+Oi4sL69atIzQ0lPXr11O9evVcvySmZMmSuLm5mT7XqlWL+vXr8/HHHzN37twc9/PNN98wcuRIOnbsyNChQylUqBAXL15kwIABme6tk5OT2ee03yDS2l24cCHbe3O/5wR33/69YsUKvv/+e/z8/NiyZQuNGjUy7b+Zlffee4+CBQuyZMkSpk6dSqlSpejbty+dOnW673hpUlNTefvtt7l27RqDBw+mXLly2NnZMXfuXFN+5MbJkycZPnw4bdq0Mdvf9Pr16/Ts2RNnZ2dGjRrFSy+9RL58+RgzZkyO7k9GCQkJFC1aNNPxIkWKcOzYMbNj93t2LyoXFxfNqHwEkpKSiI6Opnz58tjZ2Vk6HLEw5YNkpJyQ9JQPkpFyQtJTPkhG6XMiNjb2sY6lQqUA4OjoiLW1tdmLcTLasWMHDg4OzJ4927RMNacJWqjQ/2PvzuNqzP//8T8qpZMWW8VoKORY2kO02KIwfG1Fhsga0dhCmUYYRmTJlBFGJGMYNFknY3lrvBnrZEY03jRCESmppqLl/P7wO9en0ymVyqEe99vNbXRdr+v1ep7rPC9v76fX63o1BgAsXbpUbkdpAEKBVE9PDwkJCXLnMzIyZAplOjo6MjPhpNLT04X3EEqVNyXZ1dUV33//PSZNmoTY2Fi55eHvQk1NDZ9++qlcgaoiMTEx6NSpE1asWCEcu3LlyjvFoKenh1u3bskdT09PL/c9iyVZWVmhVatWOH78OJo1a4bk5GR8+eWXb71GS0sLX375Jb788kvcuXMHu3fvxvLly9GhQwd07doVDRs2lNtgqKCgQGbm6IMHD3D79m1s3rwZ/fv3F47n5+dXGHNp2dnZ8PLygqGhocySegC4ceMGUlNTsXXrVplZptnZ2e+0m7eOjg7u378vd7ysXKSy8S8/NUskEkFDQ0PRYdAHgvlApTEnqCTmA5XGnKCSmA9UmkgkqtVl3wB3/ab/n/SdkocPH0ZRUVGZbfLz86GqqiqTlEePHpVrp6qqKjdDrG3btmjRogUePXoEU1NTuV/6+voA3ryP8s6dO3j06JFwbXJyMv7++2+Z/qytrXHmzBmZZeQXLlxAVlYWrK2tK/WZR4wYgezsbPj4+EBdXR0DBw6s1HVv8+rVKzx8+BBNmjSp0nXSe1tSWfe2MkxNTXH37l08ePBAOPbgwQO5e1geJSUlDBkyBGfPnsVPP/2Exo0bw8HBodLji8Vi+Pn5AXizxBoA9PX1UVBQgIcPHwrtLl26JJNr0pwpeR9SUlIQFxdX6bGBNzMzFyxYgOzsbISGhspNSZcWPkuO88cff8gV3VVVVfH69esKx7O2tsb//vc//PPPP8Kxly9f4uLFi5XORSIiIiIiIiLijEoqYcGCBfDw8ICHhwc+//xz6Ojo4NatW2jSpAlcXFxgZ2eHiIgIfP311xgwYADi4uJw+PBhuX7atm2L6OhonD17Frq6utDT04O+vj58fX3h4+OD3Nxc9OnTByKRCI8fP0ZsbCzmzZsHIyMjjBo1CmFhYZgxYwa8vb0BAKGhoWjevLlMgXTGjBlwc3ODp6cn3N3dhV2/zczM0Lt370p93qZNm8LR0RExMTEYM2YM1NXVq3zPnjx5ghs3bgB4M+vzhx9+QGZmpsxu4pVha2uLFStWYPPmzbC0tERsbCx+//33KscDACNHjsSWLVvg6emJOXPmAHiz63dZy5PLM2TIEGzduhVRUVEYM2aMXBG1NDc3NwwYMADGxsZQUVFBdHQ0VFVV0bVrVwBAr169oKGhAX9/f0ybNg2pqanYvXs3GjZsKPQhLWZLd2fPzc3Ft99++9bXEZRl+/btiI2NxeLFi/HkyROZZeOdO3eGhYUFNDQ0sHz5ckyfPh1Pnz5FSEiIUCyXateuHQoLCxEREQFLS0toamqibdu2cuONHDkSu3btgqenJ+bOnSvs+t2gQQNMnDixSrETERERERER1WcsVJKga9eu2L17N4KDg+Hn5wdlZWUYGxtj7ty5AIDevXvDx8cHe/bsQVRUFKysrLB161Y4OzvL9DNt2jQ8fPgQixcvRlZWFmbPng1vb28MGjQI2traCAsLE2YLtmrVCg4ODkIRTV1dHeHh4QgICICPjw/09fXh5eWF6OhomZ20TUxMEB4ejg0bNsDb2xsaGhro168fFi9eXKVduwcMGICYmBi4uLi80z2LjIxEZGQkgDfvH2zXrp3c0uXKcHNzQ3JyMvbs2YMdO3bA3t4e69evx+jRo6sck/QeLlu2DAsXLhTu4ZkzZ5CdnV2pPjp06ACxWIw7d+5g6NChFba3srJCdHQ0kpOToaysjA4dOiAsLEzYYKZJkyb49ttvsWbNGsyaNQudOnXC2rVrZd4dqaamhpCQEKxYsQJz5sxBy5YtMXPmTFy6dAnx8fGV/vzSZdhr1qyRO3fmzBkYGBhg06ZNWLt2rczy8O+//16mbd++ffH5559j27ZtSE9PR7du3YTvuiRNTU1ERkYiMDAQX331FYqLi2FlZYU9e/agZcuWlY6biIiIiIiIqL5TknAHA/rAZWZmon///vDw8MDs2bNrtO9FixYhISHhnZdZEynSzZs3AQA7TqUjMeVlBa0/PO1a6SB4fh9Fh1Fn5ObmIiEhAZ06deK7hIj5QHKYE1QS84FKY05QScwHKq1kTkhf8VZyY+GaxBmV9MHZtm0bmjdvjlatWiEtLQ3h4eEoKirCqFGjamyMO3fuICEhASdOnEBAQECN9UtERERERERERO+GhUr64CgrK2PLli14+vQpVFRUYG5ujoiIiBpdRjtz5kxkZGRg+PDhcgVQiURS7oZC0viku54TEREREREREVHNqFahMicnB9nZ2TIFpKdPn2Lfvn14/fo1nJ2dYWZmVu0gqX6ZOnUqpk6dWqtjnD17ttxzV65cwYQJE8o9P2LECAQGBtZGWETvxEBfq+JGH6CPNW4iIiIiIiKqHdUqVC5duhTJycn46aefALwpXI4ZMwapqalQVlbG7t278f3338PGxqZGgiV6H7p06YKDBw+We75JkybvMRqiivmMs1Z0CO+suFgCZWUlRYdBREREREREH4BqFSqvX7+OMWPGCD8fPnwYz549w759+9C+fXt4eHhgy5YtLFTSR0VTU7PWXgpLVNNev36NvLw8iEQiRYfyTlikJCIiIiIiIqlqvWjvxYsX0NfXF34+e/YsrK2tYWFhAU1NTQwfPhx///13tYMkIqLySSQSRYdAREREREREVG3VKlRqa2vj+fPnAID8/Hxcv34ddnZ2wnkVFRXk5+dXL0IiIiIiIiIiIiKq86q19NvS0hJ79+5F27Ztcf78ebx69QqOjo7C+aSkJJkZl0RERERERERERERlqdaMSh8fHzRo0ADe3t746aef4OHhAWNjYwBAUVERYmJi0K1btxoJlIiIiIiIiIiIiOquas2obNOmDWJiYpCYmAhNTU0YGBgI5/Ly8vDVV1+hY8eO1Q6SiIiIiIiIiIiI6rZqFSoBQFVVtcxipKamJvr371/d7omIiIiIiIiIiKgeqNbSbwDIycnBtm3bMGXKFAwfPhx//fUXACAzMxM7d+7EgwcPqh0kERERERERERER1W3VmlGZmpqK8ePHIzU1FW3atME///yDf//9FwDQuHFj7Nu3DykpKfD396+RYImIiIiIiIiIiKhuqlahcu3atfj3338RHR2Npk2bwtbWVuZ8//79ce7cueoMQURERERERERERPVAtZZ+X7hwAe7u7mjfvj2UlJTkzn/66ad48uRJdYYgIiIiIiIiIiKieqBahcr8/Hw0bdq03PPSZeBEREREREREREREb1OtQmW7du1w9erVcs+fPn0anTt3rs4QREREREREREREVA9Uq1A5ceJEnDhxAtu2bUNOTg4AQCKR4MGDB1i4cCFu3LgBDw+PmoiTiIiIiIiIiIiI6rBqbaYzbNgwPH78GJs2bUJwcDAAYOrUqZBIJFBWVsa8efPQv3//moiTiIiIiIiIiIiI6rBqFSoBYObMmRg2bBh+/fVXPHjwAMXFxWjdujWcnJzw6aef1kSMREREREREREREVMe9c6EyLy8P48aNg6urK8aOHcsl3kRERERERERERPTO3vkdlSKRCMnJyVBSUqrJeIiIiIiIiIiIiKgeqtZmOg4ODvjvf/9bU7EQERERERERERFRPVWtQqWXlxeSkpKwcOFCXLt2DU+fPkVmZqbcLyIiqj2c2U5ERERERER1QbU20/nss88AAPfu3cOxY8fKbZeQkFCdYYiIqBxqamoQiUSKDkNOcbEEysosoBIREREREVHlVatQOWvWLM7kISJSsHU/XEfy02xFhyEw0NeCzzhrRYdBREREREREH5lqFSq9vb1rKg4iInpHyU+zkZjyUtFhEBEREREREVVLtd5RSURERERERERERFQTqjWjMjQ0tMI2SkpKmDVrVnWGISIiIiIiIiIiojqu1gqVSkpKkEgkLFQSUZ0TEhKC8PBwxMXFKToUIiIiIiIiojqjWoXKv//+W+5YcXExUlJSsHfvXly9ehXbt2+vzhBERB8cV1dX9O7dW9FhEBEREREREdUpNf6OSmVlZXz66adYvHgx2rRpg5UrV9b0EERECtWiRQuYmZkpOgwiIiIiIiKiOqVWN9Pp1q0bYmNja3MIIqqEuLg4TJ48GVZWVrC0tISrqysuXLgAAMjMzISfnx9sbGxgZmYGNzc3XL16VeZ6d3d3eHp64tixY3BycoK5uTlmzJiBly9fIiUlBVOmTIGlpSU+++wzXL58Webafv36YcWKFfj+++/h4OAAc3NzzJw5E8+ePZNpt27dOgwdOhSWlpZwcHDA/Pnz5dpI44iJiYGzszMsLS0xYcIEPHz4UGgzcuRILFiwQO4eBAUFwd7eHkVFRRXer9TUVMyZMwe2trYwNTVFv3798M033wjnQ0JCYGlpKROXWCyW++Xu7i60ycrKwrJly2Bvbw8TExOMHDkS//3vfyuMhYiIiIiIiKi+qNbS74rEx8dDWZkbixMp0vXr1zFx4kRYWFhg5cqV0NbWRnx8PB4/foyioiJMmzYNjx49go+PD5o3b47IyEhMmjQJ+/btg4mJidDP7du38eLFCyxatAg5OTlYuXIlvvrqK6SkpGD48OGYNGkStm7dCm9vb/znP/9Bo0aNhGtPnTqFVq1aYdmyZcjKysK6devg7e2N/fv3C23S09Ph6ekJPT09ZGRkYOfOnXB3d8fx48fRoMH//VGVkJCAjIwM+Pj4oKioCIGBgVi4cKHQl6urKwIDA5GdnQ0tLS0AQFFREQ4fPowRI0ZARUWlwnu2aNEiPHv2DP7+/mjWrBmePHmC+Pj4ctsHBAQgJydH+Pnp06fw8fGBkZERAOD169eYNGkS0tPTMXfuXOjr6+PIkSPw9PREVFQUxGJxhTF9jPLy8iCRSBQdRr2Rl5cn81+q35gPVBpzgkpiPlBpzAkqiflApZXMCel+NLWlWoXK6OjoMo9nZWXh2rVr+PXXX+Hq6lqdIYiomoKCgtCmTRtEREQIRTp7e3sAwJkzZ/DXX38Jsx2l55ycnLB161aEhIQI/eTk5CAsLAxNmzYFANy5cwfh4eFYtmwZxo4dCwDQ09PD0KFD8fvvv6N///7Ctf/++y+2b98uFA5btGgBDw8PnD9/Xhh39erVQvuioiJYWlqiV69euHTpkhAvAGRnZyM6OlqIIzc3F35+fkhNTUWLFi0wdOhQrFmzBkePHsXnn38OAIiNjUVaWhpGjRpVqXt28+ZNzJ8/H4MHDxaODR8+vNz27du3F37/6tUrfP3112jbti38/PwAAEePHsXff/+Nw4cPC20dHBzw4MEDfPfdd9i0aVOl4vrY3L9/n3+5UYCkpCRFh0AfEOYDlcacoJKYD1Qac4JKYj5QadKcUFNTq7UxqlWo9PX1LfdckyZNMH36dO74TaRAeXl5+PPPPzF//vwyZxJeu3YNmpqaQrEQAFRVVTFgwAAcO3ZMpm3Hjh2F4iAAGBoaAgBsbW3ljqWmpspca2NjIxQpAaBnz55o3Lgx/vzzT2Hs2NhYbNmyBXfv3pWZnZiUlCRTqCwdh7TwJy1UampqYtCgQTh06JBQqIyKikLXrl2F+CrSuXNnhIeHQ0VFBXZ2dmjTpk2lrgOAL7/8EsnJyTh06BBEIhEA4MKFC+jQoQMMDQ1RWFgotLW1tcWRI0cq3ffHxsjIiDMq36O8vDwkJSXB0NBQyD2qv5gPVBpzgkpiPlBpzAkqiflApZXMiZSUlFodq1qFyjNnzsgdU1JSgra2NjQ1NavTNRHVgKysLBQXF0NPT6/c882aNZM73rx5c7x8+VLmmLa2tszPqqqqACBTgJT+q8qrV69k2pY1RtOmTZGWlgYA+Ouvv+Dl5QVHR0dMmzYNzZo1g5KSEkaPHi3XV3lxlGw3evRouLm54e+//4aenh7OnTuHFStWlHEHyrZx40Zs3LgRwcHBWL58OYyMjDB//nw4OTm99brt27fjxIkT2LFjBwwMDITjL168wO3bt9GlSxe5ayqzFP1jxb/UKIZIJIKGhoaiw6APBPOBSmNOUEnMByqNOUElMR+oNJFIVKvLvoFqFiqVlJTQtGlTqKurl3k+Pz8fGRkZ+OSTT6ozDBG9Iy0tLSgrK8ttSiOlo6OD9PR0uePPnz+Hjo5OjcVR1hgZGRnQ1dUFAJw+fRqampoIDg4W3mtbnX+lsbS0hLGxMQ4dOoRPPvkEampqGDhwYKWv19PTw+rVq1FcXIz4+Hhs2bIF8+bNQ0xMDD799NMyr4mNjcWGDRuwePFi9OzZU+acjo4OxGIxVq1a9c6fiYiIiIiIiKiuq9ZON46Ojjh16lS558+ePQtHR8fqDEFE1aChoQELCwscPny4zN2ura2tkZOTI7P7dGFhIU6fPg1ra+sai+Py5cvIzs4Wfv7999+RmZkJc3NzAG/+UUNVVVXmX2aOHj1arTFdXV1x9OhRHDx4EIMHD36nfwlUVlaGmZkZ5s6di8LCQjx48KDMdv/88w8WLFiAoUOHwsPDQ+68ra0tHj16BD09PZiamsr9IiIiIiIiIqJqzqis6N1jBQUF3PWbSMEWLFgADw8PeHh44PPPP4eOjg5u3bqFJk2aYMSIETAzM8PChQuxYMECYdfvZ8+e4dtvv62xGBo1aoRp06Zh2rRpyM7Oxrp162BmZia8n9LOzg4RERH4+uuvMWDAAMTFxeHw4cPVGnPYsGFYt24dXrx4UaWZjNnZ2ZgyZQqGDRsGIyMjFBQUIDIyEtra2ujcuXOZ18ycORPq6uoYNWoUbty4IRzX1NRE+/btMXz4cOzbtw8TJkzA5MmTYWhoiOzsbNy+fRsFBQVYsGBBtT4rERERERERUV1Q5UJlTk4OsrKyhJ8zMzPx+PFjuXZZWVk4ceKEsLSTiBSja9eu2L17N4KDg+Hn5wdlZWUYGxtj7ty5UFFRwbZt27B27VoEBQUhNzcXXbp0QXh4OExMTGoshgEDBqBFixYICAhAVlYWbG1tsXz5cuF879694ePjgz179iAqKgpWVlbYunUrnJ2d33nMxo0bo3v37khNTYWFhUWlr2vYsCE6dOiAyMhIPHnyBOrq6jAxMcGOHTtkNvEpSbrz2YQJE2SOd+/eHZGRkVBTU8Pu3bsREhKCsLAwpKWloXHjxujcubOw4Q8RERERERFRfackqeKWrKGhodi8eXOl2kokEsydOxczZsx4p+CI6OPXr18/9OnTB0uXLn2v4+bk5MDBwQHe3t6YPHnyex37fbl58yYAYMepdCSmvKyg9fvTrpUOguf3UXQY9U5ubi4SEhLQqVMnvvScmA8khzlBJTEfqDTmBJXEfKDSSuZEYmIiANTaa8yqPKPSzs4OGhoakEgkCAoKwmeffSa3k62SkhJEIhG6dOnC968R0XuVk5ODxMRE7N27F0pKShg5cqSiQyIiIiIiIiKiSqhyodLS0hKWlpYAgLy8PDg5OaFDhw41HhgR0bu4desWJkyYgJYtW2LNmjVo3LixzPni4mIUFxeXe72KiorMpj5ERERERERE9H5UazOd2bNn11QcRFRHnT179r2OZ2Njgzt37pR7fsmSJfj555/LPb97927Y2NjURmi1xkBfS9EhyPjQ4iEiIiIiIqKPQ7UKlVLXr1/H7du3kZ2dLTdTSUlJCbNmzaqJYYiIqm327NkYN25cueeNjIzeYzQ1w2ectaJDkFNcLIGyMmemEhERERERUeVVq1CZmZkJT09P/PXXX5BIJFBSUoJ0bx7p71moJKIPiYGBAQwMDBQdRo15/fo18vLyIBKJFB2KDBYpiYiIiIiIqKqUq3Px2rVrcefOHaxfvx6nT5+GRCLBjh07cPLkSbi5uaFTp044f/58TcVKRERlkP4DEREREREREdHHrFqFyt9++w1jxozB4MGD0ahRozcdKiujTZs2CAgIQKtWrfDNN9/USKBERERERERERERUd1WrUJmVlYX27dsDgFCo/Pfff4XzdnZ2+O9//1udIYiIiIiIiIiIiKgeqFahUk9PD8+fPwcAqKmpoVmzZvj777+F80+fPoWSEt9TRkRERERERERERG9Xrc10unXrhosXL2LmzJkAgEGDBmHHjh1QUVFBcXExIiIi4ODgUCOBEhERERERERERUd1VrUKlh4cHLl68iNevX0NNTQ3e3t64d+8eNm3aBOBNIdPf379GAiUiIiIiIiIiIqK6q1qFSrFYDLFYLPyso6ODXbt2ISsrC8rKytDU1Kx2gERERERERERERFT3VatQWR5tbe3a6JaIiIiIiIiIiIjqqGptpgMAjx8/xtKlS+Hs7Izu3bvj6tWrAICMjAysXLkSt2/frnaQREREREREREREVLdVq1B57949jBgxAr/88gsMDAyQnZ2NwsJCAEDTpk1x/fp17Nmzp0YCJSIiIiIiIiIiorqrWku/g4KCoKWlhZ9++gkAYGtrK3O+d+/e+OWXX6ozBBEREREREREREdUD1ZpRefXqVYwdOxZNmzaFkpKS3PlPPvkET58+rc4QREREREREREREVA9Uq1ApkUigrq5e7vmMjAyoqalVZwgiIiIiIiIiIiKqB6pVqOzcuTNiY2PLPFdYWIjjx4/D3Ny8OkMQERERERERERFRPVCtQuX06dNx/vx5BAQE4O7duwCA9PR0XLx4EZMnT8Y///yD6dOn10igREREREREREREVHdVazOd3r17Y/Xq1fjmm2+EDXUWLlwIiUQCTU1NrFmzBt26dauRQImIiIiIiIiIiKjuqnKhcsOGDRg8eDA6duwIABg+fDicnJxw8eJFJCUlobi4GK1bt4a9vT00NTVrPGAiIiIiIiIiIiKqe6pcqNy2bRuMjY2FQuWLFy9ga2uL8PBwTJ06tcYDJCKit1NSUlJ0CERERERERETVVq13VEpJJJKa6IaIiKpITU0NIpFI0WHIKC7m/yYQERERERFR1VXrHZVERKR46364juSn2YoOAwBgoK8Fn3HWig6DiIiIiIiIPkIsVBIRfeSSn2YjMeWlosMgIiIiIiIiqpZ3KlSmpKTg1q1bAIDs7DezeB48eABtbe0y23fp0uUdwyMiIiIiIiIiIqL64J0KlZs2bcKmTZtkji1fvlyunUQigZKSEhISEt4tOiIiIiIiIiIiIqoXqlyoXL16dW3EUaOioqKgqqqKoUOHKjqUWiUWi4Xfq6qqonHjxhCLxRg4cCCGDx8OVVXVKvcZEhICOzs7WFlZ1UiMvr6++Pnnn2Fubo6ffvpJ5pxEIkGfPn2QmpqK2bNnw9vbu0bGpDdq+rusjlWrVuHMmTM4e/bsW9vFxsZi+/btuHv3Ll69egVdXV2Ym5tj1qxZMDIyAlB7z/eHdL+IiIiIiIiI6qMqFypHjBhRG3HUqJ9//hkaGhp1vlAJAO7u7hgyZAgKCwvx7NkznD9/HsuWLcOBAwcQHh4OTU3NKvUXGhoKDQ2NGi3WaGho4M8//8SjR4/w6aefCsevXbuG9PR0qKmp1dhY9H9q47usTSdOnMC8efMwYsQITJ06FaqqqkhMTMQvv/yCxMREoVBZW8/3x3a/iIiIiIiIiOoabqbznuXn50NdXb3G+mvZsiUsLCyEnwcPHoxBgwbB09MTgYGBWLlyZY2N9a5atWoFFRUVnDhxAp6ensLxY8eOwd7eHteuXVNgdPShiIyMhI2NDQIDA4VjdnZ2mDBhAoqLi6vcX1FREYqLi99pZjERERERERERvX/Kig6gtLi4OEyePBlWVlawtLSEq6srLly4IJxft24dhg4dCktLSzg4OGD+/Pl49uyZcN7d3R1XrlzBuXPnIBaLIRaLERISIpw/d+4cXF1dYWZmhh49eiAgIAC5ubkyMdy9exfjxo2DqakpnJyccOTIEXh5ecHd3V2m3dWrV+Hm5gYzMzPY2NjAz88PmZmZwvnk5GSIxWJERUXB398fNjY2cHV1RWRkJMzNzZGTkyPTX2JiIsRiMWJjY6t1D3v16gUnJydER0cLYzx79gx+fn5wdHSEmZkZnJycsGHDBrx+/Vq4TrqUfO3atcK9u3z5MgAgPDwco0aNgrW1NXr27AlPT0/cv3+/0jF99tlnOHbsmPBzYWEhTp48iSFDhsi1jYuLw4wZM2Bvbw8LCwsMGzYM0dHRMm0uX74MsViMCxcuYMGCBbC0tETfvn2xffv2KvcFVP47T0xMxMyZM2FtbQ0LCwtMnz4dDx8+lGkjFouxbds2bNy4ET179kTXrl2xdu1aSCQS/P777xg2bBgsLS0xceJEPHnyROba169fY8OGDejbty9MTEwwaNAgHD16VKaNr68vhgwZgsuXL2P48OGwsLCAi4sL4uPjZWIAyv4uy1LRcwW8ebY8PT0RExMDZ2dnWFpaYsKECXKf/+nTp5gxYwbMzc3h4OAg952UJysrC7q6umWeU1ZWFmIo7/mWxvfzzz/D2dkZpqam+Pvvv6ud+xKJBDt27ICzszNMTEzg6OiIXbt2ycV46tQpYdzRo0fj1q1b6Nq1qxBfbT/3RERERERERB+7D2pG5fXr1zFx4kRYWFhg5cqV0NbWRnx8PB4/fiy0SU9Ph6enJ/T09JCRkYGdO3fC3d0dx48fR4MGDRAQEICFCxdCXV0dixcvBgC0aNECABATE4N58+Zh5MiR8Pb2RlpaGtavX4+srCxs3LgRwJsZj5MnT4a2tjaCgoIAAJs3b0ZWVhZat24txBEfH49JkybBxsYGmzZtwvPnz7F+/Xrcu3cP+/btg4qKitB2w4YN6N27N9avX4/i4mKYm5sjKCgIx44dg5ubm9Du4MGD0NfXh729fbXvpb29PWJiYnD79m10794dL168QOPGjeHn5wdtbW0kJSUhJCQEaWlpwntH9+/fjzFjxgjLyQGgffv2AIDU1FSMHz8en3zyCXJycrBv3z64ubnh5MmTaNy4cYXxfPbZZ9iwYQPu3buH9u3b48KFC3j16hX69euHZcuWybR9/PgxrKysMHbsWKipqeGPP/6Av78/JBKJ3KsHAgICMGzYMGzevBmnT5/GunXrIBaL0atXr0r3Vdnv/NGjR3Bzc4OxsTECAwOhpKSEsLAweHh4ICYmRmYJ+w8//IDu3btj7dq1+PPPPxESEoLi4mJcuHABM2fOhKqqKlauXIkvv/wS4eHhwnVz5szBH3/8gVmzZqFdu3aIjY3FwoULoa2tjd69ewvt0tLSsHLlSkyfPh1aWlpYv349Zs+ejVOnTkFVVfWt32VZKnqupBISEpCRkQEfHx8UFRUhMDAQCxcuxP79+4U2Xl5eePr0KZYtWwYtLS1s374dT548kemnLF26dMEvv/yCnTt3YsCAATAwMJBr87bnG3jzXKakpGDOnDnQ1tZGy5YtkZ6eXq3cX7VqFQ4cOCAUX//44w+sW7cODRs2xNixYwEAt2/fxpw5c9C3b18sWbIEKSkpmDdvnkwx9P/9v/9X68/9hyQvLw8SiUTRYdQreXl5Mv+l+o35QKUxJ6gk5gOVxpygkpgPVFrJnJBunF1bPqhCZVBQENq0aYOIiAih0Ff6/7yX3MynqKgIlpaW6NWrFy5dugR7e3u0b98empqa0NDQkFkSLZFIsHbtWgwePBirVq0Sjuvq6mL69Onw8vKCsbExDh06hPT0dPz4449CocTExAROTk4yRauwsDDo6uoiLCxMWFrasmVLTJkyBbGxsejXr5/QtmPHjjJjAoCzszMOHTokFCwKCwtx5MgRuLi4yBQ535W0ePP8+XMAb2aMSQs7AGBlZQWRSARfX18sXboUIpFIuF+ll5MDwJIlS4TfFxUVwc7ODj179sTJkycxZsyYCuNp1aoVLCwscOzYMcydOxfHjh1Dv379oKGhIdf2s88+E34vkUjQrVs3PH36FPv375crVDo5OQmb8PTs2RPnzp3DyZMnhUJlZfqq7HceGhoKHR0d7Ny5Ew0bNhTuo6OjIw4cOIBx48YJbfX09ISip4ODA86ePYtdu3bh+PHjaNeuHYA3Mw+//vprZGVlQVtbG5cuXcLZs2exY8cOIe/t7OyQlpaGkJAQmULly5cvsWfPHhgbGwMARCIRJkyYgD///BNdu3Z963dZloqeK6ns7GxER0ejadOmAIDc3Fz4+fkhNTUVLVq0wG+//Yb4+Hjs2rULPXv2BADY2Nigd+/eFRa0FyxYgHv37iEwMBCBgYHQ1dVFnz59MH78eHTs2BEAyn2+S96XgwcPomXLlsKx5s2bv3PuP3z4EHv27MHy5cuFPLe1tUV+fj42b96MMWPGQFlZGVu3boWBgQFCQkKE2Z+NGjXCokWLhL50dHRq/bn/kNy/f59/sVGQpKQkRYdAHxDmA5XGnKCSmA9UGnOCSmI+UGnSnKjNvUY+mEJlXl4e/vzzT8yfP/+t/4c9NjYWW7Zswd27d2WWUCYlJb11RtL9+/eRkpKCJUuWoLCwUDjevXt3KCsrIz4+HsbGxoiPj0eHDh1kZnMZGBgIhRKpa9euYciQITLvv7O3t4e2tjauX78uU6js06ePXDyjR4/G+PHjcffuXRgbGyM2Nhbp6ekYNWpUuZ+hKkrPZJJIJIiIiMBPP/2E5ORkvHr1Sjj36NEjdOjQ4a393bhxA5s2bcLt27dllrdX5Q+uIUOGYPfu3ZgxYwbOnDmDdevWldnu5cuXCAkJwZkzZ/D06VMUFRUBQJmFrpLfuZKSEtq1a4fU1NQq9VXZ7/zChQsYPHgwVFRUhBzS1tZG586dZZZdA2+KWSUZGRnh+fPnQpESAAwNDQG8ma2qra2NCxcuoHHjxujRo4dMjtra2mLZsmUoKioSng09PT2hSAn83+y/p0+fyt2jyqjsc9WxY0ehSFlyXGmh8q+//oKWlpZQpAQALS0t2Nra4vbt22+NQV9fHwcPHsTVq1dx/vx5XLt2DYcOHUJ0dDQ2b94sU6gtT4cOHWSKlED1cv/ixYsA3hTES38n0pmirVq1ws2bN9G/f3+hSAkAjo6Ocv3V9nP/ITEyMuKMyvcsLy8PSUlJMDQ0hEgkUnQ4pGDMByqNOUElMR+oNOYElcR8oNJK5kRKSkqtjvXBFCqzsrJQXFwMPT29ctv89ddf8PLygqOjI6ZNm4ZmzZpBSUkJo0ePlik+lOXFixcAgFmzZpV5XvquwGfPnskUYqSaNm0qM0ZWVhaaNWsm165Zs2Z4+fKl3LHSunXrBiMjIxw8eBB+fn44dOgQunXrJjODrzqkBSvpO/8iIiKwZs0aTJ06FTY2NtDW1sbNmzexYsWKCu/d48ePMXnyZJiYmGD58uXQ09ODqqoqPD09K7y2pIEDB+Kbb77Bpk2boKqqCgcHhzLb+fr6Ii4uDrNmzRJm0P3444/45Zdf5NpqaWnJ/Kyqqors7Owq9VXZ7/zFixeIiIhARESEXNvSG7Zoa2vLnS/rGABhjBcvXiAzMxNdunSR6x94s9xbOlO2or6qoirPVUXjlncvy3oGyqKsrAwbGxvY2NgAeLOkevz48QgODq5UobJ58+Zyx6qT+y9evIBEIkGPHj3KPC8tVKalpcl9bk1NTWHmrVRtP/cfEv6FRnFEIlGZs9WpfmI+UGnMCSqJ+UClMSeoJOYDlSYSiWp12TfwARUqtbS0oKysLLeBR0mnT5+GpqYmgoODhZlLla3kSmfQLV26FGZmZnLnpQVSPT09JCQkyJ3PyMhAo0aNhJ91dHSQnp4u1y49PR06Ojoyx8r7El1dXfH9999j0qRJiI2NlVseXh3nz5+HmpqaUPSKiYlBv379sGDBAqFNYmJipfvKzc1FaGioUKgqLCyUK8hWpHnz5ujRowd27doFFxeXMndjfvXqFc6dOwdfX1+ZjWz27t1bpbGq0ldVvvPevXvj888/l2tbst270tHRQdOmTbFt27Yyz5dVAKwJ1XmuSpO+47K0sp6VyujcuTPs7OwqvdFMWc9adXJfR0cHSkpK2Lt3b5n5amRkBODNPwiU/tw5OTllFkJr87knIiIiIiIi+ph9MLt+S985d/jwYWF5bmn5+flQVVWVKUaU3hEZeDPLq3SBoG3btmjRogUePXoEU1NTuV/6+voA3ryb8M6dO3j06JFwbXJyMv7++2+Z/qytrXHmzBmZ5aAXLlxAVlYWrK2tK/WZR4wYgezsbPj4+EBdXR0DBw6s1HUV+e2333Dq1CmMGDFC+NcP6b0rqbL3Lj8/H0pKSjKbofzyyy8yn72y3N3d0bdvX7i6upZ5/vXr1yguLpaJNScnB2fPnq3yWJXtq7Lfec+ePXH37l107txZLn/atm1b5fhKs7W1RUZGBlRVVcvM0aq+A6Ks77IslX2uKsPU1BTZ2dn4/fffhWPZ2dnCEuq3kb5PtaTi4mI8ePBAZqZkZT+XVHVyX7qEPTMzs8zvRFNTE8Cbz33u3DkUFxcL154+fbrMeGrruSciIiIiIiL62H0wMyqBN5tpeHh4wMPDA59//jl0dHRw69YtNGnSBC4uLrCzs0NERAS+/vprDBgwAHFxcTh8+LBcP23btkV0dDTOnj0LXV1d6OnpQV9fH76+vvDx8UFubi769OkDkUiEx48fIzY2FvPmzYORkRFGjRqFsLAwzJgxQ9ikJTQ0FM2bN5cp5MyYMQNubm7w9PSEu7u7sOu3mZlZpZaoAm9myDk6OiImJgZjxoyBurp6le/ZkydPcOPGDRQWFiItLQ3nz5/H4cOHYW5uLrOBiK2tLXbv3o09e/bA0NAQR44cwYMHD8q8d2fOnEHXrl0hEolgZGQkLHv18/ODm5sb7t69i507d8otA66Mvn37om/fvuWe19LSgqmpKbZv346mTZuiQYMG2LZtGzQ1Ncucqfc2le2rst/5F198ARcXF0yZMgWjR49G8+bN8fz5c1y5cgVdu3YVdot+V3Z2dujbty+mTp2KqVOnQiwWIy8vD/fu3cODBw+qPPOurO9SWlgrPW5lnqvK6NWrF7p06YKFCxfCx8cHWlpawj2vyNSpU2FoaIi+ffuiVatWePHiBQ4dOoQ7d+7IbOZU3vNdnurkvpGREcaNG4dFixZhypQpMDc3R0FBAZKSknD58mV89913AABPT0+4uLjA29sbo0ePxuPHjxEeHo6GDRvKzfKsieeeiIiIiIiIqC76YGZUAkDXrl2xe/duKCkpwc/PD7Nnz8bp06fRqlUrAEDv3r3h4+ODM2fOYObMmbh27Rq2bt0q18+0adNgZWWFxYsXw8XFBT/99BMAYNCgQdi2bRvu37+PBQsWwMvLCzt37kSrVq2EGVvq6uoIDw+Hjo4OfHx8EBQUhEmTJqFNmzYy70M0MTFBeHg4/v33X3h7eyMoKAh9+vTB9u3bq7R774ABAwAALi4u73TPIiMjMWbMGHh4eGDVqlV4+vQpli9fjj179sgsR541axaGDh2Kb7/9FvPnz0fDhg3h7+8v19/SpUshkUgwbdo0uLi44NatWxCLxVi9ejVu3boFT09PHD9+HJs2bZJ7P2RNWb9+PVq3bg1fX1+sXLkSzs7OGD58eK31VdnvvE2bNjhw4AAaN26M5cuXY8qUKVi3bh3y8vIgFour8Yn/z7fffgs3Nzf8+OOPmDZtGr788kv897//Rbdu3arcV1nfZVkq+1xVhpKSEr777jt06dIFS5cuRUBAAPr16wdnZ+cKr502bRoKCwuxadMmTJo0CQEBAcjJyUFISAgmTpwo066s57s81cl9APD398fcuXNx4sQJTJ8+HYsWLcIvv/yC7t27C9d27twZwcHBuHfvHmbPno0DBw4gMDAQRUVFZT4n1X3uiYiIiIiIiOoiJQm3Za1QZmYm+vfvDw8PD8yePbtG+160aBESEhLeeakt1Y7a/M6pfvj999/h4eGByMhImaImUHPP/c2bNwEAO06lIzGlau+MrS3tWukgeH4fRYdRL+Xm5iIhIQGdOnXiS8+J+UBymBNUEvOBSmNOUEnMByqtZE5I93wwNTWtlbE+qKXfH4pt27ahefPmwm6+4eHhKCoqwqhRo2psjDt37iAhIQEnTpxAQEBAjfVL7+Z9fOdUty1btgw9e/ZE48aNce/ePXz33Xfo3LkzunbtKrThc09ERERERERUPhYqy6CsrIwtW7bg6dOnUFFRgbm5OSIiItCyZcsaG2PmzJnIyMjA8OHD5YphEomk3A2FpPFJd2emmvE+vnOq27KysvD1118jMzMTmpqacHBwwOLFi2We1bc990RERERERET1HQuVZZBuZlKb3raL9ZUrVzBhwoRyz48YMQKBgYG1EVa99T6+c6rbNmzYUGGbd9m9vjIM9GvnfbHv4kOKhYiIiIiIiD4uLFR+gLp06YKDBw+We75JkybvMRoi+tD5jLNWdAgyioslUFZWqrghERERERERUQksVH6ANDU1a+2lpERUt7x+/Rp5eXkQiUSKDkXAIiURERERERG9C77okIjoIyeRSBQdAhEREREREVG1sVBJRERERERERERECsdCJRERERERERERESkcC5VERERERERERESkcCxUEhERERERERERkcKxUElEREREREREREQKx0IlERERERERERERKRwLlURERERERERERKRwLFQSERERERERERGRwrFQSURERERERERERArHQiUREREREREREREpHAuVREREREREREREpHAsVBIREREREREREZHCsVBJRERERERERERECsdCJRERERERERERESkcC5VERERERERERESkcCxUEhERERERERERkcKxUElE9JFTUlJSdAhERERERERE1cZCJRHRR0xNTQ0ikei9jVdcLHlvYxEREREREVH90kDRARARUfWs++E6kp9m1/o4Bvpa8BlnXevjEBERERERUf3EQiUR0Ucu+Wk2ElNeKjoMIiIiIiIiomrh0m8iIiIiIiIiIiJSOBYqiYiIiIiIiIiISOFYqKymqKgoHD16VNFh1DqxWCz8MjExgb29PaZMmYIDBw6goKDgnfoMCQnBH3/8UaNxFhUVYc+ePRgxYgTMzc3RtWtXeHh44L///W+NjlOau7s7PD09hZ9DQkJgaWkp/JycnIyQkBA8ffq0VuOoScOGDYOvr2+F7Urfc2tra0ycOBGxsbHvIcp3V96zW/q7JCIiIiIiIqL3g4XKavr5559x7NgxRYfxXri7u2P//v3YtWsXlixZAj09PSxbtgzjxo1DTk5OlfsLDQ1FXFxcjcVXXFwMb29vBAYGokePHggLC8PatWuhpaWFKVOmYM+ePTU2VkVcXV0REREh/JySkoLQ0FA8e/bsvcXwPpR1z4OCgqCtrY3p06cjPDxc0SGWq7xnNyAgAIsXL1ZARERERERERET1GzfTqcPy8/Ohrq5eY/21bNkSFhYWws+DBw/GoEGD4OnpicDAQKxcubLGxnoXe/bswZkzZ7B69WqMHDlSON6vXz8sXrwYq1evRvfu3dGhQ4daj6VFixZo0aJFrY+jaBXd83Xr1qFnz57o1KnTe4mnJnK+ffv2NRQNEREREREREVVFvZ5RGRcXh8mTJ8PKygqWlpZwdXXFhQsXhPPr1q3D0KFDYWlpCQcHB8yfP19mRpy7uzuuXLmCc+fOCcuiQ0JChPPnzp2Dq6srzMzM0KNHDwQEBCA3N1cmhrt372LcuHEwNTWFk5MTjhw5Ai8vL7i7u8u0u3r1Ktzc3GBmZgYbGxv4+fkhMzNTOJ+cnAyxWIyoqCj4+/vDxsYGrq6uiIyMhLm5udyMx8TERIjF4movz+3VqxecnJwQHR0tjPHs2TP4+fnB0dERZmZmcHJywoYNG/D69WvhOrFYDABYu3atcO8uX74MAAgPD8eoUaNgbW2Nnj17wtPTE/fv368wloiICBgZGWH48OFy57744gsAkJlV2a9fP6xYsUKm3enTpyEWi5GcnCwcqygPylJy6ffly5cxYcIEAICLi4vweQsKCmBnZ4eNGzfKXT937ly4uLiU239l7jHw5j5v374dISEhsLW1FXKndB7+8ccfGDlyJExNTTFkyJBK50VF91xJSQmRkZHCMemy6ujoaPTv3x9mZmZwd3fHP//8I3OtRCLBjh074OzsDBMTEzg6OmLXrl0ybaT3+K+//sKYMWNgamqKH374AUD1nt2yln5X9vk7fPgwVqxYgW7dusHe3h5r1qxBYWGh0C41NRVz5syBra0tTE1N0a9fP3zzzTeVutdEREREREREdV29nVF5/fp1TJw4ERYWFli5ciW0tbURHx+Px48fC23S09Ph6ekJPT09ZGRkYOfOnXB3d8fx48fRoEEDBAQEYOHChVBXVxeWikpn0cXExGDevHkYOXIkvL29kZaWhvXr1yMrK0soTOXn52Py5MnQ1tZGUFAQAGDz5s3IyspC69athTji4+MxadIk2NjYYNOmTXj+/DnWr1+Pe/fuYd++fVBRURHabtiwAb1798b69etRXFwMc3NzBAUF4dixY3BzcxPaHTx4EPr6+rC3t6/2vbS3t0dMTAxu376N7t2748WLF2jcuDH8/Pygra2NpKQkhISEIC0tDatXrwYA7N+/H2PGjIG7uzuGDBkC4P9msqWmpmL8+PH45JNPkJOTg3379sHNzQ0nT55E48aNy4zhyZMnSE5OxqRJk6CsLF9/b9WqlUwxtCoqyoOKdOnSBUuXLsWKFSuwevVqtG3bFgCgqqqKESNGIDo6GnPmzBHizszMxJkzZ/Dll1+W22dl7rHUDz/8AGtrawQGBiIpKQlr165Fs2bN4OPjAwBIS0vDlClTIBaLERwcjKysLCxfvhy5ublvnQlZ2Xt+7do1meO3bt3Cw4cPsWDBAgBAcHAwpk6dipiYGKipqQEAVq1ahQMHDmDGjBkwNzfHH3/8gXXr1qFhw4YYO3as0FdBQQEWLFgADw8PzJs3T8iP6jy7pVXl+QsODoajoyOCg4MRFxeHkJAQtG7dWoh50aJFePbsGfz9/dGsWTM8efIE8fHx5d7jD1VeXh4kEomiw6BS8vLyZP5L9RvzgUpjTlBJzAcqjTlBJTEfqLSSOSGRSKCkpFRrY9XbQmVQUBDatGmDiIgIodBQumhXsuBTVFQES0tL9OrVC5cuXYK9vT3at28PTU1NaGhoyCyJlkgkWLt2LQYPHoxVq1YJx3V1dTF9+nR4eXnB2NgYhw4dQnp6On788UcYGBgAAExMTODk5CRTqAwLC4Ouri7CwsKgqqoK4M0y7ClTpiA2Nhb9+vUT2nbs2FFmTABwdnbGoUOHhEJlYWEhjhw5AhcXF5kiy7uSFnieP38O4M0svpLv+LOysoJIJIKvry+WLl0KkUgk3K/Sy8kBYMmSJcLvi4qKYGdnh549e+LkyZMYM2ZMmTFIN6lp2bJluXG2bNlSZsZsZVWUBxXR1NQUirDGxsYwNTUVzrm6uuL777/H+fPn0bt3bwDA0aNHoaysLBRwy1KZeyylq6uL9evXA3gzA/b27ds4efKkUKiMiIiAkpIStm/fDi0tLQBvvlMPD4+3fq7K3vPz58/LHEtPT8eePXtgaGgIAOjcuTMGDhyIqKgouLm54eHDh9izZw+WL18ufN+2trbIz8/H5s2bMWbMGKEwWlBQgHnz5mHw4MEyY7zrs1uWqjx/ZmZm8Pf3BwDY2dnh8uXLOHnypFCovHnzJubPny8Tb1mzUT909+/f519aPmBJSUmKDoE+IMwHKo05QSUxH6g05gSVxHyg0qQ5IZ1kVBvqZaEyLy8Pf/75J+bPn//WQl1sbCy2bNmCu3fvyiydTkpKemuB6v79+0hJScGSJUtkln12794dysrKiI+Ph7GxMeLj49GhQwehSAkABgYG6Nixo0x/165dw5AhQ4QiCfCmqKqtrY3r16/LFEr69OkjF8/o0aMxfvx43L17F8bGxoiNjUV6ejpGjRpV7meoitIzqyQSCSIiIvDTTz8hOTkZr169Es49evSowndE3rhxA5s2bcLt27dlltfWxB+S71L1f9c8qIw2bdqge/fuOHTokFCojIqKgrOzMzQ1Ncu9rir32NbWVubadu3a4fjx48LPf/75J2xsbIQiJQD07Nmz3Nmr1WVsbCwUKYE396Bjx474888/4ebmhosXLwIAnJycZJ4fW1tbbN++HU+ePEGrVq2E49L7VlJNfmdVef5K992uXTtcunRJ+Llz584IDw+HiooK7Ozs0KZNmyrF8qEwMjLijMoPUF5eHpKSkmBoaCjzjxVUPzEfqDTmBJXEfKDSmBNUEvOBSiuZEykpKbU6Vr0sVGZlZaG4uBh6enrltvnrr7/g5eUFR0dHTJs2Dc2aNYOSkhJGjx4tUxQqy4sXLwAAs2bNKvP8kydPALx5z2DTpk3lzjdt2lRmjKysLDRr1kyuXbNmzfDy5Uu5Y6V169YNRkZGOHjwIPz8/HDo0CF069ZNZtZmdUhn1unq6gJ4M0NvzZo1mDp1KmxsbKCtrY2bN29ixYoVFd67x48fY/LkyTAxMcHy5cuhp6cHVVVVeHp6vvVa6axO6b0ty5MnT976nZelOnlQWaNHj4avry8yMjLw7Nkz3L59G76+vm+9pir3WFtbW+ZnVVVVmXdZpqWllVkwKys3S9LX1wdQ8T0vvaS6vFxOS0sD8Ob5kUgk6NGjR7l9SguVIpEIjRo1kjlf099ZVZ6/ksVeQP5eb9y4ERs3bkRwcDCWL18OIyMjzJ8/H05OTlWOS5H4l5UPm0gkgoaGhqLDoA8E84FKY05QScwHKo05QSUxH6g0kUhUq8u+gXpaqNTS0oKysvJbN0Q5ffo0NDU1ERwcLCwzrWzVWDoTbenSpTAzM5M7Ly2W6enpISEhQe58RkaGTPFFR0cH6enpcu3S09Oho6Mjc6y8hJEuMZ40aRJiY2PllodXx/nz56GmpoYuXboAePN+zn79+gnvIATebN5T2b5yc3MRGhoqFNgKCwvlCkKltWjRAp9++il+++03LF68WO4+PH78GHfu3MGIESOEY2pqaigoKJBpV3qc6uRBZTk5OeHrr7/GkSNHkJycjNatW6N79+5vvaY697g0XV3dMvMrIyPjrde1bNkSBgYGFd7zYcOGyRwvL5elM4l1dHSgpKSEvXv3ysxilDIyMhJ+X1a+1/R3VpXnryJ6enpYvXo1iouLER8fjy1btmDevHmIiYnBp59++s4xEhEREREREdUF9XLXb+l76Q4fPoyioqIy2+Tn50NVVVWmEHL06FG5dqqqqnKztNq2bYsWLVrg0aNHMDU1lfslnYlmYmKCO3fu4NGjR8K1ycnJ+Pvvv2X6s7a2xpkzZ2SWwV64cAFZWVmwtrau1GceMWIEsrOz4ePjA3V1dQwcOLBS11Xkt99+w6lTpzBixAjhX1qk966kyt67/Px8KCkpyWxS88svv8h89vJMnDgRiYmJOHz4sNy5kJAQFBUVYfTo0cKxFi1ayBX3Sr/DsrJ5UBHp/ShrRp+amhqGDRuGAwcO4OjRoxg5cmSF/0JR2XtcGWZmZrh8+TKys7OFY7///rvMsvvyVHTPJRKJ3A72d+/exYMHD4SfHzx4gL///hvm5uYA3iw7B95sKlTW8/O2JfFA9Z7dstTE81easrIyzMzMMHfuXBQWFsrcDyIiIiIiIqL6ql7OqAQg7BTs4eGBzz//HDo6Orh16xaaNGkCFxcX2NnZISIiAl9//TUGDBiAuLi4Mosxbdu2RXR0NM6ePQtdXV3o6elBX18fvr6+8PHxQW5uLvr06QORSITHjx8jNjYW8+bNg5GREUaNGoWwsDDMmDED3t7eAIDQ0FA0b95cpsgyY8YMuLm5wdPTE+7u7sKuw2ZmZmW+n68sTZs2haOjI2JiYjBmzBioq6tX+Z49efIEN27cQGFhIdLS0nD+/HkcPnwY5ubmMhu72NraYvfu3cKGKUeOHCmzENO2bVucOXMGXbt2hUgkgpGRkbDc18/PD25ubrh79y527twpt3y5LOPGjcPvv/8Of39/3LlzB7169cKrV68QFRWFkydPwtvbW2aGq7OzM5YtW4bQ0FBYWloiNjYWN27ckOmzsnlQEUNDQ6ioqODQoUNo0KABVFRUZDbVGT16tLCx08iRIyvsr7L3uDImTpyIvXv3Ytq0aZg2bRqysrIQEhJSqXdUjh8/HpcuXSr3ni9evFhu5/BmzZphxowZ+OKLLwAAmzZtgr6+vvC5jYyMMG7cOCxatAhTpkyBubk5CgoKkJSUhMuXL+O77757a0zVfXZLq4nnDwCys7MxZcoUDBs2DEZGRigoKEBkZCS0tbXRuXPnSvdDREREREREVFfV20Jl165dsXv3bgQHB8PPzw/KysowNjbG3LlzAbzZoMPHxwd79uxBVFQUrKyssHXrVjg7O8v0M23aNDx8+BCLFy9GVlYWZs+eDW9vbwwaNAja2toICwsTZnO1atUKDg4OaN68OQBAXV0d4eHhCAgIgI+PD/T19eHl5YXo6GiZd92ZmJggPDwcGzZsgLe3NzQ0NNCvXz8sXry4Srt2DxgwADExMXBxcXmnexYZGYnIyEioqqqicePGEIvFWL58OYYPHy4zA3LWrFl48eIFvv32WwBvCoL+/v6YMWOGTH9Lly7FN998g2nTpiE/Px+7d++GjY0NVq9ejdDQUHh6eqJTp07YtGmT8L28jbKyMr799lv8+OOPOHToEH744QdhxtyaNWvkdld2dXXFw4cP8eOPP2LXrl0YPHgw5s+fL7OcurJ5UJGmTZti6dKl+P7773HkyBEUFhbizp07wvn27dvD0NAQrVu3LrNYVlpl73Fl6OnpYfv27Vi5ciXmzJmD1q1bY+nSpdi4cWOF1yorKyMkJAR79+7FoUOHsHfvXjRo0ABdunTBtm3byizkdenSBU5OTggKCkJaWhrMzc2xfPlymV3D/P39YWRkhP3792Pz5s1o1KgRjIyMKjUTuLrPbmk19fw1bNgQHTp0QGRkJJ48eQJ1dXWYmJhgx44dFb4PlIiIiIiIiKg+UJJw69YPSmZmJvr37w8PDw/Mnj27RvtetGgREhIS3nmJ8McoMTERo0ePxsCBA2v0vZw17eHDh3BycsKmTZuqXAT9mLi7u0NDQwNbt25VdCh1ws2bNwEAO06lIzHl7e9xrQntWukgeH6fWh+H3k1ubi4SEhLQqVMnvvScmA8khzlBJTEfqDTmBJXEfKDSSuaE9BV6JVeJ1qR6O6PyQ7Ft2zY0b94crVq1QlpaGsLDw1FUVIRRo0bV2Bh37txBQkICTpw4gYCAgBrr92PQrl07BAUFwcvLC61atYKXl5eiQ5Lx4sUL3L9/H5s3b8Ynn3wCR0dHRYdERERERERERKQQLFQqmLKyMrZs2YKnT59CRUUF5ubmiIiIQMuWLWtsjJkzZyIjIwPDhw+XK4BKJJJyNxSSxifdOflj1a9fP7kNij4U//nPf7BkyRK0adMGQUFBMkvoiYiIiIiIiIjqE1ZFFGzq1KmYOnVqrY5x9uzZcs9duXIFEyZMKPf8iBEjEBgYWBthEYCRI0dWavOcuiIyMlLRIdRJBvpaFTf6iMYhIiIiIiKi+omFynquS5cuOHjwYLnnmzRp8h6jIaJ34TPO+r2NVVwsgbKy0nsbj4iIiIiIiOoPFirrOU1NzVp7ASoR1b7Xr18jLy8PIpHovYzHIiURERERERHVlo/75YNERASJRKLoEIiIiIiIiIiqjYVKIiIiIiIiIiIiUjgWKomIiIiIiIiIiEjhWKgkIiIiIiIiIiIihWOhkoiIiIiIiIiIiBSOhUoiIiIiIiIiIiJSOBYqiYiIiIiIiIiISOFYqCQiIiIiIiIiIiKFY6GSiIiIiIiIiIiIFI6FSiIiIiIiIiIiIlI4FiqJiIiIiIiIiIhI4VioJCIiIiIiIiIiIoVjoZKIiIiIiIiIiIgUjoVKIiIiIiIiIiIiUjgWKomIiIiIiIiIiEjhWKgkIiIiIiIiIiIihWOhkoiIiIiIiIiIiBSOhUoioo+ckpKSokMgIiIiIiIiqjYWKomIPmJqamoQiURVuqa4WFJL0RARERERERG9uwaKDoCIiKpn3Q/Xkfw0u1JtDfS14DPOupYjIiIiIiIiIqo6FiqJiD5yyU+zkZjyUtFhEBEREREREVULl34TERERERERERGRwrFQSURERERERERERArHQiVRPRISEgJLS0tFh1Grdu3ahdjY2Cpdk5ycjJCQEDx9+rSWoiIiIiIiIiKiirBQSUR1yu7du6tcqExJSUFoaCiePXtWS1ERERERERERUUVYqCQiIiIiIiIiIiKFY6GS6D2Ki4vDhAkTYGFhAWtrayxYsADp6ekA3iw/FovFiI6OxtKlS9G1a1f07NkTO3fuBAAcP34czs7OsLKywuzZs5GVlSX0e/nyZYjFYsTGxmL27NmwsLCAvb09wsLCKowpJSUFX3zxBaytrWFhYYEpU6bgzp07wvnAwED06dMHxcXFMtfFxsZCLBbj3r17AIB+/fphxYoV2LVrF3r37g1LS0v4+vri9evXSEhIgJubGywsLODi4iLTPwBIJBLs2LEDzs7OMDExgaOjI3bt2iXTRrps/c6dOxg7dizMzc0xZMgQnD9/XmjTr18/pKSk4IcffoBYLIZYLEZUVNRbP//ly5cxYcIEAICLi4twXUFBAezs7LBx40a5a+bOnQsXFxfh+sre+8TERMycOVO419OnT8fDhw/fGh8RERERERFRfdFA0QEQ1RdxcXFwd3dH7969sXHjRuTl5SE4OBheXl7Yv3+/0C44OBhOTk7YtGkTTp8+jcDAQGRkZODKlStYuHAhcnJysHLlSgQFBeHrr7+WGeOrr77CZ599hpCQEFy8eBEbN26Ejo4Oxo4dW2ZMOTk5cHd3h7KyMpYvX46GDRtiy5YtGD9+PI4cOYKWLVvC1dUVO3fuxIULF+Dg4CBce+jQIVhYWKB9+/bCsTNnzsDY2BgrVqzAo0ePEBgYCFVVVdy4cQMeHh5o3rw51q1bhzlz5uDEiRNQVn7zbyWrVq3CgQMHMGPGDJibm+OPP/7AunXr0LBhQ5nYCwoK4OPjgwkTJsDLywvbt2/HF198gbNnz6JJkyYIDQ3F9OnTYWVlhcmTJwMAWrdu/dbvpUuXLli6dClWrFiB1atXo23btgAAVVVVjBgxAtHR0ZgzZ44Qa2ZmJs6cOYMvv/yySvf+0aNHcHNzg7GxMQIDA6GkpISwsDB4eHggJiYGampqb42zpuXl5UEikbzXMal25eXlyfyX6jfmA5XGnKCSmA9UGnOCSmI+UGklc0IikUBJSanWxmKhkug9Wb9+PUxMTBAaGio81B06dMCQIUMQGxuLdu3aAQAsLCywZMkSAECPHj3w66+/Ys+ePUIxDgDu3LmDgwcPyhUqe/TogcWLFwMAHBwckJ6eji1btmDMmDFCoa2kqKgoPH78GMePHxfG79atG/r27YuIiAj4+vqiXbt2sLa2xqFDh4RC5YsXL3D27FksXbpUrs/vvvtOKLpduXIFP/30E7Zv345evXoBAIqLizFjxgz873//Q8eOHfHw4UPs2bMHy5cvx5gxYwAAtra2yM/Px+bNm2VilxYqe/fuDQAwMjKCo6MjfvvtNwwbNgydO3eGmpoamjdvDgsLi0p9L5qamkKx1djYGKampsI5V1dXfP/99zh//rww5tGjR6GsrIwhQ4ZU6d6HhoZCR0cHO3fuRMOGDQEAVlZWcHR0xIEDBzBu3LhKxVtT7t+/z7941FFJSUmKDoE+IMwHKo05QSUxH6g05gSVxHyg0qQ5UZsTbVioJHoP8vLy8Mcff2DRokUoKioSjhsaGqJly5a4efOmUCi0s7MTzquoqODTTz+FkpKSUKSUXpeVlYV///0XjRo1Eo4PGDBAZlxnZ2ccPnwYqamp+OSTT+TiunbtGoyNjYWxAaBx48awtbXF9evXhWOjR4/GV199hczMTDRu3BhHjx6FqqoqBg8eLNNft27dZP7AMjQ0hLKyMnr06CFzDACePHmCjh074uLFiwAAJycnFBYWCu1sbW2xfft2PHnyBK1atQIAKCsro2fPnkIbAwMDqKur19pu3W3atEH37t1x6NAhoVAZFRUFZ2dnaGpqyrSt6N5fuHABgwcPhoqKivA5tbW10blzZ8THx9dK/G9jZGTEGZV1TF5eHpKSkmBoaAiRSKTocEjBmA9UGnOCSmI+UGnMCSqJ+UCllcyJlJSUWh2LhUqi9yArKwtFRUVYvXo1Vq9eLXf+yZMnwu+1tLRkzqmqqkJDQ0PuGAC8evVKplDZtGlTmXbNmzcHAKSlpZVZqMzKyhLalNSsWTPcvXtX+HngwIFYtWoVjhw5ggkTJpRbrNPW1paLU11dXaZ4WTJ24M3sTIlEIlPMLKlkobJ0X9L+pH3VhtGjR8PX1xcZGRl49uwZbt++DV9fX7l2Fd37Fy9eICIiAhEREXLXSu/J+8S/cNRdIpFI7s8Mqr+YD1Qac4JKYj5QacwJKon5QKWJRKJaXfYNsFBJ9F5oaWlBSUkJnp6e6N+/v9z5krMlqyMjI0Pm5+fPnwMAdHV1y2yvo6OD+/fvyx1PT0+Hjo6O8LO6ujqGDh2KqKgoWFtbIyEhAf7+/jUSs46ODpSUlLB3794yC3ZGRkY1Ms67cnJywtdff40jR44gOTkZrVu3Rvfu3eXaVXTvdXR00Lt3b3z++edy15YsNhMRERERERHVVyxUEr0HGhoasLCwwD///CPzDsSSkpOTqz3OqVOnZJYgnzx5Enp6emjRokWZ7a2trXHy5En8888/wiYyL1++xMWLF4X3RUqNHj0aP/zwA1avXg1DQ0N07dq12vECEJZyZ2Zmol+/ftXu711mWJae5VmSmpoahg0bhgMHDuD58+fw8PAo81+QKrr3PXv2xN27d9G5c2eoqKhUKT4iIiIiIiKi+oCFSqL3ZNGiRZg4cSLmzp2Lzz77DNra2khNTcXFixcxcuRIYXlzdVy6dAlr1qyBnZ0dLly4gMOHD2Pp0qVlbqQDACNHjsSuXbvg6emJuXPnCrt+N2jQABMnTpRp27FjR5iamuLq1atYsGBBtWOVMjIywrhx47Bo0SJMmTIF5ubmKCgoQFJSEi5fvozvvvuuSv21bdsWly5dwoULF6CtrQ0DA4MKZ6waGhpCRUUFhw4dQoMGDaCioiJTUB49ejQiIiKgoqKCkSNHltlHRff+iy++gIuLC6ZMmYLRo0ejefPmeP78Oa5cuYKuXbvKbc5DREREREREVN+wUEn0nlhZWWHv3r0ICQmBn58fCgoK0KJFC/To0QNt2rSR2UjmXa1YsQL79+/Hjz/+iEaNGmHOnDlv3U1aU1MTkZGRCAwMxFdffYXi4mJYWVlhz549aNmypVz7AQMG4Pbt2xg+fHi1Yy3J398fRkZG2L9/PzZv3oxGjRrByMgIAwcOrHJf8+fPx7Jly+Dt7Y1///0Xq1evLre4KNW0aVMsXboU33//PY4cOYLCwkLcuXNHON++fXsYGhqidevW0NfXL7OPiu59mzZtcODAAQQHB2P58uXIzc2Frq4uunXrBrFYXOXPSURERERERFTXKEm47SvRR+/y5cuYMGECDh48WO7S8powbtw4aGlpISwsrNbG+BA9fPgQTk5O2LRpE5ydnWXOva97X5abN28CAHacSkdiystKXdOulQ6C5/epxahIUXJzc5GQkIBOnTrxpefEfCA5zAkqiflApTEnqCTmA5VWMicSExMBoNb+/y9nVBJRhW7evInr16/j2rVr2Llzp6LDeW9evHiB+/fvY/Pmzfjkk0/g6Oio6JCIiIiIiIiI6iwWKomoQi4uLtDS0oKXlxdsbW0VHU6VSCQSFBUVlXteWVm53Hd4/uc//8GSJUvQpk0bBAUFoUED/pFJREREREREVFv4/7qJ6gAbGxuZdyrWtNrsu7b9/PPP8PPzK/f87Nmz4e3tXea5kSNHVvh+y9q+95VhoK9VK22JiIiIiIiI3icWKomoTuvbty8OHjxY7nk9Pb33GE3t8BlnXaX2xcUSKCsr1VI0RERERERERO+GhUoiqtOaNGmCJk2aKDqMWvP69Wvk5eVBJBJV+hoWKYmIiIiIiOhDVPaL2YiI6KMhkUgUHQIRERERERFRtbFQSURERERERERERArHQiUREREREREREREpHAuVREREREREREREpHAsVBIREREREREREZHCsVBJRERERERERERECsdCJRERERERERERESkcC5VERERERERERESkcCxUEhERERERERERkcKxUElEREREREREREQKx0IlERERERERERERKRwLlURERERERERERKRwLFQSERERERERERGRwrFQSURERERERERERArHQiUREREREREREREpHAuVREREREREREREpHAsVBIREREREREREZHCsVBJRPSRU1JSUnQIRERERERERNXGQiUR0UdMTU0NIpGo0u2LiyW1GA0RERERERHRu2ug6ACIiKh61v1wHclPsytsZ6CvBZ9x1u8hIiIiIiIiIqKqY6GSiOgjl/w0G4kpLxUdBhEREREREVG1cOk3ERERERERERERKRwLlURERERERERERKRwXPpNH6SoqCioqqpi6NChig6lVonFYuH3qqqqaNy4McRiMQYOHIjhw4dDVVW1yn2GhITAzs4OVlZWNRKjr68vfv755zLPbdiwAZ999lmNjFOSu7s7NDQ0sHXr1hrvu7pCQkIQHh6OuLg4RYdCREREREREVKewUEkfpJ9//hkaGhp1vlAJvCnKDRkyBIWFhXj27BnOnz+PZcuW4cCBAwgPD4empmaV+gsNDYWGhkaNFSoB4NNPP8W6devkjrdp06bGxigpICAAysof5oRvV1dX9O7dW9FhEBEREREREdU5LFQSVVF+fj7U1dVrrL+WLVvCwsJC+Hnw4MEYNGgQPD09ERgYiJUrV9bYWO9KXV1dJsba1r59+/c2VmW9fv0aDRo0QIsWLdCiRQtFh0NERERERERU53yYU5booxYXF4fJkyfDysoKlpaWcHV1xYULF4Tz69atw9ChQ2FpaQkHBwfMnz8fz549E867u7vjypUrOHfuHMRiMcRiMUJCQoTz586dg6urK8zMzNCjRw8EBAQgNzdXJoa7d+9i3LhxMDU1hZOTE44cOQIvLy+4u7vLtLt69Src3NxgZmYGGxsb+Pn5ITMzUzifnJwMsViMqKgo+Pv7w8bGBq6uroiMjIS5uTlycnJk+ktMTIRYLEZsbGy17mGvXr3g5OSE6OhoYYxnz57Bz88Pjo6OMDMzg5OTEzZs2IDXr18L10mXkq9du1a4d5cvXwYAhIeHY9SoUbC2tkbPnj3h6emJ+/fvVytOKel9Onz4MFasWIFu3brB3t4ea9asQWFhoUzbU6dOwdnZGaamphg9ejRu3bqFrl27ynzH7u7u8PT0FH4OCQmBpaUl7ty5g7Fjx8Lc3BxDhgzB+fPn5WKJiorC0KFDYWpqCgcHB2zcuBFFRUUybVJTU+Hj4wMbGxuYmZlh3LhxiI+Pl2nTr18/rFixAtu3b0ffvn1hZmaGzMxMIRapy5cvQywW48KFC1iwYAEsLS3Rt29fbN++XS62ffv2oW/fvjA3N8ekSZNw+/ZtIb+IiIiIiIiI6jvOqKQadf36dUycOBEWFhZYuXIltLW1ER8fj8ePHwtt0tPT4enpCT09PWRkZGDnzp1wd3fH8ePH0aBBAwQEBGDhwoVQV1fH4sWLAUCYwRYTE4N58+Zh5MiR8Pb2RlpaGtavX4+srCxs3LgRwJsZj5MnT4a2tjaCgoIAAJs3b0ZWVhZat24txBEfH49JkybBxsYGmzZtwvPnz7F+/Xrcu3cP+/btg4qKitB2w4YN6N27N9avX4/i4mKYm5sjKCgIx44dg5ubm9Du4MGD0NfXh729fbXvpb29PWJiYnD79m10794dL168QOPGjeHn5wdtbW0kJSUhJCQEaWlpWL16NQBg//79GDNmjLCcHPi/2YmpqakYP348PvnkE+Tk5GDfvn1wc3PDyZMn0bhx4wrjKV1wBIAGDWT/CAkODoajoyOCg4MRFxeHkJAQtG7dGmPHjgUA3L59G3PmzEHfvn2xZMkSpKSkYN68eTLF1vIUFBTAx8cHEyZMgJeXF7Zv344vvvgCZ8+eRZMmTQAAO3fuRFBQECZOnAhfX18kJiYKhUofHx8AwMuXL/H5559DQ0MDX331FbS0tBAZGYmJEyfi119/RbNmzYQxf/31V7Rp0wZffvkllJWVoaGhUW58AQEBGDZsGDZv3ozTp09j3bp1EIvF6NWrFwDgzJkzCAgIgKurK5ydnZGQkIC5c+dW+LmJiIiIiIiI6gsWKqlGBQUFoU2bNoiIiBAKfaWLdtKiGgAUFRXB0tISvXr1wqVLl2Bvb4/27dtDU1MTGhoaMsuNJRIJ1q5di8GDB2PVqlXCcV1dXUyfPh1eXl4wNjbGoUOHkJ6ejh9//BEGBgYAABMTEzg5OckUKsPCwqCrq4uwsDBh05qWLVtiypQpiI2NRb9+/YS2HTt2lBkTAJydnXHo0CGhUFlYWIgjR47AxcVFpsj5rqTF2efPnwN4M1tSWrgFACsrK4hEIvj6+mLp0qUQiUTC/Sq9nBwAlixZIvy+qKgIdnZ26NmzJ06ePIkxY8a8NZa7d++iS5cucsdjY2NllkGbmZnB398fAGBnZ4fLly/j5MmTQqFy69atMDAwQEhIiPAOykaNGmHRokUV3g9poVL6fkgjIyM4Ojrit99+w7Bhw5CTk4Nvv/0WU6dOxfz584UYVFVVERgYiClTpqBJkyaIiIhAVlYWDhw4IBQle/bsCWdnZ+zYsUMmloKCAmzfvv2tBUopJycneHt7C/2dO3cOJ0+eFAqVW7ZsQY8ePYSl/A4ODigsLMSmTZsq7Lum5eXlQSKRvPdxqXbl5eXJ/JfqN+YDlcacoJKYD1Qac4JKYj5QaSVzQiKRQElJqdbGYqGSakxeXh7+/PNPzJ8//62FutjYWGzZsgV3796VWTqdlJT01pmI9+/fR0pKCpYsWSIzu6979+5QVlZGfHw8jI2NER8fjw4dOghFSgAwMDBAx44dZfq7du0ahgwZIrOztr29PbS1tXH9+nWZQmWfPn3k4hk9ejTGjx+Pu3fvwtjYGLGxsUhPT8eoUaPK/QxVUbqQJJFIEBERgZ9++gnJycl49eqVcO7Ro0fo0KHDW/u7ceMGNm3ahNu3b8ssb09KSqowltatW2PDhg1yx0vOPgTki9Lt2rXDpUuXhJ9v3ryJ/v37y2yU4+joWOH4AKCsrIyePXsKPxsYGEBdXR1Pnz4F8OaVA7m5uRg4cKBMftja2iI/Px93795F9+7dceHCBdjY2EBHR0dop6ysjG7duuHmzZsyY9rY2FSqSFn6syspKaFdu3ZITU0F8KYwnJCQIFeQdXR0VEih8v79+/xLRx1WmWea6g/mA5XGnKCSmA9UGnOCSmI+UGnSnFBTU6u1MViopBqTlZWF4uJi6Onpldvmr7/+gpeXFxwdHTFt2jQ0a9YMSkpKGD16tEzhrSwvXrwAAMyaNavM80+ePAHw5l2OTZs2lTvftGlTmTGysrLkCm3Am+Lby5cv5Y6V1q1bNxgZGeHgwYPw8/PDoUOH0K1bN5lZm9UhLcDp6uoCACIiIrBmzRpMnToVNjY20NbWxs2bN7FixYoK793jx48xefJkmJiYYPny5dDT04Oqqio8PT0rvBYAGjZsCFNT0wrbaWlpyfysqqoqs6w7LS1N7rvR1NREw4YNK+xbXV1d7g9DVVVVIX5pfowYMaLM66X58eLFC9y4caPMGaKlv7uyvvfylPXZs7OzAQAZGRkoLCyU++xV6b8mGRkZcUZlHZSXl4ekpCQYGhpCJBIpOhxSMOYDlcacoJKYD1Qac4JKYj5QaSVzIiUlpVbHYqGSaoyWlhaUlZVlNsYp7fTp09DU1ERwcLAwq66ySS59j+LSpUthZmYmd15aINXT00NCQoLc+YyMDDRq1Ej4WUdHB+np6XLt0tPToaOjI3OsvGnNrq6u+P777zFp0iTExsbKLQ+vjvPnz0NNTU0oqMXExKBfv35YsGCB0CYxMbHSfeXm5iI0NBTa2toA3ixVL12QrW26urrIyMiQOZaTk1OpYmlFpN9ZaGhombtyS2fY6ujowMHBAXPmzJFrU7oQWlPT2Zs2bYoGDRrIffay8u994F826jaRSFTpmcBU9zEfqDTmBJXEfKDSmBNUEvOBShOJRLW67Bvgrt9Ug6TvlDx8+LDcLstS+fn5UFVVlUnso0ePyrUrOVNOqm3btmjRogUePXoEU1NTuV/6+voA3ryP8s6dO3j06JFwbXJyMv7++2+Z/qytrXHmzBmZZcIXLlxAVlYWrK2tK/WZR4wYgezsbPj4+EBdXR0DBw6s1HUV+e2333Dq1CmMGDFC+B8G6b0rqbL3Lj8/H0pKSjKb3/zyyy9lbpBTm0xNTXHu3DkUFxcLx06fPl0jfVtaWkIkEiE1NbXM/JBuuGNra4vExES0a9dOro101/SapqKigk6dOuHMmTMyx2vqsxMRERERERHVBZxRSTVqwYIF8PDwgIeHBz7//HPo6Ojg1q1baNKkCVxcXGBnZ4eIiAh8/fXXGDBgAOLi4nD48GG5ftq2bYvo6GicPXsWurq60NPTg76+Pnx9feHj44Pc3Fz06dMHIpEIjx8/RmxsLObNmwcjIyOMGjUKYWFhmDFjhrC5SWhoKJo3by5TIJ0xYwbc3Nzg6ekJd3d3YddvMzMzYcOWijRt2hSOjo6IiYnBmDFjoK6uXuV79uTJE9y4cQOFhYVIS0vD+fPncfjwYZibm8tsnmNra4vdu3djz549MDQ0xJEjR/DgwYMy792ZM2fQtWtXiEQiGBkZoUePHgAAPz8/uLm54e7du9i5c6cwu7Ii+fn5uHHjhtzxli1bCgXiyvD09ISLiwu8vb0xevRoPH78GOHh4WjYsGG1/1VGW1sbX3zxBYKCgpCamoru3btDRUUFjx49wpkzZxASEgKRSAQPDw8cPXoU48ePx4QJE/DJJ58gIyMDf/75J/T19eHh4VGtOMozc+ZMeHl5wd/fHwMHDsTt27cRHR0NADLv7CQiIiIiIiKqr1iopBrVtWtX7N69G8HBwfDz84OysjKMjY0xd+5cAEDv3r3h4+ODPXv2ICoqClZWVti6dSucnZ1l+pk2bRoePnyIxYsXIysrC7Nnz4a3tzcGDRoEbW1thIWFCbMJW7VqBQcHBzRv3hzAm3cZhoeHIyAgAD4+PtDX14eXlxeio6Nl3iNoYmKC8PBwbNiwAd7e3tDQ0EC/fv2wePHiKu3aPWDAAMTExMDFxeWd7llkZCQiIyOhqqqKxo0bQywWY/ny5Rg+fLjMDMhZs2bhxYsX+PbbbwG82XXc398fM2bMkOlv6dKl+OabbzBt2jTk5+dj9+7dsLGxwerVqxEaGgpPT0906tQJmzZtEr6Xijx69KjMncHnzJkDLy+vSn/Wzp07Izg4GOvXr8fs2bNhbGyMwMBATJgwQe4dj+9i8uTJ0NfXx86dO7Fnzx40aNAArVu3Rp8+fYTZqE2aNMH+/fsRHByMdevWITMzE82aNYO5uTkGDBhQ7RjK4+joiGXLlmHr1q04cuQIzM3NsWzZMkyePBmampq1Ni4RERERERHRx0JJwh0VqB7IzMxE//794eHhgdmzZ9do34sWLUJCQkKZy7CpYr///js8PDwQGRmJ7t27Kzqc9+rAgQPw9/fHmTNnZHapryzpLuU7TqUjMaXi9422a6WD4Pl9qjwOfRxyc3ORkJCATp068V1CxHwgOcwJKon5QKUxJ6gk5gOVVjInpHtlVGbD3XfBGZVUJ23btg3NmzdHq1atkJaWhvDwcBQVFWHUqFE1NsadO3eQkJCAEydOICAgoMb6reuWLVuGnj17onHjxrh37x6+++47dO7cGV27dlV0aLUqMzMToaGh6NGjBxo1aoSbN28iLCwMjo6O71SkJCIiIiIiIqprWKikOklZWRlbtmzB06dPoaKiAnNzc0RERKBly5Y1NsbMmTORkZGB4cOHyxVAJRJJuRsKSeOrr+8lzMrKwtdff43MzExoamrCwcEBixcvrvP3o0GDBnj06BGOHTuG7OxsNGnSBMOGDYOPj4+iQyMiIiIiIiL6ILBQSXXS1KlTMXXq1Fod4+zZs+Weu3LlCiZMmFDu+REjRiAwMLA2wvrgbdiwQdEhKISmpia2bt1aK30b6Ffu/Z6VbUdERERERESkCCxUEtWCLl264ODBg+Web9KkyXuMhuo6n3HWlW5bXCyBsnL1dlgnIiIiIiIiqg0sVBLVAk1NzVp7sSxRSa9fv0ZeXh5EIlGl2rNISURERERERB+quv1SOCKiekAikSg6BCIiIiIiIqJqY6GSiIiIiIiIiIiIFI6FSiIiIiIiIiIiIlI4FiqJiIiIiIiIiIhI4VioJCIiIiIiIiIiIoVjoZKIiIiIiIiIiIgUjoVKIiIiIiIiIiIiUjgWKomIiIiIiIiIiEjhWKgkIiIiIiIiIiIihWOhkoiIiIiIiIiIiBSOhUoiIiIiIiIiIiJSOBYqiYiIiIiIiIiISOFYqCQiIiIiIiIiIiKFY6GSiIiIiIiIiIiIFI6FSiIiIiIiIiIiIlI4FiqJiIiIiIiIiIhI4VioJCIiIiIiIiIiIoVjoZKI6COnpKSk6BCIiIiIiIiIqo2FSiKij5iamhpEIlG554uLJe8xGiIiIiIiIqJ310DRARARUfWs++E6kp9myx030NeCzzhrBUREREREREREVHUsVBIRfeSSn2YjMeWlosMgIiIiIiIiqhYu/SYiIiIiIiIiIiKFY6GSiIiIiIiIiIiIFI6FyiqIiorC0aNHFR1GrROLxdixY4fCxt+1axfEYvF7Gy8qKgpisRgZGRlvbefu7g5PT8/3FFX1nD59GmKxGMnJyeW2SU5Ohlgshlgsxm+//SZ3/qeffhLOU826fPkywsLCFB0GERERERER0QeFhcoq+Pnnn3Hs2DFFh0EKEhAQgMWLFys6jBqnoaGBEydOyB0/duwYNDQ0FBBR3XflyhVs3bpV0WEQERERERERfVBYqKwj8vPzFR3CB6eoqAgFBQU11l/79u3Rtm3bGuvvQ+Ho6IhTp07h1atXwrFnz57h6tWr6N+/vwIjIyIiIiIiIqL6pN4UKuPi4jB58mRYWVnB0tISrq6uuHDhgnB+3bp1GDp0KCwtLeHg4ID58+fj2bNnwnl3d3dcuXIF586dE5bDhoSECOfPnTsHV1dXmJmZoUePHggICEBubq5MDHfv3sW4ceNgamoKJycnHDlyBF5eXnB3d5dpd/XqVbi5ucHMzAw2Njbw8/NDZmamcF66ZDcqKgr+/v6wsbGBq6srIiMjYW5ujpycHJn+EhMTIRaLERsbWxO3EsCb5dJDhw6FqakpHBwcsHHjRhQVFQnnnz17Bj8/Pzg6OsLMzAxOTk7YsGEDXr9+LdNPTk4OFi1aBEtLS/To0QNr166V6UcqKysLy5Ytg729PUxMTDBy5Ej897//lWkjXZr9888/w9nZGaampvj777+RlZUFf39/ODg4wNTUFL1798a8efPkxkhNTcXUqVNhYWEBJycnREdHl9m/VEhICCwtLfHXX3/BxcUFpqamGDRoEP7zn/9UeP+io6MxduxYdO/eHd26dYO7uzv++usvmTbS/u/cuYOxY8fC3NwcQ4YMwfnz52XaFRQUYNWqVejevTusra2xZMkS/PvvvxXGINWrVy8oKSnJ5MeJEyfQunVrdOnSRa59Rc8K8H/3KiYmBs7OzrC0tMSECRPw8OHDKvclkUgQGhoKOzs7WFpa4osvvsDFixchFotx+fJlmXY7duyAs7MzTExM4OjoiF27dpV5T2/fvo0xY8bAzMwMI0aMwO3bt/Hq1SsEBASgW7du6NWrl9y1wJs/RyZMmAALCwtYW1tjwYIFSE9PF85Ln83Dhw9jxYoV6NatG+zt7bFmzRoUFhYKMYSGhiI3N1f4s6T0nwFERERERERE9VEDRQfwPly/fh0TJ06EhYUFVq5cCW1tbcTHx+Px48dCm/T0dHh6ekJPTw8ZGRnYuXMn3N3dcfz4cTRo0AABAQFYuHAh1NXVheW/LVq0AADExMRg3rx5GDlyJLy9vZGWlob169cjKysLGzduBPBmxuPkyZOhra2NoKAgAMDmzZuRlZWF1q1bC3HEx8dj0qRJsLGxwaZNm/D8+XOsX78e9+7dw759+6CioiK03bBhA3r37o3169ejuLgY5ubmCAoKwrFjx+Dm5ia0O3jwIPT19WFvb18j93Pnzp0ICgrCxIkT4evri8TERKFQ6ePjAwB48eIFGjduDD8/P2hrayMpKQkhISFIS0vD6tWrhb6WLFmC8+fPw8fHBwYGBti7d6/c8vrXr19j0qRJSE9Px9y5c6Gvr48jR47A09NTeL9kyfuXkpKCOXPmQFtbGy1btsTq1atx/vx5LFiwAK1atUJaWlqZ72T08fHB6NGjMWnSJPz000/w9fWFqakp2rVrV+69KCgowLx58zB58mQYGBjgxx9/xOzZs+XiKi05ORnDhw9H69at8fr1axw/fhzjxo3DkSNHYGRkJNO/j48PJkyYAC8vL2zfvh1ffPEFzp49iyZNmgB4kwc//vgjvL290blzZxw/fhzr16+v4Fv8P2pqahgwYACOHTsGJycnAG+WfQ8ZMqTM9hU9K1IJCQnIyMiAj48PioqKEBgYiIULF2L//v1V6isyMhKhoaGYOnUqevTogUuXLsHf318urlWrVuHAgQOYMWMGzM3N8ccff2DdunVo2LAhxo4dK3NPFy9eDA8PDzRv3hzr1q3D7NmzYWVlhWbNmiE4OBhnzpzB6tWrYWZmBisrKwBvipTu7u7o3bs3Nm7ciLy8PAQHB8PLy0vmMwFAcHAwHB0dERwcjLi4OISEhKB169YYO3YsXF1dkZqaimPHjiEiIgIAoKmpWenvi4iIiIiIiKiuqheFyqCgILRp0wYRERFCoa900a5k8ayoqAiWlpbo1asXLl26BHt7e7Rv3x6amprQ0NCAhYWF0FYikWDt2rUYPHgwVq1aJRzX1dXF9OnT4eXlBWNjYxw6dAjp6en48ccfYWBgAAAwMTGBk5OTTKEyLCwMurq6CAsLg6qqKgCgZcuWmDJlCmJjY9GvXz+hbceOHWXGBABnZ2ccOnRIKFQWFhbiyJEjcHFxkSlyvqucnBx8++23mDp1KubPnw8AsLOzg6qqKgIDAzFlyhQ0adIEYrFY5n2OVlZWEIlE8PX1xdKlSyESiXDv3j38+uuvWLlyJVxcXAC8+V6kxTKpo0eP4u+//8bhw4fRvn17AICDgwMePHiA7777Dps2bRLavnz5EgcPHkTLli2FYzdv3sSQIUMwYsQI4dhnn30m99nGjRuHcePGAQAsLS0RGxuLkydPwsvLq9z7UVBQgJkzZ8rFv3XrVmzYsKHc62bPni38vri4GHZ2dvjrr7/w888/C/dV2r+Pjw969+4NADAyMoKjoyN+++03DBs2DJmZmdi7dy+mTZsmzPZ0cHDA+PHj8fTp03LHL23IkCHw8vLCv//+i/T0dNy8eRNBQUFlzsKt6FmRys7ORnR0NJo2bQoAyM3NhZ+fH1JTU4Uif0V9FRUVYdu2bRg5cqRQBLe3t8eLFy9w8OBB4dqHDx9iz549WL58OcaMGQMAsLW1RX5+PjZv3owxY8ZAWVm5zHtaXFwsFDf9/PwAAD169EBMTAxiYmKEQuX69ethYmKC0NBQKCkpAQA6dOiAIUOGIDY2VugPAMzMzIRiqp2dHS5fvoyTJ09i7NixaNGiBVq0aAFlZWWZP0tqU15eHiQSyXsZixQnLy9P5r9UvzEfqDTmBJXEfKDSmBNUEvOBSiuZExKJRPj/xLWhzhcq8/Ly8Oeff2L+/PlvLdTFxsZiy5YtuHv3rszS6aSkpLfORLx//z5SUlKwZMkSYWknAHTv3h3KysqIj4+HsbEx4uPj0aFDB6FICQAGBgbo2LGjTH/Xrl3DkCFDhCIl8KYwo62tjevXr8sUKvv06SMXz+jRozF+/HjcvXsXxsbGiI2NRXp6OkaNGlXuZ6iKuLg45ObmYuDAgTKfV1oUunv3Lrp37w6JRIKIiAj89NNPSE5Olnn/4aNHj9ChQwfcvHkTEokEAwYMEM6pqKigf//+MstuL1y4gA4dOsDQ0FBuzCNHjsjE16FDB5kiJQB07twZP//8M3R1deHg4IAOHTqU+dlKfs8aGhr45JNPkJqaWuE9KSv+06dPv/WaxMREbNiwAXFxcTJLh5OSkmTaKSsro2fPnsLPBgYGUFdXF4qQ//vf/5Cfny8TAwA4OTnh6tWrFcYu1aNHDzRq1AinT59GSkoKunTpAiMjozILlZV9Vjp27CgUKQEIReaShcqK+kpNTUVaWppM3gNv3qtZslB58eJF4XOXzpHt27fjyZMnaNWqFQD5e2poaCi0lVJRUUHr1q2F7z8vLw9//PEHFi1aJPNqAkNDQ7Rs2RI3b96UKVSW/jOjXbt2uHTpkty9fF/u37/Pv2TUI6X/HKH6jflApTEnqCTmA5XGnKCSmA9UmjQn1NTUam2MOl+ozMrKQnFxMfT09Mpt89dff8HLywuOjo6YNm0amjVrBiUlJYwePVqmwFaWFy9eAABmzZpV5vknT54AePPOxpJFG6mmTZvKjJGVlYVmzZrJtWvWrBlevnwpd6y0bt26wcjICAcPHoSfnx8OHTqEbt26yczarA7p5y05O7Ek6eeNiIjAmjVrMHXqVNjY2EBbWxs3b97EihUrhM+blpYGVVVV6OjovPVzvXjxArdv3y7zfYmli8/NmzeXa/PVV19BR0cHO3fuxNq1a9GyZUtMnz4dn3/+uUw7LS0tmZ9VVVXl3qlZWnnxp6WllXtNTk4OJk+ejKZNm8LX1xeffPIJGjZsCH9/f7l8U1dXl/sDQFVVVeYeSscsqaz78DYqKioYNGgQjh8/jpSUlHIL21V5VrS1teXiBiC0q0xf0s9X+tkpK0ckEgl69OhRZtwlC5Wl76k0rrK+f2kcWVlZKCoqwurVq2VmgZbsv6R3yaXaZGRkxBmV9UBeXh6SkpJgaGgIkUik6HBIwZgPVBpzgkpiPlBpzAkqiflApZXMiZSUlFodq84XKrW0tKCsrCy3QUdJp0+fhqamJoKDg4XloZW98Y0bNwYALF26FGZmZnLnpQVSPT09JCQkyJ3PyMhAo0aNhJ91dHRkZthJpaenyxXEyptq6+rqiu+//x6TJk1CbGys3PLw6pDGEBoaKsyKK0k6YzQmJgb9+vXDggULhHOJiYkybXV1dVFQUICXL1/KfLbSn19HRwdisbhSn6Ose6KlpYUvv/wSX375Je7cuYPdu3dj+fLl6NChA7p27Vphn29TXvy6urrlXnPjxg2kpqZi69atMjNqs7Ozy7ynbyMdJz09Hfr6+sLx58+fV6kf4M1yeOnS98GDB5fZpjrPyrv0Jf18GRkZMsfLyhElJSXs3btXZjayVMn3fr4LLS0tKCkpwdPTs8yd0KXvC/1Q8S8X9YtIJIKGhoaiw6APBPOBSmNOUEnMByqNOUElMR+oNJFIVKvLvoF6UKiUvlPy8OHDmDx5cpnLv/Pz86Gqqipzs48ePSrXruQMK6m2bduiRYsWePTokVDkKYuJiQmio6Px6NEjfPrppwDebKjy999/w9raWmhnbW2NM2fOwNfXV9hM5MKFC8jKypJp9zYjRozAxo0b4ePjA3V1dQwcOLBS11WGpaUlRCIRUlNT5ZYblyS9pyWVvqempqYAgFOnTgnveCwqKpJbNm1ra4vY2Fjo6enJFOPehVgshp+fHw4ePIjExMRqFyqBsuM3Nzcvt31+fj4AyNyfP/74AykpKTA2Nq7S2B06dIC6ujpOnTqFzp07C8d//fXXKvUDvPluhwwZgmbNmpVbMK3ss1IZlemrRYsW0NXVxZkzZ2QKhKVzRLqUOzMzU26ZeE2Q/jnyzz//CHlbHYqeYUlERERERET0IarzhUoAWLBgATw8PODh4YHPP/8cOjo6uHXrFpo0aQIXFxfY2dkhIiICX3/9NQYMGIC4uDgcPnxYrp+2bdsiOjoaZ8+eha6urlA48/X1hY+PD3Jzc9GnTx+IRCI8fvwYsbGxmDdvHoyMjDBq1CiEhYVhxowZ8Pb2BvBmVmLz5s1lCjUzZsyAm5sbPD094e7uLuz6bWZmJvMOvLdp2rQpHB0dERMTgzFjxkBdXb3K9+x///sfYmJiZI5paGigV69e+OKLLxAUFITU1FR0794dKioqePToEc6cOYOQkBCIRCLY2tpi9+7d2LNnDwwNDXHkyBE8ePBApr/27dtjwIAB+Oabb/Dq1Sth1++CggKZdsOHD8e+ffswYcIETJ48GYaGhsjOzsbt27dRUFAgM2uzLG5ubhgwYACMjY2hoqKC6OhoqKqq1kiRUlVVFVu2bBHi//HHH5GamorNmzeXe42FhQU0NDSwfPlyTJ8+HU+fPkVISMg7FWEbN24MNzc3bN++Herq6sKu3w8fPqxyX0pKSsKO9OWp7LNSGZXpS0VFBdOnT8c333yD5s2bw8bGBpcvX8bvv/8OAMJMTCMjI4wbNw6LFi3ClClTYG5ujoKCAiQlJeHy5cv47rvv3inGkhYtWoSJEydi7ty5+Oyzz6CtrY3U1FRcvHgRI0eOhI2NTaX7ateuHQoLCxEREQFLS0toamqibdu21Y6RiIiIiIiI6GNWLwqVXbt2xe7duxEcHAw/Pz8oKyvD2NgYc+fOBQD07t0bPj4+2LNnD6KiomBlZYWtW7fC2dlZpp9p06bh4cOHWLx4MbKysjB79mx4e3tj0KBB0NbWRlhYmDAjrFWrVnBwcBDeFaiuro7w8HAEBATAx8cH+vr68PLyQnR0tMz77ExMTBAeHo4NGzbA29sbGhoa6NevHxYvXlylXbsHDBiAmJgYYaZfVUVHRyM6OlrmWOvWrXHq1ClMnjwZ+vr62LlzJ/bs2YMGDRqgdevW6NOnjzBLcNasWXjx4gW+/fZbAG92I/f398eMGTNk+vzmm2+wYsUKrFu3DmpqahgxYgS6d++OtWvXCm3U1NSwe/duhISEICwsDGlpaWjcuDE6d+4s957JslhZWSE6OhrJyclQVlZGhw4dEBYWhnbt2r3TvSlJVVUVGzZswPLly/G///0PBgYG+Pbbb+U2SSqpefPm2LRpE9auXQsvLy8YGhpi+fLl+P77798phgULFqCoqAjff/89iouLMWDAACxYsACLFi16149Vrso+KzXZl7u7O7KysrB3715ERkaiZ8+eWLhwIebNmyfz7Pj7+8PIyAj79+/H5s2b0ahRIxgZGdXYjGIrKyvs3bsXISEh8PPzQ0FBAVq0aIEePXqgTZs2Veqrb9+++Pzzz7Ft2zakp6ejW7duiIyMrJE4iYiIiIiIiD5WShLusKAwmZmZ6N+/Pzw8PDB79uwa7XvRokVISEh452W5VLGQkBCEh4cjLi5O0aHUO8HBwdi5cycuX778TjOG64qbN28CAHacSkdiyku58+1a6SB4fp/3HBUpSm5uLhISEtCpUye+S4iYDySHOUElMR+oNOYElcR8oNJK5oR0/5GaeC1aWerFjMoPxbZt29C8eXO0atUKaWlpCA8PR1FRUbk7LL+LO3fuICEhASdOnEBAQECN9UukKImJiThy5AgsLS2hqqqKK1euYMeOHRg7dmy9LlISERERERER1TUsVL5HysrK2LJlC54+fQoVFRWYm5sjIiICLVu2rLExZs6ciYyMDAwfPlyuACqRSFBUVPTW+KTv/CP6UKirqyMuLg4//vgj/v33X+jr62PKlCnCu16JiIiIiIiIqG5gofI9mjp1KqZOnVqrY5w9e7bcc1euXMGECRPKPT9ixAgEBgbWRlh1kre3N4tl70GrVq2we/duRYfxQTPQ16rScSIiIiIiIqIPEQuV9UiXLl1w8ODBcs83adLkPUZDRDXFZ5x1ueeKiyVQVlZ6j9EQERERERERvRsWKusRTU3NWnvZKREpxuvXr5GXlweRSFTmeRYpiYiIiIiI6GPBFxISEX3kJBKJokMgIiIiIiIiqjYWKomIiIiIiIiIiEjhWKgkIiIiIiIiIiIihWOhkoiIiIiIiIiIiBSOhUoiIiIiIiIiIiJSOBYqiYiIiIiIiIiISOFYqCQiIiIiIiIiIiKFY6GSiIiIiIiIiIiIFI6FSiIiIiIiIiIiIlI4FiqJiIiIiIiIiIhI4VioJCIiIiIiIiIiIoVjoZKIiIiIiIiIiIgUjoVKIiIiIiIiIiIiUjgWKomIiIiIiIiIiEjhWKgkIiIiIiIiIiIihWOhkoiIiIiIiIiIiBSOhUoiIiIiIiIiIiJSOBYqiYg+ckpKSooOgYiIiIiIiKjaWKgkIvqIqampQSQSCT8XF0sUGA0RERERERHRu2ug6ACIiKh61v1wHclPs2GgrwWfcdaKDoeIiIiIiIjonbBQSUT0kUt+mo3ElJeKDoOIiIiIiIioWrj0m4iIiIiIiIiIiBSOhUoiIiIiIiIiIiJSuDpfqIyKisLRo0cVHUatE4vFwi8TExPY29tjypQpOHDgAAoKCt6pz5CQEPzxxx81HClQUFAAGxsbdOzYEY8fP67Rvvv164cVK1a8tc3ly5chFotx8+ZN4Vhtfdb31f+HZteuXRCLxW9tI/0exGIxEhMT5c5v3LgRYrEY/fr1q5GYTp8+DbFYjOTk5Cpd5+vriyFDhgg/R0VFQSwWIyMjo0biIiIiIiIiIqI36nyh8ueff8axY8cUHcZ74e7ujv3792PXrl1YsmQJ9PT0sGzZMowbNw45OTlV7i80NBRxcXE1Hud///tfZGZmQiKRKOS76dKlC/bv34927doJx2rrs76v/j9mGhoaOHHihNzx48ePQ0NDQwERvV2fPn2wf/9+aGtrKzoUIiIiIiIiojqlzhcqP2T5+fk12l/Lli1hYWGBrl27YvDgwVi9ejW2bNmCmzdvIjAwsEbHqo5jx45BW1sbXbp0qfRs15q8V5qamrCwsPggi2CVVdO5o0iOjo5yBes///wTjx8/rrHZlDWpadOmsLCwQIMG3IuMiIiIiIiIqCZ90IXKuLg4TJ48GVZWVrC0tISrqysuXLggnF+3bh2GDh0KS0tLODg4YP78+Xj27Jlw3t3dHVeuXMG5c+eEJaYhISHC+XPnzsHV1RVmZmbo0aMHAgICkJubKxPD3bt3MW7cOJiamsLJyQlHjhyBl5cX3N3dZdpdvXoVbm5uMDMzg42NDfz8/JCZmSmcT05OhlgsRlRUFPz9/WFjYwNXV1dERkbC3NxcbsZjYmIixGIxYmNjq3UPe/XqBScnJ0RHRwtjPHv2DH5+fnB0dISZmRmcnJywYcMGvH79WrhOumx37dq1wr27fPkyACA8PByjRo2CtbU1evbsCU9PT9y/f79S8eTm5uLs2bNwdnbGyJEj8b///Q937tyRaSNdWhsXF4dJkybBwsICa9euBQA8ffoUixYtgq2tLczMzDBw4EBERETIjfPDDz+gb9++sLa2hpeXl8wy3dJLv9/2WSUSCXbs2AFnZ2eYmJjA0dERu3btkhsvMTERs2fPRvfu3WFubo7/9//+n1B8K69/aU7ExMTI9LVq1SqZAt3b7kdqaip8fHxgY2MDMzMzjBs3DvHx8RV+D5X5DqVLni9fvozhw4fDwsICLi4ucv3n5ORg0aJFsLS0RI8ePbB27VoUFRVVGIPUoEGD8PDhQ9y6dUs4dvToUfTs2RNNmzaVa5+SkoIvvvgC1tbWsLCwwJQpU+RyqKCgAKtWrUL37t1hbW2NJUuW4N9//5Xr6/Xr19iwYQP69u0LExMTDBo0qMLieeml39Lv8fDhw1ixYgW6desGe3t7rFmzBoWFhTLXnjp1Cs7OzjA1NcXo0aNx69YtdO3aVebPJSIiIiIiIqL66oOdEnT9+nVMnDgRFhYWWLlyJbS1tREfHy/zTsP09HR4enpCT08PGRkZ2LlzJ9zd3XH8+HE0aNAAAQEBWLhwIf6/9u48LKf0/wP4u9KqhagsWWIqW6sWoBOB6AAAPnVJREFUUbIbg98MoqRIUnYiSyZLmGGQLcY2jGyNJbvBWEZjIjP2dQyphiJpFWk9vz9cz/n29FSKmqfG+3Vdruk55z73uc85n07Np3tRU1PDzJkzAQANGjQAAJw8eRL+/v4YOHAgJk6ciOTkZISEhCAzMxMrV64E8K7Xmre3N7S1tbFs2TIAwLp165CZmYmmTZuK7bhz5w5GjhwJe3t7rF69Gi9fvkRISAgePXqEn376CUpKSmLZFStWwNnZGSEhISgsLISFhQWWLVuGY8eOwc3NTSy3f/9+GBgYwNHR8aPvpaOjI06ePIl79+7Bzs4OaWlpqFOnDgIDA6GtrY24uDiEhoYiOTkZixcvBgDs2bMHrq6u8PT0FOfn++yzzwC8S455eHigUaNGyMrKwk8//QQ3NzecOnUKderUKbMtZ86cwZs3b9CvXz8YGxtj8eLFOHbsWInzGU6bNg2urq7w8/ODuro60tLS4OrqCgDw9/eHoaEh4uPj8c8//0gdd+7cOcTHx2Pu3LlIS0vD4sWLsXDhQvG5FlfWtX7zzTfYt28fxowZAwsLC1y7dg3Lly+Hqqoqhg4dCgCIi4uDq6srGjZsiK+//hp6enr4+++/xVgtrf6iiezyKH4/MjIy4O7uDg0NDcyZMwdaWlrYsWMHRowYgV9++QX16tUrta7yPsPk5GQsWrQIvr6+0NLSQkhICCZMmIDTp09DWVkZADB79mxcuHABAQEBMDQ0xO7duys0pF9fXx+2trY4duwY2rZti8LCQpw8eRJTp07F/fv3pcpmZWXB09MTioqKCA4OhqqqKtavXw8PDw8cOXIEDRs2BPDu+yw8PBwTJ05EmzZtcPz4cYSEhMice/Lkybh27RrGjx+Pli1bIjIyEtOnT4e2tjacnZ3LfQ0AsGrVKnTv3h2rVq3C9evXERoaiqZNm4pxcu/ePUyePBldu3bF7NmzkZCQAH9/f6k/EBARERERERF9yqptonLZsmVo1qwZwsLCxERf8aSdJKkGAAUFBbCyskLnzp0RHR0NR0dHfPbZZ9DU1ISGhgYsLS3FsoIgYOnSpfjiiy/wzTffiNv19PTg6+uLcePGwdjYGBEREUhJSUF4eDgMDQ0BAO3atUOvXr2kEpUbNmyAnp4eNmzYICZvGjZsiFGjRiEyMlKqd1yrVq2kzgkAvXv3RkREhJiozM/Px5EjR+Di4iKV5PxQkuTsy5cvAbzr4SdJ3AKAtbU11NXVMWvWLMydOxfq6uri/ZIMJy9q9uzZ4tcFBQXo1KkTHBwccOrUKTGRWJpjx47BwMAAdnZ2UFRURIcOHXDs2DFMnToVCgoKUmXd3Nzg6+srfl65ciVSUlJw4sQJ8Xk4ODjInEMQBKxfvx4qKioA3vXA27hxIwoLC6GoKNuJuLRr/eeff7Bz504EBweL19WxY0e8ffsW69atg6urKxQVFREaGgplZWWEh4dDU1NTLPe++iuaqCx+P9asWYPMzEzs27dPTEo6ODigd+/e2LJlC2bMmFFqXeV9hhkZGdi5cyeMjY0BAOrq6hg+fDhu3rwJGxsbPHr0CL/88gsWLVoEFxcXAO++T3v16lWha+vXrx++//57zJgxA5cvX0ZmZiZ69eolk6g8cOAAEhMTcfz4cXGOUVtbW3Tt2hVhYWGYNWsW0tPTsXv3bowePRp+fn4AACcnJ3h4eCApKUmsKzo6GufOncOWLVvEd0unTp2QnJyM0NDQCicqzc3NERQUJNZz+fJlnDp1SkxUbty4EYaGhggNDRXjsHbt2mU+pw+VnZ0NQRAqvV6q3rKzs6X+S582xgMVx5igohgPVBxjgopiPFBxRWNCEASZ/E1lqpaJyuzsbNy8eRNTp04tM1EXGRmJ9evX4+HDh1JDp+Pi4srsiRgbG4uEhATMnj1bamimJHl2584dGBsb486dOzAxMRGTYgBgaGiIVq1aSdV35coV9OvXT0xSAu+SNdra2rh69apUorJLly4y7RkyZAg8PDzw8OFDGBsbIzIyEikpKRg0aFCp11ARxRMWgiAgLCwMe/fuxdOnT5GTkyPue/LkCUxMTMqs78aNG1i9ejXu3bsnlWyLi4sr87jU1FRERUWJPeIAoH///pg5cyauXr0KGxsbqfLF79WlS5fQoUMHqedREltbWzFJCQAtW7ZEXl4eUlJSoKenV+axRV28eBEA0KtXL6k46dixIzZv3oxnz56hcePGiI6ORu/evcUkZVUpfj+ioqJgb28PHR0dsX2KioqwtbWVWtG8JOV9hvr6+mKSEvhfT1NJwu/27dsQBAE9e/YUyygpKaFHjx4lDpEvTa9evbBgwQJcvXoVx44dg7Ozc4n388qVKzA2NpZaCKlOnTro2LEjrl69CgD4+++/8fbtW6k2Sc7x559/ip+joqJQp04ddOjQQeb5zp8/HwUFBRX6Q0Hxd07Lli0RHR0tfr59+zZ69OghlSzv3r17ueuviNjYWP5S8Ql737uYPi2MByqOMUFFMR6oOMYEFcV4oOIkMVE051LZqmWiMjMzE4WFhdDX1y+1zK1btzBu3Dh0794do0ePRr169aCgoIAhQ4ZIJd5KkpaWBgAYP358ifufPXsG4N1cjiXNkaerqyt1jszMzBKH2darVw8ZGRky24qztbWFkZER9u/fj8DAQERERMDW1laq1+bHkCSVJEm6sLAwfPfdd/Dx8YG9vT20tbVx+/ZtLFiw4L33LjExEd7e3mjXrh2Cg4Ohr68PZWVl+Pn5vffYEydOID8/H87OzsjMzAQA2NvbQ0VFBUePHpVJVNavX1/qc3p6ulTSrDTFV2OWfAO9r33FpaWlQRAEdOjQocT9kkRlenp6mbFaWYrfj7S0NNy4cQNt27aVKVtW7FTkGRa/l5JkvKRccnIylJWVoaOjI1WurGHnJalTpw4cHR1x8OBBsYdmSTIzM2Xug+R8Dx8+FNtUUhtKun/p6ekl3j9JPZLeyOWhpaUl9VlZWVlqWHdycrLM+0RTUxOqqqrlPkd5GRkZsUflJyg7OxtxcXFo3rw51NXV5d0ckjPGAxXHmKCiGA9UHGOCimI8UHFFYyIhIaFKz1UtE5VaWlpQVFSUWhinuDNnzkBTUxOrVq0SeyiV92ZJ5uCbO3cuzM3NZfZLkk76+voyQ0+Bdz0Da9euLX7W0dFBSkqKTLmUlBSZBE5p3WMHDx6MH374ASNHjkRkZKTM8PCPceHCBaioqIgJmZMnT6Jbt26YNm2aWCYmJqbcdb158wZr164Vk1j5+fkyCdmSSOYt9PLyktl38uRJBAUFSfVKLa5OnTplxkRl09HRgYKCAnbv3l1iu4yMjD6qXZIEVV5entR2SRK3PO1zcnLC5MmTZfaV9deNj3mGxenp6SEvLw8ZGRlSsV7S98P79O3bFzNmzICGhkaJPY+Bd9dc0sJNRb/XJAn5lJQUGBgYiGUkUx8UrUtXVxebNm0q8Vwl/ZHiY+jp6Ukt6gS8m3Ozogn08uAvE582dXV1aGhoyLsZVE0wHqg4xgQVxXig4hgTVBTjgYpTV1ev0mHfQDVd9Vsyp+Thw4dLXT347du3UFZWlrpBJa3Wq6ysLJMIaNGiBRo0aIAnT57AzMxM5p8kudGuXTs8ePAAT548EY99+vQp/vrrL6n62rdvj7Nnz0oNH42KikJmZibat29frmseMGAAXr16hYCAAKipqeHzzz8v13Hv89tvv+H06dMYMGCA+IKR3Luiynvv3r59CwUFBdSq9b8ct6SnZFkSEhJw/fp1uLm5Yfv27VL/JCukX7hwocw6HBwcEB0dLbWgUmUp6Vol81+mp6eXGCeSocmSuR2Lr9z+vvrr1asHZWVlqSRxbm6u1PDksnTs2BExMTFo2bKlTNtKWpxI4kOfYUnMzMwAvFvNWqKgoABnzpypcF3du3dH9+7d4efnV2ovw/bt2+Pvv//G48ePxW0ZGRm4ePGi+L1mYmICNTU1qTYBwC+//CL1uWPHjkhNTYWysnKJz7eyu7KbmZnh/PnzKCwsFLd9yH0iIiIiIiIi+q+qlj0qgXcrHHt5ecHLywvu7u7Q0dHB3bt3UbduXbi4uKBTp04ICwvDwoUL0bNnT1y/fh2HDx+WqadFixY4dOgQzp07Bz09Pejr68PAwACzZs1CQEAA3rx5gy5dukBdXR2JiYmIjIyEv78/jIyMMGjQIGzYsAFjxozBxIkTAQBr165F/fr1pRKkY8aMgZubG/z8/ODp6Smu+m1ubl7uBTl0dXXRvXt3nDx5Eq6urlBTU6vwPXv27Blu3LiB/Px8JCcn48KFCzh8+DAsLCykFs/p2LEjtm/fjp07d6J58+Y4cuQI4uPjS7x3Z8+ehY2NDdTV1WFkZCQOgw4MDISbmxsePnyIH3/8UWaIcHGS3pQ+Pj5o0qSJ1L727dtj06ZNOHbsmNR8nsV5eXnh8OHD8PDwwNixY9GkSRM8efIEcXFxmD59ernvU0lKulYjIyMMGzYMM2bMwKhRo2BhYYG8vDzExcXh8uXL+P777wEAEyZMwPnz5+Hu7g4fHx/o6ekhJiYG2dnZGD16dKn1a2pqomfPnti1axeaNWuGunXrYufOneWemNbLywtHjx6Fh4cHhg8fjkaNGiE1NRU3b96EgYFBiT1XAXzwMyzJZ599hp49e+Lbb79FTk6OuOp38V6i5aGhoYG1a9eWWWbgwIHYtm0b/Pz8MGXKFHHV71q1amHEiBEA3vVwdXNzw+bNm6Gmpiau+l18dfhOnTqha9eu8PHxgY+PD0xNTZGdnY1Hjx4hPj6+Uns1A4Cfnx9cXFwwceJEDBkyBImJidi6dStUVVWr/C9SRERERERERDVBtexRCQA2NjbYvn07FBQUEBgYiAkTJuDMmTNo3LgxAMDZ2RkBAQE4e/Ysxo4diytXrmDjxo0y9YwePRrW1taYOXMmXFxcsHfvXgBAnz59sGnTJsTGxmLatGkYN24cfvzxRzRu3Ficy05NTQ1bt26Fjo4OAgICsGzZMowcORLNmjWTmo+uXbt22Lp1K16/fo2JEydi2bJl6NKlCzZv3lyhxTgki39IVk+uqB07dsDV1RVeXl745ptvkJSUhODgYOzcuVNqqPr48ePRv39/rFmzBlOnToWqqqq4WnFRc+fOhSAIGD16NFxcXHD37l2Ymppi8eLFuHv3Lvz8/HD8+HGsXr1aZn6+4o4dOwZra2uZJCUA1KpVC/369cO5c+fw+vXrUuuoW7cuwsPDYW1tjeXLl8PX1xdbt26t0DyCpSnpWgEgKCgIU6ZMwc8//wxfX1/MmDEDJ06cgJ2dnXhs8+bN8dNPP6Fx48YIDg7G2LFjsX//fjFWy6p/zpw5sLOzw6JFizB37lw4OTmhR48e5Wpz3bp1sWfPHrRu3RrLly+Ht7c3Fi9ejISEhBKnNJD40GdYmm+//RbdunXD8uXLMWPGDBgZGYlJw8qmqamJHTt2oFWrVpgzZw4CAgKgo6ODnTt3omHDhmK5adOmwc3NDT/88AOmTJkibituzZo1cHNzQ3h4OEaPHo2vv/4av//+O2xtbSu97W3atMGqVavw6NEjTJgwAfv27cOSJUtQUFDwwfeeiIiIiIiI6L9EQeCKCxWSnp6OHj16wMvLCxMmTKjUumfMmIH79++XOAybiP57Ll26BC8vL+zYsUMq+V1ektXdt5xOQUxCBlo21sGqqV0quZVUU7x58wb3799H69atOZcQMR5IBmOCimI8UHGMCSqK8UDFFY0JyfR1kqngKlu1HfpdXWzatAn169dH48aNkZycjK1bt6KgoACDBg2qtHM8ePAA9+/fx88//4x58+ZVWr1EVL3Mnz8fDg4OqFOnDh49eoTvv/8ebdq0kVnxnoiIiIiIiOhTxETleygqKmL9+vVISkqCkpISLCwsEBYWJjXM9GONHTsWqamp+Oqrr2QSoIIglLqgkKR9klXPiah6y8zMxMKFC5Geng5NTU04OTlh5syZ/B4mIiIiIiIiAhOV7yVZaKMqnTt3rtR9f/zxB4YPH17q/gEDBmDJkiVV0SwiqmQrVqyoknoNDbSk/ktERERERERUEzFRWc21bdsW+/fvL3V/3bp1/8XWEFF1FDCsvfh1YaEARUWuIk5EREREREQ1DxOV1ZympmaVTVBKRDVfbm4usrOzoa6uDgBMUhIREREREVGNxYnRiIhqOEEQ5N0EIiIiIiIioo/GRCURERERERERERHJHROVREREREREREREJHdMVBIREREREREREZHcMVFJREREREREREREcsdEJREREREREREREckdE5VEREREREREREQkd0xUEhERERERERERkdwxUUlERERERERERERyx0QlERERERERERERyR0TlURERERERERERCR3TFQSERERERERERGR3DFRSURERERERERERHLHRCURERERERERERHJHROVREREREREREREJHdMVBIREREREREREZHcMVFJREREREREREREcsdEJREREREREREREckdE5VERDWYkpKSvJtAREREREREVCmYqCQiqsGUlJSgoKAg72YQERERERERfTQmKomIiIiIiIiIiEjumKgkIiIiIiIiIiIiuWOikoiIiIiIiIiIiOSOiUr6KAcOHMDRo0fl3Yx/RWpqKpYsWYLevXvDzMwM1tbW8PDwwL59+1BQUAAACA0NhZWV1b/arnHjxsHT0/NfPWdxmZmZMDU1xYEDB8os161bN5iamsLU1BRt27aFg4MDPD09sW3bNrx58+aDzr1t2zZERkZ+0LHyeF5EREREREREVLJa8m4A1WwHDx6EhoYG+vfvL++mVKn4+HgMHz4cBQUFGDlyJNq2bYvc3FxER0dj8eLFqFu3Lnr06CHvZtYIvXv3hre3NwoKCpCamorLly9j1apVCA8PR1hYGBo0aFCh+rZv344uXbrA2dm5ilpMRERERERERP8GJirpP+vt27dQU1OrlLoCAgJQUFCAiIgIGBgYiNs7d+4MDw8PvHr1qlLO8ymoX78+LC0txc89e/bEwIED4e7ujsDAQPz444/yaxwRERERERERyQ2Hfn/Crl+/Dm9vb1hbW8PKygqDBw9GVFSUuH/58uXo378/rKys4OTkhKlTp+LFixfifk9PT/zxxx84f/68OJw3NDRU3H/+/HkMHjwY5ubm6NChA+bNmyczvPfhw4cYNmwYzMzM0KtXLxw5cqTEocx//vkn3NzcYG5uDnt7ewQGBiI9PV3c//TpU3HocVBQEOzt7TF48GDs2LEDFhYWyMrKkqovJiYGpqam5RoyfOXKFdy6dQt+fn5SSUqJRo0awdTUtNTjExISMGnSJLRv3x6WlpYYNWoUHjx4IFXG1NQUW7Zskdq2bds2mXpjYmLg4eEBMzMz9OjRAwcPHnxv+4F3z3rMmDFwdHSEpaUlvvzySxw6dEiqzOXLl2FqaoqoqChMmzYNVlZW6Nq1KzZv3ixT3969e9GtWzdYWFhgxIgRiI+PL1c7StOmTRu4u7vj4sWLePz4MQDgzZs3WLBgAXr37g0LCwt069YNc+fOlUoKd+vWDQkJCdi1a5cYg5Lh54cOHcLQoUNhZ2cHW1tbeHp64tatWyWe/9atW3BxcYGZmRn69OmDX3/9VWr/+fPnMXLkSDg4OMDa2hqDBw/Gb7/9JlUmMzMTQUFBcHJygpmZGZydneHv7y9V5vnz5wgICIC9vT3Mzc0xbNgw3Llz56PuHREREREREdF/BXtUfqKuXr2KESNGwNLSEosWLYK2tjbu3LmDxMREsUxKSgr8/Pygr6+P1NRU/Pjjj/D09MTx48dRq1YtzJs3D9OnT4eamhpmzpwJAOKw3ZMnT8Lf3x8DBw7ExIkTkZycjJCQEGRmZmLlypUA3vV49Pb2hra2NpYtWwYAWLduHTIzM9G0aVOxHXfu3MHIkSNhb2+P1atX4+XLlwgJCcGjR4/w008/QUlJSSy7YsUKODs7IyQkBIWFhbCwsMCyZctw7NgxuLm5ieX2798PAwMDODo6vvde/fHHHwAAJyenCt/nrKwseHp6QlFREcHBwVBVVcX69evh4eGBI0eOoGHDhuWuKycnB97e3lBXV8fSpUsBAGvWrEFWVhaaN29e5rGJiYmwtrbG0KFDoaKigmvXriEoKAiCIGDAgAFSZefNm4cvv/wS69atw5kzZ7B8+XKYmpqic+fOAIBff/0Vc+bMwcCBA/HFF1/g7t27mDx5csVuTAkcHR2xZcsW3Lx5Ey1atMDbt29RUFAAf39/6Orq4tmzZ9iwYQPGjRuHHTt2AADWrl0LX19fWFtbw9vbGwDE2Hn69Cm++uorNG3aFLm5uTh+/DiGDRuGI0eOwMjISDxvXl4e/P394e3tDUNDQ4SHh2PChAk4cOCAmCh++vQpunbtCm9vbygqKuK3336Dr68vwsLCYG9vDwBYvHgxLly4gGnTpqFx48ZITk6WSmZmZGTA3d0dGhoamDNnDrS0tLBjxw6MGDECv/zyC+rVq/fR95CIiIiIiIioJmOi8hO1bNkyNGvWDGFhYWKir3jSbvHixeLXBQUFsLKyQufOnREdHQ1HR0d89tln0NTUhIaGhtRQXkEQsHTpUnzxxRf45ptvxO16enrw9fXFuHHjYGxsjIiICKSkpCA8PByGhoYAgHbt2qFXr15SicoNGzZAT08PGzZsgLKyMgCgYcOGGDVqFCIjI9GtWzexbKtWraTOCbybEzEiIkJMVObn5+PIkSNwcXGRSnKWJikpCcC7npMVdeDAASQmJuL48eNo2bIlAMDW1hZdu3ZFWFgYZs2aVaG6Xrx4gRMnToiJyTZt2uDzzz9/b6Kyb9++4teCIMDW1hZJSUnYs2ePTKKyV69emDhxIgDAwcEB58+fx6lTp8RE5fr162FjYyPGh5OTE3JycvD999+X+1pKIklyJycnAwB0dXURHBws7s/Pz4ehoSHc3d0RGxsLIyMjtGnTBioqKjLDyQFgwoQJ4teFhYXo1KkTbt26hYMHD2Lq1Knivry8PIwdOxYuLi4A3n0f9OrVCxs3bsSKFSsAAB4eHlJ12dvb49GjR9i7d6+YqLx9+zb69esndT+L3vewsDBkZmZi3759YlLSwcEBvXv3xpYtWzBjxowPvnc5OTkQBOGDj6f/huzsbKn/0qeN8UDFMSaoKMYDFceYoKIYD1Rc0ZgQBAEKCgpVdi4mKj9B2dnZuHnzJqZOnVpmoi4yMhLr16/Hw4cPpYZOx8XFldkTMTY2FgkJCZg9ezby8/PF7XZ2dlBUVMSdO3dgbGyMO3fuwMTERExSAoChoSFatWolVd+VK1fQr18/MUkJvEsmaWtr4+rVq1KJyi5dusi0Z8iQIfDw8MDDhw9hbGyMyMhIpKSkYNCgQaVeQ2W5cuUKjI2NxSQlANSpUwcdO3bE1atXK1TXrVu3YGxsLJWUbNasmcz9KklGRgZCQ0Nx9uxZJCUliauU16lTR6Zs0WeroKCAli1b4vnz5wDeJazv3r2L6dOnSx3Tu3fvj05UShJtRV94hw4dwrZt2xAfHy81bUBcXJxUr8iSxMTEYMWKFbh+/TpSUlKkji2uZ8+e4tdKSkro0aMHzpw5I257/vw5Vq5ciYsXLyI5OVlsa9u2bcUybdq0wcGDB6GnpwcnJyeYmJhInSMqKgr29vbQ0dERvy8UFRVha2uL27dvl3kt75OYmMhfIkhUUozTp4vxQMUxJqgoxgMVx5igohgPVJwkJlRUVKrsHExUfoIyMzNRWFgIfX39UsvcunUL48aNQ/fu3TF69GjUq1cPCgoKGDJkCHJycsqsPy0tDQAwfvz4Evc/e/YMAPDixQvo6urK7NfV1ZU6R2ZmZonDYuvVq4eMjAyZbcXZ2trCyMgI+/fvR2BgICIiImBrayvVa7Msknkpnz17hmbNmpXrmKJtr1+/foltf/jwYYXqevHiRan34X3PZNasWbh+/TrGjx8v9oQNDw/HiRMnZMpqaWlJfVZWVhbnhUxNTUV+fr7McyvpGitK0nNVT08PAHD69GnMnDkTrq6u8Pf3R506dZCcnIzx48e/93qzsrLg7e0NXV1dzJo1C40aNYKqqiqCgoJkjlVWVoaOjo7Utnr16ok9OwsLCzF27Fi8evUKkyZNQrNmzaCuro41a9aIsQwAc+bMgY6ODn788UcsXboUDRs2hK+vL9zd3QG8+764ceOGVHJToryxWJpGjRpV6Q8Kqhmys7MRFxeH5s2bQ11dXd7NITljPFBxjAkqivFAxTEmqCjGAxVXNCYSEhKq9FxMVH6CtLS0oKioKLUwTnFnzpyBpqYmVq1aBUXFd2sulTcYJb305s6dC3Nzc5n9kgSpvr4+7t+/L7M/NTUVtWvXFj/r6OhI9YiTSElJkUkwldb9ePDgwfjhhx8wcuRIREZGygwPL4udnR0A4Pfff69wolJHRwexsbEy24u3XUVFBXl5eVJlMjMzpT7r6+vj7t27JdalqalZahtycnJw/vx5zJo1S2qRot27d5f7OiR0dXVRq1YtpKamSm1/+fJlhesq7sKFCwAgDuE+efIkWrdujQULFohlJPOFvs+NGzfw/PlzbNy4UarH6atXr8Qh5hJ5eXnIyMiQeh4pKSliwjQ+Ph737t3DunXr0KNHD7HM27dvperR0tLC119/ja+//hoPHjzA9u3bERwcDBMTE9jY2EBHRwdOTk4lzuf5sUlGVVVV/gJBInV1dWhoaMi7GVRNMB6oOMYEFcV4oOIYE1QU44GKU1dXr9Jh3wBX/f4kSeaUPHz4sDgEuLi3b99CWVlZKgCPHj0qU05ZWVmmh1qLFi3QoEEDPHnyBGZmZjL/JD0U27VrhwcPHuDJkyfisU+fPsVff/0lVV/79u1x9uxZqWHkUVFRyMzMRPv27ct1zQMGDMCrV68QEBAANTU1fP755+U6DgBsbGxgbm6ODRs2lJjcffbsmcwq3kXb/vfff4srWQPvhmFfvHhRqu0NGjRATEyM1LEXL16U+mxmZoaHDx9KrbAdHx8vc7+Ky83NRWFhodTQ+aysLJw7d67M40qipKSENm3a4PTp01LbT506VeG6irp//z7Cw8Ph6OgoDm2XxGBR5Y1BSRKx6PHXrl0rNdle9HoKCgpw5swZWFhYAIBYd9G6EhIScP369VKvx9TUFIGBgQAgPteOHTsiJiYGLVu2lPmeKGvVeCIiIiIiIqJPBXtUfqKmTZsGLy8veHl5wd3dHTo6Orh79y7q1q0LFxcXdOrUCWFhYVi4cCF69uyJ69ev4/DhwzL1tGjRAocOHcK5c+egp6cHfX19GBgYYNasWQgICMCbN2/QpUsXqKurIzExEZGRkfD394eRkREGDRqEDRs2YMyYMeLiLWvXrkX9+vWlEqRjxoyBm5sb/Pz84OnpKa76bW5uDmdn53Jdr66uLrp3746TJ0/C1dUVampqFbpfy5cvh6enJwYNGoSRI0eibdu2yM3NxZ9//oldu3bhu+++KzHZNHDgQGzbtg1+fn6YMmWKuOp3rVq1MGLECLFc7969ERYWBjMzMxgZGeHIkSPiUOiida1fvx5+fn5ir7w1a9a8d9i1lpYWzMzMsHnzZrFH5KZNm6CpqSnTM7I8xowZg3HjxiEwMFBc9buk2CjNy5cvcePGDRQWFiI1NRXR0dHYv38/GjRogG+//VYs17FjRyxYsADr1q2DlZUVIiMjcenSJZn6WrRogejoaERFRUFbWxuGhoawtLSEhoYGgoOD4evri6SkJISGhopJ8qKUlZWxfv165OTkiKt+P3/+HOvWrRPrb9CggbiS/Js3b7BmzRqZqRPc3NzQs2dPGBsbQ0lJCYcOHYKysjJsbGwAAF5eXjh69Cg8PDwwfPhwNGrUCKmpqbh58yYMDAzg5eVV7ntIRERERERE9F/EHpWfKBsbG2zfvh0KCgoIDAzEhAkTcObMGTRu3BgA4OzsjICAAJw9exZjx47FlStXsHHjRpl6Ro8eDWtra8ycORMuLi7Yu3cvAKBPnz7YtGkTYmNjMW3aNIwbNw4//vgjGjduLCbW1NTUsHXrVujo6CAgIADLli3DyJEj0axZM6l5Etu1a4etW7fi9evXmDhxIpYtW4YuXbpg8+bN5Vq1W0KyYIpkdeeKaNasGQ4ePIi+ffsiPDwco0aNwuTJk3Ht2jXMnj0bXbt2LfE4TU1N7NixA61atcKcOXMQEBAAHR0d7Ny5Ew0bNhTLjRs3Dv369cO6deswffp0NGrUCMOHD5eqS3K/6tWrh+nTp2P58uXw8fGBmZnZe9sfEhKCpk2bYtasWVi0aBF69+6Nr776qsL3AQC6d++O4OBgXLp0CePHj0dUVBRWrVpV7uNPnToFV1dXeHp6IigoCA8ePIC/vz8OHDgglUh0c3ODt7c3du7ciQkTJuDZs2cICQmRqW/q1Klo0KABJk6cCBcXF/z666+oX78+Vq9ejdTUVIwbNw5hYWEIDg4ucei+srIyVqxYgYiICIwfPx5xcXFYs2aNOGRcRUUFoaGhUFFRweTJk7FmzRqMHTtWnBJAwtraGocOHcLkyZMxadIkPH36FBs2bBAXUqpbty727NmD1q1bY/ny5fD29sbixYuRkJBQ4hQJRERERERERJ8aBUGyfC1RNZCeno4ePXrAy8sLEyZMqNS6Z8yYgfv375c4fJioJpKsFv7ZZ59xjkrCmzdvcP/+fbRu3ZpzCRHjgWQwJqgoxgMVx5igohgPVFzRmJBMb1aeTlMfgkO/Sa42bdqE+vXro3HjxkhOTsbWrVtRUFCAQYMGVdo5Hjx4gPv37+Pnn3/GvHnzKq1eIiIiIiIiIiKqPExUklwpKipi/fr1SEpKgpKSEiwsLBAWFiY1LPpjjR07Fqmpqfjqq69kEqCCIJS6oJCkfZJVz4mIiIiIiIiIqOowUUly5ePjAx8fnyo9R1mrW//xxx8yc0EWNWDAACxZsqQqmkVEREREREREREUwUUmftLZt22L//v2l7q9bt+6/2BqiiisoKACnGiYiIiIiIqL/AiYq6ZOmqalZZRPAEv0bypq6gIiIiIiIiKgm4eR7REREREREREREJHdMVBIREREREREREZHcMVFJREREREREREREcsdEJREREREREREREckdE5VEREREREREREQkd0xUEhERERERERERkdwxUUlERERERERERERypyAIgiDvRhARUcVdu3YNgiBAWVkZCgoK8m4OyZkgCMjLy2M8EADGA8liTFBRjAcqjjFBRTEeqLiiMZGXlwcFBQVYW1tXyblqVUmtRERU5SS/NPCXBwLexYGKioq8m0HVBOOBimNMUFGMByqOMUFFMR6ouKIxoaCgUKX/D8oelURERERERERERCR3nKOSiIiIiIiIiIiI5I6JSiIiIiIiIiIiIpI7JiqJiIiIiIiIiIhI7pioJCIiIiIiIiIiIrljopKIiIiIiIiIiIjkjolKIiIiIiIiIiIikjsmKomIiIiIiIiIiEjumKgkIiIiIiIiIiIiuWOikoiIiIiIiIiIiOSOiUoiIiIiIiIiIiKSOyYqiYiIiIiIiIiISO6YqCQiIiIiIiIiIiK5Y6KSiEjOYmJiMHLkSFhaWqJTp05YunQpcnNz33ucIAjYtGkTunTpAnNzc7i6uuLGjRsy5ZKSkjBx4kRYWVnBzs4OX3/9NbKysqrgSqgyVGU8XL58GaampjL//P39q+hqqDJ8aEzs2rULfn5+6NChA0xNTXHy5MkSy/EdUbNUZTzwHVHzfEg8vHjxAkuXLsWXX34JKysrdO7cGdOmTUNCQoJMWb4fap6qjAm+I2qeD/2ZERAQgF69esHS0hK2trYYNmwYfv/9d5lyr169wuzZs2FnZwcrKytMmjQJL168qIpLoUpSlTHx9OnTEt8RQ4YMqVAba1WoNBERVaqMjAyMGDECzZs3R2hoKJKSkrBkyRK8ffsWc+fOLfPYzZs3Y82aNQgICICpqSl27doFb29vHD58GE2aNAEA5OXlwcfHBwAQEhKCt2/f4rvvvsO0adOwcePGKr8+qpiqjgeJxYsXo0WLFuLnunXrVsn10Mf7mJg4fPgwAMDZ2RmHDh0qsQzfETVLVceDBN8RNcOHxsPdu3dx+vRpDBo0CBYWFkhLS8P69esxePBgHDt2DLq6ugD4fqiJqjomJPiOqBk+5mdGXl4evLy80Lx5c+Tk5GD//v3w9fXF9u3bYWNjI5abMmUKHj16hPnz50NVVRWrVq3C6NGjERERgVq1mG6qbv6NmACAqVOnwt7eXvxcu3btijVUICIiudmwYYNgaWkppKWlidt++uknoXXr1sLz589LPe7t27eCtbW1EBISIm7LyckRunbtKsybN0/cdvToUcHU1FSIiYkRt124cEEwMTERbt68WanXQh+vquMhOjpaMDExEW7dulUVzacq8KExIQiCUFBQIAiCIDx58kQwMTERTpw4IVOG74iaparjge+ImuVD4yEjI0PIy8uT2vbs2TPB1NRU2LJli7iN74eap6pjgu+ImuVjfmYUl5+fLzg7OwtBQUHitmvXrgkmJibChQsXxG0xMTGCqampcPz48Y9uP1W+qo6Jsn7HqAgO/SYikqPffvsNDg4OqFOnjritT58+KCwsRFRUVKnHXbt2DVlZWejTp4+4TUVFBT179sRvv/0mVb+pqanUX707deqEOnXqIDIysnIvhj5aVccD1TwfGhMAoKj4/l/z+I6oWao6Hqhm+dB40NbWlunp1KBBA+jq6koN2eT7oeap6pigmuVjfmYUp6SkBC0tLeTl5UnVr62tjU6dOonbWrRogdatW/P3z2qqqmOisvA3FiIiOXr8+LHU/wAA735Z1NPTw+PHj8s8DoDMsS1btkRiYiLevn1bav0KCgowMjIqs36Sj6qOBwlfX1+0bt0anTt3xnfffSezn6qPD42Jj6mf74jqq6rjQYLviJqhMuMhNjYWKSkpaNmyZZn18/1QvVV1TEjwHVEzfGw8CIKA/Px8pKWlYcuWLYiPj4erq6tU/UZGRlBQUJA6rkWLFnxHVFNVHRMS8+fPR+vWreHg4ICgoCCkp6dXqJ2cNICISI4yMzOhra0ts11HRwcZGRllHqeiogJVVVWp7dra2hAEARkZGVBTU0NmZia0tLQqXD/JR1XHg5aWFnx8fGBrawtVVVVER0dj69atePz4Mecbq6Y+NCYqUj/fETVHVccD3xE1S2XFgyAIWLRoEfT19dG3b1+p+vl+qFmqOib4jqhZPjYe9u/fj6CgIACAhoYGVq5cCSsrK6n6S3tH3Llz5yNaTlWlqmNCRUUFQ4cOhaOjI7S1tXHz5k1s2LABd+7cwb59+6CsrFyudjJRSURE9Ilo06YN2rRpI352cHCAvr4+FixYgFu3bsHc3FyOrSMieeM74tMUGhqK6Oho/PDDD9DQ0JB3c6gaKC0m+I74tHTv3h2tWrVCWloaTp48iSlTpmDt2rVwdnaWd9NITt4XE/r6+pg/f75Y3s7ODsbGxvDz88Pp06fxxRdflOs8HPpNRCRH2traePXqlcz2jIwM6OjolHlcbm4ucnJypLZnZmZCQUFBPFZbWxtZWVkVrp/ko6rjoSSSeS35l+/q6UNjoiL18x1Rc1R1PJSE74jqqzLiYe/evVi3bh2Cg4Ph4OAgUz/fDzVLVcdESfiOqL4+Nh50dXVhZmaGzp0749tvv0Xnzp2xbNkyqfr5jqhZqjomSuLs7AwNDQ3cvXu33O1kopKISI5KmsPl1atXSE5Olpk/pPhxwLv5g4p6/PgxGjVqBDU1tVLrFwQBsbGxZdZP8lHV8UA1z4fGxMfUz3dE9VXV8UA1y8fGw+nTpzF//nxMmjQJLi4u5aqf74fqrapjgmqWyv6Z0bZtW8THx0vVHxsbC0EQpMrxHVF9VXVMVBYmKomI5Khz5864ePEiMjMzxW0nT56EoqKi1Ap6xVlbW0NTUxMnTpwQt+Xl5eGXX35B586dper/66+/EBcXJ267dOkS0tPTOWyjGqrqeCjJ8ePHAQBmZmYf2XqqCh8aExWpn++ImqOq46EkfEdUXx8TD5cvX8bUqVMxePBgjB8/vtT6+X6oWao6JkrCd0T1Vdk/M65evYomTZpI1Z+RkYFLly6J22JjY3Hv3r33/v5J8lHVMVGSX3/9FW/evKnQO0JBKJ7+JiKif01GRgb69u0LIyMj+Pn5ISkpCUuWLEH//v0xd+5csdyIESOQmJiI06dPi9s2bdqE0NBQBAQEwMTEBOHh4fj9999x+PBh8QdGXl4eBg4cCACYOnUqsrOzsXTpUpiamnLS82qoquMhICAAzZo1Q5s2bcRJ8Ldt2wZnZ2esW7fuX79eer+PiYnbt28jISEBqampCA4Ohre3NywsLKCrqws7OzsAfEfUNFUdD3xH1CwfGg8xMTFwdXVFw4YNERwcDEXF//Vd0dXVRdOmTQHw/VATVXVM8B1Rs3xoPJw/fx6HDh1Cly5d0LBhQ2RkZODYsWM4deoUVqxYIbXA0qhRoxATE4OZM2dCVVUVK1euhKKiIiIiIlCrFpdEqW6qOiaWLFkCBQUFWFpaQltbG7du3cLGjRthZGSEPXv2lDsmmKgkIpKzmJgYLFy4ENevX0ft2rXx5Zdfwt/fHyoqKmIZT09PJCQk4Ny5c+I2QRCwadMm7N69G6mpqWjdujUCAwOlVl4DgKSkJCxatAi///47atWqhZ49e2L27NnQ1NT8166Ryq8q42Hjxo04evQoEhISkJeXh8aNG6N///7w9fWVqp+qlw+NiVmzZuHgwYMy9dnZ2WHHjh3iZ74japaqjAe+I2qeD4mHAwcOIDAwsMT6BgwYgCVLloif+X6oeaoyJviOqHk+JB5iYmIQEhKC27dvIy0tDXXr1oWpqSl8fX3FP2xJvHr1CosXL8bp06eRn58PR0dHBAUFwcDA4F+9Tiq/qoyJffv2ITw8HPHx8Xj79i0MDAzQo0cPTJo0qUI/N5ioJCIiIiIiIiIiIrnjHJVEREREREREREQkd0xUEhERERERERERkdwxUUlERERERERERERyx0QlERERERERERERyR0TlURERERERERERCR3TFQSERERERERERGR3DFRSURERERERERERHLHRCURERERERERERHJHROVRERERET/MQcOHICpqSlu374t76Z8sF27duHAgQPybkalef36NdasWYN+/frB0tIS9vb2+PLLL7Fo0SIkJSXJu3lERETVQi15N4CIiIiIiKi48PBw1K1bFwMHDpR3Uz5aXl4ePDw88PjxY3z11Vfw8PDAmzdv8PDhQxw7dgw9e/aEgYGBvJtJREQkd0xUEhERERFRtZGdnQ11dXV5N6NSnTlzBvfu3cPy5cvRv39/qX05OTnIy8v719ry5s0baGho/GvnIyIiqggO/SYiIiIi+gTMmjULVlZWSExMhJ+fH6ysrODk5IRdu3YBAB48eIDhw4fD0tISXbt2xdGjR6WOlwwn//PPPzF37lzY29vD2toaM2bMQEZGhsz5du3ahb59+6Jdu3ZwdHREcHAwMjMzpcp4enqiX79+uHPnDoYNGwYLCwusWLEC3bp1w8OHD/HHH3/A1NQUpqam8PT0BACkp6fju+++Q//+/WFlZQVra2v4+Pjgr7/+kqr78uXLMDU1xc8//4z169ejc+fOMDMzw4gRIxAfHy/T3ps3b2L06NGwtbWFpaUl+vfvj7CwMKkyMTExmDRpEuzs7GBmZoaBAwfi7Nmz7733T548AQBYW1vL7FNVVYWmpqbMeSZPnowOHTrA3NwcvXv3xsqVK6XK3Lt3Dz4+PrC2toaVlRVGjBiBGzduSJWRPLM//vgD8+fPh4ODA5ydncX9kZGRcHd3h6WlJaysrODr64uHDx++93qIiIiqCntUEhERERF9IgoKCjB69GjY2NggICAAR48exYIFC6Curo6VK1eif//+6NWrF3766SfMnDkTlpaWaNKkiVQdCxYsgLa2NiZMmIDY2FiEh4cjMTERO3bsgIKCAgAgNDQUa9euRceOHTF06FCx3O3btxEeHg5lZWWxvvT0dIwePRp9+/bF//3f/6FevXqwt7fHwoULoaGhgTFjxgAA6tevD+Bd0u/MmTP4/PPPYWhoiJcvX2LPnj3w8PDA8ePHZYZQb968GQoKCvD29kZWVhZ++OEHBAQEYN++fWKZqKgo+Pn5QV9fH8OHD0f9+vURExOD8+fPY8SIEQCAhw8fYujQoTAwMMDo0aOhoaGBEydOYPz48QgNDUXPnj1Lve+NGjUCABw6dAjjxo0T71NJ/vrrLwwbNgy1atWCq6srGjdujH/++Qfnzp2Dv7+/2JZhw4ahdu3a8PHxQa1atbBnzx54enpi586dsLCwkKozODgYurq6GD9+PN68eSO2ZdasWXB0dERAQACys7MRHh4Od3d3HDx4EIaGhqW2kYiIqMoIRERERET0nxIRESGYmJgIt27dErfNnDlTMDExETZs2CBuy8jIEMzNzQVTU1Ph+PHj4vaYmBjBxMREWLNmjUydAwYMEHJzc8XtmzdvFkxMTIQzZ84IgiAIKSkpQtu2bQVvb2+hoKBALLdz507BxMRE2L9/v7jNw8NDMDExEcLDw2WuoW/fvoKHh4fM9pycHKl6BUEQnjx5IrRr105Yu3atuC06OlowMTER+vTpI+Tk5Ijbw8LCBBMTE+HBgweCIAhCfn6+0K1bN6Fr165CRkaGVL2FhYXi1yNGjBD69esnVVdhYaHg6uoq9OrVS6adRWVnZwu9e/cWTExMhK5duwqzZs0S9u3bJ7x8+VKm7LBhwwQrKyshISGh1LaMGzdOaNu2rfDPP/+I25KSkgQrKyth2LBh4jbJMxs6dKiQn58vbs/KyhJsbGyEoKAgqXMkJycL7du3l9lORET0b+HQbyIiIiKiT8jgwYPFr7W1tWFkZAR1dXX06dNH3N6iRQtoa2uLQ5aLcnV1leoROXToUNSqVQuRkZEAgIsXLyIvLw/Dhw+HouL//ndj8ODB0NTUFMtJqKioVGjBHBUVFbHegoICpKWlQUNDA0ZGRrh3755M+YEDB0JFRUX8bGNjA+B/w7Hv3buHp0+fYvjw4dDW1pY6VtLzMT09HdHR0ejTpw+ysrKQmpqK1NRUpKWlwdHREXFxcWWu3K2mpoZ9+/Zh1KhRAN4Nyf7666/h6OiIhQsXIjc3FwCQmpqKP//8E4MGDRJ7YRZvS0FBAaKiotCjRw+p3q76+vro168frl69iqysLKljhwwZAiUlJfHzxYsXkZmZib59+4rXkpqaCkVFRVhYWODy5culXgsREVFV4tBvIiIiIqJPhKqqKnR1daW2aWlpoUGDBjLDkbW0tGTmlASAZs2aSX2uXbs29PT0kJCQAABITEwE8C7ZWZSKigqaNGkilpMwMDCQSiS+T2FhIbZv347du3fj6dOnKCgoEPfVqVNHpnzxhJ8kGSm5NknC0sTEpNRz/vPPPxAEAatXr8bq1atLLJOSklLmyt1aWlqYMWMGZsyYgYSEBFy6dAlbt27Fzp07oampCX9//3K1JTU1FdnZ2TAyMpLZ17JlSxQWFuLZs2cwNjYWtxcfxh0XFwcA4rD24orPmUlERPRvYaKSiIiIiOgTUbRXXXm2C4JQlc0B8K63YUVs2LABq1evxqBBgzB58mTo6OhAUVER3377bYntLdqrs6iKXFthYSEAwNvbG05OTiWWadq0abnra9y4MVxcXNCzZ0/06NEDR48eFeefrAqqqqpSnyXXvnTpUujp6cmULy0eiIiIqhoTlUREREREVG7x8fHo0KGD+Pn169dITk5G586dAfyvB+Pjx4+lhibn5ubi6dOn6NixY7nOU9qCM6dOnYK9vT2+/fZbqe2ZmZmoW7duha4FgNjGv//+u9S2ScooKyuXu/3loaOjgyZNmogrbRdtS2l0dXWhrq6O2NhYmX2PHz+GoqIiGjZsWOZ5JeepV69epV4PERHRx+IclUREREREVG579uxBXl6e+Dk8PBz5+fliorJjx45QVlbGjh07pHot7t+/H69evYKzs3O5zqOurl7i0HMlJSWZ3pAnTpwoc47IsrRt2xaGhobYvn27zPkk56lXrx7s7OywZ88evHjxQqaO1NTUMs/x119/lVgmISEBMTEx4jBuXV1d2NraIiIiQhxCX7wtSkpK6NSpE86ePYunT5+K+1++fIljx46hffv27x267eTkBE1NTWzcuFHqWZb3eoiIiKoKe1QSEREREVG55eXlwcvLC3369EFsbCx2796N9u3bo3v37gDeJdv8/Pywdu1a+Pj4oFu3bmI5MzMz/N///V+5ztO2bVuEh4fj+++/R7NmzaCrqwsHBwd06dIF69atQ2BgIKysrPD333/j6NGjUr03K0JRURHz58/H2LFj8dVXX2HgwIHQ09PD48eP8ejRI2zZsgUAMG/ePLi7u6N///4YMmQImjRpgpcvX+LGjRt4/vw5jhw5Uuo5oqKiEBoaim7dusHCwgIaGhp4+vQpIiIikJubi4kTJ4plg4KCMHToUAwYMACurq4wNDREQkICzp8/j8OHDwMApkyZgosXL8Ld3R3u7u5QUlLCnj17kJubi+nTp7/3mjU1NTF//nzMmDEDAwcOxBdffAFdXV0kJiYiMjIS1tbWmDt37gfdTyIioo/BRCUREREREZXb3LlzcfToUaxZswZ5eXno27cvgoKCpIZqT5w4Ebq6uti5cycWL14MHR0dDBkyBFOnTpVaMbws48ePR2JiIn744Qe8fv0adnZ2cHBwwJgxY5CdnY2jR4/i559/Rps2bbBx40aEhIR88DU5OTkhLCwM69atw9atWyEIApo0aYIhQ4aIZT777DNERERg7dq1OHjwINLT06Grq4s2bdpg/PjxZdbfq1cvvH79GlFRUYiOjkZGRga0tbVhbm6OkSNHSg2lb9WqFfbu3YvVq1cjPDwcOTk5aNSokdSq7MbGxti1axdCQkKwceNGCIIAc3NzLFu2DBYWFuW65v79+0NfXx+bNm3Cli1bkJubCwMDA9jY2FRoFXYiIqLKpCD8GzNkExERERFRjXbgwAEEBgZi//79MDMzk3dziIiI6D+Ic1QSERERERERERGR3DFRSURERERERERERHLHRCURERERERERERHJHeeoJCIiIiIiIiIiIrljj0oiIiIiIiIiIiKSOyYqiYiIiIiIiIiISO6YqCQiIiIiIiIiIiK5Y6KSiIiIiIiIiIiI5I6JSiIiIiIiIiIiIpI7JiqJiIiIiIiIiIhI7pioJCIiIiIiIiIiIrljopKIiIiIiIiIiIjkjolKIiIiIiIiIiIikrv/B08X45VjyD5vAAAAAElFTkSuQmCC\n"},"metadata":{}},{"output_type":"stream","name":"stdout","text":["Top 3 features: Index(['experience_level', 'category_Data Analysis',\n"," 'category_Machine Learning and AI'],\n"," dtype='object')\n","RMSE with Top 3 Features: 51468.58712375065\n","R² Score with Top 3 Features: 0.23485901417334965\n"]}]},{"cell_type":"markdown","source":["# **HYPERPARAMETER TUNING**"],"metadata":{"id":"TJO5bPN9sVr1"}},{"cell_type":"markdown","source":["## Hyper-tuning the GBM Regression Model\n","\n","This the best performing modelcompared to the others used in this project"],"metadata":{"id":"CJtM_Doa23Ky"}},{"cell_type":"code","source":["from sklearn.model_selection import GridSearchCV\n","from sklearn.ensemble import GradientBoostingRegressor\n","from sklearn.metrics import mean_squared_error, r2_score\n","from sklearn.model_selection import train_test_split\n","import numpy as np\n","\n","# Define the parameter grid to search over\n","param_grid = {\n"," 'n_estimators': [100, 200, 300],\n"," 'max_depth': [3, 4, 5],\n"," 'learning_rate': [0.01, 0.1, 0.2],\n"," 'subsample': [0.8, 0.9, 1.0],\n"," 'min_samples_split': [2, 4],\n"," 'min_samples_leaf': [1, 2],\n"," 'max_features': [None, 'sqrt', 'log2']\n","}\n","\n","# Initialize the GBM regressor\n","gbm = GradientBoostingRegressor(random_state=42)\n","\n","# Setup the grid search\n","grid_search = GridSearchCV(estimator=gbm, param_grid=param_grid, scoring='neg_mean_squared_error', cv=3, verbose=2, n_jobs=-1)\n","\n","# Split data into features and target\n","X = usd_salary_df.drop('salary', axis=1)\n","y = usd_salary_df['salary']\n","\n","# Split data into training and testing sets\n","X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)\n","\n","# Fit the grid search to the data\n","grid_search.fit(X_train, y_train)\n","\n","# Best estimator found by grid search\n","best_gbm = grid_search.best_estimator_\n","\n","# Predict on the test set using the best estimator\n","y_pred = best_gbm.predict(X_test)\n","\n","# Calculate RMSE and R² Score\n","rmse = np.sqrt(mean_squared_error(y_test, y_pred))\n","r2 = r2_score(y_test, y_pred)\n","\n","print(f\"Optimized RMSE: {rmse}\")\n","print(f\"Optimized R² Score: {r2}\")\n","\n","# print out the best parameters found\n","print(f\"Best hyperparameters: {grid_search.best_params_}\")"],"metadata":{"colab":{"base_uri":"https://localhost:8080/"},"id":"sJrnvZlZ3YuJ","executionInfo":{"status":"ok","timestamp":1714484749035,"user_tz":300,"elapsed":1178139,"user":{"displayName":"Daniel Meier","userId":"06365571306976914087"}},"outputId":"834667da-2f11-442b-bf18-5596ea76d8a0"},"execution_count":null,"outputs":[{"output_type":"stream","name":"stdout","text":["Fitting 3 folds for each of 972 candidates, totalling 2916 fits\n","Optimized RMSE: 52888.07754321244\n","Optimized R² Score: 0.2546949186646855\n","Best hyperparameters: {'learning_rate': 0.1, 'max_depth': 3, 'max_features': 'sqrt', 'min_samples_leaf': 2, 'min_samples_split': 2, 'n_estimators': 100, 'subsample': 0.9}\n"]}]},{"cell_type":"markdown","source":["## Hyper-tuning the Lasso Regression Model"],"metadata":{"id":"nxVKmRnLAc8g"}},{"cell_type":"code","source":["from sklearn.model_selection import GridSearchCV\n","from sklearn.linear_model import Lasso\n","from sklearn.metrics import mean_squared_error, r2_score\n","from sklearn.model_selection import train_test_split\n","import numpy as np\n","\n","# Split data into features and target\n","X = usd_salary_df.drop('salary', axis=1)\n","y = usd_salary_df['salary']\n","\n","# Split data into training and testing sets\n","X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)\n","\n","# Initialize the LASSO regression model\n","lasso = Lasso(max_iter=10000, random_state=42)\n","\n","# Define the parameter grid\n","param_grid = {\n"," 'alpha': np.logspace(-4, 1, 50) # Generates 50 values between 10^-4 to 10^1\n","}\n","\n","# Setup the grid search\n","grid_search = GridSearchCV(estimator=lasso, param_grid=param_grid, scoring='neg_mean_squared_error', cv=5, verbose=2)\n","\n","# Fit the grid search to the data\n","grid_search.fit(X_train, y_train)\n","\n","# Best estimator found by grid search\n","best_lasso = grid_search.best_estimator_\n","\n","# Predict on the test set\n","y_pred = best_lasso.predict(X_test)\n","\n","# Evaluate the model\n","rmse = np.sqrt(mean_squared_error(y_test, y_pred))\n","r2 = r2_score(y_test, y_pred)\n","\n","print(f\"Optimized RMSE: {rmse}\")\n","print(f\"Optimized R² Score: {r2}\")\n","print(f\"Best alpha: {best_lasso.alpha}\")\n"],"metadata":{"colab":{"base_uri":"https://localhost:8080/"},"id":"IiIoh_PbAqHa","executionInfo":{"status":"ok","timestamp":1714359690871,"user_tz":-60,"elapsed":393692,"user":{"displayName":"Serge Nane","userId":"05651198543281429008"}},"outputId":"dc3ebbc6-cf50-4635-c4a6-c71f404ce09d"},"execution_count":null,"outputs":[{"output_type":"stream","name":"stdout","text":["Fitting 5 folds for each of 50 candidates, totalling 250 fits\n"]},{"output_type":"stream","name":"stderr","text":["/usr/local/lib/python3.10/dist-packages/sklearn/linear_model/_coordinate_descent.py:631: ConvergenceWarning: Objective did not converge. You might want to increase the number of iterations, check the scale of the features or consider increasing regularisation. Duality gap: 2.652e+12, tolerance: 2.760e+09\n"," model = cd_fast.enet_coordinate_descent(\n"]},{"output_type":"stream","name":"stdout","text":["[CV] END .......................................alpha=0.0001; total time= 2.2s\n"]},{"output_type":"stream","name":"stderr","text":["/usr/local/lib/python3.10/dist-packages/sklearn/linear_model/_coordinate_descent.py:631: ConvergenceWarning: Objective did not converge. You might want to increase the number of iterations, check the scale of the features or consider increasing regularisation. Duality gap: 2.634e+12, tolerance: 2.789e+09\n"," model = cd_fast.enet_coordinate_descent(\n"]},{"output_type":"stream","name":"stdout","text":["[CV] END .......................................alpha=0.0001; total time= 3.6s\n"]},{"output_type":"stream","name":"stderr","text":["/usr/local/lib/python3.10/dist-packages/sklearn/linear_model/_coordinate_descent.py:631: ConvergenceWarning: Objective did not converge. You might want to increase the number of iterations, check the scale of the features or consider increasing regularisation. Duality gap: 2.736e+12, tolerance: 2.820e+09\n"," model = cd_fast.enet_coordinate_descent(\n"]},{"output_type":"stream","name":"stdout","text":["[CV] END .......................................alpha=0.0001; total time= 2.1s\n"]},{"output_type":"stream","name":"stderr","text":["/usr/local/lib/python3.10/dist-packages/sklearn/linear_model/_coordinate_descent.py:631: ConvergenceWarning: Objective did not converge. You might want to increase the number of iterations, check the scale of the features or consider increasing regularisation. Duality gap: 2.687e+12, tolerance: 2.787e+09\n"," model = cd_fast.enet_coordinate_descent(\n"]},{"output_type":"stream","name":"stdout","text":["[CV] END .......................................alpha=0.0001; total time= 1.7s\n"]},{"output_type":"stream","name":"stderr","text":["/usr/local/lib/python3.10/dist-packages/sklearn/linear_model/_coordinate_descent.py:631: ConvergenceWarning: Objective did not converge. You might want to increase the number of iterations, check the scale of the features or consider increasing regularisation. Duality gap: 2.657e+12, tolerance: 2.809e+09\n"," model = cd_fast.enet_coordinate_descent(\n"]},{"output_type":"stream","name":"stdout","text":["[CV] END .......................................alpha=0.0001; total time= 1.8s\n"]},{"output_type":"stream","name":"stderr","text":["/usr/local/lib/python3.10/dist-packages/sklearn/linear_model/_coordinate_descent.py:631: ConvergenceWarning: Objective did not converge. You might want to increase the number of iterations, check the scale of the features or consider increasing regularisation. Duality gap: 2.652e+12, tolerance: 2.760e+09\n"," model = cd_fast.enet_coordinate_descent(\n"]},{"output_type":"stream","name":"stdout","text":["[CV] END .......................alpha=0.00012648552168552957; total time= 1.8s\n"]},{"output_type":"stream","name":"stderr","text":["/usr/local/lib/python3.10/dist-packages/sklearn/linear_model/_coordinate_descent.py:631: ConvergenceWarning: Objective did not converge. You might want to increase the number of iterations, check the scale of the features or consider increasing regularisation. Duality gap: 2.634e+12, tolerance: 2.789e+09\n"," model = cd_fast.enet_coordinate_descent(\n"]},{"output_type":"stream","name":"stdout","text":["[CV] END .......................alpha=0.00012648552168552957; total time= 1.8s\n"]},{"output_type":"stream","name":"stderr","text":["/usr/local/lib/python3.10/dist-packages/sklearn/linear_model/_coordinate_descent.py:631: ConvergenceWarning: Objective did not converge. You might want to increase the number of iterations, check the scale of the features or consider increasing regularisation. Duality gap: 2.736e+12, tolerance: 2.820e+09\n"," model = cd_fast.enet_coordinate_descent(\n"]},{"output_type":"stream","name":"stdout","text":["[CV] END .......................alpha=0.00012648552168552957; total time= 2.1s\n"]},{"output_type":"stream","name":"stderr","text":["/usr/local/lib/python3.10/dist-packages/sklearn/linear_model/_coordinate_descent.py:631: ConvergenceWarning: Objective did not converge. You might want to increase the number of iterations, check the scale of the features or consider increasing regularisation. Duality gap: 2.687e+12, tolerance: 2.787e+09\n"," model = cd_fast.enet_coordinate_descent(\n"]},{"output_type":"stream","name":"stdout","text":["[CV] END .......................alpha=0.00012648552168552957; total time= 3.4s\n"]},{"output_type":"stream","name":"stderr","text":["/usr/local/lib/python3.10/dist-packages/sklearn/linear_model/_coordinate_descent.py:631: ConvergenceWarning: Objective did not converge. You might want to increase the number of iterations, check the scale of the features or consider increasing regularisation. Duality gap: 2.657e+12, tolerance: 2.809e+09\n"," model = cd_fast.enet_coordinate_descent(\n"]},{"output_type":"stream","name":"stdout","text":["[CV] END .......................alpha=0.00012648552168552957; total time= 1.8s\n"]},{"output_type":"stream","name":"stderr","text":["/usr/local/lib/python3.10/dist-packages/sklearn/linear_model/_coordinate_descent.py:631: ConvergenceWarning: Objective did not converge. You might want to increase the number of iterations, check the scale of the features or consider increasing regularisation. Duality gap: 2.652e+12, tolerance: 2.760e+09\n"," model = cd_fast.enet_coordinate_descent(\n"]},{"output_type":"stream","name":"stdout","text":["[CV] END .......................alpha=0.00015998587196060574; total time= 1.8s\n"]},{"output_type":"stream","name":"stderr","text":["/usr/local/lib/python3.10/dist-packages/sklearn/linear_model/_coordinate_descent.py:631: ConvergenceWarning: Objective did not converge. You might want to increase the number of iterations, check the scale of the features or consider increasing regularisation. Duality gap: 2.634e+12, tolerance: 2.789e+09\n"," model = cd_fast.enet_coordinate_descent(\n"]},{"output_type":"stream","name":"stdout","text":["[CV] END .......................alpha=0.00015998587196060574; total time= 1.8s\n"]},{"output_type":"stream","name":"stderr","text":["/usr/local/lib/python3.10/dist-packages/sklearn/linear_model/_coordinate_descent.py:631: ConvergenceWarning: Objective did not converge. You might want to increase the number of iterations, check the scale of the features or consider increasing regularisation. Duality gap: 2.736e+12, tolerance: 2.820e+09\n"," model = cd_fast.enet_coordinate_descent(\n"]},{"output_type":"stream","name":"stdout","text":["[CV] END .......................alpha=0.00015998587196060574; total time= 1.7s\n"]},{"output_type":"stream","name":"stderr","text":["/usr/local/lib/python3.10/dist-packages/sklearn/linear_model/_coordinate_descent.py:631: ConvergenceWarning: Objective did not converge. You might want to increase the number of iterations, check the scale of the features or consider increasing regularisation. Duality gap: 2.687e+12, tolerance: 2.787e+09\n"," model = cd_fast.enet_coordinate_descent(\n"]},{"output_type":"stream","name":"stdout","text":["[CV] END .......................alpha=0.00015998587196060574; total time= 1.7s\n"]},{"output_type":"stream","name":"stderr","text":["/usr/local/lib/python3.10/dist-packages/sklearn/linear_model/_coordinate_descent.py:631: ConvergenceWarning: Objective did not converge. You might want to increase the number of iterations, check the scale of the features or consider increasing regularisation. Duality gap: 2.657e+12, tolerance: 2.809e+09\n"," model = cd_fast.enet_coordinate_descent(\n"]},{"output_type":"stream","name":"stdout","text":["[CV] END .......................alpha=0.00015998587196060574; total time= 2.8s\n"]},{"output_type":"stream","name":"stderr","text":["/usr/local/lib/python3.10/dist-packages/sklearn/linear_model/_coordinate_descent.py:631: ConvergenceWarning: Objective did not converge. You might want to increase the number of iterations, check the scale of the features or consider increasing regularisation. Duality gap: 2.652e+12, tolerance: 2.760e+09\n"," model = cd_fast.enet_coordinate_descent(\n"]},{"output_type":"stream","name":"stdout","text":["[CV] END .......................alpha=0.00020235896477251576; total time= 2.9s\n"]},{"output_type":"stream","name":"stderr","text":["/usr/local/lib/python3.10/dist-packages/sklearn/linear_model/_coordinate_descent.py:631: ConvergenceWarning: Objective did not converge. You might want to increase the number of iterations, check the scale of the features or consider increasing regularisation. Duality gap: 2.634e+12, tolerance: 2.789e+09\n"," model = cd_fast.enet_coordinate_descent(\n"]},{"output_type":"stream","name":"stdout","text":["[CV] END .......................alpha=0.00020235896477251576; total time= 1.8s\n"]},{"output_type":"stream","name":"stderr","text":["/usr/local/lib/python3.10/dist-packages/sklearn/linear_model/_coordinate_descent.py:631: ConvergenceWarning: Objective did not converge. You might want to increase the number of iterations, check the scale of the features or consider increasing regularisation. Duality gap: 2.736e+12, tolerance: 2.820e+09\n"," model = cd_fast.enet_coordinate_descent(\n"]},{"output_type":"stream","name":"stdout","text":["[CV] END .......................alpha=0.00020235896477251576; total time= 1.7s\n"]},{"output_type":"stream","name":"stderr","text":["/usr/local/lib/python3.10/dist-packages/sklearn/linear_model/_coordinate_descent.py:631: ConvergenceWarning: Objective did not converge. You might want to increase the number of iterations, check the scale of the features or consider increasing regularisation. Duality gap: 2.687e+12, tolerance: 2.787e+09\n"," model = cd_fast.enet_coordinate_descent(\n"]},{"output_type":"stream","name":"stdout","text":["[CV] END .......................alpha=0.00020235896477251576; total time= 1.7s\n"]},{"output_type":"stream","name":"stderr","text":["/usr/local/lib/python3.10/dist-packages/sklearn/linear_model/_coordinate_descent.py:631: ConvergenceWarning: Objective did not converge. You might want to increase the number of iterations, check the scale of the features or consider increasing regularisation. Duality gap: 2.657e+12, tolerance: 2.809e+09\n"," model = cd_fast.enet_coordinate_descent(\n"]},{"output_type":"stream","name":"stdout","text":["[CV] END .......................alpha=0.00020235896477251576; total time= 1.7s\n"]},{"output_type":"stream","name":"stderr","text":["/usr/local/lib/python3.10/dist-packages/sklearn/linear_model/_coordinate_descent.py:631: ConvergenceWarning: Objective did not converge. You might want to increase the number of iterations, check the scale of the features or consider increasing regularisation. Duality gap: 2.652e+12, tolerance: 2.760e+09\n"," model = cd_fast.enet_coordinate_descent(\n"]},{"output_type":"stream","name":"stdout","text":["[CV] END ........................alpha=0.0002559547922699536; total time= 1.8s\n"]},{"output_type":"stream","name":"stderr","text":["/usr/local/lib/python3.10/dist-packages/sklearn/linear_model/_coordinate_descent.py:631: ConvergenceWarning: Objective did not converge. You might want to increase the number of iterations, check the scale of the features or consider increasing regularisation. Duality gap: 2.634e+12, tolerance: 2.789e+09\n"," model = cd_fast.enet_coordinate_descent(\n"]},{"output_type":"stream","name":"stdout","text":["[CV] END ........................alpha=0.0002559547922699536; total time= 3.2s\n"]},{"output_type":"stream","name":"stderr","text":["/usr/local/lib/python3.10/dist-packages/sklearn/linear_model/_coordinate_descent.py:631: ConvergenceWarning: Objective did not converge. You might want to increase the number of iterations, check the scale of the features or consider increasing regularisation. Duality gap: 2.736e+12, tolerance: 2.820e+09\n"," model = cd_fast.enet_coordinate_descent(\n"]},{"output_type":"stream","name":"stdout","text":["[CV] END ........................alpha=0.0002559547922699536; total time= 2.3s\n"]},{"output_type":"stream","name":"stderr","text":["/usr/local/lib/python3.10/dist-packages/sklearn/linear_model/_coordinate_descent.py:631: ConvergenceWarning: Objective did not converge. You might want to increase the number of iterations, check the scale of the features or consider increasing regularisation. Duality gap: 2.687e+12, tolerance: 2.787e+09\n"," model = cd_fast.enet_coordinate_descent(\n"]},{"output_type":"stream","name":"stdout","text":["[CV] END ........................alpha=0.0002559547922699536; total time= 1.8s\n"]},{"output_type":"stream","name":"stderr","text":["/usr/local/lib/python3.10/dist-packages/sklearn/linear_model/_coordinate_descent.py:631: ConvergenceWarning: Objective did not converge. You might want to increase the number of iterations, check the scale of the features or consider increasing regularisation. Duality gap: 2.657e+12, tolerance: 2.809e+09\n"," model = cd_fast.enet_coordinate_descent(\n"]},{"output_type":"stream","name":"stdout","text":["[CV] END ........................alpha=0.0002559547922699536; total time= 1.8s\n"]},{"output_type":"stream","name":"stderr","text":["/usr/local/lib/python3.10/dist-packages/sklearn/linear_model/_coordinate_descent.py:631: ConvergenceWarning: Objective did not converge. You might want to increase the number of iterations, check the scale of the features or consider increasing regularisation. Duality gap: 2.652e+12, tolerance: 2.760e+09\n"," model = cd_fast.enet_coordinate_descent(\n"]},{"output_type":"stream","name":"stdout","text":["[CV] END .......................alpha=0.00032374575428176434; total time= 1.8s\n"]},{"output_type":"stream","name":"stderr","text":["/usr/local/lib/python3.10/dist-packages/sklearn/linear_model/_coordinate_descent.py:631: ConvergenceWarning: Objective did not converge. You might want to increase the number of iterations, check the scale of the features or consider increasing regularisation. Duality gap: 2.634e+12, tolerance: 2.789e+09\n"," model = cd_fast.enet_coordinate_descent(\n"]},{"output_type":"stream","name":"stdout","text":["[CV] END .......................alpha=0.00032374575428176434; total time= 1.8s\n"]},{"output_type":"stream","name":"stderr","text":["/usr/local/lib/python3.10/dist-packages/sklearn/linear_model/_coordinate_descent.py:631: ConvergenceWarning: Objective did not converge. You might want to increase the number of iterations, check the scale of the features or consider increasing regularisation. Duality gap: 2.736e+12, tolerance: 2.820e+09\n"," model = cd_fast.enet_coordinate_descent(\n"]},{"output_type":"stream","name":"stdout","text":["[CV] END .......................alpha=0.00032374575428176434; total time= 2.2s\n"]},{"output_type":"stream","name":"stderr","text":["/usr/local/lib/python3.10/dist-packages/sklearn/linear_model/_coordinate_descent.py:631: ConvergenceWarning: Objective did not converge. You might want to increase the number of iterations, check the scale of the features or consider increasing regularisation. Duality gap: 2.687e+12, tolerance: 2.787e+09\n"," model = cd_fast.enet_coordinate_descent(\n"]},{"output_type":"stream","name":"stdout","text":["[CV] END .......................alpha=0.00032374575428176434; total time= 3.5s\n"]},{"output_type":"stream","name":"stderr","text":["/usr/local/lib/python3.10/dist-packages/sklearn/linear_model/_coordinate_descent.py:631: ConvergenceWarning: Objective did not converge. You might want to increase the number of iterations, check the scale of the features or consider increasing regularisation. Duality gap: 2.657e+12, tolerance: 2.809e+09\n"," model = cd_fast.enet_coordinate_descent(\n"]},{"output_type":"stream","name":"stdout","text":["[CV] END .......................alpha=0.00032374575428176434; total time= 1.8s\n"]},{"output_type":"stream","name":"stderr","text":["/usr/local/lib/python3.10/dist-packages/sklearn/linear_model/_coordinate_descent.py:631: ConvergenceWarning: Objective did not converge. You might want to increase the number of iterations, check the scale of the features or consider increasing regularisation. Duality gap: 2.652e+12, tolerance: 2.760e+09\n"," model = cd_fast.enet_coordinate_descent(\n"]},{"output_type":"stream","name":"stdout","text":["[CV] END .......................alpha=0.00040949150623804275; total time= 1.8s\n"]},{"output_type":"stream","name":"stderr","text":["/usr/local/lib/python3.10/dist-packages/sklearn/linear_model/_coordinate_descent.py:631: ConvergenceWarning: Objective did not converge. You might want to increase the number of iterations, check the scale of the features or consider increasing regularisation. Duality gap: 2.634e+12, tolerance: 2.789e+09\n"," model = cd_fast.enet_coordinate_descent(\n"]},{"output_type":"stream","name":"stdout","text":["[CV] END .......................alpha=0.00040949150623804275; total time= 1.7s\n"]},{"output_type":"stream","name":"stderr","text":["/usr/local/lib/python3.10/dist-packages/sklearn/linear_model/_coordinate_descent.py:631: ConvergenceWarning: Objective did not converge. You might want to increase the number of iterations, check the scale of the features or consider increasing regularisation. Duality gap: 2.736e+12, tolerance: 2.820e+09\n"," model = cd_fast.enet_coordinate_descent(\n"]},{"output_type":"stream","name":"stdout","text":["[CV] END .......................alpha=0.00040949150623804275; total time= 1.7s\n"]},{"output_type":"stream","name":"stderr","text":["/usr/local/lib/python3.10/dist-packages/sklearn/linear_model/_coordinate_descent.py:631: ConvergenceWarning: Objective did not converge. You might want to increase the number of iterations, check the scale of the features or consider increasing regularisation. Duality gap: 2.687e+12, tolerance: 2.787e+09\n"," model = cd_fast.enet_coordinate_descent(\n"]},{"output_type":"stream","name":"stdout","text":["[CV] END .......................alpha=0.00040949150623804275; total time= 1.7s\n"]},{"output_type":"stream","name":"stderr","text":["/usr/local/lib/python3.10/dist-packages/sklearn/linear_model/_coordinate_descent.py:631: ConvergenceWarning: Objective did not converge. You might want to increase the number of iterations, check the scale of the features or consider increasing regularisation. Duality gap: 2.657e+12, tolerance: 2.809e+09\n"," model = cd_fast.enet_coordinate_descent(\n"]},{"output_type":"stream","name":"stdout","text":["[CV] END .......................alpha=0.00040949150623804275; total time= 2.8s\n"]},{"output_type":"stream","name":"stderr","text":["/usr/local/lib/python3.10/dist-packages/sklearn/linear_model/_coordinate_descent.py:631: ConvergenceWarning: Objective did not converge. You might want to increase the number of iterations, check the scale of the features or consider increasing regularisation. Duality gap: 2.652e+12, tolerance: 2.760e+09\n"," model = cd_fast.enet_coordinate_descent(\n"]},{"output_type":"stream","name":"stdout","text":["[CV] END ........................alpha=0.0005179474679231213; total time= 2.8s\n"]},{"output_type":"stream","name":"stderr","text":["/usr/local/lib/python3.10/dist-packages/sklearn/linear_model/_coordinate_descent.py:631: ConvergenceWarning: Objective did not converge. You might want to increase the number of iterations, check the scale of the features or consider increasing regularisation. Duality gap: 2.634e+12, tolerance: 2.789e+09\n"," model = cd_fast.enet_coordinate_descent(\n"]},{"output_type":"stream","name":"stdout","text":["[CV] END ........................alpha=0.0005179474679231213; total time= 1.8s\n"]},{"output_type":"stream","name":"stderr","text":["/usr/local/lib/python3.10/dist-packages/sklearn/linear_model/_coordinate_descent.py:631: ConvergenceWarning: Objective did not converge. You might want to increase the number of iterations, check the scale of the features or consider increasing regularisation. Duality gap: 2.736e+12, tolerance: 2.820e+09\n"," model = cd_fast.enet_coordinate_descent(\n"]},{"output_type":"stream","name":"stdout","text":["[CV] END ........................alpha=0.0005179474679231213; total time= 1.7s\n"]},{"output_type":"stream","name":"stderr","text":["/usr/local/lib/python3.10/dist-packages/sklearn/linear_model/_coordinate_descent.py:631: ConvergenceWarning: Objective did not converge. You might want to increase the number of iterations, check the scale of the features or consider increasing regularisation. Duality gap: 2.687e+12, tolerance: 2.787e+09\n"," model = cd_fast.enet_coordinate_descent(\n"]},{"output_type":"stream","name":"stdout","text":["[CV] END ........................alpha=0.0005179474679231213; total time= 1.7s\n"]},{"output_type":"stream","name":"stderr","text":["/usr/local/lib/python3.10/dist-packages/sklearn/linear_model/_coordinate_descent.py:631: ConvergenceWarning: Objective did not converge. You might want to increase the number of iterations, check the scale of the features or consider increasing regularisation. Duality gap: 2.657e+12, tolerance: 2.809e+09\n"," model = cd_fast.enet_coordinate_descent(\n"]},{"output_type":"stream","name":"stdout","text":["[CV] END ........................alpha=0.0005179474679231213; total time= 1.8s\n"]},{"output_type":"stream","name":"stderr","text":["/usr/local/lib/python3.10/dist-packages/sklearn/linear_model/_coordinate_descent.py:631: ConvergenceWarning: Objective did not converge. You might want to increase the number of iterations, check the scale of the features or consider increasing regularisation. Duality gap: 2.652e+12, tolerance: 2.760e+09\n"," model = cd_fast.enet_coordinate_descent(\n"]},{"output_type":"stream","name":"stdout","text":["[CV] END ........................alpha=0.0006551285568595509; total time= 1.7s\n"]},{"output_type":"stream","name":"stderr","text":["/usr/local/lib/python3.10/dist-packages/sklearn/linear_model/_coordinate_descent.py:631: ConvergenceWarning: Objective did not converge. You might want to increase the number of iterations, check the scale of the features or consider increasing regularisation. Duality gap: 2.634e+12, tolerance: 2.789e+09\n"," model = cd_fast.enet_coordinate_descent(\n"]},{"output_type":"stream","name":"stdout","text":["[CV] END ........................alpha=0.0006551285568595509; total time= 3.6s\n"]},{"output_type":"stream","name":"stderr","text":["/usr/local/lib/python3.10/dist-packages/sklearn/linear_model/_coordinate_descent.py:631: ConvergenceWarning: Objective did not converge. You might want to increase the number of iterations, check the scale of the features or consider increasing regularisation. Duality gap: 2.736e+12, tolerance: 2.820e+09\n"," model = cd_fast.enet_coordinate_descent(\n"]},{"output_type":"stream","name":"stdout","text":["[CV] END ........................alpha=0.0006551285568595509; total time= 2.0s\n"]},{"output_type":"stream","name":"stderr","text":["/usr/local/lib/python3.10/dist-packages/sklearn/linear_model/_coordinate_descent.py:631: ConvergenceWarning: Objective did not converge. You might want to increase the number of iterations, check the scale of the features or consider increasing regularisation. Duality gap: 2.687e+12, tolerance: 2.787e+09\n"," model = cd_fast.enet_coordinate_descent(\n"]},{"output_type":"stream","name":"stdout","text":["[CV] END ........................alpha=0.0006551285568595509; total time= 1.7s\n"]},{"output_type":"stream","name":"stderr","text":["/usr/local/lib/python3.10/dist-packages/sklearn/linear_model/_coordinate_descent.py:631: ConvergenceWarning: Objective did not converge. You might want to increase the number of iterations, check the scale of the features or consider increasing regularisation. Duality gap: 2.658e+12, tolerance: 2.809e+09\n"," model = cd_fast.enet_coordinate_descent(\n"]},{"output_type":"stream","name":"stdout","text":["[CV] END ........................alpha=0.0006551285568595509; total time= 1.7s\n"]},{"output_type":"stream","name":"stderr","text":["/usr/local/lib/python3.10/dist-packages/sklearn/linear_model/_coordinate_descent.py:631: ConvergenceWarning: Objective did not converge. You might want to increase the number of iterations, check the scale of the features or consider increasing regularisation. Duality gap: 2.652e+12, tolerance: 2.760e+09\n"," model = cd_fast.enet_coordinate_descent(\n"]},{"output_type":"stream","name":"stdout","text":["[CV] END ........................alpha=0.0008286427728546842; total time= 1.8s\n"]},{"output_type":"stream","name":"stderr","text":["/usr/local/lib/python3.10/dist-packages/sklearn/linear_model/_coordinate_descent.py:631: ConvergenceWarning: Objective did not converge. You might want to increase the number of iterations, check the scale of the features or consider increasing regularisation. Duality gap: 2.634e+12, tolerance: 2.789e+09\n"," model = cd_fast.enet_coordinate_descent(\n"]},{"output_type":"stream","name":"stdout","text":["[CV] END ........................alpha=0.0008286427728546842; total time= 1.8s\n"]},{"output_type":"stream","name":"stderr","text":["/usr/local/lib/python3.10/dist-packages/sklearn/linear_model/_coordinate_descent.py:631: ConvergenceWarning: Objective did not converge. You might want to increase the number of iterations, check the scale of the features or consider increasing regularisation. Duality gap: 2.736e+12, tolerance: 2.820e+09\n"," model = cd_fast.enet_coordinate_descent(\n"]},{"output_type":"stream","name":"stdout","text":["[CV] END ........................alpha=0.0008286427728546842; total time= 2.1s\n"]},{"output_type":"stream","name":"stderr","text":["/usr/local/lib/python3.10/dist-packages/sklearn/linear_model/_coordinate_descent.py:631: ConvergenceWarning: Objective did not converge. You might want to increase the number of iterations, check the scale of the features or consider increasing regularisation. Duality gap: 2.687e+12, tolerance: 2.787e+09\n"," model = cd_fast.enet_coordinate_descent(\n"]},{"output_type":"stream","name":"stdout","text":["[CV] END ........................alpha=0.0008286427728546842; total time= 3.4s\n"]},{"output_type":"stream","name":"stderr","text":["/usr/local/lib/python3.10/dist-packages/sklearn/linear_model/_coordinate_descent.py:631: ConvergenceWarning: Objective did not converge. You might want to increase the number of iterations, check the scale of the features or consider increasing regularisation. Duality gap: 2.658e+12, tolerance: 2.809e+09\n"," model = cd_fast.enet_coordinate_descent(\n"]},{"output_type":"stream","name":"stdout","text":["[CV] END ........................alpha=0.0008286427728546842; total time= 1.7s\n"]},{"output_type":"stream","name":"stderr","text":["/usr/local/lib/python3.10/dist-packages/sklearn/linear_model/_coordinate_descent.py:631: ConvergenceWarning: Objective did not converge. You might want to increase the number of iterations, check the scale of the features or consider increasing regularisation. Duality gap: 2.652e+12, tolerance: 2.760e+09\n"," model = cd_fast.enet_coordinate_descent(\n"]},{"output_type":"stream","name":"stdout","text":["[CV] END ........................alpha=0.0010481131341546852; total time= 1.8s\n"]},{"output_type":"stream","name":"stderr","text":["/usr/local/lib/python3.10/dist-packages/sklearn/linear_model/_coordinate_descent.py:631: ConvergenceWarning: Objective did not converge. You might want to increase the number of iterations, check the scale of the features or consider increasing regularisation. Duality gap: 2.634e+12, tolerance: 2.789e+09\n"," model = cd_fast.enet_coordinate_descent(\n"]},{"output_type":"stream","name":"stdout","text":["[CV] END ........................alpha=0.0010481131341546852; total time= 1.8s\n"]},{"output_type":"stream","name":"stderr","text":["/usr/local/lib/python3.10/dist-packages/sklearn/linear_model/_coordinate_descent.py:631: ConvergenceWarning: Objective did not converge. You might want to increase the number of iterations, check the scale of the features or consider increasing regularisation. Duality gap: 2.736e+12, tolerance: 2.820e+09\n"," model = cd_fast.enet_coordinate_descent(\n"]},{"output_type":"stream","name":"stdout","text":["[CV] END ........................alpha=0.0010481131341546852; total time= 1.8s\n"]},{"output_type":"stream","name":"stderr","text":["/usr/local/lib/python3.10/dist-packages/sklearn/linear_model/_coordinate_descent.py:631: ConvergenceWarning: Objective did not converge. You might want to increase the number of iterations, check the scale of the features or consider increasing regularisation. Duality gap: 2.687e+12, tolerance: 2.787e+09\n"," model = cd_fast.enet_coordinate_descent(\n"]},{"output_type":"stream","name":"stdout","text":["[CV] END ........................alpha=0.0010481131341546852; total time= 1.8s\n"]},{"output_type":"stream","name":"stderr","text":["/usr/local/lib/python3.10/dist-packages/sklearn/linear_model/_coordinate_descent.py:631: ConvergenceWarning: Objective did not converge. You might want to increase the number of iterations, check the scale of the features or consider increasing regularisation. Duality gap: 2.658e+12, tolerance: 2.809e+09\n"," model = cd_fast.enet_coordinate_descent(\n"]},{"output_type":"stream","name":"stdout","text":["[CV] END ........................alpha=0.0010481131341546852; total time= 2.8s\n"]},{"output_type":"stream","name":"stderr","text":["/usr/local/lib/python3.10/dist-packages/sklearn/linear_model/_coordinate_descent.py:631: ConvergenceWarning: Objective did not converge. You might want to increase the number of iterations, check the scale of the features or consider increasing regularisation. Duality gap: 2.652e+12, tolerance: 2.760e+09\n"," model = cd_fast.enet_coordinate_descent(\n"]},{"output_type":"stream","name":"stdout","text":["[CV] END ........................alpha=0.0013257113655901094; total time= 2.7s\n"]},{"output_type":"stream","name":"stderr","text":["/usr/local/lib/python3.10/dist-packages/sklearn/linear_model/_coordinate_descent.py:631: ConvergenceWarning: Objective did not converge. You might want to increase the number of iterations, check the scale of the features or consider increasing regularisation. Duality gap: 2.634e+12, tolerance: 2.789e+09\n"," model = cd_fast.enet_coordinate_descent(\n"]},{"output_type":"stream","name":"stdout","text":["[CV] END ........................alpha=0.0013257113655901094; total time= 1.8s\n"]},{"output_type":"stream","name":"stderr","text":["/usr/local/lib/python3.10/dist-packages/sklearn/linear_model/_coordinate_descent.py:631: ConvergenceWarning: Objective did not converge. You might want to increase the number of iterations, check the scale of the features or consider increasing regularisation. Duality gap: 2.736e+12, tolerance: 2.820e+09\n"," model = cd_fast.enet_coordinate_descent(\n"]},{"output_type":"stream","name":"stdout","text":["[CV] END ........................alpha=0.0013257113655901094; total time= 1.7s\n"]},{"output_type":"stream","name":"stderr","text":["/usr/local/lib/python3.10/dist-packages/sklearn/linear_model/_coordinate_descent.py:631: ConvergenceWarning: Objective did not converge. You might want to increase the number of iterations, check the scale of the features or consider increasing regularisation. Duality gap: 2.687e+12, tolerance: 2.787e+09\n"," model = cd_fast.enet_coordinate_descent(\n"]},{"output_type":"stream","name":"stdout","text":["[CV] END ........................alpha=0.0013257113655901094; total time= 1.7s\n"]},{"output_type":"stream","name":"stderr","text":["/usr/local/lib/python3.10/dist-packages/sklearn/linear_model/_coordinate_descent.py:631: ConvergenceWarning: Objective did not converge. You might want to increase the number of iterations, check the scale of the features or consider increasing regularisation. Duality gap: 2.658e+12, tolerance: 2.809e+09\n"," model = cd_fast.enet_coordinate_descent(\n"]},{"output_type":"stream","name":"stdout","text":["[CV] END ........................alpha=0.0013257113655901094; total time= 1.8s\n"]},{"output_type":"stream","name":"stderr","text":["/usr/local/lib/python3.10/dist-packages/sklearn/linear_model/_coordinate_descent.py:631: ConvergenceWarning: Objective did not converge. You might want to increase the number of iterations, check the scale of the features or consider increasing regularisation. Duality gap: 2.652e+12, tolerance: 2.760e+09\n"," model = cd_fast.enet_coordinate_descent(\n"]},{"output_type":"stream","name":"stdout","text":["[CV] END ........................alpha=0.0016768329368110084; total time= 1.8s\n"]},{"output_type":"stream","name":"stderr","text":["/usr/local/lib/python3.10/dist-packages/sklearn/linear_model/_coordinate_descent.py:631: ConvergenceWarning: Objective did not converge. You might want to increase the number of iterations, check the scale of the features or consider increasing regularisation. Duality gap: 2.634e+12, tolerance: 2.789e+09\n"," model = cd_fast.enet_coordinate_descent(\n"]},{"output_type":"stream","name":"stdout","text":["[CV] END ........................alpha=0.0016768329368110084; total time= 3.6s\n"]},{"output_type":"stream","name":"stderr","text":["/usr/local/lib/python3.10/dist-packages/sklearn/linear_model/_coordinate_descent.py:631: ConvergenceWarning: Objective did not converge. You might want to increase the number of iterations, check the scale of the features or consider increasing regularisation. Duality gap: 2.736e+12, tolerance: 2.820e+09\n"," model = cd_fast.enet_coordinate_descent(\n"]},{"output_type":"stream","name":"stdout","text":["[CV] END ........................alpha=0.0016768329368110084; total time= 2.0s\n"]},{"output_type":"stream","name":"stderr","text":["/usr/local/lib/python3.10/dist-packages/sklearn/linear_model/_coordinate_descent.py:631: ConvergenceWarning: Objective did not converge. You might want to increase the number of iterations, check the scale of the features or consider increasing regularisation. Duality gap: 2.687e+12, tolerance: 2.787e+09\n"," model = cd_fast.enet_coordinate_descent(\n"]},{"output_type":"stream","name":"stdout","text":["[CV] END ........................alpha=0.0016768329368110084; total time= 1.8s\n"]},{"output_type":"stream","name":"stderr","text":["/usr/local/lib/python3.10/dist-packages/sklearn/linear_model/_coordinate_descent.py:631: ConvergenceWarning: Objective did not converge. You might want to increase the number of iterations, check the scale of the features or consider increasing regularisation. Duality gap: 2.658e+12, tolerance: 2.809e+09\n"," model = cd_fast.enet_coordinate_descent(\n"]},{"output_type":"stream","name":"stdout","text":["[CV] END ........................alpha=0.0016768329368110084; total time= 1.8s\n"]},{"output_type":"stream","name":"stderr","text":["/usr/local/lib/python3.10/dist-packages/sklearn/linear_model/_coordinate_descent.py:631: ConvergenceWarning: Objective did not converge. You might want to increase the number of iterations, check the scale of the features or consider increasing regularisation. Duality gap: 2.652e+12, tolerance: 2.760e+09\n"," model = cd_fast.enet_coordinate_descent(\n"]},{"output_type":"stream","name":"stdout","text":["[CV] END ........................alpha=0.0021209508879201904; total time= 1.8s\n"]},{"output_type":"stream","name":"stderr","text":["/usr/local/lib/python3.10/dist-packages/sklearn/linear_model/_coordinate_descent.py:631: ConvergenceWarning: Objective did not converge. You might want to increase the number of iterations, check the scale of the features or consider increasing regularisation. Duality gap: 2.634e+12, tolerance: 2.789e+09\n"," model = cd_fast.enet_coordinate_descent(\n"]},{"output_type":"stream","name":"stdout","text":["[CV] END ........................alpha=0.0021209508879201904; total time= 1.8s\n"]},{"output_type":"stream","name":"stderr","text":["/usr/local/lib/python3.10/dist-packages/sklearn/linear_model/_coordinate_descent.py:631: ConvergenceWarning: Objective did not converge. You might want to increase the number of iterations, check the scale of the features or consider increasing regularisation. Duality gap: 2.736e+12, tolerance: 2.820e+09\n"," model = cd_fast.enet_coordinate_descent(\n"]},{"output_type":"stream","name":"stdout","text":["[CV] END ........................alpha=0.0021209508879201904; total time= 2.1s\n"]},{"output_type":"stream","name":"stderr","text":["/usr/local/lib/python3.10/dist-packages/sklearn/linear_model/_coordinate_descent.py:631: ConvergenceWarning: Objective did not converge. You might want to increase the number of iterations, check the scale of the features or consider increasing regularisation. Duality gap: 2.687e+12, tolerance: 2.787e+09\n"," model = cd_fast.enet_coordinate_descent(\n"]},{"output_type":"stream","name":"stdout","text":["[CV] END ........................alpha=0.0021209508879201904; total time= 3.5s\n"]},{"output_type":"stream","name":"stderr","text":["/usr/local/lib/python3.10/dist-packages/sklearn/linear_model/_coordinate_descent.py:631: ConvergenceWarning: Objective did not converge. You might want to increase the number of iterations, check the scale of the features or consider increasing regularisation. Duality gap: 2.658e+12, tolerance: 2.809e+09\n"," model = cd_fast.enet_coordinate_descent(\n"]},{"output_type":"stream","name":"stdout","text":["[CV] END ........................alpha=0.0021209508879201904; total time= 1.8s\n"]},{"output_type":"stream","name":"stderr","text":["/usr/local/lib/python3.10/dist-packages/sklearn/linear_model/_coordinate_descent.py:631: ConvergenceWarning: Objective did not converge. You might want to increase the number of iterations, check the scale of the features or consider increasing regularisation. Duality gap: 2.652e+12, tolerance: 2.760e+09\n"," model = cd_fast.enet_coordinate_descent(\n"]},{"output_type":"stream","name":"stdout","text":["[CV] END .........................alpha=0.002682695795279727; total time= 1.8s\n"]},{"output_type":"stream","name":"stderr","text":["/usr/local/lib/python3.10/dist-packages/sklearn/linear_model/_coordinate_descent.py:631: ConvergenceWarning: Objective did not converge. You might want to increase the number of iterations, check the scale of the features or consider increasing regularisation. Duality gap: 2.634e+12, tolerance: 2.789e+09\n"," model = cd_fast.enet_coordinate_descent(\n"]},{"output_type":"stream","name":"stdout","text":["[CV] END .........................alpha=0.002682695795279727; total time= 1.7s\n"]},{"output_type":"stream","name":"stderr","text":["/usr/local/lib/python3.10/dist-packages/sklearn/linear_model/_coordinate_descent.py:631: ConvergenceWarning: Objective did not converge. You might want to increase the number of iterations, check the scale of the features or consider increasing regularisation. Duality gap: 2.736e+12, tolerance: 2.820e+09\n"," model = cd_fast.enet_coordinate_descent(\n"]},{"output_type":"stream","name":"stdout","text":["[CV] END .........................alpha=0.002682695795279727; total time= 1.7s\n"]},{"output_type":"stream","name":"stderr","text":["/usr/local/lib/python3.10/dist-packages/sklearn/linear_model/_coordinate_descent.py:631: ConvergenceWarning: Objective did not converge. You might want to increase the number of iterations, check the scale of the features or consider increasing regularisation. Duality gap: 2.687e+12, tolerance: 2.787e+09\n"," model = cd_fast.enet_coordinate_descent(\n"]},{"output_type":"stream","name":"stdout","text":["[CV] END .........................alpha=0.002682695795279727; total time= 1.8s\n"]},{"output_type":"stream","name":"stderr","text":["/usr/local/lib/python3.10/dist-packages/sklearn/linear_model/_coordinate_descent.py:631: ConvergenceWarning: Objective did not converge. You might want to increase the number of iterations, check the scale of the features or consider increasing regularisation. Duality gap: 2.658e+12, tolerance: 2.809e+09\n"," model = cd_fast.enet_coordinate_descent(\n"]},{"output_type":"stream","name":"stdout","text":["[CV] END .........................alpha=0.002682695795279727; total time= 2.7s\n"]},{"output_type":"stream","name":"stderr","text":["/usr/local/lib/python3.10/dist-packages/sklearn/linear_model/_coordinate_descent.py:631: ConvergenceWarning: Objective did not converge. You might want to increase the number of iterations, check the scale of the features or consider increasing regularisation. Duality gap: 2.652e+12, tolerance: 2.760e+09\n"," model = cd_fast.enet_coordinate_descent(\n"]},{"output_type":"stream","name":"stdout","text":["[CV] END ..........................alpha=0.00339322177189533; total time= 2.7s\n"]},{"output_type":"stream","name":"stderr","text":["/usr/local/lib/python3.10/dist-packages/sklearn/linear_model/_coordinate_descent.py:631: ConvergenceWarning: Objective did not converge. You might want to increase the number of iterations, check the scale of the features or consider increasing regularisation. Duality gap: 2.634e+12, tolerance: 2.789e+09\n"," model = cd_fast.enet_coordinate_descent(\n"]},{"output_type":"stream","name":"stdout","text":["[CV] END ..........................alpha=0.00339322177189533; total time= 1.8s\n"]},{"output_type":"stream","name":"stderr","text":["/usr/local/lib/python3.10/dist-packages/sklearn/linear_model/_coordinate_descent.py:631: ConvergenceWarning: Objective did not converge. You might want to increase the number of iterations, check the scale of the features or consider increasing regularisation. Duality gap: 2.736e+12, tolerance: 2.820e+09\n"," model = cd_fast.enet_coordinate_descent(\n"]},{"output_type":"stream","name":"stdout","text":["[CV] END ..........................alpha=0.00339322177189533; total time= 1.8s\n"]},{"output_type":"stream","name":"stderr","text":["/usr/local/lib/python3.10/dist-packages/sklearn/linear_model/_coordinate_descent.py:631: ConvergenceWarning: Objective did not converge. You might want to increase the number of iterations, check the scale of the features or consider increasing regularisation. Duality gap: 2.687e+12, tolerance: 2.787e+09\n"," model = cd_fast.enet_coordinate_descent(\n"]},{"output_type":"stream","name":"stdout","text":["[CV] END ..........................alpha=0.00339322177189533; total time= 1.8s\n"]},{"output_type":"stream","name":"stderr","text":["/usr/local/lib/python3.10/dist-packages/sklearn/linear_model/_coordinate_descent.py:631: ConvergenceWarning: Objective did not converge. You might want to increase the number of iterations, check the scale of the features or consider increasing regularisation. Duality gap: 2.658e+12, tolerance: 2.809e+09\n"," model = cd_fast.enet_coordinate_descent(\n"]},{"output_type":"stream","name":"stdout","text":["[CV] END ..........................alpha=0.00339322177189533; total time= 1.8s\n"]},{"output_type":"stream","name":"stderr","text":["/usr/local/lib/python3.10/dist-packages/sklearn/linear_model/_coordinate_descent.py:631: ConvergenceWarning: Objective did not converge. You might want to increase the number of iterations, check the scale of the features or consider increasing regularisation. Duality gap: 2.652e+12, tolerance: 2.760e+09\n"," model = cd_fast.enet_coordinate_descent(\n"]},{"output_type":"stream","name":"stdout","text":["[CV] END .........................alpha=0.004291934260128779; total time= 1.8s\n"]},{"output_type":"stream","name":"stderr","text":["/usr/local/lib/python3.10/dist-packages/sklearn/linear_model/_coordinate_descent.py:631: ConvergenceWarning: Objective did not converge. You might want to increase the number of iterations, check the scale of the features or consider increasing regularisation. Duality gap: 2.634e+12, tolerance: 2.789e+09\n"," model = cd_fast.enet_coordinate_descent(\n"]},{"output_type":"stream","name":"stdout","text":["[CV] END .........................alpha=0.004291934260128779; total time= 3.6s\n"]},{"output_type":"stream","name":"stderr","text":["/usr/local/lib/python3.10/dist-packages/sklearn/linear_model/_coordinate_descent.py:631: ConvergenceWarning: Objective did not converge. You might want to increase the number of iterations, check the scale of the features or consider increasing regularisation. Duality gap: 2.736e+12, tolerance: 2.820e+09\n"," model = cd_fast.enet_coordinate_descent(\n"]},{"output_type":"stream","name":"stdout","text":["[CV] END .........................alpha=0.004291934260128779; total time= 1.9s\n"]},{"output_type":"stream","name":"stderr","text":["/usr/local/lib/python3.10/dist-packages/sklearn/linear_model/_coordinate_descent.py:631: ConvergenceWarning: Objective did not converge. You might want to increase the number of iterations, check the scale of the features or consider increasing regularisation. Duality gap: 2.687e+12, tolerance: 2.787e+09\n"," model = cd_fast.enet_coordinate_descent(\n"]},{"output_type":"stream","name":"stdout","text":["[CV] END .........................alpha=0.004291934260128779; total time= 1.7s\n"]},{"output_type":"stream","name":"stderr","text":["/usr/local/lib/python3.10/dist-packages/sklearn/linear_model/_coordinate_descent.py:631: ConvergenceWarning: Objective did not converge. You might want to increase the number of iterations, check the scale of the features or consider increasing regularisation. Duality gap: 2.658e+12, tolerance: 2.809e+09\n"," model = cd_fast.enet_coordinate_descent(\n"]},{"output_type":"stream","name":"stdout","text":["[CV] END .........................alpha=0.004291934260128779; total time= 1.8s\n"]},{"output_type":"stream","name":"stderr","text":["/usr/local/lib/python3.10/dist-packages/sklearn/linear_model/_coordinate_descent.py:631: ConvergenceWarning: Objective did not converge. You might want to increase the number of iterations, check the scale of the features or consider increasing regularisation. Duality gap: 2.652e+12, tolerance: 2.760e+09\n"," model = cd_fast.enet_coordinate_descent(\n"]},{"output_type":"stream","name":"stdout","text":["[CV] END .........................alpha=0.005428675439323859; total time= 1.8s\n"]},{"output_type":"stream","name":"stderr","text":["/usr/local/lib/python3.10/dist-packages/sklearn/linear_model/_coordinate_descent.py:631: ConvergenceWarning: Objective did not converge. You might want to increase the number of iterations, check the scale of the features or consider increasing regularisation. Duality gap: 2.634e+12, tolerance: 2.789e+09\n"," model = cd_fast.enet_coordinate_descent(\n"]},{"output_type":"stream","name":"stdout","text":["[CV] END .........................alpha=0.005428675439323859; total time= 1.7s\n"]},{"output_type":"stream","name":"stderr","text":["/usr/local/lib/python3.10/dist-packages/sklearn/linear_model/_coordinate_descent.py:631: ConvergenceWarning: Objective did not converge. You might want to increase the number of iterations, check the scale of the features or consider increasing regularisation. Duality gap: 2.736e+12, tolerance: 2.820e+09\n"," model = cd_fast.enet_coordinate_descent(\n"]},{"output_type":"stream","name":"stdout","text":["[CV] END .........................alpha=0.005428675439323859; total time= 2.5s\n"]},{"output_type":"stream","name":"stderr","text":["/usr/local/lib/python3.10/dist-packages/sklearn/linear_model/_coordinate_descent.py:631: ConvergenceWarning: Objective did not converge. You might want to increase the number of iterations, check the scale of the features or consider increasing regularisation. Duality gap: 2.687e+12, tolerance: 2.787e+09\n"," model = cd_fast.enet_coordinate_descent(\n"]},{"output_type":"stream","name":"stdout","text":["[CV] END .........................alpha=0.005428675439323859; total time= 3.1s\n"]},{"output_type":"stream","name":"stderr","text":["/usr/local/lib/python3.10/dist-packages/sklearn/linear_model/_coordinate_descent.py:631: ConvergenceWarning: Objective did not converge. You might want to increase the number of iterations, check the scale of the features or consider increasing regularisation. Duality gap: 2.658e+12, tolerance: 2.809e+09\n"," model = cd_fast.enet_coordinate_descent(\n"]},{"output_type":"stream","name":"stdout","text":["[CV] END .........................alpha=0.005428675439323859; total time= 1.8s\n"]},{"output_type":"stream","name":"stderr","text":["/usr/local/lib/python3.10/dist-packages/sklearn/linear_model/_coordinate_descent.py:631: ConvergenceWarning: Objective did not converge. You might want to increase the number of iterations, check the scale of the features or consider increasing regularisation. Duality gap: 2.652e+12, tolerance: 2.760e+09\n"," model = cd_fast.enet_coordinate_descent(\n"]},{"output_type":"stream","name":"stdout","text":["[CV] END .........................alpha=0.006866488450042998; total time= 1.7s\n"]},{"output_type":"stream","name":"stderr","text":["/usr/local/lib/python3.10/dist-packages/sklearn/linear_model/_coordinate_descent.py:631: ConvergenceWarning: Objective did not converge. You might want to increase the number of iterations, check the scale of the features or consider increasing regularisation. Duality gap: 2.634e+12, tolerance: 2.789e+09\n"," model = cd_fast.enet_coordinate_descent(\n"]},{"output_type":"stream","name":"stdout","text":["[CV] END .........................alpha=0.006866488450042998; total time= 1.8s\n"]},{"output_type":"stream","name":"stderr","text":["/usr/local/lib/python3.10/dist-packages/sklearn/linear_model/_coordinate_descent.py:631: ConvergenceWarning: Objective did not converge. You might want to increase the number of iterations, check the scale of the features or consider increasing regularisation. Duality gap: 2.736e+12, tolerance: 2.820e+09\n"," model = cd_fast.enet_coordinate_descent(\n"]},{"output_type":"stream","name":"stdout","text":["[CV] END .........................alpha=0.006866488450042998; total time= 1.8s\n"]},{"output_type":"stream","name":"stderr","text":["/usr/local/lib/python3.10/dist-packages/sklearn/linear_model/_coordinate_descent.py:631: ConvergenceWarning: Objective did not converge. You might want to increase the number of iterations, check the scale of the features or consider increasing regularisation. Duality gap: 2.687e+12, tolerance: 2.787e+09\n"," model = cd_fast.enet_coordinate_descent(\n"]},{"output_type":"stream","name":"stdout","text":["[CV] END .........................alpha=0.006866488450042998; total time= 1.7s\n"]},{"output_type":"stream","name":"stderr","text":["/usr/local/lib/python3.10/dist-packages/sklearn/linear_model/_coordinate_descent.py:631: ConvergenceWarning: Objective did not converge. You might want to increase the number of iterations, check the scale of the features or consider increasing regularisation. Duality gap: 2.658e+12, tolerance: 2.809e+09\n"," model = cd_fast.enet_coordinate_descent(\n"]},{"output_type":"stream","name":"stdout","text":["[CV] END .........................alpha=0.006866488450042998; total time= 3.1s\n"]},{"output_type":"stream","name":"stderr","text":["/usr/local/lib/python3.10/dist-packages/sklearn/linear_model/_coordinate_descent.py:631: ConvergenceWarning: Objective did not converge. You might want to increase the number of iterations, check the scale of the features or consider increasing regularisation. Duality gap: 2.652e+12, tolerance: 2.760e+09\n"," model = cd_fast.enet_coordinate_descent(\n"]},{"output_type":"stream","name":"stdout","text":["[CV] END .........................alpha=0.008685113737513529; total time= 2.5s\n"]},{"output_type":"stream","name":"stderr","text":["/usr/local/lib/python3.10/dist-packages/sklearn/linear_model/_coordinate_descent.py:631: ConvergenceWarning: Objective did not converge. You might want to increase the number of iterations, check the scale of the features or consider increasing regularisation. Duality gap: 2.634e+12, tolerance: 2.789e+09\n"," model = cd_fast.enet_coordinate_descent(\n"]},{"output_type":"stream","name":"stdout","text":["[CV] END .........................alpha=0.008685113737513529; total time= 1.7s\n"]},{"output_type":"stream","name":"stderr","text":["/usr/local/lib/python3.10/dist-packages/sklearn/linear_model/_coordinate_descent.py:631: ConvergenceWarning: Objective did not converge. You might want to increase the number of iterations, check the scale of the features or consider increasing regularisation. Duality gap: 2.736e+12, tolerance: 2.820e+09\n"," model = cd_fast.enet_coordinate_descent(\n"]},{"output_type":"stream","name":"stdout","text":["[CV] END .........................alpha=0.008685113737513529; total time= 1.8s\n"]},{"output_type":"stream","name":"stderr","text":["/usr/local/lib/python3.10/dist-packages/sklearn/linear_model/_coordinate_descent.py:631: ConvergenceWarning: Objective did not converge. You might want to increase the number of iterations, check the scale of the features or consider increasing regularisation. Duality gap: 2.687e+12, tolerance: 2.787e+09\n"," model = cd_fast.enet_coordinate_descent(\n"]},{"output_type":"stream","name":"stdout","text":["[CV] END .........................alpha=0.008685113737513529; total time= 1.7s\n"]},{"output_type":"stream","name":"stderr","text":["/usr/local/lib/python3.10/dist-packages/sklearn/linear_model/_coordinate_descent.py:631: ConvergenceWarning: Objective did not converge. You might want to increase the number of iterations, check the scale of the features or consider increasing regularisation. Duality gap: 2.658e+12, tolerance: 2.809e+09\n"," model = cd_fast.enet_coordinate_descent(\n"]},{"output_type":"stream","name":"stdout","text":["[CV] END .........................alpha=0.008685113737513529; total time= 1.8s\n"]},{"output_type":"stream","name":"stderr","text":["/usr/local/lib/python3.10/dist-packages/sklearn/linear_model/_coordinate_descent.py:631: ConvergenceWarning: Objective did not converge. You might want to increase the number of iterations, check the scale of the features or consider increasing regularisation. Duality gap: 2.652e+12, tolerance: 2.760e+09\n"," model = cd_fast.enet_coordinate_descent(\n"]},{"output_type":"stream","name":"stdout","text":["[CV] END .........................alpha=0.010985411419875584; total time= 1.9s\n"]},{"output_type":"stream","name":"stderr","text":["/usr/local/lib/python3.10/dist-packages/sklearn/linear_model/_coordinate_descent.py:631: ConvergenceWarning: Objective did not converge. You might want to increase the number of iterations, check the scale of the features or consider increasing regularisation. Duality gap: 2.634e+12, tolerance: 2.789e+09\n"," model = cd_fast.enet_coordinate_descent(\n"]},{"output_type":"stream","name":"stdout","text":["[CV] END .........................alpha=0.010985411419875584; total time= 4.0s\n"]},{"output_type":"stream","name":"stderr","text":["/usr/local/lib/python3.10/dist-packages/sklearn/linear_model/_coordinate_descent.py:631: ConvergenceWarning: Objective did not converge. You might want to increase the number of iterations, check the scale of the features or consider increasing regularisation. Duality gap: 2.736e+12, tolerance: 2.820e+09\n"," model = cd_fast.enet_coordinate_descent(\n"]},{"output_type":"stream","name":"stdout","text":["[CV] END .........................alpha=0.010985411419875584; total time= 1.8s\n"]},{"output_type":"stream","name":"stderr","text":["/usr/local/lib/python3.10/dist-packages/sklearn/linear_model/_coordinate_descent.py:631: ConvergenceWarning: Objective did not converge. You might want to increase the number of iterations, check the scale of the features or consider increasing regularisation. Duality gap: 2.687e+12, tolerance: 2.787e+09\n"," model = cd_fast.enet_coordinate_descent(\n"]},{"output_type":"stream","name":"stdout","text":["[CV] END .........................alpha=0.010985411419875584; total time= 1.8s\n"]},{"output_type":"stream","name":"stderr","text":["/usr/local/lib/python3.10/dist-packages/sklearn/linear_model/_coordinate_descent.py:631: ConvergenceWarning: Objective did not converge. You might want to increase the number of iterations, check the scale of the features or consider increasing regularisation. Duality gap: 2.658e+12, tolerance: 2.809e+09\n"," model = cd_fast.enet_coordinate_descent(\n"]},{"output_type":"stream","name":"stdout","text":["[CV] END .........................alpha=0.010985411419875584; total time= 1.8s\n"]},{"output_type":"stream","name":"stderr","text":["/usr/local/lib/python3.10/dist-packages/sklearn/linear_model/_coordinate_descent.py:631: ConvergenceWarning: Objective did not converge. You might want to increase the number of iterations, check the scale of the features or consider increasing regularisation. Duality gap: 2.652e+12, tolerance: 2.760e+09\n"," model = cd_fast.enet_coordinate_descent(\n"]},{"output_type":"stream","name":"stdout","text":["[CV] END .........................alpha=0.013894954943731374; total time= 1.7s\n"]},{"output_type":"stream","name":"stderr","text":["/usr/local/lib/python3.10/dist-packages/sklearn/linear_model/_coordinate_descent.py:631: ConvergenceWarning: Objective did not converge. You might want to increase the number of iterations, check the scale of the features or consider increasing regularisation. Duality gap: 2.634e+12, tolerance: 2.789e+09\n"," model = cd_fast.enet_coordinate_descent(\n"]},{"output_type":"stream","name":"stdout","text":["[CV] END .........................alpha=0.013894954943731374; total time= 1.7s\n"]},{"output_type":"stream","name":"stderr","text":["/usr/local/lib/python3.10/dist-packages/sklearn/linear_model/_coordinate_descent.py:631: ConvergenceWarning: Objective did not converge. You might want to increase the number of iterations, check the scale of the features or consider increasing regularisation. Duality gap: 2.736e+12, tolerance: 2.820e+09\n"," model = cd_fast.enet_coordinate_descent(\n"]},{"output_type":"stream","name":"stdout","text":["[CV] END .........................alpha=0.013894954943731374; total time= 2.7s\n"]},{"output_type":"stream","name":"stderr","text":["/usr/local/lib/python3.10/dist-packages/sklearn/linear_model/_coordinate_descent.py:631: ConvergenceWarning: Objective did not converge. You might want to increase the number of iterations, check the scale of the features or consider increasing regularisation. Duality gap: 2.687e+12, tolerance: 2.787e+09\n"," model = cd_fast.enet_coordinate_descent(\n"]},{"output_type":"stream","name":"stdout","text":["[CV] END .........................alpha=0.013894954943731374; total time= 2.8s\n"]},{"output_type":"stream","name":"stderr","text":["/usr/local/lib/python3.10/dist-packages/sklearn/linear_model/_coordinate_descent.py:631: ConvergenceWarning: Objective did not converge. You might want to increase the number of iterations, check the scale of the features or consider increasing regularisation. Duality gap: 2.658e+12, tolerance: 2.809e+09\n"," model = cd_fast.enet_coordinate_descent(\n"]},{"output_type":"stream","name":"stdout","text":["[CV] END .........................alpha=0.013894954943731374; total time= 1.8s\n"]},{"output_type":"stream","name":"stderr","text":["/usr/local/lib/python3.10/dist-packages/sklearn/linear_model/_coordinate_descent.py:631: ConvergenceWarning: Objective did not converge. You might want to increase the number of iterations, check the scale of the features or consider increasing regularisation. Duality gap: 2.652e+12, tolerance: 2.760e+09\n"," model = cd_fast.enet_coordinate_descent(\n"]},{"output_type":"stream","name":"stdout","text":["[CV] END ..........................alpha=0.01757510624854793; total time= 1.8s\n"]},{"output_type":"stream","name":"stderr","text":["/usr/local/lib/python3.10/dist-packages/sklearn/linear_model/_coordinate_descent.py:631: ConvergenceWarning: Objective did not converge. You might want to increase the number of iterations, check the scale of the features or consider increasing regularisation. Duality gap: 2.634e+12, tolerance: 2.789e+09\n"," model = cd_fast.enet_coordinate_descent(\n"]},{"output_type":"stream","name":"stdout","text":["[CV] END ..........................alpha=0.01757510624854793; total time= 1.8s\n"]},{"output_type":"stream","name":"stderr","text":["/usr/local/lib/python3.10/dist-packages/sklearn/linear_model/_coordinate_descent.py:631: ConvergenceWarning: Objective did not converge. You might want to increase the number of iterations, check the scale of the features or consider increasing regularisation. Duality gap: 2.736e+12, tolerance: 2.820e+09\n"," model = cd_fast.enet_coordinate_descent(\n"]},{"output_type":"stream","name":"stdout","text":["[CV] END ..........................alpha=0.01757510624854793; total time= 1.7s\n"]},{"output_type":"stream","name":"stderr","text":["/usr/local/lib/python3.10/dist-packages/sklearn/linear_model/_coordinate_descent.py:631: ConvergenceWarning: Objective did not converge. You might want to increase the number of iterations, check the scale of the features or consider increasing regularisation. Duality gap: 2.687e+12, tolerance: 2.787e+09\n"," model = cd_fast.enet_coordinate_descent(\n"]},{"output_type":"stream","name":"stdout","text":["[CV] END ..........................alpha=0.01757510624854793; total time= 1.7s\n"]},{"output_type":"stream","name":"stderr","text":["/usr/local/lib/python3.10/dist-packages/sklearn/linear_model/_coordinate_descent.py:631: ConvergenceWarning: Objective did not converge. You might want to increase the number of iterations, check the scale of the features or consider increasing regularisation. Duality gap: 2.658e+12, tolerance: 2.809e+09\n"," model = cd_fast.enet_coordinate_descent(\n"]},{"output_type":"stream","name":"stdout","text":["[CV] END ..........................alpha=0.01757510624854793; total time= 3.4s\n"]},{"output_type":"stream","name":"stderr","text":["/usr/local/lib/python3.10/dist-packages/sklearn/linear_model/_coordinate_descent.py:631: ConvergenceWarning: Objective did not converge. You might want to increase the number of iterations, check the scale of the features or consider increasing regularisation. Duality gap: 2.652e+12, tolerance: 2.760e+09\n"," model = cd_fast.enet_coordinate_descent(\n"]},{"output_type":"stream","name":"stdout","text":["[CV] END .........................alpha=0.022229964825261957; total time= 1.9s\n"]},{"output_type":"stream","name":"stderr","text":["/usr/local/lib/python3.10/dist-packages/sklearn/linear_model/_coordinate_descent.py:631: ConvergenceWarning: Objective did not converge. You might want to increase the number of iterations, check the scale of the features or consider increasing regularisation. Duality gap: 2.634e+12, tolerance: 2.789e+09\n"," model = cd_fast.enet_coordinate_descent(\n"]},{"output_type":"stream","name":"stdout","text":["[CV] END .........................alpha=0.022229964825261957; total time= 1.8s\n"]},{"output_type":"stream","name":"stderr","text":["/usr/local/lib/python3.10/dist-packages/sklearn/linear_model/_coordinate_descent.py:631: ConvergenceWarning: Objective did not converge. You might want to increase the number of iterations, check the scale of the features or consider increasing regularisation. Duality gap: 2.737e+12, tolerance: 2.820e+09\n"," model = cd_fast.enet_coordinate_descent(\n"]},{"output_type":"stream","name":"stdout","text":["[CV] END .........................alpha=0.022229964825261957; total time= 1.7s\n"]},{"output_type":"stream","name":"stderr","text":["/usr/local/lib/python3.10/dist-packages/sklearn/linear_model/_coordinate_descent.py:631: ConvergenceWarning: Objective did not converge. You might want to increase the number of iterations, check the scale of the features or consider increasing regularisation. Duality gap: 2.687e+12, tolerance: 2.787e+09\n"," model = cd_fast.enet_coordinate_descent(\n"]},{"output_type":"stream","name":"stdout","text":["[CV] END .........................alpha=0.022229964825261957; total time= 1.7s\n"]},{"output_type":"stream","name":"stderr","text":["/usr/local/lib/python3.10/dist-packages/sklearn/linear_model/_coordinate_descent.py:631: ConvergenceWarning: Objective did not converge. You might want to increase the number of iterations, check the scale of the features or consider increasing regularisation. Duality gap: 2.658e+12, tolerance: 2.809e+09\n"," model = cd_fast.enet_coordinate_descent(\n"]},{"output_type":"stream","name":"stdout","text":["[CV] END .........................alpha=0.022229964825261957; total time= 1.8s\n"]},{"output_type":"stream","name":"stderr","text":["/usr/local/lib/python3.10/dist-packages/sklearn/linear_model/_coordinate_descent.py:631: ConvergenceWarning: Objective did not converge. You might want to increase the number of iterations, check the scale of the features or consider increasing regularisation. Duality gap: 2.652e+12, tolerance: 2.760e+09\n"," model = cd_fast.enet_coordinate_descent(\n"]},{"output_type":"stream","name":"stdout","text":["[CV] END .........................alpha=0.028117686979742307; total time= 2.0s\n"]},{"output_type":"stream","name":"stderr","text":["/usr/local/lib/python3.10/dist-packages/sklearn/linear_model/_coordinate_descent.py:631: ConvergenceWarning: Objective did not converge. You might want to increase the number of iterations, check the scale of the features or consider increasing regularisation. Duality gap: 2.634e+12, tolerance: 2.789e+09\n"," model = cd_fast.enet_coordinate_descent(\n"]},{"output_type":"stream","name":"stdout","text":["[CV] END .........................alpha=0.028117686979742307; total time= 3.3s\n"]},{"output_type":"stream","name":"stderr","text":["/usr/local/lib/python3.10/dist-packages/sklearn/linear_model/_coordinate_descent.py:631: ConvergenceWarning: Objective did not converge. You might want to increase the number of iterations, check the scale of the features or consider increasing regularisation. Duality gap: 2.737e+12, tolerance: 2.820e+09\n"," model = cd_fast.enet_coordinate_descent(\n"]},{"output_type":"stream","name":"stdout","text":["[CV] END .........................alpha=0.028117686979742307; total time= 1.8s\n"]},{"output_type":"stream","name":"stderr","text":["/usr/local/lib/python3.10/dist-packages/sklearn/linear_model/_coordinate_descent.py:631: ConvergenceWarning: Objective did not converge. You might want to increase the number of iterations, check the scale of the features or consider increasing regularisation. Duality gap: 2.687e+12, tolerance: 2.787e+09\n"," model = cd_fast.enet_coordinate_descent(\n"]},{"output_type":"stream","name":"stdout","text":["[CV] END .........................alpha=0.028117686979742307; total time= 1.8s\n"]},{"output_type":"stream","name":"stderr","text":["/usr/local/lib/python3.10/dist-packages/sklearn/linear_model/_coordinate_descent.py:631: ConvergenceWarning: Objective did not converge. You might want to increase the number of iterations, check the scale of the features or consider increasing regularisation. Duality gap: 2.658e+12, tolerance: 2.809e+09\n"," model = cd_fast.enet_coordinate_descent(\n"]},{"output_type":"stream","name":"stdout","text":["[CV] END .........................alpha=0.028117686979742307; total time= 1.8s\n"]},{"output_type":"stream","name":"stderr","text":["/usr/local/lib/python3.10/dist-packages/sklearn/linear_model/_coordinate_descent.py:631: ConvergenceWarning: Objective did not converge. You might want to increase the number of iterations, check the scale of the features or consider increasing regularisation. Duality gap: 2.652e+12, tolerance: 2.760e+09\n"," model = cd_fast.enet_coordinate_descent(\n"]},{"output_type":"stream","name":"stdout","text":["[CV] END ..........................alpha=0.03556480306223128; total time= 1.8s\n"]},{"output_type":"stream","name":"stderr","text":["/usr/local/lib/python3.10/dist-packages/sklearn/linear_model/_coordinate_descent.py:631: ConvergenceWarning: Objective did not converge. You might want to increase the number of iterations, check the scale of the features or consider increasing regularisation. Duality gap: 2.634e+12, tolerance: 2.789e+09\n"," model = cd_fast.enet_coordinate_descent(\n"]},{"output_type":"stream","name":"stdout","text":["[CV] END ..........................alpha=0.03556480306223128; total time= 1.8s\n"]},{"output_type":"stream","name":"stderr","text":["/usr/local/lib/python3.10/dist-packages/sklearn/linear_model/_coordinate_descent.py:631: ConvergenceWarning: Objective did not converge. You might want to increase the number of iterations, check the scale of the features or consider increasing regularisation. Duality gap: 2.737e+12, tolerance: 2.820e+09\n"," model = cd_fast.enet_coordinate_descent(\n"]},{"output_type":"stream","name":"stdout","text":["[CV] END ..........................alpha=0.03556480306223128; total time= 2.7s\n"]},{"output_type":"stream","name":"stderr","text":["/usr/local/lib/python3.10/dist-packages/sklearn/linear_model/_coordinate_descent.py:631: ConvergenceWarning: Objective did not converge. You might want to increase the number of iterations, check the scale of the features or consider increasing regularisation. Duality gap: 2.687e+12, tolerance: 2.787e+09\n"," model = cd_fast.enet_coordinate_descent(\n"]},{"output_type":"stream","name":"stdout","text":["[CV] END ..........................alpha=0.03556480306223128; total time= 2.7s\n"]},{"output_type":"stream","name":"stderr","text":["/usr/local/lib/python3.10/dist-packages/sklearn/linear_model/_coordinate_descent.py:631: ConvergenceWarning: Objective did not converge. You might want to increase the number of iterations, check the scale of the features or consider increasing regularisation. Duality gap: 2.658e+12, tolerance: 2.809e+09\n"," model = cd_fast.enet_coordinate_descent(\n"]},{"output_type":"stream","name":"stdout","text":["[CV] END ..........................alpha=0.03556480306223128; total time= 1.7s\n"]},{"output_type":"stream","name":"stderr","text":["/usr/local/lib/python3.10/dist-packages/sklearn/linear_model/_coordinate_descent.py:631: ConvergenceWarning: Objective did not converge. You might want to increase the number of iterations, check the scale of the features or consider increasing regularisation. Duality gap: 2.652e+12, tolerance: 2.760e+09\n"," model = cd_fast.enet_coordinate_descent(\n"]},{"output_type":"stream","name":"stdout","text":["[CV] END ..........................alpha=0.04498432668969444; total time= 1.8s\n"]},{"output_type":"stream","name":"stderr","text":["/usr/local/lib/python3.10/dist-packages/sklearn/linear_model/_coordinate_descent.py:631: ConvergenceWarning: Objective did not converge. You might want to increase the number of iterations, check the scale of the features or consider increasing regularisation. Duality gap: 2.634e+12, tolerance: 2.789e+09\n"," model = cd_fast.enet_coordinate_descent(\n"]},{"output_type":"stream","name":"stdout","text":["[CV] END ..........................alpha=0.04498432668969444; total time= 1.7s\n"]},{"output_type":"stream","name":"stderr","text":["/usr/local/lib/python3.10/dist-packages/sklearn/linear_model/_coordinate_descent.py:631: ConvergenceWarning: Objective did not converge. You might want to increase the number of iterations, check the scale of the features or consider increasing regularisation. Duality gap: 2.737e+12, tolerance: 2.820e+09\n"," model = cd_fast.enet_coordinate_descent(\n"]},{"output_type":"stream","name":"stdout","text":["[CV] END ..........................alpha=0.04498432668969444; total time= 1.7s\n"]},{"output_type":"stream","name":"stderr","text":["/usr/local/lib/python3.10/dist-packages/sklearn/linear_model/_coordinate_descent.py:631: ConvergenceWarning: Objective did not converge. You might want to increase the number of iterations, check the scale of the features or consider increasing regularisation. Duality gap: 2.687e+12, tolerance: 2.787e+09\n"," model = cd_fast.enet_coordinate_descent(\n"]},{"output_type":"stream","name":"stdout","text":["[CV] END ..........................alpha=0.04498432668969444; total time= 1.7s\n"]},{"output_type":"stream","name":"stderr","text":["/usr/local/lib/python3.10/dist-packages/sklearn/linear_model/_coordinate_descent.py:631: ConvergenceWarning: Objective did not converge. You might want to increase the number of iterations, check the scale of the features or consider increasing regularisation. Duality gap: 2.658e+12, tolerance: 2.809e+09\n"," model = cd_fast.enet_coordinate_descent(\n"]},{"output_type":"stream","name":"stdout","text":["[CV] END ..........................alpha=0.04498432668969444; total time= 3.5s\n"]},{"output_type":"stream","name":"stderr","text":["/usr/local/lib/python3.10/dist-packages/sklearn/linear_model/_coordinate_descent.py:631: ConvergenceWarning: Objective did not converge. You might want to increase the number of iterations, check the scale of the features or consider increasing regularisation. Duality gap: 2.652e+12, tolerance: 2.760e+09\n"," model = cd_fast.enet_coordinate_descent(\n"]},{"output_type":"stream","name":"stdout","text":["[CV] END ..........................alpha=0.05689866029018299; total time= 2.0s\n"]},{"output_type":"stream","name":"stderr","text":["/usr/local/lib/python3.10/dist-packages/sklearn/linear_model/_coordinate_descent.py:631: ConvergenceWarning: Objective did not converge. You might want to increase the number of iterations, check the scale of the features or consider increasing regularisation. Duality gap: 2.634e+12, tolerance: 2.789e+09\n"," model = cd_fast.enet_coordinate_descent(\n"]},{"output_type":"stream","name":"stdout","text":["[CV] END ..........................alpha=0.05689866029018299; total time= 1.8s\n"]},{"output_type":"stream","name":"stderr","text":["/usr/local/lib/python3.10/dist-packages/sklearn/linear_model/_coordinate_descent.py:631: ConvergenceWarning: Objective did not converge. You might want to increase the number of iterations, check the scale of the features or consider increasing regularisation. Duality gap: 2.737e+12, tolerance: 2.820e+09\n"," model = cd_fast.enet_coordinate_descent(\n"]},{"output_type":"stream","name":"stdout","text":["[CV] END ..........................alpha=0.05689866029018299; total time= 1.7s\n"]},{"output_type":"stream","name":"stderr","text":["/usr/local/lib/python3.10/dist-packages/sklearn/linear_model/_coordinate_descent.py:631: ConvergenceWarning: Objective did not converge. You might want to increase the number of iterations, check the scale of the features or consider increasing regularisation. Duality gap: 2.687e+12, tolerance: 2.787e+09\n"," model = cd_fast.enet_coordinate_descent(\n"]},{"output_type":"stream","name":"stdout","text":["[CV] END ..........................alpha=0.05689866029018299; total time= 1.7s\n"]},{"output_type":"stream","name":"stderr","text":["/usr/local/lib/python3.10/dist-packages/sklearn/linear_model/_coordinate_descent.py:631: ConvergenceWarning: Objective did not converge. You might want to increase the number of iterations, check the scale of the features or consider increasing regularisation. Duality gap: 2.658e+12, tolerance: 2.809e+09\n"," model = cd_fast.enet_coordinate_descent(\n"]},{"output_type":"stream","name":"stdout","text":["[CV] END ..........................alpha=0.05689866029018299; total time= 1.8s\n"]},{"output_type":"stream","name":"stderr","text":["/usr/local/lib/python3.10/dist-packages/sklearn/linear_model/_coordinate_descent.py:631: ConvergenceWarning: Objective did not converge. You might want to increase the number of iterations, check the scale of the features or consider increasing regularisation. Duality gap: 2.652e+12, tolerance: 2.760e+09\n"," model = cd_fast.enet_coordinate_descent(\n"]},{"output_type":"stream","name":"stdout","text":["[CV] END ..........................alpha=0.07196856730011521; total time= 2.4s\n"]},{"output_type":"stream","name":"stderr","text":["/usr/local/lib/python3.10/dist-packages/sklearn/linear_model/_coordinate_descent.py:631: ConvergenceWarning: Objective did not converge. You might want to increase the number of iterations, check the scale of the features or consider increasing regularisation. Duality gap: 2.634e+12, tolerance: 2.789e+09\n"," model = cd_fast.enet_coordinate_descent(\n"]},{"output_type":"stream","name":"stdout","text":["[CV] END ..........................alpha=0.07196856730011521; total time= 3.1s\n"]},{"output_type":"stream","name":"stderr","text":["/usr/local/lib/python3.10/dist-packages/sklearn/linear_model/_coordinate_descent.py:631: ConvergenceWarning: Objective did not converge. You might want to increase the number of iterations, check the scale of the features or consider increasing regularisation. Duality gap: 1.761e+12, tolerance: 2.820e+09\n"," model = cd_fast.enet_coordinate_descent(\n"]},{"output_type":"stream","name":"stdout","text":["[CV] END ..........................alpha=0.07196856730011521; total time= 1.8s\n"]},{"output_type":"stream","name":"stderr","text":["/usr/local/lib/python3.10/dist-packages/sklearn/linear_model/_coordinate_descent.py:631: ConvergenceWarning: Objective did not converge. You might want to increase the number of iterations, check the scale of the features or consider increasing regularisation. Duality gap: 2.687e+12, tolerance: 2.787e+09\n"," model = cd_fast.enet_coordinate_descent(\n"]},{"output_type":"stream","name":"stdout","text":["[CV] END ..........................alpha=0.07196856730011521; total time= 1.8s\n"]},{"output_type":"stream","name":"stderr","text":["/usr/local/lib/python3.10/dist-packages/sklearn/linear_model/_coordinate_descent.py:631: ConvergenceWarning: Objective did not converge. You might want to increase the number of iterations, check the scale of the features or consider increasing regularisation. Duality gap: 2.658e+12, tolerance: 2.809e+09\n"," model = cd_fast.enet_coordinate_descent(\n"]},{"output_type":"stream","name":"stdout","text":["[CV] END ..........................alpha=0.07196856730011521; total time= 1.7s\n"]},{"output_type":"stream","name":"stderr","text":["/usr/local/lib/python3.10/dist-packages/sklearn/linear_model/_coordinate_descent.py:631: ConvergenceWarning: Objective did not converge. You might want to increase the number of iterations, check the scale of the features or consider increasing regularisation. Duality gap: 3.227e+12, tolerance: 2.760e+09\n"," model = cd_fast.enet_coordinate_descent(\n"]},{"output_type":"stream","name":"stdout","text":["[CV] END ..........................alpha=0.09102981779915217; total time= 1.8s\n"]},{"output_type":"stream","name":"stderr","text":["/usr/local/lib/python3.10/dist-packages/sklearn/linear_model/_coordinate_descent.py:631: ConvergenceWarning: Objective did not converge. You might want to increase the number of iterations, check the scale of the features or consider increasing regularisation. Duality gap: 1.692e+12, tolerance: 2.789e+09\n"," model = cd_fast.enet_coordinate_descent(\n"]},{"output_type":"stream","name":"stdout","text":["[CV] END ..........................alpha=0.09102981779915217; total time= 1.8s\n"]},{"output_type":"stream","name":"stderr","text":["/usr/local/lib/python3.10/dist-packages/sklearn/linear_model/_coordinate_descent.py:631: ConvergenceWarning: Objective did not converge. You might want to increase the number of iterations, check the scale of the features or consider increasing regularisation. Duality gap: 1.761e+12, tolerance: 2.820e+09\n"," model = cd_fast.enet_coordinate_descent(\n"]},{"output_type":"stream","name":"stdout","text":["[CV] END ..........................alpha=0.09102981779915217; total time= 3.0s\n"]},{"output_type":"stream","name":"stderr","text":["/usr/local/lib/python3.10/dist-packages/sklearn/linear_model/_coordinate_descent.py:631: ConvergenceWarning: Objective did not converge. You might want to increase the number of iterations, check the scale of the features or consider increasing regularisation. Duality gap: 2.687e+12, tolerance: 2.787e+09\n"," model = cd_fast.enet_coordinate_descent(\n"]},{"output_type":"stream","name":"stdout","text":["[CV] END ..........................alpha=0.09102981779915217; total time= 2.3s\n"]},{"output_type":"stream","name":"stderr","text":["/usr/local/lib/python3.10/dist-packages/sklearn/linear_model/_coordinate_descent.py:631: ConvergenceWarning: Objective did not converge. You might want to increase the number of iterations, check the scale of the features or consider increasing regularisation. Duality gap: 2.658e+12, tolerance: 2.809e+09\n"," model = cd_fast.enet_coordinate_descent(\n"]},{"output_type":"stream","name":"stdout","text":["[CV] END ..........................alpha=0.09102981779915217; total time= 1.7s\n"]},{"output_type":"stream","name":"stderr","text":["/usr/local/lib/python3.10/dist-packages/sklearn/linear_model/_coordinate_descent.py:631: ConvergenceWarning: Objective did not converge. You might want to increase the number of iterations, check the scale of the features or consider increasing regularisation. Duality gap: 3.227e+12, tolerance: 2.760e+09\n"," model = cd_fast.enet_coordinate_descent(\n"]},{"output_type":"stream","name":"stdout","text":["[CV] END ..........................alpha=0.11513953993264481; total time= 1.8s\n"]},{"output_type":"stream","name":"stderr","text":["/usr/local/lib/python3.10/dist-packages/sklearn/linear_model/_coordinate_descent.py:631: ConvergenceWarning: Objective did not converge. You might want to increase the number of iterations, check the scale of the features or consider increasing regularisation. Duality gap: 1.523e+12, tolerance: 2.789e+09\n"," model = cd_fast.enet_coordinate_descent(\n"]},{"output_type":"stream","name":"stdout","text":["[CV] END ..........................alpha=0.11513953993264481; total time= 1.8s\n"]},{"output_type":"stream","name":"stderr","text":["/usr/local/lib/python3.10/dist-packages/sklearn/linear_model/_coordinate_descent.py:631: ConvergenceWarning: Objective did not converge. You might want to increase the number of iterations, check the scale of the features or consider increasing regularisation. Duality gap: 1.761e+12, tolerance: 2.820e+09\n"," model = cd_fast.enet_coordinate_descent(\n"]},{"output_type":"stream","name":"stdout","text":["[CV] END ..........................alpha=0.11513953993264481; total time= 1.8s\n"]},{"output_type":"stream","name":"stderr","text":["/usr/local/lib/python3.10/dist-packages/sklearn/linear_model/_coordinate_descent.py:631: ConvergenceWarning: Objective did not converge. You might want to increase the number of iterations, check the scale of the features or consider increasing regularisation. Duality gap: 1.733e+12, tolerance: 2.787e+09\n"," model = cd_fast.enet_coordinate_descent(\n"]},{"output_type":"stream","name":"stdout","text":["[CV] END ..........................alpha=0.11513953993264481; total time= 2.0s\n"]},{"output_type":"stream","name":"stderr","text":["/usr/local/lib/python3.10/dist-packages/sklearn/linear_model/_coordinate_descent.py:631: ConvergenceWarning: Objective did not converge. You might want to increase the number of iterations, check the scale of the features or consider increasing regularisation. Duality gap: 1.564e+12, tolerance: 2.809e+09\n"," model = cd_fast.enet_coordinate_descent(\n"]},{"output_type":"stream","name":"stdout","text":["[CV] END ..........................alpha=0.11513953993264481; total time= 3.5s\n"]},{"output_type":"stream","name":"stderr","text":["/usr/local/lib/python3.10/dist-packages/sklearn/linear_model/_coordinate_descent.py:631: ConvergenceWarning: Objective did not converge. You might want to increase the number of iterations, check the scale of the features or consider increasing regularisation. Duality gap: 1.550e+12, tolerance: 2.760e+09\n"," model = cd_fast.enet_coordinate_descent(\n"]},{"output_type":"stream","name":"stdout","text":["[CV] END ..........................alpha=0.14563484775012445; total time= 1.8s\n"]},{"output_type":"stream","name":"stderr","text":["/usr/local/lib/python3.10/dist-packages/sklearn/linear_model/_coordinate_descent.py:631: ConvergenceWarning: Objective did not converge. You might want to increase the number of iterations, check the scale of the features or consider increasing regularisation. Duality gap: 1.523e+12, tolerance: 2.789e+09\n"," model = cd_fast.enet_coordinate_descent(\n"]},{"output_type":"stream","name":"stdout","text":["[CV] END ..........................alpha=0.14563484775012445; total time= 1.8s\n"]},{"output_type":"stream","name":"stderr","text":["/usr/local/lib/python3.10/dist-packages/sklearn/linear_model/_coordinate_descent.py:631: ConvergenceWarning: Objective did not converge. You might want to increase the number of iterations, check the scale of the features or consider increasing regularisation. Duality gap: 1.613e+12, tolerance: 2.820e+09\n"," model = cd_fast.enet_coordinate_descent(\n"]},{"output_type":"stream","name":"stdout","text":["[CV] END ..........................alpha=0.14563484775012445; total time= 1.7s\n"]},{"output_type":"stream","name":"stderr","text":["/usr/local/lib/python3.10/dist-packages/sklearn/linear_model/_coordinate_descent.py:631: ConvergenceWarning: Objective did not converge. You might want to increase the number of iterations, check the scale of the features or consider increasing regularisation. Duality gap: 1.555e+12, tolerance: 2.787e+09\n"," model = cd_fast.enet_coordinate_descent(\n"]},{"output_type":"stream","name":"stdout","text":["[CV] END ..........................alpha=0.14563484775012445; total time= 1.8s\n"]},{"output_type":"stream","name":"stderr","text":["/usr/local/lib/python3.10/dist-packages/sklearn/linear_model/_coordinate_descent.py:631: ConvergenceWarning: Objective did not converge. You might want to increase the number of iterations, check the scale of the features or consider increasing regularisation. Duality gap: 1.564e+12, tolerance: 2.809e+09\n"," model = cd_fast.enet_coordinate_descent(\n"]},{"output_type":"stream","name":"stdout","text":["[CV] END ..........................alpha=0.14563484775012445; total time= 1.7s\n"]},{"output_type":"stream","name":"stderr","text":["/usr/local/lib/python3.10/dist-packages/sklearn/linear_model/_coordinate_descent.py:631: ConvergenceWarning: Objective did not converge. You might want to increase the number of iterations, check the scale of the features or consider increasing regularisation. Duality gap: 1.550e+12, tolerance: 2.760e+09\n"," model = cd_fast.enet_coordinate_descent(\n"]},{"output_type":"stream","name":"stdout","text":["[CV] END ..........................alpha=0.18420699693267165; total time= 2.6s\n"]},{"output_type":"stream","name":"stderr","text":["/usr/local/lib/python3.10/dist-packages/sklearn/linear_model/_coordinate_descent.py:631: ConvergenceWarning: Objective did not converge. You might want to increase the number of iterations, check the scale of the features or consider increasing regularisation. Duality gap: 1.523e+12, tolerance: 2.789e+09\n"," model = cd_fast.enet_coordinate_descent(\n"]},{"output_type":"stream","name":"stdout","text":["[CV] END ..........................alpha=0.18420699693267165; total time= 3.0s\n"]},{"output_type":"stream","name":"stderr","text":["/usr/local/lib/python3.10/dist-packages/sklearn/linear_model/_coordinate_descent.py:631: ConvergenceWarning: Objective did not converge. You might want to increase the number of iterations, check the scale of the features or consider increasing regularisation. Duality gap: 1.613e+12, tolerance: 2.820e+09\n"," model = cd_fast.enet_coordinate_descent(\n"]},{"output_type":"stream","name":"stdout","text":["[CV] END ..........................alpha=0.18420699693267165; total time= 1.7s\n"]},{"output_type":"stream","name":"stderr","text":["/usr/local/lib/python3.10/dist-packages/sklearn/linear_model/_coordinate_descent.py:631: ConvergenceWarning: Objective did not converge. You might want to increase the number of iterations, check the scale of the features or consider increasing regularisation. Duality gap: 1.555e+12, tolerance: 2.787e+09\n"," model = cd_fast.enet_coordinate_descent(\n"]},{"output_type":"stream","name":"stdout","text":["[CV] END ..........................alpha=0.18420699693267165; total time= 1.8s\n"]},{"output_type":"stream","name":"stderr","text":["/usr/local/lib/python3.10/dist-packages/sklearn/linear_model/_coordinate_descent.py:631: ConvergenceWarning: Objective did not converge. You might want to increase the number of iterations, check the scale of the features or consider increasing regularisation. Duality gap: 1.565e+12, tolerance: 2.809e+09\n"," model = cd_fast.enet_coordinate_descent(\n"]},{"output_type":"stream","name":"stdout","text":["[CV] END ..........................alpha=0.18420699693267165; total time= 1.7s\n"]},{"output_type":"stream","name":"stderr","text":["/usr/local/lib/python3.10/dist-packages/sklearn/linear_model/_coordinate_descent.py:631: ConvergenceWarning: Objective did not converge. You might want to increase the number of iterations, check the scale of the features or consider increasing regularisation. Duality gap: 1.550e+12, tolerance: 2.760e+09\n"," model = cd_fast.enet_coordinate_descent(\n"]},{"output_type":"stream","name":"stdout","text":["[CV] END ...........................alpha=0.2329951810515372; total time= 1.8s\n"]},{"output_type":"stream","name":"stderr","text":["/usr/local/lib/python3.10/dist-packages/sklearn/linear_model/_coordinate_descent.py:631: ConvergenceWarning: Objective did not converge. You might want to increase the number of iterations, check the scale of the features or consider increasing regularisation. Duality gap: 1.523e+12, tolerance: 2.789e+09\n"," model = cd_fast.enet_coordinate_descent(\n"]},{"output_type":"stream","name":"stdout","text":["[CV] END ...........................alpha=0.2329951810515372; total time= 1.8s\n"]},{"output_type":"stream","name":"stderr","text":["/usr/local/lib/python3.10/dist-packages/sklearn/linear_model/_coordinate_descent.py:631: ConvergenceWarning: Objective did not converge. You might want to increase the number of iterations, check the scale of the features or consider increasing regularisation. Duality gap: 1.486e+10, tolerance: 2.820e+09\n"," model = cd_fast.enet_coordinate_descent(\n"]},{"output_type":"stream","name":"stdout","text":["[CV] END ...........................alpha=0.2329951810515372; total time= 3.1s\n"]},{"output_type":"stream","name":"stderr","text":["/usr/local/lib/python3.10/dist-packages/sklearn/linear_model/_coordinate_descent.py:631: ConvergenceWarning: Objective did not converge. You might want to increase the number of iterations, check the scale of the features or consider increasing regularisation. Duality gap: 1.555e+12, tolerance: 2.787e+09\n"," model = cd_fast.enet_coordinate_descent(\n"]},{"output_type":"stream","name":"stdout","text":["[CV] END ...........................alpha=0.2329951810515372; total time= 2.4s\n"]},{"output_type":"stream","name":"stderr","text":["/usr/local/lib/python3.10/dist-packages/sklearn/linear_model/_coordinate_descent.py:631: ConvergenceWarning: Objective did not converge. You might want to increase the number of iterations, check the scale of the features or consider increasing regularisation. Duality gap: 1.565e+12, tolerance: 2.809e+09\n"," model = cd_fast.enet_coordinate_descent(\n"]},{"output_type":"stream","name":"stdout","text":["[CV] END ...........................alpha=0.2329951810515372; total time= 1.8s\n","[CV] END ..........................alpha=0.29470517025518095; total time= 1.5s\n","[CV] END ..........................alpha=0.29470517025518095; total time= 1.6s\n","[CV] END ..........................alpha=0.29470517025518095; total time= 1.5s\n","[CV] END ..........................alpha=0.29470517025518095; total time= 1.6s\n","[CV] END ..........................alpha=0.29470517025518095; total time= 2.5s\n","[CV] END ...........................alpha=0.3727593720314942; total time= 2.0s\n","[CV] END ...........................alpha=0.3727593720314942; total time= 1.2s\n","[CV] END ...........................alpha=0.3727593720314942; total time= 1.3s\n","[CV] END ...........................alpha=0.3727593720314942; total time= 1.3s\n","[CV] END ...........................alpha=0.3727593720314942; total time= 1.1s\n","[CV] END ..........................alpha=0.47148663634573945; total time= 0.8s\n","[CV] END ..........................alpha=0.47148663634573945; total time= 0.9s\n","[CV] END ..........................alpha=0.47148663634573945; total time= 0.9s\n","[CV] END ..........................alpha=0.47148663634573945; total time= 0.9s\n","[CV] END ..........................alpha=0.47148663634573945; total time= 0.9s\n","[CV] END ...........................alpha=0.5963623316594643; total time= 1.0s\n","[CV] END ...........................alpha=0.5963623316594643; total time= 1.3s\n","[CV] END ...........................alpha=0.5963623316594643; total time= 1.6s\n","[CV] END ...........................alpha=0.5963623316594643; total time= 0.8s\n","[CV] END ...........................alpha=0.5963623316594643; total time= 0.7s\n","[CV] END ...........................alpha=0.7543120063354622; total time= 0.5s\n","[CV] END ...........................alpha=0.7543120063354622; total time= 0.6s\n","[CV] END ...........................alpha=0.7543120063354622; total time= 0.7s\n","[CV] END ...........................alpha=0.7543120063354622; total time= 0.6s\n","[CV] END ...........................alpha=0.7543120063354622; total time= 0.5s\n","[CV] END ...........................alpha=0.9540954763499944; total time= 0.3s\n","[CV] END ...........................alpha=0.9540954763499944; total time= 0.4s\n","[CV] END ...........................alpha=0.9540954763499944; total time= 0.6s\n","[CV] END ...........................alpha=0.9540954763499944; total time= 0.5s\n","[CV] END ...........................alpha=0.9540954763499944; total time= 0.3s\n","[CV] END ...........................alpha=1.2067926406393288; total time= 0.3s\n","[CV] END ...........................alpha=1.2067926406393288; total time= 0.3s\n","[CV] END ...........................alpha=1.2067926406393288; total time= 0.5s\n","[CV] END ...........................alpha=1.2067926406393288; total time= 0.3s\n","[CV] END ...........................alpha=1.2067926406393288; total time= 0.3s\n","[CV] END ...........................alpha=1.5264179671752334; total time= 0.3s\n","[CV] END ...........................alpha=1.5264179671752334; total time= 0.3s\n","[CV] END ...........................alpha=1.5264179671752334; total time= 0.5s\n","[CV] END ...........................alpha=1.5264179671752334; total time= 0.3s\n","[CV] END ...........................alpha=1.5264179671752334; total time= 0.2s\n","[CV] END ...........................alpha=1.9306977288832496; total time= 0.2s\n","[CV] END ...........................alpha=1.9306977288832496; total time= 0.2s\n","[CV] END ...........................alpha=1.9306977288832496; total time= 0.7s\n","[CV] END ...........................alpha=1.9306977288832496; total time= 0.3s\n","[CV] END ...........................alpha=1.9306977288832496; total time= 0.3s\n","[CV] END .............................alpha=2.44205309454865; total time= 0.3s\n","[CV] END .............................alpha=2.44205309454865; total time= 0.3s\n","[CV] END .............................alpha=2.44205309454865; total time= 0.5s\n","[CV] END .............................alpha=2.44205309454865; total time= 0.2s\n","[CV] END .............................alpha=2.44205309454865; total time= 0.2s\n","[CV] END ............................alpha=3.088843596477485; total time= 0.2s\n","[CV] END ............................alpha=3.088843596477485; total time= 0.3s\n","[CV] END ............................alpha=3.088843596477485; total time= 0.3s\n","[CV] END ............................alpha=3.088843596477485; total time= 0.1s\n","[CV] END ............................alpha=3.088843596477485; total time= 0.2s\n","[CV] END ............................alpha=3.906939937054621; total time= 0.1s\n","[CV] END ............................alpha=3.906939937054621; total time= 0.1s\n","[CV] END ............................alpha=3.906939937054621; total time= 0.2s\n","[CV] END ............................alpha=3.906939937054621; total time= 0.2s\n","[CV] END ............................alpha=3.906939937054621; total time= 0.2s\n","[CV] END ............................alpha=4.941713361323838; total time= 0.1s\n","[CV] END ............................alpha=4.941713361323838; total time= 0.2s\n","[CV] END ............................alpha=4.941713361323838; total time= 0.2s\n","[CV] END ............................alpha=4.941713361323838; total time= 0.2s\n","[CV] END ............................alpha=4.941713361323838; total time= 0.2s\n","[CV] END ............................alpha=6.250551925273976; total time= 0.1s\n","[CV] END ............................alpha=6.250551925273976; total time= 0.1s\n","[CV] END ............................alpha=6.250551925273976; total time= 0.1s\n","[CV] END ............................alpha=6.250551925273976; total time= 0.1s\n","[CV] END ............................alpha=6.250551925273976; total time= 0.1s\n","[CV] END ...........................alpha=7.9060432109077015; total time= 0.1s\n","[CV] END ...........................alpha=7.9060432109077015; total time= 0.1s\n","[CV] END ...........................alpha=7.9060432109077015; total time= 0.1s\n","[CV] END ...........................alpha=7.9060432109077015; total time= 0.1s\n","[CV] END ...........................alpha=7.9060432109077015; total time= 0.1s\n","[CV] END .........................................alpha=10.0; total time= 0.1s\n","[CV] END .........................................alpha=10.0; total time= 0.1s\n","[CV] END .........................................alpha=10.0; total time= 0.1s\n","[CV] END .........................................alpha=10.0; total time= 0.1s\n","[CV] END .........................................alpha=10.0; total time= 0.1s\n","Optimized RMSE: 50540.560299716315\n","Optimized R² Score: 0.26220267260895525\n","Best alpha: 10.0\n"]}]},{"cell_type":"code","source":[],"metadata":{"id":"dh_QHk23Q613"},"execution_count":null,"outputs":[]},{"cell_type":"code","source":[],"metadata":{"id":"oSuktPW59aj7"},"execution_count":null,"outputs":[]},{"cell_type":"code","source":[],"metadata":{"id":"urmUjCDIBzus"},"execution_count":null,"outputs":[]},{"cell_type":"code","source":[],"metadata":{"id":"PIZYsl6HBzpK"},"execution_count":null,"outputs":[]},{"cell_type":"code","source":[],"metadata":{"id":"tlHp8I7yBzls"},"execution_count":null,"outputs":[]},{"cell_type":"code","source":[],"metadata":{"id":"-1VhBIGZBziM"},"execution_count":null,"outputs":[]},{"cell_type":"markdown","source":["## DATA VISUALIZATION"],"metadata":{"id":"_S5tnOribp-Q"}},{"cell_type":"code","source":["import matplotlib.pyplot as plt\n","import seaborn as sns\n","import os\n","%matplotlib inline"],"metadata":{"id":"RJptc9N1bukh"},"execution_count":null,"outputs":[]},{"cell_type":"code","source":["#Shows the average/mean amount of salary based on year with color for experience_level\n","bar=sns.barplot(data=df_u,x='work_year',y='salary',hue='experience_level',palette='viridis',errorbar=None)\n","plt.xlabel('Year')\n","plt.ylabel('Salary in dollars')\n","plt.title('5 YEAR SALARY SNAPSHOT')\n","plt.savefig('/content/salary_snapshot')"],"metadata":{"colab":{"base_uri":"https://localhost:8080/","height":480},"id":"PN6YLYgldR2f","executionInfo":{"status":"ok","timestamp":1714700977698,"user_tz":300,"elapsed":998,"user":{"displayName":"Jenny O","userId":"07622373657144372939"}},"outputId":"85feac9e-a9a0-4fa2-91e8-028643184201"},"execution_count":null,"outputs":[{"output_type":"display_data","data":{"text/plain":["
"],"image/png":"iVBORw0KGgoAAAANSUhEUgAAAmIAAAHPCAYAAADwPLZLAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAAB8HElEQVR4nO3dd1gU1/s28HspS5EmilhAXTSgRIlgRVAUxYImRiOiUdSIiFExIuSrEnuMJbFFMFGQ2HtLRBFNbCTGaGwxxi5osCAo0qTDvH/wMj83CwrLwlLuz3Vx6c6ceebMHJDHc86ckQiCIICIiIiIKp2GuitAREREVFsxESMiIiJSEyZiRERERGrCRIyIiIhITZiIEREREakJEzEiIiIiNWEiRkRERKQmTMSIiIiI1ISJGBEREZGaMBEjIiIiUhMmYkTV3Pnz52FjY1Ps19WrV0s8LjU1Fc7Ozhg+fDiKe9PZ1atX0apVKyxbtgwAEBwcXOJ5bGxskJiYqBDj/v37sLGxQdu2bZGamlpsPby8vOTi2NnZ4f3338emTZtQUFBQqnuQk5ODzZs348MPP4SDgwM6dOiAAQMGYM6cObh//36xx5S2bgMHDixVHcoS823XGxoaChsbG/z666/FxvDx8UH79u3x7NmzEutSUFCAH3/8ER4eHujUqRPs7e3Rt29f/O9//5P7vnj9++f69esKcWbOnAl7e/sSzzN06FDY2Nhgx44dxe4/cOCA3PW2bdsWffv2xcKFC/H8+XO5so8ePcKsWbPQu3dvtG3bFk5OThg5ciTWrFkjV+5N7fLo0SPY2NggPDxcYd+TJ08wd+5cuLq6ok2bNnB0dMSkSZNw6dIluXKurq5v/F4v+jpw4ECJ94WotLTUXQEiUg0vLy+0bdtWblvTpk1LLG9kZISgoCD4+/tjz5498PT0FPfl5eVh3rx5aNy4MaZOnSp33Pz586Gvr19svP86dOgQzMzMkJKSgmPHjsHDw6PYujRs2BDTp08HALx8+RKHDx/GkiVL8PLlS/j7+5d80f/f1KlTER0djQEDBsDDwwN5eXmIiYnB6dOnYW9vjxYtWihdt7JQ1fV+8skniIiIwIIFC3D48GHo6uqKxx49ehTR0dGYO3cuzM3NS6zLokWLsH37dvTq1Qvvv/8+NDU1ERsbi19//RWWlpZo166dwjEhISFYt25dqa/3wYMH+Pvvv9GkSRNERETg448/LrHs1KlTYWFhgZycHFy6dAk7d+7EmTNncPjwYejp6eHhw4cYOnQodHR08NFHH8HCwgIJCQm4ceMGwsLCFL4Py+rSpUuYMGECAMDDwwMtWrTA8+fPcfDgQYwcORJffPEFvLy8AABBQUF49eqVeGx0dDQOHz6MWbNmoW7duuJ2BweHctWJCAAgEFG19scffwjW1tbC0aNHlTp+/PjxQseOHYXExERxW3h4uGBtbS2cPn1a3LZmzRrB2tpaePHiRaniFhQUCD179hSWLFkiTJ48WRg1alSx5UaNGiUMGDBAbltWVpbQs2dPwd7eXsjLy3vjef766y/B2tpa+P777xX25eXlCUlJSSqtW0lUfb1XrlwRWrVqJaxYsUIsl5aWJjg7OwvDhg0T8vPzS6xLYmKiYGNjI8yePbvYej5//lz8XPT9M2jQIMHa2lq4fv26XPkZM2YI7dq1K/Y83377reDo6CgcO3ZMsLGxEeLi4hTK7N+/X7C2thauXbsmt33JkiWCtbW1EBERIQiCIMyfP1+wtbUVHj16pBDj9foKwpvbJS4uTrC2thY2bNggbktOThacnJyErl27Cg8fPpQrn5mZKXz88cdCq1athEuXLhUbc8OGDYK1tXWx10dUXhyaJKpB0tPTkZeXV6Zj5s2bh5ycHCxZsgQA8PTpUwQHB8Pd3R0uLi5K1+XSpUt4/Pgx3N3d4e7ujosXLyI+Pr5Ux+ro6KBNmzZ49eoVXrx48caycXFxAIrvndDU1JTrwVBF3Uqi6utt164dhg8fjh9++AH37t0DAKxevRpJSUlYuHAhNDRK/uf70aNHEASh2HsikUhQr149he2jRo2CsbExgoODS1VnADh8+DD69u2LHj16wNDQEIcPHy71sV26dBHrCgD//vsvzM3N0aRJE4WyxdW3LHbv3o3ExER8/vnnCr3Eurq6WLp0KSQSCdauXVuu8xApg4kYUQ0xa9YstG/fHnZ2dvDy8sLff/9dquMsLCzg5+eHw4cP4+zZs1i0aBG0tLQQFBRUbPmUlBQkJSXJfRU3HyoiIgJNmzaFnZ0dXF1doaurW6Zf1I8fP4ZEIil2yPN1jRs3Fs9X2iS0vHWriJjFXW9AQADq1q2LuXPn4vr169ixYwfGjRsHGxubN8YquidRUVHIzMws1fkNDAwwZswYnDp1Cv/8889by//11194+PAhBgwYAKlUCjc3N0RERJTqXEBh4gUAJiYmAIAmTZogPj4e586dK9Xx+fn5Ct+HJX0vnjx5Ejo6OnB3dy82lqWlJdq3b4/z588jKyur1NdApAqcI0ZUzWlra6Nv377o3r076tati/v37yM8PBwjR47Erl27YGtr+9YYY8aMQUREBKZPn47k5GQsXLgQZmZmxZbt16+fwjaZTIaoqCjxc25uLqKiojB8+HAAhb0Orq6uiIiIwPjx4xWOL/qlCgDJycnYt28frl+/jh49esjNjypOu3bt0KlTJ+zZswcnT55Ely5d4ODggJ49e4oJyevKWrfSqKjrNTAwwOzZszF16lR4e3ujcePGmDx58lvr06BBA3z44Yf48ccf4eLigk6dOsHBwQEuLi7FzpcrMnr0aGzevBkhISH4/vvv33iOQ4cOoVGjRmjfvj0AYMCAAdi/fz9u3ryJ1q1bK5RPT09HUlIScnJycPnyZaxduxa6urro2bMngMI5jj/99BPGjh2L1q1bo2PHjujcuTOcnJygp6enEC8mJgaOjo5vvRdA4UMUMpkMUqm0xDI2Nja4cOECHj58+NZEl0iVmIgRVXMODg5yQ1C9evVC37598cEHH2DFihXFPj32X1paWli4cCE8PDzQrl07DBs2rMSywcHBMDAwkNv231+U0dHRSE5OlnuybeDAgZg4cSLu3r2Ld955R658cb9UXV1d8dVXX7217hKJBOHh4QgPD8ehQ4dw+PBhHD58GAsXLkT//v2xcOFCuV6mstatNCryevv27QsXFxecOXMG33zzzVsT0yJLliyBnZ0d9u/fj59//hk///wzli1bhi5duuDrr78udqK/oaEhRo8ejeDgYNy4caPEJD4vLw+RkZH48MMPIZFIABQONdarVw+HDh0qNhEbO3as3OcmTZpg+fLlYj3eeecd/Pjjj/juu+9w+vRp3Lx5E1u2bIG+vj5mzZql8D3ZpEkTLFq0SOE8z58/x+effy637dWrV6hTp07JNwsQ96enp7+xHJGqMREjqoGaNWuGXr164fjx48jPz4empuZbj7GzswMAvPvuu+Iv1+J06NABpqamb4x16NAhWFhYQCqV4uHDhwAKn+DU09MTe95eV/RLtaCgAP/++y/WrVuHly9fQkdH5631BgCpVIpPP/0Un376KRISEvDnn39iy5YtOHr0KLS0tLB8+XKl61YaFX29bdu2xZkzZ9CmTZtS10lDQwMjR47EyJEj8fLlS1y+fBm7du1CdHQ0/P39S1xuYsyYMdi8eTOCg4NL7BU7e/YskpKSYGdnJ14vAHTu3BlHjhzB559/rjCHbe7cuZDJZNDU1ET9+vUhk8kUyshkMnzzzTfIz8/HvXv3cPr0aWzYsAFz5syBhYUFunbtKpbV19eX+1ykaM7Z6+rUqSP3FGRxiva/LWEjUjUmYkQ1VMOGDZGbm4vMzEyFHqyKlJ6ejlOnTiE7Oxt9+vRR2H/48GH4+/vLJXv//aXq4OCAIUOGYNWqVZg9e3aZzt+gQQMMGDAAffr0wcCBAxEVFYWlS5dCS0tLqbpV9estjbp166JXr17o1asXvLy8cOHCBTx+/LjYifGGhoYYM2aM2CtWnEOHDgEApk2bVuz+CxcuiJPxi9jZ2Sksr1ISTU1Nca2udu3aYfTo0YiIiCg28SqNFi1a4MaNG8jJySlxePL27dvQ1tZG8+bNlToHkbKYiBHVUI8ePYKOjk6xa35VpOPHjyM7Oxvz589XeGIxNjYWq1evxqVLl9ChQ4cSY7Rq1QoffPABdu3ahXHjxhU71+tttLW1YWNjgwcPHuDly5cwMzNTSd3+q6pcb2m1adMGFy5cQGJiYrGJGPB/vWIhISEKD0tkZGTg5MmTcHd3R9++fRWOXbRoESIiIhQSsfLUFwASEhKUjtGjRw9cuXIFR48exaBBgxT2P3r0CJcuXYKjo2Oph36JVIWJGFE1l5SUpDBUeOvWLZw8eRLdunV74zIHFeHQoUOwtLTEiBEjFPbl5OQgNDQUERERb012xo8fjx9//BEbN27EF198UWK5Bw8eQCqVKiQvqampuHLlCoyNjcX7o6q6va6yr7c0EhMTkZKSgpYtWyrU59y5c9DQ0HjjYr+v94q1atVKbt/PP/+MjIwMjBw5sthrOnv2LKKiojBv3rw3To7/r4sXL+K9996Dtra23PYzZ84AKBy2VJanpye2bNmCb775Bg4ODrC0tBT3ZWdnY9asWRAEoVQPQhCpGhMxompu2rRp0NXVhb29PerVq4d79+5hz5490NXVRWBgoMrPd+zYsWJ72ZycnJCfn4/z58+LK5T/l1QqRbdu3RAVFYXZs2cr/NJ9XcuWLeHi4oJ9+/Zh0qRJxa4HBhQmnYGBgejWrRs6dOgAY2NjPHv2DD/++CMSEhIQFBQETU1NPHv2TKm6JSUl4bvvvlMob2Fhgc6dO1f69ZZGfHw8PDw80KVLFzg6OqJ+/fp48eIFjhw5glu3bmHMmDFvnec3evRobNq0Cbdu3ZJr74iICJiYmJT42iNXV1fs2bMHp0+fLnaotiRhYWH4559/4ObmJj61eOPGDfz4448wMTHBmDFjSh3rv+rWrYs1a9ZgwoQJGDx4sMLK+g8fPsQXX3zBlfJJLZiIEVVzvXv3RkREBDZt2oT09HTUrVsXbm5umDJlCpo1a6by882fP7/Y7Vu2bMGNGzdQUFAgLklQnJ49e+LYsWOIjo5Gr1693ngub29vnD59Gtu2bYOfn1+xZTp27IipU6fi119/xcaNG/Hy5UvUqVMHrVu3RmBgoDh8FhkZqVTdXrx4gW+//VahrKOjI168eFHp11saMpkMQUFBOHPmDHbs2IEXL15AKpXC2toaixYtwtChQ98aw8jICGPGjEFISIi47cWLFzh37hwGDBhQ4gMgjo6O0NPTw6FDh8qUiPn6+uLw4cP4888/ERERgaysLJiZmWHAgAGYNGmSXC+WMjp06IBDhw5h/fr1iIqKQmJiIgwMDGBvb4+vvvqqTL2gRKokEYRi3vZLRERERBWOK+sTERERqQkTMSIiIiI1YSJGREREpCZMxIiIiIjUhIkYERERkZowESMiIiJSE64jVsVduXIFgiC8cSFIIiIiqlpyc3MhkUhKXPy4CBOxKk4QBHCpNyIiouqltL+7mYhVcUU9YW3btlVzTYiIiKi0/v7771KV4xwxIiIiIjVhIkZERESkJkzEiIiIiNSEiRgRERGRmnCyPhER1Xj5+fnIzc1VdzWohtDW1oampqZKYjERIyKiGksQBMTHxyM5OVndVaEaxsTEBA0bNoREIilXHCZiRERUYxUlYQ0aNIC+vn65f2kSCYKAjIwMJCQkAAAaNWpUrnhMxIiIqEbKz88Xk7B69eqpuzpUg+jp6QEAEhIS0KBBg3INU3KyPhER1UhFc8L09fXVXBOqiYq+r8o795CJGBER1WgcjqSKoKrvKyZiRERERGrCRIyIiIhITZiIERERVTOurq6YOXOmuquhUl5eXvDy8lJ3NQBUbl2YiBERERGpCZevICIiqmaioqL4EEINwR4xKlZ+QUGVjkdEVNsIgoCsrCwAgFQqhba2tpprRKrAHjEqlqaGBuZuO4gHz56XO1Zz8/pYOGqwCmpFRKRaz549w+rVq3HmzBmkpqaiWbNm+OSTTzB06FBkZWXhww8/BAD8+OOP0NXVBQAkJydj4MCBsLCwwPbt26GpqYmZM2fi2LFjOHToEObPn49Lly7BwMAAw4cPx+TJk+V6rwoKCrBlyxbs3bsX//77LwwNDdG7d28EBATA2NhYLOfq6op33nkHo0aNwqpVq3D37l0EBARg7NixcHV1RadOnbB06VKxfGpqKoKDg3H8+HG8ePECjRo1goeHB8aPHw8NjcJ+l0ePHqFXr1743//+BwMDA4SFhSE+Ph42NjaYN28e7Ozs5O7P/fv3sWbNGpw/fx4ZGRlo1KgR+vXrB39//1Ldw/LKycnBunXrEBERgadPn6JevXoYMGAApk2bBqlUCgAYOHAg6tati61bt8odW1BQABcXF9jb22PNmjVluveViYkYlejBs+e4/The3dUgIqoQz58/x7BhwyCRSDBy5EiYmpoiOjoaX3zxBdLT0zF27FgsW7YMI0aMwKpVqzBr1iwAwMKFC5GWloYlS5bIraien5+P8ePH47333sPnn3+OX3/9FcHBwcjPz8dnn30mlps7dy4OHjyIIUOGwMvLC48ePcL27dtx48YN7Ny5U66nKzY2FgEBAfD09MSwYcMgk8mKvZbMzEyMGjUKz549w/Dhw9GoUSNcuXIFK1euRGJiIr744gu58ocPH8arV6/g6ekJiUSCDRs2wM/PD7/88ot4/lu3bmHkyJHQ0tKCp6cnmjRpgn///RcnT54UE7HS3ENlFRQU4NNPP8WlS5cwbNgwtGjRAnfu3MHmzZvx4MEDfPfddwCA/v37IyQkBImJiTAzMxOPv3TpEhISEuDu7q7Uva8sTMSIiKhWWrVqFfLz8xEREYG6desCAEaMGIHp06cjJCQEw4cPx3vvvYfx48cjLCwMbm5ueP78OY4cOYKgoCCFpCg7OxvdunXD7NmzAQAff/wxJk6ciLCwMHh5ecHU1BQXL17E3r17sXz5crz//vvisZ07d8b48eMRFRUlt/3hw4fYsGEDunXr9sZr2bhxI+Li4nDw4EE0b94cADB8+HA0aNAA4eHhGDdunNw7EZ88eYLjx4+LvUAymQyTJk3Cb7/9hp49ewIAFi1aBEEQcPDgQTRu3Fg8NjAwsEz3sKgnsawiIiLw+++/Y+vWrejQoYO4/Z133sG8efNw+fJlODg4wN3dHWvWrMGxY8cwatQosVxkZCT09fXRo0cPACjzva8snCNGRES1jiAIOH78OFxdXSEIApKSksQvZ2dnpKWl4Z9//gEATJkyBS1btsSMGTOwYMECdOrUCaNHjy427siRI8W/F/US5ebm4ty5cwAKJ9kbGhrCyclJ7pzvvvsu9PX1cf78ebl4FhYWb03CiuK2b98eRkZGcnG7du2K/Px8/Pnnn3Ll3d3d5YbiihKduLg4AEBSUhL+/PNPfPTRR3JJWNF1lfUeKiMqKgotWrSAlZWVXOwuXboAgHivZDIZWrdujcjISPHY/Px8HDt2DK6urmIiWNZ7X1nYI0ZERLVOUlISUlNTsXv3buzevbvEMkDhxPjFixdj6NCh0NHRweLFi4t9YlFDQwOWlpZy24p6zR4/fgygsIcrLS0Njo6OxZ7zxYsXcp8tLCxKdT0PHz7E7du3S4xbdC1FXu8dAyAmZampqQD+LyGztrYu8ZxluYfKePjwIe7fv1+qe+Xu7o6VK1fi2bNnMDc3x4ULF/DixQv0799fLl5Z7n1lYSJGRES1TsH/f5L7gw8+wODBxT9MZGNjI/79t99+A1A4/Pjw4UOFhKss561Xrx6WL19e7H5TU1O5z6Ud1isoKICTkxPGjx9f7P6i4coir89te50gCKU6X9E5gdLfw7IqKCiAtbW1ODfvvxo2bCj+vX///lixYgWOHj2KsWPH4ujRozA0NET37t3l4pXl3lcWJmJERFTrmJqaok6dOigoKEDXrl3fWPbWrVtYu3YthgwZglu3bmH27NmIiIiAoaGhXLmCggLExcXJzR2LjY0FADRp0gQA0LRpU5w7dw4ODg5Kz50qTtOmTZGRkfHWaymtokTzzp07JZYpyz1URtOmTXHr1i04Ojq+dc00S0tL2NnZ4ejRoxg1ahSOHz+O3r17i09WFsWriHtfXpwjRkREtY6mpib69u2LY8eOFZtsFA2p5ebmYtasWWjQoAG++OILLFmyBM+fP8fixYuLjbt9+3bx74IgYPv27dDW1haHw/r374/8/Hzxib/X5eXliUODZdW/f39cuXIFv/76q8K+1NRU5OXllSmeqakpOnbsiP379+PJkydy+4p6zUp7D5XVv39/PHv2DHv27FHYl5WVhYyMDLlt7u7uuHr1Kvbv34+XL1/KDUsWxauIe19eVapH7MyZMwgLC8O9e/eQnp4Oc3Nz9O7dG1OmTJH7n8fJkyexevVqxMbGonHjxpgwYQI++ugjuVg5OTlYtWoVDh06hFevXsHe3h5z5syBlZWVXLn79+9j0aJFuHLlCurUqYNBgwbJrU9SZO/evdiwYQOePHkCmUwGf39/8cmSIkWPM//yyy/Izc0Vn55p0KCBiu8UERGVV0BAAM6fP49hw4bBw8MDLVu2REpKCv755x+cO3cOFy5cwPfff4+bN29i06ZNMDAwQKtWrTB58mSsXr0a/fr1g4uLixhPR0cHv/76K2bMmAE7Ozv8+uuvOH36NCZOnCgOe3Xq1Amenp5Yv349bt68CScnJ2hra+PBgweIiorCF198gX79+pX5Wry9vXHy5ElMnDgRgwcPxrvvvovMzEzcuXMHx44dw4kTJ8o89DZ79myMGDECgwcPhqenJywsLPD48WOcPn0aP/30U6nvobIGDRqEo0ePYt68eTh//jwcHByQn5+PmJgYREVFYcOGDWjbtq1Yvn///li2bBmWLVsGExMThV66irr35VWlErHk5GTY2dnBy8sLJiYmuHv3LoKDg3H37l388MMPAAofP50yZQqGDh2KoKAg/PHHH/jiiy9Qp04duRu4aNEiREZGYubMmTA3N8e6deswduxYHDlyREzqUlJSMGbMGDRv3hzBwcF49uwZli5diqysLMydO1eMdeTIEcyZMwcTJ05Ely5dEBkZiSlTpmD79u1o166dWG7atGm4d+8e5s+fDx0dHaxevRo+Pj7Yv38/tLSq1K0mIqr16tevj71792Lt2rX4+eefsXPnTpiYmKBly5YIDAzEP//8g/Xr12PUqFHik3oAMGHCBJw4cQKzZ8/GkSNHYGRkBKCwh2jDhg2YP38+vvnmG9SpUwdTpkzB5MmT5c67cOFCtGnTBrt27cKqVaugqamJJk2a4IMPPoCDg4NS16Knp4etW7di/fr1iIqKwo8//ggDAwM0b94cfn5+CsOopdGqVSvs2bMH3377LXbu3Ins7Gw0btxYrqfpbfewPDQ0NLB27Vps2rQJP/30E37++Wfo6enBwsICXl5eCsuHNGzYEPb29rh8+TI8PDyKXROsIu59eUmEsszMU4M9e/Zgzpw5iI6Ohrm5Oby9vfHq1Svs2rVLLBMQEICbN2+Kj67Gx8fD1dUV8+bNg6enJ4DCJK9nz56YNGkSfHx8AADr16/HunXrcOrUKZiYmAAAdu/ejQULFuDUqVMwNzcHAPTt2xdt2rTBihUrxHMOHz4choaGCAsLAwBcuXIFw4cPR3h4OJydnQEAMTEx4pMcry8oVxZ///03AMhl/ZVl9IowlSzoatOkIbYE+KigRkREpZeVlYXY2FjIZLIKnxNUtLL+lStXKvQ8VHW87furtL+/q/wcsaIEKTc3Fzk5OTh//rxC16G7uzvu37+PR48eASh8uqWgoECunImJCZycnBAdHS1ui46OhqOjo3gOoLBrs6CgAGfPngVQ+AjvgwcPFMaa3d3dce7cOeTk5IixjIyM4OTkJJaxsrJC69at5c5JREREVKRKjpfl5+cjLy8P9+7dw9q1a+Hq6goLCwvcu3cPubm5CvO8WrRoAaCwB8rCwgIxMTGoV6+ewnujWrRogX379omfY2JiFOaWGRkZwczMDDExMWIZAApdoC1atEBubi7i4uLQokULxMTEQCaTKTzZYWVlJcZQliAICpMSK5JEIoGenp7K42ZmZpbp0WgiovLIzs5GQUEB8vPzkZ+fX6HnEgQBgiBU+Hmqo6SkpDfeF21tbbkOkeoiPz8fBQUFyMzMFJfyeJ0gCG992hOooolYz5498ezZMwBAt27dxCHBlJQUABDH44sUfS7an5qaWux4uJGRkVimqNx/YwGFC9sVlSvvOY2NjXH9+vU3Xu/b5Obm4ubNm+WKURZ6enqwtbVVedzY2FhkZmaqPC4RUUm0tLSQnZ1d4ecpSjSysrIq/FzVjYeHB54+fVri/vbt24vTfKqT7Oxs5OXlvbGz5b8P/hWnSiZioaGhyMzMxL179/D9999j4sSJ2Lhxo7qrpTba2tpo2bJlpZ2vNBm8MmQyGXvEiKjSZGdn48mTJ9DR0anwOWLLli2r0PjV2TfffPPGBNXY2LhKretVFlpaWmjatCl0dHQU9t27d690MVRdKVVo1aoVAMDe3h5t27bFoEGD8PPPP4vJSFpamlz5orU/ioYijYyMkJ6erhA3NTVVbrjSyMhIIRZQ2MtVVK7oz7S0NLm3uhd3zvh4xYntr8dSlkQigb6+frliVAUVMdxJRFQSDQ0NaGhoQFNTs8SV5KnidezYUd1VqBCamprQ0NCAnp5esYlkaTs1qvxkfRsbG2hra+Pff/9F06ZNoa2trdANWPS5aO6YlZUVnj9/LjcMWVTu9fllxc3fSktLQ2Jiolys18/xeixtbW1x9WErKyvExsYq9PjExsYqzGkjIiIiAqpBIvbXX38hNzcXFhYWkEql6Ny5M44dOyZXJjIyEi1atBBfjurs7AwNDQ0cP35cLJOSkoLffvtN7r1T3bt3x++//y63mm5UVBQ0NDTEpx8tLS3RvHlzREVFKZzT0dFRHP/t3r07UlJScO7cObFMbGwsbty4IXdOIiIioiJVamhyypQpaNOmDWxsbKCrq4tbt24hPDwcNjY26N27NwDg008/xejRozF//nz0798f58+fx+HDh7Fq1SoxTsOGDTF06FB8/fXX0NDQgLm5OdavXw9DQ0MMHz5cLDd8+HBs3boVkydPhq+vL549e4avv/4aw4cPF9cQAwA/Pz8EBgaiadOm6Ny5MyIjI3Ht2jVs27ZNLGNvbw9nZ2cEBQVhxowZ0NHRwapVq2BjY4M+ffpUwt0jIiKi6qZKJWJ2dnaIjIxEaGgoBEFAkyZN4OHhAW9vb7HnqUOHDggODsbq1auxb98+NG7cGIsWLVJY52v27NmoU6cOVqxYgVevXsHBwQEbN26Ue7LR2NgYmzdvxpdffonJkyejTp06GDp0KPz9/eViDRw4EJmZmQgLC0NoaChkMhlCQkJgb28vV2716tVYsmQJ5s6di7y8PDg7O2P27NlcVZ+IiIiKVeVX1q/tuLI+EZFyKnNlfap9as3K+kREREQ1FcfMiIiIqrlDhw5hy5Yt4tP75ubmcHBwwPTp01GvXj2Vn8/Lywv6+vpYv369ymPXNkzEiIiIXlNQUAANDfUMGClz7rCwMKxYsQJjx47F1KlTIQgC7t69i4iICCQkJFRIIjZv3jy13aOahokYERHRazQ0NPDN8n2Ie/S8Us9raVEfnwcOLfNxW7duxeDBgzFz5kxxm4uLC8aPH1/sOxBVQVVve8nKyqr18/eYiBEREf1H3KPnuH+/5PcjViWpqalo0KBBsfv+22t14MABbNy4EQ8ePICJiQmGDBmCqVOnim8eOHDgAGbNmoWDBw9i5cqVuHjxIho0aIBJkybhww8/FOMUNzT5559/YsWKFbhx4wb09PTg6uqKGTNmiC/0fvToEXr16oUlS5bg8uXL+Pnnn9GgQQNERESo9oZUM+xXJCIiqsbeffdd7Nq1C3v37kViYmKJ5TZu3IjZs2fD2dkZ69atg4+PD7Zs2SK3DmeRwMBAODs7Y+3atWjdujVmzpyJ+/fvlxj7+vXr+OSTT1CnTh18++23CAwMxKlTp+Dj4yO+EL3IypUrIQgCVqxYgc8//1z5C68h2CNGRERUjc2bNw9TpkzB7NmzAQAWFhbo2bMnxo4dK75xJj09HWvWrMH48eMxffp0AICTkxO0tbWxdOlSeHt7o27dumLMkSNHYuTIkQAKFyw/c+YMjh07hkmTJhVbh3Xr1sHMzAzr1q2DtrY2AKBRo0bw9vbGmTNn4OrqKpZt1aoVvvrqK9XfiGqKPWJERETVmLW1NQ4fPozQ0FCMHj0ahoaG2Lp1Kz744APcvHkTAHDlyhVkZGSgX79+yMvLE7+6du2KrKws3L17Vy6ms7Oz+Hd9fX00btwY8fElryt58eJF9OrVS0zCimIYGRnh0qVLcmV79OihgquuOdgjRkREVM1JpVK4uLjAxcUFAPDrr7/C19cXa9euRUhICF6+fAkAGDx4cLHHP30qPx/u9bfQAIC2tjZycnJKPH9qamqxT2fWq1cPKSkpCtvo/zARIyIiqmG6deuGVq1aifO6jI2NAQAhISFo2LChQvmiIUxlGRsb48WLFwrbX7x4IZ67iEQiKde5ahomYkRERNXY8+fPUb9+fbltWVlZePr0qbjMhL29PfT09BAfHw83NzeV16F9+/Y4ceIEZs6cKb5f+ezZs0hNTUX79u1Vfr6ahIkYERHRf1ha1H97oSpyzvfffx89e/aEs7MzGjRogGfPnmHbtm14+fIlxowZAwAwMjLC1KlT8c033yA+Ph6dOnWCpqYm4uLicOLECQQHB0NPT0/puk+cOBHDhw+Hr68vvLy88Pz5c6xYsQJ2dnbicCkVj4kYERHRawoKCpRaWFVV5y7rivVTpkzBqVOnsHTpUiQlJaFu3bqwsbHBpk2b0KVLF7HcuHHjYG5ujo0bN2Lbtm3Q0tJC06ZN0aNHD7lJ9spo06YNfvjhB6xcuRJ+fn7Q19cX1xErWqOMiicRBEFQdyWoZKV9e3tFGL0iDLcfl/yUTGnZNGmILQE+KqgREVHpZWVlITY2FjKZrNav3k6q97bvr9L+/ubyFURERERqwkSMiIiISE2YiBERERGpCRMxIiIiIjVhIkZERESkJkzEiIiIiNSEiRgRERGRmjARIyIiIlITJmJEREREasJEjIiIiEhNmIgRERG9Jr+goFqdOzg4GDY2NsV+hYaGVkAty2/Tpk04c+aMwnZXV1csXLhQDTVSH770m4iI6DWaGhqYu+0gHjx7XqnnbW5eHwtHDVbqWF1dXWzevFlhe6NGjcpbrQqxZcsW9OjRAy4uLnLbQ0JCYGRkpKZaqQcTMSIiov948Ow5bj+OV3c1Sk1DQwPt2rVTdzXKzdbWVt1VqHQcmiQiIqrBfvnlF9jY2ODUqVPituTkZHTr1g3Tp08Xt92/fx+ffvop2rdvj3bt2mHChAn4999/5WIVFBRg48aN6N+/P9q0aQMnJydMnToVaWlpAICZM2di4MCBcsekpqbCxsYGBw4cAFA4/Pj48WNs375dHEJ9fV/R0OSBAwdga2uL58/leyaTk5PRpk0b7Nq1S9x25coVjB49Gu3atUP79u0REBCAFy9elPfWVQomYkRERDVAXl6ewhcA9O7dGx9++CFmz56NpKQkAMCCBQsAAPPmzQMAxMXFYfjw4UhJScHSpUuxfPlyJCUlYezYscjJyRHP8eWXX+Kbb75Bjx49sG7dOsydOxd16tRBRkZGqesZEhICMzMz9O3bF7t378bu3bvRo0cPhXJubm7Q1NREVFSU3Pbjx48DAPr16wegMAnz8vKCoaEhVq1ahS+//BJ///03Jk2aVOo6qROHJomIiKq5jIwMvPvuuwrbt2/fjg4dOmD27Nl4//33MXfuXPTr1w+RkZHYsGEDjI2NARQmR8bGxti4cSN0dHQAAA4ODujVqxf27t2LkSNHIjY2Fjt37oS/vz98fX3Fc/Tt27dMdbW1tYVUKkX9+vXfOJxqaGgIFxcXHD58GKNGjRK3Hz58GE5OTjAxMQEArFixAm3atEFISAgkEgkAwNraGgMHDsSZM2cU5qFVNUzEiIiIqjldXV1s27ZNYbuVlRWAwqRmyZIl+OSTT3DmzBmMGDEC3bp1E8udPXsW7u7u0NTUFHvSjIyMYGtri+vXrwMA/vjjDwiCgKFDh1bCFRUaMGAA/P398eTJEzRu3BgJCQn4888/sWzZMgBAZmYmLl++jP/973/Iz88Xj2vevDkaNWqEv//+m4kYERERVSwNDQ20bdv2jWXat2+Pxo0b4/Hjx3I9TADw8uVLbN68udgnL7W1tQEUzs3S0tJCvXr1VFfxt+jZsyf09PRw5MgR+Pj44OjRo9DR0UHv3r0BFM4/y8/Px5IlS7BkyRKF458+fVppdVUWEzEiIqJaYM2aNXj58iWaN2+OBQsWYMuWLeJQnrGxMVxcXPDxxx8rHFenTh0AgImJCfLy8vDixYsSkzGpVIrc3Fy5bSkpKUrXWVdXF71790ZkZCR8fHwQGRmJnj17Ql9fH0BhT59EIoGvr6+YnL2ubt26Sp+7sjARIyIiquEuX76M8PBwzJ8/H7a2thg+fDg2b96MsWPHAgAcHR1x9+5d2NraQlNTs9gYXbp0gUQiwf79+zFhwoRiyzRs2BDx8fF49eqVmMCdPXtWoZy2tjays7NLVfeBAwdiwoQJ+PXXX3H16lX4+PiI+/T19dGuXTvExMS8tUewqmIiRlQN5BcUQFNDNQ85qzIWUU3V3Lx+tTpnQUEBrl69qrC9Xr16qFevHmbMmAFnZ2d4enoCACZOnIiVK1eiW7duaNGiBaZOnYqhQ4fC29sbw4YNQ/369fH8+XNcuHABHTp0wMCBAyGTyTB8+HB8++23SElJgaOjI7KysnD69Gn4+fnB3Nwcffr0wZo1axAUFIRhw4bh7t272Ldvn0K9rKys8Mcff+Ds2bMwMjKChYVFib1XXbt2hYmJCYKCgmBkZITu3bvL7f/f//6HMWPGYNq0aRgwYACMjIwQHx+P33//HUOGDEHnzp2Vvq+VgYkYUTWgqpW+y7NyN1FtkV9QoLafE2X/o5SVlSUmWa8bOnQoNDU1kZqaiq+++krc/umnn+L06dP43//+h927d6NZs2bYu3cvVq9ejQULFiAjIwNmZmbo2LEjbGxsxOPmzp0LCwsL7N27F5s3b4aJiQk6duwo9n61bNkSS5cuxXfffYdJkyahffv2WL58OQYNGiRXr+nTp2P+/Pnw8/PDq1evsGTJEgwZMqTYa9PW1haXuhg6dCikUqncfgcHB+zYsQPBwcGYNWsWcnNz0bBhQ3Tp0gXNmjUr872sbBJBEAR1V4JK9vfffwOAWrpcR68IU8nK0jZNGmJLgM/bC9IbqaI92BZUm2RlZSE2NhYymQy6urrqrg7VMG/7/irt72+OTxARERGpCRMxIiIiIjVhIkZERESkJkzEiIiIiNSEiRgRERGRmjARIyIiIlKTKpWIHT16FJ9++im6d++Odu3aYdCgQdi3bx9eX2HDy8sLNjY2Cl/379+Xi5WWloagoCB06tQJ9vb2mDp1KhISEhTOefnyZXh6esLOzg49e/ZEaGgo/ruihyAICA0NRY8ePWBnZwdPT89iF8579uwZ/Pz8YG9vj06dOuGLL75Aenq6am4OERER1ThVakHXTZs2oUmTJpg5cybq1q2L33//HXPmzEF8fDymTJkilnNwcMCMGTPkjrWwsJD7PG3aNNy7dw/z58+Hjo4OVq9eDR8fH+zfvx9aWoWX/fDhQ3h7e8PJyQnTpk3D7du3sXz5cmhqasLb21uMFRYWhjVr1iAwMBA2NjbYvn07xo0bh59++gmWlpYAgNzcXIwfPx4AsGLFCmRlZWHZsmUICAjA+vXrK+R+ERERUfVWpRKx77//HqampuJnR0dHJCcnY+PGjZg0aRI0/v9qw0ZGRmjXrl2Jca5cuYLffvsN4eHhcHZ2BgDIZDK4u7vj+PHjcHd3BwCEh4ejbt26WLlyJaRSKRwdHZGUlIR169bBy8sLUqkU2dnZWL9+PcaNGye+k6t9+/bo16+f+N4uADh27Bju3r2LyMhIWFlZifX09vbGtWvXYGdnp+K7RURERNVdlRqafD0JK9K6dWukp6cjIyOj1HGio6NhZGQEJycncZuVlRVat26N6OhouXK9evWSe12Cu7s7UlNTceXKFQCFQ5fp6eno37+/WEYqlcLNzU0hlo2NjZiEAYCTkxNMTExw5syZUtediIioLIKDg2FjY4Nu3bqhoKBAYf/w4cNhY2ODmTNniuXt7e3fGnfSpEnw8vJ6azkbGxuEh4eXveIq4uXlBV9fX7Wdv7yqVCJWnEuXLsHc3BwGBgbitgsXLqBdu3Zo27YtRo0ahT///FPumJiYGMhkMkgkErntVlZWiImJAQBkZGTg6dOncolTURmJRCKWK/rzv+VatGiBJ0+eICsrSyz33zISiQQymUyMQUREVV9+MclMVT+3trY2Xr58qfD78PHjx7h69Sr09fXFbR4eHti8eXO56kmqU6WGJv/r4sWLiIyMlJsP1rFjRwwaNAjNmzdHQkICwsPD8cknn2Dr1q1ihp+amgpDQ0OFeMbGxrh+/TqAwsn8QOHw4eukUin09PSQkpIixpJKpdDR0ZErZ2RkBEEQkJKSAl1d3TeesyiWsgRBKFOPYHlJJBLo6empPG5mZqbCgxD0dhXRHmwLqg2ys7NRUFCA/Px85Ofnl/o4TU1NzD6xF7EvEyuwdopkdc2wqJdHmeoKAAUFBdDS0oKjoyMiIiLQoUMHcd/hw4fRsmVLaGhoQBAE5Ofnw8zMDGZmZm89jyAI4jGlqUNZ660qZamnKuXn56OgoACZmZnF9kQKgqDQIVScKpuIxcfHw9/fH507d8bo0aPF7VOnTpUr16NHDwwcOBDfffcdwsLCKrualSI3Nxc3b96stPPp6enB1tZW5XFjY2ORmZmp8rg1XUW0B9uCagstLS1kZ2eXuryGhgb09PQQ+zIRt58/rcCalSwnJ6fYX+wlycvLAwC4ublh6dKlCAwMhLa2NgAgIiICffv2xfHjx5Gfn4+srCysW7cOW7duxdmzZ8UYMTExWLx4Ma5fv44GDRrAx8cHBQUFKCgoEEd+3laH18v9+uuvCAsLw927d6Gnp4fevXvD398fenp6yMzMRK9evTBx4kS53+8A8PnnnyMhIUHssUtLS0NISAhOnTqFlJQUtGjRAn5+fnB0dBSPKUoCS1NPVcrOzkZeXt4bR71en/pUkiqZiKWmpsLHxwcmJiYIDg4WJ+kXR19fHy4uLjh27Ji4zcjICPHx8QplU1JSYGxsDABi71VRz1iRnJwcZGZmiuWMjIyQk5OD7OxsuV6x1NRUSCQSuXLFLVWRkpKCRo0alfbSi6WtrY2WLVuWK0ZZlCaDV4ZMJmMvjBIqoj3YFlQbZGdn48mTJ9DR0YGurq66q1Nqpfnl/bqilQD69OmDhQsX4vLly3BxccG9e/dw9+5drF27Fj///DM0NTWhq6srli+6J9nZ2ZgyZQr09PSwdOlSAEBISAjS09PRrFmzUt07LS0tsdyxY8cQEBCAwYMHw8/PD4mJiVi1ahVevXqFFStWQFdXF66urvj5558xYcIEMcarV6/w22+/ISAgALq6usjJycHkyZPx/PlzfPbZZzA3N0dERAQ+++wz7Nu3D9bW1gAKk+eia6tsWlpaaNq0qcKoGQDcu3evdDFUXanyysrKgq+vL9LS0rB79+5ih/vexsrKCufOnVPoFoyNjRUbTl9fH40aNVLIZGNjYyEIgjjfq+jP2NhYtGrVSiwXExODxo0biw1vZWWFO3fuyMUSBAGxsbFyDw0oQyKRyI3vV1cVMdxJymFbUG2goaEh/pLW1NRUd3VKrax11dDQgEQigYGBAXr16oWjR4/C1dUVR48ehb29PZo1awaJRAKJRAJNTU2xfNF5fvrpJyQkJODo0aNo3rw5AKBNmzbo168fmjdvXqr6FN1nQRCwfPlyuLu7Y/HixeJ+c3NzTJgwAZMnT8Y777yDgQMHYtKkSYiLixPPefLkSeTl5WHAgAHQ1NREZGQkbt26hZ9++knsjHBxccG///6LdevW4dtvvwUAuWurTEX3Uk9Pr9gksLT/ia5Sk/Xz8vIwbdo0xMTEYMOGDTA3N3/rMRkZGTh9+jTatm0rbuvevTtSUlJw7tw5cVtsbCxu3LiB7t27y5U7ceIEcnNzxW2RkZEwMjIS55s5ODjAwMAAR48eFcvk5ubi+PHjCrFu3bqFBw8eiNvOnTuH5ORkuLi4lO1GEBERKWHgwIE4ceIEsrKyEBkZiQEDBrz1mGvXruGdd94REyIAaNasmVznA1D4O7roq6T5WLGxsXj8+DH69+8vV75Tp07Q0NAQ52l369YNRkZGOHLkiHjskSNH0LlzZ9SvXx8AcPbsWVhbW6N58+Zysbp27Yq///67rLemyqpSPWILFizAqVOnMHPmTKSnp8utXm9ra4tr165hw4YNcHNzQ5MmTZCQkICNGzciMTFRzIwBwN7eHs7OzggKCsKMGTOgo6ODVatWwcbGBn369BHLeXt7IyIiAgEBARgxYgTu3LmD8PBw+Pv7i13DOjo68PX1RXBwMExNTWFtbY2dO3ciOTlZbtHXvn37Yv369fDz88P06dORmZmJr7/+WlyNn4iIqKI5OztDW1sb3377LR49eiS39FJJEhISUK9ePYXt9erVE+fXPXr0CL169RL3NWnSBCdPnlQ45uXLlwCAyZMnF3uup08L591JpVL06dMHkZGRmDx5Ml6+fInff/8dCxculIt148YNvPvuuwpxqlMP59tUqUSsaOJg0Rj1606cOAEzMzPk5uZi1apVSE5Ohp6eHuzt7bFgwQKFZGf16tVYsmQJ5s6di7y8PDg7O2P27Nni2DhQmPGHh4dj6dKlmDBhAkxNTTF16lSMGzdOLpaPjw8EQcAPP/yApKQktG7dGuHh4eKq+kDhPK4NGzZg0aJFmD59OrS0tODm5oagoCBV3iIiIqISaWtro0+fPti0aRMcHR3F3qU3adCgAf755x+F7S9evBCXjmrQoAH27dsn7itpHpuJiQkAYO7cucV2QjRo0ED8+8CBA7Fv3z7cunULV69ehYaGhlxnibGxMWxsbPDVV1+99RqqsyqViBWXXf9XaReNMzQ0xOLFi+XGqIvj4OCAPXv2vLGMRCKBr6/vWxeMMzc3R3BwcKnqR0REVBE8PDzw4sULDBs2rFTl27Ztix9//BEPHz5Es2bNABS+AvDWrVviUhhSqVRuClBJrKys0LBhQ8TFxWHkyJFvLNupUyeYmZnhyJEjuHr1Krp37y43L7xr1644c+YMGjRoUKqpStVVlUrEiIiIqHzs7Ozw3Xfflbr8kCFD8P3338PX1xefffYZAGDNmjWl6k37L4lEgpkzZyIwMBAZGRno0aMH9PT08OTJE5w5cwb+/v6QyWQACocX+/Xrh4MHD+LFixdYuXKlXKwPP/wQu3btwujRozFu3Dg0b94caWlpuHHjBnJzcxEQEFDm+lVFTMSIiIj+Q1bXrFacEyhcxuKHH37A/Pnz8fnnn8Pc3ByTJk3CiRMnFJZ4Ko3+/fvDyMgI69atQ0REBIDCOWXdunVTSO4GDhyIrVu3Ql9fHz179pTbJ5VKsWXLFgQHB2PdunVITEyEiYkJbG1t8fHHHyt/wVWMROBiQlVa0ZMhpekSVrXRK8Jw+7HiemxlZdOkIbYE+KigRrWbKtqDbUG1SVZWFmJjYyGTycq0xlR+QQE037B+ZUVS57mpbN72/VXa399sbSIioteoMxFiElb7sMWJiIiI1ISJGBEREZGaMBEjIiIiUhMmYkRERERqwkSMiIiISE2YiBERERGpCRMxIiIiIjVhIkZERESkJkzEiIiIiNSEiRgREVE1FhwcDBsbm2K/QkNDSx3n5s2bCA4ORmZmZgXWtpCXlxd8fX0r/DwlCQ4Ohr29vdrO/zq+9JuIiOg1BUIBNCTq6adQ9ty6urrYvHmzwvZGjRqVOsbNmzcREhKCkSNHQk9Pr8x1IOUwESMiInqNhkQDB26FIjHjSaWe10y/MYa0mqDUsRoaGmjXrp1qK/QGWVlZZXqROpWMiRgREdF/JGY8QXz6v+quhsrY2NggMDAQWVlZ2LlzJ/Lz8+Hq6oo5c+ZAX18fBw4cwKxZswAAjo6OAIAmTZrg5MmT4r5du3ZhzZo1uHLlCoYMGYLExEQkJiZi165dcufasWMHlixZgl9//RUmJialruP9+/exfPlyXLhwAfn5+ejUqRNmz56Npk2bAigcztTX18f69evljtu2bRu+/vprnD17FoaGhhAEAT/88AP27NmDx48fw9zcHF5eXhg7dqzyN7ACMREjIiKqAfLy8hS2aWn936/57du3o3379li6dCkePHiAr7/+GvXq1UNgYCB69OiBTz/9FN9//z02bNgAQ0NDSKVSuVgBAQHw9PSEr68v9PT0kJKSAh8fH8TExMDKykost3//fri5uZUpCYuLi8Pw4cPxzjvvYOnSpZBIJFi3bh3Gjh2LqKgoSKVSDBgwAIsWLUJycrJc7MOHD8PFxQWGhoYAgK+++gp79+7FxIkT8d577+Hy5ctYvnw5dHR0MGLEiFLXqbIwESMiIqrmMjIy8O677yps3759Ozp06AAAMDMzw4oVKwAA3bt3x40bN3Ds2DEEBgbC1NRU7Hl69913YWpqqhBr+PDhmDDh/4ZOCwoK0LhxY+zfvx+ff/45AODOnTu4fv06pk+fXqb6h4SEwNjYGBs3boSOjg4AwMHBAb169cLevXsxcuRI9O3bF4sWLcLx48cxbNgwAMDjx49x9epVrF69GgDw77//Ytu2bViwYAE8PT0BAF27dkVWVhbWrl0LT09PaGhUrecUq1ZtiIiIqMx0dXWxb98+ha/WrVuLZbp27Sp3TIsWLRAfH1/qc/To0UPus4aGBj766CP89NNPYm/c/v370aRJE3F4Mz8/H3l5eeJXSc6ePQtXV1doamqKZY2MjGBra4vr168DAOrWrYuuXbviyJEj4nGRkZHQ19dHz549AQC///47AKBPnz5y5+3atSsSExPx9OnTUl9vZWGPGBERUTWnoaGBtm3bvrGMkZGR3GdtbW3k5OSU+hz169dX2DZ06FB89913OHPmDLp3745Dhw7h448/Fnud3Nzc8PjxY7H8iRMnYGFhoRDn5cuX2Lx5c7FPfmpra4t/HzBgAGbOnInExESYmZnhyJEjcHNzE3vRXr58CUEQ0KVLl2Kv4enTp2jSpEmpr7kyMBEjIiIipTRs2BDdunXD/v37kZ+fj5cvX2LIkCHi/u+//14u2WvQoEGxcYyNjeHi4oKPP/5YYV+dOnXEv/fq1QtSqRRHjx6Fs7Mzbt68KTcMamxsDIlEgh07dsglcEVkMplS11mRmIgRERGRmLiUpZcMADw8PPDZZ58hKSkJjo6Ocj1ONjY2pYrh6OiIu3fvwtbWFpqamiWWMzAwQI8ePXDkyBGkpKTA1NRUbsi1aEg0OTkZrq6uZboOdWEiRkRE9B9m+o2r1TkLCgpw9epVhe316tWDpaVlqWK0aNECQOEE/969e0NXV7dUiVSPHj1Qt25dXLlyBStXrixTvYtMnToVQ4cOhbe3N4YNG4b69evj+fPnuHDhAjp06ICBAweKZQcOHIgpU6bg8ePH6Nevn9yToTKZDCNHjsT//vc/eHt747333kNubi4ePHiA8+fP47vvvlOqfhWJiRgREdFrCoQCpRdWVcW5lVlZPysrS3xK8HVDhw7FV199VaoYtra28PPzw969e7FhwwY0atQIJ0+efOtxWlpacHV1RVRUFNzc3MpcdwBo1qwZ9u7di9WrV2PBggXIyMiAmZkZOnbsqJAMFi1VkZiYiAEDBijEmj17NmQyGXbv3o21a9eiTp06kMlk6Nevn1J1q2gSQRAEVQTKzMzEkSNHkJOTAxcXlyo3Ga66+vvvvwHgrZMwK8LoFWG4/bj0T9SUxKZJQ2wJ8FFBjWo3VbQH24Jqk6ysLMTGxkImk3EV+ApUUFCA3r17o2fPnpgzZ466q1Np3vb9Vdrf30r1iAUFBeHatWs4fPgwgMLx5GHDhuHu3bsAAENDQ2zevBm2trbKhCciIqIqLicnB7du3cKxY8cQHx+PkSNHqrtK1ZJS64idP39ervvx8OHDuHv3LpYvX47Dhw+jfv36CAkJUVkliYiIqGpJSEiAh4cHDhw4gDlz5sitrk+lp1SP2PPnz+WGHn/55Re0adNGnEw3bNgwhIeHq6aGREREVOVYWFjg9u3b6q5GtadUj5ienh7S0tIAFL7b6sKFC3B2dhb316lTR9xPRERERMVTqkfs3XffxZ49e9C5c2ecPHkSr169kluv499//0W9evVUVkkiIiJlqeiZNCI5qvq+UioRmzZtGry9vfHRRx9BEAT07dsXdnZ24v6ff/4ZDg4OKqkgERGRMooWKM3IyICenp6aa0M1TUZGBgAUu4J/WSiViLVt2xZRUVG4fPkyjIyM0KlTJ3FfamoqPv74Y7ltRERElU1TUxMmJiZISEgAAOjr60Mikai5VlTdCYKAjIwMJCQkwMTE5I1vAiiNMidiWVlZWLVqFTp37ozevXsr7DcyMsKYMWPKVSkiIiJVaNiwIQCIyRiRqpiYmIjfX+VR5kRMV1cXu3fvRsuWLct9ciIioookkUjQqFEjNGjQALm5uequDtUQ2tra5e4JK6L0ZP07d+6opAJEREQVTVNTU2W/OIlUSanlK4KCghAZGYm9e/ciLy9P1XUiIiIiqhWU6hGbOXMmJBIJ5s6di0WLFsHc3Bw6OjpyZSQSCQ4dOqSSShIRERHVREolYiYmJjAxMYFMJlN1fYiIiIhqDaUSsa1bt6q6HkRERES1jlJzxIiIiIio/JTqESuSm5uLmJgYpKWlFbvUf8eOHcsTnoiIiKhGUyoRKygowIoVK7Bjxw5kZWWVWO7mzZtKV4yIiIioplMqEVu3bh3Cw8Ph6emJ9u3b43//+x8CAwNhZGSEHTt2QCKR4PPPP1d1XYmIiIhqFKXmiB08eBD9+/fHggUL0K1bNwCFi7wOGzYMe/bsgUQiwR9//FHmuEePHsWnn36K7t27o127dhg0aBD27dunMOy5d+9e9O3bF23btsUHH3yAU6dOKcRKS0tDUFAQOnXqBHt7e0ydOrXYV1xcvnwZnp6esLOzQ8+ePREaGqpwPkEQEBoaih49esDOzg6enp64evWqQqxnz57Bz88P9vb26NSpE7744gukp6eX+T4QERFR7aBUIhYfH48uXboAAKRSKQAgJydH/PzBBx/gp59+KnPcTZs2QU9PDzNnzsT333+P7t27Y86cOVi7dq1Y5siRI5gzZw769++PsLAwtGvXDlOmTFFIjKZNm4azZ89i/vz5WL58OWJjY+Hj4yO3AO3Dhw/h7e0NMzMzrF+/HmPGjMGaNWvwww8/yMUKCwvDmjVrMHbsWKxfvx5mZmYYN24c4uLixDK5ubkYP348Hjx4gBUrVmD+/Pn47bffEBAQUOb7QERERLWD0uuIZWRkAADq1KkDAwMDuaQEAFJTU8sc9/vvv4epqan42dHREcnJydi4cSMmTZoEDQ0NrFmzBgMGDMC0adMAAF26dMGdO3ewdu1ahIWFAQCuXLmC3377DeHh4XB2dgYAyGQyuLu74/jx43B3dwcAhIeHo27duli5ciWkUikcHR2RlJSEdevWwcvLC1KpFNnZ2Vi/fj3GjRuHsWPHAgDat2+Pfv36ITw8HPPnzwcAHDt2DHfv3kVkZCSsrKwAFL4A3dvbG9euXYOdnV2Z7wcRERHVbEr1iNna2uLvv/8WP3fu3BmbN2/GpUuXcPHiRWzZsgU2NjZljvt6ElakdevWSE9PR0ZGBuLi4vDgwQP0799froy7uzvOnTsn9spFR0fDyMgITk5OYhkrKyu0bt0a0dHR4rbo6Gj06tVL7NUripWamoorV64AKBy6TE9PlzunVCqFm5ubQiwbGxsxCQMAJycnmJiY4MyZM2W+F0RERFTzKdUjNmzYMBw8eBA5OTmQSqXw9/fHyJEjMWrUKAiCAGNjY8ycOVMlFbx06RLMzc1hYGCAS5cuAYDCiv4tWrRAbm4u4uLi0KJFC8TExEAmk0EikciVs7KyQkxMDAAgIyMDT58+lUucispIJBLExMSgc+fOYvn/lmvRogU2b96MrKws6OrqIiYmRqGMRCKBTCYTYyhLEASxB7IySCQS6OnpqTxuZmZmscuc0JtVRHuwLZQjkUgg1dGBpobqlmDMLyhATnY224OohhEEQSEPKY5SiVivXr3Qq1cv8XPLli3xyy+/4Pz589DU1IS9vT1MTEyUCS3n4sWLiIyMxIwZMwAAKSkpAAqH/F5X9Llof2pqKgwNDRXiGRsb4/r16wAKJ/MXF0sqlUJPT08ullQqVXiXppGREQRBQEpKCnR1dd94zqJYysrNza3UpUD09PRga2ur8rixsbHIzMxUedyariLag22hnKK2mLvtIB48e17ueM3N62PhqMFsD6r2tLW1oaVVrqVJ5eTl5SE3N1dl8dTl9RG3kqjsrhkaGqJ3796qCof4+Hj4+/ujc+fOGD16tMriVkfa2tpo2bJlpZ2vNBm8MmQyGf/Xr4SKaA+2hXKK2uLBs+e4/TheZXHZHlSdsae4ePfu3StVuVIlYk+ePFGqEo0bN1bquNTUVPj4+MDExATBwcHQ+P+Na2xsDKCwN8vMzEyu/Ov7jYyMEB+v+I9kSkqKWKao96qoZ6xITk4OMjMz5WLl5OQgOztbrlcsNTUVEolErlxxS1WkpKSgUaNGStyF/yORSKCvr1+uGFVBRQx3knLYFlUL24NqAlX3FFf3n4vS/ie6VImYq6urUv8rV2Y4LSsrC76+vkhLS8Pu3bvlhvuK5mD9dz5WTEwMtLW1YWlpKZY7d+6cwvhsbGwsrK2tAQD6+vpo1KiRwvyt2NhYCIIgxi/6MzY2Fq1atZI7Z+PGjaGrqyuWu3PnjlwsQRAQGxsr99AAERFRTaTqnuLaolSJ2OLFiytsuOp1eXl5mDZtGmJiYrB9+3aYm5vL7be0tETz5s0RFRUlNwwaGRkJR0dHcSy2e/fu+O6773Du3Dl07doVQGEidePGDYwfP148rnv37jhx4gQ+//xzaGtri7GMjIxgb28PAHBwcICBgQGOHj0qJmK5ubk4fvw4unfvLhfr0KFDePDgAZo3bw4AOHfuHJKTk+Hi4qLiO0VEREQ1QakSsSFDhlR0PQAACxYswKlTpzBz5kykp6fLLdJqa2sLqVQKPz8/BAYGomnTpujcuTMiIyNx7do1bNu2TSxrb28PZ2dnBAUFYcaMGdDR0cGqVatgY2ODPn36iOW8vb0RERGBgIAAjBgxAnfu3EF4eDj8/f3FpE5HRwe+vr4IDg6GqakprK2tsXPnTiQnJ8Pb21uM1bdvX6xfvx5+fn6YPn06MjMz8fXXX4ur8RMRERH9l+oecVCBs2fPAgCWLl2qsO/EiROwsLDAwIEDkZmZibCwMISGhkImkyEkJETswSqyevVqLFmyBHPnzkVeXh6cnZ0xe/Zsuac6mjVrhvDwcCxduhQTJkyAqakppk6dinHjxsnF8vHxgSAI+OGHH5CUlITWrVsjPDxcHAoFCifUb9iwAYsWLcL06dOhpaUFNzc3BAUFqfIWERERUQ1SqkQsJCSkzIElEgkmT55cpmNOnjxZqnIeHh7w8PB4YxlDQ0MsXrwYixcvfmM5BwcH7Nmz541lJBIJfH194evr+8Zy5ubmCA4OfmMZIiJSjfyCApU/qafKeESlUaUSMSIiotLS1NBQ+ZN6RJWtVInYrVu3KroeREREZcYn9ai6Yx8sERERkZqUa7J+RkYG/vzzTzx+/BgA0KRJE3Ts2LFGLD5KREREVNGUTsS2bt2K1atXIyMjQ+4VBHXq1IG/vz9GjRqlkgoSERER1VRKJWI//vgjvvrqK7Rr1w6jR4+WW/F+69at+Oqrr2BgYIAPP/xQlXUlIiIiqlGUSsQ2btyIjh07YtOmTdDU1BS3t2rVCn379sXYsWOxceNGJmJEREREb6DUZP3Y2Fj069dPLgkroqmpiX79+iE2NrbclSMiIiKqyZRKxAwNDfHo0aMS9z969AgGBgZKV4qIiIioNlAqEXNxccG2bdtw5MgRhX2RkZHYvn07evbsWe7KEREREdVkSs0RCwwMxNWrVxEYGIilS5eiefPmAIAHDx7g+fPnsLKyQkBAgCrrSURERFTjKJWImZqa4uDBg9i1axeio6Px5MkTAIC1tTV8fHzg6ekJHR0dlVaUiIiIqKZReh0xHR0djBkzBmPGjFFlfYiIiIhqDb7iiIiIiEhNStUjNnr06DIHlkgk2Lx5c5mPIyIiIqotSpWIvf4KoyLx8fGIi4uDoaEhLC0tARQuW5GamoqmTZuiYcOGqq0pERERUQ1TqkRs69atcp8vXryISZMm4csvv8TgwYOhpVUYJi8vDwcOHMDy5cuxZMkS1deWiIiIqAZRao7Y119/jSFDhsDDw0NMwgBAS0sLw4YNw5AhQ7B06VKVVZKIiIioJlIqEbt9+7Y4HFkcCwsL3LlzR+lKEREREdUGSiViDRo0QGRkJPLy8hT25eXlITIyEg0aNCh35YiIiIhqMqXWERs/fjzmzZuHYcOGYcSIEWjatCkA4OHDh9i1axdu3ryJefPmqbSiRERERDWNUomYp6cnNDQ0sHr1asyZMwcSiQRA4dOVpqamWLBgAYYNG6bSihIRERHVNEqvrO/h4YHBgwfj+vXr4iuOGjdujDZt2shN4CciIiKi4pUrY9LS0kK7du3Qrl07FVWHiIiIqPbgK46IiIiI1ISJWA1SUFCg7ioQEVE1wN8XVQcnc9UgGhoa+Gb5PsQ9el6uOO0dWmLM6N4qqhUREVU1qvp9AfB3RnkxEath4h49x/37T8sVw8KivopqQ0REVZUqfl8A/J1RXhyaJKoA7PYnUsSfCyJF5e4Re/XqFVJTUyEIgsK+xo0blzc8UbXEbn8iRfy5IFKkVCKWnZ2NkJAQ7Nu3D8nJySWWu3nzprL1Iqr22O1PpIg/F0TylErE5s+fjx9//BG9e/dG+/btYWxsrOp6EREREdV4SiViP//8Mzw8PLBw4UJV14eIiIio1lBqsr5EIoGtra2q60JERERUqyiViPXq1Qu///67qutCREREVKsolYhNmjQJjx49wpw5c3D9+nUkJSUhOTlZ4YuIiIiISqbUHLE+ffoAAG7cuIF9+/aVWI5PTRIRERGVTKlEbPLkyZBIJKquCxEREVGtolQi5ufnp+p6EBEREdU6fMURERERkZqUqkcsJCQEEokEn376KTQ0NBASEvLWYyQSCSZPnlzuChIRERHVVGVKxHx8fCCVSpmIEREREalAqRKxW7duvfEzEREREZVdlZoj9vDhQ8ydOxeDBg2Cra0tBg4cqFDGy8sLNjY2Cl/379+XK5eWloagoCB06tQJ9vb2mDp1KhISEhTiXb58GZ6enrCzs0PPnj0RGhoKQRDkygiCgNDQUPTo0QN2dnbw9PTE1atXFWI9e/YMfn5+sLe3R6dOnfDFF18gPT29fDeFiIiIaiylnpqsKHfv3sWZM2fw3nvvoaCgQCEhKuLg4IAZM2bIbbOwsJD7PG3aNNy7dw/z58+Hjo4OVq9eDR8fH+zfvx9aWoWX/fDhQ3h7e8PJyQnTpk3D7du3sXz5cmhqasLb21uMFRYWhjVr1iAwMBA2NjbYvn07xo0bh59++gmWlpYAgNzcXIwfPx4AsGLFCmRlZWHZsmUICAjA+vXrVXaPiKhsCgoKoKFRpf7PSUQkqlKJmKurK3r37g0AmDlzJq5fv15sOSMjI7Rr167EOFeuXMFvv/2G8PBwODs7AwBkMhnc3d1x/PhxuLu7AwDCw8NRt25drFy5ElKpFI6OjkhKSsK6devg5eUFqVSK7OxsrF+/HuPGjcPYsWMBAO3bt0e/fv0QHh6O+fPnAwCOHTuGu3fvIjIyElZWVmI9vb29ce3aNdjZ2angDhFRWWloaOCb5fsQ9+h5uWO1d2iJMaN7q6BWRESFqlQipqr/tUZHR8PIyAhOTk7iNisrK7Ru3RrR0dFiIhYdHQ03NzdIpVKxnLu7O9avX48rV66gc+fOuHz5MtLT09G/f3+xjFQqhZubG37++We5c9rY2IhJGAA4OTnBxMQEZ86cYSJGpEZxj57j/v2n5Y5jYVFfBbUhIvo/VSoRK60LFy6gXbt2yM/Px3vvvYfPPvsMHTt2FPfHxMRAJpMprP5vZWWFmJgYAEBGRgaePn0qlzgVlZFIJIiJiUHnzp3F8v8t16JFC2zevBlZWVnQ1dVFTEyMQhmJRAKZTCbGUJYgCMjIyHhjGYlEAj09vXKdp6JlZmaWONxck7Atqo7q0BZA7WgPtkXVwbaoHIIglOotRNUuEevYsSMGDRqE5s2bIyEhAeHh4fjkk0+wdetW2NvbAwBSU1NhaGiocKyxsbE43JmWlgagcPjwdVKpFHp6ekhJSRFjSaVS6OjoyJUzMjKCIAhISUmBrq7uG89ZFEtZubm5b31vp56eHmxtbct1nooWGxuLzMxMdVejwrEtqo7q0BZA7WgPtkXVwbaoPK+PuJVEqUQsNDQUgwYNgrm5uTKHl8vUqVPlPvfo0QMDBw7Ed999h7CwsEqvT2XQ1tZGy5Yt31imOrz7UyaTVev/3ZQW26LqqA5tAdSO9mBbVB1si8px7969UpVTKhFbvXo1Vq9ejQ4dOmDQoEHo27cvDAwMlAlVbvr6+nBxccGxY8fEbUZGRoiPj1com5KSAmNjYwAQe6+KesaK5OTkIDMzUyxnZGSEnJwcZGdny/WKpaamQiKRyJUrbqmKlJQUNGrUqFzXKJFIoK+vX64YVUF16AqvLdgWVQvbo+pgW1Qd1b0tSpvwKjU7/tSpU5g+fTpSUlLwxRdfwNnZGf7+/jh9+jTy8/OVCalSVlZWiI2NVcikY2NjxXlc+vr6aNSokcL8raLjisoV/RkbGytXLiYmBo0bN4aurq5Y7r+xBEGQOycRERHR65RKxMzNzTF+/Hj89NNPOHToELy8vPDXX39h4sSJcHZ2xpdffom//vpL1XUtVkZGBk6fPo22bduK27p3746UlBScO3dO3BYbG4sbN26ge/fucuVOnDiB3NxccVtkZCSMjIzE+WYODg4wMDDA0aNHxTK5ubk4fvy4Qqxbt27hwYMH4rZz584hOTkZLi4uKr1mIiIiqhnKPVnf2toaAQEBCAgIwMWLF7F582bs2LEDO3bsQNOmTTFo0CB4enqiXr16b42VmZmJM2fOAAAeP36M9PR0REVFAQA6deqEmJgYbNiwAW5ubmjSpAkSEhKwceNGJCYm4ttvvxXj2Nvbw9nZGUFBQZgxYwZ0dHSwatUq2NjYoE+fPmI5b29vREREICAgACNGjMCdO3cQHh4Of39/cYKdjo4OfH19ERwcDFNTU1hbW2Pnzp1ITk6WW/S1b9++WL9+Pfz8/DB9+nRkZmbi66+/FlfjJyIiIvovlTw1mZ2djV9++QURERH47bffoKmpCScnJ2hra4uT6L/++mu4ubm9Mc6LFy/w2WefyW0r+rxlyxY0bNgQubm5WLVqFZKTk6Gnpwd7e3ssWLBAIdlZvXo1lixZgrlz5yIvLw/Ozs6YPXu2uKo+ADRr1gzh4eFYunQpJkyYAFNTU0ydOhXjxo2Ti+Xj4wNBEPDDDz8gKSkJrVu3Rnh4uLiqPlA4oX7Dhg1YtGgRpk+fDi0tLbi5uSEoKEipe0pEREQ1n9KJmCAIOHv2LCIiIvDLL7/g1atXsLW1RWBgIN5//32xBywhIQEBAQFYunTpWxMxCwsL3L59+41lwsPDS1U/Q0NDLF68GIsXL35jOQcHB+zZs+eNZSQSCXx9feHr6/vGcubm5ggODi5V/YiIiIiUSsQWL16MyMhIvHjxAmZmZhg+fDg+/PBDvPPOOwplGzRogKFDhyq8G5KIiIiotlMqEdu7dy969+6NDz/8EF27dn3rI5rt27fHkiVLlKogERERUU1V5kQsNzcXGzZsQJMmTdCwYcNSHWNhYQELC4syV46IiIioJivz8hUaGhoYPXo0jh8/XhH1ISIiIqo1ypyIaWpqonHjxsjJyamI+hARERHVGkot6Dpq1Cjs2bMHycnJKq4OERER1Wb1DOsgv6BApTFVHU+VlJqsX1BQAKlUCjc3N/Tt2xdNmjQRX/VTRCKRYOzYsaqoIxEREdUSBnq60NTQwOwTexH7MrHc8WR1zbCol4cKalYxlErEli1bJv593759xZZhIkZERETKin2ZiNvPn6q7GhVOqUTsxIkTqq4HERERUa2jVCLWpEkTVdeDiIiIqNZRarI+EREREZWf0u+avHXrFrZt24YbN24gLS0NBf95IkEikeCXX34pdwWJiIiIaiqlesTOnz8PDw8PnD59Gg0aNEBcXBwsLS3RoEEDPHnyBPr6+ujYsaOq60pERERUoyiViK1ZswaWlpaIiorC4sWLAQC+vr7YuXMndu3ahWfPnqFfv34qrSgRERFRTaNUInbjxg0MHToUBgYG0NTUBABxaPK9996Dp6cnvv32W9XVkoiIqALVtkVEqepQao6YpqYm6tSpAwAwMjKClpYWXrx4Ie63tLTE/fv3VVNDIiKiClbbFhGlqkOpRKxp06Z48OABgMJJ+VZWVvjll1/wwQcfAABOnz6N+vXrq6ySRERElaG2LCJKVYdSQ5MuLi44cuQI8vLyAACffPIJjh8/jj59+qBPnz44efIkPD09VVpRIiIioppGqR6xSZMmYfTo0eL8sMGDB0NDQwPHjx+HpqYmJk6ciCFDhqi0okREREQ1jVKJmLa2NurWrSu3bdCgQRg0aJBKKkVERERUG3BlfSIiIiI1KVWP2OjRo8scWCKRYPPmzWU+jmqeosfCNTVUl/erOh4REZE6lCoREwShzIGVOYZqJj4WXnUwKa5aVN0ebAui6qdUidjWrVsruh5UC/CxcPVjUly1qLI92BZE1ZPSL/0mouqLSXHVwvYgqr3KnYilp6cjPT1dfMXR6xo3blze8EREREQ1ltKJ2I4dO7Bp0ybExcWVWObmzZvKhiciIiKq8ZSa1blz504sXLgQTZs2xbRp0yAIAsaMGYMJEyagfv36aNWqFb766itV15WIiIioRlEqEdu2bRucnZ2xYcMGDBs2DEDha4/8/f0RGRmJV69eITk5WZX1JBLV0zNAgaA4FF4eqo5HRERUGkoNTf7777/4+OOPARSusg8Aubm5AABDQ0MMHToUO3bswLhx41RUTaL/Y6ijCw2JBg7cCkVixpNyxzPTb4whrSaooGZERERlo1QiZmhoiPz8fACAgYEB9PT0EB8fL+6vU6cOnj9/rpoaEpUgMeMJ4tP/VXc1iIiIlKbU0OQ777yDW7duiZ/fe+897Ny5E8+ePcPTp0+xe/duNG/eXFV1JCIiIqqRlErEPvjgA9y9exc5OTkAAD8/P9y/fx89evSAq6srYmNjMW3aNFXWk4iIiKjGUWpo8qOPPsJHH30kfm7fvj2OHDmCEydOQEtLC05OTpDJZCqrJBEREVFNpLKV9S0tLTF27FhVhSMiIiKq8VSSiN2/fx9RUVFITEyElZUVhgwZAgMDA1WEJiIiIqqxSp2Ibdu2DVu3bsXOnTthamoqbj958iQ+++wzcfkKoPAl4bt375YrR0RERETySj1Z/+TJk7C0tJRLrvLy8jB79mxoampiyZIliIiIQEBAAJ48eYJ169ZVSIWJiIiIaopSJ2L37t1Du3bt5LadP38eSUlJGDNmDAYPHox33nkHPj4+6NevH86cOaPquhIRERHVKKVOxJKTk9GwYUO5befOnYNEIoGbm5vcdgcHBzx9+lQ1NSQiIiKqoUqdiNWvX19htfyLFy9CV1cXrVq1ktsulUrFVx8RERERUfFKnYi1adMGBw8eRHp6OgDg7t27+Pvvv9GtWzdoacnP+Y+JiVHoPSMiIiIieaV+anLy5MkYOnQo+vbti5YtW+Kff/6BRCLBhAmKL0v++eef0aVLF5VWlIiIiKimKXWPmI2NDTZv3ox3330XCQkJeO+99xAaGoo2bdrIlTt//jz09PTQr1+/Mlfm4cOHmDt3LgYNGgRbW1sMHDiw2HJ79+5F37590bZtW3zwwQc4deqUQpm0tDQEBQWhU6dOsLe3x9SpU5GQkKBQ7vLly/D09ISdnR169uyJ0NBQCIIgV0YQBISGhqJHjx6ws7ODp6cnrl69qhDr2bNn8PPzg729PTp16oQvvvhC7EEkIiKiyldPzwAFQoFKY6oyXpkWdHVwcEBoaOgby3Tu3BkRERFKVebu3bs4c+YM3nvvPRQUFCgkRABw5MgRzJkzBxMnTkSXLl0QGRmJKVOmYPv27XJPdU6bNg337t3D/PnzoaOjg9WrV8PHxwf79+8Xh1IfPnwIb29vODk5Ydq0abh9+zaWL18OTU1NeHt7i7HCwsKwZs0aBAYGwsbGBtu3b8e4cePw008/wdLSEgCQm5uL8ePHAwBWrFiBrKwsLFu2DAEBAVi/fr1S94OIiIjKx1BHFxoSDRy4FYrEjCfljmem3xhDWimOBipLZa84UgVXV1f07t0bADBz5kxcv35docyaNWswYMAA8aXiXbp0wZ07d7B27VqEhYUBAK5cuYLffvsN4eHhcHZ2BgDIZDK4u7vj+PHjcHd3BwCEh4ejbt26WLlyJaRSKRwdHZGUlIR169bBy8sLUqkU2dnZWL9+PcaNGye+wql9+/bo168fwsPDMX/+fADAsWPHcPfuXURGRsLKygoAYGRkBG9vb1y7dg12dnYVdduIiIjoLRIzniA+/V91V0NBqYcmK4OGxpurExcXhwcPHqB///5y293d3XHu3Dnk5OQAAKKjo2FkZAQnJyexjJWVFVq3bo3o6GhxW3R0NHr16gWpVCoXKzU1FVeuXAFQOHSZnp4ud06pVAo3NzeFWDY2NmISBgBOTk4wMTHhmmpEVOGq+vALERWvSvWIvU1MTAyAwt6t17Vo0QK5ubmIi4tDixYtEBMTA5lMBolEIlfOyspKjJGRkYGnT5/KJU5FZSQSCWJiYtC5c2ex/H/LtWjRAps3b0ZWVhZ0dXURExOjUEYikUAmk4kxiIgqSlUffqltihJjDYnq+jtUHY+qhmqViKWkpAAoHPJ7XdHnov2pqakwNDRUON7Y2Fgc7kxLSys2llQqhZ6enlwsqVQKHR0dhXMKgoCUlBTo6uq+8ZxFsZQlCAIyMjLeWEYikUBPT69c56ntMjMzi52XWFa1sS1Ude9UrTa2haqHX/hzoZyKSoxV0R61rS0qytvaQhAEhQ6h4lSrRKy2ys3Nxc2bN99YRk9PD7a2tpVUo5opNjYWmZmZ5Y5TG9tCVfdO1WpjW6gafy7KR9WJsSrao7a2haqVpi1en/pUkmqViBkbGwMo7M0yMzMTt6empsrtNzIyQnx8vMLxKSkpYpmi3quinrEiOTk5yMzMlIuVk5OD7OxsuV6x1NRUSCQSuXLFLVWRkpKCRo0aKXfB/5+2tjZatmz5xjKlybrpzWQymcr+51/bqOreqVptbAtV489F1aKK9mBbqMbb2uLevXulilOtErGiOVj/nY8VExMDbW1tcSkJKysrnDt3TqFbMDY2FtbW1gAAfX19NGrUSGH+VmxsLARBEOMX/RkbGyv3KqeYmBg0btwYurq6Yrk7d+7IxRIEAbGxsXIPDShDIpFAX1+/XDHo7dhVrzzeu5qLbVu1sD2qjre1RWkT3mo168/S0hLNmzdHVFSU3PbIyEg4OjqKXYDdu3dHSkoKzp07J5aJjY3FjRs30L17d3Fb9+7dceLECeTm5srFMjIygr29PYDCtdMMDAxw9OhRsUxubi6OHz+uEOvWrVt48OCBuO3cuXNITk6Gi4uLam4AERER1ShVqkcsMzNTXOrh8ePHSE9PF5OuTp06wdTUFH5+fggMDETTpk3RuXNnREZG4tq1a9i2bZsYx97eHs7OzggKCsKMGTOgo6ODVatWwcbGBn369BHLeXt7IyIiAgEBARgxYgTu3LmD8PBw+Pv7i0mdjo4OfH19ERwcDFNTU1hbW2Pnzp1ITk6WW/S1b9++WL9+Pfz8/DB9+nRkZmbi66+/FlfjJyIiIvqvKpWIvXjxAp999pnctqLPW7ZsQefOnTFw4EBkZmYiLCwMoaGhkMlkCAkJEXuwiqxevRpLlizB3LlzkZeXB2dnZ8yePVvuBeXNmjVDeHg4li5digkTJsDU1BRTp07FuHHj5GL5+PhAEAT88MMPSEpKQuvWrREeHi4OhQKF87g2bNiARYsWYfr06dDS0oKbmxuCgoJUfZuIiIiohqhSiZiFhQVu37791nIeHh7w8PB4YxlDQ0MsXrwYixcvfmM5BwcH7Nmz541lJBIJfH194evr+8Zy5ubmCA4OfmMZIiIioiLVao4YERERUU3CRIyIiIhITZiIEREREakJEzEiIiIiNWEiRkRERKQmTMSISGn19AxQIBSoNKaq4xERVWVVavkKIqpeDHV0oSHRwIFboUjMeFLueGb6jTGk1QQV1IyIqHpgIkZE5ZaY8QTx6f+quxpERNUOhyaJiIiI1ISJGBEREZGaMBEjIiIiUhMmYkRERERqwkSMiIiISE2YiBERERGpCRMxIiIiIjVhIkZERESkJkzEiIiIiNSEiRgRERGRmjARIyIiIlITJmJEREREasJEjIiIiEhNmIgRERERqQkTMSIiIiI1YSJGREREpCZMxIiIiIjUhIkYERERkZowESMiIiJSEyZiRERERGrCRIyIiIhITZiIEREREakJEzEiIiIiNWEiRkRERKQmTMSIiIiI1ISJGBEREZGaMBEjIiIiUhMmYkRERERqwkSMiIiISE2YiBERERGpCRMxIiIiIjVhIkZERESkJkzEiIiIiNSEiRgRERGRmjARIyIiIlITJmJEREREalLtErEDBw7AxsZG4Wv58uVy5fbu3Yu+ffuibdu2+OCDD3Dq1CmFWGlpaQgKCkKnTp1gb2+PqVOnIiEhQaHc5cuX4enpCTs7O/Ts2ROhoaEQBEGujCAICA0NRY8ePWBnZwdPT09cvXpVpddORERENYuWuiugrA0bNsDQ0FD8bG5uLv79yJEjmDNnDiZOnIguXbogMjISU6ZMwfbt29GuXTux3LRp03Dv3j3Mnz8fOjo6WL16NXx8fLB//35oaRXemocPH8Lb2xtOTk6YNm0abt++jeXLl0NTUxPe3t5irLCwMKxZswaBgYGwsbHB9u3bMW7cOPz000+wtLSs+BtCRERE1U61TcTeffddmJqaFrtvzZo1GDBgAKZNmwYA6NKlC+7cuYO1a9ciLCwMAHDlyhX89ttvCA8Ph7OzMwBAJpPB3d0dx48fh7u7OwAgPDwcdevWxcqVKyGVSuHo6IikpCSsW7cOXl5ekEqlyM7Oxvr16zFu3DiMHTsWANC+fXv069cP4eHhmD9/foXeCyIiIqqeqt3Q5NvExcXhwYMH6N+/v9x2d3d3nDt3Djk5OQCA6OhoGBkZwcnJSSxjZWWF1q1bIzo6WtwWHR2NXr16QSqVysVKTU3FlStXABQOXaanp8udUyqVws3NTS4WERER0euqbY/YwIED8fLlSzRu3BjDhg3D+PHjoampiZiYGACFvVuva9GiBXJzcxEXF4cWLVogJiYGMpkMEolErpyVlZUYIyMjA0+fPoWVlZVCGYlEgpiYGHTu3Fks/99yLVq0wObNm5GVlQVdXV2lr1UQBGRkZLyxjEQigZ6entLnICAzM1Nh7p8y2Bblx7aoOtgWVYsq2oNtoRpvawtBEBRyjOJUu0TMzMwMfn5+eO+99yCRSHDy5EmsXr0az549w9y5c5GSkgIAMDIykjuu6HPR/tTUVLk5ZkWMjY1x/fp1AIWT+YuLJZVKoaenJxdLKpVCR0dH4ZyCICAlJaVciVhubi5u3rz5xjJ6enqwtbVV+hwExMbGIjMzs9xx2Bblx7aoOtgWVYsq2oNtoRqlaYvXR9NKUu0SsW7duqFbt27iZ2dnZ+jo6GDz5s2YOHGiGmtWcbS1tdGyZcs3lilN1k1vJpPJVPY/fyoftkXVwbaoWlTRHmwL1XhbW9y7d69UcapdIlac/v3744cffsDNmzdhbGwMoLA3y8zMTCyTmpoKAOJ+IyMjxMfHK8RKSUkRyxT1mBX1jBXJyclBZmamXKycnBxkZ2fL9YqlpqZCIpGI5ZQlkUigr69frhj0duyqrzrYFlUH26JqYXtUHW9ri9ImvDVusn7RPK2ieVtFYmJioK2tLS4lYWVlhdjYWIVsNjY2Voyhr6+PRo0aKcQqOq6oXNGfsbGxCuds3LhxuYYliYiIqOaqEYlYZGQkNDU1YWtrC0tLSzRv3hxRUVEKZRwdHcXx2u7duyMlJQXnzp0Ty8TGxuLGjRvo3r27uK179+44ceIEcnNz5WIZGRnB3t4eAODg4AADAwMcPXpULJObm4vjx4/LxSIiIiJ6XbUbmvT29kbnzp1hY2MDADhx4gT27NmD0aNHi0ORfn5+CAwMRNOmTdG5c2dERkbi2rVr2LZtmxjH3t4ezs7OCAoKwowZM6Cjo4NVq1bBxsYGffr0kTtfREQEAgICMGLECNy5cwfh4eHw9/cXkzodHR34+voiODgYpqamsLa2xs6dO5GcnCy36CsRERHR66pdIiaTybB//37Ex8ejoKAAzZs3R1BQELy8vMQyAwcORGZmJsLCwhAaGgqZTIaQkBCxB6vI6tWrsWTJEsydOxd5eXlwdnbG7NmzxVX1AaBZs2YIDw/H0qVLMWHCBJiammLq1KkYN26cXCwfHx8IgoAffvgBSUlJaN26NcLDw7mqPhEREZWo2iVis2fPLlU5Dw8PeHh4vLGMoaEhFi9ejMWLF7+xnIODA/bs2fPGMhKJBL6+vvD19S1V/YiIiIhqxBwxIiIiouqIiRgRERGRmjARIyIiIlITJmJEREREasJEjIiIiEhNmIgRERERqQkTMSIiIiI1YSJGREREpCZMxIiIiIjUhIkYERERkZowESMiIiJSEyZiRERERGrCRIyIiIhITZiIEREREakJEzEiIiIiNWEiRkRERKQmTMSIiIiI1ISJGBEREZGaMBEjIiIiUhMmYkRERERqwkSMiIiISE2YiBERERGpCRMxIiIiIjVhIkZERESkJkzEiIiIiNSEiRgRERGRmjARIyIiIlITJmJEREREasJEjIiIiEhNmIgRERERqQkTMSIiIiI1YSJGREREpCZMxIiIiIjUhIkYERERkZowESMiIiJSEyZiRERERGrCRIyIiIhITZiIEREREakJEzEiIiIiNWEiRkRERKQmTMSIiIiI1ISJGBEREZGaMBEjIiIiUhMmYip2//59fPLJJ2jXrh2cnJzw9ddfIycnR93VIiIioipIS90VqElSUlIwZswYNG/eHMHBwXj27BmWLl2KrKwszJ07V93VIyIioiqGiZgK7dq1C69evUJISAhMTEwAAPn5+ViwYAF8fX1hbm6u3goSERFRlcKhSRWKjo6Go6OjmIQBQP/+/VFQUICzZ8+qr2JERERUJUkEQRDUXYmawtHRER999BECAwPltnfr1g2DBg1S2F4aly9fhiAI0NbWfmtZiUSClJRXyMvLL/N5Xqejow0DAz28TM9AXn75YgGAjrY2jPR18TLzFXILyh9PV0sbRjp6eJWbhgIhr9zxNCRaqKNtCFX+KKiqLQDVtgfbonyq8s8G26Kc8WrZzwbbQnmlbYvc3FxIJBI4ODi8sRyHJlUoNTUVRkZGCtuNjY2RkpKiVEyJRCL359sYG9dR6jzFqWugr7JYAFBXT3V1A4A62oYqjVfae1xaqmwLQLXtwbYon6r8s8G2KGe8WvSzwbYon7e1hUQiKVV7MRGr4uzt7dVdBSIiIqognCOmQkZGRkhLS1PYnpKSAmNjYzXUiIiIiKoyJmIqZGVlhZiYGLltaWlpSExMhJWVlZpqRURERFUVEzEV6t69O37//XekpqaK26KioqChoQEnJyc11oyIiIiqIj41qUIpKSkYMGAAZDIZfH19xQVd33//fS7oSkRERAqYiKnY/fv38eWXX+LKlSuoU6cOBg0aBH9/f0ilUnVXjYiIiKoYJmJEREREasI5YkRERERqwkSMiIiISE2YiBERERGpCRMxIiIiIjVhIkZERESkJkzEiIiIiNSEL/2mNzp69CgOHTqEf/75B6mpqWjWrBm8vLzw0Ucfyb1Vfu/evdiwYQOePHkCmUwGf39/9OzZU9x/7do17Ny5ExcvXkRCQgLMzc3Rt29ffPrpp9DX15c75+XLl7Fs2TLcvHkT9erVw4gRI+Dj41Oqt9jXZJXdFn///Td27NiBq1evIjY2Fi4uLli/fn2lXnNVVdltsWvXLhw/fhy3b99GZmYmWrZsiQkTJqB3796Vet1VVWW3x8GDB7Fz5048ePAAmZmZaNy4MT744AP4+PjU+jUj1fE7o0h8fDz69++PjIwMnDt3DqamphV+varARIzeaNOmTWjSpAlmzpyJunXr4vfff8ecOXMQHx+PKVOmAACOHDmCOXPmYOLEiejSpQsiIyMxZcoUbN++He3atQNQ+MP58OFDjB8/Hs2bN8e9e/ewZs0a/PXXX9iyZYt4vocPH8Lb2xtOTk6YNm0abt++jeXLl0NTUxPe3t7quAVVRmW3xeXLl3Hx4kXY2dkhOztbHZdcZVV2W6xbtw7Ozs4YMWIE9PX1ERUVhcmTJ2Pp0qUYPHiwOm5BlVLZ7ZGSkoJu3bphwoQJMDAwwLVr1xASEoL4+Hh8+eWX6rgFVUZlt8Xrli5dCn19fWRkZFTW5aqGQPQGL168UNg2e/ZswcHBQcjPzxcEQRD69OkjTJ8+Xa6Mp6enMH78+DfGOXTokGBtbS38/fff4rY5c+YIPXv2FLKzs8VtK1asEDp06CC3rTaq7LYoiikIgjBq1ChhwoQJ5b6GmqKy26K4cp988okwcOBApa+hJqns9ijOypUrBTs7OyEvL0+ZS6gx1NUWv//+u9CpUychPDxcsLa2Lvb4qopzxOiNiuvabd26NdLT05GRkYG4uDg8ePAA/fv3lyvj7u6Oc+fOIScnp8Q4tra2AICEhARxW3R0NHr16iXXve/u7o7U1FRcuXJFJddUXVV2W2ho8J+HklR2W5R0vtfL1GaV3R7FMTExQV5eHgoKCpS9jBpBHW2Rm5uLL7/8En5+fjAxMVHRlVQe/ktLZXbp0iWYm5vDwMAAMTExAACZTCZXpkWLFsjNzUVcXNwb4wCAlZUVACAjIwNPnz4VPxexsrKCRCIRz0X/p6Lagsqustvi0qVLbK83qIz2yMvLQ2ZmJi5evIjNmzdjxIgR0NbWVuFV1AwV3RZbtmyBpqYmRowYoeKaVw7OEaMyuXjxIiIjIzFjxgwAhXMlAMDIyEiuXNHnov3/lZSUhODgYPTq1QvNmzcHAKSlpRUbSyqVQk9Pr8RYtVVFtgWVTWW3RUREBK5cuYK1a9eqoPY1T2W0R15eHt59913x8+DBgxEUFKSqS6gxKrotnj17hrVr12Lt2rXQ1NSsgCuoeEzEqNTi4+Ph7++Pzp07Y/To0UrHyc3NxfTp0wEA8+fPV1Htahe2RdVR2W1x69YtzJs3D0OGDOFTk8WorPbQ0tLCvn37kJ2djevXr+P777/HrFmzsGzZMqXPWdNURlt8/fXXcHJygqOjY3mqqlZMxKhUUlNT4ePjAxMTEwQHB4vzh4yNjQEU9maZmZnJlX99fxFBEBAUFIRr165hx44daNCggbjP0NBQjPW6nJwcZGZmKsSqrSqjLah0KrstHj9+DB8fH9jZ2WHhwoUVcUnVWmW3R9u2bQEAHTp0gIWFBSZPnoxRo0aJ22uzymiLK1eu4NixY9izZ494fGZmJgDg1atX0NPTg56eXsVdpIowEaO3ysrKgq+vL9LS0rB7924xYQL+b6w+JiZGbtw+JiYG2trasLS0lIu1bNkyHD16FGFhYWjVqpXcPn19fTRq1EhhLlhsbCwEQeB8GFReW9DbVXZbJCUlwdvbG/Xq1UNISAjnIv2Hun822rRpAwD4999/a30iVlltERsbi9zc3GKXcOnduzfc3d2xatUqVV5aheBkfXqjvLw8TJs2DTExMdiwYQPMzc3l9ltaWqJ58+aIioqS2x4ZGQlHR0e5px9DQ0OxadMmLF26tMRu5O7du+PEiRPIzc2Vi2VkZAR7e3sVXln1U9ltQSWr7LZ49eoVfHx8kJubi9DQUBgYGKj+oqqxqvCzUTSR/L+JRG1TmW3RrVs3bNmyRe7Lx8cHALB27VpMnjy5Aq5Q9dgjRm+0YMECnDp1CjNnzkR6ejquXr0q7rO1tYVUKoWfnx8CAwPRtGlTdO7cGZGRkbh27Rq2bdsmlo2IiMCKFSvwwQcfwMLCQi5O06ZNxUeVvb29ERERgYCAAIwYMQJ37txBeHg4/P39a/2K1ZXdFklJSbhw4YL491evXon/eLq4uFSLLv+KUtlt4efnh1u3buGrr77CkydP8OTJE7Fc0QKYtVllt8fIkSPh5uYGKysraGho4K+//sIPP/yAbt26wc7OrrIuu0qqzLYwMzOTG94ECofvAcDBwaHarKwvEQRBUHclqOpydXUVv7H/68SJE7CwsABQ+LqKsLAw8XUV06dPl3tdxcyZM3Hw4MFi4yxZsgRDhgwRP1++fBlLly7FzZs3YWpqipEjR/IVR6j8tjh//nyJE2xfP19tVNltYWNjU2Jdbt++rexl1BiV3R5LlizBr7/+iidPnkBLSwsWFhb48MMP8fHHH9f6/zCq43fG6w4cOIBZs2ZVq1ccMREjIiIiUhPOESMiIiJSEyZiRERERGrCRIyIiIhITZiIEREREakJEzEiIiIiNWEiRkRERKQmTMSIiIiI1ISJGBEREZGaMBEjIiIiUhMmYkRESho/fjw6duyI58+fK+xLS0uDs7MzPDw8UFBQoIbaEVF1wESMiEhJ8+bNQ25uLpYsWaKwb+XKlXj58iW+/PJLaGjwn1oiKh7/dSAiUpKlpSUmT56Mw4cP47fffhO3X7t2Dbt27cLYsWPRqlWrCq1DdnY2e9yIqjG+9JuIqBzy8vIwZMgQZGZm4vDhw9DS0oKHhwdSUlJw+PBhPHnyBN9++y3++OMPZGZm4p133sHkyZPRq1cvMUZycjLWr1+P3377DY8ePYJEIoGDgwMCAwPlErnz589j9OjRWLlyJe7cuYMDBw4gMTERFy5cgJGRkToun4jKSUvdFSAiqs60tLTw5ZdfYvjw4fjuu+9gamqKf/75Bxs2bMCjR48wYsQImJubw8fHB/r6+jh69CgmT56M4OBguLm5AQDi4uLwyy+/oF+/frCwsMDz58+xe/dujBo1CkeOHIG5ubncOb/77jtoa2vD29sbOTk50NbWVselE5EKsEeMiEgFvvzyS+zevRva2tpwdXXFihUrMHbsWLx48QL79++HVCoFAAiCgBEjRuDly5c4duwYACAnJwdaWlpyc8kePXqE/v37Y+LEiZg8eTKA/+sRs7S0xOHDh6Grq1v5F0pEKsU5YkREKuDv7w8TExNoaGhg1qxZSE5Oxh9//IH+/fsjPT0dSUlJSEpKwsuXL+Hs7IwHDx7g2bNnAACpVComYfn5+Xj58iX09fUhk8lw48YNhXN9+OGHTMKIaggOTRIRqYCBgQFkMhlevnyJ+vXr49q1axAEAd9++y2+/fbbYo958eIFzM3NUVBQgC1btmDHjh149OgR8vPzxTImJiYKx1lYWFTUZRBRJWMiRkRUAYqeZBw3bhy6detWbJmmTZsCANatW4dvv/0WH330ET777DMYGxtDQ0MDixcvRnGzR9gbRlRzMBEjIqoAlpaWAABtbW107dr1jWWPHTuGzp07Y/HixXLbU1NTUbdu3QqrIxGpH+eIERFVgHr16qFTp07YvXs3EhISFPYnJSWJf9fU1FTo+Tp69Kg4h4yIai72iBERVZB58+bh448/xvvvv49hw4bB0tISz58/x9WrVxEfH49Dhw4BAHr06IG1a9di1qxZsLe3x507dxARESH2qhFRzcVEjIiogrRs2RL79+9HSEgIDh48iOTkZJiamsLW1lZckgIAJk6ciMzMTERERCAyMhK2trZYv349VqxYocbaE1Fl4DpiRERERGrCOWJEREREasJEjIiIiEhNmIgRERERqQkTMSIiIiI1YSJGREREpCZMxIiIiIjUhIkYERERkZowESMiIiJSEyZiRERERGrCRIyIiIhITZiIEREREakJEzEiIiIiNfl/heUQoSZ3hlIAAAAASUVORK5CYII=\n"},"metadata":{}}]},{"cell_type":"code","source":["#Shows the average/mean salary by experience level with color for work setting\n","sns.barplot(data=df_u,y='salary',hue='work_setting',x='experience_level',palette='viridis',errorbar=None)\n","plt.xlabel('Experience Level')\n","plt.ylabel('Salary')\n","plt.title('Optional Worksetting Employment Salary')\n","plt.savefig('/content/worksetting_experience')"],"metadata":{"colab":{"base_uri":"https://localhost:8080/","height":480},"id":"_vL9lsh5dVgJ","executionInfo":{"status":"ok","timestamp":1714700980869,"user_tz":300,"elapsed":861,"user":{"displayName":"Jenny O","userId":"07622373657144372939"}},"outputId":"8aae41b1-f2b4-4ed5-df5d-3e161c02155d"},"execution_count":null,"outputs":[{"output_type":"display_data","data":{"text/plain":["
"],"image/png":"iVBORw0KGgoAAAANSUhEUgAAAmIAAAHPCAYAAADwPLZLAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAACAhklEQVR4nO3dd1wUx/8/8NdxcBQREEVsKKC5UxSkKIoUK4qINdZE1IiKGsEae4wmRo2xg0ZE7DX2oFiisSTGmNii+dgFCypWqiB1f3/wu/16HigguIiv5+PBQ292dmZ29457MzM7KxMEQQARERERvXc6UjeAiIiI6GPFQIyIiIhIIgzEiIiIiCTCQIyIiIhIIgzEiIiIiCTCQIyIiIhIIgzEiIiIiCTCQIyIiIhIIgzEiIiIiCTCQIyoGO3cuRMqlQqxsbFSNwUAoFKpEBISInUz3srf3x9+fn5SN+OtWrVqhYkTJ0rdjFKD50MaPO9lCwMxKtNu3LiBcePGwdPTEw0aNICHhwfGjh2LGzduvFO5y5cvx+HDh4upldJ59uwZVCoVZs6cqbVt5syZUKlUWLJkida28ePHo379+khLS3sfzSwR+V3Dc+fOISQkBElJSRK0Kn8qlSrfn2nTpkndvI/GzZs3ERISUqg/ts6cOYNBgwbB09MT9vb2aNGiBYYOHYrIyMgSbCl9KHSlbgBRSTl06BDGjBkDMzMzfPrpp6hRowbu37+P7du34+DBg1i4cCG8vb2LVHZYWBjatWuHNm3aaKR37twZHTp0gEKhKI5DKHEVK1aEtbU1zp07p7Xt3Llz0NXVzXdbvXr1YGho+D6aWSLyu4bnz59HaGgounbtChMTE41tBw4cgEwme5/N1ODu7o7OnTtrpdvY2EjQmo/TzZs3ERoaCldXV9SoUeOt+ffv34/Ro0ejXr166NevH0xNTREbG4t//vkHP//8Mzp27PgeWk2lGQMxKpPu3r2L8ePHw8rKChs3boS5ubm4rV+/fvj8888xfvx4/PLLL7Cysiq2euVyOeRyebGV9z44Oztjz549ePHiBcqVKwcASE1NxbVr1+Dj44PffvsN2dnZ4nE9fvwY9+7dQ+vWrd+57tTUVBgZGb1zOe+L1AG2tbV1noEYlV6hoaGoU6cOtm7dqvX+efbsmUSt+j/p6enQ09ODjg4HyKTCM09l0sqVK5GWlobvvvtOIwgDAHNzc3z77bdITU1FeHi4mB4SEgKVSoVbt25h5MiRcHZ2RpMmTTBz5kykp6eL+VQqFVJTU7Fr1y5xaEg9XyO/OWIbN25Ehw4dxOHRGTNmaA19qedJ3bx5E/7+/mjYsCE8PT012ggAGRkZWLx4Mbp16wYXFxc4Ojris88+w19//VWkc+Xi4oLs7Gz8+++/Ytq///6LrKwsBAQEIDU1FVeuXBG3qXvIXFxcxLT9+/ejW7ducHBwQJMmTTBu3Dg8evRIo56JEyfCyckJd+/exeDBg+Hk5IRx48bl264//vgDDRs2xJgxY5CVlQUAOHnyJPr06YNGjRrByckJ7dq1w4IFC7TOz5IlS+Dt7Y0GDRqgefPmmDt3LjIyMsQ8+V3DkJAQzJ07FwDQunVrcZv6er4+N0d9vc+ePYvZs2ejadOmcHR0xJdffonnz59rtCsnJwchISHw8PBAw4YN4e/vj5s3bxb7fB/1++jq1avo27cvGjZsCG9vbxw4cAAA8Pfff6NHjx5wcHBAu3bt8Oeff2rsX9DPQX7u3buH4OBguLq6omHDhujZsyeOHTsmbn/x4gUcHR3zHA6Pi4tDvXr1EBYWBuD/zu+ZM2cwc+ZMNG3aFI0aNcK0adOQkZGBpKQkjB8/Ho0bN0bjxo0xd+5cCIKgUWZOTg7WrFmDDh06wN7eHs2aNcO0adOQmJioka9Vq1YIDAzEmTNn0L17d9jb26N169bYvXu3mGfnzp0YOXIkgNw/6NTvj9OnT+d7Pu7evQt7e/s8g/iKFStqvI6IiEDv3r3RpEkTODg4oFu3buJ1e5OEhAT88MMP6NixI5ycnODs7IxBgwbh6tWrGvlOnz4NlUqFffv2YeHChfD09ETDhg1x5coVqFQqrFmzRqvsc+fOQaVSYe/evW9tBxUNe8SoTDp69CiqV6+ORo0a5bm9cePGqF69Oo4fP661bdSoUahevTrGjh2LCxcuYP369UhKShK/oOfOnYupU6fCwcEBPXv2BADUrFkz37aEhIQgNDQUzZo1Q58+fRATE4PNmzfj0qVL2Lx5M/T09MS8iYmJGDRoELy9vdG+fXscPHgQ8+bNg1KpRPPmzQEAKSkp2LZtG/z8/NCjRw+8ePEC27dvx6BBg7Bt2zbUq1evUOdKHVCdPXsWzZo1A5D7y9fa2hp2dnaoUqUKzp07hwYNGojbXt1v586dmDRpEuzt7TFmzBg8e/YM69atw7lz57B7926N4T11cOfi4oIJEybAwMAgzzYdPXoUwcHB8PX1xaxZsyCXy3Hjxg0EBgZCpVIhODgYCoUCd+7c0Rg6zcnJwbBhw3D27Fn07NkTtWvXxvXr17F27Vrcvn0by5YtA5D/NTQ0NMTt27exd+9eTJo0CRUqVAAArWD+dTNnzoSJiQlGjBiB+/fvY+3atfj222+xaNEiMc/8+fOxcuVKtGzZEp6enrh69SoCAgIKFNyopaenawV4AGBsbKzxRZ+YmIihQ4fC19cXPj4+2Lx5M8aMGYOcnBzMmjULvXv3hp+fHyIiIhAcHIxjx47B2NhYo8y3fQ7y8vTpU/Tu3RtpaWnw9/dHhQoVsGvXLgwbNkwMjsuVK4c2bdpg//79mDRpkkYP8t69eyEIgtZw3cyZM1GpUiUEBQXh33//xdatW1G+fHmcP38eVatWxejRo3HixAlERERAqVSiS5cu4r7Tpk3Drl270K1bN/j7+yM2NhYbN27E5cuXtT5/d+7cwciRI9G9e3d07doVO3bswMSJE1G/fn188sknaNy4Mfz9/bF+/XoMHToUtra2AIDatWvne06qVauGU6dOIS4uDlWqVMk3HwCsW7cOrVq1QseOHZGZmYl9+/Zh5MiRCAsLQ4sWLfLd7969ezh8+DB8fHxQo0YNPH36FFu3bkXfvn2xb98+WFpaauRftmwZ9PT0EBAQgIyMDNja2sLZ2Rm//PILBgwYoJE3MjIS5cqVK5YecMqHQFTGJCUlCUqlUhg2bNgb8w0dOlRQKpVCcnKyIAiCsGTJEkGpVApDhw7VyDd9+nRBqVQKV65cEdMcHR2FCRMmaJW5Y8cOQalUCvfu3RMEQRCePXsm1K9fXxg4cKCQnZ0t5tuwYYOgVCqF7du3i2l9+/YVlEqlsGvXLjEtPT1dcHd3F4KCgsS0rKwsIT09XaPexMREoVmzZsKkSZM00pVKpbBkyZI3ngdBEAQ3Nzehf//+4uuBAwcKEydOFARBEEaOHCkEBweL27p16ya0bdtWEARByMjIENzc3AQ/Pz/h5cuXYp6jR48KSqVSWLx4sZg2YcIEQalUCvPmzdOqv2/fvkKHDh0EQRCEgwcPCvXr1xemTp2qcc5Wr14tKJVK4dmzZ/kex+7du4W6desK//zzj0b65s2bBaVSKZw9e1ZMy+8arly5UuMavqply5Ya+6iv94ABA4ScnBwxfdasWUK9evWEpKQkQRAE4cmTJ4KdnZ0wfPhwjfJCQkIEpVKZZztep1Qq8/3Zu3evmE/9PoqMjBTTbt26JSiVSqFu3brChQsXxPTff/9dUCqVwo4dO8S0wnwOXj8f33//vaBUKjXOf0pKitCqVSuhZcuW4vVU13v8+HGNOjp27Cj07dtXfK0+vwMHDtQ4v7169RJUKpUwbdo0MS0rK0vw8vLS2P+ff/4RlEql8Msvv2jUc+LECa30li1barX92bNnQoMGDYQ5c+aIafv37xeUSqXw119/CQWxbds2QalUCvXr1xf8/f2FRYsWCf/884/Ge1stLS1N43VGRobg5+cn9OvXTyP99fOenp6uVd69e/eEBg0aCKGhoWLaX3/9JSiVSqF169ZadW3ZskVQKpXCzZs3Nepv0qRJgd6fVHQcmqQy58WLFwAgznfKj3q7Or/a559/rvG6b9++AIATJ04Uui1//vknMjMz0a9fP405GD169ICxsbFWj5yRkZHGHCCFQgF7e3vcu3dPTJPL5WLvR05ODhISEpCVlYUGDRrg8uXLhW4jkDtP7N9//0V2djZycnLw77//wtnZWdym7nVKS0vD1atXxW3//fcfnj17hj59+kBfX18sr0WLFrC1tdUYklLr06dPvu3Yu3cvRo8ejV69euHbb7/VOGfqnrUjR44gJycnz/0PHDiA2rVrw9bWFs+fPxd/mjZtCgBvHEJ6Fz179tSYxN+oUSNkZ2fj/v37AIBTp04hKysLn332mcZ+6vdWQbVu3RqrV6/W+mnSpIlGPiMjI3To0EF8bWtrCxMTE9SuXRsNGzYU09X/f/X9pVaUz8Hx48fh4OCg0RNdrlw59OrVC/fv38fNmzcBAM2aNUPlypU17hq8fv06rl27hk6dOmmV2717d43z6+DgAEEQ0L17dzFNLpejQYMGGsdy4MABlC9fHu7u7hrvh/r168PIyEjr/VCnTh2Ntpubm8PGxibP81NQ3bt3x8qVK9GkSROcO3cOy5Ytw+eff462bdtq3Qjzag9xYmIikpOT4eLi8tbPtUKhED8r2dnZiI+Ph5GREWxsbPLct0uXLlq90e3bt4e+vr7GNfnjjz8QHx+f5zWh4sOhSSpz8guwXpdfwFarVi2N1zVr1oSOjk6R1gZ78OABAIhDGGoKhQJWVlbiF7ValSpVtO7KMzU1xbVr1zTSdu3ahVWrViEmJgaZmZliekHu4sqLi4sLfv31V1y5cgW6urpITk4Wgy0nJyc8fvwYsbGxiI2NRVZWljgsqT6+vO7as7W1xdmzZzXSdHV18x2eiY2NxVdffQUfHx98/fXXWtt9fX2xbds2TJ06FfPnz4ebmxu8vb3h4+MjfgnduXMHt27dgpubW551lNTk6GrVqmm8VgeN6nmA6vP0+hC2mZkZTE1NC1xPlSpVxOHjt+V7/X1Uvnx5rXNfvnx5jXa+qiifgwcPHmgEemrq9/+DBw+gVCqho6ODjh07YvPmzUhLS4OhoSEiIyOhr68PHx8frf1fP7/qdletWlUr/dW5X3fu3EFycnKB3w+vlwfkfv5en09WWJ6envD09ERaWhr+97//ISoqClu2bMHQoUOxf/9+ca7Y0aNH8dNPP+HKlSsacxrfdqduTk4O1q1bh02bNiE2NhbZ2dniNjMzM638ef2eMDExQcuWLbF3716MGjUKQO6wpKWlpfiHDJUMBmJU5pQvXx4WFhZawcvrrl27BktLS625Ma97n8sVFOSOyz179mDixIlo06YNAgICULFiRcjlcoSFhRX5L/dX54np6enBzMxM/PJUL1Nx9uxZ8Uv41Yn6hfHqX+6vs7CwgIWFBY4fP45Lly7B3t5eY7uBgQE2btyI06dP49ixY/j9998RFRWFrVu3YtWqVZDL5cjJyYFSqcSkSZPyrONtc3SKKr9jEl6bOP6+5Pc+yi+9IO0s7s9Bly5dEBERgcOHD8PPzw979+5FixYtxCDrVfmd37fd6ZeTk4OKFSti3rx5eW5/fe5fSd/xbGhoiEaNGqFRo0aoUKECQkNDceLECXTt2hVnzpzBsGHD0LhxY3zzzTewsLCAnp4eduzY8daJ8suXL8fixYvx6aefYuTIkTA1NYWOjg5mzZqV57XNb25mly5dcODAAZw7dw5KpRK//fYb+vTpwzsqSxgDMSqTWrZsiZ9//hlnzpzJc8L+mTNncP/+ffTq1Utr2507dzSWtLhz5w5ycnKK1Nuk/ks+Ojpao8yMjAzExsYWqHfjdQcPHoSVlRVCQ0M1vhzzWni1oOzs7MRgS6FQwNHRUSxbV1cX9vb2OHfuHGJjY1GxYkWxB0x9fDExMVq9DjExMVo9GW+ir6+PsLAw9O/fH4MGDcKGDRvwySefaOTR0dGBm5sb3NzcMGnSJCxfvhwLFy7E6dOn0axZM9SsWRNXr16Fm5tbkQOHkgi81efh7t27Gu+D+Pj4d+5tKSlF+RxUq1YNMTExWunR0dHidjWlUgk7OztERkaiSpUqePDgAaZOnVqMR5Dbi3fq1Ck4OzvnG3wUVnG9P9Q3vzx58gRA7udaX18fERERGjde7Nix461lHTx4EE2aNMGsWbM00pOSksQbTgrC09MT5ubmiIyMRMOGDZGWlsblUt4DhrlUJgUEBMDAwADffPMN4uPjNbYlJCTgm2++gaGhIQYNGqS178aNGzVeb9iwAQDg5eUlphkZGRVo5fVmzZpBT08P69ev1/jLdPv27UhOThbvhCwM9V/tr5b377//4sKFC4UuS01XVxcODg44d+4czp07BycnJ43tTk5OOHPmjMbcMSD3y6RixYrYsmWLxlDK8ePHcevWrTfe6ZWX8uXLY+XKlahYsSK++OIL3L17V9yWkJCglV99h6i67vbt2+PRo0f4+eeftfK+fPkSqamp4uv8rqF6kdrk5ORCtf1N3NzcoKuri82bN2ukv/5eK00K8jl4XfPmzXHx4kWcP39eTEtNTcXPP/+M6tWro06dOhr5O3fujJMnT2Lt2rUwMzN7Y9lF0b59e2RnZ4t3y74qKyurSE9PKOz749SpU3mmq+eHqv+okcvlkMlkGsOKsbGxOHLkyFvrkMvlWj1f+/fv11pC5m10dXXRoUMH7N+/Hzt37oRSqUTdunULVQYVHnvEqEyytrbGnDlz8NVXX6Fjx47o3r27xsr68fHxWLBgQZ7LTsTGxmLo0KHw9PTEhQsX8Msvv8DPz0/jF1L9+vVx6tQprF69GpUrV0aNGjXynBtjbm6OwMBAhIaGYtCgQWjVqhViYmKwadMm2NvbF2kSbIsWLXDo0CF8+eWXaNGiBWJjY7FlyxbUqVNHI9AoLBcXF3Hy8qvBFpAbiKnXdnp1WFJPTw/jxo3DpEmT0LdvX3To0EFcvqJ69epat8IXhLm5OVavXo0+ffpgwIAB2Lx5MywtLbF06VKcOXMGzZs3R/Xq1fHs2TNs2rQJVapUEdvUuXNn7N+/H9988w1Onz4NZ2dnZGdnIzo6GgcOHMDKlSvFIc/8rmH9+vUBAAsXLoSvry/09PTQsmXLd1p4tlKlSujXrx9WrVolvreuXbuGEydOoEKFCgXuZbl9+zb27NmTZ/nu7u5Fbl9eCvI5eN2QIUOwb98+DB48GP7+/jA1NcXu3bsRGxuLkJAQrSEuPz8//Pjjj/j111/Rp08fjaUkioOrqyt69eqFsLAwXLlyBe7u7tDT08Pt27dx4MABTJkyJc85aW9Sr149yOVyhIeHIzk5GQqFAk2bNtVaE0xt+PDhqFGjBlq2bAkrKyukpaXhzz//xNGjR2Fvb4+WLVsCyA1iV69ejUGDBsHPz098f9esWfOt0yxatGiBpUuXYtKkSXBycsL169cRGRlZpMWqu3TpgvXr1+P06dNvXOePig8DMSqz2rdvD1tbW6xYsQLbt29HQkICzMzM0KRJEwQGBkKpVOa536JFi7B48WLMnz8furq66Nu3L8aPH6+RZ+LEiZg2bRoWLVqEly9fomvXrnkGYgAQFBQEc3NzbNiwAbNnz4apqSl69uyJMWPGFOmLp1u3buI6QX/88Qfq1KmDH3/8EQcOHMDff/9d6PLU1MGMeijyVU5OTpDJZBAEQWt+WLdu3WBgYIDw8HDMmzcPRkZGaNOmDb766iutRwQVlKWlJdasWYPPPvsMX3zxBTZs2IBWrVrh/v372LFjB+Lj41GhQgW4uroiKChInFeko6ODpUuXYs2aNdizZw9+/fVXGBoaokaNGvD399e4qSC/a+jg4ICRI0diy5Yt+P3335GTk4MjR4688xMAxo0bBwMDA2zbtg2nTp2Co6MjIiIi8NlnnxV4xf6TJ0/i5MmTWumurq7FHogV5HPwukqVKmHLli348ccfsWHDBqSnp0OlUmH58uV59o6qA8jjx4+X2BDYt99+iwYNGmDLli1YuHAh5HI5qlevjk6dOmn9wVEQFhYWmDFjBsLCwjBlyhRkZ2dj3bp1+QZiM2fOxJEjR7B//348fvwYgiDAysoKQ4cOxeDBg6Grm/s17Obmhu+//x7h4eGYNWsWatSogXHjxuH+/ftvDcSGDh2KtLQ0REZGIioqCnZ2dggLC8P8+fMLfXwNGjTAJ598glu3bvFuyfdEJkg1m5SolFEvvHrq1Km3LuBJVBySkpLQuHFjjBo1CsOGDZO6OQDe/+fgyy+/xPXr1/Hrr7+WeF1UMF26dIGpqSnWrl0rdVM+CpwjRkT0Hrx8+VIrTf1F5+rq+r6bUyo8fvy4RHvDqPAuXbqEK1euaDydgEoWhyaJiN6DqKgo7Nq1C15eXjAyMsK5c+ewd+9eeHh4FHk5kA/VvXv3cO7cOWzfvh26urp53r1M79f169fxv//9D6tWrYKFhQV8fX2lbtJHg4EYEdF7oFKpIJfLsXLlSrx48QIVK1ZEv379xMUzPyb//PMPJk2ahGrVqmHOnDmwsLCQukkfvYMHD2Lp0qWwsbHBggULNJ6UQSWLc8SIiIiIJMI5YkREREQSYSBGREREJBHOESvlzp8/D0EQin2hQyIiIio5mZmZkMlkWk8qeR0DsVJOEATJHhxMRERERVPQ724GYqWcuifs9ZXOiYiIqPS6dOlSgfJxjhgRERGRRBiIEREREUmEgRgRERGRRBiIEREREUmEk/WJiIiKQXZ2NjIzM6VuBr0Henp6kMvlxVIWAzEiIqJ3IAgC4uLikJCQIHVT6D0yMzNDlSpVIJPJ3qkcBmJERETvQB2EVa5cGUZGRu/8xUylmyAISE1NxePHjwEAVatWfafyGIgREREVUXZ2thiEVaxYUerm0HtiaGgIAHj8+DEqV678TsOUnKxPRERUROo5YUZGRhK3hN439TV/13mBDMSIiIjeEYcjPz7Fdc0ZiBERERFJhIEYERERkUQYiBEREX0EWrVqhcDAQKmb8c4mTpyIVq1aSd2MYsNAjIiIiCQRGRmJNWvWaKU/evQIISEhuHLlyvtv1HvG5SuIiIhIEnv37sWNGzcwYMAAjfTHjx8jNDQU1atXR7169TS2fffddxAE4T22smSxR4zKrBwhR+omlIo2ENHHLS0tTeomFCs9PT0oFAqpm1Fs2CNGZZaOTAdr/1uHuNRHktRfxcgS/Rv0k6RuIiqdrl69is6dO2PZsmVo3bo1AOC///7Dp59+Cjs7O+zatUvMO2jQICQmJmLbtm0AgI0bN2LTpk24c+cOzMzM4O3tjdGjR8PExETcx9/fH/Hx8ZgzZw5mz56N//77Dz179sSUKVPybM+uXbswZcoU9O/fHxMmTCjQMdy+fRvz58/HuXPnkJSUhAoVKsDFxQXffvstypcvL+bbs2cP1q5di5s3b8LAwADu7u4YP368uBK9v78//v77bwCASqUCAFSvXh2zZ89Gv365vzsnTZqESZMmAQBmz56Nbt26YeLEifj777/x22+/AQBiY2PRunVrjB8/HsbGxggPD0dcXBxUKhW++eYbODg4aLR///79CAkJwb1791CrVi2MHDkSR44c0SjzfWIgRmVaXOojxCbHSt0MIiIAgFKphImJCc6cOSMGYmfOnIGOjg6uXr2KlJQUGBsbIycnB+fPn0fPnj0BACEhIQgNDUWzZs3Qp08fxMTEYPPmzbh06RI2b94MPT09sY6EhAQMHjwYHTp0QKdOnfJd8X/r1q345ptvEBgYiNGjRxeo/RkZGQgICEBGRgb69u2LSpUq4dGjRzh27BiSkpLEQOynn37C4sWL0b59e3Tv3h3Pnz/Hhg0b8Pnnn2P37t0wMTHB0KFDkZycjLi4ODHYKleuHGrXro3g4GAsWbIEvXr1gouLCwDA2dn5jW3bu3cvXrx4gV69ekEmk2HlypUICgrC4cOHxfNz7NgxjB49GkqlEmPHjkViYiKmTJkCS0vLAh1/SWAgRkRE9J7o6OjA2dkZZ86cEdPOnj2LNm3a4MiRIzh37hy8vLzEoKxRo0Z4/vw5wsLC4OHhgfDwcOjo5M4qsrW1xbfffotffvkFn376qVjekydPMGPGDPTu3Tvfdqxbtw6zZs1CcHAwhg8fXuD237p1C7GxsVi8eDF8fHzE9BEjRoj/v3//PkJCQjBq1CgMHTpUTG/bti26du2KTZs2YejQoXB3d8e6deuQlJSEzp07a9Tj5eWFJUuWwNHRUWtbfh48eIBDhw7B1NQUAGBjY4Phw4fjjz/+QMuWLQEA8+fPh6WlJTZv3oxy5coBANzc3ODv74/q1asX+DwUJ84RIyIieo9cXFxw+fJlpKamAsgNxLy8vFC3bl2cPXsWQG4vmUwmg4uLC/78809kZmaiX79+YhAGAD169ICxsTGOHz+uUb5CoUC3bt3yrT88PBzff/89xo0bV6ggDACMjY0BAH/88Ue+c89+/fVX5OTkoH379nj+/Ln4U6lSJdSqVQunT58uVJ0F5evrKwZhANCoUSMAwL179wDk3ol5/fp1dOnSRQzCAMDV1RVKpbJE2lQQ7BEjIiJ6jxo1aoSsrCxcuHABVapUwbNnz9CoUSPcvHlT7Ck7c+YM6tSpAzMzMzx48ABAbg/YqxQKBaysrHD//n2NdEtLy3wns//99984duwYBg8ejEGDBhW67VZWVvjiiy+wevVqREZGolGjRmjVqhU6deokDkvevn0bgiCgbdu2eZahq1syoYd67pmaOihLSkoCAPE81qxZU2vfWrVq4fLlyyXSrrdhIEZERPQeNWjQAPr6+vjnn39QrVo1VKxYETY2NmjUqBE2bdqEjIwMcbiyKAwMDPLd9sknnyApKQl79uxBr169YGVlVejyJ06ciK5du+LIkSM4efIkZs6cibCwMPz888+oUqUKcnJyIJPJEB4eDrlcrrV/ST0gPa+6AJT6pS44NElERPQeKRQKODg44MyZMzhz5ow4hObi4oKMjAz88ssvePr0KRo3bgwAqFatGgAgOjpao5yMjAzExsYWam5ThQoVsGbNGujp6WHAgAF49Khod5WrVCoMHz4cGzduxMaNG/Ho0SNs3rwZQG6PkyAIqFGjBpo1a6b14+joKJaT34OzS+Ih6urzePfuXa1td+7cKfb6CqpUBWL79+/HsGHD4OXlJU7Q2759u0Y06+/vD5VKpfVz69YtjbKSk5MxefJkuLq6wsnJCcHBwXj8+LFWnefOnUOvXr3g4OCAli1bYsWKFVrRsyAIWLFiBVq0aAEHBwf06tULFy5c0Crr0aNHCAoKgpOTE1xdXTFlyhSkpKQUz8khIqIyw8XFBRcvXsTp06fFuwLNzc1Ru3ZthIeHA/i/OU7NmjWDnp4e1q9fr/H9tH37diQnJ6N58+aFqrtKlSpYvXo10tPTMXDgQMTHxxd435SUFGRlZWmkKZVK6OjoICMjA0DupHy5XI7Q0NA8v09frc/Q0BDJycla9RgaGgL4v2HF4mBpaQmlUondu3fjxYsXYvrff/+N69evF1s9hVWqhibXrFmD6tWrY+LEiahQoQL+/PNPfP3114iLi9O4I8PZ2VlrvZMaNWpovB41ahRu3ryJ6dOnQ19fH4sWLcLgwYOxY8cOcXz6zp07CAgIgLu7O0aNGoVr165h3rx5kMvlCAgIEMsKDw/HkiVLMG7cOKhUKmzcuBEDBw7Enj17xG7dzMxMcbx9/vz5ePnyJX744QeMHTsWYWFhJXK+iIjow9SoUSMsX74cDx8+FAMudfrWrVtRvXp1VKlSBUBugBYYGIjQ0FAMGjQIrVq1QkxMDDZt2gR7e3t06tSp0PXXqlULERER6NevHwICArBu3TpxIv6b/PXXX/j222/h4+MDa2trZGdnY8+ePZDL5WjXrh2A3B6xUaNGYf78+bh//z7atGmDcuXKITY2FocPH0bPnj3F79j69esjKioKs2fPhr29PYyMjNCqVSvUrFkTJiYm2LJlC8qVKwcjIyM4ODgUaSj1VaNHj8bw4cPRp08fdOvWDUlJSdi4cSOUSqVGcPY+lapA7KeffoK5ubn42s3NDQkJCVi9ejWGDx8u3i1iYmKi0bX5uvPnz+OPP/5AREQEPDw8AOTexurr64tDhw7B19cXABAREYEKFSpgwYIFUCgUcHNzw/Pnz7F8+XL4+/tDoVAgPT0dYWFhGDhwoPgIBhcXF/j4+CAiIgLTp08HABw8eBA3btxAVFSUOKHSxMQEAQEBuHjxotaCckRE9PFycnKCXC6HgYEB6tatK6arA7FXgzMACAoKgrm5OTZs2IDZs2fD1NQUPXv2xJgxYzTWECsMlUqF8PBwDBgwAEOHDsXKlSvfOL9MvY+HhweOHj2KR48ewdDQUCzn1e/lIUOGwNraGmvWrMHSpUsB5PbEubu7azyw+7PPPsOVK1ewc+dOsTOmVatW0NPTw5w5c7BgwQJMnz4dWVlZmD179jsHYq1atcKCBQsQEhKC+fPnw9raGrNnz8bu3btx48aNdyq7qEpVIPZqEKZWr149/Pzzz0hNTS1QtA4AJ06cgImJCdzd3cU0W1tb1KtXDydOnBADsRMnTsDb21vj7hJfX1+EhYXh/PnzaNKkCc6dO4eUlBS0b99ezKNQKODt7Y1ff/1Vo06VSqVxV4u7uzvMzMxw/PhxBmJERCQyNjbO8y69Tp065dvD9fnnn+Pzzz9/Y7nr16/Pd1teq8Y7ODjg3Llzb2nt/7GyssKsWbMKlLdt27b53jmpZmRkhPnz5+e5rXXr1uKit6+aM2eOxusaNWrg2rVreZaRV7qvr68YB6gtXrxY7IF830rVHLG8nD17FpaWlhpB2N9//w1HR0fY29ujb9+++OeffzT2iY6Oho2NjdZkP1tbW3GyY2pqKh4+fKh1O7CtrS1kMpmYT/3v6/lq166NBw8e4OXLl2K+1/PIZDLY2NhoTbAkIiKi9y8zM1Nrjtvp06dx9epVuLq6StKmUtUj9rozZ84gKipKYz5Y48aN0blzZ1hbW+Px48eIiIjAF198gfXr18PJyQkANB6z8CpTU1P8999/ACBODnz1GV1Abm+XoaEhEhMTxbIUCgX09fU18pmYmEAQBCQmJsLAwOCNdarLKipBEMSF/6hgZDKZONlTamlpaaX+9mkiKpr09HTk5OQgOzsb2dnZUjfnnSQkJCAzMzPf7XK5PM+Rqw/Jw4cPMXDgQHTs2BGVK1dGTEwMtm7dikqVKqFnz56FuobZ2dnIyclBWloacnJytLYLglCguz9LbSAWFxeH0aNHo0mTJuLDPwEgODhYI1+LFi3g5+eHZcuWiXealDWZmZm4cuWK1M34oBgaGsLOzk7qZgAAYmJi8l2Bmog+fLq6ukhPT5e6Ge8sKChIXNk/L1WrVsW+ffveY4uKn0KhQN26dbF9+3bEx8fD0NAQHh4eCAoKgoGBgTjKVRDp6enIysp646hXfgvrvqpUBmJJSUkYPHgwzMzMEBISovFIh9cZGRmhefPmOHjwoJhmYmKCuLg4rbyJiYniSrvq3qvXb5vNyMhAWlqamM/ExAQZGRlIT0/X6BVLSkqCTCbTyJfXUhWJiYlaq/0Wlp6eHurUqfNOZXxsSmINmqKysbFhjxhRGZWeno4HDx5AX1//rRPdS7uJEye+cQTHwMDggz9GAwMDLF68uNjK09XVRc2aNbVGzQDg5s2bBSuj2FpTTF6+fInAwEAkJydj69ateQ73vY2trS1OnTql1S0YExMjPk/KyMgIVatW1YpkY2JiIAiCON9L/W9MTIzGnS3R0dGoVq2a+Ka0tbXVWodEEATExMRo3DRQFDKZrMRWIqaSV1qGSImo+Ono6EBHRwdyuTzfld0/FLyprHDkcjl0dHRgaGiYZ4Ba0A6BUjVZPysrC6NGjUJ0dDRWrlwJS0vLt+6TmpqKY8eOwd7eXkzz8vJCYmIiTp06JabFxMTg8uXL8PLy0sh35MgRjTHxqKgomJiYiPPNnJ2dYWxsjP3794t5MjMzcejQIa2yrl69itu3b4tpp06dQkJCQqEX2yMiIqKPQ6nqEZsxYwaOHj2KiRMnIiUlRWP1ejs7O1y8eBErV66Et7c3qlevjsePH2P16tV48uSJRlejk5MTPDw8MHnyZEyYMAH6+vpYuHAhVCqVxq20AQEBiIyMxNixY9GnTx9cv34dERERGD16tDiuq6+vj8DAQISEhMDc3BxKpRKbN29GQkKCxqKv7dq1Q1hYGIKCgjBmzBikpaVh7ty54mr8RERERK8rVYHYyZMnAWivEQIAR44cgYWFBTIzM7Fw4UIkJCTA0NAQTk5OmDFjhlaws2jRIsyePRvTpk1DVlYWPDw8MHXqVI2nvqtXFp4zZw6GDBkCc3NzBAcHY+DAgRplDR48GIIgYNWqVXj+/Dnq1auHiIgIjYXl9PT0sHLlSsycORNjxoyBrq4uvL29MXny5OI8RURERFSGyATOIi7VLl26BAAaQ69UcD/8/SNik2MlqbtG+RqY4PqVJHUT0fvx8uVLxMTEwMbG5oOfyE6F87ZrX9Dv71I1R4yIiIjoY8JAjIiIiEgiDMSIiIgIISEh4ooB9P4wECMiIioB2Xk89qYs10tFU6rumiQiIior5Do6mBOyE3fvP31vddasXgkTg7q9t/qkoH7Go56entRNKRYMxIiIiErI3ftPcTNG+5F7pV1sbCxat26NuXPn4t9//0VkZCT09fXRsWNHjB07VmMpqLyoVCqMHTsWCQkJ2LlzJ9LT09GuXTtMnToVxsbGYr6kpCQsWLAAhw8fRkJCApRKJcaMGQMPDw8xj7+/P4yMjODj44Ply5fj3r172Lp1K2rVqoW5c+fi+PHjSEhIgLm5OZydnbFw4UJx32vXrmHu3Lk4e/Ys5HI53N3dMXHiRFSrVk2jrePGjcPLly+xefNmZGdno1WrVvj666/fy1NtGIgRERFRnhYtWoTWrVtj0aJFOH/+PEJCQlCzZk306dPnrfuuX78e9evXxw8//IDY2FjMmzcP6enpYqCUkZGBL774As+ePcOoUaNgaWmJX375BYGBgdi5cydUKpVY1n///Yf79+9j5MiRMDExQdWqVTF79mz8/vvvGDt2LKpXr44nT57gxIkT4j4PHz5E3759YWVlhR9//FGsu2/fvvjll180AsKNGzfCxcUFc+bMwe3btzF37lxUrFgR48aNK8azmTcGYkRERJQnBwcHTJ06FQDg7u6O06dP4+DBgwUKxBQKBZYuXSo+g1NfXx9Tp07FiBEjULt2bURGRuLq1avYs2cP6tSpAwDw9PTEnTt3sGzZMo0n5iQmJmL79u2oWrWqmHbp0iX4+fmha9euYlqHDh3E/69ZswZZWVlYtWoVzMzMAAD16tVDhw4dsGvXLvj7+4t5LSwsMH/+fAC5jyy8fPkyDh48+F4CMU7WJyIiojy9OkQIALVr10Zc3P8NtWZlZYk/2dnZGnlbtmyp8SB0Hx8fCIIgLnR68uRJKJVKWFtba5TTrFkzMY+aUqnUCMKA3Ecf7tq1CxEREbh+/bpW28+cOYMmTZqIQZi6/XXr1sXZs2c18jZr1uyNx1mS2CNGREREeSpfvrzGaz09PWRkZAD4v3lkatWrV8dvv/0mvq5YsaLGvsbGxtDX18fjx48BAPHx8bh8+TLq16+vVe+rARwAVKpUSSvP119/DVNTU6xevRpz585F1apVMWTIEHz22WcAcuef1atXT2u/ihUrIjExUSPNxMQk3+MsaQzEiIiIqNAqV66M7du3i68VCoXG9mfPnmm8TklJQXp6OipXrgwAMDU1hUqlwvfff//WumQymVZa+fLlMWXKFEyZMgXXrl3DunXrMGPGDCiVSjRq1AimpqZabVC3y9rauiCH+F5waJKIiIgKTaFQwN7eXvx5dXI9ABw9elRjuPLAgQOQyWTisxebNWuGe/fuoXLlyhrlqH8KQ6VSYdKkSQCAW7duAQBcXFzw119/afR+RUdH49q1a3BxcSnSMZcE9ogRERGVkJrVtYfUylJ9b5KRkYEvv/wSffr0Ee+abNeuHWrXrg0A6NKlC7Zs2YJ+/fph4MCBsLa2RnJyMi5fvozMzEyMHTv2jeX37t0b3t7e+OSTTyCXy7F7927o6emhUaNGAIABAwZg586dGDhwIIYNG4b09HQsWrQIVatW1ZjgLzUGYkRERCUgOydHksVVs3NyINeRfsDL398fz58/x/jx45GRkQFvb29MmzZN3K5QKLBu3TqEhIRg+fLlePLkCczMzGBnZyfO83oTZ2dn7N69G7GxsdDR0YFSqcTy5cvFQK9q1apYv3495s6di3HjxkFHR0dcR+zVpSukJhMEQZC6EZQ/9Z0jhe2mpVw//P0jYpNjJam7RvkamOD6lSR1E9H78fLlS8TExMDGxgYGBgZSN6fUUKlUGD9+PAICAqRuSol527Uv6Pe39CEzERER0UeKgRgRERGRRDhHjIiIiIrVtWvXpG7CB4M9YkREREQSYSBGREREJBEGYkREREQSYSBGREREJBEGYkREREQSYSBGREREJBEGYkREREQSYSBGRERUArJzcj6oekNCQqBSqcSfJk2aoE+fPjh+/Hgxt/DdrVmzplS2qyi4oCsREVEJkOvoYPLuHYh++vS91WlbqRJmdfm0yPsbGBhg7dq1AIDHjx9j+fLlGDp0KDZu3AhnZ+fiauY7W7duHVq0aIHmzZtL3ZR3xkCMiIiohEQ/fYqrcQ+lbkaB6ejowNHRUXzdsGFDNG/eHLt37y5VgVhZwqFJIiIiypOlpSXMzc3x4MEDMe38+fPo168fHB0d4eLigrFjx+LZs2fi9tjYWKhUKuzevRvTpk1Do0aN4ObmhtWrVwMA9u3bh3bt2sHZ2RkjRoxAUlKSRp33799HcHAwXFxc4OjoiICAAI1HJrVq1Qr379/Hxo0bxWHUnTt3itt37tyJjh07wt7eHp6enli4cCGys7NL6hS9MwZiRERElKcXL14gMTERNWrUAJAbhPn7+6N8+fJYuHAhvvvuO1y6dAnDhw/X2nfRokUwMDDA4sWL4ePjgzlz5mD+/PlYt24dvvrqK0ybNg1//fUXfvzxR3GflJQU+Pv74/Lly5gxYwZ+/PFHxMfHo2/fvnj4MLdnMTQ0FBYWFmjXrh22bt2KrVu3okWLFgCA1atXY+rUqfDw8MDy5csxePBgrFu3DgsXLiz5k1VEHJokIiIiUVZWFoDcOWI//vgjypUrh379+gEA5s+fjwYNGiA0NBQymQwAoFQq4efnh+PHj2vM2XJ0dMTkyZMBAE2bNsWhQ4ewYcMG/Pbbb6hQoQKA3IeDb9++Hd999x2A3N6sBw8eYN++fahduzYAoHHjxmjZsiXWrl2LiRMnws7ODgqFApUqVdIYRk1JScGSJUswaNAgjBkzBgDg7u4OPT09zJkzBwEBAWK9pQkDMSIiIgIApKamon79+uJruVyOZcuWwdbWFmlpaTh37hzGjx+vMdRnbW2NqlWr4tKlSxqBmLu7u0Y5VlZWkMlkGsGQtbU1kpKS8OLFC5QrVw5nzpzBJ598IgZhAGBmZoZmzZrh7Nmzb2z7+fPnkZqaCh8fHzGYBIBmzZrh5cuXuHHjBlxdXYt2YkoQAzEiIiICkHvX5IYNGyAIAm7fvo358+djwoQJiIyMhCAIyM7OxuzZszF79mytfdVDh2rly5fXeK2npwcjIyOtNABIT09HuXLlkJSUhEqVKmmVXbFiRdy4ceONbY+PjwcAdO3aNc/tr7evtGAgRkRERABy75q0t7cHADg4OMDGxgY9e/bE0qVLMWHCBMhkMgQGBqJNmzZa+xbHsJ+pqSliYmK00p89ewZTU9O37gvkziGrUqWK1nb1PLfShoEYERER5cne3h4dOnTAzp07MWLECDg6OiI6OloM1oqbi4sLDh48iOjoaNja2gIAEhMT8eeff6JXr15iPj09PaSnp2vs6+TkBENDQ8TFxcHb27tE2lcSGIgRERGVENs8htk+tPqGDx+OqKgorF27FuPHj0f//v0xatQodOjQASYmJoiLi8Off/6Jbt26oUmTJu9UV7du3bBmzRoEBgZi1KhR0NfXx08//QRdXV30799fzGdra4u//voLJ0+ehImJCWrUqIEKFSogODgYP/74I+Li4uDq6gq5XI579+7hyJEjCAkJgaGh4buejmLHQIyIiKgEZOfkvNMq9+9Sr1yn+FansrW1ha+vLzZv3ozAwEBs2rQJISEhmDRpEjIzM1GlShU0bdoUtWrVeue6jI2NsX79esyZMwdff/01cnJy4OzsjA0bNqBq1apivjFjxmD69OkICgrCixcvMHv2bHTr1g0DBw6EpaUlVq9ejQ0bNkBXVxc1a9ZEixYtxPlopY1MEARB6kZQ/i5dugQAJdYNXFKK+xdBUf3w94+ITY6VpO4a5WtggutXktRNRO/Hy5cvERMTAxsbGxgYGEjdHHqP3nbtC/r9zR4xKhFSPGPtVR6162BEy9aS1E1ERFRQDMSoxEj5jDXriu93XgYREVFRSD92RERERPSRYiBGREREJBEGYkREREQSYSBGREREJBEGYkREREQSYSBGREREJBEGYkREREQSYSBGRERECAkJgZOTU6G35SU2NhYqlQoHDhwocntUKhUiIiLemOfKlStQqVQ4ffp0keuRGhd0JSIiKgE5Qg50ZO+/v0Oqeovb1q1bUa1aNambUeIYiBEREZUAHZkO1v63DnGpj95bnVWMLNG/Qb/3Vl9JePnyJQwMDODo6Ch1U94LBmJEREQlJC71EWKTY6VuRrHq1q0bbGxsMH/+fI30H3/8EXv27MHx48fFtLS0NEyePBkHDx6EXC5H165d8dVXX0FXNzf82LlzJyZNmoQtW7ZgyZIlOH/+PLp164Zp06ZBpVJh/PjxCAgIEMtbtmwZNm7ciNTUVLi7u6N3797v56BL0Iffd0lERETFJisrS+snJydH3N6jRw8cPnwYycnJYlp2djb27NmDrl27Qi6Xi+kLFiyAIAhYtGgRAgICsGHDBixatEirzrFjx6Jp06ZYvnw5OnfunGe7NmzYgMWLF6NTp05YsmQJrKysMGXKlOI7cImwR4yIiIgAAKmpqahfv36e24yMjAAAHTt2xA8//IDIyEh89tlnAIDjx4/jyZMn+PTTTzX2qVmzJmbPng0A8PT0xMuXL7F69WoMHjwYpqamYr7evXtjyJAh+bYrOzsbYWFh6Ny5MyZMmCCW9+zZM+zZs6foB1wKsEeMiIiIAAAGBgbYvn271k/Pnj3FPMbGxmjfvj127Nghpu3cuRONGjWCtbW1Rnne3t4ar9u1a4e0tDRcv35dI71FixZvbFdcXBweP36cZ3kfOvaIEREREQBAR0cH9vb2WunHjh3TeN2zZ0/07t0bV69eReXKlXHs2DF8++23WvuZm5trvK5UqRIA4MmTJ3mm50edP7/yPmSlqkds//79GDZsGLy8vODo6IjOnTtj+/btEARBI9+2bdvQrl072Nvbo1OnTjh69KhWWcnJyZg8eTJcXV3h5OSE4OBgPH78WCvfuXPn0KtXLzg4OKBly5ZYsWKFVn2CIGDFihVo0aIFHBwc0KtXL1y4cEGrrEePHiEoKAhOTk5wdXXFlClTkJKS8m4nhYiIqJRxcnLCJ598gh07dmDPnj1QKBTw8fHRyvf8+XON10+fPgUAWFhYFKo+df78yvuQlapAbM2aNTA0NMTEiRPx008/wcvLC19//TWWLl0q5tm3bx++/vprtG/fHuHh4XB0dMSIESO0AqNRo0bh5MmTmD59OubNm4eYmBgMHjwYWVlZYp47d+4gICAAFhYWCAsLQ//+/bFkyRKsWrVKo6zw8HAsWbIEAwYMQFhYGCwsLDBw4EDcu3dPzJOZmYlBgwbh9u3bmD9/PqZPn44//vgDY8eOLZmTRUREJKEePXogMjIS27dvh6+vrziH7FW//vqrxuuDBw/C0NAQSqWyUHVVqVIFFhYWeZb3oStVQ5M//fSTRrejm5sbEhISsHr1agwfPhw6OjpYsmQJOnTogFGjRgEAmjZtiuvXr2Pp0qUIDw8HAJw/fx5//PEHIiIi4OHhAQCwsbGBr68vDh06BF9fXwBAREQEKlSogAULFkChUMDNzQ3Pnz/H8uXL4e/vD4VCgfT0dISFhWHgwIEYMGAAAMDFxQU+Pj6IiIjA9OnTAeS+GW7cuIGoqCjY2toCAExMTBAQEICLFy/CwcHhPZxBIiKi96Nz586YN28e4uPj8f333+eZ5+7du5g0aRJ8fX1x+fJlrFixAv3799eYqF8QcrkcQ4YMwffff4+KFSvC3d0dJ0+e/KBX1FcrVYHY62O/AFCvXj38/PPPSE1NRXx8PG7fvo2vvvpKI4+vry/mzp2LjIwMKBQKnDhxAiYmJnB3dxfz2Nraol69ejhx4oQYiJ04cQLe3t5QKBQaZYWFheH8+fNo0qQJzp07h5SUFLRv317Mo1Ao4O3trRGZnzhxAiqVSgzCAMDd3R1mZmY4fvw4AzEioo9QFSPLMlufmZkZXF1dERcXl+/iq6NHj8bff/+NkSNHQi6X47PPPsPo0aOLVJ+/vz+SkpKwadMmbN68GW5ubpg5cyYGDRr0DkchvVIViOXl7NmzsLS0hLGxMc6ePQsgt3frVbVr10ZmZibu3buH2rVrIzo6GjY2NpDJZBr5bG1tER0dDSD3Ft2HDx9qBE7qPDKZDNHR0WjSpImY//V8tWvXxtq1a8UVgKOjo7XyyGQy2NjYiGUUlSAISE1Nfacy3ieZTAZDQ0Opm1FqpKWlac07JKKyIT09HTk5OcjOzkZ2drbGNpmOTJJV7nOEHAg5hf+dM3z4cAwfPlzrOPLblpKSgnPnzuHLL7/U2qdq1aq4fPkygNyes9d7zNT5O3fuLK4b9noZ6v1fTR82bBiGDRv21nzvQ3Z2NnJycpCWlqaxzpqaIAhacUheSnUgdubMGURFRYlrhiQmJgLIHfJ7lfq1entSUhLKly+vVZ6pqSn+++8/ABAXonu9LIVCAUNDQ42yFAoF9PX1teoUBAGJiYkwMDB4Y53qsooqMzMTV65ceacy3idDQ0PY2dlJ3YxSIyYmBmlpaVI3g4hKiK6uLtLT07XSZTJZgb6Ii5sgCCX6x9+LFy8QHR2Nbdu2QSaTwdfXFy9fviyx+kqr9PR0ZGVlvbGz5dURt/yU2kAsLi4Oo0ePRpMmTdCv34f93Kx3paenhzp16kjdjAKT4hdPaWZjY8MeMaIyKj09HQ8ePIC+vj4MDAykbs57cfHiRQwYMABVqlTB7NmzYWn5fodfSxNdXV3UrFlTq7MGAG7evFmwMoq7UcUhKSkJgwcPhpmZGUJCQqCjk3tzp3pyX3Jyssatr0lJSRrbTUxMEBcXp1VuYmKimEfde/XqIxoAICMjA2lpaRplZWRkID09XeNEJyUlQSaTaeTLa6mKxMREVK1atQhn4f/IZLI870ahDwOHaYnKLh0dHejo6EAul2s82qcsc3Nzw7Vr16RuhuTkcjl0dHRgaGiYZxBe0E6JUrV8BZD71PXAwEAkJydj5cqVGsN96jlYr3cDRkdHQ09PD1ZWVmK+mJgYrV6ImJgYsQwjIyNUrVpVqyz1fup86n9jYmK06qxWrZp48l+df6YmCIJGnURERESvKlWBWFZWFkaNGoXo6GisXLlSq7vTysoK1tbWOHDggEZ6VFQU3NzcxLFYLy8vJCYm4tSpU2KemJgYXL58GV5eXmKal5cXjhw5gszMTI2yTExM4OTkBABwdnaGsbEx9u/fL+bJzMzEoUOHtMq6evUqbt++LaadOnUKCQkJaN68+TucFSIiIiqrStXQ5IwZM3D06FFMnDgRKSkpGou02tnZQaFQICgoCOPGjUPNmjXRpEkTREVF4eLFi9iwYYOY18nJCR4eHpg8eTImTJgAfX19LFy4ECqVCm3bthXzBQQEIDIyEmPHjkWfPn1w/fp1REREYPTo0WJQp6+vj8DAQISEhMDc3BxKpRKbN29GQkICAgICxLLatWuHsLAwBAUFYcyYMUhLS8PcuXPF1fiJiKjs4jzQj09xXfNSFYidPHkSADBnzhytbUeOHEGNGjXg5+eHtLQ0hIeHY8WKFbCxsUFoaKjYg6W2aNEizJ49G9OmTUNWVhY8PDwwdepU6Or+3yHXqlULERERmDNnDoYMGQJzc3MEBwdj4MCBGmUNHjwYgiBg1apVeP78OerVq4eIiAhxKBTInVC/cuVKzJw5E2PGjIGuri68vb0xefLk4jxFRERUiujp6QHIXRKJ80E/LuplpdTvgaKSCQzjS7VLly4BQJ4PYS3teq8Mw9W4h5LU7VPfHnO6foof/v4RscmxkrShRvkamOD61dszEtEH7eHDh0hISEDlypVhZGTEO8fLOPXano8fP4aZmVm+N+QV9Pu7VPWIERERfWiqVKkCAHj8+LHELaH3yczMTLz274KBGBER0TuQyWSoWrUqKleurHHzF5Vdenp6xbZcCQMxIiKiYvAxrSVGxadULV9BRERE9DFhIEZEREQkEQZiRERERBJhIEZEREQkEQZiRERERBJhIEZEREQkEQZiRERERBJhIEZEREQkEQZiRERERBJhIFYGZefkSN0EIiIiKgA+4qgMkuvoYE7ITty9/1SS+hs71sEXvVtJUjcREdGHhIFYGXX3/lPcjImTpG6rahUlqZeIiOhDw6FJIiIiIokwECMiIiKSCAMxIiIiIokwECMiIiKSCAMxIiIiIokwECMiIiKSCAMxIiIiIokwECMiIiKSCAMxIiIiIokwECMiIiKSCAMxIiIiIokwECMiIiKSCAMxIiIiIokwECMiIiKSCAMxIiIiIokwECMiIiKSCAMxIiIiIokwECMiIiKSCAMxIqIPSHZOjtRNKBVtICordKVuABERFZxcRwdzQnbi7v2nktRfs3olTAzqJkndRGURAzEiog/M3ftPcTMmTupmEFEx4NAkERERkUQYiBERERFJhIEYERERkUQYiBERERFJhIEYERERkUQYiBERERFJhIEYERF9cHIE6ReVLQ1t+FiUhnNdUm3gOmJERPTB0ZHpYO1/6xCX+kiS+qsYWaJ/g36S1P0xKsvXm4EYERF9kOJSHyE2OVbqZtB7UlavN4cmiYiowCqYluOzJomKEXvEiIiowIzLGUCuo4PJu3cg+qk0z7v0qF0HI1q2lqRuouLGQIyIiAot+ulTXI17KEnd1hUrSVIvUUng0CQRERGRRBiIEREREUmEgRgRERGRRBiIEREREUmEgRgRERGRRBiIEREREUmEgRgRERGRREpVIHbnzh1MmzYNnTt3hp2dHfz8/LTy+Pv7Q6VSaf3cunVLI19ycjImT54MV1dXODk5ITg4GI8fP9Yq79y5c+jVqxccHBzQsmVLrFixAoIgaOQRBAErVqxAixYt4ODggF69euHChQtaZT169AhBQUFwcnKCq6srpkyZgpSUlHc7KURERFRmFXlB1xUrVqBz586wtLQstsbcuHEDx48fR8OGDZGTk6MVEKk5OztjwoQJGmk1atTQeD1q1CjcvHkT06dPh76+PhYtWoTBgwdjx44d0NXNPew7d+4gICAA7u7uGDVqFK5du4Z58+ZBLpcjICBALCs8PBxLlizBuHHjoFKpsHHjRgwcOBB79uyBlZUVACAzMxODBg0CAMyfPx8vX77EDz/8gLFjxyIsLKzYzhERERGVHUUOxBYtWoRFixahUaNG6Ny5M9q1awdjY+N3akyrVq3Qpk0bAMDEiRPx33//5ZnPxMQEjo6O+ZZz/vx5/PHHH4iIiICHhwcAwMbGBr6+vjh06BB8fX0BABEREahQoQIWLFgAhUIBNzc3PH/+HMuXL4e/vz8UCgXS09MRFhaGgQMHYsCAAQAAFxcX+Pj4ICIiAtOnTwcAHDx4EDdu3EBUVBRsbW3FdgYEBODixYtwcHB4p3NDREREZU+RhyaPHj2KMWPGIDExEVOmTIGHhwdGjx6NY8eOITs7u2iN0SmekdITJ07AxMQE7u7uYpqtrS3q1auHEydOaORr3bo1FAqFmObr64ukpCScP38eQO7QZUpKCtq3by/mUSgU8Pb21ipLpVKJQRgAuLu7w8zMDMePHy+W4yIiIqKypcg9YpaWlhg0aBAGDRqE69evIzIyEvv27cP+/ftRoUIF+Pr6olOnTmjYsGFxthcA8Pfff8PR0RHZ2dlo2LAhRo4cicaNG4vbo6OjYWNjA5lMprGfra0toqOjAQCpqal4+PChRuCkziOTyRAdHY0mTZqI+V/PV7t2baxduxYvX76EgYEBoqOjtfLIZDLY2NiIZRSVIAhITU0tUF6ZTAZDQ8N3qo+KV1paWr7D7ESFwc936cPPd8krTe/7wlxvQRC04pC8FMtDv5VKJcaOHYuxY8fizJkzWLt2LTZt2oRNmzahZs2a6Ny5M3r16oWKFSu+c12NGzdG586dYW1tjcePHyMiIgJffPEF1q9fDycnJwBAUlISypcvr7WvqampONyZnJwMIHf48FUKhQKGhoZITEwUy1IoFNDX19fIZ2JiAkEQkJiYCAMDgzfWqS6rqDIzM3HlypUC5TU0NISdnd071UfFKyYmBmlpaVI3g8oAfr5LH36+S15pet8X9nq/OuKWn2IJxAAgPT0dhw8fRmRkJP744w/I5XK4u7tDT08Py5YtQ3h4OObOnQtvb+93qic4OFjjdYsWLeDn5yfWURbp6emhTp06BcpbkOib3i8bGxv+xUzFgp/v0oef75JXmt73hbneN2/eLFC+dwrEBEHAyZMnERkZicOHD+PFixews7PDuHHj0LFjR7EH7PHjxxg7dizmzJnzzoHY64yMjNC8eXMcPHhQTDMxMUFcXJxW3sTERJiamgKA2Hul7hlTy8jIQFpampjPxMQEGRkZSE9P1+gVS0pKgkwm08iX11IViYmJqFq16jsdo0wmg5GR0TuVQdIpLV3qRFT8+Pn+uBTmehc0gCxyIDZr1ixERUXh2bNnsLCwQO/evdGlSxd88sknWnkrV66M7t27ay05UVJsbW1x6tQprfHZmJgYKJVKALkBXNWqVbXmb8XExEAQBHG+l/rfmJgY1K1bV8wXHR2NatWqwcDAQMx3/fp1jbIEQUBMTIzGTQNEREREakW+TXHbtm1wc3PDypUrcfz4cXz11Vd5BmFqLi4umD17dlGry1dqaiqOHTsGe3t7Mc3LywuJiYk4deqUmBYTE4PLly/Dy8tLI9+RI0eQmZkppkVFRcHExEScb+bs7AxjY2Ps379fzJOZmYlDhw5plXX16lXcvn1bTDt16hQSEhLQvHnzYj1mIiIiKhuK1COWmZmJlStXonr16qhSpUqB9qlRo4bWoquvS0tLE5d6uH//PlJSUnDgwAEAgKurK6Kjo7Fy5Up4e3ujevXqePz4MVavXo0nT55g8eLFYjlOTk7w8PDA5MmTMWHCBOjr62PhwoVQqVRo27atmC8gIACRkZEYO3Ys+vTpg+vXryMiIgKjR48WJ9jp6+sjMDAQISEhMDc3h1KpxObNm5GQkKCx6Gu7du0QFhaGoKAgjBkzBmlpaZg7d664Gj8RERHR64oUiOno6KBfv36YMGEC+vXrV2yNefbsGUaOHKmRpn69bt06VKlSBZmZmVi4cCESEhJgaGgIJycnzJgxQyvYWbRoEWbPno1p06YhKysLHh4emDp1qriqPgDUqlULERERmDNnDoYMGQJzc3MEBwdj4MCBGmUNHjwYgiBg1apVeP78OerVq4eIiAhxVX0gd0L9ypUrMXPmTIwZMwa6urrw9vbG5MmTi+38EBERUdlSpEBMLpejWrVqyMjIKNbG1KhRA9euXXtjnoiIiAKVVb58ecyaNQuzZs16Yz5nZ2f8/PPPb8wjk8kQGBiIwMDAN+aztLRESEhIgdpHREREVOQ5Yn379sXPP/+MhISEYmwOERER0cejyHdN5uTkiI/6adeuHapXry7eQagmk8nE5zMSERERkaYiB2I//PCD+P/t27fnmYeBGBEREVH+ihyIHTlypDjbQURERPTRKXIgVr169eJsBxEREdFHp8iT9YmIiIjo3bzTsyavXr2KDRs24PLly0hOTkZOTo7GdplMhsOHD79TA4mIiIjKqiL3iJ0+fRo9evTAsWPHULlyZdy7dw9WVlaoXLkyHjx4ACMjIzRu3Lg420pERERUphQ5EFuyZAmsrKxw4MABcdHUwMBAbN68GVu2bMGjR4/g4+NTbA0lIiIiKmuKHIhdvnwZ3bt3h7GxMeRyOQCIQ5MNGzZEr169NJ7/SERERESaihyIyeVylCtXDgBgYmICXV1dPHv2TNxuZWWFW7duvXsLiYiIPlLZr829/ljbUJYVebJ+zZo1cfv2bQC5k/JtbW1x+PBhdOrUCQBw7NgxVKpUqVgaSURE9DGS6+hgTshO3L3/VJL6a1avhIlB3SSp+2NR5ECsefPm2LFjB8aOHQtdXV188cUXmDRpEtq2bQsAuHv3LsaMGVNsDSUiIvoY3b3/FDdj4qRuBpWQIgdiw4cPR79+/cT5YV27doWOjg4OHToEuVyOoUOHols3RtFERERE+SlyIKanp4cKFSpopHXu3BmdO3d+50YRERERfQy4sj4RERGRRArcI9avX79CFy6TybB27dpC70dERET0MShwICYIQqELL8o+RERERB+LAgdi69evL8l2EBEREX10OEeMiIiISCJFvmvyVSkpKUhJSREfcfSqatWqFUcVRERERGXOOwVimzZtwpo1a3Dv3r1881y5cuVdqiAiIiIqs4o8NLl582Z8++23qFmzJkaNGgVBENC/f38MGTIElSpVQt26dfH9998XZ1uJiIiIypQiB2IbNmyAh4cHVq5ciZ49ewLIfezR6NGjERUVhRcvXiAhIaG42klERERU5hQ5ELt79y5atmwJIHeVfQDIzMwEAJQvXx7du3fHpk2biqGJRERERGVTkQOx8uXLIzs7GwBgbGwMQ0NDxMX930NJy5Urh6dPpXlaPBEREdGHoMiB2CeffIKrV6+Krxs2bIjNmzfj0aNHePjwIbZu3Qpra+viaCMRERFRmVTkQKxTp064ceMGMjIyAABBQUG4desWWrRogVatWiEmJgajRo0qrnYSERERlTlFXr7i008/xaeffiq+dnFxwb59+/Dbb79BLpfD3d0dNjY2xdJIIiIiev8qmJZDdk4O5Dpc/72kFMuCrgBw69YtHDhwAE+ePIGNjQ0sLCyKq2giIiKSgHE5A8h1dDB59w5ESzTv26N2HYxo2VqSut+HQgViGzZswPr167F582aYm5uL6b/99htGjhwp3jUpk8mwYcMGbN26VSMfERERfXiinz7F1biHktRtXbGSJPW+L4Xqa/ztt99gZWWlEVxlZWVh6tSpkMvlmD17NiIjIzFmzBg8ePAAy5cvL/YGExEREZUVhQrEbt68CUdHR42006dP4/nz5+jfvz+6du2KTz75BIMHD4aPjw+OHz9enG0lIiIiKlMKFYglJCSgSpUqGmmnTp2CTCaDt7e3RrqzszMePpSmG5OIiIjoQ1CoQKxSpUpai7SeOXMGBgYGqFu3rka6QqEQV9wnIiIiIm2FCsQaNGiAXbt2ISUlBQBw48YNXLp0CZ6entDV1Zz3Hx0drdV7RkRERET/p1B3TX755Zfo3r072rVrhzp16uB///sfZDIZhgwZopX3119/RdOmTYutoURERERlTaF6xFQqFdauXYv69evj8ePHaNiwIVasWIEGDRpo5Dt9+jQMDQ3h4+NTrI0lIiIiKksKvaCrs7MzVqxY8cY8TZo0QWRkZJEbRURERPQx4DMLiIiIiCTCQIyIiIhIIgzEiIiIiCTCQIyIiIhIIgzEiIiIiCTCQIyIiIhIIgzEiIiIiCTCQIyIiIhIIgzEiIiIiCTCQIyIiIhIIgzEiD5w2Tk5UjehVLSBiOhDVOhnTRJR6SLX0cGckJ24e/+pJPXXrF4JE4O6SVI3EdGHjoEYURlw9/5T3IyJk7oZRERUSByaJCIiIpIIAzEiIiIiiTAQIyIiIpJIqQrE7ty5g2nTpqFz586ws7ODn59fnvm2bduGdu3awd7eHp06dcLRo0e18iQnJ2Py5MlwdXWFk5MTgoOD8fjxY618586dQ69eveDg4ICWLVtixYoVEARBI48gCFixYgVatGgBBwcH9OrVCxcuXNAq69GjRwgKCoKTkxNcXV0xZcoUpKSkFO1kEBERUZlXqgKxGzdu4Pjx46hVqxZq166dZ559+/bh66+/Rvv27REeHg5HR0eMGDFCKzAaNWoUTp48ienTp2PevHmIiYnB4MGDkZWVJea5c+cOAgICYGFhgbCwMPTv3x9LlizBqlWrNMoKDw/HkiVLMGDAAISFhcHCwgIDBw7EvXv3xDyZmZkYNGgQbt++jfnz52P69On4448/MHbs2OI7QURERFSmlKq7Jlu1aoU2bdoAACZOnIj//vtPK8+SJUvQoUMHjBo1CgDQtGlTXL9+HUuXLkV4eDgA4Pz58/jjjz8QEREBDw8PAICNjQ18fX1x6NAh+Pr6AgAiIiJQoUIFLFiwAAqFAm5ubnj+/DmWL18Of39/KBQKpKenIywsDAMHDsSAAQMAAC4uLvDx8UFERASmT58OADh48CBu3LiBqKgo2NraAgBMTEwQEBCAixcvwsHBoaROGxEREX2gSlWPmI7Om5tz79493L59G+3bt9dI9/X1xalTp5CRkQEAOHHiBExMTODu7i7msbW1Rb169XDixAkx7cSJE2jdujUUCoVGWUlJSTh//jyA3KHLlJQUjToVCgW8vb21ylKpVGIQBgDu7u4wMzPD8ePHC3MaiIiI6CNRqnrE3iY6OhpAbu/Wq2rXro3MzEzcu3cPtWvXRnR0NGxsbCCTyTTy2draimWkpqbi4cOHGoGTOo9MJkN0dDSaNGki5n89X+3atbF27Vq8fPkSBgYGiI6O1sojk8lgY2MjllFUgiAgNTW1QHllMhkMDQ3fqT4qXmlpaVrzDotLabreJXmclKs0XW/K9bF8vilXYa63IAhacUhePqhALDExEUDukN+r1K/V25OSklC+fHmt/U1NTcXhzuTk5DzLUigUMDQ01ChLoVBAX19fq05BEJCYmAgDA4M31qkuq6gyMzNx5cqVAuU1NDSEnZ3dO9VHxSsmJgZpaWklUnZput4leZyUqzRdb8r1sXy+KVdhr/erI275+aACsY+Vnp4e6tSpU6C8BYm+6f2ysbEp0b+YS4uSPE7KVZquN+X6WD7flKsw1/vmzZsFyvdBBWKmpqYAcnuzLCwsxPSkpCSN7SYmJoiL037cS2JiophH3Xul7hlTy8jIQFpamkZZGRkZSE9P1+gVS0pKgkwm08iX11IViYmJqFq1atEO+P+TyWQwMjJ6pzJIOh/L0MLHcpxEr+L7/uNSmOtd0EC6VE3Wfxv1HKzX51xFR0dDT08PVlZWYr6YmBitqDUmJkYsw8jICFWrVtUqS72fOp/635iYGK06q1WrBgMDAzHf62UJgqBRJxEREdGrPqhAzMrKCtbW1jhw4IBGelRUFNzc3MSxWC8vLyQmJuLUqVNinpiYGFy+fBleXl5impeXF44cOYLMzEyNskxMTODk5AQAcHZ2hrGxMfbv3y/myczMxKFDh7TKunr1Km7fvi2mnTp1CgkJCWjevHnxnAAiIiIqU0rV0GRaWpq41MP9+/eRkpIiBl2urq4wNzdHUFAQxo0bh5o1a6JJkyaIiorCxYsXsWHDBrEcJycneHh4YPLkyZgwYQL09fWxcOFCqFQqtG3bVswXEBCAyMhIjB07Fn369MH169cRERGB0aNHi0Gdvr4+AgMDERISAnNzcyiVSmzevBkJCQkICAgQy2rXrh3CwsIQFBSEMWPGIC0tDXPnzhVX4yciIiJ6XakKxJ49e4aRI0dqpKlfr1u3Dk2aNIGfnx/S0tIQHh6OFStWwMbGBqGhoWIPltqiRYswe/ZsTJs2DVlZWfDw8MDUqVOhq/t/h1yrVi1ERERgzpw5GDJkCMzNzREcHIyBAwdqlDV48GAIgoBVq1bh+fPnqFevHiIiIsShUCB3Qv3KlSsxc+ZMjBkzBrq6uvD29sbkyZOL+zQRERFRGVGqArEaNWrg2rVrb83Xo0cP9OjR4415ypcvj1mzZmHWrFlvzOfs7Iyff/75jXlkMhkCAwMRGBj4xnyWlpYICQl5Yx4iIiIitQ9qjhgRERFRWcJAjIjKhBwhR+omlIo2ENGHpVQNTRIRFZWOTAdr/1uHuNRHktRfxcgS/Rv0k6RuIvpwMRAjondSwbQcsnNyINeRvoM9LvURYpNjpW4GEVGBMRAjondiXM4Ach0dTN69A9FPn0rSBo/adTCiZWtJ6iYiehcMxIioWEQ/fYqrcQ8lqdu6YiVJ6iUielfSjyUQERERfaQYiBERERFJhIEYERERkUQYiBERERFJhIEYERERkUQYiBERERFJhIEYERERkUQYiBERERFJhIEYERERkUQYiBERERFJhIEYERERkUQYiBERERFJhIEYERERkUQYiBERERFJhIEYERERkUQYiBERERFJhIEYERERkUQYiBERERFJhIEYERERkUQYiBERERFJhIEYERERkUQYiBERERFJhIEYERERkUQYiBERERFJhIEYERERkUQYiBERERFJhIEYERERkUQYiBERERFJhIEYERERkUQYiBERERFJhIEYERERkUQYiBERERFJhIEYERERkUQYiBERERFJhIEYERERkUQYiBERERFJhIEYERERkUQYiBERERFJhIEYERERkUQYiBERERFJhIEYERERkUQYiBERERFJhIEYERERkUQYiBERERFJhIEYERERkUQYiBERERFJhIEYERERkUQYiBERERFJ5IMLxHbu3AmVSqX1M2/ePI1827ZtQ7t27WBvb49OnTrh6NGjWmUlJydj8uTJcHV1hZOTE4KDg/H48WOtfOfOnUOvXr3g4OCAli1bYsWKFRAEQSOPIAhYsWIFWrRoAQcHB/Tq1QsXLlwo1mMnIiKiskVX6gYU1cqVK1G+fHnxtaWlpfj/ffv24euvv8bQoUPRtGlTREVFYcSIEdi4cSMcHR3FfKNGjcLNmzcxffp06OvrY9GiRRg8eDB27NgBXd3cU3Pnzh0EBATA3d0do0aNwrVr1zBv3jzI5XIEBASIZYWHh2PJkiUYN24cVCoVNm7ciIEDB2LPnj2wsrIq+RNCREREH5wPNhCrX78+zM3N89y2ZMkSdOjQAaNGjQIANG3aFNevX8fSpUsRHh4OADh//jz++OMPREREwMPDAwBgY2MDX19fHDp0CL6+vgCAiIgIVKhQAQsWLIBCoYCbmxueP3+O5cuXw9/fHwqFAunp6QgLC8PAgQMxYMAAAICLiwt8fHwQERGB6dOnl+i5ICIiog/TBzc0+Tb37t3D7du30b59e410X19fnDp1ChkZGQCAEydOwMTEBO7u7mIeW1tb1KtXDydOnBDTTpw4gdatW0OhUGiUlZSUhPPnzwPIHbpMSUnRqFOhUMDb21ujLCIiIqJXfbCBmJ+fH+rVq4fWrVsjLCwM2dnZAIDo6GgAub1br6pduzYyMzNx7949MZ+NjQ1kMplGPltbW7GM1NRUPHz4ELa2tlp5ZDKZmE/97+v5ateujQcPHuDly5fFcchERERUxnxwQ5MWFhYICgpCw4YNIZPJ8Ntvv2HRokV49OgRpk2bhsTERACAiYmJxn7q1+rtSUlJGnPM1ExNTfHff/8ByJ3Mn1dZCoUChoaGGmUpFAro6+tr1SkIAhITE2FgYFDkYxYEAampqQXKK5PJYGhoWOS6qPilpaVp3dxRXHi9Sx9e748Lr/fHpTDXWxAErc6evHxwgZinpyc8PT3F1x4eHtDX18fatWsxdOhQCVtWcjIzM3HlypUC5TU0NISdnV0Jt4gKIyYmBmlpaSVSNq936cPr/XHh9f64FPZ6vzqtKT8fXCCWl/bt22PVqlW4cuUKTE1NAeT2ZllYWIh5kpKSAEDcbmJigri4OK2yEhMTxTzqHjN1z5haRkYG0tLSNMrKyMhAenq6Rq9YUlISZDKZmK+o9PT0UKdOnQLlLUj0Te+XjY1Nif7FTKULr/fHhdf741KY633z5s0C5SsTgdir1PO0oqOjNeZsRUdHQ09PT1xKwtbWFqdOndLqOoyJiYFSqQQAGBkZoWrVquIcsFfzCIIglq/+NyYmBnXr1tWos1q1au80LAnkfhiNjIzeqQySDocWPi683h8XXu+PS2Gud0ED6Q92sv6roqKiIJfLYWdnBysrK1hbW+PAgQNaedzc3MRuQi8vLyQmJuLUqVNinpiYGFy+fBleXl5impeXF44cOYLMzEyNskxMTODk5AQAcHZ2hrGxMfbv3y/myczMxKFDhzTKIiIiInrVB9cjFhAQgCZNmkClUgEAjhw5gp9//hn9+vUThyKDgoIwbtw41KxZE02aNEFUVBQuXryIDRs2iOU4OTnBw8MDkydPxoQJE6Cvr4+FCxdCpVKhbdu2GvVFRkZi7Nix6NOnD65fv46IiAiMHj1aDOr09fURGBiIkJAQmJubQ6lUYvPmzUhISNBY9JWIiIjoVR9cIGZjY4MdO3YgLi4OOTk5sLa2xuTJk+Hv7y/m8fPzQ1paGsLDw7FixQrY2NggNDRU7MFSW7RoEWbPno1p06YhKysLHh4emDp1qriqPgDUqlULERERmDNnDoYMGQJzc3MEBwdj4MCBGmUNHjwYgiBg1apVeP78OerVq4eIiAiuqk9ERET5+uACsalTpxYoX48ePdCjR4835ilfvjxmzZqFWbNmvTGfs7Mzfv755zfmkclkCAwMRGBgYIHaR0RERFQm5ogRERERfYgYiBERERFJhIEYERERkUQYiBERERFJhIEYERERkUQYiBERERFJhIEYERERkUQYiBERERFJhIEYERERkUQYiBERERFJhIEYERERkUQYiBERERFJhIEYERERkUQYiBERERFJhIEYERERkUQYiBERERFJhIEYERERkUQYiBERERFJhIEYERERkUQYiBERERFJhIEYERERkUQYiBERERFJhIEYERERkUQYiBERERFJhIEYERERkUQYiBERERFJhIEYERERkUQYiBERERFJhIEYERERkUQYiBERERFJhIEYERERkUQYiBERERFJhIEYERERkUQYiBERERFJhIEYERERkUQYiBERERFJhIEYERERkUQYiBERERFJhIEYERERkUQYiBERERFJhIEYERERkUQYiBERERFJhIEYERERkUQYiBERERFJhIEYERERkUQYiBERERFJhIEYERERkUQYiBERERFJhIEYERERkUQYiBERERFJhIEYERERkUQYiBERERFJhIEYERERkUQYiBERERFJhIEYERERkUQYiBWzW7du4YsvvoCjoyPc3d0xd+5cZGRkSN0sIiIiKoV0pW5AWZKYmIj+/fvD2toaISEhePToEebMmYOXL19i2rRpUjePiIiIShkGYsVoy5YtePHiBUJDQ2FmZgYAyM7OxowZMxAYGAhLS0tpG0hERESlCocmi9GJEyfg5uYmBmEA0L59e+Tk5ODkyZPSNYyIiIhKJZkgCILUjSgr3Nzc8Omnn2LcuHEa6Z6enujcubNWekGcO3cOgiBAT0+vwPvIZDIkJL1AVlZOoesrDvr6eihfzgDxqS+QmS1NGwz0dGFiYIiUjBRkCdmStEFXJoexwhgl/RHj9eb1fp94vXPxer8/H+r1zszMhEwmg7Oz85vLftfG0f9JSkqCiYmJVrqpqSkSExOLVKZMJtP4t6DMTMoVqb7iVMFI+jYYK4ylbkKhr11R8Hrn4vV+f3i9c/F6vz8f2vWWyWQFys9ArJRzcnKSuglERERUQjhHrBiZmJggOTlZKz0xMRGmpqYStIiIiIhKMwZixcjW1hbR0dEaacnJyXjy5AlsbW0lahURERGVVgzEipGXlxf+/PNPJCUliWkHDhyAjo4O3N3dJWwZERERlUa8a7IYJSYmokOHDrCxsUFgYKC4oGvHjh25oCsRERFpYSBWzG7duoXvvvsO58+fR7ly5dC5c2eMHj0aCoVC6qYRERFRKcNAjIiIiEginCNGREREJBEGYkREREQSYSBGREREJBEGYkREREQSYSBGREREJBEGYkREREQSYSBGopCQEKhUqjx/VqxYIXXz8rRmzRocP35cK71Vq1b49ttvJWhR6VVc1/fKlSsICQlBWlpaCbY2l7+/PwIDA0u8nvyEhITAyclJsvql9ssvv6B79+5wcXGBs7Mz2rdvjylTpuDZs2clUp/U17ssUn/uPT09kZOTo7W9d+/eUKlUmDhxopi/IO/54cOHw9/f/635VCoVIiIiCt/wYvIhvKd0pW4AlS4GBgZYu3atVnrVqlUlaM3brVu3Di1atEDz5s010kNDQ2FiYiJRq0qv4ri+V65cQWhoKD7//HMYGhoWZ/OoFAkPD8f8+fMxYMAABAcHQxAE3LhxA5GRkXj8+DEqVqxY7HV+88030NFh/0Bx09PTQ3x8PP755x80adJETL9//z4uXLgAIyMjMa1Hjx5av0+pZDEQIw06OjpwdHSUuhnvzM7OTuomlErv+/q+fPkSBgYG760+Kj7r169H165dxZ4SAGjevDkGDRqUZ89KcahTp06xlMP3nSY9PT24ublh3759GoHYvn378Mknn2gEv1WqVEGVKlWkaOZHi396UIEdPnwYKpUKR48eFdMSEhLg6emJMWPGiGm3bt3CsGHD4OLiAkdHRwwZMgR3797VKCsnJwerV69G+/bt0aBBA7i7uyM4OBjJyckAgIkTJ8LPz09jn6SkJKhUKuzcuRNA7vDj/fv3sXHjRnGI7dVt6qHJnTt3ws7ODk+fPtUoLyEhAQ0aNMCWLVvEtPPnz6Nfv35wdHSEi4sLxo4dW2LDMKWRSqVCeHg4QkJC0KxZMzRp0gSTJk1CamoqgNxzOWnSJACAm5sbVCoVWrVqJW5TqVQ4f/48vvjiCzg6OmLu3LkICgpC7969teratGkT7O3tkZCQUKg2vu39ld9QxIYNG+Dg4CC+xwRBQEREBNq1a4cGDRqgdevWWLNmTaHaUpYlJSWhcuXKeW57vddq586d6NixI+zt7eHp6YmFCxciOztbY7tKpcLly5cxaNAgODo6om3btti9e7dGOXldu3/++Qe9e/eGg4OD+H589T0TGxsrfvanTp2KJk2aoEePHu928GWQn58fDh48iMzMTDFt7969Wr9n8xqavHXrFvr27Qt7e3u0adMGu3bteqe2HDt2DD169ICDgwOaNm2Kb775Rvwdk5qaCkdHxzyHM4ODg9GrVy/xdVJSEqZPnw4PDw80aNAA3bp1wx9//PFObZMCAzHSkpWVpfUDAG3atEGXLl0wdepUPH/+HAAwY8YMALlDCgBw79499O7dG4mJiZgzZw7mzZuH58+fY8CAAcjIyBDr+O677/Djjz+iRYsWWL58OaZNm4Zy5cqJH8aCCA0NhYWFBdq1a4etW7di69ataNGihVY+b29vyOVyHDhwQCP90KFDAAAfHx8AuUGYv78/ypcvj4ULF+K7777DpUuXMHz48AK36UOQ3/VV27hxI27fvo05c+bgyy+/RGRkJJYtWwYAaNGiBYYNGwYAWLlyJbZu3YrQ0FCN/ceOHYumTZti+fLl6Ny5M3r06IHz588jOjpaI9+OHTvg7e0NMzOzAre9IO+vDh064OTJk1oB3t69e9G8eXOUL18eAPD9999jyZIl6NKlC1asWIGuXbti3rx52Lx5c4HbU5bVr18fW7ZswbZt2/DkyZN8861evRpTp06Fh4cHli9fjsGDB2PdunVYuHChVt5x48bBw8MDS5cuRb169TBx4kTcunUr37L/++8/fPHFFyhXrhwWL16McePG4ejRoxg8eLBGoAcACxYsgCAImD9/Pr766quiH3gZ1bJlS2RkZODkyZMAgJs3b+LatWvw9fV9437p6ekYOHAgnj59irlz52Ls2LFYsWIFLl26VKR2HDhwAMOGDYNSqURoaCi++uor/Prrr5gyZQoAwMjICK1atcK+ffs09ktJScGxY8fEwDEjIwNffPEFjh07hlGjRuGnn35C7dq1ERgYiGvXrhWpbVLh0CRpSE1NRf369bXSN27ciEaNGmHq1Kno2LEjpk2bBh8fH0RFRWHlypUwNTUFkBscmZqaYvXq1dDX1wcAODs7o3Xr1ti2bRs+//xzxMTEYPPmzRg9erTGX7/t2rUrVFvt7OygUChQqVKlNw63lS9fHs2bN8fevXvRt29fMX3v3r1wd3cXA4H58+ejQYMGCA0NhUwmAwAolUr4+fnh+PHjZWLexNuuLwBYWFhg/vz5AAAvLy9cvnwZBw8exLhx42Bubo6aNWsCyP2iNjc31yqrd+/eGDJkiPg6JycH1apVw44dO8QvyOvXr+O///7T6EktiIK8v9q1a4eZM2fi0KFD6NmzJ4D/mwuzaNEiAMDdu3exYcMGzJgxQ/wLu1mzZnj58iWWLl2KXr16ffRzlb755huMGDECU6dOBQDUqFEDLVu2xIABA1CjRg0AuV+OS5YswaBBg8Rr6e7uDj09PcyZMwcBAQGoUKGCWObnn3+Ozz//HADg5OSE48eP4+DBg/n+sbN8+XJYWFhg+fLl0NPTA5A7nzEgIADHjx8Xe2MBoG7duvj++++L/0SUEYaGhmKA06JFC+zduxdOTk6wsrJ64347d+7E48ePsX//flhbWwPI/d3r4+Mjvi4oQRAwd+5c+Pr6alwrCwsLDBkyBMOHD8cnn3yCDh06YPjw4bh9+7ZYx+HDh5GVlYX27dsDACIjI3H16lXs2bNHHNL29PTEnTt3sGzZMixevLhQbZPSx/2bhrQYGBhg+/btWj/16tUDkBvUzJ49G4cPH8akSZPQp08feHp6ivufPHkSrVq1glwuF3tbTExMYGdnh//++w8A8Ndff0EQBHTv3v29HVeHDh1w4cIFPHjwAADw+PFj/PPPP+jQoQMAIC0tDefOnYOPjw+ys7PFtltbW6Nq1apF/uuvtHnb9QVyA5JX1a5dG3FxcQWu4/VeSR0dHXz66afYs2eP2Pu2Y8cOVK9eHW5ubgCgcc5f76F7VUHeXxUqVECzZs00/qKOioqCkZERWrZsCQD4888/AQBt27bVqLdZs2Z48uQJHj58WODjLauUSiX27t2LFStWoF+/fihfvjzWr1+PTp064cqVKwBye5FTU1Ph4+OjdR5fvnyJGzduaJTp4eEh/t/IyAjVqlV743vrzJkzaN26tRiEqcswMTHB2bNnNfLm1RtOmvz8/HDkyBG8fPkSUVFR4u+/N7l48SI++eQTjaCrVq1aqFu3rka+V6//672VajExMbh//z7at2+vkd/V1RU6OjriZ9jT0xMmJiYan2H1/LZKlSoByP1doFQqYW1trfXe+9B+X7NHjDTo6OjA3t7+jXlcXFxQrVo13L9/X6OHCQDi4+Oxdu3aPO/MU/8yTUhIgK6uboncdZWfli1bwtDQEPv27cPgwYOxf/9+6Ovro02bNgBy5xpkZ2dj9uzZmD17ttb+ZeWLuSDX9/W7TfX09DSGld9G/YvyVd27d8eyZctw/PhxeHl54ZdffsFnn30m9jp5e3vj/v37Yv4jR46IvS6vKsj7C8gNvCdOnIgnT57AwsIC+/btg7e3t9iLFh8fD0EQ0LRp0zyP4eHDh6hevXqBj7msUigUaN68udgb/PvvvyMwMBBLly5FaGgo4uPjAQBdu3bNc//XPzfqYWG1t723kpKS8vw9UbFiRSQmJmql0Zt5eHhAT08PixcvRmxsrNi79Cb53SFbsWJFpKenA8idp9e6dWtxW/Xq1fHbb79p7aN+v3z55Zd51qV+vygUCrRt2xZRUVH48ssvER8fjz///FNjSaL4+Hhcvnw5zx5+uVz+1uMqTRiIUaEtWbIE8fHxsLa2xowZM7Bu3TpxKM/U1BTNmzfHZ599prVfuXLlAABmZmbIysrCs2fP8v3lqVAoNCaVAtD6xVsYBgYGaNOmDaKiojB48GBERUWhZcuW4m3b5cuXh0wmQ2BgoBicverV4RUqvCpVqsDT0xM7duxAdnY24uPj0a1bN3H7Tz/9pPGFnN8k8YK8vwCgdevWUCgU2L9/Pzw8PHDlyhWNYVBTU1PIZDJs2rRJI4BTs7GxKdJxlnWenp6oW7euOK/r1SkJed1pl1cwXRimpqZ53izz7NkzsW419e8gyp+enh7atm2LNWvWwM3NLc8/ml5XuXJl/O9//9NKf/bsGYyNjcU827dvF7cpFIo8y1JPA5k2bRocHBzyrEvNz88P27dvx9WrV3HhwgXo6Oigbdu24nZTU1OoVKoyMRzNQIwK5dy5c4iIiMD06dNhZ2eH3r17Y+3atRgwYACA3Dvpbty4ATs7u3z/KmnatClkMhl27NihMZfoVVWqVEFcXBxevHghfsGqJ5m+Sk9PT/yr7G38/PwwZMgQ/P7777hw4QIGDx4sbjMyMoKjoyOio6Pf2mP0sVMHLoXpJQNy1ycaOXIknj9/Djc3N40eJ5VKVaAyCvL+AgBjY2O0aNEC+/btQ2JiIszNzTWGXNVDogkJCRrzjOj/PH36VOuL+uXLl3j48KE4J8fJyQmGhoaIi4uDt7d3sbfBxcUFR44cwcSJE6Grm/t1dfLkSSQlJcHFxaXY6/sY9OjRA8+ePRPnT76Nvb09du/ejTt37qBWrVoAgDt37uDq1avivFKFQlGg35u2traoUqUK7t27J84VzI+rq6vYm33hwgV4eXlp9Kg2a9YMx48fR+XKlWFpaVmgYymtGIiRhpycHFy4cEErvWLFiqhYsSImTJgADw8PcYLz0KFDsWDBAnh6eqJ27doIDg5G9+7dERAQgJ49e6JSpUp4+vQp/v77bzRq1Ah+fn6wsbFB7969sXjxYiQmJsLNzQ0vX77EsWPHEBQUBEtLS7Rt2xZLlizB5MmT0bNnT9y4cUPjLy41W1tb/PXXXzh58iRMTExQo0aNfHuvmjVrBjMzM0yePBkmJibw8vLS2D5+/Hj0798fo0aNQocOHWBiYoK4uDj8+eef6Natm8b6Ox+qN13ft03aVatduzaA3An+bdq0gYGBQYECqRYtWqBChQo4f/48FixYUKh2qxXk/aXm5+eHESNG4P79+/Dx8RG/yIHcHq/PP/8c48ePR0BAABo2bIjMzEzcvn0bp0+fFu8S/Zh17NgRLVu2hIeHBypXroxHjx5hw4YNiI+PR//+/QHkDmMHBwfjxx9/RFxcHFxdXSGXy3Hv3j0cOXIEISEh77To79ChQ9G7d28EBgbC398fT58+xfz58+Hg4FAmbp6RgoODQ6He3926dcNPP/2EwMBAjBw5EkDuqEhBetNeJ5PJMHHiRIwbNw6pqalo0aIFDA0N8eDBAxw/fhyjR48We6Plcjl8fHywa9cuPHv2TOt3RpcuXbBlyxb069cPAwcOhLW1NZKTk3H58mVkZmZi7NixhW6fVBiIkYaXL19qrNOi1r17d8jlciQlJWl0BQ8bNgzHjh3D+PHjsXXrVtSqVQvbtm3DokWLMGPGDKSmpsLCwgKNGzfW+LKeNm0aatSogW3btmHt2rUwMzND48aNxd6vOnXqYM6cOVi2bBmGDx8OFxcXzJs3D507d9Zo15gxYzB9+nQEBQXhxYsXmD17tsaQ16v09PTEpS66d++u1X3u7OyMTZs2ISQkBJMmTUJmZiaqVKmCpk2bin8JfujedH0L2sVvZ2eHoKAgbNu2DStXrkTVqlXznA/yOl1dXbRq1QoHDhwocu9JQd9fAMSlKp48eZLnpOSpU6fCxsYGW7duxdKlS1GuXDnY2NiIy5l87EaMGIGjR49izpw5eP78OSpUqACVSoU1a9ZozK0bOHAgLC0tsXr1amzYsAG6urqoWbMmWrRokeewb2E0aNAAq1atwoIFCxAUFCQubTBhwoQPbh7Qh8rAwACrVq3C9OnT8dVXX8HS0hLDhw/HkSNHxDX5CqN9+/YwMTHB8uXLERkZCSB3Tpmnp6dWcOfn54f169dr3GijplAosG7dOoSEhGD58uV48uQJzMzMYGdnl+fUhdJMJgiCIHUjiKjsy8nJQZs2bdCyZUt8/fXXUjeHiKhUYI8YEZWojIwMXL16FQcPHkRcXNxb54YQEX1MGIgRUYl6/PgxevToAXNzc3z99dewtbWVuklERKUGhyaJiIiIJMKV9YmIiIgkwkCMiIiISCIMxIiIiIgkwkCMiIiISCIMxIiIiIgkwkCMiKgAQkJCCvxMTCqa2NhYqFQq7Ny5U+qmEL03DMSI6L3YuXMnVCpVvj95PQOTip86oHz+/LnUTSEicEFXInrPgoODUaNGDa30mjVrStCaghs2bBiGDBkidTOIqIxhIEZE75WXlxfs7e2lbkaBpaamwsjICLq6utDV5a9MIipeHJokolJlyZIlqFu3Lk6dOqWR/vXXX6NBgwa4evUqAOD06dNQqVSIiorCggUL4O7uDkdHRwwdOhQPHz7UKvfff/9FQEAAXFxc0LBhQ/Tt2xdnz57VyKMetrt58ybGjh2Lxo0b47PPPtPY9ro9e/agW7ducHBwgKurK0aPHq1Vv7+/P/z8/HDz5k34+/ujYcOG8PT0RHh4uFZ56enpCAkJQbt27WBvbw8PDw+MGDECd+/eFfPk5ORgzZo16NChA+zt7dGsWTNMmzYNiYmJBTzLb3fr1i0EBwfD1dUV9vb26NatG44cOSJuv3TpElQqFXbt2qW17++//w6VSoWjR4+KaY8ePcKkSZPQrFkzNGjQAB06dMD27duLrb1EHyoGYkT0XqWkpOD58+caP/Hx8eL2YcOGoV69epgyZQpSUlIA5H6x//zzzxg+fDjq1q2rUd5PP/2EY8eOYfDgwfD398eff/6JAQMG4OXLl2KeU6dO4fPPP8eLFy8wYsQIjB49GklJSejfvz8uXryo1caRI0ciLS0No0ePRo8ePfI9lp9++gkTJkxArVq1MHHiRPTr10+sKykpSSNvYmIiBg0ahLp162LChAmwtbXFvHnzcPz4cTFPdnY2AgMDERoaivr164tlJicn4/r162K+adOm4ccff4SzszOmTJmCbt26ITIyEgEBAcjMzCzglcjfjRs30KtXL9y6dQuDBw/GxIkTYWRkhC+//BK//vorAMDe3h5WVlbYv3+/1v5RUVEwNTWFh4cHAODp06fo2bOneG6mTJmCmjVrYsqUKVizZs07t5fogyYQEb0HO3bsEJRKZZ4/DRo00Mh77do1oX79+sKUKVOExMREwdPTU+jWrZuQmZkp5vnrr78EpVIpeHp6CsnJyWJ6VFSUoFQqhbVr1wqCIAg5OTlC27ZthYEDBwo5OTlivrS0NKFVq1bCF198IaYtWbJEUCqVwpgxY7Tar96mFhsbK9SrV0/46aeftNpuZ2enkd63b19BqVQKu3btEtPS09MFd3d3ISgoSEzbvn27oFQqhdWrV2vVr277P//8IyiVSuGXX37R2H7ixIk80/M7jmfPnuWbp3///oKfn5+Qnp6uUX+vXr2Etm3bimnz588X6tevLyQkJGgcV6NGjYRJkyaJaZMnTxbc3d2F58+fa9QzevRowcXFRUhLSxMEQRDu3bsnKJVKYceOHW88BqKyhD1iRPReTZs2DatXr9b4eX2ITqlUIjg4GNu2bUNAQADi4+Pxww8/5DlHq0uXLjA2NhZf+/j4wMLCQuxpunLlCm7fvo2OHTsiPj5e7IVLTU2Fm5sb/vnnH+Tk5GiU2bt377cex6+//oqcnBy0b99eo3evUqVKqFWrFk6fPq2R38jICJ07dxZfKxQK2Nvb4969e2LaoUOHUKFCBfTt21erPplMBgA4cOAAypcvD3d3d41669evDyMjI616CyshIQF//fUX2rdvr9F7GR8fDw8PD9y+fRuPHj0CAPj6+iIzMxOHDh0S9z958iSSkpLg6+sLABAEAYcOHUKrVq0gCIJGmz08PJCcnIz//e9/79Rmog8ZZ54S0Xvl4OBQoMn6AQEB2LdvHy5evIgxY8agTp06eearVauWxmuZTIZatWrh/v37AIDbt28DACZMmJBvXcnJyTA1NRVf53VX5+tu374NQRDQtm3bPLe/HjRWqVJFDKbUTE1Nce3aNfH13bt3YWNj88abAu7cuYPk5GS4ubnluf3Zs2dvbfub3L17F4IgYPHixVi8eHG+dVhaWqJu3bqwtbXF/v37xSHcqKgoVKhQAU2bNgUAPH/+HElJSdi6dSu2bt2aZ3lcSoM+ZgzEiKhUunfvHu7cuQMAGvOjCksQBADA+PHjUa9evTzzGBkZabzW19d/a7k5OTmQyWQIDw+HXC5/a5l55SmKnJwcVKxYEfPmzctzu7m5+TuXDwADBw6Ep6dnnnleXWrE19cXy5cvx/Pnz2FsbIzffvsNHTp0EINJdXmdOnVC165d8yyPC+XSx4yBGBGVOjk5OZg4cSKMjY3Rv39/LF++HO3atcuz90kdrKkJgoA7d+6IX+5WVlYAAGNjYzRr1qzY2lizZk0IgoAaNWrAxsam2Mr8999/kZmZCT09vXzznDp1Cs7OzjAwMCiWel+lPl96enoFOl++vr4IDQ3FoUOHUKlSJaSkpKBDhw7idnNzc5QrVw45OTnFev6JygrOESOiUmf16tU4f/48vv32W4wcORJOTk6YPn16nkNYu3fvFu+uBHLnUD158gReXl4AgAYNGqBmzZpYtWoVXrx4obV/UYfF2rZtC7lcjtDQULHXTU0QBI07QQtTZnx8PDZu3Ki1TV1H+/btkZ2djWXLlmnlycrK0rpbs7AqVqwIV1dXbN26FY8fP9ba/vr5ql27NpRKJaKiohAVFQULCws0btxY3C6Xy9GuXTscPHgwz55NDkvSx449YkT0Xp04cQLR0dFa6c7OzrCyssKtW7ewePFidOvWDa1atQIAzJkzB126dMGMGTO05i2Zmpris88+Q7du3fDs2TOsXbsWtWrVQs+ePQEAOjo6mDlzJgYPHgw/Pz9069YNlpaWePToEU6fPg1jY2MsX7680MdRs2ZNjBo1CvPnz8f9+/fRpk0blCtXDrGxsTh8+DB69uyJgICAQpXZpUsX7N69G7Nnz8bFixfh4uKCtLQ0nDp1Cn369EGbNm3g6uqKXr16ISwsDFeuXIG7uzv09PRw+/ZtHDhwAFOmTIGPj89b61qzZo1Wj5qOjg6GDh2Kb775Bp999hk6duyInj17wsrKCk+fPsWFCxcQFxeHX375RWM/X19fLFmyBPr6+ujevTt0dDT/xh87dixOnz6Nnj17okePHqhTpw4SExPxv//9D6dOncLff/9dqPNEVJYwECOi92rJkiV5ps+ePRvVqlXDhAkTUKFCBUyePFncZm1tjTFjxuD7779HVFSUeEceAAwdOhTXrl3DihUr8OLFC7i5ueGbb76BoaGhmKdJkybYunUrli1bhg0bNiA1NRUWFhZwcHBAr169inwsQ4YMgbW1NdasWYOlS5cCyJ2U7+7uLgaRhSGXyxEeHo6ffvoJe/fuxaFDh2BmZgZnZ2eNeVTffvstGjRogC1btmDhwoWQy+WoXr06OnXqBGdn5wLVFRYWlmf9Q4cORZ06dbBjxw6EhoZi165dSEhIgLm5Oezs7PDll19q7efr64tFixYhLS0N7du319peqVIlbNu2DUuXLsWvv/6KzZs3w8zMDHXq1MG4ceMKcYaIyh6Z8HqfOhHRB+D06dPo168fFi9eXKAeICKi0ohzxIiIiIgkwkCMiIiISCIMxIiIiIgkwjliRERERBJhjxgRERGRRBiIEREREUmEgRgRERGRRBiIEREREUmEgRgRERGRRBiIEREREUmEgRgRERGRRBiIEREREUnk/wH3BtOvy/1OSgAAAABJRU5ErkJggg==\n"},"metadata":{}}]},{"cell_type":"code","source":[],"metadata":{"id":"dFewZmnzhlkE"},"execution_count":null,"outputs":[]},{"cell_type":"code","source":["#show average/mean salary by experience level with color showing each year comparision\n","\n","orderlist=['Executive','Senior','Mid-level','Entry-level']\n","fig=plt.figure(figsize=(7,5))\n","a=sns.barplot(data=df_u,x='experience_level',y='salary',hue='work_year',\n"," dodge=True,errorbar=None,palette='viridis',order=orderlist)\n","a.set(xlabel=\"Experience Level\",ylabel=\"Average Salary\",title='Average Salary by Experience and Year')\n","#a.title.set_size(15)\n","sns.move_legend(a,'upper right',title='Year')\n","plt.savefig('/content/Ordered Experience with Year')\n"],"metadata":{"colab":{"base_uri":"https://localhost:8080/","height":496},"id":"1MlOqDLqy1q2","executionInfo":{"status":"ok","timestamp":1714702566887,"user_tz":300,"elapsed":2086,"user":{"displayName":"Jenny O","userId":"07622373657144372939"}},"outputId":"c6b58ab5-eed6-4e7c-8b08-7dd88bf4dedc"},"execution_count":null,"outputs":[{"output_type":"display_data","data":{"text/plain":["
"],"image/png":"iVBORw0KGgoAAAANSUhEUgAAApEAAAHfCAYAAAAIkYNKAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAACQY0lEQVR4nOzdeVxUZfs/8M+wDIsIiAsuqCwGgoKAC5CIoiIKKGaZmmkmImqCqPSIpKZZbk+mgaay5JJLbpWgoBaZez25krkLEmpoyh7bAOf3B785X8dBZHAQ0M/79fJVc84117nPmTNwcd/3OUciCIIAIiIiIiIVaNR3A4iIiIio8WERSUREREQqYxFJRERERCpjEUlEREREKmMRSUREREQqYxFJRERERCpjEUlEREREKmMRSUREREQqYxFJRERERCpjEUlEL43ffvsNNjY2+O233+q7KaLw8HA4OTnVdzMaPBsbG0RFRdV3MxqNqKgo2NjY1Hcz6BXHIpKojm3btg02NjYYOXJkfTelwSktLcXmzZsxfPhwODs7o0ePHvD19cX8+fNx69at+m5eo9K/f3/Y2NhU+S8gIKC+m0cvWF5eHtzd3TF69GhU9XTjCxcuoHPnzli+fHk9tI5eFlr13QCil11CQgLatWuHlJQUpKeno2PHjvXdpAYjJCQEx44dg6+vL0aOHImysjKkpqbil19+gZOTE6ysrOq7iY2Kra0t3n//faXlrVq1qofWqCYlJQWampr13YyXhqGhISIiIjBz5kzs2rULo0aNEteVlZXh448/Rtu2bRESElKPraTGjkUkUR3KyMjA+fPnsWbNGixYsAAJCQmYPn36C21DRUUFZDIZdHR0Xuh2nyUlJQVHjhzBzJkzMWXKFIV15eXlyMvLq6eW/Z/CwkLo6+vXdzNqzNTUFP7+/vXdjBp7/NxsaOfny8DHxwfff/89Vq5ciQEDBqBFixYAgC1btuDq1auIjo6Gnp5enbejsX2PqOY4nE1UhxISEmBkZIS+ffvC29sbCQkJ4jqZTIZevXph7ty5Su8rKCiAvb29wlBTaWkpIiMj4eXlha5du6Jv375YsWIFSktLFd5rY2ODTz75BPHx8fD19YW9vT2OHz8OAIiLi8Po0aPh4uICBwcHjBgxAgcPHlTafnFxMT799FO4uLjAyckJU6ZMwf3796uct3b//n3MnTsXr7/+Orp27QpfX1/s2bPnmccmIyMDAODs7Ky0TlNTE82aNRNf3717FwsXLoS3tzccHBzg4uKCkJAQ3Llz55nbOXPmDEJCQtCvXz/xuC1ZsgTFxcUKcfK5i3/99RcCAwPh5OSEsLAwREZGokuXLsjKylLKPX/+fPTo0QMlJSU12t+AgAA4OjrC3d0da9asEYcZBUFA//79MXXqVKX3lZSUoHv37liwYMEzt/Esjx49gqurK8aNG6cwxJmeng5HR0eEhoaKy8aNGwc/Pz9cunQJo0ePhoODA/r3748dO3Yo5VXHuVnbc0s+DzYxMRHr1q2Dh4cH7O3t8d577yE9PV2prRcvXkRgYCB69uwJR0dHDB06FJs3b1aIuXXrFkJCQtCrVy/Y29tjxIgRSE5OrtExrul3TH4sfvrpJ/j5+Yn7d+zYMaXYM2fO4M0334S9vT0GDhyIb7/9tkZtAYCPP/4YpaWlWLp0KQDg77//RlRUFHx8fNC3b18AwNGjR/HOO+/A0dERTk5OmDx5Mm7cuKGQ5+rVqwgPD8eAAQNgb2+P3r17Y+7cucjOzlaIk8/VvHnzJmbPno2ePXvinXfeqXF7qXFhTyRRHUpISICXlxekUin8/PywY8cOpKSkwMHBAdra2hg4cCB+/PFHLFq0CFKpVHzfTz/9hNLSUvj4+ACo7LGZOnUqzp49i7fffhtWVla4fv06Nm/ejNu3b+Orr75S2O6vv/6KpKQkjB07Fs2aNUO7du0AVPZA9O/fH0OHDoVMJsOBAwcwY8YMbNiwAf369RPfHx4ejqSkJPj7+6Nbt274/fffMXnyZKX9e/jwId5++21IJBKMHTsWJiYmOHbsGD766CMUFBRgwoQJTz02bdu2FY+Rs7MztLSe/uPojz/+wPnz5+Hr64vWrVvj7t272LFjB8aPH48DBw5U25ty8OBBFBcXY8yYMTA2NkZKSgq2bt2KzMxMREZGKsSWlZUhICAA3bt3x5w5c6CrqwsnJyesXbsWiYmJePfdd8XY0tJSHDp0CIMGDXpmL1p5eTkmTZqEbt264cMPP8Tx48cRFRWF8vJyzJgxAxKJBEOHDkVcXBxycnJgbGwsvvfnn39GQUEBhg0bVu025O2vqtjV19eHrq4umjdvjoULF2LGjBn45ptvMH78eFRUVCA8PBxNmjTBxx9/rPC+3NxcTJ48GUOGDIGvry+SkpKwcOFCaGtr46233gKgvnPzSaqeWzExMZBIJJg4cSIKCgoQGxuLsLAw7N69W4w5efIkgoKC0KpVK4wfPx4tWrTArVu38Msvv+C9994DANy4cQNjxoyBqakpAgMDoa+vj6SkJHzwwQeIioqCl5dXtZ9BTb9jAHD27FkcPnwY77zzDpo0aYJvvvkGISEhOHLkiPhH1LVr1xAQEAATExMEBwejrKwMUVFRaN68ebXtkDMzM0NwcDBWrFiBESNGYPv27dDS0kJERAQA4IcffkB4eDjc3d0RFhaGoqIi7NixA++88w6+//57mJmZAQBOnTqFjIwMjBgxAi1btsSNGzewa9cu3Lx5E7t27YJEIlHY7owZM9CxY0fMnDmzyjmZ9JIQiKhO/PHHH4K1tbVw8uRJQRAEoaKiQvDw8BA+/fRTMeb48eOCtbW18PPPPyu8NzAwUBgwYID4+ocffhA6d+4s/P777wpxO3bsEKytrYWzZ8+Ky6ytrYXOnTsLN27cUGpTUVGRwuvS0lLBz89PGD9+vLjs0qVLgrW1tfDZZ58pxIaHhwvW1tZCZGSkuCwiIkLo3bu3kJWVpRA7c+ZMoXv37krbe1xFRYXw7rvvCtbW1sLrr78uzJo1S9i6datw9+7dZ7ZbEATh/PnzgrW1tfD999+Ly3799VfB2tpa+PXXX6t974YNGwQbGxuFbc2ZM0ewtrYWPv/8c6X4UaNGCSNHjlRYdvjwYaVtVUWed/HixQr7PnnyZKFLly7Co0ePBEEQhNTUVMHa2lrYvn27wvunTJkieHp6ChUVFdVux9PTU7C2tq7y34YNGxRiZ82aJXTr1k1IS0sTYmNjBWtra+HHH39UiJF/Nl9//bW4rKSkRPD39xfc3NyE0tJSQRDUd27W9tySf+ZDhgwRSkpKxLjNmzcL1tbWwrVr1wRBEISysjKhf//+gqenp5Cbm6uQ8/Fj+9577wl+fn4KuSoqKoRRo0YJgwYNUmr3k2ryHZPvb5cuXYT09HRx2ZUrVwRra2vhm2++EZdNmzZNsLe3VzhXb968Kdja2grW1tbPbI8gCIJMJhP8/f2FXr16CdbW1sK3334rCIIgFBQUCD169BDmzZunEP/PP/8I3bt3V1he1fdo//79grW1tcJnHxkZKVhbWwuzZs2qUduoceNwNlEdSUhIQIsWLeDi4gIAkEgk8PHxQWJiIsrLywEArq6uaNasGRITE8X35ebm4tSpU2IvJFDZm2ZlZQVLS0tkZWWJ/1xdXQFA6ZY2PXv2RKdOnZTapKurq7Cd/Px8dO/eHZcvXxaXy4cXnxyCerwXDqgcgj18+DD69+8PQRAU2uXu7o78/Hz8+eefTz0+EokEcXFxCA0NhaGhIfbv349PPvkEnp6eCA0NVZgT+Xi7ZTIZsrOz0aFDBxgaGiq0vSqPv7ewsBBZWVlwcnKCIAhVvnfMmDFKy/z9/XHx4kX89ddf4rKEhAS0adMGvXr1qnb7cmPHjlXY97Fjx0Imk+H06dMAAAsLC3Tr1k1hykNOTg6OHz+OoUOHKvX0VKVbt27YuHGj0j9fX1+FuPnz58PAwAAhISH48ssv4e/vj4EDByrl09LSUrggQyqVYtSoUXj06JH42arr3Hxcbc6tESNGKPTm9+jRA8D/TZu4fPky7ty5g/Hjx8PQ0FDhvfJjm5OTg19//RVDhgxBQUGBuM3s7Gy4u7vj9u3buH//frVtr8l3TO71119Hhw4dxNedO3eGgYGB2Oby8nKcOHECAwcOFHvuAcDKygru7u7VtuNxWlpa+OSTT5CTkwNHR0e8/fbbACp7F/Py8uDr66twjDU0NNCtWzeFz+7x/SopKUFWVha6desGAFV+z0ePHl3j9lHjxeFsojpQXl6OAwcOwMXFRWHenoODA77++mucPn0a7u7u0NLSwqBBg7B//36UlpZCKpXi8OHDkMlkCkVkeno6bt26BTc3tyq39+jRI4XX8iGoJx05cgTr1q3DlStXFOarPV6g3Lt3DxoaGko5nryqPCsrC3l5edi5cyd27txZ5faqGlp9nFQqxdSpUzF16lQ8ePAAv//+O7Zs2YKkpCRoaWnh888/B1A5R3PDhg347rvvcP/+fYXhsfz8/Gq3ce/ePURGRuLnn39Gbm6uwrqCggKF11paWmjdurVSDh8fHyxZsgTx8fGYPn068vPzceTIEUyYMKFGxZ2Ghgbat2+vsMzCwgJA5XxPOX9/fyxevBh3795Fu3btcPDgQchkshpfLNOsWTO8/vrrz4wzNjbGvHnzMGPGDLRo0QLz5s2rMq5Vq1ZKF0SYm5uL7XZ0dFTbufm42pxbjxdZAMRCUf7HiLwws7a2fup2//rrLwiCgC+//BJffvlllTGPHj2CqanpU3PU5Dsm16ZNG6VlRkZGYpuzsrJQXFxc5R0dLCwscPTo0ae240kODg4AgC5duohtuX37NgCIQ/lPMjAwEP8/JycHa9asQWJiotJnWtV3sCafMzV+LCKJ6sCvv/6Kf/75BwcOHMCBAweU1ickJIg9Cb6+vti5cyeOHTuGgQMH4uDBg7C0tETnzp3F+IqKClhbW1d5EQ4ApcLn8V4DuTNnzmDq1Kno2bMnPv74Y7Rs2RLa2trYu3cv9u/fr/I+VlRUAACGDRuGN954o8oYVW6G3KpVK/j6+mLQoEHw8/PDwYMHsWzZMmhpaWHx4sX47rvv8N5778HR0RFNmzaFRCJ55nyr8vJyvP/++8jNzcWkSZNgaWkJfX193L9/H+Hh4eI+yEmlUmhoKA/QGBkZwdPTU7y6/uDBgygtLa3RPEVV+Pr6YunSpUhISMCUKVMQHx+Prl27wtLSUq3bAYATJ04AqOwty8zMVOqdqyl1nJtV5QRUO7eq+twAqDQfT77diRMnok+fPlXGPN5z+CRVv2NPu6WRKm1+HvLtrFixAi1btlRa/3j7QkNDcf78eQQEBMDW1hb6+vqoqKjApEmTqmwvr7Z/NbCIJKoDCQkJaN68eZVX1P7444/ixTS6urro2bMnWrZsicTERDg7O+PXX39VuuVNhw4dcPXqVbi5udWo56sqhw4dgo6ODuLi4hSG/fbu3asQ17ZtW1RUVODOnTtirxMApStdTUxM0KRJE1RUVNSo96umtLW1YWNjg9u3byM7OxstW7bEoUOHMHz4cISHh4txJSUlz+yFvH79Om7fvo3ly5dj+PDh4vKTJ0+q3C5/f39MmzYNKSkpSEhIgJ2dHV577bUavbeiogIZGRli7yMApKWlAYDChSXGxsbo168fEhISMHToUJw7d068AEKdjh07ht27d2PSpElISEhAeHg4du3apXRx04MHD5RuzyLvvZK3Wx3n5pPq4tyS9wRfv379qTnlMdra2rXabk2/YzVlYmICXV3dKq8yl58/z0O+v82bN692f3Nzc3H69GkEBwcr3KJMfi7Qq4tzIonUrLi4GIcPH0a/fv0wePBgpX9jx47Fv//+i59//hlAZQ/K4MGDceTIEcTHx6OsrExhKBsAhgwZgvv372PXrl1Vbq+wsPCZ7dLU1IREIhHnYwLAnTt3lG5dIu8h3b59u8LyrVu3KuXz9vbGoUOHcP36daXtPWso+/bt27h3757S8ry8PJw/fx5GRkYwMTERt/Wkb775RmFfqiLvnXq8p0QQBGzZsqXa91XFw8MDzZo1Q2xsLH7//XeVeyG3bdum0IZt27ZBW1tbaRjY398fN2/exIoVK6Cpqak0n/F55eXlYd68eXBwcMCsWbPw6aef4s8//8T69euVYsvKyhSGk0tLS7Fz506YmJigS5cuANRzbj7pec+tqnTp0gVmZmbYsmWL0j1I5edH8+bN0atXL+zcuRMPHjxQebs1/Y7VlKamJtzd3fHTTz8pfFdu3bol9iQ/jz59+sDAwAAbNmyATCZTWi/f36f1mD55ayR69bAnkkjNfv75Z/z777/o379/lesdHR1hYmKC+Ph4sVgcMmQIvvnmG0RGRsLa2lrpSS3+/v5ISkrCxx9/jN9++w3Ozs4oLy9HamoqDh48iNjYWNjb21fbrr59+2Ljxo2YNGkS/Pz88OjRI2zfvh0dOnTAtWvXxLiuXbvC29sbmzdvRk5OjniLH3mvw+O9TbNnz8Zvv/2Gt99+GyNHjkSnTp2Qm5uLP//8E6dPn8b//ve/p7bn6tWrCAsLQ58+fdCjRw8YGRnh/v37+OGHH/DgwQNERESIv7z69euHffv2wcDAAJ06dcKFCxdw6tQphVvhVMXS0hIdOnTA8uXLcf/+fRgYGODQoUO1upG5trY2fH19sXXrVpWLOx0dHRw/fhxz5syBg4MDjh8/jl9++QVTpkwRC2W5vn37wtjYGAcPHoSHh0eNb+UCVN5Xcd++fUrLmzRpIl4489lnnyEnJwcbN26EpqYmPDw8MHLkSKxfvx4DBw5UmEbRqlUrxMTE4O7duzA3N0diYiKuXLmCxYsXQ1tbG4B6zs2qPM+5VRUNDQ0sXLgQU6dOxfDhw8Vb1aSmpuLmzZuIi4sDUHlfxXfeeQdDhw7F22+/jfbt2+Phw4e4cOECMjMzER8f/9Rt1PQ7porg4GAcP34cY8eOxZgxY1BeXo6tW7eiU6dOtc4pZ2BggIULF+I///kPRowYAR8fH5iYmODevXs4evQonJ2dsWDBAhgYGKBnz56IjY2FTCaDqakpTp48WaP7tNLLjUUkkZrFx8dDR0cHvXv3rnK9hoaGOGSZnZ2NZs2awdnZGW3atMHff/+t1Aspf8/atWuxadMm7Nu3Dz/++CP09PRgZmaGcePGKQyTPo2bmxs+++wzxMTEYMmSJTAzM0NYWBju3r2r9Mto+fLlaNGiBQ4cOIAff/wRr7/+OlatWoXBgwcrDNO1aNECu3fvxtq1a/Hjjz9ix44dMDY2RqdOnRAWFlZte3r27ImQkBAcP34cGzduRHZ2Npo0aQJbW1uEhYXB29tbjP3oo4+goaGBhIQElJSUwNnZWfxlXR1tbW2sX78en376KTZs2AAdHR14eXlh7NixtXqyi7+/P7Zu3Qo3NzeVHiWoqamJ2NhYLFy4EP/973/RpEkTTJ8+HR988IFSrFQqhY+PD7Zv365yG69cuYL//Oc/SsvbtWuHgQMHIjk5Wbwv4ON/qISHh+PUqVOYM2cO9uzZIxaIRkZGWLZsGT799FPs2rULLVq0wIIFC8SrewH1nJtVeZ5z62n69OmDzZs3Y+3atfj6668hCALat2+vsD+dOnXC3r17sWbNGnz//ffIycmBiYkJ7Ozsqvy8HqfKd6ymOnfujLi4OCxduhSRkZFo3bo1goOD8c8//zx3EQkAQ4cORatWrRAdHY24uDiUlpbC1NQUPXr0wIgRI8S4lStXYvHixdi+fTsEQUDv3r0RExPz1Lmj9GqQCC9qBi8RNWpXrlzB8OHD8d///lftF5Q0FlevXoW/v7/SHEt1W7JkCfbs2YOTJ0++kMfSVWXcuHHIzs6u1UVXRPRq4JxIIlLy5CMBgcr5TxoaGujZs2c9tKhh2LVrF/T19TFo0KA620ZJSQni4+Ph7e1dbwUkEVFNcDibiJTExsbi0qVLcHV1haamJo4dO4Zjx45h1KhRVd7b7mX3888/i493Gzt2rNK9E9Xh0aNHOHXqFA4dOoScnByMHz9e7dsgIlInFpFEpMTJyQknT57EV199hcLCQrRp0wbBwcFKtx56VXz66ad4+PAhPDw8EBwcXCfbuHnzJsLCwtC8eXPMmzcPtra2dbIdIiJ14ZxIIiIiIlIZ50QSERERkcpYRBIRERGRyjgnsoE7f/48BEEQ79tGREREVFdkMhkkEgmcnJyeGcsisoETBKHKh9sTERERqZsqNQeLyAZO3gNZm8eGEREREanijz/+qHEs50QSERERkcpYRBIRERGRylhEEhEREZHKWEQSERERkcpYRBIRERGRynh1NhEREdW78vJyyGSy+m7GS01bWxuamppqy8cikoiIiOqNIAjIzMxETk5OfTfllWBsbIzWrVtDIpE8dy4WkURERFRv5AVkq1atoK+vr5bihpQJgoDCwkI8ePAAANCmTZvnzskikoiIiOpFeXm5WEA2b968vpvz0tPT0wMAPHjwAK1atXruoW1eWENERET1Qj4HUl9fv55b8uqQH2t1zD9lEUlERET1ikPYL446jzWLSCIiIiJSGYtIIiIiIlIZi0giIiJ65UyaNAk9e/bEw4cPldbl5+fD3d0dI0eOREVFRT20rnFgEUlERESvnI8//hgymQxLly5VWvfFF18gOzsbixcvhoYGS6Wn4ZEhIiKiV0779u3xwQcfYP/+/Thx4oS4PCUlBd9++y0mTJiAzp0712kbSkpKGnVPJ4tIIiIieiW9//77sLGxwaJFi1BSUoLy8nIsXLgQbdu2xfTp03Hr1i2EhISgV69esLe3x4gRI5CcnKyQIycnB8uXL8fQoUPh5OQEZ2dnTJo0CVevXlWI++2332BjY4MDBw5g1apV6NOnD7p164aCgoIXuctqxZuNv6TKyyugqan+vxHqKi8REdGLpqWlhcWLF2P06NH46quvYGJigj///BOxsbG4c+cOxowZA1NTUwQGBkJfXx9JSUn44IMPEBUVBS8vLwBARkYGfvrpJwwePBhmZmZ4+PAhdu7ciXfffRcHDhyAqampwja/+uoraGtrIyAgAKWlpdDW1q6PXVcLFpEvKU1NDSwO+C/Sr2WoLWdHm/aYH/eh2vIRERHVt27duuGdd95BXFwctLW14efnhz59+mDChAlo06YN9u7dC6lUCgB45513MGbMGHz++ediEWljY4NDhw4pzJ309/fHkCFDsGfPHnzwwQcK2yspKcHevXuhq6v74nayjrCIfImlX8vAjYu36rsZREREDdrMmTNx6NAhFBUVYe7cucjJycGvv/6KkJAQpeFmd3d3REVF4f79+zA1NRULTKDyMY55eXnQ19eHhYUFLl++rLSt4cOHvxQFJMAikoiIiF5xBgYGsLCwQHZ2Nlq0aIGUlBQIgoAvv/wSX375ZZXvefToEUxNTVFRUYEtW7Zg+/btuHPnDsrLy8UYY2NjpfeZmZnV1W68cCwiiYiIiB4jv2J64sSJ6NOnT5UxHTp0AACsX78eX375Jd58803MmDEDRkZG0NDQwJIlSyAIgtL7XpZeSIBFJBEREZGC9u3bAwC0tbXx+uuvVxt76NAhuLi4YMmSJQrL8/Ly0KxZszprY0PAy2yJiIiIHtO8eXP06tULO3fuxIMHD5TWZ2Vlif+vqamp1OOYlJSE+/fv13k76xt7IomIiIie8PHHH+Odd97B0KFD8fbbb6N9+/Z4+PAhLly4gMzMTMTHxwMA+vXrh7Vr12Lu3LlwcnLC9evXkZCQIPZmvswaVE/k0aNH8e6778LV1RVdu3bFgAEDsHTpUuTn5yvE/fzzzxg2bBjs7e3h7e2NvXv3KuUqLS3F8uXL0bt3bzg6OuL9999HamqqUtytW7fw/vvvw9HREb1798aKFStQWlqqFLd79254e3vD3t4ew4YNw5EjR5Ri8vPzERERgV69esHJyQkhISFV/gVDREREDVunTp2wd+9e9OvXD99//z0++eQTfPvtt9DQ0FC4bc+UKVMwceJEHD9+HJ999hn+/PNPbNiwAW3atKnH1r8YEqGqWZ/1ZN++fbh27Rq6desGY2Nj3LhxA1FRUejSpQu+/vprAMCZM2cwfvx4vPXWW/Dx8cGvv/6K9evXY/Xq1Rg8eLCYa8GCBUhMTER4eDhMTU2xfv16ZGRk4MCBA2jatCkAIDc3F76+vjA3N0dQUBDu37+PZcuWYdiwYViwYIGY68CBA5g9ezamTJkCV1dXJCYmYu/evdi2bRscHR3FuICAANy8eRNz5syBjo4OVq9eDQ0NDezduxdaWrXr9P3jjz8AAPb29iq/d5J7iFpv8fNaNyvEnohUWz4iInq1FRcXIy0tDRYWFi/VBScN2bOOuSp1R4Mazvb391d47eLiAqlUivnz54v3Y1q3bh0cHBzwySefAABcXV2RkZGByMhIsYjMzMzEnj178PHHH+Ott94CUHkwPD098e233yIwMBAA8O233+Lff//FmjVrxMvwy8vLsWjRIgQFBYl3mY+MjISvry9CQ0PFbV6/fh1r165FTEwMAOD8+fM4ceIE4uLi4O7uDgCwsLCAj48PDh8+DB8fn7o7cEREREQvWIMazq6KvLiTyWQoLS3Fb7/9ptDjCAA+Pj64desW7ty5AwA4ceIEKioqFOKMjY3Ru3dvHDt2TFx27NgxuLm5KdzHaciQIaioqMDJkycBVD7O6Pbt2xgyZIjSNk+fPi0OfR87dgyGhobo3bu3GGNpaQlbW1uFbRIRERG9DBpkEVleXo6SkhL8+eefWLt2Lfr37w8zMzP89ddfkMlksLS0VIi3srICAHHOY2pqKpo3bw4jIyOluMfnRaampirlMjQ0RMuWLRVyAZW9ik/mkslkyMjIEOMsLCwgkUgU4iwtLauci0lERETUmDWo4Ww5T09P8dL4Pn36YOXKlQAq5zAClYXe4+Sv5evz8vLEeY9Pxslj5HFP5gIAIyMjMe55t2lkZIRLly5Vu7/PIggCCgsLaxwvkUigp6f3XNusTlFRUZU3UCUiIlJFSUkJKioqUF5ervCkF6o75eXlqKioQFFRkXhT9ccJgqDUIfY0DbKIjI6ORlFREW7evIl169ZhypQp2LhxY303q97IZDJcuXKlxvF6enqws7Ors/akpaWhqKiozvITEdGrQ0tLCyUlJfXdjFdGSUkJysrKqh0lffx54NVpkEVk586dAQBOTk6wt7eHv78/fvzxR3Tq1AkAlG75k5eXBwDi8LWhoaHSA9PlcY8PcRsaGirlAip7F+Vx8v/m5+ejZcuW1W4zMzOz2ly1pa2tLe57TdT0L4jasrCwYE8kERE9t5KSEty7dw86Ojq8OvsF0tLSQocOHaCjo6O07ubNmzXPo85G1QUbGxtoa2vjr7/+Qv/+/aGtrY3U1FSFZ1nKq2n5/EZLS0s8fPhQqYB7cg5kVfMV8/Pz8c8//yjkquq9qamp0NbWFm8mamlpidOnTyt1A6elpcHa2vq5joFEIoG+vv5z5VCnuhwqJyKiV4eGhgY0NDSgqakJTU3N+m7OK0FTUxMaGhrQ09OrsnBXpSOqQV5Y87iLFy9CJpPBzMwMUqkULi4uOHTokEJMYmIirKysYGZmBgBwd3eHhoYGDh8+LMbk5ubixIkT8PDwEJd5eHjg1KlTYq8iABw8eBAaGhriVdbt27eHubk5Dh48qLRNNzc3scvXw8MDubm5OH36tBiTlpaGy5cvK2yTiIiI6GXQoHoip0+fjq5du8LGxga6urq4evUq4uLiYGNjg4EDBwIApk6divHjx2PhwoUYMmQIfvvtN+zfvx+rVq0S87Ru3RpvvfUWVqxYAQ0NDZiammLDhg1o2rQpRo8eLcaNHj0a33zzDT744APxZuMrVqzA6NGjxXtEAkBwcDDCwsLQoUMHuLi4IDExESkpKdi6dasY4+TkBHd3d0RERIg3G1+1ahVsbGwwaNCgF3D0iIiIiF6cBlVEOjg4IDExEdHR0RAEAe3atcPIkSMREBAg9vj16NEDUVFRWL16Nfbs2YO2bdvi008/VbqP47x589CkSROsXLkS//77L5ydnbFx40aFK6iNjIywefNmLF68GB988AGaNGmCt956CzNnzlTI5efnh6KiIsTExCA6OhoWFhZYs2YNnJycFOJWr16NpUuXYsGCBSgrK4O7uzvmzZtX66fVEBERETVUDeqxh6SMjz0kIqKXFR97+OKp87GHDX5OJBEREVFDl5SUhKlTp8LDwwOOjo7w9/fHnj17lO5msnv3bnh7e8Pe3h7Dhg3DkSNHFNanpKRg7ty58PLyQrdu3TBo0CCsXLmyyvtFnzt3DqNGjYKDgwM8PT3FkdwXheOsRERE1OCUl1dAU7N++rpqs+1NmzahXbt2CA8PR7NmzXDq1CnMnz8fmZmZmD59OgDgwIEDmD9/PqZMmQJXV1ckJiZi+vTp2LZtGxwdHQFUFqPp6emYNGkSzM3NcfPmTURGRuLixYvYsmWLuL309HQEBASgd+/eCA0NxbVr1/D5559DU1MTAQEBajsW1WERSURERA2OpqYGFgf8F+nXMl7odjvatMf8uA9Vft+6detgYmIivnZzc0NOTg42btyIadOmQUNDA5GRkfD19UVoaCgAwNXVFdevX8fatWsRExMDAAgMDFTI4+LiAkNDQ4SFheHSpUvo2rUrACAuLg7NmjXDF198AalUCjc3N2RlZWH9+vUYN25cjW8Y/jxYRBIREVGDlH4tQ61z++vS44WfnK2tLXbt2oXCwkJkZ2fj9u3b+PBDxQLVx8cHK1asQGlpKaRSaZV55E+he/Dggbjs2LFj8PLyUigWfXx8sGHDBpw/fx4uLi7q2rWn4pxIIiIiojpw9uxZmJqawsDAQHy4iYWFhUKMlZUVZDIZMjKe3uN69uxZAP/3AJTCwkL8/fffCg9Bka+XSCTVPtJQnVhEEhEREanZmTNnkJiYiIkTJwKofOgJUPmY5MfJX8vXPykrKwtRUVEYMGAAzM3NAfzf45+fzCWVSqGnp/fUXOrGIpKIiIhIjTIzMzFz5ky4uLhg/Pjxtc4jk8kwa9YsAMDChQvV1Dr1YRFJREREpCZ5eXkIDAyEsbExoqKioKFRWWoZGRkB+L9exMfjH18vJwgCIiIikJKSgpiYGLRq1UpcJ39wypO5SktLUVRUpJSrrrCIJCIiIlKD4uJiBAUFIT8/H7GxsQpPyZPPX3xyvmJqaiq0tbXRvn17heXLly9HUlIS1q5di86dOyus09fXR5s2bZRypaWlQRAEpbmSdYVFJBEREdFzKisrQ2hoKFJTUxEbGwtTU1OF9e3bt4e5uTkOHjyosDwxMRFubm4KV1lHR0dj06ZNWLZsGdzc3KrcnoeHB5KTkyGTyRRyGRoaKj2Wua7wFj9EREREz2nRokU4cuQIwsPDUVBQgAsXLojr7OzsIJVKERwcjLCwMHTo0AEuLi5ITExESkoKtm7dKsYmJCRg5cqVGDZsGMzMzBTydOjQQbwFUEBAABISEjB79myMGTMG169fR1xcHGbOnPlC7hEJsIgkIiKiBqqjTftnBzWQbZ48eRIAsGzZMqV1ycnJMDMzg5+fH4qKihATE4Po6GhYWFhgzZo1Cj2H8jzx8fGIj49XyLN06VKMGDGisp0dOyIuLg7Lli3D5MmTYWJigpCQEPFq8BdBIrzIhyySylR5EPqTJrmHqPUmra91s0LsiUi15SMioldbcXEx0tLSYGFhAV1dXYV1je2xh41FdcccUK3ueDmPEBERETVq9VnEvawFpLrxKBERERGRylhEEhEREZHKWEQSERERkcpYRBIRERGRylhEEhEREZHKWEQSERERkcpYRBIRERGRylhEEhEREZHK+NhDIiIioueUlJSE+Ph4/Pnnn8jLy0PHjh0xbtw4vPnmm5BIJGLc7t27ERsbi3v37sHCwgIzZ86Ep6enuD4lJQU7duzAmTNn8ODBA5iamsLb2xtTp06Fvr6+GPfHH39g+/btuHDhAtLS0tC3b19s2LDhhe4zi0giIiKi57Rp0ya0a9cO4eHhaNasGU6dOoX58+cjMzMT06dPBwAcOHAA8+fPx5QpU+Dq6orExERMnz4d27Ztg6OjI4DKYjQ9PR2TJk2Cubk5bt68icjISFy8eBFbtmwRt3fu3DmcOXMGDg4OKCkpqY9dZhFJREREDU95RQU0Nerp2dm12Pa6detgYmIivnZzc0NOTg42btyIadOmQUNDA5GRkfD19UVoaCgAwNXVFdevX8fatWsRExMDAAgMDFTI4+LiAkNDQ4SFheHSpUvo2rUrAGDcuHF47733xP+vDywiiYiIqMHR1NDAsqjv8Nfdhy90ux3atUB48AiV3/d44Sdna2uLXbt2obCwENnZ2bh9+zY+/PBDhRgfHx+sWLECpaWlkEqlVeaxs7MDADx48EBcplFPBfbjWEQSERFRg/TX3Ye4mZZZ382otbNnz8LU1BQGBgY4e/YsAMDCwkIhxsrKCjKZDBkZGbCysnpqHgCwtLSs2warqP7LWCIiIqKXzJkzZ5CYmIiJEycCAHJzcwEAhoaGCnHy1/L1T8rKykJUVBQGDBgAc3PzumtwLbCIJCIiIlKjzMxMzJw5Ey4uLhg/fnyt88hkMsyaNQsAsHDhQjW1Tn1YRBIRERGpSV5eHgIDA2FsbIyoqChx7qKRkREAID8/Xyn+8fVygiAgIiICKSkpiImJQatWrV5A61XDIpKIiIhIDYqLixEUFIT8/HzExsaiadOm4jr5fMbU1FSF96SmpkJbWxvt27dXWL58+XIkJSVh7dq16Ny5c903vhZYRBIRERE9p7KyMoSGhiI1NRWxsbEwNTVVWN++fXuYm5vj4MGDCssTExPh5uYGqVQqLouOjsamTZuwbNkyuLm5vZD21wavziYiIiJ6TosWLcKRI0cQHh6OgoICXLhwQVxnZ2cHqVSK4OBghIWFoUOHDnBxcUFiYiJSUlKwdetWMTYhIQErV67EsGHDYGZmppCnQ4cO4i2AsrKy8L///U/8/3///VcsUPv27Qs9Pb0632cWkURERNQgdWjXotFs8+TJkwCAZcuWKa1LTk6GmZkZ/Pz8UFRUhJiYGERHR8PCwgJr1qyBk5OTUp74+HjEx8cr5Fm6dClGjKi8h+WNGzcwY8YMhfXy1/Lt1TWJIAhCnW+Fau2PP/4AANjb26v83knuIbhx8Zba2vJaNyvEnohUWz4iInq1FRcXIy0tDRYWFtDV1VVY19ieWNNYVHfMAdXqjpfzCBEREVGjVp9F3MtaQKobjxIRERERqYxFJNWYiWkzlFdU1EnuuspLREREdYMX1lCNGRg1gaaGBpZFfYe/7j5UW97aPuyeiIiI6g+LSFLZX3cf4mZaZn03g4iIiOoRh7OJiIiISGUsIomIiIhIZSwiiYiIiEhlLCKJiIiISGUsIomIiIhIZbw6m4iIiOg5JSUlIT4+Hn/++Sfy8vLQsWNHjBs3Dm+++SYkEokYt3v3bsTGxuLevXuwsLDAzJkz4enpKa5PSUnBjh07cObMGTx48ACmpqbw9vbG1KlToa+vL8Z9++23OHz4MK5du4aioiJ06tQJkydPxsCBA1/YPjeonsikpCRMnToVHh4ecHR0hL+/P/bs2YPHH+89btw42NjYKP27dUvxGdH5+fmIiIhAr1694OTkhJCQEDx48EBpm+fOncOoUaPg4OAAT09PREdH48nHiQuCgOjoaPTr1w8ODg4YNWoULly4oJTr/v37CA4OhpOTE3r16oWPPvoIBQUF6jk4REREr5D6fAhFbba9adMm6OnpITw8HOvWrYOHhwfmz5+PtWvXijEHDhzA/PnzMWTIEMTExMDR0RHTp09XqCmSkpKQnp6OSZMmITo6Gu+99x527dqFKVOmKGxv/fr1aNu2LRYuXIioqCjY2Njggw8+wPfff1/r/VZVg+qJ3LRpE9q1a4fw8HA0a9YMp06dwvz585GZmYnp06eLcc7OzpgzZ47Ce83MzBReh4aG4ubNm1i4cCF0dHSwevVqBAYGYu/evdDSqtzt9PR0BAQEoHfv3ggNDcW1a9fw+eefQ1NTEwEBAWKumJgYREZGIiwsDDY2Nti2bRsmTpyIffv2oX379gAAmUyGSZMmAQBWrlyJ4uJiLF++HLNnz8aGDRvq5HgRERG9rDQ1NBDxw16kPlTfwy1qwrJFCywZ/qbK71u3bh1MTEzE125ubsjJycHGjRsxbdo0aGhoIDIyEr6+vggNDQUAuLq64vr161i7di1iYmIAAIGBgQp5XFxcYGhoiLCwMFy6dAldu3YFAHz33XcKcb1798bdu3fx9ddf44033qjNrqusQRWRNfkAAMDQ0BCOjo5PzXP+/HmcOHECcXFxcHd3BwBYWFjAx8cHhw8fho+PDwAgLi4OzZo1wxdffAGpVAo3NzdkZWVh/fr1GDduHKRSKUpKSrBhwwZMnDgREyZMAAB0794dgwcPRlxcHBYuXAgAOHToEG7cuIHExERYWlqK7QwICEBKSgocHBzUfLSIiIhebqkPH+Jq5t/13Ywaebx+kbO1tcWuXbtQWFiI7Oxs3L59Gx9++KFCjI+PD1asWIHS0lJIpdIq89jZ2QGAwojq07b3559/Pu+u1FiDGs5+2gEpKChAYWFhjfMcO3YMhoaG6N27t7jM0tIStra2OHbsmELcgAEDIJVKxWU+Pj7Iy8vD+fPnAVQOdxcUFGDIkCFijFQqhZeXl1IuGxsbsYAEKv8qMDY2xtGjR2vcdiIiIno5nD17FqampjAwMEBqaiqAyk6tx1lZWUEmkyEjI6PaPAAUaoynxT0rRp0aVBFZlcc/ALn//e9/cHR0hL29Pd599138/vvvCu9JTU2FhYWFwkRWoPLgyz/EwsJC/P3330oH29LSEhKJRIyT//fJOCsrK9y7dw/FxcVi3JMxEokEFhYWYg4iIiJ6NZw5cwaJiYmYOHEiACA3NxdA5Sjl4+Sv5euflJWVhaioKAwYMADm5uZP3V5CQgLOnz+vMB2vrjWo4ewnyT+Ax+c/9uzZE/7+/jA3N8eDBw8QFxeH999/H9988w2cnJwAAHl5eWjatKlSPiMjI1y6dAlA5YU3gPKHKZVKoaenJ36YeXl5kEql0NHRUYgzNDSEIAjIzc2Frq5utdt82olRU4IgqNQTK5FIoKen91zbrA9FRUVKFzUREdHLq6SkBBUVFSgvL0d5ebnCOk1NzXpqVaUn26OKzMxMzJw5E7169cLYsWNRXl6Oiv9/sc6T+ypfLj8Oj5PJZJg5cyYAYMGCBU9t07Vr1/Dxxx/jjTfegKenZ7Vtl7elqKhI3PbjBEFQ6oR7mgZbRMo/ABcXF4wfP15cHhISohDXr18/+Pn54auvvhInpb5sZDIZrly5UuN4PT09cf5EY5KWloaioqL6bgYREb1AWlpaKCkpUVimoaFR750hpaWlVRZZz5Kfn4/JkyfD0NAQy5cvR2lpKQCI+/Po0SOFTqeH///CIV1dXXF0E6gs5ubPn48//vgDcXFxaNq0qcJ6uXv37mHy5Mno0qULwsPDq4x5XElJCcrKyqodJX18ml91GmQRmZeXh8DAQBgbGyMqKkq8oKYq+vr66Nu3Lw4dOiQuMzQ0RGZmplJsbm4ujIyMAED8AOU9knKlpaUoKioS4wwNDVFaWoqSkhKF3si8vDxIJBKFuKpu55Obm4s2bdrUdNerpK2tjU6dOtU4vqZ/QTQ0FhYW7IkkInqFlJSU4N69e9DR0YGurm59N0dBTQupxxUXF2PmzJkoKCjAjh070LJlS3GdjY0NAODu3bvo3LmzuPzOnTvQ1taGlZWVwjaXL1+OH3/8EevXr3/qxbnZ2dkIDg5G8+bNsWbNGoWpf9XR0tJChw4dlEZZAeDmzZs1ygE0wCKyuLgYQUFByM/Px86dO6scIn4WS0tLnD59WqlLNi0tDdbW1gAqi882bdooVeJpaWkQBEGc3yj/b1pamsKHnpqairZt24onvaWlJa5fv66QSxAEpKWlKVzgUxsSiUThBqMvq/r+q5OIiF4sDQ0NaGhoQFNTs96Hr5+kanvKysowe/ZspKamYtu2bWjbtq3CenNzc5ibm+Pw4cMYNGiQuPzgwYNwc3NT+B0YHR2NLVu24PPPPxfvMvOkf//9F0FBQZDJZNiyZYvYqVWT/ZL39FZVuKvSEdWgLqwpKytDaGgoUlNTERsbC1NT02e+p7CwEL/88gvs7e3FZR4eHsjNzcXp06fFZWlpabh8+TI8PDwU4pKTkyGTycRliYmJMDQ0FOdXOjs7w8DAAElJSWKMTCbD4cOHlXJdvXoVt2/fFpedPn0aOTk56Nu3r2oHgoiIiBqVRYsW4ciRI5gyZQoKCgpw4cIF8Z98SDs4OBj79+9HZGQkfvvtN3z88cdISUnBtGnTxDwJCQlYuXIlhg4dCjMzM4U8WVlZYlxwcDCuXr2K4OBg3Lt3TyHuRWlQPZHyDyA8PFz8AOTs7OyQkpKC2NhYeHl5oV27dnjw4AE2btyIf/75B19++aUY6+TkBHd3d0RERGDOnDnQ0dHBqlWrYGNjo1D9BwQEICEhAbNnz8aYMWNw/fp1xMXFYebMmWKXso6ODoKCghAVFQUTExNYW1tjx44dyMnJUbgCytvbGxs2bEBwcDBmzZqFoqIirFixQnzKDREREanGskWLRrPNkydPAgCWLVumtC45ORlmZmbw8/NDUVERYmJiEB0dDQsLC6xZs0bsuHo8T3x8POLj4xXyLF26FCNGjFCIe/LhK0DlhTYvgkRoQJPQ+vfvj7t371a5Ljk5GeXl5fjkk09w7do15OTkQE9PD05OTpg+fbpSoZafn4+lS5fixx9/RFlZGdzd3TFv3jyl3s1z585h2bJluHLlCkxMTDB27FgEBgYqdOfKH3u4fft2ZGVlwdbWFnPnzlX40IHKxx5++umnOHHiBLS0tODl5YWIiIgaz1Goyh9//AEACj2tNTXJPQQ3Lt56dmANDRjZFwu+/g+mhUfjZprynNPa6mTRGl8tm6y2fERE1DgUFxcjLS0NFhYWSkOr5RUV0Kzmmoi6VJ/brmvVHXNAtbqjQfVE/vzzz8+MiYuLq1Gupk2bYsmSJViyZEm1cc7Ozti1a1e1MRKJBEFBQQgKCqo2ztTUFFFRUTVqHxERET1dfRZxL2sBqW48SkRERESkMhaRRERERKQyFpFEREREpDIWkURERESkMhaRRERERKQyFpFEREREpDIWkURERESkMhaRRERERKQyFpFEREREpLIG9cQaIiIiosYoKSkJ8fHx+PPPP5GXl4eOHTti3LhxePPNNxUepbx7927Exsbi3r17sLCwwMyZM+Hp6SmuT0lJwY4dO3DmzBk8ePAApqam8Pb2xtSpU6Gvry/Gff/999ixYwdu376NoqIitG3bFsOGDUNgYCCkUukL2WcWkURERNTgVAgV0JDUz4Bpbba9adMmtGvXDuHh4WjWrBlOnTqF+fPnIzMzE9OnTwcAHDhwAPPnz8eUKVPg6uqKxMRETJ8+Hdu2bYOjoyOAymI0PT0dkyZNgrm5OW7evInIyEhcvHgRW7ZsEbeXm5uLPn36YPLkyTAwMEBKSgrWrFmDzMxMLF68WG3HojosIomIiKjB0ZBoYPOlLcgsvP9Ct9ta3xTvdR2v8vvWrVsHExMT8bWbmxtycnKwceNGTJs2DRoaGoiMjISvry9CQ0MBAK6urrh+/TrWrl2LmJgYAEBgYKBCHhcXFxgaGiIsLAyXLl1C165dAQATJkxQ2L6rqyv+/fdfbNq0CQsXLoSmpqbK+6AqFpFERETUIGUW3sed/Dv13Ywaebzwk7O1tcWuXbtQWFiI7Oxs3L59Gx9++KFCjI+PD1asWIHS0lJIpdIq89jZ2QEAHjx4UG0bjI2NUVZWhoqKihdSRPLCGiIiIqI6cPbsWZiamsLAwACpqakAAAsLC4UYKysryGQyZGRkVJsHACwtLZXWlZWVoaioCGfOnMHmzZsxZswYaGtrq3Evno49kURERERqdubMGSQmJmLOnDkAKucwAoChoaFCnPy1fP2TsrKyEBUVhQEDBsDc3FxhXVlZGbp06SK+fuONNxAREaGuXXgmFpFEREREapSZmYmZM2fCxcUF48erPr9STiaTYdasWQCAhQsXKq3X0tLCnj17UFJSgkuXLmHdunWYO3culi9fXuttqoJFJBEREZGa5OXlITAwEMbGxoiKioKGRuXMQSMjIwBAfn4+WrZsqRD/+Ho5QRAQERGBlJQUbN++Ha1atapye/b29gCAHj16wMzMDB988AHeffddcXld4pxIIiIiIjUoLi5GUFAQ8vPzERsbi6ZNm4rr5PMZ5XMj5VJTU6GtrY327dsrLF++fDmSkpKwdu1adO7cuUbbl1+5/ddffz3PbtQYi0giIiKi51RWVobQ0FCkpqYiNjYWpqamCuvbt28Pc3NzHDx4UGF5YmIi3NzcFG4QHh0djU2bNmHZsmVwc3OrcRvkF+A8WZDWFQ5nExERET2nRYsW4ciRIwgPD0dBQQEuXLggrrOzs4NUKkVwcDDCwsLQoUMHuLi4IDExESkpKdi6dasYm5CQgJUrV2LYsGEwMzNTyNOhQwfxFkBjx46Fl5cXLC0toaGhgYsXL+Lrr79Gnz594ODg8EL2mUUkERERNUit9U2fHdRAtnny5EkAwLJly5TWJScnw8zMDH5+figqKkJMTAyio6NhYWGBNWvWwMnJSSlPfHw84uPjFfIsXboUI0aMAFA5dL1r1y7cu3cPWlpaMDMzQ3BwMN55551atb82WEQSERFRg1MhVNTqyTHq2raqjz38+eefaxQ3cuRIjBw58qnrly1bVmUh+qS5c+di7ty5NW5fXeCcSCIiImpw6uu52fW97caER4mIiIiIVMYikoiIiIhUxiKSiIiIiFTGIpKIiIiIVMYikoiIiIhUxiKSiIiIiFTGIpKIiIiIVMYikoiIiIhUxiKSiIiI6DklJSVh6tSp8PDwgKOjI/z9/bFnzx4IgqAQt3v3bnh7e8Pe3h7Dhg3DkSNHFNanpKRg7ty58PLyQrdu3TBo0CCsXLkShYWFT912ZmYmnJycYGNjg6ysrDrZv6rUqogsLS1VdzuIiIiIGq1NmzZBT08P4eHhWLduHTw8PDB//nysXbtWjDlw4ADmz5+PIUOGICYmBo6Ojpg+fTouXLggxiQlJSE9PR2TJk1CdHQ03nvvPezatQtTpkx56raXLVsGfX39uty9KtXq2dnu7u7w9vaGv78/evTooe42ERER0StOEMohkWg2mm2vW7cOJiYm4ms3Nzfk5ORg48aNmDZtGjQ0NBAZGQlfX1+EhoYCAFxdXXH9+nWsXbsWMTExAIDAwECFPC4uLjA0NERYWBguXbqErl27Kmz39OnTOH36NIKCgrB8+fJa7nHt1KqI9Pb2xuHDh7Fnzx60adMGQ4cOxbBhw2BlZaXu9hEREdErSCLRxKOMzyArTn+h29XW7Yjm7T9S+X2PF35ytra22LVrFwoLC5GdnY3bt2/jww8/VIjx8fHBihUrUFpaCqlUWmUeOzs7AMCDBw8UlstkMixevBjBwcGNpydy8eLFWLBgAX755RckJCRg48aNiI6Ohq2tLfz9/eHr64sWLVqou61ERET0CpEVp0NWfKO+m1FrZ8+ehampKQwMDHD27FkAgIWFhUKMlZUVZDIZMjIyntoZJ3+vpaWlwvItW7ZAU1MTY8aMwb59++pgD6pX6wtrtLW14eXlhcjISJw6dQqffPIJmjZtiuXLl6Nfv34IDAxEQkICiouL1dleIiIiogbvzJkzSExMxMSJEwEAubm5AABDQ0OFOPlr+fonZWVlISoqCgMGDIC5ubm4/P79+1i7di0iIiKgqVk/w/616ol8koGBAUaOHInOnTsjJiYGhw8fxvHjx3H8+HE0adIEb7/9dr11tRIRERG9SJmZmZg5cyZcXFwwfvz4WueRyWSYNWsWAGDhwoUK61asWIHevXvDzc3teZr6XJ67iMzIyEBCQgISEhJw+/ZtGBsb491334W/vz+0tbWxa9cufPPNN7hz5w6ioqLU0WYiIiKiBikvLw+BgYEwNjZGVFQUNDQqB32NjIwAAPn5+WjZsqVC/OPr5QRBQEREBFJSUrB9+3a0atVKXHf+/HkcOnQIu3btEt9fVFQEAPj333+hp6cHPT29utvJ/69WRWR2djYSExORkJCAixcvQltbG/369cOHH34IDw8PaGn9X9oFCxagdevW+Oqrr9TWaCIiIqKGpri4GEFBQcjPz8fOnTvRtGlTcZ18PmNqaqrC3MbU1FRoa2ujffv2CrmWL1+OpKQkxMTEoHPnzgrr0tLSIJPJ8MYbbyi1YeDAgfDx8cGqVavUuWtVqlUR2adPH5SVlcHR0REff/wxfHx8lMb4H/faa69VebURERER0cugrKwMoaGhSE1NxbZt22Bqaqqwvn379jA3N8fBgwcxcOBAcXliYiLc3NwglUrFZdHR0di0aRM+//zzKoer+/Tpgy1btigsO378OGJiYrB27VqFuZN1qVZFZFBQEPz9/dGhQ4caxXt6esLT07M2myIiIiJq8BYtWoQjR44gPDwcBQUFCjcQt7Ozg1QqRXBwMMLCwtChQwe4uLggMTERKSkp2Lp1qxibkJCAlStXYtiwYTAzM1PI06FDB5iYmKBly5YKQ+IAcPfuXQCAs7PzC+u4U7mILCoqwrVr13DhwoUaF5FEREREqtLW7dhotnny5EkAlU+PeVJycjLMzMzg5+eHoqIixMTEIDo6GhYWFlizZg2cnJyU8sTHxyM+Pl4hz9KlSzFixIhata8uqFxE6unp4dSpU/Dw8KiL9hARERFBEMprddNvdW1b1SfW/PzzzzWKGzlyJEaOHPnU9cuWLauyEH2WESNGvPACs1b3iezevTvOnz+v7rYQERERAUC9PfKwvrfdmNSqiFywYAHOnj2LVatWITMzU91tIiIiIqIGrlZF5LBhw5CZmYno6Gh4enqia9eucHZ2VvjXvXt3lfMmJSVh6tSp8PDwgKOjI/z9/bFnzx4IgqAQt3v3bnh7e8Pe3h7Dhg3DkSNHlHLl5+cjIiICvXr1gpOTE0JCQpSeOQkA586dw6hRo+Dg4ABPT09ER0crbU8QBERHR6Nfv35wcHDAqFGjFCa6yt2/fx/BwcFwcnJCr1698NFHH6GgoEDl40BERETU0NXq6mxvb29IJBJ1twWbNm1Cu3btEB4ejmbNmuHUqVOYP38+MjMzMX36dADAgQMHMH/+fEyZMgWurq5ITEzE9OnTsW3bNjg6Ooq5QkNDcfPmTSxcuBA6OjpYvXo1AgMDsXfvXvE+lunp6QgICEDv3r0RGhqKa9eu4fPPP4empiYCAgLEXDExMYiMjERYWBhsbGywbds2TJw4Efv27RPv6ySTyTBp0iQAwMqVK1FcXIzly5dj9uzZ2LBhg9qPFREREVF9qlURWZsJnzWxbt06hcvS3dzckJOTg40bN2LatGnQ0NBAZGQkfH19ERoaCgBwdXXF9evXsXbtWsTExACovJP7iRMnEBcXB3d3dwCVDzz38fHB4cOH4ePjAwCIi4tDs2bN8MUXX0AqlcLNzQ1ZWVlYv349xo0bB6lUipKSEmzYsAETJ07EhAkTAFTOCR08eDDi4uLExxAdOnQIN27cQGJiongTUUNDQwQEBCAlJQUODg51csyIiIiI6kOthrPrSlX3NbK1tUVBQQEKCwuRkZGB27dvY8iQIQoxPj4+OH36NEpLSwEAx44dg6GhIXr37i3GWFpawtbWFseOHROXHTt2DAMGDFC4waePjw/y8vLEC4fOnTuHgoIChW1KpVJ4eXkp5bKxsVG4C33v3r1hbGyMo0eP1vaQEBERvfSenEZGdUedx/q5np2dmZmJy5cvIz8/v8pGDR8+/HnSAwDOnj0LU1NTGBgY4OzZswAqexUfZ2VlBZlMhoyMDFhZWSE1NRUWFhZKQ+6WlpZITU0FABQWFuLvv/9WKPrkMRKJBKmpqXBxcRHjn4yzsrLC5s2bUVxcDF1dXaXHGAGARCKBhYWFmIOIiIj+j7a2NoDK38kv4lnPVHmsgf879s+jVkVkSUkJ5syZg8OHD6OiogISiUQsIh8v3J63iDxz5gwSExMxZ84cAEBubi4AKD1iUf5avj4vL0/heZVyRkZGuHTpEoDKC2+qyiWVSqGnp6eQSyqVQkdHR2mbgiAgNzcXurq61W5Tnqu2BEEQP/SakEgkjerL2MyoCcorKqCpod6O8fKKCpSWlKj9L9y6mA8sx7/GiehV06RJE9y/fx8VFRXQ09Or05+xrzJBEFBUVIR//vkHBgYGKCkpeWpcTT+DWhWRX3zxBX788UeEhobCyckJ48aNw7Jly9CqVSts3rwZDx48wPLly2uTWpSZmYmZM2fCxcUF48ePf65cjZ1MJsOVK1dqHK+npwc7O7s6bJF6GTTRhaaGBiJ+2IvUhw/VktOyRQssGf4m0tLSUFRUpJacQOVfbl272EFD87k68atUUV6GS39ehkwmU3tuIqKG7s6dO5BIJCwi64ggCBAEARUVFWIx+TSPT/OrTq1+Ex46dAgjRozA5MmTkZ2dDQAwNTWFm5sbXn/9dYwfPx7btm3DokWLapMeeXl5CAwMhLGxMaKioqDx/3uojIyMAFT2Ij7+zMi8vDyF9YaGhlXevzI3N1eMkfcaynsk5UpLS1FUVKSQq7S0FCUlJQq9kXl5eZBIJApxVd3OJzc3F23atKnFUfg/2tra6NSpU43jG+sXMPXhQ1zN/FutOS0sLNTauyeRSKChqYVHGZ9BVpyutrzauh3RvP1HeO2119gbSUSvpPLycpSVldV3M15qWlpa0NSs/kbqN2/erHm+2jTi0aNH4tXGurq6AKDQ2+Pt7Y21a9fWqogsLi5GUFAQ8vPzsXPnToUhYvmcwyfnH6ampkJbW1u83Y6lpSVOnz6t1CWblpYGa2trAIC+vj7atGmjNF8xLS0NgiCI+eX/TUtLQ+fOnRW22bZtW3H/LS0tcf36dYVcgiAgLS1N4QKf2pBIJNDX13+uHK+quhrWlxWnQ1Z8Q+15G9M0BCIievmo0hFVq0loLVq0EHsg9fT0YGRkhLS0NHF9QUHBU8faq1NWVobQ0FCkpqYiNjYWpqamCuvbt28Pc3NzHDx4UGF5YmIi3NzcxO5XDw8P5Obm4vTp02JMWloaLl++rPDMbw8PDyQnJysMHyYmJsLQ0FB8GLqzszMMDAyQlJQkxshkMhw+fFgp19WrV3H79m1x2enTp5GTk4O+ffuqfCyIiIiIGrJa9UQ6ODjg3Llz4mtPT0/ExcWhZcuWqKiowKZNmxRu/F1TixYtwpEjRxAeHo6CggKFp8LY2dlBKpUiODgYYWFh6NChA1xcXJCYmIiUlBRs3bpVjHVycoK7uzsiIiIwZ84c6OjoYNWqVbCxscGgQYPEuICAACQkJGD27NkYM2YMrl+/jri4OMycOVMsSHV0dBAUFISoqCiYmJjA2toaO3bsQE5OjsINyb29vbFhwwYEBwdj1qxZKCoqwooVK8Sn3BARERG9TGpVRI4bNw4HDx5EaWkppFIpZsyYgfPnz+M///kPAKBDhw746KOPVM578uRJAFXfzDw5ORlmZmbw8/NDUVERYmJiEB0dDQsLC6xZs0bsOZRbvXo1li5digULFqCsrAzu7u6YN2+e+LQaAOjYsSPi4uKwbNkyTJ48GSYmJggJCcHEiRMVcgUGBkIQBHz99dfIysqCra0t4uLixOFzoHLeYmxsLD799FPMmjULWlpa8PLyQkREhMrHgYiIiKihq1UR2aNHD/To0UN83aZNGyQlJeH69evQ0NCApaWlQrFWUz///HON4kaOHImRI0dWG9O0aVMsWbIES5YsqTbO2dkZu3btqjZGIpEgKCgIQUFB1caZmpoiKiqq2hh6MZo3MUCFUAENSYO6nz4REdFLQ233KdHQ0FC48ISoPjXV1YWGRAObL21BZuF9teW1M7HF0E5+astHRETUWNWoiPz9999rlbxnz561eh+RumQW3sed/Dtqy2eq30ptuYiIiBqzGhWR48aNU+mSb/mtdVS5QTYRERERNR41KiK3bNlS1+0gIiIiokakRkVkr1696rodRERERNSI8NJVIiIiIlJZra/OLikpwaFDh3D58mXk5+ejoqJCYb1EInnm7XWIiIiIqHGqVRF59+5djB8/Hnfv3oWhoSHy8/NhZGSE/Px8lJeXo1mzZnzWMxEREdFLrFbD2StWrEBBQQF27dqFgwcPQhAErFq1CufPn0dYWBh0dXURFxen7rYSERERUQNRqyLy119/xZgxY+Dg4AANjf9LIZVKMWnSJLi6unIom4iIiOglVqsisri4GO3atQMAGBgYQCKRID8/X1zv5OSEs2fPqqeFRERERNTg1KqIbNOmDe7fr3yUnJaWFkxNTXHhwgVx/c2bN6Gjo6OWBhIRERFRw1OrC2tcXV2RnJyM6dOnAwDeeOMNREdHIy8vDxUVFYiPj4e/v79aG0pEREREDUetisjJkyfjjz/+QGlpKaRSKaZMmYIHDx7g0KFD0NDQgJ+fH+bOnavuthIRERFRA1GrIrJt27Zo27at+FpHRwefffYZPvvsM7U1jIiIiIgaLrU9saaiogKPHj2CIAjqSklEREREDVSNi8i0tDT88MMPyM3NVVheUFCA//znP+jWrRvc3d3h6uqKrVu3qr2hRERERNRw1LiI3LhxI7788ksYGhoqLJ8/fz7i4+PRtm1beHl5QSqV4rPPPsNPP/2k9sYSERERUcNQ4zmR586dQ79+/SCRSMRlf//9N5KSkuDo6IitW7dCS0sLeXl5eOutt7Bt2zYMHDiwThpNRERERPWrxj2R9+/fh6WlpcKyI0eOQCKRYPz48dDSqqxHDQ0N4e/vj8uXL6u3pURERETUYNS4iKyoqBALRTn5U2l69eqlsLx169b4999/1dA8IiIiImqIalxEdujQARcvXhRfl5eX47fffoOlpSVatGihEJubmwsTExP1tZKIiIiIGpQaz4kcPnw4/vvf/8LS0hLOzs6Ij4/Ho0ePMG7cOKXYM2fOwNzcXJ3tJCIiIqIGpMZF5DvvvIPTp0/jiy++gEQigSAI6NmzJyZOnKgQ9/fff+PYsWMIDQ1Vd1uJiIiIqIGocRGpra2N9evX448//kBGRgbatm0LR0dHpbjS0lKsXLkSPXv2VGc7iYiIiKgBUfmxh/b29rC3t3/q+o4dO6Jjx47P1SgiIiIiatjU9thDIiIiInp1sIgkegWVl1c0qryNiSCUN4qcRETPS+XhbCJq/DQ1NbA44L9Iv5ahtpwdbdpjftyHasvXWEkkmniU8Rlkxelqyaet2xHN23+kllxEROrEIpLoFZV+LQM3Lt6q72a8lGTF6ZAV36jvZhAR1SkOZxORWpiYNkN5hfqHs+siJwBUCBx6JyJ6Hs/VE1laWoo///wTjx49grOzM59SQ/QKMzBqAk0NDSyL+g5/3X2olpwd2rVAePAIteR6koZEA5svbUFm4X215bQzscXQTn5qy0dE1JDVuojcsmUL1qxZg/z8fADA119/DTc3N2RlZWHIkCH48MMP8dZbb6mtoUTUOPx19yFupmXWdzNqJLPwPu7k31FbPlP9VmrLRUTU0NVqOHvv3r1YsmQJ+vTpg88++wyCIIjrTExM4OrqisTERLU1koiIiIgalloVkRs3bsSAAQOwcuVKeHp6Kq3v0qULbtzgpHIiIiKil1Wtisj09HR4eHg8db2xsTFycnJq2yYiIiIiauBqVUQaGhoiOzv7qetv3ryJli1b1rpRRERERNSw1aqI9PDwwK5du5CXl6e07saNG9i9ezf69+//3I0jIiIiooapVldnh4aG4u2334afnx88PT0hkUjwww8/YO/evTh8+DBatmyJadOmqbutRERERNRA1Kon0tTUFN999x369OmDpKQkCIKAffv24ciRI/D19cWuXbt4z0giIiKil1it7xPZvHlzfPbZZ/jss8+QlZWFiooKmJiYQEODD8EhIiIietmp5dnZ7HUkIiIierXUqohcs2ZNteslEgl0dHTQunVr9OzZE6amprVqHBERERE1TLUuIiUSCQAoPK0GgNJyTU1NjBw5EgsWLOBQNxEREdFLolZF5NGjRxEUFARbW1uMGzcOHTp0AFB5E/KtW7fi2rVrWLVqFQoLC7F582bs3LkTrVq14hXbRERERC+JWnUNLlq0CJaWlli6dCns7OxgYGAAAwMDdOnSBUuXLkXHjh2xcuVK2NraYtmyZXB3d8e+ffuemTc9PR0LFiyAv78/7Ozs4OfnpxQzbtw42NjYKP27deuWQlx+fj4iIiLQq1cvODk5ISQkBA8ePFDKd+7cOYwaNQoODg7w9PREdHS0Uu+qIAiIjo5Gv3794ODggFGjRuHChQtKue7fv4/g4GA4OTmhV69e+Oijj1BQUPDM/SYiIiJqbGpVRP7666/o2bPnU9f37NkTJ0+eFF/37dsX9+7de2beGzdu4OjRo+jYsSOsrKyeGufs7IydO3cq/DMzM1OICQ0NxcmTJ7Fw4UJ8/vnnSEtLQ2BgIMrKysSY9PR0BAQEoGXLltiwYQPee+89REZG4uuvv1bIFRMTg8jISEyYMAEbNmxAy5YtMXHiRGRkZIgxMpkMkyZNwu3bt7Fy5UosXLgQJ06cwOzZs5+530RERESNTa2Gs6VSKVJSUjBmzJgq11+8eBHa2tri67KyMujr6z8zb//+/TFw4EAAQHh4OC5dulRlnKGhIRwdHZ+a5/z58zhx4gTi4uLg7u4OALCwsICPjw8OHz4MHx8fAEBcXByaNWuGL774AlKpFG5ubsjKysL69esxbtw4SKVSlJSUYMOGDZg4cSImTJgAAOjevTsGDx6MuLg4LFy4EABw6NAh3LhxA4mJibC0tBTbGRAQgJSUFDg4ODxz/4lIUTOjJiivqIAm51MTETU4tSoi/fz8sG3bNhgbG2PMmDFiL+CdO3ewfft2xMfHY+zYsWL8b7/9hk6dOj0zr7ouvDl27BgMDQ3Ru3dvcZmlpSVsbW1x7NgxsYg8duwYvLy8IJVKxTgfHx9s2LAB58+fh4uLC86dO4eCggIMGTJEjJFKpfDy8sKPP/6osE0bGxuxgASA3r17w9jYGEePHmURSVQLBk10oamhgYgf9iL14UO15XW36oTpngPUlo+I6FVUqyLyww8/xMOHD7Fx40Zs2rRJLP4qKiogCAIGDRqEDz/8EABQUlKCLl26wNnZWW2N/t///gdHR0eUl5ejW7dumDFjhsLwempqKiwsLMQrxeUsLS2RmpoKACgsLMTff/+tUPTJYyQSCVJTU+Hi4iLGPxlnZWWFzZs3o7i4GLq6ukhNTVWKkUgksLCwEHMQUe2kPnyIq5l/qy2fefMWastFRPSqqlURqaOjg9WrV+Py5cs4fvw47t69CwBo164d3N3d0aVLF4XY6dOnq6e1qJxv6e/vD3Nzczx48ABxcXF4//338c0338DJyQkAkJeXh6ZNmyq918jISBwiz8/PB1A55Pw4qVQKPT095ObmirmkUil0dHQU4gwNDSEIAnJzc6Grq1vtNuW5aksQBBQWFtY4XiKRQE9P77m2SfWjqKhI6cIudeP50Ti9iHODiEgQBKVOuKd5rifW2NnZwc7O7nlSqCwkJEThdb9+/eDn54evvvoKMTExL7QtL4pMJsOVK1dqHK+np/fCPxdSj7S0NBQVFdXpNnh+NE4v4twgIgKgMM2vOmp57GF90tfXR9++fXHo0CFxmaGhITIzM5Vic3NzYWRkBABir6G8R1KutLQURUVFYpyhoSFKS0tRUlKi0BuZl5cHiUSiEFfV7Xxyc3PRpk2b59pHbW3tGs0plavpXxDU8FhYWLyQnkhqfF7EuUFEdPPmzRrH1rqIPHr0KDZt2oTLly8jPz+/yh9uqvSeqZOlpSVOnz6t1CWblpYGa2trAJXFZ5s2bZTmK6alpUEQBHF+o/y/aWlp6Ny5sxiXmpqKtm3bQldXV4y7fv26Qi5BEJCWlqZwgU9tSCSSGl3dTo0fh5npaXhuENGLoEpHQ60uhz506BCmTJmChw8fwsfHBxUVFfD19YWPjw90dXVhY2ODDz74oDapVVZYWIhffvkF9vb24jIPDw/k5ubi9OnT4rK0tDRcvnwZHh4eCnHJycmQyWTissTERBgaGorzK52dnWFgYICkpCQxRiaT4fDhw0q5rl69itu3b4vLTp8+jZycHPTt21et+0xERERU32rVE7lhwwY4ODhg+/btyM3NxY4dO/Dmm2/Czc0Nd+7cwahRo5Ru/l0TRUVFOHr0KADg7t27KCgowMGDBwEAvXr1QmpqKmJjY+Hl5YV27drhwYMH2LhxI/755x98+eWXYh4nJye4u7sjIiICc+bMgY6ODlatWgUbGxsMGjRIjAsICEBCQgJmz56NMWPG4Pr164iLi8PMmTPF+QA6OjoICgpCVFQUTExMYG1tjR07diAnJwcBAQFiLm9vb2zYsAHBwcGYNWsWioqKsGLFCvEpN0REREQvk1oVkbdu3cKsWbOgqakJLa3KFPInwZiZmWHMmDGIiYnB8OHDVcr76NEjzJgxQ2GZ/PWWLVvQunVryGQyrFq1Cjk5OdDT04OTkxMWLVqkVKitXr0aS5cuxYIFC1BWVgZ3d3fMmzdPbC8AdOzYEXFxcVi2bBkmT54MExMThISEYOLEiQq5AgMDIQgCvv76a2RlZcHW1hZxcXFo3769GKOtrY3Y2Fh8+umnmDVrFrS0tODl5YWIiAiVjgERERFRY1CrIlJXV1d8Io2hoSGkUin++ecfcX2LFi1w584dlfOamZnh2rVr1cbExcXVKFfTpk2xZMkSLFmypNo4Z2dn7Nq1q9oYiUSCoKAgBAUFVRtnamqKqKioGrWPiIiIqDGr1ZxICwsL3Lp1S3xta2uLffv2oaysDCUlJdi/f/9zX5FMRERERA1XrYpILy8vJCcno7S0FAAwZcoU/O9//0PPnj3h6uqKM2fOYPLkyWptKBERERE1HLUazg4ICFC4qMTT0xPffPMNDh8+DE1NTfTt2xeurq5qayQRERERNSwqF5GlpaU4fvw42rVrp3DfxB49eqBHjx5qbRwRERERNUwqD2dra2tjxowZOH/+fF20h4iIiIgaAZWLSIlEAnNzc2RnZ9dFe4iIiIioEajVhTVBQUHYtm2b0iMDiYiIiOjVUKsLay5evAhjY2MMHToUvXr1Qrt27cRnSD9u3rx5z91AIiKil4EglEMi0Ww0eYmepVZF5NatW8X/f/z51I+TSCQsIomIiP4/iUQTjzI+g6w4XW05tXU7onn7j9SWj0gVtSoir169qu52EBERvfRkxemQFd+o72YQqUWt5kQSERER0autVj2RchcuXMBvv/2GR48e4Z133oG5uTmKioqQmpoKc3NzNGnSRF3tJCIiIqIGpFZFZGlpKWbNmoXk5GQIggCJRAJPT0+Ym5tDQ0MDEydOxIQJEzB16lR1t5eIiIiIGoBaDWd/+eWX+OWXX7Bw4UIcPHgQgiCI63R0dDB48GAkJyerrZFERERE1LDUqog8cOAARo8ejVGjRsHIyEhpvZWVFTIyMp67cURERETUMNWqiHz06BFsbGyeul5TUxPFxcW1bhQRERERNWy1KiLbtGlT7dNqzp07hw4dOtS6UURERPWpQqio7yYQNXi1urDGz88PGzduxKBBg2Bubg6g8ubiALBr1y4kJSVh9uzZamskERHRi6Qh0cDmS1uQWXhfLfnsTGwxtJOfWnIRNRS1KiKnTJmCixcv4t1334WlpSUkEgmWLl2K3NxcZGZmom/fvpgwYYKam0pERPTiZBbex538O2rJZarfSi15iBqSWhWRUqkUsbGxiI+Px6FDh1BRUYHS0lLY2NggNDQU/v7+Ys8kEREREb18an2zcYlEAn9/f/j7+6uzPURERETUCNTqwpoVK1bg8uXL6m4LERERETUStSoit27dijfffBODBg3C6tWrce3aNXW3i4iIiIgasFoVkadOncLSpUthbm6O2NhYDB8+HL6+vli7dm21t/4hIqKGrby8bm5tU1d5iaj+1GpOpIGBAYYPH47hw4cjLy8Phw4dwsGDB7Fu3TqsWbMG1tbW8PX1xeTJk9XdXiIiqkOamhpYHPBfpF9T31PH7N3sMH153fw+KK+ogKZGrfpDiOg51frCGjlDQ0OMHDkSI0eORHZ2Nvbt24eoqCisWrWKRSQRUSOUfi0DNy7eUlu+DtZm0NTQwLKo7/DX3Ydqy9vTsRPeH90fET/sRepD9eV1t+qE6Z4D1JaP6GX13EUkAMhkMhw7dgyJiYk4cuQICgsL0aZNG3WkJiKil8Rfdx/iZlqm2vK1b9scAJD68CGuZv6ttrzmzVuoLRfRy6zWRWRZWRlOnjyJxMREJCcno6CgAC1btsSIESPg4+MDZ2dndbaTiIiIiBqQWhWRERERSE5ORm5uLpo1awZfX1/4+vqiZ8+evMk4ERER0SugVkVkcnIyBg4cCB8fH7i6ukJTU1MpJjc3F0ZGRs/dQCIiIiJqeGpVRJ48eRJaWspvLS0tRXJyMhISEnD8+HH88ccfz91AIiIiImp4alVEPl5ACoKA06dPIyEhAT/++CMKCgpgYmICPz8/tTWSiIiI6l95eQU0NdV/S6W6ykt1q9YX1ly6dAkJCQk4cOAAHj58CIlEAh8fH7z77rtwdHTk3EgiIqKXTF3cR7SjTXvMj/tQbfnoxVGpiMzIyEB8fDwSEhKQnp4OU1NTDB06FA4ODpg5cya8vb3h5ORUV20lIiKieqbu+4hS41XjInLUqFFISUlBs2bN4O3tjU8//RQ9evQAAPz111911kAiIiIianhqXERevHgRZmZmCA8PR79+/aq8sIaIiIiIXg01nsU6f/58tGzZEtOnT0fv3r2xYMEC/PrrrxAEoS7bR0REREQNUI27E8eOHYuxY8ciIyMDCQkJ2L9/P3bt2oUWLVrAxcUFEomEF9MQERERvSJUvp6+ffv2mDZtGhITE7Fnzx74+vrif//7HwRBwKJFizB//nwcOXIEJSUlddFeIiIiImoAnmtiY9euXdG1a1fMmTMHv/76K+Lj45GYmIjdu3dDT08P58+fV1c7iYiIiKgBUcvVMRoaGnj99dfx+uuvY9GiReJTa4iIiIjo5aT2S6x1dHTg4+MDHx8fdacmIiIiogaCzxgiIiIiIpWxiCQiIiIilbGIJCIiIiKVsYgkIiIiIpU1qCIyPT0dCxYsgL+/P+zs7ODn51dl3O7du+Ht7Q17e3sMGzYMR44cUYrJz89HREQEevXqBScnJ4SEhODBgwdKcefOncOoUaPg4OAAT09PREdHKz2FRxAEREdHo1+/fnBwcMCoUaNw4cIFpVz3799HcHAwnJyc0KtXL3z00UcoKCio3cEgIiKiV4YglDeqvEAdXJ39PG7cuIGjR4+iW7duqKioqPKRigcOHMD8+fMxZcoUuLq6IjExEdOnT8e2bdvg6OgoxoWGhuLmzZtYuHAhdHR0sHr1agQGBmLv3r3ic7/T09MREBCA3r17IzQ0FNeuXcPnn38OTU1NBAQEiLliYmIQGRmJsLAw2NjYYNu2bZg4cSL27duH9u3bAwBkMhkmTZoEAFi5ciWKi4uxfPlyzJ49Gxs2bKjDo0ZERESNnUSiiUcZn0FWnK62nNq6HdG8/Udqy/ekBlVE9u/fHwMHDgQAhIeH49KlS0oxkZGR8PX1RWhoKADA1dUV169fx9q1axETEwMAOH/+PE6cOIG4uDi4u7sDACwsLODj44PDhw+Ltx+Ki4tDs2bN8MUXX0AqlcLNzQ1ZWVlYv349xo0bB6lUipKSEmzYsAETJ07EhAkTAADdu3fH4MGDERcXh4ULFwIADh06hBs3biAxMRGWlpYAAENDQwQEBCAlJQUODg51ddiIiIjoJSArToes+EZ9N6PGGtRwtoZG9c3JyMjA7du3MWTIEIXlPj4+OH36NEpLSwEAx44dg6GhIXr37i3GWFpawtbWFseOHROXHTt2DAMGDIBUKlXIlZeXJz5t59y5cygoKFDYplQqhZeXl1IuGxsbsYAEgN69e8PY2BhHjx5V5TAQERHRcyqvqGhUeRujBtUT+SypqakAKnsVH2dlZQWZTIaMjAxYWVkhNTUVFhYWkEgkCnGWlpZijsLCQvz9998KRZ88RiKRIDU1FS4uLmL8k3FWVlbYvHkziouLoauri9TUVKUYiUQCCwsLMQcRERG9GJoaGoj4YS9SHz5UW06n9u3x4aDBasvX2DWqIjI3NxdA5TDx4+Sv5evz8vLQtGlTpfcbGRmJQ+T5+flV5pJKpdDT01PIJZVKoaOjo7RNQRCQm5sLXV3darcpz1VbgiCgsLCwxvESiQR6enrPtU2qH0VFRVXOBVYnnh+NE88Nqs7LcH6ocx/kbU19+BBXM/9WS04AMG/eAhoSDWy+tAWZhffVltfOxBZDO1V9MbE6qHJsBUFQ6oR7mkZVRL6qZDIZrly5UuN4PT092NnZ1WGLqK6kpaWhqKioTrfB86Nx4rlB1XkZzg917kNdtzWz8D7u5N9RWz5T/VZqy1UVVY/t49P8qtOoikgjIyMAlb2ILVu2FJfn5eUprDc0NERmZqbS+3Nzc8UYea+hvEdSrrS0FEVFRQq5SktLUVJSotAbmZeXB4lEohBX1e18cnNz0aZNm9rt8P+nra2NTp061Ti+pn9BUMNjYWHxQnoTqPHhuUHVeRnOD3XuA89lRaoc25s3b9Y4b6MqIuVzDp+cf5iamgptbW3xdjuWlpY4ffq0UpdsWloarK2tAQD6+vpo06aN0nzFtLQ0CIIg5pf/Ny0tDZ07d1bYZtu2baGrqyvGXb9+XSGXIAhIS0tTuMCnNiQSCfT19Z8rBzUOHEqkp+G5QdV5Gc6Pl2EfGipVjq0qBXiDujr7Wdq3bw9zc3McPHhQYXliYiLc3NzE7lcPDw/k5ubi9OnTYkxaWhouX74MDw8PcZmHhweSk5Mhk8kUchkaGsLJyQkA4OzsDAMDAyQlJYkxMpkMhw8fVsp19epV3L59W1x2+vRp5OTkoG/fvuo5AEREREQNRIPqiSwqKhJvh3P37l0UFBSIBWOvXr1gYmKC4OBghIWFoUOHDnBxcUFiYiJSUlKwdetWMY+TkxPc3d0RERGBOXPmQEdHB6tWrYKNjQ0GDRokxgUEBCAhIQGzZ8/GmDFjcP36dcTFxWHmzJliQaqjo4OgoCBERUXBxMQE1tbW2LFjB3JychRuSO7t7Y0NGzYgODgYs2bNQlFREVasWCE+5YaIiIjoZdKgishHjx5hxowZCsvkr7ds2QIXFxf4+fmhqKgIMTExiI6OhoWFBdasWSP2HMqtXr0aS5cuxYIFC1BWVgZ3d3fMmzdPfFoNAHTs2BFxcXFYtmwZJk+eDBMTE4SEhGDixIkKuQIDAyEIAr7++mtkZWXB1tYWcXFx4vA5UDlvMTY2Fp9++ilmzZoFLS0teHl5ISIiQt2HiYiIiKjeNagi0szMDNeuXXtm3MiRIzFy5MhqY5o2bYolS5ZgyZIl1cY5Oztj165d1cZIJBIEBQUhKCio2jhTU1NERUVVG0NERET0MmhUcyKJiIiIqGFgEUlEREREKmMRSUREREQqYxFJRERERCpjEUlEREREKmMRSUREREQqYxFJRERE9cbEtBnKKyrquxlUCw3qPpFERET0ajEwagJNDQ0si/oOf919qJacPR074f3R/dWSi56ORSQRERHVu7/uPsTNtEy15Grftrla8lD1OJxNRERERCpjEUlEREREKmMRSUREREQqYxFJRERERCpjEUlEREREKmMRSUREREQqYxFJRERERCpjEUlEREREKmMRSUREREQqYxFJRERERCpjEUlEREREKmMRSUREREQqYxFJRERERCpjEUlEREREKmMRSUREREQqYxFJRERERCpjEUlEREREKmMRSUREREQqYxFJRERERCpjEUlEREREKmMRSUREREQqYxFJRERERCpjEUlEREREKmMRSUREREQqYxFJRERERCpjEUlEREREKmMRSUREREQqYxFJRERERCpjEUlEREREKmMRSUREREQqYxFJRERERCpjEUlEREREKmMRSUREREQqYxFJRERERCpjEUlEREREKmMRSUREREQqYxFJRERERCprdEXkd999BxsbG6V/n3/+uULc7t274e3tDXt7ewwbNgxHjhxRypWfn4+IiAj06tULTk5OCAkJwYMHD5Tizp07h1GjRsHBwQGenp6Ijo6GIAgKMYIgIDo6Gv369YODgwNGjRqFCxcuqHXfiYiIiBoKrfpuQG3FxsaiadOm4mtTU1Px/w8cOID58+djypQpcHV1RWJiIqZPn45t27bB0dFRjAsNDcXNmzexcOFC6OjoYPXq1QgMDMTevXuhpVV5aNLT0xEQEIDevXsjNDQU165dw+effw5NTU0EBASIuWJiYhAZGYmwsDDY2Nhg27ZtmDhxIvbt24f27dvX/QEhIiIieoEabRHZpUsXmJiYVLkuMjISvr6+CA0NBQC4urri+vXrWLt2LWJiYgAA58+fx4kTJxAXFwd3d3cAgIWFBXx8fHD48GH4+PgAAOLi4tCsWTN88cUXkEqlcHNzQ1ZWFtavX49x48ZBKpWipKQEGzZswMSJEzFhwgQAQPfu3TF48GDExcVh4cKFdXosiIiIiF60Rjec/SwZGRm4ffs2hgwZorDcx8cHp0+fRmlpKQDg2LFjMDQ0RO/evcUYS0tL2Nra4tixY+KyY8eOYcCAAZBKpQq58vLycP78eQCVw90FBQUK25RKpfDy8lLIRURERPSyaLRFpJ+fH2xtbTFgwABs2LAB5eXlAIDU1FQAlb2Kj7OysoJMJkNGRoYYZ2FhAYlEohBnaWkp5igsLMTff/8NS0tLpRiJRCLGyf/7ZJyVlRXu3buH4uJidewyERERUYPR6IazW7ZsieDgYHTr1g0SiQQ///wzVq9ejfv372PBggXIzc0FABgaGiq8T/5avj4vL09hTqWckZERLl26BKDywpuqckmlUujp6Snkkkql0NHRUdqmIAjIzc2Frq5urfdZEAQUFhbWOF4ikUBPT6/W26P6U1RUpHTRlrrx/GiceG5QdXh+UHVUOT8EQVDqYHuaRldE9unTB3369BFfu7u7Q0dHB5s3b8aUKVPqsWV1RyaT4cqVKzWO19PTg52dXR22iOpKWloaioqK6nQbPD8aJ54bVB2eH1QdVc+Px6fwVafRFZFVGTJkCL7++mtcuXIFRkZGACp7EVu2bCnG5OXlAYC43tDQEJmZmUq5cnNzxRh5T6W8R1KutLQURUVFCrlKS0tRUlKi0BuZl5cHiUQixtWWtrY2OnXqVOP4mv4FQQ2PhYXFC+lNoMaH5wZVh+cHVUeV8+PmzZs1zvtSFJGPk89LTE1NVZijmJqaCm1tbfF2O5aWljh9+rRSt21aWhqsra0BAPr6+mjTpo045/HxGEEQxPzy/6alpaFz584K22zbtu1zDWUDlV9cfX3958pBjQOHiuhpeG5QdXh+UHVUOT9U+WOh0V5Y87jExERoamrCzs4O7du3h7m5OQ4ePKgU4+bmJnbRenh4IDc3F6dPnxZj0tLScPnyZXh4eIjLPDw8kJycDJlMppDL0NAQTk5OAABnZ2cYGBggKSlJjJHJZDh8+LBCLiIiIqKXRaPriQwICICLiwtsbGwAAMnJydi1axfGjx8vDl8HBwcjLCwMHTp0gIuLCxITE5GSkoKtW7eKeZycnODu7o6IiAjMmTMHOjo6WLVqFWxsbDBo0CCF7SUkJGD27NkYM2YMrl+/jri4OMycOVMsSHV0dBAUFISoqCiYmJjA2toaO3bsQE5OjsINyYmIiIheFo2uiLSwsMDevXuRmZmJiooKmJubIyIiAuPGjRNj/Pz8UFRUhJiYGERHR8PCwgJr1qwRew7lVq9ejaVLl2LBggUoKyuDu7s75s2bJz6tBgA6duyIuLg4LFu2DJMnT4aJiQlCQkIwceJEhVyBgYEQBAFff/01srKyYGtri7i4OD6thoiIiF5Kja6InDdvXo3iRo4ciZEjR1Yb07RpUyxZsgRLliypNs7Z2Rm7du2qNkYikSAoKAhBQUE1ah8RERFRY/ZSzIkkIiIioheLRSQRERERqYxFJBERERGpjEUkEREREamMRSQRERERqYxFJBERERGpjEUkEREREamMRSQRERERqYxFJBERERGpjEUkEREREamMRSQRERERqYxFJBERERGpjEUkEREREamMRSQRERERqYxFJBERERGpjEUkEREREamMRSQRERERqYxFJBERERGpjEUkEREREamMRSQRERERqYxFJBERERGpjEUkEREREamMRSQRERERqYxFJBERERGpjEUkEREREamMRSQRERERqYxFJBERERGpjEUkEREREamMRSQRERERqYxFJBERERGpjEUkEREREamMRSQRERERqYxFJBERERGpjEUkEREREamMRSQRERERqYxFJBERERGpjEUkEREREamMRSQRERERqYxFJBERERGpjEUkEREREamMRSQRERERqYxFJBERERGpjEUkEREREamMRSQRERERqYxFJBERERGpjEWkmt26dQvvv/8+HB0d0bt3b6xYsQKlpaX13SwiIiIitdKq7wa8THJzc/Hee+/B3NwcUVFRuH//PpYtW4bi4mIsWLCgvptHREREpDYsItXo22+/xb///os1a9bA2NgYAFBeXo5FixYhKCgIpqam9dtAIiIiIjXhcLYaHTt2DG5ubmIBCQBDhgxBRUUFTp48WX8NIyIiIlIzFpFqlJqaCktLS4VlhoaGaNmyJVJTU+upVURERETqJxEEQajvRrwsunTpghkzZmDy5MkKy/38/ODk5ITFixernPPcuXMQBAHa2toqvU8ikSDnn1yUycpU3ubT6OjpoGkzA+Tk/Yuysgr15dXRRtMmusgu/BeycvXk1dXWgqGuHgpKC1AmlKslJwBINbShr62PirIcCIL6jq1EogUNLWO8qK9jYzk/6uLcABrX+cFzo5q8jej84M+Op+PPjoZ1fshkMkgkEjg7Oz8zlnMiGziJRKLwX1UYtzRSd3Mq8xo2qZO8zfTVn9dAaqD2nACgoWVcJ3lr8znXVmM6P+ri3AAa1/nBc+PpGtP5wZ8d1eTlz44GcX5IJJIax7OIVCNDQ0Pk5+crLc/NzYWRUe2+dE5OTs/bLCIiIiK145xINbK0tFSa+5ifn49//vlHaa4kERERUWPGIlKNPDw8cOrUKeTl5YnLDh48CA0NDfTu3bseW0ZERESkXrywRo1yc3Ph6+sLCwsLBAUFiTcbHzp0KG82TkRERC8VFpFqduvWLSxevBjnz59HkyZN4O/vj5kzZ0IqldZ304iIiIjUhkUkEREREamMcyKJiIiISGUsIomIiIhIZSwiiYiIiEhlLCKJiIiISGUsIomIiIhIZSwiiYiIiEhlLCKJiIiISGUsIumZoqKiYGNjU+W/6Ojo+m5elTZt2oSjR48qLe/fvz8++eSTemgRPS4+Ph5vvfUWunfvDmdnZwwZMgQfffQRHj16VCfbGzduHIKCguokN9WM/OdInz59UFFRobR+9OjRsLGxQXh4uBjv5OT0zLzTpk3DuHHjnhlnY2ODuLg41RuuJjwH1fe75MqVK4iKikJRUVEdtrZSfX9uNf0e1Bet+m4ANQ66urrYvHmz0vI2bdrUQ2uebcuWLejXrx/69u2rsHzNmjUwNDSsp1YRAMTExGDlypWYMGECQkJCIAgCbty4gYSEBDx48ADNmzdX+zY//vhjaGjwb+b6pq2tjezsbPz+++9wcXERl9+9excXLlyAvr6+uGzkyJFK319q/NTxu+TKlStYs2YNxo4dCz09PXU2j1TEIpJqRENDA46OjvXdjOdmZ2dX30145X3zzTd44403xB4nAOjbty8mTZpUZQ+VOnTq1EkteYqLi6Grq6uWXK8ibW1tuLm54cCBAwpF5IEDB/Daa68pFPqtW7dG69at66OZVIde9O8SfmfrFv80p+f2008/wcbGBkeOHBGX5eTkoE+fPpg1a5a47NatW5g6dSq6d+8OR0dHTJ48GX/99ZdCroqKCmzcuBFDhgxB165d0bt3b4SEhCA/Px8AEB4eDj8/P4X35OXlwcbGBt999x2AyiHru3fvYtu2beJQyePr5MPZ3333Hezs7PDw4UOFfDk5OejatSu+/fZbcdn58+cxfvx4ODo6onv37pg9e3adDb2+7PLy8tCqVasq1z3ZW/jdd99h6NChsLe3R58+fbBq1SqUl5crrLexscHly5cxadIkODo6YtCgQfjhhx8U8lQ1JPX7779j9OjRcHBwgIuLC+bOnYucnBxx/Z07d8RzZ968eXBxccHIkSOfb+cJfn5+OHToEGQymbhs//79St/rqobxbt26hXfffRf29vYYOHAgvv/+++dqyy+//IKRI0fCwcEBrq6u+Pjjj1FYWAgAKCwshKOjY5VD4CEhIRg1apT4Oi8vDwsXLoS7uzu6du2KESNG4MSJE8/VtleVjY0NYmJiEBUVhddff138bso/l++++w5z584FALi5ucHGxgb9+/cX19nY2OD8+fN4//334ejoiBUrViA4OBijR49W2tb27dthb2+v8L2viWf9LnvaEPjWrVvh4OAg/j4TBAFxcXHw9vZG165dMWDAAGzatEmlttQ3FpFUY2VlZUr/AGDgwIEYPnw45s2bh6ysLADAokWLAFQOIwJARkYGRo8ejdzcXCxbtgyff/45srKyMGHCBJSWlorbWLx4Mf773/+iX79+WL9+PRYsWIAmTZqIP0BqYs2aNWjZsiW8vb2xc+dO7Ny5E/369VOK8/LygqamJg4ePKiw/PDhwwCAwYMHA6gsIMeNG4emTZti1apVWLx4Mf744w9Mmzatxm2i/9OlSxd8++232L17N/7555+nxm3cuBHz5s2Du7s71q9fj8DAQGzZsgWrVq1Sig0LC4O7uzvWrl0LW1tbhIeH49atW0/NfenSJbz//vto0qQJvvzyS4SFheHIkSMIDAxUKFIB4IsvvoAgCFi5ciU+/PDD2u84AQA8PT1RWlqKkydPAgBu3ryJa9euwcfHp9r3lZSUYOLEiXj48CFWrFiB2bNnIzo6Gn/88Uet2nHw4EFMnToV1tbWWLNmDT788EP8+OOP+OijjwAA+vr66N+/Pw4cOKDwvoKCAvzyyy9i0VtaWor3338fv/zyC0JDQ7Fu3TpYWVkhKCgI165dq1XbXnZP+10it23bNty+fRvLli3DBx98gISEBHz11VcAgH79+mHq1KkAgNjYWOzcuRNr1qxReP/s2bPh6uqK9evXw9/fHyNHjsT58+eRmpqqELd37154eXnB2Ni4xm2vye8yX19fnDx5Uqk43b9/P/r27YumTZsCAD777DNERkZi+PDhiI6OxhtvvIHPP/8cO3bsqHF76huHs6lGCgsL0aVLF6Xl27ZtQ48ePTBv3jwMHToUCxYswODBg5GYmIjY2FgYGRkBqCzsjIyMsHHjRujo6AAAnJ2dMWDAAOzevRtjx45FWloaduzYgZkzZyr8Feft7a1SW+3s7CCVStGiRYtqh02aNm2Kvn37Yv/+/Xj33XfF5fv370fv3r3FHywrV65E165dsWbNGkgkEgCAtbU1/Pz8cPToUc7bUtHHH3+M6dOnY968eQAAMzMzeHp6YsKECTAzMwNQ+Ys6MjISkyZNEnuze/fuDW1tbSxbtgwBAQFo1qyZmHPs2LEYO3YsAMDJyQlHjx7FoUOHnlror1+/Hi1btsT69euhra0NoHJOVkBAAI4ePSr2bABA586d8dlnn6n/QLyi9PT0xOKsX79+2L9/P5ycnNC+fftq3/fdd9/hwYMHSEpKgrm5OYDK7/rgwYPF1zUlCAJWrFgBHx8fhc+2ZcuWmDx5MqZNm4bXXnsNvr6+mDZtGm7fvi1u46effkJZWRmGDBkCAEhISMDVq1exb98+cdpEnz59kJ6ejq+++gpffvmlSm172T3rdwlQ+TmsXLkSAODh4YHLly/j0KFDCAsLg4mJCTp06ACg8g9SExMTpVyjR4/G5MmTxdcVFRVo27Yt9u7dK/4heP36dVy6dElhtKwmavK7zNvbG59++ikOHz6Mt99+G8D/zftdvXo1AOCvv/7C1q1bsWjRIrFX+/XXX0dxcTHWrl2LUaNGNYp53A2/hdQg6OrqYs+ePUr/bG1tAVQWZEuXLsVPP/2EuXPnYsyYMejTp4/4/pMnT6J///7Q1NQU//I0NDSEnZ0dLl26BAD49ddfIQgC3nrrrRe2X76+vrhw4QLu3bsHAHjw4AF+//13+Pr6AgCKiopw7tw5DB48GOXl5WLbzc3N0aZNm1r3grzKrK2tsX//fkRHR2P8+PFo2rQpvvnmGwwbNgxXrlwBUNn7W1hYiMGDByv0Vsh/yN64cUMhp7u7u/j/+vr6aNu2LTIzM5/ahjNnzmDAgAFiASnPYWhoiLNnzyrEVtWLTc/Hz88PycnJKC4uRmJiovh9q05KSgpee+01hYKxY8eO6Ny5s0Lc4+fLk73Kcmlpabh79y6GDBmiEN+rVy9oaGiIP5P69OkDQ0NDhd5I+XzOFi1aAKj82WZtbQ1zc3Olc5U/H5Q963cJUFlMPc7Kyqra7/OTnvzOamho4M0338S+ffvEXs+9e/eiXbt2cHNzAwCFn+9P9ow+ria/y5o1a4bXX39d4bxJTEyEvr4+PD09AQCnTp0CAAwaNEjpvPnnn3/w999/13h/6xN7IqlGNDQ0YG9vX21M9+7d0bZtW9y9e1ehZw8AsrOzsXnz5iqvypP/Is/JyYGWlladXJ37NJ6entDT08OBAwcQGBiIpKQk6OjoYODAgQAq5zqVl5dj6dKlWLp0qdL7G8sXvaGRSqXo27ev2It7/PhxBAUFYe3atVizZg2ys7MBAG+88UaV73/yuMuHh+S0tbUVpkk8KS8vr8rzrHnz5sjNzVVaRurl7u4ObW1tfPnll7hz547Yq1edp12537x5c5SUlAConMc6YMAAcV27du3w888/K71Hfn598MEHVW5Lfn5JpVIMGjQIiYmJ+OCDD5CdnY1Tp04p3CYsOzsbly9frrJ3TVNT85n79aqpye+SJ++g8azv85PkBf7j3nrrLXz11Vc4evQoPDw8EB8fj3feeUfs7fPy8sLdu3fF+OTkZHFk5HE1+V0GVHZQhIeH459//kHLli1x4MABeHl5ib2X2dnZEAQBrq6uVe7D33//jXbt2tV4n+sLi0hSm8jISGRnZ8Pc3ByLFi3Cli1bxOFfIyMj9O3bF++8847S+5o0aQIAMDY2RllZGR49evTUX9xSqVRhQj4ApV/6qtDV1cXAgQORmJiIwMBAJCYmwtPTU7zVSNOmTSGRSBAUFCQWlo97fEiVaq9Pnz7o3LmzOI/x8WkQVV2hW9UPd1UYGRlVeWHUo0ePxG3Lyc9hUh9tbW0MGjQImzZtgpubW5W/9J/UqlUr/Pnnn0rLHz16BAMDAzFmz5494jqpVFplLvlUlQULFsDBwaHKbcn5+flhz549uHr1Ki5cuAANDQ0MGjRIXG9kZAQbGxtOeWjgWrdujT59+mDv3r0oLy9HdnY2RowYIa5ft26dQqH6tIv/avK7DAAGDBgAqVSKpKQkuLu748qVKwpD50ZGRpBIJNi+fbtC8SlnYWFRq/180VhEklqcO3cOcXFxWLhwIezs7DB69Ghs3rwZEyZMAFB5Fd2NGzdgZ2f31L/OXV1dIZFIsHfvXoX5LI9r3bo1MjMz8e+//4pfWPkE/cdpa2uLvRPP4ufnh8mTJ+P48eO4cOECAgMDxXX6+vpwdHREamrqM/96ppp5+PChUtFQXFyMv//+W5xT5uTkBD09PWRmZsLLy0vtbejevTuSk5MRHh4OLa3KH4MnT55EXl4eunfvrvbtkbKRI0fi0aNH4pyxZ7G3t8cPP/yA9PR0dOzYEQCQnp6Oq1evinPppFJpjb6nlpaWaN26NTIyMsS5tE/Tq1cvsSfpwoUL8PDwUOj5fv3113H06FG0atUKpqamNdoXej7yokuV3kmg8pybMWMGsrKy4ObmptDTZ2NjU6McNfldBgAGBgbo168fDhw4gNzcXJiYmCgM08uH0XNychTmYDc2LCKpRioqKnDhwgWl5c2bN0fz5s0xZ84cuLu7ixOEp0yZgi+++AJ9+vSBlZUVQkJC8NZbbyEgIABvv/02WrRogYcPH+J///sfevToAT8/P1hYWGD06NH48ssvkZubCzc3NxQXF+OXX35BcHAwTE1NMWjQIERGRiIiIgJvv/02bty4odDzIGdpaYlff/0VJ0+ehKGhIczMzJ7aa/j666/D2NgYERERMDQ0hIeHh8L6//znP3jvvfcQGhoKX19fGBoaIjMzE6dOncKIESMU7ndHzzZ06FB4enrC3d0drVq1wv3797F161ZkZ2fjvffeA1A5nBUSEoL//ve/yMzMRK9evaCpqYmMjAwkJycjKirquW4yPGXKFIwePRpBQUEYN24cHj58iJUrV8LBwYEXSr0gDg4O4hW3NTFixAisW7cOQUFBmDFjBoDK0Y+a9GI+SSKRIDw8HGFhYSgsLES/fv2gp6eHe/fu4ejRo5g5c6bYE6SpqYnBgwfj+++/x6NHj/DFF18o5Bo+fDi+/fZbjB8/HhMnToS5uTny8/Nx+fJlyGQyzJ49W+X2vcyq+13yrIur5KysrABUXowzcOBA6Orq1qgI7NevH5o1a4bz588rfY41VZPfZXJ+fn6YPn067t69i8GDB4t/sAKVPY1jx47Ff/7z/9q796Aoq/8P4G9cUEOKizBYwSLELAiLFgSJgFMMg7LgpR2FMtCSNEDRwBKVwMvUSJOa3DEawbLLhre0VoVMsyncnKa0cdTSZhWcRGS5CWjknt8fDc+07qqs6Zdf+H7N7B/POec55zwPA3zm3HYpUlNTMW7cOPT29kKv10On01n1uzGQGERSv1y9etXkXLQ+M2bMgEwmQ0dHh8l0Tnp6Og4dOoSlS5dCo9HAy8sLNTU12LhxI1avXo3u7m64ubkhNDTU5Jc/Pz8fHh4eqKmpwZYtW+Dk5ITQ0FBp1NHX1xcFBQUoKytDRkYGQkJCsG7dOkybNs2kX9nZ2Vi1ahUyMzPR1dWFtWvXmkxd/JOdnZ10HNCMGTPMpsCCg4Px8ccfo7i4GMuXL0dvby9GjRqF8ePHSyMi1H8LFy7EwYMHUVBQAIPBAGdnZ/j5+aG6utpkfdDcuXPh7u6OqqoqbN26Fba2tpDL5Xj66actTv9YQ6lUYvPmzdiwYQMyMzOl41xycnK4ju3/qeHDh2Pz5s1YtWoVXn/9dbi7uyMjIwMHDhyQzt2zRlxcHB566CFUVFRgz549AP5eQxkVFWUWmCYkJODDDz802RjRZ+jQofjggw9QXFyMiooKNDc3w8nJCQEBARanPO93t/pf0t8lAQEBAcjMzERNTQ3ef/99PPzwwxbXvt7I1tYW0dHR2Ldv3x3PcPT3fxkA6Tif5uZmi5vH3njjDXh7e0Oj0aC0tBQjRoyAt7e3dLzcf4GNEEIMdCeIiIiI7iWj0YiYmBg888wzyMvLG+juDAociSQiIqJB688//8SpU6ewf/9+XLx48bbrYKn/GEQSERHRoHXp0iXMnDkTLi4uyMvLg4+Pz0B3adDgdDYRERERWY3fWENEREREVmMQSURERERWYxBJRERERFZjEElEREREVmMQSUQ0wIqLi/v9tWt0ZxobG+Hn54cdO3YMdFeIBg0GkUT0n7djxw74+fnd9GPpa9bo7usLhg0Gw0B3hYj+B3hOJBENGosWLYKHh4dZulwuH4De9F96ejrmz58/0N0gIrIKg0giGjQmTpyIoKCgge5Gv3V3d8Pe3h62trawteWfYyL6b+F0NhHdN4qKiuDv74/6+nqT9Ly8PCiVSpw6dQoAoNPp4OfnB61Wiw0bNiAiIgKPP/440tLS8Mcff5jVe+zYMaSmpiIkJATjxo1DcnIyfvzxR5MyfVO9Z86cwZIlSxAaGopZs2aZ5N3o888/h1qtxtixYxEWFoasrCyz9lNSUpCQkIAzZ84gJSUF48aNQ1RUFCorK83qu3btGoqLizFp0iQEBQUhMjISCxcuxPnz56UyRqMR1dXViI+PR1BQECZMmID8/Hy0t7f38y3f3tmzZ7Fo0SKEhYUhKCgIarUaBw4ckPJ/+eUX+Pn5YefOnWb3fvvtt/Dz88PBgweltKamJixfvhwTJkyAUqlEfHw8tm3bdtf6S0SWMYgkokHjypUrMBgMJp/W1lYpPz09HWPGjEFubi6uXLkC4O+g5LPPPkNGRgb8/f1N6isvL8ehQ4cwb948pKSk4Pvvv8eLL76Iq1evSmXq6+vxwgsvoKurCwsXLkRWVhY6OjowZ84cHD9+3KyPixcvRk9PD7KysjBz5sybPkt5eTlycnLg5eWFZcuWYfbs2VJbHR0dJmXb29vx8ssvw9/fHzk5OfDx8cG6devwzTffSGWuX7+OV155BSUlJQgMDJTq7OzsxK+//iqVy8/PxzvvvIPg4GDk5uZCrVZjz549SE1NRW9vbz9/Ejf322+/ISkpCWfPnsW8efOwbNky2NvbY8GCBairqwMABAUFwdPTE3v37jW7X6vVwtHREZGRkQCAy5cvIzExUXo3ubm5kMvlyM3NRXV19b/uLxHdgiAi+o/bvn27UCgUFj9KpdKk7OnTp0VgYKDIzc0V7e3tIioqSqjVatHb2yuVOXLkiFAoFCIqKkp0dnZK6VqtVigUCrFlyxYhhBBGo1HExsaKuXPnCqPRKJXr6ekR0dHR4qWXXpLSioqKhEKhENnZ2Wb978vr09jYKMaMGSPKy8vN+h4QEGCSnpycLBQKhdi5c6eUdu3aNRERESEyMzOltG3btgmFQiGqqqrM2u/r+9GjR4VCoRC7d+82yT98+LDF9Js9R0tLy03LzJkzRyQkJIhr166ZtJ+UlCRiY2OltPXr14vAwEDR1tZm8lxPPvmkWL58uZS2YsUKERERIQwGg0k7WVlZIiQkRPT09AghhGhoaBAKhUJs3779ls9ARP3HkUgiGjTy8/NRVVVl8rlxWlehUGDRokWoqalBamoqWltb8fbbb1tckzh9+nQ4ODhI15MnT4abm5s0wnfy5Eno9XpMmTIFra2t0uhnd3c3wsPDcfToURiNRpM6n3vuuds+R11dHYxGI+Li4kxGVV1dXeHl5QWdTmdS3t7eHtOmTZOuhw4diqCgIDQ0NEhptbW1cHZ2RnJysll7NjY2AIB9+/bhwQcfREREhEm7gYGBsLe3N2vXWm1tbThy5Aji4uJMRo1bW1sRGRkJvV6PpqYmAIBKpUJvby9qa2ul+7/77jt0dHRApVIBAIQQqK2tRXR0NIQQJn2OjIxEZ2cnTpw48a/6TEQ3x5XcRDRojB07tl8ba1JTU/Hll1/i+PHjyM7Ohq+vr8VyXl5eJtc2Njbw8vLChQsXAAB6vR4AkJOTc9O2Ojs74ejoKF1b2j1+I71eDyEEYmNjLebfGPCOGjVKCgT7ODo64vTp09L1+fPn4e3tfcsNPOfOnUNnZyfCw8Mt5re0tNy277dy/vx5CCFQWFiIwsLCm7bh7u4Of39/+Pj4YO/evdK0v1arhbOzM8aPHw8AMBgM6OjogEajgUajsVgfjxsiuncYRBLRfaehoQHnzp0DAJP1gNYSQgAAli5dijFjxlgsY29vb3I9bNiw29ZrNBphY2ODyspKyGSy29ZpqcydMBqNGDlyJNatW2cx38XF5V/XDwBz585FVFSUxTL/PI5JpVKhoqICBoMBDg4O+PrrrxEfHy8Fwn31TZ06Fc8++6zF+niIO9G9wyCSiO4rRqMRy5Ytg4ODA+bMmYOKigpMmjTJ4qhfX6DZRwiBc+fOSYGJp6cnAMDBwQETJky4a32Uy+UQQsDDwwPe3t53rc5jx46ht7cXdnZ2Ny1TX1+P4OBgDB8+/K60+09978vOzq5f70ulUqGkpAS1tbVwdXXFlStXEB8fL+W7uLhgxIgRMBqNd/X9E1H/cE0kEd1Xqqqq8NNPP2HNmjVYvHgxnnjiCaxatcritOeuXbukXdzA32sGm5ubMXHiRACAUqmEXC7H5s2b0dXVZXb/nU6lxsbGQiaToaSkRBrt7COEMNlxbk2dra2t+Oijj8zy+tqIi4vD9evXUVZWZlbmr7/+MtsVbq2RI0ciLCwMGo0Gly5dMsu/8X099thjUCgU0Gq10Gq1cHNzQ2hoqJQvk8kwadIk7N+/3+KIMqeyie4tjkQS0aBx+PBh/P7772bpwcHB8PT0xNmzZ1FYWAi1Wo3o6GgAQEFBAaZPn47Vq1ebrdNzdHTErFmzoFar0dLSgi1btsDLywuJiYkAgCFDhuDNN9/EvHnzkJCQALVaDXd3dzQ1NUGn08HBwQEVFRVWP4dcLserr76K9evX48KFC4iJicGIESPQ2NiIr776ComJiUhNTbWqzunTp2PXrl1Yu3Ytjh8/jpCQEPT09KC+vh7PP/88YmJiEBYWhqSkJGzatAknT55EREQE7OzsoNfrsW/fPuTm5mLy5Mm3bau6utpsJHPIkCFIS0vDypUrMWvWLEyZMgWJiYnw9PTE5cuX8fPPP+PixYvYvXu3yX0qlQpFRUUYNmwYZsyYgSFDTMc+lixZAp1Oh8TERMycORO+vr5ob2/HiRMnUF9fjx9++MGq90RE/ccgkogGjaKiIovpa9euxSOPPIKcnBw4OztjxYoVUt7o0aORnZ2Nt956C1qtVtr5CwBpaWk4ffo03nvvPXR1dSE8PBwrV67EAw88IJV56qmnoNFoUFZWhq1bt6K7uxtubm4YO3YskpKS7vhZ5s+fj9GjR6O6uhqlpaUA/t5AExERIQXA1pDJZKisrER5eTm++OIL1NbWwsnJCcHBwSbrBtesWQOlUolPP/0U7777LmQyGR599FFMnToVwcHB/Wpr06ZNFttPS0uDr68vtm/fjpKSEuzcuRNtbW1wcXFBQEAAFixYYHafSqXCxo0b0dPTg7i4OLN8V1dX1NTUoLS0FHV1dfjkk0/g5OQEX19fvPbaa1a8ISKylo24ca6EiOg+p9PpMHv2bBQWFvZr5I2I6H7ENZFEREREZDUGkURERERkNQaRRERERGQ1rokkIiIiIqtxJJKIiIiIrMYgkoiIiIisxiCSiIiIiKzGIJKIiIiIrMYgkoiIiIisxiCSiIiIiKzGIJKIiIiIrMYgkoiIiIisxiCSiIiIiKz2fxKyxFSvdrFmAAAAAElFTkSuQmCC\n"},"metadata":{}}]},{"cell_type":"code","source":[],"metadata":{"id":"wiqFJgPEc4cp","executionInfo":{"status":"ok","timestamp":1715124901741,"user_tz":300,"elapsed":3,"user":{"displayName":"Jenny O","userId":"07622373657144372939"}}},"execution_count":null,"outputs":[]},{"cell_type":"code","source":["\n"],"metadata":{"id":"bbWoYtxV4Sps","executionInfo":{"status":"ok","timestamp":1715124909584,"user_tz":300,"elapsed":402,"user":{"displayName":"Jenny O","userId":"07622373657144372939"}}},"execution_count":null,"outputs":[]},{"cell_type":"code","source":[],"metadata":{"id":"Xgs7Hb3XzK67"},"execution_count":null,"outputs":[]},{"cell_type":"code","source":[],"metadata":{"id":"C0VoQucxTYUJ","executionInfo":{"status":"ok","timestamp":1715124923919,"user_tz":300,"elapsed":238,"user":{"displayName":"Jenny O","userId":"07622373657144372939"}}},"execution_count":null,"outputs":[]},{"cell_type":"code","source":["fig=plt.figure(figsize=(15,15))\n","h=sns.FacetGrid(data=df_u,col='work_year',row='experience_level',\n"," palette='viridis',margin_titles=True)\n","h.map(sns.histplot,'salary','job_category')\n","h.set_titles(col_template=\"{col_name}\",row_template=\"{row_name}\")\n","h.set_axis_labels('Salary','Category')\n","h.fig.suptitle(\"Salary Information by Year, Category and Experience Level\")\n","h.fig.subplots_adjust(top=.9)\n","plt.savefig('/content/YearSalaryCategoryExperience')\n"],"metadata":{"colab":{"base_uri":"https://localhost:8080/","height":715},"id":"wRjvXeqCzDi5","executionInfo":{"status":"ok","timestamp":1714701743902,"user_tz":300,"elapsed":15913,"user":{"displayName":"Jenny O","userId":"07622373657144372939"}},"outputId":"86c7fa9a-f037-4380-975e-1d805e0e43bc"},"execution_count":null,"outputs":[{"output_type":"display_data","data":{"text/plain":["
"]},"metadata":{}},{"output_type":"display_data","data":{"text/plain":["
"],"image/png":"iVBORw0KGgoAAAANSUhEUgAABcoAAASaCAYAAABt818OAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOzdeVyN6f8/8FclRCUpZS/RCaWNVklCdrJvGWOJsY5lqLGN3dgpM3ayp7HHh7EvDZmxZV8iFCWRStrP7w+/c74d57ScozrpvJ6PxzzGue/ruu7rus593Yf3uc/7VhMKhUIQEREREREREREREakodWV3gIiIiIiIiIiIiIhImRgoJyIiIiIiIiIiIiKVxkA5EREREREREREREak0BsqJiIiIiIiIiIiISKUxUE5EREREREREREREKo2BciIiIiIiIiIiIiJSaQyUExEREREREREREZFKY6CciIiIiIiIiIiIiFQaA+VEREREREREREREpNIYKCciIioGAoEAPj4+yu6G0ty5cwc//vgjHB0dIRAI0K1bN2V3SSkCAgIgEAgQHh6u7K6I+fn5QSAQIDo6WtldISqTSuO6Lw147fm+tG7dGq1bt1Z2N4iIiEoUA+VERKRysrOzsW/fPgwaNAgODg5o0qQJnJ2d0aVLF0yfPh1nzpxRdhdL3IEDByAQCODn5/fNbaWkpGDkyJGIiIhAp06dMHbsWPTr168Ieln6iObtwIEDyu5KqXb37l1YWlrCw8MDSUlJeZYbPXo0BAIBduzYUYK9K3qRkZGYN28eOnfuDHt7e1haWqJFixbw9fVFSEgIMjIyvql9Hx8fCASCIuotKZsosJ7ff6r8xev3Kjo6GgKBgMFmIiKi70g5ZXeAiIioJGVnZ2PkyJG4dOkSdHV14e7uDmNjY2RmZuLp06cIDQ3Fs2fP4OnpqeyufrciIiKQkJCAiRMnYtSoUcrujlINHDgQHTt2RM2aNZXdFaWytLTE2LFjsXLlSsyZMwfLly+XKhMSEoIzZ86gRYsWGDRokBJ6WTQCAwOxdu1a5OTkwNbWFt7e3qhUqRLevXuHa9euYcaMGdizZw+/XCEpDg4OcHBwkLmvVq1aJdybojdp0iSMGDECRkZGyu4KERERkUwMlBMRkUoJDQ3FpUuXYGFhgZ07d0JHR0di/+fPn3H79m0l9a5sePv2LQCgevXqSu6J8unr60NfX1/Z3SgVfH19cfHiRYSGhqJVq1bo0qWLeN/Lly+xcOFC6OnpYdGiRVBTU1NiTxW3bt06BAQEoEaNGli9ejWsra2lypw7dw5btmxRQu+otHNwcMC4ceOU3Y1iU716dX4uEBERUanG1CtERKRSbt68CQDw9vaWCpIDgJaWFpycnCS2JScnY9OmTRg8eDBatmwJS0tLODk5YdSoUeL2CiMuLg6BgYHo168fXF1dxekYJk+ejKdPn0qVF/1s28/PD8+fP8fPP/8MZ2dnWFhYIDw8HH379oWFhUWe+V63bNkCgUCAzZs3F7qPX8uda/fEiRPo1asXrK2t4eDggIkTJyIuLk6qv9OmTQMA+Pv7i9MG5L579u3bt5gzZw5at24tnsuxY8fi7t27UsfPndrk4sWL8PHxgb29vTjtRO79YWFhGDBgAGxtbeHk5AR/f39xmo/79+9j5MiRaN68OWxtbTFq1CiZ83b37l3Mnz8fXbt2hYODA6ysrNCuXTssXrwYHz9+lCjr4+MDf39/qbHmzsGbX67iK1euYNiwYXBwcIClpSW8vLywbNkyJCcnS5UVpdrIysrCunXr0K5dO1haWsLd3R1Lly5VKJWHUCjE1q1b0b59e1hZWaFly5ZYuHAhUlJSxGWys7Ph7u4OOzs7fPr0SWY78+bNg0AgwIkTJ/I9nrq6OpYsWQJtbW3MnTsXb968ER9j6tSpSE1Nxfz588WBtMjISPj5+cHd3R2WlpZwcXHB5MmT8ezZM6m2nz9/jmXLlqFHjx5wcnISp3mZOXMmYmNjpcqHh4dDIBAgICAAERER8PX1hYODwzflT46OjkZgYCA0NTWxYcMGmUFyAPDw8JBakwcOHMC4cePg6emJpk2bws7ODv369cPhw4eljiEQCHDt2jUAyDc1R2xsLObOnQtPT09YWlrC0dERo0aNQkREhMx+vX37Fv7+/nB2dkbTpk3RrVs3HDx4UGKuvhYVFYWpU6fCzc1NfD2bOnUqoqKipMrmXgtHjx5F7969YWtri9atWyMyMrLA9CJdunRBkyZNxF/E5efq1auYOXMmOnbsCDs7OzRt2hSdO3dGYGAg0tPT8+1bQde53O7evYthw4bB1tYWdnZ2GDJkiFyfCYqaP38+BAIBFi1aJLUvJCQEAoEAP/74I3JycgBIfpZERkZi9OjRcHBwgI2NDfr374/Lly/neazQ0FD4+PigWbNmsLKyQocOHfDHH3/IvOaI3sP4+HhMnz4dbm5uaNSokfj6n1+O8tu3b2P8+PHiz0Z3d3fMmjVL5twrej2MjIyEv7+/+LPH2dkZAwYMwO7du2WWLez1p6hkZWVh165d6NOnD+zs7GBtbY3u3btj586d4vcSAG7dugWBQIAxY8bk2VaHDh1gaWmJxMREie2XLl3CiBEj4OjoCEtLS7Rp0wa///57vimxiIiIVAnvKCciIpWip6cHADIDOXmJjIzEqlWr0KxZM7Rq1Qq6urp48+YNzp49i0uXLuHPP/9Ey5YtC2znv//+w8aNG+Ho6Ih27dqhUqVKePHiBU6ePImzZ89iz549sLCwkKr38uVL9OnTByYmJujSpQvS0tKgra2N/v3749atWwgJCcHEiROl6gUHB6N8+fLw9vYu9Fjzsnv3bpw9exatW7dG8+bNERERgePHj+Phw4c4fPgwypcvD11dXYwdOxYPHjzAmTNn4OnpiUaNGgGA+P+vXr3CgAED8PbtWzg5OaFTp0548+YNTpw4gfPnzyMgIAAeHh5Sxz958iQuXbqEli1bol+/fnj9+rXE/rNnz+L8+fNo1aoV+vXrh5s3b+LAgQOIjo7G5MmTMWTIENjb26NXr154/Pgxzp07h+joaBw5cgTq6v9338C+fftw+vRpNG/eHC4uLsjJycG9e/ewdetWXLx4Efv27YO2tjaA//uy5euxAoCurm6+87l371789ttv0NLSQvv27VGtWjVcu3YNGzduxLlz57Bnzx6ZbUyePBnXr1+Hm5sb3N3dcfHiRWzatAnv37+XGTTLz8KFC/Hff/+hQ4cO0NHRweXLlxEUFIT//vsPe/bsQYUKFaChoYHevXsjICAAx44dQ58+fSTaSEtLw5EjR2BoaFiodEW1a9fGzJkzMW3aNEydOhVBQUFYt24dbt68iZ49e6Jt27YAgIsXL2LcuHHIysqCh4cH6tati7i4OPz99984f/48tm/fjiZNmojbPXXqFPbu3QtHR0fY2dlBU1MTT548QUhICM6dO4f9+/fLTPdw69YtrF+/Hvb29ujZsyc+fPgATU1NueZR5MCBA8jMzESnTp1gbm6eb9ny5ctLvP7tt9/QoEEDNG/eHIaGhkhMTMSFCxcwdepU8ZdkAMRr7ODBg4iJicHYsWPFbeROzXHv3j0MHToUHz9+RIsWLdCuXTt8+PABp0+fxoABA7B27Vq4u7uLyyckJKBfv36IiYkRf5n07t07zJkzB66urjLHEBERgR9//BGfPn1C69at0aBBAzx79gxHjhzBmTNnsHXrVjRt2lSq3tatWxEWFgYPDw84OjoiOTkZZmZmcHR0RHh4OJ4/fw5TU1OJOjdu3MDjx4/h5eVVqDuSN27ciOfPn8PW1hbu7u7IyMjAjRs3EBAQgPDwcGzbtg0aGhpS9Qpzncvdpx9//BGZmZlo27Yt6tWrhwcPHsDHx0fqy9aiNnXqVNy4cQNBQUFwdnZGq1atAABPnjzBggULYGhoiKVLl0pc24AvAfN+/frB3Nwcffv2RXx8PI4fP44RI0Zg+fLl6Nixo0R5f39/HDhwAMbGxmjXrh10dXVx69YtrF69GleuXMHWrVtRrpzkPycTExPRt29fVKpUCe3atYOamhqqVauW73j++usvzJo1C+XLl0fr1q1hbGyMFy9eICQkBGfPnsW+fftkpq+S53p4/vx5TJgwARkZGXBzc0OnTp2QlJSER48eYdOmTRgwYIC4rLzXn6KQmZmJUaNG4fLlyzA1NUXnzp1RoUIFhIeHY968ebh9+zaWLl0KALCxsYGpqSkuXLiADx8+oGrVqhJtRURE4NmzZ/Dy8hL/nQf4khYqICAAenp6aNWqFfT19fH48WNs2bIFFy9eRHBwsPjzjYiISGUJiYiIVMi9e/eETZo0EQoEAuGUKVOEJ0+eFEZHR+dbJykpSZiQkCC1/c2bN0JXV1dh+/btpfaZm5sLBw0aJLHt3bt3wuTkZKmyDx48ENrY2AiHDRsmsf3Vq1dCc3Nzobm5uXD58uVS9dLS0oQODg5CV1dXYWZmpsS+q1evCs3NzYWTJk3Kd2wi+/fvF5qbmwunTZsmsX3NmjVCc3Nzoa2trfDhw4cS+yZNmiQ0NzcXHjt2TGZb+/fvlzrO0KFDhebm5sI//vhDYvv169eFjRo1Ejo4OAhTUlKk2hIIBMILFy7k2e9GjRoJw8PDxduzs7OFQ4YMEZqbmwubN28uPHz4sEQ9f39/obm5ufDUqVMS26Ojo4VZWVlSx9m3b5/Q3NxcuH79+kKPVSj8v/m7evWqxDGaNGkitLW1FT59+lSi/OzZs4Xm5ubCGTNmSGwfNGiQ0NzcXOjt7S388OGDePunT5+Ebdq0EVpYWAjfvn0rsw9fmzZtmtDc3Fzo4OAgce5nZ2cLx44dKzQ3NxcGBgaKt8fFxQkbN24s9Pb2lmpLNP4VK1YU6tgi48ePF5qbmwv9/PyETZo0EbZp00b8vicmJgqbNWsmdHBwED558kSi3qNHj4Q2NjbC7t27S2yPjY0VpqenSx3n0qVLQgsLC+GsWbMktovWh7m5uXDPnj1y9T0vgwcPFpqbmwv37dsnd90XL15IbUtPTxcOHjxY2LhxY2FsbKzEPtH5IEtmZqawTZs2QktLS4k1IRR+macWLVoIXV1dJeZLtB6WLFkiUf7BgwfCJk2aCM3NzYVr1qwRb8/JyRG2b99eaG5uLrW2jh07JjQ3Nxd6eXkJs7OzxdtFa8Ha2lp47949qX7/73//E5qbmwsXL14stU90zl6+fFnmmL/28uVLYU5OjtT2lStXyrxmyXudy8nJEXp5ecm8hmzbtk18buVe9/kRHX/QoEHCNWvWyPzv5s2bEnWioqKEtra2QkdHR2FsbKwwNTVV2KlTJ6GFhYXwn3/+kSib+7Pk6/mNiIgQNm7cWNisWTOJzyfR2h4zZozw8+fPMvu7bds2ie2iY/zyyy9Sn0lC4f+9j69evRJve/bsmfga8PV5/s8//wgtLCyEo0ePltgu7/UwISFBaGdnJ2zSpInUmhAKv3yWiyhy/cmLaN49PDwKLCua07lz50p8BmVlZcn8vFq3bp3Q3NxcuGPHDqm2fvvtN6G5ubnwzJkz4m1XrlwRmpubC/v27Sv8+PGjRHnRe71gwQKJ7R4eHoXqOxERUVnC1CtERKRSGjdujCVLlsDAwABHjhzBuHHj0Lp1azg6OmLMmDE4e/asVB0dHR2ZeaaNjY3Rvn17PHv2TOoOZ1mqVasm824tCwsL8d2UmZmZUvsNDAwk7hwVqVChAnr06IH4+HicOXNGYl9wcDAAoF+/fgX2qzBEP3XPrXfv3gCAO3fuFKqN2NhYXL58GTVr1sTw4cMl9tnZ2aFTp05ITEzEqVOnpOp6enrme9d+p06dJB6Cp66ujm7dugEAGjZsiK5du0qU7969OwDg4cOHEttr1aol807TXr16QVtbO98UBYV15MgRZGZmYtCgQTAzM5PYN3HiRFSuXBmHDx+WmT5gypQpEncIVqpUCV26dEFOTo7M1DX5GTx4sMRdyOrq6pg6dSrU1dWxf/9+8fbq1avD09MT9+7dkzpGcHAw1NXVxedCYc2dOxdGRkY4cOAAcnJysHTpUlSuXBkAcOjQISQlJWH8+PFo0KCBRD1zc3P07t0b9+/fl0hXZGRkJHWXNgC0aNECDRo0yPN9a9SoUZGtkfj4eHFf5FW3bl2pbeXLl8fAgQORlZWFK1euFLqt8+fP4+XLlxg0aJDUgyGNjIwwfPhwxMfHi9vMyMjAsWPHoKOjg59++kmivIWFhXit5Hbjxg08e/YMtra2UmurY8eOsLe3x/Pnz3H9+nWpun369EHjxo2ltrdp0waGhoY4cOCAxLmflJSE//3vf6hbty5cXFwKNQd16tSRmed+yJAhAL6kn5ClsNe5Gzdu4Pnz52jevDnatGkjUX7QoEEy38/CuHbtGgIDA2X+d+vWLYmy9erVw7x58/DhwwdMnjwZc+fOxZMnT+Dr6wtnZ2eZ7evo6Eil67CyskKXLl2QlJQkce3dvn07ypUrh4ULF6JixYoSdUaPHg09PT0cPXpU6hiampqYNm2a1J3medmzZw8yMzMxffp0qbXj7OyM1q1b49y5cxIpoUQKez08dOgQUlJS0K9fP5kPSzU2NpYoK+/151vl5ORg586dMDQ0hL+/v8RnkIaGBvz8/KCmpiYx3926dYO6ujoOHjwo0VZGRgaOHz+OatWqSXxm7tixA8CXVFlf/1qpR48eaNSokcz3k4iISNUw9QoREamcjh07om3btggPD8f169fx4MEDXL9+HadPn8bp06fRvXt3LF68WCLQcv36dWzfvh23bt1CQkKCVEA7Li5O5k/Dv3b+/Hns3bsXd+/exYcPH5CVlSWx/8OHD1KpBSwsLGQGAQFgwIAB2Lp1K4KDg+Hl5QUAeP/+PU6dOgUzMzM0b968UHNSECsrK6ltNWrUAACp3N15uX//PgDA3t5eZnoLJycnHDlyBPfv35cKzslK4ZCbpaWl1DbRPMr6ibwoIPN1/urMzEwEBwfj2LFjiIyMRHJyskRu2LxyFctDNA+y0jNUqVIFjRs3xr///otnz55JpeKRNU553wcRWQGjOnXqoEaNGoiJiUFSUpI4oDJgwACcPHkSwcHB4j48evQIt27dQsuWLVG7dm25jl2lShWMGjUKc+bMQbt27WBjYyPeJwoIPnz4MM+82MCXlEiiQJZQKMSRI0dw8OBBPHz4EElJScjOzhbXySudSkHnVUl5/fo1Nm7ciCtXruDNmzdIS0uT2C/PeSeav9evXxc4f+7u7nj+/DnS0tJgaWkp84s8e3t7hISESGwTncOOjo4y++Dk5ITr16/j/v37UtegvOa8XLly6NOnD9auXYuTJ0+KH/Z6+PBhpKWloU+fPoV+yGtqaiq2b9+OU6dOISoqCp8+fYJQKBTvzyvPeWGvc6Lxy7q+amhowN7eHi9fvixUX3MbO3asXA/z7NSpE65cuYKQkBD8+++/sLe3x/jx4/Ms37hxY5nvsYODAw4ePIj79+/D29sbnz9/xsOHD1G1alUEBQXJbKt8+fKIjIyU2l6rVq0CU63kJjpfr127JvNL14SEBGRnZyMqKkrq+lfY66HoGIVJkabI9edbPX/+HImJiTAxMcGff/4ps0zFihUl8qMbGxvD2dkZYWFhePr0qbgv586dQ2JiIoYMGSLxZcWtW7egqamJEydOyHyeRGZmJt6/fy8zlQsREZEqYaCciIhUkqamJlq0aIEWLVoA+PJAwZMnT2L69Ok4dOgQ2rZtK75T8NSpUxg/fjwqVKgAFxcX1K1bF1paWlBXV8e1a9dw7dq1Qj1MMSgoCAsXLkSVKlXg4uKCGjVqQEtLC2pqajh9+jQePnwosx0DA4M826xTpw5atGiBy5cv4+XLl6hbty4OHTqEjIwM9O3bV8HZkSbrwaeiu95yB5LzI3pIpaGhocz9ou2yHmaZ3xwU1L/89n39RcXEiRNx6tQp1KlTB56enjAwMBB/SREUFCTzjn95FXYeZD1cTVbecnnfB5G8glkGBgaIiYlBcnKy+HhOTk4wMzNDaGgopk2bBm1tbezbtw8AFD7PRHepfn23qujhc6L285Kamir+86JFixAUFARDQ0O0aNECRkZG4nZF+bxlKei8koehoSEiIyPl/jLl1atX6NWrF5KSktCsWTO0aNEC2tra0NDQQExMDA4ePCjXw1pF81fQw1VF8yc6H/M6H2RtF9XJK1+4omu5b9++WLduHYKDg8WB8n379kFTUxM9e/bMs15umZmZ+OGHHxAREQFzc3N07NgR+vr64qBhYGBgnvNZ2OucaFx5jaUoz6uCeHl5ib/IGDRokMxfxIgU1F/RXdtJSUkQCoV4//49AgMD5epPXte1vIjO14IeOp17vYsU9nooer8K82sPRa4/30p0zKioqHzn++sHKnt7eyMsLAwHDx7EL7/8AgDiO8y/fjZJYmIisrKyCnw/U1NTGSgnIiKVxkA5ERERvvzjumPHjnj8+DH+/PNPXL16VRwoX716NTQ1NbF//36pVBmzZs3CtWvXCmxf9A9UUWqBrwNMX/+sPreC7qLs378/Ll26hH379mHKlCkIDg5GhQoVZKZMUCZREOrdu3cy94tSV8i647Gwd5J+izt37uDUqVNwcXHBxo0bJe7Gy8nJwaZNm4rkOLnnoWHDhlL7RfMgK2hXlBISElC/fn2p7aL35+vj9+vXDwsWLMDRo0fh7e2NI0eOwMjISObDV7+F6LiHDx+W+XDbryUkJGDHjh0wNzfHnj17pM6f0NDQPOsW5Xllb2+Pq1ev4urVq3Klotm6dSsSExOxaNEi9OjRQ2JfaGioVGqFgojm748//ijUA1ZF85WQkCBzv6ztomOIztWvKbqWjYyM0Lp1a5w6dQqRkZH4+PEjHj9+LA52F8aZM2cQERGBHj16SD3Q8e3bt3IHfmUp6FqW1/ai9v79e0yfPh1aWloAvnxh5OTklOdcFdRf0fsl+n/jxo3lPv/kXVOiY12/fr3YHiQper/i4uKkUuvkVbaw15+iIDpm27Zt5To/27ZtC21tbRw5cgSTJk1CYmIiLl26BAsLC6m+a2trQygUFurvK0RERKqMOcqJiIhyEeVJzv0z/RcvXqBBgwZSQfKcnByZOXhl+fDhA5KSkmBraysVJP/06RPu3buncJ89PDxQs2ZNHDhwAJcvX0ZUVBQ6dOiAKlWqKNxmcRDlJb5+/brUndwAEB4eDkB2qpSSIEqV0Lp1a6n8uhEREVLpMIAveb0BSKT5KEijRo0A/N94c0tKSsKDBw9QoUIFqfOtqMkKmLx69Qpv3rxBrVq1pO7W9Pb2hpaWFvbt24fjx48jKSkJvXr1yvcOVkVYW1sDQKHX1qtXr5CTkwNXV1epQFtsbCyio6OLtH956dGjBzQ1NXHy5MkC8xfnvqP5xYsXAIB27dpJlcsrqJXfeSeav//++69Q/a5fvz4qVqyIR48eycwDLet9EJ3DefXvW9bygAEDAHzJf6/IrxZE67ht27ZS+/7991+5+yOL6Fomq73s7OxCn7vfQigUws/PD3FxcZg+fTqmT5+Ot2/fYurUqRKfX7ndv39f5nsseh9F46pcuTIaNmyIJ0+eiO92Li6itEuFPV+/5RgXL14ssKy815+iUL9+fejq6uLWrVty/WqpYsWK6NChA96+fYt//vkHR48eRVZWltTd5MCXOfj48SOePHlSlF0nIiIqcxgoJyIilRIaGoqwsDCZaSri4+PFP2Fv1qyZeHutWrUQFRUlkVJBKBQiICCg0A/0qlatGrS0tHDv3j2Jn09nZmZiwYIF+PDhg6JDgrq6Ovr06YOEhAT8+uuvAIruIZ5FydjYGK6uroiJiZHKe3v79m2EhoaiSpUqUg/HKymiB1t+HfxLSEjA3LlzZdYR/UT9zZs3hT5O165doampiZ07d4qDpCKrV69GSkoKunbtmmde+qKyfft2iZQkOTk5WLJkCXJycqTubAa+3PXYuXNn3L9/H6tWrYKGhgb69OlT5P3q0aMHdHV1ERgYiIiICKn9OTk5El8yiN6369evSwSOP336hBkzZsj8UqYwDhw4AIFAAD8/v0KVr127NsaOHYvMzEz4+vrm+ZDbixcvSjzMNq/z7tKlS/jrr79ktiF6gKGshwh7enqibt262L17Ny5cuCCz/s2bN/H582cAX3JNd+zYEcnJyVL5kR8+fIhDhw5J1be3t4epqSmuX78uleLlxIkT+O+//2BiYgJ7e3uZx8+Ps7MzTExMcOjQIfzvf/+DqampzHz+eclrPl+9eoVly5bJ3R9Z7OzsYGpqin///RenT5+W2Ldz506F8pPLa+vWrbhw4QI6duyI3r17o3fv3ujYsSMuXbqU569fkpOTsXbtWoltd+7cwdGjR6GjoyPx5cKQIUOQmZmJX3/9VWYaqI8fP37TF7wiAwcOhKamJhYtWoTnz59L7c/IyPjmIHr37t2hra2NvXv3yvxyI/ezKuS9/hSFcuXKYdCgQYiPj8f8+fNlfin79u1bmX/fEAXFDx06hMOHD6NcuXLitEW5iR5kO3PmTJnpoVJTU/P9ZRsREZGqYOoVIiJSKbdv38b27dthaGgIOzs78UMIo6OjceHCBaSlpcHT0xPt27cX1xkyZAhmz54Nb29vtGvXDuXKlcONGzcQGRkJDw8PnDt3rsDjqqurw8fHBxs2bECXLl3g6emJzMxMhIeH4+PHj3B0dPymf3z37t0ba9euRVxcHMzNzWFra6twW8Vpzpw56N+/P5YsWYKwsDBYWlrizZs3OHHiBNTV1bFw4cJi+/l9QaysrGBnZ4e///4b/fr1g52dHRISEnDx4kWYmprKzMdsY2MDLS0tBAUFITExUZzr18fHJ8/UKbVr14a/vz/mzp0Lb29vdOjQAfr6+vj3339x8+ZN1K9fH1OmTCnWsQJfgn3du3dHhw4doKOjg8uXL+Phw4do0qQJRowYIbPOgAEDEBISgri4OHh4eMDY2LjI+1W1alWsWbMGY8aMQZ8+feDs7IwGDRpATU0NsbGxuHnzJhITE8WBaENDQ3Tq1AnHjh1D9+7d4erqiuTkZPzzzz8oX748GjVqhAcPHsjdD9GXafLcMT9q1ChkZWVh7dq16NWrF2xtbWFpaYnKlSvj3bt3+O+//6QeSjhgwAAcOHAAEyZMgJeXF6pXr44nT57g0qVL6NChA44fPy51HGdnZ5w4cQLjxo2Du7s7KlSogJo1a6J79+7Q1NREQEAAhg8fDl9fX9ja2qJRo0aoWLEiYmNjcefOHbx69QqXL18Wp+yYPHkyrl69ik2bNiEiIgK2traIj4/H//73P7i7u+P06dMSKTXU1NTw+++/48cff8TEiRMRGhqK+vXr4/nz5zh9+jQqV66MJUuWiO98l4eamhr69+8vTpsibw58Dw8P1KtXD1u3bsXjx4/RqFEjvHnzBufOnUOrVq1kfrmgSB8XLFiAoUOHYvz48Wjbti3q1auHBw8e4MqVK3Bzc8OlS5fkbvfatWsyHyAJfPmiShTsjIiIwIoVK1C7dm2JL/HmzZuHO3fuYNWqVWjevLnEQ3KBLw8f/euvvxAREQE7OzvEx8fj+PHjyMnJwdy5cyWuvb169cK9e/ewe/dutG3bFi1atECNGjXw8eNHREdH499//0WPHj3y/BKxsMzMzLBgwQJMnz4dnTt3hpubG0xMTJCVlYXXr1/j+vXrqFq1aoE59/Ojr6+P5cuXY/z48Rg8eDBatmwJgUCAlJQUPHr0CG/evMHZs2cByH/9KYwPHz7k+YVbxYoV8dtvv2H06NF4+PAh9u7di3PnzsHJyQlGRkZISEjAixcvcOPGDUycOFHqAaL29vaoV68eTp48iczMTHh4eMh8roCzszMmT56MFStWwMvLS/wQ5tTUVLx+/Rr//vsv7OzsCswVT0REVNYxUE5ERCpl6NChMDExwT///INHjx7h8uXLyMjIgJ6eHhwcHNC5c2d06dJFIijUr18/lC9fHkFBQTh06BAqVKiAZs2aYdGiRfj7778LFSgHgAkTJkBfXx8hISEIDg6Gjo4OXFxc8PPPP+cZHCksAwMDcUCrNN5NLlKnTh3s378ff/zxBy5evIhr166hcuXKcHNzw6hRo9C0aVOl9U1DQwN//vknVq1ahYsXL2LHjh0wMjJC79698dNPP6FTp05SdapUqYI1a9Zg7dq1OHjwoPgBb127ds03x/jAgQNRr149bNmyBX///Tc+f/6MGjVqYNiwYRg1apTMh9QVtV9//RWnTp3Cvn37EBMTAz09PQwePBgTJkxAhQoVZNZp3LixOPBcnOeZs7Mzjhw5gi1btuDy5cv477//oKmpierVq8PJyQleXl4S5RcsWIA6derg+PHj2LVrF/T19dG6dWuMHz8e48ePV6gPjx8/BgCZ73t+xo4diw4dOmD37t0IDw/HgQMHxNcYCwsLDB8+HN26dROXt7CwwPbt27Fq1SpcuHABWVlZsLCwQGBgIHR0dGQGynv37o3Xr1/j2LFj2LRpE7KysuDg4CB+LoGFhQUOHz6MrVu34vz58zhw4ADU1dVhaGiIxo0bY9y4cRIP7DMwMMDevXuxYsUKXLhwAbdv34apqSlmz54NLS0tnD59WuoLLGtra/z111/4888/ceXKFZw7dw5Vq1ZFp06dMHr0aJn57wvL29sbv//+OzQ1NeV+1kKlSpUQFBSEZcuW4dq1a/jvv/9Qp04djB49Gj/++KPM+VSEvb09du3ahZUrV4pTelhbW2PHjh24fPmywoHyvNLZ1KpVC0OGDEFycjImTpwIAFi5cqXEdUZbWxsrV65E//79MWnSJBw6dEjiWlK7dm3MmTMHy5Ytw969e5GRkYHGjRtjzJgxcHNzkzrm7Nmz0bJlS+zduxf//PMPkpOTUaVKFfG1qmvXrnKPUZZu3brBwsICW7duRXh4OC5fvoxKlSqhevXq8PLyQocOHb75GK1atcL+/fuxceNGXLlyBWFhYdDV1UX9+vUxcuRIibLyXn8Kkpqammeudx0dHfz222/Q1NTEH3/8gcOHD+PgwYM4f/68+MGatWvXxoQJE2TeKQ58uWN+9erVAKQf4pmbr68v7OzssGPHDly/fh1nz56FtrY2jIyM0KdPH3Tu3FmucREREZVFasK8ktgRERHRdyMnJwdt27ZFQkICLl++rLS7sqlsS0lJgZubG/T09HDmzBmF7hj+Xnh7e6NcuXLidEyqauXKlVi3bh02bdokM5haHMLDwzF48GB07doVS5cuLZFjlmXR0dHw9PSEt7c3Fi9erOzuEBEREZVaZfdfN0RERCrkxIkTiI6ORrdu3Rgkp2KzZ88epKamon///mU6SJ6cnIyHDx9K3WlalsnKW/zo0SNs375d/IubkiLKsT1o0KASOyYREREREVOvEBERfcc2bNiAxMRE7Nu3D5UqVVKpwB6VjOTkZOzZswdxcXHYt28fDA0NMWDAAGV3q1jp6OgolNf8e9azZ0/Uq1cPDRs2hJaWFl68eIELFy6I81fnlY6nqDx69Ajnz5/HvXv3cPHiRXh4eMDa2rpYj0lERERElBsD5URERN+x5cuXQ1NTE2ZmZpg6dSpq1qyp7C5RGfPx40csX74c5cuXR5MmTTBz5kz+aqEM6tevH06fPo1jx47h06dP0NHRQYsWLTB06FA4OjoW+/Hv3buHFStWQFtbG+3bt8fs2bOL/ZhERERERLkxRzkRERERERERERERqbSym1ySiIiIiIiIiIiIiKgQGCgnIiIiIiIiIiIiIpXGQDkRERERERERERERqTQGyomIiIiIiIiIiIhIpTFQTkREREREREREREQqjYFyIiIiIiIiIiIiIlJpDJQTERERERERERERkUpjoJyIiIiIiIiIiIiIVBoD5URERERERERERESk0hgoJyIiIiIiIiIiIiKVxkA5EREREREREREREak0BsqJiIiIiIiIiIiISKUxUE5EREREREREREREKo2BciIiIiIiIiIiIiJSaQyUExEREREREREREZFKY6CciIiIiIiIiIiIiFQaA+VEREREREREREREpNIYKCciIiIiIiIiIiIilcZAORERERERERERERGpNAbKiYiIiIiIiIiIiEilMVBORERERERERERERCqNgXIiIiIiIiIiIiIiUmkMlBMRERERERERERGRSmOgnIiIiIiIiIiIiIhUGgPlRERERERERERERKTSGCgnIiIiIiIiIiIiIpXGQDkRERERERERERERqTQGyomIiIiIiIiIiIhIpTFQTkREREREREREREQqjYFyIiIiIiIiIiIiIlJpDJQTERERERERERERkUpjoJyIiIiIiIiIiIiIVBoD5URERERERERERESk0hgoJyIiIiIiIiIiIiKVxkA5EREREREREREREak0BsqJiIiIiIiIiIiISKUxUE5EREREREREREREKo2BciIiIiIiIiIiIiJSaQyUExEREREREREREZFKY6CciIiIiIiIiIiIiFQaA+VEREREREREREREpNIYKCciIiIiIiIiIiIilcZAORERERERERERERGpNAbKiYiIiIiIiIiIiEilMVBORERERERERERERCqNgXIiIiIiIiIiIiIiUmkMlBMRERERERERERGRSmOgnIiIiIiIiIiIiIhUGgPlRERERERERERERKTSGCgnIiIiIiIiIiIiIpXGQDkRERERERERERERqTQGyomIiIiIiIiIiIhIpTFQTkREREREREREREQqjYFyIiIiIiIiIiIiIlJpDJQTERERERERERERkUorp+wOEBFRyYiIiMChQ4cQHh6OmJgY6OnpwdraGj///DNMTU0lykZGRmLhwoW4ceMGNDU14e7uDn9/f+jr60uU2b9/P8LCwvDy5UtUrlwZjRs3xrhx42BlZSV1/Li4OCxcuBBhYWHIycmBo6Mjfv31V9SpU6fYx070vVHmen327Bn27t2LiIgI3Lt3DxkZGThz5gxq165dImMn+t4oc73+/fffOH78OO7cuYN3797B2NgYHh4eGD16NHR1dUtk/ETfE2Wu11OnTmHv3r149OgREhMToa+vDxsbG4wdOxbm5uYlMn6i74my//2a248//oh//vkHAwcOxKxZs4plvFQ6qAmFQqGyO0FERMVv/PjxuHHjBtq3bw+BQID4+Hjs2rULqampCA4OFv8FPTY2Ft27d4eOjg58fHyQmpqKLVu2oEaNGggJCUH58uUBAL///jv++usvtGvXDk2bNkVycjKCg4MRExODTZs2wcXFRXzsT58+oUePHkhOTsaPP/4ITU1NbNu2DUKhEIcOHULVqlWVMidEpZUy1+uBAwcwffp0NGjQABoaGnjw4AED5UT5UOZ6dXR0RPXq1dGmTRvUrFkTjx49wt69e1GnTh0cPHgQFStWVMqcEJVWylyvgYGBiIyMRKNGjVC1alW8e/cO+/fvR3x8PIKDg2FhYaGUOSEqrZS5XnP7+++/MW3aNKSmpjJQrgqERESkEq5fvy5MT0+X2Pb8+XOhpaWlcPLkyeJts2fPFjZt2lQYExMj3hYWFiY0NzcX7t27V7ztzp07wpSUFIn23r9/L3RychL269dPYvuGDRuE5ubmwtu3b4u3PX36VNioUSPh8uXLi2R8RGWJMtfrhw8fhMnJyUKhUCjctGmT0NzcXPjq1asiGxtRWaPM9Xr16lWp/hw8eFBobm4u3Ldv3zeNi6gsUuZ6lSU+Pl7YuHFj4cyZMxUdElGZVRrWa1pamtDDw0MYGBgoNDc3F86ZM6cohkalGHOUExGpCDs7O/G36SImJiZo2LAhnj17Jt72999/o1WrVqhZs6Z4m4uLC0xMTPC///1PvM3S0hKVK1eWaK9q1apo1qyZRHsAcPLkSVhZWaFp06bibWZmZnB2dpZok4i+UOZ61dPTg7a2dlEOh6hMU+Z6dXR0lOpPmzZtAHz5iTkRSVLmepWlWrVqqFixIpKTkxUdElGZVRrW68aNGyEUCjFs2LCiGBJ9BxgoJyJSYUKhEO/evROnPomLi0NCQgIsLS2lyjZt2hQPHjwosM34+Hjo6emJX+fk5ODRo0cy27SyssLLly+RkpKi+CCIVERJrFciKhrKXK/v3r0DAKY1Iyqkkl6vSUlJeP/+PR49eoTp06cjJSUFzs7O3zQGIlVRkuv19evX2LhxI6ZMmcJUZiqEgXIiIhV25MgRxMXFoUOHDgCAt2/fAgAMDQ2lyhoaGiIxMREZGRl5tvfff//h1q1b6Nixo3ibqE5ebeY+LhHlrSTWKxEVDWWu140bN0JDQwNeXl4K9p5ItZT0eu3Tpw+cnZ3RtWtX/O9//8NPP/2EXr16FcFIiMq+klyvixcvRqNGjdCpU6ci6j19D8opuwNERKQckZGRmDt3LmxtbeHt7Q0ASE9PBwCpn7gBQIUKFQAAaWlpMvcnJCRg8uTJqF27NoYPHy7eXpg2RWWISLaSWq9E9O2UuV6PHj2Kv/76C8OHD4eJick3joSo7FPGel20aBFSUlLw6tUrHDhwAOnp6cjOzoa6Ou9jJMpPSa7Xq1ev4u+//8a+ffuKehhUyjFQTkSkguLj4zFy5Ejo6Ohg9erV0NDQAPB/f5mQ9a276C8hsn52lpqaipEjR+LTp0/YvXu3RO63wrQpKkNE0kpyvRLRt1Hmev3vv/8wffp0tGjRAhMnTiyK4RCVacpar7a2tuI/d+rUSXwn67Rp075tQERlWEmu16ysLCxYsADdunWTeMYWqQZ+ZUlEpGKSk5MxYsQIJCcnY9OmTTAyMhLvq169OoAvfxH5mih329ffxmdkZGDcuHF49OgR/vjjD5ibm0vsF9XJq83cxyUiSSW9XolIccpcrw8fPsRPP/2Ehg0bYs2aNShXjvdDEeWntHy+VqlSBU5OTjh69Og3jIaobCvp9Xro0CE8f/4cffv2RXR0tPg/APj06ROio6Px+fPnoh4mlRL8GxQRkQpJT0/HqFGjEBUVha1bt6JBgwYS+42MjKCvr4+7d+9K1Y2IiICFhYXEtpycHEybNg1XrlzBqlWr4ODgIFVPXV0d5ubmebZZp04daGtrf+PIiMoeZaxXIlKMMtfry5cvMXz4cOjr62Pjxo38lQhRAUrb52taWhqSk5PlHwiRClDGen3z5g0yMzPRv39/qX2HDh3CoUOHsHbtWrRp0+YbR0elEe8oJyJSEdnZ2fj5559x69YtrF69WuJnn7m1a9cO58+fx5s3b8Tbrly5gqioKLRv316i7Lx583D8+HHMnj0b7dq1y/PYXl5euHPnDu7cuSPe9uzZM1y9elWqTSJS7nolIvkoc73Gx8dj6NChUFNTw+bNm6Gvr180gyIqo5S5XhMSEqS2RUdH48qVK7C0tFRwRERll7LWa8eOHbF27Vqp/wDA3d0da9euZUqWMkxNKBQKld0JIiIqfgsWLMD27dvh4eEhfkp4bt26dQPw5Rv07t27Q1dXF4MHD0Zqaio2b94MIyMj7N+/X/zTtW3btmHRokWwtbWV+W1727ZtUalSJQBASkoKvL298enTJwwdOhTlypXDtm3bkJ2djcOHD/Mf9kRfUeZ6TU5Oxo4dOwAAN27cwKVLlzB06FDo6OhAV1cXgwYNKq5hE32XlLleu3XrhocPH2L48OFSPx03MDCAq6trUQ+X6LumzPXq4uICZ2dnWFhYoEqVKoiKisL+/fvx+fNnbNu2DXZ2dsU4cqLvjzLXqywCgQADBw7ErFmzimiEVBoxUE5EpCJ8fHxw7dq1PPc/evRI/OcnT55g8eLFuH79OjQ1NeHu7g4/Pz8YGBiIy/j5+eHgwYN5tnfmzBnUrl1b/Do2NhYLFy5EWFgYcnJy4OjoCH9/f9SrV+8bR0ZU9ihzvUZHR8PT01NmuVq1auHs2bPyDoeoTFPmehUIBHmWc3BwEH/pRURfKHO9BgQE4Pz583j16hU+ffoEfX19NG/eHCNHjsx3LROpKmX/+/VrDJSrBgbKiYiIiIiIiIiIiEilMUc5EREREREREREREak0BsqJiIiIiIiIiIiISKUxUE5EREREREREREREKo2BciIiIiIiIiIiIiJSaQyUExEREREREREREZFKY6CciIiIiIiIiIiIiFQaA+VEVGo8evQIjx49UnY3iKgQuF6Jvh9cr0TfD65Xou8H1ytR2cNAORGVGhkZGUhPT8f169eRnp6u7O6UaZznklNW55rrteRwnktOWZ1rrteSw3kuOWV1rrleSw7nuWSU5XnOyMhASkpKmRxbaVOWz6PShPPMQDkRlVLZ2dnK7kKZJppfznPxU4W5LstjKw1U4RwqLVRhrsvy2EoDVTiHSgtVmOuyPLbSQBXOodJAFea5LI+ttFCF86g04DwzUE5EREREREREREREKo6BciIiIiIiIiIiIiJSaQyUExEREREREREREZFKY6CciIiIiIiIiIiIiFQaA+VEREREREREREREpNIYKCciIiIiIiIiIiIilcZAORERERERERERERGpNAbKiYiIiIiIiIiIiEillVN2B4iIiArLq+c4ucqf3B9QTD0h+j7Ju4ZIEq8pyrciOEqherdfphRtR/JVATj7TKGa1nW15a4zqa+JQsci1Xbk/MsSPd7z+By568QlyV8HAO5dC5WzRhh0Td0UOlZ2+ie56/Rzr6vQsd4mCRWq9yld/nqmhordU9m1lWJjo5Iza6t8n0/WdeULG55/mC5XefnoAldjEPP4H7lqdW7TSq7yVSqpyVVekTHb1i0vV/mhXerJVX7/Gfmv8T09uX4B3lFORERERERERERERCqOgXIiIiIiIiIiIiIiUmkMlBMRERERERERERGRSmOgPB8BAQEQCAQQCASwsLCAvb09unTpgrlz5yIyMlKhNsPDw7Fu3boi7efTp08xfvx4tGzZElZWVmjZsiVGjhyJCxcuyNWOQCDA5s2bi7RvZcGDBw8gEAgQHh6ebznRuSIQCGBpaYm2bdti/vz5SExMLJmOlrDw8HAIBALcuXNH2V0hIiIiIiIiIiL6JnyYZwEqVqyIoKAgAMCnT5/w+PFjBAcHY9++fViwYAG6desmV3vXrl3Dli1bMGrUqCLp38uXL9G7d28IBAL4+flBX18fMTExuHDhAq5duwZ3d/dCtxUcHIyaNWsWSb9UlY+PDzp37oz09HRcu3YN69atQ1RUFDZt2qTsrhEREREREREREVEeGCgvgLq6OmxsbMSvXV1dMWDAAPj6+mL69Omws7NDnTp1lNa//fv3AwC2bt0KLS0t8faePXsiJ0e+p4TnHicppkaNGuJ5dHR0xNu3b7Fv3z68ffsW1atXV27nCik7Oxs5OTnQ1NRUdleIiIiIiIiIiIhKBFOvKKBChQqYOXMmMjMzERISIt5+6NAh9O/fHw4ODmjevDl8fHwQEREh3h8QEIDAwECkpqaKU3T4+PgAACIjIzFx4kS4u7vD2toaHTt2xJYtWwoMdiclJUFbW1siSC6iri759kZGRmLs2LFwcHCAtbU1unbtitDQUPF+WalXzp8/j969e6Np06ZwcnLC7NmzkZqaKt4vSr8RFhaGyZMnw9bWFh4eHti4caNUf27evImhQ4fCzs4Otra26N27N8LCwsT7MzIysGLFCnh4eMDS0hIdOnTA0aNH8x2/qI8//vgjnJ2dYWdnh969e+PixYsSZQ4cOACBQID79+9j+PDhsLGxQbt27XDo0CGp9v744w+4urrC1tYWY8eORUJCQoF9yEujRo0AAG/evJFrnE+ePMGIESPg6OgIa2treHl5Sc3pzZs3MXjwYNjY2MDe3h6TJ0+W6uuyZcvQpUsX2Nraws3NDZMmTcLbt28lyvj4+GDkyJE4ePAgvLy8YGVlhYcPHwL4Mrf9+vWDtbW1+Jy+f/++RP2kpKQC33siIiIiIiIiIqLSjHeUK6hBgwYwMjLCzZs3xduio6PRvXt31K1bFxkZGTh27BgGDhyII0eOwNTUFL1790ZsbCxCQ0PF6Vy0tbUBAG/fvoWpqSm6dOmCypUr48GDBwgICEBqairGjh2bZz+aNGmC3bt3Y9asWejfvz8EAoFUgBwAoqKi0LdvX9SoUQPTp0+HoaEhHj9+jNevX+fZ9okTJzBx4kT06NED48aNQ3x8PJYvX46kpCSsXLlSouzs2bPRrVs3rF27FqdPn8ayZcsgEAjQsmVLAMD169fxww8/wMbGBvPnz4euri7u3r0rcfwJEybgxo0bGDNmDMzMzHDhwgX88ssv0NXVzTeFTHR0NDw8PDB06FCoq6vj4sWL8PX1RVBQEBwdHSXKTpkyBX369MGPP/6Iffv2wc/PD1ZWVjAzMwMA7Ny5E6tXr8bQoUPh4uKCf/75B9OnT8/z2AV5/fo11NXVJVLaFGaco0aNgoGBARYsWABtbW28fPkSsbGx4jZu3rwJHx8fuLu7Y+XKlfj8+TNWrVqF0aNHIzg4WFwuISEBI0eORPXq1fH+/Xts3boVPj4+OHbsGMqV+7/lf/fuXcTExGDChAnQ1dVFjRo1cPz4cUyaNAmenp5Yvnw5NDU1cePGDcTFxaFx48biugW990RERERERERERKUdA+XfoEaNGnj37p34de6Adk5ODlxdXREREYGDBw9i0qRJMDY2hrGxsVQ6FwBwdnaGs7MzAEAoFMLe3h5paWnYuXNnvoFyb29vXLlyBcHBwQgODkblypXh5OSEnj17wtPTU1wuICAAmpqa2LNnjzg47+Likme7QqEQS5YsQceOHbFgwQLxdkNDQ/j6+mL06NFo2LCheHu7du0wbtw48VjOnz+PkydPioOlS5cuRb169RAUFAQNDQ0AQIsWLcT1r169irNnz2Lz5s3i7a6uroiPj0dAQEC+gfJBgwaJ/5yTkwNHR0c8ffoU+/btkwqUDxw4EAMHDgQA2Nra4sKFCzh58iRGjx6N7OxsrF+/Ht26dcO0adMAAG5ubkhISMDhw4fzPH5uOTk5yMrKQkZGBsLDw7Fnzx707dsXhoaGhR7n+/fvER0djenTp6N169YAACcnJ4njLF++HJaWlggMDISamhoAwNzcHJ07d8aFCxfE87Vo0SJxnezsbNja2qJly5a4evWqxPx//PgRf/31F2rUqAHgy/v/+++/w9XVFWvXrhWXk/U+FPTey0soFAIAPn/+rFB9KhzR/Jb1ec79CxhlKQ1zXalSpWJpl+u1ZJSGc4i+KIlrCtcryas0fNYpQ2m4NnK9EkmSdT0qDWsVKL71Cih/bFT2lcRnfWpqqkqs14IwUP4NhEKhOEgJfEltsmLFCty8eVMiBUZUVFSBbaWnp2P9+vU4evQo3rx5g8zMTPG+T58+oXLlyjLraWhoYPny5Rg1ahTOnTuH//77D2FhYThz5gxGjx6NCRMmAPgSoPXy8hIHyQvy/PlzxMTE4Ndff0VWVpZ4u4ODA9TV1XH37l2JQHnuoKuamhrMzMzEd0B//vwZt2/fxqRJk8RB8q+FhYVBT08PTk5OEsdzcXHBb7/9huzs7DzrxsbGYuXKlfjnn38QHx8v/otlkyZNpMrm7melSpVQs2ZNcT9jY2Px9u1btG3bVqKOl5dXoQPly5Ytw7Jly8Sv7e3tMWPGDLnGWbVqVdSqVQsrVqzAx48f4ezsDGNjY3HZz58/48aNG5g6dSqys7PF201MTFCjRg3cuXNHHNC+cOEC/vzzTzx58gQpKSnislFRURJzYW5uLg6SA8CzZ88QGxsr/sIgP/m994oQzUth1g19u7I+zw8ePFB2F8SUOdf29vbF0i7Xa8niPCtfSVxTuF4LUk3ZHSh1StNnnTLw81VRhsXYNqmq/K5Hyv78Ka71Cih/bPKpquwOkALk/6yX/xqf+xjKPqeLc70WhIHybxAbGwsTExMAQEpKCoYOHQp9fX34+fmhZs2aqFChAmbMmIH09PQC21q6dClCQkIwZswYWFpaQkdHB2fOnMGff/6J9PT0PAPlIg0bNkTDhg3h6+uL9+/fY9iwYdiwYQN++OEH6OnpITExUa6HSX748AEAMGbMGJn7c+fcBgAdHR2J15qamkhOTgbwJYd1Tk5Ovsf/8OEDEhMTZQa3ASA+Pl4iWCySk5ODn376CcnJyRg/fjzq1asHLS0trFmzRqqPefUzIyNDfAwA0NfXlyhjYGCQZ7+/NnjwYHTt2hWfP3/GkSNHEBISgtWrV2Py5MlyjXPz5s1YuXIl5s6di9TUVDRp0gT+/v5o3rw5kpKSkJ2djUWLFkncMS4iGndERARGjx4NT09PjBgxAtWqVYOamhr69OkjdU5+PcbExEQAKNQ5k997r4hy5cohKysLJiYmMnPvU9H4/PkzoqKiyvw8i54ToExlea65XktGWT6Hvjel4ZqiqLKyXi88fVtwIRXzPZ+X36IsXxtLYr3GXHtXcCEiOcm6HpXltSryPY3tcITiN7WR8sj7WR91Rf5rfKNGjVRivRaEgXIFPXnyBHFxcfD29gYA3Lp1C7GxsVi/fj0sLCzE5ZKTk2UGeL924sQJ9O3bF76+vuJtFy5cUKhv+vr66NGjB+bPn48XL15AT08Penp6Ug9xzI+enh4AYNasWWjatKnUfnmC7jo6OlBXV8/3+FWqVIG+vj42bNggc//XwWuRFy9e4P79+1i7di3atGkj3p6Wllbo/omI0qO8f/9eYnvu9DoFMTY2hpWVFYAvd9+/e/cOW7duxYABA1CjRo1Cj9PU1BRr1qxBZmYmbt68iRUrVmDUqFG4ePEidHR0oKamhpEjR0qMWaRq1S/fEJ8+fRra2tpYtWqVOG99TEyMzOPm/mUE8H/vvzznTFER9UVLS0upP7dRFWV9nkvT2MriXHO9lizOs/J9z/PP9Vp2qfr7WRbPaa5X+l7ld76W5fO5LI+NSoeSOL9yH0OVz2nppz5SgdLT0zFv3jyUL18evXv3BvB/gVlNTU1xuRs3bkgFJnPfwfx1m7nrZmdn49ixYwX2Ja8gruhnEqI7hZ2dnXHy5EmJ9Bv5qV+/PoyNjfHq1StYWVlJ/WdkZFSodoAvi83GxgaHDx+WSBWSm4uLC96/fw9NTU2ZxytfvrzMeqI7o3PPXUxMjMRDVgvL2NgYhoaGOHXqlMT2kydPyt2WyNSpU5GTk4PNmzcDkH+cmpqacHBwgK+vL1JSUvD27VvxfD579kxmG7Vr1wbw5ZzU1NSUCIIfPXq0UP0Wvf8HDhxQeOxERERERERERETfC95RXoCcnBzcunULwJfE9o8fP0ZwcDBevXqFxYsXi4OSNjY2qFSpEubMmQNfX1/ExcUhICBAKqBsZmaGrKwsBAUFwdbWFtra2qhfvz5cXFwQEhKCBg0aoGrVqti9e7fMgPrX/vjjDzx48ACdO3dGgwYNkJ6ejrCwMOzevRtt2rRBrVq1AHx50Oj58+cxYMAADB8+HIaGhoiMjMTnz58xYsQIqXbV1NTg5+eHKVOmIDU1Fa1atYKWlhZev36NCxcuYOLEiTA1NS30PE6ePBlDhgzBkCFDMGDAAFSpUgX37t1D1apV0atXL7i6usLDwwPDhw/H8OHDIRAI8PnzZzx9+hQvXryQeKBobqKA7vLly5GTk4PU1FSsWbNGrjveRTQ0NODr64sFCxagWrVqcHV1RVhYGMLDw+VuK3f/OnbsiL/++gtjxowp1DgfPnyI33//HR07dkSdOnWQkpKC9evXo1atWqhbty6ALwH4H374AT///DM6deoEXV1dxMbG4p9//kGPHj3g6OgIV1dXBAUFYd68eWjbti1u3rxZ6FzrampqmDZtGiZNmoRx48ahW7duKF++PG7dugUrKyt4eHgoPCdERERERERERESlDQPlBUhLS0Pfvn0BfLkzunbt2nB2dkZgYCDMzMzE5QwMDLB69WosWbIEo0ePhomJCebMmYNNmzZJtOfh4YEBAwZgw4YNSEhIQPPmzbFjxw7MnDkTs2fPxrx586ClpQVvb2+0bdtW4kGQsnTt2hXp6enYsWMH4uLioKGhgVq1amHq1KkYMGCAuJyJiQn27t2L5cuXY86cOcjOzoaJiYlEqpevdejQAbq6uli3bp34TuRatWrBzc1NrrzdANCsWTNs374dq1atgr+/P9TV1dGwYUP8/PPP4jJr1qzBhg0bsGfPHsTExEBHRwcNGzZEjx498my3fPnyCAgIwNy5czFhwgTUqFEDP/30E65evYq7d+/K1UcA8PHxQVJSEnbv3o09e/bA2dkZ8+fPx/Dhw+VuS2T06NE4fvw4du7ciXHjxhU4TkNDQxgYGGD9+vWIi4uDjo4OmjVrhqVLl4ofaGpnZ4fdu3cjICAA/v7+yMzMhLGxMZycnFCvXj0AgLu7O6ZMmYKdO3fiwIEDsLOzw/r16+Hl5VWofnfs2BEVK1bEunXrMGnSJFSoUAGNGzeWetgpERERERERERHR905NKBQKld0JIiIAuHPnDoRCITIzM9GoUSOVzYlVElJTU/HgwYPvbp69eo6Tq/zJ/QHF1JPC+17nuiBcryWnKM8hedcQSSoN1xRFlKX1uiI4SqF6t18WLv2gslnX1Za7zqS+JkXfke8AP1+/zZHzL4ul3bw8j8+Ru05ckvx1AODetVC56+iauil0rOz0T3LX6edeV6FjvU1SLHTzKV3+eqaGimXp7dpKemxlda0CX9ZrRkbGdzW2WVufyVXeuq5899eef5guV3lFxDz+R67yndu0kqt8lUpqBRfKRZEx29aVnV44L0O71JOr/P4z8l/je3rWLdPrtbCYo5yIiIiIiIiIiIiIVBoD5URERERERERERESk0hgoJyIiIiIiIiIiIiKVxkA5EREREREREREREak0+bLyExERKdH3+iA9Uh2l/WGZXEP54wOMyq7k6OsK1dOpbV/EPcmfqj6Yk0re1cgsheo5mSkWQqhcQb6H4ylaBwAc3LooVE8R2hWqyl1H0blfOKy+QvVWh0TJXUfWQzmpbJj7o2LnUWF9TH1RrO0DgG3dVnKVj3qXLVd5eR9g2sqiglzlgS8PzixOxd1+WcY7yomIiIiIiIiIiIhIpTFQTkREREREREREREQqjYFyIiIiIiIiIiIiIlJpKhEoDwgIgK2trVL70KxZMwQElFxe0NatW2Pu3Ln5lgkPD4dAIMCdO3dKqFffplu3bvDz88u3jJ+fHwQCAfr06SO1TygUwt3dHQKBoETfC1UREBCAGzduKLsbREREREREREREclOJQDnJ1qRJEwQHB8PMzEzZXSlSlSpVwu3bt/Hq1SuJ7f/99x8SEhJQvnx5JfWsbAsMDMTNmzeV3Q0iIiIiIiIiIiK5MVD+nUlLSyuytrS1tWFjY4NKlSoVWZulQa1atWBhYYHjx49LbA8NDUWLFi1QoYL8TyQmIiIiIiIiIiKisouB8v8vNjYWU6ZMgaOjI5o2bYqBAwfi7t27EmUOHTqE/v37w8HBAc2bN4ePjw8iIiKk2jp9+jTat28PKysr9OrVS2YZADh//jx69+6Npk2bwsnJCbNnz0Zqaqp4vyg1yvnz5zF+/HjY2dlhwoQJAIAzZ86gR48esLW1RbNmzdCjRw9cuHBB6hi7du2Ch4cH7O3tMXr0aLx//16q/dypVwQCATZs2IAlS5bAyckJtra28PPzQ0pKSr7z9/btW/j7+8PT0xNNmzZFu3btsGLFCmRkZEiUEwgE2LhxIwICAuDi4gJHR0f4+/tLjBsAbty4gR49esDKygqdO3eWObb8dOrUCaGhoeLXWVlZOHnyJDp37ixV9ubNmxg1ahRatGgBGxsbdOvWDYcOHZIoI5qrsLAwTJ48Gba2tvDw8MDGjRvlbgsAnjx5goEDB8LKygrt2rXDkSNHMHr0aPj4+EiUi4yMxE8//QR7e3vY2NjA19cXL1++lCgjes9WrlwJZ2dnNGvWDEuWLIFQKMSVK1fQrVs32Nra4ocffsCbN28k6mZkZGDFihXw8PCApaUlOnTogKNHj0qU8fPzQ+fOnREeHo7u3bvDxsYGvXr1klgfAoEAALBkyRIIBAIIBAKEh4dLjZuIiIiIiIiIiKg0KqfsDpQGHz9+xIABA1CpUiXMnDkTOjo62LFjB3744Qf8/fffqFatGgAgOjoa3bt3R926dZGRkYFjx45h4MCBOHLkCExNTQEADx48wPjx49GyZUv4+/sjOjoaP//8s1TA+MSJE5g4cSJ69OiBcePGIT4+HsuXL0dSUhJWrlwpUXbmzJno2rUr1q5dC3V1dbx8+RITJkxAp06dMHnyZOTk5ODhw4f4+PGjRL2zZ8/ixYsXmDVrFj58+IBFixZh3rx5Uu1/bceOHWjSpAl+//13REdHY9myZUhPT8+33ocPH6Cnpwd/f3/o6uoiKioKAQEBiI+Px6JFiyTK7tq1C/b29li8eDGioqKwZMkSVKtWDVOmTAEAxMfHY9iwYRAIBFi1ahWSkpIwZ84cpKamolGjRvn2XaRTp05YsWIFnj59igYNGiAsLAzp6elo3bo1fvvtN4myr1+/hp2dHfr374/y5cvjxo0bmDFjBoRCIby9vSXKzp49G926dcPatWtx+vRpLFu2DAKBAC1btix0W2lpaRg6dCh0dXWxdOlSAMDatWuRlJSEunXrio/16tUr9OvXDw0bNsTixYuhpqaGdevWYciQIThx4oRECpldu3bBwcEBS5Yswe3btxEQEICcnByEhYXhp59+gqamJubPn4/p06djy5Yt4noTJkzAjRs3MGbMGJiZmeHChQv45ZdfoKurC3d3d3G5+Ph4zJ8/H76+vtDR0cHy5csxduxYnDp1CpqamggODkbfvn3h4+Mj/jKiQYMGhXqviIiIiIiIiIiIlI2BcgBBQUFISkpCSEiIOCju7OwMLy8vbN68GVOnTgUAjB07VlwnJycHrq6uiIiIwMGDBzFp0iQAwIYNG1CjRg2sXbsWGhoaAIAKFSpg+vTp4rpCoRBLlixBx44dsWDBAvF2Q0ND+Pr6YvTo0WjYsKF4e+vWrfHLL7+IX584cQKZmZmYOXMmtLW1AQBubm5S4xIKhfjzzz/FAdWYmBisX78eOTk5UFfP+8cE5cuXl+r/jBkzMHbs2DzzmQsEAkybNk382s7ODlpaWvDz88OsWbOgpaUlMc7ly5cDAFq2bIn79+/j5MmT4kB5UFAQ1NTUsHHjRujo6AAAjI2NMWTIkDz7/LVatWrBxsYGoaGh+PnnnxEaGorWrVvLTDPTqVMn8Z+FQiGaN2+OuLg4BAcHSwXK27Vrh3HjxgH4co6cP38eJ0+eFAfKC9PW/v37kZCQgD179qB27doAAEtLS7Rr104iUB4YGIgqVapg69at4nQxdnZ28PT0REhICAYOHCguW716dXHQ3c3NDWfPnsW2bdtw7Ngx8XsWFxeHefPmISkpCbq6urh69SrOnj2LzZs3o0WLFgAAV1dXxMfHIyAgQCJQ/vHjR+zcuVN8XmppaWHw4MG4ffs2mjVrBhsbGwBAjRo1xH9WlFAoBAB8/vz5m9qh/Inml/Nc/ErDXBdXii2u1+/P17/gIklcr6RsXKOFx/VKqqYkrw9FeazSsFaB4luvgPLHRt+f0vp5rwrrtSAMlAMICwuDo6MjqlSpgqysLACAuro6mjdvLpGWJDIyEitWrMDNmzeRkJAg3h4VFSX+8+3bt9G6dWtxkBkA2rdvLxEof/78OWJiYvDrr7+KjwcADg4OUFdXx927dyUC5a1atZLor0AggIaGBqZMmYI+ffqgefPm4oBybs2bN5e469jMzAyZmZlISEiAoaFhnvPh4eEhs/937tzJM1AuFAoRFBSEffv2ITo6Gunp6eJ9r169grm5ufi1i4uLRF0zMzMcO3ZM/Pr27dtwdHSUGJOzszP09PTy7LMsnTt3xvbt2zFq1CicOXMGy5Ytk1nu48ePCAgIwJkzZxAXF4fs7GwAkHk8UUAZANTU1GBmZobY2Fi52rp79y7Mzc3FQXIAqF27NiwsLCSOFRYWho4dO0JDQ0N8nujq6qJx48ZSaYG+nlNTU1O8e/dO4v0yMTEB8CXNkK6uLsLCwqCnpwcnJyeJ89DFxQW//fYbsrOzxedB9erVJc5J0d3icXFxUnP0rUR9yb2uqPhwnkuOMufa3t6+WNrlev3+PHjwQNld+C5wvZZm1ZTdgWLFNSo/rldFVS3Gtqk4KH59kP+6WRzXImV//hTXegWUP7bSxUDZHfgulPbPe2Wf08W5XgvCQDm+pA25desWmjRpIrVPdIdvSkoKhg4dCn19ffj5+aFmzZriO61zB4Xj4+PFd6WLaGtrSzxA8sOHDwCAMWPGyOzP13mkv27P1NQU69atw/r16zF27Fioq6ujRYsWmDVrFmrWrCkup6urK1FPFDTP3V9Z8ur/27dv86wTFBSE33//HcOHD4ejoyN0dXVx584dzJ07V+p4X/dLU1NTIjVNfHw86tWrJ3UMfX39fPv9tfbt22PhwoVYvXo1NDU1Zd51D3zJwX3z5k2MGTMGDRo0gLa2Nvbs2YP//e9/UmW//kJCU1MTycnJcrX19u1bmWPR19eXmKsPHz4gKCgIQUFBUmU1NTUlXsuaU1nbgP97/z98+IDExESZ5z3w5X0wNjbOs/3cbRWlcuXKISsrCyYmJhK/RKCi9fnzZ0RFRXGeS0BZnmuu1+9PYVOYqSqu19LvwtO8/z5aFnCNFh7X6ze6FVtwGSpVFL0+XH4m/3WzKK9FZXmtipTlscnr9ut4ZXfhu1BaP+9VYb0WhIFyAFWqVIGbm5v4QZm5iYLLt27dQmxsLNavXy9x529ycrI4mAh8SSuS+25z4EuQPXdAUXR38axZs9C0aVOpY1avXl3itZqamlSZli1bomXLlkhJScHFixexaNEi+Pv7ywyqyiuv/n/dr9xOnDiB1q1bY/LkyeJtkZGRCh1f1hwCkHgQaWEYGBjAyckJ27ZtQ69evaSCy8CXQO/58+fh5+cn8SDN3bt3y93vwrZVvXp1md8evn//HpUrVxa/rlKlCtzd3TFgwACpsrnLKapKlSrQ19fHhg0bZO6X94uJoiI637W0tJT6cxtVwXkuOWVxrrlevz98nwqnLJ7TXK/fB7438iuL5zTXK8lSkudCcRyrLJ/PZXlsVDxK+/miyuc0A+X4kmriyJEjMDMzy/NESEtLAyB5J++NGzcQExMjkZKiadOmOHfuHPz9/cVpK06cOCHRVv369WFsbIxXr15J5JlWhLa2Njp27IiIiAiEhoZ+U1sisvqvpqYGKyurPOukpaVJBaKPHj2q0PGbNm2KPXv2IDk5WXwH95UrV5CYmCh3Wz4+PqhYsSJ69+4tc39GRgZycnIk+p6SkoKzZ8/KfazCtmVpaYlDhw7h1atXqFOnDoAvD4p9+PChxM9LnJ2d8eTJEzRu3FgiFU5RcXFxwaZNm6CpqSmV9kURmpqaxXKHORERERERERERUXFTmUB5dna2VMAa+BKUHTJkCI4ePYpBgwZh8ODBqFmzJt6/f4/bt2/DyMgIQ4YMgY2NDSpVqoQ5c+bA19cXcXFxCAgIgJGRkUR7vr6+6NWrF8aMGYP+/fsjOjoamzdvlki9oqamBj8/P0yZMgWpqalo1aoVtLS08Pr1a1y4cAETJ06EqalpnmPZu3cvbt26BTc3NxgaGiI6OhpHjhyBq6trkcxVRkaGRP+XLVsGLy+vPPOTA1+Crtu3b8fOnTthYmKCI0eO4MWLFwod/4cffsDu3bsxYsQIjBgxAklJSQgICJA7RznwJd+6h4dHnvt1dHRgZWWFjRs3Ql9fH+XKlcOGDRugra0t9x3shW2rZ8+eWLduHUaNGiV+MGhgYCAMDAwkfj0wfvx49OrVC8OGDUOfPn1gYGCAd+/e4dq1a2jWrBk6d+4s52xIcnV1hYeHB4YPH47hw4dDIBDg8+fPePr0KV68eCHxoNnCqF+/Ps6cOYNmzZpBS0sLpqam4ofNEhERERERERERlWYqEyhPT0+XmVplyZIl6NatG4KDg7Fq1SosW7YMiYmJqFatGqytrdG2bVsAX9J4rF69GkuWLMHo0aNhYmKCOXPmYNOmTRLtNW7cGKtXr8ayZcswduxYNGzYECtXrsSwYcMkynXo0AG6urpYt26d+M7rWrVqwc3NDQYG+T/8QCAQ4Ny5c1i0aBESExNhaGiITp06yRyfInx8fPD+/XtMnToVGRkZaNu2LWbNmpVvnTFjxuDDhw9Ys2YNAMDLywszZszAqFGj5D5+9erVsXHjRsyfPx8TJkxA3bp1MWvWLKxcuVKh8RRk+fLlmDVrFvz8/KCnpwcfHx+kpqZiy5YtxdJWxYoVsWXLFsyePRtTpkyBkZERRo8ejUOHDknkQK9Xrx5CQkKwatUqzJkzB6mpqTA0NETz5s0hEAiKZOxr1qzBhg0bsGfPHsTExEBHRwcNGzZEjx495G5r1qxZWLhwIUaMGIG0tDRs374djo6ORdJPIiIiIiIiIiKi4qQmFAqFyu4ElR4CgQBTp06VCuxT8UpMTESbNm0wZMgQjB07VtndUZo7d+5AKBQiMzMTjRo1UtmcWCUhNTUVDx484DyXgLI611yvsnn1HKfsLuTr5P4AZXehVON6Lf1WBEcpVO/yPxcUqqdT277gQkUo6BfLEj3e94zr9dv8uvmZQvWczBS71+5tkvxhh7ikHIWOVZK0K0g/T6wgio5r4bD6CtVbHRIld50JvU0UOpYsZXWtAl/Wa0ZGRpkcm6K2HFUss0BxinqXLVd567rFf09xT8+6xX4MRZTl9VpYKnNHOVFpsmHDBhgYGKBWrVqIj4/Hli1bkJ2djZ49eyq7a0RERERERERERCqHgXIiJVBXV8eff/6JuLg4aGhowNraGkFBQahRo4ayu0ZERERERERERKRyGCgnCY8ePVJ2F1SC6AGaREREREREREREpHwMlBMRERER0Xfh9ssUheodWP1DEfdENub2pO+Fka66QvU+pSt2vMoK5PJWtI/VdeU/VtdWpTNfcFEoynzjVLrsP/NS7jofU+V7XkCVSvKvJ3kM7VKvUOX4+UolRbFPHiIiIiIiIiIiIiKiMoKBciIiIiIiIiIiIiJSaQyUExEREREREREREZFKY6CcvnsBAQEQCAQQCASwsLCAvb09unTpgrlz5yIyMlKhNsPDw7Fu3boi7ukX27Ztg0AgwK+//los7efWunVrzJ07t0jb9PPzQ+fOnYu0TSIiIiIiIiIiImVioJzKhIoVKyI4OBh79+7FmjVr0KNHD/zzzz/o1q0bDh8+LHd7165dw/r164uhp8CRI0cAAKdOnUJGRkaxHKM4jR49GsuWLVN2N4iIiIiIiIiIiIoMA+VUJqirq8PGxgY2NjZwdXXFjz/+iMOHD8Pe3h7Tp0/Hq1evlN1FAMDz589x7949uLi4ICkpCefPn1d2l+RWt25dWFhYKLsbRERERERERERERYaBciqzKlSogJkzZyIzMxMhISHi7YcOHUL//v3h4OCA5s2bw8fHBxEREeL9AQEBCAwMRGpqqjili4+PDwAgMjISEydOhLu7O6ytrdGxY0ds2bIFOTk5hepTaGgo1NTUMHfuXBgYGODo0aNSZUTpUnbt2gUPDw/Y29tj9OjReP/+vbhMamoq5s6dCy8vL1hbW6N169aYNWsWkpOT8zz22bNnIRAIEBUVJbH948ePaNq0KXbt2gUAePLkCUaMGAFHR0dYW1vDy8sLGzduFJf/OvVKUlISZsyYATc3N1hZWcHd3R0TJ04s1HwQERERERERERGVBuWU3QGi4tSgQQMYGRnh5s2b4m3R0dHo3r076tati4yMDBw7dgwDBw7EkSNHYGpqit69eyM2NhahoaEICgoCAGhrawMA3r59C1NTU3Tp0gWVK1fGgwcPEBAQgNTUVIwdO7bA/oSGhqJZs2aoU6cOOnTogODgYCQnJ0NHR0ei3NmzZ/HixQvMmjULHz58wKJFizBv3jysXLkSAJCWlobs7GxMnDgR+vr6ePPmDdatW4fRo0djx44dMo/t7u4OIyMj7N+/H5MnT5boEwB06dIFADBq1CgYGBhgwYIF0NbWxsuXLxEbG5vnmBYtWoRLly5h8uTJqFWrFuLj43Hx4sUC54KIiIiIiIiIiKi0YKCcyrwaNWrg3bt34te5A9o5OTlwdXVFREQEDh48iEmTJsHY2BjGxsbidC65OTs7w9nZGQAgFAphb2+PtLQ07Ny5s8BAeUREBKKiovDjjz8CADp37owdO3bg5MmT6NWrl0RZoVCIP//8E+XLlwcAxMTEYP369cjJyYG6ujr09fUxZ84ccfmsrCzUrl0bAwYMwPPnz2Fqaip1fA0NDfTo0QP79+/Hzz//DA0NDQDA/v370bZtW+jq6uL9+/eIjo7G9OnT0bp1awCAk5NTvuO6c+cOOnfuDG9vb/G2Tp065VsnP0KhEADw+fNnhduggonml/Nc/ErDXFeqVKlY2uV6/f6kpqYquwulGtdr2VVS535pOIdURWmYa67XsoOfj8WnNKxVoPjWK6D8sX3PCrv2Sst5VNaVlnkuzvVaEAbKqcwTCoVQU1MTv46MjMSKFStw8+ZNJCQkiLd/nZJElvT0dKxfvx5Hjx7FmzdvkJmZKd736dMnVK5cOc+6oaGh0NTURPv27QEANjY2qFOnDo4ePSoVKG/evLk4SA4AZmZmyMzMREJCAgwNDQF8SSGzbds2vHjxQuLDJSoqSmagHAB69eqFdevW4dKlS2jVqhUePnyIe/fu4ZdffgEAVK1aFbVq1cKKFSvw8eNHODs7w9jYON85ady4MQ4ePAhDQ0O4ubnB3Nw83/IFycrKEo+Dih/nueQoc67t7e2LpV2u1+/PgwcPlN2F7wLXa2lWQaFaJX3uf//z/P3gelVUtWJs+/vDz8fip+zrYnGtV0CZYzNU0nGLjrxrT9nnkapQ9jwX53otCAPlVObFxsbCxMQEAJCSkoKhQ4dCX18ffn5+qFmzJipUqIAZM2YgPT29wLaWLl2KkJAQjBkzBpaWltDR0cGZM2fw559/Ij09Pc9AeU5ODo4fPw4HBweoq6sjKSkJAODp6Ynt27cjLi4ORkZG4vK6uroS9UVBc1EfT506hWnTpqFv376YOHEi9PT0EB8fjzFjxuQ7jtq1a8PV1RV//fUXWrVqhf3796N27driu8bV1NSwefNmrFy5EnPnzkVqaiqaNGkCf39/NG/eXGabM2fORJUqVbB161YsWbIENWrUgK+vLwYMGFDgfMpSrlw5ZGVlwcTEBFpaWgq1QQX7/PkzoqKiOM8loCzPNdfr96dRo0bK7kKpxvX6HTj7TKFqJXXul+VzqLQpy3NdEuv18rO3xdLu94qfj8WnLK9VEWWNLerKu4ILlXKFXXuqcB6VBpxnBsqpjHvy5Ani4uLEaUFu3bqF2NhYrF+/HhYWFuJyycnJBd45DQAnTpxA37594evrK9524cKFAutdvXoV8fHxiI+PlxlwPn78uDglS2GcOHECjRo1wty5c8Xbrl27Vqi6vXv3xpQpUxAXF4ejR4/Cx8dH4o57U1NTrFmzBpmZmbh58yZWrFiBUaNG4eLFizK/CNDR0cH06dMxffp0PHr0CNu3b8ecOXNgbm6OZs2aFXpMIqK+aGlpKfXnNqqC81xyyuJcc71+f/g+FU5ZPKdVfb2W9JhVdZ6VoSzOtaqvV2XgPBe/snw+l+WxFTd5541zXTJUeZ7Vld0BouKSnp6OefPmoXz58ujduzeALw/BBABNTU1xuRs3biAmJkairqamJjIyMmS2mbtudnY2jh07VmBfjh49ikqVKmHbtm3Yvn27xH8WFhY4evSoXGNLS0uT6IfoGIXh6ekJXV1dTJ48GR8/fkSPHj1kltPU1ISDgwN8fX2RkpKCt28LvutEIBDA398fwJcUN0RERERERERERN8D3lFOZUJOTg5u3boF4MvDIB4/fozg4GC8evUKixcvRu3atQF8yQteqVIlzJkzB76+voiLi0NAQIBE2hPgS07wrKwsBAUFwdbWFtra2qhfvz5cXFwQEhKCBg0aoGrVqti9e7fMgHpu6enpOHXqFNq1ayd+EGhuPXv2xIIFC/Ds2TPUr1+/UON1cXHB3LlzsXbtWtja2uLChQu4cuVKoepqamqie/fu2Lx5M1q0aIEaNWqI9z18+BC///47OnbsiDp16iAlJQXr169HrVq1ULduXZnt9evXD23btkXDhg2hoaGBQ4cOQVNTU6G7yYmIiIiIiIiIiJSBgXIqE9LS0tC3b18AX366U7t2bTg7OyMwMBBmZmbicgYGBli9ejWWLFmC0aNHw8TEBHPmzMGmTZsk2vPw8MCAAQOwYcMGJCQkoHnz5tixYwdmzpyJ2bNnY968edDS0oK3tzfatm2LGTNm5Nm38+fPIzk5Gd27d5e5v3PnzliyZAmOHj2KCRMmFGq8/fr1Q3R0NHbu3CkOeC9fvhx9+vQpVP22bdti8+bN6Nmzp8R2Q0NDGBgYYP369YiLi4OOjg6aNWuGpUuXQkNDQ2ZbdnZ2OHToEKKjo6Gurg5zc3OsW7dOYt6JiIiIiIiIiIhKMwbK6bs3btw4jBs3rtDlW7ZsiZYtW0psc3d3l3hdrlw5zJ49G7Nnz5bYbmBggLVr10q1KUrtIouXlxcePXqU5359fX3cvXtX/Prs2bNSZdq0aSPRhoaGBqZNm4Zp06ZJlPv6OLLaAoCLFy9CT08Pbdq0kdherVo1LF26NM++AsDixYslXk+dOhVTp07Ntw4REREREREREVFpxkA5kQp59uwZnj9/jp07d2LAgAEoX768srtERERERERERESkdAyUE6mQ2bNn49atW3Bzc8PIkSOV3R0iIiIiIiIiIqJSgYFyIhWyY8cOZXeBiIiIiIiIiIio1FFXdgeIiIiIiIiIiIiIiJSJd5QTERERFZGT+wOKvM3U1FQ8ePAAjRo1QqVKlYq8faLviXVdbYXqrQiOUqje5X8uKFSvhUs1heqd3Ldc/joKXne8eo5TqF5xXOeo5JkaKnbPXMjVBIXqJT78n9x1MpLfKHSs8jo15K6zPbRhiR2riVkthY6lXUFNoXrVdeV/rytXUOhQ6NqqrmIVSSE9PeWf7y1HX8hV/vzDdLnKmxpoylVevs/narjw9K3cn5X83CJ5MFBORERERERERERERN+VgwcPyl3H29s7z30MlBMRERERERERERHRd+XXX3+FUCiEmpr0r25kbRcKhQyUExEREREREREREVHZMn78eLi7u0tsu3PnDn777Tds3boVOjo6AIBLly5h1apV+balcKD87du3qF69uqLVqYwKCAhAYGAgAEBNTQ2VK1dGzZo10bx5cwwcOBBmZmZytxkeHo6bN29i1KhRRdLH6OhoeHp6ytxnamqKEydOFMlxcgsPD8fgwYPx119/wcrKqsjb/1YCgQBTp07FsGHDlN0VIiIiIiIiIiKiQqlduzaaNGkisS0pKQnAl3hX1apVAQDPnj0rsC2FA+WtWrWCk5MTunbtinbt2vHhUiRWsWJFBAUFAQA+ffqEx48fIzg4GPv27cOCBQvQrVs3udq7du0atmzZUmSBcpFJkybB0dFRYlvFihWL9BgiTZo0QXBwsEJfFJSE4OBg1KxZU9ndICIiIiIiIiIiUgqFA+Xjx49HaGgo/Pz8MGfOHHh6eqJr165o0aIF1NUVe4I2lQ3q6uqwsbERv3Z1dcWAAQPg6+uL6dOnw87ODnXq1FFeB/+/evXqSfSzOGlra5fYseSRlpaGihUrlsq+ERERERERERERlRSFI9qjRo1CaGgoDhw4gH79+uHatWvw9fWFm5sbFi5ciDt37hRlP+k7V6FCBcycOROZmZkICQkRbz906BD69+8PBwcHNG/eHD4+PoiIiBDvF6VySU1NhUAggEAggI+PDwAgMjISEydOhLu7O6ytrdGxY0ds2bIFOTk5RdJnPz8/dO7cGeHh4ejevTtsbGzQq1cv3L17V6JccnIypkyZAltbWzg7O2PFihXYsmULBAKBuEx4eDgEAoHEuhAIBNi4cSMCAgLg4uICR0dH+Pv7IzU1VaL92NhYTJkyBY6OjmjatCkGDhwo1QcAOHDgALp06QIrKyu4ublh5cqVyM7OltgvEAhw8+ZN/Pjjj7CxscGSJUvEfdm8ebO4rI+PD0aOHIkTJ07Ay8sLtra2GDx4MF6+fCnVt5EjR8La2hru7u7Ytm0bFixYgNatWysw40RERERERERERMrxzQ/zbNy4MRo3boypU6fi6tWrOHr0KA4cOIAdO3bA1NQUXbt2RdeuXZnWgdCgQQMYGRnh5s2b4m3R0dHo3r076tati4yMDBw7dgwDBw7EkSNHYGpqit69eyM2NhahoaHidC7a2toAvuTJNzU1RZcuXVC5cmU8ePAAAQEBSE1NxdixYwvsT05ODrKysiS2qaurS/wiIj4+HvPnz4evry90dHSwfPlyjB07FqdOnYKmpiYAwN/fH1evXsUvv/yCWrVqYd++fbh3716h5mTXrl2wt7fH4sWLERUVhSVLlqBatWqYMmUKAODjx48YMGAAKlWqhJkzZ0JHRwc7duzADz/8gL///hvVqlUDAGzduhVLly7FDz/8AD8/P0RGRooD5aK2RCZPnoy+ffti5MiR0NLSyrNvDx48wPv37zFlyhRkZ2dj8eLF+OWXXxAcHAzgy5OCR48ejXfv3mHOnDnQ0dHB5s2b8fr1a/6qhIiIiIiIiIiIlEJDQwMVKlSAmpqaxPavX3/tmwPluQ9kb2+PpKQkxMXFISwsDC9evEBgYCDWrFmDNm3aYMaMGXwAqIqrUaMG3r17J36dO6Cdk5MDV1dXRERE4ODBg5g0aRKMjY1hbGwslc4FAJydneHs7AzgS9DW3t4eaWlp2LlzZ6EC5RMnTpTa1qtXLyxYsED8+uPHj9i5cycaNmwIANDS0sLgwYNx+/ZtNGvWDE+fPsWpU6fw+++/o3v37gAANzc3dOjQoVDzYWhoiOXLlwMAWrZsifv37+PkyZPi4HZQUBCSkpIQEhIiDoo7OzvDy8sLmzdvxtSpU5GSkoI1a9Zg+PDhmDRpEoAv6W40NTWxePFiDBs2TPzgAgDo168ffH19C+xbcnIyDh06BH19fQBAamoq/P39ERsbC2NjY1y8eBH37t3Drl270KxZMwCAk5MT3N3doaurW6jxyyIUCgEAnz9/VrgNKphofjnPxa80zHVxPUeE67VklIZzSFWUhrnmeiV5ff1rxLJ2vLxwvRKVPrKuD6VhrQLFt14B5Y+N8ldaPre+B9/jep0/fz5sbW2ltjs4OOD27dsS29zc3MQ3f+alSALlojvJ//77b6SkpMDc3BzTpk1Dly5doKGhgQMHDmD9+vWYOnUqtm3bVhSHpO+UUCiU+PYmMjISK1aswM2bN5GQkCDeHhUVVWBb6enpWL9+PY4ePYo3b94gMzNTvO/Tp0+oXLlyvvWnTJkCJycniW2ioLBI9erVxUFy4Mtd8QAQFxcHAOJUKp6enuIy6urq8PDwwNatWwscg4uLi8RrMzMzHDt2TPw6LCwMjo6OqFKlivjud3V1dTRv3lx87Js3byI1NRXt27eXuEPexcUFaWlpePLkCRwcHMTbW7VqVWC/AMDCwkJiPkRjFwXK79y5A11dXXGQHAAqV64MZ2fnQt9RL4toDIU5B+jbcZ5LjjLn2t7evlja5XotWZznksP1WppVU3YHSp0HDx6U6eMVhOtVUYbF2DapqvyuD8r+/Cmu9Qoof2zyMVB2B0pcafvc+h4o+5yWZ73u3bs33+fuZWVl4c8//8S4ceOgp6cHPT29fNtTOFD+8OFDHDlyBMeOHcPbt29hYGCAXr16oXv37hK5mQFg2LBhqFChAn7//XdFD0dlRGxsLExMTAAAKSkpGDp0KPT19eHn54eaNWuiQoUKmDFjBtLT0wtsa+nSpQgJCcGYMWNgaWkJHR0dnDlzBn/++SfS09MLDJTXqVMHVlZW+Zb5+s5oUboVUf/i4+OhqakJHR0diXJfB9zlaT8jI0P8+sOHD7h16xaaNGkiVbdu3briMgDg7e0t8xhv3ryReG1gULgPxoLG/vbtW5njLOzY81KuXDlkZWXBxMQk39Qw9G0+f/6MqKgoznMJKMtzzfVaMsryOVTalOW5Livr9cLTt8ruQqnTqFGjMn28vHC9fpuYa+8KLkQkJ1nXh7K8VkW+p7Hdfh2v7C6UuNLyufU9+B7Xa0JCAnr06IHx48dj6NChEjfnPnnyBNOmTcODBw8wbty4QrWncKC8e/fuqFixIjw9PdG9e3e4urrmm5e4QYMG+Ub4qex78uQJ4uLixAHdW7duITY2FuvXr4eFhYW4XHJyMoyNjQts78SJE+jbt69EGpELFy4UfcfzYWhoiMzMTCQnJ0sEy9+/f18k7VepUgVubm6YMGGC1L7y5cuLywBAYGCgzHmrXbt2kfTla9WrV5c5zm8du+iipqWlVaw/j6MvOM8lpyzONddryeI8l5yyONdcr2VXSb+fpe38KYvnNNcrfa/yO1/L8vlclsdWFvC9kd/3dE4fOXIEixYtwrJly3Dq1CksXrwYdevWxaZNmxAQEIDq1asXKuODiMKB8oULF8LLy6vAu3ZFnJycpNJckOpIT0/HvHnzUL58efTu3RsAkJaWBuD/7lQGgBs3biAmJkYi3cnXd1nnbjN33ezsbIm0JSXB0tISAHDmzBlxjvKcnBycO3euSNp3cXHBkSNHYGZmludFytbWFlpaWoiNjUXbtm2L5LiFYWVlhaSkJPz7779o3rw5gC8pb65cufJNOcqJiIiIiIiIiIgKoq2tjQULFqBdu3aYMWMGvL29Ua9ePTx8+BB9+vSBn5+fXEF/hQLlnz9/xs6dO5Geno7+/fsr0gSVYTk5Obh16xaALw9NePz4MYKDg/Hq1SssXrxYfIezjY0NKlWqhDlz5sDX1xdxcXEICAiAkZGRRHtmZmbIyspCUFAQbG1toa2tjfr168PFxQUhISFo0KABqlatit27d8sMqOflxYsX4n6KqKmpwdrautBtNGzYEG3btsX8+fPx+fNn1KxZE/v27UNaWlqBT9ItjCFDhuDo0aMYNGgQBg8ejJo1a+L9+/e4ffs2jIyMMGTIEOjq6mL8+PFYunQpYmNj4eDgAA0NDbx69QpnzpxBQEBAsfxkpmXLlmjSpAkmT56MSZMmQVdXF5s2bULlypWLZOxEREREREREREQFadmyJXr27In169fj0aNHaNq0KX755Re574xXKFCupaWF6OhoBsNIprS0NPTt2xfAl5+41K5dG87OzggMDISZmZm4nIGBAVavXo0lS5Zg9OjRMDExwZw5c7Bp0yaJ9jw8PDBgwABs2LABCQkJaN68OXbs2IGZM2di9uzZmDdvHrS0tODt7Y22bdtixowZhernihUrpLZpaGjg/v37co134cKFmDt3LpYsWYLy5cvD29sbDRs2xK5du+RqR5aqVasiODgYq1atwrJly5CYmIhq1arB2tpa4u7xoUOHwsjICFu3bsXOnTtRrlw51K1bF61atZK4674oqamp4Y8//sCsWbMwa9Ys6OrqYvDgwXj+/DkflkFERERERERERMXuxYsX8PPzw82bN9G5c2eYm5tj7dq16NSpExYsWAA3N7dCt6Vw6hU3NzdcvnwZ/fr1U7QJKoPGjRtX6AT5wJdvfFq2bCmxzd3dXeJ1uXLlMHv2bMyePVtiu4GBAdauXSvVpii1S15q166NR48eFdi3xYsXS23T1dWVqqurq4tly5ZJbBs4cKBE3nVHR0eperL6MGTIEAwZMkRim6GhIRYsWFBgfzt16oROnTrlub9Hjx7o0aOHzH1f92XHjh1SZRo1aiRVztjYGBs2bBC/zsjIQKdOndCsWbMC+0tERERERERERKSoHTt2YMWKFahcuTICAwPRpk0bAECbNm3g5+eHESNGoHfv3pg3b16h2lM4UD569GhMmDABv/zyC/r27Ys6deqgQoUKUuX09PQUPQTRd+HkyZN48+YNzM3N8fnzZ4SGhuK///6TGcQva4KDg5GTkwNTU1MkJSVhz549iImJkXm3PhERERERERERUVERPUPzt99+k4hB169fH3v37sXGjRsREBBQ/IFy0Z2rT58+RWhoaJ7lmIKByrpKlSrh8OHDiIqKQmZmJurXr4+lS5eKv8UqyypUqIANGzYgJiYGAGBhYYH169fDyspKyT0jIiIiIiIiIqKybOXKlWjfvr3Mferq6hg5ciRatWpV6PYUDpSPGTOGOcqJ8CUNkTz5jsqS7t27o3v37sruBhERERERERERqRhRkFwoFOLu3bt49eoV1NTUYGJigkaNGgEABAJBodtTOFAuTx5qIiIiIiKibzWpr0mJHu/yPxcUqjeqS3VUqlRJ7nqT+gYodDxFnNxfcsei0qdrq7olWg+wlbvG6pAohY6Uki6Uu45VbQ2FjqX4fMjvyPmXJXaskhwXlayhXerJVX7/GfnOu4+p8q8/eXn1mSxX+Vlbn8lV3rquwqHSQuvpWbxrTN73DZC/T/IeozjHfO3aNcyYMQMvX0r2qV69evjtt9/g7Oxc6LbUi6pTaWlpSEtLK6rmiIiIiIiIiIiIiIhkevjwIXx9faGuro558+bBz88PAPD777+jXr168PX1xe3btwvd3jd9TfL69WsEBATgwoUL+PDhAwCgatWqcHd3x9ixY1GrVq1vaZ6IiIiIiIiIiIiISMoff/wBfX19HDhwAJUqVcKVK1cAAC1btkS3bt3Qv39/rFmzBps3by5UewoHyiMjIzFgwAAkJyfDxcUFZmZmAIBnz57h8OHDOHfuHHbv3o369esreggiIiIiIiIiIiIiIin//vsvBg4cmGfKOy8vLwQGBha6PYVTryxfvhzq6uo4ePAgNm3aBH9/f/j7+2Pjxo04dOgQ1NXVsXz5ckWbL7MCAgIgEAjg5uaGnJwcqf39+vWDQCAQ/1SgKPn5+aFz584FlhMIBIX+pqUoFLZfpUHr1q0xd+5cZXejSHXr1q3Q51tmZiYcHR1hYWGB169fS+0PDw+HQCDAnTt3irqbREREREREREREYqmpqTAyMspzv7q6OrKysgrdnsKB8n///Rc+Pj4ynxxqbm6OgQMH4tq1a4o2X6Zpamriw4cP+PfffyW2x8TE4NatWwo9+KcoBQcHo0uXLkrtQ2kVGBiIoUOHKrsbSnP58mUkJiZCKBQiNDRU2d0hIiIiIiIiIiIVZWBggLi4OKntQqEQGRkZOHDgAKysrArdnsKB8qysLFSsWDHP/VpaWnJF7FWJpqYmWrZsiWPHjklsP3bsGBo2bIi6dZX7hGkbGxtUr15dqX0oKaKFU1iNGzdG7dq1i7FHpVtoaCh0dXXRpEkTHD16VNndISIiIiIiIiIiFWVtbY3w8HCp7StXrkTHjh0RGRmJiRMnFro9hQPljRo1QkhICJKTk6X2paSk4K+//kLjxo0Vbb7M69y5M06ePInMzEzxttDQUJkpSERvqru7O6ytrdGxY0ds2bJFKnVLRkYGVq5cCU9PT1haWqJly5YyU2qEh4eje/fusLGxQa9evXD37l2J/V+nXvHx8cHIkSNx4sQJeHl5wdbWFoMHD8bLly+ljr9ixQp4eHjA0tISHTp0KLJgamRkJH766SfY29vDxsYGvr6+UsffsmULevbsCXt7ezg7O2PkyJF4/vy5RBlRmpcLFy6ga9eusLKywtmzZxEQEABbW1s8evQI/fv3h7W1NTp37oxLly5J1P869YqovYLmNDk5GVOmTIGtrS2cnZ2xYsUKbNmyReYvMnJ7+/Yt/P394enpiaZNm6Jdu3ZYsWKFVHBfIBBg48aNCAgIgIuLCxwdHeHv74/U1FSJcjdu3ECPHj1gZWUlnofCSk1NxdmzZ+Hl5YUePXrg8ePHePToUaHrExERERERERERFZW+fftCW1sb79+/F29TV1fHkSNHUK9ePezevRt2dnaFbk/hh3mOGzcOI0aMQIcOHdCjRw+YmJgAAJ4/f46DBw8iMTERs2bNUrT5Ms/DwwPTp09HWFgYWrVqhadPn+LRo0dYu3Ytjh8/LlH27du3MDU1RZcuXVC5cmU8ePAAAQEBSE1NxdixY8Xlxo0bh6tXr2LkyJGwsbHB+/fv8ffff0u0FR8fj/nz58PX1xc6OjpYvnw5xo4di1OnTkFTUzPP/j548ADv37/HlClTkJ2djcWLF+OXX35BcHCwuMyECRNw48YNjBkzBmZmZrhw4QJ++eUX6Orqwt3dXeG5evXqFfr164eGDRti8eLFUFNTw7p16zBkyBCcOHEC5cuXBwDExsZi0KBBqFmzJlJSUrB3717069cPJ0+ehJ6ensR8zp8/Hz/99BNq1KiBmjVr4smTJ8jMzMSUKVMwePBgjB49Ghs3bsT48eNx9uxZVK1aNc/+FWZO/f39cfXqVfzyyy+oVasW9u3bh3v37hU49g8fPkBPTw/+/v7Q1dVFVFQUAgICEB8fj0WLFkmU3bVrF+zt7bF48WJERUVhyZIlqFatGqZMmSLu57BhwyAQCLBq1SokJSVhzpw5SE1NRaNGjQrsy+nTp5GamorOnTujYcOGWLRoEUJDQwsM9hMRERERERERERU1R0dHODo6il87ODggPDwcOjo6CrWncKDc2dkZGzZswJIlS7BhwwaJfY0aNcLSpUvh5OSkaPNlnpaWFlq3bo1jx46hVatWCA0Nha2tLerUqSNV1tnZGc7OzgC+pAqxt7dHWloadu7cKQ6Uh4WF4fz581i+fLnEXelf36H+8eNH7Ny5Ew0bNhT3Y/Dgwbh9+zaaNWuWZ3+Tk5Nx6NAh6OvrA/hyd7G/vz9iY2NhbGyMq1ev4uzZs9i8eTNatGgBAHB1dUV8fDwCAgK+KVAeGBiIKlWqYOvWrahQoQIAwM7ODp6enggJCcHAgQMBAL/++qu4TnZ2NlxdXeHs7IyTJ0+ib9++EnOwceNGWFtbSxxHFCgX9dXU1BSenp64ePEiunXrlmf/CprTp0+f4tSpU/j999/RvXt3AICbmxs6dOhQ4NgFAgGmTZsmfm1nZwctLS34+flh1qxZ0NLSEu8zNDQUP0C3ZcuWuH//Pk6ePCkOlAcFBUFNTQ0bN24UXzCMjY0xZMiQAvsBfPnFg5GRERwcHKCurg4nJyeEhoZi0qRJUFNTK1QbhSEUCgEAnz9/LrI2SZpofjnPxa80zHVxPfuC67VklIZzSFWUhrnmei0bOM/Fj+uVSoOvf8FbVhTluErDWgWKb70Cyh8bfX9K47UjNTW1WNerPGNWdL0KhUIkJiaK/6xIrErhQDkAuLi44NChQ4iPj8fr168BADVr1oShoeG3NKsyOnfujMmTJyMtLQ3Hjx+Hj4+PzHLp6elYv349jh49ijdv3kika/n06RMqV66MK1euQEtLC506dcr3mNWrVxcHdAGgQYMGACAz8X1uFhYW4iB57nqiQHlYWBj09PTg5OQkkZvexcUFv/32G7Kzs6GhoZHvMfISFhaGjh07QkNDQ9y2rq4uGjduLJHi5NatW1i9ejXu378vXhgAEBUVJdGenp6eVJAc+PLTDNEXEgBQu3ZtVKxYscC5KWhO79y5AwDw9PSUOJaHhwe2bt2ab9tCoRBBQUHYt28foqOjkZ6eLt736tUrmJubi1+7uLhI1DUzM5PIg3/79m04OjpKfKvm7Owscbd9Xt6/f4+wsDD4+PhAXf1LxqYuXbpg2rRpuH79er5fsshL9B5//b5R8eA8lxxlzrW9vX2xtMv1WrI4zyWH65W+Fee55HC9lmXVlN2BAj148KAEj1ZycZbiGJeyz+fiWq+A8sdWvBjfKw7Ff+2Q/33L3afCndPyHUOeMcu7XuPi4rBy5UqcPn0aKSkpAABtbW14enpi8uTJcj2H8ZsC5SKGhoYMjiugRYsW0NTUxOrVqxEdHZ3nHcZLly5FSEgIxowZA0tLS+jo6ODMmTP4888/kZ6ejsqVKyMxMRGGhoYFfluiq6sr8VqUGiR3AFaReh8+fEBiYiKaNGkis358fDyMjY3zPUZePnz4gKCgIAQFBUntE/Xj9evXGDp0KCwtLTFnzhxUr14dmpqaGDlypNTYDAwMZB6nYsWK4jQuudv/1rmJj4+Hpqam1M8+cn/xkJegoCD8/vvvGD58OBwdHaGrq4s7d+5g7ty5Uv2S1Y/cuczj4+NRr149qWMUph//+9//kJWVBXd3dyQlJQH48vOW8uXL4+jRo0UaKC9XrhyysrJgYmIiccc8Fa3Pnz8jKiqK81wCyvJcc72WjLJ8DpU2ZXmuuV4VdbfgIjJwnosf12vZd/nZW2V3oUCFSWFZVGKuvSuxYxXluMryWhUpy2OLulJy550qKe5rhyLvW6NGjeRar/Ieo7jGHBsbi969e+P9+/fw8PAQ38j69OlThIaG4p9//sFff/0FIyOjQrWncKD80KFDBZapUKECjI2N0aRJE6kAJH0JZLZr1w7btm2Ds7NzngHcEydOoG/fvvD19RVv+/ohjHp6eoiPj1f4pwXfqkqVKtDX15dKwyNSmGBsfm27u7tjwIABUvsqV64MALh06RJSU1MRGBgoDhhnZWXh48ePUnVKen4MDQ2RmZmJ5ORkiWB57gcN5OXEiRNo3bo1Jk+eLN4WGRmpcD8SEhKkthemH6GhoQAgM03LiRMnMGPGjHxz3MtD9P5oaWkV68/j6AvOc8kpi3PN9VqyOM8lpyzONddryeI8l5yyONdcr9+Psvr+FMe4yvL5XJbHRsWjNJ4vuftUHOd0cY159erVSElJwb59+6Ru3r1//z4GDhyI1atXY+HChYVqT+FAuZ+fn/gDXJRDTST3djU1NWhra8PX1xcjRoxQ9HBlVu/evZGQkIA+ffrkWSY9PV0iCJmdnS2RUgP4knZj48aN+N///oeOHTsWW3/z4uLigk2bNkFTUxMWFhZF2razszOePHmCxo0b55m+JS0tDWpqaihX7v9OadFd0MpmaWkJADhz5ow4R3lOTg7OnTtXYN20tDSpAPTRo0cV6kfTpk2xZ88eiYD9lStXJNLUyBITE4ObN2+iX79+UufWgwcPsGjRIly6dAmtW7dWqF9ERERERERERETyunjxIvr06SMzw0Xjxo3Rr18/8c2fhfFNd5T7+flBT08PAwcORN26dQEAL168wK5du5CcnIyZM2ciISEBO3bswIoVK1C5cmWZdwWrsqZNm+KPP/7It4yLiwtCQkLQoEEDVK1aFbt375ZIqSEq4+7ujl9//RUvX76EtbU1EhMTcfLkSaxataoYR/CFq6srPDw8MHz4cAwfPhwCgQCfP3/G06dP8eLFCyxYsCDf+ikpKThx4oTUdkdHR4wfPx69evXCsGHD0KdPHxgYGODdu3e4du0amjVrhs6dO4sfHOvv749+/frhyZMn2Lp1q1Q6EmVo2LAh2rZti/nz5+Pz58+oWbMm9u3bJw7u58fFxQXbt2/Hzp07YWJigiNHjuDFixcK9eOHH37A7t27MWLECIwYMQJJSUkICAgoMEe56IIyfPhwqYfN2tvbY8OGDQgNDWWgnIiIiIiIiIiISkxKSgrMzMzy3G9qalrgDaK5KRwoDwoKQrVq1bB582aJ7QKBAG3btsXw4cPx119/YcGCBWjdujUGDBiAPXv2MFCugJkzZ2L27NmYN28etLS04O3tjbZt22LGjBkS5QICAhAYGIjg4GAEBgaiWrVqcHV1LbF+rlmzBhs2bMCePXsQExMDHR0dNGzYED169Ciw7ps3bzBhwgSp7bt27UKzZs0QEhKCVatWYc6cOUhNTYWhoSGaN28OgUAA4Mt5t2jRIgQGBmLkyJFo1KgRVq9ejZ9//rmoh6mQhQsXYu7cuViyZAnKly8Pb29vNGzYELt27cq33pgxY/DhwwesWbMGAODl5YUZM2Zg1KhRcvehevXq2LhxI+bPn48JEyagbt26mDVrFlauXJlvvdDQUNjZ2UkFyYEv+RM7d+6Mffv24dOnT3L3iYiIiIiIiIiISBFGRkZ4+zbvZ1rExcXJ9TBPNeHXeVMKqXnz5pg4cWKege9d/4+9+46K6lr/Bv6lCgioKIoNwTY2pIlIURSjKGLs/WKXKLZYA1Hxihp7HSzYUaMiiRUjxljv1YjJT4yNJMYEFSOIoAKhw7x/8HIuIwPMIAzjzPezlms55+yzzz7P2VtZzxye8/XX2LJlC27fvg0A2L9/PzZt2oR79+5V5HREamfMmDHQ1tbGoUOHqnsoKuP+/fuQSCTIzc1F27ZtVbJul7rIyMhAbGws46wE6hprrlflUdc5pIrUNdZcrxU3eHbJl8nL4/CqYYxzFeN6VX9bIuIqdFx6tuIpDpsmskt8lufT7pYVOq4izlx9prRzVeZ1qetaBQrXa05OjlpeW5FvLyk2795lVCjFqJC3Cp7jbUaBQu1tLSv8TLHchvSs2n87FL1vQOGYFFmvip6jqq55xYoViI6OLrVMsY+PDzp16oR///vfcvVX4btfUFCAv/76q9T9f/31FwoK/jcZ9fX1UaNGjYqejuijduHCBbx8+RKtW7dGZmYmIiMj8fPPP2Pbtm3VPTQiIiIiIiIiIqKPTkBAALKyskrdf+zYMRgYGMjdX4UT5Z6enjh69CiaNWuGYcOGCUnw7OxsHD9+HMeOHUPfvn2F9jExMUIdcyJNY2RkhNOnTyMuLg65ublo3rw51q1bh08++aS6h0ZERERERERERPTR0dXVhbGxcan7y9ons7+KDmTRokV4/vw5VqxYgTVr1sDc3BwAkJSUhNzcXHTs2BGLFi0CUJg8NzAwwIQJEyp6OqKPWteuXdG1a9fqHgYREREREREREZHayMvLw40bN/Ds2TO8e/euxH6JRIKZM2fK1VeFE+W1a9fG0aNHcfHiRfznP//B33//DQBwd3eHu7s7PvnkE2hrawMAatSogRUrVlT0VEREREREREREREREgtjYWEyfPh1///03tLS0ZLZRSqIcALS0tNC7d2/07t37Q7ohIiIiIiJSOSe2jFOofdFLsIjUVUVfKFmRl0PWrCE74VGe2cOs5GpXGS+ZPHpB8XiM8qpYSVplvjiU1FfQ/j8Vaq/oiy1rGSm2bp++VuxFmxURPKF5lZ9D1VT1y0KVdQ55LFu2DJmZmdixYwecnJwULrXyvg9+lWtiYiJ++uknJCcnw8vLCxYWFigoKEBqaipMTEygo1Oxt0cTEREREREREREREcny6NEjzJo1Cz169KiU/iqcKJdIJFi9ejW+/vpr5OXlQUtLC61bt4aFhQX++ecfeHp6YtasWRg/fnylDJSIiIiIiIiIiIiICADq1asnlP6uDBXuac+ePTh48CAmTpyI/fv3QyKRCPtMTEzQu3dvfP/995UySCIiIiIiIiIiIiKiIuPHj8eJEyeQkZFRKf1VOFEeERGBgQMHYu7cuWjTpk2J/SKRCHFxcR8yNlIysVgMkUgk/LGxsUHfvn2xe/duFBRI140SiUTYu3dvNY20UGxsLEQiEaKjo2Xuf/DgAUQiEU6fPi1zf35+PlxdXbFw4ULEx8dDJBIhKiqqKodcKk9PTwQHBwufAwIC4OPjU+nnEYvFuHPnTontqnA/iYiIiIiIiIiI5GViYgIDAwP4+Phgy5Yt+Oabb3Dy5EmpPydOnJC7vwqXXnn58iXs7e1L3W9oaIj09PSKdk/VxMDAAGFhYQCArKwsREdHY8OGDZBIJPDz86vm0SmmQ4cOsLa2xrlz5zBgwIAS+3/88UckJyejf//+qF+/PsLDw2FlZaX8gcrg7+9fad+GFRcSEgIjIyM4ODhIbQ8PD0ejRo0q/XxERERERERERERV4csvvxT+vnPnTpltJBIJBg8eLFd/FU6U161bFy9fvix1/8OHD9GwYcOKdk/VRFtbG3Z2dsLnLl264Pfff8f333//0SXKAcDHxwc7d+7EmzdvUKdOHal9kZGRqFu3LlxdXaGjoyN13dXN0lK5bw9WpWsnIiIiIiIiIiIqz6VLlyq1vwqXXunVqxeOHTuG58+fC9u0tLQAAP/9739x8uRJ9OnT58NHSNWuZs2ayMvLU/i4q1evYsKECXBxcYGDgwOGDRuG69evS7U5ceIERCIRHj16hMmTJ8POzg69e/fGqVOnSvS3fft2uLm5wd7eHjNmzEBycnK5Y+jfvz9yc3NLlFTJzs7GxYsX4e3tDR0dHZmlVy5duoTBgwfD3t4enTp1wuDBg3Ht2jVhv6xyJQcOHIBIJBI+Z2RkIDg4GF5eXrC1tYWnpyeCgoKQlpZW5rjfL73i6ekpVRan6E9AQAAA4NWrVwgMDETPnj3RsWNH9O7dGxs3bkROTo7UeAFg7dq1wvFFZWtkXcuxY8fg5eWFDh06wNPTE9u3b5cqwaPIvSMiIiIiIiIiIqpMjRo1kuuPvCr8RPmsWbMQHR2NAQMGoFOnTtDS0sLu3buxZcsW3L17F23btsXUqVMr2j1Vo6KkeFHple+//x6fffaZwv3Ex8ejR48emDhxIrS1tXH9+nX4+fkhLCwMzs7OUm3nz5+P4cOHY8KECTh+/DgCAgJgY2ODFi1aAAAOHz6MLVu2YOLEiXB1dcXNmzexaNGicsfQrFkz2NjYIDIyEqNGjRK2X716Fenp6ejfv7/M4549e4bZs2ejX79+mDdvHgoKCvDrr7/i3bt3CsUgKysL+fn5mDNnDszMzPDy5Uvs3LkT/v7+OHTokNz9hISESCW9f/vtNyxduhTW1tYAgDdv3qB27doIDAyEqakp4uLiIBaLkZSUhFWrVgEoLK8yYsQI+Pr6Ckn4li1byjzfoUOHsGLFCvj6+qJ79+6IiYlBSEgI0tLS8MUXX0i1Le/eERERERERERERKdulS5ewcuVKXL58Wa72FU6Um5iY4Pjx49i3bx8uXLiAGjVq4KeffoKlpSWmT5+OyZMnw8DAoKLdUzXJyMhA+/btpbZ5e3tXqOzKv/71L+HvBQUFcHZ2xh9//IHjx4+XSJSPGTMGY8aMAQDY29vj2rVruHDhAvz9/ZGfn4/Q0FAMGDBASNJ27doVycnJpb6os7j+/ftj1apVePnypVAO6Ny5c7C0tIStra3MYx49eoTc3FwsWbIExsbGwjkVZWZmhmXLlgmf8/Ly0KRJE4wePRp//fWXkOguT7t27YS/p6SkYO7cuXBzc8OUKVMAFD4RXjyB7eDgAENDQwQEBCAoKAiGhoZCeZWGDRuWWWolPz8f27ZtQ79+/bB48WIAgLu7O3Jzc7Fv3z74+flJlbEp695VhEQiAQBkZmZW6HiST1F8GeeqpwqxNjIyqpJ+uV6VQxXmkKZQhVhzvX7cVGEOaQpViDXXq/yq4v1LH3qu6ppDyoyFKlCFtQpU3XoFqv/aqGyatuY+xMe4XpOTk7Ft2zY8fPhQ5r1OS0tDQkKC8KDsqFGjMHr06FL7q3CiHCh88aO/v3+FE2KkegwMDHD48GEAQE5ODh4+fIitW7di8eLFwpPJ8kpISMCmTZtw8+ZNJCUlCT/wvZ+IBwoTsUWMjIzQqFEjJCQkCP28evUKvXr1kjrGy8tLrkS5t7c31qxZg++++w6TJk1Ceno6rl69ikmTJpV6jEgkgo6OjvC0tJOTE0xMTOS67vedOnUKBw4cwNOnT6UWbVxcnNyJ8iK5ubmYPXs2dHR0sHHjRmhrF1ZPkkgkCAsLw/HjxxEfH4/s7GzhmOfPn6N169Zyn+PPP//EmzdvSpRO8vb2RmhoKO7duwcPDw9he1n3riKKfqMhLi6uwn2Q/Bhn5anOWDs6OlZJv1yvysU4Kw/XK30oxll5uF6VzbxCR8XGxlbgqHpKOdeHxVnxeFQsFh+/6p7PVbVegeq/NsXUKb+JmtHUNfchqntOK7JeFy1ahOvXr0MkEpV4NyEAoYRw0T5DQ8My+6twonzs2LGYNm0aXFxcZO6/desWtm/fjoMHD1b0FFQNtLW1YWNjI3x2dHREfn4+Vq9ejQkTJsidcC0oKMC0adOQlpaGWbNmoVmzZjA0NMTWrVtlvgT2/SS0np6eUGokKSkJQOHT2cXVqyffD07m5uZwdnZGZGQkJk2ahIsXLyI7O7vUsisAYG1tjZ07dyI0NBQzZsyAtrY23N3dERQUpFBto4sXL+KLL77AiBEjMGfOHNSuXRtJSUmYPn26VDJbXitXrsSDBw9w/Phx1KpVS9geFhaGNWvWYPLkyXB2doapqSnu37+P4OBghc9TVF6mbt26UtuLPr9ffqase1cRurq6yMvLg5WVVbn/gFHFZWZmIi4ujnFWAnWONdercqjzHFI16hxrrlflUOc5pGrUOdaqvF5f3H5doePatm2r8DExL5Kq9FyVMYd+/4/i8ahILD5m6rxWi3xM13b6XsUfavtYadqa+xAf43r9+eefMXPmTEybNk3m/sjISMyfP1/u/HSFE+W3b9/GsGHDSt2fkpKCn376qaLdkwpp3rw5AOCPP/6QO1H+9OlTPHr0CNu2bcMnn3wibM/KylL4/Obmhd/Sp6SkSG1//Vr+H0r69++PwMBA/Pnnn4iMjET79u2F6ypNt27d0K1bN6Snp+P69etYtWoVAgMDERYWBgDQ19dHbm6u1DGpqalSn6OiotC2bVsEBwcL227fvi33uIs7duwYjh07hq1bt6JVq1YlzuPp6Yl58+YJ2548eVKh89SuXRtAyXgXvTy1eIK+KhS9FNjQ0LBKfz2OCjHOyqOOseZ6VS7GWXnUMdZcr8rFOCuPOsZaHderMq9D0XMpO87qck8VpU7z+X3qfG3qgPdGcR/TnP7nn3/QrFmzUvcXVbeQl/aHDKboP3BZnj59ipo1a35I96QiHj9+DAAyf4WhNEVPMevp6QnbXrx4gZiYGIXPb2FhAXNzc1y8eFFq+4ULF+Tuo3fv3qhRowbCwsJw69atMp8mf5+xsTG8vb3Rr18/qeSzhYVFiWT0zZs3pT5nZWVJxQAAzp49K/e5i/z8889YsWIFpk6dit69e5fYL+959PT0yn3C3NraGmZmZoiKipLafv78eejp6aFjx44Kj5+IiIiIiIiIiKgyOTk5lahAUVy9evXQuXNnuftT6InykydP4uTJk8LnHTt24Pjx4yXapaWl4bfffkO3bt0U6Z5UQEFBAe7evQugsB72w4cPsWPHDrRs2RKdOnWSu5/mzZvDwsICGzZsQEFBATIyMrB161bUr19f4THp6OjAz88PK1euRN26deHm5oYbN24gOjpa7j6MjY3RvXt3hIeHQ0tLC97e3mW2P3bsGO7evYuuXbvC3Nwc8fHxOHPmDNzc3IQ2Xl5eCAsLg42NDaytrXHmzBkkJiZK9ePq6org4GBs27ZNeNHljz/+qND1p6enY+bMmWjWrBk8PDyE+wMUlqOxtLSEq6srDh48iMOHD8PKygpnzpzB06dPS/TVvHlzXLp0CZ06dYKhoSGsra2Fl5UW0dHRgb+/P1asWAEzMzPhnLt378a4ceMU+sKEiIiIiIiIiIioKpRXUsXFxaXUsuGyKJQoz8zMxJs3b4TP//zzj/AyweKMjIwwcuRITJ8+XZHuSQVkZWVhxIgRAApr41lYWODTTz/FjBkzSjyxXBZ9fX2IxWIEBwdj9uzZaNiwIaZNm4Zbt27hwYMHCo/L19cXqampOHLkCI4ePQoXFxesWLECkydPlruP/v3748KFC3B2dkaDBg3KbCsSiXDlyhWsWrUKb9++hbm5Ofr164fZs2cLbfz9/YW362ppaWHEiBEYO3YsVq9eLbQZOXIk4uPjcfjwYezduxfu7u7YsGEDhg8fLve43759i5SUFKSkpGDkyJFS+wYNGoTVq1dj+vTpePPmDbZu3QqgMIm/ePFiTJ06Vap9UFAQvvrqK0yZMgVZWVk4ePAgnJ2dS5zT19cXurq6OHDgAI4ePQpzc3PMmDGjRH9ERERERERERETVQd7yxkVPlRe1L+0pcy2JosVa/j9PT08sWrQIPXv2rMjhREQl3L9/HxKJBLm5uWjbtu1HUxPrY5SRkYHY2FjGWQnUNdZcr8qjrnNIFalrrLlelUdd55AqUtdYq/p6PXP1WYWO+7S7pcLH7DlT8jdk5TH509Jr1RZXGXPo6AXF4zHKS/FYfMzUda0Ches1Jyfno7q2oP1/KtTe1rLCrzaUy9PXBVXaPwDMHWFV5edQFx/jem3bti0kEkmZ5cElEgl+/fVX5OTkwNbWVvgsS4Vn/OXLlyt6KBERERERERERERFRhZVXeqU4fX39cttXyldD6enpSE9PR0FByW+CGjVqVBmnICIiIiIiIiIiIiICUPgyz8ps/0GJ8iNHjuDAgQN4/vx5qW1iY2M/5BRERERERERERERERAr5+eefcf78eSxZskSu9hVOlB89ehTBwcFwd3fHkCFDsGnTJowfPx41atTAiRMnUK9ePfj6+la0eyIiIiIiIiJSIRWpNV5R9U1LrzdbFsXqqJvjxe3XFb4uTas3Th+/4AnNq3sIUr69VLH3HhCV5ZdffsF3332HqKgovHr1CgYGBlWfKD98+DDc3d2xZ88evHnzBps2bYKHhwdcXFwwefJkDBkyBG/fvq1o90REREREREREREREZXr06BG+++47nD9/Hi9evIChoSG6desGb29vdO/eXe5+Kpwof/bsGUaPHg0A0NPTAwDk5uYCAExMTDB06FAcOXIEEydOrOgpiIiIiIiIiIiIiIhK2Lx5M86fP49nz55BX18fXbt2xdy5c+Hp6QlDQ0OF+6twotzExAT5+fkAAGNjYxgaGiIhIUHYX7NmTbx+/bqi3RMRERERERERERERyRQaGgojIyMsWrQIgwYNQs2aNT+oP+2KHtiqVSv8+uuvwmdbW1scPXoUiYmJePnyJcLDw2FlZVXhgYnFYohEIohEIrRp0waOjo7o378/goOD8eTJkwr1GR0djZ07d1Z4TGU5cOAARCIRvvzyy0rt98SJExCJREhJSSmzna+vLz777DPhc1VeqzL6V0WdOnWCWCwus42vry9EIhHmzJlTYl96ejo6duwIkUiEEydOVMqYBgwYgICAAIWOiY+Ph0gkQlRUlLDN09MTwcHBlTImIiIiIiIiIiKiqtasWTNkZGRg7dq1WLBgASIjI5GRkVHh/iqcKP/000/x+PFj5OTkAABmzpyJJ0+eoHv37vD09MRff/2Fzz//vMIDAwADAwOEh4fj2LFj2Lp1KwYPHoybN29iwIABOH36tML93b59G6GhoR80ptKcOXMGAHDx4kUhJsq0dOlSfPHFF8LnqrxWZfT/MTMyMsKVK1dKLMwffvgBOjo61TSqsoWEhLBMEhERERERERERfTSioqJw4sQJjB8/Hr///jsWLFgAV1dXzJo1C+fPn0dWVpZC/VW49MqQIUMwZMgQ4bOjoyPOnTuHy5cvQ0dHB25ubrC2tq5o9wAAbW1t2NnZCZ/d3NwwevRo+Pn5YdGiRXBwcEDTpk0/6ByV4a+//sLDhw/h6uqKmzdv4urVq+jdu3eZx+Tk5EBXVxfa2hX+rkJKy5YtK6Wf6lLZ8ahODg4OePjwIS5fvgwfHx9he2RkJD755BPhSxVV0q5du+oeAhERERERERERkULatm2Ltm3bYu7cubh37x7Onz+P8+fP4+LFizAwMECPHj2wceNGufpSKCuZnZ2NoKAgHDp0SOb+pk2bYty4cSgoKEBYWJjwcs/KVKNGDSxZsgS5ubmIiIgQtp86dQqjRo1C586d4eTkBF9fX9y7d0/YLxaLERISgoyMDKGki6+vLwDgyZMnmDNnDjw8PGBrawtvb2/s27cPBQUFco0pMjISWlpaCA4ORr169XD27NkSbYpKW+zevRs9evRAx44d8fbtW2HsAwcOhI2NDZydnTFlyhS8ePFC6viEhARMnjwZdnZ26N27N06dOiW1v3jplbKuteh6p02bBkdHR9jZ2cHPzw/Pnj2T6q+goAD79+9H37590aFDB7i5uWHWrFlIS0srs/+AgACp5DAApKamlig3UlY8Tpw4gf79+8PGxgZdu3bFpk2bhHr4pZHnHhaVHDl9+jSCg4Ph5OQEd3d3rFmzBnl5eVL9/fDDD+jTpw9sbGwwdOhQqblUHl1dXXh5eSEyMlLYlpKSgh9//LFEbIocO3YMXl5e6NChAzw9PbF9+/YS8+/OnTsYPHgwbGxs4OPjg2vXrsnsKyYmBmPHjoWdnR0cHR0xb948JCcnlznm90uvFN3H6OhoDBw4EHZ2dhg6dCgePHggdVxaWhrmz58Pe3t7uLi4YOPGjdi3bx9EIlGZ5yMiIiIiIiIiIqpMHTt2xBdffIGrV6/i8OHDGDJkCG7fvi338Qo9UR4eHo6TJ0/iu+++K7Ndjx49sG7dOrRu3RqjR49W5BRyadmyJRo0aICYmBhhW3x8PAYOHAhLS0vk5OTg3LlzGDNmDM6cOQNra2sMGzYMCQkJiIyMRFhYGIDCl5ACwKtXr2BtbY3+/fujZs2aiI2NhVgsRkZGBmbMmFHueCIjI9GpUyc0bdoUffv2RXh4ONLS0mBiYiLV7vvvv0ezZs2waNEiaGtrw8jICHv27MG6deswdOhQzJkzB7m5ubh16xZSUlLQuHFj4dj58+dj+PDhmDBhAo4fP46AgADY2NigRYsWJcZT1rU+f/4cI0eORKtWrbB69WpoaWlh586dGD9+PKKioqCvrw8AWL58OcLDwzFu3Di4ubnhn3/+wdWrV5GRkVFm/4qQFY/9+/dj3bp1GDduHAICAvDkyRMhUT5//vxS+1LkHm7evBk9e/bE5s2bERMTA7FYDEtLS4waNQoAEBsbi1mzZqFbt24IDAxEfHw8Pv/8c4VK6vj4+GDChAl49+4datWqhfPnz6NBgwawt7cv0fbQoUNYsWIFfH190b17d8TExCAkJARpaWlCOZ2kpCRMmjQJIpEImzdvRmpqKpYtW4aMjAy0bdtW6CsmJga+vr7w8PDApk2bkJmZic2bN8Pf3x/h4eFyj7/onCtWrICfnx9MTEywYcMGzJgxAxcvXoSenh4AIDAwELdu3cKCBQvQuHFjHD9+HA8fPlToPERERERERERERJXJ0dERjo6OWLRokdzHKJQoP3/+PHr37l1uuZOmTZvCy8sL586dq5JEOQA0bNgQr1+/Fj4XT4YWFBTAzc0N9+7dw8mTJzF37lxYWFjAwsKiRDkXAHBxcYGLiwsAQCKRwNHREVlZWTh8+HC5ifJ79+4hLi4OEyZMAFCYID106BAuXLiAoUOHSrXNzc3F7t27YWRkBKDwadyQkBCMGDFC6mneTz75pMR5xowZgzFjxgAA7O3tce3aNVy4cAH+/v4l2pZ1rSEhIahVqxb279+PGjVqACgsFdKzZ09ERERgzJgx+Ouvv3D06FHMmTNH6gWhXl5eUueQ1b8i3o9Heno6tm7dismTJ2Pu3LkACsvt6OnpYfXq1Zg0aRLq1Kkjsy9F7mHHjh2xePFiof/o6GhcuHBBSJTv2rULDRs2xLZt24Sa4jVq1FBoYXXq1Al169bF999/j2HDhuHcuXMynybPz8/Htm3b0K9fP2FM7u7uyM3Nxb59++Dn54c6deogLCwMWlpa2L17t/AFjIWFBcaPHy/V34YNG9ChQweEhIRAS0sLANC6dWvhCXQPDw+5r+Hdu3c4fPgwWrVqBQAwNDTE2LFj8csvv6BTp074448/cPHiRaxZswYDBw4EAHTt2hV9+/aV+xyySCQSAEBmZuYH9UNlK4ov41z1VCHWRf/OVjauV+VQhTmkKVQh1lyvHzdVmEOaQhVizfWqPj7kxW9UNlVYq0DVrVeg+q+Nysb1Lb+Peb2mp6fjv//9L549ewZtbW1YWVnB1dUVRkZGQn5MHgolyn///Xf0799frrYODg5y13+pCIlEInWhT548wcaNGxETEyNVZiIuLq7cvrKzsxEaGoqzZ8/i5cuXUiVj/vnnH9SsWbPUYyMjI6Gnp4c+ffoAAOzs7NC0aVOcPXu2RKLc2dlZ6mbHxMQgMzOzRDtZ3N3dhb8bGRmhUaNGSEhIKPe49924cQPe3t7Q0dERyo2YmpqiXbt2QlmNW7duQSKRyDWuDyErHhkZGejTp49UKRRXV1dkZWXh8ePH6Ny5s8y+FLmHxWMJAC1atMCtW7eEz7/88gs8PT2lXrzZp08fhRLlWlpa8Pb2xrlz5+Du7o47d+5g6dKlJdr9+eefePPmjTB/inh7eyM0NBT37t2Dh4cHfvnlFzg7O0v9loKLiwtq164tfM7MzMSdO3ewcOFCqVI1VlZWaNiwIe7fv69Qorx+/fpCkhz4Xx38xMREAMD9+/cBAD179hTaaGtro0ePHti/f7/c53lf0b2XZ+3Sh2Oclac6Y+3o6Fgl/XK9KhfjrDxcr/ShGGfl4XpVZ+ZKO1NsbKzSzqWpqns+V9V6Bar/2j5uVb/Oub4VV91zWtH1GhkZiX//+99IT0+HlpaWkDM2MTHBl19+KTzcKQ+FEuW5ublCyYXy6OnpKVSqQlEJCQmwsrICUPitwcSJE2FmZoaAgAA0atQINWrUwOLFi5GdnV1uX+vWrUNERASmT5+ODh06wMTEBJcuXcKOHTuQnZ1daqK8oKAA3333HTp37gxtbW2kpqYCKEwcHjx4EImJiWjQoIHQvm7dulLHF9Xkrl+/frljfL+MS0Xj++bNG4SFhQklU97vs2hcurq6JcZb2d7v/82bNwCAQYMGyWz/8uXLUvtS5B6WF8ukpKQSYzM2NhaewJdXv379EBYWhgMHDqBVq1YQiUTCHCny7t07ACVjUfS5aH9SUhKaNWtW4hxmZmbC31NTU5Gfn49Vq1Zh1apVJdqWFT9ZTE1NpT4XzY+iNZWUlAQ9Pb0S8Sw+porQ1dVFXl4erKysYGho+EF9UekyMzMRFxfHOCuBOsea61U51HkOqRp1jjXXq3Ko8xxSNeoca67XQi9uvy6/USUpXs6SKpc6r9Ui6nxtVS3ux6pf51zf8vsY1+tPP/2EL774Ao6Ojpg6dSpSUlIwf/58hIWF4dy5cwgMDESdOnXkfnBUoUR5/fr18fjxY7naPn78WK4EcEU8fvwYiYmJQkL17t27SEhIQGhoKNq0aSO0S0tLg4WFRbn9RUVFYcSIEfDz8xO2lfaixOJu3bqFpKQkJCUlwcnJqcT+7777TijJAqDEo/5FTwO/evVKrnFWhlq1asHDw0NmSZyiZHLt2rWRl5eH5ORkhZPl+vr6JV7iWpTsfd/78ahVqxaAwvIwsuLRpEmTUs9b0Xsoi7m5eYmXX6anp8v1pUtxHTp0QNOmTXHw4EHMnj1bZpuiOZCSkiK1vej8RTGRNab3jzMxMYGWlhY+++wzmeV7SitbU1Hm5ubIzc0tUY///WtRVNG8MDQ0rNJfj6NCjLPyqGOsuV6Vi3FWHnWMNdercjHOyqOOseZ6VT7Gueqp83xW52tTB7w3ivuY5vSuXbvQvHlz7Nu3D7q6uvjxxx8BAK1atcKyZcvw8uVL7Nq1q2oS5a6urjh9+jQ+++yzMhOoycnJOH36tFRN68qSnZ2N5cuXQ19fH8OGDQMAZGVlAYDU0+537tzBixcvpEpHlPYUdnZ2ttSx+fn5OHfuXLljOXv2LIyMjLB9+3Zoa2tL7fvqq69w9uxZqUT5++zt7WFoaIhvv/0WHTt2LPd8iijtWl1cXPD48WO0a9dOqrRIcV26dIGWlha+/fZbqcSzPP1bWFggISFBqtzJjRs35BpzUTwSEhLQq1cvuY4pUtF7KEvHjh1x5coVBAYGCjGKioqqUF9TpkzB5cuXSy1ZZG1tDTMzM0RFRUld8/nz56GnpyfMi44dO+Lo0aNSSekff/xR+K0EoPAffzs7O/z555+wsbGp0HgV0aFDBwDApUuXhF9jKSgowJUrV6r83EREREREREREpNl++eUXTJw4Ebq6slPcHh4eWL9+vdz9KZQonzJlCs6cOYNx48Zh5cqVsLW1lTnAopInkydPVqT7EgoKCnD37l0AhcX3f//9d4SHh+P58+dYvXq18ISxnZ0djIyMsGzZMvj5+SExMRFisViq7AlQWIs6Ly8PYWFhsLe3h7GxMZo3bw5XV1dERESgZcuWqFOnDo4cOVJuWZPs7GxcvHgRvXv3Fl4iWdyQIUOwcuVK/Pnnn2jevLnMPkxMTDB9+nSsX78eEokEPXv2REFBAaKjo9GvX78PSnaWdq2zZs3C0KFDMWnSJAwfPhz16tXD69evcfv2bXTq1Ak+Pj6wtrbGyJEjsWXLFrx79w4uLi7IysrC1atXMXPmTDRo0KDU/nv37o2tW7fiyy+/xPDhw/H48WN88803co3Z1NQUs2bNwrp165CQkIDOnTtDR0cHz58/x6VLlyAWi0v91Y+K3MPS+Pn5YejQoZg+fTpGjRqF+Ph47N27V+HSKwAwdOjQMmu96+jowN/fHytWrICZmRk8PDxw9+5d7N69G+PGjROeAh83bhyOHDmCKVOmYMqUKUhNTYVYLJaqUQ4ACxcuxLhx4/D555+jX79+MDU1RUJCAm7evInBgwfD2dlZ4WsoTatWrdCrVy+sWLECmZmZaNSoEY4fP46srCyFXpRARERERERERESkqJycnDJLACuao1IoUd60aVNs3rwZc+fOxciRI9G0aVO0bt0aNWvWxD///IPHjx/j2bNnMDAwwMaNG2FpaalI9yVkZWVhxIgRAAqflm3SpAlcXFwQEhKCFi1aCO3q1auHLVu2YO3atfD394eVlRWWLVuGPXv2SPXXo0cPjB49Grt27UJycjKcnJxw6NAhLFmyBEuXLsXy5cthaGiIQYMGoVevXli8eHGpY7t69SrS0tJKLQjv4+ODtWvX4uzZs6WW3QAKv3wwMzPDgQMHcOLECdSsWRP29vYfXB+8tGtt1qwZIiIisHnzZixbtgwZGRkwNzeHk5MTRCKRcHxQUBCaNGmCiIgIhIWFoXbt2nBychKeEi+t/5YtW2L16tXYvn07/P394ejoiPXr12PAgAFyjXvixIlo0KAB9u/fj8OHD0NXVxeWlpbo3r17mfXxK3IPS9OuXTts2bIF69evx4wZM9CqVSts2rQJkyZNUrgvefj6+kJXVxcHDhzA0aNHYW5ujhkzZmDq1KlCm/r162P37t1YsWIFZs+eDUtLSwQFBWHTpk1SfTk4OODIkSMQi8UIDAxEbm4uLCws0KVLF5k1zj/UV199heDgYKxduxb6+voYNGgQWrVqha+//rrSz0VERERERERERFSkQYMG+Pvvv0tsl0gkSElJwdGjR2WWyy6NlkQikSg6iPj4eOzevRtXr15FYmKisL1+/fro3r07pkyZgqZNmyraLRGpgTFjxkBbWxuHDh1S+Nj79+9DIpEgNzcXbdu2/WhqYn2MMjIyEBsbyzgrgbrGmutVedR1DqkidY0116vyqOscUkXqGmuu1/85c/WZ0s71afcPe8iPSqeuaxUoXK85OTlqeW3K8u2lql/nQ3pyfcvrY1yvX375JWJjY3Hy5EkAhWWKJ06cCFdXV9y7dw/a2tr4+uuv0bJlS7n6U+iJ8iJNmjTBsmXLABS+5LCoHrWxsXFFuiOij9SFCxfw8uVLtG7dGpmZmYiMjMTPP/+Mbdu2VffQiIiIiIiIiIhIjf3rX//CiRMnkJKSAjMzM+jq6sLExATx8fHo27cvpk6dikaNGsndX4US5cUZGxszQU6koYyMjHD69GnExcUhNzcXzZs3x7p16/DJJ59U99CIiIiIiIiIiEiNtWvXDu3atRM+Ozk54fbt2xXu74MT5USkubp27YquXbtW9zCIiIiIiIiIiIg+CBPlRERERERERKRSqrpuePFavERUPeStH/4x1s6mj5N2dQ+AiIiIiIiIiIiIiKg6MVFORERERERERERERBqNiXIiIiIiIiIiIiIi0mhMlBMRERERERERERGRRlOpRLlYLIZIJIJIJEKbNm3g6OiI/v37Izg4GE+ePKlQn9HR0di5c2eljTE+Pl4Y4/Xr10vsP378uLCfKldl38sPkZqaCpFIhBMnTpTZ7s2bN/jqq6/Qu3dv2NjYwMXFBaNGjcKBAweENvHx8RCLxUhMTKzUMapSvIiIiIiIiIiIiFSZSiXKAcDAwADh4eE4duwYtm7disGDB+PmzZsYMGAATp8+rXB/t2/fRmhoaKWP08jICN99912J7ZGRkXwDbxWpqntZVfLy8jBu3DhcvHgREyZMwJ49e7B48WK0a9cOV65cEdq9ePECISEhePXqVaWe/2OLFxERERERERERUXXRre4BvE9bWxt2dnbCZzc3N4wePRp+fn5YtGgRHBwc0LRp0+ob4P/Xs2dPXLx4EcuWLUONGjUAAK9evcJPP/0EHx8fnDlzpppHSNXt9u3b+O2333D48GE4OTkJ2/v164eCgoIK9ZmVlQUDA4PKGiIRERERERERERFBBZ8ol6VGjRpYsmQJcnNzERERIWw/deoURo0ahc6dO8PJyQm+vr64d++esF8sFiMkJAQZGRlCORRfX18AwJMnTzBnzhx4eHjA1tYW3t7e2Ldvn9wJzG7dukFLSwvXrl0Ttn333XewtLRE+/btS7Rfv349+vfvD3t7e3Tt2hVz584t8QSxr68vPvvsM0RFRcHLywv29vYYO3Ysnj17pnBfEokEISEhcHNzg729PWbNmoWbN29CJBIhOjpaqt3evXvh5eWFDh06oGfPnlJlQYriaG9vj0ePHmHEiBHo2LEjBg0ahEePHiE7OxtLly6Fk5MTunXrVuJYAIiJicHYsWNhZ2cHR0dHzJs3D8nJycL+onI2p0+fRnBwMJycnODu7o41a9YgLy9PGENp91KWmJgYTJ06Fe7u7rCzs8OAAQNw6tQpqTbR0dEQiUS4ceMG5s2bB3t7e/To0QO7d+8u0d/x48fh6ekJW1tbjBs3Dk+fPi313EXevXsHADA3Ny+xT1tbWxjD2LFjAQBDhw6VKttTNL6rV69i1qxZcHBwwOzZswF82NwHCuf/tGnT4OjoCDs7O/j5+ZWYZ2lpaZg/fz7s7e3h4uKCjRs3Yt++fcL4cnNz4ebmhk2bNpW4vs8//xxDhw4tN0ZERERERERERESqQOWeKC9Ny5Yt0aBBA8TExAjb4uPjMXDgQFhaWiInJwfnzp3DmDFjcObMGVhbW2PYsGFISEhAZGQkwsLCAADGxsYACp/+tra2Rv/+/VGzZk3ExsZCLBYjIyMDM2bMKHc8+vr66NWrFyIjI9G7d28AhWVXfHx8ZLZPTk7GZ599hvr16yMlJQX79++Hr68vzp07B13d/92G2NhYpKSkYP78+cjPz8fq1auxYMEChIeHK9TXoUOHEBISgsmTJ6NLly64desWFi9eXGJcK1euREREBKZOnQpbW1vcuXMH69evR40aNTBq1CihXW5uLr744guMHz8e9erVw/r16zFjxgw4ODigbt262Lx5My5duoRVq1ahY8eOcHBwAFCYsPb19YWHhwc2bdqEzMxMbN68Gf7+/lLXBACbN29Gz549sXnzZsTExEAsFsPS0hKjRo0q817K8vfff8PBwQGjRo2Cvr4+7ty5g8WLF0MikWDQoEFSbZcuXYoBAwZg27Zt+OGHH7B+/XqIRCJ069YNAHDlyhUsWbIEgwcPhre3Nx4+fCgkrMvStm1baGtrY/HixZg+fTocHR2hr68v1aZ9+/YICgpCcHAwVq1ahebNm5foZ8mSJfj000+xbds2IcH+IXP/+fPnGDlyJFq1aoXVq1dDS0sLO3fuxPjx4xEVFSWMMTAwELdu3cKCBQvQuHFjHD9+HA8fPhTGpaenh0GDBuHUqVOYPXu2MLa3b9/i0qVLWLRoUbkxIiIiIiIiIiIiUgUfTaIcABo2bIjXr18Ln4sntAsKCuDm5oZ79+7h5MmTmDt3LiwsLGBhYVGinAsAuLi4wMXFBUDhU9WOjo7IysrC4cOH5UqUA4CPjw/8/f3xzz//IDk5Gffv38e6deuknjIvsmrVKuHv+fn5sLe3R7du3XDr1i24u7sL+9LS0nDq1CmYmZkBADIyMhAYGIiEhARYWFjI1Vd+fj527dqFwYMHY/78+QAAd3d3vHnzBt98841w7LNnz3D48GEsW7YMI0aMAAC4uroiKysL27Ztw4gRI4TkZ25uLubPnw8PDw8h3kXJ9cDAQABAly5dEBUVhaioKCFRvmHDBnTo0AEhISHQ0tICALRu3Ro+Pj64du2a0B8AdOzYUUjmu7m5ITo6GhcuXMCoUaPKvJey9OvXT/i7RCKBk5MTEhMTER4eXiJR3rt3b8ycORNA4by4evUqLly4ICTKd+zYgU6dOglx79q1K7Kzs7F9+/Yyx2BlZYWAgACsW7cO48ePh56eHjp27Ii+ffti1KhR0NXVhbGxMVq2bAkAaNWqFWxsbEr04+npiQULFkht+5C5HxISglq1amH//v1C2SAHBwf07NkTERERGDNmDP744w9cvHgRa9aswcCBA4Xr7tu3r1Rfw4YNw549e/Cf//xHuJdnz56FtrZ2qV8alUcikQAAMjMzK3Q8yacovoxz1VOFWFfVuzO4XpVDFeaQplCFWHO9ftxUYQ5pClWINdfrx00V5pAmUJU4V+W75Kr72jSBqswjdacqca7Odz9+VIlyiUQiJFuBwvIRGzduRExMjFQpj7i4uHL7ys7ORmhoKM6ePYuXL18iNzdX2PfPP/+gZs2a5fbRpUsX1KxZEz/88ANevHiB9u3bw9raWmai/Nq1a9ixYwceP36M9PR0qbEWT5S3adNGSJIDEJKoxRPl5fWVkJCApKQkeHp6So2hZ8+eUonymzdvAihMFBeVOAEKk+W7d+/Gy5cv0bhxYwCFpUKKvlgACpPARW2L6OjowNLSEgkJCQAKF9adO3ewcOFC5OfnSx3bsGFD3L9/XypRXjwOANCiRQvcunWrRCzl8e7dO4jFYly6dAmJiYnC+WvXrl2ibfHzamlpoUWLFsI15Ofn4+HDhyUS1V5eXuUmygFg3Lhx8Pb2xuXLl3H79m38+OOPWLFiBb7//nuEhYUJX0SUpXv37iW2fcjcv3HjBry9vaGjoyPcd1NTU7Rr1w4PHjwAANy/fx9A4Zwpoq2tjR49emD//v3CtmbNmqFz58749ttvhXt54sQJeHl5lfnEf1mKxiTPtdCHY5yVpzpj7ejoWCX9cr0qF+OsPFyv9KEYZ+XheqUPxTgrR3XHuarWK1D916ZJGGvlqO44V+V6Lc9HlShPSEgQErTp6emYOHEizMzMEBAQgEaNGqFGjRpYvHgxsrOzy+1r3bp1iIiIwPTp09GhQweYmJjg0qVL2LFjB7Kzs+VKlOvo6KBv3744d+4cXrx4gSFDhshsd+/ePfj7+6Nnz56YMmUK6tatCy0tLQwfPrzEWE1NTaU+6+npAYDQTp6+kpKSAEAq4Q4AdevWlfr85s0bSCQSdOnSRea4iyfKDQwMpMqGFI3LxMSkxHiLxpGamor8/HysWrVK6in44v0XJ6uvnJwcmWMrT0BAAGJiYjB9+nS0bNkSxsbGOHr0KM6fP1+irazzpqWlAQBSUlKQl5dXIpb16tWTeyzm5uYYMWIERowYgdzcXAQFBeHEiRO4cuWKVCK6NO/ftw+d+2/evEFYWJhQkqW4ovualJQEPT29ErF5Pw4AMHz4cAQEBCAlJQWvXr3Co0ePEBAQUO44SqOrq4u8vDxYWVnB0NCwwv1Q2TIzMxEXF8c4K4E6x5rrVTnUeQ6pGnWONdercqjzHFI16hxrrlflUOc5pEo0Ic7qfG2qQhPmkSpgnD+iRPnjx4+RmJgolM24e/cuEhISEBoaijZt2gjt0tLShCevyxIVFYURI0bAz89P2CbrSfDy9OvXD2PGjAEAeHt7y2zzww8/wNjYGJs3bxaeIH7x4oXC55K3r6KXR6akpEhtL/7kMQDUqlULWlpaOHLkiJAgLc7a2rpCYyxiYmICLS0tfPbZZ/jkk09K7K9Tp84H9V+a7OxsXL16FQEBAVIvsDxy5IjCfZmZmUFXV7dELIuXAFKEnp4exo8fjxMnTuDJkydyJcqL/xYF8OFzv1atWvDw8MDo0aNL7Cv6gsjc3By5ublIS0uTSpa/Hweg8DcSli9fjjNnziA+Ph6Wlpbo3LlzueMoTdH1GhoaVuuv22gKxll51DHWXK/KxTgrjzrGmutVuRhn5VHHWHO9KhfjrBzqHGd1vjZVw1grhybH+aNIlGdnZ2P58uXQ19fHsGHDAABZWVkAIJXgvXPnDl68eIFWrVoJ20p7Kjk7O1vq2Pz8fJw7d07hsdnb28PHxwd169YtNUmZlZUFPT09qYTn2bNnFT6XvH1ZWFjA3Nwcly5dkkpQ//DDD1LtikqpvH37tkSZlspgZGQEOzs7/PnnnzJrbytK3ifMc3JyUFBQIHV/09PTcfnyZYXPqaOjg3bt2uHixYsYP368sP3ChQvlHvv27VsYGxtLvawV+N+vsBR9ofH+bw2U50PnvouLCx4/fox27dpBR0dH5jk6dOgAALh06ZJQo7ygoABXrlwp0VZfXx8DBgxAREQEXr9+jfHjx5dI7hMREREREREREakylUuUFxQU4O7duwAKX2T5+++/Izw8HM+fP8fq1avRpEkTAICdnR2MjIywbNky+Pn5ITExEWKxGA0aNJDqr0WLFsjLy0NYWBjs7e1hbGyM5s2bw9XVFREREWjZsiXq1KmDI0eOVKjMh5aWFtatW1dmGzc3N4SFhWH58uXo1asXYmJicPr0aYXPJW9fOjo68PPzw1dffYV69erB2dkZ0dHR+PHHHwFAeBLd2toaY8aMwcKFCzFp0iTY2toiNzcXcXFxiI6OlqsGd3kWLlyIcePG4fPPP0e/fv1gamqKhIQE3Lx5E4MHD4azs7PcfZV2L99nYmICGxsb7N69W3gifNeuXTA2Npb5RHR5pk6dCn9/fwQGBsLb2xsPHz6U6/7dunUL69evx6BBg9CxY0fo6uoiNjYWoaGhaNSoEXr16gWg8Ne0dHR08O2330JXVxc6OjplfrHwoXN/1qxZGDp0KCZNmoThw4ejXr16eP36NW7fvo1OnTrBx8cHrVq1Qq9evbBixQpkZmaiUaNGOH78OLKysmQmwYcPH46wsDDo6Ohg8ODBCkaYiIiIiIiIiIioeqlcojwrKwsjRowAUPhEcpMmTeDi4oKQkBC0aNFCaFevXj1s2bIFa9euhb+/P6ysrLBs2TLs2bNHqr8ePXpg9OjR2LVrF5KTk+Hk5IRDhw5hyZIlWLp0KZYvXw5DQ0MMGjQIvXr1wuLFiyv9mjw8PDB//nwcPnwYJ06cgIODA0JDQ+Hl5VVlffn6+iI1NRVHjhzBoUOH4OLiggULFmDOnDlSpTQWL14Ma2trhIeHY9u2bahZsyasra3Rp0+fD75uAHBwcMCRI0cgFosRGBiI3NxcWFhYoEuXLmjWrJlCfZV2L2XZsGEDgoKCEBAQgNq1a8PX1xcZGRnYt2+fwtfQs2dPLFu2DDt37sS5c+dga2uLzZs3C7/dUBpbW1t4eXnh0qVLCAsLQ3Z2NiwsLNC/f3/4+fkJL7s0MzNDUFAQ9uzZgzNnziAvLw+//fZbqf1+6Nxv1qwZIiIisHnzZixbtgwZGRkwNzeHk5MTRCKRcPxXX32F4OBgrF27Fvr6+hg0aBBatWqFr7/+usSYWrZsCSsrK1haWpZI2BMREREREREREak6LYlEIqnuQZBybN68Gfv370d0dDQMDAyqezj0ERozZgy0tbVLfEHx7Nkz9O7dG1u2bKnQF0BF7t+/D4lEgtzcXLRt21Zja2IpQ0ZGBmJjYxlnJVDXWHO9Ko+6ziFVpK6x5npVHnWdQ6pIXWPN9ao86jqHVI06x/n+/fvIyclRy2tTNeo8j1QJ46yCT5RT5Xjy5AnOnDkDe3t76Onp4fbt29i7dy9GjRrFJDnJ5cKFC3j58iVat26NzMxMREZG4ueff8a2bduENm/evMFff/2Fbdu2oVGjRnK9nJSIiIiIiIiIiEjVMFGupgwMDBATE4OjR4/in3/+QYMGDTBp0iTMnDmzuodGHwkjIyOcPn0acXFxyM3NRfPmzbFu3TqpF8ReuXIFX375JZo1a4Z169aVeHEpERERERERERHRx4BZLTXVuHFjHDx4sLqHQR+xrl27omvXrmW2GTx4MF/eSUREREREREREHz3t6h4AEREREREREREREVF1YqKciIiIiIiIiIiIiDQaE+VEREREREREREREpNGYKCciIiIiIiIiIiIijaaxiXKxWAyRSASRSIQ2bdrA0dER/fv3R3BwMJ48eVKhPqOjo7Fz585KHinw5MkTzJs3D25ubujQoQM++eQTrF27FqmpqZV+riLR0dEQiUS4f/++sE0kEmHv3r3C5xMnTuDs2bNVNobK9sMPP0AkEiE+Pr7ctu/HvGfPnli9ejXevn1b9QOtoPj4eIjFYiQmJkptl3UviYiIiIiIiIiI6H80NlEOAAYGBggPD8exY8ewdetWDB48GDdv3sSAAQNw+vRphfu7ffs2QkNDK3WMP/30E4YOHYo//vgDCxcuxL59+zB27FicPHkSI0eOREpKSqWeryzh4eHo37+/8PnkyZOIjIxU2vmVRVbMx40bh9OnT2PEiBFISkqq7iHK9OLFC4SEhODVq1dS29u3b4/w8HC0aNGimkZGRERERERERESk2nSrewDVSVtbG3Z2dsJnNzc3jB49Gn5+fli0aBEcHBzQtGnTahtfVlYW5s6di0aNGuHo0aMwMjICAHTu3Blubm4YOHAgVqxYgY0bNyplPMVjpa7kiXlwcDDEYrHSxmNgYPBBfRgbG2vEvSMiIiIiIiIiIqoojX6iXJYaNWpgyZIlyM3NRUREhLD91KlTGDVqFDp37gwnJyf4+vri3r17wn6xWIyQkBBkZGQIJV18fX0BFJbxmDNnDjw8PGBrawtvb2/s27cPBQUFZY4lKioKr169wtSpU4WEbZEWLVpgwIABOH/+vFBq48SJExCJRCWeMh8wYAACAgKEzzExMZg6dSrc3d1hZ2eHAQMG4NSpU+XGpnjpFV9fX9y+fRtXr14VrlcsFuPQoUOwtbVFenq61LFPnjyBSCTCtWvXSu2/vBgDhXG2t7fHb7/9hlGjRsHW1hY+Pj74z3/+I9UuNzcXK1euROfOneHo6Igvv/wS//zzT7nXKE/ML168iBcvXgD4X1mTa9euYcaMGbCzs4O7u7vMEjxPnjzBtGnT4OjoCDs7O/j5+eHZs2dSbUQiEXbt2oV169bBzc0NLi4uAMq/Z9HR0Rg7diwAYOjQocI9KT7G4qVXsrOzsWrVKri7u8PGxka4ruICAgLg4+OD6OhoDBw4EHZ2dhg6dCgePHgg1e6bb75Bv3790LFjRzg7O2PUqFEl7hsREREREREREZEq0+gnykvTsmVLNGjQADExMcK2+Ph4DBw4EJaWlsjJycG5c+cwZswYnDlzBtbW1hg2bBgSEhIQGRmJsLAwAIVP8gLAq1evYG1tjf79+6NmzZqIjY2FWCxGRkYGZsyYUeo4bt++DQDo0aOHzP2enp6IiIjATz/9BB8fH7mv7++//4aDgwNGjRoFfX193LlzB4sXL4ZEIsGgQYPk6mPp0qVYsGABDAwM8MUXXwAALCwsYGhoiHXr1iEyMhIjR44U2n/zzTdo0KAB3N3dS+2zvBgXyc3Nxfz58zF27Fj4+/tj9+7dmDVrFi5fvow6deoAADZu3IijR49i5syZaNeuHc6dO4cNGzaUe13yxvz//u//0LhxY2H7kiVL0K9fP4jFYty8eRObNm1CrVq1MGrUKADA8+fPMXLkSLRq1QqrV6+GlpYWdu7cifHjxyMqKgr6+vpCXwcPHoStrS1WrlyJvLw8AOXfs/bt2yMoKAjBwcFYtWoVmjdvXuZ1zp8/H//5z3/w+eefo3nz5jh9+jRmzpyJbdu2oWfPnkK7pKQkrFixAn5+fjAxMcGGDRswY8YMXLx4EXp6evjpp5+waNEiTJw4ER4eHsjKysK9e/eQlpZWbqyJiIiIiIiIiIhUBRPlpWjYsCFev34tfC6e0C4oKICbmxvu3buHkydPYu7cubCwsICFhUWJci4A4OLiIjwZLJFI4OjoiKysLBw+fLjMRHliYiJMTU2FhPv7GjVqBABISEhQ6Nr69esn/F0ikcDJyQmJiYkIDw+XO1HesmVLGBsbw8jIqMT1enl54dtvvxUS5Xl5eThz5gyGDh0KHR2dUvssL8ZFihLlHh4eAABra2v07NkT169fx4ABA/D27VscOXIEU6ZMwWeffQYA6Nq1K/71r3+VeNHl+yoa8y5dughfGHTt2hXJycnYsWMHRowYAW1tbYSEhKBWrVrYv38/atSoAQBwcHBAz549ERERgTFjxgh91apVCyEhIdDS0hK2lXfPjI2N0bJlSwBAq1atYGNjU+o1/vrrr/j++++xbNky4R5169YNL168KJEof/fuHQ4fPoxWrVoBAAwNDTF27Fj88ssv6NSpE+7du4fatWsL1w4A3bt3L/Xc8pBIJACAzMzMD+qHylYUX8a56qlCrN//DZnKwvWqHKowhzSFKsSa6/XjpgpzSFOoQqy5Xj9uqjCHNIGqxLmq1itQ/demCVRlHqk7VYlzVa7X8jBRXgqJRCKVqHzy5Ak2btyImJgYJCcnC9vj4uLK7Ss7OxuhoaE4e/YsXr58idzcXGHfP//8g5o1a37QWIuPUx7v3r2DWCzGpUuXkJiYiPz8fABA7dq1P2gcRYYPH45//etfePz4MVq1aoVr164hOTkZQ4YMKfM4eWOsra0tfPEAAE2aNIGBgYGQBP/999+RlZWFXr16SR3Xu3dv/PTTTx94dbK9fy4vLy+cPn0aCQkJaNSoEW7cuAFvb2/o6OgIT4mbmpqiXbt2JUqZdOvWrcQ9rcx79n//938AgD59+kht79u3L1atWoWMjAzhH6X69esLSXIAQjK+KNbt2rXD27dvERAQgP79+8PBwQGGhoYKj6m4ovjIs7bowzHOylOdsXZ0dKySfrlelYtxVh6uV/pQjLPycL3Sh2KclaO641xV6xWo/mvTJIy1clR3nKtyvZaHifJSJCQkwMrKCgCQnp6OiRMnwszMDAEBAWjUqBFq1KiBxYsXIzs7u9y+1q1bh4iICEyfPh0dOnSAiYkJLl26hB07diA7O7vURLmFhQX++9//Ij09XeYTzn///TcAoEGDBgpdW0BAAGJiYjB9+nThyfCjR4/i/PnzCvVTGicnJ1hbW+Obb75BYGAgvv32Wzg5OcHS0rLUYxSJsYGBgVSpEgDQ09MT2iUlJQEA6tatK9WmXr165Y69QYMGSE1NLTfmFhYWUtvNzMxknispKQmNGjXCmzdvEBYWJpTleX/sxb0/bqBy79m7d++gp6dXIsler149SCQSpKWlCYlyU1NTmWMtirWLiwvWrl2LgwcPYtKkSahRowa8vLzw5ZdfVviLF11dXeTl5cHKyuqDk+5UuszMTMTFxTHOSqDOseZ6VQ51nkOqRp1jzfWqHOo8h1SNOsea61U51HkOqRJNiLM6X5uq0IR5pAoYZybKZXr8+DESExOFMiR3795FQkICQkND0aZNG6FdWlpaiYSpLFFRURgxYgT8/PyEbWW91LKIk5MTvvnmG1y7dk2q9EaRq1evQltbW/impaikR/En1gEgNTVV+Ht2djauXr2KgIAA4WWjAHDkyJFyx6OIYcOGYc+ePZgwYQKuXbuGlStXltn+Q2NcnLm5OQAgOTlZ6kuE4qV0StO5c2d8++23ZcZcS0sLnTp1ktr+/gtUi85VNJZatWrBw8MDo0ePLtHn+1+UvP80eWXfs1q1aiE3Nxfv3r1DrVq1pMaspaUFExMThfobMGAABgwYgJSUFFy6dAmrVq2Crq4uvvrqqwqNr+j6DQ0Nq/XXbTQF46w86hhrrlflYpyVRx1jzfWqXIyz8qhjrLlelYtxVg51jrM6X5uqYayVQ5PjrF3dA1A12dnZWL58OfT19TFs2DAAQFZWFgDpJ3/v3LmDFy9eSB2rp6eHnJwcmX0WPzY/Px/nzp0rdyx9+vRBgwYNsGPHjhL1gf766y+cPHkS3bp1Q8OGDQH878nyP//8U2j35MkTvHz5Uvick5ODgoICqfGkp6fj8uXL5Y7nfcWf4n7foEGDkJaWhvnz58PAwKBEmY/3yRtjebRu3RoGBga4ePGi1Pbvv/++3GP79OmD+vXrlxnz3r17C7XKi7x/rgsXLqB+/fpCkt/FxQWPHz9Gu3btYGNjI/WnvBdvynvP3n/auzRFX6xERUVJbY+KikK7du0q/I+hmZkZhg0bBjc3N6k5SEREREREREREpOo0+onygoIC3L17FwCQkZGB33//HeHh4Xj+/DlWr16NJk2aAADs7OxgZGSEZcuWwc/PD4mJiRCLxSVKnrRo0QJ5eXkICwuDvb09jI2N0bx5c7i6uiIiIgItW7ZEnTp1cOTIEZkJ9fcZGBhgw4YN8PPzw+jRozFhwgQ0bNgQv/76K3bu3IlatWph+fLlQntbW1s0bNgQX331FebNm4f09HTs2rVLqgSGiYkJbGxssHv3bpiZmUFXVxe7du2CsbFxiaeiy9O8eXOcOnUKly9fhrm5OerXry/ExMzMDD179hSepjcwMCizL3ljLI/atWtj5MiR2L17NwwMDNCuXTucO3cOz549K/dYAwMDbNy4sdSYN2zYEEuWLClx3K1bt7BmzRq4ubnhxo0bOH36NIKCgqCtXfhd1KxZszB06FBMmjQJw4cPR7169fD69Wvcvn0bnTp1go+PT6ljkveeWVlZQUdHB99++y10dXWho6Mj86Webdq0Qe/evbF69WpkZWXB2toaZ86cQUxMDLZv3y5PiAVbt27F27dv0blzZ9StWxe///47/vOf/2D8+PEK9UNERERERERERFSdNDpRnpWVhREjRgAofKNqkyZN4OLigpCQELRo0UJoV69ePWzZsgVr166Fv78/rKyssGzZMuzZs0eqvx49emD06NHYtWsXkpOT4eTkhEOHDmHJkiVYunQpli9fDkNDQwwaNAi9evXC4sWLyx1jUfmVbdu2YfXq1UhJSYFEIoG9vT22bdsmVc9aT08PISEh+Pe//43Zs2fD0tISX375JVavXi3V54YNGxAUFISAgADUrl0bvr6+yMjIwL59+xSK35QpU/Ds2TN88cUXSE1NxYwZMzBz5kxhf69evRAVFYWhQ4eW25e8MZbXvHnzkJ+fjz179qCgoAC9evXCvHnzsHDhwnKPLYr59u3bsXr1aqSmpqJ+/fro378/pk6dKrP2dnBwMMLDw3H06FHUrFkTs2fPxpgxY4T9zZo1Q0REBDZv3oxly5YhIyMD5ubmcHJygkgkKndM8twzMzMzBAUFYc+ePThz5gzy8vLw22+/yexv3bp12LhxI3bv3o23b9+iefPm2Lp1Kzw9PcsdS3E2NjYICwvD+fPnkZ6eDgsLC0yaNAnTpk1TqB8iIiIiIiIiIqLqpCWRSCTVPQhSTFBQEL777jscOXIErVu3ru7hlGrhwoWIjY3F2bNnq3soVSY6Ohpjx47FN998I/PpbVLM/fv3IZFIkJubi7Zt22psTSxlyMjIQGxsLOOsBOoaa65X5VHXOaSK1DXWXK/Ko65zSBWpa6y5XpVHXeeQqlHnON+/fx85OTlqeW2qRp3nkSphnFmj/KO0ePFitGzZEn5+fnj16lV1D6eE3377DadOncJ3332HsWPHVvdwiIiIiIiIiIiIiMqk0aVXPlb6+vo4duxYdQ+jVNOmTUNKSgoGDhyIIUOGVPdwiIiIiIiIiIiIiMrERDlVusuXL1f3EJTG2dm51DrgRERERERERERE9HFg6RUiIiIiIiIiIiIi0mhMlBMRERERERERERGRRmOinIiIiIiIiIiIiIg0GhPlRERERERERERERKTRmCgnIiIiIiIiIiIiIo3GRLmGu3TpEiZOnIjOnTujQ4cO8PT0RFBQEP766y+hjUgkwt69e5U2ptjYWIhEIkRHRyvtnLKsXLkSnp6eZbY5ceIERCKR8Mfe3h59+vRBYGAg7t27V6HzxsbGQiwWIzMzs0LHK/t+ERERERERERERfeyYKNdg69evh7+/P4yNjbF8+XLs378f06dPxx9//IE5c+ZU9/A+Knv27EF4eDi2b9+OsWPH4vfff8fw4cOxa9cuhfuKjY1FSEhIhRPlREREREREREREpBjd6h4AVY9r165h9+7d8Pf3x+zZs4XtTk5OGDJkCK5cuVKNo/v4tG/fHmZmZgAAFxcXjBw5El988QU2btwIBwcHdOrUqZpHSERERERERERERKXhE+Uaat++fahXrx78/f1l7u/Ro0eZxx87dgxeXl5CuZbt27ejoKBA2C8Wi2Fvb1/iuE6dOkEsFktt2759O9zc3GBvb48ZM2YgOTlZrmtYv349+vfvD3t7e3Tt2hVz587Fq1evpNr4+vris88+Q1RUFLy8vGBvb4+xY8fi2bNnUu0SExMxdepU2NraomvXrti9e7dcYyiNtrY2Fi1aBH19fRw9elTYfvXqVUyYMAEuLi5wcHDAsGHDcP36dWH/iRMnEBgYCKAw4S4SiYTyL69evUJgYCB69uyJjh07onfv3ti4cSNycnJKnD8/Px9r165Fly5dYG9vj4CAAKSnpwv7MzIyEBwcDC8vL9ja2gold9LS0qT6uXTpEgYPHgx7e3t06tQJgwcPxrVr16TanDhxAv3794eNjQ26du2KTZs2IT8//4PiR0REREREREREpEx8olwD5eXl4c6dO+jduzf09PQUPv7QoUNYsWIFfH190b17d8TExCAkJARpaWn44osvFOrr8OHD2LJlCyZOnAhXV1fcvHkTixYtkuvY5ORkfPbZZ6hfvz5SUlKwf/9++Pr64ty5c9DV/d/Ujo2NRUpKCubPn4/8/HysXr0aCxYsQHh4uNDG398fiYmJ+Pe//w0TExPs3r0bL1++lOpHUbVr10b79u0RExMjbIuPj0ePHj0wceJEaGtr4/r16/Dz80NYWBicnZ3RvXt3TJs2DTt27MCePXtgYmICfX19AMCbN29Qu3ZtBAYGwtTUFHFxcRCLxUhKSsKqVaukzn3o0CG0b98ea9asQXx8PNavX4/s7Gxs2rQJAJCVlYX8/HzMmTMHZmZmePnyJXbu3Al/f38cOnQIAPDs2TPMnj0b/fr1w7x581BQUIBff/0V7969E86zf/9+rFu3DuPGjUNAQACePHkiJMrnz59f4dgREREREREREREpExPlGujt27fIyclBo0aNFD42Pz8f27ZtQ79+/bB48WIAgLu7O3Jzc7Fv3z74+fmhTp06cvcVGhqKAQMGCAn2rl27Ijk5GadPny73+OLJ4fz8fNjb26Nbt264desW3N3dhX1paWk4deqUUBolIyMDgYGBSEhIgIWFBa5fv44HDx7gwIEDcHFxAQA4OzvDw8MDtWvXlutaStOwYUM8fPhQ+Pyvf/1L+HtBQQGcnZ3xxx9/4Pjx43B2doaZmRksLS0BSJdzAQpf0ln8iwgHBwcYGhoiICAAQUFBMDQ0FPbp6+tj27Zt0NHRAQDUqFEDixcvxowZM9CiRQuYmZlh2bJlQvu8vDw0adIEo0ePxl9//QVra2s8evQIubm5WLJkCYyNjQEU3p8i6enp2Lp1KyZPnoy5c+cCANzc3KCnp4fVq1dj0qRJcs+F4iQSCQCwRnsVK4ov41z1VCHWRkZGVdIv16tyqMIc0hSqEGuu14+bKswhTaEKseZ6/bipwhzSBKoS56par0D1X5smUJV5pO5UJc5VuV7Lw0S5BtPS0lL4mD///BNv3rxBnz59pLZ7e3sjNDQU9+7dg4eHh1x9JSQk4NWrV+jVq5fUdi8vL7kS5deuXcOOHTvw+PFjqbIicXFxUonyNm3aSCWcW7ZsKZzfwsIC9+7dg4mJiZAkBwATExO4urri0aNHcl1LaSQSiVScExISsGnTJty8eRNJSUnCD8Ht27eXq6+wsDAcP34c8fHxyM7OFvY9f/4crVu3Fj736NFDSJIDQJ8+fbBo0SLcv38fLVq0AACcOnUKBw4cwNOnT5GRkSG0jYuLg7W1NUQiEXR0dDB//nwMHz4cTk5OMDExEdrFxMQgIyMDffr0QV5enrDd1dUVWVlZePz4MTp37qxIuABA6CsuLk7hY0lxjLPyVGesHR0dq6RfrlflYpyVh+uVPhTjrDxcr/ShGGflqO44V9V6Bar/2jQJY60c1R3nqlyv5WGiXAPVrl0bNWrUwN9//63wsUVlN+rWrSu1vehz8bIc5UlKSgIAqSQ2ANSrV6/cY+/duwd/f3/07NkTU6ZMQd26daGlpYXhw4dLJZABwNTUVOpzUbmZonavXr0qMQag5DVWREJCgnA9BQUFmDZtGtLS0jBr1iw0a9YMhoaG2Lp1K16+fFluX2FhYVizZg0mT54MZ2dnmJqa4v79+wgODi5xze+P3djYGDVq1BBquF+8eBFffPEFRowYgTlz5qB27dpISkrC9OnThb6sra2xc+dOhIaGYsaMGdDW1oa7uzuCgoLQqFEjvHnzBgAwaNAgmeOV55pk0dXVRV5eHqysrKSekqfKlZmZibi4OMZZCdQ51lyvyqHOc0jVqHOsuV6VQ53nkKpR51hzvSqHOs8hVaIJcVbna1MVmjCPVAHjzES5RtLV1YWDgwNu3bqFvLw8hepwF5UiSUlJkdpe9ALOWrVqASgs9ZGbmyvVJjc3V+rJZXNzc5l9vX79utxx/PDDDzA2NsbmzZuhrV34TtoXL17IfR3FFdU4f5+8LxUtzZs3b/DgwQN4eXkBAJ4+fYpHjx5h27Zt+OSTT4R2WVlZcvUXFRUFT09PzJs3T9j25MkTmW3fH3t6ejqys7NRv359oa+2bdsiODhYaHP79u0S/XTr1g3dunVDeno6rl+/jlWrViEwMBBhYWHCvQ4JCYGFhUWJY5s0aSLXdb2v6Al8Q0PDav11G03BOCuPOsaa61W5GGflUcdYc70qF+OsPOoYa65X5WKclUOd46zO16ZqGGvl0OQ4a1f3AKh6TJgwAUlJSdi5c6fM/deuXZO53draGmZmZoiKipLafv78eejp6aFjx44AgAYNGiA3NxfPnj0T2ty6dQv5+fnCZwsLC5ibm+PixYtSfV24cKHc8WdlZUFPT0+qrMnZs2fLPU4WGxsbpKWl4ccffxS2paWl4ebNmxXqDyh8evyrr75Cbm4uxowZA+B/T7AXf4HqixcvpF72WXx/Tk6O1Paiay6utGu+cuWKVKyjoqKgpaUFGxsbhfsCCp9I9/b2Rr9+/YTkvL29PQwNDZGQkAAbG5sSfypSn5yIiIiIiIiIiKg68IlyDeXh4YHJkydDLBbjjz/+QL9+/VCnTh3Ex8fj22+/RVpamsxa4zo6OvD398eKFStgZmYGDw8P3L17F7t378a4ceOE5Gi3bt1gZGSExYsXY8qUKUhISMDBgwdRo0YNqb78/PywcuVK1K1bF25ubrhx4waio6PLHb+bmxvCwsKwfPly9OrVCzExMXLVNZelW7duaN++PRYsWID58+fDxMQEu3btEl5gKY+HDx/CxMQEWVlZ+Ouvv/Dtt9/i4cOHWLBgAezt7QEAzZs3h4WFBTZs2ICCggJkZGRg69atwlPeRYpqiH/99df45JNPYGBgAJFIBFdXVxw8eBCHDx+GlZUVzpw5g6dPn8ocT05ODqZPn45Ro0YhPj4e69evh5eXl9C3q6srgoODsW3bNtjb2+PatWtSXxQAwLFjx3D37l107doV5ubmiI+Px5kzZ+Dm5gagsKTNrFmzsG7dOiQkJKBz587Q0dHB8+fPcenSJYjFYo39VR0iIiIiIiIiIvq4MFGuwYqSuF9//TW+/PJLZGZmon79+nB3d8ekSZNKPc7X1xe6uro4cOAAjh49CnNzc8yYMQNTp04V2tSpUwdbt27FmjVrMH36dLRt2xZr166Fr69vib5SU1Nx5MgRHD16FC4uLlixYgUmT55c5tg9PDwwf/58HD58GCdOnICDgwNCQ0OFMieK0NLSwvbt27F06VIEBQXB1NQUvr6+eP36NS5duiRXH0XjNTIyQv369eHg4ICgoCDhCXsA0NfXh1gsRnBwMGbPno2GDRti2rRpuHXrFh48eCC0a9euHWbOnImIiAjs2bMHDRs2xOXLlzF9+nS8efMGW7duBVD40tPFixdLxb2Ir68vUlJSsHDhQuTk5KBXr14ICgoS9o8cORLx8fE4fPgw9u7dC3d3d2zYsAHDhw8X2ohEIly5cgWrVq3C27dvYW5ujn79+mH27NlCm4kTJ6JBgwbYv38/Dh8+DF1dXVhaWqJ79+4lnlgnIiIiIiIiIiJSVVoSiURS3YMgIgKA+/fvQyKRIDc3F23bttXYmljKkJGRgdjYWMZZCdQ11lyvyqOuc0gVqWusuV6VR13nkCpS11hzvSqPus4hVaPOcb5//z5ycnLU8tpUjTrPI1XCOLNGORERERERERERERFpOCbKiYiIiIiIiIiIiEijMVFORERERERERERERBqNiXIiIiIiIiIiIiIi0mhMlBMRERERERERERGRRmOinIiIiIiIiIiIiIg0GhPlRERERERERERERKTRmCgnIiIiIiIiIiIiIo3GRDkRERERERERERERaTQmyomIiIiIiIiIiIhIozFRTkREREREREREREQajYlyIiIiIiIiIiIiItJoWhKJRFLdgyAiAoA7d+6g6J8kPT09aGlpVfOI1JdEIkFubi7jrASqEGt9fX2IRKJK7ZPrVXlUYQ5pClWINdfrx00V5pCmUIVYc71+3FRhDmkCVYlzVa7X6r42TaAq80jdqUqcq2K9yku3Ws5KRCRD0T/Eenp61TwS9aelpQV9ff3qHoZGUNdYc70qj7rOIVWkrrHmelUedZ1DqkhdY831qjzqOodUjTrHuWi9MnFb9dR5HqkSxplPlBMRERERERERERGRhmONciIiIiIiIiIiIiLSaEyUExEREREREREREZFGY6KciIiIiIiIiIiIiDQaE+VEREREREREREREpNGYKCciIiIiIiIiIiIijcZEORERERERERERERFpNCbKiYiIiIiIiIiIiEijMVFORERERERERERERBqNiXIiIiIiIiIiIiIi0mhMlBMRERERERERERGRRmOinIiIiIiIiIiIiIg0GhPlRERERERERERERKTRmCgnIiIiIiIiIiIiIo3GRDkRERERERERERERaTQmyomIiIiIiIiIiIhIozFRTkREREREREREREQajYlyIiIiIiIiIiIiItJoTJQTERERERERERERkUZjopyIiIiIiIiIiIiINBoT5URERERERERERESk0ZgoJyIiIiIiIiIiIiKNxkQ5EREREREREREREWk0JsqJiIiIiIiIiIiISKMxUU5EREREREREREREGo2JciIiIiIiIiIiIiLSaEyUExEREREREREREZFGY6KciIiIiIiIiIiIiDQaE+VEREREREREREREpNGYKCciIiIiIiIiIiIijcZEORERERERERERERFpNCbKiYiIiIiIiIiIiEijMVFORERERERERERERBqNiXIiIiIiIiIiIiIi0mhMlBMRERERERERERGRRmOinIhUxm+//YbffvutuodBRHLgeiX6eHC9En08uF6JPh5cr0Tqh4lyIlIZOTk5yM7Oxv/93/8hOzu7uoej1hhn5VHXWHO9Kg/jrDzqGmuuV+VhnJVHXWPN9ao8jLNyqHOcc3JykJ6erpbXpmrUeR6pEsaZiXIiUlH5+fnVPQS1VhRfxrnqaUKs1fnaVIEmzCFVoQmxVudrUwWaMIdUhSbEWp2vTRVowhxSBZoQZ3W+NlWhCfNIFTDOTJQTERERERERERERkYZjopyIiIiIiIiIiIiINBoT5URERERERERERESk0ZgoJyIiIiIiIiIiIiKNxkQ5EREREREREREREWk0JsqJiIiIiIiIiIiISKMxUU5EREREREREREREGo2JciIiIiIiIiIiIiLSaLrVPQAiIlUStP/PD+4jeELzShgJkWYray2Wtca8hsyUub1Wq96lHnN8dX/5B0ZEchu55Idy29QwtZCrL1tLY7naWdSqvOeAEt4VlNtm7girSjsfUUWcufqs3DbXf88tc39iSmqZ+11FZmXuv/lbSpn7tXX0ytwPALVq1ihz/z/ZZa/HAfaG5Rxf2h5z/P6f19AvJzMypKdl2Q0AHPzuaZn7x3o3K3P/+f8+L3N/X/em5Y6hPMo4B1XckSjZ6zk1UyJze0aO7O16OrL7NzXUqtC4ZDHSl91XcrrsMZV27tF9Sl9bERffj4c5/rzxGsN6yT4m6obs+d3HTfa8Ltn//5R2jtKcvCy7r0GeivVD1Y9PlBMRERERERERERGRRmOinIiIiIiIiIiIiIg0GhPlRERERERERERERKTRmCgvg1gshkgkgkgkQps2beDo6Ij+/fsjODgYT548qVCf0dHR2LlzZ6WO848//sCsWbPQrVs32NjYoFu3bvjss89w7do1hfoRiUTYu3dvpY5NHcTGxkIkEiE6OrrMdkVzRSQSoUOHDujVqxdWrFiBt2/fKmegShYdHQ2RSIT79+9X91CIiIiIiIiIiIg+CF/mWQ4DAwOEhYUBAP755x/8/vvvCA8Px/Hjx7Fy5UoMGDBAof5u376Nffv2YerUqZUyvmfPnmHYsGEQiUQICAiAmZkZXrx4gWvXruH27dvw8PCQu6/w8HA0atSoUsalqXx9feHj44Ps7Gzcvn0bO3fuRFxcHPbs2VPdQyMiIiIiIiIiIqJSMFFeDm1tbdjZ2Qmf3dzcMHr0aPj5+WHRokVwcHBA06bV92bob7/9FgCwf/9+GBr+703fQ4YMQUFB2W8Gf1/x66SKadiwoRBHZ2dnvHr1CsePH8erV69Qv3796h2cnPLz81FQUAA9vfLfTk9ERERERERERKQOWHqlAmrUqIElS5YgNzcXERERwvZTp05h1KhR6Ny5M5ycnODr64t79+4J+8ViMUJCQpCRkSGU6PD19QUAPHnyBHPmzIGHhwdsbW3h7e2Nffv2lZvsTk1NhbGxsVSSvIi2tvTtffLkCWbMmIHOnTvD1tYWn376KSIjI4X9skqvXL16FcOGDUPHjh3RpUsXLF26FBkZGcL+ovIbN27cwLx582Bvb48ePXpg9+7dJcYTExODiRMnwsHBAfb29hg2bBhu3Lgh7M/JycHGjRvRo0cPdOjQAX379sXZs2fLvP6iMU6YMAEuLi5wcHDAsGHDcP36dak2J06cgEgkwqNHjzB58mTY2dmhd+/eOHXqVIn+tm/fDjc3N9jb22PGjBlITk4udwyladu2LQDg5cuXCl3n48ePMWXKFDg7O8PW1hZeXl4lYhoTE4OxY8fCzs4Ojo6OmDdvXomxrl+/Hv3794e9vT26du2KuXPn4tWrV1JtfH198dlnn+HkyZPw8vKCjY0Nfv31VwCFsR05ciRsbW2FOf3o0SOp41NTU8u990RERERERERERKqMT5RXUMuWLdGgQQPExMQI2+Lj4zFw4EBYWloiJycH586dw5gxY3DmzBlYW1tj2LBhSEhIQGRkpFDOxdjYGADw6tUrWFtbo3///qhZsyZiY2MhFouRkZGBGTNmlDqO9u3b48iRIwgKCsKoUaMgEolKJMgBIC4uDiNGjEDDhg2xaNEimJub4/fff8fff/9dat9RUVGYM2cOBg8ejJkzZyIpKQkbNmxAamoqNm3aJNV26dKlGDBgALZt24YffvgB69evh0gkQrdu3QAA//d//4dx48bBzs4OK1asgKmpKR48eCB1/tmzZ+POnTuYPn06WrRogWvXrmHBggUwNTUts4RMfHw8evTogYkTJ0JbWxvXr1+Hn58fwsLC4OzsLNV2/vz5GD58OCZMmIDjx48jICAANjY2aNGiBQDg8OHD2LJlCyZOnAhXV1fcvHkTixYtKvXc5fn777+hra0tVdJGnuucOnUq6tWrh5UrV8LY2BjPnj1DQkKC0EdMTAx8fX3h4eGBTZs2ITMzE5s3b4a/vz/Cw8OFdsnJyfjss89Qv359pKSkYP/+/fD19cW5c+egq/u/5f/gwQO8ePECs2fPhqmpKRo2bIjvvvsOc+fORc+ePbFhwwbo6enhzp07SExMRLt27YRjy7v3REREREREREREqo6J8g/QsGFDvH79WvhcPKFdUFAANzc33Lt3DydPnsTcuXNhYWEBCwuLEuVcAMDFxQUuLi4AAIlEAkdHR2RlZeHw4cNlJsoHDRqEH3/8EeHh4QgPD0fNmjXRpUsXDBkyBD179hTaicVi6Onp4ejRo0Jy3tXVtdR+JRIJ1q5dC29vb6xcuVLYbm5uDj8/P/j7+6NVq1bC9t69e2PmzJnCtVy9ehUXLlwQkqXr1q1Ds2bNEBYWBh0dHQCAu7u7cPytW7dw+fJl7N27V9ju5uaGpKQkiMXiMhPl//rXv4S/FxQUwNnZGX/88QeOHz9eIlE+ZswYjBkzBgBgb2+Pa9eu4cKFC/D390d+fj5CQ0MxYMAAfPHFFwCArl27Ijk5GadPny71/MUVFBQgLy8POTk5iI6OxtGjRzFixAiYm5vLfZ0pKSmIj4/HokWL4OnpCQDo0qWL1Hk2bNiADh06ICQkBFpaWgCA1q1bw8fHB9euXRPitWrVKuGY/Px82Nvbo1u3brh165ZU/N+9e4dvvvkGDRs2BFB4/9esWQM3Nzds27ZNaCfrPpR37xUlkUgAAJmZmRU6XhUU/60LVVUU3485zh8LVYi1kZFRlfRbXeu1steYqq9ZVZhDmkIVYq1u61Xdvf/vhyrMIU2hCrHmetUclfGzwof2oYyfV6riHKqwVoGqW69A9V/bx6wic07RY5RxjqruR1k0Yb2Wh4nyDyCRSIQkJVBY2mTjxo2IiYmRKoERFxdXbl/Z2dkIDQ3F2bNn8fLlS+Tm5gr7/vnnH9SsWVPmcTo6OtiwYQOmTp2KK1eu4Oeff8aNGzdw6dIl+Pv7Y/bs2QAKE7ReXl5Ckrw8f/31F168eIEvv/wSeXl5wvbOnTtDW1sbDx48kEqUF0+6amlpoUWLFsIT0JmZmfjll18wd+5cIUn+vhs3bqB27dro0qWL1PlcXV3x73//G/n5+aUem5CQgE2bNuHmzZtISkoSfrBs3759ibbFx2lkZIRGjRoJ40xISMCrV6/Qq1cvqWO8vLzkTpSvX78e69evFz47Ojpi8eLFCl1nnTp10LhxY2zcuBHv3r2Di4sLLCwshLaZmZm4c+cOFi5ciPz8fGG7lZUVGjZsiPv37wsJ7WvXrmHHjh14/Pgx0tPThbZxcXFSsWjdurWQJAeAP//8EwkJCcIXBmUp695XRFFc5Fk3VaPOB/cQGxtbCeNQjuqLs+apzlg7OjpWSb9Vu15LX4uVvcY+ljXL9ao8XK8kr9L+/WCclYfr1bxKxkDS5PtZod4H9lH2O60q5+cVZZxDtur+d7Gq1itQmdemeeu57DknOx6lHyN7fpfevvR4K74WFB2ralPn9VoeJso/QEJCAqysrAAA6enpmDhxIszMzBAQEIBGjRqhRo0aWLx4MbKzs8vta926dYiIiMD06dPRoUMHmJiY4NKlS9ixYweys7NLTZQXadWqFVq1agU/Pz+kpKRg0qRJ2LVrF8aNG4fatWvj7du3Cr1M8s2bNwCA6dOny9xfvOY2AJiYmEh91tPTQ1paGoDCGtYFBQVlnv/Nmzd4+/atzOQ2ACQlJUkli4sUFBRg2rRpSEtLw6xZs9CsWTMYGhpi69atJcZY2jhzcnKEcwCAmZmZVJt69cr+gae4sWPH4tNPP0VmZibOnDmDiIgIbNmyBfPmzVPoOvfu3YtNmzYhODgYGRkZaN++PQIDA+Hk5ITU1FTk5+dj1apVUk+MFym67nv37sHf3x89e/bElClTULduXWhpaWH48OEl5uT71/j27VsAkGvOlHXvK0JXVxd5eXmwsrKSWXu/qp2+V/Ekf5Gi2vSqLDMzE3FxcdUWZ02izrGuyvVa1lqs7DWm6mtWneeQqlHnWFfL/6+nbirnPNXo/X8/1HkOqRp1jrUi6/XF7ddl7qfKIc/PCg8Tkz6oj1d3yn43VmX8vKKMc7xPnddqkcq6tt+SNG89lzXn/rwhOx6lHZMUI3t+l9a+tP7LG5csz24pNlZVpQnrtTxMlFfQ48ePkZiYiEGDBgEA7t69i4SEBISGhqJNmzZCu7S0NJkJ3vdFRUVhxIgR8PPzE7Zdu3atQmMzMzPD4MGDsWLFCjx9+hS1a9dG7dq1S7zEsSy1a9cGAAQFBaFjx44l9iuSdDcxMYG2tnaZ569VqxbMzMywa9cumfvfT14Xefr0KR49eoRt27bhk08+EbZnZWXJPb4iReVRUlJSpLYXL69THgsLC9jY2AAofPr+9evX2L9/P0aPHo2GDRvKfZ3W1tbYunUrcnNzERMTg40bN2Lq1Km4fv06TExMoKWlhc8++0zqmovUqVP4FOYPP/wAY2NjbN68Wahb/+LFC5nnLf6bEcD/7r8ic6ayFI3F0NCwWn/d5kN8TOP+mOP8sVHHWFfXeq3sc30s90Ud55CqUsdYq8P/r6qotFgyzsqjjrHmelU9lXEfyu+j7CR25cwFZZxDNnWez+p8bVWtInEr/RjZ87tyz1E9/SibJs/pkm99pHJlZ2dj+fLl0NfXx7BhwwD8LzGrp6cntLtz506JxGTxJ5jf77P4sfn5+Th37ly5YyktiVv0axJFTwq7uLjgwoULUuU3ytK8eXNYWFjg+fPnsLGxKfGnQYMGcvUDFP7DYGdnh9OnT0uVCinO1dUVKSkp0NPTk3k+fX19mccVPRldPHYvXryQesmqvCwsLGBubo6LFy9Kbb9w4YLCfRVZuHAhCgoKsHfvXgCKX6eenh46d+4MPz8/pKen49WrV0I8//zzT5l9NGnSBEDhnNTT05NKgp89e1aucRfd/xMnTlT42omIiIiIiIiIiD4WfKK8HAUFBbh79y6AwiL8v//+O8LDw/H8+XOsXr1aSEra2dnByMgIy5Ytg5+fHxITEyEWi0sklFu0aIG8vDyEhYXB3t4exsbGaN68OVxdXREREYGWLVuiTp06OHLkiMyE+vu2b9+O2NhY+Pj4oGXLlsjOzsaNGzdw5MgRfPLJJ2jcuDGAwheNXr16FaNHj8bkyZNhbm6OJ0+eIDMzE1OmTCnRr5aWFgICAjB//nxkZGSge/fuMDQ0xN9//41r165hzpw5sLa2ljuO8+bNw/jx4zF+/HiMHj0atWrVwsOHD1GnTh0MHToUbm5u6NGjByZPnozJkydDJBIhMzMTf/zxB54+fSr1QtHiihK6GzZsQEFBATIyMrB161aFnngvoqOjAz8/P6xcuRJ169aFm5sbbty4gejoaIX7Kj4+b29vfPPNN5g+fbpc1/nrr79izZo18Pb2RtOmTZGeno7Q0FA0btwYlpaWAAoT8OPGjcPnn3+Ofv36wdTUFAkJCbh58yYGDx4MZ2dnuLm5ISwsDMuXL0evXr0QExMjd611LS0tfPHFF5g7dy5mzpyJAQMGQF9fH3fv3oWNjQ169OhR4ZgQERERERERERGpGibKy5GVlYURI0YAKHwyukmTJnBxcUFISAhatGghtKtXrx62bNmCtWvXwt/fH1ZWVli2bBn27Nkj1V+PHj0wevRo7Nq1C8nJyXBycsKhQ4ewZMkSLF26FMuXL4ehoSEGDRqEXr16Sb0IUpZPP/0U2dnZOHToEBITE6Gjo4PGjRtj4cKFGD16tNDOysoKx44dw4YNG7Bs2TLk5+fDyspKqtTL+/r27QtTU1Ps3LlTeBK5cePG6Nq1q0J1uwGgU6dOOHjwIDZv3ozAwEBoa2ujVatW+Pzzz4U2W7duxa5du3D06FG8ePECJiYmaNWqFQYPHlxqv/r6+hCLxQgODsbs2bPRsGFDTJs2Dbdu3cKDBw8UGiMA+Pr6IjU1FUeOHMHRo0fh4uKCFStWYPLkyQr3VcTf3x/fffcdDh8+jJkzZ5Z7nebm5qhXrx5CQ0ORmJgIExMTdOrUCevWrRNeaOrg4IAjR45ALBYjMDAQubm5sLCwQJcuXdCsWTMAgIeHB+bPn4/Dhw/jxIkTcHBwQGhoKLy8vOQat7e3NwwMDLBz507MnTsXNWrUQLt27Uq87JSIiIiIiIiIiOhjpyWRSCTVPQgiIgC4f/8+JBIJcnNz0bZt22qpiRW0/88P7iN4QvNKGEnVysjIQGxsbLXFWZOoa6yrer2WtRbLWmNeQ2bK3F6rVe9Sjzm+ur/8A6sG6jqHVJG6xrq6/n8dueSHctvUMC3/XT4AYGtpLFc7i1qVV1ky4V1BuW3mjrCS+qyuc0gVqWusFV2vZ64+K7fP67/nlrk/MSW1zP2uItnviypy87eUMvdr6+iVuR8AatWsUeb+f7LLXo8D7Mt+6dw/2WWfX7+cRwiH9LQsuwGAg989LXP/WO9mZe4//9/nZe7v69603DGURxnneJ+6rlWgcL3m5ORU2rUdiZK9nlMzZaftMnJkb9fTkd2/qaGW7B0VYKQvu6/kdNljKu3co/uUvrYiLsqOx7Beso+JuiF7fvdxkz2vS+u/rHOU5uRl2X0N8lSsn+qmzutVXqxRTkREREREREREREQajYlyIiIiIiIiIiIiItJoTJQTERERERERERERkUbjyzyJiIr5GOqLE2mCiq7FC9+KK3kkRPS+jeFxcrX71K11uW3Kqk1aEaXVd63KcxJVp0+7lz+fP+3+Yef49lLZ6+pQgH2Z+8uri10ZKlJbu7Jr8ZZXg7w8VVEfvDrOQRVnZiK7jndp20tTWk3uskReV2yd+nSr+rlUvE548fVaGkWvW9E65GX52GqRU+n4RDkRERERERERERERaTQmyomIiIiIiIiIiIhIozFRTkREREREREREREQajYlyIiIiIiIiIiIiItJoGpEoF4vFsLcv+wUjVa1Tp04Qi5X3gjFPT08EBweX2SY6OhoikQj3799X0qg+zIABAxAQEFBmm4CAAIhEIgwfPrzEPolEAg8PD4hEIqXeC00hFotx586d6h4GERERERERERGRwjQiUU6ytW/fHuHh4WjRokV1D6VSGRkZ4ZdffsHz59Jvbf7555+RnJwMfX39ahqZegsJCUFMTEx1D4OIiIiIiIiIiEhhTJR/ZLKysiqtL2NjY9jZ2cHIyKjS+lQFjRs3Rps2bfDdd99JbY+MjIS7uztq1KhRTSMjIiIiIiIiIiIiVcRE+f+XkJCA+fPnw9nZGR07dsSYMWPw4MEDqTanTp3CqFGj0LlzZzg5OcHX1xf37t0r0dcPP/yAPn36wMbGBkOHDpXZBgCuXr2KYcOGoWPHjujSpQuWLl2KjIwMYX9RaZSrV69i1qxZcHBwwOzZswEAly5dwuDBg2Fvb49OnTph8ODBuHbtWolzfP311+jRowccHR3h7++PlJSUEv0XL70iEomwa9curF27Fl26dIG9vT0CAgKQnp5eZvxevXqFwMBA9OzZEx07dkTv3r2xceNG5OTkSLUTiUTYvXs3xGIxXF1d4ezsjMDAQKnrBoA7d+5g8ODBsLGxgY+Pj8xrK0u/fv0QGRkpfM7Ly8OFCxfg4+NTom1MTAymTp0Kd3d32NnZYcCAATh16pRUm6JY3bhxA/PmzYO9vT169OiB3bt3K9wXADx+/BhjxoyBjY0NevfujTNnzsDf3x++vr5S7Z48eYJp06bB0dERdnZ28PPzw7Nnz6TaFN2zTZs2wcXFBZ06dcLatWshkUjw448/YsCAAbC3t8e4cePw8uVLqWNzcnKwceNG9OjRAx06dEDfvn1x9uxZqTYBAQHw8fFBdHQ0Bg4cCDs7OwwdOlRqfYhEIgDA2rVrIRKJIBKJEB0dXeK6iYiIiIiIiIiIVJFudQ9AFbx79w6jR4+GkZERlixZAhMTExw6dAjjxo3D999/j7p16wIA4uPjMXDgQFhaWiInJwfnzp3DmDFjcObMGVhbWwMAYmNjMWvWLHTr1g2BgYGIj4/H559/XiJhHBUVhTlz5mDw4MGYOXMmkpKSsGHDBqSmpmLTpk1SbZcsWYJPP/0U27Ztg7a2Np49e4bZs2ejX79+mDdvHgoKCvDrr7/i3bt3UsddvnwZT58+RVBQEN68eYNVq1Zh+fLlJfp/36FDh9C+fXusWbMG8fHxWL9+PbKzs8s87s2bN6hduzYCAwNhamqKuLg4iMViJCUlYdWqVVJtv/76azg6OmL16tWIi4vD2rVrUbduXcyfPx8AkJSUhEmTJkEkEmHz5s1ITU3FsmXLkJGRgbZt25Y59iL9+vXDxo0b8ccff6Bly5a4ceMGsrOz4enpiX//+99Sbf/++284ODhg1KhR0NfXx507d7B48WJIJBIMGjRIqu3SpUsxYMAAbNu2DT/88APWr18PkUiEbt26yd1XVlYWJk6cCFNTU6xbtw4AsG3bNqSmpsLS0lI41/PnzzFy5Ei0atUKq1evhpaWFnbu3Inx48cjKipKqoTM119/jc6dO2Pt2rX45ZdfIBaLUVBQgBs3bmDatGnQ09PDihUrsGjRIuzbt084bvbs2bhz5w6mT5+OFi1a4Nq1a1iwYAFMTU3h4eEhtEtKSsKKFSvg5+cHExMTbNiwATNmzMDFixehp6eH8PBwjBgxAr6+vsKXES1btpTrXhEREREREREREVU3JsoBhIWFITU1FREREUJS3MXFBV5eXti7dy8WLlwIAJgxY4ZwTEFBAdzc3HDv3j2cPHkSc+fOBQDs2rULDRs2xLZt26CjowMAqFGjBhYtWiQcK5FIsHbtWnh7e2PlypXCdnNzc/j5+cHf3x+tWrUStnt6emLBggXC56ioKOTm5mLJkiUwNjYGAHTt2rXEdUkkEuzYsUNIqL548QKhoaEoKCiAtnbpv0ygr69fYvyLFy/GjBkzSq1nLhKJ8MUXXwifHRwcYGhoiICAAAQFBcHQ0FDqOjds2AAA6NatGx49eoQLFy4IifKwsDBoaWlh9+7dMDExAQBYWFhg/PjxpY75fY0bN4adnR0iIyPx+eefIzIyEp6enjLLzPTr10/4u0QigZOTExITExEeHl4iUd67d2/MnDkTQOEcuXr1Ki5cuCAkyuXp69tvv0VycjKOHj2KJk2aAAA6dOiA3r17SyXKQ0JCUKtWLezfv18oF+Pg4ICePXsiIiICY8aMEdrWr19fSLp37doVly9fxoEDB3Du3DnhniUmJmL58uVITU2Fqakpbt26hcuXL2Pv3r1wd3cHALi5uSEpKQlisVgqUf7u3TscPnxYmJeGhoYYO3YsfvnlF3Tq1Al2dnYAgIYNGwp/ryiJRAIAyMzM/KB+qGxF8WWcq54qxLqqSmxxvSqHKswhTaEKsda09fr+bxV+7OdUhTmkKVQh1pq2XktTHeu4MsagCnNIE6hKnKuy5Gx1X9v7lLEmlb3uVWUeqTtViXN1lohmohzAjRs34OzsjFq1aiEvLw8AoK2tDScn2knotwABAABJREFUJ6myJE+ePMHGjRsRExOD5ORkYXtcXJzw919++QWenp5CkhkA+vTpI5Uo/+uvv/DixQt8+eWXwvkAoHPnztDW1saDBw+kEuXdu3eXGq9IJIKOjg7mz5+P4cOHw8nJSUgoF+fk5CT11HGLFi2Qm5uL5ORkmJublxqPHj16yBz//fv3S02USyQShIWF4fjx44iPj0d2draw7/nz52jdurXw2dXVVerYFi1a4Ny5c8LnX375Bc7OzlLX5OLigtq1a5c6Zll8fHxw8OBBTJ06FZcuXcL69etltnv37h3EYjEuXbqExMRE5OfnA4DM8xUllAFAS0sLLVq0QEJCgkJ9PXjwAK1btxaS5ADQpEkTtGnTRupcN27cgLe3N3R0dIR5Ympqinbt2pUoC/R+TK2trfH69Wup+2VlZQWgsMyQqakpbty4gdq1a6NLly5S89DV1RX//ve/kZ+fL8yD+vXrS83JoqfFExMTS8ToQxWNpfi6oqrDOCtPdcba0dGxSvrlelUuxll5uF7LU7cS+igUGxtbaX0VKv1n3Ko7Z0lcr8rD9aoMZa+r8tdU/cobSoXHUDrVibN6q+44V9V6BSrz2ipnrVRsPSh2bmX8XypLdc8jTVHdca7K9VoeJspRWDbk7t27aN++fYl9RU/4pqenY+LEiTAzM0NAQAAaNWokPGldPCmclJQkPJVexNjYWOoFkm/evAEATJ8+XeZ43q8j/X5/1tbW2LlzJ0JDQzFjxgxoa2vD3d0dQUFBaNSokdDO1NRU6riipHnx8cpS2vhfvXpV6jFhYWFYs2YNJk+eDGdnZ5iamuL+/fsIDg4ucb73x6WnpydVmiYpKQnNmjUrcQ4zM7Myx/2+Pn364KuvvsKWLVugp6cn86l7oLAGd0xMDKZPn46WLVvC2NgYR48exfnz50u0ff8LCT09PaSlpSnU16tXr2Rei5mZmVSs3rx5g7CwMISFhZVoq6enJ/VZVkxlbQP+d//fvHmDt2/fypz3QOF9sLCwKLX/4n1VJl1dXeTl5cHKykrqNxGocmVmZiIuLo5xVgJ1jjXXq3Ko8xxSNeoc68pcr9f+KP1nQkXJW1ZPXr8lvVb6OYtT5zmkatQ51qr2/2vcj2Wvq/LW1Ks7yWXurwwVWdfqPIdUiSbEubKuLSmmctZKRdbDy58VO3dV/l8qiybMI1XAODNRDgCoVasWunbtKrwos7ii5PLdu3eRkJCA0NBQqSd/09LShGQiUFhWpPjT5kBhkr14QrHo6eKgoCB07NixxDnr15f+Jk9LS6tEm27duqFbt25IT0/H9evXsWrVKgQGBspMqiqqtPG/P67ioqKi4OnpiXnz5gnbnjx5UqHzy4ohAKkXkcqjXr166NKlCw4cOIChQ4eWSC4DhYneq1evIiAgQOpFmkeOHFF43PL2Vb9+fZnfvqakpKBmzZrC51q1asHDwwOjR48u0bZ4u4qqVasWzMzMsGvXLpn7Ff1iorIUzXdDQ8Nq/XUbTcE4K486xprrVbkYZ+VRx1ir6nqtjrEo45yqFmd1po6xVtX1Wpryx1j1ifIPidPHEuePnTrHufKurXLWSsXGoti5q+teqvM8UiWaHGcmylFYauLMmTNo0aJFqRMhKysLgPSTvHfu3MGLFy+kSlJ07NgRV65cQWBgoFC2IioqSqqv5s2bw8LCAs+fP5eqM10RxsbG8Pb2xr179xAZGflBfRWRNX4tLS3Y2NiUekxWVlaJRPTZs2crdP6OHTvi6NGjSEtLE57g/vHHH/H27VuF+/L19YWBgQGGDRsmc39OTg4KCgqkxp6eno7Lly8rfC55++rQoQNOnTqF58+fo2nTpgAKXxT766+/Sv16iYuLCx4/fox27dpJlcKpLK6urtizZw/09PRKlH2pCD09vSp5wpyIiIiIiIiIiKiqaUyiPD8/v0TCGihMyo4fPx5nz57Fv/71L4wdOxaNGjVCSkoKfvnlFzRo0ADjx4+HnZ0djIyMsGzZMvj5+SExMRFisRgNGjSQ6s/Pzw9Dhw7F9OnTMWrUKMTHx2Pv3r1SpVe0tLQQEBCA+fPnIyMjA927d4ehoSH+/vtvXLt2DXPmzIG1tXWp13Ls2DHcvXsXXbt2hbm5OeLj43HmzBm4ublVSqxycnKkxr9+/Xp4eXmVWp8cKEy6Hjx4EIcPH4aVlRXOnDmDp0+fVuj848aNw5EjRzBlyhRMmTIFqampEIvFCtcoBwrrrffo0aPU/SYmJrCxscHu3bthZmYGXV1d7Nq1C8bGxgo/wS5vX0OGDMHOnTsxdepU4cWgISEhqFevntRvD8yaNQtDhw7FpEmTMHz4cNSrVw+vX7/G7du30alTJ/j4+CgYDWlubm7o0aMHJk+ejMmTJ0MkEiEzMxN//PEHnj59KvWiWXk0b94cly5dQqdOnWBoaAhra2vhZbNERERERERERESqTGMS5dnZ2TJLq6xduxYDBgxAeHg4Nm/ejPXr1+Pt27eoW7cubG1t0atXLwCFZTy2bNmCtWvXwt/fH1ZWVli2bBn27Nkj1V+7du2wZcsWrF+/HjNmzECrVq2wadMmTJo0Sapd3759YWpqip07dwpPXjdu3Bhdu3ZFvXr1yrwWkUiEK1euYNWqVXj79i3Mzc3Rr18/mddXEb6+vkhJScHChQuRk5ODXr16ISgoqMxjpk+fjjdv3mDr1q0AAC8vLyxevBhTp05V+Pz169fH7t27sWLFCsyePRuWlpYICgrCpk2bKnQ95dmwYQOCgoIQEBCA2rVrw9fXFxkZGdi3b1+V9GVgYIB9+/Zh6dKlmD9/Pho0aAB/f3+cOnVKqgZ6s2bNEBERgc2bN2PZsmXIyMiAubk5nJycIBKJKuXat27dil27duHo0aN48eIFTExM0KpVKwwePFjhvoKCgvDVV19hypQpyMrKwsGDB+Hs7Fwp4yQiIiIiIiIiIqpKWhKJRFLdgyDVIRKJsHDhwhKJfapab9++xSeffILx48djxowZ1T2canP//n1IJBLk5uaibdu2GlsTSxkyMjIQGxvLOCuBusaa61V51HUOqSJ1jXVlr9eN4XFytbOopV1um9F9LD9oLO87EvVM6ecsTl3nkCpS11ir4v+v314qe10N6Vn2mjr/3+eVORyZ+ro3VfgYdZ1Dqkad43z//n3k5ORU2rVF3aictdLHTfH1EHldsXP7dFP8HB9CneeRKmGcNeiJciJVsmvXLtSrVw+NGzdGUlIS9u3bh/z8fAwZMqS6h0ZERERERERERKRxmCgnqgba2trYsWMHEhMToaOjA1tbW4SFhaFhw4bVPTQiIiIiIiIiIiKNw0Q5Sfntt9+qewgaoegFmkRERERERERERFT9mCgnIirGa8jMD+7jwrfiShgJkWYray2WtcaGB5yVuf346v4fPCYiTbBg15Ny29y7sFmuvsZNWVBum8qsdw7IV39cnjrm8vZFVN22RMSV2+ZS1Ddl7tfS1S9zf9brx2XuP/XTxDL3d2pRp8z9ANDErOw1/k/2h71arfQ66fXx6k4y+rprZi1eUi0X7mXL3P7s8U8yt+elv5K5fdPGP2Rur9mkU6nnNmrQTub2Hh3qy9wedu6pzO3J6bLXarsmOjK3J74tKHVMdU3e/3ehPl7+nAyfbqq3XkurL1+RevFUveT7iZOIiIiIiIiIiIiISE0xUU5EREREREREREREGo2JciIiIiIiIiIiIiLSaEyU00dPLBZDJBJBJBKhTZs2cHR0RP/+/REcHIwnT8qvsylLdHQ0du7cWckjLXTgwAGIRCJ8+eWXVdJ/cZ6enggODq7UPgMCAuDj41OpfRIREREREREREVUnJspJLRgYGCA8PBzHjh3D1q1bMXjwYNy8eRMDBgzA6dOnFe7v9u3bCA0NrYKRAmfOnAEAXLx4ETk5OVVyjqrk7++P9evXV/cwiIiIiIiIiIiIKg0T5aQWtLW1YWdnBzs7O7i5uWHChAk4ffo0HB0dsWjRIjx/XtpbzpXrr7/+wsOHD+Hq6orU1FRcvXq1uoekMEtLS7Rp06a6h0FERERERERERFRpmCgntVWjRg0sWbIEubm5iIiIELafOnUKo0aNQufOneHk5ARfX1/cu3dP2C8WixESEoKMjAyhpIuvry8A4MmTJ5gzZw48PDxga2sLb29v7Nu3DwUFBXKNKTIyElpaWggODka9evVw9uzZEm2KyqV8/fXX6NGjBxwdHeHv74+UlBShTUZGBoKDg+Hl5QVbW1t4enoiKCgIaWlppZ778uXLEIlEiIuLk9r+7t07dOzYEV9//TUA4PHjx5gyZQqcnZ1ha2sLLy8v7N69W2j/fumV1NRULF68GF27doWNjQ08PDwwZ84cueJBRERERERERESkCnSrewBEVally5Zo0KABYmJihG3x8fEYOHAgLC0tkZOTg3PnzmHMmDE4c+YMrK2tMWzYMCQkJCAyMhJhYWEAAGNjYwDAq1evYG1tjf79+6NmzZqIjY2FWCxGRkYGZsyYUe54IiMj0alTJzRt2hR9/x97dx5XY/r/D/zVqlJJRLJmO7YoSdpESZYauyyTXUy2sdfYPsKIxlqW7NEgzVhDxm4+DGa+MgyNMUbIKKlQWrT9/ujX/XF06pzTejq9no+Hx8O57+t+39f9Ptd1xrzPfa67b1+EhYUhJSUFenp6Yu0uXbqEZ8+eYenSpUhOTsbq1auxYsUKbNiwAQCQkZGBnJwczJ49G4aGhnj16hW2b98Ob29vHDhwQOK5HR0dUb9+ffz444+YO3euWJ8AwN3dHQAwdepU1K1bF6tWrYKuri6eP3+OuLi4Iq9p9erV+PnnnzF37lw0bNgQCQkJuHbtmtRcEBERERERERERKQoWyknpNWjQAG/evBFef1rQzs3NhZ2dHe7du4djx45hzpw5MDY2hrGxsbCcy6dsbGxgY2MDAMjLy4OlpSUyMjIQGhoqtVB+7949xMTEYPz48QAANzc3HDhwAOfOncPQoUPF2ubl5WHbtm3Q1NQEALx8+RLBwcHIzc2FqqoqDA0NsXz5cqF9dnY2GjVqhFGjRuHp06cwNTUtdH41NTUMHjwYP/74I77++muoqakBAH788Ue4uLhAX18fSUlJiI2NxaJFi+Dk5AQA6NatW7HXdf/+fbi5uWHQoEHCtv79+xd7THHy8vIAAOnp6SWOUdnS0tIquwtSFeS3Kue5qlCEXOvo6JRL3MqaryWZY1VhXhZFEcZQdaEIuVa2+VrRynKulySWIoyh6kIRcs35qjhKO/er8r8TFJ0izFWg/OYrUPnXVt1UpflalfoKVI/5Kg0L5aT08vLyoKKiIrx+8uQJ1q9fj6ioKCQmJgrbP1+SRJLMzEwEBwfj1KlTePXqFbKysoR9Hz58QM2aNYs8NiIiAhoaGujTpw8AwNzcHI0bN8apU6cKFcqtrKyEIjkAtGjRAllZWUhMTISRkRGA/CVk9u3bh2fPnol9+MbExEgslAPA0KFDsX37dvz888/o0aMH/vzzTzx48ADz588HANSuXRsNGzbE+vXr8e7dO9jY2MDY2LjYnLRr1w7Hjh2DkZERHBwc0Lp162LbS5OdnS1cR1UVHR1d2V2QWVXOc1VTmbm2tLQsl7iVNV9LMseq0rwsCudrxane89WgXM5fUWSb60ZlGEsyzteKU73nKwDUKZc+VDXS52u9Uh5PpVXZn4vlNV+Bsry2WmUUR7kp5nyV/BmjmH2VTpnnqzQslJPSi4uLQ7NmzQAAqampmDBhAgwNDeHj4wMTExPUqFEDixcvRmZmptRYAQEBCA8Px7Rp09ChQwfo6enh4sWL2LZtGzIzM4sslOfm5uLMmTPo2rUrVFVV8f79ewCAs7Mz9u/fj/j4eNSvX19or6+vL3Z8QdG8oI/nz5/HwoUL4eHhgdmzZ8PAwAAJCQmYNm1asdfRqFEj2NnZ4YcffkCPHj3w448/olGjRsJd4yoqKti9ezc2bNgAPz8/pKWloX379vD19YWVlZXEmEuWLEGtWrWwd+9erF27Fg0aNICXlxdGjRolNZ+SqKurIzs7G82aNYO2tnaJYlS2tm3bVnYXpEpPT0dMTEyVznNVocy5rqz5Wvwc+7cExyg2ZR5DikaZcy3zfP2/VxXXqXIgy1x/lPBGahtZY31OmceQolHmXMvz39f//vO6gnql2KTN19d3EovdX5X/naDolHmuFiiza7st+d+xJE4R52tClOTPGEXsa3Gqw3yVhoVyUmqPHz9GfHy8sCzI3bt3ERcXh+DgYLRp00Zol5KSIvXOaQCIjIyEh4cHvLy8hG1Xr16VetzNmzeRkJCAhIQEiQXnM2fOCEuyyCIyMhJt27aFn5+fsO327dsyHTts2DDMmzcP8fHxOHXqFDw9PcXuuDc1NcXmzZuRlZWFqKgorF+/HlOnTsW1a9ckfhGgp6eHRYsWYdGiRXj06BH279+P5cuXo3Xr1ujSpYvM11SgoC/a2tqV+nOb0qhK/a7Kea5qlDHXlTVfS3IuZci9Mo4hRaWMuVaG/77KoiyvrTSxlD3PikQZc11d5mtZkp6n4gvlzHP5U+bxrMzXpogUM9eSP2MUs6/SVecxrVrZHSAqL5mZmVixYgU0NTUxbNgwAPkPwQQADQ0Nod2dO3fw8uVLsWM1NDTw8eNHiTE/PTYnJwenT5+W2pdTp05BR0cH+/btw/79+8X+tGnTBqdOnZLr2jIyMsT6UXAOWTg7O0NfXx9z587Fu3fvMHjwYIntNDQ00LVrV3h5eSE1NRWvX0u/W0UkEsHX1xdA/hI3REREREREREREVQHvKCelkJubi7t37wLIf1jCX3/9hbCwMLx48QL+/v5o1KgRgPx1wXV0dLB8+XJ4eXkhPj4egYGBYsueAPlrgmdnZyMkJAQWFhbQ1dVF8+bNYWtri/DwcLRs2RK1a9fGwYMHJRbUP5WZmYnz58+jd+/ewoNAPzVkyBCsWrUK//zzD5o3by7T9dra2sLPzw9btmyBhYUFrl69il9++UWmYzU0NDBw4EDs3r0b9vb2aNCggbDvzz//xJo1a9CvXz80btwYqampCA4ORsOGDdGkSROJ8UaMGAEXFxe0atUKampqOH78ODQ0NEp0NzkREREREREREVFlYKGclEJGRgY8PDwA5P+0pVGjRrCxsUFQUBBatGghtKtbty42bdqEtWvXwtvbG82aNcPy5cuxa9cusXg9e/bEqFGjsGPHDiQmJsLKygoHDhzAkiVLsGzZMqxYsQLa2toYNGgQXFxcsHjx4iL7duXKFaSkpGDgwIES97u5uWHt2rU4deoUZs2aJdP1jhgxArGxsQgNDRUK3uvWrcPw4cNlOt7FxQW7d+/GkCFDxLYbGRmhbt26CA4ORnx8PPT09NClSxcEBARATU1NYqzOnTvj+PHjiI2NhaqqKlq3bo3t27eL5Z2IiIiIiIiIiEiRsVBOVd6MGTMwY8YMmdt3794d3bt3F9vm6Ogo9lpdXR3Lli3DsmXLxLbXrVsXW7ZsKRSzYGkXSVxdXfHo0aMi9xsaGuKPP/4QXl+6dKlQm169eonFUFNTw8KFC7Fw4UKxdp+fR1IsALh27RoMDAzQq1cvse116tRBQEBAkX0FAH9/f7HXCxYswIIFC4o9hoiIiIiIiIiISJGxUE5Ujfzzzz94+vQpQkNDMWrUKGhqalZ2l4iIiIiIiIiIiCodC+VE1ciyZctw9+5dODg4YMqUKZXdHSIiIiIiIiIiohI5duyY3McMGjSoyH0slBNVIwcOHKjsLhAREREREREREZXaN998g7y8PKioqBTaJ2l7Xl4eC+VERLKydptd2V0gIgDnfgwsct/Svf8Uua+NqH15dIeo2gjwkuFh3F5Fz89Pzd/xRGqbBrUkPyy8pNzHr5baRkPfRKZYo/qMLW13iMrdrGHNpLZJzRxSqnPEJmcVu/8LC+1i979MypV6jo/Zxe/XUCtcAJFHVnZesftPXnle7P4vejQp1fmJZOHcvobE7W5fjZQrTvh5yeNZT6foeZSUInmO6BdxTHpmEe2NJLfvY9e4yHPLIi0tDdHR0Wjbtq3cx0Zef1EufSqvWCS/mTNnFnr24P379/Gf//wHe/fuhZ6eHgDg559/xsaNG4uNxUI5EREREREREREREVU5jRo1Qvv24jdMvX//HgAgEolQu3ZtAPnP7ZNGtey7R0RERERERERERERUdbBQTkRERERERERERETVGgvlRERERERERERERFStlbhQ/vr167LsBymJwMBAiEQiiEQitGnTBpaWlnB3d4efnx+ePJH+QCdJbt26he3bt5dZH2NjY4U+fv6nT58+ZXaeT926dQsikQj3798vl/ilJRKJsHv37sruBhERERERERERUamoqamhRo0aUFERf8Ds568/V+KHefbo0QPdunXDF198gd69e0NHR6ekoUjJaGlpISQkBADw4cMH/PXXXwgLC8ORI0ewatUqDBgwQK54t2/fxp49ezB16tQy7eecOXNgbW0ttk1LS6tMz1Ggffv2CAsLQ4sWLcolfmmFhYXBxMSksrtBREREREREREQkk9WrV6Nz586Ftnft2hW///672DYHBweEhYUVG6/EhfKZM2ciIiICPj4+WL58OZydnfHFF1/A3t4eqqpc0aU6U1VVhbm5ufDazs4Oo0aNgpeXFxYtWoTOnTujcePGldfB/69p06Zi/SxPurq6FXYueWRkZEBLS0sh+0ZERERERERERFQUKysrAMDLly+LbdewYUMYGBjAwMCg2HYlrmhPnToVEREROHr0KEaMGIHbt2/Dy8sLDg4O+PbbbxV2iQmqHDVq1MCSJUuQlZWF8PBwYfvx48cxcuRIdO3aFVZWVvD09MS9e/eE/YGBgQgKCkJaWpqwPIqnpycA4MmTJ5g9ezYcHR3RqVMn9OvXD3v27EFubm6Z9NnHxwdubm64desWBg4cCHNzcwwdOhR//PGHWLuUlBTMmzcPFhYWsLGxwfr167Fnzx6IRCKhjaSlV0QiEXbu3InAwEDY2trC2toavr6+SEtLE4sfFxeHefPmwdraGh07dsTo0aML9QEAjh49Cnd3d5iZmcHBwQEbNmxATk6O2H6RSISoqCiMHz8e5ubmWLt2rdCXT5de8fT0xJQpUxAZGQlXV1dYWFhgzJgxeP78eaG+TZkyBZ06dYKjoyP27duHVatWwcnJqQQZJyIiIiIiIiIikk2vXr3g7Ows9Y+sSnxHeYF27dqhXbt2WLBgAW7evIlTp07h6NGjOHDgAExNTfHFF1/giy++4LIOhJYtW6J+/fqIiooStsXGxmLgwIFo0qQJPn78iNOnT2P06NE4efIkTE1NMWzYMMTFxSEiIkJYzkVXVxdA/jr5pqamcHd3R82aNREdHY3AwECkpaVh+vTpUvuTm5uL7OxssW2qqqpiv4hISEjAypUr4eXlBT09Paxbtw7Tp0/H+fPnoaGhAQDw9fXFzZs3MX/+fDRs2BBHjhzBgwcPZMrJ999/D0tLS/j7+yMmJgZr165FnTp1MG/ePADAu3fvMGrUKOjo6GDJkiXQ09PDgQMHMHbsWPz000+oU6cOAGDv3r0ICAjA2LFj4ePjgydPngiF8oJYBebOnQsPDw9MmTIF2traRfYtOjoaSUlJmDdvHnJycuDv74/58+cLP1PJy8uDt7c33rx5g+XLl0NPTw+7d+/Gv//+y1+VEBERERERERFRuVq4cCHy8vLEtuXk5CAuLg6nT59GgwYN4O7uLnO8UhfKC6ioqMDS0hLv379HfHw8rl+/jmfPniEoKAibN29Gr169sHjxYtSrV6+sTklVUIMGDfDmzRvh9acF7dzcXNjZ2eHevXs4duwY5syZA2NjYxgbGxdazgUAbGxsYGNjAyC/aGtpaYmMjAyEhobKVCifPXt2oW1Dhw7FqlWrhNfv3r1DaGgoWrVqBQDQ1tbGmDFj8Pvvv6NLly74+++/cf78eaxZswYDBw4EkL/mUd++fWXKh5GREdatWwcA6N69Ox4+fIhz584Jxe2QkBC8f/8e4eHhQlHcxsYGrq6u2L17NxYsWIDU1FRs3rwZkyZNwpw5cwDkL3ejoaEBf39/TJw4EbVr1xbOOWLECHh5eUntW0pKCo4fPw5DQ0MAQFpaGnx9fREXFwdjY2Ncu3YNDx48wPfff48uXboAALp16wZHR0fo6+vLdP2SFHzApaenlzhGZfv8VwGKqCC/VTnPVYUi5Lq8niNSleZrVZiXRVGEMVRdKEKuOV8VR0k+NxRhDFUXipBrzlfFUd7/na/K/46obIowV4Hym69A+V+bMoy/0l5DeYwjZchrWauK83XcuHFF7vv6668xZMgQ1KxZU+Z4ZVIoL7iT/KeffkJqaipat26NhQsXwt3dHWpqajh69CiCg4OxYMEC7Nu3ryxOSVVUXl6e2BNmnzx5gvXr1yMqKgqJiYnC9piYGKmxMjMzERwcjFOnTuHVq1fIysoS9n348EHqRJg3bx66desmtq2gKFygXr16QpEcyL8rHgDi4+MBQFhK5dOfcaiqqqJnz57Yu3ev1GuwtbUVe92iRQucPn1aeH39+nVYW1ujVq1awt3vqqqqsLKyEs4dFRWFtLQ09OnTR+wOeVtbW2RkZODx48fo2rWrsL1Hjx5S+wUAbdq0EctHwbUXFMrv378PfX19oUgOADVr1oSNjY3Md9RLUnANsoyB8lFbehMpoqOjy6AfFaPy8lz9VGauLS0tyyVu5c1X+edpVZqXReF8rTicr2XFoALPVfZK87nB+VpxOF9lYSi9SRUnfb4alXN8kqayPxfLa74CZXltkm8slX/8lW68l4eymkMly3VZ5bX6UJb5qquri+HDh2Pnzp0YPny4TMeUuFD+559/4uTJkzh9+jRev36NunXrYujQoRg4cKDY2swAMHHiRNSoUQNr1qwp6elIScTFxaFZs2YAgNTUVEyYMAGGhobw8fGBiYkJatSogcWLFyMzM1NqrICAAISHh2PatGno0KED9PT0cPHiRWzbtg2ZmZlSC+WNGzeGmZlZsW0+vzO6YLmVgv4lJCRAQ0MDenp6Yu0+L7jLE//jx4/C6+TkZNy9exft27cvdGyTJk2ENgAwaNAgied49eqV2Ou6deuWuG/A/6799evXEq9T1msvirq6OrKzs9GsWbNil4YpLyfuxZU6Rtu2bcugJ+UrPT0dMTExlZbn6kSZc11Z87Uk87QqzMuiKPMYUjTKnOtKma//90p6GwVWks8NZR5DikaZc13W8zUyOr4MeqXYpM3Xl7ffFLu/tPGpaMo8VwuU1bW9+i1R4nZ5x98/10s33stDaedQacZRQlTZ5LU6UMb5qqKigrg42f//scSF8oEDB0JLSwvOzs4YOHAg7Ozsil2XuGXLloWWzqDq5fHjx4iPjxcKunfv3kVcXByCg4PRpk0boV1KSgqMjY2lxouMjISHh4fYMiJXr14t+44Xw8jICFlZWUhJSRErliclJZVJ/Fq1asHBwQGzZs0qtE9TU1NoAwBBQUES89aoUaMy6cvn6tWrJ/E6S3vtBb840NbWLtefx5WnqtTvqpznqkYZc12V5qui908WVSHPykIZc12V5quiKE2emOeKo4y55nyVX3nnie9D6SnzeC67a5Nc0FWGvJXVNZQs18qb1/KiDPP1/fv3+O2337Bz585CN3QXp8SF8m+//Raurq4yr/PSrVu3QstcUPWRmZmJFStWQFNTE8OGDQMAZGRkAPjfncoAcOfOHbx8+VJsuZPP77L+NOanx+bk5IgtW1IROnToAAC4ePGisEZ5bm4uLl++XCbxbW1tcfLkSbRo0aLIDykLCwtoa2sjLi4OLi4uZXJeWZiZmeH9+/f49ddfYWVlBSB/yZtffvmlVGuUExERERERERERSdO2bdtCD/MsoKKiAmNjYyxbtkzmeCUqlKenpyM0NBSZmZkYOXJkSUKQEsvNzcXdu3cB5D8c4a+//kJYWBhevHgBf39/4Q5nc3Nz6OjoYPny5fDy8kJ8fDwCAwNRv359sXgtWrRAdnY2QkJCYGFhAV1dXTRv3hy2trYIDw9Hy5YtUbt2bRw8eFBiQb0oz549E/pZQEVFBZ06dZI5RqtWreDi4oKVK1ciPT0dJiYmOHLkCDIyMsTWYi+pcePG4dSpU/jyyy8xZswYmJiYICkpCb///jvq16+PcePGQV9fHzNnzkRAQADi4uLQtWtXqKmp4cWLF7h48SICAwPL5Scz3bt3R/v27TF37lzMmTMH+vr62LVrF2rWrFkm105ERERERERERFSU6dOnFyqUq6iooFatWmjcuDHs7e2hpqYmc7wSFcq1tbURGxvLYhhJlJGRAQ8PDwD5P2Vp1KgRbGxsEBQUhBYtWgjt6tati02bNmHt2rXw9vZGs2bNsHz5cuzatUssXs+ePTFq1Cjs2LEDiYmJsLKywoEDB7BkyRIsW7YMK1asgLa2NgYNGgQXFxcsXrxYpn6uX7++0DY1NTU8fPhQruv99ttv4efnh7Vr10JTUxODBg1Cq1at8P3338sVR5LatWsjLCwMGzduxHfffYe3b9+iTp066NSpk9jd4xMmTED9+vWxd+9ehIaGQl1dHU2aNEGPHj3E7rovSyoqKti6dSuWLl2KpUuXQl9fH2PGjMHTp0/5UAwiIiIiIiIiIipX06ZNK9N4JV56xcHBAf/9738xYsSIsuwPVXEzZszAjBkzZG7fvXt3dO/eXWybo6Oj2Gt1dXUsW7as0E8l6tatiy1bthSKWbC0S1EaNWqER48eSe2bv79/oW36+vqFjtXX18d3330ntm306NFi665bW1sXOk5SH8aNG4dx48aJbTMyMsKqVauk9rd///7o379/kfsHDx6MwYMHS9z3eV8OHDhQqE3btm0LtTM2NsaOHTuE1x8/fkT//v3RpUsXqf0lIiIiIiIiIiIqL7///jsOHz6M1atXy9S+xIVyb29vzJo1C/Pnz4eHhwcaN26MGjVqFGpnYGBQ0lMQVQnnzp3Dq1ev0Lp1a6SnpyMiIgK//fabxCK+sgkLC0Nubi5MTU3x/v17HDp0CC9fvpR4tz4REREREREREVFZyc3NxU8//YQHDx4gPT290DIsMTExuH79OrS1taGiooLu3bsXukH3UyUulBfcufr3338jIiKiyHZcgoGUnY6ODk6cOIGYmBhkZWWhefPmCAgIQK9evSq7a+WuRo0a2LFjB16+fAkAaNOmDYKDg2FmZlbJPSMiIiIiIiIiImW2evVqHDhwoNjlwVVUVHDo0CEA+Uscl0uhfNq0aVyjnAj5yxA5ODhUdjcqxcCBAzFw4MDK7gYREREREREREVUzZ86cwYABA7BkyRLo6uoW2h8REYF58+bhzz//lCleiQvl8qxDTURUVfiNb17qGEv3/lPpfSgtZbgGotIqbh4owhgvqn+K0DdSbgcjn8vUrkEtNalt5ng0kynW/B1PZGo30mO01Daj+jSRKdb6sBipbWTtP1F5OfvfF1LbmDWSPhdLc3xf+8bF7t9/5pnUc2hKqUxolO4S8EWPwvM+LS0N0dHRaNu2LS7cflO6ExBVgohrkue/no7km1qzc4qOVdR/G4s6xzAX+doXtb04bt2L/2yRVR87+eNEXpfc35LEovKVnJwMe3t7iUVyAIWWYpFGtSw6BQAZGRnIyMgoq3BERERERERERERERBLl5eVBTa34b1PlWRGlxHeUA8C///6LwMBAXL16FcnJyQD+t9bL9OnT0bBhw9KEJyIiIiIiIiIiIiIqRNqzMd3d3eHu7i5zvBIXyp88eYJRo0YhJSUFtra2aNGiBQDgn3/+wYkTJ3D58mUcPHgQzZvz579EREREREREREREVHZevnwpUztZb+YucaF83bp1UFVVxbFjxyASicT2/fXXXxg3bhzWrVuHLVu2lPQUSikwMBBBQUGoV68erl69ClVV8dVvRowYgaioKAwaNAj+/v5lem4fHx/88ccfiIiIKLadSCTCggULMHHixDI9f2n7pQicnJzQo0cPLF26tLK7UmYGDBiAtm3byjTesrKyYG9vj3fv3uHSpUswMTER23/r1i2MGTMGP/zwA8zMzMqry0REREREREREVM316tVLpnXIy/1hnr/++ivGjx9fqEgOAK1bt8bo0aOxb9++koZXahoaGkhOTsavv/4Ka2trYfvLly9x9+5d6OjoVGLvgLCwsEIFUMoXFBQEfX39yu5Gpfnvf/+Lt2/fAsh/crCXl1fldoiIiIiIiIiIiKqlhQsXFiqUZ2Rk4OXLlzh37hzq16+PIUOGyByvxIXy7OxsaGlpFblfW1sb2dnZJQ2v1DQ0NGBjY4PTp0+LFcpPnz6NVq1aFbrLvKKZm5tX6vkrUl5eHrKysqCpqSlT+3bt2pVzjxRbREQE9PX10bhxY5w6dYqFciIiIiIiIiIiqhTjxo0rct+8efMwfPhwueqsJa7Itm3bFuHh4UhJSSm0LzU1FT/88EO1LyoWx83NDefOnUNWVpawLSIiAm5uboXaPnnyBLNnz4ajoyM6deqEfv36Yc+ePcjNzRVr9/HjR2zYsAHOzs7o0KEDunfvDh8fn0Lxbt26hYEDB8Lc3BxDhw7FH3/8IbZfJBJh9+7dwmtPT09MmTIFkZGRcHV1hYWFBcaMGYPnz58XOv/69evRs2dPdOjQAX379sWpU6dKlB9JOfjqq69gaWkJc3NzeHl5FTr/nj17MGTIEFhaWsLGxgZTpkzB06dPxdr4+PjAzc0NV69exRdffAEzMzNcunQJgYGBsLCwwKNHjzBy5Eh06tQJbm5u+Pnnn8WOd3Jygp+fX6F40nKakpKCefPmwcLCAjY2Nli/fj327Nkj8RcZn3r9+jV8fX3h7OyMjh07onfv3li/fj0+fvwo1k4kEmHnzp0IDAyEra0trK2t4evri7S0NLF2d+7cweDBg2FmZibkQVZpaWm4dOkSXF1dMXjwYPz111949OiRzMcTERERERERERFVBAMDAwwfPhyhoaEyH1PiO8pnzJiByZMno2/fvhg8eDCaNWsGAHj69CmOHTuGt2/fKtU6zmWtZ8+eWLRoEa5fv44ePXrg77//xqNHj7BlyxacOXNGrO3r169hamoKd3d31KxZE9HR0QgMDERaWhqmT58utJsxYwZu3ryJKVOmwNzcHElJSfjpp5/EYiUkJGDlypXw8vKCnp4e1q1bh+nTp+P8+fPQ0NAosr/R0dFISkrCvHnzkJOTA39/f8yfPx9hYWFCm1mzZuHOnTuYNm0aWrRogatXr2L+/PnQ19eHo6NjiXP14sULjBgxAq1atYK/vz9UVFSwfft2jBs3DpGRkcLd4HFxcfjyyy9hYmKC1NRUHD58GCNGjMC5c+dgYGAgls+VK1fiq6++QoMGDWBiYoLHjx8jKysL8+bNw5gxY+Dt7Y2dO3di5syZuHTpEmrXrl1k/2TJqa+vL27evIn58+ejYcOGOHLkCB48eCD12pOTk2FgYABfX1/o6+sjJiYGgYGBSEhIwOrVq8Xafv/997C0tIS/vz9iYmKwdu1a1KlTB/PmzRP6OXHiRIhEImzcuBHv37/H8uXLkZaWhrZt20rty4ULF5CWlgY3Nze0atUKq1evRkREhNRiPxERERERERERUUXT1NTEv//+i5ycHKipqUltX+JCuY2NDXbs2IG1a9dix44dYvvatm2LgIAAdOvWraThlZ62tjacnJxw+vRp9OjRAxEREbCwsEDjxo0LtbWxsYGNjQ2A/KVCLC0tkZGRgdDQUKFQfv36dVy5cgXr1q0Tuyv98zvU3717h9DQULRq1Urox5gxY/D777+jS5cuRfY3JSUFx48fh6GhIYD8u4t9fX0RFxcHY2Nj3Lx5E5cuXcLu3bthb28PALCzs0NCQgICAwNLVSgPCgpCrVq1sHfvXtSoUQMA0LlzZzg7OyM8PByjR48GAHzzzTfCMTk5ObCzs4ONjQ3OnTsHDw8PsRzs3LkTnTp1EjtPQaG8oK+mpqZwdnbGtWvXMGDAgCL7Jy2nf//9N86fP481a9Zg4MCBAAAHBwf07dtX6rWLRCIsXLhQeN25c2doa2vDx8cHS5cuhba2trDPyMgI69atAwB0794dDx8+xLlz54RCeUhICFRUVLBz507o6ekBAIyNjYv9mcqnIiIiUL9+fXTt2hWqqqro1q0bIiIiMGfOHKioqMgUQxYFa0ulp6eXWcyq5vNfApSHgvyWV54r4hqqivLOtSzK69kXVWm+lvWYrMgxLu8Y4vwrOc7XilcZ47Usz/l5LEUYQ9WFIuS6us3XoijCf3dK0gd5xpAiXGNVpQhzFSi/+QqU/7VVxPiT9xwV3SdFGUfK/lmgKHkuy/nau3dvtG/fHrm5ueVbKAcAW1tbHD9+HAkJCfj3338BACYmJjAyMipN2GrDzc0Nc+fORUZGBs6cOQNPT0+J7TIzMxEcHIxTp07h1atXYsu1fPjwATVr1sQvv/wCbW1t9O/fv9hz1qtXTyjoAkDLli0BAPHx8cUe16ZNG6FI/ulxBYXy69evw8DAAN26dRNbm97W1hb/+c9/ZP7mRpLr16+jX79+UFNTE2Lr6+ujXbt2Ykuc3L17F5s2bcLDhw+FB04CQExMjFg8AwODQkVyAFBVVRW+kACARo0aQUtLS2pupOX0/v37AABnZ2exc/Xs2RN79+4tNnZeXh5CQkJw5MgRxMbGIjMzU9j34sULtG7dWnhta2srdmyLFi1w+vRp4fXvv/8Oa2troUgO5H8J8+nd9kVJSkrC9evX4enpKazt5O7ujoULF+L//u//iv2SRV4F7/Hn71vVUvQvEGQRHR1dRv2Qrug8V51rqCoqc0xbWlqWS9zKm6/yj8+Sjcmiz1MZY7xwniX3j/Ov9DhfpSm7f+vLPl4NKuGcdUocq2r/O6Zq4XytVy59kIf0OVVXAfpQtPw8F/+5xv+2ll5lfy6W13wFyvLaJM/nosdf2c1/ec9RWX2quHEk73UrF0Wer8eOHYOVlRUaNWpUbIy8vDzcuHEDx48fx4ULFxAVFSXTuUtVKC9gZGTE4ngJ2NvbQ0NDA5s2bUJsbGyRdxgHBAQgPDwc06ZNQ4cOHaCnp4eLFy9i27ZtyMzMRM2aNfH27VsYGRlJvbNXX19f7HXB0iCfFmBLclxycjLevn2L9u3bSzw+ISEBxsbGxZ6jKMnJyQgJCUFISEihfQX9+PfffzFhwgR06NABy5cvR7169aChoYEpU6YUura6dSX/Q01LS6vQQz01NDRKnZuEhARoaGiIFagBiH3xUJSQkBCsWbMGkyZNgrW1NfT19XH//n34+fkV6pekfny6lnlCQgKaNm1a6Byy9OPs2bPIzs6Go6Mj3r9/DwCwtraGpqYmTp06VaaFcnV1dWRnZ6NZs2Zid8xXJSfuxZXqeFmWwimt9PR0xMTEFJnnqnANVYW0XFdllTVfSzI+SzImiztPRY7xosZQUf3j/Cs5zlfZPEp4U0a9kmO8/t+rCj/n1b9fyx1LmceQolHmXMszX1/fSaygXhVN2px6EJ9Q6X2Q5NMx9PL+hzKPT/mUea4WKKtre/Wb5Plc1Pgrqn1JyHuOiu5TRY+jhCj5rltZVIX56uvrizVr1hRZKH/8+DGOHz+OU6dOISEhAXXq1MGwYcNkjl/iQvnx48eltqlRowaMjY3Rvn37QgVIyi9k9u7dG/v27YONjU2RBdzIyEh4eHjAy8tL2Pb5QxgNDAyQkJCAvLy8Ml0GQ1a1atWCoaFhoWV4CshSjC0utqOjI0aNGlVoX82aNQEAP//8M9LS0hAUFCQUjLOzs/Hu3btCx1R0foyMjJCVlYWUlBSxYnlSUpLUYyMjI+Hk5IS5c+cK2548eVLifiQmFv6wl6UfERERACQ/TTgyMhKLFy8udo17eRS8P9ra2uX68zhFVpHXXV55rq7vXXGUcUxXpfla1v2rjOuVNc+K/l5UBVVhTMtLUedrZfSlLM9ZVCxFy7MyU8ZcyzdfK79Qrgj5L00f8otBxRfKFeEaqzplnKsFyu7aJM/nomOX3fyX9xyV1aeKG0fyXrdyUeT52rBhQ/zwww+wsbFBvXr5d/4nJibi1KlTOHnyJB4+fIiaNWuiV69ecHd3h52dnVx1wBIXyn18fIQTFayhVuDT7SoqKtDV1YWXlxcmT55c0tMprWHDhiExMRHDhw8vsk1mZqZYETInJ0dsSQ0gf9mNnTt34uzZs+jXr1+59bcotra22LVrFzQ0NNCmTZsyjW1jY4PHjx+jXbt2RS7fkpGRARUVFair/29IF9wFXdk6dOgAALh48aKwRnlubi4uX74s9diMjIxCBehTp06VqB8dO3bEoUOHxAr2v/zyi9gyNZK8fPkSUVFRGDFiRKGxFR0djdWrV+Pnn3+Gk5NTifpFREREREREREQkjY+PDxYsWAAnJyf06NEDWVlZuH79OoD8lTsmTpyIXr16Cc84lFep7ij38fGBgYEBRo8ejSZNmgAAnj17hu+//x4pKSlYsmQJEhMTceDAAaxfvx41a9aUeFdwddaxY0ds3bq12Da2trYIDw9Hy5YtUbt2bRw8eFBsSY2CNo6Ojvjmm2/w/PlzdOrUCW/fvsW5c+ewcePGcryCfHZ2dujZsycmTZqESZMmQSQSIT09HX///TeePXuGVatWFXt8amoqIiMjC223trbGzJkzMXToUEycOBHDhw9H3bp18ebNG9y+fRtdunSBm5ub8OBYX19fjBgxAo8fP8bevXsLLUdSGVq1agUXFxesXLkS6enpMDExwZEjR4TifnFsbW2xf/9+hIaGolmzZjh58iSePXtWon6MHTsWBw8exOTJkzF58mS8f/8egYGBUtcoL7ibfNKkSYUeNmtpaYkdO3YgIiKChXIiIiIiIiIiIio3Li4uuHDhAsLCwnDixAk8f/4cANCrVy+MHTu21EsDl7hQHhISgjp16mD37t1i20UiEVxcXDBp0iT88MMPWLVqFZycnDBq1CgcOnSIhfISWLJkCZYtW4YVK1ZAW1sbgwYNgouLCxYvXizWLjAwEEFBQQgLC0NQUBDq1KkDOzu7Cuvn5s2bsWPHDhw6dAgvX76Enp4eWrVqhcGDB0s99tWrV5g1a1ah7d9//z26dOmC8PBwbNy4EcuXL0daWhqMjIxgZWUFkUgEIH/crV69GkFBQZgyZQratm2LTZs24euvvy7ryyyRb7/9Fn5+fli7di00NTUxaNAgtGrVCt9//32xx02bNg3JycnYvHkzAMDV1RWLFy/G1KlT5e5DvXr1sHPnTqxcuRKzZs1CkyZNsHTpUmzYsKHY4yIiItC5c+dCRXIgf/1ENzc3HDlyBB8+FP9zRSIiIiIiIiIiotKoU6cOvL294e3tjd9//x0nT57EmTNncP78eZiYmKB///5wd3dH69at5Y6tkvf5uikysrKywuzZs4ssfH///ffYtGkTbt++DQDYu3cvNmzYgHv37pXkdERKZ/To0VBVVcWBAwcquysK4/79+8jLy0NWVhbatm2rsGtiSbN07z+lOt5vfPMy6knR0tLSEB0dXWSeq8I1VBXScl1VVeZ8Lcn4LMmYLO48FTnGixpDRfWP86/kOF9lczDyuUzt4t7lSm0zx6OZTLHm75DtGS0WTaQ/M2VUnyYyxVofFiO1zef9V9YxpIiUNdfyztez/30hNWZWdon+l19mX/Qofk7tPyP9F7E1axT/S1sNyStwytwHST4dQxduF/+Q4pLEp3zKOleB/Pn68ePHMru2iGuS57Nb98I3rRXXXr2I+ZKdU/S55T2HvO1L4tNzVPQ4irwu+Tr62Em+bmVRledrTk4Ofv75Z5w4cQKXL19GRkYGRCIR3N3d4e7ujvr168sUp8R3lOfm5uLp06dF7n/69Clyc//3j2NNTc0Srw9DVNWdO3cOr169QuvWrZGeno6IiAj89ttv2LJlS2V3jYiIiIiIiIiIqMpSU1NDjx490KNHD6SmpuLcuXM4ceIE1q9fj/Xr1+Phw4cyxSlxodzJyQmHDh1C06ZNMWzYMKEInpmZiSNHjuDw4cPo27ev0D4qKkpYx5youtHR0cGJEycQExODrKwsNG/eHAEBAejVq1dld42IiIiIiIiIiEgp6OrqYsiQIRgyZAji4+Nx4sQJmY8tcaF80aJFePHiBVauXIk1a9bAyMgIAJCQkICsrCx07NgRixYtApBfPNfS0sL48eNLejqiKs3BwQEODg6V3Q0iIiIiIiIiIiKl8+bNG/z888/o16+fcEN3/fr14eXlJXOMEhfKDQwMcOjQIZw/fx4///wz/v33XwCAvb097O3t0atXL6iqqgIAatSogZUrV5b0VEREVYoyrA+sDNdAyquixqeizwNF7x8pL1nX+JZ1LXNZBHi1KLNYspJ1/XSiytTXXvp6uSevFD8XNdSLXx/8ZVLxzxv48WLx8Y30VYvdD0i/DlnWYi8NrkFOiqCo5wkUtV52YorkuamvLXlOp38s+tzyrkVeVJ+KWh+9KMWt+V34HPWQEJWIPnblv3a2sq9FrqweP34MX19fODg4lHj57xIXygFARUUFvXv3Ru/evUsThoiIiIiIiIiIiIio0pSqUA4A8fHx+PXXX5GYmAhXV1cYGxsjNzcX79+/h56eHtTU5Pw6iYiIiIiIiIiIiIioApW4UJ6Xlwd/f398//33yM7OhoqKClq3bg1jY2N8+PABTk5OmDlzJsaNG1eG3SUiIiIiIiIiIiIiEqeiUvxyYtJIXyysCLt27cL+/fsxYcIE7N27F3l5/1tLSU9PD71798ZPP/1Uqs5RxQoMDIRIJBL+mJmZoW/fvti5cydyc8XXvhKJRNi9e3cl9TRfdHQ0RCIRbt26JXH/H3/8AZFIVOTTbXNycmBra4sFCxYgNjYWIpEIkZGR5dnlIjk5OcHPz0947ePjAzc3tzI/T2BgIO7cuVNouyK8n0RERERERERERCVhY2OD6Oho1K1bt8QxSnxHeXh4OAYOHIg5c+YgOTm50H6RSIRr166VuGNUObS0tBASEgIAyMjIwK1bt7Bu3Trk5eXJ9ZRYRdChQweYmpri9OnTGDBgQKH9v/zyCxITE+Hu7o569eohLCwMzZo1q/iOSuDt7Y20tLQyjxsUFAQdHR107txZbHtYWBhMTEzK/HxERERERERERERVQYkL5a9evYKFhUWR+7W1tZGamlrS8FRJVFVVYW5uLrzu1q0b/vrrL/z0009VrlAOAG5ubti+fTuSk5NRu3ZtsX0RERGoU6cObG1toaamJnbdla1Jk4p96roiXTsREREREREREZE0vr6+ch9TsJy4JCVeeqVOnTp49epVkfsfPHiABg0alDQ8KZCaNWsiOztb7uOuXLmC8ePHw8bGBp07d8awYcMK/crg6NGjEIlEePjwISZNmgRzc3P07t0bx48fLxRv69atsLOzg4WFBaZPn47ExESpfXB3d0dWVlahJVUyMzNx/vx59OvXD2pqahKXXrl48SIGDx4MCwsLdOnSBYMHD8bVq1eF/ZKWK9m3bx9EIpHwOi0tDX5+fnB1dUWnTp3g5OSEpUuXIiUlpdh+f770ipOTk9iyOAV/fHx8AACvX7+Gr68vnJ2d0bFjR/Tu3Rvr16/Hx48fxfoLAGvXrhWOL1i2RtK1HD58GK6urujQoQOcnJywdetWsSV45HnviIiIiIiIiIiIytKvv/6K27dvy/2nKCW+o9zFxQWHDx/G4MGDoaurC+B/C6b/97//xbFjxzBx4sSShqdKVFAUL1h65aeffsKUKVPkjhMbG4uePXtiwoQJUFVVxbVr1+Dl5YWQkBBYW1uLtZ03bx6GDx+O8ePH48iRI/Dx8YGZmRlatGgBAAgNDcWmTZswYcIE2Nra4saNG1i0aJHUPjRt2hRmZmaIiIjAyJEjhe1XrlxBamoq3N3dJR73/PlzzJo1C/3798fcuXORm5uLP//8E+/evZMrBxkZGcjJycHs2bNhaGiIV69eYfv27fD29saBAwdkjhMUFCRW9H706BGWLVsGU1NTAEBycjIMDAzg6+sLfX19xMTEIDAwEAkJCVi9ejWA/OVVPDw84OnpKRThW7ZsKfF8Bw4cwMqVK+Hp6YkePXogKioKQUFBSElJwcKFC8XaSnvviIiIiIiIiIiIytqFCxfKNF6JC+UzZ87ErVu3MGDAAHTp0gUqKirYuXMnNm3ahLt376Jt27aYOnVqWfaVKkBaWhrat28vtq1fv34lWnblyy+/FP6em5sLa2tr/P333zhy5EihQvno0aMxevRoAICFhQWuXr2Kc+fOwdvbGzk5OQgODsaAAQOEIq2DgwMSExOLfFDnp9zd3bF69Wq8evVK+JXD6dOn0aRJE3Tq1EniMQ8fPkRWVhaWLFkifBHk4OAgdw4MDQ2xfPly4XV2djYaNWqEUaNG4enTp0KhW5p27doJf09KSsKcOXNgZ2eHyZMnA8i/I/zTAnbnzp2hra0NHx8fLF26FNra2sLyKg0aNCh2qZWcnBxs2bIF/fv3x+LFiwEA9vb2yMrKwp49e+Dl5SW2jE1x711JFDwYOD09vUTHk2wK8ss8lz9FyLWOjk65xOV8rRiKMIaqC0XIdXWbr+XxTJbKpAhjqLpQhFxXt/lankr7WVCS4xVhDFUHipLn8pqvQOVfW3kq7/9OlyS+sv3bQZFUh/kqTYkL5Xp6ejhy5Aj27NmDc+fOoUaNGvj111/RpEkTTJs2DZMmTYKWllZZ9pUqgJaWFkJDQwEAHz9+xIMHD7B582YsXrxYuDNZVnFxcdiwYQNu3LiBhIQE4R98nxfigfxCbAEdHR2YmJggLi5OiPP69Wu4uLiIHePq6ipTobxfv35Ys2YNzpw5g4kTJyI1NRVXrlwp9hcPIpEIampqwt3SVlZW0NPTk+m6P3f8+HHs27cPz549E/tAj4mJkblQXiArKwuzZs2Cmpoa1q9fD1XV/NWT8vLyEBISgiNHjiA2NhaZmZnCMS9evEDr1q1lPsc///yD5ORk9OnTR2x7v379EBwcjHv37sHR0VHYXtx7VxIFv2iIiYkpcQySHfNccSoz15aWluUSl/O1YjHPFYfztawYSW0RHR1dAf2oeJyvFYfzVRbS52Jlk/5ZUK+UxxeN87ViVHaey2u+Aso9V4ueW8XPydLHL/ocyvpvB0VSFefrr7/+irNnz+L58+dQVVVF06ZN4erqii5dusgVp8SFciC/qOrt7V3iO0dJ8aiqqsLMzEx4bWlpiZycHPj7+2P8+PEyF1xzc3Px1VdfISUlBTNnzkTTpk2hra2NzZs3S1zb/vMitIaGhrDUSEJCAoD8u7M/VbduXZn6YmRkBGtra0RERGDixIk4f/48MjMzi1x2BQBMTU2xfft2BAcHY/r06VBVVYW9vT2WLl0KExMTmc4LAOfPn8fChQvh4eGB2bNnw8DAAAkJCZg2bZpYMVtWq1atwh9//IEjR46gVq1awvaQkBCsWbMGkyZNgrW1NfT19XH//n34+fnJfZ6C5WXq1Kkjtr3g9efLzxT33pWEuro6srOz0axZM2hra5c4DhUvPT0dMTExzHMFUOZcc75WDGUeQ4pGmXNdGfP1UcIbqW3atm1bAT2pOMo8hhSNMue6rOfry9vS52Jlk/ZZ8PpO8c+nKslniTKPIUVSHfJcVtf2/KbizdWi5lZClPRnxpUmfnHnULZ/OyiSqjpfly1bhrCwMKirq8PAwABv3ryBvr4+Dhw4gKFDh2LFihXCcuHSlLhQPmbMGHz11VewsbGRuP/mzZvYunUr9u/fX9JTkIJo3rw5AODvv/+WuVD+7NkzPHz4EFu2bEGvXr2E7RkZGXKf38go/1vVpKQkse1v3sj+HxF3d3f4+vrin3/+QUREBNq3by9cV1G6d++O7t27IzU1FdeuXcPq1avh6+uLkJAQAICmpiaysrLEjnn//r3Y68jISLRt2xZ+fn7CtuIeGlCcw4cP4/Dhw9i8eTNatWpV6DxOTk6YO3eusO3JkyclOo+BgQGAwvkueHjqpwX68lDw4aWtrV2pP7epLpjniqOMueZ8rVjMc8VRxlwr6nxVpL6UJUXLszJTxlwr6nwtT9Kvs/iiXGnyVJ3yXJmUOc/KfG1FX1fZFMqLz5vkcyhrrhVJVRrT4eHhOHLkCKZMmYJp06bhzp07GDduHCIjI3Hz5k0sWLAALVu2xLhx42SKp1rSjty+fbvYQmVSUhJ+/fXXkoYnBfL48WMAEFuXWpqCu5g1NDSEbS9fvkRUVJTc5zc2NoaRkRHOnz8vtv3cuXMyx+jduzdq1KiBkJAQ3Lx5s9i7yT+nq6uLfv36oX///mLFZ2Nj40LF6Bs3boi9zsjIEMsBAJw6dUrmcxf47bffsHLlSkydOhW9e/cutF/W82hoaEi9w9zU1BSGhoaIjIwU23727FloaGigY8eOcvefiIiIiIiIiIioLIWFhcHBwQGzZ8+GpqamsOyziooK+vXrhyFDhuCHH36QOV6pll4p7rb1Z8+eoWbNmqUJT5UgNzcXd+/eBZC/HvaDBw+wbds2tGzZUq51fZo3bw5jY2OsW7cOubm5SEtLw+bNm1GvnvzrWKmpqcHLywurVq1CnTp1YGdnh+vXr+PWrVsyx9DV1UWPHj0QFhYmTJbiHD58GHfv3oWDgwOMjIwQGxuLkydPws7OTmjj6uqKkJAQmJmZwdTUFCdPnkR8fLxYHFtbW/j5+WHLli3Cgy5/+eUXua4/NTUVM2bMQNOmTeHo6Ci8P0D+cjRNmjSBra0t9u/fj9DQUDRr1gwnT57Es2fPCsVq3rw5Ll68iC5dukBbWxumpqbCw0oLqKmpwdvbGytXroShoaFwzp07d2Ls2LFyfWFCRERERERERERUHp48eVLszbDt27fHsWPHZI4nV6H82LFjYsG3bduGI0eOFGqXkpKCR48eoXv37vKEJwWQkZEBDw8PAPlr4xkbG+OLL77A9OnTC92xXBxNTU0EBgbCz88Ps2bNQoMGDfDVV1/h5s2b+OOPP+Tul6enJ96/f4+DBw/i0KFDsLGxwcqVKzFp0iSZY7i7u+PcuXOwtrZG/fr1i20rEolw+fJlrF69Gm/fvoWRkRH69++PWbNmCW28vb2RmJiILVu2QEVFBR4eHhgzZgz8/f2FNiNGjEBsbCxCQ0Oxe/du2NvbY926dRg+fLjM/X779i2SkpKQlJSEESNGiO0bNGgQ/P39MW3aNCQnJ2Pz5s0A8ov4ixcvxtSpU8XaL126FN9++y0mT56MjIwM7N+/H9bW1oXO6enpCXV1dezbtw+HDh2CkZERpk+fXigeERERERERERFRZVBTU4O6etHl7djY2ELP1iuOXIXy9PR0JCcnC68/fPgAVdXCq7fo6OhgxIgRmDZtmjzhqZLNmDEDM2bMkKnto0ePpLbp2LFjoZ83DBw4UOz14MGDMXjw4ELHnjhxQuy1iooKpk+fjunTp8vdjwIuLi5Ftm/UqJHYPgsLCwQHBxcbT0dHB6tXry60ffz48cLf1dTUsHDhQixcuLDYfl+6dEns9afF9s/7JknNmjUl9uXz47p06YKjR49KbQcAI0eOxMiRI4s8p6zvHRERERERERERUVlr2LAhYmJiCm3Py8vD9evXceDAAbmWX5arUD5q1CiMGjUKAODk5IRFixbB2dlZnhBERERERERERERERKXi6OiI48ePw8fHB2pqagDyb7bt1asX0tLS0LFjR8ybN0/meCVeo/zzO2CJiIiIiIiIiIiIiCrCmDFj0KFDB6SlpUFPTw+GhoZwcnJCnTp1YG1tjT59+ggFdFmU6mGeBVJTU5Gamorc3NxC+0xMTMriFEREREREREREREREAIC6deuid+/ewmuRSIQtW7aUOF6pCuUHDx7Evn378OLFiyLbREdHl+YUREREREREREREREQyS01NxcWLF3H27Fls375dpmNKXCg/dOgQ/Pz8YG9vjyFDhmDDhg0YN24catSogaNHj6Ju3brw9PQsaXgiIiIiIqrCRvVpUtldICIAX/So+nOxr33jyu4CUbkb5FR15mofu/Kfk5+eIy0tDdHR0Wjbtm25n5eqtvT0dFy+fBlnzpzBtWvXkJWVhYYNG8p8fIkL5aGhobC3t8euXbuQnJyMDRs2wNHRETY2Npg0aRKGDBmCt2/fljQ8EREREREREREREVGRPn78iKtXr+LMmTO4cuUKMjIy0KBBA3z55Zfo168fOnToIHOsEhfKnz9/jlGjRgEANDQ0AABZWVkAAD09PQwdOhQHDx7EhAkTSnoKIiIiIiIiIiIiIqJC5s+fj0uXLiEtLQ316tXD8OHD0bdvX5ibm5coXokL5Xp6esjJyQEA6OrqQltbG3FxccL+mjVr4s2bNyUNT0REREREREREREQkUUREBHR0dLB8+XIMGzYMKioqpYqnWtIDW7VqhT///FN43alTJxw6dAjx8fF49eoVwsLC0KxZsxJ3LDAwECKRCCKRCG3atIGlpSXc3d3h5+eHJ0+elCjmrVu3ZF68XV779u2DSCTCN998U6Zxjx49CpFIhKSkpGLbeXp6YsqUKcLr8rzWioiviLp06YLAwMBi23h6ekIkEmH27NmF9qWmpqJjx44QiUQ4evRomfRpwIAB8PHxkeuY2NhYiEQiREZGCtucnJzg5+dXJn0iIiIiIiIiIiIqb7a2tsjMzMTSpUsxaNAgBAcH48WLFyWOV+JC+RdffIHHjx/j48ePAIAZM2bgyZMn6NGjB5ycnPD06VN8/fXXJe4YAGhpaSEsLAyHDx/G5s2bMXjwYNy4cQMDBgzAiRMn5I53+/ZtBAcHl6pPRTl58iQA4Pz580JOKtKyZcuwcOFC4XV5XmtFxK/KdHR0cPnyZaSlpYltv3DhAtTU1CqpV8ULCgriMklERERERERERFRl7N69G9euXcPy5cuhr6+PzZs3w8XFBUOGDMGuXbvw77//yhWvxIXyIUOGIDw8HJqamgAAS0tLnD59Gj4+Pli0aBFOnjyJHj16lDR8fudUVWFubg5zc3PY2dlh/PjxOHHiBCwtLbFo0aJSfUNQlp4+fYoHDx7A1tYW79+/x5UrV6Qe8/HjR+Tm5pZZH1q2bInmzZuXWbyKVtb5qEydO3eGlpYWLl26JLY9IiICvXr1qqReFa9du3Zo1KhRZXeDiIiIiIiIiIhIZoaGhvDw8MD+/ftx5coVLF68GJqamli/fj2cnJzg4eEhcyy5CuUFt7IfOHBA4v7GjRtj7NixyM3NRUhIiPBwz7JUo0YNLFmyBFlZWQgPDxe2Hz9+HCNHjkTXrl1hZWUFT09P3Lt3T9gfGBiIoKAgpKWlCUu6eHp6AgCePHmC2bNnw9HREZ06dUK/fv2wZ88emQu3ERERUFFRgZ+fH+rWrYtTp04ValOwtMXOnTvRs2dPdOzYEW/fvhX6PnDgQJiZmcHa2hqTJ0/Gy5cvxY6Pi4vDpEmTYG5ujt69e+P48eNi+z9deqW4ay243q+++gqWlpYwNzeHl5cXnj9/LhYvNzcXe/fuRd++fdGhQwfY2dlh5syZSElJKTa+j48P3NzcxGK9f/++0HIjxeXj6NGjcHd3h5mZGRwcHLBhwwZhPfyiyPIeFiw5cuLECfj5+cHKygr29vZYs2YNsrOzxeJduHABffr0gZmZGYYOHSo2lqRRV1eHq6srIiIihG1JSUn45ZdfCuWmwOHDh+Hq6ooOHTrAyckJW7duLTT+7ty5g8GDB8PMzAxubm64evWqxFhRUVEYM2YMzM3NYWlpiblz5yIxMbHYPn++9ErB+3jr1i0MHDgQ5ubmGDp0KP744w+x41JSUjBv3jxYWFjAxsYG69evx549eyASiYo9HxERERERERERUVkyMjLCl19+iUOHDuHSpUvw8fGRWlP8lFwP8wwLC8OxY8dw5syZYtv17NkTAQEBaN26NUaNGiXPKWTSsmVL1K9fH1FRUcK22NhYDBw4EE2aNMHHjx9x+vRpjB49GidPnoSpqSmGDRuGuLg4REREICQkBED+Q0gB4PXr1zA1NYW7uztq1qyJ6OhoBAYGIi0tDdOnT5fan4iICHTp0gWNGzdG3759ERYWhpSUFOjp6Ym1++mnn9C0aVMsWrQIqqqq0NHRwa5duxAQEIChQ4di9uzZyMrKws2bN5GUlISGDRsKx86bNw/Dhw/H+PHjceTIEfj4+MDMzAwtWrQo1J/irvXFixcYMWIEWrVqBX9/f6ioqGD79u0YN24cIiMjhV8IrFixAmFhYRg7dizs7Ozw4cMHXLlyBWlpacXGl4ekfOzduxcBAQEYO3YsfHx88OTJE6FQPm/evCJjyfMebty4Ec7Ozti4cSOioqIQGBiIJk2aYOTIkQCA6OhozJw5E927d4evry9iY2Px9ddfy7WkjpubG8aPH493796hVq1aOHv2LOrXrw8LC4tCbQ8cOICVK1fC09MTPXr0QFRUFIKCgpCSkiIsp5OQkICJEydCJBJh48aNeP/+PZYvX460tDS0bdtWiBUVFQVPT084Ojpiw4YNSE9Px8aNG+Ht7Y2wsDCZ+19wzpUrV8LLywt6enpYt24dpk+fjvPnz0NDQwMA4Ovri5s3b2L+/Plo2LAhjhw5ggcPHsh1HiIiIiIiIiIiorJkbGyMcePGYdy4cTIfI1eh/OzZs+jduzcaN25cbLvGjRvD1dUVp0+fLpdCOQA0aNAAb968EV5/WgzNzc2FnZ0d7t27h2PHjmHOnDkwNjaGsbGxsJzLp2xsbGBjYwMAyMvLg6WlJTIyMhAaGiq1UH7v3j3ExMRg/PjxAPILpAcOHMC5c+cwdOhQsbZZWVnYuXMndHR0AOTfjRsUFAQPDw+xu3klLc8xevRojB49GgBgYWGBq1ev4ty5c/D29i7UtrhrDQoKQq1atbB3717UqFEDQP5SIc7OzggPD8fo0aPx9OlTHDp0CLNnzxZ7QKirq6vYOSTFl8fn+UhNTcXmzZsxadIkzJkzBwBgZ2cHDQ0N+Pv7Y+LEiahdu7bEWPK8hx07dsTixYuF+Ldu3cK5c+eEQvmOHTvQoEEDbNmyRVhTvEaNGli0aJHM19alSxfUqVMHP/30E4YNG4bTp09LvJs8JycHW7ZsQf/+/YU+2dvbIysrC3v27IGXlxdq166NkJAQqKioYOfOncIXMAUT/lPr1q1Dhw4dEBQUJDzpt3Xr1sId6I6OjjJfw7t37xAaGopWrVoBALS1tTFmzBj8/vvv6NKlC/7++2+cP38ea9aswcCBAwEADg4O6Nu3r8znkCQvLw8AkJ6eXqo4VLyC/DLP5U8Rcl3wOVvWOF8rhiKMoepCEXLN+Vq1KcIYqi4UIdecr1WbIoyh6kBR8lxe8xWo/GurDhRlHCk7RclzSebrixcv8NNPP+H58+dQVVVF06ZN0bt3b5iYmMgVR65C+V9//QV3d3eZ2nbu3Bnr16+XqzPyyMvLEwqBQP7SG+vXr0dUVJTYMhMxMTFSY2VmZiI4OBinTp3Cq1evxJaM+fDhA2rWrFnksREREdDQ0ECfPn0AAObm5mjcuDFOnTpVqFBubW0t9mZHRUUhPT29UDtJ7O3thb/r6OjAxMQEcXFxUo/73PXr19GvXz+oqakJy43o6+ujXbt2wrIaN2/eRF5enkz9Kg1J+UhLS0OfPn3ElkKxtbVFRkYGHj9+jK5du0qMJc97+GkuAaBFixa4efOm8Pr333+Hk5OT2IM3+/TpI1ehXEVFBf369cPp06dhb2+PO3fuYNmyZYXa/fPPP0hOThbGT4F+/fohODgY9+7dg6OjI37//XdYW1uL/UrBxsYGBgYGwuv09HTcuXMHCxYsEPtZSbNmzdCgQQPcv39frkJ5vXr1hCI5kP9LDgCIj48HANy/fx8A4OzsLLRRVVVFz549sXfvXpnP87mC916WuUulxzxXnMrMtaWlZbnE5XytWMxzxeF8pdJinisO5yuVFvNcMSo7z+U1X4HKv7bqhLmuGJWdZ3nn644dO7Bp0ybk5uZCRUUFubm5UFVVRUBAAKZPn46vvvpK5lhyFcqzsrKEJRek0dDQkGupCnnFxcWhWbNmAPLvRJ4wYQIMDQ3h4+MDExMT1KhRA4sXL0ZmZqbUWAEBAQgPD8e0adPQoUMH6Onp4eLFi9i2bRsyMzOLLJTn5ubizJkz6Nq1K1RVVfH+/XsA+YXD/fv3Iz4+HvXr1xfa16lTR+z4gjW569WrJ7WPny/jUtL8JicnIyQkRFgy5fOYBf1SV1cv1N+y9nn85ORkAMCgQYMktn/16lWRseR5D6XlMiEhoVDfdHV1hTvwZdW/f3+EhIRg3759aNWqFUQikTBGCrx79w5A4VwUvC7Yn5CQgKZNmxY6h6GhofD39+/fIycnB6tXr8bq1asLtS0uf5Lo6+uLvS4YHwVzKiEhARoaGoXy+WmfSkJdXR3Z2dlo1qwZtLW1SxWLipaeno6YmBjmuQIoc645XyuGMo8hRaPMueZ8rRjKPIYUjTLnmvO1YijzGFIk1SHPynxtiqI6jCNFUBXzfOHCBWzYsAFubm6YPn06Xr58iQkTJuDcuXM4e/YsNmzYABMTEwwYMECmeHIVyuvVq4fHjx/L1Pbx48cyFYBL4vHjx4iPjxcKqnfv3kVcXByCg4PRpk0boV1KSgqMjY2lxouMjISHhwe8vLyEbUU9KPFTN2/eREJCAhISEmBlZVVo/5kzZ4QlWQCI3QEPQLgb+PXr1zL1syzUqlULjo6OEpfEKSgmGxgYIDs7G4mJiXIXyzU1NQs9xLWg2Pu5z/NRq1YtAPnLw0jKR6NGjYo8b0nfQ0mMjIwKPfwyNTVVpi9dPtWhQwc0btwY+/fvx6xZsyS2KRgDSUlJYtsLzl+QE0l9+vw4PT09qKioYMqUKRKX7ylq2ZqSMjIyQlZWVqH1+D+/FnkVjAttbe1y/Xkc5WOeK44y5prztWIxzxVHGXPN+VqxmOeKo4y55nytWMxzxVDmPCvztSka5rpiVKU879u3D+bm5ggICAAA/PvvvwDyb3j18vLCo0ePEBISUj6FcltbW5w4cQJTpkwptoCamJiIEydOiK1pXVYyMzOxYsUKaGpqYtiwYQCAjIwMABC72/3OnTt4+fKl2NIRRd2FnZmZKXZsTk4OTp8+LbUvp06dgo6ODrZu3QpVVVWxfd9++y1OnTolVij/nIWFBbS1tfHjjz+iY8eOUs8nj6Ku1cbGBo8fP0a7du3Elhb5VLdu3aCiooIff/xRrPAsS3xjY2PExcWJLXdy/fp1mfpckI+4uDi4uLjIdEyBkr6HknTs2BGXL1+Gr6+vkKPIyMgSxZo8eTIuXbpU5JJFpqamMDQ0RGRkpNg1nz17FhoaGsK46NixIw4dOiRWlP7ll1+EXyUA+UvymJub459//oGZmVmJ+iuPDh06AAAuXrworFGem5uLy5cvl/u5iYiIiIiIiIioenv48CGmTZtW5H4rKytcuHBB5nhyFconT56MkydPYuzYsVi1ahU6depUqM3vv/8uLHkyadIkecIXkpubi7t37wIA0tLS8NdffyEsLAwvXryAv7+/cIexubk5dHR0sHz5cnh5eSE+Ph6BgYFiy54A+WtRZ2dnIyQkBBYWFtDV1UXz5s1ha2uL8PBwtGzZErVr18bBgwelLmuSmZmJ8+fPo3fv3sJDJD81ZMgQrFq1Cv/88w+aN28uMYaenh6mTZuG7777Dnl5eXB2dkZubi5u3bqF/v37l6rYWdS1zpw5E0OHDsXEiRMxfPhw1K1bF2/evMHt27fRpUsXuLm5wdTUFCNGjMCmTZvw7t072NjYICMjA1euXMGMGTNQv379IuP37t0bmzdvxjfffIPhw4fj8ePH+OGHH2Tqs76+PmbOnImAgADExcWha9euUFNTw4sXL3Dx4kUEBgYW+dOPkryHRfHy8sLQoUMxbdo0jBw5ErGxsdi9e7fcS68AwNChQ4td611NTQ3e3t5YuXIlDA0N4ejoiLt372Lnzp0YO3ascBf42LFjcfDgQUyePBmTJ0/G+/fvERgYKLZGOQAsWLAAY8eOxddff43+/ftDX18fcXFxuHHjBgYPHgxra2u5r6EorVq1gouLC1auXIn09HSYmJjgyJEjyMjIKPRrASIiIiIiIiIiorJW3LMlk5KSoKWlJXMsuQrljRs3xsaNGzFnzhyMGDECjRs3RuvWrVGzZk18+PABjx8/xvPnz6GlpYX169ejSZMm8oQvJCMjAx4eHgDy75Zt1KgRbGxsEBQUhBYtWgjt6tati02bNmHt2rXw9vZGs2bNsHz5cuzatUssXs+ePTFq1Cjs2LEDiYmJsLKywoEDB7BkyRIsW7YMK1asgLa2NgYNGgQXFxcsXry4yL5duXIFKSkpwp20n3Nzc8PatWtx6tSpIpfdAPK/fDA0NMS+fftw9OhR1KxZExYWFqVeH7yoa23atCnCw8OxceNGLF++HGlpaTAyMoKVlRVEIpFw/NKlS9GoUSOEh4cjJCQEBgYGsLKyEgZfUfFbtmwJf39/bN26Fd7e3rC0tMR3330n808cJkyYgPr162Pv3r0IDQ2Furo6mjRpgh49ehS7Pn5J3sOitGvXDps2bcJ3332H6dOno1WrVtiwYQMmTpwodyxZeHp6Ql1dHfv27cOhQ4dgZGSE6dOnY+rUqUKbevXqYefOnVi5ciVmzZqFJk2aYOnSpdiwYYNYrM6dO+PgwYMIDAyEr68vsrKyYGxsjG7duklc47y0vv32W/j5+WHt2rXQ1NTEoEGD0KpVK3z//fdlfi4iIiIiIiIiIqICDRo0wIsXLwptz8vLw99//40DBw7Azs5O5ngqeXl5efJ2IjY2Fjt37sSVK1cQHx8vbK9Xrx569OiByZMno3HjxvKGJSIlMHr0aKiqquLAgQNyH3v//n3k5eUhKysLbdu2rTJrYlVFaWlpiI6OZp4rgLLmmvO14ijrGFJEypprzteKo6xjSBEpa645XyuOso4hRaPMeb5//z4+fvyolNemaJR5HCmSqpjnlStX4ueff8a5c+cA5C9TPGHCBDRv3hzPnj2DsbExQkNDZX42pFx3lBdo1KgRli9fDiD/IYcF61Hr6uqWJBwRVVHnzp3Dq1ev0Lp1a6SnpyMiIgK//fYbtmzZUtldIyIiIiIiIiIiJebp6YmGDRvi7du3MDAwQM2aNSESiVCnTh0MGDAAo0aNkqteXaJC+ad0dXVZICeqpnR0dHDixAnExMQgKysLzZs3R0BAAHr16lXZXSMiIiIiIiIiIiXWtGlTjB8/XnjdsWNHHD9+vMTxSl0oJ6Lqy8HBAQ4ODpXdDSIiIiIiIiIiolJhoZyIiIiIiBTawcjnMrUb1adJOfeEqOrZf+ZZsfsNdFSK3f9Fj+Ln1dn/Fn6Imrz62iv2M85kuUZFvwZSPhHXJI9Lt+7yj8XI65Jj9bGTHEve9kTlxdfXV+5j8vLy4O/vL3EfC+VEREREREREREREVKX8+uuvyMvLk+uY4tqzUE5EREREREREREREVcqFCxfKNJ5qmUYjIiIiIiIiIiIiIqpiFKpQHhgYCJFIBJFIhDZt2sDS0hLu7u7w8/PDkydPShTz1q1b2L59e5n1MTY2VujjtWvXCu0/cuSIsJ/KVlm/l6Xx/v17iEQiHD16tNh2ycnJ+Pbbb9G7d2+YmZnBxsYGI0eOxL59+4Q2sbGxCAwMRHx8fJn2UZHyRUREREREREREpMgUqlAOAFpaWggLC8Phw4exefNmDB48GDdu3MCAAQNw4sQJuePdvn0bwcHBZd5PHR0dnDlzptD2iIgI6OjolPn5qPzey/KSnZ2NsWPH4vz58xg/fjx27dqFxYsXo127drh8+bLQ7uXLlwgKCsLr16/L9PxVLV9ERERERERERESVReHWKFdVVYW5ubnw2s7ODqNGjYKXlxcWLVqEzp07o3Hjyn+KrrOzM86fP4/ly5ejRo0aAIDXr1/j119/hZubG06ePFnJPaTKdvv2bTx69AihoaGwsrIStvfv3x+5ubklipmRkQEtLa2y6iIRERERERERERFBAe8ol6RGjRpYsmQJsrKyEB4eLmw/fvw4Ro4cia5du8LKygqenp64d++esD8wMBBBQUFIS0sTlkPx9PQEADx58gSzZ8+Go6MjOnXqhH79+mHPnj0yFzC7d+8OFRUVXL16Vdh25swZNGnSBO3bty/U/rvvvoO7uzssLCzg4OCAOXPmFLqD2NPTE1OmTEFkZCRcXV1hYWGBMWPG4Pnz53LHysvLQ1BQEOzs7GBhYYGZM2fixo0bEIlEuHXrlli73bt3w9XVFR06dICzs7PYsiAFebSwsMDDhw/h4eGBjh07YtCgQXj48CEyMzOxbNkyWFlZoXv37oWOBYCoqCiMGTMG5ubmsLS0xNy5c5GYmCjsL1jO5sSJE/Dz84OVlRXs7e2xZs0aZGdnC30o6r2UJCoqClOnToW9vT3Mzc0xYMAAHD9+XKzNrVu3IBKJcP36dcydOxcWFhbo2bMndu7cWSjekSNH4OTkhE6dOmHs2LF49uxZkecu8O7dOwCAkZFRoX2qqqpCH8aMGQMAGDp0qNiyPQX9u3LlCmbOnInOnTtj1qxZAEo39oH88f/VV1/B0tIS5ubm8PLyKjTOUlJSMG/ePFhYWMDGxgbr16/Hnj17hP5lZWXBzs4OGzZsKHR9X3/9NYYOHSo1R0RERERERERERIpA4e4oL0rLli1Rv359REVFCdtiY2MxcOBANGnSBB8/fsTp06cxevRonDx5Eqamphg2bBji4uIQERGBkJAQAICuri6A/Lu/TU1N4e7ujpo1ayI6OhqBgYFIS0vD9OnTpfZHU1MTLi4uiIiIQO/evQHkL7vi5uYmsX1iYiKmTJmCevXqISkpCXv37oWnpydOnz4NdfX/vQ3R0dFISkrCvHnzkJOTA39/f8yfPx9hYWFyxTpw4ACCgoIwadIkdOvWDTdv3sTixYsL9WvVqlUIDw/H1KlT0alTJ9y5cwffffcdatSogZEjRwrtsrKysHDhQowbNw5169bFd999h+nTp6Nz586oU6cONm7ciIsXL2L16tXo2LEjOnfuDCC/YO3p6QlHR0ds2LAB6enp2LhxI7y9vcWuCQA2btwIZ2dnbNy4EVFRUQgMDESTJk0wcuTIYt9LSf7991907twZI0eOhKamJu7cuYPFixcjLy8PgwYNEmu7bNkyDBgwAFu2bMGFCxfw3XffQSQSoXv37gCAy5cvY8mSJRg8eDD69euHBw8eCAXr4rRt2xaqqqpYvHgxpk2bBktLS2hqaoq1ad++PZYuXQo/Pz+sXr0azZs3LxRnyZIl+OKLL7BlyxahwF6asf/ixQuMGDECrVq1gr+/P1RUVLB9+3aMGzcOkZGRQh99fX1x8+ZNzJ8/Hw0bNsSRI0fw4MEDoV8aGhoYNGgQjh8/jlmzZgl9e/v2LS5evIhFixZJzREREREREREREZEiqDKFcgBo0KAB3rx5I7z+tKCdm5sLOzs73Lt3D8eOHcOcOXNgbGwMY2PjQsu5AICNjQ1sbGwA5N9VbWlpiYyMDISGhspUKAcANzc3eHt748OHD0hMTMT9+/cREBAgdpd5gdWrVwt/z8nJgYWFBbp3746bN2/C3t5e2JeSkoLjx4/D0NAQAJCWlgZfX1/ExcXB2NhYplg5OTnYsWMHBg8ejHnz5gEA7O3tkZycjB9++EE49vnz5wgNDcXy5cvh4eEBALC1tUVGRga2bNkCDw8PofiZlZWFefPmwdHRUch3QXHd19cXANCtWzdERkYiMjJSKJSvW7cOHTp0QFBQEFRUVAAArVu3hpubG65evSrEA4COHTsKxXw7OzvcunUL586dw8iRI4t9LyXp37+/8Pe8vDxYWVkhPj4eYWFhhQrlvXv3xowZMwDkj4srV67g3LlzQqF827Zt6NKli5B3BwcHZGZmYuvWrcX2oVmzZvDx8UFAQADGjRsHDQ0NdOzYEX379sXIkSOhrq4OXV1dtGzZEgDQqlUrmJmZFYrj5OSE+fPni20rzdgPCgpCrVq1sHfvXmHZoM6dO8PZ2Rnh4eEYPXo0/v77b5w/fx5r1qzBwIEDhevu27evWKxhw4Zh165d+Pnnn4X38tSpU1BVVS3ySyNp8vLyAADp6eklOp5kU5Bf5rn8KUKuy+vZGZyvFUMRxlB1oQi55nwtnbS0tEo9vyKMoepCEXJdXeZrRcyrypi7ZT2GKvvzR1EpwlwFym++ApV/bZ8ry7Eob6zymgeKMo6UnaLkuTKf/VilCuV5eXlCsRXIXz5i/fr1iIqKElvKIyYmRmqszMxMBAcH49SpU3j16hWysrKEfR8+fEDNmjWlxujWrRtq1qyJCxcu4OXLl2jfvj1MTU0lFsqvXr2Kbdu24fHjx0hNTRXr66eF8jZt2ghFcgBCEfXTQrm0WHFxcUhISICTk5NYH5ydncUK5Tdu3ACQXyguWOIEyC+W79y5E69evULDhg0B5C8VUvDFApBfBC5oW0BNTQ1NmjRBXFwcgPyJdefOHSxYsAA5OTlixzZo0AD3798XK5R/mgcAaNGiBW7evFkol7J49+4dAgMDcfHiRcTHxwvnNzAwKNT20/OqqKigRYsWwjXk5OTgwYMHhQrVrq6uUgvlADB27Fj069cPly5dwu3bt/HLL79g5cqV+OmnnxASEiJ8EVGcHj16FNpWmrF//fp19OvXD2pqasL7rq+vj3bt2uGPP/4AANy/fx9A/pgpoKqqip49e2Lv3r3CtqZNm6Jr16748ccfhffy6NGjcHV1LfaO/+IU9EmWa6HSY54rTmXm2tLSslzicr5WLOa54nC+KqLCS9lJEh0dXc79kE3VzXPVw/kqi7qlOlr6vKpXqviynaP8yJZn6deoKJ8/iqqyPxfLa74ClXltksdlycaivLHK8tyyq+xxVF1Udp7Lc75KU6UK5XFxcUKBNjU1FRMmTIChoSF8fHxgYmKCGjVqYPHixcjMzJQaKyAgAOHh4Zg2bRo6dOgAPT09XLx4Edu2bUNmZqZMhXI1NTX07dsXp0+fxsuXLzFkyBCJ7e7duwdvb284Oztj8uTJqFOnDlRUVDB8+PBCfdXX1xd7raGhAQBCO1liJSQkAIBYwR0A6tSpI/Y6OTkZeXl56Natm8R+f1oo19LSEls2pKBfenp6hfpb0I/3798jJycHq1evFrsL/tP4n5IU6+PHjxL7Jo2Pjw+ioqIwbdo0tGzZErq6ujh06BDOnj1bqK2k86akpAAAkpKSkJ2dXSiXdevK/o9NIyMjeHh4wMPDA1lZWVi6dCmOHj2Ky5cvixWii/L5+1basZ+cnIyQkBBhSZZPFbyvCQkJ0NDQKJSbz/MAAMOHD4ePjw+SkpLw+vVrPHz4ED4+PlL7URR1dXVkZ2ejWbNm0NbWLnEcKl56ejpiYmKY5wqgzLnmfK0YyjyGFI0y57qqz9dHCW+kN0L+0neVSZnHkKJR5lyX9Xx9EJ9QquOlzavXdxKL3V8W5ygP8owhWa6xsj9/FJUyz9UClXVtr36TPC5LMhYTouSLJW/70qoO40gRMM9VqFD++PFjxMfHC8tm3L17F3FxcQgODkabNm2EdikpKcKd18WJjIyEh4cHvLy8hG2S7gSXpn///hg9ejQAoF+/fhLbXLhwAbq6uti4caNwB/HLly/lPpessQoeHpmUlCS2/dM7jwGgVq1aUFFRwcGDB4UC6adMTU1L1McCenp6UFFRwZQpU9CrV69C+2vXrl2q+EXJzMzElStX4OPjI/YAy4MHD8ody9DQEOrq6oVy+ekSQPLQ0NDAuHHjcPToUTx58kSmQvmnv6IASj/2a9WqBUdHR4waNarQvoIviIyMjJCVlYWUlBSxYvnneQDyf5GwYsUKnDx5ErGxsWjSpAm6du0qtR9FKbhebW3tSv25TXXBPFccZcw152vFYp4rjjLmurrMV0W5NmXPsyJRxlwr2nyV3ofSF8or8zply7P0a1SE90qRKcp4Lg+Vd22Sx2XJ+iJvrLI8t+yUeRwpkuqc5ypRKM/MzMSKFSugqamJYcOGAQAyMjIAQKzAe+fOHbx8+RKtWrUSthV1V3JmZqbYsTk5OTh9+rTcfbOwsICbmxvq1KlTZJEyIyMDGhoaYgXPU6dOyX0uWWMZGxvDyMgIFy9eFCtQX7hwQaxdwVIqb9++LbRMS1nQ0dGBubk5/vnnH4lrb8tL1jvMP378iNzcXLH3NzU1FZcuXZL7nGpqamjXrh3Onz+PcePGCdvPnTsn9di3b99CV1dX7GGtwP9+wlLwhcbnvxqQprRj38bGBo8fP0a7du2gpqYm8RwdOnQAAFy8eFFYozw3NxeXL18u1FZTUxMDBgxAeHg43rx5g3HjxhUq7hMRERERERERESkyhSuU5+bm4u7duwDyHwLw119/ISwsDC9evIC/vz8aNWoEADA3N4eOjg6WL18OLy8vxMfHIzAwEPXr1xeL16JFC2RnZyMkJAQWFhbQ1dVF8+bNYWtri/DwcLRs2RK1a9fGwYMHS7TMh4qKCgICAoptY2dnh5CQEKxYsQIuLi6IiorCiRMn5D6XrLHU1NTg5eWFb7/9FnXr1oW1tTVu3bqFX375BQCEO9FNTU0xevRoLFiwABMnTkSnTp2QlZWFmJgY3Lp1S6Y1uKVZsGABxo4di6+//hr9+/eHvr4+4uLicOPGDQwePBjW1tYyxyrqvfycnp4ezMzMsHPnTuGO8B07dkBXV1fiHdHSTJ06Fd7e3vD19UW/fv3w4MEDmd6/mzdv4rvvvsOgQYPQsWNHqKurIzo6GsHBwTAxMYGLiwuA/J9pqamp4ccff4S6ujrU1NSK/WKhtGN/5syZGDp0KCZOnIjhw4ejbt26ePPmDW7fvo0uXbrAzc0NrVq1gouLC1auXIn09HSYmJjgyJEjyMjIkFgEHz58OEJCQqCmpobBgwfLmWEiIiIiIiIiIqLKpXCF8oyMDHh4eADIvyO5UaNGsLGxQVBQEFq0aCG0q1u3LjZt2oS1a9fC29sbzZo1w/Lly7Fr1y6xeD179sSoUaOwY8cOJCYmwsrKCgcOHMCSJUuwbNkyrFixAtra2hg0aBBcXFywePHiMr8mR0dHzJs3D6GhoTh69Cg6d+6M4OBguLq6llssT09PvH//HgcPHsSBAwdgY2OD+fPnY/bs2WJLaSxevBimpqYICwvDli1bULNmTZiamqJPnz6lvm4A6Ny5Mw4ePIjAwED4+voiKysLxsbG6NatG5o2bSpXrKLeS0nWrVuHpUuXwsfHBwYGBvD09ERaWhr27Nkj9zU4Oztj+fLl2L59O06fPo1OnTph48aNwq8bitKpUye4urri4sWLCAkJQWZmJoyNjeHu7g4vLy/hYZeGhoZYunQpdu3ahZMnTyI7OxuPHj0qMm5px37Tpk0RHh6OjRs3Yvny5UhLS4ORkRGsrKwgEomE47/99lv4+flh7dq10NTUxKBBg9CqVSt8//33hfrUsmVLNGvWDE2aNClUsCciIiIiIiIiIlJ0Knl5eXmV3QmqGBs3bsTevXtx69YtaGlpVXZ3qAoaPXo0VFVVC31B8fz5c/Tu3RubNm0q0RdABe7fv4+8vDxkZWWhbdu21XZNrIqQlpaG6Oho5rkCKGuuOV8rjrKOIUWkrLlWhvl6MPK5TO1G9WlSzj0pnrKOIUWkrLkuj/m6/8yzYvcb6BS/bOIXPYqfV2f/+0LuPn2ur33jUseQlzxjSJZrrIxrqAqUda4C+fP148ePlXZtEdckj0u37vKPxcjrkmP1sZMcS972paXM40iRMM8KeEc5lY0nT57g5MmTsLCwgIaGBm7fvo3du3dj5MiRLJKTTM6dO4dXr16hdevWSE9PR0REBH777Tds2bJFaJOcnIynT59iy5YtMDExkenhpERERERERERERIqGhXIlpaWlhaioKBw6dAgfPnxA/fr1MXHiRMyYMaOyu0ZVhI6ODk6cOIGYmBhkZWWhefPmCAgIEHtA7OXLl/HNN9+gadOmCAgIKPTgUiIiIiIiIiIioqqAVS0l1bBhQ+zfv7+yu0FVmIODAxwcHIptM3jwYD68k4iIiIiIiIiIqjzVyu4AEREREREREREREVFl4h3lRERERESk0Cr7IZ1EVdmYfk3LNX51eIhldbhGqnzyPiAzPTNPrvhFPfwTANTV5ApVbg/tJKpsvKOciIiIiIiIiIiIiKo1FsqJiIiIiIiIiIiIqFpjoZyIiIiIiIiIiIiIqrVqWygPDAyESCSCSCRCmzZtYGlpCXd3d/j5+eHJkyclinnr1i1s3769jHsKPHnyBHPnzoWdnR06dOiAXr16Ye3atXj//n2Zn6vArVu3IBKJcP/+fWGbSCTC7t27hddHjx7FqVOnyq0PZe3ChQsQiUSIjY2V2vbznDs7O8Pf3x9v374t/46WUGxsLAIDAxEfHy+2XdJ7SURERERERERERP9TbQvlAKClpYWwsDAcPnwYmzdvxuDBg3Hjxg0MGDAAJ06ckDve7du3ERwcXKZ9/PXXXzF06FD8/fffWLBgAfbs2YMxY8bg2LFjGDFiBJKSksr0fMUJCwuDu7u78PrYsWOIiIiosPNXFEk5Hzt2LE6cOAEPDw8kJCRUdhclevnyJYKCgvD69Wux7e3bt0dYWBhatGhRST0jIiIiIiIiIiJSbOqV3YHKpKqqCnNzc+G1nZ0dRo0aBS8vLyxatAidO3dG48aV9yTfjIwMzJkzByYmJjh06BB0dHQAAF27doWdnR0GDhyIlStXYv369RXSn09zpaxkybmfnx8CAwMrrD9aWlqliqGrq1st3jsiIiIiIiIiIqKSqtZ3lEtSo0YNLFmyBFlZWQgPDxe2Hz9+HCNHjkTXrl1hZWUFT09P3Lt3T9gfGBiIoKAgpKWlCUu6eHp6AshfxmP27NlwdHREp06d0K9fP+zZswe5ubnF9iUyMhKvX7/G1KlThYJtgRYtWmDAgAE4e/assNTG0aNHIRKJCt1lPmDAAPj4+Aivo6KiMHXqVNjb28Pc3BwDBgzA8ePHpebm06VXPD09cfv2bVy5ckW43sDAQBw4cACdOnVCamqq2LFPnjyBSCTC1atXi4wvLcdAfp4tLCzw6NEjjBw5Ep06dYKbmxt+/vlnsXZZWVlYtWoVunbtCktLS3zzzTf48OGD1GuUJefnz5/Hy5cvAfxvWZOrV69i+vTpMDc3h729vcQleJ48eYKvvvoKlpaWMDc3h5eXF54/fy7WRiQSYceOHQgICICdnR1sbGwASH/Pbt26hTFjxgAAhg4dKrwnn/bx06VXMjMzsXr1atjb28PMzEy4rk/5+PjAzc0Nt27dwsCBA2Fubo6hQ4fijz/+EGv3ww8/oH///ujYsSOsra0xcuTIQu8bERERERERERGRIqvWd5QXpWXLlqhfvz6ioqKEbbGxsRg4cCCaNGmCjx8/4vTp0xg9ejROnjwJU1NTDBs2DHFxcYiIiEBISAiA/Dt5AeD169cwNTWFu7s7atasiejoaAQGBiItLQ3Tp08vsh+3b98GAPTs2VPificnJ4SHh+PXX3+Fm5ubzNf377//onPnzhg5ciQ0NTVx584dLF68GHl5eRg0aJBMMZYtW4b58+dDS0sLCxcuBAAYGxtDW1sbAQEBiIiIwIgRI4T2P/zwA+rXrw97e/siY0rLcYGsrCzMmzcPY8aMgbe3N3bu3ImZM2fi0qVLqF27NgBg/fr1OHToEGbMmIF27drh9OnTWLdundTrkjXn//d//4eGDRsK25csWYL+/fsjMDAQN27cwIYNG1CrVi2MHDkSAPDixQuMGDECrVq1gr+/P1RUVLB9+3aMGzcOkZGR0NTUFGLt378fnTp1wqpVq5CdnQ1A+nvWvn17LF26FH5+fli9ejWaN29e7HXOmzcPP//8M77++ms0b94cJ06cwIwZM7BlyxY4OzsL7RISErBy5Up4eXlBT08P69atw/Tp03H+/HloaGjg119/xaJFizBhwgQ4OjoiIyMD9+7dQ0pKitRcExERERERERERKQoWyovQoEEDvHnzRnj9aUE7NzcXdnZ2uHfvHo4dO4Y5c+bA2NgYxsbGhZZzAQAbGxvhzuC8vDxYWloiIyMDoaGhxRbK4+Pjoa+vLxTcP2diYgIAiIuLk+va+vfvL/w9Ly8PVlZWiI+PR1hYmMyF8pYtW0JXVxc6OjqFrtfV1RU//vijUCjPzs7GyZMnMXToUKipqRUZU1qOCxQUyh0dHQEApqamcHZ2xrVr1zBgwAC8ffsWBw8exOTJkzFlyhQAgIODA7788stCD7r8XElz3q1bN+ELAwcHByQmJmLbtm3w8PCAqqoqgoKCUKtWLezduxc1atQAAHTu3BnOzs4IDw/H6NGjhVi1atVCUFAQVFRUhG3S3jNdXV20bNkSANCqVSuYmZkVeY1//vknfvrpJyxfvlx4j7p3746XL18WKpS/e/cOoaGhaNWqFQBAW1sbY8aMwe+//44uXbrg3r17MDAwEK4dAHr06FHkuWWRl5cHAEhPTy9VHCpeQX6Z5/KnCLn+/BcyZYXztWIowhiqLhQh15yvVZsijKHqQhFyzflatSnCGKoOFCXP5TVfgfK/trS0tHJtX1GxSkNRxpGyU5Q8l+d8lYaF8iLk5eWJFSqfPHmC9evXIyoqComJicL2mJgYqbEyMzMRHByMU6dO4dWrV8jKyhL2ffjwATVr1ixVXz/tpyzevXuHwMBAXLx4EfHx8cjJyQEAGBgYlKofBYYPH44vv/wSjx8/RqtWrXD16lUkJiZiyJAhxR4na45VVVWFLx4AoFGjRtDS0hKK4H/99RcyMjLg4uIidlzv3r3x66+/lvLqJPv8XK6urjhx4gTi4uJgYmKC69evo1+/flBTUxPuEtfX10e7du0KLWXSvXv3Qu9pWb5n//d//wcA6NOnj9j2vn37YvXq1UhLSxM+lOrVqycUyQEIxfiCXLdr1w5v376Fj48P3N3d0blzZ2hra8vdp08V5EeWuUWlxzxXnMrMtaWlZbnE5XytWMxzxeF8pdJinisO5yuVFvNcMSo7z+U1X4GyvLZ6ErdGR0cX0d5IzvaS4xen6FiVo7LHUXVR2Xkuz/kqDQvlRYiLi0OzZs0AAKmpqZgwYQIMDQ3h4+MDExMT1KhRA4sXL0ZmZqbUWAEBAQgPD8e0adPQoUMH6Onp4eLFi9i2bRsyMzOLLJQbGxvjv//9L1JTUyXe4fzvv/8CAOrXry/Xtfn4+CAqKgrTpk0T7gw/dOgQzp49K1ecolhZWcHU1BQ//PADfH198eOPP8LKygpNmjQp8hh5cqylpSW2VAkAaGhoCO0SEhIAAHXq1BFrU7duXal9r1+/Pt6/fy8158bGxmLbDQ0NJZ4rISEBJiYmSE5ORkhIiLAsz+d9/9Tn/QbK9j179+4dNDQ0ChXZ69ati7y8PKSkpAiFcn19fYl9Lci1jY0N1q5di/3792PixImoUaMGXF1d8c0335T4ixd1dXVkZ2ejWbNmpS66U9HS09MRExPDPFcAZc4152vFUOYxpGiUOdecrxVDmceQolHmXHO+VgxlHkOKpDrkuayuLSEqUeL2tm3bStz+z/U3ErcX1f7Vb5LjF6eoWBWtOowjRcA8s1Au0ePHjxEfHy8sQ3L37l3ExcUhODgYbdq0EdqlpKQUKphKEhkZCQ8PD3h5eQnbinuoZQErKyv88MMPuHr1qtjSGwWuXLkCVVVV4ZuWgiU9Pr1jHQDev38v/D0zMxNXrlyBj4+P8LBRADh48KDU/shj2LBh2LVrF8aPH4+rV69i1apVxbYvbY4/ZWSU/61qYmKi2JcIny6lU5SuXbvixx9/LDbnKioq6NKli9j2zx+gWnCugr7UqlULjo6OGDVqVKGYn39R8vnd5GX9ntWqVQtZWVl49+4datWqJdZnFRUV6OnpyRVvwIABGDBgAJKSknDx4kWsXr0a6urq+Pbbb0vUv4Lr19bWrtSf21QXzHPFUcZcc75WLOa54ihjrjlfKxbzXHGUMdecrxWLea4Yypznsrs2yYVseWMX3V7+QrmivWfKPI4USXXOs2pld0DRZGZmYsWKFdDU1MSwYcMAABkZGQDE7/y9c+cOXr58KXashoYGPn78KDHmp8fm5OTg9OnTUvvSp08f1K9fH9u2bSu0PtDTp09x7NgxdO/eHQ0aNADwvzvL//nnH6HdkydP8OrVK+H1x48fkZubK9af1NRUXLp0SWp/PvfpXdyfGzRoEFJSUjBv3jxoaWkVWubjc7LmWBatW7eGlpYWzp8/L7b9p59+knpsnz59UK9evWJz3rt3b2Gt8gKfn+vcuXOoV6+eUOS3sbHB48eP0a5dO5iZmYn9kfbgTVnfs8/v9i5KwRcrkZGRYtsjIyPRrl27En8YGhoaYtiwYbCzsxMbg0RERERERERERIquWt9Rnpubi7t37wLIf0DBX3/9hbCwMLx48QL+/v5o1KgRAMDc3Bw6OjpYvnw5vLy8EB8fj8DAwEJLnrRo0QLZ2dkICQmBhYUFdHV10bx5c9ja2iI8PBwtW7ZE7dq1cfDgQYkF9c9paWlh3bp18PLywqhRozB+/Hg0aNAAf/75J7Zv345atWphxYoVQvtOnTqhQYMG+PbbbzF37lykpqZix44dYktg6OnpwczMDDt37oShoSHU1dWxY8cO6OrqFrorWprmzZvj+PHjuHTpEoyMjFCvXj0hJ4aGhnB2dhbuptfS0io2lqw5loWBgQFGjBiBnTt3QktLC+3atcPp06fx/PlzqcdqaWlh/fr1Rea8QYMGWLJkSaHjbt68iTVr1sDOzg7Xr1/HiRMnsHTpUqiq5n8XNXPmTAwdOhQTJ07E8OHDUbduXbx58wa3b99Gly5d4ObmVmSfZH3PmjVrBjU1Nfz4449QV1eHmpqaxId6tmnTBr1794a/vz8yMjJgamqKkydPIioqClu3bpUlxYLNmzfj7du36Nq1K+rUqYO//voLP//8M8aNGydXHCIiIiIiIiIiospUrQvlGRkZ8PDwAJD/c5JGjRrBxsYGQUFBaNGihdCubt262LRpE9auXQtvb280a9YMy5cvx65du8Ti9ezZE6NGjcKOHTuQmJgIKysrHDhwAEuWLMGyZcuwYsUKaGtrY9CgQXBxccHixYul9rFg+ZUtW7bA398fSUlJyMvLg4WFBbZs2SK2nrWGhgaCgoLwn//8B7NmzUKTJk3wzTffwN/fXyzmunXrsHTpUvj4+MDAwACenp5IS0vDnj175Mrf5MmT8fz5cyxcuBDv37/H9OnTMWPGDGG/i4sLIiMjMXToUKmxZM2xrObOnYucnBzs2rULubm5cHFxwdy5c7FgwQKpxxbkfOvWrfD398f79+9Rr149uLu7Y+rUqRLX3vbz80NYWBgOHTqEmjVrYtasWRg9erSwv2nTpggPD8fGjRuxfPlypKWlwcjICFZWVhCJRFL7JMt7ZmhoiKVLl2LXrl04efIksrOz8ejRI4nxAgICsH79euzcuRNv375F8+bNsXnzZjg5OUnty6fMzMwQEhKCs2fPIjU1FcbGxpg4cSK++uorueIQERERERERERFVJpW8vLy8yu4EyWfp0qU4c+YMDh48iNatW1d2d4q0YMECREdH49SpU5XdlXJz69YtjBkzBj/88IPEu7dJPvfv30deXh6ysrLQtm3barsmVkVIS0tDdHQ081wBlDXXnK8VR1nHkCJS1lxzvlYcZR1DikhZc835WnGUdQwpGmXO8/379/Hx48cyu7bI6y8kbu9j11ji9vDzkn81P8ylicTtEdckxwcAdTXJ24s6d0VT5nGkSJhnrlFeJS1evBgtW7aEl5cXXr9+XdndKeTRo0c4fvw4zpw5gzFjxlR2d4iIiIiIiIiIiIiKVa2XXqmqNDU1cfjw4cruRpG++uorJCUlYeDAgRgyZEhld4eIiIiIiIiIiIioWCyUU5m7dOlSZXehwlhbWxe5DjgRERERERERERFVDSyUExERERERERERVSJ51wMvai3yorh1V4z1xokUGdcoJyIiIiIiIiIiIqJqjYVyIiIiIiIiIiIiIqrWWCgnIiIiIiIiIiIiomqNhfJq7uLFi5gwYQK6du2KDh06wMnJCUuXLsXTp0+FNiKRCLt3766wPkVHR0MkEuHWrVsVdk5JVq1aBScnp2LbHD16FCKRSPhjYWGBPn36wNfXF/fu3SvReaOjoxEYGIj09PQSHV/R7xcREREREREREVFVx0J5Nfbdd9/B29sburq6WLFiBfbu3Ytp06bh77//xuzZsyu7e1XKrl27EBYWhq1bt2LMmDH466+/MHz4cOzYsUPuWNHR0QgKCipxoZyIiIiIiIiIiIjko17ZHaDKcfXqVezcuRPe3t6YNWuWsN3KygpDhgzB5cuXK7F3VU/79u1haGgIALCxscGIESOwcOFCrF+/Hp07d0aXLl0quYdERERERERERERUFN5RXk3t2bMHdevWhbe3t8T9PXv2LPb4w4cPw9XVVViuZevWrcjNzRX2BwYGwsLCotBxXbp0QWBgoNi2rVu3ws7ODhYWFpg+fToSExNluobvvvsO7u7usLCwgIODA+bMmYPXr1+LtfH09MSUKVMQGRkJV1dXWFhYYMyYMXj+/LlYu/j4eEydOhWdOnWCg4MDdu7cKVMfiqKqqopFixZBU1MThw4dErZfuXIF48ePh42NDTp37oxhw4bh2rVrwv6jR4/C19cXQH7BXSQSCcu/vH79Gr6+vnB2dkbHjh3Ru3dvrF+/Hh8/fix0/pycHKxduxbdunWDhYUFfHx8kJqaKuxPS0uDn58fXF1d0alTJ2HJnZSUFLE4Fy9exODBg2FhYYEuXbpg8ODBuHr1qlibo0ePwt3dHWZmZnBwcMCGDRuQk5NTqvwRERERERERERFVJN5RXg1lZ2fjzp076N27NzQ0NOQ+/sCBA1i5ciU8PT3Ro0cPREVFISgoCCkpKVi4cKFcsUJDQ7Fp0yZMmDABtra2uHHjBhYtWiTTsYmJiZgyZQrq1auHpKQk7N27F56enjh9+jTU1f83tKOjo5GUlIR58+YhJycH/v7+mD9/PsLCwoQ23t7eiI+Px3/+8x/o6elh586dePXqlVgceRkYGKB9+/aIiooStsXGxqJnz56YMGECVFVVce3aNXh5eSEkJATW1tbo0aMHvvrqK2zbtg27du2Cnp4eNDU1AQDJyckwMDCAr68v9PX1ERMTg8DAQCQkJGD16tVi5z5w4ADat2+PNWvWIDY2Ft999x0yMzOxYcMGAEBGRgZycnIwe/ZsGBoa4tWrV9i+fTu8vb1x4MABAMDz588xa9Ys9O/fH3PnzkVubi7+/PNPvHv3TjjP3r17ERAQgLFjx8LHxwdPnjwRCuXz5s0rce6IiIiIiIiIiIgqEgvl1dDbt2/x8eNHmJiYyH1sTk4OtmzZgv79+2Px4sUAAHt7e2RlZWHPnj3w8vJC7dq1ZY4VHByMAQMGCAV2BwcHJCYm4sSJE1KP/7Q4nJOTAwsLC3Tv3h03b96Evb29sC8lJQXHjx8XlkZJS0uDr68v4uLiYGxsjGvXruGPP/7Avn37YGNjAwCwtraGo6MjDAwMZLqWojRo0AAPHjwQXn/55ZfC33Nzc2FtbY2///4bR44cgbW1NQwNDdGkSRMA4su5APkP6fz0i4jOnTtDW1sbPj4+WLp0KbS1tYV9mpqa2LJlC9TU1AAANWrUwOLFizF9+nS0aNEChoaGWL58udA+OzsbjRo1wqhRo/D06VOYmpri4cOHyMrKwpIlS6Crqwsg//0pkJqais2bN2PSpEmYM2cOAMDOzg4aGhrw9/fHxIkTZR4Ln8rLywMArtFezgryyzyXP0XItY6OTrnE5XytGIowhqoLRcg152vVpghjqLpQhFxzvlZtijCGqgNFyXN5zVeg8q+tOlCUcaTsFCXP5TlfpWGhvBpTUVGR+5h//vkHycnJ6NOnj9j2fv36ITg4GPfu3YOjo6NMseLi4vD69Wu4uLiIbXd1dZWpUH716lVs27YNjx8/FltWJCYmRqxQ3qZNG7GCc8uWLYXzGxsb4969e9DT0xOK5ACgp6cHW1tbPHz4UKZrKUpeXp5YnuPi4rBhwwbcuHEDCQkJwj+C27dvL1OskJAQHDlyBLGxscjMzBT2vXjxAq1btxZe9+zZUyiSA0CfPn2waNEi3L9/Hy1atAAAHD9+HPv27cOzZ8+QlpYmtI2JiYGpqSlEIhHU1NQwb948DB8+HFZWVtDT0xPaRUVFIS0tDX369EF2draw3dbWFhkZGXj8+DG6du0qT7oAQIgVExMj97EkP+a54lRmri0tLcslLudrxWKeKw7nK5UW81xxOF+ptJjnilHZeS6v+QpU/rVVJ8x1xajsPJfnfJWGhfJqyMDAADVq1MC///4r97EFy27UqVNHbHvB60+X5ZAmISEBAMSK2ABQt25dqcfeu3cP3t7ecHZ2xuTJk1GnTh2oqKhg+PDhYgVkANDX1xd7XbDcTEG7169fF+oDUPgaSyIuLk64ntzcXHz11VdISUnBzJkz0bRpU2hra2Pz5s149eqV1FghISFYs2YNJk2aBGtra+jr6+P+/fvw8/MrdM2f911XVxc1atQQ1nA/f/48Fi5cCA8PD8yePRsGBgZISEjAtGnThFimpqbYvn07goODMX36dKiqqsLe3h5Lly6FiYkJkpOTAQCDBg2S2F9ZrkkSdXV1ZGdno1mzZmJ3yVPZSk9PR0xMDPNcAZQ515yvFUOZx5CiUeZcc75WDGUeQ4pGmXPN+VoxlHkMKZLqkGdlvjZFUR3GkSJgnlkor5bU1dXRuXNn3Lx5E9nZ2XKtw12wFElSUpLY9oIHcNaqVQtA/lIfWVlZYm2ysrLE7lw2MjKSGOvNmzdS+3HhwgXo6upi48aNUFXNfybty5cvZb6OTxWscf45WR8qWpTk5GT88ccfcHV1BQA8e/YMDx8+xJYtW9CrVy+hXUZGhkzxIiMj4eTkhLlz5wrbnjx5IrHt531PTU1FZmYm6tWrJ8Rq27Yt/Pz8hDa3b98uFKd79+7o3r07UlNTce3aNaxevRq+vr4ICQkR3uugoCAYGxsXOrZRo0YyXdfnCu7A19bWrtSf21QXzHPFUcZcc75WLOa54ihjrjlfKxbzXHGUMdecrxWLea4YypxnZb42RcNcV4zqnGfVyu4AVY7x48cjISEB27dvl7j/6tWrErebmprC0NAQkZGRYtvPnj0LDQ0NdOzYEQBQv359ZGVl4fnz50KbmzdvIicnR3htbGwMIyMjnD9/XizWuXPnpPY/IyMDGhoaYsuanDp1SupxkpiZmSElJQW//PKLsC0lJQU3btwoUTwg/+7xb7/9FllZWRg9ejSA/93B/ukDVF++fCn2sM9P93/8+FFse8E1f6qoa758+bJYriMjI6GiogIzMzO5YwH5d6T369cP/fv3F4rzFhYW0NbWRlxcHMzMzAr9Kcn65ERERERERERERJWBd5RXU46Ojpg0aRICAwPx999/o3///qhduzZiY2Px448/IiUlReJa42pqavD29sbKlSthaGgIR0dH3L17Fzt37sTYsWOF4mj37t2ho6ODxYsXY/LkyYiLi8P+/ftRo0YNsVheXl5YtWoV6tSpAzs7O1y/fh23bt2S2n87OzuEhIRgxYoVcHFxQVRUlEzrmkvSvXt3tG/fHvPnz8e8efOgp6eHHTt2CA+wlMWDBw+gp6eHjIwMPH36FD/++CMePHiA+fPnw8LCAgDQvHlzGBsbY926dcjNzUVaWho2b94s3OVdoGAN8e+//x69evWClpYWRCIRbG1tsX//foSGhqJZs2Y4efIknj17JrE/Hz9+xLRp0zBy5EjExsbiu+++g6urqxDb1tYWfn5+2LJlCywsLHD16lWxLwoA4PDhw7h79y4cHBxgZGSE2NhYnDx5EnZ2dgDyl7SZOXMmAgICEBcXh65du0JNTQ0vXrzAxYsXERgYWG1/qkNERERERERERFULC+XVWEER9/vvv8c333yD9PR01KtXD/b29pg4cWKRx3l6ekJdXR379u3DoUOHYGRkhOnTp2Pq1KlCm9q1a2Pz5s1Ys2YNpk2bhrZt22Lt2rXw9PQsFOv9+/c4ePAgDh06BBsbG6xcuRKTJk0qtu+Ojo6YN28eQkNDcfToUXTu3BnBwcHCMifyUFFRwdatW7Fs2TIsXboU+vr68PT0xJs3b3Dx4kWZYhT0V0dHB/Xq1UPnzp2xdOlS4Q57ANDU1ERgYCD8/Pwwa9YsNGjQAF999RVu3ryJP/74Q2jXrl07zJgxA+Hh4di1axcaNGiAS5cuYdq0aUhOTsbmzZsB5D/0dPHixWJ5L+Dp6YmkpCQsWLAAHz9+hIuLC5YuXSrsHzFiBGJjYxEaGordu3fD3t4e69atw/Dhw4U2IpEIly9fxurVq/H27VsYGRmhf//+mDVrltBmwoQJqF+/Pvbu3YvQ0FCoq6ujSZMm6NGjR6E71omIiIiIiIiIiBSVSl5eXl5ld4KICADu37+PvLw8ZGVloW3bttV2TayKkJaWhujoaOa5AihrrjlfK46yjiFFpKy55nytOMo6hhSRsuaa87XiKOsYUjTKnOf79+/j48ePSnltikaZx5EiYZ65RjkRERERERERERERVXMslBMRERERERERERFRtcZCORERERERERERERFVayyUExEREREREREREVG1xkI5EREREREREREREVVrLJQTERERERERERERUbXGQjkRERERERERERERVWsslBMRERERERERERFRtcZCORERERERERERERFVayyUExEREREREREREVG1xkI5EREREREREREREVVrLJQTERERERERERERUbXGQjkRERERERERERERVWsqeXl5eZXdCSIiALhz5w4KPpI0NDSgoqJSyT1SXnl5ecjKymKeK4Ai5FpTUxMikahMY3K+VhxFGEPVhSLkmvO1alOEMVRdKEKuOV+rNkUYQ9WBouS5POdrZV9bdaAo40jZKUqey2O+ykq9Us5KRCRBwQexhoZGJfdE+amoqEBTU7Oyu1EtKGuuOV8rjrKOIUWkrLnmfK04yjqGFJGy5przteIo6xhSNMqc54L5ysJt+VPmcaRImGfeUU5ERERERERERERE1RzXKCciIiIiIiIiIiKiao2FciIiIiIiIiIiIiKq1lgoJyIiIiIiIiIiIqJqjYVyIiIiIiIiIiIiIqrWWCgnIiIiIiIiIiIiomqNhXIiIiIiIiIiIiIiqtZYKCciIiIiIiIiIiKiao2FciIiIiIiIiIiIiKq1lgoJyIiIiIiIiIiIqJqjYVyIiIiIiIiIiIiIqrWWCgnIiIiIiIiIiIiomqNhXIiIiIiIiIiIiIiqtZYKCciIiIiIqL/x959h0VxrX8A/9IFARFBsaGouDYURERAxF4x9n5RY0GDLdbAtV2Jxl7BxK5YgyY2MMEYWxJr7hVbJMYSVIwgAgpIZ/n9wY+V2Z2F3aUK38/z5HmyZ86cOXPmvLvry+wZIiIiokqNiXIiIiIiIiIiIiIiqtSYKCciIiIiIiIiIiKiSo2JciIiIiIiIiIiIiKq1JgoJyIiIiIiIiIiIqJKjYlyIiIiIiIiIiIiIqrUmCgnIiIiIiIiIiIiokqNiXIiIiIiIiIiIiIiqtSYKCciIiIiIiIiIiKiSo2JciIiIiIiIiIiIiKq1JgoJyIiIiIiIiIiIqJKjYlyIiIiIiIiIiIiIqrUmCgnIiIiIiIiIiIiokqNiXIiIiIiIiIiIiIiqtSYKCciIiIiIiIiIiKiSo2JciIiIiIiIiIiIiKq1JgoJyIiIiIiIiIiIqJKjYlyIiIiIiIiIiIiIqrUmCgnIiIiIiIiIiIiokqNiXIiIiIiIiIiIiIiqtSYKCciIiIiIiIiIiKiSo2JciIqNx4+fIiHDx+WdTeISAWMV6KPB+OV6OPBeCX6eDBeiSoeJsqJqNzIyMhAeno6/ve//yE9Pb2su1OhcZxLT0Uda8Zr6eE4l56KOtaM19LDcS49FXWsGa+lh+NcOiryOGdkZCA5OblCnlt5U5HnUXnCcWainIjKqezs7LLuQoWWN74c55JXGca6Ip9beVAZ5lB5URnGuiKfW3lQGeZQeVEZxroin1t5UBnmUHlQGca5Ip9beVEZ5lF5wHFmopyIiIiIiIiIiIiIKjkmyomIiIiIiIiIiIioUmOinIiIiIiIiIiIiIgqNSbKiYiIiIiIiIiIiKhSY6KciIiIiIiIiIiIiCo1JsqJiIiIiIiIiIiIqFJjopyIiIiIiIiIiIiIKjUmyomIiIiIiIiIiIioUmOinIiIiIiIiIiIiIgqNd2y7gARUVkat/Z+qRwn+vr2UjlOaTv7fUBZd6HYlcycMAAuPBWUBM1vVQLHqTgOhz0vk+NGv5OW+jHnjGio0X7zdzzR+JhrvRtrvC9VbicvKsamgZ6WaF0dJbfkpGXmiJYnpyqWZUvF60YliMfq49cZinV/CxSta+MxQ7S8lqn4P5GeRr9TKJNmZ4rWbXIvWry8po5ouYmh4hjGJ4ufe70aqt/r1NO1vmj5mV9fiJb3cxevr46froq3rawvyuqr0wYV7ty1gsc5K1v4On/oJaUK5+Lb98LXFibC+fswWq6xfLLlQvfKqQ2y/zdr1k+wrUp1a8Hr5Bf/E7w2sW73ob9S4TGTo4R1JXYdZf//T0L+NxsD6MvFQ0MLfcHrZ3Ef3lfa1K8i2KYrF44xicITNND9MDa2VsLKGVnCffXyvT3Iv6/GvBW2W81IuD1/ffn3Xj25t7QeLh/iSH5e5N8GACGXhdtz8OHaf+IhvD6FtUXqkx//PG/fK34GZot/ZOB5nPjn5YMnkQplVlbi1+yfyAei5ckvriv2Iz1JtG71FgNEy7NS4hXKGjRtK1o3NlHx31QA0L6RsUKZfCzmeZsi/v5U31xPoayhhfjn7WuRto2riH8XqmEs3kaWsgsmQtn3LF2RrxTqftaq87mqThvf/Sz+b7mh3a1Fy8sT3lFORERERERERERERJUaE+VEREREREREREREVKkxUU5ERERERERERERElRoT5QUICAiARCKBRCJBs2bN4OjoiP79+8Pf3x9Pnmi2LuiNGzewbdu2Yu3n48ePMXPmTHTq1Al2dnbo1KkTpkyZgsuXL6vVjkQiwe7du4u1bxVBREQEJBIJbty4UWC9vLkikUjQqlUr9OjRA8uXL8fbt29Lp6Ol7MaNG5BIJLh3715Zd4WIiIiIiIiIiKhI+DDPQlSpUgVBQUEAgPfv3+Ovv/5CcHAwjh49ihUrVmDAAPEHEihz8+ZN7NmzB1OnTi2W/j1//hzDhg2DRCKBr68vzM3N8fLlS1y+fBk3b96Eh4eHym0FBwejTp06xdKvysrLywuenp5IT0/HzZs3sW3bNkRGRmLXrl1l3TUiIiIiIiIiIiJSgonyQmhra8Pe3l722s3NDaNHj4a3tzcWLlyItm3bon79snua8/fffw8A2Lt3LwwNDWXlQ4YMgVQq/pRfZfKfJ2mmdu3asnF0dnbG69evcfToUbx+/Ro1a9Ys286pKDs7G1KpFHp6ik99JiIiIiIiIiIiqoi49IoGDAwMsHjxYmRmZuLYsWOy8pMnT2LUqFFo3749nJyc4OXlhbt378q2BwQEIDAwECkpKbIlOry8vAAAT548wezZs+Hh4YE2bdqgb9++2LNnT6HJ7sTERBgbGwuS5Hm0tYWX98mTJ5g+fTrat2+PNm3a4JNPPkFoaKhsu9jSK5cuXcKwYcPQunVrdOjQAUuXLkVKSopse97yG1euXMHcuXPh4OCALl26YOfOnQr9CQ8Px4QJE9C2bVs4ODhg2LBhuHLlimx7RkYGNmzYgC5duqBVq1bo06cPQkJCCjz/vD5++umncHFxQdu2bTFs2DD88ssvgjrHjx+HRCLBgwcPMGnSJNjb26Nnz544efKkQntff/013Nzc4ODggOnTpyMuLq7QPijTvHlzAMCrV6/UOs9Hjx5h8uTJcHZ2Rps2bdCrVy+FMQ0PD8fYsWNhb28PR0dHzJ07V6Gv69atQ//+/eHg4AB3d3fMmTMHr1+/FtTx8vLClClTcOLECfTq1Qt2dnb4888/AeSO7ciRI9GmTRvZnH7w4IFg/8TExEKvPRERERERERERUXnGO8o11KRJE9SqVQvh4eGysqioKAwcOBDW1tbIyMjAmTNnMGbMGJw+fRo2NjYYNmwYoqOjERoaKlvOxdjYGADw+vVr2NjYoH///qhatSoiIiIQEBCAlJQUTJ8+XWk/WrZsicOHD2PJkiUYNWoUJBKJQoIcACIjIzFixAjUrl0bCxcuhKWlJf766y/8888/StsOCwvD7NmzMXjwYMyYMQOxsbFYv349EhMTsXHjRkHdpUuXYsCAAdi6dSt+/vlnrFu3DhKJBJ06dQIA/O9//8O4ceNgb2+P5cuXw9TUFPfv3xccf9asWbh16xamTZuGxo0b4/Lly5g/fz5MTU0LXEImKioKXbp0wYQJE6CtrY1ffvkF3t7eCAoKgrOzs6DuvHnzMHz4cHz66ac4evQofH19YWdnh8aNGwMADh48iM2bN2PChAlwdXXF1atXsXDhQqXHLsw///wDbW1twZI2qpzn1KlTYWFhgRUrVsDY2BjPnz9HdHS0rI3w8HB4eXnBw8MDGzduRGpqKjZt2gQfHx8EBwfL6sXFxWHKlCmoWbMm4uPjsXfvXnh5eeHMmTPQ1f0Q/vfv38fLly8xa9YsmJqaonbt2vjhhx8wZ84cdOvWDevXr4eenh5u3bqFmJgYtGjRQrZvYdeeiIiIiIiIiIiovGOivAhq166NN2/eyF7nT2hLpVK4ubnh7t27OHHiBObMmQMrKytYWVkpLOcCAC4uLnBxcQEA5OTkwNHREWlpaTh48GCBifJBgwbh2rVrCA4ORnBwMKpWrYoOHTpgyJAh6Natm6xeQEAA9PT0cOTIEVly3tXVVWm7OTk5WLNmDfr27YsVK1bIyi0tLeHt7Q0fHx/Y2trKynv27IkZM2bIzuXSpUs4e/asLFm6du1aNGjQAEFBQdDR0QEAdOzYUbb/9evXceHCBezevVtW7ubmhtjYWAQEBBSYKP/Xv/4l+3+pVApnZ2c8fvwYR48eVUiUjxkzBmPGjAEAODg44PLlyzh79ix8fHyQnZ2N7du3Y8CAAfjiiy8AAO7u7oiLi8OpU6eUHj8/qVSKrKwsZGRk4MaNGzhy5AhGjBgBS0tLlc8zPj4eUVFRWLhwIbp27QoA6NChg+A469evR6tWrRAYGAgtLS0AQNOmTeHp6YnLly/LxmvlypWyfbKzs+Hg4IBOnTrh+vXrgvF/9+4dvvvuO9SuXRtA7vVfvXo13NzcsHXrVlk9setQ2LVXV05ODgAgNTVVo/2pdOX/hQmppzTHzsjIqETaZbwWj8LmQt74Fuc4M3bFlcRYq4vxSsVJ3VgvyfeG4mg7fxuMVyLNFBSL6sRpYXXztpeHWAVKLl6Bsj83ojxF/dzXJF6L830jT0nGa2GYKC+CnJwcWZISyF3aZMOGDQgPDxcsgREZGVloW+np6di+fTtCQkLw6tUrZGZmyra9f/8eVatWFd1PR0cH69evx9SpU3Hx4kX897//xZUrV3D+/Hn4+Phg1qxZAHITtL169ZIlyQvz999/4+XLl/j3v/+NrKwsWXn79u2hra2N+/fvCxLl+ZOuWlpaaNy4sewO6NTUVNy5cwdz5syRJcnlXblyBWZmZujQoYPgeK6urvjPf/6D7OxspftGR0dj48aNuHr1KmJjY2VfLFu2bKlQN38/jYyMUKdOHVk/o6Oj8fr1a/To0UOwT69evVROlK9btw7r1q2TvXZ0dMSiRYvUOs/q1aujbt262LBhA969ewcXFxdYWVnJ6qampuLWrVtYsGABsrOzZeUNGzZE7dq1ce/ePVlC+/Lly/jmm2/w6NEjJCcny+pGRkYKxqJp06ayJDkAPH36FNHR0bI/GBSkoGuvibxxUSVuiodBKR2nYoqIiCjrLpSA0pkTpTl2jo6OJdJuycarZQm0WT6pOhcUx9msxI9ZWZXeZ5Ci8h+vlSc2KwLlsS7+7JzieW9Qt23Vn+Mj1gbjVVUfx/OSqOQJ46hmAdsUt6tTV357WcYqUHLxCpTkuTFuST3F9bkvPqfVaUP8+6Kq3zNKMl4Lw0R5EURHR6Nhw4YAgOTkZEyYMAHm5ubw9fVFnTp1YGBggEWLFiE9Pb3QttauXYtjx45h2rRpaNWqFUxMTHD+/Hl88803SE9PV5ooz2NrawtbW1t4e3sjPj4eEydOxI4dOzBu3DiYmZnh7du3aj1MMiEhAQAwbdo00e3519wGABMTE8FrPT09JCUlAchdw1oqlRZ4/ISEBLx9+1Y0uQ0AsbGxgmRxHqlUis8++wxJSUmYOXMmGjRoAENDQ2zZskWhj8r6mZGRITsGAJibmwvqWFhYKO23vLFjx+KTTz5BamoqTp8+jWPHjmHz5s2YO3euWue5e/dubNy4Ef7+/khJSUHLli3h5+cHJycnJCYmIjs7GytXrhTcMZ4n77zv3r0LHx8fdOvWDZMnT0aNGjWgpaWF4cOHK8xJ+XN8+/YtAKg0Zwq69prQ1dVFVlYWGjZsKLr2frG78LTkj1GB5a3DX6GU0pyoCGNXkvH6MPZN4ZUqiMLmQmpqKiIjIxXH+X+Kn3PFdczKSulYVwDFFa8vblSe2KwIlMV69P/En8FTHO8Nv91Wr21l9Qtrg/Gqnit3NH/uElUs+eNIfl7Ix+k/vyufN/J1lbVVkWM1T0mdW0HjTyRG3c9a+foFxas6n+9/XxX/vvgx/BuEiXINPXr0CDExMRg0aBAA4Pbt24iOjsb27dvRrFkzWb2kpCTRBK+8sLAwjBgxAt7e3rKyy5cva9Q3c3NzDB48GMuXL8ezZ89gZmYGMzMzhYc4FsTMzAwAsGTJErRu3VphuzpJdxMTE2hraxd4/GrVqsHc3Bw7duwQ3S6fvM7z7NkzPHjwAFu3bkX37t1l5WlpaSr3L0/e8ijx8fGC8vzL6xTGysoKdnZ2AHLvvn/z5g327t2L0aNHo3bt2iqfp42NDbZs2YLMzEyEh4djw4YNmDp1Kn755ReYmJhAS0sLU6ZMEZxznurVqwMAfv75ZxgbG2PTpk2ydetfvnwpetz8v4wAPlx/deZMccnri6GhYZn+3IZUw2ukuYowdozX4qHq2BXnOPN6FawizmnGa+Wk/FqL/2O3eOaGum2rnggSa6MizumSiVcm3CiXcE7FFbBNcbs6deW3V8RYzVNy58a4JfUU1+e++Jwu+neHj+E9QPGpj1So9PR0fPnll9DX18ewYcMAfEjM6unpyerdunVLITGZ/w5m+Tbz75udnY0zZ84U2hdlSdy8n0nk3Sns4uKCs2fPCpbfKEijRo1gZWWFFy9ewM7OTuG/WrVqqdQOkBsI9vb2OHXqlGCpkPxcXV0RHx8PPT090ePp6+uL7pd3Z3T+sXv58qXgIauqsrKygqWlJc6dOycoP3v2rNpt5VmwYAGkUil2794NQP3z1NPTQ/v27eHt7Y3k5GS8fv1aNp5Pnz4VbaNevXoAcueknp6eIAkeEhKiUr/zrv/x48c1PnciIiIiIiIiIqKPBe8oL4RUKsXt27cB5C46/9dffyE4OBgvXrzAqlWrZElJe3t7GBkZYdmyZfD29kZMTAwCAgIUEsqNGzdGVlYWgoKC4ODgAGNjYzRq1Aiurq44duwYmjRpgurVq+Pw4cOiCXV5X3/9NSIiIuDp6YkmTZogPT0dV65cweHDh9G9e3fUrVsXQO6DRi9duoTRo0dj0qRJsLS0xJMnT5CamorJkycrtKulpQVfX1/MmzcPKSkp6Ny5MwwNDfHPP//g8uXLmD17NmxsbFQex7lz52L8+PEYP348Ro8ejWrVquGPP/5A9erVMXToULi5uaFLly6YNGkSJk2aBIlEgtTUVDx+/BjPnj0TPFA0v7yE7vr16yGVSpGSkoItW7aodcd7Hh0dHXh7e2PFihWoUaMG3NzccOXKFdy4cUPttvL3r2/fvvjuu+8wbdo0lc7zzz//xOrVq9G3b1/Ur18fycnJ2L59O+rWrQtra2sAuQn4cePG4fPPP0e/fv1gamqK6OhoXL16FYMHD4azszPc3NwQFBSEL7/8Ej169EB4eLjKa61raWnhiy++wJw5czBjxgwMGDAA+vr6uH37Nuzs7NClSxeNx4SIiIiIiIiIiKi8YaK8EGlpaRgxYgSA3Duj69WrBxcXFwQGBqJx48ayehYWFti8eTPWrFkDHx8fNGzYEMuWLcOuXbsE7XXp0gWjR4/Gjh07EBcXBycnJxw4cACLFy/G0qVL8eWXX8LQ0BCDBg1Cjx49BA+CFPPJJ58gPT0dBw4cQExMDHR0dFC3bl0sWLAAo0ePltVr2LAhvv32W6xfvx7Lli1DdnY2GjZsKFjqRV6fPn1gamqKbdu2ye5Erlu3Ltzd3dVatxsA2rVrh/3792PTpk3w8/ODtrY2bG1t8fnnn8vqbNmyBTt27MCRI0fw8uVLmJiYwNbWFoMHD1barr6+PgICAuDv749Zs2ahdu3a+Oyzz3D9+nXcv39frT4CgJeXFxITE3H48GEcOXIELi4uWL58OSZNmqR2W3l8fHzwww8/4ODBg5gxY0ah52lpaQkLCwts374dMTExMDExQbt27bB27VrZA03btm2Lw4cPIyAgAH5+fsjMzISVlRU6dOiABg0aAAA8PDwwb948HDx4EMePH0fbtm2xfft29OrVS6V+9+3bF1WqVMG2bdswZ84cGBgYoEWLFgoPOyUiIiIiIiIiIvrYMVFegBkzZmDGjBkq1+/UqRM6deokKPPw8BC81tXVxdKlS7F06VJBuYWFBbZu3arQZt7SLsrY29vD3t5epf41adIE33zzjdLtDx8+VChzc3ODm5ub0n2cnZ1F9/v6668Vytq2bYv9+/crbUtfXx/Tp0/H9OnTldYR07p1a3z33XeCsoEDBwpeDx48WDThLn+HtZaWlmgfxM5RnrI6jRo1woMHD2SvCzvPGjVqYO3atYUez87OTula53kmT56s8IsB+X4eOHBA6f5du3ZF165dRbepc+2JiIiIiIiIiIjKM65RTkRERERERERERESVGhPlRERERERERERERFSpMVFORERERERERERERJWaVk5OTk5Zd4KICADu3buHnJwcZGZmonnz5jAyMirrLlVYKSkpiIiI4DiXgoo61hU1XufveKLRfmu9GxdeSUMVdQ6VRxV1rIszXn+6+kKhrKdrfdG6P/6mWBcA+nQUry/Wdkq6ev9UyZYqlukouTXIyEBLtDwzW7y+tkh1qZLuidUFlJ+72Fgpa7ufu3gblYHYHAGUz8GPUXHG67lrH8arh0t9pdsAxdjJHzepcnFooKdkgv+/5LQP9TOyhNvMqgr3TXj/oW5iivA4FibCunpyT1jT0/mwPSNLuK+WXBfz91n+XOUzIvLxK99Wfro6yrcBgDTfsbQLuU0x/zWSn+slNcfl54H8PCkOFfWzFciN14yMjBI7tx9+FX/PE5tLvd3Er92hsOei5Ub6imVVq4hP9j9fin8wWpmpfu+tss9WsX7o6oj3Q/49II9U5LNf7PtAQW0o+9wWIxaPJfn5FHZFvG1l17yobVtWeV0h41VVvKOciIiIiIiIiIiIiCo1JsqJiIiIiIiIiIiIqFJjopyIiIiIiIiIiIiIKrVKkSgPCAiAg4NDmfahXbt2CAgIKLXjde3aFf7+/gXWuXHjBiQSCe7du1dKvSqaAQMGwNfXt8A6vr6+kEgkGD58uMK2nJwceHh4QCKRlOq1qCwCAgJw69atsu4GERERERERERGR2ipFopzEtWzZEsHBwWjcuOQeQFYWjIyMcOfOHbx4IXwowX//+1/ExcVBX1/kaRFUZIGBgQgPDy/rbhAREREREREREamNifKPTFpaWrG1ZWxsDHt7+wr3JNu6deuiWbNm+OGHHwTloaGh6NixIwwMDMqoZ0RERERERERERFQeMVH+/6KjozFv3jw4OzujdevWGDNmDO7fvy+oc/LkSYwaNQrt27eHk5MTvLy8cPfuXYW2fv75Z/Tu3Rt2dnYYOnSoaB0AuHTpEoYNG4bWrVujQ4cOWLp0KVJSUmTb85ZGuXTpEmbOnIm2bdti1qxZAIDz589j8ODBcHBwQLt27TB48GBcvnxZ4RiHDh1Cly5d4OjoCB8fH8THxyu0n3/pFYlEgh07dmDNmjXo0KEDHBwc4Ovri+Tk5ALH7/Xr1/Dz80O3bt3QunVr9OzZExs2bEBGRoagnkQiwc6dOxEQEABXV1c4OzvDz89PcN4AcOvWLQwePBh2dnbw9PQUPbeC9OvXD6GhobLXWVlZOHv2LDw9PRXqhoeHY+rUqejYsSPs7e0xYMAAnDx5UlAnb6yuXLmCuXPnwsHBAV26dMHOnTvVbgsAHj16hDFjxsDOzg49e/bE6dOn4ePjAy8vL0G9J0+e4LPPPoOjoyPs7e3h7e2N58+fC+rkXbONGzfCxcUF7dq1w5o1a5CTk4Nr165hwIABcHBwwLhx4/Dq1SvBvhkZGdiwYQO6dOmCVq1aoU+fPggJCRHU8fX1haenJ27cuIGBAwfC3t4eQ4cOFcSHRCIBAKxZswYSiQQSiQQ3btxQOG8iIiIiIiIiIqLySLesO1AevHv3DqNHj4aRkREWL14MExMTHDhwAOPGjcNPP/2EGjVqAACioqIwcOBAWFtbIyMjA2fOnMGYMWNw+vRp2NjYAAAiIiIwc+ZMdOrUCX5+foiKisLnn3+ukDAOCwvD7NmzMXjwYMyYMQOxsbFYv349EhMTsXHjRkHdxYsX45NPPsHWrVuhra2N58+fY9asWejXrx/mzp0LqVSKP//8E+/evRPsd+HCBTx79gxLlixBQkICVq5ciS+//FKhfXkHDhxAy5YtsXr1akRFRWHdunVIT08vcL+EhASYmZnBz88PpqamiIyMREBAAGJjY7Fy5UpB3UOHDsHR0RGrVq1CZGQk1qxZgxo1amDevHkAgNjYWEycOBESiQSbNm1CYmIili1bhpSUFDRv3rzAvufp168fNmzYgMePH6NJkya4cuUK0tPT0bVrV/znP/8R1P3nn3/Qtm1bjBo1Cvr6+rh16xYWLVqEnJwcDBo0SFB36dKlGDBgALZu3Yqff/4Z69atg0QiQadOnVRuKy0tDRMmTICpqSnWrl0LANi6dSsSExNhbW0tO9aLFy8wcuRI2NraYtWqVdDS0sK2bdswfvx4hIWFCZaQOXToENq3b481a9bgzp07CAgIgFQqxZUrV/DZZ59BT08Py5cvx8KFC7Fnzx7ZfrNmzcKtW7cwbdo0NG7cGJcvX8b8+fNhamoKDw8PWb3Y2FgsX74c3t7eMDExwfr16zF9+nScO3cOenp6CA4OxogRI+Dl5SX7Y0STJk1UulZERERERERERERljYlyAEFBQUhMTMSxY8dkSXEXFxf06tULu3fvxoIFCwAA06dPl+0jlUrh5uaGu3fv4sSJE5gzZw4AYMeOHahduza2bt0KHR0dAICBgQEWLlwo2zcnJwdr1qxB3759sWLFClm5paUlvL294ePjA1tbW1l5165dMX/+fNnrsLAwZGZmYvHixTA2NgYAuLu7K5xXTk4OvvnmG1lC9eXLl9i+fTukUim0tZX/mEBfX1+h/4sWLcL06dOVrmcukUjwxRdfyF63bdsWhoaG8PX1xZIlS2BoaCg4z/Xr1wMAOnXqhAcPHuDs2bOyRHlQUBC0tLSwc+dOmJiYAACsrKwwfvx4pX2WV7duXdjb2yM0NBSff/45QkND0bVrV9FlZvr16yf7/5ycHDg5OSEmJgbBwcEKifKePXtixowZAHLnyKVLl3D27FlZolyVtr7//nvExcXhyJEjqFevHgCgVatW6NmzpyBRHhgYiGrVqmHv3r2y5WLatm2Lbt264dixYxgzZoysbs2aNWVJd3d3d1y4cAH79u3DmTNnZNcsJiYGX375JRITE2Fqaorr16/jwoUL2L17Nzp27AgAcHNzQ2xsLAICAgSJ8nfv3uHgwYOyeWloaIixY8fizp07aNeuHezt7QEAtWvXlv2/pnJycgAAqampRWqHCpY3vhznklcexrqklthivH4g/8uo4lQe5lBlUR7G+mOMV3Xnf0nGS3lXHOdemcdPmbIak48pXjlvyr+CrlFpXb+SOE55+GwFSi5egbI/N4AxXprUGeuSvC6l8e+PslKWS0QzUQ7gypUrcHZ2RrVq1ZCVlQUA0NbWhpOTk2BZkidPnmDDhg0IDw9HXFycrDwyMlL2/3fu3EHXrl1lSWYA6N27tyBR/vfff+Ply5f497//LTseALRv3x7a2tq4f/++IFHeuXNnQX8lEgl0dHQwb948DB8+HE5OTrKEcn5OTk6Cu44bN26MzMxMxMXFwdLSUul4dOnSRbT/9+7dU5ooz8nJQVBQEI4ePYqoqCikp6fLtr148QJNmzaVvXZ1dRXs27hxY5w5c0b2+s6dO3B2dhack4uLC8zMzJT2WYynpyf279+PqVOn4vz581i3bp1ovXfv3iEgIADnz59HTEwMsrOzAUD0eHkJZQDQ0tJC48aNER0drVZb9+/fR9OmTWVJcgCoV68emjVrJjjWlStX0LdvX+jo6MjmiampKVq0aKGwLJD8mNrY2ODNmzeC69WwYUMAucsMmZqa4sqVKzAzM0OHDh0E89DV1RX/+c9/kJ2dLZsHNWvWFMzJvLvFY2JiFMaoqPL6kj+uqORwnEtPWY61o6NjibRbMePVTKO9IiIiircbIirWOJdvjNeC1FQoUT7/FetqUr8iKY5zL433m/JL3TlVsj6meFUco4ofbx8b4TWqWcC24lRaxyn77zElFa9ASZ5bcXw2KM/9kGbEx7okP59Kv+2KHK+FYaIcucuG3L59Gy1btlTYlneHb3JyMiZMmABzc3P4+vqiTp06sjut8yeFY2NjZXel5zE2NhY8QDIhIQEAMG3aNNH+yK8jLd+ejY0Ntm3bhu3bt2P69OnQ1tZGx44dsWTJEtSpU0dWz9TUVLBfXtI8f3/FKOv/69evle4TFBSE1atXY9KkSXB2doapqSnu3bsHf39/hePJ90tPT0+wNE1sbCwaNGigcAxzc/MC+y2vd+/e+Oqrr7B582bo6emJ3nUP5K7BHR4ejmnTpqFJkyYwNjbGkSNH8OOPPyrUlf+DhJ6eHpKSktRq6/Xr16LnYm5uLhirhIQEBAUFISgoSKGunp6e4LXYmIqVAR+uf0JCAt6+fSs674Hc62BlZaW0/fxtFSddXV1kZWWhYcOGgl8iUPFKTU1FZGQkx7kUVOSxrpDx+r9XhdcRoerSYJqoyHOovKnIY11c8frb7TiFMmXz//UtxboF1Rdru6JRd6zUaaMyUDZHKtqYFFe8XrnzYbzkxyj/Niof8l8j+bleUnNcfh6UxHEq8mdrnpI6t5j/Ff2z4c/YN8XVHfp/YmNdkp9PseGl33ZFjtfCMFEOoFq1anB3d5c9KDO/vOTy7du3ER0dje3btwvu/E1KSpIlE4HcZUXy320O5CbZ8ycU8+4uXrJkCVq3bq1wzJo1hX/R0dLSUqjTqVMndOrUCcnJyfjll1+wcuVK+Pn5iSZV1aWs//L9yi8sLAxdu3bF3LlzZWVPnjzR6PhiYwhA8CBSVVhYWKBDhw7Yt28fhg4dqpBcBnITvZcuXYKvr6/gQZqHDx9Wu9+qtlWzZk3Rv/zFx8ejatWqstfVqlWDh4cHRo8erVA3fz1NVatWDebm5tixY4fodnX/MFFc8ua7oaFhmf7cprLgOJeeijjWjNcPSuP8Oc6lpyKOdfHFq+J3NOXtif/jS936FUlxnHtFm5vqUXdOfZxKIl4V26n48faxEV6juAK2FafSOk7F/GzNU3Lnxs+G8kh8rEvy86n0267I8VoYJsqRu9TE6dOn0bhxY6UTIS0tDYDwTt5bt27h5cuXgiUpWrdujYsXL8LPz0+2bEVYWJigrUaNGsHKygovXrwQrDOtCWNjY/Tt2xd3795FaGhokdrKI9Z/LS0t2NnZKd0nLS1NIREdEhKi0fFbt26NI0eOICkpSXYH97Vr1/D27Vu12/Ly8kKVKlUwbNgw0e0ZGRmQSqWCvicnJ+PChQtqH0vVtlq1aoWTJ0/ixYsXqF+/PoDcB8X++eefgp+XuLi44NGjR2jRooVgKZzi4urqil27dkFPT09h2RdN6Onplcgd5kRERERERERERCWt0iTKs7OzFRLWQG5Sdvz48QgJCcG//vUvjB07FnXq1EF8fDzu3LmDWrVqYfz48bC3t4eRkRGWLVsGb29vxMTEICAgALVq1RK05+3tjaFDh2LatGkYNWoUoqKisHv3bsHSK1paWvD19cW8efOQkpKCzp07w9DQEP/88w8uX76M2bNnw8bGRum5fPvtt7h9+zbc3d1haWmJqKgonD59Gm5ubsUyVhkZGYL+r1u3Dr169VK6PjmQm3Tdv38/Dh48iIYNG+L06dN49uyZRscfN24cDh8+jMmTJ2Py5MlITExEQECA2muUA7nrrXfp0kXpdhMTE9jZ2WHnzp0wNzeHrq4uduzYAWNjY7XvYFe1rSFDhmDbtm2YOnWq7MGggYGBsLCwEPx6YObMmRg6dCgmTpyI4cOHw8LCAm/evMHNmzfRrl07eHp6qjkaQm5ubujSpQsmTZqESZMmQSKRIDU1FY8fP8azZ88ED5pVRaNGjXD+/Hm0a9cOhoaGsLGxkT1sloiIiIiIiIiIqDyrNIny9PR00aVV1qxZgwEDBiA4OBibNm3CunXr8PbtW9SoUQNt2rRBjx49AOQu47F582asWbMGPj4+aNiwIZYtW4Zdu3YJ2mvRogU2b96MdevWYfr06bC1tcXGjRsxceJEQb0+ffrA1NQU27Ztk915XbduXbi7u8PCwqLAc5FIJLh48SJWrlyJt2/fwtLSEv369RM9P014eXkhPj4eCxYsQEZGBnr06IElS5YUuM+0adOQkJCALVu2AAB69eqFRYsWYerUqWofv2bNmti5cyeWL1+OWbNmwdraGkuWLMHGjRs1Op/CrF+/HkuWLIGvry/MzMzg5eWFlJQU7Nmzp0TaqlKlCvbs2YOlS5di3rx5qFWrFnx8fHDy5EnBGugNGjTAsWPHsGnTJixbtgwpKSmwtLSEk5MTJBJJsZz7li1bsGPHDhw5cgQvX76EiYkJbG1tMXjwYLXbWrJkCb766itMnjwZaWlp2L9/P5ydnYuln0RERERERERERCVJKycnJ6esO0Hlh0QiwYIFCxQS+1Sy3r59i+7du2P8+PGYPn16WXenzNy7dw85OTnIzMxE8+bNK+2aWKUhJSUFERERHOdSUFHHuqLG6/wdmj1fY6238l9dFVVFnUPlUUUd6+KM15+uvlAo6+laX7Tuj78p1gWAPh3F64u1nZKu3j9VsqWKZTra4nWNDBSfAwQAmdni9bVFqkuVdE+sLqD83MXGSlnb/dzF26gMxOYIoHwOfoyKM17PXfswXj1c6ivdBijGTv64SZWLQwM9JRP8/yWnfaifkSXcZlZVuG/C+w91E1OEx7EwEdbVk7vNT0/nw/aMLOG+8o/5yt9n+XOVz4jIx6/II8NkdAtZIVOa71jaSt6L8uS/RvJzvaTmuPw8kJ8nxaGifrYCufGakZFRYuf2w6/i73lic6m3m/i1OxT2XLTcSF+xrGoV8cn+50vxD0Yrs0ImdT7KPlvF+qGrI94P+feAPFKRz36x7wMFtaHsc1uMWDyW5OdT2BXxtpVd86K2bVnldYWMV1VVmjvKicqTHTt2wMLCAnXr1kVsbCz27NmD7OxsDBkypKy7RkREREREREREVOkwUU5UBrS1tfHNN98gJiYGOjo6aNOmDYKCglC7du2y7hoREREREREREVGlw0Q5CTx8+LCsu1Ap5D1Ak4iIiIiIiIiIiMqe6gsKERERERERERERERFVQLyjnIiIiMqdw0oePKSK0b2tNd7XwVpPo/02BEdqfEyraqrct2CJh7FvBCVFOU8iTYk9lOqMkoeNZWaJP41yX+gz0fKLEUkKZZamhqJ1qyp5EKe+yAPA6lYXjzE9XfE2ImPFnwBmayXSjpKHhXm0rSH6ECxlD/sSe+Bonwr0gMrikn/+5X9AIBXu+/PCz9Uq+sL5L//g3JfxHyb3+wzhNvkHZ9pYCp9oGf4sU/b/dasLUw4v4oX9qpLvYzcqXvi0P31d4b7yD87UzRc3BnIf3+lyDxHNyffETvlzT8+Ue1ip3PuL/MM+1dFLjYft5X+wpvx7bUk9dLM4H95ZGg8GrWzk52YesQfqBn4fKVpXW8nTaK8+zlAoM68q/nTaaobin6N/vlJ8Qmdtlb7XfmAg8lmsrS1+3plZ4uciH/+A8gftltSDcUvyodLF8dBOVdvO/Wx9XWLH+xjwjnIiIiIiIiIiIiIiqtSYKCciIiIiIiIiIiKiSo2JciIiIiIiIiIiIiKq1Jgop49eQEAAJBIJJBIJmjVrBkdHR/Tv3x/+/v548uSJRm3euHED27ZtK+ae5tq3bx8kEgn+/e9/l0j7+XXt2hX+/v7F2qavry88PT2LtU0iIiIiIiIiIqKyxEQ5VQhVqlRBcHAwvv32W2zZsgWDBw/G1atXMWDAAJw6dUrt9m7evInt27eXQE+B06dPAwDOnTuHjAzFB2iUdz4+Pli3bl1Zd4OIiIiIiIiIiKjYMFFOFYK2tjbs7e1hb28PNzc3fPrppzh16hQcHR2xcOFCvHjxovBGSsHff/+NP/74A66urkhMTMSlS5fKuktqs7a2RrNmzcq6G0RERERERERERMWGiXKqsAwMDLB48WJkZmbi2LFjsvKTJ09i1KhRaN++PZycnODl5YW7d+/KtgcEBCAwMBApKSmyJV28vLwAAE+ePMHs2bPh4eGBNm3aoG/fvtizZw+kUqlKfQoNDYWWlhb8/f1hYWGBkJAQhTp5y6UcOnQIXbp0gaOjI3x8fBAfHy+rk5KSAn9/f/Tq1Qtt2rRB165dsWTJEiQlJSk99oULFyCRSBAZGSkof/fuHVq3bo1Dhw4BAB49eoTJkyfD2dkZbdq0Qa9evbBz505ZffmlVxITE7Fo0SK4u7vDzs4OHh4emD17tkrjQUREREREREREVB7olnUHiEpSkyZNUKtWLYSHh8vKoqKiMHDgQFhbWyMjIwNnzpzBmDFjcPr0adjY2GDYsGGIjo5GaGgogoKCAADGxsYAgNevX8PGxgb9+/dH1apVERERgYCAAKSkpGD69OmF9ic0NBTt2rVD/fr10adPHwQHByMpKQkmJiaCehcuXMCzZ8+wZMkSJCQkYOXKlfjyyy+xceNGAEBaWhqys7Mxe/ZsmJub49WrV9i2bRt8fHxw4MAB0WN7eHigVq1a+P777zF37lxBnwCgf//+AICpU6fCwsICK1asgLGxMZ4/f47o6Gil57Ry5Ur8+uuvmDt3LurWrYvY2Fj88ssvhY4FERERERERERFRecFEOVV4tWvXxps3b2Sv8ye0pVIp3NzccPfuXZw4cQJz5syBlZUVrKysZMu55Ofi4gIXFxcAQE5ODhwdHZGWloaDBw8Wmii/e/cuIiMj8emnnwIAPD09ceDAAZw9exZDhw4V1M3JycE333wDfX19AMDLly+xfft2SKVSaGtrw9zcHMuWLZPVz8rKQr169TB69Gj8/fffsLGxUTi+jo4OBg8ejO+//x6ff/45dHR0AADff/89evToAVNTU8THxyMqKgoLFy5E165dAQAdOnQo8Lzu3bsHT09PDBo0SFbWr1+/AvcpSE5ODgAgNTVV4zaocHnjy3EueeVhrI2MjEqk3fIarykpKWXdhVJRWc6zNDFeqbgUxzgzxgvGeKWPgaZxXNh+H8P7Q14fy0OsAiUXr0DZnxup7mOInbJUGeK1MEyUU4WXk5MDLS0t2esnT55gw4YNCA8PR1xcnKxcfkkSMenp6di+fTtCQkLw6tUrZGZmyra9f/8eVatWVbpvaGgo9PT00Lt3bwCAvb096tevj5CQEIVEuZOTkyxJDgCNGzdGZmYm4uLiYGlpCSB3CZl9+/bh2bNngjf7yMhI0UQ5AAwdOhTbtm3Dr7/+is6dO+PPP//EH3/8gfnz5wMAqlevjrp162LDhg149+4dXFxcYGVlVeCYtGjRAidOnIClpSXc3d3RtGnTAusXJisrS3YeVPI4zqWnLMfa0dGxRNot2Xi11HjPiIiIMjluaSvaeVJBGK/qqlkCbX7clI+z6mPFGFcN47UgjM2ypl4cf7heivsJr2X5fH8ouI9l/e+OkopXoCTP7eP5XvqxKJ+xU/5U5HgtDBPlVOFFR0ejYcOGAIDk5GRMmDAB5ubm8PX1RZ06dWBgYIBFixYhPT290LbWrl2LY8eOYdq0aWjVqhVMTExw/vx5fPPNN0hPT1eaKJdKpfjhhx/Qvn17aGtrIzExEQDQrVs37N+/HzExMahVq5asvqmpqWD/vKR5Xh/PnTuHL774AiNGjMDs2bNhZmaG2NhYTJs2rcDzqFevHtzc3PDdd9+hc+fO+P7771GvXj3ZXeNaWlrYvXs3Nm7cCH9/f6SkpKBly5bw8/ODk5OTaJuLFy9GtWrVsHfvXqxZswa1a9eGt7c3Ro8eXeh4itHV1UVWVhYaNmwIQ0NDjdqgwqWmpiIyMpLjXAoq8liXZLw+jH1TeCUlmjdvXibHLW1FOU8Sx3jVTPT/4gqvVMkoG+ffbqs+VozxgjFeC3flDmOzrKkTx/mvl/x+8teyPL4/KOtjRY7VPCV1bs+vfzzfSz8W5TF2ypPKEK+FYaKcKrRHjx4hJiZGtizI7du3ER0dje3bt6NZs2ayeklJSYXeOQ0AYWFhGDFiBLy9vWVlly9fLnS/69evIzY2FrGxsaIJ5x9++EG2JIsqwsLC0Lx5c/j7+8vKbt68qdK+w4YNw7x58xATE4OQkBB4eXkJ7ri3sbHBli1bkJmZifDwcGzYsAFTp07FL7/8IvqHABMTEyxcuBALFy7Ew4cPsX//fixbtgxNmzZFu3btVD6nPHl9MTQ0LNOf21QWHOfSUxHHurzGa3nqS0mqLOdZFsrbnC4OJRuvTMbJUz7Oqo9VRZuDJYXxWhDGZllT7/p9uF6K+wmvZfmc8wX3sSLGap6KfG4VDa+TairznNYu6w4QlZT09HR8+eWX0NfXx7BhwwDkPgQTAPT09GT1bt26hZcvXwr21dPTQ0ZGhmib+ffNzs7GmTNnCu1LSEgIjIyMsG/fPuzfv1/wX7NmzRASEqLWuaWlpQn6kXcMVXTr1g2mpqaYO3cu3r17h8GDB4vW09PTQ/v27eHt7Y3k5GS8fv260LYlEgn8/PwA5C5xQ0RERERERERE9DHgHeVUIUilUty+fRtA7sMZ/vrrLwQHB+PFixdYtWoV6tWrByB3XXAjIyMsW7YM3t7eiImJQUBAgGDZEyB3TfCsrCwEBQXBwcEBxsbGaNSoEVxdXXHs2DE0adIE1atXx+HDh0UT6vmlp6fj3Llz6Nmzp+xBoPkNGTIEK1aswNOnT9GoUSOVztfV1RX+/v7YunUrHBwccPnyZVy7dk2lffX09DBw4EDs3r0bHTt2RO3atWXb/vzzT6xevRp9+/ZF/fr1kZycjO3bt6Nu3bqwtrYWbW/kyJHo0aMHbG1toaOjg5MnT0JPT0+ju8mJiIiIiIiIiIjKAhPlVCGkpaVhxIgRAHJ/SlOvXj24uLggMDAQjRs3ltWzsLDA5s2bsWbNGvj4+KBhw4ZYtmwZdu3aJWivS5cuGD16NHbs2IG4uDg4OTnhwIEDWLx4MZYuXYovv/wShoaGGDRoEHr06IFFixYp7dulS5eQlJSEgQMHim739PTEmjVrEBISglmzZql0viNHjkRUVBQOHjwoS3ivX78ew4cPV2n/Hj16YPfu3RgyZIig3NLSEhYWFti+fTtiYmJgYmKCdu3aYe3atdDR0RFtq23btjh58iSioqKgra2Npk2bYtu2bYJxJyIiIiIiIiIiKs+YKKeP3owZMzBjxgyV63fq1AmdOnUSlHl4eAhe6+rqYunSpVi6dKmg3MLCAlu3blVoM29pFzG9evXCw4cPlW43NzfH/fv3Za8vXLigUKd79+6CNnR0dPDFF1/giy++ENSTP45YWwDwyy+/wMzMDN27dxeU16hRA2vXrlXaVwBYtWqV4PWCBQuwYMGCAvchIiIiIiIiIiIqz5goJ6pEnj59ir///hsHDx7E6NGjoa+vX9ZdIiIiIiIiIiIiKnNMlBNVIkuXLsXt27fh7u6OKVOmlHV3iIiIiIiIiIiIygUmyokqkQMHDpR1F4iIiIiIiIiIiModJsqJiCqYcWvvF14JAGAAXHhapGMFzW9VpP2JlBnd27qsu6CWs0fXa7xv616fa7TfaI2PCBwOe67xvh/btSHN/HT1hcp19cSf941/4nNEy6saaImW16pmqFBWzVBbtG5qpnjbt8J/U+yHbQfRukkpqaLlVmZVRcufvVEsMzYQ79+bxFjR8vfposUwM1Ickz0hz0Tr1qshfkwxPV3ri5afviz+HlBFT/zaKGuHyrceLh+um3xMa8ld6uxs4eta1T7MM6lcuL1OlApeS4UvUd3ow77v04Ubs+Tq3nn6IbB09KoIthkbmAiPm5QleG1h/OHNR1vuhGKThXWdbD4sOfnqrfCE5N/DapoKX79M+FDf1FB4nCp6wrrP44Qn+Pb9h1gzkds3R25cM7M/FJz59UWBdQu6nvmvu1jdosTzuWsf2pI/jnwfqeiqVhF/TxZTzVC8bsJ78Qsj9n6vpyPexrO4TNHy16/+ViiLr9tItK6yttMypQplZkbiXyyM9MXbsK6hWD9dyfeEAz+If7YairRtpOT7SnKaYttmVcXryr9/ysoVTxu6Sr5PFcdnsLLvdfx8V6T6tywiIiIiIiIiIiIiogqIiXIiIiIiIiIiIiIiqtSYKCciIiIiIiIiIiKiSo2JcipWAQEBkEgkkEgkaNasGRwdHdG/f3/4+/vjyZMnGrV548YNbNu2rdj6GBUVJeuj/H+9e/cutuPkd+PGDUgkEty7d69E2i8qiUSC3bt3l3U3iIiIiIiIiIiIyoTGD/N8/fo1atasWZx9oQqiSpUqCAoKAgC8f/8ef/31F4KDg3H06FGsWLECAwYMUKu9mzdvYs+ePZg6dWqx9nPOnDlwdnYWlFWpUkVJ7aJp2bIlgoOD0bhx4xJpv6iCg4NRp06dsu4GERERERERERFRmdA4Ud65c2d06NABn3zyCXr27AkjI6Pi7Bd9xLS1tWFvby977ebmhtGjR8Pb2xsLFy5E27ZtUb9+2T9Zt0GDBoJ+liRjY+NSO5Y60tLSUKVKlXLZNyIiIiIiIiIiotKi8dIrM2fOxOvXr+Hr6ws3NzfMmzcPv/zyC6RSaXH2jyoIAwMDLF68GJmZmTh27Jis/OTJkxg1ahTat28PJycneHl54e7du7LtAQEBCAwMREpKimx5FC8vLwDAkydPMHv2bHh4eKBNmzbo27cv9uzZU2xz0NfXF56enrhx4wYGDhwIe3t7DB06FPfv3xfUS0pKwrx58+Dg4AAXFxds2LABe/bsgUQikdURW3pFIpFg586dCAgIgKurK5ydneHn54eUlBRB+9HR0Zg3bx6cnZ3RunVrjBkzRqEPAHD8+HH0798fdnZ2cHd3x8aNG5GdnS3YLpFIEB4ejk8//RT29vZYs2aNrC/5l17x8vLClClTEBYWhl69esHBwQFjx47F8+fPFfo2ZcoUtGnTBh4eHti3bx9WrFiBrl27ajDiREREREREREREZUPjO8qnTp2KqVOn4sGDBwgJCcGZM2cQGhqKGjVqoF+/frKEHVGeJk2aoFatWggPD5eVRUVFYeDAgbC2tkZGRgbOnDmDMWPG4PTp07CxscGwYcMQHR2N0NBQ2XIuxsbGAHKX/7GxsUH//v1RtWpVREREICAgACkpKZg+fXqh/ZFKpcjKyhKUaWtrQ1v7w9+PYmNjsXz5cnh7e8PExATr16/H9OnTce7cOejp6QEA/Pz8cP36dcyfPx9169bF0aNH8ccff6g0JocOHYKjoyNWrVqFyMhIrFmzBjVq1MC8efMAAO/evcPo0aNhZGSExYsXw8TEBAcOHMC4cePw008/oUaNGgCAvXv3Yu3atRg3bhx8fX3x5MkTWaI8r608c+fOxYgRIzBlyhQYGhoq7VtERATi4+Mxb948ZGdnY9WqVZg/fz6Cg4MBADk5OfDx8cGbN2+wbNkymJiYYPfu3fjnn38EY0hERERERERERFTeaZwoz9OiRQu0aNECCxYswPXr1xESEoLjx4/jwIEDsLGxwSeffIJPPvmE6x8TAKB27dp48+aN7HX+hLZUKoWbmxvu3r2LEydOYM6cObCysoKVlZXCci4A4OLiAhcXFwC5SVtHR0ekpaXh4MGDKiXKZ8+erVA2dOhQrFixQvb63bt3OHjwIGxtbQEAhoaGGDt2LO7cuYN27drh8ePHOHfuHFavXo2BAwcCANzd3dGnTx+VxsPS0hLr168HAHTq1AkPHjzA2bNnZcntoKAgJCYm4tixY7KkuIuLC3r16oXdu3djwYIFSE5OxpYtWzBp0iTMmTMHQO5yN3p6eli1ahUmTpyI6tWry445cuRIeHt7F9q3pKQknDx5Eubm5gCAlJQU+Pn5ITo6GlZWVvjll1/wxx9/4NChQ2jXrh0AoEOHDvDw8ICpqalK5y8mJycHAJCamqpxG1R65H8BQYry5nJZzumSWh6N8Vq2yir+KnLcM16poimueC2Pcc94JRJXWLyW1vtC3vbyEKtAycUrUPbnRhVbSX4Gy7ddGeK1MEVOlOfR0tKCo6MjEhMTERMTgytXruDZs2cIDAzEli1b0L17dyxatIgPAK3kcnJyoKWlJXv95MkTbNiwAeHh4YiLi5OVR0ZGFtpWeno6tm/fjpCQELx69QqZmZmybe/fv0fVqlUL3H/evHno0KGDoCwvKZynZs2asiQ5kHtXPADExMQAgGwplW7dusnqaGtro0uXLti7d2+h5+Dq6ip43bhxY5w5c0b2+sqVK3B2dka1atVkd79ra2vDyclJduzw8HCkpKSgd+/egjvkXV1dkZaWhkePHqF9+/ay8s6dOxfaLwBo1qyZYDzyzj0vUX7v3j2YmprKkuQAULVqVbi4uKh8R72YvHNQZQ6QMgaldqSIiIhSO9bHrizntKOjY4m0WzHj1bKsO6CyosWf5udZGeKe8QoA/M5eESiPV/XeA8pz3DNeVcWYriwU47VmIdvV8aEtdY9T1t8XSypegZI8N8YtFddnsPhcUtZ2RY7XwhRLojzvTvKffvoJycnJaNq0Kb744gv0798fOjo6OH78OLZv344FCxZg3759xXFI+khFR0ejYcOGAIDk5GRMmDAB5ubm8PX1RZ06dWBgYIBFixYhPT290LbWrl2LY8eOYdq0aWjVqhVMTExw/vx5fPPNN0hPTy80UV6/fv1ClweSvzM6b7mVvP7FxsZCT08PJiYmgnryCXd12s/IyJC9TkhIwO3bt9GyZUuFfa2trWV1AGDQoEGix3j16pXgtYWFhcZ9Az6c++vXr0XPU9VzV0ZXVxdZWVlo2LBhgUvDUAEuPC21QzVv3rzUjvWxSk1NRWRkZIWc0xUxXh/Gvim8UjlRlPgrynlW5LhnvH7w2+24QutQ+acsXl/+rt57QHmMe8arehjTlYd8vMpf+6LE85U7H9pS9TgVOVbzlNS5MW4JKJ7PYGVzSb7tyhCvhdE4Uf7nn3/i9OnTOHPmDF6/fg0LCwsMHToUAwcOFDzEEAAmTpwIAwMDrF69usgdpo/Xo0ePEBMTI0vo3r59G9HR0di+fTuaNWsmq5eUlAQrK6tC2wsLC8OIESMEy4hcvny5+DteAEtLS2RmZiIpKUmQLI+Pjy+W9qtVqwZ3d3fMmjVLYZu+vr6sDgAEBgaKjlu9evWKpS/yatasKXqeRT33vF8cGBoalunPbUg1vEaqq4hzmvFatspqzCvDta6Ic1r9eOU/ziuC4prH5TkeGK+qYkxXFopzJq6Q7er40Ja6x6mIsZqn5M6NcUvF9RksPpeUtV2R47UwGifKBw4ciCpVqqBbt24YOHAg3NzcCnyAX5MmTRTWmKbKIz09HV9++SX09fUxbNgwAEBaWhqAD3cqA8CtW7fw8uVLwXIn8ndZ528z/77Z2dmCZUtKQ6tWrQAA58+fl61RLpVKcfHixWJp39XVFadPn0bjxo2Vvkk5ODjA0NAQ0dHR6NGjR7EcVxV2dnZITEzE77//DicnJwC5S95cu3atSGuUExERERERERERlTaNE+VfffUVevXqVejyFnk6dOigsB40VUxSqRS3b98GkPtggL/++gvBwcF48eIFVq1aJbvD2d7eHkZGRli2bBm8vb0RExODgIAA1KpVS9Be48aNkZWVhaCgIDg4OMDY2BiNGjWCq6srjh07hiZNmqB69eo4fPiwaEJdmWfPnsn6mUdLSwtt2rRRuQ1bW1v06NEDy5cvR2pqKurUqYOjR48iLS1NsBa7psaPH4+QkBD861//wtixY1GnTh3Ex8fjzp07qFWrFsaPHw9TU1PMnDkTa9euRXR0NNq3bw8dHR28ePEC58+fR0BAQIn8ZKZTp05o2bIl5s6dizlz5sDU1BS7du1C1apVi+XciYiIiIiIiIiISotGifLU1FQcPHgQ6enpGDVqVHH3iT5yaWlpGDFiBIDcn3HUq1cPLi4uCAwMROPGjWX1LCwssHnzZqxZswY+Pj5o2LAhli1bhl27dgna69KlC0aPHo0dO3YgLi4OTk5OOHDgABYvXoylS5fiyy+/hKGhIQYNGoQePXpg0aJFKvVzw4YNCmU6Ojp48OCBWuf71Vdfwd/fH2vWrIG+vj4GDRoEW1tbHDp0SK12xFSvXh3BwcHYtGkT1q1bh7dv36JGjRpo06aN4O7xCRMmoFatWti7dy8OHjwIXV1dWFtbo3PnzoK77ouTlpYWvv76ayxZsgRLliyBqakpxo4di7///rtcP/CJiIiIiIiIiIhInkaJckNDQ0RFRfGuUVIwY8YMzJgxQ+X6nTp1QqdOnQRlHh4egte6urpYunQpli5dKii3sLDA1q1bFdrMW9pFmXr16uHhw4eF9m3VqlUKZaampgr7mpqaYt26dYKyMWPGCNZdd3Z2VthPrA/jx4/H+PHjBWWWlpZYsWJFof3t168f+vXrp3T74MGDMXjwYNFt8n05cOCAQp3mzZsr1LOyssKOHTtkrzMyMtCvXz+0a9eu0P4SERERERERERFp4rfffsPq1auxaNEiODs7C7ZdvXoVu3fvxj///IP69etj6tSpaNu2baFtarz0iru7O3777TeMHDlS0yaIKoSzZ8/i1atXaNq0KVJTUxEaGor//ve/okn8iiY4OBhSqRQ2NjZITEzEkSNH8PLlS9G79YmIiIiIiIiIiIpDWFgYUlNTFZLk9+/fh7e3N6pUqYKWLVvijz/+wLhx4/Ddd99BIpEU2KbGiXIfHx/MmjUL8+fPx4gRI1C/fn0YGBgo1DMzM9P0EEQfBSMjI5w6dQqRkZHIzMxEo0aNsHbtWnTv3r2su1biDAwMsGPHDrx8+RIA0KxZM2zfvh12dnZl3DMiIiIiIiIiIqqowsPDBcsS59mxYwdycnJw5MgR2NraIjk5GUOGDMHWrVuxZcuWAtvUOFGet8TD48ePERoaqrQe1yqmis7d3R3u7u5l3Y0yMXDgQAwcOLCsu0FERERERERERJVIdHQ0GjVqJCjLysrCr7/+Cjs7O9ja2gIAjI2NMWjQIBw9erTQNjVOlE+bNo1rlBMRERERERERERFRqcrMzERGRoag7M8//0RaWprCs/MsLCzw5s2bQtvUOFGuzgMbiYjKq3Fr75d1F4pd0PxWhdZJSUlBREQEmjdvDiMjo1LoFVHFdvb7AI33rYjvQ/Tx6+lav8Ta/vG3F6Ll3Vvpq9xGZrZ4eYs6Hgpliak5onXrW1QRbztLvP7b94rlyvrxPl28vIGltvgGEVWUDEdxXJtPPKyL3EZx+emq4nwoyflXWcmP6blrwnE3NNCSe/3h/7OlwrZMDXUEr3WFL1HD5ENbmVnCbcnpwjhqWddK9v9hd94KthnJ9aldDWFQvM+XG3n8OlOwrYG5nvC4aR/+/12q8ITepghf62rrKt1uqC+MYfmxMdAV9jkr33uE2HtIfvn3NDQQ1s2Se6+RyjWln++4Jy8+F2xLEw6NIObUvfcxp+BToGKmznth2BXxz1ZAKlpav4bih4y2ko+oZ7HKJoqNQomejnhd86rijce/VyxLyRDvc2aWeNv3UhTrm1QRP15DSx3R8h/vpSqUebYxFK0rJj1TvDw2Ufxc9ES6UcNEvM8//Cp+beXfewsi/56hCWX96Otedp/ZtWvXxq1btzBmzBhZ2blz55CTkwMXFxdB3ejoaJWWB9c4US4vLS33k6dKFfEvnEREREREREREREREReXh4YFDhw6hWbNm6Ny5M+7fv4+goCCYm5srPODz9u3baNKkSaFtFilR/s8//yAgIACXL19GQkICAKB69erw8PDA9OnTUbdu3aI0T0REREREREREREQkMHXqVFy8eBHr16/H+vXroaWlBV1dXaxYsQK6uh9S3vHx8Xjx4gW8vLwKbVPjRPmTJ08wevRoJCUlwdXVFY0bNwYAPH36FKdOncLFixdx+PBhhUXViYiIiIiIiIiIiIg0ZW5ujhMnTuD48eN4+vQpLC0t0bt3b1mOOn+9s2fPqtSm6ovkyVm/fj20tbVx4sQJ7Nq1C35+fvDz88POnTtx8uRJaGtrY/369Zo2X2EFBARAIpHA3d0dUqniWkUjR46ERCKBr69vsR/b19cXnp6ehdaTSCTYvXt3sR9fGVX7VR507doV/v7+Zd2NYjVgwACV51tmZiacnZ3RrFkz/PPPPwrbb9y4AYlEgnv37hV3N4mIiIiIiIiIiGSMjY3RpUsX1K9fH69fv8bBgwexb98+0ZyVKjS+o/z333/Hp59+ColEorCtadOmGDNmDPbt26dp8xWanp4eEhIS8PvvvwvWzHn58iVu375d5g/WCw4ORp06dcq0D+VVYGAgTE1Ny7obZea3337D27dvAQChoaHw9vYu2w4REREREREREVGltGPHDmzevBlSqRRaWlqQSqXQ1tbG2rVrMX36dHz22WdqtafxHeVZWVkFPrjT0NAQWVlZSrdXZnp6eujUqRPOnDkjKD9z5gxsbW1hbV22T6G3t7dHzZo1y7QPpSUnJwcZGRmFV/x/LVq0QL169UqwR+VbaGgoTE1N0bJlS4SEhJR1d4iIiIiIiIiIqBL6+eefsXHjRvTt2xdhYWHYtWsXAODs2bOYNWsWtmzZglOnTqnVpsaJ8ubNm+PYsWNISkpS2JacnIzvvvsOLVq00LT5Cs/T0xNnz55FZmamrCw0NFR0CZInT55g9uzZ8PDwQJs2bdC3b1/s2bNHYemWjIwMbNy4Ed26dUOrVq3QqVMn0SU1bty4gYEDB8Le3h5Dhw7F/fv3Bdvll17x8vLClClTEBYWhl69esHBwQFjx47F8+fPFY6/YcMGdOnSBa1atUKfPn2KLZn65MkTfPbZZ3B0dIS9vT28vb0Vjr9nzx4MGTIEjo6OcHFxwZQpU/D3338L6uQt83L58mV88sknsLOzw4ULFxAQEAAHBwc8fPgQo0aNQps2beDp6Ylff/1VsL/80it57RU2pklJSZg3bx4cHBzg4uKCDRs2YM+ePaK/yMjv9evX8PPzQ7du3dC6dWv07NkTGzZsUEjuSyQS7Ny5EwEBAXB1dYWzszP8/PyQkpIiqHfr1i0MHjwYdnZ2snFQVUpKCi5cuIBevXph8ODB+Ouvv/Dw4UOV9yciIiIiIiIiIioO+/btg729PdauXYsGDRpAS0sLQO5yLN7e3ujbty+CgoLUalPjRPmMGTPw4sUL9OnTBxs2bMDx48dx/PhxrF+/Hr1798bz588xY8YMTZuv8Lp06YKMjAxcuXIFAPD48WM8fPgQffv2Vaj7+vVr2NjYYOnSpdixYweGDx+OrVu34uuvvxbUmzFjBvbt24chQ4Zgx44dWLBggUKiNDY2FsuXL8fEiROxadMmpKenY/r06YKEvZiIiAjs3r0b8+bNw8qVK/H8+XPMnz9fUGfWrFkIDg7Gp59+iu3bt8Pd3R3z589XKxkr5sWLFxg5ciTevXuHVatWYd26dYiPj8f48eMFCePo6Gj861//wtdff43ly5dDKpVi5MiRsqVC8rx+/RrLly/H+PHjsXPnTjRv3hxA7vrb8+bNw+DBgxEYGAhzc3PMnDkTCQkJBfZPlTH18/PDpUuXMH/+fKxatQpPnjzB/v37Cz33hIQEmJmZwc/PD7t27cKkSZNw4sQJLF26VKHuoUOHEBkZiVWrVmHatGkICQkRzJHY2FhMnDgR+vr62LRpEyZOnIhly5YhJiam0H4AuX+pS0lJgaenJ/r06QNdXV2EhoaqtC8REREREREREVFxefDgAbp37650u5OTE548eaJWmxqvUe7i4oIdO3ZgzZo12LFjh2Bb8+bNsXbtWnTo0EHT5is8Q0NDdO3aFWfOnEHnzp0RGhoKBwcH1K9fX6Gui4sLXFxcAOQuFeLo6Ii0tDQcPHgQ06dPBwBcuXIFly5dwvr16wV3pcvfof7u3TscPHgQtra2sn6MHTsWd+7cQbt27ZT2NykpCSdPnoS5uTmA3LuL/fz8EB0dDSsrK1y/fh0XLlzA7t270bFjRwCAm5sbYmNjERAQAA8PD43HKjAwENWqVcPevXthYGAAAGjbti26deuGY8eOYcyYMQCAf//737J9srOz4ebmBhcXF5w9exYjRowQjMHOnTvRpk0bwXHyEuV5fbWxsUG3bt3wyy+/YMCAAUr7V9iYPn78GOfOncPq1asxcOBAAIC7uzv69OlT6LlLJBJ88cUXstdt27aFoaEhfH19sWTJEhgaGsq2WVpayh6g26lTJzx48ABnz57FvHnzAABBQUHQ0tLCzp07YWJiAgCwsrLC+PHjC+0HkPuLh1q1aqF9+/bQ1tZGhw4dEBoaijlz5sj+alcccnJyAACpqanF1mZlI/8HMjF548txLnnlYaxL6tkXjNcPVIm7inDMsjxuaWC80segIsdgno/luwzjlSqzwuI0b3t5iFWg5OIVKPtzI9KUfBxrEq8l8b1EnXitWrWq0m3x8fEFLhsuRuNEOQC4urri5MmTiI2NlT1NtE6dOrC0tCxKs5WGp6cn5s6di7S0NPzwww/w8vISrZeeno7t27cjJCQEr169Etyp/P79e1StWhXXrl2DoaEh+vXrV+Axa9asKUvoAkCTJk0AoNC7ips1ayZLkuffLy9RfuXKFZiZmaFDhw6CteldXV3xn//8B9nZ2dDR0SnwGMpcuXIFffv2hY6OjqxtU1NTtGjRQrDEye3bt7F582Y8ePBAcBd5ZGSkoD0zMzOFJDkAaGtry/4gAQD16tVDlSpVCh2bwsb03r17AIBu3boJjtWlSxfs3bu3wLZzcnIQFBSEo0ePIioqCunp6bJtL168QNOmTWWvXV1dBfs2btxYsA7+nTt34OzsLEuSA7l/hDEzMyuwD0Dum8uVK1fg5eUFbe3cH6L0798fX3zxBf73v/8V+EcWdeVdY/nrVnIMSuk4pSciIkLluqU3zlSWY+3o6Fgi7ZZ+vJYGzb7DqBN3ijR7HyraMTX/rla0434cGK8lrXI8C6ekVLwYVJwPH8t3mY87XhmHVDSKcVqzwO1l/flTUvEKlP255WJMk/qUfd6Kz2nxOVYS30tUjdfatWvjxYsXCuU5OTl4/PgxDhw4ADc3N7WOXaREeR5LS0smxzXQsWNH6OnpYfPmzYiKilJ6h/HatWtx7NgxTJs2Da1atYKJiQnOnz+Pb775Bunp6ahatSrevn0LS0vLQu/sNTU1FbzW09MDAEECVpP9EhIS8PbtW7Rs2VJ0/9jYWFhZWRV4DGUSEhIQFBQkuq5QXj/++ecfTJgwAa1atcKyZctQs2ZN6OnpYcqUKQrnZmFhIXqcKlWqQF9fX6H9oo5NbGws9PT0BAlqAII/PCgTFBSE1atXY9KkSXB2doapqSnu3bsHf39/hX6J9SP/0jSxsbFo0KCBwjFU6cePP/6IrKwseHh4IDExEQDg7OwMfX19hISEFGuiXFdXF1lZWWjYsKHgjvkSc+FpyR+jlOUtJ1SQ1NRUREZGlt44V2IVeaxLPV5LwcPYNxrtp0rcKaXh+1BRjqnpeRb1uOUd47V0vL4VV6bH/9hVtBj87bbifKjs32VKI16v3GEcUtHIx6l8LOdtr8ixmqc8nFtsOGOa1CcfxwXFa8z/xOdYWX4vcXFxwc8//yxYGlpLSwteXl549uwZrKyssGDBArXa1DhRfvLkyULrGBgYwMrKCi1btlRIQFJuIrNnz57Yt28fXFxclCZww8LCMGLECHh7e8vK5Nf9NjMzQ2xsLHJycop1GQxVVatWDebm5grL8ORRJRlbUNseHh4YPXq0wra8n1j8+uuvSElJQWBgoCxhnJWVhXfv3insU9rjY2lpiczMTCQlJQmS5fHx8YXuGxYWhq5du2Lu3LmyMnXXV8rfj7g4xTc2VfqRtxa52DItYWFhWLRokewPBEWVd30MDQ1L9OdxFZk648ZxLj0VcawZrx+UxfmX1ZhXhmtdEed0+YpX/mO+KMr++hU3xflQ2b/LlE68Mg6paBTnZlyB2ytirOYpH+fGmCb1KZu34nNafI6V5dz38vJC3bp18fbtW5iZmaFq1aqQSCSoUaMGBgwYgNGjR8PY2FitNjVOlPv6+so+wPPWUMuTv1xLS0v2tNHJkydrergKa9iwYYiLi8Pw4cOV1klPTxckIbOzswVLagC5y27s3LkTP/74o+gDQUuaq6srdu3aBT09PTRr1qxY23ZxccGjR4/QokULpcu3pKWlQUtLC7q6H6Z03l3QZa1Vq1YAgPPnz8vWKJdKpbh48WKh+6alpSkkoENCQjTqR+vWrXHkyBFBwv7atWsKDzuV9/LlS4SHh2PkyJEKcysiIgIrV67Er7/+iq5du2rULyIiIiIiIiIiInU0aNAAn376qex169atVbqxuyBFuqPc19cXZmZmGDNmDKytrQEAz549w6FDh5CUlITFixcjLi4OBw4cwIYNG1C1alXRu4Irs9atW+Prr78usI6rqyuOHTuGJk2aoHr16jh8+LBgSY28Oh4eHvj3v/+N58+fo02bNnj79i3Onj2LTZs2leAZ5HJzc0OXLl0wadIkTJo0CRKJBKmpqXj8+DGePXuGFStWFLh/cnIywsLCFMqdnZ0xc+ZMDB06FBMnTsTw4cNhYWGBN2/e4ObNm2jXrh08PT1lD4718/PDyJEj8ejRI+zdu1dhOZKyYGtrix49emD58uVITU1FnTp1cPToUVlyvyCurq7Yv38/Dh48iIYNG+L06dN49uyZRv0YN24cDh8+jMmTJ2Py5MlITExEQEBAoWuU591NPmnSJIWHzTo6OmLHjh0IDQ1lopyIiIiIiIiIiD5aGifKg4KCUKNGDezevVtQLpFI0KNHD0yaNAnfffcdVqxYga5du2L06NE4cuQIE+UaWLx4MZYuXYovv/wShoaGGDRoEHr06IFFixYJ6gUEBCAwMBDBwcEIDAxEjRo11F60vii2bNmCHTt24MiRI3j58iVMTExga2uLwYMHF7rvq1evMGvWLIXyQ4cOoV27djh27Bg2bdqEZcuWISUlBZaWlnBycoJEIgGQO+9WrlyJwMBATJkyBc2bN8fmzZvx+eefF/dpauSrr76Cv78/1qxZA319fQwaNAi2trY4dOhQgftNmzYNCQkJ2LJlCwCgV69eWLRoEaZOnap2H2rWrImdO3di+fLlmDVrFqytrbFkyRJs3LixwP1CQ0PRtm1bhSQ5kLt+oqenJ44ePYr379+r3SciIiIiIiIiIiJ1eXl5qVTvwIEDKreplSO/boqKnJycMHv2bKWJ70OHDmHz5s24efMmAGDv3r3YuHEj7t69q8nhiCqcMWPGQFtbW62Areju3buHnJwcZGZmonnz5qWy1tW4tfdL/BilLWh+q0LrpKSkICIiotTGuTKrqGNdFvFaGg6HPddov9G9rTU+pqbvQ6rEujKanidQtHMt7xivpePH316Ilutoq95GZrZ4+bv3iv+0SUwV/+dOfQvxA2Zmidd/K9K2sn5kS8XLG1iqfpLpmeL9GNilYsXgT1cV50NPV8UbNOQxXovm3DXxOBQjP58z5Va31JVbHTMjXwzJ101OF85rfd0Pv7ANu/NWsK21tfDXwRbGwl/jvs/3I+vHrzMF2+pWE94TaGTwYd93qcITepsifN28tnDfV+8+bK9tJoxhbbkfCCenCV9Xr/qhQmGPysq/2dBAuC1L7r1Gfszzj2NahnCM04RDA3Nj1fskL3/2SD5O5WM5b3tFjVUgN14zMjLKxbmFXRGP6dh34h9IxlUUL762ko+oZ7HibTySizsAqKIn3oh5VfHy+PeKbUuVpCn15AOuACZVxI/X0FJ8Od8LEakKZZ5txB/QKvbZb6gv3rfYRPGx0xPpRg0TNb4IQfF9oCBSJZnf3m7COC4oXn/4VXyO9XUv/DO7pHzyyScKy4FLpVJER0fLbrKtVq2aWksYa3xHuVQqxd9//610+99//w2p9MOE0NfXh4GBgdL6RBXZ2bNn8erVKzRt2hSpqakIDQ3Ff//7X2zdurWsu0ZERERERERERPRROX36tNJtISEh2Lhxo9rLUWucKO/atSuOHDmCBg0aYNiwYbIkeHp6Oo4ePYpvv/0Wffr0kdUPDw+XrWNOVNkYGRnh1KlTiIyMRGZmJho1aoS1a9eie/fuZd01IiIiIiIiIiKiCqN///64f/8+/vOf/6i1koPGifKFCxfixYsXWL58OVavXg1LS0sAQGxsLDIzM9G6dWssXLgQQG7yvEqVKoInkRJVJu7u7nB3dy/rbhAREREREREREVV4NjY2CA4OVmsfjRPlZmZmOHLkCM6dO4dff/0V//zzDwCgY8eO6NixI7p37w7t/1/gyMDAAMuXL9f0UEREJaYoa/wSUcVTFutvF/Y+VBJre1bkdcap/OvTsehrWYqtaw0AFqaKa4SKlQGqrYOtroq8Fm9JKYnrQIrk1yTv4SIc97NK1jcGgLgk4fqvFibCmJJf+zY28UNBTbn4s9AXrsGblf2h7pD2ZoJt+dfdBoBUubW388d2/Rr6gm1JcssNW+arm5kt7IP8mt5Dugk/I09e/PBcj6oi6zqrSn7MKxrGcuk5dUnxWTMv48UXoW5US3zd66cximtn1zUXn991qou3Ub+G4vLKytY519MRbzsxRbHfpkbidWsZvS6xz1dLU82el1GZlOVa5JrIzMzE2bNnYWpqWnjlfDROlAOAlpYWevbsiZ49exalGSIiIiIiIiIiIiIilfj5+YmWv3v3Dnfv3kVcXBzmzp2rVptFSpQDQExMDH7//XfExcWhV69esLKyglQqRWJiIkxMTKCjo8ZjWImIiIiIiIiIiIiICvD7778jJ0f4qwQtLS2YmprC0dERQ4cOVXsZZI0T5Tk5OVi1ahUOHTqErKwsaGlpoWnTprCyssL79+/RtWtXzJw5E+PHj9f0EEREREREREREREREAj///HOxt6lk9aDC7dq1C/v378eECROwd+9eQQbfxMQEPXv2xE8//VQsnaTSERAQAIlEIvvPzs4Offr0wc6dOyGVCtevkkgk2L17dxn1NFdERAQkEglu3Lghuv3+/fuQSCQ4deqU6Pbs7Gy4urpiwYIFiIqKgkQiQVhYWEl2WamuXbvC399f9trX1xeenp7FfpyAgADcunVLobw8XE8iIiIiIiIiIqKyovEd5ceOHcPAgQMxZ84cJCQkKGyXSCT45ZdfitQ5Kn1VqlRBUFAQACAtLQ03btzA+vXrkZOTA29v7zLunXpatWoFGxsbnDlzBgMGDFDYfu3aNcTFxaF///6oWbMmgoOD0bBhw9LvqAgfHx+kpKQUe7uBgYEwMjJC27ZtBeXBwcGoU6dOsR+PiIiIiIiIiIiouL18+VKlenXr1hXUz3stRuNE+atXr+Dg4KB0u6GhIZKTkzVtnsqItrY27O3tZa87dOiAv/76Cz/99NNHlygHAE9PT2zbtg0JCQmoXr26YFtoaChq1KgBV1dX6OjoCM67rFlbWxdeqRiVp3MnIiIiIiIiIiIqSPfu3RXWKBfz559/IiMjQ1b/zz//VFpX40R5jRo18OrVK6Xb//jjD9SuXVvT5qkcqVq1KrKystTe79KlSwgKCsKff/6J9PR0NG7cGDNmzECnTp1kdY4fPw4/Pz+cOHECGzZswH//+1/UrFkTPj4+GDhwoKC9r7/+GocOHUJKSgrc3NwwcuTIQvvQv39/BAQEICwsDKNGjZKVp6en49y5cxg0aBB0dHQQFRWFbt26YfPmzejduzcA4Pz589i6dSv+/vtv6OjowNraGrNmzYKHhweA3F9NLFiwABMnTpS1u2/fPqxcuRIPHz4EAKSkpGDdunW4cuUKoqOjUaNGDXTs2BHz58+HiYmJ0n77+vri/v37CA0NBZC7NIvYX8oGDRqEVatW4fXr19i4cSNu3ryJ2NhYWFlZoXfv3pg+fTr09fVl/QWANWvWYM2aNQCA/fv3w9nZWfRcvv32W+zduxcvX75EzZo1MXToUEydOhXa2tpqXzsiIiIiIiIiIqLisnLlSpXr6unpqVRf40R5jx498O2332Lw4MEwNjYGkPtkUQD47bffcOLECUHSjT4eeUnxvKVXfvrpJ0yZMkXtdqKiotClSxdMmDAB2tra+OWXX+Dt7Y2goCA4OzsL6s6bNw/Dhw/Hp59+iqNHj8LX1xd2dnZo3LgxAODgwYPYvHkzJkyYAFdXV1y9ehULFy4stA8NGjSAnZ0dQkNDBYnyS5cuITk5Gf379xfd7/nz55g1axb69euHuXPnQiqV4s8//8S7d+/UGoO0tDRkZ2dj9uzZMDc3x6tXr7Bt2zb4+PjgwIEDKrcTGBiIjIwM2euHDx9i6dKlsLGxAQAkJCTAzMwMfn5+MDU1RWRkJAICAhAbGyt7IwgODsaIESPg5eUlW/+8SZMmosc7cOAAli9fDi8vL3Tu3Bnh4eEIDAxEUlISvvjiC0Hdwq4dERERERERERFRcVLnJk0tLS2V6mucKJ85cyZu3LiBAQMGoF27dtDS0sLOnTuxefNm3L59G82bN8fUqVM1bZ7KSEpKClq2bCko69u3r0bLrvzrX/+S/b9UKoWzszMeP36Mo0ePKiTKx4wZgzFjxgAAHBwccPnyZZw9exY+Pj7Izs7G9u3bMWDAAFmS1t3dHXFxcUof1Jlf//79sXLlSrx69Ur2K4czZ87A2toabdq0Ed3nwYMHyMzMxOLFi2V/CHJ3d1d7DMzNzbFs2TLZ66ysLNSrVw+jR4/G33//LUt0F6ZFixay/4+Pj8ecOXPg5uaGyZMnA8i9Wzx/Artt27YwNDSEr68vlixZAkNDQ9nyKrVr1y5wqZXs7Gxs3boV/fr1w6JFiwAAHTt2RGZmJvbs2QNvb2/BMjYFXTtN5P1sJjU1VaP9STV548txLnnlYayNjIxKpF3Ga+koD3OosigPY814LT0l8TyY8jCHKovyMNYfc7yWxPyvKEpqbCrrmJeHWAVKLl6Bsj+3yqQ0x7oyxuzHHK+xsbH4559/AAB16tSBpaWlRsfWOFFuYmKCo0ePYs+ePTh79iwMDAzw+++/w9raGtOmTcOkSZNQpUoVTZunMlKlShUcPHgQAJCRkYE//vgDW7ZswaJFi9T6SQMAREdHY+PGjbh69SpiY2NlX/jkE/FAbiI2j5GREerUqYPo6GhZO69fv0aPHj0E+/Tq1UulRHnfvn2xevVq/PDDD5g4cSKSk5Nx6dKlAn/xIJFIoKOjI7tb2snJqcClUgpy8uRJ7Nu3D8+ePRO80UZGRqqcKM+TmZmJWbNmQUdHBxs2bJAtg5KTk4OgoCAcPXoUUVFRSE9Pl+3z4sULNG3aVOVjPH36FAkJCbIlaPL07dsX27dvx927d2XLzwAFXztN5P2iITIyUuM2SHUc59JTlmPt6OhYIu0yXksXx7n0MF4/BjWL3EJEREQx9ENcxRnn8o/xqiphzCjO/6LHVEWhODaaJVsKb7dyKev3xZKKV6Aszq145uTHqOTGWvE9sDLH7McUr9euXcOaNWsUrlezZs2wYMECuLq6qnVsjRPlQG5S1cfHR+M7R6n80dbWhp2dney1o6MjsrOzsWrVKnz66acqJ1ylUik+++wzJCUlYebMmWjQoAEMDQ2xZcsW0bXt5ZPQenp6sqVGYmNjAeTenZ2fhYWFSn2xtLSEs7MzQkNDMXHiRJw7dw7p6elKl10BABsbG2zbtg3bt2/H9OnToa2tjY4dO2LJkiWoU6eOSscFgHPnzuGLL77AiBEjMHv2bJiZmSE2NhbTpk0TJLNVtWLFCty/fx9Hjx5FtWrVZOVBQUFYvXo1Jk2aBGdnZ5iamuLevXvw9/dX+zh5y8vUqFFDUJ73Wn75mYKunSZ0dXWRlZWFhg0bwtDQUON2qGCpqamIjIzkOJeCijzWjNfSUZHnUHlTkce6osXrb7fjitxG8+bNi6EnQhV5DpU3FXmsSyJer9wRxoz8/P81vOgxVVHIj82LG29KpN3KoiLHap7SPreom8UzJz9GJTXWYt8rKmPMfmzxev36dUyePBlmZmaYPHmy7GbUyMhIHD9+HN7e3ti5cydcXFxUblPjRPnYsWPx2WefKT3Y9evX8fXXX2P//v2aHoLKiUaNGgEAHj9+rHKi/NmzZ3jw4AG2bt2K7t27y8rT0tLUPn7ezyXi4+MF5W/eqP7h0L9/f/j5+eHp06cIDQ1Fy5YtZeelTKdOndCpUyckJyfjl19+wcqVK+Hn54egoCAAgL6+PjIzMwX7JCYmCl6HhYWhefPm8Pf3l5XdvHlT5X7n9+233+Lbb7/Fli1bYGtrq3Ccrl27Yu7cubKyJ0+eaHQcMzMzAIrjHReX+8GRP0FfEvKedWBoaFiiP4+jXBzn0lMRx5rxWro4zqWnIo51xYvXoif1SnIcKs44l38VcaxLJl6FMaPYLhPleUpqPlW0eaquihireSryuZU3JTfWiu+BlfmafixzOiAgANbW1jh69Khs2eQ8kydPxvDhw3rDdh8AAQAASURBVBEQEKBWolxb087cvHmzwERlfHw8fv/9d02bp3Lk0aNHACBYl7oweXcx6+npycpevnyJ8PBwtY9vZWUFS0tLnDt3TlB+9uxZldvo2bMnDAwMEBQUhOvXrxd4N7k8Y2Nj9O3bF/369RMkn62srBSS0VevXhW8TktLE4wBAISEhKh87Dz//e9/sXz5ckydOhU9e/ZU2K7qcfT09Aq9w9zGxgbm5uYICwsTlP/444/Q09ND69at1e4/ERERERERERFRcXnw4AGGDh2qkCQHclc/GDZsmNpL6BRp6ZW8v3SLefbsGapWrVqU5qkMSKVS3L59G0Dueth//PEHvvnmGzRp0gTt2rVTuZ1GjRrBysoK69evh1QqRUpKCrZs2YKaNdVf+05HRwfe3t5YsWIFatSoATc3N1y5cgU3btxQuQ1jY2N07twZwcHB0NLSQt++fQus/+233+L27dtwd3eHpaUloqKicPr0abi5ucnq9OrVC0FBQbCzs4ONjQ1Onz6NmJgYQTuurq7w9/fH1q1bZQ+6vHbtmlrnn5ycjBkzZqBBgwbw8PCQXR8gdzkaa2truLq6Yv/+/Th48CAaNmyI06dP49mzZwptNWrUCOfPn0e7du1gaGgIGxsbhTcUHR0d+Pj4YPny5TA3N5cdc+fOnRg3bpxafzAhIiIiIiIiIiIqbrq6ugU+eDQtLQ26uuqlvtWqfeLECZw4cUL2+ptvvsHRo0cV6iUlJeHhw4fo1KmTWp2hspeWloYRI0YAyJ1wVlZW+OSTTzB9+nSFO5YLoq+vj4CAAPj7+2PWrFmoXbs2PvvsM1y/fh33799Xu19eXl5ITEzE4cOHceTIEbi4uGD58uWYNGmSym30798fZ8+ehbOzM2rVqlVgXYlEgosXL2LlypV4+/YtLC0t0a9fP8yaNUtWx8fHB3Fxcdi6dSu0tLQwYsQIjB07FqtWrZLVGTlyJKKionDw4EHs3r0bHTt2xPr16zF8+HCV+/327VvEx8cjPj4eI0eOFGwbNGgQVq1ahWnTpiEhIQFbtmwBkJvEX7RoEaZOnSqov2TJEnz11VeYPHky0tLSsH//fjg7Oysc08vLC7q6uti3bx+OHDkCS0tLTJ8+XaE9IiIiIiIiIiKi0ta+fXscOnQIPXr0UFgq+uHDhzhw4ACcnJzUalMrJycnR9XKeUlKIHc5DisrK4UH+QG56/i0bNkS06ZNU3ggIBGRMvfu3UNOTg4yMzPRvHnzj2JNrI9VSkoKIiIiOM6loKKONeO19FTUOVQeVdSxrojx+tPVF0Vuo6dr/WLoiVBFnUPlUUUd65KK13PXhDHTw0U4/89eUR5Tb5KEKQMLE+Evy6VyGYWX8VLZ/9c0FdbV1ha+zsr+sLP8D9b1dYUFqRk5SrdL5dIaSXI3GFrm60dmtnBbmly7Q7pZC16fvPhc9v9Vqyj/VX1h5Me8sqiosQrkxmtGRkapn9upS88Vyl7Gi6f2GtUSX3H5aYxUoayuufj8zswS74eOSNPaShZ41tMRbzsxRbHfpkbidWsZvS6xsRb7XlES3xPKu48tXp8+fYrRo0cjMTERbm5usmcRPnnyBFevXoWJiQkOHz6Mxo0bq9ymWneUjx49GqNHjwYAdO3aFQsXLkS3bt3UaYKIiIiIiIiIiIiISGONGjXC999/j8DAQFy+fBm//fYbgNxnLA4YMAAzZsxAnTp11GpT4zXKL1y4oOmuREREREREREREREQaq1u3LlauXAkgdzlpAKhSpYrG7RXpYZ55kpOTkZycDKlU8acb6mbuiYiIiIiIiIiIiIhUVZQEeZ4iJcoPHz6Mffv24cUL5euZRUREFOUQRERERFTMDocprm2pqtG9rQuvRATgzK/i/0bQ0xGvL7YWqLK1yLMV788BACQkK651aqDkefTFsc75m0SxNWEtEZ0SByBOYYuyc1d2PmL6dBRfM7W8rK+qbFwr41qvHxP59cHzX68f5GI5Q269Yj25rEL+dcmT04XbqlcVvs6/vrmu3Prl6ZnC+DLQk1sbXSr+/wBQRS7u5dclz09XLi7l57CRwYfjyj/hTX7cCiK/Trw6CltTPv+60EVZC72wtew1rUvFS2y97/o1xCdjbzfx63LiguJ3QbH1wgHla4YnpymWGSjJMqami7edma1Yni0VP15MSk3E/E/881VVytZQV4f8eyKg+D6Sp7Q/+8KUPG9CW8l71cf+2RwYGFhonZycHMyYMUPlNjVOlB85cgT+/v7o2LEjhgwZgo0bN2L8+PEwMDDA8ePHYWFhAS8vL02bJyIiIiIiIiIiIiJSsHXrVqXbcvL9ZbNUEuUHDx5Ex44dsWvXLiQkJGDjxo3w8PCAi4sLJk2ahCFDhuDt27eaNk9EREREREREREREpODatWsKZenp6Xjx4gWCg4MRERGBzZs3q9Wmxj86eP78Obp06QIA0NPL/V1TZmYmAMDExARDhw7F4cOHNW2eiIiIiIiIiIiIiEiBmZmZwn+1atVCu3btsHbtWjRs2BBff/21Wm1qnCg3MTFBdnbuQl/GxsYwNDREdHS0bHvVqlXx5s0bTZsnIiIiIiIiIiIiIlJbx44d8euvv6q1j8aJcltbW/z555+y123atMGRI0cQExODV69eITg4GA0bNtS0eQQEBEAikUAikaBZs2ZwdHRE//794e/vjydPnmjU5o0bN7Bt2zaN+1SQffv2QSKR4N///nextnv8+HFIJBLEx8cXWM/LywtTpkyRvS7Jcy2N9sujdu3aISAgoMA6Xl5ekEgkmD17tsK25ORktG7dGhKJBMePHy+WPg0YMAC+vr5q7RMVFQWJRIKwsDBZWdeuXeHv718sfSIiIiIiIiIiIipLOTk5qFevHlJTU1XeR+NE+SeffIJHjx4hIyMDQO7C6E+ePEHnzp3RtWtX/P333/j88881bR4AUKVKFQQHB+Pbb7/Fli1bMHjwYFy9ehUDBgzAqVOn1G7v5s2b2L59e5H6pMzp06cBAOfOnZONSWlaunQpvvjiC9nrkjzX0mj/Y2ZkZISLFy8iJSVFUP7zzz9DR0fJo5DLWGBgICZMmFDW3SAiIiIiIiIiIiqyUaNG4fjx4zA0NFR5H40f5jlkyBAMGTJE9trR0RFnzpzBhQsXoKOjAzc3N9jY2GjaPABAW1sb9vb2stdubm4YPXo0vL29sXDhQrRt2xb169cv0jGKw99//40//vgDrq6uuHr1Ki5duoSePXsWuE9GRgZ0dXWhra3x3yoEmjRpUiztlJXiHo+y1LZtW/zxxx+4cOECPD09ZeWhoaHo3r277I8q5UmLFi3KugtERERERERERERlRq2sZHp6OpYsWYIDBw6Ibq9fvz7GjRsHqVSKoKAg2cM9i5OBgQEWL16MzMxMHDt2TFZ+8uRJjBo1Cu3bt4eTkxO8vLxw9+5d2faAgAAEBgYiJSVFtqSLl5cXAODJkyeYPXs2PDw80KZNG/Tt2xd79uyBVCpVqU+hoaHQ0tKCv78/LCwsEBISolAnb2mLnTt3okuXLmjdujXevn0r6/vAgQNhZ2cHZ2dnTJ48GS9fvhTsHx0djUmTJsHe3h49e/bEyZMnBdvzL71S0Lnmne9nn30GR0dH2Nvbw9vbG8+fPxe0J5VKsXfvXvTp0wetWrWCm5sbZs6ciaSkpALb9/X1FSSHASAxMVFhuZGCxuP48ePo378/7Ozs4O7ujo0bN8rWw1dGlWuYt+TIqVOn4O/vDycnJ3Ts2BGrV69GVlaWoL2ff/4ZvXv3hp2dHYYOHSqYS4XR1dVFr169EBoaKiuLj4/HtWvXFMYmz7fffotevXqhVatW6Nq1K77++muF+Xfr1i0MHjwYdnZ28PT0xOXLl0XbCg8Px9ixY2Fvbw9HR0fMnTsXcXFxBfZZfumVvOt448YNDBw4EPb29hg6dCju378v2C8pKQnz5s2Dg4MDXFxcsGHDBuzZswcSiaTA4xEREREREREREZUnat1RHhwcjBMnTuCHH34osF6XLl2wdu1aNG3aFKNHjy5SB8U0adIEtWrVQnh4uKwsKioKAwcOhLW1NTIyMnDmzBmMGTMGp0+fho2NDYYNG4bo6GiEhoYiKCgIQO5DSAHg9evXsLGxQf/+/VG1alVEREQgICAAKSkpmD59eqH9CQ0NRbt27VC/fn306dMHwcHBSEpKgomJiaDeTz/9hAYNGmDhwoXQ1taGkZERdu3ahbVr12Lo0KGYPXs2MjMzcf36dcTHx6Nu3bqyfefNm4fhw4fj008/xdGjR+Hr6ws7Ozs0btxYoT8FneuLFy8wcuRI2NraYtWqVdDS0sK2bdswfvx4hIWFQV9fHwDw5ZdfIjg4GOPGjYObmxvev3+PS5cuISUlpcD21SE2Hnv37sXatWsxbtw4+Pr64smTJ7JE+bx585S2pc413LRpE7p164ZNmzYhPDwcAQEBsLa2xqhRowAAERERmDlzJjp16gQ/Pz9ERUXh888/V2tJHU9PT3z66ad49+4dqlWrhh9//BG1atWCg4ODQt0DBw5g+fLl8PLyQufOnREeHo7AwEAkJSXJltOJjY3FxIkTIZFIsGnTJiQmJmLZsmVISUlB8+bNZW2Fh4fDy8sLHh4e2LhxI1JTU7Fp0yb4+PggODhY5f7nHXP58uXw9vaGiYkJ1q9fj+nTp+PcuXPQ09MDAPj5+eH69euYP38+6tati6NHj+KPP/5Q6zhERERERERERERlTa1E+Y8//oiePXsWutxJ/fr10atXL5w5c6ZEEuUAULt2bbx580b2On8yVCqVws3NDXfv3sWJEycwZ84cWFlZwcrKSmE5FwBwcXGBi4sLgNyF3h0dHZGWloaDBw8Wmii/e/cuIiMj8emnnwLITZAeOHAAZ8+exdChQwV1MzMzsXPnThgZGQHIvRs3MDAQI0aMENzN2717d4XjjBkzBmPGjAEAODg44PLlyzh79ix8fHwU6hZ0roGBgahWrRr27t0LAwMDALlLhXTr1g3Hjh3DmDFj8Pfff+PIkSOYPXu24AGhvXr1EhxDrH11yI9HcnIytmzZgkmTJmHOnDkAcpfb0dPTw6pVqzBx4kRUr15dtC11rmHr1q2xaNEiWfs3btzA2bNnZYnyHTt2oHbt2ti6datsTXEDAwMsXLhQ5XNr164datSogZ9++gnDhg3DmTNnRO8mz87OxtatW9GvXz9Znzp27IjMzEzs2bMH3t7eqF69OoKCgqClpYWdO3fK/gBjZWWF8ePHC9pbv349WrVqhcDAQGhpaQEAmjZtKrsD3cPDQ+VzePfuHQ4ePAhbW1sAgKGhIcaOHYs7d+6gXbt2ePz4Mc6dO4fVq1dj4MCBAAB3d3f06dNH5WOIycnJAQC1HrZA6ssbX45zySsPY533PlvcGK+lozzMofzkn8FRkZSHsa7M8VqR51ZxUmecytOYFndfGK9FU9j1KE9zh8ou7ovjuOUhVoGSi1eg7M+tIIxlzRXH2JX38ZfvX2WI18KolSj/66+/0L9/f5Xqtm3bFhs2bNCoU6rIycmRJQKB3KU3NmzYgPDwcMEyE5GRkYW2lZ6eju3btyMkJASvXr0SLBnz/v17VK1aVem+oaGh0NPTQ+/evQEA9vb2qF+/PkJCQhQS5c7OzoKLHR4ejtTUVIV6Yjp27Cj7fyMjI9SpUwfR0dGF7ifvypUr6Nu3L3R0dGTLjZiamqJFixayZTWuX7+OnJwclfpVFGLjkZKSgt69ewuWQnF1dUVaWhoePXqE9u3bi7alzjXMP5YA0LhxY1y/fl32+s6dO+jatavgwZu9e/dWK1GupaWFvn374syZM+jYsSNu3bqFpUuXKtR7+vQpEhISZPMnT9++fbF9+3bcvXsXHh4euHPnDpydnQW/UnBxcYGZmZnsdWpqKm7duoUFCxYIlqpp2LAhateujXv37qmVKK9Zs6YsSQ58WAc/JiYGAHDv3j0AQLdu3WR1tLW10aVLF+zdu1fl48jLu/aqxC4VHce59JTlWDs6OpZIu4zX0lW842yp8Z4RERHF2I/yifFaXGqqVVt8bqnXRmWgPAYVx6ps4lX8mpVUXxivqhJeF8XrUdB2xmFZK+x6FVxXHYXNE03rlv33xZKKV6Aszk31mFR+XTT/LlhZqPN5q34bJaU4vntV7HgtjFqJ8szMTNmSC4XR09NTa6kKdUVHR6Nhw4YAcu9EnjBhAszNzeHr64s6derAwMAAixYtQnp6eqFtrV27FseOHcO0adPQqlUrmJiY4Pz58/jmm2+Qnp6uNFEulUrxww8/oH379tDW1kZiYiKA3MTh/v37ERMTg1q1asnq16hRQ7B/3prcNWsWPpHll3HRdHwTEhIQFBQkWzJFvs28funq6ir0t7jJt5+QkAAAGDRokGj9V69eKW1LnWtY2FjGxsYq9M3Y2Fh2B76q+vXrh6CgIOzbtw+2traQSCSyOZLn3bt3ABTHIu913vbY2Fg0aNBA4Rjm5uay/09MTER2djZWrlyJlStXKtQtaPzEmJqaCl7nzY+8mIqNjYWenp7CeObvkyZ0dXWRlZWFhg0bqvVkYlJPamoqIiMjOc6loCKPNeO1dJTEHHoY+6bwSkrkX/KromG8Fq/o/xX8jBR5YnPrt9vqtVEZKItBsbEqi3hVds2Kuy+MV/VcuSO8LvLXQ/665d8eo2YsU/GTv16/hiu/JkWJtcLmiSZ1K3Ks5intc1MnJpVdl+fXNf8uWFkoG7viGP+SElvAe4MY+f5VhngtjFqJ8po1a+LRo0cq1X306JFKCWBNPHr0CDExMbKE6u3btxEdHY3t27ejWbNmsnpJSUmwsrIqtL2wsDCMGDEC3t7esjJlD0rM7/r164iNjUVsbCycnJwUtv/www+yJVkACO6AByC7G/j169cq9bM4VKtWDR4eHqJL4uQlk83MzJCVlYW4uDi1k+X6+voKD3HNS/bKkx+PatWqAchdHkZsPOrVq6f0uJpeQzGWlpYKD79MTk5W6Y8u+bVq1Qr169fH/v37MWvWLNE6eXMgPj5eUJ53/LwxEeuT/H4mJibQ0tLClClTRJfvUbZsjaYsLS2RmZmpsB6//LmoK29eGBoalunPbSoLjnPpqYhjzXgtXeVlnMtDH0paeRnr4lQ28areP9bE+8UEnTzl109xrMpmHotfs5LqC+NVVcLrothuQdsZh2WtsOtVcF11FDZPNK1bMWM1T+mfm+oxWVHHvDSo83mrfhslpTi+e1XseC2MWolyV1dXnDp1ClOmTCkwgRoXF4dTp04J1rQuLunp6fjyyy+hr6+PYcOGAQDS0tIAQHC3+61bt/Dy5UvB0hHK7sJOT08X7JudnY0zZ84U2peQkBAYGRnh66+/hra2tmDbV199hZCQEEGiXJ6DgwMMDQ3x/fffo3Xr1oUeTx3KztXFxQWPHj1CixYtBEuL5NehQwdoaWnh+++/FySeVWnfysoK0dHRguVOrly5olKf88YjOjoaPXr0UGmfPJpeQzGtW7fGxYsX4efnJxujsLAwjdqaPHkyLly4oHTJIhsbG5ibmyMsLExwzj/++CP09PRk86J169Y4cuSIICl97do12a8SgNw3OHt7ezx9+hR2dnYa9VcdrVq1AgCcP39etka5VCrFxYsXS/zYRERERERERERExUmtRPnkyZNx+vRpjBs3DitWrECbNm0U6ty5c0e25MmkSZOK1DmpVIrbt28DyF1g/q+//kJwcDBevHiBVatWye4wtre3h5GREZYtWwZvb2/ExMQgICBAsOwJkLsWdVZWFoKCguDg4ABjY2M0atQIrq6uOHbsGJo0aYLq1avj8OHDhS5rkp6ejnPnzqFnz56yh0jmN2TIEKxYsQJPnz5Fo0aNRNswMTHBtGnTsG7dOuTk5KBbt26QSqW4ceMG+vXrV6Rkp7JznTlzJoYOHYqJEydi+PDhsLCwwJs3b3Dz5k20a9cOnp6esLGxwciRI7F582a8e/cOLi4uSEtLw6VLlzBjxgzUqlVLafs9e/bEli1b8O9//xvDhw/Ho0eP8N1336nUZ1NTU8ycORNr165FdHQ02rdvDx0dHbx48QLnz59HQECA0p9+aHINlfH29sbQoUMxbdo0jBo1ClFRUdi9e7faS68AwNChQwtc611HRwc+Pj5Yvnw5zM3N4eHhgdu3b2Pnzp0YN26c7C7wcePG4fDhw5g8eTImT56MxMREBAQECNYoB4AFCxZg3Lhx+Pzzz9GvXz+YmpoiOjoaV69exeDBg+Hs7Kz2OShja2uLHj16YPny5UhNTUWdOnVw9OhRpKWlKfxagIiIiIiIiIiIqDxTK1Fev359bNq0CXPmzMHIkSNRv359NG3aFFWrVsX79+/x6NEjPH/+HFWqVMGGDRtgbW1dpM6lpaVhxIgRAHLvlq1Xrx5cXFwQGBiIxo0by+pZWFhg8+bNWLNmDXx8fNCwYUMsW7YMu3btErTXpUsXjB49Gjt27EBcXBycnJxw4MABLF68GEuXLsWXX34JQ0NDDBo0CD169MCiRYuU9u3SpUtISkqS3Ukrz9PTE2vWrEFISIjSZTeA3D8+mJubY9++fTh+/DiqVq0KBweHIq8PruxcGzRogGPHjmHTpk1YtmwZUlJSYGlpCScnJ0gkEtn+S5YsQb169XDs2DEEBQXBzMwMTk5OsrvElbXfpEkTrFq1Cl9//TV8fHzg6OiIdevWYcCAASr1e8KECahVqxb27t2LgwcPQldXF9bW1ujcuXOB6+Nrcg2VadGiBTZv3ox169Zh+vTpsLW1xcaNGzFx4kS121KFl5cXdHV1sW/fPhw5cgSWlpaYPn06pk6dKqtTs2ZN7Ny5E8uXL8esWbNgbW2NJUuWYOPGjYK22rZti8OHDyMgIAB+fn7IzMyElZUVOnToILrGeVF99dVX8Pf3x5o1a6Cvr49BgwbB1tYWhw4dKvZjERERERERERERlRStnJycHHV3ioqKws6dO3Hp0iXExMTIymvWrInOnTtj8uTJqF+/frF2lIg+DmPGjIG2tjYOHDig9r737t1DTk4OMjMz0bx580q7JlZpSElJQUREBMe5FFTUsWa8lp6SmEOHw55rvO/o3kW7EaI8Y7wWrzO/vhAt1xNf/Q89XRX//fDTVfE2sqXibSQkK/7TxkDJvRYmhkX/BdybRPF/SlWrKt62snNXdj5i+nQU/3eW2FiJjWlJU3bNirsvjFf1nLsmvC49XITXQ/665b9eP8jFsvx81ZO7/S4j80NcJMs95qm6XGxkZn+oq6st3JaRJYwvPV3hdmm+fmRLhXXl+1hFX3m8Z2UL9zUsoK680vohrfz1OntFeE3yrwQrX1cdhc0TTepW1FgFcuM1IyOj1M9NPiYB5Z8j/T3Er8uJC4rfBZPTxD/TTI3EJ3pymmKZgZLbcbOyxcszsxWPaVZVW6QmoCNerBZtNdro7SY+dmLjr6vGd5uSFHZF/DNYW8l7lXz/KnK8qkqtO8rz1KtXD8uWLQOQ+5DDvPWojY2Ni7VzRFS+nT17Fq9evULTpk2RmpqK0NBQ/Pe//8XWrVvLumtEREREREREREQq0yhRnp+xsTET5ESVlJGREU6dOoXIyEhkZmaiUaNGWLt2Lbp3717WXSMiIiIiIiIiIlJZkRPlRFR5ubu7w93dvay7QUREREREREREVCRMlBMREREV0ce25ndFXmecyj9l63WKrW2tbM1VZet0q9puQf0oisLW9lTWF3XOR5myWI9cTHnpBwnJrx8tv760/Frb+bfLr0GuK7eksPy+hgZa+f6/4H7p6ihf5Luvu+qfVeqsrZ2nJNbi1aQfmuilZO3kolKnvyV1blS4vu6qP9NDmapVFGNPrAwoH+/rKSkp+O12nOi20u6f2PiXF8rWVSfVFcNS+EREREREREREREREHy8myomIiIiIiIiIiIioUmOinIiIiIiIiIiIiIgqtXKVKA8ICIBEIoFEIkGzZs3g6OiI/v37w9/fH0+ePNGozRs3bmDbtm3F1seoqChZH3/55ReF7UePHpVtp+JV3NeyKBITEyGRSHD8+PEC6yUkJOCrr75Cz549YWdnBxcXF4waNQr79u2T1YmKikJAQABiYmKKtY/labyIiIiIiIiIiIjKs3KVKAeAKlWqIDg4GN9++y22bNmCwYMH4+rVqxgwYABOnTqldns3b97E9u3bi72fRkZG+OGHHxTKQ0NDi+1BICRUUteypGRlZWHcuHE4d+4cPv30U+zatQuLFi1CixYtcPHiRVm9ly9fIjAwEK9fvy7W439s40VERERERERERFRWdAuvUrq0tbVhb28ve+3m5obRo0fD29sbCxcuRNu2bVG/ftk/xbVbt244d+4cli1bBgOD3Ed5v379Gr///js8PT1x+vTpMu4hlbWbN2/i4cOHOHjwIJycnGTl/fr1g1Qq1ajNtLQ0VKlSpbi6SERERERERERERCiHd5SLMTAwwOLFi5GZmYljx47Jyk+ePIlRo0ahffv2cHJygpeXF+7evSvbHhAQgMDAQKSkpMiWQ/Hy8gIAPHnyBLNnz4aHhwfatGmDvn37Ys+ePSonMDt16gQtLS1cvnxZVvbDDz/A2toaLVu2VKi/bt069O/fHw4ODnB3d8ecOXMU7iD28vLClClTEBYWhl69esHBwQFjx47F8+fP1W4rJycHgYGBcHNzg4ODA2bOnImrV69CIpHgxo0bgnq7d+9Gr1690KpVK3Tr1k2wLEjeODo4OODBgwcYMWIEWrdujUGDBuHBgwdIT0/H0qVL4eTkhE6dOinsCwDh4eEYO3Ys7O3t4ejoiLlz5yIuLk62PW85m1OnTsHf3x9OTk7o2LEjVq9ejaysLFkflF1LMeHh4Zg6dSo6duwIe3t7DBgwACdPnhTUuXHjBiQSCa5cuYK5c+fCwcEBXbp0wc6dOxXaO3r0KLp27Yo2bdpg3LhxePbsmdJj53n37h0AwNLSUmGbtra2rA9jx44FAAwdOlSwbE9e/y5duoSZM2eibdu2mDVrFoCizX0gd/5/9tlncHR0hL29Pby9vRXmWVJSEubNmwcHBwe4uLhgw4YN2LNnj6x/mZmZcHNzw8aNGxXO7/PPP8fQoUMLHSMiIiIiIiIiIqLyoNzdUa5MkyZNUKtWLYSHh8vKoqKiMHDgQFhbWyMjIwNnzpzBmDFjcPr0adjY2GDYsGGIjo5GaGgogoKCAADGxsYAcu/+trGxQf/+/VG1alVEREQgICAAKSkpmD59eqH90dfXR48ePRAaGoqePXsCyF12xdPTU7R+XFwcpkyZgpo1ayI+Ph579+6Fl5cXzpw5A13dD5chIiIC8fHxmDdvHrKzs7Fq1SrMnz8fwcHBarV14MABBAYGYtKkSejQoQOuX7+ORYsWKfRrxYoVOHbsGKZOnYo2bdrg1q1bWLduHQwMDDBq1ChZvczMTHzxxRcYP348LCwssG7dOkyfPh1t27ZFjRo1sGnTJpw/fx4rV65E69at0bZtWwC5CWsvLy94eHhg48aNSE1NxaZNm+Dj4yM4JwDYtGkTunXrhk2bNiE8PBwBAQGwtrbGqFGjCryWYv755x+0bdsWo0aNgr6+Pm7duoVFixYhJycHgwYNEtRdunQpBgwYgK1bt+Lnn3/GunXrIJFI0KlTJwDAxYsXsXjxYgwePBh9+/bFH3/8IUtYF6R58+bQ1tbGokWLMG3aNDg6OkJfX19Qp2XLlliyZAn8/f2xcuVKNGrUSKGdxYsX45NPPsHWrVtlCfaizP0XL15g5MiRsLW1xapVq6ClpYVt27Zh/PjxCAsLk/XRz88P169fx/z581G3bl0cPXoUf/zxh6xfenp6GDRoEE6ePIlZs2bJ+vb27VucP38eCxcuLHSMiIiIiIiIiIiIyoOPJlEOALVr18abN29kr/MntKVSKdzc3HD37l2cOHECc+bMgZWVFaysrBSWcwEAFxcXuLi4AMi9q9rR0RFpaWk4ePCgSolyAPD09ISPjw/ev3+PuLg43Lt3D2vXrhXcZZ5n5cqVsv/Pzs6Gg4MDOnXqhOvXr6Njx46ybUlJSTh58iTMzc0BACkpKfDz80N0dDSsrKxUauv/2Lv3uJzv/3/gj46KSlLkMEq4nFJJUknSyBzmMGefMIdYmCFWQ+Y05kwZOS7HpTGULTMmPgzbR4ZpThOKDgrVOh9+f/Tr+na5zh2vrutxv912u+16v1+v1/v1fl7v53Xl2bvXu6ioCLt27cKIESPg7+8PAOjVqxdev36N77//Xtj32bNnOHToEJYvX44xY8YAAFxdXZGbm4vt27djzJgxwuJnQUEB/P394eHhIYx3WXE9MDAQANCzZ09ER0cjOjpaWCjfuHEjunTpgpCQEGhpaQEA2rdvj8GDByMmJkY4HgB07dpVWMx3c3PD9evXcfbsWYwbN07meynJoEGDhP9fUlICJycnJCcnIzw8XKxQ3r9/f8yZMwdA6XVx8eJFnD17Vlgo37FjB7p37y6Mu7u7O/Ly8vDNN9/InIOVlRUCAgKwfv16TJ48GXp6eujatSs++OADjBs3Drq6ujAyMkLbtm0BAO3atYOtra3YOH379sXChQtFtlXm2g8JCUHDhg2xf/9+4bJB3bp1g5eXFyIiIjBhwgQ8evQI586dw9dff41hw4YJz/uDDz4QGWvUqFHYs2cPLl++LHwvIyMjoa2tLfWXRvKUlJQAAHJycirUnxRTFl/GufqpQqyr69kZzNeqkZ2dLXO/KlxDmkIVYq0J+Srvmq9LY7yrotdQdcxF3TFf1V9l8kKRvjVxDTG3VSNXgerLV6D2z00WVf2+VJasGKvC/NSFJuSrPHWqUF5SUiIstgKly0ds2rQJsbGxIkt5xMfHyx0rLy8PoaGhiIyMxMuXL1FQUCDc9++//6JBgwZyx+jZsycaNGiAX375BYmJiejcuTOsra0lFspjYmKwY8cOPHz4EFlZWSJzLV8o79Chg7BIDkBYRC1fKJc3VlJSElJTU9G3b1+ROXh5eYkUyq9evQqgtFBctsQJUFos3717N16+fIkWLVoAKF0qpOwXC0BpEbisbRkdHR20atUKSUlJAEoT6+bNm1i0aBGKiopE+jZr1gx37twRKZSXjwMA2NjY4Nq1a2KxVMTbt28RHByM8+fPIzk5WXh8U1NTsbblj6ulpQUbGxvhORQVFeGvv/4SK1R7e3vLLZQDwKRJkzBw4EBcuHABN27cwG+//YZVq1bh559/RlhYmPAXEbL06dNHbFtlrv0rV65g4MCB0NHREb7vJiYm6NSpE+7evQsAuHPnDoDSa6aMtrY2PD09sX//fuG21q1bo0ePHjh+/LjwvTxx4gS8vb1l3vEvS9mcFDkXqjzGuebUZqwdHR2rZVzma3niy2wpKi4uTqF2jHPNYb5WlSYSt0q/5iW3V26MqphH5UmPc83PRd0xXytK8XyrLZXJc2X6Vm2cKz4PdVfbP8dUV74CtX9upVTlO7c68Tu0ptT2NV2d+SpPnSqUJyUlCQu0WVlZmDJlCszMzBAQEIDmzZujXr16WLJkCfLy8uSOtX79ekRERGDWrFno0qULjI2Ncf78eezYsQN5eXkKFcp1dHTwwQcf4MyZM0hMTMRHH30ksd3t27fh5+cHLy8vTJ8+HY0bN4aWlhZGjx4tNlcTExOR13p6egAgbKfIWKmpqQAgUnAHgMaNG4u8fv36NUpKStCzZ0+J8y5fKDcwMBBZNqRsXsbGxmLzLZtHRkYGioqKsGbNGpG74MuPX56ksfLz8yXOTZ6AgADExsZi1qxZaNu2LYyMjHD06FH89NNPYm0lHTczMxMAkJ6ejsLCQrFYmpubKzwXCwsLjBkzBmPGjEFBQQGCgoJw4sQJ/PrrryKFaGnefd8qe+2/fv0aYWFhwiVZyit7X1NTU6GnpycWm3fjAACjR49GQEAA0tPTkZKSgnv37iEgIEDuPKTR1dVFYWEhrKysYGhoWOFxSLacnBzEx8czzjVAnWPNfP0/91NfyW8kRceOHWXuV+drSNWoc6xrI1+T/pcmcbu0a/6/tyS3V2YMZcZVZgxFybuGanIu6o75WjlX/lQ832qLMnnx7vko0rc6rqGKzEPdqXOullGFc1P2+6W6vnOrS05ODtLuS75zXBXmpy40IV/lqTOF8ocPHyI5OVm4bMatW7eQlJSE0NBQdOjQQdguMzNTeOe1LNHR0RgzZgx8fX2F2yTdCS7PoEGDMGHCBADAwIEDJbb55ZdfYGRkhC1btgjvIE5MTFT6WIqOVfbwyPT0dJHt5e88BoCGDRtCS0sLR44cERZIy7O2tq7QHMsYGxtDS0sLM2bMwPvvvy+2v1GjRpUaX5q8vDxcvHgRAQEBIg+wPHLkiNJjmZmZQVdXVyyW5ZcAUoaenh4mT56MEydO4PHjxwoVysv/FQVQ+Wu/YcOG8PDwwPjx48X2lf2CyMLCAgUFBcjMzBQplr8bB6D0LxJWrlyJ06dPIyEhAa1atUKPHj3kzkOasvM1NDSs1T+30RSMc81Rx1gzX6uGorFjnGuOOsa6dvJV8j/CpR9f8X+0K3cOys6j8qTHuebnou6YrxWl+oXyyuS5Mn2rNs4Vn4e6U8dcLaMa56Yq37nVSXKhXHXmpz5U45quHXWiUJ6Xl4eVK1dCX18fo0aNAgDk5uYCgEiB9+bNm0hMTES7du2E26TdlZyXlyfSt6ioCGfOnFF6bg4ODhg8eDAaN24stUiZm5sLPT09kYJnZGSk0sdSdCxLS0tYWFjg/PnzIgXqX375RaRd2VIqb968EVumpSrUr18f9vb2+OeffySuva0sRe8wz8/PR3Fxscj7m5WVhQsXLih9TB0dHXTq1Annzp3D5MmThdvPnj0rt++bN29gZGQk8rBW4P/+hKXsFxrv/tWAPJW99l1cXPDw4UN06tQJOjo6Eo/RpUsXAMD58+eFa5QXFxfj119/FWurr6+PoUOHIiIiAq9evcLkyZPFivtERERERERERESqTOUK5cXFxbh16xaA0gX5Hzx4gPDwcDx//hxr165Fy5YtAQD29vaoX78+li9fDl9fXyQnJyM4OBhNmzYVGc/GxgaFhYUICwuDg4MDjIyM0KZNG7i6uiIiIgJt27ZFo0aNcOTIkQot86GlpYX169fLbOPm5oawsDCsXLkS/fr1Q2xsLE6dOqX0sRQdS0dHB76+vvjqq69gbm4OZ2dnXL9+Hb/99hsACO9Et7a2xoQJE7Bo0SJMnToVdnZ2KCgoQHx8PK5fv67QGtzyLFq0CJMmTcJnn32GQYMGwcTEBElJSbh69SpGjBgBZ2dnhceS9l6+y9jYGLa2tti9e7fwjvBdu3bByMhI4h3R8sycORN+fn4IDAzEwIED8ddffyn0/l27dg0bNmzA8OHD0bVrV+jq6iIuLg6hoaFo3rw5+vXrB6D0z7R0dHRw/Phx6OrqQkdHR+YvFip77X/66acYOXIkpk6ditGjR8Pc3ByvXr3CjRs30L17dwwePBjt2rVDv379sGrVKuTk5KB58+Y4duwYcnNzJRbBR48ejbCwMOjo6GDEiBFKRpiIiIiIiIiIiKh2qVyhPDc3F2PGjAFQekdyy5Yt4eLigpCQENjY2AjbmZubY+vWrVi3bh38/PxgZWWF5cuXY8+ePSLjeXp6Yvz48di1axfS0tLg5OSEgwcPYunSpVi2bBlWrlwJQ0NDDB8+HP369cOSJUuq/Jw8PDzg7++PQ4cO4cSJE+jWrRtCQ0Ph7e1dbWP5+PggIyMDR44cwcGDB+Hi4oKFCxdi3rx5IktpLFmyBNbW1ggPD8f27dvRoEEDWFtbY8CAAZU+bwDo1q0bjhw5guDgYAQGBqKgoACWlpbo2bMnWrdurdRY0t5LSTZu3IigoCAEBATA1NQUPj4+yM7Oxr59+5Q+By8vLyxfvhw7d+7EmTNnYGdnhy1btgj/ukEaOzs7eHt74/z58wgLC0NeXh4sLS0xZMgQ+Pr6Ch92aWZmhqCgIOzZswenT59GYWEh7t+/L3Xcyl77rVu3RkREBLZs2YLly5cjOzsbFhYWcHJygkAgEPb/6quvsGLFCqxbtw76+voYPnw42rVrh8OHD4vNqW3btrCyskKrVq3ECvZERERERERERESqTqukpKSktidBNWPLli3Yv38/rl+/DgMDg9qeDtVBEyZMgLa2ttgvKJ49e4b+/ftj69atFfoFUJk7d+6gpKQEBQUF6Nixo8auiVUTsrOzERcXxzjXAHWNNfNV1JHoZxXuO35AK5n71fUaUkXqGuvaytczl59L3D7I/T2J23++Kt6+qFjy2B/0kjyGouMCQH9XxcdQlLxrqCbnou6Yr5Vz7jfJ16Ii3q0gVNeqi/1cFM+Ld89Hkb7VcQ1VZB7qTl1zFSjN1/z8fJU4N2W/X6S1V2aMmpSdnS31AaSqMD91oc75qiiVu6Ocqsbjx49x+vRpODg4QE9PDzdu3MDevXsxbtw4FslJIWfPnsXLly/Rvn175OTkICoqCn/88Qe2b98ubPP69Ws8efIE27dvR/PmzRV6OCkREREREREREZGqYaFcTRkYGCA2NhZHjx7Fv//+i6ZNm2Lq1KmYM2dObU+N6oj69evj1KlTiI+PR0FBAdq0aYP169eLPCD2119/xRdffIHWrVtj/fr1Yg8uJSIiIiIiIiIiqgtY1VJTLVq0wIEDB2p7GlSHubu7w93dXWabESNG8OGdRERERERERERU57FQTkRERFRJ8tYZJ9JE2lLWLVZmXVQdbeXGkLROqSqtXapKcyHNUpk1yd99VoC0vCwja11uWfMolvJMAml9K7qGeVWuG15da5JzrXP1Jen7S9p3Q/QVyfkywK3y33WS2ivz/VydVGUepJnkfMUREREREREREREREak3FsqJiIiIiIiIiIiISKOxUE5EREREREREREREGo2FciIiIiIiIiIiIiLSaBpbKA8ODoZAIIBAIECHDh3g6OiIIUOGYMWKFXj8+HGFxrx+/Tp27txZxTMFHj9+jAULFsDNzQ1dunTB+++/j3Xr1iEjI6PKj1Xm+vXrEAgEuHPnjnCbQCDA3r17ha9PnDiByMjIaptDVfvll18gEAiQkJAgt+27Mffy8sLatWvx5s2b6p9oBSUkJCA4OBjJycki2yW9l0RERERERERERPR/NLZQDgAGBgYIDw/Hd999h23btmHEiBG4evUqhg4dilOnTik93o0bNxAaGlqlc/z9998xcuRIPHr0CIsWLcK+ffswceJE/PDDDxg7dizS09Or9HiyhIeHY8iQIcLXP/zwA6Kiomrs+DVFUswnTZqEU6dOYcyYMUhNTa3tKUqUmJiIkJAQpKSkiGzv3LkzwsPDYWNjU0szIyIiIiIiIiIiUm26tT2B2qStrQ17e3vhazc3N4wfPx6+vr5YvHgxunXrhvfee6/W5pebm4v58+ejefPmOHr0KOrXrw8A6NGjB9zc3DBs2DCsWrUKmzZtqpH5lI+VulIk5itWrEBwcHCNzcfAwKBSYxgZGWnEe0dERERERERERFRRGn1HuST16tXD0qVLUVBQgIiICOH2kydPYty4cejRowecnJzg4+OD27dvC/cHBwcjJCQE2dnZwiVdfHx8AJQu4zFv3jx4eHjAzs4OAwcOxL59+1BcXCxzLtHR0UhJScHMmTOFBdsyNjY2GDp0KH766SfhUhsnTpyAQCAQu8t86NChCAgIEL6OjY3FzJkz0atXL9jb22Po0KE4efKk3NiUX3rFx8cHN27cwMWLF4XnGxwcjIMHD8LOzg5ZWVkifR8/fgyBQICYmBip48uLMVAaZwcHB9y/fx/jxo2DnZ0dBg8ejMuXL4u0KygowOrVq9GjRw84Ojriiy++wL///iv3HBWJ+blz55CYmAjg/5Y1iYmJwezZs2Fvb49evXpJXILn8ePH+OSTT+Do6Ah7e3v4+vri2bNnIm0EAgF27dqF9evXw83NDS4uLgDkv2fXr1/HxIkTAQAjR44Uvifl51h+6ZW8vDysWbMGvXr1gq2trfC8ygsICMDgwYNx/fp1DBs2DPb29hg5ciTu3r0r0u7777/HoEGD0LVrVzg7O2PcuHFi7xsREREREREREZEq0+g7yqVp27YtmjZtitjYWOG2hIQEDBs2DK1atUJ+fj7OnDmDCRMm4PTp07C2tsaoUaOQlJSEqKgohIWFASi9kxcAUlJSYG1tjSFDhqBBgwaIi4tDcHAwsrOzMXv2bKnzuHHjBgDA09NT4v6+ffsiIiICv//+OwYPHqzw+b148QLdunXDuHHjoK+vj5s3b2LJkiUoKSnB8OHDFRpj2bJlWLhwIQwMDPD5558DACwtLWFoaIj169cjKioKY8eOFbb//vvv0bRpU/Tq1UvqmPJiXKagoAD+/v6YOHEi/Pz8sHv3bnz66ae4cOECGjVqBADYtGkTjh49ijlz5qBTp044c+YMNm7cKPe8FI35//73P7Ro0UK4fenSpRg0aBCCg4Nx9epVbN68GQ0bNsS4ceMAAM+fP8fYsWPRrl07rF27FlpaWti5cycmT56M6Oho6OvrC8c6cOAA7OzssHr1ahQWFgKQ/5517twZQUFBWLFiBdasWYM2bdrIPE9/f39cvnwZn332Gdq0aYNTp05hzpw52L59O7y8vITtUlNTsWrVKvj6+sLY2BgbN27E7Nmzce7cOejp6eH333/H4sWLMWXKFHh4eCA3Nxe3b99GZmam3FgTERERERERERGpChbKpWjWrBlevXolfF2+oF1cXAw3Nzfcvn0bP/zwA+bPnw9LS0tYWlqKLecCAC4uLsI7g0tKSuDo6Ijc3FwcOnRIZqE8OTkZJiYmwoL7u5o3bw4ASEpKUurcBg0aJPz/kpISODk5ITk5GeHh4QoXytu2bQsjIyPUr19f7Hy9vb1x/PhxYaG8sLAQp0+fxsiRI6GjoyN1THkxLlNWKPfw8AAAWFtbw8vLC5cuXcLQoUPx5s0bHDlyBNOnT8eMGTMAAO7u7vjPf/4j9qDLd1U05j179hT+wsDd3R1paWnYsWMHxowZA21tbYSEhKBhw4bYv38/6tWrBwDo1q0bvLy8EBERgQkTJgjHatiwIUJCQqClpSXcJu89MzIyQtu2bQEA7dq1g62trdRz/Pvvv/Hzzz9j+fLlwveod+/eSExMFCuUv337FocOHUK7du0AAIaGhpg4cSL+/PNPdO/eHbdv34apqanw3AGgT58+Uo+tiJKSEgBATk5OpcYh2criyzhXP1WI9bt/IVNVmK81QxWuIU2hCrFmvlZOdnZ2rR5fFa4hTaEKsWa+SlZVeShvHFn7FdlXHddQdX0G1fZnW2WoQq4C1ZevQOXPTdn3t6avB1W//lR9fnWJJuSrPCyUS1FSUiJSqHz8+DE2bdqE2NhYpKWlCbfHx8fLHSsvLw+hoaGIjIzEy5cvUVBQINz377//okGDBpWaa/l5KuLt27cIDg7G+fPnkZycjKKiIgCAqalppeZRZvTo0fjPf/6Dhw8fol27doiJiUFaWho++ugjmf0UjbG2trbwFw8A0LJlSxgYGAiL4A8ePEBubi769esn0q9///74/fffK3l2kr17LG9vb5w6dQpJSUlo3rw5rly5goEDB0JHR0d4l7iJiQk6deoktpRJ7969xd7TqnzP/ve//wEABgwYILL9gw8+wJo1a5CdnS38UGrSpImwSA5AWIwvi3WnTp3w5s0bBAQEYMiQIejWrRsMDQ2VnlN5ZfFRJLeo8hjnmlObsXZ0dKyWcZmvNYtxrjnM16rSpAaPVSouLq7GjykJ87XmMF8VVXP5KDsPFZ+H+DhNZOyXtU90/7v7KhdnecdVtXFrT21/LlZXvgLKnpt4Dkh/fyXnS/VdDzV9POXmIY065IeqUed8lYeFcimSkpJgZWUFAMjKysKUKVNgZmaGgIAANG/eHPXq1cOSJUuQl5cnd6z169cjIiICs2bNQpcuXWBsbIzz589jx44dyMvLk1oot7S0xH//+19kZWVJvMP5xYsXAICmTZsqdW4BAQGIjY3FrFmzhHeGHz16FD/99JNS40jj5OQEa2trfP/99wgMDMTx48fh5OSEVq1aSe2jTIwNDAxElioBAD09PWG71NRUAEDjxo1F2pibm8ude9OmTZGRkSE35paWliLbzczMJB4rNTUVzZs3x+vXrxEWFiZclufduZf37ryBqn3P3r59Cz09PbEiu7m5OUpKSpCZmSkslJuYmEica1msXVxcsG7dOhw4cABTp05FvXr14O3tjS+++KLCv3jR1dVFYWEhrKysKl10J+lycnIQHx/PONcAdY4187VmqPM1pGrUOda1ka8pN9PkN6piHTt2rPFjlqfO15CqUedYV0e+Xvmz5vJRVh4qM493x3m3b/n9sva9u79sX1VcQ/KOW1HVNW5tUOdcLaPMuf33lngOSHt/U2Ml50t1XQ+S5ladx1N2HtLU5fxQNZqQr/KwUC7Bw4cPkZycLFyG5NatW0hKSkJoaCg6dOggbJeZmSlWMJUkOjoaY8aMga+vr3CbrIdalnFycsL333+PmJgYkaU3yly8eBHa2trC37SULelR/o51AMjIyBD+f15eHi5evIiAgADhw0YB4MiRI3Lno4xRo0Zhz549+PjjjxETE4PVq1fLbF/ZGJdnYWEBAEhLSxP5JUL5pXSk6dGjB44fPy4z5lpaWujevbvI9ncfoFp2rLK5NGzYEB4eHhg/frzYmO/+ouTdu8mr+j1r2LAhCgoK8PbtWzRs2FBkzlpaWjA2NlZqvKFDh2Lo0KFIT0/H+fPnsWbNGujq6uKrr76q0PzKzt/Q0LBW/9xGUzDONUcdY818rVmMc81Rx1jXTr7WfKFcVd43dbyGVJU6xrp68rXm8lH2nBWfh/g4aTL2y9onuv/dfZWLs7zjVlR1jVt71DFXyyh3buI5IL2v5HypvjjW9PGUm4c06npd1SZ1zld5tGt7AqomLy8PK1euhL6+PkaNGgUAyM3NBSB65+/NmzeRmJgo0ldPTw/5+fkSxyzft6ioCGfOnJE7lwEDBqBp06bYsWOH2PpAT548wQ8//IDevXujWbNmAP7vzvJ//vlH2O7x48d4+fKl8HV+fj6Ki4tF5pOVlYULFy7Inc+7yt/F/a7hw4cjMzMT/v7+MDAwEFvm412KxlgR7du3h4GBAc6dOyey/eeff5bbd8CAAWjSpInMmPfv31+4VnmZd4919uxZNGnSRFjkd3FxwcOHD9GpUyfY2tqK/CfvwZuKvmfv3u0tTdkvVqKjo0W2R0dHo1OnThX+MDQzM8OoUaPg5uYmcg0SERERERERERGpOo2+o7y4uBi3bt0CULr4/4MHDxAeHo7nz59j7dq1aNmyJQDA3t4e9evXx/Lly+Hr64vk5GQEBweLLXliY2ODwsJChIWFwcHBAUZGRmjTpg1cXV0RERGBtm3bolGjRjhy5IjEgvq7DAwMsHHjRvj6+mL8+PH4+OOP0axZM/z999/YuXMnGjZsiJUrVwrb29nZoVmzZvjqq6+wYMECZGVlYdeuXSJLYBgbG8PW1ha7d++GmZkZdHV1sWvXLhgZGYndFS1PmzZtcPLkSVy4cAEWFhZo0qSJMCZmZmbw8vIS3k1vYGAgcyxFY6wIU1NTjB07Frt374aBgQE6deqEM2fO4NmzZ3L7GhgYYNOmTVJj3qxZMyxdulSs37Vr1/D111/Dzc0NV65cwalTpxAUFARt7dLfRX366acYOXIkpk6ditGjR8Pc3ByvXr3CjRs30L17dwwePFjqnBR9z6ysrKCjo4Pjx49DV1cXOjo6Eh/q2aFDB/Tv3x9r165Fbm4urK2tcfr0acTGxuKbb75RJMRC27Ztw5s3b9CjRw80btwYDx48wOXLlzF58mSlxiEiIiIiIiIiIqpNGl0oz83NxZgxYwCU/qlGy5Yt4eLigpCQENjY2AjbmZubY+vWrVi3bh38/PxgZWWF5cuXY8+ePSLjeXp6Yvz48di1axfS0tLg5OSEgwcPYunSpVi2bBlWrlwJQ0NDDB8+HP369cOSJUvkzrFs+ZXt27dj7dq1SE9PR0lJCRwcHLB9+3aR9az19PQQEhKCL7/8EnPnzkWrVq3wxRdfYO3atSJjbty4EUFBQQgICICpqSl8fHyQnZ2Nffv2KRW/6dOn49mzZ/j888+RkZGB2bNnY86cOcL9/fr1Q3R0NEaOHCl3LEVjrKgFCxagqKgIe/bsQXFxMfr164cFCxZg0aJFcvuWxfybb77B2rVrkZGRgSZNmmDIkCGYOXOmxLW3V6xYgfDwcBw9ehQNGjTA3LlzMWHCBOH+1q1bIyIiAlu2bMHy5cuRnZ0NCwsLODk5QSAQyJ2TIu+ZmZkZgoKCsGfPHpw+fRqFhYW4f/++xPHWr1+PTZs2Yffu3Xjz5g3atGmDbdu2oW/fvnLnUp6trS3CwsLw008/ISsrC5aWlpg6dSo++eQTpcYhIiIiIiIiIiKqTVolJSUltT0JUk5QUBB+/PFHHDlyBO3bt6/t6Ui1aNEixMXFITIysranUm2uX7+OiRMn4vvvv5d49zYp586dOygpKUFBQQE6duyosWti1YTs7GzExcUxzjVAXWPNfK056noNqSJ1jXVt5etP/30ucbtONS7+2N/1veobXAHqeg2pInWNdXXl67nfJOejIoqKRV/Ly+F+LtLzUNY8it85jreb6Djv9i1/HFn73t1ftq8qriF5x62o6hq3NqhrrgKl+Zqfn6/Uuf18VTwHpH13RV+RnC8D3KrnepA0N6Dmv1ulzUOa2v7uVyfqnK+K4hrlddCSJUvQtm1b+Pr6IiUlpbanI+b+/fs4efIkfvzxR0ycOLG2p0NEREREREREREQkk0YvvVJX6evr47vvvqvtaUj1ySefID09HcOGDcNHH31U29MhIiIiIiIiIiIikomFcqpyFy5cqO0p1BhnZ2ep64ATERERERERERFR3cBCORERERERVbkPeqn2mqFVsRar5DGaVHBGRNWntta4VmatbXnrqFfmHKrr/OvauFT7lPmOqa61yAHl1kqvruNJO6akbVw7m2oK1ygnIiIiIiIiIiIiIo3GQjkRERERERERERERaTQWyomIiIiIiIiIiIhIo7FQruHOnz+PKVOmoEePHujSpQv69u2LoKAgPHnyRNhGIBBg7969NTanuLg4CAQCXL9+vcaOKcnq1avRt29fmW1OnDgBgUAg/M/BwQEDBgxAYGAgbt++XaHjxsXFITg4GDk5ORXqX9PvFxERERERERERUV3HQrkG27BhA/z8/GBkZISVK1di//79mDVrFh49eoR58+bV9vTqlD179iA8PBzffPMNJk6ciAcPHmD06NHYtWuX0mPFxcUhJCSkwoVyIiIiIiIiIiIiUo5ubU+AakdMTAx2794NPz8/zJ07V7jdyckJH330EX799ddanF3d07lzZ5iZmQEAXFxcMHbsWHz++efYtGkTunXrhu7du9fyDImIiIiIiIiIiEga3lGuofbt2wdzc3P4+flJ3O/p6Smz/3fffQdvb2/hci3ffPMNiouLhfuDg4Ph4OAg1q979+4IDg4W2fbNN9/Azc0NDg4OmD17NtLS0hQ6hw0bNmDIkCFwcHCAu7s75s+fj5SUFJE2Pj4+mDFjBqKjo+Ht7Q0HBwdMnDgRz549E2mXnJyMmTNnws7ODu7u7ti9e7dCc5BGW1sbixcvhr6+Po4ePSrcfvHiRXz88cdwcXFBt27dMGrUKFy6dEm4/8SJEwgMDARQWnAXCATC5V9SUlIQGBgILy8vdO3aFf3798emTZuQn58vdvyioiKsW7cOPXv2hIODAwICApCVlSXcn52djRUrVsDb2xt2dnbCJXcyMzNFxjl//jxGjBgBBwcHdO/eHSNGjEBMTIxImxMnTmDIkCGwtbWFu7s7Nm/ejKKiokrFj4iIiIiIiIiIqCbxjnINVFhYiJs3b6J///7Q09NTuv/BgwexatUq+Pj4oE+fPoiNjUVISAgyMzPx+eefKzXWoUOHsHXrVkyZMgWurq64evUqFi9erFDftLQ0zJgxA02aNEF6ejr2798PHx8fnDlzBrq6/3dpx8XFIT09Hf7+/igqKsLatWuxcOFChIeHC9v4+fkhOTkZX375JYyNjbF79268fPlSZBxlmZqaonPnzoiNjRVuS0hIgKenJ6ZMmQJtbW1cunQJvr6+CAsLg7OzM/r06YNPPvkEO3bswJ49e2BsbAx9fX0AwOvXr2FqaorAwECYmJggPj4ewcHBSE1NxZo1a0SOffDgQXTu3Blff/01EhISsGHDBuTl5WHz5s0AgNzcXBQVFWHevHkwMzPDy5cvsXPnTvj5+eHgwYMAgGfPnmHu3LkYNGgQFixYgOLiYvz99994+/at8Dj79+/H+vXrMWnSJAQEBODx48fCQrm/v3+FY0dERERERERERFSTWCjXQG/evEF+fj6aN2+udN+ioiJs374dgwYNwpIlSwAAvXr1QkFBAfbt2wdfX180atRI4bFCQ0MxdOhQYYHd3d0daWlpOHXqlNz+5YvDRUVFcHBwQO/evXHt2jX06tVLuC8zMxMnT54ULo2SnZ2NwMBAJCUlwdLSEpcuXcLdu3fx7bffwsXFBQDg7OwMDw8PmJqaKnQu0jRr1gx//fWX8PV//vMf4f8XFxfD2dkZjx49wrFjx+Ds7AwzMzO0atUKgOhyLkDpQzrL/yKiW7duMDQ0REBAAIKCgmBoaCjcp6+vj+3bt0NHRwcAUK9ePSxZsgSzZ8+GjY0NzMzMsHz5cmH7wsJCtGzZEuPHj8eTJ09gbW2Ne/fuoaCgAEuXLoWRkRGA0venTFZWFrZt24Zp06Zh/vz5AAA3Nzfo6elh7dq1mDp1qsLXQnklJSUAwDXaq1lZfBnn6qcKsa5fv361jMt8rRmqcA1pClWINfO19mVnZ1d6DMa5+jFf6yZl8qsyuahIX1W4hjSBqsS5uvIVqP1zqypV8f1XXcdUletI3alKnKszX+VhoVyDaWlpKd3nn3/+wevXrzFgwACR7QMHDkRoaChu374NDw8PhcZKSkpCSkoK+vXrJ7Ld29tboUJ5TEwMduzYgYcPH4osKxIfHy9SKO/QoYNIwblt27bC41taWuL27dswNjYWFskBwNjYGK6urrh3755C5yJNSUmJSJyTkpKwefNmXL16FampqcIfgjt37qzQWGFhYTh27BgSEhKQl5cn3Pf8+XO0b99e+NrT01NYJAeAAQMGYPHixbhz5w5sbGwAACdPnsS3336Lp0+finw5xcfHw9raGgKBADo6OvD398fo0aPh5OQEY2NjYbvY2FhkZ2djwIABKCwsFG53dXVFbm4uHj58iB49eigTLgAQjhUfH690X1Ie41xzajPWjo6O1TIu87VmMc41h/mqKZpI3BoXF1fpMRjnmsN8VXWiOSI7v5RpW3V91SPOqq+241xd+QrU/rlVjPj3l3I5V/njVeSYdTPWdU9tx7k681UeFso1kKmpKerVq4cXL14o3bds2Y3GjRuLbC97XX5ZDnlSU1MBQKSIDQDm5uZy+96+fRt+fn7w8vLC9OnT0bhxY2hpaWH06NEiBWQAMDExEXldttxMWbuUlBSxOQDi51gRSUlJwvMpLi7GJ598gszMTHz66ado3bo1DA0NsW3bNrx8+VLuWGFhYfj6668xbdo0ODs7w8TEBHfu3MGKFSvEzvnduRsZGaFevXrCNdzPnTuHzz//HGPGjMG8efNgamqK1NRUzJo1SziWtbU1du7cidDQUMyePRva2tro1asXgoKC0Lx5c7x+/RoAMHz4cInzVeScJNHV1UVhYSGsrKxE7pKnqpWTk4P4+HjGuQaoc6yZrzVDna8hVaPOsWa+ivvvLcnPxenYsWOlx2Ccqx/ztW648qdojsjKL2XaVkVfdb6GVIkmxLkunpuk7y9lcq4qjqfMMTXhOlIFjDML5RpJV1cX3bp1w7Vr11BYWKjUOtxlS5Gkp6eLbC97AGfDhg0BlC71UVBQINKmoKBA5M5lCwsLiWO9evVK7jx++eUXGBkZYcuWLdDWLn0mbWJiosLnUV7ZGufvUvShotK8fv0ad+/ehbe3NwDg6dOnuHfvHrZv3473339f2C43N1eh8aKjo9G3b18sWLBAuO3x48cS274796ysLOTl5aFJkybCsTp27IgVK1YI29y4cUNsnN69e6N3797IysrCpUuXsGbNGgQGBiIsLEz4XoeEhMDS0lKsb8uWLRU6r3eV3YFvaGhYq39uoykY55qjjrFmvtYsxrnmqGOsma+SSP5ZT7n4SB6Dca456hhr9cpX0RyRfT7KtK26vuoRZ9WnznGum+cm/v1VvedQFd+5dTXWdY8mx1m7tidAtePjjz9Gamoqdu7cKXF/TEyMxO3W1tYwMzNDdHS0yPaffvoJenp66Nq1KwCgadOmKCgowLNnz4Rtrl27hqKiIuFrS0tLWFhY4Ny5cyJjnT17Vu78c3NzoaenJ7KsSWRkpNx+ktja2iIzMxO//fabcFtmZiauXr1aofGA0rvHv/rqKxQUFGDChAkA/u8O9vIPUE1MTBR52Gf5/fn5+SLby865PGnn/Ouvv4rEOjo6GlpaWrC1tVV6LKD0jvSBAwdi0KBBwuK8g4MDDA0NkZSUBFtbW7H/KrI+ORERERERERERUW3gHeUaysPDA9OmTUNwcDAePXqEQYMGoVGjRkhISMDx48eRmZkpca1xHR0d+Pn5YdWqVTAzM4OHhwdu3bqF3bt3Y9KkScLiaO/evVG/fn0sWbIE06dPR1JSEg4cOIB69eqJjOXr64vVq1ejcePGcHNzw5UrV3D9+nW583dzc0NYWBhWrlyJfv36ITY2VqF1zSXp3bs3OnfujIULF8Lf3x/GxsbYtWuX8AGWivjrr79gbGyM3NxcPHnyBMePH8dff/2FhQsXwsHBAQDQpk0bWFpaYuPGjSguLkZ2dja2bdsmvMu7TNka4ocPH8b7778PAwMDCAQCuLq64sCBAzh06BCsrKxw+vRpPH36VOJ88vPzMWvWLIwbNw4JCQnYsGEDvL29hWO7urpixYoV2L59OxwcHBATEyPyiwIA+O6773Dr1i24u7vDwsICCQkJOH36NNzc3ACULmnz6aefYv369UhKSkKPHj2go6OD58+f4/z58wgODtbYP9UhIiIiIiIiIqK6hYVyDVZWxD18+DC++OIL5OTkoEmTJujVqxemTp0qtZ+Pjw90dXXx7bff4ujRo7CwsMDs2bMxc+ZMYZtGjRph27Zt+PrrrzFr1ix07NgR69atg4+Pj9hYGRkZOHLkCI4ePQoXFxesWrUK06ZNkzl3Dw8P+Pv749ChQzhx4gS6deuG0NBQ4TInytDS0sI333yDZcuWISgoCCYmJvDx8cGrV69w/vx5hcYom2/9+vXRpEkTdOvWDUFBQcI77AFAX18fwcHBWLFiBebOnYtmzZrhk08+wbVr13D37l1hu06dOmHOnDmIiIjAnj170KxZM1y4cAGzZs3C69evsW3bNgClDz1dsmSJSNzL+Pj4ID09HYsWLUJ+fj769euHoKAg4f6xY8ciISEBhw4dwt69e9GrVy9s3LgRo0ePFrYRCAT49ddfsWbNGrx58wYWFhYYNGgQ5s6dK2wzZcoUNG3aFPv378ehQ4egq6uLVq1aoU+fPmJ3rBMREREREREREakqrZKSkpLangQREQDcuXMHJSUlKCgoQMeOHTV2TayakJ2djbi4OMa5BqhrrJmvNUddryFVpK6xZr5K9vPV5xK393d9r9Jj9LJvzDhXM+Zr3XDuN9Ec6eciPb+UaVsVfdX1GlI16hznO3fuID8/v06em6TvL2W+/6rieMocU52vI1XCOHONciIiIiIiIiIiIiLScCyUExEREREREREREZFGY6GciIiIiIiIiIiIiDQaH+ZJREREREQapyrWYn13jLK1PYHGlR6bSB0os864Mm2rsi+RJqrO9chV4XhEFcU7yomIiIiIiIiIiIhIo7FQTkREREREREREREQajYVyIiIiIiIiIiIiItJoLJQTERERERERERERkUZjoZyIiIiIiIiIiIiINBoL5URERERERERERESk0VgoJyIiIiIiIiIiIiKNxkI5EREREREREREREWk0FsqJiIiIiIiIiIiISKNplZSUlNT2JIiIAODmzZso+0jS09ODlpZWLc9IfZWUlKCgoIBxrgGqEGt9fX0IBIIqHZP5WnNU4RrSFKoQa+Zr3aYK15CmUIVYM1/rNlW4hjSBqsS5OvO1ts9NE6jKdaTuVCXO1ZGvitKtlaMSEUlQ9kGsp6dXyzNRf1paWtDX16/taWgEdY0187XmqOs1pIrUNdbM15qjrteQKlLXWDNfa466XkOqRp3jXJavLNxWP3W+jlQJ48w7yomIiIiIiIiIiIhIw3GNciIiIiIiIiIiIiLSaCyUExEREREREREREZFGY6GciIiIiIiIiIiIiDQaC+VEREREREREREREpNFYKCciIiIiIiIiIiIijcZCORERERERERERERFpNBbKiYiIiIiIiIiIiEijsVBORERERERERERERBqNhXIiIiIiIiIiIiIi0mgslBMRERERERERERGRRmOhnIiIiIiIiIiIiIg0GgvlRERERERERERERKTRWCgnIiIiIiIiIiIiIo3GQjkRERERERERERERaTQWyomIiIiIiIiIiIhIo7FQTkREREREREREREQajYVyIiIiIiIiIiIiItJoLJQTERERERERERERkUZjoZyIiIiIiIiIiIiINBoL5URERERERERERESk0VgoJyIiIiIiIiIiIiKNxkI5EREREREREREREWk0FsqJiIiIiIiIiIiISKOxUE5EREREREREREREGo2FciIiIiIiIiIiIiLSaCyUExEREREREREREZFGY6GciIiIiIiIiIiIiDQaC+VEREREREREREREpNFYKCciIiIiIiIiIiIijcZCORERERERERERERFpNBbKiYiIiIiIiIiIiEijsVBORERERERERERERBqNhXIiIiIiIiIiIiIi0mgslBORyrh//z7u379f29MgIgUwX4nqDuYrUd3BfCWqO5ivROqHhXIiUhn5+fnIy8vD//73P+Tl5dX2dNQa41xz1DXWzNeawzjXHHWNNfO15jDONUddY818rTmMc81Q5zjn5+cjKytLLc9N1ajzdaRKGGcWyolIRRUVFdX2FNRaWXwZ5+qnCbFW53NTBZpwDakKTYi1Op+bKtCEa0hVaEKs1fncVIEmXEOqQBPirM7npio04TpSBYwzC+VEREREREREREREpOFYKCciIiIiIiIiIiIijcZCORERERERERERERFpNBbKiYiIiIiIiIiIiEijsVBORERERERERERERBqNhXIiIiIiIiIiIiIi0mgslBMRERERERERERGRRmOhnIiIiIiIiIiIiIg0mm5tT4CIqLptCo9Xus/8MVZKtR8xN0yp9r1cPZRqr+x8qG5S9lrVlOsiaP8/lR7j6avsSvVPuhZa6TmcPR5c6TGIVMHJX5/J3D/Ms5XUfYF7Hlfq2M9epkjdp2tgLLNv7psEqft6O3aU2dfEQPa8jA21yr2ywPPrr2R3KCczp0Tmfp+BrRUeizTL2avPxbZ5u76nULuUN8USx4x9ViC2zaaJnti2//75RGJ/M4sWYtvyCsWP9fxyiNi2pj2mSRzT0NBQbFv2v1li21paNBTbZmIo+d7A7PyyvGuEk7eTAAAtTHXE2t17mS+xv5OVvtg2CaeJRg20xDdKYVhPsbY5eeKfGbI+d9+l6HVTWaLHaYLLt9IApFXLsdTVsXOSv2+P/vCT1D71GttI3P763impfRq07C51378Jf0jc3rBdf6l9pMl+ESt1X/8PJ0rc/ubf8te7Gc7cTRa+uht3V2KfkV52Uo9zN6FQ4na7VtLLo7riHw0AgLRM6d/fLcyq9r5kbzfJeXPqovSfyYb2kfy5cPaK+GdAGXeHxspNDMCBH59K3D6xjv78wjvKiYiIiIiIiIiIiEijsVBORERERERERERERBqNhXIiIiIiIiIiIiIi0mgslBMRERERERERERGRRmOhXIbg4GAIBAIIBAJ06NABjo6OGDJkCFasWIHHjyv2IKLr169j586dVTrPR48e4dNPP0Xv3r1ha2uL3r17Y8aMGYiJiVFqHIFAgL1791bp3NRBXFwcBAIBrl+/LrNd2bUiEAjQpUsX9OvXD6tWrcKbN29qZqI17Pr16xAIBLhz505tT4WIiIiIiIiIiKhSpD/WlQAABgYGCAsLAwD8+++/ePDgAcLDw3Hs2DGsXr0aQ4cOVWq8GzduYN++fZg5c2aVzO/Zs2cYNWoUBAIBAgICYGZmhsTERMTExODGjRvw8PBQeKzw8HA0b968SualqXx8fDB48GDk5eXhxo0b2LlzJ+Lj47Fnz57anhoRERERERERERFJwUK5HNra2rC3txe+dnNzw/jx4+Hr64vFixejW7dueO+992ptfsePHwcA7N+/H4aGhsLtH330EYqLi5Uaq/x5UsU0a9ZMGEdnZ2ekpKTg2LFjSElJQZMmTWp3cgoqKipCcXEx9PT0ansqRERERERERERENYJLr1RAvXr1sHTpUhQUFCAiIkK4/eTJkxg3bhx69OgBJycn+Pj44Pbt28L9wcHBCAkJQXZ2tnCJDh8fHwDA48ePMW/ePHh4eMDOzg4DBw7Evn375Ba7MzIyYGRkJFIkL6OtLfr2Pn78GLNnz0aPHj1gZ2eHDz/8EFFRUcL9kpZeuXjxIkaNGoWuXbuiZ8+eWLZsGbKzs4X7y5bfuHLlChYsWAAHBwd4enpi9+7dYvOJjY3FlClT0K1bNzg4OGDUqFG4cuWKcH9+fj42bdoET09PdOnSBR988AEiIyNlnn/ZHD/++GO4uLigW7duGDVqFC5duiTS5sSJExAIBLh37x6mTZsGe3t79O/fHydPnhQb75tvvoGbmxscHBwwe/ZspKWlyZ2DNB07dgQAvHz5UqnzfPjwIaZPnw5nZ2fY2dnB29tbLKaxsbGYOHEi7O3t4ejoiAULFojNdcOGDRgyZAgcHBzg7u6O+fPnIyUlRaSNj48PZsyYgR9++AHe3t6wtbXF33//DaA0tmPHjoWdnZ3wmr53755I/4yMDLnvPRERERERERERkSrjHeUV1LZtWzRt2hSxsbHCbQkJCRg2bBhatWqF/Px8nDlzBhMmTMDp06dhbW2NUaNGISkpCVFRUcLlXIyMjAAAKSkpsLa2xpAhQ9CgQQPExcUhODgY2dnZmD17ttR5dO7cGUeOHEFQUBDGjRsHgUAgViAHgPj4eIwZMwbNmjXD4sWLYWFhgQcPHuDFixdSx46Ojsa8efMwYsQIzJkzB6mpqdi4cSMyMjKwefNmkbbLli3D0KFDsX37dvzyyy/YsGEDBAIBevfuDQD43//+h0mTJsHe3h6rVq2CiYkJ7t69K3L8uXPn4ubNm5g1axZsbGwQExODhQsXwsTEROYSMgkJCfD09MSUKVOgra2NS5cuwdfXF2FhYXB2dhZp6+/vj9GjR+Pjjz/GsWPHEBAQAFtbW9jY2AAADh06hK1bt2LKlClwdXXF1atXsXjxYqnHlufFixfQ1tYWWdJGkfOcOXMmzM3NsXr1ahgZGeHZs2dISkoSjhEbGwsfHx94eHhg8+bNyMnJwZYtW+Dn54fw8HBhu7S0NMyYMQNNmjRBeno69u/fDx8fH5w5cwa6uv+X/nfv3kViYiLmzp0LExMTNGvWDD/++CPmz58PLy8vbNy4EXp6erh58yaSk5PRqVMnYV957z0REREREREREZGqY6G8Epo1a4ZXr14JX5cvaBcXF8PNzQ23b9/GDz/8gPnz58PS0hKWlpZiy7kAgIuLC1xcXAAAJSUlcHR0RG5uLg4dOiSzUD58+HD89ttvCA8PR3h4OBo0aICePXvio48+gpeXl7BdcHAw9PT0cPToUWFx3tXVVeq4JSUlWLduHQYOHIjVq1cLt1tYWMDX1xd+fn5o166dcHv//v0xZ84c4blcvHgRZ8+eFRZL169fj9atWyMsLAw6OjoAgF69egn7X7t2DRcuXMDevXuF293c3JCamorg4GCZhfL//Oc/wv8vLi6Gs7MzHj16hGPHjokVyidMmIAJEyYAABwcHBATE4OzZ8/Cz88PRUVFCA0NxdChQ/H5558DANzd3ZGWloZTp05JPX55xcXFKCwsRH5+Pq5fv46jR49izJgxsLCwUPg809PTkZCQgMWLF6Nv374AgJ49e4ocZ+PGjejSpQtCQkKgpaUFAGjfvj0GDx6MmJgYYbzWrFkj7FNUVAQHBwf07t0b165dE4n/27dv8f3336NZs2YASt//r7/+Gm5ubti+fbuwnaT3Qd57r6ySkhIAQE5OToX6V5XyfzmhCqp6PmXxre04a4LqjLWi10X9+vWr/NiA6uRrXVHRPGa+1hxViLU65KuqfYfWdYynZMxXyXi9aKbKvu81ed3U1jVaXfkK8Gc0qn4VyZuK9KnK79bK5Hp15qs8LJRXQklJibBICZQubbJp0ybExsaKLIERHx8vd6y8vDyEhoYiMjISL1++REFBgXDfv//+iwYNGkjsp6Ojg40bN2LmzJn49ddf8ccff+DKlSs4f/48/Pz8MHfuXAClBVpvb29hkVyeJ0+eIDExEV988QUKCwuF23v06AFtbW3cvXtXpFBevuiqpaUFGxsb4R3QOTk5+PPPPzF//nxhkfxdV65cgampKXr27ClyPFdXV3z55ZcoKiqS2jcpKQmbN2/G1atXkZqaKvzBsnPnzmJty8+zfv36aN68uXCeSUlJSElJQb9+/UT6eHt7K1wo37BhAzZs2CB87ejoiCVLlih1no0aNUKLFi2wadMmvH37Fi4uLrC0tBS2zcnJwc2bN7Fo0SIUFRUJt1tZWaFZs2a4c+eOsKAdExODHTt24OHDh8jKyhK2jY+PF4lF+/bthUVyAPjnn3+QlJQk/IWBLLLe+4ooi4sieaO4xkr3iIuLq8LjV151zadq40yyKBZr5a5VRa8LR0dHpcZVVPXkqySNqnn8mlHZPGa+1pzajHXdyFcLmXtlX+umVXB8zaJqP5OoGs3OV/FnIEm+XurGs5Ko4pT7nFD0uqksydddbX2mVVe+AtX5OST7+5Y0h/S8kX6NSO8j/Tuh7FpW7po2V/L48lVnvsrDQnklJCUlwcrKCgCQlZWFKVOmwMzMDAEBAWjevDnq1auHJUuWIC8vT+5Y69evR0REBGbNmoUuXbrA2NgY58+fx44dO5CXlye1UF6mXbt2aNeuHXx9fZGeno6pU6di165dmDRpEkxNTfHmzRulHib5+vVrAMCsWbMk7i+/5jYAGBsbi7zW09NDZmYmgNI1rIuLi2Ue//Xr13jz5o3E4jYApKamihSLyxQXF+OTTz5BZmYmPv30U7Ru3RqGhobYtm2b2BylzTM/P194DAAwMzMTaWNuLjnpJZk4cSI+/PBD5OTk4PTp04iIiMDWrVuxYMECpc5z79692Lx5M1asWIHs7Gx07twZgYGBcHJyQkZGBoqKirBmzRqRO8bLlJ337du34efnBy8vL0yfPh2NGzeGlpYWRo8eLXZNvnuOb968AQCFrhlZ731F6OrqorCwEFZWVhLX3q+ImEcp8hu9o2x9ecXdVfoYylB+PrLl5OQgPj6+SuNMkikTa2Wv1aq+LpRVHfkqyanbFf/lmyqp6PvFfK056hzrqszX59dfydwv81qPFf/5jGSr7c96VcV8BS7fEn+WkqTrRVI7Ui/KfE4oet1UlrTrTh0/06rrc+jxFdnft6Q5pOVNwg3p14i0PpdjpX8nWFlZKf3d+ldyqlLHV3UslFfQw4cPkZycjOHDhwMAbt26haSkJISGhqJDhw7CdpmZmRILvO+Kjo7GmDFj4OvrK9wWExNTobmZmZlhxIgRWLVqFZ4+fQpTU1OYmpqKPcRRFlNTUwBAUFAQunbtKrZfmaK7sbExtLW1ZR6/YcOGMDMzw65duyTuf7d4Xebp06e4d+8etm/fjvfff1+4PTc3V+H5lSlbHiU9PV1ke/nldeSxtLSEra0tgNK771+9eoX9+/dj/PjxaNasmcLnaW1tjW3btqGgoACxsbHYtGkTZs6ciUuXLsHY2BhaWlqYMWOGyDmXadSo9M7LX375BUZGRtiyZYtw3frExESJxy3/lxHA/73/ylwzVaVsLoaGhrX65za1eWxJqms+tR1nTVIdsa7t905V8rWuqGyMGOeao46xrsl8VbfY1TbGUzbNzlfxYofk9iyUqzvlckDR66ayJF936pavgHp+DpFqqcj1Jb2P9O+EsuJ4VVzTdTUnxJ/6SHLl5eVh5cqV0NfXx6hRowD8X2FWT09P2O7mzZtihcnydzC/O2b5vkVFRThz5ozcuUgr4pb9mUTZncIuLi44e/asyPIbsrRp0waWlpZ4/vw5bG1txf5r2rSpQuMApclhb2+PU6dOiSwVUp6rqyvS09Ohp6cn8Xj6+voS+5XdGV0+domJiSIPWVWUpaUlLCwscO7cOZHtZ8+eVXqsMosWLUJxcTH27t0LQPnz1NPTQ48ePeDr64usrCykpKQI4/nPP/9IHKNly5YASq9JPT09kSJ4ZGSkQvMue/9PnDhR4XMnIiIiIiIiIiKqK3hHuRzFxcW4desWgNKF6B88eIDw8HA8f/4ca9euFRYl7e3tUb9+fSxfvhy+vr5ITk5GcHCwWEHZxsYGhYWFCAsLg4ODA4yMjNCmTRu4uroiIiICbdu2RaNGjXDkyBGJBfV3ffPNN4iLi8PgwYPRtm1b5OXl4cqVKzhy5Ajef/99tGjRAkDpg0YvXryI8ePHY9q0abCwsMDjx4+Rk5OD6dOni42rpaWFgIAA+Pv7Izs7G3369IGhoSFevHiBmJgYzJs3D9bW1grHccGCBZg8eTImT56M8ePHo2HDhvjrr7/QqFEjjBw5Em5ubvD09MS0adMwbdo0CAQC5OTk4NGjR3j69KnIA0XLKyvobty4EcXFxcjOzsa2bduUuuO9jI6ODnx9fbF69Wo0btwYbm5uuHLlCq5fv670WOXnN3DgQHz//feYNWuWQuf5999/4+uvv8bAgQPx3nvvISsrC6GhoWjRogVatWoFoLQAP2nSJHz22WcYNGgQTExMkJSUhKtXr2LEiBFwdnaGm5sbwsLCsHLlSvTr1w+xsbEKr7WupaWFzz//HPPnz8ecOXMwdOhQ6Ovr49atW7C1tYWnp2eFY0JERERERERERKRqWCiXIzc3F2PGjAFQemd0y5Yt4eLigpCQENjY2AjbmZubY+vWrVi3bh38/PxgZWWF5cuXY8+ePSLjeXp6Yvz48di1axfS0tLg5OSEgwcPYunSpVi2bBlWrlwJQ0NDDB8+HP369RN5EKQkH374IfLy8nDw4EEkJydDR0cHLVq0wKJFizB+/HhhOysrK3z33XfYuHEjli9fjqKiIlhZWYks9fKuDz74ACYmJti5c6fwTuQWLVrA3d1dqXW7AaB79+44cOAAtmzZgsDAQGhra6Ndu3b47LPPhG22bduGXbt24ejRo0hMTISxsTHatWuHESNGSB1XX18fwcHBWLFiBebOnYtmzZrhk08+wbVr13D3rvJrRvv4+CAjIwNHjhzB0aNH4eLiglWrVmHatGlKj1XGz88PP/74Iw4dOoQ5c+bIPU8LCwuYm5sjNDQUycnJMDY2Rvfu3bF+/XrhA027deuGI0eOIDg4GIGBgSgoKIClpSV69uyJ1q1bAwA8PDzg7++PQ4cO4cSJE+jWrRtCQ0Ph7e2t0LwHDhwIAwMD7Ny5E/Pnz0e9evXQqVMnsYedEhERERERERER1XUslMswZ84czJkzR+H2vXv3Ru/evUW2eXh4iLzW1dXFsmXLsGzZMpHt5ubm2L59u9iYZUu7SGNvbw97e3uF5te2bVvs2LFD6v779++LbXNzc4Obm5vUPs7OzhL7ffPNN2LbunXrhgMHDkgdS19fH7Nnz8bs2bOltpGka9eu+P7770W2DRs2TOT1iBEjJBbc373DWktLS+IcJJ3ju6S1adOmDe7duyd8Le88GzdujPXr18s9nq2trdS1zstMnz5d7C8G3p3nwYMHpfbv27cv+vbtK3GfMu89ERERERERERGRKuMa5URERERERERERESk0VgoJyIiIiIiIiIiIiKNxkI5EREREREREREREWk0rlFORGpv/hiraj/Gia2Tqv0YpP5q4lqti1Z83KbSY+yLfFqp/lMWBld6DkQEONvoydwf96JI5v4Bjs2l7kt4XSyzb8funaTuG+bZSmZfeU7++qzaxiaSxtv1vQq3+/Hyc4ltC4tLxLZZW4jfX1fP0Vpi//r6WmLbLvydI7Zt1CR/sW3GBuJ9AaBIQmobGxqKbcvOE597/XqSx9SX8FGkaDylOXtVPKaVHbM61NScyo6TnZ2NuLg4dOzYEfXr16+RY9clpy5K//7QkXJrq4Nzf6l9zI0ld3rVdr7SfQAgK89D4nabJtL7SMrZUnZS+9ST8uNBi0ZSu8Cxjb3E7YPcpV/jDa9I/uzzdlO9XFXE0D7K/4wh61yzs7OVHm/iwNZK91FlvKOciIiIiIiIiIiIiDQaC+VEREREREREREREpNFYKCciIiIiIiIiIiIijaYRhfLg4GA4ODjU6hy6d++O4OCaW9+0b9++WLFihcw2169fh0AgwJ07d2poVpUzdOhQBAQEyGwTEBAAgUCA0aNHi+0rKSmBh4cHBAJBjb4XmiI4OBg3b96s7WkQEREREREREREpTSMK5SRZ586dER4eDhsbm9qeSpWqX78+/vzzTzx/LvqQhj/++ANpaWnQ19evpZmpt5CQEMTGxtb2NIiIiIiIiIiIiJTGQnkdk5ubW2VjGRkZwd7eXu2ePN2iRQt06NABP/74o8j2qKgo9OrVC/Xq1aulmREREREREREREZEqYqH8/0tKSoK/vz+cnZ3RtWtXTJgwAXfv3hVpc/LkSYwbNw49evSAk5MTfHx8cPv2bbGxfvnlFwwYMAC2trYYOXKkxDYAcPHiRYwaNQpdu3ZFz549sWzZMmRnZwv3ly2NcvHiRXz66afo1q0b5s6dCwA4f/48RowYAQcHB3Tv3h0jRoxATEyM2DEOHz4MT09PODo6ws/PD+np6WLjl196RSAQYNeuXVi3bh169uwJBwcHBAQEICsrS2b8UlJSEBgYCC8vL3Tt2hX9+/fHpk2bkJ+fL9JOIBBg9+7dCA4OhqurK5ydnREYGChy3gBw8+ZNjBgxAra2thg8eLDEc5Nl0KBBiIqKEr4uLCzE2bNnMXjwYLG2sbGxmDlzJnr16gV7e3sMHToUJ0+eFGlTFqsrV65gwYIFcHBwgKenJ3bv3q30WADw8OFDTJgwAba2tujfvz9Onz4NPz8/+Pj4iLR7/PgxPvnkEzg6OsLe3h6+vr549uyZSJuy92zz5s1wcXFB9+7dsW7dOpSUlOC3337D0KFD4eDggEmTJuHly5ciffPz87Fp0yZ4enqiS5cu+OCDDxAZGSnSJiAgAIMHD8b169cxbNgw2NvbY+TIkSL5IRAIAADr1q2DQCCAQCDA9evXxc6biIiIiIiIiIhIFenW9gRUwdu3bzF+/HjUr18fS5cuhbGxMQ4ePIhJkybh559/RuPGjQEACQkJGDZsGFq1aoX8/HycOXMGEyZMwOnTp2FtbQ0AiIuLw6efforevXsjMDAQCQkJ+Oyzz8QKxtHR0Zg3bx5GjBiBOXPmIDU1FRs3bkRGRgY2b94s0nbp0qX48MMPsX37dmhra+PZs2eYO3cuBg0ahAULFqC4uBh///033r59K9LvwoULePr0KYKCgvD69WusWbMGK1euFBv/XQcPHkTnzp3x9ddfIyEhARs2bEBeXp7Mfq9fv4apqSkCAwNhYmKC+Ph4BAcHIzU1FWvWrBFpe/jwYTg6OmLt2rWIj4/HunXr0LhxY/j7+wMAUlNTMXXqVAgEAmzZsgUZGRlYvnw5srOz0bFjR5lzLzNo0CBs2rQJjx49Qtu2bXHlyhXk5eWhb9+++PLLL0XavnjxAt26dcO4ceOgr6+PmzdvYsmSJSgpKcHw4cNF2i5btgxDhw7F9u3b8csvv2DDhg0QCATo3bu3wmPl5uZiypQpMDExwfr16wEA27dvR0ZGBlq1aiU81vPnzzF27Fi0a9cOa9euhZaWFnbu3InJkycjOjpaZAmZw4cPo0ePHli3bh3+/PNPBAcHo7i4GFeuXMEnn3wCPT09rFq1CosXL8a+ffuE/ebOnYubN29i1qxZsLGxQUxMDBYuXAgTExN4eHgI26WmpmLVqlXw9fWFsbExNm7ciNmzZ+PcuXPQ09NDeHg4xowZAx8fH+EvI9q2bavQe0VERERERERERFTbWCgHEBYWhoyMDERERAiL4i4uLvD29sbevXuxaNEiAMDs2bOFfYqLi+Hm5obbt2/jhx9+wPz58wEAu3btQrNmzbB9+3bo6OgAAOrVq4fFixcL+5aUlGDdunUYOHAgVq9eLdxuYWEBX19f+Pn5oV27dsLtffv2xcKFC4Wvo6OjUVBQgKVLl8LIyAgA4O7uLnZeJSUl2LFjh7CgmpiYiNDQUBQXF0NbW/ofE+jr64vNf8mSJZg9e7bU9cwFAgE+//xz4etu3brB0NAQAQEBCAoKgqGhoch5bty4EQDQu3dv3Lt3D2fPnhUWysPCwqClpYXdu3fD2NgYAGBpaYnJkydLnfO7WrRoAXt7e0RFReGzzz5DVFQU+vbtK3GZmUGDBgn/v6SkBE5OTkhOTkZ4eLhYobx///6YM2cOgNJr5OLFizh79qywUK7IWMePH0daWhqOHj2Kli1bAgC6dOmC/v37ixTKQ0JC0LBhQ+zfv1+4XEy3bt3g5eWFiIgITJgwQdi2SZMmwqK7u7s7Lly4gG+//RZnzpwRvmfJyclYuXIlMjIyYGJigmvXruHChQvYu3cvevXqBQBwc3NDamoqgoODRQrlb9++xaFDh4TXpaGhISZOnIg///wT3bt3h729PQCgWbNmwv+vqJKSEgBATk5OpcYh2criyzhXP1WIdXUtsaVJ+fruXz7VJFW4hjSFKsRaHfK1NvOloqpzznUxHnUB85WqWnXkKvNfNXIVqL58BWr/3EhURfKOuVpKE/JVHhbKAVy5cgXOzs5o2LAhCgsLAQDa2tpwcnISWZbk8ePH2LRpE2JjY5GWlibcHh8fL/z/P//8E3379hUWmQFgwIABIoXyJ0+eIDExEV988YXweADQo0cPaGtr4+7duyKF8j59+ojMVyAQQEdHB/7+/hg9ejScnJyEBeXynJycRO46trGxQUFBAdLS0mBhYSE1Hp6enhLnf+fOHamF8pKSEoSFheHYsWNISEhAXl6ecN/z58/Rvn174WtXV1eRvjY2Njhz5ozw9Z9//glnZ2eRc3JxcYGpqanUOUsyePBgHDhwADNnzsT58+exYcMGie3evn2L4OBgnD9/HsnJySgqKgIAiccrKygDgJaWFmxsbJCUlKTUWHfv3kX79u2FRXIAaNmyJTp06CByrCtXrmDgwIHQ0dERXicmJibo1KmT2LJA78bU2toar169Enm/rKysAJQuM2RiYoIrV67A1NQUPXv2FLkOXV1d8eWXX6KoqEh4HTRp0kTkmiy7Wzw5OVksRpVVNpfyeUXVh3GuObUZa0dHx2oZt27lq3mlesfFxVXRPCqubsRZPTBf5ZH+cyQgL19k960tlc9x6eelCp8f6oz5WlFNqnHsuqnyuSoeU+b//6ntn2OqK1+Byp6ban4v1mWy807yZx9zVZQ656s8LJSjdNmQW7duoXPnzmL7yu7wzcrKwpQpU2BmZoaAgAA0b95ceKd1+aJwamqq8K70MkZGRiIPkHz9+jUAYNasWRLn8+460u+OZ21tjZ07dyI0NBSzZ8+GtrY2evXqhaCgIDRv3lzYzsTERKRfWdG8/HwlkTb/lJQUqX3CwsLw9ddfY9q0aXB2doaJiQnu3LmDFStWiB3v3Xnp6emJLE2TmpqK1q1bix3DzMxM5rzfNWDAAHz11VfYunUr9PT0JN51D5SuwR0bG4tZs2ahbdu2MDIywtGjR/HTTz+JtX33FxJ6enrIzMxUaqyUlBSJ52JmZiYSq9evXyMsLAxhYWFibfX09EReS4qppG3A/73/r1+/xps3byRe90Dp+2BpaSl1/PJjVSVdXV0UFhbCyspK5C8RqGrl5OQgPj6eca4B6hzrupSvf75IrVR/RZf+qg7qfA2pGnWOdVXm6/Prr2Tul5Uv8vrWlsrmuKzzqs3PD3XGfK2c5P+lyW+kYSqbq5dviceU+a/euVqmMueWcEM1vxfrMll5dzlW8mcfc7WUJuSrPCyUA2jYsCHc3d2FD8osr6y4fOvWLSQlJSE0NFTkzt/MzExhMREoXVak/N3mQGmRvXxBsezu4qCgIHTt2lXsmE2aiP6GS0tLS6xN79690bt3b2RlZeHSpUtYs2YNAgMDJRZVlSVt/u/Oq7zo6Gj07dsXCxYsEG57/PhxhY4vKYYARB5Eqghzc3P07NkT3377LUaOHClWXAZKC70XL15EQECAyIM0jxw5ovS8FR2rSZMmEn9bmZ6ejgYNGghfN2zYEB4eHhg/frxY2/LtKqphw4YwMzPDrl27JO5X9hcTVaXsejc0NKzVP7fRFIxzzVHHWGtSvqrC+WlCnFWFOsa6JvO1LsauOudcF+NRlzBfK4qF8ndVPtbiMVW3a7My1DFXy6jzudVFst8LyZ99fP9EafI1zUI5SpeaOH36NGxsbKReCLm5uQBE7+S9efMmEhMTRZak6Nq1K3799VcEBgYKl62Ijo4WGatNmzawtLTE8+fPRdaZrggjIyMMHDgQt2/fRlRUVKXGKiNp/lpaWrC1tZXaJzc3V6wQHRkZWaHjd+3aFUePHkVmZqbwDu7ffvsNb968UXosHx8fGBgYYNSoURL35+fno7i4WGTuWVlZuHDhgtLHUnSsLl264OTJk3j+/Dnee+89AKUPiv37779F/rzExcUFDx8+RKdOnUSWwqkqrq6u2LNnD/T09MSWfakIPT29arnDnIiIiIiIiIiIqLppTKG8qKhIrGANlBZlJ0+ejMjISPznP//BxIkT0bx5c6Snp+PPP/9E06ZNMXnyZNjb26N+/fpYvnw5fH19kZycjODgYDRt2lRkPF9fX4wcORKzZs3CuHHjkJCQgL1794osvaKlpYWAgAD4+/sjOzsbffr0gaGhIV68eIGYmBjMmzcP1tbWUs/lu+++w61bt+Du7g4LCwskJCTg9OnTcHNzq5JY5efni8x/w4YN8Pb2lro+OVBadD1w4AAOHToEKysrnD59Gk+fPq3Q8SdNmoQjR45g+vTpmD59OjIyMhAcHKz0GuVA6Xrrnp6eUvcbGxvD1tYWu3fvhpmZGXR1dbFr1y4YGRkpfQe7omN99NFH2LlzJ2bOnCl8MGhISAjMzc1F/nrg008/xciRIzF16lSMHj0a5ubmePXqFW7cuIHu3btj8ODBSkZDlJubGzw9PTFt2jRMmzYNAoEAOTk5ePToEZ4+fSryoFlFtGnTBufPn0f37t1haGgIa2tr4cNmiYiIiIiIiIiIVJnGFMrz8vIkLq2ybt06DB06FOHh4diyZQs2bNiAN2/eoHHjxrCzs0O/fv0AlC7jsXXrVqxbtw5+fn6wsrLC8uXLsWfPHpHxOnXqhK1bt2LDhg2YPXs22rVrh82bN2Pq1Kki7T744AOYmJhg586dwjuvW7RoAXd3d5iby37gmEAgwK+//oo1a9bgzZs3sLCwwKBBgySeX0X4+PggPT0dixYtQn5+Pvr164egoCCZfWbNmoXXr19j27ZtAABvb28sWbIEM2fOVPr4TZo0we7du7Fq1SrMnTsXrVq1QlBQEDZv3lyh85Fn48aNCAoKQkBAAExNTeHj44Ps7Gzs27evWsYyMDDAvn37sGzZMvj7+6Np06bw8/PDyZMnRdZAb926NSIiIrBlyxYsX74c2dnZsLCwgJOTEwQCQZWc+7Zt27Br1y4cPXoUiYmJMDY2Rrt27TBixAilxwoKCsJXX32F6dOnIzc3FwcOHICzs3OVzJOIiIiIiIiIiKg6aZWUlJTU9iRIdQgEAixatEissE/V682bN3j//fcxefJkzJ49u7anU2vu3LmDkpISFBQUoGPHjhq7JlZNyM7ORlxcHONcA9Q11nUtX/dFVuyvnMpMGSL+kOmaoq7XkCpS11hXdb6e/PWZzP3DPFtVuG/ciyKZ+1s20pa6L+F1scy+HZtLX8pO1pwVIeu8Kjs2ScZ8rZwfLz+XuD36Tq7YtgG2BmLbXkjJt/r64s/XuvB3jti2nm3ExzQ2EO8LAEUSDmVsKN42O0+8tFG/nuQx9cUfXwVv1/cktlXU2aviMa3smOpAXXMVKM3X/Pz8Sp3bqYvSvz8KpXwl/pUg/bvS3Fjy9+SrTOnfkdL6AECWhLwCAJsm0vtIyll56knISUB6DADAQMLnDQAMcpeed2evSP7s83ZjrgLqna+K0pg7yolUya5du2Bubo4WLVogNTUV+/btQ1FRET766KPanhoREREREREREZHGYaGcqBZoa2tjx44dSE5Oho6ODuzs7BAWFoZmzZrV9tSIiIiIiIiIiIg0DgvlJOL+/fu1PQWNUPYATSIiIiIiIiIiIqp9LJQTEUng/dEcpdqfPR6sVPtN4fFKtZ8/xkqp9kSqpLLrg586/UOl5zD0w+GV6l/ZcwBqd51zoqqUmSP7EUcTVv4mdZ+ugbHUfQCQdC1U5n5z+/FS97Vq1kRm37Dvz0nd98MfrrL7Luwic7+smFRmTXciZUXGiK+/+yxNfMHgK3ckr9OrpS2+lv+Bn/8V21aYnS6xf0lxgdg2WzsXsW33kwrFtrm1k7xIcdIb8fwqKhbf1ljCOssDpaxVLG2N9ndJWncckLz2eL74qRPJpasjeZ1tAEiTsq64rvRHbuBhiuQLMStX+mLfRgb1pO4zN5I8v7RM6d97BvqStzesL/1cpTGS8uwCoGLriqvyWuTS1k8HVHve6kb66vtERERERERERERERBqAhXIiIiIiIiIiIiIi0mgslBMRERERERERERGRRmOhnIiIiIiIiIiIiIg0GgvlVOcFBwdDIBBAIBCgQ4cOcHR0xJAhQ7BixQo8fvy4QmNev34dO3furOKZlvr2228hEAjwxRdfVMv45fXt2xcrVqyo0jEDAgIwePDgKh2TiIiIiIiIiIioNrFQTmrBwMAA4eHh+O6777Bt2zaMGDECV69exdChQ3Hq1Cmlx7tx4wZCQ0OrYabA6dOnAQDnzp1Dfn5+tRyjOvn5+WHDhg21PQ0iIiIiIiIiIqIqw0I5qQVtbW3Y29vD3t4ebm5u+Pjjj3Hq1Ck4Ojpi8eLFeP78eW1PEQDw5MkT/PXXX3B1dUVGRgYuXrxY21NSWqtWrdChQ4fangYREREREREREVGVYaGc1Fa9evWwdOlSFBQUICIiQrj95MmTGDduHHr06AEnJyf4+Pjg9u3bwv3BwcEICQlBdna2cEkXHx8fAMDjx48xb948eHh4wM7ODgMHDsS+fftQXFys0JyioqKgpaWFFStWwNzcHJGRkWJtypZLOXz4MDw9PeHo6Ag/Pz+kp6cL22RnZ2PFihXw9vaGnZ0d+vbti6CgIGRmZko99oULFyAQCBAfHy+y/e3bt+jatSsOHz4MAHj48CGmT58OZ2dn2NnZwdvbG7t37xa2f3fplYyMDCxZsgTu7u6wtbWFh4cH5s2bp1A8iIiIiIiIiIiIVIFubU+AqDq1bdsWTZs2RWxsrHBbQkIChg0bhlatWiE/Px9nzpzBhAkTcPr0aVhbW2PUqFFISkpCVFQUwsLCAABGRkYAgJSUFFhbW2PIkCFo0KAB4uLiEBwcjOzsbMyePVvufKKiotC9e3e89957+OCDDxAeHo7MzEwYGxuLtLtw4QKePn2KoKAgvH79GmvWrMHKlSuxefNmAEBubi6Kioowb948mJmZ4eXLl9i5cyf8/Pxw8OBBicf28PBA06ZNcfz4cSxYsEBkTgAwZMgQAMDMmTNhbm6O1atXw8jICM+ePUNSUpLUc1qzZg0uX76MBQsWoEWLFkhNTcWlS5fkxoKIiIiIiIiIiEhVsFBOaq9Zs2Z49eqV8HX5gnZxcTHc3Nxw+/Zt/PDDD5g/fz4sLS1haWkpXM6lPBcXF7i4uAAASkpK4OjoiNzcXBw6dEhuofz27duIj4/Hxx9/DAAYPHgwDh48iLNnz2LkyJEibUtKSrBjxw7o6+sDABITExEaGori4mJoa2vDzMwMy5cvF7YvLCxEy5YtMX78eDx58gTW1tZix9fR0cGIESNw/PhxfPbZZ9DR0QEAHD9+HP369YOJiQnS09ORkJCAxYsXo2/fvgCAnj17yjyvO3fuYPDgwRg+fLhw26BBg2T2kaWkpAQAkJOTU+ExakN2dnadGr8svnUtznWRKsS6fv361TJuXc3X2lLRPFaFa0hTqEKsma+qqTq/56v7Zwh1xXwlRSiTX9XRlvmtGrkKVF++ArV/bppKk/Krps5VE/JVHhbKSe2VlJRAS0tL+Prx48fYtGkTYmNjkZaWJtz+7pIkkuTl5SE0NBSRkZF4+fIlCgoKhPv+/fdfNGjQQGrfqKgo6OnpYcCAAQAAe3t7vPfee4iMjBQrlDs5OQmL5ABgY2ODgoICpKWlwcLCAkDpEjLffvstnj59KvKhGR8fL7FQDgAjR47Ezp07cfnyZfTp0wd///03/vrrLyxcuBAA0KhRI7Ro0QKbNm3C27dv4eLiAktLS5kx6dSpE3744QdYWFjA3d0d7du3l9lensLCQuF51CVxcXFK9mhczeMrpq7FuS6rzVg7OjpWy7iK56t5tRy/rqlsHjNfa45m56siNC+n5edvxWNSXd/xmoL5+q4mVTqXuk56fonHSXJbyfFUtC3z+//U9s8x1ZWvQGXPjTlbUeqXX9KvhZo+V3XOV3lYKCe1l5SUBCsrKwBAVlYWpkyZAjMzMwQEBKB58+aoV68elixZgry8PLljrV+/HhEREZg1axa6dOkCY2NjnD9/Hjt27EBeXp7UQnlxcTF+/PFH9OjRA9ra2sjIyAAAeHl54cCBA0hOTkbTpk2F7U1MTET6lxXNy+Z47tw5fP755xgzZgzmzZsHU1NTpKamYtasWTLPo2XLlnBzc8P333+PPn364Pjx42jZsqXwrnEtLS3s3bsXmzdvxooVK5CdnY3OnTsjMDAQTk5OEsdcunQpGjZsiP3792PdunVo1qwZfH19MX78eLnxlERXVxeFhYWwsrKCoaFhhcaoDR07dlSqfcyjlGodX56cnBzEx8fXuTjXReoca0Xz9c8XqTU4K9VV0TxW52tI1ahzrKvy+/VesubltLz8rUxMqvo7XlMwXyV78Xua/EYaRFp+Jf9PPE6S2l6+JTmektpKij3zW71ztUxlzi1JwrVIilG3/LocK/1aqKlz1YR8lYeFclJrDx8+RHJysnBZkFu3biEpKQmhoaHo0KGDsF1mZqbcO6cBIDo6GmPGjIGvr69wW0xMjNx+165dQ2pqKlJTUyUWnH/88UfhkiyKiI6ORseOHbFixQrhths3bijUd9SoUfD390dycjIiIyPh4+Mjcse9tbU1tm3bhoKCAsTGxmLTpk2YOXMmLl26JPEXAcbGxli8eDEWL16M+/fv48CBA1i+fDnat2+P7t27K3xOZcrmYmhoWKt/bqOs6p5rdY1f1+Jcl6ljrOtqvtaWysaIca456hhr5mvlVGfM+H5Ujjpe05XLVxbdypMeP/E4SW4rOZ6KtlW3a7My1DFXy1Tu3JizFaV+15P0a6Gmz1Wd81Ue7dqeAFF1ycvLw8qVK6Gvr49Ro0YBKH0IJgDo6ekJ2928eROJiYkiffX09JCfny9xzPJ9i4qKcObMGblziYyMRP369fHtt9/iwIEDIv916NABkZGRSp1bbm6uyDzKjqEILy8vmJiYYMGCBXj79i1GjBghsZ2enh569OgBX19fZGVlISVF/h3QAoEAgYGBAEqXuCEiIiIiIiIiIqoLeEc5qYXi4mLcunULQOlDDh48eIDw8HA8f/4ca9euRcuWLQGUrgtev359LF++HL6+vkhOTkZwcLDIsidA6ZrghYWFCAsLg4ODA4yMjNCmTRu4uroiIiICbdu2RaNGjXDkyBGJBfXy8vLycO7cOfTv31/4INDyPvroI6xevRr//PMP2rRpo9D5urq6YsWKFdi+fTscHBwQExOD3377TaG+enp6GDZsGPbu3YtevXqhWbNmwn1///03vv76awwcOBDvvfcesrKyEBoaihYtWqBVq1YSxxs7diz69euHdu3aQUdHBydPnoSenl6F7iYnIiIiIiIiIiKqDSyUk1rIzc3FmDFjAJT+SUrLli3h4uKCkJAQ2NjYCNuZm5tj69atWLduHfz8/GBlZYXly5djz549IuN5enpi/Pjx2LVrF9LS0uDk5ISDBw9i6dKlWLZsGVauXAlDQ0MMHz4c/fr1w5IlS6TO7eLFi8jMzMSwYcMk7h88eDDWrVuHyMhIzJ07V6HzHTt2LBISEnDo0CFhwXvjxo0YPXq0Qv379euHvXv34qOPPhLZbmFhAXNzc4SGhiI5ORnGxsbo3r071q9fDx0dHYljdevWDSdPnkRCQgK0tbXRvn177Ny5UyTuREREREREREREqoyFcqrz5syZgzlz5ijcvnfv3ujdu7fINg8PD5HXurq6WLZsGZYtWyay3dzcHNu3bxcbs2xpF0m8vb1x//59qfvNzMxw9+5d4esLFy6ItXn//fdFxtDR0cHnn3+Ozz//XKTdu8eRNBYAXLp0Caampnj//fdFtjdu3Bjr16+XOlcAWLt2rcjrRYsWYdGiRTL7EBERERERERERqTIWyok0yD///IMnT57g0KFDGD9+PPT19Wt7SkRERERERERERLWOhXIiDbJs2TLcunUL7u7umDFjRm1Ph4iIiIiIiIiISCWwUE6kQQ4ePFjbUyAiIiIiIiIiIlI5LJQTkdrbFB6vdJ+zx4OVaj9p/V35jcqxa2WkVHuiuiz+VVGl+tu5fljpOURfuV2p/gPculZ6DkH7/6lE70Y4dTsJKz5uU+l5EMlz8MenMvf7DGwtc39GrvR9917ky+xr2bPif/HW0kz2P20yOnpK3ffq5WOZfU/+aiJzv7GhltR9wzxbyewrz8lfn1Xb2KR+hni8J7btx8vPxbbpdBVvBwBP0wrFtknKrYvXb0megHh3PEnNFtv26naE2Lbs/P9IHLKernh+JT5/JLatfdv2YtuevZL8eaarI75NUpwGukuO09mr4m2z80rEtkXGiLeT9B4RKSO3QPxaK/MmW0ISAsjLeiW1z/+ypH9/lhRLHk9LW3ofOxtLidt/e5wntU/HZpKXhTWqJ/37Vdq/8zu3lJDg/19hseTtg6TkOgCcvSKexwDg7aZ8H1n9ZI1XlWTNzd2hcY3MQZVp1/YEiIiIiIiIiIiIiIhqEwvlRERERERERERERKTRWCgnIiIiIiIiIiIiIo3GNcqpSgUHByMkJAQAoKWlhQYNGqB58+ZwcnLChAkTYGNjo/SY169fR2xsLGbOnFklc0xISICXl5fEfdbW1oiOjq6S45R3/fp1TJw4Ed9//z1sbW2rfPzKEggEWLRoEaZOnVrbUyEiIiIiIiIiIpLrhx9+ULrP8OHDpe6rcKE8JSUFTZo0qWh3UmMGBgYICwsDAPz777948OABwsPDcezYMaxevRpDhw5VarwbN25g3759VVYoLzN//nw4OzuLbDMwMKjSY5Tp3LkzwsPDK/SLgpoQHh6O5s2b1/Y0iIiIiIiIiIiIFPLFF1+gpKQEWlrSH/wKACUl//cQ3GoplPfp0wc9e/bEhx9+iP79+6N+/foVHYrUjLa2Nuzt7YWv3dzcMH78ePj6+mLx4sXo1q0b3nuv9p/03bp1a5F5VicjI6MaO5YycnNzYWBgoJJzIyIiIiIiIiIikub777+X2yYxMRFRUVG4dOkScnNzZbat8Brln376KVJSUhAQEAA3Nzf4+/vj0qVLKC4uruiQpMbq1auHpUuXoqCgABEREcLtJ0+exLhx49CjRw84OTnBx8cHt2/fFu4vW8olOzsbAoEAAoEAPj4+AIDHjx9j3rx58PDwgJ2dHQYOHIh9+/ZV2TUYEBCAwYMH4/r16xg2bBjs7e0xcuRI3L17V6RdZmYm/P394eDgABcXF2zatAn79u2DQCAQtrl+/ToEAgHu3Lkj3CYQCLB7924EBwfD1dUVzs7OCAwMRHZ2tsj4SUlJ8Pf3h7OzM7p27YoJEyaIzQEATpw4gSFDhsDW1hbu7u7YvHkzioqKRPYLBALExsbi448/hr29PdatWyecy969e4VtfXx8MGPGDERHR8Pb2xsODg6YOHEinj17Jja3GTNmwM7ODh4eHvj222+xevVq9O3btwIRJyIiIiIiIiIiUkznzp0l/tesWTPcunULq1atwmeffYY//vgDI0aMwJEjR2SOV+E7ymfOnImZM2fi3r17iIyMxJkzZxAVFYXGjRtj0KBBwoIdUZm2bduiadOmiI2NFW5LSEjAsGHD0KpVK+Tn5+PMmTOYMGECTp8+DWtra4waNQpJSUmIiooSLudiZGQEoHT5H2trawwZMgQNGjRAXFwcgoODkZ2djdmzZ8udT3FxMQoLC0W2aWtrQ1v7/35/lJqailWrVsHX1xfGxsbYuHEjZs+ejXPnzkFPTw8AEBgYiGvXrmHhwoVo0aIFjh07hr/++kuhmBw+fBiOjo5Yu3Yt4uPjsW7dOjRu3Bj+/v4AgLdv32L8+PGoX78+li5dCmNjYxw8eBCTJk3Czz//jMaNGwMA9u/fj/Xr12PSpEkICAjA48ePhYXysrHKLFiwAGPGjMGMGTNgaGgodW5xcXFIT0+Hv78/ioqKsHbtWixcuBDh4eEASv9sxc/PD69evcLy5cthbGyMvXv34sWLFyIxJCIiIiIiIiIiqk7Z2dk4d+4coqKi8Ntvv8HAwADvv/8+/Pz84ObmplCtqtIP8+zUqRM6deqERYsW4dq1a4iMjMSJEydw8OBBWFtb48MPP8SHH37I9Y8JANCsWTO8evVK+Lp8Qbu4uBhubm64ffs2fvjhB8yfPx+WlpawtLQUW84FAFxcXODi4gKgtGjr6OiI3NxcHDp0SKFC+bx588S2jRw5EqtXrxa+fvv2LQ4dOoR27doBAAwNDTFx4kT8+eef6N69Ox49eoRz587h66+/xrBhwwAA7u7u+OCDDxSKh4WFBTZu3AgA6N27N+7du4ezZ88Ki9thYWHIyMhARESEsCju4uICb29v7N27F4sWLUJWVha2bduGadOmYf78+QBKl7vR09PD2rVrMXXqVDRq1Eh4zLFjx8LX11fu3DIzM3Hy5EmYmZkBKP3ACQwMRFJSEiwtLXHp0iX89ddfOHz4MLp37w4A6NmzJzw8PGBiYqLQ+UtStm5UTk5OhceoCu/e2V/bqno+ZfGt7ThrAlWIdXUtj6Yq+apJVO2zSd0wXxXD61A51RkvTX4vmK9UE6ojxzQtb1UhV4Hqy1eg9s+NKq8ieVnRXFblz4C6nK8nT57El19+ieLiYnh4eGDjxo3w9PSEvr6+UuNUulBeRktLC46OjsjIyEBycjKuXLmCp0+fIiQkBNu2bcP777+PJUuW8AGgGu7dBfYfP36MTZs2ITY2FmlpacLt8fHxcsfKy8tDaGgoIiMj8fLlSxQUFAj3/fvvv2jQoIHM/v7+/ujZs6fItrKicJkmTZoIi+RA6V3xAJCcnAwAwqVUvLy8hG20tbXh6emJ/fv3yz0HV1dXkdc2NjY4c+aM8PWVK1fg7OyMhg0bCu9+19bWhpOTk/DYsbGxyM7OxoABA0TukHd1dUVubi4ePnyIHj16CLf36dNH7rwAoEOHDiLxKDv3skL5nTt3YGJiIiySA0CDBg3g4uKi8B31kpSdgyLXgOIaK90jLi5OyR71lD6GMpSfj2KqNs4kS23G2tHRsVrGVTxfG8nZT4qqrs8CEqXZ+QoA5jL3yr8OZffXNJXPW4tqHLvuY74qgv8GryjpOVbxmGpq3tb2vzuqK1+Byp4b81MVyM5Lye9RRfrI71cTpM+t7Fqui/mamJiIvLw82NnZwcvLC7169VK6SA5UUaG87E7yn3/+GVlZWWjfvj0+//xzDBkyBDo6Ojhx4gRCQ0OxaNEifPvtt1VxSKqjkpKSYGVlBQDIysrClClTYGZmhoCAADRv3hz16tXDkiVLkJeXJ3es9evXIyIiArNmzUKXLl1gbGyM8+fPY8eOHcjLy5NbKH/vvffkLg/07p3RZcutlM0vNTUVenp6MDY2Fmn3bsFdmfHz8/OFr1+/fo1bt26hc+fOYn1btWolbANIf2rvy5cvRV6bmyv2j1d5556SkiLxPBU9d2l0dXVRWFgIKysrmUvDKCPmUYrSfTp27Khchwv/KH0MZSg9HzlycnIQHx9fpXEmydQ51orm66nbSTU4K/VW1Z8FJIr5WupecqrM/fKuw2tPZffXNJXN2+fXX0ndp8mfCcxXxSX/L01+I5JIWo5dvlXxmGpa3qpzrpapzLklMT9Vgqy8vBwr+T2qSB95/WqCrLlZWVnV2XydPn06bGxsEBUVhaCgIHz55Zfo06cPBg8eDA8PD2FNS54KF8r//vtvnD59GmfOnEFKSgrMzc0xcuRIDBs2TOQhhgAwdepU1KtXD19//XVFD0dq4OHDh0hOThYWdG/duoWkpCSEhoaiQ4cOwnaZmZmwtLSUO150dDTGjBkjsoxITExM1U9cBgsLCxQUFCAzM1OkWJ6enl4l4zds2BDu7u6YO3eu2L6y34w1bNgQABASEiIxbi1btqySubyrSZMmEs+zsude9hcHhoaG1frncfLU5rElqa751HacNYk6xlpV8lWTMM41Qx2v6arMV3WLTXWrznjxvWC+KoaFuIqSHv+Kx1TdrldFqWOulqncuTE/VYHs90/ye1SRPvL71QTpcysrjtfFfNXX18eAAQMwYMAAZGVl4ezZs4iMjMTcuXNhZGQEb29vDB48WGTFBUkqXCgfNmwYDAwM4OXlhWHDhsldFL1t27Zia0yT5sjLy8PKlSuhr6+PUaNGAQByc3MBQOS3Ojdv3kRiYqLIcifv3mVdfszyfYuKikSWLakJXbp0AQCcP39euEZ5cXExfv311yoZ39XVFadPn4aNjY3UDykHBwcYGhoiKSkJ/fr1q5LjKsLW1hYZGRn4/fff4eTkBKB0yZvffvutUmuUExERERERERERVYSRkRE++ugjfPTRR0hNTcWZM2cQFRWFY8eOoWnTpjJvsq1wofyrr76Ct7e33OUtyvTs2VNsPWhST8XFxbh16xaA0ocUPHjwAOHh4Xj+/DnWrl0rvMPZ3t4e9evXx/Lly+Hr64vk5GQEBwejadOmIuPZ2NigsLAQYWFhcHBwgJGREdq0aQNXV1dERESgbdu2aNSoEY4cOSKxoC7N06dPhfMso6WlBTs7O4XHaNeuHfr164dVq1YhJycHzZs3x7Fjx5CbmyuyFntFTZ48GZGRkfjPf/6DiRMnonnz5khPT8eff/6Jpk2bYvLkyTAxMcGnn36K9evXIykpCT169ICOjg6eP3+O8+fPIzg4uFr+ZKZ3797o3LkzFixYgPnz58PExAR79uxBgwYNquTciYiIiIiIiIiIpPHy8hI+BFsWLS0t1KtXT/jMQWkqVCjPycnBoUOHkJeXh3HjxlVkCFJjubm5GDNmDIDSPylp2bIlXFxcEBISAhsbG2E7c3NzbN26FevWrYOfnx+srKywfPly7NmzR2Q8T09PjB8/Hrt27UJaWhqcnJxw8OBBLF26FMuWLcPKlSthaGiI4cOHo1+/fliyZIlC89y0aZPYNh0dHdy7d0+p8/3qq6+wYsUKrFu3Dvr6+hg+fDjatWuHw4cPKzWOJI0aNUJ4eDi2bNmCDRs24M2bN2jcuDHs7OxE7h6fMmUKmjZtiv379+PQoUPQ1dVFq1at0KdPH4XXYVKWlpYWvvnmGwQFBSEoKAgmJiaYOHEinjx5ogIPpyAiIiIiIiIiInXWvn17hQrlAERWr5CmQoVyQ0NDJCQk8K5REjNnzhzMmTNH4fa9e/dG7969RbZ5eHiIvNbV1cWyZcuwbNkyke3m5ubYvn272JhlS7tI07JlS9y/f1/u3NauXSu2zcTERKyviYkJNmzYILJtwoQJIuuuOzs7i/WTNIfJkydj8uTJItssLCywevVqufMdNGgQBg0aJHX/iBEjMGLECIn73p3LwYMHxdp07NhRrJ2lpSV27dolfJ2fn49Bgwahe/fucudLRERERERERERUUTt27KjS8Sq89Iq7uzv++9//YuzYsVU5H6I65+zZs3j58iXat2+PnJwcREVF4Y8//pBYxFc34eHhKC4uhrW1NTIyMnD06FEkJiZKvFufiIiIiIiIiIhIVVW4UO7n54e5c+di4cKFGDNmDN577z3Uq1dPrJ2pqWll5kek8urXr49Tp04hPj4eBQUFaNOmDdavX4/333+/tqdW7erVq4ddu3YhMTERANChQweEhobC1ta2lmdGRERERERERETqrGPHjgotvfL3338jPz8fdnZ2KCkpwd9//y2xXYUL5WVLPDx69AhRUVFS23GtYlJ37u7ucHd3r+1p1Iphw4Zh2LBhtT0NIiIiIiIiIiLSMLNnz1Z4jXJdXV257StcKJ81axbXKCeiOmH+GKtqP0bYwi7VfgyiusrKXKe2p4AVHw+p7SlUWHZ2NuLi4tCxY8dKj7Uv8mmlx5gypHWlx6htsuNgjj9fpModQx3iII3PwMqdW4tG0v+NkJEj558fjSr8zxPce5Evc39LGWN3al65/Ep8rdg/0CQ5+eszmfuHebaq8Nik3n68/Fxs20D398S26Uj4Gp45XHKeR8aIjynJQHd7idvNjbXFtuUXiufHtYYTxba910jyzwupWcVi27p36SC2TUf80LBuKmEjgCfJ4mNKmuf+KMnfF40aiH/O6UqYvqQ5SaPo+ynpM4OfE3XXIAnvsTxHoqV/b9i1kvxd92+e9OM0qCf9ezstU/L3W1aejEKjlB/9OzbTl9qnRSPJyZL4WjxX5cnKlT63IinDnb0i/bOvUPkpwNtN+fe1psiaW2kcmuBybBqANCX6KHecqjRr1iyF22pra8ttX+GfRJV5YCMRERERERERERERUXUoLi5Geno6AMDMzAza2kr8tvL/q/gtG+/Izc0FABgYGFTVkEREREREREREREREEt2/fx/BwcH473//K1KfdnNzw9y5c9G+fXuFx6pUofzFixcIDg5GTEwMXr9+DQBo1KgRPDw8MHv2bLRo0aIywxMRERERERERERERifnjjz8wdepUaGlpwcvLC1ZWVgCAp0+f4pdffsGVK1ewZ88edO/eXaHxlL8H/f97/Pgxhg8fjlOnTqFTp06YOHEiJk6ciM6dO+PUqVP46KOP8M8//1R0eLUVHBwMgUAAd3d3FBeLL3Q0duxYCAQCBAQEVPmxAwICMHjwYLntBAIB9u7dW+XHl0bReamCvn37YsWKFbU9jSo1dOhQha+3goICODs7o0OHDnjx4oXY/uvXr0MgEODOnTtVPU0iIiIiIiIiIiKhtWvXonHjxoiOjsbGjRsxZ84czJkzBxs2bMDZs2dhZmaGNWvWKDxehe8o37hxI7S1tfHDDz9AIBCI7Hvw4AEmT56MjRs3Yvv27RU9hNrS09PD69ev8fvvv8PZ2Vm4PTExEbdu3UL9+vVrcXZAeHg4mjdvXqtzUFUhISEwMTGp7WnUmv/+97948+YNACAqKgq+vr61OyEiIiIiIiIiItJIDx48wJw5c2BpaSm2r2nTphg/fjy2bdum8HgVvqP8999/h4+Pj1iRHADat2+PCRMm4MaNGxUdXq3p6emhd+/eOHPmjMj2M2fOoF27dmjVqnafWG1vb48mTZrU6hxqSklJCfLz8xVu36lTJ7Rs2bIaZ6TaoqKiYGJigs6dOyMyMrK2p0NERERERERERBrK0tIShYWFUvcXFhZKLKJLU+FCeWFhocwHdxoaGsqcqKYbPHgwzp49i4KCAuG2qKgoiUuQPH78GPPmzYOHhwfs7OwwcOBA7Nu3T2zplvz8fGzevBleXl7o0qULevfuLXFJjevXr2PYsGGwt7fHyJEjcffuXZH97y694uPjgxkzZiA6Ohre3t5wcHDAxIkT8ezZM7Hjb9q0CZ6enujSpQs++OCDKiumPn78GJ988gkcHR1hb28PX19fsePv27cPH330ERwdHeHi4oIZM2bgyZMnIm3KlnmJiYnBhx9+CFtbW1y4cAHBwcFwcHDA/fv3MW7cONjZ2WHw4MG4fPmySP93l14pG09eTDMzM+Hv7w8HBwe4uLhg06ZN2Ldvn8RfNJWXkpKCwMBAeHl5oWvXrujfvz82bdokVtwXCATYvXs3goOD4erqCmdnZwQGBiI7O1uk3c2bNzFixAjY2toK46Co7OxsXLhwAd7e3hgxYgQePHiA+/fvK9yfiIiIiIiIiIioqkybNg2HDx/G48ePxfb9888/OHToEKZOnarweBVeeqVjx46IiIjAqFGjYGxsLLIvKysL33//PTp16lTR4dWep6cnFi9ejCtXrqBPnz549OgR7t+/j+3bt+PHH38UaZuSkgJra2sMGTIEDRo0QFxcHIKDg5GdnY3Zs2cL282ZMwfXrl3DjBkzYG9vj/T0dPz8888iY6WmpmLVqlXw9fWFsbExNm7ciNmzZ+PcuXPQ09OTOt+4uDikp6fD398fRUVFWLt2LRYuXIjw8HBhm7lz5+LmzZuYNWsWbGxsEBMTg4ULF8LExAQeHh4VjtXz588xduxYtGvXDmvXroWWlhZ27tyJyZMnIzo6Gvr6+gCApKQk/Oc//0Hz5s2RlZWF7777DmPHjsXZs2dhamoqEs9Vq1bhk08+QbNmzdC8eXM8fPgQBQUF8Pf3x8SJE+Hn54fdu3fj008/xYULF9CoUSOp81MkpoGBgbh27RoWLlyIFi1a4NixY/jrr7/knvvr169hamqKwMBAmJiYID4+HsHBwUhNTRVbY+nw4cNwdHTE2rVrER8fj3Xr1qFx48bw9/cXznPq1KkQCATYsmULMjIysHz5cmRnZ6Njx45y5/LLL78gOzsbgwcPRrt27bBmzRpERUXJLfYTERERERERERFVtZSUFJibm+PDDz+Em5sb2rRpAwB48uQJ/vvf/6Jt27ZITU1FSEiIsE9JSQnmzJkjcbwKF8rnzJmD6dOn44MPPsCIESOETxV98uQJfvjhB7x58wZBQUEVHV7tGRoaom/fvjhz5gz69OmDqKgoODg44L333hNr6+LiAhcXFwClb6ajoyNyc3Nx6NAhYaH8ypUruHjxIjZu3ChyV/q7d6i/ffsWhw4dQrt27YTzmDhxIv7880+ZT4DNzMzEyZMnYWZmBqD07uLAwEAkJSXB0tIS165dw4ULF7B371706tULAODm5obU1FQEBwdXqlAeEhKChg0bYv/+/ahXrx4AoFu3bvDy8kJERAQmTJgAAPjiiy+EfYqKiuDm5gYXFxecPXsWY8aMEYnB7t27YWdnJ3KcskJ52Vytra3h5eWFS5cuYejQoVLnJy+mjx49wrlz5/D1119j2LBhAAB3d3d88MEHcs9dIBDg888/F77u1q0bDA0NERAQgKCgIBgaGgr3WVhYYOPGjQCA3r174969ezh79qywUB4WFgYtLS3s3r1b+MstS0tLTJ48We48gNK/eGjatCl69OgBbW1t9OzZE1FRUZg/fz60tLQUGkMRJSUlAICcnJwqG5PElcWXca5+qhDr6nr2RV3K13f/wqYuUYVrqLy6HMuqVF1xYL6qn8peK8w5yVThs1EV81XR64XXVe1RJvbq8H6qQq4C1ZevQO2fG9UOVc67qlaRc61MfJTJ1/LPxrx8+bLYyhAPHjzAgwcPRLZVS6HcxcUFu3btwrp167Br1y6RfR07dsT69evRs2fPig6vEQYPHowFCxYgNzcXP/74I3x8fCS2y8vLQ2hoKCIjI/Hy5UuR5Vr+/fdfNGjQAL/99hsMDQ0xaNAgmcds0qSJsKALAG3btgUAJCcny+zXoUMHYZG8fL+yQvmVK1dgamqKnj17iiy54+rqii+//BJFRUXQ0dGReQxprly5goEDB0JHR0c4tomJCTp16iSyxMmtW7ewdetW3Lt3T/jASQCIj48XGc/U1FSsSA4A2trawl9IAEDLli1hYGAgNzbyYnrnzh0AgJeXl8ixPD09sX//fpljl5SUICwsDMeOHUNCQgLy8vKE+54/f4727dsLX7u6uor0tbGxEVkH/88//4Szs7PIX4C4uLiI3G0vTXp6Oq5cuQIfHx9oa5eu2DRkyBB8/vnn+N///ifzlyzKKnuP333fqHowzjWnNmPt6OhYLeMqnq/m1XJ8ZcTFxdX2FCqtaq6hyr8X6hBLVY5D7edrVbCogWPUHfKvFdnxUo+cqz6a/f0q/lwpydeLou0kt6WqpUzsJbcV/8yoC58Ttf3vjurKV6A2zo3fs6qgLuSd8iR/B8g+14r0kU2ZfK3q96HChXKgtDB38uRJpKam4sWLFwCA5s2bw8KCSauIXr16QU9PD1u3bkVCQoLUO4zXr1+PiIgIzJo1C126dIGxsTHOnz+PHTt2IC8vDw0aNMCbN29gYWEh985eExMTkddlS4OUL8BWpN/r16/x5s0bdO7cWWL/1NRUpRbPL+/169cICwtDWFiY2L6yebx48QJTpkxBly5dsHz5cjRp0gR6enqYMWOG2LmZm0v+x7GBgYFwGZfy41c2NqmpqdDT0xNboqj8Lx6kCQsLw9dff41p06bB2dkZJiYmuHPnDlasWCE2L0nzKL+WeWpqKlq3bi12DEXm8dNPP6GwsBAeHh7IyMgAADg7O0NfXx+RkZFVWijX1dVFYWEhrKysRO6Yp6qVk5OD+Ph4xrkGqHOsFc3XP1+k1uCsJFNkiSlVVZXXUFW8F3U5lmU0MQ41+f36/Pqrah2/rpF3rciLV1271moKv1+B5P+liW2TdL1cvqVYOwB48bt4W6pa0mKv6Psp6TNDlT8n1DlXy9T0ud1P5fesKlDlvKuoy7GSvwNknWtF+qiyShXKy1hYWLA4XgF6enro378/vv32W7i4uEgt4EZHR2PMmDHw9fUVbnv3IYympqZITU1FSUlJlS6DoaiGDRvCzMxM7K8LyihSjJU1toeHB8aPHy+2r0GDBgBK/7wiOzsbISEhwoJxYWEh3r59K9anpuNjYWGBgoICZGZmihTL09PT5faNjo5G3759sWDBAuE2SQ8oUHQeaWniH2CKzCMqKgoAJC7TEh0djSVLlshc414ZZe+PoaFhtf55HJVinGuOOsa6LuWrqs9PEaoSZ1WYgyqoa3GoS/mqbiobb75fsqnjNa14vor/bC+5vaLtJLelqqVM7BW9tutCDqhjrpZR53Mj6dTzPZf8HaDsd5H8PtXj3r17WLNmjXAJ54qocKH85MmTctvUq1cPlpaW6Ny5s9idulRq1KhRSEtLw+jRo6W2ycvLEylCFhUViSypAZTe3b9792789NNPGDhwYLXNVxpXV1fs2bMHenp66NChQ5WO7eLigocPH6JTp05Sl2/Jzc2FlpYWdHX/75Iuuwu6tnXp0gUAcP78eeEa5cXFxfj111/l9s3NzRUrQEdGRlZoHl27dsXRo0dFCva//fabyDI1kiQmJiI2NhZjx44Vu7bi4uKwZs0aXL58GX379q3QvIiIiIiIiIiIiCrj7du3+P3330WWrFZWhQvlAQEBwt90lz1spEz57VpaWjAyMoKvry+mT59e4Ymqq65du+Kbb76R2cbV1RURERFo27YtGjVqhCNHjogsqVHWxsPDA1988QWePXsGOzs7vHnzBmfPnsWWLVuq8QxKubm5wdPTE9OmTcO0adMgEAiQk5ODR48e4enTp1i9erXM/llZWYiOjhbb7uzsjE8//RQjR47E1KlTMXr0aJibm+PVq1e4ceMGunfvjsGDBwvXww8MDMTYsWPx8OFD7N+/X2w5ktrQrl079OvXD6tWrUJOTg6aN2+OY8eOCYv7sri6uuLAgQM4dOgQrKyscPr0aTx9+rRC85g0aRKOHDmC6dOnY/r06cjIyEBwcLDcNcrL7iafNm2a2MNmHR0dsWvXLkRFRbFQTkREREREREREdVal7igPCAiAqakpJkyYgFatWgEAnj59isOHDyMzMxNLly5FWloaDh48iE2bNqFBgwYSl88g2ZYuXYply5Zh5cqVMDQ0xPDhw9GvXz8sWbJEpF1wcDBCQkIQHh6OkJAQNG7cGG5ubjU2z23btmHXrl04evQoEhMTYWxsjHbt2mHEiBFy+758+RJz584V23748GF0794dERER2LJlC5YvX47s7GxYWFjAyckJAoEAACAQCIR/XjFjxgx07NgRW7duxWeffVbVp1khX331FVasWIF169ZBX18fw4cPR7t27XD48GGZ/WbNmoXXr19j27ZtAABvb28sWbIEM2fOVHoOTZo0we7du7Fq1SrMnTsXrVq1QlBQEDZv3iyzX1RUFLp16yZWJAdK108cPHgwjh07hn///VfpOREREREREREREVWFyi63rFXy7u3gCgoMDERKSgr27t0rtq+kpATTpk2DpaUlVq9ejeLiYowfPx7//vtvhZeNIFI3EyZMgLa2Ng4ePFjbU1EZd+7cQUlJCQoKCtCxY0c1XfNLNWRnZyMuLo5xrgHqGmtl8nVfZMX+EqYqTRki/jDjuqIqr6GqeC/qcizLaFocavr79eSvz6Tui3tRVG3HTXgte8m9lo2k3yNkYqgts2+LRrL/0ZX4Wvo/qWaNkH2tyIoXAAzzbCVzv6bi9yvw4+XnYtsGuovf3HL2qng7b1fxdgAQGSPeVpJXmcUSt5sbi+dSfqF4flx7LP5n8e81krzMZmqW+LFMDMSPoyMhjTu/J3nMJ8niY1qaiuf5638l53ajBuJtiySExFBfvJ2k9whQ/P2U9Jmhyp8T6pqrQGm+5ufn1/i5HYmW/r1RT8qjw/7Nk/491aCe9O+4tEzJ/bJkjKcrOe1katFI8vdw4mvJnzUAUCjlR4rW5tK/0yXlKQA0rC89BoVS+gySkst12dkrkr8DvN2kn2tF+lSXx48fY8+ePVi8eDGMjIwqNIbsnwhl+OWXX+Dl5SVxn5aWFvr27Ytz586VHkRbG97e3hVeMoKorjt79iy+/fZbXL16FefPn8e8efPwxx9/YNKkSbU9NSIiIiIiIiIiojrNxsYGa9asqXCR/P+1d+dxNeX/H8BfrYpKImJsZblCaRGTKHtUxjJ23+wasg1jTI3tJ4x9GWU3CF8kO5Gxm7HO9yvDGDMMGjIihUrbrc7vjx6dr+ve6t6We2+31/PxmMdX537O+3zO+553fN/33M8BSrD0Sm5uLp48eVLg60+ePEFu7v8+djE2NkalSpWKeziicq1y5co4evQoYmNjIZVKYWdnh+XLl6Nr166anhoREREREREREVGFV+xGeefOnbF37140aNAAAwYMEJvgmZmZ2L9/P/bt24eePXuK42NiYsR1zIkqmg4dOqBDhw6angYREREREREREZFOsLe3R3FWFf/jjz8Ubi92o3zWrFl49uwZFi5ciKVLl8La2hoAkJCQAKlUCkdHR8yaNQtAXvPcxMQEo0aNKu7hiIiIiIiIiIiIiIgAAJMmTSpWo7wgxX6YJ5D30M4zZ87gp59+wj///AMA+OSTT9C+fXt07doV+vrFXgKdiCogPsxTfXT5oTraRldzzXpVH129hrSRruaa9ao+unoNaSNdzXVZ1Kuih3mmF/Agvkz5Z2zidar82Bpmih98p+jBnZUVPCgwTcHxLaso7h8oGqvogXzVLeSPk5qu+Dw/71JfZ68hbaPLeS7rh3kevaj4oZ1/vij4AZcFKahmi1LdXPF+in5X5CvoIZvZuYU8AFRf8XEKejgpkFfHihT0cEmg4AdMFmcfXaTL9aqsYt9RDuQ9tLN79+7o3r17ac2HiIiIiIiIiIiIiEhpubm5SEpKgr6+PqysrIoVo0SNcgB4+fIlfvnlFyQmJsLb2xs2NjbIzc1FcnIyzM3NYWBgUNJDEBERERERERERERHJSExMxIoVK/Djjz/i/fv3AAALCwt069YN06dPR/Xq1ZWOVexGuSAIWLJkCf79738jOzsbenp6aNq0KWxsbPD+/Xt07twZU6ZMwciRI4t7CCIiIiIiIiIiIiIiOUlJSRg4cCASEhLQvXt3GBgY4NixY+jZsycuXLiAn3/+Gfv370etWrWUilfsRcS3bt2KnTt3YvTo0di+fbvMwunm5ubo3r07fvzxx+KGJw0IDQ2FRCIR/3NwcEDPnj2xZcsW5ObKroElkUjwww8/aGimee7fvw+JRIIbN24ofP23336DRCLB0aNHFb6ek5ODdu3aYebMmYiLi4NEIkF0dHRZTrlAnTt3RkhIiPhzUFAQ/Pz8Sv04oaGhuHXrltx2bXg/iYiIiIiIiIiIlLV+/XokJSXh4MGDWLFiBfr06QNBEPDll1/ixIkTMDAwwJo1a5SOV+w7yiMjI9GnTx9Mnz4db968kXtdIpHg8uXLxQ1PGmJiYoLw8HAAQEZGBm7cuIGVK1dCEAQEBARoeHaqadmyJWxtbREVFYXevXvLvX7t2jUkJiaiV69eqFmzJiIiItCwYUP1T1SBwMBApKWllXrcsLAwVK5cGS4uLjLbIyIiUKdOnVI/HhERERERERERUVk4f/48BgwYgCZNmsi9ZmFhgYEDB2LXrl1Kxyt2o/zFixdwdnYu8HVTU1OkpqYWNzxpiL6+PpycnMSfP/30Uzx48AA//vhjuWuUA4Cfnx82btyIN2/eoFq1ajKvnThxAtWrV0e7du1gYGAgc96aVr++4qc3lxVtOnciIiIiIiIiIqKiJCQkoHHjxgW+Xq1aNSQnJysdr9hLr1SvXh0vXrwo8PV79+6hdu3axQ1PWqRKlSrIzs5Web+LFy9i1KhRcHd3h4uLCwYMGCD3LYNDhw5BIpHg999/x9ixY+Hk5ITu3bvjyJEjcvHWr18PDw8PODs7Y9KkSUhMTCxyDr169YJUKpVbUiUzMxNnzpyBj48PDAwMFC69cu7cOfTr1w/Ozs5o3bo1+vXrh0uXLomvK1quZMeOHZBIJOLPaWlpCAkJgbe3N1q1aoXOnTtj7ty5SElJKXTeHy+90rlzZ5llcfL/CwoKAgC8evUKwcHB6NKlCxwdHdG9e3esWrUKWVlZMvMFgGXLlon75y9bo+hc9u3bB29vb7Rs2RKdO3fG+vXrZZbgUeW9IyIiIiIiIiIiKk2WlpZ4+/Ztga9fvnwZDRo0UDpese8o79atG/bt24d+/frBzMwMAKCnpwcA+Pnnn3H48GGMGTOmuOFJg/Kb4vlLr/z444/44osvVI4TFxeHTp06YfTo0dDX18fly5cREBCA8PBwtG3bVmbsjBkzMHDgQIwaNQr79+9HUFAQHBwc0KhRIwDA7t278f3332P06NFo164drl69ilmzZhU5hwYNGsDBwQEnTpzAkCFDxO0XL15EamoqevXqpXC/p0+fYurUqfD19cVXX32F3Nxc/PHHH3j37p1KOcjIyEBOTg6mTZsGKysrvHjxAhs3bkRgYKBKX/0ICwuTaXr/+eefmDdvHmxtbQEAb968gaWlJYKDg2FhYYHY2FiEhoYiISEBixcvBpC3vMqgQYPg7+8vNuEL+tRt165dWLhwIfz9/dGxY0fExMQgLCwMKSkp+Oabb2TGFvXeERERERERERERlbYmTZrg3r17ctsvXLiAK1eu4Ny5c1i0aJHS8YrdKJ8yZQpu3LiB3r17o3Xr1tDT08OWLVvw/fff4/bt27C3t8f48eOLG540JC0tDS1atJDZ5uPjU6xlV/71r3+Jf87NzUXbtm3x119/Yf/+/XKN8mHDhmHYsGEAAGdnZ1y6dAmnT59GYGAgcnJysGnTJvTu3Vts0nbo0AGJiYkFPqjzQ7169cLixYvx4sUL8VsOUVFRqF+/Plq1aqVwn99//x1SqRRz5swRPwjq0KGDyjmwsrLC/PnzxZ+zs7NRt25dDB06FE+ePBEb3UVp3ry5+OekpCRMnz4dHh4eGDduHIC8O8I/bGC7uLjA1NQUQUFBmDt3LkxNTcXlVWrXrl3oUis5OTlYt24dfH19MXv2bABA+/btIZVKsW3bNgQEBMgsY1PYe1cc+Q8GTk9PL9b+pJz8/DLPZU8bcl25cuUyict6VQ9tuIYqCm3INeu1fNOGa6ii0IZcs17Lr7S0NK24hioCbclzWdUroPlzq6iK81w3de1TXpXHevXx8cHy5cuRlJQEKysrAHk3cs+aNQvm5ub49ttv8fnnnysdr9iNcnNzc+zfvx/btm3D6dOnUalSJfzyyy+oX78+Jk6ciLFjx8LExKS44UlDTExMsHv3bgBAVlYW7t27h7Vr12L27NnincnKio+Px+rVq3H16lUkJCSI/+D7uBEP5DVi81WuXBl16tRBfHy8GOfVq1fo1q2bzD7e3t5KNcp9fHywdOlSnDx5EmPGjEFqaiouXrxY6DceJBIJDAwMxLul3dzcYG5urtR5f+zIkSPYsWMH/v77b5lfsLGxsUo3yvNJpVJMnToVBgYGWLVqFfT181ZPEgQB4eHh2L9/P+Li4pCZmSnu8+zZMzRt2lTpYzx+/Bhv3rxBjx49ZLb7+Phg06ZNuHPnDry8vMTthb13xZH/jYbY2NhixyDlMc/qo8lcu7q6lklc1qt6Mc/qw3qlkmKe1Yf1qoyapRRHd9y/f1/8M+tVPTSd57KqV6Asz826jOLqhg/rWFbBv/NKdx/dVZ7qtX///ujfv7/4s0QiQWhoKKpXr44WLVrA2NhYpWMXu1EO5DVVAwMDi33nKGkffX19ODg4iD+7uroiJycHS5YswahRo5RuuObm5mLChAlISUnBlClT0KBBA5iammLt2rUK17b/uAltZGQkLjWSkJAAAOInQ/lq1Kih1Fysra3Rtm1bnDhxAmPGjMGZM2eQmZlZ4LIrAGBra4uNGzdi06ZNmDRpEvT19dG+fXvMnTsXderUUeq4AHDmzBl88803GDRoEKZNmwZLS0skJCRg4sSJMs1sZS1atAi//fYb9u/fj6pVq4rbw8PDsXTpUowdOxZt27aFhYUF7t69i5CQEJWPk7+8TPXq1WW25//88fIzhb13xWFoaIjs7Gw0bNgQpqamxY5DhUtPT0dsbCzzrAa6nGvWq3ro8jWkbXQ516xX9dDla0jb6HKuS7tef7pd9LOdKhp7e3udvoa0SUXIc1mdW9zN16UeU5fY29sr3P5TTMG/80pzH12kC/VqZWWFrl27ymxLTEyU63EVpNiN8uHDh2PChAlwd3dX+Pr169exfv167Ny5s7iHIC1hZ2cHAPjrr7+UbpT//fff+P3337Fu3TqZCzQjI0Pl41tb532KmpSUJLP99Wvl/9Lo1asXgoOD8fjxY5w4cQItWrQQz6sgnp6e8PT0RGpqKi5fvozFixcjODgY4eHhAABjY2NIpVKZfT5+km50dDTs7e0REhIibrt586bS8/7Qvn37sG/fPqxduxZNmjSRO07nzp3x1VdfidsePXpUrONYWloCkM93/sNTP2zQl4X8Zx2YmpqW6dfjKA/zrD66mGvWq3oxz+qji7lmvaoX86w+upjr0q9XNso/9mFedfEa0ka6nGddPjdtVnDOC/6dV7r76C5duKbfvHmDM2fO4OTJk/jll18UrmOuiH5xD3jz5s1CG5VJSUn45ZdfihuetMjDhw8BQGZd6qLk38VsZGQkbnv+/DliYmJUPr6NjQ2sra1x5swZme2nT59WOkb37t1RqVIlhIeH4/r164XeTf4xMzMz+Pj4wNfXV6b5bGNjI9eMvnr1qszPGRkZMjkAgOPHjyt97Hz/+c9/sHDhQowfPx7du3eXe13Z4xgZGRV5h7mtrS2srKwQHR0ts/3UqVMwMjKCo6OjyvMnIiIiIiIiIiIqKykpKTh8+DDGjh2LDh06YN68eUhMTFRpJZQSLb2S/0m3In///TeqVKlSkvCkAbm5ubh9+zaAvPWw7927hw0bNqBx48Zo3bq10nHs7OxgY2ODlStXIjc3F2lpaVi7di1q1lR9fTwDAwMEBARg0aJFqF69Ojw8PHDlyhXcuHFD6RhmZmbo2LEjIiIioKenBx8fn0LH79u3D7dv30aHDh1gbW2NuLg4HDt2DB4eHuIYb29vhIeHw8HBAba2tjh27BhevnwpE6ddu3YICQnBunXrxAddXrt2TaXzT01NxeTJk9GgQQN4eXmJ7w+Q95WS+vXro127dti5cyd2796Nhg0b4tixY/j777/lYtnZ2eHcuXNo3bo1TE1NYWtrKz6sNJ+BgQECAwOxcOFCWFlZicfcsmULRowYodIHJkRERERERERERGXh/fv3OH/+PE6ePImff/5ZXLosICAAPj4+aNy4sUrxVGqUHz58GIcPHxZ/3rBhA/bv3y83LiUlBX/++Sc8PT1VmgxpXkZGBgYNGgQgb208GxsbfPbZZ5g0aZLcHcuFMTY2RmhoKEJCQjB16lTUrl0bEyZMwPXr1/Hbb7+pPC9/f38kJydjz5492Lt3L9zd3bFw4UKMHTtW6Ri9evXC6dOn0bZtW9SqVavQsRKJBBcuXMDixYvx9u1bWFtbw9fXF1OnThXHBAYGIjExEevWrYOenh4GDRqE4cOHY8mSJeKYwYMHIy4uDrt378YPP/yA9u3bY+XKlRg4cKDS83779i2SkpKQlJSEwYMHy7zWt29fLFmyBBMnTsSbN2+wdu1aAHlN/NmzZ2P8+PEy4+fOnYvvvvsO48aNQ0ZGBnbu3Im2bdvKHdPf3x+GhobYsWMH9u7dC2tra0yaNEkuHhERERERERERkSZ4eHggIyMD9evXx+jRo9GzZ080a9as2PH0BEEQlB2c36QE8pbjsLGxkXuQH5C3fk+LFi0wceJEpRdLJyK6e/cuBEGAVCqFvb19uV8TS5ulpaXh/v37zLMa6GquWa/qo6vXkDbS1VyzXtVHV68hbaSruS6Lej199ZnctvRMxW2ATKn8ttep8mNrmCn+dnlWtvzYypXkx6YpOL5lFcUrwyoam5MrP666hfxxUtMVn+fnXerr7DWkbXQ5z3fv3kVWVlaZndvRi08Vbv/zhYICKEJBNVuU6uaK91P0uyJfdk4B23MLbj8a6is+TqVC7tf8vEt9hdtPX5H/nZfP26Neqe2ji8pjvTZv3hympqYYOnQofH19S9QkB1S8o3zo0KEYOnQoAKBz586YNWsWunTpUqIJEBERERERERERERGpYvny5YiKikJ4eDi2bNmChg0bokePHvD19UWTJk1UjlfsNcrPnz9f3F2JiIiIiIiIiIiIiIrN19cXvr6+SE1NxdmzZxEVFYWtW7di48aNaNy4sdg0t7W1VSpeiR7mmS81NRWpqanIzZX/+kedOnVK4xBERERERERERERERDLMzMzQp08f9OnTB2/fvsWZM2dw8uRJbNy4EWFhYfjjjz+UilOiRvmePXuwY8cOPHtW8Fo+9+/fL8khiIiIiDRu2/G/Sxwj9nUBCzYqpRqO3olHyCi7Es+DiIgqFu928uvrKlq3HACMFXQILBWsbZxVwPrEitYjN1Cw9LiZqfIxFa1RbKBgPWNF51lWFOVP2Tyrc55UvvXuqPoa3OrSu6Pq13FJ1gFXZe3s4qwpXpHWIa8ILC0tMWDAAAwYMABJSUk4deqU0vsqflqGEvbu3YuQkBDUr18fX375JQRBwIgRIxAQEIAaNWqgWbNmWLRoUXHDExEREREREREREREVi5WVFYYNG6b0+GI3ynfv3o327dtj69atGDhwIADAy8sL06ZNw8mTJ/H+/Xu8ffu2uOGJiIiIiIiIiIiIiAqUkZGBsLAw+Pn5wdHREU5OTujduzfWr1+PjIwMlWIVu1H+9OlTdOrUCQBgZJT3XSipNO+7Uubm5ujfvz/27NlT3PBERERERERERERERAqlp6dj6NChWLduHczNzeHm5obMzEzUqlVLvLk7JSVF6XjFbpSbm5sjJydvrU0zMzOYmpoiPj5efL1KlSp4/fp1ccMjNDQUEokEEokEzZo1g6urK3r16oWQkBA8evSoWDFv3LiBjRs3FntOhdmxYwckEgm+/fbbUo176NAhSCQSJCUlFTrO398fX3zxhfhzWZ6rOuJro9atWyM0NLTQMf7+/pBIJJg2bZrca6mpqXB0dIREIsGhQ4dKZU69e/dGUFCQSvvExcVBIpEgOjpa3Na5c2eEhISUypyIiIiIiIiIiIjK2saNG/HgwQNs2bIFe/fuxbhx4yAIApYuXYqjR48iISEBa9euVTpesRvlTZo0kXliaKtWrbB37168fPkSL168QEREBBo2bFjc8AAAExMTREREYN++fVi7di369euHq1evonfv3jh69KjK8W7evIlNmzaVaE4FOXbsGADgzJkzyMrKKpNjFGbevHn45ptvxJ/L8lzVEb88q1y5Mi5cuIC0tDSZ7WfPnoWBgYGGZlW4sLAwjB49WtPTICIiIiIiIiIiUkp0dDT69u2L9u3bAwAEQRBfq1evHgYPHowzZ84oHa/YjfLPPvsMDx8+FJvCkydPxqNHj9CxY0d07twZT548wZdfflnc8HmT09eHk5MTnJyc4OHhgVGjRuHo0aNwdXXFrFmz8OyZ5p/0CwBPnjzBvXv30K5dOyQnJ+PixYtF7pOVlYXc3NxSm0Pjxo1hZ2dXavHUrbTzoUkuLi4wMTHB+fPnZbafOHECXbt21dCsCte8eXPUrVtX09MgIiIiIiIiIiJSyosXL9CiRYsCX69duzYSExOVjlfsRvnnn3+OyMhIGBsbAwBcXV0RFRWFoKAgzJo1C8eOHUPHjh2LG75AlSpVwpw5cyCVShEZGSluP3LkCIYMGYI2bdrAzc0N/v7+uHPnjvh6aGgowsLCkJaWJi7p4u/vDwB49OgRpk2bBi8vL7Rq1Qo+Pj7Ytm2b0o3bEydOQE9PDyEhIahRowaOHz8uNyZ/aYstW7agU6dOcHR0FB92euTIEfTp0wcODg5o27Ytxo0bh+fPn8vsHx8fj7Fjx8LJyQndu3fHkSNHZF7/cOmVws41/3wnTJgAV1dXODk5ISAgAE+fPpWJl5ubi+3bt6Nnz55o2bIlPDw8MGXKFKSkpBQaPygoCH5+fjKxkpOT5ZYbKSwfhw4dQq9eveDg4IAOHTpg9erV4jI/BVHmPcxfcuTo0aMICQmBm5sb2rdvj6VLlyI7O1sm3tmzZ9GjRw84ODigf//+MtdSUQwNDeHt7Y0TJ06I25KSknDt2jW53OTbt28fvL290bJlS3Tu3Bnr16+Xu/5u3bqFfv36wcHBAX5+frh06ZLCWDExMRg+fDicnJzg6uqKr776qshfCh8vvZL/Pt64cQN9+vSBk5MT+vfvj99++01mv5SUFMyYMQPOzs5wd3fHqlWrsG3bNkgkkkKPR0REREREREREVBJmZmZIT08v8PWYmBjUrl1b6XiGqhw8MzMTixYtQpMmTWQar/nq1auHESNGYOfOnQgPD8esWbPEB32WpsaNG6NWrVqIiYkRt8XFxaFPnz6oX78+srKyEBUVhWHDhuHYsWOwtbXFgAEDEB8fjxMnTiA8PBxAXjIB4NWrV7C1tUWvXr1QpUoV3L9/H6GhoUhLS8OkSZOKnM+JEyfQunVr1KtXDz179kRERARSUlJgbm4uM+7HH39EgwYNMGvWLOjr66Ny5crYunUrli9fjv79+2PatGmQSqW4fv06kpKS8Mknn4j7zpgxAwMHDsSoUaOwf/9+BAUFwcHBAY0aNZKbT2Hn+uzZMwwePBhNmjTBkiVLoKenh40bN2LkyJGIjo4WP/hYsGABIiIiMGLECHh4eOD9+/e4ePEi0tLSCo2vCkX52L59O5YvX44RI0YgKCgIjx49EhvlM2bMKDCWKu/hmjVr0KVLF6xZswYxMTEIDQ1F/fr1MWTIEADA/fv3MWXKFHh6eiI4OBhxcXH48ssvVVpSx8/PD6NGjcK7d+9QtWpVnDp1CrVq1YKzs7Pc2F27dmHhwoXw9/dHx44dERMTg7CwMKSkpIjL6SQkJGDMmDGQSCRYs2YNkpOTMX/+fKSlpcHe3l6MFRMTA39/f3h5eWH16tVIT0/HmjVrEBgYiIiICKXnn3/MhQsXIiAgAObm5li5ciUmTZqEM2fOiHUdHByM69ev4+uvv8Ynn3yC/fv34969eyodh4iIiIiIiIiISFUNGzbEn3/+Kbf9jz/+wLVr13DkyBFMnz5d6XgqNcojIiJw+PBhnDx5stBxnTp1wvLly9G0aVMMHTpUlUMorXbt2jIPC/2wGZqbmwsPDw/cuXMHhw8fxvTp02FjYwMbGxtxOZcPubu7w93dHUDeWjaurq7IyMjA7t27i2yU37lzB7GxsRg1ahSAvAbprl27cPr0afTv319mrFQqxZYtW1C5cmUAeXfjhoWFYdCgQTJ38ypanmPYsGEYNmwYAMDZ2RmXLl3C6dOnERgYKDe2sHMNCwtD1apVsX37dlSqVAlA3lIhXbp0QWRkJIYNG4YnT55g7969mDZtmswDQr29vWWOoSi+Kj7OR2pqKtauXYuxY8eKF7GHhweMjIywZMkSjBkzBtWqVVMYS5X30NHREbNnzxbj37hxA6dPnxYb5Zs3b0bt2rWxbt06cU3xSpUqYdasWUqfW+vWrVG9enX8+OOPGDBgAKKiohTeTZ6Tk4N169bB19dXnFP79u0hlUqxbds2BAQEoFq1aggPD4eenh62bNkifgBjY2ODkSNHysRbuXIlWrZsibCwMOjp6QEAmjZtKt6B7uXlpfQ5vHv3Drt370aTJk0AAKamphg+fDh+/fVXtG7dGn/99RfOnDmDpUuXok+fPgCADh06oGfPnkofQ5H89aQK+0SQSi4/v8xz2dOGXOf/ni1trFf1+/j5F1S6WK9UUtpwDVUU2pBr1qt2UfXvyNK+hpQ9fkX7u1wbahUou3oFNH9umlDa13FR8bTlOtJ12pJnVeq1e/fuWLt2LWbNmiX2y/T09DBq1CgYGhpi+PDhGDt2rNLxVGqUnzp1Ct27d0e9evUKHVevXj14e3sjKiqqzBrlgiCIjUAgb+mNVatWISYmRmaZidjY2CJjZWZmYtOmTTh+/DhevHgBqVQqvvb+/XtUqVKlwH1PnDgBIyMj9OjRAwDg5OSEevXq4fjx43KN8rZt28q82TExMUhPT5cbp0j+ovRA3gVTp04dxMfHF7nfx65cuQIfHx8YGBiIy41YWFigefPm4rIa169fhyAISs2rJBTlIy0tDT169JBZCqVdu3bIyMjAw4cP0aZNG4WxVHkPP8wlADRq1AjXr18Xf/7111/RuXNnmQdv9ujRQ6VGuZ6eHnx8fBAVFYX27dvj1q1bmDdvnty4x48f482bN+L1k8/HxwebNm3CnTt34OXlhV9//RVt27aV+ZaCu7s7LC0txZ/T09Nx69YtzJw5U2apmoYNG6J27dq4e/euSo3ymjVrik1yIO+bHADw8uVLAMDdu3cBAF26dBHH6Ovro1OnTti+fbvSx/lY/nuvTO1SyTHP6qPJXLu6upZJ3IpVrzU0PQEAed96orLHeqWSYp7Vh/VaXDXLMLZmFPfvyOLlWT5/io+v7Djdp+nfi2VVr4Amzk3z9Vu867jgeSsbT9PXUUWh6TyrUq/+/v7o06eP2F+0tbVFUFAQqlevDjc3N9SqVUulY6vUKH/w4AF69eql1FgXFxesWrVKpcmoIj4+Hg0bNgSQdyfy6NGjYWVlhaCgINSpUweVKlXC7NmzkZmZWWSs5cuXIzIyEhMnTkTLli1hbm6Oc+fOYcOGDcjMzCywUZ6bm4uTJ0+iTZs20NfXR3JyMoC8xuHOnTvx8uVLmTekevXqMvvnr8lds2bRv+Q+XsbFyMhIpaVA8r158wbh4eHikikfx8yfl6Ghodx8S9vH8d+8eQMA6Nu3r8LxL168KDCWKu9hUblMSEiQm5uZmZl4B76yfH19ER4ejh07dqBJkyaQSCTiNZLv3bt3AORzkf9z/usJCQlo0KCB3DGsrKzEPycnJyMnJweLFy/G4sWL5cYWlj9FLCwsZH7Ovz7yayohIQFGRkZy+fxwTsVhaGiI7OxsNGzYEKampiWKRQVLT09HbGws86wGupzrilSvv/6ToOkpAIDMcltU+livVFK6fA1pG13OtTrq9afbyj/YrLxQ9e/IklxDivKn6PjKjtNlulyr+dR9bj/FaL5+i3MdFzbvouJVhOtIG5THPBsYGMjcRGpjY4MRI0YUO55KjXKpVKr0muPFbeQq4+HDh3j58qXYUL19+zbi4+OxadMmNGvWTByXkpICGxubIuNFR0dj0KBBCAgIELcV9KDED12/fh0JCQlISEiAm5ub3OsnT54Ul2QBIHMHPADxjXz16pVS8ywNVatWhZeXl8I7/fObyZaWlsjOzkZiYqLKzXJjY2OZu7mB/zV7P/ZxPqpWrQogb3kYRfmoW7dugcct7nuoiLW1tdzDL1NTU5X60OVDLVu2RL169bBz505MnTpV4Zj8ayApKUlme/7x83OiaE4f72dubg49PT188cUXCpfvKWjZmuKytraGVCqVW4//43NRVf51YWpqWqZfj6M8zLP66GKuWa/qxzyrhy5e06xX9WKe1UcXc62eetV8o620FTdXxcuzfP4Ux1B2nO7TxVrNp/5z03z9Fu98C563svF0+TrSJhU5zyo1ymvWrImHDx8qNfbhw4dK3SmtqszMTCxYsADGxsYYMGAAACAjIwMAZJr4t27dwvPnz2WWjiioeZ+ZmSmzb05ODqKiooqcy/Hjx1G5cmWsX78e+vr6Mq999913OH78uEyj/GPOzs4wNTXFwYMH4ejoWOTxVFHQubq7u+Phw4do3ry5zNIiH/r000+hp6eHgwcPyjSelYlvY2OD+Ph4meVOrly5otSc8/MRHx+Pbt26KbVPvuK+h4o4OjriwoULCA4OFnMUHR1drFjjxo3D+fPnC/wmhq2tLaysrBAdHS1zzqdOnYKRkZF4XTg6OmLv3r0yTelr166J30oA8v5icXJywuPHj+Hg4FCs+aqiZcuWAIBz586Ja5Tn5ubiwoULZX5sIiIiIiIiIiKq2Ozt7cVne6jijz/+ULhdpUZ5u3btcPToUXzxxReF3mmcmJiIo0ePyjz8sThyc3Nx+/ZtAHkL+z948AARERF49uwZlixZIt5h7OTkhMqVK2P+/PkICAjAy5cvERoaKrcOTaNGjZCdnY3w8HA4OzvDzMwMdnZ2aNeuHSIjI9G4cWNUq1YNe/bsKfJu+MzMTJw5cwbdu3cXHyL5oc8//xyLFi3C48ePYWdnpzCGubk5Jk6ciBUrVkAQBHTp0gW5ubm4ceMGfH19S9TsLOhcp0yZgv79+2PMmDEYOHAgatSogdevX+PmzZto3bo1/Pz8YGtri8GDB+P777/Hu3fv4O7ujoyMDFy8eBGTJ09GrVq1Coyfv4j+t99+i4EDB+Lhw4c4cOCAUnO2sLDAlClTsHz5csTHx6NNmzYwMDDAs2fPcO7cOYSGhhb41Y/ivIcFCQgIQP/+/TFx4kQMGTIEcXFx+OGHH1ReegUA+vfvX+ha7wYGBggMDMTChQthZWUFLy8v3L59G1u2bMGIESPEu8BHjBiBPXv2YNy4cRg3bhySk5MRGhoq8/USAJg5cyZGjBiBL7/8Er6+vrCwsEB8fDyuXr2Kfv36oW3btiqfQ0GaNGmCbt26YeHChUhPT0edOnWwf/9+ZGRkyH1bgIiIiIiIiIiIqDRNmjSpWI3ygqjUKB83bhyOHTuGESNGYNGiRWjVqpXcmF9//VVcG1yVp4oqkpGRgUGDBgHIu1u2bt26cHd3R1hYGBo1aiSOq1GjBr7//nssW7YMgYGBaNiwIebPn4+tW7fKxOvUqROGDh2KzZs3IzExEW5ubti1axfmzJmDefPmYcGCBTA1NUXfvn3RrVs3zJ49u8C5Xbx4ESkpKeKdtB/z8/PDsmXLcPz48QKX3QDycmplZYUdO3bg0KFDqFKlCpydnUu8PnhB59qgQQNERkZizZo1mD9/PtLS0mBtbQ03NzdIJBJx/7lz56Ju3bqIjIxEeHg4LC0t4ebmJt4lXlD8xo0bY8mSJVi/fj0CAwPh6uqKFStWoHfv3krNe/To0ahVqxa2b9+O3bt3w9DQEPXr10fHjh0LXfanOO9hQZo3b47vv/8eK1aswKRJk9CkSROsXr0aY8aMUTmWMvz9/WFoaIgdO3Zg7969sLa2xqRJkzB+/HhxTM2aNbFlyxYsXLgQU6dORf369TF37lysXr1aJpaLiwv27NmD0NBQBAcHQyqVwsbGBp9++qnCNc5L6rvvvkNISAiWLVsGY2Nj9O3bF02aNMG///3vUj8WERERERERERFRvokTJ5ZqPD1Bxbb7xYsXMX36dKSnp6NevXpo2rQpqlSpgvfv3+Phw4d4+vQpTExMsHLlSnTu3LlUJ0tE2m/YsGHQ19fHrl27VN737t27EAQBUqkU9vb2FXZNLHVIS0vD/fv3mWc10NVcV7R63Xb87xLHiH2dU+IYIaMUf0uNSgfrlUpKV68hbaSruVZXvZ6++kzh9hwFf1UpWrEzSyq/rSAG+gq2qRAzJ1e+ZWGgL/8N1l5e9ZSfFEp2DSnKn3c7+eMrO06X6WqtAnn1mpWVpfZzO31Fcf2qk7eH6tdxYfMuKp4uX0fahHlW8Y5yAOjYsSOOHTuGLVu24OLFizh79qz4Ws2aNTFgwACMGzcO9epVrF/+RBXR6dOn8eLFCzRt2hTp6ek4ceIE/vOf/2DdunWanhoREREREREREZHSVG6UA0DdunUxf/58AEBqaqr44EYzM7NSnRwRabfKlSvj6NGjiI2NhVQqhZ2dHZYvX46uXbtqempERERERERERERKK1aj/ENmZmZskBNVUB06dECHDh00PQ0iIiIiIiIiIqISUbBaGBERERERERERERFRxVHiO8qJiIiIdN3oXg00duwPH6pDRAU7cuFpoa/36VS/TPYl0naKHiiZnin/gEwAyFTyIZ3mpvIP0wSArGz5uL285OtH0ZyMjRQfy7td8euvoIeWlvSBmsruX9Ee3EmqK+wBl+/SFNdpaobi7QBQ3VxxbRbG0ED1fYqjOA8AJVI33lFORERERERERERERBUaG+VEREREREREREREVKGxUU5EREREREREREREFZpWNcpDQ0MhkUggkUjQrFkzuLq6olevXggJCcGjR4+KFfPGjRvYuHFjqc0xLi5OnOPly5flXt+/f7/4OpWu0n4vSyI5ORkSiQSHDh0qdNybN2/w3XffoXv37nBwcIC7uzuGDBmCHTt2iGPi4uIQGhqKly9fluoctSlfRERERERERERE2kyrGuUAYGJigoiICOzbtw9r165Fv379cPXqVfTu3RtHjx5VOd7NmzexadOmUp9n5cqVcfLkSbntJ06cQOXKlUv9eFR272VZyc7OxogRI3DmzBmMGjUKW7duxezZs9G8eXNcuHBBHPf8+XOEhYXh1atXpXr88pYvIiIiIiIiIiIiTTHU9AQ+pq+vDycnJ/FnDw8PDB06FAEBAZg1axZcXFxQr57mn5TbpUsXnDlzBvPnz0elSpUAAK9evcIvv/wCPz8/HDt2TMMzJE27efMm/vzzT+zevRtubm7idl9fX+Tm5hYrZkZGBkxMTEprikRERERERERERAQtvKNckUqVKmHOnDmQSqWIjIwUtx85cgRDhgxBmzZt4ObmBn9/f9y5c0d8PTQ0FGFhYUhLSxOXQ/H39wcAPHr0CNOmTYOXlxdatWoFHx8fbNu2TekGpqenJ/T09HDp0iVx28mTJ1G/fn20aNFCbvyKFSvQq1cvODs7o0OHDpg+fbrcHcT+/v744osvEB0dDW9vbzg7O2P48OF4+vSpyrEEQUBYWBg8PDzg7OyMKVOm4OrVq5BIJLhx44bMuB9++AHe3t5o2bIlunTpIrMsSH4enZ2d8fvvv2PQoEFwdHRE37598fvvvyMzMxPz5s2Dm5sbPD095fYFgJiYGAwfPhxOTk5wdXXFV199hcTERPH1/OVsjh49ipCQELi5uaF9+/ZYunQpsrOzxTkU9F4qEhMTg/Hjx6N9+/ZwcnJC7969ceTIEZkxN27cgEQiwZUrV/DVV1/B2dkZnTp1wpYtW+Ti7d+/H507d0arVq0wYsQI/P333wUeO9+7d+8AANbW1nKv6evri3MYPnw4AKB///4yy/bkz+/ixYuYMmUKXFxcMHXqVAAlu/aBvOt/woQJcHV1hZOTEwICAuSus5SUFMyYMQPOzs5wd3fHqlWrsG3bNnF+UqkUHh4eWL16tdz5ffnll+jfv3+ROSIiIiIiIiIiItIGWndHeUEaN26MWrVqISYmRtwWFxeHPn36oH79+sjKykJUVBSGDRuGY8eOwdbWFgMGDEB8fDxOnDiB8PBwAICZmRmAvLu/bW1t0atXL1SpUgX3799HaGgo0tLSMGnSpCLnY2xsjG7duuHEiRPo3r07gLxlV/z8/BSOT0xMxBdffIGaNWsiKSkJ27dvh7+/P6KiomBo+L+34f79+0hKSsKMGTOQk5ODJUuW4Ouvv0ZERIRKsXbt2oWwsDCMHTsWn376Ka5fv47Zs2fLzWvRokWIjIzE+PHj0apVK9y6dQsrVqxApUqVMGTIEHGcVCrFN998g5EjR6JGjRpYsWIFJk2aBBcXF1SvXh1r1qzBuXPnsHjxYjg6OsLFxQVAXsPa398fXl5eWL16NdLT07FmzRoEBgbKnBMArFmzBl26dMGaNWsQExOD0NBQ1K9fH0OGDCn0vVTkn3/+gYuLC4YMGQJjY2PcunULs2fPhiAI6Nu3r8zYefPmoXfv3li3bh3Onj2LFStWQCKRwNPTEwBw4cIFzJkzB/369YOPjw/u3bsnNqwLY29vD319fcyePRsTJ06Eq6srjI2NZca0aNECc+fORUhICBYvXgw7Ozu5OHPmzMFnn32GdevWiQ32klz7z549w+DBg9GkSRMsWbIEenp62LhxI0aOHIno6GhxjsHBwbh+/Tq+/vprfPLJJ9i/fz/u3bsnzsvIyAh9+/bFkSNHMHXqVHFub9++xblz5zBr1qwic0RERERERERERKQNyk2jHABq166N169fiz9/2NDOzc2Fh4cH7ty5g8OHD2P69OmwsbGBjY2N3HIuAODu7g53d3cAeXdVu7q6IiMjA7t371aqUQ4Afn5+CAwMxPv375GYmIi7d+9i+fLlMneZ51u8eLH455ycHDg7O8PT0xPXr19H+/btxddSUlJw5MgRWFlZAQDS0tIQHByM+Ph42NjYKBUrJycHmzdvRr9+/TBjxgwAQPv27fHmzRscOHBA3Pfp06fYvXs35s+fj0GDBgEA2rVrh4yMDKxbtw6DBg0Sm59SqRQzZsyAl5eXmO/85npwcDAA4NNPP0V0dDSio6PFRvnKlSvRsmVLhIWFQU9PDwDQtGlT+Pn54dKlS2I8AHB0dBSb+R4eHrhx4wZOnz6NIUOGFPpeKuLr6yv+WRAEuLm54eXLl4iIiJBrlHfv3h2TJ08GkHddXLx4EadPnxYb5Rs2bEDr1q3FvHfo0AGZmZlYv359oXNo2LAhgoKCsHz5cowcORJGRkZwdHREz549MWTIEBgaGsLMzAyNGzcGADRp0gQODg5ycTp37oyvv/5aZltJrv2wsDBUrVoV27dvF5cNcnFxQZcuXRAZGYlhw4bhr7/+wpkzZ7B06VL06dNHPO+ePXvKxBowYAC2bt2Kn376SXwvjx8/Dn19/QI/NCqKIAgAgPT09GLtT8rJzy/zXPa0Iddl9ewM1qt6aMM1VFFoQ65Zr2UnLS2tzPfVhmuootCGXLNelVOS2iuN/QuKqQ3XUEWgLXkuy2fJafrcNKEs6rIw2nId6TptybMmn/1YrhrlgiCIzVYgb/mIVatWISYmRmYpj9jY2CJjZWZmYtOmTTh+/DhevHgBqVQqvvb+/XtUqVKlyBiffvopqlSpgrNnz+L58+do0aIFbG1tFTbKL126hA0bNuDhw4dITU2VmeuHjfJmzZqJTXIAYhP1w0Z5UbHi4+ORkJCAzp07y8yhS5cuMo3yq1evAshrFOcvcQLkNcu3bNmCFy9e4JNPPgGQt1RI/gcLQF4TOH9sPgMDA9SvXx/x8fEA8grr1q1bmDlzJnJycmT2rV27Nu7evSvTKP8wDwDQqFEjXL9+XS6Xynj37h1CQ0Nx7tw5vHz5Ujy+paWl3NgPj6unp4dGjRqJ55CTk4N79+7JNaq9vb2LbJQDwIgRI+Dj44Pz58/j5s2buHbtGhYuXIgff/wR4eHh4gcRhenYsaPctpJc+1euXIGPjw8MDAzE993CwgLNmzfHb7/9BgC4e/cugLxrJp++vj46deqE7du3i9saNGiANm3a4ODBg+J7eejQIXh7exd6x39h8uekzLlQyTHP6qPJXLu6upZJXNarejHP6sN6La/kl7v70P3798toX3m6nWftwnpVRs1SilM8iutH+TmpWn/KHOfDmKxX9dB0nsuqXoGSnptm67O4SlaXxafp66ii0HSey7Jei1KuGuXx8fFigzY1NRWjR4+GlZUVgoKCUKdOHVSqVAmzZ89GZmZmkbGWL1+OyMhITJw4ES1btoS5uTnOnTuHDRs2IDMzU6lGuYGBAXr27ImoqCg8f/4cn3/+ucJxd+7cQWBgILp06YJx48ahevXq0NPTw8CBA+XmamFhIfOzkZERAIjjlImVkJAAADINdwCoXr26zM9v3ryBIAj49NNPFc77w0a5iYmJzLIh+fMyNzeXm2/+PJKTk5GTk4PFixfL3AX/YfwPKYqVlZWlcG5FCQoKQkxMDCZOnIjGjRvDzMwMe/fuxalTp+TGKjpuSkoKACApKQnZ2dlyuaxRo4bSc7G2tsagQYMwaNAgSKVSzJ07F4cOHcKFCxdkGtEF+fh9K+m1/+bNG4SHh4tLsnwo/31NSEiAkZGRXG4+zgMADBw4EEFBQUhKSsKrV6/w+++/IygoqMh5FMTQ0BDZ2dlo2LAhTE1Nix2HCpeeno7Y2FjmWQ10OdesV/XQ5WtI2+hyritCvT678brQ1+3t7ctk3w/p8jWkbXQ516Vdrz/dTix6UBlSVD+qzEnZ+lOkoOPY29vr9DWkTSpCnktybj/FaLY+i6skdVkcFeE60gbMczlqlD98+BAvX74Ul824ffs24uPjsWnTJjRr1kwcl5KSIt55XZjo6GgMGjQIAQEB4jZFd4IXxdfXF8OGDQMA+Pj4KBxz9uxZmJmZYc2aNeIdxM+fP1f5WMrGyn94ZFJSksz2D+88BoCqVatCT08Pe/bsERukH7K1tS3WHPOZm5tDT08PX3zxBbp27Sr3erVq1UoUvyCZmZm4ePEigoKCZB5guWfPHpVjWVlZwdDQUC6XHy4BpAojIyOMHDkShw4dwqNHj5RqlH/4LQqg5Nd+1apV4eXlhaFDh8q9lv8BkbW1NaRSKVJSUmSa5R/nAcj7RsKCBQtw7NgxxMXFoX79+mjTpk2R8yhI/vmamppq9Os2FQXzrD66mGvWq3oxz+qji7lmvZbsa7yq7luR86xuupjr0q9XzTbiFJ+D8nMqWQ4UH+fDmLp4DWkjXc5zyc6tfDbKNfVe6vJ1pE0qcp7LRaM8MzMTCxYsgLGxMQYMGAAAyMjIAACZBu+tW7fw/PlzNGnSRNxW0F3JmZmZMvvm5OQgKipK5bk5OzvDz88P1atXL7BJmZGRASMjI5mG5/Hjx1U+lrKxbGxsYG1tjXPnzsk0qM+ePSszLn8plbdv38ot01IaKleuDCcnJzx+/Fjh2tuqUvYO86ysLOTm5sq8v6mpqTh//rzKxzQwMEDz5s1x5swZjBw5Utx++vTpIvd9+/YtzMzMZB7WCvzvKyz5H2h8/K2BopT02nd3d8fDhw/RvHlzGBgYKDxGy5YtAQDnzp0T1yjPzc3FhQsX5MYaGxujd+/eiIyMxOvXrzFy5Ei55j4REREREREREZE207pGeW5uLm7fvg0g7+EADx48QEREBJ49e4YlS5agbt26AAAnJydUrlwZ8+fPR0BAAF6+fInQ0FDUqlVLJl6jRo2QnZ2N8PBwODs7w8zMDHZ2dmjXrh0iIyPRuHFjVKtWDXv27CnWMh96enpYvnx5oWM8PDwQHh6OBQsWoFu3boiJicHRo0dVPpaysQwMDBAQEIDvvvsONWrUQNu2bXHjxg1cu3YNAMQ70W1tbTFs2DDMnDkTY8aMQatWrSCVShEbG4sbN24otQZ3UWbOnIkRI0bgyy+/hK+vLywsLBAfH4+rV6+iX79+aNu2rdKxCnovP2Zubg4HBwds2bJFvCN88+bNMDMzU3hHdFHGjx+PwMBABAcHw8fHB/fu3VPq/bt+/TpWrFiBvn37wtHREYaGhrh//z42bdqEOnXqoFu3bgDyvqZlYGCAgwcPwtDQEAYGBoV+sFDSa3/KlCno378/xowZg4EDB6JGjRp4/fo1bt68idatW8PPzw9NmjRBt27dsHDhQqSnp6NOnTrYv38/MjIyFDbBBw4ciPDwcBgYGKBfv34qZpiIiIiIiIiIiEiztK5RnpGRgUGDBgHIuyO5bt26cHd3R1hYGBo1aiSOq1GjBr7//nssW7YMgYGBaNiwIebPn4+tW7fKxOvUqROGDh2KzZs3IzExEW5ubti1axfmzJmDefPmYcGCBTA1NUXfvn3RrVs3zJ49u9TPycvLCzNmzMDu3btx6NAhuLi4YNOmTfD29i6zWP7+/khOTsaePXuwa9cuuLu74+uvv8a0adNkltKYPXs2bG1tERERgXXr1qFKlSqwtbVFjx49SnzeAODi4oI9e/YgNDQUwcHBkEqlsLGxwaeffooGDRqoFKug91KRlStXYu7cuQgKCoKlpSX8/f2RlpaGbdu2qXwOXbp0wfz587Fx40ZERUWhVatWWLNmjfjthoK0atUK3t7eOHfuHMLDw5GZmQkbGxv06tULAQEB4sMuraysMHfuXGzduhXHjh1DdnY2/vzzzwLjlvTab9CgASIjI7FmzRrMnz8faWlpsLa2hpubGyQSibj/d999h5CQECxbtgzGxsbo27cvmjRpgn//+99yc2rcuDEaNmyI+vXryzXsiYiIiIiIiIiItJ2eIAiCpidB6rFmzRps374dN27cgImJiaanQ+XQsGHDoK+vL/cBxdOnT9G9e3d8//33xfoAKN/du3chCAKkUins7e0r7JpY6pCWlob79+8zz2qgq7lmvaqPrl5D2khXc11R6vXIhaeFvt6nU/0y2fdDunoNaSNdzXVZ1Ovpq8/ktqVnKm4DZEqVi2luqnipxaxs+biK6kfRnAri3a6e0mOVPY53u3o6ew1pG13O8927d5GVlVWiczt9peBaeJemuE5TMwpu41U3V30ZVEMD1ffx7VD8uiwOXb6OtAnzrIV3lFPpePToEY4dOwZnZ2cYGRnh5s2b+OGHHzBkyBA2yUkpp0+fxosXL9C0aVOkp6fjxIkT+M9//oN169aJY968eYMnT55g3bp1qFOnjlIPJyUiIiIiIiIiItI2bJTrKBMTE8TExGDv3r14//49atWqhTFjxmDy5MmanhqVE5UrV8bRo0cRGxsLqVQKOzs7LF++XOYBsRcuXMC3336LBg0aYPny5XIPLiUiIiIiIiIiIioP2NXSUZ988gl27typ6WlQOdahQwd06NCh0DH9+vXjwzuJiIiIiIiIiKjcY6OciIiIiIhKzbpDfxf42sR+hT/MvbB9i9pf2XXES3tfIm2Xk6P8WEVrj/soWIv45E+K11VWtpZKsu64KtR1HKLi8vYo3Wu0oDXPi3ucwtZQJ9JF+pqeABERERERERERERGRJrFRTkREREREREREREQVGhvlRERERERERERERFShVdhGeWhoKCQSCSQSCZo1awZXV1f06tULISEhePToUbFi3rhxAxs3bizlmQKPHj3CV199BQ8PD7Rs2RJdu3bFsmXLkJycXOrHynfjxg1IJBLcvXtX3CaRSPDDDz+IPx86dAjHjx8vszmUtrNnz0IikSAuLq7IsR/nvEuXLliyZAnevn1b9hMtpri4OISGhuLly5cy2xW9l0RERERERERERPQ/FbZRDgAmJiaIiIjAvn37sHbtWvTr1w9Xr15F7969cfToUZXj3bx5E5s2bSrVOf7yyy/o378//vrrL8ycORPbtm3D8OHDcfjwYQwePBhJSUmlerzCREREoFevXuLPhw8fxokTJ9R2fHVRlPMRI0bg6NGjGDRoEBISEjQ9RYWeP3+OsLAwvHr1SmZ7ixYtEBERgUaNGmloZkRERERERERERNrNUNMT0CR9fX04OTmJP3t4eGDo0KEICAjArFmz4OLignr1NPeU7IyMDEyfPh116tTB3r17UblyZQBAmzZt4OHhgT59+mDhwoVYtWqVWubzYa50lTI5DwkJQWhoqNrmY2JiUqIYZmZmFeK9IyIiIiIiIiIiKq4KfUe5IpUqVcKcOXMglUoRGRkpbj9y5AiGDBmCNm3awM3NDf7+/rhz5474emhoKMLCwpCWliYu6eLv7w8gbxmPadOmwcvLC61atYKPjw+2bduG3NzcQucSHR2NV69eYfz48WLDNl+jRo3Qu3dvnDp1Slxq49ChQ5BIJHJ3mffu3RtBQUHizzExMRg/fjzat28PJycn9O7dG0eOHCkyNx8uveLv74+bN2/i4sWL4vmGhoZi165daNWqFVJTU2X2ffToESQSCS5dulRg/KJyDOTl2dnZGX/++SeGDBmCVq1awc/PDz/99JPMOKlUikWLFqFNmzZwdXXFt99+i/fv3xd5jsrk/MyZM3j+/DmA/y1rcunSJUyaNAlOTk5o3769wiV4Hj16hAkTJsDV1RVOTk4ICAjA06dPZcZIJBJs3rwZy5cvh4eHB9zd3QEU/Z7duHEDw4cPBwD0799ffE8+nOOHS69kZmZi8eLFaN++PRwcHMTz+lBQUBD8/Pxw48YN9OnTB05OTujfvz9+++03mXEHDhyAr68vHB0d0bZtWwwZMkTufSMiIiIiIiIiItJmFfqO8oI0btwYtWrVQkxMjLgtLi4Offr0Qf369ZGVlYWoqCgMGzYMx44dg62tLQYMGID4+HicOHEC4eHhAPLu5AWAV69ewdbWFr169UKVKlVw//59hIaGIi0tDZMmTSpwHjdv3gQAdOrUSeHrnTt3RmRkJH755Rf4+fkpfX7//PMPXFxcMGTIEBgbG+PWrVuYPXs2BEFA3759lYoxb948fP311zAxMcE333wDALCxsYGpqSmWL1+OEydOYPDgweL4AwcOoFatWmjfvn2BMYvKcT6pVIoZM2Zg+PDhCAwMxJYtWzBlyhScP38e1apVAwCsWrUKe/fuxeTJk9G8eXNERUVh5cqVRZ6Xsjn/73//i08++UTcPmfOHPj6+iI0NBRXr17F6tWrUbVqVQwZMgQA8OzZMwwePBhNmjTBkiVLoKenh40bN2LkyJGIjo6GsbGxGGvnzp1o1aoVFi1ahOzsbABFv2ctWrTA3LlzERISgsWLF8POzq7Q85wxYwZ++uknfPnll7Czs8PRo0cxefJkrFu3Dl26dBHHJSQkYOHChQgICIC5uTlWrlyJSZMm4cyZMzAyMsIvv/yCWbNmYfTo0fDy8kJGRgbu3LmDlJSUInNNRERERERERESkLdgoL0Dt2rXx+vVr8ecPG9q5ubnw8PDAnTt3cPjwYUyfPh02NjawsbGRW84FANzd3cU7gwVBgKurKzIyMrB79+5CG+UvX76EhYWF2HD/WJ06dQAA8fHxKp2br6+v+GdBEODm5oaXL18iIiJC6UZ548aNYWZmhsqVK8udr7e3Nw4ePCg2yrOzs3Hs2DH0798fBgYGBcYsKsf58hvlXl5eAABbW1t06dIFly9fRu/evfH27Vvs2bMH48aNwxdffAEA6NChA/71r3/JPejyY8XN+aeffip+YNChQwckJiZiw4YNGDRoEPT19REWFoaqVati+/btqFSpEgDAxcUFXbp0QWRkJIYNGybGqlq1KsLCwqCnpyduK+o9MzMzQ+PGjQEATZo0gYODQ4Hn+Mcff+DHH3/E/PnzxffI09MTz58/l2uUv3v3Drt370aTJk0AAKamphg+fDh+/fVXtG7dGnfu3IGlpaV47gDQsWPHAo+tDEEQAADp6eklikOFy88v81z2tCHXH39DprSwXtVDG66hikIbcq3r9ZqWlqbR/cuaNlxDFYU25FrX6zWfKnWn7TX6IW24hioCbclzWdUroPlzU0Zp16a6a11briNdpy15Lst6LQob5QUQBEGmUfno0SOsWrUKMTExSExMFLfHxsYWGSszMxObNm3C8ePH8eLFC0ilUvG19+/fo0qVKiWa64fzVMa7d+8QGhqKc+fO4eXLl8jJyQEAWFpalmge+QYOHIh//etfePjwIZo0aYJLly4hMTERn3/+eaH7KZtjfX198YMHAKhbty5MTEzEJviDBw+QkZGBbt26yezXvXt3/PLLLyU8O8U+Ppa3tzeOHj2K+Ph41KlTB1euXIGPjw8MDAzEu8QtLCzQvHlzuaVMPD095d7T0nzP/vvf/wIAevToIbO9Z8+eWLx4MdLS0sRfSjVr1hSb5ADEZnx+rps3b463b98iKCgIvXr1gouLC0xNTVWe04fy86NMbVHJMc/qo8lcu7q6lklc1qt6Mc/qw3otqRoFvnL//v1i76vc/tqB9ao+rFdl1CzR3orrTnHM8lKjH2K9qoem81xW9Qpo/txklXZtaleta1eudZem81yW9VoUNsoLEB8fj4YNGwIAUlNTMXr0aFhZWSEoKAh16tRBpUqVMHv2bGRmZhYZa/ny5YiMjMTEiRPRsmVLmJub49y5c9iwYQMyMzMLbJTb2Njg559/RmpqqsI7nP/55x8AQK1atVQ6t6CgIMTExGDixInineF79+7FqVOnVIpTEDc3N9ja2uLAgQMIDg7GwYMH4ebmhvr16xe4jyo5NjExkVmqBACMjIzEcQkJCQCA6tWry4ypUaPw/+MF5OUyOTm5yJzb2NjIbLeyslJ4rISEBNSpUwdv3rxBeHi4uCzPx3P/0MfzBkr3PXv37h2MjIzkmuw1atSAIAhISUkRG+UWFhYK55qfa3d3dyxbtgw7d+7EmDFjUKlSJXh7e+Pbb78t9gcvhoaGyM7ORsOGDUvcdKeCpaenIzY2lnlWA13ONetVPXT5GtI2upxrddbr9b8TCnzN3t6+2Psqs7+m6fI1pG10OdelXa8v/5tY9KBCKKq7gmJqe41+SJevIW1SEfKsTef2U0zp1mZpxyuuinAdaQPmmY1yhR4+fIiXL1+Ky5Dcvn0b8fHx2LRpE5o1ayaOS0lJkWuYKhIdHY1BgwYhICBA3FbYQy3zubm54cCBA7h06ZLM0hv5Ll68CH19ffGTlvwlPT68Yx0AkpOTxT9nZmbi4sWLCAoKEh82CgB79uwpcj6qGDBgALZu3YpRo0bh0qVLWLRoUaHjS5rjD1lbWwMAEhMTZT5E+HApnYK0adMGBw8eLDTnenp6aN26tcz2jx+gmn+s/LlUrVoVXl5eGDp0qFzMjz8o+fhu8tJ+z6pWrQqpVIp3796hatWqMnPW09ODubm5SvF69+6N3r17IykpCefOncPixYthaGiI7777rljzyz9/U1NTjX7dpqJgntVHF3PNelUv5ll9dDHX2lKvJT12eXlfNJ3nikQXc1369VqyRrniOSiOWR7fC128hrSRLudZu86ttGtTu2pdu3KtuypynvU1PQFtk5mZiQULFsDY2BgDBgwAAGRkZACQvfP31q1beP78ucy+RkZGyMrKUhjzw31zcnIQFRVV5Fx69OiBWrVqYcOGDXLrAz158gSHDx+Gp6cnateuDeB/d5Y/fvxYHPfo0SO8ePFC/DkrKwu5ubky80lNTcX58+eLnM/HPryL+2N9+/ZFSkoKZsyYARMTE7llPj6mbI6V0bRpU5iYmODMmTMy23/88cci9+3Rowdq1qxZaM67d+8urlWe7+NjnT59GjVr1hSb/O7u7nj48CGaN28OBwcHmf+KevCmsu/Zx3d7FyT/g5Xo6GiZ7dHR0WjevHmxfxlaWVlhwIAB8PDwkLkGiYiIiIiIiIiItF2FvqM8NzcXt2/fBpD3IIIHDx4gIiICz549w5IlS1C3bl0AgJOTEypXroz58+cjICAAL1++RGhoqNySJ40aNUJ2djbCw8Ph7OwMMzMz2NnZoV27doiMjETjxo1RrVo17NmzR2FD/WMmJiZYuXIlAgICMHToUIwaNQq1a9fGH3/8gY0bN6Jq1apYsGCBOL5Vq1aoXbs2vvvuO3z11VdITU3F5s2bZZbAMDc3h4ODA7Zs2QIrKysYGhpi8+bNMDMzk7sruih2dnY4cuQIzp8/D2tra9SsWVPMiZWVFbp06SLeTW9iYlJoLGVzrAxLS0sMHjwYW7ZsgYmJCZo3b46oqCg8ffq0yH1NTEywatWqAnNeu3ZtzJkzR26/69evY+nSpfDw8MCVK1dw9OhRzJ07F/r6eZ9FTZkyBf3798eYMWMwcOBA1KhRA69fv8bNmzfRunVr+Pn5FTgnZd+zhg0bwsDAAAcPHoShoSEMDAwUPtSzWbNm6N69O5YsWYKMjAzY2tri2LFjiImJwfr165VJsWjt2rV4+/Yt2rRpg+rVq+PBgwf46aefMHLkSJXiEBERERERERERaVKFbpRnZGRg0KBBAPK+NlK3bl24u7sjLCwMjRo1EsfVqFED33//PZYtW4bAwEA0bNgQ8+fPx9atW2XiderUCUOHDsXmzZuRmJgINzc37Nq1C3PmzMG8efOwYMECmJqaom/fvujWrRtmz55d5Bzzl19Zt24dlixZgqSkJAiCAGdnZ6xbt05mPWsjIyOEhYXh//7v/zB16lTUr18f3377LZYsWSITc+XKlZg7dy6CgoJgaWkJf39/pKWlYdu2bSrlb9y4cXj69Cm++eYbJCcnY9KkSZg8ebL4erdu3RAdHY3+/fsXGUvZHCvrq6++Qk5ODrZu3Yrc3Fx069YNX331FWbOnFnkvvk5X79+PZYsWYLk5GTUrFkTvXr1wvjx4xWuvR0SEoKIiAjs3bsXVapUwdSpUzFs2DDx9QYNGiAyMhJr1qzB/PnzkZaWBmtra7i5uUEikRQ5J2XeMysrK8ydOxdbt27FsWPHkJ2djT///FNhvOXLl2PVqlXYsmUL3r59Czs7O6xduxadO3cuci4fcnBwQHh4OE6dOoXU1FTY2NhgzJgxmDBhgkpxiIiIiIiIiIiINElPEARB05Mg1cydOxcnT57Enj170LRpU01Pp0AzZ87E/fv3cfz4cU1PpczcuHEDw4cPx4EDBxTevU2quXv3LgRBgFQqhb29fYVdE0sd0tLScP/+feZZDXQ116xX9dHVa0gb6Wqu1V2v6w79XeBrE/s1KPa+yuyvabp6DWkjXc11WdTryZ+eyW3LylbcBjA21JPb5tOhnlIxCxqrrXT1GtI2upznu3fvIisrS6vO7fQVxbXp7VG82izteMWly9eRNmGeuUZ5uTR79mw0btwYAQEBePXqlaanI+fPP//EkSNHcPLkSQwfPlzT0yEiIiIiIiIiIiIqVIVeeqW8MjY2xr59+zQ9jQJNmDABSUlJ6NOnDz7//HNNT4eIiIiIiIiIiIioUGyUU6k7f/68pqegNm3bti1wHXAiIiIiIiIiIiIqH7j0ChERERERERERERFVaLyjnIiIiIiISk1JHrip7Q/rJCqPyuIBm+XpoZ1EVPBDOYHCH8xZ0GvFjVcQbXloKBHvKCciIiIiIiIiIiKiCo2NciIiIiIiIiIiIiKq0NgoJyIiIiIiIiIiIqIKjY3yCu7cuXMYPXo02rRpg5YtW6Jz586YO3cunjx5Io6RSCT44Ycf1Dan+/fvQyKR4MaNG2o7piKLFi1C586dCx1z6NAhSCQS8T9nZ2f06NEDwcHBuHPnTrGOe//+fYSGhiI9Pb1Y+6v7/SIiIiIiIiIiIirv2CivwFasWIHAwECYmZlhwYIF2L59OyZOnIi//voL06ZN0/T0ypWtW7ciIiIC69evx/Dhw/HgwQMMHDgQmzdvVjnW/fv3ERYWVuxGOREREREREREREanGUNMTIM24dOkStmzZgsDAQEydOlXc7ubmhs8//xwXLlzQ4OzKnxYtWsDKygoA4O7ujsGDB+Obb77BqlWr4OLigtatW2t4hkRERERERERERFQQ3lFeQW3btg01atRAYGCgwtc7depU6P779u2Dt7e3uFzL+vXrkZubK74eGhoKZ2dnuf1at26N0NBQmW3r16+Hh4cHnJ2dMWnSJCQmJip1DitWrECvXr3g7OyMDh06YPr06Xj16pXMGH9/f3zxxReIjo6Gt7c3nJ2dMXz4cDx9+lRm3MuXLzF+/Hi0atUKHTp0wJYtW5SaQ0H09fUxa9YsGBsbY+/eveL2ixcvYtSoUXB3d4eLiwsGDBiAy5cvi68fOnQIwcHBAPIa7hKJRFz+5dWrVwgODkaXLl3g6OiI7t27Y9WqVcjKypI7fk5ODpYtW4ZPP/0Uzs7OCAoKQmpqqvh6WloaQkJC4O3tjVatWolL7qSkpMjEOXfuHPr16wdnZ2e0bt0a/fr1w6VLl2TGHDp0CL169YKDgwM6dOiA1atXIycnp0T5IyIiIiIiIiIiUifeUV4BZWdn49atW+jevTuMjIxU3n/Xrl1YuHAh/P390bFjR8TExCAsLAwpKSn45ptvVIq1e/dufP/99xg9ejTatWuHq1evYtasWUrtm5iYiC+++AI1a9ZEUlIStm/fDn9/f0RFRcHQ8H+X9v3795GUlIQZM2YgJycHS5Yswddff42IiAhxTGBgIF6+fIn/+7//g7m5ObZs2YIXL17IxFGVpaUlWrRogZiYGHFbXFwcOnXqhNGjR0NfXx+XL19GQEAAwsPD0bZtW3Ts2BETJkzAhg0bsHXrVpibm8PY2BgA8ObNG1haWiI4OBgWFhaIjY1FaGgoEhISsHjxYplj79q1Cy1atMDSpUsRFxeHFStWIDPvPRBmAAAdZElEQVQzE6tXrwYAZGRkICcnB9OmTYOVlRVevHiBjRs3IjAwELt27QIAPH36FFOnToWvry+++uor5Obm4o8//sC7d+/E42zfvh3Lly/HiBEjEBQUhEePHomN8hkzZhQ7d0REREREREREROrERnkF9PbtW2RlZaFOnToq75uTk4N169bB19cXs2fPBgC0b98eUqkU27ZtQ0BAAKpVq6Z0rE2bNqF3795ig71Dhw5ITEzE0aNHi9z/w+ZwTk4OnJ2d4enpievXr6N9+/biaykpKThy5Ii4NEpaWhqCg4MRHx8PGxsbXL58Gb/99ht27NgBd3d3AEDbtm3h5eUFS0tLpc6lILVr18a9e/fEn//1r3+Jf87NzUXbtm3x119/Yf/+/Wjbti2srKxQv359ALLLuQB5D+n88IMIFxcXmJqaIigoCHPnzoWpqan4mrGxMdatWwcDAwMAQKVKlTB79mxMmjQJjRo1gpWVFebPny+Oz87ORt26dTF06FA8efIEtra2+P333yGVSjFnzhyYmZkByHt/8qWmpmLt2rUYO3Yspk+fDgDw8PCAkZERlixZgjFjxih9LXxIEAQA4BrtZSw/v8xz2dOGXFeuXLlM4rJe1UMbrqGKQhtyzXot37ThGqootCHXrNfyTRuuoYpAW/JcVvUKaP7cSiotLU1r4+XH0pbrSNdpS57Lsl6LwkZ5Baanp6fyPo8fP8abN2/Qo0cPme0+Pj7YtGkT7ty5Ay8vL6VixcfH49WrV+jWrZvMdm9vb6Ua5ZcuXcKGDRvw8OFDmWVFYmNjZRrlzZo1k2k4N27cWDy+jY0N7ty5A3Nzc7FJDgDm5uZo164dfv/9d6XOpSCCIMjkOT4+HqtXr8bVq1eRkJAg/iO4RYsWSsUKDw/H/v37ERcXh8zMTPG1Z8+eoWnTpuLPnTp1EpvkANCjRw/MmjULd+/eRaNGjQAAR44cwY4dO/D333/L/EUWGxsLW1tbSCQSGBgYYMaMGRg4cCDc3Nxgbm4ujouJiUFaWhp69OiB7OxscXu7du2QkZGBhw8fok2bNqqkCwDEWLGxsSrvS6pjntVHk7l2dXUtk7isV/VintWH9UolxTyrD+uVSop5Vg9N57ms6hXQ/LnJqqnyHvfv3y/V45RmvI9jaVeudZem81yW9VoUNsorIEtLS1SqVAn//POPyvvmL7tRvXp1me35P3+4LEdREhISAECmiQ0ANWrUKHLfO3fuIDAwEF26dMG4ceNQvXp16OnpYeDAgTINZACwsLCQ+Tl/uZn8ca9evZKbAyB/jsURHx8vnk9ubi4mTJiAlJQUTJkyBQ0aNICpqSnWrl2LFy9eFBkrPDwcS5cuxdixY9G2bVtYWFjg7t27CAkJkTvnj+duZmaGSpUqiWu4nzlzBt988w0GDRqEadOmwdLSEgkJCZg4caIYy9bWFhs3bsSmTZswadIk6Ovro3379pg7dy7q1KmDN2/eAAD69u2rcL7KnJMihoaGyM7ORsOGDWXukqfSlZ6ejtjYWOZZDXQ516xX9dDla0jb6HKuWa/qocvXkLbR5VyzXtVDl68hbVIR8qxN5/ZTjHLPfPuQvb19qR6nNOPlx6oI15E2YJ7ZKK+QDA0N4eLiguvXryM7O1uldbjzlyJJSkqS2Z7/AM6qVasCyFvqQyqVyoyRSqUydy5bW1srjPX69esi53H27FmYmZlhzZo10NfPeybt8+fPlT6PD+Wvcf4xZR8qWpA3b97gt99+g7e3NwDg77//xu+//45169aha9eu4riMjAyl4kVHR6Nz58746quvxG2PHj1SOPbjuaempiIzMxM1a9YUY9nb2yMkJEQcc/PmTbk4np6e8PT0RGpqKi5fvozFixcjODgY4eHh4nsdFhYGGxsbuX3r1q2r1Hl9LP8OfFNTU41+3aaiYJ7VRxdzzXpVL+ZZfXQx16xX9WKe1UcXc816VS/mWT10Oc/adW6q9zGKN/eCj1Oa8T6OpV251l0VOc/6mp4AacaoUaOQkJCAjRs3Knz90qVLCrfb2trCysoK0dHRMttPnToFIyMjODo6AgBq1aoFqVSKp0+fimOuX7+OnJwc8WcbGxtYW1vjzJkzMrFOnz5d5PwzMjJgZGQks6zJ8ePHi9xPEQcHB6SkpODatWvitpSUFFy9erVY8YC8u8e/++47SKVSDBs2DMD/7mD/8AGqz58/l3nY54evZ2VlyWzPP+cPFXTOFy5ckMl1dHQ09PT04ODgoHIsIO+OdB8fH/j6+orNeWdnZ5iamiI+Ph4ODg5y/xVnfXIiIiIiIiIiIiJN4B3lFZSXlxfGjh2L0NBQ/PXXX/D19UW1atUQFxeHgwcPIiUlReFa4wYGBggMDMTChQthZWUFLy8v3L59G1u2bMGIESPE5qinpycqV66M2bNnY9y4cYiPj8fOnTtRqVIlmVgBAQFYtGgRqlevDg8PD1y5cgU3btwocv4eHh4IDw/HggUL0K1bN8TExCi1rrkinp6eaNGiBb7++mvMmDED5ubm2Lx5s/gAS2Xcu3cP5ubmyMjIwJMnT3Dw4EHcu3cPX3/9NZydnQEAdnZ2sLGxwcqVK5Gbm4u0tDSsXbtWvMs7X/4a4v/+97/RtWtXmJiYQCKRoF27dti5cyd2796Nhg0b4tixY/j7778VzicrKwsTJ07EkCFDEBcXhxUrVsDb21uM3a5dO4SEhGDdunVwdnbGpUuXZD4oAIB9+/bh9u3b6NChA6ytrREXF4djx47Bw8MDQN6SNlOmTMHy5csRHx+PNm3awMDAAM+ePcO5c+cQGhpaYb+qQ0RERERERERE5Qsb5RVYfhP33//+N7799lukp6ejZs2aaN++PcaMGVPgfv7+/jA0NMSOHTuwd+9eWFtbY9KkSRg/frw4plq1ali7di2WLl2KiRMnwt7eHsuWLYO/v79crOTkZOzZswd79+6Fu7s7Fi5ciLFjxxY6dy8vL8yYMQO7d+/GoUOH4OLigk2bNonLnKhCT08P69evx7x58zB37lxYWFjA398fr1+/xrlz55SKkT/fypUro2bNmnBxccHcuXPFO+wBwNjYGKGhoQgJCcHUqVNRu3ZtTJgwAdevX8dvv/0mjmvevDkmT56MyMhIbN26FbVr18b58+cxceJEvHnzBmvXrgWQ99DT2bNny+Q9n7+/P5KSkjBz5kxkZWWhW7dumDt3rvj64MGDERcXh927d+OHH35A+/btsXLlSgwcOFAcI5FIcOHCBSxevBhv376FtbU1fH19MXXqVHHM6NGjUatWLWzfvh27d++GoaEh6tevj44dO8rdsU5ERERERERERKSt9ARBEDQ9CSIiALh79y4EQYBUKoW9vX2FXRNLHdLS0nD//n3mWQ10NdesV/XR1WtIG+lqrlmv6qOr15A20tVcs17VR1evIW2jy3m+e/cusrKytOrcTl95pvI+3h71SvU4pRkvP5YuX0fahHnmGuVEREREREREREREVMGxUU5EREREREREREREFRob5URERERERERERERUofFhnkREREREREREROVccdYH14bjqGveREXhHeVEREREREREREREVKGxUU5EREREREREREREFRob5URERERERERERERUobFRTkREREREREREREQVGhvlRERERERERERERFShsVFORERERERERERERBUaG+VEREREREREREREVKGxUU5EREREREREREREFZqeIAiCpidBRAQAt27dQv6vJCMjI+jp6Wl4RrpLEARIpVLmWQ20IdfGxsaQSCSlGpP1qj7acA1VFNqQa9Zr+aYN11BFoQ25Zr2Wb9pwDVUE2pLnsqxXTZ9bRaAt15Gu05Y8l0W9KstQI0clIlIg/xexkZGRhmei+/T09GBsbKzpaVQIuppr1qv66Oo1pI10NdesV/XR1WtIG+lqrlmv6qOr15C20eU859crG7dlT5evI23CPPOOciIiIiIiIiIiIiKq4LhGORERERERERERERFVaGyUExEREREREREREVGFxkY5EREREREREREREVVobJQTERERERERERERUYXGRjkRERERERERERERVWhslBMRERERERERERFRhcZGORERERERERERERFVaGyUExEREREREREREVGFxkY5EREREREREREREVVobJQTERERERERERERUYXGRjkRERERERERERERVWhslBORVnj06BFGjRoFJycneHh4YNmyZcjKytL0tNTq1KlTmDBhAjw9PeHk5ITevXvjwIEDEARBZlxkZCS8vb3h4OCAzz77DBcuXJCLlZKSgm+//RZt2rSBs7MzpkyZglevXsmNu3XrFgYNGgRHR0d06tQJmzdvljueIAjYvHkzOnbsCEdHRwwaNAi3b9+Wi/Xy5UtMnjwZzs7OaNOmDWbNmoXU1NSSJUVN3r9/D09PT0gkEty9e1fmNeZbHuuV9aoprFXVsV5Zr5rCelUd65X1qimsV9WxXlmvmsJ6LWMCEZGGvX37VvDw8BCGDRsmXL58WYiMjBRcXV2F+fPna3pqajVw4EBh2rRpQlRUlHD16lVhxYoVQrNmzYTQ0FBxzIkTJwSJRCKsXr1auHbtmjBnzhyhefPmQkxMjEys0aNHC56enkJUVJRw9uxZwc/PT/jss88EqVQqjomNjRWcnJyEiRMnClevXhW2b98utGjRQti6datMrE2bNgktWrQQtm/fLly9elWYOHGi4OzsLDx9+lQck5WVJfj5+Ql+fn7CuXPnhKioKMHT01MICAgom2SVsmXLlgnt2rUTmjZtKty5c0fcznzLY73mYb1qBmtVNazXPKxXzWC9qob1mof1qhmsV9WwXvOwXjWD9Vq22CgnIo3buHGj4OTkJLx580bctm/fPsHe3l6Ij4/X3MTULDExUW7b7NmzBRcXFyEnJ0cQBEHo3r27MH36dJkxgwYNEsaOHSv+fOvWLaFp06bCTz/9JG579OiRIJFIhKioKHHbnDlzhE6dOgmZmZnitpUrVwqtW7cWt2VkZAguLi7CypUrxTGZmZlCp06dhHnz5onbjh8/LkgkEuHRo0fitp9++klo2rSp8Ouvv6qaCrX666+/BCcnJ2Hv3r1y/9hgvuWxXvOwXtWPtao61mse1qv6sV5Vx3rNw3pVP9ar6liveViv6sd6LXtceoWINO7y5ctwd3eHpaWluK1nz57Izc3FlStXNDcxNbOyspLbZm9vj9TUVKSlpeHZs2eIjY1Fz549Zcb4+Pjg2rVr4lf9Ll++DAsLC3h4eIhj7OzsYG9vj8uXL4vbLl++jC5dusDY2FgmVnJyMmJiYgDkfd0qNTVV5pjGxsbo1q2bXCyJRAI7Oztxm4eHBywtLXHp0qXipkQtFi5ciMGDB8PW1lZmO/OtGOs1D+tV/VirqmO95mG9qh/rVXWs1zysV/VjvaqO9ZqH9ap+rNeyx0Y5EWnc48ePZX5pAoCFhQWsra3x+PFjDc1KO/z3v/9FrVq1YGZmJubi478UGzVqBKlUimfPngHIy6etrS309PRkxtnZ2Ykx0tLS8OLFC7m829nZQU9PTxyX/78fj2vUqBH++ecfZGRkiOM+HqOnpwdbW1utfg+jo6Px4MEDTJw4Ue415lsx1mvBWK9lh7VaPKzXgrFeyw7rtXhYrwVjvZYd1mvxsF4LxnotO6xX9WCjnIg0Ljk5GRYWFnLbq1atinfv3mlgRtrhP//5D06ePInRo0cDgJiLj3OV/3P+68nJyTA3N5eL92E+U1JSFMYyNjaGqampTCxjY2NUqlRJ7piCIKh0TG2Tnp6OJUuWYNq0aTAzM5N7nflWjPWqGOu17LBWi4/1qhjrteywXouP9aoY67XssF6Lj/WqGOu17LBe1YeNciIiLRQfH49p06ahbdu2GD58uKano5M2bNiA6tWr4/PPP9f0VKicY72WLdYqlSbWa9livVJpYr2WLdYrlSbWa9livaoPG+VEpHEWFhbip5YfevfuHapWraqBGWlWcnIyxo0bB0tLS4SGhkJfP+9XdX4uPs5VcnKyzOsWFhZITU2Vi/thPvM/0f04VlZWFtLT02ViZWVlITMzU+6Yenp6Kh1Tmzx//hzbtm3DlClTkJKSguTkZKSlpQHI+6rZ+/fvme8CsF5lsV7LFmu1ZFivslivZYv1WjKsV1ms17LFei0Z1qss1mvZYr2qFxvlRKRxH66HlS8lJQUJCQlya1npuoyMDHzxxRdISUnB1q1bZb6ilJ+Lj3P1+PFjGBkZoV69euK4J0+eQBAEmXFPnjwRY1SuXBm1a9eWi5W/X/64/P998uSJ3DHr1KkDExMTcdzHsQRBkDmmNomLi4NUKkVAQADc3Nzg5uaG8ePHAwCGDx+OUaNGMd8FYL3+D+u17LFWS4b1+j+s17LHei0Z1uv/sF7LHuu1ZFiv/8N6LXusV/Vio5yINM7T0xNXr14VP+0E8h5Uoa+vL/M0Zl2XnZ2NL7/8Eo8fP8bWrVtRq1Ytmdfr1auHhg0bIjo6Wmb7yZMn4e7uLj6R2tPTE+/evcO1a9fEMU+ePMHvv/8OT09PcZunpyfOnTsHqVQqE8vCwgLOzs4AABcXF5iZmeHUqVPiGKlUih9//FEu1h9//IHY2Fhx27Vr1/D27Vt4eXmVICtlw97eHjt37pT5Lzg4GAAwf/58zJs3j/kuAOs1D+tVPVirJcN6zcN6VQ/Wa8mwXvOwXtWD9VoyrNc8rFf1YL2qmUBEpGFv374VPDw8hH/961/CTz/9JBw4cEBo3bq1MH/+fE1PTa1mz54tNG3aVNi2bZsQExMj819mZqYgCIJw/PhxQSKRCN9//71w/fp1Ye7cuULz5s2FW7duycQaPXq04OXlJZw8eVI4d+6c4OfnJ3z22WeCVCoVx8TGxgpOTk7C5MmThatXrwo7duwQWrRoIWzdulUm1qZNm4SWLVsKO3bsEK5evSpMnjxZcHZ2Fp4+fSqOycrKEvz8/AQ/Pz/h/PnzQlRUlODl5SUEBASUYcZK1/Xr14WmTZsKd+7cEbcx3/JYr3lYr5rDWlUe6zUP61VzWK/KY73mYb1qDutVeazXPKxXzWG9lh02yolIK/z111/CiBEjBEdHR8Hd3V1YsmSJ+JdrRdGpUyehadOmCv979uyZOG7//v1Ct27dhBYtWoh/2XwsOTlZCA4OFlq3bi04OTkJkyZNEuLj4+XG/fe//xUGDBggtGzZUvD09BQ2bdok5ObmyozJzc0VNm7cKHh6egotW7YUBgwYIPeXrSAIQnx8vDBp0iTByclJaN26tRAcHCykpKSUQmbUQ9E/NgSB+VaE9cp61STWqmpYr6xXTWK9qob1ynrVJNaralivrFdNYr2WHT1B+GhhGiIiIiIiIiIiIiKiCoRrlBMRERERERERERFRhcZGORERERERERERERFVaGyUExEREREREREREVGFxkY5EREREREREREREVVobJQTERERERERERERUYXGRjkRERERERERERERVWhslBMRERERERERERFRhcZGORERERERERERERFVaGyUExFRkfz9/eHv76/paRCRElivROUH65Wo/GC9EpUfrFcqLkNNT4CIiMrGn3/+iXXr1uHu3bt4/fo1LC0t0bhxY3Tu3Jn/aCDSMqxXovKD9UpUfrBeicoP1itpAzbKiYh00K1btzB8+HDUqVMHAwYMgLW1NV68eIFff/0VO3fu5D80iLQI65Wo/GC9EpUfrFei8oP1StqCjXIiIh20ceNGmJub48CBA7CwsJB5LTExUUOzypOdnY3c3FwYGxtrdB5E2oL1SlR+sF6Jyg/WK1H5wXolbcE1yomIdNDTp0/RuHFjuX9kAED16tXFPx88eBDDhw+Hu7s7WrZsCR8fH+zZs6fI+FlZWfj+++/Rr18/uLq6wsnJCUOHDsX169dlxsXFxUEikeCHH37Ajh070LVrVzg4OODOnTtwcnLCwoUL5WLHx8fD3t4emzZtKsaZE5U/rFei8oP1SlR+sF6Jyg/WK2kL3lFORKSDPvnkE8TExODBgwdo2rRpgeP27t2LJk2aoHPnzjA0NMSFCxcwf/58CIKAYcOGFbhfamoqIiMj4efnhwEDBuD9+/c4cOAAxo4di8jISNjb28uMP3ToEDIzMzFw4EAYGxujTp066Nq1K06dOoXg4GAYGBiIY0+cOAFBENCrV6+SJ4KoHGC9EpUfrFei8oP1SlR+sF5JW+gJgiBoehJERFS6rly5gnHjxgEAHB0d4erqCnd3d7Rt2xZGRkbiuIyMDJiYmMjsO2bMGPz99984e/asuC1/Tbhdu3YBAHJycpCTkyPz9bPk5GT07NkTXl5e+O677wDkfSLfpUsXmJmZ4cyZM7CyshLH//zzzxgzZgy2bNkCT09Pcftnn32GqlWrisci0nWsV6Lyg/VKVH6wXonKD9YraQsuvUJEpIM8PDywb98+dO7cGX/88Qe2bt2KMWPGwNPTE+fOnRPHffiPjJSUFCQlJaFNmzZ49uwZUlJSCoxvYGAg/iMjNzcXb9++RXZ2Nlq2bInff/9dbnz37t1l/pEBAO3atUPNmjVx/PhxcduDBw/w559/4rPPPiv2uROVN6xXovKD9UpUfrBeicoP1itpCy69QkSkoxwdHREWFoasrCz88ccfOHv2LHbs2IGpU6fiyJEjaNy4Mf773/8iNDQUt2/fRnp6usz+KSkpMDc3LzD+4cOHsW3bNjx58gRSqVTcXrduXbmxirbp6+ujV69e2Lt3L9LT02Fqaorjx4+jUqVK6NGjRwnOnKj8Yb0SlR+sV6Lyg/VKVH6wXkkbsFFORKTjjI2N4ejoCEdHRzRs2BDBwcGIjo7GZ599hpEjR8LOzg5BQUGoXbs2jIyMcOnSJezYsQO5ubkFxjx69CiCgoLQtWtXjBkzBtWrV4eBgQE2bdqEZ8+eyY3/+Otx+fr06YMffvgBZ8+ehZ+fH06cOIGOHTsW+g8cIl3GeiUqP1ivROUH65Wo/GC9kiaxUU5EVIG0bNkSAPDq1SucP38eWVlZ2LBhA+rUqSOOuXHjRpFxTp8+jXr16iEsLAx6enri9rVr16o0n6ZNm6J58+Y4fvw4bGxs8M8//2D27NkqxSDSVaxXovKD9UpUfrBeicoP1iupG9coJyLSQdevX4eiZzVfunQJAGBnZyc+qfvDcSkpKTh48GCR8RXt++uvv+L27dsqz7V37964cuUKwsPDYWlpKfNgFKKKgPVKVH6wXonKD9YrUfnBeiVtwTvKiYh00MKFC5Geno5u3brBzs4OUqkUt27dwqlTp/DJJ5+gX79+eP36NYyMjDB+/HgMHjwY79+/R2RkJKpXr46EhIRC43fs2BE//vgjJk6ciI4dOyIuLg779u1D48aNkZaWptJc/fz8sHz5cpw5cwZDhgyReao5UUXAeiUqP1ivROUH65Wo/GC9krZgo5yISAfNnDkT0dHRuHTpEiIiIiCVSlGnTh0MHToUEyZMgIWFBSwsLLB27VqsWbMGS5cuRY0aNTBkyBBYWVnh22+/LTR+/j9UIiIi8PPPP6Nx48ZYvnw5oqOjcfPmTZXmWqNGDXh4eODSpUvo3bt3SU6bqFxivRKVH6xXovKD9UpUfrBeSVvoCYq+20BERKRGEydOxIMHD3DmzBlNT4WIisB6JSo/WK9E5Qfrlaj8YL3qLq5RTkREGvXq1St+Gk9UTrBeicoP1itR+cF6JSo/WK+6jUuvEBGRRjx79gy3bt3CgQMHYGhoiEGDBml6SkRUANYrUfnBeiUqP1ivROUH67Vi4B3lRESkEb/88gtmzpyJuLg4LFmyBNbW1pqeEhEVgPVKVH6wXonKD9YrUfnBeq0YuEY5EREREREREREREVVovKOciIiIiIiIiIiIiCo0NsqJiIiIiIiIiIiIqEJjo5yIiIiIiIiIiIiIKjQ2yomIiIiIiIiIiIioQmOjnIiIiIiIiIiIiIgqNDbKiYiIiIiIiIiIiKhCY6OciIiIiIiIiIiIiCo0NsqJiIiIiIiIiIiIqEJjo5yIiIiIiIiIiIiIKrT/B8oNkb+KWVyHAAAAAElFTkSuQmCC\n"},"metadata":{}}]},{"cell_type":"code","source":["fig=plt.figure(figsize=(20,15))\n","b=sns.displot(data=df_u,x='salary',y='job_category',col='work_year')\n","b.set_titles((\"{col_name}\"))\n","b.set_axis_labels(\"Salary\",\"Job Category\")\n","b.tight_layout()\n","b.fig.subplots_adjust(top=.8)\n","b.fig.suptitle(\"Salary Records by Year and Category\")\n","plt.savefig('/content/SalaryRecordsByYearAndCategory')\n"],"metadata":{"colab":{"base_uri":"https://localhost:8080/","height":204},"id":"rc553rZwUiXR","executionInfo":{"status":"ok","timestamp":1714702849475,"user_tz":300,"elapsed":3918,"user":{"displayName":"Jenny O","userId":"07622373657144372939"}},"outputId":"fb71d69a-8680-4bc3-ca9d-fd4bfe3cbfca"},"execution_count":null,"outputs":[{"output_type":"display_data","data":{"text/plain":["
"]},"metadata":{}},{"output_type":"display_data","data":{"text/plain":["
"],"image/png":"iVBORw0KGgoAAAANSUhEUgAACbQAAAHsCAYAAAAAKrmZAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOzdeXxMZ///8Xc2JJJYY6cUGWoXRKy1q6WWVhVVrSpupa2lxU35UkoX2gotWq21FUoV7U1Vay/uWorW0motUSFiC5FFMr8//DK3kTmRiZnMJHk9H48+Hp3rXOe6rnOdM+dzzuTjHA+z2WwWAAAAAAAAAAAAAAAAAAAu5unqAQAAAAAAAAAAAAAAAAAAIJHQBgAAAAAAAAAAAAAAAABwEyS0AQAAAAAAAAAAAAAAAADcAgltAAAAAAAAAAAAAAAAAAC3QEIbAAAAAAAAAAAAAAAAAMAtkNAGAAAAAAAAAAAAAAAAAHALJLQBAAAAAAAAAAAAAAAAANwCCW0AAAAAAAAAAAAAAAAAALdAQhsAAAAAAAAAAAAAAAAAwC2Q0AYAAAAAAHIUk8mkvn37unoYyKAxY8bIZDIpMjLSoe2uXr1aJpNJq1evdmi7yDotW7ZUy5YtXT0MAAAAAAAAZDFvVw8AAAAAAADkHsnJyVq1apXWrl2rEydO6ObNmwoMDFTRokVVs2ZNtWzZUq1atXL1MLPU6tWrNXbsWKsyHx8fBQUFqW7dunrxxRdVpUoVF40O9rhx44Yef/xxXbhwQV9++aVq1qxps97ChQs1bdo0tW3bVuHh4Vk8ypzv/PnzWrZsmXbt2qWzZ88qLi5OgYGBMplMatGihbp3766AgIBMtz9mzBh9/fXX2rx5s8qUKePAkQMAAAAAAEAioQ0AAAAAAGSR5ORkDRo0SNu3b1dgYKCaN2+uEiVKKCkpSX/++afWr1+vv/76K9cltKWqUqWKWrduLelOYtT+/fu1fv16ff/991q4cKFCQkJcPELcj7+/v9555x317dtXr732mr7++mv5+flZ1Tlx4oRmzJihoKAgTZ482UUjzblWrlypyZMnKzExUVWqVFHHjh1VoEABXblyRfv379dbb72ljz76SHv27HH1UAEAAAAAAGCAhDYAAAAAAJAl1q9fr+3bt6tKlSpaunRpmick3bp1S7/++quLRud6VatW1bBhw6zKJkyYoIiICH3wwQdasmSJi0YGe9SrV08vvvii5s2bp2nTpunNN9+0LEtMTNRrr72mpKQkTZ8+XYUKFXLhSHOetWvXavz48SpQoIDCw8P16KOPpqmzb98+EgkBAAAAAADcnKerBwAAAAAAAHKHAwcOSJK6detm83V/vr6+atiwoVVZbGysPv30Uz377LNq1qyZqlevroYNG2rw4MGW9jLiwoULmj17tp5++mk1btxY1atXV5MmTTRy5Ej9+eefaepHRkbKZDJpzJgx+vvvv/Xqq68qLCxMVapU0Z49e9SzZ09VqVJFkZGRNvv77LPPZDKZtGDBggyP0ZYnn3xSknTkyJE0y27fvq1ly5bpqaeeUt26dVWrVi117dpVS5cuVUpKis32Dh06pFdffVVNmza1zEH//v313Xffpan73XffqU+fPgoJCVHNmjXVuXNnzZs3T4mJiWnqtmzZUi1bttSNGzc0bdo0tWzZUtWqVbN6neauXbvUu3dv1a5dWw0aNNCQIUN08uRJw23fvHmz+vXrpyZNmljG+swzz2jZsmX3nbd7bdmyRU8//bRq166t+vXr6+WXX9apU6es6owYMUImk0l79+612cbGjRtlMpkylAw1bNgwVatWTStWrNDmzZst5R988IGOHTumZ555Rk2aNJEkXb16VTNmzNBjjz2mmjVrKiQkRP369dOOHTvStJuZ74PJZFLfvn0VHR2tcePGqWnTpqpatapWr16d7jYkJiZq6dKlevHFF9WiRQtVr15dDRo00HPPPaetW7faXCf1OIiLi9Pbb7+tRx99VNWrV1ebNm00f/58mc3mNOuYzWYtXbpUHTt2VI0aNdS0aVNNnjxZsbGx6Y7vXjdu3NDUqVMlSTNnzrSZzCZJISEhWrlypVXZDz/8oFGjRqldu3aqXbu2ateure7du2vx4sVpvksmk0lff/21JKlVq1YymUwymUxq2bKlVT179qt0Z99OnTpVzZo1U40aNdS+fXt9/vnnOnv2rOVcdK+LFy9q0qRJatmypeVYGDp0qM3zxerVq2UymbR69Wpt27ZNffv2VUhIiEwmk65du6ZatWqpdevWNveRJA0ePFgmk0mHDx+2uRwAAAAAAMCReEIbAAAAAADIEgULFpSkNIlE6Tl58qQ++OAD1atXT48++qgCAwN1/vx5/fjjj9q+fbs+/vhjNWvW7L7t/PLLL/rkk08UGhqqtm3bys/PT6dPn9bGjRv1448/6ssvv1SVKlXSrHfmzBk99dRTKl++vDp37qz4+Hj5+/urV69eOnjwoFauXKnhw4enWS8iIkJ58uRRt27dMryt6fH2tv4JJykpSYMHD9aOHTtUoUIFderUSXnz5tWePXv05ptv6tdff9W7775rtc6KFSv0f//3f/L09FTLli1Vvnx5xcTE6MiRI/ryyy/VoUMHS92ZM2dq3rx5KlSokDp16iQ/Pz9t375dM2fO1I4dO7RgwQLlyZPHqv3ExEQ9++yzunbtmho3bix/f3+VKVNGkrRhwwYNHz5cPj4+6tChg4KCgrRv3z49/fTTMplMNudvwoQJCgoKUosWLVSoUCHFxMTo+PHjWr16tfr06ZPhufv++++1fft2tW7dWg0aNNDRo0e1ceNG7dmzR19++aUefvhhSVKvXr307bffKiIiQg0aNLA5Jkl6+umn79unj4+P3n33XXXv3l3jx49XrVq19Pfff+vzzz9X5cqV9dprr0mSzp07p759++rcuXOqV6+emjZtqlu3bumnn37SgAEDNHnyZD311FOWdjP7fbh69ap69uwpPz8/tW3bVh4eHipSpEi623Dt2jVNnTpVderUUaNGjVS4cGFFR0frp59+0sCBAzVlyhT16NEjzXpJSUl64YUXdPHiRTVr1kxeXl764YcfNGPGDCUmJmro0KFW9adOnaolS5YoKChIPXv2lLe3tzZv3qxff/1ViYmJaY4zIxs3btTVq1dVu3ZtS7KgkXvbfO+99+Tp6amaNWuqePHiio2N1e7duzV16lQdPnzY6rs0dOhQ/fDDDzp27JieffZZBQYGSpJVkq69+zUhIUH9+vXTb7/9pkceeUSdO3dWbGys5s6dq19++cXmNpw9e1a9e/fWxYsX1bBhQ3Xs2FHnz5/Xhg0btGXLFoWHh6tFixY252n79u1q1qyZnn76af3zzz8qUKCAOnTooNWrV2vXrl1q3Lix1Trnz5/Xtm3bVK1aNdWoUSPduQUAAAAAAHAIMwAAAAAAQBb47bffzNWqVTObTCbzqFGjzBs3bjRHRkamu87169fNMTExacrPnz9vbty4sbl9+/ZplgUHB5ufeeYZq7JLly6ZY2Nj09Q9evSouXbt2uYXXnjBqvzs2bPm4OBgc3BwsHnGjBlp1ouPjzc3aNDA3LhxY3NSUpLVst27d5uDg4PNI0aMSHfbUq1atcocHBxsHj16dJpl48aNMwcHB5sHDRpkVT5r1ixzcHCwefLkyebbt29bym/fvm0eO3asOTg42Lxp0yZL+R9//GF+5JFHzPXr1zefOHEiTT/nz5+3/P/+/fvNwcHB5ubNm5svXrxoKU9KSjIPGjTIHBwcbP7444+t1m/RooU5ODjY3K9fP/PNmzetlt24ccPcoEED8yOPPGI+dOiQ1bKpU6da5vns2bOW8m7dupmrVatmvnTpUpqx2joebEmd1+DgYPOPP/5otWzhwoXm4OBg87PPPmtV3rFjR3P16tXNly9ftio/c+aM2WQymXv27JmhvlMtXbrUHBwcbH7++efNLVq0MFerVs189OhRy/JnnnnGbDKZzOvXr7da79q1a+bHH3/cXKNGDXN0dLSlPLPfh+DgYPNrr72W5lhNT0JCgtVxcfcYOnbsaK5fv7751q1bVstSj4MBAwZYLbt06ZI5JCTEHBISYk5MTLSU79u3zxwcHGxu3bq1+cqVK5by+Ph481NPPWUODg42t2jRIkPjTT3uZ86cmeFtTHX69Ok0ZcnJyebXX3/dHBwcbD548KDVstGjR6c5Zu9m736dPXu2OTg42Dx8+HBzSkqKpfyff/4xh4aG2jw/9O/f3xwcHGz+6KOPrMr37dtnrlq1qrlBgwbmGzduWMpTvw8mk8m8devWNGM+dOiQOTg42Dxs2LA0y1LPNxERETa3FwAAAAAAwNF45SgAAAAAAMgSjzzyiN555x0VLVpUa9eu1bBhw9SyZUuFhobqpZde0o8//phmnYCAABUuXDhNeYkSJdS+fXv99ddf+ueff+7bd5EiReTv75+mvEqVKgoNDdWePXuUlJSUZnnRokXTPFFKkvLmzavu3bsrOjra6pWSkn1P8rrb0aNHFR4ervDwcE2bNk1PPPGEVq5cqWLFimn06NGWeikpKVq6dKmCgoI0duxYeXl5WZZ5eXlpzJgx8vDw0Lp16yzlX375pW7fvq0hQ4aocuXKafouUaKE5f9XrVolSfrXv/6loKAgS7m3t7dGjx4tT0/PNK9sTDVmzBj5+flZlW3evFlXr15Vp06d0jzdadiwYTZfP5va371PppNk83hIT8OGDdM8qeqZZ55RuXLltHv3bp07d85S3qtXLyUmJlpeKZlqxYoVMpvNdu/TPn36qHnz5tq5c6fOnTunV1991fIkwGPHjmnv3r1q27atOnbsaLVeYGCghg0bpoSEBG3cuNFSntnvg4+Pj0aPHm1zPo3kyZPH6ri4ewxPPPGErl27Zvj6yfHjxytfvnyWz0WKFFGrVq0UGxurv//+21Ke+trTwYMHW57gKN35fo0YMSLDY5Wk6OhoSbI55vspV65cmjJPT089++yzkqTt27dnuK3M7Nc1a9bI09NTI0aMkIeHh6W8ZMmS6tevX5o+oqKitGPHDpUqVUoDBgywWla3bl117NhRV69e1aZNm9Ks26pVK5tP8atRo4aqV6+uzZs3W+ZSkpKTk/XVV18pf/78abYHAAAAAADAWXjlKAAAAAAAyDIdOnRQmzZttGfPHu3bt09Hjx7Vvn379MMPP+iHH35Q165dNX36dKukjn379mnx4sU6ePCgYmJi0iSeXbhwQaVKlbpv31u2bNHy5ct15MgRXblyRbdv37ZafuXKFRUrVsyqrEqVKoavPOzdu7c+//xzRUREqF27dpKky5cva9OmTapYsaLq16+foTlJdezYMR07dsyqrFSpUlq2bJnV9v3999+6evWqypcvr48//thmW/ny5dNff/1l+Xzw4EFJUtOmTe87jt9//13SnUSwe1WoUEElSpRQZGSkYmNjrZLR8ubNa/P1oant2ZqPgIAAVa1aVXv37rUq79y5s6ZPn66OHTuqQ4cOatCggerWrWt3MptRv15eXgoJCdGZM2d09OhRlS5dWpLUpUsXvffee4qIiFD//v0l3XmF5tdff60CBQroscces7v/0aNHa+vWrQoKCrK0KUkHDhyQJN24cUPh4eFp1rt8+bIkWe1HKXPfh9KlS9/3FaO2/PHHH1qwYIH++9//Kjo6WgkJCWn6uldAQIAeeuihNOWpiWbXr1+3lKUeG7Ze8RoSEmKVrOlMV65c0YIFC7R161ZFRkYqLi7OavnFixcz3Ja9+/XGjRs6c+aMSpYsaXlF791CQkLSlKXOW0hIiHx8fNIsb9iwodauXavff/9dXbt2tVpWs2ZNw7H37t1b//73v7Vq1SoNHjxYkrR161ZFRUWpV69eyp8/v+G6AAAAAAAAjkRCGwAAAAAAyFI+Pj5q0qSJmjRpIunOE4A2btyocePGac2aNWrTpo1at24tSdq0aZNefvll5c2bV40aNVK5cuXk6+srT09P7d27V3v37lViYuJ9+1y0aJHeeustFShQQI0aNVLJkiXl6+srDw8P/fDDDzp27JjNdooWLWrYZtmyZdWkSRPt2LFDZ86cUbly5bRmzRolJiaqZ8+eds9Lt27dNH36dJnNZsXExOirr77SBx98oMGDBysiIkK+vr6SpKtXr0qSTp06pdmzZxu2d/PmTcv/x8bGSpKKFy9+33Gk1r376Wx3CwoK0j///KPr169bJbQVKVLEKhHx3vaM5tJW+fPPP69ChQrpiy++0JIlS7Ro0SJ5eHiofv36ev3119M86S099+s3dXyS5O/vr8cff1zLly/X7t271bBhQ/3444+Kjo5Wv379lDdv3gz3myp1nTx58sjT838vS0jdjzt37tTOnTsN1787uSqz3wejfZmegwcPql+/fkpOTlbDhg3VsmVL+fv7y9PTU0ePHtXmzZtt9hUYGGizvdSnwyUnJ1vKUufeVrKdt7e3ChUqlOHxpm6jrSS79Fy/fl1PPvmkIiMjVbNmTXXp0kUFChSQt7e3rl+/rsWLF2foHJPK3v1648YNSbbnwKg8I9/Ru+vdLb1zWseOHfX2229rxYoVGjhwoDw9PbVixQpJ9j9xEgAAAAAA4EGQ0AYAAAAAAFzKy8tLHTp00IkTJ/Txxx9r9+7dloS2Dz/8UD4+Plq1apUqVqxotd6ECRPSPNnLltu3b2v27NkKCgrS6tWr0zyFLfXpZbbYStC6W69evbR9+3atWLFCo0aNUkREhPLmzZvmqUj28PDwUNGiRTV48GBdu3ZNn332mT744AONHTtWkixJZG3atEk3oe1uqetcuHDB5qtXbdW9dOmSzVcxpr6O8N5XhRrN1d3t2WJU3rVrV3Xt2lXXr1/XgQMHtGnTJq1atUoDBgzQf/7znww/re1+/d67Hb169dLy5csVERGhhg0bWl4hm5kkxfSk9jtu3DjLqy3vJ7Pfh/sdx7Z8/PHHio+P1+LFixUaGmq1bN68eWletZsZqXMQExOT5lW1t2/f1pUrVzL8CtGQkBCtWrVKu3fvtmsMK1euVGRkpIYOHaphw4ZZLTtw4IAWL15sV3v27tfU72NMTIzN5bbK7/edSv2O2vqup3cs5MuXT926ddPChQu1Y8cOVa5cWdu2bVOtWrUsr8oFAAAAAADICp73rwIAAAAAAOB8qa+zM5vNlrLTp0+rUqVKaZJ3UlJStG/fvgy1e+XKFV2/fl116tRJk8x28+ZN/fbbb5kec4sWLVSqVCmtXr1aO3bs0KlTp/TYY4+pQIECmW7zbi+99JIKFy6sZcuW6ezZs5Kkhx9+WIGBgTp48GCa100aqV27tiRp+/bt961btWpVSdKePXvSLDt9+rSioqJUpkwZwydx3euRRx6RJP33v/9Nsyw2NlZHjx5Nd/3AwEA1b95cU6ZMUbdu3XT16lWbbRmxVTc5Odly/KRub6oqVaqobt262rRpk3799Vft2rVL9evXT3MMPqhatWpJkn755ZcMr+OI74M9fRUsWDBNMpukDCWSZkTqsWGrvX379lk9ze1+2rVrp4IFC+rAgQPatWtXunXvfuLa6dOnJUlt27ZNU8/oOEt90l5KSkqaZfbuV39/f5UtW1YXLlxQZGRkmuW29mvqvO3bty/Nq5Ol/313q1WrlqEx3K1Xr17y8PBQRESEvvrqKyUnJzs8mRMAAAAAAOB+SGgDAAAAAABZYv369dq5c6fNJJDo6GitXLlSklSvXj1LeenSpXXq1Cmr1wiazWaFh4frzz//zFC/RYoUka+vr3777Ter13AmJSVp6tSpunLlSmY3SZ6ennrqqacUExOjf//735Ic+2o+f39/vfjii0pKSrI8jc3b21vPPPOMoqOjNWXKFMXHx6dZ7+LFi1bz06tXL3l7e+ujjz6yOW9RUVGW/3/iiSck3XlC1+XLly3lycnJevvtt5WSkqInn3wyw9vQqlUrFShQQOvXr9fhw4etloWHh9t8LeLu3butEhtTpY4nX758Ge5/9+7d+umnn6zKli5dqjNnzig0NFSlS5dOs06vXr2UlJSkYcOGyWw2O+V1izVq1FC9evW0adMmffXVVzbrHD9+3OoJXY74PmRU6dKldfXqVR07dsyqfOXKldqxY4dD+ujWrZskae7cuZZXdUpSQkKCZs6caVdb/v7+GjdunCRp+PDhhsmbBw8etErQKlOmjKS0SXW///675s2bZ7ONggULSpL++eefNMsys1+7du2qlJQUzZw50+q4P3/+vBYtWpRm/RIlSqhx48Y6d+5cmuW//vqr1q9frwIFCliedGmP8uXLKywsTFu2bNHy5csVGBiojh072t0OAAAAAADAg+CVowAAAAAAIEv8+uuvWrx4sYKCglS3bl1LIklkZKS2bt2q+Ph4tWrVSu3bt7es89xzz2nixInq1q2b2rZtK29vb+3fv18nT55UixYt0iQq2eLp6am+fftq/vz56ty5s1q1aqWkpCTt2bNH165dU2hoqM2nkWVUjx49NGfOHF24cEHBwcGqU6dOptuypXfv3vrss8+0du1aDRw4UBUrVtSQIUN07NgxLV++XD/99JMaNmyo4sWLKyYmRqdPn9b+/fs1fPhwVapUSZJUqVIlTZw4URMnTlTXrl3VqlUrlS9fXleuXNGRI0eUP39+LVmyRJJUt25dDRgwQJ9++qk6deqkdu3aydfXV9u3b9eJEycUEhKiF154IcPjz58/vyZPnqzhw4erT58+6tChg4KCgrRv3z798ccfql+/fponYQ0dOlR+fn6qXbu2SpcuLbPZrF9++UWHDx9WtWrV1KhRowz336JFCw0dOlStW7fWQw89pKNHj2rbtm0qWLCgJk6caHOd9u3ba9q0abpw4YIKFSpk8+ldjjBjxgz169dP48aN05IlS1SrVi0FBAQoKipKJ06c0IkTJxQREaEiRYpIcsz3IaP69eunHTt2qHfv3nrssccUEBCgI0eOaN++fWrXrp02btz4wH2EhISob9++WrJkiTp16qT27dvL29tbmzdvVmBgoIKCguxq7/HHH1dCQoImT56sAQMGqGrVqqpTp44CAwN19epVHTx4UMeOHVOhQoUs63Tp0kULFizQW2+9pT179uihhx7S6dOntWXLFrVp00bfffddmn7CwsK0YMECvfHGG2rbtq3y58+vwMBAPfPMM5Ls368DBgzQDz/8oG+//VZ///23GjdurNjYWG3YsEH16tXTDz/8kOZVoZMmTVKvXr30zjvvaOfOnapevbrOnz+vDRs2yNPTU2+99dZ9Xy9spHfv3tq1a5cuXbqkvn372pVACgAAAAAA4AgktAEAAAAAgCzRv39/lS9fXrt27dLx48e1Y8cOJSYmqmDBgmrQoIE6deqkzp07WyVuPP3008qTJ48WLVqkNWvWKG/evKpXr56mTZum77//PsMJPK+88ooKFy6slStXKiIiQgEBAWrUqJFeffVVhYeHP9B2FS1aVM2bN9cPP/zglCd55cuXT4MGDdKUKVP0wQcfKDw8XD4+Pvroo4/0zTff6Ouvv9aWLVsUFxenQoUKqUyZMnrllVfUuXNnq3aeeuopVa5cWZ999pn27t2rzZs3q2DBgjKZTOrRo4dV3ddee02PPPKIli5dqjVr1uj27dsqV66cXn31VfXv31958uSxaxvat2+vgIAAzZ49W//5z3+UJ08e1atXT8uXL9cnn3ySJqFt5MiR2rFjh3777Tdt3bpVefPmValSpTRq1Cj16tVLPj4+Ge67bdu26tmzp+bOnautW7fK29tbbdu21YgRI1ShQgWb6+TJk0edO3fWokWL1K1bN7u3N6NKlCihVatWaenSpfr++++1bt06JScnq2jRoqpUqZKeeeYZBQcHW+o76vuQEc2aNdPcuXP18ccf67vvvpOXl5dq1qypxYsX6+zZsw5JaJOkcePGqXz58lq2bJmWL1+uggULqk2bNhoxYoS6dOlid3s9evRQkyZNtHTpUu3atUvr1q3TrVu3FBAQoMqVK2vs2LFWTxgsXry4li1bpvfee0/79u3Tjh079PDDD2vixIkKCwuzmdDWtGlTjRkzRitWrNCiRYuUlJSk0qVLWxLa7N2v+fLl0+LFizVr1ixt2LBBCxcuVJkyZTRo0CBLQtu9yWlly5bVqlWr9NFHH2nbtm3au3ev8ufPr6ZNm2rw4MGqWbOm3XOXqmXLlipUqJCuXLnC60YBAAAAAIBLeJhtvb8BAAAAAAAAGZKSkqI2bdooJiZGO3bsyPRTkeBe+vbtq//+97/asGGDypcv7+rhIJdasWKF3njjDU2aNMkpCbO2nD17Vm3atFHdunX1xRdfZEmfAAAAAAAAd/N09QAAAAAAAACysw0bNigyMlJdunQhmS2HOHTokPbu3asmTZqQzIYsceHChTRl//zzjz766CN5e3urRYsWWTaWBQsWyGw2W544BwAAAAAAkNV45SgAAAAAAEAmzJ8/X1evXtWKFSvk5+enQYMGuXpIeEBffPGFLly4oNWrV8vT01Mvv/yyq4eEXOLll19WUlKSqlevroCAAJ07d05btmzRrVu3NHLkSBUvXtyp/f/zzz9av369Tp06pdWrV6tKlSpq3769U/sEAAAAAAAwwitHAQAAAAAAMsFkMsnHx0cVK1bU66+/rsaNG7t6SHhALVu2VFRUlMqWLauhQ4eqc+fOrh4Scolly5Zp7dq1OnXqlG7cuCE/Pz9VrVpVzzzzjNq2bev0/vfs2aNnn31Wvr6+CgkJ0f/93/+pbNmyTu8XAAAAAADAFhLaAAAAAAAAAAAAAAAAAABuwdPVAwAAAAAAAAAAAAAAAAAAQCKhDQAAAAAAAAAAAAAAAADgJkhoAwAAAAAAAAAAAAAAAAC4BRLaAAAAAAAAAAAAAAAAAABugYQ2AAAAAAAAAAAAAAAAAIBbIKENAAAAAAAAAAAAAAAAAOAWSGgDAAAAAAAAAAAAAAAAALgFEtoAAAAAAAAAAAAAAAAAAG6BhDYAAAAAAAAAAAAAAAAAgFsgoQ0AAAAAAAAAAAAAAAAA4BZIaAMAAAAAAAAAAAAAAAAAuAUS2gAAAAAAAAAAAAAAAAAAboGENgAAAAAAAAAAAAAAAACAWyChDQAAAAAAAAAAAAAAAADgFkhoAwAAAAAAAAAAAAAAAAC4BRLaAAAAAAAAAAAAAAAAAABugYQ2AAAAAAAAAAAAAAAAAIBbIKENAAAAAAAAAAAAAAAAAOAWSGgDAAAAAAAAAAAAAAAAALgFEtoAAAAAAAAAAAAAAAAAAG6BhDYAAAAAAAAAAAAAAAAAgFsgoQ0AAAAAAAAAAAAAAAAA4BZIaAMAAAAAAAAAAAAAAAAAuAUS2gAAAAAAAAAAAAAAAAAAboGENgAAAAAAAAAAAAAAAACAWyChDQAAAAAAAAAAAAAAAADgFkhoAwAAAAAAAAAAAAAAAAC4BRLaAAAAAAAAAAAAAAAAAABugYQ2AAAAAAAAAAAAAAAAAIBbIKENAAAAAAAAAAAAAAAAAOAWSGgDAAAAAAAAAAAAAAAAALgFEtoAAAAAAAAAAAAAAAAAAG6BhDYAAAAAAAAAAAAAAAAAgFsgoQ0AAAAAAAAAAAAAAAAA4BZIaAMAAAAAAAAAAAAAAAAAuAUS2gAAAAAAAAAAAAAAAAAAboGENgAAAAAAAAAAAAAAAACAWyChDQAAAAAAAAAAAAAAAADgFkhoAwAAAAAAAAAAAAAAAAC4BRLaAAAAAAAAAAAAAAAAAABugYQ2AAAAAAAAAAAAAAAAAIBbIKENAAAAAAAAAAAAAAAAAOAWSGgDAAAAAAAAAAAAAAAAALgFEtoAAAAAAAAAAAAAAAAAAG6BhDYAAAAAAAAAAAAAAAAAgFsgoQ0AAAAAAAAAAAAAAAAA4BZIaAMAAAAAAAAAAAAAAAAAuAUS2gAAAAAAAAAAAAAAAAAAboGENgAAAAAAAAAAAAAAAACAW/B29QAAAMjtDh06pDVr1mjPnj06d+6cChYsqFq1aunVV19VhQoVrOqePHlSb731lvbv3y8fHx81b95cY8eOVeHCha3qrFq1Sjt37tSZM2eUP39+PfLIIxo2bJhq1KiRpv8LFy7orbfe0s6dO5WSkqLQ0FD9+9//VtmyZZ2+7QCAnMuV8e2vv/7S8uXLdejQIf32229KTEzU5s2bVaZMmSzZdgBAzubKGPf999/ru+++0+HDh3Xp0iWVKFFCLVq00JAhQxQYGJgl2w8AyJlcGd82bdqk5cuX6/jx47p69aoKFy6s2rVra+jQoQoODs6S7QcA5Fyu/jvc3Z5//nnt2rVLffr00YQJE5yyvUBO4WE2m82uHgQAALnZyy+/rP3796t9+/YymUyKjo7WsmXLFBcXp4iICMuPNlFRUeratasCAgLUt29fxcXF6bPPPlPJkiW1cuVK5cmTR5L09ttv66uvvlLbtm1Vs2ZNxcbGKiIiQufOndOnn36qRo0aWfq+efOmunfvrtjYWD3//PPy8fHRwoULZTabtWbNGhUqVMglcwIAyP5cGd9Wr16tcePGqVKlSvLy8tLRo0dJaAMAOIwrY1xoaKiKFSum1q1bq1SpUjp+/LiWL1+usmXL6uuvv1a+fPlcMicAgOzPlfFt9uzZOnnypKpWrapChQrp0qVLWrVqlaKjoxUREaEqVaq4ZE4AADmDK2Pc3b7//nuNHj1acXFxJLQBGWEGAAAutW/fPnNCQoJV2d9//22uXr26eeTIkZayiRMnmmvWrGk+d+6cpWznzp3m4OBg8/Llyy1lhw8fNt+4ccOqvcuXL5sbNmxofvrpp63K58+fbw4ODjb/+uuvlrI///zTXLVqVfOMGTMcsn0AgNzJlfHtypUr5tjYWLPZbDZ/+umn5uDgYPPZs2cdtm0AgNzNlTFu9+7dacbz9ddfm4ODg80rVqx4oO0CAORuroxvtkRHR5sfeeQR8xtvvJHZTQIAwGw2u0eMi4+PN7do0cI8e/Zsc3BwsHnSpEmO2DQgR/N0dUIdAAC5Xd26dS3/qiNV+fLlVblyZf3111+Wsu+//16PPvqoSpUqZSlr1KiRypcvr//85z+WsurVqyt//vxW7RUqVEj16tWzak+SNm7cqBo1aqhmzZqWsooVKyosLMyqTQAA7OXK+FawYEH5+/s7cnMAALBwZYwLDQ1NM57WrVtLuvPaGwAAMsuV8c2WIkWKKF++fIqNjc3sJgEAIMk9Ytwnn3wis9msF154wRGbBOQKJLQBAOCGzGazLl26ZHnl54ULFxQTE6Pq1aunqVuzZk0dPXr0vm1GR0erYMGCls8pKSk6fvy4zTZr1KihM2fO6MaNG5nfCAAA7pEV8Q0AAFdwZYy7dOmSJFn6BgDAUbI6vl2/fl2XL1/W8ePHNW7cON24cUNhYWEPtA0AANiSlTHun3/+0SeffKJRo0YpX758Dzx2ILcgoQ0AADe0du1aXbhwQY899pgk6eLFi5KkoKCgNHWDgoJ09epVJSYmGrb3yy+/6ODBg+rQoYOlLHUdozbv7hcAAEfIivgGAIAruDLGffLJJ/Ly8lK7du0yOXoAAGzL6vj21FNPKSwsTI8//rj+85//6F//+peefPJJB2wJAADWsjLGTZ8+XVWrVlXHjh0dNHogd/B29QAAAIC1kydPavLkyapTp466desmSUpISJCkNI9ElqS8efNKkuLj420uj4mJ0ciRI1WmTBkNGDDAUp6RNlPrAADwoLIqvgEAkNVcGePWrVunr776SgMGDFD58uUfcEsAAPgfV8S3adOm6caNGzp79qxWr16thIQEJScny9OT53MAABwnK2Pc7t279f3332vFihWO3gwgxyOhDQAANxIdHa1BgwYpICBAH374oby8vCT972LZ1r/+SL3ItvWY4ri4OA0aNEg3b97UF198ofz581uWZaTN1DoAADyIrIxvAABkJVfGuF9++UXjxo1TkyZNNHz4cEdsDgAAklwX3+rUqWP5/44dO1qecjN69OgH2yAAAP6/rIxxt2/f1tSpU9WlSxfVrFnTGZsD5Gj8kwYAANxEbGysXnzxRcXGxurTTz9V8eLFLcuKFSsm6c6F9r2io6NVsGDBNP8qJDExUcOGDdPx48f10UcfKTg42Gp56jpGbd7dLwAAmZXV8Q0AgKziyhh37Ngx/etf/1LlypU1a9YseXvz75YBAI7hLvdwBQoUUMOGDbVu3boH2BoAAP4nq2PcmjVr9Pfff6tnz56KjIy0/CdJN2/eVGRkpG7duuXozQRyDH7pAADADSQkJGjw4ME6deqUPv/8c1WqVMlqefHixVW4cGEdOXIkzbqHDh1SlSpVrMpSUlI0evRo/fzzz/rggw/UoEGDNOt5enoqODjYsM2yZcvK39//AbcMAJCbuSK+AQCQFVwZ486cOaMBAwaocOHC+uSTT3hSKQDAYdztHi4+Pl6xsbH2bwgAAPdwRYw7f/68kpKS1KtXrzTL1qxZozVr1mjOnDlq3br1A24dkDPxhDYAAFwsOTlZr776qg4ePKgPP/zQ6tH6d2vbtq22bNmi8+fPW8p+/vlnnTp1Su3bt7eq++abb+q7777TxIkT1bZtW8O+27Vrp8OHD+vw4cOWsr/++ku7d+9O0yYAAPZwZXwDAMCZXBnjoqOj1b9/f3l4eGjBggUqXLiwYzYKAJDruTK+xcTEpCmLjIzUzz//rOrVq2dyiwAAuMNVMa5Dhw6aM2dOmv8kqXnz5pozZw6vIgXS4WE2m82uHgQAALnZ1KlTtXjxYrVo0UKPPfZYmuVdunSRdOdfcnTt2lWBgYF69tlnFRcXpwULFqh48eJatWqV5VHHCxcu1LRp01SnTh2b/+qjTZs28vPzkyTduHFD3bp1082bN9W/f395e3tr4cKFSk5O1jfffMMfRwAAmebK+BYbG6slS5ZIkvbv36/t27erf//+CggIUGBgoJ555hlnbTYAIBdwZYzr0qWLjh07pgEDBqR5nU3RokXVuHFjR28uACCXcGV8a9SokcLCwlSlShUVKFBAp06d0qpVq3Tr1i0tXLhQdevWdeKWAwByOlfGOFtMJpP69OmjCRMmOGgLgZyJhDYAAFysb9++2rt3r+Hy48ePW/7/jz/+0PTp07Vv3z75+PioefPmGjNmjIoWLWqpM2bMGH399deG7W3evFllypSxfI6KitJbb72lnTt3KiUlRaGhoRo7dqweeuihB9wyAEBu5sr4FhkZqVatWtmsV7p0af3444/2bg4AABaujHEmk8mwXoMGDSwJ3QAA2MuV8S08PFxbtmzR2bNndfPmTRUuXFj169fXoEGD0o19AABkhKv/DncvEtqAjCGhDQAAAAAAAAAAAAAAAADgFjxdPQAAAAAAAAAAAAAAAAAAACQS2gAAAAAAAAAAAAAAAAAAboKENgAAAAAAAAAAAAAAAACAWyChDQAAAAAAAAAAAAAAAADgFkhoAwAAAAAAAAAAAAAAAAC4BRLaAAAAAAAAAAAAAAAAAABugYQ2AG7j+PHjOn78uKuHAQCAwxHjAAA5EfENAJBTEeMAADkR8Q0AkJ2Q0AbAbSQmJiohIUH79u1TQkKCq4eTYzHHzsccOxfz63zMseMR47IGc+xczK/zMcfOxfw6HvEtazDHzsccOxfz63zMseMR45yP+XU+5tj5mGPnYn4dj/iWNZhj52OOnYv5dT7mOGNIaAPglpKTk109hBwrdW6ZY+dhjp2L+XU+5ti5mFfn4dh1LubX+Zhj52J+nYt5dR6OXedjjp2L+XU+5ti5mFfn4Lh1PubY+Zhj52J+nYt5dR6OXedjjp2L+XU+5jhjSGgDAAAAAAAAAAAAAAAAALgFEtoAAAAAAAAAAAAAAAAAAG6BhDYAAAAAAAAAAAAAAAAAgFsgoQ0AAAAAAAAAAAAAAAAA4BZIaAMAAAAAAAAAAAAAAAAAuAUS2gAAAAAAAAAAAAAAAAAAboGENgAAAAAAAAAAAAAAAACAWyChDQAAAAAAAAAAAAAAAADgFkhoAwAAAAAAAAAAAAAAAAC4BRLaAAAAAAAAAAAAAAAAAABugYQ2AAAAAAAAAAAAAAAAAIBbIKENAAAAAAAAAAAAAAAAAOAWSGgDAAAAAAAAAAAAAAAAALgFb1cPAAAAAAAAAMjuNv181nBZm7CyWTiS/zEak9F40tsGe9oBADiHvedpI7eTbZd7GTwC4cLVFJvlBfw8bJbn8bFdnnjbfE9JkM7995LiE23362m7GeU1aN9svrf9O1JsFxu3n8f2ghu3DBqS5Jc3o9uc2rfB3Bn81e7qTdvtFMxvu51bian1g3R2zyVLua/BONs1su/awGif5ctju9yI0b6xdzxckwA50/e7bH/nDU6hSrptu9zoXBOfaHtBPoM4IBnHjrQtFVPUvhgl3b5ko7bka9BHkkGM9jGIDym2Q7Q8DWK6Qag0vDbI62O7PCHJdrnRtYTReIz69fGyXW6974tp568xkmLsjidGjI65tna2kxnEOCAtntAGAAAAAAAAAAAAAAAAAHALJLQBAAAAAAAAAAAAAAAAANwCCW0AAAAAAAAAAAAAAAAAALdAQhsAAAAAAAAAAAAAAAAAwC2Q0AYAAAAAAAAAAAAAAAAAcAsktAEAAAAAAAAAAAAAAAAA3AIJbQAAAAAAAAAAAAAAAAAAt0BCGwAAAAAAAAAAAAAAAADALZDQBovw8HCZTCbLfzVq1NBjjz2mTz75RCkpKVZ1TSaTFixY4KKR3nH06FGZTCbt2bPH5vIjR47IZDLpm2++sbk8OTlZjRo10uuvv67IyEiZTCZt2LDBmUM21LJlS02ePNnyecyYMerUqZPD+wkPD9f+/fvTlLvD/gQAAAAAAAAAAAAAAAC8XT0AuJd8+fJp0aJFkqT4+Hjt2bNHM2bMkNls1sCBA108OvtUr15dFSpU0LfffqsuXbqkWf7zzz8rJiZGnTt3VrFixRQREaHy5ctn/UBtGDJkiOLi4hze7uzZs+Xn56e6detalUdERKhUqVIO7w8AAAAAAAAAAAAAAACwBwltsOLp6anatWtbPjds2FAnTpzQ999/n+0S2iSpU6dOmjt3rq5cuaJChQpZLVu/fr2KFCmiRo0aycvLy2q7Xa1cuXJZ2p87bTsAAAAAAAAAAAAAAAByL145ivvKnz+/bt++bfd6W7Zs0fPPP6+wsDDVrVtXPXr00LZt26zqrF69WiaTSb///rsGDBig2rVrq23btlqzZk2a9j766CM1btxYderU0dChQxUTE3PfMXTu3FlJSUlpXiWakJCgTZs2qUOHDvLy8rL5ytHNmzere/fuqlOnjurVq6fu3btr69atluW2XtO5cOFCmUwmy+e4uDhNnjxZ7dq1U61atdSyZUtNmDBBsbGx6Y773leOtmzZ0up1sKn/jRkzRpJ08eJFjR07Vq1atVLNmjXVtm1bzZw5U4mJiVbjlaR33nnHsn7q61ptbcvy5cvVrl07Va9eXS1bttRHH31k9epZe/YdAAAAAAAAAAAAAAAAkBE8oQ1ppCavpb5y9Pvvv9egQYPsbicyMlItWrRQ//795enpqW3btmngwIFatGiRQkNDreqOGjVKTz31lJ5//nmtWLFCY8aMUY0aNVSxYkVJ0tKlS/Xhhx+qf//+atSokXbt2qVx48bddwwPPfSQatSoofXr16tXr16W8i1btujGjRvq3LmzzfXOnDmjV155RR07dtTIkSOVkpKiY8eO6dq1a3bNQXx8vJKTkzV8+HAVLlxY58+f19y5czVkyBAtWbIkw+3Mnj3bKjnt+PHjmjhxoipUqCBJunLligoWLKixY8cqMDBQp06dUnh4uKKjozVt2jRJd14r2rNnT/Xt29eSLFepUiWb/S1ZskRTpkxR37599eijj+rAgQOaPXu2YmNjNXr0aKu699t3AAAAAAAAAAAAAAAAQEaR0AYrcXFxqlatmlVZhw4dMvW60Weeecby/ykpKQoNDdWff/6pFStWpElo69Onj/r06SNJqlOnjrZu3aqNGzdqyJAhSk5O1rx589SlSxdLMlXTpk0VExOjb7755r7j6Ny5s6ZNm6bz58+rZMmSkqRvv/1W5cqVU61atWyu8/vvvyspKUlvvPGG/P39LX3aq3Dhwpo0aZLl8+3bt1WmTBn17t1bf//9tyUh7X4eeeQRy/9fvnxZI0aMUOPGjfXiiy9KuvOEtbsTzerWrStfX1+NGTNGEyZMkK+vr+W1oiVLlkz3FaPJycmaM2eOOnbsqPHjx0uSmjRpoqSkJH322WcaOHCg1etb09t3mWE2myVJt27dytT6uL/UuWWOnYc5di7m1/ly+xz7+fk5pV1inPPl9mPX2Zhf52OOnYv5dU6MI75lTFxcXKbXdcax+yDjcUY7rsb5wbmYX+fL7XPMPRzw4Nwtpts7HleNP7eff52N+eUeDnhQOeHe1xV9c/51vtw+xxmNbyS0wUq+fPm0dOlSSVJiYqJ+++03zZo1S+PHj7c86SujoqKi9P7772vXrl2Kjo62XCDdmzAn3UmYSuXn56dSpUopKirK0s7FixfVpk0bq3XatWuXoYS2Dh066O2339Z3332nF154QTdu3NCWLVv0wgsvGK5jMpnk5eVlefpY/fr1FRAQkKHtvteaNWu0cOFCnT592irgnDp1KsMJbamSkpL0yiuvyMvLSzNnzpSn5523BpvNZi1atEgrVqxQZGSkEhISLOucPXtWwcHBGe7jr7/+0pUrV9S+fXur8g4dOmjevHk6dOiQmjdvbilPb99lRuoTAk+dOpXpNpAxzLHzMcfOxfw6X26d45CQEKe0S4zLOsyxczG/zsccO1dunl9nxDji292KGS45evToA7eeuTm2PSbj8Rhvg33tZE8cx87F/Dpfbp3j3HUPZ995GsgoR10bOIq943H1NYl7nSdyntw8v9zDEffwYOyPD66MM+4X47LHeSJ7y61znNH4RkIbrHh6eqpGjRqWzyEhIUpOTtb06dP1/PPPZzgxKiUlRf/6178UGxurl19+WQ899JB8fX01a9YsnT9/Pk39e5PFfHx8LK/YjI6OlnTnaWd3K1q0aIbGEhQUpNDQUK1fv14vvPCCNm3apISEBMPXjUpShQoVNHfuXM2bN09Dhw6Vp6enmjRpogkTJqhUqVIZ6leSNm3apNGjR6tnz54aPny4ChYsqOjoaL300ktWSWcZNXXqVB05ckQrVqxQgQIFLOWLFi3S22+/rQEDBig0NFSBgYE6fPiwJk+ebHc/qa9VLVKkiFV56ud7X7ua3r7LDG9vb92+fVvly5eXr69vptuBsVu3bunUqVPMsRMxx87F/Dofc+wcxDjn49h1LubX+Zhj52J+nYP49j87f40xXFa1atVMt/sgx67RmIzGk9422NNOdsP5wbmYX+djjp3DHWOcvedpIKMcdW3gKPaOx1XXJJx/nYv5dQ53jG9Gdhwk7uHB2BsfjI65rIgz7hTjOP86H3OcMSS04b4efvhhSdKff/6Z4YS206dP6/fff9ecOXPUunVrS3l8fLzd/QcFBUm686rNu126dCnDbXTu3Fljx47VX3/9pfXr16tatWqW7TLSrFkzNWvWTDdu3NC2bds0bdo0jR07VosWLZIk5cmTR0lJSVbrXL9+3erzhg0bVLVqVU2ePNlStnfv3gyP+27Lly/X8uXLNWvWLFWuXDlNPy1bttTIkSMtZSdPnsxUPwULFpSUdr5jYu4E0bsT6ZzBw8NDkuTr6+u01wXgDubY+Zhj52J+nY85dixiXNZhjp2L+XU+5ti5mF/HIr7dzfiPLY6Ym8zNse0xGbdj3x+Mcto+5zh2LubX+Zhjx3LPGMcf9uEcjro2cBR7x+Pq76h7nSdyHubXsdwzvhkh7uHBOP8e2pHcL8Zlj/NE9sYcp8/T1QOA+/vjjz8kSYUKFcrwOqlPBfPx8bGUnTt3TgcOHLC7/xIlSigoKEibNm2yKt+4cWOG22jbtq3y5s2rRYsWaffu3ek+ne1e/v7+6tChgzp27GiVJFaiRIk0SWO7du2y+hwfH281B5K0bt26DPed6pdfftGUKVM0ePBgtW3bNs3yjPbj4+Nz3ye2VahQQYULF9aGDRusyv/zn//Ix8dHNWvWtHv8AAAAAAAAAAAAAAAAQEbwhDZYSUlJ0cGDByVJSUlJ+u233/Txxx+rUqVKqlevXobbefjhh1WiRAnNmDFDKSkpiouL06xZs1SsmP3vOvfy8tLAgQM1depUFSlSRI0bN9bOnTu1Z8+eDLfh7++vRx99VBEREfLw8FCHDh3Srb98+XIdPHhQTZs2VVBQkCIjI7V27Vo1btzYUqddu3ZatGiRatSooQoVKmjt2rW6cOGCVTuNGjXS5MmTNWfOHNWpU0dbt27Vzz//bNf237hxQ8OGDdNDDz2k5s2bW/aPdOc1rOXKlVOjRo20ePFiLV26VOXLl9fatWt1+vTpNG09/PDD2rx5s+rVqydfX19VqFBB/v7+VnW8vLw0ZMgQTZkyRYULF7b0+cknn6hfv352JTYCAAAAAAAAAAAAAAAA9iChDVbi4+PVs2dPSXfeoV6iRAk9/vjjGjp0aJongKUnT548Cg8P1+TJk/XKK6+oZMmS+te//qXdu3fryJEjdo+rb9++un79ur744gt9+eWXCgsL05QpUzRgwIAMt9G5c2dt3LhRoaGhKl68eLp1TSaTfvrpJ02bNk1Xr15VUFCQOnbsqFdeecVSZ8iQIYqJidGcOXPk4eGhnj176tlnn9X06dMtdZ5++mlFRkZq6dKlWrBggZo0aaIZM2boqaeeyvC4r169qsuXL+vy5ct6+umnrZZ169ZN06dP10svvaQrV65o1qxZku4k240fP16DBw+2qj9hwgS99dZbevHFFxUfH6/FixcrNDQ0TZ99+/aVt7e3Fi5cqC+//FJBQUEaOnRomvYAAAAAAAAAAAAAAAAARyKhDRbDhg3TsGHDMlT3+PHj961Ts2ZNffXVV1ZlXbt2tfrcvXt3de/ePc2633zzjdVnDw8PDR06VEOHDrV7HKnatGljWL9MmTJWy+rUqaN58+al256fn5+mTZuWpvz555+3/L+Xl5dGjx6t0aNHpzvuH3/80erz3Ulx947Nlvz589scy73r1atXT6tXr75vPUnq1auXevXqZdhnRvcdAAAAAAAAAAAAAAAAkFGerh4AAAAAAAAAAAAAAAAAAAASCW0AAAAAAAAAAAAAAAAAADdBQhsAAAAAAAAAAAAAAAAAwC2Q0AYAAAAAAAAAAAAAAAAAcAsktAEAAAAAAAAAAAAAAAAA3AIJbQAAAAAAAAAAAAAAAAAAt0BCGwAAAAAAAAAAAAAAAADALZDQBgAAAAAAAAAAAAAAAABwC96uHgAA5Habfj5ruKxNWFm718mYYtr5a4zahPk9YDvpMxqn0XYBANyD0fnbbLZd38PDdrnR+X7jLtvtt2tku/73BvVt91vM9mDkuLjkyPhmb1uuiq3/6/fONYQUkyX9AshdHHVONHI72Xa5UXzzNPhnoEZxLyXFuO9vt9sea9Jt253HJdxbEqTj0ZdUML/tzq/G2W7H18f2eNZttT2eFIPJyOdju1+jmB4Xb7sdv3y227mVYLt+foP6Rh7sWLGOcY7oNz3cLwOQjM8FRjElxSBmnb9iewUfL/vauZkm/txx4kKSzfICvraD5c1E2x1UDLL9J6mL122P39sgFhsMX4Xz217hdrLtNQyKFRRgO/7Exht0LKl4Advl8Ym2y/19bXdutA/88toeU5LB9Y1vHtv1E5Js92vvdVUeg2sMZ3NUnHRUHL5z7WD7GoKYfgfXPLib0W98yQZxz6g8xSCQGZ1D8xqcs2IN7ltuGNyf3OnbdrnRfWU+g/Px1Zu2G8rjbbt+AYN7wRu3bHfsZRBDjcZjdE9mNtuub3RfbMRo3jwN2rH3d2ijdowYnZvaGvw+nZm/5dor637fzR39ImfgCW0AAAAAAAAAAAAAAAAAALdAQhsAAAAAAAAAAAAAAAAAwC2Q0AYAAAAAAAAAAAAAAAAAcAsktAEAAAAAAAAAAAAAAAAA3AIJbQAAAAAAAAAAAAAAAAAAt0BCGwAAAAAAAAAAAAAAAADALZDQBgAAAAAAAAAAAAAAAABwCyS0AQAAAAAAAAAAAAAAAADcAgltyPbCw8NlMplkMplUpUoVhYSEqHPnzpo8ebJOnjyZqTb37NmjuXPnOnikdyxcuFAmk0n//ve/ndL+3Vq2bKnJkyc7tM0xY8aoU6dODm0TAAAAAAAAAAAAAAAAkEhoQw6RL18+RUREaPny5Zo1a5a6d++uXbt2qUuXLvrmm2/sbm/v3r2aN2+eE0YqrV27VpK0adMmJSYmOqUPZxoyZIjee+89Vw8DAAAAAAAAAAAAAAAAORAJbcgRPD09Vbt2bdWuXVuNGzfW888/r2+++UYhISEaN26czp496+ohSpL+/vtv/fbbb2rUqJGuX7+uLVu2uHpIditXrpyqVKni6mEAAAAAAAAAAAAAAAAgByKhDTlW3rx59cYbbygpKUkrV660lK9Zs0a9evVSgwYNVL9+ffXt21eHDh2yLA8PD9fs2bMVFxdneZVp3759JUknT57U8OHD1bx5c9WqVUsdOnTQZ599ppSUlAyNaf369fLw8NDkyZNVtGhRrVu3Lk2d1NeELlu2TC1atFBISIiGDBmiy5cvW+rExcVp8uTJateunWrVqqWWLVtqwoQJio2NNez7xx9/lMlk0qlTp6zKr127ppo1a2rZsmWSpD/++EMvvviiQkNDVatWLbVr106ffPKJpf69rxy9fv26xo8fr6ZNm6pGjRpq3ry5hg8fnqH5AAAAAAAAAAAAAAAAAO7m7eoBAM5UqVIlFS9eXAcOHLCURUZGqmvXripXrpwSExP17bffqk+fPlq7dq0qVKigHj16KCoqSuvXr9eiRYskSf7+/pKkixcvqkKFCurcubPy58+vo0ePKjw8XHFxcRo6dOh9x7N+/XrVq1dPZcuW1WOPPaaIiAjFxsYqICDAqt6PP/6o06dPa8KECbpy5YqmTZumN998U++//74kKT4+XsnJyRo+fLgKFy6s8+fPa+7cuRoyZIiWLFlis+/mzZurePHiWrVqlUaOHGk1Jknq3LmzJGnw4MEqWrSopk6dKn9/f505c0ZRUVGG2zRt2jRt375dI0eOVOnSpRUdHa1t27bddy4AAAAAAAAAAAAAAACAe5HQhhyvZMmSunTpkuXz3YlnKSkpaty4sQ4dOqSvv/5aI0aMUIkSJVSiRAnLa0zvFhYWprCwMEmS2WxWSEiI4uPjtXTp0vsmtB06dEinTp3S888/L0nq1KmTlixZoo0bN+rJJ5+0qms2m/Xxxx8rT548kqRz585p3rx5SklJkaenpwoXLqxJkyZZ6t++fVtlypRR79699ffff6tChQpp+vfy8lL37t21atUqvfrqq/Ly8pIkrVq1Sm3atFFgYKAuX76syMhIjRs3Ti1btpQkNWzYMN3tOnz4sDp16qRu3bpZyjp27JjuOukxm82SpFu3bmW6jZwkLi4uW7fvbv1mldTjl+PYOZhf58vtc+zn5+eUdnNjjLP3fO+o+GDvHDuqX0fGN1fNnb1yekzParn9/OtszK9zYlxWxDfONcionBAPc+LxzvnX+XL7HHMPB+Q8xPScLyPzk9vjm5R97+EAd5EVv7Fm9/O9rfFnxfk3u8/bg8rtMS6j8Y2ENuR4ZrNZHh4els8nT57UzJkzdeDAAcXExFjK730Vpy0JCQmaN2+e1q1bp/PnzyspKcmy7ObNm8qfP7/huuvXr5ePj4/at28vSapdu7bKli2rdevWpUloq1+/viWZTZIqVqyopKQkxcTEKCgoSNKdV6cuXLhQp0+ftjrhnzp1ymZCmyQ9+eSTmjt3rrZv365HH31Ux44d02+//abXXntNklSoUCGVLl1aM2fO1LVr1xQWFqYSJUqkOyePPPKIvv76awUFBalp06YKDg5Ot/793L5927IduUcxwyVHjx61ex17GLfvKLbH6fx+3UPuOo6zHvPrfLl1jkNCQpzSbvaKcc6OM/bGB/vGYzzHjopLjoxvjpkLYnrOkj3OE9lXbp5fZ8Q4x8Y358YH5HyuOlay5hog+8vN59+sklvnOHvfwxHLAFuyzz1uZn7bz20efK5za3yTssM9nL2Ie8haWfH7dPY539t/PnbNbz25S26NcRmNbyS0IceLiopS+fLlJUk3btxQ//79VbhwYY0ZM0alSpVS3rx5NX78eCUkJNy3rXfffVcrV67USy+9pOrVqysgIECbN2/Wxx9/rISEBMOEtpSUFH333Xdq0KCBPD09df36dUlSq1attHjxYl24cEHFixe31A8MDLRaPzW5LXWMmzZt0ujRo9WzZ08NHz5cBQsWVHR0tF566aV0t6NMmTJq3LixvvrqKz366KNatWqVypQpY3kKm4eHhxYsWKD3339fkydPVlxcnKpVq6axY8eqfv36Ntt84403VKBAAX3++ed65513VLJkSQ0cOFC9e/e+73za4u3trdu3b6t8+fLy9fXNVBvZzc5fYwyXVa1a1e517GHUvqMYjdPZ/brarVu3dOrUqVx1HGcl5tf5mGPnyE4xztlxZvtB++LDDoP6Rozm2FFxyZHxzd62XBVbc2tMz2qcf52L+XUOR8Y3R50TkXu56ljJimuA7Izzr/Mxx86RFfdwxDLAtuxyj5uZ3/ZzmweZa+Kbc7jyN0p7f+MDHpSjfmPNCed7e7bZkeff3HTvaw9iXMaQ0IYc7Y8//tCFCxcsr8M8ePCgoqKiNG/ePFWpUsVSLzY29r5PIpOkDRs2qGfPnho4cKClbOvWrfddb/fu3YqOjlZ0dLTNxLDvvvvO8irSjNiwYYOqVq2qyZMnW8r27t2boXV79OihUaNG6cKFC1q3bp369u1r9QS7ChUqaNasWUpKStKBAwc0c+ZMDR48WNu2bbOZsBcQEKBx48Zp3LhxOn78uBYvXqxJkyYpODhY9erVy/A2pUodi6+vr9NeF+B+jC+CjOfAMRf9zp9j2+PMLfs2dx3HWY/5dT7m2LGyV4xzdpyxNz7YNx7jOXZUXHJkfHPMXBDTc5bscZ7Ivphfx3JsfHNufEDO56pjJWuuAbI/zr/Oxxw7VtbcwxHLAFuyzz1uZn7bz20efK6Jb47l2t8oiXvIWlnx+3T2OT/Zfz52zW89uQsxLn2erh4A4CwJCQl68803lSdPHvXo0UOSFB8fL0ny8fGx1Nu/f7/OnTtnta6Pj48SExNttnn3usnJyfr222/vO5Z169bJz89PCxcu1OLFi63+q1KlitatW2fXtsXHx1uNI7WPjGjVqpUCAwM1cuRIXbt2Td27d7dZz8fHRw0aNNDAgQN148YNXbx48b5tm0wmjR07VtKdV7sCAAAAAAAAAAAAAAAA9uAJbcgRUlJSdPDgQUlSXFycTpw4oYiICJ09e1bTp09XmTJlJEm1a9eWn5+fJk2apIEDB+rChQsKDw+3et2nJFWsWFG3b9/WokWLVKdOHfn7++vhhx9Wo0aNtHLlSlWqVEmFChXSF198YTPx7W4JCQnatGmT2rZtq7CwsDTLn3jiCU2dOlV//fWXHn744Qxtb6NGjTR58mTNmTNHderU0datW/Xzzz9naF0fHx917dpVCxYsUJMmTVSyZEnLsmPHjuntt99Whw4dVLZsWd24cUPz5s1T6dKlVa5cOZvtPf3002rTpo0qV64sLy8vrVmzRj4+Ppl6OhsAAAAAAAAAAAAAAAByNxLakCPEx8erZ8+eku48nrJMmTIKCwvT7NmzVbFiRUu9okWL6sMPP9Q777yjIUOGqHz58po0aZI+/fRTq/ZatGih3r17a/78+YqJiVH9+vW1ZMkSvfHGG5o4caLefPNN+fr6qlu3bmrTpo3Gjx9vOLYtW7YoNjZWXbt2tbm8U6dOeuedd7Ru3Tq98sorGdrep59+WpGRkVq6dKklMW3GjBl66qmnMrR+mzZttGDBAj3xxBNW5UFBQSpatKjmzZunCxcuKCAgQPXq1dO7774rLy8vm23VrVtXa9asUWRkpDw9PRUcHKy5c+dazTsAAAAAAAAAAAAAAACQESS0IdsbNmyYhg0bluH6zZo1U7NmzazKmjdvbvXZ29tbEydO1MSJE63KixYtqjlz5qRpM/WVpra0a9dOx48fN1xeuHBhHTlyxPL5xx9/TFOndevWVm14eXlp9OjRGj16tFW9e/ux1ZYkbdu2TQULFlTr1q2tyosUKaJ3333XcKySNH36dKvPr7/+ul5//fV01wEAAAAAAAAAAAAAAAAygoQ2IBf566+/9Pfff2vp0qXq3bu38uTJ4+ohAQAAAAAAAAAAAAAAABYktAG5yMSJE3Xw4EE1bdpUgwYNcvVwAAAAAAAAAAAAAAAAACsktAG5yJIlS1w9BAAAAAAAAAAAAAAAAMCQp6sHAAAAAAAAAAAAAAAAAACAREIbAAAAAAAAAAAAAAAAAMBNkNAGAAAAAAAAAAAAAAAAAHALJLQBAAAAAAAAAAAAAAAAANwCCW0AAAAAAAAAAAAAAAAAALfg7eoBAEBOs+nnszbL24SVdVgfD9JWXFycjh49qqpVqxqO1Rn9ZkdZsS8BIDOcfX5yVDtG4/T0sK8dDzvrG0kxO6Ydo/nJzH4xGpO9Mdrevu2t76i5y+64NgCcy2znucbe75693+G1W8/YLM/nYzswpXeuNIp9ngb/1DSvj+3y2wad+Oc1qm+73NvLdvkfUbZXqFjc9gq3k22P51ai7fbjk2zX9zMY/60Eg0k1mM+1W2zvM6P63gY7xmhXGu3HjTttH1tG8y9JeQx+lTVqKynZdv1OzWwfv9/vst1O20aOu46xp50UczFtPxgjKcaq3N7rQiPEYmRXjjp2128z+u7ZPqOlGJyffPPYLg/wtR2YEpNs178Ya7sDo698/jy2l0Rdt33yKx5oOy79dem27XYuXbZZXqVsUZvll2/aHn961yonDGKot5ftbatUzHYguGkQ+xJv2y4vX9T2XMQl2q5vtA3FCtgeZ7LBtcelWNvlRQNst5Nke9co5obtdtZttX1Mmw2idB5v2/0aHXMJBvO5wSAOt29s+7uaYPAdyExbRjYaxPR2BjHdiLNjPb8nICOMfuMzuj8xKk9Osd1QXoM4ZnQOKpTfdrnRfZokJRjc6yQZxFbDy12DBUb3gvEG5/WrcbbL8xvcY10zqO+b1/aAPA3Ol0btFMpv3z2W0bWEv6/tdhIN4qTRPjY6Fyca3JsaXVN5pXNM/GeHfb/jGrVl9P0wPI8a3S4btGPvvaBUTDt/TXsPZ3QtYdSvI39Ldyfp/X6fXbYhO+AJbQAAAAAAAAAAAAAAAAAAt0BCGwAAAAAAAAAAAAAAAADALZDQBgAAAAAAAAAAAAAAAABwCyS0AQAAAAAAAAAAAAAAAADcAgltAAAAAAAAAAAAAAAAAAC3QEIbAAAAAAAAAAAAAAAAAMAtkNAGAAAAAAAAAAAAAAAAAHALJLQBAAAAAAAAAAAAAAAAANwCCW1wqPDwcJlMJplMJlWpUkUhISHq3LmzJk+erJMnT2aqzT179mju3LkOG2NkZKRljPf+1759e4f1c7c9e/bIZDLp8OHDTmn/QZlMJi1YsMDVwwAAAAAAAAAAAAAAAEAu5+3qASDnyZcvnxYtWiRJunnzpk6cOKGIiAitWLFCU6dOVZcuXexqb+/evfrss880ePBgh45zxIgRCg0NtSrLly+fQ/tIVa1aNUVERKhixYpOaf9BRUREqFSpUq4eBgAAAAAAAAAAAAAAAHI5EtrgcJ6enqpdu7blc+PGjdW7d28NHDhQ48aNU926dVW2bFnXDfD/e+ihh6zG6Uz+/v5Z1pc94uPjlS9fPrccGwAAAAAAAAAAAAAAAHIfXjmKLJE3b1698cYbSkpK0sqVKy3la9asUa9evdSgQQPVr19fffv21aFDhyzLw8PDNXv2bMXFxVleC9q3b19J0smTJzV8+HA1b95ctWrVUocOHfTZZ58pJSXFIWMeM2aMOnXqpD179qhr166qXbu2nnzySR05csSqXmxsrEaNGqU6deooLCxMM2fO1GeffSaTyWSpY+uVoyaTSZ988onCw8PVqFEjhYaGauzYsYqLi7NqPyoqSqNGjVJoaKhq1qypPn36pBmDJK1evVqdO3dWjRo11LRpU73//vtKTk62Wm4ymXTgwAE9//zzql27tt555x3LWO5+5Wjfvn01aNAgbdiwQe3atVOdOnX07LPP6syZM2nGNmjQINWqVUvNmzfXwoULNXXqVLVs2TITMw4AAAAAAAAAAAAAAIDcjie0IctUqlRJxYsX14EDByxlkZGR6tq1q8qVK6fExER9++236tOnj9auXasKFSqoR48eioqK0vr16y2vMfX395ckXbx4URUqVFDnzp2VP39+HT16VOHh4YqLi9PQoUPvO56UlBTdvn3bqszT01Oenv/L84yOjtaUKVM0cOBABQQEaMaMGRo6dKg2bdokHx8fSdLYsWO1e/duvfbaaypdurRWrFih3377LUNzsmzZMoWEhGj69Ok6deqU3nnnHRUpUkSjRo2SJF27dk29e/eWn5+f3njjDQUEBGjJkiXq16+fvv/+exUpUkSS9Pnnn+vdd99Vv379NGbMGJ08edKS0JbaVqqRI0eqZ8+eGjRokHx9fQ3HdvToUV2+fFmjRo1ScnKypk+frtdee00RERGSJLPZrCFDhujSpUuaNGmSAgICtGDBAv3zzz9WcwgAAAAAAAAAAAAAAABkFAltyFIlS5bUpUuXLJ/vTjxLSUlR48aNdejQIX399dcaMWKESpQooRIlSqR5jakkhYWFKSwsTNKd5KqQkBDFx8dr6dKlGUpoGz58eJqyJ598UlOnTrV8vnbtmpYuXarKlStLknx9ffXss8/q119/Vb169fTnn39q06ZNevvtt9W1a1dJUtOmTfXYY49laD6CgoI0Y8YMSVKzZs30+++/a+PGjZYktEWLFun69etauXKlJXktLCxM7dq104IFC/T666/rxo0bmjVrlgYMGKARI0ZIuvOaVx8fH02fPl0vvPCCChUqZOnz6aef1sCBA+87ttjYWK1Zs0aFCxeWJMXFxWns2LGKiopSiRIltG3bNv32229atmyZ6tWrJ0lq2LChmjdvrsDAwAxtvy1ms1mSdOvWrUy34a7uffqes9a5n9S5zcwcO2o8ztiurHS/8T/IHOP+mF/ny+1z7Ofn55R2syLG5fTza0bZO8fOnjdX7hd7+3Z2/ZzK0cdubj3/Ohvz65wYlxPiG+cyZGfE+juyyzidJbfHuOx8Dwcge3BknHG339hd1U5G6uf2+CZl33s4AO7HVfdMOfUeND3EuPvLaHwjoQ1Zymw2y8PDw/L55MmTmjlzpg4cOKCYmBhL+alTp+7bVkJCgubNm6d169bp/PnzSkpKsiy7efOm8ufPn+76o0aNUsOGDa3KUpO3UhUrVsySzCbdecqcJF24cEGSLK8QbdWqlaWOp6enWrRooc8///y+29CoUSOrzxUrVtS3335r+bxz506FhoaqQIEClqfJeXp6qn79+pa+Dxw4oLi4OLVv397qiXONGjVSfHy8/vjjDzVo0MBS/uijj953XJJUpUoVq/lI3fbUhLbDhw8rMDDQkswmSfnz51dYWFiGn1BnS+o2ZOQYcF/FbJYePXrUrvrpr/Pg7syxcd+22D8ee+fC3TzY+LP3cez+mF/ny61zHBIS4pR2HRvjssv51VFxxr52jOfY2fOWmfbt2zZ72TunjqufU2XNPOTW829Wyc3z64wYl73im73tBzmoX8B53C/WO/faxkjuuyaxLbfGuOxxD+dsrvnuAbmFo36vSL8tI86N0c5v58H7zR7nYedw/3s4exGvAFdxZCxzZr/Z597OMX/fz60xLqPxjYQ2ZKmoqCiVL19eknTjxg31799fhQsX1pgxY1SqVCnlzZtX48ePV0JCwn3bevfdd7Vy5Uq99NJLql69ugICArR582Z9/PHHSkhIuG9CW9myZVWjRo1069z7pLHU14ymji86Olo+Pj4KCAiwqndvYpw97ScmJlo+X7lyRQcPHlS1atXSrFuuXDlLHUnq1q2bzT7Onz9v9blo0aKZHpv0v22/ePGize3M6LYb8fb21u3bt1W+fPl0X4nqznb+GmOzvGrVqnbVT2+dB3Hr1i2dOnVK5cuX1+UT9mW52zsee+fC3WR2/HfPcXY9jt0Z8+t8zLFzODLGZZfza3oxzpbMxEpbjOZ4+0Hnzltm9ovRmBzF3jk1qu/sucsunP3d4/zrXMyvczgyvu1ws/P0uf9eslkOuBOj49fe75OjYpy9122OktuuSe5FjHOO7PQ75flfXPPdA3ILoziTme+evTHLUffjzo71zvg9gfjmHK6Mb666VgTguN/end1vdrm3e9C/7xPjMoaENmSZP/74QxcuXLAkXh08eFBRUVGaN2+eqlSpYqkXGxurEiVK3Le9DRs2qGfPnlavz9y6davjB56OoKAgJSUlKTY21iqp7fLlyw5pv0CBAmratKleeeWVNMvy5MljqSNJs2fPtjlvZcqUcchY7lWsWDGb2/mg2576BD9fX1+nvS7A+WwHMOPtMQ54zpyDO8HRvoQ2+8dj71y4mwcbf/Y+jt0f8+t8zLFjOTbGZZfzq303w5mJlbYYz7Gz5y0z7Tv3BwN759Rx9XOqrJkHzr/Oxfw6VvaKb5zLkPO4X6x3zR8p+R7fQYxzrOz1OyUJAoAzOer3ivTbMuLcGO38dh683+xxHs4+XBvfiFeAqzgyljmz3+xzvnfM3/eJcekjoQ1ZIiEhQW+++aby5MmjHj16SJLi4+Ml/e/JX5K0f/9+nTt3zuo1n/c+tezuNu9eNzk52ep1nVmhevXqkqTNmzera9eukqSUlBT99NNPDmm/UaNGWrt2rSpWrGh4IqtTp458fX0VFRWlNm3aOKTfjKhRo4auX7+u//73v6pfv76kO696/fnnn9M83Q0AAAAAAAAAAAAAAADICBLa4HApKSk6ePCgJCkuLk4nTpxQRESEzp49q+nTp1ueGFa7dm35+flp0qRJGjhwoC5cuKDw8HAVL17cqr2KFSvq9u3bWrRokerUqSN/f389/PDDatSokVauXKlKlSqpUKFC+uKLL2wmvhk5ffq0ZZypPDw8VKtWrQy3UblyZbVp00ZTpkzRrVu3VKpUKa1YsULx8fGWf+HwIJ577jmtW7dOzzzzjJ599lmVKlVKly9f1q+//qrixYvrueeeU2BgoF5++WW9++67ioqKUoMGDeTl5aWzZ89q8+bNCg8Pd8pjKps1a6Zq1app5MiRGjFihAIDA/Xpp58qf/78Dtl2AAAAAAAAAAAAAAAA5D4ktMHh4uPj1bNnT0l3HqdYpkwZhYWFafbs2apYsaKlXtGiRfXhhx/qnXfe0ZAhQ1S+fHlNmjRJn376qVV7LVq0UO/evTV//nzFxMSofv36WrJkid544w1NnDhRb775pnx9fdWtWze1adNG48ePz9A4Z86cmabMy8tLv//+u13b+9Zbb2ny5Ml65513lCdPHnXr1k2VK1fWsmXL7GrHlkKFCikiIkIffPCB3nvvPV29elVFihRRrVq1rJ7G1r9/fxUvXlyff/65li5dKm9vb5UrV06PPvqo1VPsHMnDw0MfffSRJkyYoAkTJigwMFDPPvus/v77bx09etQpfQIAAAAAAAAAAAAAACBnI6ENDjVs2DANGzYsw/WbNWumZs2aWZU1b97c6rO3t7cmTpyoiRMnWpUXLVpUc+bMSdNm6itNjZQpU0bHjx+/79imT5+epiwwMDDNuoGBgXrvvfesyvr06aMqVapYPoeGhqZZz9YYnnvuOT333HNWZUFBQZo6dep9x9uxY0d17NjRcHn37t3VvXt3m8vuHcuSJUvS1KlatWqaeiVKlND8+fMtnxMTE9WxY0fVq1fvvuMFAAAAAAAAAAAAAAAA7kVCG/CANm7cqPPnzys4OFi3bt3S+vXr9csvv9hMtstpIiIilJKSogoVKuj69ev68ssvde7cOZtPvwMAAAAAAAAAAAAAAADuh4Q24AH5+fnpm2++0alTp5SUlKSHH35Y7777rlq3bu3qoTld3rx5NX/+fJ07d06SVKVKFc2bN081atRw8cgAAAAAAAAAAAAAAACQHZHQBjygpk2bqmnTpq4ehkt07dpVXbt2dfUwAAAAAAAAAAAAAAAAkEN4unoAAAAAAAAAAAAAAAAAAABIJLQBAAAAAAAAAAAAAAAAANwECW0AAAAAAAAAAAAAAAAAALdAQhsAAAAAAAAAAAAAAAAAwC2Q0AYAAAAAAAAAAAAAAAAAcAverh4AALi7TT+ftVneJqysQ9p3VDuZYTbbLm/byPaY7J0Le7fNUXPt7H0G17ucWEw7f42RFGNVzrGSdVw1d+yzO1w1z0YcNR57+zVi6/wgSR4Oad3+4zC97XLUmOxl7z5r16is4uLidPToUVWtWlV+fn6Z6teRc2ePnHDdBtci/mQNo/sQI9/vsr1fjNpJMbj/Mdq/jzcvZ1e/3un8s1GDruXjZTsSeBm0ZRQ3jOqnJNruOem27fKgANsNnYpOsVleupB9kSyfj+1yD4NmPAy2+HaywXYl224nxfbwlT+f7fJkg4PFN49925uZOG90nBrtY8O+XXWRYcDTYDzudh7NivM9MSV3cvZ1sNF3zOicktfH9gpXbto+YRbKb7t+nEG/gb62T1pG48xjEB9KF/Sy3a9BfCtk0O/hfYttlnvne8lmeYlA2wM6fe4fm+WS5ONb0GCJ7bH65fG3We5lMEm/nfjDZnlAnWCb5Scu3LZZ7uNtsC8Tbc/1uau2g2tgPttznc/HdvnNBJvFSjKI6ddv2S5PNLiGKZTfdvvxibbL/X1tz4NR+Fy+8YzN8nx5DFaQlGR7F2jjTtvfb3uvAew9Txi1/+122+10bGr7/JSQZN94jL739iJ+5gz2xj2j4/a2wXW/0fF24art+FbQIL4ZnbPu9G10d2eb0TbExtteYPSdN/p7XnSs7W27nWx727wN7kHPxthux8/gPGd0LvAxyD65GW+73NegfR+D9uMNyo3aiTWIJ3EJtsuLBNienxsG7UhSosHxaLhtBvvA6B7O6Jgw+h542w7p+s8O298zo1hsdE3iY9C+EaN+jb6vGw1+c7H3ntKonXZ2/vbkqN+nM8PZsW/dVtvtG13fuCLm8oQ2AAAAAAAAAAAAAAAAAIBbIKENAAAAAAAAAAAAAAAAAOAWSGgDAAAAAAAAAAAAAAAAALgFEtoAAAAAAAAAAAAAAAAAAG6BhDYAAAAAAAAAAAAAAAAAgFsgoQ0AAAAAAAAAAAAAAAAA4BZIaAMAAAAAAAAAAAAAAAAAuAW7E9oee+wxzZ07V+fOnXPGeAAAAAAAAAAAAAAAAAAAuZTdCW0lS5ZUeHi42rRpoz59+mjlypWKjY11xthcLjw8XCaTSSaTSVWqVFFISIg6d+6syZMn6+TJk5lqc8+ePZo7d65Dx/nnn3/q5ZdfVrNmzVSjRg01a9ZMgwYN0tatW+1qx2QyacGCBQ4dW05w9OhRmUwm7dmzJ916qceKyWRS9erV1aZNG02ZMkVXr17NmoFmsT179shkMunw4cOuHgoAAAAAAAAAAAAAAAByCG97V/jss8906dIlrV+/XuvWrdMbb7yhN998U48++qgef/xxNW/eXD4+Ps4Yq0vky5dPixYtkiTdvHlTJ06cUEREhFasWKGpU6eqS5cudrW3d+9effbZZxo8eLBDxnfmzBn16NFDJpNJY8aMUeHChXXu3Dlt3bpVe/fuVfPmzTPcVkREhEqVKuWQceVWffv2VadOnZSQkKC9e/dq7ty5OnXqlD799FNXDw0AAAAAAAAAAAAAAABwe3YntElS0aJF9dxzz+m5557TX3/9pbVr1+rbb7/Vpk2bFBgYqMcee0yPP/646tat6+jxZjlPT0/Vrl3b8rlx48bq3bu3Bg4cqHHjxqlu3boqW7asy8a3atUqSdLnn38uX19fS/kTTzyhlJQUu9q6ezuROSVLlrTMY2hoqC5evKgVK1bo4sWLKlasmGsHl0HJyclKSUnJUYmpAAAAAAAAAAAAAAAAyB7sfuXovR5++GG9+uqr+uKLL9SuXTtdu3ZNy5cvV58+fdS2bVstW7bM7sQqd5c3b1698cYbSkpK0sqVKy3la9asUa9evdSgQQPVr19fffv21aFDhyzLw8PDNXv2bMXFxVleTdm3b19J0smTJzV8+HA1b95ctWrVUocOHfTZZ5/dd+6uX78uf39/q2S2VJ6e1rv35MmTGjp0qBo0aKBatWrp8ccf1/r16y3Lbb1ydMuWLerRo4dq1qyphg0bauLEiYqLi7MsT33t5M6dOzVy5EjVqVNHLVq00CeffJJmPAcOHFD//v1Vt25d1alTRz169NDOnTstyxMTEzVz5ky1aNFC1atX12OPPaZ169alu/2pY3z++ecVFhamunXrqkePHtq2bZtVndWrV8tkMun333/XgAEDVLt2bbVt21Zr1qxJ095HH32kxo0bq06dOho6dKhiYmLuOwYjVatWlSSdP3/eru38448/9OKLLyo0NFS1atVSu3bt0szpgQMH9Oyzz6p27doKCQnRyJEj04z1vffeU+fOnVWnTh01bdpUI0aM0MWLF63q9O3bV4MGDdLXX3+tdu3aqUaNGjp27JikO3P79NNPq1atWpZj+vfff7da//r16/fd9wAAAAAAAAAAAAAAAEBGZOoJbani4uK0adMmrV27Vnv27JEkPfroo+ratat8fHy0YsUKTZkyRcePH9fkyZMdMmB3UalSJRUvXlwHDhywlEVGRqpr164qV66cEhMT9e2336pPnz5au3atKlSooB49eigqKkrr16+3vMbU399fknTx4kVVqFBBnTt3Vv78+XX06FGFh4crLi5OQ4cONRxHtWrV9MUXX2jChAnq1auXTCZTmkQ2STp16pR69uypkiVLaty4cQoKCtKJEyf0zz//GLa9YcMGDR8+XN27d9ewYcMUHR2tGTNm6Pr163r//fet6k6cOFFdunTRnDlz9MMPP+i9996TyWRSs2bNJEn79u1Tv379VLt2bU2ZMkWBgYE6cuSIVf+vvPKK9u/fr5deekkVK1bU1q1b9dprrykwMDDdV6dGRkaqRYsW6t+/vzw9PbVt2zYNHDhQixYtUmhoqFXdUaNG6amnntLzzz+vFStWaMyYMapRo4YqVqwoSVq6dKk+/PBD9e/fX40aNdKuXbs0btw4w77v559//pGnp6fVq1wzsp2DBw9W0aJFNXXqVPn7++vMmTOKioqytHHgwAH17dtXzZs31/vvv69bt27pgw8+0JAhQxQREWGpFxMTo0GDBqlYsWK6fPmyPv/8c/Xt21fffvutvL3/9/U/cuSIzp07p1deeUWBgYEqWbKkvvvuO40YMUKtWrXSjBkz5OPjo/379+vChQt65JFHLOveb98DAAAAAAAAAAAAAAAAGWV3QltycrJ27NihtWvX6scff9StW7dUrVo1jR49Wh07dlThwoUtdVu1aqWZM2dq2bJlOS6hTbrzeslLly5ZPt+deJaSkqLGjRvr0KFD+vrrrzVixAiVKFFCJUqUSPMaU0kKCwtTWFiYJMlsNiskJETx8fFaunRpuglt3bp1088//6yIiAhFREQof/78atiwoZ544gm1atXKUi88PFw+Pj768ssvLUl0jRo1MmzXbDbrnXfeUYcOHTR16lRLeVBQkAYOHKghQ4aocuXKlvK2bdtq2LBhlm3ZsmWLNm7caElqevfdd/XQQw9p0aJF8vLykiQ1adLEsv7u3bv1448/asGCBZbyxo0bKzo6WuHh4ekmtD3zzDOW/09JSVFoaKj+/PNPrVixIk1CW58+fdSnTx9JUp06dbR161Zt3LhRQ4YMUXJysubNm6cuXbpo9OjRkqSmTZsqJiZG33zzjWH/d0tJSdHt27eVmJioPXv26Msvv1TPnj0VFBSU4e28fPmyIiMjNW7cOLVs2VKS1LBhQ6t+ZsyYoerVq2v27Nny8PCQJAUHB6tTp07aunWrZb6mTZtmWSc5OVl16tRRs2bNtHv3bqv5v3btmr766iuVLFlS0p39//bbb6tx48aaM2eOpZ6t/XC/fW8vs9ksSbp161am1s9Kdz+t0Bn1nSV1btObY3fbNke1n1XtZGSOkXmOPHad3U529SDHsKvmzpH9+vn5Oaytu2WnGGev7P6dycnnDkeOyZnxLbtcSzgb1xDO5Yz5zS7HVipnxDh3jG85+bwO3MvZ9+/E6DuyYpwP0kduv4bIzvdw2eU7ACD3cYdrAGf8LSO7yS33cACQWe52j5vRPvg7XMbim90JbY0bN9a1a9dUvHhxPfPMM+ratavl6Va2mEwm3bx5095usgWz2WxJJpLuvNJz5syZOnDggNWrH0+dOnXfthISEjRv3jytW7dO58+fV1JSkmXZzZs3lT9/fpvreXl5acaMGRo8eLB++ukn/fLLL9q5c6c2b96sIUOG6JVXXpF0J5GqXbt2lmS2+/n777917tw5/fvf/9bt27ct5Q0aNJCnp6eOHDlildB2d3KUh4eHKlasaHmi2K1bt/Trr79qxIgRlmS2e+3cuVMFCxZUw4YNrfpr1KiR/u///k/JycmG60ZFRen999/Xrl27FB0dbbkQq1atWpq6d4/Tz89PpUqVsowzKipKFy9eVJs2bazWadeuXYYT2t577z299957ls8hISEaP368XdtZqFAhlS5dWjNnztS1a9cUFhamEiVKWOreunVL+/fv1+uvv67k5GRLefny5VWyZEkdPnzYkni2detWffzxx/rjjz9048YNS91Tp05ZzUVwcLAlmU2S/vrrL0VFRVkS+9KT3r7PjNR5ycj3JusUs1l69OhRB9V3jTtz7G7b5qj23aMd9zqOcxr32Mc5XfrHsKvmzvn9hoSEOKytu7lnjDNie56N2Bs33I3zzx2umwdnfCcf7Bh2zdxlt/N69jhPZF+Zm9+ccc3gjBjn2vjm3HOKO57XgXs57v7dufdYRtzvPJoV53vn9ZFbryGyxz1c9rmHAADJve7TM/e3jJwh593DGSHuAcgcd7vHtbcP1/4dznX37xmNb3YntD366KPq0qWLGjZsaJXMZaRjx47q2LGjvd1kC1FRUSpfvrwk6caNG+rfv78KFy6sMWPGqFSpUsqbN6/Gjx+vhISE+7b17rvvauXKlXrppZdUvXp1BQQEaPPmzfr444+VkJBgmNCWqnLlyqpcubIGDhyoy5cv64UXXtD8+fPVr18/FSxYUFevXlWxYhk/IK9cuSJJeumll2wuP3/+vNXngIAAq88+Pj6KjY2VJF2/fl0pKSnp9n/lyhVdvXrVZhKaJEVHR1sldaVKSUnRv/71L8XGxurll1/WQw89JF9fX82aNSvNGI3GmZiYaOlDktVTBiWpaNGihuO+17PPPqvHH39ct27d0tq1a7Vy5Up9+OGHGjlypF3buWDBAr3//vuaPHmy4uLiVK1aNY0dO1b169fX9evXlZycrGnTplk9gS1V6nYfOnRIQ4YMUatWrfTiiy+qSJEi8vDw0FNPPZXmmLx3G69evSpJGTpm0tv3meHt7a3bt2+rfPny8vX1zXQ7jrTz1xib5VWrVnVI/ax269YtnTp1SuXLl1fMcduZ1K7aNke17+p27p5jdzmOc5Jbt27p8gn7jl0j7v59dZWMHMOumrvsvM/cMcYZMZpnI/bGDXfj7HOHK+fBkd8NR8Q3V81ddjhHSFxDONuDzG92jj/O5sr4tuOgfftlu0F9I0btGPULuIKj7t+dfR9txN3Oo1lxvndGH1xDOIcjY1x2uocAAMn4/HT+l6y7T787vjnq92C452+UxD0AmWXvb0DOvsfNaB/u8He4f/7r/vfvdiW0xcfHq0CBArp161aGktlysj/++EMXLlxQt27dJEkHDx5UVFSU5s2bpypVqljqxcbG2kzEuteGDRvUs2dPDRw40FK2devWTI2tcOHC6t69u6ZMmaLTp0+rYMGCKliwoC5evJjhNgoWLChJmjBhgmrWrJlmuT3JcQEBAfL09Ey3/wIFCqhw4cKaP3++zeX3JpmlOn36tH7//XfNmTNHrVu3tpTHx8dneHypUl8LevnyZavyu18rez8lSpRQjRo1JN15mt2lS5f0+eefq3fv3ipZsmSGt7NChQqaNWuWkpKSdODAAc2cOVODBw/Wtm3bFBAQIA8PDw0aNMhqm1MVKlRIkvTDDz/I399fH3zwgTw9PSVJ586ds9nvvd/n1P1vzzHjKKlj8fX1ddrrAuxn+2RuPD5767vGneBo+ybQddvmqPbdox33Oo5zGnuPXSPZ4/vqKukfw66au+y7z9wzxhmx70bG3uPE3Tj/3OG6eXDGsfZgx7Br5s79v3PWssd5IvvK3Pxm3/jjbK6Nb849p7jjeR24l+Ou1517H23E/c6jWXG+d14fXEM4lmNjXPa5hwAAyb3u0zP3twwYcc/fKIl7ADLH3e5x7e3DtX+Hc//7d097KufLl08RERFWr9PMjRISEvTmm28qT5486tGjh6T/JVD5+PhY6u3fvz9NAtHdTwS7t827101OTta3335737EYJVulPpow9clbYWFh2rhxo9VrJ9Pz8MMPq0SJEjp79qxq1KiR5r/ixYtnqB3pzoFdu3ZtffPNN1avyLxbo0aNdPnyZfn4+NjsL0+ePDbXS33S2N1zd+7cOR04cCDD40tVokQJBQUFadOmTVblGzdutLutVK+//rpSUlK0YMECSfZvp4+Pjxo0aKCBAwfqxo0bunjxomU+//rrL5ttlClTRtKdY9LHx8cqWW3dunUZGnfq/l+9enWmtx0AAAAAAAAAAAAAAACwl92vHK1WrZpOnDjhjLG4pZSUFB08eFCSFBcXpxMnTigiIkJnz57V9OnTLclDtWvXlp+fnyZNmqSBAwfqwoULCg8PT5P4VbFiRd2+fVuLFi1SnTp15O/vr4cffliNGjXSypUrValSJRUqVEhffPGFzcS3e3300Uc6evSoOnXqpEqVKikhIUE7d+7UF198odatW6t06dKSpKFDh2rLli3q3bu3BgwYoKCgIJ08eVK3bt3Siy++mKZdDw8PjRkzRqNGjVJcXJweffRR+fr66p9//tHWrVs1fPhwVahQIcPzOHLkSD333HN67rnn1Lt3bxUoUEC//fabChUqpCeffFKNGzdWixYtNGDAAA0YMEAmk0m3bt3Sn3/+qdOnT2vq1Kk2201NvJoxY4ZSUlIUFxenWbNm2fUEuVReXl4aOHCgpk6dqiJFiqhx48bauXOn9uzZY3dbd4+vQ4cO+uqrr/TSSy9laDuPHTumt99+Wx06dFDZsmV148YNzZs3T6VLl1a5cuUk3UmU69evn1599VV17NhRgYGBioqK0q5du9S9e3eFhoaqcePGWrRokd588021adNGBw4c0DfffJOhcXt4eGj06NEaMWKEhg0bpi5duihPnjw6ePCgatSooRYtWmR6TgAAAAAAAAAAAAAAAAAjdie0/fvf/9bAgQMVHBysbt26ydvb7iaylfj4ePXs2VPSnSeNlSlTRmFhYZo9e7YqVqxoqVe0aFF9+OGHeueddzRkyBCVL19ekyZN0qeffmrVXosWLdS7d2/Nnz9fMTExql+/vpYsWaI33nhDEydO1JtvvilfX19169ZNbdq00fjx49Md3+OPP66EhAQtWbJEFy5ckJeXl0qXLq3XX39dvXv3ttQrX768li9frhkzZmjSpElKTk5W+fLlrV5xeq/HHntMgYGBmjt3ruXJXqVLl1bTpk0tT37LqHr16mnx4sX64IMPNHbsWHl6eqpy5cp69dVXLXVmzZql+fPn68svv9S5c+cUEBCgypUrq3v37obt5smTR+Hh4Zo8ebJeeeUVlSxZUv/617+0e/duHTlyxK4xSlLfvn11/fp1ffHFF/ryyy8VFhamKVOmaMCAAXa3lWrIkCH67rvvtHTpUg0bNuy+2xkUFKSiRYtq3rx5unDhggICAlSvXj29++678vLykiTVrVtXX3zxhcLDwzV27FglJSWpRIkSatiwoR566CFJUvPmzTVq1CgtXbpUq1evVt26dTVv3jy1a9cuQ+Pu0KGD8uXLp7lz52rEiBHKmzevHnnkEbVp0ybTcwEAAAAAAAAAAAAAAACkx+5stDFjxsjDw0MTJkzQlClTVLx4ceXNm9eqjoeHh9auXeuwQbrKsGHDNGzYsAzXb9asmZo1a2ZV1rx5c6vP3t7emjhxoiZOnGhVXrRoUc2ZMydNm6mvNDVSu3Zt1a5dO0Pjq1Spkj7++GPD5cePH09T1rhxYzVu3NhwndDQUJvrffTRR2nK6tatq8WLFxu2lSdPHg0dOlRDhw41rGNLzZo19dVXX1mVde3a1epz9+7dbSbG3fvEMg8PD5tjsLWN9zKq8/DDD+v333+3fL7fdhYpUkTvvvvuffurUaOG5s+fn26dF198Mc0T+O4d55IlSwzXb9mypVq2bGlzmT37HgAAAAAAAAAAAAAAAMgIuxPaChYsqIIFC9r1ukkAAAAAAAAAAAAAAAAAAO7H7oS29J7mBAAAAAAAAAAAAAAAAABAZnm6egAAAAAAAAAAAAAAAAAAAEiZeEKbJCUnJ2vt2rXasmWL/vnnH0lSqVKl1KJFC3Xu3FleXl4OHSQAAAAAAAAAAAAAAAAAIOezO6EtNjZWL7zwgg4fPqz8+fOrbNmykqRdu3bp+++/15dffqkFCxbI39/f4YMFAAAAAAAAAAAAAAAAAORcdie0vf/++/rtt980fvx4PfXUU/Lx8ZEkJSUlaeXKlZo6daref/99vfHGGw4fLAAAAAAAAAAAAAAAAAAg5/K0d4VNmzapV69e6tOnjyWZTZJ8fHzUu3dv9erVSxs3bnToIAEAAAAAAAAAAAAAAAAAOZ/dCW1Xr15VhQoVDJdXqFBB165de6BBAQAAAAAAAAAAAAAAAAByHw+z2Wy2Z4VOnTqpePHiWrBggc3lL7zwgqKiovTtt986ZIAAco/Dhw/LbDYrKSlJVatWlZ+fn6uHlCPFxcXp6NGjzLETMcfOxfw6H3PseMS4rHG/Y3fTz2ftaq9NWFm76hu1b2877soV54acPqf34vzrXMyv47lrfDM6dxj9Ata2ke1zir3nIHvjTHptbdxluy1PD9vtpKTYLvc0+KesKQZzkZxsu9zLoB3D9u0cj9G+8TDYXkcxmgejbo2OFSPpHROOOo6yQ0zk/Ot8d8/xzl9jbNbJDseKO3F1jHPUdbC955SY67ZPjP6+9p2Q7T1/G8W381dsB5SAfLZXMBrnlRu2tytfHtv93oy3XT+Pt/GG5TcYk5EUgyBkFJvy+thu3yi2GsV0o/aNYr3RvjSK3UbtGDH6A6XRMWEk2eDaw2g89l6DtTO4BsiKGGfvmIxkx/trriEcz9XxzV4bdto+bo1OEUbnLKNzhNE50d5zkCQlJNluzC+v7cYSb9tux8fbdnliku3ypGTb/eY36NfwXtBgjvL62C6PT7Rdnsegvr33iPay95iw914wvWsbo5hoFOOMzt+O+g3CEfXd8fybHePYvXLCNmQ1u08RvXr10s6dO/Xiiy9qx44dioyMVGRkpLZv366BAwdq165d6tOnjzPGCgAAAAAAAAAAAAAAAADIwQxyfI316dNHly9f1vz587Vjxw7rxry99dJLL6l3794OGyAAAAAAAAAAAAAAAAAAIHewO6FNkoYNG6Y+ffro559/1rlz5yRJpUuXVlhYmAoXLuzQAQIAAAAAAAAAAAAAAAAAcodMJbRJUuHChdWxY0dHjgUAAAAAAAAAAAAAAAAAkIvZndD2zz//pLvcw8NDefPmVaFCheTh4ZHpgQEAAAAAAAAAAAAAAAAAche7E9patmyZoUS1vHnzKiQkREOGDFFISEimBgcAAAAAAAAAAAAAAAAAyD3sTmibOnWqlixZovPnz6tz58566KGHJEmnT5/WunXrVLp0aXXv3l2nT5/W2rVr1a9fP3366adq2LChwwcPAAAAAAAAAAAAAAAAAMg57E5ou3jxopKSkrRp0yYFBgZaLRs6dKh69+6t+Ph4jRs3TkOGDNETTzyhOXPmkNAGAAAAAAAAAAAAAAAAAEiXp70rLF++XD169EiTzCZJBQsWVI8ePbRs2TJJUqFChdS9e3cdOXLkwUf6AMLDw1WnTh2XjqFevXoKDw/Psv5atmypyZMnp1tnz549MplMOnz4cBaN6sF06dJFY8aMSbfOmDFjZDKZ9NRTT6VZZjab1bx5c5lMpizdF7lFeHi49u/f7+phAAAAAAAAAAAAAAAAIBuzO6Ht6tWrunXrluHyuLg4Xb582fI5KCgocyOD01WrVk0RERGqWLGiq4fiUH5+fvr111919uxZq/JffvlFMTExypMnj4tGlrPNnj1bBw4ccPUwAAAAAAAAAAAAAAAAkI3ZndBWo0YNLV68WMePH0+z7NixY1q6dKlq1qxpKTt58qSKFy/+YKOERXx8vMPa8vf3V+3ateXn5+ewNt1B6dKlVaVKFX333XdW5evXr1eTJk2UN29eF40MAAAAAAAAAAAAAAAAQHrsTmgbP368UlJS1K1bN/Xu3Vtjx47V2LFj1bt3b3Xv3l3JyckaN26cJCkhIUF79+5Vu3btHD5wR4uKitKoUaMUGhqqmjVrqk+fPmlelbpmzRr16tVLDRo0UP369dW3b18dOnQoTVs//PCD2rdvrxo1aujJJ5+0WUeStmzZoh49eqhmzZpq2LChJk6cqLi4OMvy1FeCbtmyRS+//LLq1q2rV155RZK0efNmde/eXXXq1FG9evXUvXt3bd26NU0fy5YtU4sWLRQSEqIhQ4ZYPT3P1itHTSaT5s+fr3f+H3t3HhdV2f9//M2qoKLhbu5LqLmAO6KQmkuKt0vu3qSlkrlWWmFut2Zp7gpaLmmkaUqZa2HmVrem1VfMFu8yy1wSJVcMQZb5/eGPyZEZYHAGBng9H4/78XXOXOc6n/M5Z65rhj7fc82dq1atWsnPz09hYWG6detWpvm7fPmyJk2apA4dOqhRo0bq1KmTFi5cqDt37pi08/Hx0apVqxQeHq7WrVurZcuWmjRpksl5S9KxY8fUu3dvNWzYUMHBwWbPLTPdunXTzp07ja9TUlK0e/duBQcHZ2gbExOjkSNHqk2bNvL19VWPHj20detWkzbpuTp06JAmTJggPz8/tWvXTqtWrbK6L0k6deqUBg8erIYNG6pTp07avn27Ro0apZCQEJN2p0+f1nPPPaemTZvK19dXoaGhOnv2rEmb9Gu2aNEi+fv7q1mzZpo7d64MBoO++uor9ejRQ35+fhoyZIguXrxosu+dO3e0cOFCtWvXTg0aNNATTzyhHTt2mLQJCwtTcHCwjh49qp49e8rX11d9+vQx+Xz4+PhIkubOnSsfHx/5+Pjo6NGjGc4bAAAAAAAAAAAAAAAAyIyrtTvUrVtX27dv16pVq/Tll18ai6EqVaqkQYMGafjw4apQoYIkqUiRImaLeRzNjRs3NGjQIHl6emrq1KkqUaKE1q1bpyFDhuizzz5T6dKlJUnnz59Xz549VbVqVd25c0e7du3S4MGDtX37dtWoUUOSdPLkSY0bN06BgYGaNGmSzp8/r+effz5DYVd0dLReeOEF9e7dW2PHjlVcXJwWLFigmzdvatGiRSZtp06dqn/9619atmyZnJ2ddfbsWY0fP17dunXThAkTlJaWpv/973+6ceOGyX779u3TH3/8oWnTpunatWuaPXu2XnvttQz932/dunV69NFH9eabb+r8+fOaP3++kpKSMt3v2rVrKlWqlCZNmiQvLy+dOXNG4eHhiouL0+zZs03avv/++2ratKnmzJmjM2fOaO7cuSpdurQmTpwoSYqLi9OwYcPk4+OjxYsX6+bNm5oxY4YSEhJUr169TGNP161bNy1cuFC//vqrateurUOHDikpKUnt27fXf/7zH5O2f/75p5o0aaKBAwfK3d1dx44d05QpU2QwGNSrVy+TttOnT1ePHj20bNkyff7555o/f758fHwUGBiY7b4SExP1zDPPyMvLS/PmzZMkLVu2TDdv3lTVqlWNxzp37pwGDBigOnXqaM6cOXJyctLbb7+toUOHKjo62mTp1Pfff18tWrTQ3Llz9d133yk8PFxpaWk6dOiQnnvuObm5uWnWrFmaPHmy1qxZY9xv/PjxOnbsmEaPHq1atWrp4MGDeumll+Tl5aWgoCBju7i4OM2aNUuhoaEqUaKEFixYoDFjxmjPnj1yc3PTpk2b1L9/f4WEhBiLBmvXrp2tawUAAAAAAAAAAAAAAACks7qgTZLKly+vKVOm2DqWPBMZGambN28qKirKWLzm7++vzp0765133tHLL78sSRozZoxxn7S0NAUEBOjEiRP6+OOP9eKLL0qSVq5cqYoVK2rZsmVycXGRdLewL/2pdZJkMBg0d+5cde3aVa+//rpxe9myZRUaGqpRo0apTp06xu3t27fXSy+9ZHwdHR2t5ORkTZ06VcWLF5cktW3bNsN5GQwGvfXWW8bCpwsXLmjFihVKS0uTs7Plh/O5u7tniH/KlCkaM2aMatWqZXYfHx8fvfLKK8bXTZo0kYeHh8LCwjRt2jR5eHiYnOeCBQskSYGBgfrpp5+0e/duY0FbZGSknJyctGrVKpUoUUKSVKFCBQ0dOtRizPd7+OGH5evrq507d+r555/Xzp071b59e7PLq3br1s34b4PBoObNm+vSpUvatGlThoK2Tp06aezYsZLu3iMHDhzQ7t27jQVt2enro48+0pUrV7Rx40ZVrlxZktSgQQN16tTJpKAtIiJCJUuW1Nq1a43LpDZp0kQdOnRQVFSUBg8ebGxbrlw5Y3Fc27ZttW/fPr377rvatWuX8ZpdunRJr732mm7evCkvLy8dOXJE+/bt0zvvvKM2bdpIkgICAhQXF6fw8HCTgrYbN25o/fr1xvvSw8NDTz31lL777js1a9ZMvr6+kqSKFSsa/51TBoNBknT79u0H6geWpeeWHNsPObYv8mt/hT3H9lqOnTnO/mx9797/FOG87ievOdLYUFByej9HynFBRH7tM8cVhPnN2jHFlmNQQR3PCipHvPb54R5i/LW/7OQ4P9wrOVWYfsMV5OsI5CZbff/LyzmuMHyX4DsEv+GAgsjef4OwRfv8NP468jyWXQXhHKyV3fktRwVt6S5fvqyrV6+qatWqdvvRmBsOHTqkli1bqmTJkkpJSZEkOTs7q3nz5ibLcZ4+fVoLFy5UTEyMrly5Ytx+5swZ47+/++47tW/f3lgMJkldunQxKWj7/fffdeHCBb366qvG40lSixYt5OzsrB9++MGkoO2xxx4zidfHx0cuLi6aOHGi+vXrp+bNmxsLv+7VvHlzk6d41apVS8nJybpy5YrKli1rMR/t2rUzG//3339vsaDNYDAoMjJSmzdv1vnz55WUlGR879y5c3rkkUeMr1u3bm2yb61atbRr1y7j6++++04tW7Y0OSd/f3+VKlXKYszmBAcH67333tPIkSO1d+9ezZ8/32y7GzduKDw8XHv37tWlS5eUmpoqSWaPl174JUlOTk6qVauWYmNjrerrhx9+0COPPGIsZpOkypUrq27duibHOnTokLp27SoXFxfjfeLl5aX69etnWA73/pzWqFFDf/31l8n1ql69uqS7y+t6eXnp0KFDKlWqlFq1amVyH7Zu3Vr/+c9/lJqaarwPypUrZ3JPpj997dKlSxly9KDSY7n3cwX7IMf2R47ti/zaX2HNcdOmTe3SL3Nc7rGc43JW9XPy5Ekrj2y+f+v7cWy5ew8Xjpzej3HCvgpzfu0xxznm/Gar8d7aMci649q6L9ifrb4bZN6Xvb+v5B3HGicKprs5LnzfnwrmbzhbXUfmE8Ac233/u8u+44R9x4P8MD8U5u8Qhec3nCXMYyh47P03CFvOcY41TuTfeewfBeEcbCO781uOCtrSl1r8448/JElr1qyRv7+/rl69qmeeeUZjxozR448/npOu88S1a9d0/PhxPfrooxneS39i1q1bt/TMM8/I29tbYWFhqlSpkvHJZfcWb8XFxRmf8pauePHixidspR9PkkaPHm02nosXL5q8vr+/GjVq6O2339aKFSs0ZswYOTs7q02bNpo2bZoqVapkbOfl5WWyX3px273xmmMp/suXL1vcJzIyUm+++aaGDx+uli1bysvLS99//71mzpyZ4Xj3x+Xm5mayJGtcXJyqVauW4Rje3t6Zxn2/Ll266I033tCSJUvk5uZm9il2khQWFqaYmBiNHj1atWvXVvHixbVx40Z9+umnGdreXzjo5uam+Ph4q/q6fPmy2XPx9vY2ydW1a9cUGRmpyMjIDG3d3NxMXpvLqblt0j/X/9q1a7p+/brZ+166ex3Slw/Oqi9bcnV1VUpKiqpXr27yZD/Yzu3bt3XmzBlybEfk2L7Ir/2RY/tgjrO/rO7dQ99dMbOXZdld7j6r/q3tx1HlxdhQ0HN6P8Zf+yK/9uGI85utxntrxyBrj5tZX18et74v2J+tvhtk1pe9v6/kBcZf+7s3x1d/Mf//3Z8f7hVHk5dznK2+B+dkbgIKA2u/g1lqnxtznLUxWZIff1/zHcI+HPE3nCVxMcxjKHjs/TcIW7R3xPE3P85j9ysI55DbrC5o27dvn8aOHStfX18FBwcrIiLC+J63t7fKly+vjz76KF8VtJUsWVJt27bV+PHjM7yXXgR2/PhxxcbGasWKFSZP0oqPjzcW/Uh3l9O89+lt0t1iuHsLf9Kf1jVt2jQ1atQowzHLlTOtzHRycsrQJjAwUIGBgbp165a++OILzZ49W5MmTTJb/GQtS/HfH9e9oqOj1b59e02YMMG47fTp0zk6vrkcStLVq1et6qdMmTJq1aqV3n33XfXp0ydDEZh0tyDrwIEDCgsLU0hIiHH7hg0brI47u32VK1fObJXt1atXVaxYMePrkiVLKigoSIMGDcrQ9t52OVWyZEl5e3tr5cqVZt+3toDQVtLvdw8Pj3z95Mf8gBzbHzm2L/Jrf+TYtpjjco/lHFv3RzDrr5P5/gva9c7de7hw5PR+jBP2RX5tyzHnN1uN99aOQdb/xxZb9gX7s9V3g8z7svf3lbzjWONEwXT3PzaZL2gj99bL2znOVt+DmU8Ac2z3/e8u+44T9h0P8sP8wHcI23LM33CWMI+h4LH33yBsOcc51jiRf+exfxSEc8hdVhe0LVu2TM2aNdO6det07do1k4I2SfL19dWmTZtsFmBuaN26tbZv365atWpZvFkSExMlmT4Z69ixY7pw4YLJUoyNGjXS/v37NWnSJONyjdHR0SZ91axZUxUqVNC5c+c0ePDgB4q9ePHi6tq1q06cOKGdO3c+UF/pzMXv5OSkhg0bWtwnMTExQ8HYjh07cnT8Ro0aaePGjYqPjzc+Ee2rr77S9evXre4rJCRERYsWVd++fc2+f+fOHaWlpZnEfuvWLe3bt8/qY2W3rwYNGmjr1q06d+6cqlSpIkk6f/68/ve//5k8WtHf31+nTp1S/fr1TZaAtZXWrVtr9erVcnNzy7DcaU64ubnZ5YltAAAAAAAAAAAAAAAAKDysLmg7deqUwsLCLL5fpkwZs0/XymupqakZCsuku8VTQ4cO1Y4dO/Tvf/9bTz31lCpVqqSrV6/qu+++U/ny5TV06FD5+vrK09NTM2bMUGhoqC5duqTw8HCVL1/epL/Q0FD16dNHo0eP1sCBA3X+/Hm98847JkuOOjk5KSwsTBMnTlRCQoIee+wxeXh46M8//9TBgwf1wgsvqEaNGhbP5YMPPtDx48fVtm1blS1bVufPn9f27dsVEBBgk1zduXPHJP758+erc+fOqlWrlsV9Wrdurffee0/r169X9erVtX37duOStNYaMmSINmzYoBEjRmjEiBG6efOmwsPDjU+2s0a7du3Url07i++XKFFCDRs21KpVq+Tt7S1XV1etXLlSxYsXt/qJcNnt68knn9Tbb7+tkSNHauzYsZKkiIgIlSlTxuRpfOPGjVOfPn00bNgw9evXT2XKlNFff/2lr7/+Ws2aNVNwcLCV2TAVEBCgdu3aafjw4Ro+fLh8fHx0+/Zt/frrr/rjjz/0+uuvW9VfzZo1tXfvXjVr1kweHh6qUaOGihcv/kAxAgAAAAAAAAAAAAAAoHCxuqDNw8NDt2/ftvj+uXPnclR4ZG9JSUlmlxSdO3euevTooU2bNmnx4sWaP3++rl+/rtKlS6tx48bq2LGjpLuFekuWLNHcuXM1atQoVa9eXTNmzNDq1atN+qtfv76WLFmi+fPna8yYMapTp44WLVqkYcOGmbR74okn5OXlpbffftv4JLOHH35Ybdu2VZkyZTI9Fx8fH+3fv1+zZ8/W9evXVbZsWXXr1s3s+eVESEiIrl69qpdffll37txRx44dNW3atEz3GT16tK5du6alS5dKkjp37qwpU6Zo5MiRVh+/XLlyWrVqlWbNmqXx48eratWqmjZtmhYtWpSj88nKggULNG3aNIWFhalUqVIKCQlRQkKC1qxZY5e+ihYtqjVr1mj69OmaOHGiypcvr1GjRmnr1q3GJ9JJUrVq1RQVFaXFixdrxowZSkhIUNmyZdW8eXP5+PjY5NyXLl2qlStXauPGjbpw4YJKlCihOnXqqHfv3lb3NW3aNL3xxhsaMWKEEhMT9d5776lly5Y2iRMAAAAAAAAAAAAAAACFg9UFbS1bttTWrVs1ZMiQDO/FxcVp8+bNmT4RKy+MHTvW+CQsS8qWLZvlE6kCAwMVGBhosi0oKChDu44dOxoL4dJ9++23GdoFBARk+lS1li1b6ueff86w3c/PTytWrMg0VnNLZj7++OMm/Vnq38XFRWFhYZk+ie9+xYoV0+zZszNsv79/c8cbOnSohg4darKtWbNm2rp1q8m2xx57LMs45syZk2Wb+69FtWrVFBkZmaHdvfeMpVwtX77c6r4kqU6dOtqwYYPx9fXr1zV79uwMeahevboWL15s8Vwk8zk1lwdz5+Du7q4xY8ZozJgxFvs315eXl1eGvpo1a6YtW7ZkGisAAAAAAAAAAAAAAACQGasL2p5//nn1799fffr0UZcuXeTk5KT//ve/OnLkiDZt2iSDwaDRo0fbI1agwFi5cqXKlCmjhx9+WHFxcVqzZo1SU1P15JNP5nVoAAAAAAAAAAAAAAAAQJ6xuqCtZs2a2rBhg15//XUtWbJEBoNB77zzjiSpRYsWmj59uipXrmzzQIGCxNnZWW+99ZYuXbokFxcXNW7cWJGRkapYsWJehwYAAAAAAAAAAAAAAADkGasL2qS7yyW+++67unHjhv744w8ZDAZVqVJF3t7eto4Puczc8pWwveHDh2v48OF5HQYAAAAAAAAAAAAAAADgUJyt3SEiIkK//PKLJKlkyZJq1KiRGjdubCxmO3XqlCIiImwbJQAAAAAAAAAAAAAAAACgwMtRQVtmT/E6deqUli1b9kBBAQAAAAAAAAAAAAAAAAAKH6sL2rJy/fp1ubm52bpbAAAAAAAAAAAAAAAAAEAB55qdRt98842OHj1qfL1nzx798ccfGdrFx8frk08+0SOPPGK7CAEAAAAAAAAAAAAAAAAAhUK2CtqOHj2qiIgISZKTk5M+++wzffbZZ2bb1q5dW1OnTrVdhAAAAAAAAAAAAAAAAACAQiFbBW3Dhw/X4MGDZTAY1Lp1a82YMUOdOnUyaePk5CQPDw8VKVLELoECAAAAwIPo6F8lX/dfGJFTADlh7djx2eFzZrc7OZlvv+cr8+0zYykmS31ZOLRFnQOsO2dLx+3ctnCOuwkJCTp58qTq1asnT09Pm/Wbk3mMuQ8PinuoYLB23rBWWpr57d4lzM9AluZEg8HCdgvHdbbQj7X3rbV5GNSlqtntlr4DlPCwdia23TnYqp/ObavYbX7LCUtxdnKwMcvSPZqXOre2TY6YH2APthrLLHFxtq69vefPzDzR5p+5Jjvjr7UxdQ+y7tzyy2c+p/Hfn+P8ngfJ+ljt3d7R5Pf4JdNzuPcehmXZKmgrWrSoihYtKknau3evvL295eHhYdfAAAAAAAAAAAAAAAAAAACFS7YK2u718MMP2yMOAAAAAAAAAAAAAAAAAEAhZ3VBmyT973//0/r16/XTTz8pPj5eafc9n9rJyUmff/65TQIEAAAAAAAAAAAAAAAAABQOVq48LR09elR9+/bVgQMHVK5cOZ07d05VqlRRuXLl9Oeff8rT01PNmze3R6wAAAAAAAAAAAAAAAAAgALM6oK2pUuXqkqVKoqOjtYbb7whSXr22We1ceNGffDBB7p06ZK6dOli80ABAAAAAAAAAAAAAAAAAAWb1QVtP/30k/r06aPixYvLxcVFkoxLjjZu3Fj9+/fXkiVLbBslAAAAAAAAAAAAAAAAAKDAs7qgzcXFRcWKFZMkeXl5ydXVVVeuXDG+X6VKFZ0+fdp2EQIAAAAAAAAAAAAAAAAACgWrC9qqVq2qM2fOSJKcnJxUs2ZNff7558b3Dxw4oDJlytgsQAAAAAAAAAAAAAAAAABA4WB1QVtQUJB27dqllJQUSdLTTz+tzz77TJ06dVKnTp20b98+9e/f3+aB2lp4eLh8fHzk4+OjunXrqmnTpurevbtmzpyZ4yfMHT16VG+//baNI5VOnz6tCRMmKCAgQA0aNNDjjz+uuXPn6ubNmzY/VrqjR4/Kx8dH33//vXGbj4+P3nnnHePrLVu2aMeOHXaLwdY+//xz+fj46Pz581m2vT/nHTp00Jw5c3T9+nX7B5pD58+fV3h4uC5dumSy3dy1BAAAAAAAAAAAAAAAAByRq7U7jBo1Sk899ZRcXFwkSb169ZKzs7M+++wzubi4aOTIkerdu7fNA7WHokWLKjIyUpL0999/65dfftGmTZu0efNmvf766+rRo4dV/X399ddas2aNRo4cabMYv/nmG4WGhqpq1ap6+eWXVbFiRf3vf//TW2+9pQMHDmj9+vXy9va22fEys2nTJlWqVMn4+uOPP5anp6e6d++eK8fPLZnlfP/+/Vq/fr3Kli2b12FmcOHCBUVEROixxx5T+fLljdsfffRRbdq0SbVq1crD6AAAAAAAAAAAAAAAAICsWV3Q5ubmpoceeshkW48ePawu/nIEzs7O8vX1Nb4OCAjQoEGDFBoaqsmTJ6tJkyaqUqVKnsWXmJioF198UZUqVdLGjRvl6ekpSWrRooUCAgLUs2dPzZo1SwsXLsyVeO7NVUGVnZzPnDlT4eHhuRZP0aJFH6iP4sWLF4prBwAAAAAAAAAAAAAAgPwv20uO7tq1SwcPHsy0zcGDB/XJJ588cFB5qUiRIpo6daqSk5MVFRVl3L5161YNHDhQLVq0UPPmzRUSEqITJ04Y3w8PD1dERIQSEhKMS5mGhIRIurt85QsvvKCgoCA1btxYXbt21Zo1a5SWlpZpLNHR0bp8+bJGjhxpLKxKV6tWLfXo0UOffvqpcYnJLVu2yMfHR1evXjVp26NHD4WFhRlfx8TEaOTIkWrTpo18fX3Vo0cPbd26Ncvc3LvkaEhIiL7++msdOHDAeL7h4eFat26dGjdurFu3bpnse/r0afn4+GR6D2WVY+lunv38/PTzzz9r4MCBaty4sYKDg/Xll1+atEtOTtbrr7+uFi1aqGnTpnr11Vf1999/Z3mO2cn5nj17dOHCBUn/LOd58OBBjRkzRr6+vmrTpo3ZpWdPnz6t5557Tk2bNpWvr69CQ0N19uxZkzY+Pj5auXKl5s2bp4CAAPn7+0vK+podPXpUTz31lCSpT58+xmtyb4z3LjmalJSk2bNnq02bNmrYsKHxvO4VFham4OBgHT16VD179pSvr6/69OmjH374waTdhx9+qG7duqlRo0Zq2bKlBg4cmOG6AQAAAAAAAAAAAAAAANmRrSe07dmzRxMnTtTq1asz78zVVRMmTJCnp6cee+wxW8SXJ2rXrq3y5csrJibGuO38+fPq2bOnqlatqjt37mjXrl0aPHiwtm/frho1aqhv376KjY3Vzp07jcuYFi9eXJJ0+fJl1ahRQ927d1exYsV08uRJhYeHKyEhQWPGjLEYx9dffy1Jateundn327dvr6ioKH3zzTcKDg7O9vn9+eefatKkiQYOHCh3d3cdO3ZMU6ZMkcFgUK9evbLVx/Tp0/XSSy+paNGieuWVVyRJFSpUkIeHh+bNm6edO3dqwIABxvYffvihypcvrzZt2ljsM6scp0tOTtbEiRP11FNPadSoUVq1apXGjRunffv2GZ8euHDhQm3cuFFjx45V/fr1tWvXLi1YsCDL88puzv/v//5PDz/8sHH71KlT1a1bN4WHh+vw4cNatGiRSpYsqYEDB0qSzp07pwEDBqhOnTqaM2eOnJyc9Pbbb2vo0KGKjo6Wu7u7sa/33ntPjRs31uuvv66UlBRJWV+zRx99VNOmTdPMmTM1e/Zs1axZM9PznDhxor788ks9//zzqlmzprZt26axY8dq2bJl6tChg7FdXFycZs2apdDQUJUoUUILFizQmDFjtGfPHrm5uembb77R5MmT9cwzzygoKEiJiYk6ceKE4uPjs8w1AAAAAAAAAAAAAAAAcL9sFbR99NFHxiUXMxMQEKBWrVpp8+bN+bqgTZIqVqyov/76y/j63sKztLQ0BQQE6MSJE/r444/14osvqkKFCqpQoUKGZUwlyd/f3/ikLYPBoKZNmyoxMVHr16/PtKDt0qVL8vLyMhbG3a9SpUqSpNjYWKvOrVu3bsZ/GwwGNW/eXJcuXdKmTZuyXdBWu3ZtFS9eXJ6enhnOt3Pnzvroo4+MBW0pKSnavn27+vTpIxcXF4t9ZpXjdOkFbUFBQZKkGjVqqEOHDvriiy/Uo0cPXb9+XRs2bNCIESP07LPPSpLatm2rf//738an2VmS05y3atXKWNjXtm1bXblyRW+99Zb69+8vZ2dnRUREqGTJklq7dq2KFCkiSWrSpIk6dOigqKgoDR482NhXyZIlFRERIScnJ+O2rK5Z8eLFVbt2bUlSnTp11LBhQ4vn+L///U+fffaZZsyYYbxGgYGBunDhQoaCths3bmj9+vWqU6eOJMnDw0NPPfWUvvvuOzVr1kwnTpxQqVKljOcu6YE/+waDQZJ0+/btB+oHlqXnlhzbDzm2L/Jrf4U9x/c/pdVWmOPsr7Dfu/ZGfu2PHNsX+bXPHMf8lj0JCQn5on97x+moGB/si/zaX2HPMb/h8r/8Mk/mxjFs2U9+GBvyy3cPS3HmhxznZ+Q3//6Gy6vPdl6OKfce2x73rrXnll/GV0uyij+7Oc7vecgrjL/2V9hznN35LVsFbSdOnNDw4cOz1WHbtm2Ny1LmZwaDwaSg6PTp01q4cKFiYmJ05coV4/YzZ85k2VdSUpJWrFihHTt26OLFi0pOTja+9/fff6tYsWIPFOu9cWbHjRs3FB4err179+rSpUtKTU2VJJUqVeqB4kjXr18//fvf/9apU6dUp04dHTx4UFeuXNGTTz6Z6X7ZzbGzs7OxQFCSKleurKJFixqL1X755RclJiaqY8eOJvt16tRJ33zzzQOenXn3H6tz587atm2bYmNjValSJR06dEhdu3aVi4uL8alrXl5eql+/foYlPAMDAzNcU1tes//7v/+TJHXp0sVk+xNPPKHZs2crISHBOICUK1fOWMwmyVg0l57r+vXr6/r16woLC1P37t3VpEkTeXh4WB3TvdLzk53PFh4MObY/cmxf5Nf+CmuOmzZtapd+meNyDzm2L/Jrf+TYvgpzfu0xxxWM+a2c3Y9w8uRJux7bcv+WmD+u9f0ULPn7PnZ85Nf+CmuOC9dvOPvPWXnBVvOY9f3bLp95Nxdn3Y9j3MP55btHzuJ0jBwXXIU5v47/G87en23HG++tOXbmObbvuTne+GrJg8X/T47zex4cU2Eef3NLYc1xdue3bBW03bx5M9uFM6VKldKNGzey1daRxcbGqnr16pKkW7du6ZlnnpG3t7fCwsJUqVIlFSlSRFOmTFFSUlKWfc2bN09RUVEaPXq0GjRooBIlSmjv3r166623lJSUZLGgrUKFCvrvf/+rW7dumX1i2J9//ilJKl++vFXnFhYWppiYGI0ePdr4pLWNGzfq008/taofS5o3b64aNWroww8/1KRJk/TRRx+pefPmqlq1qsV9rMlx0aJFTZbolCQ3Nzdju7i4OElS6dKlTdqUKVMmy9jLly+vmzdvZpnzChUqmGz39vY2e6y4uDhVqlRJ165dU2RkpHE52vtjv9f9cUu2vWY3btyQm5tbhs90mTJlZDAYFB8fbyxo8/LyMhtreq79/f01d+5cvffeexo2bJiKFCmizp0769VXX81xgaSrq6tSUlJUvXr1By6Og3m3b9/WmTNnyLEdkWP7Ir/2R47tgznO/rh37Yv82h85ti/yax8FYX777/ErWTd6QPXq1TO7/dB3tjm2pf4tsXRca/spKBgf7Iv82h85tg9HnONsNW84GlvNY9b2b8vvAHk1F2fWjyONDfnlu4e1cTpSjgsi8msftpzf7P3ZttV4nxvz573Hzs69a+9zc7Tx1ZKcxn9/jvN7HhwN46/9kePsyVZBW6lSpYyFPFn5888/bfakr7xy6tQpXbp0ybj85vHjxxUbG6sVK1aobt26xnbx8fEZCpvMiY6OVv/+/RUaGmrcdvDgwSz3a968uT788EMdPHjQZMnJdAcOHJCzs7OxejF9Kct7nwAn3S1ITJeUlKQDBw4oLCxMISEhxu0bNmzIMh5r9O3bV6tXr9bTTz+tgwcP6vXXX8+0/YPm+F5ly5aVJF25csWk2O/eJWQtadGihT766KNMc+7k5KRmzZqZbL969arJ6/RjpcdSsmRJBQUFadCgQRn6vL+g8f6ns9n6mpUsWVLJycm6ceOGSpYsaRKzk5OTSpQoYVV/PXr0UI8ePXT16lXt3btXs2fPlqurq954440cxZd+/h4eHnZbLgB3kWP7I8f2RX7tjxzbFnNc7iHH9kV+7Y8c2xf5ta2CMb/Z/z9uWM6NbY5tfe7NHzf/XkPbyN/3seMjv/ZHjm3LMee4glnQZqt5zPr+bZfPvJuLs+7HMe7h/PLdI2dxOkaOCy7ya1u2nd/s/dl2vPHemmNnnmP7nlv++cw8WPz/5Di/58ExMf7aHznOnHN2Gvn6+mrnzp3GZQ4tSU1N1c6dO+Xr62uL2PJEUlKSXnvtNbm7u6tv376SpMTEREmmT9I6duyYLly4YLKvm5ub7ty5Y7bPe/dNTU3Vrl27soylS5cuKl++vN56660Ma+f+/vvv+vjjjxUYGKiKFStK+udJbb/99pux3enTp3Xx4kXj6zt37igtLc0knlu3bmnfvn1ZxnO/e5+Kdr9evXopPj5eEydOVNGiRTMsb3m/7OY4Ox555BEVLVpUe/bsMdn+2WefZblvly5dVK5cuUxz3qlTJ1WqVMnkvfuPtXv3bpUrV85YjOfv769Tp06pfv36atiwocn/atasmWlM2b1m9z89zZL0Asjo6GiT7dHR0apfv36OB0xvb2/17dtXAQEBJvcgAAAAAAAAAAAAAAAAkF3ZekJbSEiIhgwZookTJ+r11183W/By+/ZtTZ48WX/88YdmzJhh80DtIS0tTcePH5ckJSQk6JdfftGmTZt07tw5zZkzR5UrV5Z0t6DP09NTM2bMUGhoqC5duqTw8PAMS33WqlVLKSkpioyMlJ+fn4oXL66aNWuqdevWioqKUu3atfXQQw9pw4YNZgvf7le0aFEtWLBAoaGhGjRokJ5++mlVrFhR//vf//T222+rZMmSeu2114ztGzdurIoVK+qNN97QhAkTdOvWLa1cudLkiXklSpRQw4YNtWrVKnl7e8vV1VUrV65U8eLFMzxlLCs1a9bU1q1btW/fPpUtW1blypUz5sTb21sdOnQwPp2uaNGimfaV3RxnR6lSpTRgwACtWrVKRYsWVf369bVr1y6dPXs2y32LFi2qhQsXWsx5xYoVNXXq1Az7HTlyRG+++aYCAgJ06NAhbdu2TdOmTZOz892a0XHjxqlPnz4aNmyY+vXrpzJlyuivv/7S119/rWbNmik4ONhiTNm9ZtWrV5eLi4s++ugjubq6ysXFRQ0bNszQX926ddWpUyfNmTNHiYmJqlGjhrZv366YmBgtX748Oyk2Wrp0qa5fv64WLVqodOnS+uWXX/Tll19q6NChVvUDAAAAAAAAAAAAAAAASNksaGvZsqVGjRql5cuX66uvvlLHjh1Vp04dFStWTH///bd++eUX7d27V9euXdPIkSPVsmVLe8dtE4mJierfv7+ku4+brFy5svz9/RUREaFatWoZ25UpU0ZLlizR3LlzNWrUKFWvXl0zZszQ6tWrTfpr166dBg0apJUrV+rKlStq3ry51q1bp6lTp2r69Ol67bXX5OHhoV69eqljx46aMmVKljGmLzu6bNkyzZkzR1evXpXBYJCfn5+WLVum0qVLG9u6ubkpIiJC//nPfzR+/HhVrVpVr776qubMmWPS54IFCzRt2jSFhYWpVKlSCgkJUUJCgtasWWNV/kaMGKGzZ8/qlVde0c2bNzVmzBiNHTvW+H7Hjh0VHR2tPn36ZNlXdnOcXRMmTFBqaqpWr16ttLQ0dezYURMmTNDLL7+c5b7pOV++fLnmzJmjmzdvqly5curevbtGjhxpdkndmTNnatOmTdq4caOKFSum8ePHa/Dgwcb3q1WrpqioKC1evFgzZsxQQkKCypYtq+bNm8vHxyfLmLJzzby9vTVt2jStXr1a27dvV0pKin7++Wez/c2bN08LFy7UqlWrdP36ddWsWVNLly5V+/bts4zlXg0bNlRkZKQ+/fRT3bp1SxUqVNCwYcP03HPPWdUPAAAAAAAAAAAAAAAAIGWzoE26+4SpRx55REuWLFFUVFSG92vUqKGpU6eqa9euNg3QXsaOHWtSfJWVwMBABQYGmmwLCgoyee3q6qrp06dr+vTpJtvLlCmjZcuWZegzfUnTrNSqVUsLFy40vp42bZo++eQTXblyxaSgTZIaNGigDz/80GTbtm3bTF5Xq1ZNkZGRGY5zbz5atmyZoRjq/tfly5fXypUrLcb9xRdf6JFHHlGjRo0strlXdnJs6bp9++23Jq/d3d01ZcqUDEWDPXr0yFYstWrV0oIFC7LVVpJKly6tt956K9M21atX1+LFizNtY6kALTvXTJIGDBigAQMGmGwzdy2LFi2qV199Va+++qrFWO4vhJQkLy8vk77atWundu3aWewDAAAAAAAAAAAAAAAAsEa2C9okqUuXLurSpYv++OMPnT59Wrdu3TIuq1m9enU7hYj7TZkyRb/88otCQ0O1efNmlStXLq9DMvHzzz/r5MmT+uSTTzIU9wEAAAAAAAAAAAAAAACAJVYVtKWrVq2aqlWrZutYkE3u7u764IMP8joMi5577jldvXpVPXv21JNPPpnX4QAAAAAAAAAAAAAAAADIJ3JU0AZkZt++fXkdQq4xt5wnAAAAAAAAAAAAAAAAgJxxzusAAAAAAAAAAAAAAAAAAACQKGgDAAAAAAAAAAAAAAAAADgICtoAAAAAAAAAAAAAAAAAAA6BgjYAAAAAAAAAAAAAAAAAgENwzemOv/zyiw4ePKgLFy5Ikh5++GEFBgbKx8fHZsEBAAAAAAAAAAAAAAAAAAoPqwva7ty5o2nTpmnbtm0yGAxydr77kLe0tDQtXLhQ3bt316xZs+Tu7m7zYAEgP9jz1Tmz2zv6V8nlSByXtTkip7ZHToHCJa8+85aOa0lejUH5JU5bsvac/1FOh767IumKJNvlwt73KN89YC/cK/mLpevl5GS+vbXX8bPDlsdWS+9ZOrbBYH67pfaWzi0tzXx7ZwtrNmw/cNbsdjdX8wd2thBPmoX4XSwc19r2Kanmt1sr1SQ/5XTx23/mOHOKuNnmuDlhKUedWzPe5DfMHYVTzr9/m7L2+6slluYBS/OGJZbGpuQU89sNMr/DJ1+ajz/VQjzJqeb7uf63+e3vffKH2e3Hzyab3e5X1fyAf/mmhROWFHvN/DEu3jC/j6W53lI/fyeZb1+6uPnJeN7GM+kttO+Xy8btqRYuWrUyLma330o0397Sd5LiRcy/4Wbhv0au3m7+fMt6WTiABZa+G1j7XcLDQvw7v7B0jxokldX5r//K8F4RN/N9Wbr2lj5Pt5PMv1GymHU5shVL8Xey8J2kMP7NpTDJq+tl7Xxo6TPvan7os/h5zKyvjOPE3d8Xbi4Wfl9Y+ghbOLalcSjFwpy4eY/533aWftNYOi9Lc7Gl8Iu6m38nMdl8nJbG6e0HzcefeOfeV2V1+tBfmcazdb/5fixdY0u/cV1dLI+5aRYGRmu/V1maNyx9b7MUkaVrZqkfS+ecnFJOl/4v429kFwufG8v9mN9u6fNn6TuGJbb6fmzL/rO/z92/tXf097T6GNYc15L8MEdbXdA2b948bd26VYMGDdK///1vVa1aVU5OTvrjjz+0bt06bdy4USVLltTkyZPtES8AAAAAAAAAAAAAAAAAoICyUIdp2fbt29WjRw9NmzZNNWvWlKurq1xcXFSzZk1Nnz5d3bt31/bt2+0RKwAAAAAAAAAAAAAAAACgALO6oC0lJUWNGze2+L6fn59SU2303H8AAAAAAAAAAAAAAAAAQKFhdUFbmzZt9N///tfi+19++aUCAgIeKCgAAAAAAAAAAAAAAAAAQOGTZUHb9evXTf43fvx4nT9/XmPGjNFXX32lCxcu6MKFCzp8+LBGjx6tP//8U+PHj8+N2AEAAAAAAAAAAAAAAAAABYhrVg1atWolJycnk20Gg0G//PKL9u7dm2G7JAUHB+unn36yYZgAAAAAAAAAAAAAAAAAgIIuy4K20aNHZyhoAwAAAAAAAAAAAAAAAADA1rIsaBs7dmxuxAEAAAAAAAAAAAAAAAAAKOScH7SDxMREJSYm2iKWQiE8PFw+Pj5q27at0tLSMrw/YMAA+fj4KCwszObHDgsLU3BwcJbtfHx89M4779j8+JZkNy5H0L59e82cOTOvw7CpHj16ZPt+S05OVsuWLVW3bl39+eefGd4/evSofHx89P3339s6TAAAAAAAAAAAAAAAABQCWT6hzZw///xT4eHhOnjwoK5duyZJeuihhxQUFKQxY8bo4YcftmmQBY2bm5uuXbumb775Ri1btjRuv3Dhgo4fPy5PT888jE7atGmTKlWqlKcxOKqIiAh5eXnldRh55r///a+uX78uSdq5c6dCQ0PzNiAAAAAAAAAAAAAAAAAUKFYXtJ0+fVqDBg1SfHy8WrdurVq1akmSfvvtN23btk379+/Xhg0bVLNmTZsHW1C4ubnJ399fu3btMilo27Vrl+rUqSNn5wd+cN4D8fX1zdPj5yaDwaDk5GS5u7tnq339+vXtHJFj27lzp7y8vFSlShXt2LGDgjYAAAAAAAAAAAAAAADYlNWVUwsWLJCzs7M+/vhjrV69WpMmTdKkSZO0atUqbd26Vc7OzlqwYIE9Yi1QgoODtXv3biUnJxu37dy50+zSm6dPn9YLL7ygoKAgNW7cWF27dtWaNWsyLFl6584dLVq0SB06dFCDBg0UGBhodinJo0ePqmfPnvL19VWfPn30ww8/mLx//5KjISEhevbZZxUdHa3OnTvLz89PTz31lM6ePZvh+AsXLlS7du3UoEEDPfHEE9qxY0eO8mMuB88995yaNm0qX19fhYaGZjj+mjVr9OSTT6pp06by9/fXs88+q99//92kTfrypgcPHtS//vUvNWzYUPv27VN4eLj8/Pz0888/a+DAgWrcuLGCg4P15Zdfmux//5Kj6f1lldP4+HhNnDhRfn5+8vf318KFC7VmzRr5+Phket6XL1/WpEmT1KFDBzVq1EidOnXSwoULdefOHZN2Pj4+WrVqlcLDw9W6dWu1bNlSkyZNUkJCgkm7Y8eOqXfv3mrYsKExD9mVkJCgffv2qXPnzurdu7d++eUX/fzzz9neHwAAAAAAAAAAAAAAAMiK1QVt33zzjUJCQswW4jzyyCMaPHiwvv76a5sEV5C1a9dOd+7c0aFDhyRJv/76q37++Wd17do1Q9vLly+rRo0amj59ulauXKl+/fpp2bJlWr58uUm7sWPH6t1339WTTz6plStX6uWXX85Q0BQXF6dZs2Zp2LBhWrx4sZKSkjRmzBiTwjpzTp48qXfeeUcTJ07U7NmzdfbsWb300ksmbcaPH69Nmzbp6aef1ooVK9S2bVu99NJLVhVNmXPu3DkNGDBAN27c0Jw5czR//nxdvXpVQ4cONSnsio2N1b///W8tX75cs2bNUlpamgYMGGBcIjPd5cuXNWvWLA0dOlSrVq1SvXr1JEnJycmaOHGievfurYiICHl7e2vcuHHGZXUtyU5OJ02apAMHDuill17SnDlzdPr0ab333ntZnvu1a9dUqlQpTZo0SatXr9bw4cP18ccfa/r06Rnavv/++zpz5ozmzJmj0aNHa8eOHSb3SFxcnIYNGyZ3d3ctXrxYw4YN04wZM3Tp0qUs45Ckzz//XAkJCQoODtYTTzwhV1dX7dy5M1v7AgAAAAAAAAAAAAAAANlh9ZKjKSkpKlq0qMX3PTw8lJKS8kBBFQYeHh5q3769du3apccee0w7d+6Un5+fqlSpkqGtv7+//P39Jd1dIrNp06ZKTEzU+vXrNWbMGEnSoUOHdODAAS1YsMDkKW/3P/Htxo0bWr9+verUqWOM46mnntJ3332nZs2aWYw3Pj5eW7dulbe3t6S7T+uaNGmSYmNjVaFCBR05ckT79u3TO++8ozZt2kiSAgICFBcXp/DwcAUFBeU4VxERESpZsqTWrl2rIkWKSJKaNGmiDh06KCoqSoMHD5Ykvfrqq8Z9UlNTFRAQIH9/f+3evVv9+/c3ycGqVavUuHFjk+OkF7Slx1qjRg116NBBX3zxhXr06GExvqxy+uuvv2rPnj1688031bNnT0lS27Zt9cQTT2R57j4+PnrllVeMr5s0aSIPDw+FhYVp2rRp8vDwML5XtmxZ49MRAwMD9dNPP2n37t2aOHGiJCkyMlJOTk5atWqVSpQoIUmqUKGChg4dmmUc0t0nCJYvX14tWrSQs7OzWrVqpZ07d+rFF1+Uk5NTtvrIDoPBIEm6ffu2zfp0FPcXmOaV9Nw6Yo6tzZGj5PR+jpzjrDhqTu+Vn/ObXxT2HHt6etqlX0ec4xztM/+g8eTWvetoectL9s6Fo/Vv73gK+/hrb7mZX0cdJ+wxxzni/GYrjnodgXvlh/uU+S17HuRaFvYc8xsOAPKercane/sp7PObxG84S5gPAaRztL8f52Qfe8yh9mDL/rM7v1ld0FavXj1FRUWpb9++xqKYdLdu3dKHH36o+vXrW9ttoRQcHKwJEyYoMTFRn3zyiUJCQsy2S0pK0ooVK7Rjxw5dvHjR5Mlff//9t4oVK6avvvpKHh4e6tatW6bHLFeunLHwSpJq164tSVk+patu3brGYrZ790svaDt06JBKlSqlVq1amRQ0tm7dWv/5z3+UmpoqFxeXTI9hyaFDh9S1a1e5uLgY+/by8lL9+vVNlvY8fvy4lixZop9++snkqWxnzpwx6a9UqVIZitkkydnZ2Vg4KEmVK1dW0aJFs8xNVjn9/vvvJUkdOnQwOVa7du20du3aTPs2GAyKjIzU5s2bdf78eSUlJRnfO3funB555BHj69atW5vsW6tWLe3atcv4+rvvvlPLli1NPrf+/v4qVapUpjFI0tWrV3Xo0CGFhITI2fnugx27d++uV155Rf/3f/+XaTGktdKv8f3XLX8pZ3bryZMnczmOzOVtjq3NUf7I6f0c+z7Onzm9l2Pnt2AorDlu2rSpXfrN2zkurz7z5o9ria3isT7HeRNn3rLunC2xXS7sfY/mr+8ehXX8zS22zW/++k5ljzkuf/2Gs/d4b5uxFbCGo4435uSPcSI32G/uKKw5zh+/4ez9/Zs5CEDestX4ZK6fwjq/SfyGs9XfcwAUXPYeD3LSv+3+5uxYf8ey5d8fsju/WV3QNnbsWI0YMUJPPPGEevfurerVq0uSfv/9d3388ce6fv26pk2bZm23hVKbNm3k5uamJUuW6Pz58xaf2DVv3jxFRUVp9OjRatCggUqUKKG9e/fqrbfeUlJSkooVK6br16+rbNmyWT4py8vLy+S1m5ubJJkUSuVkv2vXrun69et69NFHze4fFxenChUqZHoMS65du6bIyEhFRkZmeC89jj///FPPPPOMGjRooBkzZqhcuXJyc3PTs88+m+HcypQpY/Y4RYsWlbu7e4b+HzQ3cXFxcnNzy1AAem+BoCWRkZF68803NXz4cLVs2VJeXl76/vvvNXPmzAxxmYvj3iVZ4+LiVK1atQzHyE4cn376qVJSUhQUFKSbN29Kklq2bCl3d3ft2LHDpgVtrq6uSklJUfXq1U2eQJefHPruitnt6cvb5rXbt2/rzJkzeZpja3Pk6Dm9nyPkOCv5Laf3yg/5ze/IsX3k5RyXV595S8e15EHjyem9m9txOgJrz9kSW+XC3vdofvnuwfhrX/bIb37+TmUr+ek3nL3H+/8et83YClgjP4w3zG+m7DF3kGP7sOUcZ+/v37bqHwByylbj0739ML/ZR0H4Dcd8CCCdvceDnPRvq7852/vvWPnhv4tYXdDm7++vlStXau7cuVq5cqXJe/Xq1dO8efPUqlUrmwVYkLm5ualTp05699135e/vb7HQKjo6Wv3791doaKhx28GDB03alCpVSnFxcTIYDDZd/jG7SpYsKW9v7wz3RLrsFE1l1ndQUJAGDRqU4b1ixYpJkr788kslJCQoIiLCWNiVkpKiGzduZNgnt/NTtmxZJScnKz4+3qSo7erVq1nuGx0drfbt22vChAnGbadPn85xHFeuZByUshPHzp07Jcns8qTR0dGaMmWKsZDvQaVfHw8PD7stF2B/5gd/RzufvM2xtTnKHzm9n2Pfx/kzp/dy7PwWDOTYtvJ2jsurz7x1P4hsFY/1Oc6bOPOWbX7Q2y4X9r5H89d3D8Zf+7JtfvP/d6oHlb9+w9l7vOc/niD3Of7n7h/5Y5zIDfabO8ixbdl2jrP392/mIAB5y1bjk7l+mN9sqyD8hmM+BJDO3uNBTvq33d+cHevvWHkxZ1hd0CbdXdpw69atiouL059//ilJqlSpksqWLWvT4AqDvn376sqVK+rXr5/FNklJSSbFQqmpqSZLSUp3r8mqVav06aefqmvXrnaL15LWrVtr9erVcnNzU926dW3at7+/v06dOqX69etbXLY0MTFRTk5OcnX955ZOf6pYXmvQoIEkae/everZs6ckKS0tTfv3789y38TExAyFYjt27MhRHI0aNdLGjRtNCuu++uork+VZzblw4YJiYmI0YMCADPfWyZMnNXv2bH355Zdq3759juICAAAAAAAAAAAAAAAA0mWroO3HH3+03MH/LyC6fPmyLl++LElycXFRsWLF9PDDD8vZ2dkGYRZcjRo10vLlyzNt07p1a0VFRal27dp66KGHtGHDBpOlJNPbBAUF6dVXX9XZs2fVuHFjXb9+Xbt379bixYvteAZ3BQQEqF27dho+fLiGDx8uHx8f3b59W7/++qv++OMPvf7665nuf+vWLUVHR2fY3rJlS40bN059+vTRsGHD1K9fP5UpU0Z//fWXvv76azVr1kzBwcHGpwJOmjRJAwYM0KlTp7R27doMy3DmhTp16qhjx46aNWuWbt++rUqVKmnz5s3GIrzMtG7dWu+9957Wr1+v6tWra/v27frjjz9yFMeQIUO0YcMGjRgxQiNGjNDNmzcVHh6uUqVKZbpf+tPZhg8fripVqpi817RpU61cuVI7d+6koA0AAAAAAAAAAAAAAAAPLFsFbU8++WSOlmn08PBQ9+7dNWnSJBUtWtTq/XHX1KlTNX36dL322mvy8PBQr1691LFjR02ZMsWkXXh4uCIiIrRp0yZFRESodOnSCggIyLU4ly5dqpUrV2rjxo26cOGCSpQooTp16qh3795Z7nvx4kWNHz8+w/b3339fzZo1U1RUlBYvXqwZM2YoISFBZcuWVfPmzeXj4yNJ8vHx0ezZsxUREaFnn31W9erV05IlS/T888/b+jRz5I033tDMmTM1d+5cubu7q1evXqpTp47ef//9TPcbPXq0rl27pqVLl0qSOnfurClTpmjkyJFWx1CuXDmtWrVKs2bN0vjx41W1alVNmzZNixYtynS/nTt3qkmTJhmK2aS7Ba3BwcHavHmz/v77b6tjAgAAAAAAAAAAAAAAAO6VrYK22bNnW9WpwWDQ33//rRMnTmjz5s0yGAyaOXNmjgIsaMaOHauxY8dm2mbbtm0mr8uUKaNly5ZlaNe3b1+T10WKFNGECRM0YcIEs/3OmTMnwzYvLy/9/PPPJtvuf71u3boM+9WrVy9DO3d3d40ZM0Zjxowxe3xL5syZYza2e1WvXj3LJ8317NnTuKRnun379mU4ljmWrsu3335rdX/mcurl5aX58+ebbBs8eHCWy7MWK1bM7Ocvq2smSUOHDtXQoUNNtjVr1kxbt2412fbYY49lGkNWS5y++uqrevXVVyXdfaKeuVgAAAAAAAAAAAAAAACA7MhWQVuvXr1yfAAvLy998sknFLShUNu9e7cuXryoRx55RLdv39bOnTv17bffmi1UBAAAAAAAAAAAAAAAAAqrbBW0PYiWLVvqwIED9j4M4NA8PT21bds2nTlzRsnJyapZs6bmzZunxx9/PK9DAwAAAAAAAAAAAAAAAByG3QvaOnXqpE6dOtn7MIBDa9u2rdq2bZvXYQAAAAAAAAAAAAAAAAAOzTmvAwAAAAAAAAAAAAAAAAAAQKKgDQAAAAAAAAAAAAAAAADgIChoAwAAAAAAAAAAAAAAAAA4BAraAAAAAAAAAAAAAAAAAAAOgYI2AAAAAAAAAAAAAAAAAIBDcM3rAACgoOnoXyWvQ3B41uaInNoeOQUKl7z6zOeXsSa/xGlLOTnnhIQEnTx5UvXq1ZOnp2eex2PP/gvjPYGc4V7JX+x9vTq1tk//9hx/c9uer86Z3d7FRrmz1H9W174g5RiOj7mjcHK077uOIDtjr6Vxvbt/VZvEUDGH84Y1cjo32QLzm/2R46zlx/EJjiOv/p5jaeyWpG5tsz7GvWPDoe+umG2TV58Ne89LFufuIPNzN7/hHFNByK8jfv++d597c2zLY+Q0HkfFE9oAAAAAAAAAAAAAAAAAAA6BgjYAAAAAAAAAAAAAAAAAgEOgoA0AAAAAAAAAAAAAAAAA4BAoaAMAAAAAAAAAAAAAAAAAOAQK2gAAAAAAAAAAAAAAAAAADoGCNgAAAAAAAAAAAAAAAACAQ6CgDQAAAAAAAAAAAAAAAADgEChoAwAAAAAAAAAAAAAAAAA4BAraCrm9e/fqmWeeUYsWLdSgQQO1b99e06ZN0++//25s4+Pjo3feeSfXYjp58qR8fHx09OjRXDumOa+//rrat2+faZstW7bIx8fH+D8/Pz916dJFkyZN0okTJ3J03JMnTyo8PFy3b9/O0f65fb0AAAAAAAAAAAAAAAAAW6GgrRCbP3++Ro0apeLFi+u1117T2rVrNXr0aP3666964YUX8jq8fGX16tXatGmTli9frqeeekq//PKL+vXrp5UrV1rd18mTJxUREZHjgjYAAAAAAAAAAAAAAAAgv3LN6wCQNw4ePKhVq1Zp1KhRGj9+vHF78+bN9eSTT2r//v15GF3+8+ijj8rb21uS5O/vrwEDBuiVV17RwoUL1aRJEzVr1iyPIwQAAAAAAAAAAAAAAAAcH09oK6TWrFmjMmXKaNSoUWbfb9euXab7f/DBB+rcubNxmdLly5crLS3N+H54eLj8/Pwy7NesWTOFh4ebbFu+fLkCAgLk5+enMWPG6MqVK9k6h/nz56t79+7y8/NT27Zt9eKLL+ry5csmbUJCQvTss88qOjpanTt3lp+fn5566imdPXvWpN2lS5c0cuRINW7cWG3bttWqVauyFYMlzs7Omjx5stzd3bVx40bj9gMHDujpp5+Wv7+/mjRpor59++qLL74wvr9lyxZNmjRJ0t3COB8fH+Oyp5cvX9akSZPUoUMHNWrUSJ06ddLChQt1586dDMdPTU3V3Llz1apVK/n5+SksLEy3bt0yvp+QkKCZM2eqc+fOaty4sXGp2fj4eJN+9u7dq969e8vPz0/NmjVT7969dfDgQZM2W7ZsUffu3dWwYUO1bdtWixYtUmpq6gPlDwAAAAAAAAAAAAAAAIUTT2grhFJSUnTs2DF16tRJbm5uVu+/bt06zZo1SyEhIXrssccUExOjiIgIxcfH65VXXrGqr/Xr12vJkiV65pln1Lp1ax0+fFiTJ0/O1r5XrlzRs88+q3Llyunq1atau3atQkJCtGvXLrm6/nNrnzx5UlevXtXEiROVmpqqOXPm6KWXXtKmTZuMbUaNGqVLly7pP//5j0qUKKFVq1bp4sWLJv1Yq1SpUnr00UcVExNj3Hb+/Hm1a9dOzzzzjJydnfXFF18oNDRUkZGRatmypR577DE999xzeuutt7R69WqVKFFC7u7ukqRr166pVKlSmjRpkry8vHTmzBmFh4crLi5Os2fPNjn2unXr9Oijj+rNN9/U+fPnNX/+fCUlJWnRokWSpMTERKWmpuqFF16Qt7e3Ll68qLffflujRo3SunXrJElnz57V+PHj1a1bN02YMEFpaWn63//+pxs3bhiPs3btWs2bN09DhgxRWFiYTp8+bSxomzhxYo5zBwAAAAAAAAAAAAAAgMKJgrZC6Pr167pz544qVapk9b6pqalatmyZunXrpilTpkiS2rRpo+TkZK1Zs0ahoaF66KGHst3XihUr1KNHD2MhXNu2bXXlyhVt27Yty/3vLeJKTU2Vn5+fAgMDdeTIEbVp08b4Xnx8vLZu3WpcEjQhIUGTJk1SbGysKlSooC+++EI//PCD3n33Xfn7+0uSWrZsqaCgIJUqVSpb52JJxYoV9eOPPxpf//vf/zb+Oy0tTS1bttSvv/6qzZs3q2XLlvL29lbVqlUlmS5jKkk+Pj4mBYNNmjSRh4eHwsLCNG3aNHl4eBjfc3d317Jly+Ti4iJJKlKkiKZMmaIxY8aoVq1a8vb21owZM4ztU1JSVLlyZQ0aNEi///67atSooZ9++knJycmaOnWqihcvLunu9Ul369YtLV26VMOHD9eLL74oSQoICJCbm5vmzJmjYcOGZfteuJfBYJAk3b592+p9kT3puSXH9kOO7Yv82l9hz7Gnp6dd+mWOs7/Cfu/aG/m1P3JsX+TXPnMc85v9FYZ7NyEhIU/7Lww5zkvk1/4Ke475DZc/Pch9m9fzRn45RmEfG3IDObYv8stvOEeUnfE7O/dubswD1nC0uZXfcHmL/NpfYc9xduc3CtoKMScnJ6v3+e2333Tt2jV16dLFZHvXrl21YsUKnThxQkFBQdnqKzY2VpcvX1bHjh1Ntnfu3DlbBW0HDx7UW2+9pVOnTpksp3nmzBmTgra6deuaFIbVrl3bePwKFSroxIkTKlGihLGYTZJKlCih1q1b66effsrWuVhiMBhM8hwbG6tFixbp8OHDiouLM35pfPTRR7PVV2RkpDZv3qzz588rKSnJ+N65c+f0yCOPGF+3a9fOWMwmSV26dNHkyZP1/fffq1atWpKkrVu36t1339Uff/xh8qXgzJkzqlGjhnx8fOTi4qKJEyeqX79+at68uUqUKGFsFxMTo4SEBHXp0kUpKSnG7a1bt1ZiYqJOnTqlFi1aWJMuSTL2debMGav3hXXIsf2RY/siv/ZXWHPctGlTu/TLHJd7yLF9kV/7I8f2VZjza485jvkt9xSMHJczu/XkyZMO0X/ByLHjIr/2V1hzzG+4/C3z/Dr2vOE4x8gc97D9kWP7Ksz55TdcXjE/dkvWjd93c5z384ApR5tb+Q3nyMiv/RXWHGd3fqOgrRAqVaqUihQpoj///NPqfdOXmyxdurTJ9vTX9y5HmZW4uDhJMik2k6QyZcpkue+JEyc0atQodejQQSNGjFDp0qXl5OSkfv36mRR6SZKXl5fJ6/RlVtPbXb58OUMMUsZzzInY2Fjj+aSlpem5555TfHy8xo0bp2rVqsnDw0NLly7VxYsXs+wrMjJSb775poYPH66WLVvKy8tL33//vWbOnJnhnO+PvXjx4ipSpIguX74sSdqzZ49eeeUV9e/fXy+88IJKlSqluLg4jR492thXjRo19Pbbb2vFihUaM2aMnJ2d1aZNG02bNk2VKlXStWvXJEm9evUyG292zskcV1dXpaSkqHr16iZPnYPt3L59W2fOnCHHdkSO7Yv82h85tg/mOPvj3rUv8mt/5Ni+yK99ML/ZX0G6dw99d8Xs9nr16uVp/wUpx46I/NofObYP5jj7ys5966jzhqMdwxLGBvsjx/ZFfu2D+S1rlsZuKXvj97337tVfzD9pLDfmAXMcbW7lN5xjIr/2R46zh4K2QsjV1VVNmjTRkSNHlJKSIlfX7N8G6UtwXr161WT7lSt3J5uSJUtKurvEZXJyskmb5ORkkyeBlS1b1mxff/31V5ZxfP755ypevLgWL14sZ2dnSdKFCxeyfR73KleuXIYYpH/OKaeuXbumH374QZ07d5Yk/fHHH/rpp5+0bNkyPf7448Z2iYmJ2eovOjpa7du314QJE4zbTp8+bbbt/bHfunVLSUlJKleunLGvevXqaebMmcY2X3/9dYZ+AgMDFRgYqFu3bumLL77Q7NmzNWnSJEVGRhqvdUREhCpUqJBh38qVK2frvO6X/kQ7Dw8Puy0XgLvIsf2RY/siv/ZHjm2LOS73kGP7Ir/2R47ti/zaFvNb7ikYOTb/txbbndeD9V8wcuy4yK/9kWPbYo7LHZnn17HnDcc5Rua4h+2PHNsX+bUt5rfssPzfiK3J2d0iFfMFbXmXe0ebW/kN58jIr/2R48w553UAyBtPP/204uLi9Pbbb5t9/+DBg2a316hRQ97e3oqOjjbZ/umnn8rNzU2NGjWSJJUvX17Jyck6e/assc2RI0eUmppqfF2hQgWVLVtWe/bsMelr9+7dWcafmJgoNzc3k+U8d+zYkeV+5jRs2FDx8fH66quvjNvi4+N1+PDhHPUn3X0a2xtvvKHk5GQNHjxY0j9PhEt/Qpx0twgvJibGZN/09+/cuWOyPf2c72XpnPfv32+S6+joaDk5Oalhw4ZW9yXdfcJb165d1a1bN2MRnZ+fnzw8PBQbG6uGDRtm+N9DDz1ksT8AAAAAAAAAAAAAAADAHJ7QVkgFBQVp+PDhCg8P16+//qpu3brpoYce0vnz5/XRRx8pPj5eQUFBGfZzcXHRqFGjNGvWLHl7eysoKEjHjx/XqlWrNGTIEGMRU2BgoDw9PTVlyhSNGDFCsbGxeu+991SkSBGTvkJDQ/X666+rdOnSCggI0KFDh3T06NEs4w8ICFBkZKRee+01dezYUTExMdq2bVuOchEYGKhHH31UL730kiZOnKgSJUpo5cqVKl68eLb7+PHHH1WiRAklJibq999/10cffaQff/xRL730kvz8/CRJNWvWVIUKFbRgwQKlpaUpISFBS5cuNT41LV2tWrUkSe+//74ef/xxFS1aVD4+PmrdurXee+89rV+/XtWrV9f27dv1xx9/mI3nzp07Gj16tAYOHKjz589r/vz56ty5s7Hv1q1ba+bMmVq2bJn8/Px08OBBk4I+Sfrggw90/PhxtW3bVmXLltX58+e1fft2BQQESLq7lOu4ceM0b948xcbGqkWLFnJxcdG5c+e0d+9ehYeH83hMAAAAAAAAAAAAAAAAWIWCtkIsvdjq/fff16uvvqrbt2+rXLlyatOmjYYNG2Zxv5CQELm6uurdd9/Vxo0bVbZsWY0ZM0YjR440tnnooYe0dOlSvfnmmxo9erTq1aunuXPnKiQkJENfN2/e1IYNG7Rx40b5+/tr1qxZGj58eKaxBwUFaeLEiVq/fr22bNmiJk2aaMWKFcblPa3h5OSk5cuXa/r06Zo2bZq8vLwUEhKiv/76S3v37s1WH+nxenp6qly5cmrSpImmTZtmfGKdJLm7uys8PFwzZ87U+PHjVbFiRT333HM6cuSIfvjhB2O7+vXra+zYsYqKitLq1atVsWJF7du3T6NHj9a1a9e0dOlSSVLnzp01ZcoUk7ynCwkJ0dWrV/Xyyy/rzp076tixo6ZNm2Z8f8CAATp//rzWr1+vd955R23atNGCBQvUr18/YxsfHx/t379fs2fP1vXr11W2bFl169ZN48ePN7Z55plnVL58ea1du1br16+Xq6urqlatqsceeyzDE+AAAAAAAAAAAAAAAACArFDQVsg9/vjjevzxxzNt8/PPP2fYNnDgQA0cODDT/dq2bau2bduabPv2229NXjs5OWnMmDEaM2ZMlse834gRIzRixIhM91u3bl2G/erVq5ehXYUKFbRixYoMbSdPnpxpDL1791bv3r2zjDVdo0aN9OGHH5ps69mzZ4Z25nJSrFgxzZ49O0Pb+8/l3tdhYWFm43BxcdErr7yiV155xeK+fn5+ZnNyv27duqlbt25ZtgMAAAAAAAAAAAAAAACy4pzXAQAAAAAAAAAAAAAAAAAAIFHQBgAAAAAAAAAAAAAAAABwEBS0AQAAAAAAAAAAAAAAAAAcAgVtAAAAAAAAAAAAAAAAAACHQEEbAAAAAAAAAAAAAAAAAMAhUNAGAAAAAAAAAAAAAAAAAHAIFLQBAAAAAAAAAAAAAAAAABwCBW0AAAAAAAAAAAAAAAAAAIfgmtcBAAAAAEBhteerc2a3d/Svkift87vCdr4A7Ouzw+bHlE6trR9TbDU+WerHEmvnh5RU8/24upjfnpZmfnvnANuMu9aer6V4dlu4lp0tXEt759mWfdnqHipscyV5QEFjq98JaQbz/Ts7md9uad5ItTAeZ5xPyiku5orS0q6YbR9/23xA0YesG18txeli4ZEPO7+wlB8LCZJUxNV8km7fMb/PJ19adw2cLFwDS+fwzzmX08Vvr0i6m2NL19LSXG+JpXgssZQ6a/uxxNp73VI81n7P+/L4FUnl/v//Nb2PLeU6r+Yae899zK1wBLb63m9pLM5Mxr7K6dB3Vyx+Bj79r3VzmaXxPpOpyTwLY9NuC3OrpXHa0lxvqb2ludvSNJC98buc/vv/x19Lx7WUf2t/71tqL9l/LrPE3r9bvd2t6j7f4O/r+QtPaAMAAAAAAAAAAAAAAAAAOAQK2gAAAAAAAAAAAAAAAAAADoGCNgAAAAAAAAAAAAAAAACAQ6CgDQAAAAAAAAAAAAAAAADgEChoAwAAAAAAAAAAAAAAAAA4BAraAAAAAAAAAAAAAAAAAAAOgYI2AAAAAAAAAAAAAAAAAIBDoKANAAAAAAAAAAAAAAAAAOAQHLagLTw8XD4+PvLx8VHdunXVtGlTde/eXTNnztTp06dz1OfRo0f19ttv2zjSu9599135+Pjo1VdftWm/W7ZskY+Pj65evZppu5CQED377LPG1/Y819zo3xE1a9ZM4eHhmbYJCQmRj4+PXnjhhQzv3bp1S40aNZKPj4+2bNlik5h69OihsLAwq/Y5f/68fHx8FB0dbdzWvn17zZw50yYxAQAAAAAAAAAAAAAAADnlsAVtklS0aFFt2rRJH3zwgZYuXarevXvr8OHD6tGjh7Zt22Z1f19//bVWrFhhh0il7du3S5L27NmjO3fu2OUYmZk+fbpeeeUV42t7nmtu9J+feXp6av/+/UpISDDZ/vnnn8vFxSWPospcRESEnnnmmbwOAwAAAAAAAAAAAAAAAIWcQxe0OTs7y9fXV76+vgoICNDTTz+tbdu2qWnTppo8ebLOnTuX1yFKkn7//Xf9+OOPat26tW7evKkDBw5kuc+dO3eUlpZmsxhq166tmjVr2qy/3GbrfOSlJk2aqGjRotq3b5/J9p07d+rxxx/Po6gyV79+fVWuXDmvwwAAAAAAAAAAAAAAAEAh59AFbeYUKVJEU6dOVXJysqKioozbt27dqoEDB6pFixZq3ry5QkJCdOLECeP74eHhioiIUEJCgnEp05CQEEnS6dOn9cILLygoKEiNGzdW165dtWbNmmwXWO3cuVNOTk6aOXOmypQpox07dmRok76k46pVq9SuXTs1atRI169fN8bes2dPNWzYUC1bttSIESN04cIFk/1jY2M1fPhw+fr6qlOnTtq6davJ+/cuOZrZuaaf73PPPaemTZvK19dXoaGhOnv2rEl/aWlpWrt2rZ544gk1aNBAAQEBGjdunOLj4zPtPywsTMHBwSZ93bx5M8Mym5nlY8uWLerevbsaNmyotm3batGiRUpNTc30GmTnGqYvtblt2zbNnDlTzZs3V5s2bfTmm28qJSXFpL/PP/9cXbp0UcOGDdWnTx+Teykrrq6u6ty5s3bu3GncdvXqVX311VcZcpPugw8+UOfOndWgQQO1b99ey5cvz3D/HTt2TL1791bDhg0VHBysgwcPmu0rJiZGTz31lHx9fdW0aVNNmDBBV65cyTTm+5ccTb+OR48eVc+ePeXr66s+ffrohx9+MNkvPj5eEydOlJ+fn/z9/bVw4UKtWbNGPj4+mR4PAAAAAAAAAAAAAAAAMMc1rwPIidq1a6t8+fKKiYkxbjt//rx69uypqlWr6s6dO9q1a5cGDx6s7du3q0aNGurbt69iY2O1c+dORUZGSpKKFy8uSbp8+bJq1Kih7t27q1ixYjp58qTCw8OVkJCgMWPGZBnPzp071axZM1WpUkVPPPGENm3apPj4eJUoUcKk3WeffaZq1app8uTJcnZ2lqenp1avXq158+apT58+euGFF5ScnKwjR47o6tWrevjhh437Tpw4Uf369dPTTz+tzZs3KywsTA0bNlStWrUyxJPZuZ47d04DBgxQnTp1NGfOHDk5Oentt9/W0KFDFR0dLXd3d0nSa6+9pk2bNmnIkCEKCAjQ33//rQMHDighISHT/q1hLh9r167VvHnzNGTIEIWFhen06dPGgraJEyda7Muaa7h48WJ16NBBixcvVkxMjMLDw1W1alUNHDhQknTy5EmNGzdOgYGBmjRpks6fP6/nn3/eqqVkg4OD9fTTT+vGjRsqWbKkPv30U5UvX15+fn4Z2q5bt06zZs1SSEiIHnvsMcXExCgiIkLx8fHGZWTj4uI0bNgw+fj4aPHixbp586ZmzJihhIQE1atXz9hXTEyMQkJCFBQUpEWLFun27dtavHixRo0apU2bNmU7/vRjzpo1S6GhoSpRooQWLFigMWPGaM+ePXJzc5MkTZo0SUeOHNFLL72khx9+WJs3b9aPP/5o1XEAAAAAAAAAAAAAAACAdPmyoE2SKlasqL/++sv4+t6ipbS0NAUEBOjEiRP6+OOP9eKLL6pChQqqUKGCcRnTe/n7+8vf31+SZDAY1LRpUyUmJmr9+vVZFrSdOHFCZ86c0dNPPy3pbiHTunXrtHv3bvXp08ekbXJyslatWiVPT09Jd59uFRERof79+5s8HcvcspSDBw/W4MGDJUl+fn46ePCgdu/erVGjRmVom9m5RkREqGTJklq7dq2KFCki6e4SmR06dFBUVJQGDx6s33//XRs3btQLL7xgfOqbJHXu3NnkGOb6t8b9+bh165aWLl2q4cOH68UXX5QkBQQEyM3NTXPmzNGwYcP00EMPme3LmmvYqFEjTZkyxdj/0aNHtXv3bmNB28qVK1WxYkUtW7ZMLi4uku4+GXDy5MnZPrdmzZqpdOnS+uyzz9S3b1/t2rXL7NPZUlNTtWzZMnXr1s0YU5s2bZScnKw1a9YoNDRUDz30kCIjI+Xk5KRVq1YZCyUrVKigoUOHmvS3YMECNWjQQBEREXJycpIkPfLII8YnugUFBWX7HG7cuKH169erTp06kiQPDw899dRT+u6779SsWTP9+uuv2rNnj95880317NlTktS2bVs98cQT2T6GOQaDQZJ0+/btB+oHlqXnlhzbDzm2L/Jrf4U9x+nfTWyNOc7+CtK9m5CQ4FDtpfyd35ycb17IzznOD8ivfea4wji/2XJMyU5fD3Lv5tX4lxvzki2kH/dBx4fcvifscWx7XoP8NP7ml+8M98tPObYHfsNZll/vacBa+WE+zM1jWMPe8TxI/4V9fpP4DWcrBeH7OnImP10vRxyPGSds1/5+hX2Oy+78lm8L2gwGg7FgR7q75OTChQsVExNjsrzimTNnsuwrKSlJK1as0I4dO3Tx4kUlJycb3/v7779VrFgxi/vu3LlTbm5u6tKliyTJ19dXVapU0Y4dOzIUtLVs2dLkwsTExOj27dsZ2pnTpk0b4789PT1VqVIlxcbGZrnf/Q4dOqSuXbvKxcXFuMyml5eX6tevb1xO8siRIzIYDNmK60GYy0dCQoK6dOlisgRo69atlZiYqFOnTqlFixZm+7LmGt6bS0mqVauWjhw5Ynz93XffqX379sZiNknq0qWLVQVtTk5O6tq1q3bt2qU2bdro2LFjmj59eoZ2v/32m65du2a8f9J17dpVK1as0IkTJxQUFKTvvvtOLVu2NHnqn7+/v0qVKmV8ffv2bR07dkwvv/yyyRKt1atXV8WKFfX9999bVdBWrlw5YzGbdPfJiJJ06dIlSdL3338vSerQoYOxjbOzs9q1a6e1a9dm+zj3S7/22fns4sGQY/sjx/ZFfu2vsOa4adOmdumXOS735K8clzO79eTJk3nUPmuOnV/bn29ecOwc53+FOb/2mOMK9vxmyzHlwfu6m2Pz/Vhi7fxgK/aex2zl/uP+cx/nXZ7tP6fn3VzpWONEwfjOcD/HynHu4Tec5GjjK5DbbHWv22pete0xbMXec5/9+s8f47B98BvOWvafD/PLbx3clZ+ul73noJycG+NETtpbp2DmOGvZnd/ybUFbbGysqlevLunuk72eeeYZeXt7KywsTJUqVVKRIkU0ZcoUJSUlZdnXvHnzFBUVpdGjR6tBgwYqUaKE9u7dq7feektJSUkWC9rS0tL0ySefqEWLFnJ2dtbNmzcl3S3wee+993Tp0iWVL1/e2L506dIm+1+/fl3S3cKhrNy/fKmbm5tVS2Cmu3btmiIjI41Lhd7fZ3pcrq6uGeK1tfv7v3btmiSpV69eZttfvHjRYl/WXMOschkXF5chtuLFixufaJdd3bp1U2RkpN59913VqVNHPj4+xnsk3Y0bNyRlzEX66/T34+LiVK1atQzH8Pb2Nv775s2bSk1N1ezZszV79uwMbTPLnzleXl4mr9Pvj/TPVFxcnNzc3DLk896YcsLV1VUpKSmqXr26PDw8HqgvmHf79m2dOXOGHNsRObYv8mt/5Ng+mOPsLz/eu4e+u2J2+73Lyudm+8zkh/za8nzzQn7IcX5Gfu2jIM9v/z1uuzHlQcane+/dq79Y9/8BbO38YCv2nsdsJf24948P1h7XlvHbe07Pi7nSEcff/P6d4X6OmOOCID/NcY42vgK5zVb3urXzwJcWvi/a8hi2Yu+5zx79M7/ZR36a36xl6TPpiN/XLx9jLs4NlvJv7e99S+1tyVa/7aztP7N+CuI4kZd/X78Xc1z25MuCtlOnTunSpUvGwqfjx48rNjZWK1asUN26dY3t4uPjVaFChSz7i46OVv/+/RUaGmrcdvDgwSz3O3LkiOLi4hQXF6fmzZtneP+TTz4xLkUqyeSJcpKMT9e6fPlytuK0hZIlSyooKEiDBg3K8F560VepUqWUkpKiK1euWF3U5u7ubvJ0NOmfoqz73Z+PkiVLSrq7LKq5fFSuXNnicXN6Dc0pW7asyVP+pLtFk9kpjrxXgwYNVKVKFb333nsaP3682Tbp98DVq1dNtqcfPz0n5mK6f78SJUrIyclJzz77rNllay0t15pTZcuWVXJysuLj402K2u4/F2ul3xceHh52Wy4Ad5Fj+yPH9kV+7Y8c2xZzXO7JXzk2/4PYcvz2bp81x86v7c83Lzh2jvM/8mtbBXt+s+WY8uB93f0Dp3UFbdbOD7Zi73nMVu4/7j/3sXXHtWX89p/T826udKxxomB8Z7ifY+U4/8tfc5xjja9AbrPVvW6redW2x7AVe8999us/f4zD+Uf+mt+sZf/5ML/81sFd+el62XsOysm5MU7kpL11CmaObSffFbQlJSXptddek7u7u/r27StJSkxMlPTPE6Qk6dixY7pw4YLJkomWnmqWlJRksm9qaqp27dqVZSw7duyQp6enli9fLmdnZ5P33njjDe3YscOkoO1+fn5+8vDw0EcffaRGjRpleTxrWDpXf39/nTp1SvXr1zdZUvNerVq1kpOTkz766COTArHs9F+hQgXFxsaaLPN56NChbMWcno/Y2Fh17NgxW/uky+k1NKdRo0bav3+/Jk2aZMxRdHR0jvoaMWKE9u3bp+7du5t9v0aNGvL29lZ0dLTJOX/66adyc3Mz3heNGjXSxo0bTYrHvvrqK+NT/qS7g6avr69+++03NWzYMEfxWqNBgwaSpL1796pnz56S7j61cP/+/XY/NgAAAAAAAAAAAAAAAAomhy5oS0tL0/HjxyVJCQkJ+uWXX7Rp0yadO3dOc+bMMT6xy9fXV56enpoxY4ZCQ0N16dIlhYeHmyz3KUm1atVSSkqKIiMj5efnp+LFi6tmzZpq3bq1oqKiVLt2bT300EPasGFDlst5JiUlac+ePerUqZP8/f0zvP/kk0/q9ddf12+//aaaNWua7aNEiRIaPXq05s+fL4PBoA4dOigtLU1Hjx5Vt27dHqgoydK5jhs3Tn369NGwYcPUr18/lSlTRn/99Ze+/vprNWvWTMHBwapRo4YGDBigJUuW6MaNG/L391diYqIOHDigsWPHqnz58hb779Spk5YuXapXX31V/fr106lTp/Thhx9mK2YvLy+NGzdO8+bNU2xsrFq0aCEXFxedO3dOe/fuVXh4uMXHLebkGloSGhqqPn36aPTo0Ro4cKDOnz+vd955x+olRyWpT58+6tOnj8X3XVxcNGrUKM2aNUve3t4KCgrS8ePHtWrVKg0ZMsT4VLUhQ4Zow4YNGjFihEaMGKGbN28qPDzc+IS3dC+//LKGDBmi559/Xt26dZOXl5diY2N1+PBh9e7dWy1btrT6HCypU6eOOnbsqFmzZun27duqVKmSNm/erMTExAxP3wMAAAAAAAAAAAAAAACyw6EL2hITE9W/f39Jd58+VblyZfn7+ysiIkK1atUytitTpoyWLFmiuXPnatSoUapevbpmzJih1atXm/TXrl07DRo0SCtXrtSVK1fUvHlzrVu3TlOnTtX06dP12muvycPDQ7169VLHjh01ZcoUi7EdOHBA8fHxxidT3S84OFhz587Vjh07LC43Kd19gpe3t7feffddbdmyRcWKFZOfn5/VS33ez9K5VqtWTVFRUVq8eLFmzJihhIQElS1bVs2bN5ePj49x/2nTpqly5cqKiopSZGSkSpUqpebNmxufumap/9q1a2vOnDlavny5Ro0apaZNm2r+/Pnq0aNHtuJ+5plnVL58ea1du1br16+Xq6urqlatqscee8zkCWz3y8k1tKR+/fpasmSJ5s+frzFjxqhOnTpatGiRhg0bZnVf2RESEiJXV1e9++672rhxo8qWLasxY8Zo5MiRxjblypXTqlWrNGvWLI0fP15Vq1bVtGnTtGjRIpO+mjRpog0bNig8PFyTJk1ScnKyKlSooFatWqlatWo2j/2NN97QzJkzNXfuXLm7u6tXr16qU6eO3n//fZsfCwAAAAAAAAAAAAAAAAWfwxa0jR07VmPHjs12+8DAQAUGBppsCwoKMnnt6uqq6dOna/r06Sbby5Qpo2XLlmXoM31JU3M6d+6sn3/+2eL73t7e+uGHH4yv9+3bZ7Htk08+qSeffNLse71791bv3r0zbN+2bZvJ63Xr1pm8tnSuklS9enUtXrzYYjyS5OzsrOHDh2v48OFm38+s/549e2Yo9Ls/V5nlo1u3burWrVum8d0vO9ewcuXKZq/Z5MmTNXnyZJNtHTt2zLDs6bfffptlHPdfh/t5eXmZjWHgwIEaOHBgpvs2a9ZMW7duNdn22GOPZWjXsGFDrVy50mI/5vJw//WYM2dOhv3Mxe7l5aX58+ebbBs8eLDq1q1r8fgAAAAAAAAAAAAAAACAJQ5b0AbA8e3evVsXL17UI488otu3b2vnzp369ttvzRYXAgAAAAAAAAAAAAAAAFmhoA1Ajnl6emrbtm06c+aMkpOTVbNmTc2bN0+PP/54XocGAAAAAAAAAAAAAACAfIiCNgA51rZtW7Vt2zavwwAAAAAAAAAAAAAAAEAB4ZzXAQAAAAAAAAAAAAAAAAAAIFHQBgAAAAAAAAAAAAAAAABwEBS0AQAAAAAAAAAAAAAAAAAcAgVtAAAAAAAAAAAAAAAAAACHQEEbAAAAAAAAAAAAAAAAAMAhuOZ1AAAAAABQWHX0r5Kv+3c0he18AdhXp9bmx5TPDp+zqr1keXza85X5vvJqfrA2Hkvt7X1ce7P2uLkRv636Yq68izwgv7I03hgM5ttbmrMsNFdqqvntTi4WtjuZ3+5mob2zhUcsdAkw/5n89L/m43ex8lEN1rZ/oo39xwhbzbmZjWcJCQk6efKk6tWrJ09PT+uDtCFbfWewlr3H+7a+pR0mx1nh7w9wZNaOEZbmvc4WfpNFH7Ku/8zmDWtjtcTVwlxprcx+h5pjcT6xsp+8YqvfXtbmzdr2ucGec+Xd7xCXbdK/o7E2b8xveYsntAEAAAAAAAAAAAAAAAAAHAIFbQAAAAAAAAAAAAAAAAAAh0BBGwAAAAAAAAAAAAAAAADAIVDQBgAAAAAAAAAAAAAAAABwCBS0AQAAAAAAAAAAAAAAAAAcAgVtAAAAAAAAAAAAAAAAAACHQEEbAAAAAAAAAAAAAAAAAMAhUNAGAAAAAAAAAAAAAAAAAHAIDlXQFh4eLh8fH/n4+Khu3bpq2rSpunfvrpkzZ+r06dM56vPo0aN6++23bRbj+fPnjTF+8cUXGd7fvHmz8X3Ylq2v5YO4efOmfHx8tGXLlkzbXbt2TW+88YY6deqkhg0byt/fXwMHDtS7775rbHP+/HmFh4fr0qVLNo3RkfIFAAAAAAAAAAAAAAAAZIdDFbRJUtGiRbVp0yZ98MEHWrp0qXr37q3Dhw+rR48e2rZtm9X9ff3111qxYoXN4/T09NQnn3ySYfvOnTvl6elp8+PBftfSXlJSUjRkyBDt2bNHTz/9tFavXq0pU6aofv362r9/v7HdhQsXFBERocuXL9v0+PktXwAAAAAAAAAAAAAAAIBrXgdwP2dnZ/n6+hpfBwQEaNCgQQoNDdXkyZPVpEkTValSJe8C/P86dOigPXv2aMaMGSpSpIgk6fLly/rmm28UHBys7du353GEyGtff/21fv75Z61fv17Nmzc3bu/WrZvS0tJy1GdiYqKKFi1qqxABAAAAAAAAAAAAAAAAh+JwT2gzp0iRIpo6daqSk5MVFRVl3L5161YNHDhQLVq0UPPmzRUSEqITJ04Y3w8PD1dERIQSEhKMy4CGhIRIkk6fPq0XXnhBQUFBaty4sbp27ao1a9Zku9AoMDBQTk5OOnjwoHHbJ598oqpVq+rRRx/N0H7+/Pnq3r27/Pz81LZtW7344osZnsgVEhKiZ599VtHR0ercubP8/Pz01FNP6ezZs1b3ZTAYFBERoYCAAPn5+WncuHE6fPiwfHx8dPToUZN277zzjjp37qwGDRqoQ4cOJsthpufRz89PP/30k/r3769GjRqpV69e+umnn5SUlKTp06erefPmCgwMzLCvJMXExOipp56Sr6+vmjZtqgkTJujKlSvG99OXcd22bZtmzpyp5s2bq02bNnrzzTeVkpJijMHStTQnJiZGI0eOVJs2beTr66sePXpo69atJm2OHj0qHx8fHTp0SBMmTJCfn5/atWunVatWZehv8+bNat++vRo3bqwhQ4bojz/+sHjsdDdu3JAklS1bNsN7zs7OxhieeuopSVKfPn1MlqtNj+/AgQMaN26cmjRpovHjx0t6sHtfunv/P/fcc2ratKl8fX0VGhqa4T6Lj4/XxIkT5efnJ39/fy1cuFBr1qwxxpecnKyAgAAtWrQow/k9//zz6tOnT5Y5AgAAAAAAAAAAAAAAAO7lcE9os6R27doqX768YmJijNvOnz+vnj17qmrVqrpz54527dqlwYMHa/v27apRo4b69u2r2NhY7dy5U5GRkZKk4sWLS7r7NLUaNWqoe/fuKlasmE6ePKnw8HAlJCRozJgxWcbj7u6ujh07aufOnerUqZOku8uNBgcHm21/5coVPfvssypXrpyuXr2qtWvXKiQkRLt27ZKr6z+X4eTJk7p69aomTpyo1NRUzZkzRy+99JI2bdpkVV/r1q1TRESEhg8frlatWunIkSOaMmVKhrhef/11RUVFaeTIkWrcuLGOHTum+fPnq0iRIho4cKCxXXJysl555RUNHTpUZcqU0fz58zVmzBg1adJEpUuX1uLFi7V3717Nnj1bjRo1UpMmTSTdLSwLCQlRUFCQFi1apNu3b2vx4sUaNWqUyTlJ0uLFi9WhQwctXrxYMTExCg8PV9WqVTVw4MBMr6U5f/75p5o0aaKBAwfK3d1dx44d05QpU2QwGNSrVy+TttOnT1ePHj20bNkyff7555o/f758fHwUGBgoSdq/f7+mTp2q3r17q2vXrvrxxx+NhWWZqVevnpydnTVlyhSNHj1aTZs2lbu7u0mbRx99VNOmTdPMmTM1e/Zs1axZM0M/U6dO1b/+9S8tW7bMWAj3IPf+uXPnNGDAANWpU0dz5syRk5OT3n77bQ0dOlTR0dHGGCdNmqQjR47opZde0sMPP6zNmzfrxx9/NMbl5uamXr16aevWrRo/frwxtuvXr2vv3r2aPHlyljkCAAAAAAAAAAAAAAAA7pVvCtokqWLFivrrr7+Mr+8tPEtLS1NAQIBOnDihjz/+WC+++KIqVKigChUqZFjGVJL8/f3l7+8v6e5Typo2barExEStX78+WwVtkhQcHKxRo0bp77//1pUrV/T9999r3rx5Jk9tSzd79mzjv1NTU+Xn56fAwEAdOXJEbdq0Mb4XHx+vrVu3ytvbW5KUkJCgSZMmKTY2VhUqVMhWX6mpqVq5cqV69+6tiRMnSpLatGmja9eu6cMPPzTue/bsWa1fv14zZsxQ//79JUmtW7dWYmKili1bpv79+xuLlJKTkzVx4kQFBQUZ851eBDdp0iRJUqtWrRQdHa3o6GhjQduCBQvUoEEDRUREyMnJSZL0yCOPKDg4WAcPHjT2J0mNGjUyFt0FBATo6NGj2r17twYOHJjptTSnW7duxn8bDAY1b95cly5d0qZNmzIUtHXq1Eljx46VdPe+OHDggHbv3m0saHvrrbfUrFkzY97btm2rpKQkLV++PNMYqlevrrCwMM2bN09Dhw6Vm5ubGjVqpCeeeEIDBw6Uq6urihcvrtq1a0uS6tSpo4YNG2bop3379nrppZdMtj3IvR8REaGSJUtq7dq1xuVymzRpog4dOigqKkqDBw/Wr7/+qj179ujNN99Uz549jef9xBNPmPTVt29frV69Wl9++aXxWu7YsUPOzs4WizuzYjAYJEm3b9/O0f7IWnpuybH9kGP7Ir/2V9hz7OnpaZd+mePsrzDfuwkJCXY/RmHOb24hx/ZFfu0zxzG//cOWY/G9fT3IvWurmKztJ6+Om1P2Gh9yK35Hx/hrf4U9x/yGy/8cbbzMy3hsOefm57HB0e4JS/JzjvMD8stvOGs54thh75jy228ve8nv8Tsaxl/7K+w5zu78lq8K2gwGg7EoSrq7bOLChQsVExNjsoTlmTNnsuwrKSlJK1as0I4dO3Tx4kUlJycb3/v7779VrFixLPto1aqVihUrps8//1wXLlzQo48+qho1apgtaDt48KDeeustnTp1Srdu3TKJ9d6Ctrp16xqL2SQZi53uLWjLqq/Y2FjFxcWpffv2JjF06NDBpKDt8OHDku4WdKUv7SndLWpbtWqVLl68qIcffljS3SUy0wsApbvFWult07m4uKhq1aqKjY2VdPfDd+zYMb388stKTU012bdixYr6/vvvTQra7s2DJNWqVUtHjhzJkMvsuHHjhsLDw7V3715dunTJePxSpUplaHvvcZ2cnFSrVi3jOaSmpurHH3/MUFDWuXPnLAvaJGnIkCHq2rWr9u3bp6+//lpfffWVZs2apc8++0yRkZHGgsHMPPbYYxm2Pci9f+jQIXXt2lUuLi7G6+7l5aX69evrhx9+kCR9//33ku7eM+mcnZ3Vrl07rV271ritWrVqatGihT766CPjtdyyZYs6d+6c6RP0MpMeU3bOBQ+GHNsfObYv8mt/hTXHTZs2tUu/zHG5p2DnuJzZrSdPnsy1CAp2fh0DObavwpxfe8xxhXN+s+VYnP2+7ubYfHtLrI/J2nOzVS7yfn6THuQ+doz4HV3hGifyRmHNceH6DWfdPJBfWDvP2FvujN+5N+c6xj1s7+8wecsxclxwFeb8Fp7fcLYZ7x1tPpHsH1N+/e2Vc/k9/vzFscaJgqmw5ji781u+KmiLjY01FlLdunVLzzzzjLy9vRUWFqZKlSqpSJEimjJlipKSkrLsa968eYqKitLo0aPVoEEDlShRQnv37tVbb72lpKSkbBW0ubi46IknntCuXbt04cIFPfnkk2bbnThxQqNGjVKHDh00YsQIlS5dWk5OTurXr1+GWL28vExeu7m5SZKxXXb6iouLkySTwjhJKl26tMnra9euyWAwqFWrVmbjvregrWjRoibLZabHVaJEiQzxpsdx8+ZNpaamavbs2SZPlbu3/3uZ6+vOnTtmY8tKWFiYYmJiNHr0aNWuXVvFixfXxo0b9emnn2Zoa+648fHxkqSrV68qJSUlQy7LlCmT7VjKli2r/v37q3///kpOTta0adO0ZcsW7d+/36RgzJL7r9uD3vvXrl1TZGSkcSnSe6Vf17i4OLm5uWXIzf15kKR+/fopLCxMV69e1eXLl/XTTz8pLCwsyzgscXV1VUpKiqpXry4PD48c9wPLbt++rTNnzpBjOyLH9kV+7Y8c2wdznP0Vhnv30HdXzG6vV6+e3Y9dGPKb18ixfZFf+yiM89t/j9tuLM7OuH7vvXv1F+v+v86tjcnaecZW81Jezm/Sg48PeR2/o2P8tT9ybB+OOMdZGm/yO0vj5eVjeXO+uTF+58ac60hjg7X3bn6ZQx0pxwUR+bWPgjy/WRo74mLybv60dly3Vf+W5PffLvk9/vyC8df+yHH25JuCtlOnTunSpUvG5SKPHz+u2NhYrVixQnXr1jW2i4+PNz7JLDPR0dHq37+/QkNDjdvMPVktK926ddPgwYMlSV27djXb5vPPP1fx4sW1ePFi4xO5Lly4YPWxsttX2bJlJd0txrrXvU/ykqSSJUvKyclJGzZsMBYy3atGjRo5ijFdiRIl5OTkpGeffVaPP/54hvcfeuihB+rfkqSkJB04cEBhYWEKCQkxbt+wYYPVfXl7e8vV1TVDLu9d+tYabm5uGjp0qLZs2aLTp09nq6Dt3qcSSg9+75csWVJBQUEaNGhQhvfSCznLli2r5ORkxcfHmxS13Z8H6e4T/l577TVt375d58+fV9WqVdWiRYss47Ak/Xw9PDzstlwA7iLH9keO7Yv82h85ti3muNxTsHNs/o82uXm+BTu/joEc2xf5ta3COb/ZcizOfl93/8BpXUGb9TFZe262ykXez2/Sg9zHjhG/oytc40TeIMe25ZhzXMEsaLN2nrG33LneuTfnOsY9bN21zPt4reMYOS64yK9tFeT5zdHmE8n+MeXX3145l9/jz18ca5womMhx5vJFQVtSUpJee+01ubu7q2/fvpKkxMRESTIpxDp27JguXLigOnXqGLdZespXUlKSyb6pqanatWuX1bH5+fkpODhYpUuXtlhMlJiYKDc3N5PCpB07dlh9rOz2VaFCBZUtW1Z79+41KST7/PPPTdqlLyF6/fr1DMuT2oKnp6d8fX3122+/qWHDhg/cX3af2Hbnzh2lpaWZXN9bt25p3759Vh/TxcVF9evX1549ezR06FDj9t27d2e57/Xr11W8eHG5upp+zNIfG5leeHj/U/iy8qD3vr+/v06dOqX69evLxcXF7DEaNGggSdq7d6969uwpSUpLS9P+/fsztHV3d1ePHj0UFRWlv/76S0OHDs1QhAcAAAAAAAAAAAAAAABkh8MVtKWlpen48eOSpISEBP3yyy/atGmTzp07pzlz5qhy5cqSJF9fX3l6emrGjBkKDQ3VpUuXFB4ervLly5v0V6tWLaWkpCgyMlJ+fn4qXry4atasqdatWysqKkq1a9fWQw89pA0bNuRoeUsnJyfNmzcv0zYBAQGKjIzUa6+9po4dOyomJkbbtm2z+ljZ7cvFxUWhoaF64403VKZMGbVs2VJHjx7VV199JUnGJ7vVqFFDgwcP1ssvv6xhw4apcePGSk5O1pkzZ3T06FEtX748RzHe6+WXX9aQIUP0/PPPq1u3bvLy8lJsbKwOHz6s3r17q2XLltnuy9K1vF+JEiXUsGFDrVq1yviEtZUrV6p48eJmnzCWlZEjR2rUqFGaNGmSunbtqh9//DFb1+/IkSOaP3++evXqpUaNGsnV1VUnT57UihUrVKlSJXXs2FGSVL16dbm4uOijjz6Sq6urXFxcMi0AfNB7f9y4cerTp4+GDRumfv36qUyZMvrrr7/09ddfq1mzZgoODladOnXUsWNHzZo1S7dv31alSpW0efNmJSYmmi1W69evnyIjI+Xi4qLevXtbmWEAAAAAAAAAAAAAAADgLocraEtMTFT//v0l3X3CV+XKleXv76+IiAjVqlXL2K5MmTJasmSJ5s6dq1GjRql69eqaMWOGVq9ebdJfu3btNGjQIK1cuVJXrlxR8+bNtW7dOk2dOlXTp0/Xa6+9Jg8PD/Xq1UsdO3bUlClTbH5OQUFBmjhxotavX68tW7aoSZMmWrFihTp37my3vkJCQnTz5k1t2LBB69atk7+/v1566SW98MILJktITpkyRTVq1NCmTZu0bNkyFStWTDVq1FCXLl0e+LwlqUmTJtqwYYPCw8M1adIkJScnq0KFCmrVqpWqVatmVV+WrqU5CxYs0LRp0xQWFqZSpUopJCRECQkJWrNmjdXn0KFDB82YMUNvv/22du3apcaNG2vx4sXGpwVa0rhxY3Xu3Fl79+5VZGSkkpKSVKFCBXXv3l2hoaEqXry4pLvLmk6bNk2rV6/W9u3blZKSop9//tlivw9671erVk1RUVFavHixZsyYoYSEBJUtW1bNmzeXj4+Pcf833nhDM2fO1Ny5c+Xu7q5evXqpTp06ev/99zPEVLt2bVWvXl1Vq1bNUFgHAAAAAAAAAAAAAAAAZJeTwWAw5HUQyB2LFy/W2rVrdfToURUtWjSvw0E+NHjwYDk7O2coJDx79qw6deqkJUuW5KhQM933338vg8Gg5ORk1atXj/Wi7SQhIUEnT54kx3ZEju2L/NofObY95rjcURju3T1fnTO7vaN/FbsfuzDkN6+RY/siv7ZXWOe3zw6bH4s7tbZ+LM7OuH7vvXvouytW9W/t/GDtPGOreSkv5zfpwceHvI7f0TH+2h85tj1HneMsjTfW/lceS81TU81vd3Uxvz3NQkcZ1/i46/8vHpOBpfHy0/+aP19L8dhKbozfuTHnOtLYYCl+S/LLHOpIOS6IyK/t5bf5zRJL856l32TRh6zr38XCfJUT1o7rturfkvz+2yW/x59fMP7aHznOHod7Qhts4/Tp09q+fbv8/Pzk5uamr7/+Wu+8844GDhxIMRuyZffu3bp48aIeeeQR3b59Wzt37tS3336rZcuWGdtcu3ZNv//+u5YtW6ZKlSqpQ4cOeRgxAAAAAAAAAAAAAAAA8jsK2gqookWLKiYmRhs3btTff/+t8uXLa9iwYRo7dmxeh4Z8wtPTU9u2bdOZM2eUnJysmjVrat68eXr88ceNbfbv369XX31V1apV07x58+TqypACAAAAAAAAAAAAAACAnKP6pIB6+OGH9d577+V1GMjH2rZtq7Zt22bapnfv3urdu3cuRQQAAAAAAAAAAAAAAICCzoYrQAMAAAAAAAAAAAAAAAAAkHMUtAEAAAAAAAAAAAAAAAAAHAIFbQAAAAAAAAAAAAAAAAAAh0BBGwAAAAAAAAAAAAAAAADAIVDQBgAAAAAAAAAAAAAAAABwCK55HQAAAAAAIHs6+lfJ6xAAoNDr1Np2Y7G147q954G8iie/z2/5PX4A+UdBGm8SEhJ08uRJ1atXz2KbJ9oUnPO9n6N9B7C3/B4/APuy9xjRJSB3x6DszHF5NS7m9/E4Pf57c+zp6ZnHUQGwF57QBgAAAAAAAAAAAAAAAABwCBS0AQAAAAAAAAAAAAAAAAAcAgVtAAAAAAAAAAAAAAAAAACHQEEbAAAAAAAAAAAAAAAAAMAhUNAGAAAAAAAAAAAAAAAAAHAIFLQBAAAAAAAAAAAAAAAAABwCBW0AAAAAAAAAAAAAAAAAAIdAQRsAAAAAAAAAAAAAAAAAwCFQ0AYAAAAAAAAAAAAAAAAAcAgUtAEAAAAAAAAAAAAAAAAAHAIFbQAAAAAAAAAAAAAAAAAAh0BBGwAAAAAAAAAAAAAAAADAIVDQBgAAAAAAAAAAAAAAAABwCE4Gg8GQ10EAgCQdO3ZM6UOSm5ubnJyc8jiigslgMCg5OZkc2xE5ti/ya3+FPcfu7u7y8fGxaZ/McbmjsN+79kZ+7Y8c2xf5tf0cx/yWO7h37Y8c2xf5tb/CnmN+w+VPhf2+zQ3k2P7IsX2RX37D5Vfcu/ZHju2L/NpfYc9xduc311yIBQCyJX2wdnNzy+NICjYnJye5u7vndRgFGjm2L/Jrf+TY9pjjcgf3rn2RX/sjx/ZFfm2P+S13cO/aHzm2L/Jrf+TY9pjj7I/71v7Isf2RY/siv7bH/JY7uHftjxzbF/m1P3KcPTyhDQAAAAAAAAAAAAAAAADgEJzzOgAAAAAAAAAAAAAAAAAAACQK2gAAAAAAAAAAAAAAAAAADoKCNgAAAAAAAAAAAAAAAACAQ6CgDQAAAAAAAAAAAAAAAADgEChoAwAAAAAAAAAAAAAAAAA4BAraAAAAAAAAAAAAAAAAAAAOgYI2AAAAAAAAAAAAAAAAAIBDoKANAAAAAAAAAAAAAAAAAOAQKGgDAAAAAAAAAAAAAAAAADgECtoAAAAAAAAAAAAAAAAAAA6BgjYAAAAAAAAAAAAAAAAAgEOgoA2Awzh9+rSefvpp+fr6KiAgQHPnztWdO3fyOqxc88cff2jatGnq0aOH6tev+4eRdAAAFl1JREFUr+DgYLPtoqKi1LlzZzVs2FD/+te/tH///gxt4uPj9eqrr6pFixby8/PTuHHjdPny5Qztjh07pv79+6tRo0Zq166dVq5cKYPBYNLGYDBo5cqVeuyxx9SoUSP1799fx48fz9DXpUuXNHbsWPn5+alFixaaPHmybt26lbNk2MGnn36q5557ToGBgfL19VWPHj304YcfZjhf8pszBw8e1L///W+1atVKDRo0UIcOHTR79mzFx8ebtNu3b5/+9a9/qWHDhurcubM++uijDH3duXNHb775pgICAuTr66unn35av/32W4Z22R0zbHlNHcnff/+twMBA+fj46Pvvvzd5j/vYsTC/Mb/ZE/Ob/THH5S7mt/yFOY45zp6Y4+yL+S33McflH8xvzG/2xPxmf8xxuYv5LX9hjmOOsyfmOPtifst9zHEOwAAADuD69euGgIAAw+DBgw1ffPGFISoqytC0aVPDjBkz8jq0XLNnzx5DYGCgYezYsYbg4GBDt27dMrTZuXOnwcfHx7Bo0SLDV199ZZg6daqhfv36hpiYGJN2zzzzjCEwMNCwa9cuw+eff24IDg42/Otf/zIkJycb25w5c8bg6+trGD16tOHw4cOGtWvXGh599FHD6tWrTfpasWKF4dFHHzWsXbvWcPjwYcPo0aMNfn5+hrNnzxrb3LlzxxAcHGwIDg427N2717Br1y5DYGCgITQ01LZJegD9+vUzvPDCC4Zdu3YZDh8+bJg/f76hbt26hvDwcGMb8ptzW7duNbz55puG6Ohow5EjRwzr1q0ztGjRwvD0008b23zzzTeGevXqGaZOnWr46quvDIsWLTL4+PgYPv30U5O+pk6damjatKkh6v+1d/+xUdYHHMc/LfTUBY6GypwVFinddZXaHFhHarUFBCNYYGGpKAJzoA6Duukfzi4oISELmyERf0EVWafJgLX+SrWt/DItv8ocRVhmkABFWqVRmHAHLe1Bv/vD9InHgQfrPXfPPbxfSQN9+u1zz33vy73vjy93VVWmsbHRzJw509xxxx0mEAhYYy71OSOWj6nT/OUvfzG33Xab8fl8Zu/evdZx1rGz0Df6Zjf6Zj8aF1/0LXnQOBpnNxpnL/oWfzQuOdA3+mY3+mY/Ghdf9C150DgaZzcaZy/6Fn80LvHY0AbAEVauXGn8fr/59ttvrWNr1641ubm5pr29PXEXFkfnzp2z/v6HP/zhgi+k77rrLvPUU0+FHZsxY4Z56KGHrO+bm5uNz+czW7ZssY4dPHjQ5OTkmA8//NA69uyzz5px48aZrq4u69iyZctMQUGBdezMmTNm9OjRZtmyZdaYrq4uM27cOLNo0SLrWE1NjcnJyTEHDx60jm3ZssX4fD6zZ8+ey5kG2xw/fjzi2MKFC83o0aOtuWd+Y2vdunXG5/NZ/4bnzp1rZsyYETbmqaeeMpMmTbK+P3r0qMnNzTVr1661jn377bfG7/eb1157zTp2qc8ZsXxMneTAgQPG7/ebNWvWRLyQZh07C32jb3ajb4lB4+xB35ILjaNxdqNx8Uff7EPjkgd9o292o2+JQePsQd+SC42jcXajcfFH3+xD45yBjxwF4AiNjY0qLCxUenq6dWzSpEnq6enRtm3bEndhcZSa+sNPya2trTp8+LAmTZoUdnzy5MnasWOH9RavjY2N8nq9KioqssZkZWUpNzdXjY2N1rHGxkbdeeed8ng8YecKBALavXu3pO/e4vTUqVNht+nxeDRx4sSIc+Xk5CgrK8s6VlRUpPT0dDU0NFzONNhm8ODBEcdyc3N16tQpdXR0ML826P33HAqF1N3drZ07d+ruu+8OGzN58mQdPHhQbW1tkqStW7eqp6cnbFx6erqKiooi5iTac0asH1MnWbJkie677z4NHz487Djr2HnoG32zG31LDBpnD/qWXGgcjbMbjYs/+mYfGpc86Bt9sxt9SwwaZw/6llxoHI2zG42LP/pmHxrnDGxoA+AIhw4dCntylSSv16shQ4Zc8DO7r0S983B+OEeMGKFQKKTW1lZr3PDhw5WSkhI2LisryzpHR0eHjh49GjHnWVlZSklJscb1/nn+uBEjRuirr77SmTNnrHHnj0lJSdHw4cMd/fjt2rVL1113nQYMGMD8xsi5c+fU1dWl//znP3rllVc0fvx4DR06VEeOHFEoFLrgfZUUNicZGRkaNGhQxLjv39dLec6I5WPqJPX19dq/f78WLFgQ8TPWsfPQt+hYt7FH3+xB4+xF35IPjYuOtRt7NC726Jv9aFxyoW/RsW5jj77Zg8bZi74lHxoXHWs39mhc7NE3+9E452BDGwBHCAQC8nq9EccHDRqkkydPJuCKnKd3Hs6fp97ve38eCAQ0cODAiN///lwGg8ELnsvj8eiaa64JO5fH49FVV10VcZvGmMu6Taf517/+pdraWs2dO1cS8xsr48aNU35+vqZPn64hQ4Zo2bJlkvo+v16vN+y+XspzRiwfU6fo7OzU0qVL9eSTT2rAgAERP2cdOw99i451G1v0zT40zj70LTnRuOhYu7FF4+xB3+xF45IPfYuOdRtb9M0+NM4+9C050bjoWLuxRePsQd/sReOcpX+iLwAAgHhrb2/Xk08+qTFjxmjOnDmJvhxXee2119TZ2akDBw5oxYoVmj9/vv76178m+rJcY8WKFcrIyNCvfvWrRF8KAAeib/aicfahbwCioXH2oW/2onEAfgh9sxeNsw99AxANjbMPfbMXjXMW3qENgCN4vV5rF/L3nTx5MuItT69UvfNw/jwFAoGwn3u9Xp06dSri978/l727s88/V3d3tzo7O8PO1d3dra6urojbTElJuazbdIpAIKCHH35Y6enpeumll5Sa+l0Kmd/Y+PnPf65Ro0aprKxMr776qnbu3KkNGzb0eX4DgUDYfb2U54xYPqZO8OWXX2r16tV64oknFAwGFQgE1NHRIem7tyU+ffo069iB6Ft0rNvYoG/2o3H2oG/Ji8ZFx9qNDRpnL/pmHxqXnOhbdKzb2KBv9qNx9qBvyYvGRcfajQ0aZy/6Zh8a5zxsaAPgCBf6jOxgMKhvvvkm4rOer1S983D+PB06dEhpaWkaNmyYNa6lpUXGmLBxLS0t1jl+9KMf6frrr484V+/v9Y7r/bOlpSXiNjMzM3X11Vdb484/lzEm7Dad4MyZM/rtb3+rYDCoVatWhb3tKvMbezk5OUpLS9ORI0f005/+VGlpaRecX0lhc3Ls2LGIt749/3PfL+U5I5aPqRO0tbUpFArpkUce0a233qpbb71V8+fPlyTNmTNHv/nNb1jHDkTfomPd9h19iz8aFzv0LXnRuOhYu31H4+KLvsUWjUtO9C061m3f0bf4o3GxQ9+SF42LjrXbdzQuvuhbbNE452FDGwBHKC4u1vbt263dy5JUX1+v1NRUFRUVJfDKnGPYsGG68cYbVV9fH3a8trZWhYWF8ng8kr6by5MnT2rHjh3WmJaWFn322WcqLi62jhUXF2vTpk0KhUJh5/J6vRo1apQkafTo0RowYIDq6uqsMaFQSOvXr4841759+3T48GHr2I4dO3TixAmVlJTEZgL66OzZs/r973+vQ4cOadWqVbruuuvCfs78xt6ePXsUCoU0dOhQeTwejRkzRh999FHYmNraWo0YMUJDhw6VJN1+++1KTU3V+vXrrTEnT57U1q1bI+Yk2nNGrB/TRMvNzdWbb74Z9lVeXi5JWrx4sRYtWsQ6diD6Fh3rtm/oW2LQuNihb8mLxkXH2u0bGhd/9C22aFxyom/RsW77hr4lBo2LHfqWvGhcdKzdvqFx8UffYovGOZABAAc4ceKEKSoqMrNmzTJbtmwx1dXVpqCgwCxevDjRlxY3HR0dpq6uztTV1ZlZs2aZkpIS6/vjx48bY4ypqakxOTk5Zvny5aapqck899xz5qabbjLNzc1h55o7d64pKSkxtbW1ZtOmTaa0tNRMnTrVhEIha8zhw4eN3+83jz/+uNm+fbuprKw0I0eONKtWrQo7V0VFhcnLyzOVlZVm+/bt5vHHHzejRo0yR44cscZ0d3eb0tJSU1paajZv3mw+/PBDU1JSYh555BEbZ+zyLFy40Ph8PrN69Wqze/fusK+uri5jDPPbFwsWLDArVqwwmzdvNtu3bzerV682RUVFZsqUKdb8fvLJJyY3N9csWrTINDU1meXLl5ucnBxTW1sbdq5nn33WFBQUmOrqarNlyxYza9Ysc8cdd5hAIGCNudTnjFg+pk7U1NRkfD6f2bt3r3WMdews9I2+2Y2+2Y/GxR99Sw40jsbZjcbZi74lBo1zPvpG3+xG3+xH4+KPviUHGkfj7Ebj7EXfEoPGJRYb2gA4xoEDB8yvf/1rk5+fbwoLC83SpUutAF8JWltbjc/nu+BXU1OTNe4f//iHmThxohk5cqQVpPMFAgFTXl5uCgoKjN/vN4899phpb2+PGLdr1y5TVlZm8vLyTHFxsamoqDA9PT1hY3p6eszKlStNcXGxycvLM2VlZRFBNsaY9vZ289hjjxm/328KCgpMeXm5CQaDMZiZ2Bg3btxF57e1tdUax/z+fyoqKsy0adPMqFGjjN/vN/fcc4954YUXIq5x48aNprS01IwcOdJMnDjRVFVVRZyrq6vLLF261BQWFpr8/Hzz4IMPmgMHDkSMu9TnjFg+pk5zoRfSxrCOnYa+0Tc70Tf70bj4o2/Jg8bRODvROHvRt8SgccmBvtE3O9E3+9G4+KNvyYPG0Tg70Th70bfEoHGJlWLMeR/aCgAAAAAAAAAAAAAAAABAAqQm+gIAAAAAAAAAAAAAAAAAAJDY0AYAAAAAAAAAAAAAAAAAcAg2tAEAAAAAAAAAAAAAAAAAHIENbQAAAAAAAAAAAAAAAAAAR2BDGwAAAAAAAAAAAAAAAADAEdjQBgAAAAAAAAAAAAAAAABwBDa0AQAAAAAAAAAAAAAAAAAcgQ1tAAAAAAAAAAAAAAAAAABHYEMbAABJbPbs2Zo9e3aiLwMAgJiibwAAt6JxAAA3om8AALeicUDi9E/0BQAAcKX5/PPP9corr+jf//63jh07pvT0dGVnZ2v8+PG8KAYAJC36BgBwKxoHAHAj+gYAcCsaB7gDG9oAAIij5uZmzZkzR5mZmSorK9OQIUN09OhR7dmzR2+++SYvpAEASYm+AQDcisYBANyIvgEA3IrGAe7BhjYAAOJo5cqVGjhwoKqrq+X1esN+dvz48QRd1XfOnj2rnp4eeTyehF4HACD50DcAgFvROACAG9E3AIBb0TjAPVITfQEAAFxJjhw5ouzs7IgX0ZKUkZFh/f3tt9/WnDlzVFhYqLy8PE2ePFl///vfo56/u7tby5cv1/Tp03XLLbfI7/dr5syZampqChvX1tamnJwcvfHGG6qsrNSECRN08803a+/evfL7/VqyZEnEudvb25Wbm6uKior/454DANyMvgEA3IrGAQDciL4BANyKxgHuwTu0AQAQRzfccIN2796t/fv3y+fzXXTcmjVr9LOf/Uzjx49X//799fHHH2vx4sUyxuiBBx646O+dOnVKVVVVKi0tVVlZmU6fPq3q6mo99NBDqqqqUm5ubtj4d955R11dXbr33nvl8XiUmZmpCRMmqK6uTuXl5erXr5819oMPPpAxRlOmTOn7RAAAXIW+AQDcisYBANyIvgEA3IrGAe6RYowxib4IAACuFNu2bdPDDz8sScrPz9ctt9yiwsJCjRkzRmlpada4M2fO6Oqrrw773Xnz5umLL77Qxo0brWOzZ8+WJL311luSpHPnzuncuXNhb1ccCAQ0adIklZSU6E9/+pOk7/5nyJ133qkBAwZow4YNGjx4sDV+69atmjdvnl5//XUVFxdbx6dOnapBgwZZtwUAQC/6BgBwKxoHAHAj+gYAcCsaB7gHHzkKAEAcFRUVae3atRo/frz27dunVatWad68eSouLtamTZuscd9/ER0MBvXf//5Xv/jFL9Ta2qpgMHjR8/fr1896Ed3T06MTJ07o7NmzysvL02effRYx/q677gp7ES1Jt912m3784x+rpqbGOrZ//359/vnnmjp16v993wEA7kXfAABuReMAAG5E3wAAbkXjAPfgI0cBAIiz/Px8vfzyy+ru7ta+ffu0ceNGVVZW6ne/+53ee+89ZWdna9euXXrppZf06aefqrOzM+z3g8GgBg4ceNHzv/vuu1q9erVaWloUCoWs40OHDo0Ye6FjqampmjJlitasWaPOzk5dc801qqmp0VVXXaW77767D/ccAOBm9A0A4FY0DgDgRvQNAOBWNA5wBza0AQCQIB6PR/n5+crPz9eNN96o8vJy1dfXa+rUqXrwwQeVlZWlZ555Rtdff73S0tLU0NCgyspK9fT0XPSc77//vp555hlNmDBB8+bNU0ZGhvr166eKigq1trZGjD//7ZR7/fKXv9Qbb7yhjRs3qrS0VB988IHGjh37gy/gAQCQ6BsAwL1oHADAjegbAMCtaByQ3NjQBgCAA+Tl5UmSvv76a23evFnd3d1asWKFMjMzrTE7d+6Mep6PPvpIw4YN08svv6yUlBTr+IsvvnhZ1+Pz+XTTTTeppqZGP/nJT/TVV19p4cKFl3UOAADoGwDArWgcAMCN6BsAwK1oHJB8UhN9AQAAXEmamppkjIk43tDQIEnKyspSv379JClsXDAY1Ntvvx31/Bf63T179ujTTz+97GudNm2atm3bpr/97W9KT09XcXHxZZ8DAHBloG8AALeicQAAN6JvAAC3onGAe/AObQAAxNGSJUvU2dmpiRMnKisrS6FQSM3Nzaqrq9MNN9yg6dOn69ixY0pLS9P8+fN133336fTp06qqqlJGRoa++eabHzz/2LFjtX79ei1YsEBjx45VW1ub1q5dq+zsbHV0dFzWtZaWlur555/Xhg0bdP/99ystLa0vdx0A4GL0DQDgVjQOAOBG9A0A4FY0DnAPNrQBABBHTz/9tOrr69XQ0KB169YpFAopMzNTM2fO1KOPPiqv1yuv16sXX3xRL7zwgv785z/r2muv1f3336/Bgwfrj3/84w+ev/eF+Lp167R161ZlZ2fr+eefV319vf75z39e1rVee+21KioqUkNDg6ZNm9aXuw0AcDn6BgBwKxoHAHAj+gYAcCsaB7hHirnQ+y0CAABIWrBggfbv368NGzYk+lIAAIgZ+gYAcCsaBwBwI/oGAHArGgdcXGqiLwAAADjT119/zf8KAQC4Dn0DALgVjQMAuBF9AwC4FY0DfhgfOQoAAMK0traqublZ1dXV6t+/v2bMmJHoSwIAoM/oGwDArWgcAMCN6BsAwK1oHHBpeIc2AAAQ5pNPPtHTTz+ttrY2LV26VEOGDEn0JQEA0Gf0DQDgVjQOAOBG9A0A4FY0Drg0KcYYk+iLAAAAAAAAAAAAAAAAAACAd2gDAAAAAAAAAAAAAAAAADgCG9oAAAAAAAAAAAAAAAAAAI7AhjYAAAAAAAAAAAAAAAAAgCOwoQ0AAAAAAAAAAAAAAAAA4AhsaAMAAAAAAAAAAAAAAAAAOAIb2gAAAAAAAAAAAAAAAAAAjsCGNgAAAAAAAAAAAAAAAACAI7ChDQAAAAAAAAAAAAAAAADgCGxoAwAAAAAAAAAAAAAAAAA4wv8A9ywQXMXlqakAAAAASUVORK5CYII=\n"},"metadata":{}}]},{"cell_type":"code","source":["f=sns.displot(data=df_u,x='salary',y='experience_level',col='work_year')\n","f.set_titles((\"{col_name}\"))\n","f.set_axis_labels(\"Salary\",\"Experience Level\")\n","f.tight_layout()\n","f.fig.subplots_adjust(top=.8)\n","f.fig.suptitle(\"Salary Records by Year and Experience\")\n","plt.savefig('/content/SalaryRecordsByYearAndExp')"],"metadata":{"colab":{"base_uri":"https://localhost:8080/","height":141},"id":"Vg1UCCHbC5n4","executionInfo":{"status":"ok","timestamp":1714531758405,"user_tz":300,"elapsed":2972,"user":{"displayName":"Jenny O","userId":"07622373657144372939"}},"outputId":"870569ce-edfc-43b1-ce19-8472768904db"},"execution_count":null,"outputs":[{"output_type":"display_data","data":{"text/plain":["
"],"image/png":"iVBORw0KGgoAAAANSUhEUgAACbQAAAHsCAYAAAAAKrmZAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAACP4UlEQVR4nOzdeZxd8/0/8NdkI0E2iX2JIhNBiiCEiASxhIqdktp38bUW5VetUqrV0mirltpbQUKVqLWUKGpfGkvt1BJZJCSR7f7+8MjUdOaO5OZm5k7yfD4eeSTzOefzOe/zOed+PufceeecqkKhUAgAAAAAAAAAAAA0sRZNHQAAAAAAAAAAAAAkEtoAAAAAAAAAAACoEBLaAAAAAAAAAAAAqAgS2gAAAAAAAAAAAKgIEtoAAAAAAAAAAACoCBLaAAAAAAAAAAAAqAgS2gAAAAAAAAAAAKgIEtoAAAAAAAAAAACoCBLaAAAAAAAAAAAAqAgS2gAAAIBmobq6OkOHDm3qMJhHp59+eqqrq/P++++Xtd1Ro0aluro6o0aNKmu7NJ6BAwdm4MCBTR1GxTHGAQAAAHylVVMHAAAAADR/s2fPzsiRI3PHHXfktddeyxdffJH27dunS5cu6dWrVwYOHJhtttmmqcNsVKNGjcoZZ5xRq6x169bp2rVrNtpooxx++OHp0aNHE0XH/Pj888/zne98Jx9//HH+9Kc/pVevXvWud8011+T888/PoEGDMnz48EaOctE1cODAfPDBBw2uc/7552f33XdvpIgAAAAAWJgktAEAAAALZPbs2TnyyCPzyCOPpH379unfv39WWGGFzJw5M//+979z55135s0331zsEtrm6tGjR7bddtskXyVGPfPMM7nzzjtz77335pprrknv3r2bOEK+ydJLL50LL7wwQ4cOzamnnprbbrst7dq1q7XOa6+9losuuihdu3bNOeec00SRLtq+973vpX379vUuW2eddRo5mvIbPXp02rZt29RhAAAAADQ5CW0AAADAArnzzjvzyCOPpEePHrnhhhuyzDLL1Fo+bdq0PP/8800UXdNbZ511MmzYsFplP/zhDzNixIhcfPHFuf7665soMubHxhtvnMMPPzy///3vc/755+cnP/lJzbIZM2bk1FNPzcyZM3PBBRekU6dOTRjpouvAAw/MKqus0tRhLDRrrrlmU4cAAAAAUBFaNHUAAAAAQPP27LPPJkl22223OslsSdK2bdtsttlmtcqmTJmSK6+8Mt/73vey1VZbZb311stmm22Wo446qqa9efHxxx/n0ksvzb777pstttgi6623XrbccsucfPLJ+fe//11n/ffffz/V1dU5/fTT89Zbb+WEE07I5ptvnh49euSJJ57IPvvskx49euT999+vd3t/+MMfUl1dnauuumqeY6zPnnvumSR56aWX6iybNWtWbrzxxuy9997ZaKON8u1vfztDhgzJDTfckDlz5tTb3gsvvJATTjgh/fr1q+mDQw45JKNHj66z7ujRo7P//vund+/e6dWrV3bZZZf8/ve/z4wZM+qsO3DgwAwcODCff/55zj///AwcODDrrrturddpPvbYY/nud7+bDTbYIJtuummOOeaYvPHGG0X3/YEHHsiBBx6YLbfcsibWAw44IDfeeOM39tv/euihh7Lvvvtmgw02yCabbJLjjz8+b7/9dq11TjrppFRXV+fJJ5+st4177rkn1dXV8/RUtWHDhmXdddfNzTffnAceeKCm/OKLL84rr7ySAw44IFtuuWWSZNKkSbnooouy4447plevXundu3cOPPDAPProo3XaLeXzUF1dnaFDh2bcuHE588wz069fv6yzzjoZNWpUg/swY8aM3HDDDTn88MMzYMCArLfeetl0001z0EEH5eGHH663ztzzYOrUqfnZz36WrbfeOuutt1622267XH755SkUCnXqFAqF3HDDDRk8eHDWX3/99OvXL+ecc06mTJnSYHwL6rPPPsvAgQOz3nrr1fl8zZkzJ0OHDk11dXVuv/32mvLhw4enuro6TzzxRG677bYMGTIkvXr1yuabb54zzjgj48aNq3db83OMR40alerq6owaNSp///vfM3To0PTu3TvV1dU168w9pv9rfsaEr49x77//fk488cT06dMn66+/fnbffff87W9/K9p3o0ePzoEHHphNN90066+/fgYOHJiTTjopL774Yp1177zzzgwdOjQbb7xx1l9//ey444757W9/W+84AgAAADC/PKENAAAAWCAdO3ZMkjqJRA154403cvHFF2fjjTfO1ltvnfbt2+fDDz/Mgw8+mEceeSS/+93vstVWW31jO0899VSuuOKK9OnTJ4MGDUq7du3yzjvv5J577smDDz6YP/3pT+nRo0edeu+++2723nvvdOvWLbvsskumT5+epZdeOvvtt1+ee+653HLLLTnxxBPr1BsxYkTatGmT3XbbbZ73tSGtWtX+ambmzJk56qij8uijj2aNNdbIzjvvnCWWWCJPPPFEfvKTn+T555/Pz3/+81p1br755vzoRz9KixYtMnDgwHTr1i3jx4/PSy+9lD/96U/Zaaedatb95S9/md///vfp1KlTdt5557Rr1y6PPPJIfvnLX+bRRx/NVVddlTZt2tRqf8aMGfne976Xzz77LFtssUWWXnrpmqdk/fWvf82JJ56Y1q1bZ6eddkrXrl3z9NNPZ999962VqPP1/vvhD3+Yrl27ZsCAAenUqVPGjx+fV199NaNGjcr+++8/z31377335pFHHsm2226bTTfdNGPHjs0999yTJ554In/605/yrW99K0my33775a677sqIESOy6aab1htTkuy7777fuM3WrVvn5z//eXbfffecddZZ+fa3v5233norV199ddZee+2ceuqpSZIPPvggQ4cOzQcffJCNN944/fr1y7Rp0/K3v/0thx12WM4555zsvffeNe2W+nmYNGlS9tlnn7Rr1y6DBg1KVVVVll122Qb34bPPPst5552XDTfcMH379k3nzp0zbty4/O1vf8sRRxyRc889N3vttVedejNnzsyhhx6aTz75JFtttVVatmyZ+++/PxdddFFmzJiR4447rtb65513Xq6//vp07do1++yzT1q1apUHHnggzz//fGbMmFHnPCuXDh065KKLLsoBBxyQE088MbfddluWXnrpJMmll16aJ598MrvvvnuGDBlSp+4111yTMWPGZKeddkq/fv3y9NNPZ9SoUXnyySdzyy23pHPnzjXrzu8xnuuee+7JI488kq222ir77rtv/vOf/zS4P6WMCXPj22uvvbLqqqtm1113zWeffZbRo0fnmGOOydVXX10rybhQKOSMM87Ibbfdlk6dOmW77bZL586d89FHH+WJJ57IGmuskfXXX79m/TPOOCOjRo3KCiuskEGDBqV9+/Z57rnncskll+Qf//hHrr766jpjGwAAAMB8KQAAAAAsgJdffrmw7rrrFqqrqwunnHJK4Z577im8//77DdaZPHlyYfz48XXKP/zww8IWW2xR2GGHHeos6969e+GAAw6oVfbpp58WpkyZUmfdsWPHFjbYYIPCoYceWqv8vffeK3Tv3r3QvXv3wkUXXVSn3vTp0wubbrppYYsttijMnDmz1rLHH3+80L1798JJJ53U4L7NNXLkyEL37t0Lp512Wp1lZ555ZqF79+6FI488slb5r3/960L37t0L55xzTmHWrFk15bNmzSqcccYZhe7duxfuu+++mvLXX3+90LNnz8Imm2xSeO211+ps58MPP6z59zPPPFPo3r17oX///oVPPvmkpnzmzJmFI488stC9e/fC7373u1r1BwwYUOjevXvhwAMPLHzxxRe1ln3++eeFTTfdtNCzZ8/CCy+8UGvZeeedV9PP7733Xk35brvtVlh33XULn376aZ1Y6zsf6jO3X7t371548MEHay275pprCt27dy9873vfq1U+ePDgwnrrrVeYMGFCrfJ33323UF1dXdhnn33madtz3XDDDYXu3bsXDj744MKAAQMK6667bmHs2LE1yw844IBCdXV14c4776xV77PPPit85zvfKay//vqFcePG1ZSX+nno3r174dRTT61zrjbkyy+/rHVefD2GwYMHFzbZZJPCtGnTai2bex4cdthhtZZ9+umnhd69exd69+5dmDFjRk35008/XejevXth2223LUycOLGmfPr06YW999670L1798KAAQPmOea52z/33HMLv/71r+v9M3369Fp1Lr/88kL37t0LJ554YqFQKBT+8Y9/FHr06FHYcccdC1OnTq217tzP3brrrlt4+eWXay2bey6fccYZtcrn9xjPPW+rq6sLDz/8cL37Wd8YN79jwtfHuOHDh9dq6+9//3vNcfy6m266qdC9e/fCHnvsUZg8eXKtZbNmzSp8/PHHdfbj2GOPrXOezI31mmuuqXf/AAAAAOaVV44CAAAAC6Rnz5658MIL06VLl9xxxx0ZNmxYBg4cmD59+uTYY4/Ngw8+WKfOMsssU+tpR3OtsMIK2WGHHfLmm29+45OLkmTZZZetefrS1/Xo0SN9+vTJE088kZkzZ9ZZ3qVLlzpPlEqSJZZYIrvvvnvGjRtX65WSyfw9yevrxo4dm+HDh2f48OE5//zzs8cee+SWW27Jcsstl9NOO61mvTlz5uSGG25I165dc8YZZ6Rly5Y1y1q2bJnTTz89VVVV+ctf/lJT/qc//SmzZs3KMccck7XXXrvOtldYYYWaf48cOTJJcvTRR6dr16415a1atcppp52WFi1a5JZbbql3H04//fS0a9euVtkDDzyQSZMmZeedd6719Kbkq1dz1vf62bnbq+/pTfWdDw3ZbLPNMmDAgFplBxxwQFZbbbU8/vjj+eCDD2rK99tvv8yYMSO33XZbrfVvvvnmFAqF+T6m+++/f/r3758xY8bkgw8+yAknnFDzJMBXXnklTz75ZAYNGpTBgwfXqte+ffsMGzYsX375Ze65556a8lI/D61bt85pp502X0/DatOmTa3z4usx7LHHHvnss8/qfcVkkpx11llZcskla35edtlls80222TKlCl56623asrnvvb0qKOOqnmCY/LV5+ukk06a51j/13XXXZdLL7203j9ffvllrXUPO+yw9OvXL3fddVd+//vf55RTTkmbNm3yq1/9Km3btq23/e985zvp2bNnrbK55/Kdd95Z8zrNUo7xXNtss808PX0yKW1MmGvllVfO0UcfXausX79+WWmllfLCCy/UKr/hhhuSJOecc06dz23Lli2z3HLL1fx83XXXpVWrVvnpT39a61xIkmOOOSYdO3asNx4AAACA+eHZ7wAAAMAC22mnnbLddtvliSeeyNNPP52xY8fm6aefzv3335/7778/Q4YMyQUXXJCqqqqaOk8//XSuu+66PPfccxk/fnydxLOPP/44K6200jdu+6GHHspNN92Ul156KRMnTsysWbNqLZ84cWKthIzkq4S3Yq88/O53v5urr746I0aMyPbbb58kmTBhQu67776sueaa2WSTTeapT+Z65ZVX8sorr9QqW2mllXLjjTfW2r+33norkyZNSrdu3fK73/2u3raWXHLJvPnmmzU/P/fcc0m+SlT5Jv/617+SpNarBudaY401ssIKK+T999/PlClTaiW1LLHEEvW+PnRue/X1xzLLLJN11lknTz75ZK3yXXbZJRdccEEGDx6cnXbaKZtuumk22mij+U5mK7bdli1bpnfv3nn33XczduzYrLzyykmSXXfdNb/4xS8yYsSIHHLIIUm+epXjbbfdlg4dOmTHHXec7+2fdtppefjhh9O1a9eaNpPk2WefTZJ8/vnnGT58eJ16EyZMSJJaxzEp7fOw8sorf+MrRuvz+uuv56qrrso///nPjBs3rk4y2Mcff1ynzjLLLJPVV1+9Tvnc5LjJkyfXlM09N+p7xWvv3r1rJWbNjwceeKDmdbffpKqqKhdeeGF23XXX/PKXv0zyVcJWfefyXPXF+/Vz+Y033sg666xT8jFOkl69es1T/ElpY8JcPXr0qLefV1hhhZpxI0mmTp2a1157LV26dKmTzPe/pk2blldeeSWdOnXKtddeW+86bdq0yRtvvNFgOwAAAADfREIbAAAAUBatW7fOlltumS233DJJMnv27Nxzzz0588wzc/vtt2e77bbLtttumyS57777cvzxx2eJJZZI3759s9pqq6Vt27Zp0aJFnnzyyTz55JM1T0NqyLXXXpuf/vSn6dChQ/r27ZsVV1wxbdu2TVVVVe6///688sor9bbTpUuXom2uuuqq2XLLLfPoo4/m3XffzWqrrZbbb789M2bMyD777DPf/bLbbrvlggsuSKFQyPjx43Prrbfm4osvzlFHHZURI0bUPC1q0qRJSZK33347l156adH2vvjii5p/T5kyJUmy/PLLf2Mcc9f9+tPZvq5r1675z3/+k8mTJ9dKaFt22WVrJSL+b3vF+rK+8oMPPjidOnXKH//4x1x//fW59tprU1VVlU022STf//736zzprSHftN258SXJ0ksvne985zu56aab8vjjj2ezzTbLgw8+mHHjxuXAAw/MEkssMc/bnWtunTZt2qRFi/++BGHucRwzZkzGjBlTtP7UqVNr/l3q56HYsWzIc889lwMPPDCzZ8/OZpttloEDB2bppZdOixYtMnbs2DzwwAP1bqt9+/b1tjf36XCzZ8+uKZvb9/Ul27Vq1SqdOnWa77hL0blz52yyySa566670rFjx+y6664Nrl8sOfB/z6lSjvH/tjUvShkT5mroeM2ZM6fm5/kZQyZPnpxCoZAJEyY0GA8AAADAgpLQBgAAACwULVu2zE477ZTXXnstv/vd7/L444/XJLRdcsklad26dUaOHJk111yzVr0f/vCHdZ7sVZ9Zs2bl0ksvTdeuXTNq1Kg6T2H7+lOI/ld9CVpft99+++WRRx7JzTffnFNOOSUjRozIEksskSFDhnxjXA1ts0uXLjnqqKPy2Wef5Q9/+EMuvvjinHHGGUlSk0S23XbbzXOyyNw6H3/8cb2vXq1v3U8//TSrrbZaneXjxo2rtd7X4/6m9upTrHzIkCEZMmRIJk+enGeffTb33XdfRo4cmcMOOyx33333PD+t7Zu2+7/7sd9+++Wmm27KiBEjstlmm9W8QraUJMWGzN3umWeeme9973vzVKfUz8M3ncf1+d3vfpfp06fnuuuuS58+fWot+/3vf1/nVbulmNsH48ePr/Oq2lmzZmXixIn1vva03O66667cdddd6dSpUyZOnJhzzz035557btH1x48fX2/5/55TpRzjuebnmJUyJsyvr48h32TuGNOzZ886r+8FAAAAKKcW37wKAAAAQOmWWmqpJEmhUKgpe+edd7LWWmvVSd6ZM2dOnn766Xlqd+LEiZk8eXI23HDDOslsX3zxRV5++eWSYx4wYEBWWmmljBo1Ko8++mjefvvt7LjjjunQoUPJbX7dsccem86dO+fGG2/Me++9lyT51re+lfbt2+e5556r87rJYjbYYIMkySOPPPKN666zzjpJkieeeKLOsnfeeScfffRRVllllaJPdvpfc19P+M9//rPOsilTpmTs2LEN1m/fvn369++fc889N7vttlsmTZpUb1vF1Lfu7Nmza86fufs7V48ePbLRRhvlvvvuy/PPP5/HHnssm2yySZ1zcEF9+9vfTpI89dRT81ynHJ+H+dlWx44d6ySzJZmnRNJ5MffcqK+9p59+utbT3BaWd955J//v//2/dO7cObfffns22WST3HLLLbnrrruK1qkv3rnn8hJLLFFzfEo5xqUoZUyYX+3atUv37t3z6aef1rwqtpillloqa6+9dl5//fWap8cBAAAALAwS2gAAAIAFcuedd2bMmDG1XmM317hx43LLLbckSTbeeOOa8pVXXjlvv/12racCFQqFDB8+PP/+97/nabvLLrts2rZtm5dffrnWK/dmzpyZ8847LxMnTix1l9KiRYvsvffeGT9+fH7wgx8kSfbdd9+S2/tfSy+9dA4//PDMnDmz5slLrVq1ygEHHJBx48bl3HPPzfTp0+vU++STT2r1z3777ZdWrVrlt7/9bb399tFHH9X8e4899kjy1RO6JkyYUFM+e/bs/OxnP8ucOXOy5557zvM+bLPNNunQoUPuvPPOvPjii7WWDR8+vNYrP+d6/PHHayU2zjU3niWXXHKet//444/nb3/7W62yG264Ie+++2769OmTlVdeuU6d/fbbLzNnzsywYcNSKBTKekznWn/99bPxxhvnvvvuy6233lrvOq+++mqtp4GV4/Mwr1ZeeeVMmjQpr7zySq3yW265JY8++mhZtrHbbrslSS677LJaiU9ffvllfvnLX5ZlGw2ZMWNGTjzxxEydOjUXXHBBVlhhhVx00UXp2LFjfvjDH+bdd9+tt94dd9xRJ6lr7rk8ePDgtGnTJklpx7gUpYwJpRg6dGiSr54G+L+f2zlz5uSTTz6p+fmggw7KzJkz84Mf/CCTJ0+u09Znn322QMnEAAAAAIlXjgIAAAAL6Pnnn891112Xrl27ZqONNsoqq6ySJHn//ffz8MMPZ/r06dlmm22yww471NQ56KCDcvbZZ2e33XbLoEGD0qpVqzzzzDN54403MmDAgDqJSvVp0aJFhg4dmssvvzy77LJLttlmm8ycOTNPPPFEPvvss/Tp06fep5HNq7322iu/+c1v8vHHH6d79+7ZcMMNS26rPt/97nfzhz/8IXfccUeOOOKIrLnmmjnmmGPyyiuv5Kabbsrf/va3bLbZZll++eUzfvz4vPPOO3nmmWdy4oknZq211kqSrLXWWjn77LNz9tlnZ8iQIdlmm23SrVu3TJw4MS+99FKWWmqpXH/99UmSjTbaKIcddliuvPLK7Lzzztl+++3Ttm3bPPLII3nttdfSu3fvHHroofMc/1JLLZVzzjknJ554Yvbff//stNNO6dq1a55++um8/vrr2WSTTeo8Re24445Lu3btssEGG2TllVdOoVDIU089lRdffDHrrrtu+vbtO8/bHzBgQI477rhsu+22WX311TN27Nj8/e9/T8eOHXP22WfXW2eHHXbI+eefn48//jidOnXKoEGD5nl78+Oiiy7KgQcemDPPPDPXX399vv3tb2eZZZbJRx99lNdeey2vvfZaRowYkWWXXTZJeT4P8+rAAw/Mo48+mu9+97vZcccds8wyy+Sll17K008/ne233z733HPPAm+jd+/eGTp0aK6//vrsvPPO2WGHHdKqVas88MADad++fbp27VpSu9dee23RJwhuuummNU+d+/nPf56XX345Bx98cPr3758kWX755XPBBRfkqKOOygknnJCbbrqpJkFtrn79+mW//fbLjjvuWHMuP/3001l55ZVzyimn1Fp3fo9xqeZ3TCjFXnvtlaeeeip//vOfM2jQoGyzzTbp3LlzPvnkkzz++OPZY489MmzYsCTJnnvumZdffjl//OMfs91222XLLbfMiiuumM8++yzvv/9+/vnPf2b33XfPOeecs0D7DQAAACzeJLQBAAAAC+SQQw5Jt27d8thjj+XVV1/No48+mhkzZqRjx47ZdNNNs/POO2eXXXZJVVVVTZ199903bdq0ybXXXpvbb789SyyxRDbeeOOcf/75uffee+c5gef//u//0rlz59xyyy0ZMWJElllmmfTt2zcnnHBChg8fvkD71aVLl/Tv3z/333//QnmS15JLLpkjjzwy5557bi6++OIMHz48rVu3zm9/+9v8+c9/zm233ZaHHnooU6dOTadOnbLKKqvk//7v/7LLLrvUamfvvffO2muvnT/84Q958skn88ADD6Rjx46prq7OXnvtVWvdU089NT179swNN9yQ22+/PbNmzcpqq62WE044IYccckidBJ9vssMOO2SZZZbJpZdemrvvvjtt2rTJxhtvnJtuuilXXHFFnYS2k08+OY8++mhefvnlPPzww1liiSWy0kor5ZRTTsl+++2X1q1bz/O2Bw0alH322SeXXXZZHn744bRq1SqDBg3KSSedlDXWWKPeOm3atMkuu+ySa6+9Nrvtttt87++8WmGFFTJy5MjccMMNuffee/OXv/wls2fPTpcuXbLWWmvlgAMOSPfu3WvWL9fnYV5stdVWueyyy/K73/0uo0ePTsuWLdOrV69cd911ee+998qS0JYkZ555Zrp165Ybb7wxN910Uzp27JjtttsuJ510UnbdddeS2rzuuuuKLjvuuOPSp0+fPPjgg7nuuuuy3nrr5eSTT661zoABA3LQQQflmmuuyYUXXpizzjqr1vKDDjoo2223Xa699tqMHj067dq1y+67754TTzyxTmLa/B7jUpUyJsyvqqqqXHjhhdlyyy1z88035+67786MGTPStWvX9O7dOwMHDqy1/tlnn52tttoqN910Ux577LFMmTIlHTp0yIorrphDDz003/nOdxYoHgAAAICqQn3veQAAAABYzM2ZMyfbbbddxo8fn0cffTRLL710U4dEGQwdOjT//Oc/89e//jXdunVr6nCoAMOHD8+ll16a6667ruYpbwAAAAA0nRZNHQAAAABAJfrrX/+a999/P7vuuqtktkXECy+8kCeffDJbbrmlZDYAAAAAqFBeOQoAAADwNZdffnkmTZqUm2++Oe3atcuRRx7Z1CGxgP74xz/m448/zqhRo9KiRYscf/zxTR0SAAAAAFCEhDYAAACAr7nooovSunXrrLnmmvn+97+flVZaqalDYgFdeeWV+eijj7LqqqvmwgsvTK9evZo6JAAAAACgiKpCoVBo6iAAAAAAAAAAAACgRVMHAAAAAAAAAAAAAImENgAAAAAAAAAAACqEhDYAAAAAAAAAAAAqgoQ2AAAAAAAAAAAAKoKENgAAAAAAAAAAACqChDYAAAAAAAAAAAAqgoQ2AAAAAAAAAAAAKoKENgAAAAAAAAAAACqChDYAAAAAAAAAAAAqgoQ2AAAAAAAAAAAAKoKENgAAAAAAAAAAACqChDYAAAAAAAAAAAAqgoQ2AAAAAAAAAAAAKoKENgAAAAAAAAAAACqChDYAAAAAAAAAAAAqgoQ2AAAAAAAAAAAAKoKENgAAAAAAAAAAACqChDYAAAAAAAAAAAAqgoQ2AAAAAAAAAAAAKoKENgAAAAAAAAAAACqChDYAAAAAAAAAAAAqgoQ2AAAAAAAAAAAAKoKENgAAAAAAAAAAACqChDYAAAAAAAAAAAAqgoQ2AAAAAAAAAAAAKoKENgAAAAAAAAAAACqChDYAAAAAAAAAAAAqgoQ2AAAAAAAAAAAAKoKENgAAAAAAAAAAACqChDYAAAAAAAAAAAAqgoQ2AAAAAAAAAAAAKoKENgAAAAAAAAAAACqChDYAAAAAAAAAAAAqgoQ2AAAAAAAAAAAAKoKENgAAAAAAAAAAACqChDYAAAAAAAAAAAAqgoQ2AAAAAAAAAAAAKoKENgAAAAAAAAAAACqChDYAAAAAAAAAAAAqgoQ2AAAAAAAAAAAAKoKENgAAAAAAAAAAACqChDYAAAAAAAAAAAAqgoQ2AAAAAAAAAAAAKoKENgAAAAAAAAAAACqChDYAAAAAAAAAAAAqgoQ2AAAAAAAAAAAAKoKENgAAAAAAAAAAACqChDYAAAAAAAAAAAAqgoQ2AAAAAAAAAAAAKkKrpg4AoDl64YUXcvvtt+eJJ57IBx98kI4dO+bb3/52TjjhhKyxxhq11n3jjTfy05/+NM8880xat26d/v3754wzzkjnzp1rrTNy5MiMGTMm7777bpZaaqn07Nkzw4YNy/rrr19n+x9//HF++tOfZsyYMZkzZ0769OmTH/zgB1l11VUX+r4DwMLUlHPsm2++mZtuuikvvPBCXn755cyYMSMPPPBAVllllUbZdwBY2Jpynr333nszevTovPjii/n000+zwgorZMCAATnmmGPSvn37Rtl/AFhYmnKOve+++3LTTTfl1VdfzaRJk9K5c+dssMEGOe6449K9e/dG2X8AWFia+neyX3fwwQfnsccey/77758f/vCHC2V/gf+qKhQKhaYOAqC5Of744/PMM89khx12SHV1dcaNG5cbb7wxU6dOzYgRI2q+KPjoo48yZMiQLLPMMhk6dGimTp2aP/zhD1lxxRVzyy23pE2bNkmSn/3sZ7n11lszaNCg9OrVK1OmTMmIESPywQcf5Morr0zfvn1rtv3FF19k9913z5QpU3LwwQendevWueaaa1IoFHL77benU6dOTdInAFAOTTnHjho1KmeeeWbWWmuttGzZMmPHjpXQBsAipSnn2T59+mS55ZbLtttum5VWWimvvvpqbrrppqy66qq57bbbsuSSSzZJnwBAOTTlHHvppZfmjTfeyDrrrJNOnTrl008/zciRIzNu3LiMGDEiPXr0aJI+AYByaMo59uvuvffenHbaaZk6daqENmgsBQDm29NPP1348ssva5W99dZbhfXWW69w8skn15SdffbZhV69ehU++OCDmrIxY8YUunfvXrjppptqyl588cXC559/Xqu9CRMmFDbbbLPCvvvuW6v88ssvL3Tv3r3w/PPP15T9+9//LqyzzjqFiy66qCz7BwBNpSnn2IkTJxamTJlSKBQKhSuvvLLQvXv3wnvvvVe2fQOAptaU8+zjjz9eJ57bbrut0L1798LNN9+8QPsFAE2tKefY+owbN67Qs2fPwv/7f/+v1F0CgIpQCXPs9OnTCwMGDChceumlhe7duxd+/OMfl2PXgG/QoqkT6gCao4022qgmk3+ubt26Ze21186bb75ZU3bvvfdm6623zkorrVRT1rdv33Tr1i133313Tdl6662XpZZaqlZ7nTp1ysYbb1yrvSS55557sv7666dXr141ZWuuuWY233zzWm0CQHPUlHNsx44ds/TSS5dzdwCgojTlPNunT5868Wy77bZJvnrlCwA0Z005x9Zn2WWXzZJLLpkpU6aUuksAUBEqYY694oorUigUcuihh5Zjl4B5JKENoEwKhUI+/fTTmld+fvzxxxk/fnzWW2+9Ouv26tUrY8eO/cY2x40bl44dO9b8PGfOnLz66qv1trn++uvn3Xffzeeff176TgBABWqMORYAFldNOc9++umnSVKzbQBYlDT2HDt58uRMmDAhr776as4888x8/vnn2XzzzRdoHwCgEjXmHPuf//wnV1xxRU455ZQsueSSCxw7MO8ktAGUyR133JGPP/44O+64Y5Lkk08+SZJ07dq1zrpdu3bNpEmTMmPGjKLtPfXUU3nuueey00471ZTNrVOsza9vFwAWFY0xxwLA4qop59krrrgiLVu2zPbbb19i9ABQuRp7jt17772z+eab5zvf+U7uvvvuHH300dlzzz3LsCcAUFkac4694IILss4662Tw4MFlih6YV62aOgCARcEbb7yRc845JxtuuGF22223JMmXX36ZJHUeg5skSyyxRJJk+vTp9S4fP358Tj755Kyyyio57LDDasrnpc256wDAoqCx5lgAWBw15Tz7l7/8JbfeemsOO+ywdOvWbQH3BAAqS1PMseeff34+//zzvPfeexk1alS+/PLLzJ49Oy1aeLYFAIuOxpxjH3/88dx77725+eaby70bwDyQ0AawgMaNG5cjjzwyyyyzTC655JK0bNkyyX8vkOrL+J97YVXfo2mnTp2aI488Ml988UX++Mc/1nqP+7y0OXcdAGjuGnOOBYDFTVPOs0899VTOPPPMbLnlljnxxBPLsTsAUDGaao7dcMMNa/49ePDgmqfMnHbaaQu2QwBQIRpzjp01a1bOO++87LrrrunVq9fC2B3gG/hvGQALYMqUKTn88MMzZcqUXHnllVl++eVrli233HJJvrq4+l9z38P+v/8TYMaMGRk2bFheffXV/Pa3v0337t1rLZ9bp1ibX98uADRnjT3HAsDipCnn2VdeeSVHH3101l577fz6179Oq1b+vy0Ai45KuZft0KFDNttss/zlL39ZgL0BgMrR2HPs7bffnrfeeiv77LNP3n///Zo/SfLFF1/k/fffz7Rp08q9m8DX+MYIoERffvlljjrqqLz99tu5+uqrs9Zaa9Vavvzyy6dz58556aWX6tR94YUX0qNHj1plc+bMyWmnnZZ//OMfufjii7PpppvWqdeiRYt07969aJurrrpqll566QXcMwBoWk0xxwLA4qIp59l33303hx12WDp37pwrrrjC01IBWKRU2r3s9OnTM2XKlPnfEQCoME0xx3744YeZOXNm9ttvvzrLbr/99tx+++35zW9+k2233XYB9w4oxhPaAEowe/bsnHDCCXnuuedyySWX1Hqc+9cNGjQoDz30UD788MOasn/84x95++23s8MOO9Ra9yc/+UlGjx6ds88+O4MGDSq67e233z4vvvhiXnzxxZqyN998M48//nidNgGguWnKORYAFnVNOc+OGzcuhxxySKqqqnLVVVelc+fO5dkpAKgATTnHjh8/vk7Z+++/n3/84x9Zb731StwjAKgMTTXH7rTTTvnNb35T50+S9O/fP7/5zW+8ihQWsqpCoVBo6iAAmpvzzjsv1113XQYMGJAdd9yxzvJdd901yVfZ+0OGDEn79u3zve99L1OnTs1VV12V5ZdfPiNHjqx5vO0111yT888/PxtuuGG9mf7bbbdd2rVrlyT5/PPPs9tuu+WLL77IIYccklatWuWaa67J7Nmz8+c//9kvBQBo1ppyjp0yZUquv/76JMkzzzyTRx55JIccckiWWWaZtG/fPgcccMDC2m0AaBRNOc/uuuuueeWVV3LYYYfVeZVLly5dssUWW5R7dwGg0TTlHNu3b99svvnm6dGjRzp06JC33347I0eOzLRp03LNNddko402Woh7DgALV1POsfWprq7O/vvvnx/+8Idl2kOgGAltACUYOnRonnzyyaLLX3311Zp/v/7667ngggvy9NNPp3Xr1unfv39OP/30dOnSpWad008/PbfddlvR9h544IGsssoqNT9/9NFH+elPf5oxY8Zkzpw56dOnT84444ysvvrqC7hnANC0mnKOff/997PNNtvUu97KK6+cBx98cH53BwAqSlPOs9XV1UXX23TTTWuSygGgOWrKOXb48OF56KGH8t577+WLL75I586ds8kmm+TII49scP4FgOagqX8n+78ktEHjkdAGAAAAAAAAAABARWjR1AEAAAAAAAAAAABAIqENAAAAAAAAAACACiGhDQAAAAAAAAAAgIogoQ0AAAAAAAAAAICKIKENAAAAAAAAAACAiiChDQAAAAAAAAAAgIogoW0x9+qrr+bVV19t6jAAYJFjjgWAhcc8CwALhzkWABYOcywAzB8JbYu5GTNmZMaMGfnyyy/z9NNP58svv2zqkBY7+r5p6f+mo++blv5f+MyxTU/fNy3933T0fdPS/43DHNv09H/T0fdNS/83HX3fOMyxTU//Nx1937T0f9PR943D98VNT983Lf3fdPR909L/pZPQRpJk9uzZtf6m8ej7pqX/m46+b1r6v/Ho66aj75uW/m86+r5p6f/Gp6+bhnO96ej7pqX/m46+b3z6umk415uOvm9a+r/p6PvGpb+bjr5vWvq/6ej7pqX/SyehDQAAAAAAAAAAgIogoQ0AAAAAAAAAAICKIKENAAAAAAAAAACAiiChDQAAAAAAAAAAgIogoQ0AAAAAAAAAAICKIKENAAAAAAAAAACAiiChDQAAAAAAAAAAgIogoQ0AAAAAAAAAAICKIKENAAAAAAAAAACAiiChDQAAAAAAAAAAgIogoQ0AAAAAAAAAAICKIKENAAAAAAAAAACAiiChDQAAAAAAAAAAgIrQqqkDAGDxNXHGcnns+fFJxtdZtu3mq853e/f/4716y0tpC6ASGNdKU6zfkuJ9V0odWBiciyxKGjqfiyl2nt/XQFvbNfDZKCWGQpHyqhLqNKRYew191u99bO7+LJdHn/vvvVRVA8EVW9RQzA31aTHFjlE52yq1vVI0dO50alN/eSlxG/ehcZTyWfvvmDvvWjQwHs/fXLFcxhT5zixJZs+Z/xgamivmFAmuof2ZNbv+8pYlPEah0EDnlBJbMQ31wX/7dLl88kzxvv+6Vi2LL5tT7BiVMGc3FPfMWfWXty7ht39FY06y/Rbzf41WyjVIVer/vrjhOvVraB69p8jnu2UDfV3u69T5Vcp1beJ6gsrUWNfA9c/lX91LDerbrt46DX2mi81XDY3TDc1xg/rO/z1CseYa2k6x+EqZfxua5+dt3K99jVNs7mnRwHaK1WnwvriE64ZiGhrby3lf3JBStjNhRvHry6b+DqCxlPN7qkVRJf4+yhPaAAAAAAAAAAAAqAgS2gAAAAAAAAAAAKgIEtoAAAAAAAAAAACoCBLaAAAAAAAAAAAAqAgS2gAAAAAAAAAAAKgIEtoAAAAAAAAAAACoCBLaAAAAAAAAAAAAqAgS2gAAAAAAAAAAAKgIEtoAAAAAAAAAAACoCBLaAAAAAAAAAAAAqAgS2gAAAAAAAAAAAKgIEtoAAAAAAAAAAACoCBLaAAAAAAAAAAAAqAgS2gAAAAAAAAAAAKgIEtoAAAAAAAAAAACoCBLaAAAAAAAAAAAAqAgS2gAAAAAAAAAAAKgIEtoAAAAAAAAAAACoCBLaAAAAAAAAAAAAqAgS2gAAAAAAAAAAAKgIEtoAAAAAAAAAAACoCBLaAAAAAAAAAAAAqAgS2gAAAAAAAAAAAKgIEtoAAAAAAAAAAACoCBLaAAAAAAAAAAAAqAgS2gAAAAAAAAAAAKgIEtoAAAAAAAAAAACoCBLaAAAAAAAAAAAAqAgS2gAAAAAAAAAAAKgIEtoAAAAAAAAAAACoCBLaAAAAAAAAAAAAqAjNKqFt+PDhqa6urvfP5Zdf3tTh1euaa67Jww8/XKd84MCBOeecc5ogIgAAAAAAAAAAgMrUqqkDmF9LLrlkrr322jrlK664YhNE882uu+66bL311unfv3+t8ksvvTTt27dvoqgAAAAAAAAAAAAqT7NLaGvRokU22GCDpg5jgfXs2bOpQwAAAAAAAAAAAKgozeqVo9/k/vvvT3V1df72t7/VlE2aNCn9+vXLSSedVFP2xhtv5Oijj07v3r2zwQYb5Igjjsi7775bq605c+bk6quvzo477pj11lsvW2yxRY4//vhMmTIlSXL66adn5513rlVn8uTJqa6uzqhRo5J89VrRDz74IDfeeGPNq1G/vmzuK0dHjRqVnj175tNPP63V3qRJk7Leeuvlpptuqil79tln873vfS8bbLBBevfunZNPPjnjx49f0K4DAAAAAAAAAABocs0yoW3WrFl1/iTJtttumyFDhuSss87KhAkTkiQ//vGPkyRnn312kuS9997Lvvvum88++ywXXHBBfvGLX2TChAk56KCDMmPGjJpt/OQnP8nPf/7zbL311rnsssvywx/+MEsttVSmTp06z3Feeuml6dq1a7bffvuMGDEiI0aMyNZbb11nve222y4tW7bMX//611rl9957b5Jkhx12SPJVMtvQoUOzzDLL5Fe/+lV+8pOf5MUXX8wxxxwzzzEBAAAAAAAAAABUqmb3ytGpU6dm3XXXrVN+4403ZuONN85ZZ52VXXbZJT/84Q+zww47ZPTo0bnyyivToUOHJF8lmXXo0CFXX311llhiiSTJRhttlG222Sa33HJL9t9//7z11lv505/+lBNPPDFHHnlkzTa23377+Yq1Z8+eadOmTbp06dLga1KXWWaZ9O/fP3feeWcOOOCAmvI777wzW2yxRTp27Jgkueiii7Leeuvl0ksvTVVVVZKke/fu2XnnnfPwww+nf//+8xXfXIVCIdOmTUuSmr9pPPq+aen/pvNNfT4/CcTfpJxtLSqc+3W1a9eu7G2aY5vWotz3zWFcq9T+L6XvmkN/f12l9v3iYmH2f3M7F+daGHNs8tU8mzjXm8rCOtcXh3H6m1TC/lTy/Vgl9E8y/+e+c3vBucapyxxbHj5r8M2a4+ekEq5BKqHf5iUGc2z9fF/cNBrrc9NcPp9UnkqeD4ptx+9kS1eO/Wnu4/7COKbzOsc2u4S2JZdcMjfccEOd8m9961tJvkoOO//883PwwQfn4Ycfzn777Zd+/frVrDdmzJjstNNOadmyZc2T3dq3b5+ePXvmpZdeSpI8/vjjKRQK2XPPPRthj74yePDgnHjiifnPf/6TlVZaKZ988kn++c9/5mc/+1mSr07uZ555Jt///vcze/bsmnrdunXLiiuumBdffLHkhLaZM2fm7bffTpKav2l8+r5p6f+mslzRJWPHji1be6W1tXhw7v9X7969y96mObYyNO++b/7jWtP0fynzS7nnpKbXvM/95q/0/l/0zsWFMccmqbmnd643rYb7v/j5XEz5x+n5j6GpVcL+NP39WCWMhQ33df3nvmuQxmDc/y9z7Pwo7+cTFjfN8XNS7muqpp/LS+vr+Ylh0Rr3F5zvixempv/cVMK4VgkxMP9KmV/Kf29Xynb8Tra88//8q/xxv/GO6bzOsc0uoa1FixZZf/31G1ynd+/eWWmllfLBBx/UeuJZkkycODHXXnttrr322jr1WrdunSSZNGlSWrVqlWWXXbZ8gX+DAQMGpG3btrnrrrty+OGH5+67784SSyyRbbfdNkkyefLkzJ49O+eff37OP//8OvU//PDDkrfdunXrrLzyynn77bfTrVu3tG3btuS2mH/Tpk3T901I/zedadOmZeJrxTO611lnnflu87Hnx5etrUWdc79xmGOb1qJwnjfnca0p+79YvyXF+66UOpVqUTj3m7MF7f9F6Vxc2Fq1apVZs2Y515vIvJzrDZ3PxRQ7z8eU+NkoJYam1tD+PPpc4+xPKeNNsWNUzrZKba8U33Tu1HfulxK3cX/eucZpPIviHFvKZ62xxlxoDkq5RmtqDc2jj5Tw+S73der8KvW6dl5iMMc2Ht8Xf6WxroEbmssrYVwr5R6BptfQOVrO++KGzO92pk2blgll/p1sY+1rOZXze6r50Vzm2Ur8fVSzS2ibF7/+9a8zceLEdOvWLT/+8Y9z3XXX1byis0OHDunfv3+++93v1qm31FJLJUk6duyYWbNmZfz48UWT2tq0aZOZM2fWKvvss89KjnnJJZfMtttum9GjR+fwww/P6NGjM2DAgJpH7S2zzDKpqqrKkUceWZPk9nWdOnUqedtVVVU1H5y2bdsutEfV0zB937T0f1MpfvFU2vGof6J1bItz7i9c5tjK0Lz7vvmPa03T/8VvTIvHUkqdyta8z/3mr/T+X/TOxYVl7n2+c71pNdz/8/9FYfnH6eb3i4BK2J+mvx+rhLGw4b6u/9x3DdIYjPsL36I5x5b38wmLm+b4OSn3NVXTz+Wl9fX8xLBojfuVyffFczX956YSxrVKiIH5V8r8Uv7Peinb8TvZ8s7/86/yx/3KO6aLXELbM888k6uuuio/+tGP0rNnz+y777659tprc9BBByVJNt9887z++uvp2bNnWrZsWW8bm222WaqqqjJy5MgcccQR9a6zwgor5KOPPsoXX3xRkwg3ZsyYOuu1bt06X3755TzFvvPOO+eII47II488kueeey6HH354zbJ27dplgw02yJtvvvmNT6gDAAAAAAAAAABojppdQtucOXPy3HPP1Slfdtlls+yyy+a0007LlltumX322SdJctRRR+WXv/xl+vXrlzXXXDPHH3989txzzxx66KHZe++906VLl3z66ad58skns/HGG2fnnXfOGmuskX333TeXXHJJPvvss2y++eaZPn16HnrooQwbNizLL798Bg0alF//+tf5wQ9+kL333juvv/56br311jpxfetb38rjjz+eMWPGpH379llllVWKPk2tb9++6dixY37wgx+kffv22WqrrWot//73v58DDzwwJ5xwQgYPHpz27dvno48+ymOPPZbdd989ffr0WfAOBgAAAAAAAAAAaCLNLqFt+vTpNclqX7fnnnumZcuWmTx5cs4777ya8qOPPjoPPfRQvv/972fEiBFZffXVc8stt+Tiiy/Oj3/840ydOjVdu3bNJptskurq6pp6P/zhD7PKKqvklltuybXXXpuOHTtmk002qXka21prrZULLrggv/3tb3PMMcekd+/e+cUvfpFdd921VlwnnXRSfvSjH2XYsGH54osvcv7552f33Xevd99at26d7bffPiNGjMiee+6ZNm3a1Fq+0UYb5Y9//GOGDx+eM844IzNnzswKK6yQzTbbLKuvvnrJfQoAAAAAAAAAAFAJmlVC27BhwzJs2LAG1znnnHNq/dyqVauMHDmyVlm3bt1y8cUXN9hOixYtcthhh+Wwww4rus6QIUMyZMiQWmWvvvpqrZ/XXnvt3HjjjXXqPvjgg/W2ec4559TZh69bf/31c/nllzcQOQAAAAAAAAAAQPPUoqkDAAAAAAAAAAAAgERCGwAAAAAAAAAAABVCQhsAAAAAAAAAAAAVQUIbAAAAAAAAAAAAFUFCGwAAAAAAAAAAABVBQhsAAAAAAAAAAAAVQUIbAAAAAAAAAAAAFUFCGwAAAAAAAAAAABVBQhsAAAAAAAAAAAAVQUIbAAAAAAAAAAAAFUFCGwAAAAAAAAAAABVBQhsAAAAAAAAAAAAVQUIbAAAAAAAAAAAAFUFCGwAAAAAAAAAAABVBQhsAAAAAAAAAAAAVQUIbAAAAAAAAAAAAFUFCGwAAAAAAAAAAABVBQhsAAAAAAAAAAAAVQUIbAAAAAAAAAAAAFUFCGwAAAAAAAAAAABVBQhsAAAAAAAAAAAAVQUIbAAAAAAAAAAAAFUFCGwAAAAAAAAAAABVBQhsAAAAAAAAAAAAVQUIbAAAAAAAAAAAAFUFCGwAAAAAAAAAAABVBQhsAAAAAAAAAAAAVQUIbAAAAAAAAAAAAFUFCGwAAAAAAAAAAABVBQhsAAAAAAAAAAAAVoVVTBwCV4r5/vFd02Xabrzrf7d3fQHt1LZfHnh+fZHy9S7ctYfulKhZ3Y8ZAcYva8enU5pOss846adeuXVnaa679AJWooXmsUKS8ofmyoXm2mGLtzV9by2XM8+Oz3eblGWfmaqzx2LjWsHIeB31NpXAuNp1S7glLmS8LxRYkqaoqvmx+NbSdYlo0sP36m/tqni12L1usuYZCK3Yc5swpXqeh41DsM9XgsSsSYEPHpzzXLd9sUN9VM3Xq1IwdO7as91LlUMp3J43RVqmKnTtf9f8n9S4rJW7jPouD+fue9CtzGpgsio3TU78sXqlFA/+1/46H3623vKroTJbMmFX/thqaS1u3qn/hnAYm7dYt5//iYHaR5hqKbfrM+iu1W6J4pVYt6y//cmbx7RSLoVhbSbLjFuWbYxvqzaoiMTRUp6FrmmLXDYP6lvd3Da2L/JavobjLOfeUczuNeY2zfQnHoZgyXsI3yDUD5VTKfdfM2fWXNzS/zCw2KTVg1IP1z8sNbWdWkdjatC5e586/198HsxqIeYnW9QfR0DxWLLYkuWdMkfG9gX1t6BgV07LIdVBD97ilPBWphK8hsn2Reb4hpXwnXM46DV2DNNac0FjbaUgl3LfPL3NpwyqxfzyhDQAAAAAAAAAAgIogoQ0AAAAAAAAAAICKIKENAAAAAAAAAACAiiChDQAAAAAAAAAAgIogoQ0AAAAAAAAAAICK0GpeVrr99ttLanzIkCEl1QMAAAAAAAAAAGDxM08Jbaeffvp8N1xVVSWhDQAAAAAAAAAAgHk2TwltDzzwwMKOAwAAAAAAAAAAgMXcPCW0rbzyygs7DgAAAAAAAAAAABZz85TQVsyMGTPy8ssvZ/z48dloo43SuXPncsUFAAAAAAAAAADAYqZFqRWvu+66bLnllvnud7+bYcOG5dVXX02STJgwIX369Mmtt95atiABAAAAAAAAAABY9JWU0DZy5Mj89Kc/Tb9+/XLeeeelUCjULOvcuXM222yzjB49umxBAgAAAAAAAAAAsOgrKaHt6quvzjbbbJOLLrooAwYMqLN83XXXzeuvv77AwQEAAAAAAAAAALD4KCmh7Z133slWW21VdHnHjh0zadKkUmMCAAAAAAAAAABgMVRSQlv79u0zceLEosv//e9/p2vXriUHBQAAAAAAAAAAwOKnpIS2rbbaKjfffHMmT55cZ9nrr7+eW265JQMHDlzg4AAAAAAAAAAAAFh8tCql0gknnJC99947O++8cwYMGJCqqqrcfvvtGTlyZO6999507do1xxxzTLljBQAAAAAAAAAAYBFW0hPall9++YwaNSr9+vXL3XffnUKhkD//+c/529/+lsGDB+fmm29O586dyx0rAAAAAAAAAAAAi7CSntCWJMsuu2zOO++8nHfeeZkwYULmzJmTzp07p0WLknLkAAAAAAAAAAAAWMyVlH328MMPZ/bs2TU/d+7cOV26dJHMBgAAAAAAAAAAQMlKekLbkUcemQ4dOmTQoEHZaaed0qdPH8lsAAAAAAAAAAAALJCSEtquuOKKjB49Ovfcc09uvfXWdOrUKdtvv30GDx6cjTfeuNwxAgAAAAAAAAAAsBgoKaGtX79+6devX2bOnJlHH300o0ePzl/+8pfcdNNN6dq1a7bffvvstNNO2XDDDcsdLwAAAAAAAAAAAIuokhLa5mrdunUGDBiQAQMGZMaMGfn73/+eu+++O7feemtuvPHG/Otf/ypXnAAAAAAAAAAAACziWpSroalTp2bChAn59NNP8+WXX6ZQKJSraQAAAAAAAAAAABYDC/SEtilTpuTee+/N6NGj88QTT2TWrFnp3r17jj/++Oy0007lihEAAAAAAAAAAIDFQEkJbbfffnv++te/ZsyYMZk5c2a+9a1v5aijjsqOO+6YNddcs9wxAgAAAAAAAAAAsBgoKaHt9NNPz6qrrppDDjkkO+64Y3r06FHuuAAAAAAAAAAAAFjMlJTQduutt2a99dYrdywAAAAAAAAAAAAsxlqUUunryWyffPJJXnnllUydOrVsQQEAAAAAAAAAALD4KSmhLUnuv//+7LDDDunfv3922223PP/880mSCRMmZMiQIbn//vvLFiQAAAAAAAAAAACLvpIS2h588MEMGzYsnTp1yrHHHptCoVCzrHPnzll++eUzcuTI+W53+PDhqa6urvfP5ZdfPs/tjB07NsOHD8+0adPmO4b5NXTo0Bx55JELfTvFDB8+PBtuuGGTbR8AAAAAAAAAAKBcWpVS6Te/+U023njjXH/99Zk4cWIuvfTSWss32GCDjBgxoqSAllxyyVx77bV1yldcccV5bmPs2LG59NJLs//++6dt27YlxQEAAAAAAAAAAEDjKimh7fXXX8/pp59edHmXLl0yfvz4kgJq0aJFNthgg5LqlmL69OlZcsklG217AAAAAAAAAAAA1K+kV462bdu2wdd5vvfee+nYsWOpMTWouro6V1xxRYYPH56+ffumT58+OeOMMzJ16tQkyahRo3LGGWckSTbffPNUV1dn4MCBNcuqq6vz7LPP5uCDD84GG2yQCy+8MMOGDcu+++5bZ1t//OMfs/7662fSpEnzFeMbb7yRo48+Or17984GG2yQI444Iu+++27N8mKvKb3hhhvSq1evTJkyJUlSKBRy1VVXZfvtt896662XbbbZJtdcc818xQIAAAAAAAAAANBclJTQ1qdPn9x+++2ZNWtWnWXjxo3LzTffnC233LLkoGbNmlXnz9fdeOONefvtt3PBBRfk2GOPzV/+8pf89re/TZJsvfXWOfroo5MkV155ZUaMGFHnlagnn3xyNttss1x22WXZdddds9dee+XZZ5/Nm2++WWu9kSNHZrvttpuv5Lz33nsv++67bz777LNccMEF+cUvfpEJEybkoIMOyowZM5IkgwcPzpgxY+okyt15553p379/lllmmSTJeeedl1//+tcZMmRILr/88uy22275xS9+kT/96U/zHA8AAAAAAAAAAEBzUdIrR0844YTss88+2XPPPbPDDjukqqoqjz76aB5//PGMGDEihUIhxx57bEkBTZ06Neuuu26d8htvvDEbb7xxkqRr16656KKLkiRbbbVV/vWvf+Wee+7JKaecks6dO2e11VZLkqy77rrp3Llznbb23XffHHHEETU/z5kzJyuttFJGjhyZU089NUny2muv5aWXXspJJ500X/Ffeuml6dChQ66++uosscQSSZKNNtoo22yzTW655Zbsv//+2X777XPuuefm3nvvzd57750k+eCDD/Lcc8/l4osvTpK8++67ueGGG/LjH/84++yzT5Kkb9++mT59en7zm99kn332SYsWJeUj1lEoFGqeuNfQk/cWZ3OfALi4br9SYlgYFpVzvzken0Wl75sr/V9Xu3btyt7m4jbHlnssKmd7jTVONsfxeGFpynN/cT8Oi9O4U4n0f10LY45Nvppnk8bp68V9XGnOmuM1wDe1ZZxpWvq/6ej7uhaFORa+yaJ2HVYJ+1Op10eL4jhfCcd7XiyKfV8Ovi+Gha+pfwdQqXNiubfzTeNNc5mvmivjfl3zOseWlND2rW99K3/84x9z3nnn5ZJLLql5NWaSbLrppjn77LOzyiqrlNJ0llxyydxwww31bnOuvn371lq25ppr5q677prnbWy99da1fm7RokX22GOP3HTTTTnxxBPTqlWrjBw5MiuvvHI233zzJMns2bNrbuSTpFWr+rtuzJgx2WmnndKyZcuaJ8u1b98+PXv2zEsvvZQk6dSpU/r27Zu77rqrJqFt9OjRadeuXQYMGJAkeeyxx5IkgwYNqvWEur59++aKK67Ihx9+mJVXXnme97khM2fOzNtvv50kNX8vnpYrumTs2LFlbW9+lbb9UtUfd+PG0Piaz7m/6B2f5tP3iyb9/1+9e/cue5vNe46d/3ms4bGonO2VO7ZSLHrj8cKycM99x6EhzW/cWbTo//9aGHNskpp75fL1dSn3hOW772PhaKxj1xTXLcaZpqX/m46+/69FYY6Fb7KoXYc19e8aSo+hmHL/XqU5jvPl74Om0vz6fuFatL8vbp5jKIuecs6Lpfx+oty/0yimMn4/sejMV82Vefa/5nWOLSmhLUnWXnvtXHPNNfnss8/yzjvvpFAoZNVVV633iWjzo0WLFll//fUbXKd9+/a1fm7dunXN6zznRZcuXeqU7bnnnvntb3+bhx9+OFtttVXuuOOOfPe73615Ctp2222XDz74oGb9Bx54oN6kvYkTJ+baa6/NtddeW2dZ69ata/49ePDgnH766Rk3bly6du2au+66K9ttt13NU90mTpyYQqGQzTbbrN59KGdCW+vWrbPyyivn7bffTrdu3dK2bduytNvcjHl+fNFl66yzzny391gD7c2vUrZfqmJxN2YMjWnatGnN6txflI5Pc+v7RY3+bxzNeY4tZR5raCxqaJ6d3/bK2VapFqXxeGFpjHHGcaifMb5p6f/G06pVq8yaNatsfV3KPWE57/tYOBrr2DXmdYtxpmnp/6aj7xtPuedY8yULopxzbCVo6t81lBpDMQ3FNr/baa7jfDn7oKk0175vjirl++LmOoay6CnnvNhQW+WsU4qm/v3EtGnTMuG14k9hay7zVXNlni1dyQltc3Xo0CG9evWqVfb73/8+w4cPr3kiWXOwwgorpF+/fhk5cmRmz56diRMnZvfdd69Z/rvf/a5W0txyy9WfwdqhQ4f0798/3/3ud+ssW2qppWr+vc0226RNmza5++67s+WWW2bs2LG1Xm/aoUOHVFVV5Y9//GOtRLi51lhjjZL2sz5VVVU1H5y2bdsutEfVV77ik1JpfVK+Sa5xj0n9cS/q50XzOfcXvePTfPp+0aT/F67mPcfO/zzW8P6Vs71yx1aKRW88XlgW7rnvODSk+Y07ixb9v/BVVVUlKWdfl3JP6JcAla6xjl1TXLcYZ5qW/m86+n7ha8w5Fr7JonYd1tS/ayg9hmLK/XuV5jjOl78Pmkrz6/vmp3K+L26eYyiLnnLOi6X8fqLcv9MopjJ+P1E8oc3Y3zjMs/NvgRPa6jNnzpzMnj17YTQ9T+YmgM3PU9uSZK+99sr//d//ZcKECdl8881rPQGturp6ntrYfPPN8/rrr6dnz55p2bJl0fWWXnrpbL311rnrrrvy2WefpXPnzrVepTr3VaeTJk3KwIED52s/AAAAAAAAAAAAmqOFktC2IObMmZPnnnuuTvmyyy6bVVdddZ7aWHPNNZMkN954Y7bddtssueSS85SQtvXWW6dTp0559tln88tf/nK+4p7r+OOPz5577plDDz00e++9d7p06ZJPP/00Tz75ZDbeeOPsvPPONevuvPPOOe644/LBBx9khx12SKtW/z0ca6yxRvbff/98//vfz6GHHppvf/vbNe9Vf+KJJ/Lb3/62pPgAAAAAAAAAAAAqVcUltE2fPj377LNPnfI999wz55133jy10bNnzwwbNiy33HJLrrzyyqy44op58MEHv7Feq1atMnDgwPz1r3/NdtttN9+xJ8nqq6+eW265JRdffHF+/OMfZ+rUqenatWs22WSTOkl1/fv3zzLLLJNx48Zl8ODBddo666yzssYaa2TEiBH5zW9+k6WWWiprrLFGdthhh5JiAwAAAAAAAAAAqGQVldA2bNiwDBs2rMF1Xn311TplBx10UA466KBaZccdd1yOO+64WmW77757dt9996Jtz5kzJ48++mh22WWXtGnTZp5ivv766+uUdevWLRdffPE31m3Tpk2eeuqposurqqpywAEH5IADDii6zrz0GQAAAAAAAAAAQHMwzwltkyZNmudGp0+fXkosTWbGjBl55ZVXcs899+Sjjz7K/vvv39QhAQAAAAAAAAAALHbmOaFts802S1VV1TytWygU5nndSvDJJ59kr732SufOnfP//t//y7e+9a2mDgkAAAAAAAAAAGCxM88Jbccee2yzSlKbH6usskq9rzIFAAAAAAAAAACg8cxzQtuwYcMWZhwAAAAAAAAAAAAs5lo0dQAAAAAAAAAAAACQSGgDAAAAAAAAAACgQkhoAwAAAAAAAAAAoCJIaAMAAAAAAAAAAKAiSGgDAAAAAAAAAACgIkhoAwAAAAAAAAAAoCK0KrXi7Nmz89e//jVPPPFExo8fn+OPPz7V1dWZMmVK/vGPf2SjjTZKly5dyhkrAAAAAAAAAAAAi7CSEtomT56cww47LC+88ELatWuXadOm5YADDkiStGvXLueee26GDBmSk046qazBAgAAAAAAAAAAsOgq6ZWjv/jFL/L666/nqquuyv33359CoVCzrGXLltl+++3z8MMPly1IAAAAAAAAAAAAFn0lJbQ98MADGTp0aLbYYotUVVXVWd6tW7d88MEHCxwcAAAAAAAAAAAAi4+SEtqmTJmSVVZZpejyWbNmZfbs2SUHBQAAAAAAAAAAwOKnpIS21VZbLS+//HLR5WPGjMmaa65ZclAAAAAAAAAAAAAsfkpKaNtzzz0zcuTIjB49OoVCIUlSVVWVGTNm5Fe/+lUeeeSR7LPPPmUNFAAAAAAAAAAAgEVbq1IqHXjggfn3v/+dk046Ke3bt0+SnHLKKZk0aVJmzZqVffbZJ3vttVdZAwUAAAAAAAAAAGDRVlJCW1VVVc4999wMGTIk99xzT955553MmTMnq622Wnbcccdssskm5Y4TAAAAAAAAAACARVxJCW1zbbzxxtl4443LFQsAAAAAAAAAAACLsRalVHrvvffy4IMPFl3+4IMP5v333y85KAAAAAAAAAAAABY/JT2h7cILL8znn3+egQMH1rv8xhtvTPv27fOrX/1qgYIDAAAAAAAAAABg8VHSE9qeffbZ9O3bt+jyzTffPE899VTJQQEAAAAAAAAAALD4KSmhbfLkyVlqqaWKLm/Xrl0mTZpUakwAAAAAAAAAAAAshkpKaFtxxRXzzDPPFF3+9NNPZ4UVVig5KAAAAAAAAAAAABY/JSW07bzzzrnrrrty3XXXZc6cOTXls2fPzrXXXpvRo0dn5513LluQAAAAAAAAAAAALPpalVLpyCOPzNNPP52f/vSnueyyy7LGGmskSd56661MmDAhm266aY4++uiyBgoAAAAAAAAAAMCiraSEtjZt2uQPf/hDbrvtttx333159913kyS9evXKoEGDMmTIkLRoUdLD3wAAAAAAAAAAAFhMlZTQliQtWrTIHnvskT322KOc8QAAAAAAAAAAALCY8hg1AAAAAAAAAAAAKkLJT2h75JFHcuutt+a9997L5MmTUygUai2vqqrK/fffv8ABQinu+8d7RZdtt/mq81Veqm3nsb2pU6dm7NixWWedddKuXbv53s79RfZ1XrdfjnqlxFDOuEs53s1VqccVSlHsc5o4Fxd3pYytxeo0dJ4t6Pa/Psc2tJ1C0SXzH0Mp+9OQUmIrFKlUVVW8TrH9aWiOLdZc7c0vlzHPj08yvsHtNKSUsajcx2F+t98QYytUrgaGyaIaGqeLjXn3PDb/Y+uXM4tvp2WR/6rY0Lg/a3b95TNmFd+jGbPqL1+igW+WpheJu6F+K9beW+PmFK2z9BLFd3b8ve/WW/759OJRdFyq/va+LNIHSXL73+rfTrG+TpLpM+uP4fq73ylaZ5kl58bWNe898WlN+cwGYltqyfr3p0UD/8212LmwZOvifT2nSJd+WWQ/k2TXrVert3zBr0FqK/c1yJzCcnn0uf9e48w1qG/jfA/SkFKug8oZQ2N9R+Oaqnkp93VzsYGgoXGtTavi49fMImPe+M+Lzz3jptRfp9jYniQfTq5/sF6zS+uidd74tP7J9LPPJhat07J123rL58z6smidcU9fW2/5Eh1WKVpnqVX71Fv+5YS3itZZovMa9ZbP+Oz9onWu//u69Za3bVv8u/Txb/2z3vINe29RtM6r79ffp4UGZphN1lq26LLPptVf7y/Pvl60znort6m3vKG5dPwX9Z+nay/fsmidq+6o/1pjmbYNfE6KXNM0dM3554fqvz5q6Lpl9pyu+fejn9YpX6L4xyRLFLk+mV38I5xZs+vv02LXTQ0p9j1Mktz9aP1jWevih6fodXebBq67i+xOkqRlkV0yXy46SrnOLOW6rNh1XkP3PMXuH4qNKUnq5BzMy3aKLZs0tfiHo02r+pdNLT5dZsk29dcpdl+eJP+Z2FAM9Zc31D/FNtW+gTG82Jy0QofidYrdzzf0vUGnpeuPbnYDg9Sf7ql/rmho3C82j4x8oP62kuLnyK33F69TLOqGjnexOWn0I8WvbWcVuZlu2aL48WlVJIZi8843uWdM/fUaur4udhwa6p+GrhuKKXaf3dC9ZzENjX3FxtJSvmuoP7avfley3eb1X8OWe3+KubeB7yWLnXJNec1QUkLblVdemYsuuijLLrtsevXqlerq6nLHBQAAAAAAAAAAwGKmpIS26667Lptttlkuv/zytG7dQHosAAAAAAAAAAAAzKMGHvhX3OTJk7P99ttLZgMAAAAAAAAAAKBsSkpoW3/99fPWW2+VOxYAAAAAAAAAAAAWYyUltP3oRz/Kfffdl7/85S/ljgcAAAAAAAAAAIDFVKtSKp1wwgmZNWtWvv/97+dHP/pRVlhhhbRoUTs3rqqqKnfccUdZggQAAAAAAAAAAGDRV1JCW8eOHdOxY8esvvrq5Y4HAAAAAAAAAACAxVRJCW3XX399ueMAAAAAAAAAAABgMdfim1cBAAAAAAAAAACAha/khLbPP/88l19+eQ499NAMGTIkL7zwQpJk0qRJufrqq/POO++ULUgAAAAAAAAAAAAWfSW9cvSjjz7KAQcckI8++iirr7563nzzzXzxxRdJko4dO+amm27KBx98kLPOOquswQIAAAAAAAAAALDoKimh7cILL8wXX3yR22+/PZ07d07fvn1rLd92223z0EMPlSM+AAAAAAAAAAAAFhMlvXJ0zJgxGTp0aNZaa61UVVXVWb7qqqvmww8/XODgAAAAAAAAAAAAWHyUlNA2ffr0dO7cuejyua8fBQAAAAAAAAAAgHlVUkLbmmuumX/+859Fl99///3p2bNnyUEBAAAAAAAAAACw+Ckpoe3AAw/M6NGjc/nll+fzzz9PkhQKhbzzzjs59dRT89xzz+Wggw4qZ5wAAAAAAAAAAAAs4lqVUmnXXXfNf/7zn1xyySW5+OKLkySHHXZYCoVCWrRokRNPPDHbbrttOeMEAAAAAAAAAABgEVdSQluSHH300dl1111z77335p133smcOXOy2mqrZdCgQVl11VXLGSMAAAAAAAAAAACLgZIT2pJkpZVW8mpRAAAAAAAAAAAAyqJFUwcAAAAAAAAAAAAAyTw+oa1Hjx5p0aJFnnvuubRp0yY9evRIVVVVg3Wqqqryr3/9qyxBAgAAAAAAAAAAsOibp4S2Y489NlVVVWnVqlWtnwEAAAAAAAAAAKBc5imhbdiwYQ3+DAAAAAAAAAAAAAuqxfxWmDZtWnbffff86U9/WhjxAAAAAAAAAAAAsJia74S2tm3b5v333/fKUQAAAAAAAAAAAMpqvhPakqRfv3559NFHyx0LAAAAAAAAAAAAi7GSEtqOOeaYvP322zn11FPz1FNP5eOPP86kSZPq/AEAAAAAAAAAAIB51aqUSoMHD06S/Pvf/86dd95ZdL2xY8eWFhUAAAAAAAAAAACLnZIS2o499thUVVWVOxYAAAAAAAAAAAAWYyUltA0bNqzccQAAAAAAAAAAALCYa1GORqZMmZLZs2eXoykAAAAAAAAAAAAWUyUntL344os59NBD8+1vfzt9+vTJk08+mSSZMGFCjj766DzxxBNlC7Kx3XHHHdlzzz3Tu3fvbLTRRtlxxx1z5plnZvz48Qtle0OHDs2RRx65UNoGAAAAAAAAAABoLkp65egzzzyTAw88MMsvv3y+853v5JZbbqlZ1rlz53z++ecZMWJE+vTpU7ZAG8sVV1yRiy66KAcddFCOP/74FAqFvP766/nLX/6STz75JMsuu2zZt3n22WenRYuyPCwPAAAAAAAAAACg2Sopoe1Xv/pV1lxzzdx88835/PPPayW0JUmfPn1y2223lSXAxnb99ddnt912y+mnn15T1r9//xx22GGZM2fOQtnmWmutVZZ2pk+fniWXXLIsbQEAAAAAAAAAADS2kh4L9uKLL2b33XdPmzZtUlVVVWf58ssvn08//XSBg2sKkydPznLLLVfvsv99itqoUaOyyy67ZP3110+/fv3yq1/9KrNnz661vLq6Ov/6179y2GGHZYMNNsigQYNy++2312qnvleO/vOf/8y+++6bXr16pU+fPjnjjDMyadKkmuXvv/9+qqurM2rUqJx11lnp06dP9tprrwXbeQAAAAAAAAAAgCZUUkJbq1atGnxa2ccff5x27dqVHFRTWnfddXPTTTfllltuybhx44qud/XVV+ess87KlltumcsuuyyHH354rrvuuvzqV7+qs+4pp5ySLbfcMr/5zW+yzjrr5PTTT88bb7xRtO2XXnopBx98cJZaaqlccsklOeWUU/K3v/0thx9+eK2EuST55S9/mUKhkIsuuiinnnpq6TsOAAAAAAAAAADQxEp65ei3v/3t3HPPPTnooIPqLJs6dWpGjRqVTTbZZEFjaxJnn312jjvuuJx11llJklVWWSUDBgzIQQcdlFVWWSVJ8vnnn+fXv/51DjvssJx00klJki222CKtW7fOBRdckEMPPTSdOnWqaXP//ffP/vvvnyTZcMMN8/DDD+eee+7JMcccU28Ml112Wbp27ZrLLrssrVu3TpKsuOKKOfTQQ/Pwww9n4MCBNev26NEj55133gLtc6FQyLRp05Kk5u9F2dSpU5s6hFoWVt9Xwn6WEkO54/6m9hanc7/S6PumtaD9XwljTLktjGT8RXWObazjv6DbWZh9v6h9BprLMV3Y7TX19svV3qI47jQn+r+uhfUf3gqFQpLG6etKuLeBRVFzvQYp53YqYayo5P75unmdYyuhTxvLojDHAtA0vj5fuo+tX3P/vnhxuiYCFl3lHMsq4fv8St6fxtzOvM6xJSW0HX/88TnggANyxBFHZPDgwUmSV199Ne+//36uuuqqTJgwoWiyVqXr3r177rzzzvzjH//Io48+mn/+85+5/vrrM2rUqNx4441ZZ5118uyzz2bq1KnZYYcdMmvWrJq6ffv2zfTp0/P6669n0003rSnfcssta/7drl27rLTSSvnoo4+KxvDUU09l5513rklmm9tG+/bt8/TTT9dKaNt6660XeJ9nzpyZt99+O0lq/m7+6n9tbJKMHTu2EeOYd6X3ff372rj7WUoM5Yx7wY/3onPuNz/6vmk13P/NbyxdEL179y57m817jm2s47/wt/NV3xffTimKx1be7TSWxtqfxpvnG+c4NNV1y7xqfuPOokX//9fCmGOT1NyPl6+vyzveNPUYBc1Bc70GKW07jfX9TbnjLt/2G+v6flG8Xy2m+cyxpTBfAixM9c2X7mNraz7fF1fudSbAgirn9wal3LOX1l7jfF9YGd91lGZe59iSn9B2+eWX50c/+lFOO+20JMkFF1yQJFlttdVy+eWXp0ePHqU0XRHatGmT/v37p3///kmSRx55JEceeWR+85vf5NJLL83EiROTJLvttlu99T/88MNaPy+zzDK1fm7dunVmzJhRdPuTJ0/OsssuW6d82WWXzWeffVanbEG1bt06K6+8ct5+++1069Ytbdu2XeA2m9qY58cXXbbOOus0YiTfbNq0aQvU948V2dfG3M9SYihn3AtyvBe0/ymdvm9a89L/xT6nSeWNpZWqOc+xjXX8F+Z2vn6eT3ytvP+DpFhsDe1PJSu2Pw3NseXcTkNKOUca6zg01v7ML3Ns09L/jadVq1aZNWtW2fq6lM9nKfcijzzXPOcKWBia6zVIKdtprO9vyh33/FqY38nN6/W9+9UFV+45thTN9d4KoLn4+nzpPrbxLIzvixvrOrPc1+gA86Kc3xuUcs9eSnul3BeXe3+KebSE7yWb8h67pIS2JNl8881zzz335F//+lfeeeedFAqFrLrqqllvvfVSVVVVzhibXL9+/dKjR4+88cYbSZIOHTokSS699NKssMIKddaf+2rSUnXo0CHjx9c9kcaPH1+z7bnK0ddVVVU1F0xt27ZdaI+qb1zFP4iVun+l9339+9q4+1lKDOWMe8GP96Jz7jc/+r5pNdz/zW8srTTNe45trOO/8Lfz1TEob0JbKZ+bStZY+9N483zjHIemum6ZV81v3Fm06P+Fb+79cPn6urzjTVOPUdAcNNdrkNK201jf35Q77vJtv7Gu782/C678c2wpzJcAC1N947v72IVv4XxfXLnXmQALqpzfG5Ryz15ae43zfWFlfNexcJWc0DZXz54907Nnz3LEUhE+/fTTdOnSpVbZ9OnT8+GHH2attdZKkmy44YZp27ZtPvroo2y33XZlj6F379554IEHcvrpp6dVq68O0ZgxYzJ58uSF9hh5AAAAAAAAAACAplZyQtuMGTNy88035+GHH84HH3yQJFl55ZXTv3//7LXXXlliiSXKFmRj2mWXXTJgwIBsueWWWW655fLxxx/nhhtuyMSJE3PggQcmSdq3b5/jjz8+P//5z/PRRx9l0003TcuWLfPee+/lgQceyPDhwxfoEbFHHXVU9t133xx55JEZOnRoPv3001x00UXp1atXzWtQAQAAAAAAAAAAFjUlJbR99NFHOfjgg/PWW2+la9euWX311ZMkr7zySh555JHccMMNueaaa+p9HWelO+644/K3v/0tF1xwQSZMmJBOnTqluro611xzTTbbbLOa9Q455JAsv/zyufrqq3PDDTekVatWWW211bL11lundevWCxTDeuutlz/84Q/55S9/mWHDhqVdu3YZOHBgTjvttLRs2XJBdxEAAAAAAAAAAKAilZTQ9uMf/zj/+c9/cvHFF2eHHXaotezuu+/O6aefnh//+Mf53e9+V5YgG9P++++f/ffff57WHTx4cAYPHlx0+e67757dd9+9Tvmf//znWj9ff/31ddbZdNNNc9NNNxVte5VVVsmrr746T3ECAAAAAAAAAAA0ByUltD3++OM56KCD6iSzJcmOO+6Yf/3rX7nhhhsWODgAAAAAAAAAAAAWHy1KqbTUUkulc+fORZd36dIlSy21VMlBAQAAAAAAAAAAsPgpKaFt9913z2233ZZp06bVWfbFF19k1KhR2WOPPRY4OAAAAAAAAAAAABYfJb1ytEePHnnooYey4447ZsiQIVl99dWTJG+//Xb+/Oc/p0OHDqmurs69995bq96gQYMWPGIAAAAAAAAAAAAWSSUltJ100kk1/77sssvqLP/oo49y8sknp1Ao1JRVVVVl7NixpWwOAAAAAAAAAACAxUBJCW3XXXddueMAAAAAAAAAAABgMVdSQtumm25a7jgAAAAAAAAAAABYzLUopdKrr776jev89a9/LaVpAAAAAAAAAAAAFlMlJbTtscce+f3vf585c+bUWTZp0qSccMIJOfHEExc4OAAAAAAAAAAAABYfJSW07bbbbvnVr36VfffdN2+++WZN+f3335+dd945Dz/8cH7wgx+ULUgAAAAAAAAAAAAWfa1KqfSTn/wkgwYNyplnnpnddtstxx57bF577bXceeed2XDDDXPBBRdk9dVXL3esAAAAAAAAAAAALMJKSmhLkn79+uWuu+7KoYceml/96ldJkqOOOir/93//l6qqqrIFCAAAAAAAAAAAwOKhpFeOJsnUqVPz85//PC+88EKqq6uz5JJLZuTIkfn73/9ezvgAAAAAAAAAAABYTJSU0Pb4449nl112yW233ZaTTjopo0aNym233ZaVV145Rx11VM4888x8/vnn5Y4VAAAAAAAAAACARVhJCW0HH3xwOnTokFGjRuWII45IixYt0q1bt/zpT3/KKaeckjvvvDPf+c53yh0rAAAAAAAAAAAAi7CSEtqOOeaY3HzzzVl77bVrlVdVVeXQQw/NqFGjsuyyy5YlQAAAAAAAAAAAABYPrUqpNGzYsAaXr7nmmhkxYkRJAQEAAAAAAAAAALB4mucntL3wwguZNGnSPK373nvv5Y477ig1JgAAAAAAAAAAABZD85zQts8+++SRRx6p+XnSpEn59re/nSeffLLOus8++2zOOOOM8kQIAAAAAAAAAADAYmGeE9oKhUKdn7/88svMnj277EEBAAAAAAAAAACw+JnnhDYAAAAAAAAAAABYmCS0AQAAAAAAAAAAUBEktAEAAAAAAAAAAFARWs3Pyh988EFefvnlJMmUKVOSJO+8807at29fa73333+/TOEBAAAAAAAAAACwuJivhLZLLrkkl1xySa2yH//4x3XWKxQKqaqqWrDIAAAAAAAAAAAAWKzMc0Lb+eefvzDjAAAAAAAAAAAAYDE3zwltu+2228KMAwAAAAAAAAAAgMVci6YOAAAAAAAAAAAAABIJbQAAAAAAAAAAAFQICW0AAAAAAAAAAABUhFZNHQB8k/v/8V7RZdtuvmq95VULK5j/cV8Dsc1fDMvlsefHp5DxZWjrmzUU93ZF+rSU49CQUuoUUyxmYMGU83NaqmJjTyXE1lSKjeENjYWl9GNDyxqaE+ZXoYFlxbbTUJ26lsuY58c32D/3PFb/drbvO//nWUOxlXM+b6itqiILSzmmpcyxDV1nlKKprzNKZfxiYXBeLVzzN798pZRxskUDg/icOfWXt2ng25ti7c2cXbzOEq3rL2/VsnhwLVvU30NLtileZ8k2xWMovp36y6tXbFnSdgpFDmzbJYrXaVWkU5duW7xOQ8e1mI4lXB2Ucp4W20pDY0cp15zF6uy69WpF6xTTUM801phXbDtTp07N2LFjs84666Rdu3YL3F65NfWc0Fjf0TT1fjJ/SvkOtZTxrmUDg/G0GcVbnF1k/p02s/i2uravf1vF5pAkWa59/RNWqwYeO9B7tfrrfDZtuaJ1Oi9VfwxzGujUcd1Oqrd8lc7F5982RRZ9+vka8x3bl7OK11lmyfrrzGrgWqfl+lvVW77UEsWPz/qrdqm/rQaOabHrliT5cmb9Hb5E6+IXdq2K9Gmxa8QkmTm7/koNbKbo567Y9wmlKuV3DbOLnKcNXKaWdU4o9+9Bmiv3ns1LKcellO9di427xebRJJlRZPKZ+HkDWyryeW/dwEBQKHLjt0RDY2GR5pZq4F5xydbzP1B2Xqr4smXa1t9euwZimDKt/vJ2DdwXF/tOodj2k2TpJesvb9nAcViiVf3Lps0oWqWoNkXaSpIWVfUf73YNzPPFjveXDVzvtS4yLzc0/5dyDdumyElf0v1/A5Ua+t6iWLVSfu/UkMaaR0q5Ly0WWym/7yjlkqqx7qWLfU+WJNuW8Duxhc0T2gAAAAAAAAAAAKgIEtoAAAAAAAAAAACoCBLaAAAAAAAAAAAAqAgS2gAAAAAAAAAAAKgIEtoAAAAAAAAAAACoCBLaAAAAAAAAAAAAqAgS2gAAAAAAAAAAAKgIEtoAAAAAAAAAAACoCBLaAAAAAAAAAAAAqAgS2gAAAAAAAAAAAKgIEtoAAAAAAAAAAACoCBLaAAAAAAAAAAAAqAgS2gAAAAAAAAAAAKgIEtoAAAAAAAAAAACoCBLaAAAAAAAAAAAAqAgS2gAAAAAAAAAAAKgIEtoAAAAAAAAAAACoCBLaAAAAAAAAAAAAqAgS2gAAAAAAAAAAAKgIEtoAAAAAAAAAAACoCBLaAAAAAAAAAAAAqAgS2gAAAAAAAAAAAKgIEtoAAAAAAAAAAACoCBLaAAAAAAAAAAAAqAgS2gAAAAAAAAAAAKgIEtoAAAAAAAAAAACoCBLaAAAAAAAAAAAAqAgS2gAAAAAAAAAAAKgIEtoAAAAAAAAAAACoCBLaAAAAAAAAAAAAqAgS2gAAAAAAAAAAAKgIzT6hbfjw4amurk6/fv0yZ86cOsv33XffVFdX5/TTT69Zf8MNN/zGdo855pgMHTr0G9errq7OVVddNf+Bl8nQoUNz5JFHNtn2AQAAAAAAAAAAyqXZJ7QlSevWrTNx4sT885//rFX+wQcf5Lnnnku7du1qyvbaa69ce+21jR0iAAAAAAAAAAAA32CRSWjbaqutctddd9Uqv+uuu7L22mtntdVWqylbYYUV0qtXr8YOEQAAAAAAAAAAgG+wSCS0JcnOO++ce+65JzNnzqwpu/POO7PzzjvXWq++V46+8cYbOeCAA7L++utn2223zW233bZAsTz00EPZa6+90qtXr2y22WY5++yzM3Xq1CTJ1KlTs8EGG9T7mtLjjz8+++yzT83PkydPzo9+9KNsueWWWW+99bL77rvn0UcfXaDYAAAAAAAAAAAAKtUik9A2YMCAzJgxI2PGjEmS/Pvf/86rr76anXbaqcF6X375ZQ455JB8+umnufDCC3PyySfn8ssvz4svvlhSHH/9619z9NFHp3v37rn00ktz6qmn5r777suZZ56ZJGnXrl0GDhxY52lyn3/+eR566KGaBLwZM2bk4IMPzkMPPZQTTjghv/vd77LmmmvmyCOPzKuvvlpSbAAAAAAAAAAAAJWsVVMHUC5t27atSRTbeuutc+edd2bDDTfMqquu2mC9UaNG5ZNPPsndd9+dbt26JUl69uyZHXbYoebneVUoFHLhhRdmp512ynnnnVdT3rVr1xxxxBE55phjsvbaa2fw4ME55phj8vbbb9ds4/7778+sWbOy4447Jkn+8pe/5JVXXsmf//znrLXWWkmSfv365Z133slvf/vbXHLJJfMV2zfFPW3atCSp+bu5mPvku4VdpzkqdT8Xtz5truf+okDfN63m3v8LY9xp165d2dtszDl2cRu/55f+qYw+WNT6tBSN0QfNfYxv7pqi/yv9s7Uw5tjkq3k2aZy+rvQ+hlI01rXBonY9YZ5tOvq+rkVhjgUWXY01Zy9q22kK8zrHLsp9UJ/m/n0xwIJqrvfzlbydSp5LGzO2eZ1jF5mEtuSr146efPLJmT59ekaPHp2hQ4d+Y50XXngha6+9dq3ktdVXXz09evSotd6sWbNq/l1VVZWWLVvWaeutt97KBx98kB/84Ae11t90003TokWLvPTSS1l77bXTr1+/tG/fPnfddVeOPfbYJMldd92VPn36pEuXLkmSMWPGpHv37unWrVuttvr27Zs77rhj3jpkHs2cOTNvv/12ktT8XVmWK7pk7NixZaxTiuLbaWoN72cl92nTqMxzf/Gg75tW5fd//WPPwhh3evfuXfY2F84cW0qflLsfK3f+K6bx+qdy+6YS+mBRuGaYd403fhVT+WP8om3h9H/Tn1elWBhzbPLf+/SFPccmi899JIuX8l8bLF7XE+bZpqPv/2tRmGOBRVcpv2so73ZKUfnXIAvTf8f95nnvWW7N5/viUpib/3979x9kVXnfD/yz6G7EwZWRoAloq0jYrMDOogSLGxfwB4pZIWMGTdTQiIkxJSQ1bVNJRet3nFaT2kRNIliCVKcVCzZmkB+RHxlQEWtFNBOLjj+BqlWpuosgrPJ8/3C4ZVlYfu2959zl9ZphhHOf+9xnP/fhvA+7H88F9u5A+w0ObL79lf338cqzryIfa9vXjO1SDW1f/OIXo7KyMm677bbYsGFD4W5nHXnrrbeiV69e7Y736tUrtm7dGhERGzZsiLPPPrvwWN++fWPZsmXtnvPuu+9GRBSa1Hb1xhtvREREVVVVjB49OhYsWBCTJk2Kd999N1auXBn/7//9vzZzPffcczFw4MB28+yume5gVFZWRt++fQt3jOvevXunzn+wVj6zcY+P1dbWdtpzDsRjHbxO1jr6Ojtad9Y1LbUtW7bkdu93dWqfrXKp/57OPeVy3ilGxu7pHN5RTTq7jh1lQl519LU+sqbz6lOu1waduUcO5DqjK8ry/FUu5/iuqpj1L/dc7GyHH354fPTRR0XP2IhD59+RHFoO5PsGnf2cPcnz9yDkbHbUvnRKmbFA13UgP2vozNc5EHm+BimmXTPWvz2LJy8/ky3H7+8CpXcgP1M40Pn2Vx6+j1eOfRWPPJ3fte1Ol2poq6ysjNGjR8esWbNi+PDhhbuddeTYY4+NP/zhD+2Ob9y4MXr06FEYM3fu3MJjVVVVu52rZ8+eERFx/fXXR11d3W5fa4empqaYO3durF27NtasWRPdunWL0aNHFx4/+uijo6amps1HlxZLRUVF4YKpe/fuRbtV/YHb81+qPa/1QJ5zIPJ7wdfx15nnmmYjn3v/0KD22cp//Xd/7sn3mv9PcTL2QGrS2XXMb/7tSenqk9/a5KEG5fJ3t3Nkf/7K/zm+aytO/bPfV3lSUVEREcXP2IhD59+RHFo6/9rg0LqekLPZUfviK2XGAl3XgfysoXNf50Dk/xqkmP7vvO/fnsWSn5/JymZg7w603+DA5ttf2X8frzz7KvK8tva6VENbRMT48eNj48aNcfHFF+/T+MGDB8eDDz4Yr732WvzxH/9xRES89tprsXbt2hg6dGhEfNLANnjw4L3O1a9fv/jMZz4T69evj8suu6zDscOGDYvevXvH/PnzY82aNdHY2BhHHXVU4fEzzjgjli9fHscee2wcd9xx+/S1AAAAAAAAAAAAlLMu19BWV1cXv/zlL/d5/EUXXRR33nlnfPvb347vf//7ERFx++2379Pd3XZVUVER1157bfzlX/5lbN68OUaOHBndu3eP119/PZYvXx7XXHNNnHTSSRHxyceGnn/++fHrX/86Nm7cGP/4j//YZq4vf/nLMXv27JgwYUJMnDgxTjzxxGhpaYnnnnsuWltb4y/+4i/2e30AAAAAAAAAAAB51uUa2vbXEUccETNnzoy//du/jb/6q7+K4447Lv7sz/4sli5dGi0tLfs935gxY6K6ujqmTZsW8+bNi4iIvn37xplnntmuSa6pqSnuvffeOPLII2PUqFFtHquqqop77rkn7rjjjpg2bVq8/fbb0bNnzzjllFPi0ksvPfAvGAAAAAAAAAAAIKfKvqFt8uTJMXny5A7H/OY3v+lw/Oc+97n4l3/5lzbHvvKVr+zT6z///PPtjjU0NERDQ8Nen1tfX7/b5+/Qo0ePmDJlSkyZMmWPY+699959WicAAAAAAAAAAEDedct6AQAAAAAAAAAAABChoQ0AAAAAAAAAAICc0NAGAAAAAAAAAABALmhoAwAAAAAAAAAAIBc0tAEAAAAAAAAAAJALGtoAAAAAAAAAAADIBQ1tAAAAAAAAAAAA5IKGNgAAAAAAAAAAAHJBQxsAAAAAAAAAAAC5oKENAAAAAAAAAACAXNDQBgAAAAAAAAAAQC5oaAMAAAAAAAAAACAXNLQBAAAAAAAAAACQCxraAAAAAAAAAAAAyAUNbQAAAAAAAAAAAOSChjYAAAAAAAAAAAByQUMbAAAAAAAAAAAAuaChDQAAAAAAAAAAgFzQ0AYAAAAAAAAAAEAuaGgDAAAAAAAAAAAgFzS0AQAAAAAAAAAAkAsa2gAAAAAAAAAAAMgFDW0AAAAAAAAAAADkgoY2AAAAAAAAAAAAckFDGwAAAAAAAAAAALmgoQ0AAAAAAAAAAIBc0NAGAAAAAAAAAABALmhoAwAAAAAAAAAAIBc0tAEAAAAAAAAAAJALGtoAAAAAAAAAAADIhcOzXgDszTnDTyjJcw7EuZ3wOps3b47/+q//itra2jjyyCM7YVV7dyDrLlVNAXbm3NNeHs7h5fK+7JyxHTnvjM77ejrj2iALnfme7qhBFtc4eVIuf08oL/ZVcZXqHF6uWbGrQ/08n6VS1P5A9mln7m3nO+haukr2lYqMzY7al8aecj4P9XcN8gl16PoO1fc4D+eZQ5n6Z6cYtc/6PJLn7+PtWpt9/VlVKZzXUF7nf3doAwAAAAAAAAAAIBc0tAEAAAAAAAAAAJALGtoAAAAAAAAAAADIBQ1tAAAAAAAAAAAA5IKGNgAAAAAAAAAAAHJBQxsAAAAAAAAAAAC5oKENAAAAAAAAAACAXNDQBgAAAAAAAAAAQC5oaAMAAAAAAAAAACAXNLQBAAAAAAAAAACQCxraAAAAAAAAAAAAyAUNbQAAAAAAAAAAAOSChjYAAAAAAAAAAAByoSKllLJeBNlZvXp1pJSisrIyWltbo7KyMioqKrJe1iElpaT2GVL/7Kh9ttS/vaqqqqipqem0+WRs9uzzbKl/dtQ+W+rfXmdnbMT/5WxEqHVG7PXsqH221D87at+ejO2a7PXsqH221D87ar97vl/c9djr2VL/7Kh9ttS/vX3N2MNLsBZybMdfmIqKiqiqqsp4NYcmtc+W+mdH7bOl/sUnY7On9tlS/+yofbbUvzR25GxlZWXGKzl02evZUftsqX921L40ZGz27PXsqH221D87al8avl+cPbXPlvpnR+2zpf4Hzh3aAAAAAAAAAAAAyIVuWS8AAAAAAAAAAAAAIjS0AQAAAAAAAAAAkBMa2gAAAAAAAAAAAMgFDW0AAAAAAAAAAADkgoY2AAAAAAAAAAAAckFDGwAAAAAAAAAAALmgoQ0AAAAAAAAAAIBc0NAGAAAAAAAAAABALmhoAwAAAAAAAAAAIBc0tAEAAAAAAAAAAJALGtoAAAAAAAAAAADIBQ1th7iXXnoprrjiiqivr4+Ghob48Y9/HNu2bct6Wbnw2muvxfXXXx/jxo2LU045JZqamnY7bs6cOXHeeefF4MGDY+zYsfG73/2u3ZiWlpb40Y9+FMOGDYshQ4bE9773vXjrrbfajVu9enVccsklUVdXF6NGjYq77rorUkptxqSU4q677oqRI0dGXV1dXHLJJbFmzZp2c/3P//xPTJ48OYYMGRLDhg2Lv/mbv4lNmzYdWDFKbOHChfGd73wnGhsbo76+PsaNGxdz585tVwu173zLly+Pyy+/PP7kT/4kBg0aFGeffXb8/d//fbS0tLQZt2zZshg7dmwMHjw4zjvvvHjggQfazbVt27a45ZZboqGhIerr6+OKK66Il19+ud24fT0Pdeb7XS4++OCDaGxsjJqamvj973/f5jH7P/9k7J7J2OzI2GzJ2fyQseVNxu6ZjM2OjM2WjM0PGVveZGzH5Gx25Gx2ZGx+yNjyJ2f3TMZmR8ZmR8bmi5zNqcQh67333ksNDQ3psssuSytWrEhz5sxJp512WrrxxhuzXlouLF68ODU2NqbJkyenpqam9KUvfandmIceeijV1NSkn/70p+nxxx9PU6dOTaecckp6+umn24ybOHFiamxsTPPnz09LlixJTU1NaezYsam1tbUw5tVXX0319fVp0qRJaeXKlenuu+9OAwcOTDNmzGgz1/Tp09PAgQPT3XffnVauXJkmTZqUhgwZktatW1cYs23bttTU1JSamprS0qVL0/z581NjY2O66qqrOrdIRXLxxRena665Js2fPz+tXLky/cM//EP6/Oc/n+64447CGLUvjgcffDDdcsstadGiRWnVqlXp3nvvTcOGDUtXXHFFYcyTTz6Zamtr09SpU9Pjjz+efvrTn6aampq0cOHCNnNNnTo1nXbaaWnOnDlpxYoV6dJLL01nnnlmam5uLozZ1/NQZ77f5eTHP/5xOuOMM9KAAQPSs88+Wzhu/+efjO2YjM2OjM2WnM0PGVu+ZGzHZGx2ZGy2ZGx+yNjyJWP3Ts5mR85mR8bmh4wtb3K2YzI2OzI2OzI2X+RsPmloO4RNmzYt1dfXp3fffbdwbPbs2am2tja9+eab2S0sJz7++OPC7//6r/96txdPo0ePTj/4wQ/aHLvkkkvSN7/5zcKfV69enQYMGJAeeeSRwrGXXnop1dTUpPnz5xeOTZ06NY0aNSpt3bq1cOzWW29NQ4cOLRz78MMP06mnnppuvfXWwpitW7emUaNGpRtuuKFwbN68eammpia99NJLhWOPPPJIGjBgQHrmmWf2pwyZ2LhxY7tj1113XTr11FML74val87999+fBgwYUDgvTJw4MV1yySVtxvzgBz9IY8aMKfz5jTfeSLW1tWn27NmFY++++26qr69Pd911V+HYvp6HOvP9Lhcvvvhiqq+vT/fdd1+7iyf7P/9kbMdkbHZkbP7I2dKTseVNxnZMxmZHxuaPjC09GVveZOzeydnsyNl8kbGlJ2PLn5ztmIzNjozNFxmbDTmbXz5y9BC2YsWKGD58ePTs2bNwbMyYMbF9+/Z47LHHsltYTnTr1vFfj/Xr18err74aY8aMaXP8ggsuiMcff7xwe84VK1ZEdXV1NDQ0FMb069cvamtrY8WKFYVjK1asiLPPPjuqqqrazNXc3BxPP/10RHxyC8pNmza1ec2qqqo499xz281VU1MT/fr1KxxraGiInj17xvLly/enDJk45phj2h2rra2NTZs2xebNm9W+xHacI1pbW2Pbtm3xxBNPxPnnn99mzAUXXBAvvfRSbNiwISIiHn300di+fXubcT179oyGhoZ29drbeaiz3+9ycdNNN8VXv/rVOOmkk9oct//Lg4ztmIzNjozNHzlbejK2vMnYjsnY7MjY/JGxpSdjy5uM3Ts5mx05my8ytvRkbPmTsx2TsdmRsfkiY7MhZ/NLQ9sh7OWXX26zwSMiqquro3fv3rv9TGXa2lGjXU9sJ598crS2tsb69esL40466aSoqKhoM65fv36FOTZv3hxvvPFGu/ejX79+UVFRURi347+7jjv55JPj9ddfjw8//LAwbtcxFRUVcdJJJ5Xte/vUU0/FcccdFz169FD7Evj4449j69at8Yc//CF+8YtfxFlnnRXHH398rFu3LlpbW3dbh4hoU69evXrF0Ucf3W7cznXYl/NQZ77f5WLRokXxwgsvxKRJk9o9Zv+XBxl7cOzz0pKxpSdnsyNjy5+MPTj2eWnJ2NKTsdmRseVPxh48e7205GxpydjsyNiuQc4eHHu9tGRsacnYbMnZfNPQdghrbm6O6urqdsePPvroeP/99zNYUXnZUaNda7jjzzseb25ujqOOOqrd83euc0tLy27nqqqqiu7du7eZq6qqKj71qU+1e82U0n69Zjn5z//8z1iwYEFMnDgxItS+FEaNGhV1dXVx0UUXRe/evePWW2+NiIOvfXV1dZs67Mt5qDPf73KwZcuWuPnmm+Oaa66JHj16tHvc/i8PMvbg2OelI2OzIWezIWO7Bhl7cOzz0pGx2ZCx2ZCxXYOMPXj2eunI2dKTsdmQsV2HnD049nrpyNjSk7HZkbP5d3jWCwDoyJtvvhnXXHNNnH766TFhwoSsl3PIuOuuu2LLli3x4osvxp133hlXX3113H333Vkv65Bw5513Rq9eveIrX/lK1ksBujgZmx05mw0ZC5SKjM2OjM2GjAVKSc5mQ8ZmQ8YCpSRjsyFjsyNn888d2g5h1dXVhU7Qnb3//vvtbklJeztqtGsNm5ub2zxeXV0dmzZtavf8neu8o3t217m2bdsWW7ZsaTPXtm3bYuvWre1es6KiYr9esxw0NzfHt771rejZs2fccccd0a3bJ6cstS++z3/+8zFkyJAYP358/PKXv4wnnngiFi9efNC1b25ublOHfTkPdeb7nXf//d//HTNnzozvfe970dLSEs3NzbF58+aI+ORWtB988IH9XyZk7MGxz4tPxmZLzpaejO06ZOzBsc+LT8ZmS8aWnoztOmTswbPXi0/OZkfGlp6M7Vrk7MGx14tPxmZHxmZDzpYHDW2HsN19hnFLS0u8/fbb7T5vl/Z21GjXGr788stRWVkZJ5xwQmHcK6+8EimlNuNeeeWVwhxHHnlkfPazn203147n7Ri347+vvPJKu9fs06dPHHHEEYVxu86VUmrzmnn34Ycfxre//e1oaWmJGTNmtLllptqXVk1NTVRWVsa6devij/7oj6KysnK3tY+INvV655132t3SdNfP896X81Bnvt95t2HDhmhtbY2rrroqvvCFL8QXvvCFuPrqqyMiYsKECXHFFVfY/2VCxh4c+7y4ZGy+yNnSkLFdh4w9OPZ5ccnYfJGxpSFjuw4Ze/Ds9eKSs/khY0tDxnYtcvbg2OvFJWPzQ8aWjpwtDxraDmGNjY2xcuXKQgdpRMSiRYuiW7du0dDQkOHKysMJJ5wQJ554YixatKjN8QULFsTw4cOjqqoqIj6p8/vvvx+PP/54Ycwrr7wSzz33XDQ2NhaONTY2xtKlS6O1tbXNXNXV1TFkyJCIiDj11FOjR48esXDhwsKY1tbWePjhh9vNtXbt2nj11VcLxx5//PF47733YsSIEZ1TgCL66KOP4s///M/j5ZdfjhkzZsRxxx3X5nG1L61nnnkmWltb4/jjj4+qqqo4/fTT47e//W2bMQsWLIiTTz45jj/++IiI+OIXvxjdunWLhx9+uDDm/fffj0cffbRdvfZ2Hurs9zvPamtr45577mnza8qUKRERceONN8YNN9xg/5cJGXtw7PPikbH5I2dLQ8Z2HTL24NjnxSNj80fGloaM7Tpk7MGz14tHzuaLjC0NGdu1yNmDY68Xj4zNFxlbOnK2TCQOWe+9915qaGhIl19+eXrkkUfS3Llz09ChQ9ONN96Y9dJyYfPmzWnhwoVp4cKF6fLLL08jRowo/Hnjxo0ppZTmzZuXampq0m233ZZWrVqVrr/++nTKKaek1atXt5lr4sSJacSIEWnBggVp6dKlqampKY0dOza1trYWxrz66qupvr4+TZ48Oa1cuTLNmjUrDRw4MM2YMaPNXNOnT0+DBg1Ks2bNSitXrkyTJ09OQ4YMSevWrSuM2bZtW2pqakpNTU1p2bJlaf78+WnEiBHpqquuKmLFOs91112XBgwYkGbOnJmefvrpNr+2bt2aUlL7Ypk0aVK6884707Jly9LKlSvTzJkzU0NDQ7rwwgsLtX/yySdTbW1tuuGGG9KqVavSbbfdlmpqatKCBQvazDV16tQ0dOjQNHfu3PTII4+kyy+/PJ155pmpubm5MGZfz0Od+X6Xm1WrVqUBAwakZ599tnDM/s8/GdsxGZsdGZstOZsvMrY8ydiOydjsyNhsydh8kbHlScbunZzNjpzNjozNFxlbvuRsx2RsdmRsdmRs/sjZ/NHQdoh78cUX05/+6Z+murq6NHz48HTzzTcXTpCHuvXr16cBAwbs9teqVasK4/7t3/4tnXvuuWngwIGFE8aumpub05QpU9LQoUNTfX19+u53v5vefPPNduOeeuqpNH78+DRo0KDU2NiYpk+fnrZv395mzPbt29O0adNSY2NjGjRoUBo/fny7E2ZKKb355pvpu9/9bqqvr09Dhw5NU6ZMSS0tLZ1QmeIbNWrUHmu/fv36wji173zTp09P48aNS0OGDEn19fXpS1/6UvrZz37Wbv1LlixJTU1NaeDAgencc89Nc+bMaTfX1q1b080335yGDx+e6urq0je+8Y304osvthu3r+ehzny/y8nuLp5Ssv/LgYzdMxmbHRmbLTmbLzK2fMnYPZOx2ZGx2ZKx+SJjy5eM7ZiczY6czY6MzRcZW97k7J7J2OzI2OzI2PyRs/lTkdIuH+QKAAAAAAAAAAAAGeiW9QIAAAAAAAAAAAAgQkMbAAAAAAAAAAAAOaGhDQAAAAAAAAAAgFzQ0AYAAAAAAAAAAEAuaGgDAAAAAAAAAAAgFzS0AQAAAAAAAAAAkAsa2gAAAAAAAAAAAMgFDW0AAAAAAAAAAADkgoY2gBL7+te/Hl//+tezXgYAdDkyFgCKR84CQHHIWAAoDhkL5e3wrBcAUA6ef/75+MUvfhG///3v45133omePXtG//7946yzznIhBAAHQcYCQPHIWQAoDhkLAMUhY4EdNLQB7MXq1atjwoQJ0adPnxg/fnz07t073njjjXjmmWfinnvucfEEAAdIxgJA8chZACgOGQsAxSFjgZ1paAPYi2nTpsVRRx0Vc+fOjerq6jaPbdy4MaNVfeKjjz6K7du3R1VVVabrAIADIWMBoHjkLAAUh4wFgOKQscDOumW9AIC8W7duXfTv37/dhVNERK9evQq/f+CBB2LChAkxfPjwGDRoUFxwwQXxr//6r3udf9u2bXHbbbfFRRddFKeddlrU19fHpZdeGqtWrWozbsOGDVFTUxO/+tWvYtasWXHOOefE4MGD49lnn436+vq46aab2s395ptvRm1tbUyfPv0AvnIAKC4ZCwDFI2cBoDhkLAAUh4wFduYObQB70bdv33j66afjhRdeiAEDBuxx3H333Ref+9zn4qyzzorDDz88fve738WNN94YKaW47LLL9vi8TZs2xZw5c6KpqSnGjx8fH3zwQcydOze++c1vxpw5c6K2trbN+H//93+PrVu3xsUXXxxVVVXRp0+fOOecc2LhwoUxZcqUOOywwwpjH3rooUgpxYUXXnjwhQCATiZjAaB45CwAFIeMBYDikLHAzipSSinrRQDk2WOPPRbf+ta3IiKirq4uTjvttBg+fHicfvrpUVlZWRj34YcfxhFHHNHmuVdeeWW89tprsWTJksKxHZ/vfu+990ZExMcffxwff/xxm1vUNjc3x5gxY2LEiBHxd3/3dxHxyf8NcPbZZ0ePHj1i8eLFccwxxxTGP/roo3HllVfGP/3TP0VjY2Ph+NixY+Poo48uvBYA5ImMBYDikbMAUBwyFgCKQ8YCO/ORowB70dDQELNnz46zzjor1q5dGzNmzIgrr7wyGhsbY+nSpYVxO184tbS0xP/+7//GsGHDYv369dHS0rLH+Q877LDChdP27dvjvffei48++igGDRoUzz33XLvxo0ePbnPhFBFxxhlnxLHHHhvz5s0rHHvhhRfi+eefj7Fjxx7w1w4AxSRjAaB45CwAFIeMBYDikLHAznzkKMA+qKuri5///Oexbdu2WLt2bSxZsiRmzZoV3//+9+PBBx+M/v37x1NPPRV33HFHrFmzJrZs2dLm+S0tLXHUUUftcf5f//rXMXPmzHjllVeitbW1cPz4449vN3Z3x7p16xYXXnhh3HfffbFly5bo3r17zJs3Lz71qU/F+eeffxBfOQAUl4wFgOKRswBQHDIWAIpDxgI7aGgD2A9VVVVRV1cXdXV1ceKJJ8aUKVNi0aJFMXbs2PjGN74R/fr1i2uvvTY++9nPRmVlZSxfvjxmzZoV27dv3+Ocv/nNb+Laa6+Nc845J6688sro1atXHHbYYTF9+vRYv359u/G73kJ3hy9/+cvxq1/9KpYsWRJNTU3x0EMPxciRIzu8aAOAvJCxAFA8chYAikPGAkBxyFhAQxvAARo0aFBERLz11luxbNmy2LZtW9x5553Rp0+fwpgnnnhir/P89re/jRNOOCF+/vOfR0VFReH47bffvl/rGTBgQJxyyikxb968+MxnPhOvv/56XHfddfs1BwDkgYwFgOKRswBQHDIWAIpDxsKhqVvWCwDIu1WrVkVKqd3x5cuXR0REv3794rDDDouIaDOupaUlHnjggb3Ov7vnPvPMM7FmzZr9Xuu4cePisccei3/+53+Onj17RmNj437PAQClImMBoHjkLAAUh4wFgOKQscDO3KENYC9uuumm2LJlS5x77rnRr1+/aG1tjdWrV8fChQujb9++cdFFF8U777wTlZWVcfXVV8dXv/rV+OCDD2LOnDnRq1evePvttzucf+TIkfHwww/HpEmTYuTIkbFhw4aYPXt29O/fPzZv3rxfa21qaoqf/OQnsXjx4vja174WlZWVB/OlA0BRyVgAKB45CwDFIWMBoDhkLLAzDW0Ae/HDH/4wFi1aFMuXL4/7778/Wltbo0+fPnHppZfGd77znaiuro7q6uq4/fbb42c/+1nccsst8elPfzq+9rWvxTHHHBM/+tGPOpx/x8XX/fffH48++mj0798/fvKTn8SiRYviP/7jP/ZrrZ/+9KejoaEhli9fHuPGjTuYLxsAik7GAkDxyFkAKA4ZCwDFIWOBnVWk3d2zEYCyNWnSpHjhhRdi8eLFWS8FALoUGQsAxSNnAaA4ZCwAFIeMheLqlvUCAOg8b731lv8TAACKQMYCQPHIWQAoDhkLAMUhY6H4fOQoQBewfv36WL16dcydOzcOP/zwuOSSS7JeEgB0CTIWAIpHzgJAcchYACgOGQul4w5tAF3Ak08+GT/84Q9jw4YNcfPNN0fv3r2zXhIAdAkyFgCKR84CQHHIWAAoDhkLpVORUkpZLwIAAAAAAAAAAADcoQ0AAAAAAAAAAIBc0NAGAAAAAAAAAABALmhoAwAAAAAAAAAAIBc0tAEAAAAAAAAAAJALGtoAAAAAAAAAAADIBQ1tAAAAAAAAAAAA5IKGNgAAAAAAAAAAAHJBQxsAAAAAAAAAAAC5oKENAAAAAAAAAACAXPj/LzGDD/oc+AwAAAAASUVORK5CYII=\n"},"metadata":{}}]},{"cell_type":"code","source":[],"metadata":{"id":"_scA42bVC5Um"},"execution_count":null,"outputs":[]},{"cell_type":"code","source":["sns.displot(data=df_u,x='salary',hue='job_category',kde=True,palette='viridis')"],"metadata":{"id":"TedMXz0R41kM","colab":{"base_uri":"https://localhost:8080/","height":417},"executionInfo":{"status":"ok","timestamp":1714521449603,"user_tz":300,"elapsed":8048,"user":{"displayName":"Jenny O","userId":"07622373657144372939"}},"outputId":"115eb911-5e66-4333-e464-3dd0c58f15f5"},"execution_count":null,"outputs":[{"output_type":"execute_result","data":{"text/plain":[""]},"metadata":{},"execution_count":159},{"output_type":"display_data","data":{"text/plain":["
"],"image/png":"iVBORw0KGgoAAAANSUhEUgAAAxsAAAHkCAYAAABWhTIsAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOzdd3iN5//A8XemJLJEIiFGBo4VEiuyzNqUqlUapUjVqBatqNGvVWpXqFWrlMYotUqVilaVtmI2ikSQkCEhQ3Zyfn/kl1PHCRlykuDzuq5cl/Oc+7nvz3Of4Pmc5x46SqVSiRBCCCGEEEKUMN2yDkAIIYQQQgjxcpJkQwghhBBCCKEVkmwIIYQQQgghtEKSDSGEEEIIIYRWSLIhhBBCCCGE0ApJNoQQQgghhBBaIcmGEEIIIYQQQisk2RBCCCGEEEJohSQbRfDvv//y77//lnUYQgghhBBCvBAk2SiCjIwM0tPT+fvvv0lPTy/rcF5o0o8lR/qyZEg/lhzpSyGEEHkk2Sim7Ozssg7hhZbXf9KPz0/6smRIP5Yc6UshhBB5JNkQQgghhBBCaIUkG0IIIYQQQgitkGRDCCGEEEIIoRWSbAghhBBCCCG0QpINIYQQQgghhFZIsiGEEEIIIYTQCkk2hBBCCCGEEFohyYYQQgghhBBCKyTZEEIIIYQQQmiFJBtCCCGEEEIIrZBkQwghhBBCCKEVkmwIIYQQQgghtEKSDSGEEEIIIYRWSLIhhBBCCCGE0ApJNoQQQgghhBBaUa6SjaCgIN5++21atWpFo0aN6NChA/PmzSMpKUlVxt/fH4VCofFz8uRJtboyMjL44osv8PLywtXVlWHDhhEWFlbalySEEEIIIcQrS7+sA3jcw4cPady4Mb6+vlhaWnL9+nUCAgK4fv06GzZsUJWrUaMGixYtUjvX2dlZ7fWcOXM4dOgQ/v7+2Nrasnr1aoYOHcrBgwcxMzMrlesRQgghhBDiVVauko1evXqpvXZ3d8fQ0JDp06cTHR2Nra0tAEZGRri6uj61nqioKHbt2sVnn31G3759AXBxcaFdu3Z89913jBw5UmvXIIQQQgghhMhVroZR5cfS0hKAzMzMQp/z22+/kZOTQ5cuXdTq8fLy0hhuJV5uyWnpxCQkq/0kp6WXdVhCCCGEEK+EcvVkI092djZZWVncuHGDlStX0r59e6pXr656/9atWzRr1oz09HTq1q3L6NGjee2111Tvh4WFUblyZSwsLNTqdXZ2ZteuXaV2HaLspaRnsuv0JbVjfT1cMDWqUEYRCSGEEEK8OsplstGuXTuio6MB8PHxYfHixar36tevj4uLC7Vr1yYpKYnt27czZswYvvzyS9WTjMTExHznZZibm5OQkPBcsSmVSgBSU1Ofq55XXV7/absfs7OzNZ6KZWdnk5KSotV2S1Np9eXLTvqx5LxqfWliYlLWIQghRLlVLpONtWvXkpqayo0bN1i1ahWjRo1i48aN6Onp8c4776iVbd++PQMHDmT58uVqw6a0JSsrC4Dw8HCtt/Uq0HY/mtvYcT82Vu1YcnIyd29GabXdsiC/kyVD+rHkvCp92axZs7IOQQghyq1ymWzUq1cPADc3N1xcXOjVqxdHjx7NN5nQ1dWlU6dOLFy4kLS0NIyMjDA3Nyc5OVmjbGJiosbQqqLS19cnKysLBwcHjI2Nn6uuV1lqairh4eFa78eEtEysbWzUjpmammJvXV9rbZa20urLl530Y8mRvhRCCJGnXCYbj1MoFBgYGHD79u1Cn+Pk5MT9+/dJSEhQSy7CwsJwcnJ6rnh0dHQAMDY2lkfnJUDb/ZicmYyBgYHaMT09vZfys5PfyZIh/VhypC+FEEKU+9WoLly4QGZmptoE8cfl5ORw+PBh6tSpg5GREQDe3t7o6ury008/qcolJCTw22+/0bp161KJWwghhBBCiFdduXqyMXbsWBo1aoRCocDIyIirV6+yfv16FAoFr732GpGRkfj7+9O9e3dq1apFQkIC27dv5/LlywQEBKjqsbOzo2/fvixYsABdXV1sbW1Zs2YNZmZmDBw4sAyvUAghhBBCiFdHuUo2GjduzKFDh1i7di1KpRJ7e3v69evH8OHDMTQ0pGLFipiamrJq1Sri4uIwMDCgUaNGrFu3Dh8fH7W6pk2bRsWKFVm8eDGPHj2iadOmbNy4UXYPF0IIIYQQopSUq2TDz88PPz+/p75vaWnJqlWrClWXoaEhkydPZvLkySUVnhBCCCGEEKIIyv2cDSGEEEIIIcSLSZINIYQQQgghhFZIsiGEEEIIIYTQCkk2hBBCCCGEEFohyYYQQgghhBBCKyTZEEIIIYQQQmiFJBtCCCGEEEIIrZBkQwghhBBCCKEVkmwIIYQQQgghtEKSDSGEEEIIIYRWSLIhhBBCCCGE0ApJNoQQQgghhBBaIcmGEEIIIYQQQisk2RBCCCGEEEJohSQbQgghhBBCCK2QZEMIIYQQQgihFZJsCCGEEEIIIbRCkg0hhBBCCCGEVkiyIYQQQgghhNAKSTaEEEIIIYQQWiHJhhBCCCGEEEIrJNkQQgghhBBCaIUkG0IIIYQQQgitkGRDCCGEEEIIoRWSbAghhBBCCCG0QpINIYQQQgghhFZIsiGEEEIIIYTQCkk2hBBCCCGEEFohyYYQQgghhBBCKyTZEEIIIYQQQmiFJBtCCCGEEEIIrZBkQwghhBBCCKEVkmwIIYQQQgghtEKSDSGEEEIIIYRWSLIhhBBCCCGE0ApJNoQQQgghhBBaIcmGEEIIIYQQQisk2RBCCCGEEEJohSQbQgghhBBCCK2QZEMIIYQQQgihFZJsCCGEEEIIIbRCkg0hhBBCCCGEVkiyIYQQQgghhNCKcpVsBAUF8fbbb9OqVSsaNWpEhw4dmDdvHklJSWrljh8/zuuvv46LiwudO3dm9+7dGnVlZGTwxRdf4OXlhaurK8OGDSMsLKy0LkUIIYQQQohXXrlKNh4+fEjjxo2ZOXMm69evZ9iwYezdu5fx48eryvz111+MHTsWV1dX1q1bR9euXZk6dSqHDx9Wq2vOnDns3LmTjz76iICAADIyMhg6dKhG4iKEEEIIIYTQDv2yDuBxvXr1Unvt7u6OoaEh06dPJzo6GltbW1atWkXjxo2ZNWsWAK1ateLOnTssX76cLl26ABAVFcWuXbv47LPP6Nu3LwAuLi60a9eO7777jpEjR5buhQkhhBBCCPEKKldPNvJjaWkJQGZmJhkZGZw5c0aVVOTp1q0boaGhREREAPDbb7+Rk5OjVs7S0hIvLy9OnjxZarELIYQQQgjxKiuXyUZ2djbp6elcuXKFlStX0r59e6pXr87t27fJzMzEyclJrbyzszOAak5GWFgYlStXxsLCQqOczNsQQgghhBCidJSrYVR52rVrR3R0NAA+Pj4sXrwYgISEBADMzc3Vyue9zns/MTERMzMzjXrNzc1VZYpLqVQCkJqa+lz1vOry+k/b/ZidnU1mZqbGsZSUFK22W5pKqy9fdtKPJedV60sTE5OyDkEIIcqtcplsrF27ltTUVG7cuMGqVasYNWoUGzduLOuwAMjKygIgPDy8bAN5SWi7H81t7LgfG6t2LDk5mbs3o7TablmQ38mSIf1Ycl6VvmzWrFlZhyCEEOVWuUw26tWrB4CbmxsuLi706tWLo0ePUrt2bQCNFaUSExMBVMOmzM3NSU5O1qg3MTFRY2hVUenr65OVlYWDgwPGxsbPVderLDU1lfDwcK33Y0JaJtY2NmrHTE1Nsbeur7U2S1tp9eXLTvqx5EhfCiGEyFMuk43HKRQKDAwMuH37Nu3bt8fAwICwsDB8fHxUZfLmYeTN5XBycuL+/fskJCSoJRdhYWEa8z2KSkdHBwBjY2N5dF4CtN2PyZnJGBgYqB3T09N7KT87+Z0sGdKPJUf6UgghRLmcIP64CxcukJmZSfXq1TE0NMTd3Z0jR46olTl06BDOzs5Ur14dAG9vb3R1dfnpp59UZRISEvjtt99o3bp1qcYvhBBCCCHEq6pcPdkYO3YsjRo1QqFQYGRkxNWrV1m/fj0KhYLXXnsNgPfff58hQ4bwv//9j65du3LmzBkOHDjA0qVLVfXY2dnRt29fFixYgK6uLra2tqxZswYzMzMGDhxYVpcnhBBCCCHEK6VcJRuNGzfm0KFDrF27FqVSib29Pf369WP48OEYGhoC0Lx5cwICAli2bBm7du2iWrVqzJkzh65du6rVNW3aNCpWrMjixYt59OgRTZs2ZePGjfmuUiWEEEIIIYQoeeUq2fDz88PPz6/Ach06dKBDhw7PLGNoaMjkyZOZPHlySYUnhBBCCCGEKIJyP2dDCCGEEEII8WKSZEMIIYQQQgihFZJsCCGEEEIIIbRCkg0hhBBCCCGEVkiyIYQQQgghhNAKSTaEEEIIIYQQWiHJhhBCCCGEEEIrJNkQQgghhBBCaIUkG0IIIYQQQgitkGRDCCGEEEIIoRWSbAghhBBCCCG0QpINIYQQQgghhFZIsiGEEEIIIYTQCkk2hBBCCCGEEFohyYYQQgghhBBCKyTZEEIIIYQQQmiFJBtCCCGEEEIIrZBkQwghhBBCCKEVkmwIIYQQQgghtEKSDSGEEEIIIYRWSLIhhBBCCCGE0ApJNoQQQgghhBBaIcmGEEIIIYQQQisk2RBCCCGEEEJohSQbQgghhBBP8f3336NQKIiIiCjSeb6+vvTo0UNLUQnx4pBkQwghhBDiFREUFERAQEBZhyFeIZJsCCGEEEI8Ra9evbh48SL29vZlHUqJCAoKYsWKFWUdhniFSLIhhBBCCPEUenp6VKhQAR0dnbIO5ZWSnp5OTk5OWYchSoAkG0IIIYQQT5HfnI1vv/2W7t2706hRI7y9vZk5cyaJiYn5nn/58mUGDhxI48aNad++Pdu3by9WHEFBQbz99tu4ubnRtGlT3nzzTfbv3696/6+//uKDDz6gbdu2NGrUiDZt2vD555+TlpamKuPv78+3334LgEKhUP3kycnJYdOmTXTv3h0XFxc8PT2ZMWMGCQkJarHk5OQQEBCAt7c3TZo0wdfXlxs3btC+fXv8/f3Vyt65c4cPPviAli1b0qRJE/r378+JEyfUypw5cwaFQsHBgwdZunQpPj4+NGnShJCQEBQKBZs2bdLoj3PnzqFQKDhw4ECx+lOUHv2yDkAIIYQQ4kUREBDAihUr8PT05K233uLmzZts376dS5cusX37dgwMDFRlExIS8PPzo2vXrnTv3p0ff/yR//3vfxgYGNC3b99Ct/n999/z6aefUqdOHd577z3MzMwICQnh119/pWfPngAcPnyYtLQ03nrrLSwtLbl48SJbt24lKiqK5cuXAzBgwABiYmI4deoUCxYs0GhnxowZ7Nmzhz59+uDr60tERATffvst//zzj9q1LV68mK+//pp27drh4+PD1atXGT58OOnp6Wr13b9/n4EDB5Kamoqvry+VKlViz549vP/++yxfvpyOHTuqlf/qq68wMDBg+PDhZGRk4OTkRNOmTdm3bx9Dhw5VK7t//34qVqxIhw4dCt2PomxIsiGEEEIIUQjx8fGsWbMGb29v1q1bh65u7gARJycnZs2axb59+3jzzTdV5WNiYvD392fYsGFA7s1+//79WbJkCb169VJLTJ4mKSmJOXPm0LhxY7Zs2UKFChVU7ymVStWfJ02ahJGRker1gAEDqFWrFkuWLOHu3btUq1YNNzc3HBwcOHXqFL169VJr56+//mLnzp0sWrRIlcAAuLu7M2LECA4fPkzPnj25f/8+mzZt4rXXXmPlypWqcitWrNCYeL527Vru37/Pt99+S/PmzQHo168fr7/+OvPmzaNDhw6qPoTcoVO7d+9Wu47evXszY8YMQkNDcXZ2BiAzM5Mff/yRTp06YWxsXGAfirIlw6iEEEIIIQrh999/JzMzkyFDhqjdJPfr1w9TU1OCgoLUyuvr6zNgwADVa0NDQwYMGEBcXBxXrlwpVJunTp3i0aNH+Pn5qSUagNo8ksdv0FNSUoiPj8fNzQ2lUsk///xTYDuHDx/GzMwMLy8v4uPjVT8NGzbExMSEM2fOAHD69GmysrIYNGiQ2vlvv/22Rp1BQUE0btxYlWgAVKxYkQEDBhAZGcmNGzfUyvfu3VvtOgC6du1KhQoV1IaM/fbbbzx48IDXX3+9wOsSZU+ebAghhBBCFMLdu3eB3CcZjzM0NKRGjRpERkaqHa9SpQomJiZqxxwcHACIjIzE1dW1wDZv374NQJ06dQqMbfny5Rw/flxjjkVycnKB7dy6dYukpCQ8PDzyfT8uLk7VDkDNmjXV3re0tMTCwkIjpiZNmmjUldd/d+/epW7duqrj1atX1yhrbm5Ou3btOHDgAB9++CGQO4TK1taWVq1aFXhdouxJsiGEEEII8QLLzs5m2LBhJCQkMGLECJycnDAxMSE6Ohp/f/9CreqUk5ND5cqVWbRoUb7vW1lZlXTYGp58qpGnd+/eHD58mHPnzlG3bl2OHz/OW2+9pfZ0SZRfkmwIIYQQQhRCtWrVAAgLC6NGjRqq4xkZGURERODp6alWPiYmhpSUFLWnG+Hh4QCF3rcj7wnC9evXqVWrVr5lrl27Rnh4OF988QW9e/dWHT916pRG2act4VuzZk1Onz5N06ZNn3rTD//1we3bt9X64MGDBxpPVKpVq8bNmzc16ggLC1OrqyA+Pj5YWVmxf/9+mjRpQmpqqsacE1F+SUoohBBCCFEInp6eGBgYsGXLFrXJ2bt27SIpKYk2bdqolc/KyiIwMFD1OiMjg8DAQKysrGjYsGGh2vT29qZixYqsWbNGY7WnvBjyvuF/PCalUsk333yjUV/ehOonl+rt2rUr2dnZfPXVVxrnZGVlqcp7eHigr6+vsYRv3pK6j2vTpg0XL14kODhYdSwlJYUdO3Zgb29P7dq1n37hj9HX11et5vX9999Tt25d6tWrV6hzRdmTJxtCCCGEEIVgZWXFe++9x4oVKxgxYgTt27fn5s2bbNu2DRcXF40Jy1WqVGHdunVERkbi4ODAoUOHCAkJYfbs2YVaiQrA1NSUKVOmMG3aNPr27UuPHj0wNzfn6tWrpKWl8cUXX+Dk5ETNmjX54osviI6OxtTUlCNHjuS790dekjNnzhy8vb3R09Oje/futGzZkgEDBrBmzRpCQkLw8vLCwMCA8PBwDh8+zNSpU+nSpQvW1tYMGTKEDRs2MGrUKHx8fPj33385efIklSpVUnty4ufnx8GDBxk5ciS+vr5YWFiwd+9eIiIiCAgIKNIwqN69e7NlyxbOnDnDpEmTCn2eKHuSbAghhBBCFNK4ceOwsrJi69atzJs3DwsLC/r378+ECRM0EggLCwvmz5/PnDlz2LFjB9bW1syYMYP+/fsXqc1+/fpRuXJl1q5dy1dffYW+vj5OTk6qvScMDAxYvXo1c+bMYc2aNVSoUIGOHTsyePBgjeFGnTp1wtfXl4MHD7Jv3z6USiXdu3cHYNasWTRq1IjvvvuOpUuXoqenh729Pa+//jpNmzZV1ZG3zO7OnTs5ffo0rq6urF+/nkGDBmFoaKgqZ21tzXfffcfChQvZunUr6enpKBQKVq9eTdu2bYvUB40aNaJOnTqEhobKKlQvGB3l48/cxDNdunQJpVJJZmYm9evX11hhQhReSkoKISEhWu/HmIRkdp2+pHasr4cLVSxMtdZmaSutvnzZST+WHOlL8TLZuXMn06ZNIygoCDs7u7IOp9xKTEykRYsWfPjhh7z//vtaaaN3795YWFiwefNmrdQvtEPmbAghhBBCPEVsbCw6Ojoay7q+ytLS0jSO5SUALVu21Eqbly5dIiQkRG0CvHgxyDAqIYQQQogn3L9/nyNHjvDdd9/h6uqqlZ2q4+Pjyc7Ofur7BgYGWFpalni7z+vQoUPs2bOH1q1bY2Jiwrlz5zhw4ADe3t40a9asRNu6du0aV65cYcOGDdjY2NCtW7cSrV9onyQbQgghhBBPCA0NZcGCBTRu3JjZs2drpY2+fftqbAT4uJYtW7JlyxattP08FAoFenp6fP311zx69IjKlSszZMgQ1aZ7JenIkSOsXLkSR0dHlixZorGLuij/ylWy8eOPP7Jv3z6uXLlCYmIitWrVwtfXlzfffFO1uoGvry9nz57VOPfQoUM4OzurXiclJTFv3jx+/vlnMjMz8fHxYdq0aVSpUqXUrkcIIYQQLyZ3d3cuXLig1TYWLlyosZzt48zNzbXafnE1bNiQTZs2lUpb48aNY9y4caXSltCOcpVsbNq0CXt7e/z9/alUqRK///4706dPJyoqirFjx6rKNW3alMmTJ6ud++QW9x9++CE3btzgf//7HxUqVGDZsmWMHDmS3bt3o69fri5bCCGEEK+gkh5yJER5VK7uuletWoWVlZXqtYeHBw8fPmTjxo2MHj1atR6zubk5rq6uT60nODiY3377jfXr1+Pt7Q2Ao6Mj3bp146effpLxfkIIIYQQQpSCcrUa1eOJRp769euTnJxMSkpKoes5efIk5ubmeHl5qY45OTlRv359Tp48WSKxCiGEEEIIIZ6tXCUb+fn777+xtbXF1PS/fRHOnj2Lq6srLi4uvP322/z5559q54SFheHo6Ki2iyXkJhxhYWGlErcQQgghhBCvunI1jOpJf/31F4cOHVKbn9GiRQt69eqFg4MDMTExrF+/nmHDhrFlyxbc3NyA3I1lzMzMNOqzsLDg8uXLzxVT3h6Iqampz1XPqy6v/7Tdj9nZ2WRmZmocK8qTsvKutPryZSf9WHJetb6UjQuFEOLpym2yERUVxUcffYS7uztDhgxRHf/ggw/UyrVt25YePXrw1VdfsW7dOq3HlZWVBUB4eLjW23oVaLsfzW3suB8bq3YsOTmZuzejtNpuWZDfyZIh/VhyXpW+lEm+QgjxdOUy2UhMTGTkyJFYWloSEBCgmhieHxMTE9q0acORI0dUx8zNzYmK0ryZTEhIeO4dQPX19cnKysLBwUErG/y8KlJTUwkPD9d6PyakZWJtY6N2zNTUFHvr+lprs7SVVl++7KQfS470pRBCiDzlLtlIS0vjvffeIykpicDAwHyHQxXEycmJ06dPo1Qq1eZt3Lx5k7p16z5XfHn1GRsby6PzEqDtfkzOTMbAwEDtmJ6eXqHbTE5LJyU9U+O4SQUDTI3K18ZC8jtZMqQfS470pQgICGDFihWq14aGhlSvXp0+ffowfPhwtS8TFQoFn3zyCcOHDy+LUAEICQmhd+/efPPNN7i7u2u8f/nyZd58800WLFhAr169NN7Pzs7Gx8cHb29vPvjgAzp06MCXX35Jly5dSiN8Ne3bt6dt27bMmDEDAH9/fy5fvsyBAwdKtJ2AgAC8vLxo2rSp2vHy8HmK8qFcJRtZWVl8+OGHhIWF8e2332Jra1vgOSkpKZw4cQIXFxfVsdatW/PVV19x+vRpPD09gdxE459//mHEiBFai1+8fFLSM9l1+pLG8b4eLuUu2RBCvPyUOUp0dHUKLliO2jUyMmLz5s1A7heKZ86cYfHixSiVSvz8/EoyTK1r1KgRjo6OHDx4MN9k4/Tp08TFxdGzZ0+qVKlCYGAgDg4OpR9oPkaPHq2V+YorVqzAxMREI9kIDAykWrVqJd6eePGUq2Rj5syZ/PLLL/j7+5OcnMz58+dV7zVo0ICLFy/y9ddf07FjR+zt7YmJiWHjxo3Exsby5Zdfqsq6ubnh7e3Np59+yuTJk6lQoQJLly5FoVDQqVOnMrgyIYQQ4vnp6Orw248XSYxPLrU2za1M8e7auNjn6+rqqu2N1apVK65du8ZPP/30wiUbAD169GD16tU8ePCASpUqqb134MABKleujKenJ3p6es/cE6y01axZs1TbK0/XLspWuVr69tSpUwDMnz+fAQMGqP3ExMRgY2NDZmYmS5cuZcSIEcyePRsbGxu2bdtG48bq/xAuW7YMT09PZsyYwcSJE3FwcGDt2rWye7gQQogXWmJ8MvGxSaX2o43EpmLFiqoFV4rixIkTDBs2DA8PD5o2bUq/fv009s/6/vvvUSgUqtEMrq6udOrUib1792rU99VXX+Hl5YWbmxtjx44lLi6uwBh69uxJZmYmhw8fVjuenp7O0aNH6datG3p6ekRERKBQKNTKHTt2jD59+uDm5kbz5s3p06cPQUFBqvcVCgXr169Xq3fTpk0oFArV65SUFGbNmkXnzp1p0qQJ7du3Z8aMGSQlJT0zbn9/f3r06KF63b59exQKhcaPv78/ADExMUyZMoUOHTrQuHFjOnXqxJIlS8jIyFCLF2DBggWq88+cOfPUa/nuu+/o3LkzjRo1on379nz11Vfk5OSo3i/KZydeHOXqzvv48eMFlnnyF/dpzMzM+Pzzz/n888+fNywhhBBCPIe8xCJvGNVPP/3Ee++9V+R6IiIiaNeuHe+++y66urqcPHkSPz8/Nm/erDHHYtKkSfTv359hw4axY8cO/P39cXFxwdnZGYCtW7fy5Zdf8u677+Lp6cnvv//O1KlTC4yhVq1auLi4cODAAd566y3V8RMnTpCcnEzPnj3zPe/27duMHz+e7t27M3HiRHJycrh69SoJCQlF6oO0tDSys7P56KOPsLKy4t69e6xevZrRo0ezZcuWQtezYsUKtcTh33//5bPPPsPR0RGABw8eYGlpyZQpUzA3Nyc8PJyAgABiY2OZN28ekDtUasCAAfj6+qoSmdq1a+fb3pYtW5gzZw6+vr60bduW4OBgVqxYQVJSktoWB1DwZydeLOUq2RBCCCHEyyUlJYWGDRuqHevWrVuxhlC9/fbbqj/n5OTg7u7OjRs32LFjh0ayMXjwYAYPHgzkDq8OCgriyJEjjB49muzsbNasWUOvXr1UN7o+Pj7ExcXxww8/FBhHz549mTdvHvfu3aNq1aoAHDx4kJo1a9KkSZN8z/nnn3/IzMxk+vTpqo2KfXx8itwHVlZWzJw5U/U6KyuL6tWrM2jQIG7evKlKFgrSoEED1Z/j4+OZMGECXl5ejBw5Esh9MvF4EtC0aVOMjY3x9/dnxowZGBsbq4ZKVa1a9ZnDprKzs1m5ciXdu3dn2rRpAHh7e5OZmcmGDRvw8/NTG5L2rM9OvHjK1TAqIYQQQrxcjIyM2LVrF7t27WLbtm1MnTqVX3/9VXXTWRRRUVFMnjwZHx8fGjRoQMOGDfntt9+4efOmRllvb2/Vn01MTKhWrZpqWfyoqChiYmLo2LGj2jmdO3cuVBzdunVDV1eXQ4cOAbn7N504cUJtmNKTFAoFenp6TJo0iePHjxc47OlZ9u7dS+/evXFzc6Nhw4YMGjQIKN7eNpmZmYwfPx49PT2WLFmiWiFMqVSyadMmunXrRuPGjWnYsCGTJk0iKyuLO3fuFKmNsLAwHjx4oLEqV7du3cjMzOTixYtqx5/12YkXjzzZEEIIIYTW6Orqqq0Y2axZM7Kzs5k/fz7Dhg0r9JL0OTk5vP/++yQlJfHBBx9Qq1YtjI2NWb58Offu3dMo/+TS+QYGBqphQ7H/v9mrlZWVWhlra+tCxWJjY4O7uzsHDhxg+PDhHD16lPT09KcOoQJwdHRk9erVrFmzhrFjx6Krq4u3tzczZswo0qpNR48eZfLkyQwYMICPPvoIS0tLYmNjGTNmDOnp6YWuJ8/cuXO5fPkyO3bsUNuLbPPmzXzxxReMGDECd3d3zM3NuXTpErNmzSpyO3lDxSpXrqx2PO/1k0PJnvXZiRePJBvipaarhJaO1TWOCSGEKDtOTk4A3Lhxo9DJxq1bt/jnn39YuXIlr732mup4Wlpakdu3+f/NXuPj49WO379/v9B19OzZkylTphAWFsaBAwdo2LCh6rqepnXr1rRu3Zrk5GROnjzJvHnzmDJlimppYENDQzIz1fd2SkxMVHt9+PBh6tevz6xZs1THzp49W+i4H/fdd9/x3XffsXz5curUqaPRTvv27Zk4caLqWGhoaLHasbS0BDT7O29C/vNuuCzKNxlGJV5q6RlZrNvzu9pPekbRV0ARQghRcq5fvw6gsXTss+R9m/74Rq2RkZEEBwcXuX07OztsbGw4evSo2vEjR44Uuo5OnTpRoUIFNm/ezB9//PHMpxpPMjU1pVu3bnTv3l3tBt7Ozk7jhv73339Xe52WlqaxWe3+/fsL3Xaev/76izlz5jBq1Kh8twUobDsGBgYFPulwdHTEyspKYwWvH3/8EQMDA40VRcXLRZ5sCCGEEEJrcnJyVPtmZWZmcuXKFVatWkXt2rVp3rx5oetxcnLCzs6OxYsXk5OTQ0pKCsuXL6dKlSpFjklPTw8/Pz/mzp1L5cqV8fLy4tSpU6plWwvD1NSUtm3bEhgYiI6ODt26dXtm+e+++47z58/j4+ODjY0NERER7Nu3Dy8vL1WZzp07s3nzZlxcXHB0dGTfvn1ER0er1ePp6cmsWbNYuXKlavL06dOni3T9ycnJjBs3jlq1atGmTRu1fc2srKyoWbMmnp6efPPNN2zduhUHBwf27dvHrVu3NOpycnLi2LFjNG/eHGNjYxwdHVUT4PPo6ekxevRo5syZg5WVlarNdevW8c477xQp6RQvHkk2hBBCiBeIuZVpwYXKUXtpaWkMGDAAAH19fezs7Hj99dcZO3asxjfnz2JoaEhAQACzZs1i/PjxVK1alffff58//viDy5cvFzkuX19fEhMT2bZtG9u3b8fDw4M5c+YwYsSIQtfRs2dPjhw5gru7O7a2ts8sq1Ao+OWXX5g3bx4PHz7ExsaG7t27M378eFWZ0aNHExcXx8qVK9HR0WHAgAEMGTKE+fPnq8oMHDiQiIgItm7dyvr16/H29mbx4sX079+/0HE/fPiQ+Ph44uPjGThwoNp7b7zxBvPnz2fMmDE8ePCA5cuXA7mJ0LRp0xg1apRa+RkzZvD5558zcuRI0tLS+OabbzRWBoPc/tbX12fTpk1s374dGxsbxo4dq1GfePnoKJVKGcFeSJcuXUKpVJKZmUn9+vUxMTEp65BeWCkpKYSEhGi9HyNjHjJrg/pj8Rnvdsa+imWhzo9JSGbX6Usax/t6uFDFonT/w3+a0urLl530Y8mRvtQeZY4SHV2dV6ZdIcSLT+ZsCCGEEC+Isrrhl0RDCFFckmwIIYQQQgghtEKSDSGEEEIIIYRWSLIhhBBCCCGE0ApJNoQQQgghhBBaIcmGEEIIIYQQQisk2RBCCCGEEEJohSQbQgghhBBCCK2QZEMIIYQQQgihFZJsCCGEEEIrAgICUCgUKBQK6tWrR7NmzejZsyezZs0iNDS0WHWeOXOG1atXl3CkuTZt2oRCoeDTTz/VSv2Pa9++PbNmzSrROv39/enRo0eJ1inE85JkQwghhBBaY2RkRGBgIN999x3Lly+nT58+/P777/Tq1YsffvihyPWdPXuWNWvWaCFS2LdvHwBHjx4lIyNDK21o0+jRo1m0aFFZhyGEGkk2hBBCiBdETo7yhWtXV1cXV1dXXF1d8fLyYtiwYfzwww80a9aMqVOncufOnRKMtPhu3rzJlStX8PT0JDExkRMnTpR1SEVWs2ZN6tWrV9ZhCKFGv6wDEKIsxCQkaxwzqWCAqVGFMohGCCEKR1dXh5NBV0lISCm1Ni0sTGjdpmRvYCtUqMD06dPp3r07O3fuZMKECQDs3buXwMBAQkNDUSqV1KtXj48//pjGjRsDucOyVqxYAYBCoQCgZcuWbNmyhdDQUFasWMG5c+d4+PAh9vb29O3bl6FDh6KrW/B3qwcOHEBHR4dZs2YxcOBA9u/fT6dOndTKtG/fnrZt2+Ls7MzXX39NYmIi7u7uzJkzBysrKwBSUlJYtGgRp06dIioqisqVK+Pt7c3HH3+MmZlZvm0fP36c999/nyNHjuDg4KA6npCQgI+PD5MnT2bw4MFcv36dBQsWcPHiRdLS0rCzs6Nv376MHDkSyB1GdfnyZQ4cOABAYmIiCxYsICgoiIcPH2JlZUXTpk1ZunRpYT8qIZ6bJBvilZOjVLLr9CWN4309XCTZEEKUewkJKcTHaX5h8qKpXbs2tra2BAcHq45FRETQu3dvatasSUZGBgcPHmTw4MHs27cPR0dH+vXrR1RUFAcOHGDz5s0AmJqaAhATE4OjoyM9e/akYsWKhISEEBAQQEpKCmPHji0wngMHDtC8eXNq1KhB165dCQwMJCkpSSNBOH78OLdu3WLGjBk8ePCAefPmMXv2bNUNfFpaGtnZ2Xz00UdYWVlx7949Vq9ezejRo9myZUu+bbdp0wZbW1t2797NxIkT1WIC6NmzJwCjRo3C2tqauXPnYmpqyu3bt4mKinrqNc2bN49ff/2ViRMnYm9vT2xsLCdPniywL4QoSZJsCCGEEKJMVK1alfv376teP54U5OTk4OXlxcWLF9mzZw8TJkzAzs4OOzs71dCsx3l4eODh4QGAUqmkWbNmpKWlsXXr1gKTjYsXLxIeHs6wYcMA6NGjB1u2bOHIkSP07dtXraxSqWTVqlUYGhoCEBkZyZo1a8jJyUFXVxcrKytmzpypKp+VlUX16tUZNGgQN2/exNHRUaN9PT09+vTpw+7du/nwww/R09MDYPfu3XTs2BFzc3Pi4+OJiIhg6tSptG/fHoBWrVo987ouXbpEjx49eOONN1THunfv/sxzhChpkmyIV1Z2Tg5nrt0mNDoeIwN9IuISmPpmeyoaGZZ1aEII8UpQKpXo6OioXoeGhrJkyRKCg4OJi4tTHQ8PDy+wrvT0dNasWcP+/fu5d+8emZmZqvcePXpExYoVn3rugQMHMDAwoEuXLgC4urpSo0YN9u/fr5FstGjRQpVoADg7O5OZmUlcXBw2NjZA7nCwTZs2cevWLVJS/hvyFh4enm+yAdC3b19Wr17Nr7/+Stu2bbl69SpXrlzh448/BqBSpUrY29uzZMkSEhIS8PDwwM7O7pl90qBBA/bs2YONjQ0+Pj7UrVv3meWF0AaZIC5eSanpmfxw9h8u3oriUVoGcUkpHPgrhKEBO4h+WLbDE5LT0olJSFb7SU5LL9OYhBBCG6KiorC2tgYgOTmZd999l7t37+Lv78+3337Lrl27qFevHunpBf8buHDhQtavX0+/fv1Yu3Ytu3bt4v333wd45vk5OTkcOnSIli1boqurS2JiIomJiXTo0IGzZ88SHR2tVt7c3FztdV7ikdfG0aNHmTx5Mo0bN2bZsmXs2LGDlStXFhhH9erV8fLyYteuXUDuU43q1aurnl7o6Oiwfv16nJycmDVrFm3atKFPnz78+eefT61z+vTpvP7662zcuJGePXvStm1btm3b9tTyQmiDPNkQr6RfQ24Sk5CMob4ePg0c0dXR4a8bEfx7N5bhK3eyY9JgTCqUzROOlPRMjTklMp9ECPGyuX79OtHR0aohPufPnycqKoo1a9aoraiUlJRU4Df4AIcPH2bAgAH4+fmpjgUFBRV43h9//EFsbCyxsbG0aNFC4/1Dhw6phlcVxuHDh6lfv77aHhpnz54t1Ln9+vVj0qRJREdHs3//fnx9fdWe/Dg6OrJ8+XIyMzMJDg5myZIljBo1ipMnT+b75MbMzIypU6cydepU/v33X7755htmzpxJ3bp1ad68eaGvSYjnIU82xCvn8p1owqLj0QFeb9GAOlWtcbarTMCIXthZmnH7/kMW/yAT6IQQQlvS09OZPXs2hoaG9OvXD8idWA1gYGCgKnfu3DkiIyPVzjUwMMh3D4z09HS1c7Ozszl48GCBsezfvx8TExM2bdrEN998o/ZTr1499u/fX6RrS0tLU4sjr43C6NChA+bm5kycOJGEhAT69OmTbzkDAwNatmyJn58fycnJxMTEFFi3QqFgypQpAMXeUFGI4pAnG+KVolQqWXcs9xum+tWrYG3+3zdBdpXMmD2oEyO/2s3O05do51KbutWsyypUIYR4KeTk5HD+/Hkgd1nYa9euERgYyJ07d5g/fz7Vq1cHcudJmJiYMHPmTPz8/IiOjiYgIABbW1u1+pydncnKymLz5s24ublhamqKk5MTnp6e7Ny5k9q1a1OpUiW2bdtW4MZ86enpHD16lE6dOqkmlz/uzTffZO7cuYSFheHk5FSo6/X09GTWrFmsXLkSNzc3goKCOH36dKHONTAwoHfv3qxfvx5vb2+qVq2qeu/q1at88cUXdOvWjRo1apCcnMyaNWuwt7enZs2a+dY3cOBAOnbsSJ06ddDT02Pv3r0YGBjIUw1RqiTZEK+UBxnp3HgYj6G+Hi1q19B4371OTQb5uLLt1/PM//4X1r7/ZhlEKYQQT2dhYfJCtZeWlsaAAQMAMDExoXr16nh4eLBixQqcnZ1V5aytrfnyyy9ZsGABo0ePxsHBgZkzZ/L111+r1deuXTsGDRrE2rVriYuLo0WLFmzZsoXp06fz2WefMXv2bIyNjXnjjTfo2LEj06ZNe2psJ06cICkpid69e+f7fo8ePViwYAH79+9n/PjxhbregQMHEhERwdatW1VJw+LFi+nfv3+hzu/YsSPr16/nzTfV//+xsbHB2tqaNWvWEB0djZmZGc2bN2fhwoWq1aue1LRpU/bu3UtERAS6urrUrVuX1atXq/W7ENqmo1Qqy2Y70hfQpUuXUCqVZGZmUr9+fUxMSvcf/JdJSkoKISEhWu/HyJiHzNpwRPX62sN44tLTaFyrKp71aqmV7evhQhULUx6lZdBt7gYeJKfyYQ9v0jKzNOrNK6sNMQnJ+c7ZeFp7pdWXLzvpx5Ijfak9OTlKdHV1Ci74krT7Kvryyy/Ztm0bv/76q9qqV0K8qGTOhnhlZOXkEJ+eOyb4WcOjKhoZMvK1lgBsCTpHVnZOqcQnhBAFKasbfkk0tC8sLIxjx46xdetWBg4cKImGeGlIsiFeGXHpqSiBWtaWVDZ79ret/b0aU7WSGXFJKVy5E/3MskIIIcTz+uyzz/jwww9p0aIF7733XlmHI0SJkTkb4pVxPzUVgLYNndSWEsyPob4+fp3cmRn4Mxdv3aNRTVv0dCU3F0IIoR1btmwp6xCE0Aq5exKvhIzsbBIzc1cladugcCuK9GhWHytTYx6lZRAaFVfwCUIIIYQQQo0kG+KVkJCRu2urib5+oSd2VzDQp7d7IwDO37yHrKUghBBCCFE0kmyIV0JesmFhWLRduHs2r4++ni7xySlExCVoIzQhhBBCiJeWJBvipadUKkn4/42dLIuYbJgZV6CefRUAmSguhBBCCFFEkmyIl15adjYZOdnoAGbFWEqwYY3c3WtvxTwgKTW9hKMTQgghhHh5SbIhXnp5Q6jMDAzR0yn6r3wlU2PsrcxRAv9EyNMNIYQQQojCkmRDvPQe5s3XqFC0IVSPy3u6cTUiluwc2eRPCCGEEKIwJNkQLzWlUklSMSeHP86hihUmFQxIzcgkLCr+qeWS09KJSUhW+0lOk6FXQohXU0BAAAqFAoVCQb169WjWrBk9e/Zk1qxZhIaGFqvOM2fOsHr16hKLMSIiQhXjkz9dunQpsXYed+bMGRQKBZcuXdJK/c9LoVCwfv36sg5DvCRkUz/xUrv7IJEspRIdoKK+QbHr0dXVoUF1W/4KjeDynainlktJz2TXafX/PPp6uGBqVPxERwgh8uQolegWsClpeWvXyMiIzZs3A/Do0SOuXbtGYGAgO3bsYO7cufTq1atI9Z09e5YNGzYwatSoYsXzNBMmTMDd3V3tmJGRUYm2kadhw4YEBgbi7OyslfqfV2BgINWqVSvrMMRLQpIN8VK7GhkLQEUDg+f+D7p+jSqcC4sk+mEyN+7FFXq/DiGEKCm6Ojr8cuYaD5NSS61NSzNj2rnXLfb5urq6uLq6ql57eXkxaNAg/Pz8mDp1Kk2bNqVGjRolEOnzqVWrllqc2mRqalpqbRVFWloaRkZG5TI28eIq9jCqIUOGcPr06ae+/8cffzBkyJAi1fnjjz/y/vvv07p1a1xdXenVqxe7du3S2Ext586ddO7cGRcXF15//XV++eUXjbqSkpL49NNPadmyJW5ubnzwwQfExMQUKR7x4vv3bm6yYWZQ9FWonlSxgiGOtlYA7Pvzn+euTwghiuNhUipxDx+V2o82EpsKFSowffp0MjMz2blzp+r43r17eeutt2jZsiUtWrTA19eXixcvqt4PCAhgxYoVpKSkqIY6+fr6AhAaGspHH31EmzZtaNKkCd26dWPDhg3klNA8O39/f3r06MGZM2fo3bs3rq6u9O3bl8uXL6uVS0pKYtKkSbi5ueHh4cGSJUvYsGEDCoVCVSa/YVQKhYJ169YREBCAp6cn7u7uTJkyhZSUFLX6o6KimDRpEu7u7jRu3JjBgwdrxADw/fff07NnT1xcXPDx8WHp0qVkZ2erva9QKAgODmbYsGG4urqyYMECVSyPD6Py9fXlvffe4/Dhw3Tu3Bk3NzeGDBnC7du3NWJ77733aNKkCW3atGHTpk3MnTuX9u3bF6PHxcui2E82zp49S79+/Z76fnx8PH/++WeR6ty0aRP29vb4+/tTqVIlfv/9d6ZPn05UVBRjx44F4ODBg0yfPp1Ro0bRqlUrDh06xNixY/n222/VMvEPP/yQGzdu8L///Y8KFSqwbNkyRo4cye7du9HXlwc6r4qr/59smJZAsgG5E8VDo+I4fukGSanpmBnL8CghhCiO2rVrY2trS3BwsOpYREQEvXv3pmbNmmRkZHDw4EEGDx7Mvn37cHR0pF+/fkRFRXHgwAHV0CxT09ynzDExMTg6OtKzZ08qVqxISEgIAQEBpKSkqO4hniUnJ4esrCy1Y7q6uujq/ve9bGxsLHPmzMHPzw8zMzMWL17M2LFjOXr0KAYGuUN1p0yZwh9//MHHH3+Mvb09O3bs4MqVK4Xqk2+//ZZmzZoxf/58wsPDWbBgAZUrV2bSpEkAJCQkMGjQIExMTJg+fTpmZmZs2bKFd955h59++onKlSsDsHHjRhYuXMg777yDv78/oaGhqmQjr648EydOZMCAAbz33nsYGxs/NbaQkBDi4+OZNGkS2dnZzJ8/n48//pjAwEAgd47k6NGjuX//PjNnzsTMzIz169dz9+5dtT4Ur57nuuvWecawlFu3blGxYsUi1bdq1SqsrKxUrz08PHj48CEbN25k9OjR6Orqsnz5crp3786HH34IQKtWrbh27RorV65k3bp1AAQHB/Pbb7+xfv16vL29AXB0dKRbt2789NNPdOvWrYhXKl5EaRlZhMXkTuY2Myj+fI3HVa1kRqWKxjx4lMrBv0MY6O1aIvUKIcSrqGrVqty/f1/1+vGkICcnBy8vLy5evMiePXuYMGECdnZ22NnZaQzNgtx7Bg8PDyD3xrdZs2akpaWxdevWQiUbH330kcaxvn37MnfuXNXrhIQEtm7dSp06dQAwNjZmyJAhXLhwgebNm3Pjxg2OHj3KF198Qe/evQHw8fGha9euheoPGxsbFi9eDEDr1q35559/OHLkiCpB2Lx5M4mJiezcuVOVWHh4eNC5c2fWr1/PJ598QnJyMsuXL2fEiBFMmDAByB26ZmBgwPz58xk+fDiVKlVStTlw4ED8/PwKjC0pKYm9e/eq7tNSUlKYMmUKUVFR2NnZcfLkSa5cucK3335L8+bNgdx7tDZt2mBubl6o6xcvpyIlG3v27GHPnj2q16tWrWLHjh0a5ZKSkvj3339p3bp1kYJ5PNHIU79+fXbs2EFKSgoPHjwgPDycjz/+WK1Mt27dWLBgARkZGRgaGnLy5EnMzc3x8vJSlXFycqJ+/fqcPHlSko1XREhENNk5Sgx0dTHU1SuROnV0dGhQw5ZTV8PZ8ftFBng1eWbSLYQQ4umUSqXav6GhoaEsWbKE4OBg4uLiVMfDw8MLrCs9PZ01a9awf/9+7t27R2Zmpuq9R48eFfgF6KRJk2jVqpXasSfvS6pUqaJKNCD36QxAdHTuHkx5w6I6dOigKqOrq0u7du3YuHFjgdfg6emp9trZ2ZmDBw+qXp86dQp3d3csLCxUT2F0dXVp0aKFqu3g4GBSUlLo0qWL2pMaT09P0tLSuH79Oi1btlQdb9u2bYFxAdSrV0+tP/KuPS/ZuHTpEubm5qpEA6BixYp4eHgU+smOeDkVKdlITU3lwYMHqtePHj3K99GYiYkJAwcOZMyYMc8d4N9//42trS2mpqb8/fffQO5Tisc5OzuTmZnJnTt3cHZ2JiwsDEdHR42bQCcnJ8LCwp47JvFiuHgrd9UoUwPDEk0I6laz5q8bd7hxL47zN+/i5mRfYnULIcSrJCoqCgcHBwCSk5N59913sbKywt/fn2rVqlGhQgWmTZtGenrBS4gvXLiQnTt3MmbMGBo1aoSZmRnHjh1j1apVpKenF5hs1KhRAxcXl2eWefIb+ryhU3nxxcbGYmBggJmZmVq5/L5MLWz9GRkZqtcPHjzg/PnzNGzYUOPcmjVrqsoAvPHGG/m2ce/ePbXX1tbWxY4N/rv2mJiYfK+zsNcuXl5FSjYGDRrEoEGDAGjfvj1Tp05Vy95L2l9//cWhQ4eYPHkykPv4EjR/4fNe572fmJio8RcdwMLCIt9JVEWRN1k9NbX0VgJ5GeX1nzb78cLNSAAq6umTna0+QfDxb7zyZGdna0zEy87O1iirC7RzceZw8DW+OfE3dpb/rUqlzKfu/Op9lvzafFYdpdGXrwLpx5LzqvWliYlJWYfwQrp+/TrR0dGqm+Lz588TFRXFmjVrqFevnqpcUlISdnZ2BdZ3+PBhBgwYoDYkKCgoqOQDfwYbGxsyMzNJSkpSuw+Jj3/6/kxFYWFhgY+PD+PHj9d4z9DQUFUGYMWKFfn2W/Xq1UsklidVqVIl3+ssqWsXL65iz9k4fvx4ScahISoqio8++gh3d/cir2qlTXmPJAvzSFcUTJv9eDn8LgB62dmkpDxSHVcqldyPjdUon5yczN2b6ntomNvY5Vv2NbdGHA6+xi+XQzHISqOCfu4wrXe7tdEon1+9z5Jfm4WpQ34nS4b0Y8l5VfqyWbNmZR3CCyc9PZ3Zs2djaGioWmwmLS0N+O8bc4Bz584RGRmpNnTpyW/7H6/z8XOzs7PVhiCVhkaNGgFw7Ngx1ZyNnJycfFfNLA5PT0/27duHs7PzU5NcNzc3jI2NiYqKomPHjiXSbmG4uLiQmJjIn3/+SYsWLYDcETCnT5+WORuvuOdelik5OZm7d++SmJiosUQtoPqFK4rExERGjhyJpaUlAQEBqqFaedl6UlISNjY2auUff9/c3JyoKM0bs4SEBFWZ4tLX1ycrKwsHB4dnrtogni01NZXw8HCt9WNKeibRyScBsKpohsFjw/10dHSwfuz3J4+pqSn21vXVjiWkZeZbtn4NW6zNTLiflEJ8pg4uVXPL6Ovra5TPr95nya/NZ9Wh7b58VUg/lhzpS/G4nJwczp8/D+ROKs7b1O/OnTvMnz9f9U27q6srJiYmzJw5Ez8/P6KjowkICMDW1latPmdnZ7Kysti8eTNubm6Ympri5OSEp6cnO3fupHbt2lSqVIlt27blm5Q8za1bt1Rx5tHR0aFJkyaFrqNOnTp07NiROXPmkJqaSrVq1dixYwdpaWklMpx36NCh7N+/n7fffpshQ4ZQrVo14uPjuXDhAra2tgwdOhRzc3M++OADFi5cSFRUFC1btkRPT487d+5w7NgxAgICtPL3snXr1jRs2JCJEycyYcIEzM3N+frrr6lYsaLMbXzFFTvZiI+PZ86cOfz0009q6zbnyZv0FRISUqR609LSeO+990hKSiIwMFDtMaSTkxMAYWFhqj/nvTYwMFBtCuTk5MTp06c1Jp7dvHmTunWLvzER/LcCl7GxsTw6LwHa6sd/oyJRKqGymQlGBpq/5gb5rE6lp6enEUtyZnK+ZXWAhjXtCLoSxr937+PmZI+Ojg46+dSdX73Pkl+bhalDfidLhvRjyZG+1A5Ls9JN4J63vbS0NAYMGADkDjmrXr06Hh4erFixQm0HbWtra7788ksWLFjA6NGjcXBwYObMmXz99ddq9bVr145Bgwaxdu1a4uLiaNGiBVu2bGH69Ol89tlnzJ49G2NjY9544w06duzItGnTChXnkiVLNI7p6enxzz9F21fp888/Z9asWSxYsABDQ0PeeOMN6tSpw7ffflukevJTqVIlAgMDWbZsGYsWLeLhw4dUrlyZJk2aqD3FePfdd7G1tWXjxo1s3boVfX19atasSdu2bfP9P60k6Ojo8NVXXzFjxgxmzJiBubk5Q4YM4ebNm0W+FxQvFx1lfo8jCmHs2LH88ssv+Pr60rx586c+Int8xYOCZGVlMXbsWIKDg/n2229VKx08Lm8zv0WLFqmOvfXWW5iamqotfTtw4EA2btyoWtnh5s2bdO3alSVLlhR7NapLly6hVCrJzMykfv368p/oc0hJSSEkJERr/fjdb+f5fPcvtHSujl6y+nyNacM6sT/4qsY5fT1cNHYFj0lIZtfpSxplX29en91/XGZL0DkysrLp0bw+1Stb8Hrz+uz7S/0f1fzqfZb82nxWHdruy1eF9GPJkb7UnhylEt0y+Ja4rNp9WQwePBhdXV22bNlS1qGUqoyMDLp3707z5s2ZN29eWYcjykixn2ycOnWKd955h08++aTEgpk5cya//PIL/v7+JCcnqz3ObNCgAYaGhowbN45JkyZRs2ZN3N3dOXToEBcvXmTr1q2qsm5ubnh7e/Ppp58yefJkKlSowNKlS1EoFHTq1KnE4hXlV0hE7pwHZ9vKhCdrzrkoCQb6etSpas2VO9H8cyea6pWfb4ieEEIUpKxu+CXRKLwjR45w79496tatS2pqKgcOHOCvv/5i5cqVZR2a1gUGBpKTk4OjoyOJiYls376dyMjIfJ8aiVdHsZMNIyMj7O1LdsnPU6dOATB//nyN944dO0b16tXp0aMHqamprFu3jrVr1+Lo6MiKFStwc3NTK79s2TLmzZvHjBkzyMrKwtvbm2nTpsnu4a+Iq5ExADjZWhEeqp1kA3J3FL9yJ5qbMfE8Siv82GAhhBAvJxMTE3744QfCw8PJzMzEycmJhQsX8tprr5V1aFpXoUIF1q5dS2Rk7mqQ9erVY82aNQUuKSxebsW+83799df5+eefGTx4cIkFU9gVrvr166daveJpzMzM+Pzzz/n8889LIjTxAsnMzubGvdzNoJxtK6PNddOszEywszQj6mGSKsERQgjx6vLx8cHHx6eswygTvXv3Vq3CJUSeYicbnTt35s8//2T48OEMGDAAOzs79PQ0d2nOb+MZIbTpZnQ8mdnZmBoZYmtZ+LkSxdWghi1RD5MIiYghOyen4BOEEEIIIV4RxU428jb3A/j999813i/ualRCPK+rkbnDphT2NqUyztjJ1orfr+qTnJbBmWt3tN6eEEIIIcSLotjJhqwqIMqr6/fuA1C3qub+GNqgr6dL/epVCL55lx/+/Aev+g6l0q4QQgghRHlX7GTjjTfeKMk4hCgxefM16lStXGptNqxpy4Xwe1y6HYXC3gZr84ql1rYQQgghRHmlW3ARIV4seU82ale1LrU2TY0q4GRrBcDFW/dKrV0hhBBCiPKs2E82pkyZUmAZHR0dWQ1KlKrElDRiEpIBcLarTGJSaqm17VKrKjei4rhxL45WdWtiUsGw1NoWQgghhCiPip1snDlzRuNYTk4OsbGxZGdnY2VlhbGx8XMFJ0RR3YjKHUJlZ2mGmXGFUk02bC1NqW9vQ0hkLFfuRNOido1Sa1sIIcqjgIAAVqxYAeR+AVmxYkWqVatGixYtGDx4MM7OzkWu88yZMwQHBzNq1KgSi/PGjRssX76c8+fP8+DBAypVqkT9+vUZNGgQbdq0KXQ9CoWCTz75hOHDh5dYbC+DkJAQevfuzTfffIO7u/tTyykUCtWfDQwMqFq1Km3atGHs2LFYWlqWQqSl68yZMwwZMoRdu3a91HuRFDvZeNqeGJmZmQQGBrJ582Y2bNhQ7MCEKI4bqiFUpTdf43G93RsS8v0JrtyJxs3RHn09GakohHi1GRkZsXnzZgAePXrEtWvXCAwMZMeOHcydO5devXoVqb6zZ8+yYcOGEks2bt++Tb9+/VAoFPj7+2NlZUVkZCRBQUGcPXu2SMlGYGAg1apVK5G4XlW+vr706NGD9PR0zp49y+rVqwkPD+frr78u69BEMZX4dtoGBga8/fbb3Lhxg9mzZ7N27dqSbkKIp8p7slHbrmySDU9FLUyNDElOy+BG1H3q2VcpkziEEC+nHKWyVJb0Lsl2dXV1cXV1Vb328vJi0KBB+Pn5MXXqVJo2bUqNGmX3JHj37t0AbNy4UW1ExptvvklOEfdOevw6RfFUrVpV1Y/u7u7ExMSwY8cOYmJiqFLlxfg/NTs7m5ycHAwMDMo6lHKhxJONPPXq1eOHH37QVvVC5CtvJarSnBz+OD1dXRrVtOOPa7e5EH4PRbXSWX5XCPFq0NXR4eiF6zx4VHpDRCtVNKZjkzolWmeFChWYPn063bt3Z+fOnUyYMAGAvXv3EhgYSGhoKEqlknr16vHxxx/TuHFjQH1YVt6Qm5YtW7JlyxZCQ0NZsWIF586d4+HDh9jb29O3b1+GDh2Kru7TnzInJiZiamqa79DvJ88LDQ1l6dKlnD17lvT0dGrVqoWfnx89evRQxfTkMKoTJ06wcuVK/v33X0xMTOjcuTOTJ0/GxMQE+G8ozYYNG/j+++85fvw4lpaWDBo0iJEjR6q1HxwcTEBAAOfPn0epVFK7dm0+/PBDvLy8AMjIyGDFihXs37+f2NhYatSowejRo+nZs+czP48TJ06wefNmrl69Snp6Os7OzowbN47WrVurynz//fdMmTKFPXv2sGTJEv766y+qVKnC6NGjNXYN/+qrr/j2229JSUnBy8uLgQMHPrP9Z6lfvz4A9+7dUyUbhbnO69evs2DBAi5evEhaWhp2dnb07dtXrU+Dg4NZunQpFy9eRE9Pj7Zt2/Lpp59SufJ/X1guWrSIoKAgIiIiMDU1pUWLFvj7+6slPr6+vpiYmNClSxdWr17NnTt3CAwMxMXFhRMnTrB69WpCQkIwNDSkXr16TJkyhQYNGqjOT0xMZOLEic/87F9kWks2fv/9d5mzIUqVUqnkRlTuMKo6ZZRsANSvXoVzYZE8SE4lPOZBmcUhhHg5PXiUyv3ER2UdxnOrXbs2tra2BAcHq45FRETQu3dvatasSUZGBgcPHmTw4MHs27cPR0dH+vXrR1RUFAcOHFANzTI1NQUgJiYGR0dHevbsScWKFQkJCSEgIICUlBTGjh371DgaNmzItm3bmDFjBm+99RYKhSLf5CQ8PJwBAwZQtWpVpk6dio2NDdeuXePu3btPrfvw4cN89NFH9OnTh3HjxhEbG8vixYtJTExk6dKlamU/++wzevXqxcqVK/n5559ZtGgRCoVCdcP/999/88477+Dq6sqcOXMwNzfn8uXLau2PHz+ec+fOMWbMGJydnQkKCuLjjz/G3Nz8mcPBIiIiaNeuHe+++y66urqcPHkSPz8/Nm/erDHHYtKkSfTv359hw4axY8cO/P39cXFxUc2/2bp1K19++SXvvvsunp6e/P7770ydOvWpbRfk7t276Orqqg1PK8x1jho1Cmtra+bOnYupqSm3b98mKipKVUdwcDC+vr60adOGpUuXkpqayrJlyxg9ejSBgYGqcnFxcbz33ntUqVKF+Ph4Nm7ciK+vLwcPHkRf/7/b6MuXLxMZGcn48eMxNzenatWqHDp0iAkTJtChQwcWL16MgYEB586dIzo6Wi3ZKOizf9EVO9nI+2bhSUlJSfz555/8888/+Pn5FTswIYoqLimFh4/S0NXRwbGKVZnFUcFAn4Y1bAm+eZdzYZEolcoyi0UIIcqzqlWrcv/+fdXrx5OCnJwcvLy8uHjxInv27GHChAnY2dlhZ2enMTQLwMPDAw8PDyD3y6dmzZqRlpbG1q1bn5lsvPHGG5w+fZrAwEACAwOpWLEirVq14s0336RDhw6qcgEBARgYGLB9+3ZVguPp6fnUepVKJQsWLKBbt27MnTtXddzGxgY/Pz9Gjx5NnTr/PTHq1KkT48aNU13LiRMnOHLkiOqGc+HChdSqVYvNmzejp6cHgLe3t+r8P/74g+PHj7N+/XrVcS8vL2JjYwkICHhmsvH222+r/pyTk4O7uzs3btxgx44dGsnG4MGDGTx4MABubm4EBQVx5MgRRo8eTXZ2NmvWrKFXr15MnjwZAB8fH+Li4go92iUnJ4esrCwyMjI4c+YM27dvZ8CAAdjY2BT6OuPj44mIiGDq1Km0b98egFatWqm1s3jxYho1asSKFSvQ+f8hgnXr1qVHjx4EBQWp+uvxTayzs7Nxc3OjdevW/PHHH2r9n5CQwK5du6hatSqQ+/l/8cUXeHl5sXLlSlW5/D6Hgj77F12JJxsWFhbUqFGDmTNn0r9//2IHJkRR5U0Or2FtiZGh1h7aFUrjWlW5dCuK2MRHnAuLpGvTemUajxBClEdKpVJ1owe5w5SWLFlCcHAwcXFxquPh4eEF1pWens6aNWvYv38/9+7dIzMzU/Xeo0ePqFgx/81W9fT0WLx4MaNGjeKXX37hr7/+4tSpUxw7dozRo0czfvx4IPcmt3PnzqpEoyA3b94kMjKSTz/9lKysLNXxli1boqury+XLl9WSjcdvXHV0dHB2dlZ9E5+amsqFCxeYMGGCKtF40qlTp7C0tKRVq1Zq7Xl6evK///2P7Ozsp54bFRXF0qVL+f3334mNjVV9SdawYUONso/HaWJiQrVq1VRxRkVFERMTQ8eOHdXO6dy5c6GTjUWLFrFo0SLV62bNmjFt2rQiXWelSpWwt7dnyZIlJCQk4OHhgZ2dnapsamoq586d45NPPiE7O1t13MHBgapVq3Lp0iVVUhAUFMSqVau4fv06ycnJqrLh4eFqfVG3bl1VogEQFhZGVFSUKul6lmd99i+DYt+RXb16tSTjEOK5XVfN1yibyeGPM65gQL3qVbh8O4rNv/xNFzeF2n+oQgghcm9OHRwcAEhOTubdd9/FysoKf39/qlWrRoUKFZg2bRrp6ekF1rVw4UJ27tzJmDFjaNSoEWZmZhw7doxVq1aRnp7+1GQjT506dahTpw5+fn7Ex8czfPhw1q5dyzvvvIOlpSUPHz4s0gTlBw9yh9GOGTMm3/fv3VPfANbMzEzttYGBAUlJSUDumP6cnJxntv/gwQMePnyYb4IAEBsbq3bDnScnJ4f333+fpKQkPvjgA2rVqoWxsTHLly/XiPFpcWZkZKjaALCyUh9dYG1d+KHNQ4YM4fXXXyc1NZV9+/axc+dOvvzySyZOnFik61y/fj1Lly5l1qxZpKSk0LBhQ6ZMmUKLFi1ITEwkOzubefPmqT25yJN33RcvXmT06NF06NCBkSNHUrlyZXR0dOjfv7/G7+ST1/jw4UOAQv3OPOuzfxmU7de/QpSgvPkaZbUS1ZPcnKoREhHNPxEx/BYSjk8Dx7IOSQghyo3r168THR3NG2+8AcD58+eJiopizZo11Kv339PgpKSkfG+Sn3T48GEGDBigNoQ7KCioWLFZWVnRp08f5syZw61bt7C0tMTS0pKYmJhC15G3L8SMGTNUE9wfV5TExczMDF1d3We2b2FhgZWV1VNXAX0yAchz69Yt/vnnH1auXMlrr72mOp6Wllbo+PLkDXWKj49XO/74ULmC2NnZqfacaNmyJffv32fjxo0MGjSIqlWrFvo6HR0dWb58OZmZmQQHB7NkyRJGjRrFyZMnMTMzQ0dHh/fee0/tmvNUqlQJgJ9//hlTU1OWLVummscTGRmZb7tPfqGY9/kX5XfmZfXcycbZs2c5ceKEaoJStWrVaNu2LS1btnzu4IQoirwnG2U5OfxxFSsY0qimHRfC7xFw6He86zvI0w0hhCB3yNPs2bMxNDSkX79+wH83t48vF3ru3DkiIyPVhhs9/k36k3U+fm52djYHDx4sMJb79+/n+8173tCtvPc8PDw4cuQIkyZNKtRQKicnJ+zs7Lhz545qjkNxmZiY4Orqyg8//MC7776b73AoT09Pvv76awwMDNSStYLkfUP/eN9FRkYSHByseupUWHZ2dtjY2HD06FG1oVRHjhwpUj2P++STTzh58iTr169n2rRpRb5OAwMDWrZsiZ+fH++//75qIQFXV1fCwsKeuZleWloaBgYGav9379+/v1Bx533+33//Pd26dSvUOS+rYicbGRkZTJw4kZ9//hmlUom5uTmQ+6hv48aNdOzYUTXzXghty8lREhpVfoZR5XF1rMa1u/e5GhnDkfPX6OKmKPgkIYR4ieTk5HD+/HkAUlJSVJv63blzh/nz51O9enUgd48KExMTZs6ciZ+fH9HR0QQEBGBra6tWn7OzM1lZWWzevBk3NzdMTU1xcnLC09OTnTt3Urt2bSpVqsS2bdvyTUqe9NVXXxESEkKPHj2oXbs26enpnDp1im3btvHaa69hb28P5E5eP3HiBIMGDWLEiBHY2NgQGhpKampqvsuU6ujo4O/vz6RJk0hJSaFt27YYGxtz9+5dgoKC+Oijj3B0LPwT74kTJzJ06FCGDh3KoEGDsLCw4MqVK1SqVIm+ffvi5eVFu3btGDFiBCNGjEChUJCamsqNGze4deuW2iT1x+XdFC9evJicnBxSUlJYvnx5sfa00NPTw8/Pj7lz51K5cmW8vLw4deoUZ86cKXJdj8fXrVs3du3axZgxYwp1nVevXuWLL76gW7du1KhRg+TkZNasWYO9vT01a9YEcpOYd955hw8//JDu3btjbm5OVFQUv//+O3369MHd3R0vLy82b97M7Nmz6dixI8HBwYWee6Kjo8PkyZOZMGEC48aNo1evXhgaGnL+/HlcXFxo165dsfvkRVPsZGPlypUcPXqUd999l3fffVeV+cfFxbFhwwbWr1/PypUr+fDDD0sqViGe6u6DRFIzMjHQ06OGtWVZh6NibGhAf8/GbD7xN0v3/0qbhk4YG0oCLoQovkoVS3dZ+edtLy0tjQEDBgC539BXr14dDw8PVqxYoVouFXKfIHz55ZcsWLCA0aNH4+DgwMyZMzV2jm7Xrh2DBg1i7dq1xMXF0aJFC7Zs2cL06dP57LPPmD17NsbGxrzxxht07NhRbXJxfl5//XXS09PZsmUL0dHR6OnpYW9vzyeffMKgQYNU5RwcHPjuu+9YvHgxM2fOJDs7GwcHh2euvNm1a1fMzc1ZvXq16htxe3t7fHx8ijSPAaB58+Z88803LFu2jClTpqCrq0udOnXU7rOWL1/O2rVr2b59O5GRkZiZmVGnTh369Onz1HoNDQ0JCAhg1qxZjB8/nqpVq/L+++/zxx9/cPny5SLFCLl7TiQmJrJt2za2b9+Oh4cHc+bMYcSIEUWuK8/o0aM5dOgQW7duZdy4cQVep42NDdbW1qxZs4bo6GjMzMxo3rw5CxcuVD0Vatq0Kdu2bSMgIIApU6aQmZmJnZ0drVq1olatWkDuylGTJk1i69atfP/99zRt2pQ1a9bQuXPnQsXdrVs3jIyMWL16NRMmTKBChQo0aNBAYwL9y05HWcx1Odu3b4+7u3u+E2sA/P39OXv2LMePH3+uAMuTS5cuoVQqyczMpH79+qoNeUTRpaSkEBISUmL9eOJyKB+s30fdatbs+thXdTwy5iGzNqg/vp02rBP7gzUXOOjr4UIVC/VH4zEJyew6fUmj7OvN67Pvr5BCHe/RrD4jV+3i3oMkRnfxYFTnVhrnFdRmfrHlKem+fFVJP5Yc6UvteRF3EBdCvNqevqVmAWJjY/Od8JSncePGqlUJhNC2G3lDqOzKx3yNxxkZ6jOhpw8AG479SdSDl2eFCSFE6SqrG35JNIQQxVXsZMPOzo6zZ88+9f0///yzUKtHCFESbqgmh5ef+RqP6+Ral6ZO9qRlZrH0wK9lHY4QQgghRKkodrLRu3dvfvzxR2bMmEFYWBjZ2dnk5OQQFhbGZ599xuHDh1XL2Qmhbaplb8vJSlRP0tHRYfIbbdHRgR/P/cu5sPyXzhNCCCGEeJkUe4L4qFGjuHPnDjt27GDnzp2q9YdzcnJQKpW88cYbjBo1qsQCFeJpMrOzuRmdu3mScznZYyM/9atXoY97I3b/cZn53//Cto8Goa9X7HxfCCGEEKLcK3ayoaenx/z58xk6dCgnT55UbXJib29P69ati7TGsxDP41bMAzKzszGpYEC1SuZlHc4zjevuxU8XrnM1Mpbtv53Ht03Tsg5JCCGEEEJripRspKenM3fuXOrUqYOvb+6KP/Xq1dNILL755hu+++47pk6dKvtsCK17fHK4rm75nsRoZWrCRz19mLXjZ1Yc+p3XGtemajlPkIQQQgghiqtIYzgCAwPZs2cPbdu2fWa5tm3bsnv3bnbu3Pk8sQlRKNfv5c3XKL9DqB7Xx70Rbo7VSM3I5PPdv1DM1aeFEEIIIcq9IiUbP/74I506daJGjRrPLFezZk26dOnCwYMHnys4IQrjv5Woyufk8Cfp6uowo/9r6OvpEnQljOOXQss6JCGEEEIIrShSsnHt2jWaNWtWqLJubm78+++/xQpKiKLIe7LxoiQbkDuRfVj75gDM+/4XktPSyzgiIYQQQoiSV6RkIzMzs9BzMAwMDMjIyChWUEIUVkp6BhFxCcCLM4wqz8jX3KlhbUFMQjIrDv1e1uEIIYQQQpS4IiUbVapU4fr164Uqe/36dapUqVKsoIQorNCoeAAqm5lgZWpSxtEUjZGhPtP6dgBg+2/nuXw7qowjEkKIkhUQEICbm1uZxtC8eXMCAgJKrb327dsza9asZ5Y5c+YMCoWCS5culVJUz6dXr174+/s/s4y/vz8KhYL+/ftrvKdUKmnTpg0KhaJUP4tXRUBAAOfOnSvrMJ6qSMmGp6cnP/zwA3Fxcc8sFxcXxw8//ICnp+dzBSdEQV7EIVSP81DUonuzeiiVMGvHMbKyc8o6JCFEOZZTRgtKlFW7L6uGDRsSGBiIs7NzWYdSokxMTLhw4QJ37txRO/7XX38RFxeHoaFhGUX2cluxYgXBwcFlHcZTFWnp25EjR7Jv3z7eeecd5s6dS5MmTTTKXLhwgWnTppGens6IESNKLFAh8vOiJxsAk3q14deQm1yNjGHX6Uu0d3m5/vMRQpQcXR0djly9TnxKaqm1aWViTOd6dUqtvfIqLS0NIyOjEqnL1NQUV1fXEqmrPLG3t0dPT49Dhw7x3nvvqY4fOHAAb29v/vrrrzKMTpSVIj3ZqFGjBsuWLePu3bsMHDiQTp06MXbsWCZPnszYsWPp3LkzAwcOJCIigiVLllCzZk1txS0EADdesGVv81PZzISxXXOfAn51+HeSUmWyuBDi6eJTUolNflRqP9pObKKiopg0aRLu7u40btyYwYMHc/nyZbUye/fu5a233qJly5a0aNECX19fLl68qFHXzz//TJcuXXBxcaFv3775lgE4ceIE/fr1o3HjxrRq1YrPPvuMlJQU1ft5w5xOnDjBBx98QNOmTRk/fjwAx44do0+fPri5udG8eXP69OlDUFCQRhvffvst7dq1o1mzZowePZr4+HiN+h8fRqVQKFi7di0LFiygVatWuLm54e/vT3Jy8jP7LyYmhilTptChQwcaN25Mp06dWLJkica8WYVCwbp16wgICMDT0xN3d3emTJmidt0A586do0+fPri4uNCjR498r+1ZunfvzoEDB1Svs7KyOHLkCD169NAoGxwczKhRo/D29sbV1ZVevXqxd+9etTJ5fXXq1CkmTpyIm5sb7dq1Y926dUWuC3KH+Q8ePBgXFxc6derEvn37GD16tGr/uDyhoaG8//77NGvWDFdXV/z8/Lh9+7ZambzPbOnSpXh4eNC8eXMWLFiAUqnk9OnT9OrVCzc3N9555x3u3bundm5GRgZLliyhXbt2NGrUiK5du7J//361Mv7+/vTo0YMzZ87Qu3dvXF1d6du3r9rfD4VCAcCCBQtQKBQoFArOnDmjcd1lqcg7iLdt25Z9+/axbt06Tpw4wc8//6x6r0qVKvTr14+RI0cWuDyuECXh+gu27O3T9PVoTOCpi4RGxbHlxDmqWJqWdUhCCKF1CQkJDBo0CBMTE6ZPn46ZmRlbtmzhnXfe4aeffqJy5dwvkiIiIujduzc1a9YkIyODgwcPMnjwYPbt24ejoyMAISEhfPDBB7Ru3ZopU6YQERHBhx9+qHHTffjwYT766CP69OnDuHHjiI2NZfHixSQmJrJ06VK1stOnT+f1119n5cqV6Orqcvv2bcaPH0/37t2ZOHEiOTk5XL16lYSEBLXzjh8/zq1bt5gxYwYPHjxg3rx5zJ49W6P+J23ZsoWGDRvyxRdfEBERwaJFi0hPT3/meQ8ePMDS0pIpU6Zgbm5OeHg4AQEBxMbGMm/ePLWy3377Lc2aNWP+/PmEh4ezYMECKleuzKRJkwCIjY1l+PDhKBQKli1bRmJiIjNnziQlJYX69es/M/Y83bt3Z8mSJdy4cYPatWtz6tQp0tPTad++Pf/73//Uyt69e5emTZvy1ltvYWhoyLlz55g2bRpKpZI33nhDrexnn31Gr169WLlyJT///DOLFi1CoVDQunXrQteVlpbGu+++i7m5OQsXLgRg5cqVJCYmqn1BfufOHQYOHEidOnWYP38+Ojo6rF69mqFDh3L48GG14WDffvstLVu2ZMGCBVy4cIGAgABycnI4deoU77//PgYGBsyZM4epU6eyYcMG1Xnjx4/n3LlzjBkzBmdnZ4KCgvj4448xNzenTZs2qnKxsbHMmTMHPz8/zMzMWLx4MWPHjuXo0aMYGBgQGBjIgAED8PX1VSV0tWvXLtRnVVqKnGwAVK9enZkzZwKQnJzMo0ePqFixIqamcoMkSk9cUgrxySno6ICT7Yv7ZANAX0+XT3q34b3V3/PDn1fo79UEC5OSeVwvhBDl1ebNm0lMTGTnzp2qxMLDw4POnTuzfv16PvnkEwDGjh2rOicnJwcvLy8uXrzInj17mDBhAgBr166latWqrFy5Ej09PQAqVKjA1KlTVecqlUoWLFhAt27dmDt3ruq4jY0Nfn5+jB49mjp1/hsy1r59ez7++GPV68OHD5OZmcn06dNV9zw+Pj4a16VUKlm1apXqpjQyMpI1a9aQk5ODru7TB5UYGhpqxD9t2jTGjh371PkdCoWCyZMnq143bdoUY2Nj/P39mTFjBsbGxmrXuXjxYgBat27NP//8w5EjR1TJxubNm9HR0WHdunWYmZkBYGdnx9ChQ58a85Ps7e1xdXXlwIEDfPjhhxw4cID27dtjYqK5iEv37t1Vf1YqlbRo0YLo6GgCAwM1ko1OnToxbtw4IPd35MSJExw5ckSVbBSmrt27dxMXF8f27dupXr06AI0aNaJTp05qycaKFSuwsLBg48aNVKhQQdWvHTp0YOfOnQwePFhVtkqVKqrExcfHh+PHj7Np0yYOHjyo+syio6OZPXs2iYmJmJub88cff3D8+HHWr1+Pt7c3AF5eXsTGxhIQEKCWbCQkJLB161bV76WxsTFDhgzhwoULNG/eXDUcr2rVquV2aF6RhlHlx9TUFFtbW0k0RKm7EZU7hKp6ZQtMKhRuSebyzENRC696DmTnKPnzxp2CTxBCiBfcqVOncHd3x8LCgqysLLKystDV1aVFixZqQ4xCQ0MZM2YMnp6e1K9fn4YNG3Lz5k3Cw8NVZS5cuEC7du1UN+oAXbp0UWvv5s2bREZG0rVrV1V7WVlZtGzZEl1dXY3hW23btlV7rVAo0NPTY9KkSRw/fpykpKR8r6tFixZq3347OzuTmZlZ4AI7+cWvVCqfuWqVUqlk06ZNdOvWjcaNG9OwYUMmTZpEVlaWxkTtJxfucXZ2Jirqv5UQL1y4gLu7uyrRgNwbe0tLy2fG/aQePXpw6NAh0tLSOHbsmFoi8LiEhATmzJlDu3btaNiwoWri/M2bNzXK5t2UA+jo6GjEXpi6Ll++TN26dVWJBuR+gV6vXj21tk6dOkX79u3R09NT/Y6Ym5vToEEDjd+RJ/vU0dGRKlWqqCWHDg4OAKp4T506haWlJa1atVL7PfT09CQkJITs7GzVuVWqVFFLgPOeWkRHR+fbp+VRsZ5sCFEeXL/74k8Of9IH3b04dTWcG/ficHWohrV5xbIOSQghtObBgwecP3+ehg0baryX901zcnIy7777LlZWVvj7+1OtWjXVN/7p6f/NcYuNjVU9Hcljamqq+mY6rz2AMWPG5BvPk+Pqn6zP0dGR1atXs2bNGsaOHYuuri7e3t7MmDGDatWqqcqZm5urnZeXeDweb36eFn9MTMxTz9m8eTNffPEFI0aMwN3dHXNzcy5dusSsWbM02nsyrif3RIuNjaVWrVoabVhZWT0z7id16dKFzz//nC+//BIDA4N8n/5A7pyE4OBgxowZQ+3atTE1NWX79u38+OOPGmUfT4DyYn882StMXTExMflei5WVlVpfPXjwgM2bN7N582aNsk/uN5dfn+Z3DP77/B88eMDDhw/z/b2H3M/Bzs7uqfU/XteLQJIN8cK6EfVyzNd4XP3qVWjb0IkTV8L488YdujatV/BJQgjxgrKwsMDHx0c1+fpxeTfo58+fJyoqijVr1qh9A52UlKS6IYPcIUJPPjlITk5WuynL+4Z+xowZNG7cWKPNJ/cH09HR0SjTunVrWrduTXJyMidPnmTevHlMmTIl3xvTonpa/M/at+zw4cO0b9+eiRMnqo6FhoYWq/38+hBQm9xeGNbW1rRq1YpNmzbRt2/ffDeETk9P58SJE/j7+6tNzt62bVuR4y5sXVWqVCEkJETj/Pj4eCpW/O/LPQsLC9q0acOgQYM0yj5errgsLCywsrJi7dq1+b5f1OSuvJNkQ7yw8pa9rW33Ys/XeNLQds0IuhLGrdiH3E98JE83hBAvLU9PT/bt24ezs3O+Y/ohd1IvqH+jfO7cOSIjI9WGlzRu3JhffvmFKVOmqIYiHT58WK0uJycn7OzsuHPnjtq4++IwNTWlW7duXLx4UW31peeRX/w6Ojq4uLg89Zy0tDSNm/knVzUqrMaNG7N9+3aSkpJUTxJOnz7Nw4cPi1yXr68vRkZG9OvXL9/3MzIyyMnJUYs9OTmZ48ePF7mtwtbVqFEj9u7dy507d1QLGUVERHD16lWaNWumKufh4cH169dp0KCB2rC2kuLp6cnXX3+NgYGBxhCu4jAwMCjXTzok2RAvpJwcJTfyVqKq9uwnGxnpWSQmppGenomeni7hkXEolcp8v7EqD6pbW+JsV5kbUXGcC4ukk2vdsg5JCCGKLTs7W+OmH3JvbIcOHcr+/ft5++23GTJkCNWqVSM+Pp4LFy5ga2vL0KFDcXV1xcTEhJkzZ+Ln50d0dDQBAQHY2tqq1efn50ffvn0ZM2YMb731FhEREaxfv15tGJWOjg7+/v5MmjSJlJQU2rZti7GxMXfv3iUoKIiPPvpItbpVfr777jvOnz+Pj48PNjY2REREsG/fPry8vEqkrzIyMtTiX7RoEZ07d37m5n+enp588803bN26FQcHB/bt28etW7eK1f4777zDtm3bGDlyJCNHjiQxMZGAgIAiz9mA3Pkn7dq1e+r7ZmZmuLi4sG7dOqysrNDX12ft2rWYmpoW+UlKYet68803Wb16NaNGjVJNNl+xYgXW1tZq9wQffPABffv2Zfjw4fTv3x9ra2vu37/P2bNnad68eb7L+BaFl5cX7dq1Y8SIEYwYMQKFQkFqaio3btzg1q1baosXFIaTkxPHjh2jefPmGBsb4+joWK7mUkuyIbTiUXIaqWmZaseMjQyoaFoyKyzdfZBIakYmhvp61LSulG+ZnBwlh05e4d9/o3h889tPFv5AtWqWePnUwciofE4sb+pkz42oOMKi44lPTin4BCHEK8PKxLjgQuWovfT09HyHSS1YsIBevXoRGBjIsmXLWLRoEQ8fPqRy5co0adKEjh07ArlDcr788ksWLFjA6NGjcXBwYObMmXz99ddq9TVo0IAvv/ySRYsWMXbsWOrUqcPSpUsZPny4WrmuXbtibm7O6tWrVU8A7O3t8fHxwdr62V9eKRQKfvnlF+bNm8fDhw+xsbGhe/fu+V5fcfj6+hIfH88nn3xCRkYGHTt2ZMaMGc88Z8yYMTx48IDly5cD0LlzZ6ZNm8aoUaOK3H6VKlVYt24dc+bMYfz48dSsWZMZM2YUuGRvcS1evJgZM2bg7++PpaUlvr6+pKSkqC0RW5J1GRkZsWHDBj777DMmTZqEra0to0ePZu/evWpzQmrVqsXOnTtZtmyZaulfGxsbWrRoodrX4nktX76ctWvXsn37diIjIzEzM6NOnTr06dOnyHXNmDGDzz//nJEjR5KWlsY333yDu7t7icRZEnSUysdvw8SzXLp0CaVSSWZmJvXr13/qI18B9+8ncXB/sNqx7j3dsLbO/cuckpJCSEhIsfvxl8uhjF+/j3r2NuyY9LbG+0qlkvnrjrLvl9wVPExMDKlYsQLpGVmkJKeTlZ2DiYkh7TrUx8oqd5hSPw8XnvzLkJ2Tw54zVzTqf715ffb9pTnuM7/jfT1cqGJR+G8YYhKS2XX6EkeC/+VmzAPqVrPmK783nlrH8/alyCX9WHKkL7UnR6lEtwyeypZVu68ShULBJ598opEcCe16+PAhr732GkOHDlVbYlmUnHL1ZOPWrVusX7+eCxcucP36dZycnDTGQfr6+nL27FmNcw8dOqT2mDEpKYl58+bx888/k5mZiY+PD9OmTXvmJCvx4ihovsb2g3+z75dL6OroYFfNgsqVK6oekQ7p0oJZq34kMTGNY0f/oUtXF8zMjUjPzNJIFF5vXrhNjLTB1bEaN2MecONeHA+SU4qUsAghXk5ldcMviYZ4WaxduxZra2vs7e2JjY1lw4YNZGdn8+abb5Z1aC+tcpVsXL9+naCgIJo0aUJOTg5Pe+jStGlTtQ1sALU1kwE+/PBDbty4wf/+9z8qVKjAsmXLGDlyJLt370Zfv1xdtiiGfyNjAahTzUbjvb+v3GbFtiAA3undkr/DItXer1m1El27N+anI1d4EP+IYz//Q5duT598V1ZsLc2wtTAlOiGZ/X+FoLCXRFkIIYR4Hrq6uqxatYro6Gj09PRo0qQJmzdvpmrVqmUd2kurXN11t2/fntdeew3IXS/5yY1T8pibmz9zl8Tg4GB+++03tZ0ZHR0d6datGz/99BPdunUr8dhF6boambvmeH179WQjIzOLBet/RqmEHm0b0a1NQ41kA8DQUJ/2Hepz+MdLJCWlceq36/T1LH8Jh0stO6Iv3mDfnyF80N0LQ0mUhRDipfTvv/+WdQivhLxJ2aL0PPcO4iVJV7dkwjl58iTm5uZqq0M4OTlRv359Tp48WSJtCO1LTknn/oNktZ/klHSSUtO5cz8BgHrV1b/t33bwb27fe0Bly4qM9237zBWnTEwMadeuHnp6utyNfMiBX/JPbsuSk21lTI0MefgolR/PyX9EQgghhHixlKtko7DOnj2Lq6srLi4uvP322/z5559q74eFheHo6Khxo+nk5ERYWFhphvpSeZScxv37SWo/j5LTtNZeWnome49dVPtJS8/k37u5Q6jsLM2wrPjfKikxcUls2vMHAOMGt8HUpEK+9T6uklVFmrd0AGDbvj+Ji0su+Qt5Drq6OjSsmbtp1dag4KcOLRRCCCGEKI9euDEZLVq0oFevXjg4OBATE8P69esZNmwYW7Zswc3NDYDExESNbe0hd8fGpw3NKqy8m73U1NTnqudF9OhRBvt++Fvt2Ou9mqGjm6NRNic7m8zMTI1jKSm5y7jm9d+z+jErnzqysrO5dDN3WFQdOytVfQDrd58iPSOLRnXs8HarSUpKCkqlkuxszfger9fBwYrIiAdE3HnAqV+v06lLA/T0cvNw5RNl8xjo6tHcoZrG8Qp6+hrHdXKUanEWJPuJ665jW4nzN+/y791YfrsSSjMn9foL05eiYNKPJedV60tZcUsIIZ7uhUs2PvjgA7XXbdu2pUePHnz11VesW7dO6+1nZWUBEB4ervW2yhtLS1vux95XO5aUnMydiOhil31WP1pY2RIbG6t2LDkpibMhoQBYGSgJCcldPepBUhqHTv4DQHs3W65evQpA5aq1SEl5pFaHUqnk/hP1OjmZkvgglYSEVP48c4PadXL37sjKytIoC5CekcmyLUc1js8f10fj+OdjenM7rPAbLJnb2Gm02bZ+LY5cDOXrI79j0rZhvue9ir+T2iD9WHJelb58fOdhIYQQ6l64ZONJJiYmtGnThiNHjqiOmZubExUVpVE2ISEBCwuL52pPX1+frKwsHBwcMDYu3Y2VylpyUgbWNuobHpmZmlK1qlWRy6amphIeHv7MfkxMycTGRn0CuKmZGdEpud/6ezWuT/36DgAEfPsrWdlKGtetSq/Onqry8UnpmJhUVKtDR0cHaxvNVaxa1qnLoq+PcetWAnXqVqOytSn6+vr5ltXR0dGoF0AHzeP6enrUr1/4JXQT0jI12vRQOHDkYijnI+Mwt7XH3spc9V5h+lIUTPqx5EhfCiGEyPPCJxv5cXJy4vTp0yiVSrV5Gzdv3qRu3brPVXdefcbGxq/co/OUlGwMDNR33NbV08u3Hwpb9ln9mJKerFFHjlJJeMxDAFyda2BiYkJ8QgqHfs19wuHX31utvgfJGaohUY97sl4A9yYOODhaE37zPmfOhNO9R2MMdfXwquuoUVYHnXzrBTSO5yYmhf9dSc7UvG4HWyu86jlw6mo4+89dY8LrrTXOexV/J7VB+rHkSF8KIYR4ISeIPy4lJYUTJ07g4vLfsqWtW7cmISGB06dPq47dvHmTf/75h9atNW/SxIvjZswDsnJysKxohK1l7iZ3e46eJyMzmwbOdjRtUOO56m/p7oixsQGJCalcCL5DRmYW6/b8rvFTFhO1B3g1BmDPmSukZWSVevtCCCGEEEVVrpKN1NRUDh8+zOHDh4mMjCQ5OVn1Oj4+nr/++otRo0axe/du/vjjD/bt28fgwYOJjY1lzJgxqnrc3Nzw9vbm008/5ccff+T48eN88MEHKBQKOnXqVIZXKJ5X3s7h9eyroKOjQ3pGFruPngfgre7Nn7nUbWFUqGBAK8/cnej/+ecuV8M0h+OVFZ8GjlSrZE5CShpHzssyuEKI8i8gIACFQoFCoaBevXo0a9aMnj17MmvWLEJDQ4tV55kzZ1i9enUJRwqhoaFMnDgRLy8vGjVqxGuvvcaCBQtITEws8bbynDlzBoVCwaVLl1THFAoF69evV73+/vvv2b9/v9ZiKGk///wzCoWCiIiIAss+2ecdOnRg/vz5PHz4UPuBFlNERAQBAQFER6vPQc3vsxS5ytUwqri4OMaPH692LO/1N998g52dHZmZmSxdupSHDx9ibGyMm5sbM2fOpHHjxmrnLVu2jHnz5jFjxgyysrLw9vZm2rRpsnv4C+7q/y972+j/l4M9ciqEB4mp2Fmb0bZlnRJpo3p1K5xrVyH0Rgwrt/2KjZ0Zuk8ZMvU8ktPSSUnXXOkqO0dz9SwAPV1d+nm68OXBUwSeukivlg1JTksnKS0Tcxs7EtIySc7MXbrXpIIBpkYFL/0rhHix5CiV6D7nlyql3a6RkRGbN28G4NGjR1y7do3AwEB27NjB3Llz6dWrV5HqO3v2LBs2bGDUqFHFiic/f/75J35+ftSsWZNPPvmEqlWrcvXqVVatWsWJEyfYunUrVlaa8xO1ITAwkGrV/lt1cM+ePZiYmNCzZ89Sab+0PKvPf/nlF7Zu3aoxb7M8iIyMZMWKFbRt2xZbW1vV8YYNGxIYGIizs3MZRlc+las77+rVqxe4g+bj2f6zmJmZ8fnnn/P555+XRGiinLgamZtsuNS0Q6lUsuPHcwD07eyGfgkmBM1bOHDv3kOi7yeRpczBvnqlEqs7T0p6JrtOa34D8nrzp08m7+3eiK8O/8Hl21FcuR2FjYUpO05d4H5sLNY2Nqq5Hn09XCTZEOIlpKujw483rxGfWvjltJ+XlbEJXR2LP99RV1cXV1dX1WsvLy8GDRqEn58fU6dOpWnTptSo8XxDYJ9HWloaEyZMoFq1amzfvl01z6hly5Z4eXnRu3dv5syZw5IlS0olnsf76mVVmD6fNWsWAQEBpRaPkZHRc9Vhamr6Snx2xVGuhlEJ8TgdJTRTVFf9NHSyIzz2AQCNatpy4d9IQu/cx6iCPq+3cymgtqIxNNTHw7M2AHFxj0hO0t7mhUVR2cyETq65T3ACT10s42iEEGUhPjWFmNRHpfajjcSmQoUKTJ8+nczMTHbu3Kk6vnfvXt566y1atmxJixYt8PX15eLF//6tCwgIYMWKFaSkpKiGZ/n6+gK5Q3I++ugj2rRpQ5MmTejWrRsbNmwg5ylPi/McPnyYmJgYRo0apbGggbOzM7169eLHH39UDZv5/vvvUSgUxMfHq5Xt1asX/v7+qtfBwcGMGjUKb29vXF1d6dWrF3v37i2wbx4fRuXr68vZs2c5ceKE6noDAgLYsmULTZo0ITlZfSPa0NBQFAoFQUFBT62/oD6G3H52c3Pj33//5a233qJJkyb06NGDX3/9Va1cZmYmc+fOpWXLljRr1oxPP/2UR4/Ul5vPT2H6/OjRo0RG5u6rlTdEKSgoiLFjx+Lq6oq3t3e+w+lCQ0N5//33adasGa6urvj5+XH79m21MgqFgrVr17Jw4UK8vLzw8PAACv7Mzpw5w5AhQwDo27ev6jN5PMbHh1Glp6czb948vL29cXFxUV3X4/z9/enRowdnzpyhd+/euLq60rdvX4194Xbt2kX37t1p3Lgx7u7uvPXWWxqfW3lVrp5sCPG49PQsNn3z3z9sD5UZ5CiV2FqaYmNhyvLNJwDo7FUfs4rP941EfqpVs+Q1TwU///4vd+48oK7C9qkrUJWmgd5NOPj3VX4MvsqQtk3LOhwhhCiW2rVrY2trS3BwsOpYREQEvXv3pmbNmmRkZHDw4EEGDx7Mvn37cHR0pF+/fkRFRXHgwAHV0CxT09zFQmJiYnB0dKRnz55UrFiRkJAQAgICSElJYezYsU+N4+zZswC0a9cu3/fbt2/Pzp07+fPPP+nRo0ehr+/u3bs0bdqUt956C0NDQ86dO8e0adNQKpW88cYbharjs88+4+OPP8bIyIjJkycDYGdnh7GxMQsXLuTAgQMMHDhQVX7Xrl3Y2tri7e391DoL6uM8mZmZTJo0iSFDhjB69GjWrVvHBx98wPHjx6lUKfdp/5IlS9i+fTvjxo2jQYMGHDx4kMWLFxd4XYXt87///ht7e3vV8enTp9O9e3cCAgL4/fffWbp0KRYWFrz11lsA3Llzh4EDB1KnTh3mz5+Pjo4Oq1evZujQoRw+fBhDQ0NVXd988w1NmjRh7ty5qj3UCvrMGjZsyIwZM5g1axbz5s3Dycnpmdc5adIkfv31Vz788EOcnJz44YcfGDduHCtXrqRDhw6qcrGxscyZMwc/Pz/MzMxYvHgxY8eO5ejRoxgYGPDnn38ydepU3n33Xdq0aUNaWhoXL14kKSmpwL4uDyTZEC+MRGXu/IZGNe24/yCZX85eB+DNTq4lUr+Brh4tHaurHbOo70zQXzfIzMjm3t0Eqtco+eFURdW4VlXq2dtwNTKWI+evlXU4QghRbFWrVuX+/f82gH08KcjJycHLy4uLFy+yZ88eJkyYgJ2dHXZ2dhpDswA8PDxU31ArlUqaNWtGWloaW7dufWayER0djbm5uSppeVLe/In89u96lu7du6v+rFQqadGiBdHR0QQGBhY62ahduzampqaYmJhoXG/nzp3ZvXu3KtnIyspi37599O3bFz09vafWWVAf58lLNtq0aQOAo6MjHTp04OTJk/Tq1YuHDx+ybds2Ro4cyXvvvQeAj48Pb7/9tsbk6ScVt89btWqlSrp8fHyIi4tj1apVDBgwAF1dXVasWIGFhQUbN26kQoXcocRNmzalQ4cO7Ny5k8GDB6vqsrCwYMWKFWoLyxT0mZmamlK7du6ohzp16qithPqkq1ev8tNPPzFz5kzVZ9S6dWsiIyM1ko2EhAS2bt1KnTq5IxeMjY0ZMmQIFy5coHnz5ly8eBFLS0vVtUPuptYvCkk2RJl49Cidq//EkpFWkVoOtlSzL/gmPlGZ+82DS007fjh+iezsHBorqlGnVpUSiSlvmdvHTRvaiRo1KhEWep/4+EdYWBhjZl7yT1GKQkdHh/5eTZi142f2/xlCF9faZRqPEEIU15P7YYWGhrJkyRKCg4OJi4tTHS/MbvTp6emsWbOG/fv3c+/ePTIz/1uA49GjR1SsqLkRa1EUdbXDhIQEAgICOHbsGNHR0WRnZwNgaWn5XHHk6d+/P2+//TbXr1+nTp06BAUFERcXx5tvvvnM8wrbx7q6uqrkDXLn1RoZGakSiWvXrpGWlkbHjh3VzuvUqRN//vnnc15d/p5sq3Pnzvzwww9ERUVRrVo1Tp06Rbdu3dDT01M9rTA3N6dBgwYaw5Jat26t8ZmW5Gf2999/A9ClSxe14127dmXevHmkpKSohpBVqVJFlWgAqoQmr68bNGjAw4cP8ff3p2fPnjRt2vSF2jBVkg1RqhISUtj4dRBHj1wiPT0LyJ3g3bGzC36j2lHJKv9vOeC/Jxv17avw+e7DALzZ0VXbIWNqakRla1Pi7icTEZE7nKqsdWtaj6X7fuXug0Qi4xMp2/RHCCGKJyoqCgcHBwCSk5N59913sbKywt/fn2rVqlGhQgWmTZtGenp6gXUtXLiQnTt3MmbMGBo1aoSZmRnHjh1j1apVpKenPzXZsLOz47fffiM5OTnfb9rv3r0LoLbyUGH4+/sTHBzMmDFjVE8otm/fzo8//likep6mRYsWODo6smvXLqZMmcLu3btp0aIFNWvWfOo5ReljIyMjtWFHkLshbl652NjcBVsqV66sVsba2rrA2G1tbUlMTCywz+3s7NSOP7kiWF5bsbGxVKtWjQcPHrB582bVELsnY3/ck3FDyX5mCQkJGBgYaCQq1tbWKJVKkpKSVMmGubl5vrHm9bWHhwcLFizgm2++Yfjw4VSoUIHOnTvz6aeflljyqk2SbIhSczMsli8X/0hUVAIAVpWNMTU14c7tOI4eucRff4ax/Kt3qFrVUuPcdGU26eSgAzyITeb+g2QqmZuU2HK3Bala1ZykxDQyMrK4G/mwVNp8FpMKBrzesgHfngwmJDIWt6oWZR2SEEIUyfXr14mOjlYNKTp//jxRUVGsWbOGevXqqcolJSVp3HTm5/DhwwwYMAA/Pz/VsWdNlM7TokULdu3aRVBQkNowmjwnTpxAV1eXZs2aAaiG5zz+5ARQ248jPT2dEydO4O/vr5rADrBt27YC4ymKfv368fXXXzNs2DCCgoKYO3fuM8s/bx8/Lm9Z2ri4OLVE7PFhcU/TsmVLdu/e/cw+19HRoXnz5mrHn5yUn9dWXiwWFha0adOGQYMGadT5ZLL55FONkv7MLCwsyMzMJCEhAQuL//6Pvn//Pjo6OpiZmRWpvl69etGrVy/i4+M5duwY8+bNQ19f/4VYdbXsZ7uKV0J0VAL/m7aLqKgEqlazZPa8N/nkUx9WrPYlYNVQataqzIP4R0zz30FysubKTwn//1Sjlk0lDp64AkCv9i4YGpROvqyrq0uNmrlDvR48SOGvy7cLOEP7+v//juK37yeQIjuKCyFeIOnp6cyePRtDQ0P69esH5C4/CurfQJ87d061IlEeAwMDMjIy8q3z8XOzs7M5ePBggbF06dIFW1tbVq1aRWpqqtp7N2/eZM+ePbRu3ZqqVasC/z3hCAsLU5ULDQ3l3r17qtcZGRnk5OSoxZOcnMzx48cLjOdJjz9NeNIbb7xBUlISkyZNwsjISGPIzpMK28eFUbduXYyMjDRWV/rpp58KPLdLly5UqVLlmX3eqVMntf1GAI22jhw5QpUqVVSJkoeHB9evX6dBgwa4uLio/RQ0mbuwn9mTTx2eJi85PXz4sNrxw4cP06BBA41VuArLysqKfv364eXlpfY7WJ7Jkw2hdbGxSRz/+R+ysrJp2syB6TPfQE9PSUhICAD16ldjweJBjBm1kVvh91kw7wCz5vZVqyMv2XC0sOTsb6Ho6ujQ+7XGGm1pU8WKFbC2MeV+bDJrAn/DvmYl9A2ePglP2xyrWNHUyZ5zYZGExydT077gc4QQorTl5ORw/vx5AFJSUlSb+t25c4f58+dTvXruwhyurq6YmJgwc+ZM/Pz8iI6OJiAgQGP4krOzM1lZWWzevBk3NzdMTU1xcnLC09OTnTt3Urt2bSpVqsS2bdvyTUqeZGRkxOLFi/Hz82PQoEEMGzZMtcHc6tWrsbCwYPbs2aryTZo0oWrVqnz++edMnDiR5ORk1q5dqzacxczMDBcXF9atW4eVlRX6+vqsXbsWU1NTjW/nC+Lk5MTevXs5fvw4NjY2VKlSRdUnVlZWdOjQQfVUp6C9Igrbx4VhaWnJwIEDWbduHUZGRqrVqJ5cZjY/RkZGLFmy5Kl9XrVqVaZPn65x3h9//MEXX3yBl5cXp06d4ocffmDGjBno6uZ+d/7BBx/Qt29fhg8fTv/+/bG2tub+/fucPXuW5s2bP3M1scJ+Zg4ODujp6bF792709fXR09PLd6J4vXr16NSpE/PnzyctLQ1HR0f27dtHcHAwX331VWG6WGX58uU8fPiQli1bUrlyZa5du8avv/7K0KFDi1RPWZFkQ2hVYmIqx3++QlZWNo1cqjNnXn8MK+iTkqK+bru1jRlz5vVn3Pub+P23a5z9I5Tqtf4bT/nw/5ONR/dzvwHxae6MbWX1MY6lwc7OgqSkNBKS08iJeICDQ+UiTxosSa+3qM+5sEhuxSeTnZODQcGnCCFecFbGxftGtKzaS0tLY8CAAQCYmJhQvXp1PDw8WLFihdpuy9bW1nz55ZcsWLCA0aNH4+DgwMyZM/n666/V6mvXrh2DBg1i7dq1xMXF0aJFC7Zs2cL06dP57LPPmD17NsbGxrzxxht07NiRadOmFRhj3lCqlStXMn/+fOLj41Eqlbi5ubFy5Uq18f0GBgasWLGC//3vf4wfP56aNWvy6aefMn/+fLU6Fy9ezIwZM/D398fS0hJfX19SUlLYsGFDkfpv5MiR3L59m8mTJ5OYmMjYsWMZN26c6v2OHTty+PBh+vbt+4xachW2jwtr4sSJZGdn8/XXX5OTk0PHjh2ZOHEin3zySYHn5vX5V199xfz580lMTKRKlSr07NmTUaNG5TsXYdasWQQGBrJ9+3YqVqzI+PHj1VaYqlWrFjt37mTZsmXMnDmTlJQUbGxsaNGihWo/jGcpzGdmZWXFjBkz+Prrr9m3bx9ZWVlP3ZB64cKFLFmyhHXr1vHw4UOcnJxYvnw57du3LzCWx7m4uLB582Z+/PFHkpOTsbOzY/jw4bz//vtFqqes6CiVSmVZB/GiuHTpEkqlkszMTOrXr1/sR2Avqvv3kzi4P1jtWPeeblhba447vH8/iT27/uTHQxdITEilsrUpi798m+rVcyd3paSkEBISotGPa746xs7AM9SsWZn/fd6XxcsPk6XM4dfs+5CjxPKBLpmZ2ayc3p+mDQrecTYy5iH/x955hkdVbQ34PVOTSW8kBAgJLYQeeqgCUqRcxQvYPuygAtaLV1DEK6Ko4AUpNmwoFkC5ShNEQCw0hSAtdAIkpPdk+sz5fgwZGGZSSUiQ/T7PeWD27L3OOnvOTPY6e5VZH29yaZvxwBDWJh516zsqvjWzP3Hd/p1x/xBmf+raZjCYOXMqG6vNTqPGgYSE+Jbbf+aDQ2nUINDtfJkFxWVWEF/zZ5JL25iE9jQIcA+iS8st5PY3P6PEZKF/m2jimkSU219QNmXdk4KqI+ay9rDLMoo6eMBRV+etS2bOnMmGDRv48ssvadWq+hXUa5t///vfJCUlsXbt2rpWpdYoLab3zTfflJtuVlA/ETEbglrBbpf57ddjFBYY0Ok03DSwDV5eFT93v+fe3gQG6jh3Loetmx2xGaVZqLwNEhaLjRZRYcTHNS5PTK3i7a3h7pGOoLULFwowmSwVjKg9lEoFsZGOwLiklKw600MgEFwb6mrBf6MZGgAzZsygRYsWTJw4kczMzLpWx41jx47x3XffsWHDBmdVa4GgPiKMDUGtsPa7vaSm5KFUKhgwqA06nabiQTjSzN73YD8ANqxNRLbLDhcqWUapd2zCjRsWX6euSwDD+7XF11eLbJc5d9ax3V5XxEaGIkmQWVhCdmFJnekhEAgEfyc0Gg1ff/01P//8Mw0a1Ew9p5rkscce4z//+Q+33XZbhbU1BIK6RMRsCGqcg3+dY8VXuwDo1qMZwSFVc+cZOqwDyz75hdzcEnRB3hQEWlCaQLbJ+Pt4MaR3XG2oXSUUConGTYI4cTwDg8FCZkYR4RHXPoYEHGlwI/11pBboOXw+g/5ty8+4IRAIBILrn+pktrpe6dGjR5lxEYL6j9jZEFwVkiSRnV3kPE6fymTWf/6H3S4T0yyMFi2rnuFCo1Vx622OlHHZaYUU2s2oSxw7B4MTYtFq6oeNrNGonJXPMzMLMRrrzp0q5qJBdyItG5Olamlwi40mMguKXY5iY8UFtAQCgUAgEAgqon6s2gTXLSaThc2bHEHOsiyzdfNh8nJLaBgZSI+EFtV2dxp1W2e+XL4Do96MqkCD0iIhAUN71f2uxuUEBnqTn+dFUZGRlJQ87Pa6cacK1mkJ8vEir8TIsQtVi93QmyxugepjEtrj66WtSRUFAoFAIBDcgIidDUGNcTTpAhcu5KNUKnj8qSGor6IGRWCgD736OrJ/6DIdT+qDvL0ICfQpb1ilKbGa3I7qIEkSjRoHolBI6EvMbNlVN9u8kiQR19jhU3z4XAayXRa7FQKBQCAQCOocsbMhqBEKCw0k7j0LQNduMTRuEkLSkQtXJfOmAW3YvjUJdYkdi69MhG/NpNCUgSP57rrJdKyWPI1GRUSEPxcuFLB87R9ENwu9KkOrujQPD+bPU6kU6I38fjSZ9IJil/fFboVAIBAIBIJrjdjZEFw1siyz8/cT2Gx2IhoG0DI2okbkhjbyx6aRkGTQmcFXW7mMVnVBSKgvOp0Gg9FCamqe2/tX7jJkFjiK8NUkGpXSubuxevehGpUtEAgEAoFAUB3EzobgqjlzOovMjEJUKgUJvVqWGadRGkwOYLfZCAwMp7jIjGxX4OPr5dZ/35kLWLwVKM02NAbHwlyWHe5BV6LTquv0qb3DnSqI0yczKSwwUlRkxM/PcU12WS6zeF9N0z4qgoNn0zlwNp0WDUNFYT+BQCAQCAR1itjZEFwVJqOFxL3JALTr0ARfP3ejwdnXZGH92kTWr01kzfd7WfX176z5fi+GMrI4bd5zDLuXEhmwGKyYDBZkHAv3Kw99HRbWK8XbW83QPg4D4sKF/DqpveHrraVFwxAADiSnXfPzCwQCweUsWrSI2NhY+vbti93Dbu6dd95JbGws06ZNq/FzT5s2jZEjR1bYLzY2lo8++qjGz18WldWrPjBw4EBmzZpV12rUKLfeemul7zeLxUKPHj1o3bo1Fy64u1/v3r2b2NhYDh50f6AouIQwNgRXxfq1iej1Znx9tbRp06jG5MqyzPHjGchKCYWPYwOuILf+F6wbMzQepVKByWglJ6du9O3QtCEApzJyKDQY60QHgUAgKEWtVpOXl8cff/zh0p6amsr+/fvR6WomHq+6rFixglGjRtWpDvWVxYsX8+CDD9a1GnXGb7/9Rn6+4+HhunXr6lqd6xbhRiWoNiajhR/W/wVA564xKFU1Z7uu33EE2WRHBoKDfcgpKaAgpwSNWkmPpu5GjdKOR/eqa7234KvTEh7hz4XUfDIzCgkOuvZ/REP9fYiPiSTxzAUOJqfTOy76musgEAhqB7sso6hmSvG6Oq9arSYhIYH169fTo0cPZ/v69etp2bIlCkXdPvfs1KlTnZ7/WiLLMhaLBY2mcjGQbdq0qWWN6jfr1q3D39+fJk2asHbtWiZOnFjXKl2XCGNDUG2OJl3AZLISHOxDVNOQGpX9xfo/AZC0EqUl6sxGK2dOZfH52j1u/adNHsaaA+5pZ0fFt65RvSpDSIgP2VlFmM02sutod+OfPduReOYCSamZdG3RGK1afNUFgr8DCkli84Uj5Jqu3W9LsNaHwZFXt+gcOXIkL7/8Mi+++CJqtRpwLORGjhzJhg0bXPqeOnWKxYsXs2/fPvLz82nUqBFjxozh/vvvdzFMzGYzS5YsYd26dWRkZBAcHEyvXr14/fXXXeTt3r2bOXPmkJycTIsWLfjPf/5Du3btnO/Hxsby73//m4ceegiA8ePHo9PpGD16NPPnzyczM5P27dsze/ZsoqKiXM6/ePFi1q5dS1ZWFk2aNGHSpEk1skty6tQp5s2bx549e7DZbHTv3p0ZM2a4nP/jjz9m/fr1JCcno9Fo6NChA9OmTSMmJsbZZ9q0aRw6dIhnn32Wt956i9OnTzNv3jxOnDjBxx9/zNdff81//vMfjhw5QpMmTXjuuefo27evc/zAgQO56aabmDlzpou8F198sdw5LSoq4uWXX2bLli14eXkxduxYAgMDeeONN8qtBJ6Zmcn8+fPZs2cPWVlZREREMGzYMKZMmeJiIMXGxjJ16lSMRiNfffUVNpuNgQMH8uKLL7rslO3bt4/Zs2dz4sQJmjZtyrPPPlvpz0Cv17N161ZGjBhB69ateeWVVzh27BixsbGVliFwIFYggmphNls5muTwX2zXoUm1i/d5IjO3iOTkbAC81UoUdgVqnRqL3sIfu097HKOQJLrHNHZrd5QCvLZIkkSDcH9SzueRlVmE3mi+5jrEx0QS4qsjp1jP4fMZdG5Wcy5uAoGgbsk1lZBtct/Jrc8MGDCAF154gd9//52bbrqJkydPcuzYMZYsWeJmbGRmZhITE8OoUaPw8fEhKSmJRYsWodfrmTJlirPf448/zq5du3jkkUfo1KkTubm5/Pjjjy6ysrKymD17NhMnTsTPz4+33nqLKVOmsHnzZqfR44mkpCRyc3OZOnUqNpuN119/nWeffZYVK1Y4+zz55JPs27ePyZMn07x5c7Zv386zzz6Lv78//fv3r/ZcnT9/njvvvJOWLVvy+uuvI0kS7733Hvfffz8bN250LrrT09P5v//7PyIjIykuLubrr7/mzjvvZNOmTQQGBrrM5+zZs3nsscdo2LAhkZGRnDhxAovFwtSpU7n33nuZNGkSS5cu5YknnmDr1q0EBQWVqV9l5nT69Ons2rWLZ599lkaNGrFy5UoOHz5c4bXn5eURGBjI9OnT8ff3Jzk5mUWLFpGVlcWcOXNc+n7xxRd06dKF119/neTkZN58801CQkKYOnWqU8+HHnqI2NhYFixYQGFhIS+//DJ6vZ64uIoTtPz000/o9XpGjhxJy5YtmTNnDuvWrRPGRjUQxoagWpw4lo7ZbKNhZCBNomp2V+PztX+ADDY1BMiOHy61r8PY2LP7FP4xAW5j7HaZpf/b4dY+4/4hNapbZQkK0pGVWYTJZGXD9iNoG5QdOF8bSJJEx5iGbD14ioNn051xHAKBQFAXeHt7M3DgQNavX89NN93EunXriI+Pp0mTJm59ExISSEhIABxuP126dMFoNLJ8+XKnsfH777/z888/89Zbb7kEW18ZeF1QUMDy5ctp2bKlU497772Xv/76i65du5apb1FREd999x3BwcGA4yn39OnTSU9PJyIigl27drF161Y++ugj+vTpA0Dv3r3Jyspi0aJFV2VsLF68mICAAD755BO0WkeWxc6dOzNo0CBWrVrFPffcA8Dzzz/vHGOz2ejduzcJCQls2rSJO+64w2UOli5dSseOrrWkSo2NUl1jYmIYNGgQv/zyC7feemuZ+lU0pydPnmTz5s288cYb3HbbbQD07duXW265pcJrj42N5bnnnnO+7ty5M97e3kybNo2ZM2fi7e3tfC8sLIy33noLgH79+nHkyBE2bdrkNDaWLVuGJEksXboUPz8/ACIiIrj//vsr1AMcO2/h4eF0794dhUJBz549WbduHc8880yNPmC9ERAB4oIqI8syx445Mh0NH9kJhaLmvnRGs4V1PztqRIQ19kclO2SrfRxGx4XUPEwl136noKpIkkR4uD8A67YdwmSyVjCi5mkeEYKftxaD2cLR1Mxrfn6BQCC4nJEjR7JlyxaMRiMbNmxgxIgRHvuZTCYWLlzI4MGDad++PW3btmX+/PlkZWVRUuJwH9u5cyfe3t5lyiilQYMGzkUxQIsWLQDIyMgod1zr1q2dhsbl49LT0wGHsRMYGEjPnj2xWq3Oo1evXiQlJWGz2SqYjbL5/fffGThwIEql0inX39+fNm3acOjQpRpK+/fv54EHHqBHjx60adOGjh07otfrSU5OdpEXGBjoZmgAKBQKp1EH0LhxY7y8vCqcm4rmtDQz06BBg1zONWDAgAqvXZZlPv30U4YPH06HDh1o27YtU6dOxWq1cv78eZe+vXr1cnndvHlz5+cD8Ndff9GjRw+noQEOQ/byXZ+yyM3N5ffff2f48OFO171Ro0Zx4cIF9u7dW+F4gStiZ0NQZdIu5FNSbEKjUZLQuyXbtyXVmOzNvx/FaLRgV8BNnVuw54ejACiUl1ypCrNLCPOpvwX+SgkI9MYrU4XeaObI4QvEd46qeFANolQo6BTdkF+Tktl/5gJWW80WERQIBIKq0KdPH9RqNW+//TYpKSllPumeO3cuq1atYvLkybRr1w4/Pz+2bNnCu+++i8lkwsfHh/z8fMLCwip8wuzv7+/yutTNx2QyXdW4vLw88vPzadu2rcfxpfEG1SEvL49ly5axbNkyt/dK9bhw4QIPPvgg7dq14+WXX6ZBgwao1WoeeeQRt2sLDQ31eB4vLy+3QHG1Wn3Vc5OVlYVarXZZ5AMuxltZLFu2jDfeeIOHH36YHj164O/vz8GDB5k1a5abXp70MJsvPYzMysqiadOmbueojB4//PADVquV/v37U1hYCECPHj3QaDSsXbu23F0xgTvC2BBUmRPHHU8OYpo3QKO5+luotNifLMssX+tIjWj1kbgprpnT2ABQ+zmMjaJsPaFRgfV+G1OSJMIjAjibnMPRpAvEtWmIl1fZPsK1QWyjBvx5KpVio5mtB0/yf/07X9PzCwQCQSlqtZohQ4bw6aefkpCQUOYieOPGjdxxxx0umX+2b9/u0icwMJCsrCxkWa6TvwUBAQEEBwfzwQcfeHy/Mgva8mT379+fu+++2+09Hx8fAH799Vf0ej2LFy92LrqtVisFBQVuY671/ISFhWGxWCgqKnIxOHJzcyscu3HjRgYOHMi//vUvZ9upU6eqrUdOTo5be2X0KE1z68nlauPGjcyYMaPcmB+BK8LYEFQJvd7M+XOOL2rLVtV7anMlJpOFzZsOciG3kHNpecg4dgUaBrg+FdH4aDCrTZgNFkx6C17V3N3QqpTc07GLW7uiFoLJ/f29iGkcwpmUHI4mpdEp/trubqiUCjpGN2TX8XN89et+7urbCWUdp5kUCAQ3LmPHjiUnJ4dx48aV2cdkMrks5Gw2G+vXr3fp06tXL5YuXcoPP/zA8OHDa03fsujVqxcffvgharWa1q1rNuthQkICJ06coE2bNiiVSo99jEYjkiShUl1axpU+ja9rSrNSbdmyxRmzYbfb2bZtW4VjjUaj2yJ+7dq11dKjQ4cOfPXVVy5Gz86dO8nPzy93XGpqKomJidx5551u91ZSUhJz5szh119/ZeDAgdXS60ZEGBuCKnHmdCayLBMW5kdQkE+Nyj583hFXYPWG1iHuT4UkhUT7Dk1I3JtMUXZJtY0Nk8XGglU/u7W/M6nsP37VRZIkRt/cgf9+uo1jx9Jp264RarXnPx61RZsm4ew7ncr5nAK2HjzF4I4tKx4kEAgEtUCHDh145513yu3Tq1cvVq1aRYsWLQgKCuLLL790cY8p7dO/f3+ef/55zp07R8eOHcnPz2fTpk0sWLCgFq/AQe/evRkwYAAPP/wwDz/8MLGxsRgMBk6ePMnZs2d59dVXyx1fXFzMxo0b3dp79OjBE088wZgxY3jooYcYN24coaGhZGdns2fPHrp27crIkSPp2bMn4Mj6dOedd3LixAk++eQTN9eiuqBly5YMHjyY2bNnYzAYiIyMZOXKlU4DqTx69erFZ599xvLly4mOjmbNmjWcPXu2Wnrcd999fPnll0yYMIEJEyZQWFjIokWLKozZKN3VePjhh90SGHTp0oUPPviAdevWCWOjCghjQ1Alzp5xpKRt1rxBjcrVmyyczswDwKqTaBXgOe1e9x7NSdybTGFWyXXhSgXQvUNT/Py8KCoycupkJq3jrm1mKI1KSfumEew9lcqHP+3h5g4trot5EwgEngnW1uyDnvp2vhdffJGXXnqJV155BW9vb0aPHs3gwYOZMWOGS79FixaxePFiVqxYweLFiwkJCaF3797XTM+FCxfywQcf8NVXX5Gamoqfnx8tW7bk9ttvr3BsWloaTz75pFv7F198QdeuXVm1ahULFixwpmoNCwujW7duzrSrsbGxzJkzh8WLF/PII48QFxfH22+/zVNPPVXTl1ktXnvtNWbNmsWbb76JRqNh9OjRtGzZki+++KLccZMnTyYvL4+FCxcCMHToUGbMmMGjjz5aZR0aNGjA0qVLmT17Nk8++SRRUVHMnDmT+fPnlztu3bp1dO7c2WOmNJVKxciRI1m5cqUzWYGgYiRZlq91keXrloMHDzqrb8bFxbkUjrkROHwohScnf4YkwT/HdcfbW8Pgoe3ZvOmgW19P7Ze3WSwWsrOyCQ0LZfjIzrz+7ib+OJmKTQ1+jXy4t1UbBg1ux9MvrXCR8dq00Uya8DGyDNGdIvHydexuTJs0jFc+3+ymx4z7hzD7U9e86y/cP4RJ76x06/vOpHG8ekVfT+Or2j7jgSG89fXP7N51Gh8fLbfd3hmFQuIfXeNY86d7cL2n9jEJ7WkQ4OvWN7OgmK9+2Ud2VhahYWHO7ecrZRjNFr7+7S+MFivvPjKa3q2jXWR8s9P1syrrfH9n9Ho9SUlJN+R3u6YRc1l7XI8VxAUCgHvuuQeFQsHnn39e16oIrjFiZ0NQaXbtOAFAeEQg3t41lw3KZrNz5KILlUUnERdUdmCdt7cGn2AdxTl6hyuVb/3PSgXQrHkY+/efo6TExNnkbGKahZXZV61QuhUoVFzlIwEvjZoRXVrz7a5DfPjTHhdjQyAQXD/U1YJfGBqCqrBp0ybS0tJo1aoVBoOBdevW8eeff7JkyZK6Vk1QBwhjQ1Bpdl40NqJjPGcQqS57k85TYrIgS2DzgtaB5Wfx8A91GBuF2SWENr0+XKlUKiWtWzfkr/3nOXL4QrlzaLZY3QoUznxw6FXrMLZXB77/4wh7T6Wy73SqqCouEAgEglpBp9Px/fffk5ycjMVioVmzZsydO5ebb765rlUT1AHC2BBUitSUXJLPZCNJ1HjF8I2/O9LbWnQQ5eePn7r83QrfYB2SQsJitGIqMePlq61RfWqL2NgIDh1KJTe3hPQ09/SEtU2ovw+3dmvDt7sO8dFPf9B5ojA2BAKBQFDz9O3bl759+9a1GoJ6gsiBKagUO3ecBCA8IqBGa0UU6E38dTwVAKu3RJvAig0ZhVKBT5A3AEXZ+hrTpbbReqlp2TIcgMOHUutEhwcGdkMhSfyadEZUFRcIBAKBQFDrCGNDUCl273S4UDVuXMlCRTLoDWaXAw9xB0cvOLJbWbWgVCtoERBYKfH+oY7sKIXZJVxPOQ7i2jREkiAtrYCU9Pxrfv6osECGxrcC4KOf/rjm5xcIBAKBQHBjIYwNQYUUFxs58Nd5ABo1qZyxIcsyR89kuBxXGgV2u8yJdEeBQKu3RKvAILRlFDC6Et9gbxdXqusFX18vp8G28ZcjdaLDQ4O6AfDjX8dJvphuWCAQCAQCgaA2EMaGoEL2/XkGm81OZGQg/v7eNSY3vdiIyWJDVoBNC+2DKh94rlAq8L3oSlWYfX3luo69WGfj590nMJuvfbXXVpFh9G/bDFmGT7b+ec3PLxAIBAKB4MZBGBuCCtm10xGvEd81pkblns9zGAkWbwjQaPFHRVGJ0XlUhF+Yw5WqKEt/XblSRUT4ExDgjcls5dTJuombePjm7gCs/fMImQXFdaKDQCAQCASCvz/C2BCUi90us2fXKQA6d46uMbkGs4WMIodBYfWWUBfZ+WX/abYnnnIeFeEbdNGVymTlzOmsGtOttpEkidjWjt2NY0fT68RQ6hjdkG4tmmC12flmh3tRRoFAIBAIBIKaQBgbgnI5fSqT/Hw93t4a5wK5JjiVkYcM2NQgqRUEWCoXqyEBjQL9aRToT5OQQBpE+APw+6/Ha0y3a0Gz5mHovDUUFRm5kJpfJzpMuNkRu7F+bxIGs6VOdBAIBAKBQPD3RhgbgnJJ3JcMQPuOTVCpK2cQVIYT6Y7AZKu3RPdmjVHJlSvMJwP7jp53HiWyDXBUN5dt148rlVqtZECPlgAcPZpW4/JloMRqcjlsst2lT49WUbSLCsdktXHwbHqN6yAQCASlbNmyhQcffJDu3bvTrl07Bg4cyMyZMzlz5oyzT2xsLB999NE10ykpKYnY2Fh27959zc7piVdffZWBAweW22f16tXExsY6j/j4eIYNG8b06dM5cOBAtc6blJTEokWLMBgM1Rp/rT8vwfVLvTI2zp49y8yZM7n11ltp06YNI0eO9Nhv1apVDB06lPbt2/OPf/yDbdu2ufUpKiri+eefp3v37sTHx/PEE0+QmSnqClSVxL3JQM26UGUX6sktNiADVi8Y0q5FtWWpdCokpURJsYmSrOsrUHxovzYAXEjNp7Cwej/2ZSEjcyT/gstxpbEhSZIzduPQuXRMlmsfrC4QCKpGXcWnXc15582bx6RJk/D19eWVV17hk08+YfLkyZw8eZKnn366BrX8+/Phhx+yYsUK3nnnHe69916OHz/OuHHj+OCDD6osKykpicWLF1fb2BAIKku9qiB+4sQJtm/fTseOHbHb7R5/3NavX8+LL77Io48+Ss+ePdmwYQNTpkzhiy++oFOnTs5+Tz31FCdPnuQ///kPWq2WBQsWMGHCBL799ltUqnp12fUWi8XGgQPnAIjvEl1jco9drK1h04KPRk23Zo1ZUU1ZkiSh9dNizDdSlFKEb4RvjelZ2zQM86dRo0BSU/M5djSdbt1rNgC/MtzUtjlNwwI5m5XPkfMZxDcTVcUFgvqMJEnsyk6k0FJ0zc7pr/ajZ2h8tcZu376dpUuXMmnSJJ588klne7du3fjnP//p8WGhoGzatm1LcLAjfXpCQgJ33nknzz33HP/973/p3LkzXbt2rWMNBQJ36tXOxsCBA9m+fTsLFy6kbdu2HvssXLiQESNG8NRTT9GzZ09mzZpF+/btWbJkibNPYmIiv/32G6+++irDhw9n0KBBvP322xw7dowff/zxWl3Odc/RpAsYDRYCAryJadagRmTa7HZOpOUADheq1gFBKBVXdxtq/DUA6LP1WI3X19P50jS4p05mYrHYyu2bWVDsdlhsNkyyDa2/DybZ5nSZquwzSIVC4s4+nQD462waFlv5OggEgrqn0FJEnqXwmh1XY9h8/PHHhIaGMmnSJI/vDxgwoNzxX3/9NUOHDnW6Xr3zzjvY7Zd2aRctWkR8vLsh1LVrVxYtWuTS9s4779C7d2/i4+OZMmUKOTk5lbqGefPmMWrUKOLj4+nbty/PPPOMm6fE+PHjeeSRR9i4cSNDhw4lPj6ee++9l3Pnzrn0y8jI4NFHH6Vjx4707duXpUuXVkqHslAoFLzwwgtoNBq++uorZ/vPP//MAw88QEJCAp07d2bs2LH88ssvzvdXr17N9OnTAYfREhsb63TlyszMZPr06QwaNIgOHTowZMgQ/vvf/2I2u9e0stlsvPnmm/Ts2ZP4+HimTZtGcfGlDId6vZ5Zs2YxdOhQOnbs6HSfKypyvae2bNnC7bffTnx8PF27duX2229n+/btLn1Wr17NqFGjaN++PX379mX+/PnYxN+s64J69YhfUcGi8/z58yQnJ/Pss8+6tA8fPpw333wTs9mMRqPhl19+wd/fn969ezv7NGvWjLi4OH755ReGDx9eK/r/3SiN1+jUORqFonIxFRVxPrsQo8XqrK3RNrCSFcnLQalR0io2guPH0ik8V0hwq6uXea2IjAzEz9+LokIjp09llhmEb5dlvtnpnjVqZNfWHMpLRa/Xo9PpUCpLv0MdK63DgHbNeWfjTooMJo6lZNGuaUR1LkUgEAhcsFqt7Nu3jyFDhqBWq6s8/vPPP2f27NmMHz+em266icTERBYvXkxRURHPPfdclWQtX76ct99+mwcffJBevXqxY8cOXnjhhUqNzcnJ4ZFHHqFBgwbk5ubyySefMH78eNavX+/iKZGUlERubi5Tp07FZrPx+uuv8+yzz7JixaW9+0mTJpGRkcF//vMf/Pz8WLp0KWlpaVflcREYGEjbtm1JTEx0tqWkpDBgwAAefPBBFAoFv/zyCxMnTmTZsmX06NGDm266iccee4x3332XDz/8ED8/PzQax4O7vLw8AgMDmT59Ov7+/iQnJ7No0SKysrKYM2eOy7k///xz2rZtyxtvvEFKSgrz5s3DZDIxf/58AIxGIzabjaeffprg4GDS0tJ47733mDRpEp9//jkA586d48knn2TEiBH861//wm63c/ToUQoKCpzn+eSTT5g7dy733Xcf06ZN49SpU05jY+rUqdWeO8G1oV4ZGxVx+vRpAGJiXN1NmjdvjsVi4fz58zRv3pzTp08TExODJLkukJs1a+aUIaiY0niN+BqM1ziZfnFXwwsaqLUEarQ1Ivfmoe0cxsb5QoKaByEpHZ+9Vqnkzps6ufStbJXya4EkScTGRvDnH8kcO5pOq9hrv9BXKRV0im7Ir0nJ7E++QFyTmtnFEggENzb5+fmYzWYiIyOrPNZms7FkyRJGjBjBjBkzAOjTpw8Wi4WPP/6YiRMnEhQUVGlZ77//PrfeeqvTSOnbty85OTl8//33FY6/fIFts9mIj4+nX79+7Nq1iz59+jjfKyoq4rvvvnO6Oen1eqZPn056ejoRERH88ssvHDp0iE8//ZSEhAQAevToQf/+/QkMDKzUtZRFw4YNOXz4sPP1//3f/zn/b7fb6dGjBydPnmTlypX06NGD4OBgoqKiAFfXLHAEfl9uzHXu3Blvb2+mTZvGzJkz8fa+VNxXo9GwZMkSlBf/rmq1WmbMmMGUKVNo3rw5wcHBvPzyy87+VquVxo0bc/fdd3PmzBliYmI4cuQIFouFF198EV9fhyt03759nWOKi4tZuHAhDz/8MM888wwAvXv3Rq1W8/rrr/PQQw9V+l4Q1A3XlbFRauX6+/u7tJe+Ln2/sLAQPz8/t/EBAQEcOnToqnQojSP5uwdUGY0Wko6kAhDXJhy9Xo/dZsNiuSJFqiy7t+HIhmS3uQYkmyxWkjPzAbB6ScT6B2E0Odye7HbPjj+e2j21de4ag1KrxGayUXihCN9Ixw+W2Wxl8ftbXPq+PftO5DLOZ7tC57Laqtpe1hxZLBaimgaxP/EcBQUGUlJyoHPlZQBOl4LLXQs86SHLMnq93oO+Npo1COLPUykUG80cTcnAZrN57Pt3pvQ7/Xf/bl8LbrS51Ol0da1CvebKB3+V4fTp0+Tl5TFs2DCX9uHDh/P+++9z4MAB+vfvXylZ6enpZGZmMnjwYJf2oUOHVsrY2L59O++++y4nTpxwcRFKTk52MTZat27tsmhv0aKF8/wREREcOHAAPz8/p6EB4OfnR69evThy5EilrqUsZFl2mef09HTmz5/Pjh07yMrKcq5dynJRv1LWsmXLWLlyJSkpKZhMJud758+fp1WrVs7XAwYMcBoaAMOGDeOFF17g4MGDNG/eHIDvvvuOTz/9lLNnz7r8XUlOTiYmJobY2FiUSiVTp05l3LhxdOvWzWUNl5iYiF6vZ9iwYVitl1yle/XqhdFo5MSJE3Tv3r0q0yW4xlxXxkZ9oPRGT05OrltFapljSVlYrXaCgrzIy79AfkEagYHhZGdlu/Sz2mxubaWYrlgc70tKwWq3Y1eApILi1AL2pRZy2+huWCzuvqCAx3ZPbSqVEq9wL0rOlZCfnIcUcOkPnGcZnhbuMnp9yRUt7m1VbZdlmews96KDVqvV2R4R4UNKShGHD6Ygj6q8DLtdxmh0FEcs/feiIm7GgtVqJSnJfWfPPyyC/NwcYoJ9OZKeT+LpVAoKC7lw5sbM3vZ3/25fS26UuezSpUtdq1AvCQwMRKvVcuHChSqPLX14GBIS4tJe+vpyF5uKyLr423m5IQAQGhpa4dgDBw4wadIkBg0axIQJEwgJCUGSJMaNG+eyCAf3B6GlrmOl/TIzM910APdrrA7p6enO67Hb7Tz22GMUFRXxxBNP0LRpU7y9vVm4cCFpaRWnWl+2bBlvvPEGDz/8MD169MDf35+DBw8ya9Yst2u+UndfX1+0Wq0zpmXz5s0899xz3HHHHTz99NMEBgaSlZXF5MmTnbJiYmJ47733eP/995kyZQoKhYI+ffowc+ZMIiMjyctzpMofPXq0R30rc02CuuW6MjYCAgIAx1ZlWFiYs72wsNDlfX9/f9LT3esGFBQUOPtUF5VKhdVqJTo62mUr8e/Gzt8cP85dujWnTRtHitbiIjOhYa4/ziql0q2tlJxio8vrHQcc+dStXhAmaVEi4eXlBYBarfEow1N7WX2DY0LQp+ixFluRDAp0obpyZHjyH5bQ6XyuaHFvq2q7JEmEXna/lqJSqZzt7TW+pKQcIjtbT05+SaVlKBSOOTQajXh5eV2Ke5Lcn7aqVCri4uLcZBQYLYSGheEfFMzJ7IMUm6wcSMlhZGf3vn9nDAYDycnJf/vv9rVAzKUAHL85nTt3ZteuXVit1irFJZS6FeXm5rq0lwZ1l/4t12q1bg+PLBaLy8OW0vXClbKysz0/KLucn376CV9fXxYsWOD8fU1NTa30dVxOaczHlVQ2UL0s8vLyOHToEEOHDgUcZQSOHDnCkiVLuPnmm539XB5IlcPGjRsZOHAg//rXv5xtp06d8tj3St2Li4sxmUw0aNDAKSsuLo5Zs2Y5++zZs8dNTr9+/ejXrx/FxcX88ssvzJkzh+nTp7Ns2TLnZ7148WIiItxdjRs3blyp6xLUHdeVsdGsWTPAsb1a+v/S12q1miZNmjj77dy5021b8cyZMy7bf9WhVJ63t/ffeuv84AHHj2m37i2c16nX29wX6ZJUZuDf5UHldllm75HzANi8JSIlb8CMUqF061uWjPLaADQ6Nf5N/Sk4U0DBqXx8G/iU2V8qQ8alAOvy28prt0nuLlqe5ki6rD00VE1ERADp6QX8+PtRj7LLnmeF89/Lx10pQ5Ikj/dssaUYtVqNWq2mfdMI9p5K5evfDzC2d8dquT9c7/zdv9vXEjGXggceeICJEyfy3nvvMWXKFLf3t2/f7tEdKiYmhuDgYDZu3Oji/vTDDz+gVqvp0KEDAOHh4VgsFs6dO+eMQdi1a5dLlqKIiAjCwsLYvHmzi6xNmzZVqL/RaEStVrv8Fq5du7YSV+5O+/btKSoqYufOnU5XqqKiInbs2FHtmA273c5rr72GxWLhnnvuAS7tpFz+NyM1NZXExESio6OdbaXvX5llqvSaL6esa962bRvTp093ulJt3LgRSZJo3759lWWBY2dk+PDhHDhwgHXr1gEQHx+Pt7c36enpbq5wguuD68rYaNKkCdHR0WzcuNHFWt+wYQMJCQnOTAr9+vXjnXfeYefOnfTq1QtwGBpHjhzh4YcfrhPdrycK8vWcOpkBQHznpjUi02izYbbYsCvBW6XCFxV6PLtOXQ2BMYEUni3EVGBCn33tYw5kIMtY5NZWGWJbR5CeXsCWncdp2iykxjKAVYX2URH8lZzGyfQcfj96lj5x0ddcB4FA8Pehf//+PPzwwyxatIiTJ08yYsQIgoKCSElJ4dtvv6WoqMijsaFUKpk0aRKzZ88mODiY/v37s3//fpYuXcp9993nDAju168fOp2OGTNmMGHCBNLT0/nss8/QarUusiZOnMirr75KSEgIvXv35vfff69U5fDevXuzbNkyXnnlFQYPHkxiYmKl4jw80a9fP9q2bcuzzz7L1KlT8fPz44MPPnAGRVeGw4cP4+fnh9Fo5MyZM3z77bccPnyYZ5991pkCuFmzZkRERPDWW29ht9vR6/UsXLjQudtQSmlMxRdffMHNN9+Ml5cXsbGx9OrVi88++4zly5cTHR3NmjVrOHv2rEd9zGYzkydP5q677nJmoxo6dKhTdq9evZg1axZLliwhPj6e7du3s3PnThcZX3/9Nfv376dv376EhYWRkpLCmjVrnBlF/f39eeKJJ5g7dy7p6el0794dpVLJ+fPn2bJlC4sWLRI7qPWcemVsGAwGZ17l1NRUiouL2bhxIwDdu3cnODiYxx9/nKlTpxIVFUWPHj3YsGEDBw4cYPny5U458fHx9OnTh+eff57nnnsOrVbL/PnziY2NZciQIXVybdcT+xMdPyrRMaEEh9RMkTzDxadMVi9oImmxyTIqtQar3XOQdXVRaVXO3Y3co7llBnFXFk/ZrErbrxa1Qkn3mEvbv12iIvlr3znyCw0U5OsJCnZ306ptvDRq2jQO58DZND78aY8wNgSCeoi/2j0BSn0+X+lC+IsvvuD555/HYDDQoEED+vTpw0MPPVTmuPHjx6NSqfj000/56quvCAsLY8qUKTz66KPOPkFBQSxcuJA33niDyZMnExcXx5tvvsn48ePdZBUWFvLll1/y1VdfkZCQwOzZsyt8ANm/f3+mTp3K8uXLWb16NZ07d+b99993uixVBUmSeOedd3jppZeYOXMm/v7+jB8/nuzsbLZs2VKxAHDqq9PpaNCgAZ07d2bmzJnOnR5wZIhatGgRs2bN4sknn6Rhw4Y89thj7Nq1yyVJTps2bXj88cdZtWoVH374IQ0bNmTr1q1MnjyZvLw8Fi5cCDgC6WfMmOEy76WMHz+e3Nxc/v3vf2M2mxk8eDAzZ850vn/nnXeSkpLC8uXL+eijj+jTpw9vvfUW48aNc/aJjY1l27ZtzJkzh/z8fMLCwhgxYoRLEcgHH3yQ8PBwPvnkE5YvX45KpSIqKoqbbrqpWmmVBdeWemVs5OTkuNxcgPP1Z599Ro8ePRg5ciQGg4GlS5fywQcfEBMTw+LFi92K+ixYsIA5c+Ywc+ZMrFYrffr0YcaMGaJ6eCUora9RUylv7bLsNDZsWglFkY1MWwkWi7nM+IurIahZEEUpRZiLzWz58eqyj5nNVt5ZutWtff6sO65KLoDZYmXp/3a4tHnp1FBoIDunuE6MDYAO0Q1JSslg3+lU9p1OpbOoKi4Q1BtkWa52Ne+rPe/VuFXefPPNLh4Jnjh27Jhb21133cVdd91V7ri+ffu6pEoF+PPPP11eS5LElClT3Fy5PJ3zSiZMmMCECRPKHVdaM+Jy4uLi3PpFRETw/vvvu/WtqObH7bffzu23316hrqV06NCBb775xqXttttuc+vnaU58fHzc6mmA+zVf/nratGke9VAqlTz33HNudVEuHxsfH+9xTq5kxIgRjBgxosJ+gvpHvVp5N27cuFJf/LFjxzJ27Nhy+/j5+fHaa6/x2muv1ZR6NwzO+hpdomtEnvGioWFXgg4FSlnCXmnnoqqj1CgJbhVM9uFs/vfNn2jCvVGorq5K+bUiONiH7KxiDHoLer0Zna7mjbGK8PXSMKRTK9bvPcpHP/1B54nC2BAI6gt1FUd1I8ZvCQSCmuH6WIEJrhkZGQWkpuahUEh06BhVIzL1Nke6YKsXBFqujX3r38Qfrb8Wg8GMPkvvzDFe31GplfSKdxStzMkurqB37XFH744oJIlfk85wNPXGTIErEAgEAoHg6hHGhsCF0l2NVq0b4uvrddXy7LKM8WLcRECoDzrbtbnlJEkirH0YKpUCS4kFc2H1g9Ftst3tqE2G9nGknM3P12O12iroXTtEBvszLD4WgI9++qNOdBAIBAKBQHD9I4wNgQul8Rqdayhew3CZC9XQzq2QuHZb8Vp/Lf+8owcA+mw9NlP1Fu4lVrPbUZu0iArD21uNLENujnvhwGuBBNzWw1Fp9sf9x9l3KoXMgmKKjabyBwoEAoFAIBBchjA2BE5kWa7xeI0SpwuVxOB2LWpEZlUYeksHVN4qkKE4vRj7VWanuhZIkkRIqCMLWE5OSZ24gJksVvadTqVpWBAy8Pr/fuabnQfRmzxVXhcIBAKBQCDwjDA2BE7Onc0mN7cEjUZF27ZXX5HTLsuYLy7uNWoFDfxrJo1uVVAoJHwifFCoFNgtdvQZeuz2+h+/ERioQ6lUYLHYKCysXNXX2qBzs0gAjl/IpsggdjUEAoFAIBBUDWFsCJzs+zMZgLbtG6PRXn0gd2lguF0FAfa6S3ymUCrwifABCSx6C9+v/rPiQXWMQiERHOJIfZudVVRB79ojPNCPyGB/7LLMvtOpdaaHQCAQCASC65N6lfpWULfsu+hC1aVrTI3IK75obNi0Er7WurVrVV4qdGE69Jl6vl+9l9vG96B5XIRLn5oo1FeThIT4kJVZREmJmdPns+tMj24tGvP9niMcTc3kXFY+DQLcd6iKjSY3FyudVo2vl9atr0AgEAgEghsHYWwIALBabfy131E5PK59IzIL3NOuylWo9l1QbMRqc7gr6ZRKJGvd52jX+muxmWyYCkx8t3w3ioZaJPUlI+ijOffVoXbuaDQqAgN15OfrWffzIWLaRVQ8qBZoGORPdFgQyVl5fLz1D7q2cHex05ssfLPzoEvbmIT2wtgQCAQCgeAGRxgbAgCSjlxArzfjH+BNeOMgt4UjwG2d4iotb9veEwDYVBBWhy5UV+Id6k3TiCCOH0vHnmVGEaFFUtS9IVQWoWG+5Ofr2ZF4hgYxQfj41M3ivXurJpzNyuO3pGRRVVwgEAgEAkGlETEbAgD2/XkGgPjO0ShqYPH9425HJXhJI6G115/bTJIkJj0xBJSARcaeY67XBf90Og0+PlrsdpmjSWl1pkewr47YRg0AeH31NmxV2OUSCAQ3LosWLSI2NpbY2Fhat25Nly5dGDVqFLNmzeLUqVPVkrl7927ee++9GtbUwaeffkpsbCzPP/98jcpdvXo1sbGx5Obmlttv/PjxPPLII87XtXmt10J+faRr164sWrSo3D7jx48nNjaWp59+2u294uJiOnToQGxsLKtXr64RnW699VamTZtWpTEpKSnExsayceNGZ9vAgQOZNWtWjehUk9SfVaCgTtl70dioiXiNEqOZrItBzX5K9VXLq2kCA3UowjSOF3o7cqG13P6yJCNLdWeQhDVwxEicOJ6B2Vy+rrVJj1ZN8PXScDQ1y+POl0AgqH3q6uHI1ZzXy8uLFStW8PXXX7Nw4UJuv/12duzYwa233sr3339fZXl79uzh/fffr7Y+5bFmzRoANm/ejNlcuzWVPPHSSy/x3HPPOV/X5rVeC/nXMzqdjm3btqHX613af/rpJ5T1LMazlMWLF/Pggw/WtRpu1B//FkGdUVxs5OjRC0DNGBt7zzuewNtVEGCrn19ISatEClYj51qQ863I2kt2t15jIj0wn0KdnhF7F2O93Q4yKA0SqiIl2iwlScVpyMjXpEihn58XkQ0CuJBZwKmTmcS1iayWHLVC6TEWp7K7FN4aNfcP6MriH3awaMPvDGrfglB/n2rpIhAIqockSRwt+A29rfCanVOn9Kd1QJ9qj1coFHTq1Mn5unfv3tx9991MnDiRF154gc6dO9OkSZMa0PTqOHPmDIcPH6ZXr17s2LGDn3/+mSFDhpQ7xmw2o1KpUChq5tltixbXvh5VTVLT81GXdO7cmcOHD7N161ZGjhzpbF+3bh0333yz0zCtT7Rp06auVfDI9X83CK6av/afw26TadQ4mPCIgKuWdzLdsU2sUitQXMOK4VVF8lUi+TiMIXuOhcziQo42SmFfs9NcCMml2NuIVb64EJfAppMxhVspbGfiqaOr2NXqOEmNUsgIyMesLHvHQatS0iU60u2orKEiSRIj+juqeScdSat2nRCTxco3Ow+6HbYqFDoc1TWOuMYNKNSbePWbreU+7ZSAzIJit0NUIRcIrg69rZASa+41O2rDsNFqtbz44otYLBZWrVrlbP/uu++466676N69O926dWP8+PEcOHDA+f6iRYtYvHgxer3e6Z41fvx4AE6dOsXTTz9N//796dixI8OHD+fjjz/GXskHKuvWrUOSJGbNmkVoaChr165161PqprJ06VIGDBhAhw4dyM/Pd+p+22230b59e3r06MGECRNITXVNGZ6ens7DDz9Mp06dGDJkCN99953L+5e7UZV3raXX+9hjj9GlSxc6derExIkTOXfunIs8u93OJ598wi233EK7du3o3bs3TzzxBEVFReXKnzZtmssCG6CwsNDNdai8+Vi9ejWjRo2iffv29O3bl/nz52Oz2cr9DCrzGZa6D33//ffMmjWLbt260adPH9544w2sVte/xT/99BPDhg2jffv2jBkzxuVeqgiVSsXQoUNZt26dsy03N5edO3e6zU0pX3/9NUOHDqVdu3YMHDiQd955x+3+27dvH7fffjvt27dn5MiRbN++3aOsxMRE7r33Xjp16kSXLl3417/+RU5OTrk6X+lGVfo57t69m9tuu41OnToxZswYDh065DKuqKiIqVOnEh8fT0JCAv/973/5+OOPiY2NLfd8lUXsbAic8RpdukZftazMYj0mgxUJCJTqnwvV5UiSBMFqZKMNrDL/+vBrsvs4CugFF/kSVhDA9FtuZvprq0EBVp0dS5ANY5gVdZSKIozk+BeR418EMvgZvPk6dQ9mLwtqo8ppTJgsNl75cqPb+d+ZNK7Suvbv1oLP1uyhpMRE8plsmjUPq5lJqCJKpYJZdw7hrv9+yZaDJ9m0/zjD4j3/GJksVtb8meTWLrJUCQQCcDzFDw8PJzEx0dmWkpLCbbfdRlRUFGazmfXr13PPPfewZs0aYmJiGDt2LOnp6axbt45ly5YB4OvrcDXNzMwkJiaGUaNG4ePjQ1JSEosWLUKv1zNlypQK9Vm3bh1du3alSZMm3HLLLaxYsYKioiL8/Pxc+v344480bdqUF154AYVCgU6n48MPP2Tu3LmMGTOGp59+GovFwq5du8jNzaVRo0sJNaZOncq4ceN44IEHWLlyJdOmTaN9+/Y0b97cTZ/yrvX8+fPceeedtGzZktdffx1Jknjvvfe4//772bhxIxqNw1X4lVdeYcWKFdx333307t2bkpISfv75Z/R6fbnyq4Kn+fjkk0+YO3cu9913H9OmTePUqVNOY2Pq1KllyqrKZ7hgwQIGDRrEggULSExMZNGiRURFRXHXXXcBkJSUxBNPPEG/fv2YPn06KSkpPPXUU1Vyjxs5ciQPPPAABQUFBAQE8MMPPxAeHk58fLxb388//5zZs2czfvx4brrpJhITE1m8eDFFRUVO17isrCweeughYmNjWbBgAYWFhbz88svo9Xri4i4l4UlMTGT8+PH079+f+fPnYzAYWLBgAZMmTWLFihWV1r/0nLNnz2bixIn4+fnx1ltvMWXKFDZv3oxa7VinTZ8+nV27dvHss8/SqFEjVq5cyeHDh6t0nvIQxoagRuM1dp9NQQI0Pmp0cv10obocSSFhjVGiOmlD8YcNnxgNLU2N8DV5AdBQG4DS7NgAVBoVaHNV+J7SsvQf9zL9m7Xk+haT41tMibeRIp2BZSk7oS2oTEq8C7V4FWnINru7LlUVjUZFXJtI9iee4+DBFGKahTqMpTogtlEYDw/uznubdjH7my10io6skaQCAoHgxqNhw4ZkZ1+qI3T5gtJut9O7d28OHDjA//73P5555hkiIiKIiIhwc80CSEhIICEhAXDEmHTp0gWj0cjy5csrNDYOHDhAcnIyDzzwAOBYZH7++eds2rSJMWPGuPS1WCwsXboUnU4HOJ4KL168mDvuuMPlqfLNN9/sdp577rmHe+65B4D4+Hi2b9/Opk2bmDRpklvf8q518eLFBAQE8Mknn6DVOh7edO7cmUGDBrFq1Sruuecezpw5w1dffcXTTz/tEnQ+dOhQl3N4kl8VrpyP4uJiFi5cyMMPP8wzzzwDOFzn1Go1r7/+Og899BBBQUEeZVXlM+zQoQMzZsxwyt+9ezebNm1yGhsffPABDRs2ZMmSJc4YC61WywsvvFDpa+vatSshISH8+OOPjB07lvXr13vc1bDZbCxZsoQRI0Y4derTpw8Wi4WPP/6YiRMnEhQUxLJly5AkiaVLlzqN2IiICO6//34XeW+99Rbt2rVj8eLFzr/1rVq1cu6E9O/fv9LXUFBQwPLly2nZsiUA3t7e3Hvvvfz111907dqVkydPsnnzZt544w1uu+02APr27cstt9xS6XNUhHCjusHJyCgg5XwuCoVEx/imVyVLlmVSsxzb7V3a1L3/bWUwBVvJHm7A0NKOJEs0+MkLH2PFT90VkoSv0Zuo7DDik2PodqIFzdMi6B4YjWQHq9ZGUZierGb5jE/8iPPtMsmMySM/vBiDnwmr2oZNLntr32y3YbbbMGAmX63nt9yTmFqYUGgkCgsMrDm9l02Wv3jv9HYyNfkYVRZkLrk0aRVK7unYxeXQKmrO+Jtwc3faRYVTqDfx3OcbquSKJRAIBKXIsuzy4OTUqVNMnjyZXr16ERcXR9u2bTlz5gzJyckVyjKZTCxcuJDBgwfTvn172rZty/z588nKyqKkpKTcsevWrUOtVjNs2DAAOnXqRJMmTTy6UvXo0cO5sAbHU2iDweBmlHiiT59LsS86nY7IyEjS09MrHHclv//+OwMHDkSpVGK1WrFarfj7+9OmTRuni8yuXbuQZblSel0NnuZDr9czbNgwp25Wq5VevXphNBo5ceJEmbKq8hlePpcAzZs3d5nLv/76iwEDBrgEc5d+vpVFkiSGDx/O+vXrSUtLY9++fYwYMcKt3+nTp8nLy3OTP3z4cCwWi9N966+//qJHjx4uu2UJCQkEBgY6XxsMBvbt28ewYcOw2WzO+YuOjqZhw4YcPFi1BC0NGjRwGhpwKS4oIyMDwClv0KBBzj4KhYIBAwZU6TzlIXY2bnBKXahiW0fi6+t1VbKO5uSC2bHkvXNgPHMP/1ADGtYeNq2dnJ56ZBWY2oBfshJjjhF9ph6f8KoFPmutahrmB/FC7BAefe9rjH5mDH5mjL4mrD42rFrHURJsdI659Y8lqJor0VpVSLLkOIBnDq/kePNMbGo7stJhQBw6fhaUoG2pQXtYS94hAyWNcjiZlg46QAep9jzCzYE0sARgtthYsOpnFx3fmVx5t62KUKuUvDl+OGPnfUHimQt8um0vAT5Xd/8IBIIbj/T0dKKjowHHE/EHH3yQ4OBgpk2bRmRkJFqtlhkzZmAyVRzrNXfuXFatWsXkyZNp164dfn5+bNmyhXfffReTyYSPj+ffdbvdzoYNG+jevTsKhYLCQsdDs0GDBvHZZ5+RkZFBeHi4s39ISIjL+NIYhQYNGlSo45UuWWq1ulpZr/Ly8li2bJnT/elKmaV6qVQqN31rmivl5+XlATB69GiP/dPSyk7jXpXPsKK5zMrKctPN19fXuRNUWUaMGMGyZcv49NNPadmyJbGxsc57pJSCggLAfS5KX5e+n5WVRdOm7g92g4ODnf8vLCzEZrMxZ84c5syZ49a3vPnzhL+/v8vr0vuj9DuVlZWFWq12m8/LdbpahLFxg7Pvz2SgZuI1Ei9mofLWqYkM9a+gd90iI5Pb1YDdW0ZVqCDooI5ht8Sxbk0iOUdz0IXpql3sT2FXoCvwQlfgWHzPnXgrk79aiVlnwayzYNJZsGpt2LBj09gxaSwu4/OKS+CydbvCoqBlYBh2g4R3nIZzx/IhX0mH9Ka06hrKj8lJFCkNmBVWzntlk6bJ45ec47WeLatxaCAv3XEz//5sA1/9tp/BHVvSPKJ2/6gJBIK/DydOnCAjI8O5KN2/fz/p6em8//77tG7d2tmvqKiIiIiICuVt3LiRO+64g4kTJzrbygq+vZxdu3aRlZVFVlYW3bp1c3t/w4YNTvcqwM2FtfSpdGZmZqX0rAkCAgLo378/d999t9t7pQvywMBArFYrOTk5VTY4NBoNFovr36bSBfOVXDkfAQGORDOLFy/2OB+NGzcu87zV/Qw9ERYW5hZQXVxcXCnD9XLatWtHkyZN+Oyzz3jyySc99im9B66so1J6/tI58aTTleP8/PyQJIlHHnnEoyteWS5o1SUsLAyLxeIWn1RRTZiqIIyNGxibzc7evTUTr1FisZCfZ0ABtG4YWgPa1S4lzc2YIqxgg5DdOhQ2iRG3xrPhh7+w6C0UXSjCv3HNGEw+Ki26IsdRiozMrIeGM++7LZhVVkctDxw1Pcb2i+eTdbtRWhUoLQoUdgULJo9jXeJRUMO+1skcPnSBosNmHvxnb84cLqBYX4Ix0Ea6Vx4mhYU5J37AJ8aL0ORAFHLtGRzD4mM5dC6dz37ex7ZDpwjy8SbYT1fxQIFAcENjMpl45ZVX0Gg0jB07FgCj0bHzW/rkFRyZe1JTU13cQMraDTCZTC5jbTYb69evr1CXtWvXotPpeOedd9xStr722musXbvWxdi4kvj4eLy9vfn222/p0KFDheerCmVda0JCAidOnKBNmzZl1nzo2bMnkiTx7bffuizeKyM/IiKC9PR0SkpKnMbL77//XimdS+cjPT2dwYMHV2pMKdX9DD3RoUMHtm3bxvTp051zdHkBvKowYcIEtm7dyqhRozy+HxMTQ3BwMBs3bnS55h9++AG1Wu28Lzp06MBXX33lsrDfuXOnc3cMHO51nTp14vTp07Rv375a+laFdu3aAbBlyxZnzIbdbmfbtm01dg5hbNzAHDmcSmGBAT8/L+LaXsqWobRDj6aN3PqXV9fuz7R0FBczznVsEl52x3pAjqWEgraOP2qBB7xQFzp+hLy9NQQ1CyLnWA55J/Pwi/QrT8xVISERpvXD3+C+MO8b0pKvShI9jHIQ1yaSo0np5GQXc/CYoz6KAolQsz9hNn8uaHLJ8MqnJNiIRZtD+MkgVNbaC9Z/amRfDp5NJ/HMBTYmHuOfCe3RqsVPi0AgcGC329m/fz8Aer2e48ePs2LFCs6fP8/rr7/ufNLdqVMndDodL7/8MhMnTiQjI4NFixa5uDCBwzffarWybNky4uPj8fX1pVmzZvTq1YtVq1bRokULgoKC+PLLLyt0UTKZTGzevJkhQ4Y4A5Mv55///Cevvvoqp0+fplmzZh5l+Pn5MXnyZObNm4csywwaNAi73c7u3bsZMWLEVS0Yy7rWJ554gjFjxvDQQw8xbtw4QkNDyc7OZs+ePXTt2pWRI0cSExPDnXfeydtvv01BQQEJCQkYjUZ+/vlnHn/8ccLDw8uUP2TIEBYuXMjzzz/PuHHjOHHiBN98802ldPb39+eJJ55g7ty5pKen0717d5RKJefPn2fLli0sWrQIb29vj2Or8xmWxcSJExkzZgyTJ0/mrrvuIiUlhY8++qjKblQAY8aMKTf2RalUMmnSJGbPnk1wcDD9+/dn//79LF26lPvuu8+5G3Hffffx5ZdfMmHCBCZMmEBhYSGLFi1yidkA+Pe//819993HU089xYgRI/D39yc9PZ0dO3Zw++2306NHjypfQ1m0bNmSwYMHM3v2bAwGA5GRkaxcuRKj0VhjiWjEiuAGZtcOR5BWtx7NUakuLUZNJiufLP/Nrf/0SZ4Dq2RZ5uiFLACCArzx1tTvlLdLU35DVoM6V4nPaY3Le/5R/uSfycdqsFKUWlRHGpaPt7eGlq3COZqUxqoNicitLr2nQEFjcyhPxQ9k2oFvMftYSI/NIeJY7bk3qZQKZowZxH2LVlBoMPHTXye4pUvrigcKBIJqoVNeWzfVqz2f0WjkjjvucMjS6WjcuDEJCQksXrzYJeVraGgob7/9Nm+++SaTJk0iOjqal19+mQ8//NBF3oABA7j77rv54IMPyMnJoVu3bnz++ee8+OKLvPTSS7zyyit4e3szevRoBg8e7MwO5Imff/6ZoqIi5xPdKxk5ciRvvvkma9euLdOFBhxPvoODg/n0009ZvXo1Pj4+xMfHX3W8RFnX2rRpU1atWsWCBQucqVPDwsLo1q2bS22EmTNn0rhxY1atWsWyZcsIDAykW7duzt2KsuS3aNGC119/nXfeeYdJkybRpUsX5s2bx6233lopvR988EHCw8P55JNPWL58OSqViqioKG666SaXnYsrqc5nWBZt2rTh7bffZt68eUyZMoWWLVsyf/58HnrooSrLqgzjx49HpVLx6aef8tVXXxEWFsaUKVN49NFHnX0aNGjA0qVLmT17Nk8++SRRUVHMnDmT+fPnu8jq3LkzX375JYsWLWL69OlYLBYiIiLo2bOnx5iPq+W1115j1qxZvPnmm2g0GkaPHk3Lli354osvakS+JJdXlUvgwsGDB5FlGYvFQlxcnEv2heuRB8e/z7lzObzw0m0MGHip6uSF9HxeW7TBrf/0ScP46UfXQjCDh7bnvZW/sunPEyhs0L9tNHGNwhg0uB1Pv+SaC3r+y3c42+x2GYvFjFqt4e1X7nTre2X/8toAlsy5m8On3TN6xEY14MkXv3a+1gebSe6TBzI02OqDJv+Svf3RnPt45fPN5J/JJ+doDiqdig8+eJAJL3zuJre075W8cP8QJr2z0qXtnUnj3NpK21/99MfKySh1oyq9Dr2Z71bvw2az839ju9E8JgSlUkXpQ4jWDcJ5aOkXpLfKxaq1oTYqWdbrAX4/fN7tfP/oGudWD8NTGzhqZDQIcM/DnllQzHubdvHd7sNY7XbiYyJ59e6hVZJR1+j1epKSkv4W3+26Rsxl7XFl9qa/+3kFAkHdcM8996BQKPj8c/c1UFUROxs3KCkpuZw7l4NSqaBbd89bw5XljwtpKGwgSdAivOayF1QFs9nGO0u3urXPf/kO5/9lZDJbO2pe+CSrXQyNy/Fv4k/eqTyseit7/zhTOwpfJTqdhtjWERw5fIGvvt+Ld7gSjUbjDGp/Z9I41GYVEceDSYvNweJl4z/H1nKT3B61VDsuVaH+PtzUrhk/HThJ4pkL/JpUP+dOILieqasFvzA0BIK/L5s2bSItLY1WrVphMBhYt24df/75J0uWLKkR+cLYuEHZ9bvDhSquTSRGowWj8VLWifJiM64kJbeArJxi1ECT0ADUqtqLDbhaSsLM6EMtqCUlfkllp2lVqBQENA0g72QeG9bur7dP9Nq2a8SZk1kYTBasBgUajXsftVlFw+MhXGidzfGSDKwKmWGqTrV2PS0ahpJVWMJfyWn8d+1v/KNbHCF+VUsjLBAIBAKB4Nqh0+n4/vvvSU5OxmKx0KxZM+bOnesxG1Z1EMbGDcrOi/EaXt4a1q91DUa+eUi7Ssv5fl8SyoulI9o0Cqsx/Wqay3c1RoS1509D+U/dA6ICyD+dz5nTWSgaaMC7/hlRXl5qRtzUlm827cecb8XbX+Mx1a3apCL8ZDBZcfmctmey13aarqrmHiTWDD1aRpFdpCc1p4CNicf5Z8/2eGnET41AIBAIBPWRvn370rdv31qTLyqI34AUFRk4eNDhu9+4SfXdnsw2G1v2nkBhdwQJNwkNqCkVa5ySMDPGICuSFe6M6Fphf6VWiV9jRzYqe5G1ttWrNiMGtENSgN0K5nL09CrR8HiMoxroHttJztvd83zXFAqFxOAOLYgI9KXIYGLboZOI0DCBQCAQCG5MhLFxA7Jn12nsNpkmUSH4+VW/6vPhvBysRQ73q+iwQIxmKyVGMyXG6qWpq01yWugBCDqrI0hduYDVgKYXjSeDHdliry3VrgqdlwavQEdmD0OeBdle9qJ+SIO2xCkaIQObLQcokY1l9r1avDRqZowZhEKSOJuVz9HUrFo7l0AgEAgEgvqLMDZuQHbuOA5A56uoGi7LMvuyMlBdXK9KEhxJyXQe9QlDgIWSMDPYIfh05TPjaHw1dOgUBYBcj3c3vALUSEqwW2WMhZZy+/ZTxREi+WLAzCbLX9jk2jOimoUH071lEwB2HE2m0FB7xo1AIBAIBIL6iTA2bjAsFht/7DkNQNdu1c9Cdba4kKJCE5IMaqUCPy8P0cn1hJwWJQAEpHqhMVQt9mLIMEcxJrnYVu6uQV0iKSQ0/o7rMuSYsdvK1lMlKRmm6oQGFWlyPrttJ2pVtw7RDYkI9MNis/PrkWThTiUQCAQCwQ2GMDZuMA4eOEdJsYnAIB3NW1S/0ve+7ExUBsfCMdRPVy+zNQFkmosobGgCIPCkd5Wf5Ldt3xjUEsgOg6O+ovZVoFBLyHYw5JXvxhao8GGgypEEINGWzB95ybWjk0JJz2ZNeGJYL1QKBeez81EioRD2hkAgEAgENwzC2LjB2LXjJAA9E1qiUFTPQMgzGUnOL0B5cU0b4uddU+rVOOuzDoICtJlKbLl2SqxViyeRJAnJz5FJSS6y1viTebPd5nZUB0mS0IU4dpeM+Ray84rL7d9cGU57hcNFbO6JTbUSv2G2WFny7a98u2U/oV6Oe2TpT3vIKzbU+LkEAoFAIBDUT4SxcQMhyzI7LtbXSOjVotpy9udkoTKABMTFhKNV18+0pnaFzA/Zjornvqe01ZYj+Sgd3xSrDIaajXHIMha5HdVFrVOi8laADCt/2Fdh/16qVoRIfhRYDGwy/0WRxUiJ1USJ1URNmFQyl65PpbCjlCQsdjvf7DpYA9IFAsH1wKJFi4iNjSU2NpbWrVvTpUsXRo0axaxZszh16lS1ZO7evZv33nuvxnRMSUlx6vjLL7+4vb9y5Urn+4KapaY/y6uhsLCQ2NhYVq9eXW6/vLw8XnvtNYYMGUL79u1JSEjgrrvu4tNPP3X2SUlJYdGiRWRkZNSojvVpvqqCMDZuIM4mZ5Oelo9ao6Rz15hqyTDbbBzKyXK6UN3UrfpGS21T2MhIgdWIskTCK636BpGkkJB8HePthfU3UFySJHShDqPqlz9PYjWVv0uikpQMVXXES6EmjXy2Gg5xJP8CR/IvoFEo6B7T2O2orguUQpII0jqyZq3ec5jMgvJ3XgQCwd8HLy8vVqxYwddff83ChQu5/fbb2bFjB7feeivff/99leXt2bOH999/v8b11Ol0bNiwwa193bp16HSVTy4iqDy19VnWFlarlfvuu4/NmzfzwAMP8OGHHzJjxgzatGnDtm3bnP1SU1NZvHgxmZk1mzDnepuvUurnI2lBrVC6qxHfORpvbw0lJaYqyziSl4PVZEdtA5VCQa/2MaSezK5pVWuE3GhHuluf01ok+epiSiQ/JXKhFUx2ZLNjd6O6Lk+1idpLicZXhbnYij7bjF+kV7nxNEEKHyZF38R/T2wmRZODn02Hn80bk8XG0v/tcOs/88Gh1dbNW6VEo1Bgslh5Z+NO/nPH4GrLEghuVGTZjiRd++eEV3NehUJBp06dnK979+7N3XffzcSJE3nhhRfo3LkzTZo0qSFNq8+gQYPYvHkzL7/8Mlqt48FNZmYmf/zxByNHjmTNmjV1rKGgrtmzZw/Hjh1j+fLldOvWzdk+YsQI7PbqeT4YjUa8vKpfhuB6QOxs3EDsulg1vFfvltUaL8syiZftajQLD8LLS82+o+fdjrrG4G/BGGRFJSnwSVZftTxJpUDSOTI+yRd3N2rSBaom0YVqUCkVWPQ2LCUVG0Q3h8URYvEDCU55pWHFMcZTPMnVuFdJkkSQl+Oz+G73YZIz865CmkBwYyJJCrJLNpJW+OU1O7JLNta4gaPVannxxRexWCysWrXK2f7dd99x11130b17d7p168b48eM5cOCA8/1FixaxePFi9Hq907Vp/PjxAJw6dYqnn36a/v3707FjR4YPH87HH39c6UVgv379kCSJ7du3O9s2bNhAVFQUbdu2des/b948Ro0aRXx8PH379uWZZ55xe5I9fvx4HnnkETZu3MjQoUOJj4/n3nvv5dy5c1WWJcsyixcvpnfv3sTHx/PEE0+wY8cOYmNj2b17t0u/jz76iKFDh9KuXTsGDRrk4uJTOo/x8fEcOXKEO+64gw4dOjB69GiOHDmCyWTipZdeolu3bvTr189tLEBiYiL33nsvnTp1okuXLvzrX/8iJ+dSsdhS17Tvv/+eWbNm0a1bN/r06cMbb7yB1Wp16lDWZ+mJxMREHn30Ufr06UOnTp249dZb+e6771z67N69m9jYWH7//Xf+9a9/ER8fz4ABA1i6dKmbvJUrVzJw4EA6duzIfffdx9mzZ8s8dykFBQUAhIWFub2nUCicOtx7770AjBkzxsUFr1S/n3/+mSeeeILOnTvz5JNPAld374Pj/n/sscfo0qULnTp1YuLEiW73WVFREVOnTiU+Pp6EhAT++9//8vHHHzv1s1gs9O7dm/nz57td31NPPcWYMWMqnCNPiJ2NG4TUlFySjqQC0Cq2IdnZRdisVbPCE5PTyDUa0F2MJY4ODaxhLWuO/GhHEHLvwOacMtfMNqbkp0TW25BLbBQWeg5y1iqVTB7ax63tWqJUKxg1oB3/++kAJVkm1DolUjnJACRJItoYTrHSiElh4bRXOrIsezSe5KuM5tAqlXRv0Zg9J1P4aMseXrmr+jslAsGNisWWi9l2/RfKbNGiBeHh4SQmJjrbUlJSuO2224iKisJsNrN+/Xruuece1qxZQ0xMDGPHjiU9PZ1169axbNkyAHx9fQHHLkRMTAyjRo3Cx8eHpKQkFi1ahF6vZ8qUKRXqo9FoGDx4MOvWrWPIkCGAw4Vq5MiRHvvn5OTwyCOP0KBBA3Jzc/nkk08YP34869evR6W6tLxKSkoiNzeXqVOnYrPZeP3113n22WdZsWJFlWR9/vnnLF68mIcffpiePXuya9cuZsyY4abXq6++yqpVq3j00Ufp2LEj+/btY968eWi1Wu666y5nP4vFwnPPPcf9999PaGgo8+bNY8qUKXTu3JmQkBAWLFjAli1bmDNnDh06dKBz586AY9E/fvx4+vfvz/z58zEYDCxYsIBJkya5XBPAggULGDRoEAsWLCAxMZFFixYRFRXFXXfdVe5n6YkLFy7QuXNn7rrrLjQaDfv27WPGjBnIsszo0aNd+r700kvceuutLFmyhJ9++ol58+YRGxtLv379ANi2bRsvvvgit99+O8OHD+fw4cPORX95xMXFoVAomDFjBpMnT6ZLly5oNK6p/9u2bcvMmTOZNWsWc+bMoVkz9zIDL774Iv/4xz9YsmSJ00i5mnv//Pnz3HnnnbRs2ZLXX38dSZJ47733uP/++9m4caNTx+nTp7Nr1y6effZZGjVqxMqVKzl8+LBTL7VazejRo/nuu+948sknnbrl5+ezZcsWXnjhhQrnyBPC2PibUVJsxGB0L+z2+6/HkWUIDvFl58UdjsFD21dJ9prEJJRGkGTQKJXk5dZPv3u70k5BI4dFNDysHYvYWjOCtQrQSGCW+XnrEY9dLGYrC97/0aXtozn31cz5q8BtN3fk+58PYrfKGPIt6ILLr4OiREELQ0OO6M6Try5hbcaBcvtfDXf27siekyms+zOJRwb3oHE9NloFAkHt0rBhQ7KzL7niXm4U2O12evfuzYEDB/jf//7HM888Q0REBBEREW6uWQAJCQkkJCQAjqf7Xbp0wWg0snz58koZGwAjR45k0qRJlJSUkJOTw8GDB5k7d67Lbkcpc+bMcf7fZrMRHx9Pv3792LVrF336XHroVFRUxHfffUdwcDAAer2e6dOnk56eTkRERKVk2Ww2PvjgA26//XamTp0KQJ8+fcjLy+Obb75xjj137hzLly/n5Zdf5o477gCgV69eGI1GlixZwh133OFcQFosFqZOnUr//v2d811qoEyfPh2Anj17snHjRjZu3Og0Nt566y3atWvH4sWLnW66rVq1YuTIkWzfvt0pD6BDhw5Og6h3797s3r2bTZs2cdddd5X7WXpixIgRzv/Lsky3bt3IyMhgxYoVbsbGkCFDePzxxwHHffHzzz+zadMmp7Hx7rvv0rVrV+e89+3bF5PJxDvvvFOuDtHR0UybNo25c+dy//33o1ar6dChA7fccgt33XUXKpUKX19fWrRwxLO2bNmS9u3d11oDBw7k2WefdWm7mnt/8eLFBAQE8MknnzhdADt37sygQYNYtWoV99xzDydPnmTz5s288cYb3Hbbbc7rvuWWW1xkjR07lg8//JBff/3V+VmuXbsWhUJRpuFdEcKN6m+GwWhh/dpEt2Pvn2cAaNIkuHpy7Vb2nE5BrXc82Q7z8a63tTUKGhmxq2U0xUo6+jauMbmXp8Hd+uPhelvkD8BLq0YX6jAwDLlmbJaKd7F87F40MYUCsPTsr5i8y69GXl1iI8Po1bopNrvMR1v+qJVzCASC6wNZll3+lpw6dYrJkyfTq1cv4uLiaNu2LWfOnCE5OblCWSaTiYULFzJ48GDat29P27ZtmT9/PllZWZSUlFRKn549e+Lj48NPP/3EunXraNu2LTExnhOqbN++nTvvvJMuXbrQpk0b50L2Sl1bt27tNDQA50I0PT290rLS09PJyspi4MCBLrIHDRrk8nrHDkes3ZAhQ7Barc6jV69eZGVlkZaW5uyrUCicxhk4FtLgME5KUSqVREVFOXU1GAzs27ePYcOGYbPZnPKjo6Np2LAhBw+6Zhu83OgCaN68uct1V4WCggJmz57NgAEDaNu2LW3btmXFihWcOXPGre/l55UkyeW8NpuNw4cPM3iwa9zg0KGV22m/77772LZtG7NmzWLo0KEkJycze/ZsHnjggUq77N10001ubVdz7//+++8MHDgQpVLp/Ez8/f1p06YNhw45snKWfjaX3zMKhYIBAwa4yGratCndu3fn22+/dbatXr2aoUOHlrvzVB5iZ+MGwGa1c/CgI46icTWNjQtWA1hllBfXn2E+9be2Rl5Th4tT4FmHQaSVau42l3yUyPkW8vP1qLMUKMOrn1K3ttH4qlB5WbAa7eizK1dfJNwSSKFKT76qhMxmeUQeDUVpu/RMQkLymEnKVsXAuEcG92DH0bN8/8cRJg7pQcMg/yqNFwgEfw/S09Odi9zi4mIefPBBgoODmTZtGpGRkWi1WmbMmIHJVHFCk7lz57Jq1SomT55Mu3bt8PPzY8uWLbz77ruYTCZ8fHwqlKFUKrnllltYv349qamp/POf//TY78CBA0yaNIlBgwYxYcIEQkJCkCSJcePGuenq7+/6+6ZWO2LXSvtVRlZWlsNt7nKjBSAkJMTldV5eHrIs07NnT496p6Wl0ahRI8CRJexyF6BSvfz8/Nz0LdWjsLAQm83GnDlzXHZjLpd/OZ5kmc1Vq3dVyrRp00hMTGTy5Mm0aNECX19fvvrqK3744Qe3vp7OW1TkcA3Ozc3FarW6zWVoaGildQkLC+OOO+7gjjvuwGKxMHPmTFavXs22bdvcDEBPXPm5Xe29n5eXx7Jly5zuVZdT+rlmZWWhVqvd5ubKeQAYN24c06ZNIzc3l8zMTI4cOcK0adMq1KMshLFxA5Ceno/ZZEWn0xAUXPGP7ZXYZDvpVoNzV6NNdAPuGtoFAI2qduMRqrqINQQ4AsMlGwSedxhERZX4olYWSXKkwZULrFhTDSgaaOrtDo8kSfg00FJwzoC52MrhE2kVj0EixhBBakgmmRSR2SyPiBPBSDiu0S7LfLPTvU7GP7rGVUm3+GaN6N6yCXtOnOfjLX/ywpiBFQ8SCAR/K06cOEFGRobTBWb//v2kp6fz/vvv07p1a2e/oqIip7tReWzcuJE77riDiRMnOts8uT9VxIgRI7jnnnsAGD58uMc+P/30E76+vixYsMDplpSamlrlc1VWVmlAcm5urkv75UHZAAEBAUiSxJdffulcZF5OWbs0lcXPzw9JknjkkUe4+eab3d4PCgq6KvllYTKZ+Pnnn5k2bZpLUPSXX35ZZVnBwcGoVCq3ubzcna8qqNVq7r//flavXs2pU6cqZWxcuW642ns/ICCA/v37c/fdd7u9V2pkh4WFYbFYKCoqcjE4rpwHcOyMvfLKK6xZs4aUlBSioqLo3r17hXqUhTA2bgDOn3PcSI2bBFdrYZxhNWKT7XhdDAzPPZzB+wccucjffOf+mlLTIyXmqrny5F/c1fBL06Iy146XoOSnQllix1pkQy60IgVcfbar2kKlVaINUGEqsLJ05e8MGNoGpbL8eVGj5D+xo5i8/yuM/mZyogoJOefvNDhqikeG9GDPifOs3nWIh2/uTnhg9bZnBQLB9YfJZOKVV15Bo9EwduxYwJECFHBZJO/bt4/U1FRatryURbGsp+Mmk8llrM1mY/369VXWLT4+npEjRxISElLmQs9oNKJWq13+pq5du7bK56qsrIiICMLCwtiyZYvLIv+nn35y6VfqFpWfn+/mclUT6HQ6OnXqxOnTpz3GIlSVyu50mM1m7Ha7y+dbXFzM1q1Vj8lUKpW0adOGzZs3c//99zvbN23aVOHY/Px8fH19XRIAwCV3t1Kj8Mrdq4q42ns/ISGBEydO0KZNG5RlJKVp164dAFu2bHHGbNjtdpf6IKVoNBpuvfVWVq1aRXZ2Nvfff/9VPVgVxsbfHFmWSUkpNTZCKujtefwFqx6VEbCDyi7jXf/KSwBgUdjIb+z4wgac9cIm12y171IkpURC75b8uv0Y1lQjmnpsbADoQrSYi22kZRVy4K8U4jtHVTgmxieMBmcCyWieR1GYHo1BhX9W1XfFyqNr88Z0btaIfadT+XTbnzw3+qYalS8QCOoHdrud/fv3A47g6OPHj7NixQrOnz/P66+/TuPGjti6Tp06odPpePnll5k4cSIZGRksWrSI8PBwF3nNmzfHarWybNky4uPj8fX1pVmzZvTq1YtVq1bRokULgoKC+PLLL6vlsiNJEnPnzi23T+/evVm2bBmvvPIKgwcPJjExsVoFCisrS6lUMnHiRF577TVCQ0Pp0aMHu3fvZufOncCltKsxMTHcc889/Pvf/+ahhx6iY8eOWCwWkpOT2b17d4UB0JXh3//+N/fddx9PPfUUI0aMwN/fn/T0dHbs2MHtt99Ojx49Ki2rrM/ySvz8/Gjfvj1Lly517kx88MEH+Pr6enwyXxGPPvookyZNYvr06c5sVJX5/Hbt2sW8efMYPXo0HTp0QKVSkZSUxPvvv09kZKQzDiQ6OhqlUsm3336LSqVCqVSWa5xd7b3/xBNPMGbMGB566CHGjRtHaGgo2dnZ7Nmzh65duzJy5EhatmzJ4MGDmT17NgaDgcjISFauXInRaPRoSIwbN45ly5ahVCq5/fbbqzjDrghj429Obk4JBr0ZrVZFRERAlcfn283oZRteF12o/MzU8PPtmiOrYQmySkZVpMCeLlNC1f/IVLZQ3+Bh7fl1+zHsWWZkkw1Je23T21YFhdLhTlWcZuTwoVSaNg0mOKTiXQRdgRdBqX7kNS4ip0khKlPNXqMkSUwc3INH31/Nt7sO8siQHgTW41gggaC+oFZWL/aurs5nNBqdmZF0Oh2NGzcmISGBxYsX07x5c2e/0NBQ3n77bd58800mTZpEdHQ0L7/8Mh9++KGLvAEDBnD33XfzwQcfkJOTQ7du3fj888958cUXeemll3jllVfw9vZm9OjRDB482GN62Kulf//+TJ06leXLl7N69Wo6d+7M+++/X+kg4+rIGj9+PIWFhXz55Zd8/vnnJCQk8Oyzz/L000+7uMXMmDGDmJgYVqxYwZIlS/Dx8SEmJoZhw4Zd9XWDI8vRl19+yaJFi5g+fToWi4WIiAh69uxJ06ZNqySrrM/SE2+99RYzZ85k2rRpBAYGMn78ePR6PR9//HGVr2HQoEG8/PLLvPfee6xfv56OHTuyYMEC5y5bWXTs2JGhQ4eyZcsWli1bhslkIiIiglGjRjFx4kRnAHVwcDAzZ87kww8/ZM2aNVitVo4dO1am3Ku995s2bcqqVatYsGABL7/8Mnq9nrCwMLp16+asoQHw2muvMWvWLN588000Gg2jR4+mZcuWfPHFF246tWjRgujoaKKiotyMnqpy3Rkbq1evdqZku5wJEyY408EBrFq1ig8//JALFy4QExPD008/7RZxfyOQct7hz9m+YxOUqqq7FV2wGlBYHIHhSoWEn6X+ZmAqiXEYFz5nNNV2+alsYb6opqFIAaWxG0bUzWr2qX9No/VV0bZjNLv/Sua3X08wfGQHVJWItwnI8MHiZaU41EBm8zwSC85VOKYqJMRG0bpRA46mZvLVr/t5bFhCxYMEghsYWbYT6lMzi8aqnrc6hf0ef/xxZwrSytCvXz9nJqZSLk+lCqBSqXjppZd46aWXXNpDQ0NZsmSJm8yKFpCNGzcudyEIcP/997u43IBj3TFhwgSXtivleFo4x8XFufWrjCxJkpgyZYpLitQFCxbg5eXlDLIv7fd///d//N///V+Z1+PpcylrHjxdQ/v27fnggw/KlF+WrBdeeMGlVkNZn6UnmjZt6jEA+vLr6NGjh8fzetrRufPOO7nzzjtd2iq6Dxo2bOiWsrYsPMkvSz+4unsfHLspCxYsKFcnf39/5s2b59J2zz33uMSJlHLu3DnOnj3LM888U67MynDdGRulfPjhhy6W/OVW1/r163nxxRd59NFH6dmzJxs2bGDKlCl88cUXlcrl/Hci5bxjezG+czRGD/U3ysNgt5FjM6G5uKvRvW0UGb8n17SKNcIJfSaWYBvYQHf22rg1qRp7YykowpZmQtVUh6SsvT0frUpJ9xj3NL6KKhhVD4/txV/HUikoMJC47xzdulccKCghEXo2ALvSjj7IxMvH1jJcGU+komaerEqSxIODuvLvzzbw1W/7uW9AV3Ta+u2WJhDUJTVdybu+n1dwiVOnTrFmzRri4+NRq9Xs2bOHjz76iLvuugsvL6+6Vk9wHbBp0ybS0tJo1aoVBoOBdevW8eeff7oY6Xl5eZw5c4YlS5YQGRlZqYD3irhujY22bdt6TNcFsHDhQkaMGMFTTz0FOPJmHz9+nCVLlngsWf93paTERG6uI7d4x/im7N55skrj06x6sMuoLwaGD+kRy+f11NjYkOXII+19QY2ylgLDr0QRokbyUiAb7djSTaga1d6PvcliY+n/dri1v3D/kErL8Pf1olfvFmzdksTRpDTCI/yJiqo4jkdCosGZIDIUeRgCTKyz7+Mf6q5EKAKrcgllcnOHljQOCSAlp4DPt+9ldI92zvd0WjW+XvU3vbBAIBBcK7y8vEhMTOSrr76ipKSE8PBwHnrooSrtHAlubHQ6Hd9//z3JyclYLBaaNWvG3LlzXZIObNu2jeeff56mTZsyd+5ct2D46nDdGhtlcf78eZKTk922uYYPH86bb76J2Wx2Ky3/d6V0VyOsgT/+/lXzhbfJMulWAyoDIINWraRts4rTr9UFNpWdbbmObUmf09fus5UkCWVjb6wnS7Ce06OMqP+L4kaNg4hr05CkI2ns+O0kgSN1lRonyRINTgUReJOKvwpTWGP5k+HqeBorqp504EpUSgX3D+jC7G+2smzbXsxWG8qLwY5jEtoLY0MgEAiARo0a8dlnn9W1GoLrmL59+9K3b99y+9x+++1XHRB+JdftvujIkSOJi4tj0KBBvP/++9hsjsDe06dPA+65pJs3b47FYuH8+fPXXNe6otTYqE4hv0ybAatsd7pQNfD3QaGon6HhBY2NGOwWVIUKtNnXNlBb2VCL5KUAs4wt1XhNz11dOndpSlgDPywWGz9vPUqJvnKp+RSyxH9i/0EjKQgLNtZa9nLCVnHtjsrwj25tCfTxptho5lR6TsUDBAKBQCAQXBdcdzsbYWFhPP7443Ts2BFJkti6dSsLFiwgIyODmTNnUlBQALhX7Cx9Xfp+dZFlx+LbYDBclZzawm6zYbFYsFptpKflAxAR4QeyjMVyRcyGpzbAbpdJtehRmkGygVKSCNI5dgxku3uAuN1DW1ntpW3yxbS0pf+WJaN0vsuSKyOTG60HwPeUBkl2tLrIwINsD3LB8/VV1FcZ5Y31eAnW8wZKik0e+3uUW8V2m81zKt/SOZJlGS7r4klG6efdq1czftx0hIICA/M+3IIlxu5mTHoa76VUM5QO/EwSp8nkR+sBCm16RhHn8V7yPJ+O9JdXclv3Nny6bS+Jp1OJDnUUprLZbB771gal3+n6+t2+nrjR5lKnq9wOoUAgENyIXHfGxpVbQH369EGr1bJs2TIeffTRWj+/1WoFLhVwqW8EBoaTnZVNdlYJdruMl5cKs7kEq81GdpZrdUxPbQAHz6c70t2WOBaK/l4qTBcLzlgs7ulkPbVVtm/pfJYlw+4hFe3lfQ1hFsz+NrwUarRnlB4X5J4MlrIW7p4WzBX1lYMk8FaAwc53q//02N+T3Kq1y+j1JR56ys45LP23TBmyTHZWlvNlh45h/PlHGkdOpOOVpyK4tRdSqcEhl6GbLJOfnUtHGiDpbJzyzmGXfJLFJ7egypJdA9bLMGZlWSYpKcmtfWDrJizfvo+8EiOHT58nwt+b4uJiLpxJ93DdtUd9/W5fj9woc9mlS5e6VkEgEAjqLdedseGJW265hY8//pikpCQCAhy1JIqKipyVHAEKCwsBnO9XF5VKhdVqJTo6Gm/v+lcToLjITGhYKMlnHClcGzcJJqxBGCqlktCwUJe+ntoA1iQeRbLKKC+u6RsG+aNVO9yT1Gr3mAhPbRX1lWU7VqvVGXhUlgyFwt0t6vK+mS0dT04HBbfmL/tZ8OBF5alYjacq2hq1kqf/4ZoeWSFJZVbcvrzSp725hOVQEVt+PIQiXI2kVpTZt3rtEjqdp/S6kvOeVKlULtfqJkOS8Au95FLnFwo9vXTs/u00xmwrhScsRHQMcBgcUhm6SRKhF79XA+UwQjnPbvkk6zIO0igkiEFSO7wktbOvJxmSJBEXF+fWXmC0ENe4AQfPZZCcb6Bd8yh8fX1pFOretzYwGAwkJyfX2+/29YSYS4FAIBCU8rcwNi6ntPLk6dOnXapQnj59GrVaTZMmTa5Kfuliztvbu15unev1NlQqFWlpDnexJlGhjgWfp4Wfh7ZCs4ldp86jvrirEaDT4u11aXEveYjbKCuWw1N7aZvdrriogqJcGZ4MhdK+Fi8bRQ0d8Qb/aNCBvyTPNSA81tzwINdstrHg/c0ubR+9dp/HvuA6F8oQDbYQNfYcC+RZUTTQuOjuad6q2m6TPLtclZ5HkiSXcZ5kJBVeEWPhA/96eBBvfrCZ4gwTF/bl06hzULm6XX7PdKU5wTZfttkPk2rP43v2MlwZT7DCt2wZkme3k2JLMR1jGnH4fCYZBcVkFxtRKpXX/HtWX7/b1yNiLgUCgUBw3QaIX86GDRtQKpW0adOGJk2aEB0dzcaNG936JCQk3BCZqAoLHLEDCoVERMOq7eTsz8nCbrM7092GB9TfYnV5TQ2gAF22mmjvq8+KdLWomvugUivBaEcuqVwl8qqQZSxyO2qC+LZNaNQlCEkpoc82c25nDulZhZUe30wZzvwO4/DDiwJZz7eW3STbsioe6AFfLw2tIh27bfvPXKiWDIFAIBAIBPWH625n46GHHqJHjx7O8utbtmxh5cqV3HvvvU63qccff5ypU6cSFRVFjx492LBhAwcOHGD58uV1qfo1IyXFkYUqomFgpapEl2Kx2zmYm+1Md+ulVuHrVT+NM1mSHcYGEJRcP56cKryV/OP2LnyzYg9yngXZW1mrhf5qEt8GXjRNCOH8H7mYiqxMf2sNiiAFWt/K/UQ08wljrCaBHyz7SZPzWG/dR8QFHTJylau5d4qJ5GhqFmez8jiRlk2DAN/qXJJAIBAIBIJ6wHVnbMTExPDtt9+Snp6O3W4nOjqa559/nvHjxzv7jBw5EoPBwNKlS/nggw+IiYlh8eLFxMfH16Hm147UlDzAUVOhKhzNz8VoteJrcORzCg/w8ejGVB8obGjC5mVHZVTgn1Z/6jAMG9GRb1b/ARYZOdeCFFY/jTVPeAWoie4TyoV9eejzzJAGFj8VujAtikoYTd6ShlvVXfnFmsQRewofnfsN32hvQs4GoJAvc+9CIrOg2G28ze4IrA/08aZFRAgn03P47Od99G4dXWPXKBAIBAKB4Npy3RkbM2bMqFS/sWPHMnbs2FrWpv6h15vJzHC4wEQ2qryxIcsyidmZKE0gW2WUColgX/fATrvdc2ama4mMTE5zR2amwLPeSHLtGkRaqfJfE5VKiSJEgz3dhKy3Ietr3p2qNlF7KYnqGUJrcxjfbzmIqciKucSKd4gGrwDPweyXo5QU3KRqQ4jdl9+txygOMWDRWmlwKgiV1bHLZpdlvtl50G3sP7peCgTv0rwxp9Jz2HnsLEfOZ9CmSXjNXaRAIBAIBIJrxnVnbAjK59CBc8iyjL+/d5WqhqeWFJNlNOB9sYhfmL/OY9B2iclzqtarQaNSMuGO3h7bPaEPsWAMsiLZIPhMzbpQeTIsikyVK3pXiqRVIPmrkAut2HPNlJRUbXxdIykk7h7VjW3HTlKSacJmtqPPMmPKt7D3sOP+Km/HS5IkOiibckvLOGYc/A6Tr4ULcdmEnwpGq6/YYAEI8vWmZWQoxy9ks2jDDt59ZHRNXZ6TYqMJ/WX3s81mIyS8YY2fRyAQCASCGxlhbPzNSNx3FoDIKrpQJeZkIllkFGZHtqcw/2sXGG4xWVj8+lq39nc/ecRjf+euxnlvVOaazXFQVcOiLKQAlWNXwyrz9fIdNSLzWqP2VhIQ5Y2pwIo+14TNIvPm0p8ICPCmdVxDYpqFoVaXHRMUHxBF5NFQMprnYvG2kRabTWhyYKXP36WZY3fj96PJ7Dp2lp6xTWvgqi6hN1lcdlgsFgvDOzav0XMIBAKBQHCjI4yNvxGyLLP/orFRlXiNQrOZEwX5znS3Pdo1JUxVf+IgLifZkENxhBlkCD5VPwLDPSEpJBQhauwZZn7dfgx1Wz+UoddP/EYpkiThFahG46fCkGcGvUxBgYHdu06zb+9ZmjULI6ZZmMfCiQBqk4rIo6FkNsvHEGAiq1k+317Yh5aKP7sAHy/+0a0N/9t9mP+u/ZWvW0Y5d9uu3JUA0GnV+HrVz/tWIBAIBIIbFWFs/I04dTKTvLwSlCoF4eGVT3n7V04W2GRnuttR/dvxzkdb3frdS8+aUrXafJX2BwB+aVq0JfX79pW8lE53KsvxYhT+gUia6zPbtEIp4ROqZd5Dt7Fk9e8cS0qjqMjIsWPpHDuWTuIfyTSIDCCmWSgBAa6GhMKuIPxkELmNiygML+HDc7/SRdmMHsoWFSYg+L9+nfnpr5McTc1izR9HuK1HW8B9VwJgTEJ7YWwIBAKBQFDPqN+rNUGV2LPrJAANGwaWWfX6Six2Owdys1BdjNWICPSlZVRYBaPqBou/je15xwEIO+7q5lVgNFLiC0ZvsGjBogG7EgZ//hm2dgoUdlBYQGWGzw/8hUEHXnqqmJS16kiBKiL9/UhNycNyogR1G996m+GrMui8NES1DKZJiyAy0wo5dyaXCyn5ZGQXkZFdxMEDKYSE+hIX1xBrh1bOcRISwSl+KK0K8hoVsdd2GpNsoZ8qrtz5CPDxYsKQ7vx3za/MX/srN7VrRqCPqEgtEAgEAsH1wvX5mFXgkd27TgHQqHFwpcccy8/FaLGi0Tted4yOqA3VaoTCNkZkwO+CFq9CNTaFTLa/lZORJv65aiWZjaEwBAy+YL1obNhkGRQSdpWE1VvCGCDxyf79pEfB2ZaQ2RAMOkeq39pAkiQmPDYQJLBnm7FnmmvpTNeOI/kXSCpII0dXgk9bLc0HhfH4ff1p1CgQSYKc7GJ++/UEU19fjbnE6hwnIRGY7svk6AEAHLKf5yfrQexy+RnO7ukXT4uGIeSVGJi/9rdavTaBQCAQCAQ1i9jZ+JtQUKAn6UgqUPl4DVmW2Zed6SziF6DTEh0WWHtKXgXmABuGJg4f/cCTOlJCLeT62ZBLzWUZ1CbHboXGCGoLKK3w32fH8MTsFcgKsKnB4iXRtVdzfj55BrsKSgIch9oE644fR6bmdzuiY8JQNfXGmmzAcrIERaAKSVv5You1jVah5J6OXVzaFFWYBYVKQZ+uzcnHgsFg5sTxDI4eTSPtYhVyja8KnwaXanWMjOjA8ZQctlgPctyehs1qZ7CqQ5ny1UolM8fezL0LV/C/3YcY3iWWmAaVN6gFAoFAIBDUHcLY+Juw948z2O0yUVEh+PhUzm/9wPl0sgx6dBddqDo0jaiXLj4yMgUdDchmBWGFYZwONjotAi+TRHCRknkTb+WF1751Gxvm44PqYhyx2gRexTIz+vXj9MYzmLygOACK/R2uV//dtRNlrIKAdDteBeUbHRq1kslD+7i1K8qYP2WUN7YcM3KRDcuxEtTt/cqUrVUomHJzL7e22sJssbFg1c8ube9MGlclGVqFki7RkQD0iYvGOMzCzj2n+X7rQczFVqwmG34NvVFpHdfRStkQNUo2Wvdzyp6BzbqfEfbYMuV3iolkbK8OrNpxgBe+2FQrqXAFAoFAIBDUPMLY+Juw56ILVafOlU8P+u0fh1GaQLKBVqWkSZA/eoPDzcdWD4r3AcjYMURY0SuU2E/qSMNhaPjqFYTnKfExKpCQiPD1rZJcCfAyOo7gLCgKALmpF3kYyW2qRK2XCbhQ9hyYzTYWvP+jW/tHr93n+XyShLq1H+a9+djzLNjSyk6xazFaWPiWayrgDxZNrNyF1REmi41Xvtzo0vbOpHFsO3GS4jQjdotMYaoe/8hL8RYxygaMkDqzwZJIsj2L/yStoYvcCrXkedfnX//oxx8nz5Ocmcd/1/xCu6j6aRwLBAKBQCC4hIjZ+Btgs9n5Y4/D2IjvHF2pMTlGA3tOnXemuw3x9uLkuSyOnskAoMRscTvqAr23lcxwBfYsL0Cie2QjWqRoaJ6mwdeoRKoBpyeFHQLyYPno2/FLtyPZZCw6iezmCt7evQt7DX1LFDolqhhHpibrqRIy0gtqRnA9Ru2lJCBKh1KrQLZBYaqBsxdyKbGaKLGaCLH7cbOiPSoU7M0/x3rLXsyy1aMsnVbNG+OHo1Iq+P3oWfaeSr3GVyMQCAQCgaCqCGPjb8CxpAsUFBjw8dXSMrZyAd57szNRWEBpcTzlD/etXzUrbEp4+489ZMaokK1KUNoJTrUwZ9AgfEy1c9t6q9X4Z8qEH7Ojy7WDJPH9sWNktFJgKNvrqUooG3mhCFSBHT5asrXM+hR/JxRKCf9G3qi8FMh2eOODzfyVfp4j+Rc4kn+BvAIDLfWN8FZqSJXzWGvZi0n2bNzGNW7AC2MGAvDnqRSOX8i+lpciEAgEAoGgighj42/Azh2OlLfduzdHpao48FhvtXAkL8e5qxHq441aWX8ClotDFZxJ8OK748dAkpACzQTnmfDN5Zq4zSitEJQiE3LaRqSfH3aNRG6MktwmEvarnCZJklDH+oJS4uTxdGznjTWjdD1HoZTwi/RGqZbIyS8h5Y9c7LZLnrMEAgAASQlJREFUhpafzZs5bUejRUW6nM/3lj8xyp4zd/2zZ3vG9XIElG87dJITwuAQCAQCgaDeIoyNvwE7dzhqT/Ts1bJS/fdnZ2G32FFdDBuI8PUpf8A1wqqB1HYaUjp5YfVSoNVKKJsWo1Oa8Dl7aZVvs9vdjtrAqxg+HPUPfDPtIMsYghRktFJgvMpdDslLiarFRXeqZD32Ys9uQ383FEoJv0be+Pt6YSq0knmk0OX9WL8IblN3wws1WXIh31n+IM9c4lHWwzd3p1VkKLIMWw6e5MDZtBtil0ggEAgEgusNYWxc51y4kEfymWwUSonuPZtV2N9it7M/J8u5qxHopcVbfe3yBJQaB3ZkFEoldmRkWSa/oZLTCd4URajALqMzmbA1y0eptRHwp8YlNuNaxpP4e2mZNXQgT8R2poHWG7taIidGybydO64qlkMZrqVTl6Ygg+VoMbL9xlgoK9UKHh/fH4D8c3oKUw0u74cq/Bmt7o4OLTlyMU/tX0GmodBNjkIhMaBdc9o0CQdgx9GzvLJqC3nFBre+AoFAIBAI6g5hbFzn7NpxAoAOHaLw86u4svLhvByMZgvqi2uyCL9ru6tRbDI7jxKzhTy7malbfyK9rRa7WkJbaKfhGQOWTkYkBfjv1aAqdr1NZVl2O6qKVlK5HZ6wmCy8/ep3fL9gG9rv0/A7bQRZZsOJE6TEOAoCVgdJkrhv4k2gkpBLbFjP3jiL5A6xjQhp4cgeln6oAIvB5vJ+sMKX0epu+OLFOX0ud//6EccLM9zkSJJE37hoesU2RSFJ/HLkDMNf/ZiFm37lZG4WmcZCMo2FFFsq76rmo9NRYLSQWVDschQby84eJhAIBAKBoGxE6tvrnJ2/O4yNyrhQ2ex29mSmobpYVyO2aQP8rFcfAyHLMrLBgq3IjF1vRjbbeO+l1Rj2X0C2OlyQkOHF/3sfKSMfZJCQkSVQqSSy/kqniUJCYQclEiXtwG+7RJvYKM6eyocr4iQsdpsnNapEkanqi0eFHYKPGtFlWFAOjuRCcRHpUeCXB8GZoKiizRMQqEPdygfLkWJs5wwoQ9Qo/NVV1ut6JLSVL/psE4Z8C2kH8mnS3bVIX6DCh9Ga7vysPMh5Qx73/PIR87qOoX9EK5d+kiTRIboh4YF+/HX2AqfTc/lw4598snkvTZr4Exnpy9h2nWgfGUmInw5lBfVKTFYba/44iFrt+jmMSWiPr1fl6tcIBAKBQCC4hDA2rmOKi4wc+Os8AL16V2xs7M3MoMhkRqd3vB49sANbNx+q9vllk5UvF25Gv/Mcssk17mDvBXfXl/SSHLetNKWHNb/vDse/aZxEDaBTYfdXIwdrsdcDdyOvPBvvjhjBne99TWEQFAWBwQdC06smR6tU8sT/DWLDyr0k7U/B55yN8Y/3LbMw4N8JSZJo2DGQM79moc82k39W79bHX/Jmcee7efXYevZkJzNl91dMbTeEe5v1dOsbHujL24NH8dZv2zh4MJOcHCPJyQUkJxewY0fqxXNCgM6LIB8dQb7e6LRqigwmwvx9aBQcgErs8woEAoFAUOMIY+M65o89p7DZ7EQ1DSGyUVC5fU0WK3uy0lHrQZLBW6Oic1zjahkbdpMVe54B2Whl6//2OholUPhpUfhokLQq/vmPrvxv819IKgUoJJDggf/ryytrt2AMUCArHMUEfbPszLl7GHNf/468LjZsKjvqbBm/vyDY25vcjELQW1HqrZBuYPodS1BJVmyh3si6utsF8FapCckAXRFkN3QEt6dHweI9e1ArlCjkig0Gi9nKgvd/RLbJoIS8nBIWvbWRT5c8dA2uoO7R+KoIa+1P5pFCMo8WkZ7lbqD6q735IGE8sw+s55uz+3jz0Cb2555nSsxAt75KhYLY2GBatQoiO9tASkoRaWnFWIohM78YuyyTX2Ikv8TImUzXsRIQEehLWICvCDQXCAQCgaAGEcbGdUxpytuE3q0q6AmbD53EZLehu+hCFRHoW+U0ska9CVt2CfbiSylJuw9sQ8O4CJrERqDWXLqdOnVoyrqDpwGwSzLZATZePv0HRS29APDOteOXbkNlV9G4TQQZ4xQYmkooTNBwtRJ1sII3P57IA3e/jWSyg9GGZLSRm1GIClCl67H5abCF67AH1Z17i7ceGp2B3DDHDsfqo0mEtPNidOOWtAkIAUBTQTpiSSmhCNFgzzQjF9k4fPjGKVYXFK2jOMOIPsfMO8t/oWvv5igUrvelWqHkPx1H0dwvjLcOb+bHC0fYn3Oe3vbWRCqC3WRKkkRYmI6wMB3x8eGMje5CsNqXAr2B3GIDecUG8or1nM3KZ+uhU2TkF5FTpCctv5jX/7edIB8v+rVtRsMg/2s1DQKBQCAQ/G0RxsZ1itVqY88uR9XwilyorHY7K3YfRKUHye5Y/Ab5eFXthCVm/vPwx05DQ/LRoAzyYuKMUTz24Aew3rX7u588goxMrp+N9GArVhVgBrVBJiDVjkYvI8tg18r8+9R3GJrKSGaI+F6JV+Zl/ixKBbJOAToVsizz9JQRrFu5mzMHUlAWmVEWmfEN1LHpi51gtoHGdWGvUSn5132D3NpqEoUdQjNAVwz2WB1Zej0fnj6Id4aFoCMGvvhwcpljnYHpOhVmPxlrkYWlH/yMbAepht16tCol93Ts4q5/DVRhry6SJNGwQwBnfs3m2OlMfIK8aduukUuflLx8AAYGx9GoUxCvJ23kgjGf7/iDTspouimboy4jwL8UlVJBiJ8PIZclRMgsKMZ6MW1yocHI4bPpnEjLIa/EyPd7jtAuKpyE2KYVxnlUlmKLEb3NvXaITqnBV13F76NAIBAIBNcJwti4Tjl04DzFxUYCArxpHRdZbt/DeTlkFRajKynd1fCp2q5GjgHpZC7ZdhmUCpShOhTeZbsw2VTw9ZHDJEWZsFzsprbAv27qw2fvbkcCZMAaaKewr4kcvR6FARquUeKVXs7CTpLo0LM5/138A4R5oSixIuktFOfr+eb9bQ5vrVAfFJG+SH5aJEnCYrKw4NXvXMQs++Lxyl97FdCVwJKR/+COOZ9SFKPFEK7GGKpiaeI+bMgoPSzqXQLVdaDQQ15eCZIKVD6OOIOawmSxsWDVz27t70waV2kZtWGwqHUqGrTxJ/1AAfsTz9GoURCBQY40X0aLhZc2/uDSvyGhtG0eyebMIyTakjlhS6ePKhZZbl1tHfy9vejavBHTRt/Eiyt+5GRaLofOZZCeX0T/9jHY5Kuv5aK3mVmVvNetfWx0F2FsCAQCgeBvizA2rlNKXah6JrREqSx7gW6x29mVmYbK4NjVUCkVhPhWIV9rRgnS6TwkoG3XGI5l5CKVcT6zt0RulIqChipOJO4DNSisEJjz/+3dd5xU1f34/9e9d+rO7GxjC1VYhGUBcUGKgIKIXRRNYjcaNbaoSSyJmli+/vQTNZ/4MRF77GkqmhiVYgEjyAJKR+mdhe1ler33/P6YZWHZRUAWKXk/H49hd86cOXPuuXeW+773FPA1wRnX9eYvfI5CES1OEjohATYodGTieCOKo3E/TlgNHcvngEw7WjTFsUV5bFxViaoNY9aGsTJsmAUZxKIJ0qHN98Ntt5OzOoq3Ik7DgAzinez8fcU36E7ITdnJNm17PjHXNawcO54QxGJJzBjY9j6b8feqIwKW9mR1c9PF9LHom63M+WItZ597HPoe7igY6NzR53TsDU5mp1YSJMb01FJqljdybFY+nVze71wPj9uJt9DgWE82Gzf6qQtEeP/LlZxVVkLnbOlWJYQQQuwvmX/lCGRZitmzVgEwci9dqBbX1RBKJHA1T/ZTlO1t0yd+jypD6M2Bhir08PPHLmoTaCilCOfoVBzvYMMoF03d7SibRq+sbDpVQvf1kNWYHpTusBlcc9VIsi7PIDQiHWj00fJ5tuSS/Qs0dqVpqAw7v33uauL980h1cqM00CMp7JsC3PWjpzEa42gxMz0F7/fEHrYo+DJEpwUhemZlY2lQZ09Sl2VxwqBe3HTGqPZnnbJrXH/9KQBYcWin181RSdM0brhsNA6HjYaGMMuX7X3cSi+jgMscJzHUKMZAZ1HTFt7evJBp276hLhY6oPpkZTkpLc3F5TJIJi1+/fo01lXWHVCZQgghxH8jCTaOQCtXbKOmOkBGhoNhI/a8angklWR+TSW2CKiUwm7o5Gfu412N+gjapiYAVBcvqld2qzsoSgN/kcGN06ey9QQXoXwbaBqeOpPui2K8fO4EMv07155QKN6pWMjvwx+zTtVCUpH5H4vg/9aQqXfMAG/ltZMqziI+uIBkj0wsp0EskkCPmtga4tiqohiNcco/Wp4e33GQaUBGTZKXzjmXTpVgJKEpHucfa77h159+yoer19DepFVDh/ViR5OYEbBSbfMcjXKyMjh+WHcAli/bSkV1w17vSdk1gxG2PlzqGMUp+SUAbAzVNQcdX7Mt0vSdZ5dyOm307ZuL222jMRTl2mcms2Jr28UFhRBCCLFn0o3qCPTZjBUAjDqpL07nnsdOlFdXkjBNvJF0R6LOOft2V2Pd8q1oaxta7mioHlktgwdSusLfzUZjDzsplw6NjWimIqsyRc6WFM7m2a52HROS9Jo0nhDlmW2zwKHh2KrI+ghsjd+9Db6VTccs8mAWZvDAlafx6L1vocdSaBZoUZNXHpuCC7CcBspjx3LbUG4bW9ZUpYOQHdP1tqd5gcLG2iBEkmCq5ocFpuKzfy9CDyZb3UX54LUvyFwewGvXiWbrBDsZJLIN/lA+B71EJ7NOkVGvWi0KaLhAmaBSkApDTU3baWGPNgoIZEXJ7OwiWBljzhfruPq0Yfv03mzNw1WlQynyZLKwfgtrgzVsDNWzMVTP8sZtXHPsKM7uOhC3zbFfdbLbdfr2zSFWC6u313LdM+/w2I/PprRbAQAZTrss9ieEEEJ8Cwk2jjBmyuLz/6wEYNz4/nvMVx2JsKy+FnsElKkoyPUyqFvRXoONRDDG0/e+g6ZA5bhQvbJB0zANxZ+XLGbDyRlY9nQZRszimhFD+Pypcoxk27KUpgj1SeDvHwMDXLod58cJMhZ/583fP5pG30HdsbIdWMqOlrDQ4ibHdstnw6pK9LgJcbNlgfKHf/oKO4bpKl0DHW6/8CmMQBRIBxlac0Dwq4ufafe24N/WfLz7gud8+Jfylrze5geAsmvEs20kcuwEixzoLicZIQ1N0xjepweplMXXq6sJR5P84fGpqN4GmuPovhmpaRqFA7OINiRIhFK8+I85qEK1zxMa5Do9nN6llKHxY1jWWMHqQDUbQnXcv+R9Hvt6Omd1HciFPcooy+m+z3Wy2XQevnw8v3j5Ayobg9z52odMGFpKQZZXVhYXQggh9kKCjSPM0qWbaWwIk+lzM+SEXu3mUUoxY/sWlKVwRcACfnRaGe9/uKhVvh/v9r5ULMm2OetJhhMorx3VJxdLh0Cewt8J/v7N12DXsIdMsjYmyNye5IprBzI7MadNd5eN0TpqTgmTzE13V3JW23jxlMu45/HX03XsgLbYL5qGchoop8FDL1/HrLmrqdpQR0Oln4bKJhoq/cSDMZoawmiAZimwINgUaXc4t2HopFDpuyCG1vzQOeG4Y1iwYD1KSy9kCHDmmWVUVjURi8SJhuJEQzECdSHMpIWrNomrNolvTQQFxPPt3PHw36ja1ogjvKOV7NTUBNCCOo7js9CcR3fAYXPodBmSw5Z59ZQv3EBBaSa5xW0HfYdTrZeft3a5m5TjzGBsUV9G5PfCphtMqVjOtkgT725exLubF9HTk8dpBf1JKI1Mbe+j8DOcDs4Z0o+pi1ZR2RjkwwUrOW/YnoN9IYQQQqRJsHGE+eSj9IrfJ48pwW5vf72I5Q31VEbCOKMalmmRleFizJDebYKNXVkpk+3lG0iGE3TqnE11VxehPI3GAjCbe2oVZ+cQnrmNjJpUqxPwpLlz/IPSFYHhcMuat0nlWmgJyF7mJmOznaIzv8tsPvt2Yu1w2Lj96jGkjBCmHsXSE5hanE2p+XQeXYvhsNB00HTFotB7TFs5B01XaAVAocJZpnHxhcN595PFWDGwIjrKgrNGDuCjaUvTH2JX6IaGZlNc9uOTeGv6IpTSWiInZWmcfl4em59bipXS0o+kzmk39+T+u/5FMmQjFTXSXbTyXTz62BX8+uG30UNJtFACWyiFqzaJf8YWXBrEOjsxM204onHycvJoaAiTWOrHfpwP3Z3e905d59YzRqEshaZraM17xtlBa0N8n5x662l153o2MPXTFdSsDGJzG/g67wwKFLCiaXur9zuMIQzPbBuA98zqxG39xrGgfjPvbVnCx9tXsClcz0sbZwNQoGXRWy+gh8r71vrZbQbnDOnHlIWrqGoK8uFXKzht0LEUZLUOhPa0nsaONT2EEEKI/yYSbBxBQsEYs5q7UJ119qB281T7g3xeuRVMhSOcvqtxXI+Cb50eVylF5ZebiTVG0B0GF953Fg/OmUW8eSy5LaHIqYE/X34u17/57B7LSRQoGs6CZD6gLFzbbeQsdmPEvvuJr7Xb+gZxFSKn1E9GYYyMwhjugjjuTnFeb/wpyWMibd6/OQ79r26dtij5Nr0vbPtZy5Lv0eeU1mlb2EjpT9vmXZh8k2PHt02fm1jFgOtap02N/3+M/J/m7TEhFbYRb3KwuuBv9L64imiDm0C1l+BWL5bfJC+lE93ox709DsRJ+Awo1XEmHcSDCYxvIlx41Qg6d8/FjKd46g8fYFkWuq63dDd66ekbueXMk1rVw2l07GKGHS2x27S6SilOH9WPT8pXUbmkCcOm48nfc5eleNLk2c/K26Q/fO456JrO8E69GN6pF7897hw+3r6CtzcuZJm/ghrlp8b0M5e1fLl0LX16FlHiLqKnKw+btiOoS/+02wzOOaEfUxaupLopxK/fmMort1xESdf8ls/b03oaE7sf/12bRgghhDhiSbBxBJnx6TfE4yl69upE6YCubV5XSvHktDkkLAtPWMOyLDKcdiLx9udPddgMfnBOGR//bR7hSj+GTafw8lJ+u+QLzAwNzVRk15hkNlhoivanagWUofCPguBQQE8vTHd36Rm89c8F6Svt33FWW6UUns5RckoDZPcOkdkzwlvRWxh8e9u8O4aMmEmNVNiGGddJxQz69OrB14srsZI6ytRQCk4a3Z/Z/1mFUhrKgh1TQp16+kA+nZcO5jQN0BTjhpcw6/Ovd0lLp48aXcK8ZRtBUy0L72m6oqx/Z5Yt34hus9BtCt1uUdjDTSDahM1loRvg8KVw+FJsMRdQPGqX7bUgXJ/B8Z2H8O4f49St8mJsT+EImAQ/2kzKY2D5XERDir89Pxs9x86rT/4Ep2FH6a3HNShL8dyLM1u10bO/u+K77YhDRNM0rv3RiczdsIlQVYyKBQ10Kcsms3P73Z52vzOyg11rHWR57E4uPGYwo7P78Hr5AjZaNWwwq6lQDWyM1LMxUs/HTd+gmRqukANXyM6d408jphK4NAeOljscK6nxh7nhuXf5889+RN8unQ5KOwghhBBHMgk2jhBKKaZ+uASAcyaUEQnHicZaj8qetnQNX66vQE8qaJ4Vqnueb4+Da5PxJH+8ZzKx2vSaBDUjs1hjawQFGX6TnEoT216mXf0mXEnVVZDKTT/PWAXZM2Hci315Od72KvO3bR+AZlhkD2ii0+A63on+ghMf8rfJG6lxEt7uJlLtIlrjJFrr4sHf/IS7bnw73U1pl+jm1r/eyt+fmdTq/Xefej1//svTbcr9zYSf8NTUl1ul/fbk63jh9afa5L17/M28+sFf2qTfOeTHvPHH1vlf/+ttXH390+g2C5snhcObwpmb4Po7RzB51md48qJkFoVwZSbw5kdYn/qCslvT7w1WOFnzt27EFnsglMIWDmM6Y6hMN8pS3PLgm9S4Uzj9SQy1Ixpqfm+89ZiG/eHUdW49bVS76Qdqf1Yh13WdLmXZVC5pIlgVY9uiJvJLTCyr7aif3e+M7PDcrXtecNCjORlodGeg0Z1QIkKnXi6e/2o2UV8Cy24RzYoTzYpz36r3APDhJkf3kK15KC7z4VhpUFET4Nqn3+aZGy7g+J5d9r0hhBBCiP8CEmwcIVavqmT9umrsDoPTzjiOaCzJlA92TuvUEI/x17UrQSkygzopTHI8LryuPU/1+dVnK1sCjbrhPvwlGdhiFo+cdRrPPT39W+tj2RT+k+GOdf9E5YIegtxPwb1+/29jKGWRUdxIwbB68oc0YPemI5woYCZ0mtZ6aVydSWCTh8d/+0tuvO/VNmVk611IRQ/nw1lhpTQSfjsJv53QNjel9jNY9fHWlhxObxxf5xBXX9WLOatmktkzQma3OCfcvR4zrrHtw1w2v1WAETEhHsJy2ogkTNweG4193aS84PJbuJpMzAMcH5CMJXnqiQ/apL846YYDKhf2fxVy3dDoMiSb6q8DNG2JULs6yKPPfUSiKIXD03H73KnZOS2/lHc3LAcdkq4UUV+CuCdBVhcn22N+AkQJWFE2U5eO6/qAHvMQCMBVT7/F8Sd1YuCx+WyP+Ml1esh1ZOzzTFpCCCHE0ehwPjsTu3j7zXkAjD2lFJ/PTV1dsOW1lGUxZctGkpZFT5eP2oQfQ9cY2qsLbkf763CYTVFe+l36ZLKpvwf/cV5821MUrkkw4rquPPctdYn1UDScDmZ2+rlnOWR/Dnp850mVw2HjzqtbD2rY/aTL0zlK0YgG/hn7FWV37lydOd5kp3ZBHtee+xPu+dnHqNTOq+lOzfMtNft+ObWO/frEQ05q1zoZ4riISf9bieE0yeoTpNNxfvqckqLHD+vpclYjWyd3ouL9XPR4Cr0mgJ7hIC/mJlZgp6G/HX9PJz94dzKJHjqukMIZUtiO8JXI01Pi+nBl26n+2s/yVdvR1kBOTw85vTzYXR07HkVDwxGz44jZAQ/PnnMx7yxaRp0K0qQiNKkwfhXB9KXYXuZHfe2CBjuLP69l0ZYKVI84aOAxnPTNLKCvt5DqUHCvnyuEEEIcbSTYOAJUVDQw+/NVAFxy2YmtXlNKMWPbFmqiEVzoBKvSg6QzDRsrN1S15Nt1mttUMEZ0eSVaShE6xkXTYB9dlyXIrE3PKuVw2Lj9qtPb1CNgxqg/UxEZmH5u+OHhwefx3BMftsmbiCf50/+81yrttb/eiiM7QeGweopOrCezexSAsIJUVKducS7VX3WiabUPlEbR+aWo1Kdtyv7ep83dgwPpprQvzLhBw9fZNHydzT1n38YvnnmWgn7VdL6wis7nNLDpLwXUfJaNHkmgRRJkBF0461wEjnXg760gWyOW3bwmSlzxRHk5QT2F2zKwfdeBNIeQpmlkd8/AnePAW21n+artNGwI07AxTGaRi4Wdt7TMyrW7mljbRRHN/TyQXJqDbloe3dg5a9WPRhxHTqabTePqefL92XyxeAvaRhe6347ZL0LYEWdx01YWN23lrYoFFLgy6ZNZwLG+fDy2jlmfIxSLE4m3XehGFhwUQghxOJBg4wgw+c15KAUnjjyWXsUFrV5b1lDH1431aEpREHNQH49g13U8tvZ3bTQRI7G8EiOliBY5CA/w0evLGLZdzlXSgcL7Lc8VEBkIqXOd6UBDgXcJZM2GoWN67LpYdrsMd4qCIY18HHuc0Y+tQGu+UWGlNOq/zuKHw6/gsV98hZVMX502YC+Dyg883DhcApY9semt95+maYSqfYSqfWz4/Fh8Xf0UnlJF8cQqVr2SSdMyD0Yohh6OkxNy0cOfQ0V2inCRQcIDplNjytq10Nyrzm5pZFg6bsugJhQ+BFv43Tm9Nn7zwzP51RvvUb8+RLQxSbAyxu9f+hQ0sLl07G4bdreO4TRQivZnhyoc3CH1sesGfbILePaqHzL52GU8+s/PSDWA46ssCno6UXkp/LYIIVuUmliQmliQubUbONZXwODcbgf8+ZF4knfmLm+T/t+64KAEX0IIcXiRYOMwV1XZxMfT0ycSl1w+stVrG4N+ZmzbAkBfI4sKfxMOu0GOYW/TZclSijpbDNuXVdjiFvE8O5ffdw4f/OHzds/rzeYpZ5N5EDhdI9FdAzOOvQZyPgVnpdYmb+v3J+lU1kjRiHryBjVh2BVVFmg6NK31UjU/j+qFOaTCdu4cNZxY9EtgL6PRO9ThHW4kUm3bQu0S1fkrsvBXZHH3w1fwy2MepcugBppmZRDZ4sLwRwkvj+PLctMpYhG1u4m4HJxyzkCmfLOKuKZI6gq/buLH5PK3J2NzaGSodPDhtnSUUjj0w/fPg8uwceMZowHYXuVnyfIK1qytob4pTCpqkYomiDbn/dn/e4uizpnkd/KSl+shL89DXq6HeDzVamHAdPse2B2fi0YNoiDHw12vTyEeN9m2Nkp2rZOeXYu4d8J4nt34GWsC1VTHgqwJVLMmUM2mUD239BvHCXnHHNBnizQJvoQQ4vBy+J5NCABefH4myaTJ4CHHcNyg7i3payrr+GDzBhRQ7Mykcmt61qarzxvOtOlLW5WRMBS/+ucU9PlV2MImKZ8N74AunDugHx/yebufazkhdKJG+ATA0NASip8eM5ppT5ajWbufkDWfBGuK7GNDFI2oZ3L0Fwz62c4r5qHtLk4+ZgLP3LWGWL2z+R2H9wn/4cZSba/W6ppBw5psGlQWRpZJ9okB4isMUgGwNYQxF+o48y16nFvBxMHH881SJylLI6qbRHWLiG6RNBQpXRHAJGCku9Jd+M5kEr01HEETR9DCGTTRzTYff8i0N/PUMw9czE1/eotkxCQZTZGKWVgpRX1TmPqm9u/eGE4du9vA4bFhzzAodmVjJiwMp94qYHfaDIb3ansXQm/nEO5dlEf//nls3x6iujpCU1OcpqY4f3Mtpbi0gOOO6UpNLMjihq1sCNYyv24T8794lVH5xdzSbxxlud3bFtqB2rvyL1f9hRBCHCwSbBzGli7ZzKz/rELXNW6+decYitXbavn1P6aRtCy6ujwEt0cwLUXPgmxOP7GkJdhQKOp9JrX2GEWvbMYRNFFug8wBXTCM9ne90hX/ql1KzfUayt28GvU6hW+G4qJnBzPdmts6v7LIKg5ROKyBghMacWanT2ISQKzRTvVXuVTNyyNU4eZnfz2PWH3bKWfTdW2f2o+A5EBDF4fDxq+ubj1W5UiaSchM2KhP5EKh4uJLB/LBG/MgZkFVnKpXPfzvnGmU3lBB0p5N/bbONFUWYCUc/OH6C7nj1X8T0lIEtRQRLUUgHodcG7HcnceJLWLxWPkcmowkLkvHofR2p6vdVabhOqBt2p9pcjVNw3DoGA4dV3Z6YgTLVPzi3LE8N/MLkhGTRNQkGUmRjJhYKYUZtzDjFrGm9HH7xNr02iSaoWF36djcBnaPjXjS5Jl3Z7f5zP/vp2e3GQ9iKYWua3Trlklenott20L4/QmmLVyNbalOnz459O+fx5ld+uNPRPEno0zf9g3ltRsor93AyQXHcku/cRyX03YtnY7Q3pV/ueovhBDiYJFg4zCViKeY9MePATjjrOPwZaVnoFpbVcev/j6NQDROocONUZ8ikkiS43Fz6sBiNE3DtCyiDovthSZWIE7nKfXYohZk2PAc3wXdtXOGKtXcBcqekSR1Qoyq/nae2/4FuDVyVZhT7asZOGwb9tEmW5nNTY83YVkaAdNNwOZmcmwBQ+/ZecnbjGk0fO3jstHXc+89n7UsmLd3HXGX48DKSMST/HG3Qe2v//W2dvO2N9sW7F9w0l5w821luNs5cdc0jZP6FbN7B6DzLxvHm4vWY6uJYK+MoiUV0VU6y+/ogbckRvcLV3HsOYuI+gvZbuaTMhsh5CYT8GLw4BVn8Jtn3iORqZPINEi5dVIZOh9v2AA7Dh8FDqXhsnT+tWIlUc3EuVsAsi3QdmD2/tjfaXJ3pxsapb2LyNnQdhazu8acyiMffEQikiIRShEPpcg3vGyoqEOZikTYJBE2oS7BXb//F3WJME6vDcOxc3a09saDnFdQ1vK7223n2GNzCAYTaGGD1dvqWLmynpUr6ykoyKBfvzxuGX0SPy89lRdWz+K9rUuYXbOO2TXrOKWoL7eWjKM0u/O+NZYQQghxGJJg4zD1wnMz2LSxluycDH7wo+FM+WAxm4IB3t+8nqRlcWx+LsnNEeqCUVx2G2cPPhaHzaAhGmVzXoJgDng3RCia1YhuQtfe+TQWZqA7bYAit1MDfvUOp103h+1FHsoTvWhIegHw2aKcV7SUUbnrMbT0CbylNGpMi6Y8Dw2ml7hqPuNUJgYmuUaYfFuQbHcEfYwixkJ+/oSbxhovjTWZNFR7CfEZBT0aaKzJJBGzc6D94w+ldGDyrzbpewpO9lzGe/tUhsNh48ZLT263nLlfrUOh0qu1N/u5w8avrjkDADNlsvg/a1g0YyXJQIzQahcrH+uOZrfIPSHE+yMnM/qMECmbg4bKXBoqc+mWC5mVSahMl2faIJFpcPalw3l3yTfEdAtLg4SmSOgmz8ybD05AgV1puJTOW8u/Jm6zsJsa+j4Hnd8fb4YTV5YdV1b6WDZNi0fOPJebJr2JmVCkoibJqEkyYrK1shGAaH0Cm0vHmWXH6d33P5+ZmQ5+d9m5zFi1ls+WbGDR2u3U1ESoqYkwa9Y/6N+tgJP79+LBbhcyO7SaGQ0r+E/VGv5TtYbTOvfjZyWnUJJV1KZcpRShWAJ/JEYskSSaSLWM9/lk6VqyMlx4nA4KsjwUZHnJzczogJYTQggh9p0EG4ehWf9Zyb//lb5aevdvzifT52JhbTWzKiuwgK5OD456k8pABKfdYMLQElwuO7OC2/m/fy0l5lN0mtNE1qr0NLgq28Wvn/4hr7z/LMf03sgxvTcRdmq8sP1Y5maXEQ6nr5hnGlGGa1u4rF8BH/8zg+nJIahchb1LCnePOLpj550DK6mRqLAzpuQ45k1dSjTHxJ9nQZ5GVl4Ew2aRUxAmpyAMVANQwxJu+l36/SG/i8ZqLw01XhpwMWj0RhpqvDRWewkHXBzJgcjBsD+ByZ7y/3nyrVx356vYNofRIwlIQv08H/XzfABk9IiRfXyYzgM38eaWX3Py/RrB7R6C2zwEKjwEt3v4yaDjmf/VehSKFIq4bhHTLfr2KmLhlm0kNZV+YPLnrxZAVvqzdRNsJthSGjPXbyCuWTiU1ipAOlxomobdnR7L4SbdFeuS4YN5+f25JCMmqZhFKhYnUhvnxbfmYB8AeV32vnhfImUxY90a8MKAgXnU18dobIwRiaRYUVHDioqalrwZzjxsGRCwosxcvoUZM16nyOmjqzMHzdIJxxI0hiM0hmIkzfYH08xcvr5Nmk3XOaYgB7thkJ/loTDLS54EIEIIIQ4iCTYOMwu/2sijj6Snnb3o0hEUlxZx/9+m80VlBQC97F6ClRE2J1K47DbGD+7NKvwsqK0hbKVwVcbpPqsRezB9AtJ1VIix186n2jmZsRfaWOLvzse1I1gT3nmV1BlNkbXQxLHYTlXPQup/XUK0/zayerVehMytZbNulo265Vk0rPBhJQxu+Ott/O7tp1rl0zTFy3+5nAcfeoqcwiB5hSFyCkMMG+WhMbiejMw43qwY3qwY3fvW0cTLXHjzzvcnYjYaqr1UsY3TL6tuCUoaqzNR3+uMVUcXh8NGqo8Xs7MbY3MU3Z9EjyawJUysWJLIFheRLS62f5BeR8KRmySzJEpm3yjHDGnEe3GMt8I3cvwZTqJBL7Ggh2jISzTo4bfjT+D6JyoxNUjZFEkDhgzozhfrN2EZGpYBCQMSDsXvPp/VchfEoTScSsdh6ZRv2UJCs7AfZkGIbmiMG9GXyQuXYKUs4oEUsUASK6mYMXc1zIXsQjfHDs6j16DcfSrTbjcoKvJQVOThjrHj2FDZwNzVW1hTWcum6kai8STEQWv+E60BNcSo2XGraTc2Q8ftsOOy23Da06uoFGR7cRgGwVicGn+IukCElGWxvqoegFXb0u91O+ysq6zn1ON6M6pfTwk+hBBCdKijOthYv349jzzyCIsXL8bj8TBx4kR++ctf4nA4DnXV2lU+Zw3/89B7JJMmo0/uS/7xBVz4+Os0hWPoFvQwM6ipSveBL8r3YXR18PfoOlIobMEU3RaGcK5Lz7rjyY0x4e6FuI9LsDpYxHvr+7MmVIhFur+5suCEzO5UfLaOTlkhXCfE0c9KkcTg9U3LSBmFmJt0Ik1OIg0uok1OhpX1p3zTasgERqTr/OiKOdSOcKGlFJoJmqnQTfiwooFvkp0x1hehrwQ9oRgz9DruveUlXM4EOYUhcgqC5BaGuPCSY1j2zXxyCoNk5UZwuFIUHdNEhM8ZfW7rNtrIVG57wk1Ddbp71o5AJME67M4UyfhRfUh3COU1SPX3oNenMLbHsRIKTAviKXQrhRZPYcRMEg126ufaqZ+bvvOBpsjoHsfbO4a3VxRvcRNF/WPYfSb/bJrNmddoxMKulsf4ATai0S2Egi78kQwiCScxy0bvHkWsrK7Z2Q0LEwyTBz6d2aorll1pPDtvPlE7uJSBS+nY0fc7EHHaDK4bfGKbdJe+/6uO6zYdd64DV46dVNTk+M5dmbdkI03VURZMr2DJp9vZfnyIsC1ORp5jn8bwFPi8FPoyGVmSnvo2mTKpC4YJRONEYglC8QSbmhoor1vP6nAlSldgA6dTZ1TXYsryulO3NY5Pc7cq90cjj6Mgy9vy3LQsqpqCzF+zhX9/tYJaf5iqpiDRRJIZy9cxY/k6NA0G9ihibP9ixgzoRddsH/FE2wDf5bTjzZAB5UIIIfbuqD0z8/v9XH311fTs2ZNJkyZRXV3NY489RiwW44EHHjikdQtF4sR2mXoyEU8x+c35fNDcdaq4fxHLvRH+9fYn6CnIx0msMU6tFQJA72Tnm/wgmBqOhiTHrPRjXx1DWRpoivxTm4ifp/GUOZ7QUifK0lGmhmVpkNRAgYXOrPoG6JXLBnIhRPrRHhdQBB9VbYDe9lYvfbB9LZS2Dd5+v2ounNL6CumEWW/BVZloSYWRyEFPgJFQrF/ak6Vz8tATYE+aeB0xsjIiXPLD3iz5cjaFeX66FDVSWNCE3WmSWxgitzAE7FwhvYLZ/OZlCDa5aKzObOmSFeQjuvauo7HGSyToRLpnNdM0rE52rFwbt4wawfOvzsQI61g4wAumpdCSKUik0BIp9HgKzaTl7kfNZzuLcuQlyewdw9MrhrtbnIyuUXzd/KyMTWHgyLYf7dA8DGjUCAQyqW/y0RT0EIi4cDhy2NYYx9K05q5Yin+uWNm8ymMzBYYFd0//mGpbHJvSWwKTunC4zdgVSA8y/80rU9rU46+/uvIAmk/DnmHj1ivHUpUbIrAtStPWCPFAijkLNwDpxQU9nZxkdHLi6eTAqbc/sxam4p0vv26V9KORx3F8T2+rtDsZy5qGav69dSkfV61ge6yJz5pW8VnTKgB8uMnXfeRqXnI0L+uChehOyHFmYGg6hq7TNTeLk0p7UdWU/rKblkV1UwiP08HijdtZta2G5ZurWL65iqenlZPv81Do9tArN5tuWT7sRnpnXDB+0GEVbASjcTbWNFDjD7GpppGv1m0lnjQxdA1d09B1DZuuU9q9gO552XTN9WG37X+wKYQQYv8dtcHGm2++STgc5umnnyY7OxsA0zR56KGHuPHGGyksLDxkdYvFk7w3YxmplMmWNTV8PX8TkVDz4mKdXSwwG9HXgCepQUoRIQZAyg3hzhpKS+BbEyVnYxDb9vRsUgqNcLGd6lO9rCgohJp9O6m26SZ2y8SIKwhqENQYN7o/sz79Jn2nIpW+U4GluPyKk/n732bTPGYcpcGPLhvFO/+ch2UDZYBq7jIzeERvvly2Acuh7Xw403VSdo2UXYPmCYJm126FvjsDllrcQA5LFsXANgz8gB+0FYoct4t4UwC3lsRrj5PpipLtCdO5UxSPPYDXHseTHye7c4Bu9lq2ph7huv+XQtMgHrXRUJ1JNZWcdkkVDTWZzQPYvYSaDmyK1iOBpmncNXFsm/QRpT3509wv0OIKw2+iBxVFdg91tUFw2lGABWBaaIkUWsJES6bQkiZayiJRb6e+3k79l5mtynVn63i7KlyFSWz5UWydwjg7JXDmJ3F0SlLUPUTnHq27BSkF0ZgTfyiDQDiDYMhHfZObYDiDUMyJQsc0YOH27c1/vXaOV7j0rcloLoUdsCkNm6Vhs3Q+WruWuN3CsDR0i70OVleahdqPAe2GXSenp4ecnh5i/iR96MSMeatJxSz8FVH8FenlBW9a/CbBRByH04bDZcPuMLDZdX5/88Q2ZZrKajOlLkCm7sZTmckFajhV9ia2WHWEM6KsClYRIErAirK+eYzUxwvTU2Abmkauw4PP4cZjc2BTBvXxCDbNwI4Nh9fgxF7HcHrpMZwa68G2iiDrNjeyZks9tYEwtYEwX1fXYGganbMy6ZzppeemTpzkKcbl+H7/CwlEYqyvqk8/qhvY0Pyzxr+nKyU7LVy/reV3Q9coLszjxL49+Pm5o3Haj9r/CoUQ4pA7av/Czpo1i5EjR7YEGgBnn302Dz74IHPmzOEHP/jBIalXIpnilb/M5osv1hCpi4DZPNuTAQmfDVNTOFuGSqj0QFynBWYSR02ComVxnA07uzUoHYJ9nNSf6CHadeddBw2F25HA54yS6YzhdcbxOmPYEhZmnYNolYt7J17O3dd+0GZ62nuvH82K/2k9nSfAZccMYNo3M1ulXd1rEJ8u+k+bvI/dcCo//n3rq7Wv/fVWfnzt0y2Bh9n88+qbx/Py3/6D6WxOd4Lp0OjcuxNbahswnRoYGsrQaEjEIcNJGCd1eNOLjjcHI3tiaCYeWwKXLYHLSOKqS+Lu5sLdM/08z1ZLNyPJ05tvY/BvUhDTUFEdK6LzZeBlSs7ZjBk1SIZtJCMGqZBBQm3D5YmTTNgwkzpHwh0TpRRPPDutTfrkp27ingtOa5V2wjFdufqKSYAGmtbys/dx3amsbiIcbA6OLSsddCRMtKQJqfRPzVJEmyyiTcA3NtJ971oHI9jByARbloUjy6Sou4Ow3oirII6rME6XvHocRdXYS1LodrAsjXDURSiy4+FOP6Lp38NRJ0rpJICEBhgKDJP/nT0HfDs/1tBNXI4k13/4Z0yiuBwmLrvC4bR4b3MIX/F6dKXQlAaWjpky2J5Yhi+/HiulY5oGVvMjaUVIh2Lp7omuLDvXnTWKzd4mog0JwnVxwnVx4oEU1fXpL3YkmGjVDL945B2UA7yZLtwZdtwZDpbnZrPY2ow7045h7Jxqd2LhYCAdOHbWcuis53D+oFLe+Wo5VaqJBitEg0o/ErYkTckIplLUxkPUxnc7IW+OIrWExteLK9ASGloCtLiW/t2nYYvqENHRogaYUB3yU6X5WbRmG9ggI9tOVp6L/E4ZFOZ6yc/yUuD1kO1yEorUo/yVZKcycRl2HLqBw7Dh0G3YNR3TVKQsi0TKJJEySaZMgtE4wVicQCROYyhCVVOIqqYg1U1BNtU0Uhtof3FGgIIsD51zfHhdDhrDUZw2G0opTEthKovsDDc1gRAV9X5iiRRrK+tYW1nHxOH96dslf4/lCiGEODBHbbCxYcMGfvjDH7ZK8/l85Ofns2HDhkNUK7jh7jeoWFiVvoSrFJamMJ06pkNDiyaxh2LpE7iUiRFJYQumMJJt14+IdrERGWAnORQy8pL0dlWR5w6RmxEm0xnHbU8Qq3cQ3JpBaJObGy+9jK0rHdgsL+QCudDZeQyWBd++PoVKn0drkFIpsO18jqaIWFE0t7Uzrfm8u9H0o2WbLeepaFBvNmDPMkFLl6EBJOCEgkzebwzvUm768ZuLTuN3//MuSgNlKEy7zhXXj+P1v8/CtOuYNi39sOv0HdSd5au3Ydo0LFvza4aO0jVMZRBIugkk3e1u4R5p8O6XQMHANi+dMuNjbJfkYNNNDM3CplsYmsWFcyfBz8zmTVBoCq5YMInEzcld0hQ6cNPSpzFvjKbvFDU/NKX41TcvoK6Jpo8RK93t7YFVr8HlMZQFmpV+SVPwv+vehAujaLvkxYLnN72HdlY0XaaVLvtvW6ZjL/OjLC2dX2koC/65cQbv/mdR8zGZ3r7Lzx6ObWgETYFSzfmBU64+gVfe24BuaqiYhhbXUHGN4aXH8uWyragYEAMVUmhRC5Immmml74qkrJ2/WwqSYDaA2aATRye4RAHZ7e8LB+DW0F2guSG/MINEIojLaZJhC1FohHC5bSRSkDB1kqaBaRmYyiCldEzLIGXpWEoHDZSu06QrlOHGrzffldM1VhlBLKMIpWsoAwy7ieEw+fkrX6DbLQx7At1hoTvTdz+ueet5FBpYWvNPnStfe4aklQ6OlFdDZWhYKQ0jZsMKWWgxDT0OeiLd4auq1g+aRjU772R8NWfjzm23p7dfd2i8ZV+MpVvodoVuVxh2mL5kHnEzga4rDEOha4pMwOdwoPCQNBWpJCTjkIppJGMa0bCF1bzv9hgoK9XO7zuPETSwauM0ro3ToPtZZYBlaM1tmW5PpX/d/LtqSU+/Vee7crh1MrJseLPsZGbbycp2kp3twuO249BtJJMWke0hDBQ6OgY6hmbnxN6dsek2bJpOLJKipi5CUUamBBpCCHGQaUqpbzvTPGINGDCAX/ziF9xwww2t0idMmMDgwYN5+OGH97vMRYsWsaO5bDbbd1pdurLOjx6z9vt9GDSfdCg0h0Jr83+11vKvZe2+xBvoutac3k6aBrsGHJqmtWznEXDBfs8U7NgA1fyP2rFBqtUW73ZetXOjVcs/u7xX7DPNojmw2Rn0aDuuqFu0BDgtLdu6wQ8N2c3/NZSm4evkJsNxYONPnE4nJSUlHVQrIYQ4uhy1dzYOhh3Bhd1u30vOPeuSn91BtRFCCCGEEOLwdtQGGz6fj2Aw2Cbd7/eTlZX1ncocPHjwgVZLCCGEEEKI/xrfvePsYa64uLjN2IxgMEhtbS3FxcWHqFZCCCGEEEL89zhqg40xY8ZQXl5OILBz0OX06dPRdZ3Ro0cfwpoJIYQQQgjx3+GoHSDu9/s599xz6dWrFzfeeGPLon7nnXfeIV/UTwghhBBCiP8GR22wAbB+/XoefvhhFi9ejMfjYeLEidx+++04HG1XvBZCCCGEEEJ0rKM62BBCCCGEEEIcOkftmA0hhBBCCCHEoSXBhhBCCCGEEOKgkGBDCCGEEEIIcVBIsCGEEEIIIYQ4KCTYEEIIIYQQQhwUEmwIIYQQQgghDgoJNvbR+vXrueaaaygrK2P06NH8/ve/J5FIHOpqdbjNmzfzwAMPMHHiRPr378+ECRPazTd58mTOPPNMjjvuOM4//3w+++yzNnmCwSC/+c1vGD58OIMHD+bnP/85NTU1bfItWrSISy65hEGDBjFu3DhefPFFdp+RWSnFiy++yCmnnMKgQYO45JJLWLJkSZuyqqurue222xg8eDDDhw/nt7/9LaFQ6Ls1xgGYNm0aN998M2PGjKGsrIyJEyfyzjvvtNkuace9+/zzz7nyyis58cQTGThwIOPHj+fRRx8lGAy2yjdz5kzOP/98jjvuOM4880zefffdNmUlEgkef/xxRo8eTVlZGddccw0bNmxok29fv+8duf++b+FwmDFjxlBSUsLy5ctbvSbHpRBCiA6jxF41NTWp0aNHqyuuuELNmjVLTZ48WZ1wwgnqoYceOtRV63CffPKJGjNmjLrtttvUhAkT1Lnnntsmz4cffqhKSkrUk08+qebOnavuv/9+1b9/f7V48eJW+a699lo1ZswYNWXKFPXpp5+qCRMmqPPPP18lk8mWPJs2bVJlZWXqlltuUeXl5erVV19VAwYMUC+99FKrsl544QU1YMAA9eqrr6ry8nJ1yy23qMGDB6stW7a05EkkEmrChAlqwoQJasaMGWrKlClqzJgx6oYbbujYRtoHF198sbr99tvVlClTVHl5ufrDH/6g+vXrpyZNmtSSR9px37z33nvq8ccfV9OnT1fz5s1Tf/nLX9Tw4cPVNddc05Lnq6++UqWlper+++9Xc+fOVU8++aQqKSlR06ZNa1XW/fffr0444QQ1efJkNWvWLHX55Zerk08+WQUCgZY8+/p978j9dyj8/ve/V6NGjVJ9+/ZVy5Yta0mX41IIIURHkmBjHzz//POqrKxMNTY2tqS9+eabqrS0VFVVVR26ih0Epmm2/H733Xe3G2ycccYZ6o477miVdskll6if/vSnLc8XLVqk+vbtq2bPnt2Stn79elVSUqKmTJnSknb//fercePGqXg83pL2xBNPqKFDh7akxWIxNWTIEPXEE0+05InH42rcuHHqwQcfbEn74IMPVElJiVq/fn1L2uzZs1Xfvn3V0qVL96cZDlh9fX2btPvuu08NGTKkpY2lHb+7t956S/Xt27fl+3fttdeqSy65pFWeO+64Q5199tktzysrK1Vpaal68803W9IaGxtVWVmZevHFF1vS9vX73pH77/u2bt06VVZWpv7xj3+0CTbkuBRCCNGRpBvVPpg1axYjR44kOzu7Je3ss8/GsizmzJlz6Cp2EOj6tx8SW7duZdOmTZx99tmt0s855xzmzp3b0tVk1qxZ+Hw+Ro8e3ZKnuLiY0tJSZs2a1ZI2a9Ysxo8fj8PhaFVWIBBg8eLFQLobRigUavWZDoeD008/vU1ZJSUlFBcXt6SNHj2a7OxsPv/88/1phgOWm5vbJq20tJRQKEQkEpF2PEA7vovJZJJEIsH8+fM566yzWuU555xzWL9+PRUVFQB88cUXWJbVKl92djajR49us/17+7539P77vj3yyCNceuml9OrVq1W6HJdCCCE6mgQb+2DDhg2t/oMD8Pl85Ofnt9vf+2i2Y3t3P0np3bs3yWSSrVu3tuTr1asXmqa1yldcXNxSRiQSobKysk3bFhcXo2laS74dP3fP17t3b7Zv304sFmvJt3seTdPo1avXYbGfFi5cSGFhIV6vV9rxOzBNk3g8zjfffMMzzzzDqaeeSrdu3diyZQvJZLLd7QJabX9eXh5ZWVlt8u26Xfvyfe/I/fd9mz59OmvWrOGWW25p85ocl0IIITqaBBv7IBAI4PP52qRnZWXh9/sPQY0OnR3bu3t77Hi+4/VAIEBmZmab9+/aZjsG+O5elsPhwO12tyrL4XDgdDrbfKZSar8+81BZsGABU6dO5dprrwWkHb+LcePGMWjQIH7wgx+Qn5/PE088ARx4W/p8vlbbtS/f947cf9+naDTKY489xu23347X623zuhyXQgghOprtUFdAiKNdVVUVt99+OyNGjOCqq6461NU5Yr344otEo1HWrVvHc889x0033cSrr756qKt1RHnuuefIy8vjhz/84aGuihBCiP8ScmdjH/h8vjbTbEL6Kt/uXTKOdju2d/f2CAQCrV73+XztTkm5a5vtuEq5e1mJRIJoNNqqrEQiQTweb/OZmqbt12d+3wKBANdffz3Z2dlMmjSpZUyMtOP+69evH4MHD+aiiy7i2WefZf78+XzyyScH3JaBQKDVdu3L970j99/3Zdu2bbzyyiv8/Oc/JxgMEggEiEQiQLrLUzgcluNSCCFEh5NgYx+01786GAxSW1vbpg/x0W7H9u7eHhs2bMBut9O9e/eWfBs3bmwzn/7GjRtbysjIyKBz585tytrxvh35dvzcuHFjm8/s0qULLperJd/uZSmlWn3m9ykWi3HjjTcSDAZ56aWXWnUBkXY8MCUlJdjtdrZs2UKPHj2w2+3ttiXQavvr6uradLnZfSzAvnzfO3L/fV8qKipIJpPccMMNDBs2jGHDhnHTTTcBcNVVV3HNNdfIcSmEEKLDSbCxD8aMGUN5eXnL1T1ID7LUdb3VbCz/Dbp3707Pnj2ZPn16q/SpU6cycuTIlllnxowZg9/vZ+7cuS15Nm7cyIoVKxgzZkxL2pgxY5gxYwbJZLJVWT6fj8GDBwMwZMgQvF4v06ZNa8mTTCb5+OOP25S1atUqNm3a1JI2d+5cmpqaGDt2bMc0wD5KpVL88pe/ZMOGDbz00ksUFha2el3a8cAsXbqUZDJJt27dcDgcjBgxgo8++qhVnqlTp9K7d2+6desGwEknnYSu63z88cctefx+P1988UWb7d/b972j99/3obS0lDfeeKPV49577wXgoYce4sEHH5TjUgghRMc7JBPuHmF2LPJ15ZVXqtmzZ6t33nlHDR069Khc1C8Siahp06apadOmqSuvvFKNHTu25fmOtSN2zHf/pz/9Sc2bN0898MADqn///mrRokWtyrr22mvV2LFj1dSpU9WMGTO+ddGv2267TZWXl6vXXnttj4t+DRw4UL322muqvLxc3Xbbbd+66NfMmTPVlClT1NixYw/Jol/33Xef6tu3r3rllVfU4sWLWz12rC8g7bhvbrnlFvXcc8+pmTNnqvLycvXKK6+o0aNHq/POO6+lLXcs6vfggw+qefPmqT/96U+qpKRETZ06tVVZ999/vxo6dKh655131OzZs9WVV165x0X99vZ978j9d6jMmzevzTobclwKIYToSBJs7KN169apq6++Wg0aNEiNHDlSPfbYY60WqjpabN26VfXt27fdx7x581ryvf322+r0009XAwYMaPnPf3eBQEDde++9aujQoaqsrEzdeuut7S6CuHDhQnXRRRepgQMHqjFjxqgXXnhBWZbVKo9lWer5559XY8aMUQMHDlQXXXRRm5MfpZSqqqpSt956qyorK1NDhw5V9957rwoGgx3QMvtn3Lhxe2zHrVu3tuSTdty7F154QU2cOFENHjxYlZWVqXPPPVf98Y9/bFOfHatYDxgwQJ1++ulq8uTJbcqKx+PqscceUyNHjlSDBg1SP/nJT9S6deva5NvX73tH7r9Dob1gQyk5LoUQQnQcTandOt0KIYQQQgghRAeQMRtCCCGEEEKIg0KCDSGEEEIIIcRBIcGGEEIIIYQQ4qCQYEMIIYQQQghxUEiwIYQQQgghhDgoJNgQQgghhBBCHBQSbAghhBBCCCEOCgk2hBBCCCGEEAeFBBtCiL2aNGkSJSUlh7oaQgghhDjCSLAhhBBCCCGEOCgk2BBCCCGEEEIcFBJsCCG+V0opYrHYoa6GEEIIIb4HtkNdASHEwRMKhfjTn/7EjBkzqKmpITMzk379+nHXXXcxYMAAFixYwBtvvMGyZcuoq6sjLy+PM888kzvuuAOXy/WtZb/77rv8+9//Zu3atQSDQXr06MGVV17J5Zdf3irfqaeeSp8+fbjyyit58sknWbt2LXfeeSeffvopgUCA999/v03ZZ555Jt26dePll1/u0PYQQgghxPdLgg0hjmIPPvggH330EVdeeSW9e/emqamJhQsXsn79egYMGMD06dOJxWJcdtllZGdns2zZMv76179SVVXFU0899a1l/+Mf/6BPnz6ceuqp2Gw2PvvsMx566CGUUlxxxRWt8m7cuJE777yTSy65hIsvvphevXrh8Xi47777WLNmDX379m3Ju2zZMjZt2sTNN998UNpECCGEEN8fTSmlDnUlhBAHx9ChQzn//PN54IEH2n09Fou1uYPx4osv8n//93/MnDmTLl26AOnZqJ5++mlWr179re+97rrr2Lx5M59++mlL2qmnnsq2bdt46aWXOPnkk1vSg8Ego0eP5qqrruKuu+5qSX/kkUd49913mTNnDhkZGd9944UQQghxyMmYDSGOYj6fj6VLl1JdXd3u67sGC5FIhIaGBgYPHoxSihUrVnxr2bu+NxgM0tDQwPDhw9m6dSvBYLBV3m7durUKNAAyMzMZP348U6ZMYcc1D9M0mTZtGuPHj5dAQwghhDgKSDcqIY5id911F/fccw+nnHIKAwYMYOzYsVxwwQV0794dgO3bt/PUU08xc+ZM/H5/q/eGQqFvLXvhwoVMmjSJJUuWEI1GW70WDAbJzMxsed6tW7d2y7jggguYOnUqCxYsYNiwYZSXl1NXV8fEiRO/y+YKIYQQ4jAjwYYQR7FzzjmHoUOH8sknnzBnzhxefvll/vznPzNp0iROOukkrrnmGvx+Pz/96U8pLi4mIyOD6upq7rnnHizL2mO5W7Zs4Sc/+QnFxcXcc889dO7cGbvdzueff85rr73W5r17Gmx+0kkn0alTJ95//32GDRvG+++/T35+PqNGjerQdhBCCCHEoSHBhhBHuYKCAq644gquuOIK6uvrufDCC3n++ecpKChg06ZNPP7441xwwQUt+efMmbPXMmfOnEkikeC5555rGdcBMH/+/P2qm2EYTJgwgX/961/cddddfPrpp1x88cUYhrFf5QghhBDi8CRjNoQ4Spmm2WbsRF5eHgUFBSQSCXQ9/fXfdY4IpRRvvPHGXsveEQzs+t5gMMi777673/WcOHEifr+fBx54gEgkwvnnn7/fZQghhBDi8CR3NoQ4SoXDYcaOHcuZZ55Jv379yMjIoLy8nOXLl3PPPfdQXFxMjx49ePzxx6mursbr9fLRRx8RCAT2Wvbo0aOx2+3cdNNNXHrppYTDYSZPnkxeXh61tbX7Vc/+/fvTt29fpk+fTu/evRkwYMB33WQhhBBCHGbkzoYQRymXy8Vll13GypUreeqpp3j00UfZuHEjDz74INdccw12u53nn3+e0tJSXnjhBZ5++ml69uzJ448/vteyi4uLeeqpp9A0jccff5w333yTiy++mKuuuuo71XXHgHAZGC6EEEIcXWSdDSHEIff666/z6KOPtlrbQwghhBBHPrmzIYQ4pJRSvPPOOwwbNkwCDSGEEOIoI2M2hBCHRCQSYebMmcyfP581a9bw7LPPHuoqCSGEEKKDSTcqIcQhUVFRwfjx4/H5fFx++eXcfvvth7pKQgghhOhgEmwIIYQQQgghDgoZsyGEEEIIIYQ4KCTYEEIIIYQQQhwUEmwIIYQQQgghDgoJNoQQQgghhBAHhQQbQgghhBBCiINCgg0hhBBCCCHEQSHBhhBCCCGEEOKgkGBDCCGEEEIIcVBIsCGEEEIIIYQ4KP5/uzEHSu1xo8cAAAAASUVORK5CYII=\n"},"metadata":{}}]},{"cell_type":"code","source":[],"metadata":{"id":"NiGy0QCVLN9o"},"execution_count":null,"outputs":[]},{"cell_type":"code","source":[],"metadata":{"id":"5o7pBWsD_p-r"},"execution_count":null,"outputs":[]},{"cell_type":"code","source":["sns.countplot(data=df_u,x='work_year',hue='job_category',stat='count',palette='viridis')"],"metadata":{"colab":{"base_uri":"https://localhost:8080/","height":475},"id":"B3OcQzLG_zaL","executionInfo":{"status":"ok","timestamp":1714702926666,"user_tz":300,"elapsed":875,"user":{"displayName":"Jenny O","userId":"07622373657144372939"}},"outputId":"dd3ca7d4-d62f-411e-92e2-ac9d64254845"},"execution_count":null,"outputs":[{"output_type":"execute_result","data":{"text/plain":[""]},"metadata":{},"execution_count":77},{"output_type":"display_data","data":{"text/plain":["
"],"image/png":"iVBORw0KGgoAAAANSUhEUgAAAk8AAAG5CAYAAACX5ND3AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAADG3ElEQVR4nOzdeVxO6f/48dd9p1LapMiuyG0rFUklxGAkYxm7yS4mxr5kn+y7KEYI2YsxhhjGMJiv9TMfGTMYY8kWKUWL9uX3R7/7fNzudlHM9Xw8PB7uc65zXe9zzs1539d1nXNk2dnZ2QiCIAiCIAiFIi/tAARBEARBED4mInkSBEEQBEEoApE8CYIgCIIgFIFIngRBEARBEIpAJE+CIAiCIAhFIJInQRAEQRCEIhDJkyAIgiAIQhGUK+0APjVhYWFkZ2ejqalZ2qEIgiAIglBI6enpyGQybG1tCywrkqcSlp2djXjuqCAIgiB8XIpy7RbJUwlT9jhZWVmVciSCIAiCIBTWn3/+WeiyYs6TIAiCIAhCEYjkSRAEQRAEoQhE8iQIgiAIglAEInkSBEEQBEEoApE8CYIgCIIgFIG4264UZWZmkp6eXtphCIIg5EpTUxMNDY3SDkMQyhyRPJWC7OxsIiMjefXqVWmHIgiCkC8jIyPMzMyQyWSlHYoglBkieSoFysSpcuXK6Orqiv+UBEEoc7Kzs0lKSiIqKgqAqlWrlnJEglB2iOTpA8vMzJQSp0qVKpV2OIIgCHnS0dEBICoqisqVK4shPEH4/8SE8Q9MOcdJV1e3lCMRBEEomPL/KjE/UxD+RyRPpUQM1QmC8DEQ/1cJgroylTz99NNPfP3117Ru3RobGxu6devGgQMHVF7W5+HhgUKhUPtz7949lboSEhKYOXMmLVq0wNbWlnHjxklj92+6evUqffv2xdraGldXVzZt2iRe7CsIgiAIQp7K1Jyn7du3U716dby9valYsSIXLlxgzpw5REZGMnbsWKmcnZ0d06dPV9m2Ro0aKp8nTJjA3bt3+fbbb9HW1sbX15eRI0fy/fffU65czm4/fPiQ4cOH4+zszIQJE7h9+zYrV65EQ0OD4cOHv/8dFgRBEATho1OmkqfvvvsOY2Nj6bOjoyOvXr1i27ZteHl5IZfndJQZGBhgY2OTZz1hYWH83//9H4GBgbRq1QoAc3Nz3Nzc+Pnnn3FzcwMgMDCQihUrsnr1arS0tHB0dCQ2NpaNGzfi4eGBlpbW+9tZoUw4ePAgM2bM4NSpU2oJeH48PDx4+fIloaGh7zE6QRAEoSwqU8N2byZOSg0bNiQxMZGkpKRC13Pu3DkMDAxwdnaWlllYWNCwYUPOnTunUq59+/YqSZKbmxvx8fGEhYUVcy8EofScPXsWPz+/0g5DEAThk1amkqfc/Pe//6VKlSro6elJy65cuYKNjQ1WVlZ89dVX/Oc//1HZ5v79+5ibm6tNdLSwsOD+/fsAJCUl8ezZMywsLNTKyGQyqZzwaevWrRvXr1+nevXqpR1KiTh79iz+/v6lHYYgCMInrUwN273t999/59ixYyrzm+zt7enWrRt16tQhKiqKwMBAhg4dys6dO7G1tQUgPj4efX19tfoMDQ3566+/gJwJ5ZAzBPgmLS0tdHR0iIuLK3bcyofL5SY1NZWsrCwyMzPJzMwsdhtCySlXrhxZWVlF2iY7O5vs7Owydw6VNzuUtbjelpqaiqampjQUL5RNMpmswBtoMjOzSEtLFTfaCB+97OzsQt9dWmaTp8jISCZOnIiDgwODBg2Slo8bN06lXNu2bXF3d2fDhg1s3rz5Q4eZq/T0dG7dupXn+nLlypGamvoBIxLycvjwYb799ltCQ0OpVq0aACEhIYSEhPD48WMMDQ1xdXVl7NixKgl5VlYW2dnZXL16leXLl3P79m0qVarEkCFD6NWrV5HjOH/+PNu2bePvv/9GJpNRu3ZtBg4cSOfOnYGcu0L37dvHX3/9RUxMDMbGxrRv356xY8dSvnx5AObNm8eRI0cAaNSokVT31atXpZj37t3LDz/8wJMnT9DT06Nt27aMGzdO5UdEVlYWmzZt4uDBgyQmJtKkSRO8vb355ptvaN68OT4+PlLZJ0+esG7dOq5cuUJaWhr16tVj5MiRuLi4SGV+//13PD09WbJkCXfv3uXw4cO8ePGCXbt2MXDgQCZNmsRXX32lcjz++OMPhg4dyuLFi/n888+LfDyFkiGXy5HJZMS9TGTh2gDiYl+rrK9pYca0pcMIDw8nOTm5lKIUhJJT2LnOZTJ5io+PZ+TIkRgZGeHn55fvr1NdXV3atGnDiRMnpGUGBgZERkaqlY2Li8PQ0BBAuhAqe6CU0tLSSE5OlsoVh6amJvXq1ct1XWpqKk+fPkVbW1u66AmlR1NTE0A6H/7+/mzYsAFHR0f69+9PeHg4wcHB/P333+zatUsqL5fLSUhIYPz48XTq1Al3d3eOHz/O4sWL0dHR4csvvyx0DD/88AOzZ8+WEg8DAwNu3brF5cuX6dGjBwC//voraWlp9OvXDyMjI/7880+Cg4N58eIFvr6+APTv35+YmBguXLjA0qVLpfqV37O5c+dy6NAhevTogYeHBxEREezevZs7d+6o7NuqVasIDAzE1dUVZ2dnbt++zdixY0lNTUVDQ0Oq78WLFwwdOpSUlBS++uorjIyMOHToEBMnTsTX15fPPvsM+N9/Rlu2bEFTU5Nhw4aRlpZGgwYNsLOz48SJE4wYMULlmPz8889UqFCBTp06iX8npUgmk5GWlkZmRiaP7j/jxbPce+TNzc1Fz5Pw0bt7926hy5a55CklJYVRo0aRkJBAcHBwrsNvBbGwsODixYtqXXDh4eHUr18fyEm6qlatqja3KTw8nOzsbLW5UEUhk8nyfIK4XC5HLpejoaEhXnVQBigTc7lcTlxcHJs3b6ZVq1Zs3rxZWlevXj3mz5/P0aNHpaRIJpMRFRWFt7c3Q4cOBXKSlz59+uDr60uPHj2kZCQ/CQkJLF68GGtra3bu3Im2tra07s3v77Rp01SSiP79+1OnTh1Wr17N8+fPqVatGs2aNcPc3JwLFy5ISZfS77//zoEDB1i5ciVdu3aVlrds2ZIRI0Zw8uRJunbtyosXLwgKCuKzzz5j/fr1Ujl/f3/8/PyQyWTS9zYwMJCYmBh2795N8+bNAejbty9ffPEFy5Yto0OHDtL3HXJ+mBw8eFBlP7p3787cuXN58OABdevWBXJ6bo8fP07Hjh1V5joKZZfyNS6C8DErygNhy9SEg4yMDCZMmMD9+/fZsmULVapUKXCbpKQkzpw5g5WVlbSsdevWxMXFcfHiRWlZeHg4N2/epHXr1irlTp06pfLagWPHjmFgYCDNnxL+PS5cuEB6ejqDBg1S6e3s3bs3enp6nD17VqV8uXLl6Nu3r/RZS0uLvn37EhMTw40bNwrV5vnz53n9+jWenp4qiROo/kN+M+FISkoiNjYWW1tbsrOzuXnzZoHtHD9+HH19fZydnYmNjZX+NG7cGF1dXS5fvgzAxYsXycjIYMCAASrbvz2sBjmT062traXECaBChQr07duXiIgItV9x3bt3V+tF6ty5M9ra2tJwI8D//d//8fLlS7744osC90sQBKE0lKmeJx8fH3799Ve8vb1JTEzk2rVr0rpGjRpx/fp1tmzZQocOHahevTpRUVFs27aN6Oho1q5dK5W1tbWlVatWzJw5k+nTp6Otrc2aNWtQKBR07NhRKjd8+HCOHDnC5MmT6d+/P//88w+BgYFMnDhRPOPpX+jp06cAar2OWlpa1KxZk4iICJXllStXVuthrFOnDgARERH5PotM6dGjRwBYWloWGNu6des4ffq02s0MiYmJBbbz8OFDEhIScHR0zHV9TEyM1A5ArVq1VNYbGRmpDWU/ffqUpk2bqtWlPH5Pnz6VenpB/UG2kDPE7urqSmhoKBMmTADgyJEjVKlShZYtWxa4X4IgCKWhTCVP58+fB1CZr6F06tQpTE1NSU9PZ82aNbx69QodHR1sbW3x8fHB2tpapbyvry9Llixh7ty5ZGRk0KpVK2bPni09XRygdu3aBAYGsnTpUjw9PTE2NmbcuHEMGzbs/e6oIBRBZmYmQ4cOJS4ujhEjRmBhYYGuri7Pnz/H29u7UHcKZmVlUalSJVauXJnr+tyesVbS8pq71L17d44fP87Vq1epX78+p0+fpn///uJOPEEQyqwylTydPn26wDKBgYGFqktfX5/FixezePHifMvZ2dkREhJSqDqFT5vybrv79+9Ts2ZNaXlaWhpPnjzByclJpXxUVBRJSUkqvU8PHjwAKPRzo5Q9PHfu3KF27dq5lvnnn3948OABy5Yto3v37tJy5Y+NN+U1Zl+rVi0uXryInZ1dvhOwlcfg0aNHKsfg5cuXaj1e1apVIzw8XK0O5TxCZV0FcXFxwdjYmCNHjtC0aVOSk5Pp1q1bobYVBEEoDeKnnSD8f05OTmhqarJz506VO4cOHDhAQkICbdq0USmfkZFBcHCw9DktLY3g4GCMjY1p3Lhxodps1aoVFSpUICAgQO3xFcoYlD0wb8aUnZ3Njh071OpTTtyNj49XWd65c2cyMzPZsGGD2jYZGRlSeUdHR8qVK8fevXtVyuzevVttuzZt2nD9+nWVp/EnJSUREhJC9erV87zj9G3lypWjS5cu/PTTTxw8eJD69evToEGDQm0rCIJQGspUz5MglCZjY2NGjRqFv78/I0aMoF27doSHh7Nnzx6srKzUJjBXrlyZzZs3ExERQZ06dTh27Bi3bt1iwYIFhbrTDkBPT48ZM2Ywe/ZsevXqhbu7OwYGBvz999+kpKSwbNkyLCwsqFWrFsuWLeP58+fo6elx4sQJtQQJkJK2hQsX0qpVKzQ0NOjSpQstWrSgb9++BAQEcOvWLZydndHU1OTBgwccP36cWbNm8fnnn2NiYsKgQYPYunUro0ePxsXFhdu3b3Pu3DkqVqyo0rPl6enJ0aNHGTlyJB4eHhgaGnLo0CGePHlS4CNG3ta9e3d27tzJ5cuXmTJlSqG3EwRBKA0ieRKEN3zzzTcYGxuza9culixZgqGhIX369GHSpElqCZGhoSFLly5l4cKFhISEYGJiwty5c+nTp0+R2uzduzeVKlVi06ZNbNiwgXLlymFhYcGQIUOAnGdRbdy4kYULFxIQEIC2tjYdOnRg4MCBasNbHTt2xMPDg6NHj3L48GGys7Pp0qULAPPnz6dJkybs27ePNWvWoKGhQfXq1fniiy+ws7OT6pgyZQrly5dn//79XLx4ERsbGwIDAxkwYIDKjRQmJibs27ePFStWsGvXLlJTU1EoFGzcuJG2bdsW6Rg0adIES0tL7t27J+6yEwShzJNliyeblag///wTQOXRCW9KSUkhPDwcc3Nz8fC/MmD//v3Mnj2bs2fPYmZmVtrhlFnx8fHY29szYcIEvv766/fSRvfu3TE0NCQoKOi91C8UT0pKCv+9co2AhYfUHpJZt2FN/EJmllJkglCyCrp+v0nMeRL+1aKjo5HJZO/0RPlPTUpKitoyZULTokWL99Lmn3/+ya1bt1QmxAuCIJRVYthO+Fd68eIFJ06cYN++fdjY2LyXJyTHxsbm+4JeTU1NjIyMSrzdd3Xs2DF++OEHWrduja6uLlevXiU0NJRWrVrRrFmzEm3rn3/+4caNG2zduhVTU1Pc3NxKtH5BEIT3QSRPwr/SvXv3WL58OdbW1ixYsOC9tNGrVy+1B2u+qUWLFuzcufO9tP0uFAoFGhoabNmyhdevX1OpUiUGDRokPcSyJJ04cYL169djbm7O6tWr1Z6yLgiCUBaJ5En4V3JwcOCPP/54r22sWLFC7fEDbzIwMHiv7RdX48aN2b59+wdp65tvvuGbb775IG0JgiCUFJE8CcJ7UtJDXIIgCELZICaMC4IgCIIgFIFIngRBEARBEIpAJE+CIAiCIAhFIJInQRAEQRCEIhDJkyAIgiAIQhGI5EkQBEEQBKEIRPJUhmRlZn1Ubfv5+aFQKFAoFDRo0IBmzZrRtWtX5s+fz71794oVx+XLl9m4cWOxts3L3bt3GTduHK1bt8bKyorWrVszatQozp49W6R6FAoFgYGBJRrbp+DWrVsoFAouX76cbznld0WhUNCkSRM6dOjAwoULefXq1YcJ9AO7fPkyCoVCel+WIAifDvGcpzJEriFnufdWHt+P/KDt1rQwY9rSYcXatnz58tJ7z16/fs0///xDcHAwISEhLFq0iG7duhWpvitXrrB161ZGjx5drHje9ujRI3r37o1CocDb2xtjY2MiIiI4e/YsV65coU2bNoWuKzg4mGrVqpVIXP9WHh4euLu7k5qaypUrV9i4cSMPHjxgy5YtpR2aIAhCoYnkqYx5fD+Se7cel3YYhSaXy7GxsZE+Ozs7M2DAADw9PZk1axZ2dnbUrFmz1OL7/vvvAdi2bZvK++u+/PJLsrKK1tv25n4KxVO1alXpODo4OBAVFUVISAhRUVFUrly5dIMrpMzMTLKystDU1CztUARBKCVi2E4ocdra2syZM4f09HT2798vLT906BD9+/enRYsW2Nvb4+HhwfXr16X1fn5++Pv7k5SUJA3veHh4ADnvops4cSJt2rShadOmuLm5sXXr1gIToPj4ePT09HJ98a9crvr1v3fvHmPHjqVFixY0bdqUL774gtDQUGl9bsN2Z86coXfv3lhbW9OyZUvmzZtHUlKStF45dHP+/HkmT56Mra0trq6ubN68WS2esLAwhg0bhp2dHba2tvTu3Zvz589L69PS0li9ejWurq40adKEzp07c+TIkXz3Xxnj0KFDcXR0xM7Ojt69e3Pu3DmVMgcPHkShUHDz5k1GjBiBjY0NHTt25NChQ2r1bdiwAWdnZ2xtbRk7diwxMTEFxpCXhg0bAvDs2bMi7eedO3cYOXIkDg4ONG3alE6dOqkd07CwMAYNGoSNjQ3NmjVj8uTJarGuXLmSrl27Ymtri4uLC5MmTSIqKkqljIeHB6NGjeKHH36gU6dOWFlZ8ffffwM5x7Zfv340bdpU+k7fvHlTZfv4+PgCz70gCB8X0fMkvBf16tWjSpUqhIWFScuePHlC9+7dqVWrFmlpaRw9epSBAwdy+PBhzM3N6d27N5GRkYSGhkpDgXp6egBERUVhbm5O165dqVChArdu3cLPz4+kpCTGjh2bZxyNGzdmz549zJ07l/79+6NQKNSSJoAHDx7Qt29fqlatyqxZszA1NeWff/7h6dOnedZ9/PhxJk6cSM+ePfnmm2+Ijo5m1apVxMfHs2bNGpWy8+bNo1u3bqxfv55ffvmFlStXolAoaN26NQD//e9/GTx4MDY2NixcuBADAwP++usvlfbHjx/P1atXGTNmDHXr1uXs2bNMnToVAwODfIcfnzx5gqurK8OGDUMul3Pu3Dk8PT0JCgrCwcFBpeyUKVPo06cPQ4cOJSQkBG9vb6ysrKhbty4Au3btYu3atQwbNgwnJycuXLjArFmz8my7IE+fPkUul6sMhxZmP0ePHo2JiQmLFi1CT0+PR48eERn5v+HusLAwPDw8aNOmDWvWrCE5ORlfX1+8vLwIDg6WysXExDBq1CgqV65MbGws27Ztw8PDg6NHj1Ku3P/+e/zrr7+IiIhg/PjxGBgYULVqVY4dO8akSZNo3749q1atQlNTk6tXr/L8+XMaNWokbVvQuRcE4eMjkifhvalatSovXryQPr+Z5GRlZeHs7Mz169f54YcfmDRpEmZmZpiZmakNBQI4Ojri6OgIQHZ2Ns2aNSMlJYVdu3blmzz16NGDixcvEhwcTHBwMBUqVKBly5Z8+eWXtG/fXirn5+eHpqYme/fulRI2JyenPOvNzs5m+fLluLm5sWjRImm5qakpnp6eeHl5YWlpKS3v2LGj9AJcR0dHzpw5w4kTJ6QL6IoVK6hduzZBQUFoaGgA0KpVK2n7S5cucfr0aQIDA6Xlzs7OREdH4+fnl2/y9NVXX0l/z8rKwsHBgbt37xISEqKWPA0cOJCBAwcCYGtry9mzZzlx4gReXl5kZmYSEBBAt27dmD59OgAuLi7ExMTw448/5tn+m7KyssjIyCAtLY3Lly+zd+9e+vbti6mpaaH3MzY2lidPnjBr1izatWsHQMuWLVXaWbVqFU2aNMHf3x+ZTAZA/fr1cXd35+zZs9LxWrJkibRNZmYmtra2tG7dmkuXLqkc/7i4OA4cOEDVqlWBnPO/bNkynJ2dWb9+vVQut/NQ0LkXBOHjI4bthPcmOztbunBBzrDYmDFjcHJyomHDhjRu3Jjw8HAePHhQYF2pqamsW7eODh06YGVlRePGjVmzZg3R0dG8fv06z+00NDRYtWoVoaGhTJ48mebNm3P+/Hm8vLxYu3atVO7SpUt06tRJSpwKEh4eTkREBJ07dyYjI0P606JFC+RyOX/99ZdK+TcvxDKZjLp160o9JcnJyfzxxx90795dSpzedv78eYyMjGjZsqVKe05OTty6dYvMzMw8Y42MjGT69Om4uLjQqFEjGjduzP/93/8RHh6uVvbNOHV1dalWrZoUZ2RkJFFRUXTo0EFlm06dOhVwtP5n5cqVNG7cGFtbW0aPHo1CoWD27NlF2s+KFStSvXp1Vq9ezQ8//KDS4wQ5x/Pq1at8/vnnZGZmSnXUqVOHqlWrqtz9dvbsWfr160ezZs1o1KiRlNC8/Z2sX7++lDgB3L9/n8jISL788ssC9zm/cy8IwsdJ9DwJ701kZCR16tQBIDExkWHDhmFsbIy3tzfVqlVDW1ub2bNnk5qaWmBdK1asYP/+/YwZM4YmTZqgr6/PqVOn+O6770hNTaVChQr5bm9paYmlpSWenp7ExsYyfPhwNm3axODBgzEyMuLVq1dFmrD88uVLAMaMGZPr+jfn8ADo6+urfNbU1CQhIQHImROTlZWVb/svX77k1atXNG7cONf10dHRmJmZqS3Pysri66+/JiEhgXHjxlG7dm10dHRYt26dWox5xZmWlia1AWBsbKxSxsTEJM+43zZo0CC++OILkpOTOXz4MPv372ft2rVMnjy5SPsZGBjImjVrmD9/PklJSTRu3JgZM2Zgb29PfHw8mZmZLFmyRKVnSUm539evX8fLy4v27dszcuRIKlWqhEwmo0+fPmrfybf3Ufl4hcJ8Z/I794IgfJxE8iS8F3fu3OH58+f06NEDgGvXrhEZGUlAQAANGjSQyiUkJOR60X/b8ePH6du3L56entKyoj6nScnY2JiePXuycOFCHj58iJGREUZGRmoThfNjZGQEwNy5c7G2tlZbX5RETF9fH7lcnm/7hoaGGBsbs2nTplzXv53QKD18+JCbN2+yfv16PvvsM2l5SkpKoeNTUg6txcbGqix/c2i2IGZmZlhZWQHQokULXrx4wbZt2xgwYABVq1Yt9H6am5uzbt060tPTCQsLY/Xq1YwePZpz586hr6+PTCZj1KhRKvusVLFiRQB++eUX9PT08PX1lebBRURE5Nrumz2o8L/zX5TvjCAInw4xbCeUuNTUVBYsWICWlha9e/cG/nexfvP27qtXr6pdrN7s6Xi7zje3zczM5OjRowXGkteFXTkso+xRcHR05MSJEyQmJhZYJ4CFhQVmZmY8fvwYKysrtT9VqlQpVD2QMzxmY2PDjz/+mOfwm5OTE7GxsWhqaubanpaWVq7bKXtQ3jx2ERERKhP5C8vMzAxTU1NOnjypsvzEiRNFrktp2rRpZGVlSXcxFnU/NTU1adGiBZ6eniQmJhIVFSUdz/v37+daR40aNYCc76SmpqZKYlSYuxfhf+f/4MGDxd53QRA+XqLnqYypaVFwL0xZajMrK4tr164BkJSUJD0k8/HjxyxdulS6UNnY2KCrq4uPjw+enp48f/4cPz8/tSSjbt26ZGRkEBQUhK2tLXp6elhYWODk5MT+/fupV68eFStWZM+ePbkmWW/bsGEDt27dwt3dnXr16pGamsr58+fZs2cPn332GdWrVwdyJrOfOXOGAQMGMGLECExNTbl37x7JycmMHDlSrV6ZTIa3tzdTpkwhKSmJtm3boqOjw9OnTzl79iwTJ07E3Ny80Mdx8uTJDBkyhCFDhjBgwAAMDQ25ceMGFStWpFevXjg7O+Pq6sqIESMYMWIECoWC5ORk7t69y8OHD1Umrb9JeZFftWoVWVlZJCUlsW7dumI9U0lDQwNPT08WLVpEpUqVcHZ25vz58wU+WTw/FhYWuLm5ceDAAcaMGVOo/fz7779ZtmwZbm5u1KxZk8TERAICAqhevTq1atUCcpKywYMHM2HCBLp06YKBgQGRkZFcuHCBnj174uDggLOzM0FBQSxYsIAOHToQFhZW6InvMpmM6dOnM2nSJL755hu6deuGlpYW165dw8rKCldX12IfE0EQyj6RPJUhWZlZxX7Sd0m0LdcoekdkSkoKffv2BXJ6UGrUqIGjoyP+/v7S7e2Q08Ozdu1ali9fjpeXF3Xq1MHHx0ftydKurq4MGDCATZs2ERMTg729PTt37mTOnDnMmzePBQsWoKOjQ48ePejQoYPKZOPcfPHFF6SmprJz506eP3+OhoYG1atXZ9q0aQwYMEAqV6dOHfbt28eqVavw8fEhMzOTOnXqqAwTvq1z584YGBiwceNGqceievXquLi4FGkeEEDz5s3ZsWMHvr6+zJgxA7lcjqWlJRMmTJDKrFu3jk2bNrF3714iIiLQ19fH0tKSnj175lmvlpYWfn5+zJ8/n/Hjx1O1alW+/vprLl26pDapvTA8PDyIj49nz5497N27F0dHRxYuXMiIESOKXJeSl5cXx44dY9euXXzzzTcF7qepqSkmJiYEBATw/Plz9PX1ad68OStWrJAm3NvZ2bFnzx78/PyYMWMG6enpmJmZ0bJlS2rXrg3k3Bk3ZcoUdu3axcGDB7GzsyMgIKDQE+Dd3NwoX748GzduZNKkSWhra9OoUSO1CfWCIHx6ZNnZ2dmlHcSnRHknj3Jex9tSUlIIDw/H3Nyc8uXLf8jQBEEQiiwlJYX/XrlGwMJDvHgWp7KubsOa+IXMLKXIBKFkFXT9fpOY8yQIgiAIglAEInkSBEEQBEEoApE8CYIgCIIgFIFIngRBEARBEIpAJE+CIAiCIAhFIJInQRAEQRCEIhDJkyAIgiAIQhGI5EkQBEEQBKEIRPIkCIIgCIJQBCJ5EorNz88PhUKBQqGgQYMGNGvWjK5duzJ//nzu3btXrDovX77Mxo0bSzjSHNu3b0ehUDBz5vt/InK7du2YP39+idbp7e2Nu7t7idYpCIIgFJ1InsqQrMysj67t8uXLExwczL59+1i3bh09e/bkwoULdOvWrdAvWX3TlStXCAgIKFYsBTl8+DAAJ0+eLNRLhcsaLy8vVq5cWdphCIIg/OuJFwOXIXINOSuW7efx4+gP2m7NmqZMnd67WNvK5XJsbGykz87OzgwYMABPT09mzZqFnZ0dNWvWLKFIiy88PJwbN27g5OTEhQsXOHPmDB07diztsIqkVq1apR2CIAiCgEieypzHj6O5d/dZaYfxTrS1tZkzZw5dunRh//79TJo0CYBDhw4RHBzMvXv3yM7OpkGDBkydOhVra2sgZxjQ398fAIVCAUCLFi3YuXMn9+7dw9/fn6tXr/Lq1SuqV69Or169GDJkCHJ5wR2ooaGhyGQy5s+fT79+/Thy5Iha8tSuXTvatm1L3bp12bJlC/Hx8Tg4OLBw4UKMjY0BSEpKYuXKlZw/f57IyEgqVapEq1atmDp1Kvr6+rm2ffr0ab7++mtOnDhBnTp1pOVxcXG4uLgwffp0Bg4cyJ07d1i+fDnXr18nJSUFMzMzevXqxciRI4GcYbu//vqL0NBQAOLj41m+fDlnz57l1atXGBsbY2dnx5o1awp7qgRBEIRiEMmT8F7Uq1ePKlWqEBYWJi178uQJ3bt3p1atWqSlpXH06FEGDhzI4cOHMTc3p3fv3kRGRhIaGkpQUBAAenp6AERFRWFubk7Xrl2pUKECt27dws/Pj6SkJMaOHVtgPKGhoTRv3pyaNWvSuXNngoODSUhIUEt4Tp8+zcOHD5k7dy4vX75kyZIlLFiwQEpIUlJSyMzMZOLEiRgbG/Ps2TM2btyIl5cXO3fuzLXtNm3aUKVKFb7//nsmT56sEhNA165dARg9ejQmJiYsWrQIPT09Hj16RGRkZJ77tGTJEn777TcmT55M9erViY6O5ty5cwUeC0EQBOHdiORJeG+qVq3KixcvpM9vJjlZWVk4Oztz/fp1fvjhByZNmoSZmRlmZmZqQ4EAjo6OODo6ApCdnU2zZs1ISUlh165dBSZP169f58GDBwwdOhQAd3d3du7cyYkTJ+jVq5dK2ezsbL777ju0tLQAiIiIICAggKysLORyOcbGxvj4+EjlMzIyqFGjBgMGDCA8PBxzc3O19jU0NOjZsyfff/89EyZMQENDA4Dvv/+eDh06YGBgQGxsLE+ePGHWrFm0a9cOgJYtW+a7X3/++Sfu7u706NFDWtalS5d8txEEQRDenUiehPcmOzsbmUwmfb537x6rV68mLCyMmJgYafmDBw8KrCs1NZWAgACOHDnCs2fPSE9Pl9a9fv2aChUq5LltaGgompqafP755wDY2NhQs2ZNjhw5opY82dvbS4kTQN26dUlPTycmJgZTU1MgZ/hx+/btPHz4kKSkJJX9yC15AujVqxcbN27kt99+o23btvz999/cuHGDqVOnAlCxYkWqV6/O6tWriYuLw9HRETMzs3yPSaNGjfjhhx8wNTXFxcWF+vXr51teEARBKBnibjvhvYmMjMTExASAxMREhg0bxtOnT/H29mb37t0cOHCABg0akJqaWmBdK1asIDAwkN69e7Np0yYOHDjA119/DZDv9llZWRw7dowWLVogl8uJj48nPj6e9u3bc+XKFZ4/f65S3sDAQOWzMpFStnHy5EmmT5+OtbU1vr6+hISEsH79+gLjqFGjBs7Ozhw4cADI6XWqUaOG1Lskk8kIDAzEwsKC+fPn06ZNG3r27Ml//vOfPOucM2cOX3zxBdu2baNr1660bduWPXv25FleEARBKBmi50l4L+7cucPz58+lIaVr164RGRlJQEAADRo0kMolJCQU2MMCcPz4cfr27Yunp6e07OzZswVud+nSJaKjo4mOjsbe3l5t/bFjx6ThvMI4fvw4DRs2VHmG05UrVwq1be/evZkyZQrPnz/nyJEjeHh4qPTMmZubs27dOtLT0wkLC2P16tWMHj2ac+fO5dqzpq+vz6xZs5g1axa3b99mx44d+Pj4UL9+fZo3b17ofRIEQRCKRvQ8CSUuNTWVBQsWoKWlRe/eOY9ASElJAUBTU1Mqd/XqVSIiIlS21dTUzPUZTKmpqSrbZmZmcvTo0QJjOXLkCLq6umzfvp0dO3ao/GnQoAFHjhwp0r6lpKSoxKFsozDat2+PgYEBkydPJi4ujp49e+ZaTlNTkxYtWuDp6UliYiJRUVEF1q1QKJgxYwZAsR9QKgiCIBSO6HkS3klWVhbXrl0Dcm7j/+effwgODubx48csXbqUGjVqADnzjHR1dfHx8cHT05Pnz5/j5+dHlSpVVOqrW7cuGRkZBAUFYWtri56eHhYWFjg5ObF//37q1atHxYoV2bNnT4EPukxNTeXkyZN07NhRmmz+pi+//JJFixZx//59LCwsCrW/Tk5OzJ8/n/Xr12Nra8vZs2e5ePFiobbV1NSke/fuBAYG0qpVK6pWrSqt+/vvv1m2bBlubm7UrFmTxMREAgICqF69ep7Pd+rXrx8dOnTA0tISDQ0NDh06hKampuh1EgRBeM9E8lTG1Kxp+lG1mZKSQt++fQHQ1dWlRo0aODo64u/vT926daVyJiYmrF27luXLl+Pl5UWdOnXw8fFhy5YtKvW5uroyYMAANm3aRExMDPb29uzcuZM5c+Ywb948FixYgI6ODj169KBDhw7Mnj07z9jOnDlDQkIC3bt3z3W9u7s7y5cv58iRI4wfP75Q+9uvXz+ePHnCrl27pCRo1apV9OnTp1Dbd+jQgcDAQL788kuV5aamppiYmBAQEMDz58/R19enefPmrFixQro77212dnYcOnSIJ0+eIJfLqV+/Phs3blQ57oIgCELJk2VnZ2eXdhCfkj///BMAKyurXNenpKRIt7SXL19eZV1WZhZyjdIZSS3Ntv9N1q5dy549e/jtt99U7uoThLIqJSWF/165RsDCQ7x4Fqeyrm7DmviFvP93RQrCh1DQ9ftNouepDCnN5EUkTu/X/fv3CQ8PZ9euXQwYMEAkToIgCB8xkTwJwgcwb948rl27houLC6NGjSrtcARBEIR3IJInQfgA8np1iyAIgvDxEWM1giAIgiAIRSCSJ0EQBEEQhCIQyZMgCIIgCEIRiORJEARBEAShCMpU8vTTTz/x9ddf07p1a2xsbOjWrRsHDhzg7UdR7d+/n06dOmFlZcUXX3zBr7/+qlZXQkICM2fOpEWLFtja2jJu3LhcX3Nx9epV+vbti7W1Na6urmzatEmtPUEQBEEQBKUylTxt374dHR0dvL29+e6772jdujVz5syR3loPcPToUebMmUPnzp3ZvHkzNjY2jB07VnpFiNKECRM4f/483377LStXriQ8PJyRI0eSkZEhlXn48CHDhw/H1NSUgIAABg8ezLp169i6deuH2mVBEARBED4yZepRBd999x3GxsbSZ0dHR169esW2bdvw8vJCLpezbt06unTpwoQJEwBo2bIl//zzD+vXr2fz5s0AhIWF8X//93/S6zMg5431bm5u/Pzzz7i5uQEQGBhIxYoVWb16NVpaWjg6OhIbG8vGjRvx8PAQDzIUBEEQBEFNmep5ejNxUmrYsCGJiYkkJSXx+PFjHjx4QOfOnVXKuLm5cfHiRelFsefOncPAwABnZ2epjIWFBQ0bNuTcuXPSsnPnztG+fXuVJMnNzY34+HjCwsJKevc+OX5+figUChQKBQ0aNKBZs2Z07dqV+fPnc+/evWLVefnyZTZu3FhiMT558kSK8e0/n3/+eYm186bLly+jUCikR/2XNQqFgsDAwNIOQxAE4aNVpnqecvPf//6XKlWqoKenx3//+18gpxfpTXXr1iU9PZ3Hjx9Tt25d7t+/j7m5OTKZTKWchYUF9+/fByApKYlnz55hYWGhVkYmk3H//n0cHBze456py8zKQkNeOvlscdsuX748QUFBALx+/Zp//vmH4OBgQkJCWLRoEd26dStSfVeuXGHr1q2MHj26yLHkZ9KkSWrn8+13C5aUxo0bExwcXGZf0BscHEy1atVKOwxBEISPVplOnn7//XeOHTvG9OnTAYiLy3kppYGBgUo55Wfl+vj4ePT19dXqMzQ05K+//gJyJpTnVpeWlhY6OjpSXcWRnZ1NUlJSrutSU1PJysoiMzOTzMxMlXUaGhosXv8Dj56+KHbbxVGrmgkzx/RQi6cgWVlZyGQylZcotmzZkr59+zJ69GhmzZpF06ZNqVmzZpHqzM7OLnIs+dUHULNmzVxf9lhS7bxJR0dHaut91F9cKSkplC9fvkzGJpRNb/8AzUtycrK40Ub46GVnZxf6O19mk6fIyEgmTpyIg4MDgwYNKu1wiiQ9PZ1bt27lub5cuXKkpqaqLJPL5ejo6PDo6QvuPoh83yHmKi0tTUo2CkM5+T4lJUVt3dSpU+nVqxf79u3jm2++ASA0NJSDBw9y//59srOzqV+/PuPHj6dJkyYAbNy4kU2bNgHQqFEjAJo1a8bmzZsJDw8nICCAP/74g7i4OKpWrUr37t0ZOHAg8nx6zJTHOT09Pdc4lebNm8fNmzeZPn06q1at4uHDh9StW5cZM2ZIsUBO0r106VLOnj2LtrY23bt3x8jIiDVr1nD16lUgJ+n39PRk165d0rZ2dnaMGzeOlJQUDhw4QFZWFi4uLnh7e6OjoyPV//z5c9atW8fFixdJTk6mUaNGTJ48WSUGgMOHD7Nr1y4ePXqEoaEhXbt25euvv0ZDQ0Na/+2337Jt2zY2btzIH3/8wRdffIG3tzd2dnZMmDBB+nc1cuRIdHR0+OKLL1i/fj1RUVE0btyYOXPmqCS+z58/Z9GiRfz+++8YGhoycOBAnj17xpkzZzh69Giex1b4eMnl8kJdTMLDw0lOTv4AEQnC+1XYuc5lMnmKj49n5MiRGBkZ4efnJ10cDQ0NgZwLmKmpqUr5N9cbGBgQGamegMTFxUlllD1Tyh4opbS0NJKTk6VyxaGpqUm9evVyXZeamsrTp0/R1tZ+b8NGxVXUCfLlyuV8fXLbj0aNGlGlShVu3LghrY+KiqJ79+7UrFmT9PR0jh07xogRIzh06BB16tShX79+xMTEcPToUbZt2wZAhQoVKF++PK9evaJu3bp069aNChUq8Pfff+Pv709aWhpjxozJM0ZtbW0gp1dPGa+SXC6XvlsaGhrExMSwcuVKRowYgb6+PmvWrGHKlCmcOHECTU1NAKZNm8bly5eZMmUKVatW5cCBA/z0008qx0F5HLW0tFSOTUhICM2aNWPJkiU8ePCAlStXUqVKFSZNmgTkfD+HDx+Orq4us2bNQk9Pj927dzN69Gh++uknKlWqBOTclbpq1SoGDRqEs7Mz9+7dY+3atcjlcqkuZbyzZ8+md+/ejB49mvLly0vxlCtXTvq7XC7nzp077Ny5k8mTJ5OZmcmyZcuYO3cue/fuBXJ+kU2ePJmYmBi+/fZb9PT02Lp1K0+fPkUul5e577JQMmQymTSXND/m5uai50n46N29e7fQZctc8pSSksKoUaNISEggODhYZfhNOT/p/v37KnOV7t+/j6ampvQr2cLCgosXL6p1wYWHh1O/fn0AdHV1qVq1qjQH6s0y2dnZanOhikImk6Grq5vrOuUFW0NDQ+olKCuKGo/yV2le21WtWpUXL15I65U9UIDU8/Lnn3/y448/MmnSJKpXr07VqlWRy+XY2dmp1NWqVSvpzsns7Gzs7e1JTU1l165djBs3Lt8YASZPnqy2rlevXixatAjIOWdxcXHs2rULS0tLICdxGzRoEH/99RfNmzfn7t27/PLLLyxbtozu3bsD0LZtW+kGBuV+KttUnmelypUrs3r1aunz33//zc8//8zUqVMB2LVrFwkJCRw4cEBKlFq1akWnTp3Yvn0706ZNIzExEX9/f0aMGCElSi4uLmhra7N06VJGjBhBxYoVpRj69euHp6dnrsdFGZtMJiMhIYFDhw5JN22kpKQwY8YMoqOjMTMz4+zZs9y8eZPdu3fTvHlzAJycnGjTpg0GBgZl7rssfFhv9p4KwseqsEN2UMaSp4yMDCZMmMD9+/fZvXs3VapUUVlfs2ZN6tSpw/Hjx/nss8+k5ceOHcPR0VH6xd+6dWs2bNjAxYsXcXJyAnKSops3bzJixAhpu9atW3Pq1CmmTp0q/VI/duwYBgYG2Nravu/d/eS9nbzeu3eP1atXExYWRkxMjLT8wYMHBdaVmppKQEAAR44c4dmzZ6Snp0vrXr9+TYUKFfLdfsqUKbRs2VJl2dt3d1auXFlKnACp9/D58+cA0t1z7du3l8rI5XJcXV2lnrL8KL+LSnXr1lUZ7jp//jwODg4YGhpKQ6JyuRx7e3up7bCwMJKSkvj8889Vnlnm5ORESkoKd+7coUWLFtLytm3bFhgXQIMGDVSOh3LfIyMjMTMz488//8TAwEBKnCAnuXR0dOTGjRuFakMQBOFTUaaSJx8fH3799Ve8vb1JTExUefBlo0aN0NLS4ptvvmHKlCnUqlULBwcHjh07xvXr19m1a5dU1tbWllatWjFz5kymT5+OtrY2a9asQaFQ0LFjR6nc8OHDOXLkCJMnT6Z///78888/BAYGMnHiRPGMpxIQGRlJnTp1AEhMTGTYsGEYGxvj7e1NtWrV0NbWZvbs2Wrzv3KzYsUK9u/fz5gxY2jSpAn6+vqcOnWK7777jtTU1AKTp7wmjL/p7ZsHlAm1Mr7o6Gg0NTXVbkbI7REbha3/zSGRly9fcu3aNRo3bqy2ba1ataQyAD169Mi1jWfPnql8NjExKXZs8L99j4qKynU/C7vvgiAIn5IylTydP38egKVLl6qtO3XqFDVq1MDd3Z3k5GQ2b97Mpk2bMDc3x9/fX62nyNfXlyVLljB37lwyMjJo1aoVs2fPVpn3Urt2bQIDA1m6dCmenp4YGxszbtw4hg0b9n539F/gzp07PH/+XLrIX7t2jcjISAICAmjQoIFULiEhATMzswLrO378OH379lUZgjp79mzJB54PU1NT0tPTSUhIUEmgYmNjS6R+Q0NDXFxcGD9+vNo6ZTKvnIvn7++f63GrUaNGicTytsqVK+e6nyW174IgCB+TMpU8nT59ulDlevfuTe/evfMto6+vz+LFi1m8eHG+5ezs7AgJCSl0jELBUlNTWbBgAVpaWtJ5Ut7ppuzRgJz3CkZERKgMlb3dG/NmnW9um5mZ+cHv8FLeFXjq1ClpzlNWVlau71YsDicnJw4fPkzdunXznDNna2uLjo4OkZGRdOjQoUTaLQwrKyvi4+P5z3/+g729PZAzXHrx4kW1XitBEIRPXZlKnoScZy59TG1mZWVJw6tJSUnSQzIfP37M0qVLpZ4QGxsbdHV18fHxwdPTk+fPn+Pn56c2r61u3bpkZGQQFBSEra0tenp6WFhY4OTkxP79+6lXrx4VK1Zkz549hboLSOnhw4dq7z+UyWQ0bdq00HVYWlrSoUMHFi5cSHJyMtWqVSMkJISUlJQiTTTMy5AhQzhy5AhfffUVgwYNolq1asTGxvLHH39QpUoVhgwZgoGBAePGjWPFihVERkbSokULNDQ0ePz4MadOncLPz++9TN5t3bo1jRs3ZvLkyUyaNAkDAwO2bNlChQoVSmTfBUEQPiYieSpDMrOymDkm97ksH6Lt4jxhPCUlhb59+wI5dzDWqFEDR0dH/P39VZ6wbWJiwtq1a1m+fDleXl7UqVMHHx8ftmzZolKfq6srAwYMYNOmTcTExGBvb8/OnTuZM2cO8+bNY8GCBejo6NCjRw86dOjA7NmzCxXnm3e5KWloaHDz5s0i7e/ixYuZP38+y5cvR0tLix49emBpacnu3buLVE9uKlasSHBwML6+vqxcuZJXr15RqVIlmjZtqtLLNGzYMKpUqcK2bdvYtWsX5cqVo1atWrRt21ald64kyWQyNmzYwNy5c5k7dy4GBgYMGjSI8PDwfJ9pJgiC8CmSZYuHc5Qo5V1ReU1OTklJITw8HHNzc/FsnE+E8kGdO3fuLO1QPqi0tDS6dOlC8+bNWbJkSWmHI7wnKSkp/PfKNQIWHuLFM9U3L9RtWBO/kJmlFJkglKyCrt9vEj1PglAEJ06c4NmzZ9SvX5/k5GRCQ0P5/fffWb9+fWmH9t4FBweTlZWFubk58fHx7N27l4iIiFx79QRBED5lInkShCLQ1dXlxx9/5MGDB6Snp2NhYcGKFStUnjv2qdLW1mbTpk1EREQAOc+GCggIKNSvNEEQhE+JSJ4EoQhcXFxwcXEp7TBKRffu3aW7DAVBEP7Nij5DWBAEQRAE4V9MJE+CIAiCIAhFIJInQRAEQRCEIhDJkyAIgiAIQhGI5EkQBEEQBKEIRPIkCIIgCIJQBCJ5EgRBEARBKAKRPJUhmVlZH1Xbfn5+KBQKXFxcyMpl+379+qFQKPD29i6JEFV4e3vj7u5eYDmFQkFgYGCJt5+XwsZVFrRr14758+eXdhglqlu3boX+vqWnp+Pg4ECDBg14+vSp2vrLly+jUCikVzYIgiAoiYdkliEacjnfbv+BB5EvPmi7dcxM+HZI8V5IrKmpycuXL/nPf/6Dg4ODtDwiIoJr166hq6tbUmEWS3BwMNWqVSvVGMoqf39/DAwMSjuMUvN///d/vHr1CoDQ0FA8PT1LNyBBED4aInkqYx5EvuCfJ5GlHUahaWpq4ujoyNGjR1WSp6NHj2JpaYlcXrqdmzY2NqXa/oeUnZ1Neno6WlpahSrfqFGj9xxR2RYaGoqBgQE1a9bkyJEjInkSBKHQxLCd8M7c3d05ceIE6enp0rLQ0NBch6/u3bvHxIkTadOmDU2bNsXNzY2tW7eqDfulpaWxZs0a2rdvT5MmTWjdunWuwzGXL1+me/fu2NjY0KtXL/766y+V9W8P23l4eDBq1CiOHz9Op06dsLW1ZdCgQTx69Eit/dWrV+Pq6kqTJk3o3LkzR44cKdbxye0YfP311zRr1gwbGxs8PT3V2t+6dStffvklzZo1w9HRkVGjRhEeHq5SRjlEePbsWb744gusrKw4ffo0fn5+2Nracvv2bfr370/Tpk1xd3fnt99+U9n+7WE7ZX0FHdOEhASmTJmCra0tjo6OrF69mq1bt6JQKPLd76ioKGbMmEH79u2xtramY8eOrF69mrS0NJVyCoWCzZs34+fnh5OTEw4ODsyYMYOkpCSVclevXqVnz55YWVlJx6GwkpKSOH36NJ06daJnz578888/3L59u9DbC4Lw7yaSJ+Gdubq6kpaWxvnz5wG4e/cut2/fxs3NTa1sVFQU5ubmzJs3j02bNtGnTx/Wr1/Phg0bVMp98803bN++nS+//JJNmzYxbdo0tYtndHQ0CxcuZPjw4fj6+pKamsrYsWNVkrjc3Lp1i8DAQKZMmcKSJUt49OgRU6dOVSkzfvx4goODGTp0KAEBAbi4uDB16tQiXaBz8/jxY/r160dcXBxLly5l5cqVxMbGMmTIEJUkIjIykq+++ooNGzawcOFCsrKy6NevnzTMpBQVFcXChQsZMmQImzdvpmHDhkDOfJ4pU6bQs2dP/P39MTY2Zty4cbx8+TLf+ApzTGfMmMGZM2eYOnUqS5cu5d69e+zYsaPAfX/58iVGRkbMmDGDLVu2MGLECH744QfmzZunVnb37t08ePCApUuXMmbMGI4cOaLyHYmOjmb48OFoaWnh6+vL8OHD8fHx4fnz5wXGAfDLL7+QlJSEu7s7nTt3ply5coSGhhZqW0EQBDFsJ7wzHR0d2rVrx9GjR2nbti2hoaHY2tpSs2ZNtbKOjo44OjoCOcNMzZo1IyUlhV27djF27FgAzp8/z5kzZ1i1apVK79XbPVlxcXHs2rULS0tLKY5Bgwbxxx9/0Lx58zzjTUhI4NChQxgbGwM5vRAzZswgMjISMzMzLl26xOnTpwkMDKRVq1YAODs7Ex0djZ+fH23atCn2sfL398fQ0JBt27ahra0NgJ2dHe3bt2f//v0MHDgQgJkzZ0rbZGZm4uzsjKOjIydOnKBv374qx2Dz5s00bdpUpR1l8qSM1dzcnPbt23Pu3Dm6deuWZ3wFHdO7d+9y8uRJli1bJr0k2MXFhc6dOxe47wqFgunTp0uf7ezs0NHRwdvbm7lz56KjoyOtMzU1ZdWqVQC0bt2amzdvcuLECaZMmQJAUFAQMpmMzZs3o6+vD4CZmRlDhgwpMA7I6RmtUqUKLVq0QC6X07JlS0JDQ5k0aRIymaxQdQiC8O8lep6EEuHu7s6pU6dISUnh2LFjdOnSJddyqamprFu3jg4dOmBlZUXjxo1Zs2YN0dHRvH79GoCLFy+io6OTZx1KlStXli7yAPXq1QMosPehQYMGUuL05naRkTlzzc6fP4+RkREtW7YkIyND+uPk5MStW7fIzMws4Gjk7fz587Rr1w4NDQ2pXgMDAxo1aqQyPHbt2jWGDh2Kg4MDjRo1omnTpiQlJfHgwQOV+oyMjNQSJwC5XC4lqQA1atSgfPnyBR6bgo6p8s6z9u3bq7Tl6upa4L5nZ2ezfft23NzcsLa2pnHjxkyZMoWMjAweP36sUtbJyUnlc926daXzA/DHH3/g4OAgJU6Qk5gbGRkVGEdsbCznz5/Hzc1NmpPXtWtXnj59yn//+98CtxcEQRA9T0KJaNWqFZqamqxdu5YnT57k2ROxYsUK9u/fz5gxY2jSpAn6+vqcOnWK7777jtTUVCpUqMCrV68wNTUtsAfg7TvFNDU1gZwE7V22e/nyJa9evaJx48a5bh8dHY2ZmVm+beTl5cuXBAUFERQUpLZOGcfTp08ZNmwYTZo0wcfHh8qVK6OpqcmoUaPU9s3ExCTXdsqXL682cVxTU/Odj010dDSampoqSQugkozmJSgoiGXLljFixAgcHBwwMDDgzz//ZP78+Wpx5RbHm8Oa0dHR1K5dW62NwsTx008/kZGRQZs2bYiPjwfAwcEBLS0tjhw5km+vpSAIAojkSSghmpqadOzYke3bt+Po6JjnRf348eP07dtX5c6mt+cRGRkZER0dTXZ2dqkMoRgaGmJsbMymTZtyXV+YC3R+dbdp04YBAwaoratQoQIAv/32G0lJSSqPEsjIyCAuLk5tmw99fExNTUlPTychIUElgYqNjS1w2+PHj9OuXTsmT54sLbt3716x44iJiVFbXpg4lHObchviO378OLNnz5aSRkEQhNyI5EkoMb179yYmJoY+ffrkWSY1NVXlwpSZmcnRo0dVyjg5ObF582Z++umnXCedv29OTk5s2bIFTU1NGjRoUKJ1Ozo6cufOHRo1aoSGhkauZVJSUpDJZJQr979/nsrektLWpEkTAE6dOiXNecrKyuLXX38tcNuUlBS1pKS4dzBaW1uzd+9elSTu4sWLahPq3xYREUFYWBj9+vVT+27dunWLJUuW8Ntvv9GuXbtixSUIwr+DSJ7KmDpmuffYfAxtWltbq9019zYnJyf2799PvXr1qFixInv27FG7Vd3JyYk2bdowc+ZMHj16RNOmTXn16hUnTpzA19e3RGLNj7OzM66urowYMYIRI0agUChITk7m7t27PHz4kEWLFuW7fWJiIsePH1db7uDgwLhx4+jVqxfDhw+nT58+mJiY8OLFC65cuULz5s1xd3enZcuWQM5dbf369ePOnTts27atTDzQ0tLSkg4dOrBw4UKSk5OpVq0aISEhUsKXHycnJ3bs2MGuXbuoU6cOhw8f5uHDh8WKY/DgwezZs4eRI0cycuRI4uPj8fPzK3DOk7LXacSIEWo3NDRr1oxNmzYRGhoqkidBEPIlkqcyJDMrq9hP+i6JtjU+wAMt58yZw7x581iwYAE6Ojr06NGDDh06MHv2bJVyfn5++Pv7ExwcjL+/P5UqVcLZ2fm9x6e0bt06Nm3axN69e4mIiEBfXx9LS0t69uxZ4LbPnj1j/Pjxast3795N8+bN2b9/P76+vvj4+JCUlISpqSn29vbSc5IUCgVLlizB39+fUaNG0bBhQ9auXcuECRNKejeLZfHixcyfP5/ly5ejpaVFjx49sLS0ZPfu3fluN2bMGF6+fMm6desA6NSpE7Nnz2b06NFFjqFy5cps3ryZhQsXMn78eGrVqsXcuXNZs2ZNvtuFhoZiZ2eX652g5cqVw93dnZCQEOnmBUEQhNzIsrOzs0s7iE+J8m4kKyurXNenpKQQHh6Oubk55cuX/5ChCcJ7M3DgQORyOTt37iztUIQSlpKSwn+vXCNg4SFePFOdd1e3YU38QmbmsaUgfFwKun6/SfQ8CYJQJCdOnODZs2fUr1+f5ORkQkND+f3331m/fn1phyYIgvBBiORJEIQi0dXV5ccff+TBgwekp6djYWHBihUr+Oyzz0o7NEEQhA9CJE+CIBSJi4sLLi4upR2GIAhCqRFPGBcEQRAEQSgCkTwJgiAIgiAUgUieBEEQBEEQikAkT4IgCIIgCEUgkidBEARBEIQiEMmTIAiCIAhCEYjkSSg2Pz8/FAoFCoWCBg0a0KxZM7p27cr8+fO5d+9eseq8fPkyGzduLOFIc2zfvh2FQsHMmSX7ROSDBw+iUCiIjY3Nt5yHhwejRo2SPr/Pff0Q9ZdFzZs3x8/PL98yHh4eKBQKJk6cqLYuMTERa2trFAoFBw8eLJGYunXrhre3d5G2efLkCQqFQuUdie3atWP+/PklEtOHlJmV9U7rBaEsEs95KkM+1PvlSrLt8uXLExQUBMDr16/5559/CA4OJiQkhEWLFtGtW7ci1XflyhW2bt1arPedFeTw4cMAnDx5km+//RYtLa0SbyM/8+bNQ/7GMX6f+/oh6v+Y6erq8uuvv5KUlISurq60/JdffkFDQ6MUI8ubv79/mXg5dFFpyOUsXv8Dj56+UFtXq5oJM8eUzvs8BeFdiOSpDNGQy5kdcpDwaPX/ZN4nc1MTFvYp+IW3uZHL5djY2EifnZ2dGTBgAJ6ensyaNSvPl7B+aOHh4dy4cQMnJycuXLjAmTNn6NixY77bpKWlUa5cOZWE513Uq1evROopLSV9PEqTnZ0dN27c4PTp07i7u0vLQ0ND+eyzz6REuyxp1KhRaYdQbI+evuDug8jSDkMQSszH/7/gJyY8+gV/P438oH9KOlnT1tZmzpw5pKens3//fmn5oUOH6N+/Py1atMDe3h4PDw+uX78urffz88Pf35+kpCRpONDDwwOAe/fuMXHiRNq0aUPTpk1xc3Nj69atZBWyyz80NBSZTMb8+fMxMTHhyJEjamWUwyKbN2/G1dUVa2trXr16JcXevXt3rKyscHBwYOTIkURERKhsHxkZyYgRI7CxsaFjx44cOnRIZf2bw3b57atyf7/++muaNWuGjY0Nnp6ePHr0SKW+rKwstm3bRufOnWnSpAnOzs6MGzeOhISEfOv39vZWSRgA4uPj1Yaq8jseBw8epGvXrlhZWeHi4sKaNWvIzMzM9xwU5hwqh6t+/PFH5s+fj729Pa1atWLZsmVkZGSo1PfLL7/w+eefY2VlRa9evVS+SwUpV64cnTp1IjQ0VFoWGxvLxYsX1Y6N0r59++jUqRNNmjShXbt2bNiwQe37d/XqVXr27ImVlRXu7u6cPXs217rCwsIYNGgQNjY2NGvWjMmTJxMTE5NvzG8P2ynP4+XLl+nevTs2Njb06tWLv/76S2W7hIQEpkyZgq2tLY6OjqxevZqtW7eiUCjybU8QhLyJnifhvahXrx5VqlQhLCxMWvbkyRO6d+9OrVq1SEtL4+jRowwcOJDDhw9jbm5O7969iYyMJDQ0VBoK1NPTAyAqKgpzc3O6du1KhQoVuHXrFn5+fiQlJTF27NgC4wkNDaV58+bUrFmTzp07ExwcTEJCAvr6+irlfv75Z2rXrs2sWbOQy+Xo6uqyZcsWVqxYQa9evZg4cSLp6elcunSJ2NhYqlevLm07ZcoU+vTpw9ChQwkJCcHb2xsrKyvq1q2rFk9++/r48WP69euHpaUlS5cuRSaTsXHjRoYMGcLx48el4cYFCxYQHBzM4MGDcXZ25vXr15w5c4akpKR86y+K3I7Htm3bWLFiBYMHD8bb25t79+5JydOUKVPyrKso59DX15f27dvj6+tLWFgYfn5+1KpVi/79+wNw69Ytxo0bR+vWrZkxYwZPnjxhwoQJpKWlFXrf3N3dGTp0KHFxcRgaGvLTTz9RpUoVbG1t1cru3LmThQsX4uHhQdu2bQkLC8Pf35+EhASmT58OQHR0NMOHD0ehUODr60t8fDw+Pj4kJSXRsGFDqa6wsDA8PDxo06YNa9asITk5GV9fX7y8vAgODi50/Mo2Fy5ciKenJ/r6+qxatYqxY8dy8uRJNDU1AZgxYwaXLl1i6tSpVK9enZCQEG7cuFGkdgRBUCWSJ+G9qVq1Ki9e/K9X680LZFZWFs7Ozly/fp0ffviBSZMmYWZmhpmZmdpQIICjoyOOjo4AZGdn06xZM1JSUti1a1eBydP169d58OABQ4cOBXIumjt37uTEiRP06tVLpWx6ejqbN2+W5sEkJCTg7+9P3759VX715/YS3IEDBzJw4EAAbG1tOXv2LCdOnMDLy0utbH776u/vj6GhIdu2bUNbWxvIGWZq3749+/fvZ+DAgYSHh7N3714mTpyoMgm9U6dOKm3kVn9RvH08EhMTWbduHSNGjGDSpElAzlCtpqYmS5cuZfjw4VSsWDHXuopyDq2trZk9e7ZU/+XLlzlx4oSUPG3atImqVauyfv16aY6StrY2s2bNKvS+NW/enEqVKvHzzz/Tu3dvjh49mmuvU2ZmJuvXr6dLly5STK1atSI9PZ2tW7fi6elJxYoVCQoKQiaTsXnzZikpNzMzY8iQISr1rVq1iiZNmuDv749MJgOgfv36Uk9VmzZtCr0PcXFx7Nq1C0tLSwB0dHQYNGgQf/zxB82bN+fu3bucPHmSZcuW0b17dyDn3YSdO3cudBuCIKgTw3bCe5OdnS1dHCBn2GbMmDE4OTnRsGFDGjduTHh4OA8ePCiwrtTUVNatW0eHDh2wsrKicePGrFmzhujoaF6/fp3vtqGhoWhqavL5558DYGNjQ82aNXMdunNwcFCZQBwWFkZycrJakpWbVq1aSX/X1dWlWrVqREYWfZ7H+fPnadeuHRoaGmRkZJCRkYGBgQGNGjWShmQuXbpEdnZ2oeJ6F7kdj6SkJD7//HMptoyMDJycnEhJSeHOnTt51lWUc/jmsQSoW7euyrH8448/cHV1VZncrTy/hSWTyXBzc+Po0aM8e/aMq1ev0qVLF7Vy9+/f5+XLl2r1u7m5kZ6eLg0X/vHHHzg4OKj0Zjo6OmJkZCR9Tk5O5urVq3z++edkZmZKx69OnTpUrVqVP//8s0j7ULlyZSlxgv/Nq3v+/DmAVF/79u2lMnK5HFdX1yK1IwiCKtHzJLw3kZGR1KlTB8jpsRg2bBjGxsZ4e3tTrVo1tLW1mT17NqmpqQXWtWLFCvbv38+YMWNo0qQJ+vr6nDp1iu+++47U1FQqVKiQ63ZZWVkcO3aMFi1aIJfLiY+PB3IuJjt27OD58+dUqVJFKl+pUiWV7ZVzfCpXrlxgjG8PAWpqahZpGEnp5cuXBAUFScNtb9epjKtcuXJq8Za0t+t/+fIlAD165H6H1LNnz/KsqyjnsKBjGR0drRabnp6e1FNXWF26dCEoKIjt27djaWmJQqGQviNKcXFxgPqxUH5Wro+OjqZ27dpqbRgbG0t/j4+PJzMzkyVLlrBkyRK1svkdv9y8ffed8vuh/DcVHR2Npqam2vF8MyZBEIpOJE/Ce3Hnzh2eP38uXWSvXbtGZGQkAQEBNGjQQCqXkJCAmZlZgfUdP36cvn374unpKS3LazLumy5dukR0dDTR0dHY29urrT927Jg0nAeo9JQBUq9BVFRUoeIsCYaGhrRp04YBAwaorVMmGEZGRmRkZBATE1PkBEpLS4v09HSVZcoE4G1vHw9DQ0MgZ2gxt+NRo0aNPNst7jnMjampqdoE68TExEIl4m9q0qQJNWvWZMeOHYwfPz7XMsrvwNvP8VK2rzwmucX09nb6+vrIZDJGjRqV69BvXkOexWVqakp6erra/L6CnkkmCEL+RPIklLjU1FQWLFiAlpYWvXv3BiAlJQX43y9jyLkzKSIiQmXYIa/emtTUVJVtMzMzOXr0aIGxHDlyBF1dXTZs2KB2i/3ixYs5cuSISvL0NltbW3R0dPj++++xtrYusL2iyGtfHR0duXPnDo0aNcrzmUMtW7ZEJpPx/fffqyQjhanfzMyMyMhIXr9+LSVj58+fL1TMyuMRGRlJhw4dCrWNUnHPYW6sra359ddfmTFjhnSM3nygZFGMHDmS06dP07Vr11zXm5ubY2xszPHjx1X2+aeffkJTU1P6XlhbW7N3716VROXixYtS7yXkDOfa2Nhw//59rKysihVvUTRp0gSAU6dOSXOesrKy+PXXX99724LwKRPJk/BOsrKyuHbtGgBJSUnSQzIfP37M0qVLpZ4IGxsbdHV18fHxwdPTk+fPn+Pn56cyZAY5c1syMjIICgrC1tYWPT09LCwscHJyYv/+/dSrV4+KFSuyZ8+eAofEUlNTOXnyJB07dpQmKr/pyy+/ZNGiRdy/fx8LC4tc69DX12fMmDGsXLmS7Oxs2rdvT1ZWFpcvX6ZLly7vdAHMa1/HjRtHr169GD58OH369MHExIQXL15w5coVmjdvjru7O+bm5vTr14+1a9cSFxeHo6MjKSkpnDlzhm+++YYqVarkWX/Hjh1Zt24dM2fOpE+fPty5c4cDBw4UKmYDAwPGjRvHihUriIyMpEWLFmhoaPD48WNOnTqFn58fOjo6uW5bnHOYF09PT3r16sWYMWPo378/T548ITAwsMjDdgC9evXKd+6YhoYGXl5eLFy4EGNjY9q0acO1a9fYvHkzgwcPlnqLBg8ezJ49exg5ciQjR44kPj4ePz8/lTlPANOmTWPw4MFMmDCBLl26YGBgQGRkJBcuXKBnz544ODgUeR/yYmlpSYcOHVi4cCHJyclUq1aNkJAQUlJS1HoVBUEoPJE8lTHmpiYfVZspKSn07dsXyPlVXaNGDRwdHfH391e5Rd/ExIS1a9eyfPlyvLy8qFOnDj4+PmzZskWlPldXVwYMGMCmTZuIiYnB3t6enTt3MmfOHObNm8eCBQvQ0dGhR48edOjQQbr7KTdnzpwhISFB+sX9Nnd3d5YvX86RI0fyHLKBnJ4JY2Njtm/fzsGDB6lQoQK2trbvPN8or32tXbs2+/fvx9fXV7rV3dTUFHt7e5Vn88ydO5caNWqwf/9+goKCMDIywt7eXupNyqv+evXqsXTpUjZs2ICXlxfNmjVj5cqVhX4a/LBhw6hSpQrbtm1j165dlCtXjlq1atG2bVuVnqW3Fecc5qVRo0asXbuWlStXMnbsWCwtLVmzZg3Dhw8vcl2F4eHhQbly5di+fTt79+7F1NSUsWPHqjy9vXLlymzevJmFCxcyfvx4atWqxdy5c1mzZo1KXXZ2duzZswc/Pz9mzJhBeno6ZmZmtGzZMtc5U+9q8eLFzJ8/n+XLl6OlpUWPHj2wtLRk9+7dJd6WIPxbyLKzs7NLO4hPifLulrx6JFJSUggPD8fc3Jzy5currPsYX88iCMLHZ+DAgcjlcnbu3Flg2ZSUFP575RoBCw/x4pnq3Li6DWviF1LwuyJHz9qc6xPG69UxY+OikYUPXBDeo4Ku328SPU9lSGkmLyJxEoRP04kTJ3j27Bn169cnOTmZ0NBQfv/9d9avX1/aoQnCR0skT4IgCJ8wXV1dfvzxRx48eEB6ejoWFhasWLEi17v9BEEoHJE8CYIgfMJcXFxwcXEp7TAE4ZMixmoEQRAEQRCKQCRPgiAIgiAIRSCSJ0EQBEEQhCIQyZMgCIIgCEIRiORJEARBEAShCETyJAiCIAiCUAQieRIEQRAEQSiCMpU8PXz4kLlz59KtWzcaNWqEu7u7WhkPDw8UCoXan3v37qmUS0hIYObMmbRo0QJbW1vGjRtHVFSUWn1Xr16lb9++WFtb4+rqyqZNmxBvrCkcPz8/bG1tSzWG5s2b4+fn98Haa9euHfPnz8+3zOXLl1EoFNKj/su6bt264e3tnW8Zb29vFAoFffr0UVuXnZ1NmzZtUCgUH/Rc/Fv4+flx9erV0g5DEIQ3lKmHZN65c4ezZ8/StGlTsrKy8kxi7OzsmD59usqyGjVqqHyeMGECd+/e5dtvv0VbWxtfX19GjhzJ999/T7lyObv98OFDhg8fjrOzMxMmTOD27dusXLkSDQ2N9/aC0fyId9t9Gho3bkxwcLDKi5E/Bbq6uvzxxx88fvyYmjVrSst///13YmJi0NLSKsXoPl3+/v7o6upiZ2dX2qEIgvD/lankqV27dtIrA7y9vfnrr79yLWdgYICNjU2e9YSFhfF///d/BAYG0qpVKwDMzc1xc3Pj559/xs3NDYDAwEAqVqzI6tWr0dLSwtHRkdjYWDZu3IiHh8cHvxhoyOXMOHqA+zEvPmi7FpVMWNKl1wdts6xJSUlRe1Fzcenp6eX7/fxYVa9eHQ0NDY4dO8aoUaOk5aGhobRq1Yrff/+9FKMTBEH4cMpUV4O8hHo+zp07h4GBAc7OztIyCwsLGjZsyLlz51TKtW/fXiVJcnNzIz4+nrCwsBKJpajux7zg76hnH/TP+0zWIiMjmTJlCg4ODlhbWzNw4EC1pPjQoUP079+fFi1aYG9vj4eHB9evX1er65dffuHzzz/HysqKXr165VoG4MyZM/Tu3Rtra2tatmzJvHnzSEpKktYrh9XOnDnDuHHjsLOzY/z48QCcOnWKnj17YmtrS/PmzenZsydnz55Va2P37t24urrSrFkzvLy8iI2NVav/zWE7hULBpk2bWL58OS1btsTW1hZvb28SExPzPX5RUVHMmDGD9u3bY21tTceOHVm9ejVpaWkq5RQKBZs3b8bPzw8nJyccHByYMWOGyn5DzjB1z549sbKywt3dPdd9y0+XLl0IDQ2VPmdkZHDixIlch9jDwsIYPXo0rVq1wsbGhm7dunHo0CGVMspjdf78eSZPnoytrS2urq5s3ry5yHVBTu/1wIEDsbKyomPHjhw+fBgvLy88PDxUyt27d4+vv/6aZs2aYWNjg6enJ48ePVIpozxna9aswdHRkebNm7N8+XKys7O5ePEi3bp1w9bWlsGDB/Ps2TOVbdPS0li9ejWurq40adKEzp07c+TIEZUy3t7euLu7c/nyZbp3746NjQ29evVS+fehUCgAWL58uTRF4fLly2r7LQjCh1Wmep4K68qVK9jY2JCZmUnTpk0ZP3489vb20vr79+9jbm6OTCZT2c7CwoL79+8DkJSUxLNnz7CwsFArI5PJuH//Pg4ODsWKLzs7W+2ipZSamkpWVhaZmZlkZmaqrNPQ0ChWeyXl7XgKohxazWu7uLg4+vfvj66uLrNmzUJPT4/du3czePBgfvrpJypVqgTA48eP+eKLL6hZsybp6ekcO3aMgQMHcujQIerUqQPArVu3GDduHC4uLkybNo2IiAgmTJhAWlqadDwh5w3ykydPpkePHowZM4bo6GjWrFlDXFwcq1atkuIGmDNnDl27dmXdunVoaGgQHh7OuHHj6NKlCxMnTiQrK4vbt2/z8uVLqf7s7GxOnTrFgwcPmD17Ni9fvmTZsmXMnz9frf434wLYuXMnjRo1YvHixURERLB69WpSUlKk7XITExODgYEB06ZNw9DQkAcPHrB+/XqeP3/O4sWLVcru2rWLZs2asXjxYh48eMDKlSsxNjZm0qRJAERHRzN8+HDq16/P6tWriY+P59tvvyU5OZkGDRrke/6zs7PJzs7m888/Z/Xq1dy+fZt69epx7tw5UlJSaNOmjdo+P3nyBFtbW/r06YO2tjZhYWHMmjWLzMxMunfvrnKs5s2bJ52L06dPs3LlSiwtLaV3shWmrpSUFIYNG4a+vj7Lli0DYMOGDSQkJFCzZk0prsePH9OvXz/q1avH4sWLkclkbNq0icGDB3Ps2DGVH1O7d+/G3t6epUuXcv36dfz9/cnIyODixYuMGjUKTU1NFi9ezMyZM9myZYu03bhx47h69SpeXl7UrVuXc+fOMXXqVPT09GjdurV0TKOjo1m4cCEjRoxAX1+fNWvWMGbMGE6cOIGmpiZ79+6lf//+DBw4UEpQ69atW+R/q8X19v+heUlOTs51moVMJkNHR6fY2wvCh5SdnV3o7/xHlzzZ29vTrVs36tSpQ1RUFIGBgQwdOpSdO3dKk5fj4+PR19dX29bQ0FD6VZeQkADkDAG+SUtLCx0dHeLi4oodY3p6Ordu3cpzfbly5UhNTVVZJpfLC/WfzPukTEQKKyMjA8i5aOVm69atxMfHs2PHDoyNjQGwtbWle/fubN68mQkTJgAwbNgwaZusrCzs7Oy4fv06+/fv55tvvgEgICAAMzMzVqxYISWZcrmc+fPnk5GRQUpKCtnZ2SxfvpyOHTsya9YsqU5DQ0PGjRvHsGHDqFu3rtRr07p1a8aMGSOV++WXX8jIyGDKlClUqFAByJmQ/uY+KpOIVatWSRfZhw8fsnXrVpKSkpDL5VL9aWlpKsdGU1NTLf4FCxYwYsQIzM3Ncz2GtWrVYty4cdLnhg0bUq5cOebNm8fUqVNVvjMmJiYsWLAAyPl38tdff3H8+HG8vLwA2LZtGzKZjLVr10r/PoyNjRk9ejSZmZl5nkfISayzs7OpVKkS1tbWUo/OkSNHaNOmDXK5nOzsbOlcQM4wvFJ2djZNmjQhIiKCffv28fnnn0vHCMDV1ZURI0YAOd+RM2fO8NNPP0k/igpTV0hICDExMWzdupVq1aoBYGlpSbdu3ahevboUl5+fHwYGBqxfvx5tbW0AGjVqRNeuXdm3b5/KpHgTExN8fHyAnO/CqVOn2LFjB/v375d+eA0aNIjly5cTHR2Nvr4+//nPf/j1119Zv349jo6OQM48zcjISPz8/GjRooV0TOPi4ti8ebM0P27KlCl4enry+++/Y2trK/U8mZqaSn+HvP/NlTS5XF6oi0l4eDjJyclqy3V0dGjUqFGxtxeED62w03U+uuTpzQsJQNu2bXF3d2fDhg1qXf2lRVNTk3r16uW6LjU1ladPn6KtrV1ic2xKSlHneCkn3ue1H1euXMHBwYHKlSurbNOiRQv+/vtvabt79+7h6+vLtWvXiImJkcpGRERIZW7cuIGrq6uU1AC4u7szf/58ypUrR/ny5QkPD+fZs2fMmDFDig3A2dkZuVzOnTt3aNy4sbSf7dq1U4m9SZMmaGhoMGfOHHr37k3z5s3VknCZTIa9vb1K0q1QKMjIyOD169eYmppK9WtpaanUn1f8//zzDw0bNsz1GGZnZ7Nz505CQkKIiIhQSbpfvHiBpaWlyn6+2V79+vU5ceKEtOzmzZu0aNECU1NTqUzr1q0xNDREQ0Mj3++jhoYGMpmM8uXL4+7uzs6dO/Hy8uLs2bMsX76c8uXLI5PJpHMBOT2P/v7+nD59mqioKKm3xMjISCqjPFatW7dWab9u3bq8ePGiSHX9/fffWFpaqvQmW1hYoFAokMvlUrlLly7h5uamci5MTU1p2LChyvcyt2NqYWFBbGysSkKgPAevXr3C1NSU//znPxgaGkq9ZkouLi74+PigqamJhoYGGhoaVK5cmcaNG0tllN+Dly9fqrT75nH9kGQymdoQcW7Mzc3z7HkqjLy2F4QP6e7du4Uu+9ElT2/T1dWlTZs2nDhxQlpmYGBAZGSkWtm4uDgMDQ0BpIuisgdKKS0tjeTkZKlccchkMnR1dXNdJ5fLkcvl0n+eZUlR41H+Ks1ru1evXvHHH39gbW2ttq5WrVpoaGiQmJjIyJEjMTY2xtvbm2rVqqGtrc3s2bNJS0uT6o6OjsbExESlLUNDQ7S1taXjqewtfDvBVnr+/DkaGhrS3DpTU1OV+urWrcvGjRsJCAhg3LhxyOVyWrVqxdy5c6WeDJlMJiUbSsqLWkZGhkr9yriU8or/xYsXeR7D7du3s3z5ckaMGIGDgwMGBgb8+eefzJ8/n/T0dLX63vyspaWldgxr166t1lalSpXyPY/K/VaWcXNzY+nSpfj7+6OpqUmbNm1UetOUf581axZhYWGMGTOGevXqoaenx969e/npp59UykNOEvR27AkJCUWq68WLF1SqVCnX/UtNTZWWv3r1ih07drBjxw61/dTS0irwmBoYGKgsU/ZeKc9HXFwccXFxuX7vAWJjYzEzM0Mmk6nVpfwuvX1u3/4ulTXv2mte2r3uggCFT/bhE0iecmNhYcHFixfVxi/Dw8OpX78+kJN0Va1aVZoD9WaZ7OxstblQQtEpf30rJ2O/SdnjcO3aNSIjIwkICKBBgwbS+oSEBMzMzKTPpqamKr1SAImJiSo9MUZGRgDMnTs31wvXmz1gkPs/lNatW9O6dWsSExM5d+4cS5YsYcaMGQQFBRVij/OXV/xvx/Wm48eP065dOyZPniwte/uZZoWV2zEEVCa7F4aJiQktW7Zk+/bt9OrVC01NTbUyqampnDlzBm9vb5XJ2nv27Cly3IWtq3LlyrkOl8fGxqr0MhkaGtKmTRsGDBigVvbNcsVlaGiIsbExmzZtynW9cghbEISPV5m62644kpKSOHPmDFZWVtKy1q1bExcXx8WLF6Vl4eHh3Lx5U5qsqSx36tQp0tPTpWXHjh3DwMCg1B/++ClwcnLi3r171K1bFysrK5U/yvkbyrkbb16Ar169SkREhEpd1tbW/PrrryoTZY8fP65SxsLCAjMzMx4/fqzWnpWVFVWqVCl07Hp6eri5udGlS5diJytvyy1+mUym8t19W0pKilpy8vZdW4VlbW3N5cuXVXpbL168yKtXr4pcl4eHB66urvTu3TvX9cr5c2/GnpiYyOnTp4vcVmHratKkCbdv3+bx48fSsidPnvD333+rlHN0dOTOnTs0atRI7TtSEj+anJyciI2NRVNTM9fvYVGHxzU1NdXmSAqCULqK3fN06NAhmjdvrvZwSqUnT57w+++/S3fCFEZycrJ063RERASJiYnSBbJFixbcv3+fLVu20KFDB6pXr05UVBTbtm0jOjqatWvXSvXY2trSqlUrZs6cyfTp09HW1mbNmjUoFAo6duwolRs+fDhHjhxh8uTJ9O/fn3/++YfAwEAmTpxYag/8s6hk8lG1mZmZqZbEQM6FesiQIRw5coSvvvqKQYMGUa1aNWJjY/njjz+oUqUKQ4YMwcbGBl1dXXx8fPD09OT58+f4+fmpJTqenp706tWLMWPG0L9/f548eUJgYKA0ZAI5PUne3t5MmTKFpKQk2rZti46ODk+fPuXs2bNMnDgxz4nZAPv27ePatWu4uLhgamrKkydPOHz4sMojL95FWlqaSvwrV66kU6dO+T5M08nJiR07drBr1y7q1KnD4cOHefjwYbHaHzx4MHv27GHkyJGMHDmS+Ph4/Pz8pB67onB1dcXV1TXP9fr6+lhZWbF582aMjY0pV64cmzZtQk9Pr8g9XYWt68svv2Tjxo2MHj1autHA398fExMTlV7GcePG0atXL4YPH06fPn0wMTHhxYsXXLlyhebNm+f62IWicHZ2libAjxgxAoVCQXJyMnfv3uXhw4csWrSoSPVZWFhw6tQpmjdvjo6ODubm5ujp6b1TjIIgvJtiJ08zZsxg+fLleSZP169fZ8aMGUVKnmJiYtSGeJSfd+zYgZmZGenp6axZs4ZXr16ho6ODra0tPj4+asM0vr6+LFmyhLlz55KRkUGrVq2YPXu2ykTi2rVrExgYyNKlS/H09MTY2Fi6K6s0ZGZlldrDKov7hPHU1NRch+WWL19Ot27dCA4OxtfXl5UrV/Lq1SsqVapE06ZN6dChA5AzBLR27VqWL1+Ol5cXderUwcfHR+W2b8i5G2rt2rWsXLmSsWPHYmlpyZo1a9SeBN+5c2cMDAzYuHGj1ENTvXp1XFxcMDHJP0lUKBT8+uuvLFmyRJr826VLl1z3rzg8PDyIjY1l2rRppKWl0aFDB+bOnZvvNmPGjOHly5esW7cOgE6dOjF79mxGjx5d5PYrV67M5s2bWbhwIePHj6dWrVrMnTuXNWvWFGt/CrJq1Srmzp2Lt7c3RkZGeHh4kJSUxNatW99LXeXLl2fr1q3MmzePKVOmUKVKFby8vDh06JDKxP/atWuzf/9+fH198fHxISkpCVNTU+zt7VXuaHsX69atY9OmTezdu5eIiAj09fWxtLSkZ8+eRa5r7ty5LF68mJEjR5KSksKOHTuK/RgVQRBKhiy7mLc4NGjQgBUrVtC1a9dc1x84cIBvv/02z6eEf6qUD0bMaygmJSWF8PBwzM3Ny9zddsL7o1AomDZtWqm89uff7NWrV3z22WcMGTKEsWPHlnY4H6WUlBT+e+UaAQsP8eKZ6iNc6jasiV/IzALrGD1rM3cfqN/EU6+OGRsXjSyxWAXhXRR0/X5TkXqe/v77b5X5A7///nuuD2uLj49n3759+Q6RCIIglLRNmzZhYmJC9erViY6OZuvWrWRmZvLll1+WdmiCIHxCipQ8/fLLL/j7+wM580uCg4MJDg7OtayBgYH0lF9BEIQPQS6X891330mPpWjatClBQUFUrVq1tEMTBOETUqTkqU+fPrRt25bs7Gx69+7NuHHjVO5eg/89jr9WrVoq84sE4d/s9u3bpR3Cv4JykrYgCML7VKTspnLlytIzaXbs2EHdunWl95MJgiAIgiD8GxS7a0j5fiZBEARBEIR/k3caV/vtt984cOAAjx8/Jj4+Xu3dRDKZjF9++eWdAhQEQRAEQShLip08bdmyhVWrVklvWS+p56MIgiAIgiCUZcVOnnbs2EHLli3ZtGlTru+2EgRBEARB+BQV+9128fHxdOrUSSROgiAIgiD8qxQ7ebKysiI8PLwkYxE+Mn5+figUChQKBQ0aNKBZs2Z07dqV+fPnF/tlupcvX2bjxo0lFuOTJ0+kGM+dO6e2PiQkRFovlKySPpfvIj4+HoVCwcGDB/Mt9/LlSxYvXkzHjh2xsrLC0dGR/v37s337dqnMkydP8PPz4/nz5yUaY1k6XoIg5K/YydO3337LyZMni/2Gd0FdZlbWR9d2+fLlCQ4OZt++faxbt46ePXty4cIFunXrxo8//ljk+q5cuUJAQECxYsmPrq4ux44dU1seGhqKrq5uibcnvL9z+b5kZGQwePBgTp48ydChQ9myZQuzZ8+mUaNG/Prrr1K5iIgI/P39iYqKKtH2P7bjJQj/ZsWe8zRhwgQyMjKYNm0a3377LWZmZsjferGsTCbj8OHD7xzkv4WGXI7PuRAevor+oO3WNjJlXus+xdpWLpdjY2MjfXZ2dmbAgAF4enoya9Ys7OzsqFmzZglFWnzt27fn5MmT+Pj4oK2tDUBUVBT/+c9/cHd3F99TgStXrnD79m127dqFvb29tLxLly5kFfPHRUpKiniHpSB8gord82RkZETt2rVp3rw5jRo1wtjYGCMjI5U/hoaGJRnrv8LDV9H8E/v0g/4p6WRNW1ubOXPmkJ6ezv79+6Xlhw4don///rRo0QJ7e3s8PDy4fv26tN7Pzw9/f3+SkpKkoTQPDw8A7t27x8SJE2nTpg1NmzbFzc2NrVu3Fvqi1rp1a2QyGWfPnpWWHTt2jFq1atG4cWO18itXrqRr167Y2tri4uLCpEmT1HoaPDw8GDVqFMePH6dTp07Y2toyaNAgHj16VOS6srOz8ff3x9nZGVtbW8aNG8eFCxdQKBRcvnxZpVxgYCCdOnWiSZMmtG/fXmVISXkcbW1tuXnzJn379sXa2poePXpw8+ZNUlNTmTdvHvb29rRu3VptW4CwsDAGDRqEjY0NzZo1Y/LkycTExEjrlUOhP/74I/Pnz8fe3p5WrVqxbNkyMjIypBjyOpe5CQsLY/To0bRq1QobGxu6devGoUOHVMpcvnwZhULB+fPnmTx5Mra2tri6urJ582a1+kJCQmjXrh1NmzZl8ODBPHz4MM+2leLicl56a2pqqrZO+cPw8uXLDBo0CIBevXqpDPkq4ztz5gzjxo3Dzs6O8ePHA+/23Yec7//XX39Ns2bNsLGxwdPTU+17lpCQwJQpU7C1tcXR0ZHVq1ezdetWKb709HScnZ1Zs2aN2v5NmDCBXr16FXiMBEHIUeyep507d5ZkHMInpl69elSpUoWwsDBp2ZMnT+jevTu1atUiLS2No0ePMnDgQA4fPoy5uTm9e/cmMjKS0NBQgoKCANDT0wNyeonMzc3p2rUrFSpU4NatW/j5+ZGUlMTYsWMLjEdLS4sOHToQGhpKx44dgZwhO3d391zLx8TEMGrUKCpXrkxsbCzbtm3Dw8ODo0ePqrx26NatW8TGxjJlyhQyMzNZunQpU6dOVXnnY2Hq2rlzJ/7+/owYMYKWLVty6dIlZs+erRbXokWL2L9/P6NHj6Zp06ZcvXqVlStXoq2tTf/+/aVy6enpTJ8+nSFDhmBiYsLKlSsZO3YsdnZ2VKpUCV9fX06dOsWSJUuwtrbGzs4OyEliPDw8aNOmDWvWrCE5ORlfX1+8vLzU3mPp6+tL+/bt8fX1JSwsDD8/P2rVqkX//v3zPZe5efr0KXZ2dvTv3x8tLS2uXr3K7Nmzyc7OpkePHipl582bR7du3Vi/fj2//PILK1euRKFQSK+K+vXXX5kzZw49e/bEzc2NGzduSElMfho2bIhcLmf27NmMGTOGZs2aoaWlpVKmcePGzJ07l/nz57NkyRIsLCzU6pkzZw5ffPEF69evl5Kud/nuP378mH79+mFpacnSpUuRyWRs3LiRIUOGcPz4cSnGGTNmcOnSJaZOnUr16tUJCQnhxo0bUlyampr06NGDQ4cOMX78eCm2V69ecerUKWbNmlXgMRIEIYd4+Zzw3lStWpUXL15In99McrKysnB2dub69ev88MMPTJo0CTMzM2n4982hQABHR0ccHR2BnN6XZs2akZKSwq5duwqVPAG4u7vj5eXF69eviYmJ4c8//2TFihUqvVFKS5Yskf6emZmJra0trVu35tKlS7Rq1Upal5CQwKFDhzA2NgYgKSmJGTNmEBkZiZmZWaHqyszMZNOmTfTs2ZMpU6YA0KpVK16+fMmBAwekbR89esSuXbvw8fGhb9++ADg5OZGSksL69evp27evdEFMT09nypQptGnTRjreyoRrxowZALRs2ZLjx49z/PhxKXlatWoVTZo0wd/fH5lMBkD9+vVxd3fn7NmzUn0A1tbWUoLn7OzM5cuXOXHiBP3798/3XOamS5cu0t+zs7Oxt7fn+fPnBAcHqyVPHTt25JtvvgFyvhdnzpzhxIkTUvL03Xff0bx5c+m4u7i4kJqayoYNG/KNoU6dOnh7e7NixQqGDBmCpqYm1tbWdO7cmf79+1OuXDn09PSoV68eAJaWllhZWanV065dO6ZOnaqy7F2++/7+/hgaGrJt2zZpyNnOzo727duzf/9+Bg4cyN27dzl58iTLli2je/fu0n537txZpa7evXuzZcsWfvvtN+lcHjlyBLlcnucPCUEQ1BU7efrPf/5TqHJvzh0Q/l2ys7OlCzDkDD2sXr2asLAwlWGgBw8eFFhXamoqAQEBHDlyhGfPnpGeni6te/36NRUqVCiwjpYtW1KhQgV++eUXIiIiaNy4Mebm5rkmT2fPnuW7777jzp07JCYmqsT6ZvLUoEEDKXECpAvrm8lTQXVFRkYSHR1Nu3btVGJo3769SvJ04cIFICd5UA6PQU4CtXnzZp49e0b16tWBnGEmZbIJOYmBsqyShoYGtWrVIjIyEoDk5GSuXr3KtGnTyMzMVNm2atWq/PnnnyrJ05vHAaBu3bpcunRJ7VgWRlxcHH5+fpw6dYrnz59L7RsZGamVfbNdmUxG3bp1pX3IzMzkxo0baslLp06dCkyeAAYPHoybmxunT5/mypUrXLx4kYULF/Lzzz8TFBSkNq8zN23btlVb9i7f/fPnz+Pm5oaGhoZ03g0MDGjUqBF//fUXAH/++SeQ851RksvluLq6sm3bNmlZ7dq1adGiBd9//710Lg8ePEinTp3y7RkUBEFVsZMnDw8PlQtjXm7dulXcJoSPXGRkpHTRTkxMZNiwYRgbG+Pt7U21atXQ1tZm9uzZpKamFljXihUr2L9/P2PGjKFJkybo6+tz6tQpvvvuO1JTUwuVPGloaNC5c2eOHj1KREQEX375Za7lrl+/jpeXF+3bt2fkyJFUqlQJmUxGnz591GI1MDBQ+ax87pmyXGHqio7OmXP2ZhIGqL10++XLl2RnZ9OyZctc434zeSpfvrzKkJMyLn19fbV4lXHEx8eTmZnJkiVLVHrL3qz/TbnVlZaWlmtsBfH29iYsLIwxY8ZQr1499PT02Lt3Lz/99JNa2dzaTUhIACA2NpaMjAy1Y2liYlLoWExNTenbty99+/YlPT2duXPncvDgQX799VeV5CQvb5+3d/3uv3z5kqCgIGk4703K8xodHY2mpqbasXn7OAD06dMHb29vYmNjiYqK4ubNm3h7excYhyAI//NOTxh/W2ZmJhEREYSEhJCVlcXkyZPfKTjh43Xnzh2eP38uDblcu3aNyMhIAgICaNCggVQuISFB6qHJz/Hjx+nbty+enp7Sstx6jArSpUsXBg4cCICbm1uuZX755Rf09PTw9fWVehoiIiKK3FZh61JOUI6NjVVZ/mYPBYChoSEymYw9e/bk+nBac3PzYsWopK+vj0wmY9SoUXz22Wdq6ytWrPhO9eclNTWVM2fO4O3trTJJes+ePUWuy9jYmHLlyqkdyzeHj4tCU1OTIUOGcPDgQe7du1eo5OntH5Xv+t03NDSkTZs2DBgwQG2d8keDqakp6enpJCQkqCRQbx8HyOm5XLBgAYcPH+bJkyfUqlVLvOhdEIqo2MlTfv/YevbsyYABA7hy5YrK0IHw75CamsqCBQvQ0tKid+/eQM4t24DKRf/q1atERERgaWkpLcur9yI1NVVl28zMTI4ePVrk2GxtbXF3d6dSpUp5XrhSUlLQ1NRUuQgW93lmhanLzMwMU1NTTp06pZK0vP1SbeW/pVevXqkN8ZUEXV1dbGxsuH//fq5zeYqqsD1RaWlpZGVlqZzfxMRETp8+XeQ2NTQ0aNSoESdPnmTIkCHS8hMnThS47atXr9DT01O5IQD+N7SmTHLf7l0syLt+9x0dHblz5w6NGjVCQ0Mj1zaaNGkCwKlTp6Q5T1lZWSrPp1LS0tKiW7du7N+/nxcvXjBkyJBCjSIIgvA/72XCuFwup0uXLgQEBBTqLhfh45WVlcW1a9eAnMnS//zzD8HBwTx+/JilS5dSo0YNAGxsbNDV1cXHxwdPT0+eP3+On58fVapUUamvbt26ZGRkEBQUhK2tLXp6elhYWODk5MT+/fupV68eFStWZM+ePcUaIpLJZKxYsSLfMs7OzgQFBbFgwQI6dOhAWFhYsR74Wdi6NDQ08PT0ZPHixZiYmODg4MDly5e5ePEi8L/b5M3NzRk4cCDTpk1j+PDhNG3alPT0dB48eMDly5cLNaenINOmTWPw4MFMmDCBLl26YGBgQGRkJBcuXKBnz544ODgUuq68zuXb9PX1sbKyYvPmzVLP0aZNm9DT08u156Qgo0ePxsvLixkzZkh32xXm/F26dImVK1fSo0cPrK2tKVeuHLdu3SIgIIBq1arRoUMHIGcOmIaGBt9//z3lypVDQ0Mj32TzXb/748aNo1evXgwfPpw+ffpgYmLCixcvuHLlCs2bN8fd3R1LS0s6dOjAwoULSU5Oplq1aoSEhJCSkpJrYtSnTx+CgoLQ0NCgZ8+eRTzCgiC8t7vt4uLipHkIQuHVNlJ/xkxZbjMlJUW680tXV5caNWrg6OiIv78/devWlcqZmJiwdu1ali9fjpeXF3Xq1MHHx4ctW7ao1Ofq6sqAAQPYtGkTMTEx2Nvbs3PnTubMmcO8efNYsGABOjo69OjRgw4dOuR6O/+7atOmDVOmTGHXrl0cPHgQOzs7AgIC6NSp03ury8PDg/j4ePbs2cPOnTtxdHRk6tSpTJw4UWUYZvbs2ZibmxMcHMz69eupUKEC5ubmfP755++835BzF9eePXvw8/NjxowZpKenY2ZmRsuWLaldu3aR6srrXOZm1apVzJ07F29vb4yMjPDw8CApKYmtW7cWeR/at2+Pj48PGzdu5OjRozRt2hRfX1+pFzQvTZs2pVOnTpw6dYqgoCBSU1MxMzOja9eueHp6ShOqjY2NmTt3Llu2bOHw4cNkZGRw+/btPOt91+9+7dq12b9/P76+vvj4+JCUlISpqSn29vYqrxVavHgx8+fPZ/ny5WhpadGjRw8sLS3ZvXu3Wkz16tWjTp061KpVSy2JEwShYLLs7Ozs4mz49OnTXJfHx8fz+++/s2rVKuzs7AgMDHynAD82yrte8volmpKSQnh4OObm5mpPHs7MykKjEHfzvA+l2baQO19fX7Zt28bly5fFU6qFYhk4cCByuVwtaX306BEdO3Zk7dq1Bf4oSElJ4b9XrhGw8BAvnsWprKvbsCZ+ITMLjGP0rM3cfRCptrxeHTM2LhpZiD0RhPevoOv3m4rd89SuXbs8x8mzs7OxsbHBx8enuNX/K5Vm8iISp9J17949Dh8+jK2tLZqamly5coXAwED69+8vEiehUE6cOMGzZ8+oX78+ycnJhIaG8vvvv7N+/XqpzMuXLwkPD2f9+vVUq1atUBPgBUFQV+zkafHixWrJk0wmw8DAgFq1aknPuxEEoWDly5cnLCyMvXv38vr1a6pUqcLw4cOlh0EKQkF0dXX58ccfefDgAenp6VhYWLBixQqVmxB+/fVXZs6cSe3atVmxYoXa5HhBEAqn2P9yxCRDQSg51atXz/XxH4JQWC4uLri4uORbpmfPnuL/bkEoASXys+Pu3bvSs2uqV68uep0EQRAEQfhkvVPy9Msvv7B06VK1h/7VqFEDb29vMZ4uCIIgCMInp9jJ09mzZxk3bhzVqlVj4sSJ0m3p9+7dIyQkhG+++YaNGzdKL+sUBEEQBEH4FBQ7edqwYQMKhYLdu3ejq6srLW/fvj1fffUVAwYMYP369SJ5EgRBEAThk1Ls+9Nv375N9+7dVRInJV1dXXr06JHvg+MEQRAEQRA+RsVOnrS1tYmLi8tzfVxcHNra2sWtXhAEQRAEoUwqdvLk4ODAjh07CAsLU1v3xx9/SK+YEARBEARB+JQUO3maOnUq2traDBgwgL59++Lt7Y23tzd9+/alX79+aGtrM2XKlJKMVShj/Pz8UCgU0h8rKys6d+7M5s2bycrKUimrUChK/VU9t27dQqFQcPny5VzX//XXXygUijxfIpuZmYmTkxPTpk3jyZMnKBQKjh8//j5DzlO7du2YP3++9Nnb2xt3d/cSb8fPz4+rV6+qLS8L51MQBKG0FHvCeM2aNTl8+DABAQGcO3eOY8eOAVCtWjUGDRqEp6cnlSpVKrFA/w2ysrOQy0rnNSnFbbt8+fIEBQUBOe/Aunz5MqtWrSI7OxtPT8+SDvO9atKkCebm5hw9epRu3bqprb948SIxMTF07dqVypUrExwcTJ06dT58oLnw8vIiKSmpxOv19/dHV1cXOzs7leXBwcFUq1atxNsTBEH4GBQ7ecrIyEBbW5uZM2cyc6b6iyETExPJyMgQj/8vArlMTsAfu3iW+PyDtltVrwqjmn5VrG3lcjk2NjbS55YtW/LPP//w888/f3TJE4C7uzsbN27k5cuXVKxYUWVdaGgolSpVwsnJCQ0NDZX9Lm21atX6oO2VpX0XBEH40IrdzbFw4UL69euX5/r+/fuzdOnS4lb/r/Us8TkP4yM+6J+STtYqVKhARkZGkbc7c+YMQ4cOxdHRETs7O3r37s25c+dUyhw8eBCFQsHNmzcZMWIENjY2dOzYkUOHDqnVt2HDBpydnbG1tWXs2LHExMQUGEPXrl1JT09XG45LTU3l5MmTuLm5oaGhkeuw3alTp+jZsye2trY0b96cnj17cvbsWWl9bkNd27dvR6FQSJ+TkpKYP38+nTp1omnTprRr1465c+eSkJCQb9xvD9u1a9dOZUhV+cfb2xuAqKgoZsyYQfv27bG2tqZjx46sXr2atLQ0lXgBli9fLm2vHPLMbV/27dtHp06daNKkCe3atWPDhg0qw7dFOXeCIKjLysx6p/VCySl2t9Bvv/1G9+7d81zfqVMnDh8+XNzqhY+IMlFSDtv9/PPPjBo1qsj1PHnyBFdXV4YNG4ZcLufcuXN4enoSFBSEg4ODStkpU6bQp08fhg4dSkhICN7e3lhZWUkPa921axdr165l2LBhODk5ceHCBWbNmlVgDLVr18bKyorQ0FD69+8vLT9z5gyJiYl07do11+0ePXrE+PHj6dKlC5MnTyYrK4u///473ztSc5OSkkJmZiYTJ07E2NiYZ8+esXHjRry8vNi5c2eh6/H391dJhG7fvs28efMwNzcH4OXLlxgZGTFjxgwMDAx48OABfn5+REdHs2TJEiBnaK5v3754eHhIiVler17auXMnCxcuxMPDg7Zt2xIWFoa/vz8JCQlMnz5dpWxB504QhNzJNeQs997K4/uRautqWpgxbemwUojq36nYyVNUVBRVqlTJc33lypV5/vzDDj8JH15SUhKNGzdWWebm5lasIbuvvvrf0GFWVhYODg7cvXuXkJAQteRp4MCBDBw4EABbW1vOnj3LiRMn8PLyIjMzk4CAALp16yZduF1cXIiJiclzMvibunbtypIlS3j27BlVq1YF4OjRo9SqVYumTZvmus3NmzdJT09nzpw56OnpSW0WlbGxMT4+PtLnjIwMatSowYABAwgPD5eSn4I0atRI+ntsbCyTJk3C2dmZkSNHAjk9R28mNXZ2dujo6ODt7c3cuXPR0dGRhuaqVq2a7zBdZmYm69evp0uXLsyePRuAVq1akZ6eztatW/H09FQZAs3v3An/LhUNK5CZlYWGPO9BkILW/9s8vh/JvVuPSzuMf71iJ09GRkaEh4fnuf7evXvSRUT4dJUvX55du3YBkJaWxo0bN1i3bh2zZ8+WejAKKzIykjVr1nDhwgWio6PJzs4GUEvOIOfirKSrq0u1atWIjIyU6omKiqJDhw4q23Tq1KlQyZObmxvLli3j2LFjDB8+nMTERM6cOcPw4cPz3EahUKChoSH1qtjb26Ovr1+o/X7boUOH2L59Ow8fPlSZBP7gwYNCJ09K6enpjB8/Hg0NDVavXo38/1+EsrOzCQoKIiQkhCdPnpCamipt8/jxY+rXr1/oNu7fv8/Lly/5/PPPVZa7ubkREBDA9evXadOmjbQ8v3Mn/LvoVSiPhlzOt9t/4EHkC7X1dcxM+HZIj1KITBDyV+zkycXFhX379tG1a1eVX7kAN27cICQkRO0/U+HTI5fLsbKykj43a9aMzMxMli5dytChQwt9Ec7KyuLrr78mISGBcePGUbt2bXR0dFi3bh3Pnj1TK/92YqKpqSkNU0VHRwM5vThvMjExKVQspqamODg4EBoayvDhwzl58iSpqal5DtkBmJubs3HjRgICAhg7dixyuZxWrVoxd+7cIt2VdvLkSaZPn07fvn2ZOHEiRkZGREdHM2bMGJUEp7AWLVrEX3/9RUhICIaGhtLyoKAgli1bxogRI3BwcMDAwIA///yT+fPnF7kd5dDk23fXKj+/PXSZ37kT/p0eRL7gnycigRY+HsVOnsaPH89vv/1G7969adeunTQX4s6dO/z6668YGxszfvz4EgtU+HhYWFgAcPfu3UInTw8fPuTmzZusX7+ezz77TFqekpJS5PZNTU2BnOGqN714of7LNi9du3ZlxowZ3L9/n9DQUBo3biztV15at25N69atSUxM5Ny5cyxZsoQZM2ZIj3LQ0tIiPT1dZZv4+HiVz8ePH6dhw4Yqz3C6cuVKoeN+0759+9i3bx/r1q3D0tJSrZ127doxefJkadm9e/eK1Y6RkRGgfryVE/TfTNoEQRA+BcUeSK5SpQrff/897u7uXLx4ke+++47vvvuOS5cu0bVrVw4cOICZmVlJxip8JO7cuQOgdqt/fpS9HZqamtKyiIiIXJ9gXxAzMzNMTU05efKkyvITJ04Uuo6OHTuira1NUFCQ9J0uLD09Pdzc3OjSpYtKQmJmZqaWoFy4cEHlc0pKisoxADhy5Eih21b6/fffWbhwIaNHj6Zjx45q6wvbjqamZoE9Uebm5hgbG6vdofjTTz+hqamJtbV1keMXBEEoy97pIUyVK1dm2bJlZGdnS786jY2NkclkJRKcUPZlZWVx7do1IGd+zY0bN/juu++oV68ezZs3L3Q9FhYWmJmZsWrVKrKyskhKSmLdunVUrly5yDFpaGjg6enJokWLqFSpEs7Ozpw/fz7PJ4vnRk9P7/+1d+dxUVX//8BfM8MumygChgq44JILiBKypaYWaKS5J1oiaIjmVqIhuYuaVgIloqZGmrthktUXS/uk5Yb50VxCUEHEBWSTbWDm9we/uR/GYRsFhuX1fDx65Nxz7rnve48wb8859168+uqr2Lt3L0QiEby8vKqs/9133+HSpUtwd3eHubk5UlNTERsbC1dXV6HOsGHDsHPnTvTs2RO2traIjY1VualiwIABWL58OSIjI4XF1GfOnFHr/PPy8jBr1ix06NABnp6eQv8AZT+f7du3x4ABA7Br1y7ExMTAxsYGsbGxuHPnjkpbdnZ2iI+Ph5OTE/T19WFra6uyllEikSAwMBArV66EmZmZcMzo6GhMmTJFrSSaiKgxqJUnWIpEIj5NvJZYGVZ+B2NDPGZhYSHGjRsHANDS0oKlpSXefPNNBAUFqYxsVEVHRwfh4eFYvnw5PvjgA1hZWeH999/Hn3/+iStXrqgdl6+vL3JycrB7927s2bMHLi4uWLlyJaZNm1bjNkaMGIGffvoJzs7OVd5ZCpQtGP/111+xZs0aZGVlwdzcHN7e3kpT14GBgcjIyEBkZCREIhHGjRuHyZMnKz0Pbfz48UhNTUVMTAy2bdsGNzc3bNiwAWPHjq1x3FlZWcjMzERmZqbKs9hGjhyJsLAwzJw5E0+ePMGmTZsAlCV2ISEhmDFjhlL90NBQrF69Gv7+/igsLMSuXbtU7nwEyq63lpYWduzYgT179sDc3BxBQUEq7VHT0rKVMWSlMoglvBuOmheRXHFLE9WK//73vwCgtIi6vMLCQuGWcz09PaWyxvh6FiJq2goLC3Hh7CVErTyCx/eVF/97ejlh4Vo/rF+7Hykpj1T27evUGVPeHYIZH0cj8bbqgvCBA3rg45mj8G5YdIULxrtYW2JHsH/tnUwTMGvs6gofVdCxWzuE71N92wfVXHXf3+Xx3SkNiCaTFyZORPS8UlIe4Vai6l2x1tY1u8OVqLHhNyYRERGRGpg8EREREamByRMRERGRGpg8EREREamByRMRERGRGpg8EREREamByRMRERGRGpg8EREREamByRMRERGRGpg8NSAyuaxRHjs+Ph5Tp05F//798fLLL2PQoEEIDQ1FcnKyUMfe3h7btm2rjVBr5Nq1a7C3t1frZcB1YdWqVRg0aFCVdQ4dOgR7e3vhPwcHB7z++utYtGgRLl++/FzHvXbtGsLDw1FQUPBc+9d3fxERNSZ8PUsDIhaJcfTGl8jIT6vX47YyaIsR9oHPte+nn36K6OhoDBs2DCtWrICZmRnu3r2LgwcPYu7cuThy5EjtBtuEbd26FUZGRigoKEBycjIOHjyIsWPHYt68eQgICFCrrWvXriEiIgLvvPMO9PX16yhiIqLmqUElT3fu3MG2bdvw999/499//4WdnR1++OEHlXr79+/H1q1bkZaWBltbW8ydOxcDBw5UqpObm4s1a9bg//7v/yCVSuHu7o6QkBC0adNGqd7Fixexdu1aXLt2Da1atcKECRPg7+8PkUhUp+damYz8NDx4elsjx1bXyZMnER0djcDAQHzwwQfC9n79+uHtt9/Gr7/+qsHoGp8ePXrAzMwMAODi4oLx48dj4cKF2LhxIxwdHeHk5KThCImICGhg03b//vsvTp48iQ4dOqBjx44V1jl27BiWLFmCN954A9HR0ejTpw+CgoJw6dIlpXpz5szBH3/8gaVLl+LTTz9FcnIy/P39UVJSItS5c+cO/Pz8YG5ujqioKEyZMgWbNm3C9u3b6/I0m4zt27ejdevWCAyseNTq2YT2Wd999x2GDRsmTPV9+eWXkMn+N30YHh4OBwcHlf2cnJwQHh6utO3LL7+Eq6srHBwcEBQUhIyMjBqdw6effooRI0bAwcEB7u7umDdvHh4+fKhUx9fXF9OnT8fx48cxbNgwODg4YPLkybh7965SvQcPHmDGjBno3bs33N3dER0dXaMYKiMWi/Hxxx9DR0cHe/bsEbb/9ttveO+99+Di4gJHR0eMGTMGp06dEsoPHTqERYsWAShLwuzt7YWpw4cPH2LRokUYPHgwevXqhaFDh2Ljxo0oLi5WOX5paSnWrVuHV155BQ4ODggODkZeXp5Qnp+fj+XLl2PYsGHo3bu3MF2bm5ur1E58fDxGjRoFBwcHODk5YdSoUTh58qRSnUOHDmHEiBHo2bMn3N3d8dlnn6G0tPSFrh8RUV1pUCNPgwYNwmuvvQYACA4OxpUrV1TqbNq0Cd7e3pgzZw4A4JVXXsHNmzcRGRkpfFklJCTgP//5D7Zt2wY3NzcAgK2tLby8vPDzzz/Dy8sLALBt2za0bNkSGzduhI6ODlxcXJCZmYnNmzfD19cXOjo69XDWjVNJSQkuXryIoUOHQltbW+39v/nmG6xcuRK+vr549dVXkZCQgIiICOTm5mLhwoVqtRUTE4MvvvgCU6dOxYABA3D69Gl8/PHHNdo3IyMD06dPR5s2bZCZmYmvv/4avr6+OHbsGLS0/vfjce3aNWRmZmLBggUoLS1FWFgYPvzwQ+zdu1eoExgYiAcPHmDp0qUwMjJCdHQ07t+/r9SOukxNTdGjRw8kJCQI21JTUzFw4EBMnToVYrEYp06dQkBAAHbu3AlnZ2e8+uqreP/99/HVV18JU4GKv8tPnjyBqakpFi1aBGNjY9y+fRvh4eF49OgR1qxZo3Tsb775Bj169MDatWuRmpqKTz/9FEVFRfjss88AAIWFhSgtLcXcuXNhZmaG+/fvY/PmzQgMDMQ333wDALh79y4++OADeHt7Y/78+ZDJZLh+/Tqys7OF43z99ddYv349pkyZguDgYNy6dUtInhYsWPDc146IqK40qORJLK56ICwlJQW3b9/Ghx9+qLTdy8sL69atQ3FxMXR0dHDq1CkYGxvD1dVVqGNnZ4du3brh1KlTQvJ06tQpDBkyRClJ8vLyQlRUFBISEuDs7FyLZ9e0ZGVlobi4GG3btlV739LSUkRGRsLb2xshISEAADc3N0ilUmzfvh0BAQFo2bJljduKioqCj4+PkHS5u7sjIyMD33//fbX7l08YSktL4eDgAA8PD/z5559C4g2UTQMfOXJEmFbLz8/HokWLkJ6eDktLS5w6dQpXrlzBjh074OLiAgBwdnaGp6cnTE1Na3QulbGyssLVq1eFz5MmTRL+LJPJ4OzsjMTEROzbtw/Ozs4wMzND+/btAShPBQJlC8HLJ6eOjo7Q19dHcHAwQkNDldZH6ejoIDIyEhKJBACgq6uLkJAQBAUFoWPHjjAzM8OyZcuE+iUlJbC2tsbEiRORnJwMW1tb/PPPP5BKpViyZAkMDQ0BlPWPQl5eHjZt2oRp06Zh3rx5AABXV1doa2sjLCwMfn5+Nf67QERUXxpU8lSdpKQkAGWjSOV17NgRUqkUKSkp6NixI5KSkmBra6uybsnOzk5oIz8/H/fv34ednZ1KHZFIhKSkpOdOnuRyOfLz8yssKyoqgkwmQ2lpqcq0hOJLSlPUmSZR1JXL5TXeT3He//77L548eYKhQ4cq7Tts2DBERUXh0qVL8PDwgEwmq7R9RVv37t3Dw4cPMXjwYKV6Q4YMwffffy/Uq8ypU6ewefNmJCYmKk1JJSUlCUmQXC5H165dYWJiIrSl+DuYlpYGc3NzXLp0CUZGRujfv79Qx8DAAC4uLvjnn3+qjEExVVlZrDKZDCKRSChLT0/HF198gTNnzuDRo0eQy+UAyhIlRZ3K2pTL5fjmm2+wb98+3Lt3D0VFRULZnTt30LlzZ+Hzq6++CuB/fT1kyBB8/PHH+Pvvv2FjYwMAiI2NxY4dO3Dnzh2lO/uSkpLQvn17dO7cGRKJBPPnz8eYMWPg5OQEIyMjod6FCxeQn5+PIUOGKMXi7OyMwsJC3LhxA/369av02lHd0tTaz2cVFBQIf8+bK5FIVKObP3itnp9cLq/x3/lGlTwphvqNjY2Vtis+K8pzcnKUfkErmJiYCFOBinUZz7alo6MDfX19pWkFdUmlUly7dq3Sci0tLaUvCqBs1E3Td0UVFxcrrTmqip6eHnR1dZGamorCwsIa7VNSUoLCwkI8fvwYAGBkZKS0r2Jk4vHjxygsLBTWpz3bvlwuF9q6d++esG/5eor+Ly4urjS+q1evIigoCJ6enpgyZQpatmwJkUiEKVOm4OnTp8J+MpkMBgYGSu0ofjnl5uaisLAQ6enpMDU1VTmWqakp5HJ5lddIKpUK51lRvfv376NVq1YoLCyETCZDYGAg8vLyMGPGDLRr1w76+vr46quvkJ6eLuxfWZsxMTH4/PPPMWXKFDg5OcHY2BhXr15FWFiYcC4KxsbGSp+1tLSgq6uL+/fvo7CwECdOnEBwcDBGjRqFwMBAmJiY4PHjx5g/fz7y8vJQWFgIS0tLfP7559i+fTtmz54NkUiEAQMGYOHChbCyshLWl40ePbrCa3P37l307Nmz0mtHdUssFjeIBCo5Ofm5H7vRVOjr66N79+7V1uO1ejE1Xa7TqJKnxkJbWxudOnWqsKyoqAhpaWnQ1dWFnp5ePUdWNXXXeDk4OODcuXPQ0tKq0boeLS0t6OnpwdzcHEDZlE35a6AY+WndujX09PTQokULlJSUKNWRSqUoKCgQ2nrppZcqbEuRHOvo6FR6nU+dOgVDQ0N88cUXwpSxIhlTtA+UfYFIJBKldhTXStG+paUlsrKyVI6VlZUFkUhUZV8r1ozp6elVuP8///yDoUOHQk9PD7dv38b169cRHh6OwYMHK12X8seprM0TJ05g4MCBSlPfKSkpFV6rnJwclf4pKiqClZUV9PT08Ouvv6Jr165YuXKlUOfcuXPC8RX7Dh48GIMHD0ZeXh5+//13rF27FsuXL8fXX3+N1q1bAyhby2hpaalybaytrRvcz0lzIhKJKryZoL7Z2to2+9GUmiaxvFbPLzExscZ1G1XyZGJiAqDsi1HxBQyU/ZIvX25sbIz09HSV/bOzs4U6ipGJZ+8MKi4uRkFBgVDveYhEIhgYGFRYJhaLhS9jTU/TPUvdeKZOnYqAgABER0cjKChIpfzkyZPw9PQUPivOu1OnTjAzM8PPP/+MYcOGCeU///wztLW10adPH0gkElhZWUEqleLevXvCGp7Tp0+jtLRUaOull16Cubk54uPjldr65ZdflI5ZkeLiYmhra0NLS0v4xRQXF6eyn0gkgkgkUmpH8WdFvd69eyM3Nxdnz54Vpvtyc3Nx5swZmJqaVnltFYnbs7HKZDKEhYVBKpVi0qRJkEgkwoiSrq6uUPfevXtISEiAjY2N0vokoGy0r3ybRUVF0NHRUdp27NixCo//22+/YfHixcK2X375BSKRCL1794ZEIlGrLaDs53P48OG4cuUKfvjhB0gkEvTt2xf6+vp4+PChUv8RlafpUfnGhNfq+akzytqokifF+qSkpCSltUpJSUnQ1tZGu3bthHpnzpxRmb9MTk5Gly5dAJStR7GyshLWQJWvI5fLVdZC1ZdWBuovwNbUMT09PTFt2jSEh4cjMTER3t7eaNmyJVJTU3Hw4EHk5uYqJU8KEokEgYGBWLlyJczMzODp6YlLly4hOjpamD4DAA8PDxgYGCAkJAT+/v5IT0/Hrl27hMRA0VZAQABWrVqFVq1awdXVFX/88UeNnizu6uqKnTt3YsWKFRgyZAgSEhJqtMi8Ih4eHujRowc+/PBDLFiwAEZGRtiyZYswFVkTV69eFaYyFQ/JvHr1Kj788EPhkQ12dnawtLTEhg0bIJPJkJ+fj02bNqk8v0zxqI9vv/0Wr732GvT09GBvb48BAwZg165diImJgY2NDWJjY3Hnzp0K4ykuLsbMmTMxYcIE4W67YcOGCW0PGDAAy5cvR2RkJBwcHHDy5EmcOXNGqY3vvvsOly5dgru7O8zNzZGamorY2FjhZg5jY2PMnj0b69evR3p6Ovr37w+JRIKUlBTEx8cjPDycXwZE1OA0quSpXbt2sLGxwfHjx4VHGgBlowUuLi7CVIqHhwe+/PJLnDlzBgMGDABQlhT9888/mDZtmrCfh4cH4uPj8eGHHwrTHHFxcTA2Nq7w+UJ1TSaXPfeTvmvj2GKR+o/9Unyxf/vtt1i8eDEKCgrQpk0buLm5wc/Pr9L9fH19oaWlhR07dmDPnj0wNzdHUFAQZsyYIdRp2bIlNm3ahLVr12LmzJno1q0b1q1bB19fX5W2cnJysHv3buzZswcuLi5YuXKlUl9XxNPTEwsWLEBMTAwOHToER0dHREVFPdcIiEgkwpdffolPPvkEoaGhMDY2hq+vLx4/foz4+PgataGI18DAAG3atIGjoyNCQ0PRq1cvoY6Ojg7Cw8OxfPlyfPDBB7CyssL777+PP//8U+nRHt27d8esWbOEB8paWVnhxIkTmDlzJp48eYJNmzYBKFukHxISonTdFXx9fZGZmYmPPvoIxcXFGDJkCEJDQ4Xy8ePHIzU1FTExMcJjQTZs2ICxY8cKdezt7fHrr79izZo1yMrKgrm5Oby9vZUeqjp16lRYWFjg66+/RkxMDLS0tNC+fXu8+uqrz/UYDCKiuiaSN6DJ0YKCAuHhed9++y1SUlIQHBwMAOjfvz/MzMzwww8/YMGCBQgMDISzszPi4uJw4MABxMTEKCU8fn5+uHXrFhYuXAhdXV189tlnEIvFOHjwoLA+586dO3jrrbfg7u6OCRMm4ObNm1i/fj3mzp1b5Rd/Vf773/8CQKWLXBWjCra2tlzLQUQNXmFhIS6cvYSolUfw+L7yjTSeXk5YuNYPs4O+xK3E+yr7er7aEx8Fj8WMj6OReFt1KcXAAT3w8cxReDcsGjdTVcu7WFtiR7B/7Z1MEzBr7Grcupaisr1jt3YI37dYAxE1HdV9f5fXoEaeMjIylP5FCkD4vGvXLjg7O2P48OEoKChAdHQ0tmzZAltbW0RERKiMFH3++edYs2YNQkNDUVJSAjc3N4SEhCgtbO7QoQO2bduGsLAwBAQEwMzMDLNnz8bUqVPr/mSJiIioUWpQyZO1tTVu3LhRbb0xY8ZgzJgxVdYxMjLC6tWrsXr16irrOTo6Yt++fWrFSURERM1Xg3q3HREREVFDx+SJiIiISA1MnoiIiIjUwOSJiIiISA1MnoiIiIjUwOSJiIiISA1MnoiIiIjUwOSJnlt4eDjs7e1hb2+Prl27om/fvhgxYgSWL1+OW7duPVebf/31FzZv3lzLkQK3bt3C/Pnz4erqipdffhmvvfYa1q1bJ7xUui789ddfsLe3F55aC5S9rmTbtm3C50OHDuHo0aN1FkNt+7//+z/Y29sjNTW12rrPXvPBgwcjLCwMWVlZdR/oc0pNTUV4eDgePHigtL2iviSi5ovJUwMil5c2umPr6elh7969+O6777Bp0yaMGjUKp0+fho+Pz3O9ZPfs2bOIiop6rlgqc+7cOYwePRqJiYn46KOPsH37dkyePBmHDx/G+PHjkZmZWavHq8revXsxYsQI4fPhw4fxww8/1Nvx60tF13zKlCn4/vvvMW7cODx69EjTIVbo3r17iIiIwMOHD5W29+jRA3v37hVeikxEzVuDesJ4cycSSXAxcRnyCip+y31dMdTvAMdOnzzXvmKxGH369BE+u7q6YuLEiQgICMDHH38MR0dHtGvXrpYiVV9hYSHmzZuHtm3bYs+ePTAwMABQ9q5EV1dXvPXWW1i5ciU2btxYL/GUv1ZNVU2u+fLlyxEeHl5v8bzoeyQNDQ2bRd8RUc1w5KmBySu4g+z8m/X6X20na7q6uliyZAmkUin2798vbD9y5AgmTJiA/v37o1+/fvD19cXly5eF8vDwcERERCA/P1+YDvT19QVQNgU0d+5ceHp6onfv3vDy8sL27dshk8mqjOX48eN4+PAhZsyYIXyJK3Ts2BE+Pj748ccfhWmaQ4cOwd7eXmU0ysfHR3hJNQAkJCRgxowZcHNzQ58+feDj44MjR45Ue23KT9v5+vri7Nmz+O2334TzDQ8PxzfffIPevXsjLy9Pad9bt27B3t5eeHl2Raq7xkDZdXZwcMCNGzcwYcIE9O7dG8OHD8fvv/+uVE8qlWLVqlXo378/+vbti8WLF+Pp06fVnmNNrvkvv/yCe/fuAfjflNjJkycRFBSEPn36wM3NrcLp21u3buH9999H37590adPHwQEBODu3btKdezt7bFlyxasX78erq6ucHFxAVB9n/3111+YPHkyAGD06NFCn5SPsfy0XVFREdasWQM3Nzf07NlTOK/ygoODMXz4cPz1119466230KdPH4wePRpXrlxRqnfgwAF4e3ujV69ecHZ2xoQJE1T6jYgaDo48UZ3o1KkTLCwskJCQIGxLTU3FW2+9hfbt26O4uBjHjh3DO++8g9jYWNja2mLMmDFIT0/HDz/8gJ07dwIo+xc/ADx8+BC2trYYMWIEWrRogWvXriE8PBz5+fkICgqqNI6zZ88CAAYOHFhh+aBBg7B//36cO3cOw4cPr/H5paWlwdHRERMmTICOjg4uXryIkJAQyOVyjBw5skZtfPLJJ/jwww+hp6eHhQsXAgAsLS2hr6+P9evX44cffsD48eOF+gcOHICFhQXc3NwqbbO6a6wglUqxYMECTJ48GYGBgYiOjsbs2bNx4sQJtGzZEgCwceNG7NmzB7NmzUL37t1x7NgxbNiwodrzquk1v3DhAl566SVh+5IlS+Dt7Y3w8HCcPn0an332GUxMTDBhwgQAQEpKCsaPH4/OnTsjLCwMIpEImzdvxrvvvovjx49DR0dHaGvXrl3o3bs3Vq1ahZKSEgDV91mPHj0QGhqK5cuXY82aNbCzs6vyPBcsWIDff/8dc+bMgZ2dHb7//nvMmjULkZGRGDx4sFDv0aNHWLlyJQICAmBkZIQNGzYgKCgIv/zyC7S1tXHu3Dl8/PHHmDp1Kjw9PVFYWIjLly8jNze32mtNRJrB5InqjJWVFR4/fix8Lp/kyGQyuLq64vLlyzh8+DDmzZsHS0tLWFpaqkwFAoCLi4swgiCXy9G3b18UFhYiJiamyuTpwYMHMDY2FpKwZ7Vt2xYAkJ6erta5eXt7C3+Wy+Xo168fHjx4gL1799Y4eerUqRMMDQ1hYGCgcr7Dhg3DwYMHheSppKQEsbGxGD16NCQSSaVtVneNFRTJk6enJwDA1tYWgwcPxqlTp+Dj44OsrCzs3r0b/v7+mD59OgDA3d0dkyZNUllM/aznveavvPKKkES6u7sjIyMDX331FcaNGwexWIyIiAiYmJjg66+/hq6uLoCyF3sPHjwY+/fvxzvvvCO0ZWJigoiICIhEImFbdX1maGiITp06AQA6d+6Mnj17VnqO169fx88//4xly5YJfeTh4YF79+6pJE/Z2dmIiYlB586dAQD6+vqYPHky/v77bzg5OeHy5cswNTUVzh0AXn311UqPTUSax+SJ6oxcLlf68rp16xY2btyIhIQEZGRkCNtv375dbVtFRUWIiorC0aNHcf/+fUilUqHs6dOnaNGixQvFWj7OmsjOzkZ4eDji4+Px4MEDlJaWLbg3NTV9oTgUxo4di0mTJuHff/9F586dcfLkSWRkZODtt9+ucr+aXmOxWCwkowBgbW0NPT09ITG6efMmCgsLMWTIEKX9hg4dinPnzr3g2VXs2WMNGzYM33//PdLT09G2bVv88ccf8PLygkQiEUaTjI2N0b17d5VpMA8PD5U+rc0+u3DhAgDg9ddfV9r+xhtvYM2aNcjPzxemLNu0aSMkTgCEBE1xrbt3746srCwEBwdjxIgRcHR0hL6+vtoxEVH9YfJEdSY9PR02NjYAgLy8PEydOhVmZmYIDg5G27Ztoauri5CQEBQVFVXb1vr167F//37MnDkTL7/8MoyMjBAfH4+vvvoKRUVFlSZPlpaW+M9//oO8vLwKR0LS0tIAABYWFmqdW3BwMBISEjBz5kxhBGnPnj348ccf1WqnMv369YOtrS0OHDiARYsW4eDBg+jXrx/at29f6T7qXGM9PT2laS4A0NbWFuop7oZr1aqVUp3WrVtXG7uFhQVycnKqveaWlpZK283MzCo81qNHj9C2bVs8efIEO3fuFKZ0n429vGfjBmq3z7Kzs6Gtra2SeLVu3RpyuRy5ublC8mRsbFxhrIpr7eLignXr1mHXrl3w8/ODrq4uhg0bhsWLF9daMk5EtYvJE9WJf//9Fw8ePBCmsC5duoT09HRERUWha9euQr3c3FyVL9GKHD9+HOPGjUNAQICwraqF0wr9+vXDgQMHcPLkSaVpG4XffvsNYrEYffv2BQBhOqj8yBYApedBFRUV4bfffkNwcLCwoB0Adu/eXW086hgzZgy2bt2K9957DydPnsSqVauqrP+i17g8c3NzAEBGRoZSYll+GrYy/fv3x8GDB6u85iKRCE5OTkrbn12krziWIhYTExN4enpi4sSJKm0+mzw/O+pU231mYmICqVSK7OxsmJiYKMUsEolgZGSkVns+Pj7w8fFBZmYm4uPjsWbNGmhpaWH16tXPFR8R1S3ebUe1rqioCCtWrICOjg7GjBkDoOx2cUB5hODixYvCHVcK2traKC4urrDN8vuWlpbi2LFj1cby+uuvw8LCAl999RUKCgqUypKTk3H48GF4eHjAysoKwP9GoJKSkoR6t27dwv3794XPxcXFkMlkSvHk5eXhxIkT1cbzrPKjPc8aOXIkcnNzsWDBAujp6alMET2rpte4Jrp06QI9PT2Vu8d+/vnnavd9/fXX0aZNmyqv+dChQ4W1TwrPHuunn35CmzZthMTPxcUF//77L7p3746ePXsq/Vfd4u6a9tmzo0KVUSTbx48fV9p+/PhxdO/eXeUuw5oyMzPDmDFj4OrqqvR3kIgaFo480QuRyWS4dOkSACA/Px83b97E3r17kZKSgrCwMFhbWwMoe76RgYEBli1bhoCAADx48ADh4eEq02UdO3ZESUkJdu7cCQcHBxgaGsLOzg4DBgzA/v370alTJ7Rs2RK7d++uMMl6lp6eHjZs2ICAgABMnDgR7733HqysrHD9+nVs3rwZJiYmWLFihVC/d+/esLKywurVqzF//nzk5eVhy5YtStMnRkZG6NmzJ6Kjo2FmZgYtLS1s2bIFhoaGaj9w087ODkeOHMGJEydgbm6ONm3aCNfEzMwMgwcPFkbdqntWUU2vcU2Ymppi/PjxiI6Ohp6ennC33bOPBaiInp4eNm7cWOk1t7KywpIlS1T2+/PPP7F27Vq4urrijz/+wPfff4/Q0FCIxWX/xps9ezZGjx4NPz8/jB07Fq1bt8bjx49x9uxZODk5VXm3ZE37zMbGBhKJBAcPHoSWlhYkEkmFC8e7du2KoUOHIiwsDIWFhbC1tUVsbCwSEhLw5Zdf1uQSCzZt2oSsrCz0798frVq1ws2bN/H777/j3XffVasdIqo/TJ4aGEP9Do3qmIWFhRg3bhwAwMDAANbW1nBxcUFERITS05hbt26NL774AuvWrUNgYCBsbGywbNkybN26Vam9gQMHYuLEidiyZQsyMjLQr18/fPPNN1iyZAk++eQTrFixAvr6+hg5ciSGDBmCkJCQamNUTN1FRkYiLCwMmZmZkMvlcHBwQGRkpNL6GG1tbURERGDp0qX44IMP0L59eyxevBhhYWFKbW7YsAGhoaEIDg6GqakpfH19kZ+fj+3bt6t1/fz9/XH37l0sXLgQOTk5CAoKwqxZs4TyIUOG4Pjx4xg9enS1bdX0GtfU/PnzUVpaiq1bt0Imk2HIkCGYP38+Pvroo2r3VVzzL7/8EmFhYcjJyUGbNm0wYsQIzJgxo8K1PMuXL8fevXuxZ88etGjRAh988IHSHXQdOnTA/v378fnnn2PZsmXIz8+Hubk5+vXrJzyPqSo16TMzMzOEhoZi69atiI2NRUlJCW7cuFFhe+vXr8fGjRsRHR2NrKws2NnZYdOmTRg0aFC1sZTXs2dP7Ny5Ez/++CPy8vJgaWkJPz8/vP/++2q1Q0T1RySXy+WaDqIpUTxEr7LbnAsLC5GcnAxbW1uVkQS5vBQiUeW3odclTR5bE0JDQxEXF4fdu3ejS5cumg6nUh999BGuXbvWqN5/py7FwykPHDhQ5eMBSDMKCwtx4ewlRK08gsf3s5XKPL2csHCtH2YHfYlbifdV9vV8tSc+Ch6LGR9HI/G26uNABg7ogY9njsK7YdG4mapa3sXaEjuC/WvvZJqAWWNX49a1FJXtHbu1Q/i+xRqIqOmo7vu7PK55akA0mbw0p8QJAEJCQtCpUycEBASovMesIbhx4waOHDmCuLg44anXRETUMHDajpolHR0dfPfdd5oOo1Lvv/8+MjMz8dZbb1X7bCciIqpfTJ6IGqDnuXOvsXJ2dq50XRERUUPEaTsiIiIiNTB5IiIiIlIDkycN4U2ORNQYyOVyyCGHXMbfWUQKTJ7qmeIJxvn5+RqOhIioevn5+SgtkSE3u6D6ykTNBBeM1zOJRAJTU1Ph9ngDAwOV93AREWmaXC5Hfn4+Hj58iJt/p6C4UFr9TkTNBJMnDVC8q6shPl+IiKg8U1NTXD7D9+wRlcfkSQNEIhGsrKzQpk0bSKX81xwRNUza2tqQSJrXA3SJaoLJkwZJJBL+YiIiImpkuGCciIiISA1MnoiIiIjUwOSJiIiISA1MnoiIiIjUwOSJiIiISA1MnoiIiIjUwOSJiIiISA1MnoiIiIjUwOSJiIiISA1MnoiIiIjUwOSJiIiISA1MnoiIiIjUwOSJiIioGSiVyV6onP5HS9MBEBERUd2TiMVYHXkYd9Meq5S1b9sai2eO1EBUjROTJyIiombibtpjJN5O13QYjR6n7YiIiIjUwOSJiIiISA1MnoiIiIjUwOSJiIiISA1MnoiIiIjUwOSJiIiISA1MnoiIiIjUwOSJiIiISA1MnoiIiIjUwOSJiIiISA1MnoiIiIjU0OiSp0OHDsHe3l7lv08//VSp3v79+zFs2DD07NkTb775Jn799VeVtnJzc7F48WL0798fDg4OmD17Nh4+fFhfp0JERESNUKN9MfDWrVthZGQkfLawsBD+fOzYMSxZsgQzZszAK6+8gri4OAQFBeHbb79Fnz59hHpz5sxBYmIili5dCl1dXXz++efw9/fHwYMHoaXVaC8NERER1aFGmyH06NEDZmZmFZZt2rQJ3t7emDNnDgDglVdewc2bNxEZGYno6GgAQEJCAv7zn/9g27ZtcHNzAwDY2trCy8sLP//8M7y8vOrlPIiIiKhxaXTTdtVJSUnB7du38cYbbyht9/LywpkzZ1BcXAwAOHXqFIyNjeHq6irUsbOzQ7du3XDq1Kl6jZmIiIgaj0abPA0fPhzdunXD4MGDERUVhdLSUgBAUlISgLJRpPI6duwIqVSKlJQUoZ6trS1EIpFSPTs7O6ENIiKixqBlK2PISmWaDqPZaHTTdubm5pg1axZ69+4NkUiEEydO4PPPP8eDBw8QGhqK7OxsAICxsbHSforPivKcnBylNVMKJiYmuHLlygvFKJfLkZ+f/0JtEBFpmkgkgr6+vqbDQEFBAeRyuabD0Kjq+qKFsT7EEjHWr92PlJRHKuV9nTpjyrtDqj1OYWFhlde6KfeDXC5XGVCpTKNLntzd3eHu7i58dnNzg66uLnbu3IkZM2ZoMLL/kUqluHbtmqbDICJ6Ifr6+ujevbumw0BycjIKCgo0HYZG1bQvUlIe4VbifZXt1tatq9yvpUkLlMpk0NPTq7ROSUkp/vnnKqRSafUBN1I6Ojo1qtfokqeKvPHGG9i+fTuuXbsGExMTAGWPITA3Nxfq5OTkAIBQbmxsjPT0dJW2srOzhTrPS1tbG506dXqhNoiINK2m/wqva7a2tk16xKMm6rovDFvoQSIWY+mOw7id/lil3MayNZa+OxKdO3dusn2RmJhY47pNInkqz87ODkDZmibFnxWftbW10a5dO6HemTNnVIbpkpOT0aVLlxeKQSQSwcDA4IXaICKiMg1h6rC5uJ3+GDdTVQcWFJpyX6iToDbaBePlxcXFQSKRoHv37mjXrh1sbGxw/PhxlTouLi7CkJyHhweys7Nx5swZoU5ycjL++ecfeHh41Gv8RERE1Hg0upEnPz8/ODs7w97eHgAQHx+Pffv2YfLkycI03axZs7BgwQK0b98ezs7OiIuLw+XLlxETEyO04+DgADc3NyxevBgLFy6Erq4uPvvsM9jb22Po0KEaOTciIiJq+Bpd8mRra4uDBw8iPT0dMpkMNjY2WLx4MXx9fYU6w4cPR0FBAaKjo7FlyxbY2toiIiICDg4OSm19/vnnWLNmDUJDQ1FSUgI3NzeEhITw6eJERERUqUaXJYSEhNSo3pgxYzBmzJgq6xgZGWH16tVYvXp1bYRGREREzUCTWPNEREREVF+YPBERERGpgckTERERkRqYPBERERGpgckTETUppbKqX45aXTkRUXUa3d12RNT0yUplEEsq/7ddVeUSsRirIw/jbprqKybat22NxTNH1lqcRNQ8MXkiogZHLBFjXfB2pCSpviainZ0lPgqbWuX+d9MeI/F25a+YoKahVCaDRFx5kl1dOdHzYvJERA1SSlI6bl1L0XQY1IBJxGIsOnYASRmqo4x2rVpjjfdoDURFzQGTJyIiarSSMh7j+sP7mg6DmhmOZxIRERGpgckTERERkRqYPBERERGpgckTERERkRqYPBERERGpgckTERERkRqYPBERERGpgckTERE1SzJ51e85rK6cmi8+JJOIiJolsUiMqL9jcD/vgUqZlaEFpveepIGoqDFg8kRERM3W/bwHuJNzT9NhUCPDaTsiIiIiNTB5IiIiIlIDkyciIiIiNTB5IiIiIlIDkyciIiIiNTB5IiIiIlIDkyciIiIiNTB5IiIiIlIDkyciIiIiNTB5IiIiIlIDkycialRatjKGrJQvbCUizeG77YioUWlhrA+xRIz1a/cjJeWRUllfp86Y8u4QDUVGRM0FkyciapRSUh7hVuJ9pW3W1q01FA3VBTPjFiiVySARc5KEGhYmT0RE1CAZ6etBIhYjZN8hJD96rFQ2oHMnzBw6SEORUXPH5ImIiBq05EePcT0tXWmbTetWGoqGiAvGiYiIqBaUyqq+kaO68saEI09ERET0wiRiMRYdO4CkjMcqZXatWmON92gNRFU3mDwRERFRrUjKeIzrD+9XX7ECMrkMYlHFE2JVlWkCkyciIiLSOLFIjKi/Y3A/74HSditDC0zvPUlDUVWMyRMRERE1CPfzHuBOzj1Nh1GthjMGRkRERNQIMHkiIiIiUgOTJyIiIiI1MHkiIiIiUgOTJyIiIiI1MHkiIiIiUgOTJyJqNlqatGhWr5AgorrB5zwRUbNh2EIPErEYS3ccxu101VdI2Fi2xtJ3R2ogMiJqTJg8EVGzczv9MW6mpms6DCJqpDhtR0RERKQGJk9ERERUJTPj6tcLNiectiMiIqIqGemXrRcM2XcIyY9U1wsO6NwJM4cO0kBkmsHkiYiIiGok+dFjXE9TXS9o07qVBqLRHE7bEREREamByRMRkRr4nCgi4rQdEZEaJGIxFh07gKQM1XUfdq1aY433aA1ERUT1ickTEZGakjIe4/rD+5oOg6rQqoUhSmUySMScYKHax+SJiIiaHGPdsrvDlp3ahztZj1TKna07Y7rjUA1ERk0Bkyciov9P8SwbjlY0HXeyHuFmZprK9vYmrTUQDTUVzT55unXrFlauXImEhAS0aNECPj4+mDNnDnR0dDQdGhHVMz7LhtQhl5dCJJI8d3lz0tSmUZt18pSdnY0pU6bAxsYG4eHhePDgAcLCwlBYWIjQ0FBNh0f1SFYqg1hS+Q91deXV/VJoSr80mgM+y4ZqQiSS4GLiMuQV3FEpM9TvAMdOn2ggqoapqU2jNuvk6bvvvsPTp08REREBU1NTAEBpaSmWLVuG6dOnw8LCQrMBUr0RS8RYF7wdKUmqX5jdHTpi+kdjqtxfIhZjdeRh3E1THa1o37Y1Fs8cWWuxElHDkVdwB9n5NzUdRqPRVKZRm3XydOrUKbi4uAiJEwC88cYb+OSTT/DHH39g1KhRdXr8Fx3toNqVkpSOW9dSVLZb21pALBFj/dr9SElR/RdTX6fOmPLuENxNe4zE26rJV0uT6tfRcGSqaajJ1MSL9jWniohU1ffPhUgul8trrbVGxsXFBW+//TYWLFigtN3d3R0+Pj4q22vi4sWLkMvl0NbWrrauSCRCXm4+ZCWqD9XT0taCgaGe2sdXVzPufiUikQjZmbkoKSlVKdPV04GhsQGys56ipLSCcl1tGBrqIysnv+JyHW0YtdBDbkEhSktV+1pbS4IWerovfA5NqS+ftz9q2hdP8vIrbFtPRxtGBnp48vQppBX0lZ62Noz19ZCZ/xQlsgr219KGsZ4+8ooLUVLBwzK1JRK00K6+r6vqS5FIBGlpHuTykgrKtKAtMazVvwv18bPxPP1R0754Ulh5uZGOPnKL8yos1xJLYKRT9bUUiUQolj6BrIK+EIu0oKPdsln0BVC3/aEt0YKhdguVfZ71oj8XUqkUIpEIjo6O1R6rWY885eTkwNjYWGW7iYkJsrOzn6tNkUik9P/qGBoZPNdxaktN42wOTMyMqi43rfqH19S46r400q/bZLip9eWL9Ed1fdHSsJryFlX3tZlB1eWGOi/W19X1pbbE8IX2V1dd/2y8SH9U1xct9aouN9J5sWupo93yhfZXV0PuC6Du+6MqL/pzIRKJatxfzTp5qgsODg6aDoGIiIjqULNeZGFsbIzc3FyV7dnZ2TAxMdFARERERNTQNevkyc7ODklJSUrbcnNz8ejRI9jZ2WkoKiIiImrImnXy5OHhgdOnTyMnJ0fYdvz4cYjFYri6umowMiIiImqomvXddtnZ2fD29oatrS2mT58uPCRzxIgRfEgmERERVahZJ09A2etZVqxYofR6lrlz5/L1LERERFShZp88EREREamjWa95IiIiIlIXkyciIiIiNTB5IiIiIlIDkyciIiIiNTB5IiIiIlIDkyciIiIiNfDFwE3Qjz/+iNjYWFy9ehU5OTno0KEDfH198fbbbyu9MXr//v3YunUr0tLSYGtri7lz52LgwIFC+eXLl7Fnzx6cP38eDx8+hIWFBYYNG4b3338fBgbKb96+ePEi1q5di2vXrqFVq1aYMGEC/P39a/2N4o1NfffFf//7X+zevRuXLl1CcnIyPD09ERUVVa/n3FDVd1989913+Pnnn3Hjxg0UFBSgU6dOCAgIwGuvvVav590Q1XdfHD58GHv27MHt27dRUFCAtm3b4s0334S/vz+f6QfNfGcopKen44033kB+fj7OnDkDMzOzOj/f2sDkqQnasWMHXnrpJQQHB6Nly5Y4ffo0lixZgvT0dAQFBQEAjh07hiVLlmDGjBl45ZVXEBcXh6CgIHz77bfo06cPgLIfqDt37mDatGmwsbFBYmIiNm3ahL///hu7du0Sjnfnzh34+fnB1dUVc+bMwY0bN/Dpp59CIpHAz89PE5egwajvvrh48SLOnz+PXr16oaioSBOn3GDVd19s3rwZbm5umDBhAgwMDHD8+HHMnDkTYWFhGDlypCYuQYNR332RnZ0Nd3d3BAQEwNDQEJcvX0ZERATS09OxYsUKTVyCBqW++6O8sLAwGBgYID8/v75Ot3bIqcnJyMhQ2RYSEiJ3dHSUl5aWyuVyuXzo0KHyefPmKdUZN26cfNq0aVW2ExsbK+/SpYv8v//9r7BtyZIl8oEDB8qLioqEbRs2bJA7OTkpbWuO6rsvFG3K5XL5pEmT5AEBAS98Dk1FffdFRfXee+89+fDhw5/7HJqK+u6LimzcuFHeq1cveUlJyfOcQpOiqf44ffq0vH///vJt27bJu3TpUuH+DRXXPDVBFQ17duvWDXl5ecjPz0dKSgpu376NN954Q6mOl5cXzpw5g+Li4krb6d69OwDg4cOHwrZTp05h8ODBSsPfXl5eyMnJQUJCQq2cU2NV330hFvNHujL13ReVHa98neaqvvuiIqampigpKYFMJnve02gyNNEfUqkUK1aswKxZs2BqalpLZ1J/+Ju2mbhw4QIsLCxgaGiIpKQkAICtra1SnY4dO0IqlSIlJaXKdgDAzs4OAJCfn4/79+8LnxXs7OwgEomEY9H/1FVfkPrquy8uXLjA/qpEffRFSUkJCgoKcP78eezcuRMTJkyAtrZ2LZ5F01HX/bFr1y5IJBJMmDChliOvH1zz1AycP38ecXFxWLhwIYCy+X8AMDY2Vqqn+Kwof1ZmZibCw8MxePBg2NjYAAByc3MrbEtHRwf6+vqVttVc1WVfkHrquy+OHj2KhIQEREZG1kL0TUt99EVJSQl69OghfB45ciQWL15cW6fQpNR1fzx48ACRkZGIjIyERCKpgzOoe0yemrj09HTMnTsXzs7OmDx58nO3I5VKMW/ePADA0qVLaym65oV90XDUd19cv34dn3zyCUaNGsW77Z5RX32hpaWFAwcOoKioCFeuXMFXX32FRYsWYe3atc99zKaoPvpj3bp1cHV1hYuLy4uEqlFMnpqwnJwc+Pv7w9TUFOHh4cJ6GBMTEwBlo0bm5uZK9cuXK8jlcixevBiXL1/G7t270aZNG6HMyMhIaKu84uJiFBQUqLTVXNVHX1DN1Hdf3Lt3D/7+/ujVqxeWL19eF6fUaNV3X/Ts2RMA4OTkBGtra8ycOROTJk0Stjd39dEfCQkJ+Omnn7Bv3z5h/4KCAgDA06dPoa+vD319/bo7yVrC5KmJKiwsxPTp05Gbm4u9e/cKSQ7wv7nnpKQkpXnopKQkaGtro127dkptrV27Fj/++COio6PRtWtXpTIDAwNYWVmprG1KTk6GXC7n+g7UX19Q9eq7LzIzM+Hn54dWrVohIiKC62vK0fTPxcsvvwwAuHv3LpMn1F9/JCcnQyqVVvi4jtdeew1eXl747LPPavPU6gQXjDdBJSUlmDNnDpKSkrB161ZYWFgolbdr1w42NjY4fvy40va4uDi4uLgo3TW3ZcsW7NixA2FhYZUOsXp4eCA+Ph5SqVSpLWNjYzg4ONTimTU+9d0XVLn67ounT5/C398fUqkUW7ZsgaGhYe2fVCPVEH4uFAuZn/3ib47qsz/c3d2xa9cupf/8/f0BAJGRkZg5c2YdnGHt48hTE7Rs2TL8+uuvCA4ORl5eHi5duiSUde/eHTo6Opg1axYWLFiA9u3bw9nZGXFxcbh8+TJiYmKEukePHsWGDRvw5ptvwtraWqmd9u3bC7el+vn54ejRo5g/fz4mTJiAmzdvYtu2bZg7d26zf3pvffdFZmYmzp49K/z56dOnwi88T0/PRjEcXlfquy9mzZqF69evY9WqVUhLS0NaWppQT/FQweaqvvvinXfewZAhQ2BnZwexWIy///4b27dvh7u7O3r16lVfp91g1Wd/mJubK039AWVT2wDg6OjYaJ4wLpLL5XJNB0G1a9CgQcJfxmfFx8fD2toaQNmj9qOjo4VH7c+bN0/pUfvBwcE4fPhwhe2sWbMGo0aNEj5fvHgRYWFhuHbtGszMzPDOO+/w9Syo/77466+/Kl3kWf54zVF994W9vX2lsdy4ceN5T6NJqO++WLNmDX7//XekpaVBS0sL1tbWeOuttzBx4sRm/w88QDPfGeUdOnQIixYtalSvZ2HyRERERKQGrnkiIiIiUgOTJyIiIiI1MHkiIiIiUgOTJyIiIiI1MHkiIiIiUgOTJyIiIiI1MHkiIiIiUgOTJyIiIiI1MHkiomZv0KBBmD59uqbDIKJGgskTERERkRqYPBERERGpgckTETVbBQUFmg6hzuTn52s6BKImi8kTETUI169fh729PeLj44VtV65cgb29PUaOHKlUd9q0aRgzZozw+dtvv4W3tzdefvlluLm5YdmyZcjJyVHax9fXF8OHD8eVK1fwzjvvoHfv3ti4cWOl8Rw+fBjdu3fH2rVraxT/pk2b0KNHD2RmZqqULVmyBE5OTigqKhK2nTx5EhMnTkSfPn3g4OCAgIAA/PvvvyrXJDg4GIMHD0bPnj3h6uqKRYsW4cmTJ0r1wsPDYW9vj8TERMyfPx/9+vXDxIkTaxQ3EamPyRMRNQhdunSBsbExzp8/L2w7f/48xGIxrl+/jry8PACATCZDQkICnJycAJQlDsuXL0ebNm0QHByMYcOGYe/evZg6dSqkUqnSMbKysuDv749u3bph8eLFcHZ2rjCWvXv3YtGiRfD398fChQtrFL+Pjw9KSkoQFxentL24uBg//fQThg4dCl1dXQDAkSNHMH36dBgYGGDBggUIDAxEYmIiJk6ciNTUVGHf06dPIyUlBaNGjcKSJUvg5eWFuLg4BAQEQC6Xq8TwwQcfoKCgAHPnzlVKLomodmlpOgAiIgAQi8VwdHRUSp4uXLiA1157DfHx8bh48SI8PDyERMrJyQmZmZmIioqCm5sboqOjIRaX/XvQzs4Oy5cvR2xsLN5++22hvUePHmHZsmUYP358pXHs2rULq1evxuzZsxEYGFjj+Dt06AAHBwfExsZi0qRJwvaTJ08iOzsbPj4+AICnT59i1apVGDNmDFasWCHUGzlyJF5//XVERUUJ2ydOnIipU6cqHadPnz6YN28eLly4ICSQCl27dsWGDRtqHDMRPR+OPBFRg9G3b1/8888/wnqdCxcuwMPDA127dsWFCxcAlI1GiUQi9O3bF6dPn4ZUKsXkyZOFxAkAxowZA0NDQ5w8eVKpfR0dHYwaNarS40dHR2PVqlXCaJC6fHx88Pfff+Pu3bvCtqNHj8LKygr9+/cHUDaalJOTA29vb2RmZgr/icVi9O7dG3/99Zewr56envDnoqIiZGZmonfv3gCAq1evqhy/qqSQiGoPR56IqMFwcnJCSUkJLl26BEtLS2RkZMDJyQmJiYnCiNT58+fRqVMnmJqaIi0tDUDZSFN5Ojo6aNeuHe7du6e03cLCAjo6OhUe++zZs/jtt9/g7++PadOmPVf8Xl5eWL16NWJjYxEUFITc3Fz8+uuvePfddyESiQAAt2/fBgBMmTKlwjYMDQ2FP2dlZSEiIgJxcXHIyMhQqpebm6uyr7W19XPFTUTqYfJERA3Gyy+/DF1dXZw7dw5t27ZFq1atYGtrCycnJ+zevRvFxcXCVN7zKD+S86zOnTsjJycH33//PcaNG4d27dqp3b6JiQkGDhyIo0ePIigoCMePH0dxcTHefPNNoY5irdK6detgbm6u0oZEIhH+PGfOHCQkJMDPzw/dunWDgYEBZDIZpk2bVuGaJ8WaKiKqW0yeiKjB0NHRQa9evXD+/Hm0bdtWWNPTt29fFBcXIzY2Fo8fP0a/fv0AAG3btgUAJCUlKSU7xcXFSE1NxYABA2p87JYtW2LTpk2YOHEi3n33XezevRsWFhZqn4OPjw8CAwNx+fJlHD16FN27d0fnzp2FckWcrVq1qjK+7OxsnDlzBrNmzUJQUJCwXTFyRUSawzVPRNSg9O3bF5cvX8Zff/2Fvn37AgDMzMzQsWNHREdHA4CQVA0YMADa2tr45ptvlEZiDhw4gNzcXHh6eqp1bEtLS3z99dcoKirC1KlTVR4JUBMeHh5o2bIltm7dinPnzimNOgGAu7s7DA0NERUVpXI3IADhUQflR6DK27lzp9oxEVHt4sgTETUoTk5O2Lx5M+7fv690N5mTkxP27t2Ll156CZaWlgDKkqrp06cjIiIC06ZNw6BBg5CcnIzdu3ejZ8+eKolLTXTo0AHbtm3D5MmT4efnh127dimtQ6qOtrY2vL29ERMTA4lEAm9vb6VyQ0NDLF26FB999BFGjRoFLy8vmJmZIS0tDSdPnoSjoyNCQ0NhaGiIfv36YevWrZBKpbCwsMAff/yh9CgDItIMjjwRUYPi4OAAiUSCFi1aoGvXrsJ2RSL17O35s2bNQmhoKNLS0rBmzRr8+OOPGDt2LLZv3w5tbe3nisHe3h7R0dG4ffs2ZsyYgcLCQrX2VzyWwMXFBW3atFEpHzFiBHbs2IE2bdpg27ZtWLVqFeLi4tCtWzeluwE3bNgANzc37N69Gxs3boSWlpYw+kZEmiOSV7TqkIiIntv169fh4+ODtWvX4q233tJ0OERUyzjyRERUy/bt2wcDAwMMHTpU06EQUR3gmiciompkZWVVuLhbQSKRwMzMDCdOnEBiYiL27duHd955BwYGBvUYJRHVF07bERFVw9fXF2fPnq20/KWXXsKJEycwaNAgPH78GG5ubli3bp1aC82JqPFg8kREVI0rV64gJyen0nJdXV3hsQpE1PQxeSIiIiJSAxeMExEREamByRMRERGRGpg8EREREamByRMRERGRGpg8EREREamByRMRERGRGpg8EREREanh/wFVC04gjJfzeAAAAABJRU5ErkJggg==\n"},"metadata":{}}]},{"cell_type":"code","source":["fig=plt.figure(figsize=(10,5))\n","jobcategorycount=sns.countplot(data=df_u,x='work_year',hue='job_category',palette='viridis')\n","jobcategorycount.set(xlabel='Year',ylabel='Number Reported',title='Count of Recorded Job Category by Year')\n","sns.move_legend(jobcategorycount,'upper left',bbox_to_anchor=(1,1),title='Job Categories')\n","plt.savefig('/content/CountCategoryByYear')"],"metadata":{"colab":{"base_uri":"https://localhost:8080/","height":365},"id":"f1yXfNGjA_k3","executionInfo":{"status":"ok","timestamp":1714702941908,"user_tz":300,"elapsed":1084,"user":{"displayName":"Jenny O","userId":"07622373657144372939"}},"outputId":"581d1803-7d52-4b48-8e02-198b87f157c2"},"execution_count":null,"outputs":[{"output_type":"display_data","data":{"text/plain":["
"],"image/png":"iVBORw0KGgoAAAANSUhEUgAABJsAAAHfCAYAAAD3BtnAAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAADw5ElEQVR4nOzdeVxO6f/48VelKEqyRbZEd5Yo2Sprxp5BYyeMJSb7nn2QfVeMEFKYZBvFMIaxjLF8ZmQbZpAsRWRJaK/790e/ztetKE1kzPv5ePR4OOdcy/tc96nP537PdV1HS61WqxFCCCGEEEIIIYQQIg9o53cAQgghhBBCCCGEEOLzIckmIYQQQgghhBBCCJFnJNkkhBBCCCGEEEIIIfKMJJuEEEIIIYQQQgghRJ6RZJMQQgghhBBCCCGEyDOSbBJCCCGEEEIIIYQQeUaSTUIIIYQQQgghhBAiz0iySQghhBBCCCGEEELkGUk2CSGEEEIIIYQQQog8I8kmIYT4jKSkpLBo0SKaNm2KlZUV7u7u+R3SR+Xk5ISHh0eetRcREYFKpWL37t151uabdu/ejUql4vLlyx+sD/FuHh4e2Nra5ncYQgghhBCfDUk2CSE+O3fv3mXGjBm0aNECa2tr6tSpQ48ePfDz8yMhISG/wwNg69atHySBsWvXLnx9fWndujULFiygf//+by3r6uqKSqVSfmrVqkWHDh3YvHkzaWlpeR7b5+zs2bOoVCoOHjyYbzFcu3aN8ePH07RpU2rWrEn9+vXp378/u3btIjU19b3bW7t2LT///PMHiPS/JzQ0FCsrK5YuXZrl9XXr1qFSqTh27NjHDUwIIYQQ4gMpkN8BCCFEXjp27BijRo1CT0+Pjh07YmlpSXJyMn/88QeLFy/m5s2bzJkzJ7/DZPv27RQrVgwXF5c8bffMmTOULl2aKVOm5Ki8qakpY8eOBeDZs2eEhIQwf/58nj17xpgxY/I0NvHhBAUFMXPmTIoXL07Hjh2pWLEir1694syZM0ydOpXo6GiGDh36Xm36+PjQunVrvvjiiw8U9X+Hra0t3bt3Z9OmTXz55ZdUrVpVuRYZGcmaNWto06YNzZo1y78ghRBCCCHykCSbhBCfjXv37jFmzBjKli2Ln58fpUqVUq717t2bO3fufPYzB548eYKRkVGOyxsaGtKxY0fluGfPnrRt2xZ/f39GjhyJjo7Ohwgz1+Li4jAwMMjvMD4pFy5cYObMmdjY2LBu3TqKFCmiXOvfvz+XL1/mxo0b+Rjhh/VveSbGjx/PkSNHmDFjBtu2bUNLSwuAOXPmUKBAAaZOnfpR4oiPj0dfX/+j9CWEEEKI/y5ZRieE+Gxs2LCBuLg45s6dq5FoylCxYkX69eunHKekpLB69Wq++OILatasiZOTE8uWLSMpKUmjnkqlwsvLK1N7b+4PlLH3zh9//MH8+fNp2LAhNjY2DBs2jKdPn2rUu3HjBufOnVOWsLm6ur7z3uLi4liwYIGyRKp169b4+vqiVquB/9tb6OzZs9y4cUNp9+zZszkbvP+vYMGC1KxZk1evXvHkyRONaz/88AMuLi7UqlWL+vXrM2bMGB48eJCpjYsXLzJ48GDq1auHjY0NHTp0wM/PT6PM6dOn6dWrFzY2NtStW5dvvvmGsLAwjTJeXl6oVCpu3rzJuHHjqFevHr169QJArVazZs0amjRpQu3atXF1dX1rQiU2Npa5c+cqY9eyZUvWrVuXaalgbGwsHh4e2NnZUbduXSZNmsSLFy/ea/zedPXqVQYNGkSdOnWwtbWlX79+XLhwIcuyCQkJzJgxgwYNGlCnTh0mTpzI8+fPs+3D29sbLS0tlixZopFoymBtba0xg87X15cePXrQoEEDatWqhYuLS6blfyqViri4OPbs2aM8S68/6w8fPmTy5Mk4ODhQs2ZN2rdvz86dOzP1HRkZydChQ7GxscHe3p558+Zx8uTJLJ/NH3/8UXm+GjRowPjx43n48KFGmYy9le7evcvgwYOxtbVl/PjxrFq1iho1amj8nmWYPn06devWJTExMduxvHfvHgMHDsTGxoZGjRrh7e2t/I6p1WqcnJz45ptvMtVLTEzEzs6OGTNmvLVtQ0NDpk6dyvnz5wkKCgLg8OHD/PLLL4wbN45SpUqRlpbG5s2bad++PdbW1jg4ODBjxoxMz8HPP/+Mm5sbjRo1ombNmnzxxResXr0603JJV1dXnJ2duXLlCr1796Z27dosW7Ys23EQQgghhPinZGaTEOKz8csvv1C+fHnq1KmTo/LTpk1jz549tG7dmq+//ppLly7h4+NDWFgYq1evznUcnp6eGBkZMXz4cCIjI/Hz82P27NmsWLECgClTpjBnzhwMDAyUpU0lSpR4a3tqtZpvvvmGs2fP0qVLF6pVq8bJkydZtGgRDx8+ZMqUKZiYmLBo0SLWrl1LXFycsjTOwsLiveOPjIxES0tLY4bUd999x8qVK2nbti1dunTh6dOnBAQE0Lt3b/bu3auUPXXqFEOGDKFUqVL07duXEiVKEBYWxrFjx5RE32+//cbgwYMpV64cw4cPJyEhgYCAAHr27Mnu3bspV66cRjyjRo2iYsWKjBkzRvniv3LlSr777juaNm1K06ZN+fPPPxkwYADJyckadePj4+nTpw8PHz6kR48elClThtDQUJYtW0Z0dLQym0StVuPu7s4ff/xBjx49sLCw4PDhw0yaNOm9xy/DjRs36N27N4ULF2bQoEEUKFCAwMBAXF1dCQgIoHbt2hrlZ8+erTw34eHhbN++nfv37+Pv76/MgnlTfHw8Z86coW7dupQtWzZHcW3ZsgUnJyc6dOhAcnIy+/fvZ9SoUfj4+CjLuBYtWsS0adOoVasW3bp1A6BChQoAPH78mG7duqGlpUXv3r0xMTHhxIkTTJ06lZcvXyr7hMXFxdGvXz+io6OVZyEkJCTLBOju3buZPHky1tbWjB07lidPnrBlyxbOnz+v8XxBepJ44MCB2NnZMWnSJAoVKoStrS2rV6/mwIED9OnTRymblJTEoUOHaNWqFQULFnznuKSmpjJo0CBq167NhAkTOHnyJF5eXqSmpjJq1Ci0tLTo0KEDvr6+xMTEYGxsrNQ9evQoL1++5Msvv3xnH23btmXv3r0sWbIEe3t75s6di62tLT169ABgxowZ7NmzBxcXF1xdXYmIiGDr1q1cvXqV7du3o6urC8CePXswMDDg66+/xsDAgDNnzrBq1SpevnyZ6ZmNiYlh8ODBtG/fni+//JLixYu/M0YhhBBCiDyhFkKIz8CLFy/UlpaW6m+++SZH5a9du6a2tLRUT506VeP8ggUL1JaWlurTp08r5ywtLdWrVq3K1Ebz5s3VkyZNUo537dqltrS0VPfv31+dlpamnJ83b566WrVq6tjYWOVc+/bt1X369MlRrIcPH1ZbWlqq16xZo3F+xIgRapVKpb5z545yrk+fPur27dvnqN0+ffqo27Rpo37y5In6yZMn6rCwMPXChQvVlpaWajc3N6VcRESEulq1aurvvvtOo/7ff/+trl69unI+JSVF7eTkpG7evLn6+fPnGmVfH4+OHTuq7e3t1c+ePVPOXbt2TW1lZaWeOHGicm7VqlVqS0tL9dixYzXaevLkibpGjRpqNzc3jXaXLVumtrS01PhMVq9erbaxsVGHh4drtLFkyRJ1tWrV1Pfv31er1f83xuvXr1fKpKSkqHv16qW2tLRU79q1651jeebMGbWlpaX6xx9/VM65u7ura9Soob57965y7uHDh2pbW1t17969lXMZz03nzp3VSUlJyvn169erLS0t1T///PNb+814jj09Pd8Z3+vi4+M1jpOSktTOzs7qvn37apy3sbHRGMsMU6ZMUTs6OqqfPn2qcX7MmDFqOzs7pf2NGzeqLS0t1YcPH1bKJCQkqNu0aaO2tLRUnzlzRunf3t5e7ezsrE5ISFDK/vLLL2pLS0v1ypUrlXOTJk1SW1paqpcsWZIpru7du6u7du2qce6nn37S6OttMtqdM2eOci4tLU3t5uamrlGjhvrJkydqtVqtvnXrltrS0lK9bds2jfpDhw5VN2/eXON5fJuIiAi1jY2Nun79+uoaNWqo//77b7VarVb/73//U1taWqr37dunUf7EiROZzr/5GarVavX06dPVtWvXVicmJirn+vTpo7a0tFRv374927iEEEIIIfKSLKMTQnwWXr58CUDhwoVzVP748eMAfP311xrnBwwYoHE9NzJmfWSoW7cuqampREZG5qq9EydOoKOjk2mp3YABA1Cr1Zw4cSLXsd66dQt7e3vs7e1p27Ytvr6+ODk5MX/+fKXM4cOHSUtLo23btjx9+lT5KVGiBBUrVlRmqly9epWIiAj69u2bad+ojPF49OgR165do3PnzhozQ6ysrHBwcMhy3DNmfWT47bffSE5Opk+fPhrj/PoSyQwHDx7Ezs4OIyMjjdgdHBxITU3lf//7H5A+xgUKFKBnz55KXR0dHY1ZMu8jNTWVU6dO8cUXX1C+fHnlfKlSpXB2duaPP/5QntkM3bt3V2auQPr+WQUKFHjns/i+zz1AoUKFlH8/f/6cFy9eYGdnx9WrV7Otq1ar+emnn3ByckKtVmuMaaNGjXjx4gV//vknACdPnqR06dK0aNFCqV+wYEFlplSGK1eu8OTJE3r27Kkx+6hZs2ZUrlw5y33WXv+cMnTs2JGLFy9y9+5d5VxwcDBlypShfv362d4bpO/tliFj5lZycjKnT58GwNzcnNq1axMcHKyUi4mJ4eTJk3To0OGtM9BeZ2ZmxrBhw4iJiaF///5YWloC6c+qoaEhjo6OGuNao0YNDAwMNGaEvf4Zvnz5kqdPn1K3bl3i4+O5deuWRn96enp5/iICIYQQQojsyDI6IcRnIWOvmlevXuWofGRkJNra2srSoAwlS5bEyMgo14khINNypozES2xsbK7ai4yMpFSpUpn248lYIvdPYjUzM8PT05O0tDTu3r3L2rVrefbsmcaX/tu3b6NWq2nVqlWWbRQokP4/Jffu3QNQvjxn5f79+0D6l/Y3WVhY8Ouvv2ba8PnNZXUZbVSqVEnjvImJCUWLFtU4d+fOHf7++2/s7e2zjCdjj5/IyEhKliyZKWmTVZw58fTpU+Lj4996n2lpaTx48EDjrWQVK1bUKFe4cGFKliz5zs/3fZ97SF9u+t1333Ht2jWN/clykih5+vQpsbGxBAYGEhgY+NYykD6mFSpUyNTum79z73omKleuzB9//KFxrkCBApiammYq265dO+bNm8e+ffsYPnw4L1684JdffqF///45ujdtbW2NxODrMb3+GXTs2JE5c+YQGRmJmZkZBw8eJDk5WWOj/exYW1sDULNmTeXcnTt3ePHixVuf1df3ULtx4wYrVqzgzJkzmZKWb+4zVrp0afT09HIcmxBCCCFEXpBkkxDis1CkSBFKlSr13m/dysmX0Ld5czPeDNraWU8aVf///YY+JQYGBjg4OCjHderUwcXFheXLlzNt2jQA0tLS0NLSYv369Vm+ne5Dvwksu7123iUtLQ1HR0cGDRqU5fU3E1b/NhUrVqRAgQJcv349R+V///13vvnmG+rVq8fMmTMpWbIkurq67Nq1i5CQkGzrZ2yq/uWXX9K5c+csy6hUqpzfQC7o6ell+TtWtGhRmjdvTnBwMMOHD+fgwYMkJSVlu4/S+2rfvj3z588nODiYoUOHsm/fPmrWrEnlypX/UbtpaWkUL16cJUuWZHndxMQESE9a9+nThyJFijBy5EgqVKhAwYIF+fPPP1myZEmmje9fnwUlhBBCCPGxSLJJCPHZaN68OYGBgYSGhmJra/vOsmZmZqSlpXHnzh2NTbQfP35MbGwsZmZmyrmiRYtmmpWUlJREdHR0rmN9nySXmZkZp0+f5uXLlxqzmzKWy7we6z9lZWXFl19+yffff8+AAQMoW7YsFSpUQK1WU65cuXfO9MmYFXL9+nWNBNbrMmZ9hYeHZ7p269YtihUrlm3yKqON27dva8xEefr0aaa3dlWoUIG4uLi3xpPBzMyMM2fO8OrVK43ZTVnFmRMmJibo6+u/9T61tbUpU6aMxvk7d+7QsGFD5fjVq1dER0fTpEmTt/ajr69Pw4YNOXPmDA8ePMjU5psOHTpEwYIF8fX11ZjtsmvXrhzfV+HChUlLS8vRmN68eRO1Wq3xvL++zA00n4k3Z/WEh4fneONzSJ915O7uzqVLlwgODqZ69eoas8feJS0tjXv37mk84xmf3+u/Y8bGxjRr1ozg4GA6dOjA+fPnmTJlSo5jfJsKFSpw+vRp6tSp884E0blz54iJicHb25t69eop5yMiIv5xDEIIIYQQeUX2bBJCfDYGDRqEgYEB06ZN4/Hjx5mu3717Fz8/PwCaNm0KoBxn2LRpk8Z1SE+i/P777xrlduzY8daZTTmhr6+f42V1TZo0ITU1la1bt2qc37x5M1paWu9MRuTGoEGDSElJUcaiVatW6OjoaLwGPoNarebZs2cA1KhRg3LlyrFly5ZM95ZRr1SpUlSrVo29e/dqlLl+/TqnTp3SGPe3cXBwQFdXl4CAAI143vwsIf3tX6GhoZw8eTLTtdjYWFJSUoD0MU5JSWH79u3K9dTUVAICArKNJys6Ojo4Ojpy5MgRjSTA48ePCQkJwc7OLtOyyMDAQI236W3fvp2UlJRsP99hw4ahVquZOHFilsvprly5wp49e5S4tLS0NJ7diIgIjhw5kqmegYFBps9RR0eH1q1bc+jQoSxnU2UsoQNo1KgRDx8+1Gg7MTGRHTt2aNSpWbMmxYsX5/vvv9dY1nf8+HHCwsKUN+TlRJMmTShWrBgbNmzgf//733vPanr9d0ytVrN161Z0dXUzJcE6duzIzZs3WbRoETo6OrRv3/69+slK27ZtSU1NZc2aNZmupaSkKJ9Fxqyu15/9pKQktm3b9o9jEEIIIYTIKzKzSQjx2ahQoQJLlixhzJgxtGvXjo4dO2JpaUlSUhKhoaEcPHhQ2SjXysqKzp07ExgYSGxsLPXq1ePy5cvs2bOHL774QmOGSdeuXZk5cyYjRozAwcGBv/76i19//ZVixYrlOtYaNWqwfft21qxZQ8WKFTExMXnrXi1OTk40aNCA5cuXExkZiUql4tSpUxw5coR+/fpl2gPnn6pSpQpNmzZl586duLu7U6FCBUaPHs3SpUuJjIzkiy++oHDhwkRERPDzzz/TrVs3Bg4ciLa2Nt9++y3ffPMNnTp1wsXFhZIlS3Lr1i1u3ryJr68vABMnTmTw4MF0796dLl26kJCQQEBAAIaGhgwfPjzb+ExMTBgwYAA+Pj4MGTKEpk2bcvXqVU6cOJHpMxk4cCBHjx5l6NChdO7cmRo1ahAfH8/169c5dOgQR44cwcTEBCcnJ+rUqaPcY5UqVfjpp58y7X/zPkaPHs1vv/1Gr1696NWrFzo6OgQGBpKUlMSECRMylU9OTqZ///60bduW8PBwtm3bhp2dncYG21mpU6cOM2bMYNasWbRt25aOHTtSsWJFXr16xblz5zh69CijR48G0pOomzZtYtCgQTg7O/PkyRO2bdtGhQoV+PvvvzXarVGjBqdPn2bTpk2UKlWKcuXKUbt2bcaNG8fZs2fp1q0bXbt2pUqVKjx//pw///yT06dPc+7cOSB9w/OAgADGjRtH3759KVmyJMHBwcqyyIzZTrq6uowfP57JkyfTp08f2rdvz5MnT9iyZQtmZmb0798/x2Ouq6tL+/btCQgIeO8kUMGCBTl58iSTJk2iVq1anDx5kmPHjjF06FBlCVuGpk2bYmxszMGDB2nSpAnFixfPcT9vU79+fbp3746Pjw/Xrl3D0dERXV1dbt++zcGDB5k6dSpt2rTB1taWokWL4uHhgaurK1paWvzwww+f5DJdIYQQQvx3SbJJCPFZadGiBfv27cPX15cjR46wfft29PT0UKlUeHh4aLwJy9PTk3LlyrFnzx5+/vlnSpQowZAhQzIlPLp160ZERAQ7d+7k5MmT2NnZsWnTpvf6EvymYcOGcf/+fTZs2MCrV6+oX7/+W5NN2trafPfdd6xatYoDBw6we/duzMzMmDhxovL2vLw2cOBAjh07RkBAACNGjMDNzY1KlSqxefNmVq9eDYCpqSmOjo44OTkp9Ro3boyfnx+rV69m48aNqNVqypcvrzHuDg4ObNiwgVWrVrFq1SoKFChAvXr1mDBhQqYNmt9m9OjR6Onp8f3333P27Flq1arFxo0bGTJkiEY5fX19/P398fHx4eDBg+zdu5ciRYpQqVIlRowYgaGhIfB/Y5yxwbSWlhZOTk54eHjQqVOnbOPJ+KL/+p5WVatWZevWrSxduhQfHx/UajW1atVi8eLF1K5dO1MbM2bMIDg4mFWrVpGcnEz79u2ZNm1ajpZc9ujRA2trazZu3MjevXt59uwZBgYGVK9enfnz5yszfOzt7Zk7dy7r169n3rx5lCtXjvHjxxMZGZkp2eTh4cGMGTNYsWIFCQkJdO7cmdq1a1OiRAmCgoJYvXo1hw8fZvv27RgbG1OlShXGjx+v1C9cuDB+fn54enqyZcsWDAwM6NSpE7a2towYMUJjLy4XFxcKFSrE+vXrWbJkCQYGBnzxxRdMmDAh05sNs9OxY0cCAgKwt7enVKlSOa6no6PDhg0b+Pbbb1m8eDGFCxdm+PDhDBs2LFNZPT092rVrx7Zt295rY/DszJ49m5o1a/L999+zfPlydHR0MDMz48svv6ROnToAFCtWjLVr17Jw4UJWrFiBkZERX375Jfb29gwcODDPYhFCCCGE+Ce01PKfwoQQQoh/5MiRI7i7u7N58+a3Jg1Fus2bNzN//nxOnDhB6dKl87z9v/76i44dO7Jw4cIcJQpza968eezcuZNTp06hr6//wfoRQgghhPg3kj2bhBBCiH/o8uXLABqbzQtISEjQOE5MTCQwMJBKlSp9kEQTpO+nZmBgQKtWrT5I+5B+H/v27aN169aSaBJCCCGEyIIsoxNCCCFy6ddff+V///sfGzduxNHR8b2Wbf0XDB8+nLJly2JlZcXLly/Zt28ft27dYsmSJXne19GjR7l58yY7duygd+/e2b7VMDeePHnCb7/9xqFDh4iJiaFv37553ocQQgghxOdAltEJIYQQueTq6srVq1dp1KgRM2bMyJONoj8nmzdvZufOnURGRpKamkqVKlUYNGgQ7dq1y/O+nJycePz4MY0aNWLRokWZ3vaXF86ePUvfvn0pXrw47u7u9OnTJ8/7EEIIIYT4HEiySQghhBBCCCGEEELkGdmzSQghhBBCCCGEEELkGUk2CSGEEEIIIYQQQog8IxuE57HQ0FDUajW6urr5HYoQQgghhBAiHyUnJ6OlpYWtrW1+hyKEEB+VJJvymFqtRrbBEkIIIYQQQsj3AiHEf5Ukm/JYxowma2vrfI5ECCGEEEIIkZ8uX76c3yEIIUS+kD2bhBBCCCGEEEIIIUSekWSTEEIIIYQQQgghhMgzkmwSQgghhBBCCCGEEHlGkk1CCCGEEEIIIYQQIs9IskkIIYQQQgghhBBC5Bl5G50QQgghhBBC5LPU1FSSk5PzOwwhhMiSrq4uOjo6OS4vySYhhBBCCCGEyCdqtZqoqChiYmLyOxQhhHgnY2NjTE1N0dLSyrasJJuEEEIIIYQQIp9kJJpKlSqFgYFBjr7ECSHEx6RWq4mLi+PRo0cAlClTJts6kmwSQgghhBBCiHyQmpqqJJqKFy+e3+EIIcRb6evrA/Do0SNKlSqV7ZI62SBcCCGEEEIIIfJBxh5NBgYG+RyJEEJkL+NvVU72l5NkkxBCCCGEEELkI1k6J4T4N3ifv1WfVLLpxx9/5JtvvqFJkybY2NjQsWNHdu7ciVqtVsq4urqiUqky/YSFhWm09eLFC6ZMmUL9+vWxtbVl5MiRyvrC150/f57u3btTq1Ytmjdvzrp16zT6E0IIIYQQQgghhBA590nt2bR582bMzMzw8PCgWLFi/Pbbb0yfPp2oqCiGDx+ulKtTpw6TJk3SqFuuXDmN49GjR3Pz5k2+/fZbChYsyIoVKxg8eDC7du2iQIH0275z5w4DBw7E0dGR0aNH8/fff7NkyRJ0dHQYOHDgh79hIYQQQgghhBCfPC8vL7y9vTl9+jQmJib5Hc6/lqurKwD+/v75HIn40D6pZNN3332n8Ytrb29PTEwMmzZtwt3dHW3t9IlYRkZG2NjYvLWd0NBQfv31V3x9fWnUqBEA5ubmtGvXjp9++ol27doB4OvrS7FixVi2bBl6enrY29vz9OlT1q5di6urK3p6eh/uZoUQQgghhBBCfFS7d+9m8uTJ7Ny5E2tr64/e/9mzZ/H39yc0NJTnz59jaGhI7dq1cXFxoVWrVu/VVnx8PBs2bKB+/fo0aNDgA0UsRO58UsvossoQV6tWjZcvXxIXF5fjdk6cOIGRkRGOjo7KucqVK1OtWjVOnDihUa5FixYaSaV27doRGxtLaGhoLu9CCCGEEEIIIYTQtGrVKvr27cuNGzfo3r073377LQMHDuTVq1eMGDGC4ODg92ovPj4eb29vzp0794Eiznu+vr74+vrmdxjiI/ikZjZl5Y8//qB06dIUKVJEOXfu3DlsbGxITU2ldu3ajBo1inr16inXb926hbm5eabNqypXrsytW7cAiIuL48GDB1SuXDlTGS0tLW7duiXZYSGEEEIIIYQQ/9jBgwdZvXo1rVu3ZunSpejq6irXBg0axMmTJ0lJScnHCD+s+Ph49PX1ZfXQf8gnnWz6/fffOXDggMb+TPXq1aNjx45UqlSJR48e4evry9dff42/vz+2trYAxMbGYmhomKm9okWLcuXKFSB9A3FIX5L3Oj09PfT19Xn+/Hmu41ar1e81E0sIIYQQeSM3b3SSF4MIIT4UtVotb5r7Fzh9+jReXl5cvXqVAgUKUK9ePcaPH4+FhUWmss+ePWPWrFmcPHkSXV1dOnTowIQJEyhYsOA7+1i5ciXGxsbMmzdPI9GUoXHjxsq/k5KS+O677zh+/Dh37twhNTWV6tWrM3LkSBo2bAhAREQELVq0AMDb2xtvb28Ahg8fzogRIwAICwtj5cqVnDlzhvj4eKpWrcqwYcOUehn++usvPD09uXTpEsbGxvTo0YPSpUszZcoUjhw5orE/8tatW9m2bRt37tzB2NiYli1bMmbMGI3v1a6urjx79owFCxYwf/58rly5Qrdu3Zg6dWqWezYlJSWxdu1agoODefDgAcWLF6d9+/aMHj1aIzl16tQpvL29uXHjBqmpqZQqVYrWrVszduzYd469yB+fbLIpKiqKMWPG0KBBA/r27aucHzlypEa5Zs2a4ezszJo1a1i/fv3HDjNLycnJXLt2Lb/DEEIIIf5TdHV1qV69uvIikJxISUnh6tWrJCcnf8DIhBD/ZTKT49P222+/MXjwYMqVK8fw4cNJSEggICCAnj17snv37ixfRGVmZsa4ceO4cOEC/v7+xMbGsmjRorf2cfv2bW7dusVXX32lsWLnbV6+fElQUBDOzs507dqVV69esXPnTgYNGkRQUBDVqlXDxMSEb7/9lm+//ZaWLVvSsmVLAFQqFQA3btygZ8+elC5dmsGDB2NgYMCPP/7IsGHD8PLyUso/fPiQfv36AeDm5oaBgQFBQUFZPrcZm6Q7ODjQs2dPwsPD2b59O5cvX2b79u0aSbSYmBgGDx5M+/bt+fLLLylevHiW95qWlsY333zDH3/8Qbdu3bCwsOD69ev4+flx+/Zt1qxZo9zPkCFDUKlUjBw5Ej09Pe7cucP58+ezHU+RPz7JZFNsbCyDBw/G2NgYLy8vZWPwrBgYGNC0aVMOHTqknDMyMiIqKipT2efPn1O0aFEAZeZTxgynDElJScTHxyvlckNXV5cqVarkur4QQggh3p+WlhYFChRgkcdG7t3K/P8D3lS+sikTFwygatWqMrtJCPFB3Lx5M79DENlYtGgRRYsWJTAwEGNjYwC++OILOnfujJeXFwsXLtQoX65cOb777jsAevfuTZEiRdi2bRsDBgzAysoqyz7CwsIAsLS0zFFMRYsW5ejRoxoJn27dutG2bVv8/f2ZN28eBgYGtG7dmm+//RaVSkXHjh012pg7dy5lypRh165dSju9evWiZ8+eLFmyREk2rV+/nufPn7Nnzx6qVasGgIuLC61bt9Zo7+nTp/j4+NCoUSPWr1+vfEevXLkys2fPZt++fXz11VdK+ejoaGbNmkWPHj3eea/BwcH89ttv+Pv7U7duXeV81apVmTlzJufPn6dOnTqcOnWK5ORk1q9fL28D/Jf45JJNCQkJDBkyhBcvXhAYGJjlcrjsVK5cmdOnT2eathoeHq78ghsYGFCmTBllD6fXy6jV6kx7Ob0PLS0tDAwMcl1fCCGEELl371YUYdfu5bi8vr7+B4xGCPFfJkvoPm2PHj3i2rVrDBo0SEk0AVhZWeHg4MDx48cz1endu7fGcZ8+fdi2bRsnTpx4a7Lp5cuXABQuXDhHceno6KCjowOkz/yJjY0lLS2NmjVrcvXq1Wzrx8TEcObMGUaOHKn0naFRo0Z4eXnx8OFDSpcuzcmTJ7GxsVESTQDGxsZ06NBBY6nbb7/9RnJyMn379tWYDNK1a1eWLVvG8ePHNZJNenp6uLi4ZBvrwYMHsbCwoHLlyjx9+lQ5n7Fc8OzZs9SpU0dZpnfkyBG++uqrd05IEZ+GTyrZlJKSwujRo7l16xZbt26ldOnS2daJi4vj2LFjGq+tbNKkCWvWrOH06dM4ODgA6Umkq1evMmjQII1yR44cYcKECcqUvwMHDmBkZKTs/ySEEEIIIYQQ4vNz//59AMzNzTNds7Cw4NdffyUuLk5jIkHFihU1ylWoUAFtbW0iIiLe2k/G0rlXr17lOLY9e/awceNGwsPDNZZ6v7msLyt3795FrVazcuVKVq5cmWWZJ0+eULp0aSIjI7Gxscl0vUKFChrHGWP15qQMPT09ypcvT2RkpMb50qVL52gJ6Z07dwgLC8Pe3v6tcUL6W+ODgoKYNm0aS5cuxd7enpYtW9KmTRtJPH2iPqlk06xZs/jll1/w8PDg5cuXXLhwQblWvXp1Ll26xIYNG2jZsiVmZmY8evSITZs2ER0drfFLZGtrS6NGjZgyZQqTJk2iYMGCLF++HJVKRatWrZRyAwcOJDg4mHHjxtGzZ0+uX7+Or68vY8aMkbXVQgghhBBCCCHeKSez1zISNNevX89Rmz/88AMeHh588cUXDBw4kOLFi6Ojo4OPjw/37mU/czctLQ2AAQMGaGw8/ro3k0l5rVChQjkql5aWhqWlJZMnT87yuqmpqdLe1q1bOXv2LMeOHePkyZMcOHCAwMBANm7cqMwEE5+OTyrZdOrUKQAWLFiQ6dqRI0coWbIkycnJLF++nJiYGPT19bG1tWXWrFnUqlVLo/yKFSuYP38+M2bMICUlhUaNGjFt2jSNTUMrVqyIr68vCxYswM3NDRMTE0aOHMmAAQM+7I0KIYQQQgghhMhXZcuWBdJXwbzp1q1bFCtWLNP2KHfu3KF8+fIax2lpae+ccWRubo65uTlHjhzh1atX2S6nO3ToEOXLl8fb21sjmbVq1SqNcm9LdGXEp6urq6z0eRszMzPu3LmT6fzdu3c1jjPG6tatWxr3n5SURERERLb9vE2FChX466+/sLe3zzZxp62tjb29Pfb29kyePJm1a9eyfPlyzp49m+v+xYfzSSWbjh49mm0ZX1/fHLVlaGjIvHnzmDdv3jvL1alThx07duSoTSGEEEIIIYQQn4dSpUpRrVo19u7dy5AhQ5R9ga5fv86pU6f48ssvM9XZunUrjRo1Uo4DAgKA9C1a3mXkyJGMGTOGadOmsXjx4kxvTv31119JTk6mefPmyiyd1/cgvnjxIhcuXFCSPvB/ew7GxsZqtFW8eHHq169PYGAgffr0oVSpUhrXnz59qmyy3ahRI7Zu3cq1a9eUfZtiYmIIDg7WqOPg4ICuri7+/v40adJEiWvnzp28ePGCpk2bvvP+36Zt27YcP36cHTt20L17d41rCQkJpKWlYWBgQExMjMa+WoASb1JSUq76Fh/WJ5VsEkIIIYQQQgghPpaJEycyePBgunfvTpcuXUhISCAgIABDQ0OGDx+eqXxERARDhw6lcePGXLhwgX379uHs7PzWzcEztGvXjr///pu1a9dy9epVnJ2dKVu2LDExMZw8eZLTp0+zdOlSAJo1a8ZPP/3EsGHDaNasGREREXz//fdUqVKFuLg4pc1ChQpRpUoVfvzxRypVqoSxsTFVq1bF0tKSmTNn0qtXLzp06EC3bt0oX748jx8/5sKFC0RFRbFv3z4ABg0axL59+/j666/p06cPBgYGBAUFUaZMGWJiYpSkkomJCUOGDMHb25tBgwbh5OREeHg427Ztw9raOsvEXE507NiRH3/8kZkzZyqbgaempnLr1i0OHjzIhg0bsLa2ZvXq1fz+++80bdoUMzMznjx5wrZt2zA1NcXOzi5XfYsPS5JNQgghhBBCCCH+E9RqNYAye8jBwYENGzawatUqVq1aRYECBahXrx4TJkzQWC6WYcWKFaxcuZKlS5dSoEAB+vTpw8SJE3PU95gxY2jYsCH+/v5s376d58+fY2RkRO3atVmzZg0tWrQAwMXFhcePHxMYGMivv/5KlSpVWLx4MQcPHuTcuXMabXp6ejJnzhzmz59PcnIyw4cPx9LSkipVqrBr1y68vb3Zs2cPMTExmJiYUL16dYYNG6bUL1OmDFu2bMHT0xMfHx9MTEzo3bs3+vr6eHp6UrBgQaXsiBEjMDExISAggPnz51O0aFG6devG2LFjlRduvS9tbW1Wr17N5s2b+eGHHzh8+DD6+vqUK1cOV1dXZfN2JycnIiMj2bVrF8+ePaNYsWLUr1+fESNG5OoN9uLD01Jn/LaJPHH58mUAjbfjCSGEEOLjGdFtHmHXst9A1aJaebx2TPkIEQkh/quy+26QkJBAeHg45ubmOd5QWfwzW7ZsYe7cuRw+fPiDb5L9bzZ37lwCAwMJDQ2VzbeF4n3+Zsk7AoUQQgghhBBC/CdcvnwZAwMDjb2P/usSEhI0jp89e8a+ffuws7OTRJPINVlGJ4QQQgghhBDis3bo0CHOnTtHcHAwXbt2zbRB939Z9+7dqV+/PhYWFjx+/Jhdu3bx8uVL3N3d8zs08S8mv2FCCCGEEEIIIT5rCxcu5NWrV3Tp0oXJkyfndziflKZNm3Lo0CF27NiBlpYW1atXZ+7cudSrVy+/QxP/YpJsEkIIIYQQQgjxWTt69Gh+h/DJGjt2LGPHjs3vMMRnRvZsEkIIIYQQQgghhBB5RpJNQgghhBBCCCGEECLPSLJJCCGEEEIIIYQQQuQZSTYJIYQQQgghhBBCiDwjySYhhBBCCCGEEEIIkWck2SSEEEIIIYQQQggh8owkm4QQQgghhBBCCCFEnpFkkxBCCCGEEEKIf8TLywuVSoVKpcLKygo7Ozs6dOjA7NmzCQsLy1WbZ8+eZe3atXka582bNxk5ciRNmjTB2tqaJk2aMGTIEI4fP/5e7ahUKnx9ffM0ts/BtWvXUKlUnD179p3lMp4VlUpFzZo1admyJZ6ensTExHycQD+ys2fPolKpuHz5cn6H8tEUyO8AhBBCCCGEEEJoSktNQ1snf+YG5LbvQoUK4efnB8CrV6+4fv06gYGB7Nixg7lz59KxY8f3au/cuXNs3LiRoUOHvncsWbl79y5du3ZFpVLh4eGBiYkJkZGRHD9+nHPnztG0adMctxUYGEjZsmXzJK7/KldXV5ydnUlMTOTcuXOsXbuW27dvs2HDhvwOTeQBSTYJIYQQQgghxCdGW0ebRR4buXcr6qP2W76yKRMXDMhVXW1tbWxsbJRjR0dHevXqhZubG1OnTqVOnTqUL18+jyJ9f7t27QJg06ZN6OvrK+e/+uor0tLS3qut1+9T5E6ZMmWUcWzQoAGPHj1ix44dPHr0iFKlSuVvcDmUmppKWloaurq6+R3KJ0eSTUIIIYQQQgjxCbp3K4qwa/fyO4x/pGDBgkyfPp327dsTFBTE2LFjAdi7dy+BgYGEhYWhVquxsrJiwoQJ1KpVC0hfluft7Q2kL7kCqF+/Pv7+/oSFheHt7c358+eJiYnBzMyMLl260L9/f7S13z4jKzY2liJFimgkmjK8WS8sLIzly5dz7tw5EhMTqVixIm5ubjg7OysxTZw4kYEDByp1jh07xurVq/n7778xMDCgdevWTJo0CQMDAyB9KVXfvn3ZuHEju3fv5ujRoxgbG9OrVy8GDx6s0X9oaCheXl5cuHABtVpNlSpVGD16NI6OjgAkJSXh7e1NcHAw0dHRlC9fHnd3dzp06PDOz+PYsWP4+fnx119/kZiYiIWFBSNGjKBJkyZKmd27dzN58mT27NnDsmXL+P333ylVqhTu7u506tRJo701a9awdetW4uLicHR0pEePHu/s/12qVasGwIMHD5RkU07u88aNGyxatIhLly6RkJCAqakpXbp00RjT0NBQli9fzqVLl9DR0aFZs2ZMmTKF4sWLK2WWLFnC8ePHiYiIoEiRItSrVw8PDw+NxJerqysGBga0adOGtWvXcu/ePQIDA7G2tubYsWOsXbuWa9euoaenh5WVFZMnT6Z69epK/djYWMaNG/fOz/5zIckmIYQQQgghhBAfTJUqVShdujShoaHKuYiICDp16kSFChVISkpi//799O7dm3379mFubk7Xrl2JiooiJCREWZpXpEgRAB49eoS5uTkdOnSgcOHCXLt2DS8vL+Li4hg+fPhb46hRowbbtm1jxowZ9OzZE5VKlWVy6vbt23Tv3p0yZcowdepUSpYsyfXr17l///5b2z548CBjxozBxcWFESNGEB0dzdKlS4mNjWX58uUaZWfOnEnHjh1ZvXo1P//8M0uWLEGlUikJnz/++IN+/fphY2ODp6cnRkZGXLlyRaP/UaNGcf78eYYNG4aFhQXHjx9nwoQJGBkZvXM5YEREBM2bN2fAgAFoa2tz4sQJ3Nzc8PPzo0GDBhplx48fT7du3fj666/ZsWMHHh4eWFtbY2FhAUBAQAArV65kwIABODg48NtvvzF16tS39p2d+/fvo62trbE8MSf3OXToUEqUKMHcuXMpUqQId+/eJSrq/2YEhoaG4urqStOmTVm+fDnx8fGsWLECd3d3AgMDlXJPnjxhyJAhlCpViqdPn7Jp0yZcXV3Zv38/BQr8X+rkypUrREZGMmrUKIyMjChTpgwHDhxg7NixtGjRgqVLl6Krq8v58+d5+PChRrIpu8/+cyLJJiGEEEIIIYQQH1SZMmV4/Pixcvx6UigtLQ1HR0cuXbrEnj17GDt2LKamppiammZamgdgb2+Pvb09AGq1Gjs7OxISEggICHhnsqlz586cPn2awMBAAgMDKVy4MA0bNuSrr76iRYsWSjkvLy90dXXZvn27kuBycHB4a7tqtZpFixbRrl075s6dq5wvWbIkbm5uuLu7U7VqVeV8q1atGDFihHIvx44d49ChQ0rCYfHixVSsWBE/Pz90dHQAaNSokVL/zJkzHD16FF9fX+W8o6Mj0dHReHl5vTPZ1KdPH+XfaWlpNGjQgJs3b7Jjx45MyabevXvTu3dvAGxtbTl+/DiHDh3C3d2d1NRUfHx86NixI5MmTQKgcePGPHnyhB9++OGt/b8uLS2NlJQUkpKSOHv2LNu3b6d79+6ULFkyx/f59OlTIiIimDp1Kk5OTgA0bNhQo5+lS5dSs2ZNvL290dLSAsDS0hJnZ2eOHz+ujNf8+fOVOqmpqdja2tKkSRPOnDmjMf7Pnz9n586dlClTBkj//BcuXIijoyOrV69WymX1OWT32X9O5G10QgghhBBCCCE+KLVarXzRh/RlasOGDcPBwYFq1apRo0YNwsPDuX37drZtJSYmsmrVKlq2bIm1tTU1atRg+fLlREdH8+rVq7fW09HRYenSpYSEhDBu3Djq1q3LqVOncHd3Z+XKlUq5M2fO0Lp1ayXRlJ3w8HAiIyNp27YtKSkpyk/9+vXR1tbmypUrGuVfT1xoaWlhYWGhzMSJj4/n4sWLdOrUSUk0venUqVMYGxvTsGFDjf4cHBy4du0aqampb401KiqKSZMm0bhxY6pXr06NGjX49ddfCQ8Pz1T29TgNDAwoW7asEmdUVBSPHj2iZcuWGnVat26dzWj9nyVLllCjRg1sbW0ZOnQoKpWKadOmvdd9FitWDDMzM5YtW8aePXs0ZjRB+nieP3+eNm3akJqaqrRRqVIlypQpo/F2uOPHj9OjRw/s7OyoXr26kgB685m0tLRUEk0At27dIioqiq+++irbe37XZ/+5kZlNQgghhBBCCCE+qKioKCpVqgTAy5cvGTBgACYmJnh4eFC2bFkKFizItGnTSExMzLatxYsXExQUxLBhw6hZsyaGhoYcOXKE7777jsTERAoXLvzO+lWrVqVq1aq4ubnx9OlTBg4cyLp16+jXrx/GxsbExMS81wbVz549A2DYsGFZXn/w4IHGsaGhocaxrq4uL168ANL39ElLS3tn/8+ePSMmJoYaNWpkeT06OhpTU9NM59PS0vjmm2948eIFI0eOpGLFiujr67Nq1apMMb4tzqSkJKUPABMTE40yJUqUeGvcb+rbty9ffvkl8fHx7Nu3j6CgIFauXMm4cePe6z59fX1Zvnw5s2fPJi4ujho1ajB58mTq1atHbGwsqampzJ8/X2PmUoaM+7506RLu7u60aNGCwYMHU7x4cbS0tOjWrVumZ/LNe4yJiQHI0TPzrs/+cyPJJiGEEEIIIYQQH8yNGzd4+PAhnTt3BuDChQtERUXh4+ODlZWVUu7FixdZJknedPDgQbp3746bm5ty7vjx47mKzcTEBBcXFzw9Pblz5w7GxsYYGxvz6NGjHLdhbGwMwIwZM5QNzl/3PokrQ0NDtLW139l/0aJFMTExYd26dVlefzMBlOHOnTtcvXqV1atX88UXXyjnExISchxfhoylbk+fPtU4//pSyeyYmppibW0NpG/+/vjxYzZt2kSvXr0oU6ZMju/T3NycVatWkZycTGhoKMuWLWPo0KGcOHECQ0NDtLS0GDJkiMY9ZyhWrBgAP//8M0WKFGHFihXKPl6RkZFZ9vv6DD34v8//fZ6Z/wJZRieEEEIIIYQQ4oNITExkzpw56Onp0bVrV+D/khuvvy7+/Pnzmb7cvz6T5s02X6+bmprK/v37s43lbYmQjGVSGTNW7O3tOXToEC9fvsy2TYDKlStjamrKvXv3sLa2zvRTunTpHLUD6cvVbGxs+OGHH966HM7BwYGnT5+iq6ubZX96enpZ1suYofP62EVGRmps3J5TpqamlCxZksOHD2ucP3To0Hu3lWHixImkpaXh6+sLvP996urqUr9+fdzc3Hj58iWPHj1SxvPWrVtZtlGuXDkg/ZnU1dXVSCQFBwfnKO6Mz3/37t25vvfPkcxsEkIIIYQQQgjxj6WlpXHhwgUA4uLiuH79OoGBgdy7d48FCxYoX+xtbGwwMDBg1qxZuLm58fDhQ7y8vDIlZSwsLEhJScHPzw9bW1uKFClC5cqVcXBwICgoiCpVqlCsWDG2bduWZVLqTWvWrOHatWs4OztTpUoVEhMTOXXqFNu2beOLL77AzMwMSN+8/NixY/Tq1YtBgwZRsmRJwsLCiI+Pz/I19VpaWnh4eDB+/Hji4uJo1qwZ+vr63L9/n+PHjzNmzBjMzc1zPI7jxo2jf//+9O/fn169elG0aFH+/PNPihUrRpcuXXB0dKR58+YMGjSIQYMGoVKpiI+P5+bNm9y5c0djk/LXZSRFli5dSlpaGnFxcaxateq9Zl5l0NHRwc3Njblz51K8eHEcHR05deoUZ8+efe+2Xo+vXbt27Ny5k2HDhuXoPv/66y8WLlxIu3btKF++PC9fvsTHxwczMzMqVKgApCex+vXrx+jRo2nfvj1GRkZERUXx22+/4eLiQoMGDXB0dMTPz485c+bQsmVLQkNDc7zRuZaWFpMmTWLs2LGMGDGCjh07oqenx4ULF7C2tqZ58+a5HpN/M0k2CSGEEEIIIcQnqHzl7JeUfUp9JiQk0L17dyB9hk65cuWwt7fH29sbCwsLpVyJEiVYuXIlixYtwt3dnUqVKjFr1iw2bNig0V7z5s3p1asX69at48mTJ9SrVw9/f3+mT5/OzJkzmTNnDvr6+nTu3JmWLVtqbC6dlS+//JLExET8/f15+PAhOjo6mJmZMXHiRHr16qWUq1SpEt9//z1Lly5l1qxZpKamUqlSJY1le29q27YtRkZGrF27VpkRY2ZmRuPGjd9rHyOAunXrsmXLFlasWMHkyZPR1tamatWqjB49WimzatUq1q1bx/bt24mMjMTQ0JCqVavi4uLy1nb19PTw8vJi9uzZjBo1ijJlyvDNN99w5syZTJuY54SrqyuxsbFs27aN7du3Y29vj6enJ4MGDXrvtjK4u7tz4MABAgICGDFiRLb3WbJkSUqUKIGPjw8PHz7E0NCQunXrsnjxYmWD9Tp16rBt2za8vLyYPHkyycnJmJqa0rBhQypWrAikvzlu/PjxBAQEsHv3burUqYOPj0+ONzxv164dhQoVYu3atYwdO5aCBQtSvXr1TBuo/5doqdVqdX4H8TnJ2M0+Y+2pEEIIIT6uEd3mEXbtXrblLKqVx2vHlI8QkRDivyq77wYJCQmEh4djbm5OoUKFNK6lpaahrZM/u57kZ99CiE/Xu/5mvUn+ggghhBBCCCHEJyY/kz2SaBJC/FPyV0QIIYQQQgghhBBC5BlJNgkhhBBCCCGEEEKIPCPJJiGEEEIIIYQQQgiRZyTZJIQQQgghhBBCCCHyjCSbhBBCCCGEEEIIIUSekWSTEEIIIYQQQgghhMgzkmwSQgghhBBCCCGEEHlGkk1CCCGEEEIIIYQQIs9IskkIIYQQQgghxD/i5eWFSqVCpVJhZWWFnZ0dHTp0YPbs2YSFheWqzbNnz7J27do8jjTd5s2bUalUTJky5YO0/zonJydmz56dp216eHjg7Oycp20KkZck2SSEEEIIIYQQ4h8rVKgQgYGBfP/996xatQoXFxd+++03OnbsyA8//PDe7Z07dw4fH58PECns27cPgMOHD5OUlPRB+viQ3N3dWbJkSX6HIcRbSbJJCCGEEEIIIT4xaalp/7q+tbW1sbGxwcbGBkdHR77++mt++OEH7OzsmDp1Kvfu3cvjSHMnPDycP//8EwcHB2JjYzl27Fh+h/TeKlSogJWVVX6HIcRbFcjvAIQQQgghhBBCaNLW0WbxwiDu3Yv+qP2WL1+SCZO65ll7BQsWZPr06bRv356goCDGjh0LwN69ewkMDCQsLAy1Wo2VlRUTJkygVq1aQPqyPG9vbwBUKhUA9evXx9/fn7CwMLy9vTl//jwxMTGYmZnRpUsX+vfvj7Z29vMpQkJC0NLSYvbs2fTo0YPg4GBatWqlUcbJyYlmzZphYWHBhg0biI2NpUGDBnh6emJiYgJAXFwcS5Ys4dSpU0RFRVG8eHEaNWrEhAkTMDQ0zLLvo0eP8s0333Do0CEqVaqknH/+/DmNGzdm0qRJ9O7dmxs3brBo0SIuXbpEQkICpqamdOnShcGDBwPpy+iuXLlCSEgIALGxsSxatIjjx48TExODiYkJderUYfny5Tn9qITIU5JsEkIIIYQQQohP0L170YTdfJDfYfxjVapUoXTp0oSGhirnIiIi6NSpExUqVCApKYn9+/fTu3dv9u3bh7m5OV27diUqKoqQkBD8/PwAKFKkCACPHj3C3NycDh06ULhwYa5du4aXlxdxcXEMHz4823hCQkKoW7cu5cuXp23btgQGBvLixYtMCaKjR49y584dZsyYwbNnz5g/fz5z5sxREjgJCQmkpqYyZswYTExMePDgAWvXrsXd3R1/f/8s+27atCmlS5dm165djBs3TiMmgA4dOgAwdOhQSpQowdy5cylSpAh3794lKirqrfc0f/58Tp48ybhx4zAzMyM6OpoTJ05kOxZCfCiSbBJCCCGEEEII8UGVKVOGx48fK8evJ4XS0tJwdHTk0qVL7Nmzh7Fjx2JqaoqpqamyNO919vb22NvbA6BWq7GzsyMhIYGAgIBsk02XLl3i9u3bfP311wA4Ozvj7+/PoUOH6NKli0ZZtVrNd999h56eHgCRkZH4+PiQlpaGtrY2JiYmzJo1SymfkpJCuXLl6NWrF+Hh4Zibm2fqX0dHBxcXF3bt2sXo0aPR0dEBYNeuXbRs2RIjIyOePn1KREQEU6dOxcnJCYCGDRu+874uX76Ms7MznTt3Vs61b9/+nXWE+JAk2SSEEEIIIYQQ4oNSq9VoaWkpx2FhYSxbtozQ0FCePHminL99+3a2bSUmJuLj40NwcDAPHjwgOTlZufbq1SsKFy781rohISHo6urSpk0bAGxsbChfvjzBwcGZkk316tVTEk0AFhYWJCcn8+TJE0qWLAmkLwfcvHkzd+7cIS4uTuM+sko2AXTp0oW1a9dy8uRJmjVrxl9//cWff/7JhAkTAChWrBhmZmYsW7aM58+fY29vj6mp6TvHpHr16uzZs4eSJUvSuHFjLC0t31leiA9NNggXQgghhBBCCPFBRUVFUaJECQBevnzJgAEDuH//Ph4eHmzdupWdO3diZWVFYmJitm0tXrwYX19funbtyrp169i5cyfffPMNwDvrp6WlceDAAerXr4+2tjaxsbHExsbSokULzp07x8OHDzXKGxkZaRxnJJ4y+jh8+DCTJk2iVq1arFixgh07drB69eps4yhXrhyOjo7s3LkTSJ/VVK5cOWX2kpaWFr6+vlSuXJnZs2fTtGlTXFxc+N///vfWNqdPn86XX37Jpk2b6NChA82aNWPbtm1vLS/EhyYzm4QQQgghhBBCfDA3btzg4cOHyhKvCxcuEBUVhY+Pj8Yb1V68eJHtDB6AgwcP0r17d9zc3JRzx48fz7bemTNniI6OJjo6mnr16mW6fuDAAWV5XU4cPHiQatWqMXv2bOXcuXPnclS3a9eujB8/nocPHxIcHIyrq6vGzC9zc3NWrVpFcnIyoaGhLFu2jKFDh3LixIksZ24ZGhoydepUpk6dyt9//82WLVuYNWsWlpaW1K1bN8f3JERekZlNQgghhBBCCCE+iMTERObMmYOenh5du6a/5S4hIQEAXV1dpdz58+eJjIzUqKurq0tSUlKWbb5eNzU1lf3792cbS3BwMAYGBmzevJktW7Zo/FhZWREcHPxe95aQkKARR0YfOdGiRQuMjIwYN24cz58/x8XFJctyurq61K9fHzc3N16+fMmjR4+ybVulUjF58mQgfbmiEPlBZjYJIYQQQgghhPjH0tLSuHDhAgBxcXFcv36dwMBA7t27x4IFCyhXrhyQvk+SgYEBs2bNws3NjYcPH+Ll5UXp0qU12rOwsCAlJQU/Pz9sbW0pUqQIlStXxsHBgaCgIKpUqUKxYsXYtm1blkmp1yUmJnL48GFatWqlbC7+uq+++oq5c+dy69YtKleunKP7dXBwYPbs2axevRpbW1uOHz/O6dOnc1RXV1eXTp064evrS6NGjShTpoxy7a+//mLhwoW0a9eO8uXL8/LlS3x8fDAzM6NChQpZttejRw9atmxJ1apV0dHRYe/evejq6sqsJpFvJNkkhBBCCCGEEJ+g8uVL/qv6TEhIoHv37gAYGBhQrlw57O3t8fb2xsLCQilXokQJVq5cyaJFi3B3d6dSpUrMmjWLDRs2aLTXvHlzevXqxbp163jy5An16tXD39+f6dOnM3PmTObMmYO+vj6dO3emZcuWTJs27a2xHTt2jBcvXtCpU6csrzs7O7No0SKCg4MZNWpUju63R48eREREEBAQoCSNli5dSrdu3XJUv2XLlvj6+vLVV19pnC9ZsiQlSpTAx8eHhw8fYmhoSN26dVm8eLHy9ro31alTh7179xIREYG2tjaWlpasXbtWY9yF+Ji01Gq1Or+D+JxcvnwZAGtr63yORAghhPhvGtFtHmHX7mVbzqJaebx2TPkIEQkh/quy+26QkJBAeHg45ubmFCpUSONaWmoa2jr5s+tJfvb9X7Jy5Uq2bdvGyZMnNd56J8Sn6l1/s94kM5uEEEIIIYQQ4hOTn8keSTR9WLdu3SI8PJyAgAB69eoliSbxWZJkkxBCCCGEEEII8ZHMnDmTCxcu0LhxY4YMGZLf4QjxQUiySQghhBBCCCGE+Ej8/f3zOwQhPjiZHymEEEIIIYQQQggh8owkm4QQQgghhBBCCCFEnpFkkxBCCCGEEEIIIYTIM5JsEkIIIYQQQgghhBB5RpJNQgghhBBCCCGEECLPSLJJCCGEEEIIIYQQQuQZSTYJIYQQQgghhBBCiDwjySYhhBBCCCGEEP+Il5cXKpUKlUqFlZUVdnZ2dOjQgdmzZxMWFparNs+ePcvatWvzLMaIiAglxjd/2rRpk2f9vO7s2bOoVCouX778Qdr/p1QqFb6+vvkdhvgMFcjvAF73448/sm/fPv78809iY2OpWLEirq6ufPXVV2hpaSnlgoKC2LBhA/fv38fc3JwxY8bQvHlzjbZevHjB/Pnz+fnnn0lOTqZx48ZMmzaNUqVKaZQ7f/48Cxcu5Nq1axQvXpyePXsyePBgjf6EEEIIIYQQ4mNKTUtDRzt/5gbktu9ChQrh5+cHwKtXr7h+/TqBgYHs2LGDuXPn0rFjx/dq79y5c2zcuJGhQ4e+dyzvMnbsWBo0aKBxrlChQnnaR4YaNWoQGBiIhYXFB2n/nwoMDKRs2bL5HYb4DH1SyabNmzdjZmaGh4cHxYoV47fffmP69OlERUUxfPhwAPbv38/06dMZOnQoDRs25MCBAwwfPpytW7diY2OjtDV69Ghu3rzJt99+S8GCBVmxYgWDBw9m165dFCiQftt37txh4MCBODo6Mnr0aP7++2+WLFmCjo4OAwcOzI8hEEIIIYQQQgh0tLWZt3oPd+8//qj9VihbginDOueqrra2tsZ3MkdHR3r16oWbmxtTp06lTp06lC9fPo8izb2KFStqxPkhFSlS5KP19T4SEhIoVKjQJxmb+Dx8Usmm7777DhMTE+XY3t6emJgYNm3ahLu7O9ra2qxatYr27dszevRoABo2bMj169dZvXo169evByA0NJRff/0VX19fGjVqBIC5uTnt2rXjp59+ol27dgD4+vpSrFgxli1bhp6eHvb29jx9+pS1a9fi6uqKnp7exx0AIYQQQgghhPj/7t5/zM3bUfkdxj9SsGBBpk+fTvv27QkKCmLs2LEA7N27l8DAQMLCwlCr1VhZWTFhwgRq1aoFpC/L8/b2BtKXegHUr18ff39/wsLC8Pb25vz588TExGBmZkaXLl3o378/2nkwG8zDw4MrV64wffp05s+fz+3bt6lSpQrffvstNWvWVMq9ePGCWbNmceTIEQoVKkTXrl0xNjZm4cKF/P3330D6Mrq+ffuyc+dOrK2tlfsZP348CQkJbN++ndTUVJycnJg+fToGBgZK+1FRUSxZsoSTJ08SHx+PtbU1kydP1ogBYPfu3WzatInbt29jbGyMi4sLI0eOREdHR7k+efJkvv/+e1atWkVoaCguLi7MmDEDlUrFxIkTlckWrq6uGBgY0LlzZ5YvX86jR4+wtrbG09OTChUqaMQ2c+ZMzpw5g7GxMV9//TWRkZEcOXKEo0eP/uPPQPz7fVLJptcTTRmqVavGjh07iIuL49mzZ9y+fZsJEyZolGnXrh2LFi0iKSkJPT09Tpw4gZGREY6OjkqZypUrU61aNU6cOKEkm06cOEHLli01kkrt2rXDx8eH0NDQTFMrhRBCCCGEEEK8nypVqlC6dGlCQ0OVcxEREXTq1IkKFSqQlJTE/v376d27N/v27cPc3JyuXbsSFRVFSEiIsjSvSJEiADx69Ahzc3M6dOhA4cKFuXbtGl5eXsTFxSkrYt4lLS2NlJQUjXPa2toaiaro6Gg8PT1xc3PD0NCQpUuXMnz4cA4fPoyuri4AkydP5syZM0yYMAEzMzN27NjBn3/+maMx2bp1K3Z2dixYsIDbt2+zaNEiihcvzvjx4wF4/vw5vXr1wsDAgOnTp2NoaIi/vz/9+vXjp59+onjx4gBs2rSJxYsX069fPzw8PAgLC2P58uWkpqYqbWUYN24c3bt3Z8iQIejr6781tmvXrvH06VPGjx9PamoqCxYsYMKECQQGBgKgVqtxd3fn8ePHzJo1C0NDQ3x9fbl//36eJPvE5+GTSjZl5Y8//qB06dIUKVKEP/74A0ifpfQ6CwsLkpOTuXfvHhYWFty6dQtzc/NM+y5VrlyZW7duARAXF8eDBw+oXLlypjJaWlrcunVLkk1CCCGEEEIIkQfKlCnD48f/tyTw9aRQWloajo6OXLp0iT179jB27FhMTU0xNTXNtDQP0lfA2NvbA+mJDzs7OxISEggICMhRsmnMmDGZznXp0oW5c+cqx8+fPycgIICqVasCoK+vT9++fbl48SJ169bl5s2bHD58mIULF9KpUycAGjduTNu2bXM0HiVLlmTp0qUANGnShKtXr3Lo0CElQeTn50dsbCxBQUFKYsne3p7WrVvj6+vLxIkTefnyJatWrWLQoEHKjDFHR0d0dXVZsGABAwcOpFixYkqfPXr0wM3NLdvYXrx4wd69e5XJIHFxcUyePJmoqChMTU05ceIEf/75J1u3bqVu3bpA+oqjpk2bYmRklKP7F5+/TzrZ9Pvvv3PgwAEmTZoEpP/CA5ke4IzjjOuxsbEYGhpmaq9o0aJcuXIFSP8FyqotPT099PX1lbZyQ61WExcXl+v6QgghhHh/Wlpa7/wvtW8THx+PWq3+ABEJIf7r1Gq1vHjo/3tzLMLCwli2bBmhoaE8efJEOX/79u1s20pMTMTHx4fg4GAePHhAcnKycu3Vq1cULlz4nfXHjx9Pw4YNNc69ucqmVKlSSqIJ0mdnATx8+BBAebtcixYtlDLa2to0b96cTZs2ZXsPDg4OGscWFhbs379fOT516hQNGjSgaNGiyiwsbW1t6tWrp/QdGhpKXFwcbdq00Zip5eDgQEJCAjdu3KB+/frK+WbNmmUbF4CVlZXGeGTce0ay6fLlyxgZGSmJJoDChQtjb2+f45ld4vP3ySaboqKiGDNmDA0aNKBv3775Hc57SU5O5tq1a/kdhhBCCPGfoq+vT/Xq1d+7Xnh4OPHx8R8gIiGEQPaB/f+ioqKoVKkSAC9fvmTAgAGYmJjg4eFB2bJlKViwINOmTSMxMTHbthYvXkxQUBDDhg2jZs2aGBoacuTIEb777jsSExOzTTaVL19e2T/pbd6clJCxdC4jvujoaHR1dTNNcshqa5ictp+UlKQcP3v2jAsXLlCjRo1MdTP2Tnr27BkAnTtnvaH7gwcPNI5LlCiR69jg/+790aNHWd5nTu9d/Dd8ksmm2NhYBg8ejLGxMV5eXsq6z6JFiwLps5JKliypUf7160ZGRkRFZd5I7/nz50qZjD8KGTOcMiQlJREfH6+Uyw1dXV0l+yuEEEKIjyO3swfMzc1lZpMQ4oO4efNmfofwSbhx4wYPHz5UkiIXLlwgKioKHx8frKyslHIvXrzA1NQ02/YOHjxI9+7dNZaEHT9+PO8Df4eSJUuSnJzMixcvNBJOT58+zZP2ixYtSuPGjRk1alSmaxkJzIzvrN7e3lmOW7ly5fIkljeVKlUqy/vMq3sXn4dPLtmUkJDAkCFDePHiBYGBgRq/uBn7K926dUtjr6Vbt26hq6urvEazcuXKnD59OtNUzfDwcCwtLQEwMDCgTJkyyh5Or5dRq9WZ9nJ6H1paWhpvERBCCCHEpys3S++EECInZAld+myYOXPmoKenR9euXYH073zwfzNmAM6fP09kZKTG0rU3Z/u83ubrdVNTUzWWoH0MGW+EO3LkiLJnU1paGr/88kuetO/g4MC+ffuwsLB463dLW1tb9PX1iYqKomXLlnnSb05YW1sTGxvL//73P+rVqwekL188ffq07NkkFJ9UsiklJYXRo0dz69Yttm7dSunSpTWuly9fnkqVKnHw4EG++OIL5fyBAwewt7dXMrxNmjRhzZo1nD59WlkLGx4eztWrVxk0aJBSr0mTJhw5coQJEyYof6wOHDiAkZERtra2H/p2hRBCCCGEEOKzkZaWxoULF4D0TaWvX79OYGAg9+7dY8GCBcpMGxsbGwwMDJg1axZubm48fPgQLy+vTN//LCwsSElJwc/PD1tbW4oUKULlypVxcHAgKCiIKlWqUKxYMbZt25ZlUupt7ty5o8SZQUtLi9q1a+e4japVq9KyZUs8PT2Jj4+nbNmy7Nixg4SEhDxJMvbv35/g4GD69OlD3759KVu2LE+fPuXixYuULl2a/v37Y2RkxMiRI1m8eDFRUVHUr18fHR0d7t27x5EjR/Dy8vog/0GlSZMm1KhRg3HjxjF27FiMjIzYsGEDhQsXlgSrUHxSyaZZs2bxyy+/4OHhwcuXLzX+AFSvXh09PT1GjBjB+PHjqVChAg0aNODAgQNcunSJgIAApaytrS2NGjViypQpTJo0iYIFC7J8+XJUKhWtWrVSyg0cOJDg4GDGjRtHz549uX79Or6+vowZM0bWVgshhBBCCCHyVYWyOdtj51PpMyEhge7duwPpK0nKlSuHvb093t7eWFhYKOVKlCjBypUrWbRoEe7u7lSqVIlZs2axYcMGjfaaN29Or169WLduHU+ePKFevXr4+/szffp0Zs6cyZw5c9DX16dz5860bNmSadOm5SjOZcuWZTqno6PD1atX3+t+582bx+zZs1m0aBF6enp07tyZqlWrsnXr1vdqJyvFihUjMDCQFStWsGTJEmJiYihevDi1a9fWmMU0YMAASpcuzaZNmwgICKBAgQJUqFCBZs2aacz+yktaWlqsWbOGGTNmMGPGDIyMjOjbty/h4eGyd7FQaKk/oU0KnJyciIyMzPLakSNHlEx4UFAQ69ev5/79+5ibmzN27FiaN2+uUf7FixfMnz+fw4cPk5KSQqNGjZg2bVqmbPn58+dZsGAB165dw8TEhN69ezN48OBcZ2Qz3gyQ3YZzQgghhPgwRnSbR9i1e9mWs6hWHq8dUz5CREKI/6rsvhskJCQQHh6Oubk5hQoV0riWmpaGzv/fu/Zjy8++/+169+6NtrY2/v7++R3KR5WUlET79u2pW7cu8+fPz+9wxAfyrr9Zb/qkZjYdPXo0R+W6du2qrPd9G0NDQ+bNm8e8efPeWa5OnTrs2LEjxzEKIYQQQgghxIeWn8keSTTlzKFDh3jw4AGWlpbEx8cTEhLC77//zurVq/M7tA8uMDCQtLQ0zM3NiY2NZfv27URGRmY5a0z8N31SySYhhBBCCCGEEOLfwMDAgB9++IHbt2+TnJxM5cqVWbx4scb+wp+rggULsm7dOmVlkpWVFT4+PrLCRygk2SSEEEIIIYQQQrynxo0b07hx4/wOI1906tRJeQufEFmR+ZFCCCGEEEIIIYQQIs9IskkIIYQQQgghhBBC5BlJNgkhhBBCCCGEEEKIPCPJJiGEEEIIIYQQQgiRZyTZJIQQQgghhBBCCCHyjCSbhBBCCCGEEEIIIUSekWSTEEIIIYQQQgghhMgzkmwSQgghhBBCCPGPeHl5oVKpaNy4MWlpaZmu9+jRA5VKhYeHR5737eHhgbOzc7blVCoVvr6+ed7/2+Q0rk+Bk5MTs2fPzu8w8lTHjh1z/LwlJyfToEEDrKysuH//fqbrZ8+eRaVScfny5bwO87MlySYhhBBCCCGE+MSkZpGw+dT71tXV5dmzZ/zvf//TOB8ZGcmFCxcwMDDIi/ByLTAwkA4dOuRrDJ8qb29vBgwYkN9h5Jtff/2VmJgY1Go1ISEh+R3OZ6FAfgcghBBCCCGEEEKTjrY2327ew+2oxx+130qmJfi2f+dc1dXV1cXe3p79+/fToEED5fz+/fupWrUq2tr5O9fBxsYmX/v/mNRqNcnJyejp6eWofPXq1T9wRJ+2kJAQjIyMKF++PMHBwbi5ueV3SP96MrNJCCGEEEIIIT5Bt6Mecz0i6qP+/NPklrOzM4cOHSI5OVk5FxISkuVysrCwMMaMGUPTpk2pXbs27dq1Y+PGjZmW4SUlJbF8+XJatGhBzZo1adKkSZbLo86ePUunTp2wsbGhS5cuXLlyReP6m8voXF1dGTJkCAcPHqR169bY2trSt29f7t69m6n/ZcuW0bx5c2rWrEnbtm0JDg7O1fhkNQbffPMNdnZ22NjY4Obmlqn/jRs38tVXX2FnZ4e9vT1DhgwhPDxco0zGkr3jx4/z5ZdfYm1tzdGjR/Hy8sLW1pa///6bnj17Urt2bZydnTl58qRG/TeX0WW0l92YvnjxgvHjx2Nra4u9vT3Lli1j48aNqFSqd973o0ePmDx5Mi1atKBWrVq0atWKZcuWkZSUpFFOpVKxfv16vLy8cHBwoEGDBkyePJm4uDiNcufPn8fFxQVra2tlHHIqLi6Oo0eP0rp1a1xcXLh+/Tp///13juuLrEmySQghhBBCCCFEnmjevDlJSUmcOnUKgJs3b/L333/Trl27TGUfPXqEubk5M2fOZN26dXTr1o3Vq1ezZs0ajXIjRoxg8+bNfPXVV6xbt46JEydmSjZER0fj6enJwIEDWbFiBYmJiQwfPlwj6ZWVa9eu4evry/jx45k/fz53795lwoQJGmVGjRpFYGAgX3/9NT4+PjRu3JgJEya8V0IjK/fu3aNHjx48f/6cBQsWsGTJEp4+fUr//v01ki5RUVH06dOHNWvW4OnpSVpaGj169CAmJkajvUePHuHp6Un//v1Zv3491apVA9L3Ixo/fjwuLi54e3tjYmLCyJEjefbs2Tvjy8mYTp48mWPHjjFhwgQWLFhAWFgYW7Zsyfbenz17hrGxMZMnT2bDhg0MGjSIPXv2MHPmzExlt27dyu3bt1mwYAHDhg0jODhY4xmJjo5m4MCB6OnpsWLFCgYOHMisWbN4+PBhtnEA/Pzzz8TFxeHs7Ezbtm0pUKCALKXLA7KMTgghhBBCCCFEntDX18fJyYn9+/fTrFkzQkJCsLW1pXz58pnK2tvbY29vD6Qv+7KzsyMhIYGAgACGDx8OwKlTpzh27BhLly7VmB315kyp58+fExAQQNWqVZU4+vbty8WLF6lbt+5b433x4gV79+7FxMQESJ/lMnnyZKKiojA1NeXMmTMcPXoUX19fGjVqBICjoyPR0dF4eXnRtGnTXI+Vt7c3RYsWZdOmTRQsWBCAOnXq0KJFC4KCgujduzcAU6ZMUeqkpqbi6OiIvb09hw4donv37hpjsH79emrXrq3RT0ayKSNWc3NzWrRowYkTJ+jYseNb48tuTG/evMnhw4dZuHAhnTp1AqBx48a0bds223tXqVRMmjRJOa5Tpw76+vp4eHgwY8YM9PX1lWslS5Zk6dKlADRp0oSrV69y6NAhxo8fD4Cfnx9aWlqsX78eQ0NDAExNTenfv3+2cUD6zLvSpUtTv359tLW1adiwISEhIYwdOxYtLa0ctSEyk5lNQgghhBBCCCHyjLOzM0eOHCEhIYEDBw7Qvn37LMslJiayatUqWrZsibW1NTVq1GD58uVER0fz6tUrAE6fPo2+vv5b28hQqlQpJSkCUKVKFYBsZ7dYWVkpiabX60VFRQHpyS5jY2MaNmxISkqK8uPg4MC1a9dITU3NZjTe7tSpUzg5OaGjo6O0a2RkRPXq1TWWq124cIGvv/6aBg0aUL16dWrXrk1cXBy3b9/WaM/Y2DhToglAW1tbSeoBlCtXjkKFCmU7NtmNacab2Vq0aKHRV/PmzbO9d7VazebNm2nXrh21atWiRo0ajB8/npSUFO7du6dR1sHBQePYwsJC+XwALl68SIMGDZREE6QnMo2NjbON4+nTp5w6dYp27dope4p16NCB+/fv88cff2RbX7ydzGwSQgghhBBCCJFnGjVqhK6uLitXriQiIuKtM10WL15MUFAQw4YNo2bNmhgaGnLkyBG+++47EhMTKVy4MDExMZQsWTLbGSZGRkYax7q6ukB6Quuf1Hv27BkxMTHUqFEjy/rR0dGYmpq+s4+3efbsGX5+fvj5+WW6lhHH/fv3GTBgADVr1mTWrFmUKlUKXV1dhgwZkuneSpQokWU/hQoVyrRRuK6u7j8em+joaHR1dTWSPIBG8u5t/Pz8WLhwIYMGDaJBgwYYGRlx+fJlZs+enSmurOJ4fZlhdHQ0FStWzNRHTuL48ccfSUlJoWnTpsTGxgLQoEED9PT0CA4OfuesOPFukmwSQgghhBBCCJFndHV1adWqFZs3b8be3v6tSZCDBw/SvXt3jTd/vbkPkrGxMdHR0ajV6nxZ0lS0aFFMTExYt25dltdzktB4V9tNmzalV69ema4VLlwYgJMnTxIXF4e3t7eSdElJSeH58+eZ6nzs8SlZsiTJycm8ePFCI+H09OnTbOsePHgQJycnxo0bp5wLCwvLdRxPnjzJdD4ncWTszZTVkruDBw8ybdo0Jckm3o8km4QQQgghhBBC5KmuXbvy5MkTunXr9tYyiYmJGl/kU1NT2b9/v0YZBwcH1q9fz48//pjlJuMfmoODAxs2bEBXVxcrK6s8bdve3p4bN25QvXp1dHR0siyTkJCAlpYWBQr831f3jNk4+a1mzZoAHDlyRNmzKS0tjV9++SXbugkJCZmSOLl9w1+tWrXYvn27RtLr9OnTmTZQf1NkZCShoaH06NEj07N17do15s+fz8mTJ3FycspVXP91kmwSQgghhBBCCJGnatWqlemtcm9ycHAgKCiIKlWqUKxYMbZt26axPCqjTNOmTZkyZQp3796ldu3axMTEcOjQIVasWPEB7yCdo6MjzZs3Z9CgQQwaNAiVSkV8fDw3b97kzp07zJ079531X758ycGDBzOdb9CgASNHjqRLly4MHDiQbt26UaJECR4/fsy5c+eoW7cuzs7ONGzYEEh/61uPHj24ceMGmzZtyrS0LD9UrVqVli1b4unpSXx8PGXLlmXHjh1KguxdHBwc2LJlCwEBAVSqVIl9+/Zx586dXMXRr18/tm3bxuDBgxk8eDCxsbF4eXllu2dTxqymQYMGZdrA3s7OjnXr1hESEiLJplySZJMQQgghhBBCfIIqmWa9/Oxz6XP69OnMnDmTOXPmoK+vT+fOnWnZsiXTpk3TKOfl5YW3tzeBgYF4e3tTvHhxHB0dP1qcq1atYt26dWzfvp3IyEgMDQ2pWrUqLi4u2dZ98OABo0aNynR+69at1K1bl6CgIFasWMGsWbOIi4ujZMmS1KtXD5VKBaS/tW3+/Pl4e3szZMgQqlWrxsqVKxk9enRe32auzJs3j9mzZ7No0SL09PTo3LkzVatWZevWre+sN2zYMJ49e8aqVasAaN26NdOmTWPo0KHvHUOpUqVYv349np6ejBo1igoVKjBjxgyWL1/+znohISHUqVMnyzclFihQAGdnZ3bs2KFsVi/ej5ZarVbndxCfk4wd+a2trfM5EiGEEOK/aUS3eYRdu5dtOYtq5fHaMSXbckIIkVvZfTdISEggPDwcc3NzChUqpHEtNS0NHe38eXl4fvYt/v169+6NtrY2/v7++R2KyGPv+pv1phzNbPL29n7vILS0tBg2bNh71xNCCCGEEEKI/7r8TPZIoknk1KFDh3jw4AGWlpbEx8cTEhLC77//zurVq/M7NJHPcp1syliD+ebEKC0tLeVNAZJsEkIIIYQQQgghPk8GBgb88MMP3L59m+TkZCpXrszixYv54osv8js0kc9ylGz666+/NI4fPnyIm5sbVatWpV+/fpibmwNw69Yt/Pz8CAsLw8fHJ++jFUIIIYQQQgghxCehcePGNG7cOL/DEJ+gXM2PnDVrFhUrVmTJkiVYW1tTpEgRihQpQq1atVi6dCkVKlRg9uzZeR2rEEIIIYQQQgghhPjE5SrZdObMGeUVjFlp2LAhp0+fznVQQgghhBBCCCGEEOLfKVfJpoIFC3LhwoW3Xg8NDaVgwYK5jUkIIYQQQgghhBBC/EvlaM+mN3Xo0AF/f3+MjIzo06cPFSpUAODu3bv4+/sTEhKCq6trngYqhBBCCCGEEEIIIT59uUo2jR8/nmfPnhEQEMDWrVvR/v+vxkxLS0OtVtO+fXvGjx+fp4EKIYQQQgghhBBCiE9frpJNenp6LF68mIEDB3L8+HHu378PgJmZGU2aNMHKyipPgxRCCCGEEEIIIYQQ/w652rMpg5WVFUOGDGHWrFnMmjULNzc3STQJIYQQQgghxH+Ml5cXKpUKlUqFlZUVdnZ2dOjQgdmzZxMWFparNs+ePcvatWvzONJ0mzdvRqVSMWXKlDxtd/fu3ahUKp4+ffrOcq6urgwZMkQ5/pD3+jHa/xTVrVsXLy+vd5ZxdXVFpVIxZsyYTNdevnxJrVq1UKlU7N69O09i6tixIx4eHu9VJyIiApVKxcGDB5VzTk5OzJ49O09i+lD+UbLpwoUL+Pj4MG/ePG7fvg1AfHw8f/75J69evcqL+IQQQgghhBBC/AsUKlSIwMBAvv/+e1atWoWLiwu//fYbHTt25Icffnjv9s6dO4ePj88HiBT27dsHwOHDh0lKSvogfbzLzJkzmTRpknL8Ie/1Y7T/b2ZgYMAvv/xCXFycxvmff/4ZHR2dfIrq3by9vRkwYEB+h/FOuUo2JSUlMXz4cHr27Mny5cvx9/fnwYMH6Q1qazNgwAC2bNmSp4EKIYQQQgghxH9Falrav65vbW1tbGxssLGxwdHRka+//poffvgBOzs7pk6dyr179/I40twJDw/nzz//xMHBgdjYWI4dO5ZtnaSkJNLy8DOpUqUKlStXzrP2Pra8Ho/8VKdOHQoVKsTRo0c1zoeEhPDFF1/kU1TvVr16dcqVK5ffYbxTrvZsWrlyJceOHePbb7+lQYMGtGnTRrlWsGBB2rRpw5EjR/jmm2/yLFAhhBBCCCGE+K/Q0dZm2o7dhEc//qj9mpcsgWc3lzxrr2DBgkyfPp327dsTFBTE2LFjAdi7dy+BgYGEhYWhVquxsrJiwoQJ1KpVC0hfluft7Q2ASqUCoH79+vj7+xMWFoa3tzfnz58nJiYGMzMzunTpQv/+/ZWXV71LSEgIWlpazJ49mx49ehAcHEyrVq00yjg5OdGsWTPKlCnDtm3bePDgAb/99hsmJibs3buXzZs3ExYWhoGBAbVq1eLbb7/FzMxMqR8VFcXEiRP5/fffKVWqFO7u7nTq1Em57urqioGBAT4+Pu+8V4CwsDCWLFnCuXPnSE1NpX79+kybNk15Kzykv6zLz8+PHTt2cO/ePYoWLYqdnR1z585l8+bNb23fw8ODK1euEBISorQVGxtLvXr1mD9/Pi4uLtmOx+7du9m0aRO3b9/G2NgYFxcXRo4c+c5ZQTn5DCMiImjRogWLFi3i4sWLBAcHU7BgQTp06MC4ceMoUOD/0hk///wzS5YsITIyEpVKxYwZM7J9DjIUKFCA1q1bExISgrOzMwBPnz7l9OnTrFmzRpkF97rvv/+eTZs2ERkZSalSpejSpQtDhw7VeP7Onz+Pp6cnN27coGLFikyYMCHL/kNDQ1m+fDmXLl1CR0eHZs2aMWXKFIoXL/7WmDM+j4z7zPgcp0+fzvz587l9+zZVqlTh22+/pWbNmkq9Fy9eMGvWLI4cOUKhQoXo2rUrxsbGLFy4kL///jvHY5YTuUo27d+/nx49etC9e3eePXuW6bqFhYXGekIhhBBCCCGEEO8nPPoxf92Pyu8w/rEqVapQunRpQkNDlXMRERF06tSJChUqkJSUxP79++nduzf79u3D3Nycrl27EhUVRUhICH5+fgAUKVIEgEePHmFubk6HDh0oXLgw165dw8vLi7i4OIYPH55tPCEhIdStW5fy5cvTtm1bAgMDefHiBYaGhhrlfvrpJypWrMjUqVPR1tbGwMCADRs2sHjxYrp06cKYMWNITk7mzJkzPH36VCPZNH78eLp168bXX3/Njh078PDwwNraGgsLi0zxvOte7927R48ePahatSoLFixAS0uLtWvX0r9/fw4ePIienh4Ac+bMITAwkH79+uHo6MirV684duwYcXFx72z/fWQ1Hps2bWLx4sX069cPDw8PwsLCWL58Oampqe98Q/37fIYrVqygRYsWrFixgtDQULy8vKhQoQI9e/YE4Nq1a4wcOZImTZowefJkIiIiGD169Hstj3R2dubrr7/m+fPnFC1alB9//JHSpUtja2ubqay/vz+enp64urrSrFkzQkND8fb25sWLF8rSyOjoaAYOHIhKpWLFihXExsYya9Ys4uLiqFatmtJWaGgorq6uNG3alOXLlxMfH8+KFStwd3cnMDAwx/Fn9Onp6YmbmxuGhoYsXbqU4cOHc/jwYXR1dQGYPHkyZ86cYcKECZiZmbFjxw7+/PPP9+onp3KVbHry5ImSEc2Kjo4OCQkJuQ5KCCGEEEIIIcTno0yZMjx+/H+ztF5PKKSlpeHo6MilS5fYs2cPY8eOxdTUFFNTU2Vp3uvs7e2xt7cHQK1WY2dnR0JCAgEBAdkmmy5dusTt27f5+uuvgfQkg7+/P4cOHaJLly4aZZOTk1m/fj0GBgZA+qwQb29vunfvrrE5c1ZLrXr37k3v3r0BsLW15fjx4xw6dAh3d/dMZd91r97e3hQtWpRNmzZRsGBBIH3ZV4sWLQgKCqJ3796Eh4ezfft2xowZo7HpeOvWrTX6yKr99/HmeLx8+ZJVq1YxaNAgZcaao6Mjurq6LFiwgIEDB1KsWLEs23qfz7BWrVpMmzZNaf/s2bMcOnRISTatW7eOMmXKsHr1amU2VcGCBZk6dWqO761u3boUL16cn376ia5du7J//35lltPrUlNTWb16Ne3bt1diatSoEcnJyWzcuBE3NzeKFSuGn58fWlparF+/Xklimpqa0r9/f432li5dSs2aNfH29kZLSwsAS0tLnJ2dOX78OE2bNs3xPTx//pyAgACqVq0KgL6+Pn379uXixYvUrVuXmzdvcvjwYRYuXKjMsmvcuDFt27bNcR/vI1d7NpUpU4Zbt2699fr58+c1pvQJIYQQQnwu3ncvk/zcd0UIIT4VarVa+TIN6cuohg0bhoODA9WqVaNGjRqEh4crL556l8TERFatWkXLli2xtramRo0aLF++nOjo6GxfVBUSEoKurq6yFYyNjQ3ly5cnODg4U9kGDRooiRVIn4USHx+fKSmVlUaNGin/NjAwoGzZskRFvf8stVOnTuHk5ISOjg4pKSmkpKRgZGRE9erVuXLlCgBnzpxBrVbnKK5/IqvxiIuLo02bNkpsKSkpODg4kJCQwI0bN97a1vt8hq+PJaSvpHp9LC9evEjz5s01lu29vtVPTmhpadGuXTv279/PgwcPOH/+PO3bt89U7tatWzx79ixT++3atSM5OZlLly4pMTVo0EBjtpy9vT3GxsbKcXx8POfPn6dNmzakpqYq41epUiXKlCnD5cuX3+seSpUqpSSaIH1GIcDDhw8BlPZatGihlNHW1qZ58+bv1U9O5Wpmk7OzM5s2baJVq1ZUqlQJQPnDsWPHDn788UfGjRuXZ0EKIYQQQnwqdLS1mbd6D3fvZ7+PSoWyJZgyrPNHiEoIIT5tUVFRynfHly9fMmDAAExMTPDw8KBs2bIULFiQadOmkZiYmG1bixcvJigoiGHDhlGzZk0MDQ05cuQI3333HYmJiRQuXDjLemlpaRw4cID69eujra1NbGwskP7le8uWLTx8+JDSpUsr5d/cMycmJgZI/1KfnTeX5Onq6ubqrXfPnj3Dz89PWf72ZpsZcRUoUOCde/zkhTfbz9hSp3PnrP93LuMlYll5n88wu7GMjo7OFFuRIkWUmWA51b59e/z8/Ni8eTNVq1ZFpVIpz0iG58+fA5nHIuM443p0dDQVK1bM1IeJiYny79jYWFJTU5k/fz7z58/PVPZd45cVIyMjjeOM5yPjdyo6OhpdXd1M4/l6THkpV8mmoUOHcvHiRfr06UPlypXR0tJi/vz5PH/+nKioKJo2bZppepgQQgghxOfi7v3H3Lz9799HRQghPoYbN27w8OFDJSlx4cIFoqKi8PHxwcrKSin34sULTE1Ns23v4MGDdO/eHTc3N+Xc8ePHs6135swZoqOjiY6Opl69epmuHzhwQFleB2jMxAKUWSmPHj3KUZx5oWjRojRt2pRevXplupaRkDE2NiYlJYUnT568d8JJT0+P5ORkjXMZCZM3vTkeRYsWBdKX+mU1Hu96W1puP8OslCxZkidPnmice/nyZY4Sl6+rWbMm5cuXZ8uWLYwaNSrLMhnPwNOnTzXOZ/SfMSZZxfRmPUNDQ7S0tBgyZEiWSzHftgQxt0qWLElycnKm/cnevJe8kqtkk56eHhs2bGDfvn0cOnSItLQ0kpKSUKlUjB49mo4dO2Z6EIUQQgghhBBC/LckJiYyZ84c9PT06Nq1K4Cyv2/GzAtI34olMjJSYxnQ22YDJSYmatRNTU1l//792cYSHByMgYEBa9asyfTWunnz5hEcHKyRbHqTra0t+vr67Nq1S3lrXl55273a29tz48YNqlev/ta3uzVs2BAtLS127dqlkbzJSfumpqZERUXx6tUrJXl16tSpHMWcMR5RUVG0bNkyR3Uy5PYzzEqtWrX45ZdfmDx5sjJGuX1h2eDBgzl69CgdOnTI8rq5uTkmJiYcPHhQ455//PFHdHV1leeiVq1abN++XSOxc/r0aWV2HKQvr7SxseHWrVtYW1vnKt73kfFWuiNHjih7NqWlpfHLL798kP5ylWyC9Kxmx44d6dixY17GI4QQQgghhBDiXygtLY0LFy4AEBcXx/Xr1wkMDOTevXssWLBAmeliY2ODgYEBs2bNws3NjYcPH+Ll5aWxhA3S9+ZJSUnBz88PW1tbihQpQuXKlXFwcCAoKIgqVapQrFgxtm3blu0StcTERA4fPkyrVq2Ujalf99VXXzF37lxu3bpF5cqVs2zD0NCQYcOGsWTJEtRqNS1atCAtLY2zZ8/Svn37f5QweNu9jhw5ki5dujBw4EC6detGiRIlePz4MefOnaNu3bo4Oztjbm5Ojx49WLlyJc+fP8fe3p6EhASOHTvGiBEjKF269Fvbb9WqFatWrWLKlCl069aNGzdusHPnzhzFbGRkxMiRI1m8eDFRUVHUr18fHR0d7t27x5EjR/Dy8kJfXz/Lurn5DN/Gzc2NLl26MGzYMHr27ElERAS+vr7vvYwOoEuXLu/c+0pHRwd3d3c8PT0xMTGhadOmXLhwgfXr19OvXz9lNlK/fv3Ytm0bgwcPZvDgwcTGxuLl5aWxZxPAxIkT6devH6NHj6Z9+/YYGRkRFRXFb7/9houLCw0aNHjve3ibqlWr0rJlSzw9PYmPj6ds2bLs2LGDhISEDzJZKFfJphYtWjBlyhSNjaVe98svv+Dp6cmRI0f+UXBCCCGEEEII8V9lXrLEv6rPhIQEunfvDqTP2ihXrhz29vZ4e3tjYWGhlCtRogQrV65k0aJFuLu7U6lSJWbNmsWGDRs02mvevDm9evVi3bp1PHnyhHr16uHv78/06dOZOXMmc+bMQV9fn86dO9OyZUvl7WBZOXbsGC9evFBmdLzJ2dmZRYsWERwc/NYlVJA+88XExITNmzeze/duChcujK2t7T/eL+lt91qxYkWCgoJYsWIFs2bNIi4ujpIlS1KvXj2NN8TPmDGDcuXKERQUhJ+fH8bGxtSrV0+ZrfS29qtUqcKCBQtYs2YN7u7u2NnZsWTJkhxPKhkwYAClS5dm06ZNBAQEUKBAASpUqECzZs00Zi69KTef4dtUr16dlStXsmTJEoYPH07VqlVZvnw5AwcOfO+2csLV1ZUCBQqwefNmtm/fTsmSJRk+fDhDhw5VypQqVYr169fj6enJqFGjqFChAjNmzGD58uUabdWpU4dt27bh5eXF5MmTSU5OxtTUlIYNG2a559M/NW/ePGbPns2iRYvQ09Ojc+fOVK1ala1bt+Z5X1pqtVr9vpWsrKxYvHjxW6eW7d+/n/Hjx3Pt2rV/HOC/TcYO7x9jGpwQQgghMhvRbR5h1+5lW86iWnm8dkzJVR9Dp67P0Z5NVSqZsnbu4Fz1IYT498vuu0FCQgLh4eGYm5tTqFAhjWupaWnoaOfq5eH/WH72LYT4uHr37o22tjb+/v7Zln3X36w3/aNldG9z+fLlTDuhCyGEEEIIIYTImfxM9kiiSYjP06FDh3jw4AGWlpbEx8cTEhLC77//zurVq/O8rxwnm/z8/NiyZQuQnmiaN29epilgkL7re2xsLM7OznkXpRBCCCGEEEIIIYTINQMDA3744Qdu375NcnIylStXZvHixVm+De+fynGyqXjx4sqbASIjIyldunSmDdwgPfgaNWpk+WpGIYQQQgghhBBCCPHxNW7cmMaNG3+UvnKcbHJ2dlZmK7m6uuLu7p7lLv5CCCGEEEIIIYQQ4r/rvRfjxsfHY2RkRHR09IeIRwghhBBCCCGEEEL8i713sklfX5/Tp0+TkJDwIeIRQgghhBBCCCGEEP9iuXrNgJ2dHaGhoXkdixBCCCGEEEIIIYT4l8tVsmnGjBn88ccfLF++nKioqLyOSQghhBBCCCGEEEL8S+V4g/DXffnll6SmprJu3TrWrVuHjo4Oenp6GmW0tLT4448/8iRIIYQQQgghhBBCCPHvkKtkU+vWrdHS0srrWIQQQgghhBBCCCHEv1yukk0LFizI6ziEEEIIIYQQQvxLeXl5sXHjxnzd27du3br069ePESNGfJT+nJycaNasGTNmzHhrmbNnz9K3b1927tyJtbX1R4nrn+jYsSPVqlV753d+Dw8P9uzZQ+3atdmxY4fGNbVaTbNmzYiKimL48OEf7bP4r/Dy8sLR0ZE6derkdyjZytWeTUIIIYQQQgghPpzUtLT/ZN+fmxo1ahAYGIiFhUV+h5KnDAwMuHjxIvfu3dM4//vvv/PkyZNM2+yIvOHt7f2veVlbrmY2Abx8+ZLNmzdz7Ngx7t+/D0DZsmVp1qwZ/fv3p0iRInkWpBBCCCGEEEL8l+hoazN5/05uPXn8UfutXLwE89t3+ah9fmoSEhIoVKhQnrRVpEgRbGxs8qStT4mZmRk6OjocOHCAIUOGKOdDQkJo1KgRv//+ez5GJz4FuZrZ9PDhQzp16oS3tzdxcXHUqVOHOnXqEB8fj7e3N507d+bRo0d5HasQQgghhBBC/GfcevKYvx49+Kg/HzK5FRUVxfjx42nQoAG1atWid+/eXLlyRaPM3r176dmzJ/Xr16devXq4urpy6dKlTG39/PPPtGnTBmtra7p06ZJlGYBjx47RtWtXatWqRcOGDZk5cyZxcXHK9bNnz6JSqTh27BgjR46kTp06jBo1CoAjR47g4uKCra0tdevWxcXFhePHj2fqY+vWrTRv3hw7Ozvc3d15+vRppvYvX76snFOpVKxbt45FixbRsGFDbG1t8fDw4OXLl+8cv0ePHjF58mRatGhBrVq1aNWqFcuWLSMpKUmjnEqlYv369Xh5eeHg4ECDBg2YPHmyxn0DnD9/HhcXF6ytrXF2ds7y3t6lffv2hISEKMcpKSkcOnQIZ2fnTGVDQ0MZOnQojRo1wsbGho4dO7J3716NMhljderUKcaNG4etrS3Nmzdn/fr1790WwI0bN+jduzfW1ta0atWKffv24e7ujqurq0a5sLAwvvnmG+zs7LCxscHNzY27d+9qlMn4zJYvX469vT1169Zl0aJFqNVqTp8+TceOHbG1taVfv348ePBAo25SUhLLli2jefPm1KxZk7Zt2xIcHKxRxsPDA2dnZ86ePUunTp2wsbGhS5cuGr8fKpUKgEWLFqFSqVCpVJw9ezbTfX8qcjWzacmSJTx+/BgfHx+aNm2qce348eOMHj2apUuXsnDhwjwJUgghhBBCCCHEv9fz58/p1asXBgYGTJ8+HUNDQ/z9/enXrx8//fQTxYsXByAiIoJOnTpRoUIFkpKS2L9/P71792bfvn2Ym5sDcO3aNUaOHEmTJk2YPHkyERERjB49OlPS5eDBg4wZMwYXFxdGjBhBdHQ0S5cuJTY2luXLl2uUnT59Ol9++SWrV69GW1ubu3fvMmrUKNq3b8+4ceNIS0vjr7/+4vnz5xr1jh49yp07d5gxYwbPnj1j/vz5zJkzJ1P7b/L396dGjRosXLiQiIgIlixZQmJi4jvrPXv2DGNjYyZPnoyRkRG3b9/Gy8uL6Oho5s+fr1F269at2NnZsWDBAm7fvs2iRYsoXrw448ePByA6OpqBAweiUqlYsWIFsbGxzJo1i7i4OKpVq/bO2DO0b9+eZcuWcfPmTapUqcKpU6dITEzEycmJb7/9VqPs/fv3qVOnDj179kRPT4/z588zbdo01Go1nTt31ig7c+ZMOnbsyOrVq/n5559ZsmQJKpWKJk2a5LithIQEBgwYgJGREYsXLwZg9erVxMbGUqFCBaWve/fu0aNHD6pWrcqCBQvQ0tJi7dq19O/fn4MHD2osB9y6dSv169dn0aJFXLx4ES8vL9LS0jh16hTffPMNurq6eHp6MnXqVDZu3KjUGzVqFOfPn2fYsGFYWFhw/PhxJkyYgJGRkUY+JTo6Gk9PT9zc3DA0NGTp0qUMHz6cw4cPo6urS2BgIN27d8fV1VVJ6FWpUiVHn1V+yFWy6eTJk/Tr1y9TogmgadOmuLq6ZtooTAghhBBCCCHEf5Ofnx+xsbEEBQUpiSV7e3tat26Nr68vEydOBGD48OFKnbS0NBwdHbl06RJ79uxh7NixAKxbt44yZcqwevVqdHR0AChYsCBTp05V6qrVahYtWkS7du2YO3eucr5kyZK4ubnh7u5O1apVlfNOTk5MmDBBOT548CDJyclMnz5d2SKmcePGme5LrVbz3XffKUmJyMhIfHx8SEtLQ1v77QuJ9PT0MsU/bdo0hg8f/tb9nVQqFZMmTVKO69Spg76+Ph4eHsyYMQN9fX2N+1y6dCkATZo04erVqxw6dEhJNvn5+aGlpcX69esxNDQEwNTUlP79+7815jeZmZlhY2NDSEgIo0ePJiQkBCcnJwwMDDKVbd++vfJvtVpNvXr1ePjwIYGBgZmSTa1atVI2Fre3t+fYsWMcOnRISTblpK1du3bx5MkTtm/fTrly5QCoWbMmrVq10kg2eXt7U7RoUTZt2kTBggWVcW3RogVBQUH07t1bKVuqVCklcdW4cWOOHj3K5s2b2b9/v/KZPXz4kDlz5hAbG4uRkRFnzpzh6NGj+Pr60qhRIwAcHR2Jjo7Gy8tLI6fy/PlzAgIClOdSX1+fvn37cvHiRerWrassxyxTpsy/YmlmrpbRxcfHK38gslKiRAni4+NzHZQQQgghhBBCiM/HqVOnaNCgAUWLFiUlJYWUlBS0tbWpV6+exhKzsLAwhg0bhoODA9WqVaNGjRqEh4dz+/ZtpczFixdp3ry5kqgBaNOmjUZ/4eHhREZG0rZtW6W/lJQU6tevj7a2dqble82aNdM4VqlU6OjoMH78eI4ePcqLFy+yvK969eppzH6xsLAgOTmZJ0+evHM8sopfrVZrjMWb1Go1mzdvpl27dtSqVYsaNWowfvx4UlJSMm3U7eDgoHFsYWFBVFSUcnzx4kUaNGigJJogPbFjbGz8zrjf5OzszIEDB0hISODIkSMaiaDXPX/+HE9PT5o3b06NGjWUjdPDw8Mzlc1IygBoaWllij0nbV25cgVLS0sl0QRQrlw5rKysNPo6deoUTk5O6OjoKM+IkZER1atXz/SMvDmm5ubmlCpVSiM5WKlSJQAl3lOnTmFsbEzDhg01nkMHBweuXbtGamqqUrdUqVIaCdCMWUsPHz7Mckw/dbma2WRhYcH+/fvp0aNHpl3mk5OTNTJ77+POnTv4+vpy8eJFbty4QeXKlTXWgAK4urpy7ty5THUPHDig0eeLFy+YP38+P//8M8nJyTRu3Jhp06ZRqlQpjXrnz59n4cKFXLt2jeLFi9OzZ08GDx6MlpbWe8cvhBBCCCGEECKzZ8+eceHCBWrUqJHpWsZMk5cvXzJgwABMTEzw8PCgbNmyyoyfxMREpXx0dHSmyQ9FihRRZqZk9AcwbNiwLON5c1+dN9szNzdn7dq1+Pj4MHz4cLS1tWnUqBEzZsygbNmySjkjIyONehnfj/9fe/cdFcX19gH8u0sRkKIIgsYCqCFiBQsixRYbaozGbrCDBqwRFRQxVrAXwIYNJSoSewnGGEsSW/ITo8YuYEAFkSIgHfb9g8O8riDsrgsIfD/ncMLO3Ln3mZkrkcdb3o23OB+Kv6S1j4OCgrBy5UpMmjQJ1tbW0NXVxZ07d7BkyZIi7b0fl5qamtQ0w/j4eDRu3LhIG/r6+iXG/b4+ffpgxYoV2LhxI9TU1Iod/QUUrEkUHh4ONzc3NG3aFNra2jhw4AB+/vnnImXfTYAVxv5usk+Wul69elXsvejr60s9q6SkJAQFBSEoKKhIWTU1NanPxT3T4o4B///+k5KSkJycXGy/Bwreg7Gx8Qfrf7euykahZJOzszNmzZqFoUOHYtSoUUL2LjIyEgcPHsTDhw9LnaNanMePH+PSpUto06YN8vPzIZFIii1nZWUlNXwQgFTGEgBmzpyJJ0+e4IcffkCNGjWwYcMGODs74/Dhw1BVLbjtZ8+eYeLEibC1tcXMmTPx8OFDrFmzBioqKpg4caLc8RMREREREVFRenp6sLe3FxbffldhgubWrVuIjY3Ftm3bpEagpKamCr+QAwVTxN4fOZSWlib1S3nhCB1vb2+0bt26SJvvD0IobrCBg4MDHBwckJaWhsuXL8PHxweenp7FJibk9aH434/rXWFhYejevTtmz54tHHv69KlC7Rf3DAFILW4uCwMDA3Tq1Al79uzBkCFDiiRogIJkycWLF+Hh4SG1OPf+/fvljlvWuurWrYv79+8XuT4xMRE1a9YUPuvp6aFLly4YNWpUkbLvllOUnp4e9PX1sX379mLPy5vcq0wUSjb17dsXGRkZWLt2LRYtWiT8wZRIJKhTpw5WrFhRZBijLLp3744vv/wSQEG28v1ha4V0dXVLnKMYHh6OP/74Q2pepKmpKRwdHfHLL7/A0dERALBz507Url0b69atg7q6OmxsbJCYmIitW7fCycmpyKgtIiIiIiIikl/nzp1x4sQJNGnSpNg1fYCCRZ0B6RElN2/exPPnz6WmF7Vu3RoXLlyAp6enMBUtLCxMqi4zMzMYGxsjOjpaat0dRWhra8PR0RG3b98uMvNGUcXFLxKJ0KpVqw9ek5mZWSSZ8/6uZrJq3bo1Dhw4gNTUVGEk0dWrV5GcnCx3XU5OTtDQ0MDQoUOLPZ+dnY38/Hyp2NPS0vDbb7/J3ZasdbVs2RLHjh1DdHQ0GjZsCKBg8fkHDx6gXbt2QjkbGxs8fvwYFhYWUtMalaVz587YsWMH1NTUikzhU4SamlqlGemkULIJAAYPHoyvvvoKd+7cEYYg1q9fHy1bthRGDsmrpAXU5HH58mXo6urC1tZWOGZmZobmzZvj8uXLQrLp8uXL6Nmzp1RSydHREdu2bUN4eDisra2VEg8REREREVFVl5eXVyTpAxQkNsaNG4eTJ0/i22+/xZgxY1C/fn0kJibin3/+gZGREcaNG4e2bdtCS0sLixcvhouLC+Li4uDn5wcjIyOp+lxcXDBkyBC4ublh5MiRiImJwc6dO6Wm0YlEInh4eMDd3R3p6eno2rUrNDU18eLFC1y6dAmzZs0SdrcrzsGDB3Hr1i3Y29vD0NAQMTExOHHihNTvmB8jOztbKv41a9agd+/eJS5H07lzZ+zduxfBwcEwMTHBiRMn8OzZM4XaHzt2LPbv3w9nZ2c4OzsjJSUFfn5+cq/ZBBSsP9WtW7cPntfR0UGrVq0QGBgIfX19qKqqYvv27dDW1pZ7JJWsdX3zzTfYunUrpkyZIiw27u/vDwMDA6lRbNOnT8eQIUMwceJEDBs2DAYGBnj9+jVu3LiB9u3bC7u+KcrW1hbdunXDpEmTMGnSJJibmyMjIwNPnjzBs2fPpBavl4WZmRnOnz+P9u3bQ1NTE6ampsIC9p8ahZNNAKCqqgpLS0tYWloqKx6Z3LhxA23btkVeXh7atGmDGTNmoEOHDsL5iIgImJqaFhkKaWZmhoiICABAeno6Xr58CTMzsyJlRCIRIiIimGwiIiIiIqIKY1bHoFK1mZWVVew0uVWrVmHgwIEICQnBhg0bsGbNGiQnJ6NOnTpo06YNevbsCaBgStbGjRuxatUquLq6wsTEBIsXL8aOHTuk6rOwsMDGjRuxZs0aTJ06Fc2aNcP69euLLIXSt29f6OrqYuvWrcIIoM8++wz29vYwMCj5Ps3NzXHhwgX4+PggOTkZhoaG6NevX7H3pwgnJyckJiZi7ty5yM7ORs+ePeHt7V3iNW5ubkhKSsKmTZsAAL1794aXlxemTJkid/t169ZFYGAgli1bhhkzZqBRo0bw9vZWaDkcWaxduxbe3t7w8PBArVq14OTkhPT0dOzatatM6tLQ0MCuXbuwaNEiuLu7w8jICK6urjh27JjUmlCNGzdGaGgoNmzYgMWLFyM9PR2Ghobo0KEDzM3NlXLvmzZtwvbt23HgwAE8f/4cOjo6aNasGQYPHix3Xd7e3lixYgWcnZ2RmZmJvXv3frJ5C5HkQwsjlSI7OxuHDh3CpUuX8Pz5cwAFf3C7dOmCoUOHSmWVFVE4je79YYqbNm1C/fr1YWJiglevXmHnzp14+PAh9u3bJyS9xo8fD7FYjJ07d0pdu2TJEvz55584e/Ys4uLi4ODggHXr1hVZMd/S0hKTJ09W6A/tnTt3IJFIhJXjiYiIqHyIRCJoampi2rAVeHo/utTyTZo3hN+h+cjIyPjgOpEfamPKgkA8iYottXxTE2NsXe4sVxtEVHU8efKkxKlRmZmZiIyMhKmpKTQ0NKTO5eXnQ0VJMz/kVZFtVwfm5uaYO3cu1wkuZ8nJyfjyyy8xbtw4TJ06taLDqZRK+pn1PoVGNsXGxmL8+PGIjIyEoaGhsIr9gwcP8PvvvyM4OBh79uyRWsRNWaZPny71uWvXrujfvz82b96MwMBApbeniJycnGIXIyMiIqKyo6mpCQsLC7mvi4yMREZGxifTBhFVLYquA1uRyR4mmqgq2L59OwwMDPDZZ58hPj4eu3btQl5eHr755puKDq1aUCjZtHjxYrx48QIbNmwoshD4zz//DA8PDyxevBhbtmxRSpAl0dLSQpcuXXD27FnhmK6uLmJji/5r45s3b6Cnpwfg/7dTfHcLRaBgxFZGRoZQThFqamoc2URERFTOittJSBampqZyjWwq6zaIqOp48uRJRYdAVG2JxWJs2bIFcXFxUFFRQZs2bRAUFIR69epVdGjVgkLJpmvXrmHcuHHF7jjXt29f3Lt3D8HBwR8dnKLMzMxw9epVSCQSqb8URkZG4vPPPwdQkKSqV6+esIbTu2UkEkmRtZzkIRKJPrjDAhEREX1aNDU1q0QbRPTpUTRBTVXbw4cPKzqEaqFwUW6qGAqNj6xZsyb09fU/eN7AwAA1a9ZUOCh5pKen4+LFi1LzoB0cHPDmzRtcvXpVOBYZGYl79+7BwcFBqtz58+eRk5MjHDtz5gx0dXXLfdFzIiIiIiIiIqKqQKGRTYMHD8bRo0cxbNiwIv9S9/btWxw5ckSheZAZGRm4dOkSAOD58+dIS0sTts7s2LEjIiIisGPHDvTs2ROfffYZXr16hd27dyM+Ph4bN24U6rG0tISdnR3mz5+PefPmoUaNGli/fj3Mzc3Rq1cvodzEiRNx8uRJzJ49GyNHjsSjR4+wc+dOzJo1S+G51URERERERERE1ZlCyaYvvvgCFy9eRN++ffH1118LC4RHRUXh+PHj0NPTg7m5OX755Rep695N9BQnISGhyFaShZ/37t0LY2Nj5OTkYP369UhOToampiYsLS2xePFitG7dWuq6DRs2wMfHB97e3sjNzYWdnR28vLygqvr/t9y4cWPs3LkTvr6+cHFxgb6+PqZPn44JEyYo8liIiIiIiIiIiKo9hZJN33//vfD91q1bi5yPjY3F7NmzpRbCFIlEpe7Q1qBBg1Lnr+7cuVOmGHV0dLBixQqsWLGixHJWVlY4dOiQTHUSEREREREREVHJFEo27d27V9lxEBERERERERFRFaBQsqljx47KjoOIiIiIiIiIiKoAhZJNhbKzs/Hvv/8iISEBVlZWJe5QR0REREREREREVZ9Y0Qv37t0LOzs7jBo1CtOmTRPWWkpMTIS1tTV++uknpQVJREREREREny4/Pz+Ym5vD3NwcX3zxBdq1a4cBAwZgyZIlePr0qUJ1Xr9+vdg1ghUVExMjxHj58uUi5w8dOiScJ+VS9rv8GCkpKTA3N8eRI0dKLJeUlIQVK1agV69eaNWqFWxsbDBy5Ejs2bNHKBMTEwM/Pz/ExcUpNcZP6XkpSqFk0+HDh7FixQrY29tj+fLlUguB6+vro1OnTjhz5ozSgiQiIiIiIqpO8vLzK13bGhoaCAkJwcGDB7Fp0yYMHjwYV65cwcCBA3H8+HG567tx4wa2bdumUCwl0dLSKvb31VOnTkFLS0vp7VHZvcuykpubi7Fjx+LcuXMYP348duzYAS8vL1hYWODChQtCuefPn8Pf3x+vXr1SavuV7XkVR6FpdLt370aPHj2wdu1aJCUlFTnfokUL7Nu376ODIyIiIiIiqo5UxGIsvnwIz5Ljy7XdxrUMschhmELXisVitG3bVvhsa2uLUaNGwcXFBQsWLICVlRUaNmyopEgV16NHD5w7dw6LFy9GjRo1AACvXr3CX3/9hf79++PEiRMVHCFVtBs3buDhw4cIDg5Ghw4dhOP9+vVDvoLJ2MzMTGhoaCgrxE+eQiObnj17BgcHhw+er1WrFpKTkxWNiYiIiIiIqNp7lhyPR4kvyvVL2cmtGjVqYOHChcjJyUFoaKhw/NixYxg5ciQ6duyIDh06wMnJCbdv3xbO+/n5wd/fH+np6cLUNicnJwDA06dPMWvWLHTp0gVt2rSBo6Mjdu3aJXMSwMHBASKRCJcuXRKOnTlzBo0aNUKLFi2KlF+zZg0GDBgAS0tL2Nvb4/vvvy8yksXJyQmTJ09GWFgYevfuDUtLS4wZMwb//fef3HVJJBL4+/vD1tYWlpaWmD59Oq5cuQJzc3Ncv35dqtzOnTvRu3dvtGzZEj169JCa4lX4HC0tLXHv3j0MHz4crVu3xqBBg3Dv3j1kZWVh0aJF6NChAxwcHIpcCwDh4eEYM2YM2rZti3bt2mH27NlISEgQzhdOTTx+/DiWLFmCDh06wM7ODitXrkRubq4Qw4feZXHCw8MxZcoU2NnZoW3bthg4cCCOHTsmVeb69eswNzfHn3/+idmzZ8PS0hLdunVDYGBgkfoOHTqE7t27o02bNhg7diyePXv2wbYLvXnzBgBgaGhY5JxYLBZiGDNmDABgyJAhUlMwC+O7ePEipk+fDisrK8yYMQPAx/V9oKD/f/fdd2jXrh3atm0LFxeXIv0sNTUV7u7usLS0hI2NDdatW4ddu3YJ8eXk5MDW1hbr168vcn8zZ87EkCFDSn1GpVFoZJOurm6xI5oKPXnypNiXQkRERERERNVL06ZNYWRkhPDwcOFYTEwMvv76azRq1AjZ2dk4ffo0Ro8ejRMnTsDU1BRDhw5FbGwsTp06haCgIACAtrY2gIJRSKamphgwYABq1qyJ+/fvw8/PD+np6Zg6dWqp8airq6Nnz544deoUevXqBaBgCl3//v2LLZ+QkIDJkyejbt26SExMxO7du+Hk5ITTp09DVfX/f6W+f/8+EhMT4e7ujry8PPj6+mLOnDkICQmRq659+/bB398fkyZNQqdOnXDt2jV4eXkViWv58uUIDQ3FlClT0KZNG9y8eRNr1qxBjRo1MHLkSKFcTk4O5s2bh3HjxsHAwABr1qzB1KlTYWVlhTp16mDDhg04f/48fHx80Lp1a1hZWQEoSPo4OTmhS5cuWL9+PTIyMrBhwwa4urpK3RMAbNiwAT169MCGDRsQHh4OPz8/NGrUCCNHjizxXRbnxYsXsLKywsiRI6Guro6bN2/Cy8sLEokEgwYNkiq7aNEiDBw4EAEBAfj111+xZs0amJubC4NjLly4gIULF2Lw4MFwdHTEv//+KyR9StK8eXOIxWJ4eXnBzc0N7dq1g7q6ulSZFi1awNvbG0uWLIGPjw/MzMyK1LNw4UJ89dVXCAgIEJJUH9P3o6OjMWLECDRr1gy+vr4QiUTYunUrxo0bh7CwMCFGT09PXLt2DXPmzMFnn32GQ4cO4d9//xXiUlNTw6BBg3Ds2DHMmDFDiC05ORnnz5/HggULSn1GpVEo2eTg4IBDhw5h1KhRRc49fvwYoaGh+Oabbz46OCIiIiIiIqr86tWrh9evXwuf300K5efnw9bWFrdv38bRo0fx/fffw9jYGMbGxkWm5gGAjY0NbGxsABSM7mnXrh0yMzMRHBwsU7IJAPr37w9XV1e8ffsWCQkJuHPnDlavXi012qmQj4+P8H1eXh4sLS3h4OCAa9euwc7OTjiXmpqKY8eOCbu0p6enw9PTE7GxsTA2Npaprry8PGzfvh2DBw+Gu7s7AMDOzg5JSUlSm3D9999/CA4OxuLFizF8+HAAQOfOnZGZmYmAgAAMHz5cSCDk5OTA3d0dXbp0EZ53YYLK09MTANCpUyeEhYUhLCxMSDatXbsWLVu2hL+/P0QiEQDg888/R//+/XHp0iWhPgBo3bq1kBCztbXF9evXcfbsWYwcObLEd1mcfv36Cd9LJBJ06NABcXFxCAkJKZJs6tWrF6ZNmwagoF9cvHgRZ8+eFZJNW7ZsQfv27YXnbm9vj6ysLGzevLnEGExMTODh4YHVq1dj3LhxUFNTQ+vWrdG3b1+MHDkSqqqq0NbWRtOmTQEAzZo1Q6tWrYrU0717d8yZM0fq2Mf0fX9/f+jp6WH37t3CFFArKyv06NEDoaGhGD16NJ48eYJz585h5cqV+Prrr4X77tu3r1RdQ4cOxY4dO/D7778L7/LkyZMQi8UfTLzKQ6FpdDNnzkReXh769++PDRs2QCQS4dixY3B3d8c333wDfX19uLq6fnRwREREREREVPlJJBIhYQEUTAVyc3ND586d0bx5c7Ro0QKRkZGIiooqta6srCxs2rQJPXv2RKtWrdCiRQusX78e8fHxePv2rUzxdOrUCTVr1sSvv/6KU6dOoUWLFjA1NS227KVLlzBixAi0a9cOFhYWQiLj/Vi/+OILIdEEQEhExMbGylxXbGws4uPj0b17d6m6e/ToIfX5ypUrAAqSLbm5ucJX586dER8fj5cvXwplxWKxkJwDChIpQEFyqpCKigoaNWokxJqRkYGbN2+iT58+yMvLE+o3MTFBvXr1cOfOHal43k26AUCTJk2k7lseb968wbJly9CtWze0aNECLVq0QEhICCIjI4uUfbddkUgk1W5eXh7+/fdf9OzZU+qa3r17yxTH2LFjceHCBSxZsgS9e/dGVFQUli1bhvHjx8s8ZbNr165Fjn1M3//zzz/RvXt3qKioCO9EV1cXFhYWuHv3LgAI7+bdPiMWi9GtWzepuho3boyOHTvi8OHDwrEjR46gd+/eJY48k5VCI5uMjIxw5MgRrFu3Dj///DMkEgmOHz+OmjVrol+/fnB3d5f6Q0ZERERERETVV2xsrJDkSEtLw4QJE6Cvrw8PDw/Ur18fNWrUgJeXF7Kyskqta/Xq1QgNDYWbmxtatmwJHR0dnD9/Hlu2bEFWVhZq1qxZah0qKiro27cvTp8+jefPn39wZs7t27fh6uqKHj16wNnZGXXq1IFIJMKwYcOKxKqrqyv1WU1NDQCEcrLUFR9fsGbW+79P16lTR+pzUlISJBIJOnXqVGzcL1++xGeffQagYJfAd6eAFcalo6NTJN7COFJSUpCXlwcfHx+p0Vjv1v+u4urKzs4uNrbSeHh4IDw8HG5ubmjatCm0tbVx4MAB/Pzzz0XKFtduamoqACAxMRG5ublFnqWBgYHMsRgaGmL48OEYPnw4cnJy4O3tjSNHjuDChQtFEoDFef+9fWzfT0pKQlBQkDC97l2F7zU+Ph5qampFnk1xOZphw4bBw8MDiYmJePXqFe7duwcPD49S45CFQskmoOChLV++HMuXL0diYiLy8/Ohr68vDNVLS0tTSjaMiIiIiIiIKq/Hjx8jLi5OmAJ169YtxMbGYtu2bfjiiy+EcqmpqcJ0s5KEhYVh+PDhcHFxEY4VN/2tNP369cPo0aMBAI6OjsWW+fXXX6GtrY0NGzYIv+s+f/5c7rZkratw7ePExESp4+8uyg0Aenp6EIlE2L9/v5BkeNeHRmnJSkdHByKRCJMnT8aXX35Z5Hzt2rU/qv4PycrKwsWLF+Hh4SG1KPb+/fvlrktfXx+qqqpFnuW70znloaamhnHjxuHIkSN4+vSpTMmmd0fzAR/f9/X09NClS5dilzQqTLIaGhoiJycHqampUgmn958DUDAybunSpThx4gRiYmLQqFEjdOzYsdQ4ZKFwsuld72bIEhISEBQUhAMHDuCvv/5SRvVERERERERUCWVlZWHp0qVQV1fH0KFDARRsAQ9AKkly8+ZNPH/+HM2aNROOfWh0TFZWltS1eXl5OH36tNyxWVpaon///qhTp84Hf9HPzMyEmpqaVNLg5MmTcrcla13GxsYwNDTE+fPnpZI8v/76q1S5wmlxycnJRabcKYOWlhbatm2LiIiIYtcikpesI52ys7ORn58v9X7T0tLw22+/yd2miooKLCwscO7cOYwbN044fvbs2VKvTU5Ohra2ttQC8MD/T3csTAq+P3qtNB/b921sbPD48WNYWFhARUWl2DZatmwJADh//rywZlN+fj4uXLhQpKy6ujoGDhyI0NBQvH79GuPGjSuSIFOUXMmmhIQEHDt2DP/99x/09PTQq1cv4Ubi4uKwZcsWHD16FFlZWUrLhhEREREREVVHjWuV/w7fH9Nmfn4+bt26BaBgcexHjx4hJCQE0dHR8PX1RYMGDQAAbdu2hZaWFhYvXgwXFxfExcXBz88PRkZGUvU1adIEubm5CAoKgqWlJbS1tWFmZobOnTsjNDQUTZs2Re3atbF//36FpmyJRCKsXr26xDK2trYICgrC0qVL0bNnT4SHh+P48eNytyVrXSoqKnBxccGKFStgYGAAa2trXL9+HVevXgUAYUSUqakpRo8ejblz52LixIlo06YNcnJyEBUVhevXr5e6ALYs5s6di7Fjx2LmzJno168fdHV1ERsbiytXrmDw4MGwtraWua4Pvcv36ejooFWrVggMDBRGJm3fvh3a2trFjswpzZQpU+Dq6gpPT09hNzpZ3t+1a9ewZs0aDBo0CK1bt4aqqiru37+Pbdu2oX79+sI6UCYmJlBRUcHhw4ehqqoKFRWVEpNzH9v3p0+fjiFDhmDixIkYNmwYDAwM8Pr1a9y4cQPt27dH//790axZM/Ts2RPLli1DRkYG6tevj0OHDiEzM7PYRNKwYcMQFBQEFRUVDB48WM4n/GEyJ5uePn2Kb7/9FsnJyZBIJACAHTt2YPXq1RCJRFiwYAGys7PRq1cvTJw4UUhCERERERERkXzy8vOxyGFYhbWtIpZ/L6nMzExhZzQtLS00aNAANjY28Pf3R5MmTYRyBgYG2LhxI1atWgVXV1eYmJhg8eLF2LFjh1R93bp1w6hRo7B9+3YkJCSgQ4cO2LdvHxYuXIhFixZh6dKl0NTUxKBBg9CzZ09hNzRl6tKlC9zd3REcHIwjR47AysoK27Ztk3mRaUXqcnJyQkpKCvbv3499+/bBxsYGc+bMwaxZs6SmRXl5ecHU1BQhISEICAhAzZo1YWpqij59+nz0fQMFu5zt378ffn5+8PT0RE5ODoyNjdGpUyc0btxYrro+9C6Ls3btWnh7e8PDwwO1atWCk5MT0tPTsWvXLrnvoUePHli8eDG2bt2K06dPo02bNtiwYYMwyu5D2rRpg969e+P8+fMICgpCVlYWjI2NMWDAALi4uAhLBunr68Pb2xs7duzAiRMnkJubi4cPH36w3o/t+40bN0ZoaCg2bNiAxYsXIz09HYaGhujQoQPMzc2F61esWIElS5Zg1apVUFdXx6BBg9CsWTP8+OOPRWJq2rQpTExM0KhRoyJJr48hkhRmjkoxffp0XLp0CZ6enmjfvj1iYmLg4+ODtLQ0pKamolu3bnB3d0fDhg2VFlxlVLjyuzKGGhIREZH8pg1bgaf3o0st16R5Q/gdmq9QG1MWBOJJVOm77DQ1McbW5c4KtUFElV9pvxtkZmYiMjISpqam0NDQKM/QqJLZsGEDdu/ejevXr7OvkEJGjx4NsVhcJMn333//oVevXti4cWOpSVR5fmbJPLLp77//xsiRIzFixAgABdkvFRUVODs7Y9CgQcWuUE9EREREREREsnv69ClOnDgBS0tLqKmp4caNG9i5cydGjhzJRBPJ5OzZs3j58iU+//xzZGRk4NSpU/j7778REBAglElKSkJkZCQCAgJQv359mRY8l4fMyabk5GSpYVkAhNXTi1udnoiIiIiIiIjko6GhgfDwcBw4cABv376FkZERJk6ciGnTplV0aFRJaGlp4fjx44iKikJOTg7MzMywevVqqdzNhQsXMH/+fDRu3BirV68ushj6x5K5tvz8/CKNF37W0tJSalBERERERERE1dFnn32GvXv3VnQYVInZ29vD3t6+xDKDBw9W6oLg75MrdXX37l3UqFFD+Pz27VuIRCL873//Q2pqapHyvXr1+vgIiYiIiIiIiIio0pAr2RQUFISgoKAix/39/YscE4lEuH//vuKRERERERERERFRpSNzsonD+IiIiIiIiIiIqDQyJ5s6duxYlnEQEREREREREVEVIK7oAIiIiIiIiIiIqOpgsomIiIiIiIiIiJSGySYiIiIiIiL6KH5+fjA3Nxe+WrVqhb59+yIwMBD5+flSZc3NzbFz584KirTA/fv3YW5ujuvXrxd7/u7duzA3N8fx48eLPZ+Xl4fOnTtj7ty5iImJgbm5OcLCwsoy5A/q3r07lixZInz28PBA//79ld6On58fbt68WeT4p/A+6dMj1250REREREREVPbyJfkQiypmbICibWtoaAi7l2dmZuL69etYu3YtJBIJXFxclB1mmWrZsiVMTU1x+vRpDBw4sMj5q1evIiEhAQMGDEDdunUREhICExOT8g+0GK6urkhPT1d6vf7+/tDS0oKVlZXU8ZCQENSvX1/p7VHlxmQTERERERHRJ0YsEmPbP8F4mRZXru3W0zbC5DbfKnStWCxG27Zthc+dOnXCo0eP8Msvv1S6ZBMA9O/fH1u3bkVSUhJq164tde7UqVOoU6cOOnfuDBUVFan7rmiNGjUq1/Y+pXunT4fc6eqMjAwMHjwYBw4cKIt4iIiIiIiICMDLtDg8S3lerl/KTm7VrFkTubm5cl938eJFjB8/HjY2NrCyssLQoUNx+fJlqTJHjhyBubk57t27h0mTJqFt27bo1asXjh07VqS+zZs3w9bWFpaWlpg6dSoSEhJKjWHAgAHIyckpMj0uKysL586dg6OjI1RUVIqdRnf+/HkMHjwYlpaWaN++PQYPHoxLly4J54uberZnzx6Ym5sLn9PT07FkyRL07t0bbdq0Qffu3eHt7Y3U1NQS435/Gl337t2lpjgWfnl4eAAAXr16BU9PT/To0QOtW7dGr169sG7dOmRnZ0vFCwCrVq0Sri+cgljcvRw8eBC9e/dGy5Yt0b17d2zevFlqOqU8744qJ7lHNmlqaiImJgYikags4iEiIiIiIqJKqjCxVDiN7pdffsHkyZPlricmJgbdunXDhAkTIBaLcfnyZbi4uCAoKAjW1tZSZd3d3TFs2DCMHz8ehw4dgoeHB1q1aoUmTZoAAIKDg7Fx40ZMmDABnTt3xpUrV7BgwYJSY2jcuDFatWqFU6dOYeTIkcLxixcvIi0tDQMGDCj2uv/++w8zZsxAv379MHv2bOTn5+PBgwd48+aNXM8gMzMTeXl5mDVrFvT19fHy5Uts3boVrq6u2Ldvn8z1+Pv7SyWOHj58iEWLFsHU1BQAkJSUhFq1asHT0xO6urqIioqCn58f4uPj4ePjA6Bgqtzw4cPh5OQkJLKaNm1abHv79u3DsmXL4OTkhK5duyI8PBz+/v5ITU3FvHnzpMqW9u6o8lJoGp29vT3++OMPjBgxQtnxEBERERERUSWUnp6OFi1aSB1zdHRUaArdt9/+/1S+/Px8WFtb48mTJzh06FCRZNPo0aMxevRoAIClpSUuXbqEs2fPwtXVFXl5edi2bRsGDhwoJDrs7e2RkJDwwcW/3zVgwAD4+Pjg5cuXqFevHgDg9OnTaNSoEdq0aVPsNffu3UNOTg4WLlwIbW1toU156evrY/HixcLn3NxcNGjQAKNGjUJkZKSQLCqNhYWF8H1iYiK+//572NrawtnZGUDByKR3k0BWVlbQ1NSEh4cHvL29oampKUyVq1evXonT5vLy8hAQEIB+/frBy8sLAGBnZ4ecnBzs2rULLi4uUlMSS3p3VLkptOKcq6sroqKiMGfOHPz999+Ii4tDcnJykS8iIiIiIiKqHjQ0NPDTTz/hp59+wv79+7FgwQL8/vvvQtJBHrGxsZg3bx7s7e1hYWGBFi1a4I8//kBkZGSRsnZ2dsL3WlpaqF+/PmJjY4V6Xr16hZ49e0pd07t3b5nicHR0hFgsxpkzZwAAaWlpuHjxYom7vZmbm0NFRQXu7u747bffSp32VpJjx47h66+/hqWlJVq0aIFRo0YBAKKiouSuKycnBzNmzICKigrWrVsHsbggHSCRSLBnzx44OjqidevWaNGiBdzd3ZGbm4vo6Gi52oiIiEBSUhL69OkjddzR0RE5OTm4ffu21PGS3h1VbgqNbOrXrx8A4MmTJzh16tQHy92/f1+xqIiIiIiIiKhSEYvFaNWqlfC5Xbt2yMvLg6+vL8aPH4/PP/9cpnry8/Px3XffITU1FdOnT0fjxo2hqamJTZs24eXLl0XK6+joSH1WU1MTpo3Fx8cDKBgl9C4DAwOZYjE0NIS1tTVOnTqFiRMn4ty5c8jKyvrgFDoAMDU1xdatW7Ft2zZMnToVYrEYdnZ28Pb2lmvXtnPnzmHevHkYPnw4Zs2ahVq1aiE+Ph5ubm7IysqSuZ5Cy5cvx927d3Ho0CHo6ekJx4OCgrBy5UpMmjQJ1tbW0NXVxZ07d7BkyRK52ymcKlinTh2p44Wf359KWNK7o8pNoWSTm5sb12wiIiIiIiKiEpmZmQEoGKgga7Lp2bNnuHfvHgICAvDll18KxzMzM+Vu39DQEEDB9LF3vX79WuY6BgwYAE9PT0RERODUqVNo0aKFcF8f4uDgAAcHB6SlpeHy5cvw8fGBp6cngoKCAADq6urIycmRuiYlJUXqc1hYGJo3b44lS5YIx27cuCFz3O86ePAgDh48iE2bNqFZs2ZF2unevTtmz54tHHv69KlC7dSqVQtA0edduCD7u0kuqtoUSjZNmzZN2XEQERERERFRFfP48WMAkFqnpzSFo2nU1NSEY8+fP0d4eDhMTEzkat/Y2BiGhoY4d+6c1FS6s2fPylxHr1698MMPPyAoKAjXrl2Du7u7zNdqa2vD0dERt2/flpoVZGxsXCShc+XKFanPmZmZUs8AAE6ePClz24X+/vtvLFu2DFOmTEGvXr2KnJe1HTU1tVJHOpmamkJfXx9hYWFSz/vnn3+GmpoaWrduLXf8VDkplGx6X2pqKrS0tKCioqKM6oiIiIiIiKiSyc/Px61btwAUrA/077//YsuWLWjatCnat28vcz1mZmYwNjbG2rVrkZ+fj/T0dGzatAl169aVOyYVFRW4uLhg+fLlqFOnDmxtbfHnn3/i+vXrMtehra2Nrl27IiQkBCKRCI6OjiWWP3jwIG7dugV7e3sYGhoiJiYGJ06cgK2trVCmd+/eCAoKQqtWrWBqaooTJ04gLi5Oqp7OnTtjyZIlCAgIEBbPvnr1qlz3n5aWhmnTpqFx48bo0qWL8H6AgqmFjRo1QufOnbF3714EBwfDxMQEJ06cwLNnz4rUZWZmhvPnz6N9+/bQ1NSEqampsAB6IRUVFbi6umLZsmXQ19cX2gwMDMTYsWPlSjpS5aZwsunOnTvYsGED/v77b+Tk5GDnzp2wsbFBYmIiFixYgHHjxhXZJYCIiIiIiIhkU0/bqFK1mZmZieHDhwMAVFVVYWxsjK+++gpTp04tMnKmJOrq6vDz88OSJUswY8YM1KtXD9999x2uXbuGu3fvyh2Xk5MTUlJSsH//fhw4cAA2NjZYtmwZJk2aJHMdAwYMwNmzZ2FtbQ0jo5Kfkbm5OS5cuAAfHx8kJyfD0NAQ/fr1w4wZM4Qyrq6uSEhIQEBAAEQiEYYPH44xY8bA19dXKDNixAjExMQgODgYO3fuhJ2dHdauXYthw4bJHHdycjISExORmJhYZDf5QYMGwdfXF25ubkhKSsKmTZsAFCTCvLy8MGXKFKny3t7eWLFiBZydnZGZmYm9e/cW+zu/k5MTVFVVsWfPHhw4cACGhoaYOnVqkfqoahNJJBKJvBfdvHkTY8eOhZGREWxsbBAaGordu3fDxsYGQEHnMjQ0xLp165Qe8Kfuzp07ACC1MB4RERGVn2nDVuDp/dJ3z2nSvCH8Ds1XqI0pCwLxJKr03XKamhhj63JnhdqgT1t+Xj7EKrJv7CxveaoaSvvdIDMzU9jCXkNDQ+pcviQfYlHF9JmKbJuIPl0l/cx6n0Ijm9avX48mTZrg0KFDSEtLQ2hoqNR5a2trHD16VJGqiYiIiIg+eWIVMVZ57EJ0ROlJx4ZmxpjrO6EcoqKqpCKTPUw0EdHHUijZdOfOHXz//fdQV1cvdlc6IyMjuVb3JyIiIqqKauvVRF5+PlTEsv/iJm95qjjREbEyjaIjIiKqbhRKNqmqqiI/P/+D5+Pi4qClpaVwUERERERVgXZNDaiIxfhhz1FExZb+D3Emxgb4YdygcoiMiIiIqOwolGxq06YNzp49i3HjxhU5l56ejiNHjqBDhw4fGxsRERFRlRAV+xqPYkqfbkVERERUFSg0Rnv69Om4e/cuXFxccPnyZQDAw4cPERoaisGDByMxMRGurq5KDZSIiIiIiIiIiD59CiWb2rRpg+3bt+PZs2eYN28eAMDX1xcLFy5Efn4+tm/fji+++EKpgRIRERERERER0adPoWl0AGBjY4OzZ8/i3r17ePbsGSQSCRo2bIiWLVsWu2g4ERERERERERFVfQonmwpZWFjAwsJCGbEQEREREREREVElp3CyKTs7G4cOHcKlS5fw/PlzAMBnn32GLl26YOjQoahRo4bSgiQiIiJSttp1dJGflw+xikKrChARERHRByiUbIqNjcX48eMRGRkJQ0NDNG7cGADw4MED/P777wgODsaePXtgbGys1GCJiIiIlKWmribEKmKsXhmK6Oh4ma5p174Zxo7rWcaREREREVVuCv1T3uLFi/HixQts2LBBSC4FBwfj999/x/r16/Hy5UssXrxY2bESERERKV10dDyePnkp01dcbFJFh0tE9Ek7f/48JkyYgI4dO6Jly5bo3r07vL29ERkZKZQxNzfHzp07yy2m+/fvw9zcHNevXy+3NouzfPlydO/evcQyR44cgbm5ufBlaWmJPn36wNPTE7dv31ao3fv378PPzw8ZGRkKXV/e74uqBoWSTdeuXcO4cePQp0+fIuf69u2LMWPG4Nq1ax8dHBERERERUXWUL8mvdG2vWbMGrq6u0NbWxtKlS7F79264ubnhyZMnmDVrlpKjrNp27NiBkJAQbN68GWPGjMGjR48wbNgwbN++Xe667t+/D39/f4WTTUSKUGgaXc2aNaGvr//B8wYGBqhZs6bCQREREREREVVnYpEYJx9uRkL6i3Jtt45WfQwwd5X7ukuXLiEwMBCurq6YMWOGcLxDhw745ptvcOHCBWWGWeW1aNFC+J3bxsYGI0aMwLx587Bu3TpYWVmhffv2FRwhUckUSjYNHjwYR48exbBhw6CpqSl17u3btzhy5Ai++eYbpQRIRERERERUHSWkv0Dc26iKDkMmu3btgoGBAVxdi09UdevWrcTrDx48iN27d+P58+eoW7cuhgwZgilTpkAsLpiM4+fnh127diE8PFzquvbt22Ps2LGYNm2acGzz5s348ccfkZ6eDltbW4wYMUKme1izZg0uXbqEmJgYaGtro0OHDvDw8EDdunWFMk5OTtDS0sKgQYOwfv16vHr1Cq1atcKyZcvQqFEjoVxcXBwWLVqEq1evQldXF2PGjJEphg8Ri8VYsGABzp49iwMHDgjJposXLyIoKAgPHjxAVlYWmjRpgmnTpsHBwQFAwbQ8T09PAAVJK6BgY6/ffvsNr169wvr163Hjxg3Ex8fD2NgYffr0wdSpU6Guri7Vfl5eHlatWoUjR44gKysLvXv3hpeXF7S1tQEA6enpWLNmDf7880/ExsaiTp06sLOzw5w5c6CjoyPUc/78eQQEBCAyMhIqKipo1KgRZsyYgS5dughljhw5gt27dyMqKgq1atXC4MGDMX36dKioqHzUM6TyJVOy6ZdffpH63Lx5c1y8eBF9+/bF119/LSwQHhUVhePHj0NPTw/m5ubKj5aIiIiIiIg+Kbm5ubh58yZ69eoFNTU1ua/ft28fli1bBicnJ3Tt2hXh4eHw9/dHamoq5s2bJ1ddwcHB2LhxIyZMmIDOnTvjypUrWLBggUzXJiQkYPLkyahbty4SExOxe/duODk54fTp01BV/f9fne/fv4/ExES4u7sjLy8Pvr6+mDNnDkJCQoQyrq6uiIuLww8//AAdHR0EBgbi5cuXUvXIq1atWmjRooVUwi0mJgbdunXDhAkTIBaLcfnyZbi4uCAoKAjW1tbo2rUrvvvuO2zZsgU7duyAjo6OkEhKSkpCrVq14OnpCV1dXURFRcHPzw/x8fHw8fGRanvfvn1o0aIFVq5ciZiYGKxZswZZWVlYv349ACAzMxN5eXmYNWsW9PX18fLlS2zduhWurq7Yt28fAOC///7DjBkz0K9fP8yePRv5+fl48OAB3rx5I7Sze/durF69GmPHjoWHhweePn2K9evXIy8vD+7u7go/Oyp/MvX06dOnQyQSQSKRAIDU91u3bi1SPjY2FrNnz4ajo6MSQyUiIiIiIqJPTXJyMrKzs1G/fn25r83Ly0NAQAD69esHLy8vAICdnR1ycnKwa9cuuLi4oHbt2jLXtW3bNgwcOFBIUtnb2yMhIQHHjx8v9fp3Eyx5eXmwtLSEg4MDrl27Bjs7O+Fcamoqjh07JkxzS09Ph6enJ2JjY2FsbIzLly/j7t272LNnjzCayNraGl26dEGtWrVkupcPqVevHv7991/h87fffit8n5+fD2trazx58gSHDh2CtbU19PX1hRFX707NAwoW/n43mWdlZQVNTU14eHjA29tbahaTuro6AgIChNFFNWrUgJeXF6ZOnYomTZpAX19fapOw3NxcNGjQAKNGjUJkZCRMTU1x79495OTkYOHChcKIKHt7e+GatLQ0bNq0CZMmTcL3338PALC1tYWamhp8fX0xceJEmfsCVTyZkk179+4t6ziIiIiIiIioEhOJRHJfExERgaSkpCKbTzk6OmLbtm24ffu21BSrksTGxuLVq1fo2bOn1PHevXvLlGy6dOkStmzZgsePHyMtLU04HhUVJZVs+uKLL6SSNk2bNhXaNzY2xu3bt6GjoyMkmgBAR0cHnTt3xr1792S6lw+RSCRSzzk2Nhbr16/HlStXEB8fLwwKadGihUx1BQUF4dChQ4iJiUFWVpZwLjo6Gp9//rnwuVu3blLT2Pr06YMFCxbgzp07aNKkCQDg2LFj2LNnD549e4b09HShbFRUFExNTWFubg4VFRW4u7tj2LBh6NChg9QUu/DwcKSnp6NPnz7Izc0Vjnfu3BmZmZl4/PgxOnbsKM/jogokU7KJL5SIiIiIiIiKU6tWLdSoUQMvXsi/mHnhFKo6depIHS/8/O4Uq9LEx8cDQJHNrAwMDEq99vbt23B1dUWPHj3g7OyMOnXqQCQSYdiwYVJJGADQ1dWV+lw4dbCw3KtXr4rdUOv9e1REbGyscD/5+fn47rvvkJqaiunTp6Nx48bQ1NTEpk2b8PLly1LrCgoKwsqVKzFp0iRYW1tDV1cXd+7cwZIlS4rc8/uxa2tro0aNGnj16hUA4Ny5c5g3bx6GDx+OWbNmoVatWoiPj4ebm5tQl6mpKbZu3Ypt27Zh6tSpEIvFsLOzg7e3N+rXr4+kpCQAwKBBg4qNV5Z7ok+H4hNGiYiIiIiIqNpTVVWFlZUVrl27htzcXLnWJSqcVpaYmCh1PCEhAQCgp6cHoGDaVk5OjlSZnJwcqRE0hoaGxdb1+vXrUuP49ddfoa2tjQ0bNgiLkj9//lzm+3hX4ZpP7yu8J0UlJSXh7t276N27NwDg2bNnuHfvHgICAvDll18K5TIzM2WqLywsDN27d8fs2bOFY0+fPi227Puxp6WlISsrS1g8PSwsDM2bN8eSJUuEMjdu3ChSj4ODAxwcHJCWlobLly/Dx8cHnp6eCAoKEt61v78/jI2Ni1zboEEDme6LPg1iRS/8+++/4enpCScnJ3z11VcYMGCA1NdXX32lzDiJiIiIiIjoEzV+/HjEx8cXu6YvUDBFrTimpqbQ19dHWFiY1PGff/4ZampqaN26NQDAyMgIOTk5+O+//4Qy165dQ15envDZ2NgYhoaGOHfunFRdZ8+eLTX+zMxMqKmpSU1RO3nyZKnXFadVq1ZITU3F1atXhWOpqam4cuWKQvUBBaOYVqxYgZycHIwePRrA/4+kendR9ufPnxfZsa/wfHZ2ttTxwnt+14fu+cKFC1LPOiwsDCKRCK1atZK7LqBgZJSjoyP69esnJLgsLS2hqamJ2NhYtGrVqsgX12uqXBQa2bR7926sWrUKNWrUgKmpqZCBJCIiIiIiouqnS5cumDRpEvz8/PDkyRP069cPtWvXRkxMDA4fPozU1NRi115SUVGBq6srli1bBn19fXTp0gW3bt1CYGAgxo4dKyQYHBwcoKWlBS8vLzg7OyM2NhZ79+5FjRo1pOpycXHB8uXLUadOHdja2uLPP//E9evXS43f1tYWQUFBWLp0KXr27Inw8HCZ1nkqjoODA1q0aIE5c+bA3d0dOjo62L59u7Aotiz+/fdf6OjoIDMzE5GRkTh8+DD+/fdfzJkzB5aWlgAAMzMzGBsbY+3atcjPz0d6ejo2bdokjDYqVLim0o8//ogvv/wSGhoaMDc3R+fOnbF3714EBwfDxMQEJ06cwLNnz4qNJzs7G25ubhg5cqSwG13v3r2Fujt37owlS5YgICAAlpaWuHTpklSyDQAOHjyIW7duwd7eHoaGhoiJicGJEydga2sLoGB64vTp07F69WrExsaiY8eOUFFRQXR0NM6fPw8/Pz+pRcvp06ZQsmnnzp2wsrLC1q1bpRb0IiIiIiIiIuWooyX/7m4V2WZhIuTHH3/E/PnzkZGRgbp168LOzg4TJ0784HVOTk5QVVXFnj17cODAARgaGmLq1KmYMmWKUKZ27drYtGkTVq5cCTc3NzRv3hyrVq2Ck5NTkbpSUlKwf/9+HDhwADY2Nli2bBkmTZpUYuxdunSBu7s7goODceTIEVhZWWHbtm3ClDV5iEQibN68GYsWLYK3tzd0dXXh5OSE169f4/z58zLVURivlpYW6tatCysrK3h7ewsjvYCCHeL8/PywZMkSzJgxA/Xq1cN3332Ha9eu4e7du0I5CwsLTJs2DaGhodixYwfq1auH3377DW5ubkhKSsKmTZsAFCyk7uXlJfXcCzk5OSExMRFz585FdnY2evbsCW9vb+H8iBEjEBMTg+DgYOzcuRN2dnZYu3Ythg0bJpQxNzfHhQsX4OPjg+TkZBgaGqJfv36YMWOGUGbChAkwMjLC7t27ERwcDFVVVTRq1Ahdu3YtMnKKPm0iSeFy9XJo164d5syZgxEjRig1mGfPnmHnzp34559/8PjxY5iZmeHUqVNFyhX+IXnx4gVMTU0xa9YsdOvWTapMamoqfHx88OuvvyInJwf29vbw8vIqkuW9efMmVq5cifv376NOnToYOXIknJ2dFdpJAQDu3LkDAMJwQiIiIipf04atwNP70aWW6+LYHvNWTsT0qZvx9Ilsi4526doKcz2GYcqCQDyJii21fLfOLbDAbTDG+QbiUUzp5T9vYIw9Hs4yxUIVT9a+1qR5Q/gdml8OEdGnprTfDQpHrZiamkJDQ0PqXL4kH2KRwquefJSKbJuIPl0l/cx6n0I/QaytrfHo0SOFgivJ48ePcenSJTRu3FgYjve+06dPY+HChejbty8CAwPRtm1bTJ06Fbdu3ZIqN3PmTPz555/44YcfsGbNGkRGRsLZ2VlqC8Vnz55h4sSJMDQ0xLZt2zB27Fhs2rQJu3btUvq9ERERERERyaoikz1MNBHRx1JoGt3ChQsxYcIE7Ny5E998842wg8DH6t69u7CKvoeHh9TQv0KbNm1Cv379MHPmTABAp06d8OjRIwQEBCAwMBAAEB4ejj/++EMYvgcULDzn6OiIX375BY6OjgAKpgPWrl0b69atg7q6OmxsbJCYmIitW7fCyckJ6urqSrkvIiIiIiIiIqLqQqGUdb169TB8+HCsXbsWNjY2aNu2LaysrKS+2rVrJ38w4pLDiY6ORlRUFPr27St13NHREVevXhVW1798+TJ0dXWFhcaAgsXTmjdvjsuXLwvHLl++jB49ekgllRwdHZGSklJkBX8iIiIiIiIiIiqdQiObNm7ciK1bt8LIyAgtW7Yst0XCIyIiABSMUnpXkyZNkJOTg+joaDRp0gQREREwNTUtsu6SmZmZUEd6ejpevnwJMzOzImVEIhEiIiJgbW1dhndDRERERERERFT1KJRsOnjwILp06YLNmzeXOhpJmd68eQOgYEvEdxV+LjyfkpJSbAJMT09PmJqXmppabF3q6urQ1NQU6lKERCJBenq6wtcTERGR/EQiUZXZEjkjIwMK7OFC5UTRvsb3Wv1IJBKFNx4iIqrMFEo25eTkoGvXruWaaKpMcnJycP/+/YoOg4iIqFrR1NSEhYVFRYehFJGRkcjIyKjoMOgDFO1rfK/VE9eBJaLqSKFkU9euXfH3339jxIgRyo6nRHp6egAKRiUZGhoKx1NSUqTO6+rqIja26PbCb968EcoUjnwqHOFUKDs7GxkZGUI5RaipqaFp06YKX09ERETyq0qjB0xNTTkC5hOmaF/je61+njx5UtEhEBFVCIWSTVOnTsWsWbPwww8/YMiQIahfv36xo5yUtUtdocL1lSIiIqTWWoqIiICamhoaNmwolLt69WqRYauRkZH4/PPPAQBaWlqoV6+esIbTu2UkEkmRtZzkIRKJoKWlpfD1REREVL1VlemAJI3vtfqpSklwIiJ5KJRs6tOnDwDg/v37CAkJ+WA5ZU8la9iwIUxMTBAWFoYvv/xSOH7mzBnY2NgIQ1QdHBywefNmXL16FZ07dwZQkES6d+8eJk2aJFzn4OCA8+fPY86cOVBTUxPq0tXVhaWlpVJjJyIiIiIiIiKqDhRKNrm5uZVJlj4jIwOXLl0CADx//hxpaWkICwsDAHTs2BH6+vqYNm0a3N3d0ahRI1hbW+PMmTO4ffs2goODhXosLS1hZ2eH+fPnY968eahRowbWr18Pc3Nz9OrVSyg3ceJEnDx5ErNnz8bIkSPx6NEj7Ny5E7NmzeLcaiIiIiIiIhn5+fnB398fQMGIrpo1a6J+/fro0KEDRo8ejSZNmshd5/Xr1xEeHo4pU6YoNdanT59i8+bNuHbtGt68eQNjY2P06tULU6ZMKbKBlLJcv34dY8aMwU8//YRWrVoBAMzNzTF37lxMnDgRAHDkyBGoqalhwIABZRKDsv36669wc3PD+fPn0aBBgxLLvv/MjYyM0LNnT0yZMkXpM6KUJSYmBkePHsWwYcNgZGQkHC/uXVJRCiWbpk2bpuw4AAAJCQmYMWOG1LHCz3v37oW1tTX69++PjIwMBAYGYvv27TA1NYW/v3+RkUgbNmyAj48PvL29kZubCzs7O3h5eUFV9f9vuXHjxti5cyd8fX3h4uICfX19TJ8+HRMmTCiT+yMiIiIiIqqqNDQ0EBQUBAB4+/YtHj16hJCQEBw6dAjLly/HwIED5arvxo0b2LVrl1KTTX/99RdcXFzQqFEjzJ07F/Xq1cODBw+wZcsWXLx4EcHBwdDX11daeyUJCQlB/fr1hc9Hjx6FlpZWpUk2yaqkZ37hwgUEBwdLrcn8qXj+/Dn8/f3RtWtXqWRTixYtEBISolACtTpRKNlUVho0aICHDx+WWm7o0KEYOnRoiWV0dHSwYsUKrFixosRyVlZWOHTokFxxEhERERERlSWJJA8ikUqlalssFqNt27bCZ1tbW4waNQouLi5YsGABrKyshHV2K0JmZia+//571K9fHwcOHBDW2e3YsSNsbW3x9ddfY9myZVi3bl25xPPus6qqZHnmS5YsgZ+fX7nFo6Gh8VF1aGtrV4t397EUSjYVDo8siUgkgpubmyLVExERERERVWsikQpuPlmMtIxn5dqutmZjWDVdpLT6atSogYULF6Jfv34IDQ3F999/DwA4duwYQkJC8PTpU0gkEnzxxReYM2cOWrduDUB6Wp65uTmAggTFvn378PTpU/j7++PmzZtITk7GZ599hiFDhmDcuHHFblxVKCwsDK9evcLcuXOLbOjUpEkTDBw4EIcPH8a8efNgZGSEI0eOwNPTE1evXpUa7TRw4EA0b94cvr6+AIDw8HBs27YNd+/eRVpaGho3bozx48fj66+/LvHZvDuNzsnJCTdu3JC636lTp6JWrVpYs2YN/vzzT2hrawvXPn36FI6Ojti+fTu6dOlSbP2lPePC57xr1y4cPHgQP/zwA+7du4eGDRti3rx5sLe3F8rl5ORg1apVOH78OPLy8tC7d29YW1uXeH+yPvOffvoJz58/x2effSZMUdu+fTtCQ0Pxxx9/QFtbG99++22REW5Pnz7FmjVrcOPGDeTl5aFjx47w8vJCo0aNpJ7x7Nmz8ebNGxw7dgzp6ekIDw8v9Z0VxgEAQ4YMEep7+PBhsdPosrKysG7dOpw+fRpv3ryBmZkZpk6dip49ewrXenh44O7du1i4cCF8fHwQFRWFpk2b4ocffkDLli2Fcj/99BN2796N6OhoaGpqwszMDJ6enlLvrTJQerJJJBIJu8Ax2URERERERKSYtIxneJP+qKLD+GhNmzaFkZERwsPDhWMxMTH4+uuv0ahRI2RnZ+P06dMYPXo0Tpw4AVNTUwwdOhSxsbE4deqUMDWvMNny6tUrmJqaYsCAAahZsybu378PPz8/pKenY+rUqR+MozCZ061bt2LPd+/eHaGhofjrr7/Qv39/me/vxYsXsLKywsiRI6Guro6bN2/Cy8sLEokEgwYNkqmORYsWYc6cOdDQ0MC8efMAAMbGxtDU1MTq1atx6tQpjBgxQij/008/wcjICHZ2dh+ss7RnXCgnJwfu7u4YM2YMXF1dERgYiOnTp+O3335D7dq1AQDr1q3DgQMHMG3aNFhYWOD06dNYu3Ztqfcl6zP/3//+h88++0w4Xpig9PPzw5UrV7B+/Xro6elh5MiRAIDo6GiMGDECzZo1g6+vL0QiEbZu3Ypx48YhLCxMag3mvXv3ok2bNli+fDlyc3MBlP7OWrRoAW9vbyxZsgQ+Pj6l7lbv7u6O33//HTNnzoSZmRmOHz+OadOmISAgAD169BDKxcfHY9myZXBxcYGOjg7Wrl2LqVOn4ty5c1BTU8Nff/2FBQsWYMKECejSpQsyMzNx+/ZtpKamlvqsPzUKJZsePHhQ5Fh+fj6eP3+O/fv346+//kJgYOBHB0dERERERESVX7169fD69Wvh87tJofz8fNja2uL27ds4evQovv/+exgbG8PY2LjI1DwAsLGxgY2NDQBAIpGgXbt2yMzMRHBwcInJpri4OOjq6kqNEHpX4fpJsbGxct1bv379hO8lEgk6dOiAuLg4hISEyJxsatq0KbS1taGlpVXkfnv37o3Dhw8Lyabc3FycOHECQ4YMgYrKh6c7lvaMCxUmmwpHSJmamqJHjx64fPkyBg4ciOTkZOzfvx/Ozs6YPHkyAMDe3h7ffvst4uLiSrwvRZ95p06dhKSbvb09EhISsGXLFgwfPhxisRj+/v7Q09PD7t27UaNGDQAFS+T06NEDoaGhGD16tFCXnp4e/P39pTY5K+2daWtro2nTpgCAZs2albgQ+IMHD/DLL79g8eLFwjtycHDA8+fPiySb3rx5g+DgYDRr1gwAoKmpiTFjxuCff/5B+/btcfv2bdSqVUu4dwDo2rXrB9v+lCltzSaxWCwMt5s9ezaWLVsmU6aTiIiIiIiIqrbC2S+Fnj59inXr1iE8PBwJCQnC8aioqFLrysrKwrZt23Dy5Em8fPkSOTk5wrm3b9+iZs2aHxWrvDuvv3nzBn5+fjh//jzi4uKQl5cHAErbZW3YsGH49ttv8fjxYzRr1gyXLl1CQkICvvnmmxKvk/UZi8ViIXkHFKylrKGhISSSHj16hMzMTKkpYQDQq1cv/PXXXx95d8V7v63evXvj+PHjiI2NRf369fHnn3/C0dERKioqwmglXV1dWFhY4O7du1LXOjg4FHmnynxn//vf/wAAffr0kTret29f+Pj4ID09XZhCWLduXSHRBEBIaBU+awsLCyQnJ8PDwwMDBgyAlZUVNDU15Y7pU1AmC4R36NABa9asKYuqiYiIiIiIqJKJjY2FiYkJACAtLQ0TJkyAvr4+PDw8UL9+fdSoUQNeXl7Iysoqta7Vq1cjNDQUbm5uaNmyJXR0dHD+/Hls2bIFWVlZH0w2GRsb448//kBaWlqxI21evHgBAFI7j8nCw8MD4eHhcHNzE0YoHThwAD///LNc9XxIhw4dYGpqip9++gmenp44fPgwOnToILU20fvkecYaGhpS084AQE1NTSgXHx8PAKhTp45UGQMDg1JjNzIyQkpKSqnP3NjYWOr4+zsCFrYVHx+P+vXrIykpCUFBQcIUy/djf9f7cQPKfWdv3ryBmppakUSVgYEBJBIJUlNThWSTrq5usbEWPmsbGxusWrUKe/fuxcSJE1GjRg307t0b8+fPV1rysryUSbLp7t27JS7MRkRERERERNXD48ePERcXJ0wpu3XrFmJjY7Ft2zZ88cUXQrnU1NQiSYfihIWFYfjw4XBxcRGOXbp0qdTrOnTogJ9++gmXLl2SmkZV6OLFixCLxWjXrh0ACNOz3h05BQApKSnC91lZWbh48SI8PDzg5OQkHN+/f3+p8chj6NCh2LFjB8aPH49Lly5h+fLlJZb/2Gf8LkNDQwBAQkKCVCLu3WmRH9KxY0ccPny4xGcuEonQvn17qeOJiYlSnwvbKoxFT08PXbp0wahRo4rU+X6y8f1RTcp+Z3p6esjJycGbN2+gp6cnFbNIJIKOjo5c9Q0cOBADBw5EYmIizp8/Dx8fH6iqqmLFihUKxVdRFEo2HTt2rNjjKSkp+Pvvv/HLL79g6NChHxMXERERERERVXJZWVlYunQp1NXVhd8RMzMzAUiPQLl58yaeP38uNcVITU0N2dnZxdb57rV5eXk4ffp0qbH06dMH69atw5YtW9C9e3ep6UmRkZE4evQoHBwcUK9ePQD/P8IpIiJC+P7p06d4+fKlcF12djby8/Ol4klLS8Nvv/1Wajzve3c00fsGDRqE9evXw93dHRoaGkWmbL1P1mcsi88//xwaGho4d+4cLCwshOO//PJLqdf26dMHa9euLfGZ9+rVS1i7qdC5c+ekptKdPXsWdevWFRJlNjY2ePz4MSwsLEpct6o4sr6z90cdfUhhcrIwCVooLCwMFhYWRXbhk5W+vj6GDh2Ky5cvIyIiQqE6KpJCySYPD48PnqtduzZcXFy4Ex0REREREVE1kp+fj1u3bgEA0tPT8ejRI4SEhCA6Ohq+vr5o0KABAKBt27bQ0tLC4sWL4eLigri4OPj5+RWZvtakSRPk5uYiKCgIlpaW0NbWhpmZGTp37ozQ0FA0bdoUtWvXxv79+4tNSr1PQ0MDa9euhYuLC0aNGoXx48ejXr16ePDgAbZu3Qo9PT0sXbpUKN+mTRvUq1cPK1aswOzZs5GWlobt27dLTWfS0dFBq1atEBgYCH19faiqqmL79u3Q1tYuMjqnNGZmZjh27Bh+++03GBoaom7dusIz0dfXR48ePYSEhoaGRol1yfqMZVGrVi2MGDECgYGB0NDQEHaj+++//0q9VkNDA+vWrfvgM69Xrx4WLlxY5Lpr165h5cqVsLW1xZ9//onjx4/D29tbmEE1ffp0DBkyBBMnTsSwYcNgYGCA169f48aNG2jfvn2JuwnK+s5MTEygoqKCw4cPQ1VVFSoqKsUuFP7FF1+gV69e8PX1RWZmJkxNTXHixAmEh4dj8+bNsjxiwaZNm5CcnIyOHTuiTp06ePToEX7//XeMGzdOrno+BQolm86fP1/kmEgkKnGVeSIiIiIiIpKdtmbjStVmZmamMLJDS0sLDRo0gI2NDfz9/dGkSROhnIGBATZu3IhVq1bB1dUVJiYmWLx4MXbs2CFVX7du3TBq1Chs374dCQkJ6NChA/bt24eFCxdi0aJFWLp0KTQ1NTFo0CD07NkTXl5epcZYOJUuICAAvr6+SExMhEQigaWlJQICAqTW91FTU4O/vz9++OEHzJgxA40aNcL8+fPh6+srVefatWvh7e0NDw8P1KpVC05OTkhPT8euXbvken7Ozs7477//MG/ePKSkpGDq1KmYNm2acL5nz54ICwvDkCFDSq1L1mcsq9mzZyMvLw87duxAfn4+evbsidmzZ2Pu3LmlXlv4zDdv3gxfX1+kpKSgbt26GDBgAKZMmVLsWkRLlixBSEgIDhw4gJo1a2LGjBlSO8w1btwYoaGh2LBhAxYvXoz09HQYGhqiQ4cOMDc3LzUmWd6Zvr4+vL29sWPHDpw4cQK5ubl4+PBhsfWtXr0a69atQ2BgIJKTk2FmZoZNmzahe/fupcbyrlatWiEoKAg///wz0tLSYGxsjIkTJ+K7776Tq55PgUgikUgqOoiq5M6dOwBQ4taIREREVHamDVuBp/ejSy3XxbE95q2ciOlTN+Ppk5ellgeALl1bYa7HMExZEIgnUaVvjd2tcwsscBuMcb6BeBRTevnPGxhjj4ezTLFQxZO1rzVp3hB+h+aXQ0T0qSntd4PMzExERkbC1NS0yEgViSQPIpF804OUpSLbrgje3t44c+YM9u/fj88//7yiw/mguXPn4v79+zh58mRFh1Jmrl+/jjFjxuCnn37i79SfoJJ+Zr2Pq3gTERERERF9Yioy2VOdEk0A4OXlhaZNm8LFxQWvXr2q6HCKePjwIY4dO4YzZ85gzJgxFR0OkUxknkY3YMAAuSoWiUQ4ceKE3AERERERERERlRd1dXUcPHiwosP4oO+++w6JiYn4+uuv8c0331R0OEQykTnZVNw8yuK8fv0akZGRRbYXJCIiIiIiIiL5KLKzXWVlbW39wXWRqHKROdm0b9++Es/Hx8cjMDAQISEhUFFRwVdfffXRwRERERERERERUeWi0G5073r9+jW2b9+OQ4cOITc3FwMGDMB3332HRo0aKSM+IiIiIiIiIiKqRBRONhWOZHo3yeTq6oqGDRsqMz4iIiIiIqIqjRuEE1FlIM/PKrmTTfHx8di+fTtCQ0ORm5uLr776Ct999x2TTERERERERHJQVS34dSw3N7eCIyEiKl3hz6rCn10lkTnZ9OrVKyHJlJeXh4EDB2LKlClMMhERERERESlARUUFKioqSElJgY6OTkWHQ0RUopSUFOHnVmlkTjb17NkT2dnZaN68OSZPnowGDRogJSUF//777wevadGihazVExERERERVSsikQh169bFy5cvUaNGDdSsWZO7ehPRJ0cikeDt27dISUlBvXr1ZPo5JXOyKSsrCwBw7949zJw5s9RARCIR7t+/L2v1RERERERE1Y6enh4yMjLw+vVrxMfHV3Q4RETFEolEqFWrFvT09GQqL3OyycfHR+GgiIiIiIiIqCiRSIR69eqhbt26yMnJqehwiIiKpaamJtP0uUIyJ5sGDRqkUEBERERERERUMlnXQSEiqgzEFR0AERERERERERFVHUw2ERERERERERGR0jDZRERERERERERESsNkExERERERERERKQ2TTUREREREREREpDRMNhERERERERERkdIw2URERERERERERErDZBMRERERERERESkNk01ERERERERERKQ0TDYREREREREREZHSMNlERERERERERERKw2QTEREREREREREpDZNNRERERERERESkNEw2ERERERERERGR0jDZRERERERERERESsNkExERERERERERKQ2TTUREREREREREpDRMNhERERERERERkdIw2URERERERERERErDZBMRERERERERESkNk01ERERERERERKQ0TDYREREREREREZHSMNlERERERERERERKw2QTEREREdEnKC8/v0zLExERlRXVig6AiIiIiIiKUhGLsSLgKP578brUso3qG2C+26ByiIqIiKh0TDYREREREX2i/nvxGk+iYis6DCIiIrlwGh0RERERERERESkNk01ERERERERERKQ0TDYREREREREREZHSMNlERERERERERERKw2QTEREREREREREpDZNNRERERERERESkNEw2ERERERERERGR0jDZRERERERERERESsNkExERERERERERKQ2TTUREREREREREpDRMNhERERERERERkdIw2UREREREREREREpT6ZJNR44cgbm5eZGvNWvWSJULDQ1F79690apVK3z11Ve4cOFCkbpSU1Mxf/58dOzYEZaWlpg+fTpevXpVXrdCRERERERERFTlqFZ0AIrasWMHdHR0hM9GRkbC96dPn8bChQsxZcoUdOrUCWfOnMHUqVPx448/om3btkK5mTNn4smTJ/jhhx9Qo0YNbNiwAc7Ozjh8+DBUVSvtoyEiIiIiIiIiqjCVNqPSokUL6OvrF3tu06ZN6NevH2bOnAkA6NSpEx49eoSAgAAEBgYCAMLDw/HHH39g586dsLOzAwCYmprC0dERv/zyCxwdHcvlPoiIiIiIiIiIqpJKN42uNNHR0YiKikLfvn2ljjs6OuLq1avIzs4GAFy+fBm6urqwtbUVypiZmaF58+a4fPlyucZMRERERERERFRVVNpkU//+/dG8eXP06NED27ZtQ15eHgAgIiICQMEopXc1adIEOTk5iI6OFsqZmppCJBJJlTMzMxPqICIiIiIiIiIi+VS6aXSGhoaYNm0a2rRpA5FIhN9++w0bNmxAXFwcvL298ebNGwCArq6u1HWFnwvPp6SkSK35VEhPTw937979qBglEgnS09M/qg4iIiKSj0gkgqamZkWHoRQZGRmQSCQVHQZ9gLx9rXYdXeTn5UOsUvb/zpuZmSlX32E/K1sSiaTIP24TEVUHlS7ZZG9vD3t7e+GznZ0datSogaCgIEyZMqUCI/t/OTk5uH//fkWHQUREVK1oamrCwsKiosNQisjISGRkZFR0GPQB8va1mrqaEKuIsXplKKKj42W6pl37Zhg7rqfMbdTWq4m8/HxoaGjIfE1ubh7u3fsXOTk5Ml9D8lNXV6/oEIiIyl2lSzYVp2/fvti1axfu378PPT09AEBqaioMDQ2FMikpKQAgnNfV1UVsbGyRut68eSOUUZSamhqaNm36UXUQERGRfKrS6AFTU1OOOPmEKdrXoqPj8fTJS5nKNmhgIFfd2jU1oCIW44c9RxEV+7rU8ibGBvhh3CA0a9aMfa0MPXnypKJDICKqEFUi2fQuMzMzAAVrMhV+X/hZTU0NDRs2FMpdvXq1yNDWyMhIfP755x8Vg0gkgpaW1kfVQURERNVXVZkOSOUvKvY1HsUU/QfVD2FfK1tVKQlORCSPSrtA+LvOnDkDFRUVWFhYoGHDhjAxMUFYWFiRMjY2NsIwVgcHB7x58wZXr14VykRGRuLevXtwcHAo1/iJiIiIiIiIiKqKSjeyaeLEibC2toa5uTkA4Pz58zh06BDGjBkjTJubNm0a3N3d0ahRI1hbW+PMmTO4ffs2goODhXosLS1hZ2eH+fPnY968eahRowbWr18Pc3Nz9OrVq0LujYiIiIiIiIiosqt0ySZTU1McPnwYsbGxyM/Ph4mJCebPnw8nJyehTP/+/ZGRkYHAwEBs374dpqam8Pf3h6WlpVRdGzZsgI+PD7y9vZGbmws7Ozt4eXlBVbXSPRYiIiIiIiIiok9CpcuqeHl5yVRu6NChGDp0aIlldHR0sGLFCqxYsUIZoRERERERERERVXtVYs0mIiIiIiIiIiL6NDDZRERERERERERESsNkExERERERERERKQ2TTUREREREREREpDRMNhERERERERERkdIw2URERFVCXn5+mZYnIiIiIiLZqFZ0AEREVPXl5+VDrCL7v2/IWx4AVMRirAg4iv9evC61bKP6BpjvNkiu+omIiIiISDZMNhERUZkTq4ixymMXoiNiSy3b0MwYc30nKNTOfy9e40lU6W0QVTV5+flQEcueoJW3PBEREZE8mGwiIqJyER0Ri6f3oys6DKIqSUUshufpnxCRUPrIPrM6BvDpN6QcoiIiIqLqiskmIiIioiogIuE1Hrx6WdFhEBEREXGBcCIiIiIiIiIiUh4mm4iIiIiIiIiISGmYbCIiIiIiIiIiIqVhsomIiIiIiIiIiJSGySYiIiIiIiIiIlIaJpuIiIiIiIiIiEhpmGwiIiIiIiIiIiKlYbKJiIiIiEqVL8kv0/JERERUdahWdABERERE9OkTi8TY9k8wXqbFlVq2nrYRJrf5thyiIiIiok8Rk01EREREJJOXaXF4lvK8osMgIiKiTxyn0RERERERERERkdIw2URERERERERERErDZBMRERERERERESkNk01ERERERERERKQ0TDYREREREREREZHSMNlERERERERERERKw2QTEREREREREREpDZNNRERERERERESkNEw2ERERERERERGR0jDZRERERERERERESsNkExERERERERERKQ2TTURE9EmpXUcX+Xn5FR0GEREREREpSLWiAyAiInpXTV1NiFXEWL0yFNHR8TJd0659M4wd17OMIyMqe/q6NZGXnw8VMf89kIiIiCovJpuIiOiTFB0dj6dPXspUtkEDgzKOhqh86GhqQEUshtehI4iMfy3TNZ2bNYVbr+5lHBkRERGR7JhsIiIiIvrERMa/xoMXsTKVNTGoU8bREBEREcmHY7SJiIiIiIiIiEhpmGwiIiIiIiKZ5OXLt4GDvOWJiKhq4DQ6IiIiIiKSiYpYDM/TPyEiofQ1xczqGMCn35ByiIqIiD41TDYREREREZHMIhJe48Er2TZwUES+JB9ikewTMOQtT0REZY/JJiIiIiIi+mSIRWJs+ycYL9PiSi1bT9sIk9t8Ww5RERGRPJhsIiIiIiKiT8rLtDg8S3le0WEQEZGCON6UiIiIiIiIiIiUhskmIiIiIiIiIiJSGiabiIiIiIiIiIhIaZhsIiIiIiIiIiIipWGyiYiIiIiIiIiIlIbJJiIiIiIiIiIiUhomm4iIqNqprVcTefn5cl0jb3kiIiIioupKtaIDICIiKm/aNTWgIhbjhz1HERX7utTyJsYG+GHcoHKIjIiIiIio8mOyiYiIqq2o2Nd4FBNb0WEQEREREVUpnEZHRERERERERERKw2QTEREREREREREpDZNNRERERETVjL6u/BslEBERyYprNhERERERVTM6mgUbJXgdOoLI+NI3SgCAzs2awq1X9zKOjIiIqgImm4iIiIiIqqnI+Nd48EK2jRJMDOqUcTRERFRVcBodEREREREREREpDZNNREREZUTe9VC4fgoRERERVQWcRkdERFRGVMRieJ7+CREJpa+HYlbHAD79hpRDVEREREREZYvJJiIiojIUkfAaD169rOgwiAR1amojLz8fKmIOcCciIqKywWQTERERUTWiW6NgF7LFlw/hWXK8TNdYN2iGyVa9yjgyIiIiqiqqfbLp6dOnWLZsGcLDw1GzZk0MHDgQM2fOhLq6ekWHRkREnwh93ZocCUJVzrPkeDxKfCFT2UZ6BmUcDREREVUl1TrZ9ObNG4wdOxYmJibw8/NDXFwcfH19kZmZCW9v74oOj4iIPhE6mgUjQbwOHUFkfOnrLwFA52ZN4darexlHRlR1SCR5EIlUyvwaIiIiKnvVOtl08OBBvH37Fv7+/qhVqxYAIC8vD4sXL8bkyZNhZGRUsQESlbH8vHyIVWQfqSFveQByjwbh6BH6lEXGv8aDF7EylTUxqFPG0RBVLSKRCm4+WYy0jGcyldfWbAyrpovKOCr6GFwfjIio+qrWyabLly/DxsZGSDQBQN++fbFo0SL8+eefGDx4cMUFR1QOxCpirPLYheiI0n95trBsgslzh8rdhopYjBUBR/Hfi9JHgzSqb4D5boPkboOIiKqGtIxneJP+qKLDICXh+mBERNVXtU42RURE4JtvvpE6pqurC0NDQ0RERFRQVOUz2oSoUHRELJ7ejy61XANTI4hVxFi9MhTR0bL9hbFd+2YYO64n/nvxGk+iSk9o1daTf10c/ospUdni1CYi+lif2vpg/LlGRFT2RBKJRFLRQVSUFi1aYMaMGXBxcZE63r9/f1haWmLp0qVy13nz5k1IJBKoqakpHJdIJEJaajryc/NLLauqpgotbQ2F25JHNe4qVZZIJMKbxFTk5uaVWraGhjq0dbXwJvktcvNKLw8ANWqoQVtbE8kp6TJdU0NdDTo1NZCakYm8vNL7v4qKGDqaGuyblcCn2teS0tJliklDXQ06WhpIevsWOTL0TQDQUFODrqYGEtPfIje/9DbUVVRRS1NLprrfV5Z/BkQiEXLy0iCR5MpYXhVqKtoV9ueSfU2GNlTVoKuhiaRM2coXXqOjronU7DSZrlEVq0BHXb5+IBKJkJ2ThHwZ+5pYpAp1tdrsa4Xlq2lfU1NRhbZaTZnqfld5/VzLycmBSCSClZWV3NcSEVVm1XpkU1kQiURS/1WUto5iv3CUpY+9J/o06enryFe+lvx/oaulK19/1tGUL4HKvlk5fIp9rba2nOVryh+Tvpb818irrP8MqKloy31NRf65ZF+TsQ0N+dvQUZevL8jbD9TVastVXpE2lIl9TcY2yqGvyau8fq6JRCL+PYWIqqVqnWzS1dVFampqkeNv3ryBnp6eQnVaWlp+bFhERERERERERJVWtV7oxMzMrMjaTKmpqYiPj4eZmVkFRUVEREREREREVHlV62STg4MDrly5gpSUFOFYWFgYxGIxbG1tKzAyIiIiIiIiIqLKqVovEP7mzRv069cPpqammDx5MuLi4uDr64sBAwbA29u7osMjIiIiIiIiIqp0qnWyCQCePn2KpUuXIjw8HDVr1sTAgQMxa9YsqKurV3RoRERERERERESVTrVPNhERERERERERkfJU6zWbiIiIiIiIiIhIuZhsIiIiIiIiIiIipWGyiYiIiIiIiIiIlIbJJiIiIiIiIiIiUhomm4iIiIiIiIiISGmYbCIiIiIiIiIiIqVhsomIiIiIiIiIiJRGtaIDoMrv559/xokTJ/Dvv/8iJSUFjRs3hpOTE7755huIRCKhXGhoKHbs2IEXL17A1NQUs2bNQrdu3YTzt2/fxoEDB/D333/j1atXMDIyQu/evfHdd99BS0tLqs2bN29i5cqVuH//PurUqYORI0fC2dlZqj2qesq7r925cwf79+/HrVu3EBkZiS5dumDbtm3les9UMcq7rx08eBC//PILHj58iIyMDDRt2hQuLi748ssvy/W+qfyVd187evQoDhw4gKioKGRkZKB+/fr46quv4OzsDHV19XK9dypfFfH3tUKxsbHo27cv0tPTcfXqVejr65f5/RIRUcVisok+2p49e/DZZ5/Bw8MDtWvXxpUrV7Bw4ULExsZi6tSpAIDTp09j4cKFmDJlCjp16oQzZ85g6tSp+PHHH9G2bVsABX8JevbsGSZNmgQTExM8efIEmzZtwj///IO9e/cK7T179gwTJ06Era0tZs6ciYcPH2LNmjVQUVHBxIkTK+IRUDkp77528+ZN/P3332jdujWysrIq4papgpR3X9u6dSvs7OwwcuRIaGlpISwsDG5ubvD19cWgQYMq4hFQOSnvvvbmzRvY29vDxcUF2trauH37Nvz9/REbG4ulS5dWxCOgclLefe1dvr6+0NLSQnp6enndLhERVTQJ0UdKSEgocszLy0tiZWUlycvLk0gkEkmvXr0k33//vVSZ4cOHSyZNmlRiPSdOnJB8/vnnkjt37gjHFi5cKOnWrZskKytLOLZ27VpJ+/btpY5R1VPefa2wTolEIvn2228lLi4uH30PVDmUd18rrtz48eMl/fv3V/geqHIo775WnHXr1klat24tyc3NVeQWqJKoqL525coVSceOHSU7d+6UfP7558VeT0REVQ/XbKKPVtxQ6ObNmyMtLQ3p6emIjo5GVFQU+vbtK1XG0dERV69eRXZ29gfrsbCwAAC8evVKOHb58mX06NFDari/o6MjUlJSEB4erpR7ok9Tefc1sZg/Iqur8u5rH2rv3TJUNZV3XytOrVq1kJubi/z8fEVvgyqBiuhrOTk5WLp0KaZNm4ZatWop6U6IiKgy4G9SVCb+97//wcjICNra2oiIiAAAmJqaSpVp0qQJcnJyEB0dXWI9AGBmZgYASE9Px8uXL4XPhczMzCASiYS2qPooq75G9L7y7mv/+9//2B+rqfLoa7m5ucjIyMDff/+NoKAgjBw5Empqakq8C6oMyrqv7d27FyoqKhg5cqSSIyciok8d12wipfv7779x5swZzJs3D0DB+hAAoKurK1Wu8HPh+fclJibCz88PPXr0gImJCQAgNTW12LrU1dWhqan5wbqoairLvkb0rvLuaydPnkR4eDgCAgKUED1VJuXR13Jzc9GiRQvh86BBgzB//nxl3QJVEmXd1+Li4hAQEICAgACoqKiUwR0QEdGnjMkmUqrY2FjMmjUL1tbWGDNmjML15OTk4PvvvwcA/PDDD0qKjqoS9jUqL+Xd1x48eIBFixZh8ODB3I2umimvvqaqqoqffvoJWVlZuHv3LrZs2QJPT0+sXLlS4TapcimPvrZq1SrY2trCxsbmY0IlIqJKiskmUpqUlBQ4OzujVq1a8PPzE9a70dPTA1AwKsnQ0FCq/LvnC0kkEsyfPx+3b9/G/v37UbduXeGcjo6OUNe7srOzkZGRUaQuqprKo68RAeXf154/fw5nZ2e0bt0aS5YsKYtbok9Uefe1Vq1aAQDat2+PBg0awM3NDd9++61wnKqu8uhr4eHhOHv2LA4dOiRcn5GRAQB4+/YtNDU1oampWXY3SUREFY7JJlKKzMxMTJ48GampqQgJCRGSQsD/z9+PiIiQmssfEREBNTU1NGzYUKqulStX4ueff0ZgYCC++OILqXNaWlqoV69ekbWZIiMjIZFIuL5JNVBefY2ovPtaYmIiJk6ciDp16sDf35/r51QjFf1zrWXLlgCA//77j8mmKq68+lpkZCRycnIwaNCgIjF8+eWXcHR0xPr165V5a0RE9InhAuH00XJzczFz5kxERERgx44dMDIykjrfsGFDmJiYICwsTOr4mTNnYGNjI7Wr3Pbt27Fnzx74+vp+cNi1g4MDzp8/j5ycHKm6dHV1YWlpqcQ7o09Nefc1qr7Ku6+9ffsWzs7OyMnJwfbt26Gtra38m6JP0qfwc61wcef3kwlUtZRnX7O3t8fevXulvpydnQEAAQEBcHNzK4M7JCKiTwlHNtFHW7x4MS5cuAAPDw+kpaXh1q1bwjkLCwuoq6tj2rRpcHd3R6NGjWBtbY0zZ87g9u3bCA4OFsqePHkSa9euxVdffYUGDRpI1dOoUSNhq92JEyfi5MmTmD17NkaOHIlHjx5h586dmDVrltRfhKjqKe++lpiYiBs3bgjfv337VvhLeJcuXTgFoAor7742bdo0PHjwAMuXL8eLFy/w4sULoVzbtm3L+napApV3Xxs9ejR69uwJMzMziMVi/PPPP9i1axfs7e3RunXr8rptqgDl2dcMDQ2lpuIBBdOEAcDKykroj0REVHWJJBKJpKKDoMqte/fuwl8g3nf+/Hk0aNAAABAaGorAwEC8ePECpqam+P7779GtWzehrIeHB44ePVpsPT4+Phg8eLDw+ebNm/D19cX9+/ehr6+P0aNHw9nZGSKRSIl3Rp+a8u5r169f/+DCqe+2R1VPefc1c3PzD8by8OFDRW+DKoHy7ms+Pj74/fff8eLFC6iqqqJBgwb4+uuvMWrUKP6DTRVXEX9fe9eRI0fg6emJq1evMtlERFQNMNlERERERERERERKwzWbiIiIiIiIiIhIaZhsIiIiIiIiIiIipWGyiYiIiIiIiIiIlIbJJiIiIiIiIiIiUhomm4iIiIiIiIiISGmYbCIiIiIiIiIiIqVhsomIiIiIiIiIiJSGySYiIiIiIiIiIlIaJpuIiIiKMWnSJHTo0AGvX78uci41NRV2dnYYOnQo8vPzKyA6IiIiIqJPF5NNRERExVi0aBFycnLg4+NT5Ny6deuQlJSEpUuXQizm/0qJiIiIiN7FvyETEREVo2HDhnBzc8OpU6fwxx9/CMdv376NgwcPYty4cfjiiy/KNIasrCyOnCIiIiKiSkckkUgkFR0EERHRpyg3NxeDBw9GRkYGTp06BVVVVQwdOhRv3rzBqVOn8OLFC2zcuBHXrl1DRkYGmjVrBjc3N/To0UOoIzk5Gdu2bcMff/yBmJgYiEQiWFlZwd3dXSpZdf36dYwZMwbr1q3Do0ePcOTIEcTHx+PGjRvQ1dWtiNsnIiIiIlKIakUHQERE9KlSVVXF0qVLMWLECGzevBn6+vr4999/sWPHDsTExGDkyJEwMjKCs7MztLS08PPPP8PNzQ1+fn7o2bMnACA6Ohq//vor+vTpgwYNGuD169cICQnBt99+i9OnT8PIyEiqzc2bN0NNTQ0TJ05EdnY21NTUKuLWiYiIiIgUxpFNREREpVi6dClCQkKgpqaG7t27Y+3atRg3bhwSEhJw+PBhqKurAwAkEglGjhyJpKQknD17FgCQnZ0NVVVVqbWdYmJi0LdvX0yZMgVubm4A/n9kU8OGDXHq1CloaGiU/40SERERESkB12wiIiIqxaxZs1CrVi2IxWJ4enoiOTkZ165dQ9++fZGWlobExEQkJiYiKSkJdnZ2iIqKQlxcHABAXV1dSDTl5eUhKSkJWlpaMDU1xb1794q09fXXXzPRRERERESVGqfRERERlUJbWxumpqZISkqCgYEBbt++DYlEgo0bN2Ljxo3FXpOQkAAjIyPk5+dj79692L9/P2JiYpCXlyeUqVWrVpHrGjRoUFa3QURERERULphsIiIiklPhDnETJkyAvb19sWUaNWoEANi6dSs2btyIb775BjNmzICenh7EYjFWrFiB4mayc1QTEREREVV2TDYRERHJqWHDhgAANTU1dO7cucSyZ8+ehbW1NVasWCF1PCUlBbVr1y6zGImIiIiIKgrXbCIiIpJTnTp10LFjR4SEhODVq1dFzicmJgrfq6ioFBnB9PPPPwtrOhERERERVTUc2URERKSARYsWYdSoURgwYACGDRuGhg0b4vXr17h16xZiY2Nx4sQJAEDXrl0REBAAT09PWFpa4tGjRzh58qQwOoqIiIiIqKphsomIiEgBTZs2xeHDh+Hv74+jR48iOTkZ+vr6sLCwgJubm1BuypQpyMjIwMmTJ3HmzBlYWFhg27ZtWLt2bQVGT0RERERUdkSS4lYnJSIiIiIiIiIiUgDXbCIiIiIiIiIiIqVhsomIiIiIiIiIiJSGySYiIiIiIiIiIlIaJpuIiIiIiIiIiEhpmGwiIiIiIiIiIiKlYbKJiIiIiIiIiIiUhskmIiIiIiIiIiJSGiabiIiIiIiIiIhIaZhsIiIiIiIiIiIipWGyiYiIiIiIiIiIlIbJJiIiIiIiIiIiUhomm4iIiIiIiIiISGmYbCIiIiIiIiIiIqX5P/XOdP8YfMC7AAAAAElFTkSuQmCC\n"},"metadata":{}}]},{"cell_type":"code","source":["fig=plt.figure(figsize=(7,5))\n","exp=sns.countplot(data=df_u,x='work_year',hue='experience_level',palette='viridis')\n","exp.set(xlabel='Year',ylabel='Number Reported',title='Count of Recorded Experience Level by Year')\n","sns.move_legend(exp,'upper left',bbox_to_anchor=(1,1),title='Experience Level')\n","plt.savefig('/content/countexp')"],"metadata":{"colab":{"base_uri":"https://localhost:8080/","height":496},"id":"diSVXaN__zW0","executionInfo":{"status":"ok","timestamp":1714703230169,"user_tz":300,"elapsed":1243,"user":{"displayName":"Jenny O","userId":"07622373657144372939"}},"outputId":"eca8c8d4-a0bd-4b01-948d-fd5e7143533e"},"execution_count":null,"outputs":[{"output_type":"display_data","data":{"text/plain":["
"],"image/png":"iVBORw0KGgoAAAANSUhEUgAAAx8AAAHfCAYAAAAx02U4AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAAB7QUlEQVR4nO3dd1gU1/s28HtBUJAmiFhABAwoKhEbogiClWIjNuyRgN2AmthbrPFrFxVR7Im9xIJoYqImBk1UbBErYEFBKQICStl5//Blfq6LCuuytPtzXVyXO3PmzDMFmWfPOXMkgiAIICIiIiIiKmZqJR0AERERERFVDEw+iIiIiIhIJZh8EBERERGRSjD5ICIiIiIilWDyQUREREREKsHkg4iIiIiIVILJBxERERERqQSTDyIiIiIiUgkmH0REREREpBJMPojKqNzcXCxZsgQuLi5o0KABRo8eXdIhqZSbmxumTJmitPqePHkCGxsbHDx4UGl1lkYHDx6EjY0Nnjx5UtKhlGs2NjZYs2bNR8tcvHgRNjY2CA8PV1FUREQlr1JJB0D0OR49eoRNmzbh/PnzeP78OTQ0NGBtbQ13d3f069cPVapUKekQ8dNPP0FLSwve3t5KrffAgQMIDQ3F0KFDYWtri9q1a3+w7ODBg/HPP/+InytXrgxzc3N89dVXGDJkCNTU+D1EYV28eBFDhgz54Prly5fD09NThRFVTAcPHsTUqVOxf/9+NGnSpKTDKZVycnLg7e2NrKwsHDt2TO7/wydPnsDT0xMuLi5YvXp1CUVJRBUNkw8qs86cOYNvv/0Wmpqa6NGjB6ytrZGTk4PLly/jf//7H+7fv4958+aVdJjYtWsXqlWrpvTk48KFCzAxMcG0adMKVb5mzZqYMGECACAlJQXHjh3DokWLkJKSgsDAQKXGVhEMHjy4wIfepk2bqj6YIujRowc8PT2hqalZ0qFQMdPQ0MAPP/wAHx8frFu3Tvz9zzdv3jxoaGhgxowZJRQhEVVETD6oTHr8+DECAwNRu3ZtbNu2DTVq1BDXDRw4EA8fPsSZM2dKLkAVSEpKgp6eXqHL6+rqokePHuJnHx8fuLu7Y8eOHRg/fjzU1dWLI0yFZWZmQltbu6TD+KAWLVqga9euJR1GoeWfT3V19VJ3ran42Nvbo3///ti8eTO6deuGL774AgBw8uRJnDlzBrNnz5b5/7O4lPbfZyJSHfa1oDJp06ZNyMzMxIIFCwr8w2lubo6hQ4eKn3Nzc7F27Vp07NgRjRs3hpubG5YvX47s7GyZ7T7UT/v98QX5/eYvX76MRYsWoXXr1mjatCnGjBmD5ORkme3u3buHf/75BzY2NrCxscHgwYM/emyZmZlYvHgxXFxc0LhxY3Tp0gWhoaEQBAHA/41NuHjxIu7duyfWe/HixcKdvP+vcuXKaNy4MTIyMpCUlCSz7pdffoG3tzfs7OzQqlUrBAYG4tmzZ3J1XLt2DX5+fmjZsiWaNm2Kbt26Ydu2bTJlIiIiMGDAADRt2hQtWrTAqFGj8ODBA5kya9asgY2NDe7fv4+JEyeiZcuWGDBgAABAEASsW7cOzs7O+PLLLzF48GDcu3evwGNKS0vDggULxHPXqVMnhISEQCqVypWbMmUKmjdvjhYtWmDy5MlIT08v0vn7lAMHDsDGxgb79++XWR4cHAwbGxucPXsWwP9dz9DQUGzduhWurq6ws7PDoEGDcPfuXbl6Hzx4gPHjx6NVq1Zo0qQJvL29cfr0aZky+ffnP//8gzlz5sDR0REuLi4y694f83H27FnxOtnb28Pf31/uPE+ZMgX29vZISEjA6NGjYW9vj9atW+PHH39EXl6eTFmpVIpt27ahW7duaNKkCVq3bg1fX1/cuHFDplxh7zVFJSQkYOrUqWjTpg0aN24MT09PmWuSmJgIW1tbBAUFyW0bHR0NGxsb7Ny5U1xW2HusKKRSKZYvX462bduiadOmGDlypMw5WL16NRo1aiTzf0u+mTNnokWLFnjz5s0H6584cSIMDAwwe/ZsCIKAjIwMLFy4EPb29vDx8QHw9nfZ19cXzZs3x5dffolBgwbh8uXLMvXExcVhzpw56NKlC+zs7ODg4IDx48fL3Usfu/+IiNjyQWXSH3/8ATMzMzRr1qxQ5WfMmIFDhw6hS5cu+Prrr3H9+nVs2LABDx48wNq1axWOY/78+dDT08PYsWMRFxeHbdu24YcffsDKlSsBANOmTcO8efOgra2NkSNHAgCqV6/+wfoEQcCoUaNw8eJF9O7dGw0bNsSff/6JJUuWICEhAdOmTYOhoSGWLFmC4OBgZGZmil0prKysihx/XFwcJBKJTAvK+vXrsWrVKri7u6N3795ITk7Gzp07MXDgQBw+fFgse/78eYwYMQI1atTAkCFDUL16dTx48ABnzpwRE7+///4bfn5+MDU1xdixY/H69Wvs3LkTPj4+OHjwIExNTWXi+fbbb2Fubo7AwEAx2Vq1ahXWr18PFxcXuLi44L///sPw4cORk5Mjs21WVhYGDRqEhIQE9O/fH7Vq1UJkZCSWL1+OFy9eYPr06eI5Hj16NC5fvoz+/fvDysoKv/76KyZPnlykc5eRkVHgw2C1atUgkUjw1Vdf4ddff8XixYvRtm1b1KpVC3fu3EFQUBB69+4t9zB2+PBhZGRkYMCAAXjz5g127NiBoUOH4ujRo+I9c+/ePfj4+MDExAR+fn7Q1tbGiRMnMGbMGKxZswadOnWSqXPu3LkwNDTEmDFjkJmZ+cFjOXz4MKZMmQInJydMmjQJWVlZ2LVrFwYMGIBDhw7JXKe8vDz4+vrCzs4O33//PSIiIrB582aYmZmJCSMATJ8+HQcPHoSzszN69+6NvLw8XLp0CdeuXRO7qxX2XlNUYmIi+vbtC4lEgoEDB8LQ0BDnzp3D9OnT8erVKwwbNgzVq1dHy5YtceLECYwdO1Zm+7CwMKirq4stXIW9x4pq/fr1kEgk8PPzQ1JSErZt24Zhw4bhl19+QZUqVdCjRw+sXbsWYWFhGDRokLhddnY2Tp48ic6dO6Ny5cofrF9XVxczZszAt99+i3379uH+/ftISkrCxo0bIZFIEBERAT8/PzRu3Bhjx46FRCLBwYMHMXToUPz888+ws7MDANy4cQORkZHw9PREzZo1ERcXh127dmHIkCE4fvw4tLS0ZPZb2PuPiCoYgaiMSU9PF6ytrYVRo0YVqnxUVJRgbW0tTJ8+XWb54sWLBWtrayEiIkJcZm1tLaxevVquDldXV2Hy5Mni5wMHDgjW1tbCsGHDBKlUKi5fuHCh0LBhQyEtLU1c5unpKQwaNKhQsf7666+CtbW1sG7dOpnl48aNE2xsbISHDx+KywYNGiR4enoWqt5BgwYJXbt2FZKSkoSkpCThwYMHwo8//ihYW1sL/v7+YrknT54IDRs2FNavXy+z/Z07dwRbW1txeW5uruDm5ia4uroKqampMmXfPR89evQQHB0dhZSUFHFZVFSU0KBBA+H7778Xl61evVqwtrYWJkyYIFNXUlKS0KhRI8Hf31+m3uXLlwvW1tYy12Tt2rVC06ZNhZiYGJk6li5dKjRs2FB4+vSpIAj/d443btwolsnNzRUGDBggWFtbCwcOHPjoubxw4YJgbW39wZ/nz5+LZZ8/fy60atVK+Prrr4U3b94IPXv2FNq3by+kp6eLZR4/fixYW1sLdnZ2Qnx8vLj82rVrgrW1tbBw4UJx2dChQwUvLy/hzZs34jKpVCr069dP6Ny5s7gs//708fERcnNzZeLPX/f48WNBEATh1atXQosWLYQZM2bIlHvx4oXQvHlzmeWTJ08WrK2thaCgIJmyPXv2FHr16iV+joiIEKytrYV58+bJnb/861jYe+1D8o/j+vXrHywzbdo0oW3btkJycrLM8sDAQKF58+ZCVlaWIAiCsHv3bsHa2lq4c+eOTDkPDw9hyJAh4ufC3mOC8OH/S96Vfy+1a9dO5p4ICwsTrK2thW3btonL+vXrJ/Tp00dm+1OnTgnW1tbChQsXPrqffCNGjBCaN28uNGzYUFi2bJkgCG+vR+fOnYXhw4fL/I5lZWUJbm5uwtdffy2z7H2RkZGCtbW1cOjQIXHZx+4/IiJ2u6Iy59WrVwCAqlWrFqp8fveWr7/+Wmb58OHDZdYrIv9b1XwtWrRAXl4e4uLiFKrv3LlzUFdXl+uaNXz4cAiCgHPnzikca3R0NBwdHeHo6Ah3d3eEhobCzc0NixYtEsv8+uuvkEqlcHd3R3JysvhTvXp1mJubi127bt26hSdPnmDIkCFy307nn4/nz58jKioKvXr1goGBgbi+QYMGaNOmTYHnvX///jKf//77b+Tk5GDQoEEy5/ndLnX5wsPD0bx5c+jp6cnE3qZNG+Tl5eHff/8F8PYcV6pUSexuAgDq6uoy3ygXxpgxY7Blyxa5H319fbGMsbExZs2ahfPnz2PgwIGIiorCwoULoaOjI1dfx44dYWJiIn62s7PDl19+KZ6nly9f4sKFC3B3d8erV6/E40tJSYGTkxNiY2ORkJAgU2ffvn0/Ob7j77//RlpaGjw9PWXOm5qaGr788ssCu/O9e+4AoHnz5jJdb06dOgWJRCLXkgD83/1R2HtNUYIg4NSpU3Bzc4MgCDL7cHJyQnp6Ov777z8AQKdOnVCpUiWEhYWJ29+9exf379+Hh4eHuKyw91hR9ezZU+ae6Nq1K4yNjWV+R3r06IFr167h0aNH4rKjR4+iVq1aaNWqVaH2M2vWLOTk5KBmzZriq7mjoqIQGxuLbt26ISUlRTymzMxMODo64t9//xW7lL37tqycnBykpKSgbt260NPTw61bt+T2V5j7j4gqHna7ojIn/490RkZGocrHxcVBTU0NdevWlVlubGwMPT09hRMFAHKvt81/EE9LS1Oovri4ONSoUUPu4TS/S9XnxFqnTh3Mnz8fUqkUjx49QnBwMFJSUmS6a8TGxkIQBHTu3LnAOipVevtfxuPHjwEA1tbWH9zf06dPAQAWFhZy66ysrPDXX3/JDUJ9vxtWfh316tWTWW5oaCjzkA8ADx8+xJ07d+Do6FhgPPldpOLi4mBsbCyXvBYU58dYW1ujTZs2nyzn6emJI0eO4MyZM+jXr98H4zM3N5dbVq9ePZw4cQLA29dKC4KAVatWYdWqVQXWkZSUJJPAvH8+CxIbGwug4IQOgNy9WLlyZRgaGsos09fXR2pqqvj50aNHqFGjhkzSWdB+C3OvKSo5ORlpaWnYs2cP9uzZ88EywNv7qXXr1jhx4gQCAgIAvO1yValSJZmubIW9x4rq/WsvkUhgbm4u8/vu4eGBhQsX4siRIxg7dizS09Pxxx9/YNiwYTKJ+cfUrl0bRkZG+OKLL8REIv/6f6zbYXp6OvT19fH69Wts2LABBw8eREJCgtg1Mr/M+wpz/xFRxcPkg8ocHR0d1KhR44ODjj+ksH+gC/L+YNp8H5of490/yqWFtra2zMNys2bN4O3tjRUrVoiv2pRKpZBIJNi4cWOB31gW99tqPtZv/VOkUinatm2Lb775psD17ycwqpKSkoKbN28CAO7fvw+pVKrQvCr53z4PHz4c7dq1K7DM+wl2Yc5n/r26ZMkSGBsby61//z5Q1jfZxX2v5Z+v7t27o1evXgWWsbGxEf/t6emJqVOnIioqCg0bNsSJEyfQunVrmUSrJO8xfX19uLq64ujRoxg7dizCw8ORnZ2N7t27f1a9+df/+++/R8OGDQssk38t5s2bJ44Fadq0KXR1dSGRSGTGaL3rc36fiaj8YvJBZZKrqyv27NmDyMhI2Nvbf7RsnTp1IJVK8fDhQ5lB2YmJiUhLS0OdOnXEZfr6+nKtFtnZ2Xjx4oXCsRYl6alTpw4iIiLw6tUrmW+co6OjxfXK0qBBA3Tv3h27d+/G8OHDUbt2bdStWxeCIMDU1PSjLQFmZmYA3nZN+dC3//mtQjExMXLroqOjUa1atU8+YObXERsbK+4TePsN87vftANvH7wzMzM/2RpRp04dXLhwARkZGTKtHwXFqQw//PADMjIyMHHiRCxbtgzbtm2T6wIIvP1W/X2xsbHiNc8/fg0NjUK1uBRWfr1GRkZKq7du3br466+/8PLlyw+2fhT2XlOUoaEhqlatCqlUWqjj6tixI2bNmiV2vYqNjcWIESPkYi7MPVZU7197QRDw8OFDmeQIeNv1avTo0bh+/TqOHj0KW1tb8dW5isq//jo6Op88rpMnT6Jnz54yb/578+aN0t8UR0TlG8d8UJn0zTffQFtbGzNmzEBiYqLc+kePHomvfM1/q9D7r4DdsmWLzHrg7R/iS5cuyZTbu3fvB1s+CkNLS6vQ3bCcnZ2Rl5eHn376SWb51q1bIZFI4OzsrHAcBfnmm2+Qm5srnovOnTtDXV0dQUFBct9kCoKAlJQUAECjRo1gamqK7du3yx1b/nY1atRAw4YNcfjwYZkyd+/exfnz5wv16s02bdpAQ0MDO3fulInn/WsJAO7u7oiMjMSff/4pty4tLQ25ubkA3p7j3Nxc7Nq1S1yfl5cn8zpVZQkPD0dYWBgmTpwIf39/eHp6YuXKlQUmOr/99pvMmI3r16/j2rVr4jU3MjJCq1atsGfPHjx//lxue0W7/LRr1w46OjrYsGGD3BvEFK23c+fOEAShwNfX5l/Hwt5rilJXV0eXLl1w8uTJAl9Z/P5x6enpwcnJCSdOnMDx48ehoaGBjh07ypQp7D1WVIcPHxbHsgFv75sXL17I/b47OzujWrVq2LRpE/7999/PbvUAgMaNG6Nu3brYvHlzgV1Z3z1PBbVQ7dix47P+fySiioctH1Qm1a1bF0uXLkVgYCA8PDzEGc6zs7MRGRmJ8PBwcUbxBg0aoFevXtizZw/S0tLQsmVL3LhxA4cOHULHjh3RunVrsd4+ffpg9uzZGDduHNq0aYPbt2/jr7/+QrVq1RSOtVGjRti1axfWrVsHc3NzGBoafrDPuJubGxwcHLBixQrExcXBxsYG58+fx+nTpzF06FC5bjWfq379+nBxccH+/fsxevRo1K1bFwEBAVi2bBni4uLQsWNHVK1aFU+ePMFvv/2Gvn37wtfXF2pqapgzZw5GjRqFnj17wtvbG8bGxoiOjsb9+/cRGhoK4G1XDj8/P/Tr1w+9e/cWX7Wrq6tb4GDk9xkaGmL48OHYsGEDRowYARcXF9y6dQvnzp2Tuya+vr74/fffMXLkSPTq1QuNGjVCVlYW7t69i5MnT+L06dMwNDSEm5sbmjVrJh5j/fr1cerUqSJ/e3vp0qUC51awsbFBgwYNkJSUhDlz5sDBwUEczD5z5kxcvHgRU6dOxc8//yzT/apu3brw8fGBj48PsrOzsX37dhgYGMh08Zk9ezYGDBiAbt26oW/fvjAzM0NiYiKuXr2K+Ph4HDlypEjHALz9xnvOnDn4/vvv4e3tDQ8PDxgaGuLp06c4e/YsmjVrhlmzZhWpztatW6NHjx7YsWMHHj58iHbt2kEqleLy5cvi+SjsvfYpBw4cKDAZGDJkCCZOnIiLFy+ib9++6NOnD+rXr4/U1FT8999/iIiIwD///COzjYeHB7777jv8/PPPcHJyknuZQmHvsaLS19fHgAED4O3tLb5q19zcHH379pUpp6GhAU9PT+zcuRPq6urw9PQs8r7ep6amhvnz58PPzw9eXl7w9vaGiYkJEhIScPHiRejo6CA4OBgA0L59e/zyyy/Q0dFB/fr1cfXqVfz9998fHdtDRPQ+Jh9UZnXo0AFHjhxBaGgoTp8+jV27dkFTUxM2NjaYMmWKzB/u+fPnw9TUFIcOHcJvv/2G6tWrY8SIEXIPwH379sWTJ0+wf/9+/Pnnn2jevDm2bNmCYcOGKRznmDFj8PTpU2zatAkZGRlo1arVB5MPNTU1rF+/HqtXr0ZYWBgOHjyIOnXq4PvvvxffzqVsvr6+OHPmDHbu3Ilx48bB398f9erVw9atW8U5UGrWrIm2bdvCzc1N3K5du3bYtm0b1q5di82bN0MQBJiZmcmc9zZt2mDTpk1YvXo1Vq9ejUqVKqFly5b47rvvZLpRfUxAQAA0NTWxe/duXLx4EXZ2dti8ebNclxgtLS3s2LEDGzZsQHh4OA4fPgwdHR3Uq1cP48aNg66uLoD/O8f5g3clEok4iWTPnj0Lfd527NhR4PKxY8eiQYMGmDNnDrKzs7Fo0SKx6121atXwww8/YPTo0QgNDYWfn5+4Xc+ePaGmpoZt27YhKSkJdnZ2mDlzpswkmvXr18eBAwcQFBSEQ4cO4eXLlzA0NIStrS3GjBlT6Njf161bN9SoUQMhISEIDQ1FdnY2TExM0KJFCzGJL6pFixaJkywuWbIEurq6aNy4sUw3ycLeax/zbgvWu7y9vVGzZk3s27cPa9euxa+//opdu3bBwMAA9evXx6RJk+S2cXNzQ5UqVZCRkSHzlqt8hb3HimrkyJG4c+cOQkJCkJGRAUdHR8yePVtu3gzgbdernTt3wtHRUWkzkzs4OGDPnj1Yt24ddu7ciczMTBgbG8POzg79+vUTy02fPh1qamo4evQo3rx5g2bNmmHLli0fHANDRFQQiVAaR8YSEVUQT548QYcOHfD9998X6pt+qthu376NHj164McffyxSskxEVFpwzAcREVEZsXfvXmhra3/wFcVERKUdu10RERGVcr///jvu37+PvXv3YuDAgcX+2msiouLC5IOIiKiUmz9/PhITE+Hs7Ixx48aVdDhERArjmA8iIiIiIlIJjvkgIiIiIiKVYPJBREREREQqwTEfShYZGQlBEKChoVHSoRAREVEFkJOTA4lEIjOPDlFpxeRDyQRBAIfREBERkarwuYPKEiYfSpbf4tGkSZMSjoSIiIgqghs3bpR0CESFxjEfRERERESkEkw+iIiIiIhIJZh8EBERERGRSjD5ICIiIiIilWDyQUREREREKsG3XRERERFVEHl5ecjJySnpMKic0dDQgLq6eqHKMvkgIiIiKucEQUB8fDxevnxZ0qFQOWVgYICaNWtCIpF8tByTDyIiIqJyLj/xqFGjBrS1tT/5gEhUWIIgIDMzE8+fPwcA1KpV66PlmXwQERERlWN5eXli4mFkZFTS4VA5pKWlBQB4/vw5atSo8dEuWBxwTkRERFSO5Y/x0NbWLuFIqDzLv78+NaaIyQcRERFRBcCuVlScCnt/MfkgIiIiIiKVYPJBRERERGXWmjVrYGNjU9JhlGtPnjyBjY0NDh48+Nl1MfkgIiIiqsAOHjwIGxubD/5cvXq1pEOsEPKTqOTk5JIOpVjxbVdEREREhPHjx8PU1FRued26dUsgmsIbNWoU/P39SzoMKiQmH0REREQEZ2dnNGnSpKTDKLTMzExoa2ujUqVKqFSJj7RlBbtdEREREdEnrV69Gg0aNEBERITM8pkzZ6Jx48a4ffs2AODixYuwsbFBWFgYli9fjrZt26Jp06YYOXIknj17JlfvtWvX4Ovri+bNm+PLL7/EoEGDcPnyZZky+V2S7t+/j4kTJ6Jly5YYMGCAzLr3/fLLL/D29oadnR1atWqFwMBAuf0PHjwYXl5euH//PgYPHowvv/wS7dq1w8aNG+Xqe/PmDdasWYMuXbqgSZMmcHJywtixY/Ho0SOxjFQqxdatW+Hp6YkmTZqgTZs2mDVrFlJTUwt5lj/twYMHGD9+PFq1aoUmTZrA29sbp0+fFtffuHEDNjY2OHTokNy2f/75J2xsbPDHH3+IyxISEjB16lS0adMGjRs3hqenJ/bv36+0eN/H5IOIiEoVqVRaJuokKm9evXqF5ORkmZ+UlBRx/ahRo9CwYUNMnz4dr169AvD2YXbv3r0YPXo0GjRoIFPf+vXrcebMGfj5+WHw4MH4+++/MWzYMLx+/VosExERgYEDByIjIwNjx45FYGAg0tLSMHToUFy/fl0uxm+//RZZWVkIDAxEnz59Pngs69evx+TJk2Fubo4pU6ZgyJAh4r7S0tJkyqampuKbb75BgwYNMHnyZFhaWmLp0qU4e/asWCYvLw8jRoxAUFAQGjVqJNaZnp6Ou3fviuVmzZqF//3vf2jWrBmmT58Ob29vHD16FL6+vp+c/6Iw7t27h379+uHBgwfw8/PDlClToK2tjTFjxuDXX38FADRp0gRmZmY4ceKE3PZhYWHQ19eHk5MTACAxMRF9+/YVz8306dNRt25dTJ8+HVu3bv3seAvCNioiIipV1NTU8L+l+/H4SaJS6jMzrY7vJvVWSl1E5dmwYcPklmlqauLGjRsAAA0NDfz444/w9vbG4sWL8f3332P69Olo3LhxgWMuUlNTERYWBh0dHQCAra0tAgICsHfvXgwZMgSCIGDOnDlwcHDApk2bxHki+vfvD09PT6xcuRKbN2+WqbNBgwZYtmzZR48jLi4Oa9asQUBAAEaOHCku79y5M3r16oWff/5ZZvnz58/x448/omfPngCA3r17w83NDQcOHICLiwsA4PDhw4iIiMDUqVNlzpO/vz8EQQAAXLp0Cfv27cPSpUvRrVs3sYyDgwO++eYbhIeHyyxXxIIFC1CrVi0cOHAAmpqaAIABAwbAx8cHS5cuRadOnQAAHh4e2Lx5M1JTU6Gvrw8AyM7Oxm+//YZOnTpBQ0MDALBixQrk5eXh6NGjqFatGgDAx8cHEyZMQFBQEPr3748qVap8VszvY/JBRESlzuMniXjwQL57BhEVn1mzZsHCwkJmmZqabCcZa2trjB8/HsuWLcOdO3eQkpKCzZs3FzjmomfPnmLiAQBdu3aFsbExzp49iyFDhiAqKgqxsbEYNWqUTAsLADg6OuKXX36BVCqViaF///6fPI5ff/0VUqkU7u7uMm+Oql69OszNzXHx4kWZ5ENbWxs9evQQP2tqaqJJkyZ4/PixuOzUqVOoVq0aBg0aJLe//KQpPDwcurq6aNu2rcx+GzVqBG1tbVy8ePGzko+XL1/iwoULGD9+vNjylM/JyQlr1qxBQkICTExM4OHhgQ0bNuDUqVNiC9H58+eRlpYGDw8PAIAgCDh16hTc3d0hCIJMzE5OTjh+/Dj+++8/NG/eXOGYC8Lkg4iIiIhgZ2dXqAHnvr6+OH78OK5fv44JEyagfv36BZYzNzeX+SyRSGBubo64uDgAQGxsLABg8uTJH9xXenq6+M09gALfxvW+2NhYCIKAzp07F7j+/USpZs2acrNz6+vr486dO+LnR48ewcLC4qMD2x8+fIj09HQ4OjoWuD4pKemTsX/Mo0ePIAgCVq1ahVWrVn1wHyYmJmjQoAEsLS1x4sQJMfkICwtDtWrV0Lp1awBAcnIy0tLSsGfPHuzZs6fA+orjtb9MPoiIiIio0B4/foyHDx8CgMx4h6LK7670/fffo2HDhgWW0dbWlvlcuXLlT9YrlUohkUiwceNGqKurf7LOgsooQiqVwsjICEuXLi1wvaGh4WfXDwDDhw9Hu3btCizz7muRPTw8EBwcjOTkZOjo6OD333+Hp6enmEDl19e9e3f06tWrwPqKY/JGJh9EREREVChSqRRTpkyBjo4Ohg4diuDgYHTp0qXAVob8BCWfIAh4+PCh+EBrZmYGANDR0UGbNm2UFmPdunUhCAJMTU3lupF9Tp3Xrl1DTk6OOF6ioDIRERFo1qyZ0sdJAP93vjQ0NAp1vjw8PBAUFIRTp06hevXqePXqFTw9PcX1hoaGqFq1KqRSqVLP/6fwbVdEREREVChbtmxBZGQkfvjhB3z77bewt7fHnDlzCuyec/jwYZmxCeHh4Xjx4gWcnZ0BAI0bN0bdunWxefNmZGRkyG2vaJefzp07Q11dHUFBQWLrSj5BEOTGlxS2zpSUFPz0009y6/L34e7ujry8PKxbt06uTG5urtxbtorKyMgIrVq1wp49e/D8+XO59e+fLysrK1hbWyMsLAxhYWEwNjZGy5YtxfXq6uro0qULTp48WWALVnHNtM6WDyIiIiLCuXPnEB0dLbe8WbNmMDMzw4MHD7Bq1Sp4e3vDzc0NALB48WL07NkTc+fOlRuHoK+vjwEDBsDb2xtJSUnYtm0bzM3N0bdvXwBvB7PPnz8ffn5+8PLygre3N0xMTJCQkICLFy9CR0cHwcHBRT6OunXrIiAgAMuWLUNcXBw6duyIqlWr4smTJ/jtt9/Qt29f+Pr6FqnOnj174vDhw1i0aBGuX7+O5s2bIysrCxEREfDx8UHHjh3RqlUr9OvXDxs2bEBUVBTatm0LDQ0NxMbGIjw8HNOnT0fXrl0/ua+tW7fKtZyoqalh5MiRmD17NgYMGIBu3bqhb9++MDMzQ2JiIq5evYr4+HgcOXJEZjsPDw+sXr0alStXRu/eveVeIDBx4kRcvHgRffv2RZ8+fVC/fn2kpqbiv//+Q0REBP75558inafCYPJBRERERFi9enWByxctWoTatWtj8uTJqFatGqZNmyauq1evHiZMmIAFCxYgLCxMfJMSAIwcORJ37txBSEgIMjIy4OjoiNmzZ0NLS0ss4+DggD179mDdunXYuXMnMjMzYWxsDDs7O/Tr10/hY/H390e9evWwdetWrF27FsDbgeVt27YVE6eiUFdXx8aNG7F+/XocO3YMp06dgoGBAZo1ayYzLuKHH35A48aNsXv3bqxYsQLq6uqoU6cOunfvjmbNmhVqXxs2bChw/yNHjkT9+vVx4MABBAUF4dChQ3j58iUMDQ1ha2uLMWPGyG3n4eGBlStXIisrC+7u7nLrq1evjn379mHt2rX49ddfsWvXLhgYGKB+/fqYNGlSEc5Q4UmE99uj6LPkvwu7MG+LICKigo0PCFbaq3atrGph9cqRny5IVEZ96tnj9evXiImJgYWFRbGMRXjfxYsXMWTIEKxatapQ3/RT+VDY+4xjPoiIiIiISCWYfBARERERkUow+SAiIiIiIpXggHMiIiIiUhoHBweZ2cGJ3sWWDyIiIiIiUgkmH0REREREpBJMPoiIiIiISCWYfBARERERkUow+SAiIiIiIpVg8kFERERERCrB5IOIiIiIiFSC83wQERERUblx5MgRbN++HTExMRAEASYmJmjWrBkmTJgAIyMjpe9v8ODB0NbWxoYNG5Red3nE5IOIiIiICiSVSqGmVjIdZRTZ98aNG7Fs2TIMGzYM48ePhyAIuHfvHo4ePYrnz58XS/Ixe/bsEjtHZRGTDyIiIiIqkJqaGv63dD8eP0lU6X7NTKvju0m9i7zdjh070KtXL0yZMkVc5uLigm+++QZSqVSZIYrq16+vlHpev36NKlWqKKWu0ozJBxERERF90OMniXjw4FlJh1EoaWlpqFGjRoHr3m+dOHjwILZs2YLY2FgYGBjA29sb48ePh7q6urh+6tSpOHToEJYvX45Lly6hRo0aGD16NHr27CnWU1C3q3///RfLli3DrVu3oKWlBTc3N0yePBkGBgYAgCdPnqBDhw5YtGgRrly5gl9//RU1atTA0aNHlXtCSiG2ERERERFRudCoUSPs3r0b+/btw4sXLz5YbsuWLZgxYwacnJwQHBwMPz8/bN++HStWrJArO2nSJDg5OWHt2rVo2LAhpkyZggcPHnyw7ps3b+Lrr79G1apVsWrVKkyaNAl//PEH/Pz8kJeXJ1N2+fLlEAQBy5Ytw3fffaf4gZchbPkgIiIionJh9uzZGDt2LGbMmAEAMDU1haurK4YNGwZTU1MAwKtXr7B69Wp88803mDBhAgCgbdu20NDQwOLFi+Hr64tq1aqJdQ4cOBADBw4EANjb2+Ps2bM4efIkRo8eXWAMwcHBMDY2RnBwMDQ0NAAAtWrVgq+vL86ePQs3NzexbIMGDbBgwQLln4hSjC0fRERERFQuWFtb49ixYwgJCcGQIUOgq6uLHTt2oHv37oiKigIAREZGIjMzE127dkVubq7406ZNG7x+/Rr37t2TqdPJyUn8t7a2NmrXro34+PgPxnDp0iV06NBBTDzy69DT08Ply5dlyrZv314JR122sOWDiIiIiMoNTU1NuLi4wMXFBQDw559/YsSIEVi7di2CgoKQkpICAOjVq1eB2z97Jju+RVdXV+azhoYGsrOzP7j/tLS0At+qZWRkhNTUVLllFQ2TDyIiIiIqt9q1a4cGDRqI4zT09fUBAEFBQahZs6Zc+fzuWYrS19dHUlKS3PKkpCRx3/kkEsln7assYvJBREREROVCYmIiqlevLrPs9evXePbsmfhKXHt7e2hpaSE+Ph6dOnVSegzNmzfH6dOnMWXKFFSq9PZR+/z580hLS0Pz5s2Vvr+yhskHEREREZUL3bp1g6urK5ycnFCjRg0kJCRg586dSElJwdChQwEAenp6GD9+PP73v/8hPj4erVq1grq6Oh4/fozTp09jzZo10NLSUjiGkSNHon///hgxYgQGDx6MxMRELFu2DHZ2dmJXsIqMyQcRERERfZCZafVPFyol+xw7diz++OMPLF68GMnJyahWrRpsbGywdetWtG7dWiw3fPhwmJiYYMuWLdi5cycqVaqEunXron379jIDxRXRuHFjbN68GcuXL8e4ceOgra0tzvORP4dIRSYRBEEo6SDKkxs3bgAAmjRpUsKREBGVXeMDgpU2qZmVVS2sXjlSKXURlUafevZ4/fo1YmJiYGFhUeQZtKVSqdzkfKpSkvumoivsfcYrSkREREQFKsmHfyYe5VOpuqoHDx6EjY2N3M/SpUtlyu3btw9dunRBkyZN0L17d/zxxx9ydaWnp2PatGlo1aoV7O3tMX78eDx//lyu3JUrV9CvXz/Y2dnB1dUVISEhYGMQEREREZHylcoxH5s2bZJ5p7KJiYn47+PHj2PmzJkYOXIkWrdujbCwMIwdOxY//fQTmjZtKpYLCAjA/fv3MWfOHFSuXBkrV66En58fDhw4IL554OHDh/D19UXbtm0REBCAO3fuYOnSpVBXV4evr6/KjpeIiIiIqCIolclHo0aNYGhoWOC61atXw9PTEwEBAQCA1q1b4+7du1i7di02btwI4O3MlX/99RdCQ0PFWSktLCzg4eGBU6dOwcPDAwAQGhqKatWqYfny5dDU1ISjoyOSk5MRHByMwYMHQ1NTs/gPloiIiIiogihV3a4+5fHjx4iNjYW7u7vMcg8PD0RERIizTZ47dw56enpo27atWMbS0hINGzbEuXPnxGXnzp1Dhw4dZJIMDw8PpKWlITIyspiPhoiIiIioYimVyYeXlxcaNmyIDh06YMOGDcjLywMAREdHA3jbivEuKysr5OTk4PHjx2I5CwsLuVkjLS0txToyMzPx7NkzWFpaypWRSCRiOSIiIiIiUo5S1e3K2NgY48aNw5dffgmJRILff/8dK1euREJCAmbNmoXU1FQAbyeHeVf+5/z1aWlpMmNG8unr6+PmzZsA3g5IL6guTU1NaGlpiXUpQhAEZGZmKrw9EVFFJZFIPmtyr4/JysriC0WoXBIEQe4LV6LSqlQlH+3atUO7du3Ez05OTqhcuTK2bduGkSPLzjvac3JyEBUVVdJhEBGVOVpaWrC1tS2WumNiYpCVlVUsdROVNI5TpbKiVCUfBXF3d8fmzZsRFRUFfX19AG9bLYyNjcUyaWlpACCu19PTQ3x8vFxdqampYpn8lpH8FpB82dnZyMrKEsspQkNDA/Xr11d4eyKiiqo4v721sLBgyweVS/fv3y/pEIgKrdQnH+/KH58RHR0tM1YjOjoaGhoaMDMzE8tFRETINUPGxMTA2toaAKCtrY1atWrJje2IiYmBIAhyY0GKQiKRQFtbW+HtiYhI+YqrOxdRSWOXq/+zZs0aBAUFFbhu4sSJ8Pf3V3FEn7Z161ZYWFjAxcVFZrmbmxvat2+PWbNmlVBkxaPUJx9hYWFQV1eHra0tjI2NUa9ePYSHh6Njx44yZRwdHcUmR2dnZ6xbtw4RERFo06YNgLdJxa1bt/DNN9+I2zk7O+P06dP47rvvoKGhIdalp6cHe3t7FR4lERERESlDlSpVsG3bNrnltWrVKoFoPm379u1o3769XPIRFBQkNza5PChVyYevry8cHBxgY2MDADh9+jT27t2LIUOGiN2sxo0bh0mTJqFu3bpwcHBAWFgYrl+/jp07d4r12Nvbw8nJCdOmTcPkyZNRuXJlrFixAjY2NujcubPM/o4ePYqJEyfCx8cHd+/eRWhoKAIDA9l3koiIiCq8PKkU6mol83JURfetpqYmM/F0WVVc499KWqlKPiwsLHDgwAHEx8dDKpWiXr16mDZtGgYPHiyW8fLyQlZWFjZu3IiQkBBYWFggKChIrqVi5cqVWLRoEWbNmoXc3Fw4OTlhxowZ4uzmAGBubo7Q0FAsXrwY/v7+MDQ0xPjx4zF8+HCVHTMRERFRaaWupoZZOw8hNiFRpfutZ1IdPwzqpfR6f/vtN4wZMwbBwcFwdXUFALx8+RLdunVDy5YtsXz5cgDAgwcPsHTpUvzzzz/Iy8tDq1atMGPGDNStW1esSyqVYtu2bdi7dy8eP34MfX19NG/eHAsWLICuri6mTJmCmzdv4tixY+I2aWlpaNmyJRYtWgRvb2+4ubkhLi4OP/30E3766ScAkFmX3+3q4MGDmDFjBs6dO4fq1auL9b18+VJ8xu3fvz+At5Ntr1ixAtevX4e6ujrat2+PadOmwcjISOnnUxGlKvmYMWNGocr16dMHffr0+WgZXV1dLFy4EAsXLvxouWbNmmHv3r2FjpGIiIioIolNSMSdOPkX+ZRmubm5cssqVaqEjh07omfPnpgxYwaOHj0KQ0NDzJ07FwAwe/ZsAG8nte7fvz+++OILLF68GBKJBMHBwRg2bBjCw8PF3jHz5s3Dnj17MHToULRt2xYZGRk4c+YMMjMzC5zyoSBBQUHw9/dHs2bNxC+/301w8nXq1AmzZ89GeHg4Bg0aJC4/deoUAKBr164A3iYegwcPhouLC1asWIGsrCysXLkSo0ePxp49ewp7+opVqUo+iIiIiIg+R2ZmJho1aiS3/KeffkKLFi0wY8YMdOvWDbNmzULXrl0RFhaGTZs2iW86DQoKgr6+PrZs2YLKlSsDePtldYcOHbBv3z4MHDgQMTEx2LVrFwIDAzFixAhxH126dClSrLa2ttDU1ET16tU/2lVMV1cXLi4uOHbsmEzycezYMbRt2xYGBgYAgGXLlqFx48YICgoSX0RgbW0NLy8vnD17Vm5cSUlg8kFERERE5UaVKlVkxgLny3+Tqa6uLhYtWoSvv/4aZ8+ehY+Pj8w8c+fPn4eHhwfU1dXFFhQ9PT3Y2tqKk1VfuHABgiCgd+/eKjiitzw9PREYGIinT5+idu3aeP78Of7991/8+OOPAN5OpHrlyhV8//33yMvLE7erV68eatWqhRs3bjD5ICIiIiJSJjU1NTRp0uSjZZo3b47atWsjLi5OpiUBAFJSUrBt27YC35iV/3bUly9folKlSiodR+Hq6gotLS0cP34cfn5+OHHiBCpXriy+ATYtLQ15eXlYtGgRFi1aJLf9s2fPVBbrxzD5ICIiIqIKZfXq1UhJSUG9evUwd+5cbN++XeympK+vDxcXFwwYMEBuu6pVqwIADAwMkJubi6SkpA8mIJqamsjJyZFZlpqaqnDMVapUQceOHREWFgY/Pz+EhYXB1dVVnFtOV1cXEokEI0aMkJmSIl+1atUU3rcyMfkgIiIiogrjypUrCA0NxZw5c2Bra4v+/ftj27ZtGDZsGADA0dER9+7dg62tLdTV1Quso3Xr1pBIJDhw4MAHJy6sWbMm4uPjkZGRISYt58+flyunoaGBN2/eFCp2Ly8v+Pv7488//8TVq1fh5+cnrtPW1kbTpk0RHR39yZafksTkg4iIiIjKDalUiqtXr8otNzIygpGRESZPngwnJyf069cPADBy5EgsX74c7dq1g5WVFcaPH4/evXvD19cXffv2RfXq1ZGYmIh//vkHLVq0gJeXFywsLNC/f3+sWrUKqampcHR0xOvXr3HmzBmMGzcOJiYm6Ny5M1avXo1p06ahb9++uHfvHvbv3y8Xl6WlJS5cuIDz589DT08PpqamH2ylaNOmDQwMDDBt2jTo6enB2dlZZv3333+PoUOHIiAgAJ6entDT00N8fDz+/vtveHt7w8HB4fNP8Gdi8kFEREREH1TPpPqnC5Wifb5+/VpMLN7Vu3dvqKurIy0tDQsWLBCXjxo1CmfOnMH333+PPXv2wNzcHPv27cPKlSsxd+5cZGZmwtjYGC1bthQnwgaAWbNmwdTUFPv27cO2bdtgYGCAli1biq0c9evXx+LFi7Fu3TqMHj0azZs3x9KlS9GjRw+ZuCZMmIA5c+Zg3LhxyMjIEOf5KIiGhga6dOmCPXv2oHfv3nKTYjdr1gw///wz1qxZg6lTpyInJwc1a9ZE69atYW5urvA5VSaJIAhCSQdRnty4cQMASnVzFxFRaTc+IBgPHihncKSVVS2sXjlSKXURlUafevZ4/fo1YmJiYGFhgSpVqhSp7rI4wzmVjMLeZ7yiRERERFSgknz4Z+JRPvGqEhERERGRSjD5ICIiIiIilWDyQUREREREKsHkg4iIiIiIVILJBxERERERqQSTDyIiIiIiUgkmH0REREREpBJMPoiIiIiISCWYfBARERERkUow+SAiIiKicmHNmjWwsbFBu3btIJVK5db3798fNjY2mDJlilje3t7+k/WOHj0agwcP/mQ5GxsbhIaGFj1wJRk8eDBGjBhRYvsvDCYfRERERFSgvAIe4Ev7vjU0NJCSkoJ///1XZnlcXByuXr0KbW1tcVmfPn2wbdu2z4qTiqZSSQdARERERKWTupoaZpzeh5iUFyrdr0U1Y8zv0EehbTU0NODo6Ijjx4/DwcFBXH78+HF88cUXUFP7v+/ea9asiZo1a352vFR4TD6IiIiI6INiUl7gTuKzkg6jSLy8vDB37lzMnDkTGhoaAIBjx47By8sLYWFhYrk1a9Zg8+bNiIyMFJc9ePAAs2fPxrVr12BiYoIxY8Z8VixnzpzB2rVrcefOHWhra6NLly6YPHkytLW1kZmZiTZt2mDcuHHw9fWV2W78+PFISEjAnj17AABpaWlYvnw5fvvtN7x8+RLW1taYMGECnJycPis+VWO3KyIiIiIqV1xdXZGdnY3z588DAO7fv487d+7Aw8Pjo9u9efMGw4cPR2JiIpYsWYKJEyciJCQEN27cUCiO8PBwjBo1CtbW1ggKCsJ3332HX3/9FdOnTwcAaGtrw83NDcePH5fZ7tWrVzhz5gy8vLwAANnZ2fj6669x5swZBAQEYP369bCyssKIESNw584dhWIrKWz5ICIiIqJyRUtLS3yob9++PY4dOwZ7e3uYmZl9dLuDBw/i+fPnOHHiBOrVqwcAsLW1RdeuXcXPhSUIApYsWQIPDw8sWLBAXG5sbAx/f3+MHj0aX3zxBTw9PTF69GjExsaK+/jtt9+Qm5sLd3d3AMDRo0dx+/Zt/PLLL6hfvz4AoF27dnj48CHWrVuHVatWFSm2ksSWDyIiIiIqd7y8vHD69Gm8fv0aYWFh8PT0/OQ2169fxxdffCGTaJibm6NBgwYy5XJzc8WfvLy8AuuKiYlBXFwc3N3dZcq3atUKampquHnzJoC3SYSenp5M60f+eJXq1asDAM6fPw9ra2vUq1dPpq42bdoo3CpTUtjyQURERETljpOTEzQ0NLBq1So8efJEbEX4mOfPn8PIyEhuuZGREd68eQMAePLkCTp06CCuq1OnDn7//Xe5bVJSUgDgg2NGnj17O45GU1MTnTt3RlhYGMaMGYOUlBT8/fff+OGHH2TqunXrFho1aiRXj7q6+iePqzRh8kFERERE5Y6GhgY6d+6MrVu3wtHRUWxF+JgaNWrgv//+k1uelJQEHR0dscz+/fvFdZqamgXWZWBgAACYNWsW7OzsCtxXPi8vL+zfvx+3b9/G1atXoaamhs6dO4vr9fX1YWNjI9N9q6xi8kFERERE5VKfPn2QlJSEvn37Fqp8kyZNcPjwYTx8+BDm5uYAgIcPH+L27dto0aIFgLfJRpMmTT5Zl6WlJWrWrInHjx9j4MCBHy3bqlUrGBsb4/jx47h69SqcnZ2hq6srrm/Tpg3Onj2LGjVqwMTEpFDHUlox+SAiIiKicsnOzg7r1q0rdHlvb2+sX78eI0aMwLfffgsAWL16daFaTd4nkUgwZcoUTJo0CZmZmWjfvj20tLTw9OlTnD17FoGBgbCwsADwtutU165dcejQISQlJWH58uUydfXs2RO7d+/GkCFDMHz4cNSrVw/p6em4desWcnJyMHHixCLHV1KYfBARERHRB1lUM64Q+wSAKlWqYPPmzZgzZw6+++47mJiYYPTo0Th9+jTS09OLXJ+7uzv09PQQHByMo0ePAng7RqRdu3ZyCY2Xlxd27NgBbW1tuLq6yqzT1NTE9u3bsWbNGgQHB+PFixcwMDCAra0tBgwYoPgBlwCJIAhCSQdRnuS/caAwzXFERFSw8QHBePBAOZOaWVnVwuqVI5VSF1Fp9Klnj9evXyMmJgYWFhaoUqVKkerOk0qhrlYyL0ctyX1T0RX2PuMVJSIiIqICleTDPxOP8olXlYiIiIiIVILJBxERERERqQSTDyIiIiIiUgkmH0REREREpBJMPoiIiIiISCWYfBARERERkUow+SAiIiIiIpVg8kFERERERCrB5IOIiIiIiFSCyQcRERERlQtr1qyBjY1NgT8hISGFricqKgpr1qxBVlZWMUb71uDBgzFixIhi38+HrFmzBvb29irbXyWV7YmIiIiIyhSpIIWapGS+q1Z031WqVMG2bdvklteqVavQdURFRSEoKAgDBw6ElpZWkWOgD2PyQUREREQFUpOo4eDtELzIfKrS/Rpr14Z3A3+FtlVTU0PTpk2VG9BHvH79GlWqVFHZ/so6Jh9ERERE9EEvMp8i/tWjkg5DaWxsbDBp0iS8fv0au3btQl5eHtzc3DBz5kxoa2vj4MGDmDp1KgDA0dERAFCnTh38/vvv4rrdu3dj9erViIyMhLe3N168eIEXL15g9+7dMvv6+eefsWjRIvz5558wMDAodIwPHjzA0qVL8c8//yAvLw+tWrXCjBkzULduXQBvu2ppa2tjw4YNMtvt3LkTS5Yswfnz56GrqwtBELB582bs3bsXcXFxMDExweDBgzFs2DDFT+BnYvJBREREROVKbm6u3LJKlf7vsfenn35C8+bNsXjxYsTGxmLJkiUwMjLCpEmT0L59e4waNQrr16/Hpk2boKurC01NTZm6Jk6ciH79+mHEiBHQ0tJCamoq/Pz8EB0dDUtLS7HcgQMH0KlTpyIlHo8fP0b//v3xxRdfYPHixZBIJAgODsawYcMQHh4OTU1NeHp6Yv78+Xj58qVM3ceOHYOLiwt0dXUBAAsWLMC+ffswcuRIfPnll7hy5QqWLl2KypUrw8fHp9AxKROTDyIiIiIqNzIzM9GoUSO55T/99BNatGgBADA2NsayZcsAAM7Ozrh16xZOnjyJSZMmwdDQUGxhaNSoEQwNDeXq6t+/P/z9/69bmFQqRe3atXHgwAF89913AIC7d+/i5s2bmDBhQpHiDwoKgr6+PrZs2YLKlSsDAJo1a4YOHTpg3759GDhwILp06YL58+fj1KlT6Nu3LwAgLi4OV69excqVKwEAjx49ws6dOzF37lz069cPANCmTRu8fv0aa9euRb9+/aCmpvrxPHzbFRERERGVG1WqVMH+/fvlfho2bCiWadOmjcw2VlZWiI+PL/Q+2rdvL/NZTU0NX331FX755Rex1eXAgQOoU6eO2HUrLy8Pubm54s+HnD9/Hm5ublBXVxfL6unpwdbWFjdv3gQAVKtWDW3atMHx48fF7cLCwqCtrQ1XV1cAwN9//w0A6Ny5s8x+27RpgxcvXuDZs2eFPl5lYssHEREREZUbampqaNKkyUfL6OnpyXzW0NBAdnZ2ofdRvXp1uWW9e/fGunXrcPbsWTg7O+PIkSMYMGCA2LrQqVMnxMXFieVPnz4NU1NTuXpSUlKwbdu2At/YpaGhIf7b09MTU6ZMwYsXL2BsbIzjx4+jU6dOYmtJSkoKBEFA69atCzyGZ8+eoU6dOoU+ZmVh8kFERERE9Jlq1qyJdu3a4cCBA8jLy0NKSgq8vb3F9evXr5dJcGrUqFFgPfr6+nBxccGAAQPk1lWtWlX8d4cOHaCpqYkTJ07AyckJUVFRMl289PX1IZFI8PPPP8skLfksLCwUOs7PxeSDiIiIiOgd+Q/rRWkNAYA+ffrg22+/RXJyMhwdHWVaFmxsbApVh6OjI+7duwdbW1uoq6t/sJyOjg7at2+P48ePIzU1FYaGhjLdyfK7e718+RJubm5FOo7ixOSDiIiIiMoNqVSKq1evyi03MjKCmZlZoeqwsrIC8HaQeseOHVGlSpVCJQ/t27dHtWrVEBkZieXLlxcp7nzjx49H79694evri759+6J69epITEzEP//8gxYtWsDLy0ss6+XlhbFjxyIuLg5du3aVeaOXhYUFBg4ciO+//x6+vr748ssvkZOTg9jYWFy8eBHr1q1TKL7PVWqTj4yMDLi7uyMhIQH79++X6bu3b98+bNq0CU+fPoWFhQUCAwPFwTX50tPTsWjRIvz222/IyclBu3btMGPGDLkmritXruDHH39EVFQUjIyM4OPjAz8/P0gkEpUcJxEREVFpZqxdu0zt8/Xr1+Lbnd7Vu3dvLFiwoFB12NraYty4ceIzZ61atfD7779/crtKlSrBzc0N4eHh6NSpU5FjBwBzc3Ps27cPK1euxNy5c5GZmQljY2O0bNlSLgHKf63uixcv4OnpKVfXjBkzYGFhgT179mDt2rWoWrUqLCws0LVrV4ViUwaJIAhCie39I/73v//h8OHDSExMlEk+jh8/jokTJ2LkyJFo3bo1wsLCcODAAfz0008ys1n6+vri/v37mDx5MipXroyVK1dCTU0NBw4cELPChw8fomfPnmjbti0GDhyIO3fuYOnSpQgMDISvr69Ccd+4cQMAPjnQiYiIPmx8QDAePFDOm1isrGph9cqRSqmLqDT61LPH69evERMTAwsLiyLPxC0VpFCTlMzLUUty34qSSqXo2LEjXF1dMXPmzJIOR6UKe58VquUjKCioyAFIJBKMGTOmyNsBb2d1/PnnnzF58mTMnj1bZt3q1avh6emJgIAAAEDr1q1x9+5drF27Fhs3bgQAREZG4q+//kJoaCicnJwAvG168vDwwKlTp+Dh4QEACA0NRbVq1bB8+XJoamrC0dERycnJCA4OxuDBg+UmlCEiIiKqSEry4b8sJR7Z2dm4ffs2Tp48ifj4eAwcOLCkQyq1FE4+8rslvd9wIpFIIAjCZyUf8+fPR//+/eVG4T9+/BixsbHi5C35PDw8sGTJEmRnZ0NTUxPnzp2Dnp4e2rZtK5axtLREw4YNce7cOTH5OHfuHDp16iSTZHh4eGDDhg2IjIyEg4ODQvETERERUcXx/Plz9OnTB4aGhpg5c6bMLOckq1DJx+3bt2U+JyQkwN/fH1988QWGDh0qJgnR0dHYtm0bHjx4gA0bNigUUHh4OO7evYs1a9bgv//+k1kXHR0NQP7VYFZWVsjJycHjx49hZWWF6OhoWFhYyI3bsLS0FOvIzMzEs2fP5G4OS0tLSCQSREdHM/kgIiIiok8yNTXFnTt3SjqMMkGhAedz586Fubk5li5dKrPczs4Oy5Ytw/jx4/HDDz9g7dq1Rao3KysLixcvRmBgIHR0dOTWp6amApCfGCb/c/76tLQ06Orqym2vr68vzgyZnp5eYF2amprQ0tIS61KEIAjIzMxUeHsioopKIpFAS0urWOrOysqSa60nKg/ye5wQlQUKJR8XLlzApEmTPri+devWcolJYaxfvx5GRkb46quvFAmr1MjJyUFUVFRJh0FEVOZoaWnB1ta2WOqOiYlBVlZWsdRNVNI4TpXKCoWSj8qVK+Pq1asFzrwIvB3wnT+1e2HFxcVh8+bNWLt2rdgqkd96kJmZiYyMDOjr6wN422phbGwsbpuWlgYA4no9PT3Ex8fL7SM1NVUsk98ykr+vfNnZ2cjKyhLLKUJDQwP169dXeHsiooqqOL+9tbCwYMsHlUv3798vVDne/1ScCnt/KZR8dOvWDTt27ICenh4GDRqEunXrAgAePXqEHTt24NixYxg8eHCR6nzy5AlycnLg7+8vt27IkCH48ssvsWzZMgBvx368O1YjOjoaGhoa4sQxlpaWiIiIkGuGjImJgbW1NQBAW1sbtWrVEseAvFtGEITPGigkkUigra2t8PZERKR8xdWdi6ikfSppz5+tOzMzk78HVGzyGw3y77cPUSj5mDRpElJSUrBz50789NNPUFN7+yo0qVQKQRDg6en50W5ZBWnYsCG2b98usywqKgqLFi3C3Llz0aRJE5iZmaFevXoIDw9Hx44dxXJhYWFwdHQUmxydnZ2xbt06REREiNPMx8TE4NatW/jmm2/E7ZydnXH69Gl899134okKCwuDnp4e7O3ti35iiIiIiEoZdXV1GBgY4Pnz5wDefgHLMSKkLPljnZ8/fw4DAwOoq6t/tLxCyYempib+97//wdfXF2fPnsXTp08BAHXq1IGzszMaNGhQ5Dr19PQ++HapRo0aoVGjRgCAcePGYdKkSahbty4cHBwQFhaG69evY+fOnWJ5e3t7ODk5Ydq0aeIkgytWrICNjQ06d+4slvP19cXRo0cxceJE+Pj44O7duwgNDUVgYCD7ThIREVG5UbNmTQAQExAiZTMwMBDvs49RKPnI16BBA4USjc/h5eWFrKwsbNy4ESEhIbCwsEBQUJBcS8XKlSuxaNEizJo1C7m5uXBycsKMGTPE2c2Bt9PXh4aGYvHixfD394ehoSHGjx+P4cOHq/SYiIiIiIqTRCJBrVq1UKNGDeTk5JR0OFTOaGhofLLFI59E+IzRR1evXsXFixeRlJSEAQMGoF69esjKykJ0dDTq1auHqlWrKlp1mXXjxg0AQJMmTUo4EiKismt8QDAePHimlLqsrGph9cqRSqmLqDTisweVJQq1fGRnZ2PChAk4ffq0OKjb1dUV9erVg5qaGoYPH45hw4Zh1KhRyo6XiIiIiIjKKDVFNlq1ahXOnDmDOXPmIDw8XObVWpUrV0bXrl1x+vRppQVJRERERERln0LJx/Hjx9G/f3/069evwPkwrKys8Pjx488OjoiIiIiIyg+Fko+kpCTY2Nh8cL26ujpev36tcFBERERERFT+KJR8FDQ537uuXLkiTjxIREREREQEKJh8eHl5Yffu3YiMjBSX5U9Ws3fvXpw4cQI9e/ZUSoBERERERFQ+KPS2q5EjR+LatWsYNGgQLC0tIZFIsGjRIqSmpiI+Ph4uLi4YNmyYkkMlIiIiIqKyTOEZzjdt2oQjR47g5MmTkEqlyM7Oho2NDQICAtCjRw+xJYSIiIiIiAj4jBnOJRIJevTogR49eigzHiIiIiIiKqcUGvPRoUOHj87j8ccff6BDhw4KB0VEREREROWPQslHXFwcMjMzP7g+MzMTT58+VTgoIiIiIiIqfxRKPgB8dEzHjRs3oKenp2jVRERERERUDhV6zMe2bduwfft2AG8Tj4ULF2LFihVy5V69eoW0tDR4eXkpL0oiIiIiIirzCp18GBkZ4YsvvgDwttuViYkJTExM5Mppa2ujUaNGGDBggPKiJCIiIiKiMq/QyYeXl5fYmjF48GCMHj0ajo6OxRYYERERERGVL0Ue85GVlQU9PT28ePGiOOIhIiIiIqJyqsjJh5aWFiIiIvD69eviiIeIiIiIiMophd521bx5c0RGRio7FiIiIiIiKscUSj5mzZqFy5cvY8WKFYiPj1d2TEREREREVA4VesD5u7p37468vDyEhIQgJCQE6urq0NTUlCkjkUhw+fJlpQRJRERERERln0LJR5cuXT46ySAREREREdH7FEo+Fi9erOw4iIiIiIionFNozAcREREREVFRKdTyAQCvXr3C1q1bcebMGTx9+hQAULt2bbRv3x7Dhg2Djo6O0oIkIiIiIqKyT6GWj4SEBPTs2RNBQUHIzMxEs2bN0KxZM2RlZSEoKAi9evXC8+fPlR0rERERERGVYQq1fCxduhSJiYnYsGEDXFxcZNadPXsWAQEBWLZsGX788UelBElERERERGWfQi0ff/75J4YOHSqXeACAi4sLBg8ejLNnz352cEREREREVH4olHxkZWXByMjog+urV6+OrKwshYMiIiIiIqLyR6Hkw8rKCsePH0d2drbcupycHBw/fhxWVlafHRwREREREZUfCo358PPzQ2BgIPr06YMBAwagXr16AICYmBjs3r0bd+7cwYoVK5QZJxERERERlXEKJR/u7u7IysrCsmXLMHv2bHG2c0EQYGRkhIULF6Jr165KDZSIiIiIiMo2hef58Pb2Rvfu3XHjxg08e/YMwNt5Pho3boxKlRSuloiIiIiIyqnPyhIqVaoEe3t72NvbKyseIiIiIiIqpxROPrKzs7F3716cPXsWcXFxAIA6derAxcUFffr0QeXKlZUWJBERERERlX0KJR/x8fH4+uuvERMTA2NjY5ibmwMAbt++jT///BM7d+7E1q1bUbNmTaUGS0REREREZZdCycfcuXPx9OlTrFy5Um5g+YkTJzBlyhTMnTsX69evV0qQRERERERU9imUfFy4cAHDhg0r8I1W7u7uuHXrFnbu3PnZwRERERERUfmh0CSDVatWhaGh4QfXV69eHVWrVlU4KCIiIiIiKn8USj68vb1x6NAhZGVlya3LyMjAwYMH8dVXX312cEREREREVH4o1O2qQYMGOHPmDNzd3dGzZ09xwHlsbCx++eUX6Ovrw8bGBqdOnZLZrnPnzp8fMRERERERlUkKJR8TJkwQ/x0cHCy3Pj4+HhMnToQgCOIyiUSCqKgoRXZHRERERETlgELJx/bt25UdBxERERERlXMKJR+tWrVSdhxERERERFTOKTzDOfB2lvP//vsPSUlJaNas2UffgEVERERERBWbQm+7At52vXJycsKAAQMwbtw43LlzBwCQnJwMBwcH7N+/X2lBEhERERFR2adQ8nHgwAEsXLgQ7dq1w4IFC2QGlhsaGqJ169YICwtTWpBERERERFT2KZR8bNmyBR06dMCyZcvg6uoqt75Ro0a4d+/eZwdHRERERETlh0LJx8OHD+Hs7PzB9QYGBnj58qWiMRERERERUTmkUPKhp6eHlJSUD66/f/8+jI2NFQ6KiIiIiIjKH4WSD2dnZ+zduxdpaWly6+7du4d9+/bBzc3ts4MjIiIiIqLyQ6FX7QYEBKBv377w8vKCq6srJBIJDh8+jAMHDuDUqVMwNjbG6NGjlR0rERERERGVYQq1fJiYmODgwYNo164dTpw4AUEQ8Msvv+CPP/6Ap6cn9u7dyzk/iIiIiIhIhsKTDBoZGWHBggVYsGABkpOTIZVKYWhoCDW1t/nMq1evoKOjU6Q6z549i40bN+L+/ft49eoVTExM0LFjR4wdOxa6urpiud9//x0rV65ETEwMateuDX9/f3z11VcydWVnZ2PFihU4cuQIMjIyYG9vj5kzZ8LS0lKm3IMHDzB//nxERkaiatWq6NGjBwICAqCpqangmSEiIiIiooIoPMnguwwNDVG9enWoqakhKSkJy5cvL/AVvJ/y8uVL2NnZYe7cuQgNDcXXX3+Nw4cP49tvvxXLXLp0CWPHjkXTpk2xceNGuLu7Y/r06QgPD5epa/78+di3bx8CAwOxZs0aZGdnY9iwYUhPTxfLpKamYujQocjJycGaNWsQGBiIvXv3YvHixYqfDCIiIiIiKlCRWj6SkpJw+PBhPHr0CPr6+ujcuTMaN24MAEhISMD69etx6NAhvHnzBq1atSpyMD169JD57ODgAE1NTcycORMJCQkwMTHB+vXrYWdnhx9++AEA0Lp1azx+/BirV69G165dAQDx8fHYv38/Zs+ejd69ewMAmjRpAldXV+zevRt+fn4AgN27dyMjIwNBQUEwMDAAAOTl5WHu3LkYMWIETExMinwMRERERERUsEK3fDx48ABeXl5YunQp9uzZg5CQEPTt2xfHjx9HWFgYunbtKr7lav/+/di+fbtSAsxPCnJycpCdnY2LFy+KSUY+Dw8PPHjwAE+ePAEA/PXXX5BKpTLlDAwM0LZtW5w7d05cdu7cOTg6Oor7AAB3d3dIpVKcP39eKfETEREREdFbhW75WLVqFTIzMzF79my0aNECT548waJFi7Bw4UKkp6fD1dUVkyZNgpmZ2WcHlZeXh9zcXNy/fx9r166Fm5sbTE1Ncf/+feTk5MiN27CysgIAREdHw9TUFNHR0TAyMoK+vr5cuf3794ufo6Oj5caK6OnpwdjYGNHR0Z99HERERERE9H8KnXxcunQJPj4+6N+/PwCgfv36UFdXh5+fH3r16oVFixYpLShXV1ckJCQAANq1a4dly5YBeDtGA3ibILwr/3P++rS0NJkB6u+Wyy+TX+79ugBAX19fplxRCYKAzMxMhbcnIqqoJBIJtLS0iqXurKwsCIJQLHUTlSRBECCRSEo6DKJCKXTy8fLlS9jY2Mgsa9CgAQCgY8eOSg0qJCQEWVlZuH//PtavX4+RI0diy5YtSt1HccrJyUFUVFRJh0FEVOZoaWnB1ta2WOqOiYlBVlZWsdRNVNL4lk4qKwqdfEilUlSqJFs8/7O2trZSg8pPauzt7dGkSRP06NEDv/76K+rXrw8AMm+sAiDOtJ7fzUpPTw+vXr2SqzctLU2mK5aenp5cXcDbFpT3u2wVhYaGhhgrEREVXnF+e2thYcGWDyqX7t+/X9IhEBVakd52dfPmTVSuXFn8nJGRAYlEgsuXLxf4EN+5c+fPDtDGxgYaGhp49OgR3NzcoKGhgejoaLRr104skz8+I38siKWlJRITE+WSiOjoaJnxIpaWlnJjO9LT0/HixQu5cSVFIZFIlJ6QERHR5ymu7lxEJY1drqgsKVLysW3bNmzbtk1ueVBQkNwyiUSilK5H165dQ05ODkxNTaGpqQkHBwecPHkSQ4cOFcuEhYXBysoKpqamAAAnJyeoqanh1KlT6NOnD4C3rRl//fUXRo8eLW7n7OyM4OBgmbEf4eHhUFNTQ9u2bT87diIiIiIi+j+FTj6U9ercjxk7diwaN24MGxsbVKlSBbdv30ZoaChsbGzEcSWjRo3CkCFDMGfOHLi7u+PixYs4duwYVqxYIdZTs2ZN9O7dG0uWLIGamhpMTEywYcMG6OrqigPmAaB///7YsWMHxowZgxEjRiAhIQFLlixB//79OccHEREREZGSFTr5UGTSwKKys7NDWFgYQkJCIAgC6tSpgz59+sDX11ccSNWiRQusWbMGK1euxP79+1G7dm3Mnz8f7u7uMnXNmDEDVatWxbJly5CRkYFmzZphy5YtMm/B0tfXx7Zt2zBv3jyMGTMGVatWRe/evREYGFjsx0pEREREVNFIBI6+U6obN24AeDujOhERKWZ8QDAePHimlLqsrGph9cqRSqmLqDTisweVJYWe4ZyIiIiIiOhzMPkgIiIiIiKVYPJBREREREQqweSDiIiIiIhUosjJR1ZWFry9vbFr167iiIeIiIiIiMqpIicfWlpaePLkCWfTJCIiIiKiIlGo21W7du3w119/KTsWIiIiIiIqxxRKPkaPHo3Y2Fh89913uHTpEhISEvDy5Uu5HyIiIiIionyFnuH8XZ6engCA+/fv49ixYx8sFxUVpVhURERERERU7iiUfIwZM4ZjPoiIiIiIqEgUSj7GjRun7DiIiIiIiKicU8o8H+np6cjLy1NGVUREREREVE4pnHzcuHEDvr6++PLLL+Hg4IB//vkHAJCcnIxRo0bh4sWLSguSiIiIiIjKPoWSjytXrmDAgAF4+PAhunfvDqlUKq4zNDTEq1evsGfPHqUFSUREREREZZ9CyceKFStgZWWFsLAwBAYGyq13cHDAtWvXPjs4IiIiIiIqPxRKPm7cuAFvb29oamoW+NYrExMTJCYmfnZwRERERERUfiiUfFSqVEmmq9X7EhISoK2trXBQRERERERU/iiUfHz55Zc4efJkgesyMzNx8OBBtGzZ8rMCIyIiIiKi8kWh5GP8+PG4efMm/P39ce7cOQDAnTt3sG/fPnh7eyM5ORmjR49WaqBERERERFS2KdzyERISgocPH2Ly5MkAgMWLF2PmzJmQSqUICQlBgwYNlBooERERERGVbQrNcA4Ajo6OOHnyJG7duoWHDx9CEASYmZmhcePGBQ5CJyIiIiKiik3h5COfra0tbG1tlRELERERERGVYwonH9nZ2di7dy/Onj2LuLg4AECdOnXg4uKCPn36oHLlykoLkoiIiIiIyj6Fko/4+Hh8/fXXiImJgbGxMczNzQEAt2/fxp9//omdO3di69atqFmzplKDJSIiIiKiskuh5GPu3Ll4+vQpVq5cia5du8qsO3HiBKZMmYK5c+di/fr1SgmSiIiIiIjKPoWSjwsXLmDYsGFyiQcAuLu749atW9i5c+dnB0dEREREROWHQq/arVq1KgwNDT+4vnr16qhatarCQRERERERUfmjUPLh7e2NQ4cOISsrS25dRkYGDh48iK+++uqzgyMiIiIiovKjUN2uTp06JfO5YcOGOHPmDNzd3dGzZ09xwHlsbCx++eUX6Ovrw8bGRvnREhERERFRmVWo5GP8+PGQSCQQBAEAZP4dHBwsVz4+Ph4TJ06Eh4eHEkMlIiIiIqKyrFDJx/bt24s7DiIiIiIiKucKlXy0atWquOMgIiIiIqJyTqEB50REREREREWl0DwfAHDp0iUcOHAAT548QWpqqjgGJJ9EIsGRI0c+O0AiIiIiIiofFEo+tmzZgiVLlqBy5cqwsLCAvr6+suMiIiIiIqJyRqHkIzQ0FM2aNUNwcDB0dXWVHRMREREREZVDCo35yMrKQrdu3Zh4EBERERFRoSmUfDg4OODu3bvKjoWIiIiIiMoxhZKPmTNnIiIiAqGhoXj58qWSQyIiIiIiovJIoTEftWrVQr9+/bBkyRIsXboUlStXhpqabB4jkUhw+fJlpQRJRERERERln0LJx6pVqxAcHAwTExM0btyYYz+IiIiIiOiTFEo+du/eDRcXF6xbt06uxYOIiIiIiKggCmUOOTk5aN++PRMPIiIiIiIqNIWyh/bt2+PSpUvKjoWIiIiIiMoxhZKPsWPH4sGDB5gzZw5u3ryJ5ORkvHz5Uu6HiIiIiIgon0JjPrp27QoAiIqKwp49ez5YLioqSrGoiIiIiIio3FEo+RgzZgwkEomyYyEiIiIionJMoeRj3Lhxyo6DiIiIiIjKOb6uioiIiIiIVEKhlo+goKBPlpFIJBgzZowi1RMRERERUTmk9ORDIpFAEAQmH0REREREJEOh5OP27dtyy6RSKeLi4vDzzz/j33//xcaNGz87OCIiIiIiKj+UNuZDTU0NZmZmmDx5MszNzTF//vwi13HixAmMGjUKzs7OaNq0KXr06IH9+/dDEASZcvv27UOXLl3QpEkTdO/eHX/88YdcXenp6Zg2bRpatWoFe3t7jB8/Hs+fP5crd+XKFfTr1w92dnZwdXVFSEiI3P6IiIiIiOjzFcuA85YtW+Ls2bNF3m7r1q3Q0tLClClTsH79ejg7O2PmzJlYu3atWOb48eOYOXMm3N3dsXHjRjRt2hRjx47F1atXZeoKCAjA+fPnMWfOHCxduhQxMTHw8/NDbm6uWObhw4fw9fWFsbExNmzYgKFDh2L16tXYvHmzwsdOREREREQFU6jb1afcvHkTampFz2vWr18PQ0ND8bOjoyNevnyJLVu2YPTo0VBTU8Pq1avh6emJgIAAAEDr1q1x9+5drF27VuzqFRkZib/++guhoaFwcnICAFhYWMDDwwOnTp2Ch4cHACA0NBTVqlXD8uXLoampCUdHRyQnJyM4OBiDBw+GpqbmZ54JIiIiIiLKp1Dycfjw4QKXp6Wl4dKlSzh16hT69OlT5HrfTTzyNWzYEHv37kVmZiZSUlIQGxuL7777TqaMh4cHlixZguzsbGhqauLcuXPQ09ND27ZtxTKWlpZo2LAhzp07JyYf586dQ6dOnWSSDA8PD2zYsAGRkZFwcHAo8jEQEREREVHBFEo+pkyZ8sF11apVg7+/v9LedHX58mWYmJhAR0cHly9fBvC2FeNdVlZWyMnJwePHj2FlZYXo6GhYWFjIzcJuaWmJ6OhoAEBmZiaePXsGS0tLuTISiQTR0dFMPoiIiIiIlEih5OP06dNyyyQSCfT09KCjo/PZQeW7dOkSwsLCMHnyZABAamoqAEBPT0+mXP7n/PVpaWnQ1dWVq09fXx83b94E8HZAekF1aWpqQktLS6xLEYIgIDMzU+HtiYgqKolEAi0trWKpOysriy8UoXIpf4oDorJAoeSjTp06yo5DTnx8PAIDA+Hg4IAhQ4YU+/6UKScnB1FRUSUdBhFRmaOlpQVbW9tiqTsmJgZZWVnFUjdRSeM4VSorimXA+edKS0uDn58fDAwMsGbNGnHwur6+PoC3rRbGxsYy5d9dr6enh/j4eLl6U1NTxTL5LSP5LSD5srOzkZWVJZZThIaGBurXr6/w9kREFVVxfntrYWHBlg8ql+7fv1/SIRAVWqGTj27duhWpYolEgiNHjhQ5oNevX2PEiBFIT0/Hnj17ZLpP5Y/PiI6OlhmrER0dDQ0NDZiZmYnlIiIi5JohY2JiYG1tDQDQ1tZGrVq1xDEg75YRBEFuLEhRSCQSaGtrK7w9EREpX3F15yIqaexyRWVJod+Ha2BgUKif3Nxc3Lt3D/fu3StyMLm5uQgICEB0dDQ2bdoEExMTmfVmZmaoV68ewsPDZZaHhYXB0dFRbHJ0dnZGamoqIiIixDIxMTG4desWnJ2dxWXOzs44ffo0cnJyZOrS09ODvb19keMnIiIiIqIPK3TLx44dOz66/sWLF9i4cSP27NkDdXV1dO/evcjBzJ07F3/88QemTJmCV69eyUwcaGtrC01NTYwbNw6TJk1C3bp14eDggLCwMFy/fh07d+4Uy9rb28PJyQnTpk3D5MmTUblyZaxYsQI2Njbo3LmzWM7X1xdHjx7FxIkT4ePjg7t37yI0NBSBgYHsO0lEREREpGSfPeYjMTERISEh2Lt3L3Jzc9GtWzeMGjUKdevWLXJd58+fBwAsXrxYbt3p06dhamoKLy8vZGVlYePGjQgJCYGFhQWCgoLkWipWrlyJRYsWYdasWcjNzYWTkxNmzJiBSpX+75DNzc0RGhqKxYsXw9/fH4aGhhg/fjyGDx9e5NiJiIiIiOjjJIKCo+/yWzreTTpGjx4tjruoqG7cuAEAaNKkSQlHQkRUdo0PCMaDB8+UUpeVVS2sXjlSKXURlUZ89qCypMgtHy9evEBISAj27duH3NxcdO/eHaNGjarwSQcREREREX1coZOP58+fi0lHXl4eevTogZEjRzLpICIiIiKiQil08tGpUydkZ2ejYcOGGDFiBExNTZGWlob//vvvg9s0atRIKUESERFR6SSVSsX5uMpCvURUsgqdfLx58wYAcOvWLQQEBHy0bP78Gpzlm4iIqHxTU1PD/5bux+MniUqr08y0Or6b1Ftp9RFR6VHo5GPRokXFGQcRERGVUY+fJCrtBQFEVL4VOvno1atXccZBRERERETlHDtTEhERERGRSjD5ICIiIiIilWDyQUREREREKsHkg4iIiIiIVILJBxERERERqQSTDyIiIiIiUgkmH0REREREpBJMPoiIiIiISCWYfBARERERkUow+SAiIiIiIpVg8kFERERERCrB5IOIiIiIiFSCyQcREREREakEkw8iIiIiIlIJJh9ERERERKQSTD6IiIiIiEglmHwQEREREZFKMPkgIiIiIiKVYPJBREREREQqweSDiIiIiIhUgskHERERERGpBJMPIiIiIiJSCSYfRERERESkEkw+iIiIiIhIJZh8EBERERGRSjD5ICIiIiIilWDyQUREREREKsHkg4iISEF5UmmZqpeIqKRVKukAiIiIyip1NTXMOL0PMSkvlFanRTVjzO/QR2n1ERGVJkw+iIiIPkNMygvcSXxW0mEQEZUJ7HZFREREREQqweSDiIiIiIhUgskHERERERGpBJMPIiIiIiJSCSYfRERERESkEkw+iIiIiIhIJZh8EBERERGRSjD5ICIiIiIilWDyQUREREREKsHkg4iIiIiIVILJBxERERERqQSTDyIiIiIiUgkmH0REREREpBJMPoiIiIiISCWYfBARERERkUow+SAiIiIiIpUoVcnHw4cPMWvWLPTo0QO2trbw8vIqsNy+ffvQpUsXNGnSBN27d8cff/whVyY9PR3Tpk1Dq1atYG9vj/Hjx+P58+dy5a5cuYJ+/frBzs4Orq6uCAkJgSAISj82IiIiIqKKrlQlH/fu3cPZs2dhbm4OKyurAsscP34cM2fOhLu7OzZu3IimTZti7NixuHr1qky5gIAAnD9/HnPmzMHSpUsRExMDPz8/5ObmimUePnwIX19fGBsbY8OGDRg6dChWr16NzZs3F+dhEhERERFVSJVKOoB3ubm5oWPHjgCAKVOm4ObNm3JlVq9eDU9PTwQEBAAAWrdujbt372Lt2rXYuHEjACAyMhJ//fUXQkND4eTkBACwsLCAh4cHTp06BQ8PDwBAaGgoqlWrhuXLl0NTUxOOjo5ITk5GcHAwBg8eDE1NTRUcNREREalKnlQKdTXlfvdaHHUSlVelKvlQ+8Qv7uPHjxEbG4vvvvtOZrmHhweWLFmC7OxsaGpq4ty5c9DT00Pbtm3FMpaWlmjYsCHOnTsnJh/nzp1Dp06dZJIMDw8PbNiwAZGRkXBwcFDi0REREVFJU1dTw4zT+xCT8kIp9VlUM8b8Dn2UUhdRRVCqko9PiY6OBvC2FeNdVlZWyMnJwePHj2FlZYXo6GhYWFhAIpHIlLO0tBTryMzMxLNnz2BpaSlXRiKRIDo6mskHUTkglUo/+cVGaaqXiIpfTMoL3El8VtJhEFVIZSr5SE1NBQDo6enJLM//nL8+LS0Nurq6ctvr6+uLXbnS09MLrEtTUxNaWlpiXYoQBAGZmZkKb09EyiGRSKClpYX/Ld2Px08SlVavmWl1fDepN7KysviCCiXLv2bFQdnXqzhjBZQfb3Eoa+egLN1fRSEIgtwXrkSlVZlKPsqKnJwcREVFlXQYRBWelpYWbG1t8fhJIh48UP63nDExMcjKylJ6vRVZ/jUrDsq+XsUZK1A27q+ydg7K0v1VVBynSmVFmUo+9PX1AbxttTA2NhaXp6WlyazX09NDfHy83PapqalimfyWkfwWkHzZ2dnIysoSyylCQ0MD9evXV3h7IlKO4v4m0MLCotR/M13WFOc1U/b14v1V9s5BWbq/iuL+/fslsl8iRZSp5CN/fEZ0dLTMWI3o6GhoaGjAzMxMLBcRESHXDBkTEwNra2sAgLa2NmrVqiWOAXm3jCAIcmNBikIikUBbW1vh7YmobCjO7iakfGXtepW1eItDWToHJRkru1xRWVKmRkuamZmhXr16CA8Pl1keFhYGR0dHscnR2dkZqampiIiIEMvExMTg1q1bcHZ2Fpc5Ozvj9OnTyMnJkalLT08P9vb2xXw0REREREQVS6lq+cjKysLZs2cBAHFxcXj16pWYaLRq1QqGhoYYN24cJk2ahLp168LBwQFhYWG4fv06du7cKdZjb28PJycnTJs2DZMnT0blypWxYsUK2NjYoHPnzmI5X19fHD16FBMnToSPjw/u3r2L0NBQBAYGsu8kEREREZGSlarkIykpCd9++63MsvzP27dvh4ODA7y8vJCVlYWNGzciJCQEFhYWCAoKkmupWLlyJRYtWoRZs2YhNzcXTk5OmDFjBipV+r9DNjc3R2hoKBYvXgx/f38YGhpi/PjxGD58ePEfLBERERFRBVOqkg9TU1PcuXPnk+X69OmDPn0+PqGPrq4uFi5ciIULF360XLNmzbB3794ixUlEREREREVXpsZ8EBERERFR2cXkg4iIiIiIVILJBxERERERqQSTDyIiIiIiUgkmH0REREREpBJMPoiIiIiISCWYfBARERERkUow+SAiIiIiIpVg8kFERERERCrB5IOIiIiIiFSCyQcREREREakEkw8iIiIiIlIJJh9ERERERKQSTD6IiIiIiEglmHwQEREREZFKMPkgIiIiIiKVYPJBREREREQqweSDiIiIiIhUgskHERERERGpBJMPIiIiIiJSCSYfRERERESkEkw+iIiIiIhIJZh8EBERERGRSjD5ICIiIiIilWDyQUREREREKsHkg4iIiIiIVILJBxERERERqQSTDyIiIiIiUgkmH0REREREpBJMPoiIiIiISCWYfBARERERkUow+SAiIiIiIpVg8kFERERERCrB5IOIiIiIiFSCyQcREREREakEkw8iIqJSxEhLB1JBWix1F1e9FRmvF1HRVCrpAIiIiOj/6FauAjWJGg7eDsGLzKdKq9dYuza8G/grrT56i9eLqGiYfBAREZVCLzKfIv7Vo5IOgwqJ14uocNjtioiIiIiIVILJBxERERERqQSTDyIiIiIiUgkmH0REREREpBJMPoiIiIiISCWYfBARERERkUow+SAionKtmoEO8qScrI2IqDTgPB9ERKVInlQKdTXlfi9UHHWWJVV1qkBdTQ2zdh5CbEKi0up1bGiFUR5uSquPiKgiYPJBRFSKqKupYcbpfYhJeaGU+iyqGWN+hz5Kqausi01IxJ24eKXVZ17DSGl1ERFVFEw+iIhKmZiUF7iT+KykwyAiIlK6itsOT0REREREKsXkg4iIiIiIVILJBxERERERqQSTDyIiIipV+HpkovKLA84BPHjwAPPnz0dkZCSqVq2KHj16ICAgAJqamiUdGhERUYXD1yMTlV8VPvlITU3F0KFDUa9ePaxZswYJCQlYvHgxXr9+jVmzZpV0eERERBUWX49MVP5U+ORj9+7dyMjIQFBQEAwMDAAAeXl5mDt3LkaMGAETE5OSDZCI6DMYaelAKkihJlF+L9viqpeIiMqvCp98nDt3Do6OjmLiAQDu7u6YPXs2zp8/D29v75ILjojoM+lWrgI1iRoO3g7Bi8ynSqvXWLs2vBv4K60+IiKqGCp88hEdHY2vvvpKZpmenh6MjY0RHR1dQlFRaSaVSqGmptxve4ujTgDIk0qhXobqLSvyB8OWpXPwIvMp4l89KukwiIiogpMIgiCUdBAlqVGjRvj222/h7y/7DZ6Xlxfs7e0xb968ItV35coVCIIADQ0NZYZZakgkkmKptyzdhhKJBK8yXkOap5w3saipq0GnapViOQcSiQTp2a+V+taYSmrq0NGsrLT63qfs8yCRSJCamoHc3Dyl1Vm5sgZ0dLSQnqXcc6tZqRK0K2siJSsDOVLlxFulkgb0KmshIycdUiFXKXUCgJqkEqpq6BbbfavMa5Z/vVJeZSI3T4n3gYYG9LSrKPV6AWXvmhXn71hZuGal4Xrl5ORAIpGgWbNmSts/UXGp8C0fypb/cF5cD+nlVVk7XzpVqyi9zuI6B7qayo+1OBXHedDXr6r0OgFAV6t4zm01LeXHW1VDV+l1AsV33xbHNaumo630OoHiuV5A2bpmxfU7VpauWUleL4lEUub+jlLFVeGTDz09PaSnp8stT01Nhb6+fpHrs7e3V0ZYRERERETlTtnpsFxMLC0t5cZ2pKen48WLF7C0tCyhqIiIiIiIyp8Kn3w4Ozvj77//RlpamrgsPDwcampqaNu2bQlGRkRERERUvlT4Aeepqanw9PSEhYUFRowYIU4y2K1bN04ySERERESkRBU++QCABw8eYN68eYiMjETVqlXRo0cPBAYGQlNTs6RDIyIiIiIqN5h8EBERERGRSlT4MR9ERERERKQaTD6IiIiIiEglmHwQEREREZFKMPkgIiIiIiKVYPJBREREREQqweSDiIiIiIhUgskHERERERGpRKWSDoBU48SJEzhy5Aj+++8/pKWlwdzcHIMHD8ZXX30FiUQiltu3bx82bdqEp0+fwsLCAoGBgXB1dRXXX79+Hbt27cKlS5fw/PlzmJiYoEuXLhg1ahS0tbVl9nnlyhX8+OOPiIqKgpGREXx8fODn5yezPyqYqq/XjRs38PPPP+Pq1auIiYmBi4sLNmzYoNJjLstUfb12796NU6dO4c6dO8jKykL9+vXh7++Pjh07qvS4yzJVX7NDhw5h165diI2NRVZWFmrXro3u3bvDz8+PE9oWUkn8HcsXHx8Pd3d3ZGZmIiIiAoaGhsV+vETlFZOPCmLr1q2oU6cOpkyZgmrVquHvv//GzJkzER8fj7FjxwIAjh8/jpkzZ2LkyJFo3bo1wsLCMHbsWPz0009o2rQpgLf/+T98+BDffPMN6tWrh/v372P16tW4du0atm/fLu7v4cOH8PX1Rdu2bREQEIA7d+5g6dKlUFdXh6+vb0mcgjJF1dfrypUruHTpEuzs7PDmzZuSOOQyTdXXKzg4GE5OTvDx8YG2tjbCw8MxZswYLF68GL169SqJU1DmqPqapaamol27dvD394eOjg6uX7+OoKAgxMfHY968eSVxCsocVV+zdy1evBja2trIzMxU1eESlV8CVQhJSUlyy2bMmCE0a9ZMyMvLEwRBEDp37ixMmDBBpky/fv2Eb7755qP1HDlyRLC2thZu3LghLps5c6bg6uoqvHnzRly2bNkyoUWLFjLLqGCqvl75dQqCIAwaNEjw9/f/7GOoSFR9vQoq9/XXXwteXl4KH0NFo+prVpDly5cLdnZ2Qm5uriKHUOGU1DX7+++/hVatWgmhoaGCtbV1gdsTUeFxzEcFUVATccOGDfHq1StkZmbi8ePHiI2Nhbu7u0wZDw8PREREIDs7+4P12NraAgCeP38uLjt37hw6dOgg053Aw8MDaWlpiIyMVMoxlWeqvl5qavyv4HOo+np9aH/vlqGPU/U1K4iBgQFyc3MhlUoVPYwKpSSuWU5ODubNm4dx48bBwMBASUdCVLHxiaMCu3z5MkxMTKCjo4Po6GgAgIWFhUwZKysr5OTk4PHjxx+tBwAsLS0BAJmZmXj27Jn4OZ+lpSUkEom4Lyqa4rpeVDxUfb0uX77Ma/qZVHHNcnNzkZWVhUuXLmHbtm3w8fGBhoaGEo+iYinua7Z9+3aoq6vDx8dHyZETVVwc81FBXbp0CWFhYZg8eTKAt/2RAUBPT0+mXP7n/PXvS05Oxpo1a9ChQwfUq1cPAJCenl5gXZqamtDS0vpgXfRhxXm9SPlUfb2OHj2KyMhIrF27VgnRV0yquGa5ublo1KiR+LlXr16YNm2asg6hwinua5aQkIC1a9di7dq1UFdXL4YjIKqYmHxUQPHx8QgMDISDgwOGDBmicD05OTmYMGECAGDOnDlKio7ex+tVtqj6et2+fRuzZ8+Gt7c333alIFVds0qVKmH//v148+YNbt68ifXr12Pq1Kn48ccfFd5nRaWKa7ZkyRK0bdsWjo6OnxMqEb2HyUcFk5aWBj8/PxgYGGDNmjViX399fX0Ab1stjI2NZcq/uz6fIAiYNm0arl+/jp9//hk1atQQ1+nq6op1vSs7OxtZWVlyddGHqeJ6kfKo+nrFxcXBz88PdnZ2+OGHH4rjkMo9VV+zJk2aAABatGgBU1NTjBkzBoMGDRKX06ep4ppFRkbi5MmT2Lt3r7h9VlYWACAjIwNaWlrQ0tIqvoMkKseYfFQgr1+/xogRI5Ceno49e/aISQLwf/1co6OjZfq8RkdHQ0NDA2ZmZjJ1/fjjjzhx4gQ2btyIBg0ayKzT1tZGrVq15MZ2xMTEQBAE9ksvJFVdL1IOVV+v5ORk+Pr6wsjICEFBQRw3oICS/h1r3LgxAODRo0dMPgpJVdcsJiYGOTk5Bb66umPHjvDw8MCKFSuUeWhEFQYHnFcQubm5CAgIQHR0NDZt2gQTExOZ9WZmZqhXrx7Cw8NlloeFhcHR0VHmrVUhISHYunUrFi9e/MHmaGdnZ5w+fRo5OTkydenp6cHe3l6JR1Y+qfp60edR9fXKyMiAn58fcnJyEBISAh0dHeUfVDlXGn7H8gc5v/9QTAVT5TVr164dtm/fLvPj5+cHAFi7di3GjBlTDEdIVDGw5aOCmDt3Lv744w9MmTIFr169wtWrV8V1tra20NTUxLhx4zBp0iTUrVsXDg4OCAsLw/Xr17Fz506x7NGjR7Fs2TJ0794dpqamMvXUrVtXfIWhr68vjh49iokTJ8LHxwd3795FaGgoAgMDOZtvIaj6eiUnJ+Off/4R/52RkSH+AXdxcWH3gk9Q9fUaN24cbt++jQULFuDp06d4+vSpWC5/IjX6OFVfs4EDB6JTp06wtLSEmpoarl27hs2bN6Ndu3aws7NT1WGXaaq8ZsbGxjJdt4C33RwBoFmzZpzhnOgzSARBEEo6CCp+bm5u4n+c7zt9+jRMTU0BAPv27cPGjRvx9OlTWFhYYMKECXB1dRXLTpkyBYcOHSqwnkWLFsHb21v8fOXKFSxevBhRUVEwNDTEwIED4efnB4lEosQjK59Ufb0uXrz4wUGb7+6PCqbq62VjY/PBWO7cuaPoYVQoqr5mixYtwp9//omnT5+iUqVKMDU1Rc+ePTFgwAB+IVNIJfF37F0HDx7E1KlTERERweSD6DMw+SAiIiIiIpXgmA8iIiIiIlIJJh9ERERERKQSTD6IiIiIiEglmHwQEREREZFKMPkgIiIiIiKVYPJBREREREQqweSDiIiIiIhUgskHERERERGpBJMPIiIl+eabb9CyZUskJibKrUtPT4eTkxP69OkDqVRaAtERERGVPCYfRERKMnv2bOTk5GDRokVy65YvX46UlBTMmzcPamr8r5eIiCom/gUkIlISMzMzjBkzBseOHcNff/0lLr9+/Tp2796NYcOGoUGDBsUaw5s3b9iyQkREpZZEEAShpIMgIiovcnNz4e3tjaysLBw7dgyVKlVCnz59kJqaimPHjuHp06dYtWoVLly4gKysLHzxxRcYM2YMOnToINbx8uVLbNiwAX/99ReePHkCiUSCZs2aYdKkSTLJy8WLFzFkyBAsX74cd+/excGDB/HixQv8888/0NPTK4nDJyIi+qhKJR0AEVF5UqlSJcybNw/9+/fHunXrYGhoiP/++w+bNm3CkydP4OPjAxMTE/j5+UFbWxsnTpzAmDFjsGbNGnTq1AkA8PjxY/z222/o2rUrTE1NkZiYiD179mDQoEE4fvw4TExMZPa5bt06aGhowNfXF9nZ2dDQ0CiJQyciIvoktnwQERWDefPmYc+ePdDQ0ICbmxuWLVuGYcOGISkpCQcOHICmpiYAQBAE+Pj4ICUlBSdPngQAZGdno1KlSjJjQ548eQJ3d3eMHDkSY8aMAfB/LR9mZmY4duwYqlSpovoDJSIiKgKO+SAiKgaBgYEwMDCAmpoapk6dipcvX+LChQtwd3fHq1evkJycjOTkZKSkpMDJyQmxsbFISEgAAGhqaoqJR15eHlJSUqCtrQ0LCwvcunVLbl89e/Zk4kFERGUCu10RERUDHR0dWFhYICUlBdWrV8f169chCAJWrVqFVatWFbhNUlISTExMIJVKsX37dvz888948uQJ8vLyxDIGBgZy25mamhbXYRARESkVkw8iIhXIfwPV8OHD0a5duwLL1K1bFwAQHByMVatW4auvvsK3334LfX19qKmpYeHChSiopyxbPYiIqKxg8kFEpAJmZmYAAA0NDbRp0+ajZU+ePAkHBwcsXLhQZnlaWhqqVatWbDESEREVN475ICJSASMjI7Rq1Qp79uzB8+fP5dYnJyeL/1ZXV5dr4Thx4oQ4JoSIiKisYssHEZGKzJ49GwMGDEC3bt3Qt29fmJmZITExEVevXkV8fDyOHDkCAGjfvj3Wrl2LqVOnwt7eHnfv3sXRo0fF1hMiIqKyiskHEZGK1K9fHwcOHEBQUBAOHTqEly9fwtDQELa2tuLrcwFg5MiRyMrKwtGjRxEWFgZbW1ts2LABy5YtK8HoiYiIPh/n+SAiIiIiIpXgmA8iIiIiIlIJJh9ERERERKQSTD6IiIiIiEglmHwQEREREZFKMPkgIiIiIiKVYPJBREREREQqweSDiIiIiIhUgskHERERERGpBJMPIiIiIiJSCSYfRERERESkEkw+iIiIiIhIJZh8EBERERGRSjD5ICIiIiIilfh/vRy7IJPQp00AAAAASUVORK5CYII=\n"},"metadata":{}}]},{"cell_type":"code","source":["|"],"metadata":{"id":"RiPLVVgcNIQh","colab":{"base_uri":"https://localhost:8080/","height":106},"executionInfo":{"status":"error","timestamp":1714615275002,"user_tz":300,"elapsed":110,"user":{"displayName":"Jenny O","userId":"07622373657144372939"}},"outputId":"a82ccb4e-0497-4da2-9136-685199318443"},"execution_count":null,"outputs":[{"output_type":"error","ename":"SyntaxError","evalue":"invalid syntax (, line 1)","traceback":["\u001b[0;36m File \u001b[0;32m\"\"\u001b[0;36m, line \u001b[0;32m1\u001b[0m\n\u001b[0;31m |\u001b[0m\n\u001b[0m ^\u001b[0m\n\u001b[0;31mSyntaxError\u001b[0m\u001b[0;31m:\u001b[0m invalid syntax\n"]}]},{"cell_type":"code","source":[],"metadata":{"id":"veGTlZII_Mg4"},"execution_count":null,"outputs":[]}]} \ No newline at end of file diff --git a/05. Jupyter Notebook _ Code - P3 b/05. Jupyter Notebook _ Code - P3 new file mode 100644 index 0000000..daea9e9 --- /dev/null +++ b/05. Jupyter Notebook _ Code - P3 @@ -0,0 +1 @@ +{"cells":[{"cell_type":"markdown","metadata":{"id":"rI9YOJXtoB_R"},"source":["## Loading Data"]},{"cell_type":"code","execution_count":1,"metadata":{"id":"RYJCMFmqvvsJ","executionInfo":{"status":"ok","timestamp":1716216732169,"user_tz":300,"elapsed":2250,"user":{"displayName":"Daniel Meier","userId":"06365571306976914087"}}},"outputs":[],"source":["import pandas as pd\n","\n","# Load the dataset\n","file_path = r'/content/Student_Stress_Levels.csv'\n","data_df = pd.read_csv(file_path)"]},{"cell_type":"code","execution_count":2,"metadata":{"colab":{"base_uri":"https://localhost:8080/","height":726},"executionInfo":{"elapsed":6,"status":"ok","timestamp":1716216734139,"user":{"displayName":"Daniel Meier","userId":"06365571306976914087"},"user_tz":300},"id":"wDbtGk_R8Ef1","outputId":"2a5680e9-efa2-468c-b937-c1b93cd7ce8d"},"outputs":[{"output_type":"execute_result","data":{"text/plain":[" anxiety_level self_esteem mental_health_history depression headache \\\n","0 $1,4) ($20) 0 11 2 \n","1 15 8 1 15 5 \n","2 12 18 1 14 2 \n","3 16 12 1 15 4 \n","4 16 28 0 7 2 \n","5 20 13 1 21 3 \n","6 4 26 0 6 1 \n","7 17 3 1 22 4 \n","8 13 22 1 12 3 \n","9 6 8 0 27 4 \n","10 17 $12 1 25 4 \n","11 17 15 1 ($2,2) 3 \n","12 5 28 0 8 1 \n","13 9 23 1 24 4 \n","14 2 28 0 3 1 \n","15 11 21 0 14 3 \n","16 6 28 0 1 1 \n","17 7 25 0 3 1 \n","18 11 ($23) 0 12 3 \n","19 21 1 1 25 4 \n","\n"," blood_pressure sleep_quality breathing_problem noise_level \\\n","0 1 2 4 2 \n","1 3 1 4 3 \n","2 1 2 2 2 \n","3 3 1 3 4 \n","4 3 5 1 3 \n","5 3 1 4 3 \n","6 2 4 1 1 \n","7 3 1 5 3 \n","8 1 2 4 3 \n","9 3 1 2 0 \n","10 3 1 3 4 \n","11 3 1 5 5 \n","12 2 4 2 2 \n","13 3 1 0 1 \n","14 2 4 2 1 \n","15 1 2 4 2 \n","16 2 4 2 1 \n","17 2 4 2 2 \n","18 1 2 2 3 \n","19 3 1 4 4 \n","\n"," living_conditions ... basic_needs academic_performance study_load \\\n","0 3 ... 2 3 2 \n","1 1 ... 2 1 4 \n","2 2 ... 2 2 3 \n","3 2 ... 2 2 4 \n","4 2 ... 3 4 3 \n","5 2 ... 1 2 5 \n","6 4 ... 4 5 1 \n","7 1 ... 1 1 3 \n","8 3 ... 3 3 3 \n","9 5 ... 2 2 2 \n","10 2 ... 1 1 3 \n","11 2 ... 1 1 3 \n","12 3 ... 5 5 2 \n","13 2 ... 3 1 2 \n","14 3 ... 4 4 2 \n","15 2 ... 2 3 3 \n","16 4 ... 4 5 1 \n","17 4 ... 4 4 2 \n","18 2 ... 3 2 3 \n","19 1 ... 1 1 5 \n","\n"," teacher_student_relationship future_career_concerns social_support \\\n","0 3 3 2 \n","1 1 5 1 \n","2 3 2 2 \n","3 1 4 1 \n","4 1 2 1 \n","5 2 5 1 \n","6 4 1 3 \n","7 2 4 1 \n","8 2 3 3 \n","9 1 5 1 \n","10 1 4 1 \n","11 1 4 1 \n","12 4 1 3 \n","13 3 3 0 \n","14 5 1 3 \n","15 3 3 2 \n","16 5 1 3 \n","17 5 1 3 \n","18 2 2 3 \n","19 2 5 1 \n","\n"," peer_pressure extracurricular_activities bullying stress_level \n","0 3 3 2 1 \n","1 4 5 5 2 \n","2 3 2 2 1 \n","3 4 4 5 2 \n","4 5 0 5 1 \n","5 4 4 5 2 \n","6 2 2 1 0 \n","7 4 4 5 2 \n","8 3 2 2 1 \n","9 5 3 4 1 \n","10 4 4 5 2 \n","11 5 5 4 2 \n","12 1 1 1 0 \n","13 1 0 1 2 \n","14 1 2 1 0 \n","15 3 2 2 1 \n","16 2 2 1 0 \n","17 1 1 1 0 \n","18 3 2 3 1 \n","19 4 4 5 2 \n","\n","[20 rows x 21 columns]"],"text/html":["\n","
\n","
\n","\n","\n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n","
anxiety_levelself_esteemmental_health_historydepressionheadacheblood_pressuresleep_qualitybreathing_problemnoise_levelliving_conditions...basic_needsacademic_performancestudy_loadteacher_student_relationshipfuture_career_concernssocial_supportpeer_pressureextracurricular_activitiesbullyingstress_level
0$1,4)($20)011212423...2323323321
1158115531431...2141514552
21218114212222...2233223221
31612115431342...2241414452
4162807235132...3431215051
52013121331432...1252514452
642606124114...4514132210
7173122431531...1132414452
81322112312433...3332333221
968027431205...2221515341
1017$12125431342...1131414452
1117151($2,2)331552...1131415542
1252808124223...5524131110
13923124431012...3123301012
1422803124213...4425131210
151121014312422...2333323221
1662801124214...4515132210
1772503124224...4425131110
1811($23)012312232...3232233231
19211125431441...1152514452
\n","

20 rows × 21 columns

\n","
\n","
\n","\n","
\n"," \n","\n"," \n","\n"," \n","
\n","\n","\n","
\n"," \n","\n","\n","\n"," \n","
\n","\n","
\n","
\n"],"application/vnd.google.colaboratory.intrinsic+json":{"type":"dataframe","variable_name":"data_df"}},"metadata":{},"execution_count":2}],"source":["# Display the first few rows of the DataFrame\n","data_df.head((20))"]},{"cell_type":"markdown","metadata":{"id":"SMhIdWsYBzvy"},"source":["## Dataset info"]},{"cell_type":"code","execution_count":3,"metadata":{"colab":{"base_uri":"https://localhost:8080/"},"executionInfo":{"elapsed":168,"status":"ok","timestamp":1716216737518,"user":{"displayName":"Daniel Meier","userId":"06365571306976914087"},"user_tz":300},"id":"3GcuZkdM_WLx","outputId":"93958bc1-318d-420d-da37-acd8aef1ff74"},"outputs":[{"output_type":"stream","name":"stdout","text":["\n","Data Info:\n","\n","RangeIndex: 1100 entries, 0 to 1099\n","Data columns (total 21 columns):\n"," # Column Non-Null Count Dtype \n","--- ------ -------------- ----- \n"," 0 anxiety_level 1100 non-null object\n"," 1 self_esteem 1100 non-null object\n"," 2 mental_health_history 1100 non-null int64 \n"," 3 depression 1100 non-null object\n"," 4 headache 1100 non-null int64 \n"," 5 blood_pressure 1100 non-null int64 \n"," 6 sleep_quality 1100 non-null int64 \n"," 7 breathing_problem 1100 non-null int64 \n"," 8 noise_level 1100 non-null int64 \n"," 9 living_conditions 1100 non-null int64 \n"," 10 safety 1100 non-null int64 \n"," 11 basic_needs 1100 non-null int64 \n"," 12 academic_performance 1100 non-null int64 \n"," 13 study_load 1100 non-null int64 \n"," 14 teacher_student_relationship 1100 non-null int64 \n"," 15 future_career_concerns 1100 non-null int64 \n"," 16 social_support 1100 non-null int64 \n"," 17 peer_pressure 1100 non-null int64 \n"," 18 extracurricular_activities 1100 non-null int64 \n"," 19 bullying 1100 non-null int64 \n"," 20 stress_level 1100 non-null int64 \n","dtypes: int64(18), object(3)\n","memory usage: 180.6+ KB\n","None\n"]}],"source":["# Display information about the dataset\n","print(\"\\nData Info:\")\n","print(data_df.info())"]},{"cell_type":"markdown","metadata":{"id":"P8lPrKvMBn9C"},"source":["## Checking Missing Value"]},{"cell_type":"code","execution_count":4,"metadata":{"colab":{"base_uri":"https://localhost:8080/"},"executionInfo":{"elapsed":224,"status":"ok","timestamp":1716216739137,"user":{"displayName":"Daniel Meier","userId":"06365571306976914087"},"user_tz":300},"id":"JhAyasvYA7ZZ","outputId":"4fda898d-5527-4f22-df3d-2dbaa527b8b4"},"outputs":[{"output_type":"stream","name":"stdout","text":["\n","Missing values in each column:\n","anxiety_level 0\n","self_esteem 0\n","mental_health_history 0\n","depression 0\n","headache 0\n","blood_pressure 0\n","sleep_quality 0\n","breathing_problem 0\n","noise_level 0\n","living_conditions 0\n","safety 0\n","basic_needs 0\n","academic_performance 0\n","study_load 0\n","teacher_student_relationship 0\n","future_career_concerns 0\n","social_support 0\n","peer_pressure 0\n","extracurricular_activities 0\n","bullying 0\n","stress_level 0\n","dtype: int64\n"]}],"source":["# Checking for missing values\n","print(\"\\nMissing values in each column:\")\n","print(data_df.isnull().sum())"]},{"cell_type":"markdown","metadata":{"id":"4eU0mEQmBiXe"},"source":["## Summary Statistic for Numerical Variables"]},{"cell_type":"code","execution_count":5,"metadata":{"colab":{"base_uri":"https://localhost:8080/","height":320},"executionInfo":{"elapsed":237,"status":"ok","timestamp":1716216741382,"user":{"displayName":"Daniel Meier","userId":"06365571306976914087"},"user_tz":300},"id":"jeQApM_1BBXD","outputId":"3fc68d4d-7f19-4078-c6b8-337869547d7d"},"outputs":[{"output_type":"execute_result","data":{"text/plain":[" mental_health_history headache blood_pressure sleep_quality \\\n","count 1100.000000 1100.000000 1100.000000 1100.000000 \n","mean 0.492727 2.508182 2.181818 2.660000 \n","std 0.500175 1.409356 0.833575 1.548383 \n","min 0.000000 0.000000 1.000000 0.000000 \n","25% 0.000000 1.000000 1.000000 1.000000 \n","50% 0.000000 3.000000 2.000000 2.500000 \n","75% 1.000000 3.000000 3.000000 4.000000 \n","max 1.000000 5.000000 3.000000 5.000000 \n","\n"," breathing_problem noise_level living_conditions safety \\\n","count 1100.000000 1100.000000 1100.000000 1100.000000 \n","mean 2.753636 2.649091 2.518182 2.737273 \n","std 1.400713 1.328127 1.119208 1.406171 \n","min 0.000000 0.000000 0.000000 0.000000 \n","25% 2.000000 2.000000 2.000000 2.000000 \n","50% 3.000000 3.000000 2.000000 2.000000 \n","75% 4.000000 3.000000 3.000000 4.000000 \n","max 5.000000 5.000000 5.000000 5.000000 \n","\n"," basic_needs academic_performance study_load \\\n","count 1100.000000 1100.000000 1100.000000 \n","mean 2.772727 2.772727 2.621818 \n","std 1.433761 1.414594 1.315781 \n","min 0.000000 0.000000 0.000000 \n","25% 2.000000 2.000000 2.000000 \n","50% 3.000000 2.000000 2.000000 \n","75% 4.000000 4.000000 3.000000 \n","max 5.000000 5.000000 5.000000 \n","\n"," teacher_student_relationship future_career_concerns social_support \\\n","count 1100.000000 1100.000000 1100.000000 \n","mean 2.648182 2.649091 1.881818 \n","std 1.384579 1.529375 1.047826 \n","min 0.000000 0.000000 0.000000 \n","25% 2.000000 1.000000 1.000000 \n","50% 2.000000 2.000000 2.000000 \n","75% 4.000000 4.000000 3.000000 \n","max 5.000000 5.000000 3.000000 \n","\n"," peer_pressure extracurricular_activities bullying stress_level \n","count 1100.000000 1100.000000 1100.000000 1100.000000 \n","mean 2.734545 2.767273 2.617273 0.996364 \n","std 1.425265 1.417562 1.530958 0.821673 \n","min 0.000000 0.000000 0.000000 0.000000 \n","25% 2.000000 2.000000 1.000000 0.000000 \n","50% 2.000000 2.500000 3.000000 1.000000 \n","75% 4.000000 4.000000 4.000000 2.000000 \n","max 5.000000 5.000000 5.000000 2.000000 "],"text/html":["\n","
\n","
\n","\n","\n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n","
mental_health_historyheadacheblood_pressuresleep_qualitybreathing_problemnoise_levelliving_conditionssafetybasic_needsacademic_performancestudy_loadteacher_student_relationshipfuture_career_concernssocial_supportpeer_pressureextracurricular_activitiesbullyingstress_level
count1100.0000001100.0000001100.0000001100.0000001100.0000001100.0000001100.0000001100.0000001100.0000001100.0000001100.0000001100.0000001100.0000001100.0000001100.0000001100.0000001100.0000001100.000000
mean0.4927272.5081822.1818182.6600002.7536362.6490912.5181822.7372732.7727272.7727272.6218182.6481822.6490911.8818182.7345452.7672732.6172730.996364
std0.5001751.4093560.8335751.5483831.4007131.3281271.1192081.4061711.4337611.4145941.3157811.3845791.5293751.0478261.4252651.4175621.5309580.821673
min0.0000000.0000001.0000000.0000000.0000000.0000000.0000000.0000000.0000000.0000000.0000000.0000000.0000000.0000000.0000000.0000000.0000000.000000
25%0.0000001.0000001.0000001.0000002.0000002.0000002.0000002.0000002.0000002.0000002.0000002.0000001.0000001.0000002.0000002.0000001.0000000.000000
50%0.0000003.0000002.0000002.5000003.0000003.0000002.0000002.0000003.0000002.0000002.0000002.0000002.0000002.0000002.0000002.5000003.0000001.000000
75%1.0000003.0000003.0000004.0000004.0000003.0000003.0000004.0000004.0000004.0000003.0000004.0000004.0000003.0000004.0000004.0000004.0000002.000000
max1.0000005.0000003.0000005.0000005.0000005.0000005.0000005.0000005.0000005.0000005.0000005.0000005.0000003.0000005.0000005.0000005.0000002.000000
\n","
\n","
\n","\n","
\n"," \n","\n"," \n","\n"," \n","
\n","\n","\n","
\n"," \n","\n","\n","\n"," \n","
\n","\n","
\n"," \n"," \n"," \n","
\n","\n","
\n","
\n"],"application/vnd.google.colaboratory.intrinsic+json":{"type":"dataframe","variable_name":"summary_Stats","summary":"{\n \"name\": \"summary_Stats\",\n \"rows\": 8,\n \"fields\": [\n {\n \"column\": \"mental_health_history\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 388.75778821454674,\n \"min\": 0.0,\n \"max\": 1100.0,\n \"num_unique_values\": 5,\n \"samples\": [\n 0.49272727272727274,\n 1.0,\n 0.5001745083837833\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"headache\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 388.1077323501469,\n \"min\": 0.0,\n \"max\": 1100.0,\n \"num_unique_values\": 7,\n \"samples\": [\n 1100.0,\n 2.5081818181818183,\n 3.0\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"blood_pressure\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 388.2523198561601,\n \"min\": 0.833574564582657,\n \"max\": 1100.0,\n \"num_unique_values\": 6,\n \"samples\": [\n 1100.0,\n 2.1818181818181817,\n 3.0\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"sleep_quality\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 388.0681128767385,\n \"min\": 0.0,\n \"max\": 1100.0,\n \"num_unique_values\": 8,\n \"samples\": [\n 2.66,\n 2.5,\n 1100.0\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"breathing_problem\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 387.99482706574184,\n \"min\": 0.0,\n \"max\": 1100.0,\n \"num_unique_values\": 8,\n \"samples\": [\n 2.7536363636363634,\n 3.0,\n 1100.0\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"noise_level\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 388.0539392699523,\n \"min\": 0.0,\n \"max\": 1100.0,\n \"num_unique_values\": 7,\n \"samples\": [\n 1100.0,\n 2.649090909090909,\n 3.0\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"living_conditions\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 388.1216204260495,\n \"min\": 0.0,\n \"max\": 1100.0,\n \"num_unique_values\": 7,\n \"samples\": [\n 1100.0,\n 2.518181818181818,\n 3.0\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"safety\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 388.04588935099054,\n \"min\": 0.0,\n \"max\": 1100.0,\n \"num_unique_values\": 7,\n \"samples\": [\n 1100.0,\n 2.7372727272727273,\n 4.0\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"basic_needs\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 387.99218049940083,\n \"min\": 0.0,\n \"max\": 1100.0,\n \"num_unique_values\": 8,\n \"samples\": [\n 2.772727272727273,\n 3.0,\n 1100.0\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"academic_performance\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 388.04367396356093,\n \"min\": 0.0,\n \"max\": 1100.0,\n \"num_unique_values\": 7,\n \"samples\": [\n 1100.0,\n 2.772727272727273,\n 4.0\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"study_load\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 388.1063945709441,\n \"min\": 0.0,\n \"max\": 1100.0,\n \"num_unique_values\": 7,\n \"samples\": [\n 1100.0,\n 2.6218181818181816,\n 3.0\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"teacher_student_relationship\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 388.0514797343733,\n \"min\": 0.0,\n \"max\": 1100.0,\n \"num_unique_values\": 7,\n \"samples\": [\n 1100.0,\n 2.648181818181818,\n 4.0\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"future_career_concerns\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 388.09490013687764,\n \"min\": 0.0,\n \"max\": 1100.0,\n \"num_unique_values\": 8,\n \"samples\": [\n 2.649090909090909,\n 2.0,\n 1100.0\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"social_support\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 388.3075359543629,\n \"min\": 0.0,\n \"max\": 1100.0,\n \"num_unique_values\": 7,\n \"samples\": [\n 1100.0,\n 1.8818181818181818,\n 2.0\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"peer_pressure\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 388.0450551585041,\n \"min\": 0.0,\n \"max\": 1100.0,\n \"num_unique_values\": 7,\n \"samples\": [\n 1100.0,\n 2.7345454545454544,\n 4.0\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"extracurricular_activities\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 388.01849982822415,\n \"min\": 0.0,\n \"max\": 1100.0,\n \"num_unique_values\": 8,\n \"samples\": [\n 2.767272727272727,\n 2.5,\n 1100.0\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"bullying\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 388.0459606008991,\n \"min\": 0.0,\n \"max\": 1100.0,\n \"num_unique_values\": 8,\n \"samples\": [\n 2.617272727272727,\n 3.0,\n 1100.0\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"stress_level\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 388.56510710117675,\n \"min\": 0.0,\n \"max\": 1100.0,\n \"num_unique_values\": 6,\n \"samples\": [\n 1100.0,\n 0.9963636363636363,\n 2.0\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n }\n ]\n}"}},"metadata":{},"execution_count":5}],"source":["# Calculate the summary statistics\n","summary_Stats = data_df.describe()\n","\n","# Print Summary Statistics\n","summary_Stats"]},{"cell_type":"markdown","metadata":{"id":"ETPjbxNqCfGL"},"source":["## Observations:\n","\n","#### Dataset Overview\n","\n","- **Entries:** 1100\n","- **Features:** 21 (3 categorical, 18 numerical)\n","\n","#### Data Completeness\n","\n","- **Missing Values:** None across all features.\n","\n","#### Data Types\n","\n","- **Categorical:** `anxiety_level`, `self_esteem`, `depression`\n","- **Numerical:** The rest of the columns.\n","\n","#### Summary Statistics (Numerical Features)\n","\n","- **Range:** Values for most features range from 0 to 5, with exceptions like `blood_pressure` which caps at 3.\n","- **Central Tendency:**\n"," - **Mean:** The average values across features like `mental_health_history` (0.49), `headache` (2.51), and `blood_pressure` (2.18) indicate a moderate distribution of these conditions among the subjects.\n"," - **Median (50%):** The median values also reflect a moderate level for most features, such as `sleep_quality` at 2.5 and `safety` at 2, suggesting a balanced middle point in data distribution.\n","- **Variability:**\n"," - **Standard Deviation:** Features show varying levels of spread, with `headache` having a standard deviation of 1.41 and `social_support` at 1.05, indicating differences in variability.\n"," - **Interquartile Range (25% to 75%):** For `sleep_quality`, the values spread from 1 to 4, which signifies a wide variation in sleep quality among individuals.\n","\n","## Key Insights\n","\n","- The dataset is complete with no missing entries.\n","- Most features have a balanced distribution of data with a central tendency around the mid-point of their respective ranges.\n","\n"]},{"cell_type":"markdown","metadata":{"id":"CmgBz18WEI1s"},"source":["## checking for the unique values for categorical variables"]},{"cell_type":"code","execution_count":6,"metadata":{"colab":{"base_uri":"https://localhost:8080/"},"executionInfo":{"elapsed":175,"status":"ok","timestamp":1716216744873,"user":{"displayName":"Daniel Meier","userId":"06365571306976914087"},"user_tz":300},"id":"dZyj6pIQEGI6","outputId":"d5f18983-74f3-4020-bc5f-9ade8e6cc6cb"},"outputs":[{"output_type":"stream","name":"stdout","text":["Unique values in anxiety_level:\n","anxiety_level\n","13 67\n","10 63\n","19 61\n","21 61\n","9 60\n","12 56\n","18 55\n","11 54\n","6 52\n","15 51\n","7 51\n","14 50\n","3 48\n","2 46\n","17 46\n","1 46\n","16 45\n","8 44\n","5 40\n","20 40\n","4 33\n","0 29\n","$1,7 1\n","$1,4) 1\n","Name: count, dtype: int64\n","Unique values in self_esteem:\n","self_esteem\n","25 83\n","30 60\n","27 59\n","26 58\n","28 53\n","29 52\n","15 50\n","23 44\n","17 40\n","21 37\n","11 37\n","16 37\n","20 35\n","13 32\n","6 31\n","24 30\n","7 28\n","1 28\n","19 28\n","22 27\n","8 26\n","3 25\n","9 25\n","0 24\n","18 24\n","12 22\n","10 21\n","2 21\n","14 21\n","5 19\n","4 19\n","$21 1\n","($23) 1\n","$12 1\n","($20) 1\n","Name: count, dtype: int64\n","Unique values in depression:\n","depression\n","10 66\n","13 63\n","12 63\n","14 57\n","8 49\n","3 47\n","11 46\n","9 46\n","0 44\n","5 43\n","7 42\n","18 41\n","6 36\n","27 36\n","1 36\n","2 36\n","4 35\n","22 35\n","24 34\n","20 33\n","26 32\n","17 30\n","19 29\n","21 28\n","23 27\n","25 27\n","15 21\n","16 16\n","($2,2) 1\n","($2,6 1\n","Name: count, dtype: int64\n"]}],"source":["# Names of categorical columns\n","categorical_cols = ['anxiety_level', 'self_esteem', 'depression']\n","\n","# Checking the unique values and their counts for categorical variables\n","for col in categorical_cols:\n"," print(f\"Unique values in {col}:\")\n"," print(data_df[col].value_counts())"]},{"cell_type":"markdown","metadata":{"id":"Dps54ASEGZsa"},"source":["## Observations:\n","The presence of formatting errors and non-standard entries in categorical data points to the need for a thorough data cleaning process to ensure the accuracy and reliability of subsequent analyses."]},{"cell_type":"markdown","metadata":{"id":"No_aiaYtGwdK"},"source":["## Cleaning Data"]},{"cell_type":"code","execution_count":7,"metadata":{"colab":{"base_uri":"https://localhost:8080/","height":726},"executionInfo":{"elapsed":190,"status":"ok","timestamp":1716216746761,"user":{"displayName":"Daniel Meier","userId":"06365571306976914087"},"user_tz":300},"id":"6NdMn0ROGGt2","outputId":"7a0e3adc-7008-413c-c024-9b00765885bf"},"outputs":[{"output_type":"execute_result","data":{"text/plain":[" anxiety_level self_esteem mental_health_history depression headache \\\n","0 14 20 0 11 2 \n","1 15 8 1 15 5 \n","2 12 18 1 14 2 \n","3 16 12 1 15 4 \n","4 16 28 0 7 2 \n","5 20 13 1 21 3 \n","6 4 26 0 6 1 \n","7 17 3 1 22 4 \n","8 13 22 1 12 3 \n","9 6 8 0 27 4 \n","10 17 12 1 25 4 \n","11 17 15 1 22 3 \n","12 5 28 0 8 1 \n","13 9 23 1 24 4 \n","14 2 28 0 3 1 \n","15 11 21 0 14 3 \n","16 6 28 0 1 1 \n","17 7 25 0 3 1 \n","18 11 23 0 12 3 \n","19 21 1 1 25 4 \n","\n"," blood_pressure sleep_quality breathing_problem noise_level \\\n","0 1 2 4 2 \n","1 3 1 4 3 \n","2 1 2 2 2 \n","3 3 1 3 4 \n","4 3 5 1 3 \n","5 3 1 4 3 \n","6 2 4 1 1 \n","7 3 1 5 3 \n","8 1 2 4 3 \n","9 3 1 2 0 \n","10 3 1 3 4 \n","11 3 1 5 5 \n","12 2 4 2 2 \n","13 3 1 0 1 \n","14 2 4 2 1 \n","15 1 2 4 2 \n","16 2 4 2 1 \n","17 2 4 2 2 \n","18 1 2 2 3 \n","19 3 1 4 4 \n","\n"," living_conditions ... basic_needs academic_performance study_load \\\n","0 3 ... 2 3 2 \n","1 1 ... 2 1 4 \n","2 2 ... 2 2 3 \n","3 2 ... 2 2 4 \n","4 2 ... 3 4 3 \n","5 2 ... 1 2 5 \n","6 4 ... 4 5 1 \n","7 1 ... 1 1 3 \n","8 3 ... 3 3 3 \n","9 5 ... 2 2 2 \n","10 2 ... 1 1 3 \n","11 2 ... 1 1 3 \n","12 3 ... 5 5 2 \n","13 2 ... 3 1 2 \n","14 3 ... 4 4 2 \n","15 2 ... 2 3 3 \n","16 4 ... 4 5 1 \n","17 4 ... 4 4 2 \n","18 2 ... 3 2 3 \n","19 1 ... 1 1 5 \n","\n"," teacher_student_relationship future_career_concerns social_support \\\n","0 3 3 2 \n","1 1 5 1 \n","2 3 2 2 \n","3 1 4 1 \n","4 1 2 1 \n","5 2 5 1 \n","6 4 1 3 \n","7 2 4 1 \n","8 2 3 3 \n","9 1 5 1 \n","10 1 4 1 \n","11 1 4 1 \n","12 4 1 3 \n","13 3 3 0 \n","14 5 1 3 \n","15 3 3 2 \n","16 5 1 3 \n","17 5 1 3 \n","18 2 2 3 \n","19 2 5 1 \n","\n"," peer_pressure extracurricular_activities bullying stress_level \n","0 3 3 2 1 \n","1 4 5 5 2 \n","2 3 2 2 1 \n","3 4 4 5 2 \n","4 5 0 5 1 \n","5 4 4 5 2 \n","6 2 2 1 0 \n","7 4 4 5 2 \n","8 3 2 2 1 \n","9 5 3 4 1 \n","10 4 4 5 2 \n","11 5 5 4 2 \n","12 1 1 1 0 \n","13 1 0 1 2 \n","14 1 2 1 0 \n","15 3 2 2 1 \n","16 2 2 1 0 \n","17 1 1 1 0 \n","18 3 2 3 1 \n","19 4 4 5 2 \n","\n","[20 rows x 21 columns]"],"text/html":["\n","
\n","
\n","\n","\n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n","
anxiety_levelself_esteemmental_health_historydepressionheadacheblood_pressuresleep_qualitybreathing_problemnoise_levelliving_conditions...basic_needsacademic_performancestudy_loadteacher_student_relationshipfuture_career_concernssocial_supportpeer_pressureextracurricular_activitiesbullyingstress_level
01420011212423...2323323321
1158115531431...2141514552
21218114212222...2233223221
31612115431342...2241414452
4162807235132...3431215051
52013121331432...1252514452
642606124114...4514132210
7173122431531...1132414452
81322112312433...3332333221
968027431205...2221515341
101712125431342...1131414452
111715122331552...1131415542
1252808124223...5524131110
13923124431012...3123301012
1422803124213...4425131210
151121014312422...2333323221
1662801124214...4515132210
1772503124224...4425131110
181123012312232...3232233231
19211125431441...1152514452
\n","

20 rows × 21 columns

\n","
\n","
\n","\n","
\n"," \n","\n"," \n","\n"," \n","
\n","\n","\n","
\n"," \n","\n","\n","\n"," \n","
\n","\n","
\n","
\n"],"application/vnd.google.colaboratory.intrinsic+json":{"type":"dataframe","variable_name":"stress_level_data"}},"metadata":{},"execution_count":7}],"source":["\n","# Define the list of columns to clean and convert to integers.\n","categorical_cols = ['anxiety_level', 'self_esteem', 'depression']\n","\n","# Define the characters to remove.\n","chars_to_remove = ['$', '(', ')', ',']\n","\n","# Define a function to clean and convert the data.\n","def clean_and_convert(data_df, column):\n"," # Remove each character from chars_to_remove.\n"," for char in chars_to_remove:\n"," data_df[column] = data_df[column].str.replace(char, '', regex=False)\n"," # Convert column to numeric, setting errors='coerce' will convert non-convertible values to NaN.\n"," data_df[column] = pd.to_numeric(data_df[column], errors='coerce')\n"," return data_df\n","\n","# Apply the cleaning and conversion function to each categorical column.\n","for col in categorical_cols:\n"," stress_level_data = clean_and_convert(data_df, col)\n","\n","# Display the first few rows of the cleaned and converted data to verify.\n","stress_level_data.head((20))\n"]},{"cell_type":"markdown","metadata":{"id":"UYJLYk6GHn4r"},"source":["## checking for the unique values to observe if the errors have been cleaned"]},{"cell_type":"code","execution_count":8,"metadata":{"colab":{"base_uri":"https://localhost:8080/"},"executionInfo":{"elapsed":280,"status":"ok","timestamp":1716216751615,"user":{"displayName":"Daniel Meier","userId":"06365571306976914087"},"user_tz":300},"id":"oc2GMk3-IAUE","outputId":"24aff9db-142d-4e51-8647-816a330e5f37"},"outputs":[{"output_type":"stream","name":"stdout","text":["Unique values in anxiety_level:\n","anxiety_level\n","13 67\n","10 63\n","19 61\n","21 61\n","9 60\n","12 56\n","18 55\n","11 54\n","6 52\n","15 51\n","7 51\n","14 51\n","3 48\n","17 47\n","1 46\n","2 46\n","16 45\n","8 44\n","5 40\n","20 40\n","4 33\n","0 29\n","Name: count, dtype: int64\n","Unique values in self_esteem:\n","self_esteem\n","25 83\n","30 60\n","27 59\n","26 58\n","28 53\n","29 52\n","15 50\n","23 45\n","17 40\n","21 38\n","16 37\n","11 37\n","20 36\n","13 32\n","6 31\n","24 30\n","7 28\n","19 28\n","1 28\n","22 27\n","8 26\n","9 25\n","3 25\n","18 24\n","0 24\n","12 23\n","10 21\n","14 21\n","2 21\n","4 19\n","5 19\n","Name: count, dtype: int64\n","Unique values in depression:\n","depression\n","10 66\n","13 63\n","12 63\n","14 57\n","8 49\n","3 47\n","11 46\n","9 46\n","0 44\n","5 43\n","7 42\n","18 41\n","6 36\n","22 36\n","1 36\n","27 36\n","2 36\n","4 35\n","24 34\n","26 33\n","20 33\n","17 30\n","19 29\n","21 28\n","23 27\n","25 27\n","15 21\n","16 16\n","Name: count, dtype: int64\n"]}],"source":["# Names of categorical columns\n","categorical_cols = ['anxiety_level', 'self_esteem', 'depression']\n","\n","# Checking the unique values and their counts for categorical variables\n","for col in categorical_cols:\n"," print(f\"Unique values in {col}:\")\n"," print(stress_level_data[col].value_counts())"]},{"cell_type":"markdown","metadata":{"id":"H2h7SREiLK8d"},"source":["## Checking the Dataset description to ensure the data type is interger"]},{"cell_type":"code","execution_count":9,"metadata":{"colab":{"base_uri":"https://localhost:8080/"},"executionInfo":{"elapsed":2,"status":"ok","timestamp":1716216753621,"user":{"displayName":"Daniel Meier","userId":"06365571306976914087"},"user_tz":300},"id":"INFyNubnLh_3","outputId":"e9a0a0f3-51f5-456f-8d08-f1b343894874"},"outputs":[{"output_type":"stream","name":"stdout","text":["\n","stress_level_data Info:\n","\n","RangeIndex: 1100 entries, 0 to 1099\n","Data columns (total 21 columns):\n"," # Column Non-Null Count Dtype\n","--- ------ -------------- -----\n"," 0 anxiety_level 1100 non-null int64\n"," 1 self_esteem 1100 non-null int64\n"," 2 mental_health_history 1100 non-null int64\n"," 3 depression 1100 non-null int64\n"," 4 headache 1100 non-null int64\n"," 5 blood_pressure 1100 non-null int64\n"," 6 sleep_quality 1100 non-null int64\n"," 7 breathing_problem 1100 non-null int64\n"," 8 noise_level 1100 non-null int64\n"," 9 living_conditions 1100 non-null int64\n"," 10 safety 1100 non-null int64\n"," 11 basic_needs 1100 non-null int64\n"," 12 academic_performance 1100 non-null int64\n"," 13 study_load 1100 non-null int64\n"," 14 teacher_student_relationship 1100 non-null int64\n"," 15 future_career_concerns 1100 non-null int64\n"," 16 social_support 1100 non-null int64\n"," 17 peer_pressure 1100 non-null int64\n"," 18 extracurricular_activities 1100 non-null int64\n"," 19 bullying 1100 non-null int64\n"," 20 stress_level 1100 non-null int64\n","dtypes: int64(21)\n","memory usage: 180.6 KB\n","None\n"]}],"source":["# Display information about the dataset\n","print(\"\\nstress_level_data Info:\")\n","print(stress_level_data.info())"]},{"cell_type":"markdown","metadata":{"id":"v94oa6dUVRXp"},"source":["## Observation:\n","- The unwanted characters have been removed.\n","\n","- All data types are now int64"]},{"cell_type":"markdown","metadata":{"id":"SrRos6MkysPG"},"source":["# DATA SCIENCE"]},{"cell_type":"markdown","metadata":{"id":"QAjRlbw_nUyw"},"source":["#EXPLORATORY DATA ANALYSIS"]},{"cell_type":"code","execution_count":10,"metadata":{"id":"4d47r9jm21-m","executionInfo":{"status":"ok","timestamp":1716216769463,"user_tz":300,"elapsed":1710,"user":{"displayName":"Daniel Meier","userId":"06365571306976914087"}}},"outputs":[],"source":["import numpy as np\n","import matplotlib.pyplot as plt\n","import seaborn as sns"]},{"cell_type":"code","execution_count":11,"metadata":{"id":"pK-fb7Zmyr32","executionInfo":{"status":"ok","timestamp":1716216774436,"user_tz":300,"elapsed":326,"user":{"displayName":"Daniel Meier","userId":"06365571306976914087"}}},"outputs":[],"source":["df=stress_level_data"]},{"cell_type":"markdown","metadata":{"id":"0Y_wvYuI2mf1"},"source":["## Visualize and Understand the current data"]},{"cell_type":"code","execution_count":13,"metadata":{"colab":{"base_uri":"https://localhost:8080/","height":1000},"executionInfo":{"elapsed":7639,"status":"ok","timestamp":1716216789479,"user":{"displayName":"Daniel Meier","userId":"06365571306976914087"},"user_tz":300},"id":"EPJpWM662mLi","outputId":"0094fb7e-b5dc-4c57-ce0b-08bfe2f2e066"},"outputs":[{"output_type":"display_data","data":{"text/plain":["
"],"image/png":"iVBORw0KGgoAAAANSUhEUgAABkYAAAZGCAYAAAD6Sx39AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOzdfXgU1d3/8U8Skg0BkhAgCSkQnhQIzw0C6xMUQgJSfiBpFaUQLIWWBu5CrCJWkIAYpShWDWItN9gqxWLFVqSQgAJVAkIslQflBoqlLSRRKQkEWZbk/P7w2tUlIdmFTTabfb+uKxfMzNmZ75ndOXtmv2dmgowxRgAAAAAAAAAAAAEg2NcBAAAAAAAAAAAA1BcSIwAAAAAAAAAAIGCQGAEAAAAAAAAAAAGDxAgAAAAAAAAAAAgYJEYAAAAAAAAAAEDAIDECAAAAAAAAAAACBokRAAAAAAAAAAAQMEiMAAAAAAAAAACAgEFiBAAAAAAAAAAABAwSI/Cqjh07asqUKb4Oo1rbt29XUFCQtm/f7utQGlQsAK7PmjVrFBQUpE8//dRl/i9/+Ut17txZISEh6tevn09iAwBvGzp0qIYOHerRazp27Kjvfve7dROQG9t2t2/qzTiDgoI0c+bMWstd7TsEgP9YuHChgoKCfB1GvWjI5/sAfMvRFn7++ee+DkWSNGXKFHXs2LHO1u/L/i28h8QIGoQLFy5o4cKFJAoANAp5eXl68MEHdcstt2j16tV6/PHH6z2GTZs2aeHChfW+XQAN165du7Rw4UKdPXvW16H4zOHDh7Vw4UK/TkTQbwYAAACuXxNfB4DG5ciRIwoO9jzfduHCBWVnZ0uSx6MQAaCheeeddxQcHKxVq1YpLCzMJzFs2rRJubm5JEcAOO3atUvZ2dmaMmWKoqOjfR2OTxw+fFjZ2dkaOnRonY4idNekSZM0YcIEWSwWt19DvxmAr1zr+T4AAA0R32jwKovFotDQUF+HAQA+VVJSoqZNm/osKQIA8A8hISEKDw9vELfhKS8v93UIANx08eJFVVZW1vt2Od8HADQmJEYaoX/+85/66U9/qm7duqlp06Zq1aqVvv/971e5ZYDjnsbvv/++srKy1KZNGzVr1kx33nmnPvvsM2c5x8jnBQsWuLx+7dq1CgoK0gsvvOCcV909R8+ePavZs2erffv2slgs6tq1q5588klnR+7TTz9VmzZtJEnZ2dkKCgpSUFCQFi5cqNWrVysoKEh/+9vfqtTz8ccfV0hIiP7zn/9cz+7Snj17NHLkSEVFRSkiIkJDhgzR+++/71z++uuvKygoSDt27Kjy2hdffFFBQUE6ePCgc94nn3yi733ve4qJiVF4eLgGDBigP//5z9cVIwDvO3funGbPnq2OHTvKYrEoNjZWI0aM0IcffugsU1v7UJ2goCCtXr1a5eXlzvZszZo1bsflThtit9uVnZ2tG264QeHh4WrVqpVuvfVW5efnS/rqfqq5ubnOeBx/DpWVlXrmmWfUs2dPhYeHKy4uTj/+8Y/13//+t0o8f/nLX3TbbbepWbNmatGihUaPHq1Dhw65lJkyZYqaN2+ukydP6rvf/a6aN2+ub33rW84YDhw4oGHDhqlZs2ZKTEzU2rVr3d4fgD9z3Gv5//7v//SDH/xAUVFRatOmjebPny9jjP71r39p7NixioyMVHx8vJ566imX19tsNj366KPq2rWrLBaL2rdvrwcffFA2m82lnON5Fm+++aZ69eoli8Winj17avPmzS6xPPDAA5KkTp06OdsFR/9w9erVGjZsmGJjY2WxWJSUlOTSx/OG9957TwMHDlR4eLg6d+6s3/72t1XK1NZvdFi2bJluvvlmtWrVSk2bNlVycrJef/31Gre/Zs0aff/735ckfec733HugytvSeVOnO6q6T1xxHTlM0b27duntLQ0tW7dWk2bNlWnTp30wx/+UFLN/WaHd955x9luR0dHa+zYsfr4449dtuv4bB4+fFj33nuvWrZsqVtvvbVe+t6AP3vvvfd00003KTw8XF26dNGLL75YbblXXnlFycnJatq0qWJiYjRhwgT961//cikzdOhQ9erVS4WFhbr55pudx/vKlStdyjmeT7lu3To98sgj+ta3vqWIiAiVlZVJcq+/6k6/9+jRo0pPT1d8fLzCw8PVrl07TZgwQaWlpc4y1Z3v/+Mf/9D3v/99xcTEKCIiQoMHD9bbb79dbR3+8Ic/aMmSJWrXrp3Cw8M1fPhwHTt2zL2dD8AvnD171nl1clRUlO677z5duHDBpYw7beRf//pXff/731eHDh2c/eA5c+boyy+/rLJNR38rPDxcvXr10oYNG6qNzZP+4yuvvKKBAwcqIiJCLVu21O233668vLwq5bzZv4UPGDQ669evN3379jULFiwwv/71r83DDz9sWrZsaRITE015ebmz3OrVq40k079/fzNs2DDz3HPPmfvvv9+EhISYu+66y2WdmZmZpkmTJqawsNAYY8ypU6dMTEyMSUlJMZWVlc5yiYmJJiMjwzldXl5u+vTpY1q1amUefvhhs3LlSjN58mQTFBRkfvaznxljjDl//rx54YUXjCRz5513mt/97nfmd7/7nfn73/9uysrKTNOmTc39999fpZ5JSUlm2LBhbu+Xd99910gy7777rnPetm3bTFhYmLFareapp54yy5cvN3369DFhYWFmz549xhhjLly4YJo3b25++tOfVlnnd77zHdOzZ0/n9MGDB01UVJRJSkoyTz75pHn++efN7bffboKCgswbb7xRYywA6te9995rwsLCTFZWlvnNb35jnnzySTNmzBjzyiuvGGPcax+M+botPXHihDHGmN/97nfmtttuMxaLxdmeHT9+3K2Y3G1DHn74YRMUFGSmTZtmXnrpJfPUU0+Ze+65xzzxxBPGGGN27dplRowYYSQ5Y/jd737nfP2PfvQj06RJEzNt2jSzcuVKM3fuXNOsWTNz0003mUuXLjnL/fa3vzVBQUFm5MiR5rnnnjNPPvmk6dixo4mOjnbW1xhjMjIyTHh4uElKSjI/+clPTG5urrn55puNJLN69WqTkJBgHnjgAfPcc8+Znj17mpCQEPOPf/zD4/cM8DePPvqokWT69etn7rnnHrNixQozevRoI8k8/fTTplu3bmbGjBlmxYoV5pZbbjGSzI4dO4wxxlRUVJjU1FQTERFhZs+ebV588UUzc+ZM06RJEzN27FiX7Ugyffv2NW3btjWLFy82zzzzjOncubOJiIgwn3/+uTHGmL///e/mnnvuMZLM8uXLne3C+fPnjTHG3HTTTWbKlClm+fLl5rnnnjOpqalGknn++eddtjVkyBAzZMgQj/ZDYmKi6datm4mLizMPP/ywef755823v/1tExQUZA4ePOgs506/0aFdu3bmpz/9qXn++efN008/bQYOHGgkmY0bN1bZtqNvevz4cfM///M/RpJ5+OGHnfugqKjIozjd4c57YkzV75Di4mLTsmVLc+ONN5pf/vKX5qWXXjK/+MUvTI8ePYwxNfebjTEmPz/fNGnSxNx4441m6dKlJjs727Ru3dq0bNnSpd12fDaTkpLM2LFjzYoVK0xubq5X+95AY/PRRx+Zpk2bmg4dOpicnByzePFiExcXZ/r06WO++dPKY489ZoKCgszdd99tVqxY4TwOO3bsaP773/86yw0ZMsQkJCSY2NhYM3PmTPPss8+aW2+91Ugyq1atcpZznDsmJSWZfv36maefftrk5OSY8vJyt/urtfV7bTab6dSpk0lISDCPPfaY+c1vfmOys7PNTTfdZD799FPneq483y8qKjJxcXGmRYsW5he/+IV5+umnTd++fU1wcHC157/9+/c3ycnJZvny5WbhwoUmIiLCDBw40JtvEwAfcfQt+vfvb8aPH29WrFhhfvSjHxlJ5sEHH3SWc7eNnDVrlrnjjjvM448/bl588UUzdepUExISYr73ve+5bHfLli0mODjY9OrVyzz99NPmF7/4hYmKijI9e/Y0iYmJLmXd7T8uXLjQSDI333yz+eUvf2l+9atfmXvvvdfMnTvXWaYu+reofyRGGqELFy5UmVdQUGAkmd/+9rfOeY4TsSuTG3PmzDEhISHm7Nmzznnl5eWma9eupmfPnubixYtm9OjRJjIy0vzzn/902c6VHaXFixebZs2amf/7v/9zKffQQw+ZkJAQc/LkSWOMMZ999pmRZB599NEqsd9zzz0mISHBVFRUOOd9+OGHzh/c3HVlMqKystLccMMNJi0tzaX+Fy5cMJ06dTIjRoxwiSE2NtZcvnzZOe/06dMmODjYLFq0yDlv+PDhpnfv3ubixYvOeZWVlebmm282N9xww1VjAVD/oqKiTGZmZrXLPGkfrvxRy5ivEgXNmjXzOCZ325C+ffua0aNH17iuzMxMl5N0h7/+9a9Gknn11Vdd5m/evNll/rlz50x0dLSZNm2aS7mioiITFRXlMj8jI8NIMo8//rhz3n//+1/TtGlTExQUZNatW+ec/8knn1y1vQcaG8cJ4vTp053zLl++bNq1a2eCgoKcyUxjvj5mHP2o3/3udyY4ONj89a9/dVnnypUrjSTz/vvvO+dJMmFhYebYsWPOeX//+9+NJPPcc8855/3yl7+s0l45VNd/TEtLM507d3aZd62JEUlm586dznklJSXGYrG4/ADvbr+xungvXbpkevXqVeWH+yv7puvXr79qH8zdON3h7nty5XfIhg0bjCSzd+/eq667pn5zv379TGxsrPniiy9cthscHGwmT57snOf4bN5zzz1V1uGtvjfQ2IwbN86Eh4e7nAMfPnzYhISEOPtcn376qQkJCTFLlixxee2BAwdMkyZNXOYPGTLESDJPPfWUc57NZnMex47BKo5zx86dO7u0fZ70V2vq9xpjzN/+9jcjyaxfv77GfXBlmzp79mwjyeW76ty5c6ZTp06mY8eOznbEUYcePXoYm83mLPurX/3KSDIHDhyocbsAGj5H3+KHP/yhy/w777zTtGrVyhjjWRtZXd80JyfHBAUFubTD/fr1M23btnX5DTMvL89IqpIYcaf/ePToURMcHGzuvPNOl76QMabKwHBv929R/7iVViPUtGlT5//tdru++OILde3aVdHR0S6XyjpMnz7d5RYrt912myoqKvTPf/7TOS8iIkJr1qzRxx9/rNtvv11vv/22li9frg4dOtQYy/r163XbbbepZcuW+vzzz51/KSkpqqio0M6dO2utz+TJk3Xq1Cm9++67znmvvvqqmjZtqvT09FpffzX79+/X0aNHde+99+qLL75wxlZeXq7hw4dr586dzsva7r77bpWUlLjcauH1119XZWWl7r77bknSmTNn9M477+iuu+7SuXPnnOv74osvlJaWpqNHj3LrAaABiY6O1p49e3Tq1KkqyzxpH7zFkzYkOjpahw4d0tGjRz3ezvr16xUVFaURI0a4tMvJyclq3ry5s63Nz8/X2bNndc8997iUCwkJ0aBBg1zaZIcf/ehHzv9HR0erW7duatasme666y7n/G7duik6Olr/+Mc/PI4d8FffPDZCQkI0YMAAGWM0depU53zHMeM4NtavX68ePXqoe/fuLsfgsGHDJKnKMZiSkqIuXbo4p/v06aPIyEi3j7Vv9h9LS0v1+eefa8iQIfrHP/7hchuVa5WUlKTbbrvNOd2mTRuX+kqe9Ru/Ge9///tflZaW6rbbbqu2r+vtON11Le9JdHS0JGnjxo2y2+0ebe/06dPav3+/pkyZopiYGJftjhgxQps2barymp/85CdV5tVV3xvwZxUVFdqyZYvGjRvncg7co0cPpaWlOaffeOMNVVZW6q677nJpx+Lj43XDDTdUabubNGmiH//4x87psLAw/fjHP1ZJSYkKCwtdymZkZLi0fZ70V2vq90pSVFSUJGnLli1VbnlTk02bNmngwIG69dZbnfOaN2+u6dOn69NPP9Xhw4ddyt93330uz+BztLf0C4HG48q+xW233aYvvvhCZWVlHrWR32zvysvL9fnnn+vmm2+WMcZ5y09H3ycjI8PZjknSiBEjlJSUVCU2d/qPb775piorK7VgwQIFB7v+bH7lM+G83b9F/Wvi6wDgfV9++aVycnK0evVq/ec//5ExxrmsuhPbK5MbLVu2lKQq95q/5ZZbNGPGDOXm5iotLc15r+OaHD16VB999JHzXshXKikpqXUdI0aMUNu2bfXqq69q+PDhqqys1O9//3uNHTtWLVq0qPX1NcUmfdXBvJrS0lK1bNnSec/W1157TcOHD5ckvfbaa+rXr59uvPFGSdKxY8dkjNH8+fM1f/78atdXUlKib33rW9ccMwDvWbp0qTIyMtS+fXslJyfrjjvu0OTJk9W5c2eP2gdv8aQNWbRokcaOHasbb7xRvXr10siRIzVp0iT16dOn1u0cPXpUpaWlio2Nveo2HOUkOX+EvVJkZKTLdHh4eJW2PioqSu3atavSgYyKiqr2eSZAY3VlXysqKkrh4eFq3bp1lflffPGFpK+OwY8//tjtPlR1g1Vatmzp9rH2/vvv69FHH1VBQUGVH8VKS0tdTjavhTvxedJv3Lhxox577DHt37/f5Zkr1/sQ8+vdj9e7riFDhig9PV3Z2dlavny5hg4dqnHjxunee++VxWKpcXuOQU3dunWrsqxHjx7asmWLysvL1axZM+f8Tp06VSlbV31vwJ999tln+vLLL3XDDTdUWdatWzdn4vHo0aMyxlRbTlKVB5cnJCS4HJOSnOeXn376qQYPHuycf+Xx6kl/taZ+r2PdWVlZevrpp/Xqq6/qtttu0//7f//P+Xysq/nnP/+pQYMGVZnfo0cP5/JevXo557v72wMA/1XTce5JG3ny5EktWLBAf/7zn6u0EY7fNh19n6u1zVcOmHGn/3j8+HEFBwdXm1ipra7S9fVvUf9IjDRCs2bN0urVqzV79mxZrVZFRUUpKChIEyZMqHaEc0hISLXr+WZCRfrqAaCOKyaOHz+uCxcuKCIiosZYKisrNWLECD344IPVLnd0+moSEhKie++9Vy+99JJWrFih999/X6dOndIPfvCDWl9bW2yS9Mtf/lL9+vWrtkzz5s0lSRaLRePGjdOGDRu0YsUKFRcX6/3339fjjz9eZX0///nPXUYNfVPXrl2vK2YA3nPXXXfptttu04YNG5SXl6df/vKXevLJJ52jWCT32gdv8aQNuf3223X8+HH96U9/Ul5enn7zm99o+fLlWrlypcvI9KttJzY2Vq+++mq1yx0dNkc8v/vd7xQfH1+lXJMmrl2Iq32XuPsdAzRm1R0HtR0blZWV6t27t55++ulqy7Vv396j9dXk+PHjGj58uLp3766nn35a7du3V1hYmDZt2qTly5d75Qo5d+Jzt9/417/+Vf/v//0/3X777VqxYoXatm2r0NBQrV69WmvXrq3zOOtyXUFBQXr99de1e/duvfXWW9qyZYt++MMf6qmnntLu3bu9/t3zzZGTDnXV9wYCQWVlpYKCgvSXv/yl2jbgeo7hK49XT/qrNfV7R40aJUl66qmnNGXKFGf/8n/+53+Uk5Oj3bt3q127dtcc9zfRLwQav5qOc3fbyIqKCo0YMUJnzpzR3Llz1b17dzVr1kz/+c9/NGXKlGvqm9ZF/9Gb/Vv4BomRRuj1119XRkaGnnrqKee8ixcv6uzZs9e13kcffVQff/yxli1bprlz5+qhhx7Ss88+W+NrunTpovPnzyslJaXGcrWN7ps8ebKeeuopvfXWW/rLX/6iNm3aXPWHQ3c5bm0QGRlZa3zSV7fTevnll7Vt2zZ9/PHHMsY4b6MlyTnaJjQ01K31AfC9tm3b6qc//al++tOfqqSkRN/+9re1ZMkSLV++XJL77YM3eNqGxMTE6L777tN9992n8+fP6/bbb9fChQudiZGrtatdunTR1q1bdcstt1T7g9g3y0lSbGwsbRrgA126dNHf//53DR8+/LqvgnC42nreeust2Ww2/fnPf3YZ+VbdLfPqkrv9xj/+8Y8KDw/Xli1bXK6iWL16da3b8Na+rGuDBw/W4MGDtWTJEq1du1YTJ07UunXr9KMf/eiqdUhMTJQkHTlypMqyTz75RK1bt64yMv1q6qLvDfizNm3aqGnTptXexvSbx1yXLl1kjFGnTp3c+rHr1KlTVa7k+r//+z9JUseOHWt8rafns1fr9zoSI5LUu3dv9e7dW4888oh27dqlW265RStXrtRjjz1W7ToTExOv2uY4lgOAg7tt5IEDB/R///d/evnllzV58mTn/Pz8fJdyjjamtrZZcr//2KVLF1VWVurw4cNXTTp7wt3+LXyDZ4w0QiEhIVVGXDz33HOqqKi45nXu2bNHy5Yt0+zZs3X//ffrgQce0PPPP68dO3bU+Lq77rpLBQUF2rJlS5VlZ8+e1eXLlyXJeeXJ1ZI3ffr0UZ8+ffSb3/xGf/zjHzVhwoQqo5U9lZycrC5dumjZsmU6f/58leWfffaZy3RKSopiYmL02muv6bXXXtPAgQNdLmeOjY3V0KFD9eKLL+r06dO1rg+A71RUVFS5tWBsbKwSEhJks9k8bh+8wZM2xHGrHYfmzZura9euLpcDO06wr2xX77rrLlVUVGjx4sVVtnH58mVn+bS0NEVGRurxxx+v9j73tGlA3brrrrv0n//8Ry+99FKVZV9++aXKy8s9XufV2gXHaLcrb7/qTqLBm9ztN4aEhCgoKMilb/vpp5/qzTffrHUbV9sHDcV///vfKv14x0m5o42/Wr+5bdu26tevn15++WWXZQcPHlReXp7uuOMOt+Ooi7434M9CQkKUlpamN998UydPnnTO//jjj13arPHjxyskJETZ2dlVjmVjTJU+3OXLl/Xiiy86py9duqQXX3xRbdq0UXJyco0xudtfra3fK0llZWXONtahd+/eCg4OdulfXumOO+7QBx98oIKCAue88vJy/frXv1bHjh3duhUNgMDhbhtZXd/UGKNf/epXLq/5Zt/nm+1cfn5+lWccudt/HDdunIKDg7Vo0aIqV6Zcy9Vt7vZv4Rv0bhuh7373u/rd736nqKgoJSUlqaCgQFu3blWrVq2uaX0XL15URkaGbrjhBi1ZskSSlJ2drbfeekv33XefDhw4cNXRZw888ID+/Oc/67vf/a6mTJmi5ORklZeX68CBA3r99df16aefqnXr1mratKmSkpL02muv6cYbb1RMTIx69erlcj/SyZMn6+c//7kkeeVS/uDgYP3mN7/RqFGj1LNnT91333361re+pf/85z969913FRkZqbfeestZPjQ0VOPHj9e6detUXl6uZcuWVVlnbm6ubr31VvXu3VvTpk1T586dVVxcrIKCAv373//W3//+9+uOG8D1O3funNq1a6fvfe976tu3r5o3b66tW7dq7969euqppzxuH7zF3TYkKSlJQ4cOVXJysmJiYrRv3z69/vrrmjlzpnNdjpPp//mf/1FaWppCQkI0YcIEDRkyRD/+8Y+Vk5Oj/fv3KzU1VaGhoTp69KjWr1+vX/3qV/re976nyMhIvfDCC5o0aZK+/e1va8KECWrTpo1Onjypt99+W7fccouef/55r+8DAF+ZNGmS/vCHP+gnP/mJ3n33Xd1yyy2qqKjQJ598oj/84Q/asmWLBgwY4NE6He3CL37xC02YMEGhoaEaM2aMUlNTFRYWpjFjxujHP/6xzp8/r5deekmxsbHVJmrrirv9xtGjR+vpp5/WyJEjde+996qkpES5ubnq2rWrPvrooxq30a9fP4WEhOjJJ59UaWmpLBaLhg0bdtXnLtW3l19+WStWrNCdd96pLl266Ny5c3rppZcUGRnpTGzU1G/+5S9/qVGjRslqtWrq1Kn68ssv9dxzzykqKkoLFy70KBZv970Bf5edna3Nmzfrtttu009/+lNdvnxZzz33nHr27Olse7p06aLHHntM8+bN06effqpx48apRYsWOnHihDZs2KDp06c7jyvpq2eMPPnkk/r0009144036rXXXtP+/fv161//usrzSK7kbn+1tn6vJL3zzjuaOXOmvv/97+vGG2/U5cuX9bvf/U4hISFKT0+/agwPPfSQfv/732vUqFH6n//5H8XExOjll1/WiRMn9Mc//rHKg4sBBDZ328ju3burS5cu+vnPf67//Oc/ioyM1B//+Mdqn0eUk5Oj0aNH69Zbb9UPf/hDnTlzxtk2fzNp7G7/sWvXrvrFL36hxYsX67bbbtP48eNlsVi0d+9eJSQkKCcnx6M6u9u/hY8YNDr//e9/zX333Wdat25tmjdvbtLS0swnn3xiEhMTTUZGhrPc6tWrjSSzd+9el9e/++67RpJ59913jTHGzJkzx4SEhJg9e/a4lNu3b59p0qSJmTFjhnPeldswxphz586ZefPmma5du5qwsDDTunVrc/PNN5tly5aZS5cuOcvt2rXLJCcnm7CwMCPJPProoy7rOX36tAkJCTE33njjNe2XK+vl8Le//c2MHz/etGrVylgsFpOYmGjuuusus23btirryM/PN5JMUFCQ+de//lXtdo4fP24mT55s4uPjTWhoqPnWt75lvvvd75rXX3+91lgA1A+bzWYeeOAB07dvX9OiRQvTrFkz07dvX7NixQqXcu60D4629MSJE855GRkZplmzZtcUmzttyGOPPWYGDhxooqOjTdOmTU337t3NkiVLXNrUy5cvm1mzZpk2bdqYoKAgc+VX/q9//WuTnJxsmjZtalq0aGF69+5tHnzwQXPq1CmXcu+++65JS0szUVFRJjw83HTp0sVMmTLF7Nu3r9b6DhkyxPTs2bPK/MTERDN69Ohr2j+AP3n00UeNJPPZZ5+5zHf3mLl06ZJ58sknTc+ePY3FYjEtW7Y0ycnJJjs725SWljrLSTKZmZlV1lddv2zx4sXmW9/6lgkODnZpu/785z+bPn36mPDwcNOxY0fz5JNPmv/93/+t0r4NGTLEDBkyxKP9cLVjvrp1udtvXLVqlbnhhhuMxWIx3bt3N6tXr3bu79r2wUsvvWQ6d+5sQkJCXPpjnsRZG3ffkyu/Qz788ENzzz33mA4dOhiLxWJiY2PNd7/7XZc215ia+81bt241t9xyi2natKmJjIw0Y8aMMYcPH3Z5/dU+m990vX1voDHasWOH89jr3LmzWblyZbVtzx//+Edz6623mmbNmplmzZqZ7t27m8zMTHPkyBFnGUebv2/fPmO1Wk14eLhJTEw0zz//vMu6HOeO69evrzam2vqr7vR7//GPf5gf/vCHpkuXLiY8PNzExMSY73znO2br1q0u26quTT1+/Lj53ve+Z6Kjo014eLgZOHCg2bhxo1t1OHHihJFkVq9effWdDsAvXK1vUd35sjtt5OHDh01KSopp3ry5ad26tZk2bZr5+9//Xm2b8cc//tH06NHDWCwWk5SUZN544w2TkZFhEhMTXcq52380xpj//d//Nf3793f2wYcMGWLy8/Ody+uif4v6F2QMT7mCf/j888/Vtm1bLViwQPPnz/d1OAAAAECjRd8bqFtDhw7V559/roMHD/o6FAAAAhLXNcJvrFmzRhUVFZo0aZKvQwEAAAAaNfreAAAAaMx4xggavHfeeUeHDx/WkiVLNG7cOHXs2NFl+ZdfflnlYXJXiomJUVhYWB1GCQBXV1paqi+//LLGMvHx8fUUDQB4x2effebyAMsrhYWFKSYmph4jqntFRUU1Lm/atKmioqLqKZq6UVvfGwAAAGgMuJUWGryhQ4dq165duuWWW/TKK6/oW9/6lsvyNWvW6L777qtxHe+++66GDh1ah1ECwNVNmTJFL7/8co1l+DoG4G86duyof/7zn1ddPmTIEG3fvr3+AqoHQUFBNS7PyMjQmjVr6ieYOlJb3xuAd3ArLQAAfIvECPze6dOndejQoRrLJCcnq2XLlvUUEQC4Onz4sE6dOlVjmZSUlHqKBgC84/3336/xariWLVsqOTm5HiOqe1u3bq1xeUJCgpKSkuopGgAAAADXisQIAAAAAAAAAAAIGDx8HQAAAAAAAAAABAy/fPh6ZWWlTp06pRYtWtR6n18A/skYo3PnzikhIUHBweRwa0KbCDR+tInuo00EGj/aRPfRJgKNH22i+2gTgcbPkzbRLxMjp06dUvv27X0dBoB68K9//Uvt2rXzdRgNGm0iEDhoE2tHmwgEDtrE2tEmAoGDNrF2tIlA4HCnTfTLxEiLFi0kfVXByMjIGsva7Xbl5eUpNTVVoaGh9RFevWmsdaNe/qWu6lVWVqb27ds7j3dcHW1i3WF/eYb95RlP9hdtovtoE11Rx8aBOrqiTXRfY20T/SVW4vQu4qwebaL7Gmub+E3+GLc/xiz5Z9z+GLNUd/1Ev0yMOC53i4yMdKshi4iIUGRkpF+94e5orHWjXv6lruvF5a21o02sO+wvz7C/PHMt+4s2sXa0ia6oY+NAHatHm1i7xtom+kusxOldxFkz2sTaNdY28Zv8MW5/jFnyz7j9MWap7vqJ3HwQAAAAAAAAAAAEDBIjAAAAAAAAAAAgYJAYAQAveeKJJxQUFKTZs2c75128eFGZmZlq1aqVmjdvrvT0dBUXF7u87uTJkxo9erQiIiIUGxurBx54QJcvX67n6AEAAAAAAIDAQGIEALxg7969evHFF9WnTx+X+XPmzNFbb72l9evXa8eOHTp16pTGjx/vXF5RUaHRo0fr0qVL2rVrl15++WWtWbNGCxYsqO8qAAAAAAAAAAGBxAgAXKfz589r4sSJeumll9SyZUvn/NLSUq1atUpPP/20hg0bpuTkZK1evVq7du3S7t27JUl5eXk6fPiwXnnlFfXr10+jRo3S4sWLlZubq0uXLvmqSgAAAAAAAECj1cTXAQCAv8vMzNTo0aOVkpKixx57zDm/sLBQdrtdKSkpznndu3dXhw4dVFBQoMGDB6ugoEC9e/dWXFycs0xaWppmzJihQ4cOqX///lW2Z7PZZLPZnNNlZWWSJLvdLrvdXmOsjuW1lcNX2F+eYX95xpP9xT4FAAAAAMB7SIwAwHVYt26dPvzwQ+3du7fKsqKiIoWFhSk6OtplflxcnIqKipxlvpkUcSx3LKtOTk6OsrOzq8zPy8tTRESEW3Hn5+e7VQ5fYX95hv3lGXf214ULF+ohEgAAAAAAAgOJEQC4Rv/617/0s5/9TPn5+QoPD6+37c6bN09ZWVnO6bKyMrVv316pqamKjIys8bV2u135+fkaMWKEQkND6zpUv8f+8gz7yzOe7C/HlWEAAAAAAOD6kRgBgGtUWFiokpISffvb33bOq6io0M6dO/X8889ry5YtunTpks6ePety1UhxcbHi4+MlSfHx8frggw9c1ltcXOxcVh2LxSKLxVJlfmhoqNs/RntSFuwvT7G/POPO/mJ/AgAAAADgPSRGAD/V8aG3fR2CJMkSYrR0oNRr4RbZKoJqLf/pE6PrIar6MXz4cB04cMBl3n333afu3btr7ty5at++vUJDQ7Vt2zalp6dLko4cOaKTJ0/KarVKkqxWq5YsWaKSkhLFxsZK+uq2OpGRkUpKSqrfCgF+rKG0iZ5wtJ/wPXe/wxqSxvR9CgCBqCH1XTw5p+P7B/AP/tS/5bwIvkJiBACuUYsWLdSrVy+Xec2aNVOrVq2c86dOnaqsrCzFxMQoMjJSs2bNktVq1eDBgyVJqampSkpK0qRJk7R06VIVFRXpkUceUWZmZrVXhQAAAAAAAAC4PiRGAKAOLV++XMHBwUpPT5fNZlNaWppWrFjhXB4SEqKNGzdqxowZslqtatasmTIyMrRo0SIfRg0AAAAAAAA0XiRGAMCLtm/f7jIdHh6u3Nxc5ebmXvU1iYmJ2rRpUx1HBgAAAAAAAECSgn0dAAAAAAAAAAAAQH0hMQIAAAAAAAAAAAIGiREAAAAAAAAAABAweMYIAAAAADQiHR9629cheMwSYrR0oK+jAAAAQKDw6IqRnJwc3XTTTWrRooViY2M1btw4HTlyxKXM0KFDFRQU5PL3k5/8xKXMyZMnNXr0aEVERCg2NlYPPPCALl++fP21AQAAAAAAAAAAqIFHV4zs2LFDmZmZuummm3T58mU9/PDDSk1N1eHDh9WsWTNnuWnTpmnRokXO6YiICOf/KyoqNHr0aMXHx2vXrl06ffq0Jk+erNDQUD3++ONeqBIAAAAAAAAAAED1PLpiZPPmzZoyZYp69uypvn37as2aNTp58qQKCwtdykVERCg+Pt75FxkZ6VyWl5enw4cP65VXXlG/fv00atQoLV68WLm5ubp06ZJ3agUAAAAAgI9wtwUAAICG7boevl5aWipJiomJcZn/6quvqnXr1urVq5fmzZunCxcuOJcVFBSod+/eiouLc85LS0tTWVmZDh06dD3hAAAAAADgc467LezevVv5+fmy2+1KTU1VeXm5S7lp06bp9OnTzr+lS5c6lznutnDp0iXt2rVLL7/8stasWaMFCxbUd3UAAAAanWt++HplZaVmz56tW265Rb169XLOv/fee5WYmKiEhAR99NFHmjt3ro4cOaI33nhDklRUVOSSFJHknC4qKqp2WzabTTabzTldVlYmSbLb7bLb7TXG6VheWzl/1FjrRr3cYwkxXlnP9bIEG5d/a+Nu/Rvb+w8AAIDAsXnzZpfpNWvWKDY2VoWFhbr99tud8x13W6iO424LW7duVVxcnPr166fFixdr7ty5WrhwocLCwuq0DgAAAI3ZNSdGMjMzdfDgQb333nsu86dPn+78f+/evdW2bVsNHz5cx48fV5cuXa5pWzk5OcrOzq4yPy8vz+X5JTXJz8+/pm37g8ZaN+pVs6UDvbIar1k8oNKtcps2bXKr3DevNAMAAAD8WU13W3jllVcUHx+vMWPGaP78+c5z3KvdbWHGjBk6dOiQ+vfvX2U7gTKo0F9irSnOhjLQTfJssJsv93ljeN/rcnsAAM9cU2Jk5syZ2rhxo3bu3Kl27drVWHbQoEGSpGPHjqlLly6Kj4/XBx984FKmuLhYkq46UmbevHnKyspyTpeVlal9+/ZKTU11eX5Jdex2u/Lz8zVixAiFhobWWjd/0ljrRr3c02vhFi9Edf0swUaLB1Rq/r5g2SqDai1/cGGaW+t1nMQBAAAA/qw+77YQaIMK/SXW6uJsaAPdJPcGu7k70K0u+fP7XhcYVAgA18ajxIgxRrNmzdKGDRu0fft2derUqdbX7N+/X5LUtm1bSZLVatWSJUtUUlKi2NhYSV99WURGRiopKanadVgsFlkslirzQ0ND3f6B2ZOy/qax1o161cxWUXsSoj7ZKoPcismTYxYAAADwd/V5t4VAGVToL7HWFGdDGegmeTbYzd2BbnWhMbzvdYFBhQBwbTxKjGRmZmrt2rX605/+pBYtWjhHqURFRalp06Y6fvy41q5dqzvuuEOtWrXSRx99pDlz5uj2229Xnz59JEmpqalKSkrSpEmTtHTpUhUVFemRRx5RZmZmtckPAAAAAAD8UX3fbSHQBhX6S6zVxdnQBrpJ7g12awj725/f97raDgDAc8GeFH7hhRdUWlqqoUOHqm3bts6/1157TZIUFhamrVu3KjU1Vd27d9f999+v9PR0vfXWW851hISEaOPGjQoJCZHVatUPfvADTZ48WYsWLfJuzQAAAAAA8AFjjGbOnKkNGzbonXfeuea7LRw4cEAlJSXOMrXdbQEAAADu8SgxYoyp9m/KlCmSpPbt22vHjh364osvdPHiRR09elRLly6tcsluYmKiNm3apAsXLuizzz7TsmXL1KTJNT8HHgAAAACABiMzM1OvvPKK1q5d67zbQlFRkb788ktJ0vHjx7V48WIVFhbq008/1Z///GdNnjz5qndb+Pvf/64tW7ZwtwUAfumFF15Qnz59FBkZqcjISFmtVv3lL39xLr948aIyMzPVqlUrNW/eXOnp6c4r5BxOnjyp0aNHKyIiQrGxsXrggQd0+fLl+q4KgEbEo8QIAAAAAACoGXdbAICvtWvXTk888YQKCwu1b98+DRs2TGPHjtWhQ4ckSXPmzNFbb72l9evXa8eOHTp16pTGjx/vfH1FRYVGjx6tS5cuadeuXXr55Ze1Zs0aLViwwFdVAtAIkBgBAADAdVu4cKGCgoJc/rp37+5czkhAAIGEuy0AwNfGjBmjO+64QzfccINuvPFGLVmyRM2bN9fu3btVWlqqVatW6emnn9awYcOUnJys1atXa9euXdq9e7ckKS8vT4cPH9Yrr7yifv36adSoUVq8eLFyc3N16dIlH9cOgL+iRwUAAACv6Nmzp7Zu3eqc/uaPd3PmzNHbb7+t9evXKyoqSjNnztT48eP1/vvvS/p6JGB8fLx27dql06dPa/LkyQoNDdXjjz9e73UBAACA91VUVGj9+vUqLy+X1WpVYWGh7Ha7UlJSnGW6d++uDh06qKCgQIMHD1ZBQYF69+6tuLg4Z5m0tDTNmDFDhw4dUv/+/avdls1mk81mc06XlZVJkux2u+x2e41xOpbXVq6hccRrCTY+jsR9jlj9dV/7U9z+GLPkWdye1I3ECAAAALyiSZMmio+PrzLfMRJw7dq1GjZsmCRp9erV6tGjh3bv3q3Bgwc7RwJu3bpVcXFx6tevnxYvXqy5c+dq4cKFCgsLq+/qAEBA6rVwi2wVQb4Oo0aWEKOlA7+O9dMnRvs6JAC1OHDggKxWqy5evKjmzZtrw4YNSkpK0v79+xUWFqbo6GiX8nFxcSoqKpIkFRUVuSRFHMsdy64mJydH2dnZVebn5eUpIiLCrbjz8/PdKtfQLB5Q6esQPOav+9of4/bHmCX34r5w4YLb6yMxAgAAAK84evSoEhISFB4eLqvVqpycHHXo0KFORwICAACg4evWrZv279+v0tJSvf7668rIyNCOHTvqdJvz5s1TVlaWc7qsrEzt27dXampqlVsXXslutys/P18jRoxQaGhoncbpTY645+8Llq2yYSe5HSzBRosHVPrtvvanuP0xZsmzuB1XhrmDxAgAAACu26BBg7RmzRp169ZNp0+fVnZ2tm677TYdPHhQRUVFdTYS0Bu3SPCnWw04uHuJuL9eLu8J6liVJcT/PtOe3EajMb/XuDYdH3rb1yFU68orW4BAFhYWpq5du0qSkpOTtXfvXv3qV7/S3XffrUuXLuns2bMufcXi4mLnlcjx8fH64IMPXNbneFZddVcrO1gsFlkslirzQ0ND3f5R2JOyDYmtMsjv2h1/3df+GLc/xiy5F7cn9SIxAgAAgOs2atQo5//79OmjQYMGKTExUX/4wx/UtGnTOtuuN26R4I+3Gti0aZNH5f31cnlPUMevLR1Yx4HUIW/fIgEA0DBVVlbKZrMpOTlZoaGh2rZtm9LT0yVJR44c0cmTJ2W1WiVJVqtVS5YsUUlJiWJjYyV99X0RGRmppKQkn9UBgH8jMQIAAACvi46O1o033qhjx45pxIgRdTYS0Bu3SPCnWw04HFyY5lY5f71c3hPUsapeC7fUQ1Te5cltNDy5RQIAwPfmzZunUaNGqUOHDjp37pzWrl2r7du3a8uWLYqKitLUqVOVlZWlmJgYRUZGatasWbJarRo8eLAkKTU1VUlJSZo0aZKWLl2qoqIiPfLII8rMzKz2ihAAcAeJEQAAAHjd+fPndfz4cU2aNKlORwJ64xYJ/nqrAU/LN9akgQN1/Jq/fZ6/ydu3SAAA+F5JSYkmT56s06dPKyoqSn369NGWLVs0YsQISdLy5csVHBys9PR02Ww2paWlacWKFc7Xh4SEaOPGjZoxY4asVquaNWumjIwMLVq0yFdVAtAIkBiBV3nj3q6+uA/rp0+MrpftAADQWP385z/XmDFjlJiYqFOnTunRRx9VSEiI7rnnHkYCAgAABLBVq1bVuDw8PFy5ubnKzc29apnExESPbyUKADUhMQIAAIDr9u9//1v33HOPvvjiC7Vp00a33nqrdu/erTZt2khiJCAAAAAAoOEgMQIAAIDrtm7duhqXMxIQAAAAANBQBPs6AAAAAAAAAAAAgPrCFSMAAAAAAAAAAHioPp+RfL0cz3XGV7hiBAAAAAAAAAAABAwSIwAAAAAAAAAAIGCQGAEAAAAAAAAAAAGDxAgAAAAAAAAAAAgYJEYAAAAAAAAAAEDAIDECAAAAAAAAAAACBokRAAAAAAAAAAAQMEiMAAAAAAAAAACAgEFiBAAAAAAAAAAABAwSIwAAAAAAAAAAIGCQGAEAAAAAAAAAAAGjia8DAAAAAAAAAAAAda/Xwi2yVQT5Ogy3WUKMlg70/npJjACSOj70dp1vw3EQ+1vjAwAAAAAAAACNCbfSAgAAAAAAAAAAAYPECAAAAAAAAAAACBgkRgAAAAAAAAAAQMAgMQIAAAAAAAAAAAIGiREAAAAAAAAAABAwSIwAAAAAAAAAAICAQWIEAAAAAAAAAAAEDI8SIzk5ObrpppvUokULxcbGaty4cTpy5IhLmYsXLyozM1OtWrVS8+bNlZ6eruLiYpcyJ0+e1OjRoxUREaHY2Fg98MADunz58vXXBgDq0QsvvKA+ffooMjJSkZGRslqt+stf/uJcTnsIAAAAAAAANDweJUZ27NihzMxM7d69W/n5+bLb7UpNTVV5ebmzzJw5c/TWW29p/fr12rFjh06dOqXx48c7l1dUVGj06NG6dOmSdu3apZdffllr1qzRggULvFcrAKgH7dq10xNPPKHCwkLt27dPw4YN09ixY3Xo0CFJtIcAAACBikGFAPA1d9rEoUOHKigoyOXvJz/5iUsZ2kQA3tTEk8KbN292mV6zZo1iY2NVWFio22+/XaWlpVq1apXWrl2rYcOGSZJWr16tHj16aPfu3Ro8eLDy8vJ0+PBhbd26VXFxcerXr58WL16suXPnauHChQoLC/Ne7QCgDo0ZM8ZlesmSJXrhhRe0e/dutWvXjvYQAAAgQDkGFd500026fPmyHn74YaWmpurw4cNq1qyZpK8G0bz99ttav369oqKiNHPmTI0fP17vv/++pK8H0cTHx2vXrl06ffq0Jk+erNDQUD3++OO+rB4AeMSdNlGSpk2bpkWLFjmnIyIinP+nTQTgbR4lRq5UWloqSYqJiZEkFRYWym63KyUlxVmme/fu6tChgwoKCjR48GAVFBSod+/eiouLc5ZJS0vTjBkzdOjQIfXv37/Kdmw2m2w2m3O6rKxMkmS322W322uM0bE8edFm2SqDrrGmvnFwYVqNyx11q20f1CdLiLn+dQQbl38bC+r1FXc/rw3pc+2OiooKrV+/XuXl5bJarXXWHkreaRP9bf/6CvvLM77cX974/qlvjnbTnf3FZxAA/AuDCgHga7W1iQ4RERGKj4+vdh20iQC87ZoTI5WVlZo9e7ZuueUW9erVS5JUVFSksLAwRUdHu5SNi4tTUVGRs8w3fwR0LHcsq05OTo6ys7OrzM/Ly3PJHtdk8YBKt8o1JJs2bXKrXH5+fh1H4r6lA723Ln98z9wR6PVy93N94cKF6wmn3hw4cEBWq1UXL15U8+bNtWHDBiUlJWn//v110h5K3mkTG1K74Q/YX57xxf7y5vdPfXNnf/lLmwgAqF59DSoEAH9wZZvo8Oqrr+qVV15RfHy8xowZo/nz5zvPcX010NrfBig54vWnQbmeDBhrSPx5X/tTzFLdDSq85sRIZmamDh48qPfee+9aV+G2efPmKSsryzldVlam9u3bKzU1VZGRkTW+1m63Kz8/X/P3BTfKK0by8/M1YsQIhYaG1lNUNeu1cMt1r8MSbLR4QKVfvmc1oV5fqe1z7eDosDR03bp10/79+1VaWqrXX39dGRkZ2rFjR51u0xttYkNqNxoy9pdnfLm/vPH9U98c7ac7+8tf2kQAQFX1OajQGz8C+sOPJf7yw05jjNOXP1z6yw/V9R1nQ98fV6quTZSke++9V4mJiUpISNBHH32kuXPn6siRI3rjjTck+W6gtb8OkvPHQbns6/rjjzFL3h9UeE2JkZkzZ2rjxo3auXOn2rVr55wfHx+vS5cu6ezZsy4dvOLiYuelcPHx8frggw9c1ud4wNzVLpezWCyyWCxV5oeGhrr9w4utMki2Cv/6MdrdunmyH+qaN/exP75n7gj0ennyufYHYWFh6tq1qyQpOTlZe/fu1a9+9SvdfffdddIeSt5pExtSu+EP2F+e8cX+8ud21Z39xecPAPxXfQ4qDLS7LfhLrI0pTnfvAFCX/OXH0/qK09+uLL5amzh9+nTn/3v37q22bdtq+PDhOn78uLp06XJN2wrEQYX+OEDckwFjDYk/72t/ilmqu0GFHiVGjDGaNWuWNmzYoO3bt6tTp04uy5OTkxUaGqpt27YpPT1dknTkyBGdPHlSVqtVkmS1WrVkyRKVlJQoNjZW0ldfFpGRkUpKSvIkHABocCorK2Wz2WgPAQAAUO+DCgPlbgv+8sNOY4zT3TsA1AV/+aG6vuP0pyuLr9YmVmfQoEGSpGPHjqlLly4+G2jtr4Pk/HFQLvu6/vhjzJL3BxV6lBjJzMzU2rVr9ac//UktWrRwXqoWFRWlpk2bKioqSlOnTlVWVpZiYmIUGRmpWbNmyWq1avDgwZKk1NRUJSUladKkSVq6dKmKior0yCOPKDMzs9rGCgAaqnnz5mnUqFHq0KGDzp07p7Vr12r79u3asmUL7SEAAEAA89WgwkC724K/xNqY4mwIP1r6y4+n9RWnP+yL2trE6uzfv1+S1LZtW0kMLATgfR4lRl544QVJ0tChQ13mr169WlOmTJEkLV++XMHBwUpPT5fNZlNaWppWrFjhLBsSEqKNGzdqxowZslqtatasmTIyMrRo0aLrqwkA1LOSkhJNnjxZp0+fVlRUlPr06aMtW7ZoxIgRkmgPAQAAAhWDCgHga7W1icePH9fatWt1xx13qFWrVvroo480Z84c3X777erTp48k2kQA3ufxrbRqEx4ertzcXOXm5l61TGJiYoO4LyUAXI9Vq1bVuJz2EEAge+KJJzRv3jz97Gc/0zPPPCNJunjxou6//36tW7fOJWH8zQdpnjx5UjNmzNC7776r5s2bKyMjQzk5OWrS5JoejQcAPsGgQgD4Wm1tYlhYmLZu3apnnnlG5eXlat++vdLT0/XII484y9ImAvA2zjABAADgVXv37tWLL77oHOHnMGfOHL399ttav369oqKiNHPmTI0fP17vv/++JKmiokKjR49WfHy8du3apdOnT2vy5MkKDQ3V448/7ouqAMA1YVAhAHyttjaxffv22rFjR63roU0E4E0kRgAAAOA158+f18SJE/XSSy/psccec84vLS3VqlWrtHbtWg0bNkzSV6MEe/Tood27d2vw4MHKy8vT4cOHtXXrVsXFxalfv35avHix5s6dq4ULFyosLMxX1QIAAH6q40Nv1+v2LCFGSwdKvRZuua5ny3z6xGgvRgUAuBKJEQAAAHhNZmamRo8erZSUFJfESGFhoex2u1JSUpzzunfvrg4dOqigoECDBw9WQUGBevfu7XJrrbS0NM2YMUOHDh1S//79q2zPZrPJZrM5p8vKyiRJdrtddru9xlgdyy3BtY/sbmhqq9uV5dwt74+oY1WWEP/7TDuOQ3fq2JjfawAAANQPEiMAAADwinXr1unDDz/U3r17qywrKipSWFiYoqOjXebHxcU5H8BZVFTkkhRxLHcsq05OTo6ys7OrzM/Ly1NERIRbcS8eUOlWuYbE09tI5Ofn11EkDQd1/NrSgXUcSB1yp44XLlyoh0gAAADQmJEYAQAAwHX717/+pZ/97GfKz89XeHh4vW133rx5ysrKck6XlZWpffv2Sk1NVWRkZI2vtdvtys/P1/x9wbJVXvutLnzh4MI0t8o56jhixAiFhobWcVS+QR2r6rVwSz1E5V2WYKPFAyrdqqPjyjAAAADgWpEYacBquw+mt+5bCQAAcL0KCwtVUlKib3/72855FRUV2rlzp55//nlt2bJFly5d0tmzZ12uGikuLlZ8fLwkKT4+Xh988IHLeouLi53LqmOxWGSxWKrMDw0NdftHcltlkN/1pTxNAHiyP/wVdfyav32ev8mdOjb29xkAAAB1L9jXAQAAAMD/DR8+XAcOHND+/fudfwMGDNDEiROd/w8NDdW2bducrzly5IhOnjwpq9UqSbJarTpw4IBKSkqcZfLz8xUZGamkpKR6rxMAAAAAoHHiihEAAABctxYtWqhXr14u85o1a6ZWrVo550+dOlVZWVmKiYlRZGSkZs2aJavVqsGDB0uSUlNTlZSUpEmTJmnp0qUqKirSI488oszMzGqvCgEAAAAA4FqQGAEAAEC9WL58uYKDg5Weni6bzaa0tDStWLHCuTwkJEQbN27UjBkzZLVa1axZM2VkZGjRokU+jBoAAAAA0NiQGAEAAECd2L59u8t0eHi4cnNzlZube9XXJCYmatOmTXUcGQAAAAAgkPGMEQAAAAAAAAAAEDBIjAAAAAAAAAAAgIBBYgQAAAAAAAAAAAQMEiMAAAAAAAAAACBgkBgBAAAAAAAAAAABg8QIAAAAAAAAAAAIGCRGAAAAAAAAAABAwCAxAgAAAAAAAAAAAgaJEQAAAAAAAAAAEDBIjAAAAAAAAAAAgIBBYgQAAAAAAAAAAAQMEiMAAAAAAAAAACBgkBgBAAAAAAAAAAABg8QIAAAAAAAAAAAIGCRGAAAAAAAAAABAwCAxAgAAAAAAAKBO5OTk6KabblKLFi0UGxurcePG6ciRIy5lLl68qMzMTLVq1UrNmzdXenq6iouLXcqcPHlSo0ePVkREhGJjY/XAAw/o8uXL9VkVAI0IiREAAAAAAAAAdWLHjh3KzMzU7t27lZ+fL7vdrtTUVJWXlzvLzJkzR2+99ZbWr1+vHTt26NSpUxo/frxzeUVFhUaPHq1Lly5p165devnll7VmzRotWLDAF1UC0Ag08XUAAAAAAAAAABqnzZs3u0yvWbNGsbGxKiws1O23367S0lKtWrVKa9eu1bBhwyRJq1evVo8ePbR7924NHjxYeXl5Onz4sLZu3aq4uDj169dPixcv1ty5c7Vw4UKFhYX5omoA/BhXjAAAAAAAAACoF6WlpZKkmJgYSVJhYaHsdrtSUlKcZbp3764OHTqooKBAklRQUKDevXsrLi7OWSYtLU1lZWU6dOhQPUYPoLHgihEAAAAAAADUquNDb/ts25YQo6UDpV4Lt8hWEeSzOHB9KisrNXv2bN1yyy3q1auXJKmoqEhhYWGKjo52KRsXF6eioiJnmW8mRRzLHcuqY7PZZLPZnNNlZWWSJLvdLrvdXmOcjuW1lWtoHPFago2PI3GfI1b2dd1zxOpPMUuefUY8+RyRGAEAAAAAAABQ5zIzM3Xw4EG99957db6tnJwcZWdnV5mfl5eniIgIt9aRn5/v7bDqxeIBlb4OwWPs6/rjjzFL7n1GLly44Pb6SIwAAAAAAAAAqFMzZ87Uxo0btXPnTrVr1845Pz4+XpcuXdLZs2ddrhopLi5WfHy8s8wHH3zgsr7i4mLnsurMmzdPWVlZzumysjK1b99eqampioyMrDFWu92u/Px8jRgxQqGhoR7V05cccc/fFyxbpX9cWWUJNlo8oJJ9XQ8c+9qfYpY8+4w4rgxzB4kRAAAAAAAAAHXCGKNZs2Zpw4YN2r59uzp16uSyPDk5WaGhodq2bZvS09MlSUeOHNHJkydltVolSVarVUuWLFFJSYliY2MlfTV6PDIyUklJSdVu12KxyGKxVJkfGhrq9g/wnpRtSGyVQX53yzn2df3xx5gl9z4jnnyGSIwAAAAAAAAAqBOZmZlau3at/vSnP6lFixbOZ4JERUWpadOmioqK0tSpU5WVlaWYmBhFRkZq1qxZslqtGjx4sCQpNTVVSUlJmjRpkpYuXaqioiI98sgjyszMrDb5AQC1Cfb0BTt37tSYMWOUkJCgoKAgvfnmmy7Lp0yZoqCgIJe/kSNHupQ5c+aMJk6cqMjISEVHR2vq1Kk6f/78dVUEAAAAAAAAQMPywgsvqLS0VEOHDlXbtm2df6+99pqzzPLly/Xd735X6enpuv322xUfH6833njDuTwkJEQbN25USEiIrFarfvCDH2jy5MlatGiRL6oEoBHwODFSXl6uvn37Kjc396plRo4cqdOnTzv/fv/737ssnzhxog4dOqT8/HznvQWnT5/uefQAAAAAADRADCoEgK8YY6r9mzJlirNMeHi4cnNzdebMGZWXl+uNN96o8uyQxMREbdq0SRcuXNBnn32mZcuWqUkTboYD4Np43HqMGjVKo0aNqrGMxWK56oOPPv74Y23evFl79+7VgAEDJEnPPfec7rjjDi1btkwJCQmehgQAAAAAQIPiGFT4wx/+UOPHj6+2zMiRI7V69Wrn9JW3g5k4caJOnz6t/Px82e123XfffZo+fbrWrl1bp7EDAAA0dnWSVt2+fbtiY2PVsmVLDRs2TI899phatWolSSooKFB0dLQzKSJJKSkpCg4O1p49e3TnnXdWWZ/NZpPNZnNOO54ub7fbZbfba4zFsdwSbK67Xg2No06NrW7Uy794Wq/ajllPywEAAAANEYMKAQAAGi6vJ0ZGjhyp8ePHq1OnTjp+/LgefvhhjRo1SgUFBQoJCVFRUZFiY2Ndg2jSRDExMc6HL10pJydH2dnZVebn5eUpIiLCrbgWD6j0vDJ+orHWjXr5F3frtWnTJrfKXbhw4XrCAQAAABo8BhVeG38ZdEac3hVocTKoEADqltcTIxMmTHD+v3fv3urTp4+6dOmi7du3a/jw4de0znnz5ikrK8s5XVZWpvbt2ys1NVWRkZE1vtZutys/P1/z9wXLVhl0TdtvqCzBRosHVDa6ulEv/+JpvQ4uTHNrvY6TOAAAAKAxYlDh9fOXWInTuwIlTgYVAkDdqvMnFHXu3FmtW7fWsWPHNHz4cMXHx6ukpMSlzOXLl3XmzJmrXkJssViq3GtVkkJDQxUaGupWHLbKINkqGs+P0d/UWOtGvfyLu/Vy95h1txwAAADgjxhUeO38ZdAZcXpXoMXJoEIAqFt1nhj597//rS+++EJt27aVJFmtVp09e1aFhYVKTk6WJL3zzjuqrKzUoEGD6jocAAAA1IEXXnhBL7zwgj799FNJUs+ePbVgwQLn/fUvXryo+++/X+vWrZPNZlNaWppWrFihuLg45zpOnjypGTNm6N1331Xz5s2VkZGhnJwcNWlS511WAPA5BhV6zl9iJU7vCpQ4GVQIAHUr2NMXnD9/Xvv379f+/fslSSdOnND+/ft18uRJnT9/Xg888IB2796tTz/9VNu2bdPYsWPVtWtXpaV9lenu0aOHRo4cqWnTpumDDz7Q+++/r5kzZ2rChAk8PA4AAMBPtWvXTk888YQKCwu1b98+DRs2TGPHjtWhQ4ckSXPmzNFbb72l9evXa8eOHTp16pTGjx/vfH1FRYVGjx6tS5cuadeuXXr55Ze1Zs0aLViwwFdVAoB6VdOgQgcGFQIAAHiHx8Pv9u3bp+985zvOacdluhkZGXrhhRf00Ucf6eWXX9bZs2eVkJCg1NRULV682GXUyquvvqqZM2dq+PDhCg4OVnp6up599lkvVAcAAAC+MGbMGJfpJUuW6IUXXtDu3bvVrl07rVq1SmvXrtWwYcMkSatXr1aPHj20e/duDR48WHl5eTp8+LC2bt2quLg49evXT4sXL9bcuXO1cOFChYWF+aJaAHDNzp8/r2PHjjmnHYMKY2JiFBMTo+zsbKWnpys+Pl7Hjx/Xgw8+eNVBhStXrpTdbmdQIQCg0eq1cItfXA3mYAkxWjrQ11HgenicGBk6dKiMMVddvmXLllrXERMTo7Vr13q6aQAAAPiBiooKrV+/XuXl5bJarSosLJTdbldKSoqzTPfu3dWhQwcVFBRo8ODBKigoUO/evV1urZWWlqYZM2bo0KFD6t+/f7XbstlsstlszmnHfbbtdrvsdnuNcTqWW4Kv3rdtqGqr25Xl3C3vj6hjVZYQ//tMO45Dd+roL+81gwoBAAAaLm7YDAAAAK84cOCArFarLl68qObNm2vDhg1KSkrS/v37FRYWpujoaJfycXFxKioqkiQVFRW5JEUcyx3LriYnJ0fZ2dlV5ufl5SkiIsKtuBcPqHSrXEOyadMmj8rn5+fXUSQNB3X8mj+PXnSnjhcuXKiHSK4fgwoBAAAaLhIjAAAA8Ipu3bpp//79Ki0t1euvv66MjAzt2LGjTrc5b9485yhs6asrRtq3b6/U1FRFRkbW+Fq73a78/HzN3xcsW6X/XLYvSQcXprlVzlHHESNGNNqHs1LHqnotrP0H94bGEmy0eEClW3V0XBkGAAAAXCsSIwAAAPCKsLAwde3aVZKUnJysvXv36le/+pXuvvtuXbp0SWfPnnW5aqS4uFjx8fGSpPj4eH3wwQcu6ysuLnYuuxqLxeJy2xmH0NBQt38kt1UG+dX9jCV5nADwZH/4K+r4NX/7PH+TO3Vs7O8zAAAA6l6wrwMAAH+Vk5Ojm266SS1atFBsbKzGjRunI0eOuJS5ePGiMjMz1apVKzVv3lzp6enOH/ocTp48qdGjRysiIkKxsbF64IEHdPny5fqsCgDUicrKStlsNiUnJys0NFTbtm1zLjty5IhOnjwpq9UqSbJarTpw4IBKSkqcZfLz8xUZGamkpKR6jx0AAAAA0HiRGAGAa7Rjxw5lZmZq9+7dys/Pl91uV2pqqsrLy51l5syZo7feekvr16/Xjh07dOrUKY0fP965vKKiQqNHj9alS5e0a9cuvfzyy1qzZo0WLFjgiyoBwDWbN2+edu7cqU8//VQHDhzQvHnztH37dk2cOFFRUVGaOnWqsrKy9O6776qwsFD33XefrFarBg8eLElKTU1VUlKSJk2apL///e/asmWLHnnkEWVmZlZ7RQgAAAAAANeKW2kBwDXavHmzy/SaNWsUGxurwsJC3X777SotLdWqVau0du1aDRs2TJK0evVq9ejRQ7t379bgwYOVl5enw4cPa+vWrYqLi1O/fv20ePFizZ07VwsXLlRYWJgvqgYAHispKdHkyZN1+vRpRUVFqU+fPtqyZYtGjBghSVq+fLmCg4OVnp4um82mtLQ0rVixwvn6kJAQbdy4UTNmzJDValWzZs2UkZGhRYsW+apKAAAAAIBGisQIAHhJaWmpJCkmJkaSVFhYKLvdrpSUFGeZ7t27q0OHDiooKNDgwYNVUFCg3r17Ky4uzlkmLS1NM2bM0KFDh9S/f//6rQS8quNDb/s6hGvy6ROjfR0C/NCqVatqXB4eHq7c3Fzl5uZetUxiYqI2bdrk7dAAAAAAAHBBYgQAvKCyslKzZ8/WLbfcol69ekmSioqKFBYW5vKgYUmKi4tTUVGRs8w3kyKO5Y5l1bHZbLLZbM7psrIySZLdbpfdbq8xTsfy2srhK9e7vywhxpvh1Jtrra8vP1/+uK8twV/F7M7+4pgFAAAAAMB7SIwAgBdkZmbq4MGDeu+99+p8Wzk5OcrOzq4yPy8vTxEREW6tIz8/39thNWrXur+WDvRyIPXkekfs++Lz5a/7WnJvf124cKEeIgEAAAAAIDCQGAGA6zRz5kxt3LhRO3fuVLt27Zzz4+PjdenSJZ09e9blqpHi4mLFx8c7y3zwwQcu6ysuLnYuq868efOUlZXlnC4rK1P79u2VmpqqyMjIGmO12+3Kz8/XiBEjFBoa6lE9A9H17q9eC7fUQVQNlyXYaPGASs3fFyxbZZCvw2nwHPvLnc+X48owAAAAAABw/UiMAMA1MsZo1qxZ2rBhg7Zv365OnTq5LE9OTlZoaKi2bdum9PR0SdKRI0d08uRJWa1WSZLVatWSJUtUUlKi2NhYSV+NHo+MjFRSUlK127VYLLJYLFXmh4aGuv3jvSdlce37y1YRmMkBW2VQwNb9Wrjz+eJ4BQAAAADAe0iMAMA1yszM1Nq1a/WnP/1JLVq0cD4TJCoqSk2bNlVUVJSmTp2qrKwsxcTEKDIyUrNmzZLVatXgwYMlSampqUpKStKkSZO0dOlSFRUV6ZFHHlFmZma1yQ8AAAAAAAAA14fECABcoxdeeEGSNHToUJf5q1ev1pQpUyRJy5cvV3BwsNLT02Wz2ZSWlqYVK1Y4y4aEhGjjxo2aMWOGrFarmjVrpoyMDC1atKi+qgEAAAAAAAAEFBIjAHCNjDG1lgkPD1dubq5yc3OvWiYxMfG6H3YNAAAAAAAAwD3Bvg4AAAAAAAAAAACgvpAYAQAAAAAAAAAAAYPECAAAAAAAAIA6s3PnTo0ZM0YJCQkKCgrSm2++6bJ8ypQpCgoKcvkbOXKkS5kzZ85o4sSJioyMVHR0tKZOnarz58/XYy0ANCYkRgAAAAAAAADUmfLycvXt27fG52+OHDlSp0+fdv79/ve/d1k+ceJEHTp0SPn5+dq4caN27typ6dOn13XoABopHr4OAAAAAAAAoM6MGjVKo0aNqrGMxWJRfHx8tcs+/vhjbd68WXv37tWAAQMkSc8995zuuOMOLVu2TAkJCV6PGUDjRmIEAAAAAAAAgE9t375dsbGxatmypYYNG6bHHntMrVq1kiQVFBQoOjramRSRpJSUFAUHB2vPnj268847q6zPZrPJZrM5p8vKyiRJdrtddru9xlgcy2sr19A44rUEGx9H4j5HrP4Us+SfcftjzNLX8bpzPHpyzJIYAQAAAAAAAOAzI0eO1Pjx49WpUycdP35cDz/8sEaNGqWCggKFhISoqKhIsbGxLq9p0qSJYmJiVFRUVO06c3JylJ2dXWV+Xl6eIiIi3IorPz/f88o0AIsHVPo6BI/5Y8ySf8btjzFL7h2PFy5ccHt9JEYAAAAAAAAA+MyECROc/+/du7f69OmjLl26aPv27Ro+fPg1rXPevHnKyspyTpeVlal9+/ZKTU1VZGRkja+12+3Kz8/XiBEjFBoaek3b9wVH3PP3BctWGeTrcNxiCTZaPKDSr2KW/DNuf4xZ+jpud45Hx5Vh7iAxAgAAAAAAAKDB6Ny5s1q3bq1jx45p+PDhio+PV0lJiUuZy5cv68yZM1d9LonFYpHFYqkyPzQ01O1khydlGxJbZZBsFf7zw7fknzFL/hm3P8YsuXc8enK8Bl9vQAAAAAAAAADgLf/+97/1xRdfqG3btpIkq9Wqs2fPqrCw0FnmnXfeUWVlpQYNGuSrMAH4Ma4YAQAAAAAAAFBnzp8/r2PHjjmnT5w4of379ysmJkYxMTHKzs5Wenq64uPjdfz4cT344IPq2rWr0tLSJEk9evTQyJEjNW3aNK1cuVJ2u10zZ87UhAkTlJCQ4KtqAfBjXDECAAAAAAAAoM7s27dP/fv3V//+/SVJWVlZ6t+/vxYsWKCQkBB99NFH+n//7//pxhtv1NSpU5WcnKy//vWvLrfCevXVV9W9e3cNHz5cd9xxh2699Vb9+te/9lWVAPg5rhgBAAAAAAAAUGeGDh0qY8xVl2/ZsqXWdcTExGjt2rXeDAtAACMxAgDwCx0fervet2kJMVo6UOq1cItfPpgMAAAAAAAAVXErLQAAAAAAAAAAEDBIjAAAAAAAAAAAgIBBYgQAAAAAAAAAAAQMEiMAAAAAAAAAACBgkBgBAAAAAAAAAAABg8QIAAAAAAAAAAAIGB4nRnbu3KkxY8YoISFBQUFBevPNN12WG2O0YMECtW3bVk2bNlVKSoqOHj3qUubMmTOaOHGiIiMjFR0dralTp+r8+fPXVREAAAAAABoKzp0BAAAaLo8TI+Xl5erbt69yc3OrXb506VI9++yzWrlypfbs2aNmzZopLS1NFy9edJaZOHGiDh06pPz8fG3cuFE7d+7U9OnTr70WAAAAAAA0IJw7AwAANFxNPH3BqFGjNGrUqGqXGWP0zDPP6JFHHtHYsWMlSb/97W8VFxenN998UxMmTNDHH3+szZs3a+/evRowYIAk6bnnntMdd9yhZcuWKSEh4TqqAwAAAACA73HuDAAA0HB5nBipyYkTJ1RUVKSUlBTnvKioKA0aNEgFBQWaMGGCCgoKFB0d7ezYSVJKSoqCg4O1Z88e3XnnnVXWa7PZZLPZnNNlZWWSJLvdLrvdXmNMjuWWYHNddWuIHHVqbHWjXv7F03rVdsx6Wg4AAADwN3V17gwAAAD3eDUxUlRUJEmKi4tzmR8XF+dcVlRUpNjYWNcgmjRRTEyMs8yVcnJylJ2dXWV+Xl6eIiIi3Ipt8YBKt8r5o8ZaN+rlX9yt16ZNm9wqd+HChesJBwBQz3JycvTGG2/ok08+UdOmTXXzzTfrySefVLdu3ZxlLl68qPvvv1/r1q2TzWZTWlqaVqxY4dJ3PHnypGbMmKF3331XzZs3V0ZGhnJyctSkiVe7rQDgU3V17hwogwr9ZdAZcXpXoMXJoEIAqFt+cYY5b948ZWVlOafLysrUvn17paamKjIyssbX2u125efna/6+YNkqg+o61HplCTZaPKCy0dWNevkXT+t1cGGaW+t1nMQBAPzDjh07lJmZqZtuukmXL1/Www8/rNTUVB0+fFjNmjWTJM2ZM0dvv/221q9fr6ioKM2cOVPjx4/X+++/L0mqqKjQ6NGjFR8fr127dun06dOaPHmyQkND9fjjj/uyegDgFwJtUKG/xEqc3hUocTKoEADqllcTI/Hx8ZKk4uJitW3b1jm/uLhY/fr1c5YpKSlxed3ly5d15swZ5+uvZLFYZLFYqswPDQ1VaGioW7HZKoNkq2g8P0Z/U2OtG/XyL+7Wy91j1t1yAICGYfPmzS7Ta9asUWxsrAoLC3X77bertLRUq1at0tq1azVs2DBJ0urVq9WjRw/t3r1bgwcPVl5eng4fPqytW7cqLi5O/fr10+LFizV37lwtXLhQYWFhvqgaAHhdXZ07B8qgQn8ZdEac3hVocTKoEADqllcTI506dVJ8fLy2bdvm7MyVlZVpz549mjFjhiTJarXq7NmzKiwsVHJysiTpnXfeUWVlpQYNGuTNcAAAAOAjpaWlkqSYmBhJUmFhoex2u8v99Lt3764OHTqooKBAgwcPVkFBgXr37u1ya5m0tDTNmDFDhw4dUv/+/eu3EgBQR+rq3DnQBhX6S6zE6V2BEieDCgGgbnmcGDl//ryOHTvmnD5x4oT279+vmJgYdejQQbNnz9Zjjz2mG264QZ06ddL8+fOVkJCgcePGSZJ69OihkSNHatq0aVq5cqXsdrtmzpypCRMmKCEhwWsVAwAAgG9UVlZq9uzZuuWWW9SrVy9JX90rPywsTNHR0S5lr7yffnX323csq06g3E//Sp7ed7wx33+cOlZlCfG/z7TjOHSnjv7yXnPuDAAA0HB5nBjZt2+fvvOd7zinHZfpZmRkaM2aNXrwwQdVXl6u6dOn6+zZs7r11lu1efNmhYeHO1/z6quvaubMmRo+fLiCg4OVnp6uZ5991gvVAQAAgK9lZmbq4MGDeu+99+p8W4F2P30Hd+877pCfn19HkTQc1PFrSwfWcSB1yJ06+sv99Dl3BgAAaLg8TowMHTpUxlx9BFJQUJAWLVqkRYsWXbVMTEyM1q5d6+mmAQAA0MDNnDlTGzdu1M6dO9WuXTvn/Pj4eF26dElnz551uWqkuLjYea/8+Ph4ffDBBy7rKy4udi6rTqDcT/9K7t533FHHESNGNNpbbVDHqnot3FIPUXmX45787tTRX+6nz7kzAABAw+XVZ4wAAAAgMBljNGvWLG3YsEHbt29Xp06dXJYnJycrNDRU27ZtU3p6uiTpyJEjOnnypKxWq6Sv7qe/ZMkSlZSUKDY2VtJXo8cjIyOVlJRU7XYD7X76Dp4mADzZH/6KOn7N3z7P3+ROHRv7+wwAAIC6R2IEAAJQr4Vb/PpHEwANT2ZmptauXas//elPatGihfOZIFFRUWratKmioqI0depUZWVlKSYmRpGRkZo1a5asVqsGDx4sSUpNTVVSUpImTZqkpUuXqqioSI888ogyMzOrTX4AAAAAAHAtSIwAAADgur3wwguSvrp1zDetXr1aU6ZMkSQtX77ceY98m82mtLQ0rVixwlk2JCREGzdu1IwZM2S1WtWsWTNlZGTUeJsZAAAAAAA8RWIEAAAA162m++g7hIeHKzc3V7m5uVctk5iY6PGDxQEAAAAA8ESwrwMAAAAAAAAAAACoLyRGAAAAAAAAAABAwCAxAgAAAAAAAAAAAgaJEQAAAAAAAAB1ZufOnRozZowSEhIUFBSkN99802W5MUYLFixQ27Zt1bRpU6WkpOjo0aMuZc6cOaOJEycqMjJS0dHRmjp1qs6fP1+PtQDQmJAYAQAAAAAAAFBnysvL1bdvX+Xm5la7fOnSpXr22We1cuVK7dmzR82aNVNaWpouXrzoLDNx4kQdOnRI+fn52rhxo3bu3Knp06fXVxUANDJNfB0AAAAAAAAAgMZr1KhRGjVqVLXLjDF65pln9Mgjj2js2LGSpN/+9reKi4vTm2++qQkTJujjjz/W5s2btXfvXg0YMECS9Nxzz+mOO+7QsmXLlJCQUG91AdA4kBgBAAAAAAAA4BMnTpxQUVGRUlJSnPOioqI0aNAgFRQUaMKECSooKFB0dLQzKSJJKSkpCg4O1p49e3TnnXdWWa/NZpPNZnNOl5WVSZLsdrvsdnuNMTmW11auoXHEawk2Po7EfY5Y/SlmyT/j9seYpa/jded49OSYJTECAAAAAAAAwCeKiookSXFxcS7z4+LinMuKiooUGxvrsrxJkyaKiYlxlrlSTk6OsrOzq8zPy8tTRESEW7Hl5+e7Va6hWTyg0tcheMwfY5b8M25/jFly73i8cOGC2+sjMQIAAAAAAACgUZk3b56ysrKc02VlZWrfvr1SU1MVGRlZ42vtdrvy8/M1YsQIhYaG1nWoXuOIe/6+YNkqg3wdjlsswUaLB1T6VcySf8btjzFLX8ftzvHouDLMHSRGAAAAAAAAAPhEfHy8JKm4uFht27Z1zi8uLla/fv2cZUpKSlxed/nyZZ05c8b5+itZLBZZLJYq80NDQ91OdnhStiGxVQbJVuE/P3xL/hmz5J9x+2PMknvHoyfHa/D1BgQAAAAAAAAA16JTp06Kj4/Xtm3bnPPKysq0Z88eWa1WSZLVatXZs2dVWFjoLPPOO++osrJSgwYNqveYAfg/rhgBAAAAAAAAUGfOnz+vY8eOOadPnDih/fv3KyYmRh06dNDs2bP12GOP6YYbblCnTp00f/58JSQkaNy4cZKkHj16aOTIkZo2bZpWrlwpu92umTNnasKECUpISPBRrQD4MxIjAAAAAAAAAOrMvn379J3vfMc57Xj2R0ZGhtasWaMHH3xQ5eXlmj59us6ePatbb71VmzdvVnh4uPM1r776qmbOnKnhw4crODhY6enpevbZZ+u9LgAaBxIjAAAAAAAAAOrM0KFDZYy56vKgoCAtWrRIixYtumqZmJgYrV27ti7CAxCAeMYIAFyHnTt3asyYMUpISFBQUJDefPNNl+XGGC1YsEBt27ZV06ZNlZKSoqNHj7qUOXPmjCZOnKjIyEhFR0dr6tSpOn/+fD3WAgAAAAAAAAgcJEYA4DqUl5erb9++ys3NrXb50qVL9eyzz2rlypXas2ePmjVrprS0NF28eNFZZuLEiTp06JDy8/O1ceNG7dy5U9OnT6+vKgAAAAAAAAABhVtpAcB1GDVqlEaNGlXtMmOMnnnmGT3yyCMaO3asJOm3v/2t4uLi9Oabb2rChAn6+OOPtXnzZu3du1cDBgyQJD333HO64447tGzZMh4iBwAAAAAAAHgZV4wAQB05ceKEioqKlJKS4pwXFRWlQYMGqaCgQJJUUFCg6OhoZ1JEklJSUhQcHKw9e/bUe8wAAAAAAABAY8cVIwBQR4qKiiRJcXFxLvPj4uKcy4qKihQbG+uyvEmTJoqJiXGWuZLNZpPNZnNOl5WVSZLsdrvsdnuNMTmWW4Kv/tA7fM2xn9hf7mF/ecaxn2o7bt0tAwAAAAAA3ENiBAD8TE5OjrKzs6vMz8vLU0REhFvrWDyg0tthNWrsL8+wvzyTn59fa5kLFy7UQyQAAAAAAAQGEiMAUEfi4+MlScXFxWrbtq1zfnFxsfr16+csU1JS4vK6y5cv68yZM87XX2nevHnKyspyTpeVlal9+/ZKTU1VZGRkjTHZ7Xbl5+dr/r5g2SqDrqVaAcUSbLR4QCX7y03sL8849teIESMUGhpaY1nHlWEAAAAAAOD6kRgBgDrSqVMnxcfHa9u2bc5ESFlZmfbs2aMZM2ZIkqxWq86ePavCwkIlJydLkt555x1VVlZq0KBB1a7XYrHIYrFUmR8aGlrrj6sOtsog2Sr44dpd7C/PsL88486x6+6xDQAAAAAAakdiBACuw/nz53Xs2DHn9IkTJ7R//37FxMSoQ4cOmj17th577DHdcMMN6tSpk+bPn6+EhASNGzdOktSjRw+NHDlS06ZN08qVK2W32zVz5kxNmDBBCQkJPqoVAAAAAAAA0HiRGAGA67Bv3z595zvfcU47bnGVkZGhNWvW6MEHH1R5ebmmT5+us2fP6tZbb9XmzZsVHh7ufM2rr76qmTNnavjw4QoODlZ6erqeffbZeq8LAAAAAAAAEAhIjADAdRg6dKiMMVddHhQUpEWLFmnRokVXLRMTE6O1a9fWRXgAAAAAAAAArhDs6wAAAAAAAAAAAADqC4kRAAAAAAAAAAAQMEiMAAAAAAAAAACAgEFiBAAAAAAAAAAABAyvJ0YWLlyooKAgl7/u3bs7l1+8eFGZmZlq1aqVmjdvrvT0dBUXF3s7DAAAAAAAAAAAgCrq5IqRnj176vTp086/9957z7lszpw5euutt7R+/Xrt2LFDp06d0vjx4+siDAAAAAAAGiQGFQIAAPhOkzpZaZMmio+PrzK/tLRUq1at0tq1azVs2DBJ0urVq9WjRw/t3r1bgwcProtwAAAAAABocHr27KmtW7c6p5s0+foUfc6cOXr77be1fv16RUVFaebMmRo/frzef/99X4QKAADQqNTJFSNHjx5VQkKCOnfurIkTJ+rkyZOSpMLCQtntdqWkpDjLdu/eXR06dFBBQUFdhAIAAIB6snPnTo0ZM0YJCQkKCgrSm2++6bLcGKMFCxaobdu2atq0qVJSUnT06FGXMmfOnNHEiRMVGRmp6OhoTZ06VefPn6/HWgBA/XEMKnT8tW7dWtLXgwqffvppDRs2TMnJyVq9erV27dql3bt3+zhqAAAA/+f1K0YGDRqkNWvWqFu3bjp9+rSys7N122236eDBgyoqKlJYWJiio6NdXhMXF6eioqKrrtNms8lmszmny8rKJEl2u112u73GeBzLLcHmGmvUcDnq1NjqRr38i6f1qu2Y9bQcAKDhKC8vV9++ffXDH/6w2lulLl26VM8++6xefvllderUSfPnz1daWpoOHz6s8PBwSdLEiRN1+vRp5efny26367777tP06dO1du3a+q4OANQ5x6DC8PBwWa1W5eTkqEOHDrUOKrza3RYC5dzZX86tiNO7Ai1Ozp0BoG55PTEyatQo5//79OmjQYMGKTExUX/4wx/UtGnTa1pnTk6OsrOzq8zPy8tTRESEW+tYPKDymrbtDxpr3aiXf3G3Xps2bXKr3IULF64nHACAD4waNcqlL/hNxhg988wzeuSRRzR27FhJ0m9/+1vFxcXpzTff1IQJE/Txxx9r8+bN2rt3rwYMGCBJeu6553THHXdo2bJlSkhIqLe6AEBdq4tBhYF27uwvsRKndwVKnJw7A0DdqpNnjHxTdHS0brzxRh07dkwjRozQpUuXdPbsWZcOXnFxcbXPJHGYN2+esrKynNNlZWVq3769UlNTFRkZWeP27Xa78vPzNX9fsGyVQdddn4bEEmy0eEBlo6sb9fIvntbr4MI0t9brGN0GAGgcTpw4oaKiIpfRz1FRURo0aJAKCgo0YcIEFRQUKDo62pkUkaSUlBQFBwdrz549uvPOO6usN1BGR1/J01GkjXk0KXWsyhLif59px3HoTh0by3tdF4MKA+Xc2V/OrYjTuwItTs6dAaBu1Xli5Pz58zp+/LgmTZqk5ORkhYaGatu2bUpPT5ckHTlyRCdPnpTVar3qOiwWiywWS5X5oaGhCg0NdSsOW2WQbBUN94vzejTWulEv/+Juvdw9Zt0tBwDwD44RznFxcS7zvzn6uaioSLGxsS7LmzRpopiYmKuOkA600dEO7o4idcjPz6+jSBoO6vi1pQPrOJA65E4dG+voaG8MKgy0c2d/iZU4vStQ4uTcGQDqltcTIz//+c81ZswYJSYm6tSpU3r00UcVEhKie+65R1FRUZo6daqysrIUExOjyMhIzZo1S1ar9ar3SAUAAACuJlBGR1/J3VGkjjqOGDGi0f5wQh2r6rVwSz1E5V2OEdbu1LGxjo72xqBCAAAAuMfriZF///vfuueee/TFF1+oTZs2uvXWW7V79261adNGkrR8+XIFBwcrPT1dNptNaWlpWrFihbfDAAAAQAPiGOFcXFystm3bOucXFxerX79+zjIlJSUur7t8+bLOnDlz1RHSgTY62sHTBIAn+8NfUcev+dvn+ZvcqWNjeZ8ZVAgAX1u4cGGVq4C7deumTz75RJJ08eJF3X///Vq3bp3L74lXXo0MAO7yemJk3bp1NS4PDw9Xbm6ucnNzvb1pAAAANFCdOnVSfHy8tm3b5kyElJWVac+ePZoxY4YkyWq16uzZsyosLFRycrIk6Z133lFlZaUGDRrkq9ABoE4wqBAAXPXs2VNbt251Tjdp8vXPlnPmzNHbb7+t9evXKyoqSjNnztT48eP1/vvv+yJUAI1AnT9jBAAAAIHh/PnzOnbsmHP6xIkT2r9/v2JiYtShQwfNnj1bjz32mG644QZ16tRJ8+fPV0JCgsaNGydJ6tGjh0aOHKlp06Zp5cqVstvtmjlzpiZMmKCEhAQf1QoA6gaDCgHAVZMmTaq9Sri0tFSrVq3S2rVrNWzYMEnS6tWr1aNHD+3evZsr6QBck2BfBwAAAIDGYd++ferfv7/69+8vScrKylL//v21YMECSdKDDz6oWbNmafr06brpppt0/vx5bd68WeHh4c51vPrqq+revbuGDx+uO+64Q7feeqt+/etf+6Q+AAAAqD9Hjx5VQkKCOnfurIkTJ+rkyZOSpMLCQtntdqWkpDjLdu/eXR06dFBBQYGvwgXg57hiBAAAAF4xdOhQGWOuujwoKEiLFi3SokWLrlomJiZGa9eurYvwAAAA0EANGjRIa9asUbdu3XT69GllZ2frtttu08GDB1VUVKSwsDBFR0e7vCYuLk5FRUVXXafNZpPNZnNOl5WVSZLsdrvsdnuN8TiW11auoXHEawm+ep+8oXHE6k8xS/4Ztz/GLH0drzvHoyfHLIkRAAAAAAAAAD4zatQo5//79OmjQYMGKTExUX/4wx/UtGnTa1pnTk5OlQe6S1JeXp4iIiLcWkd+fv41bdvXFg+o9HUIHvPHmCX/jNsfY5bcOx4vXLjg9vpIjAAAAAAAAABoMKKjo3XjjTfq2LFjGjFihC5duqSzZ8+6XDVSXFxc7TNJHObNm6esrCzndFlZmdq3b6/U1FRFRkbWuH273a78/HyNGDFCoaGh112f+uKIe/6+YNkqg3wdjlsswUaLB1T6VcySf8btjzFLX8ftzvHouDLMHSRGAAAAAAAAADQY58+f1/HjxzVp0iQlJycrNDRU27ZtU3p6uiTpyJEjOnnypKxW61XXYbFYZLFYqswPDQ11O9nhSdmGxFYZJFuF//zwLflnzJJ/xu2PMUvuHY+eHK8kRgAAAAAAAAD4zM9//nONGTNGiYmJOnXqlB599FGFhITonnvuUVRUlKZOnaqsrCzFxMQoMjJSs2bNktVq1eDBg30dOgA/RWIEAAAAAAAAgM/8+9//1j333KMvvvhCbdq00a233qrdu3erTZs2kqTly5crODhY6enpstlsSktL04oVK3wcNQB/RmIEAAAAAAAAgM+sW7euxuXh4eHKzc1Vbm5uPUUEoLEL9nUAAAAAAAAAAAAA9YXECAAAAAAAAAAACBgkRgAAAAAAAAAAQMAgMQIAAAAAAAAAAAIGiREAAAAAAAAAABAwSIwAAAAAAAAAAICAQWIEAAAAAAAAAAAEjCa+DgAAAAAAAAAAGppeC7fIVhHk6zDcZgkxWjrQ11EA/oErRgAAAAAAAAAAQMAgMQIAAAAAAAAAAAIGiREAAAAAAAAAABAwSIwAAAAAAAAAAICAQWIEAAAAAAAAAAAEDBIjAAAAAAAAAAAgYJAYAQAAAAAAAAAAAYPECAAAAAAAAAAACBgkRgAAAAAAAAAAQMAgMQIAAAAAAAAAAAIGiREAAAAAAAAAABAwSIwAAAAAAAAAAICAQWIEAAAAAAAAAAAEDBIjAAAAAAAAAAAgYJAYAQAAAAAAAAAAAYPECAAAAAAAAAAACBgkRgAAAAAAAAAAQMDwaWIkNzdXHTt2VHh4uAYNGqQPPvjAl+EAgE/RJgLAV2gPAeBrtIkA8DXaRADe4rPEyGuvvaasrCw9+uij+vDDD9W3b1+lpaWppKTEVyEBgM/QJgLAV2gPAeBrtIkA8DXaRADe5LPEyNNPP61p06bpvvvuU1JSklauXKmIiAj97//+r69CAgCfoU0EgK/QHgLA12gTAeBrtIkAvMkniZFLly6psLBQKSkpXwcSHKyUlBQVFBT4IiQA8BnaRAD4Cu0hAHyNNhEAvkabCMDbmvhio59//rkqKioUFxfnMj8uLk6ffPJJlfI2m002m805XVpaKkk6c+aM7HZ7jduy2+26cOGCmtiDVVEZ5IXoG44mlUYXLlQ2urpRL//iab2++OILt9Z77tw5SZIx5rri8we0iQ1XYz1u6wr7yzOO/fXFF18oNDS0xrKB0iZ62h5Kgdsmuvt96qijO58zf0Udq2pyubweovIu2sSqaBOvzl/6HMTpXYEWJ+fOrmgT3eMvx8k3+WPMkn/G7Y8xS3XXT/RJYsRTOTk5ys7OrjK/U6dOPoimYbnX1wHUEerlXzypV+unPFv3uXPnFBUV5dmLGjnaxPrVWI/busL+8oyn+4s2sapAbRM9/T4F/AFt4vULpDbRX/ocxOldgRQn587XL5DaxG/yl+Pkm/wxZsk/4/bHmKW66Sf6JDHSunVrhYSEqLi42GV+cXGx4uPjq5SfN2+esrKynNOVlZU6c+aMWrVqpaCgmrNbZWVlat++vf71r38pMjLSOxVoIBpr3aiXf6mrehljdO7cOSUkJHhtnQ0VbWLDxf7yDPvLM57sr0BpEz1tDyXaxNpQx8aBOrqiTaRN9JdYidO7iLN6tIm0id/kj3H7Y8ySf8btjzFLdddP9EliJCwsTMnJydq2bZvGjRsn6avGadu2bZo5c2aV8haLRRaLxWVedHS0R9uMjIz0qzfcE421btTLv9RFvQJltAttYsPH/vIM+8sz7u6vQGgTPW0PJdpEd1HHxoE6fo02kTZR8p9YidO7iLMq2kTaxCv5Y9z+GLPkn3H7Y8yS9/uJPruVVlZWljIyMjRgwAANHDhQzzzzjMrLy3Xffff5KiQA8BnaRAD4Cu0hAHyNNhEAvkabCMCbfJYYufvuu/XZZ59pwYIFKioqUr9+/bR58+YqD1ECgEBAmwgAX6E9BICv0SYCwNdoEwF4k08fvj5z5syrXu7mLRaLRY8++miVS+cag8ZaN+rlXxprvXyBNrHhYX95hv3lGfbX1dVHeygFxntAHRsH6hjYaBOr8pdYidO7iBMSbWJt/DFuf4xZ8s+4/TFmqe7iDjLGGK+uEQAAAAAAAAAAoIEK9nUAAAAAAAAAAAAA9YXECAAAAAAAAAAACBgkRgAAAAAAAAAAQMBo9ImR3NxcdezYUeHh4Ro0aJA++OADX4d0XRYuXKigoCCXv+7du/s6LI/t3LlTY8aMUUJCgoKCgvTmm2+6LDfGaMGCBWrbtq2aNm2qlJQUHT161DfBeqi2uk2ZMqXKezhy5EjfBOumnJwc3XTTTWrRooViY2M1btw4HTlyxKXMxYsXlZmZqVatWql58+ZKT09XcXGxjyLG1TS2NtFbGnOb5G20B5554YUX1KdPH0VGRioyMlJWq1V/+ctfnMvZV97naTu3fv16de/eXeHh4erdu7c2bdrksrwhHv+e1PGll17SbbfdppYtW6ply5ZKSUmpUr4h9k08qeOaNWuqxB8eHu5SpqG9j57Ub+jQoVXqFxQUpNGjRzvLNLT3sLbv1eps375d3/72t2WxWNS1a1etWbOmShn6MXWroe/fhnou7C/9SH85T/WXvqY7cVbXfv/kJz+p1zhx7Rp6m3ila/nu9TV3jqOGqLZzPH/wxBNPKCgoSLNnz/Z1KFdVH9/7jTox8tprrykrK0uPPvqoPvzwQ/Xt21dpaWkqKSnxdWjXpWfPnjp9+rTz77333vN1SB4rLy9X3759lZubW+3ypUuX6tlnn9XKlSu1Z88eNWvWTGlpabp48WI9R+q52uomSSNHjnR5D3//+9/XY4Se27FjhzIzM7V7927l5+fLbrcrNTVV5eXlzjJz5szRW2+9pfXr12vHjh06deqUxo8f78OocaXG2iZ6Q2Nuk7yN9sAz7dq10xNPPKHCwkLt27dPw4YN09ixY3Xo0CFJ7Ctv87Sd27Vrl+655x5NnTpVf/vb3zRu3DiNGzdOBw8edJZpaMe/p3Xcvn277rnnHr377rsqKChQ+/btlZqaqv/85z8u5RpS3+Ravq8iIyNd4v/nP//psrwhvY+e1u+NN95wqdvBgwcVEhKi73//+y7lGtJ76E5/+JtOnDih0aNH6zvf+Y7279+v2bNn60c/+pG2bNniLEM/pm75y/5tiOfC/tKP9JfzVH/pa7oTpyRNmzbNZZ8uXbq0XuPEtfGXNvGbPP3ubQjcPY4amtrO8Rq6vXv36sUXX1SfPn18HUqt6vx73zRiAwcONJmZmc7piooKk5CQYHJycnwY1fV59NFHTd++fX0dhldJMhs2bHBOV1ZWmvj4ePPLX/7SOe/s2bPGYrGY3//+9z6I8NpdWTdjjMnIyDBjx471STzeUlJSYiSZHTt2GGO+en9CQ0PN+vXrnWU+/vhjI8kUFBT4KkxcoTG2iXWhMbdJdYH2wHMtW7Y0v/nNb9hXdcDTdu6uu+4yo0ePdpk3aNAg8+Mf/9gY0zCP/+ttyy9fvmxatGhhXn75Zee8htY38bSOq1evNlFRUVddX0N7H6/3PVy+fLlp0aKFOX/+vHNeQ3sPv6m6/vCVHnzwQdOzZ0+XeXfffbdJS0tzTtOPqVv+sH/94VzYX/qR/nSe6i99zSvjNMaYIUOGmJ/97Gc+iwnXzh/axJq4893bEFV3HPkLxzleQ3fu3Dlzww03mPz8/AbfRtXH936jvWLk0qVLKiwsVEpKinNecHCwUlJSVFBQ4MPIrt/Ro0eVkJCgzp07a+LEiTp58qSvQ/KqEydOqKioyOW9i4qK0qBBg/z+vXPYvn27YmNj1a1bN82YMUNffPGFr0PySGlpqSQpJiZGklRYWCi73e7ynnXv3l0dOnRoNO+Zv2vMbWJdC4Q26XrQHrivoqJC69atU3l5uaxWK/vKy66lnSsoKHApL0lpaWnO8g3t+PdGW37hwgXZ7XbnMevQUPom11rH8+fPKzExUe3bt68yYq8hvY/eeA9XrVqlCRMmqFmzZi7zG8p7eC1qOxbpx9Qtf9q//nYu3JDaH3c0xHbEX/qaV8bp8Oqrr6p169bq1auX5s2bpwsXLvgiPHjAn9rExuZqx1FDduU5XkOXmZmp0aNHV+l3NVR1/b3fxKtra0A+//xzVVRUKC4uzmV+XFycPvnkEx9Fdf0GDRqkNWvWqFu3bjp9+rSys7N122236eDBg2rRooWvw/OKoqIiSar2vXMs82cjR47U+PHj1alTJx0/flwPP/ywRo0apYKCAoWEhPg6vFpVVlZq9uzZuuWWW9SrVy9JX71nYWFhio6OdinbWN6zxqCxton1obG3SdeD9sA9Bw4ckNVq1cWLF9W8eXNt2LBBSUlJ2r9/P/vKi66lnSsqKqrx2G5ox7832vK5c+cqISHB5WSoIfVNrqWO3bp10//+7/+qT58+Ki0t1bJly3TzzTfr0KFDateuXYN6H6/3Pfzggw908OBBrVq1ymV+Q3oPr8XVjsWysjJ9+eWX+u9//0s/pg75Sz/RH8+FG1L7U5uG2I74S1+zujgl6d5771ViYqISEhL00Ucfae7cuTpy5IjeeOMNn8QJ9/hLm9jYXO04aqiudo7XkK1bt04ffvih9u7d6+tQ3FIf3/uNNjHSWI0aNcr5/z59+mjQoEFKTEzUH/7wB02dOtWHkcFdEyZMcP6/d+/e6tOnj7p06aLt27dr+PDhPozMPZmZmTp48GCDuJ8vAN+iPXBPt27dtH//fpWWlur1119XRkaGduzY4euwEICeeOIJrVu3Ttu3b3d5OLm/902sVqvLCL2bb75ZPXr00IsvvqjFixf7MDLvW7VqlXr37q2BAwe6zPf39xBwB+fCdashtiP+0te8WpzTp093/r93795q27athg8fruPHj6tLly71HSbQoPnL8e5wtXO8hpoc+de//qWf/exnys/PdzkPaMjq43u/0d5Kq3Xr1goJCVFxcbHL/OLiYsXHx/soKu+Ljo7WjTfeqGPHjvk6FK9xvD+N/b1z6Ny5s1q3bu0X7+HMmTO1ceNGvfvuu2rXrp1zfnx8vC5duqSzZ8+6lG+s75k/CpQ2sS4EWpvkLtoD94WFhalr165KTk5WTk6O+vbtq1/96lfsKy+7lnYuPj6+xvIN7fi/nrZ82bJleuKJJ5SXl1frgxZ92TfxxvdVaGio+vfv74y/Ib2P11O/8vJyrVu3zq0TQX/qX0pXPxYjIyPVtGlT+jF1zF/3rz+cCzek9sdTvm5H/KWvebU4qzNo0CBJatCfWfhvm+jPPDmOGoqrneM1VIWFhSopKdG3v/1tNWnSRE2aNNGOHTv07LPPqkmTJqqoqPB1iLWqi+/9RpsYCQsLU3JysrZt2+acV1lZqW3btvnFPd/cdf78eR0/flxt27b1dShe06lTJ8XHx7u8d2VlZdqzZ0+jeu8c/v3vf+uLL75o0O+hMUYzZ87Uhg0b9M4776hTp04uy5OTkxUaGurynh05ckQnT55slO+ZPwqUNrEuBFqbVBvag+tXWVkpm83GvvKya2nnrFarS3lJys/Pd5ZvaMf/tbblS5cu1eLFi7V582YNGDCg1u34sm/ije+riooKHThwwBl/Q3ofr6d+69evl81m0w9+8INat+MP/ctvqu1YpB9Tt/x1//rDuXBDan885at2xF/6mrXFWZ39+/dLUoP+zMJ/20R/dC3HUUPlOMdrqIYPH64DBw5o//79zr8BAwZo4sSJ2r9/v1/cerVOvvfr9NHuPrZu3TpjsVjMmjVrzOHDh8306dNNdHS0KSoq8nVo1+z+++8327dvNydOnDDvv/++SUlJMa1btzYlJSW+Ds0j586dM3/729/M3/72NyPJPP300+Zvf/ub+ec//2mMMeaJJ54w0dHR5k9/+pP56KOPzNixY02nTp3Ml19+6ePIa1dT3c6dO2d+/vOfm4KCAnPixAmzdetW8+1vf9vccMMN5uLFi74O/apmzJhhoqKizPbt283p06edfxcuXHCW+clPfmI6dOhg3nnnHbNv3z5jtVqN1Wr1YdS4UmNsE72lMbdJ3kZ74JmHHnrI7Nixw5w4ccJ89NFH5qGHHjJBQUEmLy/PGMO+8rba2rlJkyaZhx56yFn+/fffN02aNDHLli0zH3/8sXn00UdNaGioOXDggLNMQzv+Pa3jE088YcLCwszrr7/ucsyeO3fOGGMaZN/E0zpmZ2ebLVu2mOPHj5vCwkIzYcIEEx4ebg4dOuQs05DeR0/r53Drrbeau+++u8r8hvge1va9+tBDD5lJkyY5y//jH/8wERER5oEHHjAff/yxyc3NNSEhIWbz5s3OMvRj6pY/7N+Gei7sL/1IfzlP9Ze+Zm1xHjt2zCxatMjs27fPnDhxwvzpT38ynTt3Nrfffnu9xolr4w9t4pVqa4saIneO94aotnM8fzFkyBDzs5/9zNdhXFV9fO836sSIMcY899xzpkOHDiYsLMwMHDjQ7N6929chXZe7777btG3b1oSFhZlvfetb5u677zbHjh3zdVgee/fdd42kKn8ZGRnGGGMqKyvN/PnzTVxcnLFYLGb48OHmyJEjvg3aTTXV7cKFCyY1NdW0adPGhIaGmsTERDNt2rQG/eVqjKm2PpLM6tWrnWW+/PJL89Of/tS0bNnSREREmDvvvNOcPn3ad0GjWo2tTfSWxtwmeRvtgWd++MMfmsTERBMWFmbatGljhg8f7tJhZl95X03t3JAhQ5zHtcMf/vAHc+ONN5qwsDDTs2dP8/bbb7ssb4jHvyd1TExMrPaYffTRR40xpsH2TTyp4+zZs51l4+LizB133GE+/PBDl/U1tPfR08/pJ598YiRVe8LdEN/D2r5XMzIyzJAhQ6q8pl+/fiYsLMx07tzZ5XvFgX5M3Wro+7ehngv7Sz/SX85T/aWvWVucJ0+eNLfffruJiYkxFovFdO3a1TzwwAOmtLS0XuPEtWvobeKVamuLGiJ3jveGqLZzPH/R0BMj9fG9H2SMMddypQkAAAAAAAAAAIC/abTPGAEAAAAAAAAAALgSiREAAAAAAAAAABAwSIwAAAAAAAAAAICAQWIEAAAAAAAAAAAEDBIjAAAAAAAAAAAgYJAYAQAAAAAAAAAAAYPECAAAAAAAAAAACBgkRgAAAAAAAAAAQMAgMQIAAAAAAAAAAAIGiREAAAAAAAAAABAwSIwAAAAAAAAAAICAQWIEAAAAAAAAAAAEDBIjAAAAAAAAAAAgYJAYAQAAAAAAAAAAAYPECAAAAAAAAAAACBgkRgAAwP9n797joqrz/4G/AIdBwIHQmIFAIjUFRXGxZNJM5SaSeaFNyhTN1XLBUspcWisEjaJ21QyxWr9qq/xMzMuGBgxeYFPwwkbeik2zqGSgcgGFGAfm/P7wMSdHEGe4H3g9Hw8edT7nc868P2fmHM8573M+HyIiIiIiIiKiHoOJESIiIiIiIiIiIiIi6jGYGCEiIiIiIiIiIiIioh6DiREiIiIiIiIiIiIiIuoxmBghIiIiIiIiIiIiIqIeg4kRIiIiIiIiIiIiIiLqMZgYISIiIiIiIiIiIiKiHoOJESIiIiIiIiIiIiIi6jGYGCEiIiIiIiIiIiIioh6DiREiIiIiIiIiIiIiIuoxmBghIiIiIiIiIiIiIqIeg4kRIiIiIiIiIiIiIiLqMZgYISIiIiIiIiIiIiKiHoOJESIiIiIiIiIiIiIi6jGYGCEiIiIiIiIiIiIioh6DiREiIiIiIiIiIiIiIuoxmBiRoISEBFhZWeGXX35ptt69996LuXPndkxQN/nuu+9gZWWFLVu2dPhnExG1xNy5c3Hvvfd2dhiSYPw36Gad9e8NUXdl7rleVzB37lw4OjqaVdfKygoJCQntG1AXY2VlhdjY2DvW27JlC6ysrPDdd9+1f1BE1KnGjx+P8ePH99jPv1lXioWoO7n1vKKl+9qRI0dgZWWFI0eOtGl8UtfU/QNLznN5/dx1MDFCREREber8+fNISEjgDT6ibqK2thYJCQm8KCYiIiIiMsOxY8eQkJCAysrKzg6FmtGrswMgIiIiaSspKYG19e/PWpw/fx4rV67E+PHj+SYOUTdQW1uLlStXAkCrnuz97bff0KsXLz+IqGfLycnp7BCIqIdp6XFn3Lhx+O2332Bra9vGEXU/t57nHjt2DCtXrsTcuXPh7OxsUvfW62fqPPwWqFuora3t7BAsYjAYUFdX19lhEBG1CblcDplM1tlhEPV4Xf38ws7OTvKJkZqams4OgYgkztbWljcZiahDtfS4Y21tDTs7O97EN4Ml57m8fu46+MuWsF9++QVPPPEEFAoF+vbtixdeeOGOF8Pffvst/vjHP8LFxQX29vYIDAzE/v37G9WrqKjA/PnzoVQqYWdnhxEjRmDr1q2N6lVWVmLu3LlwcnKCs7MzoqOjW/SamLHfwo8//hivvPIKVCoVHBwc8Nhjj+GHH34wqTt+/HgMGzYMRUVFGDduHOzt7fHKK68AAHQ6HV5//XUMHDgQcrkcnp6eePnll6HT6UzWodFoMHbsWDg7O8PR0RGDBw8W12G0fv16DB06FPb29rjrrrswatQopKeni/NvNyZBU/3vG/uX3r59O4YOHQq5XI6srCwAwE8//YRnnnkGSqUScrkcQ4cOxf/93/9ZvA2J6PauXr2KJUuW4N5774VcLoerqytCQkLwn//857bLGAwGrF27FkOHDoWdnR2USiWeffZZ/O9//2tU97PPPsPDDz8MBwcH9OnTBxERETh37pxJHWM//N9++y3CwsLg4OAAd3d3JCYmQhAEi9v0wQcfYMCAAejduzcefPBB/Pvf/27Ud+zt+qxvqq/Yf//73/jjH/+I/v37i8fPpUuX4rfffrtjLDf3kbplyxb88Y9/BABMmDABVlZW4mdFR0ejX79+0Ov1jdYRGhqKwYMHW7wdiLqzO53rtfb84vr163jttdcQEBAAJycnODg44OGHH8bhw4fFOt999x3uvvtuAMDKlSvFffrWPpR/+uknTJs2DY6Ojrj77rvx0ksvoaGhwaTOrcsZz5kuXLggPk3n5OSEefPmNXro5bfffsPzzz+Pfv36oU+fPnjsscfw008/WTxuiXEsvHfeeQdr1qyBl5cXevfujUceeQRnz541qWs8bl+8eBGTJ09Gnz59MGvWLAA3EiQvvvgiPD09IZfLMXjwYLzzzju3PZ5v374dgwcPhp2dHQICApCfn29WvJb8+1JaWopHH30Ujo6OuOeee5CamgoAOHPmDCZOnAgHBwd4eXmZnM8S0Z2Ze6yqr69HUlISBgwYALlcjnvvvRevvPJKo2vRpvr6v9O1J9C+143mXEcPGzYMEyZMaLSswWDAPffcg8cff9ykzNzzaCJqfzcfd8rLy9GrVy/xbeCblZSUwMrKCu+99x6Apq8bjffkzp8/jwkTJsDe3h733HMPUlJSGq3v+++/x2OPPQYHBwe4urpi6dKlyM7ObtG4JZWVlVi6dKl4Te/h4YE5c+aYjMlnzr3Mm88FjdfUcrkcDzzwAE6ePNnoc/fu3Ythw4bBzs4Ow4YNw549e5qM7+Zz0oSEBCxbtgwA4O3tLZ4/G6/LmxpjxJz7tcbvY+fOnVi9ejU8PDxgZ2eHoKAgXLhwwaTuN998g8jISKhUKtjZ2cHDwwNRUVGoqqq647buSaT9yFYP98QTT+Dee+9FcnIyCgsL8e677+J///sfPvrooybrl5eX46GHHkJtbS2ef/559O3bF1u3bsVjjz2GXbt2Yfr06QBuXHiOHz8eFy5cQGxsLLy9vZGRkYG5c+eisrISL7zwAgBAEARMnToVn3/+OZ577jn4+Phgz549iI6ObnGbVq9eDSsrKyxfvhwVFRVYu3YtgoODUVxcjN69e4v1fv31V4SHhyMqKgpPP/00lEolDAYDHnvsMXz++edYuHAhfHx8cObMGaxZswb//e9/sXfvXgDAuXPn8Oijj2L48OFITEyEXC7HhQsXcPToUXH9H374IZ5//nk8/vjj4k2I06dP4/jx43jqqada1LZDhw5h586diI2NRb9+/XDvvfeivLwcgYGB4o2Nu+++G5999hnmz5+P6upqLFmypMXbkoh+99xzz2HXrl2IjY2Fr68vfv31V3z++ef46quv8Ic//KHJZZ599lls2bIF8+bNw/PPP49Lly7hvffewxdffIGjR4+KT3j885//RHR0NMLCwvDWW2+htrYWaWlpGDt2LL744guTBGpDQwMmTZqEwMBApKSkICsrC6+//jrq6+uRmJhodns2bdqEZ599Fg899BCWLFmCb7/9Fo899hhcXFzg6enZom2UkZGB2tpaLFq0CH379sWJEyewfv16/Pjjj8jIyDB7PePGjcPzzz+Pd999F6+88gp8fHwAAD4+Ppg9ezY++ugjZGdn49FHHxWX0Wq1OHToEF5//fUWxU7UXZlzrtea84vq6mr84x//wJNPPokFCxbg6tWr2LRpE8LCwnDixAn4+/vj7rvvRlpaGhYtWoTp06djxowZAIDhw4eLMTQ0NCAsLAyjR4/GO++8g9zcXPztb3/DgAEDsGjRIrPa6e3tjeTkZPznP//BP/7xD7i6uuKtt94S68ydOxc7d+7E7NmzERgYiLy8PERERLR423700Ue4evUqYmJiUFdXh3Xr1mHixIk4c+YMlEqlWK++vh5hYWEYO3Ys3nnnHdjb20MQBDz22GM4fPgw5s+fD39/f2RnZ2PZsmX46aefsGbNGpPPysvLw8cff4znn38ecrkcGzZswKRJk3DixAkMGzbstjFa+u9LeHg4xo0bh5SUFGzfvh2xsbFwcHDAX//6V8yaNQszZszAxo0bMWfOHKjVanh7e7d4+xH1RHc6Vv3pT3/C1q1b8fjjj+PFF1/E8ePHkZycjK+++uq2N9IA86492/O60dzr6JkzZyIhIQFarRYqlUpc/vPPP8fly5cRFRUllpl7Hk1EHU+pVOKRRx7Bzp07G11/ffzxx7CxsREfdLud//3vf5g0aRJmzJiBJ554Art27cLy5cvh5+eH8PBwADceIpk4cSLKysrwwgsvQKVSIT093eQBHHNdu3YNDz/8ML766is888wz+MMf/oBffvkF//rXv/Djjz+iX79+Zt/LNEpPT8fVq1fx7LPPwsrKCikpKZgxYwa+/fZb8RiVk5ODyMhI+Pr6Ijk5Gb/++ivmzZsHDw+PZuOdMWMG/vvf/+L//b//hzVr1qBfv34AID5sdCtz79cavfnmm7C2tsZLL72EqqoqpKSkYNasWTh+/DiAGw8/hYWFQafTYfHixVCpVPjpp5+QmZmJyspKODk5WfwddFsCSc7rr78uABAee+wxk/I///nPAgDhyy+/FARBELy8vITo6Ghx/pIlSwQAwr///W+x7OrVq4K3t7dw7733Cg0NDYIgCMLatWsFAMK2bdvEetevXxfUarXg6OgoVFdXC4IgCHv37hUACCkpKWK9+vp64eGHHxYACJs3bza7TYcPHxYACPfcc4+4fkEQhJ07dwoAhHXr1olljzzyiABA2Lhxo8k6/vnPfwrW1tYm7RMEQdi4caMAQDh69KggCIKwZs0aAYDw888/3zaeqVOnCkOHDm025ujoaMHLy6tRufH7uRkAwdraWjh37pxJ+fz58wU3Nzfhl19+MSmPiooSnJychNra2mZjICLzODk5CTExMbedf+v+/O9//1sAIGzfvt2kXlZWlkn51atXBWdnZ2HBggUm9bRareDk5GRSHh0dLQAQFi9eLJYZDAYhIiJCsLW1bfaYdLPr168Lrq6ugr+/v6DT6cTyDz74QAAgPPLII2LZ5s2bBQDCpUuXTNZhPOYePnxYLGvqeJOcnCxYWVkJ33//vVjW1DHu1n9vMjIyGq1fEAShoaFB8PDwEGbOnGlS/ve//12wsrISvv322zu0nqhnMPdcr7XnF/X19SbHEUEQhP/973+CUqkUnnnmGbHs559/FgAIr7/+eqNYjce2xMREk/KRI0cKAQEBJmW3rsPYzps/SxAEYfr06ULfvn3F6aKiIgGAsGTJEpN6c+fOvW1ct3Pp0iUBgNC7d2/hxx9/FMuPHz8uABCWLl3aqG1/+ctfTNZhPAdetWqVSfnjjz8uWFlZCRcuXDBpMwDh1KlTYtn3338v2NnZCdOnTxfLbj1et+TflzfeeEMs+9///if07t1bsLKyEnbs2CGWf/311xZvM6KezpxjVXFxsQBA+NOf/mRS56WXXhIACIcOHRLLHnnkEZPzNXOuPdvyuvHWzzf3OrqkpEQAIKxfv96k3p///GfB0dFRjMHc8+imYiGitnHrecWt+9r7778vABDOnDljspyvr68wceJEcbqp60bjPbmPPvpILNPpdIJKpRIiIyPFsr/97W8CAGHv3r1i2W+//SYMGTKkyWvF5rz22msCAGH37t2N5hkMBkEQzL+XaTwX7Nu3r3DlyhWx7r59+wQAwqeffiqW+fv7C25ubkJlZaVYlpOTIwBodD/w1vOrt99+u8lrcUFo+f1a4/fh4+Njcg6/bt06k+/ziy++EAAIGRkZjT6bTLErLQmLiYkxmV68eDEA4MCBA03WP3DgAB588EGMHTtWLHN0dMTChQvx3Xff4fz582I9lUqFJ598Uqwnk8nw/PPP49q1a8jLyxPr9erVy+RJQBsbGzGOlpgzZw769OkjTj/++ONwc3Nr1Ca5XI558+aZlGVkZMDHxwdDhgzBL7/8Iv5NnDgRAMSstHHQo3379sFgMDQZh7OzM3788ccmX6NrqUceeQS+vr7itCAI+OSTTzBlyhQIgmASc1hYGKqqqprt5oeIzOfs7Izjx4/j8uXLZtXPyMiAk5MTQkJCTPbNgIAAODo6iscTjUaDyspKPPnkkyb1bGxsMHr06CafhomNjRX/3/jU3/Xr15Gbm2tWbKdOnUJFRQWee+45k35ijd0attTNb+XV1NTgl19+wUMPPQRBEPDFF1+0eL03s7a2xqxZs/Cvf/0LV69eFcu3b9+Ohx56iE8vE93CnHO91pxf2NjYiMcRg8GAK1euoL6+HqNGjbL4HOS5554zmX744Yfx7bfftnjZX3/9FdXV1QAgdg/25z//2aRea845p02bhnvuuUecfvDBBzF69Ogmz6NvfevlwIEDsLGxwfPPP29S/uKLL0IQBHz22Wcm5Wq1GgEBAeJ0//79MXXqVGRnZzfqbsyoJf++/OlPfxL/39nZGYMHD4aDgwOeeOIJsXzw4MFwdnY2+7shot81d6wyHjvi4uJM6rz44osA0GT31UZ3uvZs7+tGc6+j77//fvj7++Pjjz8Wl21oaMCuXbswZcoU8VzS3PNoIuo8M2bMQK9evUz257Nnz+L8+fOYOXPmHZd3dHTE008/LU7b2triwQcfNDm/yMrKwj333IPHHntMLLOzs8OCBQssjveTTz7BiBEjGr05AUDsyt7ce5lGM2fOxF133SVOP/zwwwAgtqGsrAzFxcWIjo42uc4OCQkxOfduC+berzWaN2+eyb2AW2M3xpudnS25MZk7GhMjEjZo0CCT6QEDBsDa2rpRX/JG33//fZP9txu7Ofn+++/F/w4aNKjR4EpN1XNzc4Ojo6NJvdb0EX9rm6ysrDBw4MBGbbrnnnsaDRz1zTff4Ny5c7j77rtN/u6//34AN/oaBG4c/MaMGYM//elPUCqViIqKws6dO02SJMuXL4ejoyMefPBBDBo0CDExMSZdbbXErTf8fv75Z1RWVuKDDz5oFLMx6WOMmYhaJyUlBWfPnoWnpycefPBBJCQkNHtT6JtvvkFVVRVcXV0b7Z/Xrl0T981vvvkGADBx4sRG9XJychrtw9bW1rjvvvtMyozHqNsdu29lPAbferyUyWSN1m2J0tJSzJ07Fy4uLuIYAY888ggAtGk/pHPmzMFvv/0mdilRUlKCoqIizJ49u80+g6i7MOdcr7XnF1u3bsXw4cNhZ2eHvn374u6778b+/fst2u/t7OwadQ1w1113md2XfP/+/RstC0Bc/vvvv4e1tXWjtg4cONDsGG9167YFbhyPbz0W9+rVq1F3Cd9//z3c3d1NHuYBGp8r3+mzamtr8fPPPzcZn6X/vjT1HTg5OcHDw6PR2HdOTk7s55+oBZo7VhmPU7cel1QqFZydnRsdF252p2vP9r5uNPc6GrhxLX306FH89NNPAG70d19RUWFyI9Xc82gi6jz9+vVDUFAQdu7cKZZ9/PHH6NWrl9htanOaOr+49dzv+++/x4ABAxrVa8n528WLF5vtftT4eebcyzQy5/wTaPo8rq3HxjT3fq3RnWL39vZGXFwc/vGPf6Bfv34ICwtDamoqxxdpAscY6UZuPdh0Zzc/2WxkMBjg5+eHv//9700uY+x3v3fv3sjPz8fhw4exf/9+ZGVl4eOPP8bEiRORk5MDGxsb+Pj4oKSkBJmZmcjKysInn3yCDRs24LXXXhMHqLrd9r7dk3+3xmxMxDz99NO3HZfl5v67iajlnnjiCTz88MPYs2cPcnJy8Pbbb+Ott97C7t27xT5Qb2YwGODq6ort27c3uT7jzSfjfvzPf/7TpK9lo169OvefWXOPUw0NDQgJCcGVK1ewfPlyDBkyBA4ODvjpp58wd+7c275d1xK+vr4ICAjAtm3bMGfOHGzbtg22trYmTzQTUdOa2qdbc36xbds2zJ07F9OmTcOyZcvg6uoKGxsbJCcn4+LFi2bHZWNjY3ZdS5YXbjOQeUeSy+WNLrA7gqX/vtxuG3blbUskNebsTy25Jr/TtWd7Xzeaex0N3EiMxMfHIyMjA0uWLMHOnTvh5OSESZMmmazPnPNoIupcUVFRmDdvHoqLi+Hv74+dO3ciKChIHA+jOd3h/ELKbTAn9r/97W+YO3cu9u3bh5ycHDz//PPiuIV3GiOlJ2FiRMK++eYbkyfnLly4AIPBYDIQ4828vLxQUlLSqPzrr78W5xv/e/r0aRgMBpMLwabqHTx4ENeuXTN5a6Spz7CkTTcTBAEXLlww60RvwIAB+PLLLxEUFHTHE1Jra2sEBQUhKCgIf//73/HGG2/gr3/9Kw4fPozg4GAAgIODA2bOnImZM2fi+vXrmDFjBlavXo34+HjY2dnhrrvuQmVlZaN1N/c00M3uvvtu9OnTBw0NDeJnElH7cXNzw5///Gf8+c9/RkVFBf7whz9g9erVTSZGBgwYgNzcXIwZM6bJROzN9QDA1dXVrP3YYDDg22+/FZ/AA4D//ve/AHDbY/etjMfgb775RuziAAD0ej0uXbqEESNGiGXGJ0duPVbdepw6c+YM/vvf/2Lr1q2YM2eOWK7RaMyK6VZ3OgbPmTMHcXFxKCsrQ3p6OiIiIkxeYyaiGyw91wMsO7/YtWsX7rvvPuzevdtkv711IM7OfvjGy8sLBoMBly5dMnlq78KFCy1e563nnMCN47E5x2IvLy/k5ubi6tWrJm+N3HqufKfPsre3v+0NQkv/fSGizmU8Tn3zzTfiE77AjQF1KysrGx0XbtXctWd7Xzdach3t7e2NBx98EB9//DFiY2Oxe/duTJs2DXK53GR95pxHE1HnmjZtGp599lmxO63//ve/iI+Pb7P1e3l54fz58xAEweTY0pLztwEDBuDs2bN3/Dxz7mWa6+br7luZc9/TkvNnc+/XWsrPzw9+fn5YsWIFjh07hjFjxmDjxo1YtWpVi9bXHbErLQlLTU01mV6/fj0ANHmTDwAmT56MEydOoKCgQCyrqanBBx98gHvvvVfsI2/y5MnQarUmfQ3W19dj/fr1cHR0FLtWmTx5Murr65GWlibWa2hoEONoiY8++sik3/ldu3ahrKzstm262RNPPIGffvoJH374YaN5v/32G2pqagAAV65caTTf398fAKDT6QAAv/76q8l8W1tb+Pr6QhAE6PV6ADcOzFVVVTh9+rRYr6ysTOwe5k5sbGwQGRmJTz75pMkD/O26ViAiyzQ0NDR6ZdTV1RXu7u7iPn+rJ554Ag0NDUhKSmo0r76+Xkw0hIWFQaFQ4I033hCPDTdraj9+7733xP8XBAHvvfceZDIZgoKCzGrPqFGjcPfdd2Pjxo24fv26WL5ly5ZGCRDjjbX8/HyxrKGhAR988IFJPeMTJzc/YSIIAtatW2dWTLdycHAA0DghY/Tkk0/CysoKL7zwAr799luT/mmJ6HeWnusBlp1fNLXvHz9+3ORcEQDs7e0B3H6fbm9hYWEAgA0bNpiUt+acc+/evWJXMABw4sQJHD9+3KxzzsmTJ6OhocHkeA4Aa9asgZWVVaN1FBQUmPT//8MPP2Dfvn0IDQ297RN/Lfn3hYg6z+TJkwEAa9euNSk3voURERFx22XvdO3Z3teN5l5HG82cOROFhYX4v//7P/zyyy+NxiMw9zyaiDqXs7MzwsLCsHPnTuzYsQO2traYNm1am60/LCwMP/30E/71r3+JZXV1dU0ea+4kMjISX375ZZP324znsebeyzSXm5sb/P39sXXrVpP7CRqNptGYH0250zXxzcy9X2uu6upq1NfXm5T5+fnB2tr6tvdAeiq+MSJhly5dwmOPPYZJkyahoKAA27Ztw1NPPWXytPDN/vKXv+D//b//h/DwcDz//PNwcXHB1q1bcenSJXzyySdiRnXhwoV4//33MXfuXBQVFeHee+/Frl27cPToUaxdu1Z8Mm7KlCkYM2YM/vKXv+C7776Dr68vdu/e3ao+61xcXDB27FjMmzcP5eXlWLt2LQYOHGjW4EyzZ8/Gzp078dxzz+Hw4cMYM2YMGhoa8PXXX2Pnzp3Izs7GqFGjkJiYiPz8fERERMDLywsVFRXYsGEDPDw8xIGOQkNDoVKpMGbMGCiVSnz11Vd47733EBERIbY/KioKy5cvx/Tp0/H888+jtrYWaWlpuP/++80e/O7NN9/E4cOHMXr0aCxYsAC+vr64cuUK/vOf/yA3N7fJJA4RWebq1avw8PDA448/jhEjRsDR0RG5ubk4efIk/va3vzW5zCOPPIJnn30WycnJKC4uRmhoKGQyGb755htkZGRg3bp1ePzxx6FQKJCWlobZs2fjD3/4A6KionD33XejtLQU+/fvx5gxY0xunNnZ2SErKwvR0dEYPXo0PvvsM+zfvx+vvPKK2d0KyGQyrFq1Cs8++ywmTpyImTNn4tKlS9i8eXOjMUaGDh2KwMBAxMfH48qVK3BxccGOHTsanSQNGTIEAwYMwEsvvYSffvoJCoUCn3zySYv7oPf394eNjQ3eeustVFVVQS6XY+LEiXB1dQVw44n2SZMmISMjA87Ozs3eLCDqySw91zMy9/zi0Ucfxe7duzF9+nRERETg0qVL2LhxI3x9fXHt2jVxfb1794avry8+/vhj3H///XBxccGwYcPu2NdzWwkICEBkZCTWrl2LX3/9FYGBgcjLyxPfuGvJGy0DBw7E2LFjsWjRIuh0OqxduxZ9+/bFyy+/fMdlp0yZggkTJuCvf/0rvvvuO4wYMQI5OTnYt28flixZIialjYYNG4awsDA8//zzkMvlYoLH2D1rUyz994WIOteIESMQHR2NDz74AJWVlXjkkUdw4sQJbN26FdOmTcOECRNuu6w5157ted1o7nW00RNPPIGXXnoJL730ElxcXBq9xWLueTQRdb6ZM2fi6aefxoYNGxAWFgZnZ+c2W/ezzz6L9957D08++SReeOEFuLm5Yfv27bCzswNg2fnbsmXLsGvXLvzxj3/EM888g4CAAFy5cgX/+te/sHHjRowYMcLse5mWSE5ORkREBMaOHYtnnnkGV65cwfr16zF06FCTc+WmBAQEAAD++te/IioqCjKZDFOmTBETJjcz936tuQ4dOoTY2Fj88Y9/xP3334/6+nr885//FBPtdBOBJOf1118XAAjnz58XHn/8caFPnz7CXXfdJcTGxgq//fabWM/Ly0uIjo42WfbixYvC448/Ljg7Owt2dnbCgw8+KGRmZjb6jPLycmHevHlCv379BFtbW8HPz0/YvHlzo3q//vqrMHv2bEGhUAhOTk7C7NmzhS+++EIA0GT92zl8+LAAQPh//+//CfHx8YKrq6vQu3dvISIiQvj+++9N6j7yyCPC0KFDm1zP9evXhbfeeksYOnSoIJfLhbvuuksICAgQVq5cKVRVVQmCIAgHDx4Upk6dKri7uwu2traCu7u78OSTTwr//e9/xfW8//77wrhx44S+ffsKcrlcGDBggLBs2TJxHUY5OTnCsGHDBFtbW2Hw4MHCtm3bxO/nZgCEmJiYJmMuLy8XYmJiBE9PT0EmkwkqlUoICgoSPvjgA7O3HxHdnk6nE5YtWyaMGDFC6NOnj+Dg4CCMGDFC2LBhg1gnOjpa8PLyarTsBx98IAQEBAi9e/cW+vTpI/j5+Qkvv/yycPnyZZN6hw8fFsLCwgQnJyfBzs5OGDBggDB37lzh1KlTJp/h4OAgXLx4UQgNDRXs7e0FpVIpvP7660JDQ4PF7dqwYYPg7e0tyOVyYdSoUUJ+fr7wyCOPCI888ohJvYsXLwrBwcGCXC4XlEql8MorrwgajUYAIBw+fFisd/78eSE4OFhwdHQU+vXrJyxYsED48ssvGx3PmzrGNfXvzYcffijcd999go2NTaPPEgRB2LlzpwBAWLhwocVtJ+ruzD3Xa+35hcFgEN544w3By8tLkMvlwsiRI4XMzMwmj4nHjh0TAgICBFtbWwGA8PrrrwuC8Pux7XZtuNnNy91c5+effzapt3nzZgGAcOnSJbGspqZGiImJEVxcXARHR0dh2rRpQklJiQBAePPNN5vbnCYuXbokABDefvtt4W9/+5vg6ekpyOVy4eGHHxa+/PJLk7q3a5sgCMLVq1eFpUuXCu7u7oJMJhMGDRokvP3224LBYGjU5piYGGHbtm3CoEGDxO186zGxqTYLgmX/vtzqdufMXl5eQkRERHObiYhuYu6xSq/XCytXrhS8vb0FmUwmeHp6CvHx8UJdXZ3Jcreer5l77dlW141NnS+acx19szFjxggAhD/96U+3/RxzzqObioWIWu/W49Pt9rXq6mqhd+/eAgBh27ZtjeYb79XdfN5yu/OLps4fv/32WyEiIkLo3bu3cPfddwsvvvii8MknnwgAhMLCQova9OuvvwqxsbHCPffcI9ja2goeHh5CdHS08Msvv4h1zLmXefO54K1uPVcVBEH45JNPBB8fH0Eulwu+vr7C7t27m2xrU8smJSUJ99xzj2BtbW3yfbT0fq3x+8jIyGiyTca2fvvtt8IzzzwjDBgwQLCzsxNcXFyECRMmCLm5uY03bA9nJQgSGFWGur0jR45gwoQJyMjI4NMjRNQtzZ07F7t27brjkyWtMX78eAA3jqld3b59+zBt2jTk5+fj4Ycf7uxwiEiCiouLMXLkSGzbtg2zZs0ya5nvvvsO3t7eePvtt/HSSy+1c4REREREdLO1a9di6dKl+PHHH3HPPfd0djjUw3GMESIiIupwH374Ie677z6xC0Mioub89ttvjcrWrl0La2trjBs3rhMiIiIiIqLm3Hr+VldXh/fffx+DBg1iUoS6BI4xQu3q+vXrd+zv1MnJqYOiISLq2q5cuWIyoPqtbGxszB6LpKvasWMHTp8+jf3792PdunUtGhuAiHqelJQUFBUVYcKECejVqxc+++wzfPbZZ1i4cCE8PT3R0NBwxwGIHR0dOyhaIqKO9/PPP6OhoeG2821tbeHi4tKBERFRTzdjxgz0798f/v7+qKqqwrZt2/D1119j+/btAG4kTu40TrGLiwtsbW07IlzqgZgYoXZ17NixZgeaA4DNmzfj3nvv7ZiAiIi6sBkzZiAvL++28728vPDdd991XEDt4Mknn4SjoyPmz5+PP//5z50dDhFJxEMPPQSNRoOkpCRcu3YN/fv3R0JCAv76178CAH744Qd4e3s3u47XX38dc+fO7YBoiYg63gMPPIDvv//+tvMfeeQRSXS3SkTdR1hYGP7xj39g+/btaGhogK+vL3bs2IGZM2cCAD7++GPMmzev2XUcPnxY7DKaqK1xjBFqV//73/9QVFTUbJ2hQ4fCzc2tgyIiIuq6ioqK8L///e+283v37o0xY8Z0YERERNJQV1eHzz//vNk69913H+67774OioiIqGMdPXq0yW4Hje666y4EBAR0YERERM0rKyvDuXPnmq0TEBCAu+66q4Miop6GiREiIiIiIiIiIiIiIuoxOPg6ERERERERERERERH1GJIcY8RgMODy5cvo06cPB20l6qYEQcDVq1fh7u4Oa2vmcJvDYyJR98djovl4TCTq/nhMNB+PiUTdH4+J5uMxkaj7s+SYKMnEyOXLl+Hp6dnZYRBRB/jhhx/g4eHR2WF0aTwmEvUcPCbeGY+JRD0Hj4l3xmMiUc/BY+Kd8ZhI1HOYc0yUZGKkT58+AG40UKFQNFtXr9cjJycHoaGhkMlkHRFeh2Mbuwe20VR1dTU8PT3F/Z1uj8fEronbuuP0hG3NY6L5eEzsmritO05P2NY8JpqvJxwTpRi3FGMGpBm3FGMGeO3cXnhM7JqkGDMgzbilGDPQfsdESSZGjK+7KRQKsw5k9vb2UCgUkvrCLcE2dg9sY9P4euud8ZjYNXFbd5yetK15TLwzHhO7Jm7rjtOTtjWPiXfWE46JUoxbijED0oxbijEDvHZuLzwmdk1SjBmQZtxSjBlov2MiOx8kIiIiIiIiIiIiIqIeg4kRIiIiIiIiIiIiIiLqMZgYISIiIiIiIiIionaRlpaG4cOHi11YqdVqfPbZZ+L88ePHw8rKyuTvueeeM1lHaWkpIiIiYG9vD1dXVyxbtgz19fUd3RQi6kYkOcYIERERERERERERdX0eHh548803MWjQIAiCgK1bt2Lq1Kn44osvMHToUADAggULkJiYKC5jb28v/n9DQwMiIiKgUqlw7NgxlJWVYc6cOZDJZHjjjTc6vD1E1D0wMUJERERERERERETtYsqUKSbTq1evRlpaGgoLC8XEiL29PVQqVZPL5+Tk4Pz588jNzYVSqYS/vz+SkpKwfPlyJCQkwNbWtt3bQETdj0WJkYSEBKxcudKkbPDgwfj6668BAHV1dXjxxRexY8cO6HQ6hIWFYcOGDVAqlWL90tJSLFq0CIcPH4ajoyOio6ORnJyMXr2YoyEiIiIiIiIiIuquGhoakJGRgZqaGqjVarF8+/bt2LZtG1QqFaZMmYJXX31VfGukoKAAfn5+JvcXw8LCsGjRIpw7dw4jR45s8rN0Oh10Op04XV1dDQDQ6/XQ6/XNxmmcf6d6XY0U45ZizIA045ZizIBlcVvSNouzEUOHDkVubu7vK7gpobF06VLs378fGRkZcHJyQmxsLGbMmIGjR48C4KtvREREREREREREPc2ZM2egVqtRV1cHR0dH7NmzB76+vgCAp556Cl5eXnB3d8fp06exfPlylJSUYPfu3QAArVZrkhQBIE5rtdrbfmZycnKjB7yBG2+g3NxVV3M0Go1Z9boaKcYtxZgBacYtxZgB8+Kura01e30WJ0Z69erV5KttVVVV2LRpE9LT0zFx4kQAwObNm+Hj44PCwkIEBgby1TciIiIiIiIiIqIeZvDgwSguLkZVVRV27dqF6Oho5OXlwdfXFwsXLhTr+fn5wc3NDUFBQbh48SIGDBjQ4s+Mj49HXFycOF1dXQ1PT0+EhoZCoVA0u6xer4dGo0FISAhkMlmLY+hoUoxbijED0oxbijEDlsVtfDPMHBYnRr755hu4u7vDzs4OarUaycnJ6N+/P4qKiqDX6xEcHCzWHTJkCPr374+CggIEBgby1bd2wjZ2D2xj03WJiIiIiIiISNpsbW0xcOBAAEBAQABOnjyJdevW4f33329Ud/To0QCACxcuYMCAAVCpVDhx4oRJnfLycgC47bgkACCXyyGXyxuVy2Qys28KW1K3K5Fi3FKMGZBm3FKMGTAvbkvaZVFiZPTo0diyZQsGDx6MsrIyrFy5Eg8//DDOnj0LrVYLW1tbODs7myyjVCrF19r46lv7Yhu7B7bxBktefSMiAoBhCdnQNVh1dhgW+e7NiM4OgYi6KR4Tibo+qe2nchsBKQ92dhTUXRgMBpOHoG9WXFwMAHBzcwMAqNVqrF69GhUVFXB1dQVw476CQqEQu+Mi6eMxkTqaRYmR8PBw8f+HDx+O0aNHw8vLCzt37kTv3r3bPDijnvjqmyXYxu7B0jYOS8jugKjaltxaQNIoQ5u/+kZEREREREREXVN8fDzCw8PRv39/XL16Fenp6Thy5Aiys7Nx8eJFpKenY/Lkyejbty9Onz6NpUuXYty4cRg+fDgAIDQ0FL6+vpg9ezZSUlKg1WqxYsUKxMTENPlGCBGROSzuSutmzs7OuP/++3HhwgWEhITg+vXrqKysNHlrpLy8XHytja++tS+2sXswt41SyqLfqq1ffSMiIiIiIiKirqmiogJz5sxBWVkZnJycMHz4cGRnZyMkJAQ//PADcnNzsXbtWtTU1MDT0xORkZFYsWKFuLyNjQ0yMzOxaNEiqNVqODg4IDo6GomJiZ3YKiKSulYlRq5du4aLFy9i9uzZCAgIgEwmw8GDBxEZGQkAKCkpQWlpKdRqNQC++kZERERERERERNSTbNq06bbzPD09kZeXd8d1eHl54cCBA20ZFhH1cNaWVH7ppZeQl5eH7777DseOHcP06dNhY2ODJ598Ek5OTpg/fz7i4uJw+PBhFBUVYd68eVCr1QgMDARg+urbl19+iezsbL76RkRERNQNvfnmm7CyssKSJUvEsrq6OsTExKBv375wdHREZGSk+PawUWlpKSIiImBvbw9XV1csW7YM9fX1HRw9ERERERERdWcWJUZ+/PFHPPnkkxg8eDCeeOIJ9O3bF4WFhbj77rsBAGvWrMGjjz6KyMhIjBs3DiqVCrt37xaXN776ZmNjA7Vajaeffhpz5szhq29ERERE3cjJkyfx/vvvi/1CGy1duhSffvopMjIykJeXh8uXL2PGjBni/IaGBkREROD69es4duwYtm7dii1btuC1117r6CYQEbVKWloahg8fDoVCAYVCAbVajc8++0ycz0QxERERUeeyqCutHTt2NDvfzs4OqampSE1NvW0dvvpGRERE1H1du3YNs2bNwocffohVq1aJ5VVVVdi0aRPS09MxceJEAMDmzZvh4+ODwsJCBAYGIicnB+fPn0dubi6USiX8/f2RlJSE5cuXIyEhAba2tp3VLCIii3h4eODNN9/EoEGDIAgCtm7diqlTp+KLL77A0KFDsXTpUuzfvx8ZGRlwcnJCbGwsZsyYgaNHjwL4PVGsUqlw7NgxlJWVYc6cOZDJZHjjjTc6uXVERERE0teqMUaIiIiIiG4WExODiIgIBAcHmyRGioqKoNfrERwcLJYNGTIE/fv3R0FBAQIDA1FQUAA/Pz8olUqxTlhYGBYtWoRz585h5MiRjT5Pp9NBp9OJ09XV1QAAvV4PvV7fbKzG+XeqR63Hbd1xjNtYbi10ciSWM/f3IYXf0ZQpU0ymV69ejbS0NBQWFsLDw4OJYiIiIqJOxsQIEREREbWJHTt24D//+Q9OnjzZaJ5Wq4WtrS2cnZ1NypVKJbRarVjn5qSIcb5xXlOSk5OxcuXKRuU5OTmwt7c3K26NRmNWPWo9buuOkzTK0NkhWMzcngVqa2vbOZK21dDQgIyMDNTU1ECtVrdbopiIiIiIzMfECBERERG12g8//IAXXngBGo0GdnZ2Hfa58fHxiIuLE6erq6vh6emJ0NBQKBSKZpfV6/XQaDQICQmBTCZr71B7NG7rjmPc1q+esobOYNXZ4VjkbEKYWfWMb4Z1dWfOnIFarUZdXR0cHR2xZ88e+Pr6ori4uF0SxUDPfItOinFL9c0uY7xS3NZSihmwLG6ptY2IqKtgYoSIiIiIWq2oqAgVFRX4wx/+IJY1NDQgPz8f7733HrKzs3H9+nVUVlaa3AwsLy+HSqUCAKhUKpw4ccJkvcbBiI11biWXyyGXyxuVy2Qys2/AW1KXWofbuuPoDFbQNUgrMWLJPisFgwcPRnFxMaqqqrBr1y5ER0cjLy+vXT+zJ79FJ8W4pfhmFyDNbS3FmAHz4pbaW3RERF0FEyNERERE1GpBQUE4c+aMSdm8efMwZMgQLF++HJ6enpDJZDh48CAiIyMBACUlJSgtLYVarQYAqNVqrF69GhUVFXB1dQVw44aAQqGAr69vxzaIiKiVbG1tMXDgQABAQEAATp48iXXr1mHmzJntkigGeuZbdFKMW6pvdsmtBSSNMkhyW0spZsCyuKXyFh0RUVfDxAgRERERtVqfPn0wbNgwkzIHBwf07dtXLJ8/fz7i4uLg4uIChUKBxYsXQ61WIzAwEAAQGhoKX19fzJ49GykpKdBqtVixYgViYmKafCuEiEhKDAYDdDodAgIC2i1R3JPfopNi3FJ8swuQ5raWYsyAeXFLsV1ERF0BEyNERERE1CHWrFkDa2trREZGQqfTISwsDBs2bBDn29jYIDMzE4sWLYJarYaDgwOio6ORmJjYiVETEVkuPj4e4eHh6N+/P65evYr09HQcOXIE2dnZcHJyYqKYiIiomxiWkC2ZJLfcRkDKg50dRddh3dkBEBFJVVpaGoYPHw6FQgGFQgG1Wo3PPvtMnD9+/HhYWVmZ/D333HMm6ygtLUVERATs7e3h6uqKZcuWob6+vqObQkTULo4cOYK1a9eK03Z2dkhNTcWVK1dQU1OD3bt3N+oSxsvLCwcOHEBtbS1+/vlnvPPOO+jVi8/yEJG0VFRUYM6cORg8eDCCgoJw8uRJZGdnIyQkBMCNRPGjjz6KyMhIjBs3DiqVCrt37xaXNyaKbWxsoFar8fTTT2POnDlMFBMRERG1EV5lEhG1kIeHB958800MGjQIgiBg69atmDp1Kr744gsMHToUALBgwQKTC9ibB71saGhAREQEVCoVjh07hrKyMsyZMwcymQxvvPFGh7eHiIiIiNrGpk2bmp1vTBSnpqbeto4xUUxEREREbY+JESKiFpoyZYrJ9OrVq5GWlobCwkIxMWJvb3/bATJzcnJw/vx55ObmQqlUwt/fH0lJSVi+fDkSEhJga2vb7m0gIiIiIiIiIiLqadiVFhFRG2hoaMCOHTtQU1MjDpoJANu3b0e/fv0wbNgwxMfHo7a2VpxXUFAAPz8/KJVKsSwsLAzV1dU4d+5ch8ZPRERERERERETUU/CNESKiVjhz5gzUajXq6urg6OiIPXv2wNfXFwDw1FNPwcvLC+7u7jh9+jSWL1+OkpISsf9orVZrkhQBIE5rtdrbfqZOp4NOpxOnq6urAQB6vR56vb7ZeI3z71SPWo/buuMYt7HcWujkSCxn7u+DvyMiIiLqKjjQMBERdQdMjBARtcLgwYNRXFyMqqoq7Nq1C9HR0cjLy4Ovry8WLlwo1vPz84ObmxuCgoJw8eJFDBgwoMWfmZycjJUrVzYqz8nJMRnDpDkajabFn0+W4bbuOEmjDJ0dgsXM7Tv+5rfNiIiIiIiIiKh1mBghImoFW1tbDBw4EAAQEBCAkydPYt26dXj//fcb1R09ejQA4MKFCxgwYABUKhVOnDhhUqe8vBwAbjsuCQDEx8cjLi5OnK6uroanpydCQ0OhUCiajVev10Oj0SAkJAQymcy8RlKLcFt3HOO2fvWUNXQGaTy9aHQ2IcysesY3w4iIiIiIiIio9ZgYISJqQwaDwaSbq5sVFxcDANzc3AAAarUaq1evRkVFBVxdXQHceLtAoVCI3XE1RS6XQy6XNyqXyWRm34C3pC61Drd1x9EZrCTTrYORJfssEREREREREbUNJkaIiFooPj4e4eHh6N+/P65evYr09HQcOXIE2dnZuHjxItLT0zF58mT07dsXp0+fxtKlSzFu3DgMHz4cABAaGgpfX1/Mnj0bKSkp0Gq1WLFiBWJiYppMfBAREREREREREVHrMTFCRNRCFRUVmDNnDsrKyuDk5IThw4cjOzsbISEh+OGHH5Cbm4u1a9eipqYGnp6eiIyMxIoVK8TlbWxskJmZiUWLFkGtVsPBwQHR0dFITEzsxFYRERERERERERF1b0yMEBG10KZNm247z9PTE3l5eXdch5eXl9mDLxMREREREREREVHrWXd2AERERERERERERERERB2FiREiIiIiIiIiIiIiIuoxmBghIiIiIiIiIiKidpGWlobhw4dDoVBAoVBArVbjs88+E+fX1dUhJiYGffv2haOjIyIjI1FeXm6yjtLSUkRERMDe3h6urq5YtmwZ6uvrO7opRNSNMDFCRERERERERERE7cLDwwNvvvkmioqKcOrUKUycOBFTp07FuXPnAABLly7Fp59+ioyMDOTl5eHy5cuYMWOGuHxDQwMiIiJw/fp1HDt2DFu3bsWWLVvw2muvdVaTiKgb4ODrRERERERERETUbQ1LyIauwaqzwzCb3EZAyoOdHUXbmTJlisn06tWrkZaWhsLCQnh4eGDTpk1IT0/HxIkTAQCbN2+Gj48PCgsLERgYiJycHJw/fx65ublQKpXw9/dHUlISli9fjoSEBNja2nZGs4hI4pgYISIiIiIiIiIionbX0NCAjIwM1NTUQK1Wo6ioCHq9HsHBwWKdIUOGoH///igoKEBgYCAKCgrg5+cHpVIp1gkLC8OiRYtw7tw5jBw5ssnP0ul00Ol04nR1dTUAQK/XQ6/XNxuncf6d6nU1UozbGKvcWujkSCxjjFdKcRtjldLvA7Dsd21J25gYISIiIiIiIiIionZz5swZqNVq1NXVwdHREXv27IGvry+Ki4tha2sLZ2dnk/pKpRJarRYAoNVqTZIixvnGebeTnJyMlStXNirPycmBvb29WXFrNBqz6nU1Uow7aZShs0NoESnGLcXfB2Be3LW1tWavj4kRIiKShHv/sr+zQ7BId3v9nYiIiIiIqKUGDx6M4uJiVFVVYdeuXYiOjkZeXl67fmZ8fDzi4uLE6erqanh6eiI0NBQKhaLZZfV6PTQaDUJCQiCTydo1zrYkxbiNMb96yho6g4S6vLMWkDTKIKm4jTFL6fcBWPa7Nr4ZZg4mRoiIiIiIiIiIiKjd2NraYuDAgQCAgIAAnDx5EuvWrcPMmTNx/fp1VFZWmrw1Ul5eDpVKBQBQqVQ4ceKEyfrKy8vFebcjl8shl8sblctkMrNvCltStyuRYtw6g5WkxgIykmLcUvx9AObFbUm7rFsbEBEREREREREREZG5DAYDdDodAgICIJPJcPDgQXFeSUkJSktLoVarAQBqtRpnzpxBRUWFWEej0UChUMDX17fDYyei7oFvjBAREREREREREVG7iI+PR3h4OPr374+rV68iPT0dR44cQXZ2NpycnDB//nzExcXBxcUFCoUCixcvhlqtRmBgIAAgNDQUvr6+mD17NlJSUqDVarFixQrExMQ0+UYIEZE5mBghIiIiIiIiIiKidlFRUYE5c+agrKwMTk5OGD58OLKzsxESEgIAWLNmDaytrREZGQmdToewsDBs2LBBXN7GxgaZmZlYtGgR1Go1HBwcEB0djcTExM5qEhF1A0yMEBERERERERERUbvYtGlTs/Pt7OyQmpqK1NTU29bx8vLCgQMH2jo0IurBOMYIERERERERERERERH1GEyMEBERERERERERERFRj8HECBERERERERERERER9RhMjBARERERERERERERUY/BxAgREREREREREREREfUYrUqMvPnmm7CyssKSJUvEsrq6OsTExKBv375wdHREZGQkysvLTZYrLS1FREQE7O3t4erqimXLlqG+vr41oRARERERERF1CcnJyXjggQfQp08fuLq6Ytq0aSgpKTGpM378eFhZWZn8PffccyZ1eO1MRERE1D5anBg5efIk3n//fQwfPtykfOnSpfj000+RkZGBvLw8XL58GTNmzBDnNzQ0ICIiAtevX8exY8ewdetWbNmyBa+99lrLW0FERERERETUReTl5SEmJgaFhYXQaDTQ6/UIDQ1FTU2NSb0FCxagrKxM/EtJSRHn8dqZiIiIqP20KDFy7do1zJo1Cx9++CHuuususbyqqgqbNm3C3//+d0ycOBEBAQHYvHkzjh07hsLCQgBATk4Ozp8/j23btsHf3x/h4eFISkpCamoqrl+/3jatIiLqAGlpaRg+fDgUCgUUCgXUajU+++wzcT7foCMiIiLqmbKysjB37lwMHToUI0aMwJYtW1BaWoqioiKTevb29lCpVOKfQqEQ5/HamYiIiKj99GrJQjExMYiIiEBwcDBWrVollhcVFUGv1yM4OFgsGzJkCPr374+CggIEBgaioKAAfn5+UCqVYp2wsDAsWrQI586dw8iRIxt9nk6ng06nE6erq6sBAHq9Hnq9vtlYjfPvVE/K2MbuwdI2ym2E9gynXcitb8RsThul8F17eHjgzTffxKBBgyAIArZu3YqpU6fiiy++wNChQ7F06VLs378fGRkZcHJyQmxsLGbMmIGjR48C+P0pQJVKhWPHjqGsrAxz5syBTCbDG2+80cmtIyIiIqK2UlVVBQBwcXExKd++fTu2bdsGlUqFKVOm4NVXX4W9vT0AtOjamYiIiIjMY3FiZMeOHfjPf/6DkydPNpqn1Wpha2sLZ2dnk3KlUgmtVivWufnEzjjfOK8pycnJWLlyZaPynJwc8aTxTjQajVn1pIxt7B7MbWPKg+0cSDsyp421tbUdEEnrTJkyxWR69erVSEtLQ2FhITw8PLBp0yakp6dj4sSJAIDNmzfDx8cHhYWFCAwMFJ8CzM3NhVKphL+/P5KSkrB8+XIkJCTA1ta2M5pFRERERG3IYDBgyZIlGDNmDIYNGyaWP/XUU/Dy8oK7uztOnz6N5cuXo6SkBLt37wbQsmvnnvhQoRTjNsZqfHBMKozxSiluKcYMdL+HComIuiKLEiM//PADXnjhBWg0GtjZ2bVXTI3Ex8cjLi5OnK6uroanpydCQ0NNXjVuil6vh0ajQUhICGQyWXuH2inYxu7B0jYOS8jugKjaltxaQNIog1ltNF7ESUVDQwMyMjJQU1MDtVrdbm/QEREREZG0xMTE4OzZs/j8889NyhcuXCj+v5+fH9zc3BAUFISLFy9iwIABLfqsnvxQoRTjThpl6OwQWkSKcUsxZqD7PFRIRNQVWZQYKSoqQkVFBf7whz+IZQ0NDcjPz8d7772H7OxsXL9+HZWVlSZvjZSXl0OlUgEAVCoVTpw4YbJeY5/7xjq3ksvlkMvljcplMpnZN8ktqStVbGP3YG4bdQ1WHRBN+zCnjVL5ns+cOQO1Wo26ujo4Ojpiz5498PX1RXFxcbu8QQf0zCcBAel1H2fJU17UOlJ96hIw//fB3xERkTTFxsYiMzMT+fn58PDwaLbu6NGjAQAXLlzAgAEDWnTt3BMfKpRi3MaYXz1lDZ1BOtd1xgfdpBS3FGMGuvdDhUREXYVFiZGgoCCcOXPGpGzevHkYMmQIli9fDk9PT8hkMhw8eBCRkZEAgJKSEpSWlkKtVgMA1Go1Vq9ejYqKCri6ugK4kQFXKBTw9fVtizYREXWYwYMHo7i4GFVVVdi1axeio6ORl5fXrp/ZU58ElGr3cVLc1lIlxScBDxw4YFY9PglIRCQtgiBg8eLF2LNnD44cOQJvb+87LlNcXAwAcHNzA9Cya+ee/FChFOPWGawk+cCbFOOWYsxA93qokIioq7EoMdKnTx+TPlEBwMHBAX379hXL58+fj7i4OLi4uEChUGDx4sVQq9UIDAwEAISGhsLX1xezZ89GSkoKtFotVqxYgZiYmCZP4IiIujJbW1sMHDgQABAQEICTJ09i3bp1mDlzZru8QQf0zCcBAel1H2fJU17UOlJ96hIAziaEmVWPTwJSdzEsIVtyN6a+ezOis0MgCYqJiUF6ejr27duHPn36iG8DOzk5oXfv3rh48SLS09MxefJk9O3bF6dPn8bSpUsxbtw4DB8+HACvnYmIiIjak8WDr9/JmjVrYG1tjcjISOh0OoSFhWHDhg3ifBsbG2RmZmLRokVQq9VwcHBAdHQ0EhMT2zoUIqIOZzAYoNPpEBAQ0G5v0PXUJwGldiPNSIrbWqqk+CSgJfssERFJR1paGgBg/PjxJuWbN2/G3LlzYWtri9zcXKxduxY1NTXw9PREZGQkVqxYIdbltTMRERFR+2l1YuTIkSMm03Z2dkhNTUVqauptl/Hy8jK76wgioq4qPj4e4eHh6N+/P65evYr09HQcOXIE2dnZcHJy4ht0RERERD2UIDQ/7pWnp6dZ3a/y2pmIiIiofbT5GyNERD1FRUUF5syZg7KyMjg5OWH48OHIzs5GSEgIAL5BR0RERERERERE1BUxMUJE1EKbNm1qdj7foCMiIiIiIiIiIup6rDs7ACIiIiIiIiIiIiIioo7CxAgREREREREREREREfUYTIwQEREREREREREREVGPwcQIERERERERERERERH1GEyMEBERERERERERERFRj8HECBERERG1WlpaGoYPHw6FQgGFQgG1Wo3PPvtMnF9XV4eYmBj07dsXjo6OiIyMRHl5uck6SktLERERAXt7e7i6umLZsmWor6/v6KYQERERURtKTk7GAw88gD59+sDV1RXTpk1DSUmJSZ3x48fDysrK5O+5554zqcNzRSJqS0yMEBEREVGreXh44M0330RRURFOnTqFiRMnYurUqTh37hwAYOnSpfj000+RkZGBvLw8XL58GTNmzBCXb2hoQEREBK5fv45jx45h69at2LJlC1577bXOahIRERERtYG8vDzExMSgsLAQGo0Ger0eoaGhqKmpMam3YMEClJWViX8pKSniPJ4rElFb69XZARARERGR9E2ZMsVkevXq1UhLS0NhYSE8PDywadMmpKenY+LEiQCAzZs3w8fHB4WFhQgMDEROTg7Onz+P3NxcKJVK+Pv7IykpCcuXL0dCQgJsbW07o1lERERE1EpZWVkm01u2bIGrqyuKioowbtw4sdze3h4qlarJdfBckYjaGhMjRERERNSmGhoakJGRgZqaGqjVahQVFUGv1yM4OFisM2TIEPTv3x8FBQUIDAxEQUEB/Pz8oFQqxTphYWFYtGgRzp07h5EjRzb5WTqdDjqdTpyurq4GAOj1euj1+mbjNM6/Uz1qPeM2llsLnRyJ5aT2++gJ21pq3wkREZmqqqoCALi4uJiUb9++Hdu2bYNKpcKUKVPw6quvwt7eHgBafK5IRHQ7TIwQERERUZs4c+YM1Go16urq4OjoiD179sDX1xfFxcWwtbWFs7OzSX2lUgmtVgsA0Gq1Jhe6xvnGebeTnJyMlStXNirPyckRL6TvRKPRmFWPWi9plKGzQ7DYgQMHOjuEFunO27q2tradIyEiovZiMBiwZMkSjBkzBsOGDRPLn3rqKXh5ecHd3R2nT5/G8uXLUVJSgt27dwNo2bliT3yARopxS/WhDmO8UorbGKuUfh+AZb9rS9rGxAgRERERtYnBgwejuLgYVVVV2LVrF6Kjo5GXl9eunxkfH4+4uDhxurq6Gp6enggNDYVCoWh2Wb1eD41Gg5CQEMhksnaNs6czbutXT1lDZ7Dq7HAscjYhrLNDsEhP2NbGG1tERCQ9MTExOHv2LD7//HOT8oULF4r/7+fnBzc3NwQFBeHixYsYMGBAiz6rJz9AI8W4pfhQByDNuKX4+wDMi9uSB2iYGCEiIiKiNmFra4uBAwcCAAICAnDy5EmsW7cOM2fOxPXr11FZWWny1kh5ebnYj7RKpcKJEydM1ldeXi7Oux25XA65XN6oXCaTmZ3ssKQutY7OYAVdg7Ru1kv1t9Gdt7VUvxMiop4uNjYWmZmZyM/Ph4eHR7N1R48eDQC4cOECBgwY0KJzxZ74AI0U45bqQx1yawFJowySitsYs5R+H4Blv2tLHqBhYoSIiIiI2oXBYIBOp0NAQABkMhkOHjyIyMhIAEBJSQlKS0uhVqsBAGq1GqtXr0ZFRQVcXV0B3HgiSKFQwNfXt9PaQEREREStIwgCFi9ejD179uDIkSPw9va+4zLFxcUAADc3NwAtO1fsyQ/QSDFuKT7UAUgzbin+PgDz4rakXUyMEBEREVGrxcfHIzw8HP3798fVq1eRnp6OI0eOIDs7G05OTpg/fz7i4uLg4uIChUKBxYsXQ61WIzAwEAAQGhoKX19fzJ49GykpKdBqtVixYgViYmKavKAlIiIiImmIiYlBeno69u3bhz59+ohjgjg5OaF37964ePEi0tPTMXnyZPTt2xenT5/G0qVLMW7cOAwfPhwAzxWJqO0xMUJERERErVZRUYE5c+agrKwMTk5OGD58OLKzsxESEgIAWLNmDaytrREZGQmdToewsDBs2LBBXN7GxgaZmZlYtGgR1Go1HBwcEB0djcTExM5qEhERERG1gbS0NADA+PHjTco3b96MuXPnwtbWFrm5uVi7di1qamrg6emJyMhIrFixQqzLc0UiamtMjBARERFRq23atKnZ+XZ2dkhNTUVqaupt63h5eeHAgQNtHRoRERERdSJBEJqd7+npiby8vDuuh+eKRNSWrDs7ACIiIiIiIiIiIiIioo7CxAgREREREREREREREfUYTIwQEREREREREREREVGPwcQIERERERERERERERH1GEyMEBG1UHJyMh544AH06dMHrq6umDZtGkpKSkzqjB8/HlZWViZ/zz33nEmd0tJSREREwN7eHq6urli2bBnq6+s7silEREREREREREQ9Rq/ODoCISKry8vIQExODBx54APX19XjllVcQGhqK8+fPw8HBQay3YMECJCYmitP29vbi/zc0NCAiIgIqlQrHjh1DWVkZ5syZA5lMhjfeeKND20NERERERERERNQTMDFCRNRCWVlZJtNbtmyBq6srioqKMG7cOLHc3t4eKpWqyXXk5OTg/PnzyM3NhVKphL+/P5KSkrB8+XIkJCTA1ta2XdtARERERERERETU07ArLSKiNlJVVQUAcHFxMSnfvn07+vXrh2HDhiE+Ph61tbXivIKCAvj5+UGpVIplYWFhqK6uxrlz5zomcCIiIiIiIiIioh6Eb4wQEbUBg8GAJUuWYMyYMRg2bJhY/tRTT8HLywvu7u44ffo0li9fjpKSEuzevRsAoNVqTZIiAMRprVbb5GfpdDrodDpxurq6GgCg1+uh1+ubjdM4/071uiK5jdDZIVhEbn0jXilua6kxbmPjNpcSc38f/B0RERERERERtR0mRoiI2kBMTAzOnj2Lzz//3KR84cKF4v/7+fnBzc0NQUFBuHjxIgYMGNCiz0pOTsbKlSsblefk5JiMX9IcjUbTos/uTCkPdnYELSPFbS1VSaMMnR2CxQ4cOGBWvZvfNCMioq4vOTkZu3fvxtdff43evXvjoYcewltvvYXBgweLderq6vDiiy9ix44d0Ol0CAsLw4YNG0wemiktLcWiRYtw+PBhODo6Ijo6GsnJyejVi5fyRERERK3BsykiolaKjY1FZmYm8vPz4eHh0Wzd0aNHAwAuXLiAAQMGQKVS4cSJEyZ1ysvLAeC245LEx8cjLi5OnK6uroanpydCQ0OhUCia/Xy9Xg+NRoOQkBDIZLI7tq0rGZaQ3dkhWERuLSBplEGS21pqjL/rV09ZQ2ew6uxwLHI2IcysesY3w4iISBry8vIQExODBx54APX19XjllVcQGhqK8+fPw8HBAQCwdOlS7N+/HxkZGXByckJsbCxmzJiBo0ePAgAaGhoQEREBlUqFY8eOoaysDHPmzIFMJsMbb7zRmc0jIiIikjwmRoiIWkgQBCxevBh79uzBkSNH4O3tfcdliouLAQBubm4AALVajdWrV6OiogKurq4AbrxhoFAo4Ovr2+Q65HI55HJ5o3KZTGb2DXhL6nYVugZp3fA2kuK2liqdwUpyvxNL9lkiIpKOrKwsk+ktW7bA1dUVRUVFGDduHKqqqrBp0yakp6dj4sSJAIDNmzfDx8cHhYWFCAwMRE5ODs6fP4/c3FwolUr4+/sjKSkJy5cvR0JCAmxtbTujaURERETdAhMjREQtFBMTg/T0dOzbtw99+vQRxwRxcnJC7969cfHiRaSnp2Py5Mno27cvTp8+jaVLl2LcuHEYPnw4ACA0NBS+vr6YPXs2UlJSoNVqsWLFCsTExDSZ/CAiIiIi6amqqgIAuLi4AACKioqg1+sRHBws1hkyZAj69++PgoICBAYGoqCgAH5+fiZda4WFhWHRokU4d+4cRo4c2ehzeuJYdFKMW6rjoxnjlVLcUowZsGy8Qin99omIuhImRoiIWigtLQ0AMH78eJPyzZs3Y+7cubC1tUVubi7Wrl2LmpoaeHp6IjIyEitWrBDr2tjYIDMzE4sWLYJarYaDgwOio6ORmJjYkU0hIiIionZiMBiwZMkSjBkzBsOGDQMAaLVa2NrawtnZ2aSuUqkUH7bRarUmSRHjfOO8pvTUsegAacYtxfHRAGnGLcWYAfN+1xyLjogsNSwhW1K9LchthHYZd5aJESKiFhKE5p868vT0RF5e3h3X4+XlZfYAzEREREQkLTExMTh79iw+//zzdv+snjgWnRTjlur4aMYx9KQUtxRjBiwbr5Bj0RERtQwTI0RERERERETtIDY2FpmZmcjPz4eHh4dYrlKpcP36dVRWVpq8NVJeXg6VSiXWOXHihMn6ysvLxXlN6alj0QHSjFuK46MB0oxbijED5v2upfa7JyLqKqw7OwAiIiIiIiKi7kQQBMTGxmLPnj04dOgQvL29TeYHBARAJpPh4MGDYllJSQlKS0uhVqsBAGq1GmfOnEFFRYVYR6PRQKFQwNfXt2MaQkRERNRN8Y0RIiIiIiIiojYUExOD9PR07Nu3D3369BHHBHFyckLv3r3h5OSE+fPnIy4uDi4uLlAoFFi8eDHUajUCAwMBAKGhofD19cXs2bORkpICrVaLFStWICYmpsm3QoiIiIjIfBa9MZKWlobhw4dDoVBAoVBArVbjs88+E+fX1dUhJiYGffv2haOjIyIjI8VXfY1KS0sREREBe3t7uLq6YtmyZaivr2+b1hARERERERF1srS0NFRVVWH8+PFwc3MT/z7++GOxzpo1a/Doo48iMjIS48aNg0qlwu7du8X5NjY2yMzMhI2NDdRqNZ5++mnMmTMHiYmJndEkIiIiom7FojdGPDw88Oabb2LQoEEQBAFbt27F1KlT8cUXX2Do0KFYunQp9u/fj4yMDDg5OSE2NhYzZszA0aNHAQANDQ2IiIiASqXCsWPHUFZWhjlz5kAmk+GNN95olwYSERERERERdSRBEO5Yx87ODqmpqUhNTb1tHS8vLxw4cKAtQyMiIiIiWJgYmTJlisn06tWrkZaWhsLCQnh4eGDTpk1IT0/HxIkTAQCbN2+Gj48PCgsLERgYiJycHJw/fx65ublQKpXw9/dHUlISli9fjoSEBNja2rZdy4iIiIiIiIiIiIiIiG7R4sHXGxoasGPHDtTU1ECtVqOoqAh6vR7BwcFinSFDhqB///4oKCgAABQUFMDPzw9KpVKsExYWhurqapw7d64VzSAiIiIiIiIiIiIiIroziwdfP3PmDNRqNerq6uDo6Ig9e/bA19cXxcXFsLW1hbOzs0l9pVIpDjSn1WpNkiLG+cZ5t6PT6aDT6cTp6upqAIBer4der282XuP8O9WTMraxe7C0jXKbO7+e39XIrW/EbE4bu/N3TUREREREbWtYQjZ0DVadHYZZ5DYCUh7s7CiIiIh6NosTI4MHD0ZxcTGqqqqwa9cuREdHIy8vrz1iEyUnJ2PlypWNynNycmBvb2/WOjQaTVuH1eWwjd2DuW2U8om0OW2sra3tgEiIiIiIiIiIqD0lJydj9+7d+Prrr9G7d2889NBDeOuttzB48GCxTl1dHV588UXs2LEDOp0OYWFh2LBhg8kD1qWlpVi0aBEOHz4MR0dHREdHIzk5Gb16WXx7k4jI8sSIra0tBg4cCAAICAjAyZMnsW7dOsycORPXr19HZWWlyVsj5eXlUKlUAACVSoUTJ06YrK+8vFycdzvx8fGIi4sTp6urq+Hp6YnQ0FAoFIpm49Xr9dBoNHj1lDV0Bmk8PWJ0NiHMrHrGNoaEhEAmk7VzVM0blpDdLuuVWwtIGmVot+/R3G3dniz9HttrW7cn4/doThuNb4YRERERERERkXTl5eUhJiYGDzzwAOrr6/HKK68gNDQU58+fh4ODAwBg6dKl2L9/PzIyMuDk5ITY2FjMmDEDR48eBXCjS/+IiAioVCocO3YMZWVlmDNnDmQyGd54443ObB4RSVSrU6oGgwE6nQ4BAQGQyWQ4ePAgIiMjAQAlJSUoLS2FWq0GAKjVaqxevRoVFRVwdXUFcOPJcYVCAV9f39t+hlwuh1wub1Quk8nMTgToDFaSea3WyNIkhyXbo7209zZur++xs7fbzcz9HqX2e76ZOW3sSt8JEREREREREbVMVlaWyfSWLVvg6uqKoqIijBs3DlVVVdi0aRPS09MxceJEAMDmzZvh4+ODwsJCBAYGIicnB+fPn0dubi6USiX8/f2RlJSE5cuXIyEhAba2tp3RNCKSMIsGX4+Pj0d+fj6+++47nDlzBvHx8Thy5AhmzZoFJycnzJ8/H3FxcTh8+DCKioowb948qNVqBAYGAgBCQ0Ph6+uL2bNn48svv0R2djZWrFiBmJiYJhMfRERERERERERE1H1UVVUBAFxcXAAARUVF0Ov1CA4OFusMGTIE/fv3R0FBAQCgoKAAfn5+Jl1rhYWFobq6GufOnevA6Imou7DojZGKigrMmTMHZWVlcHJywvDhw5GdnY2QkBAAwJo1a2BtbY3IyEiT/gCNbGxskJmZiUWLFkGtVsPBwQHR0dFITExs21YRERERERERERFRl2IwGLBkyRKMGTMGw4YNAwBotVrY2tqadM0PAEqlElqtVqxzc1LEON84ryk6nQ46nU6cNnbZrdfrodfrm43TOP9O9boaKcZtjFVuLXRyJJYxxiuluKUYM/B7vOb8ri357VuUGNm0aVOz8+3s7JCamorU1NTb1vHy8sKBAwcs+VgiIiIiIiIiIiKSuJiYGJw9exaff/55u39WcnIyVq5c2ag8JycH9vb2Zq1Do9G0dVgdQopxJ40ydHYILSLFuKUYM2De77q2ttbs9bV6jBEiIiIiIiIiIiKi5sTGxiIzMxP5+fnw8PAQy1UqFa5fv47KykqTt0bKy8uhUqnEOidOnDBZX3l5uTivKfHx8YiLixOnq6ur4enpidDQUCgUimZj1ev10Gg0CAkJkdQYqFKM2xjzq6esoTNIZzxdubWApFEGScUtxZiB3+M253dtfDPMHEyMEBERERERERERUbsQBAGLFy/Gnj17cOTIEXh7e5vMDwgIgEwmw8GDBxEZGQkAKCkpQWlpKdRqNQBArVZj9erVqKiogKurK4AbT48rFAr4+vo2+blyubzJMY1lMpnZSQNL6nYlUoxbZ7CCrkE6N+uNpBi3FGMGzPtdW/K7Z2KEiIiIiIiIiIiI2kVMTAzS09Oxb98+9OnTRxwTxMnJCb1794aTkxPmz5+PuLg4uLi4QKFQYPHixVCr1QgMDAQAhIaGwtfXF7Nnz0ZKSgq0Wi1WrFiBmJiYJpMfRER3wsQIERERERERERERtYu0tDQAwPjx403KN2/ejLlz5wIA1qxZA2tra0RGRkKn0yEsLAwbNmwQ69rY2CAzMxOLFi2CWq2Gg4MDoqOjkZiY2FHNIKJuhokRIiIiIiIiIiIiaheCINyxjp2dHVJTU5GamnrbOl5eXjhw4EBbhkZEPZh1ZwdARERERERERERERETUUZgYISIiIiIiIiIiIiKiHoOJESKiFkpOTsYDDzyAPn36wNXVFdOmTUNJSYlJnbq6OsTExKBv375wdHREZGQkysvLTeqUlpYiIiIC9vb2cHV1xbJly1BfX9+RTSEiIiIiIiIiIuoxmBghImqhvLw8xMTEoLCwEBqNBnq9HqGhoaipqRHrLF26FJ9++ikyMjKQl5eHy5cvY8aMGeL8hoYGRERE4Pr16zh27Bi2bt2KLVu24LXXXuuMJhEREREREREREXV7HHydiKiFsrKyTKa3bNkCV1dXFBUVYdy4caiqqsKmTZuQnp6OiRMnAgA2b94MHx8fFBYWIjAwEDk5OTh//jxyc3OhVCrh7++PpKQkLF++HAkJCbC1te2MphEREREREREREXVbTIwQEbWRqqoqAICLiwsAoKioCHq9HsHBwWKdIUOGoH///igoKEBgYCAKCgrg5+cHpVIp1gkLC8OiRYtw7tw5jBw5stHn6HQ66HQ6cbq6uhoAoNfrodfrm43ROP9O9boiuY3Q2SFYRG59I14pbmupMW5j4zaXEnN/H/wdEREREREREbUdJkaIiNqAwWDAkiVLMGbMGAwbNgwAoNVqYWtrC2dnZ5O6SqUSWq1WrHNzUsQ43zivKcnJyVi5cmWj8pycHNjb25sVr0ajMateV5LyYGdH0DJS3NZSlTTK0NkhWOzAgQNm1autrW3nSIiIiIiIiIh6DiZGiIjaQExMDM6ePYvPP/+83T8rPj4ecXFx4nR1dTU8PT0RGhoKhULR7LJ6vR4ajQYhISGQyWTtHWqbGpaQ3dkhWERuLSBplEGS21pqjL/rV09ZQ2ew6uxwLHI2IcysesY3w4iIiIiIiIio9ZgYISJqpdjYWGRmZiI/Px8eHh5iuUqlwvXr11FZWWny1kh5eTlUKpVY58SJEybrKy8vF+c1RS6XQy6XNyqXyWRm34C3pG5XoWuQ1g1vIylua6nSGawk9zuxZJ8lIiIiIiIiorZh3dkBEBFJlSAIiI2NxZ49e3Do0CF4e3ubzA8ICIBMJsPBgwfFspKSEpSWlkKtVgMA1Go1zpw5g4qKCrGORqOBQqGAr69vxzSEiIiIiIiIiIioB+EbI0RELRQTE4P09HTs27cPffr0EccEcXJyQu/eveHk5IT58+cjLi4OLi4uUCgUWLx4MdRqNQIDAwEAoaGh8PX1xezZs5GSkgKtVosVK1YgJiamybdCiIiIiIiIiIiaMywhWzJv08ttBMmOKUrSxsQIEVELpaWlAQDGjx9vUr5582bMnTsXALBmzRpYW1sjMjISOp0OYWFh2LBhg1jXxsYGmZmZWLRoEdRqNRwcHBAdHY3ExMSOagYREREREREREVGPwq60iIhaSBCEJv+MSREAsLOzQ2pqKq5cuYKamhrs3r270dghXl5eOHDgAGpra/Hzzz/jnXfeQa9ezFsTkbQkJyfjgQceQJ8+feDq6opp06ahpKTEpE5dXR1iYmLQt29fODo6IjIyUhxXyai0tBQRERGwt7eHq6srli1bhvr6+o5sChEREREREXVzTIwQERERUavl5eUhJiYGhYWF0Gg00Ov1CA0NRU1NjVhn6dKl+PTTT5GRkYG8vDxcvnwZM2bMEOc3NDQgIiIC169fx7Fjx7B161Zs2bIFr732Wmc0iYioVfLz8zFlyhS4u7vDysoKe/fuNZk/d+5cWFlZmfxNmjTJpM6VK1cwa9YsKBQKODs7Y/78+bh27VoHtoKIiIioe+IjyURERO1ISn27Gn33ZkRnh0ASlJWVZTK9ZcsWuLq6oqioCOPGjUNVVRU2bdqE9PR0TJw4EcCNrgd9fHxQWFiIwMBA5OTk4Pz588jNzYVSqYS/vz+SkpKwfPlyJCQkwNbWtjOaRkTUIjU1NRgxYgSeeeYZkyTwzSZNmoTNmzeL07eOMTdr1iyUlZWJCed58+Zh4cKFSE9Pb9fYiYiIiLo7JkaIiIiIqM1VVVUBAFxcXAAARUVF0Ov1CA4OFusMGTIE/fv3R0FBAQIDA1FQUAA/Pz8olUqxTlhYGBYtWoRz585h5MiRjT5Hp9NBp9OJ09XV1QAAvV4PvV7fbIzG+XeqR61n3MZya6GTI7Gc1H4fPWFbS+U7CQ8PR3h4eLN15HJ5o25Wjb766itkZWXh5MmTGDVqFABg/fr1mDx5Mt555x24u7u3ecxEREREPQUTI0RERETUpgwGA5YsWYIxY8Zg2LBhAACtVgtbW1s4Ozub1FUqldBqtWKdm5MixvnGeU1JTk7GypUrG5Xn5OTA3t7erHg1Go1Z9aj1kkYZOjsEix04cKCzQ2iR7ryta2tr2zmSjnPkyBG4urrirrvuwsSJE7Fq1Sr07dsXAFBQUABnZ2cxKQIAwcHBsLa2xvHjxzF9+vRG6+uJyWIpJgONsUopZkCacUsxZuD3eM3ZH6W2zxIRdRVMjBARERFRm4qJicHZs2fx+eeft/tnxcfHIy4uTpyurq6Gp6cnQkNDoVAoml1Wr9dDo9EgJCQEMpmsvUPt0Yzb+tVT1tAZpNW94NmEsM4OwSI9YVsbb/ZL3aRJkzBjxgx4e3vj4sWLeOWVVxAeHo6CggLY2NhAq9XC1dXVZJlevXrBxcWFyeImSDEZKMWYAWnGLcWYAfP2x+6ULCYi6khMjBARERFRm4mNjUVmZiby8/Ph4eEhlqtUKly/fh2VlZUmb42Ul5eL3cioVCqcOHHCZH3l5eXivKbI5fJGffIDgEwmMzvZYUldah2dwUpy4y5J9bfRnbe1VL+TW0VFRYn/7+fnh+HDh2PAgAE4cuQIgoKCWrTOnpgslmIyUG4tIGmUQVIxA9KMW4oxA7/Hbc7+2F2SxUREHY2JESIiIiJqNUEQsHjxYuzZswdHjhyBt7e3yfyAgADIZDIcPHgQkZGRAICSkhKUlpZCrVYDANRqNVavXo2KigrxKWmNRgOFQgFfX9+ObRARUQe777770K9fP1y4cAFBQUFQqVSoqKgwqVNfX48rV64wWdwEKSYDpRgzIM24pRgzYN7+KMX9lYioK2BihIiIiIhaLSYmBunp6di3bx/69OkjdvPi5OSE3r17w8nJCfPnz0dcXBxcXFygUCiwePFiqNVqBAYGAgBCQ0Ph6+uL2bNnIyUlBVqtFitWrEBMTEyTN/qIiLqTH3/8Eb/++ivc3NwA3EgWV1ZWoqioCAEBAQCAQ4cOwWAwYPTo0Z0ZKhEREZHkMTFCRERERK2WlpYGABg/frxJ+ebNmzF37lwAwJo1a2BtbY3IyEjodDqEhYVhw4YNYl0bGxtkZmZi0aJFUKvVcHBwQHR0NBITEzuqGUREbebatWu4cOGCOH3p0iUUFxfDxcUFLi4uWLlyJSIjI6FSqXDx4kW8/PLLGDhwIMLCboy14uPjg0mTJmHBggXYuHEj9Ho9YmNjERUVBXd3985qFhEREVG3wMQIEREREbWaIAh3rGNnZ4fU1FSkpqbeto6XlxcOHDjQlqEREXWKU6dOYcKECeK0ceyP6OhopKWl4fTp09i6dSsqKyvh7u6O0NBQJCUlmbwht337dsTGxiIoKEhMLL/77rsd3hYiIiKi7oaJESIiIiIiIqI2Nn78+GaTxtnZ2Xdch4uLC9LT09syLCIiIiICYN3ZARAREREREREREVH3lZ+fjylTpsDd3R1WVlbYu3evyfy5c+fCysrK5G/SpEkmda5cuYJZs2ZBoVDA2dkZ8+fPx7Vr1zqwFUTUnfCNESIiIjJx71/2d3YIFpHbCEh5sLOjICIiIiKi26mpqcGIESPwzDPPYMaMGU3WmTRpEjZv3ixO39y1IADMmjULZWVl0Gg00Ov1mDdvHhYuXMg364ioRZgYISIiIiIiIiIionYTHh6O8PDwZuvI5XKoVKom53311VfIysrCyZMnMWrUKADA+vXrMXnyZLzzzjtwd3dv85iJqHtjYoSIiIiIiIiIiIg61ZEjR+Dq6oq77roLEydOxKpVq9C3b18AQEFBAZydncWkCAAEBwfD2toax48fx/Tp0xutT6fTQafTidPV1dUAAL1eD71e32wsxvl3qtfVGOOVW99+jKuuxhirlGIGpBm3FGMGfo/XnP3Rkn2WiREiIiIiIolhl3dERETUnUyaNAkzZsyAt7c3Ll68iFdeeQXh4eEoKCiAjY0NtFotXF1dTZbp1asXXFxcoNVqm1xncnIyVq5c2ag8JycH9vb2ZsWl0Wgsb0wXkDTK0NkhWEyKMQPSjFuKMQPm7Y+1tbVmr4+JESIiIiIiIiIiIuo0UVFR4v/7+flh+PDhGDBgAI4cOYKgoKAWrTM+Ph5xcXHidHV1NTw9PREaGgqFQtHssnq9HhqNBiEhIZDJZC36/M5gjPvVU9bQGaw6OxyzyK0FJI0ySCpmQJpxSzFm4Pe4zdkfjW+GmYOJESIiIiIiIiIiIuoy7rvvPvTr1w8XLlxAUFAQVCoVKioqTOrU19fjypUrtx2XRC6XNxrAHQBkMpnZyQ5L6nYlOoMVdA3SufENSDNmQJpxSzFmwLz90ZL91bq1ARERERERERERERG1lR9//BG//vor3NzcAABqtRqVlZUoKioS6xw6dAgGgwGjR4/urDCJSMIsSowkJyfjgQceQJ8+feDq6opp06ahpKTEpE5dXR1iYmLQt29fODo6IjIyEuXl5SZ1SktLERERAXt7e7i6umLZsmWor69vfWuIiIiIiIiIiIioS7l27RqKi4tRXFwMALh06RKKi4tRWlqKa9euYdmyZSgsLMR3332HgwcPYurUqRg4cCDCwsIAAD4+Ppg0aRIWLFiAEydO4OjRo4iNjUVUVBTc3d07sWVEJFUWJUby8vIQExODwsJCaDQa6PV6hIaGoqamRqyzdOlSfPrpp8jIyEBeXh4uX76MGTNmiPMbGhoQERGB69ev49ixY9i6dSu2bNmC1157re1aRUTUQfLz8zFlyhS4u7vDysoKe/fuNZk/d+5cWFlZmfxNmjTJpM6VK1cwa9YsKBQKODs7Y/78+bh27VoHtoKIiIiIiIio/Zw6dQojR47EyJEjAQBxcXEYOXIkXnvtNdjY2OD06dN47LHHcP/992P+/PkICAjAv//9b5OusLZv344hQ4YgKCgIkydPxtixY/HBBx90VpOISOIsGmMkKyvLZHrLli1wdXVFUVERxo0bh6qqKmzatAnp6emYOHEiAGDz5s3w8fFBYWEhAgMDkZOTg/PnzyM3NxdKpRL+/v5ISkrC8uXLkZCQAFtb27ZrHRFRO6upqcGIESPwzDPPmCSBbzZp0iRs3rxZnL61j9NZs2ahrKxMTDjPmzcPCxcuRHp6ervGTkRERERERNQRxo8fD0EQbjs/Ozv7jutwcXHhdTIRtZlWDb5eVVUF4MaBCQCKioqg1+sRHBws1hkyZAj69++PgoICBAYGoqCgAH5+flAqlWKdsLAwLFq0COfOnRMzxzfT6XTQ6XTitHF0eb1eD71e32yMxvly69sffLuqO7Xt1nrm1m9Pcpv22c7G76+9vseusO0s/R7ba1u3J+P3Z04bu8J3Yo7w8HCEh4c3W0cul992MLivvvoKWVlZOHnyJEaNGgUAWL9+PSZPnox33nmHrwQTERERERERERG1sRYnRgwGA5YsWYIxY8Zg2LBhAACtVgtbW1s4Ozub1FUqldBqtWKdm5MixvnGeU1JTk7GypUrG5Xn5OTA3t7erHiTRhnMqteVHDhwwKL6Go2mnSIxX8qD7bv+9voeLd3W7cnc77G9t3V7MqeNtbW1HRBJxzhy5AhcXV1x1113YeLEiVi1ahX69u0LACgoKICzs7OYFAGA4OBgWFtb4/jx45g+fXqj9bVFslgqiaebSS0Z2N4JXfqdlLe1pQ9BEBEREREREVHrtTgxEhMTg7Nnz+Lzzz9vy3iaFB8fj7i4OHG6uroanp6eCA0NhUKhaHZZvV4PjUaDV09ZQ2ewau9Q29TZhDCz6hnbGBISAplM1s5RNW9Ywp1ffWwJubWApFGGdvsezd3W7cnS77G9tnV7Mn6P5rTReLNf6iZNmoQZM2bA29sbFy9exCuvvILw8HAUFBTAxsYGWq0Wrq6uJsv06tULLi4u7Zos7gqJVEtJNRkoxcS8VElxW5ubmO9OyWIiIiIiIiKiztaixEhsbCwyMzORn58PDw8PsVylUuH69euorKw0eWukvLxc7EZGpVLhxIkTJusrLy8X5zVFLpc36pMfAGQymdmJAJ3BCroGaSVGLE1yWLI92kt7b+P2+h47e7vdzNzvUWq/55uZ08au9J20RlRUlPj/fn5+GD58OAYMGIAjR44gKCioRetsi2RxV0ikWkpqycD2TujS76S8rc1NzHeXZDERERERERFRV2BRYkQQBCxevBh79uzBkSNH4O3tbTI/ICAAMpkMBw8eRGRkJACgpKQEpaWlUKvVAAC1Wo3Vq1ejoqJCfEpao9FAoVDA19e3LdpERNRl3XfffejXrx8uXLiAoKAgqFQqVFRUmNSpr6/HlStX2jVZ3BUSqZaSajJQiol5qZLitrZknyUiIiIiIiKitmFRYiQmJgbp6enYt28f+vTpI3bz4uTkhN69e8PJyQnz589HXFwcXFxcoFAosHjxYqjVagQGBgIAQkND4evri9mzZyMlJQVarRYrVqxATExMkzf6iIi6kx9//BG//vor3NzcANxIFldWVqKoqAgBAQEAgEOHDsFgMGD06NGdGSoREREREREREVG3ZFFiJC0tDQAwfvx4k/LNmzdj7ty5AIA1a9bA2toakZGR0Ol0CAsLw4YNG8S6NjY2yMzMxKJFi6BWq+Hg4IDo6GgkJia2riVERJ3g2rVruHDhgjh96dIlFBcXw8XFBS4uLli5ciUiIyOhUqlw8eJFvPzyyxg4cCDCwm50n+Pj44NJkyZhwYIF2LhxI/R6PWJjYxEVFQV3d/fOahYREREREREREVG3ZXFXWndiZ2eH1NRUpKam3raOl5eX2YONEhF1ZadOncKECRPEaePYH9HR0UhLS8Pp06exdetWVFZWwt3dHaGhoUhKSjJ5Q2779u2IjY1FUFCQmFh+9913O7wtREREREREREREPUGLBl8nIqIbxo8f32zSODv7zgOGu7i4ID09vS3DIiIiIiIiIiIiotuw7uwAiIiIiIiIiIiIiIiIOgoTI0RERERERERERERE1GMwMUJERERERERERERERD0GEyNERERERERERERERNRjMDFCREREREREREREREQ9BhMjRERERERERERERETUYzAxQkREREREREREREREPUavzg6AiIiIiIioq7r3L/s7OwSLyG0EpDzY2VEQAOTn5+Ptt99GUVERysrKsGfPHkybNk2cLwgCXn/9dXz44YeorKzEmDFjkJaWhkGDBol1rly5gsWLF+PTTz+FtbU1IiMjsW7dOjg6OnZCi4iIiIi6D74xQkRERERERNTGampqMGLECKSmpjY5PyUlBe+++y42btyI48ePw8HBAWFhYairqxPrzJo1C+fOnYNGo0FmZiby8/OxcOHCjmoCERERUbfFN0aIiIiIiIiI2lh4eDjCw8ObnCcIAtauXYsVK1Zg6tSpAICPPvoISqUSe/fuRVRUFL766itkZWXh5MmTGDVqFABg/fr1mDx5Mt555x24u7t3WFuIiIiIuhsmRoiIiIiIiIg60KVLl6DVahEcHCyWOTk5YfTo0SgoKEBUVBQKCgrg7OwsJkUAIDg4GNbW1jh+/DimT5/eaL06nQ46nU6crq6uBgDo9Xro9fpmYzLOv1O9rsYYr9xa6ORIzGeMVUoxA9KMW4oxA7/Ha87+KLV9loioq2BihIiIiIiIiKgDabVaAIBSqTQpVyqV4jytVgtXV1eT+b169YKLi4tY51bJyclYuXJlo/KcnBzY29ubFZtGozGrXleTNMrQ2SFYTIoxA9KMW4oxA+btj7W1tR0QCRFR98PECBEREREREVE3EB8fj7i4OHG6uroanp6eCA0NhUKhaHZZvV4PjUaDkJAQyGSy9g61zRjjfvWUNXQGq84OxyxyawFJowySihmQZtxSjBn4PW5z9kfjm2FERGQZJkaIiIiIiIiIOpBKpQIAlJeXw83NTSwvLy+Hv7+/WKeiosJkufr6ely5ckVc/lZyuRxyubxRuUwmMzvZYUndrkRnsIKuQTo3vgFpxgxIM24pxgyYtz9KcX8lIuoKrDs7ACIiIiIiIqKexNvbGyqVCgcPHhTLqqurcfz4cajVagCAWq1GZWUlioqKxDqHDh2CwWDA6NGjOzxmIqLWyM/Px5QpU+Du7g4rKyvs3bvXZL4gCHjttdfg5uaG3r17Izg4GN98841JnStXrmDWrFlQKBRwdnbG/Pnzce3atQ5sBRF1J0yMEBEREREREbWxa9euobi4GMXFxQBuDLheXFyM0tJSWFlZYcmSJVi1ahX+9a9/4cyZM5gzZw7c3d0xbdo0AICPjw8mTZqEBQsW4MSJEzh69ChiY2MRFRUFd3f3zmsYEVEL1NTUYMSIEUhNTW1yfkpKCt59911s3LgRx48fh4ODA8LCwlBXVyfWmTVrFs6dOweNRoPMzEzk5+dj4cKFHdUEIupm2JUWERERERERURs7deoUJkyYIE4bx/6Ijo7Gli1b8PLLL6OmpgYLFy5EZWUlxo4di6ysLNjZ2YnLbN++HbGxsQgKCoK1tTUiIyPx7rvvdnhbiIhaKzw8HOHh4U3OEwQBa9euxYoVKzB16lQAwEcffQSlUom9e/ciKioKX331FbKysnDy5EmMGjUKALB+/XpMnjwZ77zzDhPGRGQxJkaIiIiIiIiI2tj48eMhCMJt51tZWSExMRGJiYm3rePi4oL09PT2CI+IqMu4dOkStFotgoODxTInJyeMHj0aBQUFiIqKQkFBAZydncWkCAAEBwfD2toax48fx/Tp0xutV6fTQafTidPGger1ej30en2zMRnn36leV2OMV259+39/uhpjrFKKGZBm3FKMGfg9XnP2R0v2WSZGiIiIiIiIiIiIqFNotVoAgFKpNClXKpXiPK1WC1dXV5P5vXr1gouLi1jnVsnJyVi5cmWj8pycHNjb25sVm0ajMateV5M0ytDZIVhMijED0oxbijED5u2PtbW1Zq+PiREiIiIiIiIiIiLqVuLj48VuDIEbb4x4enoiNDQUCoWi2WX1ej00Gg1CQkIgk8naO9Q2Y4z71VPW0BmsOjscs8itBSSNMkgqZkCacUsxZuD3uM3ZH41vhpmDiREiolbIz8/H22+/jaKiIpSVlWHPnj3igJnAjb5SX3/9dXz44YeorKzEmDFjkJaWhkGDBol1rly5gsWLF+PTTz8V+45et24dHB0dO6FFRERERERERB1HpVIBAMrLy+Hm5iaWl5eXw9/fX6xTUVFhslx9fT2uXLkiLn8ruVwOuVzeqFwmk5md7LCkbleiM1hB1yCdG9+ANGMGpBm3FGMGzNsfLdlfrVsbEBFRT1ZTU4MRI0YgNTW1yfkpKSl49913sXHjRhw/fhwODg4ICwtDXV2dWGfWrFk4d+4cNBoNMjMzkZ+fj4ULF3ZUE4iIiIiIiIg6jbe3N1QqFQ4ePCiWVVdX4/jx41Cr1QAAtVqNyspKFBUViXUOHToEg8GA0aNHd3jMRCR9fGOEiKgVwsPDER4e3uQ8QRCwdu1arFixAlOnTgUAfPTRR1Aqldi7dy+ioqLw1VdfISsrCydPnhQHkVu/fj0mT56Md955B+7u7h3WFiIiIiIiIqL2cO3aNVy4cEGcvnTpEoqLi+Hi4oL+/ftjyZIlWLVqFQYNGgRvb2+8+uqrcHd3F3tk8PHxwaRJk7BgwQJs3LgRer0esbGxiIqK4nUzEbUIEyNERO3k0qVL0Gq1CA4OFsucnJwwevRoFBQUICoqCgUFBXB2dhaTIgAQHBwMa2trHD9+HNOnT2+0Xp1OB51OJ04b+0/U6/XQ6/XNxmScf6d6XZHcRujsECwitxZM/kvtR8rb2tx9UYr7LBERERGR0alTpzBhwgRx2jj2R3R0NLZs2YKXX34ZNTU1WLhwISorKzF27FhkZWXBzs5OXGb79u2IjY1FUFCQ2A31u+++2+FtIaLugYkRIqJ2otVqAQBKpdKkXKlUivO0Wi1cXV1N5vfq1QsuLi5inVslJydj5cqVjcpzcnJgb29vVmwajcasel1JyoOdHUHLJI0ydHYIPYYUt/WBAwfMqldbW9vOkRARERERtZ/x48dDEG7/IJOVlRUSExORmJh42zouLi5IT09vj/CIqAdiYoSISGLi4+PFp2uAG2+MeHp6IjQ0FAqFotll9Xo9NBoNQkJCJDeA3LCE7M4OwSJyawFJowx49ZQ1dAbpDWomJVLe1mcTwsyqZ3wzrKvLz8/H22+/jaKiIpSVlWHPnj1i9wfAjS4GX3/9dXz44YeorKzEmDFjkJaWhkGDBol1rly5gsWLF+PTTz8VnwRct24dHB0dO6FFRERERERE1B0xMUJE1E5UKhUAoLy8HG5ubmJ5eXk5/P39xToVFRUmy9XX1+PKlSvi8reSy+WQy+WNymUymdnJDkvqdhW6Bmnd8DbSGawkG7vUSHFbW7LPSkFNTQ1GjBiBZ555BjNmzGg0PyUlBe+++y62bt0q9h0dFhaG8+fPi90kzJo1C2VlZdBoNNDr9Zg3bx4WLlzIpwOJiIiIiIiozVh3dgBERN2Vt7c3VCoVDh48KJZVV1fj+PHjUKvVAAC1Wo3KykoUFRWJdQ4dOgSDwYDRo0d3eMxERK0RHh6OVatWNTk+kiAIWLt2LVasWIGpU6di+PDh+Oijj3D58mXs3bsXAPDVV18hKysL//jHPzB69GiMHTsW69evx44dO3D58uUObg0RERERERF1V3xjhIioFa5du4YLFy6I05cuXUJxcTFcXFzQv39/LFmyBKtWrcKgQYPEp6Pd3d3FrmV8fHwwadIkLFiwABs3boRer0dsbCyioqLg7u7eSa0iImp7ly5dglarRXBwsFjm5OSE0aNHo6CgAFFRUSgoKICzszNGjRol1gkODoa1tTWOHz/eZMJFp9NBp9OJ08Zux/R6/R0HrTfOl+Lg9nKb2/fR3RXJrQWT/1L7kfK2NndflOI+S0RERERdCxMjREStcOrUKUyYMEGcNo79ER0djS1btuDll19GTU0NFi5ciMrKSowdOxZZWVlilzEAsH37dsTGxiIoKEjsT//dd9/t8LYQEbUnrVYLAFAqlSblSqVSnKfVauHq6moyv1evXnBxcRHr3Co5ORkrV65sVJ6TkwN7e3uzYtNoNGbV60pSHuzsCFomaZShs0PoMaS4rQ8cOGBWvdra2naOhIiIiIi6OyZGiIhaYfz48RCE2z+RaWVlhcTERCQmJt62jouLC/vOJyJqofj4eDEpDdx4Y8TT0xOhoaFQKBTNLqvX66HRaBASEiKZcVyMhiVkd3YIFpFbC0gaZcCrp6yhM0hrLCCpkfK2PpsQZlY945thREREREQtxcQIEREREbU7lUoFACgvL4ebm5tYXl5eDn9/f7FORUWFyXL19fW4cuWKuPyt5HI55HJ5o3KZTGbR4PZSS4zoGqR1w9tIZ7CSbOxSI8Vtbck+S0RERETUGhx8nYiIiIjanbe3N1QqFQ4ePCiWVVdX4/jx41Cr1QAAtVqNyspKFBUViXUOHToEg8GA0aNHd3jMRERERERE1D3xjREiIiIiahPXrl3DhQsXxOlLly6huLgYLi4u6N+/P5YsWYJVq1Zh0KBB8Pb2xquvvgp3d3dMmzYNAODj44NJkyZhwYIF2LhxI/R6PWJjYxEVFQV3d/dOahURERERERF1N0yMEBEREVGbOHXqFCZMmCBOG8f+iI6OxpYtW/Dyyy+jpqYGCxcuRGVlJcaOHYusrCzY2dmJy2zfvh2xsbEICgqCtbU1IiMj8e6773Z4W4iIiIiIiKj7srgrrfz8fEyZMgXu7u6wsrLC3r17TeYLgoDXXnsNbm5u6N27N4KDg/HNN9+Y1Lly5QpmzZoFhUIBZ2dnzJ8/H9euXWtVQ4iIiIioc40fPx6CIDT627JlCwDAysoKiYmJ0Gq1qKurQ25uLu6//36Tdbi4uCA9PR1Xr15FVVUVV4oREgABAABJREFU/u///g+Ojo6d0BoiIiIiIiLqrixOjNTU1GDEiBFITU1tcn5KSgreffddbNy4EcePH4eDgwPCwsJQV1cn1pk1axbOnTsHjUaDzMxM5OfnY+HChS1vBRERERERERERERERkRks7korPDwc4eHhTc4TBAFr167FihUrMHXqVADARx99BKVSib179yIqKgpfffUVsrKycPLkSYwaNQoAsH79ekyePBnvvPMO+48mIiIiIiIiIiIiIqJ206ZjjFy6dAlarRbBwcFimZOTE0aPHo2CggJERUWhoKAAzs7OYlIEAIKDg2FtbY3jx49j+vTpjdar0+mg0+nE6erqagCAXq+HXq9vNibjfLm10Kq2dYY7te3WeubWb09ym/bZzsbvr72+x66w7Sz9HttrW7cn4/dnThu7wndCRERERERERERE3U+bJka0Wi0AQKlUmpQrlUpxnlarhaurq2kQvXrBxcVFrHOr5ORkrFy5slF5Tk4O7O3tzYotaZTBrHpdyYEDByyqr9Fo2ikS86U82L7rb6/v0dJt3Z7M/R7be1u3J3PaWFtb2wGREBERERERERERUU/TpomR9hIfH4+4uDhxurq6Gp6enggNDYVCoWh2Wb1eD41Gg1dPWUNnsGrvUNvU2YQws+oZ2xgSEgKZTNbOUTVvWEJ2u6xXbi0gaZSh3b5Hc7d1e7L0e2yvbd2ejN+jOW00vhlGRERERERERERE1JbaNDGiUqkAAOXl5XBzcxPLy8vL4e/vL9apqKgwWa6+vh5XrlwRl7+VXC6HXC5vVC6TycxOBOgMVtA1SCsxYmmSw5Lt0V7aexu31/fY2dvtZuZ+j1L7Pd/MnDZ2pe+EiIiIiIiIiIiIug/rtlyZt7c3VCoVDh48KJZVV1fj+PHjUKvVAAC1Wo3KykoUFRWJdQ4dOgSDwYDRo0e3ZThEREREREREREREREQmLH5j5Nq1a7hw4YI4fenSJRQXF8PFxQX9+/fHkiVLsGrVKgwaNAje3t549dVX4e7ujmnTpgEAfHx8MGnSJCxYsAAbN26EXq9HbGwsoqKi4O7u3mYNIyIiIiIiIiIiIiIiupXFb4ycOnUKI0eOxMiRIwEAcXFxGDlyJF577TUAwMsvv4zFixdj4cKFeOCBB3Dt2jVkZWXBzs5OXMf27dsxZMgQBAUFYfLkyRg7diw++OCDNmoSERERERERUdeWkJAAKysrk78hQ4aI8+vq6hATE4O+ffvC0dERkZGRKC8v78SIiYiIiLoPi98YGT9+PARBuO18KysrJCYmIjEx8bZ1XFxckJ6ebulHExEREREREXUbQ4cORW5urjjdq9fvl+hLly7F/v37kZGRAScnJ8TGxmLGjBk4evRoZ4RKRERE1K206eDrRERERERERGSeXr16QaVSNSqvqqrCpk2bkJ6ejokTJwIANm/eDB8fHxQWFiIwMLCjQyUiIiLqVtp08HUiIiIiIiIiMs8333wDd3d33HfffZg1axZKS0sBAEVFRdDr9fj/7N19XFRl/v/xNyAMIg7kDaCJaFYa3i+mUqZuKqRmmbZltkpmWoa1SndLWyqZUdZuta1pba363XIt26w0U9C8qcS8KcubzU1Xs1KgNMGbHEc4vz/8zejI3QzCDGfm9Xw8fDycM9ec+Zxr5nyYcz7nXFf//v2dbdu1a6eWLVsqLy/PV+ECAAD4De4YAQAAAADAy3r06KF58+apbdu2OnjwoLKysnTNNddo+/btys/PV1hYmKKjo11eExsbq/z8/ArXabPZZLPZnI+Li4slSXa7XXa7vdJ4HM9X1a6uccRrCa54yO+6xhGrmWKWzBm3GWOWzsbrzv5otn22ItOmTVNWVpbLsrZt2+qbb76RdGbepQceeEALFy6UzWZTamqqXn75ZcXGxvoiXAB+gMIIAAAAAABeNnDgQOf/O3XqpB49eighIUFvv/226tevX611ZmdnlzmxKEk5OTmKiIhwax25ubnVem9fm96t1NcheMyMMUvmjNuMMUvu7Y8nTpzwQiTewbxLALyJwggAAAAAAD4WHR2tyy+/XLt379aAAQN06tQpHTlyxOWukYKCgnLnJHHIzMxURkaG83FxcbHi4+OVkpIiq9Va6fvb7Xbl5uZqwIABCg0NveDt8RZH3I9vDpatNMjX4bjFEmxoerdSU8UsmTNuM8YsnY3bnf3RcWeYP2DeJQDeRGEEAGoRtwMDAADAHceOHdOePXs0atQoJSUlKTQ0VKtWrdLw4cMlSbt27dL+/fuVnJxc4TosFossFkuZ5aGhoW4XOzxpW5fYSoNkKzHPiW/JnDFL5ozbjDFL7u2PZtxfK+KYdyk8PFzJycnKzs5Wy5Ytq5x3qaLCCMMLmoPZh7wzU9xmjFmqveEFKYwAQC3jdmAAAACc78EHH9SQIUOUkJCgAwcOaOrUqQoJCdFtt92mqKgojR07VhkZGWrUqJGsVqvuu+8+JScnc2U0AL9UG/MuMbyguZgxZsmccZsxZqnmhxekMAIAtYzbgQEAAHC+H374QbfddpsOHTqkpk2bqlevXtqwYYOaNm0qSXr++ecVHBys4cOHu9xZDAD+qDbmXWJ4QXPcJWX2Ie/MFLcZY5Zqb3hBCiMAUMu4HbhmWELMeaun2W5RNSMz97W7+6IZ91kAQOUWLlxY6fPh4eGaNWuWZs2a5aWIAKDuqIl5lxhe0DwnviVzxiyZM24zxizV/PCCFEYAoBZxO3DNmdnd1xFUj1lvUTUjM/b1smXL3Grnye3AAAAAgNnVxLxLAFAZCiMAUIu4HbjmdJi2wtcheMSst6iakZn7evu0VLfaeXI7MAAAAGA2zLsEwNsojACAF3E7cPWZ8TZPyby3qJqRGfvak30WAAAA8FfMuwTA2yiMAIAXcTswAAAAAACumHcJgLdRGAGAWsTtwAAAADCTDtNWmOoOTEuIYdq56AAAgO9QGAGAWsTtwAAAAAAAAEDdQmEEAGoRtwMDAAAAAAAAdQuFEQAAAAQ0sw0bAwAAAAC4MMG+DgAAAAAAAAAAAMBbKIwAAAAAAAAAAICAwVBaABCAGDYGAAAAAAAAgYo7RgAAAAAAAAAAQMDgjhEAAAAAAAAAOI/ZRluwhBia2d3XUQDmwB0jAAAAAAAAAAAgYFAYAQAAAAAAAAAAAYPCCAAAAAAAAAAACBgURgAAAAAAAAAAQMCgMAIAAAAAAAAAAAIGhREAAAAAAAAAABAwKIwAAAAAAAAAAICAQWEEAAAAAAAAAAAEDAojAAAAAAAAAAAgYFAYAQAAAAAAAAAAAYPCCAAAAAAAAAAACBgURgAAAAAAAAAAQMCgMAIAAAAAAAAAAAIGhREAAAAAAAAAABAwfFoYmTVrllq1aqXw8HD16NFDGzdu9GU4AOBT5EQAOIN8CABnkRMB4CxyIoCa4rPCyFtvvaWMjAxNnTpVX3zxhTp37qzU1FQVFhb6KiQA8BlyIgCcQT4EgLPIiQBwFjkRQE3yWWHkL3/5i8aNG6cxY8YoMTFRc+bMUUREhP7xj3/4KiQA8BlyIgCcQT4EgLPIiQBwFjkRQE3ySWHk1KlT2rJli/r37382kOBg9e/fX3l5eb4ICQB8hpwIAGeQDwHgLHIiAJxFTgRQ0+r54k1//vlnlZSUKDY21mV5bGysvvnmmzLtbTabbDab83FRUZEk6fDhw7Lb7ZW+l91u14kTJ1TPHqyS0qAaiN57Dh065FY7xzYeOnRIoaGhtRxV5eqdPl476y01dOJEaa19ju72dW3y9HOsrb6uTY7P0Z1tPHr0qCTJMAxvhOZT5ET/VNt5C2eZua/d/fsTKDnR03wokRPNwsz7qdmYua/Jia7Iie4x43fejDFL5ozbjDFLHDuXh5zoHjN+580Ys2TOuM0Ys1R7OdEnhRFPZWdnKysrq8zy1q1b+yAa72nyZ19HULeMrMV109fe4+nnePToUUVFRdVKLGYVqDnRjGozb8GVWfva078/5MSyyInmYdb91IzM2tfkxAsXqDnRjN95M8YsmTNuM8YscexcE8iJ5mHGmCVzxm3GmKXayYk+KYw0adJEISEhKigocFleUFCguLi4Mu0zMzOVkZHhfFxaWqrDhw+rcePGCgqqvLpVXFys+Ph4ff/997JarTWzAXUM2+gf2EZXhmHo6NGjat68uZei8x1yon+ir70nEPo6UHKip/lQIieaBX3tPYHQ1+REcuK5zBi3GWOWzBm3GWOWOHYuDznRPWaM24wxS+aM24wxS7WXE31SGAkLC1NSUpJWrVqloUOHSjqTnFatWqWJEyeWaW+xWGSxWFyWRUdHe/SeVqvVVB94dbCN/oFtPCtQrnYhJ/o3+tp7/L2vAyEnepoPJXKi2dDX3uPvfU1OJCeez4xxmzFmyZxxmzFmiWPnc5ETPWPGuM0Ys2TOuM0Ys1TzOdFnQ2llZGQoLS1N3bp1U/fu3fXCCy/o+PHjGjNmjK9CAgCfIScCwBnkQwA4i5wIAGeREwHUJJ8VRm699Vb99NNPmjJlivLz89WlSxctX768zCRKABAIyIkAcAb5EADOIicCwFnkRAA1yaeTr0+cOLHC291qisVi0dSpU8vcOudP2Eb/wDaCnOhf6Gvvoa/9jzfyocR3x5voa++hr/0PObFyZozbjDFL5ozbjDFL5o3bG8iJlTNj3GaMWTJn3GaMWaq9uIMMwzBqdI0AAAAAAAAAAAB1VLCvAwAAAAAAAAAAAPAWCiMAAAAAAAAAACBgUBgBAAAAAAAAAAABw/SFkXXr1mnIkCFq3ry5goKC9N5771X5mjVr1ug3v/mNLBaLLr30Us2bN6/W47wQnm7jmjVrFBQUVOZffn6+dwL2UHZ2tq688ko1bNhQMTExGjp0qHbt2lXl6xYtWqR27dopPDxcHTt21LJly7wQbfVUZxvnzZtX5jMMDw/3UsSemz17tjp16iSr1Sqr1ark5GR99NFHlb7GTJ+hv5g1a5ZatWql8PBw9ejRQxs3bvR1SH6nujkNF+7pp59WUFCQJk2a5OtQYBLkxNpHTvQdciI8ZbacWJ1zAb5m1pxYnWO9usYMOXHatGllzgG0a9fO12EFLHJi7SMn+g458QzTF0aOHz+uzp07a9asWW6137t3rwYPHqzf/va32rp1qyZNmqS77rpLK1asqOVIq8/TbXTYtWuXDh486PwXExNTSxFemLVr1yo9PV0bNmxQbm6u7Ha7UlJSdPz48Qpfs379et12220aO3asvvzySw0dOlRDhw7V9u3bvRi5+6qzjZJktVpdPsPvvvvOSxF7rkWLFnr66ae1ZcsWbd68Wddee61uvPFG7dixo9z2ZvsM/cFbb72ljIwMTZ06VV988YU6d+6s1NRUFRYW+jo0v1Ld/R0XZtOmTXrllVfUqVMnX4cCkyAnegc50TfIifCUGXNidY+TfcmsOdHTY726xkw5sX379i7nAD799FNfhxSQyIneQU70DXLiOQw/IslYvHhxpW0efvhho3379i7Lbr31ViM1NbUWI6s57mzj6tWrDUnGL7/84pWYalphYaEhyVi7dm2FbW655RZj8ODBLst69Ohh3H333bUdXo1wZxvnzp1rREVFeS+oWnDRRRcZr732WrnPmf0zNKPu3bsb6enpzsclJSVG8+bNjezsbB9G5f/c2d9xYY4ePWpcdtllRm5urtGnTx/jD3/4g69DggmQE32DnFj7yImoDrPnRHeOk+siM+fEyo716hIz5cSpU6canTt39nUYMMiJvkJOrH3kRFemv2PEU3l5eerfv7/LstTUVOXl5fkootrTpUsXNWvWTAMGDNBnn33m63DcVlRUJElq1KhRhW3M/jm6s42SdOzYMSUkJCg+Pt5U1eeSkhItXLhQx48fV3JycrltzP4Zms2pU6e0ZcsWlz4PDg5W//796fNa5u7+jupLT0/X4MGDy+QUoCLkRN8hJ9Y+ciI8RU70HTPmRHeO9eoSs+XEb7/9Vs2bN9cll1yi22+/Xfv37/d1SAGHnOg75MTaR050Va9G12YC+fn5io2NdVkWGxur4uJi/frrr6pfv76PIqs5zZo105w5c9StWzfZbDa99tpr6tu3rz7//HP95je/8XV4lSotLdWkSZN09dVXq0OHDhW2q+hzrKvzqJzL3W1s27at/vGPf6hTp04qKirSc889p6uuuko7duxQixYtvBix+7Zt26bk5GSdPHlSkZGRWrx4sRITE8tta+bP0Ix+/vlnlZSUlNvn33zzjY+i8n/u7u+ovoULF+qLL77Qpk2bfB0KTISc6BvkxNpHTkR1kBN9w2w50ZNjvbrCbDmxR48emjdvntq2bauDBw8qKytL11xzjbZv366GDRv6OryAQU70DXJi7SMnlhVwhZFA0LZtW7Vt29b5+KqrrtKePXv0/PPP65///KcPI6taenq6tm/f7tfjaLq7jcnJyS7V5quuukpXXHGFXnnlFU2fPr22w6yWtm3bauvWrSoqKtI777yjtLQ0rV27ts7/cQBqSyDkNF/6/vvv9Yc//EG5ubkKDw/3dTgAqkBOrF3kRMBczJYTzXasZ8acOHDgQOf/O3XqpB49eighIUFvv/22xo4d68PIgNpHTqxd5MTyBVxhJC4uTgUFBS7LCgoKZLVa/eJukYp07969zieXiRMnaunSpVq3bl2Vd0RU9DnGxcXVZogXzJNtPF9oaKi6du2q3bt311J0Fy4sLEyXXnqpJCkpKUmbNm3Siy++qFdeeaVMW7N+hmbVpEkThYSE0OdedCH7O9yzZcsWFRYWutwNWVJSonXr1ulvf/ubbDabQkJCfBgh6ipyoveRE2sfORHVRU70PjPmRE+O9eoCf8iJ0dHRuvzyy+v0OQB/RE70PnJi7SMnli/g5hhJTk7WqlWrXJbl5uaaYhy4C7F161Y1a9bM12GUyzAMTZw4UYsXL9bHH3+s1q1bV/kas32O1dnG85WUlGjbtm119nMsT2lpqWw2W7nPme0zNLuwsDAlJSW59HlpaalWrVpFn9ewmtjf4Z5+/fpp27Zt2rp1q/Nft27ddPvtt2vr1q11/ocdfIec6D3kRO8hJ6K6yIne4085sbJjvbrAH3LisWPHtGfPHlOdA/AH5ETvISd6DzmxfKa/Y+TYsWMulaK9e/dq69atatSokVq2bKnMzEz9+OOP+r//+z9J0j333KO//e1vevjhh3XnnXfq448/1ttvv60PP/zQV5tQJU+38YUXXlDr1q3Vvn17nTx5Uq+99po+/vhj5eTk+GoTKpWenq4FCxbo/fffV8OGDZ1zTERFRTnv4hk9erQuvvhiZWdnS5L+8Ic/qE+fPvrzn/+swYMHa+HChdq8ebNeffVVn21HZaqzjU888YR69uypSy+9VEeOHNGzzz6r7777TnfddZfPtqMymZmZGjhwoFq2bKmjR49qwYIFWrNmjVasWCHJ/J+hP8jIyFBaWpq6deum7t2764UXXtDx48c1ZswYX4fmV9zZ31EzGjZsWGb82QYNGqhx48amGJcWvkVO9A5yoveQE3EhzJgTqzpOrovMmhOrOtari8yYEx988EENGTJECQkJOnDggKZOnaqQkBDddtttvg4t4JATvYOc6D3kxAoYJrd69WpDUpl/aWlphmEYRlpamtGnT58yr+nSpYsRFhZmXHLJJcbcuXO9HrcnPN3GZ555xmjTpo0RHh5uNGrUyOjbt6/x8ccf+yZ4N5S3bZJcPpc+ffo4t9fh7bffNi6//HIjLCzMaN++vfHhhx96N3APVGcbJ02aZLRs2dIICwszYmNjjUGDBhlffPGF94N305133mkkJCQYYWFhRtOmTY1+/foZOTk5zufN/hn6i5deesn5verevbuxYcMGX4fkd9zZ31F7+vTpY/zhD3/wdRgwCXJi7SMn+hY5EZ4wW06s6ji5LjJrTqzqWM8s6npOvPXWW41mzZoZYWFhxsUXX2zceuutxu7du30dVsAiJ9Y+cqJvkRMNI8gwDKPmyiwAAAAAAAAAAAB1V8DNMQIAAAAAAAAAAAIXhREAAAAAAAAAABAwKIwAAAAAAAAAAICAQWEEAAAAAAAAAAAEDAojAAAAAAAAAAAgYFAYAQAAAAAAAAAAAYPCCAAAAAAAAAAACBgURgAAAAAAAAAAQMCgMAIAAAAAAAAAAAIGhREAAAAAAAAAABAwKIwAAAAAAAAAAICAQWEEAAAAAAAAAAAEDAojAAAAAAAAAAAgYFAYAQAAAAAAAAAAAYPCCAAAAAAAAAAACBgURgAAAAAAAAAAQMCgMAIAAAAAAAAAAAIGhREAAAAAAAAAABAwKIwAAAAAAAAAAICAQWEEAAAAAAAAAAAEDAojAAAAAAAAAAAgYFAYAQAAAAAAAAAAAYPCCAAAAAAAAAAACBgURgAAAAAAAAAAQMCgMAIAAAAAAAAAAAIGhREAAAAAAAAAABAwKIwAAAAAAAAAAICAQWEEAAAAAAAAAAAEDAojAAAAAAAAAAAgYFAYAQAAAAAAAAAAAYPCCAAAAAAAAAAACBgURlAnLV++XF26dFF4eLiCgoJ05MgRX4cEwI9MmzZNQUFB+vnnn732nkFBQZo2bZrX3s+XAmlbgbpo3759CgoK0rx583zy/v6SA7799lulpKQoKipKQUFBeu+993wdEoAA1bdvX/Xt27dW1t2qVSvdcccdtbLuyvj6bxVQl/nieLUuq80cWFfUxjY6vke+dscddygyMtKttt4+jqAwgjrn0KFDuuWWW1S/fn3NmjVL//znP9WgQQO3X79+/XpNmzaNYgoAAACqLS0tTdu2bdOMGTP0z3/+U926dfN1SADqsAULFuiFF17wdRgAqolzSRfG7DnQrJ//iRMnNG3aNK1Zs8bXoZhSPV8HAJxv06ZNOnr0qKZPn67+/ft7/Pr169crKytLd9xxh6Kjo2s+QACohl9//VX16vFnF4D/84d89+uvvyovL09/+tOfNHHiRF+HA8AEFixYoO3bt2vSpEm+DgVANXAu6cKYPQea9fM/ceKEsrKyJKnMHSePPfaY/vjHP/ogqurz9nEEd4ygziksLJQkUyUiAKhKeHi46U8UAoA7zJzvTp48qdLSUv3000+Savb36PHjx2tsXQAAABfqxIkTvg7Bb9WF33316tVTeHi4r8PwiLePIyiMoMYcPXpUkyZNUqtWrWSxWBQTE6MBAwboiy++kCR98skn+t3vfqeWLVvKYrEoPj5ekydP1q+//upcR9++fZWWliZJuvLKKxUUFOQy3unnn3+u6667TlFRUYqIiFCfPn302WefOZ+fNm2aHnroIUlS69atFRQUpKCgIO3bt099+vRR586dy429bdu2Sk1NrekuAVDH/fzzz7rllltktVrVuHFj/eEPf9DJkyedz8+dO1fXXnutYmJiZLFYlJiYqNmzZ5dZz+bNm5WamqomTZqofv36at26te68806XNuWNlfnjjz9q7Nixat68uSwWi1q3bq0JEybo1KlTbm9DUFCQJk6cqPfee08dOnSQxWJR+/bttXz58jJtf/zxR915552KjY11tvvHP/5Rpp3NZtPUqVN16aWXOvP1ww8/LJvNVqbd5MmT1bRpUzVs2FA33HCDfvjhhzLrq+rvA+APvvvuO917771q27at6tevr8aNG+t3v/ud9u3bV6btkSNHNHnyZOc+0aJFC40ePdo5jvSpU6c0ZcoUJSUlKSoqSg0aNNA111yj1atXl7uuO+64Q1FRUYqOjlZaWlqFQwB88803uvnmm9WoUSOFh4erW7du+uCDD1zazJs3T0FBQfr00091//33q2nTpoqOjtbdd9+tU6dO6ciRIxo9erQuuugiXXTRRXr44YdlGIbLOmo737355ptq27atwsPDlZSUpHXr1pVp606+W7NmjYKCgrRw4UI99thjuvjiixUREaGMjAwlJCRIkh566CEFBQWpVatWztd9+eWXGjhwoKxWqyIjI9WvXz9t2LCh3H5cu3at7r33XsXExKhFixaSzvze7dChg77++mv16dNHERERuvTSS/XOO+9IktauXasePXqofv36atu2rVauXOmybne/a44YPvvsM2VkZKhp06Zq0KCBbrrpJmfh51wfffSR+vTpo4YNG8pqterKK6/UggULXNpU9Vsc8GeV/Z7p27evPvzwQ3333XfOY1BH3nDsi+fvo44cdP7wJ6+++qratGmj+vXrq3v37vrkk09cnj927JgaNGigP/zhD2Vi/OGHHxQSEqLs7OwL2tb//e9/+t3vfqdGjRopIiJCPXv21IcffujSprb+VgG+UNm5JEl64403lJSUpPr166tRo0YaMWKEvv/+e5d1uHPOy+Gbb77RLbfcoqZNmzr/3v/pT38q086x70RHRysqKkpjxowpt5jhTnyO3x9btmxR7969FRERoUcffdSt/qnqeM6bOdDB3WNWd46Xq/r8q+KYQ2PPnj0aNGiQGjZsqNtvv12SVFpaqhdeeEHt27dXeHi4YmNjdffdd+uXX36pdJ3u5Nh9+/apadOmkqSsrCxn3I7f4eXNMXL69GlNnz5dbdq0kcViUatWrfToo4+W6bdWrVrp+uuv16effqru3bsrPDxcl1xyif7v//7PpZ3dbldWVpYuu+wyhYeHq3HjxurVq5dyc3PLbNOPP/6ooUOHKjIyUk2bNtWDDz6okpISlzbnH0c4tsGxz1R07qa6zHkpF+qke+65R++8844mTpyoxMREHTp0SJ9++qn+85//6De/+Y0WLVqkEydOaMKECWrcuLE2btyol156ST/88IMWLVokSfrTn/6ktm3b6tVXX9UTTzyh1q1bq02bNpKkjz/+WAMHDlRSUpKmTp2q4OBg50nLTz75RN27d9ewYcP03//+V//617/0/PPPq0mTJpKkpk2batSoURo3bpy2b9+uDh06OOPetGmT/vvf/+qxxx7zfqcB8KlbbrlFrVq1UnZ2tjZs2KC//vWv+uWXX5x/7GfPnq327dvrhhtuUL169bRkyRLde++9Ki0tVXp6uqQzd7mlpKSoadOm+uMf/6jo6Gjt27dP7777bqXvfeDAAXXv3l1HjhzR+PHj1a5dO/3444965513dOLECYWFhbm9HZ9++qneffdd3XvvvWrYsKH++te/avjw4dq/f78aN24sSSooKFDPnj2dPwybNm2qjz76SGPHjlVxcbHzlufS0lLdcMMN+vTTTzV+/HhdccUV2rZtm55//nn997//dZl8+K677tIbb7yhkSNH6qqrrtLHH3+swYMHl4mvqr8PgD/YtGmT1q9frxEjRqhFixbat2+fZs+erb59+2rnzp2KiIiQdOaE1jXXXKP//Oc/uvPOO/Wb3/xGP//8sz744AP98MMPatKkiYqLi/Xaa6/ptttu07hx43T06FG9/vrrSk1N1caNG9WlSxdJkmEYuvHGG/Xpp5/qnnvu0RVXXKHFixc7LzI5144dO3T11Vfr4osv1h//+Ec1aNBAb7/9toYOHap///vfuummm1za33fffYqLi1NWVpY2bNigV199VdHR0Vq/fr1atmypp556SsuWLdOzzz6rDh06aPTo0RX2TU3mu7Vr1+qtt97S/fffL4vFopdfflnXXXedNm7c6Px9526+c5g+fbrCwsL04IMPymazadCgQWrVqpUmT56s2267TYMGDXJOGLljxw5dc801slqtevjhhxUaGqpXXnlFffv2dRY0znXvvfeqadOmmjJlisuVg7/88ouuv/56jRgxQr/73e80e/ZsjRgxQm+++aYmTZqke+65RyNHjtSzzz6rm2++Wd9//70aNmwoyf3v2rmf5UUXXaSpU6dq3759euGFFzRx4kS99dZbzjbz5s3TnXfeqfbt2yszM1PR0dH68ssvtXz5co0cOVKSe7/FAX9W2e+ZP/3pTyoqKtIPP/yg559/XpLcnmj2XK+//rruvvtuXXXVVZo0aZL+97//6YYbblCjRo0UHx/vXO9NN92kt956S3/5y18UEhLifP2//vUvGYbhPCFXHQUFBbrqqqt04sQJ3X///WrcuLHmz5+vG264Qe+8847z70Vt/K0CfKWyc0kzZszQ448/rltuuUV33XWXfvrpJ7300kvq3bu3vvzyS+fdpe6c85Kkr7/+Wtdcc41CQ0M1fvx4tWrVSnv27NGSJUs0Y8YMl7huueUWtW7dWtnZ2friiy/02muvKSYmRs8884yzjbvxSWfm9B04cKBGjBih3//+94qNjXWrf6o6nvNmDpQ8O2aVqj5eruzzd9fp06eVmpqqXr166bnnnnP+Hrv77rs1b948jRkzRvfff7/27t2rv/3tb/ryyy/12WefKTQ0tNz1uZNjmzZtqtmzZ2vChAm66aabNGzYMElSp06dKozzrrvu0vz583XzzTfrgQce0Oeff67s7Gz95z//0eLFi13a7t69WzfffLPGjh2rtLQ0/eMf/9Add9yhpKQktW/fXtKZwkV2drbuuusude/eXcXFxdq8ebO++OILDRgwwLmukpISpaamqkePHnruuee0cuVK/fnPf1abNm00YcKEKvu3qnM31WYANSQqKspIT0+v8PkTJ06UWZadnW0EBQUZ3333nXPZ3LlzDUnGpk2bnMtKS0uNyy67zEhNTTVKS0td1tm6dWtjwIABzmXPPvusIcnYu3evy3sdOXLECA8PNx555BGX5ffff7/RoEED49ixY25vKwBzmzp1qiHJuOGGG1yW33vvvYYk46uvvjIMo/y8lZqaalxyySXOx4sXLy6Ts8ojyZg6darz8ejRo43g4OByX3dunquKJCMsLMzYvXu3c9lXX31lSDJeeukl57KxY8cazZo1M37++WeX148YMcKIiopybus///lPIzg42Pjkk09c2s2ZM8eQZHz22WeGYRjG1q1bDUnGvffe69Ju5MiRZba1qr8PgD8oL1/k5eUZkoz/+7//cy6bMmWKIcl49913y7R37PunT582bDaby3O//PKLERsba9x5553OZe+9954hyZg5c6Zz2enTp41rrrnGkGTMnTvXubxfv35Gx44djZMnT7q831VXXWVcdtllzmWO32Hn/+ZKTk42goKCjHvuucflvVq0aGH06dPHJdbazHeSjM2bNzuXfffdd0Z4eLhx0003OZe5m+9Wr15tSDIuueSSMp/f3r17DUnGs88+67J86NChRlhYmLFnzx7nsgMHDhgNGzY0evfu7Vzm6MdevXoZp0+fdllHnz59DEnGggULnMu++eYbQ5IRHBxsbNiwwbl8xYoVZT5Ld79rjhj69+/v0s+TJ082QkJCjCNHjhiGceY3csOGDY0ePXoYv/76q8t6Ha/z5Lc44K+q+j0zePBgIyEhocxyx754/vGpIwetXr3aMAzDOHXqlBETE2N06dLF5W/Aq6++akhyybWO3PDRRx+5rLNTp05lcnJVEhISjLS0NOfjSZMmGZJcfgsePXrUaN26tdGqVSujpKTEMIza+VsF+FJ555L27dtnhISEGDNmzHBpu23bNqNevXouy90959W7d2+jYcOGLssMw/U3keN49dx9yTAM46abbjIaN25crfgcvz/mzJlTWTeUy53jOW/mQHePWQ3D/ePlis4luiMtLc2QZPzxj390Wf7JJ58Ykow333zTZfny5cvLLO/Tp4/LNrqbY3/66acyv70dHN8jB8cx/F133eXS7sEHHzQkGR9//LFzWUJCgiHJWLdunXNZYWGhYbFYjAceeMC5rHPnzsbgwYPL6xYnR/888cQTLsu7du1qJCUluSw7f1vcPXdTXQylhRoTHR2tzz//XAcOHCj3+fr16zv/f/z4cf3888+66qqrZBiGvvzyy0rXvXXrVn377bcaOXKkDh06pJ9//lk///yzjh8/rn79+mndunUqLS2tdB1RUVG68cYbnVfRSGcqlm+99ZaGDh2qBg0aeLjFAMzOcdeHw3333SdJWrZsmSTXvFVUVKSff/5Zffr00f/+9z8VFRVJOjv+/NKlS2W3291639LSUr333nsaMmSIunXrVub58293rUr//v2dd9dJZ64QsVqt+t///ifpzJV6//73vzVkyBAZhuHMoT///LNSU1NVVFTkvA160aJFuuKKK9SuXTuXdtdee60kOW/ddfTR/fff7xJLeZPtVfX3AfAH5+YLu92uQ4cO6dJLL1V0dLTLsHH//ve/1blz5zJ3aEhn9/2QkBDnXRSlpaU6fPiwTp8+rW7durmsa9myZapXr57LVVYhISHOXOZw+PBhffzxx7rlllt09OhR53596NAhpaam6ttvv9WPP/7o8pqxY8e65KIePXrIMAyNHTvW5b26devmzDXlqel8l5ycrKSkJOfjli1b6sYbb9SKFStUUlLiUb5zSEtLc/n8KlJSUqKcnBwNHTpUl1xyiXN5s2bNNHLkSH366acqLi52ec24ceNcruZ2iIyM1IgRI5yP27Ztq+joaF1xxRUud504/n9uH7v7XXMYP368Sz9fc801Kikp0XfffSdJys3N1dGjR/XHP/6xzDjUjtfVxG9xwOxq+/fM5s2bVVhYqHvuucflTjrHEFTn6t+/v5o3b64333zTuWz79u36+uuv9fvf//6C4li2bJm6d++uXr16OZdFRkZq/Pjx2rdvn3bu3Cmp5v9WAXXRu+++q9LSUt1yyy0uvyni4uJ02WWXuQxr5M45r59++knr1q3TnXfeqZYtW7q8V3m/ie655x6Xx9dcc40OHTrk/L3hSXySZLFYNGbMGI/7wRvHc57kQHePWR2qOl6uKeff+bBo0SJFRUVpwIABLnEmJSUpMjKy3KEHHdzNsZ5wHMNnZGS4LH/ggQckqcyQiYmJibrmmmucj5s2baq2bdu69Ft0dLR27Nihb7/9tsr3L+/77O5nUNW5m+piKC3UmJkzZyotLU3x8fFKSkrSoEGDNHr0aOeB4/79+zVlyhR98MEHZcbSc5xgrIhjB6vsdtuioiJddNFFla5n9OjReuutt/TJJ5+od+/eWrlypQoKCjRq1Ch3NhGAn7nssstcHrdp00bBwcHOsUQ/++wzTZ06VXl5eWXGci0qKlJUVJT69Omj4cOHKysrS88//7z69u2roUOHauTIkbJYLOW+708//aTi4mKXYf0uxPk/qiXpoosucuban376SUeOHNGrr76qV199tdx1FBYWSjqTb//zn/9UeNuwo913332n4OBglx+Y0pmTe+er6u8D4A9+/fVXZWdna+7cufrxxx9d5t0493fOnj17NHz48CrXN3/+fP35z3/WN99841J0bd26tfP/3333nZo1a1ZmqILz98Pdu3fLMAw9/vjjevzxx8t9v8LCQl188cXOx+fnFccB6bnDGDiWVzZGck3nu/PztiRdfvnlOnHihH766ScFBwe7ne8czu3Tyvz00086ceJEuXnuiiuuUGlpqb7//nvn0AKVrbtFixZlToBERUWV27+SXPrY3e+aw/mfpeP3smOde/bskaRKP6Oa+i0OmFlt/55xFCvPz3OhoaFl3iM4OFi33367Zs+erRMnTigiIkJvvvmmwsPD9bvf/e6C4zh/WEDpTJ5zPO/IFzX5twqoi7799lsZhlHu7w9JLsMguXPOy3ES2N3fRZX9DbdarR7FJ0kXX3yxR0OYOnjjeM6THOjuMatDVcfLNaFevXrO+eTOjbOoqEgxMTFuxXk+d3KsJxzH8JdeeqnL8ri4OEVHRzs/Awd3+u2JJ57QjTfeqMsvv1wdOnTQddddp1GjRpUZzis8PLzM5+XJZ1DVuZvqojCCGnPLLbfommuu0eLFi5WTk6Nnn31WzzzzjN59912lpKRowIABOnz4sB555BG1a9dODRo00I8//qg77rijyivMHM8/++yzzrFKz+fO+IWpqamKjY3VG2+8od69e+uNN95QXFyc+vfv7/H2AvA/556k2rNnj/r166d27drpL3/5i+Lj4xUWFqZly5bp+eefd+aloKAgvfPOO9qwYYOWLFmiFStW6M4779Sf//xnbdiwoVpjq3qqvKuRJTlPljli/f3vf1/hSS3HD5fS0lJ17NhRf/nLX8ptd/5JO3dU9vdh4MCBHq8PqIvuu+8+zZ07V5MmTVJycrKioqIUFBSkESNGeHwl/RtvvKE77rhDQ4cO1UMPPaSYmBjnZLqOk9iecLz/gw8+qNTU1HLbnH+AVFFeKW/5uSfmfc2TfOfgzt0i1VXRuj3pX8m1jz39rrmzzqrU1G9xwMyq+3umojvjzp9w1lOjR4/Ws88+q/fee0+33XabFixYoOuvv77MldW1pab/VgF1UWlpqYKCgvTRRx9VeAeodGZ/vpBzXhVx5zjPnfgcqvub50KO52ojB3p6zFoTv4WqYrFYFBzsOjBTaWmpYmJiXO7uO1dlc5jUZo51945td/qtd+/e2rNnj95//33l5OTotdde0/PPP685c+borrvuqnJd1eXpXecVoTCCGtWsWTPde++9uvfee1VYWKjf/OY3mjFjhpo1a6b//ve/mj9/vsvknLm5uW6t13FFstVqrbKIUdnOERISopEjR2revHl65pln9N5771U4xAEA//ftt9+6XG2xe/dulZaWqlWrVlqyZIlsNps++OADlyslKrrdtWfPnurZs6dmzJihBQsW6Pbbb9fChQtdfgw4NG3aVFarVdu3b6/5jSpH06ZN1bBhQ5WUlFSZQ9u0aaOvvvpK/fr1qzSfJiQkqLS0VHv27HG54m/Xrl3ltq/o7wOFEfiLd955R2lpafrzn//sXHby5EkdOXLEpV2bNm2q3PffeecdXXLJJXr33Xdd9sOpU6e6tEtISNCqVat07NgxlwPf8/dDx1V2oaGhXr8YpKbzXXm36f/3v/9VRESE8+DS3XznqaZNmyoiIqLcPPfNN98oODi4WsVjT7n7XXOX43f29u3byxTIzm/jzm9xwJ9V9numot9Njiu8z99Hz78yNyEhQdKZPOcYDkY6M2Te3r171blzZ5f2HTp0UNeuXfXmm2+qRYsW2r9/v1566aUL3UQlJCRUmOfOjbOm/1YBvlbePtymTRsZhqHWrVvr8ssvr/C127Ztc+ucl+M3WU39LnI3vppQ1fGcN3Ogu8esnqip9ZyrTZs2Wrlypa6++mqPi1Lu5lhP4nYcw3/77bfOuwAlqaCgQEeOHHF+Bp5q1KiRxowZozFjxujYsWPq3bu3pk2bVu65kOqq7NzNhWCOEdSIkpKSMrfux8TEqHnz5rLZbM7Cw7lVRcMw9OKLL7q1/qSkJLVp00bPPfecjh07Vub5n376yfl/x1whFR0cjho1Sr/88ovuvvtuHTt27ILHYAVgXrNmzXJ57DiYHDhwYLl5q6ioSHPnznV5zS+//FLmShPH1bQ2m63c9w0ODtbQoUO1ZMkSbd68uczzNX31dUhIiIYPH65///vf5f4IPzeH3nLLLfrxxx/197//vUy7X3/9VcePH5ck5w/gv/71ry5tXnjhBZfHVf19APxFSEhImX33pZdeKnM13PDhw/XVV19p8eLFZdbheH15+efzzz9XXl6eS/tBgwbp9OnTmj17tnNZSUlJmRNjMTEx6tu3r1555RUdPHiwzPuemwNqWk3nu7y8PJdxlb///nu9//77SklJUUhIiEf5zlMhISFKSUnR+++/73LbfkFBgRYsWKBevXrJarVWe/2exOHOd81dKSkpatiwobKzs3Xy5EmX5xzv48lvccAfufN7pkGDBuUOZ+coLK5bt85lfecP99etWzc1bdpUc+bM0alTp5zL582bV+mxbU5Ojl544QU1bty4Ri44GTRokDZu3OjyN+f48eN69dVX1apVKyUmJkqq+b9VgK+Vdy5p2LBhCgkJUVZWVpm/vYZh6NChQ5LK3x/KO+fVtGlT9e7dW//4xz+0f//+MuvzlLvxXQh3j+e8mQPdPWb1RFXnEqvjlltuUUlJiaZPn17mudOnT1f6Xu7m2IiICEnuxT1o0CBJZY/ZHXfeDB48uMp1nO/871hkZKQuvfTSGj/Wr+zczYXgjhHUiKNHj6pFixa6+eab1blzZ0VGRmrlypXatGmT/vznP6tdu3Zq06aNHnzwQf3444+yWq3697//7fZYcsHBwXrttdc0cOBAtW/fXmPGjNHFF1+sH3/8UatXr5bVatWSJUskyTkh55/+9CeNGDFCoaGhGjJkiDPJde3aVR06dHBO1vSb3/ymdjoFQJ23d+9e3XDDDbruuuuUl5enN954QyNHjlTnzp0VHh6usLAwDRkyxFlI/fvf/66YmBiXE4vz58/Xyy+/rJtuuklt2rTR0aNH9fe//11Wq9X5w6M8Tz31lHJyctSnTx+NHz9eV1xxhQ4ePKhFixbp008/dU7qXlOefvpprV69Wj169NC4ceOUmJiow4cP64svvtDKlSt1+PBhSWcOsN9++23dc889Wr16ta6++mqVlJTom2++0dtvv60VK1aoW7du6tKli2677Ta9/PLLKioq0lVXXaVVq1Zp9+7dLu9b1d8HwF9cf/31+uc//6moqCglJiYqLy9PK1euVOPGjV3aPfTQQ3rnnXf0u9/9TnfeeaeSkpJ0+PBhffDBB5ozZ446d+6s66+/Xu+++65uuukmDR48WHv37tWcOXOUmJjoclJ6yJAhuvrqq/XHP/5R+/btU2Jiot59991yD0pnzZqlXr16qWPHjho3bpwuueQSFRQUKC8vTz/88IO++uqrWuubmsx3HTp0UGpqqu6//35ZLBa9/PLLkqSsrCxnG3fzXXU8+eSTys3NVa9evXTvvfeqXr16euWVV2Sz2TRz5sxqr9cT7n7X3GW1WvX888/rrrvu0pVXXqmRI0fqoosu0ldffaUTJ05o/vz5Hv0WB/yRO79nkpKS9NZbbykjI0NXXnmlIiMjNWTIELVv3149e/ZUZmamDh8+rEaNGmnhwoU6ffq0y3uEhobqySef1N13361rr71Wt956q/bu3au5c+dWOI7/yJEj9fDDD2vx4sWaMGFCmfkEquOPf/yj/vWvf2ngwIG6//771ahRI82fP1979+7Vv//9b+dQMbXxtwrwpYrOJT355JPKzMzUvn37NHToUDVs2FB79+7V4sWLNX78eD344IMenfP661//ql69euk3v/mNxo8fr9atW2vfvn368MMPtXXrVo9ibtOmjVvxXQh3j+e8mQPdPWb1RFXnEqujT58+uvvuu5Wdna2tW7cqJSVFoaGh+vbbb7Vo0SK9+OKLuvnmm8t9rbs5tn79+kpMTNRbb72lyy+/XI0aNVKHDh3Kncemc+fOSktL06uvvqojR46oT58+2rhxo+bPn6+hQ4fqt7/9rcfbmJiYqL59+yopKUmNGjXS5s2b9c4772jixIker6sylZ27uSAGUANsNpvx0EMPGZ07dzYaNmxoNGjQwOjcubPx8ssvO9vs3LnT6N+/vxEZGWk0adLEGDdunPHVV18Zkoy5c+c6282dO9eQZGzatKnM+3z55ZfGsGHDjMaNGxsWi8VISEgwbrnlFmPVqlUu7aZPn25cfPHFRnBwsCHJ2Lt3r8vzM2fONCQZTz31VI32AwBzmDp1qiHJ2Llzp3HzzTcbDRs2NC666CJj4sSJxq+//ups98EHHxidOnUywsPDjVatWhnPPPOM8Y9//MMlr3zxxRfGbbfdZrRs2dKwWCxGTEyMcf311xubN292eU9JxtSpU12Wfffdd8bo0aONpk2bGhaLxbjkkkuM9PR0w2azub0tkoz09PQyyxMSEoy0tDSXZQUFBUZ6eroRHx9vhIaGGnFxcUa/fv2MV1991aXdqVOnjGeeecZo3769YbFYjIsuushISkoysrKyjKKiIme7X3/91bj//vuNxo0bGw0aNDCGDBlifP/99y7b6s7fB8Af/PLLL8aYMWOMJk2aGJGRkUZqaqrxzTfflLsvHjp0yJg4caJx8cUXG2FhYUaLFi2MtLQ04+effzYMwzBKS0uNp556ykhISDAsFovRtWtXY+nSpUZaWpqRkJBQZl2jRo0yrFarERUVZYwaNcr48ssvy/y+MgzD2LNnjzF69GgjLi7OCA0NNS6++GLj+uuvN9555x1nm4p+hzny5k8//eSyPC0tzWjQoIHLstrOd2+88YZx2WWXOftm9erVZdq6k+9Wr15tSDIWLVpU5vV79+41JBnPPvtsmee++OILIzU11YiMjDQiIiKM3/72t8b69etd2lT2e7ZPnz5G+/btyyxPSEgwBg8eXOF2O7j7XasoBsd2n99vH3zwgXHVVVcZ9evXN6xWq9G9e3fjX//6l0sbd3+LA/7Gnd8zx44dM0aOHGlER0cbklzy9Z49e4z+/fsbFovFiI2NNR599FEjNze33H3x5ZdfNlq3bm1YLBajW7duxrp164w+ffoYffr0KTe2QYMGGZLK5CF3lfd3as+ePcbNN99sREdHG+Hh4Ub37t2NpUuXurSprb9VgC9VdC7p3//+t9GrVy+jQYMGRoMGDYx27doZ6enpxq5du5yvdfecl2EYxvbt242bbrrJuY+1bdvWePzxx53PV/S7y/G3/fxzXO7EV9Hvj6q4ezzn7Rzo7jGrJ8fLVZ1LrEh5v4fP9eqrrxpJSUlG/fr1jYYNGxodO3Y0Hn74YePAgQPONudvoyc5dv369UZSUpIRFhbm8jvc8T06l91uN7KysozWrVsboaGhRnx8vJGZmWmcPHmyTP+U97v0/DiffPJJo3v37kZ0dLRRv359o127dsaMGTOMU6dOVdk/5cV3/nGEu+duqivo/78pEFBefPFFTZ48Wfv27XOZOwAAAAB1U1BQkNLT0/W3v/3N16EAQJ1x0003adu2bWXu2gUAwOymTZumrKws/fTTT2rSpEmNr585RhBwDMPQ66+/rj59+lAUAQAAAACY0sGDB/Xhhx9q1KhRvg4FAADTYY4RBIzjx4/rgw8+0OrVq7Vt2za9//77vg4JACqUn59f6fP169dXVFSUl6IBgNpDvgMAz+zdu1efffaZXnvtNYWGhuruu+8u04bcCqAqx44dc5mvojxNmzZ1TgQeaIqKivTrr79W2iYuLs5L0aA2UBhBwPjpp580cuRIRUdH69FHH9UNN9zg65AAoELNmjWr9Pm0tDTNmzfPO8EAQC0i3wGAZ9auXasxY8aoZcuWmj9/frkn5sitAKry3HPPKSsrq9I2e/fuVatWrbwTUB3zhz/8QfPnz6+0DTNUmBtzjAAAUAetXLmy0uebN2+uxMREL0UDALWHfAcANY/cCqAq//vf//S///2v0ja9evVSeHi4lyKqW3bu3KkDBw5U2qZ///5eiga1gcIIAAAAAAAAAAAIGEy+DgAAAAAAAAAAAoYp5xgpLS3VgQMH1LBhQwUFBfk6HAC1wDAMHT16VM2bN1dwMDXcypATAf9HTnQfORHwf+RE95ETAf9HTnQfORHwf57kRFMWRg4cOKD4+HhfhwHAC77//nu1aNHC12HUaeREIHCQE6tGTgQCBzmxauREIHCQE6tGTgQChzs50ZSFkYYNG0o6s4FWq7XStna7XTk5OUpJSVFoaKg3wqsRZozbjDFL5ozbjDFLnsVdXFys+Ph45/6OigVCTjQj+tp7AqGvyYnuIyfWTfS19wRCX5MT3RcIOdGMcZsxZsmccZsxZolj59pCTqybzBizZM64zRizVHs50ZSFEcftblar1a1EFhERIavVaroP3GxxmzFmyZxxmzFmqXpxc3tr1QIhJ5oRfe09gdTX5MSqkRPrJvraewKpr8mJVQuEnGjGuM0Ys2TOuM0Ys8Sxc20hJ9ZNZoxZMmfcZoxZqr2cyOCDAAAAAAAAAAAgYFAYAQAAAAAAAAAAAYPCCAAAAAAAAAAACBgURgAAAAAAAAAAQMCgMAIAAAAAAAAAAAIGhREAAAAAAAAAABAwKIwAAAAAAAAAqBWzZ89Wp06dZLVaZbValZycrI8++sj5fN++fRUUFOTy75577nFZx/79+zV48GBFREQoJiZGDz30kE6fPu3tTQHgR+r5OgAAAAAAAAAA/qlFixZ6+umnddlll8kwDM2fP1833nijvvzyS7Vv316SNG7cOD3xxBPO10RERDj/X1JSosGDBysuLk7r16/XwYMHNXr0aIWGhuqpp57y+vYA8A8e3TFChRcAAAAAAACAu4YMGaJBgwbpsssu0+WXX64ZM2YoMjJSGzZscLaJiIhQXFyc85/VanU+l5OTo507d+qNN95Qly5dNHDgQE2fPl2zZs3SqVOnfLFJAPyAR3eMUOEF6pYO01bIVhLk6zDcZgkxNLO7r6MA4K/MlhMlad/Tg30dAgA/RU4E6j6z7accz6EmlJSUaNGiRTp+/LiSk5Ody99880298cYbiouL05AhQ/T44487zynm5eWpY8eOio2NdbZPTU3VhAkTtGPHDnXt2tXr24GaR06Et3lUGBkyZIjL4xkzZmj27NnasGGDszDiqPCWx1HhXblypWJjY9WlSxdNnz5djzzyiKZNm6awsLBqbgYAAAAAAACAumjbtm1KTk7WyZMnFRkZqcWLFysxMVGSNHLkSCUkJKh58+b6+uuv9cgjj2jXrl169913JUn5+fkuRRFJzsf5+fkVvqfNZpPNZnM+Li4uliTZ7XbZ7fZK43U8X1W7usaMcTtitQQbPo7EM454zdjXZopZ8ixuT7at2nOMeLPCSyIzBzPGLJkz7kD4o2GmzwMAAAAAAFSsbdu22rp1q4qKivTOO+8oLS1Na9euVWJiosaPH+9s17FjRzVr1kz9+vXTnj171KZNm2q/Z3Z2trKyssosz8nJcRnhpjK5ubnVfn9fMmPc07uV+jqEajFjX5sxZsm9uE+cOOH2+jwujPiiwksiMxczxiyZM25//qPhSSLzldmzZ2v27Nnat2+fJKl9+/aaMmWKBg4cKOnMvEtr1651ec3dd9+tOXPmOB/v379fEyZM0OrVqxUZGam0tDRlZ2erXr1q160BAAAAAKhTwsLCdOmll0qSkpKStGnTJr344ot65ZVXyrTt0aOHJGn37t1q06aN4uLitHHjRpc2BQUFklThqDWSlJmZqYyMDOfj4uJixcfHKyUlxWUOk/LY7Xbl5uZqwIABCg0NdW8j6wAzxu2I+fHNwbKVmmgorWBD07uVmrKvzRSz5Fncjhsq3OHxmTdfVHhJZOaI24wxS+aMOxD+aHiSyHyFeZcAAAAAAPBcaWmpy+gw59q6daskqVmzZpKk5ORkzZgxQ4WFhYqJiZF05oJLq9XqvFi7PBaLRRaLpczy0NBQt8//eNK2LjFj3LbSIFPNMeJgxr42Y8ySe3F7sl0eF0Z8UeElkZkr7q4zPjZVInNMlmTGvvbnPxpm+CyYdwkAAAAAgMplZmZq4MCBatmypY4ePaoFCxZozZo1WrFihfbs2aMFCxZo0KBBaty4sb7++mtNnjxZvXv3VqdOnSRJKSkpSkxM1KhRozRz5kzl5+frscceU3p6ernnCwHAHcEXugJPK7zbtm1TYWGhs407FV4AqOtKSkq0cOHCcuddatKkiTp06KDMzEyXIcIqmnepuLhYO3bs8Gr8AAAAAADUhsLCQo0ePVpt27ZVv379tGnTJq1YsUIDBgxQWFiYVq5cqZSUFLVr104PPPCAhg8friVLljhfHxISoqVLlyokJETJycn6/e9/r9GjR7uMzgAAnvLojhEqvADgyhfzLtlsNpeCtGPYMbvdXuWk9Y7nmdy+9tHX3uPoY0uw4eNIPOfu94PvEQAAAMzq9ddfr/C5+Pj4MnNzlichIUHLli2rybAABDiPCiOOCu/BgwcVFRWlTp06OSu833//vVauXKkXXnhBx48fV3x8vIYPH67HHnvM+XpHhXfChAlKTk5WgwYNlJaWRoUXgGn5Yt6l7OxsZWVllVmek5PjModJZXJzc6v9/vAMfe0907uV+joEj7l7cHfu3WZ11ezZszV79mzt27dPktS+fXtNmTJFAwcOlCT17du3zEHv3XffrTlz5jgf79+/XxMmTNDq1asVGRmptLQ0ZWdnq149j0d/BQAAAACgQh4dZVLhBQBXvph3KTMzUxkZGc7HxcXFio+PV0pKiqxWa6Xx2u125ebmasCAAaaYx8XM6GvvcfT145uDZSs117xL26elutXOcWdYXdaiRQs9/fTTuuyyy2QYhubPn68bb7xRX375pXPepXHjxrlcEHNuMbekpESDBw9WXFyc1q9fr4MHD2r06NEKDQ3VU0895fXtAQAAAAD4Ly6/A4Aa5Om8SzNmzFBhYaFiYmIkuTfvksViKXf4QXcmta9OW1wY+tp7bKVBspWYqzDiyT5b1w0ZMsTl8YwZMzR79mxt2LDBWRiJiIiosPCbk5OjnTt3auXKlYqNjVWXLl00ffp0PfLII5o2bZrCwsJqfRsAAAAAAIHhgidfB4BAlZmZqXXr1mnfvn3atm2bMjMztWbNGt1+++3as2ePpk+fri1btmjfvn364IMPNHr06ArnXfrqq6+0YsUK5l0C4BdKSkq0cOFCHT9+XMnJyc7lb775ppo0aaIOHTooMzPTZYiwvLw8dezY0WXupdTUVBUXF2vHjh1ejR8AAAAA4N+4YwQAqol5lwDA1bZt25ScnKyTJ08qMjJSixcvdt4BN3LkSCUkJKh58+b6+uuv9cgjj2jXrl169913JUn5+fkuRRFJzsf5+fkVvqfNZnO5U88x7Jjdbq9y0nrH80xuX/voa+9x9LEl2PBxJJ5z9/vB9wgAAAAXisIIAFQT8y4BgKu2bdtq69atKioq0jvvvKO0tDStXbtWiYmJGj9+vLNdx44d1axZM/Xr10979uxRmzZtqv2e2dnZysrKKrM8JyfHZQ6TyuTm5lb7/eEZ+tp7pncr9XUIHnP3N9G5d5sBAAAA1UFhBAAAADUiLCxMl156qSQpKSlJmzZt0osvvqhXXnmlTNsePXpIknbv3q02bdooLi5OGzdudGlTUFAgSRXOSyKdGdYwIyPD+bi4uFjx8fFKSUmR1WqtNF673a7c3FwNGDDAFPO4mJmjrx/fHCxbqbnmAto+LdXXIXgkEPracWcYAAAAPNdh2gpTzc9pCTE0s3vNr5fCCAAAAGpFaWmpyzBX59q6daskqVmzZpKk5ORkzZgxQ4WFhYqJiZF05u4Cq9XqHI6rPBaLpdx5mUJDQz2a3J7CiHfYSoNMdRAmybTfDX/ua7N+JgAAAKg7KIwAAADggmVmZmrgwIFq2bKljh49qgULFmjNmjVasWKF9uzZowULFmjQoEFq3Lixvv76a02ePFm9e/dWp06dJEkpKSlKTEzUqFGjNHPmTOXn5+uxxx5Tenp6uYUPAAAAAACqi8IIAAAALlhhYaFGjx6tgwcPKioqSp06ddKKFSs0YMAAff/991q5cqVeeOEFHT9+XPHx8Ro+fLgee+wx5+tDQkK0dOlSTZgwQcnJyWrQoIHS0tL0xBNP+HCrAAAAAAD+iMIIAAC1yGxjd0rSvqcH+zoEmNDrr79e4XPx8fFau3ZtletISEhwe/JlAAAAAACqK9jXAQAAAAAA4E9mz56tTp06yWq1ymq1Kjk5WR999JHz+ZMnTyo9PV2NGzdWZGSkhg8froKCApd17N+/X4MHD1ZERIRiYmL00EMP6fTp097eFAAAAL9EYQQAAAAAgBrUokULPf3009qyZYs2b96sa6+9VjfeeKN27NghSZo8ebKWLFmiRYsWae3atTpw4ICGDRvmfH1JSYkGDx6sU6dOaf369Zo/f77mzZunKVOm+GqTAAAA/ApDaQEAAAAAUIOGDBni8njGjBmaPXu2NmzYoBYtWuj111/XggULdO2110qS5s6dqyuuuEIbNmxQz549lZOTo507d2rlypWKjY1Vly5dNH36dD3yyCOaNm2awsLCfLFZAAAAfoPCCAAAAAAAtaSkpESLFi3S8ePHlZycrC1btshut6t///7ONu3atVPLli2Vl5ennj17Ki8vTx07dlRsbKyzTWpqqiZMmKAdO3aoa9eu5b6XzWaTzWZzPi4uLpYk2e122e32SuN0PF9Vu7rGjHE7YrUEGz6OxDOOeM3Y12aKWfIsbrNtGwDUFRRGAAAAAACoYdu2bVNycrJOnjypyMhILV68WImJidq6davCwsIUHR3t0j42Nlb5+fmSpPz8fJeiiON5x3MVyc7OVlZWVpnlOTk5ioiIcCvu3Nxct9rVNWaMe3q3Ul+HUC1m7Gszxiy5F/eJEye8EAkA+B8KIwAAAAAA1LC2bdtq69atKioq0jvvvKO0tDStXbu2Vt8zMzNTGRkZzsfFxcWKj49XSkqKrFZrpa+12+3Kzc3VgAEDFBoaWqtx1iQzxu2I+fHNwbKVBvk6HLdZgg1N71Zqyr42U8ySZ3E77gwDAHiGwggAAAAAADUsLCxMl156qSQpKSlJmzZt0osvvqhbb71Vp06d0pEjR1zuGikoKFBcXJwkKS4uThs3bnRZX0FBgfO5ilgsFlksljLLQ0ND3T4p7EnbusSMcdtKg2QrMU9hxMGMfW3GmCX34jbjdgFAXRDs6wAAAAAAAPB3paWlstlsSkpKUmhoqFatWuV8bteuXdq/f7+Sk5MlScnJydq2bZsKCwudbXJzc2W1WpWYmOj12AEAAPwNd4wAAAAAAFCDMjMzNXDgQLVs2VJHjx7VggULtGbNGq1YsUJRUVEaO3asMjIy1KhRI1mtVt13331KTk5Wz549JUkpKSlKTEzUqFGjNHPmTOXn5+uxxx5Tenp6uXeEAAAAwDMURgAAAAAAqEGFhYUaPXq0Dh48qKioKHXq1EkrVqzQgAEDJEnPP/+8goODNXz4cNlsNqWmpurll192vj4kJERLly7VhAkTlJycrAYNGigtLU1PPPGErzYJAADAr1AYAQAAAACgBr3++uuVPh8eHq5Zs2Zp1qxZFbZJSEjQsmXLajo0AAAAiDlGAAAAAAAAAABAAKEwAgAAAAAAAKBWzJ49W506dZLVapXValVycrI++ugj5/MnT55Uenq6GjdurMjISA0fPlwFBQUu69i/f78GDx6siIgIxcTE6KGHHtLp06e9vSkA/IhHhRESGQAAAAAAAAB3tWjRQk8//bS2bNmizZs369prr9WNN96oHTt2SJImT56sJUuWaNGiRVq7dq0OHDigYcOGOV9fUlKiwYMH69SpU1q/fr3mz5+vefPmacqUKb7aJAB+wKPCCIkMAAAAAAAAgLuGDBmiQYMG6bLLLtPll1+uGTNmKDIyUhs2bFBRUZFef/11/eUvf9G1116rpKQkzZ07V+vXr9eGDRskSTk5Odq5c6feeOMNdenSRQMHDtT06dM1a9YsnTp1ysdbB8CsPJp8fciQIS6PZ8yYodmzZ2vDhg1q0aKFXn/9dS1YsEDXXnutJGnu3Lm64oortGHDBvXs2dOZyFauXKnY2Fh16dJF06dP1yOPPKJp06YpLCys5rYMAAAAAAAAQJ1RUlKiRYsW6fjx40pOTtaWLVtkt9vVv39/Z5t27dqpZcuWysvLU8+ePZWXl6eOHTsqNjbW2SY1NVUTJkzQjh071LVr13Lfy2azyWazOR8XFxdLkux2u+x2e6VxOp6vql1dY8a4HbFagg0fR+IZR7z0de3zpK89+Tw8Koycy5uJDAAAAAAAAIA5bdu2TcnJyTp58qQiIyO1ePFiJSYmauvWrQoLC1N0dLRL+9jYWOXn50uS8vPzXc4lOp53PFeR7OxsZWVllVmek5OjiIgIt+LOzc11q11dY8a4p3cr9XUI1UJfe487fX3ixAm31+dxYcQXiYwKrzkEQtWxrgiEvjbD5zF79mzNnj1b+/btkyS1b99eU6ZM0cCBAyWdmXfpgQce0MKFC2Wz2ZSamqqXX37ZJQ/u379fEyZM0OrVqxUZGam0tDRlZ2erXr1q160BAAAAAKhT2rZtq61bt6qoqEjvvPOO0tLStHbt2lp9z8zMTGVkZDgfFxcXKz4+XikpKbJarZW+1m63Kzc3VwMGDFBoaGitxlmTzBi3I+bHNwfLVhrk63DcZgk2NL1bKX3tBZ70taNu4A6Pz7z5IpFR4TUXf6461jX+3NeeVHh9xTHv0mWXXSbDMDR//nzdeOON+vLLL9W+fXtNnjxZH374oRYtWqSoqChNnDhRw4YN02effSbp7LxLcXFxWr9+vQ4ePKjRo0crNDRUTz31lI+3DgAAAACAmhEWFqZLL71UkpSUlKRNmzbpxRdf1K233qpTp07pyJEjLhdbFxQUKC4uTpIUFxenjRs3uqyvoKDA+VxFLBaLLBZLmeWhoaFun8j2pG1dYsa4baVBspWY52S9A33tPe70tSefhceFEV8kMiq85og7EKqOdUUg9LUnFV5fYd4lAAAAAAA8V1paKpvNpqSkJIWGhmrVqlUaPny4JGnXrl3av3+/kpOTJUnJycmaMWOGCgsLFRMTI+nMBZdWq1WJiYk+2wYA5nbBY7V4I5FR4TVX3P5cdaxr/LmvzfZZMIEczmfWIe8k830/AqGvzfaZAAAAAA6ZmZkaOHCgWrZsqaNHj2rBggVas2aNVqxYoaioKI0dO1YZGRlq1KiRrFar7rvvPiUnJ6tnz56SpJSUFCUmJmrUqFGaOXOm8vPz9dhjjyk9Pb3c84UA4A6PCiMkMgBwxQRyqIoZh7xbtmyZr0OoFn/uazMML8i8SwAAAChPYWGhRo8erYMHDyoqKkqdOnXSihUrNGDAAEnS888/r+DgYA0fPtzld6JDSEiIli5dqgkTJig5OVkNGjRQWlqannjiCV9tEgA/4NFRJokMAFwxgRwqYtYh7yRp+7RUX4fgkUDoazMML8i8SwAABIYO01aYZuQCS4ihmd19HQVef/31Sp8PDw/XrFmzNGvWrArbJCQkmPYCLgB1k0eFERIZALhiAjlUxYxD3pn1u+HPfW2Gz4R5lwAAAAAAZhHs6wAAwJ+UN++SQ3nzLm3btk2FhYXONkwgB8AflJSUaOHChW7PuySpwnmXiouLtWPHDq9vAwAAAADAfzFgMwBUE/MuAYArX8y7ZLPZZLPZnI8dw47Z7fYqJ613PM/k9rXP0ceWYMPHkXjObN+PQOhrs30mAAAAqHsojABANTHvEgC48sW8S9nZ2crKyiqzPCcnRxEREW6tIzc3t6bDQgWmdyv1dQgeM+swwP7c1ydOnKjlSAD4GzPNiyIxNwoAeAOFEQCoJuZdAgBXvph3KTMzUxkZGc7HxcXFio+PV0pKiqxWa6Xx2u125ebmasCAAaaYx8XMHH39+OZg2UrNc2JKkrZPS/V1CB4JhL523BkGAAAAVBeFEQAAANSK8uZdGj58uKTy512aMWOGCgsLFRMTI8m9eZcsFku5ww+GhoZ6NLk9hRHvsJUGmeqKXUmm/W74c1+b9TMBAABA3UFhBAAAABeMeZcAAAAAAGZBYQQAAAAXjHmXAAAAAABmQWEEAAAAF4x5lwAAAAAAZhHs6wAAAAAAAAAAAAC8hcIIAAAAAAAAAAAIGBRGAAAAAAAAAABAwKAwAgAAAABADcrOztaVV16phg0bKiYmRkOHDtWuXbtc2vTt21dBQUEu/+655x6XNvv379fgwYMVERGhmJgYPfTQQzp9+rQ3NwUAAMAvMfk6AAAAAAA1aO3atUpPT9eVV16p06dP69FHH1VKSop27typBg0aONuNGzdOTzzxhPNxRESE8/8lJSUaPHiw4uLitH79eh08eFCjR49WaGionnrqKa9uDwAAgL+hMAIAAAAAQA1avny5y+N58+YpJiZGW7ZsUe/evZ3LIyIiFBcXV+46cnJytHPnTq1cuVKxsbHq0qWLpk+frkceeUTTpk1TWFhYrW4DAACAP2MoLQAAAAAAalFRUZEkqVGjRi7L33zzTTVp0kQdOnRQZmamTpw44XwuLy9PHTt2VGxsrHNZamqqiouLtWPHDu8EDgAA4Ke4YwQAAAAAgFpSWlqqSZMm6eqrr1aHDh2cy0eOHKmEhAQ1b95cX3/9tR555BHt2rVL7777riQpPz/fpSgiyfk4Pz+/3Pey2Wyy2WzOx8XFxZIku90uu91eaZyO56tqV9eYMW5HrJZgw8eReMYRr5niNmPM0tl43flem+m7DwB1CYURAAAAAABqSXp6urZv365PP/3UZfn48eOd/+/YsaOaNWumfv36ac+ePWrTpk213is7O1tZWVlllufk5LjMX1KZ3Nzcar23r5kx7undSn0dQrWYMW4zxiy5970+904zAID7KIwAAAAAAFALJk6cqKVLl2rdunVq0aJFpW179OghSdq9e7fatGmjuLg4bdy40aVNQUGBJFU4L0lmZqYyMjKcj4uLixUfH6+UlBRZrdZK399utys3N1cDBgxQaGholdtWV5gxbkfMj28Olq00yNfhuM0SbGh6t1JTxW3GmKWzcbvzvXbcGQYA8AyFEQAAAAAAapBhGLrvvvu0ePFirVmzRq1bt67yNVu3bpUkNWvWTJKUnJysGTNmqLCwUDExMZLOXD1utVqVmJhY7josFossFkuZ5aGhoW4XDTxpW5eYMW5baZBsJeY5We9gxrjNGLPk3vfabN97AKgrKIwAAAAAAFCD0tPTtWDBAr3//vtq2LChc06QqKgo1a9fX3v27NGCBQs0aNAgNW7cWF9//bUmT56s3r17q1OnTpKklJQUJSYmatSoUZo5c6by8/P12GOPKT09vdziBwAAANwX7OsAAAAAAADwJ7Nnz1ZRUZH69u2rZs2aOf+99dZbkqSwsDCtXLlSKSkpateunR544AENHz5cS5Ysca4jJCRES5cuVUhIiJKTk/X73/9eo0eP1hNPPOGrzQIAAPAbFEYAAAAAAKhBhmGU+++OO+6QJMXHx2vt2rU6dOiQTp48qW+//VYzZ84sMw9IQkKCli1bphMnTuinn37Sc889p3r1GPgBgLlkZ2fryiuvVMOGDRUTE6OhQ4dq165dLm369u2roKAgl3/33HOPS5v9+/dr8ODBioiIUExMjB566CGdPn3am5sCwI94VBghkQEAAAAAAABw19q1a5Wenq4NGzYoNzdXdrtdKSkpOn78uEu7cePG6eDBg85/M2fOdD5XUlKiwYMH69SpU1q/fr3mz5+vefPmacqUKd7eHAB+wqNLTRyJ7Morr9Tp06f16KOPKiUlRTt37lSDBg2c7caNG+dye29ERITz/45EFhcXp/Xr1+vgwYMaPXq0QkND9dRTT9XAJgEAAAAAAACoC5YvX+7yeN68eYqJidGWLVvUu3dv5/KIiAjFxcWVu46cnBzt3LlTK1euVGxsrLp06aLp06frkUce0bRp0xQWFlar2wDA/3h0x8jy5ct1xx13qH379urcubPmzZun/fv3a8uWLS7tHInM8e/c24EdieyNN95Qly5dNHDgQE2fPl2zZs3SqVOnamarAAAAAAAAANQ5RUVFkqRGjRq5LH/zzTfVpEkTdejQQZmZmTpx4oTzuby8PHXs2FGxsbHOZampqSouLtaOHTu8EzgAv3JBg5NWlsjeeOMNxcXFaciQIXr88cedd41UlMgmTJigHTt2qGvXrhcSEgAAAAAAAIA6qLS0VJMmTdLVV1+tDh06OJePHDlSCQkJat68ub7++ms98sgj2rVrl959911JUn5+vsu5REnOx/n5+eW+l81mk81mcz4uLi6WJNntdtnt9krjdDxfVbu6xoxxO2K1BBs+jsQzjnjp69rnSV978nlUuzBCIqtdZow7EHauuiIQ+toMn0d2drbeffddffPNN6pfv76uuuoqPfPMM2rbtq2zTd++fbV27VqX1919992aM2eO8/H+/fs1YcIErV69WpGRkUpLS1N2djYTawIAAAAA/Ep6erq2b9+uTz/91GX5+PHjnf/v2LGjmjVrpn79+mnPnj1q06ZNtd4rOztbWVlZZZbn5OS4DPtfmdzc3Gq9t6+ZMe7p3Up9HUK10Nfe405fn3unWVWqfdaNROYdZozbn3euusaf+9qTROYrzLsEAAAAAIB7Jk6cqKVLl2rdunVq0aJFpW179OghSdq9e7fatGmjuLg4bdy40aVNQUGBJFU4L0lmZqYyMjKcj4uLixUfH6+UlBSXYf/LY7fblZubqwEDBig0NLTKbasrzBi3I+bHNwfLVhrk63DcZgk2NL1bKX3tBZ70teOGCndUqzBCIqt9Zow7EHauuiIQ+tqTROYrTCAHAAAAAEDlDMPQfffdp8WLF2vNmjVq3bp1la/ZunWrJKlZs2aSpOTkZM2YMUOFhYWKiYmRdOaiS6vVqsTExHLXYbFYZLFYyiwPDQ11+/yPJ23rEjPGbSsNkq3EPOe4HOhr73Gnrz35LDwqjJDIvM+McfvzzlXX+HNfm+2zkLw371IgDi9oRmYd8k4y3/cjEPraDJ8JwwsCAACgPOnp6VqwYIHef/99NWzY0DmUflRUlOrXr689e/ZowYIFGjRokBo3bqyvv/5akydPVu/evdWpUydJUkpKihITEzVq1CjNnDlT+fn5euyxx5Senl7uOUMAqIpHR5gkMgAonzfnXQrk4QXNyIxD3i1btszXIVSLP/c1wwsyvCAAAIBZzZ49W9KZi2TONXfuXN1xxx0KCwvTypUr9cILL+j48eOKj4/X8OHD9dhjjznbhoSEaOnSpZowYYKSk5PVoEEDpaWlufyuBABPeFQYIZEBQPm8Oe9SIA4vaEZmHfJOkrZPS/V1CB4JhL5meEGGFwQAADArw6j8zu74+PgydxWXJyEhwbQXcQGoezweSqsyJDIAgcjb8y4F8vCCZmTGIe/M+t3w574242fireEFAQAAAADwFIM1A0A1+WreJQCo67w5vCDzLplDIMwFVFcEQl+b7TMBAABA3UNhBACqiXmXAKB83hxekHmXzMWf5wKqa/y5r80w7xIAAADqNgojAFBNzLsEAGV5e3hB5l0yh0CYC6iuCIS+NsO8SwAAAKjbKIwAQDUx7xIAnOWr4QWZd8lc/HkuoLrGn/varJ8JAAAA6g4KIwAAALhgDC8IAAAAADCLYF8HAAAAAPObPXu2ioqK1LdvXzVr1sz576233pIk5/CCKSkpateunR544AENHz5cS5Ysca7DMbxgSEiIkpOT9fvf/16jR49meEEAAAAAQI3ijhEAAABcMIYXBAAAAACYBXeMAAAAAAAAAACAgEFhBAAAAAAAAAAABAwKIwAAAAAAAAAAIGBQGAEAAAAAAAAAAAGDwggAAAAAAAAAAAgYFEYAAAAAAAAAAEDAoDACAAAAAAAAAAACBoURAAAAAABqUHZ2tq688ko1bNhQMTExGjp0qHbt2uXS5uTJk0pPT1fjxo0VGRmp4cOHq6CgwKXN/v37NXjwYEVERCgmJkYPPfSQTp8+7c1NAQAA8EsURgAAAAAAqEFr165Venq6NmzYoNzcXNntdqWkpOj48ePONpMnT9aSJUu0aNEirV27VgcOHNCwYcOcz5eUlGjw4ME6deqU1q9fr/nz52vevHmaMmWKLzYJAADAr9TzdQAAAAAAAPiT5cuXuzyeN2+eYmJitGXLFvXu3VtFRUV6/fXXtWDBAl177bWSpLlz5+qKK67Qhg0b1LNnT+Xk5Gjnzp1auXKlYmNj1aVLF02fPl2PPPKIpk2bprCwMF9sGgAAgF+gMAIAAAAAQC0qKiqSJDVq1EiStGXLFtntdvXv39/Zpl27dmrZsqXy8vLUs2dP5eXlqWPHjoqNjXW2SU1N1YQJE7Rjxw517dq1zPvYbDbZbDbn4+LiYkmS3W6X3W6vNEbH81W1q2vMGLcjVkuw4eNIPOOI10xxmzFm6Wy87nyvzfTdB4C6hMIIAAAAAAC1pLS0VJMmTdLVV1+tDh06SJLy8/MVFham6Ohol7axsbHKz893tjm3KOJ43vFcebKzs5WVlVVmeU5OjiIiItyKNzc31612dY0Z457erdTXIVSLGeM2Y8ySe9/rEydOeCESAPA/FEYAAAAAAKgl6enp2r59uz799NNaf6/MzExlZGQ4HxcXFys+Pl4pKSmyWq2VvtZutys3N1cDBgxQaGhobYdaY8wYtyPmxzcHy1Ya5Otw3GYJNjS9W6mp4jZjzNLZuN35XjvuDAMAeIbCCAAAAAAAtWDixIlaunSp1q1bpxYtWjiXx8XF6dSpUzpy5IjLXSMFBQWKi4tzttm4caPL+goKCpzPlcdischisZRZHhoa6nbRwJO2dYkZ47aVBslWYp6T9Q5mjNuMMUvufa/N9r0HgLoi2NcBAAAAAADgTwzD0MSJE7V48WJ9/PHHat26tcvzSUlJCg0N1apVq5zLdu3apf379ys5OVmSlJycrG3btqmwsNDZJjc3V1arVYmJid7ZEAAAAD9FYQQAAAAAgBqUnp6uN954QwsWLFDDhg2Vn5+v/Px8/frrr5KkqKgojR07VhkZGVq9erW2bNmiMWPGKDk5WT179pQkpaSkKDExUaNGjdJXX32lFStW6LHHHlN6enq5d4UAQF2VnZ2tK6+8Ug0bNlRMTIyGDh2qXbt2ubQ5efKk0tPT1bhxY0VGRmr48OHOu+Qc9u/fr8GDBysiIkIxMTF66KGHdPr0aW9uCgA/4lFhhEQGAAAAAEDlZs+eraKiIvXt21fNmjVz/nvrrbecbZ5//nldf/31Gj58uHr37q24uDi9++67zudDQkK0dOlShYSEKDk5Wb///e81evRoPfHEE77YJACotrVr1yo9PV0bNmxQbm6u7Ha7UlJSdPz4cWebyZMna8mSJVq0aJHWrl2rAwcOaNiwYc7nS0pKNHjwYJ06dUrr16/X/PnzNW/ePE2ZMsUXmwTAD3g0x4gjkV155ZU6ffq0Hn30UaWkpGjnzp1q0KCBpDOJ7MMPP9SiRYsUFRWliRMnatiwYfrss88knU1kcXFxWr9+vQ4ePKjRo0crNDRUTz31VM1vIQAAAAAAXmQYRpVtwsPDNWvWLM2aNavCNgkJCVq2bFlNhgYAXrd8+XKXx/PmzVNMTIy2bNmi3r17q6ioSK+//roWLFiga6+9VpI0d+5cXXHFFdqwYYN69uypnJwc7dy5UytXrlRsbKy6dOmi6dOn65FHHtG0adMUFhbmi00DYGIeFUZIZABwVnZ2tt5991198803ql+/vq666io988wzatu2rbPNyZMn9cADD2jhwoWy2WxKTU3Vyy+/rNjYWGeb/fv3a8KECVq9erUiIyOVlpam7Oxs1avnUYoGAAAAAKDOKyoqkiQ1atRIkrRlyxbZ7Xb179/f2aZdu3Zq2bKl8vLy1LNnT+Xl5aljx44ux9KpqamaMGGCduzYoa5du5Z5H5vNJpvN5nxcXFwsSbLb7bLb7ZXG6Hi+qnZ1jRnjdsRqCa76ooK6xBEvfV37POlrTz6PCzrrRiKrPWaMOxB2rroiEPraDJ8Hd9EBAAAAAOC+0tJSTZo0SVdffbU6dOggScrPz1dYWJiio6Nd2sbGxio/P9/Z5txziY7nHc+VJzs7W1lZWWWW5+TkKCIiwq14c3Nz3WpX15gx7undSn0dQrXQ197jTl+fOHHC7fVVuzBCIvMOM8btzztXXePPfe1JIvMV7qIDAAAAAMB96enp2r59uz799NNaf6/MzExlZGQ4HxcXFys+Pl4pKSmyWq2VvtZutys3N1cDBgxQaGhobYdaY8wYtyPmxzcHy1Ya5Otw3GYJNjS9Wyl97QWe9LXjhgp3VLswQiKrXWaMOxB2rroiEPrak0RWV3jrLjoAqIsYXhAAAACVmThxopYuXap169apRYsWzuVxcXE6deqUjhw54nKxdUFBgeLi4pxtNm7c6LK+goIC53PlsVgsslgsZZaHhoa6ff7Hk7Z1iRnjtpUGyVZinnNcDvS197jT1558FtU6wiSReY8Z4/bnnauu8ee+Nttn4c276AJxeEEzMuuQd5L5vh+B0Ndm+EwYXhAA4Esdpq0wzbGRJcTQzO6+jgLwHsMwdN9992nx4sVas2aNWrdu7fJ8UlKSQkNDtWrVKg0fPlyStGvXLu3fv1/JycmSpOTkZM2YMUOFhYWKiYmRdGY0CqvVqsTERO9uEAC/4FFhhEQGAOXz5l10gTy8oBmZcci7ZcuW+TqEavHnvmZ4QYYXBAAAMKv09HQtWLBA77//vho2bOi8CDAqKkr169dXVFSUxo4dq4yMDDVq1EhWq1X33XefkpOT1bNnT0lSSkqKEhMTNWrUKM2cOVP5+fl67LHHlJ6eXu7F1ABQFY8KIyQyACjL23fRBeLwgmZk1iHvJGn7tFRfh+CRQOhrhhdkeEEAAACzmj17tiSpb9++Lsvnzp2rO+64Q5L0/PPPKzg4WMOHD3cZctUhJCRES5cu1YQJE5ScnKwGDRooLS1NTzzxhLc2A4Cf8agwQiIDgLN8dRddIA8vaEZmHPLOrN8Nf+5rs30mDC+I8wXCkHd1RSD0tdk+EwAIdIZR9d+k8PBwzZo1S7NmzaqwTUJCgmnvbgdQ93g8lFZVSGQAAgV30QFA+RheEBXx5yHv6hp/7mszDC8IAIAvMe8SULVqTb4OAOAuOgAoD8MLojyBMORdXREIfW3G4QUBAABQt1AYAYBq4i46ADiL4QXhDn8e8q6u8ee+NutnAgAAgLqDwggAAHDR6o8f+joEj3Drdd3A8IIAAAAAALOgMAIAAIALxvCCAAAAAACzoDBSxzFZEgAAMAOGFwQAAAAQaDh3a17Bvg4AAAAAAAAAAADAWyiMAAAAAAAAAACAgMFQWsD/x61vAAAAAAAAAOD/KIwAAAAAJtPqjx/6OgSPcFEHAAAAgLqEobQAAAAAAAAAAEDAoDACAAAAAAAAAAACBoURAAAAAAAAAAAQMCiMAAAAAAAAAACAgMHk6wAAU2CiYQAAAAAAANQE7hgBAAAAAAAAAAABg8IIAAAAAAA1bN26dRoyZIiaN2+uoKAgvffeey7P33HHHQoKCnL5d91117m0OXz4sG6//XZZrVZFR0dr7NixOnbsmBe3AgAAwD9RGAEAAAAAoIYdP35cnTt31qxZsypsc9111+ngwYPOf//6179cnr/99tu1Y8cO5ebmaunSpVq3bp3Gjx9f26EDAAD4PeYYAQAAAACghg0cOFADBw6stI3FYlFcXFy5z/3nP//R8uXLtWnTJnXr1k2S9NJLL2nQoEF67rnn1Lx58xqPGQAAIFBQGAEAAACACrT644e+DsEjlhBDM7v7Ogq4a82aNYqJidFFF12ka6+9Vk8++aQaN24sScrLy1N0dLSzKCJJ/fv3V3BwsD7//HPddNNNvgobAADA9CiMAAAAAADgZdddd52GDRum1q1ba8+ePXr00Uc1cOBA5eXlKSQkRPn5+YqJiXF5Tb169dSoUSPl5+eXu06bzSabzeZ8XFxcLEmy2+2y2+2VxuN4vqp2dY0jXkuw4eNI3OeI1UwxS+aM24wxS2fjdWd/NNs+CwB1BYURAAAAAAC8bMSIEc7/d+zYUZ06dVKbNm20Zs0a9evXr1rrzM7OVlZWVpnlOTk5ioiIcGsdubm51XpvX5verdTXIXjMjDFL5ozbjDFL7u2PJ06c8EIkAOB/KIwAAAAAAOBjl1xyiZo0aaLdu3erX79+iouLU2FhoUub06dP6/DhwxXOS5KZmamMjAzn4+LiYsXHxyslJUVWq7XS97fb7crNzdWAAQMUGhp64RvkJY64H98cLFtpkK/DcYsl2ND0bqWmilkyZ9xmjFk6G7c7+6PjzjAAgGeCPX3BunXrNGTIEDVv3lxBQUF67733XJ6/4447FBQU5PLvuuuuc2lz+PBh3X777bJarYqOjtbYsWN17NixC9oQAAAAAADM6ocfftChQ4fUrFkzSVJycrKOHDmiLVu2ONt8/PHHKi0tVY8ePcpdh8VikdVqdfknSaGhoW7986RtXfonSbbSINlKTPLv/5+gN1XMZo3bjDGfE7cn+0Bdx/lEAHWNx4WR48ePq3Pnzpo1a1aFba677jodPHjQ+e9f//qXy/O33367duzYodzcXC1dulTr1q3T+PHjPY8eAAAAAIA66NixY9q6dau2bt0qSdq7d6+2bt2q/fv369ixY3rooYe0YcMG7du3T6tWrdKNN96oSy+9VKmpqZKkK664Qtddd53GjRunjRs36rPPPtPEiRM1YsQINW/e3IdbBgCe43wigLrG48LIwIED9eSTT+qmm26qsI3FYlFcXJzz30UXXeR87j//+Y+WL1+u1157TT169FCvXr300ksvaeHChTpw4ED1tgIAfISrXgAAAFCezZs3q2vXrurataskKSMjQ127dtWUKVMUEhKir7/+WjfccIMuv/xyjR07VklJSfrkk09ksVic63jzzTfVrl079evXT4MGDVKvXr306quv+mqTAKDaOJ8IoK6plTlG1qxZo5iYGF100UW69tpr9eSTT6px48aSpLy8PEVHR6tbt27O9v3791dwcLA+//zzShMkANQ1jqte7rzzTg0bNqzcNtddd53mzp3rfHzuwa505qqXgwcPKjc3V3a7XWPGjNH48eO1YMGCWo0dAAAAtadv374yDKPC51esWFHlOho1asRvQgABo6bPJ9psNtlsNudjx3wsdrtddru90lgcz1fVrq5xxGsJrvjvT13jiNVMMUvmjNuMMUtn43Vnf/Rkn63xwsh1112nYcOGqXXr1tqzZ48effRRDRw4UHl5eQoJCVF+fr5iYmJcg6hXT40aNVJ+fn656ySRmYPZdy4zxW3GmKXaS2S+NHDgQA0cOLDSNo6rXsrjuOpl06ZNzh94L730kgYNGqTnnnuOYRIAmMq6dev07LPPasuWLTp48KAWL16soUOHOp+/4447NH/+fJfXpKamavny5c7Hhw8f1n333aclS5YoODhYw4cP14svvqjIyEhvbQYAAAC8rDbOJ2ZnZysrK6vM8pycHEVERLgVV25urucbUwdM71bq6xA8ZsaYJXPGbcaYJff2xxMnTri9vhovjIwYMcL5/44dO6pTp05q06aN1qxZo379+lVrnSQyczFjzJI54zZjzFLNJ7K6jqteaoYlxJyFQLMVMM3IzH3t7r5oln2Wu+gAAABQHbVxPjEzM1MZGRnOx8XFxYqPj1dKSoqsVmulr7Xb7crNzdWAAQNMM8G9dDbuxzcHy1Ya5Otw3GIJNjS9W6mpYpbMGbcZY5bOxu3O/ug4R+aOWhlK61yXXHKJmjRpot27d6tfv36Ki4tTYWGhS5vTp0/r8OHDFV5RTSIzxxfV7DuXmeI2Y8xS7SWyuoyrXmrOzO6+jqB6zFrANCMz9vWyZcvcameWYjF30QEAAKAm1MT5RIvFUuYiHEkKDQ11+xyhJ23rEltpkGwl5jlfJJkzZsmccZsxZsm9/dGT/bXWCyM//PCDDh06pGbNmkmSkpOTdeTIEW3ZskVJSUmSpI8//lilpaXq0aNHuesgkZnri2rGmCVzxm3GmKWaT2R1GVe91JwO06oeh7suMWsB04zM3Nfbp6W61c5fisUSc9EBAACgajVxPhEAKuNxYeTYsWPavXu38/HevXu1detWNWrUSI0aNVJWVpaGDx+uuLg47dmzRw8//LAuvfRSpaaeOfC/4oordN1112ncuHGaM2eO7Ha7Jk6cqBEjRnAVIAC/x1Uv1WfGIqBk3gKmGZmxrz3ZZ/0Bc9HVHIYXREXM3Nf+NrwgAOAszicCqGs8Loxs3rxZv/3tb52PHVctp6Wlafbs2fr66681f/58HTlyRM2bN1dKSoqmT5/uchLvzTff1MSJE9WvXz/npJp//etfa2BzAKBu46oXAIGMuehqDsMLoipm7Gt/G14QAHAW5xMB1DUeF0b69u0rw6j46qMVK6oe6qRRo0ZMoAnAL3DVCwBUH3PRVR/DC6IiZu7rQBxeEAACBecTAdQ1tT7HCAD4M656AYDqYy666jPbsHEOZhzyzqzM2NeBNrwgAAAAfIfCCABcAK56AYCzuIsOAAAAAGAGwb4OAAAAAP5h8+bN6tq1q7p27SrpzF10Xbt21ZQpUxQSEqKvv/5aN9xwgy6//HKNHTtWSUlJ+uSTT8rcRdeuXTv169dPgwYNUq9evfTqq6/6apMAAAAAAH6IO0YAAABQI7iLDgAAAABgBtwxAgAAAAAAAAAAAgaFEQAAAAAAAAAAEDAojAAAAAAAAAAAgIBBYQQAAAAAAAAAAAQMCiMAAAAAAAAAACBgUBgBAAAAAAAAAAABg8IIAAAAAAAAAAAIGBRGAAAAAAAAAABAwKAwAgAAAAAAAAAAAgaFEQAAAAAAAAAAEDAojAAAAAAAAAAAgIBBYQQAAAAAAAAAAAQMCiMAAAAAAAAAACBgUBgBAAAAAAAAAAABg8IIAAAAAAA1bN26dRoyZIiaN2+uoKAgvffeey7PG4ahKVOmqFmzZqpfv7769++vb7/91qXN4cOHdfvtt8tqtSo6Olpjx47VsWPHvLgVAAAA/onCCAAAAAAANez48ePq3LmzZs2aVe7zM2fO1F//+lfNmTNHn3/+uRo0aKDU1FSdPHnS2eb222/Xjh07lJubq6VLl2rdunUaP368tzYBAADAb9XzdQAAAAAAAPibgQMHauDAgeU+ZxiGXnjhBT322GO68cYbJUn/93//p9jYWL333nsaMWKE/vOf/2j58uXatGmTunXrJkl66aWXNGjQID333HNq3ry517YFAADA31AYAQAAAADAi/bu3av8/Hz179/fuSwqKko9evRQXl6eRowYoby8PEVHRzuLIpLUv39/BQcH6/PPP9dNN91UZr02m002m835uLi4WJJkt9tlt9srjcnxfFXt6hpHvJZgw8eRuM8Rq5lilswZtxljls7G687+aLZ9FgDqCo8LI+vWrdOzzz6rLVu26ODBg1q8eLGGDh3qfN4wDE2dOlV///vfdeTIEV199dWaPXu2LrvsMmebw4cP67777tOSJUsUHBys4cOH68UXX1RkZGSNbBQAAAAAAHVVfn6+JCk2NtZleWxsrPO5/Px8xcTEuDxfr149NWrUyNnmfNnZ2crKyiqzPCcnRxEREW7Flpub61a7umZ6t1Jfh+AxM8YsmTNuM8Ysubc/njhxwguRXDjOJwKoazwujDjGSb3zzjs1bNiwMs87xkmdP3++Wrdurccff1ypqanauXOnwsPDJZ0ZJ/XgwYPKzc2V3W7XmDFjNH78eC1YsODCtwgAAAAAgACUmZmpjIwM5+Pi4mLFx8crJSVFVqu10tfa7Xbl5uZqwIABCg0Nre1Qa4wj7sc3B8tWGuTrcNxiCTY0vVupqWKWzBm3GWOWzsbtzv7ouDOsruN8IoC6xuPCCOOkAsBZXPUCAAAAT8XFxUmSCgoK1KxZM+fygoICdenSxdmmsLDQ5XWnT5/W4cOHna8/n8VikcViKbM8NDTU7WKHJ23rEltpkGwl5jnxLZkzZsmccZsxZsm9/dEs+yvnEwHUNcE1ubKqxkmVVOU4qQBgJo6rXmbNmlXu846rXubMmaPPP/9cDRo0UGpqqk6ePOlsc/vtt2vHjh3Kzc3V0qVLtW7dOo0fP95bmwAANWbdunUaMmSImjdvrqCgIL333nsuzxuGoSlTpqhZs2aqX7+++vfvr2+//dalzeHDh3X77bfLarUqOjpaY8eO1bFjx7y4FQBQ+1q3bq24uDitWrXKuay4uFiff/65kpOTJUnJyck6cuSItmzZ4mzz8ccfq7S0VD169PB6zABQW2rrfKLNZlNxcbHLP+nsvEtV/fOkbV36J52568gSYpJ/58wF5PNY/D1uM8Z8Ttye7APuqNHJ12trnFQmkDMHs09qZqa4zRiz5J8TyHHVCwCcxRAJAHDWsWPHtHv3bufjvXv3auvWrWrUqJFatmypSZMm6cknn9Rll13mzInNmzd33n18xRVX6LrrrtO4ceM0Z84c2e12TZw4USNGjOA3IgC/wrxLNc+M8+qYMWbJnHGbMWap5uddqtHCSG0hkZmLGWOWzBm3GWOW/GsCucpUddXLiBEjqrzq5aabbiqz3kAsFkuSJcSchUCzFTDNyMx97e6+aJZ9lmIxAJy1efNm/fa3v3U+dsz9kZaWpnnz5unhhx/W8ePHNX78eB05ckS9evXS8uXLnYViSXrzzTc1ceJE9evXzznk6l//+levbwsAmBHzLplj+DizzwVkprjNGLNUe/Mu1WhhpLbGSSWRmeOLavady0xxmzFmyT8nkKsMV73UrJndfR1B9Zi1gGlGZuzrZcuWudWOYnHFxWIAqKv69u0rw6i4aB8UFKQnnnhCTzzxRIVtGjVqxB1zAPwe8y7VPDPOq2PGmCVzxm3GmKWan3epRgsj546T6khcjnFSJ0yYIMl1nNSkpCRJVY+TSiIz1xfVjDFL5ozbjDFL/jWBnC8EYrFYkjpMW+HrEDxi1gKmGZm5r7dPS3WrHcVihlw9H3fRoSJm7mt/u4sOAOCe2jqfCACV8bgwwjipAOAernqpWWYsAkrmLWCakRn72pN9FuXjLjpzMeOdXWZlxr4OpLvoACDQcD4RQF3jcWGEcVIBwD1c9QIAZzHkas3iLjpUxMx9HUh30QFAoOF8IoC6xuPCCOOkAsBZXPUCAO5hyNWaZba7oxzMeGeXWZmxr7mLDgD8F+cTAdQ1NTrHCAAEGq56AYCzKBYDAAAAAMyAwggAXACuegGAsygWAwAAAADMgMIIAAAAagTFYgAAAACAGQT7OgAAAAAAAAAAAABvoTACAAAAAAAAAAACBoURAAAAAAAAAAAQMCiMAAAAAAAAAACAgEFhBAAAAAAAAAAABAwKIwAAAAAAAAAAIGBQGAEAAAAAAAAAAAGDwggAAAAAAAAAAAgYFEYAAAAAAAAAAEDAoDACAAAAAAAAAAACBoURAAAAAAAAAAAQMCiMAAAAAAAAAACAgEFhBAAAAAAAAAAABAwKIwAAAAAAAAAAIGBQGAEAAAAAAAAAAAGDwggAAAAAAAAAAAgYFEYAAAAAAAAAAEDAoDACAAAAAAAAAAACBoURAAAAAAC8bNq0aQoKCnL5165dO+fzJ0+eVHp6uho3bqzIyEgNHz5cBQUFPowYAADAf1AYAQAAAADAB9q3b6+DBw86/3366afO5yZPnqwlS5Zo0aJFWrt2rQ4cOKBhw4b5MFoAAAD/UeOFEa56AYCzyIkAAACoSL169RQXF+f816RJE0lSUVGRXn/9df3lL3/Rtddeq6SkJM2dO1fr16/Xhg0bfBw1ANQ8jp0BeFu92lhp+/bttXLlyrNvUu/s20yePFkffvihFi1apKioKE2cOFHDhg3TZ599VhuhAIDPkRMB4Ixp06YpKyvLZVnbtm31zTffSDpzwPvAAw9o4cKFstlsSk1N1csvv6zY2FhfhAsAte7bb79V8+bNFR4eruTkZGVnZ6tly5basmWL7Ha7+vfv72zbrl07tWzZUnl5eerZs2e567PZbLLZbM7HxcXFkiS73S673V5pLI7nq2pX1zjitQQbPo7EfY5YzRSzZM64zRizdDZed/ZHs+2zleHYGYA31UphxHHVy/kcV70sWLBA1157rSRp7ty5uuKKK7Rhw4YKf9wBgJmREwHgLA54AeCMHj16aN68eWrbtq0OHjyorKwsXXPNNdq+fbvy8/MVFham6Ohol9fExsYqPz+/wnVmZ2eXKUBLUk5OjiIiItyKKzc316PtqCumdyv1dQgeM2PMkjnjNmPMknv744kTJ7wQiXdw7AzAm2qlMMJVLxeOq168x4xxmzFmKXCveqnpnAgAZsYBLwCcMXDgQOf/O3XqpB49eighIUFvv/226tevX611ZmZmKiMjw/m4uLhY8fHxSklJkdVqrfS1drtdubm5GjBggEJDQ6v1/r7giPvxzcGylQb5Ohy3WIINTe9WaqqYJXPGbcaYpbNxu7M/Os6R+QPOJ144zid6jxnjNmPMUu2dT6zxwghXvdQsM17VYMaYJXPGbcaYpcC66qU2cmIg/riTJEuIOf9wm+0HhxmZua/d3RfNuM9WhGIxAJQvOjpal19+uXbv3q0BAwbo1KlTOnLkiMtvxYKCgnKLyw4Wi0UWi6XM8tDQULeLHZ60rUtspUGylZjnxLdkzpglc8Ztxpgl9/ZHM+6v5eF8Ys0y4/kiM8YsmTNuM8Ys1fz5xBovjHDVS83gqhfvMWPcZoxZCsyrXmojJwbqj7uZ3X0dQfWY9QeHGZmxr5ctW+ZWO4rFFIvPR7EYFTFzXwdisfhcx44d0549ezRq1CglJSUpNDRUq1at0vDhwyVJu3bt0v79+5WcnOzjSAGg5nE+sWZwPtF7zBi3GWOWau98Yq0MpXUurnq5MGa8qsGMMUvmjNuMMUuBddXL+WoiJwbijztJ6jBtha9D8IhZf3CYkZn7evu0VLfaUSyuGMViczFjAdOszNjXgVYsfvDBBzVkyBAlJCTowIEDmjp1qkJCQnTbbbcpKipKY8eOVUZGhho1aiSr1ar77rtPycnJ3EEHICBwPvHCmPF8kRljlswZtxljlmr+fGKtF0a46gUAzqqJnBioP+7M+EdbMu8PDjMyY197ss/6I4rF1UexGBUxc18HWrH4hx9+0G233aZDhw6padOm6tWrlzZs2KCmTZtKkp5//nkFBwdr+PDhstlsSk1N1csvv+zjqAHAOzifCKC21XhhhKteAOAsciIAVIxicfWZrQjoYMYCplmZsa8DrVi8cOHCSp8PDw/XrFmzNGvWLC9FBAC+w7EzAG+r8cIIV70AwFnkRAA4iwNeAAAAlKeuHjt3mLbCVBcaWEIM0w65CnhbjRdGuOoFAM4iJwLAWXX1gBcAAAC+xbEzAG+r9TlGAAB1j9muegHgHzjgBYC6z2y/E7k6GgAAVEewrwMAAAAAAAAAAADwFgojAAAAAAAAAAAgYFAYAQAAAAAAAAAAASNg5hhhnFQAAAAAAAAAAMAdIwAAAAAAAAAAIGBQGAEAAAAAAAAAAAGDwggAAAAAAAAAAAgYFEYAAAAAAAAAAEDACJjJ1wEAAIDydJi2QraSIF+HAQAAAADwEu4YAQAAAAAAAAAAAYPCCAAAAAAAAAAACBgURgAAAAAAAAAAQMCgMAIAAAAAAAAAAAIGhREAAAAAAAAAABAwKIwAAAAAAAAAAICAQWEEAAAAAAAAAAAEDAojAAAAAAAAAAAgYFAYAQAAAAAAAAAAAYPCCAAAAAAAAAAACBgURgAAAAAAAAAAQMCgMAIAAAAAAAAAAAKGTwsjs2bNUqtWrRQeHq4ePXpo48aNvgwHAHyKnAgAZ5APAeAsciIAnEVOBFBTfFYYeeutt5SRkaGpU6fqiy++UOfOnZWamqrCwkJfhQQAPkNOBIAzyIcAcBY5EQDOIicCqEk+K4z85S9/0bhx4zRmzBglJiZqzpw5ioiI0D/+8Q9fhQQAPkNOBIAzyIcAcBY5EQDOIicCqEn1fPGmp06d0pYtW5SZmelcFhwcrP79+ysvL69Me5vNJpvN5nxcVFQkSTp8+LDsdnul72W323XixAnVswerpDSohrag9tUrNXTiRKmp4jZjzJI54zZjzNLZuA8dOqTQ0NBK2x49elSSZBiGN0LzKXKifzLrfmpGZu7rQ4cOudUuUHKip/lQIieahZn3U7Mxc1+TE12RE91jxu+8GWOWzBm3GWOWOHYuDznRPWb8zpsxZsmccZsxZqn2cqJPCiM///yzSkpKFBsb67I8NjZW33zzTZn22dnZysrKKrO8devWtRZjXTDS1wFUgxljlswZtxljljyP++jRo4qKiqqVWOoKcqL/Mut+akZm7esmf/asvb/nRE/zoURONBOz7qdmZNa+Jie6Iie6z4zfeTPGLJkzbjPGLHHsfD5yovvM+J03Y8ySOeM2Y8xS7eREnxRGPJWZmamMjAzn49LSUh0+fFiNGzdWUFDl1a3i4mLFx8fr+++/l9Vqre1Qa4wZ4zZjzJI54zZjzJJncRuGoaNHj6p58+Zeis48AjEnmhF97T2B0NfkxIqRE82BvvaeQOhrcmLFAjEnmjFuM8YsmTNuM8YscexcU8iJ5ojbjDFL5ozbjDFLtZcTfVIYadKkiUJCQlRQUOCyvKCgQHFxcWXaWywWWSwWl2XR0dEevafVajXVB+5gxrjNGLNkzrjNGLPkftz+fLXLuciJ/o2+9h5/7+tAyIme5kOJnGg29LX3+HtfkxPJieczY9xmjFkyZ9xmjFni2Plc5ETPmDFuM8YsmTNuM8Ys1XxO9Mnk62FhYUpKStKqVaucy0pLS7Vq1SolJyf7IiQA8BlyIgCcQT4EgLPIiQBwFjkRQE3z2VBaGRkZSktLU7du3dS9e3e98MILOn78uMaMGeOrkADAZ8iJAHAG+RAAziInAsBZ5EQANclnhZFbb71VP/30k6ZMmaL8/Hx16dJFy5cvLzOJ0oWyWCyaOnVqmVvn6jozxm3GmCVzxm3GmCXzxu0N5ET/Q197D33tX7yVDyW+O95EX3sPfe1fyIlVM2PcZoxZMmfcZoxZMm/ctY2cWDUzxm3GmCVzxm3GmKXaizvIMAyjRtcIAAAAAAAAAABQR/lkjhEAAAAAAAAAAABfoDACAAAAAAAAAAACBoURAAAAAAAAAAAQMCiMAAAAAAAAAACAgOH3hZFZs2apVatWCg8PV48ePbRx40Zfh1SpdevWaciQIWrevLmCgoL03nvv+TqkKmVnZ+vKK69Uw4YNFRMTo6FDh2rXrl2+DqtKs2fPVqdOnWS1WmW1WpWcnKyPPvrI12F55Omnn1ZQUJAmTZrk61AqNG3aNAUFBbn8a9euna/DClhmy4lmZNac6A/MkBNRt5ATax850XfIifCU2XIix87ew7Gzd3DsXLeQE2sfOdF3yIln+HVh5K233lJGRoamTp2qL774Qp07d1ZqaqoKCwt9HVqFjh8/rs6dO2vWrFm+DsVta9euVXp6ujZs2KDc3FzZ7f+PvTsPj6o8/z/+SUIWkpBAkCSEJSAgEFYNAlE2WRIjxQUUUCoBUSwGVKiWYpFVjKJV0LLYSoFW80VB0YpIEvYqq2gqi1KgICokERACQYaQnN8f/DIwZGEmy8yczPt1XVw655yZc8+TM/c8z9znPCdf8fHxysvLc3VoZWrYsKFeeukl7dq1S19++aV69+6te+65R3v37nV1aHbZuXOn3nrrLbVv397VoVxXmzZtdPz4ceu/zz//3NUheSQz5kQzMmtONDsz5US4B3Kic5ATXYOcCEeZMScydnYexs7Ow9jZPZATnYOc6BrkxKsY1Vjnzp2N5ORk6+OCggIjKirKSElJcWFU9pNkrFy50tVhOCwnJ8eQZGzatMnVoTisTp06xttvv+3qMK7r7NmzRosWLYyMjAyjZ8+exlNPPeXqkEo1depUo0OHDq4OA4b5c6JZmTknmoWZciLcBznRNciJVY+ciPIwe05k7Ox8jJ0rH2Nn90FOdA1yYtUjJ9qqtleMXLx4Ubt27VLfvn2ty7y9vdW3b19t3brVhZFVf2fOnJEkhYWFuTgS+xUUFGjZsmXKy8tTXFycq8O5ruTkZPXv39/m+HZnBw4cUFRUlG688UYNGzZMR48edXVIHoec6DpmzIlmY7acCNcjJ7oOObHqkRPhKHKi65gxJzJ2rlqMnV2PnOg65MSqR060VaNSX82NnDhxQgUFBYqIiLBZHhERoe+++85FUVV/hYWFevrpp3X77berbdu2rg7nunbv3q24uDhduHBBwcHBWrlypWJiYlwdVpmWLVumr776Sjt37nR1KHbp0qWLlixZopYtW+r48eOaPn26unfvrj179qhWrVquDs9jkBNdw2w50YzMlhPhHsiJrkFOrHrkRJQHOdE1zJYTGTtXPcbO7oGc6BrkxKpHTiyu2hZG4BrJycnas2ePaebBbNmypTIzM3XmzBmtWLFCSUlJ2rRpk9smsx9++EFPPfWUMjIyFBAQ4Opw7JKYmGj9//bt26tLly6Kjo7W+++/r1GjRrkwMqDqmS0nmo0ZcyLgyciJVYucCJiL2XIiY+eqx9gZnoycWLXIiSWrtoWRG264QT4+PsrOzrZZnp2drcjISBdFVb2NHTtWq1at0ubNm9WwYUNXh2MXPz8/NW/eXJIUGxurnTt3au7cuXrrrbdcHFnJdu3apZycHN1yyy3WZQUFBdq8ebP+8pe/yGKxyMfHx4URXl/t2rV100036eDBg64OxaOQE53PjDnRbKpDToRrkBOdj5xY9ciJKC9yovOZMScydnY+xs6uQU50PnJi1SMnlqza3mPEz89PsbGxWrdunXVZYWGh1q1bZ4o538zEMAyNHTtWK1eu1Pr169W0aVNXh1RuhYWFslgsrg6jVH369NHu3buVmZlp/depUycNGzZMmZmZbp/EJOncuXM6dOiQ6tev7+pQPAo50XmqU050d9UhJ8I1yInOQ050HnIiyouc6DzVKScydq56jJ1dg5zoPORE5yEnlqzaXjEiSRMmTFBSUpI6deqkzp07a86cOcrLy9PIkSNdHVqpzp07Z1P5Onz4sDIzMxUWFqbGjRu7MLLSJScnKzU1VR9//LFq1aqlrKwsSVJoaKhq1qzp4uhKN2nSJCUmJqpx48Y6e/asUlNTtXHjRqWlpbk6tFLVqlWr2FyLQUFBqlu3rtvOwfjMM89owIABio6O1rFjxzR16lT5+PjowQcfdHVoHseMOdGMzJoTzciMORHug5zoHORE5yEnoiLMmBMZOzsPY2fnYOzsPsiJzkFOdB5yYimMau7NN980GjdubPj5+RmdO3c2tm3b5uqQyrRhwwZDUrF/SUlJrg6tVCXFK8lYvHixq0Mr0yOPPGJER0cbfn5+Rr169Yw+ffoY6enprg7LYT179jSeeuopV4dRqiFDhhj169c3/Pz8jAYNGhhDhgwxDh486OqwPJbZcqIZmTUnVhfunhPhXsiJVY+c6FrkRDjCbDmRsbPzMHZ2DsbO7oWcWPXIia5FTjQML8MwjMorswAAAAAAAAAAALivanuPEQAAAAAAAAAAgGtRGAEAAAAAAAAAAB6DwggAAAAAAAAAAPAYFEYAAAAAAAAAAIDHoDACAAAAAAAAAAA8BoURAAAAAAAAAADgMSiMAAAAAAAAAAAAj0FhBAAAAAAAAAAAeAwKIwAAAAAAAAAAwGNQGAEAAAAAAAAAAB6DwggAAAAAAAAAAPAYFEYAAAAAAAAAAIDHoDACAAAAAAAAAAA8BoURAAAAAAAAAADgMSiMAAAAAAAAAAAAj0FhBAAAAAAAAAAAeAwKIwAAAAAAAAAAwGNQGAEAAAAAAAAAAB6DwggAAAAAAAAAAPAYFEYAAAAAAAAAAIDHoDACAAAAAAAAAAA8BoURAAAAAAAAAADgMSiMAAAAAAAAAAAAj0FhBAAAAAAAAAAAeAwKIwAAAAAAAAAAwGNQGAEAAAAAAAAAAB6DwggAAAAAAAAAAPAYFEYAAAAAAAAAAIDHoDACAAAAAAAAAAA8BoURAAAAAAAAAADgMSiMAAAAAAAAAAAAj0FhxEE7d+7UbbfdpqCgIHl5eSkzM9PVIQEAXGTJkiXy8vLSkSNHHH7uiBEj1KRJk0qPCQAAAO6rSZMmGjFiRJW9fnXvY5a3/Rzpt2/cuFFeXl7auHGjw/sBULJp06bJy8tLJ06cqJTXK+kz3atXL/Xq1cvh1+Iz77kojDggPz9fDzzwgE6dOqXXX39d//znPxUdHW3Xc8+fP69p06bxIQMAoAxbtmzRtGnTdPr0aVeHAgAAnGz16tWaNm2aq8OAizmrPzh//nwtWbKkSvcBAHBfNVwdgJkcOnRI33//vf72t7/p0Ucfdei558+f1/Tp0yWpXNVLAID7efjhhzV06FD5+/u7OpRqY8uWLZo+fbpGjBih2rVruzocAADgRKtXr9a8efOqdXFk//798vbmHNWylNUfLG/7ldRvnz9/vm644YZiV6D06NFDv/76q/z8/MoTPgCT4TPvufg2dkBOTo4kudUPNZcuXdLFixddHYZDzp8/Xy335Y7y8vJcHQJQrfn4+CggIEBeXl6uDsX0yFdA9eesz7nZ+n+FhYW6cOGCq8MATMcdx8Kl5TnDMPTrr79Kkvz9/eXr6+vMsMrNHfNTedvPkX67t7e3AgICKGABHoLPvOfiL26nESNGqGfPnpKkBx54QF5eXta560q6AuTqeT2PHDmievXqSZKmT58uLy8veXl5Wc+Csec1il7Hy8tLr776qubMmaNmzZrJ399f+/btkyR99913uv/++xUWFqaAgAB16tRJ//rXv8r1ft955x117txZgYGBqlOnjnr06KH09HTr+o8//lj9+/dXVFSU/P391axZM82cOVMFBQU2r9OrVy+1bdtWu3btUo8ePRQYGKjnnntOkmSxWDR16lQ1b95c/v7+atSokf7whz/IYrGUGE9sbKxq1qypsLAwDR06VD/88IPd+7LHTz/9pFGjRlnfU9OmTTVmzBibzvb//vc/PfDAAwoLC1NgYKC6du2qTz/91OZ1iuYmfP/99zVr1iw1bNhQAQEB6tOnjw4ePFhsv9u3b9ddd92lOnXqKCgoSO3bt9fcuXNttrHnb1s0v+KmTZv0xBNPKDw8XA0bNrRpm3379umOO+5QYGCgGjRooNmzZxeL580331SbNm2sf/tOnTopNTXV7nYEXO3s2bN6+umn1aRJE/n7+ys8PFz9+vXTV199Zd1m+fLl1pxyww036Le//a1++umnYq/13XffafDgwapXr55q1qypli1b6k9/+pN1fUnzmtqbH8vjwIEDGjRokCIjIxUQEKCGDRtq6NChOnPmjKQr3xMlTQlw9feOdGWO16L3GBISorp16+qpp54qNgD28vLS2LFj9e6776ply5YKCAhQbGysNm/eXGw/X3/9tRITExUSEqLg4GD16dNH27Zts9mmtHw1bdo0Pfvss5Kkpk2bWr8vy3MPFwCXOfJZt6e/JV3uu9x5550KDQ1VYGCgevbsqS+++KLE/e7bt08PPfSQ6tSpo27dutkVc1Ff6r333tNzzz2nyMhIBQUF6e6773ao/2dvXzMjI0PdunVT7dq1FRwcrJYtWxbrQ16vf1TanP5F7XC1q3NqmzZt5O/vrzVr1ki63B995JFHFBERIX9/f7Vp00Z///vf7Wo3wJXKOnZ//fVXtWrVSq1atbIWByTp1KlTql+/vm677TYVFBRoxIgRmjdvniRZ+wBFn5+yxsIXL17UlClTFBsbq9DQUAUFBal79+7asGFDsTgLCws1d+5ctWvXTgEBAapXr57uvPNOffnllzb7caQvVVKea9KkiX7zm98oLS1NnTp1Us2aNfXWW29Z1117hcLp06c1fvx4a/+1YcOGGj58uHUu/tLuj2HvvPivvvqqbrvtNtWtW1c1a9ZUbGysVqxYUeJ7LC0/Xc+///1vPfDAA2rcuLE1544fP97mb16krD729fqDV7ffl19+KS8vLy1durTYPtLS0uTl5aVVq1ZJKt6GTZo00d69e7Vp0ybrPop+lymtXe35/rNnLAJ4shMnTpTaJ3UkB1/PuXPnFBQUpKeeeqrYuh9//FE+Pj5KSUmRVPJn3pHf0b7//nvdfffdCgoKUnh4uMaPH2/NQdxSwb0xlZadHn/8cTVo0EAvvviinnzySd16662KiIjQrFmzrvvcevXqacGCBRozZozuu+8+DRw4UJLUvn37csWyePFiXbhwQaNHj5a/v7/CwsK0d+9e3X777WrQoIH++Mc/KigoSO+//77uvfdeffDBB7rvvvvsfv3p06dr2rRpuu222zRjxgz5+flp+/btWr9+veLj4yVd7lQEBwdrwoQJCg4O1vr16zVlyhTl5ubqlVdesXm9kydPKjExUUOHDtVvf/tbRUREqLCwUHfffbc+//xzjR49Wq1bt9bu3bv1+uuv67///a8++ugj6/NnzZql559/XoMHD9ajjz6qn3/+WW+++aZ69Oihr7/+2uYKnpL2ZY9jx46pc+fOOn36tEaPHq1WrVrpp59+0ooVK3T+/Hn5+fkpOztbt912m86fP68nn3xSdevW1dKlS3X33XdrxYoVxdr4pZdekre3t5555hmdOXNGs2fP1rBhw7R9+3brNhkZGfrNb36j+vXr66mnnlJkZKS+/fZbrVq1ypq8Hf3bPvHEE6pXr56mTJlic8bSL7/8ojvvvFMDBw7U4MGDtWLFCk2cOFHt2rVTYmKiJOlvf/ubnnzySd1///3WL6dvvvlG27dv10MPPWRXWwKu9rvf/U4rVqzQ2LFjFRMTo5MnT+rzzz/Xt99+q1tuuUVLlizRyJEjdeuttyolJUXZ2dmaO3euvvjiC5uc8s0336h79+7y9fXV6NGj1aRJEx06dEiffPJJmbnfkfzoiIsXLyohIUEWi0Xjxo1TZGSkfvrpJ61atUqnT59WaGhouV538ODBatKkiVJSUrRt2za98cYb+uWXX/SPf/zDZrtNmzbpvffe05NPPil/f3/Nnz9fd955p3bs2KG2bdtKupyvunfvrpCQEP3hD3+Qr6+v3nrrLfXq1UubNm1Sly5dbF7z2nyVmJio//73v/q///s/vf7667rhhhskyXpyAYDyu95n3d7+1vr165WYmKjY2FhNnTpV3t7eWrx4sXr37q1///vf6ty5s81+H3jgAbVo0UIvvviiDMNwKOZZs2bJy8tLEydOVE5OjubMmaO+ffsqMzNTNWvWtG5Xkb7m3r179Zvf/Ebt27fXjBkz5O/vr4MHD9r80FUV/aP169fr/fff19ixY3XDDTeoSZMmys7OVteuXa0/TNarV0+fffaZRo0apdzcXD399NPl2hdQ1ew5dpcuXarbb79df/rTn/Taa69JkpKTk3XmzBktWbJEPj4+evzxx3Xs2DFlZGTon//8Z4n7KmksnJubq7ffflsPPvigHnvsMZ09e1aLFi1SQkKCduzYoY4dO1qfP2rUKC1ZskSJiYl69NFHdenSJf373//Wtm3b1KlTp3K9/9Ly3P79+/Xggw/q8ccf12OPPaaWLVuW+Pxz586pe/fu+vbbb/XII4/olltu0YkTJ/Svf/1LP/74o7U/VBFz587V3XffrWHDhunixYtatmyZHnjgAa1atUr9+/e32bak/GSP5cuX6/z58xozZozq1q2rHTt26M0339SPP/6o5cuXW7e7Xh974MCBdvcHO3XqpBtvvFHvv/++kpKSbNa99957qlOnjhISEkqMd86cORo3bpyCg4OtRZmyfj+w9/vvemMRwNPZO/6sqODgYN13331677339Nprr8nHx8e67v/+7/9kGIaGDRtW5mvY8ztaXl6eevfurePHj1t/10tNTS2xOA83ZMBuGzZsMCQZy5cvty7r2bOn0bNnz2LbJiUlGdHR0dbHP//8syHJmDp1arFt7X2Nw4cPG5KMkJAQIycnx2bbPn36GO3atTMuXLhgXVZYWGjcdtttRosWLex+jwcOHDC8vb2N++67zygoKLBZV1hYaP3/8+fPF3vu448/bgQGBtrE0LNnT0OSsXDhQptt//nPfxre3t7Gv//9b5vlCxcuNCQZX3zxhWEYhnHkyBHDx8fHmDVrls12u3fvNmrUqGGzvLR92WP48OGGt7e3sXPnzmLrit73008/bUiyifns2bNG06ZNjSZNmljbq+g4ad26tWGxWKzbzp0715Bk7N692zAMw7h06ZLRtGlTIzo62vjll19K3Kdh2P+3Xbx4sSHJ6Natm3Hp0iWb1ytqm3/84x/WZRaLxYiMjDQGDRpkXXbPPfcYbdq0uX6DAW4sNDTUSE5OLnHdxYsXjfDwcKNt27bGr7/+al2+atUqQ5IxZcoU67IePXoYtWrVMr7//nub17j681n0uTt8+LB1mb358docfz1ff/11se+gaxV9TyxevLjYumu/g6ZOnWpIMu6++26b7Z544glDkvGf//zH5rmSjC+//NK67PvvvzcCAgKM++67z7rs3nvvNfz8/IxDhw5Zlx07dsyoVauW0aNHD+uysvLVK6+8UqxNAZSfPZ91e/tbhYWFRosWLYyEhIRi/cKmTZsa/fr1K7bfBx980OGYi/pSDRo0MHJzc63L33//fUOSMXfuXOuyivY1X3/9dUOS8fPPP5cajz39o9JyelE7XE2S4e3tbezdu9dm+ahRo4z69esbJ06csFk+dOhQIzQ0tMTvF8Ad2HvsTpo0yfD29jY2b95sLF++3JBkzJkzx+Y5ycnJxT4zhlH2WPjSpUs24y7DMIxffvnFiIiIMB555BHrsvXr1xuSjCeffLLY6xfltPL0pUrKc9HR0YYkY82aNSWuS0pKsj6eMmWKIcn48MMPS42rpD6nYVzJlxs2bLAuKykfXZs/Ll68aLRt29bo3bt3sfdYUn6yR0k5KiUlxfDy8rLpT9vTxy6rP3ht+02aNMnw9fU1Tp06ZV1msViM2rVr2/z9S2rDNm3alPhbzLXt6sj3X1ljEcCT2dMndSQHl/SZvvb31bS0NEOS8dlnn9m8Vvv27W22KymX2vs72p///GdDkvHRRx9Zl/36669Gq1atir0m3A9TaZnQoEGDbM6WOHXqlNavX6/Bgwfr7NmzOnHihE6cOKGTJ08qISFBBw4cKHGKmJJ89NFHKiws1JQpU4rNrXf1NABXn6VXtM/u3bvr/Pnz+u6772ye5+/vr5EjR9osW758uVq3bq1WrVpZ4z1x4oR69+4tSdbK6ocffqjCwkINHjzYZrvIyEi1aNGiWAW2pH1dT2FhoT766CMNGDCgxLOEit736tWr1blzZ5tpIIKDgzV69GgdOXLEOqVZkZEjR9rcuKl79+6SLk/HJV2ebubw4cN6+umni923pmif5fnbPvbYYzaV8Ktj/e1vf2t97Ofnp86dO1vjkS7fP+fHH3/Uzp07S28wwM3Vrl1b27dv17Fjx4qt+/LLL5WTk6MnnnhCAQEB1uX9+/dXq1atrFPj/fzzz9q8ebMeeeQRNW7c2OY1rjcvsSP50RFFV4SkpaVV6vz5ycnJNo/HjRsn6XLOu1pcXJxiY2Otjxs3bqx77rlHaWlpKigoUEFBgdLT03XvvffqxhtvtG5Xv359PfTQQ/r888+Vm5tr85ql5SsAla+sz7q9/a3MzEwdOHBADz30kE6ePGndLi8vT3369NHmzZtVWFhos5/f/e535Y55+PDhqlWrlvXx/fffr/r16xfLTxXpaxb1wT7++ONisRepiv5Rz549FRMTY31sGIY++OADDRgwQIZh2MSckJCgM2fOMA0L3JIjx+60adPUpk0bJSUl6YknnlDPnj315JNPOrS/a8fC0uV7RxSNuwoLC3Xq1CldunRJnTp1svncfPDBB/Ly8tLUqVOLvW5F7hdXWp5r2rRpqVcrXO2DDz5Qhw4dSpzlobLuY3d1//SXX37RmTNn1L179xLzyrX5qTz7yMvL04kTJ3TbbbfJMAx9/fXXkirWxy7NkCFDlJ+frw8//NC6LD09XadPn9aQIUPK9ZrXcuT7r6yxCAD7x5+VoW/fvoqKitK7775rXbZnzx598803Nr+Plcae39HWrFmjBg0a6O6777YuCwgI0GOPPVZJ7wJViam0TKhp06Y2jw8ePCjDMPT888/r+eefL/E5OTk5atCgwXVf+9ChQ/L29r5uR2jv3r2aPHmy1q9fX+yHrqK57os0aNDApkAgXZ4n/9tvvy11epSiG90fOHBAhmGoRYsWJW537U3XStrX9fz888/Kzc21TgVTmu+//77YNDCS1Lp1a+v6q1/j2o5enTp1JF3uiEqX21pSmfstz9/22uOjSMOGDYt1NuvUqaNvvvnG+njixIlau3atOnfurObNmys+Pl4PPfSQbr/99lJjBNzN7NmzlZSUpEaNGik2NlZ33XWXhg8frhtvvFHff/+9JJU4lUGrVq30+eefS7pSwLxeXiiJI/nREU2bNtWECRP02muv6d1331X37t11991367e//W25p9GSVCy/NmvWTN7e3sXmsC4pD9900006f/68fv75Z0mXb3hcUtu2bt1ahYWF+uGHH9SmTRub9wTAOcr6rHt7e9vV3zpw4IAkFZuu5Gpnzpyx9nmkin3Or43Hy8tLzZs3L5afKtLXHDJkiN5++209+uij+uMf/6g+ffpo4MCBuv/++60nCVVF/+jadvn55591+vRp/fWvf9Vf//rXMmMG3Ikjx66fn5/+/ve/69Zbb1VAQIAWL17s8I/hpeWUpUuX6s9//rO+++475efnl7j9oUOHFBUVpbCwMIf2Wd6Y7M1/hw4d0qBBgyozpGJWrVqlF154QZmZmTb3WSqp/cubt48ePaopU6boX//6l3XMW6SoD1yRPnZpOnTooFatWum9997TqFGjJF2eRuuGG26wFsMrypHvv7LGIgDsH39WBm9vbw0bNkwLFizQ+fPnFRgYqHfffVcBAQF64IEHrvt8e35H+/7779WsWbNi2zVv3rxy3gSqFIWRCvLy8ipxvmRHbrLr6GtcfSaGJOuZCc8880ypZ6RU5gfy9OnT6tmzp0JCQjRjxgw1a9ZMAQEB+uqrrzRx4sRiZ9tdG29RzO3atbPOL3utRo0aWbfz8vLSZ599VupVENfbl6uUdhZ0SX/r0pTnb1taG9gTT+vWrbV//36tWrVKa9as0QcffKD58+drypQpmj59ut1xA640ePBgde/eXStXrlR6erpeeeUVvfzyyzZnkVUVR/Ojo/785z9rxIgR+vjjj5Wenq4nn3zSOjdrSZ22Io5+JzmLO+VswNNc/Vm3t79VlMNeeeUVmzn7S9q2iDM+5xXpa9asWVObN2/Whg0b9Omnn2rNmjV677331Lt3b6Wnp8vHx8eu/pGj+be0/vxvf/vbUn94K+/9CYGq5Oixm5aWJkm6cOGCDhw44PCP8CV93t955x2NGDFC9957r5599lmFh4dbb6pbdDKavcrTlyotz1Vm/qtIH+/f//637r77bvXo0UPz589X/fr15evrq8WLFys1NbXY9uWJu6CgQP369dOpU6c0ceJEtWrVSkFBQfrpp580YsSICveBr2fIkCGaNWuWTpw4oVq1aulf//qXHnzwQdWoUTk/eTny/VfWWKTongQArrg6v1XGePZaw4cP1yuvvKKPPvpIDz74oFJTU/Wb3/zGrpMLK+N3Pbg3CiMVVKdOHZtLqIoUnZVcpKwfmux9jdIUnXng6+urvn372vWc0jRr1kyFhYXat29fqV/4Gzdu1MmTJ/Xhhx+qR48e1uWHDx92aD//+c9/1KdPnzLbplmzZjIMQ02bNtVNN91k9+s7ol69egoJCdGePXvK3C46Olr79+8vtrxoapzo6GiH9tusWTNJly/jK+3vVpl/W3sFBQVpyJAhGjJkiC5evKiBAwdq1qxZmjRpks3UQ4A7q1+/vp544gk98cQTysnJ0S233KJZs2ZZb36+f//+YmeQ7d+/3/o5LvrsXS8vXKsy8uP1tGvXTu3atdPkyZO1ZcsW3X777Vq4cKFeeOEF61nap0+ftnlOWd8n1/4ocfDgQRUWFha70WbRmXJX++9//6vAwEDrGdmBgYGl5klvb2/rD5FlcWZhBvAkZX3WfXx87OpvFfVdQkJCnNIvuTbvGIahgwcP2lUgsLevKV0+m7BPnz7q06ePXnvtNb344ov605/+pA0bNljf5/X6R3Xq1CmWeyX7+/P16tVTrVq1VFBQ4LQ+H1AZHDl2v/nmG82YMUMjR45UZmamHn30Ue3evdvmx6ny9ANWrFihG2+8UR9++KHN86+dMqtZs2ZKS0vTqVOnSr1qpDx9qYpq1qzZdfucFYnrgw8+UEBAgNLS0uTv729dvnjxYseDLcXu3bv13//+V0uXLtXw4cOtyzMyMmy2s7eP7ehxMGTIEE2fPl0ffPCBIiIilJubq6FDh173efbux9Hvv9LGIhRGgLL7pFWRg9u2baubb75Z7777rho2bKijR4/qzTffLPfrXSs6Olr79u2TYRg2OeXgwYOVtg9UHe4xUkHNmjXTd999Z51GRJL+85//6IsvvrDZLjAwUFLxD7cjr1Ga8PBw9erVS2+99ZaOHz9ebP3Vr3s99957r7y9vTVjxoxiZ3UUVUSLKqZXV0gvXryo+fPn272fwYMH66efftLf/va3Yut+/fVX5eXlSZIGDhwoHx8fTZ8+vVhF1jAMnTx50u59lsbb21v33nuvPvnkE3355ZfF1hft96677tKOHTu0detW67q8vDz99a9/VZMmTRyeh/WWW25R06ZNNWfOnGLHRdE+K/Nva49r29PPz08xMTEyDMPmknTAXRUUFBSbrio8PFxRUVGyWCzq1KmTwsPDtXDhQptpBD777DN9++236t+/v6TLg/wePXro73//u44ePWrzemWdHVIZ+bE0ubm5unTpks2ydu3aydvb2/peQkJCdMMNN2jz5s0225W1/3nz5tk8LuokXjtw27p1q8081D/88IM+/vhjxcfHy8fHRz4+PoqPj9fHH39scxl0dna2UlNT1a1bN4WEhFz3fQYFBUkq+fsSQPmV9Vm3t78VGxurZs2a6dVXX9W5c+eK7aOy+yX/+Mc/dPbsWevjFStW6Pjx43b9sGRvX/PUqVPF1hedHFSUW+3pHzVr1kxnzpyxmVrh+PHjWrly5XVjlS5/fwwaNEgffPBBiT8YVnbbApXF3mM3Pz9fI0aMUFRUlObOnaslS5YoOztb48ePt9m+PP2Akvpf27dvtxm3SZfvT2IYRolXwhc9tzx9qYoaNGiQ/vOf/5SYL4riKvph/uq4CgoKSp2+7Go+Pj7y8vKyOeP6yJEj+uijjyoYue0+ro636P/nzp1rs529fWxHj4PWrVurXbt2eu+99/Tee++pfv36NicplSYoKMiufdj7/Xe9sQiAsvukVZWDH374YaWnp2vOnDmqW7dupRYpExIS9NNPP+lf//qXddmFCxdK7IPC/XDFSAU98sgjeu2115SQkKBRo0YpJydHCxcuVJs2bWzmlq9Zs6ZiYmL03nvv6aabblJYWJjatm2rtm3b2v0aZZk3b566deumdu3a6bHHHtONN96o7Oxsbd26VT/++KP+85//2PU6zZs315/+9CfNnDlT3bt318CBA+Xv76+dO3cqKipKKSkpuu2221SnTh0lJSXpySeflJeXl/75z386dCnZww8/rPfff1+/+93vtGHDBt1+++0qKCjQd999p/fff19paWnq1KmTmjVrphdeeEGTJk3SkSNHdO+996pWrVo6fPiwVq5cqdGjR+uZZ56xe7+lefHFF5Wenq6ePXtq9OjRat26tY4fP67ly5fr888/V+3atfXHP/5R//d//6fExEQ9+eSTCgsL09KlS3X48GF98MEHxW5Wfz3e3t5asGCBBgwYoI4dO2rkyJGqX7++vvvuO+3du9d6mXll/W3tER8fr8jISN1+++2KiIjQt99+q7/85S/q37+/zc1PAXd19uxZNWzYUPfff786dOig4OBgrV27Vjt37tSf//xn+fr66uWXX9bIkSPVs2dPPfjgg8rOztbcuXPVpEkTm8H5G2+8oW7duumWW27R6NGj1bRpUx05ckSffvqpMjMzS9x/ZeTH0qxfv15jx47VAw88oJtuukmXLl3SP//5T+sPEkUeffRRvfTSS3r00UfVqVMnbd68Wf/9739Lfd3Dhw/r7rvv1p133qmtW7fqnXfe0UMPPaQOHTrYbNe2bVslJCToySeflL+/v7VzevWPCy+88IIyMjLUrVs3PfHEE6pRo4beeustWSwWzZ492673WXSD9z/96U8aOnSofH19NWDAAOsAGUD5XO+zbk9/y9vbW2+//bYSExPVpk0bjRw5Ug0aNNBPP/2kDRs2KCQkRJ988kmlxRwWFqZu3bpp5MiRys7O1pw5c9S8eXO7bmZpb19zxowZ2rx5s/r376/o6Gjl5ORo/vz5atiwobp16ybJvv7R0KFDNXHiRN1333168skndf78eS1YsEA33XST3TdNf+mll7RhwwZ16dJFjz32mGJiYnTq1Cl99dVXWrt2bYlFHMAd2HPsFt3fYt26dapVq5bat2+vKVOmaPLkybr//vt11113SbrSD3jyySeVkJAgHx+f6575/5vf/EYffvih7rvvPvXv31+HDx/WwoULFRMTY/Mj9h133KGHH35Yb7zxhg4cOKA777xThYWF+ve//6077rhDY8eOleR4X6qinn32Wa1YsUIPPPCAHnnkEcXGxurUqVP617/+pYULF6pDhw5q06aNunbtqkmTJlmveFm2bFmxk2ZK0r9/f7322mu688479dBDDyknJ0fz5s1T8+bNbYq5FdGqVSs1a9ZMzzzzjH766SeFhITogw8+KHavEcm+PnZ5+oNDhgzRlClTFBAQoFGjRtk1Po+NjdWCBQv0wgsvqHnz5goPDy/xviT2fv9dbywC4Pp90qrIwQ899JD+8Ic/aOXKlRozZkyx+xVXxOOPP66//OUvevDBB/XUU0+pfv361vuYSMyI4PYM2G3Dhg2GJGP58uU2y9955x3jxhtvNPz8/IyOHTsaaWlpRlJSkhEdHW2z3ZYtW4zY2FjDz8/PkGRMnTrVodc4fPiwIcl45ZVXSozv0KFDxvDhw43IyEjD19fXaNCggfGb3/zGWLFihcPv9e9//7tx8803G/7+/kadOnWMnj17GhkZGdb1X3zxhdG1a1ejZs2aRlRUlPGHP/zBSEtLMyQZGzZssG7Xs2dPo02bNiXu4+LFi8bLL79stGnTxrqf2NhYY/r06caZM2dstv3ggw+Mbt26GUFBQUZQUJDRqlUrIzk52di/f79d+7LH999/bwwfPtyoV6+e4e/vb9x4441GcnKyYbFYrNscOnTIuP/++43atWsbAQEBRufOnY1Vq1bZvE5px0nR32/x4sU2yz///HOjX79+Rq1atYygoCCjffv2xptvvmmzjT1/28WLFxuSjJ07dxZ7b6W1zbXH2FtvvWX06NHDqFu3ruHv7280a9bMePbZZ4v9PQB3ZbFYjGeffdbo0KGD9TPVoUMHY/78+Tbbvffee9YcFxYWZgwbNsz48ccfi73enj17jPvuu8/6mW/ZsqXx/PPPW9cXfe4OHz5sXWZvfizpe6Is//vf/4xHHnnEaNasmREQEGCEhYUZd9xxh7F27Vqb7c6fP2+MGjXKCA0NNWrVqmUMHjzYyMnJKfa9M3XqVEOSsW/fPuP+++83atWqZdSpU8cYO3as8euvv9q8piQjOTnZeOedd4wWLVoY/v7+xs0332zzfop89dVXRkJCghEcHGwEBgYad9xxh7FlyxabbcrKV4ZhGDNnzjQaNGhgeHt7F2tfAI5x5LNuT3/LMAzj66+/NgYOHGjtL0RHRxuDBw821q1bV2y/P//8s8MxF/Wl/u///s+YNGmSER4ebtSsWdPo37+/8f3339tsW9G+5rp164x77rnHiIqKMvz8/IyoqCjjwQcfNP773/9aX8fe/lF6errRtm1bw8/Pz2jZsqXxzjvvWNvhakU5tSTZ2dlGcnKy0ahRI8PX19eIjIw0+vTpY/z1r391uB0BZyrr2N21a5dRo0YNY9y4cTbPuXTpknHrrbcaUVFRxi+//GJdNm7cOKNevXqGl5eX9fNT1li4sLDQePHFF43o6GhrH2XVqlUl9rUuXbpkvPLKK0arVq0MPz8/o169ekZiYqKxa9cu6zaO9qVKynPR0dFG//79S2yr6OhoIykpyWbZyZMnjbFjxxoNGjQw/Pz8jIYNGxpJSUnGiRMnrNscOnTI6Nu3r+Hv729EREQYzz33nJGRkWFXH3PRokXWPlyrVq2MxYsXO5yfrmffvn1G3759jeDgYOOGG24wHnvsMeM///lPiWPg6/WxDaP0/mBJ7WcYhnHgwAFDkiHJ+Pzzz4utL6nfnpWVZfTv39+oVauWIcno2bOnYRhXvoeu7ete7/vP3rEI4Ins7ZPam4NL+kz37NnT+jm+1l133WVIKjY2NYySP/P2/o5mGJfH6v379zdq1qxp1KtXz/j9739vfPDBB4YkY9u2bXa1D1zDyzC4YwwAAJ5m2rRpmj59un7++WfdcMMNZW7r5eWl5ORk/eUvf3FSdAAqiyOfdXexceNG3XHHHVq+fLnuv/9+V4cDAAAAk7vvvvu0e/dup937Y86cORo/frx+/PFHNWjQwCn7hOO4xwgAAAAAAAAAoNo5fvy4Pv30Uz388MNV8vq//vqrzeMLFy7orbfeUosWLSiKuDnuMeJBsrKyylxfs2ZNhYaGOika5zh37lyJN0e7Wr169aw3iwMAVzh16pQuXrxY6nofHx/Vq1fPiREBQOW7ePHide+TUd36ogBgdvRTAZjV4cOH9cUXX+jtt9+Wr6+vHn/88SrZz8CBA9W4cWN17NhRZ86c0TvvvKPvvvtO7777bpXsD5WHwogHqV+/fpnrk5KStGTJEucE4ySvvvqqzY2BS3L48GE1adLEOQEBQAkGDhyoTZs2lbo+OjpaR44ccV5AAFAFtmzZojvuuKPMbRYvXky/DADcCP1UAGa1adMmjRw5Uo0bN9bSpUsVGRlZJftJSEjQ22+/rXfffVcFBQWKiYnRsmXLNGTIkCrZHyoP9xjxIGvXri1zfVRUlGJiYpwUjXP873//0//+978yt+nWrZsCAgKcFBEAFLdr1y798ssvpa6vWbOmbr/9didGBACV75dfftGuXbvK3KZNmzbXPZkHAOA89FMBANUVhREAAAAAAAAAAOAxuPk6AAAAAAAAAADwGKa8x0hhYaGOHTumWrVqycvLy9XhAKgChmHo7NmzioqKkrc3NdyykBOB6o+caD9yIlD9kRPtR04Eqj9yov3IiUD150hONGVh5NixY2rUqJGrwwDgBD/88IMaNmzo6jDcGjkR8BzkxOsjJwKeg5x4feREwHOQE6+PnAh4DntyoikLI7Vq1ZJ0+Q2GhISUuW1+fr7S09MVHx8vX19fZ4RXKcwYtxljlswZtxljlhyLOzc3V40aNbJ+3lE6T8iJrkJ7OYb2cgw5sWqQE90Tbe08ntDW5ET7eUJONGPcZoxZMmfcZoxZop9YVciJ7smMMUvmjNuMMUtVlxNNWRgputwtJCTErkQWGBiokJAQ0/3BzRa3GWOWzBm3GWOWyhc3l7denyfkRFehvRxDezmGnFg1yInuibZ2Hk9qa3Li9XlCTjRj3GaMWTJn3GaMWaKfWFXIie7JjDFL5ozbjDFLVZcTmXwQAAAAAAAAAAB4DAojAAAAAAAAAADAY1AYAQAAAAAAAAAAHoPCCAAAAAAAAAAA8BgURgAAAAAAAAAAgMegMAIAAAAAAAAAADwGhREAAAAAAAAAAOAxKIwAAAAAAAAAAACPQWEEAAAAFbZgwQK1b99eISEhCgkJUVxcnD777DPr+l69esnLy8vm3+9+9zub1zh69Kj69++vwMBAhYeH69lnn9WlS5ec/VYAAAAAANVcDVcHAKD82k5Lk6XAy9Vh2M3fx9Dszq6OAkB11OSPn7o6BIdVt5zYsGFDvfTSS2rRooUMw9DSpUt1zz336Ouvv1abNm0kSY899phmzJhhfU5gYKD1/wsKCtS/f39FRkZqy5YtOn78uIYPHy5fX1+9+OKLTn8/qBpm67tI0pGX+rs6hHKhrQHgCrPlxOrWTwTgXsiJl1EYAQAAQIUNGDDA5vGsWbO0YMECbdu2zVoYCQwMVGRkZInPT09P1759+7R27VpFRESoY8eOmjlzpiZOnKhp06bJz8+vyt8DAAAAAMAzUBgBAABApSooKNDy5cuVl5enuLg46/J3331X77zzjiIjIzVgwAA9//zz1qtGtm7dqnbt2ikiIsK6fUJCgsaMGaO9e/fq5ptvLnFfFotFFovF+jg3N1eSlJ+fr/z8/DLjLFp/ve1QcUVt7O9tuDgSx5nt+PCEtjbb3wQAPN2CBQu0YMECHTlyRJLUpk0bTZkyRYmJiZIuT7m6adMmm+c8/vjjWrhwofXx0aNHNWbMGG3YsEHBwcFKSkpSSkqKatTgp00A5UP2AAAAQKXYvXu34uLidOHCBQUHB2vlypWKiYmRJD300EOKjo5WVFSUvvnmG02cOFH79+/Xhx9+KEnKysqyKYpIsj7OysoqdZ8pKSmaPn16seXp6ek2U3WVJSMjw67tUHEzOxW6OgSHrV692tUhlEt1buvz589XcSQAgMrElKsA3BGFEQAAAFSKli1bKjMzU2fOnNGKFSuUlJSkTZs2KSYmRqNHj7Zu165dO9WvX199+vTRoUOH1KxZs3Lvc9KkSZowYYL1cW5urho1aqT4+HiFhISU+dz8/HxlZGSoX79+8vX1LXcMuL6itn7+S29ZCs0zn7Ek7ZmW4OoQHOIJbV10ZRgAwByYchWAO6IwAgAAgErh5+en5s2bS5JiY2O1c+dOzZ07V2+99Vaxbbt06SJJOnjwoJo1a6bIyEjt2LHDZpvs7GxJKnWQLEn+/v7y9/cvttzX19fuYocj26JiLIVeprrRoyTTHhvVua3N+jcBADDlalUzY9xmjFkyZ9xmnXK1KF572tqRvweFEQAAAFSJwsJCm8Ho1TIzMyVJ9evXlyTFxcVp1qxZysnJUXh4uKTLU1yFhIRYp+MCAACAOTHlqnOZMW4zxiyZM24zTrkq2dfWjky5SmEEAAAAFTZp0iQlJiaqcePGOnv2rFJTU7Vx40alpaXp0KFDSk1N1V133aW6devqm2++0fjx49WjRw+1b99ekhQfH6+YmBg9/PDDmj17trKysjR58mQlJyeXeEUIAAAAzIMpV53DjHGbMWbJnHGbdcpVf29DMzsV2tXWjky5SmEEAAAAFZaTk6Phw4fr+PHjCg0NVfv27ZWWlqZ+/frphx9+0Nq1azVnzhzl5eWpUaNGGjRokCZPnmx9vo+Pj1atWqUxY8YoLi5OQUFBSkpKsrkJJwAAAMyJKVedy4xxmzFmyZxxm3HKVcm+tnbkb+HtyM4XLFig9u3bKyQkRCEhIYqLi9Nnn31mXd+rVy95eXnZ/Pvd735n8xpHjx5V//79FRgYqPDwcD377LO6dOmSI2EAAADAzSxatEhHjhyRxWJRTk6O1q5dq379+kmSGjVqpE2bNunkyZO6cOGCDhw4oNmzZxc7Uy86OlqrV6/W+fPn9fPPP+vVV19VjRqcxwPAfBg7A0DZHJ1ydffu3crJybFuw5SrACrKoZFmw4YN9dJLL6lFixYyDENLly7VPffco6+//lpt2rSRJD322GM2Z/ZdPWdfQUGB+vfvr8jISG3ZskXHjx/X8OHD5evrqxdffLGS3hIAAAAAAK7D2BkArmDKVQDuyKHCyIABA2wez5o1SwsWLNC2bdusnbvAwMBSL2NLT0/Xvn37tHbtWkVERKhjx46aOXOmJk6cqGnTpsnPz6+cbwMAAAAAAPfA2BkArmDKVQDuqNxzExQUFGj58uXKy8tTXFycdfm7776rd955R5GRkRowYICef/5565kvW7duVbt27RQREWHdPiEhQWPGjNHevXt18803l7gvi8Vic3ld0U1U8vPzlZ+fX2acReuvt527MWPcZoxZMmfcRbH6exsujsQxRfHa09Zm+nsAAAAApXHm2BkA3NGiRYtKXVc05er1FE25CgCVxeHCyO7duxUXF6cLFy4oODhYK1eutM7n99BDDyk6OlpRUVH65ptvNHHiRO3fv18ffvihJCkrK8umYyfJ+jgrK6vUfaakpGj69OnFlqenp9tcblyWjIwMu7ZzN2aM24wxS+aMe2anQleHUC72tPX58+edEAkAAABQNVwxduakQnMwY8ySOePmpEIAQGkcLoy0bNlSmZmZOnPmjFasWKGkpCRt2rRJMTExGj16tHW7du3aqX79+urTp48OHTqkZs2alTvISZMmacKECdbHubm5atSokeLj44vdtPNa+fn5ysjIUL9+/Ry6K72rmTFuM8YsmTPuopif/9JblkIvV4djN39vQzM7FdrV1kWDOAAAAMCMXDF25qRCczFjzJI54+akQgDAtRwujPj5+al58+aSpNjYWO3cuVNz587VW2+9VWzbLl26SJIOHjyoZs2aKTIyUjt27LDZJjs7W5JKnVtVkvz9/Uu8mZKvr6/dP2Q7sq07MWPcZoxZMmfclkIvWQrMUxgpYk9bm+1vAQAAAFzNFWNnTio0R9xmjFkyZ9ycVAgAKE257zFSpLCw0OZS3atlZmZKkurXry9JiouL06xZs5STk6Pw8HBJl6vfISEh1kuKAQAAAACobpwxduakQnPFbcaYJXPGzUmF8DRtp6WZ5pj39zE0u7Oro4AncqgwMmnSJCUmJqpx48Y6e/asUlNTtXHjRqWlpenQoUNKTU3VXXfdpbp16+qbb77R+PHj1aNHD7Vv316SFB8fr5iYGD388MOaPXu2srKyNHnyZCUnJ5fYeQMAAAAAwGwYOwMAALg3hwojOTk5Gj58uI4fP67Q0FC1b99eaWlp6tevn3744QetXbtWc+bMUV5enho1aqRBgwZp8uTJ1uf7+Pho1apVGjNmjOLi4hQUFKSkpCTNmDGj0t8YAAAAAACuwNgZAADAvTlUGFm0aFGp6xo1aqRNmzZd9zWio6O1evVqR3YLAAAAAIBpMHYGAABwb96uDgAAAAAAAAAAAMBZKIwAAAAAAAAAAACPQWEEAAAAAAAAAAB4DAojAAAAAAAAAADAYzh083UAAFylyR8/dfo+/X0Mze4stZ2WJkuBl8PPP/JS/yqICgAAAAAAABVBYQQAKslLL72kSZMm6amnntKcOXMkSRcuXNDvf/97LVu2TBaLRQkJCZo/f74iIiKszzt69KjGjBmjDRs2KDg4WElJSUpJSVGNGqRoAAAAoLoq78k3rlJ00hAAANUBU2kBQCXYuXOn3nrrLbVv395m+fjx4/XJJ59o+fLl2rRpk44dO6aBAwda1xcUFKh///66ePGitmzZoqVLl2rJkiWaMmWKs98CAAAAAAAA4BEojABABZ07d07Dhg3T3/72N9WpU8e6/MyZM1q0aJFee+019e7dW7GxsVq8eLG2bNmibdu2SZLS09O1b98+vfPOO+rYsaMSExM1c+ZMzZs3TxcvXnTVWwIAAAAAAACqLeZpcXNmurSWy2rhqZKTk9W/f3/17dtXL7zwgnX5rl27lJ+fr759+1qXtWrVSo0bN9bWrVvVtWtXbd26Ve3atbOZWishIUFjxozR3r17dfPNNzv1vQAAAAAAAADVHYURAKiAZcuW6auvvtLOnTuLrcvKypKfn59q165tszwiIkJZWVnWba4uihStL1pXEovFIovFYn2cm5srScrPz1d+fn6Z8Ratv9527sjfx3D+Pr0Nm/86yoztXBGuPL5ccXxUVNFxZU97edqxBAAAAABAVaIwAgDl9MMPP+ipp55SRkaGAgICnLbflJQUTZ8+vdjy9PR0BQYG2vUaGRkZlR1WlXPlFWkzOxWW63mrV6+u5EjMwRXHl5mvWLSnvc6fP++ESAAAAAAA8AwURgCgnHbt2qWcnBzdcsst1mUFBQXavHmz/vKXvygtLU0XL17U6dOnba4ayc7OVmRkpCQpMjJSO3bssHnd7Oxs67qSTJo0SRMmTLA+zs3NVaNGjRQfH6+QkJAyY87Pz1dGRob69esnX19fh96vq7Wdlub0ffp7G5rZqVDPf+ktS6Hj0xrumZZQBVG5L1ceX644Piqq6Piyp72KrgwDAAAAAAAVR2EEAMqpT58+2r17t82ykSNHqlWrVpo4caIaNWokX19frVu3ToMGDZIk7d+/X0ePHlVcXJwkKS4uTrNmzVJOTo7Cw8MlXT57PCQkRDExMSXu19/fX/7+/sWW+/r62v1jtCPbugtX3m/JUuhVrv2brY0riyuOL7Pcj6sk9rSXGY6lBQsWaMGCBTpy5IgkqU2bNpoyZYoSExMlSRcuXNDvf/97LVu2TBaLRQkJCZo/f77NdIJHjx7VmDFjtGHDBgUHByspKUkpKSmqUYMuKwAAAACg8jDKBIByqlWrltq2bWuzLCgoSHXr1rUuHzVqlCZMmKCwsDCFhIRo3LhxiouLU9euXSVJ8fHxiomJ0cMPP6zZs2crKytLkydPVnJyconFDwBwVw0bNtRLL72kFi1ayDAMLV26VPfcc4++/vprtWnTRuPHj9enn36q5cuXKzQ0VGPHjtXAgQP1xRdfSLp8xV3//v0VGRmpLVu26Pjx4xo+fLh8fX314osvuvjdAQAAAACqEwojAFCFXn/9dXl7e2vQoEE2Z0gX8fHx0apVqzRmzBjFxcUpKChISUlJmjFjhgujBgDHDRgwwObxrFmztGDBAm3btk0NGzbUokWLlJqaqt69e0uSFi9erNatW2vbtm3q2rWr0tPTtW/fPq1du1YRERHq2LGjZs6cqYkTJ2ratGny8/NzxdsCAAAAAFRDFEYAoBJt3LjR5nFAQIDmzZunefPmlfqc6Ohoj71JN4DqqaCgQMuXL1deXp7i4uK0a9cu5efnq2/fvtZtWrVqpcaNG2vr1q3q2rWrtm7dqnbt2tlMrZWQkKAxY8Zo7969uvnmm0vcl8VikcVisT4uuh9Lfn6+8vPzy4yzaP31tkPFFbWxv7fh4kgcZ7bjwxPa2mx/EwDwdEy5CsAdkT0AAABQKXbv3q24uDhduHBBwcHBWrlypWJiYpSZmSk/Pz/Vrl3bZvuIiAhlZWVJkrKysmwGv0Xri9aVJiUlRdOnTy+2PD09XYGBgXbFnZGRYdd2qLiZnQpdHYLDzHryQnVu6/Pnz1dxJACAysSUqwDcEYURAAAAVIqWLVsqMzNTZ86c0YoVK5SUlKRNmzZV6T4nTZqkCRMmWB/n5uaqUaNGio+PV0hISJnPzc/PV0ZGhvr162eKG9ybWVFbP/+ltyyFXq4OxyF7piW4OgSHeEJbF10ZBgAwB6ZcBeCOKIwAAACgUvj5+al58+aSpNjYWO3cuVNz587VkCFDdPHiRZ0+fdrmqpHs7GxFRkZKkiIjI7Vjxw6b18vOzrauK42/v7/8/f2LLff19bW72OHItqgYS6GXLAXm+rHerMdGdW5rs/5NAABMuVrVzDilZlGsZm1rM8VtxuNDcuwYceTvQWEEAAAAVaKwsFAWi0WxsbHy9fXVunXrNGjQIEnS/v37dfToUcXFxUmS4uLiNGvWLOXk5Cg8PFzS5SmuQkJCFBMT47L3AAAAgIpjylXnMuOUmmZtazPGbcbjQ7KvrR2ZcpXCCAAAACps0qRJSkxMVOPGjXX27FmlpqZq48aNSktLU2hoqEaNGqUJEyYoLCxMISEhGjdunOLi4tS1a1dJUnx8vGJiYvTwww9r9uzZysrK0uTJk5WcnFziFSEAAAAwD6ZcdQ4zTqnp721oZqdC07a1meI24/EhOXaMODLlqkOFkQULFmjBggU6cuSIJKlNmzaaMmWKEhMTJUkXLlzQ73//ey1btkwWi0UJCQmaP3++TVX36NGjGjNmjDZs2KDg4GAlJSUpJSVFNWpQowEAADCrnJwcDR8+XMePH1doaKjat2+vtLQ09evXT5L0+uuvy9vbW4MGDbLpJxbx8fHRqlWrNGbMGMXFxSkoKEhJSUmaMWOGq94SAJQbY2cAsMWUq85l1ik1zdjWZozbjMeHZF9bO/K3cKhH1bBhQ7300ktq0aKFDMPQ0qVLdc899+jrr79WmzZtNH78eH366adavny5QkNDNXbsWA0cOFBffPGFpMvzCPbv31+RkZHasmWLjh8/ruHDh8vX11cvvviiI6EAAADAjSxatKjM9QEBAZo3b57mzZtX6jbR0dFavXp1ZYcGAE7H2BkAysaUqwBczaHCyIABA2wez5o1SwsWLNC2bdvUsGFDLVq0SKmpqerdu7ckafHixWrdurW2bdumrl27Kj09Xfv27dPatWsVERGhjh07aubMmZo4caKmTZsmPz+/yntnAAAAAAC4AGNnALiCKVcBuKNyX4NbUFCg5cuXKy8vT3Fxcdq1a5fy8/PVt29f6zatWrVS48aNtXXrVnXt2lVbt25Vu3btbC4PTkhI0JgxY7R3717dfPPNJe7LYrHIYrFYHxfNFZafn3/dO80XrXfkjvTuoChef2/DxZHYryhWs7a1meI24/EhOXaMmOnvAQAAAJTGmWNnAHBHTLkKwB05XBjZvXu34uLidOHCBQUHB2vlypWKiYlRZmam/Pz8bOYDlKSIiAhlZWVJkrKysmw6dkXri9aVJiUlRdOnTy+2PD09XYGBgXbFbc9d693RzE6Frg7BYWZtazPGbcbjQ7Kvrc+fP++ESAAAAICq4YqxsyefVGimuD3hRDd34QltbYa/B1OuAnBHDhdGWrZsqczMTJ05c0YrVqxQUlKSNm3aVBWxWU2aNEkTJkywPs7NzVWjRo0UHx+vkJCQMp+bn5+vjIwMu+5a706K4n7+S29ZCs1xMxx/b0MzOxWatq3NFLcZjw/JsWOkaBAHAAAAmJErxs6efFKhGeOuzie6uZvq3NacVAgA5eNwYcTPz0/NmzeXJMXGxmrnzp2aO3euhgwZoosXL+r06dM2Z75kZ2crMjJSkhQZGakdO3bYvF52drZ1XWn8/f1LnDPQnjvRl2dbd2Ip9JKlwDw/fEvmbWszxm3G40Oyr63N9rcAAAAAruaKsbMnn1Roprg94UQ3d+EJbc1JhQBQPuW+x0iRwsJCWSwWxcbGytfXV+vWrdOgQYMkSfv379fRo0cVFxcnSYqLi9OsWbOUk5Oj8PBwSZer3yEhIYqJialoKAAAAAAAuCVnjJ09+aRCM8ZdnU90czfVua3N9rcAAHfhUGFk0qRJSkxMVOPGjXX27FmlpqZq48aNSktLU2hoqEaNGqUJEyYoLCxMISEhGjdunOLi4tS1a1dJUnx8vGJiYvTwww9r9uzZysrK0uTJk5WcnFxi5w0AAAAAALNh7AwAAODeHCqM5OTkaPjw4Tp+/LhCQ0PVvn17paWlqV+/fpKk119/Xd7e3ho0aJAsFosSEhI0f/586/N9fHy0atUqjRkzRnFxcQoKClJSUpJmzJhRue8KAAAAAAAXYewMAADg3hwqjCxatKjM9QEBAZo3b57mzZtX6jbR0dFavXq1I7sFAAAAAMA0GDsDAAC4N29XBwAAAAAAAAAAAOAsFEYAAAAAAAAAAIDHoDACAAAAAAAAAAA8BoURAAAAAAAAAADgMSiMAAAAAAAAAAAAj0FhBAAAAAAAAAAAeAwKIwAAAAAAAAAAwGNQGAEAAAAAAAAAAB6DwggAAAAAAAAAAPAYFEYAAAAAAAAAAIDHoDACAAAAAAAAAAA8BoURAAAAAAAAAADgMSiMAAAAAAAAAAAAj0FhBAAAABWWkpKiW2+9VbVq1VJ4eLjuvfde7d+/32abXr16ycvLy+bf7373O5ttjh49qv79+yswMFDh4eF69tlndenSJWe+FQAAAABANVfD1QEAAADA/DZt2qTk5GTdeuutunTpkp577jnFx8dr3759CgoKsm732GOPacaMGdbHgYGB1v8vKChQ//79FRkZqS1btuj48eMaPny4fH199eKLLzr1/QAAAAAAqi8KIwAAAKiwNWvW2DxesmSJwsPDtWvXLvXo0cO6PDAwUJGRkSW+Rnp6uvbt26e1a9cqIiJCHTt21MyZMzVx4kRNmzZNfn5+VfoeAAAAAACegam0AAAAUOnOnDkjSQoLC7NZ/u677+qGG25Q27ZtNWnSJJ0/f966buvWrWrXrp0iIiKsyxISEpSbm6u9e/c6J3AAAABUKqZcBeCOuGIEAAAAlaqwsFBPP/20br/9drVt29a6/KGHHlJ0dLSioqL0zTffaOLEidq/f78+/PBDSVJWVpZNUUSS9XFWVlaJ+7JYLLJYLNbHubm5kqT8/Hzl5+eXGWfR+utth4oramN/b8PFkTjObMeHJ7S12f4mAODpmHIVgDuiMAIAAIBKlZycrD179ujzzz+3WT569Gjr/7dr107169dXnz59dOjQITVr1qxc+0pJSdH06dOLLU9PT7cZTJclIyOjXPuG42Z2KnR1CA5bvXq1q0Mol+rc1ldfaQYAcH9MuQrAHVEYAQAAQKUZO3asVq1apc2bN6thw4ZlbtulSxdJ0sGDB9WsWTNFRkZqx44dNttkZ2dLUqmD5EmTJmnChAnWx7m5uWrUqJHi4+MVEhJS5v7z8/OVkZGhfv36ydfX97rvDeVX1NbPf+ktS6GXq8NxyJ5pCa4OwSGe0NZFV4YBAMyprClX33nnHUVGRmrAgAF6/vnnrSe6lDbl6pgxY7R3717dfPPNxfbjiVcWm/HK0aJYzdrWZorbjMeH5Ngx4sjfg8IIAAAAKswwDI0bN04rV67Uxo0b1bRp0+s+JzMzU5JUv359SVJcXJxmzZqlnJwchYeHS7p8NUdISIhiYmJKfA1/f3/5+/sXW+7r62t3scORbVExlkIvWQrM9WO9WY+N6tzWZv2bAACcO+WqJ19ZbMYrR83a1maM24zHh2RfWztyZbFDhZGUlBR9+OGH+u6771SzZk3ddtttevnll9WyZUvrNr169dKmTZtsnvf4449r4cKF1sdHjx7VmDFjtGHDBgUHByspKUkpKSmqUYM6DQAAgBklJycrNTVVH3/8sWrVqmUdoIaGhqpmzZo6dOiQUlNTddddd6lu3br65ptvNH78ePXo0UPt27eXJMXHxysmJkYPP/ywZs+eraysLE2ePFnJycklFj8AwF0xdgaAkjlzylVPvLLYjFeO+nsbmtmp0LRtbaa4zXh8SI4dI45cWexQb4qbJQEAAKAkCxYskHT5h76rLV68WCNGjJCfn5/Wrl2rOXPmKC8vT40aNdKgQYM0efJk67Y+Pj5atWqVxowZo7i4OAUFBSkpKcmmXwkAZsDYGQCKc/aUq558ZbFZrxw1Y1ubMW4zHh+SfW3tyN/CocIIN0sCAABASQyj7HlqGzVqVOzM6JJER0eb9mbXAFCEsTMAXOGqKVcBoCwVuv6WmyVVHTPeDIebJTmPGY8PqepulgQAAAC4M8bOVceMcXvCeM5deEJbm+HvwZSrANxRuQsj3CzJOcx4MxyztrUZ4zbj8SFV/s2SXGXBggVasGCBjhw5Iklq06aNpkyZosTEREnShQsX9Pvf/17Lli2TxWJRQkKC5s+fb5MDmTcaAACgemPs7BxmjLs6j+fcTXVua7OMnSWmXAXgXsr9yxs3S6paZrwZDjdLch4zHh9S1d0syVUaNmyol156SS1atJBhGFq6dKnuueceff3112rTpo3Gjx+vTz/9VMuXL1doaKjGjh2rgQMH6osvvpDEvNEAAACegLFz1TJj3J4wnnMXntDWZhg7M+UqAHdUrsIIN0tyHjPeDMesbW3GuM14fEiVf7MkVxkwYIDN41mzZmnBggXatm2bGjZsqEWLFik1NVW9e/eWdPlsmNatW2vbtm3q2rUr80YDAABUc4ydnceMcVfn8Zy7qc5tbba/BQC4C4cKI9wsCQBKVlBQoOXLlysvL09xcXHatWuX8vPz1bdvX+s2rVq1UuPGjbV161Z17dq1XPNGS545d7Qk+fs4f17gorl9yzsnsRnbuSJceXy54vioqOo2dzQA4ArGzgAAAO7NocIIN0sCAFu7d+9WXFycLly4oODgYK1cuVIxMTHKzMyUn5+fateubbN9RESENXeWZ95oyXPnjp7d2XX7Lu+cxJ56mbcrji9XHh8VVV3mjgYAXMHYGQAAwL05VBjhZkkAYKtly5bKzMzUmTNntGLFCiUlJdk1N2pFeOLc0ZLUdlqa0/dZNLdveeck3jMtoQqicl+uPL5ccXxUVHWbOxoAcAVjZwAAAPfm8FRaZeFmSQA8jZ+fn5o3by5Jio2N1c6dOzV37lwNGTJEFy9e1OnTp22uGsnOzrbOCV2eeaMlz5072pVzApd3TmKztXFlccXxZcY5o4swdzQAVD+MnQEAANybt6sDAIDqpLCwUBaLRbGxsfL19dW6deus6/bv36+jR48qLi5O0uV5o3fv3q2cnBzrNswbDQAAAAAAAFQth64YAQBcMWnSJCUmJqpx48Y6e/asUlNTtXHjRqWlpSk0NFSjRo3ShAkTFBYWppCQEI0bN05xcXHq2rWrJOaNBgAAAAAAAFyBwggAlFNOTo6GDx+u48ePKzQ0VO3bt1daWpr69esnSXr99dfl7e2tQYMGyWKxKCEhQfPnz7c+n3mjAQAAAAAAAOejMAIA5bRo0aIy1wcEBGjevHmaN29eqdswbzQAAAAAAADgXNxjBAAAAAAAAAAAeAwKIwAAAAAAAAAAwGNQGAEAAAAAAAAAAB6DwggAAAAAAAAAAPAYFEYAAAAAAAAAAIDHoDACAAAAAAAAAAA8BoURAAAAAAAAAADgMSiMAAAAAAAAAAAAj0FhBAAAAAAAAAAAeAwKIwAAAAAAAAAAwGNQGAEAAAAAAAAAAB6DwggAAAAqLCUlRbfeeqtq1aql8PBw3Xvvvdq/f7/NNhcuXFBycrLq1q2r4OBgDRo0SNnZ2TbbHD16VP3791dgYKDCw8P17LPP6tKlS858KwAAAACAao7CCAAAACps06ZNSk5O1rZt25SRkaH8/HzFx8crLy/Pus348eP1ySefaPny5dq0aZOOHTumgQMHWtcXFBSof//+unjxorZs2aKlS5dqyZIlmjJliiveEgAAAACgmqIwAgAAgApbs2aNRowYoTZt2qhDhw5asmSJjh49ql27dkmSzpw5o0WLFum1115T7969FRsbq8WLF2vLli3atm2bJCk9PV379u3TO++8o44dOyoxMVEzZ87UvHnzdPHiRVe+PQAAAJQTVxYDcEc1XB0AAAAAqp8zZ85IksLCwiRJu3btUn5+vvr27WvdplWrVmrcuLG2bt2qrl27auvWrWrXrp0iIiKs2yQkJGjMmDHau3evbr755mL7sVgsslgs1se5ubmSpPz8fOXn55cZY9H6622HiitqY39vw8WROM5sx4cntLXZ/iYA4OmKriy+9dZbdenSJT333HOKj4/Xvn37FBQUJOnylcWffvqpli9frtDQUI0dO1YDBw7UF198IenKlcWRkZHasmWLjh8/ruHDh8vX11cvvviiK98eAJOiMAIAAIBKVVhYqKefflq333672rZtK0nKysqSn5+fateubbNtRESEsrKyrNtcXRQpWl+0riQpKSmaPn16seXp6ekKDAy0K96MjAy7tkPFzexU6OoQHLZ69WpXh1Au1bmtz58/X8WRAAAq05o1a2weL1myROHh4dq1a5d69OhhvbI4NTVVvXv3liQtXrxYrVu31rZt29S1a1frlcVr165VRESEOnbsqJkzZ2rixImaNm2a/Pz8XPHWAJiYQ4WRlJQUffjhh/ruu+9Us2ZN3XbbbXr55ZfVsmVL6zYXLlzQ73//ey1btkwWi0UJCQmaP3++zSD36NGjGjNmjDZs2KDg4GAlJSUpJSVFNWpQpwEAADC75ORk7dmzR59//nmV72vSpEmaMGGC9XFubq4aNWqk+Ph4hYSElPnc/Px8ZWRkqF+/fvL19a3qUD1aUVs//6W3LIVerg7HIXumJbg6BId4QlsXXRkGADAnriyuOma8crQoVrO2tZniNuPxITl2jDjy93CoEsGlbwAAACjL2LFjtWrVKm3evFkNGza0Lo+MjNTFixd1+vRpm6tGsrOzFRkZad1mx44dNq9XNLd00TbX8vf3l7+/f7Hlvr6+dhc7HNkWFWMp9JKlwFw/1pv12KjObW2GvwknFQJAybiy2DnMeOWoWdvajHGb8fiQ7GtrR64sdqg3xaVvAAAAKIlhGBo3bpxWrlypjRs3qmnTpjbrY2Nj5evrq3Xr1mnQoEGSpP379+vo0aOKi4uTJMXFxWnWrFnKyclReHi4pMud35CQEMXExDj3DQFABXBSIQCUjCuLq5YZrxz19zY0s1Mhbe0ERW1tppglx44RR64srtBpJs669A0AAADuLTk5Wampqfr4449Vq1Yt65l7oaGhqlmzpkJDQzVq1ChNmDBBYWFhCgkJ0bhx4xQXF6euXbtKkuLj4xUTE6OHH35Ys2fPVlZWliZPnqzk5OQSrwoBAHfFSYUAUBxXFjuPWa8cpa2dw4wxS/YdI44cQ+UujDjz0jfmBDQH5gR0HjMeH1LVzQkIAHC9BQsWSJJ69epls3zx4sUaMWKEJOn111+Xt7e3Bg0aZDNtTBEfHx+tWrVKY8aMUVxcnIKCgpSUlKQZM2Y4620AQJVgPv2qY8a4PWE85y48oa3N8PfgymIA7qjchRFnXvrGnIDmYta2NmPcZjw+pMqfExAA4HqGcf0fHAICAjRv3jzNmzev1G2io6O1evXqygwNAFyK+fSdw4xxV+fxnLupzm1thrEzVxYDcEflKow4+9I35gQ0x6VNnjBPnbsw4/EhVd2cgAAAAIC7Yj79qmXGuD1hPOcuPKGtzTB25spiAO7IocKIqy59Y05A83x5S+aMWTLnMVKd29psfwsAAADgWsyn7zxmjLs6j+fcTXVuazP8LbiyGIA78nZk4+TkZL3zzjtKTU21XvqWlZWlX3/9VZJsLn3bsGGDdu3apZEjR5Z66dt//vMfpaWlcekbAAAAAKDaMAxDY8eO1cqVK7V+/foyTyosUtJJhbt371ZOTo51G+bTBwAAqBwOXTHCpW8AAAAAAJSN+fQBAADcm8NTaV0Pl74BAAAAADwZJxUCAAC4t3LdfB0AAAAAAJSMkwoBAADcG4URAAAAwGSa/PFTV4fgEH8fQ7M7uzoKAAAAALjMoZuvAwAAAAAAAAAAmBmFEQAAAAAAAAAA4DGYSgsAAAAAAJha22lpshR4uToMuzC9IAAArscVIwAAAAAAAAAAwGNQGAEAAAAAAAAAAB6DqbQAAAAAoBRN/vipq0NwCFP0AAAAANdHYQQAAAAAAAB24X4uAIDqgKm0AAAAAAAAAACAx6AwAgAAAAAAAAAAPAZTaQH/H5cDAwAAAAAAAED1R2EEAAAAAAAAAOAyZjphWeKk5eqAqbQAAAAAAAAAAIDHoDACAOWUkpKiW2+9VbVq1VJ4eLjuvfde7d+/32abCxcuKDk5WXXr1lVwcLAGDRqk7Oxsm22OHj2q/v37KzAwUOHh4Xr22Wd16dIlZ74VAAAAAAAAwGNQGAGActq0aZOSk5O1bds2ZWRkKD8/X/Hx8crLy7NuM378eH3yySdavny5Nm3apGPHjmngwIHW9QUFBerfv78uXryoLVu2aOnSpVqyZImmTJniircEAAAAAAAAVHvcYwQAymnNmjU2j5csWaLw8HDt2rVLPXr00JkzZ7Ro0SKlpqaqd+/ekqTFixerdevW2rZtm7p27ar09HTt27dPa9euVUREhDp27KiZM2dq4sSJmjZtmvz8/Fzx1gAAAAAAAIBqi8IIAFSSM2fOSJLCwsIkSbt27VJ+fr769u1r3aZVq1Zq3Lixtm7dqq5du2rr1q1q166dIiIirNskJCRozJgx2rt3r26++eZi+7FYLLJYLNbHubm5kqT8/Hzl5+eXGWPR+utt5478fQzn79PbsPmvo8zYzhXhyuPLFcdHRRUdV/a0l1mOpc2bN+uVV17Rrl27dPz4ca1cuVL33nuvdf2IESO0dOlSm+ckJCTYFJpPnTqlcePG6ZNPPpG3t7cGDRqkuXPnKjg42FlvAwAAAABQzVEYAYBKUFhYqKefflq333672rZtK0nKysqSn5+fateubbNtRESEsrKyrNtcXRQpWl+0riQpKSmaPn16seXp6ekKDAy0K96MjAy7tnMnszu7bt8zOxWW63mrV6+u5EjMwRXHlyuPj4qyp73Onz/vhEgqLi8vTx06dNAjjzxiM23g1e68804tXrzY+tjf399m/bBhw3T8+HHrFIUjR47U6NGjlZqaWqWxAwAAoOpwAg0Ad0NhBAAqQXJysvbs2aPPP/+8yvc1adIkTZgwwfo4NzdXjRo1Unx8vEJCQsp8bn5+vjIyMtSvXz/5+vpWdaiVqu20NKfv09/b0MxOhXr+S29ZCr0cfv6eaQlVEJX7cuXx5Yrjo6KKji972qvoyjB3l5iYqMTExDK38ff3V2RkZInrvv32W61Zs0Y7d+5Up06dJElvvvmm7rrrLr366quKioqq9JgBAABQ9TiBBoC7oTACABU0duxYrVq1Sps3b1bDhg2tyyMjI3Xx4kWdPn3a5qqR7Oxs64+CkZGR2rFjh83rZWdnW9eVxN/fv1gHUZJ8fX3t/jHakW3dhaXA8cJEpe270Ktc+zdbG1cWVxxfrjw+Ksqe9qpOx9LGjRsVHh6uOnXqqHfv3nrhhRdUt25dSdLWrVtVu3Zta1FEkvr27Stvb29t375d9913X7HXY3pBc6jo1ISwn5nb2t7Pohk/swDg6TiBBoC7cbgwwqVvAHCZYRgaN26cVq5cqY0bN6pp06Y262NjY+Xr66t169Zp0KBBkqT9+/fr6NGjiouLkyTFxcVp1qxZysnJUXh4uKTL0+qEhIQoJibGuW8IAKrYnXfeqYEDB6pp06Y6dOiQnnvuOSUmJmrr1q3y8fFRVlaWNRcWqVGjhsLCwphe8BpmnT6uvFMTwnFmbGt7p6A0y/SCAADHVPYJNABQFocLI1z6BgCXJScnKzU1VR9//LFq1apl/dEuNDRUNWvWVGhoqEaNGqUJEyYoLCxMISEhGjdunOLi4tS1a1dJUnx8vGJiYvTwww9r9uzZysrK0uTJk5WcnFziVSEAYGZDhw61/n+7du3Uvn17NWvWTBs3blSfPn3K9ZpML2gOFZ2aEPYzc1vbOwWlWaYX5KRCALBfVZxA44lXFhfFa6YrR816tasZ4zZjzNKVeO35PDrymXW4MMKlbwBw2YIFCyRJvXr1slm+ePFijRgxQpL0+uuvWwexFotFCQkJmj9/vnVbHx8frVq1SmPGjFFcXJyCgoKUlJSkGTNmOOttAIDL3Hjjjbrhhht08OBB9enTR5GRkcrJybHZ5tKlSzp16hTTC17DrNPHlXdqQjjOjG3tyGfWDDipEADsVxUn0HjqlcWSOa8cNWPMkjnjNmPMkn2fR0euLK6Se4xw6RsAT2AY16+wBwQEaN68eZo3b16p20RHR9s9dQQAVCc//vijTp48qfr160u6PL3g6dOntWvXLsXGxkqS1q9fr8LCQnXp0sWVoQKAwzipEADKrzJOoPHEK4uL4jbTlaNmvdrVjHGbMWbpStz2fB4dubK40gsjXPpWObj0zXnMGLcZY5aq7tI3AIB7OHfunA4ePGh9fPjwYWVmZiosLExhYWGaPn26Bg0apMjISB06dEh/+MMf1Lx5cyUkXJ4+p3Xr1rrzzjv12GOPaeHChcrPz9fYsWM1dOhQfgAEUC1V9kmFjJ3NwezjOTPFbcaYJcbOUuWcQOOpVxZL5rxy1IwxS+aM24wxS/Z9Hh35vFZ6YYRL3yqXGS9tMmPMkjnjNmPMUuVf+gYAcA9ffvml7rjjDuvjojP0kpKStGDBAn3zzTdaunSpTp8+raioKMXHx2vmzJk2A9Z3331XY8eOVZ8+faxTEb7xxhtOfy8AUNWq4qRCxs7mYsaYJXPGbcaYpeo1duYEGgDupkqm0roal76VD5e+OY8Z4zZjzFLVXfoGAHAPvXr1KnOawbS0698wPCwsjLnzAXiEqjipkLGzOcZGZh/PmSluM8YsVc+xMyfQAHA3VV4Y4dK3ijHjpU1mjFkyZ9xmjFmq/EvfAAAAALOrjJMKGTuba2xkxpglc8Ztxpil6jV25gQaAO7G29EnnDt3TpmZmcrMzJR05dK3o0eP6ty5c3r22We1bds2HTlyROvWrdM999xT6qVvO3bs0BdffMGlbwAAAAAAj1bWSYVFrndSIQAAAOzj8BUjXPoGAAAAAEDZmE8fAADAfTlcGOHSNwAAAAAAysZJhQAAAO6ryu8xAgAAAACAp+GkQgAAAPfl8D1GAAAAAAAAAAAAzIrCCAAAAAAAAAAA8BgURgAAAAAAAAAAgMegMAIAAAAAAAAAADwGhREAAAAAAAAAAOAxKIwAAAAAAAAAAACPQWEEAAAAAAAAAAB4DAojAAAAAAAAAADAY1AYAQAAAAAAAAAAHoPCCAAAAAAAAAAA8BgURgAAAAAAAAAAgMegMAIAAAAAAAAAADwGhREAAAAAAAAAAOAxKIwAAAAAAAAAAACPQWEEAAAAAAAAAAB4jBquDgAAALiXJn/8tFzP8/cxNLuz1HZamiwFXpUcFQAAAAAAQOXgihEAAAAAAAAAAOAxKIwAAACgUmzevFkDBgxQVFSUvLy89NFHH9msNwxDU6ZMUf369VWzZk317dtXBw4csNnm1KlTGjZsmEJCQlS7dm2NGjVK586dc+K7AAAAAABUdxRGAAAAUCny8vLUoUMHzZs3r8T1s2fP1htvvKGFCxdq+/btCgoKUkJCgi5cuGDdZtiwYdq7d68yMjK0atUqbd68WaNHj3bWWwAAAEAV4AQaAO6GwggAAAAqRWJiol544QXdd999xdYZhqE5c+Zo8uTJuueee9S+fXv94x//0LFjx6wD42+//VZr1qzR22+/rS5duqhbt2568803tWzZMh07dszJ7wYAAACVhRNoALgbhwsjVHgBAADgqMOHDysrK0t9+/a1LgsNDVWXLl20detWSdLWrVtVu3ZtderUybpN37595e3tre3btzs9ZgCoCMbOAHAFJ9AAcDc1HH1CUYX3kUce0cCBA4utL6rwLl26VE2bNtXzzz+vhIQE7du3TwEBAZIuV3iPHz+ujIwM5efna+TIkRo9erRSU1Mr/o4AAADgdrKysiRJERERNssjIiKs67KyshQeHm6zvkaNGgoLC7Nucy2LxSKLxWJ9nJubK0nKz89Xfn5+mTEVrb/edu7I38dwdQgO8fc2bP6LqmPmtrb3s2iWzyxjZwCwz/VOoBk6dOh1T6ApqeACAGVxuDCSmJioxMTEEtddW+GVpH/84x+KiIjQRx99pKFDh1orvDt37rQmszfffFN33XWXXn31VUVFRVXg7QAAAMCTpKSkaPr06cWWp6enKzAw0K7XyMjIqOywqtzszq6OoHxmdip0dQgew4xtvXr1aru2O3/+fBVHUjkYOwOAfTiBpvIUxWumEyTMelKHGeM2Y8zSlXjt+Tw68pl1uDBSFiq8AAAAKElkZKQkKTs7W/Xr17cuz87OVseOHa3b5OTk2Dzv0qVLOnXqlPX515o0aZImTJhgfZybm6tGjRopPj5eISEhZcaUn5+vjIwM9evXT76+vuV5Wy7Tdlqaq0NwiL+3oZmdCvX8l96yFHq5OpxqzcxtvWdagl3bFf2wZWaMnQGg6nnqCTSSOU+QMGPMkjnjNmPMkn2fR0dOoKnUwggV3spDhdd5zBi3GWOWqq7CCwBwf02bNlVkZKTWrVtnLYTk5uZq+/btGjNmjCQpLi5Op0+f1q5duxQbGytJWr9+vQoLC9WlS5cSX9ff31/+/v7Flvv6+tpd7HBkW3dhKTDXD95FLIVepo3dbMzY1o58Zs2OsXPlYezsPGaM24wxS543duYEmspTFLeZTpAw60kdZozbjDFLV+K25/PoyAk0lVoYqSpUeM3FjDFL5ozbjDFLlV/hBQC4h3PnzungwYPWx4cPH1ZmZqbCwsLUuHFjPf3003rhhRfUokUL63z6UVFRuvfeeyVJrVu31p133qnHHntMCxcuVH5+vsaOHauhQ4cyZQwA2IGxs7mYMWbJnHGbMWbJc8bOnEBT+cx4goQZY5bMGbcZY5bs+zw68nmt1MIIFd7KQ4XXecwYtxljlqquwgsAcA9ffvml7rjjDuvjov5bUlKSlixZoj/84Q/Ky8vT6NGjdfr0aXXr1k1r1qyx3mRYkt59912NHTtWffr0kbe3twYNGqQ33njD6e8FAKoSY+fKw9jZecwYtxljlqrn2JkTaAC4m0otjFDhrXxmrOCZMWbJnHGbMWap8iu8AAD30KtXLxlG6VNVeHl5acaMGZoxY0ap24SFhSk1NbUqwgMAt8HYufKZcWxkxpglc8Ztxpil6jV25gQaAO7G4cIIFV4AAAAAAMrG2BkAruAEGgDuxuHCCBVeAAAAAADKxtgZAADAfTlcGKHCCwAAAABA2Rg7AwAAuC9vVwcAAAAAAAAAAADgLBRGAKACNm/erAEDBigqKkpeXl766KOPbNYbhqEpU6aofv36qlmzpvr27asDBw7YbHPq1CkNGzZMISEhql27tkaNGqVz58458V0AAAAAAAAAnoPCCABUQF5enjp06KB58+aVuH727Nl64403tHDhQm3fvl1BQUFKSEjQhQsXrNsMGzZMe/fuVUZGhlatWqXNmzdr9OjRznoLAAAAAAAAgEdx+B4jAIArEhMTlZiYWOI6wzA0Z84cTZ48Wffcc48k6R//+IciIiL00UcfaejQofr222+1Zs0a7dy5U506dZIkvfnmm7rrrrv06quvKioqymnvBQAAAAAAAPAEXDECAFXk8OHDysrKUt++fa3LQkND1aVLF23dulWStHXrVtWuXdtaFJGkvn37ytvbW9u3b3d6zAAAAAAAAEB1xxUjAFBFsrKyJEkRERE2yyMiIqzrsrKyFB4ebrO+Ro0aCgsLs25zLYvFIovFYn2cm5srScrPz1d+fn6ZMRWtv9527sjfx3D+Pr0Nm/86yoztLJW/rSvaXp6mqJ3sOU7MeiwBAAAAAOCOKIwAgMmkpKRo+vTpxZanp6crMDDQrtfIyMio7LCq3OzOrtv3zE6F5Xre6tWrKzkS56hoW5e3vTyVPZ/H8+fPOyESAAAAAAA8A4URAKgikZGRkqTs7GzVr1/fujw7O1sdO3a0bpOTk2PzvEuXLunUqVPW519r0qRJmjBhgvVxbm6uGjVqpPj4eIWEhJQZU35+vjIyMtSvXz/5+vqW5225TNtpaU7fp7+3oZmdCvX8l96yFHo5/Pw90xKqIKqqV962rmh7eZqi9rLn81h0ZRgAAAAAAKg4CiMAUEWaNm2qyMhIrVu3zloIyc3N1fbt2zVmzBhJUlxcnE6fPq1du3YpNjZWkrR+/XoVFhaqS5cuJb6uv7+//P39iy339fW1u9jhyLbuwlLguh/aLYVe5dq/2dq4SEXburzt5ans+Tya9VgCAAAAAMAdURgBgAo4d+6cDh48aH18+PBhZWZmKiwsTI0bN9bTTz+tF154QS1atFDTpk31/PPPKyoqSvfee68kqXXr1rrzzjv12GOPaeHChcrPz9fYsWM1dOhQRUVFuehdAQAAAAAAANUXhREAqIAvv/xSd9xxh/Vx0RRXSUlJWrJkif7whz8oLy9Po0eP1unTp9WtWzetWbNGAQEB1ue8++67Gjt2rPr06SNvb28NGjRIb7zxhtPfCwAAAAAAAOAJKIwAQAX06tVLhmGUut7Ly0szZszQjBkzSt0mLCxMqampVREeAAAAAAAAgGtQGAEAD9R2Whr3gAAAAAAAAIBH8nZ1AAAAAAAAAAAAAM5CYQQAAAAAAAAAAHgMCiMAAAAAAAAAAMBjUBgBAAAAAAAAAAAeg8IIAAAAAAAAAADwGBRGAAAAAAAAAACAx6AwAgAAAAAAAAAAPAaFEQAAADjFtGnT5OXlZfOvVatW1vUXLlxQcnKy6tatq+DgYA0aNEjZ2dkujBgAAADOQD8RgLNVemGERAYAAIDStGnTRsePH7f++/zzz63rxo8fr08++UTLly/Xpk2bdOzYMQ0cONCF0QJA1WHsDAC26CcCcKYaVfGibdq00dq1a6/spMaV3YwfP16ffvqpli9frtDQUI0dO1YDBw7UF198URWhAAAAwI3UqFFDkZGRxZafOXNGixYtUmpqqnr37i1JWrx4sVq3bq1t27apa9euzg4VAKocY2cAuIJ+IgBnqpLCCIkMAAAAJTlw4ICioqIUEBCguLg4paSkqHHjxtq1a5fy8/PVt29f67atWrVS48aNtXXr1lL7iRaLRRaLxfo4NzdXkpSfn6/8/PwyYylaf73t3JG/j+HqEBzi723Y/BdVx8xtbe9n0Yyf2dIwdgaAKyq7nwgAZamSwggD3ooritdMAxqzDsLMGLcZY5auxGvP59Fsn1kAwPV16dJFS5YsUcuWLXX8+HFNnz5d3bt31549e5SVlSU/Pz/Vrl3b5jkRERHKysoq9TVTUlI0ffr0YsvT09MVGBhoV1wZGRkOvQ93MLuzqyMon5mdCl0dgscwY1uvXr3aru3Onz9fxZE4Dz8CAsBlVdFP5PdEczD7b1xmituMMUtV93tipRdGGPBWLjMOaMwYs2TOuM0Ys2Tf57E6DXgBAJclJiZa/799+/bq0qWLoqOj9f7776tmzZrles1JkyZpwoQJ1se5ublq1KiR4uPjFRISUuZz8/PzlZGRoX79+snX17dc+3eVttPSXB2CQ/y9Dc3sVKjnv/SWpdDL1eFUa2Zu6z3TEuzaruiHLbPjR8DKwY+AzmPGuM0Ys+SZJxVWRT+R3xPNxYwxS+aM24wxS5X/e2KlF0YY8FaOorjNNKAx6yDMjHGbMWbpStz2fB6ry4AXAFC62rVr66abbtLBgwfVr18/Xbx4UadPn7b5ITA7O7vEaWaK+Pv7y9/fv9hyX19fu/t+jmzrLiwF5vn+v5ql0Mu0sZuNGdvakc9sdcCPgJXLjD/ymDFmyZxxmzFmybNPKqyMfiK/J5qjH2D237jMFLcZY5aq7vfEKplK62oMeCvGjAMaM8YsmTNuM8Ys2fd5NOPnFQDgmHPnzunQoUN6+OGHFRsbK19fX61bt06DBg2SJO3fv19Hjx5VXFyciyMFgKrHj4Dlw4+AzmPGuM0Ys8RJhVLl9BP5PdE8x7xkzpglc8Ztxpilyv89scoLIwx4AQAAIEnPPPOMBgwYoOjoaB07dkxTp06Vj4+PHnzwQYWGhmrUqFGaMGGCwsLCFBISonHjxikuLo659AF4BH4ErBgz/shjxpglc8ZtxpglzzqpkH4iAGer9MIIiQwAAAAl+fHHH/Xggw/q5MmTqlevnrp166Zt27apXr16kqTXX39d3t7eGjRokCwWixISEjR//nwXRw0AVYOxMwBcQT8RgLNVemGERAYAAICSLFu2rMz1AQEBmjdvnubNm+ekiADAdRg7A8AV9BMBOFulF0ZIZAAAAAAAlI2xMwAAgOtU+T1GAAAAAAAAAMBs2k5LM9X9afx9DM3u7OooAHOgMAIAAACPZrYBLwAAAACgYrxdHQAAAAAAAAAAAICzUBgBAAAAAAAAAAAeg6m0AAAAAACAJPNNL8h8+gAAoDy4YgQAAAAAAAAAAHgMj7lihLNeAAAAAAAAAAAAV4wAAAAAAAAAAACPQWEEAAAAAAAAAAB4DAojAAAAAAAAAADAY1AYAQAAAAAAAAAAHoPCCAAAAAAAAAAA8BgURgAAAAAAAAAAgMegMAIAAAAAAAAAADwGhREAAAAAAAAAAOAxKIwAAAAAAAAAAACPQWEEAAAAAAAAAAB4DAojAAAAAAAAAADAY1AYAQAAAAAAAAAAHoPCCAAAAAAAAAAA8BgURgAAAAAAAAAAgMdwaWFk3rx5atKkiQICAtSlSxft2LHDleEAgEuREwHgMvIhAFxBTgSAK8iJACqLywoj7733niZMmKCpU6fqq6++UocOHZSQkKCcnBxXhQQALkNOBIDLyIcAcAU5EQCuICcCqEwuK4y89tpreuyxxzRy5EjFxMRo4cKFCgwM1N///ndXhQQALkNOBIDLyIcAcAU5EQCuICcCqEw1XLHTixcvateuXZo0aZJ1mbe3t/r27autW7cW295ischisVgfnzlzRpJ06tQp5efnl7mv/Px8nT9/XjXyvVVQ6FVJ76Dq1Sg0dP58oaniNmPMkjnjNmPM0pW4T548KV9f3zK3PXv2rCTJMAxnhOZS5ET3VdHP2smTJ6sgqqpX41Je+Z5n0tzkKuTE4hzNhxI50SzID85j5ra293uTnEhOvJoZj3kzxiyZM24zxizRTywJOdE+ZjzmzRizZM64zRizVHU50SWFkRMnTqigoEARERE2yyMiIvTdd98V2z4lJUXTp08vtrxp06ZVFqM7eMjVAZSDGWOWzBm3GWOWHI/77NmzCg0NrZJY3AU50b1V5LN2w58rLQzTMGtuchVyoi1H86FETjQT8oPzmLWtHf3eJCcW56k50YzHvBljlswZtxljlugnXoucaD8zHvNmjFkyZ9xmjFmqmpzoksKIoyZNmqQJEyZYHxcWFurUqVOqW7euvLzKrm7l5uaqUaNG+uGHHxQSElLVoVYaM8Ztxpglc8Ztxpglx+I2DENnz55VVFSUk6IzD0/Mia5CezmG9nIMObFykBPNgbZ2Hk9oa3Ji6TwxJ5oxbjPGLJkzbjPGLNFPrCzkRHPEbcaYJXPGbcaYparLiS4pjNxwww3y8fFRdna2zfLs7GxFRkYW297f31/+/v42y2rXru3QPkNCQkz1By9ixrjNGLNkzrjNGLNkf9zV+WyXq5ET3R/t5RjayzHkxCsczYcSOdFsaGvnqe5tTU4kJ17LjHGbMWbJnHGbMWaJfuLVyImOMWPcZoxZMmfcZoxZqvyc6JKbr/v5+Sk2Nlbr1q2zLissLNS6desUFxfnipAAwGXIiQBwGfkQAK4gJwLAFeREAJXNZVNpTZgwQUlJSerUqZM6d+6sOXPmKC8vTyNHjnRVSADgMuREALiMfAgAV5ATAeAKciKAyuSywsiQIUP0888/a8qUKcrKylLHjh21Zs2aYjdRqih/f39NnTq12KVz7s6McZsxZsmccZsxZsm8cTsDOdE90V6Oob0cQ3uVzFn5UOJv4Ey0tfPQ1tULOfH6zBi3GWOWzBm3GWOWzBt3VSMnXp8Z4zZjzJI54zZjzFLVxe1lGIZRqa8IAAAAAAAAAADgplxyjxEAAAAAAAAAAABXoDACAAAAAAAAAAA8BoURAAAAAAAAAADgMSiMAAAAAAAAAAAAj1HtCyPz5s1TkyZNFBAQoC5dumjHjh2uDqlMmzdv1oABAxQVFSUvLy999NFHrg7pulJSUnTrrbeqVq1aCg8P17333qv9+/e7OqzrWrBggdq3b6+QkBCFhIQoLi5On332mavDcshLL70kLy8vPf30064OpVTTpk2Tl5eXzb9WrVq5OiyPZbac6CpmzMWuZNbvAVeoDt891Qk5seqRH1zHDP1EuBez5UQz9tfMmhOrQ//FDDmRsbN7ISdWPXKi65ATL6vWhZH33ntPEyZM0NSpU/XVV1+pQ4cOSkhIUE5OjqtDK1VeXp46dOigefPmuToUu23atEnJycnatm2bMjIylJ+fr/j4eOXl5bk6tDI1bNhQL730knbt2qUvv/xSvXv31j333KO9e/e6OjS77Ny5U2+99Zbat2/v6lCuq02bNjp+/Lj13+eff+7qkDySGXOiq5gxF7uSWb8HXMHs3z3VCTnROcgPrmGmfiLcgxlzotWVszwAADzCSURBVBn7a2bNiWbvv5gpJzJ2dg/kROcgJ7oGOfEqRjXWuXNnIzk52fq4oKDAiIqKMlJSUlwYlf0kGStXrnR1GA7LyckxJBmbNm1ydSgOq1OnjvH222+7OozrOnv2rNGiRQsjIyPD6Nmzp/HUU0+5OqRSTZ061ejQoYOrw4Bh/pzoKmbNxa5k5u8BVzDLd091Q050DfJD1TNTPxHuw+w50az9NTPnRLP0X8yUExk7uw9yomuQE6seOdFWtb1i5OLFi9q1a5f69u1rXebt7a2+fftq69atLoys+jtz5owkKSwszMWR2K+goEDLli1TXl6e4uLiXB3OdSUnJ6t///42x7c7O3DggKKionTjjTdq2LBhOnr0qKtD8jjkRDiTGb8HXMFs3z3VCTnRdcgPVc9s/US4HjnRdcyYE83WfzFbTmTs7HrkRNchJ1Y9cqKtGpX6am7kxIkTKigoUEREhM3yiIgIfffddy6KqvorLCzU008/rdtvv11t27Z1dTjXtXv3bsXFxenChQsKDg7WypUrFRMT4+qwyrRs2TJ99dVX2rlzp6tDsUuXLl20ZMkStWzZUsePH9f06dPVvXt37dmzR7Vq1XJ1eB6DnAhnMdv3gCuY8bunuiEnugb5oeqZrZ8I90BOdA2z5UQz9l/MlhMZO7sHcqJrkBOrHjmxuGpbGIFrJCcna8+ePaaZB7Nly5bKzMzUmTNntGLFCiUlJWnTpk1um8x++OEHPfXUU8rIyFBAQICrw7FLYmKi9f/bt2+vLl26KDo6Wu+//75GjRrlwsgAVAWzfQ+4gtm+e4DKQn6oWmbsJwKezGw50Wz9FzPmRMbO8GTkxKpFTixZtS2M3HDDDfLx8VF2drbN8uzsbEVGRrooqupt7NixWrVqlTZv3qyGDRu6Ohy7+Pn5qXnz5pKk2NhY7dy5U3PnztVbb73l4shKtmvXLuXk5OiWW26xLisoKNDmzZv1l7/8RRaLRT4+Pi6M8Ppq166tm266SQcPHnR1KB6FnAhnMOP3gCuY7bunOiInOh/5oepVh34iXIOc6HxmzIlm679Uh5zI2Nk1yInOR06seuTEklXbe4z4+fkpNjZW69atsy4rLCzUunXrTDHnm5kYhqGxY8dq5cqVWr9+vZo2berqkMqtsLBQFovF1WGUqk+fPtq9e7cyMzOt/zp16qRhw4YpMzPT7ZOYJJ07d06HDh1S/fr1XR2KRyEnoipVp+8BV3D3757qiJzoPOQH56kO/US4BjnReapTTnT3/kt1yImMnV2DnOg85ETnISeWrNpeMSJJEyZMUFJSkjp16qTOnTtrzpw5ysvL08iRI10dWqnOnTtnU/k6fPiwMjMzFRYWpsaNG7swstIlJycrNTVVH3/8sWrVqqWsrCxJUmhoqGrWrOni6Eo3adIkJSYmqnHjxjp79qxSU1O1ceNGpaWluTq0UtWqVavYXItBQUGqW7eu287B+Mwzz2jAgAGKjo7WsWPHNHXqVPn4+OjBBx90dWgex4w50VXMmItdyazfA65gxu+e6oqc6BzkB+cxYz8R7sOMOdGM/TWz5kQz9l/MmBMZO7sPcqJzkBOdh5xYCqOae/PNN43GjRsbfn5+RufOnY1t27a5OqQybdiwwZBU7F9SUpKrQytVSfFKMhYvXuzq0Mr0yCOPGNHR0Yafn59Rr149o0+fPkZ6erqrw3JYz549jaeeesrVYZRqyJAhRv369Q0/Pz+jQYMGxpAhQ4yDBw+6OiyPZbac6CpmzMWuZNbvAVeoLt891QU5seqRH1zL3fuJcC9my4lm7K+ZNSdWl/6Lu+dExs7uhZxY9ciJrkVONAwvwzCMyiuzAAAAAAAAAAAAuK9qe48RAAAAAAAAAACAa1EYAQAAAAAAAAAAHoPCCAAAAAAAAAAA8BgURgAAAAAAAAAAgMegMAIAAAAAAAAAADwGhREAAAAAAAAAAOAxKIwAAAAAAAAAAACPQWEEAAAAAAAAAAB4DAojAAAAAAAAAADAY1AYAQAAAAAAAAAAHoPCCAAAAAAAAAAA8BgURgAAAAAAAAAAgMegMAIAAAAAAAAAADwGhREAAAAAAAAAAOAxKIwAAAAAAAAAAACPQWEEAAAAAAAAAAB4DAojAAAAAAAAAADAY1AYAQAAAAAAAAAAHoPCCAAAAAAAAAAA8BgURgAAAAAAAAAAgMegMAIAAAAAAAAAADwGhREAAAAAAAAAAOAxKIwAAAAAAAAAAACPQWEEAAAAAAAAAAB4DAojAAAAAAAAAADAY1AYAQAAAAAAAAAAHoPCCAAAAAAAAAAA8BgURgAAAAAAAAAAgMegMAIAAAAAAAAAADwGhREAAAAAAAAAAOAxKIwAAAAAAAAAAACPQWEE1c60adPk5eXl6jAkuVcsAAAAAAAAAAAKI7hGamqq5syZ4+owAAAAAAAAAACoEhRGYIPCCAAAAAAAAACgOqMwgnK7cOGCCgsLXR0GAAAAAAAAAAB2ozDiYc6ePaunn35aTZo0kb+/v8LDw9WvXz999dVX6tWrlz799FN9//338vLykpeXl5o0aSJJ2rhxo7y8vLRs2TJNnjxZDRo0UGBgoHJzcyVJ27dv15133qnQ0FAFBgaqZ8+e+uKLL+zed5EDBw5o0KBBioyMVEBAgBo2bKihQ4fqzJkzFX7v77zzjmJjY1WzZk2FhYVp6NCh+uGHH6zrx44dq+DgYJ0/f77Ycx988EFFRkaqoKDAuuyzzz5T9+7dFRQUpFq1aql///7au3dvheMEAAAAAAAAAFSdGq4OAM71u9/9TitWrNDYsWMVExOjkydP6vPPP9e3336rP/3pTzpz5ox+/PFHvf7665Kk4OBgm+fPnDlTfn5+euaZZ2SxWOTn56f169crMTFRsbGxmjp1qry9vbV48WL17t1b//73v9W5c+fr7vuWW27RxYsXlZCQIIvFonHjxikyMlI//fSTVq1apdOnTys0NLTc73vWrFl6/vnnNXjwYD366KP6+eef9eabb6pHjx76+uuvVbt2bQ0ZMkTz5s3Tp59+qgceeMD63PPnz+uTTz7RiBEj5OPjI0n65z//qaSkJCUkJOjll1/W+fPntWDBAnXr1k1ff/21taAEAAAAAAAAAHAvXoZhGK4OAs5Tu3Zt/fa3v9Vf/vKXEtf/5je/0Z49e3TkyBGb5Rs3btQdd9yhG2+8UXv27FHNmjUlSYZhqGXLlrrxxhv12WefycvLS5L066+/qk2bNmrevLnS09Pt2ndmZqZuvvlmLV++XPfff3+53+O0adM0ffp0FR3a33//vZo1a6YZM2boueees263Z88e3XzzzZo+fbqee+45GYahRo0aqWvXrlqxYoV1u+XLl2vw4MHavHmzunfvrnPnzqlRo0Z64IEH9Ne//tW6XXZ2tlq2bKnBgwdbl18bCwAAAAAAAADAtZhKy8PUrl1b27dv17Fjx8r1/KSkJGtRRLpczDhw4IAeeughnTx5UidOnNCJEyeUl5enPn36aPPmzdb7kFxv30VXhKSlpZU4nVV5ffjhhyosLNTgwYOt8Z04cUKRkZFq0aKFNmzYIEny8vLSAw88oNWrV+vcuXPW57/33ntq0KCBunXrJknKyMjQ6dOn9eCDD9q8no+Pj7p06WJ9PQAAAAAAAACA+6Ew4mFmz56tPXv2qFGjRurcubOmTZum//3vf3Y/v2nTpjaPDxw4IOlywaRevXo2/95++21ZLBbr/UGut++mTZtqwoQJevvtt3XDDTcoISFB8+bNq/D9RQ4cOCDDMNSiRYtiMX777bfKycmxbjtkyBD9+uuv+te//iVJOnfunFavXq0HHnjAejVM0Xvu3bt3sddLT0+3eT0AAAAAAAAAgHvhHiMeZvDgwerevbtWrlyp9PR0vfLKK3r55Zf14YcfKjEx8brPv/pqEUnWq0FeeeUVdezYscTnFN2nxJ59//nPf9aIESP08ccfKz09XU8++aRSUlK0bds2NWzYsFzvubCwUF5eXvrss8+s9wgpKT5J6tq1q5o0aaL3339fDz30kD755BP9+uuvGjJkSLH3/M9//lORkZHFXq9GDT5WAAAAAAAAAOCu+AXXA9WvX19PPPGEnnjiCeXk5OiWW27RrFmzlJiYaL0qwl7NmjWTJIWEhKhv374V2neRdu3aqV27dpo8ebK2bNmi22+/XQsXLtQLL7zg2Bu9KkbDMNS0aVPddNNN191+8ODBmjt3rnJzc/Xee++pSZMm6tq1q83rSVJ4eLhd7xkAAAAAAAAA4D6YSsuDFBQUFJuWKjw8XFFRUbJYLJKkoKAgh6auio2NVbNmzfTqq6/a3JejyM8//2z3vnNzc3Xp0iWbbdq1aydvb2/rNuUxcOBA+fj4lHgTdMMwdPLkSZtlQ4YMkcVi0dKlS7VmzRoNHjzYZn1CQoJCQkL04osvKj8/v9j+it4zAAAAAAAAAMD9cMWIBzl79qwaNmyo+++/Xx06dFBwcLDWrv1/7d19kJXleT/w7y4uq6ssFA27EFdCNFGJLxhU2CS1qLCIjIkN09FolVijDQWnum1iSNXwkpTUJtGkIdpMrOSNJjWJZkQirBqxqRiVhPGtdapjQxJZSGNhFeq6sPv7o7Pn58rbHtjDspzPZ2ZnOM9zn+dc132x/+x3nvM8kCeeeCJf/OIXk/xf0PH9738/zc3NOeOMM3LEEUfkggsu2OU1Kysr841vfCPTpk3Le97znlxxxRV5+9vfnt/+9rf56U9/mtra2tx77729+uyHHnooc+bMyZ/8yZ/k3e9+d7Zt25Zvf/vbGTRoUGbMmLHXfR977LH57Gc/m7lz5+a//uu/cuGFF2bIkCF56aWXcvfdd+fqq6/OX//1XxfWv/e9781xxx2Xv/mbv0l7e3uPr9FK/u/umNtuuy2XXXZZ3vve9+biiy/O2972tqxbty733Xdf3v/+9+erX/3qXtcLAAAAAEDpCEbKSE1NTf7iL/4iK1euzI9+9KN0dnbmuOOOy9e+9rXMmjUrSfIXf/EXWbt2be68887ccsstGT169G6DkSSZNGlSVq9enYULF+arX/1qXnvttdTX12fChAn58z//815/9qmnnpqpU6fm3nvvzW9/+9vU1NTk1FNPzU9+8pMeX2W1Nz71qU/l3e9+d2655ZbMnz8/SdLQ0JCmpqZ88IMf3GH9RRddlM997nM57rjj8t73vneH85dccklGjRqVz3/+8/n7v//7tLe35+1vf3v+8A//MFdcccU+1QoAAAAAQOlUdL31u4UAAAAAAAAOUp4xAgAAAAAAlA1fpcWAsXnz5vzv//7vbtfU19fvp2oAAAAAABiIfJUWA8ZHP/rRfPOb39ztGv+dAQAAAADYHcEIA8Zzzz2Xl19+ebdrJk+evJ+qAQAAAABgIBKMAAAAAAAAZcPD1wEAAAAAgLIxIB++3tnZmZdffjlDhgxJRUVFf5cDlEBXV1deffXVjBo1KpWVMlwAAAAAoG8MyGDk5ZdfTkNDQ3+XAewHv/71r3P00Uf3dxkAAAAAwEFiQAYjQ4YMSfJ/fzCtra3d7dqOjo6sXLkyTU1Nqaqq2h/l7Xd6PDjosae2trY0NDQUft8BAAAAAPrCgAxGur8+q7a2tlfBSE1NTWpraw/qPzbrceDT4875ujwAAAAAoC/54n4AAAAAAKBsCEYAAAAAAICyIRgBAAAAAADKhmAEAAAAAAAoG4IRAAAAAACgbAhGAAAAAACAsiEYAQAAAAAAyoZgBAAAAAAAKBuCEQAAAAAAoGwc0t8F7C8nzVuR9u0V/V1GUf7r89P7uwQAAAAAADiouGMEAAAAAAAoG2VzxwgcbN7xqfv6u4SiVQ/qys1n9ncVAAAAAEA5c8cIAAAAAABQNgQjAAAAAABA2RCMAAAAAAAAZUMwAgAAAAAAlA3BCAAAAAAAUDYEIwAAAAAAQNk4pL8L4ODyjk/dV5LrVg/qys1nJifNW5H27RV9fv3/+vz0Pr8mAAAAAAAHnqLuGLnttttyyimnpLa2NrW1tWlsbMxPfvKTwvlJkyaloqKix8/HP/7xHtdYt25dpk+fnpqamowYMSKf+MQnsm3btr7pBgAAAAAAYDeKumPk6KOPzuc///m8613vSldXV775zW/mQx/6UH75y1/mPe95T5LkqquuyoIFCwrvqampKfx7+/btmT59eurr6/Poo49m/fr1ufzyy1NVVZW//du/7aOWAAAAAAAAdq6oYOSCCy7o8fpzn/tcbrvttjz22GOFYKSmpib19fU7ff/KlSvz3HPP5YEHHkhdXV3GjRuXhQsX5vrrr8+8efMyePDgvWwDAAAAAABgz/b6GSPbt2/PXXfdlS1btqSxsbFw/Lvf/W6+853vpL6+PhdccEFuvPHGwl0jq1evzsknn5y6urrC+qlTp2bWrFl59tlnc9ppp+30s9rb29Pe3l543dbWliTp6OhIR0fHbuvsPl9d2bV3jfajPfX21nW9XV9K1YNKs8/d8yvVHA+EvSt2jqXa61Lqnl9vejwQZgIAAAAAHHwqurq6ivrr6tNPP53Gxsa8/vrrOeKII7J06dKcf/75SZKvf/3rGT16dEaNGpWnnnoq119/fc4888z86Ec/SpJcffXV+dWvfpUVK1YUrrd169YcfvjhWb58eaZNm7bTz5w3b17mz5+/w/GlS5f2+Kou4OCxdevWXHLJJdm8eXNqa2v7uxwAAAAA4CBR9B0jxx9/fNauXZvNmzfnBz/4QWbOnJlVq1Zl7NixufrqqwvrTj755IwcOTLnnntuXnzxxRx77LF7XeTcuXPT3NxceN3W1paGhoY0NTXt8Q+mHR0daWlpyY1PVqa9s2Kva+gPz8yb2qt13T1OmTIlVVVVJa5q906at2LPi/ZCdWVXFp7eWbI59navS6nYOZZqr0upe4696bH7zjAAAAAAgL5UdDAyePDgHHfccUmS8ePH54knnsiXv/zl/OM//uMOaydMmJAkeeGFF3Lsscemvr4+jz/+eI81GzZsSJJdPpckSaqrq1NdXb3D8aqqql4HAe2dFWnfPrCCkWJDjmL2o1RKvcelmmN/79ub9XaOA+3/85v1pscDaSYAAAAAwMGjcl8v0NnZ2eP5H2+2du3aJMnIkSOTJI2NjXn66aezcePGwpqWlpbU1tZm7Nix+1oKAAAAAADAbhV1x8jcuXMzbdq0HHPMMXn11VezdOnSPPzww1mxYkVefPHFwvNGjjzyyDz11FO57rrrctZZZ+WUU05JkjQ1NWXs2LG57LLLcvPNN6e1tTU33HBDZs+evdM7QgAAAAAAAPpSUcHIxo0bc/nll2f9+vUZOnRoTjnllKxYsSJTpkzJr3/96zzwwAO59dZbs2XLljQ0NGTGjBm54YYbCu8fNGhQli1bllmzZqWxsTGHH354Zs6cmQULFvR5YwAAAAAAAG9VVDByxx137PJcQ0NDVq1atcdrjB49OsuXLy/mYwEAAAAAAPrEPj9jBAAAAAAAYKAQjAAAAAAAAGVDMAIAAAAAAJQNwQgAAAAAAFA2BCMAAAAAAEDZEIwAAAAAAABlQzACAAAAAACUDcEIAAAAAABQNgQjAAAAAABA2RCMAAAAAAAAZUMwAgAAAAAAlA3BCAAAAAAAUDYEIwAAAAAAQNkQjAAAAAAAAGVDMAIAAAAAAJQNwQgAAAAAAFA2BCMAAAAAAEDZEIwAAAAAAABlQzACAAAAAACUDcEIAAAAAABQNgQjAAAAAABA2SgqGLnttttyyimnpLa2NrW1tWlsbMxPfvKTwvnXX389s2fPzpFHHpkjjjgiM2bMyIYNG3pcY926dZk+fXpqamoyYsSIfOITn8i2bdv6phsAAAAAAIDdKCoYOfroo/P5z38+a9asyZNPPplzzjknH/rQh/Lss88mSa677rrce++9ueuuu7Jq1aq8/PLL+fCHP1x4//bt2zN9+vS88cYbefTRR/PNb34zS5YsyU033dS3XQEAAAAAAOzEIcUsvuCCC3q8/tznPpfbbrstjz32WI4++ujccccdWbp0ac4555wkyZ133pkTTzwxjz32WCZOnJiVK1fmueeeywMPPJC6urqMGzcuCxcuzPXXX5958+Zl8ODBfdcZAAAAAADAWxQVjLzZ9u3bc9ddd2XLli1pbGzMmjVr0tHRkcmTJxfWnHDCCTnmmGOyevXqTJw4MatXr87JJ5+curq6wpqpU6dm1qxZefbZZ3Paaaft9LPa29vT3t5eeN3W1pYk6ejoSEdHx27r7D5fXdm1t632mz319tZ1vV1fStWDSrPP3fMr1RwPhL0rdo6l2utS6p5fb3o8EGYCAAAAABx8ig5Gnn766TQ2Nub111/PEUcckbvvvjtjx47N2rVrM3jw4AwbNqzH+rq6urS2tiZJWltbe4Qi3ee7z+3KokWLMn/+/B2Or1y5MjU1Nb2qe+Hpnb1adyBZvnx5UetbWlpKVEnv3Xxmaa9fqjkWu9el1Ns5lnqvS6k3PW7dunU/VAIAAAAAlJuig5Hjjz8+a9euzebNm/ODH/wgM2fOzKpVq0pRW8HcuXPT3NxceN3W1paGhoY0NTWltrZ2t+/t6OhIS0tLbnyyMu2dFSWts689M29qr9Z19zhlypRUVVWVuKrdO2neipJct7qyKwtP7yzZHHu716VU7BxLtdel1D3H3vTYfWcYAAAAAEBfKjoYGTx4cI477rgkyfjx4/PEE0/ky1/+ci666KK88cYb2bRpU4+7RjZs2JD6+vokSX19fR5//PEe19uwYUPh3K5UV1enurp6h+NVVVW9DgLaOyvSvn1gBSPFhhzF7EeplHqPSzXH/t63N+vtHAfa/+c3602PB9JMAAAAAICDR+W+XqCzszPt7e0ZP358qqqq8uCDDxbOPf/881m3bl0aGxuTJI2NjXn66aezcePGwpqWlpbU1tZm7Nix+1oKAAAAAADAbhV1x8jcuXMzbdq0HHPMMXn11VezdOnSPPzww1mxYkWGDh2aK6+8Ms3NzRk+fHhqa2tzzTXXpLGxMRMnTkySNDU1ZezYsbnsssty8803p7W1NTfccENmz5690ztCAAAAAAAA+lJRwcjGjRtz+eWXZ/369Rk6dGhOOeWUrFixIlOmTEmS3HLLLamsrMyMGTPS3t6eqVOn5mtf+1rh/YMGDcqyZcsya9asNDY25vDDD8/MmTOzYMGCvu0KAAAAAABgJ4oKRu64447dnj/00EOzePHiLF68eJdrRo8eneXLlxfzsQAAAAAAAH1in58xAgAAAAAAMFAIRgAAAAAAgLIhGAEAAAAAAMqGYAQAAAAAACgbghEAAAAAAKBsCEYAAAAAAICyIRgBAAAAAADKhmAEAAAAAAAoG4IRAAAAAACgbAhGAAAAAACAsiEYAQAAAAAAyoZgBAAAAAAAKBuCEQAAAAAAoGwIRgAAAAAAgLIhGAEAAAAAAMqGYAQAAAAAACgbghEAAAAAAKBsCEYAAAAAAICyIRgBAAAAAADKhmAEAAAAAAAoG0UFI4sWLcoZZ5yRIUOGZMSIEbnwwgvz/PPP91gzadKkVFRU9Pj5+Mc/3mPNunXrMn369NTU1GTEiBH5xCc+kW3btu17NwAAAAAAALtxSDGLV61aldmzZ+eMM87Itm3b8ulPfzpNTU157rnncvjhhxfWXXXVVVmwYEHhdU1NTeHf27dvz/Tp01NfX59HH30069evz+WXX56qqqr87d/+bR+0BAAAAAAAsHNFBSP3339/j9dLlizJiBEjsmbNmpx11lmF4zU1Namvr9/pNVauXJnnnnsuDzzwQOrq6jJu3LgsXLgw119/febNm5fBgwfvRRsAAAAAAAB7tk/PGNm8eXOSZPjw4T2Of/e7381RRx2Vk046KXPnzs3WrVsL51avXp2TTz45dXV1hWNTp05NW1tbnn322X0pBwAAAAAAYLeKumPkzTo7O3Pttdfm/e9/f0466aTC8UsuuSSjR4/OqFGj8tRTT+X666/P888/nx/96EdJktbW1h6hSJLC69bW1p1+Vnt7e9rb2wuv29rakiQdHR3p6OjYbZ3d56sru4rssP/tqbe3ruvt+lKqHlSafe6eX6nmeCDsXbFzLNVel1L3/HrT44EwEwAAAADg4FPR1dW1V39dnTVrVn7yk5/kZz/7WY4++uhdrnvooYdy7rnn5oUXXsixxx6bq6++Or/61a+yYsWKwpqtW7fm8MMPz/LlyzNt2rQdrjFv3rzMnz9/h+NLly7t8fwS4OCxdevWXHLJJdm8eXNqa2v7uxwAAAAA4CCxV3eMzJkzJ8uWLcsjjzyy21AkSSZMmJAkhWCkvr4+jz/+eI81GzZsSJJdPpdk7ty5aW5uLrxua2tLQ0NDmpqa9vgH046OjrS0tOTGJyvT3lmxx94OJM/Mm9qrdd09TpkyJVVVVSWuavdOmrdiz4v2QnVlVxae3lmyOfZ2r0up2DmWaq9LqXuOvemx+84wAAAAAIC+VFQw0tXVlWuuuSZ33313Hn744YwZM2aP71m7dm2SZOTIkUmSxsbGfO5zn8vGjRszYsSIJElLS0tqa2szduzYnV6juro61dXVOxyvqqrqdRDQ3lmR9u0DKxgpNuQoZj9KpdR7XKo59ve+vVlv5zjQ/j+/WW96PJBmAgAAAAAcPIoKRmbPnp2lS5fmxz/+cYYMGVJ4JsjQoUNz2GGH5cUXX8zSpUtz/vnn58gjj8xTTz2V6667LmeddVZOOeWUJElTU1PGjh2byy67LDfffHNaW1tzww03ZPbs2TsNPwAAAAAAAPpKZTGLb7vttmzevDmTJk3KyJEjCz/f//73kySDBw/OAw88kKamppxwwgn5q7/6q8yYMSP33ntv4RqDBg3KsmXLMmjQoDQ2NuZP//RPc/nll2fBggV92xkAAAAAAMBbFP1VWrvT0NCQVatW7fE6o0ePzvLly4v5aAAAAAAAgH1W1B0jAAAAAAAAA5lgBAAAAAAAKBuCEQAAAAAAoGwIRgAAAAAAgLIhGAEAAAAAAMqGYAQAAAAAACgbghEAAAAAAKBsCEYAAAAAAICyIRgBAAAAAADKhmAEAAAAAAAoG4IRAAAAAACgbAhGAAAAAACAsiEYAQAAAAAAyoZgBAAAAAAAKBuCEQAAAAAAoGwIRgAAAAAAgLIhGAEAAAAAAMqGYAQAAAAAACgbghEAAAAAAKBsCEYAAAAAAICyIRgBAAAAAADKRlHByKJFi3LGGWdkyJAhGTFiRC688MI8//zzPda8/vrrmT17do488sgcccQRmTFjRjZs2NBjzbp16zJ9+vTU1NRkxIgR+cQnPpFt27btezcAAAAAAAC7UVQwsmrVqsyePTuPPfZYWlpa0tHRkaampmzZsqWw5rrrrsu9996bu+66K6tWrcrLL7+cD3/4w4Xz27dvz/Tp0/PGG2/k0UcfzTe/+c0sWbIkN910U991BQAAAAAAsBOHFLP4/vvv7/F6yZIlGTFiRNasWZOzzjormzdvzh133JGlS5fmnHPOSZLceeedOfHEE/PYY49l4sSJWblyZZ577rk88MADqaury7hx47Jw4cJcf/31mTdvXgYPHtx33QEAAAAAALxJUcHIW23evDlJMnz48CTJmjVr0tHRkcmTJxfWnHDCCTnmmGOyevXqTJw4MatXr87JJ5+curq6wpqpU6dm1qxZefbZZ3Paaaft8Dnt7e1pb28vvG5ra0uSdHR0pKOjY7c1dp+vruzayy77z556e+u63q4vpepBpdnn7vmVao4Hwt4VO8dS7XUpdc+vNz0eCDMBAAAAAA4+ex2MdHZ25tprr8373//+nHTSSUmS1tbWDB48OMOGDeuxtq6uLq2trYU1bw5Fus93n9uZRYsWZf78+TscX7lyZWpqanpV78LTO3u17kCyfPnyota3tLSUqJLeu/nM0l6/VHMsdq9LqbdzLPVel1Jvety6det+qAQAAAAAKDd7HYzMnj07zzzzTH72s5/1ZT07NXfu3DQ3Nxdet7W1paGhIU1NTamtrd3tezs6OtLS0pIbn6xMe2dFqUvtU8/Mm9qrdd09TpkyJVVVVSWuavdOmreiJNetruzKwtM7SzbH3u51KRU7x1LtdSl1z7E3PXbfGQYAAAAA0Jf2KhiZM2dOli1blkceeSRHH3104Xh9fX3eeOONbNq0qcddIxs2bEh9fX1hzeOPP97jehs2bCic25nq6upUV1fvcLyqqqrXQUB7Z0Xatw+sYKTYkKOY/SiVUu9xqebY3/v2Zr2d40D7//xmvenxQJoJAAAAAHDwqCxmcVdXV+bMmZO77747Dz30UMaMGdPj/Pjx41NVVZUHH3ywcOz555/PunXr0tjYmCRpbGzM008/nY0bNxbWtLS0pLa2NmPHjt2XXgAAAAAAAHarqDtGZs+enaVLl+bHP/5xhgwZUngmyNChQ3PYYYdl6NChufLKK9Pc3Jzhw4entrY211xzTRobGzNx4sQkSVNTU8aOHZvLLrssN998c1pbW3PDDTdk9uzZO70rBAAAAAAAoK8UFYzcdtttSZJJkyb1OH7nnXfmox/9aJLklltuSWVlZWbMmJH29vZMnTo1X/va1wprBw0alGXLlmXWrFlpbGzM4YcfnpkzZ2bBggX71gkAAAAAAMAeFBWMdHV17XHNoYcemsWLF2fx4sW7XDN69OgsX768mI8GAAAAAADYZ0U9YwQAAAAAAGAgE4wAAAAAAABlQzACAAAAAACUDcEIAAAAAABQNgQjAAAAAABA2RCMAAAAAAAAZUMwAgAAAAAAlA3BCAAAAAAAUDYEIwAAAAAAQNkQjAAAAAAAAGVDMAIAAAAAAJQNwQgAAAAAAFA2BCMAAAAAAEDZEIwAAAAAAABlQzACAAAAAACUDcEIAAAAAABQNgQjAAAAAABA2RCMAAAAAAAAZUMwAgAAAAAAlA3BCAAAAAAAUDYEIwAAAAAAQNkoOhh55JFHcsEFF2TUqFGpqKjIPffc0+P8Rz/60VRUVPT4Oe+883qseeWVV3LppZemtrY2w4YNy5VXXpnXXnttnxoBAAAAAADYk6KDkS1btuTUU0/N4sWLd7nmvPPOy/r16ws///zP/9zj/KWXXppnn302LS0tWbZsWR555JFcffXVxVcPAAAAAABQhEOKfcO0adMybdq03a6prq5OfX39Ts/9+7//e+6///488cQTOf3005Mk//AP/5Dzzz8/X/jCFzJq1KhiSwIAAAAAAOiVooOR3nj44YczYsSI/MEf/EHOOeecfPazn82RRx6ZJFm9enWGDRtWCEWSZPLkyamsrMzPf/7z/PEf//EO12tvb097e3vhdVtbW5Kko6MjHR0du62l+3x1Zdc+97W/7am3t67r7fpSqh5Umn3unl+p5ngg7F2xcyzVXpdS9/x60+OBMBMAAAAA4ODT58HIeeedlw9/+MMZM2ZMXnzxxXz605/OtGnTsnr16gwaNCitra0ZMWJEzyIOOSTDhw9Pa2vrTq+5aNGizJ8/f4fjK1euTE1NTa/qWnh6Z/HN9LPly5cXtb6lpaVElfTezWeW9vqlmmOxe11KvZ1jqfe6lHrT49atW/dDJQAAAABAuenzYOTiiy8u/Pvkk0/OKaeckmOPPTYPP/xwzj333L265ty5c9Pc3Fx43dbWloaGhjQ1NaW2tna37+3o6EhLS0tufLIy7Z0Ve/X5/eWZeVN7ta67xylTpqSqqqrEVe3eSfNWlOS61ZVdWXh6Z8nm2Nu9LqVi51iqvS6l7jn2psfuO8MAAAAAAPpSSb5K683e+c535qijjsoLL7yQc889N/X19dm4cWOPNdu2bcsrr7yyy+eSVFdXp7q6eofjVVVVvQ4C2jsr0r59YAUjxYYcxexHqZR6j0s1x/7etzfr7RwH2v/nN+tNjwfSTAAAAACAg0dlqT/gN7/5TX7/+99n5MiRSZLGxsZs2rQpa9asKax56KGH0tnZmQkTJpS6HAAAAAAAoIwVfcfIa6+9lhdeeKHw+qWXXsratWszfPjwDB8+PPPnz8+MGTNSX1+fF198MZ/85Cdz3HHHZerU//uqohNPPDHnnXderrrqqtx+++3p6OjInDlzcvHFF2fUqFF91xkAAAAAAMBbFH3HyJNPPpnTTjstp512WpKkubk5p512Wm666aYMGjQoTz31VD74wQ/m3e9+d6688sqMHz8+//qv/9rjq7C++93v5oQTTsi5556b888/Px/4wAfy9a9/ve+6AgAAAAAA2Imi7xiZNGlSurq6dnl+xYo9PxB6+PDhWbp0abEfDQAAAAAAsE9K/owRAAAAAACAA4VgBAAAAAAAKBuCEQAAAAAAoGwIRgAAAAAAgLIhGAEAAAAAAMqGYAQAAAAAACgbghEAAAAAAKBsCEYAAAAAAICyIRgBAAAAAADKhmAEAAAAAAAoG4IRAAAAAACgbAhGAAAAAACAsiEYAQAAAAAAyoZgBAAAAAAAKBuCEQAAAAAAoGwIRgAAAAAAgLIhGAEAAAAAAMqGYAQAAAAAACgbghEAAAAAAKBsCEYAAAAAAICyUXQw8sgjj+SCCy7IqFGjUlFRkXvuuafH+a6urtx0000ZOXJkDjvssEyePDn/+Z//2WPNK6+8kksvvTS1tbUZNmxYrrzyyrz22mv71AgAAAAAAMCeFB2MbNmyJaeeemoWL1680/M333xzvvKVr+T222/Pz3/+8xx++OGZOnVqXn/99cKaSy+9NM8++2xaWlqybNmyPPLII7n66qv3vgsAAAAAAIBeOKTYN0ybNi3Tpk3b6bmurq7ceuutueGGG/KhD30oSfKtb30rdXV1ueeee3LxxRfn3//933P//ffniSeeyOmnn54k+Yd/+Iecf/75+cIXvpBRo0btQzsAAAAAAAC71qfPGHnppZfS2tqayZMnF44NHTo0EyZMyOrVq5Mkq1evzrBhwwqhSJJMnjw5lZWV+fnPf96X5QAAAAAAAPRQ9B0ju9Pa2pokqaur63G8rq6ucK61tTUjRozoWcQhh2T48OGFNW/V3t6e9vb2wuu2trYkSUdHRzo6OnZbU/f56squIjo5MOypt7eu6+36UqoeVJp97p5fqeZ4IOxdsXMs1V6XUvf8etPjgTATAAAAAODg06fBSKksWrQo8+fP3+H4ypUrU1NT06trLDy9s6/LKrnly5cXtb6lpaVElfTezWeW9vqlmmOxe11KvZ1jqfe6lHrT49atW/dDJQAAAABAuenTYKS+vj5JsmHDhowcObJwfMOGDRk3blxhzcaNG3u8b9u2bXnllVcK73+ruXPnprm5ufC6ra0tDQ0NaWpqSm1t7W5r6ujoSEtLS258sjLtnRV701a/eWbe1F6t6+5xypQpqaqqKnFVu3fSvBUluW51ZVcWnt5Zsjn2dq9Lqdg5lmqvS6l7jr3psfvOMAAAAACAvtSnwciYMWNSX1+fBx98sBCEtLW15ec//3lmzZqVJGlsbMymTZuyZs2ajB8/Pkny0EMPpbOzMxMmTNjpdaurq1NdXb3D8aqqql4HAe2dFWnfPrCCkWJDjmL2o1RKvcelmmN/79ub9XaOA+3/85v1pscDaSYAAAAAwMGj6GDktddeywsvvFB4/dJLL2Xt2rUZPnx4jjnmmFx77bX57Gc/m3e9610ZM2ZMbrzxxowaNSoXXnhhkuTEE0/Meeedl6uuuiq33357Ojo6MmfOnFx88cUZNWpUnzUGAAAAAADwVkUHI08++WTOPvvswuvur7iaOXNmlixZkk9+8pPZsmVLrr766mzatCkf+MAHcv/99+fQQw8tvOe73/1u5syZk3PPPTeVlZWZMWNGvvKVr/RBOwAAAAAAALtWdDAyadKkdHV17fJ8RUVFFixYkAULFuxyzfDhw7N06dJiPxoAAAAAAGCfVPZ3AQAAAAAAAPuLYAQAAAAAACgbghEAAAAAAKBsCEYAAAAAAICyIRgBAAAAAADKhmAEAAAAAAAoG4IRAAAAAACgbAhGAAAAAACAsiEYAQAAAAAAyoZgBAAAAAAAKBuCEQAAAAAAoGwIRgAAAAAAgLIhGAEAAAAAAMqGYAQAAAAAACgbghEAAAAAAKBsCEYAAAAAAICyIRgBAAAAAADKhmAEAAAAAAAoG4IRAAAAAACgbAhGAAAAAACAsiEYAQAAAAAAykafByPz5s1LRUVFj58TTjihcP7111/P7Nmzc+SRR+aII47IjBkzsmHDhr4uAwAAAAAAYAcluWPkPe95T9avX1/4+dnPflY4d9111+Xee+/NXXfdlVWrVuXll1/Ohz/84VKUAQAAAAAA0MMhJbnoIYekvr5+h+ObN2/OHXfckaVLl+acc85Jktx555058cQT89hjj2XixImlKAcAAAAAACBJie4Y+c///M+MGjUq73znO3PppZdm3bp1SZI1a9ako6MjkydPLqw94YQTcswxx2T16tWlKAUAAAAAAKCgz+8YmTBhQpYsWZLjjz8+69evz/z58/OHf/iHeeaZZ9La2prBgwdn2LBhPd5TV1eX1tbWXV6zvb097e3thddtbW1Jko6OjnR0dOy2nu7z1ZVde9lR/9lTb29d19v1pVQ9qDT73D2/Us3xQNi7YudYqr0upe759abHA2EmAAAAAMDBp6Krq6ukf13dtGlTRo8enS996Us57LDDcsUVV/QIOZLkzDPPzNlnn52/+7u/2+k15s2bl/nz5+9wfOnSpampqSlJ3UD/2rp1ay655JJs3rw5tbW1/V0OAAAAAHCQKMkzRt5s2LBhefe7350XXnghU6ZMyRtvvJFNmzb1uGtkw4YNO30mSbe5c+emubm58LqtrS0NDQ1pamra4x9MOzo60tLSkhufrEx7Z8U+97M/PTNvaq/Wdfc4ZcqUVFVVlbiq3Ttp3oqSXLe6sisLT+8s2Rx7u9elVOwcS7XXpdQ9x9702H1nGAAAAABAXyp5MPLaa6/lxRdfzGWXXZbx48enqqoqDz74YGbMmJEkef7557Nu3bo0Njbu8hrV1dWprq7e4XhVVVWvg4D2zoq0bx9YwUixIUcx+1Eqpd7jUs2xv/ftzXo7x4H2//nNetPjgTQTAAAAAODg0efByF//9V/nggsuyOjRo/Pyyy/nM5/5TAYNGpSPfOQjGTp0aK688so0Nzdn+PDhqa2tzTXXXJPGxsZMnDixr0sBAAAAAADooc+Dkd/85jf5yEc+kt///vd529velg984AN57LHH8ra3vS1Jcsstt6SysjIzZsxIe3t7pk6dmq997Wt9XQYAAAAAAMAO+jwY+d73vrfb84ceemgWL16cxYsX9/VHAwAAAAAA7FZlfxcAAAAAAACwvwhGAAAAAACAsiEYAQAAAAAAyoZgBAAAAAAAKBuCEQAAAAAAoGwIRgAAAAAAgLIhGAEAAAAAAMqGYAQAAAAAACgbghEAAAAAAKBsCEYAAAAAAICyIRgBAAAAAADKhmAEAAAAAAAoG4IRAAAAAACgbAhGAAAAAACAsiEYAQAAAAAAyoZgBAAAAAAAKBuCEQAAAAAAoGwIRgAAAAAAgLIhGAEAAAAAAMqGYAQAAAAAACgbghEAAAAAAKBs9Gswsnjx4rzjHe/IoYcemgkTJuTxxx/vz3IAAAAAAICDXL8FI9///vfT3Nycz3zmM/nFL36RU089NVOnTs3GjRv7qyQAAAAAAOAg12/ByJe+9KVcddVVueKKKzJ27NjcfvvtqampyT/90z/1V0kAAAAAAMBB7pD++NA33ngja9asydy5cwvHKisrM3ny5KxevXqH9e3t7Wlvby+83rx5c5LklVdeSUdHx24/q6OjI1u3bs0hHZXZ3lnRRx3sH7///e97ta67x9///vepqqoqcVW7d8i2LaW5bmdXtm7tLNkce7vXpVTsHEu116XUPcfe9Pjqq68mSbq6uvZHaQAAAABAmeiXYOS///u/s3379tTV1fU4XldXl//4j//YYf2iRYsyf/78HY6PGTOmZDUeCI76Yn9XcGC5pITXttf7T7FzfPXVVzN06NCS1AIAAAAAlJ9+CUaKNXfu3DQ3Nxded3Z25pVXXsmRRx6Ziord3z3Q1taWhoaG/PrXv05tbW2pS+0Xejw46LGnrq6uvPrqqxk1atR+qg4AAAAAKAf9EowcddRRGTRoUDZs2NDj+IYNG1JfX7/D+urq6lRXV/c4NmzYsKI+s7a29qD9Y3M3PR4c9Pj/uVMEAAAAAOhr/fLw9cGDB2f8+PF58MEHC8c6Ozvz4IMPprGxsT9KAgAAAAAAykC/fZVWc3NzZs6cmdNPPz1nnnlmbr311mzZsiVXXHFFf5UEAAAAAAAc5PotGLnooovyu9/9LjfddFNaW1szbty43H///Ts8kH1fVVdX5zOf+cwOX8V1MNHjwUGPAAAAAAClV9HV1dXV30UAAAAAAADsD/3yjBEAAAAAAID+IBgBAAAAAADKhmAEAAAAAAAoG4IRAAAAAACgbBwUwcjixYvzjne8I4ceemgmTJiQxx9/fLfr77rrrpxwwgk59NBDc/LJJ2f58uX7qdK9V0yPS5YsSUVFRY+fQw89dD9WW7xHHnkkF1xwQUaNGpWKiorcc889e3zPww8/nPe+972prq7OcccdlyVLlpS8zr1VbH8PP/zwDjOsqKhIa2vr/il4LyxatChnnHFGhgwZkhEjRuTCCy/M888/v8f3DcTfRwAAAABg4Brwwcj3v//9NDc35zOf+Ux+8Ytf5NRTT83UqVOzcePGna5/9NFH85GPfCRXXnllfvnLX+bCCy/MhRdemGeeeWY/V957xfaYJLW1tVm/fn3h51e/+tV+rLh4W7ZsyamnnprFixf3av1LL72U6dOn5+yzz87atWtz7bXX5mMf+1hWrFhR4kr3TrH9dXv++ed7zHHEiBElqnDfrVq1KrNnz85jjz2WlpaWdHR0pKmpKVu2bNnlewbi7yMAAAAAMLBVdHV1dfV3EftiwoQJOeOMM/LVr341SdLZ2ZmGhoZcc801+dSnPrXD+osuuihbtmzJsmXLCscmTpyYcePG5fbbb99vdRej2B6XLFmSa6+9Nps2bdrPlfaNioqK3H333bnwwgt3ueb666/Pfffd1+MP6BdffHE2bdqU+++/fz9Uufd609/DDz+cs88+O//zP/+TYcOG7bfa+tLvfve7jBgxIqtWrcpZZ5210zUD8fcRAAAAABjYBvQdI2+88UbWrFmTyZMnF45VVlZm8uTJWb169U7fs3r16h7rk2Tq1Km7XN/f9qbHJHnttdcyevToNDQ05EMf+lCeffbZ/VHufjPQ5ri3xo0bl5EjR2bKlCn5t3/7t/4upyibN29OkgwfPnyXa8pljgAAAADAgWNAByP//d//ne3bt6eurq7H8bq6ul0+i6G1tbWo9f1tb3o8/vjj80//9E/58Y9/nO985zvp7OzM+973vvzmN7/ZHyXvF7uaY1tbW/73f/+3n6rqOyNHjsztt9+eH/7wh/nhD3+YhoaGTJo0Kb/4xS/6u7Re6ezszLXXXpv3v//9Oemkk3a5bqD9PgIAAAAAA98h/V0Afa+xsTGNjY2F1+973/ty4okn5h//8R+zcOHCfqyM3jr++ONz/PHHF16/733vy4svvphbbrkl3/72t/uxst6ZPXt2nnnmmfzsZz/r71IAAAAAAHoY0HeMHHXUURk0aFA2bNjQ4/iGDRtSX1+/0/fU19cXtb6/7U2Pb1VVVZXTTjstL7zwQilK7Be7mmNtbW0OO+ywfqqqtM4888wBMcM5c+Zk2bJl+elPf5qjjz56t2sH2u8jAAAAADDwDehgZPDgwRk/fnwefPDBwrHOzs48+OCDPe6YeLPGxsYe65OkpaVll+v72970+Fbbt2/P008/nZEjR5aqzP1uoM2xL6xdu/aAnmFXV1fmzJmTu+++Ow899FDGjBmzx/eU4xwBAAAAgP414L9Kq7m5OTNnzszpp5+eM888M7feemu2bNmSK664Ikly+eWX5+1vf3sWLVqUJPnLv/zL/NEf/VG++MUvZvr06fne976XJ598Ml//+tf7s43dKrbHBQsWZOLEiTnuuOOyadOm/P3f/31+9atf5WMf+1h/trFbr732Wo+7IV566aWsXbs2w4cPzzHHHJO5c+fmt7/9bb71rW8lST7+8Y/nq1/9aj75yU/mz/7sz/LQQw/lX/7lX3Lffff1Vwu7VWx/t956a8aMGZP3vOc9ef311/ONb3wjDz30UFauXNlfLezR7Nmzs3Tp0vz4xz/OkCFDCs8JGTp0aOEunoPh9xEAAAAAGNgGfDBy0UUX5Xe/+11uuummtLa2Zty4cbn//vsLD3Ret25dKiv//40x73vf+7J06dLccMMN+fSnP513vetdueeee3b7gOj+VmyP//M//5Orrroqra2t+YM/+IOMHz8+jz76aMaOHdtfLezRk08+mbPPPrvwurm5OUkyc+bMLFmyJOvXr8+6desK58eMGZP77rsv1113Xb785S/n6KOPzje+8Y1MnTp1v9feG8X298Ybb+Sv/uqv8tvf/jY1NTU55ZRT8sADD/S4xoHmtttuS5JMmjSpx/E777wzH/3oR5McHL+PAAAAAMDAVtHV1dXV30UAAAAAAADsDwP6GSMAAAAAAADFEIwAAAAAAABlQzACAAAAAACUDcEIAAAAAABQNgQjAAAAAABA2RCMAAAAAAAAZUMwAgAAAAAAlA3BCAAAAAAAUDYEIwAAAAAAQNkQjAAAAAAAAGVDMAIAAAAAAJQNwQgAAAAAAFA2/h8TvRvq1RXwDAAAAABJRU5ErkJggg==\n"},"metadata":{}}],"source":["df.hist(bins=5,figsize=(20,20));"]},{"cell_type":"markdown","metadata":{"id":"oPJA79luYTp1"},"source":["#### Look at the intial correlation based on the dataset with no altercations."]},{"cell_type":"code","execution_count":14,"metadata":{"colab":{"base_uri":"https://localhost:8080/","height":757},"executionInfo":{"elapsed":110,"status":"ok","timestamp":1716216841738,"user":{"displayName":"Daniel Meier","userId":"06365571306976914087"},"user_tz":300},"id":"N0kfKdrqzTfP","outputId":"29690bcb-f8db-4d9c-b8f6-3f70402310a1"},"outputs":[{"output_type":"execute_result","data":{"text/plain":[" anxiety_level self_esteem \\\n","anxiety_level 1.000000 -0.672745 \n","self_esteem -0.672745 1.000000 \n","mental_health_history 0.634450 -0.603502 \n","depression 0.694340 -0.699602 \n","headache 0.632738 -0.626058 \n","blood_pressure 0.330867 -0.514692 \n","sleep_quality -0.710292 0.662693 \n","breathing_problem 0.561654 -0.510514 \n","noise_level 0.608624 -0.571169 \n","living_conditions -0.568434 0.550535 \n","safety -0.651220 0.643981 \n","basic_needs -0.637079 0.631212 \n","academic_performance -0.649601 0.639045 \n","study_load 0.586064 -0.575112 \n","teacher_student_relationship -0.663176 0.652934 \n","future_career_concerns 0.717016 -0.712520 \n","social_support -0.569748 0.679211 \n","peer_pressure 0.642910 -0.607118 \n","extracurricular_activities 0.641022 -0.641202 \n","bullying 0.709982 -0.640737 \n","stress_level 0.736795 -0.756195 \n","\n"," mental_health_history depression headache \\\n","anxiety_level 0.634450 0.694340 0.632738 \n","self_esteem -0.603502 -0.699602 -0.626058 \n","mental_health_history 1.000000 0.615882 0.604826 \n","depression 0.615882 1.000000 0.657700 \n","headache 0.604826 0.657700 1.000000 \n","blood_pressure 0.295617 0.436084 0.361986 \n","sleep_quality -0.614146 -0.693161 -0.638771 \n","breathing_problem 0.464347 0.522540 0.461719 \n","noise_level 0.515290 0.566250 0.543557 \n","living_conditions -0.508525 -0.530351 -0.532825 \n","safety -0.546731 -0.625857 -0.589136 \n","basic_needs -0.601196 -0.608776 -0.623199 \n","academic_performance -0.586193 -0.633174 -0.622059 \n","study_load 0.532267 0.602498 0.542890 \n","teacher_student_relationship -0.587728 -0.673853 -0.625928 \n","future_career_concerns 0.625909 0.706561 0.679307 \n","social_support -0.482560 -0.617972 -0.572988 \n","peer_pressure 0.580602 0.635544 0.622581 \n","extracurricular_activities 0.554576 0.648551 0.582562 \n","bullying 0.624366 0.665790 0.609775 \n","stress_level 0.648644 0.734379 0.713484 \n","\n"," blood_pressure sleep_quality \\\n","anxiety_level 0.330867 -0.710292 \n","self_esteem -0.514692 0.662693 \n","mental_health_history 0.295617 -0.614146 \n","depression 0.436084 -0.693161 \n","headache 0.361986 -0.638771 \n","blood_pressure 1.000000 -0.300323 \n","sleep_quality -0.300323 1.000000 \n","breathing_problem 0.162308 -0.541687 \n","noise_level 0.352744 -0.576645 \n","living_conditions -0.274686 0.535462 \n","safety -0.288354 0.657686 \n","basic_needs -0.280590 0.620955 \n","academic_performance -0.262785 0.671326 \n","study_load 0.348964 -0.551775 \n","teacher_student_relationship -0.352123 0.677569 \n","future_career_concerns 0.434087 -0.682130 \n","social_support -0.752531 0.554553 \n","peer_pressure 0.401392 -0.649098 \n","extracurricular_activities 0.426254 -0.623092 \n","bullying 0.370440 -0.699427 \n","stress_level 0.394200 -0.749068 \n","\n"," breathing_problem noise_level \\\n","anxiety_level 0.561654 0.608624 \n","self_esteem -0.510514 -0.571169 \n","mental_health_history 0.464347 0.515290 \n","depression 0.522540 0.566250 \n","headache 0.461719 0.543557 \n","blood_pressure 0.162308 0.352744 \n","sleep_quality -0.541687 -0.576645 \n","breathing_problem 1.000000 0.459235 \n","noise_level 0.459235 1.000000 \n","living_conditions -0.448997 -0.452362 \n","safety -0.519348 -0.536630 \n","basic_needs -0.508172 -0.572327 \n","academic_performance -0.507251 -0.513730 \n","study_load 0.428791 0.493625 \n","teacher_student_relationship -0.498895 -0.538758 \n","future_career_concerns 0.545345 0.575439 \n","social_support -0.365173 -0.492094 \n","peer_pressure 0.492729 0.583817 \n","extracurricular_activities 0.516884 0.563614 \n","bullying 0.576341 0.585458 \n","stress_level 0.573984 0.663371 \n","\n"," living_conditions ... basic_needs \\\n","anxiety_level -0.568434 ... -0.637079 \n","self_esteem 0.550535 ... 0.631212 \n","mental_health_history -0.508525 ... -0.601196 \n","depression -0.530351 ... -0.608776 \n","headache -0.532825 ... -0.623199 \n","blood_pressure -0.274686 ... -0.280590 \n","sleep_quality 0.535462 ... 0.620955 \n","breathing_problem -0.448997 ... -0.508172 \n","noise_level -0.452362 ... -0.572327 \n","living_conditions 1.000000 ... 0.503275 \n","safety 0.563571 ... 0.624774 \n","basic_needs 0.503275 ... 1.000000 \n","academic_performance 0.507221 ... 0.639387 \n","study_load -0.437732 ... -0.513459 \n","teacher_student_relationship 0.549332 ... 0.649519 \n","future_career_concerns -0.565071 ... -0.639348 \n","social_support 0.466594 ... 0.584141 \n","peer_pressure -0.501795 ... -0.587037 \n","extracurricular_activities -0.515794 ... -0.506426 \n","bullying -0.551139 ... -0.644886 \n","stress_level -0.581723 ... -0.708968 \n","\n"," academic_performance study_load \\\n","anxiety_level -0.649601 0.586064 \n","self_esteem 0.639045 -0.575112 \n","mental_health_history -0.586193 0.532267 \n","depression -0.633174 0.602498 \n","headache -0.622059 0.542890 \n","blood_pressure -0.262785 0.348964 \n","sleep_quality 0.671326 -0.551775 \n","breathing_problem -0.507251 0.428791 \n","noise_level -0.513730 0.493625 \n","living_conditions 0.507221 -0.437732 \n","safety 0.642846 -0.493903 \n","basic_needs 0.639387 -0.513459 \n","academic_performance 1.000000 -0.520417 \n","study_load -0.520417 1.000000 \n","teacher_student_relationship 0.669469 -0.514123 \n","future_career_concerns -0.643805 0.576078 \n","social_support 0.567501 -0.473312 \n","peer_pressure -0.562948 0.544189 \n","extracurricular_activities -0.588612 0.543543 \n","bullying -0.666229 0.586669 \n","stress_level -0.720922 0.634156 \n","\n"," teacher_student_relationship \\\n","anxiety_level -0.663176 \n","self_esteem 0.652934 \n","mental_health_history -0.587728 \n","depression -0.673853 \n","headache -0.625928 \n","blood_pressure -0.352123 \n","sleep_quality 0.677569 \n","breathing_problem -0.498895 \n","noise_level -0.538758 \n","living_conditions 0.549332 \n","safety 0.663328 \n","basic_needs 0.649519 \n","academic_performance 0.669469 \n","study_load -0.514123 \n","teacher_student_relationship 1.000000 \n","future_career_concerns -0.670255 \n","social_support 0.681288 \n","peer_pressure -0.587770 \n","extracurricular_activities -0.582311 \n","bullying -0.655960 \n","stress_level -0.680163 \n","\n"," future_career_concerns social_support \\\n","anxiety_level 0.717016 -0.569748 \n","self_esteem -0.712520 0.679211 \n","mental_health_history 0.625909 -0.482560 \n","depression 0.706561 -0.617972 \n","headache 0.679307 -0.572988 \n","blood_pressure 0.434087 -0.752531 \n","sleep_quality -0.682130 0.554553 \n","breathing_problem 0.545345 -0.365173 \n","noise_level 0.575439 -0.492094 \n","living_conditions -0.565071 0.466594 \n","safety -0.658106 0.614988 \n","basic_needs -0.639348 0.584141 \n","academic_performance -0.643805 0.567501 \n","study_load 0.576078 -0.473312 \n","teacher_student_relationship -0.670255 0.681288 \n","future_career_concerns 1.000000 -0.602792 \n","social_support -0.602792 1.000000 \n","peer_pressure 0.666873 -0.490172 \n","extracurricular_activities 0.666565 -0.530047 \n","bullying 0.711278 -0.567078 \n","stress_level 0.742619 -0.632497 \n","\n"," peer_pressure extracurricular_activities \\\n","anxiety_level 0.642910 0.641022 \n","self_esteem -0.607118 -0.641202 \n","mental_health_history 0.580602 0.554576 \n","depression 0.635544 0.648551 \n","headache 0.622581 0.582562 \n","blood_pressure 0.401392 0.426254 \n","sleep_quality -0.649098 -0.623092 \n","breathing_problem 0.492729 0.516884 \n","noise_level 0.583817 0.563614 \n","living_conditions -0.501795 -0.515794 \n","safety -0.556945 -0.580304 \n","basic_needs -0.587037 -0.506426 \n","academic_performance -0.562948 -0.588612 \n","study_load 0.544189 0.543543 \n","teacher_student_relationship -0.587770 -0.582311 \n","future_career_concerns 0.666873 0.666565 \n","social_support -0.490172 -0.530047 \n","peer_pressure 1.000000 0.618371 \n","extracurricular_activities 0.618371 1.000000 \n","bullying 0.661058 0.651979 \n","stress_level 0.690684 0.692977 \n","\n"," bullying stress_level \n","anxiety_level 0.709982 0.736795 \n","self_esteem -0.640737 -0.756195 \n","mental_health_history 0.624366 0.648644 \n","depression 0.665790 0.734379 \n","headache 0.609775 0.713484 \n","blood_pressure 0.370440 0.394200 \n","sleep_quality -0.699427 -0.749068 \n","breathing_problem 0.576341 0.573984 \n","noise_level 0.585458 0.663371 \n","living_conditions -0.551139 -0.581723 \n","safety -0.645673 -0.709602 \n","basic_needs -0.644886 -0.708968 \n","academic_performance -0.666229 -0.720922 \n","study_load 0.586669 0.634156 \n","teacher_student_relationship -0.655960 -0.680163 \n","future_career_concerns 0.711278 0.742619 \n","social_support -0.567078 -0.632497 \n","peer_pressure 0.661058 0.690684 \n","extracurricular_activities 0.651979 0.692977 \n","bullying 1.000000 0.751162 \n","stress_level 0.751162 1.000000 \n","\n","[21 rows x 21 columns]"],"text/html":["\n","
\n","
\n","\n","\n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n","
anxiety_levelself_esteemmental_health_historydepressionheadacheblood_pressuresleep_qualitybreathing_problemnoise_levelliving_conditions...basic_needsacademic_performancestudy_loadteacher_student_relationshipfuture_career_concernssocial_supportpeer_pressureextracurricular_activitiesbullyingstress_level
anxiety_level1.000000-0.6727450.6344500.6943400.6327380.330867-0.7102920.5616540.608624-0.568434...-0.637079-0.6496010.586064-0.6631760.717016-0.5697480.6429100.6410220.7099820.736795
self_esteem-0.6727451.000000-0.603502-0.699602-0.626058-0.5146920.662693-0.510514-0.5711690.550535...0.6312120.639045-0.5751120.652934-0.7125200.679211-0.607118-0.641202-0.640737-0.756195
mental_health_history0.634450-0.6035021.0000000.6158820.6048260.295617-0.6141460.4643470.515290-0.508525...-0.601196-0.5861930.532267-0.5877280.625909-0.4825600.5806020.5545760.6243660.648644
depression0.694340-0.6996020.6158821.0000000.6577000.436084-0.6931610.5225400.566250-0.530351...-0.608776-0.6331740.602498-0.6738530.706561-0.6179720.6355440.6485510.6657900.734379
headache0.632738-0.6260580.6048260.6577001.0000000.361986-0.6387710.4617190.543557-0.532825...-0.623199-0.6220590.542890-0.6259280.679307-0.5729880.6225810.5825620.6097750.713484
blood_pressure0.330867-0.5146920.2956170.4360840.3619861.000000-0.3003230.1623080.352744-0.274686...-0.280590-0.2627850.348964-0.3521230.434087-0.7525310.4013920.4262540.3704400.394200
sleep_quality-0.7102920.662693-0.614146-0.693161-0.638771-0.3003231.000000-0.541687-0.5766450.535462...0.6209550.671326-0.5517750.677569-0.6821300.554553-0.649098-0.623092-0.699427-0.749068
breathing_problem0.561654-0.5105140.4643470.5225400.4617190.162308-0.5416871.0000000.459235-0.448997...-0.508172-0.5072510.428791-0.4988950.545345-0.3651730.4927290.5168840.5763410.573984
noise_level0.608624-0.5711690.5152900.5662500.5435570.352744-0.5766450.4592351.000000-0.452362...-0.572327-0.5137300.493625-0.5387580.575439-0.4920940.5838170.5636140.5854580.663371
living_conditions-0.5684340.550535-0.508525-0.530351-0.532825-0.2746860.535462-0.448997-0.4523621.000000...0.5032750.507221-0.4377320.549332-0.5650710.466594-0.501795-0.515794-0.551139-0.581723
safety-0.6512200.643981-0.546731-0.625857-0.589136-0.2883540.657686-0.519348-0.5366300.563571...0.6247740.642846-0.4939030.663328-0.6581060.614988-0.556945-0.580304-0.645673-0.709602
basic_needs-0.6370790.631212-0.601196-0.608776-0.623199-0.2805900.620955-0.508172-0.5723270.503275...1.0000000.639387-0.5134590.649519-0.6393480.584141-0.587037-0.506426-0.644886-0.708968
academic_performance-0.6496010.639045-0.586193-0.633174-0.622059-0.2627850.671326-0.507251-0.5137300.507221...0.6393871.000000-0.5204170.669469-0.6438050.567501-0.562948-0.588612-0.666229-0.720922
study_load0.586064-0.5751120.5322670.6024980.5428900.348964-0.5517750.4287910.493625-0.437732...-0.513459-0.5204171.000000-0.5141230.576078-0.4733120.5441890.5435430.5866690.634156
teacher_student_relationship-0.6631760.652934-0.587728-0.673853-0.625928-0.3521230.677569-0.498895-0.5387580.549332...0.6495190.669469-0.5141231.000000-0.6702550.681288-0.587770-0.582311-0.655960-0.680163
future_career_concerns0.717016-0.7125200.6259090.7065610.6793070.434087-0.6821300.5453450.575439-0.565071...-0.639348-0.6438050.576078-0.6702551.000000-0.6027920.6668730.6665650.7112780.742619
social_support-0.5697480.679211-0.482560-0.617972-0.572988-0.7525310.554553-0.365173-0.4920940.466594...0.5841410.567501-0.4733120.681288-0.6027921.000000-0.490172-0.530047-0.567078-0.632497
peer_pressure0.642910-0.6071180.5806020.6355440.6225810.401392-0.6490980.4927290.583817-0.501795...-0.587037-0.5629480.544189-0.5877700.666873-0.4901721.0000000.6183710.6610580.690684
extracurricular_activities0.641022-0.6412020.5545760.6485510.5825620.426254-0.6230920.5168840.563614-0.515794...-0.506426-0.5886120.543543-0.5823110.666565-0.5300470.6183711.0000000.6519790.692977
bullying0.709982-0.6407370.6243660.6657900.6097750.370440-0.6994270.5763410.585458-0.551139...-0.644886-0.6662290.586669-0.6559600.711278-0.5670780.6610580.6519791.0000000.751162
stress_level0.736795-0.7561950.6486440.7343790.7134840.394200-0.7490680.5739840.663371-0.581723...-0.708968-0.7209220.634156-0.6801630.742619-0.6324970.6906840.6929770.7511621.000000
\n","

21 rows × 21 columns

\n","
\n","
\n","\n","
\n"," \n","\n"," \n","\n"," \n","
\n","\n","\n","
\n"," \n","\n","\n","\n"," \n","
\n","\n","
\n","
\n"],"application/vnd.google.colaboratory.intrinsic+json":{"type":"dataframe"}},"metadata":{},"execution_count":14}],"source":["df.corr()"]},{"cell_type":"markdown","metadata":{"id":"XlWIA8U-YjPI"},"source":["#### in researching the dataset, I found the basis of this idea and really liked the visualizaion of the correlation\n"," - Credit: https://www.kaggle.com/code/xkevnx/student-stress-factors-analysis/notebook"]},{"cell_type":"code","execution_count":15,"metadata":{"colab":{"base_uri":"https://localhost:8080/","height":545},"executionInfo":{"elapsed":650,"status":"ok","timestamp":1716216845126,"user":{"displayName":"Daniel Meier","userId":"06365571306976914087"},"user_tz":300},"id":"liXP5FfJ1Uib","outputId":"259b6f99-7c53-43c8-9dd3-6165b466d2fd"},"outputs":[{"output_type":"display_data","data":{"text/plain":["
"],"image/png":"iVBORw0KGgoAAAANSUhEUgAAAzkAAAIQCAYAAACixqBTAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOzdd3iN5//A8ffJOtkyZRAJkhAjRuw9GzVq79qzRKp2asYKalO0WjFKqd3WXlFC7UQQESRChQiCCJnn94ef83UkIUEk4vO6rue6eu7n89zP536S6LnPPY5CpVKpEEIIIYQQQoh8Qiu3ExBCCCGEEEKID0k6OUIIIYQQQoh8RTo5QgghhBBCiHxFOjlCCCGEEEKIfEU6OUIIIYQQQoh8RTo5QgghhBBCiHxFOjlCCCGEEEKIfEU6OUIIIYQQQoh8RTo5QgghhBBCiHxFOjlCCCFy3aRJk1AoFLmdRo7o2bMnTk5OH7TOlStXolAoiIyM/KD1fmg//PADxYoVQ1tbm/Lly+d2OkKIz4h0coQQ4v+FhITQrl07HB0d0dfXp1ChQjRu3JhFixZpxE2fPp1t27blTpLvwcnJiebNm+d2Gh9EQEAAbdq0wdbWFj09PQoWLEiLFi3YsmVLbqf2QX2qv2sAe/fuZdSoUdSsWRN/f3+mT5+eaWzPnj1RKBQZHrt3786R/NatW8f8+fNzpG4hRO7Tye0EhBAiLzh27Bj169enSJEi9OvXD1tbW27evMm///7LggULGDJkiDp2+vTptGvXjlatWuVewp+xiRMnMnnyZFxcXBgwYACOjo7cv3+fnTt30rZtW9auXUuXLl1yO80PIrPftW7dutGpUyeUSmXuJJYFBw8eREtLi19//RU9Pb23xiuVSn755Zd05eXKlcuJ9Fi3bh0XLlxg6NChOVK/ECJ3SSdHCCGAadOmUaBAAU6dOoWZmZnGuZiYmHeu9+nTpxgZGb1nduKlTZs2MXnyZNq1a8e6devQ1dVVnxs5ciR79uwhOTn5ve+TkpJCWlpahm/O88LPVFtbG21t7VzN4W1iYmIwMDDIUgcHQEdHh6+//jqHs8p5CQkJGBoa5nYaQnz2ZLqaEEIA165do3Tp0uk6OAAFCxZU/7dCoeDp06esWrVKPZ2mZ8+ewP/WlVy6dIkuXbpgbm5OrVq11Nf+9ttveHh4YGBggIWFBZ06deLmzZsa9woPD6dt27bY2tqir69P4cKF6dSpE48ePVLH7Nu3j1q1amFmZoaxsTElSpTg+++//2DP4m15enl5YWxsTEJCQrprO3fujK2tLampqeqyXbt2Ubt2bYyMjDAxMaFZs2ZcvHjxnXIbP348FhYWrFixQqOD85Knp6fGlLyYmBj69OmDjY0N+vr6lCtXjlWrVmlcExkZiUKhYPbs2cyfP5/ixYujVCq5dOnSB/mZZmT27NnUqFEDS0tLDAwM8PDwYNOmTRoxb/pdy2xNzpIlSyhdujRKpRJ7e3sGDx5MXFycRky9evUoU6YMly5don79+hgaGlKoUCFmzZr11rzhRQdwypQp6ufk5OTE999/T2Jiokbu/v7+PH36VJ37ypUrs1R/ZtLS0pg/fz6lS5dGX18fGxsbBgwYwMOHDzXitm/fTrNmzbC3t0epVFK8eHGmTJmi8TtZr149duzYwY0bN9T5vVw3ldmzDQgIQKFQEBAQoFFPmTJlOHPmDHXq1MHQ0FD9t5iYmMjEiRNxdnZGqVTi4ODAqFGjNJ4T5PzfsxCfKxnJEUIIwNHRkePHj3PhwgXKlCmTadyaNWvo27cvVapUoX///gAUL15cI6Z9+/a4uLgwffp0VCoV8GKkaPz48XTo0IG+ffty7949Fi1aRJ06dTh37hxmZmYkJSXh6elJYmIiQ4YMwdbWlv/++4+///6buLg4ChQowMWLF2nevDnu7u5MnjwZpVLJ1atXCQwM/CDPISt5duzYkR9//JEdO3bQvn179bUJCQn89ddf9OzZUz3KsGbNGnr06IGnpyczZ84kISGBpUuXUqtWLc6dO5etBfnh4eFcvnyZ3r17Y2Ji8tb4Z8+eUa9ePa5evYqXlxdFixZl48aN9OzZk7i4OL799luNeH9/f54/f07//v1RKpVYWFioz73rzzQzCxYs4KuvvqJr164kJSWxfv162rdvz99//02zZs3Uz+5tv2uvmjRpEr6+vjRq1IhvvvmGsLAwli5dyqlTpwgMDNToFD58+JAmTZrQpk0bOnTowKZNmxg9ejRly5blyy+/fONz7du3L6tWraJdu3YMHz6cEydO4OfnR2hoKFu3blXn/vPPP3Py5En1FLQaNWq8sV6A2NhYjde6uroUKFAAgAEDBrBy5Up69eqFt7c3ERERLF68mHPnzmm0b+XKlRgbGzNs2DCMjY05ePAgEyZM4PHjx/zwww8AjB07lkePHnHr1i3mzZsHgLGx8Vvzy8j9+/f58ssv6dSpE19//TU2NjakpaXx1VdfcfToUfr374+bmxshISHMmzePK1euqNdZ5fTfsxCfNZUQQgjV3r17Vdra2iptbW1V9erVVaNGjVLt2bNHlZSUlC7WyMhI1aNHj3TlEydOVAGqzp07a5RHRkaqtLW1VdOmTdMoDwkJUeno6KjLz507pwJUGzduzDTPefPmqQDVvXv3st1GR0dHVbNmzTI9n9U809LSVIUKFVK1bdtWI+6PP/5QAap//vlHpVKpVE+ePFGZmZmp+vXrpxF3584dVYECBTTKXz67N9m+fbsKUM2bN++tbVWpVKr58+erANVvv/2mLktKSlJVr15dZWxsrHr8+LFKpVKpIiIiVIDK1NRUFRMTo1HH+/5MVSqVqkePHipHR0eNuISEBI3XSUlJqjJlyqgaNGigUZ7Z75q/v78KUEVERKhUKpUqJiZGpaenp/riiy9Uqamp6rjFixerANWKFSvUZXXr1lUBqtWrV6vLEhMTVba2tul+pq8LCgpSAaq+fftqlI8YMUIFqA4ePKjRbiMjozfW92oskO6oW7euSqVSqY4cOaICVGvXrtW4bvfu3enKX3+2KpVKNWDAAJWhoaHq+fPn6rJmzZql+7moVOmf7UuHDh1SAapDhw6py14+y2XLlmnErlmzRqWlpaU6cuSIRvmyZctUgCowMFClUr3f37MQ4s1kupoQQgCNGzfm+PHjfPXVVwQHBzNr1iw8PT0pVKgQf/75Z7bqGjhwoMbrLVu2kJaWRocOHYiNjVUftra2uLi4cOjQIQD1J9Z79uzJcCoYoB4d2L59O2lpadls5ZtlNU+FQkH79u3ZuXMn8fHx6us3bNhAoUKF1NO59u3bR1xcHJ07d9aoT1tbm6pVq6rry6rHjx8DZGkUB2Dnzp3Y2trSuXNndZmuri7e3t7Ex8dz+PBhjfi2bdtibW2dYV3v+jPNjIGBgfq/Hz58yKNHj6hduzZnz57NUttet3//fpKSkhg6dChaWv/7X3u/fv0wNTVlx44dGvHGxsYa61/09PSoUqUK169ff+N9du7cCcCwYcM0yocPHw6Q7j7Zoa+vz759+zSOOXPmALBx40YKFChA48aNNZ63h4cHxsbGGs/71Wf75MkTYmNjqV27NgkJCVy+fPmd88uMUqmkV69eGmUbN27Ezc2NkiVLauTboEEDAHW+Ofn3LMTnTqarCSHE/6tcuTJbtmwhKSmJ4OBgtm7dyrx582jXrh1BQUGUKlUqS/UULVpU43V4eDgqlQoXF5cM419OsylatCjDhg1j7ty5rF27ltq1a/PVV1/x9ddfqztAHTt25JdffqFv376MGTOGhg0b0qZNG9q1a6fx5vZdZDXPl3nMnz+fP//8ky5duhAfH8/OnTsZMGCA+vtuwsPDAdRv7F5namqarfxexj958iRL8Tdu3MDFxSXdc3Fzc1Off9XrP7c3ncvOs8rI33//zdSpUwkKCkq3luVdvGxLiRIlNMr19PQoVqxYurYWLlw43b3Mzc05f/78W++jpaWFs7OzRrmtrS1mZmbp7pMd2traNGrUKMNz4eHhPHr0SGN93Kte3Rzk4sWLjBs3joMHD6o7xi+9urbtQylUqFC6zRXCw8MJDQ3NtNP8Mt+c/HsW4nMnnRwhhHiNnp4elStXpnLlyri6utKrVy82btzIxIkTs3T9q58kw4sF0wqFgl27dmW4I9arawHmzJlDz5492b59O3v37sXb2xs/Pz/+/fdfChcujIGBAf/88w+HDh1ix44d7N69mw0bNtCgQQP27t37XjtuZSfPatWq4eTkxB9//EGXLl3466+/ePbsGR07dtSoD16sz7C1tU1Xn45O9v4XVLJkSeDF9xnlhNd/bm86l51n9bojR47w1VdfUadOHZYsWYKdnR26urr4+/uzbt26d29ANmT2e6L6//VGb/Oxv7g1LS2NggULsnbt2gzPv+xMxMXFUbduXUxNTZk8eTLFixdHX1+fs2fPMnr06CyNlmTWtlc3LnhVRr83aWlplC1blrlz52Z4jYODg/ranPp7FuJzJ50cIYR4g0qVKgEQHR2tLsvuG7zixYujUqkoWrQorq6ub40vW7YsZcuWZdy4cRw7doyaNWuybNkypk6dCoCWlhYNGzakYcOGzJ07l+nTpzN27FgOHTqU6SfhOZFnhw4dWLBgAY8fP2bDhg04OTlRrVo1jfrgxe5075PXS66urpQoUYLt27ezYMGCty4Ud3R05Pz586SlpWl8Kv5yypKjo+M755LdZ/WqzZs3o6+vz549ezS+58bf3z9dbFZ/1162JSwsjGLFiqnLk5KSiIiI+CDP/+V90tLSCA8PV4+IAdy9e5e4uLj3eqZvUrx4cfbv30/NmjXf2BkNCAjg/v37bNmyhTp16qjLIyIi0sVm9mzNzc0B0u1Kl51RquLFixMcHEzDhg3f+jPMqb9nIT53MhYqhBC8mCOf0afYL9cgvDoNyMjIKN0boDdp06YN2tra+Pr6pruHSqXi/v37wIs1JykpKRrny5Yti5aWlnpK04MHD9LVX758eYB0W9NmV1bzfKljx44kJiayatUqdu/eTYcOHTTOe3p6YmpqyvTp0zP87pp79+5lO0dfX1/u379P37590z0rgL179/L3338D0LRpU+7cucOGDRvU51NSUli0aBHGxsbUrVs32/d/KbvP6lXa2tooFAqNkYHIyEj1jluvyurvWqNGjdDT02PhwoUa+fz66688evRIvWPb+2ratCkA8+fP1yh/OWLxoe7zug4dOpCamsqUKVPSnUtJSVE/o5cjH68+g6SkJJYsWZLuOiMjowynr73snP/zzz/qstTUVH7++eds5fvff/+xfPnydOeePXvG06dPgZz9exbicycjOUIIAQwZMoSEhARat25NyZIlSUpK4tixY+oRilcXFnt4eLB//37mzp2Lvb09RYsWpWrVqpnWXbx4caZOnYqPjw+RkZG0atUKExMTIiIi2Lp1K/3792fEiBEcPHgQLy8v2rdvj6urKykpKaxZswZtbW3atm0LwOTJk/nnn39o1qwZjo6OxMTEsGTJEgoXLqzx/S2ZuXr1qnpE6FUVKlSgWbNmWcrzpYoVK+Ls7MzYsWNJTEzUmKoGL9bQLF26lG7dulGxYkU6deqEtbU1UVFR7Nixg5o1a7J48eK35vyqjh07EhISwrRp0zh37hydO3fG0dGR+/fvs3v3bg4cOKCe8tW/f39++uknevbsyZkzZ3BycmLTpk0EBgYyf/78LG9gkJGs/kwz0qxZM+bOnUuTJk3o0qULMTEx/Pjjjzg7O6dbE5PV3zVra2t8fHzw9fWlSZMmfPXVV4SFhbFkyRIqV678wb5ks1y5cvTo0YOff/5ZPTXs5MmTrFq1ilatWlG/fv0Pcp/X1a1blwEDBuDn50dQUBBffPEFurq6hIeHs3HjRhYsWEC7du2oUaMG5ubm9OjRA29vbxQKBWvWrMnwAwwPDw82bNjAsGHDqFy5MsbGxrRo0YLSpUtTrVo1fHx8ePDgARYWFqxfvz7DTnVmunXrxh9//MHAgQM5dOgQNWvWJDU1lcuXL/PHH3+wZ88eKlWq9N5/z0KIN/jo+7kJIUQetGvXLlXv3r1VJUuWVBkbG6v09PRUzs7OqiFDhqju3r2rEXv58mVVnTp1VAYGBipAvcXvy+2GM9sOdvPmzapatWqpjIyMVEZGRqqSJUuqBg8erAoLC1OpVCrV9evXVb1791YVL15cpa+vr7KwsFDVr19ftX//fnUdBw4cULVs2VJlb2+v0tPTU9nb26s6d+6sunLlylvb6OjomOE2vYCqT58+Wc7zVWPHjlUBKmdn50zve+jQIZWnp6eqQIECKn19fVXx4sVVPXv2VJ0+fVodk5UtpF/18jkULFhQpaOjo7K2tla1aNFCtX37do24u3fvqnr16qWysrJS6enpqcqWLavy9/fXiHm5hfQPP/yQ7j7v+zNVqTLeQvrXX39Vubi4qJRKpapkyZIqf3//DJ9BZr9rmW1zvHjxYlXJkiVVurq6KhsbG9U333yjevjwoUZM3bp1VaVLl07XlozyzEhycrLK19dXVbRoUZWurq7KwcFB5ePjo7E988v6srOFdFZif/75Z5WHh4fKwMBAZWJioipbtqxq1KhRqtu3b6tjAgMDVdWqVVMZGBio7O3t1dvB89r2z/Hx8aouXbqozMzMVIBG269du6Zq1KiRSqlUqmxsbFTff/+9at++fRluIZ3Rs1SpXmwLPnPmTFXp0qVVSqVSZW5urvLw8FD5+vqqHj16pFKp3u/vWQjxZgqVKourDIUQQgghhBDiEyBrcoQQQgghhBD5inRyhBBCCCGEEPmKdHKEEEIIIYQQ+Yp0coQQQgghhBD5inRyhBBCCCGEEPmKdHKEEEIIIYQQ+Yp0coQQQgghhBD5ik5uJyDE52iHboncTkEIIYQQ2dQsOSzX7p2T7x1ys105RUZyhBBCCCGEEPmKjOQIIYQQQgiRxyl0FbmdwidFRnKEEEIIIYQQ+YqM5AghhBBCCJHHaenISE52yEiOyBX16tVj6NCh73x9ZGQkCoWCoKAgAAICAlAoFMTFxb3T9UIIIYQQIv+QkRzxWXJwcCA6OhorK6vcTkUIkYc5ftOFYsP6oLS15vH5y1wcOoVHp0IyjK22fzWWdaumK4/ZGcCplgMAcP/VD4fubTTP7znCqeZ9P3zyQoh8RaErYxPZIZ0c8VnS1tbG1tY2t9MQQuRhdu2/xO0HHy4MnkjcyWCKeveg6o5fCSjdhKR7D9LFn2k/BC09XfVrXUszap/ZTvTm3RpxMbv/4XxfH/Xr1MSknGuEECLfkOlq2SNdQpFrUlJS8PLyokCBAlhZWTF+/HhUKhUACoWCbdu2acSbmZmxcuXKt9b79OlTTE1N2bRpk0b5tm3bMDIy4smTJ5lOdztw4ACVKlXC0NCQGjVqEBamuW/81KlTKViwICYmJvTt25cxY8ZQvnz5d30EQog8rOjQXtz89Q9urdpCfOg1QgZNJDXhOQ4922YYn/zwEYl3Y9WHVaOapCY8J3qTZicnLTFJIy4l7vHHaI4QQnxWpJMjcs2qVavQ0dHh5MmTLFiwgLlz5/LLL7+8d71GRkZ06tQJf39/jXJ/f3/atWuHiYlJpteOHTuWOXPmcPr0aXR0dOjdu7f63Nq1a5k2bRozZ87kzJkzFClShKVLl753vkKIvEehq0uBiqWJPXDsf4UqFbEHj2FWrUKW6nDo1ZboP3aQmvBMo9yybhUa/XeMuhd2U2bxJHQtzD5g5kKI/Eqhq8ixIz+S6Woi1zg4ODBv3jwUCgUlSpQgJCSEefPm0a9fv/euu2/fvtSoUYPo6Gjs7OyIiYlh586d7N+//43XTZs2jbp16wIwZswYmjVrxvPnz9HX12fRokX06dOHXr16ATBhwgT27t1LfHz8e+crhMhb9KzM0dLRITHmvkZ54t37GJUo9tbrC1Qui2mZEpzvP1aj/N6eI9zZuo9nkbcwLOZAiSnDqPL3cgJrdYS0tA/aBiGE+JzJSI7INdWqVUOh+N+nB9WrVyc8PJzU1NT3rrtKlSqULl2aVatWAfDbb7/h6OhInTp13nidu7u7+r/t7OwAiImJASAsLIwqVaqku8/bJCYm8vjxY40jWSVvZoTIzxx6teNxSFi6TQqi/9hJzN8HeXLhCnf/PMCpVgMwq+yOZd23/1sihPi8aekocuzIj6STI/IkhUKhXp/zUnJycrbq6Nu3r3oNj7+/P7169dLoVGVEV/d/i4Zfxqa956erfn5+FChQQOP4Iy39omUhRN6RFPuQtJQUlAUtNcqVNpYk3ol947XahgbYd2jGTf9Nb4wDeBZxi8R7DzBydnyvfIUQQmiSTo7INSdOnNB4/e+//+Li4oK2tjbW1tZER0erz4WHh5OQkJCt+r/++mtu3LjBwoULuXTpEj169HivfEuUKMGpU6c0yl5/nREfHx8ePXqkcXTQsnivXIQQOUuVnMyjsxexalD9f4UKBZb1qxP377k3XmvXrglaSj3+W/vnW++jX8gGPUsznkffe9+UhRD5nKzJyR5ZkyNyTVRUFMOGDWPAgAGcPXuWRYsWMWfOHAAaNGjA4sWLqV69OqmpqYwePVpjlCUrzM3NadOmDSNHjuSLL76gcOHC75XvkCFD6NevH5UqVaJGjRps2LCB8+fPU6zYm+fnK5VKlEqlRpmuQj5fECKvi5jvT7kVM4k7c4FHp87j5N0DHSMDbq7aAkA5/5k8/+8uYePmalzn0Ksdd7fvJ/lBnEa5tpEhLuO9uLN1D4l3YjEs5oDbjJE8vXqD2L1HPlazhBDisyCdHJFrunfvzrNnz6hSpQra2tp8++239O/fH4A5c+bQq1cvateujb29PQsWLODMmTPZvkefPn1Yt26dxi5p76pr165cv36dESNG8Pz5czp06EDPnj05efLke9cthMh7ojfuQs/aAteJ3i++DDQ4lJPN+5L0/5sRGDjYoXptOquRa1EsalXiRJNe6epTpaZiWtaVwt1aoWtmwvPbMcTuDyRs4gLSkrI3HVcI8fnJr2tncopC9frCByHykTVr1vDdd99x+/Zt9PT0Pnj9jRs3xtbWljVr1mTruh26JT54LkIIIYTIWc2Sw94elEP+KZO17evfRZ0Lb56G+ymSkRyRLyUkJBAdHc2MGTMYMGDAB+ngJCQksGzZMjw9PdHW1ub3339n//797Nu37wNkLIQQQgghPhRZGCDypVmzZlGyZElsbW3x8fH5IHUqFAp27txJnTp18PDw4K+//mLz5s00atTog9QvhBBCCJEZLW1Fjh35kUxXEyIXyHQ1IYQQ4tOTm9PVjparmGN11wo+m2N15xaZriaEEEIIIUQep9DKnyMuOUWmqwkhhBBCCCHyFRnJEUIIIYQQIo9TaMvYRHZIJ0eIXJBfv11YCCGEECIvkE6OEEIIIYQQeVx+3QUtp0gnRwghhBBCiDxONh7IHpncJ4QQQgghhMhXZCRHCCGEEEKIPE6mq2VPvhrJUalU9O/fHwsLCxQKBUFBQbmdkhBCCCGEEOIjy1ednN27d7Ny5Ur+/vtvoqOjKVOmzFuvUSgUbNu2LeeTE0II8clxHNCFeqEH8HwQTI3DGyhQqWymsVV3r6ZpwuV0R6UtyzKML7NwEk0TLuM0uHsOZS+EyE8U2oocO/KjfDVd7dq1a9jZ2VGjRo2Pfu+kpCT09PQ++n3fJCdzSk5ORldXN0fqzi0qlYrU1FR0dPLVn4UQ4h3Ztf2SkjPGcNF7EnGngnHy6kGV7b9wuPyXJN17kC7+bOchKPT+9++inoUZtU5sI3rLnnSxNl81wqxKOZ7fvpujbRBCiM9VvhnJ6dmzJ0OGDCEqKgqFQoGTkxNOTk7Mnz9fI658+fJMmjQJACcnJwBat26tvuZlXa1atdK4bujQodSrV0/9ul69enh5eTF06FCsrKzw9PQE4MKFC3z55ZcYGxtjY2NDt27diI2NzVIb0tLSmDVrFs7OziiVSooUKcK0adPU50ePHo2rqyuGhoYUK1aM8ePHk5ycrD4/adIkypcvzy+//ELRokXR19cHIC4ujr59+2JtbY2pqSkNGjQgODhY497bt2+nYsWK6OvrU6xYMXx9fUlJSVGfVygULF26lK+++gojIyONvDJz8eJFmjdvjqmpKSYmJtSuXZtr166p2zp58mQKFy6MUqmkfPny7N69W31tZGQkCoWCLVu2UL9+fQwNDSlXrhzHjx/XuEdgYCD16tXD0NAQc3NzPD09efjwofoefn5+FC1aFAMDA8qVK8emTZvU1wYEBKBQKNi1axceHh4olUqOHj1KvXr18Pb2ZtSoUVhYWGBra6v+nYEXnaFJkyZRpEgRlEol9vb2eHt7v/V5CCE+LUW9e3LTfyO31mwh/vI1LgyZSOqz5xTu3jbD+OSHj0i6G6s+rBrUIDXhOXe27NaIU9oXpNSccQT1GklackqGdQkhxOsUWlo5duRH+aZVCxYsUL9pjo6O5tSpU2+95mWMv79/lq951apVq9DT0yMwMJBly5YRFxdHgwYNqFChAqdPn2b37t3cvXuXDh06ZKk+Hx8fZsyYwfjx47l06RLr1q3DxsZGfd7ExISVK1dy6dIlFixYwPLly5k3b55GHVevXmXz5s1s2bJFvSapffv2xMTEsGvXLs6cOUPFihVp2LAhDx68+CTyyJEjdO/enW+//ZZLly7x008/sXLlynQdmUmTJtG6dWtCQkLo3bv3G9vy33//UadOHZRKJQcPHuTMmTP07t1b3XFasGABc+bMYfbs2Zw/fx5PT0+++uorwsPDNeoZO3YsI0aMICgoCFdXVzp37qyuIygoiIYNG1KqVCmOHz/O0aNHadGiBampqQD4+fmxevVqli1bxsWLF/nuu+/4+uuvOXz4sMY9xowZw4wZMwgNDcXd3R148bM1MjLixIkTzJo1i8mTJ7Nv3z4ANm/ezLx58/jpp58IDw9n27ZtlC2b+RQWIcSnR6Gri2mF0tw/dOx/hSoVsQePY161fJbqcOjRjuhNO0lNePZKxQrK/TKLiHm/Eh969cMmLYQQQi3fzMspUKAAJiYmaGtrY2trm6VrrK2tATAzM8vyNa9ycXFh1qxZ6tdTp06lQoUKTJ8+XV22YsUKHBwcuHLlCq6urpnW9eTJExYsWMDixYvp0aMHAMWLF6dWrVrqmHHjxqn/28nJiREjRrB+/XpGjRqlLk9KSmL16tXqth09epSTJ08SExODUqkEYPbs2Wzbto1NmzbRv39/fH19GTNmjPq+xYoVY8qUKYwaNYqJEyeq6+7SpQu9evXK0rP58ccfKVCgAOvXr1dPa3u1/bNnz2b06NF06tQJgJkzZ3Lo0CHmz5/Pjz/+qI4bMWIEzZo1A8DX15fSpUtz9epVSpYsyaxZs6hUqRJLlixRx5cuXRqAxMREpk+fzv79+6levbq6XUePHuWnn36ibt266msmT55M48aNNfJ3d3dXt93FxYXFixdz4MABGjduTFRUFLa2tjRq1AhdXV2KFClClSpVsvRchBCfBj0rc7R0dEi8e1+jPDEmFuMSRd96fYFKZTEp48r5QWM1yosP74cqJZXIJWs+aL5CiPxPvicne/JNJyc3eHh4aLwODg7m0KFDGBsbp4u9du3aGzs5oaGhJCYm0rBhw0xjNmzYwMKFC7l27Rrx8fGkpKRgamqqEePo6Kju4LzMKT4+HktLS424Z8+eqaeOBQcHExgYqDFyk5qayvPnz0lISMDQ0BCASpUqZZrb64KCgqhdu3aG63YeP37M7du3qVmzpkZ5zZo1002jezmyAmBnZwdATEwMJUuWJCgoiPbt22d4/6tXr5KQkJCu85KUlESFChU0yjJq16v3fXnvmJgY4MXI2Pz58ylWrBhNmjShadOmtGjRItO1PImJiSQmJmqUJavS0FXkm4FUIcRrHHq043FIGI9Oh6jLTCuUxmlwN47WyHi6mxBCvIlsIZ09+bqTo6WlhUql0ih7dQ3L+15nZGSk8To+Pp4WLVowc+bMdLEv36BnxsDA4I3njx8/TteuXfH19cXT01M9SjJnzpy35mRnZ0dAQEC6Os3MzNQxvr6+tGnTJl3My3U9GdX9Jm9rT1a92klSKF78caelpb31HvHx8QDs2LGDQoUKaZx7OaL1Ukbter1zplAo1Pd1cHAgLCyM/fv3s2/fPgYNGsQPP/zA4cOHM+zU+fn54evrq1HWRceSrrpWmeYvhMhdSbEPSUtJQWmj+QGRsqAViXffvM5S29AAu3ZNCZ+yUKPcooYHetaW1A87qC7T0tHBbcZonLx6EOCW+YdcQgghsidfd3Ksra2Jjo5Wv378+DEREREaMbq6uuo1HK9ed+HCBY2yoKCgt+4mVrFiRTZv3oyTk1O2d+hycXHBwMCAAwcO0Ldv33Tnjx07hqOjI2PH/m/qw40bN95ab8WKFblz5w46OjrqjRUyigkLC8PZ2TlbOb+Ju7s7q1atynAXNlNTU+zt7QkMDNSYNhYYGJitaV/u7u4cOHAgXQcCoFSpUiiVSqKiojTu8aEYGBjQokULWrRoweDBgylZsiQhISFUrFgxXayPjw/Dhg3TKDtkk/VRMSHEx6dKTubxuYtY1qvO3b8OvChUKLCsX40by9a+8VrbNk3QUurx3/q/NMr/+/1PYg9pbp5S5c9f+G/ddm6t2fpB8xdC5D8yXS178nUnp0GDBqxcuZIWLVpgZmbGhAkT0NbW1ohxcnLiwIED1KxZE6VSibm5OQ0aNOCHH35g9erVVK9end9++40LFy6km+b0usGDB7N8+XI6d+6s3pnr6tWrrF+/nl9++SXdvV+lr6/P6NGjGTVqFHp6etSsWZN79+5x8eJF+vTpg4uLC1FRUaxfv57KlSuzY8cOtm59+/8UGzVqRPXq1WnVqhWzZs3C1dWV27dvs2PHDlq3bk2lSpWYMGECzZs3p0iRIrRr1w4tLS2Cg4O5cOECU6dOzdrDfo2XlxeLFi2iU6dO+Pj4UKBAAf7991+qVKlCiRIlGDlyJBMnTqR48eKUL18ef39/goKCWLv2zW8eXuXj40PZsmUZNGgQAwcORE9Pj0OHDtG+fXusrKwYMWIE3333HWlpadSqVYtHjx4RGBiIqampev3Ru1i5ciWpqalUrVoVQ0NDfvvtNwwMDHB0dMwwXqlUphs9kqlqQuR9EQtX4r58Bo/OXiDu9HmKevVAx9CAW2u2AOC+fAaJt2MImzhX4zqHHm25+9d+kh/EaZQnP4hLV5aWnELi3Viehmt+ACeEEOL95Ot3Wj4+PtStW5fmzZvTrFkzWrVqRfHixTVi5syZw759+3BwcFB3Yjw9PRk/fjyjRo2icuXKPHnyhO7d3/5lbS9HJ1JTU/niiy8oW7YsQ4cOxczMDK0sbM83fvx4hg8fzoQJE3Bzc6Njx47qdSBfffUV3333HV5eXpQvX55jx44xfvz4t9apUCjYuXMnderUoVevXri6utKpUydu3Lih3rnN09OTv//+m71791K5cmWqVavGvHnzMn3TnhWWlpYcPHiQ+Ph46tati4eHB8uXL1eP6nh7ezNs2DCGDx9O2bJl2b17N3/++ScuLi5Zvoerqyt79+4lODiYKlWqUL16dbZv364eRZsyZQrjx4/Hz88PNzc3mjRpwo4dOyha9O2Lht/EzMyM5cuXU7NmTdzd3dm/fz9//fVXunVPQohPW/TmXVz+fhau44dQ699tmLqX5GSrfiTFvNiMwMDBHqWttcY1Ri5FsahZiVurNudGykKIfEy2kM4eher1xSdCiBy307BkbqcghBBCiGxqmnA51+59vmm9HKvbfWdAjtWdW/L1dDUhhBBCCCHyA1mTkz35c3wqD4qKisLY2DjTIyoqKrdTzJaBAwdm2paBAwfmdnpCCCGEEOIzJtPVPpKUlBQiIyMzPf8uO7LlppiYGB4/fpzhOVNTUwoWLPiRM/q0yHQ1IYQQ4tOTm9PVLrZskGN1l95+8O1Br/jxxx/54YcfuHPnDuXKlWPRokVv3CE3Li6OsWPHsmXLFh48eICjoyPz58+nadOm75t6pj6dd9WfOB0dnQ+6RXNuK1iwoHRkhBBCCCE+krwyXW3Dhg0MGzaMZcuWUbVqVebPn4+npydhYWEZvjdMSkqicePGFCxYkE2bNlGoUCFu3Lih/r7GnCKdHCGEEEIIIUSWzJ07l379+tGrVy8Ali1bxo4dO1ixYgVjxoxJF79ixQoePHjAsWPH1LvsZvbdjR+SrMkRQgghhBAij8vJLaQTExN5/PixxpGYmJguh6SkJM6cOUOjRo3UZVpaWjRq1Ijjx4+niwf4888/qV69OoMHD8bGxoYyZcowffp0UlNTc+xZgYzkCJErtHTyxpCzEEIIIYSfnx++vr4aZRMnTmTSpEkaZbGxsaSmpqq/a/ElGxsbLl/OeL3S9evXOXjwIF27dmXnzp1cvXqVQYMGkZyczMSJEz9oO14lnRwhhBBCCCHyuJxck+Pj48OwYcM0ypRK5QepOy0tjYIFC/Lzzz+jra2Nh4cH//33Hz/88IN0coQQQgghhBA5Q6lUZqlTY2Vlhba2Nnfv3tUov3v3Lra2thleY2dnh66uLtra2uoyNzc37ty5Q1JSEnp6eu+XfCZkTY4QQgghhBB5nEJLkWNHVunp6eHh4cGBAwfUZWlpaRw4cIDq1atneE3NmjW5evUqaWlp6rIrV65gZ2eXYx0ckE6OEEIIIYQQIouGDRvG8uXLWbVqFaGhoXzzzTc8ffpUvdta9+7d8fHxUcd/8803PHjwgG+//ZYrV66wY8cOpk+fzuDBg3M0T+nkiA8iMjIShUJBUFBQruahUCjYtm3bR72nk5MT8+fP/6j3FEIIIcTnJS+M5AB07NiR2bNnM2HCBMqXL09QUBC7d+9Wb0YQFRVFdHS0Ot7BwYE9e/Zw6tQp3N3d8fb25ttvv81wu+kPSdbkiA/CwcGB6OhorKyssnxNvXr1KF++vHQQhBB5VpF+XSjq3Rs9GyueXLhM6MhpPDoTkmFslR2rsKid/hu/Y/Yc5mz7genKS82bSJE+nQgd48eNJas/eO5CiPxFoZV3xia8vLzw8vLK8FxAQEC6surVq/Pvv//mcFaapJMjPghtbe1MF5wJIcSnyLbNl5ScPpqLQycRd/o8ToO6U2nLco54NCUp9kG6+HNfe6P4/y+6A9CzMKPGsa3c3bo7XWzB5o0wq1yO57fvpjsnhBDi/eWdLqHIUbt376ZWrVqYmZlhaWlJ8+bNuXbtGvC/qWZbtmyhfv36GBoaUq5cOY0vderduzfu7u7qL4ZKSkqiQoUKdO/eXaOOV6erXbhwgS+//BJjY2NsbGzo1q0bsbGxAPTs2ZPDhw+zYMECFAoFCoWCiIgInJ2dmT17tkbuQUFBKBQKrl69mu1237x5kw4dOmBmZoaFhQUtW7YkMjISgL1796Kvr09cXJzGNd9++y0NGjRQvz569Ci1a9fGwMAABwcHvL29efr0abZzEUJ8Wpy8enBz1Ub+W7uVp2HXuDh0EqnPnlOoW5sM45MfPiIpJlZ9WDaoQVrCc+5s26MRp7QrSKkfxnK+7yhUySkfoylCiHxAS1uRY0d+JJ2cz8TTp08ZNmwYp0+f5sCBA2hpadG6dWuNnS7Gjh3LiBEjCAoKwtXVlc6dO5OS8uJ/wAsXLuTp06fq+ZNjx44lLi6OxYsXZ3i/uLg4GjRoQIUKFTh9+jS7d+/m7t27dOjQAYAFCxZQvXp1+vXrR3R0NNHR0RQpUoTevXvj7++vUZe/vz916tTB2dk5W21OTk7G09MTExMTjhw5QmBgIMbGxjRp0oSkpCQaNmyImZkZmzdvVl+TmprKhg0b6Nq1KwDXrl2jSZMmtG3blvPnz7NhwwaOHj2a6RCtECJ/UOjqYlq+NPcPvfIN3ioV9wOOY1alfJbqKNytLdGbd5Ka8OyVihW4/zyTiIUriL+c/Q9uhBBCZI1MV/tMtG3bVuP1ihUrsLa25tKlSxgbGwMwYsQImjVrBoCvry+lS5fm6tWrlCxZEmNjY3777Tfq1q2LiYkJ8+fP59ChQ5iammZ4v8WLF1OhQgWmT5+ucU8HBweuXLmCq6srenp6GBoaakxz69mzJxMmTODkyZNUqVKF5ORk1q1bl250Jys2bNhAWloav/zyCwrFi08p/P39MTMzIyAggC+++IJOnTqxbt06+vTpA8CBAweIi4tTPy8/Pz+6du3K0KFDAXBxcWHhwoXUrVuXpUuXoq+vn+28hBB5n56lGVo6OiTdu69RnhhzHyPXom+9voBHWUxKu3LBa5xGebHv+qJKTeXG0jUfNF8hRP6Xk18Gmh/JSM5nIjw8nM6dO1OsWDFMTU1xcnICXuyA8ZK7u7v6v+3s7ACIiYlRl1WvXp0RI0YwZcoUhg8fTq1atTK9X3BwMIcOHcLY2Fh9lCxZEkA9TS4j9vb2NGvWjBUrVgDw119/kZiYSPv27bPd5uDgYK5evYqJiYk6BwsLC54/f67OoWvXrgQEBHD79m0A1q5dS7NmzTAzM1PXsXLlSo12eHp6kpaWRkRERJbySExM5PHjxxpHkirt7RcKIT5Zhbu15cmFMI1NCkzLl8Lxm26EDPR5w5VCCCE+BBnJ+Uy0aNECR0dHli9fjr29PWlpaZQpU4akpCR1jO4rC2Zfjny8Op0tLS2NwMBAtLW137o+Jj4+nhYtWjBz5sx05152oDLTt29funXrxrx58/D396djx44YGhpmqZ2v5+Dh4cHatWvTnbO2tgagcuXKFC9enPXr1/PNN9+wdetWVq5cqVHHgAED8Pb2TldHkSJFspSHn58fvr6+GmVd9Sz5WmmdjdYIIT6mpPtxpKWkoGdtqVGuLGhJ4t3YN16rbWiAbdumXJ2+SKPcvEYl9KwtqXvpoLpMS0eHktNG4fRNdw6XbfThGiCEyHfy0u5qnwLp5HwG7t+/T1hYGMuXL6d27drAi8X02fXDDz9w+fJlDh8+jKenJ/7+/uovfnpdxYoV2bx5M05OTujoZPxrpqenR2pqarrypk2bYmRkxNKlS9m9ezf//PNPtnN9mcOGDRsoWLBgptPq4MVoztq1aylcuDBaWlrqKXsv67h06VK21wO9ysfHh2HDhmmUBRSq/M71CSFynio5mcdBF7GsV42YHf//zd4KBZZ1q3Hj5/QfnLzKtpUnWko9bm/4S6P89vo/Ndf4AJW2Luf2+j/577ctHzR/IYT43EmX8DNgbm6OpaUlP//8M1evXuXgwYPp3nS/zblz55gwYQK//PILNWvWZO7cuXz77bdcv349w/jBgwfz4MEDOnfuzKlTp7h27Rp79uyhV69e6o6Nk5MTJ06cIDIyktjYWPWokba2Nj179sTHxwcXFxeqV6/+Tu3u2rUrVlZWtGzZkiNHjhAREUFAQADe3t7cunVLI+7s2bNMmzaNdu3aoVQq1edGjx7NsWPH8PLyIigoiPDwcLZv356tjQeUSiWmpqYah55C/vSEyOsiF6+icI/22HdpiZFrMUrPm4i2oQH//bYVgLI/zcB14nfprivUvS0xOw6Q/CBOozz5QRzxoeEahyo5hcSYWJ5ejfwILRJCfMryypeBfirkndZnQEtLi/Xr13PmzBnKlCnDd999xw8//JDl658/f87XX39Nz549adGiBQD9+/enfv36dOvWLcPRGHt7ewIDA0lNTeWLL76gbNmyDB06FDMzM7T+f7h1xIgRaGtrU6pUKaytrTXWB/Xp04ekpKRMR4qywtDQkH/++YciRYrQpk0b3Nzc6NOnD8+fP9cY2XF2dqZKlSqcP39evavaS+7u7hw+fJgrV65Qu3ZtKlSowIQJE7C3t3/nvIQQn4Y7W3YRNm4WLt97UzNwKybuJTndtr96MwKDwnYobTWnnRo5O2FRoxK3Vm/OqEohhHhn0snJHoVKpVLldhJCvO7IkSM0bNiQmzdvYmNjk9vpfHC7Td1yOwUhhBBCZFOTx6G5du8b/VvlWN2OP2/Lsbpzi6zJEXlKYmIi9+7dY9KkSbRv3z5fdnCEEEIIIbJLNh7IHnlaIk/5/fffcXR0JC4ujlmzZmmcW7t2rcZWzq8epUuXzqWMhRBCCCFEXiPT1cQn48mTJ9y9ezfDc7q6ujg6On7kjN6dTFcTQgghPj25OV3t5qC2bw96Rw5L8t86QpmuJj4ZJiYmmJiY5HYaQgghhBAij5NOjhBCCCGEEHmcrMnJHnlaQgghhBBCiHxFRnKEEEIIIYTI6xT58/tscoqM5AghhBBCCCHyFRnJEUIIIYQQIo9TaMlITnZIJ0cIIYQQQog8TjYeyB55WkIIIYQQQoh8RTo54p3Vq1ePoUOH5nYa7ywgIACFQkFcXFxupyKEEEII8UYKLUWOHfmRTFcTn60aNWoQHR1NgQIFcjsVIUQeVaRfF4p690bPxoonFy4TOnIaj86EZBhbZccqLGpXSVces+cwZ9sPBMDZZzC2bZuiX8gWVVIyj4IuET5lPo9On8/RdgghxOdGOjkiz0pKSkJPTy/H6tfT08PW1jbH6hdCfNps23xJyemjuTh0EnGnz+M0qDuVtizniEdTkmIfpIs/97U3Cl1d9Ws9CzNqHNvK3a271WVPr0YSOmIqCZE30dbXx3FwDypt/YV/ynuSfP/hR2mXEOLTJGtyskeelsiSp0+f0r17d4yNjbGzs2POnDka5xMTExkxYgSFChXCyMiIqlWrEhAQoD6/cuVKzMzM2LZtGy4uLujr6+Pp6cnNmzfVMZMmTaJ8+fL88ssvFC1aFH19fQDi4uLo27cv1tbWmJqa0qBBA4KDg9XXBQcHU79+fUxMTDA1NcXDw4PTp08DcOPGDVq0aIG5uTlGRkaULl2anTt3AhlPV9u8eTOlS5dGqVTi5OSUrp1OTk5Mnz6d3r17Y2JiQpEiRfj5558/yDMWQuQtTl49uLlqI/+t3crTsGtcHDqJ1GfPKdStTYbxyQ8fkRQTqz4sG9QgLeE5d7btUcdEb9zB/YDjPIu8Rfzlq1z+fga6BUwwKVPiYzVLCCE+C9LJEVkycuRIDh8+zPbt29m7dy8BAQGcPXtWfd7Ly4vjx4+zfv16zp8/T/v27WnSpAnh4eHqmISEBKZNm8bq1asJDAwkLi6OTp06adzn6tWrbN68mS1bthAUFARA+/btiYmJYdeuXZw5c4aKFSvSsGFDHjx48Ulq165dKVy4MKdOneLMmTOMGTMG3f//NHXw4MEkJibyzz//EBISwsyZMzE2Ns6wjWfOnKFDhw506tSJkJAQJk2axPjx41m5cqVG3Jw5c6hUqRLnzp1j0KBBfPPNN4SFhb3vIxZC5CEKXV1My5fm/qHj/ytUqbgfcByzKuWzVEfhbm2J3ryT1IRnmd7DoWcHkuMe8yTk8gfIWgiRn8manOyR6WrireLj4/n111/57bffaNiwIQCrVq2icOHCAERFReHv709UVBT29vYAjBgxgt27d+Pv78/06dMBSE5OZvHixVStWlVdh5ubGydPnqRKlRfz2JOSkli9ejXW1tYAHD16lJMnTxITE4NSqQRg9uzZbNu2jU2bNtG/f3+ioqIYOXIkJUuWBMDFxUWde1RUFG3btqVs2bIAFCtWLNN2zp07l4YNGzJ+/HgAXF1duXTpEj/88AM9e/ZUxzVt2pRBgwYBMHr0aObNm8ehQ4coUUI+iRUiv9CzNENLR4eke/c1yhNj7mPkWvSt1xfwKItJaVcueI1Ld866ST3KrZiNtqEBiXfucapVH5IfxH2o1IUQQiAjOSILrl27RlJSkrpzAmBhYaF+Ux8SEkJqaiqurq4YGxurj8OHD3Pt2jX1NTo6OlSuXFn9umTJkpiZmREaGqouc3R0VHdw4MVUtPj4eCwtLTXqjoiIUNc9bNgw+vbtS6NGjZgxY4bGPb29vZk6dSo1a9Zk4sSJnD+f+eLe0NBQatasqVFWs2ZNwsPDSU1NVZe5u7ur/1uhUGBra0tMTEym9SYmJvL48WONI0mVlmm8EOLTV7hbW55cCMtwk4IH/5zgWK02/Nu4C7H7j1J+5Tz0rCxyIUshxKdERnKyRzo54r3Fx8ejra3NmTNnCAoKUh+hoaEsWLAgW3UZGRmlq9vOzk6j3qCgIMLCwhg5ciTwYi3PxYsXadasGQcPHqRUqVJs3boVgL59+3L9+nW6detGSEgIlSpVYtGiRe/VXt1XFhbDi45OWlrmnRY/Pz8KFCigcfyRdD/TeCFE7ku6H0daSgp61pYa5cqCliTejX3jtdqGBti2bcqtNZszPJ+a8IyE61E8OhXMBa9xqFJTKdy97QfLXQiRT2lp5dyRD+XPVokPqnjx4ujq6nLixAl12cOHD7ly5QoAFSpUIDU1lZiYGJydnTWOV3cvS0lJUW8IABAWFkZcXBxubm6Z3rtixYrcuXMHHR2ddHVbWVmp41xdXfnuu+/Yu3cvbdq0wd/fX33OwcGBgQMHsmXLFoYPH87y5cszvJebmxuBgYEaZYGBgbi6uqKtrZ3Fp5Wej48Pjx490jg66Fm+/UIhRK5RJSfzOOgilvWq/a9QocCybjXiTga98VrbVp5oKfW4veGvLN1LoaVAS5lzO0kKIcTnSNbkiLcyNjamT58+jBw5EktLSwoWLMjYsWPR+v+ev6urK127dqV79+7MmTOHChUqcO/ePQ4cOIC7uzvNmjUDXoyADBkyhIULF6Kjo4OXlxfVqlVTr8fJSKNGjahevTqtWrVi1qxZuLq6cvv2bXbs2EHr1q0pXbo0I0eOpF27dhQtWpRbt25x6tQp2rZ98ano0KFD+fLLL3F1deXhw4ccOnQo007V8OHDqVy5MlOmTKFjx44cP36cxYsXs2TJkvd6fkqlUr2e6CU9hXy+IEReF7l4FWWX+fHo3AUenQ7BaVB3tA0N+O+3FyPFZX+aQeLtu1zxnadxXaHubYnZcSDdOhttQwOKjRhAzK5DJN65h56lGUX6dUFpZ8OdrXsQQog3USjy57SynCKdHJElP/zwA/Hx8bRo0QITExOGDx/Oo0eP1Of9/f2ZOnUqw4cP57///sPKyopq1arRvHlzdYyhoSGjR4+mS5cu/Pfff9SuXZtff/31jfdVKBTs3LmTsWPH0qtXL+7du4etrS116tTBxsYGbW1t7t+/T/fu3bl79y5WVla0adMGX19fAFJTUxk8eDC3bt3C1NSUJk2aMG/evAzvVbFiRf744w8mTJjAlClTsLOzY/LkyRqbDgghPh93tuxCz8ocl++9UdpY8TgklNNt+6s3IzAobAevTVU1cnbCokYlTrXsk64+VWoqRq7FqNClFXqW5iQ9iOPR2RBONPma+MtXP0qbhBDic6FQqVSq3E5C5H8rV65k6NChGt9J8znbbZr5FD0hhBBC5E1NHoe+PSiHxE5I/+HJh2I1+c0fOn+KZM6MEEIIIYQQIl+R6WpCCCGEEELkcfl1q+ecIiM54qPo2bOnTFUTQgghhBAfhYzkCCGEEEIIkdfl0++zySnSyRFCCCGEECKPk+lq2SNdQiGEEEIIIUS+IiM5QgghhBBC5HEK+SLxbJFOjhC5QM9CN7dTEEIIIYTIt6STI4QQQgghRF4na3KyRca9hBBCCCGEEPmKjOQIIYQQQgiRxylkC+lskacl3lu9evUYOnToR7+vk5MT8+fP/2D15VY7hBBCCCHEhyUjOUIIIUQmCnXrSJEBPdGztiI+9ApXJvrxJPhChrEV1v+KebXK6cpjD/7D+d5eAFh7NqRQ1/aYlC2FrrkZJ5u2J/5SWI62QQiRP8j35GSPdHKEEEKIDBRs7onLuJGEjZvCo3MhOPT+mvKrl/Fvg69Ivv8gXXzIgO/Q0vvfzom6ZmZU3rWRmJ171WXahgbEnT7H3R17cZs56WM0QwiRX8gW0tkiT0t8EGlpaYwaNQoLCwtsbW2ZNGmS+lxcXBx9+/bF2toaU1NTGjRoQHBwsPr8tWvXaNmyJTY2NhgbG1O5cmX279+vUX9MTAwtWrTAwMCAokWLsnbt2nQ5zJ07l7Jly2JkZISDgwODBg0iPj5eIyYwMJB69ephaGiIubk5np6ePHz4MEvtyEpbhBD5h0Pf7txev5nojdtJuHqdsLFTSHv2DPsOrTKMT3n0mKR799WHee3qpD17TsyOfeqYO1v/JnLhTzwM/PcjtUIIIT5P0skRH8SqVaswMjLixIkTzJo1i8mTJ7Nv34v/sbdv356YmBh27drFmTNnqFixIg0bNuTBgxefhMbHx9O0aVMOHDjAuXPnaNKkCS1atCAqKkpdf8+ePbl58yaHDh1i06ZNLFmyhJiYGI0ctLS0WLhwIRcvXmTVqlUcPHiQUaNGqc8HBQXRsGFDSpUqxfHjxzl69CgtWrQgNTU1S+3ISluEEPmDQlcHkzJuPHi1M6JS8SDwBKYVy2WpDvsOrbn7127Snj3LoSyFEJ8ThZYix478SKFSqVS5nYT4tNWrV4/U1FSOHDmiLqtSpQoNGjSgefPmNGvWjJiYGJRKpfq8s7Mzo0aNon///hnWWaZMGQYOHIiXlxdXrlyhRIkSnDx5ksqVX8x3v3z5Mm5ubsybNy/TzQI2bdrEwIEDiY2NBaBLly5ERUVx9OjRbLdjxowZHD169J3akpGDTu5ZjhVCfHx6Ba2pdfIAp9t8zeOz59Xlxcd8h1m1Spxp1fWN15uUK0Pl7es41bJLhmt49AvbU+PoblmTI8QnpkHk+bcH5ZDHc4fmWN2mw+bnWN25RUZyxAfh7q75pt3Ozo6YmBiCg4OJj4/H0tISY2Nj9REREcG1a9eAFyM5I0aMwM3NDTMzM4yNjQkNDVWP5ISGhqKjo4OHh4e6/pIlS2JmZqZxz/3799OwYUMKFSqEiYkJ3bp14/79+yQkJAD/G8l5l3YAWWpLRhITE3n8+LHGkaRKe2MeQohPm33H1sSHXsl0kwIhhMg2La2cO7Lpxx9/xMnJCX19fapWrcrJkyezdN369etRKBS0atUq2/fMLtl4QHwQurq6Gq8VCgVpaWnEx8djZ2dHQEBAumtedlJGjBjBvn37mD17Ns7OzhgYGNCuXTuSkpKyfP/IyEiaN2/ON998w7Rp07CwsODo0aP06dOHpKQkDA0NMTAweOd2AFlqS0b8/Pzw9fXVKOteoCA9zGze3jAhRK5IfviQtJQU9KwsNcr1rC1Juhf7xmu1DAywad6E6/OW5GSKQgiRKzZs2MCwYcNYtmwZVatWZf78+Xh6ehIWFkbBggUzvS4yMpIRI0ZQu3btj5KnjOSIHFWxYkXu3LmDjo4Ozs7OGoeVlRXwYjOAnj170rp1a8qWLYutrS2RkZHqOkqWLElKSgpnzpxRl4WFhREXF6d+febMGdLS0pgzZw7VqlXD1dWV27dva+Ti7u7OgQMHcrQtGfHx8eHRo0caR+cC1u+chxAi56mSU3hyIRTzGlX/V6hQYF6jKo/PvnmzkYLNGqNQ6nFn6985nKUQ4nOiUChy7MiOuXPn0q9fP3r16kWpUqVYtmwZhoaGrFixItNrUlNT6dq1K76+vhQrVux9H0WWSCdH5KhGjRpRvXp1WrVqxd69e4mMjOTYsWOMHTuW06dPA+Di4sKWLVsICgoiODiYLl26qEdPAEqUKEGTJk0YMGAAJ06c4MyZM/Tt21djZMbZ2Znk5GQWLVrE9evXWbNmDcuWLdPIxcfHh1OnTjFo0CDOnz/P5cuXWbp0qXrNzodoS0aUSiWmpqYah55sAylEnnfzl9XYd26LbduvMCxelBLTxqFtaMDtjdsAcJszjWKjvNNdZ9+hDbF7D5IS9yjdOZ0CphiXKoGR84v/yRsWc8K4VAn0rC3TxQohRF6TlJTEmTNnaNSokbpMS0uLRo0acfz48Uyvmzx5MgULFqRPnz4fI80XeX20O4nPkkKhYOfOndSpU4devXrh6upKp06duHHjBjY2L6ZrzZ07F3Nzc2rUqEGLFi3w9PSkYsWKGvX4+/tjb29P3bp1adOmDf3799cYEi1Xrhxz585l5syZlClThrVr1+Ln56dRh6urK3v37iU4OJgqVapQvXp1tm/fjo5O1mZtZqUtQoj8I+bvPVydNodi3w2iys6NGJcqSXCPb0iOfbGbon4hW5QFNUdlDYs5YValIrc3bM2wTqvG9aiycyPlVr6YylZm8Q9U2bmRQl075GxjhBCfvhxck5PR+uHExMR0KcTGxpKamprufY+NjQ137tzJMO2jR4/y66+/snz58hx5LJmR3dWEyAWyu5oQQgjx6cnN3dXifxz19qB3NPueYbr1wxMnTkz3fYG3b9+mUKFCHDt2jOrVq6vLR40axeHDhzlx4oRG/JMnT3B3d2fJkiV8+eWXwIuvBYmLi2Pbtm050paXZOMBIYQQQgghPmM+Pj4MGzZMo+zVr8t4ycrKCm1tbe7evatRfvfuXWxtbdPFX7t2jcjISFq0aKEue7kkQUdHh7CwMIoXL/4hmpCOdHKEEEIIIYTI63JwPa9SqcywU/M6PT09PDw8OHDggHob6LS0NA4cOICXl1e6+JIlSxISEqJRNm7cOJ48ecKCBQtwcHD4IPlnRDo5QgghhBBCiCwZNmwYPXr0oFKlSlSpUoX58+fz9OlTevXqBUD37t0pVKgQfn5+6OvrU6ZMGY3rX37txuvlH5p0coQQQgghhMjrtLK31XNO6dixI/fu3WPChAncuXOH8uXLs3v3bvVmBFFRUWi9wxeMfmiy8YAQuUA2HhBCCCE+Pbm68cAynxyr23ig39uDPjEykiOEEEIIIUQep5Dv2MsWeVpCCCGEEEKIfEVGcoTIBTrG2rmdghBCCCE+JXlkTc6nQjo5QgghhBBC5HGKPLCY/1MiT0sIIYQQQgiRr8hIjhBCCCGEEHmdQqarZYeM5ORx9erVY+jQoR+svkmTJlG+fPkPVt/HlN3cV65cqf7CqTdRKBRs27btnfMSQgghhBB5S77v5AQEBKBQKIiLi8vtVN7Jli1bmDJlSm6n8dFl1PEYMWIEBw4cyHIdHTt25MqVK+rXmXWSoqOj+fLLL981VSFEPmbXqQNV9uyg1pl/Kb9uNSZlSr8xXtvEGOexY6h6aC+1zp6g0t/bMK9d63/nDQ0pNnoEVfbupObp45T7bSXGZUrldDOEEPmBllbOHfmQTFf7f0lJSejp6eXKvZOTk9HV1c0wHwsLi1zJ6U0yyvdjMDY2xtjYOMvxBgYGGBgYvDXO1tb2fdISQuRT1k2+oPio4YRPnsaT8xco1K0LZX5awukWrUh+8DBdvEJHB/fly0h68IDQYSNJvBuDvr09KU+eqGNcJk/AyNmZMJ9xJMbcw6ZFU9yXL+N0y7Ykxdz7mM0TQoh87ZPouqWlpeHn50fRokUxMDCgXLlybNq0CZVKRaNGjfD09ESlUgHw4MEDChcuzIQJE4iMjKR+/foAmJubo1Ao6NmzJ/BiGpiXlxdDhw7FysoKT09PAObOnUvZsmUxMjLCwcGBQYMGER8fr5FPYGAg9erVw9DQEHNzczw9PXn48MX/8JycnJg/f75GfPny5Zk0aZL6tUKhYOnSpXz11VcYGRkxbdo09SjDL7/8QtGiRdHX11fn+ep0tcTEREaPHo2DgwNKpRJnZ2d+/fVXIOPpWdu2bUPxhjmcp06donHjxlhZWVGgQAHq1q3L2bNnNWIyyvdNUlNT6dOnj/rnVaJECRYsWJAubsWKFZQuXRqlUomdnR1eXl7qZwjQunVrFAqF+vWrIzF79+5FX18/3Qjdt99+S4MGDdI9j5UrV+Lr60twcDAKhQKFQsHKlSvV7Xt11OjmzZt06NABMzMzLCwsaNmyJZGRkerzAQEBVKlSBSMjI8zMzKhZsyY3btx44zMRQnx6CnX/muhNW7i77U8Srl8nfPI00p4/x7Z1qwzjbdu0QqeAKZe8h/H4XDCJt6N5dPoMT8NejChrKZVYN2pIxNz5PDpzluc3b3JjyU88i7qJfcf2H7FlQohPkkKRc0c+9El0cvz8/Fi9ejXLli3j4sWLfPfdd3z99df8888/rFq1ilOnTrFw4UIABg4cSKFChZgwYQIODg5s3rwZgLCwMKKjozXebK9atQo9PT0CAwNZtmwZAFpaWixcuJCLFy+yatUqDh48yKhRo9TXBAUF0bBhQ0qVKsXx48c5evQoLVq0IDU1NVttmjRpEq1btyYkJITevXsDcPXqVTZv3syWLVsICgrK8Lru3bvz+++/s3DhQkJDQ/npp5+yNbrxuidPntCjRw+OHj3Kv//+i4uLC02bNuXJK588ZpZvZtLS0ihcuDAbN27k0qVLTJgwge+//54//vhDHbN06VIGDx5M//79CQkJ4c8//8TZ2Rl40fEC8Pf3Jzo6Wv36VQ0bNsTMzEz984UXnasNGzbQtWvXdPEdO3Zk+PDhlC5dmujoaKKjo+nYsWO6uOTkZDw9PTExMeHIkSMEBgZibGxMkyZNSEpKIiUlhVatWlG3bl3Onz/P8ePH6d+//xs7kkKIT49CRweTUm7E/Xvif4UqFXH/nsCknHuG11jWq8vj4PM4jx1DtcP78di6EYd+vdVTQRTa2ih0dEhLTNK4Li0xEdOKFXKsLUII8TnK89PVEhMTmT59Ovv376d69eoAFCtWjKNHj/LTTz+xbt06fvrpJ7p3786dO3fYuXMn586dQ0fnRdNeTvcqWLBgulEOFxcXZs2apVH26qiJk5MTU6dOZeDAgSxZsgSAWbNmUalSJfVrgNKl3zxHOyNdunShV69eGmVJSUmsXr0aa2vrDK+5cuUKf/zxB/v27aNRo0bqZ/E+Xo56vPTzzz9jZmbG4cOHad68+RvzzYyuri6+vr7q10WLFuX48eP88ccfdOjQAYCpU6cyfPhwvv32W3Vc5cqVAdTtNzMzy3Qqmba2Np06dWLdunX06dMHgAMHDhAXF0fbtm3TxRsYGGBsbIyOjs4bp6dt2LCBtLQ0fvnlF3XHxd/fHzMzMwICAqhUqRKPHj2iefPmFC9eHAA3N7csPRchxKdD19wchY4OSfcfaJQn3b9PgaJOGV6jX7gQZoUqE7NjFxe+GYJBEQecx/mg0NEhaunPpCYk8CgomCID+5FwPYKk+/cp2LQJpuXceRZ18yO0SgjxKZPvycmePN/JuXr1KgkJCTRu3FijPCkpiQoVXnzy1b59e7Zu3cqMGTNYunQpLi4uWarbw8MjXdn+/fvx8/Pj8uXLPH78mJSUFJ4/f05CQgKGhoYEBQXRvv37TyuoVKlSujJHR8dMOzjwYhRJW1ubunXrvvf9X7p79y7jxo0jICCAmJgYUlNTSUhIICoq6q35vsmPP/7IihUriIqK4tmzZyQlJamnmsXExHD79m0aNmz4Xrl37dqVatWqcfv2bezt7Vm7di3NmjXL0o5qmQkODubq1auYmJholD9//pxr167xxRdf0LNnTzw9PWncuDGNGjWiQ4cO2NnZZVpnYmIiiYmJGmVJaWnoyT9WQuQvWlokPXjAlUlTIC2N+Euh6BUsSOFe3Yla+jMAYT7jcJ08iWqH9qJKSeFJ6GVidu3GpJR8WCKEeAuFvG/Ijjz/tF6uh9mxYwdBQUHq49KlS2zatAmAhIQEzpw5g7a2NuHh4Vmu28jISON1ZGQkzZs3x93dnc2bN3PmzBl+/PFH4EWnCnjrQnYtLS31+qCXkpOT33rvzMpe9aHu/aoePXoQFBTEggULOHbsGEFBQVhaWqrbm9XcXrV+/XpGjBhBnz592Lt3L0FBQfTq1SvLzzCrKleuTPHixVm/fj3Pnj1j69atGU5Vy474+Hg8PDw0fteCgoK4cuUKXbp0AV6M7Bw/fpwaNWqwYcMGXF1d+ffffzOt08/PjwIFCmgca2PvvleeQoiclfzwIaqUFPQsNTd/0bO0JCn2fobXJN2L5VlkFKSlqcsSrkegtLZG8f+zC57fvMX5Xn05Wrk6Jxp9SVDnbih0dHh267+ca4wQQnyG8nwnp1SpUiiVSqKionB2dtY4HBwcABg+fDhaWlrs2rWLhQsXcvDgQfX1L3dMy8qamTNnzpCWlsacOXOoVq0arq6u3L59WyPG3d39jdsYW1tbEx0drX79+PFjIiIistXmzJQtW5a0tDQOHz6c6b2fPHnC06dP1WWZre15KTAwEG9vb5o2bareBCA2Nva98gwMDKRGjRoMGjSIChUq4OzszLVr19TnTUxMcHJyeuNz1NXVzdLPrGvXrqxdu5a//voLLS0tmjVrlmmsnp7eW+usWLEi4eHhFCxYMN3vW4ECBdRxFSpUwMfHh2PHjlGmTBnWrVuXaZ0+Pj48evRI4+hqZfPWtgkhco8qJYUnl0Ixq1r1f4UKBWZVq/Ak+HyG1zwOCsKgiIPGIl4DpyIkxtxDlZKiEZv27DlJsbHomJpgUaMG9w8G5EQzhBD5iZYi5458KM93ckxMTBgxYgTfffcdq1at4tq1a5w9e5ZFixaxatUqduzYwYoVK1i7di2NGzdm5MiR9OjRQ73bmaOjIwqFgr///pt79+6l2yntVc7OziQnJ7No0SKuX7/OmjVr1BsSvOTj48OpU6cYNGgQ58+f5/LlyyxdulTdMWjQoAFr1qzhyJEjhISE0KNHD7S1tT/Is3BycqJHjx707t2bbdu2ERERQUBAgHpBf9WqVTE0NOT777/n2rVrrFu3Tr2DWGZcXFxYs2YNoaGhnDhxgq5du773SIuLiwunT59mz549XLlyhfHjx6fbPGDSpEnMmTOHhQsXEh4erv6ZvtrWAwcOcOfOHfXPMiNdu3bl7NmzTJs2jXbt2qFUKjONdXJyIiIigqCgIGJjY9NNIXtZn5WVFS1btuTIkSPqZ+zt7c2tW7eIiIjAx8eH48ePc+PGDfbu3Ut4ePgb1+UolUpMTU01DpmqJkTe99/q37Br1xqbr1pgUKwoLuO/R8vAgDvbtgNQYvoUnIYOUcdHb9iITgFTio8ZhYFjESzq1KJIvz7cXr9BHWNeozrmNWugX8ges+pVcV+xnISICO5u+/Ojt08IIfKzT+Kd1pQpUxg/fjx+fn64ubnRpEkTduzYgZOTE3369GHSpElUrFgRAF9fX2xsbBg4cCAAhQoVwtfXlzFjxmBjY6Pepjgj5cqVY+7cucycOZMyZcqwdu1a/Pz8NGJcXV3Zu3cvwcHBVKlSherVq7N9+3b1Rgc+Pj7UrVuX5s2b06xZM1q1aqVeoP4hLF26lHbt2jFo0CBKlixJv3791CM3FhYW/Pbbb+zcuZOyZcvy+++/a2xdnZFff/2Vhw8fUrFiRbp164a3tzcFCxZ8rxwHDBhAmzZt6NixI1WrVuX+/fsMGjRII6ZHjx7Mnz+fJUuWULp0aZo3b64x1XDOnDns27cPBwcH9dqrjDg7O1OlShXOnz//1qlqbdu2pUmTJtSvXx9ra2t+//33dDGGhob8888/FClShDZt2uDm5kafPn14/vw5pqamGBoacvnyZdq2bYurqyv9+/dn8ODBDBgwIJtPSQiR193bvZfrs+fh6PUNHpvWY1SyBBcGDib5/zcjUNrZomdlpY5PvHOXkAGDMSlTCo8tf1DcZxT//baOm7/4q2O0TYxxHjeGSn9tpcT0KTw6e46QAYPTjfQIIcTrFAqtHDvyI4Xq9UUcQogc908Z2S5WCCGE+NTUuXAu1+79/PeZOVa3fufROVZ3bsnzu6sJIYQQQgjx2cuna2dySv4cnxI5auDAgRgbG2d4vJwmKIQQQgghRG6RkRyRbZMnT2bEiBEZnjM1Nf3I2QghhBBCfAby6dqZnCKdHJFtBQsWfO/NCYQQQgghRDYoZLpadkiXUAghhBBCCJGvyEiOEEIIIYQQeZ18x162yNMSQgghhBBC5CsykiNELtDSlnm1QgghhMgG2XggW+RpCSGEEEIIIfIVGckRQgghhBAir5MvA80WGckRQgghhBBC5CsykiOEEEIIIUReJ2tyskU6OUIIIUQm7Dp2oFCP7uhZWfL0yhWuzZhF/IWLmcZrmxjj6OWFVcP66BQoQGJ0NNdnzebh0cAX5w0NKTJ4EJYN6qNrYc7Ty2Fcn/UD8RcvfawmCSHEZ0E6OeK9JCUloaen90HrVKlUpKamoqOTd34982JOQoicZeX5BUVHDOPq1Ok8CQmhUNeulFn6I2datib5wcN08QodHcosW0rygweEjhhFUkwMSjs7Up88Ucc4T5qAoXNxrowdT9K9exRs1pQyPy3lbJt2JMXc+5jNE0J8ahSyJic7ZNwrH6lXrx5eXl54eXlRoEABrKysGD9+PCqVCoDExERGjBhBoUKFMDIyomrVqgQEBGjUcfToUWrXro2BgQEODg54e3vz9OlT9XknJyemTJlC9+7dMTU1pX///m/MKTIyEoVCwfr166lRowb6+vqUKVOGw4cPq2MCAgJQKBTs2rULDw8PlEolR48eJS0tDT8/P4oWLYqBgQHlypVj06ZN6usePnxI165dsba2xsDAABcXF/z9/YEXnS8vLy/s7OzQ19fH0dERPz8/jZyCgoLUdcXFxaFQKNTP411zEkLkH4W6deXOlq3EbP+TZ9cjuDp1GqnPn2PTqmWG8TatW6JTwJTQ74bzJCiYxNvRPD5zlqdXwgHQUiqxatiAyHkLeHz2LM9v3iRq2U88v3kL2/btP2bThBCfIi2tnDvyofzZqs/YqlWr0NHR4eTJkyxYsIC5c+fyyy+/AODl5cXx48dZv34958+fp3379jRp0oTw8Bf/A7527RpNmjShbdu2nD9/ng0bNnD06FG8vLw07jF79mzKlSvHuXPnGD9+fJbyGjlyJMOHD+fcuXNUr16dFi1acP/+fY2YMWPGMGPGDEJDQ3F3d8fPz4/Vq1ezbNkyLl68yHfffcfXX3+t7iCNHz+eS5cusWvXLkJDQ1m6dClWVlYALFy4kD///JM//viDsLAw1q5di5OTU7afZ3ZzEkLkDwodHYzd3Ij798T/ClUq4v49gYm7e4bXWNSty5PzIRT3GUOVg/uosPkPCvfprX4DodDWRqGjQ1piksZ1qYnPKVChfE41RQghPksy9yafcXBwYN68eSgUCkqUKEFISAjz5s3D09MTf39/oqKisLe3B2DEiBHs3r0bf39/pk+fjp+fH127dmXo0KEAuLi4sHDhQurWrcvSpUvR19cHoEGDBgwfPjxbeXl5edG2bVsAli5dyu7du/n1118ZNWqUOmby5Mk0btwYeDHqNH36dPbv30/16tUBKFasGEePHuWnn36ibt26REVFUaFCBSpVqgSg0YmJiorCxcWFWrVqoVAocHR0zP7DfIechBD5g665GQodHZLvP9AoT77/AMOiThleo1+4EPr2lYnZuYuLg70xKOJA8e/HoNDR4eZPP5OakMDjoGCK9O9LWMR1ku4/wPrLJpi6u/Ps5s2P0CohxCdNpqtli3Ry8plq1aqheOWPoHr16syZM4eQkBBSU1NxdXXViE9MTMTS0hKA4OBgzp8/z9q1a9XnVSoVaWlpRERE4ObmBqDuVGTHy04BgI6ODpUqVSI0NFQj5tV6r169SkJCgrqD8VJSUhIVKlQA4JtvvqFt27acPXuWL774glatWlGjRg0AevbsSePGjSlRogRNmjShefPmfPHFF9nOO7s5ZSQxMZHExETNa9LS0Munw8NCfK4UWlokPXjA1clTIS2Np6Gh6BW0pnCP7tz86WcArowdj4vvRKrs34sqJYX4y5e5t3sPxv//76sQQogPQzo5n4n4+Hi0tbU5c+YM2traGueMjY3VMQMGDMDb2zvd9UWKFFH/t5GRUY7k+Gq98fHxAOzYsYNChQppxCmVSgC+/PJLbty4wc6dO9m3bx8NGzZk8ODBzJ49m4oVKxIREcGuXbvYv38/HTp0oFGjRmzatAmt/+9cvFyrBJCcnPxBcsqIn58fvr6+GmW9CtrS29Yu02uEELkr+WEcqpQUdC0tNMp1LS1Iir2f4TVJ92JRpaRAWpq67Nn1CPSsrVHo6KBKSeH5rVuE9OmHloE+2kbGJMfGUmLWDJ7fupWj7RFC5AOyhXS2SCcnnzlx4oTG63///RcXFxcqVKhAamoqMTEx1K5dO8NrK1asyKVLl3B2dv7gef3777/UqVMHgJSUFM6cOZNurc+rSpUqhVKpJCoq6o3TwKytrenRowc9evSgdu3ajBw5ktmzZwNgampKx44d6dixI+3ataNJkyY8ePAAa2trAKKjo9UjMK9uQvC+Ob3Ox8eHYcOGaZSdrlkny9cLIT4+VUoK8aGhmFWtwoNDAS8KFQrMqlYhev2GDK95HBSM9ZdNXkwp+f8PUQwcHUmMufei8/OKtGfPSXv2HG0TE8yrVydi/oKcbI4QQnx2pJOTz0RFRTFs2DAGDBjA2bNnWbRoEXPmzMHV1ZWuXbvSvXt35syZQ4UKFbh37x4HDhzA3d2dZs2aMXr0aKpVq4aXlxd9+/bFyMiIS5cusW/fPhYvXvxeef3444+4uLjg5ubGvHnzePjwIb1798403sTEhBEjRvDdd9+RlpZGrVq1ePToEYGBgZiamtKjRw8mTJiAh4cHpUuXJjExkb///ls9pW7u3LnY2dlRoUIFtLS02LhxI7a2tpiZmaGlpUW1atWYMWMGRYsWJSYmhnHjxr21DVnJKSNKpTLdSI9MVRMi7/tvzVpcp/gSf/ESTy5cxP7rLmgbGHB3258AuE6dTGJMDDcWvvj3MfqPjdh16kCx0SO5/ft6DIoUoXDf3txet15dp1mN6oCCZzciMXBwwOm7oSRERhKz/c/caKIQ4lMi7x2yRTo5+Uz37t159uwZVapUQVtbm2+//Va9zbO/vz9Tp05l+PDh/Pfff1hZWVGtWjWaN28OgLu7O4cPH2bs2LHUrl0blUpF8eLF6dix43vnNWPGDGbMmEFQUBDOzs78+eef6p3QMjNlyhSsra3x8/Pj+vXrmJmZUbFiRb7//nsA9PT08PHxITIyEgMDA2rXrs369S/eTJiYmDBr1izCw8PR1tamcuXK7Ny5Uz1VbcWKFfTp0wcPDw9KlCjBrFmzsrRm5205CSHyj9g9e9E1N6fIoG9efBloWBgXBnmR/ODFZgRKW1tUr0xNS7p7l4vfeFF05HAqbtxAYkwMt9f+zi3/leoYHWNjHL29UNrYkPLoEbEHDnJj0Y/pRnqEEEK8H4Xq1YUJ4pNWr149ypcvz/z583M7FbXIyEiKFi3KuXPnKF++fG6nk2ccLVcxt1MQQgghRDbVCj6ba/d+vufXHKtb37NPjtWdW2QkRwghhBBCiLxONh7IFnla4r1Mnz4dY2PjDI8vv/wyt9MTQgghhBCfIRnJyUcCAgI++j0HDhxIhw4dMjxnYGBAoUKFkBmRQgghhBDvSb4MNFukkyPei4WFBRYWFm8PFEIIIYQQ4iORTo4QQgghhBB5nWwhnS3ytIQQQgghhBD5iozkCCGEEEIIkcepZE1OtkgnR4hcoGuom9spCCGEEELkW9LJEUIIIYQQIq+T78nJFunkCCGEEEIIkddJJydb5GkJIYQQQgghsuzHH3/EyckJfX19qlatysmTJzONXb58ObVr18bc3Bxzc3MaNWr0xvgPRTo5QgghhBBC5HEqhSLHjuzYsGEDw4YNY+LEiZw9e5Zy5crh6elJTExMhvEBAQF07tyZQ4cOcfz4cRwcHPjiiy/477//PsRjyZR0ckSOmjRpEuXLl/8o91IoFGzbtu2j3OslJycn5s+f/1HvKYQQQgiRW+bOnUu/fv3o1asXpUqVYtmyZRgaGrJixYoM49euXcugQYMoX748JUuW5JdffiEtLY0DBw7kaJ6yJkfkqBEjRjBkyJDcTkMIId6JTdt22HXtiq6FJQlXw4mcO4enly5lGq9tbIzDwG8wr1sPHVNTEu/c4cb8eTw6fkwdo2ttTZFBgylQvQba+kqe37rF9alTeHr58sdokhDiU5WDa3ISExNJTEzUKFMqlSiVSo2ypKQkzpw5g4+Pj7pMS0uLRo0acfz48SzdKyEhgeTkZCwsLN4/8TeQkRyRo4yNjbG0tMztNIQQItssGjaiiPe33Pr1Vy707EFC+FVKzluAjrl5hvEKHR1KLliEnq0d4WN9CO7YgYgZ00m+d08do21iQumffkaVkkrYsKGc79yJqIULSXny5GM1Swgh0vHz86NAgQIah5+fX7q42NhYUlNTsbGx0Si3sbHhzp07WbrX6NGjsbe3p1GjRh8k98xIJ0e8Ub169fD29mbUqFFYWFhga2vLpEmT1OejoqJo2bIlxsbGmJqa0qFDB+7evas+//p0tYCAAKpUqYKRkRFmZmbUrFmTGzduqM9v376dihUroq+vT7FixfD19SUlJeWdcr958yYdOnTAzMwMCwsLWrZsSWRkJAB79+5FX1+fuLg4jWu+/fZbGjRooH599OhRateujYGBAQ4ODnh7e/P06dN3ykcI8Wmx69yZmD+3E7vjb55FRhAxawZpic+xbt4iw3jrFi3QMTUlfPRI4s+fJ+lONE/OnSPharg6xv7rbiTejeH6tCk8vXSJxOhoHp08QWIOz00XQuQDCkWOHT4+Pjx69EjjeHW05kOZMWMG69evZ+vWrejr63/w+l8lnRzxVqtWrcLIyIgTJ04wa9YsJk+ezL59+0hLS6Nly5Y8ePCAw4cPs2/fPq5fv07Hjh0zrCclJYVWrVpRt25dzp8/z/Hjx+nfvz+K/1/wduTIEbp37863337LpUuX+Omnn1i5ciXTpk3Lds7Jycl4enpiYmLCkSNHCAwMxNjYmCZNmpCUlETDhg0xMzNj8+bN6mtSU1PZsGEDXbt2BeDatWs0adKEtm3bcv78eTZs2MDRo0fx8vJ6h6cohPiUKHR0MCpRksenXtkBSKXi0alTmJQpm+E15rXqEH8hBKcRo6i4Yxdlf1uHfY8eoPW//9Wa167D08uhOE+bTsUduyizajXWX7XM6eYIIcQbKZVKTE1NNY7Xp6oBWFlZoa2trfGBNsDdu3extbV94z1mz57NjBkz2Lt3L+7u7h80/4zImhzxVu7u7kycOBEAFxcXFi9erF4sFhISQkREBA4ODgCsXr2a0qVLc+rUKSpXrqxRz+PHj3n06BHNmzenePHiALi5uanP+/r6MmbMGHr06AFAsWLFmDJlCqNGjVLfP6s2bNhAWloav/zyi7oT5e/vj5mZGQEBAXzxxRd06tSJdevW0adPHwAOHDhAXFwcbdu2BV4M3Xbt2pWhQ4eq275w4ULq1q3L0qVLs/wJREbzXJPS0tDTks8YhMirdMzMUOjokPzggUZ58oMHGDg6ZniNspA9ph4exO7dw+Vh36FfuDBOI0eh0NbhvxW/voixt8emdRui1//O7VUrMXIrhdOwYahSkonduTPH2yWE+ITlgfcNenp6eHh4cODAAVq1agWg3kTgTR8Cz5o1i2nTprFnzx4qVar0UXKVTo54q9d723Z2dsTExBAaGoqDg4O6gwNQqlQpzMzMCA0NTdfJsbCwoGfPnnh6etK4cWMaNWpEhw4dsLOzAyA4OJjAwECNkZvU1FSeP39OQkIChoaGWc45ODiYq1evYmJiolH+/Plzrl27BkDXrl2pVq0at2/fxt7enrVr19KsWTPMzMzUdZw/f561a9eqr1epVKSlpREREaHRQXsTPz8/fH19Ncr6FLKnn0PhLLdHCPEJUGiR/PAhETP8IC2NhLDL6FlbY9f1a3UnBy0tnl4O5daypQAkXLmCYbFiFGzVRjo5Qog3yu5Wzzll2LBh9OjRg0qVKlGlShXmz5/P06dP6dWrFwDdu3enUKFC6jU9M2fOZMKECaxbtw4nJyf12h1jY2OMjY1zLE/p5Ii30tXV1XitUChIS0t7p7r8/f3x9vZm9+7dbNiwgXHjxrFv3z6qVatGfHw8vr6+tGnTJt112Z23GR8fj4eHh0YH5SVra2sAKleuTPHixVm/fj3ffPMNW7duZeXKlRp1DBgwAG9v73R1FClSJMu5+Pj4MGzYMI2y4MYNs3y9EOLjS4mLQ5WSgu5ru//oWliQfP9Bhtck349FlZICr/z7+CwyEj0rKxQ6OqhSUkiOjeVZRITGdc8iI7GoX//DN0IIIXJAx44duXfvHhMmTODOnTuUL1+e3bt3qzcjiIqKQuuVUaelS5eSlJREu3btNOqZOHGixjrvD006OeKdubm5cfPmTW7evKkezbl06RJxcXGUKlUq0+sqVKhAhQoV8PHxoXr16qxbt45q1apRsWJFwsLCcHZ2fu/cKlasyIYNGyhYsCCmpqaZxnXt2pW1a9dSuHBhtLS0aNasmUYdly5deu98MtqCUaaqCZG3qVJSeBp2GdNKlXn4zz8vChUKClSqzJ1NGzO85sn581h98cWLhbwqFQD6RYqQdO/ei84P8CTkPPpFNKe76RcpQmIWdyUSQnzGcnAL6ezy8vLKdHpaQECAxuuXmz59bHnnaYlPTqNGjShbtixdu3bl7NmznDx5ku7du1O3bt0M51tGRETg4+PD8ePHuXHjBnv37iU8PFw97WvChAmsXr0aX19fLl68SGhoKOvXr2fcuHHZzq1r165YWVnRsmVLjhw5QkREBAEBAXh7e3Pr1i2NuLNnzzJt2jTatWun0RkZPXo0x44dw8vLi6CgIMLDw9m+fbtsPCDEZyL6998p+FVLrJo2Rd/RCadRo9HS1+fe338DUGzCRBy+GaSOj9myGR3TAjh+Nwx9BwfMatSkUI+e3N28SR1zZ/3vGJcpg32PHigLF8byiy8o2LIVdzdtSnd/IYQQ705GcsQ7UygUbN++nSFDhlCnTh20tLRo0qQJixYtyjDe0NCQy5cvs2rVKu7fv4+dnR2DBw9mwIABAHh6evL3338zefJkZs6cia6uLiVLlqRv377Zzs3Q0JB//vmH0aNH06ZNG548eUKhQoVo2LChxsiOs7MzVapU4eTJk8yfP1+jDnd3dw4fPszYsWOpXbs2KpWK4sWLZ7p7nBAif3lwYD+65mYU7tsfXUtLEsKvcPm7oaQ8fDFdTWljozE1LSkmhstDvXH89jsKrllL0r173PljPbfXrFHHPA0NJXzMKBy+GUShXn1IjL7NjfnzuL93z0dvnxDi06LKQyM5nwKFSvX/Y+pCiI/mRPWquZ2CEEIIIbKp6vETuXbv+H//zLG6jat9lWN15xYZyRFCCCGEECKvyyO7q30qZNxLfBLWrl2r3mrw9aN06dK5nZ4QQgghhMhDZCRHfBK++uorqlbNeIrX61tcCyGEEELkN7ImJ3ukkyM+CSYmJum+2FMIIYQQ4rMh09WyRbqEQgghhBBCiHxFRnKEEEIIIYTI62S6WrZIJ0eIXKCjL396QgghhBA5Rd5pCSGEEEIIkcepZE1Otsi4lxBCCCGEECJfkZEcIYQQQggh8jpZk5Mt8rSEEEIIIYQQ+Yp0cvIwJycn5s+fn6VYhULBtm3bcjSfyMhIFAoFQUFBb4yrV68eQ4cOfef7vK0tAQEBKBQK4uLi3vkeQgghhBCfEhWKHDvyI5mu9hEoFAq2bt1Kq1atcjuVDyogIID69evz8OFDzMzMPtp9a9SoQXR0NAUKFHhrbG7lKITIH6xbtcGmYxd0LSx4du0qUQvnkXA5NNN4bSNj7Pv2x7x2XbRNTEm6e4ebPy7k8YnjANj16I19zz4a1zyPusHFHl1ytB1CiE+fSqarZYt0csQnR09PD1tb2496T5VKRWpqKjo68icjxOfCvH5DCn8zhKh5P/A09BIF23XAZdZcLnbvTEoGI8kKHR1cZs8nJe4h1yaNI/nePfRsbUmNj9eIexZxnSvDv1W/VqWm5nRThBDis/NZdQnr1avHkCFDGDp0KObm5tjY2LB8+XKePn1Kr169MDExwdnZmV27dqmvuXDhAl9++SXGxsbY2NjQrVs3YmNjNer09vZm1KhRWFhYYGtry6RJk9TnnZycAGjdujUKhUL9+tq1a7Rs2RIbGxuMjY2pXLky+/fvf6/2xcbG0rp1awwNDXFxceHPP//UOP+2tuzevZtatWphZmaGpaUlzZs359q1axneKzIykvr16wNgbm6OQqGgZ8+e6vNpaWmZPpP3bcvr09Vu3LhBixYtMDc3x8jIiNKlS7Nz58435piYmIi3tzcFCxZEX1+fWrVqcerUqXT32LVrFx4eHiiVSn777Te0tLQ4ffq0Rq7z58/H0dGRtLS0bLVRCJG32bTvSOyOv7i/eyfPb0QSNfcH0p4nYvll8wzjLb9sjo6JKVfHjeHphRCS7t4hPjiIZ9euasSpUlNJefhAfaQ+fvQxmiOE+NQptHLuyIfyZ6veYNWqVVhZWXHy5EmGDBnCN998Q/v27alRowZnz57liy++oFu3biQkJBAXF0eDBg2oUKECp0+fZvfu3dy9e5cOHTqkq9PIyIgTJ04wa9YsJk+ezL59+wDUb5z9/f2Jjo5Wv46Pj6dp06YcOHCAc+fO0aRJE1q0aEFUVNQ7t83X15cOHTpw/vx5mjZtSteuXXnw4AFAltry9OlThg0bxunTpzlw4ABaWlq0bt06wzfvDg4ObN68GYCwsDCio6NZsGBBlp7J+7bldYMHDyYxMZF//vmHkJAQZs6cibGx8RtzHDVqFJs3b2bVqlWcPXsWZ2dnPD09091jzJgxzJgxg9DQUL766isaNWqEv7+/Roy/vz89e/ZES+uz+3MSIt9S6Ohg6FqCx2f+9+EHKhVPzp7GuHSZDK8xq1GL+EsXKDJ0OO6b/6LUijXYdu0Or/3boCxUmLIbt1Nm7R84jZ2IbkGbnGyKEEJ8lhQqlUqV20l8LPXq1SM1NZUjR44AkJqaSoECBWjTpg2rV68G4M6dO9jZ2XH8+HH279/PkSNH2LNnj7qOW7du4eDgQFhYGK6urunqBKhSpQoNGjRgxowZQNbX5JQpU4aBAwfi5eUFvBgFGjp0aJYW8SsUCsaNG8eUKVOAFx0WY2Njdu3aRZMmTZg6depb2/K62NhYrK2tCQkJoUyZMkRGRlK0aFHOnTtH+fLlM13vkpVn8j5tef2+7u7utG3blokTJ6arK6Mcnz59irm5OStXrqRLlxfz4JOTk9XPe+TIkerrtm3bRsuWLdX1/fHHHwwcOJDo6GiUSiVnz56lUqVKXL9+XT1K97rExEQSExM1yi628ERPOkVC5Fm6lla4b9rO5cH9eXrporq80IBBmJQrz+VB/dNdU3rVOvRsbXmwfy/3tm9FWagwRb4dTsyWjUSvfvHhiGmVamgZGJB4MwpdS0vsuvdG18qaS727kfYs4aO1TwjxbjwOBebavR8GH86xus3L1c2xunPLZ/cuy93dXf3f2traWFpaUrZsWXWZjc2LT9RiYmIIDg7m0KFDGBsbq4+SJUsCaEzjerVOADs7O2JiYt6YR3x8PCNGjMDNzQ0zMzOMjY0JDQ19r5GcV/MwMjLC1NRUnUdW2hIeHk7nzp0pVqwYpqam6jft75LTuzyTrLbldd7e3kydOpWaNWsyceJEzp8//8a6r127RnJyMjVr1lSX6erqUqVKFUJDNRcUV6pUSeN1q1at0NbWZuvWrQCsXLmS+vXrZ9rBAfDz86NAgQIah/+NW2/MUQjxCVIoSHn4kBtzZpFwJYyHhw4QvXYV1l+1Uoc8PvkvcYcP8ez6NR6fOsnVMSPQMTbGvH6D3MtbCCHyoc9uFbWurq7Ga4VCoVGmULzYRi8tLY34+HhatGjBzJkz09VjZ2f3xjrftj5jxIgR7Nu3j9mzZ+Ps7IyBgQHt2rUjKSkp223KSh5ZaUuLFi1wdHRk+fLl2Nvbk5aWRpkyZd4pp3d5Ju96fd++ffH09GTHjh3s3bsXPz8/5syZw5AhQ7Kd9+uMjIw0Xuvp6dG9e3f8/f1p06YN69at05imlxEfHx+GDRumUXaxhed75yaEyDkpj+JQpaagY26hUa5rbkFyJlNnkx/cR5WSAq/8W/X8xg10La1Q6Oi8OPea1KfxPL91E6V94Q/bACFEviO7q2XPZ9fJyY6KFSuyefNmnJyc3mtXLV1dXVJf2z0nMDCQnj170rp1a+BFJyQyMvJ90n2jt7Xl/v37hIWFsXz5cmrXrg3A0aNH31innp4eQLq25QYHBwcGDhzIwIED8fHxYfny5QwZMiTDHIsXL46enh6BgYE4OjoCL6arnTp1KktTA/v27UuZMmVYsmQJKSkptGnT5o3xSqUSpVKpUSZT1YTI21QpKSRcCcO0YiUeBf7/1FuFApOKHsRs3ZzhNfEXQrBo2BgUCvj/meD6Dg4kxcZm2MEB0NI3QGlfiOR9u3OkHUII8bmSd1pvMHjwYB48eEDnzp05deoU165dY8+ePfTq1Stbb+ydnJw4cOAAd+7c4eHDhwC4uLiwZcsWgoKCCA4OpkuXLjm6O9fb2mJubo6lpSU///wzV69e5eDBg+lGH17n6OiIQqHg77//5t69e8S/tk3qxzJ06FD27NlDREQEZ8+e5dChQ7i5uWWao5GREd988w0jR45k9+7dXLp0iX79+pGQkECfPn3ecjdwc3OjWrVqjB49ms6dO2NgYJDTTRRC5IK7Gzdg1bwFFp5fol/EkSLfjUBLX5/7u3cA4OQzDvu+A9Xx97ZvRcfEFAevoSgLO2BarTq2Xbpzb9v/OkWFBg7GuFx59GxsMSpdhuJT/FClpfLwwPvtrimE+AwoFDl35EPSyXkDe3t7AgMDSU1N5YsvvqBs2bIMHToUMzOzbO2kNWfOHPbt24eDgwMVKlQAYO7cuZibm1OjRg1atGiBp6cnFStWzKmmvLUtWlparF+/njNnzlCmTBm+++47fvjhhzfWWahQIXx9fRkzZgw2NjbqDRM+ttTUVAYPHoybmxtNmjTB1dWVJUuWvDHHGTNm0LZtW7p160bFihW5evUqe/bswdzcPEv37NOnD0lJSfTu3TvH2iWEyF0PDx3g1tIfse/ZF7flKzF0diF89HBS/v/DKr2CNuhaWqrjk+/FED7qOwxLulHq11UU8fqOmC0bufP7b+oYPeuCFB3nS+nVv1Ns4hRSHj/i8uABpDyK+9jNE0J8YlQKrRw78qPPanc1IT6UKVOmsHHjxrducpCZM/Vrvj1ICCGEEHlKbu6udv/CsRyr27JMjRyrO7fImhwhsuHl2qnFixczderU3E5HCCGEEJ8JFflzWllOyZ/jU/nM2rVrNbZ+fvUoXbp0bqeXLZ96W7y8vPDw8KBevXoyVU0IIYQQIo+S6WqfgCdPnnD37t0Mz+nq6qp3CPsU5Ke2vA+ZriaEEEJ8enJzutq9iydyrG7r0lVzrO7cItPVPgEmJiaYmJjkdhofRH5qixBCCCGEyJukkyOEEEIIIURel0+3es4psiZHCCGEEEIIka/ISI4QuUBbVz5fEEIIIUTWqWRsIlukkyOEEEIIIUQep5LpatkiXUIhhBBCCCFEviIjOUIIIYQQQuRxKoWMTWSHPC0hhBBCCCFEviKdHJFnrFy5EjMzsw9SV0BAAAqFgri4uA9SX27fRwghhBCfNxWKHDvyI5muJt5Lz549iYuLY9u2bbmdihBCfHBWLVpTsH1ndCwseHb9Gv/9OJ+EsNBM47WNjLHt1Q+zmnXRNjEhKeYu/y1dyJNT/wJg2bwVVs1boWdjC8DzGxHcWbuSJ6dy7pvMhRDicySdHCGEECIDZnUbYD/Ai1sL5/D08iWs27Sn2PQ5XO7ThZQMRm8VOjoUnzGX5Lg4IqeMJ/n+PXQL2pL69Ik6Jjk2htu/LiPxv1soFArMGzeh6CQ/rgzqzfMbkR+vcUKIT46syckeeVoiSzZt2kTZsmUxMDDA0tKSRo0aMXLkSFatWsX27dtRKBQoFAoCAgIynMIVFBSEQqEgMjJSXbZy5UqKFCmCoaEhrVu35v79++pzkZGRaGlpcfr0aY085s+fj6OjI2lpadluw+bNmyldujRKpRInJyfmzJmjcX7NmjVUqlQJExMTbG1t6dKlCzExMRoxO3fuxNXVFQMDA+rXr6/RHiFE/mLdtiP3d/3Fg707SYyK5NaC2aQlPsfCs1mG8RaezdA2MSVikg9PL4WQdPcOT0OCeH79mjrm8b/HeHLqX5Ju3yLxv5vcWbmctGfPMHQr/bGaJYQQnwXp5Ii3io6OpnPnzvTu3ZvQ0FACAgJo06YNEydOpEOHDjRp0oTo6Giio6OpUaNGluo8ceIEffr0wcvLi6CgIOrXr8/UqVPV552cnGjUqBH+/v4a1/n7+9OzZ0+0tLL3q3vmzBk6dOhAp06dCAkJYdKkSYwfP56VK1eqY5KTk5kyZQrBwcFs27aNyMhIevbsqT5/8+ZN2rRpQ4sWLQgKCqJv376MGTMmW3kIIT4NCh0dDF1ciT935n+FKhXx505jlEmHpED1mjwNvUjhIcMovWE7JX5eRcFO3SCzf6+0tDCr1xAtfX2eXrqYA60QQuQnKoUix478SKaribeKjo4mJSWFNm3a4OjoCEDZsmUBMDAwIDExEVtb22zVuWDBApo0acKoUaMAcHV15dixY+zevVsd07dvXwYOHMjcuXNRKpWcPXuWkJAQtm/fnu02zJ07l4YNGzJ+/Hj1/S5dusQPP/yg7sj07t1bHV+sWDEWLlxI5cqViY+Px9jYmKVLl1K8eHH1CFCJEiUICQlh5syZ2c5HCJG3aZsWQKGtQ/LDBxrlyQ8fonRwzPAaPTt7jMvb8vDgPq6PG4nSvjCFhwxDoaPN3d9WquP0nYrhsmApWnp6pD17RoTvWBKjInOwNUII8fmRkRzxVuXKlaNhw4aULVuW9u3bs3z5ch4+fPhedYaGhlK1alWNsurVq2u8btWqFdra2mzduhV4Mb2tfv36ODk5vdP9atasqVFWs2ZNwsPDSU1NBV6M9rRo0YIiRYpgYmJC3bp1AYiKispyzhlJTEzk8ePHGkfSO0y3E0LkcQotUuLiuDn/B56FXyHu8EHu/r4Gq2atNMISb0UR9k1vrngPIPbv7TiOHIuyiFOupCyE+HTI7mrZI50c8Vba2trs27ePXbt2UapUKRYtWkSJEiWIiIjIMP7lVDKVSqUuS05OzvZ99fT06N69O/7+/iQlJbFu3TqN0ZYP6enTp3h6emJqasratWs5deqUunOVlJT0XnX7+flRoEABjWNFxM0PkbYQIoekPn6EKjUFXXMLjXJdc3NSHtzP8JqUB/dJvHUTXvkQ43lUJLqWlih0/jdxQpWSQtLt/3gWfoXoFT/x7PpVrFu3y5mGCCHyDZVCK8eO/Ch/tkp8cAqFgpo1a+Lr68u5c+fQ09Nj69at6OnpqUdCXrK2tgZeTHN7KSgoSCPGzc2NEyc0t0z9999/0923b9++7N+/nyVLlqinzL0LNzc3AgMDNcoCAwNxdXVFW1uby5cvc//+fWbMmEHt2rUpWbJkuk0H3NzcOHny5Ftzfp2Pjw+PHj3SOHoXdXindgghPg5VSgoJ4VcwLu/xv0KFAuPyHjwNzXj9zNOLISjtC8Er89uVhRxIvh+LKiUl85tpKdDS1ftQqQshhEA6OSILTpw4wfTp0zl9+jRRUVFs2bKFe/fu4ebmhpOTE+fPnycsLIzY2FiSk5NxdnbGwcGBSZMmER4ezo4dO9LtZObt7c3u3buZPXs24eHhLF68WGM9zktubm5Uq1aN0aNH07lzZwwMDN6pDcOHD+fAgQNMmTKFK1eusGrVKhYvXsyIESMAKFKkCHp6eixatIjr16/z559/MmXKFI06Bg4cSHh4OCNHjiQsLIx169ZpbFyQGaVSiampqcahl82NE4QQH9+9zRuwbNoc88ZNUDo4Uth7OFr6BjzYsxOAIiPHYtd7gDo+9u9taJuYUuibb1EWcsC0SnVsOncj9s8t6hi73gMwKlsOPRtb9J2KYdd7AMbuFXhwcO9Hb58Q4tMi09WyR95pibcyNTXln3/+oWnTpri6ujJu3DjmzJnDl19+Sb9+/ShRogSVKlXC2tqawMBAdHV1+f3337l8+TLu7u7MnDlTY+c0gGrVqrF8+XIWLFhAuXLl2Lt3L+PGjcvw/n369CEpKem9pqpVrFiRP/74g/Xr11OmTBkmTJjA5MmT1ZsOWFtbs3LlSjZu3EipUqWYMWMGs2fP1qijSJEibN68mW3btlGuXDmWLVvG9OnT3zknIUTeFnf4ILd/XoJd9z6UWLoCg+IuXB87gpS4F2sS9QraoGthqY5PvhfDte+HY1iiJCV+8qfQoG+5t3UTdzesVcfomJnhOHIsJX9dS/FZ8zF0Lcm174cTf/Z0uvsLIYR4dwrVqwsnhMiDpkyZwsaNGzl//nxup/LBBH1RO7dTEEIIIUQ2ld97JNfufeNqWI7V7ehcIsfqzi0ykiPyrPj4eC5cuMDixYsZMmRIbqcjhBBCCCE+EdLJEXmWl5cXHh4e1KtXL91UtYEDB2JsbJzhMXDgwFzKWAghhBAiZ+SlNTk//vgjTk5O6OvrU7Vq1XQbM71u48aNlCxZEn19fcqWLcvOnTvf9TFkmUxXE5+kmJgYHj9+nOE5U1NTChYs+JEzyh6ZriaEEEJ8enJzulrk1Ss5VreTs2uWYzds2ED37t1ZtmwZVatWZf78+WzcuJGwsLAM338dO3aMOnXq4OfnR/PmzVm3bh0zZ87k7NmzlClT5kM2Q4N0coTIBdLJEUIIIT49udnJibh2NcfqLlrcOcuxVatWpXLlyixevBiAtLQ0HBwcGDJkCGPGjEkX37FjR54+fcrff/+tLqtWrRr/1959x9d0/w8cf93smz1kkmEkEQQhdjW2oFqjZlqbKqkZylftVtDE7lAjVLXaWjVTo2IEMSpKRUSIKIkYiQiR/fsjP1dvk0iCSMT7+Xicx8M55/P5nPc5SO77fsapW7cu33777YsHXwAZriaEEEIIIUQZV5LD1dLS0khOTlbb0tLS8sSQnp7O6dOnadOmjeqYhoYGbdq04dixY/nGfezYMbXyAO3bty+w/MsiSY4QQgghhBBvMH9/f0xMTNQ2f3//POXu3LlDVlYW1tbWasetra2Jj4/Pt+34+PhilX9ZtEq0dSFEvoxsjEs7BCGEEEK8RnIUJffSzsmTJzNu3Di1Y7q6uiV2vVdBkhwhhBBCCCHeYLq6ukVKaipUqICmpia3bt1SO37r1i1sbGzyrWNjY1Os8i+LDFcTQgghhBCijMvJUZTYVlQ6OjrUr1+f/fv3q45lZ2ezf/9+mjRpkm+dJk2aqJUH2Lt3b4HlXxbpyRFCCCGEEEIUybhx4+jfvz+enp40bNiQRYsW8fDhQwYOHAhAv379qFixompOz+jRo/Hy8iIwMJBOnTqxYcMGTp06xXfffVeicUqSI4QQQgghRBmXU0YGYPXq1Yvbt28zbdo04uPjqVu3LsHBwarFBWJjY9HQeBpr06ZN+fHHH/nss8/43//+h7OzM1u3bi3Rd+SAvCfnpWjRogV169Zl0aJFpR0KULR4FAoFW7ZsoUuXLq8srpIyYMAAkpKS2Lp1a4FlytrfUXS/TqUdghBCCCGKqer3O0vt2lHR10qsbeeqjiXWdmmRnpzXWEhICC1btiQxMRFTU9Ni1Y2Li8PMzKxkAhNCiHLCuHUnTDt2R9PEjPTrV7mz7lvSruT/1nGjt9pgNWys2rHs9HSuDumq2i/oA9LdDatI2rX55QUuhCh3cii51dXKI0lySkF6ejo6OjqlGkNJr2jxMpSF5ySEeHMZNGpOhb5Dub1mGY+jIzFt3wXbCbO5PnEYWQ/u51sn69FDrn/60dMD/xksEfPJB2r7+rXrYzl4NCknj770+IUQ5YskOcVTNgb3lQOZmZn4+vpiYmJChQoVmDp1Kk9GAjo5OTF79mz69euHsbExw4YNA+DIkSM0b94cpVKJvb09o0aN4uHDh6o2161bh6enJ0ZGRtjY2NC3b18SEhIAiImJoWXLlgCYmZmhUCgYMGCAqm52djYTJ07E3NwcGxsbZsyYoRavQqFQDe+KiYlBoVCwefNmWrZsib6+PnXq1MnzJtoVK1Zgb2+Pvr4+Xbt2ZcGCBUXuQZoxYwZ169Zl+fLlqjZ69uzJ/ftPPygMGDCALl268MUXX2BnZ4erqysA586do1WrViiVSiwsLBg2bBgpKSl5rjFz5kwsLS0xNjZm+PDhpKenFxhPWloafn5+VKxYEQMDAxo1akRISIjq/Jo1azA1NWXHjh24urqir6/P+++/z6NHj1i7di1OTk6YmZkxatQosrKyivQMhBCvF1PvriSHBPPg8D4ybl7n9ppl5KQ9xsirXcGVcnLIup/4dEtOUjutdu5+Igb1GpMa8ReZt0v2pXhCCPGmkSTnJVm7di1aWlqcOHGCxYsXs2DBAlauXKk6HxAQQJ06dThz5gxTp04lOjoab29vunfvzl9//cXPP//MkSNH8PX1VdXJyMhg9uzZnD17lq1btxITE6NKZOzt7dm0aRMAkZGRxMXFsXjxYrV4DAwMCAsLY/78+cyaNYu9e/c+8x6mTJmCn58f4eHhuLi40KdPHzIzMwEIDQ1l+PDhjB49mvDwcNq2bcsXX3xRrGd0+fJlfvnlF7Zv305wcDBnzpxhxIgRamX2799PZGQke/fuZceOHTx8+JD27dtjZmbGyZMn+fXXX9m3b5/ac3pSLyIigpCQEH766Sc2b97MzJkzC4zF19eXY8eOsWHDBv766y969OiBt7c3UVFRqjKPHj1iyZIlbNiwgeDgYEJCQujatSu7du1i165drFu3juXLl7Nx48ZiPQchxGtAUwtdp2o8+jv86bGcHFIvhKNXrXqB1TT0lDgsCMJx4RpsxkxFu6JDwZcwNkW/TgMeHNrzEgMXQpRXOShKbCuPZLjaS2Jvb8/ChQtRKBS4urpy7tw5Fi5cyNChQwFo1aoV48ePV5UfMmQIPj4+jBkzBgBnZ2eWLFmCl5cX33zzDXp6egwaNEhVvkqVKixZsoQGDRqQkpKCoaEh5ubmAFhZWeXpUalduzbTp09Xtb1s2TL2799P27ZtC7wHPz8/OnXKnRA/c+ZMatasyeXLl6levTpLly6lQ4cO+Pn5AeDi4sLRo0fZsWNHkZ/R48eP+f7776lYsSIAS5cupVOnTgQGBqqGzxkYGLBy5UrVMLUVK1ao6hkYGACwbNkyOnfuzLx581Qreejo6LB69Wr09fWpWbMms2bNYsKECcyePVtthQ/IXfUjKCiI2NhY7OzsVPceHBxMUFAQc+bMAXKTzG+++YaqVasC8P7777Nu3Tpu3bqFoaEhNWrUoGXLlhw4cIBevXoV+TkIIco+TSNjFJqaeXpiMu8nobS1z7dOevw/JKxcRPr1GDSU+ph27EbFqQFcn/wxWYl385Q3eqs12Y9TeXhKhqoJIcTLJj05L0njxo1RKJ5mwk2aNCEqKko1lMnT01Ot/NmzZ1mzZg2GhoaqrX379mRnZ3P16lUATp8+TefOnXFwcMDIyAgvLy8g90N6YWrXrq22b2trqxrqVpQ6tra2AKo6kZGRNGzYUK38f/cL4+DgoEpwIPcZZWdnExkZqTrm7u6uNg8nIiKCOnXqqBIcgGbNmuWpV6dOHfT19dXaTklJ4fr163niOHfuHFlZWbi4uKg9/4MHDxIdHa0qp6+vr0pwAKytrXFycsLQ0FDtWGHPNS0tjeTkZLUtTYa4CVHupF2+SEroH6THXuFx5Hnil3xB9oP7GLfqkG95o7fbknIshJyMjFccqRDidSQ9OcUjPTmvyL8/pAOkpKTw0UcfMWrUqDxlHRwcVMO02rdvz/r167G0tCQ2Npb27ds/c67JE9ra2mr7CoWC7OzsItd5krAVVudl++9zKgkpKSloampy+vRpNDU11c79O4HJ7xk+z3P19/fPM3Tuk9rVGF3H5XnCF0K8AlkPksnJykLT2FTtuJaJKVn3E4vYSBZp166gbWWX55SeS0107Oy59dW8lxCtEEKI/5Ik5yUJCwtT2z9+/DjOzs55PkQ/Ua9ePS5cuEC1atXyPX/u3Dnu3r3L3LlzsbfPHRpx6tQptTJPejxexcR3V1dXTp48qXbsv/uFiY2N5ebNm6ohYsePH0dDQ0O1wEB+3NzcWLNmDQ8fPlQlQKGhoXnqnT17ltTUVJRKpaptQ0ND1bP7Nw8PD7KyskhISKB58+bFuofnMXnyZMaNG6d27J+Pe5b4dYUQLyArk7SYy+jXrMujP4/nHlMoUNaoy/19RRymq9BAp5Ijj/46leeUkVc7Hl+NIv361ZcYtBCiPMvJKZ89LiVFhqu9JLGxsYwbN47IyEh++uknli5dyujRowss/+mnn3L06FF8fX0JDw8nKiqK3377TTWh3sHBAR0dHZYuXcqVK1fYtm0bs2fPVmvD0dERhULBjh07uH37dr4rjr0sn3zyCbt27WLBggVERUWxfPlydu/erTZErzB6enr079+fs2fPcvjwYUaNGkXPnj2fuZy1j4+Pqt758+c5cOAAn3zyCR9++KFqPg7kLjc9ePBgLly4wK5du5g+fTq+vr555uNA7nwiHx8f+vXrx+bNm7l69SonTpzA39+fnTtf/ku+dHV1MTY2Vtt0C0h+hRBlR1LwFoy82mP0Vmu07eyp0H8kCl09HhzKXcTFatg4zHv0V5U3e68PyloeaFnaoONYFavhfmhVsCI55He1dhV6SgwbvsWD/xwXQgjx8kiS85L069eP1NRUGjZsyMiRIxk9erRqqej81K5dm4MHD3Lp0iWaN2+Oh4cH06ZNU/VyWFpasmbNGn799Vdq1KjB3LlzCQgIUGujYsWKzJw5k0mTJmFtbZ1nxbGXqVmzZnz77bcsWLCAOnXqEBwczNixY9HT0ytyG9WqVaNbt2507NiRdu3aUbt2bb7++utn1tHX1+f333/n3r17NGjQgPfff5/WrVuzbNkytXKtW7fG2dmZt99+m169evHuu+/mWTb734KCgujXrx/jx4/H1dWVLl26cPLkSRwcCl4JSQjxZnkYdpi7G1Zh1u0D7GcvRdexCnFfTlMtRqBlYYmmqbmqvIaBIZaDRuEw91tsx89EQ6nPjdl+ZNxUnxto2Dh3fmXK8YOv7F6EEK8/mZNTPIqcnP+8qUyIIho6dCgXL17k8OHDhZadMWMGW7duJTw8vOQDew1E9+tU2iEIIYQQopiqfv/yR3wU1fnLJfc+rVrVyv5L4otL5uSIIgsICKBt27YYGBiwe/du1q5dW2hPjBBCCCGEEK+aJDmiyE6cOMH8+fN58OCB6r09Q4YMAaBmzZpcu3Yt33rLly9/lWEKIYQQQpQ75XVYWUmR4Wripbh27RoZBbzrwdraGiMjo1ccUdkmw9WEEEKI109pDlc7d/lWibXtXs268EKvGenJES+Fo6NjaYcghBBCCFFuyRLSxSOrqwkhhBBCCCHKFenJEUIIIYQQoozLljk5xSJJjhClwLpRzdIOQQghhBCi3JIkRwghhBBCiDJOVlcrHklyhBBCCCGEKONk4YHikYUHhBBCCCGEEOWK9OQIIYQQQghRxslwteKRnpzXTIsWLRgzZkyB552cnFi0aFGJx6FQKNi6dWuJX0cIIYQQQojikp4cIYQQogC/nL3C939e5u6jNJwrGDPRqza1bMzyLfvH5ZusPnWJ60kPyczOwcHUgA88qtHJzV5V5u6jxywJvcDx2AQepGVSz86CiS3ccTA1fFW3JIR4TcmcnOKRJEeUOTk5OWRlZaGlVXb+eZbFmIQQJWvPpRssOPw3/2tVm1rWZvwYfgXf346x+cPWmOvr5ilvrKfDoAYuVDYzQktDg8Mx8czcdwYzfV2aOlqRk5PD+B0n0NLQYME7jTDQ0WL9mWg+3nKUjR+0QqktP1+EEOJlkeFqr6HMzEx8fX0xMTGhQoUKTJ06lZycnHzLxsbG8t5772FoaIixsTE9e/bk1q1bamW++eYbqlatio6ODq6urqxbt07tfFRUFG+//TZ6enrUqFGDvXv3FjnWmJgYFAoFGzZsoGnTpujp6VGrVi0OHjyoKhMSEoJCoWD37t3Ur18fXV1djhw5QnZ2Nv7+/lSuXBmlUkmdOnXYuHGjql5iYiI+Pj5YWlqiVCpxdnYmKCgIgPT0dHx9fbG1tUVPTw9HR0f8/f3VYgoPD1e1lZSUhEKhICQk5IViEkKUHz+cuUzXWo68W8ORKhbG/K9VHfS0NPntwrV8y3tWqkCrqnZUNjfC3tSAvnWrUq2CMeE37wIQm/SQc/GJTG5Zm5rWZjiZGTG5ZR3SMrMIjrzxKm9NCPEaykFRYlt5JF8bvYbWrl3L4MGDOXHiBKdOnWLYsGE4ODgwdOhQtXLZ2dmqBOfgwYNkZmYycuRIevXqpfowv2XLFkaPHs2iRYto06YNO3bsYODAgVSqVImWLVuSnZ1Nt27dsLa2JiwsjPv37z9zTlBBJkyYwKJFi6hRowYLFiygc+fOXL16FQsLC1WZSZMmERAQQJUqVTAzM8Pf358ffviBb7/9FmdnZw4dOsQHH3yApaUlXl5eTJ06lQsXLrB7924qVKjA5cuXSU1NBWDJkiVs27aNX375BQcHB65fv87169eLHXdxYxJClA8ZWdlcTLjPQE8X1TENhYKG9paci0sstH5OTg4n/7nDtcQURjWrAUB6VjYAOpqaam3qaGoQHneXrrUcX/JdCCHEm0uSnNeQvb09CxcuRKFQ4Orqyrlz51i4cGGeJGf//v2cO3eOq1evYm+fOyb8+++/p2bNmpw8eZIGDRoQEBDAgAEDGDFiBADjxo3j+PHjBAQE0LJlS/bt28fFixf5/fffsbOzA2DOnDl06NChWDH7+vrSvXt3ILfnKDg4mFWrVjFx4kRVmVmzZtG2bVsA0tLSmDNnDvv27aNJkyYAVKlShSNHjrB8+XK8vLyIjY3Fw8MDT09PIHfRhSdiY2NxdnbmrbfeQqFQ4Oj4fB8eihuTEKJ8SEpNIysnB4v/DEuz0NclJvFBgfUepGXQYfXvpGdlo6lQMKlFbRo7WAHgZGaIjZGSZUcvMKVVHZTaucPVbqU85s7DxyV6P0KI15/MySkeSXJeQ40bN0ahePoPvUmTJgQGBpKVlaVWLiIiAnt7e1WCA1CjRg1MTU2JiIigQYMGREREMGzYMLV6zZo1Y/HixWptPElwnlyvuP5dR0tLC09PTyIiItTKPElWAC5fvsyjR49UCcYT6enpeHh4APDxxx/TvXt3/vzzT9q1a0eXLl1o2rQpAAMGDKBt27a4urri7e3NO++8Q7t27Yodd3Fjyk9aWhppaWlqxzIyMtGV8fdClDsGOlr81KcFjzKyOHH9NgsOn6eiiQGelSqgralBQKeGzNp3hpbf7Ubz/3uGmjlakf+AYyGEeCq7tAN4zcinLFFmGBgYqP6ckpICwM6dO6lYsaJaOV3d3G9WO3TowLVr19i1axd79+6ldevWjBw5koCAAOrVq8fVq1fZvXs3+/bto2fPnrRp04aNGzeioZE7Fe3f85gyMjJeSkz58ff3Z+bMmWrHJndoyv86NSuwjhCidJkqddFUKLj7SP0LiruP0qigr1dgPQ2FAvv/XynN1dKEq/ceEHTqEp6VKgDgZmXKT31b8iAtg8ysbMz0den380FqWJmW2L0IIcSbSBYeeA2FhYWp7R8/fhxnZ2c0/zXOG8DNzS3PXJQLFy6QlJREjRo1VGVCQ0PV6oWGhqqdv379OnFxcWrXK65/18nMzOT06dO4ubkVWL5GjRro6uoSGxtLtWrV1LZ/90xZWlrSv39/fvjhBxYtWsR3332nOmdsbEyvXr1YsWIFP//8M5s2beLevXtYWloCqN3TvxcheNGY/mvy5Mncv39fbRvfrlGh1xNClB5tTQ2qW5lw8vpt1bHsnBxOXr+Nu23+S0jnJ4fc+T3/ZaSrjZm+LrFJKUQkJOFVxfZlhC2EKMdychQltpVH0pPzGoqNjWXcuHF89NFH/PnnnyxdupTAwMA85dq0aYO7uzs+Pj4sWrSIzMxMRowYgZeXl2oY1oQJE+jZsyceHh60adOG7du3s3nzZvbt26dqw8XFhf79+/Pll1+SnJzMlClTih3zV199hbOzM25ubixcuJDExEQGDRpUYHkjIyP8/PwYO3Ys2dnZvPXWW9y/f5/Q0FCMjY3p378/06ZNo379+tSsWZO0tDR27NihSpwWLFiAra0tHh4eaGho8Ouvv2JjY4OpqSkaGho0btyYuXPnUrlyZRISEvjss88KvYeixJQfXV3dPD09KTJUTYgy7wOPakzf+ydu1qb/v4R0NKmZWbxbwwGAaXtOY2mg5JP/X1hg9clL1LA2pZKJARlZ2RyJucXOi9eZ3KKOqs29UTcwU+piY6Tk8p1kAg6do0UVW5o4WpXKPQohRHkln7ReQ/369SM1NZWGDRuiqanJ6NGj88yrAVAoFPz222988sknvP3222hoaODt7c3SpUtVZbp06cLixYsJCAhg9OjRVK5cmaCgIFq0aAGAhoYGW7ZsYfDgwTRs2BAnJyeWLFmCt7d3sWKeO3cuc+fOJTw8nGrVqrFt2zYqVKjwzDqzZ8/G0tISf39/rly5gqmpKfXq1eN///sfADo6OkyePJmYmBiUSiXNmzdnw4YNQG5CMn/+fKKiotDU1KRBgwbs2rVLNVRt9erVDB48mPr16+Pq6sr8+fOLNGensJiEEOVHO5eKJKam8e3xi9x9mIaLpTFL32uMxf8PV4t/kKo2P/JxZhZzD/xFQkoqulqaOJkZ8nm7+rRzeTq89c7Dxyw8fD532JuBHp2q2zO0oesrvzchxOunvC71XFIUOQW9YEWIlyAmJobKlStz5swZ6tatW9rhlBkpX00svJAQQgghyhTDkfNL7dpHIwpe2fFFNXUzKrG2S4v05AghhBBCCFHGlde5MyVFFh4QL2TOnDkYGhrmuxX3XTpCCCGEEEK8DNKTI17I8OHD6dmzZ77nlEolFStWREZECiGEEEK8GJmTUzyS5IgXYm5ujrm5eWmHIYQQQghRrmXLd8bFIsPVhBBCCCGEEOWK9OQIIYQQQghRxslwteKRJEeIUjDy1rjSDkEIIYQQxbS2tAMQRSZJjhBCCCGEEGWcLCFdPDInRwghhBBCCFGuSE+OEEIIIYQQZZy8kaN4pCdHCCGEEEIIUa5IklMGtGjRgjFjxgDg5OTEokWLnqtuebZmzRpMTU1V+zNmzKBu3brPrBMTE4NCoSA8PLxEYxNCCCGEKGnZKEpsK49kuFoZc/LkSQwMDIpcfvPmzWhra5dgRGWTn58fn3zyiWp/wIABJCUlsXXrVtUxe3t74uLiqFChQilEKIQoT7q2MqRFfSX6ehpExaazdnsyt+5lFVi+S0tDurY0VDt283Ymk5feUe2bGGrQq50RNavqoNRVEHcni+2HUjh1Ia3E7kMI8fqShQeKR5KcMsbS0rJY5c3NzUsokrLN0NAQQ0PDZ5bR1NTExsbmFUUkhCivOr5lQNtG+qzYcp87iVl0a2WIXz8z/rfsDhmZBdf751YG89cmqvaz/vO68mHdTNDXU7D4xyQePMqmSW09RvY0Zfq3d4mNf0bDQgghCiXD1cqYfw9X69u3L7169VI7n5GRQYUKFfj++++BvMPVnJycmDNnDoMGDcLIyAgHBwe+++47tTaOHj1K3bp10dPTw9PTk61btxZrWNfff//NO++8g7GxMUZGRjRv3pzo6GgAsrOzmTVrFpUqVUJXV5e6desSHBysqvtkCNnmzZtp2bIl+vr61KlTh2PHjqldY82aNTg4OKCvr0/Xrl25e/eu2vl/D1ebMWMGa9eu5bfffkOhUKBQKAgJCcl3uNrBgwdp2LAhurq62NraMmnSJDIzn36YaNGiBaNGjWLixImYm5tjY2PDjBkzVOdzcnKYMWMGDg4O6OrqYmdnx6hRo4r03IQQr6f2TfTZfiiFMxfTuH4rk+8238fUSJN61fWeWS8rG+6nZKu2lEfqSU41e232hj3iyo0Mbidmse3gQx49zqGy3ZvXOy+EKFxOTslt5ZEkOWWYj48P27dvJyUlRXXs999/59GjR3Tt2rXAeoGBgXh6enLmzBlGjBjBxx9/TGRkJADJycl07twZd3d3/vzzT2bPns2nn35a5Jhu3LjB22+/ja6uLn/88QenT59m0KBBqkRh8eLFBAYGEhAQwF9//UX79u159913iYqKUmtnypQp+Pn5ER4ejouLC3369FG1ERYWxuDBg/H19SU8PJyWLVvy+eefFxiTn58fPXv2xNvbm7i4OOLi4mjatGm+sXfs2JEGDRpw9uxZvvnmG1atWpWn7bVr12JgYEBYWBjz589n1qxZ7N27F4BNmzaxcOFCli9fTlRUFFu3bsXd3b3Iz08I8XqxNNPE1EiTv6PTVcdS03K4ciODavbPTkZsLDRZ5GfJl2Mq8FF3E8xN1H/lXr6eQaNaehgoFSgU0KiWHtpaEBGTXkCLQgghikqSnDKsffv2GBgYsGXLFtWxH3/8kXfffRcjI6MC63Xs2JERI0ZQrVo1Pv30UypUqMCBAwdU9RUKBStWrKBGjRp06NCBCRMmFDmmr776ChMTEzZs2ICnpycuLi4MHDgQV1dXAAICAvj000/p3bs3rq6uzJs3j7p16+ZZTMHPz49OnTrh4uLCzJkzuXbtGpcvXwZyEyVvb28mTpyIi4sLo0aNon379gXGZGhoiFKpRFdXFxsbG2xsbNDR0clT7uuvv8be3p5ly5ZRvXp1unTpwsyZMwkMDCQ7O1tVrnbt2kyfPh1nZ2f69euHp6cn+/fvByA2NhYbGxvatGmDg4MDDRs2ZOjQoUV+fkKI14uJYe6vyfsp2WrHk1OyVOfyc+WfdFZsuU/gukTW7kjG0kyTKYMt0NN5Oqb+q1+S0NRU8PVka1ZOs2bAu8Ys+SmJhGfM9RFCvLlyUJTYVlLu3buHj48PxsbGmJqaMnjwYLUv7/Mr/8knn+Dq6opSqcTBwYFRo0Zx//79Yl9bkpwyTEtLi549e7J+/XoAHj58yG+//YaPj88z69WuXVv1Z4VCgY2NDQkJCQBERkZSu3Zt9PSeDrNo2LBhkWMKDw+nefPm+S52kJyczM2bN2nWrJna8WbNmhEREVFgjLa2tgCqGCMiImjUqJFa+SZNmhQ5xoJERETQpEkTFIqn/5mbNWtGSkoK//zzT76xPYnvSWw9evQgNTWVKlWqMHToULZs2aI23C0/aWlpJCcnq21ZmTKxWIiyqEltPZZPsVJtmprP185fUemc/Dt3eNv5y+ks+CERfT0FDWs9/dnbrZUh+noK5q25x4xv7/L70YeM6GlKJSuZLiuEKB98fHz4+++/2bt3Lzt27ODQoUMMGzaswPI3b97k5s2bBAQEcP78edasWUNwcDCDBw8u9rXlJ2kZ5+Pjg5eXFwkJCezduxelUom3t/cz6/w3AVEoFGo9FS9CqVS+lHb+HeOTpONlxfiinvX87O3tiYyMZN++fezdu5cRI0bw5ZdfcvDgwQJXufP392fmzJlqx2q/PZ66Xn4lcwNCiOd25mIa0f88nQOorZn788nEUEOtN8fYUJPYuIwit/vocQ7xd7OwNs/NmqzMNGnb2ID/Lb3Djdu5X5Rcv5WJi6MOrRvps3Z78su4HSFEOZL9ms2diYiIIDg4mJMnT+Lp6QnA0qVL6dixIwEBAdjZ2eWpU6tWLTZt2qTar1q1Kl988QUffPABmZmZaGkVPXWRnpwyrmnTptjb2/Pzzz+zfv16evTo8UJLRru6unLu3DnS0p72JJw8ebLI9WvXrs3hw4fJyMj7y93Y2Bg7OztCQ0PVjoeGhlKjRo0iX8PNzY2wsDC1Y8ePH39mHR0dHbKynj3Ew83NjWPHjpHzrxl2oaGhGBkZUalSpSLHp1Qq6dy5M0uWLCEkJIRjx45x7ty5AstPnjyZ+/fvq23uzT4psLwQovQ8Ts8h4V6WartxO5OkB1nUqPJ0CKyeroIqFbW5fL3oSY6ujgIrM02SHuQmSjra///lzn9m/GbngIasEiuEKAeOHTuGqampKsEBaNOmDRoaGnk+5z3L/fv3MTY2LlaCA5LkvBb69u3Lt99+y969ewsdqlaUtrKzsxk2bBgRERH8/vvvBAQEAKgN4yqIr68vycnJ9O7dm1OnThEVFcW6detUCxtMmDCBefPm8fPPPxMZGcmkSZMIDw9n9OjRRY5x1KhRBAcHExAQQFRUFMuWLVNboS0/Tk5O/PXXX0RGRnLnzp18k7ARI0Zw/fp1PvnkEy5evMhvv/3G9OnTGTduHBoaRfuvsGbNGlatWsX58+e5cuUKP/zwA0qlEkdHxwLr6OrqYmxsrLZpaukW6XpCiNL3+7FHvOtliIerLpWstBjWzYSkB1n8efGxqszEAWa0aaiv2u/d3ghXJ20qmGpSzV6bUX1Myc6B4+dSAYi7k0n83UwGvmtClYraWJlp4t1Un5pVdDgd8ThPDEIIkZOjKLEtv6H1//5C/HnEx8djZWWldkxLSwtzc3Pi4+OL1MadO3eYPXv2M4e4FUSSnNeAj48PFy5coGLFinnmuxSXsbEx27dvJzw8nLp16zJlyhSmTZsGoDZPpyAWFhb88ccfpKSk4OXlRf369VmxYoWqd2nUqFGMGzeO8ePH4+7uTnBwMNu2bcPZ2bnIMTZu3JgVK1awePFi6tSpw549e/jss8+eWWfo0KG4urri6emJpaVlnt4kgIoVK7Jr1y5OnDhBnTp1GD58OIMHDy607X8zNTVlxYoVNGvWjNq1a7Nv3z62b9+OhYVFkdsQQrxedh15yN6wRwx415jpH+UuHhCwLlHtHTlWZloYGjz9lWpmrMHH75syd1QFRvY0JeVRNrO/u8uD/19GOisbFqxLJPlhNmN8TPl8pAXN6ipZseU+f0XJ6mpCiLxKcglpf39/TExM1DZ/f/9845g0aZLqlR0FbRcvXnzh+01OTqZTp07UqFFD7XUeRaXIySmvq2OLolq/fj0DBw7k/v37L23OjXi2/tOK9g2GEEIIIcqOtbNK7yXju/4s+hDZ4mpdMztPz42uri66unlHnty+fTvP+wv/q0qVKvzwww+MHz+exMSnL0XOzMxET0+PX3/99ZmvQ3nw4AHt27dHX1+fHTt2FOmL+P+ShQfeQN9//z1VqlShYsWKnD17lk8//ZSePXtKgiOEEEIIUUZll+BSzwUlNPmxtLTE0tKy0HJNmjQhKSmJ06dPU79+fQD++OMPsrOz86yi+2/Jycm0b98eXV1dtm3b9lwJDshwtTdSfHw8H3zwAW5ubowdO5YePXrw3XffATB8+HAMDQ3z3YYPH17KkQshhBBCiNeBm5sb3t7eDB06lBMnThAaGoqvry+9e/dWrax248YNqlevzokTJ4DcBKddu3Y8fPiQVatWkZycTHx8PPHx8YUuMPVfMlxNqElISCA5Of+lS42NjfNMIBPPR4arCSGEEK+f0hyutv30s9/L9yI61y+ZwV337t3D19eX7du3o6GhQffu3VmyZAmGhoYAxMTEULlyZQ4cOECLFi0ICQmhZcuW+bZ19epVnJycinxtGa4m1FhZWUkiI4QQQgghXpi5uTk//vhjgeednJzUXu3RokULXlb/iyQ5QgghhBBClHE5OfISreKQOTlCCCGEEEKIckV6coQoBY8epJZ2CEIIIYR4jWTLLPpikZ4cIYQQQgghRLkiPTlCCCGEEEKUcbIecvFIkiOEEEIIIUQZl1OCLwMtj2S4mhBCCCGEEKJckSRHPNOMGTOoW7duseooFAq2bt1aIvEIIYQQQryJsnNKbiuPZLiaeCY/Pz8++eST0g6jTHryVt7ExERMTU1LOxwhRAnq5W1K6yZGGOhpcDEmjRW/3iH+zrPfPm5uoonPO+Z4uCnR1VYQfyeTrzbc5sr1dAB6tDelmYcBFqZaZGblcOWfdH7amcjl2LRXcUtCCFGuSZIjnsnQ0BBDQ8PSDqPMycjIKO0QhBCvyHutTOjwtjHLfrxDwt0Mencw47PhNoyde4OMzPy/AjVQajB7lC1/Rz1mznfxJKdkY2OpzcNH2aoycbczWLX5LrfuZqKjreAdLxOmDrfhky+uk/wwO992hRBvLll4oHhkuFo5sXHjRtzd3VEqlVhYWNCmTRsePnxIdnY2s2bNolKlSujq6lK3bl2Cg4PV6v7zzz/06dMHc3NzDAwM8PT0JCwsDMg7XO3kyZO0bduWChUqYGJigpeXF3/++edzxZyeno6vry+2trbo6enh6OiIv78/ADExMSgUCsLDw1Xlk5KSUCgUhISEALk9KQqFgp07d1K7dm309PRo3Lgx58+fV9VZs2YNpqambN26FWdnZ/T09Gjfvj3Xr19Xi+Wbb76hatWq6Ojo4Orqyrp169TOKxQKvvnmG959910MDAwYOnQoLVu2BMDMzAyFQsGAAQOe6zkIIcq2Tl7GbNqTxKnzj4iNy2DZj7cxM9akgbt+gXW6tDbhblIWX2+4w+XYdBLuZfJXZCq37j7t/Tny50POXXpMwt1M/onPYO3Wu+grNXCw03kVtyWEEOWaJDnlQFxcHH369GHQoEFEREQQEhJCt27dyMnJYfHixQQGBhIQEMBff/1F+/bteffdd4mKigIgJSUFLy8vbty4wbZt2zh79iwTJ04kOzv/bxEfPHhA//79OXLkCMePH8fZ2ZmOHTvy4MGDYse9ZMkStm3bxi+//EJkZCTr16/Hycmp2O1MmDCBwMBATp48iaWlJZ07d1braXn06BFffPEF33//PaGhoSQlJdG7d2/V+S1btjB69GjGjx/P+fPn+eijjxg4cCAHDhxQu86MGTPo2rUr586dY+bMmWzatAmAyMhI4uLiWLx4cbFjF0KUbVYWWpgZa3Hu0mPVsUePc7h8LQ1XJ90C63nW1Cf6ehrj+luxcpYD88fb0bqxUYHltTShTRMjHqZmce1m+ku9ByFE+ZCTU3JbeSTD1cqBuLg4MjMz6datG46OjgC4u7sDEBAQwKeffqr6UD9v3jwOHDjAokWL+Oqrr/jxxx+5ffs2J0+exNzcHIBq1aoVeK1WrVqp7X/33XeYmppy8OBB3nnnnWLFHRsbi7OzM2+99RYKhUIVe3FNnz6dtm3bArB27VoqVarEli1b6NmzJ5A7tGzZsmU0atRIVcbNzY0TJ07QsGFDAgICGDBgACNGjABg3LhxHD9+nICAAFVvDUDfvn0ZOHCgav/q1asAWFlZyZwcIcopUyNNAJJSstSOJ6Vkqc7lx8pCi3ZNjdgRkszmfUlUc9BlUFdzMrNyOHgyRVWuXg0lY/tZoaOtICk5i9nfxPNAhqoJIcQLk56ccqBOnTq0bt0ad3d3evTowYoVK0hMTCQ5OZmbN2/SrFkztfLNmjUjIiICgPDwcDw8PFQJTmFu3brF0KFDcXZ2xsTEBGNjY1JSUoiNjS123AMGDCA8PBxXV1dGjRrFnj17it0GQJMmTVR/Njc3x9XVVXV/AFpaWjRo0EC1X716dUxNTVVlIiIinvmMnvD09Hyu+NLS0khOTlbbsjJlYrEQZdFb9QxYN9dRtWlpPt97KTQUCq7+k85PuxKJuZHOvmMP2Hf8Ae2aqvfm/H35MRMCbvDZkjjCL6Yyrr8Vxobyq1kIkVd2jqLEtvJIfpKWA5qamuzdu5fdu3dTo0YNli5diqurq6qn4VmUSmWxrtW/f3/Cw8NZvHgxR48eJTw8HAsLC9LTiz+8ol69ely9epXZs2eTmppKz549ef/99wHQ0Mj9p5nzrz7U0p7sb2Bg8Fz1/P39MTExUdsunvzmJUcnhHgZTv39iAkBN1Rb8sPcHhxTQ/VeG1NDTZIeZOXXBACJyVn8c0v9Z9aNWxlUMFUfQJGWnkP8nUyirqXxzc93yMqGVo0KHtYmhHhzyXC14pEkp5xQKBQ0a9aMmTNncubMGXR0dNi/fz92dnaEhoaqlQ0NDaVGjRoA1K5dm/DwcO7du1ek64SGhjJq1Cg6duxIzZo10dXV5c6dO88dt7GxMb169WLFihX8/PPPbNq0iXv37mFpaQnkDsV74t+LEPzb8ePHVX9OTEzk0qVLuLm5qY5lZmZy6tQp1X5kZCRJSUmqMm5ubs98RgXR0cmdHJyVVfAHHYDJkydz//59ta16g4+fWUcIUToep+UmHU+2f+IzSEzOpJaLnqqMUldBNUddImMK7pGNvPoYOytttWO2VtrcTnz2stMKBWhrlc9vVYUQ4lWSOTnlQFhYGPv376ddu3ZYWVkRFhbG7du3cXNzY8KECUyfPp2qVatSt25dgoKCCA8PZ/369QD06dOHOXPm0KVLF/z9/bG1teXMmTPY2dmpDQN7wtnZmXXr1uHp6UlycjITJkwodm/QEwsWLMDW1hYPDw80NDT49ddfsbGxwdTUFA0NDRo3bszcuXOpXLkyCQkJfPbZZ/m2M2vWLCwsLLC2tmbKlClUqFCBLl26qM5ra2vzySefsGTJErS0tPD19aVx48Y0bNgQyF24oGfPnnh4eNCmTRu2b9/O5s2b2bdv3zPjd3R0RKFQsGPHDjp27IhSqcx3uW1dXV10ddUnKGtq3S3m0xJClJadB5Pp3taU+NuZJNzLoFcHMxKTszh57pGqzLSPbThx7iHBR3IXYdlx8D6fj7ajaxsTjoU/pJqDLm0aG7H8l9wvhXR1FHRrY8qpvx+RmJyFsYEG7d8yxtxEk2NnH5bKfQohyrby2uNSUiTJKQeMjY05dOgQixYtIjk5GUdHRwIDA+nQoQPt27fn/v37jB8/noSEBGrUqMG2bdtwdnYGcnsj9uzZw/jx4+nYsSOZmZnUqFGDr776Kt9rrVq1imHDhlGvXj3s7e2ZM2cOfn5+zxW3kZER8+fPJyoqCk1NTRo0aMCuXbtUQ9VWr17N4MGDqV+/Pq6ursyfP5927drlaWfu3LmMHj2aqKgo6taty/bt21W9LAD6+vp8+umn9O3blxs3btC8eXNWrVqlOt+lSxcWL15MQEAAo0ePpnLlygQFBdGiRYtnxl+xYkVmzpzJpEmTGDhwIP369WPNmjXP9SyEEGXXb3/cR09HwUc9LdBXanDxahpfLI9Xe0eOdQUtjAyeDmmLvp7Ol6tv4dPJnPfbmZJwL5M1W+9x5M/cBCY7Gypaa9OigRVGhpo8eJhFdGwa05bG8U+8vIdLCCFelCInR/JC8XoKCQmhZcuWJCYmFri62Zo1axgzZgxJSUmvNLbC9Bhb+HwpIYQQQpQtvy6sXGrX/uFwyX1k/6B5+RsmK3NyhBBCCCGEEOWKJDmixMyZMwdDQ8N8tw4dOpR2eEIIIYQQr42cHEWJbeWRDFcTJebevXsFrtqmVCqpWLHiK46o7JDhakIIIcTrpzSHq607VHJtf/h2ybVdWmThAVFizM3Ni/ySUSGEEEIIUTDpligeSXKEEEIIIYQo47IlySkWmZMjhBBCCCGEKFekJ0cIIYQQQogyToarFY8kOUKUgof3U0o7BCGEEEKIckuSHCGEEEIIIco46ckpHpmTI4QQQgghhChXpCdHCCGEEEKIMk5WVyueMt+TM2PGDOrWrVvaYZSYmJgYFAoF4eHhpR3Kc3lZfz+v+u85JCQEhUJBUlJSmYlJCCGEEEK8HMVKclq0aMGYMWNKKJTXx5o1azA1NS3tMJ5JoVCwdevW0g4jX/nF5ufnx/79+0snoAKUxZiEEK/eB12s+GFBdbZ8W5Mv/CpjZ6VTaB0LUy38hlZiwxI3tnxbk69nOePspFSd19PV4GMfO74PyG3328+d6dhCXp4shChYTk7JbeXRGzlcLScnh6ysLLS03sjbL5L09HR0dAr/Rf6yGBoaYmho+MquVxRlMSYhxKv1focKvNumAgtWXif+TgYfdrVm9vjKDJ9yiYzM/D8ZGOprEPC/qvx1MYVpC2O4/yATO2tdHjzMUpUZ2tuWOtUN+HLFdW7dSadeLUNGflCRu0kZhIU/eFW3J4R4jWRnl3YEr5ci9+QMGDCAgwcPsnjxYhQKBQqFgpiYGM6fP0+HDh0wNDTE2tqaDz/8kDt37qjqBQcH89Zbb2FqaoqFhQXvvPMO0dHRam3/888/9OnTB3NzcwwMDPD09CQsLEytzLp163BycsLExITevXvz4MHTXwLZ2dn4+/tTuXJllEolderUYePGjarzT4Ym7d69m/r166Orq8uRI0eeeb9nz56lZcuWGBkZYWxsTP369Tl16hQhISEMHDiQ+/fvq57DjBkzgPx7KExNTVmzZo1q/8SJE3h4eKCnp4enpydnzpzJc+3CnmmLFi0YNWoUEydOxNzcHBsbG1UMAE5OTgB07doVhUKh2n+WJ0OzVq5cSeXKldHT0wMgKSmJIUOGYGlpibGxMa1ateLs2bMFtnPy5Enatm1LhQoVMDExwcvLiz///LPQ2P47NCw7O5tZs2ZRqVIldHV1qVu3LsHBwarzT4b5bd68mZYtW6Kvr0+dOnU4duyYqsy1a9fo3LkzZmZmGBgYULNmTXbt2qUW7+nTp/H09ERfX5+mTZsSGRmZ55k8MWDAALp06cLMmTNVz2P48OGkp6cX+nyFEK+nLm0rsGF7AsfDHxDzz2MCV17HwlSLJvWMC6zzfkdLbt/LYOHqG1y6msqtOxmc+TuF+NtPf1a4VdVn/9EkzkU+JOFuBsEHE7ly/TGulfVfxW0JIUS5V+QkZ/HixTRp0oShQ4cSFxdHXFwcRkZGtGrVCg8PD06dOkVwcDC3bt2iZ8+eqnoPHz5k3LhxnDp1iv3796OhoUHXrl3J/v90NCUlBS8vL27cuMG2bds4e/YsEydOVJ0HiI6OZuvWrezYsYMdO3Zw8OBB5s6dqzrv7+/P999/z7fffsvff//N2LFj+eCDDzh48KDaPUyaNIm5c+cSERFB7dq1n3m/Pj4+VKpUiZMnT3L69GkmTZqEtrY2TZs2ZdGiRRgbG6ueg5+fX5GeYUpKCu+88w41atTg9OnTzJgxI0/dpKSkQp8pwNq1azEwMCAsLIz58+cza9Ys9u7dC+QmGgBBQUHExcWp9gtz+fJlNm3axObNm1VzhHr06EFCQgK7d+/m9OnT1KtXj9atW3Pv3r1823jw4AH9+/fnyJEjHD9+HGdnZzp27KhKSosa2+LFiwkMDCQgIIC//vqL9u3b8+677xIVFaVWbsqUKfj5+REeHo6Liwt9+vQhMzMTgJEjR5KWlsahQ4c4d+4c8+bNy9MzM2XKFAIDAzl16hRaWloMGjTomc9o//79REREEBISwk8//cTmzZuZOXPmsx+sEOK1ZGOpjbmpNuEXnr7X6lFqNpFXHuFWteBkpHFdY6JiUpn8sQM/LnJj6fRqtH/bTK1MRPQjGtU1wsI0d0RB7eoGVLTR4c+/pRdHCJE/Ga5WPEUer2ViYoKOjg76+vrY2NgA8Pnnn+Ph4cGcOXNU5VavXo29vT2XLl3CxcWF7t27q7WzevVqLC0tuXDhArVq1eLHH3/k9u3bnDx5EnPz3PHI1apVU6uTnZ3NmjVrMDIyAuDDDz9k//79fPHFF6SlpTFnzhz27dtHkyZNAKhSpQpHjhxh+fLleHl5qdqZNWsWbdu2LdL9xsbGMmHCBKpXrw6As7Oz2rNQKBSq51BUP/74I9nZ2axatQo9PT1q1qzJP//8w8cff6wqs2zZskKfKUDt2rWZPn26KrZly5axf/9+2rZti6WlJZDbi1ScGNPT0/n+++9V9Y8cOcKJEydISEhAV1cXgICAALZu3crGjRsZNmxYnjZatWqltv/dd99hamrKwYMHeeedd4ocW0BAAJ9++im9e/cGYN68eRw4cIBFixbx1Vdfqcr5+fnRqVMnAGbOnEnNmjW5fPky1atXJzY2lu7du+Pu7g7k/rv4ry+++EL1b2TSpEl06tSJx48fq3qy/ktHR4fVq1ejr69PzZo1mTVrFhMmTGD27NloaJT5dTyEEMVgZqwNQGJyptrxpORMzEwK/vVpY6lDp5bmbPn9Dj/vTMClspLhfe3IzMxh/9EkAL5Zf5NR/SuyboEbmZk55OTksHjtDc5felRi9yOEEG+SF5qUcvbsWQ4cOJDvvIXo6GhcXFyIiopi2rRphIWFcefOHVUPTWxsLLVq1SI8PBwPDw9VgpMfJycnVYIDYGtrS0JCApDb+/Do0aM8yUt6ejoeHh5qxzw9PYt8b+PGjWPIkCGsW7eONm3a0KNHD6pWrVrk+vl50oP07w/QTxKzJ4ryTIE8PVH/fibPy9HRUZWEPIklJSUFCwsLtXKpqal5hhw+cevWLT777DNCQkJISEggKyuLR48eERsbW+Q4kpOTuXnzJs2aNVM73qxZszxD5f79HGxtbQFISEigevXqjBo1io8//pg9e/bQpk0bunfvnue5FVTfwcEh39jq1KmDvv7Tb3CbNGlCSkoK169fx9HRMd86aWlppKWlqR3LykpHU/PVzXkSQhSuRWNTPulnp9qfvujac7WjUEBUTCprN98C4ErsYxwr6tGxhYUqyXm3tQXVq+ozY3EMCXczqOViwIgP7LiXlEH4hYcvfC9CiPKnvPa4lJQXSnJSUlLo3Lkz8+bNy3PuyQfGzp074+joyIoVK7CzsyM7O5tatWqp5jEolco8df9LW1tbbV+hUKgNdwPYuXMnFStWVCv3pPfhCQMDgyLeWe58jL59+7Jz5052797N9OnT2bBhA127di2wjkKhIOc//wIzMjKKfE0o2jOFZz+T5/Xf55OSkoKtrS0hISF5yha0ulz//v25e/cuixcvxtHREV1dXZo0aVJi81b+/RwUCgWA6jkMGTKE9u3bs3PnTvbs2YO/vz+BgYF88sknRar/svj7++cZ0lat7nCcPUa81OsIIV5MWHgykVee9qRoa+X+TDAz1iLx/tPeHFNjLa7EPi6wncSkTK7fVP9i4/rNNJrVNwFAR1tB/+7WfL4slpN/5Q5Pi/nnMVUd9OjW3lKSHCGEeAmKleTo6OiQlfV0dZh69eqxadMmnJyc8l2p7O7du0RGRrJixQqaN28OkGfCf+3atVm5ciX37t17Zm9OQWrUqIGuri6xsbFqQ9NeBhcXF1xcXBg7dix9+vQhKCiIrl275nkOT1haWhIXF6faj4qK4tGjp78w3dzcWLdundpwqOPHj6u1UdgzLSptbe18YyyOevXqER8fj5aWVpEWLwAIDQ3l66+/pmPHjgBcv35dbdGEosRmbGyMnZ0doaGhan+noaGhNGzYsFj3YG9vz/Dhwxk+fDiTJ09mxYoVaklOcZ09e5bU1FRVcn78+HEMDQ2xt7cvsM7kyZMZN26c2rEen0QVUFoIUVpSH2eT+lj9C5l7SRnUqWHIleu5SY1STwPXKvrsPJD/vESAC5cfUdFG/Uu2ija6JNzNbVtTU4G2lkaeL8WysnPQULyMOxFClEfyMtDiKdYkAicnJ8LCwoiJieHOnTuMHDmSe/fu0adPH06ePEl0dDS///47AwcOJCsrCzMzMywsLPjuu++4fPkyf/zxR54Pe3369MHGxoYuXboQGhrKlStX2LRpk9oqWc9iZGSEn58fY8eOZe3atURHR/Pnn3+ydOlS1q5dW5zbU0lNTcXX15eQkBCuXbtGaGgoJ0+exM3NTfUcUlJS2L9/P3fu3FElMq1atWLZsmWcOXOGU6dOMXz4cLWegr59+6JQKBg6dCgXLlxg165dBAQEqF27sGdaVE5OTuzfv5/4+HgSExOf6zm0adOGJk2a0KVLF/bs2UNMTAxHjx5lypQpnDp1Kt86zs7OrFu3joiICMLCwvDx8cnTW1eU2CZMmMC8efP4+eefiYyMZNKkSYSHhzN69Ogixz9mzBh+//13rl69yp9//smBAwdUf4fPKz09ncGDB6v+/qZPn46vr+8z5+Po6upibGystslQNSFeD1v33qH3O1Y0qmuEU0Vd/IZU4m5SJsf+TFaVmeNXmXdaPR3Wu2XPHapX0adnJ0tsrXRo0ciEDl7m7PgjNzFKfZzNXxdTGNTDFndXA6wraNOmmSmtm5px9F/tCiGEeH7FSnL8/PzQ1NSkRo0aWFpakp6eTmhoKFlZWbRr1w53d3fGjBmDqakpGhoaaGhosGHDBk6fPk2tWrUYO3YsX375pVqbOjo67NmzBysrKzp27Ii7uztz585FU1OzyHHNnj2bqVOn4u/vj5ubG97e3uzcuZPKlSsX5/ZUNDU1uXv3Lv369cPFxYWePXvSoUMH1ZCjpk2bMnz4cHr16oWlpSXz588HIDAwEHt7e5o3b07fvn3x8/NTm79haGjI9u3bOXfuHB4eHkyZMiXPsLQnPRgFPdOiCgwMZO/evdjb2+eZm1RUCoWCXbt28fbbbzNw4EBcXFzo3bs3165dw9raOt86q1atIjExkXr16vHhhx8yatQorKysih3bqFGjGDduHOPHj8fd3Z3g4GC2bdumtgBEYbKyshg5cqTq34SLiwtff/110R9APlq3bo2zszNvv/02vXr14t1331VbvlsIUb5s3H2H7fvv8En/iiyaVg09PU2mLbiq9o4cWysdTIye/s6Kiknl86+u0aKRKd/MdqZ3ZyuW/3STkONJqjLzvr1OVMwjJgyz59vPXejR0ZLvN99iV0jBPURCiDdbTk5OiW3lkSKnvN6ZEC/ZgAEDSEpKyvMupOfRcdC5Fw9ICCGEEK/UrtXupXbtpTtL7iP7J53K31hZWfNWCCGEEEIIUa68sUlOzZo1MTQ0zHdbv359aYf30r1p9yuEEEIIUZ5kZ5fcVh690BLSr7Ndu3YVuLxzQfNNXmdv2v2WhDVr1pR2CEIIIYQQogje2CSnoBc3lldv2v0KIYQQQpQnMou+eN7Y4WpCCCGEEEKI8umN7ckRQgghhBDidSEvAy0e6ckRQgghhBBClCvSkyNEKchISy/tEIQQQgjxGpE5OcUjSY4QQgghhBBlXE6JjleTl4EKIYQQQgghRKHu3buHj48PxsbGmJqaMnjwYFJSUopUNycnhw4dOqBQKNi6dWuxry1JjhBCCCGEEGVcdk7JbSXFx8eHv//+m71797Jjxw4OHTrEsGHDilR30aJFKBTP38MkSc4brkWLFowZM6ZE2o6JiUGhUBAeHl4i7b8qTk5OLFq0qLTDEEIIIYR4bURERBAcHMzKlStp1KgRb731FkuXLmXDhg3cvHnzmXXDw8MJDAxk9erVz319mZMjSoy9vT1xcXFUqFChtEMRQogX0r+7LR1aWmJooMnfl1JYsjqWG7fSCiy/blEtbCx18xzftjeBpWuuA9CxZQVaNTWnWmV9DJSadBkazsNHWSV2D0KI11tJLjyQlpZGWpr6zzRdXV10dfP+HCuqY8eOYWpqiqenp+pYmzZt0NDQICwsjK5du+Zb79GjR/Tt25evvvoKGxub576+9OSIEqOpqYmNjQ1aWpJLCyFeX73esaZLeysWB13jk2kXeZyWjf8kZ7S1Cx5G4Tv1Ij1HnFVtE+dcAuBgWKKqjK6uBif/us9Pv8WV+D0IIcSz+Pv7Y2Jiorb5+/u/UJvx8fFYWVmpHdPS0sLc3Jz4+PgC640dO5amTZvy3nvvvdD1JckRZGZm4uvri4mJCRUqVGDq1Knk/P/XBevWrcPT0xMjIyNsbGzo27cvCQkJqrqJiYn4+PhgaWmJUqnE2dmZoKAgIP/han///TfvvPMOxsbGGBkZ0bx5c6KjowuNccCAAXTp0oWAgABsbW2xsLBg5MiRZGRkqMqkpaXh5+dHxYoVMTAwoFGjRoSEhKi1c+TIEZo3b45SqcTe3p5Ro0bx8OFD1fmEhAQ6d+6MUqmkcuXKrF+/Xq1+Tk4OM2bMwMHBAV1dXezs7Bg1alSRn7UQ4vXT1dua9VvjOXb6PlevpzLvm6tYmGrTrL5pgXXuP8gk8f7TrbGHCTfiH/NXxNMJt1uCE/h5+y0iLj8ssB0hhHgiOzunxLbJkydz//59tW3y5Mn5xjFp0iQUCsUzt4sXLz7XPW7bto0//vjjpUwTkK/YBWvXrmXw4MGcOHGCU6dOMWzYMBwcHBg6dCgZGRnMnj0bV1dXEhISGDduHAMGDGDXrl0ATJ06lQsXLrB7924qVKjA5cuXSU1Nzfc6N27c4O2336ZFixb88ccfGBsbExoaSmZmZpHiPHDgALa2thw4cIDLly/Tq1cv6taty9ChQwHw9fXlwoULbNiwATs7O7Zs2YK3tzfnzp3D2dmZ6OhovL29+fzzz1m9ejW3b9/G19cXX19fVWI2YMAAbt68yYEDB9DW1mbUqFFqSd2mTZtYuHAhGzZsoGbNmsTHx3P27NkXefxCiDLMxlIHCzNtzvydrDr2KDWbi9EPqeFsQMjxxGfUzqWlqaD1WxZs2nWrJEMVQojnVpyhaePHj2fAgAHPLFOlShVsbGzUPkNB7hfr9+7dK3AY2h9//EF0dDSmpqZqx7t3707z5s3zfHn9LJLkCOzt7Vm4cCEKhQJXV1fOnTvHwoULGTp0KIMGDVKVq1KlCkuWLKFBgwakpKRgaGhIbGwsHh4eqvGWTk5OBV7nq6++wsTEhA0bNqCtrQ2Ai4tLkeM0MzNj2bJlaGpqUr16dTp16sT+/fsZOnQosbGxBAUFERsbi52dHQB+fn4EBwcTFBTEnDlz8Pf3x8fHR7XQgrOzM0uWLMHLy4tvvvmG2NhYdu/ezYkTJ2jQoAEAq1atws3NTRVDbGwsNjY2tGnTBm1tbRwcHGjYsGGR70EI8XoxN839WZV4P0PteOL9DMz+/1xhmnqaYqivyZ5Dd196fEKIN0dZeRmopaUllpaWhZZr0qQJSUlJnD59mvr16wO5SUx2djaNGjXKt86kSZMYMmSI2jF3d3cWLlxI586dixWnJDmCxo0bqy3R16RJEwIDA8nKyiI8PJwZM2Zw9uxZEhMTyc7OBnI/7NeoUYOPP/6Y7t278+eff9KuXTu6dOlC06ZN871OeHg4zZs3VyU4xVWzZk00NTVV+7a2tpw7dw6Ac+fOkZWVlSdpSktLw8LCAoCzZ8/y119/qQ1By8nJITs7m6tXr3Lp0iW0tLRU/xEBqlevrvZtQo8ePVi0aBFVqlTB29ubjh070rlz52fOO8pvMl92VjoamjrFfwhCiBLVqqk5YwY7qPY/+/LyC7fZoYUFJ87e525SRuGFhRCiAGUlySkqNzc3vL29GTp0KN9++y0ZGRn4+vrSu3dv1RfSN27coHXr1nz//fc0bNgQGxubfHt5HBwcqFy5crGuL0mOKNDjx49p37497du3Z/369VhaWhIbG0v79u1JT08HoEOHDly7do1du3axd+9eWrduzciRIwkICMjTnlKpfKF4/pscKRQKVdKVkpKCpqYmp0+fVkuEAAwNDVVlPvroo3zn0Dg4OHDp0qVCY7C3tycyMpJ9+/axd+9eRowYwZdffsnBgwcLTN78/f2ZOXOm2rHKtYZStfZHhV5PCPFqHfsziYvRT+fIaGvlfgFkZqLNvaSnQ2vNTLSJvvao0PasKujgUcuYmYsKn3sohBDlzfr16/H19aV169ZoaGjQvXt3lixZojqfkZFBZGQkjx4V/vO0uCTJEYSFhantHz9+HGdnZy5evMjdu3eZO3cu9vb2AJw6dSpPfUtLS/r370///v1p3rw5EyZMyDfJqV27NmvXriUjI+O5e3MK4uHhQVZWFgkJCTRv3jzfMvXq1ePChQtUq1Yt3/PVq1cnMzOT06dPq4arRUZGkpSUpFZOqVTSuXNnOnfuzMiRI6levTrnzp2jXr16+bY7efJkxo0bp3as67C/i3mHQohXIfVxNqmP1Xte7yZm4FHTiOhrufMN9ZUaVK9qwPZ9twttr/3bFiTdzyTszP0SiVcI8ebIft26cgBzc3N+/PHHAs87OTmpFrsqSGHnCyKrqwliY2MZN24ckZGR/PTTTyxdupTRo0fj4OCAjo4OS5cu5cqVK2zbto3Zs2er1Z02bRq//fYbly9f5u+//2bHjh1qc1j+zdfXl+TkZHr37s2pU6eIiopi3bp1REZGvvA9uLi44OPjQ79+/di8eTNXr17lxIkT+Pv7s3PnTgA+/fRTjh49iq+vL+Hh4URFRfHbb7/h6+sLgKurK97e3nz00UeEhYVx+vRphgwZotYDtWbNGlatWsX58+e5cuUKP/zwA0qlEkdHxwJj09XVxdjYWG2ToWpCvD62BN+ibxdbmtQzwclej4nDK3M3KYPQ00mqMvMnO/NeW/Ux6goFtPeyYO/hu/x/p7MaMxMtqjoqqWidO9m3sr2Sqo5KjAw08xYWQghRLNKTI+jXrx+pqak0bNgQTU1NRo8ezbBhw1AoFKxZs4b//e9/LFmyhHr16hEQEMC7776rqqujo8PkyZOJiYlBqVTSvHlzNmzYkO91LCws+OOPP5gwYQJeXl5oampSt25dmjVr9lLuIygoiM8//5zx48dz48YNKlSoQOPGjXnnnXeA3J6kgwcPMmXKFJo3b05OTg5Vq1alV69eam0MGTIELy8vrK2t+fzzz5k6darqvKmpKXPnzmXcuHFkZWXh7u7O9u3bVfN+hBDlz887bqGnq8GYwY4Y6mty/lIKk+dFkZHx9NtFW2tdjI3Uf6XWq2WEdQVdgg/eybfdd1pb0q+7nWp/4TRXAL5cHiOLFAgh8sjJ58sSUTBFzvP2AQkhnltbn9OlHYIQQgghimnv+vqFFyohs9YX7ZUbz2OaT/nr9yh/dySEEEIIIUQ5I/0SxSNzckSZYGhoWOB2+PDh0g5PCCGEEEK8RqQnR5QJ4eHhBZ6rWLHiqwtECCGEEKIMym8BE1EwSXJEmVDQss5CCCGEEEKGqxWXDFcTQgghhBBClCvSkyOEEEIIIUQZly0dOcUiPTlCCCGEEEKIckV6coQoBTnydYwQQgghikE+OxSP9OQIIYQQQgghyhXpyRFCCCGEEKKMk8XVikd6coQQQgghhBDliiQ54o0QHx9P27ZtMTAwwNTUtLTDEUIIIYQoluzsnBLbyiMZribeCAsXLiQuLo7w8HBMTEyKVGfGjBls3bqV8PDwkg1OCFHm9X/fjo6tKmBooMXfkSksXn2NG/FpBZb/YYk7Npa6eY7/tieBpUGxAHRqVYFWzSyo5qSPgb4m7w0+w8NHWSV2D0II8SaRJEe8EaKjo6lfvz7Ozs6lHYoQ4jXTq7MNXb2tmP9NDHG30xjYw465k1wYNOE8GRn5fwM6ckoEGv8aK1HZXsn8Ka4cOp6oOqarq8HJs/c5efY+Q/pUKunbEEK85nJkUk6xyHA18drYuHEj7u7uKJVKLCwsaNOmDQ8fPuTkyZO0bduWChUqYGJigpeXF3/++aeqnpOTE5s2beL7779HoVAwYMAAAJKSkhgyZAiWlpYYGxvTqlUrzp49C8CaNWuYOXMmZ8+eRaFQoFAoWLNmDYMGDeKdd95RiysjIwMrKytWrVr1yp6FEOLV6dbBivVb4jh6OomrsanM+zoGCzNtmnmaFljn/oNMEu8/3RrVM+VG/GPORjxQldm8O4EN2+KJiHr4Cu5CCPG6y8kuua08kp4c8VqIi4ujT58+zJ8/n65du/LgwQMOHz5MTk4ODx48oH///ixdupScnBwCAwPp2LEjUVFRGBkZcfLkSfr164exsTGLFy9GqVQC0KNHD5RKJbt378bExITly5fTunVrLl26RK9evTh//jzBwcHs27cPABMTE1xcXHj77beJi4vD1tYWgB07dvDo0SN69epVas9HCFEybK10sDDT4c/zyapjD1OziIh+SA1nQ0KOJT6jdi4tTQVt3jJn485bJRmqEEKIf5EkR7wW4uLiyMzMpFu3bjg6OgLg7u4OQKtWrdTKfvfdd5iamnLw4EHeeecdLC0t0dXVRalUYmNjA8CRI0c4ceIECQkJ6OrmjpsPCAhg69atbNy4kWHDhmFoaIiWlpaqDkDTpk1xdXVl3bp1TJw4EYCgoCB69OiBoaFhiT8HIcSrZWaiDUDi/Uy140n3MzA31S5SG80amGKor8WeQ3dfenxCiDdHtgxXKxYZriZeC3Xq1KF169a4u7vTo0cPVqxYQWJi7jeot27dYujQoTg7O2NiYoKxsTEpKSnExsYW2N7Zs2dJSUnBwsICQ0ND1Xb16lWio6OfGcuQIUMICgpSXXv37t0MGjSowPJpaWkkJyerbdlZ6c/xFIQQJa1VM3O2B3moNi0txQu32aFFBU6E3+duYsZLiFAIIURRSE+OeC1oamqyd+9ejh49yp49e1i6dClTpkwhLCyMjz/+mLt377J48WIcHR3R1dWlSZMmpKcXnEikpKRga2tLSEhInnOFLTHdr18/Jk2axLFjxzh69CiVK1emefPmBZb39/dn5syZascq1xxKFfdhz7yOEOLVO3Y6iYuXn86R0dbOTXLMTLS4l/Q0STE10SY65lGh7VlV0MHD3ZiZC5795YkQQhRGFh4oHklyxGtDoVDQrFkzmjVrxrRp03B0dGTLli2Ehoby9ddf07FjRwCuX7/OnTt3ntlWvXr1iI+PR0tLCycnp3zL6OjokJWVdzlXCwsLunTpQlBQEMeOHWPgwIHPvNbkyZMZN26c2rEuQ84/s44QonSkPs4m9bH60tB3E9PxqGVM9LVUAPSVGrhVNWD73oRC2/P2qkDS/QyOn0kqiXCFEEIUQJIc8VoICwtj//79tGvXDisrK8LCwrh9+zZubm44Ozuzbt06PD09SU5OZsKECarFBQrSpk0bmjRpQpcuXZg/fz4uLi7cvHmTnTt30rVrVzw9PXFycuLq1auEh4dTqVIljIyMVPN3hgwZwjvvvENWVhb9+/d/5rV0dXVV9Z7Q0NR5sQcihHhlNu9OwKeLLTfiHxOfkM6AHnbcTcwg9FSSqsz8KS6Enkzktz23VccUCmjvZcHeQ3fJzmf1IjMTLcxNtbGzyf35UNleSerjLBLupPPgobwvRwihrry+tLOkSJIjXgvGxsYcOnSIRYsWkZycjKOjI4GBgXTo0AEbGxuGDRtGvXr1sLe3Z86cOfj5+T2zPYVCwa5du5gyZQoDBw7k9u3b2NjY8Pbbb2NtbQ1A9+7d2bx5My1btiQpKYmgoCDV8tNt2rTB1taWmjVrYmdnV9K3L4QoRT9vj0dPV4OxQ5ww1NfkfGQKk+ZeUntHjp21LiZG6gsR1KtljLWlLrtD8u9Z7tzGin7vP/35sWhGdQDmf3NVFikQQogXpMiRAX5CFFtKSgoVK1YkKCiIbt26Fbt+mz6nSiAqIYQQQpSkfT95ltq1xyxNKbG2F31S/laIlZ4cIYohOzubO3fuEBgYiKmpKe+++25phySEEEKIN0CODFcrFklyhCiG2NhYKleuTKVKlVizZg1aWvJfSAghhBCirJFPaEIUg5OTkyzhKIQQQohXTl4GWjzyMlAhhBBCCCFEuSI9OUIIIYQQQpRxMieneKQnRwghhBBCCFGuSE+OEEIIIYQQZZz05BSPJDlClIKsLHmbuRBCCCFESZEkRwghhBBCiDJOOnKKR5IcIYQQQgghyjgZrlY8svCAEEIIIYQQolyRnhwhhBBCCCHKOHkZefFIT84LcnJyYtGiRSV+HYVCwdatW0v8Oi9q69atVKtWDU1NTcaMGVPa4QghhBBCiDeQ9OS8JuLi4jAzMyvtMAr10UcfMXDgQEaNGoWRkVFphyOEEC/FwJ4V6dTaCkMDLc5ffMDClVe5EZ9WYPmfltXFxko3z/Gtv99i8aoYjAw0GdCzEp51TLCuoEtScgahJxNZveEfHqbK6otCiLyyZU5OsUiS85qwsbEp7RCeKSMjg7S0NBISEmjfvj12dnbP3VZ6ejo6OjovMTohhHh+vd+zpVsHG+Z+dYW4hMcM6mXP/CnVGTDuLzIy8v/QMXzyeTQ0FKr9yg5KAqe6EXLsLgAW5jpUMNfh23WxXPsnFesKuowd6oSFmQ4zFkS9kvsSQojyrFwNVwsODuatt97C1NQUCwsL3nnnHaKjo1Xn//nnH/r06YO5uTkGBgZ4enoSFhYGQHR0NO+99x7W1tYYGhrSoEED9u3bp9Z+QkICnTt3RqlUUrlyZdavX58nhqSkJIYMGYKlpSXGxsa0atWKs2fPqs7PmDGDunXrsnr1ahwcHDA0NGTEiBFkZWUxf/58bGxssLKy4osvvlBr97/D1Z51L8/y5PrLly/H3t4efX19evbsyf3799XKrVy5Ejc3N/T09KhevTpff/216lxMTAwKhYKff/4ZLy8v9PT0WL9+varnplWrVigUCkJCQgDYtGkTNWvWRFdXFycnJwIDA9Wu5eTkxOzZs+nXrx/GxsYMGzaMNWvWYGpqyo4dO3B1dUVfX5/333+fR48esXbtWpycnDAzM2PUqFFq75xZt24dnp6eGBkZYWNjQ9++fUlISFCdDwkJQaFQsH//fjw9PdHX16dp06ZERkaqxbR9+3YaNGiAnp4eFSpUoGvXrqpzaWlp+Pn5UbFiRQwMDGjUqJHqXoUQ5c/7HW1Yt/kGoacSuRKbiv+yaCqY6fBWg4J71+8/yCTxfoZqa1LPlBvxjzl74QEAMddTmR4YxbHTSdy8lcaZv5NZteEfmtQ3RaNc/WYWQrwsOTk5JbaVR+XqR+nDhw8ZN24cp06dYv/+/WhoaNC1a1eys7NJSUnBy8uLGzdusG3bNs6ePcvEiRPJzs4GICUlhY4dO7J//37OnDmDt7c3nTt3JjY2VtX+gAEDuH79OgcOHGDjxo18/fXXah+gAXr06EFCQgK7d+/m9OnT1KtXj9atW3Pv3j1VmejoaHbv3k1wcDA//fQTq1atolOnTvzzzz8cPHiQefPm8dlnnxWYtBR2L4W5fPkyv/zyC9u3byc4OJgzZ84wYsQI1fn169czbdo0vvjiCyIiIpgzZw5Tp05l7dq1au1MmjSJ0aNHExERQcuWLVWJwqZNm4iLi6Np06acPn2anj170rt3b86dO8eMGTOYOnUqa9asUWsrICCAOnXqcObMGaZOnQrAo0ePWLJkCRs2bCA4OJiQkBC6du3Krl272LVrF+vWrWP58uVs3LhR1U5GRgazZ8/m7NmzbN26lZiYGAYMGJDnGUyZMoXAwEBOnTqFlpYWgwYNUp3buXMnXbt2pWPHjpw5c4b9+/fTsGFD1XlfX1+OHTvGhg0b+Ouvv+jRowfe3t5ERcm3r0KUN7ZWuliY6XD6r2TVsYepWURcTqGmS9GG5GppKmjbvAK7D9x+ZjkDfU0epWZRxB/lQgghnqFcDVfr3r272v7q1auxtLTkwoULHD16lNu3b3Py5EnMzc0BqFatmqpsnTp1qFOnjmp/9uzZbNmyhW3btuHr68ulS5fYvXs3J06coEGDBgCsWrUKNzc3VZ0jR45w4sQJEhIS0NXNHYsdEBDA1q1b2bhxI8OGDQMgOzub1atXY2RkRI0aNVQJwq5du9DQ0MDV1ZV58+Zx4MABGjVqlOc+f/zxx2feS2EeP37M999/T8WKFQFYunQpnTp1IjAwEBsbG6ZPn05gYCDdunUDoHLlyly4cIHly5fTv39/VTtjxoxRlYHcXiwAc3Nz1fC6BQsW0Lp1a1Xi4uLiwoULF/jyyy/Vko9WrVoxfvx41f7hw4fJyMjgm2++oWrVqgC8//77rFu3jlu3bmFoaKh6dgcOHKBXr14AaslKlSpVWLJkCQ0aNCAlJQVDQ0PVuS+++AIvLy8gN1nr1KkTjx8/Rk9Pjy+++ILevXszc+ZMVfkn/zZiY2MJCgoiNjZWNSTPz8+P4OBggoKCmDNnTp7nnZaWRlqa+tj97Kx0NDRlSJ4QZZ25qTYAifcz1I4n3s9QnSvMWw3NMDTQIjik4CTH2EiLD7tXZMe+hALLCCHebPKenOIpVz05UVFR9OnThypVqmBsbIyTkxOQ+8E0PDwcDw8PVVLwXykpKfj5+eHm5oapqSmGhoZERESoenIiIiLQ0tKifv36qjrVq1fH1NRUtX/27FlSUlKwsLDA0NBQtV29elVt2JyTk5PapHxra2tq1KiBxr/GKFhbW+fpJXqisHspjIODgyrBAWjSpAnZ2dlERkby8OFDoqOjGTx4sNo9fP7552r3AODp6VnotSIiImjWrJnasWbNmhEVFaU2zCy/tvT19VUJDuQ+EycnJ7Vk5b/P6fTp03Tu3BkHBweMjIxUicy/e+QAateurfqzra0tgKqd8PBwWrdune/9nDt3jqysLFxcXNSez8GDB/M8nyf8/f0xMTFR265dXJtvWSFE6WrzlgW7vvdUbVqaisIrFaJjS0vCwpO4m5iR73l9pSZzJ7ly7Z9U1vx644WvJ4Qon3Kyc0psK4/KVU9O586dcXR0ZMWKFdjZ2ZGdnU2tWrVIT09HqVQ+s66fnx979+4lICCAatWqoVQqef/990lPTy/y9VNSUrC1tc13fsa/kyFtbfVv/xQKRb7HChp+Vti9vIiUlBQAVqxYkacXSVNTU23fwMDgpV03v7aK+5wePnxI+/btad++PevXr8fS0pLY2Fjat2+f5+/x3+0oFLkfYp6086znm5KSgqamJqdPn87zPP6dfP3b5MmTGTdunNqxzgPP5ltWCFG6Qk8lciEqRbWvo5375ZOZiTb3kp4mKWYm2lyOeVRoe9YVdKhX24TpAfkPZ1XqaTDvf648Ss1iasAlsrLK54cNIYR41cpNknP37l0iIyNZsWIFzZs3B3KHjz1Ru3ZtVq5cyb179/LtAQkNDWXAgAGqCeYpKSnExMSozlevXp3MzExOnz6tGq4WGRmpGqIFUK9ePeLj49HS0lL1IpWEwu6lMLGxsdy8eVM13Or48eOqYXLW1tbY2dlx5coVfHx8XjhWNzc3QkND1Y6Fhobi4uKSJ0l4URcvXuTu3bvMnTsXe3t7AE6dOlXsdmrXrs3+/fsZOHBgnnMeHh5kZWWRkJCg+ndWGF1dXdXwxSdkqJoQZVPq42xSH6sPL72bmE49d2Oir+UmNfpKTdyqGfLbnluFtufd0pKk+xkc+zMxzzl9pSbzp7iSkZHDlPmXClypTQghALLL6QIBJaXcDFczMzPDwsKC7777jsuXL/PHH3+ofXvep08fbGxs6NKlC6GhoVy5coVNmzZx7NgxAJydndm8eTPh4eGcPXuWvn37qvWkuLq64u3tzUcffURYWBinT59myJAhat/6t2nThiZNmtClSxf27NlDTEwMR48eZcqUKc/1Ybsghd1LYfT09Ojfvz9nz57l8OHDjBo1ip49e6rm0cycORN/f3+WLFnCpUuXOHfuHEFBQSxYsKDYsY4fP579+/cze/ZsLl26xNq1a1m2bBl+fn7FbqswDg4O6OjosHTpUq5cucK2bduYPXt2sduZPn06P/30E9OnTyciIoJz584xb948IHdOkY+PD/369WPz5s1cvXqVEydO4O/vz86dO1/2LQkhyoCNu+L5sFtFmtY3pbK9ksm+VbiTmM6Rk08Tl8Cp1enS3lqtnkIB3i0s+f3gnTyLCegrNflySnX0dDX58tsr6Cs1MTPRxsxEG40XHyEnhBBvvHKT5GhoaLBhwwZOnz5NrVq1GDt2LF9++aXqvI6ODnv27MHKyoqOHTvi7u7O3LlzVb0JCxYswMzMjKZNm9K5c2fat29PvXr11K4RFBSEnZ0dXl5edOvWjWHDhmFlZaU6r1Ao2LVrF2+//TYDBw7ExcWF3r17c+3aNayt1X/5vYjC7qUw1apVo1u3bnTs2JF27dpRu3ZttSWihwwZwsqVKwkKCsLd3R0vLy/WrFlD5cqVix1rvXr1+OWXX9iwYQO1atVi2rRpzJo1K98Vz16UpaUla9as4ddff6VGjRrMnTuXgICAYrfTokULfv31V7Zt20bdunVp1aoVJ06cUJ0PCgqiX79+jB8/HldXV7p06cLJkydxcHB4mbcjhCgjNvwWx5bgeMZ/VJlv/Wuh1NXk0zmRaj0vdtZ6mBirD46o726CjaVuvquqOVfWp4aLIVUd9Vm/tC6bV9RTbZYVpKdXCJGXzMkpHkVOeV0cW+RrxowZbN26lfDw8NIO5Y3Wsmfh7zQSQgghRNly4Je8q96+Kv2nxZdY22tnle2Xzj+PctOTI4QQQgghRHn1Or4M9N69e/j4+GBsbIypqSmDBw9WLXL1LMeOHaNVq1YYGBhgbGzM22+/TWpqarGuLUlOOVOzZk21pY3/va1fv760wxNCCCGEEG8IHx8f/v77b/bu3cuOHTs4dOiQ6r2RBTl27Bje3t60a9eOEydOcPLkSXx9fdVetVIUMlytnLl27RoZGfm/i8Ha2lrt/Tyi9MhwNSGEEOL1U5rD1T6YcrPE2v7hC7uX3mZERAQ1atTg5MmTqvchBgcH07FjR/755x/VKr//1bhxY9q2bftci0f9W7lZQlrkcnR0LO0QhBBCCCHES1aSCwSkpaWRlqa+fH5+r8AojmPHjmFqaqr2wvc2bdqgoaFBWFiY6rUt/5aQkEBYWBg+Pj40bdqU6OhoqlevzhdffMFbb71VrOvLcDUhhBBCCCHeYP7+/piYmKht/v7+L9RmfHy82irEAFpaWpibmxMfn/8iCleuXAFyF8oaOnQowcHB1KtXj9atWxMVlf9LlQsiSY4QQgghhBBlXEkuPDB58mTu37+vtk2ePDnfOCZNmoRCoXjmdvHixee6xyfvqPzoo48YOHAgHh4eLFy4EFdXV1avXl2stmS4mhClIDMtvbRDEEIIIYQAijc0bfz48YW+77BKlSrY2NiQkJCgdjwzM5N79+6pXkD/X7a2tgDUqFFD7bibmxuxsbFFiu8JSXKEEEIIIYQo43L+v5ejtFlaWmJpaVlouSZNmpCUlMTp06epX78+AH/88QfZ2dk0apT/Ag5OTk7Y2dkRGRmpdvzSpUt06NChWHHKcDUhhBBCCCHES+Xm5oa3tzdDhw7lxIkThIaG4uvrS+/evVUrq924cYPq1atz4sQJABQKBRMmTGDJkiVs3LiRy5cvM3XqVC5evMjgwYOLdX3pyRFCCCGEEKKMyy7B1dVKyvr16/H19aV169ZoaGjQvXt3lixZojqfkZFBZGQkjx49Uh0bM2YMjx8/ZuzYsdy7d486deqwd+9eqlatWqxry3tyhCgFzd87XNohCCGEEKKYDv/WvNSu3cvvWom1/XNA+XsFiQxXe8MNGDCALl26lHYYpeK/996iRQvGjBlTavEIIYQQQhSkJFdXK49kuJoQ/2/z5s1oa2ur9p2cnBgzZowkPkIIBvd1pHNbGwwNNDl3MZnAby7zT9zjAsv/8l0DbK318hzfvOsmC5dHA7Dkc3c83E3Vzm8NjiPwm8svNXYhRPlQki8DLY8kyRHi/5mbm5d2CEKIMqhvt0p072THnMWRxN16zGAfJwJn1OJD39OkZ+T/oWOYXzga/xorUdnRgEWz3DkQeket3Lbf41j149MhKI/TysbqSUII8bqT4WpviI0bN+Lu7o5SqcTCwoI2bdrw8OHDPOWys7Px9/encuXKKJVK6tSpw8aNG9XKnD9/ng4dOmBoaIi1tTUffvghd+48/cXdokULfH198fX1xcTEhAoVKjB16tQid4cmJCTQuXNnlEollStXZv369Tg5ObFo0SIAYmJiUCgUhIeHq+okJSWhUCgICQkBICsri8GDB6vuw9XVlcWLFz/zuv8ertaiRQuuXbvG2LFjVS+2evjwIcbGxnmex9atWzEwMODBgwdFuj8hxOulZ+eKfP9rLEdO3CP62iO+WBSJhbkuzRtXKLBOUnIG95Kebk09zfknLpXw8/fVyj1Oy1Yr9yg1q6RvRwjxmsrJzimxrTySJOcNEBcXR58+fRg0aBARERGEhITQrVu3fJMOf39/vv/+e7799lv+/vtvxo4dywcffMDBgweB3GSiVatWeHh4cOrUKYKDg7l16xY9e/ZUa2ft2rVoaWlx4sQJFi9ezIIFC1i5cmWR4h0wYADXr1/nwIEDbNy4ka+//jrPy6QKk52dTaVKlfj111+5cOEC06ZN43//+x+//PJLkepv3ryZSpUqMWvWLOLi4oiLi8PAwIDevXsTFBSkVjYoKIj3338fIyOjYsUohCj7bK31sDDX4dTZJNWxh4+yiLj0gJquRfs/r6WloF0LK3btu5XnXDsvK7ava8zaJfX46EMndHXk17IQQrwMMlztDRAXF0dmZibdunXD0TF39Qx3d/c85dLS0pgzZw779u2jSZMmQO4ba48cOcLy5cvx8vJi2bJleHh4MGfOHFW91atXY29vz6VLl3BxcQHA3t6ehQsXolAocHV15dy5cyxcuJChQ4c+M9ZLly6xe/duTpw4QYMGDQBYtWoVbm5uxbpnbW1tZs6cqdqvXLkyx44d45dffsmTkOXH3NwcTU1NjIyM1N7KO2TIEJo2bUpcXBy2trYkJCSwa9cu9u3bV2BbaWlppKWlqR3LzkpHQ1OnWPckhHj1LMxy5+klJqWrHb+XlI65WdH+DzdvZIGhgRa7/lBPcvYeus2t29e5cy+dqk4GDO9XGfuKSj6bG/FyghdClCvZOTKctTjkK6M3QJ06dWjdujXu7u706NGDFStWkJiYmKfc5cuXefToEW3btsXQ0FC1ff/990RH506UPXv2LAcOHFA7X716dQBVGYDGjRujUChU+02aNCEqKoqsrGcPxYiIiEBLS0v1ZlyA6tWrY2pqWuz7/uqrr6hfvz6WlpYYGhry3XffERsbW+x2/q1hw4bUrFmTtWvXAvDDDz/g6OjI22+/XWAdf39/TExM1LbrUT+8UBxCiJLR1suS3zc0VW1ami/+a/KdtjaEnb7H3XvqidL2PfGcOJPElWuP2HvwNl8sisSrSQXsbPIuWCCEEKJ4pCfnDaCpqcnevXs5evQoe/bsYenSpUyZMoWwsDC1cikpKQDs3LmTihUrqp3T1dVVlencuTPz5s3Lcx1bW9sSugN1Gv8/m/ffw+0yMjLUymzYsAE/Pz8CAwNp0qQJRkZGfPnll3nu+XkMGTKEr776ikmTJhEUFMTAgQPVErr/mjx5MuPGjVM71qHvyReOQwjx8h05cY8LkX+q9rW1c3/emJnqcDfx6c8Zc1Mdoq6mFNqetaUu9Wub8tncC4WWvXApd15fJVs9bsYXvHKbEOLNVF7nzpQUSXLeEAqFgmbNmtGsWTOmTZuGo6MjW7ZsUStTo0YNdHV1iY2NxcvLK9926tWrx6ZNm3ByckJLq+B/Pv9NJo4fP46zszOamprPjLN69epkZmZy+vRp1XC1yMhIkpKSVGUsLS2B3GF4Hh4eAGqLEACEhobStGlTRowYoTr2756motDR0cm35+mDDz5g4sSJLFmyhAsXLtC/f/9ntqOrq6tKEp+QoWpClE2pqVnc+M/k/7v30qlf25TLV3MXa9FXauLmYsTW4LhC2+vY2pqk+xkcO3Wv0LLOlQ1V1xNCCPFiZLjaGyAsLIw5c+Zw6tQpYmNj2bx5M7dv384zz8XIyAg/Pz/Gjh3L2rVriY6O5s8//2Tp0qWq4VkjR47k3r179OnTh5MnTxIdHc3vv//OwIED1RKC2NhYxo0bR2RkJD/99BNLly5l9OjRhcbq6uqKt7c3H330EWFhYZw+fZohQ4agVCpVZZRKJY0bN2bu3LlERERw8OBBPvvsM7V2nJ2dOXXqFL///juXLl1i6tSpnDxZvN4TJycnDh06xI0bN9RWjzMzM6Nbt25MmDCBdu3aUalSpWK1K4R4vfyy/Qb9e9rTrKE5VRz1+WyMC3fvpXH4+NOfC4tmudOto3pvtkKRm+TsPnCLrP8Mpbez0aN/T3tcqhpiY6VLs4bmTBnjQvj5+0Rfe/QqbksI8ZqR1dWKR3py3gDGxsYcOnSIRYsWkZycjKOjI4GBgXTo0IGff/5Zrezs2bOxtLTE39+fK1euYGpqSr169fjf//4HgJ2dHaGhoXz66ae0a9eOtLQ0HB0d8fb2Vg0jA+jXrx+pqak0bNgQTU1NRo8ezbBhw4oUb1BQEEOGDMHLywtra2s+//xzpk6dqlZm9erVDB48mPr16+Pq6sr8+fNp166d6vxHH33EmTNn6NWrFwqFgj59+jBixAh2795d5Oc2a9YsPvroI6pWrUpaWpra8LjBgwfz448/MmjQoCK3J4R4Pf24+R+UeppMGOGMoYEW5yLu4zfzb7V35NjZ6GFirK1Wz7OOKTZWevmuqpaZmY1nHTN6dK6Inp4mCXfSOHjsDmt/uV7i9yOEeD0V9VUcIpciR56YeMlatGhB3bp1Ve+1eRmcnJwYM2aM6j02pW3dunWMHTuWmzdvoqNT/KFnzd87XAJRCSGEEKIkHf6teald+72PI0us7d++cS2xtkuL9OQIUQyPHj0iLi6OuXPn8tFHHz1XgiOEEEIIUVzZ2bKEdHHInBzxSh0+fFht+en/bmXd/PnzqV69OjY2NkyePLm0wxFCCCGEEPmQ4WrilUpNTeXGjRsFnq9WrdorjKb0yHA1IYQQ4vVTmsPV3hla+FL0z2vHihol1nZpkeFq4pVSKpVvTCIjhBBCCCFKhyQ5QgghhBBClHE5OTInpzhkTo4QQgghhBCiXJGeHCFKQY6skCKEEEKIYiivL+0sKZLkCCGEEEIIUcZJklM8MlxNCCGEEEIIUa5IT44QQgghhBBlXLYsPFAs0pMjhBBCCCGEKFckyREvLCYmBoVCQXh4uOpYaGgo7u7uaGtr06VLl1KLTQghhBCiPMjJzimxrTyS4WqiRIwbN466deuye/duDA0NS/RaAwYMICkpia1bt5bodYQQb67BPk50bmeDkYEW5yKSCfg6in/iUgss/+vKRtha6+U5vnnnDRZ8e1m1X9PVmGEfOlHD1Zjs7ByirqQwbvo50tNlWIoQQrwISXJEiYiOjmb48OFUqlSptEMRQogX4tPdnvffqcgXiy4Sd+sxQ3ycWDDLnQ9GnCQ9I/9vQIeO+xONf42VqOJowKLP63DgyG3VsZquxgTOdOeHjbEs+u4ymVk5OFc2LLffqgohXoy8fqJ4ZLiaUNm4cSPu7u4olUosLCxo06YNDx8+BGDlypW4ubmhp6dH9erV+frrr/Nt48nQtbt37zJo0CAUCgVr1qwp9Nrnz5+nQ4cOGBoaYm1tzYcffsidO3cKjW3GjBmsXbuW3377DYVCgUKhICQkBIDr16/Ts2dPTE1NMTc357333iMmJkbtus+6ryf38ssvv9C8eXOUSiUNGjTg0qVLnDx5Ek9PTwwNDenQoQO3b99GCFE+9Xi3It//co0jYXeJjnnI5wsvYmGuS/PGFQqsk5Scwb2kp1vTBhb8czOVM+fvq8qMGlKVjdtv8MPG61yNfcT1G6n8ceQ2GZmS5AghxIuSJEcAEBcXR58+fRg0aBARERGEhITQrVs3cnJyWL9+PdOmTeOLL74gIiKCOXPmMHXqVNauXZunHXt7e+Li4jA2NmbRokXExcXRq1evZ147KSmJVq1a4eHhwalTpwgODubWrVv07Nmz0Nj8/Pzo2bMn3t7exMXFERcXR9OmTcnIyKB9+/YYGRlx+PBhQkNDMTQ0xNvbm/T0dIAi39f06dP57LPP+PPPP9HS0qJv375MnDiRxYsXc/jwYS5fvsy0adNe0t+EEKIssbPWo4K5LifDE1XHHj7K4sKlZGpVNy5SG1paCtq1tGbnvnjVMVMTbWpWNybxfjrfzK/Ltu+bsNS/DrVrFK1NIcSbR+bkFI8MVxNAbiKRmZlJt27dcHR0BMDd3R3I/ZAfGBhIt27dAKhcuTIXLlxg+fLl9O/fX60dTU1NbGxsUCgUmJiYYGNjU+i1ly1bhoeHB3PmzFEdW716Nfb29ly6dImUlJQCYwNQKpWkpaWpXeuHH34gOzublStXolAoAAgKCsLU1JSQkBDatWtX5Pvy8/Ojffv2AIwePZo+ffqwf/9+mjVrBsDgwYOL1FslhHj9mJvpAJCYlKF2PDEpXXWuMG83roChgRa79j9Ncira5M7XGdTHia9WRxN19SHeraxZ9Hkd+o089cz5PkIIIQonSY4AoE6dOrRu3Rp3d3fat29Pu3bteP/999HR0SE6OprBgwczdOhQVfnMzExMTExeyrXPnj3LgQMH8l2gIDo6mnbt2uUbm5mZ2TPbvHz5MkZGRmrHHz9+THR0NA8fPizyfdWuXVv1Z2tra0A9ybK2tiYhIaHAWNLS0khLS1M7lp2VjoZm0T4gCSFenbZeVkwY6aLanzjr3Au32amtDWGn73H3Xrrq2JMvX34LjmPX/lsARF1JoX5tUzq1tWH591df+LpCiPIlR96TUyyS5Aggtwdm7969HD16lD179rB06VKmTJnC9u3bAVixYgWNGjXKU+dlSElJoXPnzsybNy/POVtb2wJjCwsLo3LlygW2Wb9+fdavX5/nnKWlJSkpKUDR7ktbW1v15ycfTP57LPsZkwH9/f2ZOXOm2jF75/44uA4ssI4QonQcOXGXC5dOqfZ1tHNHdZuZanM38WmSYmaqw+UrKYW2Z22pi2cdM6b4/612/ElbMdcfqh2/9s8jrC11nzt+IUT5lV1Oh5WVFElyhIpCoaBZs2Y0a9aMadOm4ejoSGhoKHZ2dly5cgUfH58SuW69evXYtGkTTk5OaGnl/08yv9i2bNnCuHHj0NHRISsrK0+bP//8M1ZWVhgb5x3jbmJiUuL39cTkyZMZN26c2jHv3mElek0hxPNJTc3iRqr6z5M799LwrGPG5au5CYm+UpMaLsZs3XWz0PY6tbEh8X46x07eVTsed+sxt++m4VBRX+24vZ2S46cTEUII8WIkyREAhIWFsX//ftq1a4eVlRVhYWHcvn0bNzc3Zs6cyahRozAxMcHb25u0tDROnTpFYmJing/vz2PkyJGsWLGCPn36MHHiRMzNzbl8+TIbNmxg5cqVnDp1qsDYAJycnPj999+JjIzEwsICExMTfHx8+PLLL3nvvfeYNWsWlSpV4tq1a2zevJmJEydSqVKlEr+vJ3R1ddHVVf9mVoaqCfH6+HXbDfr3cuD6zdTcJaQ/cOLuvTQOH3+6AuSiz2tz6NgdNu98mvgoFNCxjQ3Bf9wiK5/O3h83X2dwXycuX00h6moKHVrZ4FhJn8/mXngVtyWEeM3IEtLFI0mOAMDY2JhDhw6xaNEikpOTcXR0JDAwkA4dOgCgr6/Pl19+yYQJEzAwMMDd3Z0xY8a8lGvb2dkRGhrKp59+Srt27UhLS8PR0RFvb280NDQKjW3o0KGEhITg6elJSkoKBw4coEWLFhw6dIhPP/2Ubt268eDBAypWrEjr1q1VPTtDhgwp0fsSQpQP6zddR09Pk4m+LhgaaHHuwn3GTz+n9o6cijZKTI211ep51jXDxkqPnXvj/9skkJs86epo8MmQqhgbaXP5agpjp/3FzfjHJXo/QgjxJlDk5OTIAD8hXrG3Oh8s7RCEEEIIUUxHtnuV2rW9uh0tsbYPbm5aYm2XFnlPjhBCCCGEEKJckSRHlLjhw4djaGiY7zZ8+PDSDk8IIYQQoszLyckusa08kjk5osTNmjULPz+/fM/lt/KZEEIIIYQQL0KSHFHirKyssLKyKu0whBBCCCFeWznynpxikSRHCCGEEEKIMk6WkC4emZMjhBBCCCGEKFdkCWkhhBDiJUlLS8Pf35/JkyfneQmwEEKIV0eSHCGEEOIlSU5OxsTEhPv378vCKkIIUYpkuJoQQgghhBCiXJEkRwghhBBCCFGuSJIjhBBCCCGEKFckyRFCCCFeEl1dXaZPny6LDgghRCmThQeEEEIIIYQQ5Yr05AghhBBCCCHKFUlyhBBCCCGEEOWKJDlCCCGEEEKIckWSHCGEEOIVcnJyYtGiRa/0mi1atGDMmDGv9JpCCFGaJMkRQghRbgwYMIAuXbqUdhhCCCFKmSQ5Qggh3jgZGRmlHYIQQogSJEmOEEKI187GjRtxd3dHqVRiYWFBmzZtmDBhAmvXruW3335DoVCgUCgICQkhJiYGhULBzz//jJeXF3p6eqxfvx6AlStX4ubmhp6eHtWrV+frr79WXSM9PR1fX19sbW3R09PD0dERf39/AHJycpgxYwYODg7o6upiZ2fHqFGjnutekpKSGDJkCJaWlhgbG9OqVSvOnj0LwKVLl1AoFFy8eFGtzsKFC6latapq//z583To0AFDQ0Osra358MMPuXPnznPFI4QQ5YFWaQcghBBCFEdcXBx9+vRh/vz5dO3alQcPHnD48GH69etHbGwsycnJBAUFAWBubs7NmzcBmDRpEoGBgXh4eKgSnWnTprFs2TI8PDw4c+YMQ4cOxcDAgP79+7NkyRK2bdvGL7/8goODA9evX+f69esAbNq0iYULF7JhwwZq1qxJfHy8KjEprh49eqBUKtm9ezcmJiYsX76c1q1bc+nSJVxcXPD09GT9+vXMnj1bVWf9+vX07dsXyE2SWrVqxZAhQ1i4cCGpqal8+umn9OzZkz/++ONFHrUQQry2JMkRQgjxWomLiyMzM5Nu3brh6OgIgLu7OwBKpZK0tDRsbGzy1BszZgzdunVT7U+fPp3AwEDVscqVK3PhwgWWL19O//79iY2NxdnZmbfeeguFQqG6FkBsbCw2Nja0adMGbW1tHBwcaNiwYbHv5ciRI5w4cYKEhAR0dXUBCAgIYOvWrWzcuJFhw4bh4+PDsmXLVEnOpUuXOH36ND/88AOAKkmbM2eOqt3Vq1djb2+vSpSEEOJNI8PVhBBCvFbq1KlD69atcXd3p0ePHqxYsYLExMRC63l6eqr+/PDhQ6Kjoxk8eDCGhoaq7fPPPyc6OhrIXcQgPDwcV1dXRo0axZ49e1T1e/ToQWpqKlWqVGHo0KFs2bKFzMzMYt/L2bNnSUlJwcLCQi2Oq1evquLo3bs3MTExHD9+HMjtxalXrx7Vq1dXtXHgwAG1+k/OPWlDCCHeNNKTI4QQ4rWiqanJ3r17OXr0KHv27GHp0qVMmTKFsLCwZ9YzMDBQ/TklJQWAFStW0KhRozztA9SrV4+rV6+ye/du9u3bR8+ePWnTpg0bN27E3t6eyMhI9u3bx969exkxYgRffvklBw8eRFtbu8j3kpKSgq2tLSEhIXnOmZqaAmBjY0OrVq348ccfady4MT/++CMff/yxWhudO3dm3rx5edqwtbUtcixCCFGeSJIjhBDitaNQKGjWrBnNmjVj2rRpODo6smXLFnR0dMjKyiq0vrW1NXZ2dly5cgUfH58CyxkbG9OrVy969erF+++/j7e3N/fu3cPc3BylUknnzp3p3LkzI0eOpHr16pw7d4569eoV+T7q1atHfHw8WlpaODk5FVjOx8eHiRMn0qdPH65cuULv3r3V2ti0aRNOTk5oacmvdSGEAElyhBBCvGbCwsLYv38/7dq1w8rKirCwMG7fvo2bmxuPHz/m999/JzIyEgsLC0xMTApsZ+bMmYwaNQoTExO8vb1JS0vj1KlTJCYmMm7cOBYsWICtrS0eHh5oaGjw66+/YmNjg6mpKWvWrCErK4tGjRqhr6/PDz/8gFKpVJu3UxRt2rShSZMmdOnShfnz5+Pi4sLNmzfZuXMnXbt2VQ2x69atGx9//DEff/wxLVu2xM7OTtXGyJEjWbFiBX369GHixImYm5tz+fJlNmzYwMqVK1U9U0II8SaRJEcIIcRrxdjYmEOHDrFo0SKSk5NxdHQkMDCQDh06oljjLwAAAWRJREFU4OnpSUhICJ6enqSkpHDgwIECe0iGDBmCvr4+X375JRMmTMDAwAB3d3fGjBkDgJGREfPnzycqKgpNTU0aNGjArl270NDQwNTUlLlz5zJu3DiysrJwd3dn+/btWFhYFOteFAoFu3btYsqUKQwcOJDbt29jY2PD22+/jbW1taqckZERnTt35pdffmH16tVqbdjZ2REaGsqnn35Ku3btSEtLw9HREW9vbzQ0ZOqtEOLNpMjJyckp7SCEEEIIIYQQ4mWRr3iEEEIIIYQQ5YokOUIIIcRLcvjwYbWlnP+7CSGEeDVkuJoQQgjxkqSmpnLjxo0Cz1erVu0VRiOEEG8uSXKEEEIIIYQQ5YoMVxNCCCGEEEKUK5LkCCGEEEIIIcoVSXKEEEIIIYQQ5YokOUIIIYQQQohyRZIcIYQQQgghRLkiSY4QQgghhBCiXJEkRwghhBBCCFGuSJIjhBBCCCGEKFf+D8/fGzmHpmx9AAAAAElFTkSuQmCC\n"},"metadata":{}}],"source":["\n","stress_corr=df.corr()\n","stress_corr=stress_corr['stress_level'].sort_values(ascending=False)\n","stress_corr=stress_corr.drop('stress_level')\n","plt.figure(figsize=(8,6))\n","sns.heatmap(stress_corr.to_frame(),annot=True,cmap='coolwarm')\n","plt.title('Stress Level Correlation of Features')\n","plt.show()"]},{"cell_type":"code","execution_count":16,"metadata":{"colab":{"base_uri":"https://localhost:8080/","height":350},"executionInfo":{"elapsed":336,"status":"ok","timestamp":1716216847523,"user":{"displayName":"Daniel Meier","userId":"06365571306976914087"},"user_tz":300},"id":"jTpncqzKEV6D","outputId":"f3327711-99b9-4200-eab4-c411019b3fd8"},"outputs":[{"output_type":"execute_result","data":{"text/plain":[" anxiety_level self_esteem mental_health_history depression \\\n","count 1100.000000 1100.000000 1100.000000 1100.000000 \n","mean 11.063636 17.777273 0.492727 12.555455 \n","std 6.117558 8.944599 0.500175 7.727008 \n","min 0.000000 0.000000 0.000000 0.000000 \n","25% 6.000000 11.000000 0.000000 6.000000 \n","50% 11.000000 19.000000 0.000000 12.000000 \n","75% 16.000000 26.000000 1.000000 19.000000 \n","max 21.000000 30.000000 1.000000 27.000000 \n","\n"," headache blood_pressure sleep_quality breathing_problem \\\n","count 1100.000000 1100.000000 1100.000000 1100.000000 \n","mean 2.508182 2.181818 2.660000 2.753636 \n","std 1.409356 0.833575 1.548383 1.400713 \n","min 0.000000 1.000000 0.000000 0.000000 \n","25% 1.000000 1.000000 1.000000 2.000000 \n","50% 3.000000 2.000000 2.500000 3.000000 \n","75% 3.000000 3.000000 4.000000 4.000000 \n","max 5.000000 3.000000 5.000000 5.000000 \n","\n"," noise_level living_conditions ... basic_needs academic_performance \\\n","count 1100.000000 1100.000000 ... 1100.000000 1100.000000 \n","mean 2.649091 2.518182 ... 2.772727 2.772727 \n","std 1.328127 1.119208 ... 1.433761 1.414594 \n","min 0.000000 0.000000 ... 0.000000 0.000000 \n","25% 2.000000 2.000000 ... 2.000000 2.000000 \n","50% 3.000000 2.000000 ... 3.000000 2.000000 \n","75% 3.000000 3.000000 ... 4.000000 4.000000 \n","max 5.000000 5.000000 ... 5.000000 5.000000 \n","\n"," study_load teacher_student_relationship future_career_concerns \\\n","count 1100.000000 1100.000000 1100.000000 \n","mean 2.621818 2.648182 2.649091 \n","std 1.315781 1.384579 1.529375 \n","min 0.000000 0.000000 0.000000 \n","25% 2.000000 2.000000 1.000000 \n","50% 2.000000 2.000000 2.000000 \n","75% 3.000000 4.000000 4.000000 \n","max 5.000000 5.000000 5.000000 \n","\n"," social_support peer_pressure extracurricular_activities bullying \\\n","count 1100.000000 1100.000000 1100.000000 1100.000000 \n","mean 1.881818 2.734545 2.767273 2.617273 \n","std 1.047826 1.425265 1.417562 1.530958 \n","min 0.000000 0.000000 0.000000 0.000000 \n","25% 1.000000 2.000000 2.000000 1.000000 \n","50% 2.000000 2.000000 2.500000 3.000000 \n","75% 3.000000 4.000000 4.000000 4.000000 \n","max 3.000000 5.000000 5.000000 5.000000 \n","\n"," stress_level \n","count 1100.000000 \n","mean 0.996364 \n","std 0.821673 \n","min 0.000000 \n","25% 0.000000 \n","50% 1.000000 \n","75% 2.000000 \n","max 2.000000 \n","\n","[8 rows x 21 columns]"],"text/html":["\n","
\n","
\n","\n","\n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n","
anxiety_levelself_esteemmental_health_historydepressionheadacheblood_pressuresleep_qualitybreathing_problemnoise_levelliving_conditions...basic_needsacademic_performancestudy_loadteacher_student_relationshipfuture_career_concernssocial_supportpeer_pressureextracurricular_activitiesbullyingstress_level
count1100.0000001100.0000001100.0000001100.0000001100.0000001100.0000001100.0000001100.0000001100.0000001100.000000...1100.0000001100.0000001100.0000001100.0000001100.0000001100.0000001100.0000001100.0000001100.0000001100.000000
mean11.06363617.7772730.49272712.5554552.5081822.1818182.6600002.7536362.6490912.518182...2.7727272.7727272.6218182.6481822.6490911.8818182.7345452.7672732.6172730.996364
std6.1175588.9445990.5001757.7270081.4093560.8335751.5483831.4007131.3281271.119208...1.4337611.4145941.3157811.3845791.5293751.0478261.4252651.4175621.5309580.821673
min0.0000000.0000000.0000000.0000000.0000001.0000000.0000000.0000000.0000000.000000...0.0000000.0000000.0000000.0000000.0000000.0000000.0000000.0000000.0000000.000000
25%6.00000011.0000000.0000006.0000001.0000001.0000001.0000002.0000002.0000002.000000...2.0000002.0000002.0000002.0000001.0000001.0000002.0000002.0000001.0000000.000000
50%11.00000019.0000000.00000012.0000003.0000002.0000002.5000003.0000003.0000002.000000...3.0000002.0000002.0000002.0000002.0000002.0000002.0000002.5000003.0000001.000000
75%16.00000026.0000001.00000019.0000003.0000003.0000004.0000004.0000003.0000003.000000...4.0000004.0000003.0000004.0000004.0000003.0000004.0000004.0000004.0000002.000000
max21.00000030.0000001.00000027.0000005.0000003.0000005.0000005.0000005.0000005.000000...5.0000005.0000005.0000005.0000005.0000003.0000005.0000005.0000005.0000002.000000
\n","

8 rows × 21 columns

\n","
\n","
\n","\n","
\n"," \n","\n"," \n","\n"," \n","
\n","\n","\n","
\n"," \n","\n","\n","\n"," \n","
\n","\n","
\n","
\n"],"application/vnd.google.colaboratory.intrinsic+json":{"type":"dataframe"}},"metadata":{},"execution_count":16}],"source":["df.describe()"]},{"cell_type":"code","execution_count":17,"metadata":{"colab":{"base_uri":"https://localhost:8080/"},"executionInfo":{"elapsed":216,"status":"ok","timestamp":1716216848751,"user":{"displayName":"Daniel Meier","userId":"06365571306976914087"},"user_tz":300},"id":"JE-35YkzlfaB","outputId":"864acbda-d10a-44e8-cf0b-8022ad0344d2"},"outputs":[{"output_type":"execute_result","data":{"text/plain":["Index(['anxiety_level', 'self_esteem', 'mental_health_history', 'depression',\n"," 'headache', 'blood_pressure', 'sleep_quality', 'breathing_problem',\n"," 'noise_level', 'living_conditions', 'safety', 'basic_needs',\n"," 'academic_performance', 'study_load', 'teacher_student_relationship',\n"," 'future_career_concerns', 'social_support', 'peer_pressure',\n"," 'extracurricular_activities', 'bullying', 'stress_level'],\n"," dtype='object')"]},"metadata":{},"execution_count":17}],"source":["df.columns"]},{"cell_type":"markdown","metadata":{"id":"9L3XVy2bY9Pc"},"source":["## Scaling - Standardizing\n","- Most of the columns were done in a 0-5 rating scale\n","- By scaling the data, we are able to see a better correlation between each feature.\n"]},{"cell_type":"code","execution_count":18,"metadata":{"id":"zx3RJsf2LVUy","executionInfo":{"status":"ok","timestamp":1716216850993,"user_tz":300,"elapsed":2,"user":{"displayName":"Daniel Meier","userId":"06365571306976914087"}}},"outputs":[],"source":["cols=['anxiety_level', 'self_esteem', 'mental_health_history', 'depression',\n"," 'headache', 'blood_pressure', 'sleep_quality', 'breathing_problem',\n"," 'noise_level', 'living_conditions', 'safety', 'basic_needs',\n"," 'academic_performance', 'study_load', 'teacher_student_relationship',\n"," 'future_career_concerns', 'social_support', 'peer_pressure',\n"," 'extracurricular_activities', 'bullying', 'stress_level']\n","cols_norm=['blood_pressure']"]},{"cell_type":"code","execution_count":null,"metadata":{"id":"_eJwxExRIgjG"},"outputs":[],"source":[]},{"cell_type":"code","execution_count":19,"metadata":{"id":"Dd9_DBHrjk8F","executionInfo":{"status":"ok","timestamp":1716216853276,"user_tz":300,"elapsed":317,"user":{"displayName":"Daniel Meier","userId":"06365571306976914087"}}},"outputs":[],"source":["from sklearn.preprocessing import StandardScaler\n","sc=StandardScaler()\n","scaled=sc.fit_transform(df[cols].iloc[:,range(0,21)].values)\n","df_scaled=pd.DataFrame(sc.fit_transform(scaled),columns=cols)"]},{"cell_type":"code","execution_count":null,"metadata":{"id":"acn8z1x8O02x"},"outputs":[],"source":[]},{"cell_type":"code","execution_count":20,"metadata":{"colab":{"base_uri":"https://localhost:8080/","height":444},"executionInfo":{"elapsed":167,"status":"ok","timestamp":1716216856658,"user":{"displayName":"Daniel Meier","userId":"06365571306976914087"},"user_tz":300},"id":"aplsM5vsGMm0","outputId":"a3688c28-9b38-45e0-f9cd-c3d34263b011"},"outputs":[{"output_type":"execute_result","data":{"text/plain":[" anxiety_level self_esteem mental_health_history depression headache \\\n","0 0.487122 0.695889 0.000000 0.382739 0.069589 \n","1 0.567758 0.302804 0.037851 0.567758 0.189253 \n","2 0.439057 0.658586 0.036588 0.512233 0.073176 \n","3 0.569976 0.427482 0.035624 0.534353 0.142494 \n","4 0.452911 0.792594 0.000000 0.198148 0.056614 \n","... ... ... ... ... ... \n","1095 0.414873 0.641167 0.000000 0.528020 0.113147 \n","1096 0.470438 0.627250 0.000000 0.418167 0.000000 \n","1097 0.138178 0.898155 0.000000 0.103633 0.034544 \n","1098 0.676014 0.000000 0.032191 0.611632 0.160956 \n","1099 0.663039 0.221013 0.036835 0.552532 0.110506 \n","\n"," blood_pressure sleep_quality breathing_problem noise_level \\\n","0 0.034794 0.069589 0.139178 0.069589 \n","1 0.113552 0.037851 0.151402 0.113552 \n","2 0.036588 0.073176 0.073176 0.073176 \n","3 0.106871 0.035624 0.106871 0.142494 \n","4 0.084921 0.141535 0.028307 0.084921 \n","... ... ... ... ... \n","1095 0.037716 0.113147 0.075431 0.075431 \n","1096 0.156813 0.000000 0.000000 0.000000 \n","1097 0.069089 0.172722 0.069089 0.069089 \n","1098 0.096573 0.032191 0.128765 0.096573 \n","1099 0.110506 0.000000 0.110506 0.110506 \n","\n"," living_conditions ... basic_needs academic_performance study_load \\\n","0 0.104383 ... 0.069589 0.104383 0.069589 \n","1 0.037851 ... 0.075701 0.037851 0.151402 \n","2 0.073176 ... 0.073176 0.073176 0.109764 \n","3 0.071247 ... 0.071247 0.071247 0.142494 \n","4 0.056614 ... 0.084921 0.113228 0.084921 \n","... ... ... ... ... ... \n","1095 0.075431 ... 0.113147 0.075431 0.075431 \n","1096 0.052271 ... 0.209083 0.000000 0.052271 \n","1097 0.103633 ... 0.138178 0.172722 0.034544 \n","1098 0.032191 ... 0.032191 0.064382 0.160956 \n","1099 0.000000 ... 0.110506 0.110506 0.147342 \n","\n"," teacher_student_relationship future_career_concerns social_support \\\n","0 0.104383 0.104383 0.069589 \n","1 0.037851 0.189253 0.037851 \n","2 0.109764 0.073176 0.073176 \n","3 0.035624 0.142494 0.035624 \n","4 0.028307 0.056614 0.028307 \n","... ... ... ... \n","1095 0.075431 0.113147 0.113147 \n","1096 0.052271 0.052271 0.052271 \n","1097 0.138178 0.034544 0.103633 \n","1098 0.032191 0.128765 0.032191 \n","1099 0.110506 0.110506 0.036835 \n","\n"," peer_pressure extracurricular_activities bullying stress_level \n","0 0.104383 0.104383 0.069589 0.034794 \n","1 0.151402 0.189253 0.189253 0.075701 \n","2 0.109764 0.073176 0.073176 0.036588 \n","3 0.142494 0.142494 0.178118 0.071247 \n","4 0.141535 0.000000 0.141535 0.028307 \n","... ... ... ... ... \n","1095 0.075431 0.113147 0.113147 0.037716 \n","1096 0.156813 0.209083 0.156813 0.104542 \n","1097 0.034544 0.069089 0.034544 0.000000 \n","1098 0.128765 0.128765 0.128765 0.064382 \n","1099 0.184177 0.036835 0.147342 0.073671 \n","\n","[1100 rows x 21 columns]"],"text/html":["\n","
\n","
\n","\n","\n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n","
anxiety_levelself_esteemmental_health_historydepressionheadacheblood_pressuresleep_qualitybreathing_problemnoise_levelliving_conditions...basic_needsacademic_performancestudy_loadteacher_student_relationshipfuture_career_concernssocial_supportpeer_pressureextracurricular_activitiesbullyingstress_level
00.4871220.6958890.0000000.3827390.0695890.0347940.0695890.1391780.0695890.104383...0.0695890.1043830.0695890.1043830.1043830.0695890.1043830.1043830.0695890.034794
10.5677580.3028040.0378510.5677580.1892530.1135520.0378510.1514020.1135520.037851...0.0757010.0378510.1514020.0378510.1892530.0378510.1514020.1892530.1892530.075701
20.4390570.6585860.0365880.5122330.0731760.0365880.0731760.0731760.0731760.073176...0.0731760.0731760.1097640.1097640.0731760.0731760.1097640.0731760.0731760.036588
30.5699760.4274820.0356240.5343530.1424940.1068710.0356240.1068710.1424940.071247...0.0712470.0712470.1424940.0356240.1424940.0356240.1424940.1424940.1781180.071247
40.4529110.7925940.0000000.1981480.0566140.0849210.1415350.0283070.0849210.056614...0.0849210.1132280.0849210.0283070.0566140.0283070.1415350.0000000.1415350.028307
..................................................................
10950.4148730.6411670.0000000.5280200.1131470.0377160.1131470.0754310.0754310.075431...0.1131470.0754310.0754310.0754310.1131470.1131470.0754310.1131470.1131470.037716
10960.4704380.6272500.0000000.4181670.0000000.1568130.0000000.0000000.0000000.052271...0.2090830.0000000.0522710.0522710.0522710.0522710.1568130.2090830.1568130.104542
10970.1381780.8981550.0000000.1036330.0345440.0690890.1727220.0690890.0690890.103633...0.1381780.1727220.0345440.1381780.0345440.1036330.0345440.0690890.0345440.000000
10980.6760140.0000000.0321910.6116320.1609560.0965730.0321910.1287650.0965730.032191...0.0321910.0643820.1609560.0321910.1287650.0321910.1287650.1287650.1287650.064382
10990.6630390.2210130.0368350.5525320.1105060.1105060.0000000.1105060.1105060.000000...0.1105060.1105060.1473420.1105060.1105060.0368350.1841770.0368350.1473420.073671
\n","

1100 rows × 21 columns

\n","
\n","
\n","\n","
\n"," \n","\n"," \n","\n"," \n","
\n","\n","\n","
\n"," \n","\n","\n","\n"," \n","
\n","\n","
\n"," \n"," \n"," \n","
\n","\n","
\n","
\n"],"application/vnd.google.colaboratory.intrinsic+json":{"type":"dataframe","variable_name":"df_norm"}},"metadata":{},"execution_count":20}],"source":["from sklearn.preprocessing import Normalizer\n","\n","data_norm = Normalizer()\n","Normalize = data_norm.fit_transform(df[cols].iloc[:,range(0,21)].values)\n","df_norm=pd.DataFrame(data_norm.fit_transform(Normalize),columns=cols)\n","df_norm\n"]},{"cell_type":"code","execution_count":21,"metadata":{"colab":{"base_uri":"https://localhost:8080/","height":444},"executionInfo":{"elapsed":134,"status":"ok","timestamp":1716216859915,"user":{"displayName":"Daniel Meier","userId":"06365571306976914087"},"user_tz":300},"id":"UcXyYmIoGuuZ","outputId":"d9f97fac-5e35-4cfd-ac4e-39090b57d57a"},"outputs":[{"output_type":"execute_result","data":{"text/plain":[" anxiety_level self_esteem mental_health_history depression headache \\\n","0 0.666667 0.666667 -2.0 -0.370370 -0.4 \n","1 0.857143 -0.933333 2.0 0.222222 2.0 \n","2 0.285714 0.400000 2.0 0.074074 -0.4 \n","3 1.047619 -0.400000 2.0 0.222222 1.2 \n","4 1.047619 1.733333 -2.0 -0.962963 -0.4 \n","... ... ... ... ... ... \n","1095 0.095238 0.266667 -2.0 0.074074 0.4 \n","1096 -0.285714 -0.400000 -2.0 -0.814815 -2.0 \n","1097 -1.238095 1.466667 -2.0 -1.555556 -1.2 \n","1098 2.000000 -2.000000 2.0 0.814815 2.0 \n","1099 1.428571 -1.200000 2.0 0.222222 0.4 \n","\n"," blood_pressure sleep_quality breathing_problem noise_level \\\n","0 -2.0 -0.4 1.2 -0.4 \n","1 2.0 -1.2 1.2 0.4 \n","2 -2.0 -0.4 -0.4 -0.4 \n","3 2.0 -1.2 0.4 1.2 \n","4 2.0 2.0 -1.2 0.4 \n","... ... ... ... ... \n","1095 -2.0 0.4 -0.4 -0.4 \n","1096 2.0 -2.0 -2.0 -2.0 \n","1097 0.0 2.0 -0.4 -0.4 \n","1098 2.0 -1.2 1.2 0.4 \n","1099 2.0 -2.0 0.4 0.4 \n","\n"," living_conditions ... basic_needs academic_performance study_load \\\n","0 0.4 ... -0.4 0.4 -0.4 \n","1 -1.2 ... -0.4 -1.2 1.2 \n","2 -0.4 ... -0.4 -0.4 0.4 \n","3 -0.4 ... -0.4 -0.4 1.2 \n","4 -0.4 ... 0.4 1.2 0.4 \n","... ... ... ... ... ... \n","1095 -0.4 ... 0.4 -0.4 -0.4 \n","1096 -1.2 ... 1.2 -2.0 -1.2 \n","1097 0.4 ... 1.2 2.0 -1.2 \n","1098 -1.2 ... -1.2 -0.4 2.0 \n","1099 -2.0 ... 0.4 0.4 1.2 \n","\n"," teacher_student_relationship future_career_concerns social_support \\\n","0 0.4 0.4 0.666667 \n","1 -1.2 2.0 -0.666667 \n","2 0.4 -0.4 0.666667 \n","3 -1.2 1.2 -0.666667 \n","4 -1.2 -0.4 -0.666667 \n","... ... ... ... \n","1095 -0.4 0.4 2.000000 \n","1096 -1.2 -1.2 -0.666667 \n","1097 1.2 -1.2 2.000000 \n","1098 -1.2 1.2 -0.666667 \n","1099 0.4 0.4 -0.666667 \n","\n"," peer_pressure extracurricular_activities bullying stress_level \n","0 0.4 0.4 -0.4 0.0 \n","1 1.2 2.0 2.0 2.0 \n","2 0.4 -0.4 -0.4 0.0 \n","3 1.2 1.2 2.0 2.0 \n","4 2.0 -2.0 2.0 0.0 \n","... ... ... ... ... \n","1095 -0.4 0.4 0.4 0.0 \n","1096 0.4 1.2 0.4 2.0 \n","1097 -1.2 -0.4 -1.2 -2.0 \n","1098 1.2 1.2 1.2 2.0 \n","1099 2.0 -1.2 1.2 2.0 \n","\n","[1100 rows x 21 columns]"],"text/html":["\n","
\n","
\n","\n","\n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n","
anxiety_levelself_esteemmental_health_historydepressionheadacheblood_pressuresleep_qualitybreathing_problemnoise_levelliving_conditions...basic_needsacademic_performancestudy_loadteacher_student_relationshipfuture_career_concernssocial_supportpeer_pressureextracurricular_activitiesbullyingstress_level
00.6666670.666667-2.0-0.370370-0.4-2.0-0.41.2-0.40.4...-0.40.4-0.40.40.40.6666670.40.4-0.40.0
10.857143-0.9333332.00.2222222.02.0-1.21.20.4-1.2...-0.4-1.21.2-1.22.0-0.6666671.22.02.02.0
20.2857140.4000002.00.074074-0.4-2.0-0.4-0.4-0.4-0.4...-0.4-0.40.40.4-0.40.6666670.4-0.4-0.40.0
31.047619-0.4000002.00.2222221.22.0-1.20.41.2-0.4...-0.4-0.41.2-1.21.2-0.6666671.21.22.02.0
41.0476191.733333-2.0-0.962963-0.42.02.0-1.20.4-0.4...0.41.20.4-1.2-0.4-0.6666672.0-2.02.00.0
..................................................................
10950.0952380.266667-2.00.0740740.4-2.00.4-0.4-0.4-0.4...0.4-0.4-0.4-0.40.42.000000-0.40.40.40.0
1096-0.285714-0.400000-2.0-0.814815-2.02.0-2.0-2.0-2.0-1.2...1.2-2.0-1.2-1.2-1.2-0.6666670.41.20.42.0
1097-1.2380951.466667-2.0-1.555556-1.20.02.0-0.4-0.40.4...1.22.0-1.21.2-1.22.000000-1.2-0.4-1.2-2.0
10982.000000-2.0000002.00.8148152.02.0-1.21.20.4-1.2...-1.2-0.42.0-1.21.2-0.6666671.21.21.22.0
10991.428571-1.2000002.00.2222220.42.0-2.00.40.4-2.0...0.40.41.20.40.4-0.6666672.0-1.21.22.0
\n","

1100 rows × 21 columns

\n","
\n","
\n","\n","
\n"," \n","\n"," \n","\n"," \n","
\n","\n","\n","
\n"," \n","\n","\n","\n"," \n","
\n","\n","
\n"," \n"," \n"," \n","
\n","\n","
\n","
\n"],"application/vnd.google.colaboratory.intrinsic+json":{"type":"dataframe","variable_name":"df_minmax"}},"metadata":{},"execution_count":21}],"source":["from sklearn.preprocessing import MinMaxScaler\n","scaler=MinMaxScaler(feature_range=(-2,2))\n","df_minmax=pd.DataFrame(scaler.fit_transform(df),columns=cols)\n","\n","df_minmax\n"]},{"cell_type":"code","execution_count":22,"metadata":{"colab":{"base_uri":"https://localhost:8080/","height":444},"executionInfo":{"elapsed":201,"status":"ok","timestamp":1716216862178,"user":{"displayName":"Daniel Meier","userId":"06365571306976914087"},"user_tz":300},"id":"w6NgKdT1mRSr","outputId":"ef5d1987-2b6a-40b8-e338-00df63a95487"},"outputs":[{"output_type":"execute_result","data":{"text/plain":[" anxiety_level self_esteem mental_health_history depression headache \\\n","0 0.480208 0.248612 -0.985559 -0.201393 -0.360741 \n","1 0.643746 -1.093590 1.014653 0.316508 1.768859 \n","2 0.153131 0.024912 1.014653 0.187033 -0.360741 \n","3 0.807284 -0.646189 1.014653 0.316508 1.058992 \n","4 0.807284 1.143414 -0.985559 -0.719293 -0.360741 \n","... ... ... ... ... ... \n","1095 -0.010407 -0.086938 -0.985559 0.187033 0.349125 \n","1096 -0.337484 -0.646189 -0.985559 -0.589818 -1.780475 \n","1097 -1.155175 0.919713 -0.985559 -1.237193 -1.070608 \n","1098 1.624976 -1.988391 1.014653 0.834408 1.768859 \n","1099 1.134361 -1.317290 1.014653 0.316508 0.349125 \n","\n"," blood_pressure sleep_quality breathing_problem noise_level \\\n","0 -1.418416 -0.426445 0.890211 -0.488949 \n","1 0.981981 -1.072574 0.890211 0.264334 \n","2 -1.418416 -0.426445 -0.538282 -0.488949 \n","3 0.981981 -1.072574 0.175964 1.017616 \n","4 0.981981 1.511942 -1.252529 0.264334 \n","... ... ... ... ... \n","1095 -1.418416 0.219684 -0.538282 -0.488949 \n","1096 0.981981 -1.718703 -1.966776 -1.995514 \n","1097 -0.218218 1.511942 -0.538282 -0.488949 \n","1098 0.981981 -1.072574 0.890211 0.264334 \n","1099 0.981981 -1.718703 0.175964 0.264334 \n","\n"," living_conditions ... basic_needs academic_performance study_load \\\n","0 0.430695 ... -0.539196 0.160736 -0.472800 \n","1 -1.357096 ... -0.539196 -1.253741 1.047901 \n","2 -0.463200 ... -0.539196 -0.546502 0.287551 \n","3 -0.463200 ... -0.539196 -0.546502 1.047901 \n","4 -0.463200 ... 0.158587 0.867974 0.287551 \n","... ... ... ... ... ... \n","1095 -0.463200 ... 0.158587 -0.546502 -0.472800 \n","1096 -1.357096 ... 0.856371 -1.960979 -1.233150 \n","1097 0.430695 ... 0.856371 1.575213 -1.233150 \n","1098 -1.357096 ... -1.236980 -0.546502 1.808252 \n","1099 -2.250991 ... 0.158587 0.160736 1.047901 \n","\n"," teacher_student_relationship future_career_concerns social_support \\\n","0 0.254213 0.229550 0.112839 \n","1 -1.190927 1.537869 -0.841952 \n","2 0.254213 -0.424609 0.112839 \n","3 -1.190927 0.883709 -0.841952 \n","4 -1.190927 -0.424609 -0.841952 \n","... ... ... ... \n","1095 -0.468357 0.229550 1.067629 \n","1096 -1.190927 -1.078768 -0.841952 \n","1097 0.976783 -1.078768 1.067629 \n","1098 -1.190927 0.883709 -0.841952 \n","1099 0.254213 0.229550 -0.841952 \n","\n"," peer_pressure extracurricular_activities bullying stress_level \n","0 0.186334 0.164249 -0.403377 0.004428 \n","1 0.888277 1.575763 1.557071 1.222011 \n","2 0.186334 -0.541508 -0.403377 0.004428 \n","3 0.888277 0.870006 1.557071 1.222011 \n","4 1.590220 -1.953023 1.557071 0.004428 \n","... ... ... ... ... \n","1095 -0.515609 0.164249 0.250106 0.004428 \n","1096 0.186334 0.870006 0.250106 1.222011 \n","1097 -1.217552 -0.541508 -1.056860 -1.213156 \n","1098 0.888277 0.870006 0.903589 1.222011 \n","1099 1.590220 -1.247265 0.903589 1.222011 \n","\n","[1100 rows x 21 columns]"],"text/html":["\n","
\n","
\n","\n","\n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n","
anxiety_levelself_esteemmental_health_historydepressionheadacheblood_pressuresleep_qualitybreathing_problemnoise_levelliving_conditions...basic_needsacademic_performancestudy_loadteacher_student_relationshipfuture_career_concernssocial_supportpeer_pressureextracurricular_activitiesbullyingstress_level
00.4802080.248612-0.985559-0.201393-0.360741-1.418416-0.4264450.890211-0.4889490.430695...-0.5391960.160736-0.4728000.2542130.2295500.1128390.1863340.164249-0.4033770.004428
10.643746-1.0935901.0146530.3165081.7688590.981981-1.0725740.8902110.264334-1.357096...-0.539196-1.2537411.047901-1.1909271.537869-0.8419520.8882771.5757631.5570711.222011
20.1531310.0249121.0146530.187033-0.360741-1.418416-0.426445-0.538282-0.488949-0.463200...-0.539196-0.5465020.2875510.254213-0.4246090.1128390.186334-0.541508-0.4033770.004428
30.807284-0.6461891.0146530.3165081.0589920.981981-1.0725740.1759641.017616-0.463200...-0.539196-0.5465021.047901-1.1909270.883709-0.8419520.8882770.8700061.5570711.222011
40.8072841.143414-0.985559-0.719293-0.3607410.9819811.511942-1.2525290.264334-0.463200...0.1585870.8679740.287551-1.190927-0.424609-0.8419521.590220-1.9530231.5570710.004428
..................................................................
1095-0.010407-0.086938-0.9855590.1870330.349125-1.4184160.219684-0.538282-0.488949-0.463200...0.158587-0.546502-0.472800-0.4683570.2295501.067629-0.5156090.1642490.2501060.004428
1096-0.337484-0.646189-0.985559-0.589818-1.7804750.981981-1.718703-1.966776-1.995514-1.357096...0.856371-1.960979-1.233150-1.190927-1.078768-0.8419520.1863340.8700060.2501061.222011
1097-1.1551750.919713-0.985559-1.237193-1.070608-0.2182181.511942-0.538282-0.4889490.430695...0.8563711.575213-1.2331500.976783-1.0787681.067629-1.217552-0.541508-1.056860-1.213156
10981.624976-1.9883911.0146530.8344081.7688590.981981-1.0725740.8902110.264334-1.357096...-1.236980-0.5465021.808252-1.1909270.883709-0.8419520.8882770.8700060.9035891.222011
10991.134361-1.3172901.0146530.3165080.3491250.981981-1.7187030.1759640.264334-2.250991...0.1585870.1607361.0479010.2542130.229550-0.8419521.590220-1.2472650.9035891.222011
\n","

1100 rows × 21 columns

\n","
\n","
\n","\n","
\n"," \n","\n"," \n","\n"," \n","
\n","\n","\n","
\n"," \n","\n","\n","\n"," \n","
\n","\n","
\n"," \n"," \n"," \n","
\n","\n","
\n","
\n"],"application/vnd.google.colaboratory.intrinsic+json":{"type":"dataframe","variable_name":"df_scaled"}},"metadata":{},"execution_count":22}],"source":["df_scaled"]},{"cell_type":"code","execution_count":24,"metadata":{"colab":{"base_uri":"https://localhost:8080/","height":1000},"executionInfo":{"elapsed":17522,"status":"ok","timestamp":1716216895894,"user":{"displayName":"Daniel Meier","userId":"06365571306976914087"},"user_tz":300},"id":"Y6Nxys-mdHkV","outputId":"44f2c5f7-4300-47f5-f495-dfea8a6132a3"},"outputs":[{"output_type":"display_data","data":{"text/plain":["
"],"image/png":"iVBORw0KGgoAAAANSUhEUgAABkYAAAZGCAYAAAD6Sx39AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOzdfVxUZf7/8feAMIgKhAlI3qal4v1iKt2oKYI36zeT3bJcRXN11wV3lbZaWzXUjM1ubDPMtnW1O7ayzdrMVdG82RJNaS1vylVX190UrFwlMccRrt8f/pgcARmQYZiZ1/Px4AHnnGvOfK5r5lxcM5/rnGMxxhgBAAAAAAAAAAD4gQBPBwAAAAAAAAAAAFBXSIwAAAAAAAAAAAC/QWIEAAAAAAAAAAD4DRIjAAAAAAAAAADAb5AYAQAAAAAAAAAAfoPECAAAAAAAAAAA8BskRgAAAAAAAAAAgN8gMQIAAAAAAAAAAPwGiREAAAAAAAAAAOA3SIygVrVp00bjx4/3dBgV2rRpkywWizZt2uTpUOpVLACuzvLly2WxWHTkyBGn9U888YSuv/56BQYGqkePHh6JDQBq24ABAzRgwIBqPaZNmzb64Q9/6J6AXHhuV8emtRmnxWJRenp6leUq+x8CwHtkZmbKYrF4Oow6UZ8/7wPwrLK+8Ouvv/Z0KJKk8ePHq02bNm7bvyfHt6g9JEZQL5w9e1aZmZkkCgD4hHXr1unBBx/ULbfcomXLlumxxx6r8xhWr16tzMzMOn9eAPXX1q1blZmZqVOnTnk6FI/Zt2+fMjMzvToRwbgZAAAAuHoNPB0AfMv+/fsVEFD9fNvZs2c1Z84cSar2LEQAqG8++OADBQQEaOnSpQoODvZIDKtXr1Z2djbJEQAOW7du1Zw5czR+/HhFRER4OhyP2Ldvn+bMmaMBAwa4dRahq8aOHavRo0fLarW6/BjGzQA8paaf9wEAqI/4j4ZaZbVaFRQU5OkwAMCjTpw4oYYNG3osKQIA8A6BgYEKCQmpF5fhKS4u9nQIAFx07tw5lZaW1vnz8nkfAOBLSIz4oH//+9/6xS9+oQ4dOqhhw4Zq2rSpfvzjH5e7ZEDZNY0/+ugjZWRkqFmzZmrUqJHuvPNOffXVV45yZTOfZ8+e7fT4nJwcWSwWPf/88451FV1z9NSpU5o2bZpatmwpq9Wq9u3b6/HHH3cM5I4cOaJmzZpJkubMmSOLxSKLxaLMzEwtW7ZMFotF//jHP8rV87HHHlNgYKC+/PLLq2kubd++XUOGDFF4eLhCQ0PVv39/ffTRR47tb731liwWizZv3lzusS+88IIsFov27NnjWPfFF1/oRz/6kSIjIxUSEqJevXrpr3/961XFCKD2ffvtt5o2bZratGkjq9WqqKgoDR48WJ988omjTFX9Q0UsFouWLVum4uJiR3+2fPlyl+NypQ+x2+2aM2eObrjhBoWEhKhp06a69dZblZubK+ni9VSzs7Md8ZT9lCktLdUzzzyjzp07KyQkRNHR0frZz36m//3vf+Xi+dvf/qbbbrtNjRo1UpMmTTR8+HDt3bvXqcz48ePVuHFjHT16VD/84Q/VuHFjXXfddY4Ydu/erYEDB6pRo0Zq3bq1cnJyXG4PwJuVXWv5n//8p37yk58oPDxczZo106xZs2SM0X/+8x/dcccdCgsLU0xMjJ566imnx9tsNj3yyCNq3769rFarWrZsqQcffFA2m82pXNn9LN555x116dJFVqtVnTt31po1a5xieeCBByRJbdu2dfQLZePDZcuWaeDAgYqKipLValVcXJzTGK82fPjhh+rdu7dCQkJ0/fXX6+WXXy5XpqpxY5knn3xSN998s5o2baqGDRsqPj5eb7311hWff/ny5frxj38sSbr99tsdbXD5JalcidNVV3pNymK6/B4jO3fuVHJysq699lo1bNhQbdu21X333SfpyuPmMh988IGj346IiNAdd9yhzz//3Ol5y96b+/bt07333qtrrrlGt956a52MvQFv9uGHH+qmm25SSEiI2rVrpxdeeKHCcq+++qri4+PVsGFDRUZGavTo0frPf/7jVGbAgAHq0qWL8vPzdfPNNzuO9yVLljiVK7s/5euvv66ZM2fquuuuU2hoqIqKiiS5Nl51Zdx74MABpaSkKCYmRiEhIWrRooVGjx6t06dPO8pU9Hn/X//6l3784x8rMjJSoaGh6tu3r95///0K6/Dmm29q/vz5atGihUJCQjRo0CAdPHjQtcYH4BVOnTrlODs5PDxcEyZM0NmzZ53KuNJH/v3vf9ePf/xjtWrVyjEOnj59ur777rtyz1k23goJCVGXLl20cuXKCmOrzvjx1VdfVe/evRUaGqprrrlG/fr107p168qVq83xLTzAwOesWLHCdO/e3cyePdv84Q9/MA8//LC55pprTOvWrU1xcbGj3LJly4wk07NnTzNw4ECzaNEic//995vAwEBz1113Oe0zLS3NNGjQwOTn5xtjjDl27JiJjIw0iYmJprS01FGudevWJjU11bFcXFxsunXrZpo2bWoefvhhs2TJEjNu3DhjsVjMr371K2OMMWfOnDHPP/+8kWTuvPNO88orr5hXXnnFfPrpp6aoqMg0bNjQ3H///eXqGRcXZwYOHOhyu2zcuNFIMhs3bnSs27BhgwkODjYJCQnmqaeeMgsXLjTdunUzwcHBZvv27cYYY86ePWsaN25sfvGLX5Tb5+233246d+7sWN6zZ48JDw83cXFx5vHHHzfPPfec6devn7FYLObtt9++YiwA6ta9995rgoODTUZGhvnjH/9oHn/8cTNixAjz6quvGmNc6x+M+b4vPXz4sDHGmFdeecXcdtttxmq1OvqzQ4cOuRSTq33Iww8/bCwWi5k0aZJ58cUXzVNPPWXuuece87vf/c4YY8zWrVvN4MGDjSRHDK+88orj8T/96U9NgwYNzKRJk8ySJUvMQw89ZBo1amRuuukmc/78eUe5l19+2VgsFjNkyBCzaNEi8/jjj5s2bdqYiIgIR32NMSY1NdWEhISYuLg48/Of/9xkZ2ebm2++2Ugyy5YtM7GxseaBBx4wixYtMp07dzaBgYHmX//6V7VfM8DbPPLII0aS6dGjh7nnnnvM4sWLzfDhw40k8/TTT5sOHTqYKVOmmMWLF5tbbrnFSDKbN282xhhTUlJikpKSTGhoqJk2bZp54YUXTHp6umnQoIG54447nJ5Hkunevbtp3ry5mTdvnnnmmWfM9ddfb0JDQ83XX39tjDHm008/Nffcc4+RZBYuXOjoF86cOWOMMeamm24y48ePNwsXLjSLFi0ySUlJRpJ57rnnnJ6rf//+pn///tVqh9atW5sOHTqY6Oho8/DDD5vnnnvO/OAHPzAWi8Xs2bPHUc6VcWOZFi1amF/84hfmueeeM08//bTp3bu3kWRWrVpV7rnLxqaHDh0yv/zlL40k8/DDDzvaoKCgoFpxusKV18SY8v9DCgsLzTXXXGNuvPFG88QTT5gXX3zR/Pa3vzWdOnUyxlx53GyMMbm5uaZBgwbmxhtvNAsWLDBz5swx1157rbnmmmuc+u2y92ZcXJy54447zOLFi012dnatjr0BX/PZZ5+Zhg0bmlatWpmsrCwzb948Ex0dbbp162Yu/Wrl0UcfNRaLxdx9991m8eLFjuOwTZs25n//+5+jXP/+/U1sbKyJiooy6enp5tlnnzW33nqrkWSWLl3qKFf22TEuLs706NHDPP300yYrK8sUFxe7PF6tatxrs9lM27ZtTWxsrHn00UfNH//4RzNnzhxz0003mSNHjjj2c/nn/YKCAhMdHW2aNGlifvvb35qnn37adO/e3QQEBFT4+bdnz54mPj7eLFy40GRmZprQ0FDTu3fv2nyZAHhI2diiZ8+eZtSoUWbx4sXmpz/9qZFkHnzwQUc5V/vIqVOnmmHDhpnHHnvMvPDCC2bixIkmMDDQ/OhHP3J63rVr15qAgADTpUsX8/TTT5vf/va3Jjw83HTu3Nm0bt3aqayr48fMzEwjydx8883miSeeML///e/Nvffeax566CFHGXeMb1H3SIz4oLNnz5Zbl5eXZySZl19+2bGu7IPY5cmN6dOnm8DAQHPq1CnHuuLiYtO+fXvTuXNnc+7cOTN8+HATFhZm/v3vfzs9z+UDpXnz5plGjRqZf/7zn07lfvOb35jAwEBz9OhRY4wxX331lZFkHnnkkXKx33PPPSY2NtaUlJQ41n3yySeOL9xcdXkyorS01Nxwww0mOTnZqf5nz541bdu2NYMHD3aKISoqyly4cMGx7vjx4yYgIMDMnTvXsW7QoEGma9eu5ty5c451paWl5uabbzY33HBDpbEAqHvh4eEmLS2twm3V6R8u/1LLmIuJgkaNGlU7Jlf7kO7du5vhw4dfcV9paWlOH9LL/P3vfzeSzGuvvea0fs2aNU7rv/32WxMREWEmTZrkVK6goMCEh4c7rU9NTTWSzGOPPeZY97///c80bNjQWCwW8/rrrzvWf/HFF5X294CvKfuAOHnyZMe6CxcumBYtWhiLxeJIZhrz/TFTNo565ZVXTEBAgPn73//utM8lS5YYSeajjz5yrJNkgoODzcGDBx3rPv30UyPJLFq0yLHuiSeeKNdflalo/JicnGyuv/56p3U1TYxIMlu2bHGsO3HihLFarU5fwLs6bqwo3vPnz5suXbqU++L+8rHpihUrKh2DuRqnK1x9TS7/H7Jy5UojyezYsaPSfV9p3NyjRw8TFRVlvvnmG6fnDQgIMOPGjXOsK3tv3nPPPeX2UVtjb8DXjBw50oSEhDh9Bt63b58JDAx0jLmOHDliAgMDzfz5850eu3v3btOgQQOn9f379zeSzFNPPeVYZ7PZHMdx2WSVss+O119/vVPfV53x6pXGvcYY849//MNIMitWrLhiG1zep06bNs1Icvpf9e2335q2bduaNm3aOPqRsjp06tTJ2Gw2R9nf//73RpLZvXv3FZ8XQP1XNra47777nNbfeeedpmnTpsaY6vWRFY1Ns7KyjMViceqHe/ToYZo3b+70Hea6deuMpHKJEVfGjwcOHDABAQHmzjvvdBoLGWPKTQyv7fEt6h6X0vJBDRs2dPxtt9v1zTffqH379oqIiHA6VbbM5MmTnS6xctttt6mkpET//ve/HetCQ0O1fPlyff755+rXr5/ef/99LVy4UK1atbpiLCtWrNBtt92ma665Rl9//bXjJzExUSUlJdqyZUuV9Rk3bpyOHTumjRs3Ota99tpratiwoVJSUqp8fGV27dqlAwcO6N5779U333zjiK24uFiDBg3Sli1bHKe13X333Tpx4oTTpRbeeustlZaW6u6775YknTx5Uh988IHuuusuffvtt479ffPNN0pOTtaBAwe49ABQj0RERGj79u06duxYuW3V6R9qS3X6kIiICO3du1cHDhyo9vOsWLFC4eHhGjx4sFO/HB8fr8aNGzv62tzcXJ06dUr33HOPU7nAwED16dPHqU8u89Of/tTxd0REhDp06KBGjRrprrvucqzv0KGDIiIi9K9//avasQPe6tJjIzAwUL169ZIxRhMnTnSsLztmyo6NFStWqFOnTurYsaPTMThw4EBJKncMJiYmql27do7lbt26KSwszOVj7dLx4+nTp/X111+rf//++te//uV0GZWaiouL02233eZYbtasmVN9peqNGy+N93//+59Onz6t2267rcKxbm3H6aqavCYRERGSpFWrVslut1fr+Y4fP65du3Zp/PjxioyMdHrewYMHa/Xq1eUe8/Of/7zcOneNvQFvVlJSorVr12rkyJFOn4E7deqk5ORkx/Lbb7+t0tJS3XXXXU79WExMjG644YZyfXeDBg30s5/9zLEcHBysn/3sZzpx4oTy8/Odyqampjr1fdUZr15p3CtJ4eHhkqS1a9eWu+TNlaxevVq9e/fWrbfe6ljXuHFjTZ48WUeOHNG+ffucyk+YMMHpHnxl/S3jQsB3XD62uO222/TNN9+oqKioWn3kpf1dcXGxvv76a918880yxjgu+Vk29klNTXX0Y5I0ePBgxcXFlYvNlfHjO++8o9LSUs2ePVsBAc5fm19+T7jaHt+i7jXwdACofd99952ysrK0bNkyffnllzLGOLZV9MH28uTGNddcI0nlrjV/yy23aMqUKcrOzlZycrLjWsdXcuDAAX322WeOayFf7sSJE1XuY/DgwWrevLlee+01DRo0SKWlpfrzn/+sO+64Q02aNKny8VeKTbo4wKzM6dOndc011ziu2frGG29o0KBBkqQ33nhDPXr00I033ihJOnjwoIwxmjVrlmbNmlXh/k6cOKHrrruuxjEDqD0LFixQamqqWrZsqfj4eA0bNkzjxo3T9ddfX63+obZUpw+ZO3eu7rjjDt14443q0qWLhgwZorFjx6pbt25VPs+BAwd0+vRpRUVFVfocZeUkOb6EvVxYWJjTckhISLm+Pjw8XC1atCg3gAwPD6/wfiaAr7p8rBUeHq6QkBBde+215dZ/8803ki4eg59//rnLY6iKJqtcc801Lh9rH330kR555BHl5eWV+1Ls9OnTTh82a8KV+Kozbly1apUeffRR7dq1y+meK1d7E/Orbcer3Vf//v2VkpKiOXPmaOHChRowYIBGjhype++9V1ar9YrPVzapqUOHDuW2derUSWvXrlVxcbEaNWrkWN+2bdtyZd019ga82VdffaXvvvtON9xwQ7ltHTp0cCQeDxw4IGNMheUklbtxeWxsrNMxKcnx+fLIkSPq27evY/3lx2t1xqtXGveW7TsjI0NPP/20XnvtNd122236v//7P8f9sSrz73//W3369Cm3vlOnTo7tXbp0cax39bsHAN7rSsd5dfrIo0ePavbs2frrX/9aro8o+26zbOxTWd98+YQZV8aPhw4dUkBAQIWJlarqKl3d+BZ1j8SID5o6daqWLVumadOmKSEhQeHh4bJYLBo9enSFM5wDAwMr3M+lCRXp4g1Ay86YOHTokM6ePavQ0NArxlJaWqrBgwfrwQcfrHB72aDvSgIDA3XvvffqxRdf1OLFi/XRRx/p2LFj+slPflLlY6uKTZKeeOIJ9ejRo8IyjRs3liRZrVaNHDlSK1eu1OLFi1VYWKiPPvpIjz32WLn9/frXv3aaNXSp9u3bX1XMAGrPXXfdpdtuu00rV67UunXr9MQTT+jxxx93zGKRXOsfakt1+pB+/frp0KFDevfdd7Vu3Tr98Y9/1MKFC7VkyRKnmemVPU9UVJRee+21CreXDdjK4nnllVcUExNTrlyDBs5DiMr+l7j6PwbwZRUdB1UdG6WlperatauefvrpCsu1bNmyWvu7kkOHDmnQoEHq2LGjnn76abVs2VLBwcFavXq1Fi5cWCtnyLkSn6vjxr///e/6v//7P/Xr10+LFy9W8+bNFRQUpGXLliknJ8ftcbpzXxaLRW+99Za2bdum9957T2vXrtV9992np556Stu2bav1/z2Xzpws466xN+APSktLZbFY9Le//a3CPuBqjuHLj9fqjFevNO4dOnSoJOmpp57S+PHjHePLX/7yl8rKytK2bdvUokWLGsd9KcaFgO+70nHuah9ZUlKiwYMH6+TJk3rooYfUsWNHNWrUSF9++aXGjx9fo7GpO8aPtTm+hWeQGPFBb731llJTU/XUU0851p07d06nTp26qv0+8sgj+vzzz/Xkk0/qoYce0m9+8xs9++yzV3xMu3btdObMGSUmJl6xXFWz+8aNG6ennnpK7733nv72t7+pWbNmlX5x6KqySxuEhYVVGZ908XJaL730kjZs2KDPP/9cxhjHZbQkOWbbBAUFubQ/AJ7XvHlz/eIXv9AvfvELnThxQj/4wQ80f/58LVy4UJLr/UNtqG4fEhkZqQkTJmjChAk6c+aM+vXrp8zMTEdipLJ+tV27dlq/fr1uueWWCr8Qu7ScJEVFRdGnAR7Qrl07ffrppxo0aNBVnwVRprL9vPfee7LZbPrrX//qNPOtokvmuZOr48a//OUvCgkJ0dq1a53Ooli2bFmVz1Fbbeluffv2Vd++fTV//nzl5ORozJgxev311/XTn/600jq0bt1akrR///5y27744gtde+215WamV8YdY2/AmzVr1kwNGzas8DKmlx5z7dq1kzFGbdu2denLrmPHjpU7k+uf//ynJKlNmzZXfGx1P89WNu4tS4xIUteuXdW1a1fNnDlTW7du1S233KIlS5bo0UcfrXCfrVu3rrTPKdsOAGVc7SN3796tf/7zn3rppZc0btw4x/rc3FyncmV9TFV9s+T6+LFdu3YqLS3Vvn37Kk06V4er41t4BvcY8UGBgYHlZlwsWrRIJSUlNd7n9u3b9eSTT2ratGm6//779cADD+i5557T5s2br/i4u+66S3l5eVq7dm25badOndKFCxckyXHmSWXJm27duqlbt2764x//qL/85S8aPXp0udnK1RUfH6927drpySef1JkzZ8pt/+qrr5yWExMTFRkZqTfeeENvvPGGevfu7XQ6c1RUlAYMGKAXXnhBx48fr3J/ADynpKSk3KUFo6KiFBsbK5vNVu3+oTZUpw8pu9ROmcaNG6t9+/ZOpwOXfcC+vF+96667VFJSonnz5pV7jgsXLjjKJycnKywsTI899liF17mnTwPc66677tKXX36pF198sdy27777TsXFxdXeZ2X9Qtlst8svv+pKoqE2uTpuDAwMlMVicRrbHjlyRO+8806Vz1FZG9QX//vf/8qN48s+lJf18ZWNm5s3b64ePXropZdectq2Z88erVu3TsOGDXM5DneMvQFvFhgYqOTkZL3zzjs6evSoY/3nn3/u1GeNGjVKgYGBmjNnTrlj2RhTbgx34cIFvfDCC47l8+fP64UXXlCzZs0UHx9/xZhcHa9WNe6VpKKiIkcfW6Zr164KCAhwGl9ebtiwYfr444+Vl5fnWFdcXKw//OEPatOmjUuXogHgP1ztIysamxpj9Pvf/97pMZeOfS7t53Jzc8vd48jV8ePIkSMVEBCguXPnljszpSZnt7k6voVnMLr1QT/84Q/1yiuvKDw8XHFxccrLy9P69evVtGnTGu3v3LlzSk1N1Q033KD58+dLkubMmaP33ntPEyZM0O7duyudffbAAw/or3/9q374wx9q/Pjxio+PV3FxsXbv3q233npLR44c0bXXXquGDRsqLi5Ob7zxhm688UZFRkaqS5cuTtcjHTdunH79619LUq2cyh8QEKA//vGPGjp0qDp37qwJEybouuuu05dffqmNGzcqLCxM7733nqN8UFCQRo0apddff13FxcV68skny+0zOztbt956q7p27apJkybp+uuvV2FhofLy8vTf//5Xn3766VXHDeDqffvtt2rRooV+9KMfqXv37mrcuLHWr1+vHTt26Kmnnqp2/1BbXO1D4uLiNGDAAMXHxysyMlI7d+7UW2+9pfT0dMe+yj5M//KXv1RycrICAwM1evRo9e/fXz/72c+UlZWlXbt2KSkpSUFBQTpw4IBWrFih3//+9/rRj36ksLAwPf/88xo7dqx+8IMfaPTo0WrWrJmOHj2q999/X7fccouee+65Wm8DABeNHTtWb775pn7+859r48aNuuWWW1RSUqIvvvhCb775ptauXatevXpVa59l/cJvf/tbjR49WkFBQRoxYoSSkpIUHBysESNG6Gc/+5nOnDmjF198UVFRURUmat3F1XHj8OHD9fTTT2vIkCG69957deLECWVnZ6t9+/b67LPPrvgcPXr0UGBgoB5//HGdPn1aVqtVAwcOrPS+S3XtpZde0uLFi3XnnXeqXbt2+vbbb/Xiiy8qLCzMkdi40rj5iSee0NChQ5WQkKCJEyfqu+++06JFixQeHq7MzMxqxVLbY2/A282ZM0dr1qzRbbfdpl/84he6cOGCFi1apM6dOzv6nnbt2unRRx/VjBkzdOTIEY0cOVJNmjTR4cOHtXLlSk2ePNlxXEkX7zHy+OOP68iRI7rxxhv1xhtvaNeuXfrDH/5Q7n4kl3N1vFrVuFeSPvjgA6Wnp+vHP/6xbrzxRl24cEGvvPKKAgMDlZKSUmkMv/nNb/TnP/9ZQ4cO1S9/+UtFRkbqpZde0uHDh/WXv/yl3I2LAfg3V/vIjh07ql27dvr1r3+tL7/8UmFhYfrLX/5S4f2IsrKyNHz4cN1666267777dPLkSUfffGnS2NXxY/v27fXb3/5W8+bN02233aZRo0bJarVqx44dio2NVVZWVrXq7Or4Fh5i4HP+97//mQkTJphrr73WNG7c2CQnJ5svvvjCtG7d2qSmpjrKLVu2zEgyO3bscHr8xo0bjSSzceNGY4wx06dPN4GBgWb79u1O5Xbu3GkaNGhgpkyZ4lh3+XMYY8y3335rZsyYYdq3b2+Cg4PNtddea26++Wbz5JNPmvPnzzvKbd261cTHx5vg4GAjyTzyyCNO+zl+/LgJDAw0N954Y43a5fJ6lfnHP/5hRo0aZZo2bWqsVqtp3bq1ueuuu8yGDRvK7SM3N9dIMhaLxfznP/+p8HkOHTpkxo0bZ2JiYkxQUJC57rrrzA9/+EPz1ltvVRkLgLphs9nMAw88YLp3726aNGliGjVqZLp3724WL17sVM6V/qGsLz18+LBjXWpqqmnUqFGNYnOlD3n00UdN7969TUREhGnYsKHp2LGjmT9/vlOfeuHCBTN16lTTrFkzY7FYzOX/8v/whz+Y+Ph407BhQ9OkSRPTtWtX8+CDD5pjx445ldu4caNJTk424eHhJiQkxLRr186MHz/e7Ny5s8r69u/f33Tu3Lnc+tatW5vhw4fXqH0Ab/LII48YSearr75yWu/qMXP+/Hnz+OOPm86dOxur1WquueYaEx8fb+bMmWNOnz7tKCfJpKWlldtfReOyefPmmeuuu84EBAQ49V1//etfTbdu3UxISIhp06aNefzxx82f/vSncv1b//79Tf/+/avVDpUd8xXty9Vx49KlS80NN9xgrFar6dixo1m2bJmjvatqgxdffNFcf/31JjAw0Gk8Vp04q+Lqa3L5/5BPPvnE3HPPPaZVq1bGarWaqKgo88Mf/tCpzzXmyuPm9evXm1tuucU0bNjQhIWFmREjRph9+/Y5Pb6y9+alrnbsDfiizZs3O46966+/3ixZsqTCvucvf/mLufXWW02jRo1Mo0aNTMeOHU1aWprZv3+/o0xZn79z506TkJBgQkJCTOvWrc1zzz3ntK+yz44rVqyoMKaqxquujHv/9a9/mfvuu8+0a9fOhISEmMjISHP77beb9evXOz1XRX3qoUOHzI9+9CMTERFhQkJCTO/evc2qVatcqsPhw4eNJLNs2bLKGx2AV6hsbFHR52VX+sh9+/aZxMRE07hxY3PttdeaSZMmmU8//bTCPuMvf/mL6dSpk7FarSYuLs68/fbbJjU11bRu3dqpnKvjR2OM+dOf/mR69uzpGIP379/f5ObmOra7Y3yLumcxhrtcwTt8/fXXat68uWbPnq1Zs2Z5OhwAAADAZzH2BtxrwIAB+vrrr7Vnzx5PhwIAgF/ivEZ4jeXLl6ukpERjx471dCgAAACAT2PsDQAAAF/GPUZQ733wwQfat2+f5s+fr5EjR6pNmzZO27/77rtyN5O7XGRkpIKDg90YJQBU7vTp0/ruu++uWCYmJqaOogGA2vHVV1853cDycsHBwYqMjKzDiNyvoKDgitsbNmyo8PDwOorGPaoaewMAAAC+gEtpod4bMGCAtm7dqltuuUWvvvqqrrvuOqfty5cv14QJE664j40bN2rAgAFujBIAKjd+/Hi99NJLVyzDv2MA3qZNmzb697//Xen2/v37a9OmTXUXUB2wWCxX3J6amqrly5fXTTBuUtXYG0Dt4FJaAAB4FokReL3jx49r7969VywTHx+va665po4iAgBn+/bt07Fjx65YJjExsY6iAYDa8dFHH13xbLhrrrlG8fHxdRiR+61fv/6K22NjYxUXF1dH0QAAAACoKRIjAAAAAAAAAADAb3DzdQAAAAAAAAAA4De88ubrpaWlOnbsmJo0aVLldX4BeCdjjL799lvFxsYqIIAc7pXQJwK+jz7RdfSJgO+jT3QdfSLg++gTXUefCPi+6vSJXpkYOXbsmFq2bOnpMADUgf/85z9q0aKFp8Oo1+gTAf9Bn1g1+kTAf9AnVo0+EfAf9IlVo08E/IcrfaJXJkaaNGki6WIFw8LCPByNZ9jtdq1bt05JSUkKCgrydDgeQztc5IvtUFRUpJYtWzqOd1SuOn2iL75Xaoq2cEZ7OKtv7UGf6DpX+8T69hq7g6/X0dfrJ1HHytAnus7XPjv7wzFRFdqANpCc2+C7776jT3SRr/WJrvD348Xf6y/5XxtUZ5zolYmRstPdwsLC/KYju5zdbldoaKjCwsL84k1dGdrhIl9uB05vrVp1+kRffq9UF23hjPZwVl/bgz6xaq72ifX1Na5Nvl5HX6+fRB2rQp9YNV/77OwPx0RVaAPaQKq4DegTq+ZrfaIr/P148ff6S/7bBq70iVx8EAAAAAAAAAAA+A0SIwAAAAAAAAAAwG+QGAGAWvK73/1OFotF06ZNc6w7d+6c0tLS1LRpUzVu3FgpKSkqLCx0etzRo0c1fPhwhYaGKioqSg888IAuXLhQx9EDAAAAAAAA/oHECADUgh07duiFF15Qt27dnNZPnz5d7733nlasWKHNmzfr2LFjGjVqlGN7SUmJhg8frvPnz2vr1q166aWXtHz5cs2ePbuuqwAAAAAAAAD4BRIjAHCVzpw5ozFjxujFF1/UNddc41h/+vRpLV26VE8//bQGDhyo+Ph4LVu2TFu3btW2bdskSevWrdO+ffv06quvqkePHho6dKjmzZun7OxsnT9/3lNVAgAAAAAAAHxWA08HAADeLi0tTcOHD1diYqIeffRRx/r8/HzZ7XYlJiY61nXs2FGtWrVSXl6e+vbtq7y8PHXt2lXR0dGOMsnJyZoyZYr27t2rnj17lns+m80mm83mWC4qKpIk2e122e32K8Zatr2qcv6AtnBGezirb+1RX+IAAAAAAMAXkBgBgKvw+uuv65NPPtGOHTvKbSsoKFBwcLAiIiKc1kdHR6ugoMBR5tKkSNn2sm0VycrK0pw5c8qtX7dunUJDQ12KOzc316Vy/oC2cEZ7OKsv7XH27FlPhwAAAAAAgM8gMQIANfSf//xHv/rVr5Sbm6uQkJA6e94ZM2YoIyPDsVxUVKSWLVsqKSlJYWFhV3ys3W5Xbm6uBg8erKCgIHeHWq/RFs5oD2f1rT3KzgwDAAAAAABXj8QIANRQfn6+Tpw4oR/84AeOdSUlJdqyZYuee+45rV27VufPn9epU6eczhopLCxUTEyMJCkmJkYff/yx034LCwsd2ypitVpltVrLrQ8KCnL5C9zqlPV1tIUz2sNZfWmP+hADAAAAAAC+gsQI4KXa/OZ9x9/WQKMFvaUumWtlK7F4MKqqHfndcE+HUGsGDRqk3bt3O62bMGGCOnbsqIceekgtW7ZUUFCQNmzYoJSUFEnS/v37dfToUSUkJEiSEhISNH/+fJ04cUJRUVGSLl66JywsTHFxcXVbIcCLXdon1oa66ld9qU/0Vt7wv7MivHcAwLvVdOzi6c9+/P8B6j9v/L6IvgWeQGIEAGqoSZMm6tKli9O6Ro0aqWnTpo71EydOVEZGhiIjIxUWFqapU6cqISFBffv2lSQlJSUpLi5OY8eO1YIFC1RQUKCZM2cqLS2twrNCAAAAAAAAAFwdEiMA4EYLFy5UQECAUlJSZLPZlJycrMWLFzu2BwYGatWqVZoyZYoSEhLUqFEjpaamau7cuR6MGgAAAAAAAPBdJEYAoBZt2rTJaTkkJETZ2dnKzs6u9DGtW7fW6tWr3RwZAAAAAAAAAEkK8HQAAAAAAAAAAAAAdYXECAAAAAAAAAAA8BskRgAAAAAAAAAAgN/gHiMAAAAA4EPa/OZ9T4fgMmug0YLeUpfMtdo//4eeDgcAAAB+olpnjGRlZemmm25SkyZNFBUVpZEjR2r//v1OZQYMGCCLxeL08/Of/9ypzNGjRzV8+HCFhoYqKipKDzzwgC5cuHD1tQEAAAAAAAAAALiCap0xsnnzZqWlpemmm27ShQsX9PDDDyspKUn79u1To0aNHOUmTZqkuXPnOpZDQ0Mdf5eUlGj48OGKiYnR1q1bdfz4cY0bN05BQUF67LHHaqFKAAAAAAAAAAAAFavWGSNr1qzR+PHj1blzZ3Xv3l3Lly/X0aNHlZ+f71QuNDRUMTExjp+wsDDHtnXr1mnfvn169dVX1aNHDw0dOlTz5s1Tdna2zp8/Xzu1AgAAAADAQ7jaAgAAQP12VTdfP336tCQpMjLSaf1rr72ma6+9Vl26dNGMGTN09uxZx7a8vDx17dpV0dHRjnXJyckqKirS3r17ryYcAAAAAAA8ruxqC9u2bVNubq7sdruSkpJUXFzsVG7SpEk6fvy442fBggWObWVXWzh//ry2bt2ql156ScuXL9fs2bPrujoAAAA+p8Y3Xy8tLdW0adN0yy23qEuXLo719957r1q3bq3Y2Fh99tlneuihh7R//369/fbbkqSCggKnpIgkx3JBQUGFz2Wz2WSz2RzLRUVFkiS73S673V7TKni1snr7a/3L+HM7WAPN938HGKff9Zmrr5U/vqYAAADwDWvWrHFaXr58uaKiopSfn69+/fo51pddbaEiZVdbWL9+vaKjo9WjRw/NmzdPDz30kDIzMxUcHOzWOgAAAPiyGidG0tLStGfPHn344YdO6ydPnuz4u2vXrmrevLkGDRqkQ4cOqV27djV6rqysLM2ZM6fc+nXr1jndv8Qf5ebmejqEesEf22FB7/Lr5vUqrftAqmn16tUulbv0TDMAAADAm13paguvvvqqYmJiNGLECM2aNcvxGbeyqy1MmTJFe/fuVc+ePcs9j69PKvSliXGXTnSr1uM8PCmuPrS9L70PaurSNvDndgCAq1GjxEh6erpWrVqlLVu2qEWLFlcs26dPH0nSwYMH1a5dO8XExOjjjz92KlNYWChJlc6UmTFjhjIyMhzLRUVFatmypZKSkpzuX+JP7Ha7cnNzNXjwYAUFBXk6HI/x53bokrnW8bc1wGher1LN2hkgW6nFg1FVbU9mskvlyj7EAQAAAN6sLq+24C+TCn1hYlxFE92qw1OT4lyd6FYXfOF9cLVyc3OZVAgANVStxIgxRlOnTtXKlSu1adMmtW3btsrH7Nq1S5LUvHlzSVJCQoLmz5+vEydOKCoqStLFjjwsLExxcXEV7sNqtcpqtZZbHxQU5Hdfhl+ONrjIH9vBVlI+AWIrtVS4vj5x9XXyt9cTAAAAvqkur7bg65MKfWli3KUT3arD05PiXJ3o5k6+9D6oqUvb4LvvvvN0OADglaqVGElLS1NOTo7effddNWnSxDFLJTw8XA0bNtShQ4eUk5OjYcOGqWnTpvrss880ffp09evXT926dZMkJSUlKS4uTmPHjtWCBQtUUFCgmTNnKi0trcLkBwAAAAAA3qiur7bgL5MKfaE+VzuhzVOT4upTu/vC++BqBQUF6cKFC54OAwC8UkB1Cj///PM6ffq0BgwYoObNmzt+3njjDUlScHCw1q9fr6SkJHXs2FH333+/UlJS9N577zn2ERgYqFWrVikwMFAJCQn6yU9+onHjxmnu3Lm1WzMAAAAAADzAGKP09HStXLlSH3zwQY2vtrB7926dOHHCUaaqqy0AAADANdVKjBhjKvwZP368JKlly5bavHmzvvnmG507d04HDhzQggULyp2y27p1a61evVpnz57VV199pSeffFINGtT4PvAAAAAAANQbaWlpevXVV5WTk+O42kJBQYHjkjeHDh3SvHnzlJ+fryNHjuivf/2rxo0bV+nVFj799FOtXbuWqy0A8ErPP/+8unXrprCwMIWFhSkhIUF/+9vfHNvPnTuntLQ0NW3aVI0bN1ZKSorjDLkyR48e1fDhwxUaGqqoqCg98MADnC0D4KpUKzECAAAAAACujKstAMD3WrRood/97nfKz8/Xzp07NXDgQN1xxx3au3evJGn69Ol67733tGLFCm3evFnHjh3TqFGjHI8vKSnR8OHDdf78eW3dulUvvfSSli9frtmzZ3uqSgB8AIkRAAAAXLXMzExZLBann44dOzq2MxMQgD/hagsA8L0RI0Zo2LBhuuGGG3TjjTdq/vz5aty4sbZt26bTp09r6dKlevrppzVw4EDFx8dr2bJl2rp1q7Zt2yZJWrdunfbt26dXX31VPXr00NChQzVv3jxlZ2fr/PnzHq4dAG/FiAoAAAC1onPnzlq/fr1j+dIv76ZPn673339fK1asUHh4uNLT0zVq1Ch99NFHkr6fCRgTE6OtW7fq+PHjGjdunIKCgvTYY4/VeV0AAABQ+0pKSrRixQoVFxcrISFB+fn5stvtSkxMdJTp2LGjWrVqpby8PPXt21d5eXnq2rWroqOjHWWSk5M1ZcoU7d27Vz179qzwuWw2m2w2m2O5qKhIkmS322W3291UQ8+zBprv/w4wTr/rK3e9HmX79eXXuyr+1gbVqSeJEQAAANSKBg0aKCYmptz6spmAOTk5GjhwoCRp2bJl6tSpk7Zt26a+ffs6ZgKuX79e0dHR6tGjh+bNm6eHHnpImZmZCg4OruvqAIDfafOb9z0dwhVZA40W9Ja6ZK6VrcTiWH/kd8M9GBUAV+zevVsJCQk6d+6cGjdurJUrVyouLk67du1ScHCwIiIinMpHR0eroKBAklRQUOCUFCnbXratMllZWZozZ0659evWrVNoaOhV1qj+WtC7/Lp5vUrrPpBqWL16tVv3n5ub69b9ewN/aYOzZ8+6XJbECAAAAGrFgQMHFBsbq5CQECUkJCgrK0utWrVy60xAAAAA1H8dOnTQrl27dPr0ab311ltKTU3V5s2b3fqcM2bMUEZGhmO5qKhILVu2VFJSUrlLF/qSLplrHX9bA4zm9SrVrJ0BspVarvAoz9qTmeyW/drtduXm5mrw4MEKCgpyy3PUd/7WBmVnhrmCxAgAAACuWp8+fbR8+XJ16NBBx48f15w5c3Tbbbdpz549KigocNtMwJpeIqFsW32/rEBlXDlF3NdPm/f1+kk1r+Oll9Co7y69xIer9fTl1xw1U9/PdAEgBQcHq3379pKk+Ph47dixQ7///e9199136/z58zp16pTTWLGwsNBxJnJMTIw+/vhjp/2V3auuorOVy1itVlmt1nLrg4KCfPoL4kvPqHOsK7VUuL6+cPfr4euvuSv8pQ2qU0cSIwAAALhqQ4cOdfzdrVs39enTR61bt9abb76phg0buu15r/YSCfX9sgKVqc7lBnz9tHlfr59U/TpWdAmN+m5er1KX39fVuUQCAKB+Ki0tlc1mU3x8vIKCgrRhwwalpKRIkvbv36+jR48qISFBkpSQkKD58+frxIkTioqKknTxf2NYWJji4uI8VgcA3o3ECAAAAGpdRESEbrzxRh08eFCDBw9220zAml4ioeyU8vp+WYHKuHK5AV8/bd7X6yfVvI6XXkKjvrv0Eh/5s4e49JjqXCIBAOB5M2bM0NChQ9WqVSt9++23ysnJ0aZNm7R27VqFh4dr4sSJysjIUGRkpMLCwjR16lQlJCSob9++kqSkpCTFxcVp7NixWrBggQoKCjRz5kylpaVVeEYIALiCxAgAAABq3ZkzZ3To0CGNHTvWrTMBr/YSCfX9sgKVqc6X5L5+2ryv10+qfh298T1tK7W4XEdff70BwNecOHFC48aN0/HjxxUeHq5u3bpp7dq1Gjx4sCRp4cKFCggIUEpKimw2m5KTk7V48WLH4wMDA7Vq1SpNmTJFCQkJatSokVJTUzV37lxPVQmADyAxglpV19d2tQYaLeh9cVbc1XwAPPK74bUYFQAA/ufXv/61RowYodatW+vYsWN65JFHFBgYqHvuuYeZgAAAAH5s6dKlV9weEhKi7OxsZWdnV1qmdevW1bqUKABUhcQIAAAArtp///tf3XPPPfrmm2/UrFkz3Xrrrdq2bZuaNWsmiZmAAAAAAID6g8QIAAAArtrrr79+xe3MBAQAAAAA1BcBng4AAAAAAAAAAACgrnDGCAAAAAAAAAAA1VDX91quicvvz8x9lr/HGSMAAAAAAAAAAMBvkBgBAAAAAAAAAAB+g8QIAAAAAAAAAADwGyRGAAAAAAAAAACA3yAxAgAAAAAAAAAA/AaJEQAAAAAAAAAA4DdIjAAAAAAAAAAAAL9BYgQAAAAAAAAAAPgNEiMAAAAAAAAAAMBvkBgBAAAAAAAAAAB+g8QIAAAAAAAAAADwGw08HQAAAAAAAAAAAHCvNr9539Mh1MiR3w2v9X2SGAHkvZ0CAAAAAAAAAKB6uJQWAAAAAAAAAADwGyRGAAAAAAAAAACA3yAxAgAAAAAAAAAA/AaJEQAAAAAAAAAA4DdIjAAAAAAAAAAAAL9BYgQAAAAAAAAAAPgNEiMAAAAAAAAAAMBvVCsxkpWVpZtuuklNmjRRVFSURo4cqf379zuVOXfunNLS0tS0aVM1btxYKSkpKiwsdCpz9OhRDR8+XKGhoYqKitIDDzygCxcuXH1tAKAOPf/88+rWrZvCwsIUFhamhIQE/e1vf3Nspz8EAAAAAAAA6p9qJUY2b96stLQ0bdu2Tbm5ubLb7UpKSlJxcbGjzPTp0/Xee+9pxYoV2rx5s44dO6ZRo0Y5tpeUlGj48OE6f/68tm7dqpdeeknLly/X7Nmza69WAFAHWrRood/97nfKz8/Xzp07NXDgQN1xxx3au3evJPpDAAAAf8WkQgD4nit94oABA2SxWJx+fv7znzuVoU8EUJsaVKfwmjVrnJaXL1+uqKgo5efnq1+/fjp9+rSWLl2qnJwcDRw4UJK0bNkyderUSdu2bVPfvn21bt067du3T+vXr1d0dLR69OihefPm6aGHHlJmZqaCg4Nrr3YA4EYjRoxwWp4/f76ef/55bdu2TS1atKA/BAAA8FNlkwpvuukmXbhwQQ8//LCSkpK0b98+NWrUSNLFSTTvv/++VqxYofDwcKWnp2vUqFH66KOPJH0/iSYmJkZbt27V8ePHNW7cOAUFBemxxx7zZPUAoFpc6RMladKkSZo7d65jOTQ01PE3fSKA2latxMjlTp8+LUmKjIyUJOXn58tutysxMdFRpmPHjmrVqpXy8vLUt29f5eXlqWvXroqOjnaUSU5O1pQpU7R371717Nmz3PPYbDbZbDbHclFRkSTJbrfLbrdXGWeXzLU1q6CH7clMrnRbWb1dqX9dsgaaun2+AOP02195Uzu4+p6tb+/tqpSUlGjFihUqLi5WQkKC2/pD6er6xPrad3gCbeHM29ujtv//1FW/6qt9IgD4OyYVAsD3quoTy4SGhiomJqbCfdAnAqhtNU6MlJaWatq0abrlllvUpUsXSVJBQYGCg4MVERHhVDY6OloFBQWOMpd+CVi2vWxbRbKysjRnzpxy69etW+eUPa7Mgt5VFqmXVq9eXWWZ3NzcOojEdZ5q63m9Sj3zxPWMN7SDK+9rSTp79qybI6kdu3fvVkJCgs6dO6fGjRtr5cqViouL065du9zSH0pX3ydK9a/v8CTawpm3toe7/v+4u1/1tT4RAFCxuppUCADe4PI+scxrr72mV199VTExMRoxYoRmzZrl+IzriYnW3urSSWPeMpHWXa+HuycA1vUE8ZrwlvdAVdwxqbDGiZG0tDTt2bNHH374YU134bIZM2YoIyPDsVxUVKSWLVsqKSlJYWFhVT7eV88Yyc3N1eDBgxUUFFSHUV1ZXbe1NcBoXq9SzdoZIFuppU6fuz7xpna40vv6UmUDlvquQ4cO2rVrl06fPq233npLqamp2rx5s1uf82r6xPrad3gCbeHM29ujtv//1FW/6mt9IgCgvLqcVHi1XwLW9y94fOXLnavh6TaoD18me/uZzrXh0jbwtnaoqE+UpHvvvVetW7dWbGysPvvsMz300EPav3+/3n77bUmemWjtrSqaNFbfJ9K6OmGsptw1AdCbJuPX9/dAVdwxqbBGiZH09HStWrVKW7ZsUYsWLRzrY2JidP78eZ06dcppgFdYWOg4FS4mJkYff/yx0/7KbjBX2elyVqtVVqu13PqgoCCXvryxldTvL4or40rdXG2DuuKptraVWrz2da5N3tAOrr5f69P7+kqCg4PVvn17SVJ8fLx27Nih3//+97r77rvd0h9KV98nVresr6MtnHlre7ir73N3v+prfSIAoLy6nFToL1db8PYvd2qDp9rA3V9eVoe3nulcm3Jzc73uzOLK+sTJkyc7/u7atauaN2+uQYMG6dChQ2rXrl2NnutqJ1p7q0snjXnLRFpXJ4xVl7snAHrDZHxveQ9UxR2TCquVGDHGaOrUqVq5cqU2bdqktm3bOm2Pj49XUFCQNmzYoJSUFEnS/v37dfToUSUkJEiSEhISNH/+fJ04cUJRUVGSLnbkYWFhiouLq044AFDvlJaWymaz0R8CAACgzicV+vrVFnzly52r4ek2cNeXl9Xh7Wc614ZL2+C7777zdDguq6xPrEifPn0kSQcPHlS7du08MtHaW1U0sau+T6R19+vhrte8Prfp5er7e6Aq7phUWK3ESFpamnJycvTuu++qSZMmjlPVwsPD1bBhQ4WHh2vixInKyMhQZGSkwsLCNHXqVCUkJKhv376SpKSkJMXFxWns2LFasGCBCgoKNHPmTKWlpVXYWQFAfTVjxgwNHTpUrVq10rfffqucnBxt2rRJa9eupT8EAADwY56aVOgvV1vw9i93aoOn2qA+fZns619uuyIoKEgXLlzwdBhVqqpPrMiuXbskSc2bN5fExEIAta9aiZHnn39ekjRgwACn9cuWLdP48eMlSQsXLlRAQIBSUlJks9mUnJysxYsXO8oGBgZq1apVmjJlihISEtSoUSOlpqZq7ty5V1cTAKhjJ06c0Lhx43T8+HGFh4erW7duWrt2rQYPHiyJ/hAAAMBfMakQAL5XVZ946NAh5eTkaNiwYWratKk+++wzTZ8+Xf369VO3bt0k0ScCqH3VvpRWVUJCQpSdna3s7OxKy7Ru3bpeXZcSAGpi6dKlV9xOfwjAn/3ud7/TjBkz9Ktf/UrPPPOMJOncuXO6//779frrrzsljC+9kebRo0c1ZcoUbdy4UY0bN1ZqaqqysrLUoEGNbo0HAB7BpEIA+F5VfWJwcLDWr1+vZ555RsXFxWrZsqVSUlI0c+ZMR1n6RAC1jU+YAAAAqFU7duzQCy+84JjhV2b69Ol6//33tWLFCoWHhys9PV2jRo3SRx99JEkqKSnR8OHDFRMTo61bt+r48eMaN26cgoKC9Nhjj3miKgBQI0wqBIDvVdUntmzZUps3b65yP/SJAGoTiREAAADUmjNnzmjMmDF68cUX9eijjzrWnz59WkuXLlVOTo4GDhwo6eIswU6dOmnbtm3q27ev1q1bp3379mn9+vWKjo5Wjx49NG/ePD300EPKzMxUcHCwp6oFAAC8VJvfvO/pEGrkyO+GezoEAPBpJEYAAABQa9LS0jR8+HAlJiY6JUby8/Nlt9uVmJjoWNexY0e1atVKeXl56tu3r/Ly8tS1a1enS2slJydrypQp2rt3r3r27Fnu+Ww2m2w2m2O5qKhIkmS322W32yuNs2ybNaDqWd310ZXqdnkZV8p6I1+vn1TzOloDved9XXYMWgOMy/X05dccAAAAdYPECAAAAGrF66+/rk8++UQ7duwot62goEDBwcGKiIhwWh8dHe24AWdBQYFTUqRse9m2imRlZWnOnDnl1q9bt06hoaFVxjyvV2mVZeqj6lxGIjc3142ReJ6v10+qfh0X9HZTIG40r1epy+/rs2fPujkaAAAA+DoSIwAAALhq//nPf/SrX/1Kubm5CgkJqbPnnTFjhjIyMhzLRUVFatmypZKSkhQWFlbp4+x2u3JzczVrZ4BspZa6CLVW7clMrrJMWR0HDx6soKCgOoiqbvl6/aSa17FL5lo3RlW7rAFG83qVatbOAOXPHuLSY8rODAMAAABqisRIPXal62BaA40W9L74ocdW4n0f5gEAgG/Jz8/XiRMn9IMf/MCxrqSkRFu2bNFzzz2ntWvX6vz58zp16pTTWSOFhYWKiYmRJMXExOjjjz922m9hYaFjW0WsVqusVmu59UFBQS59kWwrtXjlWKo6X5K72hbeytfrJ1W/jt74nraVWlyuo6+/3gAAAHC/AE8HAAAAAO83aNAg7d69W7t27XL89OrVS2PGjHH8HRQUpA0bNjges3//fh09elQJCQmSpISEBO3evVsnTpxwlMnNzVVYWJji4uLqvE4AAAAAAN/EGSMAAAC4ak2aNFGXLl2c1jVq1EhNmzZ1rJ84caIyMjIUGRmpsLAwTZ06VQkJCerbt68kKSkpSXFxcRo7dqwWLFiggoICzZw5U2lpaRWeFQIAAAAAQE2QGAEAAECdWLhwoQICApSSkiKbzabk5GQtXrzYsT0wMFCrVq3SlClTlJCQoEaNGik1NVVz5871YNQAAAAAAF9DYgQAAABusWnTJqflkJAQZWdnKzs7u9LHtG7dWqtXr3ZzZAAAAAAAf8Y9RgAAAAAAAAAAgN8gMQIAAAAAAAAAAPwGiREAAAAAAAAAAOA3SIwAAAAAAAAAAAC/QWIEAAAAAAAAAAD4DRIjAAAAAAAAAADAb5AYAQAAAAAAAAAAfoPECAAAAAAAAAAA8BskRgAAAAAAAAAAgN8gMQIAAAAAAAAAAPwGiREAAAAAAAAAAOA3SIwAAAAAAAAAAAC/QWIEAAAAAAAAAAD4DRIjAAAAAAAAAADAb5AYAQAAAAAAAAAAfoPECAAAAAAAAAC3yMrK0k033aQmTZooKipKI0eO1P79+53KnDt3TmlpaWratKkaN26slJQUFRYWOpU5evSohg8frtDQUEVFRemBBx7QhQsX6rIqAHwIiREAAAAAAAAAbrF582alpaVp27Ztys3Nld1uV1JSkoqLix1lpk+frvfee08rVqzQ5s2bdezYMY0aNcqxvaSkRMOHD9f58+e1detWvfTSS1q+fLlmz57tiSoB8AENPB0AAAAAAAAAAN+0Zs0ap+Xly5crKipK+fn56tevn06fPq2lS5cqJydHAwcOlCQtW7ZMnTp10rZt29S3b1+tW7dO+/bt0/r16xUdHa0ePXpo3rx5euihh5SZmang4GBPVA2AF+OMEQAAAAAAAAB14vTp05KkyMhISVJ+fr7sdrsSExMdZTp27KhWrVopLy9PkpSXl6euXbsqOjraUSY5OVlFRUXau3dvHUYPwFdwxggAAAAAAACq1OY373s6BFkDjRb0lrpkrpWtxOLpcFBNpaWlmjZtmm655RZ16dJFklRQUKDg4GBFREQ4lY2OjlZBQYGjzKVJkbLtZdsqYrPZZLPZHMtFRUWSJLvdLrvdXiv1qY+sgeb7vwOM0+/6yl2vR9l+3bX/S9u6vvKW90BVXH0Nq/NakxgBAAAAAAAA4HZpaWnas2ePPvzwQ7c/V1ZWlubMmVNu/bp16xQaGur25/eUBb3Lr5vXq7TuA6mG1atXu3X/ubm5btlvRW1dX9X390BVXH2PnD171uV9khgBAAAAAAAA4Fbp6elatWqVtmzZohYtWjjWx8TE6Pz58zp16pTTWSOFhYWKiYlxlPn444+d9ldYWOjYVpEZM2YoIyPDsVxUVKSWLVsqKSlJYWFhtVWteqdL5lrH39YAo3m9SjVrZ4BspfX3DKs9mclu2a/dbldubq4GDx6soKCgWt//pW1dX3nLe6Aqrr5Hys4McwWJEQAAAAAAAABuYYzR1KlTtXLlSm3atElt27Z12h4fH6+goCBt2LBBKSkpkqT9+/fr6NGjSkhIkCQlJCRo/vz5OnHihKKioiRdPAsgLCxMcXFxFT6v1WqV1Wottz4oKMgtX5LXFxVdYs5WaqnXl55z9+vhrte8Prfp5er7e6Aqrr5+1XmdSYwAAAAAAAAAcIu0tDTl5OTo3XffVZMmTRz3BAkPD1fDhg0VHh6uiRMnKiMjQ5GRkQoLC9PUqVOVkJCgvn37SpKSkpIUFxensWPHasGCBSooKNDMmTOVlpZWYfIDAKoSUN0HbNmyRSNGjFBsbKwsFoveeecdp+3jx4+XxWJx+hkyZIhTmZMnT2rMmDEKCwtTRESEJk6cqDNnzlxVRQAAAAAAAADUL88//7xOnz6tAQMGqHnz5o6fN954w1Fm4cKF+uEPf6iUlBT169dPMTExevvttx3bAwMDtWrVKgUGBiohIUE/+clPNG7cOM2dO9cTVQLgA6qdGCkuLlb37t2VnZ1daZkhQ4bo+PHjjp8///nPTtvHjBmjvXv3Kjc313FtwcmTJ1c/egAAAAAA6iEmFQLARcaYCn/Gjx/vKBMSEqLs7GydPHlSxcXFevvtt8vdO6R169ZavXq1zp49q6+++kpPPvmkGjTgYjgAaqbavcfQoUM1dOjQK5axWq2V3vjo888/15o1a7Rjxw716tVLkrRo0SINGzZMTz75pGJjY6sbEgAAAAAA9UrZpML77rtPo0aNqrDMkCFDtGzZMsfy5ZeDGTNmjI4fP67c3FzZ7XZNmDBBkydPVk5OjltjBwAA8HVuSatu2rRJUVFRuuaaazRw4EA9+uijatq0qSQpLy9PERERjqSIJCUmJiogIEDbt2/XnXfeWW5/NptNNpvNsVx2d3m73S673V5lPNZAc7VVqnesAcbpt7+iHS7ypnZw5ZitTjkAAACgPmJSIQAAQP1V64mRIUOGaNSoUWrbtq0OHTqkhx9+WEOHDlVeXp4CAwNVUFCgqKgo5yAaNFBkZKTj5kuXy8rK0pw5c8qtX7dunUJDQ6uMaUHvmtXFG8zrVerpEOoF2uEib2iH1atXu1Tu7Nmzbo4EAAAA8CwmFVaPN00IcxfawH/a4ErHbNk2V49tAEB5tZ4YGT16tOPvrl27qlu3bmrXrp02bdqkQYMG1WifM2bMUEZGhmO5qKhILVu2VFJSksLCwqp8fJfMtTV63vrMGmA0r1epZu0MkK3U4ulwPIZ2uMib2mFPZrJL5co+xAEAAAC+iEmFNecNE8LcjTbw/TZwZVJhbm4ukwoBoIbcfoei66+/Xtdee60OHjyoQYMGKSYmRidOnHAqc+HCBZ08ebLSU4itVmu5a61KUlBQkIKCgqqMwVZSv78ovhq2UotP189VtMNF3tAOrhyz1SkHAAAAeCMmFVafN00IcxfawH/a4EqTCu12u3JzczV48GB99913dRgVAPgOtydG/vvf/+qbb75R8+bNJUkJCQk6deqU8vPzFR8fL0n64IMPVFpaqj59+rg7HAAAALjB888/r+eff15HjhyRJHXu3FmzZ892XF//3Llzuv/++/X666/LZrMpOTlZixcvVnR0tGMfR48e1ZQpU7Rx40Y1btxYqampysrKUoMGbh+yAoDHManQdd4wIczdaAPfbwNXjtmgoCBduHChDqIBAN8TUN0HnDlzRrt27dKuXbskSYcPH9auXbt09OhRnTlzRg888IC2bdumI0eOaMOGDbrjjjvUvn17JSdfzHR36tRJQ4YM0aRJk/Txxx/ro48+Unp6ukaPHs3N4wAAALxUixYt9Lvf/U75+fnauXOnBg4cqDvuuEN79+6VJE2fPl3vvfeeVqxYoc2bN+vYsWMaNWqU4/ElJSUaPny4zp8/r61bt+qll17S8uXLNXv2bE9VCQDq1JUmFZZhUiEAAEDtqPb0u507d+r22293LJedppuamqrnn39en332mV566SWdOnVKsbGxSkpK0rx585xmrbz22mtKT0/XoEGDFBAQoJSUFD377LO1UB0AAAB4wogRI5yW58+fr+eff17btm1TixYttHTpUuXk5GjgwIGSpGXLlqlTp07atm2b+vbtq3Xr1mnfvn1av369oqOj1aNHD82bN08PPfSQMjMzFRwc7IlqAUCNnTlzRgcPHnQsl00qjIyMVGRkpObMmaOUlBTFxMTo0KFDevDBByudVLhkyRLZ7XYmFQIAfFKb37zvlv1aA40W9L54qUhfPsMMNVPtxMiAAQNkjKl0+9q1VV+TNDIyUjk5OdV9agAAAHiBkpISrVixQsXFxUpISFB+fr7sdrsSExMdZTp27KhWrVopLy9Pffv2VV5enrp27ep0aa3k5GRNmTJFe/fuVc+ePSt8LpvNJpvN5lguKiqSdPHa23a7vdIYy7ZZAyof19ZnV6rb5WVcKeuNfL1+Us3raA30nvd12TFoDTAu19NbXnMmFQIAANRfXLAZAAAAtWL37t1KSEjQuXPn1LhxY61cuVJxcXHatWuXgoODFRER4VQ+OjpaBQUFkqSCggKnpEjZ9rJtlcnKytKcOXPKrV+3bp1CQ0OrjHler9Iqy9RHq1evdrlsbm6uGyPxPF+vn1T9Oi7o7aZA3Gher1KX39dnz551czS1g0mFAAAA9ReJEQAAANSKDh06aNeuXTp9+rTeeustpaamavPmzW59zhkzZjhmYUsXzxhp2bKlkpKSFBYWVunj7Ha7cnNzNWtngGyl3nda/Z7M5CrLlNVx8ODBLt3A1dv4ev2kmtexS2bVX7jXF9YAo3m9SjVrZ4DyZw9x6TFlZ4YBAAAANUViBAAAALUiODhY7du3lyTFx8drx44d+v3vf6+7775b58+f16lTp5zOGiksLFRMTIwkKSYmRh9//LHT/goLCx3bKmO1Wp0uO1MmKCjIpS+SbaUWr7zecHW+JHe1LbyVr9dPqn4dvfE9bSu1uFxHX3+9AQAA4H4Bng4AALxVVlaWbrrpJjVp0kRRUVEaOXKk9u/f71Tm3LlzSktLU9OmTdW4cWOlpKQ4vugrc/ToUQ0fPlyhoaGKiorSAw88oAsXLtRlVQDALUpLS2Wz2RQfH6+goCBt2LDBsW3//v06evSoEhISJEkJCQnavXu3Tpw44SiTm5ursLAwxcXF1XnsAAAAAADfRWIEAGpo8+bNSktL07Zt25Sbmyu73a6kpCQVFxc7ykyfPl3vvfeeVqxYoc2bN+vYsWMaNWqUY3tJSYmGDx+u8+fPa+vWrXrppZe0fPlyzZ492xNVAoAamzFjhrZs2aIjR45o9+7dmjFjhjZt2qQxY8YoPDxcEydOVEZGhjZu3Kj8/HxNmDBBCQkJ6tu3ryQpKSlJcXFxGjt2rD799FOtXbtWM2fOVFpaWoVnhAAAAAAAUFNcSgsAamjNmjVOy8uXL1dUVJTy8/PVr18/nT59WkuXLlVOTo4GDhwoSVq2bJk6deqkbdu2qW/fvlq3bp327dun9evXKzo6Wj169NC8efP00EMPKTMzU8HBwZ6oGgBU24kTJzRu3DgdP35c4eHh6tatm9auXavBgwdLkhYuXKiAgAClpKTIZrMpOTlZixcvdjw+MDBQq1at0pQpU5SQkKBGjRopNTVVc+fO9VSVAAAAAAA+isQIANSS06dPS5IiIyMlSfn5+bLb7UpMTHSU6dixo1q1aqW8vDz17dtXeXl56tq1q6Kjox1lkpOTNWXKFO3du1c9e/as20qgVrX5zfueDsFl1kCjBb0v3rB3//wfejoceKGlS5decXtISIiys7OVnZ1daZnWrVtr9erVtR0aAAAAAABOSIwAQC0oLS3VtGnTdMstt6hLly6SpIKCAgUHBzvdaFiSoqOjVVBQ4ChzaVKkbHvZtorYbDbZbDbHclFRkSTJbrfLbrdfMc6y7VWV8wd10RbWQOO2fdc2a4Bx/PbG90dtt/Wl7eFOrra1N74mAAAAAADUVyRGAKAWpKWlac+ePfrwww/d/lxZWVmaM2dOufXr1q1TaGioS/vIzc2t7bC8ljvbYkFvt+3abeb1KvXKGfvuaut5vUrds+P/z9W2Pnv2rFvjAAAAAADAn5AYAYCrlJ6erlWrVmnLli1q0aKFY31MTIzOnz+vU6dOOZ01UlhYqJiYGEeZjz/+2Gl/hYWFjm0VmTFjhjIyMhzLRUVFatmypZKSkhQWFnbFWO12u3JzczV48GAFBQVVq56+pi7aokvmWrfs1x2sAUbzepVq1s4A2Uotng7H4+qqPfZkJrtUruzMMAAAAAAAcPVIjABADRljNHXqVK1cuVKbNm1S27ZtnbbHx8crKChIGzZsUEpKiiRp//79Onr0qBISEiRJCQkJmj9/vk6cOKGoqChJF89gCAsLU1xcXIXPa7VaZbVay60PCgpy+Qv+6pT1de5sC1uJ9yUYbKUWr4zbXdzdHtU5ZgEAAAAAQO0gMQIANZSWlqacnBy9++67atKkieOeIOHh4WrYsKHCw8M1ceJEZWRkKDIyUmFhYZo6daoSEhLUt29fSVJSUpLi4uI0duxYLViwQAUFBZo5c6bS0tIqTH4AAAAAAAAAuDokRgCghp5//nlJ0oABA5zWL1u2TOPHj5ckLVy4UAEBAUpJSZHNZlNycrIWL17sKBsYGKhVq1ZpypQpSkhIUKNGjZSamqq5c+fWVTUAAAAAAAAAv0JiBABqyBhTZZmQkBBlZ2crOzu70jKtW7f2yptdAwAAAAAAAN4owNMBAAAAAAAAAAAA1BUSIwAAAAAAAAAAwG+QGAEAAAAAAADgNlu2bNGIESMUGxsri8Wid955x2n7+PHjZbFYnH6GDBniVObkyZMaM2aMwsLCFBERoYkTJ+rMmTN1WAsAvoTECAAAAAAAAAC3KS4uVvfu3a94/80hQ4bo+PHjjp8///nPTtvHjBmjvXv3Kjc3V6tWrdKWLVs0efJkd4cOwEdx83UAAAAAAAAAbjN06FANHTr0imWsVqtiYmIq3Pb5559rzZo12rFjh3r16iVJWrRokYYNG6Ynn3xSsbGxtR4zAN9GYgQAAAAAAACAR23atElRUVG65pprNHDgQD366KNq2rSpJCkvL08RERGOpIgkJSYmKiAgQNu3b9edd95Zbn82m002m82xXFRUJEmy2+2y2+1uro3nWAPN938HGKff/sbf6y/5Thu4esxW59gmMQIAAAAAAADAY4YMGaJRo0apbdu2OnTokB5++GENHTpUeXl5CgwMVEFBgaKiopwe06BBA0VGRqqgoKDCfWZlZWnOnDnl1q9bt06hoaFuqUd9sKB3+XXzepXWfSD1iL/XX/L+Nli9erVL5c6ePevyPkmMAAAAAAAAAPCY0aNHO/7u2rWrunXrpnbt2mnTpk0aNGhQjfY5Y8YMZWRkOJaLiorUsmVLJSUlKSws7Kpjrq+6ZK51/G0NMJrXq1SzdgbIVmrxYFSe4e/1l3ynDfZkJrtUruzMMFeQGAEAAAAAAABQb1x//fW69tprdfDgQQ0aNEgxMTE6ceKEU5kLFy7o5MmTld6XxGq1ymq1llsfFBSkoKAgt8RdH9hKyn/5bSu1VLjeX/h7/SXvbwNXj9nqHNsBNQ0GAAAAAAAAAGrbf//7X33zzTdq3ry5JCkhIUGnTp1Sfn6+o8wHH3yg0tJS9enTx1NhAvBinDECAAAAAAAAwG3OnDmjgwcPOpYPHz6sXbt2KTIyUpGRkZozZ45SUlIUExOjQ4cO6cEHH1T79u2VnHzx8jmdOnXSkCFDNGnSJC1ZskR2u13p6ekaPXq0YmNjPVUtAF6MM0YAAAAAAAAAuM3OnTvVs2dP9ezZU5KUkZGhnj17avbs2QoMDNRnn32m//u//9ONN96oiRMnKj4+Xn//+9+dLoX12muvqWPHjho0aJCGDRumW2+9VX/4wx88VSUAXo4zRgAAAAAAAAC4zYABA2SMqXT72rVrK91WJjIyUjk5ObUZFgA/RmIEAOAV2vzm/VrdnzXQaEFvqUvmWq++ARkAAAAAAACqh0tpAQAAAAAAAAAAv0FiBAAAAAAAAAAA+A0SIwAAAAAAAAAAwG+QGAEAAAAAAAAAAH6DxAgAAAAAAAAAAPAbJEYAAAAAAAAAAIDfqHZiZMuWLRoxYoRiY2NlsVj0zjvvOG03xmj27Nlq3ry5GjZsqMTERB04cMCpzMmTJzVmzBiFhYUpIiJCEydO1JkzZ66qIgAAAAAA1Bd8dgYAAKi/qp0YKS4uVvfu3ZWdnV3h9gULFujZZ5/VkiVLtH37djVq1EjJyck6d+6co8yYMWO0d+9e5ebmatWqVdqyZYsmT55c81oAAAAAAFCP8NkZAACg/mpQ3QcMHTpUQ4cOrXCbMUbPPPOMZs6cqTvuuEOS9PLLLys6OlrvvPOORo8erc8//1xr1qzRjh071KtXL0nSokWLNGzYMD355JOKjY29iuoAAAAAAOB5fHYGAACov6qdGLmSw4cPq6CgQImJiY514eHh6tOnj/Ly8jR69Gjl5eUpIiLCMbCTpMTERAUEBGj79u268847y+3XZrPJZrM5louKiiRJdrtddru9yrisgeZqqlUvWQOM029/RTtc5E3t4MoxW51yAAAAgLdx12dnAAAAuKZWEyMFBQWSpOjoaKf10dHRjm0FBQWKiopyDqJBA0VGRjrKXC4rK0tz5swpt37dunUKDQ2tMq4FvV0K3yvN61Xq6RDqBdrhIm9oh9WrV7tU7uzZs26OBABQm7KysvT222/riy++UMOGDXXzzTfr8ccfV4cOHRxlzp07p/vvv1+vv/66bDabkpOTtXjxYqex49GjRzVlyhRt3LhRjRs3VmpqqrKystSgQa0OWwHAo9z12dnXJxV604Qwd6EN/KcNrnTMlm1z9dgGAJTnFZ8wZ8yYoYyMDMdyUVGRWrZsqaSkJIWFhVX5+C6Za90ZnkdYA4zm9SrVrJ0BspVaPB2Ox9AOF3lTO+zJTHapXNmHOACAd9i8ebPS0tJ000036cKFC3r44YeVlJSkffv2qVGjRpKk6dOn6/3339eKFSsUHh6u9PR0jRo1Sh999JEkqaSkRMOHD1dMTIy2bt2q48ePa9y4cQoKCtJjjz3myeoBgFfwl0mF3jAhzN1oA99vA1cmFebm5jKpEABqqFYTIzExMZKkwsJCNW/e3LG+sLBQPXr0cJQ5ceKE0+MuXLigkydPOh5/OavVKqvVWm59UFCQgoKCqozLVlK/vyi+GrZSi0/Xz1W0w0Xe0A6uHLPVKQcAqB/WrFnjtLx8+XJFRUUpPz9f/fr10+nTp7V06VLl5ORo4MCBkqRly5apU6dO2rZtm/r27at169Zp3759Wr9+vaKjo9WjRw/NmzdPDz30kDIzMxUcHOyJqgFArXPXZ2dfn1ToTRPC3IU28J82uNKkQrvdrtzcXA0ePFjfffddHUYFAL6jVhMjbdu2VUxMjDZs2OAYzBUVFWn79u2aMmWKJCkhIUGnTp1Sfn6+4uPjJUkffPCBSktL1adPn9oMBwAAAB5y+vRpSVJkZKQkKT8/X3a73el6+h07dlSrVq2Ul5envn37Ki8vT127dnW6tExycrKmTJmivXv3qmfPnnVbCQBwE3d9dvaXSYXeMCHM3WgD328DV47ZoKAgXbhwoQ6iAQDfU+3EyJkzZ3Tw4EHH8uHDh7Vr1y5FRkaqVatWmjZtmh599FHdcMMNatu2rWbNmqXY2FiNHDlSktSpUycNGTJEkyZN0pIlS2S325Wenq7Ro0crNja21ioGAAAAzygtLdW0adN0yy23qEuXLpIuXis/ODhYERERTmUvv55+RdfbL9tWkZpeT79sm7den9yV64lfev1xX+Tr9ZNqXsf6fp+IS116rwBX6+ktrzmfnQEAAOqvaidGdu7cqdtvv92xXHaabmpqqpYvX64HH3xQxcXFmjx5sk6dOqVbb71Va9asUUhIiOMxr732mtLT0zVo0CAFBAQoJSVFzz77bC1UBwAAAJ6WlpamPXv26MMPP3T7c13t9fS99frkrlx3vExubq4bI/E8X6+fVP06est9Ii41r1epy+9rb7mePp+dAQAA6q9qJ0YGDBggYyqfgWSxWDR37lzNnTu30jKRkZHKycmp7lMDAACgnktPT9eqVau0ZcsWtWjRwrE+JiZG58+f16lTp5zOGiksLHRcKz8mJkYff/yx0/4KCwsd2ypS0+vpl12b21uvT36l646XufT647547y5fr59U8zrW9/tEXOrSewXkzx7i0mPKzgyr7/jsDAAAUH/V6j1GAAAA4J+MMZo6dapWrlypTZs2qW3btk7b4+PjFRQUpA0bNiglJUWStH//fh09elQJCQmSLl5Pf/78+Tpx4oSioqIkXZwpHxYWpri4uAqf96qvp++l1yevzpfkrraFt/L1+knVr6M3vqdtpRaX6+jrrzcAAADcj8QIAPihLplrvfJLEwD1V1pamnJycvTuu++qSZMmjnuChIeHq2HDhgoPD9fEiROVkZGhyMhIhYWFaerUqUpISFDfvn0lSUlJSYqLi9PYsWO1YMECFRQUaObMmUpLS6sw+QEAAAAAQE2QGAEAAMBVe/755yVdvHTMpZYtW6bx48dLkhYuXOi4Rr7NZlNycrIWL17sKBsYGKhVq1ZpypQpSkhIUKNGjZSamnrFy8wAAAAAAFBdJEYAAABw1a50Hf0yISEhys7OVnZ2dqVlWrduXa0biwMAAAAAUF0Bng4AAAAAAAAAAACgrpAYAQAAAAAAAAAAfoPECAAAAAAAAAAA8BskRgAAAAAAAAC4zZYtWzRixAjFxsbKYrHonXfecdpujNHs2bPVvHlzNWzYUImJiTpw4IBTmZMnT2rMmDEKCwtTRESEJk6cqDNnztRhLQD4EhIjAAAAAAAAANymuLhY3bt3V3Z2doXbFyxYoGeffVZLlizR9u3b1ahRIyUnJ+vcuXOOMmPGjNHevXuVm5urVatWacuWLZo8eXJdVQGAj2ng6QAAAAAAAAAA+K6hQ4dq6NChFW4zxuiZZ57RzJkzdccdd0iSXn75ZUVHR+udd97R6NGj9fnnn2vNmjXasWOHevXqJUlatGiRhg0bpieffFKxsbF1VhcAvoHECAAAAAAAAACPOHz4sAoKCpSYmOhYFx4erj59+igvL0+jR49WXl6eIiIiHEkRSUpMTFRAQIC2b9+uO++8s9x+bTabbDabY7moqEiSZLfbZbfb3Vgjz7IGmu//DjBOv/2Nv9df8p02cPWYrc6xTWIEAAAAAAAAgEcUFBRIkqKjo53WR0dHO7YVFBQoKirKaXuDBg0UGRnpKHO5rKwszZkzp9z6devWKTQ0tDZCr5cW9C6/bl6v0roPpB7x9/pL3t8Gq1evdqnc2bNnXd4niREAAAAAAAAAPmXGjBnKyMhwLBcVFally5ZKSkpSWFiYByNzry6Zax1/WwOM5vUq1aydAbKVWjwYlWf4e/0l32mDPZnJLpUrOzPMFSRGAAAAAAAAAHhETEyMJKmwsFDNmzd3rC8sLFSPHj0cZU6cOOH0uAsXLujkyZOOx1/OarXKarWWWx8UFKSgoKBair7+sZWU//LbVmqpcL2/8Pf6S97fBq4es9U5tgNqGgwAAAAAAAAAXI22bdsqJiZGGzZscKwrKirS9u3blZCQIElKSEjQqVOnlJ+f7yjzwQcfqLS0VH369KnzmAF4P84YAQAAAAAAAOA2Z86c0cGDBx3Lhw8f1q5duxQZGalWrVpp2rRpevTRR3XDDTeobdu2mjVrlmJjYzVy5EhJUqdOnTRkyBBNmjRJS5Yskd1uV3p6ukaPHq3Y2FgP1QqANyMxAgAAAAAAAMBtdu7cqdtvv92xXHbvj9TUVC1fvlwPPvigiouLNXnyZJ06dUq33nqr1qxZo5CQEMdjXnvtNaWnp2vQoEEKCAhQSkqKnn322TqvCwDfQGIEAAAAAAAAgNsMGDBAxphKt1ssFs2dO1dz586ttExkZKRycnLcER4AP8Q9RgDgKmzZskUjRoxQbGysLBaL3nnnHaftxhjNnj1bzZs3V8OGDZWYmKgDBw44lTl58qTGjBmjsLAwRUREaOLEiTpz5kwd1gIAAAAAAADwHyRGAOAqFBcXq3v37srOzq5w+4IFC/Tss89qyZIl2r59uxo1aqTk5GSdO3fOUWbMmDHau3evcnNztWrVKm3ZskWTJ0+uqyoAAAAAAAAAfoVLaQHAVRg6dKiGDh1a4TZjjJ555hnNnDlTd9xxhyTp5ZdfVnR0tN555x2NHj1an3/+udasWaMdO3aoV69ekqRFixZp2LBhevLJJ7mJHAAAAAAAAFDLOGMEANzk8OHDKigoUGJiomNdeHi4+vTpo7y8PElSXl6eIiIiHEkRSUpMTFRAQIC2b99e5zEDAAAAAAAAvo4zRgDATQoKCiRJ0dHRTuujo6Md2woKChQVFeW0vUGDBoqMjHSUuZzNZpPNZnMsFxUVSZLsdrvsdvsVYyrbbg2o/KZ3/qKsDWiLi2gPZ3XVHlUds9UtBwAAAAAAqkZiBAC8TFZWlubMmVNu/bp16xQaGurSPub1Kq3tsLwWbeGM9nDm7vZYvXq1S+XOnj3r1jgAAAAAAPAnJEYAwE1iYmIkSYWFhWrevLljfWFhoXr06OEoc+LECafHXbhwQSdPnnQ8/nIzZsxQRkaGY7moqEgtW7ZUUlKSwsLCrhiT3W5Xbm6uZu0MkK3UUpNq+QxrgNG8XqW0xf9Hezirq/bYk5nsUrmyM8MAAAAAAMDVIzECAG7Stm1bxcTEaMOGDY5ESFFRkbZv364pU6ZIkhISEnTq1Cnl5+crPj5ekvTBBx+otLRUffr0qXC/VqtVVqu13PqgoCAFBQW5FJut1CJbCV9+S7TF5WgPZ+5uD1ePWVfLAQAAAACAqpEYAYCrcObMGR08eNCxfPjwYe3atUuRkZFq1aqVpk2bpkcffVQ33HCD2rZtq1mzZik2NlYjR46UJHXq1ElDhgzRpEmTtGTJEtntdqWnp2v06NGKjY31UK0AAAAAAAAA30ViBACuws6dO3X77bc7lssucZWamqrly5frwQcfVHFxsSZPnqxTp07p1ltv1Zo1axQSEuJ4zGuvvab09HQNGjRIAQEBSklJ0bPPPlvndQEAAAAAAAD8AYkRALgKAwYMkDGm0u0Wi0Vz587V3LlzKy0TGRmpnJwcd4QHAAAAAAAA4DIBng4AAAAAAAAAAACgrpAYAQAAAAAAAAAAfoPECAAAAAAAAAAA8BskRgAAAAAAAAAAgN+o9cRIZmamLBaL00/Hjh0d28+dO6e0tDQ1bdpUjRs3VkpKigoLC2s7DAAAAAAAAAAAgHLccsZI586ddfz4ccfPhx9+6Ng2ffp0vffee1qxYoU2b96sY8eOadSoUe4IAwAAAACAeolJhQAAAJ7TwC07bdBAMTEx5dafPn1aS5cuVU5OjgYOHChJWrZsmTp16qRt27apb9++7ggHAAAAAIB6p3Pnzlq/fr1juUGD7z+iT58+Xe+//75WrFih8PBwpaena9SoUfroo488ESoAAIBPccsZIwcOHFBsbKyuv/56jRkzRkePHpUk5efny263KzEx0VG2Y8eOatWqlfLy8twRCgAAAOrIli1bNGLECMXGxspiseidd95x2m6M0ezZs9W8eXM1bNhQiYmJOnDggFOZkydPasyYMQoLC1NERIQmTpyoM2fO1GEtAKDulE0qLPu59tprJX0/qfDpp5/WwIEDFR8fr2XLlmnr1q3atm2bh6MGAADwfrV+xkifPn20fPlydejQQcePH9ecOXN02223ac+ePSooKFBwcLAiIiKcHhMdHa2CgoJK92mz2WSz2RzLRUVFkiS73S673V5lTNZAU7PK1GPWAOP021/RDhd5Uzu4csxWpxwAoP4oLi5W9+7ddd9991V4qdQFCxbo2Wef1UsvvaS2bdtq1qxZSk5O1r59+xQSEiJJGjNmjI4fP67c3FzZ7XZNmDBBkydPVk5OTl1XBwDcrmxSYUhIiBISEpSVlaVWrVpVOamwsqst+PpnZ2/63OMutIH/tMGVjtmyba4e2wCA8mo9MTJ06FDH3926dVOfPn3UunVrvfnmm2rYsGGN9pmVlaU5c+aUW79u3TqFhoZW+fgFvWv0tF5hXq9ST4dQL9AOF3lDO6xevdqlcmfPnnVzJACA2jZ06FCnseCljDF65plnNHPmTN1xxx2SpJdfflnR0dF65513NHr0aH3++edas2aNduzYoV69ekmSFi1apGHDhunJJ59UbGxsndUFANzNHZMK/eWzszd87nE32sD328CVz865ubl8dgaAGnLLPUYuFRERoRtvvFEHDx7U4MGDdf78eZ06dcppgFdYWFjhPUnKzJgxQxkZGY7loqIitWzZUklJSQoLC6syhi6Za6+qDvWRNcBoXq9SzdoZIFupxdPheAztcJE3tcOezGSXypXNbgMA+IbDhw+roKDAafZzeHi4+vTpo7y8PI0ePVp5eXmKiIhwJEUkKTExUQEBAdq+fbvuvPPOcvut6ezosm3eOtvUldmhl84m9UW+Xj+p5nWs77P+L3XpzG9/O7PYHZMKff2zszd97nEX2sB/2uBKn53tdrtyc3M1ePBgfffdd3UYFQD4DrcnRs6cOaNDhw5p7Nixio+PV1BQkDZs2KCUlBRJ0v79+3X06FElJCRUug+r1Sqr1VpufVBQkIKCgqqMwVbiu/8obaUWn66fq2iHi7yhHVw5ZqtTDgDgHcpmOEdHRzutv3T2c0FBgaKiopy2N2jQQJGRkZXOkL7a2dHeOtvU1TMwpYuzSX2Zr9dPqn4dvWXW/6Xm9Sr1+zOLa2NSob98dvaGzz3uRhv4fhu4cswGBQXpwoULdRANAPieWk+M/PrXv9aIESPUunVrHTt2TI888ogCAwN1zz33KDw8XBMnTlRGRoYiIyMVFhamqVOnKiEhodJrpAIAAACVqens6LKZlt4629SVMzAvnU3qixMOfL1+Us3rWN9n/V/q0pnf+bOHuPQYXz2zuDYmFQIAAMA1tZ4Y+e9//6t77rlH33zzjZo1a6Zbb71V27ZtU7NmzSRJCxcuVEBAgFJSUmSz2ZScnKzFixfXdhgAAACoR8pmOBcWFqp58+aO9YWFherRo4ejzIkTJ5wed+HCBZ08ebLSGdJXPTvaS2ebVudLclfbwlv5ev2k6tfRG9/TtlKL351ZzKRCAPheZmZmubOAO3TooC+++EKSdO7cOd1///16/fXXnb5PvPxsZABwVa0nRl5//fUrbg8JCVF2drays7Nr+6kBAABQT7Vt21YxMTHasGGDIxFSVFSk7du3a8qUKZKkhIQEnTp1Svn5+YqPj5ckffDBByotLVWfPn08FToAuAWTCgHAWefOnbV+/XrHcoMG339tOX36dL3//vtasWKFwsPDlZ6erlGjRumjjz7yRKgAfIDb7zECAAAA/3DmzBkdPHjQsXz48GHt2rVLkZGRatWqlaZNm6ZHH31UN9xwg9q2batZs2YpNjZWI0eOlCR16tRJQ4YM0aRJk7RkyRLZ7Xalp6dr9OjRio2N9VCtAMA9mFQIAM4aNGhQ4VnCp0+f1tKlS5WTk6OBAwdKkpYtW6ZOnTpp27ZtnEkHoEYCPB0AAAAAfMPOnTvVs2dP9ezZU5KUkZGhnj17avbs2ZKkBx98UFOnTtXkyZN100036cyZM1qzZo1CQkIc+3jttdfUsWNHDRo0SMOGDdOtt96qP/zhDx6pDwAAAOrOgQMHFBsbq+uvv15jxozR0aNHJUn5+fmy2+1KTEx0lO3YsaNatWqlvLw8T4ULwMtxxggAAABqxYABA2SMqXS7xWLR3LlzNXfu3ErLREZGKicnxx3hAQAAoJ7q06ePli9frg4dOuj48eOaM2eObrvtNu3Zs0cFBQUKDg5WRESE02Oio6NVUFBQ6T5tNptsNptjuaioSJJkt9tlt9vdUo/6wBr4/XjcGmCcfvsbf6+/5Dtt4OoxW51jm8QIAAAAAAAAAI8ZOnSo4+9u3bqpT58+at26td588001bNiwRvvMysoqd0N3SVq3bp1CQ0NrHGt9t6B3+XXzepXWfSD1iL/XX/L+Nli9erVL5c6ePevyPkmMAAAAAAAAAKg3IiIidOONN+rgwYMaPHiwzp8/r1OnTjmdNVJYWFjhPUnKzJgxQxkZGY7loqIitWzZUklJSQoLC3Nn+B7VJXOt429rgNG8XqWatTNAtlKLB6PyDH+vv+Q7bbAnM9mlcmVnhrmCxAgAAAAAAACAeuPMmTM6dOiQxo4dq/j4eAUFBWnDhg1KSUmRJO3fv19Hjx5VQkJCpfuwWq2yWq3l1gcFBSkoKMhtsXuaraT8l9+2UkuF6/2Fv9df8v42cPWYrc6xTWIEAAAAAAAAgMf8+te/1ogRI9S6dWsdO3ZMjzzyiAIDA3XPPfcoPDxcEydOVEZGhiIjIxUWFqapU6cqISFBffv29XToALwUiREAAAAAAAAAHvPf//5X99xzj7755hs1a9ZMt956q7Zt26ZmzZpJkhYuXKiAgAClpKTIZrMpOTlZixcv9nDUALwZiREAAAAAAAAAHvP6669fcXtISIiys7OVnZ1dRxEB8HUBng4AAAAAAAAAAACgrpAYAQAAAAAAAAAAfoPECAAAAAAAAAAA8BskRgAAAAAAAAAAgN8gMQIAAAAAAAAAAPwGiREAAAAAAAAAAOA3SIwAAAAAAAAAAAC/0cDTAQAAAAAAAABAfdLmN+97OgQAbsQZIwAAAAAAAAAAwG+QGAEAAAAAAAAAAH6DxAgAAAAAAAAAAPAbJEYAAAAAAAAAAIDfIDECAAAAAAAAAAD8BokRAAAAAAAAAADgN0iMAAAAAAAAAAAAv0FiBAAAAAAAAAAA+A0SIwAAAAAAAAAAwG+QGAEAAAAAAAAAAH6DxAgAAAAAAAAAAPAbJEYAAAAAAAAAAIDfIDECAAAAAAAAAAD8BokRAAAAAAAAAADgN0iMAAAAAAAAAAAAv0FiBAAAAAAAAAAA+A0SIwAAAAAAAAAAwG94NDGSnZ2tNm3aKCQkRH369NHHH3/syXAAwKPoEwHgIvpDAPgefSIAfI8+EUBt8Vhi5I033lBGRoYeeeQRffLJJ+revbuSk5N14sQJT4UEAB5DnwgAF9EfAsD36BMB4Hv0iQBqk8cSI08//bQmTZqkCRMmKC4uTkuWLFFoaKj+9Kc/eSokAPAY+kQAuIj+EAC+R58IAN+jTwRQmzySGDl//rzy8/OVmJj4fSABAUpMTFReXp4nQgIAj6FPBICL6A8B4Hv0iQDwPfpEALWtgSee9Ouvv1ZJSYmio6Od1kdHR+uLL74oV95ms8lmszmWT58+LUk6efKk7HZ7lc/X4ELxVUZc/zQoNTp7tlQN7AEqKbV4OhyPoR0u8qZ2+Oabb1wq9+2330qSjDHuDKdeqMs+0W636+zZs17xXnE3bzpu6gLt4ayu2oM+0Vl1+0Op5n2it/eHrrx3yur4zTffKCgoqA6iqlu+Xj+p5nX0ps8/l/a39InO6rJPLFPf3zuMV2gDyX/a4Ep94qX/H86dOyeJPrEivt4nusJfjpfK+Hv9Jd9pA3eMEz2SGKmurKwszZkzp9z6tm3beiCa+uNeTwdQT9AOF3lLO1z7VPXKf/vttwoPD3dPMF6KPrH2eMtxU1doD2d10R70iVfPX/vE6r53gPqsrL+99onqPY4+sTx/6BMZr9AGkn+0AePEq+cPfaIr/OF4uRJ/r7/kG23gjj7RI4mRa6+9VoGBgSosLHRaX1hYqJiYmHLlZ8yYoYyMDMdyaWmpTp48qaZNm8pi8d5M19UoKipSy5Yt9Z///EdhYWGeDsdjaIeLfLEdjDH69ttvFRsb6+lQ3K4u+0RffK/UFG3hjPZwVt/aw1/6xOr2h1LN+8T69hq7g6/X0dfrJ1HHytAn1n6f6C384ZioCm1AG0jObdCkSRP6RD/tE13h78eLv9df8r82qM440SOJkeDgYMXHx2vDhg0aOXKkpIud04YNG5Senl6uvNVqldVqdVoXERFRB5HWf2FhYX7xpq4K7XCRr7WDv8x28USf6GvvlatBWzijPZzVp/bwhz6xuv2hdPV9Yn16jd3F1+vo6/WTqGNF6BPd0yd6C384JqpCG9AG0vdtQJ/o332iK/z9ePH3+kv+1Qau9okeu5RWRkaGUlNT1atXL/Xu3VvPPPOMiouLNWHCBE+FBAAeQ58IABfRHwLA9+gTAeB79IkAapPHEiN33323vvrqK82ePVsFBQXq0aOH1qxZU+4mSgDgD+gTAeAi+kMA+B59IgB8jz4RQG3y6M3X09PTKz3dDVdmtVr1yCOPlDsl0N/QDhfRDr6hLvpE3ivfoy2c0R7OaA/Poj+sHb5eR1+vn0QdcRGfm7/H+4U2kGgDyb/bgD6xevz5vSJRf4k2uBKLMcZ4OggAAAAAAAAAAIC6EODpAAAAAAAAAAAAAOoKiREAAAAAAAAAAOA3SIwAAAAAAAAAAAC/QWLEB8yfP18333yzQkNDFRER4elw6lR2drbatGmjkJAQ9enTRx9//LGnQ6pTW7Zs0YgRIxQbGyuLxaJ33nnH0yHBSxw5ckQTJ05U27Zt1bBhQ7Vr106PPPKIzp8/7+nQPMaf+1KJ/rQM/arvqskxbozR7Nmz1bx5czVs2FCJiYk6cOCAewO9CidPntSYMWMUFhamiIgITZw4UWfOnLniYwYMGCCLxeL08/Of/7yOIq5adfumFStWqGPHjgoJCVHXrl21evXqOoq05qpTx+XLl5d7vUJCQuow2uqrSb+6adMm/eAHP5DValX79u21fPlyt8cJ7+OvYzd/HrMxTpOysrJ00003qUmTJoqKitLIkSO1f/9+T4cFL+JvfSd9pn/3mVUhMeIDzp8/rx//+MeaMmWKp0OpU2+88YYyMjL0yCOP6JNPPlH37t2VnJysEydOeDq0OlNcXKzu3bsrOzvb06HAy3zxxRcqLS3VCy+8oL1792rhwoVasmSJHn74YU+H5jH+2pdK9KeXol/1XTU5xhcsWKBnn31WS5Ys0fbt29WoUSMlJyfr3Llzboy05saMGaO9e/cqNzdXq1at0pYtWzR58uQqHzdp0iQdP37c8bNgwYI6iLZq1e2btm7dqnvuuUcTJ07UP/7xD40cOVIjR47Unj176jhy19Wk/w0LC3N6vf7973/XYcTVV91+9fDhwxo+fLhuv/127dq1S9OmTdNPf/pTrV271s2Rwtv449jN38dsjNOkzZs3Ky0tTdu2bVNubq7sdruSkpJUXFzs6dDgJfyp76TPpM+skoHPWLZsmQkPD/d0GHWmd+/eJi0tzbFcUlJiYmNjTVZWlgej8hxJZuXKlZ4OA15swYIFpm3btp4Ow+P8rS81hv60MvSrvsnVY7y0tNTExMSYJ554wrHu1KlTxmq1mj//+c9ujLBm9u3bZySZHTt2ONb97W9/MxaLxXz55ZeVPq5///7mV7/6VR1EWH3V7ZvuuusuM3z4cKd1ffr0MT/72c/cGufVqG4dvf1/lCv96oMPPmg6d+7stO7uu+82ycnJbowM3szbj4vqYMz2PcZpF504ccJIMps3b/Z0KPAy/tB30md+jz6zYpwxAq90/vx55efnKzEx0bEuICBAiYmJysvL82BkgPc6ffq0IiMjPR0G6hj9KVCxw4cPq6CgwOnYCA8PV58+ferlsZGXl6eIiAj16tXLsS4xMVEBAQHavn37FR/72muv6dprr1WXLl00Y8YMnT171t3hVqkmfVNeXp5TeUlKTk6ul6+XVPP+98yZM2rdurVatmypO+64Q3v37q2LcOuMt72OQF1hzIaKnD59WpL4HAdchj4TriAxAq/09ddfq6SkRNHR0U7ro6OjVVBQ4KGoAO918OBBLVq0SD/72c88HQrqGP0pULGy97+3HBsFBQWKiopyWtegQQNFRkZeMd57771Xr776qjZu3KgZM2bolVde0U9+8hN3h1ulmvRNBQUFXvN6STWrY4cOHfSnP/1J7777rl599VWVlpbq5ptv1n//+9+6CLlOVPY6FhUV6bvvvvNQVIDnMWbD5UpLSzVt2jTdcsst6tKli6fDAeoV+ky4gsRIPfWb3/ym3I0VL//54osvPB0mgHqmJn3Hl19+qSFDhujHP/6xJk2a5KHI3YO+FPBt/nCMu7uOkydPVnJysrp27aoxY8bo5Zdf1sqVK3Xo0KFarAVqS0JCgsaNG6cePXqof//+evvtt9WsWTO98MILng4NqBX+0K8DtSUtLU179uzR66+/7ulQ4GH0nUDNNPB0AKjY/fffr/Hjx1+xzPXXX183wdRD1157rQIDA1VYWOi0vrCwUDExMR6KCvC86vYdx44d0+23366bb75Zf/jDH9wcXd2jL60a/Sm8mTuP8bL3f2FhoZo3b+5YX1hYqB49etRonzXhah1jYmLK3UjywoULOnnyZLWO5T59+ki6eCZhu3btqh1vbalJ3xQTE+NVfVlt9L9BQUHq2bOnDh486I4QPaKy1zEsLEwNGzb0UFSoK4zdKseYDZdKT0/XqlWrtGXLFrVo0cLT4cDD6DvLo8+EK0iM1FPNmjVTs2bNPB1GvRUcHKz4+Hht2LBBI0eOlHTxNNINGzYoPT3ds8EBHlSdvuPLL7/U7bffrvj4eC1btkwBAb53EiF9adXoT+HN3HmMt23bVjExMdqwYYMjEVJUVKTt27drypQpbnnOirhax4SEBJ06dUr5+fmKj4+XJH3wwQcqLS11JDtcsWvXLklySgZ5Qk36poSEBG3YsEHTpk1zrMvNzVVCQkIdRFx9tdH/lpSUaPfu3Ro2bJgbI61bCQkJWr16tdO6+vw6onYxdqscYzZIkjFGU6dO1cqVK7Vp0ya1bdvW0yGhHqDvLI8+E64gMeIDjh49qpMnT+ro0aMqKSlxfKBt3769Gjdu7Nng3CgjI0Opqanq1auXevfurWeeeUbFxcWaMGGCp0OrM2fOnHGaIXj48GHt2rVLkZGRatWqlQcjQ3335ZdfasCAAWrdurWefPJJffXVV45t/jp7wl/7Uon+9FL0q77LlWO8Y8eOysrK0p133imLxaJp06bp0Ucf1Q033KC2bdtq1qxZio2NdXy4qk86deqkIUOGaNKkSVqyZInsdrvS09M1evRoxcbGSrrY9w8aNEgvv/yyevfurUOHDiknJ0fDhg1T06ZN9dlnn2n69Onq16+funXr5uEaVd03jRs3Ttddd52ysrIkSb/61a/Uv39/PfXUUxo+fLhef/117dy5s16fEVndOs6dO1d9+/ZV+/btderUKT3xxBP697//rZ/+9KeerMYVVdWvzpgxQ19++aVefvllSdLPf/5zPffcc3rwwQd133336YMPPtCbb76p999/31NVQD3lj2M3fx+zMU67ePmsnJwcvfvuu2rSpInjXgnh4eGcVQeX+FPfSZ9Jn1klA6+XmppqJJX72bhxo6dDc7tFixaZVq1ameDgYNO7d2+zbds2T4dUpzZu3Fjha5+amurp0FDPLVu2rML3jj//W/DnvtQY+tMy9Ku+y5VjXJJZtmyZY7m0tNTMmjXLREdHG6vVagYNGmT2799f98G76JtvvjH33HOPady4sQkLCzMTJkww3377rWP74cOHnep89OhR069fPxMZGWmsVqtp3769eeCBB8zp06c9VIPyrtQ39e/fv9yx+eabb5obb7zRBAcHm86dO5v333+/jiOuvurUcdq0aY6y0dHRZtiwYeaTTz7xQNSuq6pfTU1NNf379y/3mB49epjg4GBz/fXXOx2XQBl/Hbv585iNcZqp9DMc/SRc5W99J32mf/eZVbEYY8zVp1cAAAAAAAAAAADqP9+7oDwAAAAAAAAAAEAlSIwAAAAAAAAAAAC/QWIEAAAAAAAAAAD4DRIjAAAAAAAAAADAb5AYAQAAAAAAAAAAfoPECAAAAAAAAAAA8BskRgAAAAAAAAAAgN8gMQIAAAAAAAAAAPwGiREAAAAAAAAAAOA3SIwAAAAAAAAAAAC/QWIEAAAAAAAAAAD4DRIjAAAAAAAAAADAb5AYAQAAAAAAAAAAfoPECAAAAAAAAAAA8BskRgAAAAAAAAAAgN8gMQIAAAAAAAAAAPwGiREAAAAAAAAAAOA3SIwAAAAAAAAAAAC/QWIEAAAAAAAAAAD4DRIjAAAAAAAAAADAb5AYAQAAAAAAAAAAfoPECAAAAAAAAAAA8BskRgAAAAAAAAAAgN8gMQIAAAAAAAAAAPwGiREAAAAAAAAAAOA3SIwAAAAAAAAAAAC/QWIEAAAAAAAAAAD4DRIjAAAAAAAAAADAb5AYAQAAAAAAAAAAfoPECAAAAAAAAAAA8BskRgAAAAAAAAAAgN8gMeKFMjMzZbFY9PXXX1+xXJs2bTR+/Pi6CeoSR44ckcVi0fLly+v8uQGgJsaPH682bdp4OgyvUPY/6FKe+n8D+CpXx3r1wfjx49W4cWOXylosFmVmZro3oHrGYrEoPT29ynLLly+XxWLRkSNH3B8UAI8aMGCABgwY4LfPf6n6FAvgSy4fV9T0WNu0aZMsFos2bdpUq/F5u4q+P6jOOJfPz/UHiREAAFCr9u3bp8zMTL7gA3zE/2Pv3uOiqPf/gb8Al0XAhdDYhUAiNRVveDBls8y4imSadJIyRfNoecBSyjx0zLhkGHWOWiFWx6/aUX4mpnZCE9YbnBS8cCJvxUmz6MJCZYBCrAs7vz987ByXiyywFxZez8fDh85nPjPz+czMjjPz/nzmU19fj+TkZD4UExEREREZ4fjx40hOTkZ1dbW1i0K30MfaBSAiIiLbVlZWBnv7/7W1uHDhAlJSUjB58mT2xCHqAerr65GSkgIAXWrZ+/vvv6NPHz5+EFHvlp+fb+0iEFEv09nrzqRJk/D777/D0dHRxCXqeZrf5x4/fhwpKSmYN28e3N3dDfI2f34m6+FRoB6hvr7e2kXoEJ1Oh4aGBmsXg4jIJKRSKSQSibWLQdTrdff7CycnJ5sPjNTV1Vm7CERk4xwdHfmSkYgsqrPXHXt7ezg5OfElvhE6cp/L5+fug2e2Dfvll1/w2GOPQSaToX///njuuefafRj+5ptv8Mc//hEeHh5wdnZGcHAw9u3b1yJfVVUVFixYALlcDicnJ4wZMwZbt25tka+6uhrz5s2Dm5sb3N3dERcX16luYvrvFn744Yd46aWXoFAo4OLigocffhjff/+9Qd7Jkydj5MiRKCkpwaRJk+Ds7IyXXnoJAKDRaPDKK69g8ODBkEql8PX1xYsvvgiNRmOwDpVKhfvuuw/u7u5wdXXF0KFDxXXovf322xgxYgScnZ1x2223Ydy4ccjOzhbntzUmQWvf39d/X3r79u0YMWIEpFIpDhw4AAD48ccf8dRTT0Eul0MqlWLEiBH4v//7vw7vQyJq29WrV7F06VLceeedkEql8PT0RHh4OP7zn/+0uYxOp8O6deswYsQIODk5QS6X4+mnn8Zvv/3WIu+nn36K+++/Hy4uLujXrx+io6Nx/vx5gzz67/B/8803iIyMhIuLC7y9vZGamgpBEDpcp/feew+DBg1C3759MX78ePz73/9u8e3Ytr5Z39q3Yv/973/jj3/8IwYOHCheP5ctW4bff/+93bLc/I3ULVu24I9//CMA4MEHH4SdnZ24rbi4OAwYMABarbbFOiIiIjB06NAO7weinqy9e72u3l9cv34dq1atQlBQENzc3ODi4oL7778fR44cEfN8++23uP322wEAKSkp4m+6+TeUf/zxR8yYMQOurq64/fbb8cILL6CpqckgT/Pl9PdMFy9eFFvTubm5Yf78+S0avfz+++949tlnMWDAAPTr1w8PP/wwfvzxxw6PW6IfC+/NN9/E2rVr4efnh759++KBBx7AuXPnDPLqr9uXLl3C1KlT0a9fP8yePRvAjQDJ888/D19fX0ilUgwdOhRvvvlmm9fz7du3Y+jQoXByckJQUBAKCwuNKm9H/n8pLy/HQw89BFdXV9xxxx3IzMwEAJw9exYhISFwcXGBn5+fwf0sEbXP2GtVY2Mj0tLSMGjQIEilUtx555146aWXWjyLtvat//aePQHzPjca8xw9cuRIPPjggy2W1el0uOOOO/Doo48apBl7H01E5nfzdaeyshJ9+vQRewPfrKysDHZ2dnjnnXcAtP7cqH8nd+HCBTz44INwdnbGHXfcgYyMjBbr++677/Dwww/DxcUFnp6eWLZsGfLy8jo1bkl1dTWWLVsmPtP7+Phg7ty5BmPyGfMu8+Z7Qf0ztVQqxT333INTp0612O7evXsxcuRIODk5YeTIkdizZ0+r5bv5njQ5ORnLly8HAPj7+4v3z/rn8tbGGDHmfa3+eOzcuROrV6+Gj48PnJycEBoaiosXLxrk/frrrxETEwOFQgEnJyf4+PggNjYWNTU17e7r3sS2m2z1co899hjuvPNOpKeno7i4GG+99RZ+++03fPDBB63mr6ysxL333ov6+no8++yz6N+/P7Zu3YqHH34Yu3btwiOPPALgxoPn5MmTcfHiRSQkJMDf3x85OTmYN28eqqur8dxzzwEABEHA9OnT8dlnn+GZZ57B8OHDsWfPHsTFxXW6TqtXr4adnR1WrFiBqqoqrFu3DmFhYSgtLUXfvn3FfL/++iuioqIQGxuLJ598EnK5HDqdDg8//DA+++wzLFq0CMOHD8fZs2exdu1a/Pe//8XevXsBAOfPn8dDDz2E0aNHIzU1FVKpFBcvXsSxY8fE9b///vt49tln8eijj4ovIc6cOYMTJ07giSee6FTdDh8+jJ07dyIhIQEDBgzAnXfeicrKSgQHB4svNm6//XZ8+umnWLBgAWpra7F06dJO70si+p9nnnkGu3btQkJCAgICAvDrr7/is88+w5dffok//OEPrS7z9NNPY8uWLZg/fz6effZZXL58Ge+88w4+//xzHDt2TGzh8c9//hNxcXGIjIzE66+/jvr6emRlZeG+++7D559/bhBAbWpqwpQpUxAcHIyMjAwcOHAAr7zyChobG5Gammp0fTZt2oSnn34a9957L5YuXYpvvvkGDz/8MDw8PODr69upfZSTk4P6+nosXrwY/fv3x8mTJ/H222/jhx9+QE5OjtHrmTRpEp599lm89dZbeOmllzB8+HAAwPDhwzFnzhx88MEHyMvLw0MPPSQuo1arcfjwYbzyyiudKjtRT2XMvV5X7i9qa2vxj3/8A48//jgWLlyIq1evYtOmTYiMjMTJkycRGBiI22+/HVlZWVi8eDEeeeQRzJw5EwAwevRosQxNTU2IjIzEhAkT8Oabb+LgwYP429/+hkGDBmHx4sVG1dPf3x/p6en4z3/+g3/84x/w9PTE66+/LuaZN28edu7ciTlz5iA4OBgFBQWIjo7u9L794IMPcPXqVcTHx6OhoQHr169HSEgIzp49C7lcLuZrbGxEZGQk7rvvPrz55ptwdnaGIAh4+OGHceTIESxYsACBgYHIy8vD8uXL8eOPP2Lt2rUG2yooKMCHH36IZ599FlKpFBs2bMCUKVNw8uRJjBw5ss0ydvT/l6ioKEyaNAkZGRnYvn07EhIS4OLigr/+9a+YPXs2Zs6ciY0bN2Lu3LlQKpXw9/fv9P4j6o3au1b96U9/wtatW/Hoo4/i+eefx4kTJ5Ceno4vv/yyzRdpgHHPnuZ8bjT2OXrWrFlITk6GWq2GQqEQl//ss8/w008/ITY2Vkwz9j6aiCxPLpfjgQcewM6dO1s8f3344YdwcHAQG7q15bfffsOUKVMwc+ZMPPbYY9i1axdWrFiBUaNGISoqCsCNRiQhISGoqKjAc889B4VCgezsbIMGOMa6du0a7r//fnz55Zd46qmn8Ic//AG//PIL/vWvf+GHH37AgAEDjH6XqZednY2rV6/i6aefhp2dHTIyMjBz5kx888034jUqPz8fMTExCAgIQHp6On799VfMnz8fPj4+tyzvzJkz8d///hf/7//9P6xduxYDBgwAALGxUXPGvq/VW7NmDezt7fHCCy+gpqYGGRkZmD17Nk6cOAHgRuOnyMhIaDQaLFmyBAqFAj/++CNyc3NRXV0NNze3Dh+DHksgm/PKK68IAISHH37YIP3Pf/6zAED44osvBEEQBD8/PyEuLk6cv3TpUgGA8O9//1tMu3r1quDv7y/ceeedQlNTkyAIgrBu3ToBgLBt2zYx3/Xr1wWlUim4uroKtbW1giAIwt69ewUAQkZGhpivsbFRuP/++wUAwubNm42u05EjRwQAwh133CGuXxAEYefOnQIAYf369WLaAw88IAAQNm7caLCOf/7zn4K9vb1B/QRBEDZu3CgAEI4dOyYIgiCsXbtWACD8/PPPbZZn+vTpwogRI25Z5ri4OMHPz69Fuv743AyAYG9vL5w/f94gfcGCBYKXl5fwyy+/GKTHxsYKbm5uQn19/S3LQETGcXNzE+Lj49uc3/z3/O9//1sAIGzfvt0g34EDBwzSr169Kri7uwsLFy40yKdWqwU3NzeD9Li4OAGAsGTJEjFNp9MJ0dHRgqOj4y2vSTe7fv264OnpKQQGBgoajUZMf++99wQAwgMPPCCmbd68WQAgXL582WAd+mvukSNHxLTWrjfp6emCnZ2d8N1334lprV3jmv9/k5OT02L9giAITU1Ngo+PjzBr1iyD9L///e+CnZ2d8M0337RTe6Lewdh7va7eXzQ2NhpcRwRBEH777TdBLpcLTz31lJj2888/CwCEV155pUVZ9de21NRUg/SxY8cKQUFBBmnN16Gv583bEgRBeOSRR4T+/fuL0yUlJQIAYenSpQb55s2b12a52nL58mUBgNC3b1/hhx9+ENNPnDghABCWLVvWom5/+ctfDNahvwd+9dVXDdIfffRRwc7OTrh48aJBnQEIp0+fFtO+++47wcnJSXjkkUfEtObX6878//Laa6+Jab/99pvQt29fwc7OTtixY4eY/tVXX3V4nxH1dsZcq0pLSwUAwp/+9CeDPC+88IIAQDh8+LCY9sADDxjcrxnz7GnK58bm2zf2ObqsrEwAILz99tsG+f785z8Lrq6uYhmMvY9urSxEZBrN7yua/9beffddAYBw9uxZg+UCAgKEkJAQcbq150b9O7kPPvhATNNoNIJCoRBiYmLEtL/97W8CAGHv3r1i2u+//y4MGzas1WfFW1m1apUAQNi9e3eLeTqdThAE499l6u8F+/fvL1y5ckXM+/HHHwsAhE8++URMCwwMFLy8vITq6moxLT8/XwDQ4n1g8/urN954o9VncUHo/Pta/fEYPny4wT38+vXrDY7n559/LgAQcnJyWmybDPFTWjYsPj7eYHrJkiUAgP3797eaf//+/Rg/fjzuu+8+Mc3V1RWLFi3Ct99+iwsXLoj5FAoFHn/8cTGfRCLBs88+i2vXrqGgoEDM16dPH4OWgA4ODmI5OmPu3Lno16+fOP3oo4/Cy8urRZ2kUinmz59vkJaTk4Phw4dj2LBh+OWXX8Q/ISEhACBGpfWDHn388cfQ6XStlsPd3R0//PBDq93oOuuBBx5AQECAOC0IAj766CNMmzYNgiAYlDkyMhI1NTW3/MwPERnP3d0dJ06cwE8//WRU/pycHLi5uSE8PNzgtxkUFARXV1fxeqJSqVBdXY3HH3/cIJ+DgwMmTJjQamuYhIQE8d/6Vn/Xr1/HwYMHjSrb6dOnUVVVhWeeecbgO7H6zxp21s298urq6vDLL7/g3nvvhSAI+Pzzzzu93pvZ29tj9uzZ+Ne//oWrV6+K6du3b8e9997L1stEzRhzr9eV+wsHBwfxOqLT6XDlyhU0NjZi3LhxHb4HeeaZZwym77//fnzzzTedXvbXX39FbW0tAIifB/vzn/9skK8r95wzZszAHXfcIU6PHz8eEyZMaPU+unmvl/3798PBwQHPPvusQfrzzz8PQRDw6aefGqQrlUoEBQWJ0wMHDsT06dORl5fX4nNjep35/+VPf/qT+G93d3cMHToULi4ueOyxx8T0oUOHwt3d3ehjQ0T/c6trlf7akZiYaJDn+eefB4BWP1+t196zp7mfG419jr777rsRGBiIDz/8UFy2qakJu3btwrRp08R7SWPvo4nIembOnIk+ffoY/J7PnTuHCxcuYNasWe0u7+rqiieffFKcdnR0xPjx4w3uLw4cOIA77rgDDz/8sJjm5OSEhQsXdri8H330EcaMGdOi5wQA8VP2xr7L1Js1axZuu+02cfr+++8HALEOFRUVKC0tRVxcnMFzdnh4uMG9tykY+75Wb/78+QbvApqXXV/evLw8mxuT2dIYGLFhQ4YMMZgeNGgQ7O3tW3xLXu+7775r9fvt+s+cfPfdd+LfQ4YMaTG4Umv5vLy84OrqapCvK9+Ib14nOzs7DB48uEWd7rjjjhYDR3399dc4f/48br/9doM/d999N4Ab3xoEblz8Jk6ciD/96U+Qy+WIjY3Fzp07DYIkK1asgKurK8aPH48hQ4YgPj7e4FNbndH8hd/PP/+M6upqvPfeey3KrA/66MtMRF2TkZGBc+fOwdfXF+PHj0dycvItXwp9/fXXqKmpgaenZ4vf57Vr18Tf5tdffw0ACAkJaZEvPz+/xW/Y3t4ed911l0Ga/hrV1rW7Of01uPn1UiKRtFh3R5SXl2PevHnw8PAQxwh44IEHAMCk3yGdO3cufv/9d/GTEmVlZSgpKcGcOXNMtg2insKYe72u3l9s3boVo0ePhpOTE/r374/bb78d+/bt69Dv3snJqcWnAW677TajvyU/cODAFssCEJf/7rvvYG9v36KugwcPNrqMzTXft8CN63Hza3GfPn1afC7hu+++g7e3t0FjHqDlvXJ726qvr8fPP//cavk6+v9La8fAzc0NPj4+Lca+c3Nz43f+iTrhVtcq/XWq+XVJoVDA3d29xXXhZu09e5r7udHY52jgxrP0sWPH8OOPPwK48b37qqoqgxepxt5HE5H1DBgwAKGhodi5c6eY9uGHH6JPnz7iZ1NvpbX7i+b3ft999x0GDRrUIl9n7t8uXbp0y8+P6rdnzLtMPWPuP4HW7+NMPTamse9r9doru7+/PxITE/GPf/wDAwYMQGRkJDIzMzm+SCs4xkgP0vxi05Pd3LJZT6fTYdSoUfj73//e6jL67+737dsXhYWFOHLkCPbt24cDBw7gww8/REhICPLz8+Hg4IDhw4ejrKwMubm5OHDgAD766CNs2LABq1atEgeoamt/t9Xyr3mZ9YGYJ598ss1xWW7+fjcRdd5jjz2G+++/H3v27EF+fj7eeOMNvP7669i9e7f4DdSb6XQ6eHp6Yvv27a2uT//ySf87/uc//2nwrWW9Pn2s+9+ssdeppqYmhIeH48qVK1ixYgWGDRsGFxcX/Pjjj5g3b16bves6IyAgAEFBQdi2bRvmzp2Lbdu2wdHR0aBFMxG1rrXfdFfuL7Zt24Z58+ZhxowZWL58OTw9PeHg4ID09HRcunTJ6HI5ODgYnbcjywttDGRuSVKptMUDtiV09P+XtvZhd963RLbGmN9TZ57J23v2NPdzo7HP0cCNwEhSUhJycnKwdOlS7Ny5E25ubpgyZYrB+oy5jyYi64qNjcX8+fNRWlqKwMBA7Ny5E6GhoeJ4GLfSE+4vbLkOxpT9b3/7G+bNm4ePP/4Y+fn5ePbZZ8VxC9sbI6U3YWDEhn399dcGLecuXrwInU5nMBDjzfz8/FBWVtYi/auvvhLn6/8+c+YMdDqdwYNga/kOHTqEa9euGfQaaW0bHanTzQRBwMWLF4260Rs0aBC++OILhIaGtntDam9vj9DQUISGhuLvf/87XnvtNfz1r3/FkSNHEBYWBgBwcXHBrFmzMGvWLFy/fh0zZ87E6tWrkZSUBCcnJ9x2222orq5use5btQa62e23345+/fqhqalJ3CYRmY+Xlxf+/Oc/489//jOqqqrwhz/8AatXr241MDJo0CAcPHgQEydObDUQe3M+APD09DTqd6zT6fDNN9+ILfAA4L///S8AtHntbk5/Df7666/FTxwAgFarxeXLlzFmzBgxTd9ypPm1qvl16uzZs/jvf/+LrVu3Yu7cuWK6SqUyqkzNtXcNnjt3LhITE1FRUYHs7GxER0cbdGMmohs6eq8HdOz+YteuXbjrrruwe/dug99t84E4rd34xs/PDzqdDpcvXzZotXfx4sVOr7P5PSdw43pszLXYz88PBw8exNWrVw16jTS/V25vW87Ozm2+IOzo/y9EZF3669TXX38ttvAFbgyoW11d3eK60Nytnj3N/dzYkedof39/jB8/Hh9++CESEhKwe/duzJgxA1Kp1GB9xtxHE5F1zZgxA08//bT4Oa3//ve/SEpKMtn6/fz8cOHCBQiCYHBt6cz926BBg3Du3Ll2t2fMu0xj3fzc3Zwx7z07cv9s7Pvajho1ahRGjRqFlStX4vjx45g4cSI2btyIV199tVPr64n4KS0blpmZaTD99ttvA0CrL/kAYOrUqTh58iSKiorEtLq6Orz33nu48847xW/kTZ06FWq12uBbg42NjXj77bfh6uoqflpl6tSpaGxsRFZWlpivqalJLEdnfPDBBwbfnd+1axcqKirarNPNHnvsMfz44494//33W8z7/fffUVdXBwC4cuVKi/mBgYEAAI1GAwD49ddfDeY7OjoiICAAgiBAq9UCuHFhrqmpwZkzZ8R8FRUV4udh2uPg4ICYmBh89NFHrV7g2/q0AhF1TFNTU4suo56envD29hZ/88099thjaGpqQlpaWot5jY2NYqAhMjISMpkMr732mnhtuFlrv+N33nlH/LcgCHjnnXcgkUgQGhpqVH3GjRuH22+/HRs3bsT169fF9C1btrQIgOhfrBUWFoppTU1NeO+99wzy6Vuc3NzCRBAErF+/3qgyNefi4gKgZUBG7/HHH4ednR2ee+45fPPNNwbfpyWi/+novR7QsfuL1n77J06cMLhXBABnZ2cAbf+mzS0yMhIAsGHDBoP0rtxz7t27V/wUDACcPHkSJ06cMOqec+rUqWhqajK4ngPA2rVrYWdn12IdRUVFBt////777/Hxxx8jIiKizRZ/nfn/hYisZ+rUqQCAdevWGaTre2FER0e3uWx7z57mfm409jlab9asWSguLsb//d//4ZdffmkxHoGx99FEZF3u7u6IjIzEzp07sWPHDjg6OmLGjBkmW39kZCR+/PFH/Otf/xLTGhoaWr3WtCcmJgZffPFFq+/b9Pexxr7LNJaXlxcCAwOxdetWg/cJKpWqxZgfrWnvmfhmxr6vNVZtbS0aGxsN0kaNGgV7e/s234H0VuwxYsMuX76Mhx9+GFOmTEFRURG2bduGJ554wqC18M3+8pe/4P/9v/+HqKgoPPvss/Dw8MDWrVtx+fJlfPTRR2JEddGiRXj33Xcxb948lJSU4M4778SuXbtw7NgxrFu3TmwZN23aNEycOBF/+ctf8O233yIgIAC7d+/u0jfrPDw8cN9992H+/PmorKzEunXrMHjwYKMGZ5ozZw527tyJZ555BkeOHMHEiRPR1NSEr776Cjt37kReXh7GjRuH1NRUFBYWIjo6Gn5+fqiqqsKGDRvg4+MjDnQUEREBhUKBiRMnQi6X48svv8Q777yD6Ohosf6xsbFYsWIFHnnkETz77LOor69HVlYW7r77bqMHv1uzZg2OHDmCCRMmYOHChQgICMCVK1fwn//8BwcPHmw1iENEHXP16lX4+Pjg0UcfxZgxY+Dq6oqDBw/i1KlT+Nvf/tbqMg888ACefvpppKeno7S0FBEREZBIJPj666+Rk5OD9evX49FHH4VMJkNWVhbmzJmDP/zhD4iNjcXtt9+O8vJy7Nu3DxMnTjR4cebk5IQDBw4gLi4OEyZMwKeffop9+/bhpZdeMvqzAhKJBK+++iqefvpphISEYNasWbh8+TI2b97cYoyRESNGIDg4GElJSbhy5Qo8PDywY8eOFjdJw4YNw6BBg/DCCy/gxx9/hEwmw0cffdTpb9AHBgbCwcEBr7/+OmpqaiCVShESEgJPT08AN1q0T5kyBTk5OXB3d7/lywKi3qyj93p6xt5fPPTQQ9i9ezceeeQRREdH4/Lly9i4cSMCAgJw7do1cX19+/ZFQEAAPvzwQ9x9993w8PDAyJEj2/3Ws6kEBQUhJiYG69atw6+//org4GAUFBSIPe4606Nl8ODBuO+++7B48WJoNBqsW7cO/fv3x4svvtjustOmTcODDz6Iv/71r/j2228xZswY5Ofn4+OPP8bSpUvFoLTeyJEjERkZiWeffRZSqVQM8Og/z9qajv7/QkTWNWbMGMTFxeG9995DdXU1HnjgAZw8eRJbt27FjBkz8OCDD7a5rDHPnuZ8bjT2OVrvsccewwsvvIAXXngBHh4eLXqxGHsfTUTWN2vWLDz55JPYsGEDIiMj4e7ubrJ1P/3003jnnXfw+OOP47nnnoOXlxe2b98OJycnAB27f1u+fDl27dqFP/7xj3jqqacQFBSEK1eu4F//+hc2btyIMWPGGP0usyPS09MRHR2N++67D0899RSuXLmCt99+GyNGjDC4V25NUFAQAOCvf/0rYmNjIZFIMG3aNDFgcjNj39ca6/Dhw0hISMAf//hH3H333WhsbMQ///lPMdBONxHI5rzyyisCAOHChQvCo48+KvTr10+47bbbhISEBOH3338X8/n5+QlxcXEGy166dEl49NFHBXd3d8HJyUkYP368kJub22IblZWVwvz584UBAwYIjo6OwqhRo4TNmze3yPfrr78Kc+bMEWQymeDm5ibMmTNH+PzzzwUAreZvy5EjRwQAwv/7f/9PSEpKEjw9PYW+ffsK0dHRwnfffWeQ94EHHhBGjBjR6nquX78uvP7668KIESMEqVQq3HbbbUJQUJCQkpIi1NTUCIIgCIcOHRKmT58ueHt7C46OjoK3t7fw+OOPC//973/F9bz77rvCpEmThP79+wtSqVQYNGiQsHz5cnEdevn5+cLIkSMFR0dHYejQocK2bdvE43MzAEJ8fHyrZa6srBTi4+MFX19fQSKRCAqFQggNDRXee+89o/cfEbVNo9EIy5cvF8aMGSP069dPcHFxEcaMGSNs2LBBzBMXFyf4+fm1WPa9994TgoKChL59+wr9+vUTRo0aJbz44ovCTz/9ZJDvyJEjQmRkpODm5iY4OTkJgwYNEubNmyecPn3aYBsuLi7CpUuXhIiICMHZ2VmQy+XCK6+8IjQ1NXW4Xhs2bBD8/f0FqVQqjBs3TigsLBQeeOAB4YEHHjDId+nSJSEsLEyQSqWCXC4XXnrpJUGlUgkAhCNHjoj5Lly4IISFhQmurq7CgAEDhIULFwpffPFFi+t5a9e41v6/ef/994W77rpLcHBwaLEtQRCEnTt3CgCERYsWdbjuRD2dsfd6Xb2/0Ol0wmuvvSb4+fkJUqlUGDt2rJCbm9vqNfH48eNCUFCQ4OjoKAAQXnnlFUEQ/ndta6sON7t5uZvz/Pzzzwb5Nm/eLAAQLl++LKbV1dUJ8fHxgoeHh+Dq6irMmDFDKCsrEwAIa9asudXuNHD58mUBgPDGG28If/vb3wRfX19BKpUK999/v/DFF18Y5G2rboIgCFevXhWWLVsmeHt7CxKJRBgyZIjwxhtvCDqdrkWd4+PjhW3btglDhgwR93Pza2JrdRaEjv3/0lxb98x+fn5CdHT0rXYTEd3E2GuVVqsVUlJSBH9/f0EikQi+vr5CUlKS0NDQYLBc8/s1Y589TfXc2Nr9ojHP0TebOHGiAED405/+1OZ2jLmPbq0sRNR1za9Pbf3Wamtrhb59+woAhG3btrWYr39Xd/N9S1v3F63dP37zzTdCdHS00LdvX+H2228Xnn/+eeGjjz4SAAjFxcUdqtOvv/4qJCQkCHfccYfg6Ogo+Pj4CHFxccIvv/wi5jHmXebN94LNNb9XFQRB+Oijj4Thw4cLUqlUCAgIEHbv3t1qXVtbNi0tTbjjjjsEe3t7g+PR2fe1+uORk5PTap30df3mm2+Ep556Shg0aJDg5OQkeHh4CA8++KBw8ODBlju2l7MTBBsYVYZ6vKNHj+LBBx9ETk4OW48QUY80b9487Nq1q92WJV0xefJkADeuqd3dxx9/jBkzZqCwsBD333+/tYtDRDaotLQUY8eOxbZt2zB79myjlvn222/h7++PN954Ay+88IKZS0hEREREN1u3bh2WLVuGH374AXfccYe1i0O9HMcYISIiIot7//33cdddd4mfMCQiupXff/+9Rdq6detgb2+PSZMmWaFERERERHQrze/fGhoa8O6772LIkCEMilC3wDFGyKyuX7/e7vdO3dzcLFQaIqLu7cqVKwYDqjfn4OBg9Fgk3dWOHTtw5swZ7Nu3D+vXr+/U2ABE1PtkZGSgpKQEDz74IPr06YNPP/0Un376KRYtWgRfX180NTW1OwCxq6urhUpLRGR5P//8M5qamtqc7+joCA8PDwuWiIh6u5kzZ2LgwIEIDAxETU0Ntm3bhq+++grbt28HcCNw0t44xR4eHnB0dLREcakXYmCEzOr48eO3HGgOADZv3ow777zTMgUiIurGZs6ciYKCgjbn+/n54dtvv7Vcgczg8ccfh6urKxYsWIA///nP1i4OEdmIe++9FyqVCmlpabh27RoGDhyI5ORk/PWvfwUAfP/99/D397/lOl555RXMmzfPAqUlIrK8e+65B999912b8x944AGb+NwqEfUckZGR+Mc//oHt27ejqakJAQEB2LFjB2bNmgUA+PDDDzF//vxbruPIkSPiJ6OJTI1jjJBZ/fbbbygpKbllnhEjRsDLy8tCJSIi6r5KSkrw22+/tTm/b9++mDhxogVLRERkGxoaGvDZZ5/dMs9dd92Fu+66y0IlIiKyrGPHjrX62UG92267DUFBQRYsERHRrVVUVOD8+fO3zBMUFITbbrvNQiWi3oaBESIiIiIiIiIiIiIi6jU4+DoREREREREREREREfUaNjnGiE6nw08//YR+/fpx0FaiHkoQBFy9ehXe3t6wt2cM91Z4TSTq+XhNNB6viUQ9H6+JxuM1kajn4zXReLwmEvV8Hbkm2mRg5KeffoKvr6+1i0FEFvD999/Dx8fH2sXo1nhNJOo9eE1sH6+JRL0Hr4nt4zWRqPfgNbF9vCYS9R7GXBNtMjDSr18/ADcqKJPJoNVqkZ+fj4iICEgkEiuXrmNYduux5fL3hrLX1tbC19dX/L1T25pfE3sLW/4dmBP3S9tsed/wmmg8Y66JtnwumALr33vr31Pqzmui8Tpyn9hTzo+O6G11Zn17Jl4TjWfuZ+eedM6xLt0T69K+jlwTbTIwou/uJpPJxMCIs7MzZDKZzZ0ULLv12HL5e1PZ2b21fc2vib2FLf8OzIn7pW09Yd/wmtg+Y66JPeFc6ArWv/fWv6fVndfE9nXkPrGnnR/G6G11Zn17Nl4T22fuZ+eedM6xLt0T62I8Y66J/PggERERERERERERERH1GgyMEBERERERERERERFRr8HACBEREREREREREZlFVlYWRo8eLX7CSqlU4tNPPxXnT548GXZ2dgZ/nnnmGYN1lJeXIzo6Gs7OzvD09MTy5cvR2Nho6aoQUQ9ik2OMEBERERERERERUffn4+ODNWvWYMiQIRAEAVu3bsX06dPx+eefY8SIEQCAhQsXIjU1VVzG2dlZ/HdTUxOio6OhUChw/PhxVFRUYO7cuZBIJHjttdcsXh8i6hkYGCEiIiIiIiIiIiKzmDZtmsH06tWrkZWVheLiYjEw4uzsDIVC0ery+fn5uHDhAg4ePAi5XI7AwECkpaVhxYoVSE5OhqOjo9nrQEQ9T4cCI8nJyUhJSTFIGzp0KL766isAQENDA55//nns2LEDGo0GkZGR2LBhA+RyuZi/vLwcixcvxpEjR+Dq6oq4uDikp6ejTx/GaIiIiIiIiIiIiHqqpqYm5OTkoK6uDkqlUkzfvn07tm3bBoVCgWnTpuHll18We40UFRVh1KhRBu8XIyMjsXjxYpw/fx5jx45tdVsajQYajUacrq2tBQBotVpotVqT102/TnOs29JYl+6JdTF+vcbocDRixIgROHjw4P9WcFNAY9myZdi3bx9ycnLg5uaGhIQEzJw5E8eOHQPArm9ERERERERERES9zdmzZ6FUKtHQ0ABXV1fs2bMHAQEBAIAnnngCfn5+8Pb2xpkzZ7BixQqUlZVh9+7dAAC1Wm0QFAEgTqvV6ja3mZ6e3qKBN3CjB8rNn+oyNZVKZbZ1Wxrr0j2xLm2rr683Om+HAyN9+vRptWtbTU0NNm3ahOzsbISEhAAANm/ejOHDh6O4uBjBwcHs+kZERERERERERNTLDB06FKWlpaipqcGuXbsQFxeHgoICBAQEYNGiRWK+UaNGwcvLC6Ghobh06RIGDRrU6W0mJSUhMTFRnK6trYWvry8iIiIgk8m6VJ/WaLVaqFQqhIeHQyKRmHz9lsS6dE+sS/v0PcOM0eHAyNdffw1vb284OTlBqVQiPT0dAwcORElJCbRaLcLCwsS8w4YNw8CBA1FUVITg4GCzdX2z5W5ELLv12HL5e0PZbbFuRERERERERNSSo6MjBg8eDAAICgrCqVOnsH79erz77rst8k6YMAEAcPHiRQwaNAgKhQInT540yFNZWQkAbY5LAgBSqRRSqbRFukQiMetLZXOv35JYl+6Jdbn1+ozVocDIhAkTsGXLFgwdOhQVFRVISUnB/fffj3PnzkGtVsPR0RHu7u4Gy8jlcrFbm7m7vtlyNyKW3Xpsufw9uewd6fpGRHTnX/a1m0fqICBjPDAyOQ+aJjsLlKp9366JtnYRiKgHauua2B2vgzfjNZE6y5j7gNZY8zfB8516O51OZ9AI+malpaUAAC8vLwCAUqnE6tWrUVVVBU9PTwA33inIZDLxc1z0P529Jt7M0tdHXhPJGjoUGImKihL/PXr0aEyYMAF+fn7YuXMn+vbta/LC6bXX9c2WuxGx7NZjy+XXl/3l0/bQ6LrfQ+2tfP7XEKP2e0e6vhERERERERFR95SUlISoqCgMHDgQV69eRXZ2No4ePYq8vDxcunQJ2dnZmDp1Kvr3748zZ85g2bJlmDRpEkaPHg0AiIiIQEBAAObMmYOMjAyo1WqsXLkS8fHxrfYIISIyRoc/pXUzd3d33H333bh48SLCw8Nx/fp1VFdXG/QaqaysFLu1mbvrmy13I2LZrceWy6/R2XXL1n63ot/X7e13Wz0mRERERERERPQ/VVVVmDt3LioqKuDm5obRo0cjLy8P4eHh+P7773Hw4EGsW7cOdXV18PX1RUxMDFauXCku7+DggNzcXCxevBhKpRIuLi6Ii4tDamqqFWtFRLauS4GRa9eu4dKlS5gzZw6CgoIgkUhw6NAhxMTEAADKyspQXl4OpVIJgF3fiIiIiIiIiIiIepNNmza1Oc/X1xcFBQXtrsPPzw/79+83ZbGIqJez70jmF154AQUFBfj2229x/PhxPPLII3BwcMDjjz8ONzc3LFiwAImJiThy5AhKSkowf/58KJVKBAcHAzDs+vbFF18gLy+PXd+IiIiIeqA1a9bAzs4OS5cuFdMaGhoQHx+P/v37w9XVFTExMWLvYb3y8nJER0fD2dkZnp6eWL58ORobGy1ceiIiIiIiIurJOhQY+eGHH/D4449j6NCheOyxx9C/f38UFxfj9ttvBwCsXbsWDz30EGJiYjBp0iQoFArs3r1bXF7f9c3BwQFKpRJPPvkk5s6dy65vRERERD3IqVOn8O6774rfhdZbtmwZPvnkE+Tk5KCgoAA//fQTZs6cKc5vampCdHQ0rl+/juPHj2Pr1q3YsmULVq1aZekqEBF1SVZWFkaPHg2ZTAaZTAalUolPP/1UnM9AMREREZF1dehTWjt27LjlfCcnJ2RmZiIzM7PNPOz6RkRERNRzXbt2DbNnz8b777+PV199VUyvqanBpk2bkJ2djZCQEADA5s2bMXz4cBQXFyM4OBj5+fm4cOECDh48CLlcjsDAQKSlpWHFihVITk6Go6OjtapFRNQhPj4+WLNmDYYMGQJBELB161ZMnz4dn3/+OUaMGIFly5Zh3759yMnJgZubGxISEjBz5kwcO3YMwP8CxQqFAsePH0dFRQXmzp0LiUSC1157zcq1IyIiIrJ9XRpjhIiIiIjoZvHx8YiOjkZYWJhBYKSkpARarRZhYWFi2rBhwzBw4EAUFRUhODgYRUVFGDVqFORyuZgnMjISixcvxvnz5zF27NgW29NoNNBoNOJ0bW0tAECr1UKr1bZaRn16W/N7Ota/59df6iC0nm4vGPzd3Rh7TGzh2E2bNs1gevXq1cjKykJxcTF8fHwYKCYiIiKyMgZGiIiIiMgkduzYgf/85z84depUi3lqtRqOjo5wd3c3SJfL5VCr1WKem4Mi+vn6ea1JT09HSkpKi/T8/Hw4OzvfsrwqleqW83s61r/n1j9j/K3np43TWaYgHWTslwXq6+vNXBLTampqQk5ODurq6qBUKs0WKCYiIiIi4zEwQkRERERd9v333+O5556DSqWCk5OTxbablJSExMREcbq2tha+vr6IiIiATCZrdRmtVguVSoXw8HBIJBJLFbXbYP17fv1HJue1mi61F5A2ToeXT9tDo7OzcKnady450qh8+p5h3d3Zs2ehVCrR0NAAV1dX7NmzBwEBASgtLTVLoBjoXC86PVvuTdVWL6l2l7NiLypr7GdbPsad0Vvq29PrR0RkLgyMEBEREVGXlZSUoKqqCn/4wx/EtKamJhQWFuKdd95BXl4erl+/jurqaoOXgZWVlVAoFAAAhUKBkydPGqxXPxixPk9zUqkUUqm0RbpEImn3pbcxeXoy1r/n1l/TdOugh0Zn124eazD2eNjKcRs6dChKS0tRU1ODXbt2IS4uDgUFBWbdZld60enZYm+q9npJtccavaisOfaqLR7jrujp9bW1XnRERN0FAyNERERE1GWhoaE4e/asQdr8+fMxbNgwrFixAr6+vpBIJDh06BBiYmIAAGVlZSgvL4dSqQQAKJVKrF69GlVVVfD09ARw42WGTCZDQECAZStERNRFjo6OGDx4MAAgKCgIp06dwvr16zFr1iyzBIqBzvWi07Pl3lRt9ZJqjzV7URnbQ8qUbPkYd0Zvqa+t9KIjIupuGBghIiIioi7r168fRo4caZDm4uKC/v37i+kLFixAYmIiPDw8IJPJsGTJEiiVSgQHBwMAIiIiEBAQgDlz5iAjIwNqtRorV65EfHx8q71CiIhsiU6ng0ajQVBQkNkCxV3pRdeZvN1FV3tAWaMXlTX3sS0e467o6fXtyXUjIjInBkaIiIiIyCLWrl0Le3t7xMTEQKPRIDIyEhs2bBDnOzg4IDc3F4sXL4ZSqYSLiwvi4uKQmppqxVITEXVcUlISoqKiMHDgQFy9ehXZ2dk4evQo8vLy4ObmxkAxERFRD3DnX/ZZdHtSBwEZ42/0lOxsQP/bNdEmLpXtsrd2AYiIbFVWVhZGjx4NmUwGmUwGpVKJTz/9VJw/efJk2NnZGfx55plnDNZRXl6O6OhoODs7w9PTE8uXL0djY6Olq0JEZBZHjx7FunXrxGknJydkZmbiypUrqKurw+7du1t8EsbPzw/79+9HfX09fv75Z7z55pvo04dteYjItlRVVWHu3LkYOnQoQkNDcerUKeTl5SE8PBzAjUDxQw89hJiYGEyaNAkKhQK7d+8Wl9cHih0cHKBUKvHkk09i7ty5DBQTERERmQifMomIOsnHxwdr1qzBkCFDIAgCtm7diunTp+Pzzz/HiBEjAAALFy40eIC9edDLpqYmREdHQ6FQ4Pjx46ioqMDcuXMhkUjw2muvWbw+RERERGQamzZtuuV8faA4MzOzzTz6QDERERERmR4DI0REnTRt2jSD6dWrVyMrKwvFxcViYMTZ2bnNATLz8/Nx4cIFHDx4EHK5HIGBgUhLS8OKFSuQnJwMR0dHs9eBiIiIiIiIiIiot+GntIiITKCpqQk7duxAXV2dOGgmAGzfvh0DBgzAyJEjkZSUhPr6enFeUVERRo0aBblcLqZFRkaitrYW58+ft2j5iYiIiIiIiIiIegv2GCEi6oKzZ89CqVSioaEBrq6u2LNnDwICAgAATzzxBPz8/ODt7Y0zZ85gxYoVKCsrE78frVarDYIiAMRptVrd5jY1Gg00Go04XVtbCwDQarXQarUmrV93pq9rb6qzMXrrfpE6CO3nsRcM/u4OjD1Ove14EhER9XSWHrAX4KC9REREN2NghIioC4YOHYrS0lLU1NRg165diIuLQ0FBAQICArBo0SIx36hRo+Dl5YXQ0FBcunQJgwYN6vQ209PTkZKS0iI9Pz/fYAyT3kKlUlm7CN1Sb9svGeONz5s2Tme+gnSQsd+Ov7m3GRERERERERF1DQMjRERd4OjoiMGDBwMAgoKCcOrUKaxfvx7vvvtui7wTJkwAAFy8eBGDBg2CQqHAyZMnDfJUVlYCQJvjkgBAUlISEhMTxena2lr4+voiIiICMpmsy3WyFVqtFiqVCuHh4ZBIJNYuTrfRW/fLyOS8dvNI7QWkjdPh5dP20Og610rS1M4lRxqVT98zjIiIiIiIiIi6joERIiIT0ul0Bp+5ullpaSkAwMvLCwCgVCqxevVqVFVVwdPTE8CNVv4ymUz8HFdrpFIppFJpi3SJRNKrXoTr9dZ6t6e37ZeOfA5Co7Pr9OcjTM3YY9SbjiURERERERGRuTEwQkTUSUlJSYiKisLAgQNx9epVZGdn4+jRo8jLy8OlS5eQnZ2NqVOnon///jhz5gyWLVuGSZMmYfTo0QCAiIgIBAQEYM6cOcjIyIBarcbKlSsRHx/fauCDiIiIiIiIiIiIuo6BESKiTqqqqsLcuXNRUVEBNzc3jB49Gnl5eQgPD8f333+PgwcPYt26dairq4Ovry9iYmKwcuVKcXkHBwfk5uZi8eLFUCqVcHFxQVxcHFJTU61YKyIiIiIiIiIiop6NgREiok7atGlTm/N8fX1RUFDQ7jr8/PyMHnyZiIiIiIiIiIiIus7e2gUgIiIiIiIiIiIiIiKyFAZGiIiIiIiIiIiIiIio12BghIiIiIiIiIiIiMwiKysLo0ePhkwmg0wmg1KpxKeffirOb2hoQHx8PPr37w9XV1fExMSgsrLSYB3l5eWIjo6Gs7MzPD09sXz5cjQ2Nlq6KkTUgzAwQkRERERERERERGbh4+ODNWvWoKSkBKdPn0ZISAimT5+O8+fPAwCWLVuGTz75BDk5OSgoKMBPP/2EmTNniss3NTUhOjoa169fx/Hjx7F161Zs2bIFq1atslaViKgH4ODrREREREREREREZBbTpk0zmF69ejWysrJQXFwMHx8fbNq0CdnZ2QgJCQEAbN68GcOHD0dxcTGCg4ORn5+PCxcu4ODBg5DL5QgMDERaWhpWrFiB5ORkODo6WqNaRGTjGBghIiIiIiIiIiIis2tqakJOTg7q6uqgVCpRUlICrVaLsLAwMc+wYcMwcOBAFBUVITg4GEVFRRg1ahTkcrmYJzIyEosXL8b58+cxduzYVrel0Wig0WjE6draWgCAVquFVqs1ed306zTHujtC6iB0fR32gsHf5mbOfWbO42KKfd2h7ZnguFj7/NQz13HpyPoYGCEiIiIiIiIiIiKzOXv2LJRKJRoaGuDq6oo9e/YgICAApaWlcHR0hLu7u0F+uVwOtVoNAFCr1QZBEf18/by2pKenIyUlpUV6fn4+nJ2du1ijtqlUKrOt2xgZ4023rrRxOtOt7Bb2799v9m2Y47iYcl93RFeOiyX2dUeY+rjU19cbnZeBESIisgl3/mWfwbTUQUDGeGBkch40TXZWKtWtfbsm2tpFICIiIiIisrqhQ4eitLQUNTU12LVrF+Li4lBQUGDWbSYlJSExMVGcrq2tha+vLyIiIiCTyUy+Pa1WC5VKhfDwcEgkEpOv31gjk/O6vA6pvYC0cTq8fNoeGp35n7fPJUeabd3mPC6m2NcdYYrjYs593RHmOi76nmHGYGCEiIiIiIiIiIiIzMbR0RGDBw8GAAQFBeHUqVNYv349Zs2ahevXr6O6utqg10hlZSUUCgUAQKFQ4OTJkwbrq6ysFOe1RSqVQiqVtkiXSCRmDVyYe/3tMWXDQY3OziINES2xv8xxXKzVSLMrx8Wa52ZrTH1cOrIue5NtlYiIiIiIiIiIiKgdOp0OGo0GQUFBkEgkOHTokDivrKwM5eXlUCqVAAClUomzZ8+iqqpKzKNSqSCTyRAQEGDxshNRz8AeI0RERERERERERGQWSUlJiIqKwsCBA3H16lVkZ2fj6NGjyMvLg5ubGxYsWIDExER4eHhAJpNhyZIlUCqVCA4OBgBEREQgICAAc+bMQUZGBtRqNVauXIn4+PhWe4QQERmDgREiIiIiIiIiIiIyi6qqKsydOxcVFRVwc3PD6NGjkZeXh/DwcADA2rVrYW9vj5iYGGg0GkRGRmLDhg3i8g4ODsjNzcXixYuhVCrh4uKCuLg4pKamWqtKRNQDMDBCREREREREREREZrFp06ZbzndyckJmZiYyMzPbzOPn54f9+/ebumhE1ItxjBEiIiIiIiIiIiIiIuo1GBghIiIiIiIiIiIiIqJeg4ERIiIiIiIiIiIiIiLqNRgYISIiIiIiIiIiIiKiXoOBESIiIiIiIiIiIiIi6jW6FBhZs2YN7OzssHTpUjGtoaEB8fHx6N+/P1xdXRETE4PKykqD5crLyxEdHQ1nZ2d4enpi+fLlaGxs7EpRiIiIiIiIiLqF9PR03HPPPejXrx88PT0xY8YMlJWVGeSZPHky7OzsDP4888wzBnn47ExERERkHp0OjJw6dQrvvvsuRo8ebZC+bNkyfPLJJ8jJyUFBQQF++uknzJw5U5zf1NSE6OhoXL9+HcePH8fWrVuxZcsWrFq1qvO1ICIiIiIiIuomCgoKEB8fj+LiYqhUKmi1WkRERKCurs4g38KFC1FRUSH+ycjIEOfx2ZmIiIjIfDoVGLl27Rpmz56N999/H7fddpuYXlNTg02bNuHvf/87QkJCEBQUhM2bN+P48eMoLi4GAOTn5+PChQvYtm0bAgMDERUVhbS0NGRmZuL69eumqRURkQVkZWVh9OjRkMlkkMlkUCqV+PTTT8X57EFHRERE1DsdOHAA8+bNw4gRIzBmzBhs2bIF5eXlKCkpMcjn7OwMhUIh/pHJZOI8PjsTERERmU+fziwUHx+P6OhohIWF4dVXXxXTS0pKoNVqERYWJqYNGzYMAwcORFFREYKDg1FUVIRRo0ZBLpeLeSIjI7F48WKcP38eY8eObbE9jUYDjUYjTtfW1gIAtFqt+Ec/bWtYduux5fLryyy1F6xcko4zdr/bwnHx8fHBmjVrMGTIEAiCgK1bt2L69On4/PPPMWLECCxbtgz79u1DTk4O3NzckJCQgJkzZ+LYsWMA/tcKUKFQ4Pjx46ioqMDcuXMhkUjw2muvWbl2RERERGQqNTU1AAAPDw+D9O3bt2Pbtm1QKBSYNm0aXn75ZTg7OwNAp56diYiIiMg4HQ6M7NixA//5z39w6tSpFvPUajUcHR3h7u5ukC6Xy6FWq8U8N9/Y6efr57UmPT0dKSkpLdLz8/PFm0YAUKlUHapLd8KyW48tlz9tnM7aRegw/f5ub7/X19dbojhdMm3aNIPp1atXIysrC8XFxfDx8cGmTZuQnZ2NkJAQAMDmzZsxfPhwFBcXIzg4WGwFePDgQcjlcgQGBiItLQ0rVqxAcnIyHB0drVEtIiIiIjIhnU6HpUuXYuLEiRg5cqSY/sQTT8DPzw/e3t44c+YMVqxYgbKyMuzevRtA556d22tUeCu23HBM6tC5BmP6hma22OCsM0xRX1s6P2z5nO6Inl4/IiJz6VBg5Pvvv8dzzz0HlUoFJycnc5WphaSkJCQmJorTtbW18PX1RUREBGQyGbRaLVQqFcLDwyGRSCxWLlNg2a3HlsuvL/vLp+2h0dlZuzgd8vlfQ4za7/qHOFvR1NSEnJwc1NXVQalUmq0HHRERERHZlvj4eJw7dw6fffaZQfqiRYvEf48aNQpeXl4IDQ3FpUuXMGjQoE5ty9hGhbdiiw3HMsZ3bXlbbHDWFV2p7/79+01YEsuwxXO6I2yhUSERUXfUocBISUkJqqqq8Ic//EFMa2pqQmFhId555x3k5eXh+vXrqK6uNug1UllZCYVCAQBQKBQ4efKkwXr139zX52lOKpVCKpW2SJdIJAYvVptP2xKW3XpsufwanR00TbYVGNHv6/b2u60ck7Nnz0KpVKKhoQGurq7Ys2cPAgICUFpaapYedEDXWgLasuYtAW2hhZ81jkdvaRnXnDEtRbvjOWPsceptx5OIqKdISEhAbm4uCgsL4ePjc8u8EyZMAABcvHgRgwYN6tSzc3uNCm/FlhuOjUzO69RyUnsBaeN0NtngrDNMUd9zyZEmLpX52PI53RG21qiQiKi76FBgJDQ0FGfPnjVImz9/PoYNG4YVK1bA19cXEokEhw4dQkxMDACgrKwM5eXlUCqVAAClUonVq1ejqqoKnp6eAG5E72UyGQICAkxRJyIiixk6dChKS0tRU1ODXbt2IS4uDgUFBWbdpilaAtqitloCducWftZsUdfTW8Y115GWot3pnDH2HGFLQCIi2yIIApYsWYI9e/bg6NGj8Pf3b3eZ0tJSAICXlxeAzj07G9uo8FZsseFYVxuL2WKDs67oSn1t7dwAbPOc7oieXDciInPqUGCkX79+Bt9EBQAXFxf0799fTF+wYAESExPh4eEBmUyGJUuWQKlUIjg4GAAQERGBgIAAzJkzBxkZGVCr1Vi5ciXi4+NbvYEjIurOHB0dMXjwYABAUFAQTp06hfXr12PWrFlm6UEHdK0loC1r3hLQFlr4WaNFXW9pGdecMS1Fu+M5Y+w5wpaA1BPc+Zd91i4CgBs9zDLG37huGPNi8Ns10RYoFfU08fHxyM7Oxscff4x+/fqJvYHd3NzQt29fXLp0CdnZ2Zg6dSr69++PM2fOYNmyZZg0aRJGjx4NgM/ORERERObU4cHX27N27VrY29sjJiYGGo0GkZGR2LBhgzjfwcEBubm5WLx4MZRKJVxcXBAXF4fU1FRTF4WIyOJ0Oh00Gg2CgoLM1oPOFC0BbVFbL6+6cws/ax6Pnn4+NNeRc6A7nTMdab1LRES2IysrCwAwefJkg/TNmzdj3rx5cHR0xMGDB7Fu3TrU1dXB19cXMTExWLlypZiXz85ERERE5tPlwMjRo0cNpp2cnJCZmYnMzMw2l/Hz87PJAbuIiG6WlJSEqKgoDBw4EFevXkV2djaOHj2KvLw8uLm5sQcdERERUS8lCLcez8rX19eoz6/y2ZmIiIjIPEzeY4SIqLeoqqrC3LlzUVFRATc3N4wePRp5eXkIDw8HwB50RERERERERERE3REDI0REnbRp06ZbzmcPOiIiIiIiIiIiou7H3toFICIiIiIiIiIiIiIishQGRoiIiIiIiIiIiIiIqNdgYISIiIiIiIiIiIiIiHoNBkaIiIiIiIiIiIiIiKjXYGCEiIiIiIiIiIiIiIh6DQZGiIiIiKjLsrKyMHr0aMhkMshkMiiVSnz66afi/IaGBsTHx6N///5wdXVFTEwMKisrDdZRXl6O6OhoODs7w9PTE8uXL0djY6Olq0JEREREJpSeno577rkH/fr1g6enJ2bMmIGysjKDPJMnT4adnZ3Bn2eeecYgD+8ViciUGBghIiIioi7z8fHBmjVrUFJSgtOnTyMkJATTp0/H+fPnAQDLli3DJ598gpycHBQUFOCnn37CzJkzxeWbmpoQHR2N69ev4/jx49i6dSu2bNmCVatWWatKRERERGQCBQUFiI+PR3FxMVQqFbRaLSIiIlBXV2eQb+HChaioqBD/ZGRkiPN4r0hEptbH2gUgIiIiIts3bdo0g+nVq1cjKysLxcXF8PHxwaZNm5CdnY2QkBAAwObNmzF8+HAUFxcjODgY+fn5uHDhAg4ePAi5XI7AwECkpaVhxYoVSE5OhqOjozWqRURERERddODAAYPpLVu2wNPTEyUlJZg0aZKY7uzsDIVC0eo6eK9IRKbGwAgRERERmVRTUxNycnJQV1cHpVKJkpISaLVahIWFiXmGDRuGgQMHoqioCMHBwSgqKsKoUaMgl8vFPJGRkVi8eDHOnz+PsWPHtrotjUYDjUYjTtfW1gIAtFottFptq8vo09ua39NZq/5SB8Gi22uL1F4w+Ls9tnietLWvO1p3SzN2X9viMSEiov+pqakBAHh4eBikb9++Hdu2bYNCocC0adPw8ssvw9nZGQA6fa9IRNQWBkaIiIiIyCTOnj0LpVKJhoYGuLq6Ys+ePQgICEBpaSkcHR3h7u5ukF8ul0OtVgMA1Gq1wYOufr5+XlvS09ORkpLSIj0/P198kG6LSqUyplo9lqXrnzHeoptrV9o4nVH59u/fb+aSmF57+9rYuluasfu6vr7ezCUhIiJz0el0WLp0KSZOnIiRI0eK6U888QT8/Pzg7e2NM2fOYMWKFSgrK8Pu3bsBdO5esTMNaLqiuzS+MUVjFEs3pjDnPjPncbF0wx9THBdrn5965jouHVkfAyNEREREZBJDhw5FaWkpampqsGvXLsTFxaGgoMCs20xKSkJiYqI4XVtbC19fX0REREAmk7W6jFarhUqlQnh4OCQSiVnL1x1Zq/4jk/Mstq1bkdoLSBunw8un7aHR2bWb/1xypAVKZVpt7euO1t3SjN3X+hdbRERke+Lj43Hu3Dl89tlnBumLFi0S/z1q1Ch4eXkhNDQUly5dwqBBgzq1ra40oOkKaze+MWVjFEs1prBEQxRzHBdrNfzpynHpbo1+TH1cOtKAhoERIiIiIjIJR0dHDB48GAAQFBSEU6dOYf369Zg1axauX7+O6upqg14jlZWV4nekFQoFTp48abC+yspKcV5bpFIppFJpi3SJRNLuS39j8vRklq6/pql7vYjX6OyMKpMtniPt1cvYuluasfvaFo+JLRmZnNctzw8isn0JCQnIzc1FYWEhfHx8bpl3woQJAICLFy9i0KBBnbpX7EwDmq7oLo1vTNEYxdKNKczZEMWcx8XSDX9McVy6S6Mfcx2XjjSgYWCEiIiIiMxCp9NBo9EgKCgIEokEhw4dQkxMDACgrKwM5eXlUCqVAAClUonVq1ejqqoKnp6eAG60HpLJZAgICLBaHYiIiIioawRBwJIlS7Bnzx4cPXoU/v7+7S5TWloKAPDy8gLQuXvFrjSg6QprN74xZXDbUo0pLLG/zHFcrNWQoCvHpbs1MDH1cenIuhgYISIiIqIuS0pKQlRUFAYOHIirV68iOzsbR48eRV5eHtzc3LBgwQIkJibCw8MDMpkMS5YsgVKpRHBwMAAgIiICAQEBmDNnDjIyMqBWq7Fy5UrEx8e3+kBLRERERLYhPj4e2dnZ+Pjjj9GvXz9xTBA3Nzf07dsXly5dQnZ2NqZOnYr+/fvjzJkzWLZsGSZNmoTRo0cD4L0iEZkeAyNERERE1GVVVVWYO3cuKioq4ObmhtGjRyMvLw/h4eEAgLVr18Le3h4xMTHQaDSIjIzEhg0bxOUdHByQm5uLxYsXQ6lUwsXFBXFxcUhNTbVWlYiIiIjIBLKysgAAkydPNkjfvHkz5s2bB0dHRxw8eBDr1q1DXV0dfH19ERMTg5UrV4p5ea9IRKbGwAgRERERddmmTZtuOd/JyQmZmZnIzMxsM4+fn1+3GwyQiIiIiLpGEIRbzvf19UVBQUG76+G9IhGZkr21C0BERERERERERERERGQpDIwQEREREREREREREVGvwcAIERERERERERERERH1GgyMEBERERERERERERFRr8HACBFRJ6Wnp+Oee+5Bv3794OnpiRkzZqCsrMwgz+TJk2FnZ2fw55lnnjHIU15ejujoaDg7O8PT0xPLly9HY2OjJatCRERERERERETUa/SxdgGIiGxVQUEB4uPjcc8996CxsREvvfQSIiIicOHCBbi4uIj5Fi5ciNTUVHHa2dlZ/HdTUxOio6OhUChw/PhxVFRUYO7cuZBIJHjttdcsWh8iIiIiIiIiIqLegIERIqJOOnDggMH0li1b4OnpiZKSEkyaNElMd3Z2hkKhaHUd+fn5uHDhAg4ePAi5XI7AwECkpaVhxYoVSE5OhqOjo1nrQERERERERERE1NvwU1pERCZSU1MDAPDw8DBI3759OwYMGICRI0ciKSkJ9fX14ryioiKMGjUKcrlcTIuMjERtbS3Onz9vmYITERERERERERH1IuwxQkRkAjqdDkuXLsXEiRMxcuRIMf2JJ56An58fvL29cebMGaxYsQJlZWXYvXs3AECtVhsERQCI02q1utVtaTQaaDQacbq2thYAoNVqodVqTVqv7kTqIBhO2wsGf3dH1jge+m325HOhNc3Pj1bzdMNzxtjj1NuOJxEREREREZE5MTBCRGQC8fHxOHfuHD777DOD9EWLFon/HjVqFLy8vBAaGopLly5h0KBBndpWeno6UlJSWqTn5+cbjF/S02SMbz09bZzOsgXpgP3791tt2yqVymrbtoa2zo/WdKdzxthz5OaeZkRE1P2lp6dj9+7d+Oqrr9C3b1/ce++9eP311zF06FAxT0NDA55//nns2LEDGo0GkZGR2LBhg0GjmfLycixevBhHjhyBq6sr4uLikJ6ejj59+ChPRERE1BW8myIi6qKEhATk5uaisLAQPj4+t8w7YcIEAMDFixcxaNAgKBQKnDx50iBPZWUlALQ5LklSUhISExPF6draWvj6+iIiIgIymawrVenWRibnGUxL7QWkjdPh5dP20OjsrFSqWzuXHGnxbWq1WqhUKoSHh0MikVh8+9bS/PxoTXc8Z4w9R/Q9w4iIyDYUFBQgPj4e99xzDxobG/HSSy8hIiICFy5cgIuLCwBg2bJl2LdvH3JycuDm5oaEhATMnDkTx44dAwA0NTUhOjoaCoUCx48fR0VFBebOnQuJRILXXnvNmtUjIiIisnkMjBARdZIgCFiyZAn27NmDo0ePwt/fv91lSktLAQBeXl4AAKVSidWrV6Oqqgqenp4AbrT0l8lkCAgIaHUdUqkUUqm0RbpEIunRL8I1Ta2/yNbo7NqcZ23WPB49/XxoriPnQHc6Z4w9Rr3pWBIR9QQHDhwwmN6yZQs8PT1RUlKCSZMmoaamBps2bUJ2djZCQkIAAJs3b8bw4cNRXFyM4OBg5Ofn48KFCzh48CDkcjkCAwORlpaGFStWIDk5GY6OjtaoGhEREVGPwMAIEVEnxcfHIzs7Gx9//DH69esnjgni5uaGvn374tKlS8jOzsbUqVPRv39/nDlzBsuWLcOkSZMwevRoAEBERAQCAgIwZ84cZGRkQK1WY+XKlYiPj281+EFEREREtqempgYA4OHhAQAoKSmBVqtFWFiYmGfYsGEYOHAgioqKEBwcjKKiIowaNcrg01qRkZFYvHgxzp8/j7Fjx7bYTlfGotPP705jcZlbdxx/zJxMUV9bGvest4y919PrR0RkLgyMEBF1UlZWFgBg8uTJBumbN2/GvHnz4OjoiIMHD2LdunWoq6uDr68vYmJisHLlSjGvg4MDcnNzsXjxYiiVSri4uCAuLg6pqamWrAoRERERmYlOp8PSpUsxceJEjBw5EgCgVqvh6OgId3d3g7xyuVxsbKNWqw2CIvr5+nmtMcVYdN1pLC5L6W117kp9rTmGXmf19LH3OBYdEXXEnX/ZZ+0iAACkDgIyxt/4LLYxX3T4dk20ycvAwAgRUScJwq1bWvn6+qKgoKDd9fj5+dnkAwYRERERtS8+Ph7nzp3DZ599ZvZtdWUsOv04Zd1pLC5z647jj5mTKeprjTH0Oqu3jL3HseiIiDqHgREiIiIiIiIiM0hISEBubi4KCwvh4+MjpisUCly/fh3V1dUGvUYqKyuhUCjEPCdPnjRYX2VlpTivNaYYi647jcVlKb2tzl2pry0GGHr62Hs9uW5EROZkb+0CEBEREREREfUkgiAgISEBe/bsweHDh+Hv728wPygoCBKJBIcOHRLTysrKUF5eDqVSCQBQKpU4e/YsqqqqxDwqlQoymQwBAQGWqQgRERFRD8UeI0REREREREQmFB8fj+zsbHz88cfo16+fOCaIm5sb+vbtCzc3NyxYsACJiYnw8PCATCbDkiVLoFQqERwcDACIiIhAQEAA5syZg4yMDKjVaqxcuRLx8fGt9gohIiIiIuN1qMdIVlYWRo8eDZlMBplMBqVSiU8//VSc39DQgPj4ePTv3x+urq6IiYkRu/rqlZeXIzo6Gs7OzvD09MTy5cvR2NhomtoQERERERERWVlWVhZqamowefJkeHl5iX8+/PBDMc/atWvx0EMPISYmBpMmTYJCocDu3bvF+Q4ODsjNzYWDgwOUSiWefPJJzJ07F6mpqdaoEhEREVGP0qEeIz4+PlizZg2GDBkCQRCwdetWTJ8+HZ9//jlGjBiBZcuWYd++fcjJyYGbmxsSEhIwc+ZMHDt2DADQ1NSE6OhoKBQKHD9+HBUVFZg7dy4kEglee+01s1SQiIiIiIiIyJIEQWg3j5OTEzIzM5GZmdlmHj8/P+zfv9+URSMiIiIidDAwMm3aNIPp1atXIysrC8XFxfDx8cGmTZuQnZ2NkJAQAMDmzZsxfPhwFBcXIzg4GPn5+bhw4QIOHjwIuVyOwMBApKWlYcWKFUhOToajo6PpakZERERERERERERERNRMpwdfb2pqwo4dO1BXVwelUomSkhJotVqEhYWJeYYNG4aBAweiqKgIAFBUVIRRo0ZBLpeLeSIjI1FbW4vz5893oRpERERERERERERERETt6/Dg62fPnoVSqURDQwNcXV2xZ88eBAQEoLS0FI6OjnB3dzfIL5fLxYHm1Gq1QVBEP18/ry0ajQYajUacrq2tBQBotVrxj37a1rDs1mPL5deXWWrffhf97sbY/W6Lx4WIiIiIiIiIiIi6vw4HRoYOHYrS0lLU1NRg165diIuLQ0FBgTnKJkpPT0dKSkqL9Pz8fDg7O4vTKpXKrOUwJ5bdemy5/GnjdNYuQofp93d7+72+vt4SxSEiIiIiIiIiM0pPT8fu3bvx1VdfoW/fvrj33nvx+uuvY+jQoWKehoYGPP/889ixYwc0Gg0iIyOxYcMGgwbW5eXlWLx4MY4cOQJXV1fExcUhPT0dffp0+PUmEVHHAyOOjo4YPHgwACAoKAinTp3C+vXrMWvWLFy/fh3V1dUGvUYqKyuhUCgAAAqFAidPnjRYX2VlpTivLUlJSUhMTBSna2tr4evri4iICMhkMmi1WqhUKoSHh0MikbRYfmRyXkeraTFSewFp43R4+bQ9NDo7g3nnkiOtVCrjtLbfu/O+bu7mfV+yaoq1i9Mh+n3f2nnT3X3+15Bb/l719D3DiIiIiIiIiMh2FRQUID4+Hvfccw8aGxvx0ksvISIiAhcuXICLiwsAYNmyZdi3bx9ycnLg5uaGhIQEzJw5E8eOHQNw45P+0dHRUCgUOH78OCoqKjB37lxIJBK89tprZin3nX/Z16H8UgcBGeNvvBvTNNnWuxqi3qjLIVWdTgeNRoOgoCBIJBIcOnQIMTExAICysjKUl5dDqVQCAJRKJVavXo2qqip4enoCuNFqXCaTISAgoM1tSKVSSKXSFukSicTgxWrzaT1buBhpdHYtynmrl8bdyc373Rb2dXManZ3N7OvmWjtvujv9vm7r99o8HxERERERERHZrgMHDhhMb9myBZ6enigpKcGkSZNQU1ODTZs2ITs7GyEhIQCAzZs3Y/jw4SguLkZwcDDy8/Nx4cIFHDx4EHK5HIGBgUhLS8OKFSuQnJwMR0dHa1SNiGxYhwZfT0pKQmFhIb799lucPXsWSUlJOHr0KGbPng03NzcsWLAAiYmJOHLkCEpKSjB//nwolUoEBwcDACIiIhAQEIA5c+bgiy++QF5eHlauXIn4+PhWAx9ERERERERERETUc9TU1AAAPDw8AAAlJSXQarUICwsT8wwbNgwDBw5EUVERAKCoqAijRo0y+LRWZGQkamtrcf78eQuWnoh6ig71GKmqqsLcuXNRUVEBNzc3jB49Gnl5eQgPDwcArF27Fvb29oiJiTH4HqCeg4MDcnNzsXjxYiiVSri4uCAuLg6pqammrRURERERERERERF1KzqdDkuXLsXEiRMxcuRIAIBarYajo6PBp/kBQC6XQ61Wi3luDoro5+vntUaj0UCj0YjT+k92a7VaaLXadssqdRCMq5Q+v71g8Lcts3RdjDkeXV23ObbR0XOky9vrxeeYscevI8e5Q4GRTZs23XK+k5MTMjMzkZmZ2WYePz8/7N+/vyObJSIiIiIiIiIiIhsXHx+Pc+fO4bPPPjP7ttLT05GSktIiPT8/H87Ozu0unzG+c9tNG6fr3ILdkKXqYol3xSqVyuTr7Ow50lW98Rwz9hypr683ettdHmOEiIiIiIiIiIiI6FYSEhKQm5uLwsJC+Pj4iOkKhQLXr19HdXW1Qa+RyspKKBQKMc/JkycN1ldZWSnOa01SUhISExPF6draWvj6+iIiIgIymazd8o5MzjO6bsCNlu9p43R4+bQ9NDrbGg+2OUvX5VxypNnWrdVqoVKpEB4ebvLxbDt6jnRVbz7HjD1H9D3DjMHACBEREREREREREZmFIAhYsmQJ9uzZg6NHj8Lf399gflBQECQSCQ4dOoSYmBgAQFlZGcrLy6FUKgEASqUSq1evRlVVFTw9PQHc6AEgk8kQEBDQ6nalUmmrYxpLJBKjXpBrmjr34lmjs+v0st2Npepi6oBFW9sw9XasdZx74zlm7LHryDFmYISIiIiIiIiIiIjMIj4+HtnZ2fj444/Rr18/cUwQNzc39O3bF25ubliwYAESExPh4eEBmUyGJUuWQKlUIjg4GAAQERGBgIAAzJkzBxkZGVCr1Vi5ciXi4+NbDX4QEbWHgREiIiIiIiIiIiIyi6ysLADA5MmTDdI3b96MefPmAQDWrl0Le3t7xMTEQKPRIDIyEhs2bBDzOjg4IDc3F4sXL4ZSqYSLiwvi4uKQmppqqWoQUQ/DwAgRERERERERERGZhSAI7eZxcnJCZmYmMjMz28zj5+dnkUG6iah3sLd2AYiIiIiIiIiIiIiIiCyFgREiIiIiIiIiIiIiIuo1GBghIuqk9PR03HPPPejXrx88PT0xY8YMlJWVGeRpaGhAfHw8+vfvD1dXV8TExKCystIgT3l5OaKjo+Hs7AxPT08sX74cjY2NlqwKERERERERERFRr8HACBFRJxUUFCA+Ph7FxcVQqVTQarWIiIhAXV2dmGfZsmX45JNPkJOTg4KCAvz000+YOXOmOL+pqQnR0dG4fv06jh8/jq1bt2LLli1YtWqVNapERERERERERETU43HwdSKiTjpw4IDB9JYtW+Dp6YmSkhJMmjQJNTU12LRpE7KzsxESEgIA2Lx5M4YPH47i4mIEBwcjPz8fFy5cwMGDByGXyxEYGIi0tDSsWLECycnJcHR0tEbViIh6jTv/ss/aReiUb9dEW7sIRERERERENouBESIiE6mpqQEAeHh4AABKSkqg1WoRFhYm5hk2bBgGDhyIoqIiBAcHo6ioCKNGjYJcLhfzREZGYvHixTh//jzGjh3bYjsajQYajUacrq2tBQBotVpotVqz1K07kDoIhtP2gsHf3ZE1jod+mz35XGhN8/Oj1Tzd8Jwx9jj1tuNJREREREREZE4MjBARmYBOp8PSpUsxceJEjBw5EgCgVqvh6OgId3d3g7xyuRxqtVrMc3NQRD9fP6816enpSElJaZGen58PZ2fnrlal28oY33p62jidZQvSAfv377fatlUqldW2bQ1tnR+t6U7njLHnSH19vZlLQkRERERERNR7MDBCRGQC8fHxOHfuHD777DOzbyspKQmJiYnidG1tLXx9fREREQGZTGb27VvLyOQ8g2mpvYC0cTq8fNoeGp2dlUp1a+eSIy2+Ta1WC5VKhfDwcEgkEotv31qanx+t6Y7njLHniL5nGBERERERERF1HQMjRERdlJCQgNzcXBQWFsLHx0dMVygUuH79Oqqrqw16jVRWVkKhUIh5Tp48abC+yspKcV5rpFIppFJpi3SJRNKjX4Rrmlp/ka3R2bU5z9qseTx6+vnQXEfOge50zhh7jHrTsSQiIiIiIiIyN3trF4CIyFYJgoCEhATs2bMHhw8fhr+/v8H8oKAgSCQSHDp0SEwrKytDeXk5lEolAECpVOLs2bOoqqoS86hUKshkMgQEBFimIkRERERERERERL0Ie4wQEXVSfHw8srOz8fHHH6Nfv37imCBubm7o27cv3NzcsGDBAiQmJsLDwwMymQxLliyBUqlEcHAwACAiIgIBAQGYM2cOMjIyoFarsXLlSsTHx7faK4SIiIiIiIiIiIi6hoERIqJOysrKAgBMnjzZIH3z5s2YN28eAGDt2rWwt7dHTEwMNBoNIiMjsWHDBjGvg4MDcnNzsXjxYiiVSri4uCAuLg6pqamWqgYREREREREREVGvwk9pERF1kiAIrf7RB0UAwMnJCZmZmbhy5Qrq6uqwe/fuFmOH+Pn5Yf/+/aivr8fPP/+MN998E336MG5NRLYlPT0d99xzD/r16wdPT0/MmDEDZWVlBnkaGhoQHx+P/v37w9XVFTExMeK4Snrl5eWIjo6Gs7MzPD09sXz5cjQ2NlqyKkRERERERNTDMTBCRERERF1WUFCA+Ph4FBcXQ6VSQavVIiIiAnV1dWKeZcuW4ZNPPkFOTg4KCgrw008/YebMmeL8pqYmREdH4/r16zh+/Di2bt2KLVu2YNWqVdaoEhFRlxQWFmLatGnw9vaGnZ0d9u7dazB/3rx5sLOzM/gzZcoUgzxXrlzB7NmzIZPJ4O7ujgULFuDatWsWrAURERFRz8QmyURERGZy51/2WXybUgcBGeOBkcl50DTZdWod366JNnGpqDc4cOCAwfSWLVvg6emJkpISTJo0CTU1Ndi0aROys7MREhIC4ManB4cPH47i4mIEBwcjPz8fFy5cwMGDByGXyxEYGIi0tDSsWLECycnJcHR0tEbViIg6pa6uDmPGjMFTTz1lEAS+2ZQpU7B582ZxuvkYc7Nnz0ZFRYUYcJ4/fz4WLVqE7Oxss5adiIiIqKdjYISIiIiITK6mpgYA4OHhAQAoKSmBVqtFWFiYmGfYsGEYOHAgioqKEBwcjKKiIowaNQpyuVzMExkZicWLF+P8+fMYO3Zsi+1oNBpoNBpxura2FgCg1Wqh1WpbLZs+XavVQuogdLGm1tFW3TqybFfW0RndZV9L7QWDv9tj6f1kCm3t647W3dKM3de2ckyioqIQFRV1yzxSqbTFZ1b1vvzySxw4cACnTp3CuHHjAABvv/02pk6dijfffBPe3t4mLzMRERFRb8HACBERERGZlE6nw9KlSzFx4kSMHDkSAKBWq+Ho6Ah3d3eDvHK5HGq1Wsxzc1BEP18/rzXp6elISUlpkZ6fnw9nZ+dbllOlUiFjvFFV6nb279/f5XWoVCoTlMR43W1fp43TGZXPFPva0trb18bW3dKM3df19fVmLonlHD16FJ6enrjtttsQEhKCV199Ff379wcAFBUVwd3dXQyKAEBYWBjs7e1x4sQJPPLIIy3W15lgsZ5+fncNnJlDdw8Wmpop6msrgUnAeg0BLK2n14+IyFwYGCEiIiIik4qPj8e5c+fw2WefmX1bSUlJSExMFKdra2vh6+uLiIgIyGSyVpfRarVQqVQIDw/H2NWHzV5GcziXHNnpZW+uv0QiMWGpbm1kcp7FtnUrUnsBaeN0ePm0PTS69j852JV9bS1t7euO1t3SjN3X+pf9tm7KlCmYOXMm/P39cenSJbz00kuIiopCUVERHBwcoFar4enpabBMnz594OHhYZZgsV53DZyZU2+rc1fqa4vBYks3BLC0nhQsJiKyJAZGiIiIiMhkEhISkJubi8LCQvj4+IjpCoUC169fR3V1tUGvkcrKSvEzMgqFAidPnjRYX2VlpTivNVKptMU3+QFAIpG0+9JfIpF0eiweazNFQMOYfWRK3W1fa3R2RpXJkvvIVNqrl7F1tzRj97UtHpPWxMbGiv8eNWoURo8ejUGDBuHo0aMIDQ3t1Do7EyzW0wdNu2vgzBy6e7DQ1ExRX1sKFlurIYCl9ZRgMRGRpTEwQkRERERdJggClixZgj179uDo0aPw9/c3mB8UFASJRIJDhw4hJiYGAFBWVoby8nIolUoAgFKpxOrVq1FVVSW2klapVJDJZAgICLBshYiILOyuu+7CgAEDcPHiRYSGhkKhUKCqqsogT2NjI65cuWKWYLFedw2cmVNvq3NX6muLAQZLNwSwtJ5cNyIic2JghIiIiIi6LD4+HtnZ2fj444/Rr18/8TMvbm5u6Nu3L9zc3LBgwQIkJibCw8MDMpkMS5YsgVKpRHBwMAAgIiICAQEBmDNnDjIyMqBWq7Fy5UrEx8e3+qKPiKgn+eGHH/Drr7/Cy8sLwI1gcXV1NUpKShAUFAQAOHz4MHQ6HSZMmGDNohIRERHZPAZGiIiIiKjLsrKyAACTJ082SN+8eTPmzZsHAFi7di3s7e0RExMDjUaDyMhIbNiwQczr4OCA3NxcLF68GEqlEi4uLoiLi0NqaqqlqkFEZDLXrl3DxYsXxenLly+jtLQUHh4e8PDwQEpKCmJiYqBQKHDp0iW8+OKLGDx4MCIjb3yqaPjw4ZgyZQoWLlyIjRs3QqvVIiEhAbGxsfD29rZWtYiIiIh6BAZGiIiIiKjLBEFoN4+TkxMyMzORmZnZZh4/Pz+bHNiViKi506dP48EHHxSn9WN/xMXFISsrC2fOnMHWrVtRXV0Nb29vREREIC0tzaCH3Pbt25GQkIDQ0FAxsPzWW29ZvC5EREREPQ0DI0REREREREQmNnny5FsGjfPy8tpdh4eHB7Kzs01ZLCIiIiICYG/tAhAREREREREREVHPVVhYiGnTpsHb2xt2dnbYu3evwfx58+bBzs7O4M+UKVMM8ly5cgWzZ8+GTCaDu7s7FixYgGvXrlmwFkTUk7DHCBERERm48y/7rF0EIiIiIiLqQerq6jBmzBg89dRTmDlzZqt5pkyZgs2bN4vTN39aEABmz56NiooKqFQqaLVazJ8/H4sWLWLPOiLqFAZGiIiIiIiIiIiIyGyioqIQFRV1yzxSqRQKhaLVeV9++SUOHDiAU6dOYdy4cQCAt99+G1OnTsWbb74Jb29vk5eZiHo2BkaIiIiIiIiIiKhdttSzWOogIGM8MDI5D5omO2sXp8O+XRNt7SJY3NGjR+Hp6YnbbrsNISEhePXVV9G/f38AQFFREdzd3cWgCACEhYXB3t4eJ06cwCOPPNJifRqNBhqNRpyura0FAGi1Wmi12nbLI3Voe5yoVvPbCwZ/2zJL18WY49HVdZtjGx09R7q8vV58jhl7/DpynBkYISIiIiIiIiIiIquZMmUKZs6cCX9/f1y6dAkvvfQSoqKiUFRUBAcHB6jVanh6ehos06dPH3h4eECtVre6zvT0dKSkpLRIz8/Ph7Ozc7tlyhjfubqkjdN1bsFuyFJ12b9/v9m3oVKpTL7Ozp4jXdUbzzFjz5H6+nqjt83ACBEREREREREREVlNbGys+O9Ro0Zh9OjRGDRoEI4ePYrQ0NBOrTMpKQmJiYnidG1tLXx9fREREQGZTNbu8iOT8zq0Pam9gLRxOrx82h4ane31UrqZpetyLjnSbOvWarVQqVQIDw+HRCIx6bo7eo50VW8+x4w9R/Q9w4zBwAgRERERERERERF1G3fddRcGDBiAixcvIjQ0FAqFAlVVVQZ5GhsbceXKlTbHJZFKpS0GcAcAiURi1Avyzn6CTaOzs8nPt7XGUnUxdcCirW2YejvWOs698Rwz9th15BjbG52TiIiIiIiIiIiIyMx++OEH/Prrr/Dy8gIAKJVKVFdXo6SkRMxz+PBh6HQ6TJgwwVrFJCIb1qHASHp6Ou655x7069cPnp6emDFjBsrKygzyNDQ0ID4+Hv3794erqytiYmJQWVlpkKe8vBzR0dFwdnaGp6cnli9fjsbGxq7XhoiIiIiIiIiIiLqVa9euobS0FKWlpQCAy5cvo7S0FOXl5bh27RqWL1+O4uJifPvttzh06BCmT5+OwYMHIzLyxudzhg8fjilTpmDhwoU4efIkjh07hoSEBMTGxsLb29uKNSMiW9WhwEhBQQHi4+NRXFwMlUoFrVaLiIgI1NXViXmWLVuGTz75BDk5OSgoKMBPP/2EmTNnivObmpoQHR2N69ev4/jx49i6dSu2bNmCVatWma5WREQWUlhYiGnTpsHb2xt2dnbYu3evwfx58+bBzs7O4M+UKVMM8ly5cgWzZ8+GTCaDu7s7FixYgGvXrlmwFkRERERERETmc/r0aYwdOxZjx44FACQmJmLs2LFYtWoVHBwccObMGTz88MO4++67sWDBAgQFBeHf//63waewtm/fjmHDhiE0NBRTp07Ffffdh/fee89aVSIiG9ehMUYOHDhgML1lyxZ4enqipKQEkyZNQk1NDTZt2oTs7GyEhIQAADZv3ozhw4ejuLgYwcHByM/Px4ULF3Dw4EHI5XIEBgYiLS0NK1asQHJyMhwdHU1XOyIiM6urq8OYMWPw1FNPGQSBbzZlyhRs3rxZnG7+jdPZs2ejoqJCDDjPnz8fixYtQnZ2tlnLTkRERERERGQJkydPhiAIbc7Py2t/EGsPDw8+JxORyXRp8PWamhoANy5MAFBSUgKtVouwsDAxz7BhwzBw4EAUFRUhODgYRUVFGDVqFORyuZgnMjISixcvxvnz58XI8c00Gg00Go04rR9dXqvVin/0062ROrR94bU2qb1g8PfN2qpPd9Hafu/O+7q5m/d9d9/XzenL29p5092193ttnq+7i4qKQlRU1C3zSKXSNgeD+/LLL3HgwAGcOnUK48aNAwC8/fbbmDp1Kt588012CSYiIiIiIiIiIjKxTgdGdDodli5diokTJ2LkyJEAALVaDUdHR7i7uxvklcvlUKvVYp6bgyL6+fp5rUlPT0dKSkqL9Pz8fDg7O4vTKpWq1eUzxhtXJ2tKG6drkbZ//34rlKTjbt7vtrCvm0sbp7OZfd1ca+dNd6c/X9r6verV19dbojgWcfToUXh6euK2225DSEgIXn31VfTv3x8AUFRUBHd3dzEoAgBhYWGwt7fHiRMn8Mgjj7RYX3vB4p6qeeD1VoHl3oz7pW3dcd8Y+5vtyb9tIiIiIiIiIkvrdGAkPj4e586dw2effWbK8rQqKSkJiYmJ4nRtbS18fX0REREBmUwGrVYLlUqF8PBwSCSSFsuPTG6/O561SO0FpI3T4eXT9tDo7AzmnUuOtFKpjNPafu/O+7q5m/d9yaop7S/Qjej3fWvnTXf3+V9Dbvl71dO/7Ld1U6ZMwcyZM+Hv749Lly7hpZdeQlRUFIqKiuDg4AC1Wg1PT0+DZfr06QMPD48uB4t7mrYCr7YYILQE7pe2dad9Y2xgvicFi4mIiIiIiIisrVOBkYSEBOTm5qKwsBA+Pj5iukKhwPXr11FdXW3Qa6SyslL8jIxCocDJkycN1ldZWSnOa41UKm3xTX4AkEgkBi9Wm0/raZq6/4tjjc6uRTlv9dK4O7l5v9vCvm5Oo7OzmX3dXGvnTXen39dt/V6b57N1sbGx4r9HjRqF0aNHY9CgQTh69ChCQ0M7tc72gsU9VfPA660Cy70Z90vbuuO+MbYRRE8JFhMRERERERF1Bx0KjAiCgCVLlmDPnj04evQo/P39DeYHBQVBIpHg0KFDiImJAQCUlZWhvLwcSqUSAKBUKrF69WpUVVWJraRVKhVkMhkCAgJMUSciom7rrrvuwoABA3Dx4kWEhoZCoVCgqqrKIE9jYyOuXLnS5WBxT9NWENAWA4SWwP3Stu60b4z9zfbk3zYRERERERGRpXUoMBIfH4/s7Gx8/PHH6Nevn/iZFzc3N/Tt2xdubm5YsGABEhMT4eHhAZlMhiVLlkCpVCI4OBgAEBERgYCAAMyZMwcZGRlQq9VYuXIl4uPjW33RR0TUk/zwww/49ddf4eXlBeBGsLi6uholJSUICgoCABw+fBg6nQ4TJkywZlGJiIiIiIiIiIh6pA4FRrKysgAAkydPNkjfvHkz5s2bBwBYu3Yt7O3tERMTA41Gg8jISGzYsEHM6+DggNzcXCxevBhKpRIuLi6Ii4tDampq12pCRGQF165dw8WLF8Xpy5cvo7S0FB4eHvDw8EBKSgpiYmKgUChw6dIlvPjiixg8eDAiI298Pmf48OGYMmUKFi5ciI0bN0Kr1SIhIQGxsbHw9va2VrWIiIiIiIiIiIh6rA5/Sqs9Tk5OyMzMRGZmZpt5/Pz8jB5slIioOzt9+jQefPBBcVo/9kdcXByysrJw5swZbN26FdXV1fD29kZERATS0tIMesht374dCQkJCA0NFQPLb731lsXrQkRERERERERE1Bt0avB1IiK6YfLkybcMGufl5bU5T8/DwwPZ2dmmLBYRERERERERERG1wd7aBSAiIiIiIiIiIiIiIrIUBkaIiIiIiIiIiIiIiKjXYGCEiIiIiIiIiIiIiIh6DQZGiIiIiIiIiIiIiIio12BghIiIiIiIiIiIiIiIeg0GRoiIiIiIiIiIiIiIqNdgYISIiIiIiIiIiIiIiHqNPtYuABERERERUXd151/2WbsIZKMKCwvxxhtvoKSkBBUVFdizZw9mzJghzhcEAa+88gref/99VFdXY+LEicjKysKQIUPEPFeuXMGSJUvwySefwN7eHjExMVi/fj1cXV2tUCMiIiKinoM9RoiIiIiIiIhMrK6uDmPGjEFmZmar8zMyMvDWW29h48aNOHHiBFxcXBAZGYmGhgYxz+zZs3H+/HmoVCrk5uaisLAQixYtslQViIiIiHos9hghIiIiIiIiMrGoqChERUW1Ok8QBKxbtw4rV67E9OnTAQAffPAB5HI59u7di9jYWHz55Zc4cOAATp06hXHjxgEA3n77bUydOhVvvvkmvL29LVYXIiIiop6GgREiIiIiIiIiC7p8+TLUajXCwsLENDc3N0yYMAFFRUWIjY1FUVER3N3dxaAIAISFhcHe3h4nTpzAI4880mK9Go0GGo1GnK6trQUAaLVaaLXaW5ZJP19qL3SpbrZEX9feUmfW17a095vtaD4iIjLEwAgRERERERGRBanVagCAXC43SJfL5eI8tVoNT09Pg/l9+vSBh4eHmKe59PR0pKSktEjPz8+Hs7OzUWVLG6czKl9P0tvqzPrahv379xuVr76+3swlISLqmRgYISIiIiIiIuoBkpKSkJiYKE7X1tbC19cXERERkMlkt1xWq9VCpVLh5dP20OjszF3UbkFqLyBtnK7X1Jn1tS3nkiONyqfvGUZERB3DwAgRERERERGRBSkUCgBAZWUlvLy8xPTKykoEBgaKeaqqqgyWa2xsxJUrV8Tlm5NKpZBKpS3SJRIJJBKJUWXT6OygabK9l8hd0dvqzPraBmN/s8bmIyIiQ/bWLgARERERERFRb+Lv7w+FQoFDhw6JabW1tThx4gSUSiUAQKlUorq6GiUlJWKew4cPQ6fTYcKECRYvMxFRVxQWFmLatGnw9vaGnZ0d9u7dazBfEASsWrUKXl5e6Nu3L8LCwvD1118b5Lly5Qpmz54NmUwGd3d3LFiwANeuXbNgLYioJ2FghIiIiIiIiMjErl27htLSUpSWlgK4MeB6aWkpysvLYWdnh6VLl+LVV1/Fv/71L5w9exZz586Ft7c3ZsyYAQAYPnw4pkyZgoULF+LkyZM4duwYEhISEBsbC29vb+tVjIioE+rq6jBmzBhkZma2Oj8jIwNvvfUWNm7ciBMnTsDFxQWRkZFoaGgQ88yePRvnz5+HSqVCbm4uCgsLsWjRIktVgYh6GH5Ki4iIiIiIiMjETp8+jQcffFCc1o/9ERcXhy1btuDFF19EXV0dFi1ahOrqatx33304cOAAnJycxGW2b9+OhIQEhIaGwt7eHjExMXjrrbcsXhcioq6KiopCVFRUq/MEQcC6deuwcuVKTJ8+HQDwwQcfQC6XY+/evYiNjcWXX36JAwcO4NSpUxg3bhwA4O2338bUqVPx5ptvMmBMRB3GwAgRERERERGRiU2ePBmCILQ5387ODqmpqUhNTW0zj4eHB7Kzs81RPCKibuPy5ctQq9UICwsT09zc3DBhwgQUFRUhNjYWRUVFcHd3F4MiABAWFgZ7e3ucOHECjzzySIv1ajQaaDQacVo/UL1Wq4VWq223XFKHtq/hrea3Fwz+tmWWrosxx6Or6zbHNjp6jnR5e734HDP2+HXkODMwQkRERERERERERFahVqsBAHK53CBdLpeL89RqNTw9PQ3m9+nTBx4eHmKe5tLT05GSktIiPT8/H87Ozu2WK2O8UcVvIW2crnMLdkOWqsv+/fvNvg2VSmXydXb2HOmq3niOGXuO1NfXG71tBkaIiIiIiIiIiIioR0lKShI/Ywjc6DHi6+uLiIgIyGSydpcfmZzXoe1J7QWkjdPh5dP20OjsOlze7sTSdTmXHGm2dWu1WqhUKoSHh0MikZh03R09R7qqN59jxp4j+p5hxmBghIioCwoLC/HGG2+gpKQEFRUV2LNnjzhgJnDjW6mvvPIK3n//fVRXV2PixInIysrCkCFDxDxXrlzBkiVL8Mknn4jfjl6/fj1cXV2tUCMiIiIiIiIiy1EoFACAyspKeHl5iemVlZUIDAwU81RVVRks19jYiCtXrojLNyeVSiGVSlukSyQSo16Qa5o69+JZo7Pr9LLdjaXqYuqARVvbMPV2rHWce+M5Zuyx68gxtjc6JxERtVBXV4cxY8YgMzOz1fkZGRl46623sHHjRpw4cQIuLi6IjIxEQ0ODmGf27Nk4f/48VCoVcnNzUVhYiEWLFlmqCkRERERERERW4+/vD4VCgUOHDolptbW1OHHiBJRKJQBAqVSiuroaJSUlYp7Dhw9Dp9NhwoQJFi8zEdk+9hghIuqCqKgoREVFtTpPEASsW7cOK1euxPTp0wEAH3zwAeRyOfbu3YvY2Fh8+eWXOHDgAE6dOiUOIvf2229j6tSpePPNN+Ht7W2xuhARERERERGZw7Vr13Dx4kVx+vLlyygtLYWHhwcGDhyIpUuX4tVXX8WQIUPg7++Pl19+Gd7e3uIXGYYPH44pU6Zg4cKF2LhxI7RaLRISEhAbG8vnZiLqFAZGiIjM5PLly1Cr1QgLCxPT3NzcMGHCBBQVFSE2NhZFRUVwd3cXgyIAEBYWBnt7e5w4cQKPPPJIi/VqNBpoNBpxWv/9RK1WC61Wa8YaWZfUQTCcthcM/qYbuF/a1h33jbG/2Z782yYiIiKinu/06dN48MEHxWn92B9xcXHYsmULXnzxRdTV1WHRokWorq7GfffdhwMHDsDJyUlcZvv27UhISEBoaKj4Geq33nrL4nUhop6BgREiIjNRq9UAALlcbpAul8vFeWq1Gp6engbz+/TpAw8PDzFPc+np6UhJSWmRnp+fD2dnZ1MUvVvKGN96eto4nWULYiO4X9rWnfbN/v37jcpXX19v5pIQEREREZnP5MmTIQhtN1Cys7NDamoqUlNT28zj4eGB7OxscxSPiHohBkaIiGxMUlKS2LoGuNFjxNfXFxEREZDJZFYsmXmNTM4zmJbaC0gbp8PLp+2h0fWMQcdMgfulbd1x35xLjjQqn75nWHdXWFiIN954AyUlJaioqMCePXvEzx8ANz4x+Morr+D9999HdXU1Jk6ciKysLAwZMkTMc+XKFSxZsgSffPKJ2BJw/fr1cHV1tUKNiIiIiIiIqCdiYISIyEwUCgUAoLKyEl5eXmJ6ZWUlAgMDxTxVVVUGyzU2NuLKlSvi8s1JpVJIpdIW6RKJBBKJxESl7340Ta2/yNbo7Nqc15txv7StO+0bY3+ztvLbrqurw5gxY/DUU09h5syZLeZnZGTgrbfewtatW8VvR0dGRuLChQviZxJmz56NiooKqFQqaLVazJ8/H4sWLWLrQCIiIiIiIjIZe2sXgIiop/L394dCocChQ4fEtNraWpw4cQJKpRIAoFQqUV1djZKSEjHP4cOHodPpMGHCBIuXmYioK6KiovDqq6+2Oj6SIAhYt24dVq5cienTp2P06NH44IMP8NNPP2Hv3r0AgC+//BIHDhzAP/7xD0yYMAH33Xcf3n77bezYsQM//fSThWtDREREREREPRV7jBARdcG1a9dw8eJFcfry5csoLS2Fh4cHBg4ciKVLl+LVV1/FkCFDxNbR3t7e4qdlhg8fjilTpmDhwoXYuHEjtFotEhISEBsbC29vbyvViojI9C5fvgy1Wo2wsDAxzc3NDRMmTEBRURFiY2NRVFQEd3d3jBs3TswTFhYGe3t7nDhxotWAi0ajgUajEaf1nx3TarVtDlqvT9dqtZA6tP2t6+6srbp1ZNmurKMzusu+ltoLBn/3Jt297saek5Y+d4mIiIio52FghIioC06fPo0HH3xQnNaP/REXF4ctW7bgxRdfRF1dHRYtWoTq6mrcd999OHDggPjJGADYvn07EhISEBoaKn5P/6233rJ4XYiIzEmtVgMA5HK5QbpcLhfnqdVqeHp6Gszv06cPPDw8xDzNpaenIyUlpUV6fn4+nJ2db1kmlUqFjPFGV6Fb2b9/f5fXoVKpTFAS43W3fZ02TmftIlhNd627sed1fX29mUtCRERERD0dAyNERF0wefJkCELbrS7t7OyQmpqK1NTUNvN4eHjw2/lERJ2UlJQkBqWBGz1GfH19ERERAZlM1uoyWq0WKpUK4eHhGLv6sKWKalLnkiM7vezN9bfk+DUjk/Mstq1bkdoLSBunw8un7aHRdY/xhiylu9fd2PNa3zOMiIiIiKizGBghIiIiIrNTKBQAgMrKSnh5eYnplZWVCAwMFPNUVVUZLNfY2IgrV66IyzcnlUohlUpbpEskknZf+kskEmiaut/LYWOYIqBhzD4ype62rzU6u25XJkvprnU39ny05HlLRERERD0TB18nIiIiIrPz9/eHQqHAoUOHxLTa2lqcOHECSqUSAKBUKlFdXY2SkhIxz+HDh6HT6TBhwgSLl5mIiIiIiIh6JvYYISIiIiKTuHbtGi5evChOX758GaWlpfDw8MDAgQOxdOlSvPrqqxgyZAj8/f3x8ssvw9vbGzNmzAAADB8+HFOmTMHChQuxceNGaLVaJCQkIDY2Ft7e3laqFREREREREfU0DIwQERERkUmcPn0aDz74oDitH/sjLi4OW7ZswYsvvoi6ujosWrQI1dXVuO+++3DgwAE4OTmJy2zfvh0JCQkIDQ2Fvb09YmJi8NZbb1m8LkRERERERNRzdfhTWoWFhZg2bRq8vb1hZ2eHvXv3GswXBAGrVq2Cl5cX+vbti7CwMHz99dcGea5cuYLZs2dDJpPB3d0dCxYswLVr17pUESIiIiKyrsmTJ0MQhBZ/tmzZAgCws7NDamoq1Go1GhoacPDgQdx9990G6/Dw8EB2djauXr2Kmpoa/N///R9cXV2tUBsiIiIiIiLqqTocGKmrq8OYMWOQmZnZ6vyMjAy89dZbh+YAIgABAABJREFU2LhxI06cOAEXFxdERkaioaFBzDN79mycP38eKpUKubm5KCwsxKJFizpfCyIiIiIiIiIiIiIiIiN0+FNaUVFRiIqKanWeIAhYt24dVq5cienTpwMAPvjgA8jlcuzduxexsbH48ssvceDAAZw6dQrjxo0DALz99tuYOnUq3nzzTX4/moiIiIiIiIiIiIiIzMakY4xcvnwZarUaYWFhYpqbmxsmTJiAoqIixMbGoqioCO7u7mJQBADCwsJgb2+PEydO4JFHHmmxXo1GA41GI07X1tYCALRarfhHP90aqYNgkvqZg9ReMPj7Zm3Vp7tobb93533d3M37vrvv6+b05W3tvOnu2vu9Ns9HREREREREREREZEomDYyo1WoAgFwuN0iXy+XiPLVaDU9PT8NC9OkDDw8PMU9z6enpSElJaZGen58PZ2dncVqlUrW6fMZ44+tgLWnjdC3S9u/fb4WSdNzN+90W9nVzaeN0NrOvm2vtvOnu9OdLW79Xvfr6eksUh4iIiIiIiIiIiHoZkwZGzCUpKQmJiYnidG1tLXx9fREREQGZTAatVguVSoXw8HBIJJIWy49MzrNkcTtEai8gbZwOL5+2h0ZnZzDvXHKklUplnNb2e3fe183dvO9LVk2xdnE6RL/vWztvurvP/xpyy9+rnr5nGBEREREREREREZEpmTQwolAoAACVlZXw8vIS0ysrKxEYGCjmqaqqMliusbERV65cEZdvTiqVQiqVtkiXSCQGL1abT+tpmrr/i2ONzq5FOW/10rg7uXm/28K+bk6js7OZfd1ca+dNd6ff1239XpvnIyIiIiIiIiIiIjIle1OuzN/fHwqFAocOHRLTamtrceLECSiVSgCAUqlEdXU1SkpKxDyHDx+GTqfDhAkTTFkcIiIiIiIiIiIiIiIiAx3uMXLt2jVcvHhRnL58+TJKS0vh4eGBgQMHYunSpXj11VcxZMgQ+Pv74+WXX4a3tzdmzJgBABg+fDimTJmChQsXYuPGjdBqtUhISEBsbCy8vb1NVjEiIiIiIiIiIiIiIqLmOtxj5PTp0xg7dizGjh0LAEhMTMTYsWOxatUqAMCLL76IJUuWYNGiRbjnnntw7do1HDhwAE5OTuI6tm/fjmHDhiE0NBRTp07Ffffdh/fee89EVSIiIiIiIiLq3pKTk2FnZ2fwZ9iwYeL8hoYGxMfHo3///nB1dUVMTAwqKyutWGIiIiKinqPDPUYmT54MQRDanG9nZ4fU1FSkpqa2mcfDwwPZ2dkd3TQRERERERFRjzFixAgcPHhQnO7T53+P6MuWLcO+ffuQk5MDNzc3JCQkYObMmTh27Jg1ikpERETUo5h08HUiIiIiIiIiMk6fPn2gUChapNfU1GDTpk3Izs5GSEgIAGDz5s0YPnw4iouLERwcbOmiEhEREfUoJh18nYiIiIiIiIiM8/XXX8Pb2xt33XUXZs+ejfLycgBASUkJtFotwsLCxLzDhg3DwIEDUVRUZK3iEhEREfUY7DFCREREREREZGETJkzAli1bMHToUFRUVCAlJQX3338/zp07B7VaDUdHR7i7uxssI5fLoVar21ynRqOBRqMRp2trawEAWq0WWq32luXRz5fat/3p7J5GX9feUmfW17a095vtaL7uLjk5GSkpKQZpQ4cOxVdffQXgxrhLzz//PHbs2AGNRoPIyEhs2LABcrncGsUloh6AgREiIiIiIiIiC4uKihL/PXr0aEyYMAF+fn7YuXMn+vbt26l1pqent3ixCAD5+flwdnY2ah1p43Sd2rYt6211Zn1tw/79+43KV19fb+aSWA7HXSIiS2JghIiIiIiIiMjK3N3dcffdd+PixYsIDw/H9evXUV1dbdBrpLKystUxSfSSkpKQmJgoTtfW1sLX1xcRERGQyWS33L5Wq/3/7N15fBXV/f/xdxKSGwIkMZAFBAKism8NAlEEZElYRNGoRSxERFAMWogrVlnFKFqh2gj6rQUsUi1WXBCFgCxVgiyKChQrFESBBIRCWCQJyfz+4HcvXLLdm9x9Xs/Hgwe5M+fee86Zmc+dmc/MGeXk5OjpLcEqLA2qcXv8gSXY0IwupaZpM+31L9unpjpUznpnWCDguUsAPInECAC4EbcDAwAAwBGnTp3Snj17NGLECCUlJSk0NFSrV69WWlqaJOn777/X/v37lZycXOFnWCwWWSyWMtNDQ0MVGhrqUD0KS4NUWOJ/J5Frwmxtpr3+wdFt1tFy/sD63KXw8HAlJycrKytLTZs2rfK5SxUlRmoyvKAkWUKcG4bN34dvu5in2+LOIeGsn+2O73B2Hanx95l4HXPH8IIkRgDAzbgdGAAAAJd65JFHNGTIECUmJurgwYOaMmWKQkJCdOeddyoqKkqjR49WZmamYmJiFBkZqQcffFDJyclcGQ0gILnjuUs1HV5wVlenmyHJf4dvK4+n2uLo0HE1kZOT4/LPrO46UlNmXMfcMbwgiREAcDNuBwYAAMClfv75Z9155506evSoYmNj1aNHD23cuFGxsbGSpNmzZys4OFhpaWl2dxYDQCByx3OXajK8oCS1m7rCqe/z9+HbLubptjg6dFx1WIeK7N+/v8vvsHJ2HakpM69j7hhekMQIALiZr90O7K8uvUU1kG4hdSX6pWK+2DfuuB0YAOAf3n777Urnh4eHKzs7W9nZ2R6qEQD4Dlc8d6mmwwtWdwg2fx2+rTyeaosnhoRzZlhJR3lrOZtxHXPH8IIkRgDAjXzxdmB/VdEtqoF0C6kr0S8V86W+ccftwAAAAIC/c8VzlwCgMiRGAMCNfPF2YH916S2qgXQLqSvRLxXzxb5xx+3AAAAAgL/huUsAPI3ECAB4kC/cDuyvKrq1MpBuIXUl+qVivtQ37rgdGAAAAPA3PHcJgKeRGAEAD+J2YAAAAAAA7PHcJQCeRmIEANyI24EBAAAAAAAA30JiBADciNuBAQAAAAAAAN9CYgQA3IjbgQEAAAAAAADfEuztCgAAAAAAAAAAAHgKiREAAAAAAAAAAGAaJEYAAAAAAAAAAIBp8IwRADCZZk987O0qAAAAAAAAAF7DHSMAAAAAAAAAAMA0SIwAAAAAAAAAAADTIDECAAAAAAAAAABMg8QIAAAAAAAAAAAwDRIjAAAAAAAAAADANEiMAAAAAAAAAAAA0yAxAgAAAAAAAAAATIPECAAAAAAAAAAAMA0SIwAAAAAAAAAAwDRIjAAAAAAAAAAAANMgMQIAAAAAAAAAAEyDxAgAAAAAAAAAADANEiMAAAAAAAAAAMA0SIwAAAAAAAAAAADTIDECAAAAAAAAAABMg8QIAAAAAAAAAAAwDa8mRrKzs9WsWTOFh4erW7du2rRpkzerAwBeRUwEgPOIhwBwATERAC4gJgJwFa8lRt555x1lZmZqypQp+uqrr9SxY0elpqbq8OHD3qoSAHgNMREAziMeAsAFxEQAuICYCMCVvJYYeemllzRmzBiNGjVKbdq00bx58xQREaG//vWv3qoSAHgNMREAziMeAsAFxEQAuICYCMCVvJIYKSoq0tatW9WvX78LFQkOVr9+/ZSbm+uNKgGA1xATAeA84iEAXEBMBIALiIkAXK2WN770l19+UUlJieLj4+2mx8fHa9euXWXKFxYWqrCw0Pb6xIkTkqRjx46puLhYxcXFOnPmjI4eParQ0NAy76917rSLW+A6tUoNnTlTqlrFwSopDbKbd/ToUS/VyjHl9bsv9/WlLu57X+/rS1n7vrz1xtcdPXq00u3V6uTJk5IkwzA8VTWvcXVMrIo/baeVqSx+mhn9UjFf7BtHf3/MEhOdjYdS9WLixfsw/hoTa7LvUtW+s7v4Sl/7YizwFF9vOzHRnqdiopU/H2NUl69vE65Ge/0LMdGep2Oi5Py+i7+vcxfzdFvceV7Onfu+nt6/NfM65o6Y6JXEiLOysrI0bdq0MtObN2/uhdq43vAKpjf4o0erYUrWvm/wglerYSoNnVyvT548qaioKPdUxk8Fekx0RkXx0+zol4r5Wt84+1tPTCzLrDGR/cSa8bVY4Em+3HZiYs2ZNSbWhC9vE+5Ae/0HMbHmvBET/Xmdu5Qn28K+rePMuo65IyZ6JTHSoEEDhYSEKD8/3256fn6+EhISypSfNGmSMjMzba9LS0t17Ngx1a9fX0FBQSooKFCTJk30008/KTIy0u31dyXq7j3+XH8z1N0wDJ08eVKNGjXyYO28w9Ux0Sz8eTtwJ/qlYv7cN2aJic7GQ6l6MdGf1wVXoP3mbX+gtJ2Y6NqYaBUo64czzNZm2huYiInuiYnVEUjrHG3xTbSlas7ERK8kRsLCwpSUlKTVq1dr6NChks4Hp9WrV2v8+PFlylssFlksFrtp0dHRZcpFRkb67UpB3b3Hn+sf6HU3y9Uu7oqJZuHP24E70S8V89e+MUNMdDYeSjWLif66LrgK7Tdv+wOh7cRE18dEq0BYP5xltjbT3sBDTHRfTKyOQFrnaItvoi2VczQmem0orczMTKWnp6tLly7q2rWr5syZo9OnT2vUqFHeqhIAeA0xEQDOIx4CwAXERAC4gJgIwJW8lhj57W9/qyNHjmjy5MnKy8tTp06d9Omnn5Z5iBIAmAExEQDOIx4CwAXERAC4gJgIwJW8+vD18ePHV3i7mzMsFoumTJlS5vY4f0Ddvcef60/dA5OrYqJZsC6Vj36pGH3jP9wdD82+LtB+87bfzG33Z57aRzTj+mG2NtNeBAJfPm4OpHWOtvgm2uJaQYZhGF77dgAAAAAAAAAAAA8K9nYFAAAAAAAAAAAAPIXECAAAAAAAAAAAMA0SIwAAAAAAAAAAwDT8MjEyc+ZMXXvttYqIiFB0dLRD77n77rsVFBRk92/AgAHurWgFqlN/wzA0efJkNWzYULVr11a/fv30ww8/uLei5Th27JjuuusuRUZGKjo6WqNHj9apU6cqfU/v3r3L9P3999/vkfpmZ2erWbNmCg8PV7du3bRp06ZKyy9ZskStWrVSeHi42rdvr+XLl3uknuVxpu4LFiwo08fh4eEerO0F69ev15AhQ9SoUSMFBQXp/fffr/I9a9eu1W9+8xtZLBZdeeWVWrBggdvricBSnbgaqJyNe2ZQnbgE89i3b59Gjx6t5s2bq3bt2mrRooWmTJmioqIib1fNI8wWP80aI4mDcIZZ42Kgx0MzxT9iHnxBIMVSf46PgRL7AiWuZWVl6ZprrlG9evUUFxenoUOH6vvvv/daffwyMVJUVKTbb79d48aNc+p9AwYM0KFDh2z//v73v7uphpWrTv1nzZqll19+WfPmzdOXX36pOnXqKDU1VWfPnnVjTcu66667tGPHDuXk5GjZsmVav369xo4dW+X7xowZY9f3s2bNcntd33nnHWVmZmrKlCn66quv1LFjR6Wmpurw4cPllt+wYYPuvPNOjR49Wl9//bWGDh2qoUOHavv27W6v66WcrbskRUZG2vXxjz/+6MEaX3D69Gl17NhR2dnZDpXfu3evBg8erBtuuEHbtm3ThAkTdO+992rFihVurikCSXV/FwJNdWKHGTgbl2Auu3btUmlpqV577TXt2LFDs2fP1rx58/Tkk096u2oeYab4aeYYSRyEM8waFwM5Hpot/hHz4AsCKZb6a3wMpNgXKHFt3bp1ysjI0MaNG5WTk6Pi4mKlpKTo9OnT3qmQ4cfmz59vREVFOVQ2PT3duPnmm91aH2c5Wv/S0lIjISHBeOGFF2zTjh8/blgsFuPvf/+7G2tob+fOnYYkY/PmzbZpn3zyiREUFGQcOHCgwvf16tXL+P3vf++BGtrr2rWrkZGRYXtdUlJiNGrUyMjKyiq3/B133GEMHjzYblq3bt2M++67z631LI+zdXdmW/AkScbSpUsrLfPYY48Zbdu2tZv229/+1khNTXVjzRCofHVb8BRnY4cZORKXgFmzZhnNmzf3djU8ygzxkxh5HnEQ1WGmuBiI8dDM8Y+YB1/i77HU3+JjoMa+QIprhw8fNiQZ69at88r3++UdI9W1du1axcXFqWXLlho3bpyOHj3q7So5ZO/evcrLy1O/fv1s06KiotStWzfl5uZ6rB65ubmKjo5Wly5dbNP69eun4OBgffnll5W+96233lKDBg3Url07TZo0SWfOnHFrXYuKirR161a7PgsODla/fv0q7LPc3Fy78pKUmprq0T6Wqld3STp16pQSExPVpEkT3XzzzdqxY4cnqltjvtLvgL+rbuwAUNaJEycUExPj7WrAhYiRQM0QF/0X8Q/wHcRSzyH2+YcTJ05Ikte2C9MkRgYMGKA333xTq1ev1vPPP69169Zp4MCBKikp8XbVqpSXlydJio+Pt5seHx9vm+epesTFxdlNq1WrlmJiYiqtx/Dhw7Vo0SKtWbNGkyZN0t/+9jf97ne/c2tdf/nlF5WUlDjVZ3l5eV7vY6l6dW/ZsqX++te/6oMPPtCiRYtUWlqqa6+9Vj///LMnqlwjFfV7QUGBfv31Vy/VCvA/1YkdAMravXu3XnnlFd13333ergpciBgJVB9x0b8R/wDfQCz1LGKf7ystLdWECRN03XXXqV27dl6pg88kRp544okyD4++9N+uXbuq/fnDhg3TTTfdpPbt22vo0KFatmyZNm/erLVr1/pF/d3J3XUfO3asUlNT1b59e91111168803tXTpUu3Zs8eFrTC35ORkjRw5Up06dVKvXr303nvvKTY2Vq+99pq3qwZUmz/HVQDeV50YcuDAAQ0YMEC33367xowZ46Wa1xzxE0B5zBgXiYcAXC1QYinxEd6WkZGh7du36+233/ZaHWp57Zsv8fDDD+vuu++utMwVV1zhsu+74oor1KBBA+3evVt9+/at8ee5s/4JCQmSpPz8fDVs2NA2PT8/X506darWZ17M0bonJCSUeUDRuXPndOzYMVsdHdGtWzdJ57PlLVq0cLq+jmjQoIFCQkKUn59vNz0/P7/CuiYkJDhV3l2qU/dLhYaGqnPnztq9e7c7quhSFfV7ZGSkateu7aVawRd4+nfB37kidgCBxNkYcvDgQd1www269tpr9frrr7u5du5F/CyLGAmYMy4SD4l/gKsFSiwN9PhI7PNt48eP17Jly7R+/Xo1btzYa/XwmcRIbGysYmNjPfZ9P//8s44ePWqXaKgJd9a/efPmSkhI0OrVq22JkIKCAn355ZcaN25cjT/f0bonJyfr+PHj2rp1q5KSkiRJn332mUpLS23JDkds27ZNklzW9+UJCwtTUlKSVq9eraFDh0o6f4vW6tWrNX78+HLfk5ycrNWrV2vChAm2aTk5OUpOTnZbPctTnbpfqqSkRN99950GDRrkxpq6RnJyspYvX243zRv9Dt/j6d8Ff+eK2AEEEmdiyIEDB3TDDTcoKSlJ8+fPV3Cwz9xUXS3Ez7KIkYA54yLxkPgHuFqgxNJAj4/EPt9kGIYefPBBLV26VGvXrlXz5s29Wh+fSYw4Y//+/Tp27Jj279+vkpIS24n2K6+8UnXr1pUktWrVSllZWbrlllt06tQpTZs2TWlpaUpISNCePXv02GOP6corr1RqaqrP1z8oKEgTJkzQM888o6uuukrNmzfX008/rUaNGtk2bk9o3bq1BgwYoDFjxmjevHkqLi7W+PHjNWzYMDVq1EjS+aDft29fvfnmm+ratav27NmjxYsXa9CgQapfv76+/fZbTZw4UT179lSHDh3cWt/MzEylp6erS5cu6tq1q+bMmaPTp09r1KhRkqSRI0fq8ssvV1ZWliTp97//vXr16qU//vGPGjx4sN5++21t2bLFKxl9Z+s+ffp0de/eXVdeeaWOHz+uF154QT/++KPuvfdej9f91KlTdneq7N27V9u2bVNMTIyaNm2qSZMm6cCBA3rzzTclSffff7/+/Oc/67HHHtM999yjzz77TP/4xz/08ccfe7zu8F+OxFUzqCp2mFVVcQnmduDAAfXu3VuJiYl68cUXdeTIEds8M1xNZqb4aeYYSRyEM8waFwM5Hpot/hHz4AsCKZb6a3wMpNgXKHEtIyNDixcv1gcffKB69erZnvcSFRXlnVFjDD+Unp5uSCrzb82aNbYykoz58+cbhmEYZ86cMVJSUozY2FgjNDTUSExMNMaMGWPk5eX5Rf0NwzBKS0uNp59+2oiPjzcsFovRt29f4/vvv/d43Y8ePWrceeedRt26dY3IyEhj1KhRxsmTJ23z9+7da9eW/fv3Gz179jRiYmIMi8ViXHnllcajjz5qnDhxwiP1feWVV4ymTZsaYWFhRteuXY2NGzfa5vXq1ctIT0+3K/+Pf/zDuPrqq42wsDCjbdu2xscff+yRepbHmbpPmDDBVjY+Pt4YNGiQ8dVXX3mh1oaxZs2actdva33T09ONXr16lXlPp06djLCwMOOKK66wW/cBRzgSV82isthhVlXFJZjb/Pnzy10//HQ32Wlmi59mjZHEQTjDrHEx0OOhmeIfMQ++IJBiqT/Hx0CJfYES1yraJrx1HjDo/1cKAAAAAAAAAAAg4PnO4HYAAAAAAAAAAABuRmIEAAAAAAAAAACYBokRAAAAAAAAAABgGiRGAAAAAAAAAACAaZAYAQAAAAAAAAAApkFiBAAAAAAAAAAAmAaJEQAAAAAAAAAAYBokRgAAAAAAAAAAgGmQGAEAAAAAAAAAAKZBYgQAAAAAAAAAAJgGiREAAAAAAAAAAGAaJEYAAAAAAAAAAIBpkBgBAAAAAAAAAACmQWIEAAAAAAAAAACYBokRAAAAAAAAAABgGiRGAAAAAAAAAACAaZAYAQAAAAAAAAAApkFiBAAAAAAAAAAAmAaJEQAAAAAAAAAAYBokRgAAAAAAAAAAgGmQGAEAAAAAAAAAAKZBYgQAAAAAAAAAAJgGiREAAAAAAAAAAGAaJEYAAAAAAAAAAIBpkBgBAAAAAAAAAACmQWIEAAAAAAAAAACYBokRAAAAAAAAAABgGiRGAAAAAAAAAACAaZAYAQAAAAAAAAAApkFiBAAAAAAAAAAAmAaJEQAAAAAAAAAAYBokRuCTPv30U3Xq1Enh4eEKCgrS8ePHvV0lAAFk6tSpCgoK0i+//OKx7wwKCtLUqVM99n3eZKa2Ar5o3759CgoK0oIFC7zy/YESA3744QelpKQoKipKQUFBev/9971dJQAm1bt3b/Xu3dstn92sWTPdfffdbvnsynj7twrwZd44XvVl7oyBvsIdbbSuR9529913q27dug6V9fRxBIkR+JyjR4/qjjvuUO3atZWdna2//e1vqlOnjsPv37Bhg6ZOnUoyBQAAANWWnp6u7777TjNnztTf/vY3denSxdtVAuDDFi9erDlz5ni7GgCqiXNJNePvMdBfl/+ZM2c0depUrV271ttV8Uu1vF0B4FKbN2/WyZMnNWPGDPXr18/p92/YsEHTpk3T3XffrejoaNdXEACq4ddff1WtWvzsAgh8gRDvfv31V+Xm5uoPf/iDxo8f7+3qAPADixcv1vbt2zVhwgRvVwVANXAuqWb8PQb66/I/c+aMpk2bJkll7jh56qmn9MQTT3ihVtXn6eMI7hiBzzl8+LAk+VUgAoCqhIeH+/2JQgBwhD/Hu7Nnz6q0tFRHjhyR5Nr90dOnT7vsswAAAGrqzJkz3q5CwPKF/b5atWopPDzc29VwiqePI0iMwGVOnjypCRMmqFmzZrJYLIqLi1P//v311VdfSZL+9a9/6fbbb1fTpk1lsVjUpEkTTZw4Ub/++qvtM3r37q309HRJ0jXXXKOgoCC78U6//PJLDRgwQFFRUYqIiFCvXr30xRdf2OZPnTpVjz76qCSpefPmCgoKUlBQkPbt26devXqpY8eO5da9ZcuWSk1NdXWXAPBxv/zyi+644w5FRkaqfv36+v3vf6+zZ8/a5s+fP199+vRRXFycLBaL2rRpo7lz55b5nC1btig1NVUNGjRQ7dq11bx5c91zzz12ZcobK/PAgQMaPXq0GjVqJIvFoubNm2vcuHEqKipyuA1BQUEaP3683n//fbVr104Wi0Vt27bVp59+WqbsgQMHdM899yg+Pt5W7q9//WuZcoWFhZoyZYquvPJKW7x+7LHHVFhYWKbcxIkTFRsbq3r16ummm27Szz//XObzqvp9AALBjz/+qAceeEAtW7ZU7dq1Vb9+fd1+++3at29fmbLHjx/XxIkTbdtE48aNNXLkSNs40kVFRZo8ebKSkpIUFRWlOnXq6Prrr9eaNWvK/ay7775bUVFRio6OVnp6eoVDAOzatUu33XabYmJiFB4eri5duujDDz+0K7NgwQIFBQXp888/10MPPaTY2FhFR0frvvvuU1FRkY4fP66RI0fqsssu02WXXabHHntMhmHYfYa7491bb72lli1bKjw8XElJSVq/fn2Zso7Eu7Vr1yooKEhvv/22nnrqKV1++eWKiIhQZmamEhMTJUmPPvqogoKC1KxZM9v7vv76aw0cOFCRkZGqW7eu+vbtq40bN5bbj+vWrdMDDzyguLg4NW7cWNL5/d127drp22+/Va9evRQREaErr7xS7777riRp3bp16tatm2rXrq2WLVtq1apVdp/t6LpmrcMXX3yhzMxMxcbGqk6dOrrllltsiZ+LffLJJ+rVq5fq1aunyMhIXXPNNVq8eLFdmar2xYFAVtn+TO/evfXxxx/rxx9/tB2DWuOGdVu8dBu1xqBLhz95/fXX1aJFC9WuXVtdu3bVv/71L7v5p06dUp06dfT73/++TB1//vlnhYSEKCsrq0Zt/e9//6vbb79dMTExioiIUPfu3fXxxx/blXHXbxXgDZWdS5KkRYsWKSkpSbVr11ZMTIyGDRumn376ye4zHDnnZbVr1y7dcccdio2Ntf3e/+EPfyhTzrrtREdHKyoqSqNGjSo3meFI/az7H1u3blXPnj0VERGhJ5980qH+qep4zpMx0MrRY1ZHjperWv5VsT5DY8+ePRo0aJDq1aunu+66S5JUWlqqOXPmqG3btgoPD1d8fLzuu+8+/e9//6v0Mx2Jsfv27VNsbKwkadq0abZ6W/fDy3vGyLlz5zRjxgy1aNFCFotFzZo105NPPlmm35o1a6Ybb7xRn3/+ubp27arw8HBdccUVevPNN+3KFRcXa9q0abrqqqsUHh6u+vXrq0ePHsrJySnTpgMHDmjo0KGqW7euYmNj9cgjj6ikpMSuzKXHEdY2WLeZis7dVJd/XsoFn3T//ffr3Xff1fjx49WmTRsdPXpUn3/+uf7973/rN7/5jZYsWaIzZ85o3Lhxql+/vjZt2qRXXnlFP//8s5YsWSJJ+sMf/qCWLVvq9ddf1/Tp09W8eXO1aNFCkvTZZ59p4MCBSkpK0pQpUxQcHGw7afmvf/1LXbt21a233qr//Oc/+vvf/67Zs2erQYMGkqTY2FiNGDFCY8aM0fbt29WuXTtbvTdv3qz//Oc/euqppzzfaQC86o477lCzZs2UlZWljRs36uWXX9b//vc/24/93Llz1bZtW910002qVauWPvroIz3wwAMqLS1VRkaGpPN3uaWkpCg2NlZPPPGEoqOjtW/fPr333nuVfvfBgwfVtWtXHT9+XGPHjlWrVq104MABvfvuuzpz5ozCwsIcbsfnn3+u9957Tw888IDq1aunl19+WWlpadq/f7/q168vScrPz1f37t1tO4axsbH65JNPNHr0aBUUFNhueS4tLdVNN92kzz//XGPHjlXr1q313Xffafbs2frPf/5j9/Dhe++9V4sWLdLw4cN17bXX6rPPPtPgwYPL1K+q3wcgEGzevFkbNmzQsGHD1LhxY+3bt09z585V7969tXPnTkVEREg6f0Lr+uuv17///W/dc889+s1vfqNffvlFH374oX7++Wc1aNBABQUF+stf/qI777xTY8aM0cmTJ/XGG28oNTVVmzZtUqdOnSRJhmHo5ptv1ueff677779frVu31tKlS20XmVxsx44duu6663T55ZfriSeeUJ06dfSPf/xDQ4cO1T//+U/dcsstduUffPBBJSQkaNq0adq4caNef/11RUdHa8OGDWratKmeffZZLV++XC+88ILatWunkSNHVtg3rox369at0zvvvKOHHnpIFotFr776qgYMGKBNmzbZ9u8cjXdWM2bMUFhYmB555BEVFhZq0KBBatasmSZOnKg777xTgwYNsj0wcseOHbr++usVGRmpxx57TKGhoXrttdfUu3dvW0LjYg888IBiY2M1efJkuysH//e//+nGG2/UsGHDdPvtt2vu3LkaNmyY3nrrLU2YMEH333+/hg8frhdeeEG33XabfvrpJ9WrV0+S4+vaxcvysssu05QpU7Rv3z7NmTNH48eP1zvvvGMrs2DBAt1zzz1q27atJk2apOjoaH399df69NNPNXz4cEmO7YsDgayy/Zk//OEPOnHihH7++WfNnj1bkhx+0OzF3njjDd1333269tprNWHCBP33v//VTTfdpJiYGDVp0sT2ubfccoveeecdvfTSSwoJCbG9/+9//7sMw7CdkKuO/Px8XXvttTpz5oweeugh1a9fXwsXLtRNN92kd9991/Z74Y7fKsBbKjuXNHPmTD399NO64447dO+99+rIkSN65ZVX1LNnT3399de2u0sdOeclSd9++62uv/56hYaGauzYsWrWrJn27Nmjjz76SDNnzrSr1x133KHmzZsrKytLX331lf7yl78oLi5Ozz//vK2Mo/WTzj/Td+DAgRo2bJh+97vfKT4+3qH+qep4zpMxUHLumFWq+ni5suXvqHPnzik1NVU9evTQiy++aNsfu++++7RgwQKNGjVKDz30kPbu3as///nP+vrrr/XFF18oNDS03M9zJMbGxsZq7ty5GjdunG655RbdeuutkqQOHTpUWM97771XCxcu1G233aaHH35YX375pbKysvTvf/9bS5cutSu7e/du3XbbbRo9erTS09P117/+VXfffbeSkpLUtm1bSecTF1lZWbr33nvVtWtXFRQUaMuWLfrqq6/Uv39/22eVlJQoNTVV3bp104svvqhVq1bpj3/8o1q0aKFx48ZV2b9VnbupNgNwkaioKCMjI6PC+WfOnCkzLSsrywgKCjJ+/PFH27T58+cbkozNmzfbppWWlhpXXXWVkZqaapSWltp9ZvPmzY3+/fvbpr3wwguGJGPv3r1233X8+HEjPDzcePzxx+2mP/TQQ0adOnWMU6dOOdxWAP5typQphiTjpptuspv+wAMPGJKMb775xjCM8uNWamqqccUVV9heL126tEzMKo8kY8qUKbbXI0eONIKDg8t938VxriqSjLCwMGP37t22ad98840hyXjllVds00aPHm00bNjQ+OWXX+zeP2zYMCMqKsrW1r/97W9GcHCw8a9//cuu3Lx58wxJxhdffGEYhmFs27bNkGQ88MADduWGDx9epq1V/T4AgaC8eJGbm2tIMt58803btMmTJxuSjPfee69Meeu2f+7cOaOwsNBu3v/+9z8jPj7euOeee2zT3n//fUOSMWvWLNu0c+fOGddff70hyZg/f75tet++fY327dsbZ8+etfu+a6+91rjqqqts06z7YZfucyUnJxtBQUHG/fffb/ddjRs3Nnr16mVXV3fGO0nGli1bbNN+/PFHIzw83Ljlllts0xyNd2vWrDEkGVdccUWZ5bd3715DkvHCCy/YTR86dKgRFhZm7Nmzxzbt4MGDRr169YyePXvapln7sUePHsa5c+fsPqNXr16GJGPx4sW2abt27TIkGcHBwcbGjRtt01esWFFmWTq6rlnr0K9fP7t+njhxohESEmIcP37cMIzz+8j16tUzunXrZvz66692n2t9nzP74kCgqmp/ZvDgwUZiYmKZ6dZt8dLjU2sMWrNmjWEYhlFUVGTExcUZnTp1svsNeP311w1JdrHWGhs++eQTu8/s0KFDmZhclcTERCM9Pd32esKECYYku33BkydPGs2bNzeaNWtmlJSUGIbhnt8qwJvKO5e0b98+IyQkxJg5c6Zd2e+++86oVauW3XRHz3n17NnTqFevnt00w7DfJ7Ier168LRmGYdxyyy1G/fr1q1U/6/7HvHnzKuuGcjlyPOfJGOjoMathOH68XNG5REekp6cbkownnnjCbvq//vUvQ5Lx1ltv2U3/9NNPy0zv1auXXRsdjbFHjhwps+9tZV2PrKzH8Pfee69duUceecSQZHz22We2aYmJiYYkY/369bZphw8fNiwWi/Hwww/bpnXs2NEYPHhwed1iY+2f6dOn203v3LmzkZSUZDft0rY4eu6muhhKCy4THR2tL7/8UgcPHix3fu3atW1/nz59Wr/88ouuvfZaGYahr7/+utLP3rZtm3744QcNHz5cR48e1S+//KJffvlFp0+fVt++fbV+/XqVlpZW+hlRUVG6+eabbVfRSOczlu+8846GDh2qOnXqONliAP7OeteH1YMPPihJWr58uST7uHXixAn98ssv6tWrl/773//qxIkTki6MP79s2TIVFxc79L2lpaV6//33NWTIEHXp0qXM/Etvd61Kv379bHfXSeevEImMjNR///tfSeev1PvnP/+pIUOGyDAMWwz95ZdflJqaqhMnTthug16yZIlat26tVq1a2ZXr06ePJNlu3bX20UMPPWRXl/IetlfV7wMQCC6OF8XFxTp69KiuvPJKRUdH2w0b989//lMdO3Ysc4eGdGHbDwkJsd1FUVpaqmPHjuncuXPq0qWL3WctX75ctWrVsrvKKiQkxBbLrI4dO6bPPvtMd9xxh06ePGnbro8eParU1FT98MMPOnDggN17Ro8ebReLunXrJsMwNHr0aLvv6tKliy3WlMfV8S45OVlJSUm2102bNtXNN9+sFStWqKSkxKl4Z5Wenm63/CpSUlKilStXaujQobriiits0xs2bKjhw4fr888/V0FBgd17xowZY3c1t1XdunU1bNgw2+uWLVsqOjparVu3trvrxPr3xX3s6LpmNXbsWLt+vv7661VSUqIff/xRkpSTk6OTJ0/qiSeeKDMOtfV9rtgXB/ydu/dntmzZosOHD+v++++3u5POOgTVxfr166dGjRrprbfesk3bvn27vv32W/3ud7+rUT2WL1+url27qkePHrZpdevW1dixY7Vv3z7t3LlTkut/qwBf9N5776m0tFR33HGH3T5FQkKCrrrqKrthjRw553XkyBGtX79e99xzj5o2bWr3XeXtE91///12r6+//nodPXrUtr/hTP0kyWKxaNSoUU73gyeO55yJgY4es1pVdbzsKpfe+bBkyRJFRUWpf//+dvVMSkpS3bp1yx160MrRGOsM6zF8Zmam3fSHH35YksoMmdimTRtdf/31ttexsbFq2bKlXb9FR0drx44d+uGHH6r8/vLWZ0eXQVXnbqqLobTgMrNmzVJ6erqaNGmipKQkDRo0SCNHjrQdOO7fv1+TJ0/Whx9+WGYsPesJxopYN7DKbrc9ceKELrvssko/Z+TIkXrnnXf0r3/9Sz179tSqVauUn5+vESNGONJEAAHmqquusnvdokULBQcH28YS/eKLLzRlyhTl5uaWGcv1xIkTioqKUq9evZSWlqZp06Zp9uzZ6t27t4YOHarhw4fLYrGU+71HjhxRQUGB3bB+NXHpTrUkXXbZZbZYe+TIER0/flyvv/66Xn/99XI/4/Dhw5LOx9t///vfFd42bC33448/Kjg42G4HUzp/cu9SVf0+AIHg119/VVZWlubPn68DBw7YPXfj4v2cPXv2KC0trcrPW7hwof74xz9q165ddknX5s2b2/7+8ccf1bBhwzJDFVy6He7evVuGYejpp5/W008/Xe73HT58WJdffrnt9aVxxXpAevEwBtbplY2R7Op4d2nclqSrr75aZ86c0ZEjRxQcHOxwvLO6uE8rc+TIEZ05c6bcONe6dWuVlpbqp59+sg0tUNlnN27cuMwJkKioqHL7V5JdHzu6rllduiyt+8vWz9yzZ48kVbqMXLUvDvgzd+/PWJOVl8a50NDQMt8RHBysu+66S3PnztWZM2cUERGht956S+Hh4br99ttrXI9LhwWUzsc563xrvHDlbxXgi3744QcZhlHu/ocku2GQHDnnZT0J7Oh+UWW/4ZGRkU7VT5Iuv/xyp4YwtfLE8ZwzMdDRY1arqo6XXaFWrVq258ldXM8TJ04oLi7OoXpeypEY6wzrMfyVV15pNz0hIUHR0dG2ZWDlSL9Nnz5dN998s66++mq1a9dOAwYM0IgRI8oM5xUeHl5meTmzDKo6d1NdJEbgMnfccYeuv/56LV26VCtXrtQLL7yg559/Xu+9955SUlLUv39/HTt2TI8//rhatWqlOnXq6MCBA7r77rurvMLMOv+FF16wjVV6KUfGL0xNTVV8fLwWLVqknj17atGiRUpISFC/fv2cbi+AwHPxSao9e/aob9++atWqlV566SU1adJEYWFhWr58uWbPnm2LS0FBQXr33Xe1ceNGffTRR1qxYoXuuece/fGPf9TGjRurNbaqs8q7GlmS7WSZta6/+93vKjypZd1xKS0tVfv27fXSSy+VW+7Sk3aOqOz3YeDAgU5/HuCLHnzwQc2fP18TJkxQcnKyoqKiFBQUpGHDhjl9Jf2iRYt09913a+jQoXr00UcVFxdne5iu9SS2M6zf/8gjjyg1NbXcMpceIFUUV8qbfvGJeW9zJt5ZOXK3SHVV9NnO9K9k38fOrmuOfGZVXLUvDviz6u7PVHRn3KUPnHXWyJEj9cILL+j999/XnXfeqcWLF+vGG28sc2W1u7j6twrwRaWlpQoKCtInn3xS4R2g0vntuSbnvCriyHGeI/Wzqu4+T02O59wRA509ZnXFvlBVLBaLgoPtB2YqLS1VXFyc3d19F6vsGSbujLGO3rHtSL/17NlTe/bs0QcffKCVK1fqL3/5i2bPnq158+bp3nvvrfKzqsvZu84rQmIELtWwYUM98MADeuCBB3T48GH95je/0cyZM9WwYUP95z//0cKFC+0ezpmTk+PQ51qvSI6MjKwyiVHZxhESEqLhw4drwYIFev755/X+++9XOMQBgMD3ww8/2F1tsXv3bpWWlqpZs2b66KOPVFhYqA8//NDuSomKbnft3r27unfvrpkzZ2rx4sW666679Pbbb9vtDFjFxsYqMjJS27dvd32jyhEbG6t69eqppKSkyhjaokULffPNN+rbt2+l8TQxMVGlpaXas2eP3RV/33//fbnlK/p9IDGCQPHuu+8qPT1df/zjH23Tzp49q+PHj9uVa9GiRZXb/rvvvqsrrrhC7733nt12OGXKFLtyiYmJWr16tU6dOmV34Hvpdmi9yi40NNTjF4O4Ot6Vd5v+f/7zH0VERNgOLh2Nd86KjY1VREREuXFu165dCg4Orlby2FmOrmuOsu5nb9++vUyC7NIyjuyLA4Gssv2ZivabrFd4X7qNXnplbmJioqTzcc46HIx0fsi8vXv3qmPHjnbl27Vrp86dO+utt95S48aNtX//fr3yyis1baISExMrjHMX19PVv1WAt5W3Dbdo0UKGYah58+a6+uqrK3zvd99959A5L+s+mav2ixytnytUdTznyRjo6DGrM1z1ORdr0aKFVq1apeuuu87ppJSjMdaZeluP4X/44QfbXYCSlJ+fr+PHj9uWgbNiYmI0atQojRo1SqdOnVLPnj01derUcs+FVFdl525qgmeMwCVKSkrK3LofFxenRo0aqbCw0JZ4uDiraBiG/vSnPzn0+UlJSWrRooVefPFFnTp1qsz8I0eO2P62PiukooPDESNG6H//+5/uu+8+nTp1qsZjsALwX9nZ2XavrQeTAwcOLDdunThxQvPnz7d7z//+978yV5pYr6YtLCws93uDg4M1dOhQffTRR9qyZUuZ+a6++jokJERpaWn65z//We5O+MUx9I477tCBAwf0f//3f2XK/frrrzp9+rQk2XaAX375Zbsyc+bMsXtd1e8DEChCQkLKbLuvvPJKmavh0tLS9M0332jp0qVlPsP6/vLiz5dffqnc3Fy78oMGDdK5c+c0d+5c27SSkpIyJ8bi4uLUu3dvvfbaazp06FCZ7704Briaq+Ndbm6u3bjKP/30kz744AOlpKQoJCTEqXjnrJCQEKWkpOiDDz6wu20/Pz9fixcvVo8ePRQZGVntz3emHo6sa45KSUlRvXr1lJWVpbNnz9rNs36PM/viQCByZH+mTp065Q5nZ00srl+/3u7zLh3ur0uXLoqNjdW8efNUVFRkm75gwYJKj21XrlypOXPmqH79+i654GTQoEHatGmT3W/O6dOn9frrr6tZs2Zq06aNJNf/VgHeVt65pFtvvVUhISGaNm1amd9ewzB09OhRSeVvD+Wd84qNjVXPnj3117/+Vfv37y/zec5ytH414ejxnCdjoKPHrM6o6lxiddxxxx0qKSnRjBkzysw7d+5cpd/laIyNiIiQ5Fi9Bw0aJKnsMbv1zpvBgwdX+RmXunQdq1u3rq688kqXH+tXdu6mJrhjBC5x8uRJNW7cWLfddps6duyounXratWqVdq8ebP++Mc/qlWrVmrRooUeeeQRHThwQJGRkfrnP//p8FhywcHB+stf/qKBAweqbdu2GjVqlC6//HIdOHBAa9asUWRkpD766CNJsj2Q8w9/+IOGDRum0NBQDRkyxBbkOnfurHbt2tke1vSb3/zGPZ0CwOft3btXN910kwYMGKDc3FwtWrRIw4cPV8eOHRUeHq6wsDANGTLElkj9v//7P8XFxdmdWFy4cKFeffVV3XLLLWrRooVOnjyp//u//1NkZKRtx6M8zz77rFauXKlevXpp7Nixat26tQ4dOqQlS5bo888/tz3U3VWee+45rVmzRt26ddOYMWPUpk0bHTt2TF999ZVWrVqlY8eOSTp/gP2Pf/xD999/v9asWaPrrrtOJSUl2rVrl/7xj39oxYoV6tKlizp16qQ777xTr776qk6cOKFrr71Wq1ev1u7du+2+t6rfByBQ3Hjjjfrb3/6mqKgotWnTRrm5uVq1apXq169vV+7RRx/Vu+++q9tvv1333HOPkpKSdOzYMX344YeaN2+eOnbsqBtvvFHvvfeebrnlFg0ePFh79+7VvHnz1KZNG7uT0kOGDNF1112nJ554Qvv27VObNm303nvvlXtQmp2drR49eqh9+/YaM2aMrrjiCuXn5ys3N1c///yzvvnmG7f1jSvjXbt27ZSamqqHHnpIFotFr776qiRp2rRptjKOxrvqeOaZZ5STk6MePXrogQceUK1atfTaa6+psLBQs2bNqvbnOsPRdc1RkZGRmj17tu69915dc801Gj58uC677DJ98803OnPmjBYuXOjUvjgQiBzZn0lKStI777yjzMxMXXPNNapbt66GDBmitm3bqnv37po0aZKOHTummJgYvf322zp37pzdd4SGhuqZZ57Rfffdpz59+ui3v/2t9u7dq/nz51c4jv/w4cP12GOPaenSpRo3blyZ5wlUxxNPPKG///3vGjhwoB566CHFxMRo4cKF2rt3r/75z3/ahopxx28V4E0VnUt65plnNGnSJO3bt09Dhw5VvXr1tHfvXi1dulRjx47VI4884tQ5r5dfflk9evTQb37zG40dO1bNmzfXvn379PHHH2vbtm1O1blFixYO1a8mHD2e82QMdPSY1RlVnUusjl69eum+++5TVlaWtm3bppSUFIWGhuqHH37QkiVL9Kc//Um33XZbue91NMbWrl1bbdq00TvvvKOrr75aMTExateuXbnPsenYsaPS09P1+uuv6/jx4+rVq5c2bdqkhQsXaujQobrhhhucbmObNm3Uu3dvJSUlKSYmRlu2bNG7776r8ePHO/1Zlans3E2NGIALFBYWGo8++qjRsWNHo169ekadOnWMjh07Gq+++qqtzM6dO41+/foZdevWNRo0aGCMGTPG+OabbwxJxvz5823l5s+fb0gyNm/eXOZ7vv76a+PWW2816tevb1gsFiMxMdG44447jNWrV9uVmzFjhnH55ZcbwcHBhiRj7969dvNnzZplSDKeffZZl/YDAP8wZcoUQ5Kxc+dO47bbbjPq1atnXHbZZcb48eONX3/91Vbuww8/NDp06GCEh4cbzZo1M55//nnjr3/9q11c+eqrr4w777zTaNq0qWGxWIy4uDjjxhtvNLZs2WL3nZKMKVOm2E378ccfjZEjRxqxsbGGxWIxrrjiCiMjI8MoLCx0uC2SjIyMjDLTExMTjfT0dLtp+fn5RkZGhtGkSRMjNDTUSEhIMPr27Wu8/vrrduWKioqM559/3mjbtq1hsViMyy67zEhKSjKmTZtmnDhxwlbu119/NR566CGjfv36Rp06dYwhQ4YYP/30k11bHfl9AALB//73P2PUqFFGgwYNjLp16xqpqanGrl27yt0Wjx49aowfP964/PLLjbCwMKNx48ZGenq68csvvxiGYRilpaXGs88+ayQmJhoWi8Xo3LmzsWzZMiM9Pd1ITEws81kjRowwIiMjjaioKGPEiBHG119/XWb/yjAMY8+ePcbIkSONhIQEIzQ01Lj88suNG2+80Xj33XdtZSraD7PGzSNHjthNT09PN+rUqWM3zd3xbtGiRcZVV11l65s1a9aUKetIvFuzZo0hyViyZEmZ9+/du9eQZLzwwgtl5n311VdGamqqUbduXSMiIsK44YYbjA0bNtiVqWx/tlevXkbbtm3LTE9MTDQGDx5cYbutHF3XKqqDtd2X9tuHH35oXHvttUbt2rWNyMhIo2vXrsbf//53uzKO7osDgcaR/ZlTp04Zw4cPN6Kjow1JdvF6z549Rr9+/QyLxWLEx8cbTz75pJGTk1Putvjqq68azZs3NywWi9GlSxdj/fr1Rq9evYxevXqVW7dBgwYZksrEIUeV9zu1Z88e47bbbjOio6ON8PBwo2vXrsayZcvsyrjrtwrwporOJf3zn/80evToYdSpU8eoU6eO0apVKyMjI8P4/vvvbe919JyXYRjG9u3bjVtuucW2jbVs2dJ4+umnbfMr2u+y/rZfeo7LkfpVtP9RFUeP5zwdAx09ZnXmeLmqc4kVKW9/+GKvv/66kZSUZNSuXduoV6+e0b59e+Oxxx4zDh48aCtzaRudibEbNmwwkpKSjLCwMLv9cOt6dLHi4mJj2rRpRvPmzY3Q0FCjSZMmxqRJk4yzZ8+W6Z/y9ksvreczzzxjdO3a1YiOjjZq165ttGrVypg5c6ZRVFRUZf+UV79LjyMcPXdTXUH//0sBU/nTn/6kiRMnat++fXbPDgAAAIBvCgoKUkZGhv785z97uyoA4DNuueUWfffdd2Xu2gUAwN9NnTpV06ZN05EjR9SgQQOXfz7PGIHpGIahN954Q7169SIpAgAAAADwS4cOHdLHH3+sESNGeLsqAAD4HZ4xAtM4ffq0PvzwQ61Zs0bfffedPvjgA29XCQAqlJeXV+n82rVrKyoqykO1AQD3Id4BgHP27t2rL774Qn/5y18UGhqq++67r0wZYiuAqpw6dcrueRXliY2NtT0I3GxOnDihX3/9tdIyCQkJHqoN3IHECEzjyJEjGj58uKKjo/Xkk0/qpptu8naVAKBCDRs2rHR+enq6FixY4JnKAIAbEe8AwDnr1q3TqFGj1LRpUy1cuLDcE3PEVgBVefHFFzVt2rRKy+zdu1fNmjXzTIV8zO9//3stXLiw0jI8ocK/8YwRAAB80KpVqyqd36hRI7Vp08ZDtQEA9yHeAYDrEVsBVOW///2v/vvf/1ZapkePHgoPD/dQjXzLzp07dfDgwUrL9OvXz0O1gTuQGAEAAAAAAAAAAKbBw9cBAAAAAAAAAIBp+OUzRkpLS3Xw4EHVq1dPQUFB3q4OADcwDEMnT55Uo0aNFBxMDrcyxEQg8BETHUdMBAIfMdFxxEQg8BETHUdMBAKfMzHRLxMjBw8eVJMmTbxdDQAe8NNPP6lx48beroZPIyYC5kFMrBoxETAPYmLViImAeRATq0ZMBMzDkZjol4mRevXqSTrfwMjIyDLzi4uLtXLlSqWkpCg0NNTT1fM62k/7A6H9BQUFatKkiW17R8Uqi4mBsj7UBH1AH1j5cz8QEx1X1X6i5N/rgivQfnO3X/L/PiAmOs6RmGjl7+uFs2hv4DJTWyViojMqiolmW2cuRttpe6C13ZmY6JeJEevtbpGRkRUmRiIiIhQZGRlwC9cRtJ/2B1L7ub21apXFxEBbH6qDPqAPrAKhH4iJVatqP1EKjHWhJmi/udsvBU4fEBOr5khMtAqU9cJRtDdwmamtFyMmVq2imGjWdUai7bQ9cNvuSExk8EEAAAAAAAAAAGAaJEYAAAAAAAAAAIBpkBgBAAAAAAAAAACmQWIEAAAAAAAAAACYBokRAAAAAAAAAABgGiRGAAAAAAAAAACAaZAYAQAAAAAAAOAWc+fOVYcOHRQZGanIyEglJyfrk08+sc3v3bu3goKC7P7df//9dp+xf/9+DR48WBEREYqLi9Ojjz6qc+fOebopAAJILW9XAAAAAAAAAEBgaty4sZ577jldddVVMgxDCxcu1M0336yvv/5abdu2lSSNGTNG06dPt70nIiLC9ndJSYkGDx6shIQEbdiwQYcOHdLIkSMVGhqqZ5991uPtARAYnLpjhAwvAAAAAAAAAEcNGTJEgwYN0lVXXaWrr75aM2fOVN26dbVx40ZbmYiICCUkJNj+RUZG2uatXLlSO3fu1KJFi9SpUycNHDhQM2bMUHZ2toqKirzRJAABwKk7RsjwAr6j2RMflzvdEmJoVlep3dQVKiwJ8nCtqrbvucHergLgMRVtp57mbFxgOwV8X03ii7f2FYgtANylOjHR28dNxESYVUlJiZYsWaLTp08rOTnZNv2tt97SokWLlJCQoCFDhujpp5+2nVPMzc1V+/btFR8fbyufmpqqcePGaceOHercubPH2+HLnImJ3o6FVsREeINTiZEhQ4bYvZ45c6bmzp2rjRs32hIj1gxveawZ3lWrVik+Pl6dOnXSjBkz9Pjjj2vq1KkKCwurZjMAAAAAAAAA+KLvvvtOycnJOnv2rOrWraulS5eqTZs2kqThw4crMTFRjRo10rfffqvHH39c33//vd577z1JUl5enl1SRJLtdV5eXoXfWVhYqMLCQtvrgoICSVJxcbGKi4tt061/XzzNn1lCDMfLBht2/3uLN/o+0Ja7MwK57c60qdrPGPFkhtfRQGYVyAvXEbTfHO2v6IfOV37UKuLocgn05QcAAAAAgFm0bNlS27Zt04kTJ/Tuu+8qPT1d69atU5s2bTR27Fhbufbt26thw4bq27ev9uzZoxYtWlT7O7OysjRt2rQy01euXGk3wo1VTk5Otb/Ll8zq6vx7ZnQpdX1FnLB8+XKvfXegLPfqCMS2nzlzxuGyTidGvJHhdTaQWQXiwnUG7Q/s9lf1Q+ftH7WKOPpj50wgAwAAAAAAvissLExXXnmlJCkpKUmbN2/Wn/70J7322mtlynbr1k2StHv3brVo0UIJCQnatGmTXZn8/HxJqnDUGkmaNGmSMjMzba8LCgrUpEkTpaSk2D3DpLi4WDk5Oerfv79CQ0Or30gf0W7qCofLWoINzehSqqe3BKuw1HtDaW2fmurx7wy05e6MQG679YYKRzidGPFGhtfRQGYVyAvXEbTfHO2v6IfOV37UKuLoj50zgQwAAADwJVOnTi1zcV/Lli21a9cuSdLZs2f18MMP6+2331ZhYaFSU1P16quv2l1IuH//fo0bN05r1qxR3bp1lZ6erqysLNWqVe2BHwDAZ5SWltqNDnOxbdu2SZIaNmwoSUpOTtbMmTN1+PBhxcXFSTp/MWxkZKTtYu3yWCwWWSyWMtNDQ0PLPV9U0XR/U51nhRSWBnn1GSPe7PdAWe7VEYhtd6Y9Tu9ReSPD62wgc3R+oPNG+33hQcPWB0d1nvmZw0HdHx/yVFXbvP2jVhFH10kzb7sAAADwf23bttWqVatsry9OaEycOFEff/yxlixZoqioKI0fP1633nqrvvjiC0nnh64ePHiwEhIStGHDBh06dEgjR45UaGionn32WY+3BQBqYtKkSRo4cKCaNm2qkydPavHixVq7dq1WrFihPXv2aPHixRo0aJDq16+vb7/9VhMnTlTPnj3VoUMHSVJKSoratGmjESNGaNasWcrLy9NTTz2ljIyMcs8XAoAjgmv6Ac5meL/77jsdPnzYVsaRDC8AAAAAAP6kVq1aSkhIsP1r0KCBJOnEiRN644039NJLL6lPnz5KSkrS/PnztWHDBm3cuFHS+WGjd+7cqUWLFqlTp04aOHCgZsyYoezsbBUVFXmzWQDgtMOHD2vkyJFq2bKl+vbtq82bN2vFihXq37+/wsLCtGrVKqWkpKhVq1Z6+OGHlZaWpo8++sj2/pCQEC1btkwhISFKTk7W7373O40cOVLTp0/3YqsA+Dun7hghwwsAFzBEAgAAACryww8/qFGjRgoPD1dycrKysrLUtGlTbd26VcXFxerXr5+tbKtWrdS0aVPl5uaqe/fuys3NVfv27e32G1NTUzVu3Djt2LFDnTt3Lvc7CwsL7S5ctA5PW1xcrOLi4krra51fVTlfZAkxnH9PsGH3v6d5up/9efk6y0xtlfyjnW+88UaF85o0aaJ169ZV+RmJiYlefUA3gMDj1Jk3a4b30KFDioqKUocOHWwZ3p9++kmrVq3SnDlzdPr0aTVp0kRpaWl66qmnbO+3ZnjHjRun5ORk1alTR+np6WR4AfgthkgAAADApbp166YFCxaoZcuWOnTokKZNm6brr79e27dvV15ensLCwhQdHW33nvj4eOXl5UmS8vLy7JIi1vnWeRXJysoqc+GOdP4OlIiICIfqnpOT41A5XzKra/XfO6NLqesq4gRvneD1x+VbXWZp65kzZ7xdBQDwS04lRsjwAoA96xAJl7IOkbB48WL16dNHkjR//ny1bt1aGzduVPfu3W1DJKxatUrx8fHq1KmTZsyYoccff1xTp05VWFiYp5sDAAAAFxg4cKDt7w4dOqhbt25KTEzUP/7xD9WuXdtt3ztp0iRlZmbaXhcUFKhJkyZKSUlRZGRkpe8tLi5WTk6O+vfv73fP+2s3dYXT77EEG5rRpVRPbwlWYannn824fWqqR7/Pn5evs8zUVunCnWEAAOcwVgsA1ICvD5FgttvIy+PNPqjOsA7u4OxQEYG6vvjz9uAPdWZ4QQCoWHR0tK6++mrt3r1b/fv3V1FRkY4fP25310h+fr7tgpuEhARt2rTJ7jPy8/Nt8ypisVjKHaY6NDTU4RPEzpT1FYUl1U9sFJYG1ej91eWtPvbH5VtdZmmrGdoIAO7AUSYAVJM/DZFgltvIK+ONPqjJsA7u4OhQEYF+Z6c/bg/+MkQCwwsCQPlOnTqlPXv2aMSIEUpKSlJoaKhWr16ttLQ0SdL333+v/fv3Kzk5WZKUnJysmTNn6vDhw4qLi5N0/vcrMjJSbdq08Vo7AAAAAgWJEQCoJn8YIsFst5GXx5t9UJ1hHdzB2aEiPD20g6f48/bgL0MkMLwgAJz3yCOPaMiQIUpMTNTBgwc1ZcoUhYSE6M4771RUVJRGjx6tzMxMxcTEKDIyUg8++KCSk5PVvXt3SVJKSoratGmjESNGaNasWcrLy9NTTz2ljIyMcu8IAQAAgHNIjACAi/jyEAlmuY28Mt7oA28My1AZR4eKCPR1xR+3B3+przeGFwQAX/Tzzz/rzjvv1NGjRxUbG6sePXpo48aNio2NlSTNnj1bwcHBSktLsxte0CokJETLli3TuHHjlJycrDp16ig9PV3Tp0/3VpMAAAACCokRAHARhkgAYGbeGl7QmecuWfnz82asavIMI2efO+QqvtLfgbD8a8rf+8Af6v32229XOj88PFzZ2dnKzs6usExiYmLAD28JAADgLSRGAKCaGCIBAC7w1vCC1XnukpU/Pm/GyhXPMHL0uUOu4msneP15+buKv/aBvzx3CQAAAL6LxAgAVBNDJABAxTw1vKAzz12y8ufnzVjV5BlGzj53yFV85flFgbD8a8rf+8BfnrsEAAAA30ViBACqiSESAKBinhpesDrPXXKmjK9yxTOMHH3ukKv4Wl/78/J3FX/tA3+sMwAAAHwLiREAAADUGMMLAgAAAAD8BYkRAAAA1BjDCwIAAAAA/AWJEQAAANQYwwsCAAAAAPxFsLcrAAAAAAAAAAAA4CkkRgAAAAAAAAAAgGmQGAEAAAAAAAAAAKZBYgQAAAAAAAAAAJgGiREAAAAAAAAAAGAaJEYAAAAAAAAAAIBpkBgBAAAAAAAAAACmQWIEAAAAAAAAAACYBokRAAAAAAAAAABgGiRGAAAAAAAAAACAaZAYAQAAAAAAAOAWc+fOVYcOHRQZGanIyEglJyfrk08+sc0/e/asMjIyVL9+fdWtW1dpaWnKz8+3+4z9+/dr8ODBioiIUFxcnB599FGdO3fO000BEECcSowQyAAAAAAAAAA4qnHjxnruuee0detWbdmyRX369NHNN9+sHTt2SJImTpyojz76SEuWLNG6det08OBB3Xrrrbb3l5SUaPDgwSoqKtKGDRu0cOFCLViwQJMnT/ZWkwAEAKcSIwQyAAAAAAAAAI4aMmSIBg0apKuuukpXX321Zs6cqbp162rjxo06ceKE3njjDb300kvq06ePkpKSNH/+fG3YsEEbN26UJK1cuVI7d+7UokWL1KlTJw0cOFAzZsxQdna2ioqKvNw6AP6qljOFhwwZYvd65syZmjt3rjZu3KjGjRvrjTfe0OLFi9WnTx9J0vz589W6dWtt3LhR3bt3twWyVatWKT4+Xp06ddKMGTP0+OOPa+rUqQoLC3NdywAAAAAAAAD4jJKSEi1ZskSnT59WcnKytm7dquLiYvXr189WplWrVmratKlyc3PVvXt35ebmqn379oqPj7eVSU1N1bhx47Rjxw517ty53O8qLCxUYWGh7XVBQYEkqbi4WMXFxbbp1r8vnubPLCGG42WDDbv/vcUbfR9oy90Zgdx2Z9rkVGLkYp4MZAAAAAAAAAD803fffafk5GSdPXtWdevW1dKlS9WmTRtt27ZNYWFhio6OtisfHx+vvLw8SVJeXp7duUTrfOu8imRlZWnatGllpq9cuVIRERFlpufk5DjbLJ80q6vz75nRpdT1FXHC8uXLvfbdgbLcqyMQ237mzBmHyzqdGPFGIHM0w2sVyFkvR3iz/c5kpd1Wh2pku/1xXamor30l218RR/vaH5cJAAAAAAAoq2XLltq2bZtOnDihd999V+np6Vq3bp1bv3PSpEnKzMy0vS4oKFCTJk2UkpKiyMhI2/Ti4mLl5OSof//+Cg0NdWudPKHd1BUOl7UEG5rRpVRPbwlWYWmQG2tVue1TUz3+nYG23J0RyG235g0c4XRixBuBzNkMr1UgZr2c4Y32Vycr7S7OZLu9mZmurqr62tvZ/oo42tfOZHgBAAAAAIDvCgsL05VXXilJSkpK0ubNm/WnP/1Jv/3tb1VUVKTjx4/bXWydn5+vhIQESVJCQoI2bdpk93n5+fm2eRWxWCyyWCxlpoeGhpZ7Mrii6f6msMT5BEdhaVC13ucq3uz3QFnu1RGIbXemPU4nRrwRyBzN8FoFctbLEd5svzNZaXepTrbbG5npmqqor30l218RR/vamQwvAAAAAADwH6WlpSosLFRSUpJCQ0O1evVqpaWlSZK+//577d+/X8nJyZKk5ORkzZw5U4cPH1ZcXJyk8xcDR0ZGqk2bNl5rAwD/Vu1njFh5IpA5m+F1dH6g80b7vZldvpQz2W5/XE+qapu3s/0VcbSv/XGZAAAAAAAAe5MmTdLAgQPVtGlTnTx5UosXL9batWu1YsUKRUVFafTo0crMzFRMTIwiIyP14IMPKjk5Wd27d5ckpaSkqE2bNhoxYoRmzZqlvLw8PfXUU8rIyCj3fCEAOMKpxAiBDAAAAAAAAICjDh8+rJEjR+rQoUOKiopShw4dtGLFCvXv31+SNHv2bAUHBystLU2FhYVKTU3Vq6++ant/SEiIli1bpnHjxik5OVl16tRRenq6pk+f7q0mAQgATiVGCGQAAAAAAAAAHPXGG29UOj88PFzZ2dnKzs6usExiYqJfPh8WgO9yKjFCIAMAAAAAAAAAAP4s2NsVAAAAAAAAAAAA8BQSIwAAAAAAAAAAwDRIjAAAAAAAAAAAANMgMQIAAAAAAAAAAEyDxAgAAAAAAAAAADANEiMAAAAAAAAAAMA0SIwAAAAAAOBGzz33nIKCgjRhwgTbtLNnzyojI0P169dX3bp1lZaWpvz8fLv37d+/X4MHD1ZERITi4uL06KOP6ty5cx6uPQAAQOAhMQIAAAAAgJts3rxZr732mjp06GA3feLEifroo4+0ZMkSrVu3TgcPHtStt95qm19SUqLBgwerqKhIGzZs0MKFC7VgwQJNnjzZ000AAAAIOCRGAAAAAABwg1OnTumuu+7S//3f/+myyy6zTT9x4oTeeOMNvfTSS+rTp4+SkpI0f/58bdiwQRs3bpQkrVy5Ujt37tSiRYvUqVMnDRw4UDNmzFB2draKioq81SQAAICAQGIEAFyEIRIAAABwsYyMDA0ePFj9+vWzm75161YVFxfbTW/VqpWaNm2q3NxcSVJubq7at2+v+Ph4W5nU1FQVFBRox44dnmkAAABAgKrl7QoAQCCobIiEjz/+WEuWLFFUVJTGjx+vW2+9VV988YWkC0MkJCQkaMOGDTp06JBGjhyp0NBQPfvss95oCgAAAFzg7bff1ldffaXNmzeXmZeXl6ewsDBFR0fbTY+Pj1deXp6tzMVJEet867zyFBYWqrCw0Pa6oKBAklRcXKzi4uJK62udX1U5X2QJMZx/T7Bh97+nebqf/Xn5OstMbZXM004AcDUSIwBQQxcPkfDMM8/YpluHSFi8eLH69OkjSZo/f75at26tjRs3qnv37rYhElatWqX4+Hh16tRJM2bM0OOPP66pU6cqLCzMW80CgBp57rnnNGnSJP3+97/XnDlzJJ2/i+7hhx/W22+/rcLCQqWmpurVV1+1O/G3f/9+jRs3TmvWrFHdunWVnp6urKws1arFbisA//HTTz/p97//vXJychQeHu6x783KytK0adPKTF+5cqUiIiIc+oycnBxXV8vtZnWt/ntndCl1XUWcsHz5cq98rz8u3+oyS1vPnDnj7SoAgF/iCBMAaujiIRIuToxUNURC9+7dKxwiYdy4cdqxY4c6d+5c5vucuRLQbFdLlcebfVCdqxfdwdkrIgN1ffHn7cHf6sxddADMbuvWrTp8+LB+85vf2KaVlJRo/fr1+vOf/6wVK1aoqKhIx48ft7trJD8/XwkJCZKkhIQEbdq0ye5zrUOyWstcatKkScrMzLS9LigoUJMmTZSSkqLIyMhK61xcXKycnBz1799foaGhTrXX29pNXeH0eyzBhmZ0KdXTW4JVWBrkhlpVbvvUVI9+nz8vX2eZqa3SheNBAIBzSIwAQA14Y4iE6lwJaJarpSrjjT6oydWL7uDoFZHeuoLRU/xxe/CnKwG5iw4ApL59++q7776zmzZq1Ci1atVKjz/+uJo0aaLQ0FCtXr1aaWlpkqTvv/9e+/fvV3JysiQpOTlZM2fO1OHDhxUXFyfp/G9YZGSk2rRpU+73WiwWWSyWMtNDQ0MdPkHsTFlfUVhS/cRGYWlQjd5fXd7qY39cvtVllraaoY0A4A4kRgCgmrw1RIIzVwKa7Wqp8nizD6pz9aI7OHtFpKevYPQUf94e/OlKQE/fRQcAvqhevXpq166d3bQ6deqofv36tumjR49WZmamYmJiFBkZqQcffFDJycnq3r27JCklJUVt2rTRiBEjNGvWLOXl5empp55SRkZGuckPAAAAOI7ECABUk7eGSKjOlYBmuVqqMt7oA29cfVgZR6+IDPR1xR+3B3+pr788aNifh1WzqslQfd564LCv9HcgLP+a8vc+8Nd6X2r27NkKDg5WWlqa3XOXrEJCQrRs2TKNGzdOycnJqlOnjtLT0zV9+nQv1hoAACAwkBgBgGry1hAJAOCL/PFBw/44rJqVK4bq8/QDh31tmD5/Xv6u4q994E/DC15s7dq1dq/Dw8OVnZ2t7OzsCt+TmJjoc9sOAABAICAxAgDVxBAJAHCBPz1o2J+HVbOqyVB93nrgsK8M0xcIy7+m/L0P/Gl4QQAAAPgmEiMA4EYMkQDALPzxQcP+OKyalSuG6vP0A4d9ra/9efm7ir/2gT/WGQAAAL6FxAgAuBBDJAAwK+6iAwAAAAD4CxIjAAAA8AjuogMAAAAA+IJgb1cAAAAAgWnt2rWaM2eO7bX1Lrpjx47p9OnTeu+998o8O8R6F92ZM2d05MgRvfjii6pVi2t5AAAA/FVWVpauueYa1atXT3FxcRo6dKi+//57uzK9e/dWUFCQ3b/777/frsz+/fs1ePBgRUREKC4uTo8++qjOnTvnyaYACCBOJUYIZAAAAAAAAAActW7dOmVkZGjjxo3KyclRcXGxUlJSdPr0abtyY8aM0aFDh2z/Zs2aZZtXUlKiwYMHq6ioSBs2bNDChQu1YMECTZ482dPNARAgnLr8zhrIrrnmGp07d05PPvmkUlJStHPnTtWpU8dWbsyYMXZDHkRERNj+tgayhIQEbdiwQYcOHdLIkSMVGhqqZ5991gVNAgAAAAAAAOALPv30U7vXCxYsUFxcnLZu3aqePXvapkdERJS5m9hq5cqV2rlzp1atWqX4+Hh16tRJM2bM0OOPP66pU6cqLCzMrW0AEHicumPk008/1d133622bduqY8eOWrBggfbv36+tW7falbMGMuu/yMhI2zxrIFu0aJE6deqkgQMHasaMGcrOzlZRUZFrWgUAAAAAAADA55w4cUKSFBMTYzf9rbfeUoMGDdSuXTtNmjRJZ86csc3Lzc1V+/btFR8fb5uWmpqqgoIC7dixwzMVBxBQajRgc2WBbNGiRUpISNCQIUP09NNP2+4aqSiQjRs3Tjt27FDnzp1rUiUAAAAAAAAAPqi0tFQTJkzQddddp3bt2tmmDx8+XImJiWrUqJG+/fZbPf744/r+++/13nvvSZLy8vLsziVKsr3Oy8sr97sKCwtVWFhoe11QUCBJKi4uVnFxsW269e+Lp/kzS4jheNlgw+5/b/FG3wfacndGILfdmTZVOzHii4HMKpAXriO82X5ngq/b6lCNoO6P60pFfe0rP2oVcbSv/XGZAAAAAACAimVkZGj79u36/PPP7aaPHTvW9nf79u3VsGFD9e3bV3v27FGLFi2q9V1ZWVmaNm1amekrV660G/bfKicnp1rf42tmdXX+PTO6lLq+Ik5Yvny51747UJZ7dQRi2y++06wq1U6M+HIgswrEhesMb7S/OsHXXZwJ6t4MwNVVVV97+0etIo72tTOBDAAAAAAA+Lbx48dr2bJlWr9+vRo3blxp2W7dukmSdu/erRYtWighIUGbNm2yK5Ofny9JFT6XZNKkScrMzLS9LigoUJMmTZSSkmI37H9xcbFycnLUv39/hYaGVqttvqTd1BUOl7UEG5rRpVRPbwlWYWmQG2tVue1TUz3+nYG23J0RyG233lDhiGolRnw1kFkF8sJ1hDfb70zwdZfqBHVvBOCaqqivfeVHrSKO9rUzgQwAAAAAAPgmwzD04IMPaunSpVq7dq2aN29e5Xu2bdsmSWrYsKEkKTk5WTNnztThw4cVFxcn6fwFwZGRkWrTpk25n2GxWGSxWMpMDw0NLfd8WUXT/U1hifPnggpLg6r1PlfxZr8HynKvjkBsuzPtcSox4i+BzNH5gc4b7fdmEL2UM0HdH9eTqtrm7R+1ijja1/64TAAAAAAAgL2MjAwtXrxYH3zwgerVq2cbSj8qKkq1a9fWnj17tHjxYg0aNEj169fXt99+q4kTJ6pnz57q0KGDJCklJUVt2rTRiBEjNGvWLOXl5empp55SRkZGuecMAaAqTiVGCGQAAAAAAAAAHDV37lxJUu/eve2mz58/X3fffbfCwsK0atUqzZkzR6dPn1aTJk2Ulpamp556ylY2JCREy5Yt07hx45ScnKw6deooPT1d06dP92RTAAQQpxIjBDIAAAAAAAAAjjIMo9L5TZo00bp166r8nMTERL98RiwA3+T0UFqVIZABAAAAAAAAAABfFuztCgAAAAAAAAAAAHgKiREAAAAAAAAAAGAaJEYAAAAAAAAAAIBpkBgBAAAAAAAAAACmQWIEAAAAAAAAAACYRi1vVwAAAAAAAAAAfEmzJz72dhUAuBF3jAAAAAAAAAAAANMgMQIAAAAAAAAAAEyDxAgAAAAAAAAAADANEiMAAAAAAAAAAMA0SIwAAAAAAAAAAADTIDECAAAAAAAAAABMg8QIAAAAAAAAAAAwDRIjAAAAAAAAAADANEiMAAAAAAAAAAAA0yAxAgAAAAAAAAAATIPECAAAAAAAAAAAMA0SIwAAAAAAAAAAwDRIjAAAAAAAAAAAANMgMQIAAAAAgAvNnTtXHTp0UGRkpCIjI5WcnKxPPvnENv/s2bPKyMhQ/fr1VbduXaWlpSk/P9/uM/bv36/BgwcrIiJCcXFxevTRR3Xu3DlPNwUAACAgkRgBAAAAAMCFGjdurOeee05bt27Vli1b1KdPH918883asWOHJGnixIn66KOPtGTJEq1bt04HDx7Urbfeant/SUmJBg8erKKiIm3YsEELFy7UggULNHnyZG81CQAAIKCQGAGAauJKQAAAAJRnyJAhGjRokK666ipdffXVmjlzpurWrauNGzfqxIkTeuONN/TSSy+pT58+SkpK0vz587VhwwZt3LhRkrRy5Urt3LlTixYtUqdOnTRw4EDNmDFD2dnZKioq8nLrAAAA/F8tb1cAAPyV9UrAq666SoZhaOHChbr55pv19ddfq23btpo4caI+/vhjLVmyRFFRURo/frxuvfVWffHFF5IuXAmYkJCgDRs26NChQxo5cqRCQ0P17LPPerl1AAAAcIWSkhItWbJEp0+fVnJysrZu3ari4mL169fPVqZVq1Zq2rSpcnNz1b17d+Xm5qp9+/aKj4+3lUlNTdW4ceO0Y8cOde7cudzvKiwsVGFhoe11QUGBJKm4uFjFxcWV1tM6v6pyvsgSYjj/nmDD7n9P83Q/+/PydZaZ2ir5RzuzsrL03nvvadeuXapdu7auvfZaPf/882rZsqWtzNmzZ/Xwww/r7bffVmFhoVJTU/Xqq6/axcH9+/dr3LhxWrNmjerWrav09HRlZWWpVi1ObwJwnlORg0AGABcMGTLE7vXMmTM1d+5cbdy4UY0bN9Ybb7yhxYsXq0+fPpKk+fPnq3Xr1tq4caO6d+9uuxJw1apVio+PV6dOnTRjxgw9/vjjmjp1qsLCwrzRLAColrlz52ru3Lnat2+fJKlt27aaPHmyBg4cKIl9RADm89133yk5OVlnz55V3bp1tXTpUrVp00bbtm1TWFiYoqOj7crHx8crLy9PkpSXl2cXH63zrfMqkpWVpWnTppWZvnLlSkVERDhU75ycHIfK+ZJZXav/3hldSl1XEScsX77cK9/rj8u3uszS1jNnzni7ClVat26dMjIydM011+jcuXN68sknlZKSop07d6pOnTqSxIWFADzOqaNMAhkAlM9XrwQ029VS5fFmH1Tn6kV3cPaKyEBdX/x5e/CHOnMXHQDYa9mypbZt26YTJ07o3XffVXp6utatW+fW75w0aZIyMzNtrwsKCtSkSROlpKQoMjKy0vcWFxcrJydH/fv3V2hoqFvr6Wrtpq5w+j2WYEMzupTq6S3BKiwNckOtKrd9aqpHv8+fl6+zzNRW6cLxoC/79NNP7V4vWLBAcXFx2rp1q3r27GkbYpALCwF4klOJEQIZANjzlysBzXK1VGW80Qc1uXrRHRy9ItJbVzB6ij9uD/5wJSB30QGAvbCwMF155ZWSpKSkJG3evFl/+tOf9Nvf/lZFRUU6fvy43b5ifn6+EhISJEkJCQnatGmT3edZn1VnLVMei8Uii8VSZnpoaKjDJ4idKesrCkuqn9goLA2q0fury1t97I/Lt7rM0lZ/bOOJEyckSTExMZLktgsLHb2osKILqHzlQjd38vawglbeuBDMny+cq6lAbrszbarRuAS+FsisAnnhOsLsV0dXJ6j747pSUV/7yo9aRRzta39ZJr5+JaDZrpYqjzf7oDpXL7qDs1dEevoKRk/x5+3BH64EvJiv3kVnFQj7ijXZ5/LWvoKv9HcgLP+a8vc+8Nd6l5aWqrCwUElJSQoNDdXq1auVlpYmSfr++++1f/9+JScnS5KSk5M1c+ZMHT58WHFxcZLOJ/YjIyPVpk0br7UBAGqqtLRUEyZM0HXXXad27dpJOn9hoDsuLHT2osJLL6DytQvd3MlbwwpaefPiPH+8cM5VArHtzlxUWO3EiC8HMqtAXLjOMPvV0c4EdX+8Orqqvvb2j1pFHO1rf7g6WvKfKwHNcrVUZbzRB964+rAyjl4RGejrij9uD/5SX3+5i87Kn/cVXbHP5el9BV/b3/Ln5e8q/toH/rCfOGnSJA0cOFBNmzbVyZMntXjxYq1du1YrVqxQVFSURo8erczMTMXExCgyMlIPPvigkpOT1b17d0lSSkqK2rRpoxEjRmjWrFnKy8vTU089pYyMjHL3AwHAX2RkZGj79u36/PPP3f5djl5UWNEFVL5yoZs7eXtYQStvXJznzxfO1VQgt92ZiwqrnRjxxUBmFcgL1xFmvzq6OkHdH6+OrqivfeVHrSKO9rW/XR1txZWAAMzM1++iswqEfcWa7HN5a1/BV/a3AmH515S/94E/7CcePnxYI0eO1KFDhxQVFaUOHTpoxYoV6t+/vyRp9uzZCg4OVlpamgoLC5WamqpXX33V9v6QkBAtW7ZM48aNU3JysurUqaP09HRNnz7dW00CgBobP368li1bpvXr16tx48a26QkJCW65sNDZiwovne5rF7q5k7eGFbTy5v6IP1445yqB2HZn2lOtxIivBzJH5wc6s18d7UxQ98f1pKq2eftHrSLOjG3s67gSEADs+ctddM6U8VWu+I339L6Cr/W1Py9/V/HXPvCHOr/xxhuVzg8PD1d2drays7MrLJOYmOhzd1oBQHUYhqEHH3xQS5cu1dq1a9W8eXO7+VxYCMAbgp0pbBiGxo8fr6VLl+qzzz6rNJBZlRfIvvvuOx0+fNhWhkAGwB9ZrwRs2bKl+vbtq82bN5e5EvDGG29UWlqaevbsqYSEBL333nu291uvBAwJCVFycrJ+97vfaeTIkVwJCCBglHcXnRX7iAAAAOaQkZGhRYsWafHixapXr57y8vKUl5enX3/9VZLsLixcs2aNtm7dqlGjRlV4YeE333yjFStWcGEhgBpx6o6RjIwMLV68WB988IEtkEnnA1jt2rW5QhqAqXAlIABcwF10AAAAKM/cuXMlSb1797abPn/+fN19992SGGIQgOc5lRghkAEAAKA8jKcPAACA8hiGUWUZLiyEP2r2xMferoLT9j032NtV8BlOJUYIZAAAACgPd9EBAAAAAPyFU88YAQAAAAAAAAAA8GdO3TECAAAAAACAmvH08CuWEEOzukrtpq5QYUlQtT+HIVgAAIGCO0YAAAAAAAAAAIBpcMcIAAAAAAAAApI/PhxZ4u4cAHA3EiM+rLo/3q66RRYAAAAAAAAA3MkbCUzOn4KhtAAAAAAAAAAAgGmQGAEAAAAAAAAAAKbBUFqA/HfMUQAAAAAAAACAc7hjBAAAAAAAAAAAmAaJEQAAAAAAAAAAYBokRgAAAAAAAAAAgGmQGAEAAAAAAAAAAKZBYgQAAAAAAAAAAJgGiREAAAAAAAAAAGAaJEYAAAAAAAAAAIBpkBgBAAAAAAAAAACmQWIEAAAAAAAAAACYBokRAAAAAAAAAABgGiRGAAAAAAAAAACAaZAYAQAAAAAAAAAApkFiBAAAAAAAAAAAmAaJEQAAAAAAAAAAYBpOJ0bWr1+vIUOGqFGjRgoKCtL7779vN//uu+9WUFCQ3b8BAwbYlTl27JjuuusuRUZGKjo6WqNHj9apU6dq1BAAAAAAAAAAvofziQB8jdOJkdOnT6tjx47Kzs6usMyAAQN06NAh27+///3vdvPvuusu7dixQzk5OVq2bJnWr1+vsWPHOl97AAAAAAAAAD6N84kAfE0tZ98wcOBADRw4sNIyFotFCQkJ5c7797//rU8//VSbN29Wly5dJEmvvPKKBg0apBdffFGNGjVytkoAAAAAAAAAfBTnEwH4GqcTI45Yu3at4uLidNlll6lPnz565plnVL9+fUlSbm6uoqOjbUFMkvr166fg4GB9+eWXuuWWW9xRJQAAAAAAAAA+ytXnEwsLC1VYWGh7XVBQIEkqLi5WcXGxbbr174unSZIlxHBd43yUJdiw+99MzNr2i9f/S9f5QOBMm1yeGBkwYIBuvfVWNW/eXHv27NGTTz6pgQMHKjc3VyEhIcrLy1NcXJx9JWrVUkxMjPLy8sr9TEcDmVWgLNzqBmCzbthWtN+32+/odunv2y8AAAAAAHCMO84nZmVladq0aWWmr1y5UhEREWWm5+Tk2L2e1bUGDfIzM7qUersKXmO2ti9fvtz296XrfCA4c+aMw2VdnhgZNmyY7e/27durQ4cOatGihdauXau+fftW6zOdDWRW/r5waxqAzbZhX4r2+2b7Lw7AlXEmkAEAAAAAAP/ljvOJkyZNUmZmpu11QUGBmjRpopSUFEVGRtqmFxcXKycnR/3791doaKhterupK6r1vf7EEmxoRpdSPb0lWIWlQd6ujkeZte3bp6ZWuM4HAusNFY5wy1BaF7viiivUoEED7d69W3379lVCQoIOHz5sV+bcuXM6duxYheMIOhrIrAJl4VY3AJt1w7ai/b7d/u1TUx0q50wgAwAAAAAAgcMV5xMtFossFkuZ6aGhoeWeL7x0emGJ751TcZfC0iBTtfdiZmv7xet4RduCP3OmPW5PjPz88886evSoGjZsKElKTk7W8ePHtXXrViUlJUmSPvvsM5WWlqpbt27lfoazgczR+b6uphul2TbsS9F+32y/o9ukP2+7AAAAAACg+lxxPhEAKuN0YuTUqVPavXu37fXevXu1bds2xcTEKCYmRtOmTVNaWpoSEhK0Z88ePfbYY7ryyiuVmnr+KvHWrVtrwIABGjNmjObNm6fi4mKNHz9ew4YNU6NGjVzXMgAAAAAAAABex/lEAL4m2Nk3bNmyRZ07d1bnzp0lSZmZmercubMmT56skJAQffvtt7rpppt09dVXa/To0UpKStK//vUvuzs+3nrrLbVq1Up9+/bVoEGD1KNHD73++uuuaxUAAAAAAF6SlZWla665RvXq1VNcXJyGDh2q77//3q7M2bNnlZGRofr166tu3bpKS0tTfn6+XZn9+/dr8ODBioiIUFxcnB599FGdO3fOk00BAJfgfCIAX+P0HSO9e/eWYRgVzl+xournYsTExGjx4sXOfjUA+JSsrCy999572rVrl2rXrq1rr71Wzz//vFq2bGkrc/bsWT388MN6++23VVhYqNTUVL366quKj4+3ldm/f7/GjRunNWvWqG7dukpPT1dWVpZq1XL7aIcAAABwg3Xr1ikjI0PXXHONzp07pyeffFIpKSnauXOn6tSpI0maOHGiPv74Yy1ZskRRUVEaP368br31Vn3xxReSpJKSEg0ePFgJCQnasGGDDh06pJEjRyo0NFTPPvusN5sHAE7jfCIAX8NZNwCoJg54AeACksUAcMGnn35q93rBggWKi4vT1q1b1bNnT504cUJvvPGGFi9erD59+kiS5s+fr9atW2vjxo3q3r27Vq5cqZ07d2rVqlWKj49Xp06dNGPGDD3++OOaOnWqwsLCvNE0AADgx5o98bEsIYZmdZXaTV3hk88nLs++5wa7/DM5wgSAauKAFwAuIFkMABU7ceKEpPNXO0vS1q1bVVxcrH79+tnKtGrVSk2bNlVubq66d++u3NxctW/f3i55nJqaqnHjxmnHjh224WguVlhYqMLCQtvrgoICSVJxcbGKi4srraN1flXlfJElpOKr0Ct8T7Bh93+gc1V7/WH9uHRdrs764Qsc7Wt/WCYA4ItIjACAi/jiAa8/H+C6ijf7wFcOwpw9EA7U9cWftwd/qDPJYgAoX2lpqSZMmKDrrrtO7dq1kyTl5eUpLCxM0dHRdmXj4+OVl5dnK3PxPqJ1vnVeebKysjRt2rQy01euXKmIiAiH6puTk+NQOV8yq2v13zujS6nrKuIHatre5cuXu6gm7mddl2uyfniTo3195swZN9cEAAITiREAcAFfP+D1xwNcV/NGH/jaQZijB8L+dMBbHf64PfjjAa+nksUA4OsyMjK0fft2ff75527/rkmTJikzM9P2uqCgQE2aNFFKSooiIyMrfW9xcbFycnLUv39/hYaGuruqLtVuatXPJriUJdjQjC6lenpLsApL/WMYkZpwVXu3T011Ya3c49J1uTrrhy9wtK+tF8oBAJxDYgQAXMBXD3j9+QDXVbzZB75yEObsgbA/HPBWhz9vD/52wOvJZHF1ho3x57uHrGpyR5q3ho/xlf4OhOVfU/7eB/5U7/Hjx2vZsmVav369GjdubJuekJCgoqIiHT9+3C4u5ufnKyEhwVZm06ZNdp+Xn59vm1cei8Uii8VSZnpoaKjDv33OlPUVNRkfvbA0yG/GV3eFmrbXn9YN67rsr8vXmW0WAOA8EiMAUEP+cMDrjwe4ruaNPvC1gzBHD4QDfV3xx+3B3+rryWRxTYaN8ce7h6xccUeap4eP8bW70fx5+buKv/aBP9xFZxiGHnzwQS1dulRr165V8+bN7eYnJSUpNDRUq1evVlpamiTp+++/1/79+5WcnCxJSk5O1syZM3X48GHFxcVJOr/MIiMj1aZNG882CAAAIMCQGAGAauKAFwDK8nSyuDrDxvjz3UNWNbkjzVvDx/jK3WiBsPxryt/7wB/uosvIyNDixYv1wQcfqF69era73qKiolS7dm1FRUVp9OjRyszMVExMjCIjI/Xggw8qOTlZ3bt3lySlpKSoTZs2GjFihGbNmqW8vDw99dRTysjIKPciGQAAADiOxAgAVBMHvABwgbeSxTUZNsYf7x6ycsUdaZ4ePsbX+tqfl7+r+Gsf+EOd586dK0nq3bu33fT58+fr7rvvliTNnj1bwcHBSktLU2FhoVJTU/Xqq6/ayoaEhGjZsmUaN26ckpOTVadOHaWnp2v69OmeagYAAEDAIjECANXEAS/gO5o98XGVZSwhhmZ1PX+lva8Mc7bvucHeroLLkCwGgAsMo+pn+ISHhys7O1vZ2dkVlklMTPS5YegAAAACAYkRAKgmDngB4AKSxQAAAAAAf0FiBAAAADVGshiBypE70nxNIN2NBgAAALhDsLcrAAAAAAAAAAAA4CkkRgAAAAAAAAAAgGkwlBYAAAAABJCqhv+yhBia1VVqN3WFCkuCPFSrqjEEGAAAADyFO0YAAAAAAAAAAIBpkBgBAAAAAAAAAACmwVBaAAC/UNWwIBXx1eFCfFl1+xoAAAAAAMAfcMcIAAAAAAAAAAAwDe4YAQAAAOB2vnI3GncSAgAAAOCOEQAAAAAAAAAAYBokRgAAAAAAAAAAgGmQGAEAAAAAAAAAAKbhdGJk/fr1GjJkiBo1aqSgoCC9//77dvMNw9DkyZPVsGFD1a5dW/369dMPP/xgV+bYsWO66667FBkZqejoaI0ePVqnTp2qUUMAAAAAAAAA+B7OJwLwNU4nRk6fPq2OHTsqOzu73PmzZs3Syy+/rHnz5unLL79UnTp1lJqaqrNnz9rK3HXXXdqxY4dycnK0bNkyrV+/XmPHjq1+KwAAAAAAAAD4JM4nAvA1tZx9w8CBAzVw4MBy5xmGoTlz5uipp57SzTffLEl68803FR8fr/fff1/Dhg3Tv//9b3366afavHmzunTpIkl65ZVXNGjQIL344otq1KhRDZoDAAAAAAAAwJdwPhGAr3E6MVKZvXv3Ki8vT/369bNNi4qKUrdu3ZSbm6thw4YpNzdX0dHRtiAmSf369VNwcLC+/PJL3XLLLa6sEgAAAAAAAAAf5a7ziYWFhSosLLS9LigokCQVFxeruLjYNt3698XTJMkSYrimgT7MEmzY/W8mtN2/2n7p9lnTcpKLEyN5eXmSpPj4eLvp8fHxtnl5eXmKi4uzr0StWoqJibGVuZSjgcyqooDmb6obgP1x5XYl2u/b7XdHIAMAAAAAAP7JXecTs7KyNG3atDLTV65cqYiIiDLTc3Jy7F7P6up4G/zdjC6l3q6C19B2/7B8+XKHyp05c8bhz3RpYsRdnA1kVpcGNH9T0wDsTyu3O9B+32y/OwIZAAAAAADAxSZNmqTMzEzb64KCAjVp0kQpKSmKjIy0TS8uLlZOTo769++v0NBQ2/R2U1d4tL7eYAk2NKNLqZ7eEqzC0iBvV8ejaLt/tX371FSHyllvqHCESxMjCQkJkqT8/Hw1bNjQNj0/P1+dOnWylTl8+LDd+86dO6djx47Z3n8pRwOZVUUBzd9UNwD748rtSrTft9vvjkAGAAAAAAD8k7vOJ1osFlksljLTQ0NDyz1feOn0whLfO6fiLoWlQaZq78Vou3+03dFz/M7kAlyaGGnevLkSEhK0evVqW+AqKCjQl19+qXHjxkmSkpOTdfz4cW3dulVJSUmSpM8++0ylpaXq1q1buZ/rbCBzdL6vq+mK6U8rtzvQft9svzsCGQAAAAAA8E/uOp8IAJVxOjFy6tQp7d692/Z679692rZtm2JiYtS0aVNNmDBBzzzzjK666io1b95cTz/9tBo1aqShQ4dKklq3bq0BAwZozJgxmjdvnoqLizV+/HgNGzZMjRo1clnDAAAAAAAAAHgf5xMB+BqnEyNbtmzRDTfcYHttHeIqPT1dCxYs0GOPPabTp09r7NixOn78uHr06KFPP/1U4eHhtve89dZbGj9+vPr27avg4GClpaXp5ZdfdkFzAAAAAAAAAPgSzicC8DVOJ0Z69+4twzAqnB8UFKTp06dr+vTpFZaJiYnR4sWLnf1qAAAAAAAAAH6G84kAfE2wtysAAAAAAAAAAADgKSRGAAAAAAAAAACAaZAYAQAAAAAAAAAApkFiBAAAAAAAAAAAmAaJEQAAAAAAAAAAYBokRgAAAAAAAAAAgGmQGAEAAAAAAAAAAKZBYgQAAAAAAAAAAJgGiREAAAAAAAAAAGAaJEYAAAAAAAAAAIBpkBgBAAAAAMDF1q9fryFDhqhRo0YKCgrS+++/bzffMAxNnjxZDRs2VO3atdWvXz/98MMPdmWOHTumu+66S5GRkYqOjtbo0aN16tQpD7YCAAAgMJEYAYAa4IAXAAAA5Tl9+rQ6duyo7OzscufPmjVLL7/8subNm6cvv/xSderUUWpqqs6ePWsrc9ddd2nHjh3KycnRsmXLtH79eo0dO9ZTTQAAAAhYJEYAoAY44AWAC0gWA8AFAwcO1DPPPKNbbrmlzDzDMDRnzhw99dRTuvnmm9WhQwe9+eabOnjwoC12/vvf/9ann36qv/zlL+rWrZt69OihV155RW+//bYOHjzo4dYAAAAEFhIjAFADHPACwAUkiwHAMXv37lVeXp769etnmxYVFaVu3bopNzdXkpSbm6vo6Gh16dLFVqZfv34KDg7Wl19+6fE6AwAABJJa3q4AAASqqg54hw0bVuUBb3kJl8LCQhUWFtpeFxQUSJKKi4tVXFxsV9b6+tLp/sgSYlTvfcGG3f9mRB+c54v94Oi26S/b8MCBAzVw4MBy512aLJakN998U/Hx8Xr//fc1bNgwW7J48+bNtrj4yiuvaNCgQXrxxRfVqFEjj7UFANwpLy9PkhQfH283PT4+3jYvLy9PcXFxdvNr1aqlmJgYW5lLObOfeCl/3m+szn6iL+4XuJOr2usP68el63J1jyO8LdD2EwHA15AYAQA3cdcBb1ZWlqZNm1Zm+sqVKxUREVHue3Jycpyuv6+Z1bVm75/RpdQ1FfFj9MF5vtQPy5cvd6jcmTNn3FwT9/OFZLGVP5/8s6rJSR6znQy8lNnbL/luH3ASsOaqs594KX/cb6zJfqIv7Rd4Qk3b6+i+iy+wrss1PY7wFjPtJwKAN5AYAQA/M2nSJGVmZtpeFxQUqEmTJkpJSVFkZKRd2eLiYuXk5Kh///4KDQ31dFVdqt3UFdV6nyXY0IwupXp6S7AKS4NcXCv/QB+c54v9sH1qqkPlrCf7/ZkvJYut/PHkn5UrTvKY7WTgpczefsn3+sBMJwETEhIkSfn5+WrYsKFten5+vjp16mQrc/jwYbv3nTt3TseOHbO9/1LO7Cdeyp/3G6uzn+iL+wXu5Kr2Orrv4k2XrsvVPY7wNjPtJwKAN5AYAQA3cdcBr8VikcViKTM9NDS0woPYyub5i8KSmh2wFpYG1fgz/B19cJ4v9YOj26W/b7/uVJ2TgP588s+qJid5zHYy8FJmb7/ku31gppOAzZs3V0JCglavXm3bLywoKNCXX36pcePGSZKSk5N1/Phxbd26VUlJSZKkzz77TKWlperWrVu5n1ud/cSalPUVNfld96X9Ak+oaXv9ad2wrsv+unzZTwQA9yIxAgBu4q4DXgDwR76ULHamjK9yxUkes50MvJTZ2y/5Xh8E2knAU6dOaffu3bbXe/fu1bZt2xQTE6OmTZtqwoQJeuaZZ3TVVVepefPmevrpp9WoUSMNHTpUktS6dWsNGDBAY8aM0bx581RcXKzx48dr2LBhPHMJAACghoK9XQEA8GenTp3Stm3btG3bNkkXDnj379+voKAg2wHvhx9+qO+++04jR46s8IB306ZN+uKLLzjgBRCQLk4WW1mTxcnJyZLsk8VWJIsB+KstW7aoc+fO6ty5syQpMzNTnTt31uTJkyVJjz32mB588EGNHTtW11xzjU6dOqVPP/1U4eHhts9466231KpVK/Xt21eDBg1Sjx499Prrr3ulPQAAAIGEO0YAoAa2bNmiG264wfbaOpxLenq6FixYoMcee0ynT5/W2LFjdfz4cfXo0aPcA97x48erb9++Cg4OVlpaml5++WWPtwUAaoqrowHggt69e8swKn7AfVBQkKZPn67p06dXWCYmJkaLFy92R/UAAABMjcQIANQAB7wAcAHJYgAAAACAPyAxAgAAAJcgWQwAAAAA8Acuf8bI1KlTFRQUZPevVatWtvlnz55VRkaG6tevr7p16yotLU35+fmurgYAAAAAAAAAP8D5RACe5paHr7dt21aHDh2y/fv8889t8yZOnKiPPvpIS5Ys0bp163Tw4EHdeuut7qgGAAAAAAAAAD/A+UQAnuSWobRq1aqlhISEMtNPnDihN954Q4sXL1afPn0kSfPnz1fr1q21ceNGde/e3R3VAQAAAAAAAODDOJ8IwJPckhj54Ycf1KhRI4WHhys5OVlZWVlq2rSptm7dquLiYvXr189WtlWrVmratKlyc3MrDGSFhYUqLCy0vS4oKJAkFRcXq7i4uEx567Ty5vkTS0jFY3RX+r5gw+5/s6H9vt1+R7dLf99+AQAAAACA47x1PrGi84jVPS/nT3z9HJI70Xb/ars7zie6PDHSrVs3LViwQC1bttShQ4c0bdo0XX/99dq+fbvy8vIUFham6Ohou/fEx8crLy+vws/MysrStGnTykxfuXKlIiIiKnxfTk5OtdvhC2Z1rdn7Z3QpdU1F/BTt9832L1++3KFyZ86ccXNNAAAAAACAL/CF84mXnkes6Xk5f+Kr55A8gbb7B3ecT3R5YmTgwIG2vzt06KBu3bopMTFR//jHP1S7du1qfeakSZOUmZlpe11QUKAmTZooJSVFkZGRZcoXFxcrJydH/fv3V2hoaLW+0xe0m7qiWu+zBBua0aVUT28JVmFpkItr5ftov2+3f/vUVIfKWa/kAAAAAAAAgc2b5xMrOo9Y3fNy/sTXzyG5E233r7a743yiW4bSulh0dLSuvvpq7d69W/3791dRUZGOHz9ul+XNz88vdwxBK4vFIovFUmZ6aGhopYmPqub7usKSmq2YhaVBNf4Mf0b7fbP9jm6T/rztAgAAAACA6vPG+cRLp/viORV38dVzSJ5A2/2j7e44nxhc3co46tSpU9qzZ48aNmyopKQkhYaGavXq1bb533//vfbv36/k5GR3VwUAAAAAAACAj+N8IgB3c/kdI4888oiGDBmixMREHTx4UFOmTFFISIjuvPNORUVFafTo0crMzFRMTIwiIyP14IMPKjk5ucIHJQEAAAAAAAAIXJxPBOBpLk+M/Pzzz7rzzjt19OhRxcbGqkePHtq4caNiY2MlSbNnz1ZwcLDS0tJUWFio1NRUvfrqq66uBgAAAAAAAAA/wPlEAJ7m8sTI22+/Xen88PBwZWdnKzs729VfDQAAAAAAAMDPcD4RgKe5/RkjAAAAAAAAAAAAvoLECAAAAAAAAAAAMA0SIwAAAAAAAAAAwDRIjAAAAAAAAAAAANNw+cPXfVGzJz72dhUAAAAAAAAAAIAP4I4RAAAAAAAAAABgGiRGAAAAAAAAAACAaZAYAQAAAAAAAAAApmGKZ4wAAC7guUsAAAAAAAAwM+4YAQAAAAAAAAAApsEdIwAAAAAAQJLUbuoKFZYEebsaAAAAbsUdIwAAAAAAAAAAwDRIjAAAAAAAAAAAANMgMQIAAAAAAAAAAEyDZ4wAAADAtJo98bG3qwAAAAAA8DDuGAEAAAAAAAAAAKZBYgQAAAAAAAAAAJgGiREAAAAAAAAAAGAaJEYAAAAAAAAAAIBpkBgBAAAAAAAAAACmQWIEAAAAAAAAAACYBokRAAAAAAAAAABgGl5NjGRnZ6tZs2YKDw9Xt27dtGnTJm9WBwC8ipgIAOcRDwHgAmIiAFxATATgKl5LjLzzzjvKzMzUlClT9NVXX6ljx45KTU3V4cOHvVUlAPAaYiIAnEc8BIALiIkAcAExEYAreS0x8tJLL2nMmDEaNWqU2rRpo3nz5ikiIkJ//etfvVUlAPAaYiIAnEc8BIALiIkAcAExEYAr1fLGlxYVFWnr1q2aNGmSbVpwcLD69eun3NzcMuULCwtVWFhoe33ixAlJ0rFjx1RcXFymfHFxsc6cOaOjR48qNDRUtc6ddkMrfFetUkNnzpSqVnGwSkqDvF0dj6P9vt3+o0ePOlTu5MmTkiTDMNxZHZ/gzph4aTyUREw0IfrgPF/sB2KiPWfjoeT8fqJkHxvNFhMl39wWPMns7Zd8tw+IifY8FROtrLHR19YLd/HV7cBdXNVeR7dTbwqUc0LERHvujInlHTdL5jh2NlssvBht96+2uyMmeiUx8ssvv6ikpETx8fF20+Pj47Vr164y5bOysjRt2rQy05s3b+62Ovq74d6ugJfRft/V4I/OlT958qSioqLcUxkfQUx0P1/eJjyFPjjP1/qBmGjP2XgoEROry9e2BU8ze/sl3+wDYqI9YqL7+eJ24E6uaK+z2ymqj5hoj5joPmaLhRej7f7DHTHRK4kRZ02aNEmZmZm216WlpTp27Jjq16+voKCyWa2CggI1adJEP/30kyIjIz1ZVZ9A+2l/ILTfMAydPHlSjRo18nZVfI4zMTFQ1oeaoA/oAyt/7gdiYsWc3U+U/HtdcAXab+72S/7fB8TEilUnJlr5+3rhLNobuMzUVomYWBlHY6LZ1pmL0XbaHmhtdyYmeiUx0qBBA4WEhCg/P99uen5+vhISEsqUt1gsslgsdtOio6Or/J7IyMiAW7jOoP2039/bH8hXu1zMEzExENaHmqIP6AMrf+0HM8REZ+OhVP39RMl/1wVXof3mbr/k331ATHR9TLTy5/WiOmhv4DJTW4mJromJZlpnLkXbaXsgcTQmeuXh62FhYUpKStLq1att00pLS7V69WolJyd7o0oA4DXERAA4j3gIABcQEwHgAmIiAFfz2lBamZmZSk9PV5cuXdS1a1fNmTNHp0+f1qhRo7xVJQDwGmIiAJxHPASAC4iJAHABMRGAK3ktMfLb3/5WR44c0eTJk5WXl6dOnTrp008/LfMQpeqwWCyaMmVKmdvlzIL2034zt99fuSsmsj7QBxJ9YEU/+Ad37iNamX1doP3mbr9EH/gTT8REK7OtF7Q3cJmprWbDcbPr0XbabmZBhmEY3q4EAAAAAAAAAACAJ3jlGSMAAAAAAAAAAADeQGIEAAAAAAAAAACYBokRAAAAAAAAAABgGiRGAAAAAAAAAACAaQR0YmTfvn0aPXq0mjdvrtq1a6tFixaaMmWKioqKvF01j5k5c6auvfZaRUREKDo62tvVcbvs7Gw1a9ZM4eHh6tatmzZt2uTtKnnM+vXrNWTIEDVq1EhBQUF6//33vV0l+BDi4QVmi4uSuWOjRHxExYiNxESzxUTiIRxhxtgY6LHQTHGPOIeaMGP8u1igx8KLmSkuXowYaS+gEyO7du1SaWmpXnvtNe3YsUOzZ8/WvHnz9OSTT3q7ah5TVFSk22+/XePGjfN2VdzunXfeUWZmpqZMmaKvvvpKHTt2VGpqqg4fPuztqnnE6dOn1bFjR2VnZ3u7KvBBxMMLzBQXJWKjRHxExYiNxESzxUTiIRxhxtgYyLHQbHGPOIeaMGP8u1ggx8KLmS0uXowYeQnDZGbNmmU0b97c29XwuPnz5xtRUVHeroZbde3a1cjIyLC9LikpMRo1amRkZWV5sVbeIclYunSpt6sBH2fWeGhlhrhoGMTGSxEfURWzxkZiovliIvEQzjBLbAzEWGjmuEecgyuYJf5dLBBj4cXMHBcvRow0jIC+Y6Q8J06cUExMjLerARcrKirS1q1b1a9fP9u04OBg9evXT7m5uV6sGeC7iIeBj9gIOI/YGLiIiUD1ERv9E3EPqDniX2AhLuJipkqM7N69W6+88oruu+8+b1cFLvbLL7+opKRE8fHxdtPj4+OVl5fnpVoBvot4aA7ERsA5xMbARkwEqofY6L+Ie0DNEP8CD3ERF/PLxMgTTzyhoKCgSv/t2rXL7j0HDhzQgAEDdPvtt2vMmDFeqrlrVKf9AAKT2eOhFXERwMXMHhuJiQDKY7bYSCwEYGW2+HcxYiFQsVrerkB1PPzww7r77rsrLXPFFVfY/j548KBuuOEGXXvttXr99dfdXDv3c7b9ZtCgQQOFhIQoPz/fbnp+fr4SEhK8VCvA/cweD62Ii+UjNsKszB4biYnlIybC7MwWG4mFxD3Aymzx72LEQnvERVzMLxMjsbGxio2NdajsgQMHdMMNNygpKUnz589XcLBf3iRjx5n2m0VYWJiSkpK0evVqDR06VJJUWlqq1atXa/z48d6tHOBGZo+HVsTF8hEbYVZmj43ExPIRE2F2ZouNxELiHmBltvh3MWKhPeIiLuaXiRFHHThwQL1791ZiYqJefPFFHTlyxDbPLFnA/fv369ixY9q/f79KSkq0bds2SdKVV16punXrerdyLpaZman09HR16dJFXbt21Zw5c3T69GmNGjXK21XziFOnTmn37t2213v37tW2bdsUExOjpk2berFm8AXEwwvMFBclYqNEfETFiI3ERLPFROIhHGHG2BjIsdBscY84h5owY/y7WCDHwouZLS5ejBh5CSOAzZ8/35BU7j+zSE9PL7f9a9as8XbV3OKVV14xmjZtaoSFhRldu3Y1Nm7c6O0qecyaNWvKXdbp6enerhp8APHwArPFRcMwd2w0DOIjKkZsJCaaLSYSD+EIM8bGQI+FZop7xDnUhBnj38UCPRZezExx8WLESHtBhmEYzqdTAAAAAAAAAAAA/I9/D5QHAAAAAAAAAADgBBIjAAAAAAAAAADANEiMAAAAAAAAAAAA0yAxAgAAAAAAAAAATIPECAAAAAAAAAAAMA0SIwAAAAAAAAAAwDRIjAAAAAAAAAAAANMgMQIAAAAAAAAAAEyDxMj/Y+/e46Is8/+PvwE5CAiGCUge01LxkIUplJl5AInsIHkoU3Qt+xraJlu5tmaoma21aQfUdnPVrdzMyg5qApqHLfEQZXkoV12NSoHKEA85INy/P/wxOTLADKeZYV7Px4OHzn1f931f9zX3fc0187mv6wIAAAAAAAAAAG6DwAgAAAAAAAAAAHAbBEYAAAAAAAAAAIDbIDACAAAAAAAAAADcBoERAAAAAAAAAADgNgiMAAAAAAAAAAAAt0FgBAAAAAAAAAAAuA0CIwAAAAAAAAAAwG0QGAEAAAAAAAAAAG6DwAgAAAAAAAAAAHAbBEYAAAAAAAAAAIDbIDACAAAAAAAAAADcBoERAAAAAAAAAADgNgiMAAAAAAAAAAAAt0FgBAAAAAAAAAAAuA0CIwAAAAAAAAAAwG0QGAEAAAAAAAAAAG6DwAgAAAAAAAAAAHAbBEYAAAAAAAAAAIDbIDACAAAAAAAAAADcBoERAAAAAAAAAADgNgiMAAAAAAAAAAAAt0FgBAAAAAAAAAAAuA0CI3batWuXbrjhBgUEBMjDw0O7d+92dJYAAA6ybNkyeXh46OjRo3ZvO3bsWLVt27bW8wQAAADn1bZtW40dO7bO9t/Q25jVLT972u2bN2+Wh4eHNm/ebPdxAFiXmpoqDw8P/fzzz7WyP2v3dL9+/dSvXz+798U9774IjNihuLhYw4YN04kTJzR//ny9/vrratOmjU3bnj17VqmpqdxkAABUYtu2bUpNTVVBQYGjswIAAOrZunXrlJqa6uhswMHqqz24cOFCLVu2rE6PAQBwXo0cnQFXcvjwYX333Xf6xz/+ofvvv9+ubc+ePauZM2dKUrWilwAA5zN69GiNHDlSvr6+js5Kg7Ft2zbNnDlTY8eOVdOmTR2dHQAAUI/WrVuntLS0Bh0cOXDggDw9eUa1MpW1B6tbftba7QsXLtTll19ergdK37599dtvv8nHx6c62QfgYrjn3RefxnbIz8+XJKf6oeb8+fMqKipydDbscvbs2QZ5LGd05swZR2cBaNC8vLzk5+cnDw8PR2fF5VFfAQ1ffd3nrtb+Ky0t1blz5xydDcDlOON34YrqOcMw9Ntvv0mSfH195e3tXZ/ZqjZnrJ+qW372tNs9PT3l5+dHAAtwE9zz7ot33EZjx47VzTffLEkaNmyYPDw8zGPXWesBcvG4nkePHlXz5s0lSTNnzpSHh4c8PDzMT8HYso+y/Xh4eOj555/XggUL1L59e/n6+mr//v2SpG+//VZ33323QkJC5Ofnp549e+rDDz+s1vm+8cYb6tWrl/z9/XXZZZepb9++ysjIMK//4IMPlJCQoIiICPn6+qp9+/aaPXu2SkpKLPbTr18/de3aVdnZ2erbt6/8/f31xBNPSJJMJpOeeuopdejQQb6+vmrVqpUef/xxmUwmq/mJiopS48aNFRISopEjR+r777+3+Vi2+PHHHzV+/HjzObVr104TJ060aGz/73//07BhwxQSEiJ/f39FR0dr7dq1FvspG5vw7bff1pw5c9SyZUv5+flpwIABOnToULnj7tixQ7feeqsuu+wyBQQEqHv37nrxxRct0tjy3paNr7hlyxY99NBDCg0NVcuWLS3KZv/+/brlllvk7++vK664QvPmzSuXn5dfflldunQxv/c9e/bUihUrbC5HwNFOnTqlRx55RG3btpWvr69CQ0M1aNAgffHFF+Y0q1atMtcpl19+ue677z79+OOP5fb17bffavjw4WrevLkaN26sjh076i9/+Yt5vbVxTW2tH6vj4MGDSkxMVHh4uPz8/NSyZUuNHDlSJ0+elPT754S1IQEu/tyRfh/jtewcg4KC1KxZM/3xj38s9wXYw8NDkyZN0ptvvqmOHTvKz89PUVFR2rp1a7njfPnll4qPj1dQUJACAwM1YMAAbd++3SJNRfVVamqqHnvsMUlSu3btzJ+X1ZnDBcAF9tzrtrS3pAttl8GDBys4OFj+/v66+eab9dlnn1k97v79+3XvvffqsssuU58+fWzKc1lbauXKlXriiScUHh6ugIAA3X777Xa1/2xta2ZmZqpPnz5q2rSpAgMD1bFjx3JtyKraRxWN6V9WDhe7uE7t0qWLfH19tX79ekkX2qN/+MMfFBYWJl9fX3Xp0kX//Oc/bSo3wJEqu3Z/++03derUSZ06dTIHByTpxIkTatGihW644QaVlJRo7NixSktLkyRzG6Ds/qnsu3BRUZFmzJihqKgoBQcHKyAgQDfddJM2bdpULp+lpaV68cUX1a1bN/n5+al58+YaPHiwPv/8c4vj2NOWslbPtW3bVrfddpvS09PVs2dPNW7cWK+++qp53aU9FAoKCjRlyhRz+7Vly5YaM2aMeSz+iubHsHVc/Oeff1433HCDmjVrpsaNGysqKkrvvPOO1XOsqH6qyn/+8x8NGzZMrVu3Nte5U6ZMsXjPy1TWxq6qPXhx+X3++efy8PDQ8uXLyx0jPT1dHh4eWrNmjaTyZdi2bVvt27dPW7ZsMR+j7HeZisrVls8/W76LAO7s559/rrBNak8dXJXTp08rICBAf/zjH8ut++GHH+Tl5aW5c+dKsn7P2/M72nfffafbb79dAQEBCg0N1ZQpU8x1EFMqODeG0rLRgw8+qCuuuELPPPOMHn74YV1//fUKCwvTnDlzqty2efPmWrRokSZOnKi77rpLQ4cOlSR17969WnlZunSpzp07pwkTJsjX11chISHat2+fbrzxRl1xxRX685//rICAAL399tu688479e677+quu+6yef8zZ85UamqqbrjhBs2aNUs+Pj7asWOHPvnkE8XGxkq60KgIDAxUSkqKAgMD9cknn2jGjBkqLCzUc889Z7G/X375RfHx8Ro5cqTuu+8+hYWFqbS0VLfffrs+/fRTTZgwQZ07d9aePXs0f/58/fe//9X7779v3n7OnDl68sknNXz4cN1///366aef9PLLL6tv37768ssvLXrwWDuWLY4dO6ZevXqpoKBAEyZMUKdOnfTjjz/qnXfe0dmzZ+Xj46O8vDzdcMMNOnv2rB5++GE1a9ZMy5cv1+2336533nmnXBk/++yz8vT01KOPPqqTJ09q3rx5GjVqlHbs2GFOk5mZqdtuu00tWrTQH//4R4WHh+ubb77RmjVrzJW3ve/tQw89pObNm2vGjBkWTyz9+uuvGjx4sIYOHarhw4frnXfe0dSpU9WtWzfFx8dLkv7xj3/o4Ycf1t13323+cPr666+1Y8cO3XvvvTaVJeBo//d//6d33nlHkyZNUmRkpH755Rd9+umn+uabb3Tddddp2bJlGjdunK6//nrNnTtXeXl5evHFF/XZZ59Z1Clff/21brrpJnl7e2vChAlq27atDh8+rI8++qjSut+e+tEeRUVFiouLk8lk0uTJkxUeHq4ff/xRa9asUUFBgYKDg6u13+HDh6tt27aaO3eutm/frpdeekm//vqr/vWvf1mk27Jli1auXKmHH35Yvr6+WrhwoQYPHqydO3eqa9euki7UVzfddJOCgoL0+OOPy9vbW6+++qr69eunLVu2qHfv3hb7vLS+io+P13//+1/9+9//1vz583X55ZdLkvnhAgDVV9W9bmt765NPPlF8fLyioqL01FNPydPTU0uXLlX//v31n//8R7169bI47rBhw3TVVVfpmWeekWEYduV5zpw58vDw0NSpU5Wfn68FCxZo4MCB2r17txo3bmxOV5O25r59+3Tbbbepe/fumjVrlnx9fXXo0CGLH7rqon30ySef6O2339akSZN0+eWXq23btsrLy1N0dLT5h8nmzZvr448/1vjx41VYWKhHHnmkWscC6pot1+7y5ct144036i9/+YteeOEFSVJycrJOnjypZcuWycvLSw8++KCOHTumzMxMvf7661aPZe27cGFhoV577TXdc889euCBB3Tq1CktWbJEcXFx2rlzp3r06GHefvz48Vq2bJni4+N1//336/z58/rPf/6j7du3q2fPntU6/4rquQMHDuiee+7Rgw8+qAceeEAdO3a0uv3p06d100036ZtvvtEf/vAHXXfddfr555/14Ycf6ocffjC3h2rixRdf1O23365Ro0apqKhIb731loYNG6Y1a9YoISHBIq21+skWq1at0tmzZzVx4kQ1a9ZMO3fu1Msvv6wffvhBq1atMqerqo09dOhQm9uDPXv21JVXXqm3335bSUlJFutWrlypyy67THFxcVbzu2DBAk2ePFmBgYHmoExlvx/Y+vlX1XcRwN3Z+v2zpgIDA3XXXXdp5cqVeuGFF+Tl5WVe9+9//1uGYWjUqFGV7sOW39HOnDmj/v376/jx4+bf9VasWGE1OA8nZMBmmzZtMiQZq1atMi+7+eabjZtvvrlc2qSkJKNNmzbm1z/99JMhyXjqqafKpbV1H0eOHDEkGUFBQUZ+fr5F2gEDBhjdunUzzp07Z15WWlpq3HDDDcZVV11l8zkePHjQ8PT0NO666y6jpKTEYl1paan5/2fPni237YMPPmj4+/tb5OHmm282JBmLFy+2SPv6668bnp6exn/+8x+L5YsXLzYkGZ999plhGIZx9OhRw8vLy5gzZ45Fuj179hiNGjWyWF7RsWwxZswYw9PT09i1a1e5dWXn/cgjjxiSLPJ86tQpo127dkbbtm3N5VV2nXTu3NkwmUzmtC+++KIhydizZ49hGIZx/vx5o127dkabNm2MX3/91eoxDcP293bp0qWGJKNPnz7G+fPnLfZXVjb/+te/zMtMJpMRHh5uJCYmmpfdcccdRpcuXaouMMCJBQcHG8nJyVbXFRUVGaGhoUbXrl2N3377zbx8zZo1hiRjxowZ5mV9+/Y1mjRpYnz33XcW+7j4/iy7744cOWJeZmv9eGkdX5Uvv/yy3GfQpco+J5YuXVpu3aWfQU899ZQhybj99tst0j300EOGJOOrr76y2FaS8fnnn5uXfffdd4afn59x1113mZfdeeedho+Pj3H48GHzsmPHjhlNmjQx+vbta15WWX313HPPlStTANVny71ua3urtLTUuOqqq4y4uLhy7cJ27doZgwYNKnfce+65x+48l7WlrrjiCqOwsNC8/O233zYkGS+++KJ5WU3bmvPnzzckGT/99FOF+bGlfVRRnV5WDheTZHh6ehr79u2zWD5+/HijRYsWxs8//2yxfOTIkUZwcLDVzxfAGdh67U6bNs3w9PQ0tm7daqxatcqQZCxYsMBim+Tk5HL3jGFU/l34/PnzFt+7DMMwfv31VyMsLMz4wx/+YF72ySefGJKMhx9+uNz+y+q06rSlrNVzbdq0MSQZ69evt7ouKSnJ/HrGjBmGJOO9996rMF/W2pyG8Xt9uWnTJvMya/XRpfVHUVGR0bVrV6N///7lztFa/WQLa3XU3LlzDQ8PD4v2tC1t7Mrag5eW37Rp0wxvb2/jxIkT5mUmk8lo2rSpxftvrQy7dOli9beYS8vVns+/yr6LAO7MljapPXWwtXv60t9X09PTDUnGxx9/bLGv7t27W6SzVpfa+jva3/72N0OS8f7775uX/fbbb0anTp3K7RPOh6G0XFBiYqLF0xInTpzQJ598ouHDh+vUqVP6+eef9fPPP+uXX35RXFycDh48aHWIGGvef/99lZaWasaMGeXG1rt4GICLn9IrO+ZNN92ks2fP6ttvv7XYztfXV+PGjbNYtmrVKnXu3FmdOnUy5/fnn39W//79JckcWX3vvfdUWlqq4cOHW6QLDw/XVVddVS4Ca+1YVSktLdX777+vIUOGWH1KqOy8161bp169elkMAxEYGKgJEybo6NGj5iHNyowbN85i4qabbrpJ0oXhuKQLw80cOXJEjzzySLl5a8qOWZ339oEHHrCIhF+c1/vuu8/82sfHR7169TLnR7owf84PP/ygXbt2VVxggJNr2rSpduzYoWPHjpVb9/nnnys/P18PPfSQ/Pz8zMsTEhLUqVMn89B4P/30k7Zu3ao//OEPat26tcU+qhqX2J760R5lPULS09Nrdfz85ORki9eTJ0+WdKHOu1hMTIyioqLMr1u3bq077rhD6enpKikpUUlJiTIyMnTnnXfqyiuvNKdr0aKF7r33Xn366acqLCy02GdF9RWA2lfZvW5re2v37t06ePCg7r33Xv3yyy/mdGfOnNGAAQO0detWlZaWWhzn//7v/6qd5zFjxqhJkybm13fffbdatGhRrn6qSVuzrA32wQcflMt7mbpoH918882KjIw0vzYMQ++++66GDBkiwzAs8hwXF6eTJ08yDAuckj3Xbmpqqrp06aKkpCQ99NBDuvnmm/Xwww/bdbxLvwtLF+aOKPveVVpaqhMnTuj8+fPq2bOnxX3z7rvvysPDQ0899VS5/dZkvriK6rl27dpV2FvhYu+++66uueYaq6M81NY8dhe3T3/99VedPHlSN910k9V65dL6qTrHOHPmjH7++WfdcMMNMgxDX375paSatbErMmLECBUXF+u9994zL8vIyFBBQYFGjBhRrX1eyp7Pv8q+iwCw/ftnbRg4cKAiIiL05ptvmpft3btXX3/9tcXvYxWx5Xe09evX64orrtDtt99uXubn56cHHnigls4CdYmhtFxQu3btLF4fOnRIhmHoySef1JNPPml1m/z8fF1xxRVV7vvw4cPy9PSssiG0b98+TZ8+XZ988km5H7rKxrovc8UVV1gECKQL4+R/8803FQ6PUjbR/cGDB2UYhq666iqr6S6ddM3asary008/qbCw0DwUTEW+++67csPASFLnzp3N6y/ex6UNvcsuu0zShYaodKGsJVV63Oq8t5deH2VatmxZrrF52WWX6euvvza/njp1qjZs2KBevXqpQ4cOio2N1b333qsbb7yxwjwCzmbevHlKSkpSq1atFBUVpVtvvVVjxozRlVdeqe+++06SrA5l0KlTJ3366aeSfg9gVlUvWGNP/WiPdu3aKSUlRS+88ILefPNN3XTTTbr99tt13333VXsYLUnl6tf27dvL09Oz3BjW1urhq6++WmfPntVPP/0k6cKEx9bKtnPnziotLdX333+vLl26WJwTgPpR2b3u6elpU3vr4MGDklRuuJKLnTx50tzmkWp2n1+aHw8PD3Xo0KFc/VSTtuaIESP02muv6f7779ef//xnDRgwQEOHDtXdd99tfkioLtpHl5bLTz/9pIKCAv3973/X3//+90rzDDgTe65dHx8f/fOf/9T1118vPz8/LV261O4fwyuqU5YvX66//e1v+vbbb1VcXGw1/eHDhxUREaGQkBC7jlndPNla/x0+fFiJiYm1maVy1qxZo6efflq7d++2mGfJWvlXt97OycnRjBkz9OGHH5q/85YpawPXpI1dkWuuuUadOnXSypUrNX78eEkXhtG6/PLLzcHwmrLn86+y7yIAbP/+WRs8PT01atQoLVq0SGfPnpW/v7/efPNN+fn5adiwYVVub8vvaN99953at29fLl2HDh1q5yRQpwiM1JCHh4fV8ZLtmWTX3n1c/CSGJPOTCY8++miFT6TU5g1ZUFCgm2++WUFBQZo1a5bat28vPz8/ffHFF5o6dWq5p+0uzW9Znrt162YeX/ZSrVq1Mqfz8PDQxx9/XGEviKqO5SgVPQVt7b2uSHXe24rKwJb8dO7cWQcOHNCaNWu0fv16vfvuu1q4cKFmzJihmTNn2pxvwJGGDx+um266SatXr1ZGRoaee+45/fWvf7V4iqyu2Fs/2utvf/ubxo4dqw8++EAZGRl6+OGHzWOzWmu0lbH3M6m+OFOdDbibi+91W9tbZXXYc889ZzFmv7W0ZerjPq9JW7Nx48baunWrNm3apLVr12r9+vVauXKl+vfvr4yMDHl5ednUPrK3/q2oPX/fffdV+MNbdecnBOqSvdduenq6JOncuXM6ePCg3T/CW7vf33jjDY0dO1Z33nmnHnvsMYWGhpon1S17GM1W1WlLVVTP1Wb9V5M23n/+8x/dfvvt6tu3rxYuXKgWLVrI29tbS5cu1YoVK8qlr06+S0pKNGjQIJ04cUJTp05Vp06dFBAQoB9//FFjx46tcRu4KiNGjNCcOXP0888/q0mTJvrwww91zz33qFGj2vnJy57Pv8q+i5TNSQDgdxfXb7XxffZSY8aM0XPPPaf3339f99xzj1asWKHbbrvNpocLa+N3PTg3AiM1dNlll1l0oSpT9lRymcp+aLJ1HxUpe/LA29tbAwcOtGmbirRv316lpaXav39/hR/4mzdv1i+//KL33ntPffv2NS8/cuSIXcf56quvNGDAgErLpn379jIMQ+3atdPVV19t8/7t0bx5cwUFBWnv3r2VpmvTpo0OHDhQbnnZ0Dht2rSx67jt27eXdKEbX0XvW22+t7YKCAjQiBEjNGLECBUVFWno0KGaM2eOpk2bZjH0EODMWrRooYceekgPPfSQ8vPzdd1112nOnDnmyc8PHDhQ7gmyAwcOmO/jsnuvqnrhUrVRP1alW7du6tatm6ZPn65t27bpxhtv1OLFi/X000+bn9IuKCiw2Kayz5NLf5Q4dOiQSktLy020Wfak3MX++9//yt/f3/xEtr+/f4X1pKenp/mHyMrUZ2AGcCeV3eteXl42tbfK2i5BQUH10i65tN4xDEOHDh2yKUBga1tTuvA04YABAzRgwAC98MILeuaZZ/SXv/xFmzZtMp9nVe2jyy67rFzdK9nenm/evLmaNGmikpKSemvzAbXBnmv366+/1qxZszRu3Djt3r1b999/v/bs2WPx41R12gHvvPOOrrzySr333nsW2186ZFb79u2Vnp6uEydOVNhrpDptqZpq3759lW3OmuTr3XfflZ+fn9LT0+Xr62tevnTpUvszW4E9e/bov//9r5YvX64xY8aYl2dmZlqks7WNbe91MGLECM2cOVPvvvuuwsLCVFhYqJEjR1a5na3Hsffzr6LvIgRGgMrbpHVRB3ft2lXXXnut3nzzTbVs2VI5OTl6+eWXq72/S7Vp00b79++XYRgWdcqhQ4dq7RioO8wxUkPt27fXt99+ax5GRJK++uorffbZZxbp/P39JZW/ue3ZR0VCQ0PVr18/vfrqqzp+/Hi59Rfvtyp33nmnPD09NWvWrHJPdZRFRMsiphdHSIuKirRw4UKbjzN8+HD9+OOP+sc//lFu3W+//aYzZ85IkoYOHSovLy/NnDmzXETWMAz98ssvNh+zIp6enrrzzjv10Ucf6fPPPy+3vuy4t956q3bu3KmsrCzzujNnzujvf/+72rZta/c4rNddd53atWunBQsWlLsuyo5Zm++tLS4tTx8fH0VGRsowDIsu6YCzKikpKTdcVWhoqCIiImQymdSzZ0+FhoZq8eLFFsMIfPzxx/rmm2+UkJAg6cKX/L59++qf//yncnJyLPZX2dMhtVE/VqSwsFDnz5+3WNatWzd5enqazyUoKEiXX365tm7dapGusuOnpaVZvC5rJF76xS0rK8tiHOrvv/9eH3zwgWJjY+Xl5SUvLy/Fxsbqgw8+sOgGnZeXpxUrVqhPnz4KCgqq8jwDAgIkWf+8BFB9ld3rtra3oqKi1L59ez3//PM6ffp0uWPUdrvkX//6l06dOmV+/c477+j48eM2/bBka1vzxIkT5daXPRxUVrfa0j5q3769Tp48aTG0wvHjx7V69eoq8ypd+PxITEzUu+++a/UHw9ouW6C22HrtFhcXa+zYsYqIiNCLL76oZcuWKS8vT1OmTLFIX512gLX2144dOyy+t0kX5icxDMNqT/iybavTlqqpxMREffXVV1bri7J8lf0wf3G+SkpKKhy+7GJeXl7y8PCweOL66NGjev/992uYc8tjXJzfsv+/+OKLFulsbWPbex107txZ3bp108qVK7Vy5Uq1aNHC4iGligQEBNh0DFs//6r6LgKg8jZpXdXBo0ePVkZGhhYsWKBmzZrVapAyLi5OP/74oz788EPzsnPnzlltg8L50GOkhv7whz/ohRdeUFxcnMaPH6/8/HwtXrxYXbp0sRhbvnHjxoqMjNTKlSt19dVXKyQkRF27dlXXrl1t3kdl0tLS1KdPH3Xr1k0PPPCArrzySuXl5SkrK0s//PCDvvrqK5v206FDB/3lL3/R7NmzddNNN2no0KHy9fXVrl27FBERoblz5+qGG27QZZddpqSkJD388MPy8PDQ66+/bldXstGjR+vtt9/W//3f/2nTpk268cYbVVJSom+//VZvv/220tPT1bNnT7Vv315PP/20pk2bpqNHj+rOO+9UkyZNdOTIEa1evVoTJkzQo48+avNxK/LMM88oIyNDN998syZMmKDOnTvr+PHjWrVqlT799FM1bdpUf/7zn/Xvf/9b8fHxevjhhxUSEqLly5fryJEjevfdd8tNVl8VT09PLVq0SEOGDFGPHj00btw4tWjRQt9++6327dtn7mZeW++tLWJjYxUeHq4bb7xRYWFh+uabb/TKK68oISHBYvJTwFmdOnVKLVu21N13361rrrlGgYGB2rBhg3bt2qW//e1v8vb21l//+leNGzdON998s+655x7l5eXpxRdfVNu2bS2+nL/00kvq06ePrrvuOk2YMEHt2rXT0aNHtXbtWu3evdvq8WujfqzIJ598okmTJmnYsGG6+uqrdf78eb3++uvmHyTK3H///Xr22Wd1//33q2fPntq6dav++9//VrjfI0eO6Pbbb9fgwYOVlZWlN954Q/fee6+uueYai3Rdu3ZVXFycHn74Yfn6+pobpxf/uPD0008rMzNTffr00UMPPaRGjRrp1Vdflclk0rx582w6z7IJ3v/yl79o5MiR8vb21pAhQ8xfkAFUT1X3ui3tLU9PT7322muKj49Xly5dNG7cOF1xxRX68ccftWnTJgUFBemjjz6qtTyHhISoT58+GjdunPLy8rRgwQJ16NDBpsksbW1rzpo1S1u3blVCQoLatGmj/Px8LVy4UC1btlSfPn0k2dY+GjlypKZOnaq77rpLDz/8sM6ePatFixbp6quvtnnS9GeffVabNm1S79699cADDygyMlInTpzQF198oQ0bNlgN4gDOwJZrt2x+i40bN6pJkybq3r27ZsyYoenTp+vuu+/WrbfeKun3dsDDDz+suLg4eXl5Vfnk/2233ab33ntPd911lxISEnTkyBEtXrxYkZGRFj9i33LLLRo9erReeuklHTx4UIMHD1Zpaan+85//6JZbbtGkSZMk2d+WqqnHHntM77zzjoYNG6Y//OEPioqK0okTJ/Thhx9q8eLFuuaaa9SlSxdFR0dr2rRp5h4vb731VrmHZqxJSEjQCy+8oMGDB+vee+9Vfn6+0tLS1KFDB4tgbk106tRJ7du316OPPqoff/xRQUFBevfdd8vNNSLZ1sauTntwxIgRmjFjhvz8/DR+/Hibvp9HRUVp0aJFevrpp9WhQweFhoZanZfE1s+/qr6LAKi6TVoXdfC9996rxx9/XKtXr9bEiRPLzVdcEw8++KBeeeUV3XPPPfrjH/+oFi1amOcxkRgRwekZsNmmTZsMScaqVasslr/xxhvGlVdeafj4+Bg9evQw0tPTjaSkJKNNmzYW6bZt22ZERUUZPj4+hiTjqaeesmsfR44cMSQZzz33nNX8HT582BgzZowRHh5ueHt7G1dccYVx2223Ge+8847d5/rPf/7TuPbaaw1fX1/jsssuM26++WYjMzPTvP6zzz4zoqOjjcaNGxsRERHG448/bqSnpxuSjE2bNpnT3XzzzUaXLl2sHqOoqMj461//anTp0sV8nKioKGPmzJnGyZMnLdK+++67Rp8+fYyAgAAjICDA6NSpk5GcnGwcOHDApmPZ4rvvvjPGjBljNG/e3PD19TWuvPJKIzk52TCZTOY0hw8fNu6++26jadOmhp+fn9GrVy9jzZo1Fvup6Dope/+WLl1qsfzTTz81Bg0aZDRp0sQICAgwunfvbrz88ssWaWx5b5cuXWpIMnbt2lXu3Coqm0uvsVdffdXo27ev0axZM8PX19do37698dhjj5V7PwBnZTKZjMcee8y45pprzPfUNddcYyxcuNAi3cqVK811XEhIiDFq1Cjjhx9+KLe/vXv3GnfddZf5nu/YsaPx5JNPmteX3XdHjhwxL7O1frT2OVGZ//3vf8Yf/vAHo3379oafn58REhJi3HLLLcaGDRss0p09e9YYP368ERwcbDRp0sQYPny4kZ+fX+5z56mnnjIkGfv37zfuvvtuo0mTJsZll11mTJo0yfjtt98s9inJSE5ONt544w3jqquuMnx9fY1rr73W4nzKfPHFF0ZcXJwRGBho+Pv7G7fccouxbds2izSV1VeGYRizZ882rrjiCsPT07Nc+QKwjz33ui3tLcMwjC+//NIYOnSoub3Qpk0bY/jw4cbGjRvLHfenn36yO89lbal///vfxrRp04zQ0FCjcePGRkJCgvHdd99ZpK1pW3Pjxo3GHXfcYURERBg+Pj5GRESEcc899xj//e9/zfuxtX2UkZFhdO3a1fDx8TE6duxovPHGG+ZyuFhZnWpNXl6ekZycbLRq1crw9vY2wsPDjQEDBhh///vf7S5HoD5Vdu1mZ2cbjRo1MiZPnmyxzfnz543rr7/eiIiIMH799VfzssmTJxvNmzc3PDw8zPdPZd+FS0tLjWeeecZo06aNuY2yZs0aq22t8+fPG88995zRqVMnw8fHx2jevLkRHx9vZGdnm9PY25ayVs+1adPGSEhIsFpWbdq0MZKSkiyW/fLLL8akSZOMK664wvDx8TFatmxpJCUlGT///LM5zeHDh42BAwcavr6+RlhYmPHEE08YmZmZNrUxlyxZYm7DderUyVi6dKnd9VNV9u/fbwwcONAIDAw0Lr/8cuOBBx4wvvrqK6vfgatqYxtGxe1Ba+VnGIZx8OBBQ5Ihyfj000/LrbfWbs/NzTUSEhKMJk2aGJKMm2++2TCM3z+HLm3rVvX5Z+t3EcAd2domtbUOtnZP33zzzeb7+FK33nqrIancd1PDsH7P2/o7mmFc+K6ekJBgNG7c2GjevLnxpz/9yXj33XcNScb27dttKh84hodhMGMMAADuJjU1VTNnztRPP/2kyy+/vNK0Hh4eSk5O1iuvvFJPuQNQW+y5153F5s2bdcstt2jVqlW6++67HZ0dAAAAuLi77rpLe/bsqbe5PxYsWKApU6bohx9+0BVXXFEvx4T9mGMEAAAAAAAAANDgHD9+XGvXrtXo0aPrZP+//fabxetz587p1Vdf1VVXXUVQxMkxx4gbyc3NrXR948aNFRwcXE+5qR+nT5+2OjnaxZo3b26eLA4AHOHEiRMqKiqqcL2Xl5eaN29ejzkCgNpXVFRU5TwZDa0tCgCujnYqAFd15MgRffbZZ3rttdfk7e2tBx98sE6OM3ToULVu3Vo9evTQyZMn9cYbb+jbb7/Vm2++WSfHQ+0hMOJGWrRoUen6pKQkLVu2rH4yU0+ef/55i4mBrTly5Ijatm1bPxkCACuGDh2qLVu2VLi+TZs2Onr0aP1lCADqwLZt23TLLbdUmmbp0qW0ywDAidBOBeCqtmzZonHjxql169Zavny5wsPD6+Q4cXFxeu211/Tmm2+qpKREkZGReuuttzRixIg6OR5qD3OMuJENGzZUuj4iIkKRkZH1lJv68b///U//+9//Kk3Tp08f+fn51VOOAKC87Oxs/frrrxWub9y4sW688cZ6zBEA1L5ff/1V2dnZlabp0qVLlQ/zAADqD+1UAEBDRWAEAAAAAAAAAAC4DSZfBwAAAAAAAAAAbsMl5xgpLS3VsWPH1KRJE3l4eDg6OwDqgGEYOnXqlCIiIuTpSQy3MtSJQMNHnWg76kSg4aNOtB11ItDwUSfajjoRaPjsqRNdMjBy7NgxtWrVytHZAFAPvv/+e7Vs2dLR2XBq1ImA+6BOrBp1IuA+qBOrRp0IuA/qxKpRJwLuw5Y60SUDI02aNJF04QSDgoIcnJv6U1xcrIyMDMXGxsrb29vR2XEalEt5DaFMCgsL1apVK/P9joq5a51YHQ3h3nAUyq76aqPsqBNtV1GdyDVMGUiUgdQwyoA60XZVtRMbwvVQU+5eBu5+/pLrlwF1ou3c8buzq1/fdYEysa6hlIs9daJLBkbKursFBQW5TUUmXbhA/f39FRQU5NIXaG2jXMprSGVC99aquWudWB0N6d6ob5Rd9dVm2VEnVq2iOpFrmDKQKAOpYZUBdWLVqmonNqTrobrcvQzc/fylhlMG1IlVc8fvzg3l+q5NlIl1Da1cbKkTGXwQAAAAAAAAAAC4DQIjAAAAAAAAAADAbRAYAQAAAAAAAAAAboPACAAAAAAAAAAAcBsERgAAAAAAAAAAgNsgMAIAAAAAAAAAANwGgREAAAAAAAAAAOA2CIwAAAAAAAAAAAC3QWAEAAAAAAAAAAC4jUaOzgAq1vbPay1e+3oZmtdL6pqaLlOJh4NyVbmjzyY4OgsAADd06WemM6ns85vPTbgTZ7hPq9Oe5j4FnF9N6hdHfc+mbgGcnzO0XaqD+gWwDT1GAAAAAAAAAACA2yAwAgAAAAAAAAAA3AaBEQAAAAAAalFqaqo8PDws/jp16mRef+7cOSUnJ6tZs2YKDAxUYmKi8vLyLPaRk5OjhIQE+fv7KzQ0VI899pjOnz9f36cCAADQIDHHCAAAAAAAtaxLly7asGGD+XWjRr9//Z4yZYrWrl2rVatWKTg4WJMmTdLQoUP12WefSZJKSkqUkJCg8PBwbdu2TcePH9eYMWPk7e2tZ555pt7PBQAAoKEhMAIAAAAAQC1r1KiRwsPDyy0/efKklixZohUrVqh///6SpKVLl6pz587avn27oqOjlZGRof3792vDhg0KCwtTjx49NHv2bE2dOlWpqany8fGp79MBAABoUAiMAAAAAABQyw4ePKiIiAj5+fkpJiZGc+fOVevWrZWdna3i4mINHDjQnLZTp05q3bq1srKyFB0draysLHXr1k1hYWHmNHFxcZo4caL27duna6+91uoxTSaTTCaT+XVhYaEkqbi4WMXFxeXSly2zts6V+HoZ1d/W07D4t744S5k3lGugJly9DFw13wDgaHYFRlJTUzVz5kyLZR07dtS3334r6cI4qX/605/01ltvyWQyKS4uTgsXLrRozOXk5GjixInatGmTAgMDlZSUpLlz51p0KwYAAIBroZ0IAL/r3bu3li1bpo4dO+r48eOaOXOmbrrpJu3du1e5ubny8fFR06ZNLbYJCwtTbm6uJCk3N9eifixbX7auInPnzi1XF0tSRkaG/P39K9wuMzPT1lNzSvN61Xwfs3uW1nwndli3bl29Hq8qrn4N1AZXLYOzZ886OgsA4JLs/pbJOKkAAACwhnYiAFwQHx9v/n/37t3Vu3dvtWnTRm+//bYaN25cZ8edNm2aUlJSzK8LCwvVqlUrxcbGKigoqFz64uJiZWZmatCgQfL29q6zfNW1rqnp1d7W19PQ7J6levJzT5lKPWoxV5XbmxpXb8eqTEO5BmrC1cugrGcYAMA+dgdGGCcVAAAA1tBOBADrmjZtqquvvlqHDh3SoEGDVFRUpIKCAoteI3l5eeY6NDw8XDt37rTYR15ennldRXx9feXr61tuube3d6U/+Fa13tmZSmoe0DCVetTKfmzlbOXt6tdAbXDVMnDFPAOAM/C0d4OycVKvvPJKjRo1Sjk5OZJU5TipkiocJ7WwsFD79u2r6bkAAADAgWgnAoB1p0+f1uHDh9WiRQtFRUXJ29tbGzduNK8/cOCAcnJyFBMTI0mKiYnRnj17lJ+fb06TmZmpoKAgRUZG1nv+AQAAGhq7eow4apxUeyeQaygunUDOUZPC2cMR74erT5RWFxpCmbhy3gHAHTl7O7EhfDbWlKPLoCaTI9daHqrRnm5o14yjr4Pa4Ap5f/TRRzVkyBC1adNGx44d01NPPSUvLy/dc889Cg4O1vjx45WSkqKQkBAFBQVp8uTJiomJUXR0tCQpNjZWkZGRGj16tObNm6fc3FxNnz5dycnJVnuEAIAzW7RokRYtWqSjR49KujD86owZM8zDDvbr109btmyx2ObBBx/U4sWLza+Ziw5AbbOr9nDUOKnVnUDO1VU0gVx9TwpnD0dOIOeqE6XVJVcuEyaQAwDX4irtRFf+bKwtjiqD2pgcubbY0552tgmSa4sr3wuu0E784YcfdM899+iXX35R8+bN1adPH23fvl3NmzeXJM2fP1+enp5KTEyUyWRSXFycFi5caN7ey8tLa9as0cSJExUTE6OAgAAlJSVp1qxZjjolAKi2li1b6tlnn9VVV10lwzC0fPly3XHHHfryyy/VpUsXSdIDDzxgUcdd3I5jLjoAdaFGYdX6GifV3gnkGopLJ5Bz1KRw9nDEBHKuPlFaXWgIZcIEcgDg2pytndgQPhtrytFlUJPJkWtLddrTzjJBcm1x9HVQG1yhnfjWW29Vut7Pz09paWlKS0urME2bNm0abGAOgHsZMmSIxes5c+Zo0aJF2r59uzkw4u/vX2Gbj7noANSFGgVGysZJHT16tMU4qYmJiZKsj5M6Z84c5efnKzQ0VJJt46RWdwI5V1fRxG/1PSmcPRz5fjT066E6XLlMXDXfAIALnLWd6MqfjbXFUWXgTO1Xe9rTDfV6ceV7wVXzDQC40Ptj1apVOnPmjLkdKElvvvmm3njjDYWHh2vIkCF68sknzb1GKpqLbuLEidq3b5+uvfZaq8eq6dD8zjAMaHUwnGzlKBPrGkq52JN/uwIjjJMKAAAAa2gnAgAAoCJ79uxRTEyMzp07p8DAQK1evdr88Mu9996rNm3aKCIiQl9//bWmTp2qAwcO6L333pNU/bnoajo0vzMNA2oPa70NXXkIzbpCmVjn6uViz5CrdgVGGCcVAAAA1tBOBAAAQEU6duyo3bt36+TJk3rnnXeUlJSkLVu2KDIyUhMmTDCn69atm1q0aKEBAwbo8OHDat++fbWPWdOh+Z1hGNDquHgY0IYwhGZto0ysayjlYs+Qq3YFRhgnFQAAANbQTgQAAEBFfHx81KFDB0lSVFSUdu3apRdffFGvvvpqubS9e/eWJB06dEjt27ev9lx0NR2a35mGAbUHw8nahjKxztXLxZ68e9ZhPgAAAAAAAADAQmlpqcX8HxfbvXu3JKlFixaSLsxFt2fPHuXn55vT2DIXHQBUpkaTrwMAAAAAAABARaZNm6b4+Hi1bt1ap06d0ooVK7R582alp6fr8OHDWrFihW699VY1a9ZMX3/9taZMmaK+ffuqe/fukpiLDkDdIDACAAAAAAAAoE7k5+drzJgxOn78uIKDg9W9e3elp6dr0KBB+v7777VhwwYtWLBAZ86cUatWrZSYmKjp06ebt2cuOgB1gcAIAAAAAAAAgDqxZMmSCte1atVKW7ZsqXIfzEUHoLYxxwgAAAAAAAAAAHAbBEYAAAAAAAAAAIDbYCgtAIBLaPvntTXeh6+XoXm9pK6p6TKVeNRCrip39NmEOj8GAAAAAAAA7EOPEQCoJc8++6w8PDz0yCOPmJedO3dOycnJatasmQIDA5WYmKi8vDyL7XJycpSQkCB/f3+Fhobqscce0/nz5+s59wAAAAAAAIB7IDACALVg165devXVV9W9e3eL5VOmTNFHH32kVatWacuWLTp27JiGDh1qXl9SUqKEhAQVFRVp27ZtWr58uZYtW6YZM2bU9ykAAAAAAAAAboHACADU0OnTpzVq1Cj94x//0GWXXWZefvLkSS1ZskQvvPCC+vfvr6ioKC1dulTbtm3T9u3bJUkZGRnav3+/3njjDfXo0UPx8fGaPXu20tLSVFRU5KhTAgAAAAAAABosAiMAUEPJyclKSEjQwIEDLZZnZ2eruLjYYnmnTp3UunVrZWVlSZKysrLUrVs3hYWFmdPExcWpsLBQ+/btq58TAAAAAAAAANwIk68DQA289dZb+uKLL7Rr165y63Jzc+Xj46OmTZtaLA8LC1Nubq45zcVBkbL1ZeusMZlMMplM5teFhYWSpOLiYhUXF1f7XJydr5dR8314Ghb/1rWG9H6UnYuznlNtXB91pbLrztbydNZyBwAAAADAFREYAYBq+v777/XHP/5RmZmZ8vPzq7fjzp07VzNnziy3PCMjQ/7+/vWWj/o2r1ft7Wt2z9La21kl1q1bVy/HqU+ZmZmOzoJVtXl91BVr152t18jZs2drOzsAAAAAALgtAiMAUE3Z2dnKz8/XddddZ15WUlKirVu36pVXXlF6erqKiopUUFBg0WskLy9P4eHhkqTw8HDt3LnTYr95eXnmddZMmzZNKSkp5teFhYVq1aqVYmNjFRQUVFun53S6pqbXeB++noZm9yzVk597ylTqUQu5qtze1Lg6P0Z9KS4uVmZmpgYNGiRvb29HZ6ec2rg+6kpl152t10hZzzAAAAAAAFBzBEYAoJoGDBigPXv2WCwbN26cOnXqpKlTp6pVq1by9vbWxo0blZiYKEk6cOCAcnJyFBMTI0mKiYnRnDlzlJ+fr9DQUEkXnsgPCgpSZGSk1eP6+vrK19e33HJvb2+n/MG6tphKai+QYSr1qNX9VaQhvh/Oep3Vx/tZU9auO1vL0hnLHAAAAAAAV0VgBACqqUmTJuratavFsoCAADVr1sy8fPz48UpJSVFISIiCgoI0efJkxcTEKDo6WpIUGxuryMhIjR49WvPmzVNubq6mT5+u5ORkq8EPAAAAAAAAADVDYAQA6tD8+fPl6empxMREmUwmxcXFaeHCheb1Xl5eWrNmjSZOnKiYmBgFBAQoKSlJs2bNcmCuAQAAAAAAgIaLwAgA1KLNmzdbvPbz81NaWprS0tIq3KZNmzYNcpJuAAAAAAAAwBl5OjoDAAAAAAAAAAAA9YXACAAAAAAAAAAAcBsERgAAAAAAAAAAgNsgMAIAAAAAAAAAANwGgREAAAAAAAAAAOA2CIwAAAAAAAAAAAC3QWAEAAAAAAAAQJ1YtGiRunfvrqCgIAUFBSkmJkYff/yxef25c+eUnJysZs2aKTAwUImJicrLy7PYR05OjhISEuTv76/Q0FA99thjOn/+fH2fCoAGhMAIAAAAAAAAgDrRsmVLPfvss8rOztbnn3+u/v3764477tC+ffskSVOmTNFHH32kVatWacuWLTp27JiGDh1q3r6kpEQJCQkqKirStm3btHz5ci1btkwzZsxw1CkBaAAaOToDAAAAAAAAABqmIUOGWLyeM2eOFi1apO3bt6tly5ZasmSJVqxYof79+0uSli5dqs6dO2v79u2Kjo5WRkaG9u/frw0bNigsLEw9evTQ7NmzNXXqVKWmpsrHx8cRpwXAxdFjBAAAAAAAAECdKykp0VtvvaUzZ84oJiZG2dnZKi4u1sCBA81pOnXqpNatWysrK0uSlJWVpW7duiksLMycJi4uToWFheZeJwBgL3qMAAAAAAAAAKgze/bsUUxMjM6dO6fAwECtXr1akZGR2r17t3x8fNS0aVOL9GFhYcrNzZUk5ebmWgRFytaXrauIyWSSyWQyvy4sLJQkFRcXq7i4uMo8+3oZNp2bs7n43Mr+b8v5ugvKxLqGUi725J/ACAAAAAAAAIA607FjR+3evVsnT57UO++8o6SkJG3ZsqVOjzl37lzNnDmz3PKMjAz5+/tXuf28XnWRq7q3bt26cssyMzMdkBPnRplY5+rlcvbsWZvTEhgBAAAAAAAAUGd8fHzUoUMHSVJUVJR27dqlF198USNGjFBRUZEKCgoseo3k5eUpPDxckhQeHq6dO3da7C8vL8+8riLTpk1TSkqK+XVhYaFatWql2NhYBQUFVZnnrqnpNp+fM9mbGmf+f3FxsTIzMzVo0CB5e3s7MFfOgzKxrqGUS1nPMFsQGAEAAAAAoA49++yzmjZtmv74xz9qwYIFkqRz587pT3/6k9566y2ZTCbFxcVp4cKFFsPF5OTkaOLEidq0aZMCAwOVlJSkuXPnqlEjvsoDcG2lpaUymUyKioqSt7e3Nm7cqMTEREnSgQMHlJOTo5iYGElSTEyM5syZo/z8fIWGhkq68FR7UFCQIiMjKzyGr6+vfH19yy339va26YdfU4lHdU7N4aydm63n7E4oE+tcvVzsyTutKQAAAAAA6siuXbv06quvqnv37hbLp0yZorVr12rVqlUKDg7WpEmTNHToUH322WeSLkxQnJCQoPDwcG3btk3Hjx/XmDFj5O3trWeeecYRpwIA1TJt2jTFx8erdevWOnXqlFasWKHNmzcrPT1dwcHBGj9+vFJSUhQSEqKgoCBNnjxZMTExio6OliTFxsYqMjJSo0eP1rx585Sbm6vp06crOTnZauADAGzh6egMAAAAAADQEJ0+fVqjRo3SP/7xD1122WXm5SdPntSSJUv0wgsvqH///oqKitLSpUu1bds2bd++XdKFMfD379+vN954Qz169FB8fLxmz56ttLQ0FRUVOeqUAMBu+fn5GjNmjDp27KgBAwZo165dSk9P16BBgyRJ8+fP12233abExET17dtX4eHheu+998zbe3l5ac2aNfLy8lJMTIzuu+8+jRkzRrNmzXLUKQFoAGrUY4TuwAAAALCGdiIASMnJyUpISNDAgQP19NNPm5dnZ2eruLhYAwcONC/r1KmTWrduraysLEVHRysrK0vdunWzqCPj4uI0ceJE7du3T9dee22545lMJplMJvPrsnG2i4uLVVxcXC592TJr61yJr5dR/W09DYt/64uzlHlDuQZqwtXLwBXyvWTJkkrX+/n5KS0tTWlpaRWmadOmjdVJxQGguqr9DZPuwAAAALCGdiIASG+99Za++OIL7dq1q9y63Nxc+fj4WEw0LElhYWHKzc01p7k4KFK2vmydNXPnztXMmTPLLc/IyJC/v3+Fec3MzKz0XJzdvF4138fsnqU134kdnO0HXle/BmqDq5bB2bNnHZ0FAHBJ1QqMXNwd+OKnXsq6A69YsUL9+/eXJC1dulSdO3fW9u3bFR0dbe4OvGHDBoWFhalHjx6aPXu2pk6dqtTUVPn4+NTOmQEAAKDe0U4EAOn777/XH//4R2VmZsrPz6/ejjtt2jSlpKSYXxcWFqpVq1aKjY1VUFBQufTFxcXKzMzUoEGDXHqi1a6p6dXe1tfT0OyepXryc0+ZSutvouW9qXH1dqzKNJRroCZcvQzKeoYBAOxTrcCIs3cHbigu7Q7sqC6+9nDE++Hq3V7rQkMoE1fOOwC4s/puJwKAM8rOzlZ+fr6uu+4687KSkhJt3bpVr7zyitLT01VUVKSCggKLXiN5eXkKDw+XJIWHh2vnzp0W+83LyzOvs8bX19fqRMTe3t6V/uBb1XpnZyqpeUDDVOpRK/uxlbOVt6tfA7XBVcvAFfMMAM7A7sCIK3UHdnUVdQeu7y6+9nBkd2BX7fZal1y5TOgODACuxxHtRFsfoGkIDw3UlKPLoCZzANRaHqrxoFFDu2YcfR3UBlfI+4ABA7Rnzx6LZePGjVOnTp00depUtWrVSt7e3tq4caMSExMlSQcOHFBOTo5iYmIkSTExMZozZ47y8/MVGhoq6UL7PigoSJGRkfV7QgAAAA2MXYERV+kO3FBc2h3YUV187eGI7sCu3u21LjSEMqE7MAC4Fke1E+19gMaVHxqoLY4qg9qYA6C22POgkbPNA1BbXPlecIUHaJo0aaKuXbtaLAsICFCzZs3My8ePH6+UlBSFhIQoKChIkydPVkxMjKKjoyVJsbGxioyM1OjRozVv3jzl5uZq+vTpSk5OttorBAAAALazKzDiat2BXV1F3Xjru4uvPRz5fjT066E6XLlMXDXfAOCuHNVOtPUBmobw0EBNOboMajIHQG2pzoNGzjIPQG1x9HVQGxrKAzTz58+Xp6enEhMTZTKZFBcXp4ULF5rXe3l5ac2aNZo4caJiYmIUEBCgpKQkzZo1y4G5BgAAaBjsCozQHRgAAADWOKqdaO8DNK780EBtcVQZONODPfY8aNRQrxdXvhdcNd+bN2+2eO3n56e0tDSlpaVVuE2bNm0abK8lAAAAR7IrMEJ3YAAAAFhDOxEAAAAA4Crsnny9KnQHBgAAgDW0EwEAAAAAzqDGgRG6AwMAAMAa2okAAAAAAGfk6egMAAAAAAAAAAAA1BcCIwAAAAAAAAAAwG0QGAEAAAAAAAAAAG6DwAgAAAAAAAAAAHAbBEYAAAAAAAAAAIDbIDACAAAAAAAAAADcBoERAAAAAAAAAADgNho5OgMAqqftn9dWuM7Xy9C8XlLX1HSZSjzqMVdVO/psgqOzAAAAAAAAAMCN0WMEAAAAAAAAAAC4DQIjAAAAAAAAAADAbRAYAQAAAAAAAAAAboPACAAAAAAAAIA6MXfuXF1//fVq0qSJQkNDdeedd+rAgQMWafr16ycPDw+Lv//7v/+zSJOTk6OEhAT5+/srNDRUjz32mM6fP1+fpwKgAWHydQAAAAAAAAB1YsuWLUpOTtb111+v8+fP64knnlBsbKz279+vgIAAc7oHHnhAs2bNMr/29/c3/7+kpEQJCQkKDw/Xtm3bdPz4cY0ZM0be3t565pln6vV8ADQMBEYAAAAAAAAA1In169dbvF62bJlCQ0OVnZ2tvn37mpf7+/srPDzc6j4yMjK0f/9+bdiwQWFhYerRo4dmz56tqVOnKjU1VT4+PnV6DgAaHgIjAFBNixYt0qJFi3T06FFJUpcuXTRjxgzFx8dLks6dO6c//elPeuutt2QymRQXF6eFCxcqLCzMvI+cnBxNnDhRmzZtUmBgoJKSkjR37lw1akT1DAAAAABoeE6ePClJCgkJsVj+5ptv6o033lB4eLiGDBmiJ5980txrJCsrS926dbP4Ph0XF6eJEydq3759uvbaa8sdx2QyyWQymV8XFhZKkoqLi1VcXFxlPn29DPtPzglcfG5l/7flfN0FZWJdQykXe/LPL28AUE0tW7bUs88+q6uuukqGYWj58uW644479OWXX6pLly6aMmWK1q5dq1WrVik4OFiTJk3S0KFD9dlnn0miKzAAAAAAwL2UlpbqkUce0Y033qiuXbual997771q06aNIiIi9PXXX2vq1Kk6cOCA3nvvPUlSbm6uRVBEkvl1bm6u1WPNnTtXM2fOLLc8IyPDYpiuiszrZfNpOZV169aVW5aZmemAnDg3ysQ6Vy+Xs2fP2pyWwAgAVNOQIUMsXs+ZM0eLFi3S9u3b1bJlSy1ZskQrVqxQ//79JUlLly5V586dtX37dkVHR9MVGAAAAADgVpKTk7V37159+umnFssnTJhg/n+3bt3UokULDRgwQIcPH1b79u2rdaxp06YpJSXF/LqwsFCtWrVSbGysgoKCqty+a2p6tY7raHtT48z/Ly4uVmZmpgYNGiRvb28H5sp5UCbWNZRyKesZZgsCIwBQC0pKSrRq1SqdOXNGMTExys7OVnFxsQYOHGhO06lTJ7Vu3VpZWVmKjo6uVldgqebdgV1VbXRj9vU0LP6taw3p/XD2brXO3M29suvO1vJ01nIHAAAAbDVp0iStWbNGW7duVcuWLStN27t3b0nSoUOH1L59e4WHh2vnzp0WafLy8iSpwnlJfH195evrW265t7e3TT/8mko8qkzjjKydm63n7E4oE+tcvVzsyTuBEQCogT179igmJkbnzp1TYGCgVq9ercjISO3evVs+Pj5q2rSpRfqwsDBzN9/qdAWWat4d2FXVZjfm2T1La29nlbDWhdnVOWu3Wlfo5m7turP1GrGnOzAAAADgTAzD0OTJk7V69Wpt3rxZ7dq1q3Kb3bt3S5JatGghSYqJidGcOXOUn5+v0NBQSRe+mwQFBSkyMrLO8g6g4SIwAgA10LFjR+3evVsnT57UO++8o6SkJG3ZsqVOj1nT7sCuqja6Mft6Gprds1RPfu4pU2ndP/1zcRdmV+fs3WqduZt7ZdedrdeIPd2BAQAAAGeSnJysFStW6IMPPlCTJk3MDwIGBwercePGOnz4sFasWKFbb71VzZo109dff60pU6aob9++6t69uyQpNjZWkZGRGj16tObNm6fc3FxNnz5dycnJVnuFAEBVCIwAQA34+PioQ4cOkqSoqCjt2rVLL774okaMGKGioiIVFBRY9BrJy8szd/OtTldgqebdgV1VbXZjNpV61Eu36Ib4fjjrdeYK3dytXXe2lqUzljkAAABgi0WLFkmS+vXrZ7F86dKlGjt2rHx8fLRhwwYtWLBAZ86cUatWrZSYmKjp06eb03p5eWnNmjWaOHGiYmJiFBAQoKSkJM2aNas+TwVAA0JgBABqUWlpqUwmk6KiouTt7a2NGzcqMTFRknTgwAHl5OQoJiZGEl2BAQAAAAANn2FUPh9gq1atbBp5oU2bNg1yuGIAjkFgBACqadq0aYqPj1fr1q116tQprVixQps3b1Z6erqCg4M1fvx4paSkKCQkREFBQZo8ebJiYmIUHR0tia7AAAAAAAAAgCMQGAGAasrPz9eYMWN0/PhxBQcHq3v37kpPT9egQYMkSfPnz5enp6cSExNlMpkUFxenhQsXmrenKzAAAAAAAABQ/wiMAEA1LVmypNL1fn5+SktLU1paWoVp6AoMAAAAAAAA1C9PR2cAAAAAAAAAAACgvhAYAQAAAAAAAAAAboPACAAAAAAAAAAAcBsERgAAAAAAAAAAgNsgMAIAAAAAAAAAANwGgREAAAAAAAAAAOA2CIwAAAAAAFCLFi1apO7duysoKEhBQUGKiYnRxx9/bF5/7tw5JScnq1mzZgoMDFRiYqLy8vIs9pGTk6OEhAT5+/srNDRUjz32mM6fP1/fpwIAANAgERgBAAAAAKAWtWzZUs8++6yys7P1+eefq3///rrjjju0b98+SdKUKVP00UcfadWqVdqyZYuOHTumoUOHmrcvKSlRQkKCioqKtG3bNi1fvlzLli3TjBkzHHVKAAAADUojR2cAAAAAAICGZMiQIRav58yZo0WLFmn79u1q2bKllixZohUrVqh///6SpKVLl6pz587avn27oqOjlZGRof3792vDhg0KCwtTjx49NHv2bE2dOlWpqany8fFxxGkBAAA0GHb1GKE7MAAAAKyhnQgA1pWUlOitt97SmTNnFBMTo+zsbBUXF2vgwIHmNJ06dVLr1q2VlZUlScrKylK3bt0UFhZmThMXF6fCwkJzrxMAAABUn109Rsq6A1911VUyDEPLly/XHXfcoS+//FJdunTRlClTtHbtWq1atUrBwcGaNGmShg4dqs8++0zS792Bw8PDtW3bNh0/flxjxoyRt7e3nnnmmTo5QQAAANQ92okAYGnPnj2KiYnRuXPnFBgYqNWrVysyMlK7d++Wj4+PmjZtapE+LCxMubm5kqTc3FyLoEjZ+rJ1FTGZTDKZTObXhYWFkqTi4mIVFxeXS1+2zNo6V+LrZVR/W0/D4t/64ixl3lCugZpw9TJw1XwDgKPZFRihOzAAAACsoZ0IAJY6duyo3bt36+TJk3rnnXeUlJSkLVu21Okx586dq5kzZ5ZbnpGRIX9//wq3y8zMrMts1bl5vWq+j9k9S2u+EzusW7euXo9XFVe/BmqDq5bB2bNnHZ0FAHBJ1Z5jpKSkRKtWrbK5O3B0dHSF3YEnTpyoffv26dprr7V6LHufemkoLn3qxVFPstjDEe+Hqz/dUV2VPRXlzNeKre+Tu72fANCQ1Gc7EQCclY+Pjzp06CBJioqK0q5du/Tiiy9qxIgRKioqUkFBgUWvkby8PIWHh0uSwsPDtXPnTov9lQ0/WJbGmmnTpiklJcX8urCwUK1atVJsbKyCgoLKpS8uLlZmZqYGDRokb2/vap+ro3VNTa/2tr6ehmb3LNWTn3vKVOpRi7mq3N7UuHo7VmUayjVQE65eBmW/kQEA7GN3YMQR3YGr+9SLq6voqZf6fpLFHo586sVVn+6oLlueinLGa8XWa4SnXgDA9TjzsDHu+iDFxRxdBjUZ6qbW8lCNh0ca2jXj6OugNrhq3ktLS2UymRQVFSVvb29t3LhRiYmJkqQDBw4oJydHMTExkqSYmBjNmTNH+fn5Cg0NlXTh+05QUJAiIyMrPIavr698fX3LLff29q70B9+q1js7U0nNAxqmUo9a2Y+tnK28Xf0aqA2uWgaumGcAcAZ2B0Yc0R3Y3qdeGopLn3px1JMs9nDEUy+u/nRHdVX2VJQzXyu2XiM89QIArscVho1xtwcprHFUGdTGUDe1xZ6HR5xtuJva4sr3gis8QDNt2jTFx8erdevWOnXqlFasWKHNmzcrPT1dwcHBGj9+vFJSUhQSEqKgoCBNnjxZMTExio6OliTFxsYqMjJSo0eP1rx585Sbm6vp06crOTnZauADAAAA9rE7MOKI7sDVferF1VX0tEp9P8liD0e+Hw39eriULdeAM14rtr5H7vReAkBD4czDxrjrgxQXc3QZ1GSom9pSnYdHnGW4m9ri6OugNrjCAzT5+fkaM2aMjh8/ruDgYHXv3l3p6ekaNGiQJGn+/Pny9PRUYmKiTCaT4uLitHDhQvP2Xl5eWrNmjSZOnKiYmBgFBAQoKSlJs2bNctQpAQAANCjVnmOkTH10BwYAAIDrccZhY9ztQQprHFUGzvSwhj0PjzTU68WV7wVXyPeSJUsqXe/n56e0tDSlpaVVmKZNmzYNtscSAACAo3nak3jatGnaunWrjh49qj179mjatGnavHmzRo0aZdEdeNOmTcrOzta4ceMq7A781VdfKT09ne7AAAAADQDtRAAAAFgzd+5cXX/99WrSpIlCQ0N155136sCBAxZpzp07p+TkZDVr1kyBgYFKTEw09x4uk5OTo4SEBPn7+ys0NFSPPfaYzp8/X5+nAqABsavHCN2BAQAAYA3tRAAAAFizZcsWJScn6/rrr9f58+f1xBNPKDY2Vvv371dAQIAkacqUKVq7dq1WrVql4OBgTZo0SUOHDtVnn30mSSopKVFCQoLCw8O1bds2HT9+XGPGjJG3t7eeeeYZR54eABdlV2CE7sAAAACwhnYiAAAArFm/fr3F62XLlik0NFTZ2dnq27evTp48qSVLlmjFihXq37+/JGnp0qXq3Lmztm/frujoaGVkZGj//v3asGGDwsLC1KNHD82ePVtTp05VamqqfHx8HHFqAFyYXUNpAQAAAAAAAEB1nTx5UpIUEhIiScrOzlZxcbEGDhxoTtOpUye1bt1aWVlZkqSsrCx169ZNYWFh5jRxcXEqLCzUvn376jH3ABqKGk++DgAAAAAAAABVKS0t1SOPPKIbb7xRXbt2lSTl5ubKx8dHTZs2tUgbFham3Nxcc5qLgyJl68vWWWMymWQymcyvCwsLJUnFxcUqLi6uMq++XoZtJ+VkLj63sv/bcr7ugjKxrqGUiz35JzACAAAAAAAAoM4lJydr7969+vTTT+v8WHPnztXMmTPLLc/IyJC/v3+V28/rVRe5qnvWhqbNzMx0QE6cG2VinauXy9mzZ21OS2AEAAAAAAAAQJ2aNGmS1qxZo61bt6ply5bm5eHh4SoqKlJBQYFFr5G8vDyFh4eb0+zcudNif3l5eeZ11kybNk0pKSnm14WFhWrVqpViY2MVFBRUZX67pqbbfG7OZG9qnPn/xcXFyszM1KBBg+Tt7e3AXFWuPsva19PQ7J6levJzT5lKPWq0r4vL2tW5yrVSlbKeYbYgMAIAAAAAAACgThiGocmTJ2v16tXavHmz2rVrZ7E+KipK3t7e2rhxoxITEyVJBw4cUE5OjmJiYiRJMTExmjNnjvLz8xUaGirpwpPtQUFBioyMtHpcX19f+fr6llvu7e1t0w+/ppKa/WjuKNbOzdZzdhRHlLWp1KPGx3XmMq0uZ79WqmJP3gmMAAAAAAAAAKgTycnJWrFihT744AM1adLEPCdIcHCwGjdurODgYI0fP14pKSkKCQlRUFCQJk+erJiYGEVHR0uSYmNjFRkZqdGjR2vevHnKzc3V9OnTlZycbDX4AQBVITACAAAAAAAAoE4sWrRIktSvXz+L5UuXLtXYsWMlSfPnz5enp6cSExNlMpkUFxenhQsXmtN6eXlpzZo1mjhxomJiYhQQEKCkpCTNmjWrvk4DQANDYAQAAAAAAABAnTAMo8o0fn5+SktLU1paWoVp2rRpY3VicQCoDk9HZwAAAAAAAAAAAKC+EBgBAAAAAAAAAABug6G0AAAAAAAAAACwQ9s/r3V0Fux29NkER2fBadBjBAAAAAAAAAAAuA0CIwAAAAAAAAAAwG0QGAEAAAAAAAAAAG6DwAgAAAAAAAAAAHAbBEYAAAAAAAAAAIDbIDACAAAAAAAAAADcBoERAAAAAAAAAADgNgiMAAAAAAAAAAAAt9HI0RkAAAAAAAAAAAB1q+2f11pd7utlaF4vqWtqukwlHvWcq6odfTah1vdJjxEAAAAAAAAAAOA2CIwAQDXNnTtX119/vZo0aaLQ0FDdeeedOnDggEWac+fOKTk5Wc2aNVNgYKASExOVl5dnkSYnJ0cJCQny9/dXaGioHnvsMZ0/f74+TwUAAAAAAABwGwRGAKCatmzZouTkZG3fvl2ZmZkqLi5WbGyszpw5Y04zZcoUffTRR1q1apW2bNmiY8eOaejQoeb1JSUlSkhIUFFRkbZt26bly5dr2bJlmjFjhiNOCQAAAAAAAGjwmGMEAKpp/fr1Fq+XLVum0NBQZWdnq2/fvjp58qSWLFmiFStWqH///pKkpUuXqnPnztq+fbuio6OVkZGh/fv3a8OGDQoLC1OPHj00e/ZsTZ06VampqfLx8XHEqQEAAAAAABd08RwSzj5vBOBIBEYAoJacPHlSkhQSEiJJys7OVnFxsQYOHGhO06lTJ7Vu3VpZWVmKjo5WVlaWunXrprCwMHOauLg4TZw4Ufv27dO1115b7jgmk0kmk8n8urCwUJJUXFys4uLiOjk3Z+DrZdR8H56Gxb91rSG9H2Xn4qznVBvXR12p7LqztTydtdwBAAAAAHBFBEYAoBaUlpbqkUce0Y033qiuXbtKknJzc+Xj46OmTZtapA0LC1Nubq45zcVBkbL1ZeusmTt3rmbOnFlueUZGhvz9/Wt6Kk5rXq/a29fsnqW1t7NKrFu3rl6OU58yMzMdnQWravP6qCvWrjtbr5GzZ8/WdnYAAAAAAHBbBEYAoBYkJydr7969+vTTT+v8WNOmTVNKSor5dWFhoVq1aqXY2FgFBQXV+fEdpWtqeo334etpaHbPUj35uadMpXXfjXhvalydH6O+FBcXKzMzU4MGDZK3t7ejs1NObVwfdaWy687Wa6SsZxgAAAAAAKg5AiMAUEOTJk3SmjVrtHXrVrVs2dK8PDw8XEVFRSooKLDoNZKXl6fw8HBzmp07d1rsLy8vz7zOGl9fX/n6+pZb7u3t7ZQ/WNeW2hwP1VTqUS/jqzbE98NZrzNXGC/X2nVna1k6Y5kDAAAAAOCqPB2dAQBwVYZhaNKkSVq9erU++eQTtWvXzmJ9VFSUvL29tXHjRvOyAwcOKCcnRzExMZKkmJgY7dmzR/n5+eY0mZmZCgoKUmRkZP2cCAAAAAAAAOBGCIwAQDUlJyfrjTfe0IoVK9SkSRPl5uYqNzdXv/32myQpODhY48ePV0pKijZt2qTs7GyNGzdOMTExio6OliTFxsYqMjJSo0eP1ldffaX09HRNnz5dycnJVnuFAAAAAADgarZu3aohQ4YoIiJCHh4eev/99y3Wjx07Vh4eHhZ/gwcPtkhz4sQJjRo1SkFBQWratKnGjx+v06dP1+NZAGhICIwAQDUtWrRIJ0+eVL9+/dSiRQvz38qVK81p5s+fr9tuu02JiYnq27evwsPD9d5775nXe3l5ac2aNfLy8lJMTIzuu+8+jRkzRrNmzXLEKQEAAAAAUOvOnDmja665RmlpaRWmGTx4sI4fP27++/e//22xftSoUdq3b58yMzPNw1lPmDChrrMOoIFijhEAqCbDMKpM4+fnp7S0tEobf23atNG6detqM2sAAAAAADiN+Ph4xcfHV5rG19e3wrk2v/nmG61fv167du1Sz549JUkvv/yybr31Vj3//POKiIio9TwDaNgIjAAAAAAAUIvmzp2r9957T99++60aN26sG264QX/961/VsWNHc5pz587pT3/6k9566y2ZTCbFxcVp4cKFCgsLM6fJycnRxIkTtWnTJgUGBiopKUlz585Vo0Z8lQfQ8GzevFmhoaG67LLL1L9/fz399NNq1qyZJCkrK0tNmzY1B0UkaeDAgfL09NSOHTt01113ldufyWSSyWQyvy4sLJQkFRcXq7i4uMr8+HpV/TCks/P1NCz+BWVSEWcvF1vuWXvSSQRGAAAAAACoVVu2bFFycrKuv/56nT9/Xk888YRiY2O1f/9+BQQESJKmTJmitWvXatWqVQoODtakSZM0dOhQffbZZ5KkkpISJSQkKDw8XNu2bdPx48c1ZswYeXt765lnnnHk6QFArRs8eLCGDh2qdu3a6fDhw3riiScUHx+vrKwseXl5KTc3V6GhoRbbNGrUSCEhIcrNzbW6z7lz52rmzJnllmdkZMjf37/KPM3rVb1zcUaze5Y6OgtOhzKxzlnLxdaRVs6ePWvzPu0KjPDUCwAAAKyhnQgAv1u/fr3F62XLlik0NFTZ2dnq27evTp48qSVLlmjFihXq37+/JGnp0qXq3Lmztm/frujoaGVkZGj//v3asGGDwsLC1KNHD82ePVtTp05VamqqfHx8HHFqAFAnRo4caf5/t27d1L17d7Vv316bN2/WgAEDqrXPadOmKSUlxfy6sLBQrVq1UmxsrIKCgqrcvmtqerWO60x8PQ3N7lmqJz/3lKnUw9HZcQqUiXXOXi57U+NsSlfWM8wWdn3D5KkXAAAAWEM7EQAqdvLkSUlSSEiIJCk7O1vFxcUaOHCgOU2nTp3UunVrZWVlKTo6WllZWerWrZtF8DguLk4TJ07Uvn37dO2119bvSQBAPbryyit1+eWX69ChQxowYIDCw8OVn59vkeb8+fM6ceJEhfOS+Pr6ytfXt9xyb29veXt7V5kHU4nz/ThcXaZSjwZ1PrWBMrHOWcvFlnvWnnSSnYERnnoBAACANbQTAcC60tJSPfLII7rxxhvVtWtXSVJubq58fHzUtGlTi7RhYWHmIWFyc3MtgiJl68vWWWPvePply+wZj9sZ1WQeAEeNqe4sZd5QroGacPUycNV8V+WHH37QL7/8ohYtWkiSYmJiVFBQoOzsbEVFRUmSPvnkE5WWlqp3796OzCoAF1WjMQnq66mXmk6W5Koubdw5+yQ4kmM+kF29EVNdlTX+nflaqYvJkgAAzoenowHgguTkZO3du1effvppnR+ruuPpZ2Zm1mW26lxtzANQ32Oq2zpWen1x9WugNrhqGdgznr4jnT59WocOHTK/PnLkiHbv3q2QkBCFhIRo5syZSkxMVHh4uA4fPqzHH39cHTp0UFzcheFzOnfurMGDB+uBBx7Q4sWLVVxcrEmTJmnkyJGKiIhw1GkBcGHVDozU51MvNZ0syVVV1Lhz1klwJMc27ly1EVNdtjT+nfFaqYvJkgAAzsUZn4521wcpLuboMqjJE921lodqPDzS0K4ZR18HtcGV8j5p0iStWbNGW7duVcuWLc3Lw8PDVVRUpIKCAot6MS8vzzwkTHh4uHbu3Gmxv7y8PPM6a+wdT7+4uFiZmZkaNGiQXUNPOJuazAPgqDHVbR0rva7Zew244pwLVZW1q98H9oyn70iff/65brnlFvPrsroqKSlJixYt0tdff63ly5eroKBAERERio2N1ezZsy2GwnrzzTc1adIkDRgwQJ6enkpMTNRLL71U7+cCoGGodmCkPp96qelkSa7q0gaHs0+CIzmmcefqjZjqqqxB6szXSl1MlgQAcC7O/HS0uz1IYY2jyqA2nuiuLfY8POJsT3XXFle+F1zhARrDMDR58mStXr1amzdvVrt27SzWR0VFydvbWxs3blRiYqIk6cCBA8rJyVFMTIykC8PGzJkzR/n5+QoNDZV04X0LCgpSZGSk1eNWdzx9W8fbd1a1MRZ6fY+p7mzl3ZDnXLBnXHpne19s4Sp57tevnwyj4gcT0tOrDrqFhIRoxYoVtZktAG6sWoGR+n7qpaaTJbmqihoczjoJjuTYD+SGfj1cypZrwBmvlbqYLAkA4Dyc9elod32Q4mKOLgNneMq4Og+POMtT3bXF0ddBbXCFB2iSk5O1YsUKffDBB2rSpIm511twcLAaN26s4OBgjR8/XikpKQoJCVFQUJAmT56smJgYRUdHS5JiY2MVGRmp0aNHa968ecrNzdX06dOVnJxs9fsxAAAAbGdXYMRRT70AAADAubnK09Hu9iCFNY4qA2d6WMOeh0ca6vXiyveCK+R70aJFki48IX2xpUuXauzYsZKk+fPnm4eCMZlMiouL08KFC81pvby8tGbNGk2cOFExMTEKCAhQUlKSZs2aVV+nAQAA0GDZFRjhqRcAAABYQzsRAH5X2XAxZfz8/JSWlqa0tLQK07Rp06bBDucGAADgSHYFRnjqBQAAANbQTgQAAAAAuAq7h9KqCk+9AAAAuB/aiQAAAAAAV+Hp6AwAAAAAAAAAAADUFwIjAAAAAAAAAADAbdg1lBYAAAAAx2v757V2b+PrZWheL6lrarpMJR51kCs4i8quD2e+Do4+m+DoLAD1pjr1eF1w5joBAIC6RI8RAAAAAAAAAADgNugxAgAAAAAAgAapqt45ztprhl50AFC3CIwAAAAAQAWcZbgbAAAAALWHwAggvvACAAAAAAAAgLtgjhEAAAAAAAAAAOA2CIwAAAAAAAAAAAC3QWAEAAAAAAAAAAC4DeYYAQAAFqzNu+TrZWheL6lrarpMJR4OyBUAAAAAAEDtoMcIAAAAAAAAAABwGwRGAAAAAAAAAACA2yAwAgAAAAAAAAAA3AaBEQAAAAAAAAAA4DYIjAAAAAAAAAAAALdBYAQAAAAAAABAndm6dauGDBmiiIgIeXh46P3337dYbxiGZsyYoRYtWqhx48YaOHCgDh48aJHmxIkTGjVqlIKCgtS0aVONHz9ep0+frsezANCQEBgBAAAAAAAAUGfOnDmja665RmlpaVbXz5s3Ty+99JIWL16sHTt2KCAgQHFxcTp37pw5zahRo7Rv3z5lZmZqzZo12rp1qyZMmFBfpwCggWnk6AwAAAAAAAAAaLji4+MVHx9vdZ1hGFqwYIGmT5+uO+64Q5L0r3/9S2FhYXr//fc1cuRIffPNN1q/fr127dqlnj17SpJefvll3XrrrXr++ecVERFRb+cCoGEgMAIAAAAAAADAIY4cOaLc3FwNHDjQvCw4OFi9e/dWVlaWRo4cqaysLDVt2tQcFJGkgQMHytPTUzt27NBdd91Vbr8mk0kmk8n8urCwUJJUXFys4uLiKvPl62XU5LScgq+nYfEvKJOKOHu52HLP2pNOIjACAAAAAAAAwEFyc3MlSWFhYRbLw8LCzOtyc3MVGhpqsb5Ro0YKCQkxp7nU3LlzNXPmzHLLMzIy5O/vX2W+5vWyKfsuYXbPUkdnwelQJtY5a7msW7fOpnRnz561eZ8ERgAAAAAAAAA0KNOmTVNKSor5dWFhoVq1aqXY2FgFBQVVuX3X1PS6zF698PU0NLtnqZ783FOmUg9HZ8cpUCbWOXu57E2NsyldWc8wWxAYAQAAAAAAAOAQ4eHhkqS8vDy1aNHCvDwvL089evQwp8nPz7fY7vz58zpx4oR5+0v5+vrK19e33HJvb295e3tXmS9TifP9OFxdplKPBnU+tYEysc5Zy8WWe9aedJLkWd3MAAAAAAAAAEBNtGvXTuHh4dq4caN5WWFhoXbs2KGYmBhJUkxMjAoKCpSdnW1O88knn6i0tFS9e/eu9zwDcH30GAEAAAAAAABQZ06fPq1Dhw6ZXx85ckS7d+9WSEiIWrdurUceeURPP/20rrrqKrVr105PPvmkIiIidOedd0qSOnfurMGDB+uBBx7Q4sWLVVxcrEmTJmnkyJGKiIhw0FkBcGUERgAAAAAAAADUmc8//1y33HKL+XXZ3B9JSUlatmyZHn/8cZ05c0YTJkxQQUGB+vTpo/Xr18vPz8+8zZtvvqlJkyZpwIAB8vT0VGJiol566aV6PxcADQOBEQAAAAAAAAB1pl+/fjIMo8L1Hh4emjVrlmbNmlVhmpCQEK1YsaIusgfADTHHCADUwNatWzVkyBBFRETIw8ND77//vsV6wzA0Y8YMtWjRQo0bN9bAgQN18OBBizQnTpzQqFGjFBQUpKZNm2r8+PE6ffp0PZ4FAAAAAAAA4D4IjABADZw5c0bXXHON0tLSrK6fN2+eXnrpJS1evFg7duxQQECA4uLidO7cOXOaUaNGad++fcrMzNSaNWu0detWTZgwob5OAQAAAAAAAHArDKUFADUQHx+v+Ph4q+sMw9CCBQs0ffp03XHHHZKkf/3rXwoLC9P777+vkSNH6ptvvtH69eu1a9cu9ezZU5L08ssv69Zbb9Xzzz/PJHIAAAAAAABALaPHCADUkSNHjig3N1cDBw40LwsODlbv3r2VlZUlScrKylLTpk3NQRFJGjhwoDw9PbVjx456zzMAAAAAAADQ0NFjBADqSG5uriQpLCzMYnlYWJh5XW5urkJDQy3WN2rUSCEhIeY0lzKZTDKZTObXhYWFkqTi4mIVFxfXWv6dja9XxRP12bwPT8Pi37rmqu+HtbKu77JrSCorO1uvEVe9lgAAAAAAcEYERgDAxcydO1czZ84stzwjI0P+/v4OyFH9mNer9vY1u2dp7e2sEuvWrauX49S2ysq6vsquIbJWdrZeI2fPnq3t7AAAAAAA4LYIjABAHQkPD5ck5eXlqUWLFubleXl56tGjhzlNfn6+xXbnz5/XiRMnzNtfatq0aUpJSTG/LiwsVKtWrRQbG6ugoKBaPgvn0TU1vcb78PU0NLtnqZ783FOmUo9ayFXl9qbG1fkx6oK1sq7vsmtIKis7W6+Rsp5hAADXsXXrVj333HPKzs7W8ePHtXr1at15553m9YZh6KmnntI//vEPFRQU6MYbb9SiRYt01VVXmdOcOHFCkydP1kcffSRPT08lJibqxRdfVGBgoAPOCAAAoOGwe46RrVu3asiQIYqIiJCHh4fef/99i/WGYWjGjBlq0aKFGjdurIEDB+rgwYMWaU6cOKFRo0YpKChITZs21fjx43X69OkanQgAOJt27dopPDxcGzduNC8rLCzUjh07FBMTI0mKiYlRQUGBsrOzzWk++eQTlZaWqnfv3lb36+vrq6CgIIs/SfL29m7Qf6YSj5r//f8fpU2ltbAvG/4cXWa1Wtb1XHYN6q+SsrPnfXEFtBMB4HdnzpzRNddco7S0NKvr582bp5deekmLFy/Wjh07FBAQoLi4OJ07d86cZtSoUdq3b58yMzO1Zs0abd26VRMmTKivUwAAAGiw7A6M0LgDgN+dPn1au3fv1u7duyVdmHB99+7dysnJkYeHhx555BE9/fTT+vDDD7Vnzx6NGTNGERER5qcFO3furMGDB+uBBx7Qzp079dlnn2nSpEkaOXKkIiIiHHdiAFANtBMB4Hfx8fF6+umnddddd5VbZxiGFixYoOnTp+uOO+5Q9+7d9a9//UvHjh0zB5W/+eYbrV+/Xq+99pp69+6tPn366OWXX9Zbb72lY8eO1fPZAAAANCx2D6UVHx+v+Ph4q+subdxJ0r/+9S+FhYXp/fff18iRI82Nu127dqlnz56SpJdfflm33nqrnn/+eX4IBOBSPv/8c91yyy3m12VDXCUlJWnZsmV6/PHHdebMGU2YMEEFBQXq06eP1q9fLz8/P/M2b775piZNmqQBAwaYh0h46aWX6v1cAKCmaCcCgG2OHDmi3NxcDRw40LwsODhYvXv3VlZWlkaOHKmsrCw1bdrUXB9K0sCBA+Xp6akdO3ZYDbgAAADANrU6x0hdNe5MJpNMJpP5ddk428XFxSouLq7NU3Aqvl6G5WtPw+JfZ+SI96PsmDU59qVl7eqc+Vqx9X1ylXu7X79+MoyKy9nDw0OzZs3SrFmzKkwTEhKiFStW1EX2AMBpOLqdWBvtBWdSnbaLM7cP6gtl4Nxl0NDaiZXJzc2VJIWFhVksDwsLM6/Lzc1VaGioxfpGjRopJCTEnOZS9n53bih1Y02+zznzPVEf3P38JectA3eqEwHAEWo1MFJXjbu5c+dq5syZ5ZZnZGTI39+/NrLulOb1sr58ds/S+s2IHdatW+ewY2dmZlZ724rK2tU547Vi6zVy9uzZOs6J+2r757WOzgIAN+Qs7cSatBecSU3aLs7YPqhvlIFzlgHtxJqr7ndnV68ba+P7nDPeE/XJ3c9fcr4yoE4EgLpVq4GRujJt2jTz8DTShadeWrVqpdjYWPOkww1R19R0i9e+noZm9yzVk597midydTZ7U+Pq/ZjFxcXKzMzUoEGDqj057aVl7eqc+Vqx9Rope7oNAIDK2NpOrI32gjOpTtvFmdsH9YUycO4ycKd2Ynh4uCQpLy9PLVq0MC/Py8tTjx49zGny8/Mttjt//rxOnDhh3v5S9n53bih1Y02+zznzPVEf3P38JectA3eqEwHAEWo1MFJXjTtfX1/5+vqWW+7t7e3SjbeqmEqsfyCbSj0qXOdojnw/anI9OGt51pQzXiu2vkcN+d4GAHfkLO3EhtJ+rMnnuzO2D+obZeCcZeBO7cR27dopPDxcGzduNNeBhYWF2rFjhyZOnChJiomJUUFBgbKzsxUVFSVJ+uSTT1RaWqrevXtb3W91vzu7et1YG9eyM94T9cndz19yvjJwpzoRABzBszZ3dnHjrkxZ4y4mJkaSZeOuTFWNOwAAALg22okA3M3p06e1e/du7d69W9KFuZZ2796tnJwceXh46JFHHtHTTz+tDz/8UHv27NGYMWMUERGhO++8U5LUuXNnDR48WA888IB27typzz77TJMmTdLIkSMVERHhuBMDAABoAOzuMXL69GkdOnTI/LqscRcSEqLWrVubG3dXXXWV2rVrpyeffLLCxt3ixYtVXFxM4w4AAKABoJ0IAL/7/PPPdcstt5hflw1xlZSUpGXLlunxxx/XmTNnNGHCBBUUFKhPnz5av369/Pz8zNu8+eabmjRpkgYMGCBPT08lJibqpZdeqvdzAQAAaGjsDozQuAMAAIA1tBMB4Hf9+vWTYRgVrvfw8NCsWbM0a9asCtOEhIRoxYoVdZE9AAAAt2Z3YITGHQAAAKyhnQgAAAAAcAW1OscIAAAAAAAAAACAMyMwAgAAAAAAAAAA3AaBEQAAAAAAAAAOk5qaKg8PD4u/Tp06mdefO3dOycnJatasmQIDA5WYmKi8vDwH5hiAqyMwAgAAAAAAAMChunTpouPHj5v/Pv30U/O6KVOm6KOPPtKqVau0ZcsWHTt2TEOHDnVgbgG4OrsnXwcAAAAAAACA2tSoUSOFh4eXW37y5EktWbJEK1asUP/+/SVJS5cuVefOnbV9+3ZFR0fXd1YBNAD0GAEAAAAAAADgUAcPHlRERISuvPJKjRo1Sjk5OZKk7OxsFRcXa+DAgea0nTp1UuvWrZWVleWo7AJwcfQYAQAAAAAAAOAwvXv31rJly9SxY0cdP35cM2fO1E033aS9e/cqNzdXPj4+atq0qcU2YWFhys3NrXCfJpNJJpPJ/LqwsFCSVFxcrOLi4irz5OtlVO9knIivp2HxLyiTijh7udhyz9qTTiIwAgAAAAAAAMCB4uPjzf/v3r27evfurTZt2ujtt99W48aNq7XPuXPnaubMmeWWZ2RkyN/fv8rt5/Wq1mGd0uyepY7OgtOhTKxz1nJZt26dTenOnj1r8z4JjAAAAAAAAABwGk2bNtXVV1+tQ4cOadCgQSoqKlJBQYFFr5G8vDyrc5KUmTZtmlJSUsyvCwsL1apVK8XGxiooKKjKPHRNTa/ROTgDX09Ds3uW6snPPWUq9XB0dpwCZWKds5fL3tQ4m9KV9QyzBYERAAAAAAAAAE7j9OnTOnz4sEaPHq2oqCh5e3tr48aNSkxMlCQdOHBAOTk5iomJqXAfvr6+8vX1Lbfc29tb3t7eVebBVOJ8Pw5Xl6nUo0GdT22gTKxz1nKx5Z61J51EYAQAAAAAAACAAz366KMaMmSI2rRpo2PHjumpp56Sl5eX7rnnHgUHB2v8+PFKSUlRSEiIgoKCNHnyZMXExCg6OtrRWQfgogiMAAAAAAAAAHCYH374Qffcc49++eUXNW/eXH369NH27dvVvHlzSdL8+fPl6empxMREmUwmxcXFaeHChQ7ONQBXRmAEAAAAAAAAgMO89dZbla738/NTWlqa0tLS6ilHABo6T0dnAAAAAAAAAAAAoL4QGAEAAAAAAAAAAG6DwAgAAAAAAAAAAHAbBEYAAAAAAAAAAIDbIDACAAAAAAAAAADcBoERAAAAAAAAAADgNgiMAAAAAAAAAAAAt0FgBAAAAAAAAAAAuA0CIwAAAAAAAAAAwG00cnQGAAAAAEdp++e1js4CAAAAAKCeERgBAAAAAAAEiwEAgNtgKC0AAAAAAAAAAOA23KLHCE+9AAAAAAAAAAAAiR4jAAAAAAAAAADAjRAYAQAAAAAAAAAAboPACAAAAAAAAAAAcBsERgAAAAAAAAAAgNsgMAIAAAAAAAAAANwGgREAAAAAAAAAAOA2CIwAAAAAAAAAAAC3QWAEAAAAAAAAAAC4DYcGRtLS0tS2bVv5+fmpd+/e2rlzpyOzAwAORZ0IABdQHwLA76gTAeB31IkAaovDAiMrV65USkqKnnrqKX3xxRe65pprFBcXp/z8fEdlCQAchjoRAC6gPgSA31EnAsDvqBMB1CaHBUZeeOEFPfDAAxo3bpwiIyO1ePFi+fv765///KejsgQADkOdCAAXUB8CwO+oEwHgd9SJAGpTI0cctKioSNnZ2Zo2bZp5maenpwYOHKisrKxy6U0mk0wmk/n1yZMnJUknTpxQcXFxlcdrdP5MLeTa8RqVGjp7tlSNij1VUurh6OxY9csvv9T7MYuLi3X27Fn98ssv8vb2rtY+Gso1UsaZrxVbr5FTp05JkgzDqMvsOAXqxPpT3/eGI+rE2mDtGnHmesXZVVZ21ImW7K0PJdvrxIraC+5UJ3IfUwaSc5cBdaKluqwTy1xaN7pTnVjGme+J+uDu5y85bxlQJ1qqjzrxUg2hTnTW69uRKBPrnL1c6qJOdEhg5Oeff1ZJSYnCwsIsloeFhenbb78tl37u3LmaOXNmueXt2rWrszw6q3sdnYEqXP43R+cAZZz1WrH3Gjl16pSCg4PrJjNOgjqxftXnvdHQ6kRnrVdcQUVlR51oyd76UKJOtBf3MWUgOW8ZUCdaok6sP856T9QXdz9/yTnLgDrREnVi9Tnj9e1olIl1zlwudVEnOiQwYq9p06YpJSXF/Lq0tFQnTpxQs2bN5OHhfBGsulJYWKhWrVrp+++/V1BQkKOz4zQol/IaQpkYhqFTp04pIn5CcegAAD+KSURBVCLC0VlxOtSJ1dcQ7g1HoeyqrzbKjjqxYrbWiVzDlIFEGUgNowyoEytmbzuxIVwPNeXuZeDu5y+5fhlQJ1aM786uf33XBcrEuoZSLvbUiQ4JjFx++eXy8vJSXl6exfK8vDyFh4eXS+/r6ytfX1+LZU2bNq3LLDq1oKAgl75A6wrlUp6rl0lDftrlYtSJ9c/V7w1Houyqr6Zl5w51or31oWR/ncg1TBlIlIHk+mVAnVg7dWIZV78eaoO7l4G7n7/k2mVAnVi7dWJD5MrXd12hTKxrCOVia53okMnXfXx8FBUVpY0bN5qXlZaWauPGjYqJiXFElgDAYagTAeAC6kMA+B11IgD8jjoRQG1z2FBaKSkpSkpKUs+ePdWrVy8tWLBAZ86c0bhx4xyVJQBwGOpEALiA+hAAfkedCAC/o04EUJscFhgZMWKEfvrpJ82YMUO5ubnq0aOH1q9fX24SJfzO19dXTz31VLlugO6OcimPMnE91In1g3uj+ii76qPs7FNX9SHvA2UgUQYSZeBq6rqNyPVAGbj7+UuUgSvhe7P9uL7Lo0ysc8dy8TAMw3B0JgAAAAAAAAAAAOqDQ+YYAQAAAAAAAAAAcAQCIwAAAAAAAAAAwG0QGAEAAAAAAAAAAG6DwAgAAAAAAAAAAHAbBEZc2Jw5c3TDDTfI399fTZs2dXR2HCItLU1t27aVn5+fevfurZ07dzo6Sw61detWDRkyRBEREfLw8ND777/v6CwBTos61D7Ut/ajTnZeR48e1fjx49WuXTs1btxY7du311NPPaWioiJHZ63euGMd6O71GHUSqkLdSN3obnUj9SLcjTvWcda4c71njTvXhQRGXFhRUZGGDRumiRMnOjorDrFy5UqlpKToqaee0hdffKFrrrlGcXFxys/Pd3TWHObMmTO65pprlJaW5uisAE7P3etQe1DfVg91svP69ttvVVpaqldffVX79u3T/PnztXjxYj3xxBOOzlq9cbc6kHqMOglVo26kbnS3upF6Ee7G3eo4a9y93rPGnetCD8MwDEdnAjWzbNkyPfLIIyooKHB0VupV7969df311+uVV16RJJWWlqpVq1aaPHmy/vznPzs4d47n4eGh1atX684773R0VgCn5q51qD2ob2uOOtn5Pffcc1q0aJH+97//OTor9cpd6kDqMUvUSbAVdWOBo7NSp6gbf0e9CHfiLnWcNdR7lXO3upAeI3BJRUVFys7O1sCBA83LPD09NXDgQGVlZTkwZwDQsFDfwl2cPHlSISEhjs4G6gD1GFB91I0NF3UjAHdDvYdLERiBS/r5559VUlKisLAwi+VhYWHKzc11UK4AoOGhvoU7OHTokF5++WU9+OCDjs4K6gD1GFA91I0NG3UjAHdDvYdLERhxMn/+85/l4eFR6d+3337r6GwCgFOiDgXcW3XqgB9//FGDBw/WsGHD9MADDzgo57WDOhCANdSN1I0AGi7qOKD6Gjk6A7D0pz/9SWPHjq00zZVXXlk/mXFil19+uby8vJSXl2exPC8vT+Hh4Q7KFQBHow6tfdS3cCX21gHHjh3TLbfcohtuuEF///vf6zh3dY860DrqMbg76kbqRmuoG4GGgTrOdtR7uBSBESfTvHlzNW/e3NHZcHo+Pj6KiorSxo0bzRMClZaWauPGjZo0aZJjMwfAYahDax/1LVyJPXXAjz/+qFtuuUVRUVFaunSpPD1dvyM1daB11GNwd9SN1I3WUDcCDQN1nO2o93ApAiMuLCcnRydOnFBOTo5KSkq0e/duSVKHDh0UGBjo2MzVg5SUFCUlJalnz57q1auXFixYoDNnzmjcuHGOzprDnD59WocOHTK/PnLkiHbv3q2QkBC1bt3agTkDnI+716H2oL6tHupk5/Xjjz+qX79+atOmjZ5//nn99NNP5nXu8rSYu9WB1GPUSagadSN1o7vVjdSLcDfuVsdZ4+71njVuXRcacFlJSUmGpHJ/mzZtcnTW6s3LL79stG7d2vDx8TF69eplbN++3dFZcqhNmzZZvSaSkpIcnTXA6VCH2of61n7Uyc5r6dKlVt8bd2oau2Md6O71GHUSqkLdSN3obnUj9SLcjTvWcda4c71njTvXhR6GYRi1EWABAAAAAAAAAABwdq4/YCgAAAAAAAAAAICNCIwAAAAAAAAAAAC3QWAEAAAAAAAAAAC4DQIjAAAAAAAAAADAbRAYAQAAAAAAAAAAboPACAAAAAAAAAAAcBsERgAAAAAAAAAAgNsgMAIAAAAAAAAAANwGgREAAAAAAAAAAOA2CIwAAAAAAAAAAAC3QWAEAAAAAAAAAAC4DQIjAAAAAAAAAADAbRAYAQAAAAAAAAAAboPACAAAAAAAAAAAcBsERgAAAAAAAAAAgNsgMAIAAAAAAAAAANwGgREAAAAAAAAAAOA2CIwAAAAAAAAAAAC3QWAEAAAAAAAAAAC4DQIjAAAAAAAAAADAbRAYAQAAAAAAAAAAboPACAAAAAAAAAAAcBsERgAAAAAAAAAAgNsgMAIAAAAAAAAAANwGgREAAAAAAAAAAOA2CIwAAAAAAAAAAAC3QWAEAAAAAAAAAAC4DQIjAAAAAAAAAADAbRAYAQAAAAAAAAAAboPACAAAAAAAAAAAcBsERgAAAAAAAAAAgNsgMIIGJzU1VR4eHo7OhiTnygsAAAAAAAAAgMAILrFixQotWLDA0dkAAAAAAAAAAKBOEBiBBQIjAAAAAAAAAICGjMAIqu3cuXMqLS11dDYAAAAAAAAAALAZgRE3c+rUKT3yyCNq27atfH19FRoaqkGDBumLL75Qv379tHbtWn333Xfy8PCQh4eH2rZtK0navHmzPDw89NZbb2n69Om64oor5O/vr8LCQknSjh07NHjwYAUHB8vf318333yzPvvsM5uPXebgwYNKTExUeHi4/Pz81LJlS40cOVInT56s8bm/8cYbioqKUuPGjRUSEqKRI0fq+++/N6+fNGmSAgMDdfbs2XLb3nPPPQoPD1dJSYl52ccff6ybbrpJAQEBatKkiRISErRv374a5xMAAAAAAAAAUHcaOToDqF//93//p3feeUeTJk1SZGSkfvnlF3366af65ptv9Je//EUnT57UDz/8oPnz50uSAgMDLbafPXu2fHx89Oijj8pkMsnHx0effPKJ4uPjFRUVpaeeekqenp5aunSp+vfvr//85z/q1atXlce+7rrrVFRUpLi4OJlMJk2ePFnh4eH68ccftWbNGhUUFCg4OLja5z1nzhw9+eSTGj58uO6//3799NNPevnll9W3b199+eWXatq0qUaMGKG0tDStXbtWw4YNM2979uxZffTRRxo7dqy8vLwkSa+//rqSkpIUFxenv/71rzp79qwWLVqkPn366MsvvzQHlAAAAAAAAAAAzsXDMAzD0ZlA/WnatKnuu+8+vfLKK1bX33bbbdq7d6+OHj1qsXzz5s265ZZbdOWVV2rv3r1q3LixJMkwDHXs2FFXXnmlPv74Y3l4eEiSfvvtN3Xp0kUdOnRQRkaGTcfevXu3rr32Wq1atUp33313tc8xNTVVM2fOVNml/d1336l9+/aaNWuWnnjiCXO6vXv36tprr9XMmTP1xBNPyDAMtWrVStHR0XrnnXfM6VatWqXhw4dr69atuummm3T69Gm1atVKw4YN09///ndzury8PHXs2FHDhw83L780LwAAAAAAAAAAx2IoLTfTtGlT7dixQ8eOHavW9klJSeagiHQhmHHw4EHde++9+uWXX/Tzzz/r559/1pkzZzRgwABt3brVPA9JVccu6xGSnp5udTir6nrvvfdUWlqq4cOHm/P3888/Kzw8XFdddZU2bdokSfLw8NCwYcO0bt06nT592rz9ypUrdcUVV6hPnz6SpMzMTBUUFOiee+6x2J+Xl5d69+5t3h8AAAAAAAAAwPkQGHEz8+bN0969e9WqVSv16tVLqamp+t///mfz9u3atbN4ffDgQUkXAibNmze3+HvttddkMpnM84NUdex27dopJSVFr732mi6//HLFxcUpLS2txvOLHDx4UIZh6KqrriqXx2+++Ub5+fnmtCNGjNBvv/2mDz/8UJJ0+vRprVu3TsOGDTP3hik75/79+5fbX0ZGhsX+AAAAAAAAAADOhTlG3Mzw4cN10003afXq1crIyNBzzz2nv/71r3rvvfcUHx9f5fYX9xaRZO4N8txzz6lHjx5Wtymbp8SWY//tb3/T2LFj9cEHHygjI0MPP/yw5s6dq+3bt6tly5bVOufS0lJ5eHjo448/Ns8RYi1/khQdHa22bdvq7bff1r333quPPvpIv/32m0aMGFHunF9//XWFh4eX21+jRtxWAAAAAAAAAOCs+AXXDbVo0UIPPfSQHnroIeXn5+u6667TnDlzFB8fb+4VYav27dtLkoKCgjRw4MAaHbtMt27d1K1bN02fPl3btm3TjTfeqMWLF+vpp5+270QvyqNhGGrXrp2uvvrqKtMPHz5cL774ogoLC7Vy5Uq1bdtW0dHRFvuTpNDQUJvOGQAAAAAAAADgPBhKy42UlJSUG5YqNDRUERERMplMkqSAgAC7hq6KiopS+/bt9fzzz1vMy1Hmp59+svnYhYWFOn/+vEWabt26ydPT05ymOoYOHSovLy+rk6AbhqFffvnFYtmIESNkMpm0fPlyrV+/XsOHD7dYHxcXp6CgID3zzDMqLi4ud7yycwYAAAAAAAAAOB96jLiRU6dOqWXLlrr77rt1zTXXKDAwUBs2bNCuXbv0t7/9TdKFQMfKlSuVkpKi66+/XoGBgRoyZEiF+/T09NRrr72m+Ph4denSRePGjdMVV1yhH3/8UZs2bVJQUJA++ugjm479ySefaNKkSRo2bJiuvvpqnT9/Xq+//rq8vLyUmJhY7fNu3769nn76aU2bNk1Hjx7VnXfeqSZNmujIkSNavXq1JkyYoEcffdSc/rrrrlOHDh30l7/8RSaTyWIYLelC75hFixZp9OjRuu666zRy5Eg1b95cOTk5Wrt2rW688Ua98sor1c4vAAAAAAAAAKDuEBhxI/7+/6+9+4/yqr7vxP+cwWFw0IGiMsOsIzGaBKkiFiNMNnVRgRE5Jm44ezRaMR4rGwqe1UkTQ44afsSYumk1aVHbXSv21Gmz9qithAAjrrhZ8RcpR8WEE62VpDJDGxdGoI4jM98/+uVTRn7NwOcD0c/jcc4cvPe+P6/7uq8Z/7nPcz+3Jr/3e7+XVatW5ZFHHklPT09OP/303HPPPZkzZ06S5Pd+7/eyfv36PPDAA7nrrrsyevToAwYjSTJ58uSsXbs2ixcvzp/8yZ9k+/btqa+vz8SJE/Nf/+t/7fe5zz777DQ3N+fxxx/PP/3TP6WmpiZnn312fvSjH/X5KqtD8fWvfz2f/OQnc9ddd2XhwoVJksbGxkybNi2f+9zn9lp/+eWX5/bbb8/pp5+e3/qt39rr+JVXXpmGhoZ85zvfyX//7/89XV1d+Q//4T/kt3/7t3PttdceVq8AAAAAAJRORe8Hv1sIAAAAAADgI8o7RgAAAAAAgLLhq7T40Ni2bVv+9V//9YBr6uvrj1A3AAAAAAB8GPkqLT40vvSlL+XBBx884Bp/zgAAAAAAHIhghA+NV199NW+99dYB10yZMuUIdQMAAAAAwIeRYAQAAAAAACgbXr4OAAAAAACUjQ/ly9d7enry1ltv5fjjj09FRcXRbgcogd7e3rzzzjtpaGhIZaUMFwAAAAAojg9lMPLWW2+lsbHxaLcBHAG/+MUvcvLJJx/tNgAAAACAj4gPZTBy/PHHJ/m3G6a1tbVH9Nzd3d1ZtWpVpk2blqqqqiN67sOl9yPvw9p3cvR77+zsTGNjY+H/dwAAAACAYvhQBiO7vz6rtrb2qAQjNTU1qa2t/VDe6Nb7kfVh7Tv59end1+UBAAAAAMXki/sBAAAAAICyIRgBAAAAAADKhmAEAAAAAAAoG4IRAAAAAACgbAhGAAAAAACAsiEYAQAAAAAAyoZgBAAAAAAAKBuCEQAAAAAAoGwIRgAAAAAAgLJxzNFu4Ej42Nd/WLRa1YN6c+d5yZkLVqZrV0XR6u7LP35nRknrAwAAAABAufHECAAAAAAAUDbK4okR+Cgq5pNQ+1Kqp6M8CQUAAAAAHE2eGAEAAAAAAMqGYAQAAAAAACgbghEAAAAAAKBsCEYAAAAAAICyIRgBAAAAAADKhmAEAAAAAAAoG8cc7Qb4aPnY139YkrrVg3pz53nJmQtWpmtXRdHr/+N3ZhS9JgAAAAAAv34G9MTIvffem3HjxqW2tja1tbVpamrKj370o8LxyZMnp6Kios/Pl7/85T41Nm3alBkzZqSmpiYjR47MV7/61bz//vvFuRoAAAAAAIADGNATIyeffHK+853v5BOf+ER6e3vz4IMP5vOf/3z+/u//Pr/5m7+ZJLn++uuzaNGiwmdqamoK/71r167MmDEj9fX1eeaZZ7J58+bMmjUrVVVV+fa3v12kSwIAAAAAANi3AQUjl156aZ/t22+/Pffee2+effbZQjBSU1OT+vr6fX5+1apVefXVV/PEE0+krq4u48ePz+LFi3PzzTdnwYIFGTx48CFeBgAAAAAAwMEd8jtGdu3alYcffjg7duxIU1NTYf9DDz2Uv/zLv0x9fX0uvfTS3HrrrYWnRtauXZuzzjordXV1hfXNzc2ZM2dONmzYkHPOOWef5+rq6kpXV1dhu7OzM0nS3d2d7u7ug/ZaPaj3kK5xn7Uqe/v8W0r9ubZDqVfsunsq5qz71C3x3Es1k1LOvFSzLtQv0cz7O4tS/p0CAAAAAOWrore3d0B3PV9++eU0NTXl3XffzXHHHZfW1tZccsklSZI/+7M/y+jRo9PQ0JCXXnopN998c84777w88sgjSZLZs2fnzTffzMqVKwv1du7cmaFDh2b58uWZPn36Ps+5YMGCLFy4cK/9ra2tfb6qC/jo2LlzZ6688sps27YttbW1R7sdAAAAAOAjYsBPjHzqU5/K+vXrs23btvzN3/xNrrnmmqxZsyZjx47N7NmzC+vOOuusjBo1KhdddFFef/31nHbaaYfc5Pz589PS0lLY7uzsTGNjY6ZNm9avG6ZnLlh50DX9VV3Zm8Xn9uTWFyvT1VNRtLr78sqC5qLW6+7uTltbW6ZOnZqqqqqi1t6tmLPeU6nnXuxZ71bKmZdq1ruVaub9nfXuJ8MAAAAAAIppwMHI4MGDc/rppydJJkyYkBdeeCHf+9738qd/+qd7rZ04cWKS5LXXXstpp52W+vr6PP/8833WdHR0JMl+30uSJNXV1amurt5rf1VVVb9uNnftKv6N9K6eipLU3VOpwov+zu1QlHompZp7qeaxZ/1in6PUsy6cp8gz7+8cSv07AQAAAADKU+XhFujp6enz/o89rV+/PkkyatSoJElTU1NefvnlbNmypbCmra0ttbW1GTt27OG2AgAAAAAAcEADemJk/vz5mT59ek455ZS88847aW1tzVNPPZWVK1fm9ddfL7xv5IQTTshLL72Um266Keeff37GjRuXJJk2bVrGjh2bq6++OnfeeWfa29tzyy23ZO7cuft8IgQAAAAAAKCYBhSMbNmyJbNmzcrmzZszbNiwjBs3LitXrszUqVPzi1/8Ik888UTuvvvu7NixI42NjZk5c2ZuueWWwucHDRqUZcuWZc6cOWlqasrQoUNzzTXXZNGiRUW/MAAAAAAAgA8aUDBy//337/dYY2Nj1qxZc9Aao0ePzvLlywdyWgAAAAAAgKI47HeMAAAAAAAAfFgIRgAAAAAAgLIhGAEAAAAAAMqGYAQAAAAAACgbghEAAAAAAKBsCEYAAAAAAICyIRgBAAAAAADKhmAEAAAAAAAoG4IRAAAAAACgbAhGAAAAAACAsiEYAQAAAAAAyoZgBAAAAAAAKBuCEQAAAAAAoGwIRgAAAAAAgLIhGAEAAAAAAMqGYAQAAAAAACgbghEAAAAAAKBsCEYAAAAAAICyIRgBAAAAAADKhmAEAAAAAAAoG4IRAAAAAACgbAwoGLn33nszbty41NbWpra2Nk1NTfnRj35UOP7uu+9m7ty5OeGEE3Lcccdl5syZ6ejo6FNj06ZNmTFjRmpqajJy5Mh89atfzfvvv1+cqwEAAAAAADiAAQUjJ598cr7zne9k3bp1efHFF3PhhRfm85//fDZs2JAkuemmm/L444/n4Ycfzpo1a/LWW2/lC1/4QuHzu3btyowZM/Lee+/lmWeeyYMPPpilS5fmtttuK+5VAQAAAAAA7MMxA1l86aWX9tm+/fbbc++99+bZZ5/NySefnPvvvz+tra258MILkyQPPPBAzjjjjDz77LOZNGlSVq1alVdffTVPPPFE6urqMn78+CxevDg333xzFixYkMGDBxfvygAAAAAAAD5gQMHInnbt2pWHH344O3bsSFNTU9atW5fu7u5MmTKlsGbMmDE55ZRTsnbt2kyaNClr167NWWedlbq6usKa5ubmzJkzJxs2bMg555yzz3N1dXWlq6ursN3Z2Zkk6e7uTnd390F7rR7Ue6iXuXetyt4+/5ZSf67tUOoVu+6eijnrPnVLPPdSzaSUMy/VrAv1SzTz/s6ilH+nAAAAAED5GnAw8vLLL6epqSnvvvtujjvuuDz66KMZO3Zs1q9fn8GDB2f48OF91tfV1aW9vT1J0t7e3icU2X1897H9ueOOO7Jw4cK99q9atSo1NTUH7fnO8w66ZMAWn9tT/KIfsHz58pLUbWtrK0ndpDSz3lOp5l6qWe9WipmXeta7FXvm/Z31zp07i3peAAAAAIDkEIKRT33qU1m/fn22bduWv/mbv8k111yTNWvWlKK3gvnz56elpaWw3dnZmcbGxkybNi21tbUH/fyZC1YWrZfqyt4sPrcnt75Yma6eiqLV3ZdXFjQXtV53d3fa2toyderUVFVVFbX2bsWc9Z5KPfdiz3q3Us68VLPerVQz7++sdz8ZBgAAAABQTAMORgYPHpzTTz89STJhwoS88MIL+d73vpfLL7887733XrZu3drnqZGOjo7U19cnSerr6/P888/3qdfR0VE4tj/V1dWprq7ea39VVVW/bjZ37Sr+jfSunoqS1N1TqcKL/s7tUJR6JqWae6nmsWf9Yp+j1LMunKfIM+/vHEr9OwEAAAAAylPl4Rbo6elJV1dXJkyYkKqqqqxevbpwbOPGjdm0aVOampqSJE1NTXn55ZezZcuWwpq2trbU1tZm7Nixh9sKAAAAAADAAQ3oiZH58+dn+vTpOeWUU/LOO++ktbU1Tz31VFauXJlhw4bluuuuS0tLS0aMGJHa2trccMMNaWpqyqRJk5Ik06ZNy9ixY3P11VfnzjvvTHt7e2655ZbMnTt3n0+EAAAAAAAAFNOAgpEtW7Zk1qxZ2bx5c4YNG5Zx48Zl5cqVmTp1apLkrrvuSmVlZWbOnJmurq40NzfnnnvuKXx+0KBBWbZsWebMmZOmpqYMHTo011xzTRYtWlTcqwIAAAAAANiHAQUj999//wGPDxkyJEuWLMmSJUv2u2b06NFZvnz5QE4LAAAAAABQFIf9jhEAAAAAAIAPC8EIAAAAAABQNgQjAAAAAABA2RCMAAAAAAAAZUMwAgAAAAAAlA3BCAAAAAAAUDYEIwAAAAAAQNkQjAAAAAAAAGVDMAIAAAAAAJQNwQgAAAAAAFA2BCMAAAAAAEDZEIwAAAAAAABlQzACAAAAAACUDcEIAAAAAABQNgQjAAAAAABA2RCMAAAAAAAAZUMwAgAAAAAAlA3BCAAAAAAAUDYEIwAAAAAAQNkQjAAAAAAAAGVjQMHIHXfckU9/+tM5/vjjM3LkyFx22WXZuHFjnzWTJ09ORUVFn58vf/nLfdZs2rQpM2bMSE1NTUaOHJmvfvWref/99w//agAAAAAAAA7gmIEsXrNmTebOnZtPf/rTef/99/ONb3wj06ZNy6uvvpqhQ4cW1l1//fVZtGhRYbumpqbw37t27cqMGTNSX1+fZ555Jps3b86sWbNSVVWVb3/720W4JAAAAAAAgH0bUDCyYsWKPttLly7NyJEjs27dupx//vmF/TU1Namvr99njVWrVuXVV1/NE088kbq6uowfPz6LFy/OzTffnAULFmTw4MGHcBkAAAAAAAAHd1jvGNm2bVuSZMSIEX32P/TQQznxxBNz5plnZv78+dm5c2fh2Nq1a3PWWWelrq6usK+5uTmdnZ3ZsGHD4bQDAAAAAABwQAN6YmRPPT09ufHGG/Mf/+N/zJlnnlnYf+WVV2b06NFpaGjISy+9lJtvvjkbN27MI488kiRpb2/vE4okKWy3t7fv81xdXV3p6uoqbHd2diZJuru7093dfdBeqwf1DuziDlSrsrfPv6XUn2s7lHrFrrunYs66T90Sz71UMynlzEs160L9Es28v7Mo5d8pAAAAAFC+Knp7ew/pruecOXPyox/9KD/+8Y9z8skn73fdk08+mYsuuiivvfZaTjvttMyePTtvvvlmVq5cWVizc+fODB06NMuXL8/06dP3qrFgwYIsXLhwr/2tra193l8CfHTs3LkzV155ZbZt25ba2tqj3Q4AAAAA8BFxSE+MzJs3L8uWLcvTTz99wFAkSSZOnJgkhWCkvr4+zz//fJ81HR0dSbLf95LMnz8/LS0the3Ozs40NjZm2rRp/bpheuaClQdd01/Vlb1ZfG5Pbn2xMl09FUWruy+vLGguar3u7u60tbVl6tSpqaqqKmrt3Yo56z2Veu7FnvVupZx5qWa9W6lm3t9Z734yDAAAAACgmAYUjPT29uaGG27Io48+mqeeeiqnnnrqQT+zfv36JMmoUaOSJE1NTbn99tuzZcuWjBw5MknS1taW2trajB07dp81qqurU11dvdf+qqqqft1s7tpV/BvpXT0VJam7p1KFF/2d26Eo9UxKNfdSzWPP+sU+R6lnXThPkWfe3zmU+ncCAAAAAJSnAQUjc+fOTWtra/72b/82xx9/fOGdIMOGDcuxxx6b119/Pa2trbnkkktywgkn5KWXXspNN92U888/P+PGjUuSTJs2LWPHjs3VV1+dO++8M+3t7bnlllsyd+7cfYYfAAAAAAAAxVI5kMX33ntvtm3blsmTJ2fUqFGFnx/84AdJksGDB+eJJ57ItGnTMmbMmHzlK1/JzJkz8/jjjxdqDBo0KMuWLcugQYPS1NSU3/md38msWbOyaNGi4l4ZAAAAAADABwz4q7QOpLGxMWvWrDlondGjR2f58uUDOTUAAAAAAMBhG9ATIwAAAAAAAB9mghEAAAAAAKBsCEYAAAAAAICyIRgBAAAAAADKhmAEAAAAAAAoG4IRAAAAAACgbAhGAAAAAACAsiEYAQAAAAAAyoZgBAAAAAAAKBuCEQAAAAAAoGwIRgAAAAAAgLIhGAEAAAAAAMqGYAQAAAAAACgbghEAAAAAAKBsCEYAAAAAAICyIRgBAAAAAADKhmAEAAAAAAAoG4IRAAAAAACgbAhGAAAAAACAsiEYAQAAAAAAyoZgBAAAAAAAKBsDCkbuuOOOfPrTn87xxx+fkSNH5rLLLsvGjRv7rHn33Xczd+7cnHDCCTnuuOMyc+bMdHR09FmzadOmzJgxIzU1NRk5cmS++tWv5v333z/8qwEAAAAAADiAAQUja9asydy5c/Pss8+mra0t3d3dmTZtWnbs2FFYc9NNN+Xxxx/Pww8/nDVr1uStt97KF77whcLxXbt2ZcaMGXnvvffyzDPP5MEHH8zSpUtz2223Fe+qAAAAAAAA9uGYgSxesWJFn+2lS5dm5MiRWbduXc4///xs27Yt999/f1pbW3PhhRcmSR544IGcccYZefbZZzNp0qSsWrUqr776ap544onU1dVl/PjxWbx4cW6++eYsWLAggwcPLt7VAQAAAAAA7GFAwcgHbdu2LUkyYsSIJMm6devS3d2dKVOmFNaMGTMmp5xyStauXZtJkyZl7dq1Oeuss1JXV1dY09zcnDlz5mTDhg0555xz9jpPV1dXurq6CtudnZ1Jku7u7nR3dx+0z+pBvYd2gfuqVdnb599S6s+1HUq9YtfdUzFn3aduiedeqpmUcualmnWhfolm3t9ZlPLvFAAAAAAoXxW9vb2HdNezp6cnn/vc57J169b8+Mc/TpK0trbm2muv7RNiJMl5552XCy64IH/wB3+Q2bNn580338zKlSsLx3fu3JmhQ4dm+fLlmT59+l7nWrBgQRYuXLjX/tbW1tTU1BxK+8CvuZ07d+bKK6/Mtm3bUltbe7TbAQAAAAA+Ig75iZG5c+fmlVdeKYQipTR//vy0tLQUtjs7O9PY2Jhp06b164bpmQtWHnRNf1VX9mbxuT259cXKdPVUFK3uvryyoLmo9bq7u9PW1papU6emqqqqqLV3K+as91TquRd71ruVcualmvVupZp5f2e9+8kwAAAAAIBiOqRgZN68eVm2bFmefvrpnHzyyYX99fX1ee+997J169YMHz68sL+joyP19fWFNc8//3yfeh0dHYVj+1JdXZ3q6uq99ldVVfXrZnPXruLfSO/qqShJ3T2VKrzo79wORalnUqq5l2oee9Yv9jlKPevCeYo88/7OodS/EwAAAACgPFUOZHFvb2/mzZuXRx99NE8++WROPfXUPscnTJiQqqqqrF69urBv48aN2bRpU5qampIkTU1Nefnll7Nly5bCmra2ttTW1mbs2LGHcy0AAAAAAAAHNKAnRubOnZvW1tb87d/+bY4//vi0t7cnSYYNG5Zjjz02w4YNy3XXXZeWlpaMGDEitbW1ueGGG9LU1JRJkyYlSaZNm5axY8fm6quvzp133pn29vbccsstmTt37j6fCgEAAAAAACiWAQUj9957b5Jk8uTJffY/8MAD+dKXvpQkueuuu1JZWZmZM2emq6srzc3NueeeewprBw0alGXLlmXOnDlpamrK0KFDc80112TRokWHdyUAAAAAAAAHMaBgpLe396BrhgwZkiVLlmTJkiX7XTN69OgsX758IKcGAAAAAAA4bAN6xwgAAAAAAMCHmWAEAAAAAAAoG4IRAAAAAACgbAhGAAAAAACAsiEYAQAAAAAAyoZgBAAAAAAAKBuCEQAAAAAAoGwIRgAAAAAAgLIhGAEAAAAAAMqGYAQAAAAAACgbghEAAAAAAKBsCEYAAAAAAICyIRgBAAAAAADKhmAEAAAAAAAoG4IRAAAAAACgbAhGAAAAAACAsiEYAQAAAAAAyoZgBAAAAAAAKBuCEQAAAAAAoGwIRgAAAAAAgLIhGAEAAAAAAMrGgIORp59+OpdeemkaGhpSUVGRxx57rM/xL33pS6moqOjzc/HFF/dZ8/bbb+eqq65KbW1thg8fnuuuuy7bt28/rAsBAAAAAAA4mAEHIzt27MjZZ5+dJUuW7HfNxRdfnM2bNxd+/uqv/qrP8auuuiobNmxIW1tbli1blqeffjqzZ88eePcAAAAAAAADcMxAPzB9+vRMnz79gGuqq6tTX1+/z2M//elPs2LFirzwwgs599xzkyR//Md/nEsuuSTf/e5309DQMNCWAAAAAAAA+mXAwUh/PPXUUxk5cmR+4zd+IxdeeGG+9a1v5YQTTkiSrF27NsOHDy+EIkkyZcqUVFZW5rnnnst//s//ea96XV1d6erqKmx3dnYmSbq7u9Pd3X3QfqoH9R7uJf17rcrePv+WUn+u7VDqFbvunoo56z51Szz3Us2klDMv1awL9Us08/7OopR/pwAAAABA+aro7e095LueFRUVefTRR3PZZZcV9v31X/91ampqcuqpp+b111/PN77xjRx33HFZu3ZtBg0alG9/+9t58MEHs3Hjxj61Ro4cmYULF2bOnDl7nWfBggVZuHDhXvtbW1tTU1NzqO0Dv8Z27tyZK6+8Mtu2bUttbe3RbgcAAAAA+Igo+hMjV1xxReG/zzrrrIwbNy6nnXZannrqqVx00UWHVHP+/PlpaWkpbHd2dqaxsTHTpk3r1w3TMxesPKTz7kt1ZW8Wn9uTW1+sTFdPRdHq7ssrC5qLWq+7uzttbW2ZOnVqqqqqilp7t2LOek+lnnuxZ71bKWdeqlnvVqqZ93fWu58MAwAAAAAoppJ8ldaePv7xj+fEE0/Ma6+9losuuij19fXZsmVLnzXvv/9+3n777f2+l6S6ujrV1dV77a+qqurXzeauXcW/kd7VU1GSunsqVXjR37kdilLPpFRzL9U89qxf7HOUetaF8xR55v2dQ6l/JwAAAABAeaos9Ql++ctf5le/+lVGjRqVJGlqasrWrVuzbt26wponn3wyPT09mThxYqnbAQAAAAAAytiAnxjZvn17XnvttcL2G2+8kfXr12fEiBEZMWJEFi5cmJkzZ6a+vj6vv/56vva1r+X0009Pc/O/fX3OGWeckYsvvjjXX3997rvvvnR3d2fevHm54oor0tDQULwrAwAAAAAA+IABPzHy4osv5pxzzsk555yTJGlpack555yT2267LYMGDcpLL72Uz33uc/nkJz+Z6667LhMmTMj/+T//p89XYT300EMZM2ZMLrroolxyySX57Gc/mz/7sz8r3lUBAAAAAADsw4CfGJk8eXJ6e3v3e3zlyoO/EHrEiBFpbW0d6KkBAAAAAAAOS8nfMQIAAAAAAPDrQjACAAAAAACUDcEIAAAAAABQNgQjAAAAAABA2RCMAAAAAAAAZUMwAgAAAAAAlA3BCAAAAAAAUDYEIwAAAAAAQNkQjAAAAAAAAGVDMAIAAAAAAJQNwQgAAAAAAFA2BCMAAAAAAEDZEIwAAAAAAABlQzACAAAAAACUDcEIAAAAAABQNgQjAAAAAABA2RCMAAAAAAAAZUMwAgAAAAAAlA3BCAAAAAAAUDYEIwAAAAAAQNkYcDDy9NNP59JLL01DQ0MqKiry2GOP9Tne29ub2267LaNGjcqxxx6bKVOm5Oc//3mfNW+//Xauuuqq1NbWZvjw4bnuuuuyffv2w7oQAAAAAACAgxlwMLJjx46cffbZWbJkyT6P33nnnfn+97+f++67L88991yGDh2a5ubmvPvuu4U1V111VTZs2JC2trYsW7YsTz/9dGbPnn3oVwEAAAAAANAPxwz0A9OnT8/06dP3eay3tzd33313brnllnz+859PkvzFX/xF6urq8thjj+WKK67IT3/606xYsSIvvPBCzj333CTJH//xH+eSSy7Jd7/73TQ0NBzG5QAAAAAAAOxfUd8x8sYbb6S9vT1Tpkwp7Bs2bFgmTpyYtWvXJknWrl2b4cOHF0KRJJkyZUoqKyvz3HPPFbMdAAAAAACAPgb8xMiBtLe3J0nq6ur67K+rqysca29vz8iRI/s2ccwxGTFiRGHNB3V1daWrq6uw3dnZmSTp7u5Od3f3QfuqHtTb/4s4WK3K3j7/llJ/ru1Q6hW77p6KOes+dUs891LNpJQzL9WsC/VLNPP+zqKUf6cAAAAAQPkqajBSKnfccUcWLly41/5Vq1alpqbmoJ+/87zi97T43J7iF/2A5cuXl6RuW1tbSeompZn1nko191LNerdSzLzUs96t2DPv76x37txZ1PMCAAAAACRFDkbq6+uTJB0dHRk1alRhf0dHR8aPH19Ys2XLlj6fe//99/P2228XPv9B8+fPT0tLS2G7s7MzjY2NmTZtWmpraw/a15kLVg70UvarurI3i8/tya0vVqarp6JodffllQXNRa3X3d2dtra2TJ06NVVVVUWtvVsxZ72nUs+92LPerZQzL9WsdyvVzPs7691PhgEAAAAAFFNRg5FTTz019fX1Wb16dSEI6ezszHPPPZc5c+YkSZqamrJ169asW7cuEyZMSJI8+eST6enpycSJE/dZt7q6OtXV1Xvtr6qq6tfN5q5dxb+R3tVTUZK6eypVeNHfuR2KUs+kVHMv1Tz2rF/sc5R61oXzFHnm/Z1DqX8nAAAAAEB5GnAwsn379rz22muF7TfeeCPr16/PiBEjcsopp+TGG2/Mt771rXziE5/IqaeemltvvTUNDQ257LLLkiRnnHFGLr744lx//fW577770t3dnXnz5uWKK65IQ0ND0S4MAAAAAADggwYcjLz44ou54IILCtu7v+LqmmuuydKlS/O1r30tO3bsyOzZs7N169Z89rOfzYoVKzJkyJDCZx566KHMmzcvF110USorKzNz5sx8//vfL8LlAAAAAAAA7N+Ag5HJkyent7d3v8crKiqyaNGiLFq0aL9rRowYkdbW1oGeGgAAAAAA4LBUHu0GAAAAAAAAjhTBCAAAAAAAUDYEIwAAAAAAQNkQjAAAAAAAAGVDMAIAAAAAAJQNwQgAAAAAAFA2BCMAAAAAAEDZEIwAAAAAAABlQzACAAAAAACUDcEIAAAAAABQNgQjAAAAAABA2RCMAAAAAAAAZUMwAgAAAAAAlA3BCAAAAAAAUDYEIwAAAAAAQNkQjAAAAAAAAGVDMAIAAAAAAJQNwQgAAAAAAFA2BCMAAAAAAEDZEIwAAAAAAABlQzACAAAAAACUjaIHIwsWLEhFRUWfnzFjxhSOv/vuu5k7d25OOOGEHHfccZk5c2Y6OjqK3QYAAAAAAMBeSvLEyG/+5m9m8+bNhZ8f//jHhWM33XRTHn/88Tz88MNZs2ZN3nrrrXzhC18oRRsAAAAAAAB9HFOSoscck/r6+r32b9u2Lffff39aW1tz4YUXJkkeeOCBnHHGGXn22WczadKkUrQDAAAAAACQpERPjPz85z9PQ0NDPv7xj+eqq67Kpk2bkiTr1q1Ld3d3pkyZUlg7ZsyYnHLKKVm7dm0pWgEAAAAAACgo+hMjEydOzNKlS/OpT30qmzdvzsKFC/Pbv/3beeWVV9Le3p7Bgwdn+PDhfT5TV1eX9vb2/dbs6upKV1dXYbuzszNJ0t3dne7u7oP2VD2o99AuZl+1Knv7/FtK/bm2Q6lX7Lp7Kuas+9Qt8dxLNZNSzrxUsy7UL9HM+zuLUv6dAgAAAADlq6K3t7ekd1e3bt2a0aNH54/+6I9y7LHH5tprr+0TciTJeeedlwsuuCB/8Ad/sM8aCxYsyMKFC/fa39rampqampL0DRxdO3fuzJVXXplt27altrb2aLcDAAAAAHxElOQdI3saPnx4PvnJT+a1117L1KlT895772Xr1q19nhrp6OjY5ztJdps/f35aWloK252dnWlsbMy0adP6dcP0zAUrD+sa9lRd2ZvF5/bk1hcr09VTUbS6+/LKguai1uvu7k5bW1umTp2aqqqqotberZiz3lOp517sWe9WypmXata7lWrm/Z317ifDAAAAAACKqeTByPbt2/P666/n6quvzoQJE1JVVZXVq1dn5syZSZKNGzdm06ZNaWpq2m+N6urqVFdX77W/qqqqXzebu3YV/0Z6V09FSeruqVThRX/ndihKPZNSzb1U89izfrHPUepZF85T5Jn3dw6l/p0AAAAAAOWp6MHI7//+7+fSSy/N6NGj89Zbb+Wb3/xmBg0alC9+8YsZNmxYrrvuurS0tGTEiBGpra3NDTfckKampkyaNKnYrQAAAAAAAPRR9GDkl7/8Zb74xS/mV7/6VU466aR89rOfzbPPPpuTTjopSXLXXXelsrIyM2fOTFdXV5qbm3PPPfcUuw0AAAAAAIC9FD0Y+eu//usDHh8yZEiWLFmSJUuWFPvUAAAAAAAAB1R5tBsAAAAAAAA4UgQjAAAAAABA2RCMAAAAAAAAZUMwAgAAAAAAlA3BCAAAAAAAUDYEIwAAAAAAQNkQjAAAAAAAAGVDMAIAAAAAAJQNwQgAAAAAAFA2BCMAAAAAAEDZEIwAAAAAAABlQzACAAAAAACUDcEIAAAAAABQNgQjAAAAAABA2RCMAAAAAAAAZUMwAgAAAAAAlA3BCAAAAAAAUDYEIwAAAAAAQNkQjAAAAAAAAGVDMAIAAAAAAJQNwQgAAAAAAFA2jmowsmTJknzsYx/LkCFDMnHixDz//PNHsx0AAAAAAOAj7qgFIz/4wQ/S0tKSb37zm/nJT36Ss88+O83NzdmyZcvRagkAAAAAAPiIO2rByB/90R/l+uuvz7XXXpuxY8fmvvvuS01NTf78z//8aLUEAAAAAAB8xB1zNE763nvvZd26dZk/f35hX2VlZaZMmZK1a9futb6rqytdXV2F7W3btiVJ3n777XR3dx/0fMe8v6MIXf//tXp6s3NnT47prsyunoqi1d2XX/3qV0Wt193dnZ07d+ZXv/pVqqqqilp7t2LOuk/dEs+92LPerZQzL9WsC/VLNPP+zvqdd95JkvT29hbt3AAAAAAARyUY+Zd/+Zfs2rUrdXV1ffbX1dXlZz/72V7r77jjjixcuHCv/aeeemrJejyQK4/QeU78wyN0og+JUs7drPetFDMf6KzfeeedDBs2rASdAAAAAADl6KgEIwM1f/78tLS0FLZ7enry9ttv54QTTkhFRWmf2vigzs7ONDY25he/+EVqa2uP6LkPl96PvA9r38nR7723tzfvvPNOGhoajvi5AQAAAICPrqMSjJx44okZNGhQOjo6+uzv6OhIfX39Xuurq6tTXV3dZ9/w4cNL2eJB1dbWfuhudO+m9yPvw9p3cnR796QIAAAAAFBsR+Xl64MHD86ECROyevXqwr6enp6sXr06TU1NR6MlAAAAAACgDBy1r9JqaWnJNddck3PPPTfnnXde7r777uzYsSPXXnvt0WoJAAAAAAD4iDtqwcjll1+ef/7nf85tt92W9vb2jB8/PitWrNjrhey/bqqrq/PNb35zr6/2+jDQ+5H3Ye07+XD3DgAAAACwPxW9vb29R7sJAAAAAACAI+GovGMEAAAAAADgaBCMAAAAAAAAZUMwAgAAAAAAlA3BCAAAAAAAUDYEI/1w++235zOf+UxqamoyfPjwfn2mt7c3t912W0aNGpVjjz02U6ZMyc9//vPSNroPb7/9dq666qrU1tZm+PDhue6667J9+/YDfmby5MmpqKjo8/PlL3+55L0uWbIkH/vYxzJkyJBMnDgxzz///AHXP/zwwxkzZkyGDBmSs846K8uXLy95j/sykL6XLl2612yHDBlyBLv9d08//XQuvfTSNDQ0pKKiIo899thBP/PUU0/lt37rt1JdXZ3TTz89S5cuLXmfAAAAAADFJBjph/feey//5b/8l8yZM6ffn7nzzjvz/e9/P/fdd1+ee+65DB06NM3NzXn33XdL2OnerrrqqmzYsCFtbW1ZtmxZnn766cyePfugn7v++uuzefPmws+dd95Z0j5/8IMfpKWlJd/85jfzk5/8JGeffXaam5uzZcuWfa5/5pln8sUvfjHXXXdd/v7v/z6XXXZZLrvssrzyyisl7fNw+06S2traPrN98803j2DH/27Hjh05++yzs2TJkn6tf+ONNzJjxoxccMEFWb9+fW688cb87u/+blauXFniTgEAAAAAiqeit7e392g38WGxdOnS3Hjjjdm6desB1/X29qahoSFf+cpX8vu///tJkm3btqWuri5Lly7NFVdccQS6TX76059m7NixeeGFF3LuuecmSVasWJFLLrkkv/zlL9PQ0LDPz02ePDnjx4/P3XfffUT6TJKJEyfm05/+dP7kT/4kSdLT05PGxsbccMMN+frXv77X+ssvvzw7duzIsmXLCvsmTZqU8ePH57777vu17bu/f0NHWkVFRR599NFcdtll+11z880354c//GGf8OmKK67I1q1bs2LFiiPQJQAAAADA4fPESAm88cYbaW9vz5QpUwr7hg0blokTJ2bt2rVHrI+1a9dm+PDhhVAkSaZMmZLKyso899xzB/zsQw89lBNPPDFnnnlm5s+fn507d5asz/feey/r1q3rM6/KyspMmTJlv/Nau3Ztn/VJ0tzcfETneyh9J8n27dszevToNDY25vOf/3w2bNhwJNo9bL8OMwcAAAAAOFzHHO0GPora29uTJHV1dX3219XVFY4dqT5GjhzZZ98xxxyTESNGHLCPK6+8MqNHj05DQ0Neeuml3Hzzzdm4cWMeeeSRkvT5L//yL9m1a9c+5/Wzn/1sn59pb28/6vM9lL4/9alP5c///M8zbty4bNu2Ld/97nfzmc98Jhs2bMjJJ598JNo+ZPubeWdnZ/71X/81xx577FHqDAAAAACg/8r2iZGvf/3re70E+4M/+7u5fbSVuvfZs2enubk5Z511Vq666qr8xV/8RR599NG8/vrrRbyK8tTU1JRZs2Zl/Pjx+U//6T/lkUceyUknnZQ//dM/PdqtAQAAAACUhbJ9YuQrX/lKvvSlLx1wzcc//vFDql1fX58k6ejoyKhRowr7Ozo6Mn78+EOquaf+9l5fX7/XS8Dff//9vP3224Ue+2PixIlJktdeey2nnXbagPs9mBNPPDGDBg1KR0dHn/0dHR377bO+vn5A60vhUPr+oKqqqpxzzjl57bXXStFiUe1v5rW1tZ4WAQAAAAA+NMo2GDnppJNy0kknlaT2qaeemvr6+qxevboQhHR2dua5557LnDlzDrt+f3tvamrK1q1bs27dukyYMCFJ8uSTT6anp6cQdvTH+vXrk6RPyFNMgwcPzoQJE7J69erCy797enqyevXqzJs3b5+faWpqyurVq3PjjTcW9rW1taWpqakkPe7LofT9Qbt27crLL7+cSy65pISdFkdTU1OWL1/eZ9+RnjkAAAAAwOEq26/SGohNmzZl/fr12bRpU3bt2pX169dn/fr12b59e2HNmDFj8uijjyZJKioqcuONN+Zb3/pW/u7v/i4vv/xyZs2alYaGhsIN9CPhjDPOyMUXX5zrr78+zz//fP7v//2/mTdvXq644oo0NDQkSf7pn/4pY8aMyfPPP58kef3117N48eKsW7cu//iP/5i/+7u/y6xZs3L++edn3LhxJeu1paUl/+N//I88+OCD+elPf5o5c+Zkx44dufbaa5Mks2bNyvz58wvr/9t/+29ZsWJF/vAP/zA/+9nPsmDBgrz44ov9DiSOVt+LFi3KqlWr8g//8A/5yU9+kt/5nd/Jm2++md/93d89on0n//YS+N1/y0nyxhtvFP7Ok2T+/PmZNWtWYf2Xv/zl/MM//EO+9rWv5Wc/+1nuueee/K//9b9y0003HfHeAQAAAAAOVdk+MTIQt912Wx588MHC9jnnnJMk+d//+39n8uTJSZKNGzdm27ZthTVf+9rXsmPHjsyePTtbt27NZz/72axYsSJDhgw5or0/9NBDmTdvXi666KJUVlZm5syZ+f73v1843t3dnY0bN2bnzp1J/u0piCeeeCJ33313duzYkcbGxsycOTO33HJLSfu8/PLL88///M+57bbb0t7envHjx2fFihWFl31v2rQplZX/nuN95jOfSWtra2655ZZ84xvfyCc+8Yk89thjOfPMM0va5+H2/f/+3//L9ddfn/b29vzGb/xGJkyYkGeeeSZjx449on0nyYsvvpgLLrigsN3S0pIkueaaa7J06dJs3ry5EJIk//Yk1A9/+MPcdNNN+d73vpeTTz45//N//s80Nzcf8d4BAAAAAA5VRW9vb+/RbgIAAAAAAOBI8FVaAAAAAABA2RCMAAAAAAAAZUMwAgAAAAAAlA3BCAAAAAAAUDYEIwAAAAAAQNkQjAAAAAAAAGVDMAIAAAAAAJQNwQgAAAAAAFA2BCMAAAAAAEDZEIwAAAAAAABlQzACAAAAAACUDcEIAAAAAABQNv4/O/QARFuLS8UAAAAASUVORK5CYII=\n"},"metadata":{}},{"output_type":"display_data","data":{"text/plain":["
"],"image/png":"iVBORw0KGgoAAAANSUhEUgAABlEAAAZGCAYAAAA/OYdsAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOzde1yUZf7/8TcgRxUQDZBUMs0DHtKodNLSVQQPtZrsltUqllu7LrqrdPBra56NsoOVoVaraAeztc0O5ipoHrbEQ5RlWq6arZUClSt4xBGu3x/9mG1kxAFnmGF8PR8PHnpf93Xf9/VhmGuuaz73wc8YYwQAAAAAAAAAAAA7/p5uAAAAAAAAAAAAgDciiQIAAAAAAAAAAOAASRQAAAAAAAAAAAAHSKIAAAAAAAAAAAA4QBIFAAAAAAAAAADAAZIoAAAAAAAAAAAADpBEAQAAAAAAAAAAcIAkCgAAAAAAAAAAgAMkUQAAAAAAAAAAABwgiQKXuuKKKzRy5EhPN8OhDRs2yM/PTxs2bPB0U7yqLQAuzuLFi+Xn56dvvvnGrvyJJ57QlVdeqYCAAHXp0sUjbQMAV+vdu7d69+5drW2uuOIK3Xzzze5pkBPHdnZs6sp2+vn5acyYMResd77PEAB1x9SpU+Xn5+fpZtQKb57vA/Csir7wxx9/9HRTJEkjR47UFVdc4bb9e3J8C88giQKvcPLkSU2dOpWkAgCfkJOTo4ceekg9evRQdna2Hn300Vpvw6pVqzR16tRaPy4A77V582ZNnTpVR48e9XRTPGb37t2aOnVqnU5aMG4GAAAAalc9TzcAvmXPnj3y969+bu7kyZOaNm2aJFX77EYA8DYffPCB/P39tXDhQgUFBXmkDatWrVJWVhaJFAA2mzdv1rRp0zRy5EhFRkZ6ujkesXv3bk2bNk29e/d269mJzho+fLiGDRum4OBgp7dh3AzAU2o63wcAoK7j0w8uFRwcrMDAQE83AwA8qqioSKGhoR5LoAAA6oaAgACFhIR4xa2ATpw44ekmAHDS6dOnVV5eXuvHZb4PALhUkUTxQf/5z3/0pz/9SW3btlVoaKgaN26s3/72t5VuW1BxD+aPPvpIGRkZuuyyy1S/fn3deuut+uGHH2z1Ks6onjx5st32S5culZ+fn+bPn28rc3SP1KNHj2rcuHFq3ry5goOD1bp1az3++OO2Qd8333yjyy67TJI0bdo0+fn5yc/PT1OnTlV2drb8/Pz06aefVorz0UcfVUBAgL7//vuL+XVp69at6t+/vyIiIhQWFqZevXrpo48+sq1/88035efnp40bN1ba9oUXXpCfn5+++OILW9lXX32l3/zmN4qKilJISIiuvfZavfvuuxfVRgCud+zYMY0bN05XXHGFgoODFR0drX79+umTTz6x1blQ/+CIn5+fsrOzdeLECVt/tnjxYqfb5UwfYrVaNW3aNF111VUKCQlR48aN1bNnT+Xm5kr6+f6vWVlZtvZU/FQoLy/XM888ow4dOigkJEQxMTH6wx/+oP/+97+V2vPPf/5TN954o+rXr6+GDRtq0KBB2rVrl12dkSNHqkGDBjp48KBuvvlmNWjQQJdffrmtDTt37lSfPn1Uv359xcfHa+nSpU7/PoC6rOLe0P/+97/1u9/9ThEREbrsssv0yCOPyBijb7/9VoMHD1Z4eLhiY2P11FNP2W1fWlqqKVOmqHXr1goODlbz5s310EMPqbS01K5exfM33n77bXXs2FHBwcHq0KGDVq9ebdeWBx98UJLUsmVLW79QMT7Mzs5Wnz59FB0dreDgYCUkJNiN8Vzhww8/1PXXX6+QkBBdeeWVevnllyvVudC4scKTTz6pG264QY0bN1ZoaKgSExP15ptvVnn8xYsX67e//a0k6Ve/+pXtd3DubbGcaaezqnpNKtp07jNRPv74Y6WkpKhJkyYKDQ1Vy5Ytdc8990iqetxc4YMPPrD125GRkRo8eLC+/PJLu+NW/G3u3r1bd955pxo1aqSePXvWytgbqMs+/PBDXXfddQoJCVGrVq30wgsvOKz36quvKjExUaGhoYqKitKwYcP07bff2tXp3bu3OnbsqPz8fN1www229/uCBQvs6lU8T3PZsmWaNGmSLr/8coWFhamkpESSc+NVZ8a9e/fuVWpqqmJjYxUSEqJmzZpp2LBhKi4uttVxNN//+uuv9dvf/lZRUVEKCwtT9+7d9f777zuM4e9//7tmzZqlZs2aKSQkRH379tW+ffuc++UDqBOOHj1qu+o5IiJCd999t06ePGlXx5k+8l//+pd++9vfqkWLFrZx8Pjx43Xq1KlKx6wYb4WEhKhjx45asWKFw7ZVZ/z46quv6vrrr1dYWJgaNWqkm266STk5OZXquXJ8Cy9n4HOWL19urr76ajN58mTz4osvmocfftg0atTIxMfHmxMnTtjqZWdnG0mma9eupk+fPmbu3Lnm/vvvNwEBAea2226z22d6erqpV6+eyc/PN8YYc+jQIRMVFWWSkpJMeXm5rV58fLxJS0uzLZ84ccJ07tzZNG7c2Dz88MNmwYIFZsSIEcbPz8/85S9/McYYc/z4cTN//nwjydx6663mlVdeMa+88or57LPPTElJiQkNDTX3339/pTgTEhJMnz59nP69rF+/3kgy69evt5WtW7fOBAUFGYvFYp566ikzZ84c07lzZxMUFGS2bt1qjDHm5MmTpkGDBuZPf/pTpX3+6le/Mh06dLAtf/HFFyYiIsIkJCSYxx9/3Dz//PPmpptuMn5+fuatt96qsi0Aatedd95pgoKCTEZGhvnb3/5mHn/8cXPLLbeYV1991RjjXP9gzP/60gMHDhhjjHnllVfMjTfeaIKDg2392f79+51qk7N9yMMPP2z8/PzMvffea1566SXz1FNPmTvuuMM89thjxhhjNm/ebPr162ck2drwyiuv2Lb//e9/b+rVq2fuvfdes2DBAjNhwgRTv359c91115kzZ87Y6r388svGz8/P9O/f38ydO9c8/vjj5oorrjCRkZG2eI0xJi0tzYSEhJiEhATzxz/+0WRlZZkbbrjBSDLZ2dkmLi7OPPjgg2bu3LmmQ4cOJiAgwHz99dfVfs2AumbKlClGkunSpYu54447zLx588ygQYOMJPP000+btm3bmtGjR5t58+aZHj16GElm48aNxhhjysrKTHJysgkLCzPjxo0zL7zwghkzZoypV6+eGTx4sN1xJJmrr77aNG3a1MyYMcM888wz5sorrzRhYWHmxx9/NMYY89lnn5k77rjDSDJz5syx9QvHjx83xhhz3XXXmZEjR5o5c+aYuXPnmuTkZCPJPP/883bH6tWrl+nVq1e1fg/x8fGmbdu2JiYmxjz88MPm+eefN9dcc43x8/MzX3zxha2eM+PGCs2aNTN/+tOfzPPPP2+efvppc/311xtJZuXKlZWOXTE23b9/v/nzn/9sJJmHH37Y9jsoKCioVjud4cxrYkzlz5DCwkLTqFEj06ZNG/PEE0+Yl156yfz1r3817du3N8ZUPW42xpjc3FxTr14906ZNGzN79mwzbdo006RJE9OoUSO7frvibzMhIcEMHjzYzJs3z2RlZbl07A34ms8//9yEhoaaFi1amMzMTDNjxgwTExNjOnfubH751crMmTONn5+fuf322828efNs78MrrrjC/Pe//7XV69Wrl4mLizPR0dFmzJgx5rnnnjM9e/Y0kszChQtt9SrmjgkJCaZLly7m6aefNpmZmebEiRNOj1cvNO4tLS01LVu2NHFxcWbmzJnmb3/7m5k2bZq57rrrzDfffGPbz7nz/YKCAhMTE2MaNmxo/vrXv5qnn37aXH311cbf39/h/Ldr164mMTHRzJkzx0ydOtWEhYWZ66+/3pUvEwAPqRhbdO3a1QwdOtTMmzfP/P73vzeSzEMPPWSr52wfOXbsWDNw4EDz6KOPmhdeeMGMGjXKBAQEmN/85jd2x12zZo3x9/c3HTt2NE8//bT561//aiIiIkyHDh1MfHy8XV1nx49Tp041kswNN9xgnnjiCfPss8+aO++800yYMMFWxx3jW3g3kig+6OTJk5XK8vLyjCTz8ssv28oqJm3nJkLGjx9vAgICzNGjR21lJ06cMK1btzYdOnQwp0+fNoMGDTLh4eHmP//5j91xzh1UzZgxw9SvX9/8+9//tqv3f//3fyYgIMAcPHjQGGPMDz/8YCSZKVOmVGr7HXfcYeLi4kxZWZmt7JNPPrF9OeescxMX5eXl5qqrrjIpKSl28Z88edK0bNnS9OvXz64N0dHR5uzZs7ayw4cPG39/fzN9+nRbWd++fU2nTp3M6dOnbWXl5eXmhhtuMFddddV52wKg9kVERJj09HSH66rTP5z7BZgxPycV6tevX+02OduHXH311WbQoEFV7is9Pd1uQl/hX//6l5FkXnvtNbvy1atX25UfO3bMREZGmnvvvdeuXkFBgYmIiLArT0tLM5LMo48+aiv773//a0JDQ42fn59ZtmyZrfyrr746b38P+JqKyeR9991nKzt79qxp1qyZ8fPzsyU+jfnfe6ZiHPXKK68Yf39/869//ctunwsWLDCSzEcffWQrk2SCgoLMvn37bGWfffaZkWTmzp1rK3viiScq9VcVHI0fU1JSzJVXXmlXVtMkiiSzadMmW1lRUZEJDg62+7Le2XGjo/aeOXPGdOzYsdKX/OeOTZcvX37eMZiz7XSGs6/JuZ8hK1asMJLM9u3bz7vvqsbNXbp0MdHR0eann36yO66/v78ZMWKErazib/OOO+6otA9Xjb0BXzNkyBATEhJiNwfevXu3CQgIsI25vvnmGxMQEGBmzZplt+3OnTtNvXr17Mp79eplJJmnnnrKVlZaWmp7H1ec2FIxd7zyyivt+r7qjFerGvcaY8ynn35qJJnly5dX+Ts4t08dN26ckWT3WXXs2DHTsmVLc8UVV9j6kYoY2rdvb0pLS211n332WSPJ7Ny5s8rjAvB+FWOLe+65x6781ltvNY0bNzbGVK+PdDQ2zczMNH5+fnb9cJcuXUzTpk3tvsPMyckxkiolUZwZP+7du9f4+/ubW2+91W4sZIypdBK5q8e38G7czssHhYaG2v5vtVr1008/qXXr1oqMjLS7XLfCfffdZ3eblxtvvFFlZWX6z3/+YysLCwvT4sWL9eWXX+qmm27S+++/rzlz5qhFixZVtmX58uW68cYb1ahRI/3444+2n6SkJJWVlWnTpk0XjGfEiBE6dOiQ1q9fbyt77bXXFBoaqtTU1Atufz47duzQ3r17deedd+qnn36yte3EiRPq27evNm3aZLu07vbbb1dRUZHd7R7efPNNlZeX6/bbb5ckHTlyRB988IFuu+02HTt2zLa/n376SSkpKdq7dy+3PwC8SGRkpLZu3apDhw5VWled/sFVqtOHREZGateuXdq7d2+1j7N8+XJFRESoX79+dv1yYmKiGjRoYOtrc3NzdfToUd1xxx129QICAtStWze7PrnC73//e9v/IyMj1bZtW9WvX1+33Xabrbxt27aKjIzU119/Xe22A3XVL98bAQEBuvbaa2WM0ahRo2zlFe+ZivfG8uXL1b59e7Vr187uPdinTx9JqvQeTEpKUqtWrWzLnTt3Vnh4uNPvtV+OH4uLi/Xjjz+qV69e+vrrr+1u5VJTCQkJuvHGG23Ll112mV28UvXGjb9s73//+18VFxfrxhtvdDjWdXU7nVWT1yQyMlKStHLlSlmt1mod7/Dhw9qxY4dGjhypqKgou+P269dPq1atqrTNH//4x0pl7hp7A3VZWVmZ1qxZoyFDhtjNgdu3b6+UlBTb8ltvvaXy8nLddtttdv1YbGysrrrqqkp9d7169fSHP/zBthwUFKQ//OEPKioqUn5+vl3dtLQ0u76vOuPVqsa9khQRESFJWrNmTaXb7lRl1apVuv7669WzZ09bWYMGDXTffffpm2++0e7du+3q33333XbPDKzobxkXAr7j3LHFjTfeqJ9++kklJSXV6iN/2d+dOHFCP/74o2644QYZY2y3Ha0Y+6Slpdn6MUnq16+fEhISKrXNmfHj22+/rfLyck2ePFn+/vZfm5/7DDtXj2/h3ep5ugFwvVOnTikzM1PZ2dn6/vvvZYyxrXM0CT43EdKoUSNJqnRv/B49emj06NHKyspSSkqK7d7MVdm7d68+//xz272bz1VUVHTBffTr109NmzbVa6+9pr59+6q8vFyvv/66Bg8erIYNG15w+6raJv08GD2f4uJiNWrUyHaP2TfeeEN9+/aVJL3xxhvq0qWL2rRpI0nat2+fjDF65JFH9MgjjzjcX1FRkS6//PIatxmA68yePVtpaWlq3ry5EhMTNXDgQI0YMUJXXnlltfoHV6lOHzJ9+nQNHjxYbdq0UceOHdW/f38NHz5cnTt3vuBx9u7dq+LiYkVHR5/3GBX1JNm+sD1XeHi43XJISEilvj4iIkLNmjWrNNiMiIhw+PwVwFedO9aKiIhQSEiImjRpUqn8p59+kvTze/DLL790egzl6MSWRo0aOf1e++ijjzRlyhTl5eVV+gKtuLjYbmJaE860rzrjxpUrV2rmzJnasWOH3TNiLvYB7Rf7e7zYffXq1UupqamaNm2a5syZo969e2vIkCG68847FRwcXOXxKk6Aatu2baV17du315o1a3TixAnVr1/fVt6yZctKdd019gbqsh9++EGnTp3SVVddVWld27ZtbUnKvXv3yhjjsJ6kSg9lj4uLs3tPSrLNL7/55ht1797dVn7u+7U649Wqxr0V+87IyNDTTz+t1157TTfeeKN+/etf257ndT7/+c9/1K1bt0rl7du3t63v2LGjrdzZ7x4A1F1Vvc+r00cePHhQkydP1rvvvlupj6j4brNi7HO+vvnck2ucGT/u379f/v7+DpMwF4pVurjxLbwbSRQfNHbsWGVnZ2vcuHGyWCyKiIiQn5+fhg0b5vDM6YCAAIf7+WXyRfr54aYVV2Ls379fJ0+eVFhYWJVtKS8vV79+/fTQQw85XF8xQKxKQECA7rzzTr300kuaN2+ePvroIx06dEi/+93vLrjthdomSU888YS6dOnisE6DBg0kScHBwRoyZIhWrFihefPmqbCwUB999JEeffTRSvt74IEH7M5G+qXWrVtfVJsBuM5tt92mG2+8UStWrFBOTo6eeOIJPf7447azYyTn+gdXqU4fctNNN2n//v165513lJOTo7/97W+aM2eOFixYYHfG+/mOEx0drddee83h+orBXUV7XnnlFcXGxlaqV6+e/RDifJ8lzn7GAL7M0fvgQu+N8vJyderUSU8//bTDes2bN6/W/qqyf/9+9e3bV+3atdPTTz+t5s2bKygoSKtWrdKcOXNccuWdM+1zdtz4r3/9S7/+9a910003ad68eWratKkCAwOVnZ2tpUuXur2d7tyXn5+f3nzzTW3ZskXvvfee1qxZo3vuuUdPPfWUtmzZ4vLPnl+ekVnBXWNv4FJQXl4uPz8//fOf/3TYB1zMe/jc92t1xqtVjXsHDBggSXrqqac0cuRI2/jyz3/+szIzM7VlyxY1a9asxu3+JcaFgO+r6n3ubB9ZVlamfv366ciRI5owYYLatWun+vXr6/vvv9fIkSNrNDZ1x/jRleNbeD+SKD7ozTffVFpamp566ilb2enTp3X06NGL2u+UKVP05Zdf6sknn9SECRP0f//3f3ruueeq3KZVq1Y6fvy4kpKSqqx3obMGR4wYoaeeekrvvfee/vnPf+qyyy4775eMzqq4vUJ4ePgF2yf9fEuvJUuWaN26dfryyy9ljLHdykuS7SyewMBAp/YHwPOaNm2qP/3pT/rTn/6koqIiXXPNNZo1a5bmzJkjyfn+wRWq24dERUXp7rvv1t13363jx4/rpptu0tSpU21JlPP1q61atdLatWvVo0cPh1+e/bKeJEVHR9OnAR7QqlUrffbZZ+rbt+9FX11R4Xz7ee+991RaWqp3333X7ow6R7ftcydnx43/+Mc/FBISojVr1thdnZGdnX3BY7jqd+lu3bt3V/fu3TVr1iwtXbpUd911l5YtW6bf//73540hPj5ekrRnz55K67766is1adKk0hnv5+OOsTdQl1122WUKDQ11eCvVX77nWrVqJWOMWrZs6dQXY4cOHap0hdi///1vSdIVV1xR5bbVnc+eb9xbkUSRpE6dOqlTp06aNGmSNm/erB49emjBggWaOXOmw33Gx8eft8+pWA8AFZztI3fu3Kl///vfWrJkiUaMGGErz83NtatX0cdcqG+WnB8/tmrVSuXl5dq9e/d5E9TV4ez4Ft6PZ6L4oICAgEpncsydO1dlZWU13ufWrVv15JNPaty4cbr//vv14IMP6vnnn9fGjRur3O62225TXl6e1qxZU2nd0aNHdfbsWUmyXdFyvkRP586d1blzZ/3tb3/TP/7xDw0bNqzSWdDVlZiYqFatWunJJ5/U8ePHK63/4Ycf7JaTkpIUFRWlN954Q2+88Yauv/56u0uqo6Oj1bt3b73wwgs6fPjwBfcHwHPKysoq3d4wOjpacXFxKi0trXb/4ArV6UMqbvdToUGDBmrdurXdJckVk/Fz+9XbbrtNZWVlmjFjRqVjnD171lY/JSVF4eHhevTRRx3el58+DXCv2267Td9//71eeumlSutOnTqlEydOVHuf5+sXKs6iO/cWsM4kJVzJ2XFjQECA/Pz87Ma233zzjd5+++0LHuN8vwNv8d///rfSOL5iAl/Rx59v3Ny0aVN16dJFS5YssVv3xRdfKCcnRwMHDnS6He4YewN1WUBAgFJSUvT222/r4MGDtvIvv/zSrs8aOnSoAgICNG3atErvZWNMpTHc2bNn9cILL9iWz5w5oxdeeEGXXXaZEhMTq2yTs+PVC417JamkpMTWx1bo1KmT/P397caX5xo4cKC2bdumvLw8W9mJEyf04osv6oorrnDqdjgALh3O9pGOxqbGGD377LN22/xy7PPLfi43N7fSM5mcHT8OGTJE/v7+mj59eqUrXmpy1Zyz41t4P0bCPujmm2/WK6+8ooiICCUkJCgvL09r165V48aNa7S/06dPKy0tTVdddZVmzZolSZo2bZree+893X333dq5c+d5z2p78MEH9e677+rmm2/WyJEjlZiYqBMnTmjnzp1688039c0336hJkyYKDQ1VQkKC3njjDbVp00ZRUVHq2LGj3f1TR4wYoQceeECSXHI7AX9/f/3tb3/TgAED1KFDB9199926/PLL9f3332v9+vUKDw/Xe++9Z6sfGBiooUOHatmyZTpx4oSefPLJSvvMyspSz5491alTJ91777268sorVVhYqLy8PH333Xf67LPPLrrdAC7esWPH1KxZM/3mN7/R1VdfrQYNGmjt2rXavn27nnrqqWr3D67ibB+SkJCg3r17KzExUVFRUfr444/15ptvasyYMbZ9VUy8//znPyslJUUBAQEaNmyYevXqpT/84Q/KzMzUjh07lJycrMDAQO3du1fLly/Xs88+q9/85jcKDw/X/PnzNXz4cF1zzTUaNmyYLrvsMh08eFDvv/++evTooeeff97lvwMAPxs+fLj+/ve/649//KPWr1+vHj16qKysTF999ZX+/ve/a82aNbr22murtc+KfuGvf/2rhg0bpsDAQN1yyy1KTk5WUFCQbrnlFv3hD3/Q8ePH9dJLLyk6OtphUtddnB03Dho0SE8//bT69++vO++8U0VFRcrKylLr1q31+eefV3mMLl26KCAgQI8//riKi4sVHBysPn36nPc5UbVtyZIlmjdvnm699Va1atVKx44d00svvaTw8HBbEqSqcfMTTzyhAQMGyGKxaNSoUTp16pTmzp2riIgITZ06tVptcfXYG6jrpk2bptWrV+vGG2/Un/70J509e1Zz585Vhw4dbH1Pq1atNHPmTE2cOFHffPONhgwZooYNG+rAgQNasWKF7rvvPtv7Svr5mSiPP/64vvnmG7Vp00ZvvPGGduzYoRdffLHS81PO5ex49ULjXkn64IMPNGbMGP32t79VmzZtdPbsWb3yyisKCAhQamrqedvwf//3f3r99dc1YMAA/fnPf1ZUVJSWLFmiAwcO6B//+EelhzIDuLQ520e2a9dOrVq10gMPPKDvv/9e4eHh+sc//uHw+UmZmZkaNGiQevbsqXvuuUdHjhyx9c2/TDA7O35s3bq1/vrXv2rGjBm68cYbNXToUAUHB2v79u2Ki4tTZmZmtWJ2dnyLOsDA5/z3v/81d999t2nSpIlp0KCBSUlJMV999ZWJj483aWlptnrZ2dlGktm+fbvd9uvXrzeSzPr1640xxowfP94EBASYrVu32tX7+OOPTb169czo0aNtZecewxhjjh07ZiZOnGhat25tgoKCTJMmTcwNN9xgnnzySXPmzBlbvc2bN5vExEQTFBRkJJkpU6bY7efw4cMmICDAtGnTpka/l3PjqvDpp5+aoUOHmsaNG5vg4GATHx9vbrvtNrNu3bpK+8jNzTWSjJ+fn/n2228dHmf//v1mxIgRJjY21gQGBprLL7/c3HzzzebNN9+8YFsA1I7S0lLz4IMPmquvvto0bNjQ1K9f31x99dVm3rx5dvWc6R8q+tIDBw7YytLS0kz9+vVr1DZn+pCZM2ea66+/3kRGRprQ0FDTrl07M2vWLLs+9ezZs2bs2LHmsssuM35+fubcj/wXX3zRJCYmmtDQUNOwYUPTqVMn89BDD5lDhw7Z1Vu/fr1JSUkxERERJiQkxLRq1cqMHDnSfPzxxxeMt1evXqZDhw6VyuPj482gQYNq9PsB6pIpU6YYSeaHH36wK3f2PXPmzBnz+OOPmw4dOpjg4GDTqFEjk5iYaKZNm2aKi4tt9SSZ9PT0SvtzNC6bMWOGufzyy42/v79d3/Xuu++azp07m5CQEHPFFVeYxx9/3CxatKhS/9arVy/Tq1evav0ezveed7QvZ8eNCxcuNFdddZUJDg427dq1M9nZ2bbf94V+By+99JK58sorTUBAgN14rDrtvBBnX5NzP0M++eQTc8cdd5gWLVqY4OBgEx0dbW6++Wa7PteYqsfNa9euNT169DChoaEmPDzc3HLLLWb37t1225/vb/OXLnbsDfiijRs32t57V155pVmwYIHDvucf//iH6dmzp6lfv76pX7++adeunUlPTzd79uyx1ano8z/++GNjsVhMSEiIiY+PN88//7zdvirmjsuXL3fYpguNV50Z93799dfmnnvuMa1atTIhISEmKirK/OpXvzJr1661O5ajPnX//v3mN7/5jYmMjDQhISHm+uuvNytXrnQqhgMHDhhJJjs7+/y/dAB1wvnGFo7my870kbt37zZJSUmmQYMGpkmTJubee+81n332mcM+4x//+Idp3769CQ4ONgkJCeatt94yaWlpJj4+3q6es+NHY4xZtGiR6dq1q20M3qtXL5Obm2tb747xLbybnzE8wQt1w48//qimTZtq8uTJeuSRRzzdHAAAAMBnMfYG3Kt379768ccf9cUXX3i6KQAA4AK4thJ1xuLFi1VWVqbhw4d7uikAAACAT2PsDQAAAPyMZ6LA633wwQfavXu3Zs2apSFDhuiKK66wW3/q1KlKD8o7V1RUlIKCgtzYSgA4v+LiYp06darKOrGxsbXUGgBwjR9++MHu4ZznCgoKUlRUVC22yP0KCgqqXB8aGqqIiIhaao17XGjsDQAAAFxquJ0XvF7v3r21efNm9ejRQ6+++qouv/xyu/WLFy/W3XffXeU+1q9fr969e7uxlQBwfiNHjtSSJUuqrMPHMYC65oorrtB//vOf867v1auXNmzYUHsNqgV+fn5Vrk9LS9PixYtrpzFucqGxNwDX4HZeAADUHSRRUOcdPnxYu3btqrJOYmKiGjVqVEstAgB7u3fv1qFDh6qsk5SUVEutAQDX+Oijj6q8yq5Ro0ZKTEysxRa539q1a6tcHxcXp4SEhFpqDQAAAIDaQBIFAAAAAAAAAADAAR4sDwAAAAAAAAAA4MBFPVj+scce08SJE/WXv/xFzzzzjCTp9OnTuv/++7Vs2TKVlpYqJSVF8+bNU0xMjG27gwcPavTo0Vq/fr0aNGigtLQ0ZWZmql4955pTXl6uQ4cOqWHDhhe8LzGAuskYo2PHjikuLk7+/uR7q0KfCPg++kTn0ScCvo8+0Xn0iYDvo090Hn0i4Pvc1SfWOImyfft2vfDCC+rcubNd+fjx4/X+++9r+fLlioiI0JgxYzR06FB99NFHkqSysjINGjRIsbGx2rx5sw4fPqwRI0YoMDBQjz76qFPHPnTokJo3b17TpgOoQ7799ls1a9bM083wavSJwKWDPvHC6BOBSwd94oXRJwKXDvrEC6NPBC4dru4Ta5REOX78uO666y699NJLmjlzpq28uLhYCxcu1NKlS9WnTx9JUnZ2ttq3b68tW7aoe/fuysnJ0e7du7V27VrFxMSoS5cumjFjhiZMmKCpU6cqKCjogsdv2LChpJ9/GeHh4VXWtVqtysnJUXJysgIDA2sSrlfxpXiIxTt5SywlJSVq3ry57f2O87uU+0RnELPvx3wpxEuf6Dz6ROKqa4ir+ugTnXcp9onE4V2Iw/3oE513KfaJ5yKuuoW4qs9dfWKNkijp6ekaNGiQkpKS7JIo+fn5slqtSkpKspW1a9dOLVq0UF5enrp37668vDx16tTJ7vZeKSkpGj16tHbt2qWuXbte8PgVl9yFh4c71emFhYUpPDzcJ/7YfCkeYvFO3hYLl9he2KXcJzqDmH0/5kspXvrEC6NPJK66hrhqjj7xwi7FPpE4vAtx1B76xAu7FPvEcxFX3UJcNefqPrHaSZRly5bpk08+0fbt2yutKygoUFBQkCIjI+3KY2JiVFBQYKvzywRKxfqKdY6UlpaqtLTUtlxSUiLp51+41Wqtsr0V6y9Ur67wpXiIxTt5SyyePj4AAAAAAAAAVCuJ8u233+ovf/mLcnNzFRIS4q42VZKZmalp06ZVKs/JyVFYWJhT+8jNzXV1szzKl+IhFu/k6VhOnjzp0eMDAAAAAAAAQLWSKPn5+SoqKtI111xjKysrK9OmTZv0/PPPa82aNTpz5oyOHj1qdzVKYWGhYmNjJUmxsbHatm2b3X4LCwtt6xyZOHGiMjIybMsV9zZLTk526vK73Nxc9evXzycue/KleIjFO3lLLBVXnAEAAAB1zfz58zV//nx98803kqQOHTpo8uTJGjBggCTp9OnTuv/++7Vs2TKVlpYqJSVF8+bNs7trw8GDBzV69GitX79eDRo0UFpamjIzM1WvXo3uyg0AAIAaqtboq2/fvtq5c6dd2d1336127dppwoQJat68uQIDA7Vu3TqlpqZKkvbs2aODBw/KYrFIkiwWi2bNmqWioiJFR0dL+vmM9/DwcCUkJDg8bnBwsIKDgyuVBwYGOv0lb3Xq1gW+FA+xeCdPx+Irv0cAAABcepo1a6bHHntMV111lYwxWrJkiQYPHqxPP/1UHTp00Pjx4/X+++9r+fLlioiI0JgxYzR06FB99NFHkn4+WXHQoEGKjY3V5s2bdfjwYY0YMUKBgYF69NFHPRwdAADApaVaSZSGDRuqY8eOdmX169dX48aNbeWjRo1SRkaGoqKiFB4errFjx8pisah79+6SpOTkZCUkJGj48OGaPXu2CgoKNGnSJKWnpztMlAAAAAAAUJfccsstdsuzZs3S/PnztWXLFjVr1kwLFy7U0qVL1adPH0lSdna22rdvry1btqh79+7KycnR7t27tXbtWsXExKhLly6aMWOGJkyYoKlTpyooKMgTYQEAAFyS/F29wzlz5ujmm29WamqqbrrpJsXGxuqtt96yrQ8ICNDKlSsVEBAgi8Wi3/3udxoxYoSmT5/u6qYAAAAAAOBRZWVlWrZsmU6cOCGLxaL8/HxZrVYlJSXZ6rRr104tWrRQXl6eJCkvL0+dOnWyu71XSkqKSkpKtGvXrlqPAQAA4FJ20TdT3bBhg91ySEiIsrKylJWVdd5t4uPjtWrVqos9NAAAAAAAXmnnzp2yWCw6ffq0GjRooBUrVighIUE7duxQUFCQ3XNEJSkmJkYFBQWSpIKCArsESsX6inXnU1paqtLSUttyxXMGrVarrFZrle2tWH+het6OOLwLcbifN7YJAHwNT6QDAAAAAMDF2rZtqx07dqi4uFhvvvmm0tLStHHjRrceMzMzU9OmTatUnpOTo7CwMKf2kZub6+pmeQRxeBficJ+TJ096ugkA4PNIogAAAAAA4GJBQUFq3bq1JCkxMVHbt2/Xs88+q9tvv11nzpzR0aNH7a5GKSwsVGxsrCQpNjZW27Zts9tfYWGhbd35TJw4URkZGbblkpISNW/eXMnJyQoPD6+yvVarVbm5uerXr58CAwOrFas3IQ7vQhzuV3HFGQDAfUiiwLX8/JyvGxoqvf66FBEhnTrlvjY5wxjPHh8AcPG84fOkuvj88Q787QCoBeXl5SotLVViYqICAwO1bt06paamSpL27NmjgwcPymKxSJIsFotmzZqloqIiRUdHS/r5DPjw8HAlJCSc9xjBwcEKDg6uVB4YGOj0F7/VqevNvD6OC82d//98ObBJEwV602dUDT9/vP71cJI3xuFt7fE5jBMBiCQKAAAAAAAuNXHiRA0YMEAtWrTQsWPHtHTpUm3YsEFr1qxRRESERo0apYyMDEVFRSk8PFxjx46VxWJR9+7dJUnJyclKSEjQ8OHDNXv2bBUUFGjSpElKT093mCQBAACA+5BEAQAAAADAhYqKijRixAgdPnxYERER6ty5s9asWaN+/fpJkubMmSN/f3+lpqaqtLRUKSkpmjdvnm37gIAArVy5UqNHj5bFYlH9+vWVlpam6dOneyokAACASxZJFAAAAAAAXGjhwoVVrg8JCVFWVpaysrLOWyc+Pl6rVq1yddMAAABQTf6ebgAAAAAAAAAAAIA3IokCAAAAAAAAAADgAEkUAAAAAAAAAAAAB0iiAAAAAAAAAAAAOEASBQAAAAAAAAAAwAGSKAAAAAAAAAAAAA6QRAEAAAAAAMCF+flV7yci4uftIiKqv62rfgAAuEgkUQAAAAAAAAAAABwgiQIAAAAAAAAAAOAASRQAAAAAAAAAAAAHSKIAAAAAAAAAAAA4QBIFAAAAAAAAAADAAZIoAAAAAAAAAAAADpBEAQAAAAAAAAAAcIAkCgAAAAAAAAC3mDp1qvz8/Ox+2rVrZ1t/+vRppaenq3HjxmrQoIFSU1NVWFhot4+DBw9q0KBBCgsLU3R0tB588EGdPXu2tkMBcIkiiQIALvLYY4/Jz89P48aNs5UxGAQAAAAAXOo6dOigw4cP234+/PBD27rx48frvffe0/Lly7Vx40YdOnRIQ4cOta0vKyvToEGDdObMGW3evFlLlizR4sWLNXnyZE+EAuASRBIFAFxg+/bteuGFF9S5c2e7cgaDAC4VnGEIAACA86lXr55iY2NtP02aNJEkFRcXa+HChXr66afVp08fJSYmKjs7W5s3b9aWLVskSTk5Odq9e7deffVVdenSRQMGDNCMGTOUlZWlM2fOeDIsAJcIkigAcJGOHz+uu+66Sy+99JIaNWpkK2cwCOBSwxmGAAAAcGTv3r2Ki4vTlVdeqbvuuksHDx6UJOXn58tqtSopKclWt127dmrRooXy8vIkSXl5eerUqZNiYmJsdVJSUlRSUqJdu3bVbiAALkn1PN0AAKjr0tPTNWjQICUlJWnmzJm28gsNBrt3737eweDo0aO1a9cude3atVZjAYCLUXGG4bkqkspLly5Vnz59JEnZ2dlq3769tmzZou7du9uSymvXrlVMTIy6dOmiGTNmaMKECZo6daqCgoJqOxwAAAC4QLdu3bR48WK1bdtWhw8f1rRp03TjjTfqiy++UEFBgYKCghQZGWm3TUxMjAoKCiRJBQUFdnPmivUV686ntLRUpaWltuWSkhJJktVqldVqrbLNFeutoaHOBelNwsLOu8oaGiotWiRrbKx06lQtNuoCiosvanPb63WB17WuIa6a79vVSKIAwEVYtmyZPvnkE23fvr3SOncNBl0yEPSxD+CqELPvq9MTHCdfo7ryWlacYRgSEiKLxaLMzEy1aNGCpDIAAMAlbMCAAbb/d+7cWd26dVN8fLz+/ve/K9SNY/jMzExNmzatUnlOTo7Cqkg0/FLuokWubpZX8Lq4Vq1yyW5yc3Ndsh9vQ1zOO3nypMv3KZFEAYAa+/bbb/WXv/xFubm5CgkJqbXjumQg6KMfwFUhZt/ndRMBZzg5WXDXQNCVOMOwllURm68mUomrbqmLZxgCAGpHZGSk2rRpo3379qlfv346c+aMjh49ajdWLCwstF3hHBsbq23bttnto+LZeo6ugq4wceJEZWRk2JZLSkrUvHlzJScnKzw8vMo2Wq1W5ebmqt899yjQm67YuEjW0FDlLlrkfXG54EqU3Nxc9evXT4GBgS5qlOcRV/VVzAddjSQKANRQfn6+ioqKdM0119jKysrKtGnTJj3//PNas2aNWwaDLhkI+tgHcFWI2fdjrtMTHCcnC+4aCLoSZxjWMicScL6aSCWuuqUunWEIAKgdx48f1/79+zV8+HAlJiYqMDBQ69atU2pqqiRpz549OnjwoCwWiyTJYrFo1qxZKioqUnR0tKSfP1/Cw8OVkJBw3uMEBwcrODi4UnlgYKDT86TAU6fq3hzDCV4Xl4vmrdV5besS4qrePt2BJAoA1FDfvn21c+dOu7K7775b7dq104QJE9S8eXO3DAZdMhD00Q/gqhCz7/O6iYAzqvGerWs4w9DNqkjA+Woilbjqlrp4hiEAwD0eeOAB3XLLLYqPj9ehQ4c0ZcoUBQQE6I477lBERIRGjRqljIwMRUVFKTw8XGPHjpXFYlH37t0lScnJyUpISNDw4cM1e/ZsFRQUaNKkSUpPT3c4NwYAVyOJAgA11LBhQ3Xs2NGurH79+mrcuLGtnMEggEsVZxi6mROx+Woilbjqlrp0hiEAwD2+++473XHHHfrpp5902WWXqWfPntqyZYsuu+wySdKcOXPk7++v1NRUlZaWKiUlRfPmzbNtHxAQoJUrV2r06NGyWCyqX7++0tLSNH36dE+FBOASQxIFANyIwSCASwVnGAIAAMCRZcuWVbk+JCREWVlZysrKOm+d+Ph4rXLRw8cBoLpIogCAC23YsMFumcEggEsFZxgCAAAAAHwRSRQAAABcNM4wBAAAAAD4In9PNwAAAAAAAAAAAMAbkUQBAAAAAAAAAABwgCQKAAAAAAAulJmZqeuuu04NGzZUdHS0hgwZoj179tjV6d27t/z8/Ox+/vjHP9rVOXjwoAYNGqSwsDBFR0frwQcf1NmzZ2szFAAAgEsez0QBAAAAAMCFNm7cqPT0dF133XU6e/asHn74YSUnJ2v37t2qX7++rd69996r6dOn25bDwsJs/y8rK9OgQYMUGxurzZs36/DhwxoxYoQCAwP16KOP1mo8AAAAlzKSKAAAAAAAuNDq1avtlhcvXqzo6Gjl5+frpptuspWHhYUpNjbW4T5ycnK0e/durV27VjExMerSpYtmzJihCRMmaOrUqQoKCnJrDAAAAPgZt/MCAAAAAMCNiouLJUlRUVF25a+99pqaNGmijh07auLEiTp58qRtXV5enjp16qSYmBhbWUpKikpKSrRr167aaTgAAAC4EgUAAAAAAHcpLy/XuHHj1KNHD3Xs2NFWfueddyo+Pl5xcXH6/PPPNWHCBO3Zs0dvvfWWJKmgoMAugSLJtlxQUODwWKWlpSotLbUtl5SUSJKsVqusVmuV7axYf6F63q7OxBEaWuVq6/9fb71APW/nFXG44G/Bm/+uvLFNAOBrSKIAAAAAAOAm6enp+uKLL/Thhx/ald933322/3fq1ElNmzZV3759tX//frVq1apGx8rMzNS0adMqlefk5Ng9b6Uqubm5NTq2t/H6OF5/3alquYsWubkhtcOjcaxa5bJdeePf1S+vYAMAuAdJFAAAAAAA3GDMmDFauXKlNm3apGbNmlVZt1u3bpKkffv2qVWrVoqNjdW2bdvs6hQWFkrSeZ+jMnHiRGVkZNiWS0pK1Lx5cyUnJys8PLzK41utVuXm5qpfv34KDAy8YGzeqs7EERFR5WpraKhyFy1Sv3vuUeCpU7XUKNfzijj+/+30LoY3/11VXHEGAHAfkigAAAAAALiQMUZjx47VihUrtGHDBrVs2fKC2+zYsUOS1LRpU0mSxWLRrFmzVFRUpOjoaEk/nwUfHh6uhIQEh/sIDg5WcHBwpfLAwECnv/itTl1v5vVxOJlQCDx1qk4nUSp4NA4X/h1449+Vt7UHAHwRSRQAAAAAAFwoPT1dS5cu1TvvvKOGDRvanmESERGh0NBQ7d+/X0uXLtXAgQPVuHFjff755xo/frxuuukmde7cWZKUnJyshIQEDR8+XLNnz1ZBQYEmTZqk9PR0h4kSAAAAuIe/pxsAAAAAAIAvmT9/voqLi9W7d281bdrU9vPGG29IkoKCgrR27VolJyerXbt2uv/++5Wamqr33nvPto+AgACtXLlSAQEBslgs+t3vfqcRI0Zo+vTpngoLAADgksSVKAAAAAAAuJAxpsr1zZs318aNGy+4n/j4eK1y4UOxAQAAUH1ciQIAAAAAAAAAAOAASRQAAAAAAAAAAAAHSKIAAAAAAAAAAAA4QBIFAAAAAAAAAADAgWolUebPn6/OnTsrPDxc4eHhslgs+uc//2lbf/r0aaWnp6tx48Zq0KCBUlNTVVhYaLePgwcPatCgQQoLC1N0dLQefPBBnT171jXRAAAAAAAAAAAAuEi1kijNmjXTY489pvz8fH388cfq06ePBg8erF27dkmSxo8fr/fee0/Lly/Xxo0bdejQIQ0dOtS2fVlZmQYNGqQzZ85o8+bNWrJkiRYvXqzJkye7NioAAAAAAFB9ERGSn1/d+gEAAHCjetWpfMstt9gtz5o1S/Pnz9eWLVvUrFkzLVy4UEuXLlWfPn0kSdnZ2Wrfvr22bNmi7t27KycnR7t379batWsVExOjLl26aMaMGZowYYKmTp2qoKAg10UGAAAAAAAAAABwEWr8TJSysjItW7ZMJ06ckMViUX5+vqxWq5KSkmx12rVrpxYtWigvL0+SlJeXp06dOikmJsZWJyUlRSUlJbarWQAAAAAAAAAAALxBta5EkaSdO3fKYrHo9OnTatCggVasWKGEhATt2LFDQUFBioyMtKsfExOjgoICSVJBQYFdAqVifcW68yktLVVpaaltuaSkRJJktVpltVqrbG/F+gvVqyu8Pp7QUKerWv9/XWs1tnGbi/x9ev3rUg3eEounjw8AAAAAAAAA1U6itG3bVjt27FBxcbHefPNNpaWlaePGje5om01mZqamTZtWqTwnJ0dhYWFO7SM3N9fVzfIor43n9dervUnuokVuaEg1rVrlkt147etSA56O5eTJkx49PgAAAAAAAABUO4kSFBSk1q1bS5ISExO1fft2Pfvss7r99tt15swZHT161O5qlMLCQsXGxkqSYmNjtW3bNrv9FRYW2tadz8SJE5WRkWFbLikpUfPmzZWcnKzw8PAq22u1WpWbm6t+/fopMDCwWrF6I6+PJyLC6arW0FDlLlqkfvfco8BTp9zYKCcUF1/U5l7/ulSDt8RSccUZAAAAAAAAAHhKtZMo5yovL1dpaakSExMVGBiodevWKTU1VZK0Z88eHTx4UBaLRZJksVg0a9YsFRUVKTo6WtLPZ7uHh4crISHhvMcIDg5WcHBwpfLAwECnv+StTt26wGvjqUEyJPDUKc8nUVz0u/Ta16UGPB2Lr/weAQAAAAAAANRd1UqiTJw4UQMGDFCLFi107NgxLV26VBs2bNCaNWsUERGhUaNGKSMjQ1FRUQoPD9fYsWNlsVjUvXt3SVJycrISEhI0fPhwzZ49WwUFBZo0aZLS09MdJkkAAAAAAAAAAAA8pVpJlKKiIo0YMUKHDx9WRESEOnfurDVr1qhfv36SpDlz5sjf31+pqakqLS1VSkqK5s2bZ9s+ICBAK1eu1OjRo2WxWFS/fn2lpaVp+vTpro0KAAAAAAAAAADgIlUribJw4cIq14eEhCgrK0tZWVnnrRMfH69VLnqINwAAAAAAAAAAgLv4e7oBAAAAAAAAAAAA3ogkCgAAAAAAAAAAgAMkUQAAAAAAAADUiscee0x+fn4aN26crez06dNKT09X48aN1aBBA6WmpqqwsNBuu4MHD2rQoEEKCwtTdHS0HnzwQZ09e7aWWw/gUkQSBQAAAAAAAIDbbd++XS+88II6d+5sVz5+/Hi99957Wr58uTZu3KhDhw5p6NChtvVlZWUaNGiQzpw5o82bN2vJkiVavHixJk+eXNshALgEkUQBAACAy3GGIQAAAH7p+PHjuuuuu/TSSy+pUaNGtvLi4mItXLhQTz/9tPr06aPExERlZ2dr8+bN2rJliyQpJydHu3fv1quvvqouXbpowIABmjFjhrKysnTmzBlPhQTgEkESBQAAAC7FGYYAAAA4V3p6ugYNGqSkpCS78vz8fFmtVrvydu3aqUWLFsrLy5Mk5eXlqVOnToqJibHVSUlJUUlJiXbt2lU7AQC4ZNXzdAMAAADgO355huHMmTNt5RVnGC5dulR9+vSRJGVnZ6t9+/basmWLunfvbjvDcO3atYqJiVGXLl00Y8YMTZgwQVOnTlVQUJCnwgIAAMBFWLZsmT755BNt37690rqCggIFBQUpMjLSrjwmJkYFBQW2Or9MoFSsr1jnSGlpqUpLS23LJSUlkiSr1Sqr1VpleyvWW0NDq6xX11TE43VxXeD1uPDmVrt/fQVx1XzfrkYSBQAAAC7zyzMMf5lEudAZht27dz/vGYajR4/Wrl271LVr10rHu2Qnx1XExmSrbiGumu8bAFA3fPvtt/rLX/6i3NxchYSE1NpxMzMzNW3atErlOTk5CgsLc2ofuYsWubpZXsHr4lq1yiW7yc3Ndcl+vA1xOe/kyZMu36dEEgUAAAAu4okzDC/ZybETE00mW3ULcTnPXZNjAIB75Ofnq6ioSNdcc42trKysTJs2bdLzzz+vNWvW6MyZMzp69KjdWLGwsFCxsbGSpNjYWG3bts1uvxXP1quoc66JEycqIyPDtlxSUqLmzZsrOTlZ4eHhVbbZarUqNzdX/e65R4GnTlUrXm9mDQ1V7qJF3hdXcfFFbW57vfr1U2BgoIsa5XnEVX0VJ9W5GkkUAAAAXDRPnWF4yU6Oq5hoMtmqW4ir+tw1OQYAuEffvn21c+dOu7K7775b7dq104QJE9S8eXMFBgZq3bp1Sk1NlSTt2bNHBw8elMVikSRZLBbNmjVLRUVFio6OlvRzoj48PFwJCQkOjxscHKzg4OBK5YGBgU5/NgWeOlX3xolO8Lq4XDRWqM5rW5cQV/X26Q4kUQAAAHDRPHWG4SU7OXYiNiZbdQtxVW+fAIC6o2HDhurYsaNdWf369dW4cWNb+ahRo5SRkaGoqCiFh4dr7Nixslgs6t69uyQpOTlZCQkJGj58uGbPnq2CggJNmjRJ6enpDseCAOBK/p5uAAAAAOq+ijMMd+zYYfu59tprddddd9n+X3GGYQVHZxju3LlTRUVFtjoXOsMQAAAAdd+cOXN08803KzU1VTfddJNiY2P11ltv2dYHBARo5cqVCggIkMVi0e9+9zuNGDFC06dP92CrAVwquBIFAAAAF40zDAEAAOCsDRs22C2HhIQoKytLWVlZ590mPj5eq1z0AHIAqA6uRAGAGpo/f746d+6s8PBwhYeHy2Kx6J///Kdt/enTp5Wenq7GjRurQYMGSk1Ntd2WpsLBgwc1aNAghYWFKTo6Wg8++KDOnj1b26EAQK3gDEMAAAAAQF1DEgUAaqhZs2Z67LHHlJ+fr48//lh9+vTR4MGDtWvXLknS+PHj9d5772n58uXauHGjDh06pKFDh9q2Lysr06BBg3TmzBlt3rxZS5Ys0eLFizV58mRPhQQALrVhwwY988wztuWKMwyPHDmiEydO6K233qr0rJOKMwxPnjypH374QU8++aTq1ePiaQB1S2Zmpq677jo1bNhQ0dHRGjJkiPbs2WNXhxNuXMjP738/ERE/l0VE2Jd72w8AAKgzSKIAQA3dcsstGjhwoK666iq1adNGs2bNUoMGDbRlyxYVFxdr4cKFevrpp9WnTx8lJiYqOztbmzdv1pYtWyRJOTk52r17t1599VV16dJFAwYM0IwZM5SVlaUzZ854ODoAAADU1MaNG5Wenq4tW7YoNzdXVqtVycnJOnHihK0OJ9wAAADUDSRRAMAFysrKtGzZMp04cUIWi0X5+fmyWq1KSkqy1WnXrp1atGihvLw8SVJeXp46deqkmJgYW52UlBSVlJTYrmYBAABA3bN69WqNHDlSHTp00NVXX63Fixfr4MGDys/PlyROuAEAAKhDuDcCAFyEnTt3ymKx6PTp02rQoIFWrFihhIQE7dixQ0FBQYqMjLSrHxMTo4KCAklSQUGBXQKlYn3FuvMpLS1VaWmpbbmkpESSZLVaZbVaq2xvxfoL1fMlxOz7bPGGhnq4JTXg5Gt0qbyWAOCriouLJUlRUVGSdMETbrp3737eE25Gjx6tXbt2qWvXrpWO45JxYl38PP2FivYTh3fwijhcMI7y5vG1N7YJAHwNSRQAuAht27bVjh07VFxcrDfffFNpaWnauHGjW4+ZmZmpadOmVSrPyclRWFiYU/vIzc11dbO8HjH7vtxFizzdhOpbtcqpaidPnnRzQwAA7lJeXq5x48apR48e6tixo6SfT5hxxwk3Lhkn1sXPUweIw7t4NA4nx1vO8MbxNeNEAHA/kigAcBGCgoLUunVrSVJiYqK2b9+uZ599VrfffrvOnDmjo0eP2k2OCwsLbQ9Rjo2N1bZt2+z2V/Ew0XMftPxLEydOVEZGhm25pKREzZs3V3JyssLDw6tsr9VqVW5urvr166fAwMBqxVpXEbPvx2yL9557FHjqlKebUz3//8zkC6k4kxgAUPekp6friy++0Icffuj2Y7lknFgXP09/wRoaqtxFi4jDS3hFHE6Ot6rizeNrxokA4H4kUQDAhcrLy1VaWqrExEQFBgZq3bp1Sk1NlSTt2bNHBw8elMVikSRZLBbNmjVLRUVFio6OlvTzmU3h4eFKSEg47zGCg4MVHBxcqTwwMNDpAX116voKYvZ9gadO1b0vGarxngUA1D1jxozRypUrtWnTJjVr1sxWHhsb65YTblwyTqyLn6cOEId38WgcLhxHeeP42tvaAwC+iAfLA0ANTZw4UZs2bdI333yjnTt3auLEidqwYYPuuusuRUREaNSoUcrIyND69euVn5+vu+++WxaLRd27d5ckJScnKyEhQcOHD9dnn32mNWvWaNKkSUpPT3c4+QUAAEDdYIzRmDFjtGLFCn3wwQdq2bKl3fpfnnBTwdEJNzt37lRRUZGtjjMn3AAAAMC1uBIFAGqoqKhII0aM0OHDhxUREaHOnTtrzZo16tevnyRpzpw58vf3V2pqqkpLS5WSkqJ58+bZtg8ICNDKlSs1evRoWSwW1a9fX2lpaZo+fbqnQgIAAIALpKena+nSpXrnnXfUsGFD2zNMIiIiFBoaanfCTVRUlMLDwzV27NjznnAze/ZsFRQUcMINAACAB5BEAYAaWrhwYZXrQ0JClJWVpaysrPPWiY+P1yoXPugQAAAAnjd//nxJUu/eve3Ks7OzNXLkSEmccAMAAFBXkEQBAAAAAMCFjDEXrMMJNwAAAHUDz0QBAAAAAAAAAABwgCQKAAAAAAAAAACAAyRRAAAAAAAAAAAAHCCJAgAAAAAAAAAA4ABJFAAAAAAAAAAAAAdIogAAAAAAAAAAADhAEsWb+flV/omI+HldRITj9Z7+AQAAAAAAAADAR5BEAQAAAAAAAAAAcIAkCgAAAAAAAAAAgAMkUQAAAAAAAAAAABwgiQJIF/8sGE88qwYAAAAAAAAA4FYkUQAAAAAAAAAAABwgiQIAAAAAAAAAAOBAPU83oNZEREinTnm6FQAAAAAAAAAAoI7gShQAAACgrvG2Z7XxPDcAAAAAPookCgAAAAAAAAAAgAMkUQAAAAAAAAAAABwgiQIAAOx5+pY/1f2puHURAAAAAACAi5FEAQAAAAAAAAAAcIAkCgAAAAAAAAAAgAMkUQAAAAAAAAC4xfz589W5c2eFh4crPDxcFotF//znP23rT58+rfT0dDVu3FgNGjRQamqqCgsL7fZx8OBBDRo0SGFhYYqOjtaDDz6os2fP1nYoAC5RJFEAAABw0ZgcAwAAwJFmzZrpscceU35+vj7++GP16dNHgwcP1q5duyRJ48eP13vvvafly5dr48aNOnTokIYOHWrbvqysTIMGDdKZM2e0efNmLVmyRIsXL9bkyZM9FRKASwxJFAAAAFw0JscAAABw5JZbbtHAgQN11VVXqU2bNpo1a5YaNGigLVu2qLi4WAsXLtTTTz+tPn36KDExUdnZ2dq8ebO2bNkiScrJydHu3bv16quvqkuXLhowYIBmzJihrKwsnTlzxsPRAbgU1PN0AwAAAFD33XLLLXbLs2bN0vz587VlyxY1a9ZMCxcu1NKlS9WnTx9JUnZ2ttq3b68tW7aoe/futsnx2rVrFRMToy5dumjGjBmaMGGCpk6dqqCgIE+EBQAAABcqKyvT8uXLdeLECVksFuXn58tqtSopKclWp127dmrRooXy8vLUvXt35eXlqVOnToqJibHVSUlJ0ejRo7Vr1y517drV4bFKS0tVWlpqWy4pKZEkWa1WWa3WKttZsd4aGlrjWL1RRTxeF9cFXo8Lb261+9dXEFfN9+1qJFEAAADgUkyOPYvJcd1CXDXfNwCg7ti5c6csFotOnz6tBg0aaMWKFUpISNCOHTsUFBSkyMhIu/oxMTEqKCiQJBUUFNiNESvWV6w7n8zMTE2bNq1SeU5OjsLCwpxqd+6iRU7Vq2u8Lq5Vq1yym9zcXJfsx9sQl/NOnjzp8n1KJFEAAADgIkyOvYvXxcXkuErE5Tx3TY4BAO7Ttm1b7dixQ8XFxXrzzTeVlpamjRs3uvWYEydOVEZGhm25pKREzZs3V3JyssLDw6vc1mq1Kjc3V/3uuUeBp065tZ21yRoaqtxFi7wvruLii9rc9nr166fAwEAXNcrziKv6Kk6qc7VqJVEyMzP11ltv6auvvlJoaKhuuOEGPf7442rbtq2tzunTp3X//fdr2bJlKi0tVUpKiubNm2c3KT548KBGjx6t9evXq0GDBkpLS1NmZqbq1SOnAwAAUFcxOfYOTI7rFuKqPndNjgEA7hMUFKTWrVtLkhITE7V9+3Y9++yzuv3223XmzBkdPXrU7oSbwsJCxcbGSpJiY2O1bds2u/0VFhba1p1PcHCwgoODK5UHBgY6/dkUeOqUd42nXMTr4nLRWKE6r21dQlzV26c7VCtrsXHjRqWnp+u6667T2bNn9fDDDys5OVm7d+9W/fr1Jf380ND3339fy5cvV0REhMaMGaOhQ4fqo48+kvS/h4bGxsZq8+bNOnz4sEaMGKHAwEA9+uijro8QAAAAtYLJsXfxuriYHFeJuKq3TwBA3VZeXq7S0lIlJiYqMDBQ69atU2pqqiRpz549OnjwoCwWiyTJYrFo1qxZKioqUnR0tKSfr3QMDw9XQkKCx2IAcOmoVhJl9erVdsuLFy9WdHS08vPzddNNN6m4uJiHhgIAAEASk2MAAAD8fOXwgAED1KJFCx07dkxLly7Vhg0btGbNGkVERGjUqFHKyMhQVFSUwsPDNXbsWFksFnXv3l2SlJycrISEBA0fPlyzZ89WQUGBJk2apPT0dIcn0wCAq13U/bOK//8l+VFRUZLktoeG8sDQ//HaB4XWALFc7EHd80BNb3m4qaePDwCoHibHAGBv06ZNeuKJJ5Sfn6/Dhw9rxYoVGjJkiG39yJEjtWTJErttUlJS7E5ePHLkiMaOHav33ntP/v7+Sk1N1bPPPqsGDRrUVhgAcNGKioo0YsQIHT58WBEREercubPWrFmjfv36SZLmzJlj6+N++WiACgEBAVq5cqVGjx4ti8Wi+vXrKy0tTdOnT/dUSAAuMTVOopSXl2vcuHHq0aOHOnbsKOnnh36646GhPDC0Ml+Kh1hqyEUPZz0fTz/clAeGAkDdwuQYAOydOHFCV199te655x4NHTrUYZ3+/fsrOzvbtnxu0viuu+7S4cOHlZubK6vVqrvvvlv33Xefli5d6ta2A4ArLVy4sMr1ISEhysrKUlZW1nnrxMfHa5WbvwcBgPOpcRIlPT1dX3zxhT788ENXtschHhj6P177oNAaIJaLdJEPZz0fb3m4KQ8MBYC6hckxANgbMGCABgwYUGWd4ODg8z736csvv9Tq1au1fft2XXvttZKkuXPnauDAgXryyScVFxfn8jYDAACgsholUcaMGaOVK1dq06ZNatasma08NjbWLQ8N5YGhlflSPMRS04O5N8Hh6Yeb8sBQAAAA+LoNGzYoOjpajRo1Up8+fTRz5kw1btxYkpSXl6fIyEhbAkWSkpKS5O/vr61bt+rWW2+ttD9uhe07t40mDlc24uJvFe0tt712xBvbBAC+plpJFGOMxo4dqxUrVmjDhg1q2bKl3XoeGgoAAAAAwIX1799fQ4cOVcuWLbV//349/PDDGjBggPLy8hQQEKCCggLbnLlCvXr1FBUVxa2wnUAc3sWjcbjwKldP3/baEW6FDQDuV60kSnp6upYuXap33nlHDRs2tA3cIiIiFBoaykNDAQAAAABwwrBhw2z/79Spkzp37qxWrVppw4YN6tu3b432ya2wfee20cThQi64Fba33PbaEW6FDQDuV60kyvz58yVJvXv3tivPzs7WyJEjJfHQUAAAAAAAquvKK69UkyZNtG/fPvXt21exsbEqKiqyq3P27FkdOXKEW2E7gTi8i0fjcGHSw9O3vXbE29oDAL6o2rfzuhAeGgoAAAAAQPV89913+umnn9S0aVNJP98K++jRo8rPz1diYqIk6YMPPlB5ebm6devmyaYCAABcUmr0YHkAAAAAAHB+x48f1759+2zLBw4c0I4dOxQVFaWoqChNmzZNqampio2N1f79+/XQQw+pdevWSklJkSS1b99e/fv317333qsFCxbIarVqzJgxGjZsmOLi4jwVFgAAwCXH39MNAAAAAADA13z88cfq2rWrunbtKknKyMhQ165dNXnyZAUEBOjzzz/Xr3/9a7Vp00ajRo1SYmKi/vWvf9ndjuu1115Tu3bt1LdvXw0cOFA9e/bUiy++6KmQAAAALklciQIAAAAAgIv17t27yltir1mz5oL7iIqK0tKlS13ZLAAAAFQTV6IAAAAAAAAAAAA4QBIFAAAAAAAAAADAAZIoAFBDmZmZuu6669SwYUNFR0dryJAh2rNnj12d06dPKz09XY0bN1aDBg2UmpqqwsJCuzoHDx7UoEGDFBYWpujoaD344IM6e/ZsbYYCAAAAAAAAwAGSKABQQxs3blR6erq2bNmi3NxcWa1WJScn68SJE7Y648eP13vvvafly5dr48aNOnTokIYOHWpbX1ZWpkGDBunMmTPavHmzlixZosWLF2vy5MmeCAkAAAAAAADAL/BgeQCoodWrV9stL168WNHR0crPz9dNN92k4uJiLVy4UEuXLlWfPn0kSdnZ2Wrfvr22bNmi7t27KycnR7t379batWsVExOjLl26aMaMGZowYYKmTp2qoKAgT4QGAAAAAAAAQCRRAMBliouLJUlRUVGSpPz8fFmtViUlJdnqtGvXTi1atFBeXp66d++uvLw8derUSTExMbY6KSkpGj16tHbt2qWuXbtWOk5paalKS0ttyyUlJZIkq9Uqq9VaZRsr1l+oni8h5hoIDXVha9zP+v/ba61j7ZYkOfkaXUp/vwAAAAAAeBOSKADgAuXl5Ro3bpx69Oihjh07SpIKCgoUFBSkyMhIu7oxMTEqKCiw1fllAqVifcU6RzIzMzVt2rRK5Tk5OQoLC3Oqvbm5uU7V8yXEXA2vv+7ahtSS3EWLPN2E6lu1yqlqJ0+edHNDAAAAAACAIyRRAMAF0tPT9cUXX+jDDz90+7EmTpyojIwM23JJSYmaN2+u5ORkhYeHV7mt1WpVbm6u+vXrp8DAQHc31SsQcw1ijohwfaPcyBoaqtxFi9TvnnsUeOqUp5tTPf//CrYLqbjiDAAAAAAA1C6SKABwkcaMGaOVK1dq06ZNatasma08NjZWZ86c0dGjR+2uRiksLFRsbKytzrZt2+z2V1hYaFvnSHBwsIKDgyuVBwYGOv2FeXXq+gpiroa6loj4/wJPnap7SZRqvGcBAAAAAEDt8/d0AwCgrjLGaMyYMVqxYoU++OADtWzZ0m59YmKiAgMDtW7dOlvZnj17dPDgQVksFkmSxWLRzp07VVRUZKuTm5ur8PBwJSQk1E4gAAAAAAAAABziShQAqKH09HQtXbpU77zzjho2bGh7hklERIRCQ0MVERGhUaNGKSMjQ1FRUQoPD9fYsWNlsVjUvXt3SVJycrISEhI0fPhwzZ49WwUFBZo0aZLS09MdXm0CAAAAAAAAoPaQRAGAGpo/f74kqXfv3nbl2dnZGjlypCRpzpw58vf3V2pqqkpLS5WSkqJ58+bZ6gYEBGjlypUaPXq0LBaL6tevr7S0NE2fPr22wgAAAAAAAABwHiRRAKCGjDEXrBMSEqKsrCxlZWWdt058fLxWrVrlyqYBAAAAAAAAcAGeiQIAAAAAAAAAAOAASRQAAAAAAAAAAAAHSKIAAAAAAAAAAAA4QBIFAAAAAAAAAADAAZIoAAAAAAAAAAAADpBEAQAAAAAAAAAAcIAkCgAAAAAAAAAAgAMkUQAAAAAAAAAAABwgiQIAAAAAAAAAAOAASRQAAAAAAAAAAAAHSKIAAADgomVmZuq6665Tw4YNFR0drSFDhmjPnj12dU6fPq309HQ1btxYDRo0UGpqqgoLC+3qHDx4UIMGDVJYWJiio6P14IMP6uzZs7UZCgAAAFyIcSKAuo4kCgAAAC7axo0blZ6eri1btig3N1dWq1XJyck6ceKErc748eP13nvvafny5dq4caMOHTqkoUOH2taXlZVp0KBBOnPmjDZv3qwlS5Zo8eLFmjx5sidCAgAAgAswTgRQ19XzdAMAAABQ961evdpuefHixYqOjlZ+fr5uuukmFRcXa+HChVq6dKn69OkjScrOzlb79u21ZcsWde/eXTk5Odq9e7fWrl2rmJgYdenSRTNmzNCECRM0depUBQUFeSI0AAAAXATGiQDqOpIoAAAAcLni4mJJUlRUlCQpPz9fVqtVSUlJtjrt2rVTixYtlJeXp+7duysvL0+dOnVSTEyMrU5KSopGjx6tXbt2qWvXrrUbBAAAAFyutsaJpaWlKi0ttS2XlJRIkqxWq6xWa5VtrFhvDQ2tYZTeqSIer4vrAq/HhTe32v3rK4ir5vt2NZIoAAAAcKny8nKNGzdOPXr0UMeOHSVJBQUFCgoKUmRkpF3dmJgYFRQU2Or8cmJcsb5inSNMjivz2slxWNhFbW4NDZUWLZI1NlY6dcpFjXLC//+ix12YHNd83wCAuqc2x4mZmZmaNm1apfKcnByFOTkuyV20yKl6dY3XxbVqlUt2k5ub65L9eBvict7Jkyddvk+JJAoAAABcLD09XV988YU+/PBDtx+LyfH5EZeLuGhSfyFMjp3nrskxAMD9anOcOHHiRGVkZNiWS0pK1Lx5cyUnJys8PLzKba1Wq3Jzc9XvnnsUWJsnb7iZNTRUuYsWeV9cF3nSiu316tdPgYGBLmqU5xFX9VWcVOdqJFEAAADgMmPGjNHKlSu1adMmNWvWzFYeGxurM2fO6OjRo3ZnGRYWFio2NtZWZ9u2bXb7KywstK1zhMlxZV47Ob5IHourFq5EYXJcPe6aHLvapk2b9MQTTyg/P1+HDx/WihUrNGTIENt6Y4ymTJmil156SUePHlWPHj00f/58XXXVVbY6R44c0dixY/Xee+/J399fqampevbZZ9WgQQMPRAQAF6e2x4nBwcEKDg6uVB4YGOj0Z1PgqVM+NZ6q4HVxuWisUJ3Xti4hrurt0x1IogAA6gY/v5ptFxoqvf66FBFRu7d/kSRjavd4gAcZYzR27FitWLFCGzZsUMuWLe3WJyYmKjAwUOvWrVNqaqokac+ePTp48KAsFoskyWKxaNasWSoqKlJ0dLSkn89iDw8PV0JCgsPjMjk+P+Jy1QFrZ8LK5Lh6+6wLTpw4oauvvlr33HOPhg4dWmn97Nmz9dxzz2nJkiVq2bKlHnnkEaWkpGj37t0KCQmRJN111106fPiwcnNzZbVadffdd+u+++7T0qVLazscAKgxT40TAcBVSKIAAADgoqWnp2vp0qV655131LBhQ9u9qSMiIhQaGqqIiAiNGjVKGRkZioqKUnh4uMaOHSuLxaLu3btLkpKTk5WQkKDhw4dr9uzZKigo0KRJk5Senu4wUQIA3mzAgAEaMGCAw3XGGD3zzDOaNGmSBg8eLEl6+eWXFRMTo7ffflvDhg3Tl19+qdWrV2v79u269tprJUlz587VwIED9eSTTyouLq7WYgGAi8E4EUBdRxIFAAAAF23+/PmSpN69e9uVZ2dna+TIkZKkOXPm2G5HU1paqpSUFM2bN89WNyAgQCtXrtTo0aNlsVhUv359paWlafr06bUVBgDUigMHDqigoEBJSUm2soiICHXr1k15eXkaNmyY8vLyFBkZaUugSFJSUpL8/f21detW3XrrrZX2W1paqtLSUttyxa3PrFarrFZrlW2qWG8NDb2o2Dytov3E4R28Io4L/O07twur3b/exBvbdC7GiQDqOpIoAAAAuGjGidvXhYSEKCsrS1lZWeetEx8fr1W19CBvAPCUirOwY2Ji7MpjYmJs6woKCmy3rKlQr149RUVF2eqcKzMzU9OmTatUnpOTo7CwMKfalrtokVP1vB1xeBePxuHCcUVubq7L9uUqJ0+e9HQTLohxIoC6jiQKAAAAAAA+YOLEicrIyLAtl5SUqHnz5kpOTlZ4eHiV21qtVuXm5qrfPffU6ecpWUNDlbtoEXF4Ca+Io7j4ondhe3/06+d1z2WquOIMAOA+JFEAAAAAAKhFsbGxkqTCwkI1bdrUVl5YWKguXbrY6hQVFdltd/bsWR05csS2/bmCg4MdPhsgMDDQ6S9+A0+dqtNf2lcgDu/i0ThcmPSoznuptnhbewDAF/l7ugEAAAAAAFxKWrZsqdjYWK1bt85WVlJSoq1bt8pisUiSLBaLjh49qvz8fFudDz74QOXl5erWrVuttxkAAOBSxZUoAAAAAAC42PHjx7Vv3z7b8oEDB7Rjxw5FRUWpRYsWGjdunGbOnKmrrrpKLVu21COPPKK4uDgNGTJEktS+fXv1799f9957rxYsWCCr1aoxY8Zo2LBhiouL81BUAAAAlx6SKABwKYqIkHzgtgAAAADe6uOPP9avfvUr23LFs0rS0tK0ePFiPfTQQzpx4oTuu+8+HT16VD179tTq1asVEhJi2+a1117TmDFj1LdvX/n7+ys1NVXPPfdcrccCAABwKSOJAgAAAACAi/Xu3VvGmPOu9/Pz0/Tp0zV9+vTz1omKitLSpUvd0TwAAAA4iWeiAAAAAAAAAAAAOEASBQAAAAAAAAAAwAGSKAAAAAAAAAAAAA6QRAEAAAAAAAAAAHCAJAoAAAAAAAAAAIADJFEAAAAAAAAAAAAcIIkCAAAAAAAAAADgQLWTKJs2bdItt9yiuLg4+fn56e2337Zbb4zR5MmT1bRpU4WGhiopKUl79+61q3PkyBHdddddCg8PV2RkpEaNGqXjx49fVCAAAAAAAAAAAACuVO0kyokTJ3T11VcrKyvL4frZs2frueee04IFC7R161bVr19fKSkpOn36tK3OXXfdpV27dik3N1crV67Upk2bdN9999U8CgAAAAAAAAAAABerV90NBgwYoAEDBjhcZ4zRM888o0mTJmnw4MGSpJdfflkxMTF6++23NWzYMH355ZdavXq1tm/frmuvvVaSNHfuXA0cOFBPPvmk4uLiLiIcAAAAAAAAAAAA16h2EqUqBw4cUEFBgZKSkmxlERER6tatm/Ly8jRs2DDl5eUpMjLSlkCRpKSkJPn7+2vr1q269dZbK+23tLRUpaWltuWSkhJJktVqldVqrbJNFeutoaEXFZu3qIjDF+Ihlos9aNV/+zXfrdXuX0/x9PEBAAAAAAAAwKVJlIKCAklSTEyMXXlMTIxtXUFBgaKjo+0bUa+eoqKibHXOlZmZqWnTplUqz8nJUVhYmFNty120yKl6dYUvxUMsNbRqlVt3n5ub69b9X8jJkyc9enwAAAAAgA/w87v4fYSGSq+/LkVESKdOXfz+nGFM7RwHAHBBLk2iuMvEiROVkZFhWy4pKVHz5s2VnJys8PDwKre1Wq3Kzc1Vv3vuUWBtfdC5kTU0VLmLFvlEPMRykYqL3bJb23umXz8FBga65RjOqLjiDAAAAAAAAAA8xaVJlNjYWElSYWGhmjZtaisvLCxUly5dbHWKiorstjt79qyOHDli2/5cwcHBCg4OrlQeGBjo9Je8gadO1fkv6n/Jl+IhlpoezL0Jjuq8v9x1fAAAAAAAAADwJH9X7qxly5aKjY3VunXrbGUlJSXaunWrLBaLJMlisejo0aPKz8+31fnggw9UXl6ubt26ubI5AAAAAAAAAAAANVbtJMrx48e1Y8cO7dixQ9LPD5PfsWOHDh48KD8/P40bN04zZ87Uu+++q507d2rEiBGKi4vTkCFDJEnt27dX//79de+992rbtm366KOPNGbMGA0bNkxxcXGujA0A3G7Tpk265ZZbFBcXJz8/P7399tt2640xmjx5spo2barQ0FAlJSVp7969dnWOHDmiu+66S+Hh4YqMjNSoUaN0/PjxWowCAAAAAAAAgCPVTqJ8/PHH6tq1q7p27SpJysjIUNeuXTV58mRJ0kMPPaSxY8fqvvvu03XXXafjx49r9erVCgkJse3jtddeU7t27dS3b18NHDhQPXv21IsvvuiikACg9pw4cUJXX321srKyHK6fPXu2nnvuOS1YsEBbt25V/fr1lZKSotOnT9vq3HXXXdq1a5dyc3O1cuVKbdq0Sffdd19thQB38vPzzE9ExM/Hj4io2fYAAAAAAACQVINnovTu3VvGmPOu9/Pz0/Tp0zV9+vTz1omKitLSpUure2gA8DoDBgzQgAEDHK4zxuiZZ57RpEmTNHjwYEnSyy+/rJiYGL399tsaNmyYvvzyS61evVrbt2/XtddeK0maO3euBg4cqCeffJIr9AAAAAAAAAAPcumD5QEA/3PgwAEVFBQoKSnJVhYREaFu3bopLy9Pw4YNU15eniIjI20JFElKSkqSv7+/tm7dqltvvbXSfktLS1VaWmpbLikpkSRZrVZZrdYq21Sx3hoaelGx1SUVsRKz76rT8V7gPfu/as7VAwAAAAAArkUSBQDcpKCgQJIUExNjVx4TE2NbV1BQoOjoaLv19erVU1RUlK3OuTIzMzVt2rRK5Tk5OQoLC3OqbbmLFjlVz5cQs++rk/GuWuVUtZMnT7q5IQAAAAAAwBGSKABQx0ycOFEZGRm25ZKSEjVv3lzJyckKDw+vclur1arc3Fz1u+ceBZ465e6megVraKhyFy0iZh9Wp+MtLnaqWsUVZwAAAAAAoHaRRAEAN4mNjZUkFRYWqmnTprbywsJCdenSxVanqKjIbruzZ8/qyJEjtu3PFRwcrODg4ErlgYGBCgwMdKptgadO1b0vmy8SMfu+Ohmvs+9ZJ+sBAAAAAADX8vd0AwDAV7Vs2VKxsbFat26draykpERbt26VxWKRJFksFh09elT5+fm2Oh988IHKy8vVrVu3Wm8zAAAAAAAAgP/hShQAuAjHjx/Xvn37bMsHDhzQjh07FBUVpRYtWmjcuHGaOXOmrrrqKrVs2VKPPPKI4uLiNGTIEElS+/bt1b9/f917771asGCBrFarxowZo2HDhikuLs5DUQEAAAAAAACQSKIAwEX5+OOP9atf/cq2XPGskrS0NC1evFgPPfSQTpw4ofvuu09Hjx5Vz549tXr1aoWEhNi2ee211zRmzBj17dtX/v7+Sk1N1XPPPVfrsQAAAAAAAACwx+28AOAi9O7dW8aYSj+LFy+WJPn5+Wn69OkqKCjQ6dOntXbtWrVp08ZuH1FRUVq6dKmOHTum4uJiLVq0SA0aNPBANAAAAAAAuN6mTZt0yy23KC4uTn5+fnr77bft1htjNHnyZDVt2lShoaFKSkrS3r177eocOXJEd911l8LDwxUZGalRo0bp+PHjtRgFgEsVSRQAAAC4BJNjAAAAOHLixAldffXVysrKcrh+9uzZeu6557RgwQJt3bpV9evXV0pKik6fPm2rc9ddd2nXrl3Kzc3VypUrtWnTJt133321FQKASxhJFAAAALgEk2MAAAA4MmDAAM2cOVO33nprpXXGGD3zzDOaNGmSBg8erM6dO+vll1/WoUOHbCflfPnll1q9erX+9re/qVu3burZs6fmzp2rZcuW6dChQ7UcDYBLDUkUAAAAuASTYwBw3tSpU+Xn52f3065dO9v606dPKz09XY0bN1aDBg2UmpqqwsJCD7YYANzjwIEDKigoUFJSkq0sIiJC3bp1U15eniQpLy9PkZGRuvbaa211kpKS5O/vr61bt9Z6mwFcWniwPAAAANzuQpPjYcOGXXBy7Cg5U1paqtLSUttySUmJJMlqtcpqtVbZpor11tDQi4rN21TEQ1yuOnDVf0cXv3ur3b++wp1x+dLvqkOHDlq7dq1tuV69/03Rx48fr/fff1/Lly9XRESExowZo6FDh+qjjz7yRFMBwG0KCgokSTExMXblMTExtnUFBQWKjo62W1+vXj1FRUXZ6pyLcWJlXjtOvMjPdsZTdUtdHCeSRAEAAIDbuWtynJmZqWnTplUqz8nJUVhYmFNty120yKl6dQ1xuciqVbVymNzc3Fo5Tm1zR1wnT550+T49pV69eoqNja1UXlxcrIULF2rp0qXq06ePJCk7O1vt27fXli1b1L1799puKgDUOYwTz8/r4nLReIvxVN1Sl8aJJFEAAABQZ02cOFEZGRm25ZKSEjVv3lzJyckKDw+vclur1arc3Fz1u+ceBZ465e6m1hpraKhyFy0iLlcpLnbr7m1/h/36KTAw0K3Hqk3ujKviTGJfsHfvXsXFxSkkJEQWi0WZmZlq0aKF8vPzZbVa7a7ea9eunVq0aKG8vDySKAB8SkUyubCwUE2bNrWVFxYWqkuXLrY6RUVFdtudPXtWR44ccZiMlhgnOuK148SLHG8xnqpb6uI4kSQKAAAA3M5dk+Pg4GAFBwdXKg8MDHR6QB546pR3TSJdhLhcdcDambBW52+2LnFHXL7ye+rWrZsWL16stm3b6vDhw5o2bZpuvPFGffHFFyooKFBQUJAiIyPttvnl1XuOcOsaL75VTTURh3fxSBxO3pLGF27z07JlS8XGxmrdunW2cWFJSYm2bt2q0aNHS5IsFouOHj2q/Px8JSYmSpI++OADlZeXq1u3bg73yzjx/LwuLhd9tjOeqlvq0jiRJAoAAADczl2TYwCoqwYMGGD7f+fOndWtWzfFx8fr73//u0Jr+EUtt675H+LwLsRRA07e3qiu3OLw+PHj2rdvn235wIED2rFjh6KiotSiRQuNGzdOM2fO1FVXXaWWLVvqkUceUVxcnIYMGSJJat++vfr37697771XCxYskNVq1ZgxYzRs2DDFxcV5KCoAlwqSKAAAAHAJJscAUHORkZFq06aN9u3bp379+unMmTM6evSo3dUohYWF570yT+LWNZIX36qmmojDu3gkDidvb1RXbnH48ccf61e/+pVtuaKvSktL0+LFi/XQQw/pxIkTuu+++3T06FH17NlTq1evVkhIiG2b1157TWPGjFHfvn3l7++v1NRUPffcc7UeC4BLD0kUAAAAuASTYwCouePHj2v//v0aPny4EhMTFRgYqHXr1ik1NVWStGfPHh08eFAWi+W8++DWNf9DHN6FOGpyMCffs3XkFj+9e/eWMea86/38/DR9+nRNnz79vHWioqK0dOlSdzQPAKpEEgUAAAAuweQYAJz3wAMP6JZbblF8fLwOHTqkKVOmKCAgQHfccYciIiI0atQoZWRkKCoqSuHh4Ro7dqwsFgsPlQcAAKhlJFEAAAAAAKhl3333ne644w799NNPuuyyy9SzZ09t2bJFl112mSRpzpw5tivySktLlZKSonnz5nm41QAAAJcekigAAAAAANSyZcuWVbk+JCREWVlZysrKqqUWAQAAwBF/TzcAAAAAAAAAAADAG5FEAQAAAAAAAAAAcIAkCgAAAAAAAAAAgAMkUQAAAAAAAAAAABwgiQIAAAAAAAAAAOAASRQAAAAAAAAAAAAHSKIAAAAAAAAAAAA4QBIFAAAAAAAAAADAAZIoAAAAAAAAAAAADpBEAQAAAAAAAAAAcIAkCgAAAAAAAAAAgAMkUQAAAAAAAAAAABwgiQIAAAAAAAAAAOAASRQAAAAAAAAAAAAHSKIAAAAAAAAAAAA4QBIFAAAAAAAAAADAAZIoAAAAAAAAAAAADpBEAQAAAAAAAAB4hp/fxf1ERPy8n4iIi99XdX5wySCJAgAAAAAAAAAA4ABJFAAAAAAAAAAAAAdIogAAAAAAAAAAADhAEgUAAAAAAAAAAMABkigAAAAAAAAAAAAOkEQBAAAAAAAAAABwgCQKAAAAAAAAAACAAyRRgLrKz889PxERP+8/IsI9+wcAAAAAAACAOoIkCgAAAAAAAAAAgAMkUQAAAAAAAAAAABwgiQIAAAAAAAAAAOCAR5MoWVlZuuKKKxQSEqJu3bpp27ZtnmwOAHgUfSIA/Iz+EAD+hz4RAP6HPhGAJ3gsifLGG28oIyNDU6ZM0SeffKKrr75aKSkpKioq8lSTAMBj6BMB4Gf0h/A6fn7u/YmI+Pk4ERGu2yd8Bn0iAPwPfSIAT/FYEuXpp5/Wvffeq7vvvlsJCQlasGCBwsLCtGjRIk81CQA8hj4RAH5GfwgA/0OfCAD/Q58IwFM8kkQ5c+aM8vPzlZSU9L+G+PsrKSlJeXl5nmgSAHgMfSIA/Iz+EHARd189464rbGCHPhEA/oc+EV7JG8dTjLfcop4nDvrjjz+qrKxMMTExduUxMTH66quvKtUvLS1VaWmpbbm4uFiSdOTIEVmt1iqPZbVadfLkSf0UEqJAY1zQes+yhoT4TDzE4p3cHstPPzlV7dixY5IkU8d/n86gT3QvX3p/OutSi7lOx0ufaKe6/aFEn+hInX5PVIG46pYaxUWfaIc+sWZ85T1FHN7FI3HQJ9qhT3QNX3lPnou4qiE01DX7uQjW0FCdzMrSTzExCjx1yrmNvvvOqWru6hM9kkSprszMTE2bNq1SecuWLT3QGg87fVq6805Pt8I1iMU7uTuWJk2qVf3YsWOKqMi8QxJ9YrX50vvTWZdazHU5XvrEi0af6EBdfk9UhbjqlprERZ940egT5TvvKeLwLp6Igz7xotEnOuAr78lzEVfdUgfHiR5JojRp0kQBAQEqLCy0Ky8sLFRsbGyl+hMnTlRGRoZtuby8XEeOHFHjxo3ld4HLkEpKStS8eXN9++23Cg8Pd00AHuRL8RCLd/KWWIwxOnbsmOLi4jzWhtpCn+hexOz7MV8K8V4qfWJ1+0OJPtER4qpbiKv66BPpE6tCHN6FONyPPpE+sTqIq24hrupzV5/okSRKUFCQEhMTtW7dOg0ZMkTSzx3ZunXrNGbMmEr1g4ODFRwcbFcWGRlZrWOGh4f71B+bL8VDLN7JG2K5VM6ioU+sHcTs+3w93kuhT6xufyjRJ1aFuOoW4qoe+kT6xAshDu9CHO5Fn0ifWF3EVbcQV/W4o0/02O28MjIylJaWpmuvvVbXX3+9nnnmGZ04cUJ33323p5oEAB5DnwgAP6M/BID/oU8EgP+hTwTgKR5Lotx+++364YcfNHnyZBUUFKhLly5avXp1pQdEAcClgD4RAH5GfwgA/0OfCAD/Q58IwFM8+mD5MWPGnPeSO1cJDg7WlClTKl2+V1f5UjzE4p18KZa6hj7RPYjZ911q8V4KaqM/lHz3b4e46hbiwoXQJ1YPcXgX4oCr0SdeHOKqW4jLe/gZY4ynGwEAAAAAAAAAAOBt/D3dAAAAAAAAAAAAAG9EEgUAAAAAAAAAAMABkigAAAAAAAAAAAAO+EQSJSsrS1dccYVCQkLUrVs3bdu2rcr6y5cvV7t27RQSEqJOnTpp1apVtdRS51Qnnpdeekk33nijGjVqpEaNGikpKemC8dem6r42FZYtWyY/Pz8NGTLEvQ2shurGcvToUaWnp6tp06YKDg5WmzZtvOZvrbqxPPPMM2rbtq1CQ0PVvHlzjR8/XqdPn66l1uJCXN0HGmM0efJkNW3aVKGhoUpKStLevXvdGUK1ubqfHDlypPz8/Ox++vfv7+4wnFadeBcvXlwplpCQELs6vvYa9+7du1LMfn5+GjRokK2Ot7/GcB1f7RNdGZfVatWECRPUqVMn1a9fX3FxcRoxYoQOHTrk7jAqcec4/o9//KP8/Pz0zDPPuLjVF+aOuL788kv9+te/VkREhOrXr6/rrrtOBw8edFcIDrk6ruPHj2vMmDFq1qyZQkNDlZCQoAULFrgzhEuer8ydfWXO7CvzZV+ZKzNPvvT4Sp94rurEtWvXLqWmpuqKK67w2LjJWb7S95+rOnG99dZbuvbaaxUZGan69eurS5cueuWVV2qxtc7zlc84G1PHLVu2zAQFBZlFixaZXbt2mXvvvddERkaawsJCh/U/+ugjExAQYGbPnm12795tJk2aZAIDA83OnTtrueWOVTeeO++802RlZZlPP/3UfPnll2bkyJEmIiLCfPfdd7Xc8sqqG0uFAwcOmMsvv9zceOONZvDgwbXT2AuobiylpaXm2muvNQMHDjQffvihOXDggNmwYYPZsWNHLbe8surG8tprr5ng4GDz2muvmQMHDpg1a9aYpk2bmvHjx9dyy+GIO/rAxx57zERERJi3337bfPbZZ+bXv/61admypTl16lRthVUld/STaWlppn///ubw4cO2nyNHjtRWSFWqbrzZ2dkmPDzcLpaCggK7Or72Gv/000928X7xxRcmICDAZGdn2+p482sM1/HVPtHVcR09etQkJSWZN954w3z11VcmLy/PXH/99SYxMbHWYjLGveP4t956y1x99dUmLi7OzJkzx82R2HNHXPv27TNRUVHmwQcfNJ988onZt2+feeeddy44rnYld8R17733mlatWpn169ebAwcOmBdeeMEEBASYd955p7bCuqT4ytzZV+bMvjJf9pW5MvPkS4+v9Innqm5c27ZtMw888IB5/fXXTWxsbK2Pm5zlK33/uaob1/r1681bb71ldu/ebfbt22eeeeYZExAQYFavXl3LLa+ar3zG/VKdT6Jcf/31Jj093bZcVlZm4uLiTGZmpsP6t912mxk0aJBdWbdu3cwf/vAHt7bTWdWN51xnz541DRs2NEuWLHFXE51Wk1jOnj1rbrjhBvO3v/3NpKWlec0bprqxzJ8/31x55ZXmzJkztdVEp1U3lvT0dNOnTx+7soyMDNOjRw+3thPOcXUfWF5ebmJjY80TTzxhW3/06FETHBxsXn/9dTdEUH3u6Ce9qb85V3Xjzc7ONhEREefd36XwGs+ZM8c0bNjQHD9+3Fbmza8xXMdX+8TaGO9u27bNSDL/+c9/XNNoJ7grru+++85cfvnl5osvvjDx8fG1/mWAO+K6/fbbze9+9zv3NNhJ7oirQ4cOZvr06XZ1rrnmGvPXv/7VhS1HBV+ZO/vKnNlX5su+Mldmnnzp8ZU+8VwX00d6YtzkLF/p+891sXEZY0zXrl3NpEmT3NG8GvOVz7hfqtO38zpz5ozy8/OVlJRkK/P391dSUpLy8vIcbpOXl2dXX5JSUlLOW7821SSec508eVJWq1VRUVHuaqZTahrL9OnTFR0drVGjRtVGM51Sk1jeffddWSwWpaenKyYmRh07dtSjjz6qsrKy2mq2QzWJ5YYbblB+fr7tsruvv/5aq1at0sCBA2ulzTg/d/SBBw4cUEFBgV2diIgIdevWzef7yQ0bNig6Olpt27bV6NGj9dNPP7m07TVR03iPHz+u+Ph4NW/eXIMHD9auXbts6y6F13jhwoUaNmyY6tevb1fuja8xXMdX+8TaGu8WFxfLz89PkZGRLmn3hbgrrvLycg0fPlwPPvigOnTo4J7GV8EdcZWXl+v9999XmzZtlJKSoujoaHXr1k1vv/222+I4l7terxtuuEHvvvuuvv/+exljtH79ev373/9WcnKyewK5hPnK3NlX5sy+Ml/2lbky8+RLj6/0iedyRR/pjXyl7z/XxcZljNG6deu0Z88e3XTTTe5sarX4ymfcuep0EuXHH39UWVmZYmJi7MpjYmJUUFDgcJuCgoJq1a9NNYnnXBMmTFBcXFyljr221SSWDz/8UAsXLtRLL71UG010Wk1i+frrr/Xmm2+qrKxMq1at0iOPPKKnnnpKM2fOrI0mn1dNYrnzzjs1ffp09ezZU4GBgWrVqpV69+6thx9+uDaajCq4ow+s+PdS6yf79++vl19+WevWrdPjjz+ujRs3asCAAR5PfNYk3rZt22rRokV655139Oqrr6q8vFw33HCDvvvuO0m+/xpv27ZNX3zxhX7/+9/blXvrawzX8dU+sTbGu6dPn9aECRN0xx13KDw83DUNvwB3xfX444+rXr16+vOf/+z6RjvBHXEVFRXp+PHjeuyxx9S/f3/l5OTo1ltv1dChQ7Vx40b3BHIOd71ec+fOVUJCgpo1a6agoCD1799fWVlZXvVFgK/wlbmzr8yZfWW+7CtzZebJlx5f6RPP5Yo+0hv5St9/rprGVVxcrAYNGigoKEiDBg3S3Llz1a9fP3c312m+8hl3rnqebgBc57HHHtOyZcu0YcOGSg8R9nbHjh3T8OHD9dJLL6lJkyaebs5FKy8vV3R0tF588UUFBAQoMTFR33//vZ544glNmTLF082rlg0bNujRRx/VvHnz1K1bN+3bt09/+ctfNGPGDD3yyCOebh5QLefrJ4cNG2b7f6dOndS5c2e1atVKGzZsUN++fT3R1BqzWCyyWCy25RtuuEHt27fXCy+8oBkzZniwZbVj4cKF6tSpk66//nq7cl96jQFXslqtuu2222SM0fz58z3dnIuSn5+vZ599Vp988on8/Pw83RyXKS8vlyQNHjxY48ePlyR16dJFmzdv1oIFC9SrVy9PNu+izJ07V1u2bNG7776r+Ph4bdq0Senp6V73JQd8R12dM/vSfNlX5srMk4G6o672/efTsGFD7dixQ8ePH9e6deuUkZGhK6+8Ur179/Z002qkrnzG1ekkSpMmTRQQEKDCwkK78sLCQsXGxjrcJjY2tlr1a1NN4qnw5JNP6rHHHtPatWvVuXNndzbTKdWNZf/+/frmm290yy232MoqJoz16tXTnj171KpVK/c2+jxq8ro0bdpUgYGBCggIsJW1b99eBQUFOnPmjIKCgtza5vOpSSyPPPKIhg8fbjuru1OnTjpx4oTuu+8+/fWvf5W/f52+oK1Oc0cfWPFvYWGhmjZtalenS5cuLmx9zdRWP3nllVeqSZMm2rdvn0e/YL+YeCsEBgaqa9eu2rdvnyTffo1PnDihZcuWafr06Rc8jre8xnAdX+0T3TnerUig/Oc//9EHH3xQa1ehSO6J61//+peKiorUokUL2/qysjLdf//9euaZZ/TNN9+4NggH3BFXkyZNVK9ePSUkJNjVad++vT788EMXtv783BHXqVOn9PDDD2vFihUaNGiQJKlz587asWOHnnzySZIoLuYrc2dfmTP7ynzZV+bKzJMvPb7SJ57LFfNHb+Qrff+5ahqXv7+/WrduLennE2u+/PJLZWZmek0SxVc+485Vp3v1oKAgJSYmat26dbay8vJyrVu3zu4s3F+yWCx29SUpNzf3vPVrU03ikaTZs2drxowZWr16ta699traaOoFVTeWdu3aaefOndqxY4ft59e//rV+9atfaceOHWrevHltNt9OTV6XHj16aN++fbY3vST9+9//VtOmTT2WQJFqFsvJkycrDQArBrzGGPc1Fhfkjj6wZcuWio2NtatTUlKirVu3XlL95HfffaeffvrJ7ktTT6hpvL9UVlamnTt32mLx1ddYkpYvX67S0lL97ne/u+BxvOU1huv4ap/orvFuRQJl7969Wrt2rRo3buyeAM7DHXENHz5cn3/+ud14Mi4uTg8++KDWrFnjvmB+wR1xBQUF6brrrtOePXvs6vz73/9WfHy8iyNwzB1xWa1WWa1Wh+PMX46h4Rq+Mnf2lTmzr8yXfWWuzDz50uMrfeK5XDF/9Ea+0vefy1WvV3l5uUpLS93RxBrxlc+4Sjz6WHsXWLZsmQkODjaLFy82u3fvNvfdd5+JjIw0BQUFxhhjhg8fbv7v//7PVv+jjz4y9erVM08++aT58ssvzZQpU0xgYKDZuXOnp0KwU914HnvsMRMUFGTefPNNc/jwYdvPsWPHPBWCTXVjOVdaWpoZPHhwLbW2atWN5eDBg6Zhw4ZmzJgxZs+ePWblypUmOjrazJw501Mh2FQ3lilTppiGDRua119/3Xz99dcmJyfHtGrVytx2222eCgG/4I4+8LHHHjORkZHmnXfeMZ9//rkZPHiwadmypTl16lStx+eIq/vJY8eOmQceeMDk5eWZAwcOmLVr15prrrnGXHXVVeb06dMeifGXqhvvtGnTzJo1a8z+/ftNfn6+GTZsmAkJCTG7du2y1fG117hCz549ze23316p3NtfY7iOr/aJro7rzJkz5te//rVp1qyZ2bFjh13fWFpaWmfjciQ+Pt7MmTPH3aHYcUdcb731lgkMDDQvvvii2bt3r5k7d64JCAgw//rXv+p0XL169TIdOnQw69evN19//bXJzs42ISEhZt68ebUW16XEV+bOvjJn9pX5sq/MlZknX3p8pU88V3XjKi0tNZ9++qn59NNPTdOmTc0DDzxgPv30U7N3715PheCQr/T956puXI8++qjJyckx+/fvN7t37zZPPvmkqVevnnnppZc8FYJDvvIZ90t1PolijDFz5841LVq0MEFBQeb66683W7Zssa3r1auXSUtLs6v/97//3bRp08YEBQWZDh06mPfff7+WW1y16sQTHx9vJFX6mTJlSu033IHqvja/5G1vmOrGsnnzZtOtWzcTHBxsrrzySjNr1ixz9uzZWm61Y9WJxWq1mqlTp5pWrVqZkJAQ07x5c/OnP/3J/Pe//639hsMhV/eB5eXl5pFHHjExMTEmODjY9O3b1+zZs6c2QnGaK/vJkydPmuTkZHPZZZeZwMBAEx8fb+69917bh7s3qE6848aNs9WNiYkxAwcONJ988ond/nztNTbGmK+++spIMjk5OZX2VRdeY7iOr/aJrozrwIEDDvtFSWb9+vW1FNHP3D2O90QSxRj3xLVw4ULTunVrExISYq6++mrz9ttvuzuMSlwd1+HDh83IkSNNXFycCQkJMW3btjVPPfWUKS8vr41wLkm+Mnf2lTmzr8yXfWWuzDz50uMrfeK5qhPX+caFvXr1qv2GX4Cv9P3nqk5cf/3rX23jwUaNGhmLxWKWLVvmgVZfmK98xlXwM4brDAEAAAAAAAAAAM5Vp5+JAgAAAAAAAAAA4C4kUQAAAAAAAAAAABwgiQIAAAAAAAAAAOAASRQAAAAAAAAAAAAHSKIAAAAAAAAAAAA4QBIFAAAAAAAAAADAAZIoAAAAAAAAAAAADpBEAQAAAAAAAAAAcIAkCgAAAAAAAAAAgAMkUQAAAAAAAAAAABwgiQIAAAAAAAAAAOAASRQAAAAAAAAAAAAHSKIAAAAAAAAAAAA4QBIFAAAAAAAAAADAAZIoAAAAAAAAAAAADpBEAQAAAAAAAAAAcIAkCgAAAAAAAAAAgAMkUQAAAAAAAAAAABwgiQIAAAAAAAAAAOAASRQAAAAAAAAAAAAHSKIAAAAAAAAAAAA4QBIFAAAAAAAAAADAAZIoAAAAAAAAAAAADpBEAQAAAAAAAAAAcIAkCgD8P/buPS7KMv//+BtwOAuECWgq2UnFNApLJrNMETI6mFTamqK51RJaSrWurb88pZTbrraFtrWe2jLTjrtaCpqHTfGwlLumZVoWHQRKUzQVR7h/f/hlcmSQAWaYA6/n48FD576vuef63MCHe+7PXNcFAAAAAAAAAHZQRAEAAAAAAAAAALCDIgoAAAAAAAAAAIAdFFEAAAAAAAAAAADsoIgCAAAAAAAAAABgB0UUAAAAAAAAAAAAOyiiAAAAAAAAAAAA2EERxQtNnjxZfn5++umnn87Z7sILL9SIESOaplNn+Prrr+Xn56eFCxc2+WsDQEOMGDFCF154obu74RWq/wadyV1/bwBf5ei1nicYMWKEwsPDHWrr5+enyZMnu7ZDHsbPz0+jR4+us93ChQvl5+enr7/+2vWdAuBWffr0UZ8+fZrt65/Jk/oC+JKzrysa+ru2bt06+fn5ad26dU7tn7ezd/+gPte5vH/2ThRRAACAU+3atUuTJ0/mZiDgI44dO6bJkyfzBhoAAABwwKZNmzR58mQdOnTI3V2Bk7RwdwcAAIB32717t/z9f/1cxq5duzRlyhT16dOHET6ADzh27JimTJkiSY36xPDx48fVogVvPwA0b/n5+e7uAoBmpqF55/rrr9fx48cVGBjo5B75nrOvczdt2qQpU6ZoxIgRioqKsml79vtneAe+Y/AJx44dc3cX6qWqqkonTpxwdzcAwCmCgoJkMpnc3Q2g2fP064vg4GCvL6L88ssv7u4CAC8XGBjIDUkATaqhecff31/BwcHc8HdAfa5zef/snfgt8GI//fST7r77bkVERKhVq1Z65JFH6nzj/NVXX+muu+5SdHS0QkNDlZycrBUrVtRoV1ZWplGjRik2NlbBwcG64oortGjRohrtDh06pBEjRigyMlJRUVHKzMxs0FC16nkW33jjDT3xxBOKi4tTWFiYbrvtNn377bc2bfv06aPLL79cRUVFuv766xUaGqonnnhCklRRUaFJkybpkksuUVBQkNq3b6/f//73qqiosDlGQUGBrrvuOkVFRSk8PFydOnWyHqPa888/r65duyo0NFTnnXeeevToocWLF1v317aGgr31Aqrnw37ttdfUtWtXBQUFaeXKlZKk77//Xvfdd59iY2MVFBSkrl27av78+fU+hwBqd+TIEY0dO1YXXnihgoKCFBMTo/79++vjjz+u9TlVVVWaPXu2unbtquDgYMXGxurBBx/Uzz//XKPtBx98oN69eyssLEwtW7ZUenq6du7cadOmet2Ar776SmlpaQoLC1Pbtm01depUGYZR75heeuklXXzxxQoJCdE111yjf//73zXmuq1tjn17c9v++9//1l133aUOHTpY8+e4ceN0/PjxOvty5pyuCxcu1F133SVJuvHGG+Xn52d9rczMTJ1//vmyWCw1jpGamqpOnTrV+zwAvqyua73GXl+cPHlSTz75pJKSkhQZGamwsDD17t1ba9eutbb5+uuv1bp1a0nSlClTrL/TZ8/5/P3332vgwIEKDw9X69at9dhjj6mystKmzdnPq75m2rt3r/VTepGRkRo5cmSND8gcP35cDz/8sM4//3y1bNlSt912m77//vt6r7NSvXbfs88+q1mzZik+Pl4hISG64YYb9Omnn9q0rc7bX375pW6++Wa1bNlSQ4cOlXS6mPLoo4+qffv2CgoKUqdOnfTss8/Wms9fe+01derUScHBwUpKStKGDRsc6m99/r4UFxfrlltuUXh4uC644ALl5eVJknbs2KG+ffsqLCxM8fHxNtezAOrmaK46deqUpk2bposvvlhBQUG68MIL9cQTT9R4L2pvbYK63ntKrn3f6Mj76Msvv1w33nhjjedWVVXpggsu0J133mmzzdHraACud2beKS0tVYsWLayjjM+0e/du+fn56YUXXpBk/31j9T25Xbt26cYbb1RoaKguuOACzZw5s8bxvvnmG912220KCwtTTEyMxo0bp1WrVjVonZVDhw5p3Lhx1vf07dq10/Dhw23WEHTkXuaZ14LV76mDgoJ09dVXa9u2bTVe991339Xll1+u4OBgXX755XrnnXfs9u/Ma9LJkyfr8ccflyR17NjRev1c/b7c3poojtyvrf5+LF26VNOnT1e7du0UHBysfv36ae/evTZt9+zZo4yMDMXFxSk4OFjt2rXTkCFDdPjw4TrPNezz7o+CNXN33323LrzwQuXm5mrz5s3661//qp9//lmvvPKK3falpaW69tprdezYMT388MNq1aqVFi1apNtuu01vvvmm7rjjDkmn36T26dNHe/fu1ejRo9WxY0ctW7ZMI0aM0KFDh/TII49IkgzD0O23366PPvpIv/vd79SlSxe98847yszMbHBM06dPl5+fn8aPH6+ysjLNnj1bKSkp2r59u0JCQqztDhw4oAEDBmjIkCG69957FRsbq6qqKt1222366KOP9MADD6hLly7asWOHZs2apS+++ELvvvuuJGnnzp265ZZb1L17d02dOlVBQUHau3evNm7caD3+yy+/rIcfflh33nmn9YbF//73P23ZskW/+c1vGhTbhx9+qKVLl2r06NE6//zzdeGFF6q0tFTJycnWmyCtW7fWBx98oFGjRqm8vFxjx45t8LkE8Kvf/e53evPNNzV69GglJCTowIED+uijj/TZZ5/pqquusvucBx98UAsXLtTIkSP18MMPa9++fXrhhRf0ySefaOPGjdZPjvzjH/9QZmam0tLS9Mwzz+jYsWOaO3eurrvuOn3yySc2xdbKykrddNNNSk5O1syZM7Vy5UpNmjRJp06d0tSpUx2OZ968eXrwwQd17bXXauzYsfrqq6902223KTo6Wu3bt2/QOVq2bJmOHTumrKwstWrVSlu3btXzzz+v7777TsuWLXP4ONdff70efvhh/fWvf9UTTzyhLl26SJK6dOmiYcOG6ZVXXtGqVat0yy23WJ9TUlKiDz/8UJMmTWpQ3wFf5ci1XmOuL8rLy/X3v/9d99xzj+6//34dOXJE8+bNU1pamrZu3arExES1bt1ac+fOVVZWlu644w4NGjRIktS9e3drHyorK5WWlqaePXvq2Wef1erVq/XnP/9ZF198sbKyshyKs2PHjsrNzdXHH3+sv//974qJidEzzzxjbTNixAgtXbpUw4YNU3JystavX6/09PQGn9tXXnlFR44cUXZ2tk6cOKHnnntOffv21Y4dOxQbG2ttd+rUKaWlpem6667Ts88+q9DQUBmGodtuu01r167VqFGjlJiYqFWrVunxxx/X999/r1mzZtm81vr16/XGG2/o4YcfVlBQkObMmaObbrpJW7du1eWXX15rH+v792XAgAG6/vrrNXPmTL322msaPXq0wsLC9Mc//lFDhw7VoEGD9OKLL2r48OEym83q2LFjg88f0BzVlat++9vfatGiRbrzzjv16KOPasuWLcrNzdVnn31W6003ybH3nq583+jo++jBgwdr8uTJKikpUVxcnPX5H330kX744QcNGTLEus3R62gATS82NlY33HCDli5dWuP91xtvvKGAgADrh+Jq8/PPP+umm27SoEGDdPfdd+vNN9/U+PHj1a1bNw0YMEDS6Q+c9O3bV/v379cjjzyiuLg4LV682ObDOo46evSoevfurc8++0z33XefrrrqKv3000/65z//qe+++07nn3++w/cyqy1evFhHjhzRgw8+KD8/P82cOVODBg3SV199Zc1R+fn5ysjIUEJCgnJzc3XgwAGNHDlS7dq1O2d/Bw0apC+++EKvv/66Zs2apfPPP1+SrB9MOpuj92urPf300/L399djjz2mw4cPa+bMmRo6dKi2bNki6fQHpdLS0lRRUaExY8YoLi5O33//vZYvX65Dhw4pMjKy3t8DSDLgdSZNmmRIMm677Tab7Q899JAhyfjvf/9rGIZhxMfHG5mZmdb9Y8eONSQZ//73v63bjhw5YnTs2NG48MILjcrKSsMwDGP27NmGJOPVV1+1tjt58qRhNpuN8PBwo7y83DAMw3j33XcNScbMmTOt7U6dOmX07t3bkGQsWLDA4ZjWrl1rSDIuuOAC6/ENwzCWLl1qSDKee+4567YbbrjBkGS8+OKLNsf4xz/+Yfj7+9vEZxiG8eKLLxqSjI0bNxqGYRizZs0yJBk//vhjrf25/fbbja5du56zz5mZmUZ8fHyN7dXfnzNJMvz9/Y2dO3fabB81apTRpk0b46effrLZPmTIECMyMtI4duzYOfsAwDGRkZFGdnZ2rfvP/n3+97//bUgyXnvtNZt2K1eutNl+5MgRIyoqyrj//vtt2pWUlBiRkZE22zMzMw1JxpgxY6zbqqqqjPT0dCMwMPCcOelMJ0+eNGJiYozExESjoqLCuv2ll14yJBk33HCDdduCBQsMSca+fftsjlGdc9euXWvdZi/f5ObmGn5+fsY333xj3WYvx53992bZsmU1jm8YhlFZWWm0a9fOGDx4sM32v/zlL4afn5/x1Vdf1RE90Dw4eq3X2OuLU6dO2eQRwzCMn3/+2YiNjTXuu+8+67Yff/zRkGRMmjSpRl+rc9vUqVNttl955ZVGUlKSzbazj1Ed55mvZRiGcccddxitWrWyPi4qKjIkGWPHjrVpN2LEiFr7VZt9+/YZkoyQkBDju+++s27fsmWLIckYN25cjdj+8Ic/2Byj+hr4qaeestl+5513Gn5+fsbevXttYpZk/Oc//7Fu++abb4zg4GDjjjvusG47O1835O/LjBkzrNt+/vlnIyQkxPDz8zOWLFli3f7555/X+5wBzZ0juWr79u2GJOO3v/2tTZvHHnvMkGR8+OGH1m033HCDzfWaI+89nfm+8ezXd/R99O7duw1JxvPPP2/T7qGHHjLCw8OtfXD0OtpeXwA4x9nXFWf/rv3tb38zJBk7duyweV5CQoLRt29f62N77xur78m98sor1m0VFRVGXFyckZGRYd325z//2ZBkvPvuu9Ztx48fNzp37mz3veK5PPnkk4Yk4+23366xr6qqyjAMx+9lVl8LtmrVyjh48KC17XvvvWdIMv71r39ZtyUmJhpt2rQxDh06ZN2Wn59vSKpxP/Ds66s//elPdt+LG0bD79dWfz+6dOlicw3/3HPP2Xw/P/nkE0OSsWzZshqvjYZjOi8vlp2dbfN4zJgxkqT333/fbvv3339f11xzja677jrrtvDwcD3wwAP6+uuvtWvXLmu7uLg43XPPPdZ2JpNJDz/8sI4ePar169db27Vo0cLmE4YBAQHWfjTE8OHD1bJlS+vjO++8U23atKkRU1BQkEaOHGmzbdmyZerSpYs6d+6sn376yfrVt29fSbJWu6sXdHrvvfdUVVVltx9RUVH67rvv7A7la6gbbrhBCQkJ1seGYeitt97SrbfeKsMwbPqclpamw4cPn3OqIQCOi4qK0pYtW/TDDz841H7ZsmWKjIxU//79bX43k5KSFB4ebs0nBQUFOnTokO655x6bdgEBAerZs6fdT9mMHj3a+v/qTxOePHlSq1evdqhv//nPf1RWVqbf/e53NvPaVk+t2FBnjvb75Zdf9NNPP+naa6+VYRj65JNPGnzcM/n7+2vo0KH65z//qSNHjli3v/baa7r22mv5VDRwFkeu9RpzfREQEGDNI1VVVTp48KBOnTqlHj161Psa5He/+53N4969e+urr75q8HMPHDig8vJySbJOUfbQQw/ZtGvMNefAgQN1wQUXWB9fc8016tmzp93r6LNH07z//vsKCAjQww8/bLP90UcflWEY+uCDD2y2m81mJSUlWR936NBBt99+u1atWlVjyrNqDfn78tvf/tb6/6ioKHXq1ElhYWG6++67rds7deqkqKgoh783AH51rlxVnTtycnJs2jz66KOSZHcK7Wp1vfd09ftGR99HX3bZZUpMTNQbb7xhfW5lZaXefPNN3XrrrdZrSUevowG4z6BBg9SiRQub3+dPP/1Uu3bt0uDBg+t8fnh4uO69917r48DAQF1zzTU21xcrV67UBRdcoNtuu826LTg4WPfff3+9+/vWW2/piiuuqDEiQ5J1On1H72VWGzx4sM477zzr4969e0uSNYb9+/dr+/btyszMtHmf3b9/f5trb2dw9H5ttZEjR9rcCzi779X9XbVqldetIe3JKKJ4sUsvvdTm8cUXXyx/f/8ac99X++abb+zON1891co333xj/ffSSy+tsXCUvXZt2rRReHi4TbvGzGl/dkx+fn665JJLasR0wQUX1FgUa8+ePdq5c6dat25t83XZZZdJOj03onQ6Ufbq1Uu//e1vFRsbqyFDhmjp0qU2BZXx48crPDxc11xzjS699FJlZ2fbTPfVEGffHPzxxx916NAhvfTSSzX6XF0gqu4zgMaZOXOmPv30U7Vv317XXHONJk+efM4bSHv27NHhw4cVExNT4/fz6NGj1t/NPXv2SJL69u1bo11+fn6N32F/f39ddNFFNtuqc1Rtufts1Tn47HxpMplqHLs+iouLNWLECEVHR1vXNLjhhhskyanzpg4fPlzHjx+3Tmuxe/duFRUVadiwYU57DcBXOHKt19jri0WLFql79+4KDg5Wq1at1Lp1a61YsaJev/fBwcE1pic477zzHJ77vkOHDjWeK8n6/G+++Ub+/v41Yr3kkksc7uPZzj630ul8fHYubtGiRY0pG7755hu1bdvW5oM/Us1r5bpe69ixY/rxxx/t9q++f1/sfQ8iIyPVrl27Gmv1RUZGsi4B0ADnylXVeersvBQXF6eoqKgaeeFMdb33dPX7RkffR0un30tv3LhR33//vaTT8/OXlZXZ3HR19DoagPucf/756tevn5YuXWrd9sYbb6hFixbWqVvPxd71xdnXft98840uvvjiGu0acv325ZdfnnMK1OrXc+ReZjVHrj8l+9dxzl7L09H7tdXq6nvHjh2Vk5Ojv//97zr//POVlpamvLw81kNpJNZE8SFnJyZfduYnpqtVVVWpW7du+stf/mL3OdXrBISEhGjDhg1au3atVqxYoZUrV+qNN95Q3759lZ+fr4CAAHXp0kW7d+/W8uXLtXLlSr311luaM2eOnnzySeviW7Wd79o+UXh2n6uLNvfee2+t68icOd84gIa7++671bt3b73zzjvKz8/Xn/70Jz3zzDN6++23rXO2nqmqqkoxMTF67bXX7B6v+kZV9e/xP/7xD5u5oau1aOHeP7OO5qnKykr1799fBw8e1Pjx49W5c2eFhYXp+++/14gRI2odtdcQCQkJSkpK0quvvqrhw4fr1VdfVWBgoM0npQHYZ+93ujHXF6+++qpGjBihgQMH6vHHH1dMTIwCAgKUm5urL7/80uF+BQQEONy2Ps83almkvSkFBQXVeDPeFOr796W2c+jJ5xbwNo78PjXkPXld7z1d/b7R0ffR0ukiyoQJE7Rs2TKNHTtWS5cuVWRkpG666Sab4zlyHQ3AvYYMGaKRI0dq+/btSkxM1NKlS9WvXz/r+h3n4gvXF94cgyN9//Of/6wRI0bovffeU35+vh5++GHrOot1rekC+yiieLE9e/bYfCJv7969qqqqsllk8kzx8fHavXt3je2ff/65dX/1v//73/9UVVVl86bRXrs1a9bo6NGjNqNR7L1GfWI6k2EY2rt3r0MXhRdffLH++9//ql+/fnVevPr7+6tfv37q16+f/vKXv2jGjBn64x//qLVr1yolJUWSFBYWpsGDB2vw4ME6efKkBg0apOnTp2vChAkKDg7Weeedp0OHDtU49rk+ZXSm1q1bq2XLlqqsrLS+JgDXadOmjR566CE99NBDKisr01VXXaXp06fbLaJcfPHFWr16tXr16mW3aHtmO0mKiYlx6Pe4qqpKX331lfWTfZL0xRdfSFKtufts1Tl4z5491mkWJMlisWjfvn264oorrNuqP5Fydq46O0/t2LFDX3zxhRYtWqThw4dbtxcUFDjUp7PVlYOHDx+unJwc7d+/X4sXL1Z6errNUGoAp9X3Wk+q3/XFm2++qYsuukhvv/22ze/t2YuMuvuDOvHx8aqqqtK+fftsPg24d+/eBh/z7GtO6XQ+diQXx8fHa/Xq1Tpy5IjNaJSzr5Xreq3Q0NBabybW9+8LAPeqzlN79uyxfnJYOr1Y8KFDh2rkhbOd672nq9831ud9dMeOHXXNNdfojTfe0OjRo/X2229r4MCBCgoKsjmeI9fRANxr4MCBevDBB61Ten3xxReaMGGC044fHx+vXbt2yTAMm9zSkOu3iy++WJ9++mmdr+fIvUxHnfm++2yO3Pesz/Wzo/dr66tbt27q1q2bJk6cqE2bNqlXr1568cUX9dRTTzXoeM0d03l5sby8PJvHzz//vCTZvSEoSTfffLO2bt2qwsJC67ZffvlFL730ki688ELrnH4333yzSkpKbOZGPHXqlJ5//nmFh4dbp3e5+eabderUKc2dO9farrKy0tqPhnjllVds5sl/8803tX///lpjOtPdd9+t77//Xi+//HKNfcePH9cvv/wiSTp48GCN/YmJiZKkiooKSdKBAwds9gcGBiohIUGGYchisUg6ncQPHz6s//3vf9Z2+/fvt05RU5eAgABlZGTorbfesvvHoLbpHQDUT2VlZY1hqzExMWrbtq31d/5sd999tyorKzVt2rQa+06dOmUtSqSlpSkiIkIzZsyw5oYz2fs9fuGFF6z/NwxDL7zwgkwmk/r16+dQPD169FDr1q314osv6uTJk9btCxcurFEsqb4Jt2HDBuu2yspKvfTSSzbtqj/JcuYnVwzD0HPPPedQn84WFhYmqWbxpto999wjPz8/PfLII/rqq69s5tMF8Kv6XutJ9bu+sPe7v2XLFptrRUkKDQ2VVPvvtKulpaVJkubMmWOzvTHXnO+++651OhpJ2rp1q7Zs2eLQNefNN9+syspKm3wuSbNmzZKfn1+NYxQWFtqsV/Dtt9/qvffeU2pqaq2fJGzI3xcA7nPzzTdLkmbPnm2zvXp0R3p6eq3Preu9p6vfNzr6Prra4MGDtXnzZs2fP18//fRTjfUTHL2OBuBeUVFRSktL09KlS7VkyRIFBgZq4MCBTjt+Wlqavv/+e/3zn/+0bjtx4oTdXFOXjIwM/fe//7V7v636OtbRe5mOatOmjRITE7Vo0SKb+wkFBQU11iixp673xGdy9H6to8rLy3Xq1Cmbbd26dZO/v3+t90BQN0aieLF9+/bptttu00033aTCwkK9+uqr+s1vfmPzKeQz/eEPf9Drr7+uAQMG6OGHH1Z0dLQWLVqkffv26a233rJWah944AH97W9/04gRI1RUVKQLL7xQb775pjZu3KjZs2dbP3F36623qlevXvrDH/6gr7/+WgkJCXr77bcbNcdedHS0rrvuOo0cOVKlpaWaPXu2LrnkEocWnho2bJiWLl2q3/3ud1q7dq169eqlyspKff7551q6dKlWrVqlHj16aOrUqdqwYYPS09MVHx+vsrIyzZkzR+3atbMu4pSamqq4uDj16tVLsbGx+uyzz/TCCy8oPT3dGv+QIUM0fvx43XHHHXr44Yd17NgxzZ07V5dddpnDC/s9/fTTWrt2rXr27Kn7779fCQkJOnjwoD7++GOtXr3absEHQP0cOXJE7dq105133qkrrrhC4eHhWr16tbZt26Y///nPdp9zww036MEHH1Rubq62b9+u1NRUmUwm7dmzR8uWLdNzzz2nO++8UxEREZo7d66GDRumq666SkOGDFHr1q1VXFysFStWqFevXjY32YKDg7Vy5UplZmaqZ8+e+uCDD7RixQo98cQTDk9tYDKZ9NRTT+nBBx9U3759NXjwYO3bt08LFiyosSZK165dlZycrAkTJujgwYOKjo7WkiVLalxQde7cWRdffLEee+wxff/994qIiNBbb73V4DnzExMTFRAQoGeeeUaHDx9WUFCQ+vbtq5iYGEmnPyl/0003admyZYqKijrnjQWgOavvtV41R68vbrnlFr399tu64447lJ6ern379unFF19UQkKCjh49aj1eSEiIEhIS9MYbb+iyyy5TdHS0Lr/88jrnpnaWpKQkZWRkaPbs2Tpw4ICSk5O1fv1660i+hoyUueSSS3TdddcpKytLFRUVmj17tlq1aqXf//73dT731ltv1Y033qg//vGP+vrrr3XFFVcoPz9f7733nsaOHWstYFe7/PLLlZaWpocfflhBQUHWYlD1FLH21PfvCwD3uuKKK5SZmamXXnpJhw4d0g033KCtW7dq0aJFGjhwoG688cZan+vIe09Xvm909H10tbvvvluPPfaYHnvsMUVHR9cYHePodTQA9xs8eLDuvfdezZkzR2lpaYqKinLasR988EG98MILuueee/TII4+oTZs2eu211xQcHCypftdvjz/+uN58803ddddduu+++5SUlKSDBw/qn//8p1588UVdccUVDt/LrI/c3Fylp6fruuuu03333aeDBw/q+eefV9euXW2ule1JSkqSJP3xj3/UkCFDZDKZdOutt1qLK2dy9H6toz788EONHj1ad911ly677DKdOnVK//jHP6xFeTSQAa8zadIkQ5Kxa9cu48477zRatmxpnHfeecbo0aON48ePW9vFx8cbmZmZNs/98ssvjTvvvNOIiooygoODjWuuucZYvnx5jdcoLS01Ro4caZx//vlGYGCg0a1bN2PBggU12h04cMAYNmyYERERYURGRhrDhg0zPvnkE0OS3fa1Wbt2rSHJeP31140JEyYYMTExRkhIiJGenm588803Nm1vuOEGo2vXrnaPc/LkSeOZZ54xunbtagQFBRnnnXeekZSUZEyZMsU4fPiwYRiGsWbNGuP222832rZtawQGBhpt27Y17rnnHuOLL76wHudvf/ubcf311xutWrUygoKCjIsvvth4/PHHrceolp+fb1x++eVGYGCg0alTJ+PVV1+1fn/OJMnIzs622+fS0lIjOzvbaN++vWEymYy4uDijX79+xksvveTw+QNQu4qKCuPxxx83rrjiCqNly5ZGWFiYccUVVxhz5syxtsnMzDTi4+NrPPell14ykpKSjJCQEKNly5ZGt27djN///vfGDz/8YNNu7dq1RlpamhEZGWkEBwcbF198sTFixAjjP//5j81rhIWFGV9++aWRmppqhIaGGrGxscakSZOMysrKesc1Z84co2PHjkZQUJDRo0cPY8OGDcYNN9xg3HDDDTbtvvzySyMlJcUICgoyYmNjjSeeeMIoKCgwJBlr1661ttu1a5eRkpJihIeHG+eff75x//33G//9739r5HN7Oc7e35uXX37ZuOiii4yAgIAar2UYhrF06VJDkvHAAw/UO3bA1zl6rdfY64uqqipjxowZRnx8vBEUFGRceeWVxvLly+3mxE2bNhlJSUlGYGCgIcmYNGmSYRi/5rbaYjjTmc87s82PP/5o027BggWGJGPfvn3Wbb/88ouRnZ1tREdHG+Hh4cbAgQON3bt3G5KMp59++lyn08a+ffsMScaf/vQn489//rPRvn17IygoyOjdu7fx3//+16ZtbbEZhmEcOXLEGDdunNG2bVvDZDIZl156qfGnP/3JqKqqqhFzdna28eqrrxqXXnqp9TyfnRPtxWwY9fv7crbarpnj4+ON9PT0c50mAGdwNFdZLBZjypQpRseOHQ2TyWS0b9/emDBhgnHixAmb5519veboe09nvW+0d73oyPvoM/Xq1cuQZPz2t7+t9XUcuY621xcAjXd2fqrtd628vNwICQkxJBmvvvpqjf3V9+rOvG6p7frC3vXjV199ZaSnpxshISFG69atjUcffdR46623DEnG5s2b6xXTgQMHjNGjRxsXXHCBERgYaLRr187IzMw0fvrpJ2sbR+5lnnkteLazr1UNwzDeeusto0uXLkZQUJCRkJBgvP3223ZjtffcadOmGRdccIHh7+9v8/1o6P3a6u/HsmXL7MZUHetXX31l3HfffcbFF19sBAcHG9HR0caNN95orF69uuaJhcP8DMMLVsyBz1u3bp1uvPFGLVu2jE+lAPBJI0aM0JtvvlnnJ1Yao0+fPpJO51RP995772ngwIHasGGDevfu7e7uAPBC27dv15VXXqlXX31VQ4cOdeg5X3/9tTp27Kg//elPeuyxx1zcQwAAAJxp9uzZGjdunL777jtdcMEF7u4O4DDWRAEAAE3u5Zdf1kUXXWSdRhEAzuX48eM1ts2ePVv+/v66/vrr3dAjAAAAnMvZ128nTpzQ3/72N1166aUUUOB1WBMFLnXy5Mk652eNjIxsot4AgGc7ePCgzWLxZwsICHB47RRPtWTJEv3vf//TihUr9NxzzzVoLQMAzc/MmTNVVFSkG2+8US1atNAHH3ygDz74QA888IDat2+vysrKOhdXDg8Pb6LeAkDT+/HHH1VZWVnr/sDAQEVHRzdhjwA0d4MGDVKHDh2UmJiow4cP69VXX9Xnn3+u1157TdLpIktd6ypHR0crMDCwKboLnBNFFLjUpk2bzrmIniQtWLBAF154YdN0CAA82KBBg7R+/fpa98fHx+vrr79uug65wD333KPw8HCNGjVKDz30kLu7A8BLXHvttSooKNC0adN09OhRdejQQZMnT9Yf//hHSdK3336rjh07nvMYkyZN0ogRI5qgtwDQ9K6++mp98803te6/4YYbvGLKVwC+Iy0tTX//+9/12muvqbKyUgkJCVqyZIkGDx4sSXrjjTc0cuTIcx5j7dq11mmrAXdiTRS41M8//6yioqJztunatavatGnTRD0CAM9VVFSkn3/+udb9ISEh6tWrVxP2CAC8w4kTJ/TRRx+ds81FF12kiy66qIl6BABNa+PGjXanPqx23nnnKSkpqQl7BADntn//fu3cufOcbZKSknTeeec1UY+A2lFEAQAAAAAAAAAAsIOF5QEAAAAAAAAAAOzwyjVRqqqq9MMPP6hly5YsSAv4KMMwdOTIEbVt21b+/tR7z4WcCPg+cqLjyImA7yMnOo6cCPg+cqLjyImA73NVTvTKIsoPP/yg9u3bu7sbAJrAt99+q3bt2rm7Gx6NnAg0H+TEupETgeaDnFg3ciLQfJAT60ZOBJoPZ+dEryyitGzZUtLpkxEREdGkr22xWJSfn6/U1FSZTKYmfW1nIxbPRCynlZeXq3379tbfd9SuPjnRl36+auPrMRKfd2tofOREx5ETicvbEFf9kRMdR05sOM7HrzgXtjztfJATHUdOdD7Ok2M4T3Vz1jlyVU70yiJK9ZC7iIgItxRRQkNDFRER4fU/9MTimYjFFkNs61afnOhLP1+18fUYic+7NTY+cmLdyInE5W2Iq+HIiXUjJzYc5+NXnAtbnno+yIl1Iyc6H+fJMZynujn7HDk7JzJZIgAAAAAAAACX+f7773XvvfeqVatWCgkJUbdu3fSf//zHut8wDD355JNq06aNQkJClJKSoj179tgc4+DBgxo6dKgiIiIUFRWlUaNG6ejRo00dCoBmiCIKAAAAAAAAAJf4+eef1atXL5lMJn3wwQfatWuX/vznP+u8886ztpk5c6b++te/6sUXX9SWLVsUFhamtLQ0nThxwtpm6NCh2rlzpwoKCrR8+XJt2LBBDzzwgDtCAtDMeOV0XgAAAAAAAAA83zPPPKP27dtrwYIF1m0dO3a0/t8wDM2ePVsTJ07U7bffLkl65ZVXFBsbq3fffVdDhgzRZ599ppUrV2rbtm3q0aOHJOn555/XzTffrGeffVZt27Zt2qAANCsUUQAAAAAAAAC4xD//+U+lpaXprrvu0vr163XBBRfooYce0v333y9J2rdvn0pKSpSSkmJ9TmRkpHr27KnCwkINGTJEhYWFioqKshZQJCklJUX+/v7asmWL7rjjjhqvW1FRoYqKCuvj8vJySafXXrBYLOfsc/X+uto1d5wnx3Ce6uasc+Sqc0wRBQAAAAAAAIBLfPXVV5o7d65ycnL0xBNPaNu2bXr44YcVGBiozMxMlZSUSJJiY2NtnhcbG2vdV1JSopiYGJv9LVq0UHR0tLXN2XJzczVlypQa2/Pz8xUaGupQ3wsKChxq19xxnhzDeapbY8/RsWPHnNQTWxRRAAAAAAAAALhEVVWVevTooRkzZkiSrrzySn366ad68cUXlZmZ6bLXnTBhgnJycqyPy8vL1b59e6WmpioiIuKcz7VYLCooKFD//v1lMplc1kdvx3lyDOepbs46R9UjzpyNIgoAAAAAAAAAl2jTpo0SEhJstnXp0kVvvfWWJCkuLk6SVFpaqjZt2ljblJaWKjEx0dqmrKzM5hinTp3SwYMHrc8/W1BQkIKCgmpsN5lMDt+krU/b5ozz5BjOU90ae45cdX796/uE77//Xvfee69atWqlkJAQdevWTf/5z3+s+w3D0JNPPqk2bdooJCREKSkp2rNnj80xDh48qKFDhyoiIkJRUVEaNWqUjh492vhoAAAAAAAAAHiMXr16affu3TbbvvjiC8XHx0s6vch8XFyc1qxZY91fXl6uLVu2yGw2S5LMZrMOHTqkoqIia5sPP/xQVVVV6tmzZxNEAaA5q1cR5eeff1avXr1kMpn0wQcfaNeuXfrzn/+s8847z9pm5syZ+utf/6oXX3xRW7ZsUVhYmNLS0nTixAlrm6FDh2rnzp0qKCjQ8uXLtWHDBj3wwAPOiwoAAAAAAACA240bN06bN2/WjBkztHfvXi1evFgvvfSSsrOzJUl+fn4aO3asnnrqKf3zn//Ujh07NHz4cLVt21YDBw6UdHrkyk033aT7779fW7du1caNGzV69GgNGTJEbdu2dWN0AJqDek3n9cwzz6h9+/ZasGCBdVvHjh2t/zcMQ7Nnz9bEiRN1++23S5JeeeUVxcbG6t1339WQIUP02WefaeXKldq2bZt69OghSXr++ed1880369lnn3VN4vPzc96xQkKk11+XIiOl48edd1x7DMO1xwfQfDVFDnM2ciIAVyEnAoB3c+Z7/mqufu9PHkczcvXVV+udd97RhAkTNHXqVHXs2FGzZ8/W0KFDrW1+//vf65dfftEDDzygQ4cO6brrrtPKlSsVHBxsbfPaa69p9OjR6tevn/z9/ZWRkaG//vWv7gjJs7kiJ9bGWbmSnAgPV68iyj//+U+lpaXprrvu0vr163XBBRfooYce0v333y9J2rdvn0pKSpSSkmJ9TmRkpHr27KnCwkINGTJEhYWFioqKshZQJCklJUX+/v7asmWL7rjjjhqvW1FRoYqKCuvj6gViLBaLLBZL3R0PCalPmOdk+b9jWZx4zNpfzIHYGnV4i82/3oxYPFNjYvGF+AEAAAAAgHTLLbfolltuqXW/n5+fpk6dqqlTp9baJjo6WosXL3ZF9wDgnOpVRPnqq680d+5c5eTk6IknntC2bdv08MMPKzAwUJmZmSopKZEkxcbG2jwvNjbWuq+kpEQxMTG2nWjRQtHR0dY2Z8vNzdWUKVNqbM/Pz1doaGjdHX/9dUfCq5eC+fOdfswa3n/f9a8hqaCgoElepykQi2dqSCzHjh1zQU8AAAAAAAAAwHH1KqJUVVWpR48emjFjhiTpyiuv1KeffqoXX3xRmZmZLumgJE2YMEE5OTnWx+Xl5Wrfvr1SU1MVERFR9wEiI53WF0tIiArmz1f/++6TydXTPhw+7NLDWywWFRQUqH///jKZTC59LVcjFs/UmFiqR5wBAAAAAAAAgLvUq4jSpk0bJSQk2Gzr0qWL3nrrLUlSXFycJKm0tFRt2rSxtiktLVViYqK1TVlZmc0xTp06pYMHD1qff7agoCAFBQXV2G4ymRy7MeuCYofp+HHXF1Ga6Aa6w+fRCxCLZ2pILL4SOwAAAAAAAADv5V+fxr169dLu3btttn3xxReKj4+XdHqR+bi4OK1Zs8a6v7y8XFu2bJHZbJYkmc1mHTp0SEVFRdY2H374oaqqqtSzZ88GBwIAAAAAAAAAAOBM9RqJMm7cOF177bWaMWOG7r77bm3dulUvvfSSXnrpJUmnF4EaO3asnnrqKV166aXq2LGj/t//+39q27atBg4cKOn0yJWbbrpJ999/v1588UVZLBaNHj1aQ4YMUdu2bZ0eIAAAAAAAAAAAQEPUayTK1VdfrXfeeUevv/66Lr/8ck2bNk2zZ8/W0KFDrW1+//vfa8yYMXrggQd09dVX6+jRo1q5cqWCg4OtbV577TV17txZ/fr1080336zrrrvOWogBAG8xefJk+fn52Xx17tzZuv/EiRPKzs5Wq1atFB4eroyMDJWWltoco7i4WOnp6QoNDVVMTIwef/xxnTp1qqlDAQAAAAAAAGBHvUaiSNItt9yiW265pdb9fn5+mjp1qqZOnVprm+joaC1evLi+Lw0AHqdr165avXq19XGLFr+m1XHjxmnFihVatmyZIiMjNXr0aA0aNEgbN26UJFVWVio9PV1xcXHatGmT9u/fr+HDh8tkMmnGjBlNHgsAAAAAAAAAW/UuogAAftWiRQvFxcXV2H748GHNmzdPixcvVt++fSVJCxYsUJcuXbR582YlJycrPz9fu3bt0urVqxUbG6vExERNmzZN48eP1+TJkxUYGNjU4QAAAAAAAAA4Q72m8wIA2NqzZ4/atm2riy66SEOHDlVxcbEkqaioSBaLRSkpKda2nTt3VocOHVRYWChJKiwsVLdu3RQbG2ttk5aWpvLycu3cubNpAwEAAAAAAABQAyNRAKCBevbsqYULF6pTp07av3+/pkyZot69e+vTTz9VSUmJAgMDFRUVZfOc2NhYlZSUSJJKSkpsCijV+6v31aaiokIVFRXWx+Xl5ZIki8Uii8Vyzj5X77eEhDgWpCepI7Zfm1ls/vU1xOfdGhqfr54PAAAAAAA8HUUUAGigAQMGWP/fvXt39ezZU/Hx8Vq6dKlCXFikyM3N1ZQpU2psz8/PV2hoqEPHKJg/39ndcr33369X84KCAhd1xDMQn3erb3zHjh1zUU8AAAAAAMC5UEQBACeJiorSZZddpr1796p///46efKkDh06ZDMapbS01LqGSlxcnLZu3WpzjNLSUuu+2kyYMEE5OTnWx+Xl5Wrfvr1SU1MVERFxzj5aLBYVFBSo/333yXT8eH1DdK/Dhx1qZo2xf3+ZTCYXd6rpEZ93a2h81SPOAAAAAABA06KIAgBOcvToUX355ZcaNmyYkpKSZDKZtGbNGmVkZEiSdu/ereLiYpnNZkmS2WzW9OnTVVZWppiYGEmnP50eERGhhISEWl8nKChIQUFBNbabTCaHb8qajh/3viJKPW+o1+d8eCPi8271jc+XzwUAAAAAAJ6MheUBoIEee+wxrV+/Xl9//bU2bdqkO+64QwEBAbrnnnsUGRmpUaNGKScnR2vXrlVRUZFGjhwps9ms5ORkSVJqaqoSEhI0bNgw/fe//9WqVas0ceJEZWdn2y2SAIAnmzx5svz8/Gy+OnfubN1/4sQJZWdnq1WrVgoPD1dGRoZ19F214uJipaenKzQ0VDExMXr88cd16tSppg4FAAAAAAArRqIAQAN99913uueee3TgwAG1bt1a1113nTZv3qzWrVtLkmbNmiV/f39lZGSooqJCaWlpmjNnjvX5AQEBWr58ubKysmQ2mxUWFqbMzExNnTrVXSEBQKN07dpVq1evtj5u0eLXS81x48ZpxYoVWrZsmSIjIzV69GgNGjRIGzdulCRVVlYqPT1dcXFx2rRpk/bv36/hw4fLZDJpxowZTR6Lx/Pzq31fSIj0+utSZKTkSaMODcPdPQAAAACAeqOIAgANtGTJknPuDw4OVl5envLy8mptEx8fr/fruWA6AHiqFi1a2F3T6fDhw5o3b54WL16svn37SpIWLFigLl26aPPmzUpOTlZ+fr527dql1atXKzY2VomJiZo2bZrGjx+vyZMnKzAwsKnDAQAAAACAIgoAAACcY8+ePWrbtq2Cg4NlNpuVm5urDh06qKioSBaLRSkpKda2nTt3VocOHVRYWKjk5GQVFhaqW7duio2NtbZJS0tTVlaWdu7cqSuvvNLua1ZUVKiiosL6uLy8XJJksVhksVjO2d/q/ZaQkAbH7Imq4/G4uOr4ftT9dIvNv76CuBp+bAAAAKApUEQBAABAo/Xs2VMLFy5Up06dtH//fk2ZMkW9e/fWp59+qpKSEgUGBioqKsrmObGxsSopKZEklZSU2BRQqvdX76tNbm6upkyZUmN7fn6+QkNDHep7wfz5DrXzNh4Xl5NGXhYUFDjlOJ6GuBx37Ngxpx/T2SZPnlwjN3Xq1Emff/65pNPrRD366KNasmSJzbSvZ+bB4uJiZWVlae3atQoPD1dmZqZyc3NtpkoEAACA63H1BQAAgEYbMGCA9f/du3dXz549FR8fr6VLlyrEhSMiJkyYoJycHOvj8vJytW/fXqmpqYqIiDjncy0WiwoKCtT/vvtk8qS1QxrJEhKigvnzPS+uw4cb9XTr96t/f5lMJid1yv2Iq/6qR5x5OtaJAgAA8A0UUQAAAOB0UVFRuuyyy7R37171799fJ0+e1KFDh2xGo5SWllrXUImLi9PWrVttjlFaWmrdV5ugoCAFBQXV2G4ymRy+cWs6ftyzig1O4nFxOelGen2+t96EuOp3TG/AOlEAAAC+gSIKAAAAnO7o0aP68ssvNWzYMCUlJclkMmnNmjXKyMiQJO3evVvFxcUym82SJLPZrOnTp6usrEwxMTGSTk8DFBERoYSEBLfFAQAN5bXrRHnjmjMuGPHo8vWlvOg8e/XPhgt42vnwlH4AgC+jiAIAAIBGe+yxx3TrrbcqPj5eP/zwgyZNmqSAgADdc889ioyM1KhRo5STk6Po6GhFRERozJgxMpvNSk5OliSlpqYqISFBw4YN08yZM1VSUqKJEycqOzvb7kgTAPBkXr1OlDeuz/P66y47tMvWl3LSOlFNySt/NlzIU86HN6wTBQDejiIKAAAAGu27777TPffcowMHDqh169a67rrrtHnzZrVu3VqSNGvWLPn7+ysjI8NmEeVqAQEBWr58ubKysmQ2mxUWFqbMzExNnTrVXSEBQIN59TpR3rg+T2Sk0w/p8vWlGrlOVFPy6p8NF/C08+Et60QBgDejiAIAAIBGW7JkyTn3BwcHKy8vT3l5ebW2iY+P1/te+MlcAKiLV60T5Y3r87hw/SeXrS/lbedYXvqz4UKecj48oQ8A4Ov83d0BAAAAAAB8WfU6UW3atLFZJ6qavXWiduzYobKyMmsb1okCAABwD0aiAAAAAADgRKwTBQAA4DsoogAAAAAA4ESsEwUAAOA7KKIAAAAAAOBErBMFAADgO1gTBQAAAAAAAAAAwA6KKAAA7+Dn59hXZOTp9pGRjj/HVV8AAAAA0MxNnjxZfn5+Nl+dO3e27j9x4oSys7PVqlUrhYeHKyMjQ6WlpTbHKC4uVnp6ukJDQxUTE6PHH39cp06daupQADRTTOcFAAAAAAAAwGW6du2q1atXWx+3aPHrLclx48ZpxYoVWrZsmSIjIzV69GgNGjRIGzdulCRVVlYqPT1dcXFx2rRpk/bv36/hw4fLZDJpxowZTR4LgOaHIgoAAAAAAAAAl2nRooXi4uJqbD98+LDmzZunxYsXq2/fvpKkBQsWqEuXLtq8ebOSk5OVn5+vXbt2afXq1YqNjVViYqKmTZum8ePHa/LkyQoMDGzqcAA0MxRRAAAAAAAAALjMnj171LZtWwUHB8tsNis3N1cdOnRQUVGRLBaLUlJSrG07d+6sDh06qLCwUMnJySosLFS3bt0UGxtrbZOWlqasrCzt3LlTV155pd3XrKioUEVFhfVxeXm5JMlischisZyzv9X762rnkUJCmuylLP/3WpbGvqY3nud68OqfpybirHPkqnNMEQUAAAAAAACAS/Ts2VMLFy5Up06dtH//fk2ZMkW9e/fWp59+qpKSEgUGBioqKsrmObGxsSopKZEklZSU2BRQqvdX76tNbm6upkyZUmN7fn6+QkNDHep7QUGBQ+08yuuvN/lLFsyf37gDvP++czri4bzy56mJNfYcHTt2zEk9sUURBQAAAAAAAIBLDBgwwPr/7t27q2fPnoqPj9fSpUsV4sJRExMmTFBOTo71cXl5udq3b6/U1FRFRESc87kWi0UFBQXq37+/TCaTy/roEpGRTfZSlpAQFcyfr/733SfT8eMNP9Dhw87rlAfy6p+nJuKsc1Q94szZ6lVEmTx5co0KbqdOnfT5559Lkk6cOKFHH31US5YsUUVFhdLS0jRnzhybanFxcbGysrK0du1ahYeHKzMzU7m5uTYLSgEAAAAAAADwPVFRUbrsssu0d+9e9e/fXydPntShQ4dsRqOUlpZa11CJi4vT1q1bbY5RWlpq3VeboKAgBQUF1dhuMpkcvklbn7YeozHFjAYyHT/euCKKt53jBvLKn6cm1thz5Krz61/fJ3Tt2lX79++3fn300UfWfePGjdO//vUvLVu2TOvXr9cPP/ygQYMGWfdXVlYqPT1dJ0+e1KZNm7Ro0SItXLhQTz75pHOiAQAAAAAAAOCxjh49qi+//FJt2rRRUlKSTCaT1qxZY92/e/duFRcXy2w2S5LMZrN27NihsrIya5uCggJFREQoISGhyfsPoPmp9/CPFi1a2K3yHj58WPPmzdPixYvVt29fSdKCBQvUpUsXbd68WcnJycrPz9euXbu0evVqxcbGKjExUdOmTdP48eM1efJkBQYGNj4iAAAAAAAAAB7hscce06233qr4+Hj98MMPmjRpkgICAnTPPfcoMjJSo0aNUk5OjqKjoxUREaExY8bIbDYrOTlZkpSamqqEhAQNGzZMM2fOVElJiSZOnKjs7Gy7I00AwNnqXUTZs2eP2rZtq+DgYJnNZuXm5qpDhw4qKiqSxWJRSkqKtW3nzp3VoUMHFRYWKjk5WYWFherWrZvN9F5paWnKysrSzp07deWVV9p9zYqKClVUVFgfV89tZrFYZLFY6u60E+dXtPzfsSwunLPx1xdzILZGHd5i8683IxbP1JhYfCF+AAAAAACau++++0733HOPDhw4oNatW+u6667T5s2b1bp1a0nSrFmz5O/vr4yMDJvlAaoFBARo+fLlysrKktlsVlhYmDIzMzV16lR3hQSgmalXEaVnz55auHChOnXqpP3792vKlCnq3bu3Pv30U5WUlCgwMNBm/kJJio2NVUlJiSSppKTEpoBSvb96X21yc3NrrMUiSfn5+QoNDa2746+/XnebeiqYP9/px6zh/fdd/xo6PQTSVxCLZ2pILMeOHXNBTwAAAAAAQFNasmTJOfcHBwcrLy9PeXl5tbaJj4/X+010nwwAzlavIsqAAQOs/+/evbt69uyp+Ph4LV26VCEuHJkxYcIE5eTkWB+Xl5erffv2Sk1NVURERN0HiIx0Wl8sISEqmD9f/e+7r3ELJjni8GGXHt5isaigoED9+/f3+kWNiMUzNSaW6hFnAAAAAAAAAOAu9Z7O60xRUVG67LLLtHfvXvXv318nT57UoUOHbEajlJaWWtdQiYuL09atW22OUVpaat1Xm6CgILtzHJpMJsduzLqg2GE6ftz1RZQmuoHu8Hn0AsTimRoSi6/EDgAAAAAAAMB7+TfmyUePHtWXX36pNm3aKCkpSSaTSWvWrLHu3717t4qLi2U2myVJZrNZO3bsUFlZmbVNQUGBIiIilJCQ0JiuAAAAAAAAAAAAOFW9RqI89thjuvXWWxUfH68ffvhBkyZNUkBAgO655x5FRkZq1KhRysnJUXR0tCIiIjRmzBiZzWYlJydLklJTU5WQkKBhw4Zp5syZKikp0cSJE5WdnW13pAkAAAAAAAAAAIC71KuI8t133+mee+7RgQMH1Lp1a1133XXavHmzWrduLUmaNWuW/P39lZGRoYqKCqWlpWnOnDnW5wcEBGj58uXKysqS2WxWWFiYMjMzNXXqVOdGBQAAAAAAAAAA0Ej1KqIsWbLknPuDg4OVl5envLy8WtvEx8fr/fffr8/LAgAAAAAAAAAANLlGrYkCAAAAAAAAAADgqyiiAAAAAAAAAAAA2EERBQAAAAAAAAAAwA6KKAAAAAAAAAAAAHZQRAEAJ3n66afl5+ensWPHWredOHFC2dnZatWqlcLDw5WRkaHS0lKb5xUXFys9PV2hoaGKiYnR448/rlOnTjVx7wEAAAAAAACcjSIKADjBtm3b9Le//U3du3e32T5u3Dj961//0rJly7R+/Xr98MMPGjRokHV/ZWWl0tPTdfLkSW3atEmLFi3SwoUL9eSTTzZ1CAAAAAAAAADOQhEFABrp6NGjGjp0qF5++WWdd9551u2HDx/WvHnz9Je//EV9+/ZVUlKSFixYoE2bNmnz5s2SpPz8fO3atUuvvvqqEhMTNWDAAE2bNk15eXk6efKku0ICAAAAAAAAIIooANBo2dnZSk9PV0pKis32oqIiWSwWm+2dO3dWhw4dVFhYKEkqLCxUt27dFBsba22Tlpam8vJy7dy5s2kCAAAAAAAAAGBXC3d3AAC82ZIlS/Txxx9r27ZtNfaVlJQoMDBQUVFRNttjY2NVUlJibXNmAaV6f/U+eyoqKlRRUWF9XF5eLkmyWCyyWCzn7G/1fktIyDnbebPq2Dwixjq+Hw07pMXmX19DfOd+HgAAAAAAaFoUUQCggb799ls98sgjKigoUHBwcJO9bm5urqZMmVJje35+vkJDQx06RsH8+c7ulsfxiBjff99lhy4oKHDZsT0B8dk6duyYi3oCAAAAAADOhSIKADRQUVGRysrKdNVVV1m3VVZWasOGDXrhhRe0atUqnTx5UocOHbIZjVJaWqq4uDhJUlxcnLZu3Wpz3NLSUus+eyZMmKCcnBzr4/LycrVv316pqamKiIg4Z58tFosKCgrU/777ZDp+vF7xegtLSIgK5s/3jBgPH3b6Ia3fw/79ZTKZnH58dyM++6pHnHmTp59+WhMmTNAjjzyi2bNnS5JOnDihRx99VEuWLFFFRYXS0tI0Z84cmxF5xcXFysrK0tq1axUeHq7MzEzl5uaqRQsuWwEAAAAATY93owDQQP369dOOHTtsto0cOVKdO3fW+PHj1b59e5lMJq1Zs0YZGRmSpN27d6u4uFhms1mSZDabNX36dJWVlSkmJkbS6U+oR0REKCEhwe7rBgUFKSgoqMZ2k8nk8E1Z0/Hj7i8wuJhHxOjCIkB9vt/eiPhqtvcm27Zt09/+9jd1797dZvu4ceO0YsUKLVu2TJGRkRo9erQGDRqkjRs3SjpdiE5PT1dcXJw2bdqk/fv3a/jw4TKZTJoxY4Y7QgEAAAAANHMUUQCggVq2bKnLL7/cZltYWJhatWpl3T5q1Cjl5OQoOjpaERERGjNmjMxms5KTkyVJqampSkhI0LBhwzRz5kyVlJRo4sSJys7OtlsoAQBPd/ToUQ0dOlQvv/yynnrqKev2w4cPa968eVq8eLH69u0rSVqwYIG6dOmizZs3Kzk5Wfn5+dq1a5dWr16t2NhYJSYmatq0aRo/frwmT56swMBAd4UFAAAAAGim/N3dAQDwZbNmzdItt9yijIwMXX/99YqLi9Pbb79t3R8QEKDly5crICBAZrNZ9957r4YPH66pU6e6sdcA0HDZ2dlKT09XSkqKzfaioiJZLBab7Z07d1aHDh1UWFgoSSosLFS3bt1spvdKS0tTeXm5du7c2TQBAAAAAABwBkaiAIATrVu3zuZxcHCw8vLylJeXV+tz4uPj9b4LFyAHgKayZMkSffzxx9q2bVuNfSUlJQoMDLRZI0qSYmNjVVJSYm1zZgGlen/1PnsqKipUUVFhfVy9fozFYpHFYjlnf6v3W0JCztnO21TH43Fx1fH9qPvpFpt/fQVxNfzY3oR1ogAAALwXV14AAABotG+//VaPPPKICgoKFBwc3GSvm5ubqylTptTYnp+fr9DQUIeOUTB/vrO75RE8Li4nfWCgoKDAKcfxNMTluGPHjjn9mK7EOlEAAADejSIKAAAAGq2oqEhlZWW66qqrrNsqKyu1YcMGvfDCC1q1apVOnjypQ4cO2YxGKS0tVVxcnCQpLi5OW7dutTluaWmpdZ89EyZMUE5OjvVxeXm52rdvr9TUVEVERJyzzxaLRQUFBep/330yHT9er3g9mSUkRAXz53teXIcPN+rp1u9X//4ymUxO6pT7EVf9VY848wasEwUAAOD9KKIAAACg0fr166cdO3bYbBs5cqQ6d+6s8ePHq3379jKZTFqzZo0yMjIkSbt371ZxcbHMZrMkyWw2a/r06SorK1NMTIyk059ij4iIUEJCgt3XDQoKUlBQUI3tJpPJ4Ru3puPHPavY4CQeF5eTbqTX53vrTYirfsf0FmeuE3VmEaWudaKSk5NrXScqKytLO3fu1JVXXlnj9ZwyxaEXTpcmF0xf6PKpEb3oPHv1z4YLeNr58JR+AIAvo4gCAACARmvZsqUuv/xym21hYWFq1aqVdfuoUaOUk5Oj6OhoRUREaMyYMTKbzUpOTpYkpaamKiEhQcOGDdPMmTNVUlKiiRMnKjs7226hBAA8mTvWiXLKFIfeOLXc66+77NAumxrRC9dE9MqfDRfylPPhbVMcAoA3oogCAACAJjFr1iz5+/srIyPDZhHlagEBAVq+fLmysrJkNpsVFhamzMxMTZ061Y29BoD6c9c6UU6Z4tAbp5aLjHT6IV0+NWIjpzhsSl79s+ECnnY+vGmKQwDwVhRRAAAA4BLr1q2zeRwcHKy8vDzl5eXV+pz4+Hi974WfzgWAM7lrnSinTHHojVPLuXDqQpdNjeht51he+rPhQp5yPjyhDwDg6/zd3QGcg5+fa7+qP60TGem8YwIAAABAM1e9TtT27dutXz169NDQoUOt/69eJ6qavXWiduzYobKyMmubutaJAgAAgPMxEgUAAAAAACdinSgAAADfwUgUAAAAAACa2KxZs3TLLbcoIyND119/veLi4vT2229b91evExUQECCz2ax7771Xw4cPZ50oAF7v6aeflp+fn8aOHWvdduLECWVnZ6tVq1YKDw9XRkaGdQrDasXFxUpPT1doaKhiYmL0+OOP69SpU03cewDNESNRAAAAAABwMdaJAgBp27Zt+tvf/qbu3bvbbB83bpxWrFihZcuWKTIyUqNHj9agQYO0ceNGSafXlUpPT1dcXJw2bdqk/fv3a/jw4TKZTJoxY4Y7QgHQjDASBQAAAAAAAIBLHT16VEOHDtXLL7+s8847z7r98OHDmjdvnv7yl7+ob9++SkpK0oIFC7Rp0yZt3rxZkpSfn69du3bp1VdfVWJiogYMGKBp06YpLy9PJ0+edFdIAJoJiigAAAAAAAAAXCo7O1vp6elKSUmx2V5UVCSLxWKzvXPnzurQoYMKCwslSYWFherWrZtiY2OtbdLS0lReXq6dO3c2TQAAmi2m8wIAAAAAAADgMkuWLNHHH3+sbdu21dhXUlKiwMBARUVF2WyPjY1VSUmJtc2ZBZTq/dX77KmoqFBFRYX1cXl5uSTJYrHIYrGcs7/V++tq55FCQprspSz/91qWxr6mN57nevDqn6cm4qxz5Kpz3KgiytNPP60JEybokUce0ezZsyWdXgjq0Ucf1ZIlS1RRUaG0tDTNmTPHJtEVFxcrKytLa9euVXh4uDIzM5Wbm6sWLajpAAAAAAAAAL7i22+/1SOPPKKCggIFBwc32evm5uZqypQpNbbn5+crNDTUoWMUFBQ4u1uu9/rrTf6SBfPnN+4AzWT9L6/8eWpijT1Hx44dc1JPbDW4asFCUAAAAAAAAADOpaioSGVlZbrqqqus2yorK7Vhwwa98MILWrVqlU6ePKlDhw7ZjEYpLS1VXFycJCkuLk5bt261OW5paal1nz0TJkxQTk6O9XF5ebnat2+v1NRURUREnLPPFotFBQUF6t+/v0wmU73idbvIyCZ7KUtIiArmz1f/++6T6fjxhh/o8GHndcoDefXPUxNx1jmqHnHmbA0qopy5ENRTTz1l3V69ENTixYvVt29fSdKCBQvUpUsXbd68WcnJydaFoFavXq3Y2FglJiZq2rRpGj9+vCZPnqzAwEDnRAYAAAAAAADArfr166cdO3bYbBs5cqQ6d+6s8ePHq3379jKZTFqzZo0yMjIkSbt371ZxcbHMZrMkyWw2a/r06SorK1NMTIyk059Yj4iIUEJCgt3XDQoKUlBQUI3tJpPJ4Zu09WnrMRpTzGgg0/HjjSuieNs5biCv/HlqYo09R646vw0qopy5ENSZRZS6FoJKTk6udSGorKws7dy5U1deeWWN12vMHIaSnDoXoNPm+vMALonFTXP7+dLcgsRi+1wAAAAATSgy0i034AD4rpYtW+ryyy+32RYWFqZWrVpZt48aNUo5OTmKjo5WRESExowZI7PZrOTkZElSamqqEhISNGzYMM2cOVMlJSWaOHGisrOz7RZKAMCZ6l1EccdCUI2ew9AFcwE2eq4/D+LUWNw8h6EvzS3Y3GNx1RyGAAAAAADAs8yaNUv+/v7KyMiwWWO5WkBAgJYvX66srCyZzWaFhYUpMzNTU6dOdWOvATQX9SqiuGshqMbMYSjJqXMBOm2uPw/gkljcNIehL80tSCynuWoOQwAAAAAA4F7r1q2zeRwcHKy8vDzl5eXV+pz4+Hi930wWIAfgWepVRHHXQlCNnsPQBcWORs/150GcGoubb/r70tyCzT0WX4kdAAAAAAAAgPfyr0/j6oWgtm/fbv3q0aOHhg4dav1/9UJQ1ewtBLVjxw6VlZVZ29S1EBQAAAAAAAAAAEBTq9dIFBaCAgAAAAAAAAAAzUW9F5avCwtBAQAAAAAAAAAAX9DoIgoLQQEAAAAAAAAAAF9UrzVRAAAAAAAAAAAAmguKKAAAAAAAAAAAAHZQRAEAAAAAAAAAALCDIgoAAAAAAAAAAIAdFFEAAAAAAAAAAADsoIgCAAAAAAAAAABgB0UUAAAAAAAAAAAAOyiiAAAAAAAAAAAA2EERBQAAAAAAAAAAwA6KKAAAAAAAAAAAAHZQRAGABpo7d666d++uiIgIRUREyGw264MPPrDuP3HihLKzs9WqVSuFh4crIyNDpaWlNscoLi5Wenq6QkNDFRMTo8cff1ynTp1q6lAAAAAAAAAA2EERBQAaqF27dnr66adVVFSk//znP+rbt69uv/127dy5U5I0btw4/etf/9KyZcu0fv16/fDDDxo0aJD1+ZWVlUpPT9fJkye1adMmLVq0SAsXLtSTTz7prpAAAAAAAAAAnKGFuzsAAN7q1ltvtXk8ffp0zZ07V5s3b1a7du00b948LV68WH379pUkLViwQF26dNHmzZuVnJys/Px87dq1S6tXr1ZsbKwSExM1bdo0jR8/XpMnT1ZgYKA7wgIAAAAAAADwfxiJAgBOUFlZqSVLluiXX36R2WxWUVGRLBaLUlJSrG06d+6sDh06qLCwUJJUWFiobt26KTY21tomLS1N5eXl1tEsAAAAAAAAANyHkSgA0Ag7duyQ2WzWiRMnFB4ernfeeUcJCQnavn27AgMDFRUVZdM+NjZWJSUlkqSSkhKbAkr1/up9tamoqFBFRYX1cXl5uSTJYrHIYrGcs7/V+y0hIY4F6IWqY/OIGOv4fjTskBabf30N8Z37eQAAAAAAoGlRRAGARujUqZO2b9+uw4cP680331RmZqbWr1/v0tfMzc3VlClTamzPz89XaGioQ8comD/f2d3yOB4R4/vvu+zQBQUFLju2JyA+W8eOHXNRT5xn7ty5mjt3rr7++mtJUteuXfXkk09qwIABkqQTJ07o0Ucf1ZIlS1RRUaG0tDTNmTPHpphcXFysrKwsrV27VuHh4crMzFRubq5atOCSFQAAAADgHrwjBYBGCAwM1CWXXCJJSkpK0rZt2/Tcc89p8ODBOnnypA4dOmQzGqW0tFRxcXGSpLi4OG3dutXmeKWlpdZ9tZkwYYJycnKsj8vLy9W+fXulpqYqIiLinP21WCwqKChQ//vuk+n48XrF6i0sISEqmD/fM2I8fNjph7R+D/v3l8lkcvrx3Y347KsecebJ2rVrp6efflqXXnqpDMPQokWLdPvtt+uTTz5R165dNW7cOK1YsULLli1TZGSkRo8erUGDBmnjxo2STk+LmJ6erri4OG3atEn79+/X8OHDZTKZNGPGDDdHBwAAAABoriiiAIATVVVVqaKiQklJSTKZTFqzZo0yMjIkSbt371ZxcbHMZrMkyWw2a/r06SorK1NMTIyk059Oj4iIUEJCQq2vERQUpKCgoBrbTSaTwzdlTcePu7/A4GIeEaMLiwD1+X57I+Kr2d7T3XrrrTaPp0+frrlz52rz5s1q166d5s2bp8WLF6tv376SpAULFqhLly7avHmzkpOTlZ+fr127dmn16tWKjY1VYmKipk2bpvHjx2vy5MkKDAx0R1gA0CCMzgMAAPAdXH0BQANNmDBBAwYMUIcOHXTkyBEtXrxY69at06pVqxQZGalRo0YpJydH0dHRioiI0JgxY2Q2m5WcnCxJSk1NVUJCgoYNG6aZM2eqpKREEydOVHZ2tt0iCQB4i8rKSi1btky//PKLzGazioqKZLFYlJKSYm3TuXNndejQQYWFhUpOTlZhYaG6detmcwMxLS1NWVlZ2rlzp6688kq7r8U6UTV51NpQZ2rk2j6+umYScTX82J6M0XkAAAC+gyIKADRQWVmZhg8frv379ysyMlLdu3fXqlWr1L9/f0nSrFmz5O/vr4yMDJtPGFYLCAjQ8uXLlZWVJbPZrLCwMGVmZmrq1KnuCgkAGmXHjh0ym806ceKEwsPD9c477yghIUHbt29XYGCgzfSGkhQbG6uSkhJJUklJiU0BpXp/9b7asE5U7TwuLietE+WrayYRl+O8YZ0oRucBAAD4DoooANBA8+bNO+f+4OBg5eXlKS8vr9Y28fHxet+Fi48DQFPq1KmTtm/frsOHD+vNN99UZmam1q9f79LXZJ2omjxqbagzNXKdKF9dM4m46s8b1ok6U1OOzgMAAIDzUUQBAACAUwQGBuqSSy6RJCUlJWnbtm167rnnNHjwYJ08eVKHDh2yGY1SWlqquLg4SVJcXJy2bt1qc7zS0lLrvtqwTlTtPC4uJ91I99U1k4irfsf0Bu4YnccUh87j8qkRvWBaumq+Ou1gQ3na+fCUfgCAL6OIAgAAAJeoqqpSRUWFkpKSZDKZtGbNGmVkZEiSdu/ereLiYpnNZkmS2WzW9OnTVVZWppiYGEmnpwGKiIhQQkKC22IAgIZyx+g8pjh0PpedDy8cje6r0w42lKecD2+Y4hAAvB1FFAAAADTahAkTNGDAAHXo0EFHjhzR4sWLtW7dOq1atUqRkZEaNWqUcnJyFB0drYiICI0ZM0Zms1nJycmSpNTUVCUkJGjYsGGaOXOmSkpKNHHiRGVnZ9sdaQIAns4do/OY4tB5XD41YiOnOGxKvjrtYEN52vnwtikOAcAbUUQBAABAo5WVlWn48OHav3+/IiMj1b17d61atUr9+/eXJM2aNUv+/v7KyMhQRUWF0tLSNGfOHOvzAwICtHz5cmVlZclsNissLEyZmZmaOnWqu0ICAKdqitF5THHofC47Hx5w872+fHXawYbylPPhCX2oy9y5czV37lx9/fXXkqSuXbvqySef1IABAyRJJ06c0KOPPqolS5bYXCeeOa1hcXGxsrKytHbtWoWHhyszM1O5ublq0YJbmwBcj0wDAACARps3b9459wcHBysvL095eXm1tomPj9f7Xji9CQCcjdF5APCrdu3a6emnn9all14qwzC0aNEi3X777frkk0/UtWtXjRs3TitWrNCyZcsUGRmp0aNHa9CgQdq4caMkqbKyUunp6YqLi9OmTZu0f/9+DR8+XCaTSTNmzHBzdACaA4ooAAAAAAA4EaPzAOBXt956q83j6dOna+7cudq8ebPatWunefPmafHixerbt68kacGCBerSpYs2b96s5ORk5efna9euXVq9erViY2OVmJioadOmafz48Zo8ebICAwPdERaAZoQiCgAAAAAATsToPACwr7KyUsuWLdMvv/wis9msoqIiWSwWpaSkWNt07txZHTp0UGFhoZKTk1VYWKhu3brZTO+VlpamrKws7dy5U1deeaXrOhwZKTHFIdDs1auIwhyGAAAAAAAAAOpjx44dMpvNOnHihMLDw/XOO+8oISFB27dvV2BgoKKiomzax8bGqqSkRJJUUlJic2+xen/1vtpUVFSooqLC+ri8vFySZLFYZLFYztnf6v2WkBDHAmymqs9Po89THd8Pb2f9efLxOBvDWefIVee4XpUL5jAEAAAAAAAAUB+dOnXS9u3bdfjwYb355pvKzMzU+vXrXfqaubm5mjJlSo3t+fn5Cg0NdegYBfPnO7tbPqnR56mZjLwsKChwdxc8XmPP0bFjx5zUE1v1KqIwhyEAAAAAAACA+ggMDNQll1wiSUpKStK2bdv03HPPafDgwTp58qQOHTpkMxqltLRUcXFxkqS4uDht3brV5nilpaXWfbWZMGGCcnJyrI/Ly8vVvn17paamKiIi4pz9tVgsKigoUP/77pOJ6bxqZQkJUcH8+Y0/T4cPO69THsj689S/v0wmk7u745GcdY6qR5w5W4Pn0GrKOQwbM/xOkuTEoXdOG6bmAVwSi5uGpfnSsDhisX0uAAAAAADwLVVVVaqoqFBSUpJMJpPWrFmjjIwMSdLu3btVXFwss9ksSTKbzZo+fbrKysoUExMj6fSn1SMiIpSQkFDrawQFBSkoKKjGdpPJ5PBNWtPx4xRRHNDo89RMCgv1+dlrrhp7jlx1futdRHHHHIaNHn73+ut1t6knXxrO59RY3Dz8zpeGxTX3WFw1/A4AAAAAADSdCRMmaMCAAerQoYOOHDmixYsXa926dVq1apUiIyM1atQo5eTkKDo6WhERERozZozMZrOSk5MlSampqUpISNCwYcM0c+ZMlZSUaOLEicrOzrZbJAEAZ6t3EcUdcxg2ZvidJCky0ml9cdowNQ/gkljcNPzOl4bFEctprhp+BwAAAAAAmk5ZWZmGDx+u/fv3KzIyUt27d9eqVavUv39/SdKsWbPk7++vjIwMVVRUKC0tTXPmzLE+PyAgQMuXL1dWVpbMZrPCwsKUmZmpqVOnuiskAM1MvYso7pjDsNHD71xQ7PCl4XxOjcXNN/19aVhcc4/FV2IHAAAAAKA5mzdv3jn3BwcHKy8vT3l5ebW2iY+P1/vNZPFxAJ7Hv7EHsDeHYTV7cxju2LFDZWVl1jaOzGEIAAAAAAAAAADQ1Oo1EoU5DAEAAAAAAAAAQHNRryIKcxgCAAAAAAAAAIDmol5FFOYwBAAAAAAAAAAAzUWj10QBAAAAAAAAAADwRRRRAAAAAAAAAAAA7KCIAgAAAAAAAAAAYAdFFAAAAAAAAAAAADsoogAAAAAAAAAAANhBEQUAAAAAAAAAAMAOiigAAAAAAAAAAAB2UEQBAAAAAAAAAACwgyIKAAAAAAAAAACAHRRRAAAAAAAAAAAA7KCIAgAAAAAAAAAAYAdFFAAAAAAAAAAAADsoogAAAAAAAAAAANhBEQUAAAAAAAAAAMAOiigAAAAAAAAAAAB2UEQBAAAAAAAAAACwgyIKADRQbm6urr76arVs2VIxMTEaOHCgdu/ebdPmxIkTys7OVqtWrRQeHq6MjAyVlpbatCkuLlZ6erpCQ0MVExOjxx9/XKdOnWrKUAAAAAAAAADYQREFABpo/fr1ys7O1ubNm1VQUCCLxaLU1FT98ssv1jbjxo3Tv/71Ly1btkzr16/XDz/8oEGDBln3V1ZWKj09XSdPntSmTZu0aNEiLVy4UE8++aQ7QgIAAAAAAABwhhbu7gAAeKuVK1faPF64cKFiYmJUVFSk66+/XocPH9a8efO0ePFi9e3bV5K0YMECdenSRZs3b1ZycrLy8/O1a9curV69WrGxsUpMTNS0adM0fvx4TZ48WYGBge4IDQAAAAAAAIAYiQIATnP48GFJUnR0tCSpqKhIFotFKSkp1jadO3dWhw4dVFhYKEkqLCxUt27dFBsba22Tlpam8vJy7dy5swl7DwCNwxSHAAAAAABfxEgUAHCCqqoqjR07Vr169dLll18uSSopKVFgYKCioqJs2sbGxqqkpMTa5swCSvX+6n32VFRUqKKiwvq4vLxckmSxWGSxWM7Zz+r9lpAQByPzPtWxeUSMdXw/GnZIi82/vob4zv08T1Y9xeHVV1+tU6dO6YknnlBqaqp27dqlsLAwSaenOFyxYoWWLVumyMhIjR49WoMGDdLGjRsl/TrFYVxcnDZt2qT9+/dr+PDhMplMmjFjhjvDAwAAAAA0UxRRAMAJsrOz9emnn+qjjz5y+Wvl5uZqypQpNbbn5+crNDTUoWMUzJ/v7G55HI+I8f33XXbogoIClx3bExCfrWPHjrmoJ87DFIcA8Kvc3Fy9/fbb+vzzzxUSEqJrr71WzzzzjDp16mRtc+LECT366KNasmSJKioqlJaWpjlz5th8wKa4uFhZWVlau3atwsPDlZmZqdzcXLVowVt5AACApsKVFwA00ujRo7V8+XJt2LBB7dq1s26Pi4vTyZMndejQIZvRKKWlpYqLi7O22bp1q83xqqe2qW5ztgkTJignJ8f6uLy8XO3bt1dqaqoiIiLO2VeLxaKCggL1v+8+mY4fr1ec3sISEqKC+fM9I8b/m+LNmazfw/79ZTKZnH58dyM++6pHnHmT+k5xmJycXOsUh1lZWdq5c6euvPLKpg0CABqI0XkAAAC+gyIKADSQYRgaM2aM3nnnHa1bt04dO3a02Z+UlCSTyaQ1a9YoIyNDkrR7924VFxfLbDZLksxms6ZPn66ysjLFxMRIOv0J9YiICCUkJNh93aCgIAUFBdXYbjKZHL4pazp+3P0FBhfziBhdWASoz/fbGxFfzfbehCkO3cujpjU8UyOnpfPV6f6Iq+HH9mSMzgMAAPAdFFEAoIGys7O1ePFivffee2rZsqX1Bl9kZKRCQkIUGRmpUaNGKScnR9HR0YqIiNCYMWNkNpuVnJwsSUpNTVVCQoKGDRummTNnqqSkRBMnTlR2drbdQgkAeAOmOPQMHheXk6Y49NXp/ojLcd4wxeHZmmp0HoVl53F5QdoLioHVfLXY21Cedj48pR8A4MsoogBAA82dO1eS1KdPH5vtCxYs0IgRIyRJs2bNkr+/vzIyMmzmuq4WEBCg5cuXKysrS2azWWFhYcrMzNTUqVObKgwAcCqmOHQ/j5rW8EyNnOLQV6f7I67687YpDptydB6FZedz2flw4dp5ruKrxd6G8pTz4Y2FZQDwNhRRAKCBDMOos01wcLDy8vKUl5dXa5v4+Hi974VvogDgTExx6Hk8Li4n3Uj31en+iKt+x/QmTTk6j8Ky87i8IO2CtfNcxVeLvQ3laefDGwrLubm5evvtt/X5558rJCRE1157rZ555hl16tTJ2ubEiRN69NFHtWTJEpsPIJ5ZTC4uLlZWVpbWrl2r8PBwZWZmKjc3Vy1acHsTgGuRZQAAANBoTHEIADU19eg8CsvO57Lz4QE33+vLV4u9DeUp58MT+lCX9evXKzs7W1dffbVOnTqlJ554Qqmpqdq1a5fCwsIkSePGjdOKFSu0bNkyRUZGavTo0Ro0aJA2btwoSaqsrFR6erri4uK0adMm7d+/X8OHD5fJZNKMGTPcGR6AZsC/Po1zc3N19dVXq2XLloqJidHAgQO1e/dumzYnTpxQdna2WrVqpfDwcGVkZFgv9KoVFxcrPT1doaGhiomJ0eOPP65Tp041PhoAAAC4xdy5c3X48GH16dNHbdq0sX698cYb1jazZs3SLbfcooyMDF1//fWKi4vT22+/bd1fPcVhQECAzGaz7r33Xg0fPpwpDgF4HcMwNHr0aL3zzjv68MMPzzk6r5q90Xk7duxQWVmZtU1do/MAwBOtXLlSI0aMUNeuXXXFFVdo4cKFKi4uVlFRkaTT60bNmzdPf/nLX9S3b18lJSVpwYIF2rRpkzZv3izp9LSEu3bt0quvvqrExEQNGDBA06ZNU15enk6ePOnO8AA0A/UaiULlGAAAAPYwxSEA/IrReQBQu8P/N51ddHS0JKmoqEgWi0UpKSnWNp07d1aHDh1UWFio5ORkFRYWqlu3bjbTe6WlpSkrK0s7d+7UlVdeWeN1KioqVFFRYX1cPfWZxWKRxWI5Zx+r91tCQhoYZfNQfX4afZ7q+H54O+vPk4/H2RjOOkeuOsf1KqKsXLnS5vHChQsVExOjoqIiXX/99dbK8eLFi9W3b19JpxdY7tKlizZv3qzk5GRr5Xj16tWKjY1VYmKipk2bpvHjx2vy5MkKDAx0XnQAAAAAADSxuXPnSpL69Oljs33BggUaMWKEpNOj8/z9/ZWRkWEz/3+16tF5WVlZMpvNCgsLU2ZmJqPzAHi1qqoqjR07Vr169dLll18uSSopKVFgYKDN9IaSFBsbay1Cl5SU2BRQqvdX77MnNzdXU6ZMqbE9Pz9foaGhDvW3YP58h9o1d40+T83kQ1QFBQXu7oLHa+w5OnbsmJN6YqtRa6J4Q+VYkuTEqrHTKqwewCWxuKmi6ksVXWKxfS4AAADgbRidBwD2ZWdn69NPP9VHH33k8teaMGGCcnJyrI/Ly8vVvn17paamKiIi4pzPtVgsKigoUP/77mOdqHOwhISoYP78xp+n/7vH7KusP0/9+3vFOkbu4KxzVF03cLYGF1G8qnL8+ut1t6knX6pEOzUWN1/g+1JFt7nH4qrKMQAAAAAAaHqjR4/W8uXLtWHDBrVr1866PS4uTidPntShQ4ds7imWlpYqLi7O2mbr1q02x6teg7m6zdmCgoLsTn9oMpkcvklrOn6cIooDGn2emklhoT4/e81VY8+Rq85vg4so3lI5liRFRjqtL06rsHoAl8TipsqxL1V0ieU0V1WOAQAAAABA0zEMQ2PGjNE777yjdevWqWPHjjb7k5KSZDKZtGbNGmVkZEiSdu/ereLiYpnNZkmS2WzW9OnTVVZWppiYGEmnP7AZERGhhISEpg0IQLPToCKK11WOXVDs8KVKtFNjcfNNf1+q6Db3WHwldgAAAAAAmrPs7GwtXrxY7733nlq2bGmdiSYyMlIhISGKjIzUqFGjlJOTo+joaEVERGjMmDEym81KTk6WJKWmpiohIUHDhg3TzJkzVVJSookTJyo7O9vuPUMAcCb/+jQ2DEOjR4/WO++8ow8//PCcleNq9irHO3bsUFlZmbUNlWMAAAAAAADA98ydO1eHDx9Wnz591KZNG+vXG2+8YW0za9Ys3XLLLcrIyND111+vuLg4vf3229b9AQEBWr58uQICAmQ2m3Xvvfdq+PDhmjp1qjtCgrP5+XnnF5qNeo1EoXIMAAAAAAAAwFGGYdTZJjg4WHl5ecrLy6u1TXx8vN5381q8AJqnehVR5s6dK0nq06ePzfYFCxZoxIgRkk5Xjv39/ZWRkaGKigqlpaVpzpw51rbVleOsrCyZzWaFhYUpMzOTyjEAAAAAAAAAAPAo9SqiUDkGAAAAAAAAAADNRb3WRAEAAAAAAAAAAGguKKIAAAAAAAAAAADYQREFAAAAAAAAAADADoooAAAAAAAAAAAAdlBEAQAAAAAAaEp+ft7zFRl5us/V/wIA0MxQRAEAAAAAAAAAALCDIgoAAAAAAAAAAIAdFFEAAAAAAAAAAADsoIgCAAAAAAAAAABgB0UUAAAAAAAAAAAAOyiiAAAAAAAAAAAA2EERBQAAAAAAAAAAwA6KKAAAAAAAAAAAAHZQRAEAAAAAAAAAALCDIgoAAAAAAAAAAIAdFFEAAAAAAAAAAADsoIgCAAAAAAAAAABgB0UUAAAAAAAAAAAAOyiiAAAAAAAAAAAA2EERBQAAAAAAAAAAwA6KKAAAAAAAAAAAAHZQRAEAAAAAAAAAALCDIgoANMKGDRt06623qm3btvLz89O7775rs98wDD355JNq06aNQkJClJKSoj179ti0OXjwoIYOHaqIiAhFRUVp1KhROnr0aBNGAQAAAAAAAMAeiigA0Ai//PKLrrjiCuXl5dndP3PmTP31r3/Viy++qC1btigsLExpaWk6ceKEtc3QoUO1c+dOFRQUaPny5dqwYYMeeOCBpgoBAAAAAAAAQC0oogBAIwwYMEBPPfWU7rjjjhr7DMPQ7NmzNXHiRN1+++3q3r27XnnlFf3www/WESufffaZVq5cqb///e/q2bOnrrvuOj3//PNasmSJfvjhhyaOBgAah9F5AAAAAABfQxEFAFxk3759KikpUUpKinVbZGSkevbsqcLCQklSYWGhoqKi1KNHD2ublJQU+fv7a8uWLU3eZziZn5/zvyIjTx87MtI1x/fzc+85g1djdB4A/IrCMgAAgG9o4e4OAICvKikpkSTFxsbabI+NjbXuKykpUUxMjM3+Fi1aKDo62trmbBUVFaqoqLA+Li8vlyRZLBZZLJZz9ql6vyUkpB6ReJfq2Hw1xiaJr46fI1ey/oy6sQ+u1ND4vOV8DBgwQAMGDLC77+zReZL0yiuvKDY2Vu+++66GDBliHZ23bds2a3H5+eef180336xnn31Wbdu2bbJYAKCxqgvL9913nwYNGlRjf3VhedGiRerYsaP+3//7f0pLS9OuXbsUHBws6XRhef/+/SooKJDFYtHIkSP1wAMPaPHixU0dDgAAQLNFEQUAvExubq6mTJlSY3t+fr5CQ0MdOkbB/PnO7pbH8fUYXRrf+++77tgOKigocHcXXKq+8R07dsxFPWk6dY3OGzJkSJ2j8+xNnUhhuSaPLSY3shjoq0VW4mr4sT0dhWUA+NWGDRv0pz/9SUVFRdq/f7/eeecdDRw40LrfMAxNmjRJL7/8sg4dOqRevXpp7ty5uvTSS61tDh48qDFjxuhf//qX/P39lZGRoeeee07h4eFuiAhAc1LvIgpJDwAcExcXJ0kqLS1VmzZtrNtLS0uVmJhobVNWVmbzvFOnTungwYPW559twoQJysnJsT4uLy9X+/btlZqaqoiIiHP2yWKxqKCgQP3vu0+m48cbEpbHs4SEqGD+fJ+NsUniO3zYNcd1gPVntH9/mUwmt/XDVRoaX3VhwJu5anQeheXaeVxcTirQ+mqRlbgcR2GZwnJT8NiCtBvYnAsvKWK6kqcVvz2lH3VhdB4Ab1bvIgpJDwAc07FjR8XFxWnNmjXWokl5ebm2bNmirKwsSZLZbNahQ4dUVFSkpKQkSdKHH36oqqoq9ezZ0+5xg4KCFBQUVGO7yWRy+Kas6fhxnywwnMnXY3RpfB5QvKjPz7M3qm98vnwuGovCck0eW0xuZIHWV4usxFV/FJYpLDclzsevCubP94gRy57CU4rf3lJYZnQeAG9W7yIKSQ8AfnX06FHt3bvX+njfvn3avn27oqOj1aFDB40dO1ZPPfWULr30UmthuW3bttYRfF26dNFNN92k+++/Xy+++KIsFotGjx6tIUOGkA8B+BRXjc6jsFw7j4vLSTfSfbXISlz1Oybso7DsPB5bkHYDm3NRSwGvOfG04rcvFJYZnee9mv2oPQdHgnnaCDZP5Kxz5Kpz7NQ1UVyV9ADAU/3nP//RjTfeaH1c/aY1MzNTCxcu1O9//3v98ssveuCBB3To0CFdd911WrlypXVkniS99tprGj16tPr162ed4vCvf/1rk8cCAK7kqtF5AOCNKCx7D87Hr0zHj3tE0cBTeErx2xP60FiMzvN+zfY81XN0nqeMYPNkjT1Hrhqd59QiiquSXmMqx5IkJ1ZDfanC6pJY3FRR9aWKLrHYPtfT9enTR4Zh1Lrfz89PU6dO1dSpU2ttEx0dzXSGAHwCo/MAwDEUlgHA9Rid53rNftSeg9PVetoINk/krHPkqtF5Ti2iuEqjK8evv+70PvlShdWpsbh5flRfqug291i8ZV5XAMCvGJ0HAL+isAwAjmF0nvdrtuepnjf7PWUEmydr7Dly1fl1ahHFVUmvMZVjSVJkZD0jqZ0vVVhdEksjFwxtKF+q6BLLab4wrysANDeMzgOAX1FYBgDHMDoPgKdzahHFVUmv0ZVjFxQ7fKnC6tRY3HzT35cqus09Fl+JHQAAAM0ThWUA+BWj8wB4s3oXUUh6AAAAAAAAABzF6DwA3qzeRRSSHgAAAAAAAABHMToPgDerdxGFpAcAAAAAAAAAAJoDf3d3AAAAAAAAAAAAwBNRRAEAAAAAAAAAALCDIgoAAAAAAAAAAIAdFFEAAAAAAAAAAADsoIgCAAAAAAAAAABgB0UUAAAAAAAAAAAAOyiiAAAAAAAAAAAA2EERBQAAAAAAAAAAwA6KKAAAAAAAAAAAAHZQRAEAAAAAAAAAALCDIgoAAAAAAAAAAIAdFFEAAAAAAAAAAADsoIgCAAAAAAAAAABgB0UUAAAAAAAAAAAAOyiiAAAAAHA9P7/GfUVGnj5OZGTjj1WfLwAAAADNGkUUAAAAAAAAAAAAOyiiwLma8lOBzvxkIgAAAAAAAAAAZ6GIAgAAAAAAAAAAYAdFFAAAAAAAAAAAADsoogAAAAAAAAAAANhBEQUAAAAAAAAAAMAOiigAAAAAAAAAAAB2UEQBAAAAAAAAAACwgyIKAAAAAAAAAACAHRRRAAAAAAAAAAAA7KCIAgAAAAAAAAAAYAdFFECS/Pw85ysy8nSfIiPP3Q4AAAAAAAAA4FIUUQAAAAAAAFA3d3/osCFfAOAqzv7ANDnRY7m1iJKXl6cLL7xQwcHB6tmzp7Zu3erO7gCAW5ETAeA08iEA/IqcCAC/IicCcAe3FVHeeOMN5eTkaNKkSfr44491xRVXKC0tTWVlZe7qEgC4DTkRHsUbpjTk0zQ+i3wIAL8iJwLAr8iJANzFbUWUv/zlL7r//vs1cuRIJSQk6MUXX1RoaKjmz5/vri4B3sXdw/8aejMUdpETAeA08iEA/IqcCDiBp3zohyl3Go2cCDiBu+8VNjS3uplbiignT55UUVGRUlJSfu2Iv79SUlJUWFjoji4BgNuQEwEncPcFX0MvDGGDfAiP5O43jNx4a7bIiQDwK3IiAHdq4Y4X/emnn1RZWanY2Fib7bGxsfr8889rtK+oqFBFRYX18eHDhyVJBw8elMViqfsFg4Mb1+EzWIKDdezYMR0IDpbJMJx2XHcgFs/k87EcOODQc48cOSJJMrz8HDiiKXOixWLxmZ+v2vjS75A9xOfdasRHTrRR33wokRPt8dXfI+Kqh5AQ5xynESwhITqWl6cDsbEyHT/u2JO++86hZuREcmJT8NWc0xCcC1tNdj64TrRBTvRM5AfHcJ7qVuc5cnNOdEsRpb5yc3M1ZcqUGts7duzY9J05cUL6zW+a/nVdgVg8k6/Hcv759TrEkSNHFFn9CU1I8rCc6Il86XfIHuLzbmfHR05sNHKiHb76e0Rc3qUhcZETG42c6ES++rvZEJwLW011PsiJjUZObALkB8dwnupW1zlyc050SxHl/PPPV0BAgEpLS222l5aWKi4urkb7CRMmKCcnx/q4qqpKBw8eVKtWreTXxMPVy8vL1b59e3377beKiIho0td2NmLxTMRymmEYOnLkiNq2beui3nmOpsyJvvTzVRtfj5H4vFtD42suObG++VAiJ9pDXN6FuOqPnEhObAqcj19xLmx52vkgJ5IT3Ynz5BjOU92cdY5clRPdUkQJDAxUUlKS1qxZo4EDB0o6ncjWrFmj0aNH12gfFBSkoKAgm21RUVFN0NPaRURE+MwPPbF4JmJRs/kUjTtyoi/9fNXG12MkPu/WkPiaQ06sbz6UyInnQlzehbjqh5xITmwqnI9fcS5sedL5ICeSE92N8+QYzlPdnHGOXJET3TadV05OjjIzM9WjRw9dc801mj17tn755ReNHDnSXV0CALchJwLAaeRDAPgVOREAfkVOBOAubiuiDB48WD/++KOefPJJlZSUKDExUStXrqyxQBQANAfkRAA4jXwIAL8iJwLAr8iJANzFrQvLjx49utYhd54qKChIkyZNqjEc0BsRi2ciluarKXJic/ie+HqMxOfdfD0+Z2mqa0Rf/X4Ql3chLtSFnOgenI9fcS5scT7ci5zoWThPjuE81c3Tz5GfYRiGuzsBAAAAAAAAAADgafzd3QEAAAAAAAAAAABPRBEFAAAAAAAAAADADoooAAAAAAAAAAAAdlBEkZSXl6cLL7xQwcHB6tmzp7Zu3XrO9suWLVPnzp0VHBysbt266f3337fZP2LECPn5+dl83XTTTa4Mwao+sezcuVMZGRm68MIL5efnp9mzZzf6mM7k7FgmT55c4/vSuXNnF0bwq/rE8vLLL6t3794677zzdN555yklJaVGe8Mw9OSTT6pNmzYKCQlRSkqK9uzZ4+owJDk/Fnf+vvgqZ+c0T+SKXOdJnP175mnqE9/bb7+tHj16KCoqSmFhYUpMTNQ//vGPJuxt/TX07+aSJUvk5+engQMHuraDzYyv5kRfzYO+mv98Ne+R77yPr+bEhvLVXNoQvpp/G8pX8zZskRMdQ650DHm0bl6dW41mbsmSJUZgYKAxf/58Y+fOncb9999vREVFGaWlpXbbb9y40QgICDBmzpxp7Nq1y5g4caJhMpmMHTt2WNtkZmYaN910k7F//37r18GDBz0ulq1btxqPPfaY8frrrxtxcXHGrFmzGn1MT45l0qRJRteuXW2+Lz/++KNL4zCM+sfym9/8xsjLyzM++eQT47PPPjNGjBhhREZGGt999521zdNPP21ERkYa7777rvHf//7XuO2224yOHTsax48f97pY3PX74qtckdM8jSvygydxxe+ZJ6lvfGvXrjXefvttY9euXcbevXuN2bNnGwEBAcbKlSubuOeOaejfzX379hkXXHCB0bt3b+P2229vms42A76aE301D/pq/vPVvEe+8z6+mhMbyldzaUP4av5tKF/N27BFTnQMudIx5NG6eXtubfZFlGuuucbIzs62Pq6srDTatm1r5Obm2m1/9913G+np6TbbevbsaTz44IPWx5mZmW55Q1DfWM4UHx9vN7E15piN4YpYJk2aZFxxxRVO7KVjGnsOT506ZbRs2dJYtGiRYRiGUVVVZcTFxRl/+tOfrG0OHTpkBAUFGa+//rpzO38WZ8diGO77ffFVrshpnsYV+cGTuOL3zJM44+/KlVdeaUycONEV3Wu0hsR36tQp49prrzX+/ve/kxOdzFdzoq/mQV/Nf76a98h33sdXc2JD+WoubQhfzb8N5at5G7bIiY4hVzqGPFo3b8+tzXo6r5MnT6qoqEgpKSnWbf7+/kpJSVFhYaHd5xQWFtq0l6S0tLQa7detW6eYmBh16tRJWVlZOnDggPMDOENDYnHHMd39unv27FHbtm110UUXaejQoSouLm5sd8/JGbEcO3ZMFotF0dHRkqR9+/appKTE5piRkZHq2bOnx39fzo6lWlP/vvgqV+Y0T+GuvNRUXPl75gkaG59hGFqzZo12796t66+/3pVdbZCGxjd16lTFxMRo1KhRTdHNZsNXc6Kv5kFfzX++mvfId97HV3NiQ/lqLm0IX82/DeWreRu2yImOIVc6hjxaN1/Irc26iPLTTz+psrJSsbGxNttjY2NVUlJi9zklJSV1tr/pppv0yiuvaM2aNXrmmWe0fv16DRgwQJWVlc4P4v80JBZ3HNOdr9uzZ08tXLhQK1eu1Ny5c7Vv3z717t1bR44caWyXa+WMWMaPH6+2bdtaE03187zx+3J2LJJ7fl98latymidxV15qKq76PfMUDY3v8OHDCg8PV2BgoNLT0/X888+rf//+ru5uvTUkvo8++kjz5s3Tyy+/3BRdbFZ8NSf6ah701fznq3mPfOd9fDUnNpSv5tKG8NX821C+mrdhi5zoGHKlY8ijdfOF3NrCLa/q44YMGWL9f7du3dS9e3ddfPHFWrdunfr16+fGnjVvAwYMsP6/e/fu6tmzp+Lj47V06VKP/TTc008/rSVLlmjdunUKDg52d3capbZY+H0BnMeXcsaZWrZsqe3bt+vo0aNas2aNcnJydNFFF6lPnz7u7lqjHDlyRMOGDdPLL7+s888/393dAbyar+U/X8t75DvAd/la/m0oX8vbAJoOebR2npRbm3UR5fzzz1dAQIBKS0tttpeWliouLs7uc+Li4urVXpIuuuginX/++dq7d6/Lbgo3JBZ3HNOTXjcqKkqXXXaZ9u7d67Rjnq0xsTz77LN6+umntXr1anXv3t26vfp5paWlatOmjc0xExMTndf5s7giFnua4vfFVzVVTnMnd+WlptJUv2fu0tD4/P39dckll0iSEhMT9dlnnyk3N9fj3pTWN74vv/xSX3/9tW699VbrtqqqKklSixYttHv3bl188cWu7bQP89Wc6Kt50Ffzn6/mPfKd9/HVnNhQvppLG8JX829D+Wrehi1yomPIlY4hj9bNF3Jrs57OKzAwUElJSVqzZo11W1VVldasWSOz2Wz3OWaz2aa9JBUUFNTaXpK+++47HThwwOaGt7M1JBZ3HNOTXvfo0aP68ssvPfL7MnPmTE2bNk0rV65Ujx49bPZ17NhRcXFxNscsLy/Xli1bPPL7cq5Y7GmK3xdf1VQ5zZ3clZeaSlP9nrmLs75/VVVVqqiocEUXG6W+8XXu3Fk7duzQ9u3brV+33XabbrzxRm3fvl3t27dvyu77HF/Nib6aB301//lq3iPfeR9fzYkN5au5tCF8Nf82lK/mbdgiJzqGXOkY8mjdfCK3umU5ew+yZMkSIygoyFi4cKGxa9cu44EHHjCioqKMkpISwzAMY9iwYcYf/vAHa/uNGzcaLVq0MJ599lnjs88+MyZNmmSYTCZjx44dhmEYxpEjR4zHHnvMKCwsNPbt22esXr3auOqqq4xLL73UOHHihEfFUlFRYXzyySfGJ598YrRp08Z47LHHjE8++cTYs2ePw8f0plgeffRRY926dca+ffuMjRs3GikpKcb5559vlJWVeVQsTz/9tBEYGGi8+eabxv79+61fR44csWkTFRVlvPfee8b//vc/4/bbbzc6duxoHD9+3Kticefvi69ydk7zRK7ID57EFTnDk9Q3vhkzZhj5+fnGl19+aezatct49tlnjRYtWhgvv/yyu0I4p/rGd7bMzEzj9ttvb6Le+j5fzYm+mgd9Nf/5at4j33kfX82JDeWrubQhfDX/NpSv5m3YIic6hlzpGPJo3bw9tzb7IophGMbzzz9vdOjQwQgMDDSuueYaY/PmzdZ9N9xwg5GZmWnTfunSpcZll11mBAYGGl27djVWrFhh3Xfs2DEjNTXVaN26tWEymYz4+Hjj/vvvd3nRoSGxwfx2HgABAABJREFU7Nu3z5BU4+uGG25w+JjeFMvgwYONNm3aGIGBgcYFF1xgDB482Ni7d6/HxRIfH283lkmTJlnbVFVVGf/v//0/IzY21ggKCjL69etn7N692+ticffvi69yZk7zVK7IdZ7E2TnD09Qnvj/+8Y/GJZdcYgQHBxvnnXeeYTabjSVLlrih146r7+/gmbip6Hy+mhN9NQ/6av7z1bxHvvM+vpoTG8pXc2lD+Gr+bShfzduwRU50DLnSMeTRunlzbvUzDMNwzpgWAAAAAAAAAAAA39Gs10QBAAAAAAAAAACoDUUUAAAAAAAAAAAAOyiiAAAAAAAAAAAA2EERBQAAAAAAAAAAwA6KKAAAAAAAAAAAAHZQRAEAAAAAAAAAALCDIgoAAAAAAAAAAIAdFFEAAAAAAAAAAADsoIgCAAAAAAAAAABgB0UUAAAAAAAAAAAAOyiiAAAAAAAAAAAA2EERBQAAAAAAAAAAwA6KKAAAAAAAAAAAAHZQRAEAAAAAAAAAALCDIgoAAAAAAAAAAIAdFFEAAAAAAAAAAADsoIgCAAAAAAAAAABgB0UUAAAAAAAAAAAAOyiiAAAAAAAAAAAA2EERBQAAAAAAAAAAwA6KKAAAAAAAAAAAAHZQRAEAAAAAAAAAALCDIgoAAAAAAAAAAIAdFFEAAAAAAAAAAADsoIgCAAAAAAAAAABgB0UUAAAAAAAAAAAAOyiiAAAAAAAAAAAA2EERBQAAAAAAAAAAwA6KKAAAAAAAAAAAAHZQRAEAAAAAAAAAALCDIgoAAAAAAAAAAIAdFFHgkVauXKnExEQFBwfLz89Phw4dcneXAPiQyZMny8/PTz/99FOTvaafn58mT57cZK/nTs0pVsATff311/Lz89PChQvd8vq+kgP27Nmj1NRURUZGys/PT++++667uwSgmerTp4/69OnjkmNfeOGFGjFihEuOfS7u/lsFeDJ3vF/1ZK7MgZ7CFTFW/xy524gRIxQeHu5QW09+H0ERBR7nwIEDuvvuuxUSEqK8vDz94x//UFhYmMPP37RpkyZPnkzhBQAAAA2WmZmpHTt2aPr06frHP/6hHj16uLtLADzY4sWLNXv2bHd3A0ADcS+pcbw9B3rr9//YsWOaPHmy1q1b5+6u+LwW7u4AcLZt27bpyJEjmjZtmlJSUur9/E2bNmnKlCkaMWKEoqKinN9BAGiA48ePq0UL/uwC8H2+kO+OHz+uwsJC/fGPf9To0aPd3R0AXmDx4sX69NNPNXbsWHd3BUADcC+pcbw9B3rr9//YsWOaMmWKJNUYyTJx4kT94Q9/cEOvGs6T30cwEgUep6ysTJK8KmkBQF2Cg4M99mIAAJzJm/PdiRMnVFVVpR9//FGSc69Hf/nlF6cdCwAAoLGOHTvm7i74LE+47mvRooWCg4Pd3Y168eT3ERRR4DRHjhzR2LFjdeGFFyooKEgxMTHq37+/Pv74Y0nSv//9b911113q0KGDgoKC1L59e40bN07Hjx+3HqNPnz7KzMyUJF199dXy8/P7/+zde1xUdf7H8TfgcHcgTEBT0axUvGRhyXRRU4TMLJO2tUwpLYvQSrqtrXnNaK1duyzaZb3tr8yyzUpzVTQvW2IaZZmWm65mpUDlCl5hhPP7o53JkQFnkGEY5vV8POahc873nPP5fjnzmTPne873OIzP+sknn+jaa69VVFSUwsPD1bt3b3388cf2+ZMnT9YjjzwiSWrXrp0CAgIUEBCgvXv3qnfv3rr44oudxt6hQwelpaXVdZMAaOB+/vln3XLLLTKbzWrWrJkeeOABnThxwj5/3rx56tu3r2JjYxUSEqLExETNnj27yno+/fRTpaWl6dxzz1VYWJjatWunkSNHOpRxNrbnjz/+qFGjRqlly5YKCQlRu3btlJmZqfLycpfrEBAQoDFjxujdd99Vly5dFBISos6dO2vFihVVyv74448aOXKk4uLi7OXmzp1bpVxZWZkmTZqkCy64wJ6vH330UZWVlVUpN27cODVv3lxNmzbVDTfcoB9++KHK+s70/QA0Bt99953uu+8+dejQQWFhYWrWrJl+97vfae/evVXKHjp0SOPGjbN/Jlq1aqURI0bYx70uLy/XxIkTlZSUpKioKEVEROjqq6/W2rVrna7rjjvuUFRUlKKjo5WRkVHtMATffPONbr75ZsXExCg0NFQ9evTQ+++/71Bm/vz5CggI0EcffaT7779fzZs3V3R0tO655x6Vl5fr0KFDGjFihM455xydc845evTRR2UYhsM6PJ3vXn/9dXXo0EGhoaFKSkrShg0bqpR1Jd+tW7dOAQEBWrRokSZMmKDzzjtP4eHhys7OVkJCgiTpkUceUUBAgNq2bWtf7vPPP9eAAQNkNpsVGRmpfv36adOmTU7bcf369brvvvsUGxurVq1aSfr1eLdLly768ssv1bt3b4WHh+uCCy7Q22+/LUlav369evbsqbCwMHXo0EGrV692WLer+5otho8//ljZ2dlq3ry5IiIidNNNN9k7iU71z3/+U71791bTpk1lNpt12WWXaeHChQ5lznQsDjRmNR3P9OnTRx988IG+++47+29QW96wfRZP/4zactDpQ7C88sorat++vcLCwnT55ZfrX//6l8P8I0eOKCIiQg888ECVGH/44QcFBQUpJyfnrOr6n//8R7/73e8UExOj8PBwJScn64MPPnAo46nvKsAbajqXJEmvvfaakpKSFBYWppiYGA0dOlTff/+9wzpcOedl88033+iWW25R8+bN7d/3f/zjH6uUs312oqOjFRUVpTvvvNNpx4cr8dmOPwoKCtSrVy+Fh4fr8ccfd6l9zvR7rj5zoI2rv1ld+b18pr//mdie+bF7925dd911atq0qYYNGyZJqqys1HPPPafOnTsrNDRUcXFxuueee/Tf//63xnW6kmP37t2r5s2bS5KmTJlij9t2HO7smSgnT57UtGnT1L59e4WEhKht27Z6/PHHq7Rb27Ztdf311+ujjz7S5ZdfrtDQUJ1//vn6+9//7lDOarVqypQpuvDCCxUaGqpmzZrpqquuUl5eXpU6/fjjjxo8eLAiIyPVvHlzPfzww6qoqHAoc/rvCFsdbJ+Z6s7d1IeG2bUDn3Tvvffq7bff1pgxY5SYmKhffvlFH330kb7++mtdeumlWrx4sY4dO6bMzEw1a9ZMmzdv1osvvqgffvhBixcvliT98Y9/VIcOHfTKK69o6tSpateundq3by9J+vDDDzVgwAAlJSVp0qRJCgwMtJ/g/Ne//qXLL79cQ4YM0b///W+98cYbmjlzps4991xJUvPmzTV8+HDdfffd+uqrr9SlSxd73Fu2bNG///1vTZgwof4bDYBX3XLLLWrbtq1ycnK0adMmvfDCC/rvf/9rPzCYPXu2OnfurBtuuEFNmjTR0qVLdd9996myslJZWVmSfr17LjU1Vc2bN9cf/vAHRUdHa+/evXrnnXdq3Pb+/ft1+eWX69ChQxo9erQ6duyoH3/8UW+//baOHTum4OBgl+vx0Ucf6Z133tF9992npk2b6oUXXlB6err27dunZs2aSZKKioqUnJxsP4hs3ry5/vnPf2rUqFEqLS2133ZdWVmpG264QR999JFGjx6tTp06adu2bZo5c6b+/e9/OzxY+a677tJrr72m2267TVdccYU+/PBDDRw4sEp8Z/p+ABqDLVu2aOPGjRo6dKhatWqlvXv3avbs2erTp4927Nih8PBwSb+e/Lr66qv19ddfa+TIkbr00kv1888/6/3339cPP/ygc889V6Wlpfrb3/6mW2+9VXfffbcOHz6sOXPmKC0tTZs3b1b37t0lSYZh6MYbb9RHH32ke++9V506ddKSJUvsF6Scavv27bryyit13nnn6Q9/+IMiIiL01ltvafDgwfrHP/6hm266yaH82LFjFR8frylTpmjTpk165ZVXFB0drY0bN6pNmzZ66qmntHz5cj3zzDPq0qWLRowYUW3b1GW+W79+vd58803df//9CgkJ0axZs3Tttddq8+bN9uM7V/OdzbRp0xQcHKyHH35YZWVluu6669S2bVuNGzdOt956q6677jr7wzC3b9+uq6++WmazWY8++qhMJpNefvll9enTx975car77rtPzZs318SJEx2uSPzvf/+r66+/XkOHDtXvfvc7zZ49W0OHDtXrr7+uBx98UPfee69uu+02PfPMM7r55pv1/fffq2nTppJc39dO/Vuec845mjRpkvbu3avnnntOY8aM0ZtvvmkvM3/+fI0cOVKdO3fW+PHjFR0drc8//1wrVqzQbbfdJsm1Y3GgMavpeOaPf/yjSkpK9MMPP2jmzJmS5PJDdE81Z84c3XPPPbriiiv04IMP6j//+Y9uuOEGxcTEqHXr1vb13nTTTXrzzTf1l7/8RUFBQfbl33jjDRmGYT95VxtFRUW64oordOzYMd1///1q1qyZFixYoBtuuEFvv/22/fvCE99VgLfUdC5p+vTpeuKJJ3TLLbforrvu0k8//aQXX3xRvXr10ueff26/a9WVc16S9OWXX+rqq6+WyWTS6NGj1bZtW+3evVtLly7V9OnTHeK65ZZb1K5dO+Xk5Oizzz7T3/72N8XGxupPf/qTvYyr8Um/PoN4wIABGjp0qG6//XbFxcW51D5n+j1XnzlQcu83q3Tm38s1/f1ddfLkSaWlpemqq67Ss88+az8eu+eeezR//nzdeeeduv/++7Vnzx799a9/1eeff66PP/5YJpPJ6fpcybHNmzfX7NmzlZmZqZtuuklDhgyRJHXr1q3aOO+66y4tWLBAN998sx566CF98sknysnJ0ddff60lS5Y4lN21a5duvvlmjRo1ShkZGZo7d67uuOMOJSUlqXPnzpJ+7eTIycnRXXfdpcsvv1ylpaX69NNP9dlnn6l///72dVVUVCgtLU09e/bUs88+q9WrV+vPf/6z2rdvr8zMzDO275nO3dQLA6gjUVFRRlZWVrXzjx07VmVaTk6OERAQYHz33Xf2afPmzTMkGVu2bLFPq6ysNC688EIjLS3NqKysdFhnu3btjP79+9unPfPMM4YkY8+ePQ7bOnTokBEaGmo89thjDtPvv/9+IyIiwjhy5IjLdQXg2yZNmmRIMm644QaH6ffdd58hyfjiiy8Mw3Cet9LS0ozzzz/f/n7JkiVVcpYzkoxJkybZ348YMcIIDAx0utypee5MJBnBwcHGrl277NO++OILQ5Lx4osv2qeNGjXKaNGihfHzzz87LD906FAjKirKXtf/+7//MwIDA41//etfDuVeeuklQ5Lx8ccfG4ZhGFu3bjUkGffdd59Dudtuu61KXc/0/QA0Bs7yRX5+viHJ+Pvf/26fNnHiREOS8c4771Qpb/vsnzx50igrK3OY99///teIi4szRo4caZ/27rvvGpKMGTNm2KedPHnSuPrqqw1Jxrx58+zT+/XrZ3Tt2tU4ceKEw/auuOIK48ILL7RPsx2HnX7MZbFYjICAAOPee+912FarVq2M3r17O8TqyXwnyfj000/t07777jsjNDTUuOmmm+zTXM13a9euNSQZ559/fpW/3549ewxJxjPPPOMwffDgwUZwcLCxe/du+7T9+/cbTZs2NXr16mWfZmvHq666yjh58qTDOnr37m1IMhYuXGif9s033xiSjMDAQGPTpk326StXrqzyt3R1X7PFkJKS4tDO48aNM4KCgoxDhw4ZhvHrMXLTpk2Nnj17GsePH3dYr205d47FgcbqTMczAwcONBISEqpMt30WT/99astBa9euNQzDMMrLy43Y2Fije/fuDt8Br7zyiiHJIdfacsM///lPh3V269atSk4+k4SEBCMjI8P+/sEHHzQkORwLHj582GjXrp3Rtm1bo6KiwjAMz3xXAd7k7FzS3r17jaCgIGP69OkOZbdt22Y0adLEYbqr57x69eplNG3a1GGaYTgeE9l+r576WTIMw7jpppuMZs2a1So+2/HHSy+9VFMzOOXK77n6zIGu/mY1DNd/L1d3LtEVGRkZhiTjD3/4g8P0f/3rX4Yk4/XXX3eYvmLFiirTe/fu7VBHV3PsTz/9VOXY28a2H9nYfsPfddddDuUefvhhQ5Lx4Ycf2qclJCQYkowNGzbYpxUXFxshISHGQw89ZJ928cUXGwMHDnTWLHa29pk6darD9EsuucRISkpymHZ6XVw9d1MfGM4LdSY6OlqffPKJ9u/f73R+WFiY/f9Hjx7Vzz//rCuuuEKGYejzzz+vcd1bt27Vt99+q9tuu02//PKLfv75Z/388886evSo+vXrpw0bNqiysrLGdURFRenGG2+0X50j/doT+uabb2rw4MGKiIhws8YAfJ3tbhKbsWPHSpKWL18uyTFvlZSU6Oeff1bv3r31n//8RyUlJZJ+Gy9/2bJlslqtLm23srJS7777rgYNGqQePXpUmX/6LbdnkpKSYr9rT/r1yhOz2az//Oc/kn69AvAf//iHBg0aJMMw7Dn0559/VlpamkpKSuy3Yi9evFidOnVSx44dHcr17dtXkuy3D9va6P7773eIxdmDBM/0/QA0BqfmC6vVql9++UUXXHCBoqOjHYau+8c//qGLL764yp0f0m+f/aCgIPvdGZWVlTp48KBOnjypHj16OKxr+fLlatKkicPVW0FBQfZcZnPw4EF9+OGHuuWWW3T48GH75/qXX35RWlqavv32W/34448Oy4waNcohF/Xs2VOGYWjUqFEO2+rRo4c91zhT1/nOYrEoKSnJ/r5Nmza68cYbtXLlSlVUVLiV72wyMjIc/n7Vqaio0KpVqzR48GCdf/759uktWrTQbbfdpo8++kilpaUOy9x9990OV4nbREZGaujQofb3HTp0UHR0tDp16uRwN4vt/6e2sav7ms3o0aMd2vnqq69WRUWFvvvuO0lSXl6eDh8+rD/84Q9Vxs22LVcXx+KAr/P08cynn36q4uJi3XvvvQ536NmGwTpVSkqKWrZsqddff90+7auvvtKXX36p22+//aziWL58uS6//HJdddVV9mmRkZEaPXq09u7dqx07dkiq++8qoCF65513VFlZqVtuucXhmCI+Pl4XXnihw9BKrpzz+umnn7RhwwaNHDlSbdq0cdiWs2Oie++91+H91VdfrV9++cV+vOFOfJIUEhKiO++80+12qI/fc+7kQFd/s9qc6fdyXTn9jorFixcrKipK/fv3d4gzKSlJkZGRToc/tHE1x7rD9hs+OzvbYfpDDz0kSVWGbUxMTNTVV19tf9+8eXN16NDBod2io6O1fft2ffvtt2fcvrP92dW/wZnO3dQHhvNCnZkxY4YyMjLUunVrJSUl6brrrtOIESPsPzL37duniRMn6v33368y9p/tZGR1bB/Gmm75LSkp0TnnnFPjekaMGKE333xT//rXv9SrVy+tXr1aRUVFGj58uCtVBNDIXHjhhQ7v27dvr8DAQPvYpx9//LEmTZqk/Pz8KmPPlpSUKCoqSr1791Z6erqmTJmimTNnqk+fPho8eLBuu+02hYSEON3uTz/9pNLSUoehBc/G6QfgknTOOefYc+1PP/2kQ4cO6ZVXXtErr7zidB3FxcWSfs23X3/9dbW3LtvKfffddwoMDHQ4GJV+PRF4ujN9PwCNwfHjx5WTk6N58+bpxx9/dHhOyKnHObt371Z6evoZ17dgwQL9+c9/1jfffOPQQduuXTv7/7/77ju1aNGiynAJp38Od+3aJcMw9MQTT+iJJ55wur3i4mKdd9559ven5xXbj9dTh1KwTa9pTOe6znen521Juuiii3Ts2DH99NNPCgwMdDnf2ZzapjX56aefdOzYMad5rlOnTqqsrNT3339vH96gpnW3atWqysmSqKgop+0ryaGNXd3XbE7/W9qOl23r3L17tyTV+Deqq2NxwJd5+njG1rF5ep4zmUxVthEYGKhhw4Zp9uzZOnbsmMLDw/X6668rNDRUv/vd7846jtOHJpR+zXO2+bZ8UZffVUBD9O2338owDKfHH5IchmJy5ZyX7YSxq8dFNX2Hm81mt+KTpPPOO8+tYVRt6uP3nDs50NXfrDZn+r1cF5o0aWJ//t2pcZaUlCg2NtalOE/nSo51h+03/AUXXOAwPT4+XtHR0fa/gY0r7TZ16lTdeOONuuiii9SlSxdde+21Gj58eJUhxUJDQ6v8vdz5G5zp3E19oBMFdeaWW27R1VdfrSVLlmjVqlV65pln9Kc//UnvvPOOUlNT1b9/fx08eFCPPfaYOnbsqIiICP3444+64447znjlmm3+M888Yx9b9XSujLeYlpamuLg4vfbaa+rVq5dee+01xcfHKyUlxe36Amh8Tj2htXv3bvXr108dO3bUX/7yF7Vu3VrBwcFavny5Zs6cac9LAQEBevvtt7Vp0yYtXbpUK1eu1MiRI/XnP/9ZmzZtqtVYsO5ydpWzJPuJNVust99+e7UnwGwHOZWVleratav+8pe/OC13+gk+V9T0/TBgwAC31wc0RGPHjtW8efP04IMPymKxKCoqSgEBARo6dKjbV+i/9tpruuOOOzR48GA98sgjio2NtT8o2HbC2x227T/88MNKS0tzWub0H1PV5RVn0089ie9t7uQ7G1fuQqmt6tbtTvtKjm3s7r7myjrPpK6OxQFfVtvjmeruuDv9YbruGjFihJ555hm9++67uvXWW7Vw4UJdf/31Va7Y9pS6/q4CGqLKykoFBATon//8Z7V3lkq/fp7P5pxXdVz5nedKfDa1PeY5m99znsiB7v5mrYtjoTMJCQlRYKDjgE+VlZWKjY11uGvwVDU9c8WTOdbVO8FdabdevXpp9+7deu+997Rq1Sr97W9/08yZM/XSSy/prrvuOuO6asvdu9nrAp0oqFMtWrTQfffdp/vuu0/FxcW69NJLNX36dLVo0UL//ve/tWDBAocHj+bl5bm0XtuVzmaz+YwdHjV9kIKCgnTbbbdp/vz5+tOf/qR333232mEWADR+3377rcNVHLt27VJlZaXatm2rpUuXqqysTO+//77DFRjV3XKbnJys5ORkTZ8+XQsXLtSwYcO0aNEihwMHm+bNm8tsNuurr76q+0o50bx5czVt2lQVFRVnzKHt27fXF198oX79+tWYTxMSElRZWandu3c7XEm4c+dOp+Wr+36gEwWNxdtvv62MjAz9+c9/tk87ceKEDh065FCuffv2Z/zsv/322zr//PP1zjvvOHwOJ02a5FAuISFBa9as0ZEjRxx+JJ/+ObRdvWcymer9wpG6znfOhgr497//rfDwcPsPUVfznbuaN2+u8PBwp3num2++UWBgYK06mt3l6r7mKttx9ldffVWlM+30Mq4ciwONWU3HM9UdN9muHD/9M3r6Fb8JCQmSfs1ztiFppF+H7duzZ48uvvhih/JdunTRJZdcotdff12tWrXSvn379OKLL55tFZWQkFBtnjs1zrr+rgK8zdlnuH379jIMQ+3atdNFF11U7bLbtm1z6ZyX7Zisro6LXI2vLpzp91x95kBXf7O6wxMn5du3b6/Vq1fryiuvdLsDy9Uc607ctt/w3377rf3uQkkqKirSoUOH7H8Dd8XExOjOO+/UnXfeqSNHjqhXr16aPHmy03MhtVXTuZv6wjNRUCcqKiqqDB8QGxurli1bqqyszN5JcWpvpWEYev75511af1JSktq3b69nn31WR44cqTL/p59+sv/f9myT6n5IDh8+XP/97391zz336MiRI2c9ZiwA35Wbm+vw3vbDc8CAAU7zVklJiebNm+ewzH//+98qV7DYrtItKytzut3AwEANHjxYS5cu1aefflplfl1f1R0UFKT09HT94x//cHrAfmoOveWWW/Tjjz/q1VdfrVLu+PHjOnr0qCTZD5ZfeOEFhzLPPfecw/szfT8AjUVQUFCVz+6LL75Y5Sq79PR0ffHFF1qyZEmVddiWd5Z/PvnkE+Xn5zuUv+6663Ty5EnNnj3bPq2ioqLKSbTY2Fj16dNHL7/8sg4cOFBlu6fmgLpW1/kuPz/fYRzo77//Xu+9955SU1MVFBTkVr5zV1BQkFJTU/Xee+85DB1QVFSkhQsX6qqrrpLZbK71+t2Jw5V9zVWpqalq2rSpcnJydOLECYd5tu24cywONEauHM9EREQ4HVLP1gm5YcMGh/WdPuRgjx491Lx5c7300ksqLy+3T58/f36Nv21XrVql5557Ts2aNauTi1Ouu+46bd682eE75+jRo3rllVfUtm1bJSYmSqr77yrA25ydSxoyZIiCgoI0ZcqUKt+9hmHol19+keT88+DsnFfz5s3Vq1cvzZ07V/v27auyPne5Gt/ZcPX3XH3mQFd/s7rjTOcSa+OWW25RRUWFpk2bVmXeyZMna9yWqzk2PDxckmtxX3fddZKq/ma33dEzcODAM67jdKfvY5GRkbrgggvq/Ld+Tedu6gt3oqBOHD58WK1atdLNN9+siy++WJGRkVq9erW2bNmiP//5z+rYsaPat2+vhx9+WD/++KPMZrP+8Y9/uDz2XWBgoP72t79pwIAB6ty5s+68806dd955+vHHH7V27VqZzWYtXbpUkuwPG/3jH/+ooUOHymQyadCgQfaEeMkll6hLly72B1FdeumlnmkUAA3enj17dMMNN+jaa69Vfn6+XnvtNd122226+OKLFRoaquDgYA0aNMje6frqq68qNjbW4STkggULNGvWLN10001q3769Dh8+rFdffVVms9l+kOLMU089pVWrVql3794aPXq0OnXqpAMHDmjx4sX66KOP7A+srytPP/201q5dq549e+ruu+9WYmKiDh48qM8++0yrV6/WwYMHJf36Y/ytt97Svffeq7Vr1+rKK69URUWFvvnmG7311ltauXKlevTooe7du+vWW2/VrFmzVFJSoiuuuEJr1qzRrl27HLZ7pu8HoLG4/vrr9X//93+KiopSYmKi8vPztXr1ajVr1syh3COPPKK3335bv/vd7zRy5EglJSXp4MGDev/99/XSSy/p4osv1vXXX6933nlHN910kwYOHKg9e/bopZdeUmJiosMJ7EGDBunKK6/UH/7wB+3du1eJiYl65513nP6Azc3N1VVXXaWuXbvq7rvv1vnnn6+ioiLl5+frhx9+0BdffOGxtqnLfNelSxelpaXp/vvvV0hIiGbNmiVJmjJlir2Mq/muNp588knl5eXpqquu0n333acmTZro5ZdfVllZmWbMmFHr9brD1X3NVWazWTNnztRdd92lyy67TLfddpvOOeccffHFFzp27JgWLFjg1rE40Bi5cjyTlJSkN998U9nZ2brssssUGRmpQYMGqXPnzkpOTtb48eN18OBBxcTEaNGiRTp58qTDNkwmk5588kndc8896tu3r37/+99rz549mjdvXrXPHbjtttv06KOPasmSJcrMzKzy/IPa+MMf/qA33nhDAwYM0P3336+YmBgtWLBAe/bs0T/+8Q/7cDWe+K4CvKm6c0lPPvmkxo8fr71792rw4MFq2rSp9uzZoyVLlmj06NF6+OGH3Trn9cILL+iqq67SpZdeqtGjR6tdu3bau3evPvjgA23dutWtmNu3b+9SfGfD1d9z9ZkDXf3N6o4znUusjd69e+uee+5RTk6Otm7dqtTUVJlMJn377bdavHixnn/+ed18881Ol3U1x4aFhSkxMVFvvvmmLrroIsXExKhLly5On7tz8cUXKyMjQ6+88ooOHTqk3r17a/PmzVqwYIEGDx6sa665xu06JiYmqk+fPkpKSlJMTIw+/fRTvf322xozZozb66pJTedu6o0B1IGysjLjkUceMS6++GKjadOmRkREhHHxxRcbs2bNspfZsWOHkZKSYkRGRhrnnnuucffddxtffPGFIcmYN2+evdy8efMMScaWLVuqbOfzzz83hgwZYjRr1swICQkxEhISjFtuucVYs2aNQ7lp06YZ5513nhEYGGhIMvbs2eMwf8aMGYYk46mnnqrTdgDgGyZNmmRIMnbs2GHcfPPNRtOmTY1zzjnHGDNmjHH8+HF7uffff9/o1q2bERoaarRt29b405/+ZMydO9chr3z22WfGrbfearRp08YICQkxYmNjjeuvv9749NNPHbYpyZg0aZLDtO+++84YMWKE0bx5cyMkJMQ4//zzjaysLKOsrMzlukgysrKyqkxPSEgwMjIyHKYVFRUZWVlZRuvWrQ2TyWTEx8cb/fr1M1555RWHcuXl5caf/vQno3PnzkZISIhxzjnnGElJScaUKVOMkpISe7njx48b999/v9GsWTMjIiLCGDRokPH999871NWV7wegMfjvf/9r3Hnnnca5555rREZGGmlpacY333zj9LP4yy+/GGPGjDHOO+88Izg42GjVqpWRkZFh/Pzzz4ZhGEZlZaXx1FNPGQkJCUZISIhxySWXGMuWLTMyMjKMhISEKusaPny4YTabjaioKGP48OHG559/XuX4yjAMY/fu3caIESOM+Ph4w2QyGeedd55x/fXXG2+//ba9THXHYba8+dNPPzlMz8jIMCIiIhymeTrfvfbaa8aFF15ob5u1a9dWKetKvlu7dq0hyVi8eHGV5ffs2WNIMp555pkq8z777DMjLS3NiIyMNMLDw41rrrnG2Lhxo0OZmo5ne/fubXTu3LnK9ISEBGPgwIHV1tvG1X2tuhhs9T693d5//33jiiuuMMLCwgyz2WxcfvnlxhtvvOFQxtVjcaCxceV45siRI8Ztt91mREdHG5Ic8vXu3buNlJQUIyQkxIiLizMef/xxIy8vz+lncdasWUa7du2MkJAQo0ePHsaGDRuM3r17G71793Ya23XXXWdIqpKHXOXse2r37t3GzTffbERHRxuhoaHG5ZdfbixbtsyhjKe+qwBvqu5c0j/+8Q/jqquuMiIiIoyIiAijY8eORlZWlrFz5077sq6e8zIMw/jqq6+Mm266yf4Z69Chg/HEE0/Y51d33GX7bj/9HJcr8VV3/HEmrv6eq+8c6OpvVnd+L5/pXGJ1nB0Pn+qVV14xkpKSjLCwMKNp06ZG165djUcffdTYv3+/vczpdXQnx27cuNFISkoygoODHY7DbfvRqaxWqzFlyhSjXbt2hslkMlq3bm2MHz/eOHHiRJX2cXZcenqcTz75pHH55Zcb0dHRRlhYmNGxY0dj+vTpRnl5+Rnbx1l8p/+OcPXcTX0I+F+AgF95/vnnNW7cOO3du9fhWQcAAABomAICApSVlaW//vWv3g4FABqMm266Sdu2batyNzAAAL5u8uTJmjJlin766Sede+65Xo2FZ6LA7xiGoTlz5qh37950oAAAAAAAfNKBAwf0wQcfaPjw4d4OBQCARo1nosBvHD16VO+//77Wrl2rbdu26b333vN2SABQrcLCwhrnh4WFKSoqqp6iAQDPId8BgHv27Nmjjz/+WH/7299kMpl0zz33VClDbgVwJkeOHHF4voYzzZs3tz/k3N+UlJTo+PHjNZaJj4+vp2jgbXSiwG/89NNPuu222xQdHa3HH39cN9xwg7dDAoBqtWjRosb5GRkZmj9/fv0EAwAeRL4DAPesX79ed955p9q0aaMFCxY4PYlHbgVwJs8++6ymTJlSY5k9e/aobdu29RNQA/PAAw9owYIFNZbhKRn+g2eiAADQAK1evbrG+S1btlRiYmI9RQMAnkO+A4C6R24FcCb/+c9/9J///KfGMldddZVCQ0PrKaKGZceOHdq/f3+NZVJSUuopGngbnSgAAAAAAAAAAABO8GB5AAAAAAAAAAAAJ3zymSiVlZXav3+/mjZtqoCAAG+HA8ADDMPQ4cOH1bJlSwUG0t9bE3Ii0PiRE11HTgQaP3Ki68iJQONHTnQdORFo/DyVE32yE2X//v1q3bq1t8MAUA++//57tWrVytthNGjkRMB/kBPPjJwI+A9y4pmREwH/QU48M3Ii4D/qOif6ZCdK06ZNJf3aGGazucayVqtVq1atUmpqqkwmU32E51Non+rRNjXzdPuUlpaqdevW9s87qkdOdJ0/15+6+3bdyYmuIyd6Bm3lOtrKdbVtK3Ki68iJjhp7HamfbyMnep6/5ERi9w5i947TY/dUTvTJThTbLXdms9mlpBceHi6z2exzO0F9oH2qR9vUrL7ah1tsz4yc6Dp/rj91bxx1JyeeGTnRM2gr19FWrjvbtiInnhk50VFjryP1823kRM/zl5xI7N5B7N5RXex1nRMZLBEAAAAAAAAAAMAJOlEAAAAAAAAAAACcoBMFAAAAAAAAAADACTpRAAAAAAAAAAAAnKATBQAAAAAAAAAAwAk6UQAAAAAAAAAAAJygEwUAAAAAAAAAAMAJOlEAAAAAAAAAAACcoBMFAAAAAAAAAADACTpRGrKAAM+/oqJ+3VZUVN2sD4BvqKvPfH2+AAC/qe8cXBfHjAB8A8eJAODb6vpcH3kcoBMFAAAAAAAAAADAGTpRAAAAAAAAAAAAnKATBQAAAAAAAAAAwAk6UQAAAAAAAAAAAJygEwUAAAAAAAAAAMAJOlEAAL4hIODsX1FRv64rKqpu1nemFwAAAAAAAHwanSgAAAAAAAAAAABO0IkCAAAAAAAAAADgBJ0oAAAAAADUocmTJysgIMDh1bFjR/v8EydOKCsrS82aNVNkZKTS09NVVFTksI59+/Zp4MCBCg8PV2xsrB555BGdPHmyvqsCAADg95p4OwAAAAAAABqbzp07a/Xq1fb3TZr89vN73Lhx+uCDD7R48WJFRUVpzJgxGjJkiD7++GNJUkVFhQYOHKj4+Hht3LhRBw4c0IgRI2QymfTUU0/Ve10AAAD8GXeiAAAAAABQx5o0aaL4+Hj769xzz5UklZSUaM6cOfrLX/6ivn37KikpSfPmzdPGjRu1adMmSdKqVau0Y8cOvfbaa+revbsGDBigadOmKTc3V+Xl5d6sVsMUEODaKyrq1/JRUa4v46kX4Edmz56tbt26yWw2y2w2y2Kx6J///Kd9fp8+farcvXfvvfc6rIO78wB4E50oAAAAAADUsW+//VYtW7bU+eefr2HDhmnfvn2SpIKCAlmtVqWkpNjLduzYUW3atFF+fr4kKT8/X127dlVcXJy9TFpamkpLS7V9+/b6rQgAnKVWrVrp6aefVkFBgT799FP17dtXN954o0M+u/vuu3XgwAH7a8aMGfZ5trvzysvLtXHjRi1YsEDz58/XxIkTvVEdAH6I4bwAAAAAAKhDPXv21Pz589WhQwcdOHBAU6ZM0dVXX62vvvpKhYWFCg4OVnR0tMMycXFxKiwslCQVFhY6dKDY5tvmVaesrExlZWX296WlpZIkq9Uqq9VaY8y2+dawMNcq6YNsdWsQdTzD36N2q7Q6/NvYUL+al2vIBg0a5PB++vTpmj17tjZt2qTOnTtLksLDwxUfH+90edvdeatXr1ZcXJy6d++uadOm6bHHHtPkyZMVHBzs8ToA8G90ogAAAAAAUIcGDBhg/3+3bt3Us2dPJSQk6K233lKYB0/g5+TkaMqUKVWmr1q1SuHh4S6tI2/u3LoOq8FpEHVcvtxjq87Ly/PYuhsC6ufo2LFjHorEMyoqKrR48WIdPXpUFovFPv3111/Xa6+9pvj4eA0aNEhPPPGEPW9Vd3deZmamtm/frksuuaTe6wHAv9CJAgAAAACAB0VHR+uiiy7Srl271L9/f5WXl+vQoUMOd6MUFRXZr8KOj4/X5s2bHdZRVFRkn1ed8ePHKzs72/6+tLRUrVu3Vmpqqsxmc40xWq1W5eXlqf/IkTIdP+5uFX2CNSxMeXPnNow6lpTU+Srtf8P+/WUymep8/d5G/Zyz3XHW0G3btk0Wi0UnTpxQZGSklixZosTEREnSbbfdpoSEBLVs2VJffvmlHnvsMe3cuVPvvPOOJC/fnecDd/qcrkHddeeq09rbJ9ud2L3i9Ng9VQc6UQAAAAAA8KAjR45o9+7dGj58uJKSkmQymbRmzRqlp6dLknbu3Kl9+/bZr8q2WCyaPn26iouLFRsbK+nXq9PNZrP9pKMzISEhCgkJqTLdZDK5fFLWdPy49zsYPKxB1NGDnQDu/L19EfWrWt4XdOjQQVu3blVJSYnefvttZWRkaP369UpMTNTo0aPt5bp27aoWLVqoX79+2r17t9q3b1/rbdbJ3Xm+eOfT/+62axB33bnqtLvzfLLd/4fYvcMWu6fuzqMTBQAAAACAOvTwww9r0KBBSkhI0P79+zVp0iQFBQXp1ltvVVRUlEaNGqXs7GzFxMTIbDZr7NixslgsSk5OliSlpqYqMTFRw4cP14wZM1RYWKgJEyYoKyvLaScJADR0wcHBuuCCCyRJSUlJ2rJli55//nm9/PLLVcr27NlTkrRr1y61b9/eu3fn+eCdT9b4+IZz152r/nd3nk+3O7F7xemxe+ruPDpRAAAAUOeefvppjR8/Xg888ICee+45SdKJEyf00EMPadGiRSorK1NaWppmzZrlMDzDvn37lJmZqbVr1yoyMlIZGRnKyclRkyYctgLwHT/88INuvfVW/fLLL2revLmuuuoqbdq0Sc2bN5ckzZw5U4GBgUpPT3fIhzZBQUFatmyZMjMzZbFYFBERoYyMDE2dOtVbVQKAOlVZWekw1Naptm7dKklq0aKFJC/fneeLdz79r+OkQdx156rT2tgn2/1/iN07bLF7Kn5+jQIAAKBObdmyRS+//LK6devmMH3cuHH64IMPtHjxYkVFRWnMmDEaMmSIPv74Y0m/Pmh04MCBio+P18aNG3XgwAGNGDFCJpNJTz31lDeqAgC1smjRohrnh4aGKjc3V7m5udWWSUhI0HIPPnwcAOrL+PHjNWDAALVp00aHDx/WwoULtW7dOq1cuVK7d+/WwoULdd1116lZs2b68ssvNW7cOPXq1ct+LMndeQC8LdDbAQAAAKDxOHLkiIYNG6ZXX31V55xzjn16SUmJ5syZo7/85S/q27evkpKSNG/ePG3cuFGbNm2S9Ov41Dt27NBrr72m7t27a8CAAZo2bZpyc3NVXl7urSoBAADgLBQXF2vEiBHq0KGD+vXrpy1btmjlypXq37+/goODtXr1aqWmpqpjx4566KGHlJ6erqVLl9qXt92dFxQUJIvFottvv10jRozg7jwA9YY7UQAAAFBnsrKyNHDgQKWkpOjJJ5+0Ty8oKJDValVKSop9WseOHdWmTRvl5+crOTlZ+fn56tq1q8PwXmlpacrMzNT27dt1ySWX1GtdAAAAcPbmzJlT7bzWrVtr/fr1Z1wHd+cB8CY6UQAAAFAnFi1apM8++0xbtmypMq+wsFDBwcGKjo52mB4XF6fCwkJ7mVM7UGzzbfOcKSsrcxhP2/YgQavVKqvVWmO8tvlnKtcghYXV6+as/9ue9Wy264vtXAs+vV/Vs9q2FW0LAACA+kQnCgAAAM7a999/rwceeEB5eXkKDQ2tt+3m5ORoypQpVaavWrVK4eHhLq0jLy+vrsPyvDfe8Mpm8+bOrf3Cfnb1qE/uV17iblsdO3bMQ5EAAAAAVdGJAgB15Omnn9b48eP1wAMP6LnnnpMknThxQg899JAWLVqksrIypaWladasWQ5XWu/bt0+ZmZlau3atIiMjlZGRoZycHDVpQooG4DsKCgpUXFysSy+91D6toqJCGzZs0F//+letXLlS5eXlOnTokMPdKEVFRYqPj5ckxcfHa/PmzQ7rLSoqss9zZvz48crOzra/Ly0tVevWrZWamiqz2VxjzFarVXl5eerfv79MJpNb9fW6qKh63Zw1LEx5c+eq/8iRMh0/XruVlJTUbVANlE/vV/Wstm1lu+MMAAAAqA+coQOAOrBlyxa9/PLL6tatm8P0cePG6YMPPtDixYsVFRWlMWPGaMiQIfr4448l/XqCceDAgYqPj9fGjRt14MABjRgxQiaTSU899ZQ3qgIAtdKvXz9t27bNYdqdd96pjh076rHHHlPr1q1lMpm0Zs0apaenS5J27typffv2yWKxSJIsFoumT5+u4uJixcbGSvr1CnWz2azExESn2w0JCVFISEiV6SaTyeWTsu6UbTBq25FxlkzHj9e+E8XX2vgs+eR+5SXuthXtCgAAgPpEJwoAnKUjR45o2LBhevXVVx0eolxSUqI5c+Zo4cKF6tu3ryRp3rx56tSpkzZt2qTk5GStWrVKO3bs0OrVqxUXF6fu3btr2rRpeuyxxzR58mQFBwd7q1oA4JamTZuqS5cuDtMiIiLUrFkz+/RRo0YpOztbMTExMpvNGjt2rCwWi5KTkyVJqampSkxM1PDhwzVjxgwVFhZqwoQJysrKctpRAgAAAACAp9GJAgBnKSsrSwMHDlRKSopDJ0pBQYGsVqtSUlLs0zp27Kg2bdooPz9fycnJys/PV9euXR2G90pLS1NmZqa2b9+uSy65pMr26uQhyvX8QOKGok4ejOzWBhvOg2/9+UHHjaHuvhz7qWbOnKnAwEClp6c7DHFoExQUpGXLlikzM1MWi0URERHKyMjQ1KlTvRg1AAAAAMCf0YkCAGdh0aJF+uyzz7Rly5Yq8woLCxUcHOww9r8kxcXFqbCw0F7m1A4U23zbPGfq5CHKZ/Ng4Eag3urfAB+i7M8POvbluvvqQ5TXrVvn8D40NFS5ubnKzc2tdpmEhAQtb4CfHQAAAACAf6ITBQBq6fvvv9cDDzygvLw8hYaG1tt26+QhymfzYGAfVicPRnZHA3qIsj8/6Lgx1J2HKAMAAABotAICfv03LEx64w0pKsprzwB0i2F4OwLUk7PqRHn66ac1fvx4PfDAA3ruueckSSdOnNBDDz2kRYsWOQzTcOqV1vv27VNmZqbWrl2ryMhIZWRkKCcnR02a0KcDwHcUFBSouLhYl156qX1aRUWFNmzYoL/+9a9auXKlysvLdejQIYe7UYqKihQfHy9Jio+P1+bNmx3WW1RUZJ/nTJ08RPlsHgzcCNRb/RvgCXt/ftCxL9fdV+MGAAAAAMDXBdZ2wS1btujll19Wt27dHKaPGzdOS5cu1eLFi7V+/Xrt379fQ4YMsc+vqKjQwIEDVV5ero0bN2rBggWaP3++Jk6cWPtaAIAX9OvXT9u2bdPWrVvtrx49emjYsGH2/5tMJq1Zs8a+zM6dO7Vv3z5ZLBZJksVi0bZt21RcXGwvk5eXJ7PZrMTExHqvEwAAAAAAAIDf1OrWjyNHjmjYsGF69dVXHR6iXFJSojlz5mjhwoXq27evJGnevHnq1KmTNm3apOTkZK1atUo7duzQ6tWrFRcXp+7du2vatGl67LHHNHnyZAUHB9dNzQDAw5o2baouXbo4TIuIiFCzZs3s00eNGqXs7GzFxMTIbDZr7NixslgsSk5OliSlpqYqMTFRw4cP14wZM1RYWKgJEyYoKyvL6d0mAAAAAAAAAOpPrTpRsrKyNHDgQKWkpDh0ohQUFMhqtSolJcU+rWPHjmrTpo3y8/OVnJys/Px8de3a1WF4r7S0NGVmZmr79u265JJLqmyvrKxMZWVl9ve2ccGtVqusVmuNsdrmn6lcgxQW5vFNWP+3DWtdbcsX27kaPr3v1ANPt09jafeZM2cqMDBQ6enpDkMc2gQFBWnZsmXKzMyUxWJRRESEMjIyNHXqVC9GDQAAAAAAAECqRSfKokWL9Nlnn2nLli1V5hUWFio4ONhh7H9JiouLU2Fhob3MqR0otvm2ec7k5ORoypQpVaavWrVK4eHhLsWdl5fnUrkG5Y036m1TeXPn1s2Kli+vm/U0ID6579QjT7XPsWPHPLJeT1u3bp3D+9DQUOXm5io3N7faZRISErS8EX52AAAAAAAAAF/nVifK999/rwceeEB5eXkKDQ31VExVjB8/XtnZ2fb3paWlat26tVJTU2U2m2tc1mq1Ki8vT/379/e9h7JGRXl8E9awMOXNnav+I0fWzUOWS0rOfh0NhE/vO/XA0+1ju+MMAAAAAAAAALzFrU6UgoICFRcX69JLL7VPq6io0IYNG/TXv/5VK1euVHl5uQ4dOuRwN0pRUZHi4+MlSfHx8dq8ebPDeouKiuzznAkJCXH6bACTyeTyyVt3yjYYddGp4SLT8eN104nia23sAp/cd+qRp9qHNgcAAAAAAADgbYHuFO7Xr5+2bdumrVu32l89evTQsGHD7P83mUxas2aNfZmdO3dq3759slgskiSLxaJt27apuLjYXiYvL09ms1mJiYl1VC0AAAAAAAAAAICz49adKE2bNlWXLl0cpkVERKhZs2b26aNGjVJ2drZiYmJkNps1duxYWSwWJScnS5JSU1OVmJio4cOHa8aMGSosLNSECROUlZXl9G4TAAAAAAAAAAAAb3D7wfJnMnPmTAUGBio9PV1lZWVKS0vTrFmz7PODgoK0bNkyZWZmymKxKCIiQhkZGZo6dWpdhwIAAAAAAAAAAFBrZ92Jsm7dOof3oaGhys3NVW5ubrXLJCQkaPny5We7aQAAAAAAAAAAAI9x65koAAAAAAAAAAAA/oJOFAAAAAAAAAAAACfoRAEAAAAAAADgEbNnz1a3bt1kNptlNptlsVj0z3/+0z7/xIkTysrKUrNmzRQZGan09HQVFRU5rGPfvn0aOHCgwsPDFRsbq0ceeUQnT56s76oA8FN0ogAAAAAAAADwiFatWunpp59WQUGBPv30U/Xt21c33nijtm/fLkkaN26cli5dqsWLF2v9+vXav3+/hgwZYl++oqJCAwcOVHl5uTZu3KgFCxZo/vz5mjhxoreqBMDPnPWD5QEAAAAAAADAmUGDBjm8nz59umbPnq1NmzapVatWmjNnjhYuXKi+fftKkubNm6dOnTpp06ZNSk5O1qpVq7Rjxw6tXr1acXFx6t69u6ZNm6bHHntMkydPVnBwsDeqBcCP0IkCAAAAAAAAwOMqKiq0ePFiHT16VBaLRQUFBbJarUpJSbGX6dixo9q0aaP8/HwlJycrPz9fXbt2VVxcnL1MWlqaMjMztX37dl1yySVOt1VWVqaysjL7+9LSUkmS1WqV1WqtMU7b/DOVa4isYWEO//oSn4v9lP3Dp/eZRhS7p+pAJwoAAAAAAAAAj9m2bZssFotOnDihyMhILVmyRImJidq6dauCg4MVHR3tUD4uLk6FhYWSpMLCQocOFNt827zq5OTkaMqUKVWmr1q1SuHh4S7FnZeX51K5BmXuXElS3v/+9UU+E/vy5VUm+eQ+8z+NIfZjx455ZP10ogAAAAAAAADwmA4dOmjr1q0qKSnR22+/rYyMDK1fv96j2xw/fryys7Pt70tLS9W6dWulpqbKbDbXuKzValVeXp769+8vk8nk0TjrmjU+Xnlz56r/yJEyHT/u7XDcYg0L863YS0rs//XpfaYRxW6746yu0YkCAAAAwPMCArwdQe0YhrcjAADA5wUHB+uCCy6QJCUlJWnLli16/vnn9fvf/17l5eU6dOiQw90oRUVFio+PlyTFx8dr8+bNDusrKiqyz6tOSEiIQkJCqkw3mUwunyh2p2yD8b/OB9Px477REeGEz8TuZN/wyX3mfxpD7J6KP9AjawUAAAAAAAAAJyorK1VWVqakpCSZTCatWbPGPm/nzp3at2+fLBaLJMlisWjbtm0qLi62l8nLy5PZbFZiYmK9xw7A/3AnCgAAAAAAAACPGD9+vAYMGKA2bdro8OHDWrhwodatW6eVK1cqKipKo0aNUnZ2tmJiYmQ2mzV27FhZLBYlJydLklJTU5WYmKjhw4drxowZKiws1IQJE5SVleX0ThMAqGt0ogAAAAAAAADwiOLiYo0YMUIHDhxQVFSUunXrppUrV6p///6SpJkzZyowMFDp6ekqKytTWlqaZs2aZV8+KChIy5YtU2ZmpiwWiyIiIpSRkaGpU6d6q0oA/AydKAAAAAAAAAA8Ys6cOTXODw0NVW5urnJzc6stk5CQoOXLl9d1aADgEp6JAgAAAACABz399NMKCAjQgw8+aJ924sQJZWVlqVmzZoqMjFR6err9Qck2+/bt08CBAxUeHq7Y2Fg98sgjOnnyZD1HDwAA4N/oRAEAAAAAwEO2bNmil19+Wd26dXOYPm7cOC1dulSLFy/W+vXrtX//fg0ZMsQ+v6KiQgMHDlR5ebk2btyoBQsWaP78+Zo4cWJ9VwEAAMCv0YkCAAAAAIAHHDlyRMOGDdOrr76qc845xz69pKREc+bM0V/+8hf17dtXSUlJmjdvnjZu3KhNmzZJklatWqUdO3botddeU/fu3TVgwABNmzZNubm5Ki8v91aVAAAA/A7PRAEAAAAAwAOysrI0cOBApaSk6Mknn7RPLygokNVqVUpKin1ax44d1aZNG+Xn5ys5OVn5+fnq2rWr4uLi7GXS0tKUmZmp7du365JLLqmyvbKyMpWVldnfl5aWSpKsVqusVmuNsdrmW8PCaldZH2CrW4Oo4xn+HrVbpdXh38aG+tW8HADAc+hEAQAAAACgji1atEifffaZtmzZUmVeYWGhgoODFR0d7TA9Li5OhYWF9jKndqDY5tvmOZOTk6MpU6ZUmb5q1SqFh4e7FHfe3LkulfNlDaKOHnxAdl5ensfW3RBQP0fHjh3zUCQAABs6UQAAAAAAqEPff/+9HnjgAeXl5Sk0NLTetjt+/HhlZ2fb35eWlqp169ZKTU2V2WyucVmr1aq8vDz1HzlSpuPHPR2qV1jDwpQ3d27DqGNJSZ2v0v437N9fJpOpztfvbdTPOdsdZwAAz6ETBQAAAACAOlRQUKDi4mJdeuml9mkVFRXasGGD/vrXv2rlypUqLy/XoUOHHO5GKSoqUnx8vCQpPj5emzdvdlhvUVGRfZ4zISEhCgkJqTLdZDK5fFLWdPy49zsYPKxB1NGDnQDu/L19EfWrWh4A4Fk8WB4AAAAAgDrUr18/bdu2TVu3brW/evTooWHDhtn/bzKZtGbNGvsyO3fu1L59+2SxWCRJFotF27ZtU3Fxsb1MXl6ezGazEhMT671OAAAA/oo7UQAAAAAAqENNmzZVly5dHKZFRESoWbNm9umjRo1Sdna2YmJiZDabNXbsWFksFiUnJ0uSUlNTlZiYqOHDh2vGjBkqLCzUhAkTlJWV5fRuEwAAAHgGnSgAAAAAANSzmTNnKjAwUOnp6SorK1NaWppmzZplnx8UFKRly5YpMzNTFotFERERysjI0NSpU70YNQAAgP+hEwUAAAAAAA9bt26dw/vQ0FDl5uYqNze32mUSEhK0fPlyD0cGAACAmvBMFAAAAAAAAAAAACfoRAEAAAAAAAAAAHCCThQAAAAAAAAAAAAn/OeZKFFR0vHj3o4CAAAAAAAAAAD4CO5EAQAAAAAAAAAAcIJOFAAAAAAAAAAAACfoRAEAAAAAAAAAAHCCThQAAACctdmzZ6tbt24ym80ym82yWCz65z//aZ9/4sQJZWVlqVmzZoqMjFR6erqKiooc1rFv3z4NHDhQ4eHhio2N1SOPPKKTJ0/Wd1UAAAAAALCjEwUAAABnrVWrVnr66adVUFCgTz/9VH379tWNN96o7du3S5LGjRunpUuXavHixVq/fr3279+vIUOG2JevqKjQwIEDVV5ero0bN2rBggWaP3++Jk6c6K0qAQAAAABAJwoAAADO3qBBg3Tdddfpwgsv1EUXXaTp06crMjJSmzZtUklJiebMmaO//OUv6tu3r5KSkjRv3jxt3LhRmzZtkiStWrVKO3bs0Guvvabu3btrwIABmjZtmnJzc1VeXu7l2gEAAKC2cnJydNlll6lp06aKjY3V4MGDtXPnTocyffr0UUBAgMPr3nvvdSjDXcsAvKWJtwMAAABA41JRUaHFixfr6NGjslgsKigokNVqVUpKir1Mx44d1aZNG+Xn5ys5OVn5+fnq2rWr4uLi7GXS0tKUmZmp7du365JLLnG6rbKyMpWVldnfl5aWSpKsVqusVmuNcdrmn6lcgxQWVq+bs/5ve9Z63m6D4Ob+4dP7VT2rbVvRtgDgW9avX6+srCxddtllOnnypB5//HGlpqZqx44dioiIsJe7++67NXXqVPv78PBw+/9tdy3Hx8dr48aNOnDggEaMGCGTyaSnnnqqXusDwP/QiQIAtTR79mzNnj1be/fulSR17txZEydO1IABAyT9Ov7/Qw89pEWLFqmsrExpaWmaNWuWwwnCffv2KTMzU2vXrlVkZKQyMjKUk5OjJk1IzwB8z7Zt22SxWHTixAlFRkZqyZIlSkxM1NatWxUcHKzo6GiH8nFxcSosLJQkFRYWOuRH23zbvOrk5ORoypQpVaavWrXK4Yd3TfLy8lwq16C88YZXNps3d65XtutVy5fXajGf3K+8xN22OnbsmIciAQB4wooVKxzez58/X7GxsSooKFCvXr3s08PDwxUfH+90Hba7llevXq24uDh1795d06ZN02OPPabJkycrODjYo3UA4N84SwcAtWQb///CCy+UYRhasGCBbrzxRn3++efq3Lmzxo0bpw8++ECLFy9WVFSUxowZoyFDhujjjz+WxJU0ABqfDh06aOvWrSopKdHbb7+tjIwMrV+/3qPbHD9+vLKzs+3vS0tL1bp1a6WmpspsNte4rNVqVV5envr37y+TyeTROOtcVFS9bs4aFqa8uXPVf+RImY4fr9dte11JiVvFfXq/qme1bSvbHWcAAN9U8r/v1piYGIfpr7/+ul577TXFx8dr0KBBeuKJJ+wXxdT2rmUAqAt0ogBALQ0aNMjh/fTp0zV79mxt2rRJrVq10pw5c7Rw4UL17dtXkjRv3jx16tRJmzZtUnJyMlfSAGh0goODdcEFF0iSkpKStGXLFj3//PP6/e9/r/Lych06dMjhbpSioiL71Ybx8fHavHmzw/qKiors86oTEhKikJCQKtNNJpPLJ2XdKdtgeKkjw3T8uP91otRy3/DJ/cpL3G0r2hUAfFdlZaUefPBBXXnllerSpYt9+m233aaEhAS1bNlSX375pR577DHt3LlT77zzjqTa3bXsr8O++vIwrD4X+yn7h0/vM40odk/VgU4UAKgDPjf+v68ckNSxej8ga0AHIL58UHS2GkPdfTX2yspKlZWVKSkpSSaTSWvWrFF6erokaefOndq3b58sFoskyWKxaPr06SouLlZsbKykX4f4MZvNSkxM9FodAAAAUHeysrL01Vdf6aOPPnKYPnr0aPv/u3btqhYtWqhfv37avXu32rdvX6tt+e2wr/8bftWXh2H1mdidDPvqk/vM/zSG2D017KtbnSiM/w8Ajnx2/H9fOSDxkHqrfy3H0fckXz4oOlu+XHdfGP9//PjxGjBggNq0aaPDhw9r4cKFWrdunVauXKmoqCiNGjVK2dnZiomJkdls1tixY2WxWJScnCxJSk1NVWJiooYPH64ZM2aosLBQEyZMUFZWltM7TQAAAOBbxowZo2XLlmnDhg1q1apVjWV79uwpSdq1a5fat29fq7uW/XXYV2t8vM8Ow+pzQ8ieMuyrT+8zjSh2Tw376lbPBeP/A4Ajnx3/31cOSOpYvR+QuTmOvif58kHR2WoMdfeF8f+Li4s1YsQIHThwQFFRUerWrZtWrlyp/v37S5JmzpypwMBApaenO1xsYxMUFKRly5YpMzNTFotFERERysjI0NSpU71VJQAAANQBwzA0duxYLVmyROvWrVO7du3OuMzWrVslSS1atJBUu7uW/X3YV18ehtVnYneyb/jkPvM/jSF2T8XvVicK4/8DgCOfHf/fVw5IPKTe6t8ADz58+aDobPly3X0h7jlz5tQ4PzQ0VLm5ucrNza22TEJCgpY3wDu4AAAAUHtZWVlauHCh3nvvPTVt2tQ+8kJUVJTCwsK0e/duLVy4UNddd52aNWumL7/8UuPGjVOvXr3UrVs3Sdy1DMC7Amu7YEVFhRYtWuTy+P+Sqh3/v7S0VNu3bz+LagBAw+Bs/H8bZ+P/b9u2TcXFxfYyjP8PAF4QFSUFBPjWCwAAwEfMnj1bJSUl6tOnj1q0aGF/vfnmm5J+vThx9erVSk1NVceOHfXQQw8pPT1dS5cuta/DdtdyUFCQLBaLbr/9do0YMYK7lgHUC7cfROKN8f95iLLn1PlDln30wbfONIYHEXuSp9vHF9qd8f8BAAAAAKiZYRg1zm/durVLw2Jz1zIAb3G7E8Ub4//zEGXPq7P2aYRfZr78IOL64Kn28YWHKDP+PwAAAAAAANC4ud2J4o3x/3mIsufU+UOWG9BDlM9WY3gQsSd5un184SHKjP8PAAAAAAAANG5ud6Kcztn4/+np6ZKcj/8/ffp0FRcXKzY2VpJr4//zEGXPq7P2aYSdDb78IOL64Kn2oc0BAAAAAAAAeJtbnSiM/w8AAAAAAAAAAPyFW50ojP8PAAAAAAAAAAD8hVudKIz/DwAAAAAAAAAA/MVZPxMFcBAQ4O0IascwvB0BAAAAAAAAAKCBCfR2AAAAAAAAAAAAAA0Rd6IAAAAAAAAAwOmioqTjx70dhXvCwrwdAdDocCcKAAAAAAAAAACAE3SiAAAAAAAAAAAAOEEnCgAAAAAAAAAAgBN0ogAAAAAAAAAAADhBJwoAAAAAAHVo9uzZ6tatm8xms8xmsywWi/75z3/a5584cUJZWVlq1qyZIiMjlZ6erqKiIod17Nu3TwMHDlR4eLhiY2P1yCOP6OTJk/VdFQAAAL9HJwoAAAAAAHWoVatWevrpp1VQUKBPP/1Uffv21Y033qjt27dLksaNG6elS5dq8eLFWr9+vfbv368hQ4bYl6+oqNDAgQNVXl6ujRs3asGCBZo/f74mTpzorSoBAAD4rSbeDgAAAAAAgMZk0KBBDu+nT5+u2bNna9OmTWrVqpXmzJmjhQsXqm/fvpKkefPmqVOnTtq0aZOSk5O1atUq7dixQ6tXr1ZcXJy6d++uadOm6bHHHtPkyZMVHBzsjWoBAAD4Je5EAQAAAADAQyoqKrRo0SIdPXpUFotFBQUFslqtSklJsZfp2LGj2rRpo/z8fElSfn6+unbtqri4OHuZtLQ0lZaW2u9mAQAAQP3gThQAAAAAAOrYtm3bZLFYdOLECUVGRmrJkiVKTEzU1q1bFRwcrOjoaIfycXFxKiwslCQVFhY6dKDY5tvmVaesrExlZWX296WlpZIkq9Uqq9VaY7y2+dawMNcq6INsdWsQdTzD36N2q7Q6/NvYUL+alwMAeA6dKAAAAAAA1LEOHTpo69atKikp0dtvv62MjAytX7/eo9vMycnRlClTqkxftWqVwsPDXVpH3ty5dR1Wg9Mg6rh8ucdWnZeX57F1NwTUz9GxY8c8FAkAwIZOFAAAAAAA6lhwcLAuuOACSVJSUpK2bNmi559/Xr///e9VXl6uQ4cOOdyNUlRUpPj4eElSfHy8Nm/e7LC+oqIi+7zqjB8/XtnZ2fb3paWlat26tVJTU2U2m2uM12q1Ki8vT/1HjpTp+HG36uorrGFhyps7t2HUsaSkzldp/xv27y+TyVTn6/c26uec7Y4zAIDn0IkCAAAAAICHVVZWqqysTElJSTKZTFqzZo3S09MlSTt37tS+fftksVgkSRaLRdOnT1dxcbFiY2Ml/Xp1utlsVmJiYrXbCAkJUUhISJXpJpPJ5ZOypuPHvd/B4GENoo4e7ARw5+/ti6hf1fIAAM/iwfIAAAAAANSh8ePHa8OGDdq7d6+2bdum8ePHa926dRo2bJiioqI0atQoZWdna+3atSooKNCdd94pi8Wi5ORkSVJqaqoSExM1fPhwffHFF1q5cqUmTJigrKwsp50kANCQ5eTk6LLLLlPTpk0VGxurwYMHa+fOnQ5lTpw4oaysLDVr1kyRkZFKT0+334Fns2/fPg0cOFDh4eGKjY3VI488opMnT9ZnVQD4KTpRAAAAAACoQ8XFxRoxYoQ6dOigfv36acuWLVq5cqX69+8vSZo5c6auv/56paenq1evXoqPj9c777xjXz4oKEjLli1TUFCQLBaLbr/9do0YMUJTp071VpUAoNbWr1+vrKwsbdq0SXl5ebJarUpNTdXRo0ftZcaNG6elS5dq8eLFWr9+vfbv368hQ4bY51dUVGjgwIEqLy/Xxo0btWDBAs2fP18TJ070RpUA+BmG8wIAAAAAoA7NmTOnxvmhoaHKzc1Vbm5utWUSEhK03IMPHweA+rJixQqH9/Pnz1dsbKwKCgrUq1cvlZSUaM6cOVq4cKH69u0rSZo3b546deqkTZs2KTk5WatWrdKOHTu0evVqxcXFqXv37po2bZoee+wxTZ48WcHBwd6oGgA/QScKAAAAAAAAgHpRUlIiSYqJiZEkFRQUyGq1KiUlxV6mY8eOatOmjfLz85WcnKz8/Hx17dpVcXFx9jJpaWnKzMzU9u3bdckll1TZTllZmcrKyuzvS0tLJUlWq1VWq7XGGG3zrWFhtayl99hiJvZ6cMp+ZN9nzrBvNUSNKXZP1YFOFAAAAAAAAAAeV1lZqQcffFBXXnmlunTpIkkqLCxUcHCwoqOjHcrGxcWpsLDQXubUDhTbfNs8Z3JycjRlypQq01etWqXw8HCX4s2bO9elcg0RsdcDJ3eM5uXleSGQutEYYj927JhH1k8nCgAAAAAAAACPy8rK0ldffaWPPvrI49saP368srOz7e9LS0vVunVrpaamymw217is1WpVXl6e+o8cKdPx454OtU5Zw8KUN3cusdeH/91VJZ2yz/TvL5PJ5MWg3NeYYrfdcVbX6EQBAAAAAAAA4FFjxozRsmXLtGHDBrVq1co+PT4+XuXl5Tp06JDD3ShFRUWKj4+3l9m8ebPD+oqKiuzznAkJCVFISEiV6SaTyeUTxabjx33jZL4TxF4PnOxH7uxfDU1jiN1T8Qd6ZK0AAAAAAAAA/J5hGBozZoyWLFmiDz/8UO3atXOYn5SUJJPJpDVr1tin7dy5U/v27ZPFYpEkWSwWbdu2TcXFxfYyeXl5MpvNSkxMrJ+KAPBb3IkCAAAAAAAAwCOysrK0cOFCvffee2ratKn9GSZRUVEKCwtTVFSURo0apezsbMXExMhsNmvs2LGyWCxKTk6WJKWmpioxMVHDhw/XjBkzVFhYqAkTJigrK8vp3SYAUJfoRAEAAAAAAADgEbNnz5Yk9enTx2H6vHnzdMcdd0iSZs6cqcDAQKWnp6usrExpaWmaNWuWvWxQUJCWLVumzMxMWSwWRUREKCMjQ1OnTq2vagDwY3SiAAAAAAAAAPAIwzDOWCY0NFS5ubnKzc2ttkxCQoKWL19el6EBgEt4JgoAAAAAAAAAAIATdKIAAAAAAAAAAAA4QScKAAAAAAAAAACAE3SiAAAAAAAAAAAAOEEnCgAAAAAAAAAAgBN0ogAAAAAAAAAAADhBJwoAAAAAAAAAAIATdKIAAAAAAAAAAAA4QScKAAAAzlpOTo4uu+wyNW3aVLGxsRo8eLB27tzpUObEiRPKyspSs2bNFBkZqfT0dBUVFTmU2bdvnwYOHKjw8HDFxsbqkUce0cmTJ+uzKgAAAAAA2NGJAgAAgLO2fv16ZWVladOmTcrLy5PValVqaqqOHj1qLzNu3DgtXbpUixcv1vr167V//34NGTLEPr+iokIDBw5UeXm5Nm7cqAULFmj+/PmaOHGiN6oEAAAAAICaeDsAAAAA+L4VK1Y4vJ8/f75iY2NVUFCgXr16qaSkRHPmzNHChQvVt29fSdK8efPUqVMnbdq0ScnJyVq1apV27Nih1atXKy4uTt27d9e0adP02GOPafLkyQoODvZG1QAAAAAAfow7UQCglhi6BgCqV1JSIkmKiYmRJBUUFMhqtSolJcVepmPHjmrTpo3y8/MlSfn5+eratavi4uLsZdLS0lRaWqrt27fXY/QAAAAAAPyKO1EAoJZsQ9dcdtllOnnypB5//HGlpqZqx44dioiIkPTr0DUffPCBFi9erKioKI0ZM0ZDhgzRxx9/LOm3oWvi4+O1ceNGHThwQCNGjJDJZNJTTz3lzeoBQK1VVlbqwQcf1JVXXqkuXbpIkgoLCxUcHKzo6GiHsnFxcSosLLSXObUDxTbfNs+ZsrIylZWV2d+XlpZKkqxWq6xWa41x2uZbw8JcrJn/srWRX7bVGfajqsWtDv+ierVtK9oWAAAA9YlOFACoJYauAQDnsrKy9NVXX+mjjz7y+LZycnI0ZcqUKtNXrVql8PBwl9aRN3duXYfVaPllWy1fXqvF8vLy6jiQxsvdtjp27JiHIgEAAACqcqsTJScnR++8846++eYbhYWF6YorrtCf/vQndejQwV7mxIkTeuihh7Ro0SKVlZUpLS1Ns2bNcriqcN++fcrMzNTatWsVGRmpjIwM5eTkqEkT+nQA+C53h65JTk6uduiazMxMbd++XZdcckmV7XDVde3V+5XUDehKWX++Mrox1N2XYh8zZoyWLVumDRs2qFWrVvbp8fHxKi8v16FDhxzuRikqKlJ8fLy9zObNmx3WZxsC0VbmdOPHj1d2drb9fWlpqVq3bq3U1FSZzeYaY7VarcrLy1P/kSNlOn7crXr6G2tYmPLmzvXPtvrf97ur7PtV//4ymUweCqpxqG1b2Y59AAAAgPrgVq8FQ9cAgHP1OXQNV12fvXqrfy2vXvYkf74y2pfr7gtXXRuGobFjx2rJkiVat26d2rVr5zA/KSlJJpNJa9asUXp6uiRp586d2rdvnywWiyTJYrFo+vTpKi4uVmxsrKRf/25ms1mJiYlOtxsSEqKQkJAq000mk8snZU3Hj/tfx0At+WVb1bIjxJ190N+521a0KwAAAOqTW50oDF0DAM7V59A1XHVde/V+JbWbVy97kj9fGd0Y6u4LV11nZWVp4cKFeu+999S0aVN7R3BUVJTCwsIUFRWlUaNGKTs7WzExMTKbzRo7dqwsFouSk5MlSampqUpMTNTw4cM1Y8YMFRYWasKECcrKynLaUQIAAAAAgKed1fhZDF3j+/z6IaGncrIfNYbhXzzJ0+3jS+1e30PXcNX12au3+jfAE/b+fGW0L9fdF+KePXu2JKlPnz4O0+fNm6c77rhDkjRz5kwFBgYqPT3dYdhXm6CgIC1btkyZmZmyWCyKiIhQRkaGpk6dWl/VAAAAAADAQa07URi6pnHx+/apYcgdXx7+pT54qn0Yuqb6oWsAoCEyDOOMZUJDQ5Wbm6vc3NxqyyQkJGh5AxwKDwAAAAAcBAT89v+wMOmNN6SoKKkhX7Tqwu82VFXrThSGrmkc/PohoadyMuROYxj+xZM83T4MXcPQNY3CqQdU3ubOAR0HVQAAAAAAAJJq2YnC0DWNj9+3Tw37kS8P/1IfPNU+vtDmDF0DAAAAAMCZbdiwQc8884wKCgp04MABLVmyRIMHD7bPv+OOO7RgwQKHZdLS0hyez3zw4EGNHTtWS5cutf/Ofv755xUZGVlf1QDgp9zqRGHoGgD4DUPXAAAAAABwZkePHtXFF1+skSNHasiQIU7LXHvttZo3b579/ekXVA8bNkwHDhxQXl6erFar7rzzTo0ePVoLFy70aOwA4FYnCkPXAAAAAAAAAHDHgAEDNGDAgBrLhISEVDtKzddff60VK1Zoy5Yt6tGjhyTpxRdf1HXXXadnn31WLVu2rPOYAcAm0J3Cs2fPVklJifr06aMWLVrYX2+++aa9zMyZM3X99dcrPT1dvXr1Unx8vN555x37fNvQNUFBQbJYLLr99ts1YsQIhq4BAAAAAAAA/NS6desUGxurDh06KDMzU7/88ot9Xn5+vqKjo+0dKJKUkpKiwMBAffLJJ94IF4AfcXs4rzNh6BoAAAAAAAAArrr22ms1ZMgQtWvXTrt379bjjz+uAQMGKD8/X0FBQSosLLQ/FsCmSZMmiomJsY+Uc7qysjKVlZXZ35eWlkqSrFarrFZrjfHY5lvDws6mWl5hi5nY65fPxO5k37fv72f4XDREp8fuqTrU6sHyAAAAAAAAAFAXhg4dav9/165d1a1bN7Vv317r1q1Tv379arXOnJwcTZkypcr0VatWKTw83KV15M2dW6ttNwTE7h0NPvYabmzIy8urx0Dqli32Y8eOeWT9dKIAAAAAAFCHcnJy9M477+ibb75RWFiYrrjiCv3pT39Shw4d7GVOnDihhx56SIsWLVJZWZnS0tI0a9YsxcXF2cvs27dPmZmZWrt2rSIjI5WRkaGcnBw1acJPeQCN2/nnn69zzz1Xu3btUr9+/RQfH6/i4mKHMidPntTBgwerfY7K+PHjlZ2dbX9fWlqq1q1bKzU1VWazucbtW61W5eXlqf/IkTIdP372FapH1rAw5c2dS+z1zGdiLympMsm+v/fvL5PJ5IWgau/02G13nNU1jrwAAAAAAKhD69evV1ZWli677DKdPHlSjz/+uFJTU7Vjxw5FRERIksaNG6cPPvhAixcvVlRUlMaMGaMhQ4bo448/liRVVFRo4MCBio+P18aNG3XgwAGNGDFCJpNJTz31lDerBwAe98MPP+iXX35RixYtJEkWi0WHDh1SQUGBkpKSJEkffvihKisr1bNnT6frCAkJUUhISJXpJpPJ5RPFpuPHG/YJ8RoQu3c0+Nhr2Pfd+Ww0NLbYPRU/nSgAAAAAANShFStWOLyfP3++YmNjVVBQoF69eqmkpERz5szRwoUL1bdvX0nSvHnz1KlTJ23atEnJyclatWqVduzYodWrVysuLk7du3fXtGnT9Nhjj2ny5MkKDg72RtUAoFaOHDmiXbt22d/v2bNHW7duVUxMjGJiYjRlyhSlp6crPj5eu3fv1qOPPqoLLrhAaWlpkqROnTrp2muv1d13362XXnpJVqtVY8aM0dChQ9WyZUtvVQuAn6ATBQAAAAAADyr539AZMTExkqSCggJZrValpKTYy3Ts2FFt2rRRfn6+kpOTlZ+fr65duzoM75WWlqbMzExt375dl1xySZXt+OtDlF3VoB7664EH3/ryg4FdQf1qXq6h+/TTT3XNNdfY39uG2crIyNDs2bP15ZdfasGCBTp06JBatmyp1NRUTZs2zeFOktdff11jxoxRv379FBgYqPT0dL3wwgv1XhcA/odOFAAAAAAAPKSyslIPPvigrrzySnXp0kWSVFhYqODgYEVHRzuUjYuLU2Fhob3MqR0otvm2ec74+0OUXdUg6ljDg33Pli8/GNgV1M+Rpx6iXNf69OkjwzCqnb9y5cozriMmJkYLFy6sy7AAwCV0ogAAAAAA4CFZWVn66quv9NFHH3l8W/76EGVXNaiH/jp5sO/Z8uUHA7uC+jnnqYcoAwB+QycKAAAAAAAeMGbMGC1btkwbNmxQq1at7NPj4+NVXl6uQ4cOOdyNUlRUpPj4eHuZzZs3O6yvqKjIPs8Zf3+IsqsaRB092Angyw8GdgX1q1oeAOBZgd4OAAAAAACAxsQwDI0ZM0ZLlizRhx9+qHbt2jnMT0pKkslk0po1a+zTdu7cqX379slisUiSLBaLtm3bpuLiYnuZvLw8mc1mJSYm1k9FAAAAwJ0oAAAAAADUpaysLC1cuFDvvfeemjZtan+GSVRUlMLCwhQVFaVRo0YpOztbMTExMpvNGjt2rCwWi5KTkyVJqampSkxM1PDhwzVjxgwVFhZqwoQJysrKcnq3CQAAADyDThQAAAAAAOrQ7NmzJf36IOVTzZs3T3fccYckaebMmQoMDFR6errKysqUlpamWbNm2csGBQVp2bJlyszMlMViUUREhDIyMjR16tT6qgYAAABEJwoAAAAAAHXKMIwzlgkNDVVubq5yc3OrLZOQkKDly5fXZWgAAABwE89EAQAAAAAAAAAAcIJOFAAAAAAAAAAAACfoRAEAAAAAAAAAAHCCThQAAAAAAAAAAAAn6EQBAAAAAAAAAABwgk4UAAAAAAAAAAAAJ+hEAQAAAAAAAAAAcIJOFAAAAAAAAAAAACfoRAEAAAAAAAAAAHCCThQAAAAAAAAAAAAn6EQBAAAAAAAAAABwgk4UAAAAAAAAAAAAJ+hEAQAAAAAAAAAAcIJOFAAAAAAAAAAAACfoRAEAAAAAAAAAAHCCThQAAAAAAAAAHrNhwwYNGjRILVu2VEBAgN59912H+YZhaOLEiWrRooXCwsKUkpKib7/91qHMwYMHNWzYMJnNZkVHR2vUqFE6cuRIPdYCgL+iEwUAAAAAAACAxxw9elQXX3yxcnNznc6fMWOGXnjhBb300kv65JNPFBERobS0NJ04ccJeZtiwYdq+fbvy8vK0bNkybdiwQaNHj66vKgDwY028HQAAAAAAAACAxmvAgAEaMGCA03mGYei5557ThAkTdOONN0qS/v73vysuLk7vvvuuhg4dqq+//lorVqzQli1b1KNHD0nSiy++qOuuu07PPvusWrZsWW91AeB/6EQBAAAAAAAA4BV79uxRYWGhUlJS7NOioqLUs2dP5efna+jQocrPz1d0dLS9A0WSUlJSFBgYqE8++UQ33XRTlfWWlZWprKzM/r60tFSSZLVaZbVaa4zJNt8aFnZWdfMGW8zEXr98JnYn+759fz/D56IhOj12T9WBThQAAAAAAAAAXlFYWChJiouLc5geFxdnn1dYWKjY2FiH+U2aNFFMTIy9zOlycnI0ZcqUKtNXrVql8PBwl2LLmzvXpXINEbF7R4OPffnyamfl5eXVYyB1yxb7sWPHPLJ+OlEAAAAAAAAANCrjx49Xdna2/X1paalat26t1NRUmc3mGpe1Wq3Ky8tT/5EjZTp+3NOh1ilrWJjy5s4l9nrmM7GXlFSZZN/f+/eXyWTyQlC1d3rstjvO6hqdKAAAAAAAAAC8Ij4+XpJUVFSkFi1a2KcXFRWpe/fu9jLFxcUOy508eVIHDx60L3+6kJAQhYSEVJluMplcPlFsOn68YZ8QrwGxe0eDj72Gfd+dz0ZDY4vdU/EHemStAAAAAAAAAHAG7dq1U3x8vNasWWOfVlpaqk8++UQWi0WSZLFYdOjQIRUUFNjLfPjhh6qsrFTPnj3rPWYA/oU7UQAAAAAAAAB4zJEjR7Rr1y77+z179mjr1q2KiYlRmzZt9OCDD+rJJ5/UhRdeqHbt2umJJ55Qy5YtNXjwYElSp06ddO211+ruu+/WSy+9JKvVqjFjxmjo0KFq2bKll2oFwF/QiQIAAAAAAADAYz799FNdc8019ve2Z5VkZGRo/vz5evTRR3X06FGNHj1ahw4d0lVXXaUVK1YoNDTUvszrr7+uMWPGqF+/fgoMDFR6erpeeOGFeq8LAP/DcF4AAACoExs2bNCgQYPUsmVLBQQE6N1333WYbxiGJk6cqBYtWigsLEwpKSn69ttvHcocPHhQw4YNk9lsVnR0tEaNGqUjR47UYy0AAABQ1/r06SPDMKq85s+fL0kKCAjQ1KlTVVhYqBMnTmj16tW66KKLHNYRExOjhQsX6vDhwyopKdHcuXMVGRnphdoA8Dd0ogDAWeCEIQD85ujRo7r44ouVm5vrdP6MGTP0wgsv6KWXXtInn3yiiIgIpaWl6cSJE/Yyw4YN0/bt25WXl6dly5Zpw4YNGj16dH1VAQAAAAAAB253onDCEAB+wwlDAPjNgAED9OSTT+qmm26qMs8wDD333HOaMGGCbrzxRnXr1k1///vftX//fvvx5Ndff60VK1bob3/7m3r27KmrrrpKL774ohYtWqT9+/fXc20AAAAAAKjFM1FsJwxHjhypIUOGVJlvO2G4YMEC+4Og0tLStGPHDvs4hsOGDdOBAweUl5cnq9WqO++8U6NHj9bChQvPvkYAUI8GDBigAQMGOJ13+glDSfr73/+uuLg4vfvuuxo6dKj9hOGWLVvUo0cPSdKLL76o6667Ts8++ywPyAPQaOzZs0eFhYVKSUmxT4uKilLPnj2Vn5+voUOHKj8/X9HR0fZ8KEkpKSkKDAzUJ5984rRzpqysTGVlZfb3paWlkiSr1Sqr1VpjTLb51rCws6qbP7C1kV+21Rn2o6rFrQ7/onq1bSvaFgAAAPXJ7U4UThgCgGs4Ydjw+PNJQLfq3shOTjWGE5q+HLtNYWGhJCkuLs5helxcnH1eYWGhYmNjHeY3adJEMTEx9jKny8nJ0ZQpU6pMX7VqlcLDw12KLW/uXJfKwU/bavnyWi2Wl5dXx4E0Xu621bFjxzwUCQAAAFCV250oNfHUCUMA8EWcMGy4/Ln+LtW9licMGzpfPqHJCcPqjR8/XtnZ2fb3paWlat26tVJTU2U2m2tc1mq1Ki8vT/1HjpTp+HFPh+rTrGFhyps71z/bqqTEreL2/ap/f5lMJg8F1TjUtq1sF5AAAAAA9aFOO1E8dcKQq649x5+vynbgZD9qDFcue5Kn24d2rx4nDGvPn08CulV3N08YNnSN4YRmYzhhGB8fL0kqKipSixYt7NOLiorUvXt3e5ni4mKH5U6ePKmDBw/alz9dSEiIQkJCqkw3mUwu/71Nx4/7XU6oLb9sq1rmDXf2QX/nblvRrgAAAKhPddqJ4ilcde15ft8+NVx17ctXLtcHT7VPY7jqmhOGDZc/19+lujfSk1O+fELTV+M+Vbt27RQfH681a9bYc2Bpaak++eQTZWZmSpIsFosOHTqkgoICJSUlSZI+/PBDVVZWqmfPnt4KHQAAAADgx+q0E8VTJwy56tpz/PmqbAdOrrpuDFcue5Kn26cxXHXNCUMA/ubIkSPatWuX/f2ePXu0detWxcTEqE2bNnrwwQf15JNP6sILL1S7du30xBNPqGXLlho8eLAkqVOnTrr22mt1991366WXXpLVatWYMWM0dOhQnpsHwOds2LBBzzzzjAoKCnTgwAEtWbLEnu+kX58pOmnSJL366qs6dOiQrrzySs2ePVsXXnihvczBgwc1duxYLV26VIGBgUpPT9fzzz+vyMhIL9QIAADAP9VpJ4qnThhy1bXn+X371LAf+fKVy/XBU+3jK23OCUMA+M2nn36qa665xv7edhFMRkaG5s+fr0cffVRHjx7V6NGjdejQIV111VVasWKFQkND7cu8/vrrGjNmjPr162c/YfjCCy/Ue10A4GwdPXpUF198sUaOHKkhQ4ZUmT9jxgy98MILWrBggf04MS0tTTt27LDnxWHDhunAgQPKy8uT1WrVnXfeqdGjR2vhwoX1XR0AAAC/5XYnCicMAeA3nDAEgN/06dNHhmFUOz8gIEBTp07V1KlTqy0TExPDyUEAjcKAAQM0YMAAp/MMw9Bzzz2nCRMm6MYbb5Qk/f3vf1dcXJzeffddDR06VF9//bVWrFihLVu2qEePHpKkF198Udddd52effZZfj8DAADUE7c7UThhCAC/4YQhAAAA3LVnzx4VFhYqJSXFPi0qKko9e/ZUfn6+hg4dqvz8fEVHR9s7UCQpJSVFgYGB+uSTT3TTTTd5I3QAAAC/43YnCicMAQAAAACovcLCQklSXFycw/S4uDj7vMLCQsXGxjrMb9KkiWJiYuxlTldWVqaysjL7e9tzBq1Wq6xWa40x2eZbw8LcqIlvsdWtQdTxDH+P2q3S6vBvY0P9al4OAOA5dfpMFAAAAAAA4B05OTmaMmVKlemrVq1SeHi4S+vImzu3rsNqcBpEHZcv99iq8/LyPLbuhoD6OTp27JiHIgEA2NCJAgAAAABAPYqPj5ckFRUVqUWLFvbpRUVF6t69u71McXGxw3InT57UwYMH7cufbvz48fYht6Vf70Rp3bq1UlNTZTaba4zJarUqLy9P/UeOlOn48dpUq8GzhoUpb+7chlHHkpI6X6X9b9i/v0wmU52v39uon3O2O84AAJ5DJwoAAAAAAPWoXbt2io+P15o1a+ydJqWlpfrkk0+UmZkpSbJYLDp06JAKCgqUlJQkSfrwww9VWVmpnj17Ol1vSEiIQkJCqkw3mUwun5Q1HT/u/Q4GD2sQdfRgJ4A7f29fRP2qlgcAeBadKAAAAAAA1LEjR45o165d9vd79uzR1q1bFRMTozZt2ujBBx/Uk08+qQsvvFDt2rXTE088oZYtW2rw4MGSpE6dOunaa6/V3XffrZdeeklWq1VjxozR0KFD1bJlSy/VCgAAwP/QiQIAAAAAQB379NNPdc0119jf24bZysjI0Pz58/Xoo4/q6NGjGj16tA4dOqSrrrpKK1asUGhoqH2Z119/XWPGjFG/fv0UGBio9PR0vfDCC/VeFwAAAH9GJwoAAAAAAHWsT58+Mgyj2vkBAQGaOnWqpk6dWm2ZmJgYLVy40BPhAQAAwEWB3g4AAAAAAAAAAACgIaITBQAAAAAAAAAAwAk6UQAAAAAAAAB4zeTJkxUQEODw6tixo33+iRMnlJWVpWbNmikyMlLp6ekqKiryYsQA/AmdKAAAAAAAAAC8qnPnzjpw4ID99dFHH9nnjRs3TkuXLtXixYu1fv167d+/X0OGDPFitAD8CQ+WBwAAAAAAAOBVTZo0UXx8fJXpJSUlmjNnjhYuXKi+fftKkubNm6dOnTpp06ZNSk5Oru9QAfgZ7kQBAAAAAAAA4FXffvutWrZsqfPPP1/Dhg3Tvn37JEkFBQWyWq1KSUmxl+3YsaPatGmj/Px8b4ULwI9wJwoAAAAAAAAAr+nZs6fmz5+vDh066MCBA5oyZYquvvpqffXVVyosLFRwcLCio6MdlomLi1NhYWG16ywrK1NZWZn9fWlpqSTJarXKarXWGI9tvjUsrJY18h5bzMRev3wmdif7vn1/P8PnoiE6PXZP1YFOFAAAAAAAAABeM2DAAPv/u3Xrpp49eyohIUFvvfWWwmp5UjonJ0dTpkypMn3VqlUKDw93aR15c+fWatsNAbF7R4OPffnyamfl5eXVYyB1yxb7sWPHPLJ+OlEAAAAAAAAANBjR0dG66KKLtGvXLvXv31/l5eU6dOiQw90oRUVFTp+hYjN+/HhlZ2fb35eWlqp169ZKTU2V2WyucftWq1V5eXnqP3KkTMePn3V96pM1LEx5c+cSez3zmdhLSqpMsu/v/fvLZDJ5IajaOz122x1ndY1OFAAAAAAAAAANxpEjR7R7924NHz5cSUlJMplMWrNmjdLT0yVJO3fu1L59+2SxWKpdR0hIiEJCQqpMN5lMLp8oNh0/3rBPiNeA2L2jwcdew77vzmejobHF7qn46UQBAAAAAAAA4DUPP/ywBg0apISEBO3fv1+TJk1SUFCQbr31VkVFRWnUqFHKzs5WTEyMzGazxo4dK4vFouTkZG+HDsAP0IkCAAAAAAAAwGt++OEH3Xrrrfrll1/UvHlzXXXVVdq0aZOaN28uSZo5c6YCAwOVnp6usrIypaWladasWV6OGoC/oBMFAAAAAAAAgNcsWrSoxvmhoaHKzc1Vbm5uPUUEAL8J9HYAAAAAAAAAfiUgoO5fUVG/rjsqyjPrDwjwbpsBAOAldKIAAAAAAAAAAAA4QScKAAAAAAAAAACAE3SiAAAAAAAAAAAAOEEnCgAAAAAAAAAAgBN0ogAAAAAAAAAAADhBJwoAAAAAAAAAAIATdKIAAAAAAAAAAAA4QScKAAAAAAAAAACAE3SiAAAAAAAAAAAAOEEnCgAAAAAAAAAAgBN0ogAAAAAAAAAAADhBJwoAAAAAAAAAAIATdKIAAAAAAAAAAAA4QScKAAAAAAAAAACAE3SiAAAAAAAAAAAAOEEnCgAAAAAAAAAAgBN0ogAAAAAAAAAAADhBJwoAAAAAVCcgwL1XVNSvy0VFub9sXb0AAAAA1Bk6UQAAAAAAAAAAAJygEwUAAAAAAAAAgMauod5J3cDvtPZqJ0pubq7atm2r0NBQ9ezZU5s3b/ZmOPBnvphA0OiQEwHgV+RDAPgNOREAfkNOBOANXutEefPNN5Wdna1Jkybps88+08UXX6y0tDQVFxd7KyQA8BpyIhoUb3cS07Hs18iHAPAbciIA/IacCMBbvNaJ8pe//EV333237rzzTiUmJuqll15SeHi45s6d662QAMBryInAWaqpg6Uh31mIKsiHQB3wdm5z9XV6fkYV5EQA+A05EYC3NPHGRsvLy1VQUKDx48fbpwUGBiolJUX5+flVypeVlamsrMz+vqSkRJJ08OBBWa3WGrdltVp17Ngx/RIaKpNh1FENGg9raCjtU40G3zZhYV7dvDUsTMdyc/VLXJxMx4+7vuAPP7hU7PDhw5IkoyG2fR0jJ9afBv+59iDq3kDr/ssvLhXzl5zobj6UyIn1pUF/jhoY2sp1VdqKnOiAnFj3Gvvns17q58XfoZ7+Dept9s/gL7/IZDK5vBw5kZx4Ol/OdcTuHT4RezXHiafnTo/lRMMLfvzxR0OSsXHjRofpjzzyiHH55ZdXKT9p0iRDEi9evPzw9f3339dXavIaciIvXrxcfTX2nOhuPjQMciIvXv78IidWRU7kxct/X+TEqsiJvHj576uuc6JX7kRx1/jx45WdnW1/X1lZqYMHD6pZs2YKOMNt36WlpWrdurW+//57mc1mT4fqc2if6tE2NfN0+xiGocOHD6tly5Z1vm5fR06sPX+uP3X37bqTE6tHTqwftJXraCvX1batyInVIyfWrLHXkfr5NnJi3fPXnEjs3kHs3nF67J7KiV7pRDn33HMVFBSkoqIih+lFRUWKj4+vUj4kJEQhISEO06Kjo93aptls9rmdoD7RPtWjbWrmyfaJso2T3ciRE+ufP9efuvtu3f0hJ7qbDyVyYn2jrVxHW7muNm1FTiQnno3GXkfq59vIic6RE91H7N5B7N5xauyeyIleebB8cHCwkpKStGbNGvu0yspKrVmzRhaLxRshAYDXkBMB4FfkQwD4DTkRAH5DTgTgTV4bzis7O1sZGRnq0aOHLr/8cj333HM6evSo7rzzTm+FBABeQ04EgF+RDwHgN+REAPgNORGAt3itE+X3v/+9fvrpJ02cOFGFhYXq3r27VqxYobi4uDrdTkhIiCZNmlTl9j38ivapHm1TM9qnbpET64c/15+6+2fdfVF95UOJfcMdtJXraCvX0VZnRk6sW429jtTPtzX2+tUFcqJriN07iN076iv2AMMwDI9uAQAAAAAAAAAAwAd55ZkoAAAAAAAAAAAADR2dKAAAAAAAAAAAAE7QiQIAAAAAAAAAAOAEnSgAAAAAAAAAAABONIpOlNzcXLVt21ahoaHq2bOnNm/eXGP5xYsXq2PHjgoNDVXXrl21fPnyeorUO9xpn+3btys9PV1t27ZVQECAnnvuufoL1AvcaZtXX31VV199tc455xydc845SklJOeO+5uvcaZ933nlHPXr0UHR0tCIiItS9e3f93//9Xz1GCxt/zon+nu/8OaeRr1Adf86J7vL3HOoOf8637iA3Nzz+kBMbey5r7PmnsecNdz+DNosWLVJAQIAGDx7s2QAbubrOgYZhaOLEiWrRooXCwsKUkpKib7/91idiv+OOOxQQEODwuvbaa70eu6t5ubafJW/HPnny5Crt3rFjR6/G7cp3RUPd112Jvc72dcPHLVq0yAgODjbmzp1rbN++3bj77ruN6Ohoo6ioyGn5jz/+2AgKCjJmzJhh7Nixw5gwYYJhMpmMbdu21XPk9cPd9tm8ebPx8MMPG2+88YYRHx9vzJw5s34Drkfuts1tt91m5ObmGp9//rnx9ddfG3fccYcRFRVl/PDDD/Ucef1wt33Wrl1rvPPOO8aOHTuMXbt2Gc8995wRFBRkrFixop4j92/+nBP9Pd/5c04jX6E6/pwT3eXvOdQd/pxv3UFubnj8ISc29lzW2PNPY88b7tbPZs+ePcZ5551nXH311caNN95YP8E2Qp7IgU8//bQRFRVlvPvuu8YXX3xh3HDDDUa7du2M48ePN/jYMzIyjGuvvdY4cOCA/XXw4ME6jbs2sbuSl2v7WWoIsU+aNMno3LmzQ7v/9NNPXo3ble+KhrqvuxJ7Xe3rPt+JcvnllxtZWVn29xUVFUbLli2NnJwcp+VvueUWY+DAgQ7Tevbsadxzzz0ejdNb3G2fUyUkJDT4g8izcTZtYxiGcfLkSaNp06bGggULPBWiV51t+xiGYVxyySXGhAkTPBEequHPOdHf850/5zTyFarjzznRXf6eQ93hz/nWHeTmhscfcmJjz2WNPf809rxRm/qdPHnSuOKKK4y//e1vRkZGBp0oZ6Guc2BlZaURHx9vPPPMM/b5hw4dMkJCQow33nijQcduGEa97U+eyMt1kStc4YnYJ02aZFx88cV1GGVVdf1d0ZD39TPFbhh1t6/79HBe5eXlKigoUEpKin1aYGCgUlJSlJ+f73SZ/Px8h/KSlJaWVm15X1ab9vEXddE2x44dk9VqVUxMjKfC9JqzbR/DMLRmzRrt3LlTvXr18mSoOIU/50R/z3f+nNPIV6iOP+dEd/l7DnWHP+dbd5CbGx5/yImNPZc19vzT2PNGbes3depUxcbGatSoUfURZqPliRy4Z88eFRYWOpSJiopSz5496zTneDJ/r1u3TrGxserQoYMyMzP1yy+/1FnctY3dG+us7+18++23atmypc4//3wNGzZM+/btO9tw7TzxXdGQ9/UzxW5TF/u6T3ei/Pzzz6qoqFBcXJzD9Li4OBUWFjpdprCw0K3yvqw27eMv6qJtHnvsMbVs2bLKF1NjUNv2KSkpUWRkpIKDgzVw4EC9+OKL6t+/v6fDxf/4c07093znzzmNfIXq+HNOdJe/51B3+HO+dQe5ueHxh5zY2HNZY88/jT1v1KZ+H330kebMmaNXX321PkJs1DyRA23/ejrneCp/X3vttfr73/+uNWvW6E9/+pPWr1+vAQMGqKKiwquxe2Od9bmdnj17av78+VqxYoVmz56tPXv26Oqrr9bhw4fPNmRJnvmuaMj7+umcfc/V1b7exK3SACRJTz/9tBYtWqR169YpNDTU2+E0GE2bNtXWrVt15MgRrVmzRtnZ2Tr//PPVp08fb4cGoAb+mNPIVwC8wR/zrTvIzYDnNNb801jzxuHDhzV8+HC9+uqrOvfcc70dDhqhoUOH2v/ftWtXdevWTe3bt9e6devUr18/L0bWuA0YMMD+/27duqlnz55KSEjQW2+91SDuOPPl74rqYq+rfd2nO1HOPfdcBQUFqaioyGF6UVGR4uPjnS4THx/vVnlfVpv28Rdn0zbPPvusnn76aa1evVrdunXzZJheU9v2CQwM1AUXXCBJ6t69u77++mvl5OT4/AGsr/DnnOjv+c6fcxr5CtXx55zoLn/Poe7w53zrDnJzw+MPObGx57LGnn8ae95wt367d+/W3r17NWjQIPu0yspKSVKTJk20c+dOtW/f3rNBNyKeyIG2f4uKitSiRQuHMt27d2/QsTtz/vnn69xzz9WuXbvqrBPFE3m5vnJ9fW0nOjpaF110kXbt2lUn6/PEd0VD3tfPFLsztd3XfXo4r+DgYCUlJWnNmjX2aZWVlVqzZo0sFovTZSwWi0N5ScrLy6u2vC+rTfv4i9q2zYwZMzRt2jStWLFCPXr0qI9QvaKu9p3KykqVlZV5IkQ44c850d/znT/nNPIVquPPOdFd/p5D3eHP+dYd5OaGxx9yYmPPZY09/zT2vOFu/Tp27Kht27Zp69at9tcNN9yga665Rlu3blXr1q3rM3yf54kc2K5dO8XHxzuUKS0t1SeffFKnOae+8vcPP/ygX375xeEk+dnyRF6ur1xfX9s5cuSIdu/eXWft7onvioa8r58pdmdqva+f9aPpvWzRokVGSEiIMX/+fGPHjh3G6NGjjejoaKOwsNAwDMMYPny48Yc//MFe/uOPPzaaNGliPPvss8bXX39tTJo0yTCZTMa2bdu8VQWPcrd9ysrKjM8//9z4/PPPjRYtWhgPP/yw8fnnnxvffvutt6rgMe62zdNPP20EBwcbb7/9tnHgwAH76/Dhw96qgke52z5PPfWUsWrVKmP37t3Gjh07jGeffdZo0qSJ8eqrr3qrCn7Jn3Oiv+c7f85p5CtUx59zorv8PYe6w5/zrTvIzQ2PP+TExp7LGnv+aex5w936nS4jI8O48cYb6ynaxscTOfDpp582oqOjjffee8/48ssvjRtvvNFo166dcfz48QYd++HDh42HH37YyM/PN/bs2WOsXr3auPTSS40LL7zQOHHihFdjdyUvn2mdDTn2hx56yFi3bp2xZ88e4+OPPzZSUlKMc8891yguLvZa3K58VzTUff1Msdflvu7znSiGYRgvvvii0aZNGyM4ONi4/PLLjU2bNtnn9e7d28jIyHAo/9ZbbxkXXXSRERwcbHTu3Nn44IMP6jni+uVO++zZs8eQVOXVu3fv+g+8HrjTNgkJCU7bZtKkSfUfeD1xp33++Mc/GhdccIERGhpqnHPOOYbFYjEWLVrkhajhzznR3/OdP+c08hWq48850V3+nkPd4c/51h3k5obHH3JiY89ljT3/NPa84e5n8FR0opy9us6BlZWVxhNPPGHExcUZISEhRr9+/YydO3c2+NiPHTtmpKamGs2bNzdMJpORkJBg3H333XXeCVGb2F3NyzWtsyHH/vvf/95o0aKFERwcbJx33nnG73//e2PXrl1ejduV74qGuq+fKfa63NcDDMMw3Lt3BQAAAAAAAAAAoPHz6WeiAAAAAAAAAAAAeAqdKAAAAAAAAAAAAE7QiQIAAAAAAAAAAOAEnSgAAAAAAAAAAABO0IkCAAAAAAAAAADgBJ0oAAAAAAAAAAAATtCJAgAAAAAAAAAA4ASdKAAAAAAAAAAAAE7QiQIAAAAAAAAAAOAEnSgAAAAAAAAAAABO0IkCAAAAAAAAAADgBJ0oAAAAAAAAAAAATtCJAgAAAAAAAAAA4ASdKAAAAAAAAAAAAE7QiQIAAAAAAAAAAOAEnSgAAAAAAAAAAABO0IkCAAAAAAAAAADgBJ0oAAAAAAAAAAAATtCJAgAAAAAAAAAA4ASdKAAAAAAAAAAAAE7QiQIAAAAAAAAAAOAEnSgAAAAAAAAAAABO0IkCAAAAAAAAAADgBJ0oAAAAAAAAAAAATtCJAgAAAAAAAAAA4ASdKAAAAAAAAAAAAE7QiQIAAAAAAAAAAOAEnSgAAAAAAAAAAABO0IkCAAAAAAAAAADgBJ0oAAAAAAAAAAAATtCJAgAAAAAAAAAA4ASdKG7asmWLrrjiCkVERCggIEBbt271dkgAAC+ZP3++AgICtHfvXreXveOOO9S2bds6jwkAAAANV9u2bXXHHXd4bP2N/Riztu3nznH7unXrFBAQoHXr1rm9HQDOTZ48WQEBAfr555/rZH3OPtN9+vRRnz593F4Xn3m4gk4UN1itVv3ud7/TwYMHNXPmTP3f//2fEhISXFr22LFjmjx5Mh9IAABqsHHjRk2ePFmHDh3ydigAAKCeLV++XJMnT/Z2GPCy+joenDVrlubPn+/RbQAAGocm3g7Al+zevVvfffedXn31Vd11111uLXvs2DFNmTJFkmrVKwoAaHiGDx+uoUOHKiQkxNuhNBobN27UlClTdMcddyg6Otrb4QAAgHq0fPly5ebmNuqOlJ07dyowkOtZa1LT8WBt28/ZcfusWbN07rnnVrmzpVevXjp+/LiCg4NrEz4AH8NnHq7gm9sNxcXFktSgTuqcPHlS5eXl3g7DLceOHWuU22qIjh496u0QgEYtKChIoaGhCggI8HYoPo98BTR+9fU597Xjv8rKSp04ccLbYQA+pyH+Fq4uzxmGoePHj0uSQkJCZDKZ6jOsWmuI+am27efOcXtgYKBCQ0Pp7AL8BJ95uIK9w0V33HGHevfuLUn63e9+p4CAAPtYe87uLDl1HNK9e/eqefPmkqQpU6YoICBAAQEB9qtrXFmHbT0BAQF69tln9dxzz6l9+/YKCQnRjh07JEnffPONbr75ZsXExCg0NFQ9evTQ+++/X6v6vvbaa7r88ssVHh6uc845R7169dKqVavs89977z0NHDhQLVu2VEhIiNq3b69p06apoqLCYT19+vRRly5dVFBQoF69eik8PFyPP/64JKmsrEyTJk3SBRdcoJCQELVu3VqPPvqoysrKnMaTlJSksLAwxcTEaOjQofr+++9d3pYrfvzxR40aNcpep3bt2ikzM9PhwPw///mPfve73ykmJkbh4eFKTk7WBx984LAe21iKb731lqZPn65WrVopNDRU/fr1065du6ps95NPPtF1112nc845RxEREerWrZuef/55hzKu/G1t40GuX79e9913n2JjY9WqVSuHttmxY4euueYahYeH67zzztOMGTOqxPPiiy+qc+fO9r99jx49tHDhQpfbEfC2w4cP68EHH1Tbtm0VEhKi2NhY9e/fX5999pm9zOLFi+055dxzz9Xtt9+uH3/8scq6vvnmG91yyy1q3ry5wsLC1KFDB/3xj3+0z3c2Dqur+bE2vv32W6Wnpys+Pl6hoaFq9f/s3XtcVHX+x/E34HATwTQBr2hqKaZpVDKlWYoQS1cptVoldbM1tJLNdf2tec10rU27oLWl6FamabfVTEEz3RTSKFvT1rXWolKgNMELwgjn94fL4MgIAzLMwLyej8c8dM75nnO+3y8zn/me8zmXdu00fPhwFRQUSKr4nbB3W4Jzf3ekinvSlrcxODhYLVu21KOPPlppZ9nLy0vjx4/XG2+8oSuuuEL+/v6KiorStm3bKm3niy++UHx8vIKDgxUUFKRBgwYpKyvLpsyF4tWMGTM0adIkSVKnTp2sv5e1eeYMgLNq8l13ZLwlnR273HLLLQoJCVFgYKAGDBig7du3293uvn37dN999+mSSy5Rv379HKpz+Vhq1apV+r//+z+Fh4eradOmuv3222s0/nN0rJmRkaF+/fqpefPmCgoK0hVXXFFpDFnd+OhCzyAo74dznRtTe/ToIT8/P23YsEHS2fHo6NGjFRYWJj8/P/Xo0UNLly51qN8AV6rqs1tUVKRu3bqpW7du1kSCJB09elStW7fW9ddfr9LSUj3wwANKTU2VJOsYoPz7U9W+cElJiaZNm6aoqCiFhISoadOm6t+/v7Zs2VKpnmVlZXruuefUs2dP+fv7q1WrVrrlllv02Wef2WynJmMpe3GuY8eOuvXWW7Vx40Zdc801CggI0Msvv2ydd/6VD8eOHdPEiROt49d27dpp5MiR1mcHXOh5Ho7ex/+ZZ57R9ddfr5YtWyogIEBRUVFas2aN3TZeKD5V55///KfuuecedejQwRpzJ06caPM3L1fVGLu68eC5/ffZZ5/Jy8tLy5cvr7SNjRs3ysvLS+vWrZNUuQ87duyovXv3auvWrdZtlB+XuVC/OvL758i+CODJfvnllwuOSWsSg6tz4sQJNW3aVI8++mileT/++KN8fHw0d+5cSfa/8zU5jvb999/r9ttvV9OmTRUaGqqJEydaYxCPdWg8uJ2Xgx566CG1bdtWTz31lB555BFde+21CgsL05w5c6pdtlWrVlq8eLHGjRunu+66S0OGDJEk9erVq1Z1SUtL0+nTpzV27Fj5+fmpRYsW2rt3r2644Qa1bdtWf/rTn9S0aVO99dZbuvPOO/X222/rrrvucnj9M2fO1IwZM3T99ddr1qxZ8vX11aeffqqPPvpIsbGxks4OQIKCgpSSkqKgoCB99NFHmjZtmgoLC/X000/brO/IkSOKj4/X8OHD9dvf/lZhYWEqKyvT7bffrk8++URjx45V9+7dtWfPHi1YsED/+c9/9N5771mXnzNnjp544gkNHTpUv/vd7/Tzzz/rhRde0I033qgvvvjC5soge9tyxKFDh3Tdddfp2LFjGjt2rLp166affvpJa9as0alTp+Tr66u8vDxdf/31OnXqlB555BG1bNlSy5cv1+233641a9ZU6uN58+bJ29tbjz/+uAoKCjR//nzdf//9+vTTT61lMjIydOutt6p169Z69NFHFR4erq+//lrr1q2zBvqa/m0ffvhhtWrVStOmTbM5E+rXX3/VLbfcoiFDhmjo0KFas2aNJk+erJ49eyo+Pl6S9Morr+iRRx7R3Xffbf0h+9e//qVPP/1U9913n0N9Cbja73//e61Zs0bjx49XZGSkjhw5ok8++URff/21rr76ai1btkyjRo3Stddeq7lz5yovL0/PPfectm/fbhNT/vWvf6l///4ymUwaO3asOnbsqG+//VZr166tMvbXJD7WRElJieLi4lRcXKwJEyYoPDxcP/30k9atW6djx44pJCSkVusdOnSoOnbsqLlz5yorK0vPP/+8fv31V/3973+3Kbd161atWrVKjzzyiPz8/LRo0SLdcsst2rlzp6688kpJZ+NV//79FRwcrD/+8Y8ymUx6+eWXddNNN2nr1q3q27evzTrPj1fx8fH6z3/+ozfffFMLFizQpZdeKknWExEA1F5133VHx1sfffSR4uPjFRUVpenTp8vb21tpaWkaOHCg/vnPf+q6666z2e4999yjrl276qmnnpJhGDWq85w5c+Tl5aXJkycrPz9fCxcuVExMjHbv3q2AgABruYsZa+7du1e33nqrevXqpVmzZsnPz0/ffPONzUExZ4yPPvroI7311lsaP368Lr30UnXs2FF5eXmKjo62HsRs1aqVPvzwQ40ZM0aFhYV67LHHarUtwNkc+ewuX75cN9xwg/785z/r2WeflSQlJyeroKBAy5Ytk4+Pjx566CEdOnRIGRkZeu211+xuy96+cGFhoV599VXde++9evDBB3X8+HEtWbJEcXFx2rlzp3r37m1dfsyYMVq2bJni4+P1u9/9TmfOnNE///lPZWVl6ZprrqlV+y8U5/bv3697771XDz30kB588EFdccUVdpc/ceKE+vfvr6+//lqjR4/W1VdfrV9++UX/+Mc/9OOPP1rHQxfjueee0+233677779fJSUlWrlype655x6tW7dOCQkJNmXtxSdHrF69WqdOndK4cePUsmVL7dy5Uy+88IJ+/PFHrV692lquujH2kCFDHB4PXnPNNbrsssv01ltvKSkpyWbeqlWrdMkllyguLs5ufRcuXKgJEyYoKCjImsCp6viBo79/1e2LAJ7O0f3PixUUFKS77rpLq1at0rPPPisfHx/rvDfffFOGYej++++vch2OHEc7efKkBg4cqMOHD1uP661YscJuIh8NnAGHbdmyxZBkrF692jptwIABxoABAyqVTUpKMiIiIqzvf/75Z0OSMX369EplHV3HwYMHDUlGcHCwkZ+fb1N20KBBRs+ePY3Tp09bp5WVlRnXX3+90bVrV4fbeODAAcPb29u46667jNLSUpt5ZWVl1v+fOnWq0rIPPfSQERgYaFOHAQMGGJKMl156yabsa6+9Znh7exv//Oc/baa/9NJLhiRj+/bthmEYxnfffWf4+PgYc+bMsSm3Z88eo0mTJjbTL7QtR4wcOdLw9vY2du3aVWleebsfe+wxQ5JNnY8fP2506tTJ6Nixo7W/yj8n3bt3N4qLi61ln3vuOUOSsWfPHsMwDOPMmTNGp06djIiICOPXX3+1u03DcPxvm5aWZkgy+vXrZ5w5c8ZmfeV98/e//906rbi42AgPDzcSExOt0+644w6jR48e1XcY4MZCQkKM5ORku/NKSkqM0NBQ48orrzSKioqs09etW2dIMqZNm2adduONNxrNmjUzvv/+e5t1nPv9LP/eHTx40DrN0fh4foyvzhdffFHpN+h85b8TaWlplead/xs0ffp0Q5Jx++2325R7+OGHDUnGl19+abOsJOOzzz6zTvv+++8Nf39/46677rJOu/POOw1fX1/j22+/tU47dOiQ0axZM+PGG2+0TqsqXj399NOV+hRA7TnyXXd0vFVWVmZ07drViIuLqzQu7NSpkzF48OBK27333ntrXOfysVTbtm2NwsJC6/S33nrLkGQ899xz1mkXO9ZcsGCBIcn4+eefL1gfR8ZHF4rp5f1wLkmGt7e3sXfvXpvpY8aMMVq3bm388ssvNtOHDx9uhISE2P19AdyBo5/dKVOmGN7e3sa2bduM1atXG5KMhQsX2iyTnJxc6TtjGFXvC585c8Zmv8swDOPXX381wsLCjNGjR1unffTRR4Yk45FHHqm0/vKYVpuxlL04FxERYUgyNmzYYHdeUlKS9f20adMMScY777xzwXrZG3MaRkW83LJli3WavXh0fvwoKSkxrrzySmPgwIGV2mgvPjnCXoyaO3eu4eXlZTOedmSMXdV48Pz+mzJlimEymYyjR49apxUXFxvNmze3+fvb68MePXrYPRZzfr/W5Pevqn0RwJM5MiatSQy2950+//jqxo0bDUnGhx9+aLOuXr162ZSzF0sdPY7217/+1ZBkvPfee9ZpRUVFRrdu3SqtEw0bt/NqgBITE23Owjh69Kg++ugjDR06VMePH9cvv/yiX375RUeOHFFcXJwOHDhg9zY19rz33nsqKyvTtGnTKt0L8NxbEZx79l/5Nvv3769Tp07p3//+t81yfn5+GjVqlM201atXq3v37urWrZu1vr/88osGDhwoSdaM7TvvvKOysjINHTrUplx4eLi6du1aKbNrb1vVKSsr03vvvafbbrvN7tlH5e1ev369rrvuOptbUQQFBWns2LH67rvvrLdVKzdq1Cibh1L1799f0tlbgklnb3lz8OBBPfbYY5Wes1O+zdr8bR988EGbDPu5df3tb39rfe/r66vrrrvOWh/p7PN+fvzxR+3atevCHQa4uebNm+vTTz/VoUOHKs377LPPlJ+fr4cfflj+/v7W6QkJCerWrZv19nw///yztm3bptGjR6tDhw4266juPso1iY81UX6lycaNG+v0fv/Jyck27ydMmCDpbMw7l9lsVlRUlPV9hw4ddMcdd2jjxo0qLS1VaWmp0tPTdeedd+qyyy6zlmvdurXuu+8+ffLJJyosLLRZ54XiFYC6V9V33dHx1u7du3XgwAHdd999OnLkiLXcyZMnNWjQIG3btk1lZWU22/n9739f6zqPHDlSzZo1s76/++671bp160rx6WLGmuVjsPfff79S3cs5Y3w0YMAARUZGWt8bhqG3335bt912mwzDsKlzXFycCgoKuBUM3FJNPrszZsxQjx49lJSUpIcfflgDBgzQI488UqPtnb8vLJ191kX5fldZWZmOHj2qM2fO6JprrrH53rz99tvy8vLS9OnTK633Yp5vd6E416lTpwteBXGut99+W1dddZXdu0fU1XP3zh2f/vrrryooKFD//v3txpXz41NttnHy5En98ssvuv7662UYhr744gtJFzfGvpBhw4bJYrHonXfesU5LT0/XsWPHNGzYsFqt83w1+f2ral8EgOP7n3UhJiZGbdq00RtvvGGd9tVXX+lf//qXzfGxC3HkONqGDRvUtm1b3X777dZp/v7+evDBB+uoFXAX3M6rAerUqZPN+2+++UaGYeiJJ57QE088YXeZ/Px8tW3bttp1f/vtt/L29q520LR3715NnTpVH330UaWDYuX35i/Xtm1bm2SCdPa+/l9//fUFb9GSn59vLWcYhrp27Wq33PkPlLO3rer8/PPPKiwstN6O5kK+//77SreikaTu3btb55+7jvMHhZdccomks4NW6WxfS6pyu7X5257/+SjXrl27SgPTSy65RP/617+s7ydPnqxNmzbpuuuuU5cuXRQbG6v77rtPN9xwwwXrCLib+fPnKykpSe3bt1dUVJR+85vfaOTIkbrsssv0/fffS5Ld2yl069ZNn3zyiaSKZGd1ccGemsTHmujUqZNSUlL07LPP6o033lD//v11++2367e//W2tb+UlqVJ87dy5s7y9vSvdc9teHL788st16tQp/fzzz5LOPszZXt92795dZWVl+uGHH9SjRw+bNgGoH1V91729vR0abx04cECSKt0y5VwFBQXWMY90cd/z8+vj5eWlLl26VIpPFzPWHDZsmF599VX97ne/05/+9CcNGjRIQ4YM0d133209ocgZ46Pz++Xnn3/WsWPH9Le//U1/+9vfqqwz4E5q8tn19fXV0qVLde2118rf319paWk1PnB+oZiyfPly/fWvf9W///1vWSwWu+W//fZbtWnTRi1atKjRNmtbJ0fj37fffqvExMS6rFIl69at05NPPqndu3fbPBfKXv/XNm7n5ORo2rRp+sc//mHd5y1XPga+mDH2hVx11VXq1q2bVq1apTFjxkg6eyuvSy+91Jo4v1g1+f2ral8EgOP7n3XB29tb999/vxYvXqxTp04pMDBQb7zxhvz9/XXPPfdUu7wjx9G+//57de7cuVK5Ll261E0j4DZIolwkLy8vu/d3rskDhGu6jnPP8JBkPePh8ccfv+CZLnX55T127JgGDBig4OBgzZo1S507d5a/v78+//xzTZ48udJZfOfXt7zOPXv2tN4P93zt27e3lvPy8tKHH354wasrqtuWq1zo7Gp7f+sLqc3f9kJ94Eh9unfvrv3792vdunXasGGD3n77bS1atEjTpk3TzJkzHa434EpDhw5V//799e677yo9PV1PP/20/vKXv9icneYsNY2PNfXXv/5VDzzwgN5//32lp6frkUcesd5L1t4Ar1xNf5PqizvFbMDTnPtdd3S8VR7Dnn76aZtnDNgrW64+vucXM9YMCAjQtm3btGXLFn3wwQfasGGDVq1apYEDByo9PV0+Pj4OjY9qGn8vNJ7/7W9/e8GDdLV9niLgTDX97G7cuFGSdPr0aR04cKDGB+ztfd9ff/11PfDAA7rzzjs1adIkhYaGWh8YXH7imqNqM5a6UJyry/h3MWO8f/7zn7r99tt14403atGiRWrdurVMJpPS0tK0YsWKSuVrU+/S0lINHjxYR48e1eTJk9WtWzc1bdpUP/30kx544IGLHgNXZ9iwYZozZ45++eUXNWvWTP/4xz907733qkmTujnkVZPfv6r2RcqfoQCgwrnxrS72Z883cuRIPf3003rvvfd07733asWKFbr11lsdOhGxLo7rofEgiXKRLrnkEpvLuMqVn+1crqqDUo6u40LKz2gwmUyKiYlxaJkL6dy5s8rKyrRv374LDg4+/vhjHTlyRO+8845uvPFG6/SDBw/WaDtffvmlBg0aVGXfdO7cWYZhqFOnTrr88ssdXn9NtGrVSsHBwfrqq6+qLBcREaH9+/dXml5+e56IiIgabbdz586Szl5KeKG/W13+bR3VtGlTDRs2TMOGDVNJSYmGDBmiOXPmaMqUKTa3PwLcWevWrfXwww/r4YcfVn5+vq6++mrNmTPH+mD3/fv3Vzozbf/+/dbvcfl3r7q4cL66iI/V6dmzp3r27KmpU6dqx44duuGGG/TSSy/pySeftJ79fezYMZtlqvo9Of8AxjfffKOysrJKDxEtPwPvXP/5z38UGBhoPdM7MDDwgnHS29vbetCyKvWZxAE8SVXfdR8fH4fGW+Vjl+Dg4HoZl5wfdwzD0DfffONQMsHRsaZ09izFQYMGadCgQXr22Wf11FNP6c9//rO2bNlibWd146NLLrmkUuyVHB/Pt2rVSs2aNVNpaWm9jfmAulCTz+6//vUvzZo1S6NGjdLu3bv1u9/9Tnv27LE5kFWbccCaNWt02WWX6Z133rFZ/vzbdnXu3FkbN27U0aNHL3g1Sm3GUherc+fO1Y45L6Zeb7/9tvz9/bVx40b5+flZp6elpdW8shewZ88e/ec//9Hy5cs1cuRI6/SMjAybco6OsWv6ORg2bJhmzpypt99+W2FhYSosLNTw4cOrXc7R7dT09+9C+yIkUYCqx6TOiMFXXnml+vTpozfeeEPt2rVTTk6OXnjhhVqv73wRERHat2+fDMOwiSnffPNNnW0D7oFnolykzp0769///rf1ViaS9OWXX2r79u025QIDAyVVDgQ1WceFhIaG6qabbtLLL7+sw4cPV5p/7nqrc+edd8rb21uzZs2qdLZIeaa1PBN7bua1pKREixYtcng7Q4cO1U8//aRXXnml0ryioiKdPHlSkjRkyBD5+Pho5syZlTK9hmHoyJEjDm/zQry9vXXnnXdq7dq1+uyzzyrNL9/ub37zG+3cuVOZmZnWeSdPntTf/vY3dezYscb3jb366qvVqVMnLVy4sNLnonybdfm3dcT5/enr66vIyEgZhmFzWTzgrkpLSyvdMis0NFRt2rRRcXGxrrnmGoWGhuqll16yuZXBhx9+qK+//loJCQmSzh4QuPHGG7V06VLl5OTYrK+qs07qIj5eSGFhoc6cOWMzrWfPnvL29ra2JTg4WJdeeqm2bdtmU66q7aemptq8Lx9Qnr+Tl5mZaXPf7B9++EHvv/++YmNj5ePjIx8fH8XGxur999+3uRQ7Ly9PK1asUL9+/RQcHFxtO5s2bSrJ/u8lgNqr6rvu6HgrKipKnTt31jPPPKMTJ05U2kZdj0v+/ve/6/jx49b3a9as0eHDhx06COXoWPPo0aOV5pefSFQeWx0ZH3Xu3FkFBQU2t3c4fPiw3n333WrrKp39/UhMTNTbb79t9+BiXfctUFcc/exaLBY98MADatOmjZ577jktW7ZMeXl5mjhxok352owD7I2/Pv30U5v9Nuns81QMw7B7hX35srUZS12sxMREffnll3bjRXm9yg/in1uv0tLSC95C7Vw+Pj7y8vKyOZP7u+++03vvvXeRNbfdxrn1Lf//c889Z1PO0TF2TT8H3bt3V8+ePbVq1SqtWrVKrVu3tjmh6UKaNm3q0DYc/f2rbl8EQNVjUmfF4BEjRig9PV0LFy5Uy5Yt6zShGRcXp59++kn/+Mc/rNNOnz5tdwyKho0rUS7S6NGj9eyzzyouLk5jxoxRfn6+XnrpJfXo0cPmXvgBAQGKjIzUqlWrdPnll6tFixa68sordeWVVzq8jqqkpqaqX79+6tmzpx588EFddtllysvLU2Zmpn788Ud9+eWXDq2nS5cu+vOf/6zZs2erf//+GjJkiPz8/LRr1y61adNGc+fO1fXXX69LLrlESUlJeuSRR+Tl5aXXXnutRpezjRgxQm+99ZZ+//vfa8uWLbrhhhtUWlqqf//733rrrbe0ceNGXXPNNercubOefPJJTZkyRd99953uvPNONWvWTAcPHtS7776rsWPH6vHHH3d4uxfy1FNPKT09XQMGDNDYsWPVvXt3HT58WKtXr9Ynn3yi5s2b609/+pPefPNNxcfH65FHHlGLFi20fPlyHTx4UG+//bb1vtmO8vb21uLFi3Xbbbepd+/eGjVqlFq3bq1///vf2rt3r/VS97r62zoiNjZW4eHhuuGGGxQWFqavv/5aL774ohISEmwe7Aq4q+PHj6tdu3a6++67ddVVVykoKEibNm3Srl279Ne//lUmk0l/+ctfNGrUKA0YMED33nuv8vLy9Nxzz6ljx442O/LPP/+8+vXrp6uvvlpjx45Vp06d9N133+mDDz7Q7t277W6/LuLjhXz00UcaP3687rnnHl1++eU6c+aMXnvtNevBi3K/+93vNG/ePP3ud7/TNddco23btuk///nPBdd78OBB3X777brllluUmZmp119/Xffdd5+uuuoqm3JXXnml4uLi9Mgjj8jPz886kD33QMSTTz6pjIwM9evXTw8//LCaNGmil19+WcXFxZo/f75D7Sx/eP2f//xnDR8+XCaTSbfddpt1ZxpA7VT3XXdkvOXt7a1XX31V8fHx6tGjh0aNGqW2bdvqp59+0pYtWxQcHKy1a9fWWZ1btGihfv36adSoUcrLy9PChQvVpUsXhx7U6ehYc9asWdq2bZsSEhIUERGh/Px8LVq0SO3atVO/fv0kOTY+Gj58uCZPnqy77rpLjzzyiE6dOqXFixfr8ssvd/iB8PPmzdOWLVvUt29fPfjgg4qMjNTRo0f1+eefa9OmTXYTPoA7cOSzW/48js2bN6tZs2bq1auXpk2bpqlTp+ruu+/Wb37zG0kV44BHHnlEcXFx8vHxqfaKgltvvVXvvPOO7rrrLiUkJOjgwYN66aWXFBkZaXPA++abb9aIESP0/PPP68CBA7rllltUVlamf/7zn7r55ps1fvx4STUfS12sSZMmac2aNbrnnns0evRoRUVF6ejRo/rHP/6hl156SVdddZV69Oih6OhoTZkyxXolzcqVKyudYGNPQkKCnn32Wd1yyy267777lJ+fr9TUVHXp0sUm8XsxunXrps6dO+vxxx/XTz/9pODgYL399tuVno0iOTbGrs14cNiwYZo2bZr8/f01ZswYh/bPo6KitHjxYj355JPq0qWLQkND7T5HxdHfv+r2RQBUPyZ1Rgy+77779Mc//lHvvvuuxo0bV+n5yhfjoYce0osvvqh7771Xjz76qFq3bm197orEnRYaFQMO27JliyHJWL16tc30119/3bjssssMX19fo3fv3sbGjRuNpKQkIyIiwqbcjh07jKioKMPX19eQZEyfPr1G6zh48KAhyXj66aft1u/bb781Ro4caYSHhxsmk8lo27atceuttxpr1qypcVuXLl1q9OnTx/Dz8zMuueQSY8CAAUZGRoZ1/vbt243o6GgjICDAaNOmjfHHP/7R2LhxoyHJ2LJli7XcgAEDjB49etjdRklJifGXv/zF6NGjh3U7UVFRxsyZM42CggKbsm+//bbRr18/o2nTpkbTpk2Nbt26GcnJycb+/fsd2pYjvv/+e2PkyJFGq1atDD8/P+Oyyy4zkpOTjeLiYmuZb7/91rj77ruN5s2bG/7+/sZ1111nrFu3zmY9F/qclP/90tLSbKZ/8sknxuDBg41mzZoZTZs2NXr16mW88MILNmUc+dumpaUZkoxdu3ZVatuF+ub8z9jLL79s3HjjjUbLli0NPz8/o3PnzsakSZMq/T0Ad1VcXGxMmjTJuOqqq6zfqauuuspYtGiRTblVq1ZZY1yLFi2M+++/3/jxxx8rre+rr74y7rrrLut3/oorrjCeeOIJ6/zy793Bgwet0xyNj/Z+J6ry3//+1xg9erTRuXNnw9/f32jRooVx8803G5s2bbIpd+rUKWPMmDFGSEiI0axZM2Po0KFGfn5+pd+d6dOnG5KMffv2GXfffbfRrFkz45JLLjHGjx9vFBUV2axTkpGcnGy8/vrrRteuXQ0/Pz+jT58+Nu0p9/nnnxtxcXFGUFCQERgYaNx8883Gjh07bMpUFa8MwzBmz55ttG3b1vD29q7UvwBqpibfdUfGW4ZhGF988YUxZMgQ63ghIiLCGDp0qLF58+ZK2/35559rXOfysdSbb75pTJkyxQgNDTUCAgKMhIQE4/vvv7cpe7Fjzc2bNxt33HGH0aZNG8PX19do06aNce+99xr/+c9/rOtxdHyUnp5uXHnllYavr69xxRVXGK+//rq1H85VHlPtycvLM5KTk4327dsbJpPJCA8PNwYNGmT87W9/q3E/AvWpqs9udna20aRJE2PChAk2y5w5c8a49tprjTZt2hi//vqrddqECROMVq1aGV5eXtbvT1X7wmVlZcZTTz1lREREWMco69atszvWOnPmjPH0008b3bp1M3x9fY1WrVoZ8fHxRnZ2trVMTcdS9uJcRESEkZCQYLevIiIijKSkJJtpR44cMcaPH2+0bdvW8PX1Ndq1a2ckJSUZv/zyi7XMt99+a8TExBh+fn5GWFiY8X//939GRkaGQ2PMJUuWWMdw3bp1M9LS0mocn6qzb98+IyYmxggKCjIuvfRS48EHHzS+/PJLu/vA1Y2xDePC40F7/WcYhnHgwAFDkiHJ+OSTTyrNtzduz83NNRISEoxmzZoZkowBAwYYhlHxO3T+WLe63z9H90UAT+TomNTRGGzvOz1gwADr9/h8v/nNbwxJlfZNDcP+d97R42iGcXZfPSEhwQgICDBatWpl/OEPfzDefvttQ5KRlZXlUP/A/XkZBk/DAQDA08yYMUMzZ87Uzz//rEsvvbTKsl5eXkpOTtaLL75YT7UDUFdq8l13Fx9//LFuvvlmrV69WnfffberqwMAAIAG7q677tKePXvq7VklCxcu1MSJE/Xjjz+qbdu29bJNOBfPRAEAAAAAAAAANDqHDx/WBx98oBEjRjhl/UVFRTbvT58+rZdfflldu3YlgdKI8EwUD5Kbm1vl/ICAAIWEhNRTberHiRMn7D747VytWrWyPggPAFzh6NGjKikpueB8Hx8ftWrVqh5rBAB1r6SkpNrnejS2sSgANHSMUwE0VAcPHtT27dv16quvymQy6aGHHnLKdoYMGaIOHTqod+/eKigo0Ouvv65///vfeuONN5yyPbgGSRQP0rp16yrnJyUladmyZfVTmXryzDPP2Dz02J6DBw+qY8eO9VMhALBjyJAh2rp16wXnR0RE6Lvvvqu/CgGAE+zYsUM333xzlWXS0tIYlwGAG2GcCqCh2rp1q0aNGqUOHTpo+fLlCg8Pd8p24uLi9Oqrr+qNN95QaWmpIiMjtXLlSg0bNswp24Nr8EwUD7Jp06Yq57dp00aRkZH1VJv68d///lf//e9/qyzTr18/+fv711ONAKCy7Oxs/frrrxecHxAQoBtuuKEeawQAde/XX39VdnZ2lWV69OhR7Yk/AID6wzgVAACSKAAAAAAAAAAAAHbxYHkAAAAAAAAAAAA7GuQzUcrKynTo0CE1a9ZMXl5erq4OACcwDEPHjx9XmzZt5O1NvrcqxESg8SMmOo6YCDR+xETHEROBxo+Y6DhiItD4OSsmNsgkyqFDh9S+fXtXVwNAPfjhhx/Url07V1fDIfPmzdOUKVP06KOPauHChZKk06dP6w9/+INWrlyp4uJixcXFadGiRQoLC7Mul5OTo3HjxmnLli0KCgpSUlKS5s6dqyZNHAvRxETAczSkmOgqxETAcxATq0dMBDwHMbF6xETAc9R1TGyQSZRmzZpJOtsZwcHBVZa1WCxKT09XbGysTCZTfVTPpTypvbS1cSpvq9lsVqdOnazfd3e3a9cuvfzyy+rVq5fN9IkTJ+qDDz7Q6tWrFRISovHjx2vIkCHavn27JKm0tFQJCQkKDw/Xjh07dPjwYY0cOVImk0lPPfWUQ9smJroP+te5PLl/CwsL1b59+wYTE12JmFh79EcF+qKCO/YFMdFxxMTaoz8q0Be23K0/iImOIybWHv1Rgb6o4I594ayY2CCTKOWX3AUHBzsU9AIDAxUcHOw2f0xn8qT20tbGqbyt5cGuIVxie+LECd1///165ZVX9OSTT1qnFxQUaMmSJVqxYoUGDhwoSUpLS1P37t2VlZWl6Ohopaena9++fdq0aZPCwsLUu3dvzZ49W5MnT9aMGTPk6+tb7faJie6D/nUu+rdhxERXIybWHv1Rgb6o4M59QUysHjGx9uiPCvSFLXftD2Ji9YiJtUd/VKAvKrhzX9R1TGyQSRQAcCfJyclKSEhQTEyMTRIlOztbFotFMTEx1mndunVThw4dlJmZqejoaGVmZqpnz542t/eKi4vTuHHjtHfvXvXp06fS9oqLi1VcXGx9X1hYKOnsj5fFYqmyruXzqyuH2qF/ncuT+9cT2wwAAAAAgDsgiQIAF2HlypX6/PPPtWvXrkrzcnNz5evrq+bNm9tMDwsLU25urrXMuQmU8vnl8+yZO3euZs6cWWl6enq6AgMDHap3RkaGQ+VQO/Svc3li/546dcrVVQAAAAAAwCORRAGAWvrhhx/06KOPKiMjQ/7+/vW23SlTpiglJcX6vvx+j7GxsQ5dkpyRkaHBgwe73aWWjQH961ye3L/lV5wBAAAAAID6RRIFAGopOztb+fn5uvrqq63TSktLtW3bNr344ovauHGjSkpKdOzYMZurUfLy8hQeHi5JCg8P186dO23Wm5eXZ51nj5+fn/z8/CpNN5lMDh9YrklZ1Bz961ye2L+e1l4AAAAAANyFt6srAAAN1aBBg7Rnzx7t3r3b+rrmmmt0//33W/9vMpm0efNm6zL79+9XTk6OzGazJMlsNmvPnj3Kz8+3lsnIyFBwcLAiIyPrvU0AAAAAAAAAKnAlCgDUUrNmzXTllVfaTGvatKlatmxpnT5mzBilpKSoRYsWCg4O1oQJE2Q2mxUdHS1Jio2NVWRkpEaMGKH58+crNzdXU6dOVXJyst2rTQAAAAAAAADUH65EAQAnWrBggW699VYlJibqxhtvVHh4uN555x3rfB8fH61bt04+Pj4ym8367W9/q5EjR2rWrFkurDUAAAAuxowZM+Tl5WXz6tatm3X+6dOnlZycrJYtWyooKEiJiYnWW7qWy8nJUUJCggIDAxUaGqpJkybpzJkz9d0UAAAAj8eVKABQhz7++GOb9/7+/kpNTVVqauoFl4mIiND69eudXDMAAADUpx49emjTpk3W902aVOx+T5w4UR988IFWr16tkJAQjR8/XkOGDNH27dslnX3OXkJCgsLDw7Vjxw4dPnxYI0eOlMlk0lNPPVXvbQEAAPBkXIkCAACAi8ZZ1wBgq0mTJgoPD7e+Lr30UklSQUGBlixZomeffVYDBw5UVFSU0tLStGPHDmVlZUmS0tPTtW/fPr3++uvq3bu34uPjNXv2bKWmpqqkpMSVzQIAAPA4NboSZcaMGZo5c6bNtCuuuEL//ve/JZ3dOf7DH/6glStXqri4WHFxcVq0aJHCwsKs5XNycjRu3Dht2bJFQUFBSkpK0ty5c23OynGKkBCpqMi526hrhuHqGgCA+/DycnUNqhcQIL35ZsVvDnEcHoazruuRM2Li+TGsrhET4WEOHDigNm3ayN/fX2azWXPnzlWHDh2UnZ0ti8WimJgYa9lu3bqpQ4cOyszMVHR0tDIzM9WzZ0+bfem4uDiNGzdOe/fuVZ8+fexus7i4WMXFxdb3hYWFkiSLxSKLxVJlfcvnV1fOLYWE1PkqLQEB0tKlsoSHOycmFhTU/TqdpEF/NpzA3frDXeoBN8I4EahzNc5csHMMAAAAe8rPuj5f+VnXK1as0MCBAyVJaWlp6t69u7KyshQdHW0963rTpk0KCwtT7969NXv2bE2ePFkzZsyQr69vfTcHAGqtb9++WrZsma644godPnxYM2fOVP/+/fXVV18pNzdXvr6+at68uc0yYWFhys3NlSTl5ubaJFDK55fPu5C5c+dWOvFROntlS2BgoEN1z8jIcKicW3nzTaetOmPpUuesuAHezrdBfjacyF3649SpU66uAgA0ejVOorBzDAAAAHtccdY1ALij+Ph46/979eqlvn37KiIiQm+99ZYCAgKctt0pU6YoJSXF+r6wsFDt27dXbGysgoODq1zWYrEoIyNDgwcPlslkclodncJJV6JkLF2qwaNHy8SVKA33s+EE7tYf5VecAQCcp8ZJFHaOAQAAcD5XnXXtsbeuccJBWMv/1mlx1gHeBtTPDfqzUcfcsS/cqS6Oat68uS6//HJ98803Gjx4sEpKSnTs2DGbuJiXl2c9YTE8PFw7d+60WUf5c6TsndRYzs/PT35+fpWmm0wmhw/21qSs23DirbtNRUXOSaI0tD5WA/1sOJG79Ic71AEAGrsaJVEa9M6xE8/2cZpa7By4406Os9DWxsmT2goAjYmrzrrm1jV1j1vXVGiQnw0ncae+aIi3rjlx4oS+/fZbjRgxQlFRUTKZTNq8ebMSExMlSfv371dOTo7MZrMkyWw2a86cOcrPz1doaKiks3+D4OBgRUZGuqwdAAAAnqhGSZQGvXPsrJ1BZ7qIHU132slxNtraOG3ZssXVVQAAXIT6OuuaW9fUHW5dU6FBfzbqmDv2RUO4dc3jjz+u2267TRERETp06JCmT58uHx8f3XvvvQoJCdGYMWOUkpKiFi1aKDg4WBMmTJDZbFZ0dLQkKTY2VpGRkRoxYoTmz5+v3NxcTZ06VcnJyXavNAEAAIDz1Ph2XudqUDvHztoZdKZa7Gi6406Os9DWxqm8rTfffLOrqwIAuAj1ddY1t66pe9y6pkKD/Gw4iTv1hbvUoyo//vij7r33Xh05ckStWrVSv379lJWVpVatWkmSFixYIG9vbyUmJqq4uFhxcXFatGiRdXkfHx+tW7dO48aNk9lsVtOmTZWUlKRZs2a5qkkAAAAe66KSKA1q59hZO4POdBE7B+60k+NstLVx8pR2AkBjwVnXAFBh5cqVVc739/dXamqqUlNTL1gmIiJC6xvgbfAAAAAamxolUdg5BgAAgD2cdQ0AAAAAaIxqlERh5xgAAAD2cNY1AAAAAKAxqlEShZ1jAAAAAAAAAADgKbxdXQEAAAAAAAAAAAB3RBIFAAAAAAAAAADADpIoAAAAAAAAAAAAdpBEAQAAAAAAAAAAsIMkCgAAAAAAAAAAgB0kUQAAAAAAAAAAAOwgiQIAAAAAAAAAAGAHSRQAAAAAAAAAAAA7SKIAAAAAAAAAAADYQRLFnXl51fwVEnJ22ZCQ2i1/sS8AAAAAAAAAABoJkigAAAAAAAAAAAB2NHF1BQAAAAAAAADA7YSESEVFrq4FABfjShQAAAAAAAAAAAA7SKIAAAAAAAAAAADYQRIFAAAAAAAAAADADpIoAAAAAAAAAAAAdpBEAQAAAAAAAAAAsIMkCgAAAAAAAAAAgB0kUQAAgC0vL/d8hYScrV9ISOV5AAAAAAAATkASBQAAAAAAAEC9mDdvnry8vPTYY49Zp50+fVrJyclq2bKlgoKClJiYqLy8PJvlcnJylJCQoMDAQIWGhmrSpEk6c+ZMPdcegCciiQIAAAAAAADA6Xbt2qWXX35ZvXr1spk+ceJErV27VqtXr9bWrVt16NAhDRkyxDq/tLRUCQkJKikp0Y4dO7R8+XItW7ZM06ZNq+8mAPBAJFEAAAAAAAAAONWJEyd0//3365VXXtEll1xinV5QUKAlS5bo2Wef1cCBAxUVFaW0tDTt2LFDWVlZkqT09HTt27dPr7/+unr37q34+HjNnj1bqampKikpcVWTAHiIJq6uAAAAAAAAAIDGLTk5WQkJCYqJidGTTz5pnZ6dnS2LxaKYmBjrtG7duqlDhw7KzMxUdHS0MjMz1bNnT4WFhVnLxMXFady4cdq7d6/69OlTaXvFxcUqLi62vi8sLJQkWSwWWSyWKutaPt8SEFC7xjYy5f3gtP6o5u/hTqyfjQZUZ2dxx75wVl1IogAAAAAAAABwmpUrV+rzzz/Xrl27Ks3Lzc2Vr6+vmjdvbjM9LCxMubm51jLnJlDK55fPs2fu3LmaOXNmpenp6ekKDAx0qN4ZS5c6VM5TOK0/1q93znqdKCMjw9VVcBvu1BenTp1yynpJogAAAAAAAABwih9++EGPPvqoMjIy5O/vX2/bnTJlilJSUqzvCwsL1b59e8XGxio4OLjKZS0WizIyMjR49GiZioqcXVW3ZwkIUMbSpc7rj4KCul+nk1g/G4MHy2Qyubo6LuWOfVF+xVldI4kCAAAAAAAAwCmys7OVn5+vq6++2jqttLRU27Zt04svvqiNGzeqpKREx44ds7kaJS8vT+Hh4ZKk8PBw7dy502a9eXl51nn2+Pn5yc/Pr9J0k8nk8AFfU1ERSZRzOK0/3OQAfE3U5HPU2LlTXzirHjxYHgAAAAAAAIBTDBo0SHv27NHu3butr2uuuUb333+/9f8mk0mbN2+2LrN//37l5OTIbDZLksxms/bs2aP8/HxrmYyMDAUHBysyMrLe2wTAs3AlCgAAAAAAAACnaNasma688kqbaU2bNlXLli2t08eMGaOUlBS1aNFCwcHBmjBhgsxms6KjoyVJsbGxioyM1IgRIzR//nzl5uZq6tSpSk5Otnu1CQDUJZIoAAAAAAAAAFxmwYIF8vb2VmJiooqLixUXF6dFixZZ5/v4+GjdunUaN26czGazmjZtqqSkJM2aNcuFtQbgKUiiAAAAAAAAAKg3H3/8sc17f39/paamKjU19YLLREREaP369U6uGQBUxjNRAAAAAAAAAAAA7CCJAgAAAAAAAAAAYAdJFAAAAAAAAAAAADtIogAAAAAA4ETz5s2Tl5eXHnvsMeu006dPKzk5WS1btlRQUJASExOVl5dns1xOTo4SEhIUGBio0NBQTZo0SWfOnKnn2gMAAHg2kigAAAAAADjJrl279PLLL6tXr1420ydOnKi1a9dq9erV2rp1qw4dOqQhQ4ZY55eWliohIUElJSXasWOHli9frmXLlmnatGn13QQAAACPRhIFAAAAdY6zrgFAOnHihO6//3698soruuSSS6zTCwoKtGTJEj377LMaOHCgoqKilJaWph07digrK0uSlJ6ern379un1119X7969FR8fr9mzZys1NVUlJSWuahIAAIDHaXIxC8+bN09TpkzRo48+qoULF0o6u3P8hz/8QStXrlRxcbHi4uK0aNEihYWFWZfLycnRuHHjtGXLFgUFBSkpKUlz585VkyYXVR0AAAC4garOuv7ggw+0evVqhYSEaPz48RoyZIi2b98uqeKs6/DwcO3YsUOHDx/WyJEjZTKZ9NRTT7miKQBwUZKTk5WQkKCYmBg9+eST1unZ2dmyWCyKiYmxTuvWrZs6dOigzMxMRUdHKzMzUz179rTZl46Li9O4ceO0d+9e9enTp9L2iouLVVxcbH1fWFgoSbJYLLJYLFXWtXx+deXcUkBAna/S8r91Wpyw7rMrbjj93KA/G07gbv3hLvUAgMas1lkLdo4BAABwvnPPuj73gGH5WdcrVqzQwIEDJUlpaWnq3r27srKyFB0dbT3retOmTQoLC1Pv3r01e/ZsTZ48WTNmzJCvr6+rmgUANbZy5Up9/vnn2rVrV6V5ubm58vX1VfPmzW2mh4WFKTc311rm3ARK+fzyefbMnTtXM2fOrDQ9PT1dgYGBDtU7IyPDoXJu5c03nbbqjKVLnbPi9euds14napCfDSdyl/44deqUq6sAAI1erZIo7BwDgLR48WItXrxY3333nSSpR48emjZtmuLj4yVxZR4Az8RZ1/WEs66dqkF/NuqYO/aFO9XlQn744Qc9+uijysjIkL+/f71td8qUKUpJSbG+LywsVPv27RUbG6vg4OAql7VYLMrIyNDgwYNlMpmcXdW6FRJS56u0BAQoY+lSDR49WqaiojpfvwoK6n6dTtKgPxtO4G79UT72AQA4T62O0jXInWNn7Qy6Gafv/FZbgfrboXHHHTpnoa3uqV27dpo3b566du0qwzC0fPly3XHHHfriiy/Uo0cPrswD4HE467oecdZ1vWiQnw0ncae+aAhnXWdnZys/P19XX321dVppaam2bdumF198URs3blRJSYmOHTtmExfz8vIUHh4uSQoPD9fOnTtt1lv+HKnyMufz8/OTn59fpekmk8nhg701Kes2nJHk+B9TUZFzkigNrY/VQD8bTuQu/eEOdQCAxq7GSZQGu3PsrJ1BN+Wy9rpg59idduiczZPaumXLFldXoVq33Xabzfs5c+Zo8eLFysrKUrt27bgyD4BH4azresZZ107VoD8bdcwd+6IhnHU9aNAg7dmzx2baqFGj1K1bN02ePFnt27eXyWTS5s2blZiYKEnav3+/cnJyZDabJUlms1lz5sxRfn6+QkNDJZ3dHwgODlZkZGT9NggAAMCD1SiJ0qB3jp21M+hmnL7zW5163Dl2xx06Z/HEtt58882urkqNlJaWavXq1Tp58qTMZrPTrsyTuHWNO6t0NWBD7GfJbfu6yqstG2pfO6ghfGc567qecdZ1vWiQnw0ncae+cJd6VKVZs2a68sorbaY1bdpULVu2tE4fM2aMUlJS1KJFCwUHB2vChAkym82Kjo6WJMXGxioyMlIjRozQ/PnzlZubq6lTpyo5Odlu3AMAAIBz1CiJ0qB3jp21M+imXNZeF+zQuNMOnbN5Wlsbgj179shsNuv06dMKCgrSu+++q8jISO3evdspV+ZJ3LqmIbBeDdgAb10jye372u7Vlg21rx3UEG5dw1nXAFAzCxYskLe3txITE22en1fOx8dH69at07hx42Q2m9W0aVMlJSVp1qxZLqw1AACA56lREoWdYwCwdcUVV2j37t0qKCjQmjVrlJSUpK1btzp1m9y6xn1VuhqwAd26xoab9nWVV1s21L52UEO4dQ1nXQNA1T7++GOb9/7+/kpNTVVqauoFl4mIiND6Rn6iAAAAgLurURKFnWMAsOXr66suXbpIkqKiorRr1y4999xzGjZsmFOuzJO4dU1DYL0asKH1cTk372u7V1s21L52UIP7vl4AZ10DAAAAABqaGj9YvjrsHAPwZGVlZSouLlZUVBRX5gHweJx1DQAAAABo6C46icLOMQBPNWXKFMXHx6tDhw46fvy4VqxYoY8//lgbN25USEgIV+YBAAAAAAAADVydX4kCAJ4iPz9fI0eO1OHDhxUSEqJevXpp48aNGjx4sCSuzAMAAAAAAAAaOpIoAFBLS5YsqXI+V+YBAAAAAAAADRtJFAAAAAAAcFZIiFRU5OpaAAAAuA2SKAAAAPBsHDAEAAAAAFyAt6srAAAAAAAAAAAA4I5IogAAAAAAAAAAANhBEgUAAAAAAAAAAMAOkigAAAAAAAAAAAB2kEQBAAAAAAAAAACwgyQKAAAAAAAAAACAHSRRAAAAAAAAAAAA7CCJAgAAAAAAAAAAYAdJFAAAAAAAAAAAADtIogAAAAAAAAAAANhBEgUAAAAAAAAAAMAOkigAAAAAAAAAAAB2kEQBAAAAAAAAAACwgyQKAAAAAAAAAACAHSRRAAAAAAAAAAAA7CCJAgAAAAAAAAAAYAdJFAAAAAAAAAAAADtIogAAAAAAAAAAANhBEgUAAAAAAACAUyxevFi9evVScHCwgoODZTab9eGHH1rnnz59WsnJyWrZsqWCgoKUmJiovLw8m3Xk5OQoISFBgYGBCg0N1aRJk3TmzJn6bgoAD0USBQAAAAAAAIBTtGvXTvPmzVN2drY+++wzDRw4UHfccYf27t0rSZo4caLWrl2r1atXa+vWrTp06JCGDBliXb60tFQJCQkqKSnRjh07tHz5ci1btkzTpk1zVZMAeJgmrq4AAAAAAAAAgMbptttus3k/Z84cLV68WFlZWWrXrp2WLFmiFStWaODAgZKktLQ0de/eXVlZWYqOjlZ6err27dunTZs2KSwsTL1799bs2bM1efJkzZgxQ76+vq5oFgAPwpUoAAAAAAAAAJyutLRUK1eu1MmTJ2U2m5WdnS2LxaKYmBhrmW7duqlDhw7KzMyUJGVmZqpnz54KCwuzlomLi1NhYaH1ahYAcCauRAEAAAAAAADgNHv27JHZbNbp06cVFBSkd999V5GRkdq9e7d8fX3VvHlzm/JhYWHKzc2VJOXm5tokUMrnl8+7kOLiYhUXF1vfFxYWSpIsFossFkuV9S2fbwkIcKyBjVx5PzitP6r5e7gT62ejAdXZWdyxL5xVF5IoAAAAAAAAAJzmiiuu0O7du1VQUKA1a9YoKSlJW7dudeo2586dq5kzZ1aanp6ersDAQIfWkbF0aV1Xq0FzWn+sX++c9TpRRkaGq6vgNtypL06dOuWU9ZJEAQAAAAAAAOA0vr6+6tKliyQpKipKu3bt0nPPPadhw4appKREx44ds7kaJS8vT+Hh4ZKk8PBw7dy502Z9eXl51nkXMmXKFKWkpFjfFxYWqn379oqNjVVwcHCV9bVYLMrIyNDg0aNlKiqqUVsbI0tAgDKWLnVefxQU1P06ncT62Rg8WCaTydXVcSl37IvyK87qGkkUAAAAAAAAAPWmrKxMxcXFioqKkslk0ubNm5WYmChJ2r9/v3JycmQ2myVJZrNZc+bMUX5+vkJDQyWdPfM9ODhYkZGRF9yGn5+f/Pz8Kk03mUwOH/A1FRWRRDmH0/rDTQ7A10RNPkeNnTv1hbPqQRIFAAAAAAAAgFNMmTJF8fHx6tChg44fP64VK1bo448/1saNGxUSEqIxY8YoJSVFLVq0UHBwsCZMmCCz2azo6GhJUmxsrCIjIzVixAjNnz9fubm5mjp1qpKTk+0mSQCgrpFEAQAAAAAAAOAU+fn5GjlypA4fPqyQkBD16tVLGzdu1ODBgyVJCxYskLe3txITE1VcXKy4uDgtWrTIuryPj4/WrVuncePGyWw2q2nTpkpKStKsWbNc1SQAHoYkCgAAAAAAAACnWLJkSZXz/f39lZqaqtTU1AuWiYiI0PoG+PBxAI2Dt6srAAAAAABAY7J48WL16tVLwcHBCg4Oltls1ocffmidf/r0aSUnJ6tly5YKCgpSYmKi9SHJ5XJycpSQkKDAwECFhoZq0qRJOnPmTH03BQAAwOORRAEAAMBF44AhAFRo166d5s2bp+zsbH322WcaOHCg7rjjDu3du1eSNHHiRK1du1arV6/W1q1bdejQIQ0ZMsS6fGlpqRISElRSUqIdO3Zo+fLlWrZsmaZNm+aqJgEAAHisGiVR2DkGAACAPRwwBIAKt912m37zm9+oa9euuvzyyzVnzhwFBQUpKytLBQUFWrJkiZ599lkNHDhQUVFRSktL044dO5SVlSVJSk9P1759+/T666+rd+/eio+P1+zZs5WamqqSkhIXtw4AAMCz1OiZKOU7x127dpVhGFq+fLnuuOMOffHFF+rRo4cmTpyoDz74QKtXr1ZISIjGjx+vIUOGaPv27ZIqdo7Dw8O1Y8cOHT58WCNHjpTJZNJTTz3llAYCAADA+W677Tab93PmzNHixYuVlZWldu3aacmSJVqxYoUGDhwoSUpLS1P37t2VlZWl6Oho6wHDTZs2KSwsTL1799bs2bM1efJkzZgxQ76+vq5oFgBctNLSUq1evVonT56U2WxWdna2LBaLYmJirGW6deumDh06KDMzU9HR0crMzFTPnj0VFhZmLRMXF6dx48Zp79696tOnj91tFRcXq7i42Pq+sLBQkmSxWGSxWKqsZ/l8S0BArdvamJT3g9P6o5q/hzuxfjYaUJ2dyd36w13qAQCNWY2SKOwcAwAAoDr1ecAQANzVnj17ZDabdfr0aQUFBendd99VZGSkdu/eLV9fXzVv3tymfFhYmHJzcyVJubm5NvGwfH75vAuZO3euZs6cWWl6enq6AgMDHap3xtKlDpXzFE7rjwb4gOyMjAxXV8GtuEt/nDp1ytVVAIBGr0ZJlHNxNo17cvrZMtVWoP7OgHC3sz+cibYCABoCVxwwZJxYdzjrugLjkQru2BfuVJeqXHHFFdq9e7cKCgq0Zs0aJSUlaevWrU7d5pQpU5SSkmJ9X1hYqPbt2ys2NlbBwcFVLmuxWJSRkaHBo0fLVFTk1Ho2BJaAAGUsXeq8/igoqPt1Oon1szF4sEwmk6ur43Lu1h/lYx8AgPPUOInC2TQNg8va64Kzadzl7I/64Elt3bJli6urAACoIVccMGScWPc467qCJ429quNOfdFQzrr29fVVly5dJElRUVHatWuXnnvuOQ0bNkwlJSU6duyYzf5zXl6ewsPDJUnh4eHauXOnzfrKnzdaXsYePz8/+fn5VZpuMpkcPthrKioiiXIOp/WHGxx8r6mafI48gbv0hzvUAQAauxonUTibxr05/WyZ6tTj2TTudvaHM3liW2+++WZXVwUAUEOuOGDIOLHucNZ1BU8ae1XHHfuioZ51XVZWpuLiYkVFRclkMmnz5s1KTEyUJO3fv185OTkym82SJLPZrDlz5ig/P1+hoaGSziaygoODFRkZ6bI2AAAAeKIaJ1E4m6ZhcFl7XbBj5S5nf9QHT2srAKBhq48DhowT6x5nXVfwpLFXddypL9ylHlWZMmWK4uPj1aFDBx0/flwrVqzQxx9/rI0bNyokJERjxoxRSkqKWrRooeDgYE2YMEFms1nR0dGSpNjYWEVGRmrEiBGaP3++cnNzNXXqVCUnJ9uNeQAAAHCeWj8TpRxn0wAAAIADhgBQIT8/XyNHjtThw4cVEhKiXr16aePGjRo8eLAkacGCBfL29lZiYqKKi4sVFxenRYsWWZf38fHRunXrNG7cOJnNZjVt2lRJSUmaNWuWq5oEAADgsWqURGHnGAAAAPZwwBAAKixZsqTK+f7+/kpNTVVqauoFy0RERGh9A3yWEAAAQGNToyQKO8cAAACwhwOGAAAAAIDGqEZJFHaOAQAAAAAAAACAp/B2dQUAAAAAAAAAAADcEUkUAAAAAAAAAAAAO0iiAAAAAAAAAAAA2EESBQAAAAAAAAAAwA6SKAAAAAAAAAAAAHaQRAEAAAAAAAAAALCDJAoA1NLcuXN17bXXqlmzZgoNDdWdd96p/fv325Q5ffq0kpOT1bJlSwUFBSkxMVF5eXk2ZXJycpSQkKDAwECFhoZq0qRJOnPmTH02BQAAAAAAAIAdJFEAoJa2bt2q5ORkZWVlKSMjQxaLRbGxsTp58qS1zMSJE7V27VqtXr1aW7du1aFDhzRkyBDr/NLSUiUkJKikpEQ7duzQ8uXLtWzZMk2bNs0VTQIAAAAAAABwjiaurgAANFQbNmyweb9s2TKFhoYqOztbN954owoKCrRkyRKtWLFCAwcOlCSlpaWpe/fuysrKUnR0tNLT07Vv3z5t2rRJYWFh6t27t2bPnq3JkydrxowZ8vX1dUXTAAAAAAAAAIgkCgDUmYKCAklSixYtJEnZ2dmyWCyKiYmxlunWrZs6dOigzMxMRUdHKzMzUz179lRYWJi1TFxcnMaNG6e9e/eqT58+lbZTXFys4uJi6/vCwkJJksVikcViqbKO5fOrK+eWAgJcXYNqWf5Xx/J/1RD7WXLbvq7UvzYzG2hfO6hBfmcBAAAAAGgESKIAQB0oKyvTY489phtuuEFXXnmlJCk3N1e+vr5q3ry5TdmwsDDl5uZay5ybQCmfXz7Pnrlz52rmzJmVpqenpyswMNCh+mZkZDhUzq28+aara+CwjKVLz/5n/XrXVqS23Lyvrf17roba1w46deqUq6sAAAAAAIBHIokCAHUgOTlZX331lT755BOnb2vKlClKSUmxvi8sLFT79u0VGxur4ODgKpe1WCzKyMjQ4MGDZTKZnF3VuhUS4uoaVMsSEKCMpUs1ePRomYqKpP9dndTguGlfV+rfczXUvnZQ+RVnAAAAAACgfpFEAYCLNH78eK1bt07btm1Tu3btrNPDw8NVUlKiY8eO2VyNkpeXp/DwcGuZnTt32qwvLy/POs8ePz8/+fn5VZpuMpkcTozUpKzbOP+guRszFRWdPcjf0Pq4nJv3tbV/bSY20L52UIP7vgIAAAAA0Eh4u7oCANBQGYah8ePH691339VHH32kTp062cyPioqSyWTS5s2brdP279+vnJwcmc1mSZLZbNaePXuUn59vLZORkaHg4GBFRkbWT0MAAAAAAAAA2MWVKABQS8nJyVqxYoXef/99NWvWzPoMk5CQEAUEBCgkJERjxoxRSkqKWrRooeDgYE2YMEFms1nR0dGSpNjYWEVGRmrEiBGaP3++cnNzNXXqVCUnJ9u92gQAAAAAAABA/SGJAgC1tHjxYknSTTfdZDM9LS1NDzzwgCRpwYIF8vb2VmJiooqLixUXF6dFixZZy/r4+GjdunUaN26czGazmjZtqqSkJM2aNau+mgEAAAAAAADgAkiiAEAtGYZRbRl/f3+lpqYqNTX1gmUiIiK0fv36uqwaAAAAAAAAgDrAM1EAAAAAAAAAAADsIIkCAAAAAAAAAABgB0kUAAAAAAAAAAAAO0iiAAAAAAAAAAAA2EESBQAAAAAAAAAAwA6SKAAAAAAAAAAAAHaQRAEAAAAAAAAAALCDJAoAAAAAAAAAAIAdJFEAAAAAAAAAAADsIIkCAAAAAAAAAABgB0kUAAAAAAAAAE4xd+5cXXvttWrWrJlCQ0N15513av/+/TZlTp8+reTkZLVs2VJBQUFKTExUXl6eTZmcnBwlJCQoMDBQoaGhmjRpks6cOVOfTQHgoUiiAAAAAAAAAHCKrVu3Kjk5WVlZWcrIyJDFYlFsbKxOnjxpLTNx4kStXbtWq1ev1tatW3Xo0CENGTLEOr+0tFQJCQkqKSnRjh07tHz5ci1btkzTpk1zRZMAeJgmrq4AAAAAAAAAgMZpw4YNNu+XLVum0NBQZWdn68Ybb1RBQYGWLFmiFStWaODAgZKktLQ0de/eXVlZWYqOjlZ6err27dunTZs2KSwsTL1799bs2bM1efJkzZgxQ76+vq5oGgAPQRIFAAAAAAAAQL0oKCiQJLVo0UKSlJ2dLYvFopiYGGuZbt26qUOHDsrMzFR0dLQyMzPVs2dPhYWFWcvExcVp3Lhx2rt3r/r06VNpO8XFxSouLra+LywslCRZLBZZLJYq61g+3xIQUMtWNi7l/eC0/qjm7+FOrJ+NBlRnZ3HHvnBWXUiiAAAAAAAAAHC6srIyPfbYY7rhhht05ZVXSpJyc3Pl6+ur5s2b25QNCwtTbm6utcy5CZTy+eXz7Jk7d65mzpxZaXp6eroCAwMdqm/G0qUOlfMUTuuP9euds14nysjIcHUV3IY79cWpU6ecsl6SKAAAAAAAAACcLjk5WV999ZU++eQTp29rypQpSklJsb4vLCxU+/btFRsbq+Dg4CqXtVgsysjI0ODRo2UqKnJ2Vd2eJSBAGUuXOq8//nd1UkNg/WwMHiyTyeTq6riUO/ZF+RVndY0kCgAAAAAAAACnGj9+vNatW6dt27apXbt21unh4eEqKSnRsWPHbK5GycvLU3h4uLXMzp07bdaXl5dnnWePn5+f/Pz8Kk03mUwOH/A1FRWRRDmH0/rDTQ7A10RNPkeNnTv1hbPq4e2UtQIAAAAA4KHmzp2ra6+9Vs2aNVNoaKjuvPNO7d+/36bM6dOnlZycrJYtWyooKEiJiYnWA4LlcnJylJCQoMDAQIWGhmrSpEk6c+ZMfTYFAC6aYRgaP3683n33XX300Ufq1KmTzfyoqCiZTCZt3rzZOm3//v3KycmR2WyWJJnNZu3Zs0f5+fnWMhkZGQoODlZkZGT9NATO4+XVcF4hIWfrXP4vPEKNkigMBAEAAGAP40QAqLB161YlJycrKytLGRkZslgsio2N1cmTJ61lJk6cqLVr12r16tXaunWrDh06pCFDhljnl5aWKiEhQSUlJdqxY4eWL1+uZcuWadq0aa5oEuqaqw8CcsAQ9Sg5OVmvv/66VqxYoWbNmik3N1e5ubkq+t8VDSEhIRozZoxSUlK0ZcsWZWdna9SoUTKbzYqOjpYkxcbGKjIyUiNGjNCXX36pjRs3aurUqUpOTrZ7tQkA1KUaJVEYCAIAAMAexokAUGHDhg164IEH1KNHD1111VVatmyZcnJylJ2dLUkqKCjQkiVL9Oyzz2rgwIGKiopSWlqaduzYoaysLElnH3y8b98+vf766+rdu7fi4+M1e/ZspaamqqSkxJXNA4AaWbx4sQoKCnTTTTepdevW1teqVausZRYsWKBbb71ViYmJuvHGGxUeHq533nnHOt/Hx0fr1q2Tj4+PzGazfvvb32rkyJGaNWuWK5oEwMPU6JkoGzZssHm/bNkyhYaGKjs7WzfeeKN1ILhixQoNHDhQkpSWlqbu3bsrKytL0dHR1oHgpk2bFBYWpt69e2v27NmaPHmyZsyYIV9f37prHQAAAOoF40RUy8vL1TVwXECA9OabZ8+6PnXK1bVBI1DwvwfmtmjRQpKUnZ0ti8WimJgYa5lu3bqpQ4cOyszMVHR0tDIzM9WzZ0+FhYVZy8TFxWncuHHau3ev+vTpU2k7xcXFKi4utr4vf7iqxWKRxWKpso7l8y0BAbVsZeNS3g/0x3l9Uc3nyBNYvytu0hfuUo+qGIZRbRl/f3+lpqYqNTX1gmUiIiK0fv36uqwaADjkoh4sX18DQQAAADQsHDBseDhgWIEDhhXc7WCh5F51cURZWZkee+wx3XDDDbryyislSbm5ufL19bV5gLIkhYWFKTc311rm3HhYPr98nj1z587VzJkzK01PT09XYGCgQ/XNWLrUoXKegv6okLF0qcQBbKuMjAxXV0GSdIpkPwA4Xa2TKPU5EGTn2HEu3/mtxx0ad9yhcxbaCgBoSDhg2LDRHxU4YFjBXQ4WSg3vgGFycrK++uorffLJJ07f1pQpU5SSkmJ9X1hYqPbt2ys2NlbBwcFVLmuxWJSRkaHBo0fL9L/nFHgyS0CAMpYupT90Xl9c4PfYk1i/K4MHy2Qyubo61mNkAADnqXUSpT4Hguwc15zL2uuCnUx32qFzNk9q65YtW1xdBQANSUO6TdC5HLi1QUPEAcOGiQOGFThgWMHdDhZKDeuA4fjx47Vu3Tpt27ZN7dq1s04PDw9XSUmJjh07ZpNczsvLU3h4uLXMzp07bdaXl5dnnWePn5+f3Qcsm0wmh/9+pqIij48B56I/KpiKitwmDriDmnyvnF0PAIBz1SqJUt8DQXaOHefynd//3bqjPrjjDp2zeGJbb775ZldXBQBQCxwwbPjojwocMKzgLgcLpYZxwNAwDE2YMEHvvvuuPv74Y3Xq1MlmflRUlEwmkzZv3qzExERJ0v79+5WTkyOz2SxJMpvNmjNnjvLz8xUaGirp7ElVwcHBioyMrN8GAQAAeLAaJVFcNRBk57jmXNZeF+zQuNMOnbN5WlsBAA0HBwwBoEJycrJWrFih999/X82aNbPekjAkJEQBAQEKCQnRmDFjlJKSohYtWig4OFgTJkyQ2WxWdHS0JCk2NlaRkZEaMWKE5s+fr9zcXE2dOlXJycl2948BAADgHDVKojAQBAAAgD2MEwGgwuLFiyVJN910k830tLQ0PfDAA5KkBQsWyNvbW4mJiSouLlZcXJwWLVpkLevj46N169Zp3LhxMpvNatq0qZKSkjRr1qz6agYAAABUwyQKA0EAAADYwzgRACoYDjzzyt/fX6mpqUpNTb1gmYiICK13wXMnAQAAUKHGt/OqDgNBAAAAz8M4EQAAAADQGHm7ugIAAAAAAAAAAADuiCQKAAAAAAAAAACAHSRRAAAAAAAAAAAA7CCJAgAAAAAAAAAAYAdJFAAAAAAAAAAAADtIogAAAAAAAAAAANhBEgUAAAAAAAAAAMAOkigAAAAAAAAAAAB2kEQBAAAAAAAAAACwgyQKAAAAAAAAAACAHSRRAAAAAAAAAAAA7Gji6goAANBoeXm5ugYAAAAAAAC4CFyJAgAAAAAAAAAAYAdJFAAAAAAAAAAAADtIogAAAAAAAAAAANhBEgUAAAAAAAAAAMAOkigAAAAAAAAAAAB2kEQBAAAAAAAAAACwgyQKAAAAAAAAAACAHSRRAAAAAAAAAAAA7CCJAgAAAAAAAAAAYAdJFAC4CNu2bdNtt92mNm3ayMvLS++9957NfMMwNG3aNLVu3VoBAQGKiYnRgQMHbMocPXpU999/v4KDg9W8eXONGTNGJ06cqMdWAAAAAAAAALCHJAoAXISTJ0/qqquuUmpqqt358+fP1/PPP6+XXnpJn376qZo2baq4uDidPn3aWub+++/X3r17lZGRoXXr1mnbtm0aO3ZsfTUBAAAAAAAAwAU0cXUFAKAhi4+PV3x8vN15hmFo4cKFmjp1qu644w5J0t///neFhYXpvffe0/Dhw/X1119rw4YN2rVrl6655hpJ0gsvvKDf/OY3euaZZ9SmTZt6awsAAAAAAAAAWyRRAMBJDh48qNzcXMXExFinhYSEqG/fvsrMzNTw4cOVmZmp5s2bWxMokhQTEyNvb299+umnuuuuuyqtt7i4WMXFxdb3hYWFkiSLxSKLxVJlncrnV1fOLQUEuLoG1bL8r46WBlDXhqhR9q+D38UG+Z0FAAAAAKARIIkCAE6Sm5srSQoLC7OZHhYWZp2Xm5ur0NBQm/lNmjRRixYtrGXON3fuXM2cObPS9PT0dAUGBjpUt4yMDIfKuZU333R1DRyWsXSpq6vQqDWq/l2/3qFip06dcnJFAAAAAACAPSRRAKCBmTJlilJSUqzvCwsL1b59e8XGxio4OLjKZS0WizIyMjR48GCZTCZnV7VuhYS4ugbVsgQEKGPpUg0ePVqmoiJXV6fRaZT9W1DgULHyK84AAAAAAED9IokCAE4SHh4uScrLy1Pr1q2t0/Py8tS7d29rmfz8fJvlzpw5o6NHj1qXP5+fn5/8/PwqTTeZTA4nRmpS1m00oIPmpqKixnOQ3w01qv6twXcWAAAAAADUP29XVwAAGqtOnTopPDxcmzdvtk4rLCzUp59+KrPZLEkym806duyYsrOzrWU++ugjlZWVqW/fvs6rXEiI5OXVsF4AAAAAAABAPeNKFAC4CCdOnNA333xjfX/w4EHt3r1bLVq0UIcOHfTYY4/pySefVNeuXdWpUyc98cQTatOmje68805JUvfu3XXLLbfowQcf1EsvvSSLxaLx48dr+PDhatOmjYtaBQAAAAAAAEAiiQIAF+Wzzz7TzTffbH1f/qySpKQkLVu2TH/84x918uRJjR07VseOHVO/fv20YcMG+fv7W5d54403NH78eA0aNEje3t5KTEzU888/X+9tAQAAAAAAAGCL23kBwEW46aabZBhGpdeyZcskSV5eXpo1a5Zyc3N1+vRpbdq0SZdffrnNOlq0aKEVK1bo+PHjKigo0NKlSxUUFOSC1gAAAAAAUPe2bdum2267TW3atJGXl5fee+89m/mGYWjatGlq3bq1AgICFBMTowMHDtiUOXr0qO6//34FBwerefPmGjNmjE6cOFGPrQDgqUiiAAAAAAAAAHCakydP6qqrrlJqaqrd+fPnz9fzzz+vl156SZ9++qmaNm2quLg4nT592lrm/vvv1969e5WRkaF169Zp27ZtGjt2bH01AYAH43ZeAAAAAAAAAJwmPj5e8fHxducZhqGFCxdq6tSpuuOOOyRJf//73xUWFqb33ntPw4cP19dff60NGzZo165duuaaayRJL7zwgn7zm9/omWee4ZmiAJyKK1EAAAAAAAAAuMTBgweVm5urmJgY67SQkBD17dtXmZmZkqTMzEw1b97cmkCRpJiYGHl7e+vTTz+t9zoD8CxciYK65eVVf9sKCJDefFMKCZGKii5uXYZRN3UCAMCDbdu2TU8//bSys7N1+PBhvfvuu7rzzjut8w3D0PTp0/XKK6/o2LFjuuGGG7R48WJ17drVWubo0aOaMGGC1q5dK29vbyUmJuq5557jWVEAGhxiIgA4Jjc3V5IUFhZmMz0sLMw6Lzc3V6GhoTbzmzRpohYtWljLnK+4uFjFxcXW94WFhZIki8Uii8VSZZ3K51sCAmrQksarvB/oj/P6oprPUWNn/Z64UT84qy41TqIwEAQAAIA95fe6Hj16tIYMGVJpfvm9rpcvX65OnTrpiSeeUFxcnPbt2yd/f39JZ+91ffjwYWVkZMhisWjUqFEaO3asVqxYUd/NAYCLQkwEANeaO3euZs6cWWl6enq6AgMDHVpHxtKldV2tBo3+qJCxdKm0fr2rq+EWMjIyXF0Fq1OnTjllvTVOojAQBAAAgD3c6xoAKhATAcAx4eHhkqS8vDy1bt3aOj0vL0+9e/e2lsnPz7dZ7syZMzp69Kh1+fNNmTJFKSkp1veFhYVq3769YmNjFRwcXGWdLBaLMjIyNHj0aJku9u4njYAlIEAZS5fSHzqvLy5wFZSnsH5PBg+WyWRydXUkVVxxVtdqnERhIAgAAICaqu5e18OHD6/2Xtd33XWXK6oOAHXOWTGRW9fUHW5dU4Fb19hyt9vXuEs9LkanTp0UHh6uzZs3W5MmhYWF+vTTTzVu3DhJktls1rFjx5Sdna2oqChJ0kcffaSysjL17dvX7nr9/Pzk5+dXabrJZHL4gK+pqMjjkwbnoj8qmIqK3CZx4Go1+U45m7PqUafPRGEg6HqeNNCr07a6+aDD3QZpzuRJbQUAT8K9rt2fJ40jq8MBwwruODZzp7rUlrNiIreuqXv0RwVuXWPLXW5f46xb19S1EydO6JtvvrG+P3jwoHbv3q0WLVqoQ4cOeuyxx/Tkk0+qa9eu1jvbtGnTxvoIge7du+uWW27Rgw8+qJdeekkWi0Xjx4/X8OHDOSEbgNPVaRKFgaD78KT21klbG8hA0F0GafVhy5Ytrq4CAKABYJxY9+iPChwwrOBO49CGcsDQFbh1Td3h1jUVuHWNLXe7fY2zbl1T1z777DPdfPPN1vflsSopKUnLli3TH//4R508eVJjx47VsWPH1K9fP23YsMH6aABJeuONNzR+/HgNGjTI+ozl559/vt7bAsDz1GkSxVkYCDrOkwZ6ddrWgoK6qZSTuNsgzZnK23ru4AoA0PBxr2v350njyOpwwLCCO45DG8oBw6o4KyZy65q6R39U4NY1ttzl9jXuUAdH3HTTTTIM44Lzvby8NGvWLM2aNeuCZVq0aMHzlAG4RJ0mURgIug9Pam+dtLWBDDrcZZBWHzylnQDgKbjXdcNBf1TggGEFdxqHuks9LoazYiIAAADqnnddruzcgWC58oGg2WyWZDsQLMdAEAAAoOE7ceKEdu/erd27d0uquNd1Tk6OvLy8rPe6/sc//qE9e/Zo5MiRF7zX9c6dO7V9+3budQ2gwSImAgAANA41vhKFB0EBAADAHu51DQAViIkAAACNQ42TKAwEAQAAYA/3ugaACsREAACAxqHGSRQGggAAAAAAAAAAwBPU6TNRAAAAAAAAAAAAGguSKAAAAAAAAAAAAHaQRAEAAAAAAAAAALCDJAoAAAAAAAAAAIAdJFEAAAAAAAAAAADsIIkCAAAAAAAAAABgB0kUAAAAAAAAAAAAO0iiAAAAAAAAAAAA2EESBQAAAAAAAAAAwA6SKAAAAAAAAAAAAHaQRAEAAAAAAAAAALCDJAoAAAAAAAAAAIAdJFEAAAAAAAAAAADsIIkCAAAAAAAAAABgB0kUAAAAAAAAAAAAO0iiAAAAAAAAAAAA2EESBQAAAAAAAAAAwA6SKAAAAAAAAAAAAHaQRAEAAAAAAAAAALCDJAoAAAAAAAAAAIAdJFEAAAAAAAAAAADsIIkCAAAAAAAAAABgB0kUAAAAAAAAAAAAO0iiAAAAAAAAAAAA2EESBQAAAAAAAAAAwA6SKAAAAAAAAAAAAHaQRAEAAAAAAAAAALCDJAoAAAAAAAAAAIAdJFEAAAAAAAAAAADsIIkCAAAAAAAAAABgB0kUAAAAAAAAAAAAO0iiAAAAAAAAAAAA2EESBQAAAAAAAAAAwA6SKAAAAAAAAAAAAHaQRAEAAAAAAAAAALDDpUmU1NRUdezYUf7+/urbt6927tzpyurAk3l5ufcrJORsPUNCKqah0SEmAsBZxEMAqEBMhFtx9b5xbV5oVIiJcCuujm/ExHrjsiTKqlWrlJKSounTp+vzzz/XVVddpbi4OOXn57uqSgDgMsREADiLeAi34+odXXaOPRoxEagDdR1j7Z3kSCyvF8REAK7isiTKs88+qwcffFCjRo1SZGSkXnrpJQUGBmrp0qWuqhIAuAwxEQDOIh4CdaAhHizkgKFdxEQAqEBMBOoA48RaaeKKjZaUlCg7O1tTpkyxTvP29lZMTIwyMzMrlS8uLlZxcbH1fUFBgSTp6NGjslgsVW7LYrHo1KlTOuLvL5Nh1FEL3JfF399j2uvxbT1yxLWVcpLy7+zRo0clSUYj/9tKxMTGxJPikis0yv51MJYfP35cUuOPiTWNhxIxsS41yu9YLdEXFeq1L4iJNoiJrkUcqEBf2Kq3/iAm2iAmuhZxoAJ9UcGjxomGC/z000+GJGPHjh020ydNmmRcd911lcpPnz7dkMSLFy8PfP3www/1FZpchpjIixcvR1+NPSbWNB4aBjGRFy9PfhETKyMm8uLluS9iYmXERF68PPdV1zHRJVei1NSUKVOUkpJifV9WVqajR4+qZcuW8qrmcp7CwkK1b99eP/zwg4KDg51dVZfzpPbS1sapvK05OTny8vJSmzZtXF0lt0NMdF/0r3N5cv8ahqHjx48TE+0gJtYd+qMCfVHBHfuCmHhhxMS6Q39UoC9suVt/EBMvjJhYd+iPCvRFBXfsC2fFRJckUS699FL5+PgoLy/PZnpeXp7Cw8Mrlffz85Ofn5/NtObNm9dom8HBwW7zx6wPntRe2to4hYSEeExbiYmND/3rXJ7avyHl95ttxGoaDyViojPQHxXoiwru1hfERGJifaE/KtAXttypP4iJxMT6Qn9UoC8quFtfOCMmuuTB8r6+voqKitLmzZut08rKyrR582aZzWZXVAkAXIaYCABnEQ8BoAIxEQAqEBMBuJLLbueVkpKipKQkXXPNNbruuuu0cOFCnTx5UqNGjXJVlQDAZYiJAHAW8RAAKhATAaACMRGAq7gsiTJs2DD9/PPPmjZtmnJzc9W7d29t2LBBYWFhdbodPz8/TZ8+vdLle42VJ7WXtjZOntTWcxETGwf617noX89QX/FQ4jN1PvqjAn1Rgb5wLWKi69AfFegLW/SH6xATXYf+qEBfVPCkvvAyDMNwdSUAAAAAAAAAAADcjUueiQIAAAAAAAAAAODuSKIAAAAAAAAAAADYQRIFAAAAAAAAAADADpIoAAAAAAAAAAAAdjSKJEpqaqo6duwof39/9e3bVzt37qyy/OrVq9WtWzf5+/urZ8+eWr9+fT3V9OLVpK179+5VYmKiOnbsKC8vLy1cuLD+KlpHatLeV155Rf3799cll1yiSy65RDExMdV+FtxJTdr6zjvv6JprrlHz5s3VtGlT9e7dW6+99lo91vbi1PQ7W27lypXy8vLSnXfe6dwKNjB1HQMNw9C0adPUunVrBQQEKCYmRgcOHHBmE9xaXffvAw88IC8vL5vXLbfc4swmuC1n/KbVNr6g8fKkcaIjPG0sWRVPGmdWx5PGoZ6OmGiLmFiBmGiLuOgZiIm2iIkViIkViIf/YzRwK1euNHx9fY2lS5cae/fuNR588EGjefPmRl5ent3y27dvN3x8fIz58+cb+/btM6ZOnWqYTCZjz5499VzzmqtpW3fu3Gk8/vjjxptvvmmEh4cbCxYsqN8KX6Satve+++4zUlNTjS+++ML4+uuvjQceeMAICQkxfvzxx3quec3VtK1btmwx3nnnHWPfvn3GN998YyxcuNDw8fExNmzYUM81r7matrXcwYMHjbZt2xr9+/c37rjjjvqpbAPgjBg4b948IyQkxHjvvfeML7/80rj99tuNTp06GUVFRfXVLLfhjP5NSkoybrnlFuPw4cPW19GjR+urSW7DGb9ptY0vaLw8aZzoCE8bS1bFk8aZ1fGkcainIybaIiZWICbaIi56BmKiLWJiBWJiBeJhhQafRLnuuuuM5ORk6/vS0lKjTZs2xty5c+2WHzp0qJGQkGAzrW/fvsZDDz3k1HrWhZq29VwRERENLqBdTHsNwzDOnDljNGvWzFi+fLmzqlhnLrathmEYffr0MaZOneqM6tWp2rT1zJkzxvXXX2+8+uqrRlJSEkmUc9R1DCwrKzPCw8ONp59+2jr/2LFjhp+fn/Hmm286oQXuzRm/MXyGz3LGb1pdxFI0Lp40TnSEp40lq+JJ48zqeNI41NMRE20REysQE20RFz0DMdEWMbECMbEC8bBCg76dV0lJibKzsxUTE2Od5u3trZiYGGVmZtpdJjMz06a8JMXFxV2wvLuoTVsbsrpo76lTp2SxWNSiRQtnVbNOXGxbDcPQ5s2btX//ft14443OrOpFq21bZ82apdDQUI0ZM6Y+qtlgOCMGHjx4ULm5uTZlQkJC1Ldv30YZa6rizN+Yjz/+WKGhobriiis0btw4HTlypO4b4Mac8Zvmab+TqJ4njRMdwXekgieNM6vjSeNQT0dMtEVMrEBMtEVc9AzERFvExArExArEQ1sNOonyyy+/qLS0VGFhYTbTw8LClJuba3eZ3NzcGpV3F7Vpa0NWF+2dPHmy2rRpU+lHzt3Utq0FBQUKCgqSr6+vEhIS9MILL2jw4MHOru5FqU1bP/nkEy1ZskSvvPJKfVSxQXFGDCz/11NiTVWc9Rtzyy236O9//7s2b96sv/zlL9q6davi4+NVWlpa941wU874TfO030lUz5PGiY7gO1LBk8aZ1fGkcainIybaIiZWICbaIi56BmKiLWJiBWJiBeKhrSaurgDgDPPmzdPKlSv18ccfy9/f39XVcYpmzZpp9+7dOnHihDZv3qyUlBRddtlluummm1xdtTpz/PhxjRgxQq+88oouvfRSV1cHqBPDhw+3/r9nz57q1auXOnfurI8//liDBg1yYc0AAI7whHFmdTxhHArAMcTEs4iLACRiotR442GDTqJceuml8vHxUV5ens30vLw8hYeH210mPDy8RuXdRW3a2pBdTHufeeYZzZs3T5s2bVKvXr2cWc06Udu2ent7q0uXLpKk3r176+uvv9bcuXPdOijVtK3ffvutvvvuO912223WaWVlZZKkJk2aaP/+/ercubNzK+3GnBEDy//Ny8tT69atbcr07t27Dmvv/urrN+ayyy7TpZdeqm+++cZjkijO+E3ztN9JVM+TxomO4DtSwZPGmdXxpHGopyMm2iImViAm2iIuegZioi1iYgViYgXioa0GfTsvX19fRUVFafPmzdZpZWVl2rx5s8xms91lzGazTXlJysjIuGB5d1GbtjZktW3v/PnzNXv2bG3YsEHXXHNNfVT1otXV37asrEzFxcXOqGKdqWlbu3Xrpj179mj37t3W1+23366bb75Zu3fvVvv27euz+m7HGTGwU6dOCg8PtylTWFioTz/9tFHGmqrU12/Mjz/+qCNHjtgkrRo7Z/ymedrvJKrnSeNER/AdqeBJ48zqeNI41NMRE20REysQE20RFz0DMdEWMbECMbEC8fA8rn2u/cVbuXKl4efnZyxbtszYt2+fMXbsWKN58+ZGbm6uYRiGMWLECONPf/qTtfz27duNJk2aGM8884zx9ddfG9OnTzdMJpOxZ88eVzXBYTVta3FxsfHFF18YX3zxhdG6dWvj8ccfN7744gvjwIEDrmpCjdS0vfPmzTN8fX2NNWvWGIcPH7a+jh8/7qomOKymbX3qqaeM9PR049tvvzX27dtnPPPMM0aTJk2MV155xVVNcFhN23q+pKQk44477qin2ro/Z8TAefPmGc2bNzfef/9941//+pdxxx13GJ06dTKKiorqvX2uVtf9e/z4cePxxx83MjMzjYMHDxqbNm0yrr76aqNr167G6dOnXdJGV3HGb1p164Tn8aRxoiM8bSxZFU8aZ1bHk8ahno6YaIuYWIGYaIu46BmIibaIiRWIiRWIhxUafBLFMAzjhRdeMDp06GD4+voa1113nZGVlWWdN2DAACMpKcmm/FtvvWVcfvnlhq+vr9GjRw/jgw8+qOca115N2nrw4EFDUqXXgAED6r/itVST9kZERNht7/Tp0+u/4rVQk7b++c9/Nrp06WL4+/sbl1xyiWE2m42VK1e6oNa1U9Pv7LlIolRW1zGwrKzMeOKJJ4ywsDDDz8/PGDRokLF///76aIpbqsv+PXXqlBEbG2u0atXKMJlMRkREhPHggw967EF+Z/ymVbVOeCZPGic6wtPGklXxpHFmdTxpHOrpiIm2iIkViIm2iIuegZhoi5hYgZhYgXh4lpdhGIZTLnEBAAAAAAAAAABowBr0M1EAAAAAAAAAAACchSQKAAAAAAAAAACAHSRRAAAAAAAAAAAA7CCJAgAAAAAAAAAAYAdJFAAAAAAAAAAAADtIogAAAAAAAAAAANhBEgUAAAAAAAAAAMAOkigAAAAAAAAAAAB2kEQBAAAAAAAAAACwgyQKAAAAAAAAAACAHSRRAAAAAAAAAAAA7CCJAgAAAAAAAAAAYAdJFAAAAAAAAAAAADtIogAAAAAAAAAAANhBEgUAAAAAAAAAAMAOkigAAAAAAAAAAAB2kEQBAAAAAAAAAACwgyQKAAAAAAAAAACAHSRRAAAAAAAAAAAA7CCJAgAAAAAAAAAAYAdJFAAAAAAAAAAAADtIogAAAAAAAAAAANhBEgUAAAAAAAAAAMAOkigAAAAAAAAAAAB2kEQBAAAAAAAAAACwgyQKAAAAAAAAAACAHSRRAAAAAAAAAAAA7CCJAgAAAAAAAAAAYAdJFAAAAAAAAAAAADtIogAAAAAAAAAAANhBEgUAAAAAAAAAAMAOkihodGbMmCEvLy9XV0OSe9UFAAAAAAAAAFAzJFFgY8WKFVq4cKGrqwEAAAAAAAAAgMuRRIENkigAAAAAAAAAAJxFEgW1dvr0aZWVlbm6GgAAAAAAAAAAOAVJFA9z/PhxPfbYY+rYsaP8/PwUGhqqwYMH6/PPP9dNN92kDz74QN9//728vLzk5eWljh07SpI+/vhjeXl5aeXKlZo6daratm2rwMBAFRYWSpI+/fRT3XLLLQoJCVFgYKAGDBig7du3O7ztcgcOHFBiYqLCw8Pl7++vdu3aafjw4SooKLjotr/++uuKiopSQECAWrRooeHDh+uHH36wzh8/fryCgoJ06tSpSsvee++9Cg8PV2lpqXXahx9+qP79+6tp06Zq1qyZEhIStHfv3ouuJwAAAAAAAADAPTRxdQVQv37/+99rzZo1Gj9+vCIjI3XkyBF98skn+vrrr/XnP/9ZBQUF+vHHH7VgwQJJUlBQkM3ys2fPlq+vrx5//HEVFxfL19dXH330keLj4xUVFaXp06fL29tbaWlpGjhwoP75z3/quuuuq3bbV199tUpKShQXF6fi4mJNmDBB4eHh+umnn7Ru3TodO3ZMISEhtW73nDlz9MQTT2jo0KH63e9+p59//lkvvPCCbrzxRn3xxRdq3ry5hg0bptTUVH3wwQe65557rMueOnVKa9eu1QMPPCAfHx9J0muvvaakpCTFxcXpL3/5i06dOqXFixerX79++uKLL6zJJwAAAAAAAABAw+VlGIbh6kqg/jRv3ly//e1v9eKLL9qdf+utt+qrr77Sd999ZzP9448/1s0336zLLrtMX331lQICAiRJhmHoiiuu0GWXXaYPP/xQXl5ekqSioiL16NFDXbp0UXp6ukPb3r17t/r06aPVq1fr7rvvrnUbZ8yYoZkzZ6r8o/3999+rc+fOmjVrlv7v//7PWu6rr75Snz59NHPmTP3f//2fDMNQ+/btFR0drTVr1ljLrV69WkOHDtW2bdvUv39/nThxQu3bt9c999yjv/3tb9ZyeXl5uuKKKzR06FDr9PPrAgAAAAAAAABoOLidl4dp3ry5Pv30Ux06dKhWyyclJVkTKNLZxMeBAwd033336ciRI/rll1/0yy+/6OTJkxo0aJC2bdtmfW5Kddsuv9Jk48aNdm+pVVvvvPOOysrKNHToUGv9fvnlF4WHh6tr167asmWLJMnLy0v33HOP1q9frxMnTliXX7Vqldq2bat+/fpJkjIyMnTs2DHde++9Nuvz8fFR3759resDAAAAAAAAADRsJFE8zPz58/XVV1+pffv2uu666zRjxgz997//dXj5Tp062bw/cOCApLPJlVatWtm8Xn31VRUXF1ufZ1Ldtjt16qSUlBS9+uqruvTSSxUXF6fU1NSLfh7KgQMHZBiGunbtWqmOX3/9tfLz861lhw0bpqKiIv3jH/+QJJ04cULr16/XPffcY73KprzNAwcOrLS+9PR0m/UBAAAAAAAAABounoniYYYOHar+/fvr3XffVXp6up5++mn95S9/0TvvvKP4+Phqlz/3KhRJ1qtMnn76afXu3dvuMuXPVXFk23/961/1wAMP6P3331d6eroeeeQRzZ07V1lZWWrXrl2t2lxWViYvLy99+OGH1mea2KufJEVHR6tjx4566623dN9992nt2rUqKirSsGHDKrX5tddeU3h4eKX1NWnC1woAAAAAAAAAGgOO9nqg1q1b6+GHH9bDDz+s/Px8XX311ZozZ47i4+OtV1s4qnPnzpKk4OBgxcTEXNS2y/Xs2VM9e/bU1KlTtWPHDt1www166aWX9OSTT9asoefU0TAMderUSZdffnm15YcOHarnnntOhYWFWrVqlTp27Kjo6Gib9UlSaGioQ20GAAAAAAAAADRM3M7Lg5SWlla6NVZoaKjatGmj4uJiSVLTpk1rdPusqKgode7cWc8884zNc0TK/fzzzw5vu7CwUGfOnLEp07NnT3l7e1vL1MaQIUPk4+Nj9wHvhmHoyJEjNtOGDRum4uJiLV++XBs2bNDQoUNt5sfFxSk4OFhPPfWULBZLpe2VtxkAAAAAAAAA0LBxJYoHOX78uNq1a6e7775bV111lYKCgrRp0ybt2rVLf/3rXyWdTYqsWrVKKSkpuvbaaxUUFKTbbrvtguv09vbWq6++qvj4ePXo0UOjRo1S27Zt9dNPP2nLli0KDg7W2rVrHdr2Rx99pPHjx+uee+7R5ZdfrjNnzui1116Tj4+PEhMTa93uzp0768knn9SUKVP03Xff6c4771SzZs108OBBvfvuuxo7dqwef/xxa/mrr75aXbp00Z///GcVFxfb3MpLOnvVzeLFizVixAhdffXVGj58uFq1aqWcnBx98MEHuuGGG/Tiiy/Wur4AAAAAAAAAAPdAEsWDBAYG6uGHH1Z6erreeecdlZWVqUuXLlq0aJHGjRsnSXr44Ye1e/dupaWlacGCBYqIiKgyiSJJN910kzIzMzV79my9+OKLOnHihMLDw9W3b1899NBDDm/7qquuUlxcnNauXauffvpJgYGBuuqqq/Thhx/a3E6rNv70pz/p8ssv14IFCzRz5kxJUvv27RUbG6vbb7+9Uvlhw4Zpzpw56tKli66++upK8++77z61adNG8+bN09NPP63i4mK1bdtW/fv316hRoy6qrgAAAAAAAAAA9+BlnH9/IwAAAAAAAAAAAPBMFAAAAAAAAAAAAHu4nRcajIKCAhUVFVVZJjw8vJ5qAwAAAAAAAABo7LidFxqMBx54QMuXL6+yDB9nAAAAAAAAAEBdIYmCBmPfvn06dOhQlWViYmLqqTYAAAAAAAAAgMaOJAoAAAAAAAAAAIAdPFgeAAAAAAAAAADAjgb5YPmysjIdOnRIzZo1k5eXl6urA8AJDMPQ8ePH1aZNG3l7k+8FAAAAAAAAUP8aZBLl0KFDat++vaurAaAe/PDDD2rXrp2rqwEAAAAAAADAAzXIJEqzZs0knT24GhwcXGVZi8Wi9PR0xcbGymQy1Uf13Br9UYG+qOCOfVFYWKj27dtbv+8AAAAAAAAAUN8aZBKl/BZewcHBDiVRAgMDFRwc7DYHh12J/qhAX1Rw577gln0AAAAAAAAAXIUHDQAAAAAAAAAAANhBEgUAAAAAAAAAAMAOkigAAAAAAAAAAAB2kEQBAAAAAAAAAACwgyQKAAAAAAAAAACAHSRRAAAAAAAAAAAA7CCJAgAAAAAAAAAAYAdJFAAAAAAAAAAAADtIogAAAAAAAAAAANhBEsWdeXnV/Ssk5Oy6Q0Kcs34AAAAAAAAAABoJkigAAAAAAAAAAAB2kEQBAAAAAAAAAACwgyQKAAAAAAAAAACAHSRRAAAAAAAAAAAA7KhREmXGjBny8vKyeXXr1s06//Tp00pOTlbLli0VFBSkxMRE5eXl2awjJydHCQkJCgwMVGhoqCZNmqQzZ87UTWsAAAAAAAAAAADqSJOaLtCjRw9t2rSpYgVNKlYxceJEffDBB1q9erVCQkI0fvx4DRkyRNu3b5cklZaWKiEhQeHh4dqxY4cOHz6skSNHymQy6amnnqqD5gAAAAAAAAAAANSNGidRmjRpovDw8ErTCwoKtGTJEq1YsUIDBw6UJKWlpal79+7KyspSdHS00tPTteTIXpgAACLtSURBVG/fPm3atElhYWHq3bu3Zs+ercmTJ2vGjBny9fW9+BYBAAAAAAAAAADUgRonUQ4cOKA2bdrI399fZrNZc+fOVYcOHZSdnS2LxaKYmBhr2W7duqlDhw7KzMxUdHS0MjMz1bNnT4WFhVnLxMXFady4cdq7d6/69Oljd5vFxcUqLi62vi8sLJQkWSwWWSyWKutbPr+6cm4pIKDOV2n53zotTlj32RU3nH5u0J+NOuaOfeFOdQEAAAAAAADgmWqUROnbt6+WLVumK664QocPH9bMmTPVv39/ffXVV8rNzZWvr6+aN29us0xYWJhyc3MlSbm5uTYJlPL55fMuZO7cuZo5c2al6enp6QoMDHSo7hkZGQ6Vcytvvum0VWcsXeqcFa9f75z1OlGD/Gw4iTv1xalTp1xdBQAAAAAAAAAerkZJlPj4eOv/e/Xqpb59+yoiIkJvvfWWApx1ZYOkKVOmKCUlxfq+sLBQ7du3V2xsrIKDg6tc1mKxKCMjQ4MHD5bJZHJaHZ0iJKTOV2kJCFDG0qUaPHq0TEVFdb5+FRTU/TqdpEF/NuqYO/ZF+RVnAAAAAAAAAOAqNb6d17maN2+uyy+/XN98840GDx6skpISHTt2zOZqlLy8POszVMLDw7Vz506bdeTl5VnnXYifn5/8/PwqTTeZTA4f8K1JWbfhjCTH/5iKipyTRGlofawG+tlwEnfqC3epBwAAAAAAAADP5X0xC584cULffvutWrduraioKJlMJm3evNk6f//+/crJyZHZbJYkmc1m7dmzR/n5+dYyGRkZCg4OVmRk5MVUBQAAAAAAAAAAoE7V6EqUxx9/XLfddpsiIiJ06NAhTZ8+XT4+Prr33nsVEhKiMWPGKCUlRS1atFBwcLAmTJggs9ms6OhoSVJsbKwiIyM1YsQIzZ8/X7m5uZo6daqSk5PtXmkCAAAAAAAAAADgKjVKovz444+69957deTIEbVq1Ur9+vVTVlaWWrVqJUlasGCBvL29lZiYqOLiYsXFxWnRokXW5X18fLRu3TqNGzdOZrNZTZs2VVJSkmbNmlW3rQIAAAAAAAAAALhINUqirFy5ssr5/v7+Sk1NVWpq6gXLREREaP369TXZLAAAAAAAAAAAQL27qAfLNyghIU59UDsAAAAAAAAAAGhcLurB8gAAAAAAAAAAAI0VSRQAAAAAAAAAAAA7SKIAAAAAAAAAAADYQRIFAAAAAAAAAADADpIoAAAAAAAAAAAAdpBEAQAAAAAAAAAAsIMkCgAAAAAAAAAAgB0kUQAAAAAAAAAAAOwgiQIAAAAAAAAAAGAHSRQAAAAAAAAAAAA7SKIAAAAAAAAAAADYQRIFAAAAAAAAAADADpIoAAAAAAAAAAAAdpBEAQAAAAAAAAAAsIMkCgAAAAAAAAAAgB0kUQAAAAAAAAAAAOwgiQIAAAAAAAAAAGAHSRQAAAAAAAAAAAA7SKIAAAAAAAAAAADYQRIFAAAAAAAAAADADpIoAAAAAAAAAAAAdpBEAQAAAAAAAAAAsIMkCgAAAAAAAAAAgB0kUQAAAAAAAAAAAOwgiQIAAAAAAAAAAGAHSRQAAAAAAAAAAAA7SKIAAAAAAAAAAADYQRIFAAAAAAAAAADADpIoAAAAAAAAAAAAdpBEAQAAAAAAAAAAsIMkCgAAAAAAAAAAgB0kUQAAAAAAAAAAAOwgiQIAAAAAAAAAAGDHRSVR5s2bJy8vLz322GPWaadPn1ZycrJatmypoKAgJSYmKi8vz2a5nP9v7/5jvK7vO4A/AY87QA+GljuZiDhdkQnisIXb3NopcjJiSuQPdcZSJTUhaKq3qmOxKNqGzrjqXFG2RcRmY+1cUhYJQ640YBoOVJyZxc3YxoR29o5WAye/jq9w+6Pjqzc+Ug7u+H6RxyO5HJ/35/19f1/v133++j75fD/bt2fWrFkZOnRoRo0alXvuuScffPDBiZQCAAAAAADQp447RHn55Zfzd3/3d5k0aVKP8bvvvjvPP/98nnvuuWzcuDHvvPNOrr/++vL5gwcPZtasWTlw4EA2bdqUZ599NitWrMiiRYuOfxcAAAAAAAB97LhClN27d+fmm2/OP/zDP+S3fuu3yuO7du3K008/nW9961u56qqrMmXKlDzzzDPZtGlTNm/enCRZt25d3njjjfzjP/5jJk+enJkzZ+bhhx/O0qVLc+DAgb7ZFQAAAAAAwAk6rhBlwYIFmTVrVqZPn95jfOvWrSmVSj3Gx48fn/PPPz9tbW1Jkra2tkycODENDQ3lOc3Nzens7My2bduOpxwAAAAAAIA+d0ZvX/Dd7343r776al5++eUjzrW3t2fw4MEZMWJEj/GGhoa0t7eX53w0QDl8/vC5Il1dXenq6iofd3Z2JklKpVJKpdJR6z18vjRkyFHnnS4O96Hf+vEb/h7VpHxtnEI195dq7EU11QIAAAAAnJ56FaL87Gc/y1e+8pW0tramrq6uv2o6wpIlS7J48eIjxtetW5ehQ4ce0xqty5f3dVmntH7rx5o1/bNuP2ptba10CVWjmnqxd+/eSpcAAAAAAJzmehWibN26NTt27Mjv//7vl8cOHjyYF198Md/+9rfzwgsv5MCBA9m5c2ePu1E6OjrS2NiYJGlsbMxLL73UY92Ojo7yuSILFy5MS0tL+bizszNjxozJjBkzUl9ff9SaS6VSWltbc81tt6Vm377ebPcTqTRkSFqXL++/fuza1fdr9pPytXHNNampqal0ORVVjb04fMcZAAAAAECl9CpEufrqq/P666/3GLv11lszfvz43HfffRkzZkxqamqyfv36zJkzJ0ny5ptvZvv27WlqakqSNDU15Rvf+EZ27NiRUaNGJfn1/36vr6/PhAkTCt+3trY2tbW1R4zX1NQc8we+Nfv2CVE+ot/6USUfwPdGb66jT7pq6kW11AEAAAAAnL56FaKcddZZufTSS3uMDRs2LGeffXZ5fN68eWlpacnIkSNTX1+fO++8M01NTZk2bVqSZMaMGZkwYUJuueWWPPLII2lvb8/999+fBQsWFAYlAAAAAAAAldDrB8v/Jo899lgGDhyYOXPmpKurK83NzXnyySfL5wcNGpTVq1dn/vz5aWpqyrBhwzJ37tw89NBDfV0KAAAAAADAcTvhEGXDhg09juvq6rJ06dIsXbr0Y18zduzYrDkFH0AOAAAAAACcPgZWugAAAAAAAIBqJEQBAAAAAAAoIEQBAAAAAAAoIEQBAAAAAAAoIEQBAAAAAAAoIEQBAAAAAAAoIEQBAAAAAAAoIEQBAAAAAAAoIEQBAAAAAAAoIEQBAAAAAAAoIEQBAAAAAAAoIEQBAAAAAAAoIEQBAAAAAAAoIEQBAAAAAAAoIEQBAAAAAAAoIEQBAAAAAAAoIEQBAAAAAAAoIEQBAAAAAAAoIEQBAAAAAAAoIEQBAAAAAAAoIEQBAAAAAAAoIEQBAAAAAAAoIEQBAAAAAAAoIEQBAAAAAAAoIEQBAAAAAAAoIEQBAAAAAAAoIEQBAAAAAAAoIEQBAAAAAAAoIEQBAAAAAAAoIEQBAAAAAAAoIEQBAAAAAAAoIEQBAAAAAAAoIEQBAAAAAAAoIEQBAAAAAAAoIEQBAAAAAAAo0KsQ5amnnsqkSZNSX1+f+vr6NDU15d///d/L5/fv358FCxbk7LPPzplnnpk5c+ako6Ojxxrbt2/PrFmzMnTo0IwaNSr33HNPPvjgg77ZDQAAAAAAQB/pVYhy3nnn5Zvf/Ga2bt2aV155JVdddVW+8IUvZNu2bUmSu+++O88//3yee+65bNy4Me+8806uv/768usPHjyYWbNm5cCBA9m0aVOeffbZrFixIosWLerbXQEAAAAAAJygM3oz+brrrutx/I1vfCNPPfVUNm/enPPOOy9PP/10Vq5cmauuuipJ8swzz+SSSy7J5s2bM23atKxbty5vvPFGfvCDH6ShoSGTJ0/Oww8/nPvuuy8PPvhgBg8e3Hc7AwAAAAAAOAG9ClE+6uDBg3nuueeyZ8+eNDU1ZevWrSmVSpk+fXp5zvjx43P++eenra0t06ZNS1tbWyZOnJiGhobynObm5syfPz/btm3L5ZdfXvheXV1d6erqKh93dnYmSUqlUkql0lHrPHy+NGTI8W71E+VwH/qtH7/h71FNytfGKVRzf6nGXlRTLQAAAADA6anXIcrrr7+epqam7N+/P2eeeWa+//3vZ8KECXnttdcyePDgjBgxosf8hoaGtLe3J0na29t7BCiHzx8+93GWLFmSxYsXHzG+bt26DB069Jjqbl2+/JjmnS76rR9r1vTPuv2otbW10iVUjWrqxd69eytdAgAAAABwmut1iPLpT386r732Wnbt2pV//dd/zdy5c7Nx48b+qK1s4cKFaWlpKR93dnZmzJgxmTFjRurr64/62lKplNbW1lxz222p2bevX+s8FZSGDEnr8uX9149du/p+zX5SvjauuSY1NTWVLqeiqrEXh+84AwAAAAColF6HKIMHD85FF12UJJkyZUpefvnl/M3f/E1uuOGGHDhwIDt37uxxN0pHR0caGxuTJI2NjXnppZd6rNfR0VE+93Fqa2tTW1t7xHhNTc0xf+Bbs2+fEOUj+q0fVfIBfG/05jr6pKumXlRLHQAAAADA6WvgiS5w6NChdHV1ZcqUKampqcn69evL5958881s3749TU1NSZKmpqa8/vrr2bFjR3lOa2tr6uvrM2HChBMtBQAAAAAAoM/06k6UhQsXZubMmTn//PPz/vvvZ+XKldmwYUNeeOGFDB8+PPPmzUtLS0tGjhyZ+vr63HnnnWlqasq0adOSJDNmzMiECRNyyy235JFHHkl7e3vuv//+LFiwoPBOEwAAAAAAgErpVYiyY8eOfPGLX8wvfvGLDB8+PJMmTcoLL7yQa665Jkny2GOPZeDAgZkzZ066urrS3NycJ598svz6QYMGZfXq1Zk/f36ampoybNiwzJ07Nw899FDf7goAAAAAAOAE9SpEefrpp496vq6uLkuXLs3SpUs/ds7YsWOzZs2a3rwtAAAAAADASXfCz0QBAAAAAAD4JBKiAAAAAAAAFBCiAAAAAAAAFBCiAAAAAAAAFBCiAAAAAAAAFBCiAAAAAAAAFBCiAAAAAAAAFBCiAAAAAAAAFBCiAAAAAAAAFBCiAAAAAAAAFBCiAAAAAAAAFBCiAAAAAAAAFBCiAAAAAAAAFBCiAAAAAAAAFBCiAAAAAAAAFBCiAAAAAAAAFBCiAAAAAAAAFBCiAAAAAAAAFBCiAAAAAAAAFBCiAAAAAAAAFBCiAAAAAAAAFBCiAAAAAAAAFBCiAAAAAAAAFBCiAAAAAAAAFBCiAAAAAAAAFBCiAAAAAAAAFBCiAAAAAAAAFBCiAAAAAAAAFBCiAAAAAAAAFBCiAAAAAAAAFBCiAAAAAAAAFBCiAAAAAAAAFBCiAAAAAAAAFBCiAAAAAAAAFOhViLJkyZJ85jOfyVlnnZVRo0Zl9uzZefPNN3vM2b9/fxYsWJCzzz47Z555ZubMmZOOjo4ec7Zv355Zs2Zl6NChGTVqVO6555588MEHJ74bAAAAAACAPtKrEGXjxo1ZsGBBNm/enNbW1pRKpcyYMSN79uwpz7n77rvz/PPP57nnnsvGjRvzzjvv5Prrry+fP3jwYGbNmpUDBw5k06ZNefbZZ7NixYosWrSo73YFAAAAAABwgs7ozeS1a9f2OF6xYkVGjRqVrVu35o//+I+za9euPP3001m5cmWuuuqqJMkzzzyTSy65JJs3b860adOybt26vPHGG/nBD36QhoaGTJ48OQ8//HDuu+++PPjggxk8eHDf7Q4AAAAAAOA49SpE+f927dqVJBk5cmSSZOvWrSmVSpk+fXp5zvjx43P++eenra0t06ZNS1tbWyZOnJiGhobynObm5syfPz/btm3L5ZdffsT7dHV1paurq3zc2dmZJCmVSimVSket8fD50pAhx7nLT5bDfei3fvyGv0c1KV8bp1DN/aUae1FNtQAAAAAAp6fjDlEOHTqUu+66K3/4h3+YSy+9NEnS3t6ewYMHZ8SIET3mNjQ0pL29vTznowHK4fOHzxVZsmRJFi9efMT4unXrMnTo0GOqt3X58mOad7rot36sWdM/6/aj1tbWSpdQNaqpF3v37q10CQAAAADAae64Q5QFCxbkxz/+cX70ox/1ZT2FFi5cmJaWlvJxZ2dnxowZkxkzZqS+vv6ory2VSmltbc01t92Wmn37+rvUqlcaMiSty5f3Xz/+7+6kU0H52rjmmtTU1FS6nIqqxl4cvuMMAAAAAKBSjitEueOOO7J69eq8+OKLOe+888rjjY2NOXDgQHbu3NnjbpSOjo40NjaW57z00ks91uvo6CifK1JbW5va2tojxmtqao75A9+affuEKB/Rb/2okg/ge6M319EnXTX1olrqAAAAAABOXwN7M7m7uzt33HFHvv/97+eHP/xhxo0b1+P8lClTUlNTk/Xr15fH3nzzzWzfvj1NTU1Jkqamprz++uvZsWNHeU5ra2vq6+szYcKEE9kLAAAAAABAn+nVnSgLFizIypUr82//9m8566yzys8wGT58eIYMGZLhw4dn3rx5aWlpyciRI1NfX58777wzTU1NmTZtWpJkxowZmTBhQm655ZY88sgjaW9vz/33358FCxYU3m0CAAAAAABQCb0KUZ566qkkyec///ke488880y+9KUvJUkee+yxDBw4MHPmzElXV1eam5vz5JNPlucOGjQoq1evzvz589PU1JRhw4Zl7ty5eeihh05sJwAAAAAAAH2oVyFKd3f3b5xTV1eXpUuXZunSpR87Z+zYsVmzZk1v3hoAAAAAAOCk6tUzUQAAAAAAAE4XQhQAAAAAAIACQhQAAAAAAIACQhQAAAAAAIACQhQAAAAAAIACQhQAAAAAAIACQhQAAAAAAIACQhQAAAAAAIACQhQAAAAAAIACQhQAAAAAAIACQhQAAAAAAIACQhQAAAAAAIACQhQAAAAAAIACQhQAAAAAAIACQhQAAAAAAIACQhQAAAAAAIACQhQAAAAAAIACQhQAAAAAAIACQhQAAAAAAIACQhQAAAAAAIACQhQAAAAAAIACQhQAAAAAAIACQhQAAAAAAIACQhQAAAAAAIACQhQAAAAAAIACQhQAAAAAAIACQhQAAAAAAIACQhQAAAAAAIACQhQAAAAAAIACQhQAAAAAAIACQhQAAAAAAIACQhQAAAAAAIACQhQAAAAAAIACQhQAAAAAAIACvQ5RXnzxxVx33XUZPXp0BgwYkFWrVvU4393dnUWLFuXcc8/NkCFDMn369Lz11ls95rz33nu5+eabU19fnxEjRmTevHnZvXv3CW0EAAAAAACgL/U6RNmzZ08uu+yyLF26tPD8I488kieeeCLLli3Lli1bMmzYsDQ3N2f//v3lOTfffHO2bduW1tbWrF69Oi+++GJuv/32498FAAAAAABAHzujty+YOXNmZs6cWXiuu7s7jz/+eO6///584QtfSJJ85zvfSUNDQ1atWpUbb7wx//Vf/5W1a9fm5ZdfzhVXXJEk+du//dv86Z/+aR599NGMHj36BLYDAAAAAADQN/r0mShvv/122tvbM3369PLY8OHDM3Xq1LS1tSVJ2traMmLEiHKAkiTTp0/PwIEDs2XLlr4sBwAAAAAA4Lj1+k6Uo2lvb0+SNDQ09BhvaGgon2tvb8+oUaN6FnHGGRk5cmR5zv/X1dWVrq6u8nFnZ2eSpFQqpVQqHbWmw+dLQ4b0YiefXIf70G/9+A1/j2pSvjZOoZr7SzX2oppqAQAAAABOT30aovSXJUuWZPHixUeMr1u3LkOHDj2mNVqXL+/rsk5p/daPNWv6Z91+1NraWukSqkY19WLv3r2VLgEAAAAAOM31aYjS2NiYJOno6Mi5555bHu/o6MjkyZPLc3bs2NHjdR988EHee++98uv/v4ULF6alpaV83NnZmTFjxmTGjBmpr68/ak2lUimtra255rbbUrNv3/Fs6xOlNGRIWpcv779+7NrV92v2k/K1cc01qampqXQ5FVWNvTh8xxkAAAAAQKX0aYgybty4NDY2Zv369eXQpLOzM1u2bMn8+fOTJE1NTdm5c2e2bt2aKVOmJEl++MMf5tChQ5k6dWrhurW1tamtrT1ivKam5pg/8K3Zt0+I8hH91o8q+QC+N3pzHX3SVVMvqqUOAAAAAOD01esQZffu3fnJT35SPn777bfz2muvZeTIkTn//PNz11135etf/3ouvvjijBs3Ll/72tcyevTozJ49O0lyySWX5Nprr82Xv/zlLFu2LKVSKXfccUduvPHGjB49us82BgAAAAAAcCJ6HaK88sor+ZM/+ZPy8eGv2Zo7d25WrFiRe++9N3v27Mntt9+enTt35sorr8zatWtTV1dXfs0//dM/5Y477sjVV1+dgQMHZs6cOXniiSf6YDsAAAAAAAB9o9chyuc///l0d3d/7PkBAwbkoYceykMPPfSxc0aOHJmVK1f29q0BAAAAAABOmoGVLgAAAAAAAKAaCVEAAAAAAAAKCFEAAAAAAAAKCFEAAAAAAAAKCFHoWwMGnDo/w4f/uubDvwEAAAAA4COEKAAAAAAAAAWEKAAAAAAAAAWEKAAAAAAAAAWEKAAAAAAAAAWEKAAAAAAAAAWEKAAAAAAAAAWEKAAAAAAAAAWEKAAAAAAAAAWEKAAAAAAAAAWEKAAAAAAAAAWEKAAAAAAAAAWEKAAAAAAAAAWEKAAAAAAAAAWEKAAAAAAAAAWEKAAAAAAAAAWEKAAAAAAAAAWEKAAAAAAAAAWEKAAAAAAAAAWEKAAAAAAAAAWEKAAAAAAAAAWEKAAAAAAAAAWEKAAAAAAAAAWEKAAAAAAAAAWEKAAAAAAAAAWEKAAAAAAAAAWEKAAAAAAAAAWEKAAAAAAAAAWEKAAAAAAAAAWEKAAAAAAAAAXOqHQBUBUGDKh0Bb3X3V3pCgAAAAAAPtEqeifK0qVLc8EFF6Suri5Tp07NSy+9VMlyAAAAAAAAyioWonzve99LS0tLHnjggbz66qu57LLL0tzcnB07dlSqJAAAAAAAgLKKhSjf+ta38uUvfzm33nprJkyYkGXLlmXo0KFZvnx5pUqCU8uAAX33M3z4r9ccPrxv1y36AQAAAAA4RVTkmSgHDhzI1q1bs3DhwvLYwIEDM3369LS1tR0xv6urK11dXeXjXbt2JUnee++9lEqlo75XqVTK3r17825dXWo8QyKlujr9+D968aGT2ot33z2mae+//36SpPs0/9sAAAAAAJVTkRDlV7/6VQ4ePJiGhoYe4w0NDfnv//7vI+YvWbIkixcvPmJ83Lhx/VbjJ9b+/cmf/Vmlq6gOevGhk9mLc87p1fT3338/ww/fKQMAAAAAcBJVJETprYULF6alpaV8fOjQobz33ns5++yzM+A3fD1QZ2dnxowZk5/97Gepr6/v71Krnn58SC8+VI296O7uzvvvv5/Ro0dXuhQAAAAA4DRVkRDlnHPOyaBBg9LR0dFjvKOjI42NjUfMr62tTW1tbY+xESNG9Oo96+vrq+bD4WqgHx/Siw9VWy/cgQIAAAAAVFJFHiw/ePDgTJkyJevXry+PHTp0KOvXr09TU1MlSgIAAAAAAOihYl/n1dLSkrlz5+aKK67IZz/72Tz++OPZs2dPbr311kqVBAAAAAAAUFaxEOWGG27IL3/5yyxatCjt7e2ZPHly1q5de8TD5k9UbW1tHnjggSO+Dux0pR8f0osP6QUAAAAAwJEGdHd3d1e6CAAAAAAAgGpTkWeiAAAAAAAAVDshCgAAAAAAQAEhCgAAAAAAQAEhCgAAAAAAQIFTMkRZunRpLrjggtTV1WXq1Kl56aWXjjr/ueeey/jx41NXV5eJEydmzZo1Pc53d3dn0aJFOffcczNkyJBMnz49b731Vn9uoc/0dS++9KUvZcCAAT1+rr322v7cQp/pTS+2bduWOXPm5IILLsiAAQPy+OOPn/Ca1aav+/Hggw8ecW2MHz++H3cAAAAAAFBZp1yI8r3vfS8tLS154IEH8uqrr+ayyy5Lc3NzduzYUTh/06ZNuemmmzJv3rz8x3/8R2bPnp3Zs2fnxz/+cXnOI488kieeeCLLli3Lli1bMmzYsDQ3N2f//v0na1vHpT96kSTXXnttfvGLX5R//vmf//lkbOeE9LYXe/fuzYUXXphvfvObaWxs7JM1q0l/9CNJfu/3fq/HtfGjH/2ov7YAAAAAAFBxA7q7u7srXURvTJ06NZ/5zGfy7W9/O0ly6NChjBkzJnfeeWf+4i/+4oj5N9xwQ/bs2ZPVq1eXx6ZNm5bJkydn2bJl6e7uzujRo/Pnf/7n+epXv5ok2bVrVxoaGrJixYrceOONJ2djx6Gve5H8+k6UnTt3ZtWqVSdlD32lt734qAsuuCB33XVX7rrrrj5bs9L6ox8PPvhgVq1alddee62fqgYAAAAAqC6n1J0oBw4cyNatWzN9+vTy2MCBAzN9+vS0tbUVvqatra3H/CRpbm4uz3/77bfT3t7eY87w4cMzderUj12zGvRHLw7bsGFDRo0alU9/+tOZP39+3n333b7fQB86nl5UYs2TpT9rf+uttzJ69OhceOGFufnmm7N9+/YTLRcAAAAAoGqdUiHKr371qxw8eDANDQ09xhsaGtLe3l74mvb29qPOP/y7N2tWg/7oRfLrr/L6zne+k/Xr1+ev/uqvsnHjxsycOTMHDx7s+030kePpRSXWPFn6q/apU6dmxYoVWbt2bZ566qm8/fbb+aM/+qO8//77J1oyAAAAAEBVOqPSBVBdPvr1ZRMnTsykSZPyO7/zO9mwYUOuvvrqClZGpc2cObP870mTJmXq1KkZO3Zs/uVf/iXz5s2rYGUAAAAAAP3jlLoT5ZxzzsmgQYPS0dHRY7yjo+NjH4bd2Nh41PmHf/dmzWrQH70ocuGFF+acc87JT37ykxMvup8cTy8qsebJcrJqHzFiRH73d3+3qq8NAAAAAIATcUqFKIMHD86UKVOyfv368tihQ4eyfv36NDU1Fb6mqampx/wkaW1tLc8fN25cGhsbe8zp7OzMli1bPnbNatAfvSjy85//PO+++27OPffcvim8HxxPLyqx5slysmrfvXt3fvrTn1b1tQEAAAAAcCJOua/zamlpydy5c3PFFVfks5/9bB5//PHs2bMnt956a5Lki1/8Yn77t387S5YsSZJ85Stfyec+97n89V//dWbNmpXvfve7eeWVV/L3f//3SZIBAwbkrrvuyte//vVcfPHFGTduXL72ta9l9OjRmT17dqW2eUz6uhe7d+/O4sWLM2fOnDQ2NuanP/1p7r333lx00UVpbm6u2D6PRW97ceDAgbzxxhvlf//P//xPXnvttZx55pm56KKLjmnNatYf/fjqV7+a6667LmPHjs0777yTBx54IIMGDcpNN91UmU0CAAAAAPSzUy5EueGGG/LLX/4yixYtSnt7eyZPnpy1a9eWH6K9ffv2DBz44Q02f/AHf5CVK1fm/vvvz1/+5V/m4osvzqpVq3LppZeW59x7773Zs2dPbr/99uzcuTNXXnll1q5dm7q6upO+v97o614MGjQo//mf/5lnn302O3fuzOjRozNjxow8/PDDqa2trcgej1Vve/HOO+/k8ssvLx8/+uijefTRR/O5z30uGzZsOKY1q1l/9OPnP/95brrpprz77rv51Kc+lSuvvDKbN2/Opz71qZO6NwAAAACAk2VAd3d3d6WLAAAAAAAAqDan1DNRAAAAAAAAThYhCgAAAAAAQAEhCgAAAAAAQAEhCgAAAAAAQAEhCgAAAAAAQAEhCgAAAAAAQAEhCgAAAAAAQAEhCgAAAAAAQAEhCgAAAAAAQAEhCgAAAAAAQAEhCgAAAAAAQAEhCgAAAAAAQIH/Bat71zg4V1DmAAAAAElFTkSuQmCC\n"},"metadata":{}},{"output_type":"display_data","data":{"text/plain":["
"],"image/png":"iVBORw0KGgoAAAANSUhEUgAABkYAAAZGCAYAAAD6Sx39AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOzdfVxUdf7//+eAXCuDqICkommpeL1USqmZIniRZbK1lqt48dFdF9xV2nJtTUUzyrVsM8xqFe0CK9t0N3MVNC+2RDP6Wl6Uq66ubQpUrpCoOMr5/dFvpkYQZ5RhYOZxv9243Zhz3nPm9ZphXpyZ1/ucYzIMwxAAAAAAAAAAAIAX8HF3AAAAAAAAAAAAALWFxggAAAAAAAAAAPAaNEYAAAAAAAAAAIDXoDECAAAAAAAAAAC8Bo0RAAAAAAAAAADgNWiMAAAAAAAAAAAAr0FjBAAAAAAAAAAAeA0aIwAAAAAAAAAAwGvQGAEAAAAAAAAAAF6DxghqVOvWrTV27Fh3h1GlrVu3ymQyaevWre4OpU7FAuD6rFixQiaTSceOHbNb/qc//Uk33nijfH191b17d7fEBgA1rV+/furXr59T92ndurXuvvtu1wTkwGM7um9ak3GaTCalpaVdddyV/ocAqD/mzJkjk8nk7jBqRV3+vA/Avay18Ntvv3V3KJKksWPHqnXr1i7bvjv3b1FzaIygTjh79qzmzJlDowCAR8jNzdWjjz6qO+64Q9nZ2XryySdrPYb169drzpw5tf64AOquHTt2aM6cOTp9+rS7Q3GbAwcOaM6cOfW6EcF+MwAAAHD9Grg7AHiWgwcPysfH+X7b2bNnlZGRIUlOz0IEgLrmgw8+kI+Pj5YtWyZ/f3+3xLB+/XplZWXRHAFgs2PHDmVkZGjs2LEKCwtzdzhuceDAAWVkZKhfv34unUXoqNGjR2vkyJEKCAhw+D7sNwNwl2v9vA8AQF3EfzTUqICAAPn5+bk7DABwq+LiYgUFBbmtKQIAqB98fX0VGBhYJ07DU1ZW5u4QADjo/PnzqqioqPXH5fM+AMCT0BjxQP/5z3/0m9/8Ru3bt1dQUJCaNGmi+++/v9IpA6znNP7oo4+Unp6uZs2aKSQkRPfdd5+++eYb2zjrzOdZs2bZ3T8nJ0cmk0kvvviibVlV5xw9ffq0pk6dqpYtWyogIEDt2rXT008/bduRO3bsmJo1ayZJysjIkMlkkslk0pw5c5SdnS2TyaT/9//+X6U8n3zySfn6+urrr7++nqdLu3bt0qBBg2Q2mxUcHKw777xTH330kW39O++8I5PJpG3btlW670svvSSTyaR9+/bZln355Zf6+c9/rvDwcAUGBuqWW27R3//+9+uKEUDN+/777zV16lS1bt1aAQEBioiI0MCBA/Xpp5/axlytPlTFZDIpOztbZWVltnq2YsUKh+NypIZYLBZlZGTopptuUmBgoJo0aaLevXsrLy9P0g/nU83KyrLFY/2xqqio0HPPPadOnTopMDBQkZGR+tWvfqX//e9/leL5xz/+oT59+igkJESNGjXS0KFDtX//frsxY8eOVcOGDXX8+HHdfffdatiwoW644QZbDHv37lX//v0VEhKimJgY5eTkOPx8APWZ9VzL//rXv/TLX/5SZrNZzZo10+OPPy7DMPTVV1/p3nvvVWhoqKKiovTMM8/Y3b+8vFyzZ89Wu3btFBAQoJYtW+rRRx9VeXm53Tjr9SzWrl2rzp07KyAgQJ06ddKGDRvsYnnkkUckSW3atLHVBev+YXZ2tvr376+IiAgFBAQoNjbWbh+vJnz44Ye67bbbFBgYqBtvvFGvvvpqpTFX22+0WrhwoW6//XY1adJEQUFBiouL0zvvvFPt469YsUL333+/JOmuu+6yPQeXn5LKkTgdVd1rYo3p8muMfPLJJ0pKSlLTpk0VFBSkNm3aaPz48ZKq32+2+uCDD2x1OywsTPfee6+++OILu8e1/m0eOHBADz30kBo3bqzevXvXyr43UJ99+OGHuvXWWxUYGKi2bdvqpZdeqnLc66+/rri4OAUFBSk8PFwjR47UV199ZTemX79+6ty5swoKCnT77bfb3u9Lly61G2e9PuWbb76pmTNn6oYbblBwcLBKS0slOba/6sh+76FDh5ScnKyoqCgFBgaqRYsWGjlypEpKSmxjqvq8/+9//1v333+/wsPDFRwcrF69eun999+vMoe3335b8+fPV4sWLRQYGKgBAwbo8OHDjj35AOqF06dP245ONpvNGjdunM6ePWs3xpEa+c9//lP333+/WrVqZdsPnjZtms6dO1fpMa37W4GBgercubPWrFlTZWzO7D++/vrruu222xQcHKzGjRurb9++ys3NrTSuJvdv4QYGPM7q1auNbt26GbNmzTJefvll47HHHjMaN25sxMTEGGVlZbZx2dnZhiSjR48eRv/+/Y3FixcbDz/8sOHr62s88MADdttMTU01GjRoYBQUFBiGYRgnTpwwwsPDjYSEBKOiosI2LiYmxkhJSbHdLisrM7p27Wo0adLEeOyxx4ylS5caY8aMMUwmk/G73/3OMAzDOHPmjPHiiy8akoz77rvPeO2114zXXnvN+Oyzz4zS0lIjKCjIePjhhyvlGRsba/Tv39/h52XLli2GJGPLli22ZZs3bzb8/f2N+Ph445lnnjEWLVpkdO3a1fD39zd27dplGIZhnD171mjYsKHxm9/8ptI277rrLqNTp0622/v27TPMZrMRGxtrPP3008YLL7xg9O3b1zCZTMa7775bbSwAatdDDz1k+Pv7G+np6cZf/vIX4+mnnzaGDRtmvP7664ZhOFYfDOPHWnr06FHDMAzjtddeM/r06WMEBATY6tmRI0ccisnRGvLYY48ZJpPJmDhxovHKK68YzzzzjPHggw8aTz31lGEYhrFjxw5j4MCBhiRbDK+99prt/v/3f/9nNGjQwJg4caKxdOlSY/r06UZISIhx6623GhcuXLCNe/XVVw2TyWQMGjTIWLx4sfH0008brVu3NsLCwmz5GoZhpKSkGIGBgUZsbKzx61//2sjKyjJuv/12Q5KRnZ1tREdHG4888oixePFio1OnToavr6/x73//2+nXDKhvZs+ebUgyunfvbjz44IPGkiVLjKFDhxqSjGeffdZo3769MXnyZGPJkiXGHXfcYUgytm3bZhiGYVy6dMlITEw0goODjalTpxovvfSSkZaWZjRo0MC499577R5HktGtWzejefPmxrx584znnnvOuPHGG43g4GDj22+/NQzDMD777DPjwQcfNCQZixYtstWFM2fOGIZhGLfeeqsxduxYY9GiRcbixYuNxMREQ5Lxwgsv2D3WnXfeadx5551OPQ8xMTFG+/btjcjISOOxxx4zXnjhBeNnP/uZYTKZjH379tnGObLfaNWiRQvjN7/5jfHCCy8Yzz77rHHbbbcZkox169ZVemzrvumRI0eM3/72t4Yk47HHHrM9B4WFhU7F6QhHXhPDqPw/pKioyGjcuLFx8803G3/605+MV155xfjjH/9odOzY0TCM6vebDcMw8vLyjAYNGhg333yzsWDBAiMjI8No2rSp0bhxY7u6bf3bjI2NNe69915jyZIlRlZWVo3uewOe5vPPPzeCgoKMVq1aGZmZmca8efOMyMhIo2vXrsZPv1p54oknDJPJZPziF78wlixZYnsftm7d2vjf//5nG3fnnXca0dHRRkREhJGWlmY8//zzRu/evQ1JxrJly2zjrJ8dY2Njje7duxvPPvuskZmZaZSVlTm8v3q1/d7y8nKjTZs2RnR0tPHEE08Yf/nLX4yMjAzj1ltvNY4dO2bbzuWf9wsLC43IyEijUaNGxh//+Efj2WefNbp162b4+PhU+fm3R48eRlxcnLFo0SJjzpw5RnBwsHHbbbfV5MsEwE2s+xY9evQwRowYYSxZssT4v//7P0OS8eijj9rGOVojp0yZYgwZMsR48sknjZdeesmYMGGC4evra/z85z+3e9yNGzcaPj4+RufOnY1nn33W+OMf/2iYzWajU6dORkxMjN1YR/cf58yZY0gybr/9duNPf/qT8ec//9l46KGHjOnTp9vGuGL/FrWPxogHOnv2bKVl+fn5hiTj1VdftS2zfhC7vLkxbdo0w9fX1zh9+rRtWVlZmdGuXTujU6dOxvnz542hQ4caoaGhxn/+8x+7x7l8R2nevHlGSEiI8a9//ctu3B/+8AfD19fXOH78uGEYhvHNN98YkozZs2dXiv3BBx80oqOjjUuXLtmWffrpp7Yv3Bx1eTOioqLCuOmmm4ykpCS7/M+ePWu0adPGGDhwoF0MERERxsWLF23LTp48afj4+Bhz5861LRswYIDRpUsX4/z587ZlFRUVxu23327cdNNNV4wFQO0zm81GampqleucqQ+Xf6llGD80CkJCQpyOydEa0q1bN2Po0KHVbis1NdXuQ7rVP//5T0OS8cYbb9gt37Bhg93y77//3ggLCzMmTpxoN66wsNAwm812y1NSUgxJxpNPPmlb9r///c8ICgoyTCaT8eabb9qWf/nll1es94CnsX5AnDRpkm3ZxYsXjRYtWhgmk8nWzDSMH98z1v2o1157zfDx8TH++c9/2m1z6dKlhiTjo48+si2TZPj7+xuHDx+2Lfvss88MScbixYtty/70pz9VqldWVe0/JiUlGTfeeKPdsmttjEgytm/fbltWXFxsBAQE2H0B7+h+Y1XxXrhwwejcuXOlL+4v3zddvXr1FffBHI3TEY6+Jpf/D1mzZo0hydi9e/cVt13dfnP37t2NiIgI47vvvrN7XB8fH2PMmDG2Zda/zQcffLDSNmpq3xvwNMOHDzcCAwPtPgMfOHDA8PX1te1zHTt2zPD19TXmz59vd9+9e/caDRo0sFt+5513GpKMZ555xrasvLzc9j62Tlaxfna88cYb7WqfM/ur1e33GoZh/L//9/8MScbq1aurfQ4ur6lTp041JNn9r/r++++NNm3aGK1bt7bVEWsOHTt2NMrLy21j//znPxuSjL1791b7uADqPuu+xfjx4+2W33fffUaTJk0Mw3CuRla1b5qZmWmYTCa7Oty9e3ejefPmdt9h5ubmGpIqNUYc2X88dOiQ4ePjY9x33312+0KGYVSaGF7T+7eofZxKywMFBQXZfrdYLPruu+/Url07hYWF2R0qazVp0iS7U6z06dNHly5d0n/+8x/bsuDgYK1YsUJffPGF+vbtq/fff1+LFi1Sq1atqo1l9erV6tOnjxo3bqxvv/3W9pOQkKBLly5p+/btV81nzJgxOnHihLZs2WJb9sYbbygoKEjJyclXvf+V7NmzR4cOHdJDDz2k7777zhZbWVmZBgwYoO3bt9sOa/vFL36h4uJiu1MtvPPOO6qoqNAvfvELSdKpU6f0wQcf6IEHHtD3339v2953332npKQkHTp0iFMPAHVIWFiYdu3apRMnTlRa50x9qCnO1JCwsDDt379fhw4dcvpxVq9eLbPZrIEDB9rV5bi4ODVs2NBWa/Py8nT69Gk9+OCDduN8fX3Vs2dPu5ps9X//93+238PCwtS+fXuFhITogQcesC1v3769wsLC9O9//9vp2IH66qfvDV9fX91yyy0yDEMTJkywLbe+Z6zvjdWrV6tjx47q0KGD3Xuwf//+klTpPZiQkKC2bdvabnft2lWhoaEOv9d+uv9YUlKib7/9Vnfeeaf+/e9/251G5VrFxsaqT58+ttvNmjWzy1dybr/xp/H+73//U0lJifr06VPlvm5Nx+moa3lNwsLCJEnr1q2TxWJx6vFOnjypPXv2aOzYsQoPD7d73IEDB2r9+vWV7vPrX/+60jJX7XsD9dmlS5e0ceNGDR8+3O4zcMeOHZWUlGS7/e6776qiokIPPPCAXR2LiorSTTfdVKl2N2jQQL/61a9st/39/fWrX/1KxcXFKigosBubkpJiV/uc2V+tbr9XksxmsyRp48aNlU55U53169frtttuU+/evW3LGjZsqEmTJunYsWM6cOCA3fhx48bZXYPPWm/ZLwQ8x+X7Fn369NF3332n0tJSp2rkT+tdWVmZvv32W91+++0yDMN2yk/rvk9KSoqtjknSwIEDFRsbWyk2R/Yf165dq4qKCs2aNUs+PvZfm19+Tbia3r9F7Wvg7gBQ886dO6fMzExlZ2fr66+/lmEYtnVVfbC9vLnRuHFjSap0rvk77rhDkydPVlZWlpKSkmznOq7OoUOH9Pnnn9vOhXy54uLiq25j4MCBat68ud544w0NGDBAFRUVWrVqle699141atToqvevLjbphx3MKykpKVHjxo1t52x96623NGDAAEnSW2+9pe7du+vmm2+WJB0+fFiGYejxxx/X448/XuX2iouLdcMNN1xzzABqzoIFC5SSkqKWLVsqLi5OQ4YM0ZgxY3TjjTc6VR9qijM1ZO7cubr33nt18803q3Pnzho0aJBGjx6trl27XvVxDh06pJKSEkVERFzxMazjJNm+hL1caGio3e3AwMBKtd5sNqtFixaVdiDNZnOV1zMBPNXl+1pms1mBgYFq2rRppeXfffedpB/eg1988YXD+1BVTVZp3Lixw++1jz76SLNnz1Z+fn6lL8VKSkrsPmxeC0fic2a/cd26dXriiSe0Z88eu2uuXO9FzK/3ebzebd15551KTk5WRkaGFi1apH79+mn48OF66KGHFBAQUO3jWSc1tW/fvtK6jh07auPGjSorK1NISIhteZs2bSqNddW+N1CfffPNNzp37pxuuummSuvat29vazweOnRIhmFUOU5SpQuXR0dH270nJdk+Xx47dky9evWyLb/8/erM/mp1+73Wbaenp+vZZ5/VG2+8oT59+uiee+6xXR/rSv7zn/+oZ8+elZZ37NjRtr5z58625Y5+9wCg/qrufe5MjTx+/LhmzZqlv//975VqhPW7Teu+z5Vq8+UTZhzZfzxy5Ih8fHyqbKxcLVfp+vZvUftojHigKVOmKDs7W1OnTlV8fLzMZrNMJpNGjhxZ5QxnX1/fKrfz04aK9MMFQK1HTBw5ckRnz55VcHBwtbFUVFRo4MCBevTRR6tcb93pq46vr68eeughvfLKK1qyZIk++ugjnThxQr/85S+vet+rxSZJf/rTn9S9e/cqxzRs2FCSFBAQoOHDh2vNmjVasmSJioqK9NFHH+nJJ5+stL3f//73drOGfqpdu3bXFTOAmvPAAw+oT58+WrNmjXJzc/WnP/1JTz/9tG0Wi+RYfagpztSQvn376siRI/rb3/6m3Nxc/eUvf9GiRYu0dOlSu5npV3qciIgIvfHGG1Wut+6wWeN57bXXFBUVVWlcgwb2uxBX+l/i6P8YwJNV9T642nujoqJCXbp00bPPPlvluJYtWzq1veocOXJEAwYMUIcOHfTss8+qZcuW8vf31/r167Vo0aIaOULOkfgc3W/85z//qXvuuUd9+/bVkiVL1Lx5c/n5+Sk7O1s5OTkuj9OV2zKZTHrnnXe0c+dOvffee9q4caPGjx+vZ555Rjt37qzx/z0/nTlp5ap9b8AbVFRUyGQy6R//+EeVNeB63sOXv1+d2V+tbr938ODBkqRnnnlGY8eOte1f/va3v1VmZqZ27typFi1aXHPcP8V+IeD5qnufO1ojL126pIEDB+rUqVOaPn26OnTooJCQEH399dcaO3bsNe2bumL/sSb3b+EeNEY80DvvvKOUlBQ988wztmXnz5/X6dOnr2u7s2fP1hdffKGFCxdq+vTp+sMf/qDnn3++2vu0bdtWZ86cUUJCQrXjrja7b8yYMXrmmWf03nvv6R//+IeaNWt2xS8OHWU9tUFoaOhV45N+OJ3WypUrtXnzZn3xxRcyDMN2Gi1Jttk2fn5+Dm0PgPs1b95cv/nNb/Sb3/xGxcXF+tnPfqb58+dr0aJFkhyvDzXB2RoSHh6ucePGady4cTpz5oz69u2rOXPm2BojV6qrbdu21aZNm3THHXdU+YXYT8dJUkREBDUNcIO2bdvqs88+04ABA677KAirK23nvffeU3l5uf7+97/bzXyr6pR5ruTofuNf//pXBQYGauPGjXZHUWRnZ1/1MWrquXS1Xr16qVevXpo/f75ycnI0atQovfnmm/q///u/K+YQExMjSTp48GCldV9++aWaNm1aaWb6lbhi3xuoz5o1a6agoKAqT2P60/dc27ZtZRiG2rRp49CXXSdOnKh0JNe//vUvSVLr1q2rva+zn2evtN9rbYxIUpcuXdSlSxfNnDlTO3bs0B133KGlS5fqiSeeqHKbMTExV6w51vUAYOVojdy7d6/+9a9/aeXKlRozZoxteV5ent04a425Wm2WHN9/bNu2rSoqKnTgwIErNp2d4ej+LdyDa4x4IF9f30ozLhYvXqxLly5d8zZ37dqlhQsXaurUqXr44Yf1yCOP6IUXXtC2bduqvd8DDzyg/Px8bdy4sdK606dP6+LFi5JkO/LkSs2brl27qmvXrvrLX/6iv/71rxo5cmSl2crOiouLU9u2bbVw4UKdOXOm0vpvvvnG7nZCQoLCw8P11ltv6a233tJtt91mdzhzRESE+vXrp5deekknT5686vYAuM+lS5cqnVowIiJC0dHRKi8vd7o+1ARnaoj1VDtWDRs2VLt27ewOB7Z+wL68rj7wwAO6dOmS5s2bV+kxLl68aBuflJSk0NBQPfnkk1We556aBrjWAw88oK+//lqvvPJKpXXnzp1TWVmZ09u8Ul2wzna7/PSrjjQaapKj+42+vr4ymUx2+7bHjh3T2rVrr/oYV3oO6or//e9/lfbjrR/KrTX+SvvNzZs3V/fu3bVy5Uq7dfv27VNubq6GDBnicByu2PcG6jNfX18lJSVp7dq1On78uG35F198YVezRowYIV9fX2VkZFR6LxuGUWkf7uLFi3rppZdsty9cuKCXXnpJzZo1U1xcXLUxObq/erX9XkkqLS211VirLl26yMfHx27/8nJDhgzRxx9/rPz8fNuysrIyvfzyy2rdurVDp6IB4D0crZFV7ZsahqE///nPdvf56b7PT+tcXl5epWscObr/OHz4cPn4+Gju3LmVjky5lqPbHN2/hXuwd+uB7r77br322msym82KjY1Vfn6+Nm3apCZNmlzT9s6fP6+UlBTddNNNmj9/viQpIyND7733nsaNG6e9e/decfbZI488or///e+6++67NXbsWMXFxamsrEx79+7VO++8o2PHjqlp06YKCgpSbGys3nrrLd18880KDw9X586d7c5HOmbMGP3+97+XpBo5lN/Hx0d/+ctfNHjwYHXq1Enjxo3TDTfcoK+//lpbtmxRaGio3nvvPdt4Pz8/jRgxQm+++abKysq0cOHCStvMyspS79691aVLF02cOFE33nijioqKlJ+fr//+97/67LPPrjtuANfv+++/V4sWLfTzn/9c3bp1U8OGDbVp0ybt3r1bzzzzjNP1oaY4WkNiY2PVr18/xcXFKTw8XJ988oneeecdpaWl2bZl/TD929/+VklJSfL19dXIkSN155136le/+pUyMzO1Z88eJSYmys/PT4cOHdLq1av15z//WT//+c8VGhqqF198UaNHj9bPfvYzjRw5Us2aNdPx48f1/vvv64477tALL7xQ488BgB+MHj1ab7/9tn79619ry5YtuuOOO3Tp0iV9+eWXevvtt7Vx40bdcsstTm3TWhf++Mc/auTIkfLz89OwYcOUmJgof39/DRs2TL/61a905swZvfLKK4qIiKiyUesqju43Dh06VM8++6wGDRqkhx56SMXFxcrKylK7du30+eefV/sY3bt3l6+vr55++mmVlJQoICBA/fv3v+J1l2rbypUrtWTJEt13331q27atvv/+e73yyisKDQ21NTaq22/+05/+pMGDBys+Pl4TJkzQuXPntHjxYpnNZs2ZM8epWGp63xuo7zIyMrRhwwb16dNHv/nNb3Tx4kUtXrxYnTp1stWetm3b6oknntCMGTN07NgxDR8+XI0aNdLRo0e1Zs0aTZo0yfa+kn64xsjTTz+tY8eO6eabb9Zbb72lPXv26OWXX650PZLLObq/erX9Xkn64IMPlJaWpvvvv18333yzLl68qNdee02+vr5KTk6+Ygx/+MMftGrVKg0ePFi//e1vFR4erpUrV+ro0aP661//WunCxQC8m6M1skOHDmrbtq1+//vf6+uvv1ZoaKj++te/Vnk9oszMTA0dOlS9e/fW+PHjderUKVtt/mnT2NH9x3bt2umPf/yj5s2bpz59+mjEiBEKCAjQ7t27FR0drczMTKdydnT/Fm5iwOP873//M8aNG2c0bdrUaNiwoZGUlGR8+eWXRkxMjJGSkmIbl52dbUgydu/ebXf/LVu2GJKMLVu2GIZhGNOmTTN8fX2NXbt22Y375JNPjAYNGhiTJ0+2Lbv8MQzDML7//ntjxowZRrt27Qx/f3+jadOmxu23324sXLjQuHDhgm3cjh07jLi4OMPf39+QZMyePdtuOydPnjR8fX2Nm2+++Zqel8vzsvp//+//GSNGjDCaNGliBAQEGDExMcYDDzxgbN68udI28vLyDEmGyWQyvvrqqyof58iRI8aYMWOMqKgow8/Pz7jhhhuMu+++23jnnXeuGguA2lFeXm488sgjRrdu3YxGjRoZISEhRrdu3YwlS5bYjXOkPlhr6dGjR23LUlJSjJCQkGuKzZEa8sQTTxi33XabERYWZgQFBRkdOnQw5s+fb1dTL168aEyZMsVo1qyZYTKZjMv/5b/88stGXFycERQUZDRq1Mjo0qWL8eijjxonTpywG7dlyxYjKSnJMJvNRmBgoNG2bVtj7NixxieffHLVfO+8806jU6dOlZbHxMQYQ4cOvabnB6hPZs+ebUgyvvnmG7vljr5nLly4YDz99NNGp06djICAAKNx48ZGXFyckZGRYZSUlNjGSTJSU1Mrba+q/bJ58+YZN9xwg+Hj42NXu/7+978bXbt2NQIDA43WrVsbTz/9tLF8+fJK9e3OO+807rzzTqeehyu956valqP7jcuWLTNuuukmIyAgwOjQoYORnZ1te76v9hy88sorxo033mj4+vra7Y85E+fVOPqaXP4/5NNPPzUefPBBo1WrVkZAQIARERFh3H333XY11zCq32/etGmTcccddxhBQUFGaGioMWzYMOPAgQN297/S3+ZPXe++N+CJtm3bZnvv3XjjjcbSpUurrD1//etfjd69exshISFGSEiI0aFDByM1NdU4ePCgbYy15n/yySdGfHy8ERgYaMTExBgvvPCC3basnx1Xr15dZUxX2191ZL/33//+tzF+/Hijbdu2RmBgoBEeHm7cddddxqZNm+weq6qaeuTIEePnP/+5ERYWZgQGBhq33XabsW7dOodyOHr0qCHJyM7OvvKTDqBeuNK+RVWflx2pkQcOHDASEhKMhg0bGk2bNjUmTpxofPbZZ1XWjL/+9a9Gx44djYCAACM2NtZ49913jZSUFCMmJsZunKP7j4ZhGMuXLzd69Ohh2we/8847jby8PNt6V+zfovaZDIOrXKF++Pbbb9W8eXPNmjVLjz/+uLvDAQAAADwW+96Aa/Xr10/ffvut9u3b5+5QAADwShzXiHpjxYoVunTpkkaPHu3uUAAAAACPxr43AAAAPBnXGEGd98EHH+jAgQOaP3++hg8frtatW9utP3fuXKWLyV0uPDxc/v7+LowSAK6spKRE586dq3ZMVFRULUUDADXjm2++sbuA5eX8/f0VHh5eixG5XmFhYbXrg4KCZDabayka17javjcAAADgCTiVFuq8fv36aceOHbrjjjv0+uuv64YbbrBbv2LFCo0bN67abWzZskX9+vVzYZQAcGVjx47VypUrqx3Dv2MA9U3r1q31n//854rr77zzTm3durX2AqoFJpOp2vUpKSlasWJF7QTjIlfb9wZQMziVFgAA7kVjBPXeyZMntX///mrHxMXFqXHjxrUUEQDYO3DggE6cOFHtmISEhFqKBgBqxkcffVTt0XCNGzdWXFxcLUbkeps2bap2fXR0tGJjY2spGgAAAADXisYIAAAAAAAAAADwGlx8HQAAAAAAAAAAeI16efH1iooKnThxQo0aNbrqeX4B1E+GYej7779XdHS0fHzo4VaHmgh4Pmqi46iJgOejJjqOmgh4Pmqi46iJgOdzpibWy8bIiRMn1LJlS3eHAaAWfPXVV2rRooW7w6jTqImA96AmXh01EfAe1MSroyYC3oOaeHXURMB7OFIT62VjpFGjRpJ+SDA0NLTasRaLRbm5uUpMTJSfn19thFfryNEzkKO90tJStWzZ0vZ+x5VRE+2Ro2cgR3vURMdRE+2Ro2cgR3vURMdRE+2Ro2cgR3vURMdRE+2Ro2cgR3vO1MR62RixHu4WGhrqUCELDg5WaGioR/9xkGP9R45V4/DWq6Mm2iNHz0COVaMmXh010R45egZyrBo18eqoifbI0TOQY9WoiVdHTbRHjp6BHKvmSE3k5IMAAAAAAAAAAMBr0BgBAAAAAAAAAABeg8YIANSQp556SiaTSVOnTrUtO3/+vFJTU9WkSRM1bNhQycnJKioqsrvf8ePHNXToUAUHBysiIkKPPPKILl68WMvRAwAAAAAAAN6BxggA1IDdu3frpZdeUteuXe2WT5s2Te+9955Wr16tbdu26cSJExoxYoRt/aVLlzR06FBduHBBO3bs0MqVK7VixQrNmjWrtlMAAAAAAAAAvAKNEQC4TmfOnNGoUaP0yiuvqHHjxrblJSUlWrZsmZ599ln1799fcXFxys7O1o4dO7Rz505JUm5urg4cOKDXX39d3bt31+DBgzVv3jxlZWXpwoUL7koJAAAAAAAA8FgN3B0AANR3qampGjp0qBISEvTEE0/YlhcUFMhisSghIcG2rEOHDmrVqpXy8/PVq1cv5efnq0uXLoqMjLSNSUpK0uTJk7V//3716NGj0uOVl5ervLzcdru0tFSSZLFYZLFYqo3Vuv5q4+ozcvQM5Fj1WAAAAAAAcP1ojADAdXjzzTf16aefavfu3ZXWFRYWyt/fX2FhYXbLIyMjVVhYaBvz06aIdb11XVUyMzOVkZFRaXlubq6Cg4MdijsvL8+hcfUZOXoGcvzB2bNnayESAAAAAAC8A40RALhGX331lX73u98pLy9PgYGBtfa4M2bMUHp6uu12aWmpWrZsqcTERIWGhlZ7X4vFory8PA0cOFB+fn6uDtUtyNEzkKM965FhAAAAAADg+tEYAYBrVFBQoOLiYv3sZz+zLbt06ZK2b9+uF154QRs3btSFCxd0+vRpu6NGioqKFBUVJUmKiorSxx9/bLfdoqIi27qqBAQEKCAgoNJyPz8/h79AdmZsfUWOnoEcfxwDAAAAAABqBo0RoJ4yZZjcHYLTgnyCtKrrKneHUWMGDBigvXv32i0bN26cOnTooOnTp6tly5by8/PT5s2blZycLEk6ePCgjh8/rvj4eElSfHy85s+fr+LiYkVEREj64bQ6oaGhio2Nrd2EgHqMmojrYX7KrHMV59wdhlOM2Ya7QwAAXAdX7btY9y9c9b+N/z9A3edofXF1vXAGtQXuQGMEAK5Ro0aN1LlzZ7tlISEhatKkiW35hAkTlJ6ervDwcIWGhmrKlCmKj49Xr169JEmJiYmKjY3V6NGjtWDBAhUWFmrmzJlKTU2t8qgQAAAAAAAAANeHxggAuNCiRYvk4+Oj5ORklZeXKykpSUuWLLGt9/X11bp16zR58mTFx8crJCREKSkpmjt3rhujBgAAAAAAADwXjREAqEFbt261ux0YGKisrCxlZWVd8T4xMTFav369iyMDAAAAAAAAIEk+7g4AAAAAAAAAAACgttAYAQAAAAAAAAAAXoPGCAAAAAAAAAAA8BpcYwQAAAAAPIgpw+TuEJwW5BOkVV1XuTsMAAAAeAmnjhjJzMzUrbfeqkaNGikiIkLDhw/XwYMH7cb069dPJpPJ7ufXv/613Zjjx49r6NChCg4OVkREhB555BFdvHjx+rMBAAAAAAAAAACohlNHjGzbtk2pqam69dZbdfHiRT322GNKTEzUgQMHFBISYhs3ceJEzZ0713Y7ODjY9vulS5c0dOhQRUVFaceOHTp58qTGjBkjPz8/PfnkkzWQEgAAAAAAAAAAQNWcOmJkw4YNGjt2rDp16qRu3bppxYoVOn78uAoKCuzGBQcHKyoqyvYTGhpqW5ebm6sDBw7o9ddfV/fu3TV48GDNmzdPWVlZunDhQs1kBQAAAACAm3C2BQAAgLrtui6+XlJSIkkKDw+3W/7GG2+oadOm6ty5s2bMmKGzZ8/a1uXn56tLly6KjIy0LUtKSlJpaan2799/PeEAAAAAAOB21rMt7Ny5U3l5ebJYLEpMTFRZWZnduIkTJ+rkyZO2nwULFtjWWc+2cOHCBe3YsUMrV67UihUrNGvWrNpOBwAAwONc88XXKyoqNHXqVN1xxx3q3LmzbflDDz2kmJgYRUdH6/PPP9f06dN18OBBvfvuu5KkwsJCu6aIJNvtwsLCKh+rvLxc5eXlttulpaWSJIvFIovFUm2c1vVXG1efkaNncDbHIJ8gV4bjEtaYHcnRk19rAAAAeLYNGzbY3V6xYoUiIiJUUFCgvn372pZbz7ZQFevZFjZt2qTIyEh1795d8+bN0/Tp0zVnzhz5+/u7NAcAAABPds2NkdTUVO3bt08ffvih3fJJkybZfu/SpYuaN2+uAQMG6MiRI2rbtu01PVZmZqYyMjIqLc/NzbW7fkl18vLyrumx6xNy9AyO5riq6yoXR+I6juT40yPNAAAAgPqsurMtvP7664qKitKwYcP0+OOP2z7jXulsC5MnT9b+/fvVo0ePSo/DpMLq1aUcXTXRzbpdV22/Ljx3del1dBVncvTk5wEAXOmaGiNpaWlat26dtm/frhYtWlQ7tmfPnpKkw4cPq23btoqKitLHH39sN6aoqEiSrjhTZsaMGUpPT7fdLi0tVcuWLZWYmGh3/ZKqWCwW5eXlaeDAgfLz87tqbvUROXoGZ3M0P2WuhahqVpBPkJZ3Xu5QjtYPcQAAAEB9VptnW2BSoWPqQo6unui2vPNyl2x3/fr1LtnutagLr6OrMakQAFzHqcaIYRiaMmWK1qxZo61bt6pNmzZXvc+ePXskSc2bN5ckxcfHa/78+SouLlZERISkHwp9aGioYmNjq9xGQECAAgICKi338/Nz+EtyZ8bWV+ToGRzN8VzFuVqIxjUcydHTX2cAAAB4h9o82wKTCqtXl3J01UQ362S08fvGu+QzY8kfSmp8m86qS6+jqziTI5MKAeDaONUYSU1NVU5Ojv72t7+pUaNGtlkqZrNZQUFBOnLkiHJycjRkyBA1adJEn3/+uaZNm6a+ffuqa9eukqTExETFxsZq9OjRWrBggQoLCzVz5kylpqZW2fwAAAAAAKA+qu2zLTCp0DF1IUdXT3Q7V3HOJY/h7uftp+rC6+hqTCoEANfxcWbwiy++qJKSEvXr10/Nmze3/bz11luSJH9/f23atEmJiYnq0KGDHn74YSUnJ+u9996zbcPX11fr1q2Tr6+v4uPj9ctf/lJjxozR3LlzazYzAAAAAADcwDAMpaWlac2aNfrggw+u+WwLe/fuVXFxsW3M1c62AAAAAMc41RgxDKPKn7Fjx0qSWrZsqW3btum7777T+fPndejQIS1YsKDSIbsxMTFav369zp49q2+++UYLFy5UgwbXfB14AAAAAADqjNTUVL3++uvKycmxnW2hsLBQ5879MIP/yJEjmjdvngoKCnTs2DH9/e9/15gxY654toXPPvtMGzdu5GwLAOqlF198UV27dlVoaKhCQ0MVHx+vf/zjH7b158+fV2pqqpo0aaKGDRsqOTnZdoSc1fHjxzV06FAFBwcrIiJCjzzyiC5evFjbqQDwIE41RgAAAAAAQPU42wIA/KhFixZ66qmnVFBQoE8++UT9+/fXvffeq/3790uSpk2bpvfee0+rV6/Wtm3bdOLECY0YMcJ2/0uXLmno0KG6cOGCduzYoZUrV2rFihWaNWuWu1IC4AFojAAAAOC6zZkzRyaTye6nQ4cOtvXMBATgTTjbAgD8aNiwYRoyZIhuuukm3XzzzZo/f74aNmyonTt3qqSkRMuWLdOzzz6r/v37Ky4uTtnZ2dqxY4d27twpScrNzdWBAwf0+uuvq3v37ho8eLDmzZunrKwsXbhwwc3ZAaiv2KMCAABAjejUqZM2bdpku/3TL++mTZum999/X6tXr5bZbFZaWppGjBihjz76SNKPMwGjoqK0Y8cOnTx5UmPGjJGfn5+efPLJWs8FAAAANe/SpUtavXq1ysrKFB8fr4KCAlksFiUkJNjGdOjQQa1atVJ+fr569eql/Px8denSRZGRkbYxSUlJmjx5svbv368ePXpU+Vjl5eUqLy+33S4tLZUkWSwWWSyWauO0rr/auLooyCfIqXGOjnclVz3P9fl1dBQ5Vj3WETRGAAAAUCMaNGigqKioSsutMwFzcnLUv39/SVJ2drY6duyonTt3qlevXraZgJs2bVJkZKS6d++uefPmafr06ZozZ478/f1rOx0A8Ermp8w6V3HO3WE4xZhtuDsEAFexd+9excfH6/z582rYsKHWrFmj2NhY7dmzR/7+/goLC7MbHxkZqcLCQklSYWGhXVPEut667koyMzOVkZFRaXlubq6Cg4MdijsvL8+hcXXJqq6rnBq/vPNyF0XiuPXr17t0+/XxdXQWOf7g7NmzDm+PxggAAABqxKFDhxQdHa3AwEDFx8crMzNTrVq1culMQAAAANR97du31549e1RSUqJ33nlHKSkp2rZtm0sfc8aMGUpPT7fdLi0tVcuWLZWYmFjp1IWXs1gsysvL08CBA+Xn5+fSOGua+SmzQ+OCfIK0vPNyjd833u0N8ZI/lLhku/X5dXQUOdqzHhnmCBojAAAAuG49e/bUihUr1L59e508eVIZGRnq06eP9u3bp8LCQpfNBKyJUyTUhdMHOMvRQ8Q5tN4zOJtjffybtsZc06dIgHcwZZgcGhfkE6RVXVfVy6NigPrO399f7dq1kyTFxcVp9+7d+vOf/6xf/OIXunDhgk6fPm23r1hUVGQ7EjkqKkoff/yx3fas16qr6mhlq4CAAAUEBFRa7ufn5/AXyM6MrSucrW/nKs65vSa6+jmuj6+js8jxxzGOojECAACA6zZ48GDb7127dlXPnj0VExOjt99+W0FBrvuStiZOkVAXTh/gLGdPN8Ch9Z7B0RydPYVGXVLTp0gAANRNFRUVKi8vV1xcnPz8/LR582YlJydLkg4ePKjjx48rPj5ekhQfH6/58+eruLhYERERkn74fxEaGqrY2Fi35QCgfqMxAgAAgBoXFhamm2++WYcPH9bAgQNdNhOwJk6RUBdOH+AsR083wKH1nsHZHB09hUZdYj2dR02fIgEA4H4zZszQ4MGD1apVK33//ffKycnR1q1btXHjRpnNZk2YMEHp6ekKDw9XaGiopkyZovj4ePXq1UuSlJiYqNjYWI0ePVoLFixQYWGhZs6cqdTU1CqPCAEAR9AYAQAAQI07c+aMjhw5otGjR7t0JmBNnCKhLpw+wFnONgA4tN4zOJpjfft7/qmaPkUCAMD9iouLNWbMGJ08eVJms1ldu3bVxo0bNXDgQEnSokWL5OPjo+TkZJWXlyspKUlLliyx3d/X11fr1q3T5MmTFR8fr5CQEKWkpGju3LnuSgmAB6Axghrl6LldneXqc8Eas40a3yYAAN7k97//vYYNG6aYmBidOHFCs2fPlq+vrx588EFmAgIAAHixZcuWVbs+MDBQWVlZysrKuuKYmJgYp08lCgDVoTECAACA6/bf//5XDz74oL777js1a9ZMvXv31s6dO9WsWTNJzAQEAAAAANQdNEYAAABw3d58881q1zMTEAAAAABQV/i4OwAAAAAAAAAAAIDawhEjAAAAAAAAAAA4wVXXWnaGs9dl5jrLP+KIEQAAAAAAAAAA4DVojAAAAAAAAAAAAK9BYwQAAAAAAAAAAHgNGiMAAAAAAAAAAMBr0BgBAAAAAAAAAABeg8YIAAAAAAAAAADwGjRGAAAAAAAAAACA16AxAgAAAAAAAAAAvAaNEQAAAAAAAAAA4DVojAAAAAAAAAAAAK9BYwQAAAAAAAAAAHiNBu4OAAAAAAAAAAAAuJYpw+TuEJwW5BOkVV1X1fh2aYwAqhtFwfomNz9l1rmKc+4OBwAAAAAAAAA8EqfSAgAAAAAAAAAAXoPGCAAAAAAAAAAA8Bo0RgAAAAAAAAAAgNegMQIAAAAAAAAAALwGjREAAAAAAAAAAOA1aIwAAAAAAAAAAACvQWMEAAAAAAAAAAB4DacaI5mZmbr11lvVqFEjRUREaPjw4Tp48KDdmPPnzys1NVVNmjRRw4YNlZycrKKiIrsxx48f19ChQxUcHKyIiAg98sgjunjx4vVnAwC16MUXX1TXrl0VGhqq0NBQxcfH6x//+IdtPfUQAAAAAAAAqHucaoxs27ZNqamp2rlzp/Ly8mSxWJSYmKiysjLbmGnTpum9997T6tWrtW3bNp04cUIjRoywrb906ZKGDh2qCxcuaMeOHVq5cqVWrFihWbNm1VxWAFALWrRooaeeekoFBQX65JNP1L9/f917773av3+/JOohAACAt2JSIQD8yJGa2K9fP5lMJrufX//613ZjqIkAalIDZwZv2LDB7vaKFSsUERGhgoIC9e3bVyUlJVq2bJlycnLUv39/SVJ2drY6duyonTt3qlevXsrNzdWBAwe0adMmRUZGqnv37po3b56mT5+uOXPmyN/fv+ayAwAXGjZsmN3t+fPn68UXX9TOnTvVokUL6iEAAICXsk4qvPXWW3Xx4kU99thjSkxM1IEDBxQSEiLph0k077//vlavXi2z2ay0tDSNGDFCH330kaQfJ9FERUVpx44dOnnypMaMGSM/Pz89+eST7kwPAJziSE2UpIkTJ2ru3Lm228HBwbbfqYkAappTjZHLlZSUSJLCw8MlSQUFBbJYLEpISLCN6dChg1q1aqX8/Hz16tVL+fn56tKliyIjI21jkpKSNHnyZO3fv189evSo9Djl5eUqLy+33S4tLZUkWSwWWSyWamO0ro9aEKVzFeeuMVP3KPlDiUPjrDle7bmoDUE+QS7drqu2Xxd4U46O/K3Whb9nZ1y6dEmrV69WWVmZ4uPjXVYPpZqpifXt+XUGOXoGZ3Osj7XTk2siAHg7JhUCwI+uVhOtgoODFRUVVeU2qIkAato1N0YqKio0depU3XHHHercubMkqbCwUP7+/goLC7MbGxkZqcLCQtuYn34JaF1vXVeVzMxMZWRkVFqem5tr1z2uzvLOyx0aV5esX7/eqfF5eXkuisRxq7qucun26+Pr6CxvyNGRv9WzZ8/WQiTXb+/evYqPj9f58+fVsGFDrVmzRrGxsdqzZ49L6qFUMzWxLtQLVyNHz+Bojq7+/+NKnlQTAQBVq61JhQBQH1xeE63eeOMNvf7664qKitKwYcP0+OOP2z7jumuidX2coOTopLG6NEHXVc+zq1/HuvDc1aXX0VVcNanwmhsjqamp2rdvnz788MNr3YTDZsyYofT0dNvt0tJStWzZUomJiQoNDa32vhaLRXl5eRq/b7xHHzGSl5engQMHys/Pz8VRVc/8lNkl2w3yCdLyzsvr5evoKG/K0ZG/VesOS13Xvn177dmzRyUlJXrnnXeUkpKibdu2ufQxa6Im1oV64Srk6BmczdFV/39cyRNrIgCgstqcVFgTXwJ6wxcr5Hjt6sKXxPX5C2tHOZNjfXseqqqJkvTQQw8pJiZG0dHR+vzzzzV9+nQdPHhQ7777riT3TbSuj5PRnJ00Vhcm6Do7OdxZrnod69IEvbrwOrpaTU8qvKbGSFpamtatW6ft27erRYsWtuVRUVG6cOGCTp8+bbeDV1RUZDsULioqSh9//LHd9qwXmLvS4XIBAQEKCAiotNzPz8/hL4TOVZyrd182O/tllzPPh6u4+jmuj6+js7whR0f+Vt39t+wof39/tWvXTpIUFxen3bt3689//rN+8YtfuKQeSjVTE+tCvXA1cvQMjuZYn+umJ9VEAEBltTmp0FvPtuAscrx2rv7y0hn18QtrZ3nikcVXqomTJk2y/d6lSxc1b95cAwYM0JEjR9S2bdtreixvnVTo6KSxujRB19HJ4c5y9etYFybo1aXX0VVcNanQqcaIYRiaMmWK1qxZo61bt6pNmzZ26+Pi4uTn56fNmzcrOTlZknTw4EEdP35c8fHxkqT4+HjNnz9fxcXFioiIkPRDoQ8NDVVsbKwz4QBAnVNRUaHy8nLqIQAAAGp9UqG3nm3BUd705ZGrcnTVl5fOqM9fWDvKmRzr05HFV6qJVenZs6ck6fDhw2rbtq3bJlrXx8lozr7368IEXVc/x656Hd39vP1UXXgdXa2mJxU61RhJTU1VTk6O/va3v6lRo0a2Q9XMZrOCgoJkNps1YcIEpaenKzw8XKGhoZoyZYri4+PVq1cvSVJiYqJiY2M1evRoLViwQIWFhZo5c6ZSU1OrLFYAUFfNmDFDgwcPVqtWrfT9998rJydHW7du1caNG6mHAAAAXsxdkwq99WwLziLHa1eXviCuj19YO8tTjiy+Wk2syp49eyRJzZs3l8TEQgA1z6nGyIsvvihJ6tevn93y7OxsjR07VpK0aNEi+fj4KDk5WeXl5UpKStKSJUtsY319fbVu3TpNnjxZ8fHxCgkJUUpKiubOnXt9mQBALSsuLtaYMWN08uRJmc1mde3aVRs3btTAgQMlUQ8BAAC8FZMKAeBHV6uJR44cUU5OjoYMGaImTZro888/17Rp09S3b1917dpVEjURQM1z+lRaVxMYGKisrCxlZWVdcUxMTEydOi8lAFyLZcuWVbueegjAmz311FOaMWOGfve73+m5556TJJ0/f14PP/yw3nzzTbuG8U8vpHn8+HFNnjxZW7ZsUcOGDZWSkqLMzEw1aHBNl8YDALdgUiEA/OhqNdHf31+bNm3Sc889p7KyMrVs2VLJycmaOXOmbSw1EUBN4xMmAAAAatTu3bv10ksv2Wb4WU2bNk3vv/++Vq9eLbPZrLS0NI0YMUIfffSRJOnSpUsaOnSooqKitGPHDp08eVJjxoyRn5+fnnzySXekAgDXhEmFAPCjq9XEli1batu2bVfdDjURQE2iMQIAAIAac+bMGY0aNUqvvPKKnnjiCdvykpISLVu2TDk5Oerfv7+kH2YJduzYUTt37lSvXr2Um5urAwcOaNOmTYqMjFT37t01b948TZ8+XXPmzJG/v7+70gIAAPWUKcPk7hCcFuQTpFVdV7k7DADwaDRGAAAAUGNSU1M1dOhQJSQk2DVGCgoKZLFYlJCQYFvWoUMHtWrVSvn5+erVq5fy8/PVpUsXu1NrJSUlafLkydq/f7969OhR6fHKy8tVXl5uu11aWipJslgsslgs1cZqXR/kE3RtybrR1XK7fJyj4+sjcqysPv5NW2N2JEdPfq0BAABQO2iMAAAAoEa8+eab+vTTT7V79+5K6woLC+Xv76+wsDC75ZGRkbYLcBYWFto1RazrreuqkpmZqYyMjErLc3NzFRwc7FDcyzsvd2hcXeLsaSTy8vJcFEndQY4/qs+zjB3J8ezZs7UQCQAAADwZjREAAABct6+++kq/+93vlJeXp8DAwFp73BkzZig9Pd12u7S0VC1btlRiYqJCQ0Orva/FYlFeXp7G7xuvcxXnXB1qjSr5Q4lD46w5Dhw4UH5+fi6Oyj3IsTLzU+ZaiKpmBfkEaXnn5Q7laD0yDAAAALhWNEbqMEfPg2k996T5KXO9+1APAAA8Q0FBgYqLi/Wzn/3MtuzSpUvavn27XnjhBW3cuFEXLlzQ6dOn7Y4aKSoqUlRUlCQpKipKH3/8sd12i4qKbOuqEhAQoICAgErL/fz8HP6S/FzFuXq3D+VsA8CZ56O+Iscf1be/559yJEdPf50BAADgej7uDgAAAAD134ABA7R3717t2bPH9nPLLbdo1KhRtt/9/Py0efNm230OHjyo48ePKz4+XpIUHx+vvXv3qri42DYmLy9PoaGhio2NrfWcAAAAAACeiSNGAAAAcN0aNWqkzp072y0LCQlRkyZNbMsnTJig9PR0hYeHKzQ0VFOmTFF8fLx69eolSUpMTFRsbKxGjx6tBQsWqLCwUDNnzlRqamqVR4UAAAAAAHAtaIwAAACgVixatEg+Pj5KTk5WeXm5kpKStGTJEtt6X19frVu3TpMnT1Z8fLxCQkKUkpKiuXPnujFqAAAAAICnoTECAAAAl9i6davd7cDAQGVlZSkrK+uK94mJidH69etdHBkAAAAAwJtxjREAAAAAAAAAAOA1aIwAAAAAAAAAAACvQWMEAAAAAAAAAAB4DRojAAAAAAAAAADAa9AYAQAAAAAAAAAAXoPGCAAAAAAAAAAA8Bo0RgAAAAAAAAAAgNegMQIAAAAAAAAAALwGjREAAAAAAAAAAOA1aIwAAAAAAAAAAACvQWMEAAAAAAAAAAB4DRojAAAAAAAAAADAa9AYAQAAAAAAAAAAXoPGCAAAAAAAAAAA8Bo0RgAAAAAAAAAAgNegMQIAAAAAAADAJTIzM3XrrbeqUaNGioiI0PDhw3Xw4EG7MefPn1dqaqqaNGmihg0bKjk5WUVFRXZjjh8/rqFDhyo4OFgRERF65JFHdPHixdpMBYAHoTECAAAAAAAAwCW2bdum1NRU7dy5U3l5ebJYLEpMTFRZWZltzLRp0/Tee+9p9erV2rZtm06cOKERI0bY1l+6dElDhw7VhQsXtGPHDq1cuVIrVqzQrFmz3JESAA/QwN0BAAAAAAAAAPBMGzZssLu9YsUKRUREqKCgQH379lVJSYmWLVumnJwc9e/fX5KUnZ2tjh07aufOnerVq5dyc3N14MABbdq0SZGRkerevbvmzZun6dOna86cOfL393dHagDqMY4YAQAAAAAAAFArSkpKJEnh4eGSpIKCAlksFiUkJNjGdOjQQa1atVJ+fr4kKT8/X126dFFkZKRtTFJSkkpLS7V///5ajB6Ap+CIEQAAAAAAAFyVKcPk7hAU5BOkVV1XyfyUWecqzrk7HDipoqJCU6dO1R133KHOnTtLkgoLC+Xv76+wsDC7sZGRkSosLLSN+WlTxLreuq4q5eXlKi8vt90uLS2VJFksFlkslmrjtK6/2ri6KMgnyKlxjo53JVc9z65+HevCc1eXXkdXsebmyOvozGtNYwQAAAAAAACAy6Wmpmrfvn368MMPXf5YmZmZysjIqLQ8NzdXwcHBDm0jLy+vpsNyuVVdVzk1fnnn5S6KxHHr16936fZd9To6+1y7Ul14HV3Nkdfx7NmzDm+PxggAAAAAAAAAl0pLS9O6deu0fft2tWjRwrY8KipKFy5c0OnTp+2OGikqKlJUVJRtzMcff2y3vaKiItu6qsyYMUPp6em226WlpWrZsqUSExMVGhpabawWi0V5eXkaOHCg/Pz8nMrT3cxPmR0aF+QTpOWdl2v8vvFuP/qq5A8lLtmuq19HR59rV6pLr6OrWHN05HW0HhnmCBojAAAAAAAAAFzCMAxNmTJFa9as0datW9WmTRu79XFxcfLz89PmzZuVnJwsSTp48KCOHz+u+Ph4SVJ8fLzmz5+v4uJiRURESPph9nhoaKhiY2OrfNyAgAAFBARUWu7n5+fwl+TOjK0rnP1y/FzFObd/oe7q59hVr6O7n7efqguvo6s58jo68zrTGAEAAAAAAADgEqmpqcrJydHf/vY3NWrUyHZNELPZrKCgIJnNZk2YMEHp6ekKDw9XaGiopkyZovj4ePXq1UuSlJiYqNjYWI0ePVoLFixQYWGhZs6cqdTU1CqbHwBwNT7O3mH79u0aNmyYoqOjZTKZtHbtWrv1Y8eOlclksvsZNGiQ3ZhTp05p1KhRCg0NVVhYmCZMmKAzZ85cVyIAAAAAAAAA6pYXX3xRJSUl6tevn5o3b277eeutt2xjFi1apLvvvlvJycnq27evoqKi9O6779rW+/r6at26dfL19VV8fLx++ctfasyYMZo7d647UgLgAZxujJSVlalbt27Kysq64phBgwbp5MmTtp9Vq+wvRDNq1Cjt379feXl5tnMLTpo0yfnoAQAAAACog5hUCAA/MAyjyp+xY8faxgQGBiorK0unTp1SWVmZ3n333UrXDomJidH69et19uxZffPNN1q4cKEaNOBkOACujdPVY/DgwRo8eHC1YwICAq544aMvvvhCGzZs0O7du3XLLbdIkhYvXqwhQ4Zo4cKFio6OdjYkAAAAAADqFOukwvHjx2vEiBFVjhk0aJCys7Ntty8/HcyoUaN08uRJ5eXlyWKxaNy4cZo0aZJycnJcGjsAAICnc0lbdevWrYqIiFDjxo3Vv39/PfHEE2rSpIkkKT8/X2FhYbamiCQlJCTIx8dHu3bt0n333Vdpe+Xl5SovL7fdtl5d3mKxyGKxVBuLdX2QT9B151VXWXMjx/rNm3K82vvW0TFAXWfKMLlku0E+QVrVdZXMT5ldcnE1Y7ZR49sEAMDbMKkQAACg7qrxxsigQYM0YsQItWnTRkeOHNFjjz2mwYMHKz8/X76+viosLFRERIR9EA0aKDw83HbxpctlZmYqIyOj0vLc3FwFBwc7FNfyzsudT6aeIUfP4A055uXlXXXM2bNnayESAAAAwH2YVFi7vGkyGjnWb0wqBADXq/HGyMiRI22/d+nSRV27dlXbtm21detWDRgw4Jq2OWPGDKWnp9tul5aWqmXLlkpMTFRoaGi197VYLMrLy9P4feNdMqu2LgjyCdLyzsvJsZ7zphwHDhwoPz+/asdaP8QBAAAAnohJhe5Djp7BG3JkUiEAuI7Lr1B04403qmnTpjp8+LAGDBigqKgoFRcX2425ePGiTp06dcVDiAMCAiqda1WS/Pz8rvrlqtW5inMe+2WzFTl6Bm/I0ZH3rqPvbQAAAKA+YlJh7fOmyWjkWL8xqRAAXM/ljZH//ve/+u6779S8eXNJUnx8vE6fPq2CggLFxcVJkj744ANVVFSoZ8+erg4HAAAALvDiiy/qxRdf1LFjxyRJnTp10qxZs2zn1z9//rwefvhhvfnmmyovL1dSUpKWLFmiyMhI2zaOHz+uyZMna8uWLWrYsKFSUlKUmZmpBg1cvssKAG7HpMLaQ46ewRtyZFIhALiOj7N3OHPmjPbs2aM9e/ZIko4ePao9e/bo+PHjOnPmjB555BHt3LlTx44d0+bNm3XvvfeqXbt2SkpKkiR17NhRgwYN0sSJE/Xxxx/ro48+UlpamkaOHMnF4wAAAOqpFi1a6KmnnlJBQYE++eQT9e/fX/fee6/2798vSZo2bZree+89rV69Wtu2bdOJEyc0YsQI2/0vXbqkoUOH6sKFC9qxY4dWrlypFStWaNasWe5KCQBqVXWTCq2YVAgAAFAznJ5+98knn+iuu+6y3bYeppuSkqIXX3xRn3/+uVauXKnTp08rOjpaiYmJmjdvnt2slTfeeENpaWkaMGCAfHx8lJycrOeff74G0gEAAIA7DBs2zO72/Pnz9eKLL2rnzp1q0aKFli1bppycHPXv31+SlJ2drY4dO2rnzp3q1auXcnNzdeDAAW3atEmRkZHq3r275s2bp+nTp2vOnDny9/d3R1oAcM3OnDmjw4cP225bJxWGh4crPDxcGRkZSk5OVlRUlI4cOaJHH330ipMKly5dKovFwqRCAIBHMmWYXLLdIJ8greq6SuanzB5/hBmc53RjpF+/fjIM44rrN27ceNVthIeHKycnx9mHBgAAQD1w6dIlrV69WmVlZYqPj1dBQYEsFosSEhJsYzp06KBWrVopPz9fvXr1Un5+vrp06WJ3aq2kpCRNnjxZ+/fvV48ePap8rPLycpWXl9tuW8+zbbFYZLFYqo3Tuj7IJ+iac3WXq+V2+ThHx9dH5FhZffybtsbsSI715bVmUiEAAEDdxQmbAQAAUCP27t2r+Ph4nT9/Xg0bNtSaNWsUGxurPXv2yN/fX2FhYXbjIyMjVVhYKEkqLCy0a4pY11vXXUlmZqYyMjIqLc/NzVVwcLBDcS/vvNyhcXXJ+vXrnRqfl5fnokjqDnL80aquq1wcies4kuPZs2drIZLrx6RCAACAuovGCAAAAGpE+/bttWfPHpWUlOidd95RSkqKtm3b5tLHnDFjhm0WtvTDESMtW7ZUYmKiQkNDq72vxWJRXl6exu8bX+8OrS/5Q4lD46w5Dhw40GMvzkqOlZmfMtdCVDUryCdIyzsvdyhH65FhAAAAwLWiMQIAAIAa4e/vr3bt2kmS4uLitHv3bv35z3/WL37xC124cEGnT5+2O2qkqKhIUVFRkqSoqCh9/PHHdtsrKiqyrbuSgIAAu9POWPn5+Tn8Jfm5inP1rjHibAPAmeejviLHH9W3v+efciRHT3+dAQAA4Ho+7g4AAOqrzMxM3XrrrWrUqJEiIiI0fPhwHTx40G7M+fPnlZqaqiZNmqhhw4ZKTk62fdFndfz4cQ0dOlTBwcGKiIjQI488oosXL9ZmKgDgEhUVFSovL1dcXJz8/Py0efNm27qDBw/q+PHjio+PlyTFx8dr7969Ki4uto3Jy8tTaGioYmNjaz12AAAAAIDnojECANdo27ZtSk1N1c6dO5WXlyeLxaLExESVlZXZxkybNk3vvfeeVq9erW3btunEiRMaMWKEbf2lS5c0dOhQXbhwQTt27NDKlSu1YsUKzZo1yx0pAcA1mzFjhrZv365jx45p7969mjFjhrZu3apRo0bJbDZrwoQJSk9P15YtW1RQUKBx48YpPj5evXr1kiQlJiYqNjZWo0eP1meffaaNGzdq5syZSk1NrfKIEAAAAAAArhWn0gKAa7Rhwwa72ytWrFBERIQKCgrUt29flZSUaNmyZcrJyVH//v0lSdnZ2erYsaN27typXr16KTc3VwcOHNCmTZsUGRmp7t27a968eZo+fbrmzJkjf39/d6QGAE4rLi7WmDFjdPLkSZnNZnXt2lUbN27UwIEDJUmLFi2Sj4+PkpOTVV5erqSkJC1ZssR2f19fX61bt06TJ09WfHy8QkJClJKSorlz57orJQAAAACAh6IxAgA1pKTkhwvhhoeHS5IKCgpksViUkJBgG9OhQwe1atVK+fn56tWrl/Lz89WlSxdFRkbaxiQlJWny5Mnav3+/evToUbtJAMA1WrZsWbXrAwMDlZWVpaysrCuOiYmJ0fr162s6NAAAAAAA7NAYAYAaUFFRoalTp+qOO+5Q586dJUmFhYXy9/e3u9CwJEVGRqqwsNA25qdNEet667qqlJeXq7y83Ha7tLRUkmSxWGSxWKqN07r+auPqs7qUY5BPkEu366rt14XnztnX0VXPhStZY3Ykx7rwmgAAAAAA4ClojABADUhNTdW+ffv04YcfuvyxMjMzlZGRUWl5bm6ugoODHdpGXl5eTYdV59SFHFd1XeXS7S/vvNwl261LM/YdfR1d/Vy7kiM5nj17thYiAQAAAADAO9AYAYDrlJaWpnXr1mn79u1q0aKFbXlUVJQuXLig06dP2x01UlRUpKioKNuYjz/+2G57RUVFtnVVmTFjhtLT0223S0tL1bJlSyUmJio0NLTaWC0Wi/Ly8jRw4ED5+fk5lWd9UZdyND9ldsl2g3yCtLzzco3fN17nKs7V+PZL/lBS49t0lrOvo6uea1eyvo6O5Gg9MgwAAAAAAFw/GiMAcI0Mw9CUKVO0Zs0abd26VW3atLFbHxcXJz8/P23evFnJycmSpIMHD+r48eOKj4+XJMXHx2v+/PkqLi5WRESEpB9mj4eGhio2NrbKxw0ICFBAQECl5X5+fg43ApwZW1/VhRxd0bS4fPuueAx3P28/5ejr6Orn2pUcybEuvSYAAAAAANR3NEYA4BqlpqYqJydHf/vb39SoUSPbNUHMZrOCgoJkNps1YcIEpaenKzw8XKGhoZoyZYri4+PVq1cvSVJiYqJiY2M1evRoLViwQIWFhZo5c6ZSU1OrbH4AAAAAAAAAuD40RgDgGr344ouSpH79+tktz87O1tixYyVJixYtko+Pj5KTk1VeXq6kpCQtWbLENtbX11fr1q3T5MmTFR8fr5CQEKWkpGju3Lm1lQYAAAAAAADgVWiMAMA1MgzjqmMCAwOVlZWlrKysK46JiYmpUxe7BgAAAAAAADyZj7sDAAAAAAAAAAAAqC00RgAAAAAAAAAAgNegMQIAAAAAAADAZbZv365hw4YpOjpaJpNJa9eutVs/duxYmUwmu59BgwbZjTl16pRGjRql0NBQhYWFacKECTpz5kwtZgHAk9AYAQAAAAAAAOAyZWVl6tatW7XX3xw0aJBOnjxp+1m1apXd+lGjRmn//v3Ky8vTunXrtH37dk2aNMnVoQPwUFx8HQAAAAAAAIDLDB48WIMHD652TEBAgKKioqpc98UXX2jDhg3avXu3brnlFknS4sWLNWTIEC1cuFDR0dE1HjMAz0ZjBAAAAAAAAIBbbd26VREREWrcuLH69++vJ554Qk2aNJEk5efnKywszNYUkaSEhAT5+Pho165duu+++yptr7y8XOXl5bbbpaWlkiSLxSKLxVJtLNb1VxtXFwX5BDk1ztHx9RE5egZrbo68H515z9IYAQAAAAAAAOA2gwYN0ogRI9SmTRsdOXJEjz32mAYPHqz8/Hz5+vqqsLBQERERdvdp0KCBwsPDVVhYWOU2MzMzlZGRUWl5bm6ugoODHYorLy/P+WTcbFXXVVcf9BPLOy93USR1Bzl6Bkfej2fPnnV4ezRGAAAAAAAAALjNyJEjbb936dJFXbt2Vdu2bbV161YNGDDgmrY5Y8YMpaen226XlpaqZcuWSkxMVGhoaLX3tVgsysvL08CBA+Xn53dNj+8u5qfMDo0L8gnS8s7LNX7feJ2rOOfiqNyDHD2DNUdH3o/WI8McQWMEAAAAAAAAQJ1x4403qmnTpjp8+LAGDBigqKgoFRcX2425ePGiTp06dcXrkgQEBCggIKDScj8/P4ebHc6MrSuc/XL8XMU5j/1C3YocPYMj70dn3q80RgAAgB1ThsndISjIJ0iruq6S+Smzx+/cAQAAALD33//+V999952aN28uSYqPj9fp06dVUFCguLg4SdIHH3ygiooK9ezZ052hAqinaIwAAAAAAAAAcJkzZ87o8OHDtttHjx7Vnj17FB4ervDwcGVkZCg5OVlRUVE6cuSIHn30UbVr105JSUmSpI4dO2rQoEGaOHGili5dKovForS0NI0cOVLR0dHuSgtAPebj7gAAAAAAAAAAeK5PPvlEPXr0UI8ePSRJ6enp6tGjh2bNmiVfX199/vnnuueee3TzzTdrwoQJiouL0z//+U+7U2G98cYb6tChgwYMGKAhQ4aod+/eevnll92VEoB6jiNGAAAAAAAAALhMv379ZBjGFddv3LjxqtsIDw9XTk5OTYYFwIvRGAEA1AuOXveCa1MAAAAAAACgOpxKCwAAAAAAAAAAeA0aIwAAAAAAAAAAwGvQGAEAAAAAAAAAAF6DxggAAAAAAAAAAPAaNEYAAAAAAAAAAIDXoDECAAAAAAAAAAC8htONke3bt2vYsGGKjo6WyWTS2rVr7dYbhqFZs2apefPmCgoKUkJCgg4dOmQ35tSpUxo1apRCQ0MVFhamCRMm6MyZM9eVCAAAAAAAdQWfnQEAAOoupxsjZWVl6tatm7Kysqpcv2DBAj3//PNaunSpdu3apZCQECUlJen8+fO2MaNGjdL+/fuVl5endevWafv27Zo0adK1ZwEAAAAAQB3CZ2cAAIC6q4Gzdxg8eLAGDx5c5TrDMPTcc89p5syZuvfeeyVJr776qiIjI7V27VqNHDlSX3zxhTZs2KDdu3frlltukSQtXrxYQ4YM0cKFCxUdHX0d6QAAAAAA4H58dgYAAKi7nG6MVOfo0aMqLCxUQkKCbZnZbFbPnj2Vn5+vkSNHKj8/X2FhYbYdO0lKSEiQj4+Pdu3apfvuu6/SdsvLy1VeXm67XVpaKkmyWCyyWCzVxmRdH+QTdF251WXW3MixfvOmHK/2vnV0DAAAAFAfueqzMwAAABxTo42RwsJCSVJkZKTd8sjISNu6wsJCRURE2AfRoIHCw8NtYy6XmZmpjIyMSstzc3MVHBzsUGzLOy93aFx9Ro6ewRtyzMvLu+qYs2fP1kIkAICakpmZqXfffVdffvmlgoKCdPvtt+vpp59W+/btbWPOnz+vhx9+WG+++abKy8uVlJSkJUuW2O07Hj9+XJMnT9aWLVvUsGFDpaSkKDMzUw0a1OhuKwC4las+OzOpsHreNBmNHOs3JhUCgOvVi0+YM2bMUHp6uu12aWmpWrZsqcTERIWGhlZ7X4vFory8PI3fN17nKs65OlS3CPIJ0vLOy8mxnvOmHAcOHCg/P79qx1o/xAEA6odt27YpNTVVt956qy5evKjHHntMiYmJOnDggEJCQiRJ06ZN0/vvv6/Vq1fLbDYrLS1NI0aM0EcffSRJunTpkoYOHaqoqCjt2LFDJ0+e1JgxY+Tn56cnn3zSnekBQL3ApELHkKNn8IYcmVQIAK5To42RqKgoSVJRUZGaN29uW15UVKTu3bvbxhQXF9vd7+LFizp16pTt/pcLCAhQQEBApeV+fn5X/XLV6lzFOY/9stmKHD2DN+ToyHvX0fc2AKBu2LBhg93tFStWKCIiQgUFBerbt69KSkq0bNky5eTkqH///pKk7OxsdezYUTt37lSvXr2Um5urAwcOaNOmTYqMjFT37t01b948TZ8+XXPmzJG/v787UgOAGueqz85MKqyeN01GI8f6jUmFAOB6NdoYadOmjaKiorR582bbzlxpaal27dqlyZMnS5Li4+N1+vRpFRQUKC4uTpL0wQcfqKKiQj179qzJcAAAAOAmJSUlkqTw8HBJUkFBgSwWi9359Dt06KBWrVopPz9fvXr1Un5+vrp06WJ3apmkpCRNnjxZ+/fvV48ePWo3CQBwEVd9dmZSoWPI0TN4Q45MKgQA13G6MXLmzBkdPnzYdvvo0aPas2ePwsPD1apVK02dOlVPPPGEbrrpJrVp00aPP/64oqOjNXz4cElSx44dNWjQIE2cOFFLly6VxWJRWlqaRo4cqejo6BpLDAAAAO5RUVGhqVOn6o477lDnzp0l/XCufH9/f4WFhdmNvfx8+lWdb9+6rireej59R88nbh3nyecfJ8fK6uPftCeeT5/PzgAAAHWX042RTz75RHfddZfttvUw3ZSUFK1YsUKPPvqoysrKNGnSJJ0+fVq9e/fWhg0bFBgYaLvPG2+8obS0NA0YMEA+Pj5KTk7W888/XwPpAAAAwN1SU1O1b98+ffjhhy5/LG89n/769eudGu/IOcrrO3L80aquq1wciet40vn0+ewMAABQdzndGOnXr58Mw7jiepPJpLlz52ru3LlXHBMeHq6cnBxnHxoAAAB1XFpamtatW6ft27erRYsWtuVRUVG6cOGCTp8+bXfUSFFRke1c+VFRUfr444/ttldUVGRbVxVvPZ9+yR9KHBpnzdGRc5TXV+RYmfkpcy1EVbM88Xz6fHYGAACou2r0GiMAAADwToZhaMqUKVqzZo22bt2qNm3a2K2Pi4uTn5+fNm/erOTkZEnSwYMHdfz4ccXHx0v64Xz68+fPV3FxsSIiIiT9MHs8NDRUsbGxVT6ut55P39kGgDPPR31Fjj+qb3/PP8X59AEAAFAbaIwAgBcyP2Wu11+aAKh7UlNTlZOTo7/97W9q1KiR7ZogZrNZQUFBMpvNmjBhgtLT0xUeHq7Q0FBNmTJF8fHx6tWrlyQpMTFRsbGxGj16tBYsWKDCwkLNnDlTqampVTY/AAAAAAC4FjRGAAAAcN1efPFFST+cOuansrOzNXbsWEnSokWLbOfILy8vV1JSkpYsWWIb6+vrq3Xr1mny5MmKj49XSEiIUlJSqj3NDAAAAAAAzqIxAgAAgOtW3Xn0rQIDA5WVlaWsrKwrjomJiXH6wuIAAAAAADjDx90BAAAAAAAAAAAA1BYaIwAAAAAAAAAAwGvQGAEAAAAAAAAAAF6DxggAAAAAAAAAl9m+fbuGDRum6OhomUwmrV271m69YRiaNWuWmjdvrqCgICUkJOjQoUN2Y06dOqVRo0YpNDRUYWFhmjBhgs6cOVOLWQDwJDRGAAAAAAAAALhMWVmZunXrpqysrCrXL1iwQM8//7yWLl2qXbt2KSQkRElJSTp//rxtzKhRo7R//37l5eVp3bp12r59uyZNmlRbKQDwMA3cHQAAAAAAAAAAzzV48GANHjy4ynWGYei5557TzJkzde+990qSXn31VUVGRmrt2rUaOXKkvvjiC23YsEG7d+/WLbfcIklavHixhgwZooULFyo6OrrWcgHgGWiMAAAAAAAAAHCLo0ePqrCwUAkJCbZlZrNZPXv2VH5+vkaOHKn8/HyFhYXZmiKSlJCQIB8fH+3atUv33Xdfpe2Wl5ervLzcdru0tFSSZLFYZLFYqo3Juv5q4+qiIJ8gp8Y5Or4+IkfPYM3NkfejM+9ZGiMAAAAAAAAA3KKwsFCSFBkZabc8MjLStq6wsFARERF26xs0aKDw8HDbmMtlZmYqIyOj0vLc3FwFBwc7FFteXp5D4+qSVV1XOTV+eeflLoqk7iBHz+DI+/Hs2bMOb4/GCAAAAAAAAACPMmPGDKWnp9tul5aWqmXLlkpMTFRoaGi197VYLMrLy9PAgQPl5+fn6lBrlPkps0PjgnyCtLzzco3fN17nKs65OCr3IEfPYM3Rkfej9cgwR9AYAQAAAAAAAOAWUVFRkqSioiI1b97ctryoqEjdu3e3jSkuLra738WLF3Xq1Cnb/S8XEBCggICASsv9/PwcbnY4M7aucPbL8XMV5zz2C3UrcvQMjrwfnXm/+lxvQAAAAAAAAABwLdq0aaOoqCht3rzZtqy0tFS7du1SfHy8JCk+Pl6nT59WQUGBbcwHH3ygiooK9ezZs9ZjBlD/ccQIAAAAAAAAAJc5c+aMDh8+bLt99OhR7dmzR+Hh4WrVqpWmTp2qJ554QjfddJPatGmjxx9/XNHR0Ro+fLgkqWPHjho0aJAmTpyopUuXymKxKC0tTSNHjlR0dLSbsgJQn9EYAQAAAAAAAOAyn3zyie666y7bbeu1P1JSUrRixQo9+uijKisr06RJk3T69Gn17t1bGzZsUGBgoO0+b7zxhtLS0jRgwAD5+PgoOTlZzz//fK3nAsAz0BgBAAAAAAAA4DL9+vWTYRhXXG8ymTR37lzNnTv3imPCw8OVk5PjivAAeCGuMQIA12H79u0aNmyYoqOjZTKZtHbtWrv1hmFo1qxZat68uYKCgpSQkKBDhw7ZjTl16pRGjRql0NBQhYWFacKECTpz5kwtZgEAAAAAAAB4DxojAHAdysrK1K1bN2VlZVW5fsGCBXr++ee1dOlS7dq1SyEhIUpKStL58+dtY0aNGqX9+/crLy9P69at0/bt2zVp0qTaSgEAAAAAAADwKpxKCwCuw+DBgzV48OAq1xmGoeeee04zZ87UvffeK0l69dVXFRkZqbVr12rkyJH64osvtGHDBu3evVu33HKLJGnx4sUaMmSIFi5cyEXkAAAAAAAAgBrGESMA4CJHjx5VYWGhEhISbMvMZrN69uyp/Px8SVJ+fr7CwsJsTRFJSkhIkI+Pj3bt2lXrMQMAAAAAAACejiNGAMBFCgsLJUmRkZF2yyMjI23rCgsLFRERYbe+QYMGCg8Pt425XHl5ucrLy223S0tLJUkWi0UWi6XamKzrg3yCnMikfrHmRo71mzfleLX3raNjAAAAAACAY2iMAEA9k5mZqYyMjErLc3NzFRwc7NA2lndeXtNh1Tnk6Bm8Ice8vLyrjjl79mwtRAIAAAAAgHegMQIALhIVFSVJKioqUvPmzW3Li4qK1L17d9uY4uJiu/tdvHhRp06dst3/cjNmzFB6errtdmlpqVq2bKnExESFhoZWG5PFYlFeXp7G7xuvcxXnriWtOi/IJ0jLOy8nx3rOm3IcOHCg/Pz8qh1rPTIMAAAAAABcPxojAOAibdq0UVRUlDZv3mxrhJSWlmrXrl2aPHmyJCk+Pl6nT59WQUGB4uLiJEkffPCBKioq1LNnzyq3GxAQoICAgErL/fz8rvrlqtW5inMe+2WzFTl6Bm/I0ZH3rqPvbQAAAAAAcHU0RgDgOpw5c0aHDx+23T569Kj27Nmj8PBwtWrVSlOnTtUTTzyhm266SW3atNHjjz+u6OhoDR8+XJLUsWNHDRo0SBMnTtTSpUtlsViUlpamkSNHKjo62k1ZAQAAAAAAAJ6LxggAXIdPPvlEd911l+229RRXKSkpWrFihR599FGVlZVp0qRJOn36tHr37q0NGzYoMDDQdp833nhDaWlpGjBggHx8fJScnKznn3++1nMBAAAAAAAAvAGNEQC4Dv369ZNhGFdcbzKZNHfuXM2dO/eKY8LDw5WTk+OK8AAAAAAAAABcxsfdAQAAAAAAAAAAANQWGiMAAAAAAAAAAMBr0BgBAAAAAAAAAABeg8YIAAAAAAAAAADwGjXeGJkzZ45MJpPdT4cOHWzrz58/r9TUVDVp0kQNGzZUcnKyioqKajoMAAAAAAAAAACASlxyxEinTp108uRJ28+HH35oWzdt2jS99957Wr16tbZt26YTJ05oxIgRrggDAAAAAIA6iUmFAAAA7tPAJRtt0EBRUVGVlpeUlGjZsmXKyclR//79JUnZ2dnq2LGjdu7cqV69erkiHAAAAAAA6pxOnTpp06ZNttsNGvz4EX3atGl6//33tXr1apnNZqWlpWnEiBH66KOP3BEqAACAR3HJESOHDh1SdHS0brzxRo0aNUrHjx+XJBUUFMhisSghIcE2tkOHDmrVqpXy8/NdEQoAAABqyfbt2zVs2DBFR0fLZDJp7dq1dusNw9CsWbPUvHlzBQUFKSEhQYcOHbIbc+rUKY0aNUqhoaEKCwvThAkTdObMmVrMAgBqj3VSofWnadOmkn6cVPjss8+qf//+iouLU3Z2tnbs2KGdO3e6OWoAAID6r8aPGOnZs6dWrFih9u3b6+TJk8rIyFCfPn20b98+FRYWyt/fX2FhYXb3iYyMVGFh4RW3WV5ervLyctvt0tJSSZLFYpHFYqk2Huv6IJ+ga8yo7rPmRo71mzfleLX3raNjAAB1S1lZmbp166bx48dXearUBQsW6Pnnn9fKlSvVpk0bPf7440pKStKBAwcUGBgoSRo1apROnjypvLw8WSwWjRs3TpMmTVJOTk5tpwMALmedVBgYGKj4+HhlZmaqVatWV51UeKWzLfDZuXre9JmLHOs3PjsDgOvVeGNk8ODBtt+7du2qnj17KiYmRm+//baCgq7tn1ZmZqYyMjIqLc/NzVVwcLBD21jeefk1PXZ9Qo6ewRtyzMvLu+qYs2fP1kIkAICaNHjwYLt9wZ8yDEPPPfecZs6cqXvvvVeS9OqrryoyMlJr167VyJEj9cUXX2jDhg3avXu3brnlFknS4sWLNWTIEC1cuFDR0dG1lgsAuJorJhXy2dkx5OgZvCFHPjsDgOu45BojPxUWFqabb75Zhw8f1sCBA3XhwgWdPn3abgevqKioymuSWM2YMUPp6em226WlpWrZsqUSExMVGhpa7eNbLBbl5eVp/L7xOldx7rrzqYuCfIK0vPNycqznvCnHgQMHys/Pr9qx1tltAADPcPToURUWFtrNfjabzerZs6fy8/M1cuRI5efnKywszNYUkaSEhAT5+Pho165duu+++ypt11tnRzs6O9Q6zpNnk5JjZfXxb9obZ0e7YlIhn52r502fucixfuOzMwC4nssbI2fOnNGRI0c0evRoxcXFyc/PT5s3b1ZycrIk6eDBgzp+/Lji4+OvuI2AgAAFBARUWu7n53fVfxBW5yrOeew/TCty9AzekKMj711H39sAgPrBOsM5MjLSbvlPZz8XFhYqIiLCbn2DBg0UHh5+xRnS3jo7ev369U6Nd2TGaX1Hjj9a1XWViyNxHW+eHV0Tkwr57OwYcvQM3pAjn50BwHVqvDHy+9//XsOGDVNMTIxOnDih2bNny9fXVw8++KDMZrMmTJig9PR0hYeHKzQ0VFOmTFF8fPwVz5EKAAAAXIm3zo4u+UOJQ+OsOToy47S+IsfKzE+ZayGqmsXs6JqZVAgAAADH1Hhj5L///a8efPBBfffdd2rWrJl69+6tnTt3qlmzZpKkRYsWycfHR8nJySovL1dSUpKWLFlS02EAAACgDrHOcC4qKlLz5s1ty4uKitS9e3fbmOLiYrv7Xbx4UadOnbriDGlvnR3tbAPAmeejviLHH9W3v+ef8qbZ0UwqBIAfzZkzp9JRwO3bt9eXX34pSTp//rwefvhhvfnmm3bfJ15+NDIAOKrGGyNvvvlmtesDAwOVlZWlrKysmn5oAAAA1FFt2rRRVFSUNm/ebGuElJaWateuXZo8ebIkKT4+XqdPn1ZBQYHi4uIkSR988IEqKirUs2dPd4UOAC7BpEIAsNepUydt2rTJdrtBgx+/tpw2bZref/99rV69WmazWWlpaRoxYoQ++ugjd4QKwAO4/BojAAAA8A5nzpzR4cOHbbePHj2qPXv2KDw8XK1atdLUqVP1xBNP6KabblKbNm30+OOPKzo6WsOHD5ckdezYUYMGDdLEiRO1dOlSWSwWpaWlaeTIkYqOjnZTVgDgGkwqBAB7DRo0qPIo4ZKSEi1btkw5OTnq37+/JCk7O1sdO3bUzp07OZIOwDXxcXcAAAAA8AyffPKJevTooR49ekiS0tPT1aNHD82aNUuS9Oijj2rKlCmaNGmSbr31Vp05c0YbNmxQYGCgbRtvvPGGOnTooAEDBmjIkCHq3bu3Xn75ZbfkAwAAgNpz6NAhRUdH68Ybb9SoUaN0/PhxSVJBQYEsFosSEhJsYzt06KBWrVopPz/fXeECqOc4YgQAAAA1ol+/fjIM44rrTSaT5s6dq7lz515xTHh4uHJyclwRHgAAAOqonj17asWKFWrfvr1OnjypjIwM9enTR/v27VNhYaH8/f0VFhZmd5/IyEgVFhZecZvl5eUqLy+33S4tLZUkWSwWWSyWauOxrr/auLooyCfIqXGOjq+PyNEzWHNz5P3ozHuWxggAAAAAAAAAtxk8eLDt965du6pnz56KiYnR22+/raCga/vCNzMzs9IF3SUpNzdXwcHBDm0jLy/vmh7bnVZ1XeXU+OWdl7sokrqDHD2DI+/Hs2fPOrw9GiMAAAAAAAAA6oywsDDdfPPNOnz4sAYOHKgLFy7o9OnTdkeNFBUVVXlNEqsZM2YoPT3ddru0tFQtW7ZUYmKiQkNDq318i8WivLw8DRw4UH5+ftedT20yP2V2aFyQT5CWd16u8fvG61zFORdH5R7k6BmsOTryfrQeGeYIGiMAAAAAAAAA6owzZ87oyJEjGj16tOLi4uTn56fNmzcrOTlZknTw4EEdP35c8fHxV9xGQECAAgICKi338/NzuNnhzNi6wtkvx89VnPPYL9StyNEzOPJ+dOb9SmMEAAAAAAAAgNv8/ve/17BhwxQTE6MTJ05o9uzZ8vX11YMPPiiz2awJEyYoPT1d4eHhCg0N1ZQpUxQfH69evXq5O3QA9RSNEQAAAAAAAABu89///lcPPvigvvvuOzVr1ky9e/fWzp071axZM0nSokWL5OPjo+TkZJWXlyspKUlLlixxc9QA6jMaIwAAAAAAAADc5s0336x2fWBgoLKyspSVlVVLEQHwdD7uDgAAAAAAAAAAAKC20BgBAAAAAAAAAABeg8YIAAAAAAAAAADwGjRGAAAAAAAAAACA16AxAgAAAAAAAAAAvAaNEQAAAAAAAAAA4DVojAAAAAAAAAAAAK/RwN0BAAAAAAAAAEBdY37KrHMV59wdBgAX4IgRAAAAAAAAAADgNWiMAAAAAAAAAAAAr0FjBAAAAAAAAAAAeA0aIwAAAAAAAAAAwGvQGAEAAAAAAAAAAF6DxggAAAAAAAAAAPAaNEYAAAAAAAAAAIDXoDECAAAAAAAAAAC8Bo0RAAAAAAAAAADgNWiMAAAAAAAAAAAAr0FjBAAAAAAAAAAAeA0aIwAAAAAAAAAAwGvQGAEAAAAAAAAAAF6DxggAAAAAAAAAAPAaNEYAAAAAAAAAAIDXoDECAAAAAAAAAAC8Bo0RAAAAAAAAAADgNdzaGMnKylLr1q0VGBionj176uOPP3ZnOADgVtREAPgB9RAAfkRNBIAfURMB1BS3NUbeeustpaena/bs2fr000/VrVs3JSUlqbi42F0hAYDbUBMB4AfUQwD4ETURAH5ETQRQk9zWGHn22Wc1ceJEjRs3TrGxsVq6dKmCg4O1fPlyd4UEAG5DTQSAH1APAeBH1EQA+BE1EUBNcktj5MKFCyooKFBCQsKPgfj4KCEhQfn5+e4ICQDchpoIAD+gHgLAj6iJAPAjaiKAmtbAHQ/67bff6tKlS4qMjLRbHhkZqS+//LLS+PLycpWXl9tul5SUSJJOnToli8VS7WNZLBadPXtWgRcCZVQYNRB93RPoE0iOHsCbcvzuu+/k5+dX7djvv/9ekmQYnvlc/BQ1sWZ503uJHOs3amJlztZDyXtr4nfffefQOGuOjvyd1VfkWFnghcBaiKpmURMroybWPG/avyDH+o2aWBk1seZ503uJHOs3V9VEtzRGnJWZmamMjIxKy9u0aeOGaOqe8zqvh/SQu8NwKXL0DNeS4/fffy+z2eyiiOonamL1eC95BnKsGjWxMm+tiU2fbOruEIAaRU2sGd5aEx3F/oVnIMeqURMroyZWj/eSZyDHqjlSE93SGGnatKl8fX1VVFRkt7yoqEhRUVGVxs+YMUPp6em22xUVFTp16pSaNGkik8lU7WOVlpaqZcuW+uqrrxQaGlozCdQx5OgZyNGeYRj6/vvvFR0dXUvRuQ81sWaRo2cgR3veUhOdrYcSNfFqyNEzkKM9aiI18VqRo2cgR3vURGritSJHz0CO9pypiW5pjPj7+ysuLk6bN2/W8OHDJf1QnDZv3qy0tLRK4wMCAhQQEGC3LCwszKnHDA0N9dg/Dity9Azk+CNvme1CTXQNcvQM5Pgjb6iJztZDiZroKHL0DOT4I2oiNfF6kKNnIMcfUROpideDHD0DOf7I0ZrotlNppaenKyUlRbfccotuu+02PffccyorK9O4cePcFRIAuA01EQB+QD0EgB9REwHgR9READXJbY2RX/ziF/rmm280a9YsFRYWqnv37tqwYUOliygBgDegJgLAD6iHAPAjaiIA/IiaCKAmufXi62lpaVc83K2mBAQEaPbs2ZUOnfMk5OgZyBHUxJpBjp6BHL1bbdRDyTteA3L0DOTo3aiJNYccPQM5ejdqYs0hR89AjtfOZBiGUaNbBAAAAAAAAAAAqKN83B0AAAAAAAAAAABAbaExAgAAAAAAAAAAvAaNEQAAAAAAAAAA4DW8qjFy7NgxTZgwQW3atFFQUJDatm2r2bNn68KFC+4OrcbMnz9ft99+u4KDgxUWFubucGpMVlaWWrdurcDAQPXs2VMff/yxu0OqMdu3b9ewYcMUHR0tk8mktWvXujukGpWZmalbb71VjRo1UkREhIYPH66DBw+6OyyImlifURPrL2pi3UVNrL+oifUXNbHuoibWX9TE+ouaWHdRE+svamL9VRs10asaI19++aUqKir00ksvaf/+/Vq0aJGWLl2qxx57zN2h1ZgLFy7o/vvv1+TJk90dSo156623lJ6ertmzZ+vTTz9Vt27dlJSUpOLiYneHViPKysrUrVs3ZWVluTsUl9i2bZtSU1O1c+dO5eXlyWKxKDExUWVlZe4OzetRE+snamL9Rk2su6iJ9RM1sX6jJtZd1MT6iZpYv1ET6y5qYv1ETazfaqUmGl5uwYIFRps2bdwdRo3Lzs42zGazu8OoEbfddpuRmppqu33p0iUjOjrayMzMdGNUriHJWLNmjbvDcKni4mJDkrFt2zZ3h4IqUBPrPmqiZ6Em1m3UxLqPmuhZqIl1GzWx7qMmehZqYt1GTaz7qImexRU10auOGKlKSUmJwsPD3R0GruDChQsqKChQQkKCbZmPj48SEhKUn5/vxshwrUpKSiSJ910dRU2s26iJnoeaWLdRE+s2aqLnoSbWbdTEuo2a6HmoiXUbNbFuoyZ6HlfURK9ujBw+fFiLFy/Wr371K3eHgiv49ttvdenSJUVGRtotj4yMVGFhoZuiwrWqqKjQ1KlTdccdd6hz587uDgeXoSbWfdREz0JNrNuoiXUfNdGzUBPrNmpi3UdN9CzUxLqNmlj3URM9i6tqokc0Rv7whz/IZDJV+/Pll1/a3efrr7/WoEGDdP/992vixIluitwx15IfUBelpqZq3759evPNN90dikejJlITUT9QE2sHNZGaiPqBmlg7qInURNQP1MTaQU2kJqJ+cFVNbFCjW3OThx9+WGPHjq12zI033mj7/cSJE7rrrrt0++236+WXX3ZxdNfP2fw8SdOmTeXr66uioiK75UVFRYqKinJTVLgWaWlpWrdunbZv364WLVq4OxyPRk2kJqLuoybWHmoiNRF1HzWx9lATqYmo+6iJtYeaSE1E3efKmugRjZFmzZqpWbNmDo39+uuvdddddykuLk7Z2dny8an7B804k5+n8ff3V1xcnDZv3qzhw4dL+uHwqc2bNystLc29wcEhhmFoypQpWrNmjbZu3ao2bdq4OySPR030XNTE+o+aWPuoiZ6Lmlj/URNrHzXRc1ET6z9qYu2jJnouamL9Vxs10SMaI476+uuv1a9fP8XExGjhwoX65ptvbOs8pVt4/PhxnTp1SsePH9elS5e0Z88eSVK7du3UsGFD9wZ3jdLT05WSkqJbbrlFt912m5577jmVlZVp3Lhx7g6tRpw5c0aHDx+23T569Kj27Nmj8PBwtWrVyo2R1YzU1FTl5OTob3/7mxo1amQ7l6PZbFZQUJCbo/Nu1ERqYl1ETYS7UBOpiXURNRHuQk2kJtZF1ES4CzWRmlgXURNrgOFFsrOzDUlV/niKlJSUKvPbsmWLu0O7LosXLzZatWpl+Pv7G7fddpuxc+dOd4dUY7Zs2VLla5aSkuLu0GrEld5z2dnZ7g7N61ET6y9qYv1FTay7qIn1FzWx/qIm1l3UxPqLmlh/URPrLmpi/UVNrL9qoyaa/v8HAgAAAAAAAAAA8Hh1/4R4AAAAAAAAAAAANYTGCAAAAAAAAAAA8Bo0RgAAAAAAAAAAgNegMQIAAAAAAAAAALwGjREAAAAAAAAAAOA1aIwAAAAAAAAAAACvQWMEAAAAAAAAAAB4DRojAAAAAAAAAADAa9AYAQAAAAAAAAAAXoPGCAAAAAAAAAAA8Bo0RgAAAAAAAAAAgNegMQIAAAAAAAAAALwGjREAAAAAAAAAAOA1aIwAAAAAAAAAAACvQWMEAAAAAAAAAAB4DRojAAAAAAAAAADAa9AYAQAAAAAAAAAAXoPGCAAAAAAAAAAA8Bo0RgAAAAAAAAAAgNegMQIAAAAAAAAAALwGjREAAAAAAAAAAOA1aIwAAAAAAAAAAACvQWMEAAAAAAAAAAB4DRojAAAAAAAAAADAa9AYAQAAAAAAAAAAXoPGCAAAAAAAAAAA8Bo0RgAAAAAAAAAAgNegMQIAAAAAAAAAALwGjREAAAAAAAAAAOA1aIwAAAAAAAAAAACvQWMEAAAAAAAAAAB4DRoj9dCcOXNkMpn07bffVjuudevWGjt2bO0E9RPHjh2TyWTSihUrav2xAeBajB07Vq1bt3Z3GPWC9X/QT7nr/w3gqRzd16sLxo4dq4YNGzo01mQyac6cOa4NqI4xmUxKS0u76rgVK1bIZDLp2LFjrg8KgFv169dP/fr189rH/6m6FAvgSS7fr7jW99rWrVtlMpm0devWGo2vvqvq+wNn9nP5/Fx30BgBAAA16sCBA5ozZw5f8AEe4uzZs5ozZw4figEAAAAH7NixQ3PmzNHp06fdHQqq0cDdAQAAgPrt4MGD8vH5ca7FgQMHlJGRoX79+nEkDuABzp49q4yMDEm6rpm9586dU4MGfPwA4N1yc3PdHQIAL3Otdadv3746d+6c/P39azgiz3P5fu6OHTuUkZGhsWPHKiwszG7s5Z+f4T68CvAIZ8+edXcITqmoqND58+fdHQYA1IiAgAD5+fm5OwzA69X1/YvAwMB63xgpKytzdwgA6jl/f3++ZARQq6617vj4+CgwMJAv8R3gzH4un5/rDv6y67Fvv/1WDzzwgEJDQ9WkSRP97ne/u+qH4X//+9+6//77FR4eruDgYPXq1Uvvv/9+pXHFxcWaMGGCIiMjFRgYqG7dumnlypWVxp0+fVpjx46V2WxWWFiYUlJSrukwMet5C9966y099thjioqKUkhIiO655x599dVXdmP79eunzp07q6CgQH379lVwcLAee+wxSVJ5eblmz56tdu3aKSAgQC1bttSjjz6q8vJyu23k5eWpd+/eCgsLU8OGDdW+fXvbNqwWL16sTp06KTg4WI0bN9Ytt9yinJwc2/orXZOgqvPvW88v/cYbb6hTp04KCAjQhg0bJElff/21xo8fr8jISAUEBKhTp05avny5088hgCv7/vvvNXXqVLVu3VoBAQGKiIjQwIED9emnn17xPhUVFXruuefUqVMnBQYGKjIyUr/61a/0v//9r9LYf/zjH+rTp49CQkLUqFEjDR06VPv377cbYz0P/7///W8lJSUpJCRE0dHRmjt3rgzDcDqnl19+WW3btlVQUJBuu+02/fOf/6x07tgrnbO+qnPF/vOf/9T999+vVq1a2erntGnTdO7cuavG8tNzpK5YsUL333+/JOmuu+6SyWSyPVZKSoqaNm0qi8VSaRuJiYlq3769088D4Mmutq93vfsXFy5c0KxZsxQXFyez2ayQkBD16dNHW7ZssY05duyYmjVrJknKyMiwvacvP4fy119/reHDh6thw4Zq1qyZfv/73+vSpUt2Yy6/n3Wf6fDhw7bZdGazWePGjas06eXcuXP67W9/q6ZNm6pRo0a655579PXXXzt93RLrtfAWLlyoRYsWKSYmRkFBQbrzzju1b98+u7HWun3kyBENGTJEjRo10qhRoyT90CB5+OGH1bJlSwUEBKh9+/ZauHDhFev5G2+8ofbt2yswMFBxcXHavn27Q/E68//l+PHjuvvuu9WwYUPdcMMNysrKkiTt3btX/fv3V0hIiGJiYuz2ZwFcnaO16uLFi5o3b57atm2rgIAAtW7dWo899lilz6JVnev/ap89Jdd+bnTkc3Tnzp111113VbpvRUWFbrjhBv385z+3W+bofjQA1/tp3SkqKlKDBg1sRwP/1MGDB2UymfTCCy9Iqvpzo/U7uQMHDuiuu+5ScHCwbrjhBi1YsKDS9v7zn//onnvuUUhIiCIiIjRt2jRt3Ljxmq5bcvr0aU2bNs32mb5FixYaM2aM3TX5HPku86f7gtbP1AEBAbr11lu1e/fuSo+7du1ade7cWYGBgercubPWrFlTZXw/3SedM2eOHnnkEUlSmzZtbPvP1s/lVV1jxJHva62vx9tvv6358+erRYsWCgwM1IABA3T48GG7sYcOHVJycrKioqIUGBioFi1aaOTIkSopKbnqc+1N6veULS/3wAMPqHXr1srMzNTOnTv1/PPP63//+59effXVKscXFRXp9ttv19mzZ/Xb3/5WTZo00cqVK3XPPffonXfe0X333Sfphw+e/fr10+HDh5WWlqY2bdpo9erVGjt2rE6fPq3f/e53kiTDMHTvvffqww8/1K9//Wt17NhRa9asUUpKyjXnNH/+fJlMJk2fPl3FxcV67rnnlJCQoD179igoKMg27rvvvtPgwYM1cuRI/fKXv1RkZKQqKip0zz336MMPP9SkSZPUsWNH7d27V4sWLdK//vUvrV27VpK0f/9+3X333eratavmzp2rgIAAHT58WB999JFt+6+88op++9vf6uc//7ntS4jPP/9cu3bt0kMPPXRNuX3wwQd6++23lZaWpqZNm6p169YqKipSr169/j/27j4sqjL/H/ibweHZGcJiBhJYUlNREJcKZjUzeRJZV4N+abmKD6vFDrZKmdG6KT6EWbtqhVitoq2ihWluZMhgCt8U1NjIp2LTLCoZqFhAQYYBzu8Przk5gjiDDAzD+3VdXnXu85kz92eOc3vmfM59jnhi46677sLHH3+MefPmoa6uDosWLer0Z0lEv3rqqaewZ88eJCUlISAgAL/88gs+/fRTfPnll/jtb3/b7muefPJJbNu2DXPmzMHTTz+Nixcv4o033sDnn3+Oo0ePild4/Otf/0JCQgKio6Px8ssvo6GhARkZGRg7diw+//xzowJqS0sLJk6ciLCwMKxbtw65ublYvnw5mpubsXLlSpPz2bJlC5588kn87ne/w6JFi/DNN9/gD3/4Azw8PODj49Opzyg7OxsNDQ1ITEzEgAEDcOLECbz++uv44YcfkJ2dbfJ2xo0bh6effhqvvfYaXnjhBQwfPhwAMHz4cMycORPvvPMODh48iN///vfia7RaLT755BMsX768U30nslWmHOvdzvFFXV0d/vnPf+Lxxx/H/PnzcfnyZWzZsgXR0dE4ceIEgoODcddddyEjIwOJiYl45JFHEBcXBwAICgoS+9DS0oLo6GiEhobi1VdfRX5+Pv7+979j0KBBSExMNClPf39/pKWl4T//+Q/++c9/wtPTEy+//LIYM3v2bLz33nuYOXMmwsLCUFBQgNjY2E5/tu+88w4uX74MtVqNxsZGbNy4ERMmTMDp06ehUCjEuObmZkRHR2Ps2LF49dVX4eLiAkEQ8Ic//AGHDx/GvHnzEBwcjIMHD2LJkiX48ccfsX79eqP3KigowLvvvounn34ajo6O2LRpEyZOnIgTJ05g5MiRN+2juf++xMTEYNy4cVi3bh127tyJpKQkuLq64q9//StmzJiBuLg4bN68GbNmzYJKpYK/v3+nPz+ivuhWY9Wf/vQnbN++HY8++iieeeYZHD9+HGlpafjyyy9veiINMO23pyV/N5r6O3ratGlYsWIFtFotlEql+PpPP/0Uly5dwvTp08U2U4+jiaj7KRQKPPTQQ3jvvffa/P569913YW9vL17odjP/+9//MHHiRMTFxeGxxx7Dnj17sHTpUgQGBiImJgbAtYtIJkyYgIqKCvzlL3+BUqlEVlaW0QU4prpy5QoefPBBfPnll5g7dy5++9vf4ueff8a///1v/PDDD7jzzjtNPpdpkJWVhcuXL+PJJ5+EnZ0d1q1bh7i4OHzzzTfiGJWXl4f4+HgEBAQgLS0Nv/zyC+bMmYOBAwd22N+4uDj897//xa5du7B+/XrceeedACBebHQjU8/XGqxduxYSiQTPPvssamtrsW7dOsyYMQPHjx8HcO3ip+joaOh0OixcuBBKpRI//vgjcnJyUFNTA7lcbvY+sFkC9TrLly8XAAh/+MMfjNr//Oc/CwCEL774QhAEQfDz8xMSEhLE9YsWLRIACP/3f/8ntl2+fFnw9/cXfvOb3wgtLS2CIAjChg0bBADCjh07xLimpiZBpVIJbm5uQl1dnSAIgvDBBx8IAIR169aJcc3NzcKDDz4oABAyMzNNzunw4cMCAOHuu+8Wty8IgvDee+8JAISNGzeKbQ899JAAQNi8ebPRNv71r38JEonEKD9BEITNmzcLAISjR48KgiAI69evFwAIP/300037M2XKFGHEiBEd9jkhIUHw8/Nr027YP9cDIEgkEuHs2bNG7fPmzRO8vLyEn3/+2ah9+vTpglwuFxoaGjrsAxGZRi6XC2q1+qbrb/w+/9///Z8AQNi5c6dRXG5urlH75cuXBXd3d2H+/PlGcVqtVpDL5UbtCQkJAgBh4cKFYltra6sQGxsrODg4dDgmXa+pqUnw9PQUgoODBZ1OJ7a/9dZbAgDhoYceEtsyMzMFAMLFixeNtmEYcw8fPiy2tTfepKWlCXZ2dsJ3330ntrU3xt347012dnab7QuCILS0tAgDBw4Upk2bZtT+j3/8Q7CzsxO++eabW2RP1DeYeqx3u8cXzc3NRuOIIAjC//73P0GhUAhz584V23766ScBgLB8+fI2fTWMbStXrjRqHz16tBASEmLUduM2DHle/16CIAiPPPKIMGDAAHG5pKREACAsWrTIKG727Nk37dfNXLx4UQAgODs7Cz/88IPYfvz4cQGAsHjx4ja5Pf/880bbMBwDr1692qj90UcfFezs7ITz588b5QxA+Oyzz8S27777TnBychIeeeQRse3G8boz/7689NJLYtv//vc/wdnZWbCzsxN2794ttn/11Vdmf2ZEfZ0pY1VpaakAQPjTn/5kFPPss88KAIRPPvlEbHvooYeMjtdM+e3Zlb8bb3x/U39Hl5WVCQCE119/3Sjuz3/+s+Dm5ib2wdTj6Pb6QkRd48bjihu/a2+++aYAQDh9+rTR6wICAoQJEyaIy+39bjSck3vnnXfENp1OJyiVSiE+Pl5s+/vf/y4AED744AOx7erVq8KwYcPa/a3YkRdffFEAIOzdu7fNutbWVkEQTD+XaTgWHDBggFBdXS3G7t+/XwAgfPjhh2JbcHCw4OXlJdTU1IhteXl5AoA25wNvPL565ZVX2v0tLgidP19r2B/Dhw83OobfuHGj0f78/PPPBQBCdnZ2m/cmY7yVVi+mVquNlhcuXAgAOHDgQLvxBw4cwAMPPICxY8eKbW5ubliwYAG+/fZbnDt3ToxTKpV4/PHHxTipVIqnn34aV65cQUFBgRjXr18/oysB7e3txX50xqxZs9C/f39x+dFHH4WXl1ebnBwdHTFnzhyjtuzsbAwfPhzDhg3Dzz//LP6ZMGECAIhVacNDj/bv34/W1tZ2++Hu7o4ffvih3Wl0nfXQQw8hICBAXBYEAe+//z4mT54MQRCM+hwdHY3a2toOb/NDRKZzd3fH8ePHcenSJZPis7OzIZfLERkZafTdDAkJgZubmzieaDQa1NTU4PHHHzeKs7e3R2hoaLtXwyQlJYn/b7jqr6mpCfn5+Sb17bPPPkNVVRWeeuopo/vEGm5r2FnXz8qrr6/Hzz//jN/97ncQBAGff/55p7d7PYlEghkzZuDf//43Ll++LLbv3LkTv/vd73j1MtENTDnWu53jC3t7e3EcaW1tRXV1NZqbm3HfffeZfQzy1FNPGS0/+OCD+Oabbzr92l9++QV1dXUAIN4e7M9//rNR3O0cc06dOhV33323uPzAAw8gNDS03ePoG2e9HDhwAPb29nj66aeN2p955hkIgoCPP/7YqF2lUiEkJERc9vX1xZQpU3Dw4ME2txsz6My/L3/605/E/3d3d8fQoUPh6uqKxx57TGwfOnQo3N3dTd43RPSrjsYqw9iRnJxsFPPMM88AQLu3rza41W9PS/9uNPV39L333ovg4GC8++674mtbWlqwZ88eTJ48WTyWNPU4moh6TlxcHPr162f0fT5z5gzOnTuHadOm3fL1bm5u+OMf/yguOzg44IEHHjA6vsjNzcXdd9+NP/zhD2Kbk5MT5s+fb3Z/33//fYwaNarNzAkA4q3sTT2XaTBt2jTccccd4vKDDz4IAGIOFRUVKC0tRUJCgtHv7MjISKNj765g6vlagzlz5hidC7ix74b+Hjx4sNc9k7m7sTDSiw0ZMsRoedCgQZBIJG3uJW/w3XfftXv/dsNtTr777jvxv0OGDGnzcKX24ry8vODm5mYUdzv3iL8xJzs7OwwePLhNTnfffXebB0d9/fXXOHv2LO666y6jP/feey+Aa/caBK4NfmPGjMGf/vQnKBQKTJ8+He+9955RkWTp0qVwc3PDAw88gCFDhkCtVhvdaqszbjzh99NPP6GmpgZvvfVWmz4bij6GPhPR7Vm3bh3OnDkDHx8fPPDAA1ixYkWHJ4W+/vpr1NbWwtPTs83388qVK+J38+uvvwYATJgwoU1cXl5em++wRCLBPffcY9RmGKNuNnbfyDAG3zheSqXSNts2R3l5OWbPng0PDw/xGQEPPfQQAHTpfUhnzZqFq1evireUKCsrQ0lJCWbOnNll70FkK0w51rvd44vt27cjKCgITk5OGDBgAO666y589NFHZn3vnZyc2twa4I477jD5XvK+vr5tXgtAfP13330HiUTSJtfBgweb3Mcb3fjZAtfG4xvH4n79+rW5XcJ3330Hb29vo4t5gLbHyrd6r4aGBvz000/t9s/cf1/a2wdyuRwDBw5s8+w7uVzO+/wTdUJHY5VhnLpxXFIqlXB3d28zLlzvVr89Lf270dTf0cC139JHjx7Fjz/+CODa/e6rqqqMTqSaehxNRD3nzjvvRHh4ON577z2x7d1330W/fv3E26Z2pL3jixuP/b777jsMGjSoTVxnjt8uXLjQ4e1HDe9nyrlMA1OOP4H2j+O6+tmYpp6vNbhV3/39/ZGcnIx//vOfuPPOOxEdHY309HQ+X6QdfMaIDblxsLFl11/ZbNDa2orAwED84x//aPc1hvvuOzs7o7CwEIcPH8ZHH32E3NxcvPvuu5gwYQLy8vJgb2+P4cOHo6ysDDk5OcjNzcX777+PTZs24cUXXxQfUHWzz/tmV/7d2GdDIeaPf/zjTZ/Lcv39u4mo8x577DE8+OCD2LdvH/Ly8vDKK6/g5Zdfxt69e8V7oF6vtbUVnp6e2LlzZ7vbM5x8MnyP//Wvfxnda9mgX7+e/WfW1HGqpaUFkZGRqK6uxtKlSzFs2DC4urrixx9/xOzZs286u64zAgICEBISgh07dmDWrFnYsWMHHBwcjK5oJqL2tfedvp3jix07dmD27NmYOnUqlixZAk9PT9jb2yMtLQ0XLlwwuV/29vYmx5rzeuEmDzLvTo6Ojm1+YHcHc/99udlnaM2fLVFvY8r3qTO/yW/129PSvxtN/R0NXCuMpKSkIDs7G4sWLcJ7770HuVyOiRMnGm3PlONoIupZ06dPx5w5c1BaWorg4GC89957CA8PF5+H0RFbOL7ozTmY0ve///3vmD17Nvbv34+8vDw8/fTT4nMLb/WMlL6EhZFe7Ouvvza6cu78+fNobW01ehDj9fz8/FBWVtam/auvvhLXG/576tQptLa2Gv0QbC/u0KFDuHLlitGskfbew5ycricIAs6fP2/Sgd6gQYPwxRdfIDw8/JYHpBKJBOHh4QgPD8c//vEPvPTSS/jrX/+Kw4cPIyIiAgDg6uqKadOmYdq0aWhqakJcXBzWrFmDlJQUODk54Y477kBNTU2bbXd0NdD17rrrLvTv3x8tLS3iexKR5Xh5eeHPf/4z/vznP6Oqqgq//e1vsWbNmnYLI4MGDUJ+fj7GjBnTbiH2+jgA8PT0NOl73Nraim+++Ua8Ag8A/vvf/wLATcfuGxnG4K+//lq8xQEA6PV6XLx4EaNGjRLbDFeO3DhW3ThOnT59Gv/973+xfft2zJo1S2zXaDQm9elGtxqDZ82aheTkZFRUVCArKwuxsbFG05iJ6Bpzj/UA844v9uzZg3vuuQd79+41+t7e+CDOnr74xs/PD62trbh48aLRVXvnz5/v9DZvPOYEro3HpozFfn5+yM/Px+XLl41mjdx4rHyr93JxcbnpCUJz/30hop5lGKe+/vpr8Qpf4NoDdWtqatqMCzfq6LenpX83mvM72t/fHw888ADeffddJCUlYe/evZg6dSocHR2NtmfKcTQR9aypU6fiySefFG+n9d///hcpKSldtn0/Pz+cO3cOgiAYjS2dOX4bNGgQzpw5c8v3M+Vcpqmu/919I1POe5pz/Gzq+VpzBQYGIjAwEMuWLcOxY8cwZswYbN68GatXr+7U9mwRb6XVi6Wnpxstv/766wDQ7kk+AJg0aRJOnDiBoqIisa2+vh5vvfUWfvOb34j3yJs0aRK0Wq3RvQabm5vx+uuvw83NTby1yqRJk9Dc3IyMjAwxrqWlRexHZ7zzzjtG953fs2cPKioqbprT9R577DH8+OOPePvtt9usu3r1Kurr6wEA1dXVbdYHBwcDAHQ6HQDgl19+MVrv4OCAgIAACIIAvV4P4NrAXFtbi1OnTolxFRUV4u1hbsXe3h7x8fF4//332x3gb3ZrBSIyT0tLS5spo56envD29ha/8zd67LHH0NLSglWrVrVZ19zcLBYaoqOjIZPJ8NJLL4ljw/Xa+x6/8cYb4v8LgoA33ngDUqkU4eHhJuVz33334a677sLmzZvR1NQktm/btq1NAcRwYq2wsFBsa2lpwVtvvWUUZ7ji5PorTARBwMaNG03q041cXV0BtC3IGDz++OOws7PDX/7yF3zzzTdG96clol+Ze6wHmHd80d53//jx40bHigDg4uIC4ObfaUuLjo4GAGzatMmo/XaOOT/44APxVjAAcOLECRw/ftykY85JkyahpaXFaDwHgPXr18POzq7NNoqKiozu///9999j//79iIqKuukVf53594WIes6kSZMAABs2bDBqN8zCiI2Nvelrb/Xb09K/G039HW0wbdo0FBcXY+vWrfj555/bPI/A1ONoIupZ7u7uiI6OxnvvvYfdu3fDwcEBU6dO7bLtR0dH48cff8S///1vsa2xsbHdseZW4uPj8cUXX7R7vs1wHGvquUxTeXl5ITg4GNu3bzc6n6DRaNo886M9t/pNfD1Tz9eaqq6uDs3NzUZtgYGBkEgkNz0H0ldxxkgvdvHiRfzhD3/AxIkTUVRUhB07duCJJ54wulr4es8//zx27dqFmJgYPP300/Dw8MD27dtx8eJFvP/++2JFdcGCBXjzzTcxe/ZslJSU4De/+Q327NmDo0ePYsOGDeKVcZMnT8aYMWPw/PPP49tvv0VAQAD27t17W/es8/DwwNixYzFnzhxUVlZiw4YNGDx4sEkPZ5o5cybee+89PPXUUzh8+DDGjBmDlpYWfPXVV3jvvfdw8OBB3HfffVi5ciUKCwsRGxsLPz8/VFVVYdOmTRg4cKD4oKOoqCgolUqMGTMGCoUCX375Jd544w3ExsaK+U+fPh1Lly7FI488gqeffhoNDQ3IyMjAvffea/LD79auXYvDhw8jNDQU8+fPR0BAAKqrq/Gf//wH+fn57RZxiMg8ly9fxsCBA/Hoo49i1KhRcHNzQ35+Pk6ePIm///3v7b7moYcewpNPPom0tDSUlpYiKioKUqkUX3/9NbKzs7Fx40Y8+uijkMlkyMjIwMyZM/Hb3/4W06dPx1133YXy8nJ89NFHGDNmjNGJMycnJ+Tm5iIhIQGhoaH4+OOP8dFHH+GFF14w+bYCUqkUq1evxpNPPokJEyZg2rRpuHjxIjIzM9s8Y2TEiBEICwtDSkoKqqur4eHhgd27d7c5SBo2bBgGDRqEZ599Fj/++CNkMhnef//9Tt+DPjg4GPb29nj55ZdRW1sLR0dHTJgwAZ6engCuXdE+ceJEZGdnw93dvcOTBUR9mbnHegamHl/8/ve/x969e/HII48gNjYWFy9exObNmxEQEIArV66I23N2dkZAQADeffdd3HvvvfDw8MDIkSNvea/nrhISEoL4+Hhs2LABv/zyC8LCwlBQUCDOuOvMjJbBgwdj7NixSExMhE6nw4YNGzBgwAA899xzt3zt5MmT8fDDD+Ovf/0rvv32W4waNQp5eXnYv38/Fi1aJBalDUaOHIno6Gg8/fTTcHR0FAs8htuztsfcf1+IqGeNGjUKCQkJeOutt1BTU4OHHnoIJ06cwPbt2zF16lQ8/PDDN32tKb89Lfm70dTf0QaPPfYYnn32WTz77LPw8PBoM4vF1ONoIup506ZNwx//+Eds2rQJ0dHRcHd377JtP/nkk3jjjTfw+OOP4y9/+Qu8vLywc+dOODk5ATDv+G3JkiXYs2cP/t//+3+YO3cuQkJCUF1djX//+9/YvHkzRo0aZfK5THOkpaUhNjYWY8eOxdy5c1FdXY3XX38dI0aMMDpWbk9ISAgA4K9//SumT58OqVSKyZMniwWT65l6vtZUn3zyCZKSkvD//t//w7333ovm5mb861//EgvtdB2Bep3ly5cLAIRz584Jjz76qNC/f3/hjjvuEJKSkoSrV6+KcX5+fkJCQoLRay9cuCA8+uijgru7u+Dk5CQ88MADQk5OTpv3qKysFObMmSPceeedgoODgxAYGChkZma2ifvll1+EmTNnCjKZTJDL5cLMmTOFzz//XADQbvzNHD58WAAg7Nq1S0hJSRE8PT0FZ2dnITY2Vvjuu++MYh966CFhxIgR7W6nqalJePnll4URI0YIjo6Owh133CGEhIQIqampQm1trSAIgnDo0CFhypQpgre3t+Dg4CB4e3sLjz/+uPDf//5X3M6bb74pjBs3ThgwYIDg6OgoDBo0SFiyZIm4DYO8vDxh5MiRgoODgzB06FBhx44d4v65HgBBrVa32+fKykpBrVYLPj4+glQqFZRKpRAeHi689dZbJn9+RHRzOp1OWLJkiTBq1Cihf//+gqurqzBq1Chh06ZNYkxCQoLg5+fX5rVvvfWWEBISIjg7Owv9+/cXAgMDheeee064dOmSUdzhw4eF6OhoQS6XC05OTsKgQYOE2bNnC5999pnRe7i6ugoXLlwQoqKiBBcXF0GhUAjLly8XWlpazM5r06ZNgr+/v+Do6Cjcd999QmFhofDQQw8JDz30kFHchQsXhIiICMHR0VFQKBTCCy+8IGg0GgGAcPjwYTHu3LlzQkREhODm5ibceeedwvz584UvvviizXje3hjX3r83b7/9tnDPPfcI9vb2bd5LEAThvffeEwAICxYsMDt3Iltn6rHe7R5ftLa2Ci+99JLg5+cnODo6CqNHjxZycnLaHROPHTsmhISECA4ODgIAYfny5YIg/Dq23SyH613/uutjfvrpJ6O4zMxMAYBw8eJFsa2+vl5Qq9WCh4eH4ObmJkydOlUoKysTAAhr167t6OM0cvHiRQGA8Morrwh///vfBR8fH8HR0VF48MEHhS+++MIo9ma5CYIgXL58WVi8eLHg7e0tSKVSYciQIcIrr7witLa2tslZrVYLO3bsEIYMGSJ+zjeOie3lLAjm/ftyo5sdM/v5+QmxsbEdfUxEdB1Txyq9Xi+kpqYK/v7+glQqFXx8fISUlBShsbHR6HU3Hq+Z+tuzq343tne8aMrv6OuNGTNGACD86U9/uun7mHIc3V5fiOj23Tg+3ey7VldXJzg7OwsAhB07drRZbzhXd/1xy82OL9o7fvzmm2+E2NhYwdnZWbjrrruEZ555Rnj//fcFAEJxcbFZOf3yyy9CUlKScPfddwsODg7CwIEDhYSEBOHnn38WY0w5l3n9seCNbjxWFQRBeP/994Xhw4cLjo6OQkBAgLB37952c23vtatWrRLuvvtuQSKRGO2Pzp6vNeyP7OzsdnMy5PrNN98Ic+fOFQYNGiQ4OTkJHh4ewsMPPyzk5+e3/WD7ODtB6AVPlSGbd+TIETz88MPIzs7m1SNEZJNmz56NPXv23PLKktsxfvx4ANfGVGu3f/9+TJ06FYWFhXjwwQd7ujtE1AuVlpZi9OjR2LFjB2bMmGHSa7799lv4+/vjlVdewbPPPmvhHhIRERHR9TZs2IDFixfjhx9+wN13393T3aE+js8YISIiom739ttv45577hFvYUhE1JGrV6+2aduwYQMkEgnGjRvXAz0iIiIioo7cePzW2NiIN998E0OGDGFRhKwCnzFCFtXU1HTL+53K5fJu6g0RkXWrrq42eqD6jezt7U1+Fom12r17N06dOoWPPvoIGzdu7NSzAYio71m3bh1KSkrw8MMPo1+/fvj444/x8ccfY8GCBfDx8UFLS8stH0Ds5ubWTb0lIup+P/30E1paWm663sHBAR4eHt3YIyLq6+Li4uDr64vg4GDU1tZix44d+Oqrr7Bz504A1wont3pOsYeHBxwcHLqju9QHsTBCFnXs2LEOHzQHAJmZmfjNb37TPR0iIrJicXFxKCgouOl6Pz8/fPvtt93XIQt4/PHH4ebmhnnz5uHPf/5zT3eHiHqJ3/3ud9BoNFi1ahWuXLkCX19frFixAn/9618BAN9//z38/f073Mby5csxe/bsbugtEVH3u//++/Hdd9/ddP1DDz3UK263SkS2Izo6Gv/85z+xc+dOtLS0ICAgALt378a0adMAAO+++y7mzJnT4TYOHz4s3jKaqKvxGSNkUf/73/9QUlLSYcyIESPg5eXVTT0iIrJeJSUl+N///nfT9c7OzhgzZkw39oiIqHdobGzEp59+2mHMPffcg3vuuaebekRE1L2OHj3a7m0HDe644w6EhIR0Y4+IiDpWUVGBs2fPdhgTEhKCO+64o5t6RH0NCyNERERERERERERERNRn8OHrRERERERERERERETUZ/TKZ4y0trbi0qVL6N+/Px/aSmSjBEHA5cuX4e3tDYmENdyOcEwksn0cE03HMZHI9nFMNB3HRCLbxzHRdBwTiWyfOWNiryyMXLp0CT4+Pj3dDSLqBt9//z0GDhzY092wahwTifoOjom3xjGRqO/gmHhrHBOJ+g6OibfGMZGo7zBlTOyVhZH+/fsDuJagTCbrMFav1yMvLw9RUVGQSqXd0b1uxxxtA3M0VldXBx8fH/H7TjfHMdEYc7QNzNEYx0TTcUw0xhxtA3M0xjHRdBwTjTFH28AcjXFMNB3HRGPM0TYwR2PmjIm9sjBimO4mk8lMGshcXFwgk8ls+i8Hc+z9mGP7OL311jgmGmOOtoE5to9j4q1xTDTGHG0Dc2wfx8Rb45hojDnaBubYPo6Jt8Yx0RhztA3MsX2mjIm8+SAREREREREREREREfUZLIwQEREREREREREREVGfwcIIERERERERERERWURGRgaCgoLEW1ipVCp8/PHH4vrx48fDzs7O6M9TTz1ltI3y8nLExsbCxcUFnp6eWLJkCZqbm7s7FSKyIb3yGSNERERERERERERk/QYOHIi1a9diyJAhEAQB27dvx5QpU/D5559jxIgRAID58+dj5cqV4mtcXFzE/29paUFsbCyUSiWOHTuGiooKzJo1C1KpFC+99FK350NEtoGFESIiIiIiIiIiIrKIyZMnGy2vWbMGGRkZKC4uFgsjLi4uUCqV7b4+Ly8P586dQ35+PhQKBYKDg7Fq1SosXboUK1asgIODg8VzICLbY1ZhZMWKFUhNTTVqGzp0KL766isAQGNjI5555hns3r0bOp0O0dHR2LRpExQKhRhfXl6OxMREHD58GG5ubkhISEBaWhr69WONhoiIiIiIiIiIyFa1tLQgOzsb9fX1UKlUYvvOnTuxY8cOKJVKTJ48GX/729/EWSNFRUUIDAw0Or8YHR2NxMREnD17FqNHj273vXQ6HXQ6nbhcV1cHANDr9dDr9R3207D+VnG9GXO0Dcyx/VhTmF2NGDFiBPLz83/dwHUFjcWLF+Ojjz5CdnY25HI5kpKSEBcXh6NHjwLg1DciIiIiIiIiIqK+5vTp01CpVGhsbISbmxv27duHgIAAAMATTzwBPz8/eHt749SpU1i6dCnKysqwd+9eAIBWqzUqigAQl7Va7U3fMy0trc0F3sC1GSjX36qrIxqNxqS43ow52gbmeE1DQ4PJ2zO7MNKvX792p7bV1tZiy5YtyMrKwoQJEwAAmZmZGD58OIqLixEWFsapb0RERERERERERH3M0KFDUVpaitraWuzZswcJCQkoKChAQEAAFixYIMYFBgbCy8sL4eHhuHDhAgYNGtTp90xJSUFycrK4XFdXBx8fH0RFRUEmk3X4Wr1eD41Gg8jISEil0k73wZoxR9vAHI0ZZoaZwuzCyNdffw1vb284OTlBpVIhLS0Nvr6+KCkpgV6vR0REhBg7bNgw+Pr6oqioCGFhYZz6ZiHM0TYwx/ZjiYiIiIiIiKh3c3BwwODBgwEAISEhOHnyJDZu3Ig333yzTWxoaCgA4Pz58xg0aBCUSiVOnDhhFFNZWQkAN30uCQA4OjrC0dGxTbtUKjX5BLI5sb0Vc7QNzPHXGFOZVRgJDQ3Ftm3bMHToUFRUVCA1NRUPPvggzpw5A61WCwcHB7i7uxu9RqFQiNPaOPXNspijbWCO15gz9Y2IyC7Vrqe7YDZniTN2Be3q6W4QkQ3imEhk/Sz1PTV8l+Rr5bjaerXLty8sF7p8m9Q3tba2Gl0Efb3S0lIAgJeXFwBApVJhzZo1qKqqgqenJ4Br5xVkMpl4Oy7q3TgmUk8wqzASExMj/n9QUBBCQ0Ph5+eH9957D87Ozl3eOQNOfesYc7QN5uYoXyvvhl51LWeJM7aO3NrlU9+IiIiIiIiIyDqlpKQgJiYGvr6+uHz5MrKysnDkyBEcPHgQFy5cQFZWFiZNmoQBAwbg1KlTWLx4McaNG4egoCAAQFRUFAICAjBz5kysW7cOWq0Wy5Ytg1qtbndGCBGRKcy+ldb13N3dce+99+L8+fOIjIxEU1MTampqjGaNVFZWitPaOPXNspijbTA1R0tUurtLV099IyIiIiIiIiLrVFVVhVmzZqGiogJyuRxBQUE4ePAgIiMj8f333yM/Px8bNmxAfX09fHx8EB8fj2XLlomvt7e3R05ODhITE6FSqeDq6oqEhASsXLmyB7Miot7utgojV65cwYULFzBz5kyEhIRAKpXi0KFDiI+PBwCUlZWhvLwcKpUKAKe+ERERERERERER9SVbtmy56TofHx8UFBTccht+fn44cOBAV3aLiPo4iTnBzz77LAoKCvDtt9/i2LFjeOSRR2Bvb4/HH38ccrkc8+bNQ3JyMg4fPoySkhLMmTMHKpUKYWFhAIynvn3xxRc4ePAgp74RERER2aC1a9fCzs4OixYtEtsaGxuhVqsxYMAAuLm5IT4+Xpw9bFBeXo7Y2Fi4uLjA09MTS5YsQXNzczf3noiIiIiIiGyZWYWRH374AY8//jiGDh2Kxx57DAMGDEBxcTHuuusuAMD69evx+9//HvHx8Rg3bhyUSiX27t0rvt4w9c3e3h4qlQp//OMfMWvWLE59IyIiIrIhJ0+exJtvvineF9pg8eLF+PDDD5GdnY2CggJcunQJcXFx4vqWlhbExsaiqakJx44dw/bt27Ft2za8+OKL3Z0CEdFtycjIQFBQEGQyGWQyGVQqFT7++GNxPQvFRERERD3LrFtp7d69u8P1Tk5OSE9PR3p6+k1jOPWNiIiIyHZduXIFM2bMwNtvv43Vq1eL7bW1tdiyZQuysrIwYcIEAEBmZiaGDx+O4uJihIWFIS8vD+fOnUN+fj4UCgWCg4OxatUqLF26FCtWrICDg0NPpUVEZJaBAwdi7dq1GDJkCARBwPbt2zFlyhR8/vnnGDFiBBYvXoyPPvoI2dnZkMvlSEpKQlxcHI4ePQrg10KxUqnEsWPHUFFRgVmzZkEqleKll17q4eyIiIiIer/besYIEREREdH11Go1YmNjERERYVQYKSkpgV6vR0REhNg2bNgw+Pr6oqioCGFhYSgqKkJgYCAUCoUYEx0djcTERJw9exajR49u8346nQ46nU5crqurAwDo9Xro9foO+2pYf6u43ow52gZzc3SWOFuyOxZh6LMpOfaGfT158mSj5TVr1iAjIwPFxcUYOHAgC8VEREREPYyFESIiIiLqErt378Z//vMfnDx5ss06rVYLBwcHuLu7G7UrFApotVox5vqiiGG9YV170tLSkJqa2qY9Ly8PLi4uJvVbo9GYFNebMUfbYGqOu4J2WbgnlmNKjg0NDd3Qk67T0tKC7Oxs1NfXQ6VSWaxQTERERESmY2GEiIiIiG7b999/j7/85S/QaDRwcnLqtvdNSUlBcnKyuFxXVwcfHx9ERUVBJpN1+Fq9Xg+NRoPIyEhIpVJLd7VHMEfbYG6O8rXybuhV13KWOGPryK0m5WiYGWbtTp8+DZVKhcbGRri5uWHfvn0ICAhAaWmpRQrFAGfR3Yo15WipmV2G7Vpq+9bw2VnTfrQUc3K05c+BiMiSWBghIiIiottWUlKCqqoq/Pa3vxXbWlpaUFhYiDfeeAMHDx5EU1MTampqjE4GVlZWQqlUAgCUSiVOnDhhtF3Dw4gNMTdydHSEo6Njm3apVGrySXJzYnsr5mgbTM3xauvVbuiNZZiSY2/Zz0OHDkVpaSlqa2uxZ88eJCQkoKCgwKLvyVl0prGGHC09s2vryK0W2a41PTPWGvajpdniLDoiImvBwggRERER3bbw8HCcPn3aqG3OnDkYNmwYli5dCh8fH0ilUhw6dAjx8fEAgLKyMpSXl0OlUgEAVCoV1qxZg6qqKnh6egK4dkJAJpMhICCgexMiIrpNDg4OGDx4MAAgJCQEJ0+exMaNGzFt2jSLFIoBzqK7FWvK0VIzuwyzr+aemWuRImnt87Vdvk1zWdN+tBRzcuwts+iIiKwNCyNEREREdNv69++PkSNHGrW5urpiwIABYvu8efOQnJwMDw8PyGQyLFy4ECqVCmFhYQCAqKgoBAQEYObMmVi3bh20Wi2WLVsGtVrd7qwQIqLepLW1FTqdDiEhIRYrFHMWnWmsIUdLz+y62nrVIu/R05/b9axhP1qaLc2iIyKyNiyMEBEREVG3WL9+PSQSCeLj46HT6RAdHY1NmzaJ6+3t7ZGTk4PExESoVCq4uroiISEBK1eu7MFeExGZLyUlBTExMfD19cXly5eRlZWFI0eO4ODBg5DL5SwUExER2QC7VLue7gKcJc7YFbQL8rVykwriwnKhG3rVO0h6ugNERL1VRkYGgoKCIJPJIJPJoFKp8PHHH4vrx48fDzs7O6M/Tz31lNE2ysvLERsbCxcXF3h6emLJkiVobm7u7lSIiCziyJEj2LBhg7js5OSE9PR0VFdXo76+Hnv37m1zSxg/Pz8cOHAADQ0N+Omnn/Dqq6+iXz9ey0NEvUtVVRVmzZqFoUOHIjw8HCdPnsTBgwcRGRkJ4Fqh+Pe//z3i4+Mxbtw4KJVK7N27V3y9oVBsb28PlUqFP/7xj5g1axYLxURERERdhL8yiYg6aeDAgVi7di2GDBkCQRCwfft2TJkyBZ9//jlGjBgBAJg/f77RD9jrH3rZ0tKC2NhYKJVKHDt2DBUVFZg1axakUileeumlbs+HiIiIiLrGli1bOlxvKBSnp6ffNMZQKCYiIiKirsfCCBFRJ02ePNloec2aNcjIyEBxcbFYGHFxcbnpAzLz8vJw7tw55OfnQ6FQIDg4GKtWrcLSpUuxYsUKODg4WDwHIiIiIiIiIiKivoa30iIi6gItLS3YvXs36uvrxYdmAsDOnTtx5513YuTIkUhJSUFDQ4O4rqioCIGBgVAoFGJbdHQ06urqcPbs2W7tPxERERERERERUV/BGSNERLfh9OnTUKlUaGxshJubG/bt24eAgAAAwBNPPAE/Pz94e3vj1KlTWLp0KcrKysT7R2u1WqOiCABxWavV3vQ9dToddDqduFxXVwcA0Ov10Ov1HfbXsP5Wcb0Zc7QN5uboLHG2ZHcswtBnU3K05X1NREREvQcfNExERLaChREiotswdOhQlJaWora2Fnv27EFCQgIKCgoQEBCABQsWiHGBgYHw8vJCeHg4Lly4gEGDBnX6PdPS0pCamtqmPS8vz+gZJh3RaDSdfv/egjnaBlNz3BW0y8I9sRxTcrx+thkRERERERER3R4WRoiIboODgwMGDx4MAAgJCcHJkyexceNGvPnmm21iQ0NDAQDnz5/HoEGDoFQqceLECaOYyspKALjpc0kAICUlBcnJyeJyXV0dfHx8EBUVBZlM1mF/9Xo9NBoNIiMjIZVKTUuyl2GOtsHcHOVr5d3Qq67lLHHG1pFbTcrRMDOMiIiIiIiIiG4fCyNERF2otbXV6DZX1ystLQUAeHl5AQBUKhXWrFmDqqoqeHp6Arh25bhMJhNvx9UeR0dHODo6tmmXSqUmnyQ3J7a3Yo62wdQcTbmNgrUyJUdb389ERERERERE3YmFESKiTkpJSUFMTAx8fX1x+fJlZGVl4ciRIzh48CAuXLiArKwsTJo0CQMGDMCpU6ewePFijBs3DkFBQQCAqKgoBAQEYObMmVi3bh20Wi2WLVsGtVrdbuGDiIiIiIiIiIiIbh8LI0REnVRVVYVZs2ahoqICcrkcQUFBOHjwICIjI/H9998jPz8fGzZsQH19PXx8fBAfH49ly5aJr7e3t0dOTg4SExOhUqng6uqKhIQErFy5sgezIiIiIiIiIiIism0sjBARddKWLVtuus7HxwcFBQW33Iafnx8OHDjQld0iIiIiIiIiIiKiDkh6ugNERERERERERERERETdhYURIiIiIiIiIiIiIiLqM1gYISIiIiIiIiIiIovIyMhAUFAQZDIZZDIZVCoVPv74Y3F9Y2Mj1Go1BgwYADc3N8THx6OystJoG+Xl5YiNjYWLiws8PT2xZMkSNDc3d3cqRGRDWBghIiIiIiIiIiIiixg4cCDWrl2LkpISfPbZZ5gwYQKmTJmCs2fPAgAWL16MDz/8ENnZ2SgoKMClS5cQFxcnvr6lpQWxsbFoamrCsWPHsH37dmzbtg0vvvhiT6VERDaAD18nIiIiIiIiIiKbZJdq19NdMJuzxBm7gnb1dDe6zOTJk42W16xZg4yMDBQXF2PgwIHYsmULsrKyMGHCBABAZmYmhg8fjuLiYoSFhSEvLw/nzp1Dfn4+FAoFgoODsWrVKixduhQrVqyAg4NDT6RFRL0cCyNERERERERERERkcS0tLcjOzkZ9fT1UKhVKSkqg1+sREREhxgwbNgy+vr4oKipCWFgYioqKEBgYCIVCIcZER0cjMTERZ8+exejRo9t9L51OB51OJy7X1dUBAPR6PfR6fYf9NKy/VVxvZk05OkucLbpdS23fGpibozXsb3OZ83fVnPxYGCEiIiIiIiIiIiKLOX36NFQqFRobG+Hm5oZ9+/YhICAApaWlcHBwgLu7u1G8QqGAVqsFAGi1WqOiiGG9Yd3NpKWlITU1tU17Xl4eXFxcTOq3RqMxKa43s4YcLT1DauvIrRbdvjUwNccDBw5YuCeWY8rf1YaGBpO3x8IIERH1CqZOgTdMO5evleNq61UL96pjwnKhR9+fiIiIiIjIGgwdOhSlpaWora3Fnj17kJCQgIKCAou+Z0pKCpKTk8Xluro6+Pj4ICoqCjKZrMPX6vV6aDQaREZGQiqVWrSfPcWacpSvlVtku84SZ2wduRVzz8zt8fMDlmJujrXP13ZDr7qWOX9XDTPDTMHCCBEREREREREREVmMg4MDBg8eDAAICQnByZMnsXHjRkybNg1NTU2oqakxmjVSWVkJpVIJAFAqlThx4oTR9iorK8V1N+Po6AhHR8c27VKp1ORCgDmxvZU15GjposXV1qs2WxgxMDXHnt7Xt8OUv6vm5Ce53Q4RERERERERERERmaq1tRU6nQ4hISGQSqU4dOiQuK6srAzl5eVQqVQAAJVKhdOnT6OqqkqM0Wg0kMlkCAgI6Pa+E5Ft4IwRIiIiIiIiIiIisoiUlBTExMTA19cXly9fRlZWFo4cOYKDBw9CLpdj3rx5SE5OhoeHB2QyGRYuXAiVSoWwsDAAQFRUFAICAjBz5kysW7cOWq0Wy5Ytg1qtbndGCBGRKVgYISIiIiIiIiIiIouoqqrCrFmzUFFRAblcjqCgIBw8eBCRkZEAgPXr10MikSA+Ph46nQ7R0dHYtGmT+Hp7e3vk5OQgMTERKpUKrq6uSEhIwMqVK3sqJSKyASyMEBERERERERERkUVs2bKlw/VOTk5IT09Henr6TWP8/Pxw4MCBru4aEfVhfMYIERERERERERERERH1GSyMEBERERERERERERFRn8HCCBERERERERERERER9RksjBARERERERERERERUZ/BwggREREREREREREREfUZt1UYWbt2Lezs7LBo0SKxrbGxEWq1GgMGDICbmxvi4+NRWVlp9Lry8nLExsbCxcUFnp6eWLJkCZqbm2+nK0RERERERERWIS0tDffffz/69+8PT09PTJ06FWVlZUYx48ePh52dndGfp556yiiGv52JiIiILKPThZGTJ0/izTffRFBQkFH74sWL8eGHHyI7OxsFBQW4dOkS4uLixPUtLS2IjY1FU1MTjh07hu3bt2Pbtm148cUXO58FERERERERkZUoKCiAWq1GcXExNBoN9Ho9oqKiUF9fbxQ3f/58VFRUiH/WrVsnruNvZyIiIiLL6VRh5MqVK5gxYwbefvtt3HHHHWJ7bW0ttmzZgn/84x+YMGECQkJCkJmZiWPHjqG4uBgAkJeXh3PnzmHHjh0IDg5GTEwMVq1ahfT0dDQ1NXVNVkRE3SAjIwNBQUGQyWSQyWRQqVT4+OOPxfWcQUdERETUN+Xm5mL27NkYMWIERo0ahW3btqG8vBwlJSVGcS4uLlAqleIfmUwmruNvZyIiIiLL6deZF6nVasTGxiIiIgKrV68W20tKSqDX6xERESG2DRs2DL6+vigqKkJYWBiKiooQGBgIhUIhxkRHRyMxMRFnz57F6NGj27yfTqeDTqcTl+vq6gAAer0eer2+w74a1t8qrjdjjrbB3BydJc6W7I5FGPpsSo69YV8PHDgQa9euxZAhQyAIArZv344pU6bg888/x4gRI7B48WJ89NFHyM7OhlwuR1JSEuLi4nD06FEAv14FqFQqcezYMVRUVGDWrFmQSqV46aWXejg7IiIiIuoqtbW1AAAPDw+j9p07d2LHjh1QKpWYPHky/va3v8HFxQUAOvXbmYiIiIhMY3ZhZPfu3fjPf/6DkydPtlmn1Wrh4OAAd3d3o3aFQgGtVivGXH9gZ1hvWNeetLQ0pKamtmnPy8sTDxpvRaPRmBTXmzFH22BqjruCdlm4J5ZjSo4NDQ3d0JPbM3nyZKPlNWvWICMjA8XFxRg4cCC2bNmCrKwsTJgwAQCQmZmJ4cOHo7i4GGFhYeJVgPn5+VAoFAgODsaqVauwdOlSrFixAg4ODj2RFhERERF1odbWVixatAhjxozByJEjxfYnnngCfn5+8Pb2xqlTp7B06VKUlZVh7969ADr325kXFXbMmnK01IVuhu32xgvpTNWXcrSViwqJiKyRWYWR77//Hn/5y1+g0Wjg5ORkqT61kZKSguTkZHG5rq4OPj4+iIqKMppq3B69Xg+NRoPIyEhIpVJLd7VHMEfbYG6O8rXybuhV13KWOGPryK0m5Wj4EddbtLS0IDs7G/X19VCpVBabQUdEREREvYtarcaZM2fw6aefGrUvWLBA/P/AwEB4eXkhPDwcFy5cwKBBgzr1Xryo0DTWkKOlL3TbOnKrRbdvDfpCjrZyUSERkTUyqzBSUlKCqqoq/Pa3vxXbWlpaUFhYiDfeeAMHDx5EU1MTampqjGaNVFZWQqlUAgCUSiVOnDhhtF3DPfcNMTdydHSEo6Njm3apVGrySXJzYnsr5mgbTM3xauvVbuiNZZiSY2/Zz6dPn4ZKpUJjYyPc3Nywb98+BAQEoLS01CIz6IC+eyWgqVeEWdMVZJb6nHvzfjQVby9ozJb3NRGRLUtKSkJOTg4KCwsxcODADmNDQ0MBAOfPn8egQYM69duZFxV2zJpytNSFboaL0eaemdurfzN2pC/laIsXFRIRWQuzCiPh4eE4ffq0UducOXMwbNgwLF26FD4+PpBKpTh06BDi4+MBAGVlZSgvL4dKpQIAqFQqrFmzBlVVVfD09ARwrQIuk8kQEBDQFTkREXWboUOHorS0FLW1tdizZw8SEhJQUFBg0ffsq1cCmntVnTVcQXbgwAGLbr837kdz8faC1/BKQCKi3kUQBCxcuBD79u3DkSNH4O/vf8vXlJaWAgC8vLwAdO63My8qNI015GjpE/pXW6/abNHAoC/kaEsXFRIRWRuzCiP9+/c3uicqALi6umLAgAFi+7x585CcnAwPDw/IZDIsXLgQKpUKYWFhAICoqCgEBARg5syZWLduHbRaLZYtWwa1Wt3uARwRkTVzcHDA4MGDAQAhISE4efIkNm7ciGnTpllkBh3Qd68ENPWqOmu6gqz2+VqLbLc370dT8faCxnglINkCu1Q7i2zXWeKMXUG7IF8rt8i4LywXunybZPvUajWysrKwf/9+9O/fX5wNLJfL4ezsjAsXLiArKwuTJk3CgAEDcOrUKSxevBjjxo1DUFAQAP52JiIiIrIksx++fivr16+HRCJBfHw8dDodoqOjsWnTJnG9vb09cnJykJiYCJVKBVdXVyQkJGDlypVd3RUiom7X2toKnU6HkJAQi82g66tXApp7sssariCz9GfcG/ejuXh7wV9jiIio98jIyAAAjB8/3qg9MzMTs2fPhoODA/Lz87FhwwbU19fDx8cH8fHxWLZsmRjL385ERERElnPbhZEjR44YLTs5OSE9PR3p6ek3fY2fn5/Fby9CRGRpKSkpiImJga+vLy5fvoysrCwcOXIEBw8ehFwu5ww6IiIioj5KEDqeaeTj42PS7Vf525mIiIjIMrp8xggRUV9RVVWFWbNmoaKiAnK5HEFBQTh48CAiIyMBcAYdERERERERERGRNWJhhIiok7Zs2dLhes6gIyIiIiIiIiIisj6Snu4AERERERERERERERFRd2FhhIiIiIiIiIiIiIiI+gwWRoiIiIiIiIiIiIiIqM9gYYSIiIiIiIiIiIiIiPoMFkaIiIiIiIiIiIiIiKjPYGGEiIiIiG5bRkYGgoKCIJPJIJPJoFKp8PHHH4vrGxsboVarMWDAALi5uSE+Ph6VlZVG2ygvL0dsbCxcXFzg6emJJUuWoLm5ubtTISIiIqIulJaWhvvvvx/9+/eHp6cnpk6dirKyMqOY8ePHw87OzujPU089ZRTDY0Ui6kosjBARERHRbRs4cCDWrl2LkpISfPbZZ5gwYQKmTJmCs2fPAgAWL16MDz/8ENnZ2SgoKMClS5cQFxcnvr6lpQWxsbFoamrCsWPHsH37dmzbtg0vvvhiT6VERERERF2goKAAarUaxcXF0Gg00Ov1iIqKQn19vVHc/PnzUVFRIf5Zt26duI7HikTU1fr1dAeIiIiIqPebPHmy0fKaNWuQkZGB4uJiDBw4EFu2bEFWVhYmTJgAAMjMzMTw4cNRXFyMsLAw5OXl4dy5c8jPz4dCoUBwcDBWrVqFpUuXYsWKFXBwcOiJtIiIiIjoNuXm5hotb9u2DZ6enigpKcG4cePEdhcXFyiVyna3wWNFIupqLIwQERERUZdqaWlBdnY26uvroVKpUFJSAr1ej4iICDFm2LBh8PX1RVFREcLCwlBUVITAwEAoFAoxJjo6GomJiTh79ixGjx7d7nvpdDrodDpxua6uDgCg1+uh1+s77Kdh/a3iejNrytFZ4mzR7Vpq+9bw2Zm7Hy31WViSoc+m5GgN+4SIiDqvtrYWAODh4WHUvnPnTuzYsQNKpRKTJ0/G3/72N7i4uABAp48ViYhuhoURIiIiIuoSp0+fhkqlQmNjI9zc3LBv3z4EBASgtLQUDg4OcHd3N4pXKBTQarUAAK1Wa/RD17DesO5m0tLSkJqa2qY9Ly9P/CF9KxqNxqS43swactwVtMui2986cqtFtnvgwAGLbLczTN2Plv6sLcmUHBsaGrqhJ0REZAmtra1YtGgRxowZg5EjR4rtTzzxBPz8/ODt7Y1Tp05h6dKlKCsrw969ewF07liRF9B0zJpy7K0X0FgDc3O0hv1tLnP+rpqTHwsjRERERNQlhg4ditLSUtTW1mLPnj1ISEhAQUGBRd8zJSUFycnJ4nJdXR18fHwQFRUFmUzW4Wv1ej00Gg0iIyMhlUot2s+eYk05ytfKLbJdZ4kzto7cirln5uJq69Uu337t87Vdvk1zmbsfLfVZW5JhP5qSo+HEFhER9T5qtRpnzpzBp59+atS+YMEC8f8DAwPh5eWF8PBwXLhwAYMGDerUe/ECGtNYQ4699QIaa2JqjtZ00Y+5uvoCGhZGiIiIiKhLODg4YPDgwQCAkJAQnDx5Ehs3bsS0adPQ1NSEmpoao1kjlZWV4n2klUolTpw4YbS9yspKcd3NODo6wtHRsU27VCo1uRBgTmxvZQ05WqJoceP2LfEePf25Xc/U/Wjpz9qSTMnRmvYJERGZLikpCTk5OSgsLMTAgQM7jA0NDQUAnD9/HoMGDerUsSIvoOmYNeXYWy+gsQbm5mgNF/2Yy5y/q+ZcQMPCCBERERFZRGtrK3Q6HUJCQiCVSnHo0CHEx8cDAMrKylBeXg6VSgUAUKlUWLNmDaqqquDp6Qng2hVBMpkMAQEBPZYDEREREd0eQRCwcOFC7Nu3D0eOHIG/v/8tX1NaWgoA8PLyAtC5Y0VeQGMaa8ixt15AY01MzbGn9/Xt6OoLaFgYISIiIqLblpKSgpiYGPj6+uLy5cvIysrCkSNHcPDgQcjlcsybNw/Jycnw8PCATCbDwoULoVKpEBYWBgCIiopCQEAAZs6ciXXr1kGr1WLZsmVQq9Xt/qAlIiIiot5BrVYjKysL+/fvR//+/cVngsjlcjg7O+PChQvIysrCpEmTMGDAAJw6dQqLFy/GuHHjEBQUBIDHikTU9VgYISIiIqLbVlVVhVmzZqGiogJyuRxBQUE4ePAgIiMjAQDr16+HRCJBfHw8dDodoqOjsWnTJvH19vb2yMnJQWJiIlQqFVxdXZGQkICVK1f2VEpERERE1AUyMjIAAOPHjzdqz8zMxOzZs+Hg4ID8/Hxs2LAB9fX18PHxQXx8PJYtWybG8liRiLoaCyNEREREdNu2bNnS4XonJyekp6cjPT39pjF+fn69+mGARERERNSWIAgdrvfx8UFBQcEtt8NjRSLqSpKe7gAREREREREREREREVF3YWGEiIiIiIiIiIiIiIj6DBZGiIiIiIiIiIiIiIioz2BhhIiIiIiIiIiIiIiI+gwWRoiIOiktLQ33338/+vfvD09PT0ydOhVlZWVGMePHj4ednZ3Rn6eeesoopry8HLGxsXBxcYGnpyeWLFmC5ubm7kyFiIiIiIiIiIioz+jX0x0gIuqtCgoKoFarcf/996O5uRkvvPACoqKicO7cObi6uopx8+fPx8qVK8VlFxcX8f9bWloQGxsLpVKJY8eOoaKiArNmzYJUKsVLL73UrfkQERERERERERH1BSyMEBF1Um5urtHytm3b4OnpiZKSEowbN05sd3FxgVKpbHcbeXl5OHfuHPLz86FQKBAcHIxVq1Zh6dKlWLFiBRwcHCyaAxERERERERERUV/DW2kREXWR2tpaAICHh4dR+86dO3HnnXdi5MiRSElJQUNDg7iuqKgIgYGBUCgUYlt0dDTq6upw9uzZ7uk4ERERERERERFRH8IZI0REXaC1tRWLFi3CmDFjMHLkSLH9iSeegJ+fH7y9vXHq1CksXboUZWVl2Lt3LwBAq9UaFUUAiMtarbbd99LpdNDpdOJyXV0dAECv10Ov13fYT8P6W8VZI2eJs1lxpsZbkqU+5968H01lbo7WsL/NZeizKTna8r4mIiIiIiIi6m4sjBARdQG1Wo0zZ87g008/NWpfsGCB+P+BgYHw8vJCeHg4Lly4gEGDBnXqvdLS0pCamtqmPS8vz+j5JR3RaDSdeu+etCtol1nxW0dutVBPTHfgwAGLbr837kdzmZqjuX8/rIkpOV4/04yIiKxfWloa9u7di6+++grOzs743e9+h5dffhlDhw4VYxobG/HMM89g9+7d0Ol0iI6OxqZNm4wumikvL0diYiIOHz4MNzc3JCQkIC0tDf368ac8ERER0e3g0RQR0W1KSkpCTk4OCgsLMXDgwA5jQ0NDAQDnz5/HoEGDoFQqceLECaOYyspKALjpc0lSUlKQnJwsLtfV1cHHxwdRUVGQyWQdvr9er4dGo0FkZCSkUuktc7Mm8rVyk+KcJc7YOnIr5p6Zi6utVy3cq47VPl9rke325v1oKnNzNPXvhzUx/F01JUfDzDAiIuodCgoKoFarcf/996O5uRkvvPACoqKicO7cObi6ugIAFi9ejI8++gjZ2dmQy+VISkpCXFwcjh49CgBoaWlBbGwslEoljh07hoqKCsyaNQtSqRQvvfRST6ZHRERE1OuxMEJE1EmCIGDhwoXYt28fjhw5An9//1u+prS0FADg5eUFAFCpVFizZg2qqqrg6ekJ4NrV4zKZDAEBAe1uw9HREY6Ojm3apVKpySfJzYm1FuYWOa62Xu3xwoilP+PeuB/NZWqOPb2vb4cpOdr6fiYisjW5ublGy9u2bYOnpydKSkowbtw41NbWYsuWLcjKysKECRMAAJmZmRg+fDiKi4sRFhaGvLw8nDt3Dvn5+VAoFAgODsaqVauwdOlSrFixAg4ODj2RGhEREZFNYGGEiKiT1Go1srKysH//fvTv3198JohcLoezszMuXLiArKwsTJo0CQMGDMCpU6ewePFijBs3DkFBQQCAqKgoBAQEYObMmVi3bh20Wi2WLVsGtVrdbvGDiIiIiHqf2tprs0g9PDwAACUlJdDr9YiIiBBjhg0bBl9fXxQVFSEsLAxFRUUIDAw0urVWdHQ0EhMTcfbsWYwePbrN+/TVZ9GZyppytNTz0azpeXuW0pdy5LPoiIgsh4URIqJOysjIAACMHz/eqD0zMxOzZ8+Gg4MD8vPzsWHDBtTX18PHxwfx8fFYtmyZGGtvb4+cnBwkJiZCpVLB1dUVCQkJWLlyZXemQkREREQW0traikWLFmHMmDEYOXIkAECr1cLBwQHu7u5GsQqFQrzYRqvVGhVFDOsN69rTV59FZy5ryNHSz0ezhuftWVpfyJHPoiOirmaXatfTXTCbs8TZIv9usjBCRNRJgiB0uN7HxwcFBQW33I6fn5/FH9JNRERERD1DrVbjzJkz+PTTTy3+Xn31WXSmsqYcLfV8NGt63p6l9KUc+Sw6IiLLYWGEiIiIiIiIyAKSkpKQk5ODwsJCDBw4UGxXKpVoampCTU2N0ayRyspKKJVKMebEiRNG26usrBTXtaevPovOXNaQo6VP6FvD8/YsrS/kyGfRERFZjqSnO0BERERERERkSwRBQFJSEvbt24dPPvkE/v7+RutDQkIglUpx6NAhsa2srAzl5eVQqVQAAJVKhdOnT6OqqkqM0Wg0kMlkCAgI6J5EiIiIiGwUZ4wQERERERERdSG1Wo2srCzs378f/fv3F58JIpfL4ezsDLlcjnnz5iE5ORkeHh6QyWRYuHAhVCoVwsLCAABRUVEICAjAzJkzsW7dOmi1WixbtgxqtbrdWSFEREREZDqzZoxkZGQgKCgIMpkMMpkMKpUKH3/8sbi+sbERarUaAwYMgJubG+Lj48Wpvgbl5eWIjY2Fi4sLPD09sWTJEjQ3N3dNNkREREREREQ9LCMjA7W1tRg/fjy8vLzEP++++64Ys379evz+979HfHw8xo0bB6VSib1794rr7e3tkZOTA3t7e6hUKvzxj3/ErFmzsHLlyp5IiYiIiMimmDVjZODAgVi7di2GDBkCQRCwfft2TJkyBZ9//jlGjBiBxYsX46OPPkJ2djbkcjmSkpIQFxeHo0ePAgBaWloQGxsLpVKJY8eOoaKiArNmzYJUKsVLL71kkQSJiIiIiIiIupMgCLeMcXJyQnp6OtLT028a4+fnhwMHDnRl14iIiIgIZhZGJk+ebLS8Zs0aZGRkoLi4GAMHDsSWLVuQlZWFCRMmAAAyMzMxfPhwFBcXIywsDHl5eTh37hzy8/OhUCgQHByMVatWYenSpVixYgUcHBy6LjMiIiIiIiIiIiIiIqIbdPrh6y0tLdi9ezfq6+uhUqlQUlICvV6PiIgIMWbYsGHw9fVFUVERAKCoqAiBgYFQKBRiTHR0NOrq6nD27NnbSIOIiIiIiIiIiIiIiOjWzH74+unTp6FSqdDY2Ag3Nzfs27cPAQEBKC0thYODA9zd3Y3iFQqF+KA5rVZrVBQxrDesuxmdTgedTicu19XVAQD0ej30en2H/TWsv1Vcb8YcbYO5OTpLnC3ZHYsw9NmUHG15XxMRERERUdexS7UzKc5Z4oxdQbsgXyvH1darFu4VERERWTOzCyNDhw5FaWkpamtrsWfPHiQkJKCgoMASfROlpaUhNTW1TXteXh5cXFxM2oZGo+nqblkd5mgbTM1xV9AuC/fEckzJsaGhoRt6QkRERERERESWlJaWhr179+Krr76Cs7Mzfve73+Hll1/G0KFDxZjGxkY888wz2L17N3Q6HaKjo7Fp0yajC6zLy8uRmJiIw4cPw83NDQkJCUhLS0O/fmaf3iQiMr8w4uDggMGDBwMAQkJCcPLkSWzcuBHTpk1DU1MTampqjGaNVFZWQqlUAgCUSiVOnDhhtL3Kykpx3c2kpKQgOTlZXK6rq4OPjw+ioqIgk8k67K9er4dGo8HcM3N73RUhtc/XmhRnyDEyMhJSqdTCveqYfK3cItt1ljhj68itFtuPpn7WlmTufrTUZ21Jhv1oSo6GmWFERERERERE1HsVFBRArVbj/vvvR3NzM1544QVERUXh3LlzcHV1BQAsXrwYH330EbKzsyGXy5GUlIS4uDgcPXoUwLVb+sfGxkKpVOLYsWOoqKjArFmzIJVK8dJLL/VkekTUS912SbW1tRU6nQ4hISGQSqU4dOgQ4uPjAQBlZWUoLy+HSqUCAKhUKqxZswZVVVXw9PQEcO3KcZlMhoCAgJu+h6OjIxwdHdu0S6VSkwsBV1uv9rrCiLlFDnM+D0ux9Gdsqf3Y05/b9Uzdj73t7/P1TMnRmvYJEREREREREXVObm6u0fK2bdvg6emJkpISjBs3DrW1tdiyZQuysrIwYcIEAEBmZiaGDx+O4uJihIWFIS8vD+fOnUN+fj4UCgWCg4OxatUqLF26FCtWrICDg0NPpEZEvZhZD19PSUlBYWEhvv32W5w+fRopKSk4cuQIZsyYAblcjnnz5iE5ORmHDx9GSUkJ5syZA5VKhbCwMABAVFQUAgICMHPmTHzxxRc4ePAgli1bBrVa3W7hg4iIiIiIiIiIiGxHbe21u3Z4eHgAAEpKSqDX6xERESHGDBs2DL6+vigqKgIAFBUVITAw0OjWWtHR0airq8PZs2e7sfdEZCvMmjFSVVWFWbNmoaKiAnK5HEFBQTh48CAiIyMBAOvXr4dEIkF8fLzR/QAN7O3tkZOTg8TERKhUKri6uiIhIQErV67s2qyIiIiIiIiIiIjIqrS2tmLRokUYM2YMRo4cCQDQarVwcHAwujU/ACgUCmi1WjHm+qKIYb1hXXt0Oh10Op24bLhlt16vh16v77CfhvW3iuvNrClHZ4mzRbdrqe1bg76Uoyl/V835+2xWYWTLli0drndyckJ6ejrS09NvGuPn54cDBw6Y87ZERERERERERETUy6nVapw5cwaffvqpxd8rLS0Nqampbdrz8vLg4uJi0jY0Gk1Xd8vqWEOOu4J2WXT7W0dutej2rUFfyNGUv6sNDQ0mb++2nzFCRERERERERERE1JGkpCTk5OSgsLAQAwcOFNuVSiWamppQU1NjNGuksrISSqVSjDlx4oTR9iorK8V17UlJSUFycrK4XFdXBx8fH0RFRUEmk3XYV71eD41Gg8jISJt9Bqo15ShfK7fIdp0lztg6civmnpnbq5/V25G+lKMpf1cNM8NMwcIIERERERERERERWYQgCFi4cCH27duHI0eOwN/f32h9SEgIpFIpDh06hPj4eABAWVkZysvLoVKpAAAqlQpr1qxBVVUVPD09AVy7elwmkyEgIKDd93V0dGz3mcZSqdTkQoA5sb2VNeRo6RP6V1uv2mzRwKAv5GjK31Vz/i6zMEJEREREREREREQWoVarkZWVhf3796N///7iM0HkcjmcnZ0hl8sxb948JCcnw8PDAzKZDAsXLoRKpUJYWBgAICoqCgEBAZg5cybWrVsHrVaLZcuWQa1Wt1v8ICK6FRZGiIiIiIiIiIiIyCIyMjIAAOPHjzdqz8zMxOzZswEA69evh0QiQXx8PHQ6HaKjo7Fp0yYx1t7eHjk5OUhMTIRKpYKrqysSEhKwcuXK7kqDiGwMCyNERERERERERERkEYIg3DLGyckJ6enpSE9Pv2mMn58fDhw40JVdI6I+TNLTHSAiIiIiIiIiIiIiIuouLIwQEREREREREREREVGfwcIIEVEnpaWl4f7770f//v3h6emJqVOnoqyszCimsbERarUaAwYMgJubG+Lj41FZWWkUU15ejtjYWLi4uMDT0xNLlixBc3Nzd6ZCRERERERERETUZ7AwQkTUSQUFBVCr1SguLoZGo4Fer0dUVBTq6+vFmMWLF+PDDz9EdnY2CgoKcOnSJcTFxYnrW1paEBsbi6amJhw7dgzbt2/Htm3b8OKLL/ZESkRERERERERERDaPD18nIuqk3Nxco+Vt27bB09MTJSUlGDduHGpra7FlyxZkZWVhwoQJAIDMzEwMHz4cxcXFCAsLQ15eHs6dO4f8/HwoFAoEBwdj1apVWLp0KVasWAEHB4eeSI2IiIiIiIiIiMhmsTBCRNRFamtrAQAeHh4AgJKSEuj1ekRERIgxw4YNg6+vL4qKihAWFoaioiIEBgZCoVCIMdHR0UhMTMTZs2cxevToNu+j0+mg0+nE5bq6OgCAXq+HXq/vsI+G9beKs0bOEmez4kyNtyRLfc69eT+aytwcrWF/m8vQZ1NytOV9TURERERERNTdWBghIuoCra2tWLRoEcaMGYORI0cCALRaLRwcHODu7m4Uq1AooNVqxZjriyKG9YZ17UlLS0Nqamqb9ry8PLi4uJjUX41GY1KcNdkVtMus+K0jt1qoJ6Y7cOCARbffG/ejuUzN0dy/H9bElBwbGhq6oSdEREREREREfQMLI0REXUCtVuPMmTP49NNPLf5eKSkpSE5OFpfr6urg4+ODqKgoyGSyDl+r1+uh0WgQGRkJqVRq6a52KflauUlxzhJnbB25FXPPzMXV1qsW7lXHap+vtch2e/N+NJW5OZr698OaGP6umpKjYWYYEREREREREd0+FkaIiG5TUlIScnJyUFhYiIEDB4rtSqUSTU1NqKmpMZo1UllZCaVSKcacOHHCaHuVlZXiuvY4OjrC0dGxTbtUKjX5JLk5sdbC3CLH1darPV4YsfRn3Bv3o7lMzbGn9/XtMCVHW9/PRERERERERN1J0tMdICLqrQRBQFJSEvbt24dPPvkE/v7+RutDQkIglUpx6NAhsa2srAzl5eVQqVQAAJVKhdOnT6OqqkqM0Wg0kMlkCAgI6J5EiIiIiIiIiIiI+hDOGCEi6iS1Wo2srCzs378f/fv3F58JIpfL4ezsDLlcjnnz5iE5ORkeHh6QyWRYuHAhVCoVwsLCAABRUVEICAjAzJkzsW7dOmi1WixbtgxqtbrdWSFERERERERERDdjl2pnUpyzxBm7gnZBvlbeq2fgE3UWCyNERJ2UkZEBABg/frxRe2ZmJmbPng0AWL9+PSQSCeLj46HT6RAdHY1NmzaJsfb29sjJyUFiYiJUKhVcXV2RkJCAlStXdlcaREREREREREREfQpvpUVE1EmCILT7x1AUAQAnJyekp6ejuroa9fX12Lt3b5tnh/j5+eHAgQNoaGjATz/9hFdffRX9+rFuTUS9S1paGu6//370798fnp6emDp1KsrKyoxiGhsboVarMWDAALi5uSE+Pl58rpJBeXk5YmNj4eLiAk9PTyxZsgTNzc3dmQoRERERERHZOBZGiIiIiOi2FRQUQK1Wo7i4GBqNBnq9HlFRUaivrxdjFi9ejA8//BDZ2dkoKCjApUuXEBcXJ65vaWlBbGwsmpqacOzYMWzfvh3btm3Diy++2BMpERHdlsLCQkyePBne3t6ws7PDBx98YLR+9uzZsLOzM/ozceJEo5jq6mrMmDEDMpkM7u7umDdvHq5cudKNWRARERHZJl6STEREZCGm3tvVXJa+F6ywXOjybZLty83NNVretm0bPD09UVJSgnHjxqG2thZbtmxBVlYWJkyYAODarQeHDx+O4uJihIWFIS8vD+fOnUN+fj4UCgWCg4OxatUqLF26FCtWrICDg0NPpEZE1Cn19fUYNWoU5s6da1QEvt7EiRORmZkpLt/4jLkZM2agoqJCLDjPmTMHCxYsQFZWlkX7TkRERGTrWBghIiIioi5XW1sLAPDw8AAAlJSUQK/XIyIiQowZNmwYfH19UVRUhLCwMBQVFSEwMBAKhUKMiY6ORmJiIs6ePYvRo0e3eR+dTgedTicu19XVAQD0ej30en2HfTSsv1Vcb2ZNOTpLnC26XUtt3xo+O3P3o6U+C0sy9NmUHK1hn5giJiYGMTExHcY4Ojq2uc2qwZdffonc3FycPHkS9913HwDg9ddfx6RJk/Dqq6/C29u7y/tMRERE1FewMEJEREREXaq1tRWLFi3CmDFjMHLkSACAVquFg4MD3N3djWIVCgW0Wq0Yc31RxLDesK49aWlpSE1NbdOel5cHFxcXk/qr0WhMiuvNrCHHXUG7LLr9rSO3WmS7Bw4csMh2O8PU/Wjpz9qSTMmxoaGhG3rSPY4cOQJPT0/ccccdmDBhAlavXo0BAwYAAIqKiuDu7i4WRQAgIiICEokEx48fxyOPPNJme321WGxqMdDShVRrwBxtgy0Wi4mIrA0LI0RERETUpdRqNc6cOYNPP/3U4u+VkpKC5ORkcbmurg4+Pj6IioqCTCbr8LV6vR4ajQaRkZGQSqWW7mqPsKYc5WvlFtmus8QZW0duxdwzcy1ye8Ha52u7fJvmMnc/WuqztiTDfjQlR8PJ/t5u4sSJiIuLg7+/Py5cuIAXXngBMTExKCoqgr29PbRaLTw9PY1e069fP3h4eLBYfANzi4GWKqRaE+ZoG/pasZiIqDuxMEJEREREXSYpKQk5OTkoLCzEwIEDxXalUommpibU1NQYzRqprKwUbyOjVCpx4sQJo+1VVlaK69rj6OjY5p78ACCVSk0uBJgT21tZQ46WKFrcuH1LvEdPf27XM3U/WvqztiRTcrSmfXI7pk+fLv5/YGAggoKCMGjQIBw5cgTh4eGd2mZfLRabWgy0dCHVGjBH29AXi8VERN2NhREiIiIium2CIGDhwoXYt28fjhw5An9/f6P1ISEhkEqlOHToEOLj4wEAZWVlKC8vh0qlAgCoVCqsWbMGVVVV4lXSGo0GMpkMAQEB3ZsQEVE3u+eee3DnnXfi/PnzCA8Ph1KpRFVVlVFMc3MzqqurWSy+gbknxy1VSLUmzNE29KViMRFRd2NhhIiIiIhum1qtRlZWFvbv34/+/fuLt3mRy+VwdnaGXC7HvHnzkJycDA8PD8hkMixcuBAqlQphYWEAgKioKAQEBGDmzJlYt24dtFotli1bBrVa3e6JPiIiW/LDDz/gl19+gZeXF4BrxeKamhqUlJQgJCQEAPDJJ5+gtbUVoaGhPdlVIiIiol6PhREiIiIium0ZGRkAgPHjxxu1Z2ZmYvbs2QCA9evXQyKRID4+HjqdDtHR0di0aZMYa29vj5ycHCQmJkKlUsHV1RUJCQlYuXJld6VBRNRlrly5gvPnz4vLFy9eRGlpKTw8PODh4YHU1FTEx8dDqVTiwoULeO655zB48GBER0cDAIYPH46JEydi/vz52Lx5M/R6PZKSkjB9+nR4e3v3VFpERERENoGFESIiIiK6bYIg3DLGyckJ6enpSE9Pv2mMn58fDhw40JVdIyLqEZ999hkefvhhcdnw7I+EhARkZGTg1KlT2L59O2pqauDt7Y2oqCisWrXKaIbczp07kZSUhPDwcLGw/Nprr3V7LkRERES2hoURIiIiIiIioi42fvz4DovGBw8evOU2PDw8kJWV1ZXdIiIiIiIAkp7uABEREREREREREdmuwsJCTJ48Gd7e3rCzs8MHH3xgtH727Nmws7Mz+jNx4kSjmOrqasyYMQMymQzu7u6YN28erly50o1ZEJEt4YwRIiIiMmKXatfTXYCzxBm7gnZBvlaOq61Xe7o7RERERER0G+rr6zFq1CjMnTsXcXFx7cZMnDgRmZmZ4vL1txYEgBkzZqCiogIajQZ6vR5z5szBggULOLOOiDqFhREiIiIiIiIiIiKymJiYGMTExHQY4+joCKVS2e66L7/8Erm5uTh58iTuu+8+AMDrr7+OSZMm4dVXX4W3t3eX95mIbBsLI0RERERERERERNSjjhw5Ak9PT9xxxx2YMGECVq9ejQEDBgAAioqK4O7uLhZFACAiIgISiQTHjx/HI4880mZ7Op0OOp1OXK6rqwMA6PV66PX6DvtiWH+rOGvkLHE2K87U+N6IOdoGQ26mfB/N+c6yMEJERERE1MuYess73paOiIiIeoOJEyciLi4O/v7+uHDhAl544QXExMSgqKgI9vb20Gq18PT0NHpNv3794OHhAa1W2+4209LSkJqa2qY9Ly8PLi4uJvVLo9GYn0wP2xW0y6z4rSO3Wqgn1oM52gZTvo8NDQ0mb4+FESIiIiIiIiIiIuox06dPF/8/MDAQQUFBGDRoEI4cOYLw8PBObTMlJQXJycnicl1dHXx8fBAVFQWZTNbha/V6PTQaDSIjIyGVSjv1/j1FvlZuUpyzxBlbR27F3DNzbfYCGuZoGww5mvJ9NMwMMwULI0RERERERERERGQ17rnnHtx55504f/48wsPDoVQqUVVVZRTT3NyM6urqmz6XxNHRsc0D3AFAKpWaXOwwJ9ZamHty/GrrVZs9oW7AHG2DKd9Hc76vktvtEBEREREREREREVFX+eGHH/DLL7/Ay8sLAKBSqVBTU4OSkhIx5pNPPkFraytCQ0N7qptE1IuZVRhJS0vD/fffj/79+8PT0xNTp05FWVmZUUxjYyPUajUGDBgANzc3xMfHo7Ky0iimvLwcsbGxcHFxgaenJ5YsWYLm5ubbz4aIiIiIiIiIiIisypUrV1BaWorS0lIAwMWLF1FaWory8nJcuXIFS5YsQXFxMb799lscOnQIU6ZMweDBgxEdHQ0AGD58OCZOnIj58+fjxIkTOHr0KJKSkjB9+nR4e3v3YGZE1FuZVRgpKCiAWq1GcXExNBoN9Ho9oqKiUF9fL8YsXrwYH374IbKzs1FQUIBLly4hLi5OXN/S0oLY2Fg0NTXh2LFj2L59O7Zt24YXX3yx67IiIuomhYWFmDx5Mry9vWFnZ4cPPvjAaP3s2bNhZ2dn9GfixIlGMdXV1ZgxYwZkMhnc3d0xb948XLlypRuzICIiIiIiIrKczz77DKNHj8bo0aMBAMnJyRg9ejRefPFF2Nvb49SpU/jDH/6Ae++9F/PmzUNISAj+7//+z+hWWDt37sSwYcMQHh6OSZMmYezYsXjrrbd6KiUi6uXMesZIbm6u0fK2bdvg6emJkpISjBs3DrW1tdiyZQuysrIwYcIEAEBmZiaGDx+O4uJihIWFIS8vD+fOnUN+fj4UCgWCg4OxatUqLF26FCtWrICDg0PXZUdEZGH19fUYNWoU5s6da1QEvt7EiRORmZkpLt94j9MZM2agoqJCLDjPmTMHCxYsQFZWlkX7TkRERERERNQdxo8fD0EQbrr+4MGDt9yGh4cHfycTUZe5rYev19bWArg2MAFASUkJ9Ho9IiIixJhhw4bB19cXRUVFCAsLQ1FREQIDA6FQKMSY6OhoJCYm4uzZs2Ll+Ho6nQ46nU5cNjxdXq/XQ6/Xd9hHw3pniXMns+w5t8rtxjhT4y3JUp+zYbuW2r41fHbm7sfe+Hfa0GdTcrSGfWKKmJgYxMTEdBjj6Oh404fBffnll8jNzcXJkydx3333AQBef/11TJo0Ca+++iqnBBMREREREREREXWxThdGWltbsWjRIowZMwYjR44EAGi1Wjg4OMDd3d0oVqFQQKvVijHXF0UM6w3r2pOWlobU1NQ27Xl5eXBxcTGpv1tHbjUpzpocOHDArHiNRmOhnphuV9Aui27fUvvR3M/akkzdj5b+rC3JlBwbGhq6oSfd48iRI/D09MQdd9yBCRMmYPXq1RgwYAAAoKioCO7u7mJRBAAiIiIgkUhw/PhxPPLII2221xXF4t5SeLqeqcVASxdSrQFztA22WCwmIiIiIiIi6g06XRhRq9U4c+YMPv30067sT7tSUlKQnJwsLtfV1cHHxwdRUVGQyWQdvlav10Oj0WDumbm42nrV0l3tUrXP15oUZ8gxMjISUqnUwr3qmHyt3CLbdZY4Y+vIrRbbj6Z+1pZk7n601GdtSYb9aEqOhpP9vd3EiRMRFxcHf39/XLhwAS+88AJiYmJQVFQEe3t7aLVaeHp6Gr2mX79+8PDwsGix2BoKqeYytxjYGwvi5mKOtqGvFYuJiIiIiIiIelqnCiNJSUnIyclBYWEhBg4cKLYrlUo0NTWhpqbGaNZIZWWleBsZpVKJEydOGG2vsrJSXNceR0fHNvfkBwCpVGpyIeBq69VeVxgxt8hhzudhKZb+jC21H3v6c7ueqfuxt/19vp4pOVrTPrkd06dPF/8/MDAQQUFBGDRoEI4cOYLw8PBObbMrisXWUEg1l6nFQEsXUq0Bc7QNfbFYTERERERERGQNzCqMCIKAhQsXYt++fThy5Aj8/f2N1oeEhEAqleLQoUOIj48HAJSVlaG8vBwqlQoAoFKpsGbNGlRVVYlXSWs0GshkMgQEBHRFTkREVuuee+7BnXfeifPnzyM8PBxKpRJVVVVGMc3NzaiurrZosdgaCqnmMvfkeG8siJuLOdqGvlQsJiIiIiIiIrIGZhVG1Go1srKysH//fvTv31+8zYtcLoezszPkcjnmzZuH5ORkeHh4QCaTYeHChVCpVAgLCwMAREVFISAgADNnzsS6deug1WqxbNkyqNXqdk/0ERHZkh9++AG//PILvLy8AFwrFtfU1KCkpAQhISEAgE8++QStra0IDQ3tya4SERERERERERHZJLMKIxkZGQCA8ePHG7VnZmZi9uzZAID169dDIpEgPj4eOp0O0dHR2LRpkxhrb2+PnJwcJCYmQqVSwdXVFQkJCVi5cuXtZUJE1AOuXLmC8+fPi8sXL15EaWkpPDw84OHhgdTUVMTHx0OpVOLChQt47rnnMHjwYERHRwMAhg8fjokTJ2L+/PnYvHkz9Ho9kpKSMH36dHh7e/dUWkRERERERERERDbL7Ftp3YqTkxPS09ORnp5+0xg/Pz8cOHDAnLcmIrJKn332GR5++GFx2fDsj4SEBGRkZODUqVPYvn07ampq4O3tjaioKKxatcpohtzOnTuRlJSE8PBwsbD82muvdXsuREREREREREREfUGnHr5ORETXjB8/vsOi8cGDB2+5DQ8PD2RlZXVlt4iIiIiIiIiIiOgmJD3dASIiIiIiIiIiIiIiou7CwggREREREREREREREfUZLIwQEREREREREREREVGfwcIIERERERERERERERH1GSyMEBERERERERERERFRn8HCCBERERERERERERER9RksjBARERERERERERERUZ/Rr6c7QEREREREZK3sUu16ugtwljhjV9AuyNfKcbX1ak93h0xUWFiIV155BSUlJaioqMC+ffswdepUcb0gCFi+fDnefvtt1NTUYMyYMcjIyMCQIUPEmOrqaixcuBAffvghJBIJ4uPjsXHjRri5ufVARkRERES2gzNGiIiIiIiIiLpYfX09Ro0ahfT09HbXr1u3Dq+99ho2b96M48ePw9XVFdHR0WhsbBRjZsyYgbNnz0Kj0SAnJweFhYVYsGBBd6VAREREZLM4Y4SIiIiIiIioi8XExCAmJqbddYIgYMOGDVi2bBmmTJkCAHjnnXegUCjwwQcfYPr06fjyyy+Rm5uLkydP4r777gMAvP7665g0aRJeffVVeHt7d1suRERERLaGhREiIiIiIiKibnTx4kVotVpERESIbXK5HKGhoSgqKsL06dNRVFQEd3d3sSgCABEREZBIJDh+/DgeeeSRNtvV6XTQ6XTicl1dHQBAr9dDr9d32CfD+lvFWSNnibNZcabG90bM0TYYcjPl+9gbv7NERNaAhREiIiIiIiKibqTVagEACoXCqF2hUIjrtFotPD09jdb369cPHh4eYsyN0tLSkJqa2qY9Ly8PLi4uJvVNo9GYFGdNdgXtMit+68itFuqJ9WCOtsGU72NDQ0M39ISIyPawMEJERERERERkA1JSUpCcnCwu19XVwcfHB1FRUZDJZB2+Vq/XQ6PRIDIyElKp1NJd7VLytXKT4pwlztg6civmnpmLq61XLdyrnsEcbYMhR1O+j4aZYUREZB4WRoiIiIiIiIi6kVKpBABUVlbCy8tLbK+srERwcLAYU1VVZfS65uZmVFdXi6+/kaOjIxwdHdu0S6VSk4sd5sRaC3NPjl9tvWqzJ9QNmKNtMOX72Nu+r0RE1kLS0x0gIiIiIiIi6kv8/f2hVCpx6NAhsa2urg7Hjx+HSqUCAKhUKtTU1KCkpESM+eSTT9Da2orQ0NBu7zMR0e0oLCzE5MmT4e3tDTs7O3zwwQdG6wVBwIsvvggvLy84OzsjIiICX3/9tVFMdXU1ZsyYAZlMBnd3d8ybNw9XrlzpxiyIyJawMEJERERERETUxa5cuYLS0lKUlpYCuPbA9dLSUpSXl8POzg6LFi3C6tWr8e9//xunT5/GrFmz4O3tjalTpwIAhg8fjokTJ2L+/Pk4ceIEjh49iqSkJEyfPh3e3t49lxgRUSfU19dj1KhRSE9Pb3f9unXr8Nprr2Hz5s04fvw4XF1dER0djcbGRjFmxowZOHv2LDQaDXJyclBYWIgFCxZ0VwpEZGN4Ky0iIiIiIiKiLvbZZ5/h4YcfFpcNz/5ISEjAtm3b8Nxzz6G+vh4LFixATU0Nxo4di9zcXDg5OYmv2blzJ5KSkhAeHg6JRIL4+Hi89tpr3Z4LEdHtiomJQUxMTLvrBEHAhg0bsGzZMkyZMgUA8M4770ChUOCDDz7A9OnT8eWXXyI3NxcnT57EfffdBwB4/fXXMWnSJLz66qssGBOR2VgYISIiIiIiIupi48ePhyAIN11vZ2eHlStXYuXKlTeN8fDwQFZWliW6R0RkNS5evAitVouIiAixTS6XIzQ0FEVFRZg+fTqKiorg7u4uFkUAICIiAhKJBMePH8cjjzzSZrs6nQ46nU5cNjyoXq/XQ6/Xd9gnw/pbxVkjZ4mzWXGmxvdGzNE2GHIz5ftozneWhREiIiIiIiIiIiLqEVqtFgCgUCiM2hUKhbhOq9XC09PTaH2/fv3g4eEhxtwoLS0Nqampbdrz8vLg4uJiUt80Go1JcdZkV9Aus+K3jtxqoZ5YD+ZoG0z5PjY0NJi8PRZGiIiIiIiIiIiIyKakpKSItzEErs0Y8fHxQVRUFGQyWYev1ev10Gg0iIyMhFQqtXRXu5R8rdykOGeJM7aO3Iq5Z+biautVC/eqZzBH22DI0ZTvo2FmmClYGCEiug2FhYV45ZVXUFJSgoqKCuzbt098YCZw7V6py5cvx9tvv42amhqMGTMGGRkZGDJkiBhTXV2NhQsX4sMPPxTvHb1x40a4ubn1QEZERERERERE3UepVAIAKisr4eXlJbZXVlYiODhYjKmqqjJ6XXNzM6qrq8XX38jR0RGOjo5t2qVSqcnFDnNirYW5J8evtl612RPqBszRNpjyfTTn+yq53Q4REfVl9fX1GDVqFNLT09tdv27dOrz22mvYvHkzjh8/DldXV0RHR6OxsVGMmTFjBs6ePQuNRoOcnBwUFhZiwYIF3ZUCERERERERUY/x9/eHUqnEoUOHxLa6ujocP34cKpUKAKBSqVBTU4OSkhIx5pNPPkFraytCQ0O7vc9E1PtxxggR0W2IiYlBTExMu+sEQcCGDRuwbNkyTJkyBQDwzjvvQKFQ4IMPPsD06dPx5ZdfIjc3FydPnhQfIvf6669j0qRJePXVV+Ht7d1tuRARERERERFZwpUrV3D+/Hlx+eLFiygtLYWHhwd8fX2xaNEirF69GkOGDIG/vz/+9re/wdvbW7wjw/DhwzFx4kTMnz8fmzdvhl6vR1JSEqZPn87fzUTUKSyMEBFZyMWLF6HVahERESG2yeVyhIaGoqioCNOnT0dRURHc3d3FoggAREREQCKR4Pjx43jkkUfabFen00Gn04nLhvsn6vV66PX6DvtkWH+rOGvkLHE2K87U+N6IOdoGQ26mfB9743eWiIiIiMjgs88+w8MPPywuG579kZCQgG3btuG5555DfX09FixYgJqaGowdOxa5ublwcnISX7Nz504kJSUhPDxcvA31a6+91u25EJFtYGGEiMhCtFotAEChUBi1KxQKcZ1Wq4Wnp6fR+n79+sHDw0OMuVFaWhpSU1PbtOfl5cHFxcWkvmk0GpPirMmuoF1mxW8dudVCPbEezNE2mPJ9bGho6IaeEBERERFZxvjx4yEIwk3X29nZYeXKlVi5cuVNYzw8PJCVlWWJ7hFRH8TCCBFRL5OSkiJeXQNcmzHi4+ODqKgoyGSyDl+r1+uh0WgQGRnZ6x4gJ18rNynOWeKMrSO3Yu6ZuTb74DHmaBsMOZryfTTMDLN2hYWFeOWVV1BSUoKKigrs27dPvP0BcO0Wg8uXL8fbb7+NmpoajBkzBhkZGRgyZIgYU11djYULF+LDDz8UrwTcuHEj3NzceiAjIiIiIiIiskUsjBARWYhSqQQAVFZWwsvLS2yvrKxEcHCwGFNVVWX0uubmZlRXV4uvv5GjoyMcHR3btEulUpOLHebEWgtzT45fbb1qsyfUDZijbTDl+9hbvq/19fUYNWoU5s6di7i4uDbr161bh9deew3bt28X7x0dHR2Nc+fOibdJmDFjBioqKqDRaKDX6zFnzhwsWLCAVwcSERERERFRl5H0dAeIiGyVv78/lEolDh06JLbV1dXh+PHjUKlUAACVSoWamhqUlJSIMZ988glaW1sRGhra7X0mIrodMTExWL16dbvPRxIEARs2bMCyZcswZcoUBAUF4Z133sGlS5fwwQcfAAC+/PJL5Obm4p///CdCQ0MxduxYvP7669i9ezcuXbrUzdkQERERERGRreKMESKi23DlyhWcP39eXL548SJKS0vh4eEBX19fLFq0CKtXr8aQIUPEq6O9vb3FW8sMHz4cEydOxPz587F582bo9XokJSVh+vTp8Pb27qGsiIi63sWLF6HVahERESG2yeVyhIaGoqioCNOnT0dRURHc3d1x3333iTERERGQSCQ4fvx4uwUXnU4HnU4nLhtuO6bX62/50HrD+t74cHtnibNZcabG90bM0TYYcjPl+9gbv7NEREREZF1YGCEiug2fffYZHn74YXHZ8OyPhIQEbNu2Dc899xzq6+uxYMEC1NTUYOzYscjNzRVvGQMAO3fuRFJSEsLDw8X76b/22mvdngsRkSVptVoAgEKhMGpXKBTiOq1WC09PT6P1/fr1g4eHhxhzo7S0NKSmprZpz8vLg4uLi0l902g0JsVZk11Bu8yK3zpyq4V6Yj2Yo20w5fvY0NDQDT0hIiIiIlvGwggR0W0YP348BEG46Xo7OzusXLkSK1euvGmMh4cH751PRNRJKSkpYlEauDZjxMfHB1FRUZDJZB2+Vq/XQ6PRIDIystc8x8VAvlZuUpyzxBlbR27F3DNzbfZ5PczRNhhyNOX7aJgZRkRERETUWSyMEBEREZHFKZVKAEBlZSW8vLzE9srKSgQHB4sxVVVVRq9rbm5GdXW1+PobOTo6wtHRsU27KQ+170ystTD35PjV1qs2e0LdgDnaBlO+j73t+0pERERE1ocPXyciIiIii/P394dSqcShQ4fEtrq6Ohw/fhwqlQoAoFKpUFNTg5KSEjHmk08+QWtrK0JDQ7u9z0RERERERGSbOGOEiIiIiLrElStXcP78eXH54sWLKC0thYeHB3x9fbFo0SKsXr0aQ4YMgb+/P/72t7/B29sbU6dOBQAMHz4cEydOxPz587F582bo9XokJSVh+vTp8Pb27qGsiIiIiIiIyNawMEJEREREXeKzzz7Dww8/LC4bnv2RkJCAbdu24bnnnkN9fT0WLFiAmpoajB07Frm5uXBychJfs3PnTiQlJSE8PBwSiQTx8fF47bXXuj0XIiIiIiIisl1m30qrsLAQkydPhre3N+zs7PDBBx8YrRcEAS+++CK8vLzg7OyMiIgIfP3110Yx1dXVmDFjBmQyGdzd3TFv3jxcuXLlthIhIiIiop41fvx4CILQ5s+2bdsAAHZ2dli5ciW0Wi0aGxuRn5+Pe++912gbHh4eyMrKwuXLl1FbW4utW7fCzc2tB7IhIiIiIiIiW2V2YaS+vh6jRo1Cenp6u+vXrVuH1157DZs3b8bx48fh6uqK6OhoNDY2ijEzZszA2bNnodFokJOTg8LCQixYsKDzWRAREREREREREREREZnA7FtpxcTEICYmpt11giBgw4YNWLZsGaZMmQIAeOedd6BQKPDBBx9g+vTp+PLLL5Gbm4uTJ0/ivvvuAwC8/vrrmDRpEl599VXeP5qIiIiIiIiIiIiIiCymS58xcvHiRWi1WkRERIhtcrkcoaGhKCoqwvTp01FUVAR3d3exKAIAERERkEgkOH78OB555JE229XpdNDpdOJyXV0dAECv10Ov13fYJ8N6Z4nzbeXWE26V241xpsZbkqU+Z8N2LbV9a/jszN2PvfHvtKHPpuRoDfuEiIiIiIiIiIiIbE+XFka0Wi0AQKFQGLUrFApxnVarhaenp3En+vWDh4eHGHOjtLQ0pKamtmnPy8uDi4uLSX3bOnKrSXHW5MCBA2bFazQaC/XEdLuCdll0+5baj+Z+1pZk6n609GdtSabk2NDQ0A09ISIiIiIiIiIior6mSwsjlpKSkoLk5GRxua6uDj4+PoiKioJMJuvwtXq9HhqNBnPPzMXV1quW7mqXqn2+1qQ4Q46RkZGQSqUW7lXH5GvlFtmus8QZW0dutdh+NPWztiRz96OlPmtLMuxHU3I0zAwjIiIiIiIiIiIi6kpdWhhRKpUAgMrKSnh5eYntlZWVCA4OFmOqqqqMXtfc3Izq6mrx9TdydHSEo6Njm3apVGpyIeBq69VeVxgxt8hhzudhKZb+jC21H3v6c7ueqfuxt/19vp4pOVrTPiEiIiIiIiIiIiLbIenKjfn7+0OpVOLQoUNiW11dHY4fPw6VSgUAUKlUqKmpQUlJiRjzySefoLW1FaGhoV3ZHSIiIiIiIiIiIiIiIiNmzxi5cuUKzp8/Ly5fvHgRpaWl8PDwgK+vLxYtWoTVq1djyJAh8Pf3x9/+9jd4e3tj6tSpAIDhw4dj4sSJmD9/PjZv3gy9Xo+kpCRMnz4d3t7eXZYYERERERERERERERHRjcyeMfLZZ59h9OjRGD16NAAgOTkZo0ePxosvvggAeO6557Bw4UIsWLAA999/P65cuYLc3Fw4OTmJ29i5cyeGDRuG8PBwTJo0CWPHjsVbb73VRSkRERERERERWbcVK1bAzs7O6M+wYcPE9Y2NjVCr1RgwYADc3NwQHx+PysrKHuwxERERke0we8bI+PHjIQjCTdfb2dlh5cqVWLly5U1jPDw8kJWVZe5bExEREREREdmMESNGID8/X1zu1+/Xn+iLFy/GRx99hOzsbMjlciQlJSEuLg5Hjx7tia4SERER2ZQuffg6EREREREREZmmX79+UCqVbdpra2uxZcsWZGVlYcKECQCAzMxMDB8+HMXFxQgLC+vurhIRERHZlC59+DoRERERERERmebrr7+Gt7c37rnnHsyYMQPl5eUAgJKSEuj1ekRERIixw4YNg6+vL4qKinqqu0REREQ2gzNGiIiIiIiIiLpZaGgotm3bhqFDh6KiogKpqal48MEHcebMGWi1Wjg4OMDd3d3oNQqFAlqt9qbb1Ol00Ol04nJdXR0AQK/XQ6/Xd9gfw/pbxVkjZ4mzWXGmxvdGzNE2GHIz5fvYG7+z7VmxYgVSU1ON2oYOHYqvvvoKwLXnLj3zzDPYvXs3dDodoqOjsWnTJigUip7oLhHZABZGiIiIiIiIiLpZTEyM+P9BQUEIDQ2Fn58f3nvvPTg7d+6Eb1paWpsTiwCQl5cHFxcXk7ah0Wg69d49aVfQLrPit47caqGeWA/maBtM+T42NDR0Q0+6B5+7RETdiYURIiIiIiIioh7m7u6Oe++9F+fPn0dkZCSamppQU1NjNGuksrKy3WeSGKSkpCA5OVlcrqurg4+PD6KioiCTyTp8f71eD41Gg8jISEil0tvOpzvJ18pNinOWOGPryK2Ye2YurrZetXCvegZztA2GHE35PhpmhtkCPneJiLoTCyNERBbE6cBEREREZIorV67gwoULmDlzJkJCQiCVSnHo0CHEx8cDAMrKylBeXg6VSnXTbTg6OsLR0bFNu1QqNbnYYU6stTD35PjV1qs2e0LdgDnaBlO+j73t+9oRw3OXnJycoFKpkJaWBl9f31s+d+lmhRHeXtC0uL5wWzrm2LtZ6vaCLIwQEVkYpwMTERER0Y2effZZTJ48GX5+frh06RKWL18Oe3t7PP7445DL5Zg3bx6Sk5Ph4eEBmUyGhQsXQqVS8cpoIrJJlnjuEm8vaJq+cFs65mgbuvr2giyMEBFZGKcDExEREdGNfvjhBzz++OP45ZdfcNddd2Hs2LEoLi7GXXfdBQBYv349JBIJ4uPjjWYWExHZIks8d4m3F+xYX7otHXPs3Sx1e0EWRoiILIzTgbsGpwP/ijnaBktNByYiot5h9+7dHa53cnJCeno60tPTu6lHRETWoyueu8TbC5oeb6sn1A2Yo23o6tsLsjBCRGRBnA7cdTgduC3maBu6ejowEREREVFv1xXPXSIi6ggLI0REFsTpwF2H04F/xRxtg6WmAxMRERER9TZ87hIRdTcWRoiIuhGnA3cepwO3xRxtQ1dPByYiIiIi6m343CUi6m4sjBARdSNOByYiIiIiIiIyxucuEVF3Y2GEiMiCOB2YiIiIiHoT+Vq5zc/WJCIiImJhhIjIgjgdmIiIiIiIiIiIyLqwMEJEZEGcDkxERERERERERGRdWBghIiIioj6Nt40hIiIiIiLqWyQ93QEiIiIiIiIiIiIiIqLuwsIIERERERERERERERH1GbyVFhFRH8TbxhARERERERERUV/FGSNERERERERERERERNRncMYIERERERERERER0Q14twUi28UZI0RERERERERERERE1GewMEJERERERERERERERH0GCyNERERERERERERERNRnsDBCRERERERERERERER9BgsjRERERERERERERETUZ7AwQkREREREREREREREfQYLI0RERERERERERERE1GewMEJERERERERERERERH0GCyNERERERERERERERNRnsDBCRERERERERERERER9BgsjRERERERERERERETUZ7AwQkREREREREREREREfQYLI0RERERERERERERE1GewMEJERERERERERERERH1GjxZG0tPT8Zvf/AZOTk4IDQ3FiRMnerI7REQ9imMiEdE1HA+JiH7FMZGI6FccpWOaSAABAABJREFUE4moq/RYYeTdd99FcnIyli9fjv/85z8YNWoUoqOjUVVV1VNdIiLqMRwTiYiu4XhIRPQrjolERL/imEhEXanHCiP/+Mc/MH/+fMyZMwcBAQHYvHkzXFxcsHXr1p7qEhFRj+GYSER0DcdDIqJfcUwkIvoVx0Qi6ko9UhhpampCSUkJIiIifu2IRIKIiAgUFRX1RJeIiHoMx0Qioms4HhIR/YpjIhHRrzgmElFX69cTb/rzzz+jpaUFCoXCqF2hUOCrr75qE6/T6aDT6cTl2tpaAEB1dTX0en2H76XX69HQ0ACnJicIrUIX9L77/PLLLybFGXL85ZdfIJVKLdyrjjk1OVlmuxIni+5HUz9rSzJ3P1rqs7Ykw340JcfLly8DAAShd31vO4NjYtey9HhhDZijbeCY2Ja54yHAMfFW+tJ3iTn2bhwT2+KY2PX60neJOfZuHBPb4pjY9frSd4k59m6WGhN7pDBirrS0NKSmprZp9/f374HedJ87X7qzp7tgNRrRiCfwhMW2z8+6e3RmP16+fBlyudxCPeqd+uqYaCpLjxfWgDnaBo6JXYNjYsf4XbINzLF9HBPb4pjYMX6XbANzbB/HxLY4JnaM3yXbwBzbZ8qY2COFkTvvvBP29vaorKw0aq+srIRSqWwTn5KSguTkZHG5tbUV1dXVGDBgAOzs7Dp8r7q6Ovj4+OD777+HTCbrmgSsDHO0DczRmCAIuHz5Mry9vbupdz2HY2LXYo62gTka6ytjornjIcAx8VaYo21gjsY4JnJM7CzmaBuYozGOiRwTO4s52gbmaMycMbFHCiMODg4ICQnBoUOHMHXqVADXBqdDhw4hKSmpTbyjoyMcHR2N2tzd3c16T5lMZrN/OQyYo21gjr/qK1e7cEy0DOZoG5jjr/rCmGjueAhwTDQVc7QNzPFXHBM5Jt4O5mgbmOOvOCZyTLwdzNE2MMdfmTom9tittJKTk5GQkID77rsPDzzwADZs2ID6+nrMmTOnp7pERNRjOCYSEV3D8ZD+P3v3Hhdlnf///wnIGYFQAU08ZKXieTEVM7VU8JDloVzXUjykZViblJmtqWRGWbvW+jWt3Tx8trRW00pzVTQPlZqHsjykm65mqYBlgkcc4fr94W9GRxBncIY5Pe63G7cbc13vueb9uoZ5cc31uq73G8Bl5EQAuIycCMCRXFYY+eMf/6jjx49rwoQJysnJUfPmzbVixYoSkygBgC8gJwLAJeRDALiMnAgAl5ETATiSSydfHzVq1DVvd3OU4OBgTZw4scStc96EGL0DMYKc6BjE6B2I0bdVRD6UfOM9IEbvQIy+jZzoOMToHYjRt5ETHYcYvQMxlp+fYRiGQ7cIAAAAAAAAAADgpvxd3QEAAAAAAAAAAICKQmEEAAAAAAAAAAD4DAojAAAAAAAAAADAZ/hUYeTQoUMaNmyY6tatq9DQUNWrV08TJ07UhQsXXN01h5kyZYratm2rsLAwRUdHu7o7DjNjxgzVqVNHISEhat26tbZs2eLqLjnMhg0b1LNnT9WoUUN+fn76+OOPXd0lh8rKytIdd9yhypUrKzY2Vr169dK+fftc3S2InOjJyImei5zovsiJnouc6LnIie6LnOi5yImei5zovsiJnouc6LkqIif6VGFk7969Ki4u1ttvv63du3dr2rRpmjVrlp5//nlXd81hLly4oAcffFAjR450dVcc5sMPP1RGRoYmTpyob775Rs2aNVNqaqry8vJc3TWHOHPmjJo1a6YZM2a4uitOsX79eqWnp2vz5s3Kzs6WyWRSSkqKzpw54+qu+TxyomciJ3o2cqL7Iid6JnKiZyMnui9yomciJ3o2cqL7Iid6JnKiZ6uQnGj4uKlTpxp169Z1dTccbs6cOUZUVJSru+EQrVq1MtLT0y2Pi4qKjBo1ahhZWVku7JVzSDKWLFni6m44VV5eniHJWL9+vau7glKQE90fOdG7kBPdGznR/ZETvQs50b2RE90fOdG7kBPdGznR/ZETvYszcqJP3TFSmvz8fMXExLi6G7iGCxcuaPv27ercubNlmb+/vzp37qxNmza5sGcor/z8fEnic+emyInujZzofciJ7o2c6N7Iid6HnOjeyInujZzofciJ7o2c6N7Iid7HGTnRpwsj+/fv1/Tp0/Xoo4+6uiu4hl9//VVFRUWKi4uzWh4XF6ecnBwX9QrlVVxcrKeeekp33nmnGjdu7Oru4CrkRPdHTvQu5ET3Rk50f+RE70JOdG/kRPdHTvQu5ET3Rk50f+RE7+KsnOgVhZHnnntOfn5+Zf7s3bvX6jlHjhxR165d9eCDD2r48OEu6rltyhMf4I7S09O1a9cuffDBB67uilcjJ5IT4RnIiRWDnEhOhGcgJ1YMciI5EZ6BnFgxyInkRHgGZ+XESg7dmos8/fTTGjx4cJltbrnlFsvvR48e1d133622bdvqnXfecXLvbpy98XmTqlWrKiAgQLm5uVbLc3NzFR8f76JeoTxGjRqlZcuWacOGDapZs6aru+PVyInkRLg/cmLFISeSE+H+yIkVh5xIToT7IydWHHIiORHuz5k50SsKI9WqVVO1atVsanvkyBHdfffdSkpK0pw5c+Tv7/43zdgTn7cJCgpSUlKS1qxZo169ekm6dPvUmjVrNGrUKNd2DjYxDENPPPGElixZonXr1qlu3bqu7pLXIyd6L3Ki5yMnVjxyovciJ3o+cmLFIyd6L3Ki5yMnVjxyovciJ3q+isiJXlEYsdWRI0fUsWNH1a5dW6+//rqOHz9uWect1cLDhw/rxIkTOnz4sIqKirRjxw5J0q233qqIiAjXdq6cMjIylJaWppYtW6pVq1Z64403dObMGQ0ZMsTVXXOI06dPa//+/ZbHBw8e1I4dOxQTE6NatWq5sGeOkZ6ervnz5+uTTz5R5cqVLWM5RkVFKTQ01MW9823kRHKiOyInwlXIieREd0ROhKuQE8mJ7oicCFchJ5IT3RE50QEMHzJnzhxDUqk/3iItLa3U+NauXevqrt2Q6dOnG7Vq1TKCgoKMVq1aGZs3b3Z1lxxm7dq1pb5naWlpru6aQ1zrMzdnzhxXd83nkRM9FznRc5ET3Rc50XOREz0XOdF9kRM9FznRc5ET3Rc50XOREz1XReREv///hQAAAAAAAAAAALye+w+IBwAAAAAAAAAA4CAURgAAAAAAAAAAgM+gMAIAAAAAAAAAAHwGhREAAAAAAAAAAOAzKIwAAAAAAAAAAACfQWEEAAAAAAAAAAD4DAojAAAAAAAAAADAZ1AYAQAAAAAAAAAAPoPCCAAAAAAAAAAA8BkURgAAAAAAAAAAgM+gMAIAAAAAAAAAAHwGhREAAAAAAAAAAOAzKIwAAAAAAAAAAACfQWEEAAAAAAAAAAD4DAojAAAAAAAAAADAZ1AYAQAAAAAAAAAAPoPCCAAAAAAAAAAA8BkURgAAAAAAAAAAgM+gMAIAAAAAAAAAAHwGhREAAAAAAAAAAOAzKIwAAAAAAAAAAACfQWEEAAAAAAAAAAD4DAojAAAAAAAAAADAZ1AYAQAAAAAAAAAAPoPCCAAAAAAAAAAA8BkURgAAAAAAAAAAgM+gMAIAAAAAAAAAAHwGhREAAAAAAAAAAOAzKIwAAAAAAAAAAACfQWEEAAAAAAAAAAD4DAojAAAAAAAAAADAZ1AYgVtasWKFmjdvrpCQEPn5+enkyZOu7hIALzJp0iT5+fnp119/rbDX9PPz06RJkyrs9VzJl2IF3NGhQ4fk5+enuXPnuuT1vSUH/Pjjj0pJSVFUVJT8/Pz08ccfu7pLAHxUx44d1bFjR6dsu06dOho8eLBTtl0WV/+vAtyZK76vujNn5kB34YwYzX9HrjZ48GBFRETY1Laiv0dQGIHb+e2339SvXz+FhoZqxowZ+te//qXw8HCbn79x40ZNmjSJYgoAAADKLS0tTTt37tSUKVP0r3/9Sy1btnR1lwC4sfnz5+uNN95wdTcAlBPnkm6Mp+dAT33/z549q0mTJmndunWu7opHquTqDgBX27p1q06dOqXJkyerc+fOdj9/48aNyszM1ODBgxUdHe34DgJAOZw7d06VKvFvF4D384Z8d+7cOW3atEl/+ctfNGrUKFd3B4AHmD9/vnbt2qWnnnrK1V0BUA6cS7oxnp4DPfX9P3v2rDIzMyWpxB0n48eP13PPPeeCXpVfRX+P4I4RuJ28vDxJ8qhEBADXExIS4vEnCgHAFp6c786fP6/i4mIdP35ckmOPR8+cOeOwbQEAANyos2fPuroLXssdjvsqVaqkkJAQV3fDLhX9PYLCCBzm1KlTeuqpp1SnTh0FBwcrNjZWXbp00TfffCNJ+uKLL/Tggw+qVq1aCg4OVkJCgkaPHq1z585ZttGxY0elpaVJku644w75+flZjXf69ddfq2vXroqKilJYWJg6dOigr776yrJ+0qRJGjNmjCSpbt268vPzk5+fnw4dOqQOHTqoWbNmpfa9fv36Sk1NdfQuAeDmfv31V/Xr10+RkZGqUqWK/vznP+v8+fOW9XPmzNE999yj2NhYBQcHKzExUTNnziyxnW3btik1NVVVq1ZVaGio6tatq6FDh1q1KW2szCNHjmjYsGGqUaOGgoODVbduXY0cOVIXLlywOQY/Pz+NGjVKH3/8sRo3bqzg4GA1atRIK1asKNH2yJEjGjp0qOLi4iztZs+eXaJdYWGhJk6cqFtvvdWSr5999lkVFhaWaDd69GhVq1ZNlStX1n333adffvmlxPau9/8B8AY//fSTHn/8cdWvX1+hoaGqUqWKHnzwQR06dKhE25MnT2r06NGWz0TNmjU1aNAgyzjSFy5c0IQJE5SUlKSoqCiFh4frrrvu0tq1a0vd1uDBgxUVFaXo6GilpaVdcwiAvXv36oEHHlBMTIxCQkLUsmVLffrpp1Zt5s6dKz8/P3355Zd68sknVa1aNUVHR+vRRx/VhQsXdPLkSQ0aNEg33XSTbrrpJj377LMyDMNqG87Od++//77q16+vkJAQJSUlacOGDSXa2pLv1q1bJz8/P33wwQcaP368br75ZoWFhSkjI0O1a9eWJI0ZM0Z+fn6qU6eO5XnffvutunXrpsjISEVERKhTp07avHlzqftx/fr1evzxxxUbG6uaNWtKunS827hxY33//ffq0KGDwsLCdOutt2rRokWSpPXr16t169YKDQ1V/fr1tXr1aqtt2/q3Zu7DV199pYyMDFWrVk3h4eHq3bu3pfBzpf/85z/q0KGDKleurMjISN1xxx2aP3++VZvrHYsD3qys45mOHTvqs88+008//WT5DmrOG+bP4tWfUXMOunr4k3feeUf16tVTaGioWrVqpS+++MJq/enTpxUeHq4///nPJfr4yy+/KCAgQFlZWTcU6//+9z89+OCDiomJUVhYmNq0aaPPPvvMqo2z/lcBrlDWuSRJeu+995SUlKTQ0FDFxMSof//++vnnn622Ycs5L7O9e/eqX79+qlatmuX//V/+8pcS7cyfnejoaEVFRWnIkCGlFjNs6Z/5+GP79u1q3769wsLC9Pzzz9u0f673fa4ic6CZrd9Zbfm+fL33/3rMc2gcOHBA3bt3V+XKlfXQQw9JkoqLi/XGG2+oUaNGCgkJUVxcnB599FH9/vvvZW7Tlhx76NAhVatWTZKUmZlp6bf5OLy0OUYuXryoyZMnq169egoODladOnX0/PPPl9hvderU0b333qsvv/xSrVq1UkhIiG655Rb93//9n1U7k8mkzMxM3XbbbQoJCVGVKlXUrl07ZWdnl4jpyJEj6tWrlyIiIlStWjU988wzKioqsmpz9fcIcwzmz8y1zt2Ul2deygW39Nhjj2nRokUaNWqUEhMT9dtvv+nLL7/UDz/8oD/84Q9auHChzp49q5EjR6pKlSrasmWLpk+frl9++UULFy6UJP3lL39R/fr19c477+jFF19U3bp1Va9ePUnS559/rm7duikpKUkTJ06Uv7+/5aTlF198oVatWqlPnz7673//qwULFmjatGmqWrWqJKlatWoaOHCghg8frl27dqlx48aWfm/dulX//e9/NX78+IrfaQBcql+/fqpTp46ysrK0efNm/f3vf9fvv/9u+Wc/c+ZMNWrUSPfdd58qVaqkpUuX6vHHH1dxcbHS09MlXbrLLSUlRdWqVdNzzz2n6OhoHTp0SIsXLy7ztY8ePapWrVrp5MmTGjFihBo0aKAjR45o0aJFOnv2rIKCgmyO48svv9TixYv1+OOPq3Llyvr73/+uvn376vDhw6pSpYokKTc3V23atLEcGFarVk3/+c9/NGzYMBUUFFhueS4uLtZ9992nL7/8UiNGjFDDhg21c+dOTZs2Tf/973+tJh9+5JFH9N5772nAgAFq27atPv/8c/Xo0aNE/673/wHwBlu3btXGjRvVv39/1axZU4cOHdLMmTPVsWNH7dmzR2FhYZIundC666679MMPP2jo0KH6wx/+oF9//VWffvqpfvnlF1WtWlUFBQX65z//qT/96U8aPny4Tp06pXfffVepqanasmWLmjdvLkkyDEP333+/vvzySz322GNq2LChlixZYrnI5Eq7d+/WnXfeqZtvvlnPPfecwsPD9e9//1u9evXSRx99pN69e1u1f+KJJxQfH6/MzExt3rxZ77zzjqKjo7Vx40bVqlVLL7/8spYvX67XXntNjRs31qBBg665bxyZ79avX68PP/xQTz75pIKDg/XWW2+pa9eu2rJli+X4ztZ8ZzZ58mQFBQXpmWeeUWFhobp37646depo9OjR+tOf/qTu3btbJozcvXu37rrrLkVGRurZZ59VYGCg3n77bXXs2NFS0LjS448/rmrVqmnChAlWVw7+/vvvuvfee9W/f389+OCDmjlzpvr376/3339fTz31lB577DENGDBAr732mh544AH9/PPPqly5siTb/9aufC9vuukmTZw4UYcOHdIbb7yhUaNG6cMPP7S0mTt3roYOHapGjRpp3Lhxio6O1rfffqsVK1ZowIABkmw7Fge8WVnHM3/5y1+Un5+vX375RdOmTZMkmyeavdK7776rRx99VG3bttVTTz2l//3vf7rvvvsUExOjhIQEy3Z79+6tDz/8UH/7298UEBBgef6CBQtkGIblhFx55Obmqm3btjp79qyefPJJValSRfPmzdN9992nRYsWWf5fOON/FeAqZZ1LmjJlil544QX169dPjzzyiI4fP67p06erffv2+vbbby13l9pyzkuSvv/+e911110KDAzUiBEjVKdOHR04cEBLly7VlClTrPrVr18/1a1bV1lZWfrmm2/0z3/+U7GxsXr11VctbWztn3RpTt9u3bqpf//+evjhhxUXF2fT/rne97mKzIGSfd9Zpet/Xy7r/bfVxYsXlZqaqnbt2un111+3HI89+uijmjt3roYMGaInn3xSBw8e1P/7f/9P3377rb766isFBgaWuj1bcmy1atU0c+ZMjRw5Ur1791afPn0kSU2bNr1mPx955BHNmzdPDzzwgJ5++ml9/fXXysrK0g8//KAlS5ZYtd2/f78eeOABDRs2TGlpaZo9e7YGDx6spKQkNWrUSNKlwkVWVpYeeeQRtWrVSgUFBdq2bZu++eYbdenSxbKtoqIipaamqnXr1nr99de1evVq/fWvf1W9evU0cuTI6+7f6527KTcDcJCoqCgjPT39muvPnj1bYllWVpbh5+dn/PTTT5Zlc+bMMSQZW7dutSwrLi42brvtNiM1NdUoLi622mbdunWNLl26WJa99tprhiTj4MGDVq918uRJIyQkxBg7dqzV8ieffNIIDw83Tp8+bXOsADzbxIkTDUnGfffdZ7X88ccfNyQZ3333nWEYpeet1NRU45ZbbrE8XrJkSYmcVRpJxsSJEy2PBw0aZPj7+5f6vCvz3PVIMoKCgoz9+/dbln333XeGJGP69OmWZcOGDTOqV69u/Prrr1bP79+/vxEVFWWJ9V//+pfh7+9vfPHFF1btZs2aZUgyvvrqK8MwDGPHjh2GJOPxxx+3ajdgwIASsV7v/wPgDUrLF5s2bTIkGf/3f/9nWTZhwgRDkrF48eIS7c2f/YsXLxqFhYVW637//XcjLi7OGDp0qGXZxx9/bEgypk6dall28eJF46677jIkGXPmzLEs79Spk9GkSRPj/PnzVq/Xtm1b47bbbrMsMx+HXX3MlZycbPj5+RmPPfaY1WvVrFnT6NChg1VfnZnvJBnbtm2zLPvpp5+MkJAQo3fv3pZltua7tWvXGpKMW265pcT7d/DgQUOS8dprr1kt79WrlxEUFGQcOHDAsuzo0aNG5cqVjfbt21uWmfdju3btjIsXL1pto0OHDoYkY/78+ZZle/fuNSQZ/v7+xubNmy3LV65cWeK9tPVvzdyHzp07W+3n0aNHGwEBAcbJkycNw7h0jFy5cmWjdevWxrlz56y2a36ePcfigLe63vFMjx49jNq1a5dYbv4sXv391JyD1q5daxiGYVy4cMGIjY01mjdvbvU/4J133jEkWeVac274z3/+Y7XNpk2blsjJ11O7dm0jLS3N8vipp54yJFkdC546dcqoW7euUadOHaOoqMgwDOf8rwJcqbRzSYcOHTICAgKMKVOmWLXduXOnUalSJavltp7zat++vVG5cmWrZYZhfUxk/r565WfJMAyjd+/eRpUqVcrVP/Pxx6xZs8raDaWy5ftcReZAW7+zGobt35evdS7RFmlpaYYk47nnnrNa/sUXXxiSjPfff99q+YoVK0os79Chg1WMtubY48ePlzj2NjP/HZmZv8M/8sgjVu2eeeYZQ5Lx+eefW5bVrl3bkGRs2LDBsiwvL88IDg42nn76acuyZs2aGT169Chtt1iY98+LL75otbxFixZGUlKS1bKrY7H13E15MZQWHCY6Olpff/21jh49Wur60NBQy+9nzpzRr7/+qrZt28owDH377bdlbnvHjh368ccfNWDAAP3222/69ddf9euvv+rMmTPq1KmTNmzYoOLi4jK3ERUVpfvvv99yFY10qWL54YcfqlevXgoPD7czYgCeznzXh9kTTzwhSVq+fLkk67yVn5+vX3/9VR06dND//vc/5efnS7o8/vyyZctkMplset3i4mJ9/PHH6tmzp1q2bFli/dW3u15P586dLXfXSZeuEImMjNT//vc/SZeu1Pvoo4/Us2dPGYZhyaG//vqrUlNTlZ+fb7kNeuHChWrYsKEaNGhg1e6ee+6RJMutu+Z99OSTT1r1pbTJ9q73/wHwBlfmC5PJpN9++0233nqroqOjrYaN++ijj9SsWbMSd2hIlz/7AQEBlrsoiouLdeLECV28eFEtW7a02tby5ctVqVIlq6usAgICLLnM7MSJE/r888/Vr18/nTp1yvK5/u2335Samqoff/xRR44csXrOsGHDrHJR69atZRiGhg0bZvVaLVu2tOSa0jg63yUnJyspKcnyuFatWrr//vu1cuVKFRUV2ZXvzNLS0qzev2spKirSqlWr1KtXL91yyy2W5dWrV9eAAQP05ZdfqqCgwOo5w4cPt7qa2ywiIkL9+/e3PK5fv76io6PVsGFDq7tOzL9fuY9t/VszGzFihNV+vuuuu1RUVKSffvpJkpSdna1Tp07pueeeKzEOtfl5jjgWBzyds49ntm3bpry8PD322GNWd9KZh6C6UufOnVWjRg29//77lmW7du3S999/r4cffviG+rF8+XK1atVK7dq1syyLiIjQiBEjdOjQIe3Zs0eS4/9XAe5o8eLFKi4uVr9+/ayOKeLj43XbbbdZDWtkyzmv48ePa8OGDRo6dKhq1apl9VqlHRM99thjVo/vuusu/fbbb5bjDXv6J0nBwcEaMmSI3fuhIr7P2ZMDbf3Oana978uOcvWdDwsXLlRUVJS6dOli1c+kpCRFRESUOvSgma051h7m7/AZGRlWy59++mlJKjFkYmJiou666y7L42rVqql+/fpW+y06Olq7d+/Wjz/+eN3XL+3v2db34HrnbsqLobTgMFOnTlVaWpoSEhKUlJSk7t27a9CgQZYvjocPH9aECRP06aeflhhLz3yC8VrMH7CybrfNz8/XTTfdVOZ2Bg0apA8//FBffPGF2rdvr9WrVys3N1cDBw60JUQAXua2226zelyvXj35+/tbxhL96quvNHHiRG3atKnEWK75+fmKiopShw4d1LdvX2VmZmratGnq2LGjevXqpQEDBig4OLjU1z1+/LgKCgqshvW7EVcfVEvSTTfdZMm1x48f18mTJ/XOO+/onXfeKXUbeXl5ki7l2x9++OGatw2b2/3000/y9/e3OsCULp3cu9r1/j8A3uDcuXPKysrSnDlzdOTIEat5N648zjlw4ID69u173e3NmzdPf/3rX7V3716romvdunUtv//000+qXr16iaEKrv4c7t+/X4Zh6IUXXtALL7xQ6uvl5eXp5ptvtjy+Oq+Yv5BeOYyBeXlZYyQ7Ot9dnbcl6fbbb9fZs2d1/Phx+fv725zvzK7cp2U5fvy4zp49W2qea9iwoYqLi/Xzzz9bhhYoa9s1a9YscQIkKiqq1P0ryWof2/q3Znb1e2k+XjZv88CBA5JU5nvkqGNxwJM5+3jGXKy8Os8FBgaWeA1/f3899NBDmjlzps6ePauwsDC9//77CgkJ0YMPPnjD/bh6WEDpUp4zrzfnC0f+rwLc0Y8//ijDMEo9/pBkNQySLee8zCeBbT0uKut/eGRkpF39k6Sbb77ZriFMzSri+5w9OdDW76xm1/u+7AiVKlWyzCd3ZT/z8/MVGxtrUz+vZkuOtYf5O/ytt95qtTw+Pl7R0dGW98DMlv324osv6v7779ftt9+uxo0bq2vXrho4cGCJ4bxCQkJKvF/2vAfXO3dTXhRG4DD9+vXTXXfdpSVLlmjVqlV67bXX9Oqrr2rx4sVKSUlRly5ddOLECY0dO1YNGjRQeHi4jhw5osGDB1/3CjPz+tdee80yVunVbBm/MDU1VXFxcXrvvffUvn17vffee4qPj1fnzp3tjheA97nyJNWBAwfUqVMnNWjQQH/729+UkJCgoKAgLV++XNOmTbPkJT8/Py1atEibN2/W0qVLtXLlSg0dOlR//etftXnz5nKNrWqv0q5GlmQ5WWbu68MPP3zNk1rmA5fi4mI1adJEf/vb30ptd/VJO1uU9f+hW7dudm8PcEdPPPGE5syZo6eeekrJycmKioqSn5+f+vfvb/eV9O+9954GDx6sXr16acyYMYqNjbVMpms+iW0P8+s/88wzSk1NLbXN1V+QrpVXSlt+5Yl5V7Mn35nZcrdIeV1r2/bsX8l6H9v7t2bLNq/HUcfigCcr7/HMte6Mu3rCWXsNGjRIr732mj7++GP96U9/0vz583XvvfeWuLLaWRz9vwpwR8XFxfLz89N//vOfa94BKl36PN/IOa9rseV7ni39MyvvMc+NfJ9zRg609zurI46Fric4OFj+/tYDMxUXFys2Ntbq7r4rlTWHiTNzrK13bNuy39q3b68DBw7ok08+0apVq/TPf/5T06ZN06xZs/TII49cd1vlZe9d59dCYQQOVb16dT3++ON6/PHHlZeXpz/84Q+aMmWKqlevrv/+97+aN2+e1eSc2dnZNm3XfEVyZGTkdYsYZX04AgICNGDAAM2dO1evvvqqPv7442sOcQDA+/34449WV1vs379fxcXFqlOnjpYuXarCwkJ9+umnVldKXOt21zZt2qhNmzaaMmWK5s+fr4ceekgffPCB1cGAWbVq1RQZGaldu3Y5PqhSVKtWTZUrV1ZRUdF1c2i9evX03XffqVOnTmXm09q1a6u4uFgHDhywuuJv3759pba/1v8HCiPwFosWLVJaWpr++te/WpadP39eJ0+etGpXr1696372Fy1apFtuuUWLFy+2+hxOnDjRql3t2rW1Zs0anT592uqL79WfQ/NVdoGBgRV+MYij811pt+n/97//VVhYmOXLpa35zl7VqlVTWFhYqXlu79698vf3L1fx2F62/q3ZynycvWvXrhIFsqvb2HIsDnizso5nrnXcZL7C++rP6NVX5tauXVvSpTxnHg5GujRk3sGDB9WsWTOr9o0bN1aLFi30/vvvq2bNmjp8+LCmT59+oyGqdu3a18xzV/bT0f+rAFcr7TNcr149GYahunXr6vbbb7/mc3fu3GnTOS/zMZmjjots7Z8jXO/7XEXmQFu/s9rDUdu5Ur169bR69WrdeeeddhelbM2x9vTb/B3+xx9/tNwFKEm5ubk6efKk5T2wV0xMjIYMGaIhQ4bo9OnTat++vSZNmlTquZDyKuvczY1gjhE4RFFRUYlb92NjY1WjRg0VFhZaCg9XVhUNw9Cbb75p0/aTkpJUr149vf766zp9+nSJ9cePH7f8bp4r5FpfDgcOHKjff/9djz76qE6fPn3DY7AC8FwzZsywemz+MtmtW7dS81Z+fr7mzJlj9Zzff/+9xJUm5qtpCwsLS31df39/9erVS0uXLtW2bdtKrHf01dcBAQHq27evPvroo1IPwq/Mof369dORI0f0j3/8o0S7c+fO6cyZM5JkOQD++9//btXmjTfesHp8vf8PgLcICAgo8dmdPn16iavh+vbtq++++05LliwpsQ3z80vLP19//bU2bdpk1b579+66ePGiZs6caVlWVFRU4sRYbGysOnbsqLffflvHjh0r8bpX5gBHc3S+27Rpk9W4yj///LM++eQTpaSkKCAgwK58Z6+AgAClpKTok08+sbptPzc3V/Pnz1e7du0UGRlZ7u3b0w9b/tZslZKSosqVKysrK0vnz5+3Wmd+HXuOxQFvZMvxTHh4eKnD2ZkLixs2bLDa3tXD/bVs2VLVqlXTrFmzdOHCBcvyuXPnlvnddtWqVXrjjTdUpUoVh1xw0r17d23ZssXqf86ZM2f0zjvvqE6dOkpMTJTk+P9VgKuVdi6pT58+CggIUGZmZon/vYZh6LfffpNU+uehtHNe1apVU/v27TV79mwdPny4xPbsZWv/boSt3+cqMgfa+p3VHtc7l1ge/fr1U1FRkSZPnlxi3cWLF8t8LVtzbFhYmCTb+t29e3dJJb+zm++86dGjx3W3cbWr/8YiIiJ06623Ovy7flnnbm4Ed4zAIU6dOqWaNWvqgQceULNmzRQREaHVq1dr69at+utf/6oGDRqoXr16euaZZ3TkyBFFRkbqo48+snksOX9/f/3zn/9Ut27d1KhRIw0ZMkQ333yzjhw5orVr1yoyMlJLly6VJMuEnH/5y1/Uv39/BQYGqmfPnpYk16JFCzVu3NgyWdMf/vAH5+wUAG7v4MGDuu+++9S1a1dt2rRJ7733ngYMGKBmzZopJCREQUFB6tmzp6WQ+o9//EOxsbFWJxbnzZunt956S71791a9evV06tQp/eMf/1BkZKTlwKM0L7/8slatWqUOHTpoxIgRatiwoY4dO6aFCxfqyy+/tEzq7iivvPKK1q5dq9atW2v48OFKTEzUiRMn9M0332j16tU6ceKEpEtfsP/973/rscce09q1a3XnnXeqqKhIe/fu1b///W+tXLlSLVu2VPPmzfWnP/1Jb731lvLz89W2bVutWbNG+/fvt3rd6/1/ALzFvffeq3/961+KiopSYmKiNm3apNWrV6tKlSpW7caMGaNFixbpwQcf1NChQ5WUlKQTJ07o008/1axZs9SsWTPde++9Wrx4sXr37q0ePXro4MGDmjVrlhITE61OSvfs2VN33nmnnnvuOR06dEiJiYlavHhxqV9KZ8yYoXbt2qlJkyYaPny4brnlFuXm5mrTpk365Zdf9N133zlt3zgy3zVu3Fipqal68sknFRwcrLfeekuSlJmZaWlja74rj5deeknZ2dlq166dHn/8cVWqVElvv/22CgsLNXXq1HJv1x62/q3ZKjIyUtOmTdMjjzyiO+64QwMGDNBNN92k7777TmfPntW8efPsOhYHvJEtxzNJSUn68MMPlZGRoTvuuEMRERHq2bOnGjVqpDZt2mjcuHE6ceKEYmJi9MEHH+jixYtWrxEYGKiXXnpJjz76qO655x798Y9/1MGDBzVnzpxrjuM/YMAAPfvss1qyZIlGjhxZYj6B8njuuee0YMECdevWTU8++aRiYmI0b948HTx4UB999JFlqBhn/K8CXOla55JeeukljRs3TocOHVKvXr1UuXJlHTx4UEuWLNGIESP0zDPP2HXO6+9//7vatWunP/zhDxoxYoTq1q2rQ4cO6bPPPtOOHTvs6nO9evVs6t+NsPX7XEXmQFu/s9rjeucSy6NDhw569NFHlZWVpR07diglJUWBgYH68ccftXDhQr355pt64IEHSn2urTk2NDRUiYmJ+vDDD3X77bcrJiZGjRs3LnUem2bNmiktLU3vvPOOTp48qQ4dOmjLli2aN2+eevXqpbvvvtvuGBMTE9WxY0clJSUpJiZG27Zt06JFizRq1Ci7t1WWss7d3BADcIDCwkJjzJgxRrNmzYzKlSsb4eHhRrNmzYy33nrL0mbPnj1G586djYiICKNq1arG8OHDje+++86QZMyZM8fSbs6cOYYkY+vWrSVe59tvvzX69OljVKlSxQgODjZq165t9OvXz1izZo1Vu8mTJxs333yz4e/vb0gyDh48aLV+6tSphiTj5Zdfduh+AOAZJk6caEgy9uzZYzzwwANG5cqVjZtuuskYNWqUce7cOUu7Tz/91GjatKkREhJi1KlTx3j11VeN2bNnW+WVb775xvjTn/5k1KpVywgODjZiY2ONe++919i2bZvVa0oyJk6caLXsp59+MgYNGmRUq1bNCA4ONm655RYjPT3dKCwstDkWSUZ6enqJ5bVr1zbS0tKsluXm5hrp6elGQkKCERgYaMTHxxudOnUy3nnnHat2Fy5cMF599VWjUaNGRnBwsHHTTTcZSUlJRmZmppGfn29pd+7cOePJJ580qlSpYoSHhxs9e/Y0fv75Z6tYbfn/AHiD33//3RgyZIhRtWpVIyIiwkhNTTX27t1b6mfxt99+M0aNGmXcfPPNRlBQkFGzZk0jLS3N+PXXXw3DMIzi4mLj5ZdfNmrXrm0EBwcbLVq0MJYtW2akpaUZtWvXLrGtgQMHGpGRkUZUVJQxcOBA49tvvy1xfGUYhnHgwAFj0KBBRnx8vBEYGGjcfPPNxr333mssWrTI0uZax2HmvHn8+HGr5WlpaUZ4eLjVMmfnu/fee8+47bbbLPtm7dq1Jdraku/Wrl1rSDIWLlxY4vkHDx40JBmvvfZaiXXffPONkZqaakRERBhhYWHG3XffbWzcuNGqTVnHsx06dDAaNWpUYnnt2rWNHj16XDNuM1v/1q7VB3PcV++3Tz/91Gjbtq0RGhpqREZGGq1atTIWLFhg1cbWY3HA29hyPHP69GljwIABRnR0tCHJKl8fOHDA6Ny5sxEcHGzExcUZzz//vJGdnV3qZ/Gtt94y6tatawQHBxstW7Y0NmzYYHTo0MHo0KFDqX3r3r27IalEHrJVaf+nDhw4YDzwwANGdHS0ERISYrRq1cpYtmyZVRtn/a8CXOla55I++ugjo127dkZ4eLgRHh5uNGjQwEhPTzf27dtnea6t57wMwzB27dpl9O7d2/IZq1+/vvHCCy9Y1l/ruMv8v/3qc1y29O9axx/XY+v3uYrOgbZ+Z7Xn+/L1ziVeS2nHw1d65513jKSkJCM0NNSoXLmy0aRJE+PZZ581jh49amlzdYz25NiNGzcaSUlJRlBQkNVxuPnv6Eomk8nIzMw06tatawQGBhoJCQnGuHHjjPPnz5fYP6Udl17dz5deeslo1aqVER0dbYSGhhoNGjQwpkyZYly4cOG6+6e0/l39PcLWczfl5ff/vyjgU958802NHj1ahw4dspo7AAAAAO7Jz89P6enp+n//7/+5uisA4DZ69+6tnTt3lrhrFwAATzdp0iRlZmbq+PHjqlq1qsO3zxwj8DmGYejdd99Vhw4dKIoAAAAAADzSsWPH9Nlnn2ngwIGu7goAAB6HOUbgM86cOaNPP/1Ua9eu1c6dO/XJJ5+4uksAcE05OTllrg8NDVVUVFQF9QYAnId8BwD2OXjwoL766iv985//VGBgoB599NESbcitAK7n9OnTVvNVlKZatWqWicB9TX5+vs6dO1dmm/j4+ArqDZyBwgh8xvHjxzVgwABFR0fr+eef13333efqLgHANVWvXr3M9WlpaZo7d27FdAYAnIh8BwD2Wb9+vYYMGaJatWpp3rx5pZ6YI7cCuJ7XX39dmZmZZbY5ePCg6tSpUzEdcjN//vOfNW/evDLbMEOFZ2OOEQAA3NDq1avLXF+jRg0lJiZWUG8AwHnIdwDgeORWANfzv//9T//73//KbNOuXTuFhIRUUI/cy549e3T06NEy23Tu3LmCegNnoDACAAAAAAAAAAB8BpOvAwAAAAAAAAAAn+GRc4wUFxfr6NGjqly5svz8/FzdHQBOYBiGTp06pRo1asjfnxpuWciJgPcjJ9qOnAh4P3Ki7ciJgPcjJ9qOnAh4P3tyokcWRo4ePaqEhARXdwNABfj5559Vs2ZNV3fDrZETAd9BTrw+ciLgO8iJ10dOBHwHOfH6yImA77AlJ3pkYaRy5cqSLgUYGRlZZluTyaRVq1YpJSVFgYGBFdG9CkeM3oEYrRUUFCghIcHyece1kROtEaN3IEZr5ETbkROtEaN3IEZr5ETbkROtEaN3IEZr5ETbkROtEaN3IEZr9uREjyyMmG93i4yMtCmRhYWFKTIy0qv/OIjR8xFj6bi99frIidaI0TsQY+nIiddHTrRGjN6BGEtHTrw+cqI1YvQOxFg6cuL1kROtEaN3IMbS2ZITGXwQAAAAAAAAAAD4DAojAAAAAAAAAADAZ1AYAQAAAAAAAAAAPoPCCAAAAAAAAAAA8BkURgAAAAAAAAAAgM+gMAIAAAAAAAAAAHwGhREAAAAAAAAATjFz5kw1bdpUkZGRioyMVHJysv7zn/9Y1nfs2FF+fn5WP4899pjVNg4fPqwePXooLCxMsbGxGjNmjC5evFjRoQDwIpVc3QEAAAAAAAAA3qlmzZp65ZVXdNttt8kwDM2bN0/333+/vv32WzVq1EiSNHz4cL344ouW54SFhVl+LyoqUo8ePRQfH6+NGzfq2LFjGjRokAIDA/Xyyy9XeDwAvINdd4xQ4QUAAAAAAABgq549e6p79+667bbbdPvtt2vKlCmKiIjQ5s2bLW3CwsIUHx9v+YmMjLSsW7Vqlfbs2aP33ntPzZs3V7du3TR58mTNmDFDFy5ccEVIALyAXXeMUOEF3Idfpp+ru2C3UP9QLWi6wNXdAOCFyIkAcBk5EXB/zvqcmj9LUa9E6VzxOYdv35hoOHyb8C1FRUVauHChzpw5o+TkZMvy999/X++9957i4+PVs2dPvfDCC5Zzips2bVKTJk0UFxdnaZ+amqqRI0dq9+7datGiRYXHAcciJ8IV7CqM9OzZ0+rxlClTNHPmTG3evNlSGDFXeEtjrvCuXr1acXFxat68uSZPnqyxY8dq0qRJCgoKKmcYAAAAAAAAANzRzp07lZycrPPnzysiIkJLlixRYmKiJGnAgAGqXbu2atSooe+//15jx47Vvn37tHjxYklSTk6OVVFEkuVxTk7ONV+zsLBQhYWFlscFBQWSJJPJJJPJVGZ/zeuv186TuVOMof6hTt2us7bvDvvOnd5HZ7EnRnv2Q7nnGKnICi+JrGzE6B3sjdFZSd2ZzH12dCIDAAAAAADuq379+tqxY4fy8/O1aNEipaWlaf369UpMTNSIESMs7Zo0aaLq1aurU6dOOnDggOrVq1fu18zKylJmZmaJ5atWrbIa4aYs2dnZ5X59T+EOMTr7rtHZjWc7ZbvLly93ynbLwx3eR2ezJcazZ8/avD27CyOuqPCSyGxDjN7B1hg9eagBRycyV5k5c6ZmzpypQ4cOSZIaNWqkCRMmqFu3bpIuzbu0fv16q+c8+uijmjVrluXx4cOHNXLkSK1du1YRERFKS0tTVlaWKlUqd90aAAAAAAC3EhQUpFtvvVWSlJSUpK1bt+rNN9/U22+/XaJt69atJUn79+9XvXr1FB8fry1btli1yc3NlaRrjlojSePGjVNGRoblcUFBgRISEpSSkmI1h0lpTCaTsrOz1aVLFwUGBtoWpIdxpxijXolyynZD/UM1u/FsDd011ClDaeU/l+/wbdrLnd5HZ7EnRvMNFbaw+8ybKyq8JLKyEaN3sDdGZ/3TcCbzPyRHJzJXYd4lAAAAAADsV1xcbDU6zJV27NghSapevbokKTk5WVOmTFFeXp5iY2MlXbrgMjIy0nKxdmmCg4MVHBxcYnlgYKDN55bsaeup3CFGZxQtrt6+M17D1fvtSu7wPjqbLTHasw/sLoy4osJLIrONO8To7MmSqv61qtdPlmTr++jsfxrO5OhE5irMuwQAAAAAQNnGjRunbt26qVatWjp16pTmz5+vdevWaeXKlTpw4IDmz5+v7t27q0qVKvr+++81evRotW/fXk2bNpUkpaSkKDExUQMHDtTUqVOVk5Oj8ePHKz09vdTzhQBgC/8b3YC9Fd6dO3cqLy/P0saWCi8AuLuioiJ98MEHpc67VLVqVTVu3Fjjxo2zGiLsWvMuFRQUaPfu3RXafwAAAAAAnCEvL0+DBg1S/fr11alTJ23dulUrV65Uly5dFBQUpNWrVyslJUUNGjTQ008/rb59+2rp0qWW5wcEBGjZsmUKCAhQcnKyHn74YQ0aNMhqdAYAsJddd4xQ4QUAa66Yd6mwsNCqIG0edsxkMl130nrzem+e3J4YvYO9MYb6hzqzO05h7rMtMXrzew0AAADv9u67715zXUJCQom5OUtTu3Ztt5roGoDns6swYq7wHjt2TFFRUWratKmlwvvzzz9r9erVeuONN3TmzBklJCSob9++Gj9+vOX55grvyJEjlZycrPDwcKWlpVHhBeCxXDHvUlZWljIzM0ssX7VqldUcJmXJzs4u9+t7CmL0DrbGuKDpAif3xHlsifHKu83c1cyZMzVz5kwdOnRIktSoUSNNmDBB3bp1kyR17NixxJfeRx99VLNmzbI8Pnz4sEaOHKm1a9cqIiJCaWlpysrKUqVKdo/+CgAAAADANdn1LZMKLwBYc8W8S+PGjVNGRoblcUFBgRISEpSSkqLIyMgy+2symZSdna0uXbp4xDwu5UGM3sHeGKNeiaqAXjlWqH+oZjeebVOM5jvD3FnNmjX1yiuv6LbbbpNhGJo3b57uv/9+ffvtt5Z5l4YPH251QcyVxdyioiL16NFD8fHx2rhxo44dO6ZBgwYpMDBQL7/8coXHAwAAAADwXlx+BwAOZO+8S1OmTFFeXp5iY2Ml2TbvUnBwcKnDD9oyqX152noqYvQOtsZ4rvhcBfTGOWyJ0RPe5549e1o9njJlimbOnKnNmzdbCiNhYWHXLPyuWrVKe/bs0erVqxUXF6fmzZtr8uTJGjt2rCZNmqSgoCCnxwAAAAAA8A03PPk6APiqcePGacOGDTp06JB27typcePGad26dXrooYd04MABTZ48Wdu3b9ehQ4f06aefatCgQdecd+m7777TypUrmXcJgFcoKirSBx98oDNnzig5Odmy/P3331fVqlXVuHFjjRs3zmqIsE2bNqlJkyZWcy+lpqaqoKBAu3fvrtD+AwAAAAC8G3eMAEA5Me8SAFjbuXOnkpOTdf78eUVERGjJkiWWO+AGDBig2rVrq0aNGvr+++81duxY7du3T4sXL5Yk5eTkWBVFJFke5+TkXPM1CwsLre7UMw87ZjKZrjtpvXm9N09uT4zewd4YQ/1DndkdpzD32ZYYvfm9BgAAQMWgMAIA5cS8SwBgrX79+tqxY4fy8/O1aNEipaWlaf369UpMTNSIESMs7Zo0aaLq1aurU6dOOnDggOrVq1fu18zKylJmZmaJ5atWrbKaw6Qs2dnZ5X59T0GM3sHWGBc0XeDknjiPLTFeebcZAAAAUB4URgAAAOAQQUFBuvXWWyVJSUlJ2rp1q9588029/fbbJdq2bt1akrR//37Vq1dP8fHx2rJli1Wb3NxcSbrmvCTSpWENMzIyLI8LCgqUkJCglJQURUZGltlfk8mk7OxsdenSxSPmcSkPd4ox6pUop2w31D9UsxvP1tBdQ50y31D+c/kO36a97H0fnbWvncn8PtoSo/nOMAAAANjHL9PP1V2wW6h/qFMu/KEwAgAAAKcoLi62GubqSjt27JAkVa9eXZKUnJysKVOmKC8vT7GxsZIuXTkeGRlpGY6rNMHBwaXOy2TLpPblaeup3CFGZxQtrt6+M17D1fvtSra+j87e185kS4zu9J4AAADAM1EYAQAAwA0bN26cunXrplq1aunUqVOaP3++1q1bp5UrV+rAgQOaP3++unfvripVquj777/X6NGj1b59ezVt2lSSlJKSosTERA0cOFBTp05VTk6Oxo8fr/T09FILHwAAAAAAlBeFEQAAANywvLw8DRo0SMeOHVNUVJSaNm2qlStXqkuXLvr555+1evVqvfHGGzpz5owSEhLUt29fjR8/3vL8gIAALVu2TCNHjlRycrLCw8OVlpamF1980YVRAQAAAAC8EYURAACcxFljd5rH14x6Jcopw6UYEw2HbxPe7913373muoSEBK1fv/6626hdu7aWL1/uyG4BAAAAAFCCv6s7AAAAAACAN5k5c6aaNm2qyMhIRUZGKjk5Wf/5z38s68+fP6/09HRVqVJFERER6tu3r3Jzc622cfjwYfXo0UNhYWGKjY3VmDFjdPHixYoOBQAAwCtRGAEAAAAAwIFq1qypV155Rdu3b9e2bdt0zz336P7779fu3bslSaNHj9bSpUu1cOFCrV+/XkePHlWfPn0szy8qKlKPHj104cIFbdy4UfPmzdPcuXM1YcIEV4UEAADgVRhKCwAAAAAAB+rZs6fV4ylTpmjmzJnavHmzatasqXfffVfz58/XPffcI0maM2eOGjZsqM2bN6tNmzZatWqV9uzZo9WrVysuLk7NmzfX5MmTNXbsWE2aNElBQUGuCAsAAMBrUBgBAAAAAMBJioqKtHDhQp05c0bJycnavn27TCaTOnfubGnToEED1apVS5s2bVKbNm20adMmNWnSRHFxcZY2qampGjlypHbv3q0WLVqU+lqFhYUqLCy0PC4oKJAkmUwmmUymMvtpXn+9dp7MnWIM9Q916nadtX132Hfu9D46iz0xevN+AABnojACAAAAAICD7dy5U8nJyTp//rwiIiK0ZMkSJSYmaseOHQoKClJ0dLRV+7i4OOXk5EiScnJyrIoi5vXmddeSlZWlzMzMEstXrVqlsLAwm/qdnZ1tUztP5g4xLmi6wKnbn914tlO2u3z5cqdstzzc4X10NltiPHv2bAX0BAC8D4URAAAAAAAcrH79+tqxY4fy8/O1aNEipaWlaf369U59zXHjxikjI8PyuKCgQAkJCUpJSVFkZGSZzzWZTMrOzlaXLl0UGBjo1H66ijvFGPVKlFO2G+ofqtmNZ2vorqE6V3zO4dvPfy7f4du0lzu9j85iT4zmO8MAAPahMAIAAAAAgIMFBQXp1ltvlSQlJSVp69atevPNN/XHP/5RFy5c0MmTJ63uGsnNzVV8fLwkKT4+Xlu2bLHaXm5urmXdtQQHBys4OLjE8sDAQJtPINvT1lO5Q4zOKFpcvX1nvIar99uV3OF9dDZbYvT2fQAAzuLv6g4AAAAAAODtiouLVVhYqKSkJAUGBmrNmjWWdfv27dPhw4eVnJwsSUpOTtbOnTuVl5dnaZOdna3IyEglJiZWeN8BAAC8DXeMAAAAAADgQOPGjVO3bt1Uq1YtnTp1SvPnz9e6deu0cuVKRUVFadiwYcrIyFBMTIwiIyP1xBNPKDk5WW3atJEkpaSkKDExUQMHDtTUqVOVk5Oj8ePHKz09vdQ7QgAAAGAfCiMAAAAAADhQXl6eBg0apGPHjikqKkpNmzbVypUr1aVLF0nStGnT5O/vr759+6qwsFCpqal66623LM8PCAjQsmXLNHLkSCUnJys8PFxpaWl68cUXXRUSAACAV6EwAgAAAACAA7377rtlrg8JCdGMGTM0Y8aMa7apXbu2li9f7uiuAQAAQMwxAgAAAAAAAAAAfAiFEQAAAAAAAABOMXPmTDVt2lSRkZGKjIxUcnKy/vOf/1jWnz9/Xunp6apSpYoiIiLUt29f5ebmWm3j8OHD6tGjh8LCwhQbG6sxY8bo4sWLFR0KAC9iV2GERAYAAAAAAADAVjVr1tQrr7yi7du3a9u2bbrnnnt0//33a/fu3ZKk0aNHa+nSpVq4cKHWr1+vo0ePqk+fPpbnFxUVqUePHrpw4YI2btyoefPmae7cuZowYYKrQgLgBewqjJDIAAAAAAAAANiqZ8+e6t69u2677TbdfvvtmjJliiIiIrR582bl5+fr3Xff1d/+9jfdc889SkpK0pw5c7Rx40Zt3rxZkrRq1Srt2bNH7733npo3b65u3bpp8uTJmjFjhi5cuODi6AB4KrsmX+/Zs6fV4ylTpmjmzJnavHmzatasqXfffVfz58/XPffcI0maM2eOGjZsqM2bN6tNmzaWRLZ69WrFxcWpefPmmjx5ssaOHatJkyYpKCjIcZEBAAAAAAAAcBtFRUVauHChzpw5o+TkZG3fvl0mk0mdO3e2tGnQoIFq1aqlTZs2qU2bNtq0aZOaNGmiuLg4S5vU1FSNHDlSu3fvVosWLUp9rcLCQhUWFloeFxQUSJJMJpNMJlOZ/TSvv147T+ZOMYb6hzp1u87avjvsO3vfR2ftC2cy99mWGO15T+wqjFypIhMZAAAAAAAAAM+0c+dOJScn6/z584qIiNCSJUuUmJioHTt2KCgoSNHR0Vbt4+LilJOTI0nKycmxOpdoXm9edy1ZWVnKzMwssXzVqlUKCwuzqd/Z2dk2tfNk7hDjgqYLnLr92Y1nO2W7y5cvd8p2y8PW99HZ+9qZbInx7NmzNm/P7sKIKxIZFd6yuVOMVHhvvA9UeGVzG1ebOXOmZs6cqUOHDkmSGjVqpAkTJqhbt26SLs279PTTT+uDDz5QYWGhUlNT9dZbb1nlwcOHD2vkyJFau3atIiIilJaWpqysLFWqVO66NQAAAAAAbqV+/frasWOH8vPztWjRIqWlpWn9+vVOfc1x48YpIyPD8rigoEAJCQlKSUlRZGRkmc81mUzKzs5Wly5dFBgY6NR+uoo7xRj1SpRTthvqH6rZjWdr6K6hOld8zuHbz38u3+HbtJe976Oz9rUzmd9HW2I01w1sYfeZN1ckMiq8tnGHGKnw3jgqvJfYU+F1FfO8S7fddpsMw9C8efN0//3369tvv1WjRo00evRoffbZZ1q4cKGioqI0atQo9enTR1999ZWky/MuxcfHa+PGjTp27JgGDRqkwMBAvfzyyy6ODgAAAAAAxwgKCtKtt94qSUpKStLWrVv15ptv6o9//KMuXLigkydPWl1snZubq/j4eElSfHy8tmzZYrW93Nxcy7prCQ4OVnBwcInlgYGBNhcC7GnrqdwhRmcULa7evjNew9X77Uq2vo/O3tfOZEuM9rwndhdGXJHIqPCWzZ1ipMJbflR4rdlT4XUV5l0CAAAAAMB+xcXFKiwsVFJSkgIDA7VmzRr17dtXkrRv3z4dPnxYycnJkqTk5GRNmTJFeXl5io2NlXTpgsvIyEglJia6LAYAnu2Gx2qpiERGhdc27hAjFd4bR4X3chtPwgRy7sOdYmR4wRvvA8MLyuY2AAAAgDsaN26cunXrplq1aunUqVOaP3++1q1bp5UrVyoqKkrDhg1TRkaGYmJiFBkZqSeeeELJyclq06aNJCklJUWJiYkaOHCgpk6dqpycHI0fP17p6emlni8EAFvYVRghkQGANSaQc1/uECPDC944hhe8xBOGF2TeJQAAAJQmLy9PgwYN0rFjxxQVFaWmTZtq5cqV6tKliyRp2rRp8vf3V9++fa2OE80CAgK0bNkyjRw5UsnJyQoPD1daWppefPFFV4UEwAvY9S2TRAYA1phAzv24U4wML1h+DC9ozROGF2TeJQAAvJ9fpp+ru6BQ/1AtaLpAUa9E2XQsbEw0KqBXKMu7775b5vqQkBDNmDFDM2bMuGab2rVru9UFXAA8n12FERIZAFhjAjn35Q4xMrzgjWN4wctt3B3zLgEAAAAAPIW/qzsAAN6ktHmXzEqbd2nnzp3Ky8uztGECOQDeoKioSB988IHN8y5Juua8SwUFBdq9e3eFxwAAAAAA8F4M2AwA5cS8SwBgzRXzLhUWFqqwsNDy2DzsmMlkuu6k9eb13jy5vTvFGOof6tTtOmv77rDv7H0fnbUvnMncZ1tidIf3BAAAAJ6NwggAlBPzLgGANVfMu5SVlaXMzMwSy1etWqWwsDCbtpGdne3obrkdd4hxQdMFTt3+7MaznbJddxoG2Nb30dn72plsifHs2bMV0BMA3sId5kWxl3keFQCA81AYAYByYt4lALDminmXxo0bp4yMDMvjgoICJSQkKCUlRZGRkWX212QyKTs7W126dPGIeVzKw51ijHolyinbDfUP1ezGszV011CnzDeU/1y+w7dpL3vfR2fta2cyv4+2xGi+MwwAAAAoLwojAAAAcIrS5l3q27evpNLnXZoyZYry8vIUGxsrybZ5l4KDg0sdftCWSe3L09ZTuUOMzihaXL19Z7yGq/fblWx9H529r53Jlhjd6T0BAACAZ6IwAgAAgBvGvEsAAAAAAE9BYQQAAAA3jHmXAAAAAACegsIIAAAAbhjzLgEAAAAAPIW/qzsAAAAAAAAAAABQUSiMAAAAAAAAAAAAn0FhBAAAAAAAAAAA+AwKIwAAAAAAOFBWVpbuuOMOVa5cWbGxserVq5f27dtn1aZjx47y8/Oz+nnssces2hw+fFg9evRQWFiYYmNjNWbMGF28eLEiQwEAAPBKTL4OAAAAAIADrV+/Xunp6brjjjt08eJFPf/880pJSdGePXsUHh5uaTd8+HC9+OKLlsdhYWGW34uKitSjRw/Fx8dr48aNOnbsmAYNGqTAwEC9/PLLFRoPAACAt6EwAgAAAACAA61YscLq8dy5cxUbG6vt27erffv2luVhYWGKj48vdRurVq3Snj17tHr1asXFxal58+aaPHmyxo4dq0mTJikoKMipMQAAAHgzhtICAAAAAMCJ8vPzJUkxMTFWy99//31VrVpVjRs31rhx43T27FnLuk2bNqlJkyaKi4uzLEtNTVVBQYF2795dMR0HAADwUtwxAgAAAACAkxQXF+upp57SnXfeqcaNG1uWDxgwQLVr11aNGjX0/fffa+zYsdq3b58WL14sScrJybEqikiyPM7JySn1tQoLC1VYWGh5XFBQIEkymUwymUxl9tO8/nrtPJk7xRjqH+rU7Tpr++7Al2K05W/VHf6eAcATURgBAAAAAMBJ0tPTtWvXLn355ZdWy0eMGGH5vUmTJqpevbo6deqkAwcOqF69euV6raysLGVmZpZYvmrVKqv5S8qSnZ1drtf2JO4Q44KmC5y6/dmNZzt1++7AF2K05W/1yjvNAAC2ozACAAAAAIATjBo1SsuWLdOGDRtUs2bNMtu2bt1akrR//37Vq1dP8fHx2rJli1Wb3NxcSbrmvCTjxo1TRkaG5XFBQYESEhKUkpKiyMjIMl/fZDIpOztbXbp0UWBg4HVj80TuFGPUK1FO2W6of6hmN56tobuG6lzxOae8hqv5Uoy2/K2a7wwDANiHwggAAAAAAA5kGIaeeOIJLVmyROvWrVPdunWv+5wdO3ZIkqpXry5JSk5O1pQpU5SXl6fY2FhJl64ej4yMVGJiYqnbCA4OVnBwcInlgYGBNhcC7GnrqdwhRmef0D9XfM5riwZmvhCjLX+rrv5bBgBPRWEEAAAAAAAHSk9P1/z58/XJJ5+ocuXKljlBoqKiFBoaqgMHDmj+/Pnq3r27qlSpou+//16jR49W+/bt1bRpU0lSSkqKEhMTNXDgQE2dOlU5OTkaP3680tPTSy1+AAAAwHb+ru4AAAAAAADeZObMmcrPz1fHjh1VvXp1y8+HH34oSQoKCtLq1auVkpKiBg0a6Omnn1bfvn21dOlSyzYCAgK0bNkyBQQEKDk5WQ8//LAGDRqkF1980VVhAQAAeA0KIwAAAAAAOJBhGKX+DB48WJKUkJCg9evX67ffftP58+f1448/aurUqSXmAaldu7aWL1+us2fP6vjx43r99ddVqRIDPwDwLFlZWbrjjjtUuXJlxcbGqlevXtq3b59Vm44dO8rPz8/q57HHHrNqc/jwYfXo0UNhYWGKjY3VmDFjdPHixYoMBYAXsaswQiIDAAAAAAAAYKv169crPT1dmzdvVnZ2tkwmk1JSUnTmzBmrdsOHD9exY8csP1OnTrWsKyoqUo8ePXThwgVt3LhR8+bN09y5czVhwoSKDgeAl7DrUhNzIrvjjjt08eJFPf/880pJSdGePXsUHh5uaTd8+HCr23vDwsIsv5sTWXx8vDZu3Khjx45p0KBBCgwM1Msvv+yAkAAAAAAAAAC4gxUrVlg9njt3rmJjY7V9+3a1b9/esjwsLEzx8fGlbmPVqlXas2ePVq9erbi4ODVv3lyTJ0/W2LFjNWnSJAUFBTk1BgDex647RlasWKHBgwerUaNGatasmebOnavDhw9r+/btVu3Micz8c+XtwOZE9t5776l58+bq1q2bJk+erBkzZujChQuOiQoAAAAAAACA28nPz5ckxcTEWC1///33VbVqVTVu3Fjjxo3T2bNnLes2bdqkJk2aKC4uzrIsNTVVBQUF2r17d8V0HIBXuaHBSctKZO+9957i4+PVs2dPvfDCC5a7Rq6VyEaOHKndu3erRYsWN9IlAAAAAAAAAG6ouLhYTz31lO688041btzYsnzAgAGqXbu2atSooe+//15jx47Vvn37tHjxYklSTk6O1blESZbHOTk5pb5WYWGhCgsLLY8LCgokSSaTSSaTqcx+mtdfr50nc6cYQ/1DnbpdZ23fHfadve+js/aFM5n7bEuM9rwn5S6MkMjchzvFSCK78T6QyGRzG1fLysrS4sWLtXfvXoWGhqpt27Z69dVXVb9+fUubjh07av369VbPe/TRRzVr1izL48OHD2vkyJFau3atIiIilJaWpqysLCbWBAAAAAB4lfT0dO3atUtffvml1fIRI0ZYfm/SpImqV6+uTp066cCBA6pXr165XisrK0uZmZkllq9atcpq2P+yZGdnl+u1PYk7xLig6QKnbn9249lO2e7y5cudst3ysPV9dPa+diZbYrzyTrPrKfdZNxKZ+3GHGElkN45Edok9icxVmHcJAAAAAADbjBo1SsuWLdOGDRtUs2bNMtu2bt1akrR//37Vq1dP8fHx2rJli1Wb3NxcSbrmvCTjxo1TRkaG5XFBQYESEhKUkpJiNex/aUwmk7Kzs9WlSxcFBgZeNzZP5E4xRr0S5ZTthvqHanbj2Rq6a6jOFZ9z+Pbzn8t3+DbtZe/76Kx97Uzm99GWGM03VNiiXIUREpl7cacYSWTlRyKzZk8icxUmkAMAAAAAoGyGYeiJJ57QkiVLtG7dOtWtW/e6z9mxY4ckqXr16pKk5ORkTZkyRXl5eYqNjZV06aLLyMhIJSYmlrqN4OBgBQcHl1geGBho8/kze9p6KneI0Rnn+q7evjNew9X77Uq2vo/O3tfOZEuM9rwndhVGSGTuzR1iJJHdOBLZ5TaepqLmXWJ4wbK5U4wML3jjfWB4QdncxtUYXhAAAAClSU9P1/z58/XJJ5+ocuXKlqH0o6KiFBoaqgMHDmj+/Pnq3r27qlSpou+//16jR49W+/bt1bRpU0lSSkqKEhMTNXDgQE2dOlU5OTkaP3680tPTSz1nCADXY9c3TBIZAJSuIuddYnhB27hDjAwveOMYXvAShhdkeEEAAABPNXPmTEmXLpK50pw5czR48GAFBQVp9erVeuONN3TmzBklJCSob9++Gj9+vKVtQECAli1bppEjRyo5OVnh4eFKS0uzOq4EAHvYVRghkQFA6Spy3iWGFyybO8XI8ILlx/CC1hhekOEFAQAAPJVhGGWuT0hIKHFXcWlq167tVhdxAfBsdg+lVRYSGQBfVNHzLjG8oG3cIUaGF7xxDC94uY2nqajhBQEAAAAAsBeDNQNAOblq3iUAcHcVObwg8y6VzZ1iZN6lG+8D8y7J5jYAAABAWSiMAEA5Me8SAJSuIocXZN4l27hDjMy7dOOYd+kST5h3CQAAAO6NwggAlBPzLgFASRU9vCDzLpXNnWJk3qXyY94la54w7xIAAADcG4URACgn5l0CgMtcNbwg8y7Zxh1iZN6lG8e8S5fbAAAAADeCwggAAABuGMMLAgAAAAA8hb+rOwAAAADPN3PmTOXn56tjx46qXr265efDDz+UJMvwgikpKWrQoIGefvpp9e3bV0uXLrVswzy8YEBAgJKTk/Xwww9r0KBBDC8IAAAAAHAo7hgBAADADWN4QQAAAACAp+COEQAAAAAAAAAA4DMojAAAAAAAAAAAAJ9BYQQAAAAAAAAAAPgMCiMAAAAAAAAAAMBnUBgBAAAAAAAAAAA+g8IIAAAAAAAAAADwGRRGAAAAAAAAAACAz6AwAgAAAACAA2VlZemOO+5Q5cqVFRsbq169emnfvn1Wbc6fP6/09HRVqVJFERER6tu3r3Jzc63aHD58WD169FBYWJhiY2M1ZswYXbx4sSJDAQAA8EoURgAAAAAAcKD169crPT1dmzdvVnZ2tkwmk1JSUnTmzBlLm9GjR2vp0qVauHCh1q9fr6NHj6pPnz6W9UVFRerRo4cuXLigjRs3at68eZo7d64mTJjgipAAAAC8SiVXdwAAAAAAAG+yYsUKq8dz585VbGystm/frvbt2ys/P1/vvvuu5s+fr3vuuUeSNGfOHDVs2FCbN29WmzZttGrVKu3Zs0erV69WXFycmjdvrsmTJ2vs2LGaNGmSgoKCXBEaAACAV6AwAgAAAACAE+Xn50uSYmJiJEnbt2+XyWRS586dLW0aNGigWrVqadOmTWrTpo02bdqkJk2aKC4uztImNTVVI0eO1O7du9WiRYsSr1NYWKjCwkLL44KCAkmSyWSSyWQqs4/m9ddr58ncKcZQ/1CnbtdZ23cHvhSjLX+r7vD3DACeiMIIAAAAAABOUlxcrKeeekp33nmnGjduLEnKyclRUFCQoqOjrdrGxcUpJyfH0ubKooh5vXldabKyspSZmVli+apVqxQWFmZTf7Ozs21q58ncIcYFTRc4dfuzG8926vbdgS/EaMvf6tmzZyugJwDgfSiMAAAAAADgJOnp6dq1a5e+/PJLp7/WuHHjlJGRYXlcUFCghIQEpaSkKDIyssznmkwmZWdnq0uXLgoMDHR2V13CnWKMeiXKKdsN9Q/V7MazNXTXUJ0rPueU13A1X4rRlr9V851hAAD7UBgBAAAAAMAJRo0apWXLlmnDhg2qWbOmZXl8fLwuXLigkydPWt01kpubq/j4eEubLVu2WG0vNzfXsq40wcHBCg4OLrE8MDDQ5kKAPW09lTvE6OwT+ueKz3lt0cDMF2K05W/V1X/LAOCp/F3dAQAAAAAAvIlhGBo1apSWLFmizz//XHXr1rVan5SUpMDAQK1Zs8aybN++fTp8+LCSk5MlScnJydq5c6fy8vIsbbKzsxUZGanExMSKCQQAAMBLURgBAAAAAMCB0tPT9d5772n+/PmqXLmycnJylJOTo3PnLl3dHhUVpWHDhikjI0Nr167V9u3bNWTIECUnJ6tNmzaSpJSUFCUmJmrgwIH67rvvtHLlSo0fP17p6eml3hUCAO4qKytLd9xxhypXrqzY2Fj16tVL+/bts2pz/vx5paenq0qVKoqIiFDfvn0td8mZHT58WD169FBYWJhiY2M1ZswYXbx4sSJDAeBF7CqMkMgAAAAAACjbzJkzlZ+fr44dO6p69eqWnw8//NDSZtq0abr33nvVt29ftW/fXvHx8Vq8eLFlfUBAgJYtW6aAgAAlJyfr4Ycf1qBBg/Tiiy+6IiQAKLf169crPT1dmzdvVnZ2tkwmk1JSUnTmzBlLm9GjR2vp0qVauHCh1q9fr6NHj6pPnz6W9UVFRerRo4cuXLigjRs3at68eZo7d64mTJjgipAAeAG75hgxJ7I77rhDFy9e1PPPP6+UlBTt2bNH4eHhki4lss8++0wLFy5UVFSURo0apT59+uirr76SdDmRxcfHa+PGjTp27JgGDRqkwMBAvfzyy46PEAAAAACACmQYxnXbhISEaMaMGZoxY8Y129SuXVvLly93ZNcAoMKtWLHC6vHcuXMVGxur7du3q3379srPz9e7776r+fPn65577pEkzZkzRw0bNtTmzZvVpk0brVq1Snv27NHq1asVFxen5s2ba/LkyRo7dqwmTZqkoKAgV4QGwIPZVRghkQHAZVlZWVq8eLH27t2r0NBQtW3bVq+++qrq169vaXP+/Hk9/fTT+uCDD1RYWKjU1FS99dZbiouLs7Q5fPiwRo4cqbVr1yoiIkJpaWnKyspSpUp2pWgAAAAAANxefn6+JCkmJkaStH37dplMJnXu3NnSpkGDBqpVq5Y2bdqkNm3aaNOmTWrSpInVd+nU1FSNHDlSu3fvVosWLUq8TmFhoQoLCy2PCwoKJEkmk0kmk6nMPprXX6+dJ3OnGEP9Q526XWdt3x32nb3vo7P2hTOZ+2xLjPa8Jzd01o1E5h7cKUYS2Y33gUQmm9u4GnfRAQAAAABgu+LiYj311FO688471bhxY0lSTk6OgoKCFB0dbdU2Li5OOTk5ljZXnks0rzevK01WVpYyMzNLLF+1apXCwsJs6m92drZN7TyZO8S4oOkCp25/duPZTtmuO93Vaev76Ox97Uy2xHj27Fmbt1fuwgiJzP24Q4wkshtHIrvEnkTmKtxFBwAAAACA7dLT07Vr1y59+eWXTn+tcePGKSMjw/K4oKBACQkJSklJUWRkZJnPNZlMys7OVpcuXRQYGOjsrrqEO8UY9UqUU7Yb6h+q2Y1na+iuoTpXfM7h289/Lt/h27SXve+js/a1M5nfR1tiNN9QYYtyF0ZIZO7DnWIkkZUficyaPYnMXVTUXXQA4I4YXhAAAABlGTVqlJYtW6YNGzaoZs2aluXx8fG6cOGCTp48aXWxdW5uruLj4y1ttmzZYrW93Nxcy7rSBAcHKzg4uMTywMBAm8+f2dPWU7lDjM4413f19p3xGq7eb1ey9X109r52JltitOc9Kdc3TBKZe3KHGElkN45EdrmNJ6nIu+gYXrBs7hQjwwveeB8YXlA2t3E1hhcEALiKX6afTe1C/UO1oOkCRb0S5dHfpwBPYxiGnnjiCS1ZskTr1q1T3bp1rdYnJSUpMDBQa9asUd++fSVJ+/bt0+HDh5WcnCxJSk5O1pQpU5SXl6fY2FhJl0ajiIyMVGJiYsUGBMAr2FUYIZEBQOkq8i46hhe0jTvEyPCCN47hBS9heEGGFwQAAPBU6enpmj9/vj755BNVrlzZchFgVFSUQkNDFRUVpWHDhikjI0MxMTGKjIzUE088oeTkZLVp00aSlJKSosTERA0cOFBTp05VTk6Oxo8fr/T09FIvpgaA67GrMEIiA4CSKvouOoYXLJs7xcjwguXH8ILWGF6Q4QUBAAA81cyZMyVJHTt2tFo+Z84cDR48WJI0bdo0+fv7q2/fvlZDrpoFBARo2bJlGjlypJKTkxUeHq60tDS9+OKLFRUGAC9jV2GERAYAl7nqLjqGF7SNO8TI8II3juEFL7fxJAwv6D7cKUaGF7zxPjC8oGxuAwBwH4ZhXLdNSEiIZsyYoRkzZlyzTe3atd3q7nYAns3uobSuh0QGwFdwFx0AlI7hBd2PO8TI8II3juEFL/GE4QUBAHAV5l0CbFOuydcBANxFBwClYXhB9+JOMTK8YPkxvKA1TxxeEAAAAO6FwggAlBN30QHAZQwv6N7cIUaGF7xxDC94uQ0AAABwIyiMAAAAK7beeu1M3NbteRheEAAAAADgKSiMAAAA4IYxvCAAAAAAwFNQGHFjTJYEAAA8BcMLAgAAAPAljLbg2fxd3QEAAAAAAAAAAICKQmEEAAAAAAAAAAD4DIbSAsStbwAAAAAAAADgKyiMAAAAAB6GuegAAAAAoPwYSgsAAAAAAAAAAPgMCiMAAAAAAAAAAMBnUBgBAAAAAAAAAAA+g8IIAAAAAAAAAADwGUy+DgDwCEw0DAAAAAAAAEfgjhEAAAAAAAAAAOAzKIwAAAAAAOBgGzZsUM+ePVWjRg35+fnp448/tlo/ePBg+fn5Wf107drVqs2JEyf00EMPKTIyUtHR0Ro2bJhOnz5dgVEAAAB4JwojAAAAAAA42JkzZ9SsWTPNmDHjmm26du2qY8eOWX4WLFhgtf6hhx7S7t27lZ2drWXLlmnDhg0aMWKEs7sOAADg9ZhjBAAAAAAAB+vWrZu6detWZpvg4GDFx8eXuu6HH37QihUrtHXrVrVs2VKSNH36dHXv3l2vv/66atSo4fA+AwAA+AoKIwAAAABwDX6Zfq7ugkL9Q7Wg6QJFvRKlc8XnXN0dONC6desUGxurm266Sffcc49eeuklValSRZK0adMmRUdHW4oiktS5c2f5+/vr66+/Vu/evV3VbQAAAI9HYQQAAAAAgArWtWtX9enTR3Xr1tWBAwf0/PPPq1u3btq0aZMCAgKUk5Oj2NhYq+dUqlRJMTExysnJKXWbhYWFKiwstDwuKCiQJJlMJplMpjL7Y15/vXbuKNQ/1K52trb3RMToHcyx2fJ59MTPLAC4AwojAAAAAABUsP79+1t+b9KkiZo2bap69epp3bp16tSpU7m2mZWVpczMzBLLV61apbCwMJu2kZ2dXa7XdqUFTRdcv9EVZjee7aSeuA9i9A62fB7Pnj1bAT0BAO9DYQQAAAAAABe75ZZbVLVqVe3fv1+dOnVSfHy88vLyrNpcvHhRJ06cuOa8JOPGjVNGRoblcUFBgRISEpSSkqLIyMgyX99kMik7O1tdunRRYGDgjQdUgaJeibKpXah/qGY3nq2hu4Z67bB0xOgdzDHa8nk03xkGALCP3YWRDRs26LXXXtP27dt17NgxLVmyRL169bKsHzx4sObNm2f1nNTUVK1YscLy+MSJE3riiSe0dOlS+fv7q2/fvnrzzTcVERFR/kgAAAAAAPBQv/zyi3777TdVr15dkpScnKyTJ09q+/btSkpKkiR9/vnnKi4uVuvWrUvdRnBwsIKDg0ssDwwMtLnYYU9bd2HvyfFzxee89oS6GTF6B1s+j57yeeV8IgB342/vE86cOaNmzZppxowZ12zTtWtXHTt2zPKzYIH1ba0PPfSQdu/erezsbC1btkwbNmzQiBEj7O89AAAAAABu6PTp09qxY4d27NghSTp48KB27Nihw4cP6/Tp0xozZow2b96sQ4cOac2aNbr//vt16623KjU1VZLUsGFDde3aVcOHD9eWLVv01VdfadSoUerfv79q1KjhwsgAwH6cTwTgbuwujHTr1k0vvfSSevfufc02wcHBio+Pt/zcdNNNlnU//PCDVqxYoX/+859q3bq12rVrp+nTp+uDDz7Q0aNHyxcFALjIhg0b1LNnT9WoUUN+fn76+OOPrdYPHjxYfn5+Vj9du3a1anPixAk99NBDioyMVHR0tIYNG6bTp09XYBQAAABwtG3btqlFixZq0aKFJCkjI0MtWrTQhAkTFBAQoO+//1733Xefbr/9dg0bNkxJSUn64osvrO74eP/999WgQQN16tRJ3bt3V7t27fTOO++4KiQAKDfOJwJwN06ZY2TdunWKjY3VTTfdpHvuuUcvvfSSqlSpIknatGmToqOj1bJlS0v7zp07y9/fX19//XWZCRIA3I35qpehQ4eqT58+pbbp2rWr5syZY3l89fAGDz30kI4dO6bs7GyZTCYNGTJEI0aM0Pz5853adwAAADhPx44dZRjGNdevXLnyutuIiYnhmBCAz3D0+cTCwkIVFhZaHpvnYzGZTDKZTGX2xbz+eu3cUah/qF3tbG3viYjRO5hjs+XzaM9n1uGFka5du6pPnz6qW7euDhw4oOeff17dunXTpk2bFBAQoJycHMXGxlp3olIlxcTEKCcnp9Rtkshsa+cLHwBi9GzOSmSu1K1bN3Xr1q3MNuarXkpjvupl69atlgO86dOnq3v37nr99dcZJgGAR2HsaAAAAJSHM84nZmVlKTMzs8TyVatWKSwszKZ+ZWdn2x+Miy1ouuD6ja4wu/FsJ/XEfRCjd7Dl83j27Fmbt+fwwkj//v0tvzdp0kRNmzZVvXr1tG7dOnXq1Klc2ySR2cYXPgDE6B0cncjcHVe9OAbF4suI0Tt4Y7GYu+gAAABQHs44nzhu3DhlZGRYHhcUFCghIUEpKSmKjIws87kmk0nZ2dnq0qWLx0xwbxb1SpRN7UL9QzW78WwN3TVU54rPOblXrkGM3sEcoy2fR/M5Mls4ZSitK91yyy2qWrWq9u/fr06dOik+Pl55eXlWbS5evKgTJ05c84pqElnZfOkDQIyezVmJzJ1x1YvjUCwuiRi9gzcVi7mLDgAAAI7giPOJwcHBJS7CkaTAwECbzxHa09Zd2HtO6VzxOa89D2VGjN7Bls+jPZ9XpxdGfvnlF/3222+qXr26JCk5OVknT57U9u3blZSUJEn6/PPPVVxcrNatW5e6DRKZ7e29/QNAjN7B0YnMnXHVi+NQLL6MGL2DLxaLJeaiAwAAwPU54nwiAJTF7sLI6dOntX//fsvjgwcPaseOHYqJiVFMTIwyMzPVt29fxcfH68CBA3r22Wd16623KjU1VZLUsGFDde3aVcOHD9esWbNkMpk0atQo9e/fn6sAAXg9rnopP4rFJRGjd/ClYjFz0TkOwwteRozewRuHFwQAXMb5RADuxu7CyLZt23T33XdbHpuvWk5LS9PMmTP1/fffa968eTp58qRq1KihlJQUTZ482eok3vvvv69Ro0apU6dOlkk1//73vzsgHABwb1z1AsCXMRed4zC8YEnE6B28aXhBAMBlnE8E4G7sLox07NhRhmFcc/3KlSuvu42YmBgm0ATgFbjqBQDKj7noyo/hBS8jRu/gq8MLAoCv4HwiAHfj9DlGAMCbcdULAJQfc9GVH8MLlkSM3sGXhhcEAACA61AYAYAbwFUvAHAZd9EBAAAAADyBv6s7AAAAAO+wbds2tWjRQi1atJB06S66Fi1aaMKECQoICND333+v++67T7fffruGDRumpKQkffHFFyXuomvQoIE6deqk7t27q127dnrnnXdcFRIAAAAAwAtxxwgAAAAcgrvoAAAAAACegDtGAAAAAAAAAACAz6AwAgAAAAAAAAAAfAaFEQAAAAAAAAAA4DMojAAAAAAAAAAAAJ9BYQQAAAAAAAAAAPgMCiMAAAAAAAAAAMBnUBgBAAAAAAAAAAA+g8IIAAAAAAAAAADwGRRGAAAAAAAAAACAz6AwAgAAAAAAAAAAfAaFEQAAAAAAAAAA4DMojAAAAAAAAAAAAJ9BYQQAAAAAAAAAAPgMCiMAAAAAAAAAAMBnUBgBAAAAAMDBNmzYoJ49e6pGjRry8/PTxx9/bLXeMAxNmDBB1atXV2hoqDp37qwff/zRqs2JEyf00EMPKTIyUtHR0Ro2bJhOnz5dgVEAAAB4JwojAAAAAAA42JkzZ9SsWTPNmDGj1PVTp07V3//+d82aNUtff/21wsPDlZqaqvPnz1vaPPTQQ9q9e7eys7O1bNkybdiwQSNGjKioEAAAALxWJVd3AAAAAAAAb9OtWzd169at1HWGYeiNN97Q+PHjdf/990uS/u///k9xcXH6+OOP1b9/f/3www9asWKFtm7dqpYtW0qSpk+fru7du+v1119XjRo1KiwWAAAAb0NhBAAAAACACnTw4EHl5OSoc+fOlmVRUVFq3bq1Nm3apP79+2vTpk2Kjo62FEUkqXPnzvL399fXX3+t3r17l9huYWGhCgsLLY8LCgokSSaTSSaTqcw+mddfr507CvUPtaudre09ETF6B3NstnwePfEzCwDuwO7CyIYNG/Taa69p+/btOnbsmJYsWaJevXpZ1huGoYkTJ+of//iHTp48qTvvvFMzZ87UbbfdZmlz4sQJPfHEE1q6dKn8/f3Vt29fvfnmm4qIiHBIUAAAAAAAuKucnBxJUlxcnNXyuLg4y7qcnBzFxsZara9UqZJiYmIsba6WlZWlzMzMEstXrVqlsLAwm/qWnZ1tUzt3sqDpArvaz24820k9cR/E6B1s+TyePXu2Anpy4zifCMDd2F0YMY+TOnToUPXp06fEevM4qfPmzVPdunX1wgsvKDU1VXv27FFISIikS+OkHjt2TNnZ2TKZTBoyZIhGjBih+fPn33hEAAAAAAD4oHHjxikjI8PyuKCgQAkJCUpJSVFkZGSZzzWZTMrOzlaXLl0UGBjo7K46VNQrUTa1C/UP1ezGszV011CdKz7n5F65BjF6B3OMtnwezXeGuTvOJwJwN3YXRhgnFQAu46oXAAAA2Cs+Pl6SlJubq+rVq1uW5+bmqnnz5pY2eXl5Vs+7ePGiTpw4YXn+1YKDgxUcHFxieWBgoM3FDnvaugt7T46fKz7ntSfUzYjRO9jyefSUzyvnEwG4G4fOMeKscVIBwF1x1QsAXEaxGABsU7duXcXHx2vNmjWWQkhBQYG+/vprjRw5UpKUnJyskydPavv27UpKSpIkff755youLlbr1q1d1XUAcDjmXXIs5l26jBi9g7PmXXJoYcRZ46SSyGxr5wsfAGL0bN44gRxXvQDAZRSLAeCy06dPa//+/ZbHBw8e1I4dOxQTE6NatWrpqaee0ksvvaTbbrvNkhNr1KhhKSg3bNhQXbt21fDhwzVr1iyZTCaNGjVK/fv35xgRgFdh3iXHYt6lkojROzh63iWHFkachURmG1/4ABCjd/CmCeTKwlUvjkWx+DJi9A4UiykWA/Bu27Zt09133215bJ77Iy0tTXPnztWzzz6rM2fOaMSIETp58qTatWunFStWWArFkvT+++9r1KhR6tSpk+Uuur///e8VHgsAeCLmXSqbL83XQ4yezVnzLjm0MOKscVJJZGXzpQ8AMXo2b5xArixc9eJYFItLIkbvQLGYIVcBeKeOHTvKMIxrrvfz89OLL76oF1988ZptYmJiuGMOgNdj3iXHYt6lkojROzh63iWHFkacNU4qicz29t7+ASBG7+BNE8i5AsXisvlSkZEYPRvFYlkeM+Sq/biL7jJi9A7eeBcdAMA2zLsEwBXsLowwTioA2IarXhyLYnFJxOgdKBbfGO6is40v3H1FjN7BV+6iAwBfw/lEAO7G7sII46QCgG246gUALmPIVcfiLrrLiNE7+NpddADgazifCMDd2F0YYZxUALiMq14AwDYMuepY3EVXEjF6B+6iAwDvxPlEAO7GoXOMAICv4aoXALiMYjEAAAAAwBNQGAGAG8BVLwBwGcViAAAAAIAnoDACAAAAh6BYDAAAAADwBP6u7gAAAAAAAAAAAEBFoTACAAAAAAAAAAB8BoURAAAAAAAAAADgMyiMAAAAAAAAAAAAn0FhBAAAAAAAAAAA+AwKIwAAAAAAAAAAwGdQGAEAAAAAAAAAAD6DwggAAAAAAAAAAPAZFEYAAAAAAAAAAIDPoDACAAAAAAAAAAB8BoURAAAAAAAAAADgMyiMAAAAAAAAAAAAn0FhBAAAAAAAAAAA+AwKIwAAAAAAAAAAwGdQGAEAAAAAAAAAAD6DwggAAAAAAAAAAPAZFEYAAAAAAAAAAIDPoDACAAAAAAAAAAB8BoURAAAAAAAq2KRJk+Tn52f106BBA8v68+fPKz09XVWqVFFERIT69u2r3NxcF/YYAADAe1AYAQAAAADABRo1aqRjx45Zfr788kvLutGjR2vp0qVauHCh1q9fr6NHj6pPnz4u7C0AAID3cHhhhKteAOAyciIAAACupVKlSoqPj7f8VK1aVZKUn5+vd999V3/72990zz33KCkpSXPmzNHGjRu1efNmF/caAByP784AKlolZ2y0UaNGWr169eUXqXT5ZUaPHq3PPvtMCxcuVFRUlEaNGqU+ffroq6++ckZXAMDlyIkAcMmkSZOUmZlptax+/frau3evpEtfeJ9++ml98MEHKiwsVGpqqt566y3FxcW5orsA4HQ//vijatSooZCQECUnJysrK0u1atXS9u3bZTKZ1LlzZ0vbBg0aqFatWtq0aZPatGlT6vYKCwtVWFhoeVxQUCBJMplMMplMZfbFvP567dxRqH+oXe1sbe+JiNE7mGOz5fPoiZ/Za+G7M4CK5JTCiPmql6uZr3qZP3++7rnnHknSnDlz1LBhQ23evPmaB3cA4MnIiQBwGV94AeCS1q1ba+7cuapfv76OHTumzMxM3XXXXdq1a5dycnIUFBSk6Ohoq+fExcUpJyfnmtvMysoqUYCWpFWrViksLMymfmVnZ9sVhztY0HSBXe1nN57tpJ64D2L0DrZ8Hs+ePVsBPakYfHcGUJGcUhjhqhfH4KqXy4jRO/jqVS+OzokA4Mn4wgsAl3Tr1s3ye9OmTdW6dWvVrl1b//73vxUaWr7vBOPGjVNGRoblcUFBgRISEpSSkqLIyMgyn2symZSdna0uXbooMDCwXK/vKlGvRNnULtQ/VLMbz9bQXUN1rvick3vlGsToHcwx2vJ5NJ8j8wacT3QMzideRozewVnnEx1eGOGqF8fhqpeSiNE7+NJVL87IiRzc2dbOFw4KiNGzUSymWAwAV4qOjtbtt9+u/fv3q0uXLrpw4YJOnjxpdayYm5tbanHZLDg4WMHBwSWWBwYG2lzssKetu7D35Pi54nNee0LdjBi9gy2fR0/7vF4L5xMdh/OJJRGjd3D0+USHF0a46sVxuOrlMmL0Dr541YszciIHd7bxhYMCYvQOFIspFpcHxeLLiNE7+Gqx+EqnT5/WgQMHNHDgQCUlJSkwMFBr1qxR3759JUn79u3T4cOHlZyc7OKeAoDjcT7RcTifeBkxegdnnU90ylBaV+Kql/LjqpeSiNE7+NJVL1dzRE7k4K5svnRQQIyejWIxxeIbQbG4JGL0Dr5ULH7mmWfUs2dP1a5dW0ePHtXEiRMVEBCgP/3pT4qKitKwYcOUkZGhmJgYRUZG6oknnlBycjJ30AHwCZxPLD/OJ5ZEjN7B0ecTnV4Y4aoXALjMETmRgzvb23v7QQExegeKxRSLy4Ni8WXE6B18sVj8yy+/6E9/+pN+++03VatWTe3atdPmzZtVrVo1SdK0adPk7++vvn37qrCwUKmpqXrrrbdc3GsAqBicTwTgbA4vjHDVCwBcRk4EgGujWFx+FItLIkbv4EvF4g8++KDM9SEhIZoxY4ZmzJhRQT0CANfhuzOAiubwwghXvQDAZeREALiML7wAAAAojbt+d456JcrrL0oAfJXDCyNc9QIAl5ETAeAyd/3CCwAAANfiuzOAiub0OUYAAO6Hq14AuAJfeAHA/XGcCAAAfIG/qzsAAAAAAAAAAABQUSiMAAAAAAAAAAAAn0FhBAAAAAAAAAAA+AyfmWOEcVIBAAAAAAAAAAB3jAAAAAAAAAAAAJ9BYQQAAAAAAAAAAPgMCiMAAAAAAAAAAMBnUBgBAAAAAAAAAAA+w2cmXwcAAABKE/VKlM4Vn3N1NwAAAAAAFYQ7RgAAAAAAAAAAgM+gMAIAAAAAAAAAAHwGhREAAAAAAAAAAOAzKIwAAAAAAAAAAACfQWEEAAAAAAAAAAD4DAojAAAAAAAAAADAZ1AYAQAAAAAAAAAAPoPCCAAAAAAAAAAA8BkURgAAAAAAAAAAgM+gMAIAAAAAAAAAAHwGhREAAAAAAAAAAOAzKIwAAAAAAAAAAACf4dLCyIwZM1SnTh2FhISodevW2rJliyu7AwAuRU4EgEvIhwBwGTkRAC4jJwJwFJcVRj788ENlZGRo4sSJ+uabb9SsWTOlpqYqLy/PVV0CAJchJwLAJeRDALiMnAgAl5ETATiSywojf/vb3zR8+HANGTJEiYmJmjVrlsLCwjR79mxXdQkAXIacCACXkA8B4DJyIgBcRk4E4EiVXPGiFy5c0Pbt2zVu3DjLMn9/f3Xu3FmbNm0q0b6wsFCFhYWWx/n5+ZKkEydOyGQylflaJpNJZ8+eVciFEBnFhoMicC8h/iHE6AV8KcbffvtNgYGBZbY9deqUJMkwvHNfXImc6Fi+9FkiRs9GTizJ3nwokROvx5c+S8To2ciJJZETHc+XPkvE6NnIiSWREx3Plz5LxOjZnJYTDRc4cuSIIcnYuHGj1fIxY8YYrVq1KtF+4sSJhiR++OHHB39+/vnnikpNLkNO5Icffmz98facaG8+NAxyIj/8+PIPObEkciI//PjuDzmxJHIiP/z47o8tOdEld4zYa9y4ccrIyLA8Li4u1okTJ1SlShX5+fmV+dyCggIlJCTo559/VmRkpLO76hLE6B2I0ZphGDp16pRq1KhRQb3zHOTEshGjdyBGa+TEayMnlo0YvQMxWiMnXhs5sWzE6B2I0Ro58drIiWUjRu9AjNbsyYkuKYxUrVpVAQEBys3NtVqem5ur+Pj4Eu2Dg4MVHBxstSw6Otqu14yMjPTaPw4zYvQOxHhZVFRUBfTG9ciJzkGM3oEYL/OFnGhvPpTIibYiRu9AjJeRE8mJN4IYvQMxXkZOJCfeCGL0DsR4ma050SWTrwcFBSkpKUlr1qyxLCsuLtaaNWuUnJzsii4BgMuQEwHgEvIhAFxGTgSAy8iJABzNZUNpZWRkKC0tTS1btlSrVq30xhtv6MyZMxoyZIirugQALkNOBIBLyIcAcBk5EQAuIycCcCSXFUb++Mc/6vjx45owYYJycnLUvHlzrVixQnFxcQ59neDgYE2cOLHErXPehBi9AzH6NnKi4xCjdyBG31VR+VDyjfeAGL0DMfoucqJjEaN3IEbfRU50LGL0DsRYfn6GYRgO3SIAAAAAAAAAAICbcskcIwAAAAAAAAAAAK5AYQQAAAAAAAAAAPgMCiMAAAAAAAAAAMBnUBgBAAAAAAAAAAA+w6cKI4cOHdKwYcNUt25dhYaGql69epo4caIuXLjg6q45zJQpU9S2bVuFhYUpOjra1d1xmBkzZqhOnToKCQlR69attWXLFld3yWE2bNignj17qkaNGvLz89PHH3/s6i45VFZWlu644w5VrlxZsbGx6tWrl/bt2+fqbkHkRE9GTvRc5ET3RU70XOREz0VOdF/kRM9FTvRc5ET3RU70XOREz1UROdGnCiN79+5VcXGx3n77be3evVvTpk3TrFmz9Pzzz7u6aw5z4cIFPfjggxo5cqSru+IwH374oTIyMjRx4kR98803atasmVJTU5WXl+fqrjnEmTNn1KxZM82YMcPVXXGK9evXKz09XZs3b1Z2drZMJpNSUlJ05swZV3fN55ETPRM50bORE90XOdEzkRM9GznRfZETPRM50bORE90XOdEzkRM9W4XkRMPHTZ061ahbt66ru+Fwc+bMMaKiolzdDYdo1aqVkZ6ebnlcVFRk1KhRw8jKynJhr5xDkrFkyRJXd8Op8vLyDEnG+vXrXd0VlIKc6P7Iid6FnOjeyInuj5zoXciJ7o2c6P7Iid6FnOjeyInuj5zoXZyRE33qjpHS5OfnKyYmxtXdwDVcuHBB27dvV+fOnS3L/P391blzZ23atMmFPUN55efnSxKfOzdFTnRv5ETvQ050b+RE90ZO9D7kRPdGTnRv5ETvQ050b+RE90ZO9D7OyIk+XRjZv3+/pk+frkcffdTVXcE1/PrrryoqKlJcXJzV8ri4OOXk5LioVyiv4uJiPfXUU7rzzjvVuHFjV3cHVyEnuj9yonchJ7o3cqL7Iyd6F3KieyMnuj9yonchJ7o3cqL7Iyd6F2flRK8ojDz33HPy8/Mr82fv3r1Wzzly5Ii6du2qBx98UMOHD3dRz21TnvgAd5Senq5du3bpgw8+cHVXvBo5kZwIz0BOrBjkRHIiPAM5sWKQE8mJ8AzkxIpBTiQnwjM4KydWcujWXOTpp5/W4MGDy2xzyy23WH4/evSo7r77brVt21bvvPOOk3t34+yNz5tUrVpVAQEBys3NtVqem5ur+Ph4F/UK5TFq1CgtW7ZMGzZsUM2aNV3dHa9GTiQnwv2REysOOZGcCPdHTqw45ERyItwfObHikBPJiXB/zsyJXlEYqVatmqpVq2ZT2yNHjujuu+9WUlKS5syZI39/979pxp74vE1QUJCSkpK0Zs0a9erVS9Kl26fWrFmjUaNGubZzsIlhGHriiSe0ZMkSrVu3TnXr1nV1l7weOdF7kRM9Hzmx4pETvRc50fOREyseOdF7kRM9Hzmx4pETvRc50fNVRE70isKIrY4cOaKOHTuqdu3aev3113X8+HHLOm+pFh4+fFgnTpzQ4cOHVVRUpB07dkiSbr31VkVERLi2c+WUkZGhtLQ0tWzZUq1atdIbb7yhM2fOaMiQIa7umkOcPn1a+/fvtzw+ePCgduzYoZiYGNWqVcuFPXOM9PR0zZ8/X5988okqV65sGcsxKipKoaGhLu6dbyMnkhPdETkRrkJOJCe6I3IiXIWcSE50R+REuAo5kZzojsiJDmD4kDlz5hiSSv3xFmlpaaXGt3btWld37YZMnz7dqFWrlhEUFGS0atXK2Lx5s6u75DBr164t9T1LS0tzddcc4lqfuTlz5ri6az6PnOi5yImei5zovsiJnouc6LnIie6LnOi5yImei5zovsiJnouc6LkqIif6/f8vBAAAAAAAAAAA4PXcf0A8AAAAAAAAAAAAB6EwAgAAAAAAAAAAfAaFEQAAAAAAAAAA4DMojAAAAAAAAAAAAJ9BYQQAAAAAAAAAAPgMCiMAAAAAAAAAAMBnUBgBAAAAAAAAAAA+g8IIAAAAAAAAAADwGRRGAAAAAAAAAACAz6AwAgAAAAAAAAAAfAaFEQAAAAAAAAAA4DMojAAAAAAAAAAAAJ9BYQQAAAAAAAAAAPgMCiMAAAAAAAAAAMBnUBgBAAAAAAAAAAA+g8IIAAAAAAAAAADwGRRGAAAAAAAAAACAz6AwAgAAAAAAAAAAfAaFEQAAAAAAAAAA4DMojAAAAAAAAAAAAJ9BYQQAAAAAAAAAAPgMCiMAAAAAAAAAAMBnUBgBAAAAAAAAAAA+g8IIAAAAAAAAAADwGRRGAAAAAAAAAACAz6AwAgAAAAAAAAAAfAaFEQAAAAAAAAAA4DMojAAAAAAAAAAAAJ9BYQQAAAAAAAAAAPgMCiMAAAAAAAAAAMBnUBgBAAAAAAAAAAA+g8KInbZu3aq2bdsqPDxcfn5+2rFjh6u7BABwkblz58rPz0+HDh2y+7mDBw9WnTp1HN4nAAAAuK86depo8ODBTtu+tx9jlnf/2XPcvm7dOvn5+WndunV2vw6A0k2aNEl+fn769ddfHbK90j7THTt2VMeOHe3eFp9530VhxA4mk0kPPvigTpw4oWnTpulf//qXateubdNzz549q0mTJvEhAwCgDBs3btSkSZN08uRJV3cFAABUsOXLl2vSpEmu7gZcrKKOB9966y3NnTvXqa8BAHBflVzdAU9y4MAB/fTTT/rHP/6hRx55xK7nnj17VpmZmZJUruolAMD9DBw4UP3791dwcLCru+I1Nm7cqMzMTA0ePFjR0dGu7g4AAKhAy5cv14wZM7y6OLJv3z75+3ONalnKOh4s7/4r7bj9rbfeUtWqVUvcgdK+fXudO3dOQUFB5ek+AA/DZ9538d/YDnl5eZLkVidqLl68qAsXLri6G3Y5e/asV76WOzpz5oyruwB4tYCAAIWEhMjPz8/VXfF45CvA+1XU59zTjv+Ki4t1/vx5V3cD8Dju+F34WnnOMAydO3dOkhQcHKzAwMCK7Fa5uWN+Ku/+s+e43d/fXyEhIRSwAB/BZ9538Y7baPDgwerQoYMk6cEHH5Sfn59l7LrS7gC5clzPQ4cOqVq1apKkzMxM+fn5yc/Pz3IVjC3bMG/Hz89Pr7/+ut544w3Vq1dPwcHB2rNnjyRp7969euCBBxQTE6OQkBC1bNlSn376abnife+999SqVSuFhYXppptuUvv27bVq1SrL+k8++UQ9evRQjRo1FBwcrHr16mny5MkqKiqy2k7Hjh3VuHFjbd++Xe3bt1dYWJief/55SVJhYaEmTpyoW2+9VcHBwUpISNCzzz6rwsLCUvuTlJSk0NBQxcTEqH///vr5559tfi1bHDlyRMOGDbPEVLduXY0cOdLqYPt///ufHnzwQcXExCgsLExt2rTRZ599ZrUd89iE//73vzVlyhTVrFlTISEh6tSpk/bv31/idb/++mt1795dN910k8LDw9W0aVO9+eabVm1seW/N4yuuX79ejz/+uGJjY1WzZk2rfbNnzx7dfffdCgsL080336ypU6eW6M/06dPVqFEjy3vfsmVLzZ8/3+b9CLjaqVOn9NRTT6lOnToKDg5WbGysunTpom+++cbSZuHChZacUrVqVT388MM6cuRIiW3t3btX/fr1U7Vq1RQaGqr69evrL3/5i2V9aeOa2pofy+PHH39U3759FR8fr5CQENWsWVP9+/dXfn6+pMv/J0obEuDK/zvS5TFezTFGRkaqSpUq+vOf/1ziC7Cfn59GjRql999/X/Xr11dISIiSkpK0YcOGEq/z7bffqlu3boqMjFRERIQ6deqkzZs3W7W5Vr6aNGmSxowZI0mqW7eu5f9leeZwAXCJPZ91W463pEvHLl27dlVUVJTCwsLUoUMHffXVV6W+7p49ezRgwADddNNNateunU19Nh9Lffjhh3r++ecVHx+v8PBw3XfffXYd/9l6rJmdna127dopOjpaERERql+/foljyOsdH11rTH/zfrjSlTm1UaNGCg4O1ooVKyRdOh4dOnSo4uLiFBwcrEaNGmn27Nk27TfAlcr62z137pwaNGigBg0aWIoDknTixAlVr15dbdu2VVFRkQYPHqwZM2ZIkuUYwPz5Keu78IULFzRhwgQlJSUpKipK4eHhuuuuu7R27doS/SwuLtabb76pJk2aKCQkRNWqVVPXrl21bds2q9ex51iqtDxXp04d3XvvvVq5cqVatmyp0NBQvf3225Z1V9+hcPLkSY0ePdpy/FqzZk0NGjTIMhb/tebHsHVc/Ndff11t27ZVlSpVFBoaqqSkJC1atKjUGK+Vn67niy++0IMPPqhatWpZcu7o0aOt3nOzso6xr3c8eOX+27Ztm/z8/DRv3rwSr7Fy5Ur5+flp2bJlkkruwzp16mj37t1av3695TXM52WutV9t+f9ny3cRwJf9+uuv1zwmtScHX8/p06cVHh6uP//5zyXW/fLLLwoICFBWVpak0j/z9pxH++mnn3TfffcpPDxcsbGxGj16tCUHMaWCe2MoLRs9+uijuvnmm/Xyyy/rySef1B133KG4uDhNmTLlus+tVq2aZs6cqZEjR6p3797q06ePJKlp06bl6sucOXN0/vx5jRgxQsHBwYqJidHu3bt155136uabb9Zzzz2n8PBw/fvf/1avXr300UcfqXfv3jZvPzMzU5MmTVLbtm314osvKigoSF9//bU+//xzpaSkSLp0UBEREaGMjAxFRETo888/14QJE1RQUKDXXnvNanu//fabunXrpv79++vhhx9WXFyciouLdd999+nLL7/UiBEj1LBhQ+3cuVPTpk3Tf//7X3388ceW50+ZMkUvvPCC+vXrp0ceeUTHjx/X9OnT1b59e3377bdWd/CU9lq2OHr0qFq1aqWTJ09qxIgRatCggY4cOaJFixbp7NmzCgoKUm5urtq2bauzZ8/qySefVJUqVTRv3jzdd999WrRoUYl9/Morr8jf31/PPPOM8vPzNXXqVD300EP6+uuvLW2ys7N17733qnr16vrzn/+s+Ph4/fDDD1q2bJkledv73j7++OOqVq2aJkyYYHXF0u+//66uXbuqT58+6tevnxYtWqSxY8eqSZMm6tatmyTpH//4h578/9i7+7io6vz//09AQFAHowQkkQxNRUWNSmezMi8gYt1MKrtYJXW1CO2T7LbGrpkXGa61pbWK7TevdgtrLa3NTEHzYktM183Ni3LV1awUqFzBSxzh/P7wx+jIhTM4wwwzj/vtxu3mnPOec96vc2benve8zvt9nnxS9913n/U/py+//FKff/65Hn74YbuOJeBujz/+uN59912NHTtW8fHx+umnn/Tpp5/qq6++0o033qhFixZpxIgRuvnmm5WTk6Pi4mLNnj1bn332mU2b8uWXX+q2225TYGCgxowZo+uuu0779+/Xhx9+WGfb70j76IizZ88qOTlZ5eXlGjdunKKiovT9999rxYoVOnbsmMLCwuq13QceeEDXXXedcnJytHnzZr366qv63//+p7/85S825TZs2KB33nlHTz75pIKDgzV37lzddddd2rJli7p27SrpfHt12223yWQy6be//a0CAwP1+uuvq2/fvtqwYYN69epls81L26uUlBT95z//0ZIlS/TKK6/ommuukSTrzQUA6u9y33V7r7c++eQTpaSkKDExUc8995z8/f21cOFC9evXT//4xz90yy232Oz3/vvvV4cOHfTCCy/IMAyH6jx9+nT5+flpwoQJKikp0axZszRgwABt375dISEh1nJXcq25a9cu/fznP1dCQoKmTp2q4OBg7du3z+aHLldcH33yySf629/+prFjx+qaa67Rddddp+LiYvXu3dv6w2SrVq308ccfa9SoUSorK9NTTz1Vr30BrmbPZ3fx4sW69dZb9fvf/14vv/yyJCkzM1OlpaVatGiRAgIC9Nhjj+nw4cMqKCjQX//61xr3VVNfuKysTG+88YYeeughjR49WsePH9f8+fOVnJysLVu2qEePHtb3jxo1SosWLVJKSop+9atf6dy5c/rHP/6hzZs366abbqpX/LW1c3v27NFDDz2kxx57TKNHj1bHjh1rfP+JEyd022236auvvtLIkSN144036scff9Tf//53fffdd9broSsxe/Zs/eIXv9Ajjzyis2fP6u2339b999+vFStWKDU11aZsTe2TPZYuXapTp04pIyNDV199tbZs2aLXXntN3333nZYuXWotd7lr7CFDhth9PXjTTTfp+uuv19/+9jelp6fbrHvnnXd01VVXKTk5ucb6zpo1S+PGjVPz5s2tSZm6fj+w9/+/y/VFAF9nb//zSjVv3lz33nuv3nnnHb388ssKCAiwrluyZIkMw9AjjzxS5zbs+R3t5MmT6tevn44cOWL9XS8vL6/G5Dw8kAG7rVu3zpBkLF261LrsjjvuMO64445qZdPT043Y2Fjr6x9++MGQZDz33HPVytq7jQMHDhiSDJPJZJSUlNiU7d+/v9GtWzfjzJkz1mWVlZXGz372M6NDhw52x7h3717D39/fuPfee42KigqbdZWVldZ/nzp1qtp7H3vsMSM0NNSmDnfccYchyZg3b55N2b/+9a+Gv7+/8Y9//MNm+bx58wxJxmeffWYYhmEcPHjQCAgIMKZPn25TbseOHUaTJk1slte2L3sMHz7c8Pf3N7Zu3VptXVXcTz31lCHJps7Hjx832rVrZ1x33XXW41X1OencubNRXl5uLTt79mxDkrFjxw7DMAzj3LlzRrt27YzY2Fjjf//7X437NAz7z+3ChQsNSUafPn2Mc+fO2Wyv6tj85S9/sS4rLy83oqKijLS0NOuye+65x+jSpcvlDxjgwcLCwozMzMwa1509e9aIiIgwunbtapw+fdq6fMWKFYYkY9KkSdZlt99+u9GiRQvjm2++sdnGxd/Pqu/dgQMHrMvsbR8vbeMv54svvqj2f9Clqv6fWLhwYbV1l/4f9NxzzxmSjF/84hc25Z544glDkvHvf//b5r2SjH/+85/WZd98843RtGlT495777UuGzx4sBEUFGTs37/fuuzw4cNGixYtjNtvv926rK726sUXX6x2TAHUnz3fdXuvtyorK40OHToYycnJ1a4L27VrZwwcOLDafh966CGH61x1LXXttdcaZWVl1uV/+9vfDEnG7Nmzrcuu9FrzlVdeMSQZP/zwQ631sef6qLY2veo4XEyS4e/vb+zatctm+ahRo4zWrVsbP/74o83yBx980AgLC6vx/xfAE9j72c3Ozjb8/f2NjRs3GkuXLjUkGbNmzbJ5T2ZmZrXvjGHU3Rc+d+6cTb/LMAzjf//7nxEZGWmMHDnSuuyTTz4xJBlPPvlkte1XtWn1uZaqqZ2LjY01JBmrVq2qcV16err19aRJkwxJxrJly2qtV03XnIZxob1ct26ddVlN7dGl7cfZs2eNrl27Gv369asWY03tkz1qaqNycnIMPz8/m+tpe66x67oevPT4ZWdnG4GBgcbRo0ety8rLy42WLVvanP+ajmGXLl1q/C3m0uPqyP9/dfVFAF9mzzWpI21wTd/pS39fXb16tSHJ+Pjjj222lZCQYFOuprbU3t/R/vjHPxqSjPfff9+67PTp00anTp2qbROeh6m0GqG0tDSbuyWOHj2qTz75RA888ICOHz+uH3/8UT/++KN++uknJScna+/evTVOEVOT999/X5WVlZo0aVK1ufUungbg4rv0qvZ522236dSpU/r6669t3hccHKwRI0bYLFu6dKk6d+6sTp06Wev7448/ql+/fpJkzawuW7ZMlZWVeuCBB2zKRUVFqUOHDtUysDXt63IqKyv1/vvva9CgQTXeJVQV98qVK3XLLbfYTAPRvHlzjRkzRgcPHrROaVZlxIgRNg9uuu222ySdn45LOj/dzIEDB/TUU09Ve25N1T7rc25Hjx5tkwm/uK6//OUvra+DgoJ0yy23WOsjnX9+znfffaetW7fWfsAAD9eyZUt9/vnnOnz4cLV1//znP1VSUqInnnhCTZs2tS5PTU1Vp06drFPj/fDDD9q4caNGjhyptm3b2mzjcvMSO9I+OqJqRMjq1audOn9+Zmamzetx48ZJOt/mXcxsNisxMdH6um3btrrnnnu0evVqVVRUqKKiQvn5+Ro8eLCuv/56a7nWrVvr4Ycf1qeffqqysjKbbdbWXgFwvrq+6/Zeb23fvl179+7Vww8/rJ9++sla7uTJk+rfv782btyoyspKm/08/vjj9a7z8OHD1aJFC+vr++67T61bt67WPl3JtWbVNdgHH3xQre5VXHF9dMcddyg+Pt762jAMvffeexo0aJAMw7Cpc3JyskpLS5mGBR7Jkc/u5MmT1aVLF6Wnp+uJJ57QHXfcoSeffNKh/V3aF5bOPzuiqt9VWVmpo0eP6ty5c7rppptsvjfvvfee/Pz89Nxzz1Xb7pU8L662dq5du3a1jla42Hvvvafu3bvXOMuDs55jd/H16f/+9z+Vlpbqtttuq7FdubR9qs8+Tp48qR9//FE/+9nPZBiGvvjiC0lXdo1dm6FDh8pisWjZsmXWZfn5+Tp27JiGDh1ar21eypH//+rqiwCwv//pDAMGDFB0dLTeeust67KdO3fqyy+/tPl9rDb2/I62atUqXXvttfrFL35hXda0aVONHj3aSVHAlZhKqxFq166dzet9+/bJMAw9++yzevbZZ2t8T0lJia699trLbnv//v3y9/e/7IXQrl27NHHiRH3yySfVfuiqmuu+yrXXXmuTIJDOz5P/1Vdf1To9StWD7vfu3SvDMNShQ4cay1360LWa9nU5P/zwg8rKyqxTwdTmm2++qTYNjCR17tzZuv7ibVx6oXfVVVdJOn8hKp0/1pLq3G99zu2ln48qbdq0qXaxedVVV+nLL7+0vp4wYYLWrFmjW265Re3bt1dSUpIefvhh3XrrrbXWEfA0M2fOVHp6umJiYpSYmKi7775bw4cP1/XXX69vvvlGkmqcyqBTp0769NNPJV1IYF6uXaiJI+2jI9q1a6esrCy9/PLLeuutt3TbbbfpF7/4hX75y1/WexotSdXa17i4OPn7+1ebw7qmdviGG27QqVOn9MMPP0g6/8Djmo5t586dVVlZqW+//VZdunSxiQlAw6jru+7v72/X9dbevXslqdp0JRcrLS21XvNIV/Y9v7Q+fn5+at++fbX26UquNYcOHao33nhDv/rVr/TMM8+of//+GjJkiO677z7rTUKuuD669Lj88MMPOnbsmP785z/rz3/+c511BjyJI5/doKAgLViwQDfffLOaNm2qhQsXOvxjeG1tyuLFi/XHP/5RX3/9tSwWS43l9+/fr+joaIWHhzu0z/rWyd72b//+/UpLS3NmlapZsWKFnn/+eW3fvt3mOUs1Hf/6ttuHDh3SpEmT9Pe//93a561SdQ18JdfYtenevbs6deqkd955R6NGjZJ0fhqta665xpoMv1KO/P9XV18EgP39T2fw9/fXI488otzcXJ06dUqhoaF666231LRpU91///2Xfb89v6N98803iouLq1auffv2zgkCLkVi5Ar5+fnVOF+yIw/ZdXQbF9+JIcl6Z8JvfvObWu9IceYX8tixY7rjjjtkMpk0depUxcXFqWnTpvrXv/6lCRMmVLvb7tL6VtW5W7du1vllLxUTE2Mt5+fnp48//rjWURCX25e71HYXdE3nujb1Obe1HQN76tO5c2ft2bNHK1as0KpVq/Tee+9p7ty5mjRpkqZMmWJ3vQF3euCBB3Tbbbdp+fLlys/P14svvqg//OEPNneRuYqj7aOj/vjHP+rRRx/VBx98oPz8fD355JPWuVlrumir4uj/SQ3Fk9pswNdc/F2393qrqg178cUXbebsr6lslYb4nl/JtWZISIg2btyodevW6aOPPtKqVav0zjvvqF+/fsrPz1dAQIBd10eOtr+1Xc//8pe/rPWHt/o+nxBwJUc/u6tXr5YknTlzRnv37nX4R/iavu9vvvmmHn30UQ0ePFhPP/20IiIirA/VrboZzV71uZaqrZ1zZvt3Jdd4//jHP/SLX/xCt99+u+bOnavWrVsrMDBQCxcuVF5eXrXy9al3RUWFBg4cqKNHj2rChAnq1KmTmjVrpu+//16PPvroFV8DX87QoUM1ffp0/fjjj2rRooX+/ve/66GHHlKTJs75ycuR///q6otUPZMAwAUXt2/O6M9eavjw4XrxxRf1/vvv66GHHlJeXp5+/vOf23VzoTN+14NnIzFyha666iqbIVRVqu5KrlLXD032bqM2VXceBAYGasCAAXa9pzZxcXGqrKzU7t27a/0Pf/369frpp5+0bNky3X777dblBw4ccGg///73v9W/f/86j01cXJwMw1C7du10ww032L19R7Rq1Uomk0k7d+6ss1xsbKz27NlTbXnV1DixsbEO7TcuLk7S+WF8tZ03Z55bezVr1kxDhw7V0KFDdfbsWQ0ZMkTTp09Xdna2zdRDgCdr3bq1nnjiCT3xxBMqKSnRjTfeqOnTp1sffr5nz55qd5Dt2bPH+j2u+u5drl24lDPax8vp1q2bunXrpokTJ2rTpk269dZbNW/ePD3//PPWu7SPHTtm8566/j+59EeJffv2qbKystqDNqvulLvYf/7zH4WGhlrvyA4NDa21nfT397f+EFmXhkzMAL6kru96QECAXddbVdcuJpOpQa5LLm13DMPQvn377EoQ2HutKZ2/m7B///7q37+/Xn75Zb3wwgv6/e9/r3Xr1lnjvNz10VVXXVWt7ZXsv55v1aqVWrRooYqKiga75gOcwZHP7pdffqmpU6dqxIgR2r59u371q19px44dNj9O1ec64N1339X111+vZcuW2bz/0imz4uLitHr1ah09erTWUSP1uZa6UnFxcZe95rySer333ntq2rSpVq9ereDgYOvyhQsXOl7ZWuzYsUP/+c9/tHjxYg0fPty6vKCgwKacvdfYjn4Ohg4dqilTpui9995TZGSkysrK9OCDD172ffbux9H//2rri5AYAeq+JnVFG9y1a1f17NlTb731ltq0aaNDhw7ptddeq/f2LhUbG6vdu3fLMAybNmXfvn1O2wdch2eMXKG4uDh9/fXX1mlEJOnf//63PvvsM5tyoaGhkqp/uR3ZRm0iIiLUt29fvf766zpy5Ei19Rdv93IGDx4sf39/TZ06tdpdHVUZ0aqM6cUZ0rNnz2ru3Ll27+eBBx7Q999/r//3//5ftXWnT5/WyZMnJUlDhgxRQECApkyZUi0jaxiGfvrpJ7v3WRt/f38NHjxYH374of75z39WW1+137vvvltbtmxRYWGhdd3Jkyf15z//Wdddd53D87DeeOONateunWbNmlXtc1G1T2eeW3tcejyDgoIUHx8vwzBshqQDnqqioqLadFURERGKjo5WeXm5brrpJkVERGjevHk20wh8/PHH+uqrr5SamirpfCf/9ttv14IFC3To0CGb7dV1d4gz2sfalJWV6dy5czbLunXrJn9/f2ssJpNJ11xzjTZu3GhTrq79z5kzx+Z11UXipR23wsJCm3mov/32W33wwQdKSkpSQECAAgIClJSUpA8++MBmGHRxcbHy8vLUp08fmUymy8bZrFkzSTX/fwmg/ur6rtt7vZWYmKi4uDi99NJLOnHiRLV9OPu65C9/+YuOHz9uff3uu+/qyJEjdv2wZO+15tGjR6utr7o5qKpttef6KC4uTqWlpTZTKxw5ckTLly+/bF2l8/9/pKWl6b333qvxB0NnH1vAWez97FosFj366KOKjo7W7NmztWjRIhUXF2v8+PE25etzHVDT9dfnn39u02+Tzj+fxDCMGkfCV723PtdSVyotLU3//ve/a2wvqupV9cP8xfWqqKiodfqyiwUEBMjPz8/mjuuDBw/q/fffv8Ka2+7j4vpW/Xv27Nk25ey9xnb0c9C5c2d169ZN77zzjt555x21bt3a5ial2jRr1syufdj7/9/l+iIA6r4mdVUbPGzYMOXn52vWrFm6+uqrnZqkTE5O1vfff6+///3v1mVnzpyp8RoUnocRI1do5MiRevnll5WcnKxRo0appKRE8+bNU5cuXWzmlg8JCVF8fLzeeecd3XDDDQoPD1fXrl3VtWtXu7dRlzlz5qhPnz7q1q2bRo8ereuvv17FxcUqLCzUd999p3//+992bad9+/b6/e9/r2nTpum2227TkCFDFBwcrK1btyo6Olo5OTn62c9+pquuukrp6el68skn5efnp7/+9a8ODSUbNmyY/va3v+nxxx/XunXrdOutt6qiokJff/21/va3v2n16tW66aabFBcXp+eff17Z2dk6ePCgBg8erBYtWujAgQNavny5xowZo9/85jd277c2L7zwgvLz83XHHXdozJgx6ty5s44cOaKlS5fq008/VcuWLfXMM89oyZIlSklJ0ZNPPqnw8HAtXrxYBw4c0HvvvVftYfWX4+/vr9zcXA0aNEg9evTQiBEj1Lp1a3399dfatWuXdZi5s86tPZKSkhQVFaVbb71VkZGR+uqrr/SnP/1JqampNg8/BTzV8ePH1aZNG913333q3r27mjdvrjVr1mjr1q364x//qMDAQP3hD3/QiBEjdMcdd+ihhx5ScXGxZs+ereuuu86mc/7qq6+qT58+uvHGGzVmzBi1a9dOBw8e1EcffaTt27fXuH9ntI+1+eSTTzR27Fjdf//9uuGGG3Tu3Dn99a9/tf4gUeVXv/qVZsyYoV/96le66aabtHHjRv3nP/+pdbsHDhzQL37xC911110qLCzUm2++qYcffljdu3e3Kde1a1clJyfrySefVHBwsPXi9OIfF55//nkVFBSoT58+euKJJ9SkSRO9/vrrKi8v18yZM+2Ks+oB77///e/14IMPKjAwUIMGDbJ2kAHUz+W+6/Zcb/n7++uNN95QSkqKunTpohEjRujaa6/V999/r3Xr1slkMunDDz90Wp3Dw8PVp08fjRgxQsXFxZo1a5bat29v18Ms7b3WnDp1qjZu3KjU1FTFxsaqpKREc+fOVZs2bdSnTx9J9l0fPfjgg5owYYLuvfdePfnkkzp16pRyc3N1ww032P3Q9BkzZmjdunXq1auXRo8erfj4eB09elT/+te/tGbNmhqTOIAnsOezW/V8i7Vr16pFixZKSEjQpEmTNHHiRN133326++67JV24DnjyySeVnJysgICAy975//Of/1zLli3Tvffeq9TUVB04cEDz5s1TfHy8zY/Yd955p4YNG6ZXX31Ve/fu1V133aXKykr94x//0J133qmxY8dKcvxa6ko9/fTTevfdd3X//fdr5MiRSkxM1NGjR/X3v/9d8+bNU/fu3dWlSxf17t1b2dnZ1hEvb7/9drWbZmqSmpqql19+WXfddZcefvhhlZSUaM6cOWrfvr1NMvdKdOrUSXFxcfrNb36j77//XiaTSe+99161Z41I9l1j1+d6cOjQoZo0aZKaNm2qUaNG2dU/T0xMVG5urp5//nm1b99eERERNT6XxN7//y7XFwFw+WtSV7TBDz/8sH77299q+fLlysjIqPa84ivx2GOP6U9/+pMeeugh/d///Z9at25tfY6JxIwIHs+A3datW2dIMpYuXWqz/M033zSuv/56IygoyOjRo4exevVqIz093YiNjbUpt2nTJiMxMdEICgoyJBnPPfecQ9s4cOCAIcl48cUXa6zf/v37jeHDhxtRUVFGYGCgce211xo///nPjXfffdfhWBcsWGD07NnTCA4ONq666irjjjvuMAoKCqzrP/vsM6N3795GSEiIER0dbfz2t781Vq9ebUgy1q1bZy13xx13GF26dKlxH2fPnjX+8Ic/GF26dLHuJzEx0ZgyZYpRWlpqU/a9994z+vTpYzRr1sxo1qyZ0alTJyMzM9PYs2ePXfuyxzfffGMMHz7caNWqlREcHGxcf/31RmZmplFeXm4ts3//fuO+++4zWrZsaTRt2tS45ZZbjBUrVthsp7bPSdX5W7hwoc3yTz/91Bg4cKDRokULo1mzZkZCQoLx2muv2ZSx59wuXLjQkGRs3bq1Wmy1HZtLP2Ovv/66cfvttxtXX321ERwcbMTFxRlPP/10tfMBeKry8nLj6aefNrp37279TnXv3t2YO3euTbl33nnH2saFh4cbjzzyiPHdd99V297OnTuNe++91/qd79ixo/Hss89a11d97w4cOGBdZm/7WNP/E3X573//a4wcOdKIi4szmjZtaoSHhxt33nmnsWbNGptyp06dMkaNGmWEhYUZLVq0MB544AGjpKSk2v87zz33nCHJ2L17t3HfffcZLVq0MK666ipj7NixxunTp222KcnIzMw03nzzTaNDhw5GcHCw0bNnT5t4qvzrX/8ykpOTjebNmxuhoaHGnXfeaWzatMmmTF3tlWEYxrRp04xrr73W8Pf3r3Z8ATjGke+6PddbhmEYX3zxhTFkyBDr9UJsbKzxwAMPGGvXrq223x9++MHhOlddSy1ZssTIzs42IiIijJCQECM1NdX45ptvbMpe6bXm2rVrjXvuuceIjo42goKCjOjoaOOhhx4y/vOf/1i3Y+/1UX5+vtG1a1cjKCjI6Nixo/Hmm29aj8PFqtrUmhQXFxuZmZlGTEyMERgYaERFRRn9+/c3/vznPzt8HIGGVNdnd9u2bUaTJk2McePG2bzn3Llzxs0332xER0cb//vf/6zLxo0bZ7Rq1crw8/Ozfn/q6gtXVlYaL7zwghEbG2u9RlmxYkWN11rnzp0zXnzxRaNTp05GUFCQ0apVKyMlJcXYtm2btYyj11I1tXOxsbFGampqjccqNjbWSE9Pt1n2008/GWPHjjWuvfZaIygoyGjTpo2Rnp5u/Pjjj9Yy+/fvNwYMGGAEBwcbkZGRxu9+9zujoKDArmvM+fPnW6/hOnXqZCxcuNDh9ulydu/ebQwYMMBo3ry5cc011xijR482/v3vf9fYB77cNbZh1H49WNPxMwzD2Lt3ryHJkGR8+umn1dbXdN1eVFRkpKamGi1atDAkGXfccYdhGBf+H7r0Wvdy///Z2xcBfJG916T2tsE1fafvuOMO6/f4UnfffbchqVrf1DBq/s7b+zuaYZzvq6emphohISFGq1atjF//+tfGe++9Z0gyNm/ebNfxgXv4GQZPjAEAwNdMnjxZU6ZM0Q8//KBrrrmmzrJ+fn7KzMzUn/70pwaqHQBnceS77inWr1+vO++8U0uXLtV9993n7uoAAACgkbv33nu1Y8eOBnv2x6xZszR+/Hh99913uvbaaxtkn3AczxgBAAAAAAAAAHidI0eO6KOPPtKwYcNcsv3Tp0/bvD5z5oxef/11dejQgaSIh+MZIz6kqKiozvUhISEKCwtroNo0jBMnTtT4cLSLtWrVyvqwOABwh6NHj+rs2bO1rg8ICFCrVq0asEYA4Hxnz5697HMyvO1aFAAaO65TATRWBw4c0GeffaY33nhDgYGBeuyxx1yynyFDhqht27bq0aOHSktL9eabb+rrr7/WW2+95ZL9wXlIjPiQ1q1b17k+PT1dixYtapjKNJCXXnrJ5sHANTlw4ICuu+66hqkQANRgyJAh2rBhQ63rY2NjdfDgwYarEAC4wKZNm3TnnXfWWWbhwoVclwGAB+E6FUBjtWHDBo0YMUJt27bV4sWLFRUV5ZL9JCcn64033tBbb72liooKxcfH6+2339bQoUNdsj84D88Y8SFr1qypc310dLTi4+MbqDYN47///a/++9//1lmmT58+atq0aQPVCACq27Ztm/73v//Vuj4kJES33nprA9YIAJzvf//7n7Zt21ZnmS5dulz2Zh4AQMPhOhUA4K1IjAAAAAAAAAAAAJ/Bw9cBAAAAAAAAAIDPaJTPGKmsrNThw4fVokUL+fn5ubs6AFzAMAwdP35c0dHR8vcnh1sX2kTA+9Em2o82EfB+tIn2o00EvB9tov1oEwHv50ib2CgTI4cPH1ZMTIy7qwGgAXz77bdq06aNu6vh0WgTAd9Bm3h5tImA76BNvDzaRMB30CZeHm0i4DvsaRMbZWKkRYsWks4HaDKZ6ixrsViUn5+vpKQkBQYGNkT1GhwxegditFVWVqaYmBjr9x21o020RYzegRht0SbajzbRFjF6B2K0RZtoP9pEW8ToHYjRFm2i/WgTbRGjdyBGW460iY0yMVI13M1kMtnVkIWGhspkMnn1h4MYGz9irBnDWy+PNtEWMXoHYqwZbeLl0SbaIkbvQIw1o028PNpEW8ToHYixZrSJl0ebaIsYvQMx1syeNpHJBwEAAAAAAAAAgM8gMQIAAAAAAAAAAHwGiREAAAAAAAAAAOAzSIwAAAAAAAAAAACfQWIEAAAAAAAAAAD4DBIjAAAAAAAAAADAZ5AYAQAAAAAAAAAAPoPECAAAAAAAAAAA8BkkRgAAAHDFcnNzlZCQIJPJJJPJJLPZrI8//ti6vm/fvvLz87P5e/zxx222cejQIaWmpio0NFQRERF6+umnde7cuYYOBQAAAADg5Zq4uwIA6sdvip+7q+CwEP8QLUlY4u5qAPBCtInu16ZNG82YMUMdOnSQYRhavHix7rnnHn3xxRfq0qWLJGn06NGaOnWq9T2hoaHWf1dUVCg1NVVRUVHatGmTjhw5ouHDhyswMFAvvPBCg8cD53PV97TquxQ2I0ynK087ffvGc4bTt+lqtIkAcAFtIgBcQJt4AYkRAAAAXLFBgwbZvJ4+fbpyc3O1efNma2IkNDRUUVFRNb4/Pz9fu3fv1po1axQZGakePXpo2rRpmjBhgiZPnqygoCCXxwAAAAAA8A0kRgAAAOBUFRUVWrp0qU6ePCmz2Wxd/tZbb+nNN99UVFSUBg0apGeffdY6aqSwsFDdunVTZGSktXxycrIyMjK0a9cu9ezZs8Z9lZeXq7y83Pq6rKxMkmSxWGSxWOqsZ9X6y5VrzDwpxhD/EJdu11Xb94Rj5+h5dNWxcKWqOtsToyecEwCA/XJzc5Wbm6uDBw9Kkrp06aJJkyYpJSVF0vkpVzds2GDznscee0zz5s2zvj506JAyMjK0bt06NW/eXOnp6crJyVGTJvy0CaB+aD0AAADgFDt27JDZbNaZM2fUvHlzLV++XPHx8ZKkhx9+WLGxsYqOjtaXX36pCRMmaM+ePVq2bJkkqaioyCYpIsn6uqioqNZ95uTkaMqUKdWW5+fn20zVVZeCggK7yjVmnhCjq6cEWdB1gUu2u3LlSpdstz7sPY+NefoVe2I8depUA9QEAOAsTLkKwBORGAEAAIBTdOzYUdu3b1dpaaneffddpaena8OGDYqPj9eYMWOs5bp166bWrVurf//+2r9/v+Li4uq9z+zsbGVlZVlfl5WVKSYmRklJSTKZTHW+12KxqKCgQAMHDlRgYGC96+DJPCnGsBlhLtluiH+IFnRdoJE7R7rkGSOlz5Q6fZuOcvQ8uupYu1LVebQnxqqRYQCAxoEpVwF4IhIjAAAAcIqgoCC1b99ekpSYmKitW7dq9uzZev3116uV7dWrlyRp3759iouLU1RUlLZs2WJTpri4WJJq7SRLUnBwsIKDg6stDwwMtDsR4EjZxsoTYnRF0uLS7btiH+4+bhez9zy6+li7kj0xetI5AQA4hilXPQcxegemXLXlyLkmMQIAAACXqKystOmMXmz79u2SpNatW0uSzGazpk+frpKSEkVEREg6P6WOyWSyTscFAACAxokpVz0XMXoHplw9z5EpV0mMAAAA4IplZ2crJSVFbdu21fHjx5WXl6f169dr9erV2r9/v/Ly8nT33Xfr6quv1pdffqnx48fr9ttvV0JCgiQpKSlJ8fHxGjZsmGbOnKmioiJNnDhRmZmZNY4IAQAAQOPBlKuehxi9A1Ou2nJkylUSIwAAALhiJSUlGj58uI4cOaKwsDAlJCRo9erVGjhwoL799lutWbNGs2bN0smTJxUTE6O0tDRNnDjR+v6AgACtWLFCGRkZMpvNatasmdLT020ewgkAAIDGiSlXPRcxegemXL1Qxl7+juw8NzdXCQkJMplMMplMMpvN+vjjj63r+/btKz8/P5u/xx9/3GYbhw4dUmpqqkJDQxUREaGnn35a586dc6QaAAAA8DDz58/XwYMHVV5erpKSEq1Zs0YDBw6UJMXExGjDhg366aefdObMGe3du1czZ86sdqdebGysVq5cqVOnTumHH37QSy+9pCZNuI8HQOND3xkA6ubolKs7duxQSUmJtQxTrgK4Ug71NNu0aaMZM2aoQ4cOMgxDixcv1j333KMvvvhCXbp0kSSNHj3a5s6+i+fsq6ioUGpqqqKiorRp0yYdOXJEw4cPV2BgoF544QUnhQQAAAAAgPvQdwaAC5hyFYAncigxMmjQIJvX06dPV25urjZv3my9uAsNDa11GFt+fr52796tNWvWKDIyUj169NC0adM0YcIETZ48WUFBQfUMAwAAAAAAz0DfGQAuYMpVAJ6o3nMTVFRUaOnSpTp58qTMZrN1+VtvvaU333xTUVFRGjRokJ599lnrnS+FhYXq1q2bIiMjreWTk5OVkZGhXbt2qWfPnjXuq7y83GZ4XdVDVCwWiywWS531rFp/uXKNGTF6B0djDPEPcWV1XKKqzvbE6M3nGgAAAL6jIfvOAOCJ5s+fX+u6qilXL6dqylUAcBaHEyM7duyQ2WzWmTNn1Lx5cy1fvtw6n9/DDz+s2NhYRUdH68svv9SECRO0Z88eLVu2TJJUVFRkc2Enyfq6qKio1n3m5ORoypQp1Zbn5+fbDDeuS0FBgV3lGjNi9A72xrgkYYmLa+I69sR46tSpBqgJAAAA4Bru6DtzU2HdiNE7cFOhLW8+1wDgSg4nRjp27Kjt27ertLRU7777rtLT07VhwwbFx8drzJgx1nLdunVT69at1b9/f+3fv19xcXH1rmR2draysrKsr8vKyhQTE6OkpKRqD+28lMViUUFBgQYOHOjQU+kbE2L0Do7GGDYjrAFq5Vwh/iFa0HWBXTFWdeIAAACAxsgdfWduKrQPMXoHbio8j5sKAaB+HE6MBAUFqX379pKkxMREbd26VbNnz9brr79erWyvXr0kSfv27VNcXJyioqK0ZcsWmzLFxcWSVOvcqpIUHBxc48OUAgMD7f6R3JGyjRUxegd7YzxdeboBauMa9sTo7ecZAAAA3s0dfWduKqwbMXoHbiq0xU2FAFA/9X7GSJXKykqboboX2759uySpdevWkiSz2azp06erpKREERERks5nv00mk3VIMQAAAAAA3qYh+s7cVGgfYvQO3FR4oQxwMb8pfnaVC/EP0ZKEJQqbEeb274nxnOHW/cM3OZQYyc7OVkpKitq2bavjx48rLy9P69ev1+rVq7V//37l5eXp7rvv1tVXX60vv/xS48eP1+23366EhARJUlJSkuLj4zVs2DDNnDlTRUVFmjhxojIzM2u8eAMAAAAAoLGh7wwAAODZHEqMlJSUaPjw4Tpy5IjCwsKUkJCg1atXa+DAgfr222+1Zs0azZo1SydPnlRMTIzS0tI0ceJE6/sDAgK0YsUKZWRkyGw2q1mzZkpPT9fUqVOdHhgAAAAAAO5A3xkAAMCzOZQYmT9/fq3rYmJitGHDhstuIzY2VitXrnRktwAAAAAANBr0nQEAADybv7srAAAAAAAAAAAA0FBIjAAAAAAAAAAAAJ9BYgQAAAAAAAAAAPgMEiMAAAAAAAAAAMBnOPTwdQAA3MVvip9d5UL8Q7QkYYnCZoTpdOVpF9eqbsZzhlv3DwAAAAAAgOpIjACAk8yYMUPZ2dn6v//7P82aNUuSdObMGf3617/W22+/rfLyciUnJ2vu3LmKjIy0vu/QoUPKyMjQunXr1Lx5c6WnpysnJ0dNmtBEAwAAAN7I3pt+HOXqm4S48QcA4C2YSgsAnGDr1q16/fXXlZCQYLN8/Pjx+vDDD7V06VJt2LBBhw8f1pAhQ6zrKyoqlJqaqrNnz2rTpk1avHixFi1apEmTJjV0CAAAAAAAAIBPIDECAFfoxIkTeuSRR/T//t//01VXXWVdXlpaqvnz5+vll19Wv379lJiYqIULF2rTpk3avHmzJCk/P1+7d+/Wm2++qR49eiglJUXTpk3TnDlzdPbsWXeFBAAAAAAAAHgt5mnxYMynDzQOmZmZSk1N1YABA/T8889bl2/btk0Wi0UDBgywLuvUqZPatm2rwsJC9e7dW4WFherWrZvN1FrJycnKyMjQrl271LNnzwaNBQAAAAAAAPB2JEYA4Aq8/fbb+te//qWtW7dWW1dUVKSgoCC1bNnSZnlkZKSKioqsZS5OilStr1pXk/LycpWXl1tfl5WVSZIsFossFkud9a1af7lynijEP8ShcvaWdyVXHefGfB7t5WiMnnC+HVVVZ3ti9OZzDQAAAABAQyMxAgD19O233+r//u//VFBQoKZNmzbYfnNycjRlypRqy/Pz8xUaGmrXNgoKCpxdLZdbkrDEofILui5wUU3st3LlSpduvzGeR0fZG6Ojnw9PYk+Mp06daoCaAAAAAADgG0iMAEA9bdu2TSUlJbrxxhutyyoqKrRx40b96U9/0urVq3X27FkdO3bMZtRIcXGxoqKiJElRUVHasmWLzXaLi4ut62qSnZ2trKws6+uysjLFxMQoKSlJJpOpzjpbLBYVFBRo4MCBCgwMdChedwubEWZXuRD/EC3oukAjd450+/SCpc+UumS7jfk82svRGO39fHiSqs+qPTFWjQwDAAAAAABXjsQIANRT//79tWPHDptlI0aMUKdOnTRhwgTFxMQoMDBQa9euVVpamiRpz549OnTokMxmsyTJbDZr+vTpKikpUUREhKTzd4+bTCbFx8fXuN/g4GAFBwdXWx4YGGj3j+SOlPUUjiY5TleedntixNXHuDGeR0fZG6O7z/WVsCfGxnCec3NzlZubq4MHD0qSunTpokmTJiklJUWSdObMGf3617/W22+/rfLyciUnJ2vu3Lk20wkeOnRIGRkZWrdunZo3b6709HTl5OSoSRMuWQEAAAAAzkMvEwDqqUWLFuratavNsmbNmunqq6+2Lh81apSysrIUHh4uk8mkcePGyWw2q3fv3pKkpKQkxcfHa9iwYZo5c6aKioo0ceJEZWZm1pj8AABP1aZNG82YMUMdOnSQYRhavHix7rnnHn3xxRfq0qWLxo8fr48++khLly5VWFiYxo4dqyFDhuizzz6TdH7EXWpqqqKiorRp0yYdOXJEw4cPV2BgoF544QU3RwcAAAAA8CYkRgDAhV555RX5+/srLS3N5g7pKgEBAVqxYoUyMjJkNpvVrFkzpaena+rUqW6sNQA4btCgQTavp0+frtzcXG3evFlt2rTR/PnzlZeXp379+kmSFi5cqM6dO2vz5s3q3bu38vPztXv3bq1Zs0aRkZHq0aOHpk2bpgkTJmjy5MkKCgpyR1gAAAAAAC9EYgQAnGj9+vU2r5s2bao5c+Zozpw5tb4nNjbW5Q/pBoCGVFFRoaVLl+rkyZMym83atm2bLBaLBgwYYC3TqVMntW3bVoWFherdu7cKCwvVrVs3m6m1kpOTlZGRoV27dqlnz5417qu8vFzl5eXW11XPY7FYLLJYLHXWs2r95co1Zp4UY4h/iEu366rte8Kxc/Q8uupYuFJVne2J0RPOCQDAfky5CsAT0XoAAADAKXbs2CGz2awzZ86oefPmWr58ueLj47V9+3YFBQWpZcuWNuUjIyNVVFQkSSoqKrLp/Fatr1pXm5ycHE2ZMqXa8vz8fIWGhtpV74KCArvKNWaeEOOShCUu3f6Crgtcsl1PunnB3vPo6mPtSvbEeOrUqQaoCQDAWZhyFYAnIjECAAAAp+jYsaO2b9+u0tJSvfvuu0pPT9eGDRtcus/s7GxlZWVZX5eVlSkmJkZJSUkymUx1vtdisaigoEADBw5sFA+4rw9PijFsRphLthviH6IFXRdo5M6ROl152unbL32m1OnbdJSj59FVx9qVqs6jPTFWjQwDADQOTLkKwBORGAEAAIBTBAUFqX379pKkxMREbd26VbNnz9bQoUN19uxZHTt2zGbUSHFxsaKioiRJUVFR2rJli832iouLretqExwcrODg4GrLAwMD7U4EOFK2sfKEGF2RtLh0+67Yh7uP28XsPY+uPtauZE+MnnROAACOYcpV17N3Sk1XT0fqCFcd58Z8Hu3FlKu2HDnXJEYAAADgEpWVlSovL1diYqICAwO1du1apaWlSZL27NmjQ4cOyWw2S5LMZrOmT5+ukpISRURESDo/pY7JZFJ8fLzbYgAAAMCVY8rVhuPolJqumo7UEa6eurQxnkdHMeXqeY5MuUpiBAAAAFcsOztbKSkpatu2rY4fP668vDytX79eq1evVlhYmEaNGqWsrCyFh4fLZDJp3LhxMpvN6t27tyQpKSlJ8fHxGjZsmGbOnKmioiJNnDhRmZmZNY4IAQAAQOPBlKsNx94pNV09HakjXDV1aWM+j/ZiylVbjky56lBiJDc3V7m5uTp48KAkqUuXLpo0aZJSUlIkSWfOnNGvf/1rvf322yovL1dycrLmzp1rk9U9dOiQMjIytG7dOjVv3lzp6enKyclRkybkaAAAABqrkpISDR8+XEeOHFFYWJgSEhK0evVqDRw4UJL0yiuvyN/fX2lpaTbXiVUCAgK0YsUKZWRkyGw2q1mzZkpPT9fUqVPdFRIA1Bt9ZwCwxZSrDcfRJIerpiN1hKuPcWM8j45iytULZezl0BVVmzZtNGPGDHXo0EGGYWjx4sW655579MUXX6hLly4aP368PvroIy1dulRhYWEaO3ashgwZos8++0zS+XkEU1NTFRUVpU2bNunIkSMaPny4AgMD9cILLzhSFQAAAHiQ+fPn17m+adOmmjNnjubMmVNrmdjYWJcPoweAhkDfGQDqxpSrANzNocTIoEGDbF5Pnz5dubm52rx5s9q0aaP58+crLy9P/fr1kyQtXLhQnTt31ubNm9W7d2/l5+dr9+7dWrNmjSIjI9WjRw9NmzZNEyZM0OTJkxUUFOS8yAAAAAAAcAP6zgBwAVOuAvBE9R6DW1FRoaVLl+rkyZMym83atm2bLBaLBgwYYC3TqVMntW3bVoWFherdu7cKCwvVrVs3m+HBycnJysjI0K5du9SzZ88a91VeXq7y8nLr66q5wiwWy2WfNF+13pEn0nuKEP8Qh8rZW96VXHWcG/N5tJejMXrC+XZUVZ3tidGbzzUAAAB8R0P2nQHAEzHlKgBP5HBiZMeOHTKbzTpz5oyaN2+u5cuXKz4+Xtu3b1dQUJDNfICSFBkZqaKiIklSUVGRzYVd1fqqdbXJycnRlClTqi3Pz89XaGioXfW256n1nmZJwhKHyi/ousBFNbGfq6e/aIzn0VH2xujo58OT2BPjqVOnGqAmAAAAgGu4o+/sqzcV2suTYnTVjW6uvnHSE44dNxXa8oRzcjlMuQrAEzmcGOnYsaO2b9+u0tJSvfvuu0pPT9eGDRtcUTer7OxsZWVlWV+XlZUpJiZGSUlJMplMdb7XYrGooKDArqfWe5qwGWF2lQvxD9GCrgs0cudItz9Ap/SZUpdstzGfR3s5GqO9nw9PUvVZtSfGqk4cAAAA0Bi5o+/sqzcVOsoTYnT1jW6uunHSk36Y5qbC87ipEADqx+HESFBQkNq3by9JSkxM1NatWzV79mwNHTpUZ8+e1bFjx2zufCkuLlZUVJQkKSoqSlu2bLHZXnFxsXVdbYKDg2ucM9CeJ9HXp6yncDTJcbrytNsTI64+xo3xPDrK3hjdfa6vhD0xevt5BgAAgHdzR9/ZV28qtJcnxeiqG91cfeOkq26GdAQ3FdripkIAqJ96P2OkSmVlpcrLy5WYmKjAwECtXbtWaWlpkqQ9e/bo0KFDMpvNkiSz2azp06erpKREERERks5nv00mk+Lj46+0KgAAAAAAeKSG6Dv76k2FjvKEGF19o5urbpx093G7GDcVXigDAHCcQ4mR7OxspaSkqG3btjp+/Ljy8vK0fv16rV69WmFhYRo1apSysrIUHh4uk8mkcePGyWw2q3fv3pKkpKQkxcfHa9iwYZo5c6aKioo0ceJEZWZm1njxBgAAAABAY0PfGQAAwLM5lBgpKSnR8OHDdeTIEYWFhSkhIUGrV6/WwIEDJUmvvPKK/P39lZaWpvLyciUnJ2vu3LnW9wcEBGjFihXKyMiQ2WxWs2bNlJ6erqlTpzo3KgAAAAAA3IS+MwAAgGdzKDEyf/78Otc3bdpUc+bM0Zw5c2otExsb61EP6wIAAAAAwJnoOwMAAHg2f3dXAAAAAAAAAAAAoKGQGAEAAAAAAAAAAD6DxAgAAAAAAAAAAPAZJEYAAAAAAAAAAIDPIDECAAAAAAAAAAB8BokRAAAAAAAAAADgM0iMAAAAAAAAAAAAn0FiBAAAAAAAAAAA+AwSIwAAAAAAAAAAwGeQGAEAAAAAAAAAAD6DxAgAAAAAAAAAAPAZJEYAAAAAAAAAAIDPIDECAAAAAAAAAAB8BokRAAAAXLGcnBzdfPPNatGihSIiIjR48GDt2bPHpkzfvn3l5+dn8/f444/blDl06JBSU1MVGhqqiIgIPf300zp37lxDhgIAAAAA8HJN3F0BAAAANH4bNmxQZmambr75Zp07d06/+93vlJSUpN27d6tZs2bWcqNHj9bUqVOtr0NDQ63/rqioUGpqqqKiorRp0yYdOXJEw4cPV2BgoF544YUGjQcAAAAA4L1IjAAAAOCKrVq1yub1okWLFBERoW3btun222+3Lg8NDVVUVFSN28jPz9fu3bu1Zs0aRUZGqkePHpo2bZomTJigyZMnKygoyKUxAAAAAAB8A1NpAQAAwOlKS0slSeHh4TbL33rrLV1zzTXq2rWrsrOzderUKeu6wsJCdevWTZGRkdZlycnJKisr065duxqm4gAAAHAqplwF4IkYMQIAAACnqqys1FNPPaVbb71VXbt2tS5/+OGHFRsbq+joaH355ZeaMGGC9uzZo2XLlkmSioqKbJIikqyvi4qKatxXeXm5ysvLra/LysokSRaLRRaLpc56Vq2/XLnGzJNiDPEPcel2XbV9Tzh2jp5HVx0LV6qqsz0xesI5AQDYjylXAXgiEiMAAABwqszMTO3cuVOffvqpzfIxY8ZY/92tWze1bt1a/fv31/79+xUXF1evfeXk5GjKlCnVlufn59t0putSUFBQr303Jp4Q45KEJS7d/oKuC1yy3ZUrV7pku/Vh73l09bF2JXtivHikGQDA8zHlKgBPRGIEAAAATjN27FitWLFCGzduVJs2beos26tXL0nSvn37FBcXp6ioKG3ZssWmTHFxsSTV2knOzs5WVlaW9XVZWZliYmKUlJQkk8lU5/4tFosKCgo0cOBABQYGXja2xsiTYgybEeaS7Yb4h2hB1wUauXOkTleedvr2S58pdfo2HeXoeXTVsXalqvNoT4xVI8MAAI1TXVOuvvnmm4qKitKgQYP07LPPWm90qW3K1YyMDO3atUs9e/asth9fHVls78hRV4+6dYSrjnNjPo/2YmSxLUfONYkRAAAAXDHDMDRu3DgtX75c69evV7t27S77nu3bt0uSWrduLUkym82aPn26SkpKFBERIen83eMmk0nx8fE1biM4OFjBwcHVlgcGBtqdCHCkbGPlCTG6Imlx6fZdsQ93H7eL2XseXX2sXcmeGD3pnAAAHNOQU6766shiR0eOumrUrSNcPUK3MZ5HRzGy+DxHRhY7lBjJycnRsmXL9PXXXyskJEQ/+9nP9Ic//EEdO3a0lunbt682bNhg877HHntM8+bNs74+dOiQMjIytG7dOjVv3lzp6enKyclRkybkaQAAABqjzMxM5eXl6YMPPlCLFi2sHdSwsDCFhIRo//79ysvL0913362rr75aX375pcaPH6/bb79dCQkJkqSkpCTFx8dr2LBhmjlzpoqKijRx4kRlZmbWmPwAAE9F3xkAataQU6766shie0eOunrUrSNcNUK3MZ9HezGy2JYjI4sdupriYUkAAACoSW5urqTzP/RdbOHChXr00UcVFBSkNWvWaNasWTp58qRiYmKUlpamiRMnWssGBARoxYoVysjIkNlsVrNmzZSenm5zXQkAjQF9ZwCorqGnXPXVkcWOJjlcNerWEa4+xo3xPDqKkcUXytjLocQID0sCAABATQzDqHN9TExMtTujaxIbG+tRD7sGgPqg7wwAF7hrylUAqMsVjb/lYUmuxcOSqm+3MZ5He/GwJFvefK4BAADgW+g7ewZPitFV/TlX/z7gCceOvrMtTzgnl8OUqwA8Ub0TIzwsyfV4WFJ1jfE8OoqHJZ3nyMOS3CU3N1e5ubk6ePCgJKlLly6aNGmSUlJSJElnzpzRr3/9a7399tsqLy9XcnKy5s6da9MGMm80AACAd6Pv7Hk8IUZX9+dc9fuAJ43qpO98XmPpO0tMuQrAs9T7lzceluR6PCzpgsZ8Hu3Fw5JsOfKwJHdp06aNZsyYoQ4dOsgwDC1evFj33HOPvvjiC3Xp0kXjx4/XRx99pKVLlyosLExjx47VkCFD9Nlnn0li3mgAAABfQN/Zc3hSjK7qz7n69wFX9fkdQd/ZVmPoOzPlKgBPVK/ECA9Lahg8LKnm7Te28+goHpZ0oYynGzRokM3r6dOnKzc3V5s3b1abNm00f/585eXlqV+/fpLO3w3TuXNnbd68Wb1792beaAAAAC9H39kzeUKMru7Puer3AXcft4vRd75QBgDgOIcSIzwsCQBqVlFRoaVLl+rkyZMym83atm2bLBaLBgwYYC3TqVMntW3bVoWFherdu3e95o2WfHfuaJ67VH27jfE82ou5o21587kGAG9E3xkAAMCzOZQY4WFJAGBrx44dMpvNOnPmjJo3b67ly5crPj5e27dvV1BQkFq2bGlTPjIy0tp21mfeaMl3547muUvVNcbz6Cjmjj6vMcwdDQC4gL4zAACAZ3MoMcLDkgDAVseOHbV9+3aVlpbq3XffVXp6ul1zo14JX507mucuXdCYz6O9mDvaVmOYOxoAcAF9ZwAAAM/m8FRadeFhSQB8TVBQkNq3by9JSkxM1NatWzV79mwNHTpUZ8+e1bFjx2xGjRQXF1vnhK7PvNGS784dzXOXat5+YzuPjmLu6AtlAACNB31nAAAAz+bv7goAgDeprKxUeXm5EhMTFRgYqLVr11rX7dmzR4cOHZLZbJZ0ft7oHTt2qKSkxFqGeaMBAAAAAAAA13JoxAgA4ILs7GylpKSobdu2On78uPLy8rR+/XqtXr1aYWFhGjVqlLKyshQeHi6TyaRx48bJbDard+/ekpg3GgAAAAAAAHAHEiMAUE8lJSUaPny4jhw5orCwMCUkJGj16tUaOHCgJOmVV16Rv7+/0tLSVF5eruTkZM2dO9f6fuaNBgAAAAAAABoeiREAqKf58+fXub5p06aaM2eO5syZU2sZ5o0GAAAAAAAAGhbPGAEAAAAAAAAAAD6DxAgAAAAAAAAAAPAZJEYAAAAAAAAAAIDPIDECAAAAAAAAAAB8BokRAAAAAAAAAADgM0iMAAAAAAAAAAAAn0FiBAAAAAAAAAAA+AwSIwAAAAAAAAAAwGeQGAEAAAAAAAAAAD6DxAgAAAAAAAAAAPAZJEYAAAAAAAAAAIDPIDECAACAK5aTk6Obb75ZLVq0UEREhAYPHqw9e/bYlDlz5owyMzN19dVXq3nz5kpLS1NxcbFNmUOHDik1NVWhoaGKiIjQ008/rXPnzjVkKAAAAAAAL0diBAAAAFdsw4YNyszM1ObNm1VQUCCLxaKkpCSdPHnSWmb8+PH68MMPtXTpUm3YsEGHDx/WkCFDrOsrKiqUmpqqs2fPatOmTVq8eLEWLVqkSZMmuSMkAAAAAICXIjECAACAK7Zq1So9+uij6tKli7p3765Fixbp0KFD2rZtmySptLRU8+fP18svv6x+/fopMTFRCxcu1KZNm7R582ZJUn5+vnbv3q0333xTPXr0UEpKiqZNm6Y5c+bo7Nmz7gwPAAAA9cTIYgCeqIm7KwAAAADvU1paKkkKDw+XJG3btk0Wi0UDBgywlunUqZPatm2rwsJC9e7dW4WFherWrZsiIyOtZZKTk5WRkaFdu3apZ8+e1fZTXl6u8vJy6+uysjJJksVikcViqbOOVesvV64x86QYQ/xDXLpdV23fE46do+fRVcfClarqbE+MnnBOAAD2qxpZfPPNN+vcuXP63e9+p6SkJO3evVvNmjWTdH5k8UcffaSlS5cqLCxMY8eO1ZAhQ/TZZ59JujCyOCoqSps2bdKRI0c0fPhwBQYG6oUXXnBneAAaKRIjAAAAcKrKyko99dRTuvXWW9W1a1dJUlFRkYKCgtSyZUubspGRkSoqKrKWuTgpUrW+al1NcnJyNGXKlGrL8/PzFRoaald9CwoK7CrXmHlCjEsSlrh0+wu6LnDJdleuXOmS7daHvefR1cfaleyJ8dSpUw1QEwCAs6xatcrm9aJFixQREaFt27bp9ttvt44szsvLU79+/SRJCxcuVOfOnbV582b17t3bOrJ4zZo1ioyMVI8ePTRt2jRNmDBBkydPVlBQkDtCA9CIOZQYycnJ0bJly/T1118rJCREP/vZz/SHP/xBHTt2tJY5c+aMfv3rX+vtt99WeXm5kpOTNXfuXJtO7qFDh5SRkaF169apefPmSk9PV05Ojpo0IU8DAADQ2GVmZmrnzp369NNPXb6v7OxsZWVlWV+XlZUpJiZGSUlJMplMdb7XYrGooKBAAwcOVGBgoKur6haeFGPYjDCXbDfEP0QLui7QyJ0jdbrytNO3X/pMqdO36ShHz6OrjrUrVZ1He2KsGhkGAGicGFnsWvaOHHX1qFtHuOo4N+bzaC9GFtty5Fw7lIlg6BsAAADqMnbsWK1YsUIbN25UmzZtrMujoqJ09uxZHTt2zGbUSHFxsaKioqxltmzZYrO9qrmlq8pcKjg4WMHBwdWWBwYG2p0IcKRsY+UJMboiaXHp9l2xD3cft4vZex5dfaxdyZ4YPemc1IabCgGgZowsdj1HR466atStI1w9QrcxnkdHMbL4PEdGFjt0NcXQNwAAANTEMAyNGzdOy5cv1/r169WuXTub9YmJiQoMDNTatWuVlpYmSdqzZ48OHToks9ksSTKbzZo+fbpKSkoUEREh6fzFr8lkUnx8fMMGBABXgJsKAaBmjCx2PXtHjrp61K0jXDVC19Xn0RNG6XrSeXQVV40svqLbTBpq6BsAAAA8W2ZmpvLy8vTBBx+oRYsW1jv3wsLCFBISorCwMI0aNUpZWVkKDw+XyWTSuHHjZDab1bt3b0lSUlKS4uPjNWzYMM2cOVNFRUWaOHGiMjMzaxwVAgCeipsKAaA6RhY3DEd/HHfVqFtHuPoYu+o8uvu4XcwTzqOrOXtkcb0TIw059I05Ae0r5wlzxDEnYP0xJ6Atbz7XAOCNcnNzJUl9+/a1Wb5w4UI9+uijkqRXXnlF/v7+SktLs5k2pkpAQIBWrFihjIwMmc1mNWvWTOnp6Zo6dWpDhQEALsF8+p7Bk2J0VX/O1b8PeMKxo+9syxPOyeUwshiAJ6p3YqQhh74xJ6B9mBPQOzAn4HmOzAkIAHA/wzAuW6Zp06aaM2eO5syZU2uZ2NhYl19PAEBDYj59z+MJMbq6P+eq3wc86f9o+s7nNYa+MyOLAXiieiVGGnroG3MC1s2X5pJzVYyumsvQEY5+Vj1hHkNHuWpOQAAAAMBTMZ++5/CkGF3Vn6PvXB19Z/djZDEAT+RQYsRdQ9+YE9D+8t6aGKniqhg96bNh72e1MZ9rZ88JCAAAAHgi5tP3TJ4Qo6v7c/SdL6Dv7H6MLAbgifwdKZyZmak333xTeXl51qFvRUVFOn36/H8yFw99W7dunbZt26YRI0bUOvTt3//+t1avXs3QNwAAAACA1zAMQ2PHjtXy5cv1ySef1HlTYZWabircsWOHSkpKrGWYTx8AAMA5HBoxwtA3AAAAAADqxnz6AAAAns3hqbQuh6FvAAAAAABfxk2FAAAAnq1eD18HAAAAAAA146ZCAAAAz0ZiBAAAAGhk/Kb42VUuxD9ESxKWKGxGWKN++CwAAAAAOJNDD18HAAAAAAAAAABozEiMAAAAAAAAAAAAn8FUWgAAAAAAoNFiekEAAOAoRowAAAAAAAAAAACfQWIEAAAAAAAAAAD4DKbSAgAAAIBa2DtFjysx/Q8AAADgXCRGAAAAAAAAcFkkiwEA3oKptAAAAAAAAAAAgM8gMQIAAAAAAAAAAHwGU2kBYjgwAAAAAAAAAPgKEiMAAAAAAAAAALdw1Q3L3ISMujCVFgAAAAAAAAAA8BkkRgCgnnJycnTzzTerRYsWioiI0ODBg7Vnzx6bMmfOnFFmZqauvvpqNW/eXGlpaSouLrYpc+jQIaWmpio0NFQRERF6+umnde7cuYYMBQAAAAAAAPAZJEYAoJ42bNigzMxMbd68WQUFBbJYLEpKStLJkyetZcaPH68PP/xQS5cu1YYNG3T48GENGTLEur6iokKpqak6e/asNm3apMWLF2vRokWaNGmSO0ICAAAAAAAAvB7PGAGAelq1apXN60WLFikiIkLbtm3T7bffrtLSUs2fP195eXnq16+fJGnhwoXq3LmzNm/erN69eys/P1+7d+/WmjVrFBkZqR49emjatGmaMGGCJk+erKCgIHeEBgAAAAAAAHgtEiMA4CSlpaWSpPDwcEnStm3bZLFYNGDAAGuZTp06qW3btiosLFTv3r1VWFiobt26KTIy0lomOTlZGRkZ2rVrl3r27FltP+Xl5SovL7e+LisrkyRZLBZZLJY661i1/nLlPFGIf4hD5ewt70quOs6N+Tzay9EYPeF8O6qqzvbE2FjO9caNG/Xiiy9q27ZtOnLkiJYvX67Bgwdb1z/66KNavHixzXuSk5NtEs1Hjx7VuHHj9OGHH8rf319paWmaPXu2mjdv3lBhAAAAAAC8HIkRAHCCyspKPfXUU7r11lvVtWtXSVJRUZGCgoLUsmVLm7KRkZEqKiqylrk4KVK1vmpdTXJycjRlypRqy/Pz8xUaGmpXfQsKCuwq50mWJCxxqPyCrgtcVBP7rVy50qXbb4zn0VH2xujo58OT2BPjqVOnGqAmV+7kyZPq3r27Ro4caTNt4MXuuusuLVy40Po6ODjYZv0jjzyiI0eOWKcoHDFihMaMGaO8vDyX1h0AAACuww00ADwNiREAcILMzEzt3LlTn376qcv3lZ2draysLOvrsrIyxcTEKCkpSSaTqc73WiwWFRQUaODAgQoMDHR1VZ0qbEaYXeVC/EO0oOsCjdw5UqcrT7u4VnUrfabUJdttzOfRXo7GaO/nw5NUfVbtibFqZJinS0lJUUpKSp1lgoODFRUVVeO6r776SqtWrdLWrVt10003SZJee+013X333XrppZcUHR3t9DoDAADA9biBBoCnITECAFdo7NixWrFihTZu3Kg2bdpYl0dFRens2bM6duyYzaiR4uJi64+CUVFR2rJli832iouLretqEhwcXO0CUZICAwPt/pHckbKewtEkx+nK025PjLj6GDfG8+goe2N097m+EvbE6E3nef369YqIiNBVV12lfv366fnnn9fVV18tSSosLFTLli2tSRFJGjBggPz9/fX555/r3nvvrbY9phe0r1xjnG7OXsToHbxxekEAwAXcQAPA0zicGGHoGwCcZxiGxo0bp+XLl2v9+vVq166dzfrExEQFBgZq7dq1SktLkyTt2bNHhw4dktlsliSZzWZNnz5dJSUlioiIkHR+Wh2TyaT4+PiGDQgAXOyuu+7SkCFD1K5dO+3fv1+/+93vlJKSosLCQgUEBKioqMjaFlZp0qSJwsPDmV7wEo1xekFXI0bv4E3TCwIAHOPsG2gAoC4OJ0YY+gYA52VmZiovL08ffPCBWrRoYf3RLiwsTCEhIQoLC9OoUaOUlZWl8PBwmUwmjRs3TmazWb1795YkJSUlKT4+XsOGDdPMmTNVVFSkiRMnKjMzs8ZRIQDQmD344IPWf3fr1k0JCQmKi4vT+vXr1b9//3ptk+kF6+ZJ0wu6CjF6B2+cXpCbCgHAfq64gYaRxfaV84URqcTYuLlqZLHDiRGGvgHAebm5uZKkvn372ixfuHChHn30UUnSK6+8Yu3ElpeXKzk5WXPnzrWWDQgI0IoVK5SRkSGz2axmzZopPT1dU6dObagwAMBtrr/+el1zzTXat2+f+vfvr6ioKJWUlNiUOXfunI4ePcr0gpdojNMLuhoxegdvml6QmwoBwH6uuIGGkcX28YURqcToHZw9stglzxhh6BsAX2AYxmXLNG3aVHPmzNGcOXNqLRMbG6uVK1c6s2oA0Ch89913+umnn9S6dWtJ56cXPHbsmLZt26bExERJ0ieffKLKykr16tXLnVUFAIdxUyEA1J8zbqBhZHHdfGlEKjE2bq4aWez0xAhD35yHoW8XEKN34KGaAODdTpw4oX379llfHzhwQNu3b1d4eLjCw8M1ZcoUpaWlKSoqSvv379dvf/tbtW/fXsnJyZKkzp0766677tLo0aM1b948WSwWjR07Vg8++CA/AALwSs6+qZC+s33lfKHPRYyNG31n59xAw8hi+8t76w/qVYjROzh7ZLHTEyMMfXMehr5VR4zegYdqAoB3+uc//6k777zT+rrqDr309HTl5ubqyy+/1OLFi3Xs2DFFR0crKSlJ06ZNs+mwvvXWWxo7dqz69+9vnYrw1VdfbfBYAMDVXHFTIX1n+/hCn4sYvYM39Z25gQaAp3HJVFoXY+hb/TH07QJi9A7e+FBNAMAFffv2rXOawdWrV192G+Hh4cydD8AnuOKmQvrOdfOlPhcxNm7e2HfmBhoAnsbliRGGvtUfQ9+qI0bv4E0P1QQAAACcwRk3FdJ3tr+8t/e5iNE7eFPfmRtoAHgaf0ffcOLECW3fvl3bt2+XdGHo26FDh3TixAk9/fTT2rx5sw4ePKi1a9fqnnvuqXXo25YtW/TZZ58x9A0AAAAA4NPquqmwyuVuKgQAAIB9HB4xwtA3AAAAAADqxnz6AAAAnsvhxAhD3wAAAAAAqBs3FQIAAHgulz9jBAAAAAAAX8NNhQAAAJ7L4WeMAAAAAAAAAAAANFYkRgAAAAAAAAAAgM8gMQIAAAAAAAAAAHwGiREAAAAAAAAAAOAzSIwAAAAAAAAAAACfQWIEAAAAAAAAAAD4DBIjAAAAAAAAAADAZ5AYAQAAAAAAAAAAPoPECAAAAAAAAAAA8BkkRgAAAAAAAAAAgM8gMQIAAAAAAAAAAHwGiREAAAAAAAAAAOAzSIwAAAAAAAAAAACfQWIEAAAAAAAAAAD4DBIjAAAAAAAAAADAZzRxdwUAAIBn8Zvi5+4qKMQ/REsSlihsRphOV552d3UAAAAAAIAXYcQIAAAAAAAAAADwGSRGAAAA4BQbN27UoEGDFB0dLT8/P73//vs26w3D0KRJk9S6dWuFhIRowIAB2rt3r02Zo0eP6pFHHpHJZFLLli01atQonThxogGjAAAAAAB4OxIjAAAAcIqTJ0+qe/fumjNnTo3rZ86cqVdffVXz5s3T559/rmbNmik5OVlnzpyxlnnkkUe0a9cuFRQUaMWKFdq4caPGjBnTUCEAAADABbiBBoCnITECAAAAp0hJSdHzzz+ve++9t9o6wzA0a9YsTZw4Uffcc48SEhL0l7/8RYcPH7Z2jL/66iutWrVKb7zxhnr16qU+ffrotdde09tvv63Dhw83cDQAAABwFm6gAeBpHE6MkOEFAACAow4cOKCioiINGDDAuiwsLEy9evVSYWGhJKmwsFAtW7bUTTfdZC0zYMAA+fv76/PPP2/wOgPAlaDvDAAXcAMNAE/TxNE3VGV4R44cqSFDhlRbX5XhXbx4sdq1a6dnn31WycnJ2r17t5o2bSrpfIb3yJEjKigokMVi0YgRIzRmzBjl5eVdeUQAAADwOEVFRZKkyMhIm+WRkZHWdUVFRYqIiLBZ36RJE4WHh1vLXKq8vFzl5eXW12VlZZIki8Uii8VSZ52q1l+unCcK8Q9xqJy95RsjYvQOVbHZ831sLN9Z+s4AYJ/L3UDz4IMPXvYGmpoSLgBQF4cTIykpKUpJSalx3aUZXkn6y1/+osjISL3//vt68MEHrRnerVu3Whuz1157TXfffbdeeuklRUdHX0E4AAAA8CU5OTmaMmVKteX5+fkKDQ21axsFBQXOrpbLLUlY4lD5BV0XuKgmnoMYvYM938dTp041QE2uHH1nALAPN9A4FzfQXECM3sFVN9A4nBipCxleAAAA1CQqKkqSVFxcrNatW1uXFxcXq0ePHtYyJSUlNu87d+6cjh49an3/pbKzs5WVlWV9XVZWppiYGCUlJclkMtVZJ4vFooKCAg0cOFCBgYH1CcttwmaE2VUuxD9EC7ou0MidI3W68rSLa+UexOgdqmK05/tY9cNWY0bfGQBcjxto7OMLN14Qo3dw9g00Tk2MkOF1LjK8FxCjd/DGKRIAAPZp166doqKitHbtWmsipKysTJ9//rkyMjIkSWazWceOHdO2bduUmJgoSfrkk09UWVmpXr161bjd4OBgBQcHV1seGBhod7LDkbKewtEfx09XnvbaH9SrEKN3sOf72Ni+rzWh7+xc9J0vIEbv4Gt9Z26gcS5uoLmAGL2Dq26gcWpixFXI8NrHFzKDxOgdvGmKBADABSdOnNC+ffusrw8cOKDt27crPDxcbdu21VNPPaXnn39eHTp0sM6nHx0drcGDB0uSOnfurLvuukujR4/WvHnzZLFYNHbsWD344INMGQMAdqDvbB9f6HMRo3fwlb4zN9A4FzfQVEeM3sHZN9A4NTFChte5yPBeQIzewdemSAAAX/PPf/5Td955p/V11fVbenq6Fi1apN/+9rc6efKkxowZo2PHjqlPnz5atWqV9SHDkvTWW29p7Nix6t+/v/z9/ZWWlqZXX321wWMBAFei7+xc9J0vIEbv4I19Z26gAeBpnJoYIcPrXGR4qyNG7+ArUyQAgK/p27evDMOodb2fn5+mTp2qqVOn1lomPDxceXl5rqgeAHgM+s7ORd+5OmL0Dt7Ud+YGGgCexuHECBleAAAAAADqRt8ZAC7gBhoAnsbhxAgZXgAAAAAA6kbfGQAAwHM5nBghwwsAAAAAQN3oOwMAAHguf3dXAAAAAAAAAAAAoKGQGAGAK7Bx40YNGjRI0dHR8vPz0/vvv2+z3jAMTZo0Sa1bt1ZISIgGDBigvXv32pQ5evSoHnnkEZlMJrVs2VKjRo3SiRMnGjAKAAAAAAAAwHeQGAGAK3Dy5El1795dc+bMqXH9zJkz9eqrr2revHn6/PPP1axZMyUnJ+vMmTPWMo888oh27dqlgoICrVixQhs3btSYMWMaKgQAAAAAAADApzj8jBEAwAUpKSlKSUmpcZ1hGJo1a5YmTpyoe+65R5L0l7/8RZGRkXr//ff14IMP6quvvtKqVau0detW3XTTTZKk1157TXfffbdeeuklRUdHN1gsAAAAAAAAgC9gxAgAuMiBAwdUVFSkAQMGWJeFhYWpV69eKiwslCQVFhaqZcuW1qSIJA0YMED+/v76/PPPG7zOAAAAAAAAgLdjxAgAuEhRUZEkKTIy0mZ5ZGSkdV1RUZEiIiJs1jdp0kTh4eHWMpcqLy9XeXm59XVZWZkkyWKxyGKx1FmnqvWXK+eJQvxDHCpnb3lXctVxdvV59IRj50nn0VWqYrPnPDbG7ywAAAAAAJ6KxAgANDI5OTmaMmVKteX5+fkKDQ21axsFBQXOrpbLLUlY4lD5BV0XuKgm9lu5cqVLt++q8+josXYlTziPrmbPeTx16lQD1AQAAAAAAN9AYgQAXCQqKkqSVFxcrNatW1uXFxcXq0ePHtYyJSUlNu87d+6cjh49an3/pbKzs5WVlWV9XVZWppiYGCUlJclkMtVZJ4vFooKCAg0cOFCBgYH1CcttwmaE2VUuxD9EC7ou0MidI3W68rSLa1W30mdKXbJdV59He4+1K3nSeXSVqhjtOY9VI8MAAAAAAMCVIzECAC7Srl07RUVFae3atdZESFlZmT7//HNlZGRIksxms44dO6Zt27YpMTFRkvTJJ5+osrJSvXr1qnG7wcHBCg4OrrY8MDDQ7h/JHSnrKRz9cfx05Wm3/6Du6mPsqvPo7uN2MU84j65mz3lsbN9XAAAAAAA8GYkRALgCJ06c0L59+6yvDxw4oO3btys8PFxt27bVU089peeff14dOnRQu3bt9Oyzzyo6OlqDBw+WJHXu3Fl33XWXRo8erXnz5slisWjs2LF68MEHFR0d7aaoAAAAAAAAAO9FYgQArsA///lP3XnnndbXVVNcpaena9GiRfrtb3+rkydPasyYMTp27Jj69OmjVatWqWnTptb3vPXWWxo7dqz69+8vf39/paWl6dVXX23wWAAAAAAAAABfQGIEAK5A3759ZRhGrev9/Pw0depUTZ06tdYy4eHhysvLc0X1AAAAAAAAAFyCxAgA+KCwGWFe/9wGAAAAAAAAoCb+7q4AAAAAAAAAAABAQyExAgAAAAAAAAAAfAaJEQAAAAAAAAAA4DNIjAAAAAAAAAAAAJ9BYgQAAAAAAAAAAPgMEiMAAAAAAAAAAMBnkBgBAAAAAAAAAAA+g8QIAAAAGsTkyZPl5+dn89epUyfr+jNnzigzM1NXX321mjdvrrS0NBUXF7uxxgAAAGgIXCcCaGhOT4zQkAEAAKA2Xbp00ZEjR6x/n376qXXd+PHj9eGHH2rp0qXasGGDDh8+rCFDhrixtgDgOvSdAcAW14kAGlITV2y0S5cuWrNmzYWdNLmwm/Hjx+ujjz7S0qVLFRYWprFjx2rIkCH67LPPXFEVAAAAeJAmTZooKiqq2vLS0lLNnz9feXl56tevnyRp4cKF6ty5szZv3qzevXs3dFUBwOXoOwPABVwnAmhILkmM0JABAACgJnv37lV0dLSaNm0qs9msnJwctW3bVtu2bZPFYtGAAQOsZTt16qS2bduqsLCw1uvE8vJylZeXW1+XlZVJkiwWiywWS511qVp/uXKeKMQ/xKFy9pZvjIjRO1TFZs/3sTF+Z2tD3xkALnD2dSIA1MUliRE6vM5Bh/cCYvQOvtrhBQCc16tXLy1atEgdO3bUkSNHNGXKFN12223auXOnioqKFBQUpJYtW9q8JzIyUkVFRbVuMycnR1OmTKm2PD8/X6GhoXbVq6CgwKE4PMGShCUOlV/QdYGLauI5iNE72PN9PHXqVAPUpGHwIyAAnOeK60R+T7SvnC/8DkWMjZurfk90emKEDq/z0OGtjhi9g691eAEA56WkpFj/nZCQoF69eik2NlZ/+9vfFBJSvwv57OxsZWVlWV+XlZUpJiZGSUlJMplMdb7XYrGooKBAAwcOVGBgYL327y5hM8LsKhfiH6IFXRdo5M6ROl152sW1cg9i9A5VMdrzfaz6Yaux40dA5+FHwAuI0Tv44k2FrrhO5PdE+/jC71DE6B2c/Xui0xMjdHidhw7vBcToHXyxwwsAqF3Lli11ww03aN++fRo4cKDOnj2rY8eO2fwQWFxcXOM0M1WCg4MVHBxcbXlgYKDd136OlPUUjl4rnK487bXXF1WI0TvY831sbN/X2vAjoPPwI2B1xOgdfPmmQmdcJ/J7Yt186XcoYmzcXPV7okum0roYHd76o8NbHTF6B1/q8AIAanfixAnt379fw4YNU2JiogIDA7V27VqlpaVJkvbs2aNDhw7JbDa7uaYA4Hr8CFh//Ah4ATF6B24qdM51Ir8n2l/eW79LVYjROzj790SXJ0bo8AIAAECSfvOb32jQoEGKjY3V4cOH9dxzzykgIEAPPfSQwsLCNGrUKGVlZSk8PFwmk0njxo2T2WxmLn0APoEfAeuPHwGrI0bv4Es3FXKdCKChOT0xQkMGAACAmnz33Xd66KGH9NNPP6lVq1bq06ePNm/erFatWkmSXnnlFfn7+ystLU3l5eVKTk7W3Llz3VxrAHAN+s4AcAHXiQAamtMTIzRkAAAAqMnbb79d5/qmTZtqzpw5mjNnTgPVCADch74zAFzAdSKAhub0xAgNGQAAAAAAdaPvDAAA4D4uf8YIAAAAAAAAADQ2YTPCvP5ZNoCvIjECAAAAn0aHFwAAAAB8i7+7KwAAAAAAAAAAANBQSIwAAAAAAAAAAACfwVRaAAAAAABAEtMLAgAA38CIEQAAAAAAAAAA4DN8ZsQId70AAAAAAAAAAABGjAAAAAAAAAAAAJ9BYgQAAAAAAAAAAPgMEiMAAAAAAAAAAMBnkBgBAAAAAAAAAAA+g8QIAAAAAAAAAADwGSRGAAAAAAAAAACAzyAxAgAAAAAAAAAAfAaJEQAAAAAAAAAA4DNIjAAAAAAAAAAAAJ9BYgQAAAAAAAAAAPgMEiMAAAAAAAAAAMBnkBgBAAAAAAAAAAA+g8QIAAAAAAAAAADwGSRGAAAAAAAAAACAz3BrYmTOnDm67rrr1LRpU/Xq1UtbtmxxZ3UAwK1oEwHgPNpDALiANhEALqBNBOAsbkuMvPPOO8rKytJzzz2nf/3rX+revbuSk5NVUlLirioBgNvQJgLAebSHAHABbSIAXECbCMCZ3JYYefnllzV69GiNGDFC8fHxmjdvnkJDQ7VgwQJ3VQkA3IY2EQDOoz0EgAtoEwHgAtpEAM7UxB07PXv2rLZt26bs7GzrMn9/fw0YMECFhYXVypeXl6u8vNz6urS0VJJ09OhRWSyWOvdlsVh06tQpNT3bVEal4aQIPEtT/6bE6AV8KcaffvpJgYGBdZY9fvy4JMkwvPNYXIw20bk86bv0008/uWS7VefRnu9SfTQ929Tp23S4Dh50Hl2FNrE6R9tDiTbxcnzpu0SMjRttYnW0ic7nS98lYmzcaBOro010Pl/6LhFj4+ayNtFwg++//96QZGzatMlm+dNPP23ccsst1co/99xzhiT++OPPB/++/fbbhmqa3IY2kT/++LP3z9vbREfbQ8OgTeSPP1/+o02sjjaRP/589482sTraRP74890/e9pEt4wYcVR2draysrKsrysrK3X06FFdffXV8vPzq/O9ZWVliomJ0bfffiuTyeTqqroFMXoHYrRlGIaOHz+u6OjoBqpd40GbWDdi9A7EaIs2sXa0iXUjRu9AjLZoE2tHm1g3YvQOxGiLNrF2tIl1I0bvQIy2HGkT3ZIYueaaaxQQEKDi4mKb5cXFxYqKiqpWPjg4WMHBwTbLWrZs6dA+TSaT1344qhCjdyDGC8LCwhqgNu5Hm+gaxOgdiPECX2gTHW0PJdpEexGjdyDGC2gTaROvBDF6B2K8gDaRNvFKEKN3IMYL7G0T3fLw9aCgICUmJmrt2rXWZZWVlVq7dq3MZrM7qgQAbkObCADn0R4CwAW0iQBwAW0iAGdz21RaWVlZSk9P10033aRbbrlFs2bN0smTJzVixAh3VQkA3IY2EQDOoz0EgAtoEwHgAtpEAM7ktsTI0KFD9cMPP2jSpEkqKipSjx49tGrVKkVGRjp1P8HBwXruueeqDZ3zJsToHYjRt9EmOg8xegdi9F0N1R5KvnEOiNE7EKPvok10LmL0DsTou2gTnYsYvQMx1p+fYRiGU7cIAAAAAAAAAADgodzyjBEAAAAAAAAAAAB3IDECAAAAAAAAAAB8BokRAAAAAAAAAADgM0iMAAAAAAAAAAAAn+FTiZGDBw9q1KhRateunUJCQhQXF6fnnntOZ8+edXfVnGb69On62c9+ptDQULVs2dLd1XGaOXPm6LrrrlPTpk3Vq1cvbdmyxd1VcpqNGzdq0KBBio6Olp+fn95//313V8mpcnJydPPNN6tFixaKiIjQ4MGDtWfPHndXC6JNbMxoExsv2kTPRZvYeNEmNl60iZ6LNrHxok1svGgTPRdtYuNFm9h4NUSb6FOJka+//lqVlZV6/fXXtWvXLr3yyiuaN2+efve737m7ak5z9uxZ3X///crIyHB3VZzmnXfeUVZWlp577jn961//Uvfu3ZWcnKySkhJ3V80pTp48qe7du2vOnDnuropLbNiwQZmZmdq8ebMKCgpksViUlJSkkydPurtqPo82sXGiTWzcaBM9F21i40Sb2LjRJnou2sTGiTaxcaNN9Fy0iY0TbWLj1iBtouHjZs6cabRr187d1XC6hQsXGmFhYe6uhlPccsstRmZmpvV1RUWFER0dbeTk5LixVq4hyVi+fLm7q+FSJSUlhiRjw4YN7q4KakCb6PloE70LbaJno030fLSJ3oU20bPRJno+2kTvQpvo2WgTPR9tondxRZvoUyNGalJaWqrw8HB3VwO1OHv2rLZt26YBAwZYl/n7+2vAgAEqLCx0Y81QX6WlpZLE985D0SZ6NtpE70Ob6NloEz0bbaL3oU30bLSJno020fvQJno22kTPRpvofVzRJvp0YmTfvn167bXX9Nhjj7m7KqjFjz/+qIqKCkVGRtosj4yMVFFRkZtqhfqqrKzUU089pVtvvVVdu3Z1d3VwCdpEz0eb6F1oEz0bbaLno030LrSJno020fPRJnoX2kTPRpvo+WgTvYur2kSvSIw888wz8vPzq/Pv66+/tnnP999/r7vuukv333+/Ro8e7aaa26c+8QGeKDMzUzt37tTbb7/t7qp4NdpE2kQ0DrSJDYM2kTYRjQNtYsOgTaRNRONAm9gwaBNpE9E4uKpNbOLUrbnJr3/9az366KN1lrn++uut/z58+LDuvPNO/exnP9Of//xnF9fuyjkanze55pprFBAQoOLiYpvlxcXFioqKclOtUB9jx47VihUrtHHjRrVp08bd1fFqtIm0ifB8tIkNhzaRNhGejzax4dAm0ibC89EmNhzaRNpEeD5XtolekRhp1aqVWrVqZVfZ77//XnfeeacSExO1cOFC+ft7/qAZR+LzNkFBQUpMTNTatWs1ePBgSeeHT61du1Zjx451b+VgF8MwNG7cOC1fvlzr169Xu3bt3F0lr0eb6L1oExs/2sSGR5vovWgTGz/axIZHm+i9aBMbP9rEhkeb6L1oExu/hmgTvSIxYq/vv/9effv2VWxsrF566SX98MMP1nXeki08dOiQjh49qkOHDqmiokLbt2+XJLVv317Nmzd3b+XqKSsrS+np6brpppt0yy23aNasWTp58qRGjBjh7qo5xYkTJ7Rv3z7r6wMHDmj79u0KDw9X27Zt3Vgz58jMzFReXp4++OADtWjRwjqXY1hYmEJCQtxcO99Gm0ib6IloE+EutIm0iZ6INhHuQptIm+iJaBPhLrSJtImeiDbRCQwfsnDhQkNSjX/eIj09vcb41q1b5+6qXZHXXnvNaNu2rREUFGTccsstxubNm91dJadZt25djecsPT3d3VVzitq+cwsXLnR31XwebWLjRZvYeNEmei7axMaLNrHxok30XLSJjRdtYuNFm+i5aBMbL9rExqsh2kS//39HAAAAAAAAAAAAXs/zJ8QDAAAAAAAAAABwEhIjAAAAAAAAAADAZ5AYAQAAAAAAAAAAPoPECAAAAAAAAAAA8BkkRgAAAAAAAAAAgM8gMQIAAAAAAAAAAHwGiREAAAAAAAAAAOAzSIwAAAAAAAAAAACfQWIEAAAAAAAAAAD4DBIjAAAAAAAAAADAZ5AYAQAAAAAAAAAAPoPECAAAAAAAAAAA8BkkRgAAAAAAAAAAgM8gMQIAAAAAAAAAAHwGiREAAAAAAAAAAOAzSIwAAAAAAAAAAACfQWIEAAAAAAAAAAD4DBIjAAAAAAAAAADAZ5AYAQAAAAAAAAAAPoPECAAAAAAAAAAA8BkkRgAAAAAAAAAAgM8gMQIAAAAAAAAAAHwGiREAAAAAAAAAAOAzSIwAAAAAAAAAAACfQWIEAAAAAAAAAAD4DBIjAAAAAAAAAADAZ5AYAQAAAAAAAAAAPoPECAAAAAAAAAAA8BkkRgAAAAAAAAAAgM8gMQIAAAAAAAAAAHwGiREAAAAAAAAAAOAzSIzA60yePFl+fn7uroYkz6oLAAAAAAAAAIDECC6Rl5enWbNmubsaAAAAAAAAAAC4BIkR2CAxAgAAAAAAAADwZiRGUG9nzpxRZWWlu6sBAAAAAAAAAIDdSIz4mOPHj+upp57Sddddp+DgYEVERGjgwIH617/+pb59++qjjz7SN998Iz8/P/n5+em6666TJK1fv15+fn56++23NXHiRF177bUKDQ1VWVmZJOnzzz/XXXfdpbCwMIWGhuqOO+7QZ599Zve+q+zdu1dpaWmKiopS06ZN1aZNGz344IMqLS294tjffPNNJSYmKiQkROHh4XrwwQf17bffWtePHTtWzZs316lTp6q996GHHlJUVJQqKiqsyz7++GPddtttatasmVq0aKHU1FTt2rXriusJAAAAAAAAAHCdJu6uABrW448/rnfffVdjx45VfHy8fvrpJ3366af66quv9Pvf/16lpaX67rvv9Morr0iSmjdvbvP+adOmKSgoSL/5zW9UXl6uoKAgffLJJ0pJSVFiYqKee+45+fv7a+HCherXr5/+8Y9/6JZbbrnsvm+88UadPXtWycnJKi8v17hx4xQVFaXvv/9eK1as0LFjxxQWFlbvuKdPn65nn31WDzzwgH71q1/phx9+0Guvvabbb79dX3zxhVq2bKmhQ4dqzpw5+uijj3T//fdb33vq1Cl9+OGHevTRRxUQECBJ+utf/6r09HQlJyfrD3/4g06dOqXc3Fz16dNHX3zxhTWhBAAAAAAAAADwLH6GYRjurgQaTsuWLfXLX/5Sf/rTn2pc//Of/1w7d+7UwYMHbZavX79ed955p66//nrt3LlTISEhkiTDMNSxY0ddf/31+vjjj+Xn5ydJOn36tLp06aL27dsrPz/frn1v375dPXv21NKlS3XffffVO8bJkydrypQpqvpof/PNN4qLi9PUqVP1u9/9zlpu586d6tmzp6ZMmaLf/e53MgxDMTEx6t27t959911ruaVLl+qBBx7Qxo0bddttt+nEiROKiYnR/fffrz//+c/WcsXFxerYsaMeeOAB6/JL6wIAAAAAAAAAcC+m0vIxLVu21Oeff67Dhw/X6/3p6enWpIh0Ppmxd+9ePfzww/rpp5/0448/6scff9TJkyfVv39/bdy40focksvtu2pEyOrVq2uczqq+li1bpsrKSj3wwAPW+v3444+KiopShw4dtG7dOkmSn5+f7r//fq1cuVInTpywvv+dd97Rtddeqz59+kiSCgoKdOzYMT300EM22wsICFCvXr2s2wMAAAAAAAAAeB4SIz5m5syZ2rlzp2JiYnTLLbdo8uTJ+u9//2v3+9u1a2fzeu/evZLOJ0xatWpl8/fGG2+ovLzc+nyQy+27Xbt2ysrK0htvvKFrrrlGycnJmjNnzhU/X2Tv3r0yDEMdOnSoVsevvvpKJSUl1rJDhw7V6dOn9fe//12SdOLECa1cuVL333+/dTRMVcz9+vWrtr38/Hyb7QEAAAAAAAAAPAvPGPExDzzwgG677TYtX75c+fn5evHFF/WHP/xBy5YtU0pKymXff/FoEUnW0SAvvviievToUeN7qp5TYs++//jHP+rRRx/VBx98oPz8fD355JPKycnR5s2b1aZNm3rFXFlZKT8/P3388cfWZ4TUVD9J6t27t6677jr97W9/08MPP6wPP/xQp0+f1tChQ6vF/Ne//lVRUVHVttekCV8rAAAAAAAAAPBU/ILrg1q3bq0nnnhCTzzxhEpKSnTjjTdq+vTpSklJsY6KsFdcXJwkyWQyacCAAVe07yrdunVTt27dNHHiRG3atEm33nqr5s2bp+eff96xQC+qo2EYateunW644YbLln/ggQc0e/ZslZWV6Z133tF1112n3r1722xPkiIiIuyKGQAAAAAAAADgOZhKy4dUVFRUm5YqIiJC0dHRKi8vlyQ1a9bMoamrEhMTFRcXp5deesnmuRxVfvjhB7v3XVZWpnPnztmU6datm/z9/a1l6mPIkCEKCAio8SHohmHop59+slk2dOhQlZeXa/HixVq1apUeeOABm/XJyckymUx64YUXZLFYqu2vKmYAAAAAAAAAgOdhxIgPOX78uNq0aaP77rtP3bt3V/PmzbVmzRpt3bpVf/zjHyWdT3S88847ysrK0s0336zmzZtr0KBBtW7T399fb7zxhlJSUtSlSxeNGDFC1157rb7//nutW7dOJpNJH374oV37/uSTTzR27Fjdf//9uuGGG3Tu3Dn99a9/VUBAgNLS0uodd1xcnJ5//nllZ2fr4MGDGjx4sFq0aKEDBw5o+fLlGjNmjH7zm99Yy994441q3769fv/736u8vNxmGi3p/OiY3NxcDRs2TDfeeKMefPBBtWrVSocOHdJHH32kW2+9VX/605/qXV8AAAAAAAAAgOuQGPEhoaGheuKJJ5Sfn69ly5apsrJS7du319y5c5WRkSFJeuKJJ7R9+3YtXLhQr7zyimJjY+tMjEhS3759VVhYqGnTpulPf/qTTpw4oaioKPXq1UuPPfaY3fvu3r27kpOT9eGHH+r7779XaGiounfvro8//thmKqv6eOaZZ3TDDTfolVde0ZQpUyRJMTExSkpK0i9+8Ytq5YcOHarp06erffv2uvHGG6utf/jhhxUdHa0ZM2boxRdfVHl5ua699lrddtttGjFixBXVFQAAAAAAAADgOn7GpXMLAQAAAAAAAAAAeCmeMQIAAAAAAAAAAHwGU2mh0SgtLdXp06frLBMVFdVAtQEAAAAAAAAANEZMpYVG49FHH9XixYvrLMPHGQAAAAAAAABQFxIjaDR2796tw4cP11lmwIABDVQbAAAAAAAAAEBjRGIEAAAAAAAAAAD4DB6+DgAAAAAAAAAAfEajfPh6ZWWlDh8+rBYtWsjPz8/d1QHgAoZh6Pjx44qOjpa/PzlcAAAAAAAAAM7RKBMjhw8fVkxMjLurAaABfPvtt2rTpo27qwEAAAAAAADASzTKxEiLFi0knf/B1GQy1VnWYrEoPz9fSUlJCgwMbIjqNThi9A7EaKusrEwxMTHW7zsAAAAAAAAAOEOjTIxUTZ9lMpnsSoyEhobKZDJ59Y/NxNj4EWPNmC4PAAAAAAAAgDMxcT8AAAAAAAAAAPAZJEYAAAAAAAAAAIDPIDECAAAAAAAAAAB8BokRAAAAAAAAAADgM0iMAAAAAAAAAAAAn0FiBAAAAAAAAAAA+AwSIwAAAAAAAAAAwGeQGAEAAAAAAAAAAD6DxAgAAAAAAAAAAPAZTdxdgYYSNiNMpytPu7saDjGeM9xdBQAAAAAAAAAAvAojRgAAAAAAAAAAgM/wmREjgLfxm+Ln7io4LMQ/REsSlri7GgAAAAAAAAB8GCNGAAAAAAAAAACAzyAxAgAAAAAAAAAAfAaJEQAAAAAAAAAA4DNIjAAAAAAAAAAAAJ9BYgQAAAAAAAAAAPgMEiMAAAAAAAAAAMBnNHF3BeBd/Kb4uWS7If4hWpKwRGEzwnS68rTTt288Zzh9mwAAAAAAAAAAz+PQiJHc3FwlJCTIZDLJZDLJbDbr448/tq7v27ev/Pz8bP4ef/xxm20cOnRIqampCg0NVUREhJ5++mmdO3fOOdEAAAAAAAAAAADUwaERI23atNGMGTPUoUMHGYahxYsX65577tEXX3yhLl26SJJGjx6tqVOnWt8TGhpq/XdFRYVSU1MVFRWlTZs26ciRIxo+fLgCAwP1wgsvOCkkAAAAAAAAAACAmjmUGBk0aJDN6+nTpys3N1ebN2+2JkZCQ0MVFRVV4/vz8/O1e/durVmzRpGRkerRo4emTZumCRMmaPLkyQoKCqpnGAAAAAAAAAAAAJdX72eMVFRUaOnSpTp58qTMZrN1+VtvvaU333xTUVFRGjRokJ599lnrqJHCwkJ169ZNkZGR1vLJycnKyMjQrl271LNnzxr3VV5ervLycuvrsrIySZLFYpHFYqmznlXrQ/xD6heoG10utkvL2VvelVx1nKu266rte8Kxc/Q8NsbPdFWd7YnRE84JAAAAAAAAAO/jZxiGQ0+d3rFjh8xms86cOaPmzZsrLy9Pd999tyTpz3/+s2JjYxUdHa0vv/xSEyZM0C233KJly5ZJksaMGaNvvvlGq1evtm7v1KlTatasmVauXKmUlJQa9zl58mRNmTKl2vK8vDybqboAeI9Tp07p4YcfVmlpqUwmk7urAwAAAAAAAMBLODxipGPHjtq+fbtKS0v17rvvKj09XRs2bFB8fLzGjBljLdetWze1bt1a/fv31/79+xUXF1fvSmZnZysrK8v6uqysTDExMUpKSrrsD6YWi0UFBQUauXOkTleerncd3KH0mVK7ylXFOHDgQAUGBrq4VnULmxHmku2G+IdoQdcFLjuP9h5rV3L0PLrqWLtS1Xm0J8aqkVJPf48AACbUSURBVGEAAAAAAAAA4EwOJ0aCgoLUvn17SVJiYqK2bt2q2bNn6/XXX69WtlevXpKkffv2KS4uTlFRUdqyZYtNmeLiYkmq9bkkkhQcHKzg4OBqywMDA+1OBJyuPN3oEiOOJjkcOR6u4upj7Krz6O7jdjF7z2Nj+zxfzJ4YPemcAAAAAAAAAPAe/le6gcrKSpvnf1xs+/btkqTWrVtLksxms3bs2KGSkhJrmYKCAplMJsXHx19pVQAAAAAAAAAAAOrk0IiR7OxspaSkqG3btjp+/Ljy8vK0fv16rV69Wvv377c+b+Tqq6/Wl19+qfHjx+v2229XQkKCJCkpKUnx8fEaNmyYZs6cqaKiIk2cOFGZmZk1jggBAAAAAAAAAABwJocSIyUlJRo+fLiOHDmisLAwJSQkaPXq1Ro4cKC+/fZbrVmzRrNmzdLJkycVExOjtLQ0TZw40fr+gIAArVixQhkZGTKbzWrWrJnS09M1depUpwcGAAAAAAAAAABwKYcSI/Pnz691XUxMjDZs2HDZbcTGxmrlypWO7BYAAAAAAAAAAMAprvgZIwAAAAAAAAAAAI0FiREAAAAAAAAAAOAzSIwAAAAAAAAAAACfQWIEAAAAAAAAAAD4DBIjAAAAAAAAAADAZ5AYAQAAAAAAAAAAPoPECAAAAAAAAAAA8BkkRgAAAAAAAAAAgM8gMQIAAAAAAAAAAHwGiREAAAAAAAAAAOAzSIwAAAAAAAAAAACfQWIEAAAAAAAAAAD4DBIjAAAAAAAAAADAZ5AYAQAAAAAAAAAAPoPECAAAAAAAAAAA8BkkRgAAAAAAAAAAgM8gMQIAAAAAAAAAAHwGiREAAAAAAAAAAOAzSIwAAAAAAAAAAACfQWIEAAAAAAAAAAD4DBIjAAAAAAAAAADAZziUGMnNzVVCQoJMJpNMJpPMZrM+/vhj6/ozZ84oMzNTV199tZo3b660tDQVFxfbbOPQoUNKTU1VaGioIiIi9PTTT+vcuXPOiQYAAAAAAAAAAKAODiVG2rRpoxkzZmjbtm365z//qX79+umee+7Rrl27JEnjx4/Xhx9+qKVLl2rDhg06fPiwhgwZYn1/RUWFUlNTdfbsWW3atEmLFy/WokWLNGnSJOdGBQAAAAAAAAAAUIMmjhQeNGiQzevp06crNzdXmzdvVps2bTR//nzl5eWpX79+kqSFCxeqc+fO2rx5s3r37q38/Hzt3r1ba9asUWRkpHr06KFp06ZpwoQJmjx5soKCgpwXGQAAAAAAAAAAwCUcSoxcrKKiQkuXLtXJkydlNpu1bds2WSwWDRgwwFqmU6dOatu2rQoLC9W7d28VFhaqW7duioyMtJZJTk5WRkaGdu3apZ49e9a4r/LycpWXl1tfl5WVSZIsFossFkud9axaH+IfUt9Q3eZysV1azt7yruSq41y1XVdt3xOOnaPnsTF+pqvqbE+MnnBOAAAAAAAAAHgfhxMjO3bskNls1pkzZ9S8eXMtX75c8fHx2r59u4KCgtSyZUub8pGRkSoqKpIkFRUV2SRFqtZXratNTk6OpkyZUm15fn6+QkND7ar3gq4L7CrnSVauXOlQ+YKCAhfVxH5LEpa4dPuuOo+OHmtXsvc8uvpYu5I9MZ46daoBagIAAAAAAADA1zicGOnYsaO2b9+u0tJSvfvuu0pPT9eGDRtcUTer7OxsZWVlWV+XlZUpJiZGSUlJMplMdb7XYrGooKBAI3eO1OnK0y6tp7OVPlNqV7mqGAcOHKjAwEAX16puYTPCXLLdEP8QLei6wGXn0d5j7UqOnkdXHWtXqjqP9sRYNTIMAAAAAAAAAJzJ4cRIUFCQ2rdvL0lKTEzU1q1bNXv2bA0dOlRnz57VsWPHbEaNFBcXKyoqSpIUFRWlLVu22GyvuLjYuq42wcHBCg4OrrY8MDDQ7kTA6crTjS4x4miSw5Hj4SquPsauOo/uPm4Xs/c8NrbP88XsidGTzgkAAAAAAAAA7+F/pRuorKxUeXm5EhMTFRgYqLVr11rX7dmzR4cOHZLZbJYkmc1m7dixQyUlJdYyBQUFMplMio+Pv9KqAAAAAAAAAAAA1MmhESPZ2dlKSUlR27Ztdfz4ceXl5Wn9+vVavXq1wsLCNGrUKGVlZSk8PFwmk0njxo2T2WxW7969JUlJSUmKj4/XsGHDNHPmTBUVFWnixInKzMyscUQIAAAAAAAAAACAMzmUGCkpKdHw4cN15MgRhYWFKSEhQatXr9bAgQMlSa+88or8/f2Vlpam8vJyJScna+7cudb3BwQEaMWKFcrIyJDZbFazZs2Unp6uqVOnOjcqAAAAAAAAAACAGjiUGJk/f36d65s2bao5c+Zozpw5tZaJjY3VypUrHdktAAAAAAAAAACAU1zxM0YAAAAAAAAAAAAaCxIjAAAAAAAAAADAZ5AYAQAAAAAAAAAAPoPECAAAAAAAAAAA8BkkRgAAAAAAAAAAgM8gMQIA/197dx9jZXnmD/w7g8MwKAM76sxIRIp2u+pi1aAi1TWovPgSd9mSZq2u9YXoLhlMdLqtYlwF+0LXmmq0VNukiJtINU1WjcSljrjCmqK2NMZVKymuu2zVGayEGXlxGJ35/TXzcwRhBuZ4gOfzSSbhuZ/73Oe67vvwz3zzzAEAAAAACkMwAgAAAAAAFIZgBAAAAAAAKAzBCAAAAAAAUBiCEQAAAAAAoDAEIwAAAAAAQGEIRgAAAAAAgMIQjAAAAAAAAIUhGAEAAAAAAApDMAIAAAAAABSGYAQAAAAAACgMwQgAAAAAAFAYghEAAAAAAKAwBCMAAAAAAEBhCEYAAAAAAIDCGFQwsmjRopx++ukZNWpU6uvrM2vWrKxbt67fnKlTp6aioqLfzz/+4z/2m7Nhw4ZcfPHFGTlyZOrr6/Otb30rH3300b53AwAAAAAAsBuHDGbyqlWr0tTUlNNPPz0fffRRbrnllsyYMSOvv/56Dj300L551157be64446+65EjR/b9++OPP87FF1+cxsbG/PrXv867776bb3zjG6mqqsr3v//9IWgJAAAAAABg1wYVjKxYsaLf9dKlS1NfX5+1a9fmnHPO6RsfOXJkGhsbd7nG008/nddffz3PPPNMGhoacsopp+Q73/lObrrppixYsCDDhw/fizYAAAAAAAD2bJ++Y6S9vT1JUldX12/84YcfzhFHHJGJEydm/vz52bZtW9+9NWvW5KSTTkpDQ0Pf2MyZM9PR0ZHXXnttX8oBAAAAAADYrUE9MfJJ3d3dueGGG3LWWWdl4sSJfeOXXXZZxo8fn7Fjx+aVV17JTTfdlHXr1uXf/u3fkiStra39QpEkfdetra27fK/Ozs50dnb2XXd0dCRJurq60tXVtds6e+/XVNYMssPy21Nvn5430PmlVKp97l23VOvvD3s32HM8ED/TvTUPpMf94UwAAAAAgINPRU9PT8/evHDu3Ln593//9zz//PM5+uijP3Pes88+m/PPPz/r16/Pcccdl+uuuy7/+7//m1/96ld9c7Zt25ZDDz00Tz31VC688MKd1liwYEEWLly40/iyZcv6fX8JcPDYtm1bLrvssrS3t6e2trbc5QAAAAAAB4m9emJk3rx5Wb58eVavXr3bUCRJJk+enCR9wUhjY2NeeumlfnPa2tqS5DO/l2T+/Plpbm7uu+7o6Mi4ceMyY8aMPf7CtKurKy0tLbnm1WuyvXv7Hnvbn7Tf3D6geb09Tp8+PVVVVSWuavdG/2B0SdatqazJkolLSnaOA93rUhrsOZZqr0up9xwH0mPvk2EAAAAAAENpUMFIT09Prr/++jz22GN57rnnMmHChD2+5uWXX06SHHXUUUmSKVOm5Hvf+142btyY+vr6JElLS0tqa2tz4okn7nKN6urqVFdX7zReVVU14CBge/f2Ay4YGWzIMZj9KJVS73GpzrHc+/ZJAz3HA+3z/EkD6XF/OhMAAAAA4OAxqGCkqakpy5YtyxNPPJFRo0b1fSfI6NGjU1NTkzfffDPLli3LRRddlMMPPzyvvPJKbrzxxpxzzjn58pe/nCSZMWNGTjzxxFxxxRW5884709ramltvvTVNTU27DD8AAAAAAACGSuVgJt9///1pb2/P1KlTc9RRR/X9PProo0mS4cOH55lnnsmMGTNy/PHH55vf/GZmz56dJ598sm+NYcOGZfny5Rk2bFimTJmSv//7v883vvGN3HHHHUPbGQAAAAAAwKcM+k9p7c64ceOyatWqPa4zfvz4PPXUU4N5awAAAAAAgH02qCdGAAAAAAAADmSCEQAAAAAAoDAEIwAAAAAAQGEIRgAAAAAAgMIQjAAAAAAAAIUhGAEAAAAAAApDMAIAAAAAABSGYAQAAAAAACgMwQgAAAAAAFAYghEAAAAAAKAwBCMAAAAAAEBhCEYAAAAAAIDCEIwAAAAAAACFIRgBAAAAAAAKQzACAAAAAAAUhmAEAAAAAAAoDMEIAAAAAABQGIIRAAAAAACgMAQjAAAAAABAYQhGAAAAAACAwhCMAAAAAAAAhTGoYGTRokU5/fTTM2rUqNTX12fWrFlZt25dvzkffvhhmpqacvjhh+ewww7L7Nmz09bW1m/Ohg0bcvHFF2fkyJGpr6/Pt771rXz00Uf73g0AAAAAAMBuDCoYWbVqVZqamvLCCy+kpaUlXV1dmTFjRrZu3do358Ybb8yTTz6ZX/7yl1m1alXeeeedfPWrX+27//HHH+fiiy/Ojh078utf/zoPPfRQli5dmttuu23ougIAAAAAANiFQwYzecWKFf2uly5dmvr6+qxduzbnnHNO2tvb8/Of/zzLli3LeeedlyR58MEHc8IJJ+SFF17ImWeemaeffjqvv/56nnnmmTQ0NOSUU07Jd77zndx0001ZsGBBhg8fPnTdAQAAAAAAfMKggpFPa29vT5LU1dUlSdauXZuurq5Mmzatb87xxx+fY445JmvWrMmZZ56ZNWvW5KSTTkpDQ0PfnJkzZ2bu3Ll57bXXcuqpp+70Pp2dnens7Oy77ujoSJJ0dXWlq6trtzX23q+prNnLLstnT719et5A55dSqfa5d91Srb8/7N1gz/FA/Ez31jyQHveHMwEAAAAADj57HYx0d3fnhhtuyFlnnZWJEycmSVpbWzN8+PCMGTOm39yGhoa0trb2zflkKNJ7v/ferixatCgLFy7cafzpp5/OyJEjB1TvkolLBjRvf/LUU08Nan5LS0uJKhm4X3z5FyVdv1TnONi9LqWBnmOp97qUBtLjtm3bPodKAAAAAICi2etgpKmpKa+++mqef/75oaxnl+bPn5/m5ua+646OjowbNy4zZsxIbW3tbl/b1dWVlpaWXPPqNdnevb3UpQ6p9pvbBzSvt8fp06enqqqqxFXt3ugfjC7JujWVNVkycUnJznGge11Kgz3HUu11KfWe40B67H0yDAAAAABgKO1VMDJv3rwsX748q1evztFHH9033tjYmB07dmTz5s39nhppa2tLY2Nj35yXXnqp33ptbW1993aluro61dXVO41XVVUNOAjY3r39gAtGBhtyDGY/SqXUe1yqcyz3vn3SQM/xQPs8f9JAetyfzgQAAAAAOHhUDmZyT09P5s2bl8ceeyzPPvtsJkyY0O/+pEmTUlVVlZUrV/aNrVu3Lhs2bMiUKVOSJFOmTMl//dd/ZePGjX1zWlpaUltbmxNPPHFfegEAAAAAANitQT0x0tTUlGXLluWJJ57IqFGj+r4TZPTo0ampqcno0aMzZ86cNDc3p66uLrW1tbn++uszZcqUnHnmmUmSGTNm5MQTT8wVV1yRO++8M62trbn11lvT1NS0y6dCAAAAAAAAhsqggpH7778/STJ16tR+4w8++GCuuuqqJMndd9+dysrKzJ49O52dnZk5c2Z+8pOf9M0dNmxYli9fnrlz52bKlCk59NBDc+WVV+aOO+7Yt04AAAAAAAD2YFDBSE9Pzx7njBgxIosXL87ixYs/c8748ePz1FNPDeatAQAAAAAA9tmgvmMEAAAAAADgQCYYAQAAAAAACkMwAgAAAAAAFIZgBAAAAAAAKAzBCAAAAAAAUBiCEQAAAAAAoDAEIwAAAAAAQGEIRgAAAAAAgMIQjAAAAAAAAIUhGAEAAAAAAApDMAIAAAAAABSGYAQAAAAAACgMwQgAAAAAAFAYghEAAAAAAKAwBCMAAAAAAEBhCEYAAAAAAIDCEIwAAAAAAACFIRgBAAAAAAAKQzACAAAAAAAUhmAEAAAAAAAoDMEIAAAAAABQGIMORlavXp1LLrkkY8eOTUVFRR5//PF+96+66qpUVFT0+7ngggv6zdm0aVMuv/zy1NbWZsyYMZkzZ062bNmyT40AAAAAAADsyaCDka1bt+bkk0/O4sWLP3POBRdckHfffbfv5xe/+EW/+5dffnlee+21tLS0ZPny5Vm9enWuu+66wVcPAAAAAAAwCIcM9gUXXnhhLrzwwt3Oqa6uTmNj4y7v/f73v8+KFSvym9/8JqeddlqS5L777stFF12Uu+66K2PHjh1sSQAAAAAAAAMy6GBkIJ577rnU19fnz/7sz3Leeeflu9/9bg4//PAkyZo1azJmzJi+UCRJpk2blsrKyrz44ov527/9253W6+zsTGdnZ991R0dHkqSrqytdXV27raX3fk1lzT739XnbU2+fnjfQ+aVUqn3uXbdU6+8PezfYczwQP9O9NQ+kx/3hTAAAAACAg09FT09Pz16/uKIijz32WGbNmtU39sgjj2TkyJGZMGFC3nzzzdxyyy057LDDsmbNmgwbNizf//7389BDD2XdunX91qqvr8/ChQszd+7cnd5nwYIFWbhw4U7jy5Yty8iRI/e2fGA/tm3btlx22WVpb29PbW1tucsBAAAAAA4SQ/7EyKWXXtr375NOOilf/vKXc9xxx+W5557L+eefv1drzp8/P83NzX3XHR0dGTduXGbMmLHHX5h2dXWlpaUl17x6TbZ3b9+r9y+X9pvbBzSvt8fp06enqqqqxFXt3ugfjC7JujWVNVkycUnJznGge11Kgz3HUu11KfWe40B67H0yDAAAAABgKJXkT2l90rHHHpsjjjgi69evz/nnn5/GxsZs3Lix35yPPvoomzZt+szvJamurk51dfVO41VVVQMOArZ3bz/ggpHBhhyD2Y9SKfUel+ocy71vnzTQczzQPs+fNJAe96czAQAAAAAOHpWlfoM//vGPef/993PUUUclSaZMmZLNmzdn7dq1fXOeffbZdHd3Z/LkyaUuBwAAAAAAKLBBPzGyZcuWrF+/vu/6rbfeyssvv5y6urrU1dVl4cKFmT17dhobG/Pmm2/m29/+dr74xS9m5syZSZITTjghF1xwQa699to88MAD6erqyrx583LppZdm7NixQ9cZAAAAAADApwz6iZHf/va3OfXUU3PqqacmSZqbm3Pqqafmtttuy7Bhw/LKK6/kr//6r/OlL30pc+bMyaRJk/Kf//mf/f4U1sMPP5zjjz8+559/fi666KKcffbZ+dnPfjZ0XQEAAAAAAOzCoJ8YmTp1anp6ej7z/q9+9as9rlFXV5dly5YN9q0BAAAAAAD2Scm/YwQAAAAAAGB/IRgBAAAAAAAKQzACAAAAAAAUhmAEAAAAAAAoDMEIAAAAAABQGIIRAAAAAACgMAQjAAAAAABAYQhGAAAAAACAwhCMAAAAAAAAhSEYAQAAAAAACkMwAgAAAAAAFIZgBAAAAAAAKAzBCAAAAAAAUBiCEQAAAAAAoDAEIwAAAAAAQGEIRgAAAAAAgMIQjAAAAAAAAIUhGAEAAAAAAApDMAIAAAAAABSGYAQAAAAAACiMQQcjq1evziWXXJKxY8emoqIijz/+eL/7PT09ue2223LUUUelpqYm06ZNyx/+8Id+czZt2pTLL788tbW1GTNmTObMmZMtW7bsUyMAAAAAAAB7MuhgZOvWrTn55JOzePHiXd6/8847c++99+aBBx7Iiy++mEMPPTQzZ87Mhx9+2Dfn8ssvz2uvvZaWlpYsX748q1evznXXXbf3XQAAAAAAAAzAIYN9wYUXXpgLL7xwl/d6enpyzz335NZbb83f/M3fJEn+9V//NQ0NDXn88cdz6aWX5ve//31WrFiR3/zmNznttNOSJPfdd18uuuii3HXXXRk7duw+tAMAAAAAAPDZhvQ7Rt566620trZm2rRpfWOjR4/O5MmTs2bNmiTJmjVrMmbMmL5QJEmmTZuWysrKvPjii0NZDgAAAAAAQD+DfmJkd1pbW5MkDQ0N/cYbGhr67rW2tqa+vr5/EYcckrq6ur45n9bZ2ZnOzs6+646OjiRJV1dXurq6dltT7/2ayppBdLJ/2FNvn5430PmlVKp97l23VOvvD3s32HM8ED/TvTUPpMf94UwAAAAAgIPPkAYjpbJo0aIsXLhwp/Gnn346I0eOHNAaSyYuGeqySu6pp54a1PyWlpYSVTJwv/jyL0q6fqnOcbB7XUoDPcdS73UpDaTHbdu2fQ6VAAAAAABFM6TBSGNjY5Kkra0tRx11VN94W1tbTjnllL45Gzdu7Pe6jz76KJs2bep7/afNnz8/zc3NfdcdHR0ZN25cZsyYkdra2t3W1NXVlZaWllzz6jXZ3r19b9oqm/ab2wc0r7fH6dOnp6qqqsRV7d7oH4wuybo1lTVZMnFJyc5xoHtdSoM9x1LtdSn1nuNAeux9MgwAAAAAYCgNaTAyYcKENDY2ZuXKlX1BSEdHR1588cXMnTs3STJlypRs3rw5a9euzaRJk5Ikzz77bLq7uzN58uRdrltdXZ3q6uqdxquqqgYcBGzv3n7ABSODDTkGsx+lUuo9LtU5lnvfPmmg53igfZ4/aSA97k9nAgAAAAAcPAYdjGzZsiXr16/vu37rrbfy8ssvp66uLsccc0xuuOGGfPe7382f//mfZ8KECfnnf/7njB07NrNmzUqSnHDCCbngggty7bXX5oEHHkhXV1fmzZuXSy+9NGPHjh2yxgAAAAAAAD5t0MHIb3/725x77rl9171/4urKK6/M0qVL8+1vfztbt27Nddddl82bN+fss8/OihUrMmLEiL7XPPzww5k3b17OP//8VFZWZvbs2bn33nuHoB0AAAAAAIDPNuhgZOrUqenp6fnM+xUVFbnjjjtyxx13fOacurq6LFu2bLBvDQAAAAAAsE8qy10AAAAAAADA50UwAgAAAAAAFIZgBAAAAAAAKAzBCAAAAAAAUBiCEQAAAAAAoDAEIwAAAAAAQGEIRgAAAAAAgMIQjAAAAAAAAIUhGAEAAAAAAApDMAIAAAAAABSGYAQAAAAAACgMwQgAAAAAAFAYghEAAAAAAKAwBCMAAAAAAEBhCEYAAAAAAIDCEIwAAAAAAACFIRgBAAAAAAAKQzACAAAAAAAUhmAEAAAAAAAoDMEIAAAAAABQGIIRAAAAAACgMIY8GFmwYEEqKir6/Rx//PF99z/88MM0NTXl8MMPz2GHHZbZs2enra1tqMsAAAAAAADYSUmeGPnLv/zLvPvuu30/zz//fN+9G2+8MU8++WR++ctfZtWqVXnnnXfy1a9+tRRlAAAAAAAA9HNISRY95JA0NjbuNN7e3p6f//znWbZsWc4777wkyYMPPpgTTjghL7zwQs4888xSlAMAAAAAAJCkRE+M/OEPf8jYsWNz7LHH5vLLL8+GDRuSJGvXrk1XV1emTZvWN/f444/PMccckzVr1pSiFAAAAAAAgD5D/sTI5MmTs3Tp0vzFX/xF3n333SxcuDB/9Vd/lVdffTWtra0ZPnx4xowZ0+81DQ0NaW1t/cw1Ozs709nZ2Xfd0dGRJOnq6kpXV9du6+m9X1NZs5cdlc+eevv0vIHOL6VS7XPvuqVaf3/Yu8Ge44H4me6teSA97g9nAgAAAAAcfCp6enp6SvkGmzdvzvjx4/OjH/0oNTU1ufrqq/uFHElyxhln5Nxzz82//Mu/7HKNBQsWZOHChTuNL1u2LCNHjixJ3UB5bdu2LZdddlna29tTW1tb7nIAAAAAgINESb5j5JPGjBmTL33pS1m/fn2mT5+eHTt2ZPPmzf2eGmlra9vld5L0mj9/fpqbm/uuOzo6Mm7cuMyYMWOPvzDt6upKS0tLrnn1mmzv3r7P/Xye2m9uH9C83h6nT5+eqqqqEle1e6N/MLok69ZU1mTJxCUlO8eB7nUpDfYcS7XXpdR7jgPpsffJMAAAAACAoVTyYGTLli158803c8UVV2TSpEmpqqrKypUrM3v27CTJunXrsmHDhkyZMuUz16iurk51dfVO41VVVQMOArZ3bz/ggpHBhhyD2Y9SKfUel+ocy71vnzTQczzQPs+fNJAe96czAQAAAAAOHkMejPzTP/1TLrnkkowfPz7vvPNObr/99gwbNixf//rXM3r06MyZMyfNzc2pq6tLbW1trr/++kyZMiVnnnnmUJcCAAAAAADQz5AHI3/84x/z9a9/Pe+//36OPPLInH322XnhhRdy5JFHJknuvvvuVFZWZvbs2ens7MzMmTPzk5/8ZKjLAAAAAAAA2MmQByOPPPLIbu+PGDEiixcvzuLFi4f6rQEAAAAAAHarstwFAAAAAAAAfF4EIwAAAAAAQGEIRgAAAAAAgMIQjAAAAAAAAIUhGAEAAAAAAApDMAIAAAAAABSGYAQAAAAAACgMwQgAAAAAAFAYghEAAAAAAKAwBCMAAAAAAEBhCEYAAAAAAIDCEIwAAAAAAACFIRgBAAAAAAAKQzACAAAAAAAUhmAEAAAAAAAoDMEIAAAAAABQGIIRAAAAAACgMAQjAAAAAABAYQhGAAAAAACAwhCMAAAAAAAAhSEYAQAAAAAACqOswcjixYvzhS98ISNGjMjkyZPz0ksvlbMcAAAAAADgIFe2YOTRRx9Nc3Nzbr/99vzud7/LySefnJkzZ2bjxo3lKgkAAAAAADjIlS0Y+dGPfpRrr702V199dU488cQ88MADGTlyZJYsWVKukgAAAAAAgIPcIeV40x07dmTt2rWZP39+31hlZWWmTZuWNWvW7DS/s7MznZ2dfdft7e1Jkk2bNqWrq2u379XV1ZVt27ZlxI4R6enuGaIOPh/vv//+gOb19vj++++nqqqqxFXt3ogdI0qzbuWIkp7jQPe6lAZ7jqXa61LqPceB9PjBBx8kSXp6Dqz/twAAAADA/q0swcif/vSnfPzxx2loaOg33tDQkDfeeGOn+YsWLcrChQt3Gp8wYULJatwfHPH9I8pdwn7jw3yYy3JZyda315+PvTnHDz74IKNHjy5RRQAAAABA0ZQlGBms+fPnp7m5ue+6u7s7mzZtyuGHH56KiordvrajoyPjxo3L//3f/6W2trbUpZaFHg8Oeuyvp6cnH3zwQcaOHfs5VQcAAAAAFEFZgpEjjjgiw4YNS1tbW7/xtra2NDY27jS/uro61dXV/cbGjBkzqPesra09aH/Z3EuPBwc9/n+eFAEAAAAAhlpZvnx9+PDhmTRpUlauXNk31t3dnZUrV2bKlCnlKAkAAAAAACiAsv0prebm5lx55ZU57bTTcsYZZ+See+7J1q1bc/XVV5erJAAAAAAA4CBXtmDk7/7u7/Lee+/ltttuS2tra0455ZSsWLFipy9k31fV1dW5/fbbd/pTXAcTPR4c9AgAAAAAUHoVPT09PeUuAgAAAAAA4PNQlu8YAQAAAAAAKAfBCAAAAAAAUBiCEQAAAAAAoDAEIwAAAAAAQGEUKhj5n//5n8yZMycTJkxITU1NjjvuuNx+++3ZsWNHuUsbMt/73vfyla98JSNHjsyYMWPKXc6QWbx4cb7whS9kxIgRmTx5cl566aVylzRkVq9enUsuuSRjx45NRUVFHn/88XKXNKQWLVqU008/PaNGjUp9fX1mzZqVdevWlbssAAAAAKCgChWMvPHGG+nu7s5Pf/rTvPbaa7n77rvzwAMP5JZbbil3aUNmx44d+drXvpa5c+eWu5Qh8+ijj6a5uTm33357fve73+Xkk0/OzJkzs3HjxnKXNiS2bt2ak08+OYsXLy53KSWxatWqNDU15YUXXkhLS0u6uroyY8aMbN26tdylAQAAAAAFVNHT09NT7iLK6Yc//GHuv//+/Pd//3e5SxlSS5cuzQ033JDNmzeXu5R9Nnny5Jx++un58Y9/nCTp7u7OuHHjcv311+fmm28uc3VDq6KiIo899lhmzZpV7lJK5r333kt9fX1WrVqVc845p9zlAAAAAAAFU6gnRnalvb09dXV15S6Dz7Bjx46sXbs206ZN6xurrKzMtGnTsmbNmjJWxt5qb29PEv/vAAAAAICyKHQwsn79+tx33335h3/4h3KXwmf405/+lI8//jgNDQ39xhsaGtLa2lqmqthb3d3dueGGG3LWWWdl4sSJ5S4HAAAAACiggyIYufnmm1NRUbHbnzfeeKPfa95+++1ccMEF+drXvpZrr722TJUPzN70B/ujpqamvPrqq3nkkUfKXQoAAAAAUFCHlLuAofDNb34zV1111W7nHHvssX3/fuedd3LuuefmK1/5Sn72s5+VuLp9N9j+DiZHHHFEhg0blra2tn7jbW1taWxsLFNV7I158+Zl+fLlWb16dY4++uhylwMAAAAAFNRBEYwceeSROfLIIwc09+233865556bSZMm5cEHH0xl5f7/0Mxg+jvYDB8+PJMmTcrKlSv7vpC8u7s7K1euzLx588pbHAPS09OT66+/Po899liee+65TJgwodwlAQAAAAAFdlAEIwP19ttvZ+rUqRk/fnzuuuuuvPfee333DpanDzZs2JBNmzZlw4YN+fjjj/Pyyy8nSb74xS/msMMOK29xe6m5uTlXXnllTjvttJxxxhm55557snXr1lx99dXlLm1IbNmyJevXr++7fuutt/Lyyy+nrq4uxxxzTBkrGxpNTU1ZtmxZnnjiiYwaNarvu2FGjx6dmpqaMlcHAAAAABRNRU9PT0+5i/i8LF269DN/mX6wbMNVV12Vhx56aKfx//iP/8jUqVM//4KGyI9//OP88Ic/TGtra0455ZTce++9mTx5crnLGhLPPfdczj333J3Gr7zyyixduvTzL2iIVVRU7HL8wQcf3OOfiAMAAAAAGGqFCkYAAAAAAIBi2/+/YAMAAAAAAGCICEYAAAAAAIDCEIwAAAAAAACFIRgBAAAAAAAKQzACAAAAAAAUhmAEAAAAAAAoDMEIAAAAAABQGIIRAAAAAACgMAQjAAAAAABAYQhGAAAAAACAwhCMAAAAAAAAhSEYAQAAAAAACuP/Aa19pioVoO3rAAAAAElFTkSuQmCC\n"},"metadata":{}}],"source":["df_scaled.hist(bins=5,figsize=(20,20));\n","\n","df_norm.hist(bins=5,figsize=(20,20),color='r');\n","\n","df_minmax.hist(bins=5,figsize=(20,20),color='g');"]},{"cell_type":"code","execution_count":null,"metadata":{"id":"6qzC8HCnfO7A"},"outputs":[],"source":[]},{"cell_type":"code","execution_count":25,"metadata":{"colab":{"base_uri":"https://localhost:8080/","height":545},"executionInfo":{"elapsed":2763,"status":"ok","timestamp":1716216907268,"user":{"displayName":"Daniel Meier","userId":"06365571306976914087"},"user_tz":300},"id":"wI9Bh3Kp9ihi","outputId":"8c6d1f08-f14a-43b6-d594-763120e150fb"},"outputs":[{"output_type":"display_data","data":{"text/plain":["
"],"image/png":"iVBORw0KGgoAAAANSUhEUgAAAzkAAAIQCAYAAACixqBTAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOzdd1RUx9vA8e/Sli69qAgqYEGxYO8de+/GXqPYW/gZCzbU2GPURBPURKOxJ7E3jBJjx4oNwRJRbKCIUu/7hy8bV0BBRRCfzzn3HHfuzNxn7rLrzk5ZlaIoCkIIIYQQQgiRS+hkdwBCCCGEEEII8SFJJ0cIIYQQQgiRq0gnRwghhBBCCJGrSCdHCCGEEEIIkatIJ0cIIYQQQgiRq0gnRwghhBBCCJGrSCdHCCGEEEIIkatIJ0cIIYQQQgiRq0gnRwghhBBCCJGrSCdHCCH+36RJk1CpVNkdRpbo0aMHLi4uH7TOFStWoFKpCA8P/6D1fmjffPMNhQoVQldXl9KlS2d3OJ8teR4yr1atWtSqVeujXCunv/+5uLjQo0cPzePAwEBUKhWBgYHZFpPI2aSTI0QOc+7cOdq2bYuzszOGhobky5eP+vXr8+2332rlmz59Olu2bMmeIN+Di4sLTZs2ze4wPojAwEBat26Ng4MDBgYG2NnZ0axZMzZt2pTdoX1Qn+rfGsDu3bsZM2YMVatWJSAggOnTp6ebt0ePHqhUqjSPnTt3Zkl8a9asYf78+VlSd06S1vNw584dJk2aRHBw8EeNJTw8nJ49e1K4cGEMDQ1xcHCgRo0aTJw4USvf4sWLWbFixUeN7VPxxx9/ULNmTezs7DA2NqZQoUK0b98+y14nQrwLvewOQAjxn7///pvatWtToEAB+vbti4ODA7du3eKff/5hwYIFDB48WJN3+vTptG3blpYtW2ZfwJ+xiRMnMnnyZNzc3Ojfvz/Ozs48fPiQ7du306ZNG1avXk3nzp2zO8wPIr2/ta5du9KxY0fUanX2BJYB+/fvR0dHhx9//BEDA4O35ler1SxfvjxVeqlSpbIiPNasWcP58+cZNmxYltSfU6T1PJw4cQI/Pz9cXFw+2sjOtWvXKF++PEZGRvTq1QsXFxciIiI4deoUM2fOxM/PT5N38eLF2NjYaI0eCJg9ezajR4+mZs2a+Pr6YmxszLVr19i7dy9r166lYcOGHyWOGjVq8Pz58wy9rsXnSTo5QuQg06ZNI0+ePBw/fhwLCwutc5GRke9c77NnzzAxMXnP6ESKDRs2MHnyZNq2bcuaNWvQ19fXnBs9ejS7du0iISHhva+TmJhIcnJymv+J54TnVFdXF11d3WyN4W0iIyMxMjLK8AchPT09vvjiiyyOKuvFxsZibGyc3WFoZPZ5eB9vem3MmzePmJgYgoODcXZ2ThVjbvam95PM1DFlyhTq16/P7t27U53/mPdQR0cHQ0PDj3Y98emR6WpC5CChoaF4eHik6uAA2NnZaf6tUql49uwZK1eu1EynSfm2MWVe9cWLF+ncuTOWlpZUq1ZNU/aXX37By8sLIyMjrKys6NixI7du3dK61tWrV2nTpg0ODg4YGhqSP39+OnbsSHR0tCbPnj17qFatGhYWFpiamlKkSBH+97//fbB78bY4fXx8MDU1JTY2NlXZTp064eDgQFJSkiZtx44dVK9eHRMTE8zMzGjSpAkXLlx4p9jGjx+PlZUVP/30k1YHJ4W3t7fWlLzIyEh69+6Nvb09hoaGlCpVipUrV2qVCQ8PR6VSMXv2bObPn0/hwoVRq9VcvHjxgzynaZk9ezZVqlTB2toaIyMjvLy82LBhg1aeN/2tpbcmZ/HixXh4eKBWq8mbNy+DBg0iKipKK0+tWrUoUaIEFy9epHbt2hgbG5MvXz5mzZr11rjhvw9bKffJxcWF//3vf8TFxWnFHhAQwLNnzzSxv+/0o+TkZObPn4+HhweGhobY29vTv39/Hj9+rJVv69atNGnShLx586JWqylcuDBTpkzR+pusVasW27Zt48aNG5r4UtZNpXdv01qHkHIvT548SY0aNTA2Nta8FuPi4pg4cSKurq6o1WqcnJwYM2aM1n2Cd389BwQEUKdOHezs7FCr1RQvXpwlS5Zo5UnveShfvjwAPXv2TPP5OXr0KA0bNiRPnjwYGxtTs2ZNgoKCtOp+22vjdaGhoeTPnz9VBwe032NdXFy4cOECBw8e1MSWsjbm0aNHjBo1ipIlS2Jqaoq5uTmNGjXizJkzWvWlPFe//fYb06ZNI3/+/BgaGlK3bl2uXbuW6vo//PADhQsXxsjIiAoVKnDo0KFUeeLj45kwYQJeXl7kyZMHExMTqlevzoEDB7Tyven9BODw4cOUL18eQ0NDChcuzPfff5/uPXvVgwcPePLkCVWrVk3z/Kv3EODFixdMmjQJd3d3DA0NcXR0pHXr1oSGhmryZOR9KC1vei1k5H3lxo0bNG/eHBMTE+zs7Bg+fDi7du2SdT65iIzkCJGDODs7c+TIEc6fP0+JEiXSzffzzz/Tp08fKlSoQL9+/QAoXLiwVp527drh5ubG9OnTURQFeDlSNH78eNq3b0+fPn24f/8+3377LTVq1OD06dNYWFgQHx+Pt7c3cXFxDB48GAcHB/7991/+/PNPoqKiyJMnDxcuXKBp06Z4enoyefJk1Go1165dS/UB5F1lJM4OHTrw3XffsW3bNtq1a6cpGxsbyx9//EGPHj00oww///wz3bt3x9vbm5kzZxIbG8uSJUuoVq0ap0+fztSC/KtXr3Lp0iV69eqFmZnZW/M/f/6cWrVqce3aNXx8fChYsCDr16+nR48eREVFMXToUK38AQEBvHjxgn79+qFWq7GystKce9fnND0LFiygefPmdOnShfj4eNauXUu7du34888/adKkiebeve1v7VWTJk3Cz8+PevXq8eWXX3L58mWWLFnC8ePHCQoK0uoUPn78mIYNG9K6dWvat2/Phg0bGDt2LCVLlqRRo0ZvvK99+vRh5cqVtG3blpEjR3L06FH8/f0JCQlh8+bNmth/+OEHjh07ppmCVqVKlTfWCy8/yL1KX1+fPHnyANC/f39WrFhBz549GTJkCGFhYSxatIjTp09rtW/FihWYmpoyYsQITE1N2b9/PxMmTODJkyd88803AIwbN47o6Ghu377NvHnzADA1NX1rfGl5+PAhjRo1omPHjnzxxRfY29uTnJxM8+bNOXz4MP369aNYsWKcO3eOefPmceXKFc06q/d5PS9ZsgQPDw+aN2+Onp4ef/zxBwMHDiQ5OZlBgwYBaT8Pbm5uTJ48mQkTJtCvXz+qV68O/Pf87N+/n0aNGuHl5cXEiRPR0dHRdKgOHTpEhQoVtOJI67WRFmdnZ/bu3cv+/fupU6dOuvnmz5/P4MGDMTU1Zdy4cQDY29sDcP36dbZs2UK7du0oWLAg9+7d4/vvv6dmzZpcvHiRvHnzatU1Y8YMdHR0GDVqFNHR0cyaNYsuXbpw9OhRTZ4ff/yR/v37U6VKFYYNG8b169dp3rw5VlZWODk5afI9efKE5cuX06lTJ/r27cvTp0/58ccf8fb25tixY6mm/aX1fnLu3DkaNGiAra0tkyZNIjExkYkTJ2ra9yZ2dnYYGRnxxx9/MHjwYK33p9clJSXRtGlT9u3bR8eOHRk6dChPnz5lz549nD9/XvM+kpH3oczIyPvKs2fPqFOnDhEREQwdOhQHBwfWrFmTqrMoPnGKECLH2L17t6Krq6vo6uoqlStXVsaMGaPs2rVLiY+PT5XXxMRE6d69e6r0iRMnKoDSqVMnrfTw8HBFV1dXmTZtmlb6uXPnFD09PU366dOnFUBZv359unHOmzdPAZT79+9nuo3Ozs5KkyZN0j2f0TiTk5OVfPnyKW3atNHK99tvvymA8tdffymKoihPnz5VLCwslL59+2rlu3v3rpInTx6t9JR79yZbt25VAGXevHlvbauiKMr8+fMVQPnll180afHx8UrlypUVU1NT5cmTJ4qiKEpYWJgCKObm5kpkZKRWHe/7nCqKonTv3l1xdnbWyhcbG6v1OD4+XilRooRSp04drfT0/tYCAgIUQAkLC1MURVEiIyMVAwMDpUGDBkpSUpIm36JFixRA+emnnzRpNWvWVABl1apVmrS4uDjFwcEh1XP6uuDgYAVQ+vTpo5U+atQoBVD279+v1W4TE5M31vdqXiDVUbNmTUVRFOXQoUMKoKxevVqr3M6dO1Olv35vFUVR+vfvrxgbGysvXrzQpDVp0iTV86Ioqe9tigMHDiiAcuDAAU1ayr1cunSpVt6ff/5Z0dHRUQ4dOqSVvnTpUgVQgoKCFEV5v9dzWu309vZWChUqpJWW1vNw/PhxBVACAgK00pOTkxU3NzfF29tbSU5O1rpWwYIFlfr162vS0nttpOf8+fOKkZGRAiilS5dWhg4dqmzZskV59uxZqrweHh6a5/5VL1680Pr7VpSXr1+1Wq1MnjxZk5byXBUrVkyJi4vTpC9YsEABlHPnzimK8vJ1Z2dnp5QuXVor3w8//KD196coipKYmKiVR1EU5fHjx4q9vb3Sq1cvrXjSez9p2bKlYmhoqNy4cUOTdvHiRUVXV/et73+KoigTJkxQAMXExERp1KiRMm3aNOXkyZOp8v30008KoMydOzfVudef11el9z7k7Oys9T70ptfC295X5syZowDKli1bNGnPnz9XihYtmqpO8emS6WpC5CD169fnyJEjNG/enDNnzjBr1iy8vb3Jly8fv//+e6bqGjBggNbjTZs2kZycTPv27Xnw4IHmcHBwwM3NTfMNVso31rt27UpzKhigGR3YunUrycnJmWzlm2U0TpVKRbt27di+fTsxMTGa8uvWrSNfvnyaKSt79uwhKiqKTp06adWnq6tLxYoVM/3N3ZMnTwAyNIoDsH37dhwcHOjUqZMmTV9fnyFDhhATE8PBgwe18rdp0wZbW9s063rX5zQ9RkZGmn8/fvyY6OhoqlevzqlTpzLUttft3buX+Ph4hg0bho7Of/+99O3bF3Nzc7Zt26aV39TUVGv9i4GBARUqVOD69etvvM727dsBGDFihFb6yJEjAVJdJzMMDQ3Zs2eP1jFnzhwA1q9fT548eahfv77W/fby8sLU1FTrfr96b58+fcqDBw+oXr06sbGxXLp06Z3jS49araZnz55aaevXr6dYsWIULVpUK96UEYyUeN/n9fxqO6Ojo3nw4AE1a9bk+vXrWtNbMyM4OJirV6/SuXNnHj58qIn72bNn1K1bl7/++itVnK+/NtLj4eFBcHAwX3zxBeHh4SxYsICWLVtib2/PsmXLMlSHWq3W/H0nJSXx8OFDzRS/tF47PXv21FoHkzJqlfJ3fuLECSIjIxkwYIBWvh49emjej1Po6upq8iQnJ/Po0SMSExMpV65cmtd+/f0kKSmJXbt20bJlSwoUKKBJL1asGN7e3hlqv5+fH2vWrKFMmTLs2rWLcePG4eXlRdmyZQkJCdHk27hxIzY2Nlob5qR4davqD/0+lJH3lZ07d5IvXz6aN2+uSTM0NKRv377vdE2RM8l0NSFymPLly7Np0ybi4+M5c+YMmzdvZt68ebRt25bg4GCKFy+eoXoKFiyo9fjq1asoioKbm1ua+VOm2RQsWJARI0Ywd+5cVq9eTfXq1WnevDlffPGF5j/cDh06sHz5cvr06cNXX31F3bp1ad26NW3bttX6cPsuMhpnShzz58/n999/p3PnzsTExLB9+3b69++v+U/06tWrAOlOTTE3N89UfCn5nz59mqH8N27cwM3NLdV9KVasmOb8q15/3t50LjP3Ki1//vknU6dOJTg4ONValneR0pYiRYpopRsYGFCoUKFUbc2fP3+qa1laWnL27Nm3XkdHRwdXV1etdAcHBywsLFJdJzN0dXWpV69emueuXr1KdHR0qnUHKV5ddH3hwgW+/vpr9u/fr+kYp3jXD/9vki9fvlQLyq9evUpISEi6neaUeN/n9RwUFMTEiRM5cuRIqi9FoqOjU31Iz4iU12z37t3TzRMdHY2lpaXm8ZteN69zd3fn559/JikpiYsXL/Lnn38ya9Ys+vXrR8GCBdN9/lMkJyezYMECFi9eTFhYmNY6K2tr61T5X+1MAJq4U9Zxpfy9vv461tfXp1ChQqnqW7lyJXPmzOHSpUtaG5ykdQ9eT7t//z7Pnz9P8z2jSJEimi8Q3qZTp0506tSJJ0+ecPToUVasWMGaNWto1qwZ58+fx9DQkNDQUIoUKYKe3ps/an7o96GMvK/cuHGDwoULp8r3+nuK+LRJJ0eIHMrAwIDy5ctTvnx53N3d6dmzJ+vXr0/1Ww7pefXbMXj5H7NKpWLHjh1p7oj16lqAOXPm0KNHD7Zu3cru3bsZMmQI/v7+/PPPP+TPnx8jIyP++usvDhw4wLZt29i5cyfr1q2jTp067N69+7123MpMnJUqVcLFxYXffvuNzp0788cff/D8+XM6dOigVR+8XBfg4OCQqr63/Qf8uqJFiwIvf88oK7z+vL3pXGbu1esOHTpE8+bNqVGjBosXL8bR0RF9fX0CAgJYs2bNuzcgE9L7O1HesKbiVR/7hwuTk5Oxs7Nj9erVaZ5P6UxERUVRs2ZNzM3NmTx5sub3WE6dOsXYsWMzNFqSXtte/UD9qrT+bpKTkylZsiRz585Ns0zKWo93fT2HhoZSt25dihYtyty5c3FycsLAwIDt27czb968dx7lTSn3zTffpLu19Ot/22963aRHV1eXkiVLUrJkSSpXrkzt2rVZvXr1Wzs506dPZ/z48fTq1YspU6ZgZWWFjo4Ow4YNS7PN7/t3/qpffvmFHj160LJlS0aPHo2dnR26urr4+/trLeZP8S73JTPMzc2pX78+9evXR19fn5UrV3L06FFq1qyZofJZ8T70Ie+3+LRJJ0eIT0C5cuUAiIiI0KRl9gNe4cKFURSFggUL4u7u/tb8Kf/5f/311/z9999UrVqVpUuXMnXqVODl9p1169albt26zJ07l+nTpzNu3DgOHDjw1g8JHzLO9u3bs2DBAp48ecK6detwcXGhUqVKWvXBywWz7xNXCnd3d4oUKcLWrVtZsGDBWxeKOzs7c/bsWZKTk7W+FU+ZspTWLk8Zldl79aqNGzdiaGjIrl27tH7nJiAgIFXejP6tpbTl8uXLWt9Ax8fHExYW9kHuf8p1kpOTuXr1qmZEDODevXtERUW91z19k8KFC7N3716qVq36xg+PgYGBPHz4kE2bNlGjRg1NelhYWKq86d3blG/7X9+VLjOjVIULF+bMmTPUrVv3rc/hu7ye//jjD+Li4vj999+1RisyOgU0vZhSXrPm5uYf7G/mbTLzHrthwwZq167Njz/+qJUeFRWFjY1Npq+d8vd69epVrRHnhIQEwsLCtH6jacOGDRQqVIhNmzZpxZfRL79sbW0xMjLSjJa96vLly5mO/VXlypVj5cqVmntYuHBhjh49SkJCQrqjypl5H/qQnJ2duXjxIoqiaN3HtHa9E58uWZMjRA5y4MCBNL9tSplC8Oo0IBMTk1QfgN6kdevW6Orq4ufnl+oaiqLw8OFD4OWak8TERK3zJUuWREdHRzOV4NGjR6nqT/nG9fWtaTMro3Gm6NChA3FxcaxcuZKdO3fSvn17rfPe3t6Ym5szffr0NH+75v79+5mO0c/Pj4cPH9KnT59U9wpe/rr7n3/+CUDjxo25e/cu69at05xPTEzk22+/xdTUNMPfeKYls/fqVbq6uqhUKq2RgfDwcM2OW6/K6N9avXr1MDAwYOHChVrx/Pjjj0RHR7/TTklpady4MfByB6xXpYxYfKjrvK59+/YkJSUxZcqUVOcSExM19yjlm+RX70F8fDyLFy9OVc7ExCTN6WspH/T/+usvTVpSUhI//PBDpuL9999/01xr8vz5c549ewa8++s5rXZGR0dn+ANqym/ZvP635eXlReHChZk9e7bWersU7/KaTXHo0KE03wcy8x6rq6ub6vW2fv16/v3333eKqVy5ctja2rJ06VLi4+M16StWrEh1/bTu+dGjRzly5EiGrqWrq4u3tzdbtmzh5s2bmvSQkBB27dr11vKxsbHpXmvHjh3Af/ewTZs2PHjwgEWLFqXKmxJ/Zt6HPiRvb2/+/fdfrbWuL168yPC6LPFpkJEcIXKQwYMHExsbS6tWrShatCjx8fH8/fffmhGKVxcWe3l5sXfvXubOnUvevHkpWLAgFStWTLfuwoULM3XqVHx9fQkPD6dly5aYmZkRFhbG5s2b6devH6NGjWL//v34+PjQrl073N3dSUxM5Oeff0ZXV5c2bdoAMHnyZP766y+aNGmCs7MzkZGRLF68mPz587/xNypSXLt2TTMi9KoyZcrQpEmTDMWZomzZsri6ujJu3Dji4uK0pqrBy2+DlyxZQteuXSlbtiwdO3bE1taWmzdvsm3bNqpWrZrmf8Jv0qFDB86dO8e0adM4ffo0nTp1wtnZmYcPH7Jz50727dunmWrRr18/vv/+e3r06MHJkydxcXFhw4YNBAUFMX/+/AxvYJCWjD6naWnSpAlz586lYcOGdO7cmcjISL777jtcXV1TrYnJ6N+ara0tvr6++Pn50bBhQ5o3b87ly5dZvHgx5cuX/2A/slmqVCm6d+/ODz/8oJkaduzYMVauXEnLli2pXbv2B7nO62rWrEn//v3x9/cnODiYBg0aoK+vz9WrV1m/fj0LFiygbdu2VKlSBUtLS7p3786QIUNQqVT8/PPPaX6B4eXlxbp16xgxYgTly5fH1NSUZs2a4eHhQaVKlfD19eXRo0dYWVmxdu3aNDvV6enatSu//fYbAwYM4MCBA1StWpWkpCQuXbrEb7/9xq5duyhXrtw7v54bNGiAgYEBzZo1o3///sTExLBs2TLs7Oy0RkTSU7hwYSwsLFi6dClmZmaYmJhQsWJFChYsyPLly2nUqBEeHh707NmTfPny8e+//3LgwAHMzc35448/MnwfXjVz5kxOnjxJ69at8fT0BODUqVOsWrUKKysrhg0bpsnr5eXFkiVLmDp1Kq6urtjZ2VGnTh2aNm3K5MmT6dmzJ1WqVOHcuXOsXr06zfUzGaGvr8/UqVPp378/derUoUOHDoSFhREQEJCqzqZNm7Jp0yZatWpFkyZNCAsLY+nSpRQvXjzNDmFa/Pz82LlzJ9WrV2fgwIGaL108PDzeuh4uNjaWKlWqUKlSJRo2bIiTkxNRUVFs2bKFQ4cO0bJlS8qUKQNAt27dWLVqFSNGjODYsWNUr16dZ8+esXfvXgYOHEiLFi0y9T70IfXv359FixbRqVMnhg4diqOjI6tXr9b8uOjHngorssjH28hNCPE2O3bsUHr16qUULVpUMTU1VQwMDBRXV1dl8ODByr1797TyXrp0SalRo4ZmO9SUrTVTtlRNbzvYjRs3KtWqVVNMTEwUExMTpWjRosqgQYOUy5cvK4qiKNevX1d69eqlFC5cWDE0NFSsrKyU2rVrK3v37tXUsW/fPqVFixZK3rx5FQMDAyVv3rxKp06dlCtXrry1jc7Ozmlu0wsovXv3znCcrxo3bpwCKK6urule98CBA4q3t7eSJ08exdDQUClcuLDSo0cP5cSJE5o8GdlC+lUp98HOzk7R09NTbG1tlWbNmilbt27Vynfv3j2lZ8+eio2NjWJgYKCULFky1ba5KVu+fvPNN6mu877PqaKkvYX0jz/+qLi5uSlqtVopWrSoEhAQkOY9SO9vLb1tjhctWqQULVpU0dfXV+zt7ZUvv/xSefz4sVaemjVrKh4eHqnaklacaUlISFD8/PyUggULKvr6+oqTk5Pi6+urtT1zSn2Z2UI6I3l/+OEHxcvLSzEyMlLMzMyUkiVLKmPGjFHu3LmjyRMUFKRUqlRJMTIyUvLmzavZDp7XtqeNiYlROnfurFhYWCiAVttDQ0OVevXqKWq1WrG3t1f+97//KXv27Elz29y07qWivNyOd+bMmYqHh4eiVqsVS0tLxcvLS/Hz81Oio6MVRXm/1/Pvv/+ueHp6KoaGhoqLi4syc+ZMzdbBr/5dpHdvt27dqhQvXlzR09NLtZ306dOnldatWyvW1taKWq1WnJ2dlfbt2yv79u3T5Hnba+N1QUFByqBBg5QSJUooefLkUfT19ZUCBQooPXr0UEJDQ7Xy3r17V2nSpIliZmamtZXzixcvlJEjRyqOjo6KkZGRUrVqVeXIkSNKzZo1tbZ7Ttni+PXt+FNe66+/ByxevFgpWLCgolarlXLlyil//fVXqjqTk5OV6dOnK87OzoparVbKlCmj/Pnnn6leN296P1EURTl48KDi5eWlGBgYKIUKFVKWLl2aofe/hIQEZdmyZUrLli01MRgbGytlypRRvvnmm1TbW8fGxirjxo3TvE4dHByUtm3bat3rjL4PZXQL6Yy+r1y/fl1p0qSJYmRkpNja2iojR45UNm7cqADKP//888b7ID4NKkWRlVhCCCGEEOLzNn/+fIYPH87t27fJly9fdocj3pN0coQQQgghxGfl+fPnWhuIvHjxgjJlypCUlMSVK1eyMTLxociaHCGEEEII8Vlp3bo1BQoUoHTp0kRHR/PLL79w6dKldLeIF58e6eQIIYQQQojPire3N8uXL2f16tUkJSVRvHhx1q5dm2rzGvHpkulqQgghhBBCiFxFfidHCCGEEEIIkatIJ0cIIYQQQgiRq0gnRwghhBBCCJGryMYDQmSDbfpFsjsEIYQQQmRSk4TL2XbtrPzskJ3tyioykiOEEEIIIYTIVWQkRwghhBBCiBxOpa/K7hA+KTKSI4QQQgghhMhVZCRHCCGEEEKIHE5HT0ZyMkNGckS2qFWrFsOGDXvn8uHh4ahUKoKDgwEIDAxEpVIRFRX1TuWFEEIIIUTuISM54rPk5OREREQENjY22R2KECIHc/6yM4VG9EbtYMuTs5e4MGwK0cfPpZm30t5VWNesmCo9cnsgx1v0B8DzR3+curXWPr/rEMeb9vnwwQshchWVvoxNZIZ0csRnSVdXFwcHh+wOQwiRgzm2a0Sxb3w5P2giUcfOUHBIdypu+5FAj4bE33+UKv/JdoPRMdDXPNa3tqD6ya1EbNyplS9y51+c7eOreZwUF591jRBC5BoyXS1zpEsosk1iYiI+Pj7kyZMHGxsbxo8fj6IoAKhUKrZs2aKV38LCghUrVry13mfPnmFubs6GDRu00rds2YKJiQlPnz5Nd7rbvn37KFeuHMbGxlSpUoXLl7X3jZ86dSp2dnaYmZnRp08fvvrqK0qXLv2ut0AIkYMVHNaTWz/+xu2Vm4gJCeXcwIkkxb7AqUebNPMnPI4m7t4DzWFTrypJsS+I2KDdyUmOi9fKlxj15GM0RwghPivSyRHZZuXKlejp6XHs2DEWLFjA3LlzWb58+XvXa2JiQseOHQkICNBKDwgIoG3btpiZmaVbdty4ccyZM4cTJ06gp6dHr169NOdWr17NtGnTmDlzJidPnqRAgQIsWbLkveMVQuQ8Kn198pT14MG+v/9LVBQe7P8bi0plMlSHU882RPy2jaTY51rp1jUrUO/fv6l5ficlFk1C38riA0YuhMitVPqqLDtyI5muJrKNk5MT8+bNQ6VSUaRIEc6dO8e8efPo27fve9fdp08fqlSpQkREBI6OjkRGRrJ9+3b27t37xnLTpk2jZs2aAHz11Vc0adKEFy9eYGhoyLfffkvv3r3p2bMnABMmTGD37t3ExMS8d7xCiJzFwMYSHT094iIfaqXH3XuISZFCby2fp3xJzEsU4Wy/cVrp93cd4u7mPTwPv41xISeKTBlBhT+XEVStAyQnf9A2CCHE50xGckS2qVSpEirVf98eVK5cmatXr5KUlPTedVeoUAEPDw9WrlwJwC+//IKzszM1atR4YzlPT0/Nvx0dHQGIjIwE4PLly1SoUCHVdd4mLi6OJ0+eaB0JinyYESI3c+rZlifnLqfapCDit+1E/rmfp+evcO/3fRxv2R+L8p5Y13z7e4kQ4vOmo6fKsiM3kk6OyJFUKpVmfU6KhISETNXRp08fzRqegIAAevbsqdWpSou+/n+LhlPyJr/nt6v+/v7kyZNH6/gtOfWiZSFEzhH/4DHJiYmo7ay10tX21sTdffDGsrrGRuRt34RbARvemA/gedht4u4/wsTV+b3iFUIIoU06OSLbHD16VOvxP//8g5ubG7q6utja2hIREaE5d/XqVWJjYzNV/xdffMGNGzdYuHAhFy9epHv37u8Vb5EiRTh+/LhW2uuP0+Lr60t0dLTW0V7H6r1iEUJkLSUhgehTF7CpU/m/RJUK69qVifrn9BvLOrZtiI7agH9X//7W6xjms8fA2oIXEfffN2QhRC4na3IyR9bkiGxz8+ZNRowYQf/+/Tl16hTffvstc+bMAaBOnTosWrSIypUrk5SUxNixY7VGWTLC0tKS1q1bM3r0aBo0aED+/PnfK97BgwfTt29fypUrR5UqVVi3bh1nz56lUKE3z89Xq9Wo1WqtNH2VfL8gRE4XNj+AUj/NJOrkeaKPn8VlSHf0TIy4tXITAKUCZvLi33tc/nquVjmnnm25t3UvCY+itNJ1TYxxG+/D3c27iLv7AONCThSbMZpn127wYPehj9UsIYT4LEgnR2Sbbt268fz5cypUqICuri5Dhw6lX79+AMyZM4eePXtSvXp18ubNy4IFCzh58mSmr9G7d2/WrFmjtUvau+rSpQvXr19n1KhRvHjxgvbt29OjRw+OHTv23nULIXKeiPU7MLC1wn3ikJc/BnomhGNN+xD//5sRGDk5orw2ndXEvSBW1cpxtGHPVPUpSUmYl3Qnf9eW6FuY8eJOJA/2BnF54gKS4zM3HVcI8fnJrWtnsopKeX3hgxC5yM8//8zw4cO5c+cOBgYGH7z++vXr4+DgwM8//5ypctv0i3zwWIQQQgiRtZokXH57pizyV4mMbV//Lmqcf/M03E+RjOSIXCk2NpaIiAhmzJhB//79P0gHJzY2lqVLl+Lt7Y2uri6//vore/fuZc+ePR8gYiGEEEII8aHIwgCRK82aNYuiRYvi4OCAr6/vB6lTpVKxfft2atSogZeXF3/88QcbN26kXr16H6R+IYQQQoj06OiqsuzIjWS6mhDZQKarCSGEEJ+e7JyudrhU2Syru9qZU1lWd3aR6WpCCCGEEELkcCqd3DniklVkupoQQgghhBAiV5GRHCGEEEIIIXI4la6MTWSGdHKEyAa59deFhRBCCCFyAunkCCGEEEIIkcPl1l3Qsop0coQQQgghhMjhZOOBzJHJfUIIIYQQQohcRUZyhBBCCCGEyOFkulrm5KqRHEVR6NevH1ZWVqhUKoKDg7M7JCGEEEIIIcRHlqs6OTt37mTFihX8+eefREREUKJEibeWUalUbNmyJeuDE0II8clx7t+ZWiH78H50hioH15GnXMl081bcuYrGsZdSHeU2LU0zf4mFk2gcewmXQd2yKHohRG6i0lVl2ZEb5arpaqGhoTg6OlKlSpWPfu34+HgMDAw++nXfJCtjSkhIQF9fP0vqzi6KopCUlISeXq56WQgh3pFjm0YUnfEVF4ZMIur4GVx8ulNh63IOlm5E/P1HqfKf6jQYlcF/74sGVhZUO7qFiE27UuW1b14PiwqleHHnXpa2QQghPle5ZiSnR48eDB48mJs3b6JSqXBxccHFxYX58+dr5StdujSTJk0CwMXFBYBWrVppyqTU1bJlS61yw4YNo1atWprHtWrVwsfHh2HDhmFjY4O3tzcA58+fp1GjRpiammJvb0/Xrl158OBBhtqQnJzMrFmzcHV1Ra1WU6BAAaZNm6Y5P3bsWNzd3TE2NqZQoUKMHz+ehIQEzflJkyZRunRpli9fTsGCBTE0NAQgKiqKPn36YGtri7m5OXXq1OHMmTNa1966dStly5bF0NCQQoUK4efnR2Jioua8SqViyZIlNG/eHBMTE6240nPhwgWaNm2Kubk5ZmZmVK9endDQUE1bJ0+eTP78+VGr1ZQuXZqdO3dqyoaHh6NSqdi0aRO1a9fG2NiYUqVKceTIEa1rBAUFUatWLYyNjbG0tMTb25vHjx9rruHv70/BggUxMjKiVKlSbNiwQVM2MDAQlUrFjh078PLyQq1Wc/jwYWrVqsWQIUMYM2YMVlZWODg4aP5m4GVnaNKkSRQoUAC1Wk3evHkZMmTIW++HEOLTUnBID24FrOf2z5uIuRTK+cETSXr+gvzd2qSZP+FxNPH3HmgOmzpVSIp9wd1NO7XyqfPaUXzO1wT3HE1yQmKadQkhxOtUOjpZduRGuaZVCxYs0HxojoiI4Pjx428tk5InICAgw2VetXLlSgwMDAgKCmLp0qVERUVRp04dypQpw4kTJ9i5cyf37t2jffv2GarP19eXGTNmMH78eC5evMiaNWuwt7fXnDczM2PFihVcvHiRBQsWsGzZMubNm6dVx7Vr19i4cSObNm3SrElq164dkZGR7Nixg5MnT1K2bFnq1q3Lo0cvv4k8dOgQ3bp1Y+jQoVy8eJHvv/+eFStWpOrITJo0iVatWnHu3Dl69er1xrb8+++/1KhRA7Vazf79+zl58iS9evXSdJwWLFjAnDlzmD17NmfPnsXb25vmzZtz9epVrXrGjRvHqFGjCA4Oxt3dnU6dOmnqCA4Opm7duhQvXpwjR45w+PBhmjVrRlJSEgD+/v6sWrWKpUuXcuHCBYYPH84XX3zBwYMHta7x1VdfMWPGDEJCQvD09ARePrcmJiYcPXqUWbNmMXnyZPbs2QPAxo0bmTdvHt9//z1Xr15ly5YtlCyZ/hQWIcSnR6Wvj3kZDx4e+Pu/REXhwf4jWFYsnaE6nLq3JWLDdpJin79SsYpSy2cRNu9HYkKufdighRBCaOSaeTl58uTBzMwMXV1dHBwcMlTG1tYWAAsLiwyXeZWbmxuzZs3SPJ46dSplypRh+vTpmrSffvoJJycnrly5gru7e7p1PX36lAULFrBo0SK6d+8OQOHChalWrZomz9dff635t4uLC6NGjWLt2rWMGTNGkx4fH8+qVas0bTt8+DDHjh0jMjIStVoNwOzZs9myZQsbNmygX79++Pn58dVXX2muW6hQIaZMmcKYMWOYOHGipu7OnTvTs2fPDN2b7777jjx58rB27VrNtLZX2z979mzGjh1Lx44dAZg5cyYHDhxg/vz5fPfdd5p8o0aNokmTJgD4+fnh4eHBtWvXKFq0KLNmzaJcuXIsXrxYk9/DwwOAuLg4pk+fzt69e6lcubKmXYcPH+b777+nZs2amjKTJ0+mfv36WvF7enpq2u7m5saiRYvYt28f9evX5+bNmzg4OFCvXj309fUpUKAAFSpUyNB9EUJ8GgxsLNHR0yPu3kOt9LjIB5gWKfjW8nnKlcSshDtnB47TSi88si9KYhLhi3/+oPEKIXI/+Z2czMk1nZzs4OXlpfX4zJkzHDhwAFNT01R5Q0ND39jJCQkJIS4ujrp166abZ926dSxcuJDQ0FBiYmJITEzE3NxcK4+zs7Omg5MSU0xMDNbW1lr5nj9/rpk6dubMGYKCgrRGbpKSknjx4gWxsbEYGxsDUK5cuXRje11wcDDVq1dPc93OkydPuHPnDlWrVtVKr1q1aqppdCkjKwCOjo4AREZGUrRoUYKDg2nXrl2a17927RqxsbGpOi/x8fGUKVNGKy2tdr163ZRrR0ZGAi9HxubPn0+hQoVo2LAhjRs3plmzZumu5YmLiyMuLk4rLUFJRl+VawZShRCvcerelifnLhN94pwmzbyMBy6DunK4StrT3YQQ4k1kC+nMydWdHB0dHRRF0Up7dQ3L+5YzMTHRehwTE0OzZs2YOXNmqrwpH9DTY2Rk9MbzR44coUuXLvj5+eHt7a0ZJZkzZ85bY3J0dCQwMDBVnRYWFpo8fn5+tG7dOlWelHU9adX9Jm9rT0a92klSqV6+uJOTk996jZiYGAC2bdtGvnz5tM6ljGilSKtdr3fOVCqV5rpOTk5cvnyZvXv3smfPHgYOHMg333zDwYMH0+zU+fv74+fnp5XWWc+aLvo26cYvhMhe8Q8ek5yYiNpe+wsitZ0NcffevM5S19gIx7aNuTploVa6VRUvDGytqX15vyZNR0+PYjPG4uLTncBi6X/JJYQQInNydSfH1taWiIgIzeMnT54QFhamlUdfX1+zhuPVcufPn9dKCw4OfutuYmXLlmXjxo24uLhkeocuNzc3jIyM2LdvH3369El1/u+//8bZ2Zlx4/6b+nDjxo231lu2bFnu3r2Lnp6eZmOFtPJcvnwZV1fXTMX8Jp6enqxcuTLNXdjMzc3JmzcvQUFBWtPGgoKCMjXty9PTk3379qXqQAAUL14ctVrNzZs3ta7xoRgZGdGsWTOaNWvGoEGDKFq0KOfOnaNs2bKp8vr6+jJixAittAP2GR8VE0J8fEpCAk9OX8C6VmXu/bHvZaJKhXXtStxYuvqNZR1aN0RHbcC/a//QSv/31995cEB785QKvy/n3zVbuf3z5g8avxAi95HpapmTqzs5derUYcWKFTRr1gwLCwsmTJiArq6uVh4XFxf27dtH1apVUavVWFpaUqdOHb755htWrVpF5cqV+eWXXzh//nyqaU6vGzRoEMuWLaNTp06anbmuXbvG2rVrWb58eaprv8rQ0JCxY8cyZswYDAwMqFq1Kvfv3+fChQv07t0bNzc3bt68ydq1aylfvjzbtm1j8+a3/6dYr149KleuTMuWLZk1axbu7u7cuXOHbdu20apVK8qVK8eECRNo2rQpBQoUoG3btujo6HDmzBnOnz/P1KlTM3azX+Pj48O3335Lx44d8fX1JU+ePPzzzz9UqFCBIkWKMHr0aCZOnEjhwoUpXbo0AQEBBAcHs3r1mz88vMrX15eSJUsycOBABgwYgIGBAQcOHKBdu3bY2NgwatQohg8fTnJyMtWqVSM6OpqgoCDMzc0164/exYoVK0hKSqJixYoYGxvzyy+/YGRkhLOzc5r51Wp1qtEjmaomRM4XtnAFnstmEH3qPFEnzlLQpzt6xkbc/nkTAJ7LZhB3J5LLE+dqlXPq3oZ7f+wl4VGUVnrCo6hUackJicTde8Czq9pfwAkhhHg/ufqTlq+vLzVr1qRp06Y0adKEli1bUrhwYa08c+bMYc+ePTg5OWk6Md7e3owfP54xY8ZQvnx5nj59Srdub/+xtpTRiaSkJBo0aEDJkiUZNmwYFhYW6GRge77x48czcuRIJkyYQLFixejQoYNmHUjz5s0ZPnw4Pj4+lC5dmr///pvx48e/tU6VSsX27dupUaMGPXv2xN3dnY4dO3Ljxg3Nzm3e3t78+eef7N69m/Lly1OpUiXmzZuX7of2jLC2tmb//v3ExMRQs2ZNvLy8WLZsmWZUZ8iQIYwYMYKRI0dSsmRJdu7cye+//46bm1uGr+Hu7s7u3bs5c+YMFSpUoHLlymzdulUzijZlyhTGjx+Pv78/xYoVo2HDhmzbto2CBd++aPhNLCwsWLZsGVWrVsXT05O9e/fyxx9/pFr3JIT4tEVs3MGl/83Cffxgqv2zBXPPohxr2Zf4yJebERg55UXtYKtVxsStIFZVy3F75cbsCFkIkYvJFtKZo1JeX3wihMhy242LZncIQgghhMikxrGXsu3aZxvXyrK6PbcHZlnd2SVXT1cTQgghhBAiN5A1OZmTO8encqCbN29iamqa7nHz5s3sDjFTBgwYkG5bBgwYkN3hCSGEEEKIz5hMV/tIEhMTCQ8PT/f8u+zIlp0iIyN58uRJmufMzc2xs7P7yBF9WmS6mhBCCPHpyc7pahda1Mmyuj227n97pld89913fPPNN9y9e5dSpUrx7bffvnGH3KioKMaNG8emTZt49OgRzs7OzJ8/n8aNG79v6On6dD5Vf+L09PQ+6BbN2c3Ozk46MkIIIYQQH0lOma62bt06RowYwdKlS6lYsSLz58/H29uby5cvp/nZMD4+nvr162NnZ8eGDRvIly8fN27c0PxeY1aRTo4QQgghhBAiQ+bOnUvfvn3p2bMnAEuXLmXbtm389NNPfPXVV6ny//TTTzx69Ii///5bs8tuer/d+CHJmhwhhBBCCCFyuKzcQjouLo4nT55oHXFxcaliiI+P5+TJk9SrV0+TpqOjQ7169Thy5Eiq/AC///47lStXZtCgQdjb21OiRAmmT59OUlJSlt0rkJEcIbKFjl7OGHIWQgghhPD398fPz08rbeLEiUyaNEkr7cGDByQlJWl+azGFvb09ly6lvV7p+vXr7N+/ny5durB9+3auXbvGwIEDSUhIYOLEiR+0Ha+STo4QQgghhBA5XFauyfH19WXEiBFaaWq1+oPUnZycjJ2dHT/88AO6urp4eXnx77//8s0330gnRwghhBBCCJE11Gp1hjo1NjY26Orqcu/ePa30e/fu4eDgkGYZR0dH9PX10dXV1aQVK1aMu3fvEh8fj4GBwfsFnw5ZkyOEEEIIIUQOp9JRZdmRUQYGBnh5ebFv3z5NWnJyMvv27aNy5cpplqlatSrXrl0jOTlZk3blyhUcHR2zrIMD0skRQgghhBBCZNCIESNYtmwZK1euJCQkhC+//JJnz55pdlvr1q0bvr6+mvxffvkljx49YujQoVy5coVt27Yxffp0Bg0alKVxSidHfBDh4eGoVCqCg4OzNQ6VSsWWLVs+6jVdXFyYP3/+R72mEEIIIT4vOWEkB6BDhw7Mnj2bCRMmULp0aYKDg9m5c6dmM4KbN28SERGhye/k5MSuXbs4fvw4np6eDBkyhKFDh6a53fSHJGtyxAfh5OREREQENjY2GS5Tq1YtSpcuLR0EIUSOVaBvZwoO6YWBvQ1Pz18iZPQ0ok+eSzNvhW0rsaqe+he/I3cd5FS7AanSi8+bSIHeHQn5yp8bi1d98NiFELmLSifnjE34+Pjg4+OT5rnAwMBUaZUrV+aff/7J4qi0SSdHfBC6urrpLjgTQohPkUPrRhSdPpYLwyYRdeIsLgO7UW7TMg55NSb+waNU+U9/MQTV///QHYCBlQVV/t7Mvc07U+W1a1oPi/KleHHnXqpzQggh3l/O6RKKLLVz506qVauGhYUF1tbWNG3alNDQUOC/qWabNm2idu3aGBsbU6pUKa0fderVqxeenp6aH4aKj4+nTJkydOvWTauOV6ernT9/nkaNGmFqaoq9vT1du3blwYMHAPTo0YODBw+yYMECVCoVKpWKsLAwXF1dmT17tlbswcHBqFQqrl27lul237p1i/bt22NhYYGVlRUtWrQgPDwcgN27d2NoaEhUVJRWmaFDh1KnTh3N48OHD1O9enWMjIxwcnJiyJAhPHv2LNOxCCE+LS4+3bm1cj3/rt7Ms8uhXBg2iaTnL8jXtXWa+RMeRxMf+UBzWNepQnLsC+5u2aWVT+1oR/FvxnG2zxiUhMSP0RQhRC6go6vKsiM3kk7OZ+LZs2eMGDGCEydOsG/fPnR0dGjVqpXWThfjxo1j1KhRBAcH4+7uTqdOnUhMfPkf8MKFC3n27Jlm/uS4ceOIiopi0aJFaV4vKiqKOnXqUKZMGU6cOMHOnTu5d+8e7du3B2DBggVUrlyZvn37EhERQUREBAUKFKBXr14EBARo1RUQEECNGjVwdXXNVJsTEhLw9vbGzMyMQ4cOERQUhKmpKQ0bNiQ+Pp66detiYWHBxo0bNWWSkpJYt24dXbp0ASA0NJSGDRvSpk0bzp49y7p16zh8+HC6Q7RCiNxBpa+PeWkPHh545Re8FYWHgUewqFA6Q3Xk79qGiI3bSYp9/krFKjx/mEnYwp+IuZT5L26EEEJkjExX+0y0adNG6/FPP/2Era0tFy9exNTUFIBRo0bRpEkTAPz8/PDw8ODatWsULVoUU1NTfvnlF2rWrImZmRnz58/nwIEDmJubp3m9RYsWUaZMGaZPn651TScnJ65cuYK7uzsGBgYYGxtrTXPr0aMHEyZM4NixY1SoUIGEhATWrFmTanQnI9atW0dycjLLly9HpXr5LUVAQAAWFhYEBgbSoEEDOnbsyJo1a+jduzcA+/btIyoqSnO//P396dKlC8OGDQPAzc2NhQsXUrNmTZYsWYKhoWGm4xJC5HwG1hbo6OkRf/+hVnpc5ENM3Au+tXwer5KYebhz3udrrfRCw/ugJCVxY8nPHzReIUTul5U/BpobyUjOZ+Lq1at06tSJQoUKYW5ujouLC/ByB4wUnp6emn87OjoCEBkZqUmrXLkyo0aNYsqUKYwcOZJq1aqle70zZ85w4MABTE1NNUfRokUBNNPk0pI3b16aNGnCTz/9BMAff/xBXFwc7dq1y3Sbz5w5w7Vr1zAzM9PEYGVlxYsXLzQxdOnShcDAQO7cuQPA6tWradKkCRYWFpo6VqxYodUOb29vkpOTCQsLy1AccXFxPHnyROuIV5LfXlAI8cnK37UNT89f1tqkwLx0cZy/7Mq5Ab5vKCmEEOJDkJGcz0SzZs1wdnZm2bJl5M2bl+TkZEqUKEF8fLwmj/4rC2ZTRj5enc6WnJxMUFAQurq6b10fExMTQ7NmzZg5c2aqcykdqPT06dOHrl27Mm/ePAICAujQoQPGxsYZaufrMXh5ebF69epU52xtbQEoX748hQsXZu3atXz55Zds3ryZFStWaNXRv39/hgwZkqqOAgUKZCgOf39//Pz8tNK6GFjzhdo2E60RQnxM8Q+jSE5MxMDWWitdbWdN3L0Hbyyra2yEQ5vGXJv+rVa6ZZVyGNhaU/Pifk2ajp4eRaeNweXLbhwsWe/DNUAIkevkpN3VPgXSyfkMPHz4kMuXL7Ns2TKqV68OvFxMn1nffPMNly5d4uDBg3h7exMQEKD54afXlS1blo0bN+Li4oKeXtp/ZgYGBiQlJaVKb9y4MSYmJixZsoSdO3fy119/ZTrWlBjWrVuHnZ1dutPq4OVozurVq8mfPz86OjqaKXspdVy8eDHT64Fe5evry4gRI7TSAvOVf+f6hBBZT0lI4EnwBaxrVSJy2///srdKhXXNStz4IfUXJ69yaOmNjtqAO+v+0Eq/s/Z37TU+QLnNy7iz9nf+/WXTB41fCCE+d9Il/AxYWlpibW3NDz/8wLVr19i/f3+qD91vc/r0aSZMmMDy5cupWrUqc+fOZejQoVy/fj3N/IMGDeLRo0d06tSJ48ePExoayq5du+jZs6emY+Pi4sLRo0cJDw/nwYMHmlEjXV1devToga+vL25ublSuXPmd2t2lSxdsbGxo0aIFhw4dIiwsjMDAQIYMGcLt27e18p06dYpp06bRtm1b1Gq15tzYsWP5+++/8fHxITg4mKtXr7J169ZMbTygVqsxNzfXOgxU8tITIqcLX7SS/N3bkbdzC0zcC+ExbyK6xkb8+8tmAEp+PwP3icNTlcvXrQ2R2/aR8ChKKz3hURQxIVe1DiUhkbjIBzy7Fv4RWiSE+JTllB8D/VTIJ63PgI6ODmvXruXkyZOUKFGC4cOH880332S4/IsXL/jiiy/o0aMHzZo1A6Bfv37Url2brl27pjkakzdvXoKCgkhKSqJBgwaULFmSYcOGYWFhgc7/D7eOGjUKXV1dihcvjq2trdb6oN69exMfH5/uSFFGGBsb89dff1GgQAFat25NsWLF6N27Ny9evNAa2XF1daVChQqcPXtWs6taCk9PTw4ePMiVK1eoXr06ZcqUYcKECeTNm/ed4xJCfBrubtrB5a9n4fa/IVQN2oyZZ1FOtOmn2YzAKL8jagftaacmri5YVSnH7VUb06pSCCHemXRyMkelKIqS3UEI8bpDhw5Rt25dbt26hb29fXaH88HtNC+W3SEIIYQQIpMaPgnJtmvf6Ncyy+p2/mFLltWdXWRNjshR4uLiuH//PpMmTaJdu3a5soMjhBBCCJFZsvFA5sjdEjnKr7/+irOzM1FRUcyaNUvr3OrVq7W2cn718PDwyKaIhRBCCCFETiPT1cQn4+nTp9y7dy/Nc/r6+jg7O3/kiN6dTFcTQgghPj3ZOV3t1sA2b8/0jpwW5751hDJdTXwyzMzMMDMzy+4whBBCCCFEDiedHCGEEEIIIXI4WZOTOXK3hBBCCCGEELmKjOQIIYQQQgiR06ly5+/ZZBUZyRFCCCGEEELkKjKSI4QQQgghRA6n0pGRnMyQTo4QQgghhBA5nGw8kDlyt4QQQgghhBC5inRyxDurVasWw4YNy+4w3llgYCAqlYqoqKjsDkUIIYQQ4o1UOqosO3Ijma4mPltVqlQhIiKCPHnyZHcoQogcqkDfzhQc0gsDexuenr9EyOhpRJ88l2beCttWYlW9Qqr0yF0HOdVuAACuvoNwaNMYw3wOKPEJRAdf5OqU+USfOJul7RBCiM+NdHJEjhUfH4+BgUGW1W9gYICDg0OW1S+E+LQ5tG5E0eljuTBsElEnzuIysBvlNi3jkFdj4h88SpX/9BdDUOnrax4bWFlQ5e/N3Nu8U5P27Fo4IaOmEht+C11DQ5wHdafc5uX8VdqbhIePP0q7hBCfJlmTkzlyt0SGPHv2jG7dumFqaoqjoyNz5szROh8XF8eoUaPIly8fJiYmVKxYkcDAQM35FStWYGFhwZYtW3Bzc8PQ0BBvb29u3bqlyTNp0iRKly7N8uXLKViwIIaGhgBERUXRp08fbG1tMTc3p06dOpw5c0ZT7syZM9SuXRszMzPMzc3x8vLixIkTANy4cYNmzZphaWmJiYkJHh4ebN++HUh7utrGjRvx8PBArVbj4uKSqp0uLi5Mnz6dXr16YWZmRoECBfjhhx8+yD0WQuQsLj7dubVyPf+u3syzy6FcGDaJpOcvyNe1dZr5Ex5HEx/5QHNY16lCcuwL7m7ZpckTsX4bDwOP8Dz8NjGXrnHpfzPQz2OGWYkiH6tZQgjxWZBOjsiQ0aNHc/DgQbZu3cru3bsJDAzk1KlTmvM+Pj4cOXKEtWvXcvbsWdq1a0fDhg25evWqJk9sbCzTpk1j1apVBAUFERUVRceOHbWuc+3aNTZu3MimTZsIDg4GoF27dkRGRrJjxw5OnjxJ2bJlqVu3Lo8evfwmtUuXLuTPn5/jx49z8uRJvvrqK/T//9vUQYMGERcXx19//cW5c+eYOXMmpqamabbx5MmTtG/fno4dO3Lu3DkmTZrE+PHjWbFihVa+OXPmUK5cOU6fPs3AgQP58ssvuXz58vveYiFEDqLS18e8tAcPDxz5L1FReBh4BIsKpTNUR/6ubYjYuJ2k2OfpXsOpR3sSop7w9NylDxC1ECI3kzU5mSPT1cRbxcTE8OOPP/LLL79Qt25dAFauXEn+/PkBuHnzJgEBAdy8eZO8efMCMGrUKHbu3ElAQADTp08HICEhgUWLFlGxYkVNHcWKFePYsWNUqPByHnt8fDyrVq3C1tYWgMOHD3Ps2DEiIyNRq9UAzJ49my1btrBhwwb69evHzZs3GT16NEWLFgXAzc1NE/vNmzdp06YNJUuWBKBQoULptnPu3LnUrVuX8ePHA+Du7s7Fixf55ptv6NGjhyZf48aNGThwIABjx45l3rx5HDhwgCJF5JtYIXILA2sLdPT0iL//UCs9LvIhJu4F31o+j1dJzDzcOe/zdapztg1rUeqn2egaGxF39z7HW/Ym4VHUhwpdCCEEMpIjMiA0NJT4+HhN5wTAyspK86H+3LlzJCUl4e7ujqmpqeY4ePAgoaGhmjJ6enqUL19e87ho0aJYWFgQEhKiSXN2dtZ0cODlVLSYmBisra216g4LC9PUPWLECPr06UO9evWYMWOG1jWHDBnC1KlTqVq1KhMnTuTs2fQX94aEhFC1alWttKpVq3L16lWSkpI0aZ6enpp/q1QqHBwciIyMTLfeuLg4njx5onXEK8np5hdCfPryd23D0/OX09yk4NFfR/m7Wmv+qd+ZB3sPU3rFPAxsrLIhSiHEp0RGcjJHOjnivcXExKCrq8vJkycJDg7WHCEhISxYsCBTdZmYmKSq29HRUave4OBgLl++zOjRo4GXa3kuXLhAkyZN2L9/P8WLF2fz5s0A9OnTh+vXr9O1a1fOnTtHuXLl+Pbbb9+rvfqvLCyGlx2d5OT0Oy3+/v7kyZNH6/gt/mG6+YUQ2S/+YRTJiYkY2FprpavtrIm79+CNZXWNjXBo05jbP29M83xS7HNir98k+vgZzvt8jZKURP5ubT5Y7EKIXEpHJ+uOXCh3tkp8UIULF0ZfX5+jR49q0h4/fsyVK1cAKFOmDElJSURGRuLq6qp1vLp7WWJiomZDAIDLly8TFRVFsWLF0r122bJluXv3Lnp6eqnqtrGx0eRzd3dn+PDh7N69m9atWxMQEKA55+TkxIABA9i0aRMjR45k2bJlaV6rWLFiBAUFaaUFBQXh7u6Orq5uBu9War6+vkRHR2sd7Q2s315QCJFtlIQEngRfwLpWpf8SVSqsa1Yi6ljwG8s6tPRGR23AnXV/ZOhaKh0VOuqs20lSCCE+R7ImR7yVqakpvXv3ZvTo0VhbW2NnZ8e4cePQ+f+ev7u7O126dKFbt27MmTOHMmXKcP/+ffbt24enpydNmjQBXo6ADB48mIULF6Knp4ePjw+VKlXSrMdJS7169ahcuTItW7Zk1qxZuLu7c+fOHbZt20arVq3w8PBg9OjRtG3bloIFC3L79m2OHz9OmzYvvxUdNmwYjRo1wt3dncePH3PgwIF0O1UjR46kfPnyTJkyhQ4dOnDkyBEWLVrE4sWL3+v+qdVqzXqiFAYq+X5BiJwufNFKSi71J/r0eaJPnMNlYDd0jY3495eXI8Ulv59B3J17XPGbp1UuX7c2RG7bl2qdja6xEYVG9SdyxwHi7t7HwNqCAn07o3a05+7mXQghxJuoVLlzWllWkU6OyJBvvvmGmJgYmjVrhpmZGSNHjiQ6OlpzPiAggKlTpzJy5Ej+/fdfbGxsqFSpEk2bNtXkMTY2ZuzYsXTu3Jl///2X6tWr8+OPP77xuiqViu3btzNu3Dh69uzJ/fv3cXBwoEaNGtjb26Orq8vDhw/p1q0b9+7dw8bGhtatW+Pn5wdAUlISgwYN4vbt25ibm9OwYUPmzZuX5rXKli3Lb7/9xoQJE5gyZQqOjo5MnjxZa9MBIcTn4+6mHRjYWOL2vyGo7W14ci6EE236aTYjMMrvCK9NVTVxdcGqSjmOt+idqj4lKQkT90KU6dwSA2tL4h9FEX3qHEcbfkHMpWsfpU1CCPG5UCmKomR3ECL3W7FiBcOGDdP6TZrP2U7z9KfoCSGEECJnavgk5O2ZssiDCam/PPlQbCa/+UvnT5HMmRFCCCGEEELkKjJdTQghhBBCiBwut271nFVkJEd8FD169JCpakIIIYQQ4qOQkRwhhBBCCCFyulz6ezZZRTo5QgghhBBC5HAyXS1zpEsohBBCCCGEyFVkJEcIIYQQQogcTiU/JJ4p0skRIhsYWOlndwhCCCGEELmWdHKEEEIIIYTI6WRNTqbIuJcQQgghhBAiV5GRHCGEEEIIIXI4lWwhnSlyt8R7q1WrFsOGDfvo13VxcWH+/PkfrL7saocQQgghhPiwZCRHCCGESEe+rh0o0L8HBrY2xIRc4cpEf56eOZ9m3jJrf8SyUvlU6Q/2/8XZXj4A2HrXJV+XdpiVLI6+pQXHGrcj5uLlLG2DECJ3kN/JyRzp5AghhBBpsGvqjdvXo7n89RSiT5/DqdcXlF61lH/qNCfh4aNU+c/1H46OwX87J+pbWFB+x3oit+/WpOkaGxF14jT3tu2m2MxJH6MZQojcQraQzhS5W+KDSE5OZsyYMVhZWeHg4MCkSZM056KioujTpw+2traYm5tTp04dzpw5ozkfGhpKixYtsLe3x9TUlPLly7N3716t+iMjI2nWrBlGRkYULFiQ1atXp4ph7ty5lCxZEhMTE5ycnBg4cCAxMTFaeYKCgqhVqxbGxsZYWlri7e3N48ePM9SOjLRFCJF7OPXpxp21G4lYv5XYa9e5PG4Kyc+fk7d9yzTzJ0Y/If7+Q81hWb0yyc9fELltjybP3c1/Er7wex4H/fORWiGEEJ8n6eSID2LlypWYmJhw9OhRZs2axeTJk9mz5+V/7O3atSMyMpIdO3Zw8uRJypYtS926dXn06OU3oTExMTRu3Jh9+/Zx+vRpGjZsSLNmzbh586am/h49enDr1i0OHDjAhg0bWLx4MZGRkVox6OjosHDhQi5cuMDKlSvZv38/Y8aM0ZwPDg6mbt26FC9enCNHjnD48GGaNWtGUlJShtqRkbYIIXIHlb4eZiWK8ejVzoii8CjoKOZlS2WojrztW3Hvj50kP3+eRVEKIT4nKh1Vlh25kUpRFCW7gxCftlq1apGUlMShQ4c0aRUqVKBOnTo0bdqUJk2aEBkZiVqt1px3dXVlzJgx9OvXL806S5QowYABA/Dx8eHKlSsUKVKEY8eOUb78y/nuly5dolixYsybNy/dzQI2bNjAgAEDePDgAQCdO3fm5s2bHD58ONPtmDFjBocPH36ntqRlv4tnhvMKIT4+Aztbqh3bx4nWX/Dk1FlNeuGvhmNRqRwnW3Z5Y3mzUiUov3UNx1t0TnMNj2H+vFQ5vFPW5AjxiakTfvbtmbLIk7nDsqxu8xHzs6zu7CIjOeKD8PTU/tDu6OhIZGQkZ86cISYmBmtra0xNTTVHWFgYoaGhwMuRnFGjRlGsWDEsLCwwNTUlJCREM5ITEhKCnp4eXl5emvqLFi2KhYWF1jX37t1L3bp1yZcvH2ZmZnTt2pWHDx8SGxsL/DeS8y7tADLUlrTExcXx5MkTrSNeSX5jHEKIT1veDq2ICbmS7iYFQgiRaTo6WXdk0nfffYeLiwuGhoZUrFiRY8eOZajc2rVrUalUtGzZMtPXzCzZeEB8EPr6+lqPVSoVycnJxMTE4OjoSGBgYKoyKZ2UUaNGsWfPHmbPno2rqytGRka0bduW+Pj4DF8/PDycpk2b8uWXXzJt2jSsrKw4fPgwvXv3Jj4+HmNjY4yMjN65HUCG2pIWf39//Pz8tNK65bGju4X92xsmhMgWCY8fk5yYiIGNtVa6ga018fcfvLGsjpER9k0bcn3e4qwMUQghssW6desYMWIES5cupWLFisyfPx9vb28uX76MnZ1duuXCw8MZNWoU1atX/yhxykiOyFJly5bl7t276Onp4erqqnXY2NgALzcD6NGjB61ataJkyZI4ODgQHh6uqaNo0aIkJiZy8uRJTdrly5eJiorSPD558iTJycnMmTOHSpUq4e7uzp07d7Ri8fT0ZN++fVnalrT4+voSHR2tdXTKY/vOcQghsp6SkMjT8yFYVqn4X6JKhWWVijw59ebNRuya1EelNuDu5j+zOEohxOdEpVJl2ZEZc+fOpW/fvvTs2ZPixYuzdOlSjI2N+emnn9Itk5SURJcuXfDz86NQoULveysyRDo5IkvVq1ePypUr07JlS3bv3k14eDh///0348aN48SJEwC4ubmxadMmgoODOXPmDJ07d9aMngAUKVKEhg0b0r9/f44ePcrJkyfp06eP1siMq6srCQkJfPvtt1y/fp2ff/6ZpUuXasXi6+vL8ePHGThwIGfPnuXSpUssWbJEs2bnQ7QlLWq1GnNzc63DQLaBFCLHu7V8FXk7tcGhTXOMCxekyLSv0TU24s76LQAUmzONQmOGpCqXt31rHuzeT2JUdKpzennMMS1eBBPXl//JGxdywbR4EQxsrVPlFUKInCY+Pp6TJ09Sr149TZqOjg716tXjyJEj6ZabPHkydnZ29O7d+2OE+TKuj3Yl8VlSqVRs376dGjVq0LNnT9zd3enYsSM3btzA3v7ldK25c+diaWlJlSpVaNasGd7e3pQtW1arnoCAAPLmzUvNmjVp3bo1/fr10xoSLVWqFHPnzmXmzJmUKFGC1atX4+/vr1WHu7s7u3fv5syZM1SoUIHKlSuzdetW9PQyNmszI20RQuQekX/u4tq0ORQaPpAK29djWrwoZ7p/ScKDl7spGuZzQG2nPSprXMgFiwplubNuc5p12tSvRYXt6ym14uVUthKLvqHC9vXk69I+axsjhPj0ZeGanLTWD8fFxaUK4cGDByQlJaX63GNvb8/du3fTDPvw4cP8+OOPLFu2LEtuS3pkdzUhsoHsriaEEEJ8erJzd7WY78a8PdM7mn3fONX64YkTJ6b6vcA7d+6QL18+/v77bypXrqxJHzNmDAcPHuTo0aNa+Z8+fYqnpyeLFy+mUaNGwMufBYmKimLLli1Z0pYUsvGAEEIIIYQQnzFfX19GjBihlfbqz2WksLGxQVdXl3v37mml37t3DwcHh1T5Q0NDCQ8Pp1mzZpq0lCUJenp6XL58mcKFC3+IJqQinRwhhBBCCCFyuixcz6tWq9Ps1LzOwMAALy8v9u3bp9kGOjk5mX379uHj45Mqf9GiRTl37pxW2tdff83Tp09ZsGABTk5OHyT+tEgnRwghhBBCCJEhI0aMoHv37pQrV44KFSowf/58nj17Rs+ePQHo1q0b+fLlw9/fH0NDQ0qUKKFVPuVnN15P/9CkkyOEEEIIIUROp5O5rZ6zSocOHbh//z4TJkzg7t27lC5dmp07d2o2I7h58yY67/ADox+abDwgRDaQjQeEEEKIT0+2bjyw1DfL6jYd4P/2TJ8YGckRQgghhBAih1PJb+xlitwtIYQQQgghRK4iIzlCZAM9U93sDkEIIYQQn5IcsibnUyGdHCGEEEIIIXI4VQ5YzP8pkbslhBBCCCGEyFVkJEcIIYQQQoicTiXT1TJDRnJyuFq1ajFs2LAPVt+kSZMoXbr0B6vvY8ps7CtWrND84NSbqFQqtmzZ8s5xCSGEEEKInCXXd3ICAwNRqVRERUVldyjvZNOmTUyZMiW7w/jo0up4jBo1in379mW4jg4dOnDlyhXN4/Q6SRERETRq1OhdQxVC5GKOHdtTYdc2qp38h9JrVmFWwuON+XXNTHEd9xUVD+ym2qmjlPtzC5bVq/133tiYQmNHUWH3dqqeOEKpX1ZgWqJ4VjdDCJEb6Ohk3ZELyXS1/xcfH4+BgUG2XDshIQF9ff0047GyssqWmN4krXg/BlNTU0xNTTOc38jICCMjo7fmc3BweJ+whBC5lG3DBhQeM5Krk6fx9Ox58nXtTInvF3OiWUsSHj1OlV+lp4fnsqXEP3pEyIjRxN2LxDBvXhKfPtXkcZs8ARNXVy77fk1c5H3smzXGc9lSTrRoQ3zk/Y/ZPCGEyNU+ia5bcnIy/v7+FCxYECMjI0qVKsWGDRtQFIV69erh7e2NoigAPHr0iPz58zNhwgTCw8OpXbs2AJaWlqhUKnr06AG8nAbm4+PDsGHDsLGxwdvbG4C5c+dSsmRJTExMcHJyYuDAgcTExGjFExQURK1atTA2NsbS0hJvb28eP375H56Liwvz58/Xyl+6dGkmTZqkeaxSqViyZAnNmzfHxMSEadOmaUYZli9fTsGCBTE0NNTE+ep0tbi4OMaOHYuTkxNqtRpXV1d+/PFHIO3pWVu2bEH1hjmcx48fp379+tjY2JAnTx5q1qzJqVOntPKkFe+bJCUl0bt3b83zVaRIERYsWJAq308//YSHhwdqtRpHR0d8fHw09xCgVatWqFQqzeNXR2J2796NoaFhqhG6oUOHUqdOnVT3Y8WKFfj5+XHmzBlUKhUqlYoVK1Zo2vfqqNGtW7do3749FhYWWFlZ0aJFC8LDwzXnAwMDqVChAiYmJlhYWFC1alVu3LjxxnsihPj05Ov2BREbNnFvy+/EXr/O1cnTSH7xAodWLdPM79C6JXp5zLk4ZARPTp8h7k4E0SdO8uzyyxFlHbUa23p1CZs7n+iTp3hx6xY3Fn/P85u3yNuh3UdsmRDik6RSZd2RC30SnRx/f39WrVrF0qVLuXDhAsOHD+eLL77gr7/+YuXKlRw/fpyFCxcCMGDAAPLly8eECRNwcnJi48aNAFy+fJmIiAitD9srV67EwMCAoKAgli5dCoCOjg4LFy7kwoULrFy5kv379zNmzBhNmeDgYOrWrUvx4sU5cuQIhw8fplmzZiQlJWWqTZMmTaJVq1acO3eOXr16AXDt2jU2btzIpk2bCA4OTrNct27d+PXXX1m4cCEhISF8//33mRrdeN3Tp0/p3r07hw8f5p9//sHNzY3GjRvz9JVvHtOLNz3Jycnkz5+f9evXc/HiRSZMmMD//vc/fvvtN02eJUuWMGjQIPr168e5c+f4/fffcXV1BV52vAACAgKIiIjQPH5V3bp1sbCw0Dy/8LJztW7dOrp06ZIqf4cOHRg5ciQeHh5EREQQERFBhw4dUuVLSEjA29sbMzMzDh06RFBQEKampjRs2JD4+HgSExNp2bIlNWvW5OzZsxw5coR+/fq9sSMphPj0qPT0MCtejKh/jv6XqChE/XMUs1KeaZaxrlWTJ2fO4jruKyod3IvX5vU49e2lmQqi0tVFpadHcly8VrnkuDjMy5bJsrYIIcTnKMdPV4uLi2P69Ons3buXypUrA1CoUCEOHz7M999/z5o1a/j+++/p1q0bd+/eZfv27Zw+fRo9vZdNS5nuZWdnl2qUw83NjVmzZmmlvTpq4uLiwtSpUxkwYACLFy8GYNasWZQrV07zGMDD481ztNPSuXNnevbsqZUWHx/PqlWrsLW1TbPMlStX+O2339izZw/16tXT3Iv3kTLqkeKHH37AwsKCgwcP0rRp0zfGmx59fX38/Pw0jwsWLMiRI0f47bffaN++PQBTp05l5MiRDB06VJOvfPnyAJr2W1hYpDuVTFdXl44dO7JmzRp69+4NwL59+4iKiqJNmzap8hsZGWFqaoqent4bp6etW7eO5ORkli9frum4BAQEYGFhQWBgIOXKlSM6OpqmTZtSuHBhAIoVK5ah+yKE+HToW1qi0tMj/uEjrfT4hw/JU9AlzTKG+fNhka88kdt2cP7LwRgVcML1a19UenrcXPIDSbGxRAefocCAvsReDyP+4UPsGjfEvJQnz2/e+gitEkJ8yuR3cjInx3dyrl27RmxsLPXr19dKj4+Pp0yZl998tWvXjs2bNzNjxgyWLFmCm5tbhur28vJKlbZ37178/f25dOkST548ITExkRcvXhAbG4uxsTHBwcG0a/f+0wrKlSuXKs3Z2TndDg68HEXS1dWlZs2a7339FPfu3ePrr78mMDCQyMhIkpKSiI2N5ebNm2+N902+++47fvrpJ27evMnz58+Jj4/XTDWLjIzkzp071K1b971i79KlC5UqVeLOnTvkzZuX1atX06RJkwztqJaeM2fOcO3aNczMzLTSX7x4QWhoKA0aNKBHjx54e3tTv3596tWrR/v27XF0dEy3zri4OOLi4rTS4pOTMZA3KyFyFx0d4h894sqkKZCcTMzFEAzs7Mjfsxs3l/wAwGXfr3GfPIlKB3ajJCbyNOQSkTt2YlZcviwRQryFSj43ZEaOv1sp62G2bdtGcHCw5rh48SIbNmwAIDY2lpMnT6Krq8vVq1czXLeJiYnW4/DwcJo2bYqnpycbN27k5MmTfPfdd8DLThXw1oXsOjo6mvVBKRISEt567fTSXvWhrv2q7t27ExwczIIFC/j7778JDg7G2tpa096MxvaqtWvXMmrUKHr37s3u3bsJDg6mZ8+eGb6HGVW+fHkKFy7M2rVref78OZs3b05zqlpmxMTE4OXlpfW3FhwczJUrV+jcuTPwcmTnyJEjVKlShXXr1uHu7s4///yTbp3+/v7kyZNH61j94N57xSmEyFoJjx+jJCZiYK29+YuBtTXxDx6mWSb+/gOeh9+E5GRNWuz1MNS2tqj+f3bBi1u3OduzD4fLV+ZovUYEd+qKSk+P57f/zbrGCCHEZyjHd3KKFy+OWq3m5s2buLq6ah1OTk4AjBw5Eh0dHXbs2MHChQvZv3+/pnzKjmkZWTNz8uRJkpOTmTNnDpUqVcLd3Z07d+5o5fH09HzjNsa2trZERERoHj958oSwsLBMtTk9JUuWJDk5mYMHD6Z77adPn/Ls2TNNWnpre1IEBQUxZMgQGjdurNkE4MGDB+8VZ1BQEFWqVGHgwIGUKVMGV1dXQkNDNefNzMxwcXF5433U19fP0HPWpUsXVq9ezR9//IGOjg5NmjRJN6+BgcFb6yxbtixXr17Fzs4u1d9bnjx5NPnKlCmDr68vf//9NyVKlGDNmjXp1unr60t0dLTW0cXG/q1tE0JkHyUxkacXQ7CoWPG/RJUKi4oVeHrmbJplngQHY1TASWsRr5FLAeIi76MkJmrlTX7+gvgHD9AzN8OqShUe7g/MimYIIXITHVXWHblQju/kmJmZMWrUKIYPH87KlSsJDQ3l1KlTfPvtt6xcuZJt27bx008/sXr1aurXr8/o0aPp3r27ZrczZ2dnVCoVf/75J/fv30+1U9qrXF1dSUhI4Ntvv+X69ev8/PPPmg0JUvj6+nL8+HEGDhzI2bNnuXTpEkuWLNF0DOrUqcPPP//MoUOHOHfuHN27d0dXV/eD3AsXFxe6d+9Or1692LJlC2FhYQQGBmoW9FesWBFjY2P+97//ERoaypo1azQ7iKXHzc2Nn3/+mZCQEI4ePUqXLl3ee6TFzc2NEydOsGvXLq5cucL48eNTbR4wadIk5syZw8KFC7l69armOX21rfv27ePu3bua5zItXbp04dSpU0ybNo22bduiVqvTzevi4kJYWBjBwcE8ePAg1RSylPpsbGxo0aIFhw4d0tzjIUOGcPv2bcLCwvD19eXIkSPcuHGD3bt3c/Xq1Teuy1Gr1Zibm2sdMlVNiJzv31W/4Ni2FfbNm2FUqCBu4/+HjpERd7dsBaDI9Cm4DBusyR+xbj16ecwp/NUYjJwLYFWjGgX69ubO2nWaPJZVKmNZtQqG+fJiUbkinj8tIzYsjHtbfv/o7RNCiNzsk/ikNWXKFMaPH4+/vz/FihWjYcOGbNu2DRcXF3r37s2kSZMoW7YsAH5+ftjb2zNgwAAA8uXLh5+fH1999RX29vaabYrTUqpUKebOncvMmTMpUaIEq1evxt/fXyuPu7s7u3fv5syZM1SoUIHKlSuzdetWzUYHvr6+1KxZk6ZNm9KkSRNatmypWaD+ISxZsoS2bdsycOBAihYtSt++fTUjN1ZWVvzyyy9s376dkiVL8uuvv2ptXZ2WH3/8kcePH1O2bFm6du3KkCFDsLOze68Y+/fvT+vWrenQoQMVK1bk4cOHDBw4UCtP9+7dmT9/PosXL8bDw4OmTZtqTTWcM2cOe/bswcnJSbP2Ki2urq5UqFCBs2fPvnWqWps2bWjYsCG1a9fG1taWX3/9NVUeY2Nj/vrrLwoUKEDr1q0pVqwYvXv35sWLF5ibm2NsbMylS5do06YN7u7u9OvXj0GDBtG/f/9M3iUhRE53f+durs+eh7PPl3htWItJ0SKcHzCIhP/fjEDt6ICBjY0mf9zde5zrPwizEsXx2vQbhX3H8O8va7i1PECTR9fMFNevv6LcH5spMn0K0adOc67/oFQjPUII8TqVSifLjtxIpby+iEMIkeX+KiHbxQohhBCfmhrnT2fbtV/8OjPL6jbsNDbL6s4uOX53NSGEEEIIIT57uXTtTFbJneNTIksNGDAAU1PTNI+UaYJCCCGEEEJkFxnJEZk2efJkRo0aleY5c3PzjxyNEEIIIcRnIJeunckq0skRmWZnZ/femxMIIYQQQohMUMl0tcyQLqEQQgghhBAiV5GRHCGEEEIIIXI6+Y29TJG7JYQQQgghhMhVZCRHiGygoyvzaoUQQgiRCbLxQKbI3RJCCCGEEELkKjKSI4QQQgghRE4nPwaaKTKSI4QQQgghhMhVZCRHCCGEEEKInE7W5GSKdHKEEEKIdDh2aE++7t0wsLHm2ZUrhM6YRcz5C+nm1zUzxdnHB5u6tdHLk4e4iAiuz5rN48NBL88bG1Ng0ECs69RG38qSZ5cuc33WN8RcuPixmiSEEJ8F6eSI9xIfH4+BgcEHrVNRFJKSktDTyzl/njkxJiFE1rLxbkDBUSO4NnU6T8+dI1+XLpRY8h0nW7Qi4dHjVPlVenqUWLqEhEePCBk1hvjISNSOjiQ9farJ4zppAsauhbkybjzx9+9j16QxJb5fwqnWbYmPvP8xmyeE+NSoZE1OZsi4Vy5Sq1YtfHx88PHxIU+ePNjY2DB+/HgURQEgLi6OUaNGkS9fPkxMTKhYsSKBgYFadRw+fJjq1atjZGSEk5MTQ4YM4dmzZ5rzLi4uTJkyhW7dumFubk6/fv3eGFN4eDgqlYq1a9dSpUoVDA0NKVGiBAcPHtTkCQwMRKVSsWPHDry8vFCr1Rw+fJjk5GT8/f0pWLAgRkZGlCpVig0bNmjKPX78mC5dumBra4uRkRFubm4EBAQALztfPj4+ODo6YmhoiLOzM/7+/loxBQcHa+qKiopCpVJp7se7xiSEyD3yde3C3U2bidz6O8+vh3Ft6jSSXrzAvmWLNPPbt2qBXh5zQoaP5GnwGeLuRPDk5CmeXbkKgI5ajU3dOoTPW8CTU6d4cesWN5d+z4tbt3Fo1+5jNk0I8SnS0cm6IxfKna36jK1cuRI9PT2OHTvGggULmDt3LsuXLwfAx8eHI0eOsHbtWs6ePUu7du1o2LAhV6++/A84NDSUhg0b0qZNG86ePcu6des4fPgwPj4+WteYPXs2pUqV4vTp04wfPz5DcY0ePZqRI0dy+vRpKleuTLNmzXj48KFWnq+++ooZM2YQEhKCp6cn/v7+rFq1iqVLl3LhwgWGDx/OF198oekgjR8/nosXL7Jjxw5CQkJYsmQJNjY2ACxcuJDff/+d3377jcuXL7N69WpcXFwyfT8zG5MQIndQ6elhWqwYUf8c/S9RUYj65yhmnp5plrGqWZOnZ89R2PcrKuzfQ5mNv5G/dy/NBwiVri4qPT2S4+K1yiXFvSBPmdJZ1RQhhPgsydybXMbJyYl58+ahUqkoUqQI586dY968eXh7exMQEMDNmzfJmzcvAKNGjWLnzp0EBAQwffp0/P396dKlC8OGDQPAzc2NhQsXUrNmTZYsWYKhoSEAderUYeTIkZmKy8fHhzZt2gCwZMkSdu7cyY8//siYMWM0eSZPnkz9+vWBl6NO06dPZ+/evVSuXBmAQoUKcfjwYb7//ntq1qzJzZs3KVOmDOXKlQPQ6sTcvHkTNzc3qlWrhkqlwtnZOfM38x1iEkLkDvqWFqj09Eh4+EgrPeHhI4wLuqRZxjB/Pgzzlidy+w4uDBqCUQEnCv/vK1R6etz6/geSYmN5EnyGAv36cDnsOvEPH2HbqCHmnp48v3XrI7RKCPFJk+lqmSKdnFymUqVKqF55EVSuXJk5c+Zw7tw5kpKScHd318ofFxeHtbU1AGfOnOHs2bOsXr1ac15RFJKTkwkLC6NYsWIAmk5FZqR0CgD09PQoV64cISEhWnlerffatWvExsZqOhgp4uPjKVOmDABffvklbdq04dSpUzRo0ICWLVtSpUoVAHr06EH9+vUpUqQIDRs2pGnTpjRo0CDTcWc2prTExcURFxenXSY5GYNcOjwsxOdKpaND/KNHXJs8FZKTeRYSgoGdLfm7d+PW9z8AcGXceNz8JlJh726UxERiLl3i/s5dmP7/+6sQQogPQzo5n4mYmBh0dXU5efIkurq6WudMTU01efr378+QIUNSlS9QoIDm3yYmJlkS46v1xsTEALBt2zby5cunlU+tVgPQqFEjbty4wfbt29mzZw9169Zl0KBBzJ49m7JlyxIWFsaOHTvYu3cv7du3p169emzYsAGd/+9cpKxVAkhISPggMaXF398fPz8/rbSedg70cnBMt4wQInslPI5CSUxE39pKK13f2or4Bw/TLBN//wFKYiIkJ2vSnl8Pw8DWFpWeHkpiIi9u3+Zc777oGBmia2JKwoMHFJk1gxe3b2dpe4QQuYBsIZ0p0snJZY4ePar1+J9//sHNzY0yZcqQlJREZGQk1atXT7Ns2bJluXjxIq6urh88rn/++YcaNWoAkJiYyMmTJ1Ot9XlV8eLFUavV3Lx5843TwGxtbenevTvdu3enevXqjB49mtmzZwNgbm5Ohw4d6NChA23btqVhw4Y8evQIW1tbACIiIjQjMK9uQvC+Mb3O19eXESNGaKWdqFojw+WFEB+fkphITEgIFhUr8OhA4MtElQqLihWIWLsuzTJPgs9g26jhyykl//8lipGzM3GR9192fl6R/PwFyc9foGtmhmXlyoTNX5CVzRFCiM+OdHJymZs3bzJixAj69+/PqVOn+Pbbb5kzZw7u7u506dKFbt26MWfOHMqUKcP9+/fZt28fnp6eNGnShLFjx1KpUiV8fHzo06cPJiYmXLx4kT179rBo0aL3iuu7777Dzc2NYsWKMW/ePB4/fkyvXr3SzW9mZsaoUaMYPnw4ycnJVKtWjejoaIKCgjA3N6d79+5MmDABLy8vPDw8iIuL488//9RMqZs7dy6Ojo6UKVMGHR0d1q9fj4ODAxYWFujo6FCpUiVmzJhBwYIFiYyM5Ouvv35rGzISU1rUanWqkR6ZqiZEzvfvz6txn+JHzIWLPD1/gbxfdEbXyIh7W34HwH3qZOIiI7mx8OX7Y8Rv63Hs2J5CY0dz59e1GBUoQP4+vbizZq2mTosqlQEVz2+EY+TkhMvwYcSGhxO59ffsaKIQ4lMinx0yRTo5uUy3bt14/vw5FSpUQFdXl6FDh2q2eQ4ICGDq1KmMHDmSf//9FxsbGypVqkTTpk0B8PT05ODBg4wbN47q1aujKAqFCxemQ4cO7x3XjBkzmDFjBsHBwbi6uvL7779rdkJLz5QpU7C1tcXf35/r169jYWFB2bJl+d///geAgYEBvr6+hIeHY2RkRPXq1Vm79uWHCTMzM2bNmsXVq1fR1dWlfPnybN++XTNV7aeffqJ37954eXlRpEgRZs2alaE1O2+LSQiRezzYtRt9S0sKDPzy5Y+BXr7M+YE+JDx6uRmB2sEB5ZWpafH37nHhSx8Kjh5J2fXriIuM5M7qX7kdsEKTR8/UFOchPqjt7UmMjubBvv3c+Pa7VCM9Qggh3o9KeXVhgvik1apVi9KlSzN//vzsDkUjPDycggULcvr0aUqXLp3d4eQYh0uVze4QhBBCCJFJ1c6cyrZrv9j1Y5bVbejdO8vqzi4ykiOEEEIIIUROJxsPZIrcLfFepk+fjqmpaZpHo0aNsjs8IYQQQgjxGZKRnFwkMDDwo19zwIABtG/fPs1zRkZG5MuXD5kRKYQQQgjxnuTHQDNFOjnivVhZWWFlZfX2jEIIIYQQQnwk0skRQgghhBAip5MtpDNF7pYQQgghhBAiV5GRHCGEEEIIIXI4RdbkZIp0coTIBvrG+tkdghBCCCFEriWdHCGEEEIIIXI6+Z2cTJFOjhBCCCGEEDmddHIyRe6WEEIIIYQQIsO+++47XFxcMDQ0pGLFihw7dizdvMuWLaN69epYWlpiaWlJvXr13pj/Q5FOjhBCCCGEEDmcolJl2ZEZ69atY8SIEUycOJFTp05RqlQpvL29iYyMTDN/YGAgnTp14sCBAxw5cgQnJycaNGjAv//++yFuS7qkkyOy1KRJkyhduvRHuZZKpWLLli0f5VopXFxcmD9//ke9phBCCCFEdpk7dy59+/alZ8+eFC9enKVLl2JsbMxPP/2UZv7Vq1czcOBASpcuTdGiRVm+fDnJycns27cvS+OUNTkiS40aNYrBgwdndxhCCPFO7Nu0xbFLF/StrIm9dpXwuXN4dvFiuvl1TU1xGvAlljVroWduTtzdu9yYP4/oI39r8ujb2lJg4CDyVK6CrqGaF7dvc33qFJ5duvQxmiSE+FRl4ZqcuLg44uLitNLUajVqtVorLT4+npMnT+Lr66tJ09HRoV69ehw5ciRD14qNjSUhIQErK6v3D/wNZCRHZClTU1Osra2zOwwhhMg0q7r1KDBkKLd//JHzPboTe/UaRectQM/SMs38Kj09ii74FgMHR66O8+VMh/aEzZhOwv37mjy6ZmZ4fP8DSmISl0cM42ynjtxcuJDEp08/VrOEECIVf39/8uTJo3X4+/unyvfgwQOSkpKwt7fXSre3t+fu3bsZutbYsWPJmzcv9erV+yCxp0c6OeKNatWqxZAhQxgzZgxWVlY4ODgwadIkzfmbN2/SokULTE1NMTc3p3379ty7d09z/vXpaoGBgVSoUAETExMsLCyoWrUqN27c0JzfunUrZcuWxdDQkEKFCuHn50diYuI7xX7r1i3at2+PhYUFVlZWtGjRgvDwcAB2796NoaEhUVFRWmWGDh1KnTp1NI8PHz5M9erVMTIywsnJiSFDhvDs2bN3ikcI8Wlx7NSJyN+38mDbnzwPDyNs1gyS415g27RZmvltmzVDz9ycq2NHE3P2LPF3I3h6+jSx165q8uT9oitx9yK5Pm0Kzy5eJC4iguhjR4nL4rnpQohcQKXKssPX15fo6Git49XRmg9lxowZrF27ls2bN2NoaPjB63+VdHLEW61cuRITExOOHj3KrFmzmDx5Mnv27CE5OZkWLVrw6NEjDh48yJ49e7h+/TodOnRIs57ExERatmxJzZo1OXv2LEeOHKFfv36o/n/B26FDh+jWrRtDhw7l4sWLfP/996xYsYJp06ZlOuaEhAS8vb0xMzPj0KFDBAUFYWpqSsOGDYmPj6du3bpYWFiwceNGTZmkpCTWrVtHly5dAAgNDaVhw4a0adOGs2fPsm7dOg4fPoyPj8873EUhxKdEpaeHSZGiPDn+yg5AikL08eOYlSiZZhnLajWIOX8Ol1FjKLttByV/WUPe7t1B57//ai2r1+DZpRBcp02n7LYdlFi5CtvmLbK6OUII8UZqtRpzc3Ot4/WpagA2Njbo6upqfaENcO/ePRwcHN54jdmzZzNjxgx2796Np6fnB40/LbImR7yVp6cnEydOBMDNzY1FixZpFoudO3eOsLAwnJycAFi1ahUeHh4cP36c8uXLa9Xz5MkToqOjadq0KYULFwagWLFimvN+fn589dVXdO/eHYBChQoxZcoUxowZo7l+Rq1bt47k5GSWL1+u6UQFBARgYWFBYGAgDRo0oGPHjqxZs4bevXsDsG/fPqKiomjTpg3wcui2S5cuDBs2TNP2hQsXUrNmTZYsWZLhbyDSmucan5yMgY58xyBETqVnYYFKT4+ER4+00hMePcLI2TnNMup8eTH38uLB7l1cGjEcw/z5cRk9BpWuHv/+9OPLPHnzYt+qNRFrf+XOyhWYFCuOy4gRKIkJPNi+PcvbJYT4hOWAzw0GBgZ4eXmxb98+WrZsCaDZROBNXwLPmjWLadOmsWvXLsqVK/dRYpVOjnir13vbjo6OREZGEhISgpOTk6aDA1C8eHEsLCwICQlJ1cmxsrKiR48eeHt7U79+ferVq0f79u1xdHQE4MyZMwQFBWmN3CQlJfHixQtiY2MxNjbOcMxnzpzh2rVrmJmZaaW/ePGC0NBQALp06UKlSpW4c+cOefPmZfXq1TRp0gQLCwtNHWfPnmX16tWa8oqikJycTFhYmFYH7U38/f3x8/PTSuudLy99nfJnuD1CiE+ASoeEx48Jm+EPycnEXr6Ega0tjl2+0HRy0NHh2aUQbi9dAkDslSsYFyqEXcvW0skRQrxRZrd6ziojRoyge/fulCtXjgoVKjB//nyePXtGz549AejWrRv58uXTrOmZOXMmEyZMYM2aNbi4uGjW7piammJqapplcUonR7yVvr6+1mOVSkVycvI71RUQEMCQIUPYuXMn69at4+uvv2bPnj1UqlSJmJgY/Pz8aN26dapymZ23GRMTg5eXl1YHJYWtrS0A5cuXp3Dhwqxdu5Yvv/ySzZs3s2LFCq06+vfvz5AhQ1LVUaBAgQzH4uvry4gRI7TSztSvm+HyQoiPLzEqCiUxEf3Xdv/Rt7Ii4eGjNMskPHyAkpgIr7w/Pg8Px8DGBpWeHkpiIgkPHvA8LEyr3PPwcKxq1/7wjRBCiCzQoUMH7t+/z4QJE7h79y6lS5dm586dms0Ibt68ic4ro05LliwhPj6etm3batUzceJErXXeH5p0csQ7K1asGLdu3eLWrVua0ZyLFy8SFRVF8eLF0y1XpkwZypQpg6+vL5UrV2bNmjVUqlSJsmXLcvnyZVxdXd87trJly7Ju3Trs7OwwNzdPN1+XLl1YvXo1+fPnR0dHhyZNmmjVcfHixfeOJ60tGGWqmhA5m5KYyLPLlzAvV57Hf/31MlGlIk+58tzdsD7NMk/PnsWmQYOXC3kVBQDDAgWIv3//ZecHeHruLIYFtKe7GRYoQFwGdyUSQnzGsnAL6czy8fFJd3paYGCg1uOUTZ8+tpxzt8Qnp169epQsWZIuXbpw6tQpjh07Rrdu3ahZs2aa8y3DwsLw9fXlyJEj3Lhxg927d3P16lXNtK8JEyawatUq/Pz8uHDhAiEhIaxdu5avv/4607F16dIFGxsbWrRowaFDhwgLCyMwMJAhQ4Zw+/ZtrXynTp1i2rRptG3bVqszMnbsWP7++298fHwIDg7m6tWrbN26VTYeEOIzEfHrr9g1b4FN48YYOrvgMmYsOoaG3P/zTwAKTZiI05cDNfkjN21EzzwPzsNHYOjkhEWVquTr3oN7Gzdo8txd+yumJUqQt3t31PnzY92gAXYtWnJvw4ZU1xdCCPHuZCRHvDOVSsXWrVsZPHgwNWrUQEdHh4YNG/Ltt9+mmd/Y2JhLly6xcuVKHj58iKOjI4MGDaJ///4AeHt78+effzJ58mRmzpyJvr4+RYsWpU+fPpmOzdjYmL/++ouxY8fSunVrnj59Sr58+ahbt67WyI6rqysVKlTg2LFjzJ8/X6sOT09PDh48yLhx46hevTqKolC4cOF0d48TQuQuj/btRd/Sgvx9+qFvbU3s1StcGj6MxMcvp6up7e21pqbFR0ZyadgQnIcOx+7n1cTfv8/d39Zy5+efNXmehYRw9asxOH05kHw9exMXcYcb8+fxcPeuj94+IcSnRclBIzmfApWi/P+YuhDiozlauWJ2hyCEEEKITKp45Gi2XTvmn9+zrG7TSs2zrO7sIiM5QgghhBBC5HQ5ZHe1T4WMe4lPwurVqzVbDb5+eHh4ZHd4QgghhBAiB5GRHPFJaN68ORUrpj3F6/UtroUQQgghchtZk5M50skRnwQzM7NUP+wphBBCCPHZkOlqmSJdQiGEEEIIIUSuIiM5QgghhBBC5HQyXS1TpJMjRDbQM5SXnhBCCCFEVpFPWkIIIYQQQuRwiqzJyRQZ9xJCCCGEEELkKjKSI4QQQgghRE4na3IyRe6WEEIIIYQQIleRTk4O5uLiwvz58zOUV6VSsWXLliyNJzw8HJVKRXBw8Bvz1apVi2HDhr3zdd7WlsDAQFQqFVFRUe98DSGEEEKIT4mCKsuO3Eimq30EKpWKzZs307Jly+wO5YMKDAykdu3aPH78GAsLi4923SpVqhAREUGePHnemje7YhRC5A62LVtj36Ez+lZWPA+9xs2F84i9FJJufl0TU/L26Ydl9ZrompkTf+8ut75byJOjRwBw7N6LvD16a5V5cfMGF7p3ztJ2CCE+fYpMV8sU6eSIT46BgQEODg4f9ZqKopCUlISenrxkhPhcWNauS/4vB3Nz3jc8C7mIXdv2uM2ay4VunUhMYyRZpaeH2+z5JEY9JnTS1yTcv4+BgwNJMTFa+Z6HXefKyKGax0pSUlY3RQghPjufVZewVq1aDB48mGHDhmFpaYm9vT3Lli3j2bNn9OzZEzMzM1xdXdmxY4emzPnz52nUqBGmpqbY29vTtWtXHjx4oFXnkCFDGDNmDFZWVjg4ODBp0iTNeRcXFwBatWqFSqXSPA4NDaVFixbY29tjampK+fLl2bt373u178GDB7Rq1QpjY2Pc3Nz4/ffftc6/rS07d+6kWrVqWFhYYG1tTdOmTQkNDU3zWuHh4dSuXRsAS0tLVCoVPXr00JxPTk5O9568b1ten65248YNmjVrhqWlJSYmJnh4eLB9+/Y3xhgXF8eQIUOws7PD0NCQatWqcfz48VTX2LFjB15eXqjVan755Rd0dHQ4ceKEVqzz58/H2dmZ5OTkTLVRCJGz2bfrwINtf/Bw53Ze3Ajn5txvSH4Rh3Wjpmnmt27UFD0zc659/RXPzp8j/t5dYs4E8zz0mlY+JSmJxMePNEfSk+iP0RwhxKdOpZN1Ry6UO1v1BitXrsTGxoZjx44xePBgvvzyS9q1a0eVKlU4deoUDRo0oGvXrsTGxhIVFUWdOnUoU6YMJ06cYOfOndy7d4/27dunqtPExISjR48ya9YsJk+ezJ49ewA0H5wDAgKIiIjQPI6JiaFx48bs27eP06dP07BhQ5o1a8bNmzffuW1+fn60b9+es2fP0rhxY7p06cKjR48AMtSWZ8+eMWLECE6cOMG+ffvQ0dGhVatWaX54d3JyYuPGjQBcvnyZiIgIFixYkKF78r5ted2gQYOIi4vjr7/+4ty5c8ycORNTU9M3xjhmzBg2btzIypUrOXXqFK6urnh7e6e6xldffcWMGTMICQmhefPm1KtXj4CAAK08AQEB9OjRAx2dz+7lJESupdLTw9i9CE9O/vflB4rC01MnMPUokWYZiyrViLl4ngLDRuK58Q+K//QzDl26wWvvDep8+Sm5fislVv+Gy7iJ6NvZZ2VThBDis6RSFEXJ7iA+llq1apGUlMShQ4cASEpKIk+ePLRu3ZpVq1YBcPfuXRwdHTly5Ah79+7l0KFD7Nq1S1PH7du3cXJy4vLly7i7u6eqE6BChQrUqVOHGTNmABlfk1OiRAkGDBiAj48P8HIUaNiwYRlaxK9Sqfj666+ZMmUK8LLDYmpqyo4dO2jYsCFTp059a1te9+DBA2xtbTl37hwlSpQgPDycggULcvr0aUqXLp3uepeM3JP3acvr1/X09KRNmzZMnDgxVV1pxfjs2TMsLS1ZsWIFnTu/nAefkJCgud+jR4/WlNuyZQstWrTQ1Pfbb78xYMAAIiIiUKvVnDp1inLlynH9+nXNKN3r4uLiiIuL00q70MwbA+kUCZFj6Vvb4LlhK5cG9ePZxQua9Hz9B2JWqjSXBvZLVcZj5RoMHBx4tHc397duRp0vPwWGjiRy03oiVr38csS8QiV0jIyIu3UTfWtrHLv1Qt/Glou9upL8PPajtU8I8W68DgRl27UfnzmYZXVblqqZZXVnl8/uU5anp6fm37q6ulhbW1OyZElNmr39y2/UIiMjOXPmDAcOHMDU1FRzFC1aFEBrGterdQI4OjoSGRn5xjhiYmIYNWoUxYoVw8LCAlNTU0JCQt5rJOfVOExMTDA3N9fEkZG2XL16lU6dOlGoUCHMzc01H9rfJaZ3uScZbcvrhgwZwtSpU6latSoTJ07k7Nmzb6w7NDSUhIQEqlatqknT19enQoUKhIRoLyguV66c1uOWLVuiq6vL5s2bAVixYgW1a9dOt4MD4O/vT548ebSOgBu33xijEOITpFKR+PgxN+bMIvbKZR4f2EfE6pXYNm+pyfLk2D9EHTzA8+uhPDl+jGtfjULP1BTL2nWyL24hhMiFPrtV1Pr6+lqPVSqVVppK9XIbveTkZGJiYmjWrBkzZ85MVY+jo+Mb63zb+oxRo0axZ88eZs+ejaurK0ZGRrRt25b4+PhMtykjcWSkLc2aNcPZ2Zlly5aRN29ekpOTKVGixDvF9C735F3L9+nTB29vb7Zt28bu3bvx9/dnzpw5DB48ONNxv87ExETrsYGBAd26dSMgIIDWrVuzZs0arWl6afH19WXEiBFaaReaeb93bEKIrJMYHYWSlIiepZVWur6lFQnpTJ1NePQQJTERXnmvenHjBvrWNqj09F6ee03Ssxhe3L6FOm/+D9sAIUSuI7urZc5n18nJjLJly7Jx40ZcXFzea1ctfX19kl7bPScoKIgePXrQqlUr4GUnJDw8/H3CfaO3teXhw4dcvnyZZcuWUb16dQAOHz78xjoNDAwAUrUtOzg5OTFgwAAGDBiAr68vy5YtY/DgwWnGWLhwYQwMDAgKCsLZ2Rl4OV3t+PHjGZoa2KdPH0qUKMHixYtJTEykdevWb8yvVqtRq9VaaTJVTYicTUlMJPbKZczLliM66P+n3qpUmJX1InLzxjTLxJw/h1Xd+qBSwf/PBDd0ciL+wYM0OzgAOoZGqPPmI2HPzixphxBCfK7kk9YbDBo0iEePHtGpUyeOHz9OaGgou3btomfPnpn6YO/i4sK+ffu4e/cujx8/BsDNzY1NmzYRHBzMmTNn6Ny5c5buzvW2tlhaWmJtbc0PP/zAtWvX2L9/f6rRh9c5OzujUqn4888/uX//PjGvbZP6sQwbNoxdu3YRFhbGqVOnOHDgAMWKFUs3RhMTE7788ktGjx7Nzp07uXjxIn379iU2NpbevXu/5WpQrFgxKlWqxNixY+nUqRNGRkZZ3UQhRDa4t34dNk2bYeXdCMMCzhQYPgodQ0Me7twGgIvv1+TtM0CT//7WzeiZmePkMwx1fifMK1XGoXM37m/5r1OUb8AgTEuVxsDeAROPEhSe4o+SnMTjfe+3u6YQ4jOgUmXdkQtJJ+cN8ubNS1BQEElJSTRo0ICSJUsybNgwLCwsMrWT1pw5c9izZw9OTk6UKVMGgLlz52JpaUmVKlVo1qwZ3t7elC1bNqua8ta26OjosHbtWk6ePEmJEiUYPnw433zzzRvrzJcvH35+fnz11VfY29trNkz42JKSkhg0aBDFihWjYcOGuLu7s3jx4jfGOGPGDNq0aUPXrl0pW7Ys165dY9euXVhaWmbomr179yY+Pp5evXplWbuEENnr8YF93F7yHXl79KHYshUYu7pxdexIEv//yyoDO3v0ra01+RPuR3J1zHCMixaj+I8rKeAznMhN67n76y+aPAa2dhT82g+PVb9SaOIUEp9Ec2lQfxKjoz5284QQnxhFpZNlR270We2uJsSHMmXKFNavX//WTQ7Sc7J21bdnEkIIIUSOkp27qz08/3eW1W1dokqW1Z1dZE2OEJmQsnZq0aJFTJ06NbvDEUIIIcRnQiF3TivLKrlzfCqXWb16tdbWz68eHh4e2R1epnzqbfHx8cHLy4tatWrJVDUhhBBCiBxKpqt9Ap4+fcq9e/fSPKevr6/ZIexTkJva8j5kupoQQgjx6cnO6Wr3LxzNsrptPSpmWd3ZRaarfQLMzMwwMzPL7jA+iNzUFiGEEEIIkTNJJ0cIIYQQQoicLpdu9ZxVZE2OEEIIIYQQIleRkRwhsoGuvny/IIT4P/buOy6r8n3g+OdhPewpUxkOQFScuDPc23LkLveqyImmX3OXqIG7YaZgZlm5cpIj0URFHJgmIqKIA8XBEET27w9+PvYECKgI4vV+vc7r1XPOfe5znaMh13Nf932EEKLocmRsolgkyRFCCCGEEKKMy5FytWKRlFAIIYQQQghRrshIjhBCCCGEEGVcjkLGJopDnpYQQgghhBCiXJEkR5QZAQEBmJqavpS+goKCUCgUJCQkvJT+Svs6QgghhHiz5aAosa08knI18UKGDBlCQkIC27ZtK+1QhBDipavQrQdWvfujZW5O6pUobn61lEcR4QW21zQwxGboSEybe6JpZER63B1ufrOch6HHAbDo2p0KXbujY20DwONrV7m9IYCHoSX3JnMhhHgTSZIjhBBC5MPUszV2o724sdyPlIsXsOzZmyrz/bg4fACZ+YzeKrS0qLpgMRkJCUTPm0HG/btoW9mQlfJQ1SbjXhy31nxL2s0bKBQKzNp1pPJsHy59NIzH16Jf3c0JIV47MieneORpiSLZtGkT7u7u6OnpYWFhQdu2bZk8eTLr1q3j999/R6FQoFAoCAoKyreEKywsDIVCQXR0tGpfQEAADg4O6Ovr06NHD+7fv686Fh0djYaGBidPnlSLY+nSpTg6OpKdnV3se9i8eTM1a9ZEqVTi5OSEn5+f2vH169fj4eGBkZERNjY2DBgwgLi4OLU2u3fvxsXFBT09PVq1aqV2P0KI8sWyV1/u79nBg727SYuJ5sYyX7LTHmPeoUu+7c07dEHTyJirs6eRcuEc6Xduk3IujMdXolRtko4f5WHocdJv3SDt5nVuB6wmOzUVfbear+q2hBDijSBJjihUbGws/fv3Z9iwYYSHhxMUFETPnj2ZNWsWffr0oWPHjsTGxhIbG0uzZs2K1GdISAjDhw/Hy8uLsLAwWrVqxeeff6467uTkRNu2bfH391c7z9/fnyFDhqChUby/uqdOnaJPnz7069ePc+fOMXv2bGbMmEFAQICqTUZGBvPmzePs2bNs27aN6OhohgwZojp+/fp1evbsSbdu3QgLC2PEiBFMnTq1WHEIIV4PCi0t9J1dSD5z6unOnBySz5zEoICExKRpc1LC/6HSJxOp+cvvuH63Dqt+H0BBP680NDBt2QYNXV1SLvxTAnchhChPchSKEtvKIylXE4WKjY0lMzOTnj174ujoCIC7uzsAenp6pKWlYWNjU6w+ly1bRseOHZkyZQoALi4uHD16lMDAQFWbESNGMGbMGBYvXoxSqeT06dOcO3eO33//vdj3sHjxYtq0acOMGTNU17tw4QJffvmlKpEZNmyYqn2VKlVYvnw5DRs2JDk5GUNDQ7755huqVq2qGgFydXXl3LlzLFy4sNjxCCHKNk1jExSaWmTEP1DbnxEfj9LeMd9zdGztMKxrQ/yf+7jy2WSUdpWo9MlEFFqa3PkxQNVO16kKzsu+QUNHh+zUVK7OmU5aTHQJ3o0QQrx5ZCRHFKpOnTq0adMGd3d3evfuzerVq4mPj3+hPsPDw2ncuLHavqZNm6p97t69O5qammzduhXILW9r1aoVTk5Oz3W95s2bq+1r3rw5kZGRZGVlAbmjPd26dcPBwQEjIyM8PT0BiImJKXLM+UlLSyMpKUltS3+OcjshRBmn0CAzIYHrS78kNfISCYf+5M7P66nQpbtas7QbMUR8OIxLY0dzb+fvOE6ejtLBqVRCFkK8PmR1teKRJEcUSlNTk3379rFnzx5q1KjBihUrcHV15erVq/m2f1JKlpOTo9qXkZFR7Ovq6OgwaNAg/P39SU9P56efflIbbXmZUlJS6NChA8bGxmzYsIHQ0FBVcpWenv5Cffv4+GBiYqK2rb16/WWELYQoIVlJieRkZaJtZq62X9vMjMwH9/M9J/PBfdJuXId/fYnxOCYabQsLFFpPCydyMjNJv3WT1MhLxK5dReqVy1j2eK9kbkQIUW7kKDRKbCuPyuddiZdOoVDQvHlz5syZw5kzZ9DR0WHr1q3o6OioRkKesLS0BHLL3J4ICwtTa+Pm5kZIiPqSqcePH89z3REjRrB//36+/vprVcnc83BzcyM4OFhtX3BwMC4uLmhqanLx4kXu37/PggULaNGiBdWrV8+z6ICbmxsnTpwoNOb/mjZtGomJiWrbsMr2z3UfQohXIyczk0eRlzCs2+DpToUCw7oNSAnPf/5Myj/nUNpVhH/Vtysr2pNx/x45mZkFX0xDgYa2zssKXQghBJLkiCIICQlh/vz5nDx5kpiYGLZs2cLdu3dxc3PDycmJv//+m4iICO7du0dGRgbVqlXD3t6e2bNnExkZya5du/KsZDZ27FgCAwPx9fUlMjKSlStXqs3HecLNzY0mTZrw6aef0r9/f/T09J7rHiZNmsSBAweYN28ely5dYt26daxcuRJvb28AHBwc0NHRYcWKFVy5coXt27czb948tT7GjBlDZGQkkydPJiIigp9++klt4YKCKJVKjI2N1TadYi6cIIR49e5u/gWLzl0xa9cRpb0jlcZOQkNXjwd/7AbAYfJ0bIeNVrW/t3MbmkbGVPxwHMqK9hg3aop1/w+4t32Lqo3tsNEYuNdBx9oGXacq2A4bjWHtejz4c+8rvz8hxOtFytWKR37TEoUyNjbm8OHDdO7cGRcXFz777DP8/Pzo1KkTI0eOxNXVFQ8PDywtLQkODkZbW5uff/6ZixcvUrt2bRYuXKi2chpAkyZNWL16NcuWLaNOnTrs3buXzz77LN/rDx8+nPT09BcqVatfvz6//vorGzdupFatWsycOZO5c+eqFh2wtLQkICCA3377jRo1arBgwQJ8fX3V+nBwcGDz5s1s27aNOnXq8O233zJ//vznjkkIUbYlHPqTW999je2g4bh+sxa9qs5cme5NZkLunEQdK2u0zS1U7TPuxhH1v0nou1bHdZU/FT8ax92tm7jzywZVGy1TUxwnT6f6mg1UXbQUfZfqRP1vEsmnT+a5vhBCiOenyPn3xAkhyqB58+bx22+/8ffff5d2KC9NWPsWpR2CEEIIIYqp7t6/Su3a1y5HlFjfjtVcS6zv0iIjOaLMSk5O5vz586xcuZJPPvmktMMRQgghhBCvCUlyRJnl5eVFgwYNaNmyZZ5StTFjxmBoaJjvNmbMmFKKWAghhBCiZJSlOTlfffUVTk5O6Orq0rhx4zwLM/3Xb7/9RvXq1dHV1cXd3Z3du3c/72MoMilXE6+luLg4kpKS8j1mbGyMlZXVK46oeKRcTQghhHj9lGa5WvTlSyXWt1M1lyK3/eWXXxg0aBDffvstjRs3ZunSpfz2229ERETk+/vX0aNHefvtt/Hx8aFr16789NNPLFy4kNOnT1OrVq2XeRtqJMkRohRIkiOEEEK8fkozybkadbnE+q5ctVqR2zZu3JiGDRuycuVKALKzs7G3t+eTTz5h6tSpedr37duXlJQUdu7cqdrXpEkT6taty7fffvviwRdAytWEEEIIIYQo40qyXC0tLY2kpCS1LS0tLU8M6enpnDp1irZt26r2aWho0LZtW44dO5Zv3MeOHVNrD9ChQ4cC278skuQIIYQQQgjxBvPx8cHExERt8/HxydPu3r17ZGVlYW1trbbf2tqa27dv59v37du3i9X+ZdEq0d6FEPkysjEu7RCEEEII8RrJUZTcSzunTZvGxIkT1fYplcoSu96rIEmOEEIIIYQQbzClUlmkpKZChQpoampy584dtf137tzBxsYm33NsbGyK1f5lkXI1IYQQQgghyricHEWJbUWlo6NDgwYNOHDggGpfdnY2Bw4coGnTpvme07RpU7X2APv27Suw/csiIzlCCCGEEEKIIpk4cSKDBw/Gw8ODRo0asXTpUlJSUhg6dCgAgwYNomLFiqo5PePGjcPT0xM/Pz+6dOnCxo0bOXnyJN99912JxilJjhBCCCGEEGVcThkpwOrbty93795l5syZ3L59m7p16xIYGKhaXCAmJgYNjaexNmvWjJ9++onPPvuM//3vfzg7O7Nt27YSfUcOyHtyXoqWLVtSt25dli5dWtqhAEWLR6FQsHXrVrp37/7K4iopQ4YMISEhgW3bthXYpqz9GUUN6lLaIQghhBCimKr+sKvUrh0Zda3E+nau6lhifZcWGcl5jQUFBdGqVSvi4+MxNTUt1rmxsbGYmZmVTGBCCFFOGLfpgmnnXmiamJF+/Sr31n9L2pX83zpu9FZbrEZNUNuXnZ7O1RE9VJ8L+gXp/sY1JOze8vICF0KUOzmU3Opq5ZEkOaUgPT0dHR2dUo2hpFe0eBnKwnMSQry5DBq3oMKAkdwNWMnjqAhMO3THdvI8rk8ZRdbDxHzPyXqUwvVPRz/d8Z9iiehP3lf7rF+7AZbDx5EcevSlxy+EKF8kySmeslHcVw5kZmbi5eWFiYkJFSpUYMaMGTypBHRycmLevHkMGjQIY2NjRo0aBcCRI0do0aIFenp62NvbM3bsWFJSUlR9rl+/Hg8PD4yMjLCxsWHAgAHExcUBEB0dTatWrQAwMzNDoVAwZMgQ1bnZ2dlMmTIFc3NzbGxsmD17tlq8CoVCVd4VHR2NQqFgy5YttGrVCn19ferUqZPnTbSrV6/G3t4efX19evToweLFi4s8gjR79mzq1q3LqlWrVH306dOHxMSnvygMGTKE7t2788UXX2BnZ4erqysA586do3Xr1ujp6WFhYcGoUaNITk7Oc405c+ZgaWmJsbExY8aMIT09vcB40tLS8Pb2pmLFihgYGNC4cWOCgoJUxwMCAjA1NWXnzp24urqir6/Pe++9x6NHj1i3bh1OTk6YmZkxduxYsrKyivQMhBCvF9OOPUgKCuThX/vJuHWduwEryUl7jJFn+4JPyskhKzH+6ZaUoHZY7VhiPAb1m5Aa/jeZd0v2pXhCCPGmkSTnJVm3bh1aWlqcOHGCZcuWsXjxYr7//nvVcV9fX+rUqcOZM2eYMWMGUVFRdOzYkV69evH333/zyy+/cOTIEby8vFTnZGRkMG/ePM6ePcu2bduIjo5WJTL29vZs3rwZgIiICGJjY1m2bJlaPAYGBoSEhLBo0SLmzp3Lvn37nnkP06dPx9vbm7CwMFxcXOjfvz+ZmZkABAcHM2bMGMaNG0dYWBjt2rXjiy++KNYzunz5Mr/++is7duwgMDCQM2fO8NFHH6m1OXDgABEREezbt4+dO3eSkpJChw4dMDMzIzQ0lN9++439+/erPacn54WHhxMUFMTPP//Mli1bmDNnToGxeHl5cezYMTZu3Mjff/9N79696dixI5GRkao2jx49Yvny5WzcuJHAwECCgoLo0aMHu3fvZvfu3axfv55Vq1axadOmYj0HIcRrQFMLpVM1Hv0T9nRfTg6pF8LQrVa9wNM0dPVwWOyP45IAbMbPQLuiQ8GXMDZFv05DHh7e+xIDF0KUVzkoSmwrj6Rc7SWxt7dnyZIlKBQKXF1dOXfuHEuWLGHkyJEAtG7dmkmTJqnajxgxgoEDBzJ+/HgAnJ2dWb58OZ6ennzzzTfo6uoybNgwVfsqVaqwfPlyGjZsSHJyMoaGhpibmwNgZWWVZ0Sldu3azJo1S9X3ypUrOXDgAO3atSvwHry9venSJXdC/Jw5c6hZsyaXL1+mevXqrFixgk6dOuHt7Q2Ai4sLR48eZefOnUV+Ro8fP+aHH36gYsWKAKxYsYIuXbrg5+enKp8zMDDg+++/V5WprV69WnWegYEBACtXrqRbt24sXLhQtZKHjo4Oa9euRV9fn5o1azJ37lwmT57MvHnz1Fb4gNxVP/z9/YmJicHOzk5174GBgfj7+zN//nwgN8n85ptvqFq1KgDvvfce69ev586dOxgaGlKjRg1atWrFwYMH6du3b5GfgxCi7NM0MkahqZlnJCYzMQE9W/t8z0m/fYO475eSfj0aDT19TDv3pOIMX65P+5Cs+Pt52hu91Ybsx6mknJRSNSGEeNlkJOcladKkCQrF00y4adOmREZGqkqZPDw81NqfPXuWgIAADA0NVVuHDh3Izs7m6tWrAJw6dYpu3brh4OCAkZERnp6eQO4v6YWpXbu22mdbW1tVqVtRzrG1tQVQnRMREUGjRo3U2v/3c2EcHBxUCQ7kPqPs7GwiIiJU+9zd3dXm4YSHh1OnTh1VggPQvHnzPOfVqVMHfX19tb6Tk5O5fv16njjOnTtHVlYWLi4uas//0KFDREVFqdrp6+urEhwAa2trnJycMDQ0VNtX2HNNS0sjKSlJbUuTEjchyp20yxdJDv6T9JgrPI44z+3lX5D9MBHj1p3ybW/0djuSjwWRk5HxiiMVQryOZCSneGQk5xX59y/pAMnJyYwePZqxY8fmaevg4KAq0+rQoQMbNmzA0tKSmJgYOnTo8My5Jk9oa2urfVYoFGRnZxf5nCcJW2HnvGz/fU4lITk5GU1NTU6dOoWmpqbasX8nMPk9w+d5rj4+PnlK5z6pXY1xdVyeJ3whxCuQ9TCJnKwsNI1N1fZrmZiSlRhfxE6ySLt2BW0ruzyHdF1qomNnz52vFr6EaIUQQvyXJDkvSUhIiNrn48eP4+zsnOeX6Cfq16/PhQsXqFatWr7Hz507x/3791mwYAH29rmlESdPnlRr82TE41VMfHd1dSU0NFRt338/FyYmJoZbt26pSsSOHz+OhoaGaoGB/Li5uREQEEBKSooqAQoODs5z3tmzZ0lNTUVPT0/Vt6GhoerZ/Vu9evXIysoiLi6OFi1aFOsense0adOYOHGi2r4bH/Yp8esKIV5AViZp0ZfRr1mXR6eP5+5TKNCrUZfE/UUs01VooFPJkUd/n8xzyMizPY+vRpJ+/epLDFoIUZ7l5JTPEZeSIuVqL0lMTAwTJ04kIiKCn3/+mRUrVjBu3LgC23/66accPXoULy8vwsLCiIyM5Pfff1dNqHdwcEBHR4cVK1Zw5coVtm/fzrx589T6cHR0RKFQsHPnTu7evZvvimMvyyeffMLu3btZvHgxkZGRrFq1ij179qiV6BVGV1eXwYMHc/bsWf766y/Gjh1Lnz59nrmc9cCBA1XnnT9/noMHD/LJJ5/wwQcfqObjQO5y08OHD+fChQvs3r2bWbNm4eXllWc+DuTOJxo4cCCDBg1iy5YtXL16lRMnTuDj48OuXS//JV9KpRJjY2O1TVlA8iuEKDsSArdi5NkBo7faoG1nT4XBH6NQ6vLwcO4iLlajJmLee7Cqvdm7/dGrVQ8tSxt0HKtiNcYbrQpWJAX9odavQlcPw0Zv8fA/+4UQQrw8kuS8JIMGDSI1NZVGjRrx8ccfM27cONVS0fmpXbs2hw4d4tKlS7Ro0YJ69eoxc+ZM1SiHpaUlAQEB/Pbbb9SoUYMFCxbg6+ur1kfFihWZM2cOU6dOxdraOs+KYy9T8+bN+fbbb1m8eDF16tQhMDCQCRMmoKurW+Q+qlWrRs+ePencuTPt27endu3afP311888R19fnz/++IMHDx7QsGFD3nvvPdq0acPKlSvV2rVp0wZnZ2fefvtt+vbtyzvvvJNn2ex/8/f3Z9CgQUyaNAlXV1e6d+9OaGgoDg4Fr4QkhHizpIT8xf2NazDr+T7281agdKxC7JczVYsRaFlYomlqrmqvYWCI5bCxOCz4FttJc9DQ0+fmPG8ybqnPDTRskju/Mvn4oVd2L0KI15/MySkeRU7Of95UJkQRjRw5kosXL/LXX38V2nb27Nls27aNsLCwkg/sNRA1qEtphyCEEEKIYqr6w8uv+Ciq85dL7n1ataqV/ZfEF5fMyRFF5uvrS7t27TAwMGDPnj2sW7eu0JEYIYQQQgghXjVJckSRnThxgkWLFvHw4UPVe3tGjBgBQM2aNbl27Vq+561atepVhimEEEIIUe6U17KykiLlauKluHbtGhkFvOvB2toaIyOjVxxR2SblakIIIcTrpzTL1c5dvlNifbtXsy680WtGRnLES+Ho6FjaIQghhBBClFuyhHTxyOpqQgghhBBCiHJFRnKEEEIIIYQo47JlTk6xSJIjRCmwblyztEMQQgghhCi3JMkRQgghhBCijJPV1YpHkhwhhBBCCCHKOFl4oHhk4QEhhBBCCCFEuSIjOUIIIYQQQpRxUq5WPDKS85pp2bIl48ePL/C4k5MTS5cuLfE4FAoF27ZtK/HrCCGEEEIIUVwykiOEEEIU4NezV/jh9GXuP0rDuYIxUzxrU8vGLN+2f16+xdqTl7iekEJmdg4Opga8X68aXdzsVW3uP3rM8uALHI+J42FaJvXtLJjS0h0HU8NXdUtCiNeUzMkpHklyRJmTk5NDVlYWWlpl569nWYxJCFGy9l66yeK//uF/rWtTy9qMn8Ku4PX7MbZ80AZzfWWe9sa6Ogxr6EJlMyO0NDT4K/o2c/afwUxfSTNHK3Jycpi08wRaGhos7toYAx0tNpyJ4sOtR9n0fmv0tOXnixBCvCxSrvYayszMxMvLCxMTEypUqMCMGTPIycnJt21MTAzvvvsuhoaGGBsb06dPH+7cuaPW5ptvvqFq1aro6Ojg6urK+vXr1Y5HRkby9ttvo6urS40aNdi3b1+RY42OjkahULBx40aaNWuGrq4utWrV4tChQ6o2QUFBKBQK9uzZQ4MGDVAqlRw5coTs7Gx8fHyoXLkyenp61KlTh02bNqnOi4+PZ+DAgVhaWqKnp4ezszP+/v4ApKen4+Xlha2tLbq6ujg6OuLj46MWU1hYmKqvhIQEFAoFQUFBLxSTEKL8+PHMZXrUcuSdGo5UsTDmf63roKulye8XruXb3qNSBVpXtaOyuRH2pgYMqFuVahWMCbt1H4CYhBTO3Y5nWqva1LQ2w8nMiGmt6pCWmUVgxM1XeWtCiNdQDooS28oj+droNbRu3TqGDx/OiRMnOHnyJKNGjcLBwYGRI0eqtcvOzlYlOIcOHSIzM5OPP/6Yvn37qn6Z37p1K+PGjWPp0qW0bduWnTt3MnToUCpVqkSrVq3Izs6mZ8+eWFtbExISQmJi4jPnBBVk8uTJLF26lBo1arB48WK6devG1atXsbCwULWZOnUqvr6+VKlSBTMzM3x8fPjxxx/59ttvcXZ25vDhw7z//vtYWlri6enJjBkzuHDhAnv27KFChQpcvnyZ1NRUAJYvX8727dv59ddfcXBw4Pr161y/fr3YcRc3JiFE+ZCRlc3FuESGerio9mkoFDSyt+RcbHyh5+fk5BB64x7X4pMZ27wGAOlZ2QDoaGqq9amjqUFY7H161HJ8yXchhBBvLklyXkP29vYsWbIEhUKBq6sr586dY8mSJXmSnAMHDnDu3DmuXr2KvX1uTfgPP/xAzZo1CQ0NpWHDhvj6+jJkyBA++ugjACZOnMjx48fx9fWlVatW7N+/n4sXL/LHH39gZ2cHwPz58+nUqVOxYvby8qJXr15A7shRYGAga9asYcqUKao2c+fOpV27dgCkpaUxf/589u/fT9OmTQGoUqUKR44cYdWqVXh6ehITE0O9evXw8PAAchddeCImJgZnZ2feeustFAoFjo7P98tDcWMSQpQPCalpZOXkYPGfsjQLfSXR8Q8LPO9hWgad1v5BelY2mgoFU1vWpomDFQBOZobYGOmx8ugFpreug552brnaneTH3Et5XKL3I4R4/cmcnOKRJOc11KRJExSKp3/RmzZtip+fH1lZWWrtwsPDsbe3VyU4ADVq1MDU1JTw8HAaNmxIeHg4o0aNUjuvefPmLFu2TK2PJwnOk+sV17/P0dLSwsPDg/DwcLU2T5IVgMuXL/Po0SNVgvFEeno69erVA+DDDz+kV69enD59mvbt29O9e3eaNWsGwJAhQ2jXrh2urq507NiRrl270r59+2LHXdyY8pOWlkZaWpravoyMTJRSfy9EuWOgo8XP/VvyKCOLE9fvsviv81Q0McCjUgW0NTXw7dKIufvP0Oq7PWj+/8hQc0cr8i84FkKIp7JLO4DXjPyWJcoMAwMD1X8nJycDsGvXLipWrKjWTqnM/Wa1U6dOXLt2jd27d7Nv3z7atGnDxx9/jK+vL/Xr1+fq1avs2bOH/fv306dPH9q2bcumTZvQ0MidivbveUwZGRkvJab8+Pj4MGfOHLV90zo1439dmhd4jhCidJnqKdFUKLj/SP0LivuP0qigr1vgeRoKBfb/v1Kaq6UJVx88xP/kJTwqVQDAzcqUnwe04mFaBplZ2ZjpKxn0yyFqWJmW2L0IIcSbSBYeeA2FhISofT5+/DjOzs5o/qvOG8DNzS3PXJQLFy6QkJBAjRo1VG2Cg4PVzgsODlY7fv36dWJjY9WuV1z/PiczM5NTp07h5uZWYPsaNWqgVCqJiYmhWrVqatu/R6YsLS0ZPHgwP/74I0uXLuW7775THTM2NqZv376sXr2aX375hc2bN/PgwQMsLS0B1O7p34sQvGhM/zVt2jQSExPVtkntGxd6PSFE6dHW1KC6lQmh1++q9mXn5BB6/S7utvkvIZ2fHHLn9/yXkVIbM30lMQnJhMcl4FnF9mWELYQox3JyFCW2lUcykvMaiomJYeLEiYwePZrTp0+zYsUK/Pz88rRr27Yt7u7uDBw4kKVLl5KZmclHH32Ep6enqgxr8uTJ9OnTh3r16tG2bVt27NjBli1b2L9/v6oPFxcXBg8ezJdffklSUhLTp08vdsxfffUVzs7OuLm5sWTJEuLj4xk2bFiB7Y2MjPD29mbChAlkZ2fz1ltvkZiYSHBwMMbGxgwePJiZM2fSoEEDatasSVpaGjt37lQlTosXL8bW1pZ69eqhoaHBb7/9ho2NDaampmhoaNCkSRMWLFhA5cqViYuL47PPPiv0HooSU36USmWekZ5kKVUTosx7v141Zu07jZu16f8vIR1FamYW79RwAGDm3lNYGujxyf8vLLA29BI1rE2pZGJARlY2R6LvsOvidaa1rKPqc1/kTcz0lNgY6XH5XhK+h8/RsootTR2tSuUehRCivJLftF5DgwYNIjU1lUaNGqGpqcm4cePyzKsBUCgU/P7773zyySe8/fbbaGho0LFjR1asWKFq0717d5YtW4avry/jxo2jcuXK+Pv707JlSwA0NDTYunUrw4cPp1GjRjg5ObF8+XI6duxYrJgXLFjAggULCAsLo1q1amzfvp0KFSo885x58+ZhaWmJj48PV65cwdTUlPr16/O///0PAB0dHaZNm0Z0dDR6enq0aNGCjRs3ArkJyaJFi4iMjERTU5OGDRuye/duVana2rVrGT58OA0aNMDV1ZVFixYVac5OYTEJIcqP9i4ViU9N49vjF7mfkoaLpTEr3m2Cxf+Xq91+mKo2P/JxZhYLDv5NXHIqSi1NnMwM+bx9A9q7PC1vvZfymCV/nc8tezPQpUt1e0Y2cn3l9yaEeP2U16WeS4oip6AXrAjxEkRHR1O5cmXOnDlD3bp1SzucMiP5qymFNxJCCCFEmWL48aJSu/bR8IJXdnxRzdyMSqzv0iIjOUIIIYQQQpRx5XXuTEmRhQfEC5k/fz6Ghob5bsV9l44QQgghhBAvg4zkiBcyZswY+vTpk+8xPT09KlasiFRECiGEEEK8GJmTUzyS5IgXYm5ujrm5eWmHIYQQQghRrmXLd8bFIuVqQgghhBBCiHJFRnKEEEIIIYQo46RcrXgkyRGiFHx8Z2JphyCEEEKIYlpX2gGIIpMkRwghhBBCiDJOlpAuHpmTI4QQQgghhChXZCRHCCGEEEKIMk7eyFE8MpIjhBBCCCGEKFckySkDWrZsyfjx4wFwcnJi6dKlz3VueRYQEICpqanq8+zZs6lbt+4zz4mOjkahUBAWFlaisQkhhBBClLRsFCW2lUdSrlbGhIaGYmBgUOT2W7ZsQVtbuwQjKpu8vb355JNPVJ+HDBlCQkIC27ZtU+2zt7cnNjaWChUqlEKEQojypEdrQ1o20ENfV4PImHTW7UjizoOsAtt3b2VIj1aGavtu3c1k2op7qs8mhhr0bW9Ezao66CkVxN7LYsfhZE5eSCux+xBCvL5k4YHikSSnjLG0tCxWe3Nz8xKKpGwzNDTE0NDwmW00NTWxsbF5RREJIcqrzm8Z0K6xPqu3JnIvPouerQ3xHmTG/1beIyOz4PNu3Mlg0bp41ees/7yufFRPE/R1FSz7KYGHj7JpWluXj/uYMuvb+8TcfkbHQgghCiXlamXMv8vVBgwYQN++fdWOZ2RkUKFCBX744Qcgb7mak5MT8+fPZ9iwYRgZGeHg4MB3332n1sfRo0epW7cuurq6eHh4sG3btmKVdf3zzz907doVY2NjjIyMaNGiBVFRUQBkZ2czd+5cKlWqhFKppG7dugQGBqrOfVJCtmXLFlq1aoW+vj516tTh2LFjatcICAjAwcEBfX19evTowf3799WO/7tcbfbs2axbt47ff/8dhUKBQqEgKCgo33K1Q4cO0ahRI5RKJba2tkydOpXMzKe/TLRs2ZKxY8cyZcoUzM3NsbGxYfbs2arjOTk5zJ49GwcHB5RKJXZ2dowdO7ZIz00I8Xrq0FSfHYeTOXMxjet3MvluSyKmRprUr677zPOysiExOVu1JT9ST3Kq2WuzL+QRV25mcDc+i+2HUnj0OIfKdm/e6LwQonA5OSW3lUeS5JRhAwcOZMeOHSQnJ6v2/fHHHzx69IgePXoUeJ6fnx8eHh6cOXOGjz76iA8//JCIiAgAkpKS6NatG+7u7pw+fZp58+bx6aefFjmmmzdv8vbbb6NUKvnzzz85deoUw4YNUyUKy5Ytw8/PD19fX/7++286dOjAO++8Q2RkpFo/06dPx9vbm7CwMFxcXOjfv7+qj5CQEIYPH46XlxdhYWG0atWKzz//vMCYvL296dOnDx07diQ2NpbY2FiaNWuWb+ydO3emYcOGnD17lm+++YY1a9bk6XvdunUYGBgQEhLCokWLmDt3Lvv27QNg8+bNLFmyhFWrVhEZGcm2bdtwd3cv8vMTQrxeLM00MTXS5J+odNW+1LQcrtzMoJr9s5MRGwtNlnpb8uX4CozuZYK5ifo/uZevZ9C4li4GegoUCmhcSxdtLQiPTi+gRyGEEEUlSU4Z1qFDBwwMDNi6datq308//cQ777yDkZFRged17tyZjz76iGrVqvHpp59SoUIFDh48qDpfoVCwevVqatSoQadOnZg8eXKRY/rqq68wMTFh48aNeHh44OLiwtChQ3F1dQXA19eXTz/9lH79+uHq6srChQupW7dunsUUvL296dKlCy4uLsyZM4dr165x+fJlIDdR6tixI1OmTMHFxYWxY8fSoUOHAmMyNDRET08PpVKJjY0NNjY26Ojo5Gn39ddfY29vz8qVK6levTrdu3dnzpw5+Pn5kZ2drWpXu3ZtZs2ahbOzM4MGDcLDw4MDBw4AEBMTg42NDW3btsXBwYFGjRoxcuTIIj8/IcTrxcQw95/JxORstf1JyVmqY/m5ciOd1VsT8Vsfz7qdSViaaTJ9uAW6Ok9r6r/6NQFNTQVfT7Pm+5nWDHnHmOU/JxD3jLk+Qog3Vw6KEttKyoMHDxg4cCDGxsaYmpoyfPhwtS/v82v/ySef4Orqip6eHg4ODowdO5bExMRiX1uSnDJMS0uLPn36sGHDBgBSUlL4/fffGThw4DPPq127tuq/FQoFNjY2xMXFARAREUHt2rXR1X1aZtGoUaMixxQWFkaLFi3yXewgKSmJW7du0bx5c7X9zZs3Jzw8vMAYbW1tAVQxhoeH07hxY7X2TZs2LXKMBQkPD6dp06YoFE//Z27evDnJycncuHEj39iexPcktt69e5OamkqVKlUYOXIkW7duVSt3y09aWhpJSUlqW1amTCwWoixqWluXVdOtVJum5vP183dkOqH/5Ja3nb+czuIf49HXVdCo1tOfvT1bG6Kvq2BhwANmf3ufP46m8FEfUypZyXRZIUT5MHDgQP755x/27dvHzp07OXz4MKNGjSqw/a1bt7h16xa+vr6cP3+egIAAAgMDGT58eLGvLT9Jy7iBAwfi6elJXFwc+/btQ09Pj44dOz7znP8mIAqFQm2k4kXo6em9lH7+HeOTpONlxfiinvX87O3tiYiIYP/+/ezbt4+PPvqIL7/8kkOHDhW4yp2Pjw9z5sxR21f77UnU9fQumRsQQjy3MxfTiLrxdA6gtmbuzycTQw210RxjQ01iYjOK3O+jxzncvp+FtXlu1mRlpkm7Jgb8b8U9bt7N/aLk+p1MXBx1aNNYn3U7kl7G7QghypHs12zuTHh4OIGBgYSGhuLh4QHAihUr6Ny5M76+vtjZ2eU5p1atWmzevFn1uWrVqnzxxRe8//77ZGZmoqVV9NRFRnLKuGbNmmFvb88vv/zChg0b6N279wstGe3q6sq5c+dIS3s6khAaGlrk82vXrs1ff/1FRkbef9yNjY2xs7MjODhYbX9wcDA1atQo8jXc3NwICQlR23f8+PFnnqOjo0NW1rNLPNzc3Dh27Bg5/5phFxwcjJGREZUqVSpyfHp6enTr1o3ly5cTFBTEsWPHOHfuXIHtp02bRmJiotrm3vyTAtsLIUrP4/Qc4h5kqbabdzNJeJhFjSpPS2B1lQqqVNTm8vWiJzlKHQVWZpokPMxNlHS0///Lnf/M+M3OAQ1ZJVYIUQ4cO3YMU1NTVYID0LZtWzQ0NPL8nvcsiYmJGBsbFyvBAUlyXgsDBgzg22+/Zd++fYWWqhWlr+zsbEaNGkV4eDh//PEHvr6+AGplXAXx8vIiKSmJfv36cfLkSSIjI1m/fr1qYYPJkyezcOFCfvnlFyIiIpg6dSphYWGMGzeuyDGOHTuWwMBAfH19iYyMZOXKlWortOXHycmJv//+m4iICO7du5dvEvbRRx9x/fp1PvnkEy5evMjvv//OrFmzmDhxIhoaRftfISAggDVr1nD+/HmuXLnCjz/+iJ6eHo6OjgWeo1QqMTY2Vts0tZRFup4QovT9cewR73gaUs9VSSUrLUb1NCHhYRanLz5WtZkyxIy2jfRVn/t1MMLVSZsKpppUs9dmbH9TsnPg+LlUAGLvZXL7fiZD3zGhSkVtrMw06dhMn5pVdDgV/jhPDEIIkZOjKLEtv9L6f38h/jxu376NlZWV2j4tLS3Mzc25fft2kfq4d+8e8+bNe2aJW0EkyXkNDBw4kAsXLlCxYsU8812Ky9jYmB07dhAWFkbdunWZPn06M2fOBFCbp1MQCwsL/vzzT5KTk/H09KRBgwasXr1aNbo0duxYJk6cyKRJk3B3dycwMJDt27fj7Oxc5BibNGnC6tWrWbZsGXXq1GHv3r189tlnzzxn5MiRuLq64uHhgaWlZZ7RJICKFSuye/duTpw4QZ06dRgzZgzDhw8vtO9/MzU1ZfXq1TRv3pzatWuzf/9+duzYgYWFRZH7EEK8XnYfSWFfyCOGvGPMrNG5iwf4ro9Xe0eOlZkWhgZP/0k1M9bgw/dMWTC2Ah/3MSX5UTbzvrvPw/9fRjorGxavjycpJZvxA035/GMLmtfVY/XWRP6OlNXVhBB5leQS0j4+PpiYmKhtPj4++cYxdepU1Ss7CtouXrz4wveblJREly5dqFGjhtrrPIpKkZNTXlfHFkW1YcMGhg4dSmJi4kubcyOebfDMon2DIYQQQoiyY93c0nvJ+O7TRS+RLa42NbPzjNwolUqUyryVJ3fv3s3z/sL/qlKlCj/++COTJk0iPv7pS5EzMzPR1dXlt99+e+brUB4+fEiHDh3Q19dn586dRfoi/r9k4YE30A8//ECVKlWoWLEiZ8+e5dNPP6VPnz6S4AghhBBClFHZJbjUc0EJTX4sLS2xtLQstF3Tpk1JSEjg1KlTNGjQAIA///yT7OzsPKvo/ltSUhIdOnRAqVSyffv250pwQMrV3ki3b9/m/fffx83NjQkTJtC7d2++++47AMaMGYOhoWG+25gxY0o5ciGEEEII8Tpwc3OjY8eOjBw5khMnThAcHIyXlxf9+vVTrax28+ZNqlevzokTJ4DcBKd9+/akpKSwZs0akpKSuH37Nrdv3y50gan/knI1oSYuLo6kpPyXLjU2Ns4zgUw8HylXE0IIIV4/pVmutuPUs9/L9yK6NSiZ4q4HDx7g5eXFjh070NDQoFevXixfvhxDQ0MAoqOjqVy5MgcPHqRly5YEBQXRqlWrfPu6evUqTk5ORb62lKsJNVZWVpLICCGEEEKIF2Zubs5PP/1U4HEnJye1V3u0bNmSlzX+IkmOEEIIIYQQZVxOjrxEqzhkTo4QQgghhBCiXJGRHCFKwaOHqaUdghBCCCFeI9kyi75YZCRHCCGEEEIIUa7ISI4QQgghhBBlnKyHXDyS5AghhBBCCFHG5ZTgy0DLIylXE0IIIYQQQpQrkuSIZ5o9ezZ169Yt1jkKhYJt27aVSDxCCCGEEG+i7JyS28ojKVcTz+Tt7c0nn3xS2mGUSU/eyhsfH4+pqWlphyOEKEF9O5rSpqkRBroaXIxOY/Vv97h979lvHzc30WRgV3Pquemh1FZw+14mX228y5Xr6QD07mBK83oGWJhqkZmVw5Ub6fy8K57LMWmv4paEEKJckyRHPJOhoSGGhoalHUaZk5GRUdohCCFekXdbm9DpbWNW/nSPuPsZ9OtkxmdjbJiw4CYZmfl/BWqgp8G8sbb8E/mY+d/dJik5GxtLbVIeZavaxN7NYM2W+9y5n4mOtoKunibMGGPDJ19cJyklO99+hRBvLll4oHikXK2c2LRpE+7u7ujp6WFhYUHbtm1JSUkhOzubuXPnUqlSJZRKJXXr1iUwMFDt3Bs3btC/f3/Mzc0xMDDAw8ODkJAQIG+5WmhoKO3ataNChQqYmJjg6enJ6dOnnyvm9PR0vLy8sLW1RVdXF0dHR3x8fACIjo5GoVAQFhamap+QkIBCoSAoKAjIHUlRKBTs2rWL2rVro6urS5MmTTh//rzqnICAAExNTdm2bRvOzs7o6urSoUMHrl+/rhbLN998Q9WqVdHR0cHV1ZX169erHVcoFHzzzTe88847GBgYMHLkSFq1agWAmZkZCoWCIUOGPNdzEEKUbV08jdm8N4GT5x8RE5vByp/uYmasSUN3/QLP6d7GhPsJWXy98R6XY9KJe5DJ3xGp3Ln/dPTnyOkUzl16TNz9TG7czmDdtvvo62ngYKfzKm5LCCHKNUlyyoHY2Fj69+/PsGHDCA8PJygoiJ49e5KTk8OyZcvw8/PD19eXv//+mw4dOvDOO+8QGRkJQHJyMp6enty8eZPt27dz9uxZpkyZQnZ2/t8iPnz4kMGDB3PkyBGOHz+Os7MznTt35uHDh8WOe/ny5Wzfvp1ff/2ViIgINmzYgJOTU7H7mTx5Mn5+foSGhmJpaUm3bt3URloePXrEF198wQ8//EBwcDAJCQn069dPdXzr1q2MGzeOSZMmcf78eUaPHs3QoUM5ePCg2nVmz55Njx49OHfuHHPmzGHz5s0AREREEBsby7Jly4oduxCibLOy0MLMWItzlx6r9j16nMPla2m4OikLPM+jpj5R19OYONiK7+c6sGiSHW2aGBXYXksT2jY1IiU1i2u30l/qPQghyoecnJLbyiMpVysHYmNjyczMpGfPnjg6OgLg7u4OgK+vL59++qnql/qFCxdy8OBBli5dyldffcVPP/3E3bt3CQ0NxdzcHIBq1aoVeK3WrVurff7uu+8wNTXl0KFDdO3atVhxx8TE4OzszFtvvYVCoVDFXlyzZs2iXbt2AKxbt45KlSqxdetW+vTpA+SWlq1cuZLGjRur2ri5uXHixAkaNWqEr68vQ4YM4aOPPgJg4sSJHD9+HF9fX9VoDcCAAQMYOnSo6vPVq1cBsLKykjk5QpRTpkaaACQkZ6ntT0jOUh3Lj5WFFu2bGbEzKIkt+xOo5qBkWA9zMrNyOBSarGpXv4YeEwZZoaOtICEpi3nf3OahlKoJIcQLk5GccqBOnTq0adMGd3d3evfuzerVq4mPjycpKYlbt27RvHlztfbNmzcnPDwcgLCwMOrVq6dKcApz584dRo4cibOzMyYmJhgbG5OcnExMTEyx4x4yZAhhYWG4uroyduxY9u7dW+w+AJo2bar6b3Nzc1xdXVX3B6ClpUXDhg1Vn6tXr46pqamqTXh4+DOf0RMeHh7PFV9aWhpJSUlqW1amTCwWoix6q74B6xc4qjYtzed7L4WGQsHVG+n8vDue6Jvp7D/2kP3HH9K+mfpozj+XHzPZ9yafLY8l7GIqEwdbYWwo/zQLIfLKzlGU2FYeyU/SckBTU5N9+/axZ88eatSowYoVK3B1dVWNNDyLnp5esa41ePBgwsLCWLZsGUePHiUsLAwLCwvS04tfXlG/fn2uXr3KvHnzSE1NpU+fPrz33nsAaGjk/tXM+dcYamlP9jcwMHiu83x8fDAxMVHbLoZ+85KjE0K8DCf/ecRk35uqLSkldwTH1FB91MbUUJOEh1n5dQFAfFIWN+6o/8y6eSeDCqbqBRRp6TncvpdJ5LU0vvnlHlnZ0LpxwWVtQog3l5SrFY8kOeWEQqGgefPmzJkzhzNnzqCjo8OBAwews7MjODhYrW1wcDA1atQAoHbt2oSFhfHgwYMiXSc4OJixY8fSuXNnatasiVKp5N69e88dt7GxMX379mX16tX88ssvbN68mQcPHmBpaQnkluI98e9FCP7t+PHjqv+Oj4/n0qVLuLm5qfZlZmZy8uRJ1eeIiAgSEhJUbdzc3J75jAqio5M7OTgrq+BfdACmTZtGYmKi2la94YfPPEcIUToep+UmHU+2G7cziE/KpJaLrqqNnlJBNUclEdEFj8hGXH2MnZW22j5bK23uxj972WmFArS1yue3qkII8SrJnJxyICQkhAMHDtC+fXusrKwICQnh7t27uLm5MXnyZGbNmkXVqlWpW7cu/v7+hIWFsWHDBgD69+/P/Pnz6d69Oz4+Ptja2nLmzBns7OzUysCecHZ2Zv369Xh4eJCUlMTkyZOLPRr0xOLFi7G1taVevXpoaGjw22+/YWNjg6mpKRoaGjRp0oQFCxZQuXJl4uLi+Oyzz/LtZ+7cuVhYWGBtbc306dOpUKEC3bt3Vx3X1tbmk08+Yfny5WhpaeHl5UWTJk1o1KgRkLtwQZ8+fahXrx5t27Zlx44dbNmyhf379z8zfkdHRxQKBTt37qRz587o6enlu9y2UqlEqVSfoKypdb+YT0sIUVp2HUqiVztTbt/NJO5BBn07mRGflEXouUeqNjM/tOHEuRQCj+QuwrLzUCKfj7OjR1sTjoWlUM1BSdsmRqz6NfdLIaWOgp5tTTn5zyPik7IwNtCgw1vGmJtocuxsSqncpxCibCuvIy4lRZKccsDY2JjDhw+zdOlSkpKScHR0xM/Pj06dOtGhQwcSExOZNGkScXFx1KhRg+3bt+Ps7Azkjkbs3buXSZMm0blzZzIzM6lRowZfffVVvtdas2YNo0aNon79+tjb2zN//ny8vb2fK24jIyMWLVpEZGQkmpqaNGzYkN27d6tK1dauXcvw4cNp0KABrq6uLFq0iPbt2+fpZ8GCBYwbN47IyEjq1q3Ljh07VKMsAPr6+nz66acMGDCAmzdv0qJFC9asWaM63r17d5YtW4avry/jxo2jcuXK+Pv707Jly2fGX7FiRebMmcPUqVMZOnQogwYNIiAg4LmehRCi7Pr9z0R0dRSM7mOBvp4GF6+m8cWq22rvyLGuoIWRwdOStqjr6Xy59g4Du5jzXntT4h5kErDtAUdO5yYw2dlQ0Vqblg2tMDLU5GFKFlExacxcEcuN2/IeLiGEeFGKnBzJC8XrKSgoiFatWhEfH1/g6mYBAQGMHz+ehISEVxpbYXpPKHy+lBBCCCHKlt+WVC61a//4V8n9yv5+i/JXJitzcoQQQgghhBDliiQ5osTMnz8fQ0PDfLdOnTqVdnhCCCGEEK+NnBxFiW3lkZSriRLz4MGDAldt09PTo2LFiq84orJDytWEEEKI109plqutP1xyfX/wdsn1XVpk4QFRYszNzYv8klEhhBBCCFEwGZYoHklyhBBCCCGEKOOyJckpFpmTI4QQQgghhChXZCRHCCGEEEKIMk7K1YpHkhwhSkFKYnJphyCEEEIIUW5JkiOEEEIIIUQZJyM5xSNzcoQQQgghhBDliozkCCGEEEIIUcbJ6mrFU+ZHcmbPnk3dunVLO4wSEx0djUKhICwsrLRDeS4v68/nVf85BwUFoVAoSEhIKDMxCSGEEEKIl6NYSU7Lli0ZP358CYXy+ggICMDU1LS0w3gmhULBtm3bSjuMfOUXm7e3NwcOHCidgApQFmMSQrx673e34sfF1dn6bU2+8K6MnZVOoedYmGrhPbISG5e7sfXbmnw91xlnJz3VcV2lBh8OtOMH39x+v/3cmc4t5eXJQoiC5eSU3FYevZHlajk5OWRlZaGl9UbefpGkp6ejo1P4P+Qvi6GhIYaGhq/sekVRFmMSQrxa73WqwDttK7D4++vcvpfBBz2smTepMmOmXyIjM//fDAz1NfD9X1X+vpjMzCXRJD7MxM5aycOULFWbkf1sqVPdgC9XX+fOvXTq1zLk4/crcj8hg5Cwh6/q9oQQr5Hs7NKO4PVS5JGcIUOGcOjQIZYtW4ZCoUChUBAdHc358+fp1KkThoaGWFtb88EHH3Dv3j3VeYGBgbz11luYmppiYWFB165diYqKUuv7xo0b9O/fH3NzcwwMDPDw8CAkJEStzfr163FycsLExIR+/frx8OHTfwSys7Px8fGhcuXK6OnpUadOHTZt2qQ6/qQ0ac+ePTRo0AClUsmRI0eeeb9nz56lVatWGBkZYWxsTIMGDTh58iRBQUEMHTqUxMRE1XOYPXs2kP8IhampKQEBAarPJ06coF69eujq6uLh4cGZM2fyXLuwZ9qyZUvGjh3LlClTMDc3x8bGRhUDgJOTEwA9evRAoVCoPj/Lk9Ks77//nsqVK6OrqwtAQkICI0aMwNLSEmNjY1q3bs3Zs2cL7Cc0NJR27dpRoUIFTExM8PT05PTp04XG9t/SsOzsbObOnUulSpVQKpXUrVuXwMBA1fEnZX5btmyhVatW6OvrU6dOHY4dO6Zqc+3aNbp164aZmRkGBgbUrFmT3bt3q8V76tQpPDw80NfXp1mzZkREROR5Jk8MGTKE7t27M2fOHNXzGDNmDOnp6YU+XyHE66l7uwps3BHH8bCHRN94jN/317Ew1aJpfeMCz3mvsyV3H2SwZO1NLl1N5c69DM78k8ztu09/VrhV1efA0QTORaQQdz+DwEPxXLn+GNfK+q/itoQQotwrcpKzbNkymjZtysiRI4mNjSU2NhYjIyNat25NvXr1OHnyJIGBgdy5c4c+ffqozktJSWHixImcPHmSAwcOoKGhQY8ePcj+/3Q0OTkZT09Pbt68yfbt2zl79ixTpkxRHQeIiopi27Zt7Ny5k507d3Lo0CEWLFigOu7j48MPP/zAt99+yz///MOECRN4//33OXTokNo9TJ06lQULFhAeHk7t2rWfeb8DBw6kUqVKhIaGcurUKaZOnYq2tjbNmjVj6dKlGBsbq56Dt7d3kZ5hcnIyXbt2pUaNGpw6dYrZs2fnOTchIaHQZwqwbt06DAwMCAkJYdGiRcydO5d9+/YBuYkGgL+/P7GxsarPhbl8+TKbN29my5YtqjlCvXv3Ji4ujj179nDq1Cnq169PmzZtePDgQb59PHz4kMGDB3PkyBGOHz+Os7MznTt3ViWlRY1t2bJl+Pn54evry99//02HDh145513iIyMVGs3ffp0vL29CQsLw8XFhf79+5OZmQnAxx9/TFpaGocPH+bcuXMsXLgwz8jM9OnT8fPz4+TJk2hpaTFs2LBnPqMDBw4QHh5OUFAQP//8M1u2bGHOnDnPfrBCiNeSjaU25qbahF14+l6rR6nZRFx5hFvVgpORJnWNiYxOZdqHDvy01I0Vs6rR4W0ztTbhUY9oXNcIC9PcioLa1Q2oaKPD6X9kFEcIkT8pVyueItdrmZiYoKOjg76+PjY2NgB8/vnn1KtXj/nz56varV27Fnt7ey5duoSLiwu9evVS62ft2rVYWlpy4cIFatWqxU8//cTdu3cJDQ3F3Dy3HrlatWpq52RnZxMQEICRkREAH3zwAQcOHOCLL74gLS2N+fPns3//fpo2bQpAlSpVOHLkCKtWrcLT01PVz9y5c2nXrl2R7jcmJobJkydTvXp1AJydndWehUKhUD2Hovrpp5/Izs5mzZo16OrqUrNmTW7cuMGHH36oarNy5cpCnylA7dq1mTVrliq2lStXcuDAAdq1a4elpSWQO4pUnBjT09P54YcfVOcfOXKEEydOEBcXh1KpBMDX15dt27axadMmRo0alaeP1q1bq33+7rvvMDU15dChQ3Tt2rXIsfn6+vLpp5/Sr18/ABYuXMjBgwdZunQpX331laqdt7c3Xbp0AWDOnDnUrFmTy5cvU716dWJiYujVqxfu7u5A7t+L//riiy9Uf0emTp1Kly5dePz4sWok6790dHRYu3Yt+vr61KxZk7lz5zJ58mTmzZuHhkaZX8dDCFEMZsbaAMQnZartT0jKxMyk4H8+bSx16NLKnK1/3OOXXXG4VNZjzAA7MjNzOHA0AYBvNtxi7OCKrF/sRmZmDjk5OSxbd5Pzlx6V2P0IIcSb5IUmpZw9e5aDBw/mO28hKioKFxcXIiMjmTlzJiEhIdy7d081QhMTE0OtWrUICwujXr16qgQnP05OTqoEB8DW1pa4uDggd/Th0aNHeZKX9PR06tWrp7bPw8OjyPc2ceJERowYwfr162nbti29e/ematWqRT4/P09GkP79C/STxOyJojxTIM9I1L+fyfNydHRUJSFPYklOTsbCwkKtXWpqap6Swyfu3LnDZ599RlBQEHFxcWRlZfHo0SNiYmKKHEdSUhK3bt2iefPmavubN2+ep1Tu38/B1tYWgLi4OKpXr87YsWP58MMP2bt3L23btqVXr155nltB5zs4OOQbW506ddDXf/oNbtOmTUlOTub69es4Ojrme05aWhppaWlq+7Ky0tHUfHVznoQQhWvZxJRPBtmpPs9aeu25+lEoIDI6lXVb7gBwJeYxjhV16dzSQpXkvNPGgupV9Zm9LJq4+xnUcjHgo/fteJCQQdiFlBe+FyFE+VNeR1xKygslOcnJyXTr1o2FCxfmOfbkF8Zu3brh6OjI6tWrsbOzIzs7m1q1aqnmMejp6eU597+0tbXVPisUCrVyN4Bdu3ZRsWJFtXZPRh+eMDAwKOKd5c7HGDBgALt27WLPnj3MmjWLjRs30qNHjwLPUSgU5Pznb2BGRkaRrwlFe6bw7GfyvP77fJKTk7G1tSUoKChP24JWlxs8eDD3799n2bJlODo6olQqadq0aYnNW/n3c1AoFACq5zBixAg6dOjArl272Lt3Lz4+Pvj5+fHJJ58U6fyXxcfHJ09JW7W6Y3Cu99FLvY4Q4sWEhCURceXpSIq2Vu7PBDNjLeITn47mmBprcSXmcYH9xCdkcv2W+hcb12+l0byBCQA62goG97Lm85UxhP6dW54WfeMxVR106dnBUpIcIYR4CYqV5Ojo6JCV9XR1mPr167N582acnJzyXans/v37REREsHr1alq0aAGQZ8J/7dq1+f7773nw4MEzR3MKUqNGDZRKJTExMWqlaS+Di4sLLi4uTJgwgf79++Pv70+PHj3yPIcnLC0tiY2NVX2OjIzk0aOn/2C6ubmxfv16tXKo48ePq/VR2DMtKm1t7XxjLI769etz+/ZttLS0irR4AUBwcDBff/01nTt3BuD69etqiyYUJTZjY2Ps7OwIDg5W+zMNDg6mUaNGxboHe3t7xowZw5gxY5g2bRqrV69WS3KK6+zZs6SmpqqS8+PHj2NoaIi9vX2B50ybNo2JEyeq7ev9SWQBrYUQpSX1cTapj9W/kHmQkEGdGoZcuZ6b1OjpauBaRZ9dB/Oflwhw4fIjKtqof8lW0UZJ3P3cvjU1FWhraeT5UiwrOwcNxcu4EyFEeSQvAy2eYk0icHJyIiQkhOjoaO7du8fHH3/MgwcP6N+/P6GhoURFRfHHH38wdOhQsrKyMDMzw8LCgu+++47Lly/z559/5vllr3///tjY2NC9e3eCg4O5cuUKmzdvVlsl61mMjIzw9vZmwoQJrFu3jqioKE6fPs2KFStYt25dcW5PJTU1FS8vL4KCgrh27RrBwcGEhobi5uameg7JyckcOHCAe/fuqRKZ1q1bs3LlSs6cOcPJkycZM2aM2kjBgAEDUCgUjBw5kgsXLrB79258fX3Vrl3YMy0qJycnDhw4wO3bt4mPj3+u59C2bVuaNm1K9+7d2bt3L9HR0Rw9epTp06dz8uTJfM9xdnZm/fr1hIeHExISwsCBA/OM1hUltsmTJ7Nw4UJ++eUXIiIimDp1KmFhYYwbN67I8Y8fP54//viDq1evcvr0aQ4ePKj6M3xe6enpDB8+XPXnN2vWLLy8vJ45H0epVGJsbKy2SamaEK+Hbfvu0a+rFY3rGuFUUYn3iErcT8jk2OkkVZv53pXp2vppWe/WvfeoXkWfPl0ssbXSoWVjEzp5mrPzz9zEKPVxNn9fTGZYb1vcXQ2wrqBN2+amtGlmxtF/9SuEEOL5FSvJ8fb2RlNTkxo1amBpaUl6ejrBwcFkZWXRvn173N3dGT9+PKampmhoaKChocHGjRs5deoUtWrVYsKECXz55Zdqfero6LB3716srKzo3Lkz7u7uLFiwAE1NzSLHNW/ePGbMmIGPjw9ubm507NiRXbt2Ubly5eLcnoqmpib3799n0KBBuLi40KdPHzp16qQqOWrWrBljxoyhb9++WFpasmjRIgD8/Pywt7enRYsWDBgwAG9vb7X5G4aGhuzYsYNz585Rr149pk+fnqcs7ckIRkHPtKj8/PzYt28f9vb2eeYmFZVCoWD37t28/fbbDB06FBcXF/r168e1a9ewtrbO95w1a9YQHx9P/fr1+eCDDxg7dixWVlbFjm3s2LFMnDiRSZMm4e7uTmBgINu3b1dbAKIwWVlZfPzxx6q/Ey4uLnz99ddFfwD5aNOmDc7Ozrz99tv07duXd955R235biFE+bJpzz12HLjHJ4MrsnRmNXR1NZm5+KraO3JsrXQwMXr6b1ZkdCqff3WNlo1N+WaeM/26WbHq51sEHU9QtVn47XUiox8xeZQ9337uQu/Olvyw5Q67gwoeIRJCvNlycnJKbCuPFDnl9c6EeMmGDBlCQkJCnnchPY/Ow869eEBCCCGEeKV2r3UvtWuv2FVyv7J/0qX81crKmrdCCCGEEEKIcuWNTXJq1qyJoaFhvtuGDRtKO7yX7k27XyGEEEKI8iQ7u+S28uiFlpB+ne3evbvA5Z0Lmm/yOnvT7rckBAQElHYIQgghhBCiCN7YJKegFzeWV2/a/QohhBBClCcyi7543thyNSGEEEIIIUT59MaO5AghhBBCCPG6kJeBFo+M5AghhBBCCCHKFRnJEaIUZKSll3YIQgghhHiNyJyc4pEkRwghhBBCiDIup0Tr1eRloEIIIYQQQghRqAcPHjBw4ECMjY0xNTVl+PDhJCcnF+ncnJwcOnXqhEKhYNu2bcW+tiQ5QgghhBBClHHZOSW3lZSBAwfyzz//sG/fPnbu3Mnhw4cZNWpUkc5dunQpCsXzjzBJkvOGa9myJePHjy+RvqOjo1EoFISFhZVI/6+Kk5MTS5cuLe0whBBCCCFeG+Hh4QQGBvL999/TuHFj3nrrLVasWMHGjRu5devWM88NCwvDz8+PtWvXPvf1ZU6OKDH29vbExsZSoUKF0g5FCCFeyOBetnRqZYmhgSb/XEpm+doYbt5JK7D9+qW1sLFU5tm/fV8cKwKuA9C5VQVaNzOnWmV9DPQ06T4yjJRHWSV2D0KI11tJLjyQlpZGWpr6zzSlUolSmffnWFEdO3YMU1NTPDw8VPvatm2LhoYGISEh9OjRI9/zHj16xIABA/jqq6+wsbF57uvLSI4oMZqamtjY2KClJbm0EOL11berNd07WLHM/xqfzLzI47RsfKY6o61dcBmF14yL9PnorGqbMv8SAIdC4lVtlEoNQv9O5OffY0v8HoQQ4ll8fHwwMTFR23x8fF6oz9u3b2NlZaW2T0tLC3Nzc27fvl3geRMmTKBZs2a8++67L3R9SXIEmZmZeHl5YWJiQoUKFZgxYwY5//91wfr16/Hw8MDIyAgbGxsGDBhAXFyc6tz4+HgGDhyIpaUlenp6ODs74+/vD+RfrvbPP//QtWtXjI2NMTIyokWLFkRFRRUa45AhQ+jevTu+vr7Y2tpiYWHBxx9/TEZGhqpNWloa3t7eVKxYEQMDAxo3bkxQUJBaP0eOHKFFixbo6elhb2/P2LFjSUlJUR2Pi4ujW7du6OnpUblyZTZs2KB2fk5ODrNnz8bBwQGlUomdnR1jx44t8rMWQrx+enS0ZsO22xw7lcjV66ks/OYqFqbaNG9gWuA5iQ8ziU98ujWpZ8LN24/5O/zphNutgXH8suMO4ZdTCuxHCCGeyM7OKbFt2rRpJCYmqm3Tpk3LN46pU6eiUCieuV28ePG57nH79u38+eefL2WagHzFLli3bh3Dhw/nxIkTnDx5klGjRuHg4MDIkSPJyMhg3rx5uLq6EhcXx8SJExkyZAi7d+8GYMaMGVy4cIE9e/ZQoUIFLl++TGpqar7XuXnzJm+//TYtW7bkzz//xNjYmODgYDIzM4sU58GDB7G1teXgwYNcvnyZvn37UrduXUaOHAmAl5cXFy5cYOPGjdjZ2bF161Y6duzIuXPncHZ2Jioqio4dO/L555+zdu1a7t69i5eXF15eXqrEbMiQIdy6dYuDBw+ira3N2LFj1ZK6zZs3s2TJEjZu3EjNmjW5ffs2Z8+efZHHL4Qow2wsdbAw0+bMP0mqfY9Ss7kYlUINZwOCjsc/4+xcWpoK2rxlwebdd0oyVCGEeG7FKU2bNGkSQ4YMeWabKlWqYGNjo/Y7FOR+sf7gwYMCy9D+/PNPoqKiMDU1Vdvfq1cvWrRokefL62eRJEdgb2/PkiVLUCgUuLq6cu7cOZYsWcLIkSMZNmyYql2VKlVYvnw5DRs2JDk5GUNDQ2JiYqhXr56q3tLJyanA63z11VeYmJiwceNGtLW1AXBxcSlynGZmZqxcuRJNTU2qV69Oly5dOHDgACNHjiQmJgZ/f39iYmKws7MDwNvbm8DAQPz9/Zk/fz4+Pj4MHDhQtdCCs7Mzy5cvx9PTk2+++YaYmBj27NnDiRMnaNiwIQBr1qzBzc1NFUNMTAw2Nja0bdsWbW1tHBwcaNSoUZHvQQjxejE3zf1ZFZ+YobY/PjEDs/8/VphmHqYY6muy9/D9lx6fEOLNUVZeBmppaYmlpWWh7Zo2bUpCQgKnTp2iQYMGQG4Sk52dTePGjfM9Z+rUqYwYMUJtn7u7O0uWLKFbt27FilOSHEGTJk3Uluhr2rQpfn5+ZGVlERYWxuzZszl79izx8fFkZ2cDub/s16hRgw8//JBevXpx+vRp2rdvT/fu3WnWrFm+1wkLC6NFixaqBKe4atasiaampuqzra0t586dA+DcuXNkZWXlSZrS0tKwsLAA4OzZs/z9999qJWg5OTlkZ2dz9epVLl26hJaWlup/RIDq1aurfZvQu3dvli5dSpUqVejYsSOdO3emW7duz5x3lN9kvuysdDQ0dYr/EIQQJap1M3PGD3dQff7sy8sv3GenlhacOJvI/YSMwhsLIUQBykqSU1Rubm507NiRkSNH8u2335KRkYGXlxf9+vVTfSF98+ZN2rRpww8//ECjRo2wsbHJd5THwcGBypUrF+v6kuSIAj1+/JgOHTrQoUMHNmzYgKWlJTExMXTo0IH09HQAOnXqxLVr19i9ezf79u2jTZs2fPzxx/j6+ubpT09P74Xi+W9ypFAoVElXcnIympqanDp1Si0RAjA0NFS1GT16dL5zaBwcHLh06VKhMdjb2xMREcH+/fvZt28fH330EV9++SWHDh0qMHnz8fFhzpw5avsq1xpJ1dqjC72eEOLVOnY6gYtRT+fIaGvlfgFkZqLNg4SnpbVmJtpEXXtUaH9WFXSoV8uYOUsLn3sohBDlzYYNG/Dy8qJNmzZoaGjQq1cvli9frjqekZFBREQEjx4V/vO0uCTJEYSEhKh9Pn78OM7Ozly8eJH79++zYMEC7O3tATh58mSe8y0tLRk8eDCDBw+mRYsWTJ48Od8kp3bt2qxbt46MjIznHs0pSL169cjKyiIuLo4WLVrk26Z+/fpcuHCBatWq5Xu8evXqZGZmcurUKVW5WkREBAkJCWrt9PT06NatG926dePjjz+mevXqnDt3jvr16+fb77Rp05g4caLavh6j/inmHQohXoXUx9mkPlYfeb0fn0G9mkZEXcudb6ivp0H1qgbs2H+30P46vG1BQmImIWcSSyReIcSbI/t1G8oBzM3N+emnnwo87uTkpFrsqiCFHS+IrK4miImJYeLEiURERPDzzz+zYsUKxo0bh4ODAzo6OqxYsYIrV66wfft25s2bp3buzJkz+f3337l8+TL//PMPO3fuVJvD8m9eXl4kJSXRr18/Tp48SWRkJOvXryciIuKF78HFxYWBAwcyaNAgtmzZwtWrVzlx4gQ+Pj7s2rULgE8//ZSjR4/i5eVFWFgYkZGR/P7773h5eQHg6upKx44dGT16NCEhIZw6dYoRI0aojUAFBASwZs0azp8/z5UrV/jxxx/R09PD0dGxwNiUSiXGxsZqm5SqCfH62Bp4hwHdbWla3wQne12mjKnM/YQMgk8lqNosmubMu+3Ua9QVCujgacG+v+7z/4POasxMtKjqqEdF69zJvpXt9ajqqIeRgWbexkIIIYpFRnIEgwYNIjU1lUaNGqGpqcm4ceMYNWoUCoWCgIAA/ve//7F8+XLq16+Pr68v77zzjupcHR0dpk2bRnR0NHp6erRo0YKNGzfmex0LCwv+/PNPJk+ejKenJ5qamtStW5fmzZu/lPvw9/fn888/Z9KkSdy8eZMKFSrQpEkTunbtCuSOJB06dIjp06fTokULcnJyqFq1Kn379lXrY8SIEXh6emJtbc3nn3/OjBkzVMdNTU1ZsGABEydOJCsrC3d3d3bs2KGa9yOEKH9+2XkHXaUG44c7YqivyflLyUxbGElGxtNvF22tlRgbqf+TWr+WEdYVlAQeupdvv13bWDKol53q85KZrgB8uSpaFikQQuSRk8+XJaJgipznHQMSQjy3dgNPlXYIQgghhCimfRsaFN6ohMzdULRXbjyPmQPL37hH+bsjIYQQQgghyhkZlygemZMjygRDQ8MCt7/++qu0wxNCCCGEEK8RGckRZUJYWFiBxypWrPjqAhFCCCGEKIPyW8BEFEySHFEmFLSssxBCCCGEkHK14pJyNSGEEEIIIUS5IiM5QgghhBBClHHZMpBTLDKSI4QQQgghhChXZCRHiFKQI1/HCCGEEKIY5HeH4pGRHCGEEEIIIUS5IiM5QgghhBBClHGyuFrxyEiOEEIIIYQQolyRJEe8EW7fvk27du0wMDDA1NS0tMMRQgghhCiW7OycEtvKIylXE2+EJUuWEBsbS1hYGCYmJkU6Z/bs2Wzbto2wsLCSDU4IUeYNfs+Ozq0rYGigxT8RySxbe42bt9MKbP/jcndsLJV59v++N44V/jEAdGldgdbNLajmpI+BvibvDj9DyqOsErsHIYR4k0iSI94IUVFRNGjQAGdn59IORQjxmunbzYYeHa1Y9E00sXfTGNrbjgVTXRg2+TwZGfl/A/rx9HA0/lUrUdlej0XTXTl8PF61T6nUIPRsIqFnExnRv1JJ34YQ4jWXI5NyikXK1cRrY9OmTbi7u6Onp4eFhQVt27YlJSWF0NBQ2rVrR4UKFTAxMcHT05PTp0+rznNycmLz5s388MMPKBQKhgwZAkBCQgIjRozA0tISY2NjWrduzdmzZwEICAhgzpw5nD17FoVCgUKhICAggGHDhtG1a1e1uDIyMrCysmLNmjWv7FkIIV6dnp2s2LA1lqOnErgak8rCr6OxMNOmuYdpgeckPswkPvHp1ri+KTdvP+Zs+ENVmy174ti4/TbhkSmv4C6EEK+7nOyS28ojGckRr4XY2Fj69+/PokWL6NGjBw8fPuSvv/4iJyeHhw8fMnjwYFasWEFOTg5+fn507tyZyMhIjIyMCA0NZdCgQRgbG7Ns2TL09PQA6N27N3p6euzZswcTExNWrVpFmzZtuHTpEn379uX8+fMEBgayf/9+AExMTHBxceHtt98mNjYWW1tbAHbu3MmjR4/o27dvqT0fIUTJsLXSwcJMh9Pnk1T7UlKzCI9KoYazIUHH4p9xdi4tTQVt3zJn0647JRmqEEKIf5EkR7wWYmNjyczMpGfPnjg6OgLg7u4OQOvWrdXafvfdd5iamnLo0CG6du2KpaUlSqUSPT09bGxsADhy5AgnTpwgLi4OpTK3bt7X15dt27axadMmRo0ahaGhIVpaWqpzAJo1a4arqyvr169nypQpAPj7+9O7d28MDQ1L/DkIIV4tMxNtAOITM9X2JyRmYG6qXaQ+mjc0xVBfi72H77/0+IQQb45sKVcrFilXE6+FOnXq0KZNG9zd3enduzerV68mPj73G9Q7d+4wcuRInJ2dMTExwdjYmOTkZGJiYgrs7+zZsyQnJ2NhYYGhoaFqu3r1KlFRUc+MZcSIEfj7+6uuvWfPHoYNG1Zg+7S0NJKSktS27Kz053gKQoiS1rq5OTv866k2LS3FC/fZqWUFToQlcj8+4yVEKIQQoihkJEe8FjQ1Ndm3bx9Hjx5l7969rFixgunTpxMSEsKHH37I/fv3WbZsGY6OjiiVSpo2bUp6esGJRHJyMra2tgQFBeU5VtgS04MGDWLq1KkcO3aMo0ePUrlyZVq0aFFgex8fH+bMmaO2r3LNkVRxH/XM6wghXr1jpxK4ePnpHBlt7dwkx8xEiwcJT5MUUxNtoqIfFdqfVQUd6rkbM2fxs788EUKIwsjCA8UjSY54bSgUCpo3b07z5s2ZOXMmjo6ObN26leDgYL7++ms6d+4MwPXr17l3794z+6pfvz63b99GS0sLJyenfNvo6OiQlZV3OVcLCwu6d++Ov78/x44dY+jQoc+81rRp05g4caLavu4jzj/zHCFE6Uh9nE3qY/Wloe/Hp1OvljFR11IB0NfTwK2qATv2xRXaX0fPCiQkZnD8TEJJhCuEEKIAkuSI10JISAgHDhygffv2WFlZERISwt27d3Fzc8PZ2Zn169fj4eFBUlISkydPVi0uUJC2bdvStGlTunfvzqJFi3BxceHWrVvs2rWLHj164OHhgZOTE1evXiUsLIxKlSphZGSkmr8zYsQIunbtSlZWFoMHD37mtZRKpeq8JzQ0dV7sgQghXpkte+IY2N2Wm7cfczsunSG97bgfn0HwyQRVm0XTXQgOjef3vXdV+xQK6OBpwb7D98nOZ/UiMxMtzE21sbPJ/flQ2V6P1MdZxN1L52GKvC9HCKGuvL60s6RIkiNeC8bGxhw+fJilS5eSlJSEo6Mjfn5+dOrUCRsbG0aNGkX9+vWxt7dn/vz5eHt7P7M/hULB7t27mT59OkOHDuXu3bvY2Njw9ttvY21tDUCvXr3YsmULrVq1IiEhAX9/f9Xy023btsXW1paaNWtiZ2dX0rcvhChFv+y4ja5SgwkjnDDU1+R8RDJTF1xSe0eOnbUSEyP1hQjq1zLG2lLJnqD8R5a7tbVi0HtPf34snV0dgEXfXJVFCoQQ4gUpcqTAT4hiS05OpmLFivj7+9OzZ89in9+2/8kSiEoIIYQQJWn/zx6ldu3xK5JLrO+ln5S/FWJlJEeIYsjOzubevXv4+flhamrKO++8U9ohCSGEEOINkCPlasUiSY4QxRATE0PlypWpVKkSAQEBaGnJ/0JCCCGEEGWN/IYmRDE4OTnJEo5CCCGEeOXkZaDFIy8DFUIIIYQQQpQrMpIjhBBCCCFEGSdzcopHRnKEEEIIIYQQ5YqM5AghhBBCCFHGyUhO8UiSI0QpyMqSt5kLIYQQQpQUSXKEEEIIIYQo42Qgp3gkyRFCCCGEEKKMk3K14pGFB4QQQgghhBDliozkCCGEEEIIUcbJy8iLR0ZyXpCTkxNLly4t8esoFAq2bdtW4td5Udu2baNatWpoamoyfvz40g5HCCGEEEK8gWQk5zURGxuLmZlZaYdRqNGjRzN06FDGjh2LkZFRaYcjhBAvxdA+FenSxgpDAy3OX3zIku+vcvN2WoHtf15ZFxsrZZ792/64w7I10RgZaDKkTyU86phgXUFJQlIGwaHxrN14g5RUWX1RCJFXtszJKRZJcl4TNjY2pR3CM2VkZJCWlkZcXBwdOnTAzs7uuftKT09HR0fnJUYnhBDPr9+7tvTsZMOCr64QG/eYYX3tWTS9OkMm/k1GRv6/dIyZdh4NDYXqc2UHPfxmuBF07D4AFuY6VDDX4dv1MVy7kYp1BSUTRjphYabD7MWRr+S+hBCiPCtX5WqBgYG89dZbmJqaYmFhQdeuXYmKilIdv3HjBv3798fc3BwDAwM8PDwICQkBICoqinfffRdra2sMDQ1p2LAh+/fvV+s/Li6Obt26oaenR+XKldmwYUOeGBISEhgxYgSWlpYYGxvTunVrzp49qzo+e/Zs6taty9q1a3FwcMDQ0JCPPvqIrKwsFi1ahI2NDVZWVnzxxRdq/f63XO1Z9/IsT66/atUq7O3t0dfXp0+fPiQmJqq1+/7773Fzc0NXV5fq1avz9ddfq45FR0ejUCj45Zdf8PT0RFdXlw0bNqhGblq3bo1CoSAoKAiAzZs3U7NmTZRKJU5OTvj5+aldy8nJiXnz5jFo0CCMjY0ZNWoUAQEBmJqasnPnTlxdXdHX1+e9997j0aNHrFu3DicnJ8zMzBg7dqzaO2fWr1+Ph4cHRkZG2NjYMGDAAOLi4lTHg4KCUCgUHDhwAA8PD/T19WnWrBkRERFqMe3YsYOGDRuiq6tLhQoV6NGjh+pYWloa3t7eVKxYEQMDAxo3bqy6VyFE+fNeZxvWb7lJ8Ml4rsSk4rMyigpmOrzVsODR9cSHmcQnZqi2pvVNuXn7MWcvPAQg+noqs/wiOXYqgVt30jjzTxJrNt6gaQNTNMrVv8xCiJclJyenxLbyqFz9KE1JSWHixImcPHmSAwcOoKGhQY8ePcjOziY5ORlPT09u3rzJ9u3bOXv2LFOmTCE7OxuA5ORkOnfuzIEDBzhz5gwdO3akW7duxMTEqPofMmQI169f5+DBg2zatImvv/5a7RdogN69exMXF8eePXs4deoU9evXp02bNjx48EDVJioqij179hAYGMjPP//MmjVr6NKlCzdu3ODQoUMsXLiQzz77rMCkpbB7Kczly5f59ddf2bFjB4GBgZw5c4aPPvpIdXzDhg3MnDmTL774gvDwcObPn8+MGTNYt26dWj9Tp05l3LhxhIeH06pVK1WisHnzZmJjY2nWrBmnTp2iT58+9OvXj3PnzjF79mxmzJhBQECAWl++vr7UqVOHM2fOMGPGDAAePXrE8uXL2bhxI4GBgQQFBdGjRw92797N7t27Wb9+PatWrWLTpk2qfjIyMpg3bx5nz55l27ZtREdHM2TIkDzPYPr06fj5+XHy5Em0tLQYNmyY6tiuXbvo0aMHnTt35syZMxw4cIBGjRqpjnt5eXHs2DE2btzI33//Te/evenYsSORkfLtqxDlja2VEgszHU79naTal5KaRfjlZGq6FK0kV0tTQbsWFdhz8O4z2xnoa/IoNYsi/igXQgjxDOWqXK1Xr15qn9euXYulpSUXLlzg6NGj3L17l9DQUMzNzQGoVq2aqm2dOnWoU6eO6vO8efPYunUr27dvx8vLi0uXLrFnzx5OnDhBw4YNAVizZg1ubm6qc44cOcKJEyeIi4tDqcytxfb19WXbtm1s2rSJUaNGAZCdnc3atWsxMjKiRo0aqgRh9+7daGho4OrqysKFCzl48CCNGzfOc58//fTTM++lMI8fP+aHH36gYsWKAKxYsYIuXbrg5+eHjY0Ns2bNws/Pj549ewJQuXJlLly4wKpVqxg8eLCqn/Hjx6vaQO4oFoC5ubmqvG7x4sW0adNGlbi4uLhw4cIFvvzyS7Xko3Xr1kyaNEn1+a+//iIjI4NvvvmGqlWrAvDee++xfv167ty5g6GhoerZHTx4kL59+wKoJStVqlRh+fLlNGzYkOTkZAwNDVXHvvjiCzw9PYHcZK1Lly48fvwYXV1dvvjiC/r168ecOXNU7Z/83YiJicHf35+YmBhVSZ63tzeBgYH4+/szf/78PM87LS2NtDT12v3srHQ0NKUkT4iyztxUG4D4xAy1/fGJGapjhXmrkRmGBloEBhWc5BgbafFBr4rs3B9XYBshxJtN3pNTPOVqJCcyMpL+/ftTpUoVjI2NcXJyAnJ/MQ0LC6NevXqqpOC/kpOT8fb2xs3NDVNTUwwNDQkPD1eN5ISHh6OlpUWDBg1U51SvXh1TU1PV57Nnz5KcnIyFhQWGhoaq7erVq2plc05OTmqT8q2tralRowYa/6pRsLa2zjNK9ERh91IYBwcHVYID0LRpU7Kzs4mIiCAlJYWoqCiGDx+udg+ff/652j0AeHh4FHqt8PBwmjdvrravefPmREZGqpWZ5deXvr6+KsGB3Gfi5OSklqz89zmdOnWKbt264eDggJGRkSqR+feIHEDt2rVV/21rawug6icsLIw2bdrkez/nzp0jKysLFxcXtedz6NChPM/nCR8fH0xMTNS2axfX5dtWCFG62r5lwe4fPFSblqai8JMK0bmVJSFhCdyPz8j3uL6eJgumunLtRioBv9184esJIcqnnOycEtvKo3I1ktOtWzccHR1ZvXo1dnZ2ZGdnU6tWLdLT09HT03vmud7e3uzbtw9fX1+qVauGnp4e7733Hunp6UW+fnJyMra2tvnOz/h3MqStrf7tn0KhyHdfQeVnhd3Li0hOTgZg9erVeUaRNDU11T4bGBi8tOvm11dxn1NKSgodOnSgQ4cObNiwAUtLS2JiYujQoUOeP8d/96NQ5P4S86SfZz3f5ORkNDU1OXXqVJ7n8e/k69+mTZvGxIkT1fZ1G3o237ZCiNIVfDKeC5HJqs862rlfPpmZaPMg4WmSYmaizeXoR4X2Z11Bh/q1TZjlm385q56uBgv/58qj1Cxm+F4iK6t8/rIhhBCvWrlJcu7fv09ERASrV6+mRYsWQG752BO1a9fm+++/58GDB/mOgAQHBzNkyBDVBPPk5GSio6NVx6tXr05mZianTp1SlatFRESoSrQA6tevz+3bt9HS0lKNIpWEwu6lMDExMdy6dUtVbnX8+HFVmZy1tTV2dnZcuXKFgQMHvnCsbm5uBAcHq+0LDg7GxcUlT5Lwoi5evMj9+/dZsGAB9vb2AJw8ebLY/dSuXZsDBw4wdOjQPMfq1atHVlYWcXFxqr9nhVEqlaryxSekVE2Isin1cTapj9XLS+/Hp1Pf3Zioa7lJjb6eJm7VDPl9751C++vYypKExAyOnY7Pc0xfT5NF013JyMhh+qJLBa7UJoQQANnldIGAklJuytXMzMywsLDgu+++4/Lly/z5559q3573798fGxsbunfvTnBwMFeuXGHz5s0cO3YMAGdnZ7Zs2UJYWBhnz55lwIABaiMprq6udOzYkdGjRxMSEsKpU6cYMWKE2rf+bdu2pWnTpnTv3p29e/cSHR3N0aNHmT59+nP9sl2Qwu6lMLq6ugwePJizZ8/y119/MXbsWPr06aOaRzNnzhx8fHxYvnw5ly5d4ty5c/j7+7N48eJixzpp0iQOHDjAvHnzuHTpEuvWrWPlypV4e3sXu6/CODg4oKOjw4oVK7hy5Qrbt29n3rx5xe5n1qxZ/Pzzz8yaNYvw8HDOnTvHwoULgdw5RQMHDmTQoEFs2bKFq1evcuLECXx8fNi1a9fLviUhRBmwafdtPuhZkWYNTKlsr8c0ryrci0/nSOjTxMVvRnW6d7BWO0+hgI4tLfnj0L08iwno62ny5fTq6Co1+fLbK+jraWJmoo2ZiTYaL14hJ4QQb7xyk+RoaGiwceNGTp06Ra1atZgwYQJffvml6riOjg579+7FysqKzp074+7uzoIFC1SjCYsXL8bMzIxmzZrRrVs3OnToQP369dWu4e/vj52dHZ6envTs2ZNRo0ZhZWWlOq5QKNi9ezdvv/02Q4cOxcXFhX79+nHt2jWsrdX/8XsRhd1LYapVq0bPnj3p3Lkz7du3p3bt2mpLRI8YMYLvv/8ef39/3N3d8fT0JCAggMqVKxc71vr16/Prr7+yceNGatWqxcyZM5k7d26+K569KEtLSwICAvjtt9+oUaMGCxYswNfXt9j9tGzZkt9++43t27dTt25dWrduzYkTJ1TH/f39GTRoEJMmTcLV1ZXu3bsTGhqKg4PDy7wdIUQZsfH3WLYG3mbS6Mp861MLPaUmn86PUBt5sbPWxcRYvTiigbsJNpbKfFdVc66sTw0XQ6o66rNhRV22rK6v2iwryEivECIvmZNTPIqc8ro4tsjX7Nmz2bZtG2FhYaUdyhutVZ/C32kkhBBCiLLl4K95V719VQbPvF1ifa+bW7ZfOv88ys1IjhBCCCGEEOXV6/gy0AcPHjBw4ECMjY0xNTVl+PDhqkWunuXYsWO0bt0aAwMDjI2Nefvtt0lNTS3WtSXJKWdq1qyptrTxv7cNGzaUdnhCCCGEEOINMXDgQP755x/27dvHzp07OXz4sOq9kQU5duwYHTt2pH379pw4cYLQ0FC8vLzUXrVSFFKuVs5cu3aNjIz838VgbW2t9n4eUXqkXE0IIYR4/ZRmudr702+VWN8/fmH30vsMDw+nRo0ahIaGqt6HGBgYSOfOnblx44Zqld//atKkCe3atXuuxaP+rdwsIS1yOTo6lnYIQgghhBDiJSvJBQLS0tJIS1NfPj+/V2AUx7FjxzA1NVV74Xvbtm3R0NAgJCRE9dqWf4uLiyMkJISBAwfSrFkzoqKiqF69Ol988QVvvfVWsa4v5WpCCCGEEEK8wXx8fDAxMVHbfHx8XqjP27dvq61CDKClpYW5uTm3b+e/iMKVK1eA3IWyRo4cSWBgIPXr16dNmzZERub/UuWCSJIjhBBCCCFEGVeSCw9MmzaNxMREtW3atGn5xjF16lQUCsUzt4sXLz7XPT55R+Xo0aMZOnQo9erVY8mSJbi6urJ27dpi9SXlakKUgsy09NIOQQghhBACKF5p2qRJkwp932GVKlWwsbEhLi5ObX9mZiYPHjxQvYD+v2xtbQGoUaOG2n43NzdiYmKKFN8TkuQIIYQQQghRxuX8/yhHabO0tMTS0rLQdk2bNiUhIYFTp07RoEEDAP7880+ys7Np3Dj/BRycnJyws7MjIiJCbf+lS5fo1KlTseKUcjUhhBBCCCHES+Xm5kbHjh0ZOXIkJ06cIDg4GC8vL/r166daWe3mzZtUr16dEydOAKBQKJg8eTLLly9n06ZNXL58mRkzZnDx4kWGDx9erOvLSI4QQgghhBBlXHYJrq5WUjZs2ICXlxdt2rRBQ0ODXr16sXz5ctXxjIwMIiIiePTokWrf+PHjefz4MRMmTODBgwfUqVOHffv2UbVq1WJdW96TI0QpaPHuX6UdghBCCCGK6a/fW5Tatft6Xyuxvn/xLX+vIJFytTfckCFD6N69e2mHUSr+e+8tW7Zk/PjxpRaPEEIIIURBSnJ1tfJIytWE+H9btmxBW1tb9dnJyYnx48dL4iOEYPgAR7q1s8HQQJNzF5Pw++YyN2IfF9j+1+8aYmutm2f/lt23WLIqCoDln7tTz91U7fi2wFj8vrn8UmMXQpQPJfky0PJIkhwh/p+5uXlphyCEKIMG9KxEry52zF8WQeydxwwf6ITf7Fp84HWK9Iz8f+kY5R2Gxr9qJSo7GrB0rjsHg++ptdv+RyxrfnpagvI4rWysniSEEK87KVd7Q2zatAl3d3f09PSwsLCgbdu2pKSk5GmXnZ2Nj48PlStXRk9Pjzp16rBp0ya1NufPn6dTp04YGhpibW3NBx98wL17T//hbtmyJV5eXnh5eWFiYkKFChWYMWNGkYdD4+Li6NatG3p6elSuXJkNGzbg5OTE0qVLAYiOjkahUBAWFqY6JyEhAYVCQVBQEABZWVkMHz5cdR+urq4sW7bsmdf9d7lay5YtuXbtGhMmTFC92ColJQVjY+M8z2Pbtm0YGBjw8OHDIt2fEOL10qdbRX74LYYjJx4Qde0RXyyNwMJcSYsmFQo8JyEpgwcJT7dmHubciE0l7HyiWrvHadlq7R6lZpX07QghXlM52TkltpVHkuS8AWJjY+nfvz/Dhg0jPDycoKAgevbsmW/S4ePjww8//MC3337LP//8w4QJE3j//fc5dOgQkJtMtG7dmnr16nHy5EkCAwO5c+cOffr0Uetn3bp1aGlpceLECZYtW8bixYv5/vvvixTvkCFDuH79OgcPHmTTpk18/fXXeV4mVZjs7GwqVarEb7/9xoULF5g5cyb/+9//+PXXX4t0/pYtW6hUqRJz584lNjaW2NhYDAwM6NevH/7+/mpt/f39ee+99zAyMipWjEKIss/WWhcLcx1Onk1Q7Ut5lEX4pYfUdC3a//NaWgrat7Ri9/47eY6197Rix/omrFten9EfOKHUkX+WhRDiZZBytTdAbGwsmZmZ9OzZE0fH3NUz3N3d87RLS0tj/vz57N+/n6ZNmwK5b6w9cuQIq1atwtPTk5UrV1KvXj3mz5+vOm/t2rXY29tz6dIlXFxcALC3t2fJkiUoFApcXV05d+4cS5YsYeTIkc+M9dKlS+zZs4cTJ07QsGFDANasWYObm1ux7llbW5s5c+aoPleuXJljx47x66+/5knI8mNubo6mpiZGRkZqb+UdMWIEzZo1IzY2FltbW+Li4ti9ezf79+8vsK+0tDTS0tLU9mVnpaOhqVOsexJCvHoWZrnz9OIT0tX2P0hIx9ysaP8Pt2hsgaGBFrv/VE9y9h2+y52717n3IJ2qTgaMGVQZ+4p6fLYg/OUEL4QoV7JzpJy1OOQrozdAnTp1aNOmDe7u7vTu3ZvVq1cTHx+fp93ly5d59OgR7dq1w9DQULX98MMPREXlTpQ9e/YsBw8eVDtevXp1AFUbgCZNmqBQKFSfmzZtSmRkJFlZzy7FCA8PR0tLS/VmXIDq1atjampa7Pv+6quvaNCgAZaWlhgaGvLdd98RExNT7H7+rVGjRtSsWZN169YB8OOPP+Lo6Mjbb79d4Dk+Pj6YmJiobdcjf3yhOIQQJaOdpyV/bGym2rQ0X/yfya7tbAg59YD7D9QTpR17b3PiTAJXrj1i36G7fLE0As+mFbCzybtggRBCiOKRkZw3gKamJvv27ePo0aPs3buXFStWMH36dEJCQtTaJScnA7Br1y4qVqyodkypVKradOvWjYULF+a5jq2tbQndgTqN/5/N++9yu4yMDLU2GzduxNvbGz8/P5o2bYqRkRFffvllnnt+HiNGjOCrr75i6tSp+Pv7M3ToULWE7r+mTZvGxIkT1fZ1GhD6wnEIIV6+IycecCHitOqztnbuzxszUx3uxz/9OWNuqkPk1eRC+7O2VNKgtimfLbhQaNsLl3Ln9VWy1eXW7YJXbhNCvJnK69yZkiJJzhtCoVDQvHlzmjdvzsyZM3F0dGTr1q1qbWrUqIFSqSQmJgZPT898+6lfvz6bN2/GyckJLa2C//r8N5k4fvw4zs7OaGpqPjPO6tWrk5mZyalTp1TlahERESQkJKjaWFpaArllePXq1QNQW4QAIDg4mGbNmvHRRx+p9v17pKkodHR08h15ev/995kyZQrLly/nwoULDB48+Jn9KJVKVZL4hJSqCVE2paZmcfM/k//vP0inQW1TLl/NXaxFX08TNxcjtgXGFtpf5zbWJCRmcOzkg0LbOlc2VF1PCCHEi5FytTdASEgI8+fP5+TJk8TExLBlyxbu3r2bZ56LkZER3t7eTJgwgXXr1hEVFcXp06dZsWKFqjzr448/5sGDB/Tv35/Q0FCioqL4448/GDp0qFpCEBMTw8SJE4mIiODnn39mxYoVjBs3rtBYXV1d6dixI6NHjyYkJIRTp04xYsQI9PT0VG309PRo0qQJCxYsIDw8nEOHDvHZZ5+p9ePs7MzJkyf5448/uHTpEjNmzCA0tHijJ05OThw+fJibN2+qrR5nZmZGz549mTx5Mu3bt6dSpUrF6lcI8Xr5dcdNBvexp3kjc6o46vPZeBfuP0jjr+NPfy4snetOz87qo9kKRW6Ss+fgHbL+U0pvZ6PL4D72uFQ1xMZKSfNG5kwf70LY+USirj16FbclhHjNyOpqxSMjOW8AY2NjDh8+zNKlS0lKSsLR0RE/Pz86derEL7/8otZ23rx5WFpa4uPjw5UrVzA1NaV+/fr873//A8DOzo7g4GA+/fRT2rdvT1paGo6OjnTs2FFVRgYwaNAgUlNTadSoEZqamowbN45Ro0YVKV5/f39GjBiBp6cn1tbWfP7558yYMUOtzdq1axk+fDgNGjTA1dWVRYsW0b59e9Xx0aNHc+bMGfr27YtCoaB///589NFH7Nmzp8jPbe7cuYwePZqqVauSlpamVh43fPhwfvrpJ4YNG1bk/oQQr6efttxAT1eTyR85Y2igxbnwRLzn/KP2jhw7G11MjLXVzvOoY4qNlW6+q6plZmbjUceM3t0qoqurSdy9NA4du8e6X6+X+P0IIV5PRX0Vh8ilyJEnJl6yli1bUrduXdV7bV4GJycnxo8fr3qPTWlbv349EyZM4NatW+joFL/0rMW7f5VAVEIIIYQoSX/93qLUrv3uhxEl1vfv37iWWN+lRUZyhCiGR48eERsby4IFCxg9evRzJThCCCGEEMWVnS1LSBeHzMkRr9Rff/2ltvz0f7eybtGiRVSvXh0bGxumTZtW2uEIIYQQQoh8SLmaeKVSU1O5efNmgcerVav2CqMpPVKuJoQQQrx+SrNcrevIwpeif147V9cosb5Li5SriVdKT0/vjUlkhBBCCCFE6ZAkRwghhBBCiDIuJ0fm5BSHzMkRQgghhBBClCsykiNEKciRFVKEEEIIUQzl9aWdJUWSHCGEEEIIIco4SXKKR8rVhBBCCCGEEOWKjOQIIYQQQghRxmXLwgPFIiM5QgghhBBCiHJFkhzxwqKjo1EoFISFhan2BQcH4+7ujra2Nt27dy+12IQQQgghyoOc7JwS28ojKVcTJWLixInUrVuXPXv2YGhoWKLXGjJkCAkJCWzbtq1EryOEeHMNH+hEt/Y2GBlocS48Cd+vI7kRm1pg+9++b4yttW6e/Vt23WTxt5dVn2u6GjPqAydquBqTnZ1D5JVkJs46R3q6lKUIIcSLkCRHlIioqCjGjBlDpUqVSjsUIYR4IQN72fNe14p8sfQisXceM2KgE4vnuvP+R6GkZ+T/DejIiafR+FetRBVHA5Z+XoeDR+6q9tV0NcZvjjs/boph6XeXyczKwbmyYbn9VlUI8WLk9RPFI+VqQmXTpk24u7ujp6eHhYUFbdu2JSUlBYDvv/8eNzc3dHV1qV69Ol9//XW+fTwpXbt//z7Dhg1DoVAQEBBQ6LXPnz9Pp06dMDQ0xNramg8++IB79+4VGtvs2bNZt24dv//+OwqFAoVCQVBQEADXr1+nT58+mJqaYm5uzrvvvkt0dLTadZ91X0/u5ddff6VFixbo6enRsGFDLl26RGhoKB4eHhgaGtKpUyfu3r2LEKJ86v1ORX749RpHQu4TFZ3C50suYmGupEWTCgWek5CUwYOEp1uzhhbcuJXKmfOJqjZjR1Rl046b/LjpOldjHnH9Zip/HrlLRqYkOUII8aIkyREAxMbG0r9/f4YNG0Z4eDhBQUH07NmTnJwcNmzYwMyZM/niiy8IDw9n/vz5zJgxg3Xr1uXpx97entjYWIyNjVm6dCmxsbH07dv3mddOSEigdevW1KtXj5MnTxIYGMidO3fo06dPobF5e3vTp08fOnbsSGxsLLGxsTRr1oyMjAw6dOiAkZERf/31F8HBwRgaGtKxY0fS09MBinxfs2bN4rPPPuP06dNoaWkxYMAApkyZwrJly/jrr7+4fPkyM2fOfEl/EkKIssTOWpcK5kpCw+JV+1IeZXHhUhK1qhsXqQ8tLQXtW1mza/9t1T5TE21qVjcmPjGdbxbVZfsPTVnhU4faNYrWpxDizSNzcopHytUEkJtIZGZm0rNnTxwdHQFwd3cHcn/J9/Pzo2fPngBUrlyZCxcusGrVKgYPHqzWj6amJjY2NigUCkxMTLCxsSn02itXrqRevXrMBUlNwAAADNJJREFUnz9ftW/t2rXY29tz6dIlkpOTC4wNQE9Pj7S0NLVr/fjjj2RnZ/P999+jUCgA8Pf3x9TUlKCgINq3b1/k+/L29qZDhw4AjBs3jv79+3PgwAGaN28OwPDhw4s0WiWEeP2Ym+kAEJ+QobY/PiFddawwbzepgKGBFrsPPE1yKtrkztcZ1t+Jr9ZGEXk1hY6trVn6eR0GfXzymfN9hBBCFE6SHAFAnTp1aNOmDe7u7nTo0IH27dvz3nvvoaOjQ1RUFMOHD2fkyJGq9pmZmZiYmLyUa589e5aDBw/mu0BBVFQU7du3zzc2MzOzZ/Z5+fJljIyM1PY/fvyYqKgoUlJSinxftWvXVv23tbU1oJ5kWVtbExcXV2AsaWlppKWlqe3LzkpHQ7NovyAJIV6ddp5WTP7YRfV5ytxzL9xnl3Y2hJx6wP0H6ap9T758+T0wlt0H7gAQeSWZBrVN6dLOhlU/XH3h6wohypcceU9OsUiSI4DcEZh9+/Zx9OhR9u7dy4oVK5g+fTo7duwAYPXq1TRu3DjPOS9DcnIy3bp1Y+HChXmO2draFhhbSEgIlStXLrDPBg0asGHDhjzHLC0tSU5OBop2X9ra2qr/fvKLyX/3ZT9jMqCPjw9z5sxR22fvPBgH16EFniOEKB1HTtznwqWTqs862rlV3Wam2tyPf5qkmJnqcPlKcqH9WVsq8ahjxnSff9T2P+kr+nqK2v5rNx5hbal87viFEOVXdjktKyspkuQIFYVCQfPmzWnevDkzZ87E0dGR4OBg7OzsuHLlCgMHDiyR69avX5/Nmzfj5OSEllb+fyXzi23r1q1MnDgRHR0dsrKy8vT5yy+/YGVlhbFx3hp3ExOTEr+vJ6ZNm8bEiRPV9nXsF1Ki1xRCPJ/U1Cxupqr/PLn3IA2POmZcvpqbkOjraVLDxZhtu28V2l+XtjbEJ6ZzLPS+2v7YO4+5ez8Nh4r6avvt7fQ4fioeIYQQL0aSHAFASEgIBw4coH379lhZWRESEsLdu3dxc3Njzpw5jB07FhMTEzp27EhaWhonT54kPj4+zy/vz+Pjjz9m9erV9O/fnylTpmBubs7ly5fZuHEj33//PSdPniwwNgAnJyf++OMPIiIisLCwwMTEhIEDB/Lll1/y7rvvMnfuXCpVqsS1a9fYsmULU6ZMoVKlSiV+X08olUqUSvVvZqVUTYjXx2/bbzK4rwPXb6XmLiH9vhP3H6Tx1/GnK0Au/bw2h4/dY8uup4mPQgGd29oQ+OcdsvIZ7P1py3WGD3Di8tVkIq8m06m1DY6V9PlswYVXcVtCiNeMLCFdPJLkCACMjY05fPgwS5cuJSkpCUdHR/z8/OjUqRMA+vr6fPnll0yePBkDAwPc3d0ZP378S7m2nZ0dwcHBfPrpp7Rv3560tDQcHR3p2LEjGhoahcY2cuRIgoKC8PDwIDk5mYMHD9KyZUsOHz7Mp59+Ss+ePXn48CEVK1akTZs2qpGdESNGlOh9CSHKhw2br6Orq8kULxcMDbQ4dyGRSbPOqb0jp6KNHqbG2mrnedQ1w8ZKl137bv+3SyA3eVLqaPDJiKoYG2lz+WoyE2b+za3bj0v0foQQ4k2gyMnJkQI/IV6xt7odKu0QhBBCCFFMR3Z4ltq1PXseLbG+D21pVmJ9lxZ5T44QQgghhBCiXJEkR5S4MWPGYGhomO82ZsyY0g5PCCGEEKLMy8nJLrGtPJI5OaLEzZ07F29v73yP5bfymRBCCCGEEC9CkhxR4qysrLCysirtMIQQQgghXls58p6cYpEkRwghhBBCiDJOlpAuHpmTI4QQQgghhChXZAlpIYQQ4iVJS0vDx8eHadOm5XkJsBBCiFdHkhwhhBDiJUlKSsLExITExERZWEUIIUqRlKsJIYQQQgghyhVJcoQQQgghhBDliiQ5QgghhBBCiHJFkhwhhBDiJVEqlcyaNUsWHRBCiFImCw8IIYQQQgghyhUZyRFCCCGEEEKUK5LkCCGEEEIIIcoVSXKEEEIIIYQQ5YokOUIIIcQr5PR/7dxpSFR9H8bx71imk7ngUI4DObaZEkM4TBtGi0nYC6Ekt6QsssAMEcEMghaKFs2MkiAUK0gpM2whJW2xrMgoKoooywwjk4oMM8xKvF/EPeATPXfdT0/heH3gwDlzzv93fv95M1xzluBgdu/e/VvPOWvWLDIzM3/rOUVE/iSFHBERcRlLly5l/vz5f7oNERH5wxRyRERkwPn8+fOfbkFERP6PFHJERKTfqaiowGazYTQaMZlMREVFkZ2dzaFDhzh58iQGgwGDwUBdXR3Pnj3DYDBw9OhRZs6ciaenJ6WlpQAUFxcTFhaGp6cnoaGh7Nu3z3mOT58+sXr1agIDA/H09MRqtbJt2zYAent72bhxI0FBQXh4eGCxWMjIyPhXc3n37h2pqakMHz4cHx8fIiMjuXv3LgCNjY0YDAYePnzYZ0xBQQFjxoxxbt+/f5958+YxbNgwAgICWLx4MW/evPlX/YiIuILBf7oBERGRn/Hy5UuSkpLIzc1lwYIFvH//nvr6epYsWUJLSwsdHR0cOHAAAH9/f1pbWwFYu3Yt+fn5hIeHO4PO+vXrKSwsJDw8nNu3b7NixQq8vLxISUlhz549nDp1ivLycoKCgnj+/DnPnz8H4Pjx4xQUFHDkyBEmTJhAW1ubM5j8rLi4OIxGI9XV1fj6+rJ//37mzJlDY2MjISEhOBwOSktL2bx5s3NMaWkpixYtAr6GpMjISFJTUykoKKCrq4ucnBzi4+O5cOHC//JVi4j0Wwo5IiLSr7x8+ZIvX74QGxuL1WoFwGazAWA0Gunu7sZsNn8zLjMzk9jYWOf2hg0byM/Pd342atQoHjx4wP79+0lJSaGlpYVx48Yxffp0DAaD81wALS0tmM1moqKicHd3JygoiMmTJ//0XK5cucKNGzd49eoVHh4eAOzcuZMTJ05QUVHBypUrSU5OprCw0BlyGhsbuXXrFocPHwZwhrStW7c665aUlDBy5EhnUBIRGWh0u5qIiPQrEydOZM6cOdhsNuLi4igqKqK9vf0fxzkcDuf6hw8faGpqYvny5QwbNsy5bNmyhaamJuDrSwzu3LnD+PHjycjIoKamxjk+Li6Orq4uRo8ezYoVK6isrOTLly8/PZe7d+/S2dmJyWTq00dzc7Ozj8TERJ49e8b169eBr1dx7HY7oaGhzhoXL17sM/7vfX/XEBEZaHQlR0RE+pVBgwZRW1vLtWvXqKmpYe/evaxbt46Ghob/Os7Ly8u53tnZCUBRURFTpkz5pj6A3W6nubmZ6upqzp07R3x8PFFRUVRUVDBy5EgePXrEuXPnqK2tZdWqVeTl5XHp0iXc3d1/eC6dnZ0EBgZSV1f3zT4/Pz8AzGYzkZGRlJWVMXXqVMrKykhLS+tTIyYmhh07dnxTIzAw8Id7ERFxJQo5IiLS7xgMBiIiIoiIiGD9+vVYrVYqKysZMmQIPT09/zg+ICAAi8XC06dPSU5O/u5xPj4+JCQkkJCQwMKFC4mOjubt27f4+/tjNBqJiYkhJiaG9PR0QkNDuXfvHna7/YfnYbfbaWtrY/DgwQQHB3/3uOTkZNasWUNSUhJPnz4lMTGxT43jx48THBzM4MH6WRcRAYUcERHpZxoaGjh//jxz585lxIgRNDQ08Pr1a8LCwvj48SNnz57l0aNHmEwmfH19v1tn06ZNZGRk4OvrS3R0NN3d3dy8eZP29naysrLYtWsXgYGBhIeH4+bmxrFjxzCbzfj5+XHw4EF6enqYMmUKQ4cO5fDhwxiNxj7P7fyIqKgopk2bxvz588nNzSUkJITW1lbOnDnDggULnLfYxcbGkpaWRlpaGrNnz8ZisThrpKenU1RURFJSEmvWrMHf358nT55w5MgRiouLnVemREQGEoUcERHpV3x8fLh8+TK7d++mo6MDq9VKfn4+8+bNw+FwUFdXh8PhoLOzk4sXL373CklqaipDhw4lLy+P7OxsvLy8sNlsZGZmAuDt7U1ubi6PHz9m0KBBTJo0iaqqKtzc3PDz82P79u1kZWXR09ODzWbj9OnTmEymn5qLwWCgqqqKdevWsWzZMl6/fo3ZbGbGjBkEBAQ4j/P29iYmJoby8nJKSkr61LBYLFy9epWcnBzmzp1Ld3c3VquV6Oho3Nz06K2IDEyG3t7e3j/dhIiIiIiIyK+iv3hERERERMSlKOSIiIj8IvX19X1e5fyfi4iI/B66XU1EROQX6erq4sWLF9/dP3bs2N/YjYjIwKWQIyIiIiIiLkW3q4mIiIiIiEtRyBEREREREZeikCMiIiIiIi5FIUdERERERFyKQo6IiIiIiLgUhRwREREREXEpCjkiIiIiIuJSFHJERERERMSl/AVzOMovkm0MbwAAAABJRU5ErkJggg==\n"},"metadata":{}}],"source":["\n","df_scaled_corr=df_scaled.corr()\n","df_scaled_corr=df_scaled_corr['stress_level'].sort_values(ascending=False)\n","df_scaled_corr=df_scaled_corr.drop('stress_level')\n","plt.figure(figsize=(8,6))\n","sns.heatmap(df_scaled_corr.to_frame(),annot=True,cmap='coolwarm')\n","plt.title('Stress Level Correlation of Features after Standard Scaling')\n","plt.show()"]},{"cell_type":"code","execution_count":26,"metadata":{"colab":{"base_uri":"https://localhost:8080/","height":545},"executionInfo":{"elapsed":669,"status":"ok","timestamp":1716216909976,"user":{"displayName":"Daniel Meier","userId":"06365571306976914087"},"user_tz":300},"id":"l2_RcNVzKXVj","outputId":"a131e01f-9570-49df-a8c6-71cccf87b0a3"},"outputs":[{"output_type":"display_data","data":{"text/plain":["
"],"image/png":"iVBORw0KGgoAAAANSUhEUgAAAzkAAAIQCAYAAACixqBTAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOzdd3xN5x/A8c/N3gOJBJGQYcSOrfYItfdqiVGU2DNVJJSgRoyWVitGKa3d2lIxUpsQKyJEtEKshAiZ5/eHX25dSUgQifi+X6/zeuU+5znP+T7njtznPOOqFEVREEIIIYQQQoh8Qiu3AxBCCCGEEEKId0kaOUIIIYQQQoh8RRo5QgghhBBCiHxFGjlCCCGEEEKIfEUaOUIIIYQQQoh8RRo5QgghhBBCiHxFGjlCCCGEEEKIfEUaOUIIIYQQQoh8RRo5QgghhBBCiHxFGjlCiHzP29sblUqV22HkCA8PDxwcHN5pmStWrEClUhEREfFOy33Xvv32W0qWLIm2tjaVKlXK7XA+WvI85LyM3ucqlQpvb+/3Gkde/yx1cHDAw8ND/TgwMBCVSkVgYGCuxSRyjzRyhHhPQkJC6NSpE/b29hgYGFC0aFGaNm3KokWLNPLNmDGDLVu25E6Qb8HBwYFWrVrldhjvRGBgIB06dMDGxgY9PT2sra1p3bo1mzZtyu3Q3qkP9bUGsGfPHsaNG0edOnXw9/dnxowZmeb18PBApVJluO3atStH4lu7di1+fn45UnZektHzcOvWLby9vQkODn5vcaR9mVWpVJw6dSrdfg8PD0xMTN5bPAL++OMP6tevj7W1NUZGRpQsWZIuXbrk2HtOiJfp5HYAQnwM/v77bxo2bEjx4sX54osvsLGx4ebNmxw9epQFCxYwdOhQdd4ZM2bQqVMn2rVrl3sBf8SmTJnC1KlTcXZ2ZuDAgdjb23P//n127NhBx44dWbNmDT169MjtMN+JzF5rn3/+Od26dUNfXz93AsuCv/76Cy0tLX7++Wf09PRem19fX5+ffvopXXrFihVzIjzWrl3L+fPnGTFiRI6Un1dk9DycPHkSHx8fHBwccqVnx9vbmz/++OO9n/d9e/r0KTo6efNr3Jw5cxg7diz169fHy8sLIyMjrl69yr59+1i3bh3Nmzd/L3HUq1ePp0+fZukzQuQ/efPdIUQ+M336dMzNzTlx4gQWFhYa+6Kjo9+43CdPnmBsbPyW0Yk0GzZsYOrUqXTq1Im1a9eiq6ur3jd27Fh2795NUlLSW58nOTmZ1NTUDP/x5oXnVFtbG21t7VyN4XWio6MxNDTM8pcXHR0dPvvssxyOKufFx8djZGSU22GoZfd5eBtZeW9UqlSJP//8k9OnT1OlSpUciyUvPA8GBga5ev7MJCcnM23aNJo2bcqePXvS7X+b/3nZpaWllWevk8h5MlxNiPcgPDwcV1fXdA0cAGtra/XfKpWKJ0+esHLlSvXQi7TxxWljoS9evEiPHj2wtLTkk08+UR/7yy+/4ObmhqGhIQUKFKBbt27cvHlT41xhYWF07NgRGxsbDAwMKFasGN26dSM2NladZ+/evXzyySdYWFhgYmJCqVKl+Oqrr97ZtXhdnJ6enpiYmBAfH5/u2O7du2NjY0NKSoo6befOndStWxdjY2NMTU1p2bIlFy5ceKPYJk2aRIECBVi+fLlGAyeNu7u7xpC86Oho+vXrR+HChTEwMKBixYqsXLlS45iIiAhUKhVz5szBz88PR0dH9PX1uXjx4jt5TjMyZ84cateuTcGCBTE0NMTNzY0NGzZo5HnVay2zOTnff/89rq6u6OvrU6RIEYYMGUJMTIxGngYNGlCuXDkuXrxIw4YNMTIyomjRosyePfu1ccN/X5DSrpODgwNfffUVCQkJGrH7+/vz5MkTdewrVqzIUvmZSU1Nxc/PD1dXVwwMDChcuDADBw7k4cOHGvm2bt1Ky5YtKVKkCPr6+jg6OjJt2jSN12SDBg3Yvn07N27cUMeXNp8is2ub0dyBtGt56tQp6tWrh5GRkfq9mJCQwJQpU3ByckJfXx87OzvGjRuncZ3gzd/P/v7+NGrUCGtra/T19SlbtixLlizRyJPZ81CtWjUA+vTpk+Hzc+zYMZo3b465uTlGRkbUr1+foKAgjbJf997IzNChQ7G0tMzyXJXsvKZffh5efG9/9913lCxZEiMjI5o1a8bNmzdRFIVp06ZRrFgxDA0Nadu2LQ8ePNAoOyuvp8y8OCcnLZbMthdl5foDHD58mGrVqmFgYICjoyM//PBDlq7pvXv3ePToEXXq1Mlw/4v/8wCePXuGt7c3Li4uGBgYYGtrS4cOHQgPD1fnycpnWkZe9b7KymfUjRs3aNOmDcbGxlhbWzNy5Eh2794t83w+ENKTI8R7YG9vz5EjRzh//jzlypXLNN/q1avp378/1atXZ8CAAQA4Ojpq5OncuTPOzs7MmDEDRVGA5z1FkyZNokuXLvTv35+7d++yaNEi6tWrx5kzZ7CwsCAxMRF3d3cSEhIYOnQoNjY2/Pvvv/z555/ExMRgbm7OhQsXaNWqFRUqVGDq1Kno6+tz9erVDP8BvomsxNm1a1e+++47tm/fTufOndXHxsfH88cff+Dh4aHuZVi9ejW9e/fG3d2dWbNmER8fz5IlS/jkk084c+ZMtibkh4WFcfnyZfr27Yupqelr8z99+pQGDRpw9epVPD09KVGiBL///jseHh7ExMQwfPhwjfz+/v48e/aMAQMGoK+vT4ECBdT73vQ5zcyCBQto06YNPXv2JDExkXXr1tG5c2f+/PNPWrZsqb52r3utvcjb2xsfHx+aNGnCl19+SWhoKEuWLOHEiRMEBQVpNAofPnxI8+bN6dChA126dGHDhg2MHz+e8uXL06JFi1de1/79+7Ny5Uo6derE6NGjOXbsGL6+vly6dInNmzerY//xxx85fvy4egha7dq1X1kuPP/y9SJdXV3Mzc0BGDhwICtWrKBPnz4MGzaM69evs3jxYs6cOaNRvxUrVmBiYsKoUaMwMTHhr7/+YvLkyTx69Ihvv/0WgIkTJxIbG8s///zD/PnzAd54Psj9+/dp0aIF3bp147PPPqNw4cKkpqbSpk0bDh8+zIABAyhTpgwhISHMnz+fK1euqOdZvc37ecmSJbi6utKmTRt0dHT4448/GDx4MKmpqQwZMgTI+HlwdnZm6tSpTJ48mQEDBlC3bl3gv+fnr7/+okWLFri5uTFlyhS0tLTUDapDhw5RvXp1jTgyem+8ipmZGSNHjmTy5Mmv7c3Jzms6o+chzZo1a0hMTGTo0KE8ePCA2bNn06VLFxo1akRgYCDjx4/n6tWrLFq0iDFjxrB8+XL1sVl5PWWFlZUVq1ev1khLSkpi5MiRGr1sWb3+ISEhNGvWDCsrK7y9vUlOTmbKlCka9c6MtbU1hoaG/PHHHwwdOlTjs+5lKSkptGrVioCAALp168bw4cN5/Pgxe/fu5fz58+rPpKx8pmVHVj6jnjx5QqNGjYiKimL48OHY2Niwdu1a9u/fn+3ziVyiCCFy3J49exRtbW1FW1tbqVWrljJu3Dhl9+7dSmJiYrq8xsbGSu/evdOlT5kyRQGU7t27a6RHREQo2trayvTp0zXSQ0JCFB0dHXX6mTNnFED5/fffM41z/vz5CqDcvXs323W0t7dXWrZsmen+rMaZmpqqFC1aVOnYsaNGvt9++00BlIMHDyqKoiiPHz9WLCwslC+++EIj3+3btxVzc3ON9LRr9ypbt25VAGX+/PmvrauiKIqfn58CKL/88os6LTExUalVq5ZiYmKiPHr0SFEURbl+/boCKGZmZkp0dLRGGW/7nCqKovTu3Vuxt7fXyBcfH6/xODExUSlXrpzSqFEjjfTMXmv+/v4KoFy/fl1RFEWJjo5W9PT0lGbNmikpKSnqfIsXL1YAZfny5eq0+vXrK4CyatUqdVpCQoJiY2OT7jl9WXBwsAIo/fv310gfM2aMAih//fWXRr2NjY1fWd6LeYF0W/369RVFUZRDhw4pgLJmzRqN43bt2pUu/eVrqyiKMnDgQMXIyEh59uyZOq1ly5bpnhdFSX9t0+zfv18BlP3796vT0q7l0qVLNfKuXr1a0dLSUg4dOqSRvnTpUgVQgoKCFEV5u/dzRvV0d3dXSpYsqZGW0fNw4sQJBVD8/f010lNTUxVnZ2fF3d1dSU1N1ThXiRIllKZNm6rTMntvZCbt+v3+++9KTEyMYmlpqbRp0ybTON/kNf3y85D23rayslJiYmLU6V5eXgqgVKxYUUlKSlKnd+/eXdHT09N4nWT19ZTR+xxQpkyZkuk1GTx4sKKtra1+32Tn+rdr104xMDBQbty4oU67ePGioq2t/drPUkVRlMmTJyuAYmxsrLRo0UKZPn26curUqXT5li9frgDKvHnz0u17OcYXZfaZZm9vr/GZ9qr31es+o+bOnasAypYtW9RpT58+VUqXLp2uTJE3yXA1Id6Dpk2bcuTIEdq0acPZs2eZPXs27u7uFC1alG3btmWrrEGDBmk83rRpE6mpqXTp0oV79+6pNxsbG5ydndV3ndLuWO/evTvDoWCAundg69atpKamZrOWr5bVOFUqFZ07d2bHjh3ExcWpj1+/fj1FixZVD1nZu3cvMTExdO/eXaM8bW1tatSoke27bY8ePQLIUi8OwI4dO7CxsaF79+7qNF1dXYYNG0ZcXBwHDhzQyN+xY0esrKwyLOtNn9PMGBoaqv9++PAhsbGx1K1bl9OnT2epbi/bt28fiYmJjBgxAi2t//5tfPHFF5iZmbF9+3aN/CYmJhrzX/T09KhevTrXrl175Xl27NgBwKhRozTSR48eDZDuPNlhYGDA3r17Nba5c+cC8Pvvv2Nubk7Tpk01rrebmxsmJiYa1/vFa/v48WPu3btH3bp1iY+P5/Lly28cX2b09fXp06ePRtrvv/9OmTJlKF26tEa8jRo1AlDH+zbv5xfrGRsby71796hfvz7Xrl3TGN6aHcHBwYSFhdGjRw/u37+vjvvJkyc0btyYgwcPpovz5fdGVpibmzNixAi2bdvGmTNnMsyT3dd0Rs9Dms6dO6s/XwFq1KgBwGeffaaxMECNGjVITEzk33//Vafl1Otp1apVfP/998yePZuGDRsCWb/+KSkp7N69m3bt2lG8eHF1mWXKlMHd3T1L5/fx8WHt2rVUrlyZ3bt3M3HiRNzc3KhSpQqXLl1S59u4cSOFChXSWHwnzYvD7N71Z1pWPqN27dpF0aJFadOmjTrNwMCAL7744o3OKd4/Ga4mxHtSrVo1Nm3aRGJiImfPnmXz5s3Mnz+fTp06ERwcTNmyZbNUTokSJTQeh4WFoSgKzs7OGeZPG3JRokQJRo0axbx581izZg1169alTZs2fPbZZ+p/0F27duWnn36if//+TJgwgcaNG9OhQwc6deqk8UXgTWQ1zrQ4/Pz82LZtGz169CAuLo4dO3YwcOBA9T++sLAwAPUXu5eZmZllK760/I8fP85S/hs3buDs7JzuupQpU0a9/0UvP2+v2peda5WRP//8k2+++Ybg4OB0c1neRFpdSpUqpZGup6dHyZIl09W1WLFi6c5laWnJuXPnXnseLS0tnJycNNJtbGywsLBId57s0NbWpkmTJhnuCwsLIzY2Nt1cgTQvTpS+cOECX3/9NX/99Ze6YZzmTb/8v0rRokXTTeoPCwvj0qVLmTaa0+J9m/dzUFAQU6ZM4ciRI+luisTGxmp8qc+qtPds7969M80TGxuLpaWl+vGr3jevMnz4cObPn4+3tzdbt25Ntz+7r+mMnoc0LzYE4L8bSnZ2dhmmvzjPKydeT8HBwQwaNIju3btr3DDI6vVPSEjg6dOnGX7+lCpVSn0z4nW6d+9O9+7defToEceOHWPFihWsXbuW1q1bc/78eQwMDAgPD6dUqVKvXSXuXX+mZeUz6saNGzg6OqbL9/Lnk8i7pJEjxHump6dHtWrVqFatGi4uLvTp04fff/+dKVOmZOn4F+9owfMJ0yqVip07d2a4ItaLcwHmzp2Lh4cHW7duZc+ePQwbNgxfX1+OHj2qnhx78OBB9u/fz/bt29m1axfr16+nUaNG7Nmz561W3MpOnDVr1sTBwYHffvuNHj168Mcff/D06VO6du2qUR48nxdgY2OTrrzsLq1aunRp4PlY9Jzw8vP2qn3ZuVYvO3ToEG3atKFevXp8//332Nraoquri7+/P2vXrn3zCmRDZq8TJQtzKuDNv7i8qdTUVKytrVmzZk2G+9MaEzExMdSvXx8zMzOmTp2Ko6MjBgYGnD59mvHjx2eptySzumU20Tyj101qairly5dn3rx5GR6T9uX6Td/P4eHhNG7cmNKlSzNv3jzs7OzQ09Njx44dzJ8//417edOO+/bbbzNdWvrl1/ar3jevktab4+3tnWlvTna8Ko7MruPr3gfv4vX0socPH9KxY0dcXFzSLZme1ev/8uIVb8vMzIymTZvStGlTdHV1WblyJceOHaN+/fpZOj4nPtPe9jNKfBikkSNELqpatSoAUVFR6rTsfsFzdHREURRKlCiBi4vLa/OXL1+e8uXL8/XXX/P3339Tp04dli5dyjfffAM8X3KzcePGNG7cmHnz5jFjxgwmTpzI/v37M70TnhNxdunShQULFvDo0SPWr1+Pg4MDNWvW1CgPnk9yfZu40ri4uFCqVCm2bt3KggULXjtR3N7ennPnzpGamqpxVzxtiIm9vf0bx5Lda/WijRs3YmBgwO7duzV+58bf3z9d3qy+1tLqEhoaSsmSJdXpiYmJXL9+/Z1c/7TzpKamEhYWpu4RA7hz5w4xMTFvdU1fxdHRkX379lGnTp1XfpkNDAzk/v37bNq0iXr16qnTr1+/ni5vZtc2rZfi5RW8stNL5ejoyNmzZ2ncuPFrn8M3eT//8ccfJCQksG3bNo1eiqwOAc0sprT3rJmZ2Tt7zbzKiBEj8PPzw8fHJ91CHe/rNf0q2Xk9ZUVqaio9e/YkJiaGffv2pVviOqvX38rKCkNDQ3XPz4tCQ0PfKLY0VatWZeXKler/eY6Ojhw7doykpKRMe6iz85n2Ltnb23Px4kUURdF4TV+9ejVHzyveHZmTI8R7sH///gzvEKV1+784ZMLY2DjdF6BX6dChA9ra2vj4+KQ7h6Io3L9/H3g+5yQ5OVljf/ny5dHS0lLfuXt5eVNAfcfvbe/uZTXONF27diUhIYGVK1eya9cuunTporHf3d0dMzMzZsyYkeFv19y9ezfbMfr4+HD//n369++f7lrB8193//PPPwH49NNPuX37NuvXr1fvT05OZtGiRZiYmGT5LmVGsnutXqStrY1KpdLoGYiIiFCvuPWirL7WmjRpgp6eHgsXLtSI5+effyY2NvaNVjfKyKeffgqAn5+fRnpaj8W7Os/LunTpQkpKCtOmTUu3Lzk5WX2N0u7+vngNEhMT+f7779MdZ2xsnOFwo7QvmgcPHlSnpaSk8OOPP2Yr3n///Zdly5al2/f06VOePHkCvPn7OaN6xsbGZvlLZdpv2bz82nJzc8PR0ZE5c+ZozLdL8ybv2VdJ683ZunUrwcHBGvve12v6VbLzesoKHx8fdu/eza+//prhML+sXn9tbW3c3d3ZsmULkZGR6v2XLl1i9+7dr40jPj6eI0eOZLhv586dwH//8zp27Mi9e/dYvHhxurxp1yU7n2nvkru7O//++6/GvNlnz55l+L4TeZP05AjxHgwdOpT4+Hjat29P6dKlSUxM5O+//1b3ULw4odXNzY19+/Yxb948ihQpQokSJdQTWTPi6OjIN998g5eXFxEREbRr1w5TU1OuX7/O5s2bGTBgAGPGjOGvv/7C09OTzp074+LiQnJyMqtXr0ZbW5uOHTsCMHXqVA4ePEjLli2xt7cnOjqa77//nmLFimXpNyquXr2q7hF6UeXKlWnZsmWW4kxTpUoVnJycmDhxIgkJCRpD1eD53cglS5bw+eefU6VKFbp164aVlRWRkZFs376dOnXqZPiP81W6du1KSEgI06dP58yZM3Tv3h17e3vu37/Prl27CAgIUA+PGDBgAD/88AMeHh6cOnUKBwcHNmzYQFBQEH5+fllewCAjWX1OM9KyZUvmzZtH8+bN6dGjB9HR0Xz33Xc4OTmlmxOT1dealZUVXl5e+Pj40Lx5c9q0aUNoaCjff/891apVe2c/slmxYkV69+7Njz/+qB7Kc/z4cVauXEm7du3UE6jftfr16zNw4EB8fX0JDg6mWbNm6OrqEhYWxu+//86CBQvo1KkTtWvXxtLSkt69ezNs2DBUKhWrV6/O8AaGm5sb69evZ9SoUVSrVg0TExNat26Nq6srNWvWxMvLiwcPHlCgQAHWrVuXYaM6M59//jm//fYbgwYNYv/+/dSpU4eUlBQuX77Mb7/9xu7du6lateobv5+bNWuGnp4erVu3ZuDAgcTFxbFs2TKsra01ep0z4+joiIWFBUuXLsXU1BRjY2Nq1KhBiRIl+Omnn2jRogWurq706dOHokWL8u+//7J//37MzMz4448/snwdsiJtbs7Zs2c1fkj0fb2mXyU7r6fXCQkJYdq0adSrV4/o6Gh++eUXjf2fffYZWlpaWb7+Pj4+7Nq1i7p16zJ48GD1DRxXV9fXzq2Lj4+ndu3a1KxZk+bNm2NnZ0dMTAxbtmzh0KFDtGvXjsqVKwPQq1cvVq1axahRozh+/Dh169blyZMn7Nu3j8GDB9O2bdtsfaa9SwMHDmTx4sV0796d4cOHY2try5o1a9Q/Lvq+h9WKN/De1nET4iO2c+dOpW/fvkrp0qUVExMTRU9PT3FyclKGDh2q3LlzRyPv5cuXlXr16imGhoYKoF4OM21J1cyWg924caPyySefKMbGxoqxsbFSunRpZciQIUpoaKiiKIpy7do1pW/fvoqjo6NiYGCgFChQQGnYsKGyb98+dRkBAQFK27ZtlSJFiih6enpKkSJFlO7duytXrlx5bR3t7e0zXKYXUPr165flOF80ceJEBVCcnJwyPe/+/fsVd3d3xdzcXDEwMFAcHR0VDw8P5eTJk+o8WVlC+kVp18Ha2lrR0dFRrKyslNatWytbt27VyHfnzh2lT58+SqFChRQ9PT2lfPny6ZbNTVtm9ttvv013nrd9ThUl46Vlf/75Z8XZ2VnR19dXSpcurfj7+2d4DTJ7rWW2zPHixYuV0qVLK7q6ukrhwoWVL7/8Unn48KFGnvr16yuurq7p6pJRnBlJSkpSfHx8lBIlSii6urqKnZ2d4uXlpbGcblp52VlCOit5f/zxR8XNzU0xNDRUTE1NlfLlyyvjxo1Tbt26pc4TFBSk1KxZUzE0NFSKFCmiXg6el5aUjYuLU3r06KFYWFgogEbdw8PDlSZNmij6+vpK4cKFla+++krZu3dvhkvdZnQtFeX5ErqzZs1SXF1dFX19fcXS0lJxc3NTfHx8lNjYWEVR3u79vG3bNqVChQqKgYGB4uDgoMyaNUu93O+Lr4vMru3WrVuVsmXLKjo6OumWkz5z5ozSoUMHpWDBgoq+vr5ib2+vdOnSRQkICFDned1742UvLiH9srSyMorzbV7Tmb23M4sl7X114sQJdVpWX0+vW0I67ZyZbS/KyvVXFEU5cOCA4ubmpujp6SklS5ZUli5dmqXP0qSkJGXZsmVKu3btFHt7e0VfX18xMjJSKleurHz77bdKQkKCRv74+Hhl4sSJ6ve8jY2N0qlTJyU8PFydJ6ufaVldQjqrn1HXrl1TWrZsqRgaGipWVlbK6NGjlY0bNyqAcvTo0VdeB5H7VIois6yEEEIIIYR4HT8/P0aOHMk///xD0aJFczsc8QrSyBFCCCGEEOIlT58+1ViM5NmzZ1SuXJmUlBSuXLmSi5GJrJA5OUIIIYQQQrykQ4cOFC9enEqVKhEbG8svv/zC5cuXM11uXuQt0sgRQgghhBDiJe7u7vz000+sWbOGlJQUypYty7p169IthCPyJhmuJoQQQgghhMhX5HdyhBBCCCGEEPmKNHKEEEIIIYQQ+Yo0coQQQgghhBD5iiw8IEQu2K5bKrdDEEIIIUQ2tUwKzbVz5+R3h9ysV06RnhwhhBBCCCFEviI9OUIIIYQQQuRxKl1VbofwQZGeHCGEEEIIIUS+Ij05QgghhBBC5HFaOtKTkx3SkyNyRYMGDRgxYsQbHx8REYFKpSI4OBiAwMBAVCoVMTExb3S8EEIIIYTIP6SRIz5KdnZ2REVFUa5cudwORQiRh9l/2YOGYQE0f3yO2kG/YV6t/Cvz65ib4rpwMo0jD9E8LoT6F3Zh1byeer+2iTFl535Fw6t/0fzRWWof/BXzqq8uUwghAFS6Wjm25UcyXE18lLS1tbGxscntMIQQeZht5xaU+daL80OmEHP8LCWG9abG9p8JdG1O4t0H6fKrdHWpscufxOj7nO42nGf/3sGweBGSYh+p81T44RtMXZ056zGOZ1HRFO3Rhhq7/DlQ4VMSbkW/z+oJIT4wMlwte/Jn0018EJKTk/H09MTc3JxChQoxadIkFEUBQKVSsWXLFo38FhYWrFix4rXlPnnyBDMzMzZs2KCRvmXLFoyNjXn8+HGmw90CAgKoWrUqRkZG1K5dm9BQzXXjv/nmG6ytrTE1NaV///5MmDCBSpUqveklEELkYSVG9OHmz7/xz8pNxF0KJ2TwFFLin2Hn0THD/HZ9OqJrac7JjkN4+Pdpnt74lweHTvD43PPPES0DfWw6NOOy17c8OHyS+PBIwqYtJj78BvYDe7zPqgkhRL4njRyRa1auXImOjg7Hjx9nwYIFzJs3j59++umtyzU2NqZbt274+/trpPv7+9OpUydMTU0zPXbixInMnTuXkydPoqOjQ9++fdX71qxZw/Tp05k1axanTp2iePHiLFmy5K3jFULkPSpdXcyruHIv4O//EhWFe3/9jUXNyhkeU7hVI2KOBVNu0WSa/BNEvTN/4Dh+IGg9/1er0tFBS0eHlGcJGselPE2gQJ0qOVYXIUT+oNJV5diWH8lwNZFr7OzsmD9/PiqVilKlShESEsL8+fP54osv3rrs/v37U7t2baKiorC1tSU6OpodO3awb9++Vx43ffp06tevD8CECRNo2bIlz549w8DAgEWLFtGvXz/69OkDwOTJk9mzZw9xcXFvHa8QIm/RK2SJlo4OCdH3NdIT7tzHuFTJDI8xKmGHYcOa3Pr1D463GYCxY3HKLZqClq4OYd98R0rcEx4eOY3zxMHEXb5Gwp17FO3WCsualXhyNfJ9VEsIIT4a0pMjck3NmjVRqf67e1CrVi3CwsJISUl567KrV6+Oq6srK1euBOCXX37B3t6eevXqvfK4ChUqqP+2tbUFIDr6+Tj50NBQqlevnu48r5OQkMCjR480tiQlNVv1EUJ8ALRUJEbf59ygSTw6fYGo33dydeZSig/ops4S7DEOVCqaRB6ixZMQHDw/59b67ZAqnwlCiFfT0lHl2JYfSSNH5EkqlUo9PydNUlJStsro37+/eg6Pv78/ffr00WhUZURXV1cjBoDUt/zy4evri7m5ucb2W2r6SctCiLwj8d5DUpOT0bcuqJGuX7ggCbfvZXhMwu27PAmL0GiwxF26hoGtNar/f7bEX7vJ0cafs8u8En+VaEBQ7c6odHSIv34zp6oihBAfJWnkiFxz7NgxjcdHjx7F2dkZbW1trKysiIqKUu8LCwsjPj4+W+V/9tln3Lhxg4ULF3Lx4kV69+79VvGWKlWKEydOaKS9/DgjXl5exMbGamxdtAq8VSxCiJylJCURe/oChRrV+i9RpaJgw1rEHD2T4TEP/z6NkWNxeOFmirGLA89uRaO8dJMmJf4pCbfvomNhhlWzT7j9R0CO1EMIkX/InJzskTk5ItdERkYyatQoBg4cyOnTp1m0aBFz584FoFGjRixevJhatWqRkpLC+PHjNXpZssLS0pIOHTowduxYmjVrRrFixd4q3qFDh/LFF19QtWpVateuzfr16zl37hwlS2Y8Pj+Nvr4++vr6Gmm6Krm/IERed93Pn4rLZxFz6jyxJ87hMKw3OsaG3Fy5CYCK/rN49u8dQr+eB8CNH37FfvBnuM6fSMR3v2DsZI/T+IFELF6tLrNQ009QqVTEXbmOsWNxSs8aR1zoNf5ZsSlX6iiEEPmVNHJErunVqxdPnz6levXqaGtrM3z4cAYMGADA3Llz6dOnD3Xr1qVIkSIsWLCAU6dOZfsc/fr1Y+3atRqrpL2pnj17cu3aNcaMGcOzZ8/o0qULHh4eHD9+/K3LFkLkPVG/70TPqgAuU4ahb2PFo7OXON6qP4n/X4zA0M4W5YWhac/+uc3xlv0oO8eLuqe38ezfO1xftIrwb5ep8+iam1Lqm1EYFLMh6UEMtzfvIXTSfJTk5PdePyHEhyW/zp3JKSrl5YkPQuQjq1evZuTIkdy6dQs9Pb13Xn7Tpk2xsbFh9erVr8/8gu26pd55LEIIIYTIWS2TQl+fKYccLJfx8vXvQr3zGQ/D/ZBJT47Il+Lj44mKimLmzJkMHDjwnTRw4uPjWbp0Ke7u7mhra/Prr7+yb98+9u7d+w4iFkIIIYQQ74pMDBD50uzZsyldujQ2NjZ4eXm9kzJVKhU7duygXr16uLm58ccff7Bx40aaNGnyTsoXQgghhMiMlrYqx7b8SIarCZELZLiaEEII8eHJzeFqhytWybGyPzl7OsfKzi0yXE0IIYQQQog8TqWVP3tccooMVxNCCCGEEELkK9KTI4QQQgghRB6n0pa+ieyQRo4QuSC//rqwEEIIIUReII0cIYQQQggh8rj8ugpaTpFGjhBCCCGEEHmcLDyQPTK4TwghhBBCCJGvSCNHCCGEEEKIPC4v/Rjod999h4ODAwYGBtSoUYPjx4+/Mn9MTAxDhgzB1tYWfX19XFxc2LFjx5teiiyRRo54aw0aNGDEiBHv/bwODg74+fm9s/Jyqx5CCCGEEB+K9evXM2rUKKZMmcLp06epWLEi7u7uREdHZ5g/MTGRpk2bEhERwYYNGwgNDWXZsmUULVo0R+OUOTlCCCFEJuwH9qDEiH7oFy7E45DLXBj9DbEnQzLNr2NuSinvERRu2xRdSwueRd7i4rgZ3N198HkGLS2cv/akaLc26BcuxLOoaP79ZTNXZy55TzUSQnyoVHlk4YF58+bxxRdf0KdPHwCWLl3K9u3bWb58ORMmTEiXf/ny5Tx48IC///4bXV1d4PmN6pwmPTlCCCFEBmw7tqD0zAlcnfEdQbU78CgklOpbf0LPqkCG+VW6ulT/czmG9kU502M4Byu2IGTIJJ7duqPO4zj6C+z7d+fCqGkcrNyS0K/nUnJkf+y//Px9VUsIIdJJSEjg0aNHGltCQkK6fImJiZw6dYomTZqo07S0tGjSpAlHjhzJsOxt27ZRq1YthgwZQuHChSlXrhwzZswgJSUlx+oD0sgR70hqairjxo2jQIEC2NjY4O3trd4XExND//79sbKywszMjEaNGnH27Fn1/vDwcNq2bUvhwoUxMTGhWrVq7Nu3T6P86OhoWrdujaGhISVKlGDNmjXpYpg3bx7ly5fH2NgYOzs7Bg8eTFxcnEaeoKAgGjRogJGREZaWlri7u/Pw4cMs1SMrdRFC5B8lhnlw0/93/lm9ibjL4ZwfOoWUp88o1qtjhvntendA19KcU108eXj0DE8j/+XB4RM8DglV57GsWZk72wO4u+sATyP/5faW3dwLCMKiavn3VS0hxAdKpaWVY5uvry/m5uYam6+vb7oY7t27R0pKCoULF9ZIL1y4MLdv384w7mvXrrFhwwZSUlLYsWMHkyZNYu7cuXzzzTc5cp3SSCNHvBMrV67E2NiYY8eOMXv2bKZOncrevXsB6Ny5M9HR0ezcuZNTp05RpUoVGjduzIMHDwCIi4vj008/JSAggDNnztC8eXNat25NZGSkunwPDw9u3rzJ/v372bBhA99//326sZ9aWlosXLiQCxcusHLlSv766y/GjRun3h8cHEzjxo0pW7YsR44c4fDhw7Ru3VrjTsKr6pGVuggh8geVri5mlV25v//v/xIVhXt/HcGyRqUMj7Fu2YiYY8G4+k2m8fXD1D2xDcexA0Hrv3+1D4+eoWCDWhg7OQBgWr4UlrWqcHfPwRysjRBCvJqXlxexsbEam5eX1zspOzU1FWtra3788Ufc3Nzo2rUrEydOZOnSpe+k/MzInBzxTlSoUIEpU6YA4OzszOLFiwkICMDQ0JDjx48THR2Nvr4+AHPmzGHLli1s2LCBAQMGULFiRSpWrKgua9q0aWzevJlt27bh6enJlStX2LlzJ8ePH6datWoA/Pzzz5QpU0YjhhcXDXBwcOCbb75h0KBBfP/99wDMnj2bqlWrqh8DuLq6ZqkeTZs25fDhw6+tixAif9ArZImWjg4Jd+5rpCdE38OkVIkMjzFysMOwfk1urf+DEx0GYlyyOK5+U1Dp6nB1xncAhM/5ER1TY+oF70BJSUGlrc0Vbz9urf8zx+skhPiw5eTv5Ojr66u/27xKoUKF0NbW5s6dOxrpd+7cwcbGJsNjbG1t0dXVRVtbW51WpkwZbt++TWJiInp6em8XfCakkSPeiQoVKmg8trW1JTo6mrNnzxIXF0fBggU19j99+pTw8HDgeU+Ot7c327dvJyoqiuTkZJ4+faruybl06RI6Ojq4ubmpjy9dujQWFhYaZe7btw9fX18uX77Mo0ePSE5O5tmzZ8THx2NkZERwcDCdO3d+o3oAWapLRhISEtKNa01SUtFVSUeqEPmJSkuLxLv3CRkyGVJTeXTmAgZFClNiZF91I8e2YwuKdGtNsMcY4i5dxbRCacrO/ur5AgRrtuRuBYQQedqbLPX8runp6eHm5kZAQADt2rUDnvfUBAQE4OnpmeExderUYe3ataSmpqL1/57tK1euYGtrm2MNHJBGjnhH0lbLSKNSqUhNTSUuLg5bW1sCAwPTHZPWSBkzZgx79+5lzpw5ODk5YWhoSKdOnUhMTMzy+SMiImjVqhVffvkl06dPp0CBAhw+fJh+/fqRmJiIkZERhoaGb1wPIEt1yYivry8+Pj4aaT10CtJTt9DrKyaEyBWJ9x6SmpyMfmHNmxr61oVIuHMvw2Oe3b6LkpQE///MAIgLDcfAxhqVri5KUhKlZ4zl2txlRG14/vsQjy9cwbB4ERzHDJBGjhDigzBq1Ch69+5N1apVqV69On5+fjx58kS92lqvXr0oWrSoek7Pl19+yeLFixk+fDhDhw4lLCyMGTNmMGzYsByNUxo5IkdVqVKF27dvo6Ojk+lygUFBQXh4eNC+fXvgeWMiIiJCvb906dIkJydz6tQp9XC10NBQYmJi1HlOnTpFamoqc+fOVd8l+O233zTOU6FCBQICAtI1ON5lXTLi5eXFqFGjNNL2F676RjEIId4PJSmJR2cuULBBLe78EfA8UaWiYMOa3FiafuETgIdHT1OkSytQqUBRADB2cuBZVPTzxg+gbWiI8kIjCICUVFRa0rMrhHi1nByulh1du3bl7t27TJ48mdu3b1OpUiV27dqlXowgMjJS/V0MwM7Ojt27dzNy5EgqVKhA0aJFGT58OOPHj8/ROKWRI3JUkyZNqFWrFu3atWP27Nm4uLhw69Yttm/fTvv27alatSrOzs5s2rSJ1q1bo1KpmDRpkrr3BKBUqVI0b96cgQMHsmTJEnR0dBgxYoRGz4yTkxNJSUksWrSI1q1bExQUlG5Cm5eXF+XLl2fw4MEMGjQIPT099u/fT+fOnSlU6PW9KlmpS0YyGucqQ9WEyPuuL1xBhWUziT19npiT5yjh2RsdI0P+Wb0JgArLZpJwK5rQKfMAiPzxV+wH9qTsnIncWPILRk72OI4dSMSS1eoyo3fsx3HcIJ7ejCLu4lXMKpXBYagH/6zamCt1FEKIN+Hp6Znp8LSMRrzUqlWLo0eP5nBUmuSblshRKpWKHTt2UK9ePfr06YOLiwvdunXjxo0b6hb/vHnzsLS0pHbt2rRu3Rp3d3eqVKmiUY6/vz9FihShfv36dOjQgQEDBmBtba3eX7FiRebNm8esWbMoV64ca9asSbf0oYuLC3v27OHs2bNUr16dWrVqsXXrVnR0stbWz0pdhBD5R9TGnVz+ajYuk4byydEtmFUozfF2X5AY/XwxAkO7IujbWKnzP/v3Nifa9MfcrRyfHN9K2TkTifh+NeFzlqnzXBj9Dbc376ac32TqndlO6RnjuLl8PVemLnzv9RNCfFhycgnp/EilKP/vUxdCvDc7jErndghCCCGEyKZP4y/n2rnPfdogx8qusCMwx8rOLTJcTQghhBBCiDwur8zJ+VDkz/4pIYQQQgghxEdLenKEEEIIIYTI4/LC7+R8SKSRI4QQQgghRB4nw9WyR4arCSGEEEIIIfIV6ckRQgghhBAij8uvSz3nFGnkCJELdE3lrSeEEEIIkVPkm5YQQgghhBB5nMzJyR7p9xJCCCGEEELkK9KTI4QQQgghRB4nPTnZIz05QgghhBBCiHwlXzVyFEVhwIABFChQAJVKRXBwcG6HJIQQQgghxFtTaalybMuP8tVwtV27drFixQoCAwMpWbIkhQoVeu0xKpWKzZs3065du5wPUAghxAelWJ9uOAzug551IeIuhnL5qxk8OnM+0/w6ZqY4eQ3DumUTdC3MefrPLa5MmsW9gEMAfHJiN4bFi6Y77ubyX7nsNT3H6iGE+PDJEtLZk68aOeHh4dja2lK7du33fu7ExET09PTe+3lfJSdjSkpKQldXN0fKzi2KopCSkoKOTr56Wwgh3lDhts0p5TOOS+OmEnv6HMUHfE6VdT8QVKc1SfcepMuv0tWhym/LSLz3gLP9RpFw+w6GxYqQFPtYnedY824aX1RMyjjj9vtP3Pljz3upkxBCfCzyTZPQw8ODoUOHEhkZiUqlwsHBAQcHB/z8/DTyVapUCW9vbwAcHBwAaN++vfqYtLJe7tkZMWIEDRo0UD9u0KABnp6ejBgxgkKFCuHu7g7A+fPnadGiBSYmJhQuXJjPP/+ce/fuZakOqampzJ49GycnJ/T19SlevDjTp/93Z2/8+PG4uLhgZGREyZIlmTRpEklJSer93t7eVKpUiZ9++okSJUpgYGAAQExMDP3798fKygozMzMaNWrE2bNnNc69detWqlSpgoGBASVLlsTHx4fk5GT1fpVKxZIlS2jTpg3GxsYacWXmwoULtGrVCjMzM0xNTalbty7h4eHquk6dOpVixYqhr69PpUqV2LVrl/rYiIgIVCoVmzZtomHDhhgZGVGxYkWOHDmicY6goCAaNGiAkZERlpaWuLu78/DhQ/U5fH19KVGiBIaGhlSsWJENGzaojw0MDESlUrFz507c3NzQ19fn8OHDNGjQgGHDhjFu3DgKFCiAjY2N+jUDzxtD3t7eFC9eHH19fYoUKcKwYcNeez2EEB8W+0G9+OeXDdxat4UnV65xaexUUp4+o2j39hnmL9q9A7qW5pz1GEbsiTM8u3mLh0dOEncxVJ0n6f5DEu/eV2+FmtYn/nokD/8+8b6qJYT4QGlpq3Jsy4/yTSNnwYIF6i/NUVFRnDjx+n8YaXn8/f2zfMyLVq5ciZ6eHkFBQSxdupSYmBgaNWpE5cqVOXnyJLt27eLOnTt06dIlS+V5eXkxc+ZMJk2axMWLF1m7di2FCxdW7zc1NWXFihVcvHiRBQsWsGzZMubPn69RxtWrV9m4cSObNm1Sz0nq3Lkz0dHR7Ny5k1OnTlGlShUaN27MgwfP70QeOnSIXr16MXz4cC5evMgPP/zAihUr0jVkvL29ad++PSEhIfTt2/eVdfn333+pV68e+vr6/PXXX5w6dYq+ffuqG04LFixg7ty5zJkzh3PnzuHu7k6bNm0ICwvTKGfixImMGTOG4OBgXFxc6N69u7qM4OBgGjduTNmyZTly5AiHDx+mdevWpKSkAODr68uqVatYunQpFy5cYOTIkXz22WccOHBA4xwTJkxg5syZXLp0iQoVKgDPn1tjY2OOHTvG7NmzmTp1Knv37gVg48aNzJ8/nx9++IGwsDC2bNlC+fLlX/3kCiE+KCpdHUwrlOXBoaP/JSoKDw4exbxqxQyPsXJvQOzJs5SeOZF65w9Q68BmHIZ/AZkMMVHp6mDbsRX//ro5J6oghBAftXwzLsfc3BxTU1O0tbWxsbHJ0jFWVlYAWFhYZPmYFzk7OzN79mz142+++YbKlSszY8YMddry5cuxs7PjypUruLi4ZFrW48ePWbBgAYsXL6Z3794AODo68sknn6jzfP311+q/HRwcGDNmDOvWrWPcuHHq9MTERFatWqWu2+HDhzl+/DjR0dHo6+sDMGfOHLZs2cKGDRsYMGAAPj4+TJgwQX3ekiVLMm3aNMaNG8eUKVPUZffo0YM+ffpk6dp89913mJubs27dOvWwthfrP2fOHMaPH0+3bt0AmDVrFvv378fPz4/vvvtOnW/MmDG0bNkSAB8fH1xdXbl69SqlS5dm9uzZVK1ale+//16d39XVFYCEhARmzJjBvn37qFWrlrpehw8f5ocffqB+/frqY6ZOnUrTpk014q9QoYK67s7OzixevJiAgACaNm1KZGQkNjY2NGnSBF1dXYoXL0716tWzdF2EEB8GvQKWaOnokHj3vkZ64t37GDuXyPAYQ/tiWH5SlNubtnOmx5cYlShO6Zlfo6Wjw7W5S9Llt27RGB1zU6LWbcmJKggh8pn8ukBATsk3jZzc4ObmpvH47Nmz7N+/HxMTk3R5w8PDX9nIuXTpEgkJCTRu3DjTPOvXr2fhwoWEh4cTFxdHcnIyZmZmGnns7e3VDZy0mOLi4ihYsKBGvqdPn6qHjp09e5agoCCNnpuUlBSePXtGfHw8RkZGAFStWjXT2F4WHBxM3bp1M5y38+jRI27dukWdOnU00uvUqZNuGF1azwqAra0tANHR0ZQuXZrg4GA6d+6c4fmvXr1KfHx8usZLYmIilStX1kjLqF4vnjft3NHR0cDznjE/Pz9KlixJ8+bN+fTTT2ndunWmc3kSEhJISEjQjENJRU+VbzpShRAAWlok3nvAxdHekJrK43MX0bexxmFInwwbOUV6dOD+X4dJuHP3/ccqhBD5XL5u5GhpaaEoikbai3NY3vY4Y2NjjcdxcXG0bt2aWbNmpcub9gU9M4aGhq/cf+TIEXr27ImPjw/u7u7qXpK5c+e+NiZbW1sCAwPTlWlhYaHO4+PjQ4cOHdLlSZvXk1HZr/K6+mTVi40kler5HYzU1NTXniMuLg6A7du3U7So5kpGaT1aaTKq18uNM5VKpT6vnZ0doaGh7Nu3j7179zJ48GC+/fZbDhw4kGGjztfXFx8fH420z4ys6GVinWn8QojclfjgIanJyehZad4g0rMqSEJ0xvMsE+/cJTU5Gf7/WQHwJOwa+oWtUOnqoCT9N8/RoJgtBevV5GzfETkSvxAi/5HV1bInX18tKysroqKi1I8fPXrE9evXNfLo6uqq53BkdhyQpd/cqVKlChcuXMDBwQEnJyeN7XUNBGdnZwwNDQkICMhw/99//429vT0TJ06katWqODs7c+PGjSzFdPv2bXR0dNLFlLbEdpUqVQgNDU2338nJCa03fENVqFCBQ4cOZdg4NDMzo0iRIgQFBWmkBwUFUbZs2WydI7PrVbZsWfT19YmMjExXJzs7u+xVJgOGhoa0bt2ahQsXEhgYyJEjRwgJCckwr5eXF7GxsRpbN+PXL28uhMg9SlIyj89dpEDdGv8lqlQUqFuD2JNnMzwm5kQwRg7FQfXfkBIjRwcSbkdrNHAAinRrT+K9B9zbezBH4hdCiI9dvm7kNGrUiNWrV3Po0CFCQkLo3bs32traGnkcHBwICAjg9u3b6lW5GjVqxMmTJ1m1ahVhYWFMmTKF8+cz/12ENEOGDOHBgwd0796dEydOEB4ezu7du+nTp0+6htTLDAwMGD9+POPGjWPVqlWEh4dz9OhRfv75Z+B5IygyMpJ169YRHh7OwoUL2bz59ZNVmzRpQq1atWjXrh179uwhIiKCv//+m4kTJ3Ly5EkAJk+ezKpVq/Dx8eHChQtcunSJdevWacwByi5PT08ePXpEt27dOHnyJGFhYaxevZrQ0OerDI0dO5ZZs2axfv16QkNDmTBhAsHBwQwfPjzL5/Dy8uLEiRMMHjyYc+fOcfnyZZYsWcK9e/cwNTVlzJgxjBw5kpUrVxIeHs7p06dZtGgRK1eufON6AaxYsYKff/6Z8+fPc+3aNX755RcMDQ2xt7fPML++vj5mZmYamwxVEyLvu7F0FUV7dsK2SxuMnUtSZvYktI0MufX/OTSui2bgNHGEOv/NFevRtTSn1PQJGJW0p1CTepQY/gU3/ddpFqxSUaRbO279thXlNf8bhBAijfwYaPbk6+FqXl5eXL9+nVatWmFubs60adPS9eTMnTuXUaNGsWzZMooWLUpERATu7u5MmjSJcePG8ezZM/r27UuvXr0yvVOfJq13Yvz48TRr1oyEhATs7e1p3rx5lnpEJk2ahI6ODpMnT+bWrVvY2toyaNAgANq0acPIkSPx9PQkISGBli1bMmnSJI2ljTOiUqnYsWMHEydOpE+fPty9excbGxvq1aunXrnN3d2dP//8k6lTpzJr1ix0dXUpXbo0/fv3f23MmSlYsCB//fUXY8eOpX79+mhra1OpUiX1PJxhw4YRGxvL6NGjiY6OpmzZsmzbtg1nZ+csn8PFxYU9e/bw1VdfUb16dQwNDalRowbdu3cHYNq0aVhZWeHr68u1a9ewsLCgSpUqfPXVV29cL3g+zG/mzJmMGjWKlJQUypcvzx9//JFu3pMQ4sN2Z+su9Apa4jjOE33rQjy+cJnT3QepFyMwKGqrMTQt4dZtTncbiMvUcdTcv4mE29FELvuFiEU/a5RboF4tDO2KcGutrKomhMi6/NoYySkq5eXJJ0KIHLe3cLncDkEIIYQQ2dT0zutH9uSUGwPa5VjZ9j9uybGyc0u+7skRQgghhBAiP5CFB7JHrtZ7EhkZiYmJSaZbZGRkboeYLYMGDcq0LmlD7IQQQgghhMgN0pPznhQpUuSVK7QVKVLk/QXzDkydOpUxY8ZkuO/l3+4RQgghhBBvR+bkZI80ct6TtCWc8wtra2usreV3XoQQQgghRN4jjRwhhBBCCCHyOJmTkz1ytYQQQgghhBD5ivTkCJELdMy0X59JCCGEECKNSubkZIf05AghhBBCCCHyFenJEUIIIYQQIo+T1dWyRxo5QgghhBBC5HGy8ED2yNUSQgghhBBC5CvSyMnjGjRowIgRI95Zed7e3lSqVOmdlfc+ZTf2FStWYGFh8dp8KpWKLVu2vHFcQgghhBA5TaWlyrEtP8r3jZzAwEBUKhUxMTG5Hcob2bRpE9OmTcvtMN67jBoeY8aMISAgIMtldO3alStXrqgfZ9ZIioqKokWLFm8aqhAiHyvasys19++g3vnjuG34BdMK5V6ZX8fUFOcpXtQO2kf9CyeosWcbBep/ot7vMHQQDcPOamzVd23J4VoIIcTHR+bk/F9iYiJ6enq5cu6kpCR0dXUzjKdAgQK5EtOrZBTv+2BiYoKJiUmW8xsaGmJoaPjafDY2Nm8TlhAin7L+1B2nr8YQOvkbHp0Nwa53TyouX8KxZm1JevAgXX6Vrg4VVywl6cEDLgwdQ8KdaAyK2pL06LFGvrgrVznbe4D6sZKSkuN1EUJ8+GROTvZ8EFcrNTUVX19fSpQogaGhIRUrVmTDhg0oikKTJk1wd3dHURQAHjx4QLFixZg8eTIRERE0bNgQAEtLS1QqFR4eHsDzYWCenp6MGDGCQoUK4e7uDsC8efMoX748xsbG2NnZMXjwYOLi4jTiCQoKokGDBhgZGWFpaYm7uzsPHz4EwMHBAT8/P438lSpVwtvbW/1YpVKxZMkS2rRpg7GxMdOnT1f3Mvz000+UKFECAwMDdZwvDldLSEhg/Pjx2NnZoa+vj5OTEz///DOQ8fCsLVu2oHrFuuonTpygadOmFCpUCHNzc+rXr8/p06c18mQU76ukpKTQr18/9fNVqlQpFixYkC7f8uXLcXV1RV9fH1tbWzw9PdXXEKB9+/aoVCr14xd7Yvbs2YOBgUG6Hrrhw4fTqFGjdNdjxYoV+Pj4cPbsWVQqFSqVihUrVqjr92Kv0c2bN+nSpQsWFhYUKFCAtm3bEhERod4fGBhI9erVMTY2xsLCgjp16nDjxo1XXhMhxIfHru/n3Fq/idsbtxJ/9Rqhk78h9ekzbDu1yzC/baf26FqYE/LlSGJPB/Ps31vEHD/Fk8tXNPIpKckk3ruv3pIexuR8ZYQQ4iPzQTRyfH19WbVqFUuXLuXChQuMHDmSzz77jIMHD7Jy5UpOnDjBwoULARg0aBBFixZl8uTJ2NnZsXHjRgBCQ0OJiorS+LK9cuVK9PT0CAoKYunSpQBoaWmxcOFCLly4wMqVK/nrr78YN26c+pjg4GAaN25M2bJlOXLkCIcPH6Z169akZPNOnLe3N+3btyckJIS+ffsCcPXqVTZu3MimTZsIDg7O8LhevXrx66+/snDhQi5dusQPP/yQrd6Nlz1+/JjevXtz+PBhjh49irOzM59++imPH2veecwo3sykpqZSrFgxfv/9dy5evMjkyZP56quv+O2339R5lixZwpAhQxgwYAAhISFs27YNJycn4HnDC8Df35+oqCj14xc1btwYCwsL9fMLzxtX69evp2fPnunyd+3aldGjR+Pq6kpUVBRRUVF07do1Xb6kpCTc3d0xNTXl0KFDBAUFYWJiQvPmzUlMTCQ5OZl27dpRv359zp07x5EjRxgwYMArG5JCiA+PSlcHE9cyPPz76H+JisKDv49iVrlChscUalSf2DPncJniRZ0jf1Ft+0bsB/WDl+6+GtnbU/vwXmr+tZ0yc2egbyu9yUKI15M5OdmT54erJSQkMGPGDPbt20etWrUAKFmyJIcPH+aHH35g7dq1/PDDD/Tq1Yvbt2+zY8cOzpw5g47O86qlDfeytrZO18vh7OzM7NmzNdJe7DVxcHDgm2++YdCgQXz//fcAzJ49m6pVq6ofA7i6uma7Xj169KBPnz4aaYmJiaxatQorK6sMj7ly5Qq//fYbe/fupUmTJupr8TbSej3S/Pjjj1hYWHDgwAFatWr1yngzo6uri4+Pj/pxiRIlOHLkCL/99htdunQB4JtvvmH06NEMHz5cna9atWoA6vpbWFhkOpRMW1ubbt26sXbtWvr16wdAQEAAMTExdOzYMV1+Q0NDTExM0NHReeXwtPXr15OamspPP/2kbrj4+/tjYWFBYGAgVatWJTY2llatWuHo6AhAmTJlsnRdhBAfDl1LS7R0dEi8d18jPen+fYwdS2R4jIFdMSxqFeHOth2c7T8EI/viuHh/hUpHh4jFPwDw6GwIl8ZPIv56BPpWVjgMHUiVX/053rIjKU/ic7xeQgjxscjzjZyrV68SHx9P06ZNNdITExOpXLkyAJ07d2bz5s3MnDmTJUuW4OzsnKWy3dzc0qXt27cPX19fLl++zKNHj0hOTubZs2fEx8djZGREcHAwnTt3fut6Va1aNV2avb19pg0ceN6LpK2tTf369d/6/Gnu3LnD119/TWBgINHR0aSkpBAfH09kZORr432V7777juXLlxMZGcnTp09JTExUDzWLjo7m1q1bNG7c+K1i79mzJzVr1uTWrVsUKVKENWvW0LJlyyytqJaZs2fPcvXqVUxNTTXSnz17Rnh4OM2aNcPDwwN3d3eaNm1KkyZN6NKlC7a2tpmWmZCQQEJCgkZaopKKnuqD6EgVQmSRSkuLpPsPCP16KqSmEnfhEvqFrbHr31vdyHlwMEid/0loGI/OhlDrwE6sW7gTtWFzboUuhPgA5Ncel5yS579lpc2H2b59O8HBwert4sWLbNiwAYD4+HhOnTqFtrY2YWFhWS7b2NhY43FERAStWrWiQoUKbNy4kVOnTvHdd98BzxtVwGsnsmtpaannB6VJSkp67bkzS3vRuzr3i3r37k1wcDALFizg77//Jjg4mIIFC6rrm9XYXrRu3TrGjBlDv3792LNnD8HBwfTp0yfL1zCrqlWrhqOjI+vWrePp06ds3rw5w6Fq2REXF4ebm5vGay04OJgrV67Qo0cP4HnPzpEjR6hduzbr16/HxcWFo0ePZlqmr68v5ubmGtvaB9FvFacQImclPXxIanIyeoUKaqTrFixIwt17GR6TePcu8ddvQGqqOu1J+DX0ra1Q6WZ8TzH58WPir9/A0N7u3QUvhMiftLRybsuH8nytypYti76+PpGRkTg5OWlsdnbP/ymMHj0aLS0tdu7cycKFC/nrr7/Ux6etmJaVOTOnTp0iNTWVuXPnUrNmTVxcXLh165ZGngoVKrxyGWMrKyuioqLUjx89esT169ezVefMlC9fntTUVA4cOJDpuR8/fsyTJ0/UaZnN7UkTFBTEsGHD+PTTT9WLANy7l/E/8KwKCgqidu3aDB48mMqVK+Pk5ER4eLh6v6mpKQ4ODq+8jrq6ull6znr27MmaNWv4448/0NLSomXLlpnm1dPTe22ZVapUISwsDGtr63SvN3Nzc3W+ypUr4+Xlxd9//025cuVYu3ZtpmV6eXkRGxursfUoYP3augkhco+SlEzchUtY1qrxX6JKhWXtGjw6cy7DY2JPBT9vrLwwR8+ohD0Jd6JRkpIzPEbbyBDD4naZNpyEEEK8mTzfyDE1NWXMmDGMHDmSlStXEh4ezunTp1m0aBErV65k+/btLF++nDVr1tC0aVPGjh1L79691aud2dvbo1Kp+PPPP7l79266ldJe5OTkRFJSEosWLeLatWusXr1avSBBGi8vL06cOMHgwYM5d+4cly9fZsmSJeqGQaNGjVi9ejWHDh0iJCSE3r17o62t/U6uhYODA71796Zv375s2bKF69evExgYqJ7QX6NGDYyMjPjqq68IDw9n7dq16hXEMuPs7Mzq1au5dOkSx44do2fPnm/d0+Ls7MzJkyfZvXs3V65cYdKkSekWD/D29mbu3LksXLiQsLAw9XP6Yl0DAgK4ffu2+rnMSM+ePTl9+jTTp0+nU6dO6OvrZ5rXwcGB69evExwczL1799INIUsrr1ChQrRt25ZDhw6pr/GwYcP4559/uH79Ol5eXhw5coQbN26wZ88ewsLCXjkvR19fHzMzM41NhqoJkffdXL4a264dsGnfGiPHErhM/RptQ0OiNm4BoMzsbyg5epg6/79rf0PXwhznr8dj6GBPwQZ1sR/Un3/XrFfncRw/CovqbhgULYJZ5YqU+34+SmoK0X/ufN/VE0J8YNJWh82JLT/6IL5pTZs2jUmTJuHr60uZMmVo3rw527dvx8HBgX79+uHt7U2VKlUA8PHxoXDhwgwaNAiAokWL4uPjw4QJEyhcuLB6meKMVKxYkXnz5jFr1izKlSvHmjVr8PX11cjj4uLCnj17OHv2LNWrV6dWrVps3bpVvdCBl5cX9evXp1WrVrRs2ZJ27dqpJ6i/C0uWLKFTp04MHjyY0qVL88UXX6h7bgoUKMAvv/zCjh07KF++PL/++qvG0tUZ+fnnn3n48CFVqlTh888/Z9iwYVhbv10vw8CBA+nQoQNdu3alRo0a3L9/n8GDB2vk6d27N35+fnz//fe4urrSqlUrjaGGc+fOZe/evdjZ2annXmXEycmJ6tWrc+7cudcOVevYsSPNmzenYcOGWFlZ8euvv6bLY2RkxMGDBylevDgdOnSgTJky9OvXj2fPnmFmZoaRkRGXL1+mY8eOuLi4MGDAAIYMGcLAgQOzeZWEEHld9I7dhM+cR4nhg6m27TdMy5TiXL/BJN1//hs5+kVs0LMupM6fcPsOZ/t8iWkFV6r9+TvOk8bzz8o13PhhuTqPvk1hys6bSY09W3Fd+C1JD2M51flzkh5kfjNHCCFE9qmUlydxCCFy3H7nirkdghBCCCGyqWHY2Vw7973J/XKs7EJTf86xsnPLB9GTI4QQQgghhBBZJY0ckW2DBg3CxMQkwy1tmKAQQgghhHh35MdAsyfP/06OyHumTp3KmDFjMtxnZmb2nqMRQgghhBBCkzRyRLZZW1u/9eIEQgghhBAiG/Lp79nkFGnkCCGEEEIIkcfl12FlOUWahEIIIYQQQoh8RRo5QgghhBBC5HEqlVaObdn13Xff4eDggIGBATVq1OD48eNZOm7dunWoVCratWuX7XNmlwxXEyIXaOlIl7MQQgghPjzr169n1KhRLF26lBo1auDn54e7uzuhoaGvnLMdERHBmDFjqFu37nuJU3pyhBBCCCGEyOu0VDm3ZcO8efP44osv6NOnD2XLlmXp0qUYGRmxfPnyTI9JSUmhZ8+e+Pj4ULJkybe9ElkijRwhhBBCCCE+YgkJCTx69EhjS0hISJcvMTGRU6dO0aRJE3WalpYWTZo04ciRI5mWP3XqVKytrenXr1+OxJ8RaeQIIYQQQgiRx6m0tHJs8/X1xdzcXGPz9fVNF8O9e/dISUmhcOHCGumFCxfm9u3bGcZ9+PBhfv75Z5YtW5Yj1yUz0sgR70RERAQqlYrg4OBcjUOlUrFly5b3ek4HBwf8/Pze6zmFEEIIId4VLy8vYmNjNTYvL6+3Lvfx48d8/vnnLFu2jEKFCr2DSLNOFh4Q74SdnR1RUVHZegE3aNCASpUqSQNBCJFnFenRFbu+vdErVJC4y1e4On0Wj0POZ5pf29SUEiM8KdS0Ebrm5jy7FUW477c8OHgYAPshg3DwHKRxTPy165xo2T5H6yGE+PDl5O/k6Ovro6+v/9p8hQoVQltbmzt37mik37lzBxsbm3T5w8PDiYiIoHXr1uq01NRUAHR0dAgNDcXR0fEto8+YNHLEO6GtrZ3hi1sIIT5UVi2a4Th+NFe8p/P4XAhFe/Wk/LLvOfFpW5IePEyXX6WrQ4Wfl5L04AEXh48l4U40BkVtSX70WCPfk7CrnO07UP1YSU7J8boIIfKBN1jq+V3T09PDzc2NgIAA9TLQqampBAQE4OnpmS5/6dKlCQkJ0Uj7+uuvefz4MQsWLMDOzi7HYs39qyXei127dvHJJ59gYWFBwYIFadWqFeHh4cB/Q802bdpEw4YNMTIyomLFihoTyPr27UuFChXUk9ASExOpXLkyvXr10ijjxeFq58+fp0WLFpiYmFC4cGE+//xz7t27B4CHhwcHDhxgwYIFqFQqVCoV169fx8nJiTlz5mjEHhwcjEql4urVq9mu982bN+nSpQsWFhYUKFCAtm3bEhERAcCePXswMDAgJiZG45jhw4fTqFEj9ePDhw9Tt25dDA0NsbOzY9iwYTx58iTbsQghPizFen9O1O+buLN5K/Hh1wjz/obUZ8+w6dAuw/w2Hdqha27GBc+RPDoTTMKtW8SeOMWT0Csa+ZTkFJLu3VdvyS99BgkhRF42atQoli1bxsqVK7l06RJffvklT548oU+fPgD06tVLPdTNwMCAcuXKaWwWFhaYmppSrlw59PT0cixOaeR8JJ48ecKoUaM4efIkAQEBaGlp0b59e3WXIcDEiRMZM2YMwcHBuLi40L17d5KTkwFYuHAhT548YcKECeq8MTExLF68OMPzxcTE0KhRIypXrszJkyfZtWsXd+7coUuXLgAsWLCAWrVq8cUXXxAVFUVUVBTFixenb9+++Pv7a5Tl7+9PvXr1cHJyyladk5KScHd3x9TUlEOHDhEUFISJiQnNmzcnMTGRxo0bY2FhwcaNG9XHpKSksH79enr27Ak872Zt3rw5HTt25Ny5c6xfv57Dhw9neLdCCJF/qHR1MHUtw8Mjx/5LVBQeHjmGWaUKGR5TsFEDHgWfw2mSF7UOBVB12waKD+gHWpr/ag3ti1PzwB6q7/mT0rNnoG8rveBCiNdTaalybMuOrl27MmfOHCZPnkylSpUIDg5m165d6sUIIiMjiYqKyolLkC0yXO0j0bFjR43Hy5cvx8rKiosXL2JiYgLAmDFjaNmyJQA+Pj64urpy9epVSpcujYmJCb/88gv169fH1NQUPz8/9u/fj5mZWYbnW7x4MZUrV2bGjBka57Szs+PKlSu4uLigp6eHkZGRxjA3Dw8PJk+ezPHjx6levTpJSUmsXbs2Xe9OVqxfv57U1FR++uknVKrnb2B/f38sLCwIDAykWbNmdOvWjbVr16qXNAwICCAmJkZ9vXx9fenZsycjRowAwNnZmYULF1K/fn2WLFmCgYFBtuMSQuR9uhaWqHR0SLp/XyM96f59jEo4ZHiMYbGiGNSoxp0/dxAy0BNDezucJ3+FSkeHG9//AMDjcyFc/moyT69HoGdVCPshg6j0y3JOtu5ESnx8TldLCCHeCU9Pz0xv+AYGBr7y2BUrVrz7gDIgjZyPRFhYGJMnT+bYsWPcu3dP3YMTGRlJ2bJlAahQ4b+7k7a2tgBER0dTunRpAGrVqsWYMWOYNm0a48eP55NPPsn0fGfPnmX//v3qBtSLwsPDcXFxyfC4IkWK0LJlS5YvX0716tX5448/SEhIoHPnztmu89mzZ7l69SqmpqYa6c+ePVMP1evZsyc1a9bk1q1bFClShDVr1tCyZUssLCzUZZw7d441a9aoj1cUhdTUVK5fv06ZMmVeG0dCQkK6teYTU1PR05KOVCHyFS0tEu8/4MrkaZCaStzFS+hbW1OsX291I+fBoSB19idXwnh07jw1A3Zg1aIZtzduyaXAhRAfBPnekC3SyPlItG7dGnt7e5YtW0aRIkVITU2lXLlyJCYmqvPo6uqq/07r+XhxOFtqaipBQUFoa2u/dn5MXFwcrVu3ZtasWen2pTWgMtO/f38+//xz5s+fj7+/P127dsXIyChL9Xw5Bjc3N40GShorKysAqlWrhqOjI+vWrePLL79k8+bNGncY4uLiGDhwIMOGDUtXRvHixbMUh6+vLz4+PhppvQsWpo+VDFERIq9KinmIkpyMbsGCGum6BQuS+P+5hS9LvHsXJTkZXvjcjL92HX0rK1S6OihJyemOSXn8mPiISAyL59zkWyGE+BhJI+cjcP/+fUJDQ1m2bBl169YFnk+mz65vv/2Wy5cvc+DAAdzd3fH391dPMntZlSpV2LhxIw4ODujoZPwy09PTIyUl/apCn376KcbGxixZsoRdu3Zx8ODBbMeaFsP69euxtrbOdFgdPO/NWbNmDcWKFUNLS0s9ZC+tjIsXL2Z7PtCLvLy8GDVqlEbasWqZ94IJIXKfkpTM4wuXsKxZnfsB+58nqlRY1qzOv2vWZXjMo9NnsW7VAlQqUBQADB3sSYiOzrCBA6BlZIihXTGit2XccBJCiDRpN6BF1ki/10fA0tKSggUL8uOPP3L16lX++uuvdF+6X+fMmTNMnjyZn376iTp16jBv3jyGDx/OtWvXMsw/ZMgQHjx4QPfu3Tlx4gTh4eHs3r2bPn36qBs2Dg4OHDt2jIiICI0hdNra2nh4eODl5YWzszO1atV6o3r37NmTQoUK0bZtWw4dOsT169cJDAxk2LBh/PPPPxr5Tp8+zfTp0+nUqZPGOvHjx4/n77//xtPTk+DgYMLCwti6dWu2Fh7Q19fHzMxMY5OhakLkff+sXI1t5w4Ubtsao5IlcJ4yES1DQ25v3gpAqZnTKDFyqDr/rXW/oWNuhtNX4zB0KE6B+nUpPqAft9b+ps5TcuxIzKu5oV+kCGaVKlJu0XyU1BSit+967/UTQoj8TL5pfQS0tLRYt24dp06doly5cowcOZJvv/02y8c/e/aMzz77DA8PD/WPOQ0YMICGDRvy+eefZ9gbU6RIEYKCgkhJSaFZs2aUL1+eESNGYGFhgdb/v+CPGTMGbW1typYti5WVFZGRkerj+/XrR2JiYqY9RVlhZGTEwYMHKV68OB06dKBMmTL069ePZ8+eafTsODk5Ub16dc6dO6deVS1NhQoVOHDgAFeuXKFu3bpUrlyZyZMnU6RIkTeOSwjxYbi7cw/hs+fhMOxL3Davx6R0KUIGDCbp/gMADGxt0fv/0FeAhNt3CPliMKblXam65XecvhrHv6vXErlsuTqPvk1hyszxpfrOLZSdP5ukmBjOdOtF0sP0v7sjhBAatLRybsuHVIry/z51IfKQQ4cO0bhxY27evKlekjA/OVCmUm6HIIQQQohsqn8pONfOHffduBwr22TI7BwrO7fInByRpyQkJHD37l28vb3p3LlzvmzgCCGEEEKInJU/+6fEB+vXX3/F3t6emJgYZs/WvKuwZs0aTExMMtxcXV1zKWIhhBBCiPdApZVzWz4kPTkiT/Hw8MDDwyPDfW3atKFGjRoZ7ntx+WshhBBCCPFxk0aO+GCYmpqm+2FPIYQQQoiPgpYsIZ0d+bN/SgghhBBCCPHRkp4cIYQQQggh8jhVPp07k1PkagkhhBBCCCHyFenJESIXqLRlXK0QQgghskHm5GSLNHKEEEIIIYTI41RaMgArO+RqCSGEEEIIIfIV6ckRQgghhBAir1PJcLXskJ4c8cYaNGjAiBEjcjuMNxYYGIhKpSImJia3QxFCCCGEEO+QNHLER6t27dpERUVhbm6e26EIIfIo225dqL57O5+cOkqltaswLef6yvzapiY4TZxAjf17+OT0Mar+uQXLup9kmNeuXx/qnT9DyfFjciJ0IUR+o6WVc1s+JMPVRJ6VmJiInp5ejpWvp6eHjY1NjpUvhPiwWTVvhuO40YRNnc7jc+cp+nkPyv3wPSdbtyPpwcN0+VU6OlRYtpTEBw+4NGosCXeiMShShOTHj9PlNSlXFtvOHYkLvfI+qiKEEB+d/Nl0E+/ckydP6NWrFyYmJtja2jJ37lyN/QkJCYwZM4aiRYtibGxMjRo1CAwMVO9fsWIFFhYWbNmyBWdnZwwMDHB3d+fmzZvqPN7e3lSqVImffvqJEiVKYGBgAEBMTAz9+/fHysoKMzMzGjVqxNmzZ9XHnT17loYNG2JqaoqZmRlubm6cPHkSgBs3btC6dWssLS0xNjbG1dWVHTt2ABkPV9u4cSOurq7o6+vj4OCQrp4ODg7MmDGDvn37YmpqSvHixfnxxx/fyTUWQuQtRXt9RtSGTdzZso34a9cImzqd1GfPsGnfLsP8Nh3aoWNuxsVho3h05iwJt6KIPXmKJy81ZLQMDSk9cwZXvKeR/OjRe6iJECJfUKlybsuHpJEjsmTs2LEcOHCArVu3smfPHgIDAzl9+rR6v6enJ0eOHGHdunWcO3eOzp0707x5c8LCwtR54uPjmT59OqtWrSIoKIiYmBi6deumcZ6rV6+yceNGNm3aRHBwMACdO3cmOjqanTt3curUKapUqULjxo158OABAD179qRYsWKcOHGCU6dOMWHCBHR1dQEYMmQICQkJHDx4kJCQEGbNmoWJiUmGdTx16hRdunShW7duhISE4O3tzaRJk1ixYoVGvrlz51K1alXOnDnD4MGD+fLLLwkNDX3bSyyEyENUOjqYli1DzNFj/yUqCjFHj2FasUKGxxRsUJ9HZ8/hNHECNQ/sw23z79h90TfdUBDnr714cPCQZtlCCCHeKRmuJl4rLi6On3/+mV9++YXGjRsDsHLlSooVKwZAZGQk/v7+REZGUqRIEQDGjBnDrl278Pf3Z8aMGQAkJSWxePFiatSooS6jTJkyHD9+nOrVqwPPh6itWrUKKysrAA4fPszx48eJjo5GX18fgDlz5rBlyxY2bNjAgAEDiIyMZOzYsZQuXRoAZ2dndeyRkZF07NiR8uXLA1CyZMlM6zlv3jwaN27MpEmTAHBxceHixYt8++23eHh4qPN9+umnDB48GIDx48czf/589u/fT6lSpd70Egsh8hhdS0tUOjok3n+gkZ54/z7mJRwyPMagWFEsilYjevtOzn85FMPidjh97YVKR4fIJc97fK1auGNSpjSnu32W01UQQuQz8js52SONHPFa4eHhJCYmqhsnAAUKFFB/qQ8JCSElJQUXFxeN4xISEihYsKD6sY6ODtWqVVM/Ll26NBYWFly6dEndyLG3t1c3cOD5ULS4uDiNcgCePn1KeHg4AKNGjaJ///6sXr2aJk2a0LlzZxwdHQEYNmwYX375JXv27KFJkyZ07NiRChUyvgt76dIl2rZtq5FWp04d/Pz8SElJQVtbG0DjeJVKhY2NDdHR0Zlev4SEBBISEjTSElNT0ZMPKyHyFy0tEh884Ir3NEhNJe7iJfSsrSnWpxeRS35E36YwjhPGEvLFlyiJibkdrRDiQ6OS7w3ZIY0c8dbi4uLQ1tbm1KlT6oZAmsyGhmXG2Ng4Xdm2trYa83vSWFhYAM/n8vTo0YPt27ezc+dOpkyZwrp162jfvj39+/fH3d2d7du3s2fPHnx9fZk7dy5Dhw7NVlwvShsKl0alUpGampppfl9fX3x8fDTSPKwK08fa9o1jEELkrKSHD1GSk9ErWEAjXa9gQRLv3c/wmMS791CSk+GFz4P4a9fRt7JCpaODSdky6BUsSJXf1qr3q3R0MHerQtHuXTlUpYbGsUIIId6cNAnFazk6OqKrq8uxY/+NH3/48CFXrjyfTFu5cmVSUlKIjo7GyclJY3tx9bLk5GT1ggAAoaGhxMTEUKZMmUzPXaVKFW7fvo2Ojk66sgsVKqTO5+LiwsiRI9mzZw8dOnTA399fvc/Ozo5BgwaxadMmRo8ezbJlyzI8V5kyZQgKCtJICwoKwsXFJV3jLTu8vLyIjY3V2HoWKvzG5Qkhcp6SnMzji5eweKEHG5UKixrVeXz2XIbHPAoOxrC4ncYkXkOH4iRE30VJTibm6HFOtuvEqU7d1Nvj8xeI3r6DU526SQNHCPFqWqqc2/Ih6ckRr2ViYkK/fv0YO3YsBQsWxNramokTJ6L1/+FWLi4u9OzZk169ejF37lwqV67M3bt3CQgIoEKFCrRs2RJ43gMydOhQFi5ciI6ODp6entSsWVM9VC0jTZo0oVatWrRr147Zs2fj4uLCrVu32L59O+3bt8fV1ZWxY8fSqVMnSpQowT///MOJEyfo2LEjACNGjKBFixa4uLjw8OFD9u/fn2mjavTo0VSrVo1p06bRtWtXjhw5wuLFi/n+++/f6vrp6+ur5xOlkaFqQuR9/676hVLTpxJ34SKPzp+n2Gc90DI05PaWrQCUmjGNhOhoIvwWARC1/neKdO+K44Rx3Fr7K4b2xSn+RT/+XfMrACnx8cRfDdc4R8rTpyTFxKZLF0II8XakkSOy5NtvvyUuLo7WrVtjamrK6NGjiY2NVe/39/fnm2++YfTo0fz7778UKlSImjVr0qpVK3UeIyMjxo8fT48ePfj333+pW7cuP//88yvPq1Kp2LFjBxMnTqRPnz7cvXsXGxsb6tWrR+HChdHW1ub+/fv06tWLO3fuUKhQITp06KAeHpaSksKQIUP4559/MDMzo3nz5syfPz/Dc1WpUoXffvuNyZMnM23aNGxtbZk6darGogNCiI/H3V170LW0xN7zS/QKFSTucijnBw0h6f+LEejb2qC80PuScPsOIQOH4DhuNG6bfiMhOpp/f1nLzZ9X5FINhBD5iUrm5GSLSlEUJbeDEPnfihUrGDFihMZv0nzMDparnNshCCGEECKb6p0/k2vnfvbrrBwr26D7+BwrO7dIT44QQgghhBB5XT6dO5NTpN9LCCGEEEIIka9II0e8Fx4eHjJUTQghhBDiTam0cm7Lh2S4mhBCCCGEEHmdSoarZUf+bLoJIYQQQgghPlrSkyOEEEIIIUReJ7+xly1ytYQQQgghhBD5ivTkCJELjK2McjsEIYQQQnxI8ukCATlFrpYQQgghhBAiX5GeHCGEEEIIIfI6+THQbJGeHCGEEEIIIUS+Ij05QgghhBBC5HUyJydb5GqJHOXt7U2lSpXey7lUKhVbtmx5L+dK4+DggJ+f33s9pxAid1m160C5XzdQefdflP7+R4xKl3llfm1jE+yGj6LChq1U3r0f11W/Ylaj1nuKVgghPk7SkyNy1JgxYxg6dGhuhyGEEO+EZcPGFPtyKJHzv+XJpYtYd+qC8+x5XOjVneSYmHT5VTo6OM/xIznmIeHeX5N09y56NjakxMW9/+CFEB82lczJyQ5p5IgcZWJigomJSW6HIYQQ70Thzl25t/0P7u/aAUDkvG8xr1Gbgi1acefXX9LlL9iiFTqmZlz2HAgpKQAk3rn9XmMWQuQT8mOg2SJXS7xSgwYNGDZsGOPGjaNAgQLY2Njg7e2t3h8ZGUnbtm0xMTHBzMyMLl26cOfOHfX+l4erBQYGUr16dYyNjbGwsKBOnTrcuHFDvX/r1q1UqVIFAwMDSpYsiY+PD8nJyW8U+82bN+nSpQsWFhYUKFCAtm3bEhERAcCePXswMDAg5qU7r8OHD6dRo0bqx4cPH6Zu3boYGhpiZ2fHsGHDePLkyRvFI4T4sKl0dDByKcWjUyf+S1QUHp8+iYlruQyPsaj9CXEXz1N8xGgqbPyDsstXY9Ozl3xZEUKIHCafsuK1Vq5cibGxMceOHWP27NlMnTqVvXv3kpqaStu2bXnw4AEHDhxg7969XLt2ja5du2ZYTnJyMu3ataN+/fqcO3eOI0eOMGDAAFT/7349dOgQvXr1Yvjw4Vy8eJEffviBFStWMH369GzHnJSUhLu7O6amphw6dIigoCBMTExo3rw5iYmJNG7cGAsLCzZu3Kg+JiUlhfXr19OzZ08AwsPDad68OR07duTcuXOsX7+ew4cP4+np+QZXUQjxodMxt0ClrUPywwca6UkPH6BboECGx+gXKYJl/QaotLS46jWGqNUrKNy5G7af9X4fIQsh8hOVKue2fEiGq4nXqlChAlOmTAHA2dmZxYsXExAQAEBISAjXr1/Hzs4OgFWrVuHq6sqJEyeoVq2aRjmPHj0iNjaWVq1a4ejoCECZMv9N2PXx8WHChAn07v38n3/JkiWZNm0a48aNU58/q9avX09qaio//fSTuhHl7++PhYUFgYGBNGvWjG7durF27Vr69esHQEBAADExMXTs2BEAX19fevbsyYgRI9R1X7hwIfXr12fJkiUYGBhkKZaEhAQSEhI00hJTU9GTO7lC5H8qFckPH3Jj7mxITSX+Sii6hQph07UHUav8czs6IYTIt+RblnitChUqaDy2tbUlOjqaS5cuYWdnp27gAJQtWxYLCwsuXbqUrpwCBQrg4eGBu7s7rVu3ZsGCBURFRan3nz17lqlTp6rn8ZiYmPDFF18QFRVFfHx8tmI+e/YsV69exdTUVF1WgQIFePbsGeHh4QD07NmTwMBAbt26BcCaNWto2bIlFhYW6jJWrFihEY+7uzupqalcv349y7H4+vpibm6usfnf+Cdb9RFC5L7k2BiUlGR0LDV7bXQtC5D04EGGxyQ9uM+zf25Caqo67dmNG+gWLIRKR+4zCiGyQaWVc1s+lD9rJd4pXV1djccqlYrUF/5hZ4e/vz9Hjhyhdu3arF+/HhcXF44ePQpAXFwcPj4+BAcHq7eQkBDCwsKy3GuSJi4uDjc3N42ygoODuXLlCj169ACgWrVqODo6sm7dOp4+fcrmzZvVQ9XSyhg4cKDG8WfPniUsLEzdE5UVXl5exMbGamx97Itlqz5CiNynJCcTfyUUsypV/0tUqTCt4kbchfMZHhN3PgT9osU0hoMY2NmReO8eyhvONxRCCPF6chtJvLEyZcpw8+ZNbt68qe7NuXjxIjExMZQtWzbT4ypXrkzlypXx8vKiVq1arF27lpo1a1KlShVCQ0NxcnJ669iqVKnC+vXrsba2xszMLNN8PXv2ZM2aNRQrVgwtLS1atmypUcbFixffOh59fX309fU10mSomhAfpju/r8dhwkSeXLlM/P+XkNYyMOD+ru0AOHh9TeLde9z6aSkAd7duxrpdR+w8RxC9eQP6xYph06MX0Zt+z81qCCE+RPLdIVvkaok31qRJE8qXL0/Pnj05ffo0x48fp1evXtSvX5+qVaumy3/9+nW8vLw4cuQIN27cYM+ePYSFhann5UyePJlVq1bh4+PDhQsXuHTpEuvWrePrr7/Odmw9e/akUKFCtG3blkOHDnH9+nUCAwMZNmwY//zzj0a+06dPM336dDp16qTRGBk/fjx///03np6eBAcHExYWxtatW2XhASE+Yg/3B/DPku8o4tGfMstWYOTkTNj40SQ/fAiAnnVhdAsWVOdPuhtN2LiRGJUuQ9mfV1LccyTRm37ndgbLTQshhHh3pCdHvDGVSsXWrVsZOnQo9erVQ0tLi+bNm7No0aIM8xsZGXH58mVWrlzJ/fv3sbW1ZciQIQwcOBAAd3d3/vzzT6ZOncqsWbPQ1dWldOnS9O/fP9uxGRkZcfDgQcaPH0+HDh14/PgxRYsWpXHjxho9O05OTlSvXp3jx4/j5+enUUaFChU4cOAAEydOpG7duiiKgqOjY6arxwkhPg53t2zk7paNGe67MjL9jx8/uXiB0CEDcjosIUR+l09XQcspKkVRlNwOQoiPzamGdXI7BCGEEEJkk9v+oFw797M9Obcio0GzPjlWdm6R4WpCCCGEEEKIfEUaOeKDsGbNGo2lnF/cXF1dczs8IYQQQoiclYd+DPS7777DwcEBAwMDatSowfHjxzPNu2zZMurWrYulpSWWlpY0adLklfnfFZmTIz4Ibdq0oUaNGhnue3mJayGEEEIIkTPWr1/PqFGjWLp0KTVq1MDPzw93d3dCQ0OxtrZOlz8wMJDu3btTu3ZtDAwMmDVrFs2aNePChQsULVo0x+KUOTlC5AKZkyOEEEJ8eHJ1Tk7Aqhwr26BxryznrVGjBtWqVWPx4sUApKamYmdnx9ChQ5kwYcJrj09JScHS0pLFixfTq1fWz5tdMlxNCCGEEEKIj1hCQgKPHj3S2BISEtLlS0xM5NSpUzRp0kSdpqWlRZMmTThy5EiWzhUfH09SUhIFChR4Z/FnRBo5QgghhBBC5HGKSpVjm6+vL+bm5hqbr69vuhju3btHSkoKhQsX1kgvXLgwt2/fzlI9xo8fT5EiRTQaSjlB5uQIIYQQQgjxEfPy8mLUqFEaaS/+QPq7MnPmTNatW0dgYCAGBgbvvPwXSSNHCCGEEEKIvE6VcwOw9PX1s9SoKVSoENra2ty5c0cj/c6dO9jY2Lzy2Dlz5jBz5kz27dtHhQoV3irerJDhakIIIYQQQuR1Kq2c27JIT08PNzc3AgIC1GmpqakEBARQq1atTI+bPXs206ZNY9euXVStWvWtLkNWSU+OEEIIIYQQIktGjRpF7969qVq1KtWrV8fPz48nT57Qp08fAHr16kXRokXVc3pmzZrF5MmTWbt2LQ4ODuq5O2m/d5hTpJEjhBBCCCFEHqe8wY925oSuXbty9+5dJk+ezO3bt6lUqRK7du1SL0YQGRmJltZ/vUNLliwhMTGRTp06aZQzZcoUvL29cyxO+Z0cIXKB/E6OEEII8eHJzd/JiT+wLsfKNqrfLcfKzi3SkyOEEEJkg1W7DhTu2gPdAgV4Gn6VyIXzib98KdP82sYmFOk/AMu69dE2NSPxzm1ufreQR8ey9psSQggB5OjCA/mRNHLEW0lMTERPT++dlqkoCikpKejo5J2XZ16MSQjx/lk2bEyxL4cSOf9bnly6iHWnLjjPnseFXt1JjolJl1+lo4PzHD+SYx4S7v01SXfvomdjQ0pc3PsPXgghPiLSJMxHGjRogKenJ56enpibm1OoUCEmTZpE2ojEhIQExowZQ9GiRTE2NqZGjRoEBgZqlHH48GHq1q2LoaEhdnZ2DBs2jCdPnqj3Ozg4MG3aNHr16oWZmRkDBgx4ZUwRERGoVCrWrVtH7dq1MTAwoFy5chw4cECdJzAwEJVKxc6dO3Fzc0NfX5/Dhw+TmpqKr68vJUqUwNDQkIoVK7Jhwwb1cQ8fPqRnz55YWVlhaGiIs7Mz/v7+wPPGl6enJ7a2thgYGGBvb6+eAJcWU3BwsLqsmJgYVCqV+nq8aUxCiPytcOeu3Nv+B/d37eDZjQgi531L6rMECrZolWH+gi1aoWNqxtWvJ/DkfAiJd24TdzaYp+FX33PkQogPnkqVc1s+JI2cfGblypXo6Ohw/PhxFixYwLx58/jpp58A8PT05MiRI6xbt45z587RuXNnmjdvTlhYGADh4eE0b96cjh07cu7cOdavX8/hw4fx9PTUOMecOXOoWLEiZ86cYdKkSVmKa+zYsYwePZozZ85Qq1YtWrduzf379zXyTJgwgZkzZ3Lp0iUqVKiAr68vq1atYunSpVy4cIGRI0fy2WefqRtIkyZN4uLFi+zcuZNLly6xZMkSChUqBMDChQvZtm0bv/32G6GhoaxZswYHB4dsX8/sxiSEyL9UOjoYuZTi0akT/yUqCo9Pn8TEtVyGx1jU/oS4i+cpPmI0FTb+Qdnlq7Hp2Qu05N+vEELkJBl7k8/Y2dkxf/58VCoVpUqVIiQkhPnz5+Pu7o6/vz+RkZEUKVIEgDFjxrBr1y78/f2ZMWMGvr6+9OzZkxEjRgDg7OzMwoULqV+/PkuWLFH/Mm2jRo0YPXp0tuLy9PSkY8eOwPNVNnbt2sXPP//MuHHj1HmmTp1K06ZNgee9TjNmzGDfvn3qdddLlizJ4cOH+eGHH6hfvz6RkZFUrlxZvd76i42YyMhInJ2d+eSTT1CpVNjb22f/Yr5BTBlJSEggISFBIy0xNRU9+ZIjxAdFx9wClbYOyQ8faKQnPXyAQfHiGR6jX6QIpjZVeLBvD1e9xqBftBjFh49Gpa1N1Cr/9xG2ECK/kO8N2SKNnHymZs2aqF7odqxVqxZz584lJCSElJQUXFxcNPInJCRQsGBBAM6ePcu5c+dYs2aNer+iKKSmpnL9+nXKlCkD8EY/4vTiD0Tp6OhQtWpVLl3SnKj7YrlXr14lPj5e3cBIk5iYSOXKlQH48ssv6dixI6dPn6ZZs2a0a9eO2rVrA+Dh4UHTpk0pVaoUzZs3p1WrVjRr1izbcWc3poz4+vri4+OjkfaFfTEGlsj4S5EQIh9RqUh++JAbc2dDairxV0LRLVQIm649pJEjhMiWvLKE9IdCGjkfibi4OLS1tTl16hTa2toa+9J+iCkuLo6BAwcybNiwdMcXf+EupbGxcY7E+GK5cf+flLt9+3aKFi2qkU9fXx+AFi1acOPGDXbs2MHevXtp3LgxQ4YMYc6cOVSpUoXr16+zc+dO9u3bR5cuXWjSpAkbNmxQr93+4urpSUlJ7ySmjHh5eTFq1CiNtAut3TPNL4TIm5JjY1BSktGxLKCRrmtZgKQHDzI8JunBfZTkZEhNVac9u3ED3YKFUOnoPN8nhBDinZNGTj5z7NgxjcdHjx7F2dmZypUrk5KSQnR0NHXr1s3w2CpVqnDx4kWcnJzeeVxHjx6lXr16ACQnJ3Pq1Kl0c31eVLZsWfT19YmMjMx0GBiAlZUVvXv3pnfv3tStW5exY8cyZ84cAMzMzOjatStdu3alU6dONG/enAcPHmBlZQVAVFSUugfmxUUI3jaml+nr66drBMlQNSE+PEpyMvFXQjGrUpXYoEPPE1UqTKu4Eb15Y4bHxJ0PoUDjps8n9v7/xoqBnR2J9+5JA0cIkT2yhHS2SCMnn4mMjGTUqFEMHDiQ06dPs2jRIubOnYuLiws9e/akV69ezJ07l8qVK3P37l0CAgKoUKECLVu2ZPz48dSsWRNPT0/69++PsbExFy9eZO/evSxevPit4vruu+9wdnamTJkyzJ8/n4cPH9K3b99M85uamjJmzBhGjhxJamoqn3zyCbGxsQQFBWFmZkbv3r2ZPHkybm5uuLq6kpCQwJ9//qkeUjdv3jxsbW2pXLkyWlpa/P7779jY2GBhYYGWlhY1a9Zk5syZlChRgujoaL7++uvX1iErMQkh8rc7v6/HYcJEnly5TPz/l5DWMjDg/q7tADh4fU3i3Xvc+mkpAHe3bsa6XUfsPEcQvXkD+sWKYdOjF9Gbfs/NagghRL4njZx8plevXjx9+pTq1aujra3N8OHD1cs8+/v788033zB69Gj+/fdfChUqRM2aNWnV6vnSpxUqVODAgQNMnDiRunXroigKjo6OdO3a9a3jmjlzJjNnziQ4OBgnJye2bdumXgktM9OmTcPKygpfX1+uXbuGhYUFVapU4auvvgJAT08PLy8vIiIiMDQ0pG7duqxb9/zXgE1NTZk9ezZhYWFoa2tTrVo1duzYoR6qtnz5cvr164ebmxulSpVi9uzZWZqz87qYhBD528P9AeiYW1DEo///fww0jLDxo0l++BAAPevCKKkvDIW9G03YuJEUGzKcsj+vJOnuPaI3/c7tX3/JrSoIIT5QivTkZItKeXFigvigNWjQgEqVKuHn55fboahFRERQokQJzpw5Q6VKlXI7nDzjVMM6uR2CEEIIIbLJbX9Qrp077ui2HCvbpGabHCs7t0hPjhBCCCGEEHmdrK6WLdLvJd7KjBkzMDExyXBr0aJFbocnhBBCCCE+QjJcTbyVBw8e8CCTpVMNDQ3TLbUsnpPhakIIIcSHJzeHqz0+vj3Hyjat3jLHys4tMlxNvJUCBQpQoECB12cUQgghhBBvToarZYsMVxNCCCGEEELkK9KTI4QQQgghRF4nS0hnizRyhMgFhhYGuR2CEEIIIUS+JY0cIYQQQggh8jhF5uRki/R7CSGEEEIIIfIV6ckRQgghhBAir5M5OdkiV0sIIYQQQgiRr0gjR+QZK1aswMLC4p2UFRgYiEqlIiYm5p2Ul9vnEUIIIcTHTUGVY1t+JMPVxFvx8PAgJiaGLVu25HYoQgjxzlm2aEvBdl3QsShAQkQ4UT8t4llYaIZ5zRu6U3TYOI201MRELndtoZGmV6w4hT//AiPXCqi0tUm4eYObs31IvhedY/UQQnz4FBmuli3SyBFCCCEyYFanAYX7DCJqqR9Pr1ymYOsO2E+exVVPD1JiYzI8JuVJHFc9Pf5LUDT369rY4jBjATH7dnJ33UpSnj5B384BJSkxx+ohhBAfI2kSiizZsGED5cuXx9DQkIIFC9KkSRPGjh3LypUr2bp1KyqVCpVKRWBgYIZDuIKDg1GpVERERKjTVqxYQfHixTEyMqJ9+/bcv39fvS8iIgItLS1OnjypEYefnx/29vakpqZmuw4bN27E1dUVfX19HBwcmDt3rsb+1atXU7VqVUxNTbGxsaFHjx5ER2veWd2xYwcuLi4YGhrSsGFDjfoIIfKXgm06EbN3B7F/7SbxnxtELfUjNSEBi8bNX3lcSszD/7bYhxr7rHv0I+7UMaJX/ciz61dJuh1F3IkjmTaahBBCTaWVc1s+lD9rJd6pqKgounfvTt++fbl06RKBgYF06NCBKVOm0KVLF5o3b05UVBRRUVHUrl07S2UeO3aMfv364enpSXBwMA0bNuSbb75R73dwcKBJkyb4+/trHOfv74+HhwdaWtl76Z46dYouXbrQrVs3QkJC8Pb2ZtKkSaxYsUKdJykpiWnTpnH27Fm2bNlCREQEHh4e6v03b96kQ4cOtG7dmuDgYPr378+ECROyFYcQ4gOho4OBowtPzp7+L01ReHLuNEalymZ6mJaBIU4/rMV52a/YeU1F387+v50qFSZVa5B46x+KT56Jy4oNlJi1GNPqdXKwIkII8XGS4WritaKiokhOTqZDhw7Y2z//h12+fHkADA0NSUhIwMbGJltlLliwgObNmzNu3PPx6y4uLvz999/s2rVLnad///4MGjSIefPmoa+vz+nTpwkJCWHr1q3ZrsO8efNo3LgxkyZNUp/v4sWLfPvtt+qGTN++fdX5S5YsycKFC6lWrRpxcXGYmJiwZMkSHB0d1T1ApUqVIiQkhFmzZr3y3AkJCSQkJGikJaakoqct9xiEyKt0TM1RaWuT/FJPTHLMQ/SL2mV4TOKtm9xa/C3PIq6hbWxMwbZdcPBdSPjwfiTfv4e2uQXahkYU6tCN6LX+3Fm1DJMq1Sg23psbk0cTf+Hc+6iaEOIDJT8Gmj3yLUu8VsWKFWncuDHly5enc+fOLFu2jIcPH77+wFe4dOkSNWrU0EirVauWxuN27dqhra3N5s2bgefD2xo2bIiDg8Mbna9OHc27pXXq1CEsLIyUlBTgeW9P69atKV68OKamptSvXx+AyMjILMecEV9fX8zNzTW2ZVcisl0HIUTe9jT0IrGBe0mICCf+wjluzppCyqNYLJu1AkD1/yEhj4//zYM/NpIQEc79TeuIO3kUS/fWuRm6EELkO9LIEa+lra3N3r172blzJ2XLlmXRokWUKlWK69evZ5g/bSiZovw34zYpKSnb59XT06NXr174+/uTmJjI2rVrNXpb3qUnT57g7u6OmZkZa9as4cSJE+rGVWLi200I9vLyIjY2VmP7wsXhHUQthMgpyY9jUVJS0DG31EjXsbAkOeZB1gpJSeHZ9avo2Rb9r8zkZBJu3tDIlvBPJLqFrN9J3EKI/EtRaeXYlh/lz1qJd06lUlGnTh18fHw4c+YMenp6bN68GT09PXVPSBorKyvg+TC3NMHBwRp5ypQpw7FjxzTSjh49mu68/fv3Z9++fXz//ffqIXNvokyZMgQFBWmkBQUF4eLigra2NpcvX+b+/fvMnDmTunXrUrp06XSLDpQpU4bjx4+/NuaX6evrY2ZmprHJUDUh8rjkZJ6FX8G4QuX/0lQqjMtXJj70YtbK0NJCv3gJkh8+UJf59Gooei8Nd9MrUoyku3feUeBCCCFAGjkiC44dO8aMGTM4efIkkZGRbNq0ibt371KmTBkcHBw4d+4coaGh3Lt3j6SkJJycnLCzs8Pb25uwsDC2b9+ebiWzYcOGsWvXLubMmUNYWBiLFy/WmI+TpkyZMtSsWZPx48fTvXt3DA0N36gOo0ePJiAggGnTpnHlyhVWrlzJ4sWLGTNmDADFixdHT0+PRYsWce3aNbZt28a0adM0yhg0aBBhYWGMHTuW0NBQ1q5dq7FwgRAif7m/bQMWTVti3rAZesWKYztwBFoGBsQE7AagyLDxWH/WT52/UJfPMa7ohm5hWwxKOlN0hBe6VoV5uHfHf2VuWY95nQZYNP0UXZsiWLZoi2m1WjzYte29108I8YFRqXJuy4ekkSNey8zMjIMHD/Lpp5/i4uLC119/zdy5c2nRogVffPEFpUqVomrVqlhZWREUFISuri6//vorly9fpkKFCsyaNUtj5TSAmjVrsmzZMhYsWEDFihXZs2cPX3/9dYbn79evH4mJiW81VK1KlSr89ttvrFu3jnLlyjF58mSmTp2qXnTAysqKFStW8Pvvv1O2bFlmzpzJnDlzNMooXrw4GzduZMuWLVSsWJGlS5cyY8aMN45JCJG3PQoK5M6KpVh186DkvB8wKOFI5NQJ6mWhda2s0bEsqM6vbWyC7eDROC5aTvGvZ6BlaESE1zAS//lveNrjY0FE/eBHwXZdcfT7Ccumn3JztjdPL51/7/UTQnxYZLha9qiUFydOCJEHTZs2jd9//51z5/LPykMX2zfO7RCEEEIIkU1lNwfk2rnvn/87x8ouWC5rPwHyIZElpEWeFRcXR0REBIsXL07XEySEEEII8TFRyJ/DynJK/uyfEvmCp6cnbm5uNGjQIN1QtUGDBmFiYpLhNmjQoFyKWAghhBBC5AUyXE18kKKjo3n06FGG+8zMzLC2ztvLscpwNSGEEOLDk5vD1e5eOPb6TG/IyrXG6zN9YGS4mvggWVtb5/mGjBBCCCGEyB3SyBFCCCGEECKvy6dLPecUmZMjhBBCCCGEyFekJ0eIXKDSkvsLQgghhMg6RfomskUaOUIIIYQQQuRxigxXyxZpEgohhBBCCCHyFenJEUIIIYQQIo9TVNI3kR1ytYQQQgghhBD5ijRy8jAHBwf8/PyylFelUrFly5YcjSciIgKVSkVwcPAr8zVo0IARI0a88XleV5fAwEBUKhUxMTFvfA4hhBBCiA+JgirHtvxIhqu9ByqVis2bN9OuXbvcDuWdCgwMpGHDhjx8+BALC4v3dt7atWsTFRWFubn5a/PmVoxCiPzBsnkbCrTtjI5FARIiwrn983c8uxqaYV7zhs0o4jlWIy01MZHQ7i3Vj209x2LRsJlGnrgzJ7j5zVfvPnghhPiISSNHfHD09PSwsbF5r+dUFIWUlBR0dOQtI8THwrR2faw9BnL7h4U8DbtEgVYdKD7Jl/ChfUl5FJPhMSlPnhA+rM9/CYqSLk/c6ePc+m7Of1mSkt516EKIfEjm5GTPR3W1GjRowNChQxkxYgSWlpYULlyYZcuW8eTJE/r06YOpqSlOTk7s3LlTfcz58+dp0aIFJiYmFC5cmM8//5x79+5plDls2DDGjRtHgQIFsLGxwdvbW73fwcEBgPbt26NSqdSPw8PDadu2LYULF8bExIRq1aqxb9++t6rfvXv3aN++PUZGRjg7O7Nt2zaN/a+ry65du/jkk0+wsLCgYMGCtGrVivDw8AzPFRERQcOGDQGwtLREpVLh4eGh3p+amprpNXnburw8XO3GjRu0bt0aS0tLjI2NcXV1ZceOHa+MMSEhgWHDhmFtbY2BgQGffPIJJ06cSHeOnTt34ubmhr6+Pr/88gtaWlqcPHlSI1Y/Pz/s7e1JTU3NVh2FEHlbwdYdidm3k9j9u0n8J5LbPywgNSEBi8burzhKISXm4X9bbEz6HMlJGnlSn8TlWB2EEOJj9VE1cgBWrlxJoUKFOH78OEOHDuXLL7+kc+fO1K5dm9OnT9OsWTM+//xz4uPjiYmJoVGjRlSuXJmTJ0+ya9cu7ty5Q5cuXdKVaWxszLFjx5g9ezZTp05l7969AOovzv7+/kRFRakfx8XF8emnnxIQEMCZM2do3rw5rVu3JjIy8o3r5uPjQ5cuXTh37hyffvopPXv25MGDBwBZqsuTJ08YNWoUJ0+eJCAgAC0tLdq3b5/hl3c7Ozs2btwIQGhoKFFRUSxYsCBL1+Rt6/KyIUOGkJCQwMGDBwkJCWHWrFmYmJi8MsZx48axceNGVq5cyenTp3FycsLd3T3dOSZMmMDMmTO5dOkSbf7H3n3H13T/Dxx/3aybcbOFGJEYSQRBiF17JJTWaClam2qlZijVmq2gSc0OpRVUv9patWtUlCBmgkqDEDFCEBEZMu69vz/yc/U2Q4JIxPv5eJxHe8/5fD7nfQ6S+z6fcd54g/bt27NixQq9MitWrGDgwIEYyAs+hSg9jIwwreZGyumTj/dptaScPomZW808qxmYmlH9u5+ovnQNlT6egYmTc44y5rXq4vrjr1Rd9COOw0dhqLIsiisQQpQyWoWiyLbSSKHV5tKXXkq1bt0atVrNgQMHAFCr1VhbW9OjRw9WrVoFwM2bNylfvjyHDx9mz549HDhwgD/++EPXxrVr13ByciIqKgo3N7ccbQI0atSItm3bMmfOHKDgc3Jq167NiBEj8PPzA7J7gcaMGVOgSfwKhYJPP/2UWbNmAdkJi0qlYseOHfj6+vL5558/8Vr+686dOzg4OHDmzBlq165NTEwMVapU4dSpU9SrVy/P+S4FuSfPci3/PW+dOnXo2bMn06ZNy9FWbjGmpKRga2tLcHAwffv2BSAzM1N3vydMmKCrt2nTJt58801de7/++isjRowgLi4OpVLJyZMn8fb25tKlS7peuoKI7NmhwGWFEC+eka09rsvXEjN5FGnnI3X7y743FPOadYiZPCpHHTM3D0zKV+ThlcsYmltg9+ZbmHvU4dKYoWQlZPeaWzVvjSY9ncz4OIwdK1C272A0D9OI+WQ0SG+wECWex/qCP7B93q6fP1NkbVd08yyytovLK/fouU6dOrr/NzQ0xN7eHk/Px3+w5cqVAyA+Pp6IiAj27duHSqXSbTVq1ADQG8b17zYBypcvT3x8fL5xJCcn4+/vj4eHBzY2NqhUKiIjI5+pJ+ffcVhYWGBlZaWLoyDXcuHCBfr06UPVqlWxsrLSfWl/mpie5p4U9Fr+a9SoUXz++ec0b96cadOmcfr06Xzbjo6OJjMzk+bNm+v2GRsb06hRIyIjI/XKent7633u1q0bhoaGbNy4EYDg4GDatGmTb4KTnp5OUlKS3pahli8zQpQ2aecjub9/D+kx0aSeO821eTNQJyVi2/HxwgNJoSEkHz9MemwMyUcPcTXgU8xca2Beq24xRi6EeBnI6mqF88olOcbGxnqfFQqF3j7F/3fZaTQakpOT6dq1K+Hh4XrbhQsXaNmyZb5tPml+hr+/Pxs3bmT27NkcOHCA8PBwPD09ycjIeK7X9iiOglxL165dSUhIYNmyZYSFhREWFgbwVDE9zT152vpDhw7l0qVLvPfee5w5cwZvb28WL15c6JhzY2FhoffZxMSE/v37s2LFCjIyMvj5558ZPHhwvm0EBARgbW2tt30fdfm5xCeEKBpZD+6jVasxtLHV229obUtW4r2CNaJW8/ByNMblK+ZZJPPWTbLuJ2LiWOFZwhVCvAK0CoMi20qj0nlVz0n9+vX5+++/cXFxoXr16nrbf7/85sfY2Bi1Wq23LzQ0lIEDB9K9e3c8PT1xdHQkJibmOV/BY0+6lrt37xIVFcWnn35Ku3bt8PDw4N69/H+Rm5iYAOS4tuLg5OTEiBEj2LBhA+PHj2fZsmVA7jFWq1YNExMTQkNDdfsyMzM5duwYNWvmPdb+kaFDh7Jnzx6++eYbsrKy6NGjR77lJ0+ezP379/W24e5VnuYyhRAvSlYWD6PPY+Hp9XifQoFFHS/Szp8rWBsGBiidXci6dzfPIkZ2ZTC0tCLrXu5zDoUQQjwdSXLyMXLkSBISEujTpw/Hjh0jOjqaP/74g0GDBhXqi72Liwt79+7l5s2busTB1dWVDRs2EB4eTkREBH379i3S1bmedC22trbY29vz/fffc/HiRf7880/GjRuXb5vOzs4oFAq2bt3K7du3SU4unhWCxowZwx9//MHly5c5efIk+/btw8PDI88YLSws+OCDD5gwYQI7d+7k3LlzDBs2jNTUVIYMGfLE83l4eNCkSRM+/vhj+vTpg5mZWb7llUolVlZWepuJofzTE6Kku7tlPTbtO2PdugMmFSvjOHwUBkpTEv/MnttY/qOJOPR73JNb5u13sajbAONyjphWqU6F0ZMwLlOOxD3ZK3YqTE0p238Ypq4eGDuUw9zTi0qTZpBx8wYp4cdzjUEIIR4pScPVvv76a1xcXDA1NaVx48YcPXo03/K//fYbNWrUwNTUFE9PT7Zv3/60t6HA5JtWPipUqEBoaChqtZqOHTvi6enJmDFjsLGxKdRKWkFBQezevRsnJye8vLKfCn711VfY2trSrFkzunbtio+PD/Xr1y+qS3nitRgYGLB27VpOnDhB7dq1GTt2LF9++WW+bVasWJEZM2YwadIkypUrp1sw4UVTq9WMHDkSDw8PfH19cXNz45tvvsk3xjlz5tCzZ0/ee+896tevz8WLF/njjz+wtbXN71Q6Q4YMISMj44lD1YQQL68Hh/YTv+p7HN4ZQJWgbzF1qUbs55/oloU2LlMWI1t7XXkDCxXlPxhL1YU/4DTlCwzNzImZMpqMa/8/r1GjQelcFafJM6i2eAXlPxzHw0sXuPLpWLRZ8q4cIcTL4ZdffmHcuHFMmzaNkydPUrduXXx8fPKcO33o0CH69OnDkCFDOHXqFN26daNbt26cPXu2SON8pVZXE+J5mTVrFr/99tsTFznIi6yuJoQQQrx8inN1tSsXo4qsbefq7gUu27hxYxo2bMiSJUuA7HnsTk5OfPTRR0yaNClH+d69e5OSksLWrVt1+5o0aUK9evX47rvvnj34PEhPjhCFkJyczNmzZ1myZAkfffRRcYcjhBBCCPHMclsJNj09PUe5jIwMTpw4Qfv27XX7DAwMaN++PYcPH8617cOHD+uVB/Dx8cmz/PMiSc5LYM2aNXpLP/97q1WrVnGHVygv+7X4+fnRoEEDWrduLUPVhBBCCPHCFOWcnNxWgg0ICMgRw507d1Cr1bpXrjxSrlw5bt68mWvcN2/eLFT558WoSFsXz8Ubb7xB48aNcz3236WWS7qX/VqCg4MJDg4u7jCEEEIIIZ6byZMn51hwSqlUFlM0z4ckOS8BS0tLLC0tizuM56I0XYsQQgghxItSlO+zUSqVBUpqypQpg6GhIbdu3dLbf+vWLRwdHXOt4+joWKjyz4sMVxNCCCGEEKKEKwlLSJuYmNCgQQP27t2r26fRaNi7dy9NmzbNtU7Tpk31ygPs3r07z/LPi/TkCCGEEEIIIQpk3LhxDBgwAG9vbxo1asSCBQtISUlh0KBBAPTv35+KFSvq5vSMHj2aVq1aERQUxOuvv87atWs5fvw433//fZHGKUmOEMXAzNa8uEMQQgghxEtEqyj8SzuLQu/evbl9+zZTp07l5s2b1KtXj507d+oWF4iNjdV7n2SzZs34+eef+fTTT/nkk09wdXVl06ZN1K5du0jjlPfkCFEMYoa+WdwhCCGEEKKQXJb/Xmznjr50qcjarla1apG1XVykJ0cIIYQQQogSTqstGT05LwtZeEAIIYQQQghRqkhPjhBCCCGEECWcVvomCkXu1nPQunVrxowZU9xh6BQkHoVCwaZNm15IPEVt4MCBdOvWLd8yJe3PSAghhBBCFB3pyXmJhYSE0KZNG+7du4eNjU2h6sbFxWFra1s0gQkhRClh2aYz1j7dMLS2JeNqDHf/9z0Zly/kWlbVrC1lBo/W26fNzODKB2/rPpvXb4JlK19MnKthqLLixowxZFy9XKTXIIQoHQrzPhshSU6xyMjIwMTEpFhjKOq3zD4PJeE+CSFeXeYNX8Ou12Du/vQt6ZfOY9W+K+XGTOf6px+ieXA/1zqa1BSuf/qh7rMW/QVMFSamPLwQScrxUMoM8CvS+IUQpYskOYUjw9Wek6ysLPz8/LC2tqZMmTJ89tlnPFqd28XFhVmzZtG/f3+srKwYPnw4AAcPHqRFixaYmZnh5OTEqFGjSElJ0bW5evVqvL29sbS0xNHRkb59+xIfHw9ATEwMbdq0AcDW1haFQsHAgQN1dTUaDRMnTsTOzg5HR0emT5+uF++/h6vFxMSgUCjYsGEDbdq0wdzcnLp163L48GG9OsuWLcPJyQlzc3O6d+/OV199VeAepOnTp1OvXj2WLl2qa6NXr17cv//4i8KjYWdffPEFFSpUwN3dHYAzZ87Qtm1bzMzMsLe3Z/jw4SQnJ+c4x4wZM3BwcMDKyooRI0aQkZGRZzzp6en4+/tTsWJFLCwsaNy4MSEhIbrjwcHB2NjYsHXrVtzd3TE3N+ett94iNTWVlStX4uLigq2tLaNGjUKtVhfoHgghXi7WHd7kwYFdJIfuJTPuKnd/+hZtRjqWr7XPp5YWdVKibtMk6SdDKUdCuL/1Fx6eiyja4IUQ4hUnSc5zsnLlSoyMjDh69CgLFy7kq6++Yvny5brjgYGB1K1bl1OnTvHZZ58RHR2Nr68vPXv25PTp0/zyyy8cPHgQP7/HT/YyMzOZNWsWERERbNq0iZiYGF0i4+TkxPr16wGIiooiLi6OhQsX6sVjYWFBWFgY8+bNY+bMmezevTvfa5gyZQr+/v6Eh4fj5uZGnz59yMrKAiA0NJQRI0YwevRowsPD6dChA1988UWh7tHFixf59ddf2bJlCzt37uTUqVN8+OGHemX27t1LVFQUu3fvZuvWraSkpODj44OtrS3Hjh3jt99+Y8+ePXr36VG9yMhIQkJC+N///seGDRuYMWNGnrH4+flx+PBh1q5dy+nTp3n77bfx9fXlwoXHw1BSU1NZtGgRa9euZefOnYSEhNC9e3e2b9/O9u3bWb16NUuXLmXdunWFug9CiJeAoREmztX0kxGtloeRESiruudZTaE0o9LcZVSa9wNlR36CcQWnFxCsEOJVoEVRZFtpJMPVnhMnJyfmz5+PQqHA3d2dM2fOMH/+fIYNGwZA27ZtGT9+vK780KFD6devn24yvKurK4sWLaJVq1Z8++23mJqaMnjwYF35qlWrsmjRIho2bEhycjIqlQo7OzsAypYtm6NHpU6dOkybNk3X9pIlS9i7dy8dOnTI8xr8/f15/fXXgexekVq1anHx4kVq1KjB4sWL6dSpE/7+/gC4ublx6NAhtm7dWuB79PDhQ1atWkXFihUBWLx4Ma+//jpBQUG64XMWFhYsX75cN0xt2bJlunoWFhYALFmyhK5duzJ37lzd23VNTEz48ccfMTc3p1atWsycOZMJEyYwa9YsvbfuQvabeFesWEFsbCwVKlTQXfvOnTtZsWIFs2fPBrKTzG+//ZZq1aoB8NZbb7F69Wpu3bqFSqWiZs2atGnThn379tG7d+8C3wchRMlnqLJCYWiIOilRb786KRFjx0q51sm8eZ07wYvJvBaDwswca59ulJ80l+vTPkJ97+4LiFoIIcQj0pPznDRp0gSF4nEm3LRpUy5cuKAbyuTt7a1XPiIiguDgYFQqlW7z8fFBo9Fw+XL2JNQTJ07QtWtXKleujKWlJa1atQKyv6Q/SZ06dfQ+ly9fXjfUrSB1ypcvD6CrExUVRaNGjfTK//fzk1SuXFmX4ED2PdJoNERFRen2eXp66s3DiYyMpG7duroEB6B58+Y56tWtWxdzc3O9tpOTk7l69WqOOM6cOYNarcbNzU3v/u/fv5/o6GhdOXNzc12CA1CuXDlcXFxQqVR6+550X9PT00lKStLb0mWImxClTvqlKFIO7yPj6mXSz/9N/DdzUCcnYdnSp7hDE0KUAtKTUzjSk/OC/PtLOkBycjLvv/8+o0aNylG2cuXKumFaPj4+rFmzBgcHB2JjY/Hx8cl3rskjxsbGep8VCgUajabAdR4lbE+q87z99z4VheTkZAwNDTlx4gSGhoZ6x/6dwOR2D5/mvgYEBOQYOjfay40x9Ws8TfhCiBdAnZyEVq3G0MpGb7+hlQ3q+/cK2IiajNhLGJUt//wDFEIIkS9Jcp6TsLAwvc9HjhzB1dU1x5foR+rXr8+5c+eoXr16rsfPnDnD3bt3mTNnDk5O2WO6jx8/rlfmUY/Hi5j47u7uzrFjx/T2/ffzk8TGxnLjxg3dELEjR45gYGCgW2AgNx4eHgQHB5OSkqJLgEJDQ3PUi4iIIC0tDTMzM13bKpVKd+/+zcvLC7VaTXx8PC1atCjUNTyNyZMnM27cOL19caP7Fvl5hRDPQJ1FxpVoTD3qkBr+/z/fFQpMa9Thwb7tBWtDYYBJRWdSz5woujiFEK8MrbZ09rgUFRmu9pzExsYybtw4oqKi+N///sfixYsZPXp0nuU//vhjDh06hJ+fH+Hh4Vy4cIHff/9dN6G+cuXKmJiYsHjxYi5dusTmzZuZNWuWXhvOzs4oFAq2bt3K7du3c11x7Hn56KOP2L59O1999RUXLlxg6dKl7NixQ2+I3pOYmpoyYMAAIiIiOHDgAKNGjaJXr175Lmfdr18/Xb2zZ8+yb98+PvroI9577z3dfBzIXm56yJAhnDt3ju3btzNt2jT8/PxyzMeB7PlE/fr1o3///mzYsIHLly9z9OhRAgIC2LZtW+FuTAEolUqsrKz0NmUeya8QouS4v/t3LFt2xKJZG4zLV8L+3REolKY8CN0DQJnBY7Dp8Z6uvHWX3pjWrIdRmXKYVK5KmaFjMbR3IPnA40VfDCxUmDhV0S1IYORYEROnKjl6jIQQQjwb6cl5Tvr3709aWhqNGjXC0NCQ0aNH65aKzk2dOnXYv38/U6ZMoUWLFmi1WqpVq6abwO7g4EBwcDCffPIJixYton79+gQGBvLGG2/o2qhYsSIzZsxg0qRJDBo0iP79+xMcHFwk19e8eXO+++47ZsyYwaeffoqPjw9jx45lyZIlBW6jevXq9OjRg86dO5OQkECXLl345ptv8q1jbm7OH3/8wejRo2nYsCHm5ub07NmTr776Sq9cu3btcHV1pWXLlqSnp9OnT58cy2b/24oVK/j8888ZP348169fp0yZMjRp0oQuXboU+HqEEKVb6rGDJKissH2zL4ZWtmRcvcytBTN0y0Ib2ZcB7ePhqgYWKsoMGImhlS2a1GTSr0RzM+BjMuMezw00r9tI74WhZd+fAEDi5v+RuHntC7oyIcTLqLTOnSkqCu2jl7kIUUjDhg3jn3/+4cCBA08sO336dDZt2kR4eHjRB/YSiBn6ZnGHIIQQQohCcln+e7Gd++zFm0XWdu3qJf8l8YUlPTmiwAIDA+nQoQMWFhbs2LGDlStXPrEnRgghhBBCiBdNkhxRYEePHmXevHk8ePBA996eoUOHAlCrVi2uXLmSa72lS5e+yDCFEEIIIUodGa5WODJcTTwXV65cITMzM9dj5cqVw9LS8gVHVLLJcDUhhBDi5VOcw9XOXLxVZG17Vi/35EIvGenJEc+Fs7NzcYcghBBCCFFqyRLShSNLSAshhBBCCCFKFenJEUIIIYQQooTTyJycQpEkR4hiYFnJobhDEEIIIYQotSTJEUIIIYQQooST1dUKR5IcIYQQQgghSjhZeKBwZOEBIYQQQgghRKkiPTlCCCGEEEKUcDJcrXCkJ+cl07p1a8aMGZPncRcXFxYsWFDkcSgUCjZt2lTk5xFCCCGEEKKwpCdHCCGEyIOyYRvMmvtgoLIm6+ZVUnf8j6zrl59Yz6R2Qyzfep+Mf07xYO3X2TsNDDFv2w1jV08MbR3QpqeReekcKXvWo31wv4ivRAjxspM5OYUjPTmixNFqtWRlZRV3GHpKYkxCiKJlUqshFj69SAvZwv2lM1Hfuorlu2NQWFjmW8/Axh7zjm+TeeW83n6FsQmG5Z1J+2sriUtn8uCXbzCwd8Sqz0dFeRlCCPFKkiTnJZSVlYWfnx/W1taUKVOGzz77DK1Wm2vZ2NhY3nzzTVQqFVZWVvTq1Ytbt27plfn222+pVq0aJiYmuLu7s3r1ar3jFy5coGXLlpiamlKzZk12795d4FhjYmJQKBSsXbuWZs2aYWpqSu3atdm/f7+uTEhICAqFgh07dtCgQQOUSiUHDx5Eo9EQEBBAlSpVMDMzo27duqxbt05X7969e/Tr1w8HBwfMzMxwdXVlxYoVAGRkZODn50f58uUxNTXF2dmZgIAAvZjCw8N1bSUmJqJQKAgJCXmmmIQQpYdp0w6knzxAengo6ttxpGz9CTIzUHq9lnclhQJVj2Gk7duM+t5tvUPa9DQerP6KjL+Po7l7i6xrl0jZ/jNGFVwwsLYr4qsRQrzstCiKbCuNZLjaS2jlypUMGTKEo0ePcvz4cYYPH07lypUZNmyYXjmNRqNLcPbv309WVhYjR46kd+/eui/zGzduZPTo0SxYsID27duzdetWBg0aRKVKlWjTpg0ajYYePXpQrlw5wsLCuH//fr5zgvIyYcIEFixYQM2aNfnqq6/o2rUrly9fxt7eXldm0qRJBAYGUrVqVWxtbQkICOCnn37iu+++w9XVlb/++ot3330XBwcHWrVqxWeffca5c+fYsWMHZcqU4eLFi6SlpQGwaNEiNm/ezK+//krlypW5evUqV69eLXTchY1JCFFKGBpiVMGZtIPbH+/Tasm4FIlxpao8zKOaWauuaFOSSD91ECNn1yeexsDUDK1Wg/Zh6vOJWwghBCBJzkvJycmJ+fPno1AocHd358yZM8yfPz9HkrN3717OnDnD5cuXcXJyAmDVqlXUqlWLY8eO0bBhQwIDAxk4cCAffvghAOPGjePIkSMEBgbSpk0b9uzZwz///MMff/xBhQoVAJg9ezadOnUqVMx+fn707NkTyO452rlzJz/88AMTJ07UlZk5cyYdOnQAID09ndmzZ7Nnzx6aNm0KQNWqVTl48CBLly6lVatWxMbG4uXlhbe3N5C96MIjsbGxuLq68tprr6FQKHB2di5UvE8bkxCidFCYq1AYGKJNTtLbr01JQlHGMdc6RpWro6z/Gve/m1mwkxgZYd7+LTLOHEWbnlfaJIQQ2WROTuHIcLWXUJMmTVAoHv9Fb9q0KRcuXECtVuuVi4yMxMnJSZfgANSsWRMbGxsiIyN1ZZo3b65Xr3nz5nrHnZycdAnOo/MV1r/rGBkZ4e3trTvHI4+SFYCLFy+SmppKhw4dUKlUum3VqlVER0cD8MEHH7B27Vrq1avHxIkTOXTokK7+wIEDCQ8Px93dnVGjRrFr165Cx/w0MeUmPT2dpKQkvS09S51neSHES8hEiar7EFI2r0Kbmvzk8gaGWL49AhSQsu2noo9PCPHS0xThVhpJT44oMSwsLHT/n5yc/SVh27ZtVKxYUa+cUqkEoFOnTly5coXt27eze/du2rVrx8iRIwkMDKR+/fpcvnyZHTt2sGfPHnr16kX79u1Zt24dBgbZuf2/5zFlZmY+l5hyExAQwIwZM/T2TWjlxcet6+dZRwhRvLSpyWg1ahQqK739CgsrtMk5V0IztCuLoa0Dln3/tYjA/z+Mspu6lMTFn6J5NEfHwBDLt9/HwNqepJWB0osjhBBFQJKcl1BYWJje5yNHjuDq6oqhoaHefg8PD91clEe9OefOnSMxMZGaNWvqyoSGhjJgwABdvdDQUL3jV69eJS4ujvLly+vOV1hHjhyhZcuWQPbCCSdOnMDPzy/P8jVr1kSpVBIbG5vvMDAHBwcGDBjAgAEDaNGiBRMmTCAwMBAAKysrevfuTe/evXnrrbfw9fUlISEBBwcHAOLi4vDy8gLQW4TgWWP6r8mTJzNu3Di9fcnzRhe4vhCiGKjVZN24gnEVDzL/Cc/ep1BgXLUGD4/uy1n8ThyJ30zV22fetjsKE1NSdv4PTVJC9s5HCY59OZKCv0SbllLEFyKEKC1kuFrhSJLzEoqNjWXcuHG8//77nDx5ksWLFxMUFJSjXPv27fH09KRfv34sWLCArKwsPvzwQ1q1aqUbhjVhwgR69eqFl5cX7du3Z8uWLWzYsIE9e/bo2nBzc2PAgAF8+eWXJCUlMWXKlELH/PXXX+Pq6oqHhwfz58/n3r17DB48OM/ylpaW+Pv7M3bsWDQaDa+99hr3798nNDQUKysrBgwYwNSpU2nQoAG1atUiPT2drVu34uHhAcBXX31F+fLl8fLywsDAgN9++w1HR0dsbGwwMDCgSZMmzJkzhypVqhAfH8+nn376xGsoSEy5USqVOXp6Mo0Mcy0rhCg5Hh7ejar7YNQ3rpB1/TKmTdqjMFaSfioUAFX3wWiSEknduwGyslDH39Crr3mYigE83m9giGWvERiWd+bBz4vAwEDXU6RNSwG1DGMVQojnRZKcl1D//v1JS0ujUaNGGBoaMnr0aIYPH56jnEKh4Pfff+ejjz6iZcuWGBgY4Ovry+LFi3VlunXrxsKFCwkMDGT06NFUqVKFFStW0Lp1awAMDAzYuHEjQ4YMoVGjRri4uLBo0SJ8fX0LFfOcOXOYM2cO4eHhVK9enc2bN1OmTJl868yaNQsHBwcCAgK4dOkSNjY21K9fn08++QQAExMTJk+eTExMDGZmZrRo0YK1a9cC2QnJvHnzuHDhAoaGhjRs2JDt27frhqr9+OOPDBkyhAYNGuDu7s68efPo2LHjE6/jSTEJIUqPjL+PkWqhwqzNmxiorMi6eZUHPy1Am5K9GIGBtX2ey/fnxsDKBpMa2b3HNh9M1zt2P/hLsmKinlvsQojSp7Qu9VxUFNrC/IQWopBiYmKoUqUKp06dol69esUdTolxd/rQ4g5BCCGEEIVkP315sZ37UOSDImu7mUf+Lzl+GUlPjhBCCCGEECWczMkpHFlCWjyT2bNn6y2n/O+tsO/SEUIIIYQQ4nmQnhzxTEaMGEGvXr1yPWZmZkbFihULNWZdCCGEEELkJHNyCkeSHPFM7OzssLOzK+4whBBCCCFKNY08My4UGa4mhBBCCCGEKFWkJ0cIIYQQQogSToarFY4kOUIUg+B6y4o7BCGEEEIU0vjiDkAUmCQ5QgghhBBClHCyhHThyJwcIYQQQgghRKkiPTlCCCGEEEKUcPJGjsKRnhwhhBBCCCFEqSJJTgnQunVrxowZA4CLiwsLFix4qrqlWXBwMDY2NrrP06dPp169evnWiYmJQaFQEB4eXqSxCSGEEEIUNQ2KIttKIxmuVsIcO3YMCwuLApffsGEDxsbGRRhRyeTv789HH32k+zxw4EASExPZtGmTbp+TkxNxcXGUKVOmGCIUQpQWWq2WE7sXE3n0NzLSknB0qc9r3adhXcYlzzrnDv+Pc0f+x4N71wGwLVed+u1GUrlGSwAeJFzjf3Pb51q3fb8FVK3j+9yvQwjxcpOFBwpHkpwSxsHBoVDl7ezsiiiSkk2lUqFSqfItY2hoiKOj4wuKSAhRWkXsX87Z0NW07jUHS7tKHN+1kO0/DOXtcdswMlbmWsfCuhyNOo3HuowzWq2W8yc2sWvVSHqM2oCdoysWNuV599MDenUiw37l9P4fcHJv8SIuSwghSjUZrlbC/Hu4Wt++fendu7fe8czMTMqUKcOqVauAnMPVXFxcmD17NoMHD8bS0pLKlSvz/fff67Vx6NAh6tWrh6mpKd7e3mzatKlQw7r+/vtvunTpgpWVFZaWlrRo0YLo6GgANBoNM2fOpFKlSiiVSurVq8fOnTt1dR8NIduwYQNt2rTB3NycunXrcvjwYb1zBAcHU7lyZczNzenevTt3797VO/7v4WrTp09n5cqV/P777ygUChQKBSEhIbkOV9u/fz+NGjVCqVRSvnx5Jk2aRFZWlu5469atGTVqFBMnTsTOzg5HR0emT5+uO67Vapk+fTqVK1dGqVRSoUIFRo0aVaD7JoR4+Wi1Ws4cXIVX2xG41GqHfXl32vSaS2pSPDF/78mznnPNtlSu0QrrMi7YOFShke9YjE3MiY+NAMDAwBBzSwe9LebvPVSt0wljZcF784UQrw6ttui20kiSnBKsX79+bNmyheTkZN2+P/74g9TUVLp3755nvaCgILy9vTl16hQffvghH3zwAVFRUQAkJSXRtWtXPD09OXnyJLNmzeLjjz8ucEzXr1+nZcuWKJVK/vzzT06cOMHgwYN1icLChQsJCgoiMDCQ06dP4+PjwxtvvMGFCxf02pkyZQr+/v6Eh4fj5uZGnz59dG2EhYUxZMgQ/Pz8CA8Pp02bNnz++ed5xuTv70+vXr3w9fUlLi6OuLg4mjVrlmvsnTt3pmHDhkRERPDtt9/yww8/5Gh75cqVWFhYEBYWxrx585g5cya7d+8GYP369cyfP5+lS5dy4cIFNm3ahKenZ4HvnxDi5fIg4RppD25T0fXxzxQTM0vKOtUhPja8QG1oNGouhm8jMyOVcs71ci1z+9pZ7t6IxL1hz+cQtRBCCBmuVoL5+PhgYWHBxo0bee+99wD4+eefeeONN7C0tMyzXufOnfnwww8B+Pjjj5k/fz779u3D3d2dn3/+GYVCwbJlyzA1NaVmzZpcv36dYcOGFSimr7/+Gmtra9auXaubC+Tm5qY7HhgYyMcff8w777wDwNy5c9m3bx8LFizg66+/1pXz9/fn9ddfB2DGjBnUqlWLixcvUqNGDRYuXIivry8TJ07UtX/o0CG9HqF/U6lUmJmZkZ6enu/wtG+++QYnJyeWLFmCQqGgRo0a3Lhxg48//pipU6diYJCd89epU4dp06YB4OrqypIlS9i7dy8dOnQgNjYWR0dH2rdvj7GxMZUrV6ZRo0YFundCiJdP6oPbAJir7PX2m6nKkPrgTr51E+Ki2PRNH9RZ6RibmNOx/xJsy1XPtWzUsfXYlK2Go0v95xO4EKLU0b6ECwQkJCTw0UcfsWXLFgwMDOjZsycLFy7Mc8pBQkIC06ZNY9euXcTGxuLg4EC3bt2YNWsW1tbWhTq39OSUYEZGRvTq1Ys1a9YAkJKSwu+//06/fv3yrVenTh3d/ysUChwdHYmPjwcgKiqKOnXqYGpqqitTmC/p4eHhtGjRItfFDpKSkrhx4wbNmzfX29+8eXMiIyPzjLF8+fIAuhgjIyNp3LixXvmmTZsWOMa8REZG0rRpUxSKxz8kmjdvTnJyMteuXcs1tkfxPYrt7bffJi0tjapVqzJs2DA2btyoN9wtN+np6SQlJeltWZnpz3w9Qojn78KpLfz4WX3dptHk/+87P9YOVeg5eiPdRv5CzSbvEPLrJO7dupijXFbmQy6Gb6WG9OIIIUqZfv368ffff7N79262bt3KX3/9xfDhw/Msf+PGDW7cuEFgYCBnz54lODiYnTt3MmTIkEKfW3pySrh+/frRqlUr4uPj2b17N2ZmZvj65r/qzn8TEIVCgUajeS7xmJmZPZd2/h3jo6TjecX4rPK7f05OTkRFRbFnzx52797Nhx9+yJdffsn+/fvzXOUuICCAGTNm6O3r0HsqPu9ML5L4hRBPz7lmG8o6PX7Qoc7KACA1+S7mVmV1+9OS72BfwSPftgyNTLAu4wyAQ6Xa3L52ljMHV9Gy50y9cpfO/EFW5kNc63d7TlchhCiNNC/Z3JnIyEh27tzJsWPH8Pb2BmDx4sV07tyZwMBAKlSokKNO7dq1Wb9+ve5ztWrV+OKLL3j33XfJysrCyKjgqYv05JRwzZo1w8nJiV9++YU1a9bw9ttvP9OS0e7u7pw5c4b09Mc9CceOHStw/Tp16nDgwAEyMzNzHLOysqJChQqEhobq7Q8NDaVmzZoFPoeHhwdhYWF6+44cOZJvHRMTE9Rq9RPbPXz4MNp/zbALDQ3F0tKSSpUqFTg+MzMzunbtyqJFiwgJCeHw4cOcOXMmz/KTJ0/m/v37elu7npMLfD4hxItjolRhXcZZt9mWq46ZpQM3Lj5eHCXjYTLxV09TtnK9QrWt1WrQqDNy7I86tg5njzaYqV7N1TKFEMUvt1En//6u+DQOHz6MjY2NLsEBaN++PQYGBjm+5+Xn/v37WFlZFSrBAUlyXgp9+/blu+++Y/fu3U8cqlaQtjQaDcOHDycyMpI//viDwMBAAL1hXHnx8/MjKSmJd955h+PHj3PhwgVWr16tW9hgwoQJzJ07l19++YWoqCgmTZpEeHg4o0ePLnCMo0aNYufOnQQGBnLhwgWWLFmS53ycR1xcXDh9+jRRUVHcuXMn1yTsww8/5OrVq3z00Uf8888//P7770ybNo1x48bp5uM8SXBwMD/88ANnz57l0qVL/PTTT5iZmeHs7JxnHaVSiZWVld6W17KzQoiSRaFQ4Plaf07++R0x5/4kIS6Kfb98jLlVWVxqPX7PzdbvB3L20E+6z0d3BBF36RgPEq6REBfF0R1B3Lh0lOr1uuq1f//OFeIuH6dGo7df2DUJIV5OWq2iyLaAgACsra31toCAgGeK9+bNm5QtW1Zvn5GREXZ2dty8ebNAbdy5c4dZs2blO8QtL5LkvAT69evHuXPnqFixYo75LoVlZWXFli1bCA8Pp169ekyZMoWpU6cC6M3TyYu9vT1//vknycnJtGrVigYNGrBs2TJd79KoUaMYN24c48ePx9PTk507d7J582ZcXV0LHGOTJk1YtmwZCxcupG7duuzatYtPP/003zrDhg3D3d0db29vHBwccvQmAVSsWJHt27dz9OhR6taty4gRIxgyZMgT2/43Gxsbli1bRvPmzalTpw579uxhy5Yt2NvbP7myEOKlVLfVUGo3e5cD66eyccnbZGWk0mnwMr2HFUkJsTxMuaf7nJacwL5fP+aXwE5sXTaI29fO0nnwciq56f8Mjzq+HgsrRyq5PtvPdiFE6VeUS0jnNupk8uTcR51MmjRJ98qOvLZ//vnnma83KSmJ119/nZo1a+q9zqOgFFptaV0dWxTUmjVrGDRoEPfv339uc25E/oI2yT87IYQQ4mUzvlvxrXC2/WTOUSrPS+f6BZ8Kcfv27RzvL/yvqlWr8tNPPzF+/Hju3Xv8ACgrKwtTU1N+++23fF+H8uDBA3x8fDA3N2fr1q0FehD/X7LwwCto1apVVK1alYoVKxIREcHHH39Mr169JMERQgghhCihNCVkCWkHBwccHByeWK5p06YkJiZy4sQJGjRoAMCff/6JRqPJsYruvyUlJeHj44NSqWTz5s1PleCADFd7Jd28eZN3330XDw8Pxo4dy9tvv833338PwIgRI1CpVLluI0aMKObIhRBCCCHEy8DDwwNfX1+GDRvG0aNHCQ0Nxc/Pj3feeUe3str169epUaMGR48eBbITnI4dO5KSksIPP/xAUlISN2/e5ObNm09cYOq/ZLia0BMfH09SUlKux6ysrHJMIBNPR4arCSGEEC+f4hyutuXE07+360m6NiiawV0JCQn4+fnpvQx00aJFupeBxsTEUKVKFfbt20fr1q0JCQmhTZs2ubZ1+fJlXFxcCnxuSXKEKAaS5AghhBAvH0lyXh6l74qEEEIIIYQoZbTakjEn52Uhc3KEEEIIIYQQpYr05AhRDK5dSynuEIQQQghRaKpiO7NGRroXivTkCCGEEEIIIUoV6ckRQgghhBCihJOlwgpHkhwhhBBCCCFKOG0JeRnoy0KGqwkhhBBCCCFKFUlyXnEDBw6kW7duxR1Gsfjvtbdu3ZoxY8YUWzxCCCGEEHnRaItuK41kuJoQ/2/Dhg0YGxvrPru4uDBmzBhJfIQQ+DYyoWktI0yVCmLi1PwWks6d+wX7ZtCuvjFdminZH57BpoMZuv32VgreaK6kagVDjAzhnytZrP8rg+S0UvqNQwghXiDpyRHi/9nZ2WFpaVncYQghSpi29Y1pWdeY30LSWfBbGumZMOINM4wMn1zXqawBTWsbc/2OWm+/iRGMeNMMgG82pbFofRqGhgqGdjGVUfdCiFxptUW3lUaS5Lwi1q1bh6enJ2ZmZtjb29O+fXtSUnK+q0Wj0RAQEECVKlUwMzOjbt26rFu3Tq/M2bNn6dSpEyqVinLlyvHee+9x584d3fHWrVvj5+eHn58f1tbWlClThs8++wxtAf8VxcfH07VrV8zMzKhSpQpr1qzBxcWFBQsWABATE4NCoSA8PFxXJzExEYVCQUhICABqtZohQ4borsPd3Z2FCxfme95/D1dr3bo1V65cYezYsSgUChQKBSkpKVhZWeW4H5s2bcLCwoIHDx4U6PqEEC+XVnWN2XU8g7OX1cTd1fDznodYWSjwrJr/YAgTY3i3oym//plOWrr+sSrlDbGzVPDznofE3dXo2nUqa4BrpQJkT0IIIfIlSc4rIC4ujj59+jB48GAiIyMJCQmhR48euSYdAQEBrFq1iu+++46///6bsWPH8u6777J//34gO5lo27YtXl5eHD9+nJ07d3Lr1i169eql187KlSsxMjLi6NGjLFy4kK+++orly5cXKN6BAwdy9epV9u3bx7p16/jmm2+Ij48v1DVrNBoqVarEb7/9xrlz55g6dSqffPIJv/76a4Hqb9iwgUqVKjFz5kzi4uKIi4vDwsKCd955hxUrVuiVXbFiBW+99Zb0AglRCtlbKbCyMOD81cc9MQ8z4MotDS6O+f8KfauVksiYLM5fU+c4ZmQIWiDrX4cys7KfqFapIEmOECIn6ckpHJmT8wqIi4sjKyuLHj164OzsDICnp2eOcunp6cyePZs9e/bQtGlTAKpWrcrBgwdZunQprVq1YsmSJXh5eTF79mxdvR9//BEnJyfOnz+Pm5sbAE5OTsyfPx+FQoG7uztnzpxh/vz5DBs2LN9Yz58/z44dOzh69CgNGzYE4IcffsDDw6NQ12xsbMyMGTN0n6tUqcLhw4f59ddfcyRkubGzs8PQ0BBLS0scHR11+4cOHUqzZs2Ii4ujfPnyxMfHs337dvbs2VOo+IQQLwdL8+zBY8mp+t8CklM1umO58XI1oqKDAfN/Tcv1eMxNNRmZ0LWZCduOZKAAujQzwdBAgVU+7QohhCgYSXJeAXXr1qVdu3Z4enri4+NDx44deeutt7C1tdUrd/HiRVJTU+nQoYPe/oyMDLy8vACIiIhg3759qFSqHOeJjo7WJTlNmjRBoXj8i7pp06YEBQWhVqsxNMz7KWVkZCRGRkY0aNBAt69GjRrY2NgU+rq//vprfvzxR2JjY0lLSyMjI4N69eoVup1/a9SoEbVq1WLlypVMmjSJn376CWdnZ1q2bJlnnfT0dNLT9ceqZGVmYmSsfKZYhBDPX303I3q1fvxvc9nW3JOU/NioFHRvYcK3vz/U66n5t5SHsHLnQ95qraRFXWO0Wjh1Pour8epS+1RVCPFsNFp5AFIYkuS8AgwNDdm9ezeHDh1i165dLF68mClTphAWFqZXLjk5GYBt27ZRsWJFvWNKpVJXpmvXrsydOzfHecqXL19EV6DPwCB7iMi/h9tlZmbqlVm7di3+/v4EBQXRtGlTLC0t+fLLL3Nc89MYOnQoX3/9NZMmTWLFihUMGjRIL6H7r4CAAL1eJYDGnSbTtPMnzxyLEOL5+vtyFoG3HmcmRobZ/7ZV5gqS/tWbozI34Mad3DOYSg4GWJobML63mW6foYGCqhUMeK2OMRO+TUGrhairar5YnYqFKag12cPgZgwy526SpoiuTgjxMpMHIIUjSc4rQqFQ0Lx5c5o3b87UqVNxdnZm48aNemVq1qyJUqkkNjaWVq1a5dpO/fr1Wb9+PS4uLhgZ5f3X57/JxJEjR3B1dc23Fweye22ysrI4ceKEbrhaVFQUiYmJujIODg5A9jC8Rz1M/16EACA0NJRmzZrx4Ycf6vZFR0fne+7/MjExQa3O+SXm3XffZeLEiSxatIhz584xYMCAfNuZPHky48aN09s35YfMPEoLIYpTeiak6y0NrSUpRYNbJUNu3MlOPpTG4FzOgENnc/93fOGamrk/p+rt69NOSfw9DXtPZub4opLyMPu/1SsaojJXcPZy1vO6HCGEeGVJkvMKCAsLY+/evXTs2JGyZcsSFhbG7du38fDw4PTp07pylpaW+Pv7M3bsWDQaDa+99hr3798nNDQUKysrBgwYwMiRI1m2bBl9+vRh4sSJ2NnZcfHiRdauXcvy5ct1SUxsbCzjxo3j/fff5+TJkyxevJigoKAnxuru7o6vry/vv/8+3377LUZGRowZMwYzs8dPRM3MzGjSpAlz5syhSpUqxMfH8+mnn+q14+rqyqpVq/jjjz+oUqUKq1ev5tixY1SpUqXA983FxYW//vqLd955B6VSSZkyZQCwtbWlR48eTJgwgY4dO1KpUqV821EqlbqesEeMjJMLHIcQonjtj8ikg7cJtxM1JDzQ0qmxCUkpWs5cepyMfPCmKWcuqTl4JpP0TLiZoN8bk5EFKQ+1evsbeRhxK0FDcpoWF0dDurdUsj88k9uJ8rhWCJGT9OQUjqyu9gqwsrLir7/+onPnzri5ufHpp58SFBREp06dcpSdNWsWn332GQEBAXh4eODr68u2bdt0yUGFChUIDQ1FrVbTsWNHPD09GTNmDDY2NrphZAD9+/cnLS2NRo0aMXLkSEaPHs3w4cMLFO+KFSuoUKECrVq1okePHgwfPpyyZcvqlfnxxx/JysqiQYMGjBkzhs8//1zv+Pvvv0+PHj3o3bs3jRs35u7du3q9OgUxc+ZMYmJiqFatmq736JEhQ4aQkZHB4MGDC9WmEOLl8+fJTA6czqRXGyVj3zZDaQxLt6TpzbcpY22AhVnhxsuXtTFgcGdTJvUzp2MjE3Yfz2BzaMaTKwohhHgihbagLy8RooBat25NvXr1dO+1eR5cXFwYM2aM7j02xW316tWMHTuWGzduYGJiUuj6Y5dIT44QQgjxspnvl3PhpRflpwNF95X93Ralb1EDGa4mRCGkpqYSFxfHnDlzeP/9958qwRFCCCGEEEVLhquJF+rAgQOoVKo8t5Ju3rx51KhRA0dHRyZPnlzc4QghhBDiFaHVKopsK41kuJp4odLS0rh+/Xqex6tXr/4Coyk+MlxNCCGEePkU53C11X8VXdvv5f26v5eWDFcTL5SZmdkrk8gIIYQQQjwv0i1ROJLkCCGEEEIIUcJpJMkpFJmTI4QQQgghhChVpCdHCCGEEEKIEk6GqxWOJDlCFIO0lMziDkEIIYQQotSSJEcIIYQQQogSTnpyCkfm5AghhBBCCCFKFenJEUIIIYQQooST1dUKp8T35EyfPp169eoVdxhFJiYmBoVCQXh4eHGH8lSe15/Pi/5zDgkJQaFQkJiYWGJiEkIIIYQQz0ehenJat25NvXr1WLBgQRGF83IIDg5mzJgx+X5BLm4KhYKNGzfSrVu34g4lh9xi8/f356OPPiq+oHJREmMSQhSPrq+Z8lpdJWZKBdHXs/jfrlTi72nyLN+luSldXjPT23fzrprpy5MAMDdV0PU1UzxcjLGzMiA5TUv4+Qw2H0jjYUaRXooQ4iUlc3IK55UcrqbValGr1RgZvZKXXyAZGRmYmJi8sPOpVCpUKtULO19BlMSYhBAvXsfGSto0ULJyWyp37mt4o4UpH/VSMWN5ElnqvOtdv61m4S8PdJ/V/8qJbFQKrFUGrN+XRtxdNfZWBvT1McfG0oDvN6UU4dUIIV5Wmryfq4hcFHi42sCBA9m/fz8LFy5EoVCgUCiIiYnh7NmzdOrUCZVKRbly5Xjvvfe4c+eOrt7OnTt57bXXsLGxwd7eni5duhAdHa3X9rVr1+jTpw92dnZYWFjg7e1NWFiYXpnVq1fj4uKCtbU177zzDg8ePP7FodFoCAgIoEqVKpiZmVG3bl3WrVunO/5oaNKOHTto0KABSqWSgwcP5nu9ERERtGnTBktLS6ysrGjQoAHHjx8nJCSEQYMGcf/+fd19mD59OpDdQ7Fp0ya9dmxsbAgODtZ9Pnr0KF5eXpiamuLt7c2pU6dynPtJ97R169aMGjWKiRMnYmdnh6Ojoy4GABcXFwC6d++OQqHQfc7Po6FZy5cvp0qVKpiamgKQmJjI0KFDcXBwwMrKirZt2xIREZFnO8eOHaNDhw6UKVMGa2trWrVqxcmTJ58Y23+Hhmk0GmbOnEmlSpVQKpXUq1ePnTt36o4/Gua3YcMG2rRpg7m5OXXr1uXw4cO6MleuXKFr167Y2tpiYWFBrVq12L59u168J06cwNvbG3Nzc5o1a0ZUVFSOe/LIwIED6datGzNmzNDdjxEjRpCRIY9dhSjN2nmbsuPwQyIuZnL9tpoVW1OwURlQz80433oajZaklMdbStrjx7A37mj4flMKZ6IzuZOoISo2i9//SsOzmjEGiqK+IiGEKP0KnOQsXLiQpk2bMmzYMOLi4oiLi8PS0pK2bdvi5eXF8ePH2blzJ7du3aJXr166eikpKYwbN47jx4+zd+9eDAwM6N69O5r/T0eTk5Np1aoV169fZ/PmzURERDBx4kTdcYDo6Gg2bdrE1q1b2bp1K/v372fOnDm64wEBAaxatYrvvvuOv//+m7Fjx/Luu++yf/9+vWuYNGkSc+bMITIykjp16uR7vf369aNSpUocO3aMEydOMGnSJIyNjWnWrBkLFizAyspKdx/8/f0LdA+Tk5Pp0qULNWvW5MSJE0yfPj1H3cTExCfeU4CVK1diYWFBWFgY8+bNY+bMmezevRvITjQAVqxYQVxcnO7zk1y8eJH169ezYcMG3Ryht99+m/j4eHbs2MGJEyeoX78+7dq1IyEhIdc2Hjx4wIABAzh48CBHjhzB1dWVzp0765LSgsa2cOFCgoKCCAwM5PTp0/j4+PDGG29w4cIFvXJTpkzB39+f8PBw3Nzc6NOnD1lZWQCMHDmS9PR0/vrrL86cOcPcuXNz9MxMmTKFoKAgjh8/jpGREYMHD873Hu3du5fIyEhCQkL43//+x4YNG5gxY0b+N1YI8dIqY22AtcqAyJgs3b6HGXD5RhZVK+Q/GqCsrSFzPrRm1vtWDO5ijq1l/tmLmVLBwwytTC4WQuRKqy26rTQq8Hgta2trTExMMDc3x9HREYDPP/8cLy8vZs+erSv3448/4uTkxPnz53Fzc6Nnz5567fz44484ODhw7tw5ateuzc8//8zt27c5duwYdnZ2AFSvXl2vjkajITg4GEtLSwDee+899u7dyxdffEF6ejqzZ89mz549NG3aFICqVaty8OBBli5dSqtWrXTtzJw5kw4dOhToemNjY5kwYQI1atQAwNXVVe9eKBQK3X0oqJ9//hmNRsMPP/yAqakptWrV4tq1a3zwwQe6MkuWLHniPQWoU6cO06ZN08W2ZMkS9u7dS4cOHXBwcACye5EKE2NGRgarVq3S1T948CBHjx4lPj4epVIJQGBgIJs2bWLdunUMHz48Rxtt27bV+/z9999jY2PD/v376dKlS4FjCwwM5OOPP+add94BYO7cuezbt48FCxbw9ddf68r5+/vz+uuvAzBjxgxq1arFxYsXqVGjBrGxsfTs2RNPT08g++/Ff33xxRe6vyOTJk3i9ddf5+HDh7qerP8yMTHhxx9/xNzcnFq1ajFz5kwmTJjArFmzMDAo8et4CCEKyUqVnZgkpeiPE3mQqsXKIu9/85fjsli5PYVbCRqsVQpeb26Gfz9LZv6YRHounb8WZgo6NzPlYHj6c41fCCFeVc80KSUiIoJ9+/blOm8hOjoaNzc3Lly4wNSpUwkLC+POnTu6HprY2Fhq165NeHg4Xl5eugQnNy4uLroEB6B8+fLEx8cD2b0PqampOZKXjIwMvLy89PZ5e3sX+NrGjRvH0KFDWb16Ne3bt+ftt9+mWrVqBa6fm0c9SP/+Av0oMXukIPcUyNET9e978rScnZ11ScijWJKTk7G3t9crl5aWlmPI4SO3bt3i008/JSQkhPj4eNRqNampqcTGxhY4jqSkJG7cuEHz5s319jdv3jzHULl/34fy5csDEB8fT40aNRg1ahQffPABu3bton379vTs2TPHfcurfuXKlXONrW7dupibm+s+N23alOTkZK5evYqzs3OuddLT00lP1//ios5Kx9BImWt5IUTxaVTThL4+j/+Nf70u+ana+fvS456f67fh8o1kZn9gTYMaJhw6rZ/lmJqA31sq4u5q2BL68OkCF0KUeqW1x6WoPFOSk5ycTNeuXZk7d26OY4++MHbt2hVnZ2eWLVtGhQoV0Gg01K5dWzePwczMLEfd/zI21h/3rFAo9Ia7AWzbto2KFSvqlXvU+/CIhYVFAa8sez5G37592bZtGzt27GDatGmsXbuW7t2751lHoVCg/c/fwMzMzAKfEwp2TyH/e/K0/nt/kpOTKV++PCEhITnK2tjY5NrGgAEDuHv3LgsXLsTZ2RmlUknTpk2LbN7Kv++DQpH9xPXRfRg6dCg+Pj5s27aNXbt2ERAQQFBQkN6KafnVf14CAgJyDGlr0G4i3h0mPdfzCCGeXcTFDC7feJygPFqfxsrCgKSUx6sMWJoruBafz6oD/5GWruVWgpqyNvq9P0oT+KiXJQ8ztHy3IVkmFgshxHNSqCTHxMQEtfrxD/X69euzfv16XFxccl2p7O7du0RFRbFs2TJatGgBkGPCf506dVi+fDkJCQn59ubkpWbNmiiVSmJjY/WGpj0Pbm5uuLm5MXbsWPr06cOKFSvo3r17jvvwiIODA3FxcbrPFy5cIDU1VffZw8OD1atX6w2HOnLkiF4bT7qnBWVsbJxrjIVRv359bt68iZGRUYEWLwAIDQ3lm2++oXPnzgBcvXpVb9GEgsRmZWVFhQoVCA0N1fszDQ0NpVGjRoW6BicnJ0aMGMGIESOYPHkyy5Yte6ZloSMiIkhLS9Ml50eOHEGlUuHk5JRnncmTJzNu3Di9feMXp+ZRWghRnNIz4HaGfqZxP1lDDWcjXVJjagJVKhjxVyGGlimNwcHGgLCUxw/CTE1gVC9LstRavlmfnO9KbUIIIfP1CqdQkwhcXFwICwsjJiaGO3fuMHLkSBISEujTpw/Hjh0jOjqaP/74g0GDBqFWq7G1tcXe3p7vv/+eixcv8ueff+b4stenTx8cHR3p1q0boaGhXLp0ifXr1+utkpUfS0tL/P39GTt2LCtXriQ6OpqTJ0+yePFiVq5cWZjL00lLS8PPz4+QkBCuXLlCaGgox44dw8PDQ3cfkpOT2bt3L3fu3NElMm3btmXJkiWcOnWK48ePM2LECL2egr59+6JQKBg2bBjnzp1j+/btBAYG6p37Sfe0oFxcXNi7dy83b97k3r17T3Uf2rdvT9OmTenWrRu7du0iJiaGQ4cOMWXKFI4fP55rHVdXV1avXk1kZCRhYWH069cvR29dQWKbMGECc+fO5ZdffiEqKopJkyYRHh7O6NGjCxz/mDFj+OOPP7h8+TInT55k3759uj/Dp5WRkcGQIUN0f37Tpk3Dz88v3/k4SqUSKysrvU2Gqgnx8th7/CGdmplSp7oxFcoYMPB1CxKTNYSff9xTP6a3itb1H/+77tnGDFcnI+ytDKha0ZARPVRotHDsXHavtqkJjOptiYkxrNqRiplSgZVF9qaQ1dWEEOKZFSrJ8ff3x9DQkJo1a+Lg4EBGRgahoaGo1Wo6duyIp6cnY8aMwcbGBgMDAwwMDFi7di0nTpygdu3ajB07li+//FKvTRMTE3bt2kXZsmXp3Lkznp6ezJkzB0NDwwLHNWvWLD777DMCAgLw8PDA19eXbdu2UaVKlcJcno6hoSF3796lf//+uLm50atXLzp16qQbctSsWTNGjBhB7969cXBwYN68eQAEBQXh5OREixYt6Nu3L/7+/nrzN1QqFVu2bOHMmTN4eXkxZcqUHMPSHvVg5HVPCyooKIjdu3fj5OSUY25SQSkUCrZv307Lli0ZNGgQbm5uvPPOO1y5coVy5crlWueHH37g3r171K9fn/fee49Ro0ZRtmzZQsc2atQoxo0bx/jx4/H09GTnzp1s3rxZbwGIJ1Gr1YwcOVL3d8LNzY1vvvmm4DcgF+3atcPV1ZWWLVvSu3dv3njjDb3lu4UQpc+usHRCTqTTz8ecyQOsUJooWPyrfs+Lg60BKrPH2YmNpQFDulowfZgVw95UkZymZe7qByT//zLSlcsZUbWCEZXKGvH5+9bM87PRbXaWsoiJECInrVZbZFtppNCW1isT4jkbOHAgiYmJOd6F9DRGzH263jUhhBBCFJ/vPrYttnMv3lZ0X9k/er30dSHL4yIhhBBCCCFEqfLKJjm1atVCpVLluq1Zs6a4w3vuXrXrFUIIIYQoTTSaottKo2daQvpltn379jyXd85rvsnL7FW73qIQHBxc3CEIIYQQQogCeGWTnLxe3FhavWrXK4QQQghRmsgs+sJ5ZYerCSGEEEIIIUqnV7YnRwghhBBCiJeFvAy0cKQnRwghhBBCCFGqSE+OEMVAXk8lhBBCiMKQrw6FI0mOEEIIIYQQJZy2SMeryctAhRBCCCGEEKJEk54cIYQQQgghSjhZeKBwpCfnFde6dWvGjBlTJG3HxMSgUCgIDw8vkvZfFBcXFxYsWFDcYQghhBBCiAKSnhxRZJycnIiLi6NMmTLFHYoQQjyTri3MaFFXiZlSQfT1LH7+I4X4e5o8y3d5zYyur5np7bt5V820Zfd1n/v5mOPhYoy1yoD0TC3R17PYsC+VWwl5tyuEeHW9jAsPJCQk8NFHH7FlyxYMDAzo2bMnCxcuRKVSPbGuVqulc+fO7Ny5k40bN9KtW7dCnVuSHFFkDA0NcXR0LO4whBDimfg0NqVtAyXB21K4k6jhjZZmjOptyfRl98lS513v+u0sFqx9oPus/k/uEntTzdFzGSQkaTA3VdD1NTPG9Lbkk+/uv5RfZoQQ4r/69etHXFwcu3fvJjMzk0GDBjF8+HB+/vnnJ9ZdsGABCsXTL4ggw9UEWVlZ+Pn5YW1tTZkyZfjss890SxyvXr0ab29vLC0tcXR0pG/fvsTHx+vq3rt3j379+uHg4ICZmRmurq6sWLECyH242t9//02XLl2wsrLC0tKSFi1aEB0d/cQYBw4cSLdu3QgMDKR8+fLY29szcuRIMjMzdWXS09Px9/enYsWKWFhY0LhxY0JCQvTaOXjwIC1atMDMzAwnJydGjRpFSkqK7nh8fDxdu3bFzMyMKlWqsGbNGr36Wq2W6dOnU7lyZZRKJRUqVGDUqFEFvtdCiJdPu4ambD/0kIgLmVy/rWbF1hRsVAbUczPJt55GA0kpWt2WkqafuRyISOfC1Szu3tdw9Zaa3/9Kw87aEHtr+dUshMhJo9EW2VYUIiMj2blzJ8uXL6dx48a89tprLF68mLVr13Ljxo1864aHhxMUFMSPP/741OeXn6SClStXYmRkxNGjR1m4cCFfffUVy5cvByAzM5NZs2YRERHBpk2biImJYeDAgbq6n332GefOnWPHjh1ERkby7bff5jk87fr167Rs2RKlUsmff/7JiRMnGDx4MFlZWQWKc9++fURHR7Nv3z5WrlxJcHAwwcHBuuN+fn4cPnyYtWvXcvr0ad5++218fX25cOECANHR0fj6+tKzZ09Onz7NL7/8wsGDB/Hz89O1MXDgQK5evcq+fftYt24d33zzjV5St379eubPn8/SpUu5cOECmzZtwtPTs6C3WgjxkiljbYC1yoDImMcPVB6ma7l8I4uqFfMfDFHW1pC5I234fIQ1g7taYGuV969cE2NoVkfJ7UQ195JkuJoQ4sVKT08nKSlJb0tPT3+mNg8fPoyNjQ3e3t66fe3bt8fAwICwsLA866WmptK3b1++/vrrZxoRJMPVBE5OTsyfPx+FQoG7uztnzpxh/vz5DBs2jMGDB+vKVa1alUWLFtGwYUOSk5NRqVTExsbi5eWl+wvs4uKS53m+/vprrK2tWbt2LcbGxgC4ubkVOE5bW1uWLFmCoaEhNWrU4PXXX2fv3r0MGzaM2NhYVqxYQWxsLBUqVADA39+fnTt3smLFCmbPnk1AQAD9+vXTLbTg6urKokWLaNWqFd9++y2xsbHs2LGDo0eP0rBhQwB++OEHPDw8dDHExsbi6OhI+/btMTY2pnLlyjRq1KjA1yCEeLlYqbITk6QU/cQjKUWDtUXewygu38gieFsytxI0WKsM6NLclAn9LJnxw33SMx6Xa+WlpEcbc0xNFNy8q2bB2gc5hrUJIQQU7ZycgIAAZsyYobdv2rRpTJ8+/anbvHnzJmXLltXbZ2RkhJ2dHTdv3syz3tixY2nWrBlvvvnmU58bJMkRQJMmTfTGPDZt2pSgoCDUajXh4eFMnz6diIgI7t27h0aT/ds3NjaWmjVr8sEHH9CzZ09OnjxJx44d6datG82aNcv1POHh4bRo0UKX4BRWrVq1MDQ01H0uX748Z86cAeDMmTOo1eocSVN6ejr29vYAREREcPr0ab0haFqtFo1Gw+XLlzl//jxGRkY0aNBAd7xGjRrY2NjoPr/99tssWLCAqlWr4uvrS+fOnenatStGRnn/U0pPT8/xNESdlY6hkbLwN0EIUaQa1TShn6+F7vOS3x7kUzpvf1963PNz/baayzeyCPjAGu8aJoSefpzlhJ3LIDImE2uVAR0amTK8m4p5q5PynesjhHg1FWWSM3nyZMaNG6e3T6nM/XvKpEmTmDt3br7tRUZGPlUcmzdv5s8//+TUqVNPVf/fJMkReXr48CE+Pj74+PiwZs0aHBwciI2NxcfHh4yM7F/SnTp14sqVK2zfvp3du3fTrl07Ro4cSWBgYI72zMzMcuwrjP8mRwqFQpd0JScnY2hoyIkTJ/QSIUC3gkdycjLvv/9+rnNoKleuzPnz558Yg5OTE1FRUezZs4fdu3fz4Ycf8uWXX7J///48k7fcno7UbzcR7/YfP/F8QogXK+JiBpd/fDyE1sgo+wGQlYUBSSmPMw8rCwOuxhc8E0lL13LrngYHW/2fTw/TtTxM1xJ/T8Ol68nMH2OLl5sJxyIz8mhJCCGeP6VSmWdS81/jx4/Xm7qQm6pVq+Lo6Kg35B+y54EnJCTkOQztzz//JDo6Wu8BM0DPnj1p0aJFjrnW+ZEkR+QYF3nkyBFcXV35559/uHv3LnPmzMHJyQmA48eP56jv4ODAgAEDGDBgAC1atGDChAm5Jjl16tRh5cqVZGZmPnVvTl68vLxQq9XEx8fTokWLXMvUr1+fc+fOUb169VyP16hRg6ysLE6cOKEbrhYVFUViYqJeOTMzM7p27UrXrl0ZOXIkNWrU4MyZM9SvXz/XdnN7OjJuUUquZYUQxSs9A25n6I8Xu5+soYaLMdf+P6kxNYEqFYzYf6rg49WVxuBgY8CR5LzHoikU2Vs+HcNCiFeYpoQsu+jg4ICDg8MTyzVt2pTExEROnDihGyXz559/otFoaNy4ca51Jk2axNChQ/X2eXp6Mn/+fLp27VqoOOVHqSA2NpZx48bx/vvvc/LkSRYvXkxQUBCVK1fGxMSExYsXM2LECM6ePcusWbP06k6dOpUGDRpQq1Yt0tPT2bp1q94cln/z8/Nj8eLFvPPOO0yePBlra2uOHDlCo0aNcHd3f6ZrcHNzo1+/fvTv35+goCC8vLy4ffs2e/fupU6dOrz++ut8/PHHNGnSBD8/P4YOHYqFhQXnzp1j9+7dLFmyBHd3d3x9fXn//ff59ttvMTIyYsyYMXo9UMHBwajVaho3boy5uTk//fQTZmZmODs75xlbbk9HDI0KttiCEKL47T32kM7NTIlPUHPnvoY3W5iRmKwh/Pzj3pax71hy6nwGISezE5+ebcw4fTGThKTsOTldXzNDo4Vj57LrlLE2wNvDhHOXM3mQpsXW0gDfJqZkZGk5G52ZaxxCCPEy8fDwwNfXl2HDhvHdd9+RmZmJn58f77zzjm7+9PXr12nXrh2rVq2iUaNGODo65trLU7lyZapUqVKo80uSI+jfvz9paWk0atQIQ0NDRo8ezfDhw1EoFAQHB/PJJ5+waNEi6tevT2BgIG+88YauromJCZMnTyYmJgYzMzNatGjB2rVrcz2Pvb09f/75JxMmTKBVq1YYGhpSr149mjdv/lyuY8WKFXz++eeMHz+e69evU6ZMGZo0aUKXLl2A7J6k/fv3M2XKFFq0aIFWq6VatWr07t1br42hQ4fSqlUrypUrx+eff85nn32mO25jY8OcOXMYN24carUaT09PtmzZopv3I4Qoff4Ie4iJiYJ3fS0wN1Vw8VoWi355oDdvpoytASrzx6un2VoaMPQNFRZmCpJTtVy8lsmcVSkk//8y0plqLdWdjGjX0BRzUwVJKRouXM1i3uokHqSWjKe1QoiSRfsSLkqyZs0a/Pz8aNeune5loIsWLdIdz8zMJCoqitTU1Od+boVWW0L6voR4hbw/J6G4QxBCCCFEIS2dZFds5565puhGgUztV/r6PUrfFQkhhBBCCFHKSL9E4cjLQEWJoFKp8twOHDhQ3OEJIYQQQoiXiPTkiBIhPDw8z2MVK1Z8cYEIIYQQQpRAmpdwTk5xkiRHlAh5LesshBBCCCFkuFphyXA1IYQQQgghRKkiPTlCCCGEEEKUcBrpyCkU6ckRQgghhBBClCrSkyOEEEIIIUQJp5WunEKRnhwhhBBCCCFEqSI9OUIIIYQQQpRwsrha4UhPjhBCCCGEEKJUkZ4cIYQQQgghSjiNzMkpFElyRL6mT5/Opk2bCA8PL3AdhULBxo0b6datW5HFJYQQL1LXFma0qKvETKkg+noWP/+RQvy9vF8/3uU1M7q+Zqa37+ZdNdOW3dd97udjjoeLMdYqA9IztURfz2LDvlRuJchrzYUQ4llJkiPy5e/vz0cffVTcYZRIISEhtGnThnv37mFjY1Pc4QghiohPY1PaNlASvC2FO4ka3mhpxqjelkxfdp8sdd71rt/OYsHaB7rP6v/kLrE31Rw9l0FCkgZzUwVdXzNjTG9LPvnuvoy9F0LkoJUfDIUic3JEvlQqFfb29sUdRomTmZlZ3CEIIV6Qdg1N2X7oIREXMrl+W82KrSnYqAyo52aSbz2NBpJStLotJU3/C8qBiHQuXM3i7n0NV2+p+f2vNOysDbG3ll/NQoictJqi20oj+UlaSqxbtw5PT0/MzMywt7enffv2pKSkoNFomDlzJpUqVUKpVFKvXj127typV/fatWv06dMHOzs7LCws8Pb2JiwsDMgerlavXj1d2WPHjtGhQwfKlCmDtbU1rVq14uTJk08Vc0ZGBn5+fpQvXx5TU1OcnZ0JCAgAICYmBoVCoTdMLjExEYVCQUhICJDdk6JQKNi2bRt16tTB1NSUJk2acPbsWV2d4OBgbGxs2LRpE66urpiamuLj48PVq1f1Yvn222+pVq0aJiYmuLu7s3r1ar3jCoWCb7/9ljfeeAMLCwuGDRtGmzZtALC1tUWhUDBw4MCnug9CiJKrjLUB1ioDImMeP9h4mK7l8o0sqlbMfzBEWVtD5o604fMR1gzuaoGtVd6/ck2MoVkdJbcT1dxLKqXfOIQQ4gWSJKcUiIuLo0+fPgwePJjIyEhCQkLo0aMHWq2WhQsXEhQURGBgIKdPn8bHx4c33niDCxcuAJCcnEyrVq24fv06mzdvJiIigokTJ6LR5P5L9sGDBwwYMICDBw9y5MgRXF1d6dy5Mw8ePMi1fH4WLVrE5s2b+fXXX4mKimLNmjW4uLgUup0JEyYQFBTEsWPHcHBwoGvXrno9LampqXzxxResWrWK0NBQEhMTeeedd3THN27cyOjRoxk/fjxnz57l/fffZ9CgQezbt0/vPNOnT6d79+6cOXOGGTNmsH79egCioqKIi4tj4cKFhY5dCFGyWamyf00mpej/TExK0WBtociz3uUbWQRvS2bRrw/4+Y9UylgbMKGfJcr/dP608lKycJwti8fbUbuqMQvWPsgxrE0IIQA0Wm2RbaWRzMkpBeLi4sjKyqJHjx44OzsD4OnpCUBgYCAff/yx7kv93Llz2bdvHwsWLODrr7/m559/5vbt2xw7dgw7OzsAqlevnue52rZtq/f5+++/x8bGhv3799OlS5dCxR0bG4urqyuvvfYaCoVCF3thTZs2jQ4dOgCwcuVKKlWqxMaNG+nVqxeQPbRsyZIlNG7cWFfGw8ODo0eP0qhRIwIDAxk4cCAffvghAOPGjePIkSMEBgbqemsA+vbty6BBg3SfL1++DEDZsmXznZOTnp5Oenq63j51VjqGRsqnul4hRNFpVNOEfr4Wus9Lfiv8AxyAvy89ftBy/baayzeyCPjAGu8aJoSeztAdCzuXQWRMJtYqAzo0MmV4NxXzViflO9dHCCHEk0lPTilQt25d2rVrh6enJ2+//TbLli3j3r17JCUlcePGDZo3b65Xvnnz5kRGRgIQHh6Ol5eXLsF5klu3bjFs2DBcXV2xtrbGysqK5ORkYmNjCx33wIEDCQ8Px93dnVGjRrFr165CtwHQtGlT3f/b2dnh7u6uuz4AIyMjGjZsqPtco0YNbGxsdGUiIyPzvUePeHt7P1V8AQEBWFtb622nQhY8VVtCiKIVcTGDz3+8r9uS/38ejZWF/q9LKwsD7qcU/OlnWrqWW/c0ONga6u1/mK4l/p6GC1ezWLoxGUc7Q7yeMNdHCPFq0mq1RbaVRpLklAKGhobs3r2bHTt2ULNmTRYvXoy7u7uupyE/ZmZmTyzzbwMGDCA8PJyFCxdy6NAhwsPDsbe3JyMj48mV/6N+/fpcvnyZWbNmkZaWRq9evXjrrbcAMDDI/qv57394xT3Z38LC4smFcjF58mTu37+vt3m1HvN8gxNCPBfpGXA7UaPb4u6ouZ+soYaLsa6MqQlUqWDEpetZBW5XaQwONgbcT857LJpCkb0ZyRgLIYR4ZpLklBIKhYLmzZszY8YMTp06hYmJCXv37qVChQqEhobqlQ0NDaVmzZoA1KlTh/DwcBISEgp0ntDQUEaNGkXnzp2pVasWSqWSO3fuPHXcVlZW9O7dm2XLlvHLL7+wfv16EhIScHBwALKH4j2S17t6jhw5ovv/e/fucf78eTw8PHT7srKyOH78uO5zVFQUiYmJujIeHh753qO8mJhkP21Vq/MfV6JUKrGystLbZKiaEC+Pvcce0rmZKXWqG1PBwZBBXVQkJmsIP//44c7YdyxpXf/xv+uebcxwdTLC3tqAqhWNGNHDEo0Wjp3LrlPG2gDfJqZULmeIrVV2meHdVGRkaTkbLas3CiFy0mi0RbaVRvK8qBQICwtj7969dOzYkbJlyxIWFsbt27fx8PBgwoQJTJs2jWrVqlGvXj1WrFhBeHg4a9asAaBPnz7Mnj2bbt26ERAQQPny5Tl16hQVKlTQGwb2iKurK6tXr8bb25ukpCQmTJhQ6N6gR7766ivKly+Pl5cXBgYG/Pbbbzg6OmJjY4OBgQFNmjRhzpw5VKlShfj4eD799NNc25k5cyb29vaUK1eOKVOmUKZMGb0XkRobG/PRRx+xaNEijIyM8PPzo0mTJjRq1AjIXrigV69eeHl50b59e7Zs2cKGDRvYs2dPvvE7OzujUCjYunUrnTt3xszMDJVK9VT3QghRcv0R9hATEwXv+lpgbqrg4rUsFv3yQG/eTBlbA1Tmj58b2loaMPQNFRZmCpJTtVy8lsmcVSm64W+Zai3VnYxo19AUc1MFSSnZQ9bmrU7iQWrp/MIhhBAvkiQ5pYCVlRV//fUXCxYsICkpCWdnZ4KCgujUqRM+Pj7cv3+f8ePHEx8fT82aNdm8eTOurq5Adm/Erl27GD9+PJ07dyYrK4uaNWvy9ddf53quH374geHDh1O/fn2cnJyYPXs2/v7+TxW3paUl8+bN48KFCxgaGtKwYUO2b9+uG6r2448/MmTIEBo0aIC7uzvz5s2jY8eOOdqZM2cOo0eP5sKFC9SrV48tW7boelkAzM3N+fjjj+nbty/Xr1+nRYsW/PDDD7rj3bp1Y+HChQQGBjJ69GiqVKnCihUraN26db7xV6xYkRkzZjBp0iQGDRpE//79CQ4Ofqp7IYQo2bYcSGPLgbQ8j0/59r7e5+WbU/Jt736yliW/JT+X2IQQr4ZSOnWmyCi0pXW2kSj1QkJCaNOmDffu3ctzdbPg4GDGjBlDYmLiC43tSd6fU7DhgUIIIYQoOZZOKthCTUVh9MKnW+2xIBaOtiyytouLzMkRQgghhBBClCqS5IgiM3v2bFQqVa5bp06dijs8IYQQQoiXhrwMtHBkuJooMgkJCXmu2mZmZkbFihVfcEQlhwxXE0IIIV4+xTlc7aMFSUXW9uIxVkXWdnGRhQdEkbGzsyvwS0aFEEIIIUTetKV0qeeiIsPVhBBCCCGEEKWK9OQIIYQQQghRwklPTuFIkiNEMcjKVD+5kBBCCCGEeCqS5AghhBBCCFHCSUdO4UiSI4QQQgghRAknw9UKRxYeEEIIIYQQQpQq0pMjhBBCCCFECSevtiwc6cl5Ri4uLixYsKDIz6NQKNi0aVORn+dZbdq0ierVq2NoaMiYMWOKOxwhhBBCCPEKkp6cl0RcXBy2trbFHcYTvf/++wwaNIhRo0ZhaWlZ3OEIIcRz8WYrc1p6mWJuasDFq5ms3pFMfELeqyS+0dKcN1tZ6O2Lu5PFp9/e032e8J41NVxM9MqEnEhj9fbk5xu8EKJU0MicnEKRJOcl4ejoWNwh5CszM5P09HTi4+Px8fGhQoUKT91WRkYGJiYmTy4ohBAvQKdmZrRvZMYPvz/gTqKabq0tGNfXmk+/TSArn9Xgr8dnEfhTou6zRpOzzP6TaWwKSdF9zsh8joELIcQrrFQNV9u5cyevvfYaNjY22Nvb06VLF6Kjo3XHr127Rp8+fbCzs8PCwgJvb2/CwsIAiI6O5s0336RcuXKoVCoaNmzInj179NqPj4+na9eumJmZUaVKFdasWZMjhsTERIYOHYqDgwNWVla0bduWiIgI3fHp06dTr149fvzxRypXroxKpeLDDz9ErVYzb948HB0dKVu2LF988YVeu/8drpbfteTn0fmXLl2Kk5MT5ubm9OrVi/v37+uVW758OR4eHpiamlKjRg2++eYb3bGYmBgUCgW//PILrVq1wtTUlDVr1uh6btq2bYtCoSAkJASA9evXU6tWLZRKJS4uLgQFBemdy8XFhVmzZtG/f3+srKwYPnw4wcHB2NjYsHXrVtzd3TE3N+ett94iNTWVlStX4uLigq2tLaNGjUKtfvwtY/Xq1Xh7e2NpaYmjoyN9+/YlPj5edzwkJASFQsHevXvx9vbG3NycZs2aERUVpRfTli1baNiwIaamppQpU4bu3bvrjqWnp+Pv70/FihWxsLCgcePGumsVQpQ+7RuZsfVAKuHnM7gWr+aH3x9gY2lA/RrKfOupNZCUotVtyWk5n8JmZGr1yjzMkCe1QojcabXaIttKo1LVk5OSksK4ceOoU6cOycnJTJ06le7duxMeHk5qaiqtWrWiYsWKbN68GUdHR06ePInm/x+tJScn07lzZ7744guUSiWrVq2ia9euREVFUblyZQAGDhzIjRs32LdvH8bGxowaNUrvCzTA22+/jZmZGTt27MDa2pqlS5fSrl07zp8/j52dHZCdUO3YsYOdO3cSHR3NW2+9xaVLl3Bzc2P//v0cOnSIwYMH0759exo3bpzjOpOTk/O9lie5ePEiv/76K1u2bCEpKYkhQ4bw4Ycf6pK2NWvWMHXqVJYsWYKXlxenTp1i2LBhWFhYMGDAAF07kyZNIigoCC8vLwwMDIiKisLd3Z3169fTrFkz7OzsOHHiBL169WL69On07t2bQ4cO8eGHH2Jvb8/AgQN1bQUGBjJ16lSmTZsGwIEDB0hNTWXRokWsXbuWBw8e0KNHD7p3746NjQ3bt2/n0qVL9OzZk+bNm9O7d28gu0dp1qxZuLu7Ex8fz7hx4xg4cCDbt2/XuwdTpkwhKCgIBwcHRowYweDBgwkNDQVg27ZtdO/enSlTprBq1SoyMjL06vv5+XHu3DnWrl1LhQoV2LhxI76+vpw5cwZXV9cC/RkIIV4OZWwMsLE05NzlDN2+tHQtl65nUq2iEUf/Ts+zbjk7Q4LG2JGZBdHXMln/ZwoJSfo/p5vUNqWJpylJyRrCL2Sw9a8UMrKK7HKEEOKVodCW1vQNuHPnDg4ODpw5c4ZDhw7h7+9PTEyMLtl4ktq1azNixAj8/Pw4f/487u7uHD16lIYNGwLwzz//4OHhwfz58xkzZgwHDx7k9ddfJz4+HqXy8RO+6tWrM3HiRIYPH8706dP58ssvuXnzpq7nw9fXl6ioKKKjozEwyO5cq1GjBgMHDmTSpElAdk/Oxo0b6datG99//32hr+WR6dOn8/nnn3PlyhUqVqwIZPeAvf7661y/fh1HR0eqV6/OrFmz6NOnj67e559/zvbt2zl06BAxMTFUqVKFBQsWMHr0aF2ZxMREbG1t2bdvH61btwagX79+3L59m127dunKTZw4kW3btvH3338D2T05Xl5ebNy4UVcmODiYQYMGcfHiRapVqwbAiBEjWL16Nbdu3UKlUununYuLC999912u13v8+HEaNmzIgwcPUKlUhISE0KZNG/bs2UO7du0A2L59O6+//jppaWmYmprSrFkzqlatyk8//ZSjvdjYWKpWrUpsbKzekLz27dvTqFEjZs+enaNOeno66en6X4RGBSVhaJT/U2AhRPGrVsmITwbZMm7+Xe4nP05QRvS0RKuFpRse5FqvdjUTTE3g5l011ioD3mhpga2lAVOX3tP11rT0MuXufTWJyRoqlTXirXYWXL6RxTe/Jb2QaxNCFN4PnzkU27mHzLpdZG0X53UVlVLVk3PhwgWmTp1KWFgYd+7c0fVsxMbGEh4ejpeXV55JQXJyMtOnT2fbtm3ExcWRlZVFWloasbGxAERGRmJkZESDBg10dWrUqIGNjY3uc0REBMnJydjb2+u1nZaWpjdszsXFRW9Sfrly5TA0NNQlOI/2/beX6JEnXcuTVK5cWZfgADRt2hSNRkNUVBSWlpZER0czZMgQhg0bpiuTlZWFtbW1Xjve3t5PPFdkZCRvvvmm3r7mzZuzYMEC1Go1hoaGebZlbm6uS3Ag+564uLjoEpxH+/59n06cOMH06dOJiIjg3r17en8HatasqStXp04d3f+XL18eyB6OWLlyZcLDw/Wu/d/OnDmDWq3Gzc1Nb396enqOP/dHAgICmDFjht6+eq39qd92Yq7lhRDFp3FtJf1ff/zzeeH/7udTOm9nox/3/FyLV3Pp+n3mjbLDu6aSg+EPAfjr1ENdmevxau4na5jwng0OtgbcvlewnnkhxKtDXgZaOKUqyenatSvOzs4sW7aMChUqoNFoqF27NhkZGZiZmeVb19/fn927dxMYGEj16tUxMzPjrbfeIiMjI996/5acnEz58uVznZ/x72TI2NhY75hCoch1X17Dz550Lc8iOTl7VZ9ly5blGCr3KCF5xMJCf+WgZ5FbW4W9TykpKfj4+ODj48OaNWtwcHAgNjYWHx+fHH+O/25HoVAA6NrJ7/4mJydjaGjIiRMnctyPfydf/zZ58mTGjRunt29UkDypFaIkijifwYzrCbrPRkbZPx+sLBTc/9eiZ1YWBly9WfBxZWnpWm4lqClrZ5hnmUvXs1cdKGtrKEmOEEI8o1KT5Ny9e5eoqCiWLVtGixYtADh48KDueJ06dVi+fDkJCQm59oCEhoYycOBA3QTz5ORkYmJidMdr1KhBVlYWJ06c0A1Xi4qKIjExUVemfv363Lx5EyMjI1xcXJ7/RRbwWp4kNjaWGzdu6IZbHTlyBAMDA9zd3SlXrhwVKlTg0qVL9OvX75lj9fDw0M11eSQ0NBQ3N7ccScKz+ueff7h79y5z5szByckJyB6uVlh16tRh7969DBo0KMcxLy8v1Go18fHxur9nT6JUKvWGLwIYGuU9jl8IUXweZuSc/J/4QI1HFROu3koDwNREQdWKxoSceJhbE7lSGmcnL4dP5/1vv3K57F/J/x4WJ4QQj2hK7wyTIlFqVleztbXF3t6e77//nosXL/Lnn3/qPT3v06cPjo6OdOvWjdDQUC5dusT69es5fPgwAK6urmzYsIHw8HAiIiLo27evXk+Ku7s7vr6+vP/++4SFhXHixAmGDh2q99S/ffv2NG3alG7durFr1y5iYmI4dOgQU6ZMeaov23l50rU8iampKQMGDCAiIoIDBw4watQoevXqpVumesaMGQQEBLBo0SLOnz/PmTNnWLFiBV999VWhYx0/fjx79+5l1qxZnD9/npUrV7JkyRL8/f0L3daTVK5cGRMTExYvXsylS5fYvHkzs2bNKnQ706ZN43//+x/Tpk0jMjKSM2fOMHfuXADc3Nzo168f/fv3Z8OGDVy+fJmjR48SEBDAtm3bnvclCSFKgD1H0+jymjl13UyoWNaQod0sSXyg4eQ/jxMW/3etaettqvvcq70FbpWNsbc2oFolI0b2skajgbC/sxMjB1sDurQwx9nRCHtrA+q6mTDkTSuirmSv4CaEEOLZlJokx8DAgLVr13LixAlq167N2LFj+fLLL3XHTUxM2LVrF2XLlqVz5854enoyZ84cXW/CV199ha2tLc2aNaNr1674+PhQv359vXOsWLGCChUq0KpVK3r06MHw4cMpW7as7rhCoWD79u20bNmSQYMG4ebmxjvvvMOVK1coV67cc7vWJ13Lk1SvXp0ePXrQuXNnOnbsSJ06dfSWiB46dCjLly9nxYoVeHp60qpVK4KDg6lSpUqhY61fvz6//vora9eupXbt2kydOpWZM2fqraz2vDg4OBAcHMxvv/1GzZo1mTNnDoGBgYVup3Xr1vz2229s3ryZevXq0bZtW44ePao7vmLFCvr378/48eNxd3enW7duHDt2TLcKnxCidNlxKI29x9IY8Lolnw2xRWmsYP7P9/XekeNga4jK/PGvVFsrA97vYckXH9oxoqcVKWkavlhxj+TU7CexWWqoWcWYcf2s+eJDO3q3t+DEP+ksWitDWYUQudNqtEW2lUalenU1kdP06dPZtGkT4eHhxR3KK60oV0gRQgghRNEozlXIBky9WWRtr5xZsl86/zRKzZwcIYQQQgghSivplygcSXJKmVq1anHlypVcjy1duvQFRyOEEEIIIcSLJ0lOKbN9+3YyMzNzPVauXDksLS2ZPn36iw1KCCGEEEI8E00pnTtTVCTJKWWcnZ2LOwQhhBBCCPGcldYFAopKqVldTQghhBBCCCFAenKEEEIIIYQo8WThgcKRJEeIYqBWyxvNhRBCCCGKigxXE0IIIYQQooTTajRFthWVhIQE+vXrh5WVFTY2NgwZMoTk5OQn1jt8+DBt27bFwsICKysrWrZsSVpaWqHOLUmOEEIIIYQQ4rnr168ff//9N7t372br1q389ddfDB8+PN86hw8fxtfXl44dO3L06FGOHTuGn58fBgaFS1tkuJoQQgghhBAl3Mu2hHRkZCQ7d+7k2LFjeHt7A7B48WI6d+5MYGAgFSpUyLXe2LFjGTVqFJMmTdLtc3d3L/T5pSdHCCGEEEKIV1h6ejpJSUl6W3p6+jO1efjwYWxsbHQJDkD79u0xMDAgLCws1zrx8fGEhYVRtmxZmjVrRrly5WjVqhUHDx4s9PklyRGvhJs3b9KhQwcsLCywsbEp7nCEEEIIIQpFq9UW2RYQEIC1tbXeFhAQ8Ezx3rx5k7Jly+rtMzIyws7Ojps3b+Za59KlSwBMnz6dYcOGsXPnTurXr0+7du24cOFCoc4vw9XEK2H+/PnExcURHh6OtbV1gepMnz6dTZs2ER4eXrTBCSFKvO5tLGhV3wxzUwMuXM1g1dYH3EpQ51m+W2sLurVW6e2Lu5PF5CV39fZVq2RMz3YqqlU0RqPVEnszi8DV98jMKpLLEEK8xIryZaCTJ09m3LhxevuUSmWuZSdNmsTcuXPzbS8yMvKp4tD8/yII77//PoMGDQLAy8uLvXv38uOPPxYq8ZIkR7wSoqOjadCgAa6ursUdihDiJdO5uTkdGpuzbGMStxPV9Ghjwfj3bJjy9d18k5Fr8Vl8ueqe7rP6P19QqlUyZvy7Nmw7mMJP25PQaMDJ0Qh5FYYQ4kVTKpV5JjX/NX78eAYOHJhvmapVq+Lo6Eh8fLze/qysLBISEnB0dMy1Xvny5QGoWbOm3n4PDw9iY2MLFN8jMlxNvDTWrVuHp6cnZmZm2Nvb0759e1JSUjh27BgdOnSgTJkyWFtb06pVK06ePKmr5+Liwvr161m1ahUKhUL3DzMxMZGhQ4fi4OCAlZUVbdu2JSIiAoDg4GBmzJhBREQECoUChUJBcHAwgwcPpkuXLnpxZWZmUrZsWX744YcXdi+EEC9OxybmbP4rhVNR6Vy7lcWyjUnYWhpSv0b+Xwg0Gi33kzW6LTlVP3vp66tiT1gq2w6mcuO2mpt31Rz7O52svDuIhBCvMK1GW2RbYTg4OFCjRo18NxMTE5o2bUpiYiInTpzQ1f3zzz/RaDQ0btw417ZdXFyoUKECUVFRevvPnz+Ps7NzoeKUnhzxUoiLi6NPnz7MmzeP7t278+DBAw4cOIBWq+XBgwcMGDCAxYsXo9VqCQoKonPnzly4cAFLS0uOHTtG//79sbKyYuHChZiZmQHw9ttvY2Zmxo4dO7C2tmbp0qW0a9eO8+fP07t3b86ePcvOnTvZs2cPANbW1ri5udGyZUvi4uJ0Txu2bt1KamoqvXv3Lrb7I4QoGg62hthYGnLuUoZuX1q6luhrmVSrZELY2bwn5pazM2L++DJkZmmJvprJb3uTSbifPRTD0kJBtUomHD79kClDbClra0jcHTXr/0zmQmxmkV+XEEIUNQ8PD3x9fRk2bBjfffcdmZmZ+Pn58c477+hWVrt+/Trt2rVj1apVNGrUCIVCwYQJE5g2bRp169alXr16rFy5kn/++Yd169YV6vyS5IiXQlxcHFlZWfTo0UOXyXt6egLQtm1bvbLff/89NjY27N+/ny5duuDg4IBSqcTMzEzXPXrw4EGOHj1KfHy8rns2MDCQTZs2sW7dOoYPH45KpcLIyEivS7VZs2a4u7uzevVqJk6cCMCKFSt4++23Uan0x98/kp6enmOFEnVWOoZGBesWFkIUH2tV9oCH+8n6L8tLStHojuUm+lomyzfdJ+6uGhuVAW+2tuCTQXZ8+s1dHmZoKWub/eu3W2sVa3c9IPZmFs3rmjKxvy2ffnM33/k+QohXk0ZbdC/tLCpr1qzBz8+Pdu3aYWBgQM+ePVm0aJHueGZmJlFRUaSmpur2jRkzhocPHzJ27FgSEhKoW7cuu3fvplq1aoU6tyQ54qVQt25d2rVrh6enJz4+PnTs2JG33noLW1tbbt26xaeffkpISAjx8fGo1WpSU1PzHbsZERFBcnIy9vb2evvT0tKIjo7ON5ahQ4fy/fffM3HiRG7dusWOHTv4888/8ywfEBDAjBkz9K+n1XjqtZ5QgCsXQrxITT1NGdDVUvd5/prEp2rnzMXHPT/XbsGl65kEjilDo1pK/jr1EIUi+9i+E2kcDH8IQOzNZGpWNaGFlxnr9j75jeBCCFHS2dnZ8fPPP+d53MXFBW0uExEnTZqk956cpyFJjngpGBoasnv3bg4dOsSuXbtYvHgxU6ZMISwsjA8++IC7d++ycOFCnJ2dUSqVNG3alIyMjDzbS05Opnz58oSEhOQ49qQlpvv378+kSZM4fPgwhw4dokqVKrRo0SLP8rmtWDJyXmK+5xBCFI9TUelEX388XMzIMPu/1ioDvd4cKwsDYm8WfAm01Idabt5VU9Yu+9du4oPsnpobt/XbuHFbjb21TJcVQuRUlKurlUaS5IiXhkKhoHnz5jRv3pypU6fi7OzMxo0bCQ0N5ZtvvqFz584AXL16lTt37uTbVv369bl58yZGRka4uLjkWsbExAS1OueQEXt7e7p168aKFSs4fPiwbonDvOS2YomhUVq+dYQQxeNhhpaH/xkqlvhATc0qJrqkxlSpoFolY/YdT82tiVwpTRSUtTPk0Onstu8kariXpKa8vaFeOUd7Q05fzPsBjRBCiIKRJEe8FMLCwti7dy8dO3akbNmyhIWFcfv2bTw8PHB1dWX16tV4e3uTlJTEhAkTdIsL5KV9+/Y0bdqUbt26MW/ePNzc3Lhx4wbbtm2je/fueHt74+LiwuXLlwkPD6dSpUpYWlrqkpWhQ4fSpUsX1Go1AwYMeBG3QAhRTHYdSaVrSwtuJqi5c09Nj7YW3Hug5uQ/j+faTexvw4l/0tl7NPsBRu+OKsKj0rl7X42NpSHdWlug0UDYmYe6OjsOpdKttQWxt7KIvZnFa3VNKV/GiCW/3n/h1yiEKPmkJ6dwJMkRLwUrKyv++usvFixYQFJSEs7OzgQFBdGpUyccHR0ZPnw49evXx8nJidmzZ+Pv759vewqFgu3btzNlyhQGDRrE7du3cXR0pGXLlpQrVw6Anj17smHDBtq0aUNiYiIrVqzQLT/dvn17ypcvT61atXQrhAghSqftoakoTRQM6mqJuakB52MzCPopUe8dOWXtjLA0fzzMzc7KkBFvWaMyM+BBqoYLsZnMWp7Ag38tI73rSCrGRtDHxxKVmQGxtzL5cvU9bt+TRQeEEDnlNndF5E2hlTsmRKElJydTsWJFVqxYQY8ePQpdf+D0W0UQlRBCCCGKUvD0csV27jc/iHpyoaf0+7fuRdZ2cZGeHCEKQaPRcOfOHYKCgrCxseGNN94o7pCEEEII8QrQaF6+JaSLkyQ5QhRCbGwsVapUoVKlSgQHB2NkJP+EhBBCCCFKGvmGJkQh5LWeuxBCCCFEUZKFBwpHFuMXQgghhBBClCrSkyOEEEIIIUQJp9XKnJzCkJ4cIYQQQgghRKkiPTlCFIOLJ/4p7hCEEEIIUWjFt4S0zMkpHElyhBBCCCGEKOEkySkcGa4mhBBCCCGEKFWkJ0cIIYQQQogSTiMLDxSK9OQIIYQQQgghShVJcsQzi4mJQaFQEB4ertsXGhqKp6cnxsbGdOvWrdhiE0IIIYQoDbQabZFtpZEMVxNFYty4cdSrV48dO3agUqmK9FwDBw4kMTGRTZs2Fel5hBCvriH9XOja0RFLCyPORCYR+M0FrsWl5Vn+t+WNKV/ONMf+Dduu89V3FwGYMNIV77q2lLEzIfWhmrORSXy78hKx1/JuVwghRMFIkiOKRHR0NCNGjKBSpUrFHYoQQjyTfj2deKtLRb5Y8A9xtx4ytJ8LX8305N0Pj5GRmfsT0GHjTmLwr7ESVZ0tWPB5XfYdvK3bF3UxmV0h8dy6/RArS2MG93Fm/sw6vD00DI0MvRdC/IdWfjAUigxXEzrr1q3D09MTMzMz7O3tad++PSkpKQAsX74cDw8PTE1NqVGjBt98802ubTwaunb37l0GDx6MQqEgODj4iec+e/YsnTp1QqVSUa5cOd577z3u3LnzxNimT5/OypUr+f3331EoFCgUCkJCQgC4evUqvXr1wsbGBjs7O958801iYmL0zpvfdT26ll9//ZUWLVpgZmZGw4YNOX/+PMeOHcPb2xuVSkWnTp24ffs2QojS6e03KrLq1yscDLtLdEwKn8//B3s7JS2alMmzTmJSJgmJj7dmDe25diONU2fv68ps/iOOiL/vczM+nfPRySz7KYZyDqY4ls3ZAySEEKJwJMkRAMTFxdGnTx8GDx5MZGQkISEh9OjRA61Wy5o1a5g6dSpffPEFkZGRzJ49m88++4yVK1fmaMfJyYm4uDisrKxYsGABcXFx9O7dO99zJyYm0rZtW7y8vDh+/Dg7d+7k1q1b9OrV64mx+fv706tXL3x9fYmLiyMuLo5mzZqRmZmJj48PlpaWHDhwgNDQUFQqFb6+vmRkZAAU+LqmTZvGp59+ysmTJzEyMqJv375MnDiRhQsXcuDAAS5evMjUqVOf05+EEKIkqVDOlDJ2So6F39PtS0lVc+58ErVrWBWoDSMjBR3blGPbnpt5ljFVGtC5vSM3bqYRfyf9meMWQpQ+MiencGS4mgCyE4msrCx69OiBs7MzAJ6enkD2l/ygoCB69OgBQJUqVTh37hxLly5lwIABeu0YGhri6OiIQqHA2toaR0fHJ557yZIleHl5MXv2bN2+H3/8EScnJ86fP09ycnKesQGYmZmRnp6ud66ffvoJjUbD8uXLUSgUAKxYsQIbGxtCQkLo2LFjga/L398fHx8fAEaPHk2fPn3Yu3cvzZs3B2DIkCEF6q0SQrx87GxNALiXmKm3/15ihu7Yk7RsUgaVhRHb9+ZMcrp3rsAHA6tibmbIlWupjPnsNFlZpfMLhxBCvEiS5AgA6tatS7t27fD09MTHx4eOHTvy1ltvYWJiQnR0NEOGDGHYsGG68llZWVhbWz+Xc0dERLBv375cFyiIjo6mY8eOucZma2ubb5sXL17E0tJSb//Dhw+Jjo4mJSWlwNdVp04d3f+XK1cO0E+yypUrR3x8fJ6xpKenk56u/2RWo87AwLBgX5CEEC9Oh1ZlmTDSTfd54swzz9zm6x0cCTuRwN2EjBzHdoXc4tipe9jbmdCneyVmfVyTDyaeynOujxDi1aWV9+QUiiQ5Asjugdm9ezeHDh1i165dLF68mClTprBlyxYAli1bRuPGjXPUeR6Sk5Pp2rUrc+fOzXGsfPnyecYWFhZGlSpV8myzQYMGrFmzJscxBwcHkpOTgYJdl7Gxse7/H/UK/XefJp/JgAEBAcyYMUNvn5PrACq7D8qzjhCieBw8epdz54/rPpsYZ4/qtrUx5u69x0mKrY0JFy8lP7G9cg5KvOvaMiXg71yPp6SqSUlN41pcGn9HJbHjf81p2bQMLH/AtAAACqlJREFUe/6SeX5CCH2aUjqsrKhIkiN0FAoFzZs3p3nz5kydOhVnZ2dCQ0OpUKECly5dol+/fkVy3vr167N+/XpcXFwwMsr9r2RusW3cuJFx48ZhYmKCWq3O0eYvv/xC2bJlsbLKOW7e2tq6yK/rkcmTJzNu3Di9fb7vhBXpOYUQTyctTc31NP2fJ3cS0vGua8vFy9kLsZibGVLTzYpN2288sb3X2zty734Gh4/dfWJZBaBQgLGxTJcVQohnJUmOACAsLIy9e/fSsWNHypYtS1hYGLdv38bDw4MZM2YwatQorK2t8fX1JT09nePHj3Pv3r0cX96fxsiRI1m2bBl9+vRh4sSJ2NnZcfHiRdauXcvy5cs5fvx4nrEBuLi48McffxAVFYW9vT3W1tb069ePL7/8kjfffJOZM2dSqVIlrly5woYNG5g4cSKVKlUq8ut6RKlUolQq9fbJUDUhXh6/bb7OgN6VuXojLXsJ6XdduJuQzoEjj1eAXPB5Hf46fIcN2x4nPgoFdG7vyM4/b6H+T2dvhXKmtG3hwLFT90hMysTBXsm7bzmRnq7h8PGEF3VpQoiXiCwhXTiS5AgArKys+Ouvv1iwYAFJSUk4OzsTFBREp06dADA3N+fLL79kwoQJWFhY4OnpyZgxY57LuStUqEBoaCgff/wxHTt2JD09HWdnZ3x9fTEwMHhibMOGDSMkJARvb2+Sk5PZt28frVu35q+//uLjjz+mR48ePHjwgIoVK9KuXTtdz87QoUOL9LqEEKXDmvVXMTU1ZKKfGyoLI86cu8/4aWf05s1UdDTDxspYr553PVscy5qybXfOBQfSMzXUrWVNrzcqYakyIiExg4i/7zNi4ikS72fmKC+EEKJwFFqtVgb4CfGCvdZ1f3GHIIQQQohCOrilVbGdu1WPQ0XW9v4NzYqs7eIiA3+FEEIIIYQQpYokOaLIjRgxApVKles2YsSI4g5PCCGEEKLE02o1RbaVRjInRxS5mTNn4u/vn+ux3FY+E0IIIYQQ4llIkiOKXNmyZSlbtmxxhyGEEEII8dLSyntyCkWSHCGEEEIIIUo4WUK6cGROjhBCCCGEEKJUkSWkhRBCiOckPT2dgIAAJk+enOMlwEIIIV4cSXKEEEKI5yQpKQlra2vu378vC6sIIUQxkuFqQgghhBBCiFJFkhwhhBBCCCFEqSJJjhBCCCGEEKJUkSRHCCGEeE6USiXTpk2TRQeEEKKYycIDQgghhBBCiFJFenKEEEIIIYQQpYokOUIIIYQQQohSRZIcIYQQQgghRKkiSY4QQgjxArm4uLBgwYIXes7WrVszZsyYF3pOIYQoTpLkCCGEKDUGDhxIt27dijsMIYQQxUySHCGEEK+czMzM4g5BCCFEEZIkRwghxEtn3bp1eHp6YmZmhr29Pe3bt2fChAmsXLmS33//HYVCgUKhICQkhJiYGBQKBb/88gutWrXC1NSUNWvWALB8+XI8PDwwNTWlRo0afPPNN7pzZGRk4OfnR/ny5TE1NcXZ2ZmAgAAAtFot06dPp3LlyiiVSipUqMCoUaOe6loSExMZOnQoDg4OWFlZ0bZtWyIiIgA4f/48CoWCf/75R6/O/PnzqVatmu7z2bNn6dSpEyqVinLlyvHee+9x586dp4pHCCFKA6PiDkAIIYQojLi4OPr06cO8efPo3r07Dx484MCBA/Tv35/Y2FiSkpJYsWIFAHZ2dty4cQOASZMmERQUhJeXly7RmTp1KkuWLMHLy4tTp04xbNgwLCwsGDBgAIsWLWLz5s38+uuvVK5cmatXr3L16lUA1q9fz/z581m7di21/q+d+wtpeo3jOP6ef4pp6nCQc2CzKDNiRGNlYQTpkHUxKGn+aRcRWWCCiJBeCEUUUZoV1I0spAuVKMMgUlJL+0tGQREEWmoIlSQkxGINHJ2LOD/whOcUJ87B+XnBD37b83u+e57djM+e5/dbu5bJyUkjmPwqv9+P2Wymp6eHtLQ0WlpaKCwsZGRkhJycHNxuN+3t7Rw7dszo097ezu7du4HvIamgoICKigrOnj1LOBymvr6ekpIS7ty582++ahGReUshR0RE5pUPHz4wMzNDcXExDocDAKfTCYDZbCYSiWCz2X7oV1NTQ3FxsfH6yJEjNDc3G+8tX76cV69e0dLSwp49e5iYmGDVqlVs2bIFk8lkfBbAxMQENpsNj8dDYmIiy5YtY+PGjb88lwcPHvDkyRM+fvzI4sWLATh9+jTXr1+ns7OTAwcOEAgEuHDhghFyRkZGePbsGW1tbQBGSDtx4oRRt7W1laysLCMoiYgsNNquJiIi88q6desoLCzE6XTi9/sJBoNMT0//Yz+3222cf/nyhdHRUfbt28eSJUuM4/jx44yOjgLfH2Lw/PlzVq9eTXV1Nb29vUZ/v99POBxmxYoV7N+/n66uLmZmZn55Li9evCAUCmG1WmeNY3x83BhHWVkZb9++5fHjx8D3VRyXy0Vubq5RY2BgYFb/P9v+rCEistBoJUdEROaV+Ph4+vr6ePToEb29vZw/f56GhgaGhob+tl9ycrJxHgqFAAgGg+Tl5f1QH8DlcjE+Pk5PTw/9/f2UlJTg8Xjo7OwkKyuL4eFh+vv76evr4+DBgzQ1NXH37l0SExN/ei6hUIjMzEwGBwd/aLNYLADYbDYKCgro6Ohg06ZNdHR0UFlZOauGz+fj1KlTP9TIzMz86bGIiMQShRwREZl3TCYT+fn55Ofnc/jwYRwOB11dXSxatIhoNPqP/TMyMrDb7YyNjREIBOa8LjU1ldLSUkpLS9m1axder5dPnz6Rnp6O2WzG5/Ph8/moqqoiNzeXly9f4nK5fnoeLpeLyclJEhISyM7OnvO6QCBAXV0d5eXljI2NUVZWNqvGtWvXyM7OJiFBP+siIqCQIyIi88zQ0BC3b9+mqKiIpUuXMjQ0xNTUFGvWrOHr16/cunWL4eFhrFYraWlpc9Y5evQo1dXVpKWl4fV6iUQiPH36lOnpaWprazlz5gyZmZmsX7+euLg4rl69is1mw2KxcOnSJaLRKHl5eSQlJdHW1obZbJ51387P8Hg8bN68mR07dtDY2EhOTg7v37/n5s2b7Ny509hiV1xcTGVlJZWVlWzbtg273W7UqKqqIhgMUl5eTl1dHenp6bx584bLly9z8eJFY2VKRGQhUcgREZF5JTU1lXv37nHu3Dk+f/6Mw+GgubmZ7du343a7GRwcxO12EwqFGBgYmHOFpKKigqSkJJqamjh06BDJyck4nU5qamoASElJobGxkdevXxMfH8+GDRvo7u4mLi4Oi8XCyZMnqa2tJRqN4nQ6uXHjBlar9ZfmYjKZ6O7upqGhgb179zI1NYXNZmPr1q1kZGQY16WkpODz+bhy5Qqtra2zatjtdh4+fEh9fT1FRUVEIhEcDgder5e4ON16KyILk+nbt2/f/u9BiIiIiIiI/C76i0dERERERGKKQo6IiMhvcv/+/VmPcv7rISIi/w1tVxMREflNwuEw7969m7N95cqV/+FoREQWLoUcERERERGJKdquJiIiIiIiMUUhR0REREREYopCjoiIiIiIxBSFHBERERERiSkKOSIiIiIiElMUckREREREJKYo5IiIiIiISExRyBERERERkZjyB2DqecyZfEGQAAAAAElFTkSuQmCC\n"},"metadata":{}}],"source":["\n","df_norm_corr=df_norm.corr()\n","df_norm_corr=df_norm_corr['stress_level'].sort_values(ascending=False)\n","df_norm_corr=df_norm_corr.drop('stress_level')\n","plt.figure(figsize=(8,6))\n","sns.heatmap(df_norm_corr.to_frame(),annot=True,cmap='coolwarm')\n","plt.title('Stress Level Correlation of Features after Normalized Scaling')\n","plt.show()"]},{"cell_type":"code","execution_count":27,"metadata":{"colab":{"base_uri":"https://localhost:8080/","height":545},"executionInfo":{"elapsed":1377,"status":"ok","timestamp":1716216913440,"user":{"displayName":"Daniel Meier","userId":"06365571306976914087"},"user_tz":300},"id":"sJKr80mdQ-2J","outputId":"8e1bb1ed-c82f-44a0-f8a2-3911b3fa347f"},"outputs":[{"output_type":"display_data","data":{"text/plain":["
"],"image/png":"iVBORw0KGgoAAAANSUhEUgAAAzkAAAIQCAYAAACixqBTAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOzdd1RUx9vA8e/Sli5VsCCogB0L9t4x9l6jYokaJcRuiLFgw94TTTSiMRqN3cTeMEqMHexdxIIiKiqitL3vH77szxVQUBHE53POPYedOzP3mbss7OyUVSmKoiCEEEIIIYQQOYReVgcghBBCCCGEEB+SdHKEEEIIIYQQOYp0coQQQgghhBA5inRyhBBCCCGEEDmKdHKEEEIIIYQQOYp0coQQQgghhBA5inRyhBBCCCGEEDmKdHKEEEIIIYQQOYp0coQQQgghhBA5inRyhBAiDWPHjkWlUmV1GJnC29sbFxeXD1rn0qVLUalUhIWFfdB6P7Rp06ZRqFAh9PX1KVOmTFaH89nKKc+DSqVi7NixWR1GjpPa3yi51yIjpJMjRDZ3+vRp2rZti7OzM8bGxuTLl48GDRowb948nXyTJk1i48aNWRPke3BxcaFp06ZZHcYHERQUROvWrXF0dMTIyIjcuXPTrFkz1q9fn9WhfVCf6u8awM6dOxk+fDjVqlUjMDCQSZMmpZnX29sblUqV6rF9+/ZMiW/lypXMnj07U+rOTlJ7Hu7cucPYsWMJCQnJ6vDEa9L7f0iI7MQgqwMQQqTt33//pU6dOhQoUICvvvoKR0dHbt68yX///cecOXP45ptvtHknTZpE27ZtadmyZdYF/BkbM2YM48aNw83Njb59++Ls7MyDBw/YunUrbdq0YcWKFXTu3Dmrw/wg0vpd69q1Kx07dkStVmdNYOmwd+9e9PT0+PXXXzEyMnprfrVazeLFi1Okly5dOjPCY+XKlZw5c4aBAwdmSv3ZRWrPw7Fjx/D398fFxeWTGtl5/vw5BgY59+1URv4PZbacfq/FhyW/KUJkYxMnTiRXrlwcPXoUKysrnXORkZHvXO+zZ88wMzN7z+hEsrVr1zJu3Djatm3LypUrMTQ01J4bNmwYO3bsICEh4b2vk5iYiEajSfXNeXZ4TvX19dHX18/SGN4mMjISExOTdHVwAAwMDPjyyy8zOarMFxsbi6mpaVaHoZXR5+F9ZPZrw9jYONPqzg4y6//Qu8jp91p8WDJdTYhs7OrVq5QoUSLFPxaA3Llza39WqVQ8e/aMZcuWaafTeHt7A/9bV3Lu3Dk6d+6MtbU11atX15b9/fff8fT0xMTEBBsbGzp27MjNmzd1rnX58mXatGmDo6MjxsbG5M+fn44dO/L48WNtnl27dlG9enWsrKwwNzenSJEifP/99x/sXrwtTh8fH8zNzYmNjU1RtlOnTjg6OpKUlKRN27ZtGzVq1MDMzAwLCwuaNGnC2bNn3ym2UaNGYWNjw5IlS3Q6OMm8vLx0puRFRkbSq1cvHBwcMDY2pnTp0ixbtkynTFhYGCqViunTpzN79mwKFy6MWq3m3LlzH+Q5Tc306dOpWrUqtra2mJiY4Onpydq1a3XyvOl3La01OT/99BMlSpRArVaTN29eBgwYQHR0tE6e2rVrU7JkSc6dO0edOnUwNTUlX758TJ069a1xw8sO4Pjx47X3ycXFhe+//564uDid2AMDA3n27Jk29qVLl6ar/rRoNBpmz55NiRIlMDY2xsHBgb59+/Lo0SOdfJs2baJJkybkzZsXtVpN4cKFGT9+vM7vZO3atdmyZQs3btzQxpe8JiGtexsUFIRKpSIoKEinnpIlS3L8+HFq1qyJqamp9rUYFxfHmDFjcHV1Ra1W4+TkxPDhw3XuE7z76zkwMJC6deuSO3du1Go1xYsXZ8GCBTp50noeKlSoAECPHj1SfX4OHz5Mo0aNyJUrF6amptSqVYvg4GCdut/22nhd8n09ePAgvr6+2NvbY2VlRd++fYmPjyc6Oppu3bphbW2NtbU1w4cPR1GUFO15dZ1IcgxXrlzB29sbKysrcuXKRY8ePVL8fVKpVPj4+LBmzRqKFy+OiYkJVapU4fTp0wD8/PPPuLq6YmxsTO3atVM8/wcOHKBdu3YUKFBA+3wOGjSI58+fa/NERkZib29P7dq1dWK/cuUKZmZmdOjQIc37A+n/P5Ts999/p2LFipiammJtbU3NmjXZuXOn9nx6XgtpeZ97/fz5c3x9fbGzs8PCwoLmzZtz+/ZtWeeTg8lIjhDZmLOzM4cOHeLMmTOULFkyzXzLly+nd+/eVKxYkT59+gBQuHBhnTzt2rXDzc2NSZMmaf/RTZw4kVGjRtG+fXt69+7N/fv3mTdvHjVr1uTkyZNYWVkRHx+Pl5cXcXFxfPPNNzg6OnL79m3+/vtvoqOjyZUrF2fPnqVp06Z4eHgwbtw41Go1V65cSfEG5F2lJ84OHTrw448/smXLFtq1a6ctGxsby19//YW3t7d2lGH58uV0794dLy8vpkyZQmxsLAsWLKB69eqcPHkyQwvyL1++zIULF+jZsycWFhZvzf/8+XNq167NlStX8PHxoWDBgqxZswZvb2+io6P59ttvdfIHBgby4sUL+vTpg1qtxsbGRnvuXZ/TtMyZM4fmzZvTpUsX4uPjWbVqFe3atePvv/+mSZMm2nv3tt+1V40dOxZ/f3/q16/P119/zcWLF1mwYAFHjx4lODhYp1P46NEjGjVqROvWrWnfvj1r165lxIgRlCpVii+++OKN97V3794sW7aMtm3bMmTIEA4fPkxAQADnz59nw4YN2th/+eUXjhw5op2CVrVq1TfWCxAVFaXz2NDQkFy5cgHQt29fli5dSo8ePfD19eX69evMnz+fkydP6rRv6dKlmJubM3jwYMzNzdm7dy+jR4/myZMnTJs2DYCRI0fy+PFjbt26xaxZswAwNzd/a3ypefDgAV988QUdO3bkyy+/xMHBAY1GQ/PmzTl48CB9+vShWLFinD59mlmzZnHp0iXtOqv3eT0vWLCAEiVK0Lx5cwwMDPjrr7/o378/Go2GAQMGAKk/D25ubowbN47Ro0fTp08fatSoAfzv+dm7dy9ffPEFnp6ejBkzBj09PW2H6sCBA1SsWFEnjtReG2+S/LfN39+f//77j19++QUrKyv+/fdfChQowKRJk9i6dSvTpk2jZMmSdOvW7a11tm/fnoIFCxIQEMCJEydYvHgxuXPnZsqUKTr5Dhw4wObNm7X3JyAggKZNmzJ8+HB++ukn+vfvz6NHj5g6dSo9e/Zk79692rJr1qwhNjaWr7/+GltbW44cOcK8efO4desWa9asAV52RBYsWEC7du2YN28evr6+aDQavL29sbCw4KeffnpjO9L7fwjA39+fsWPHUrVqVcaNG4eRkRGHDx9m7969NGzYEEjfayGj0nOvvb29+fPPP+natSuVK1dm//792r9rIodShBDZ1s6dOxV9fX1FX19fqVKlijJ8+HBlx44dSnx8fIq8ZmZmSvfu3VOkjxkzRgGUTp066aSHhYUp+vr6ysSJE3XST58+rRgYGGjTT548qQDKmjVr0oxz1qxZCqDcv38/w210dnZWmjRpkub59Map0WiUfPnyKW3atNHJ9+effyqA8s8//yiKoihPnz5VrKyslK+++kon3927d5VcuXLppCffuzfZtGmTAiizZs16a1sVRVFmz56tAMrvv/+uTYuPj1eqVKmimJubK0+ePFEURVGuX7+uAIqlpaUSGRmpU8f7PqeKoijdu3dXnJ2ddfLFxsbqPI6Pj1dKliyp1K1bVyc9rd+1wMBABVCuX7+uKIqiREZGKkZGRkrDhg2VpKQkbb758+crgLJkyRJtWq1atRRA+e2337RpcXFxiqOjY4rn9HUhISEKoPTu3VsnfejQoQqg7N27V6fdZmZmb6zv1bxAiqNWrVqKoijKgQMHFEBZsWKFTrnt27enSH/93iqKovTt21cxNTVVXrx4oU1r0qRJiudFUVLe22T79u1TAGXfvn3atOR7uXDhQp28y5cvV/T09JQDBw7opC9cuFABlODgYEVR3u/1nFo7vby8lEKFCumkpfY8HD16VAGUwMBAnXSNRqO4ubkpXl5eikaj0blWwYIFlQYNGmjT0nptpCX5vr5ed5UqVRSVSqX069dPm5aYmKjkz59f+/wnA5QxY8akiKFnz546+Vq1aqXY2tqmKKtWq3We159//lkBFEdHR+3fA0VRFD8/vxS/A6nd74CAAEWlUik3btzQSe/UqZNiamqqXLp0SZk2bZoCKBs3bkzz3iRL7/+hy5cvK3p6ekqrVq10Xu+KoqR43l6X2mshtb9R73qvjx8/rgDKwIEDdfJ5e3unqFPkHDJdTYhsrEGDBhw6dIjmzZsTGhrK1KlT8fLyIl++fGzevDlDdfXr10/n8fr169FoNLRv356oqCjt4ejoiJubG/v27QPQfmK9Y8eOVKeCAdrRgU2bNqHRaDLYyjdLb5wqlYp27dqxdetWYmJitOVXr15Nvnz5tFNWdu3aRXR0NJ06ddKpT19fn0qVKmnrS68nT54ApGsUB2Dr1q04OjrSqVMnbZqhoSG+vr7ExMSwf/9+nfxt2rTB3t4+1bre9TlNi4mJifbnR48e8fjxY2rUqMGJEyfS1bbX7d69m/j4eAYOHIie3v/+3Xz11VdYWlqyZcsWnfzm5uY661+MjIyoWLEi165de+N1tm7dCsDgwYN10ocMGQKQ4joZYWxszK5du3SOGTNmAC8/Rc+VKxcNGjTQud+enp6Ym5vr3O9X7+3Tp0+JioqiRo0axMbGcuHChXeOLy1qtZoePXropK1Zs4ZixYpRtGhRnXjr1q0LoI33fV7Pr7bz8ePHREVFUatWLa5du6YzvTUjQkJCuHz5Mp07d+bBgwfauJ89e0a9evX4559/UsT5+mvjbXr16qWzXXylSpVQFIVevXpp0/T19Slfvvxbfx/TiqFGjRo8ePBA+zcjWb169XRGjytVqgS8fO2/+nclOf3V6796v589e0ZUVBRVq1ZFURROnjypc5358+eTK1cu2rZty6hRo+jatSstWrR4azvS+39o48aNaDQaRo8erfN6B3TubWa8Ft52r5N3Q+zfv79Ovo+5aYL4+GS6mhDZXIUKFVi/fj3x8fGEhoayYcMGZs2aRdu2bQkJCaF48eLpqqdgwYI6jy9fvoyiKLi5uaWaP3maTcGCBRk8eDAzZ85kxYoV1KhRg+bNm/Pll19qO0AdOnRg8eLF9O7dm++++4569erRunVr2rZtm+KfXUalN87kOGbPns3mzZvp3LkzMTExbN26lb59+2r/yV6+fBlA+8budZaWlhmKLzn/06dP05X/xo0buLm5pbgvxYoV055/1evP25vOZeRepebvv/9mwoQJhISEpFjL8i6S21KkSBGddCMjIwoVKpSirfnz509xLWtra06dOvXW6+jp6eHq6qqT7ujoiJWVVYrrZIS+vj7169dP9dzly5d5/PhxqusSQHdR9tmzZ/nhhx/Yu3dvije57/rm/03y5cuXYlH/5cuXOX/+fJqd5uR43+f1HBwczJgxYzh06FCKD0UeP36s/ZuREcmv2e7du6eZ5/Hjx1hbW2sfv+l1k5oCBQroPE6O08nJKUX66+ut0ltncnyPHj3S+TuTkWsnl08WHh7O6NGj2bx5c4q4Xv+9srGxYe7cubRr1w4HBwfmzp2brnZA+v4PXb16FT09vbf+T8qM18Lb7nXy34jXfy9e/5shchbp5AjxiTAyMqJChQpUqFABd3d3evTowZo1axgzZky6yr/66Rm8XDCtUqnYtm1bqjtivboWYMaMGXh7e7Np0yZ27tyJr68vAQEB/Pfff+TPnx8TExP++ecf9u3bx5YtW9i+fTurV6+mbt267Ny587123MpInJUrV8bFxYU///yTzp0789dff/H8+XOdhbXJn/guX74cR0fHFPVldHvSokWLAmgXCn9orz9vbzqXkXv1ugMHDtC8eXNq1qzJTz/9RJ48eTA0NCQwMJCVK1e+ewMyIK3fEyUdayrg3Ttj70qj0ZA7d25WrFiR6vnkzkR0dDS1atXC0tKScePGUbhwYYyNjTlx4gQjRoxI12hJWm1La7F2ar83Go2GUqVKMXPmzFTLJL+pftfX89WrV6lXrx5FixZl5syZODk5YWRkxNatW5k1a9Y7j/Iml5s2bVqaW0u//rv9ptdNatJqU2rp6f19TO/vc0au/Wr5pKQkGjRowMOHDxkxYgRFixbFzMyM27dv4+3tner93rFjB/Dyzf+tW7feuEYvNe/7f+hDvBZS875/O0TOJJ0cIT5B5cuXByAiIkKbltE3eIULF0ZRFAoWLIi7u/tb85cqVYpSpUrxww8/8O+//1KtWjUWLlzIhAkTANDT06NevXrUq1ePmTNnMmnSJEaOHMm+ffvS/CQ8M+Js3749c+bM4cmTJ6xevRoXFxcqV66sUx+8XIz7PnElc3d3p0iRImzatIk5c+a8daG4s7Mzp06dQqPR6HwqnjxNw9nZ+Z1jyei9etW6deswNjZmx44dOt9zExgYmCJven/Xktty8eJFChUqpE2Pj4/n+vXrH+T+J19Ho9Fw+fJl7YgYwL1794iOjn6ve/omhQsXZvfu3VSrVu2Nb6qDgoJ48OAB69evp2bNmtr069evp8ib1r1N/mT69V3pMjJKVbhwYUJDQ6lXr95bn8N3eT3/9ddfxMXFsXnzZp1P1tM7BTStmJJfs5aWlh/sdyYnOH36NJcuXWLZsmU6GyHs2rUr1fzbt29n8eLFDB8+nBUrVtC9e3cOHz78zt878/r/ocKFC6PRaDh37lyandGMvBY+pOS/EdevX9cZ6b5y5UqmXldkLVmTI0Q2tm/fvlQ/iUpeg/DqNCAzM7MUb4DepHXr1ujr6+Pv75/iGoqi8ODBA+DlmpPExESd86VKlUJPT087penhw4cp6k/+J/f61rQZld44k3Xo0IG4uDiWLVvG9u3bad++vc55Ly8vLC0tmTRpUqrfXXP//v0Mx+jv78+DBw/o3bt3insFL7/d/e+//wagcePG3L17l9WrV2vPJyYmMm/ePMzNzalVq1aGr58so/fqVfr6+qhUKp2RgbCwMO2OW69K7+9a/fr1MTIyYu7cuTrx/Prrrzx+/PiD7WzUuHFjAGbPnq2TnjxikVk7KLVv356kpCTGjx+f4lxiYqL2HiV/yvzqPYiPj091VyszM7NUp+wkv9H/559/tGlJSUn88ssvGYr39u3bLFq0KMW558+f8+zZM+DdX8+ptfPx48epdpRTk/xdNq//bnl6elK4cGGmT5+us94u2bu8ZnOC1O63oijMmTMnRd7o6GjtroiTJk1i8eLFnDhxgkmTJr31Oun9P9SyZUv09PQYN25cihGZ5PIZeS18SF5eXgAprjNv3rxMva7IWjKSI0Q29s033xAbG0urVq0oWrQo8fHx/Pvvv9oRilcXFnt6erJ7925mzpxJ3rx5KViwoHahamoKFy7MhAkT8PPzIywsjJYtW2JhYcH169fZsGEDffr0YejQoezduxcfHx/atWuHu7s7iYmJLF++HH19fdq0aQPAuHHj+Oeff2jSpAnOzs5ERkby008/kT9//jd+R0WyK1euaEeEXlW2bFmaNGmSrjiTlStXDldXV0aOHElcXFyK74CwtLRkwYIFdO3alXLlytGxY0fs7e0JDw9ny5YtVKtWjfnz57815ld16NCB06dPM3HiRE6ePEmnTp1wdnbmwYMHbN++nT179minfPXp04eff/4Zb29vjh8/jouLC2vXriU4OJjZs2enewOD1KT3OU1NkyZNmDlzJo0aNaJz585ERkby448/4urqmmJNTHp/1+zt7fHz88Pf359GjRrRvHlzLl68yE8//USFChU+2Jdsli5dmu7du/PLL79op8McOXKEZcuW0bJlS+rUqfNBrvO6WrVq0bdvXwICAggJCaFhw4YYGhpy+fJl1qxZw5w5c2jbti1Vq1bF2tqa7t274+vri0qlYvny5am+cfT09GT16tUMHjyYChUqYG5uTrNmzShRogSVK1fGz8+Phw8fYmNjw6pVq1LtVKela9eu/Pnnn/Tr1499+/ZRrVo1kpKSuHDhAn/++Sc7duygfPny7/x6btiwIUZGRjRr1oy+ffsSExPDokWLyJ07t86oc1oKFy6MlZUVCxcuxMLCAjMzMypVqkTBggVZvHgxX3zxBSVKlKBHjx7ky5eP27dvs2/fPiwtLfnrr7/SfR9yiqJFi1K4cGGGDh3K7du3sbS0ZN26damuGfr222958OABu3fvRl9fn0aNGtG7d28mTJhAixYtKF26dJrXSe//oeS/u+PHj6dGjRq0bt0atVrN0aNHyZs3LwEBARl6LXxInp6etGnThtmzZ/PgwQPtFtKXLl0CPv5UV/GRfIwt3IQQ72bbtm1Kz549laJFiyrm5uaKkZGR4urqqnzzzTfKvXv3dPJeuHBBqVmzpmJiYqIA2i1+k7fYTGs72HXr1inVq1dXzMzMFDMzM6Vo0aLKgAEDlIsXLyqKoijXrl1TevbsqRQuXFgxNjZWbGxslDp16ii7d+/W1rFnzx6lRYsWSt68eRUjIyMlb968SqdOnZRLly69tY3Ozs6pbtMLKL169Up3nK8aOXKkAiiurq5pXnffvn2Kl5eXkitXLsXY2FgpXLiw4u3trRw7dkybJz1bSL8q+T7kzp1bMTAwUOzt7ZVmzZopmzZt0sl37949pUePHoqdnZ1iZGSklCpVKsW2uclbSE+bNi3Fdd73OVWU1Ldn/fXXXxU3NzdFrVYrRYsWVQIDA1O9B2n9rqW1zfH8+fOVokWLKoaGhoqDg4Py9ddfK48ePdLJU6tWLaVEiRIp2pJanKlJSEhQ/P39lYIFCyqGhoaKk5OT4ufnp7MlbXJ9GdlCOj15f/nlF8XT01MxMTFRLCwslFKlSinDhw9X7ty5o80THBysVK5cWTExMVHy5s2r3YaX17Z/jomJUTp37qxYWVkpgE7br169qtSvX19Rq9WKg4OD8v333yu7du1KdQvp1O6lorzcFnzKlClKiRIlFLVarVhbWyuenp6Kv7+/8vjxY0VR3u/1vHnzZsXDw0MxNjZWXFxclClTpihLlixJ8XuR1r3dtGmTUrx4ccXAwCDFdtInT55UWrdurdja2ipqtVpxdnZW2rdvr+zZs0eb522vjdcl/84ePXpUJz2telKLmzS2NX69bGqvD0AZMGCATr60XvvJ24W/up3/uXPnlPr16yvm5uaKnZ2d8tVXXymhoaE69y55m/sZM2bo1PfkyRPF2dlZKV26dKpfS5AsI/+HFEVRlixZopQtW1b7+1WrVi1l165d2vPpfS1kZAvp9NzrZ8+eKQMGDFBsbGwUc3NzpWXLlsrFixcVQJk8eXKa7RefLpWiyKosIYQQQgjxeQkJCaFs2bL8/vvvdOnSJavDER+YrMkRQgghhBA52vPnz1OkzZ49Gz09PZ1NEETOIWtyhBBCCCFEjjZ16lSOHz9OnTp1MDAwYNu2bWzbto0+ffqk+E4ikTPIdDUhhBBCCJGj7dq1C39/f86dO0dMTAwFChSga9eujBw58p230RbZm3RyhBBCCCGEEDmKrMkRQgghhBBC5CjSyRFCCCGEEELkKNLJEUIIIYQQQuQostJKiCywxbBIVocghBBCiAxqknAxy66dme8dsrJdmUVGcoQQQgghhBA5iozkCCGEEEIIkc2pDFVZHcInRUZyhBBCCCGEEDmKjOQIIYQQQgiRzekZyEhORshIjsgStWvXZuDAge9cPiwsDJVKRUhICABBQUGoVCqio6PfqbwQQgghhMg5ZCRHfJacnJyIiIjAzs4uq0MRQmRjzl93ptDgXqgd7Xly6gJnB47n8dHTqeatvPs3bGtVSpEeuTWIoy36AuDxawBO3Vrrnt9xgKNNe3/44IUQOYrKUMYmMkI6OeKzpK+vj6OjY1aHIYTIxvK0+4Ji0/w4M2AM0UdCKejbnUpbfiWoRCPi7z9Mkf94u2/QMzLUPja0taLG8U1ErNuuky9y+z+c6u2nfZwUF595jRBC5BgyXS1jpEsoskxiYiI+Pj7kypULOzs7Ro0ahaIoAKhUKjZu3KiT38rKiqVLl7613mfPnmFpacnatWt10jdu3IiZmRlPnz5Nc7rbnj17KF++PKamplStWpWLF3X3jZ8wYQK5c+fGwsKC3r17891331GmTJl3vQVCiGys4MAe3Pz1T24tW0/M+auc7j+GpNgXOHm3STV/wqPHxN2L0h529auRFPuCiLW6nRxNXLxOvsToJx+jOUII8VmRTo7IMsuWLcPAwIAjR44wZ84cZs6cyeLFi9+7XjMzMzp27EhgYKBOemBgIG3btsXCwiLNsiNHjmTGjBkcO3YMAwMDevbsqT23YsUKJk6cyJQpUzh+/DgFChRgwYIF7x2vECL7URkakqtcCaL2/Pu/REUhau+/WFUum646nHq0IeLPLSTFPtdJt61Vkfq3/6XWme2UnD8WQxurDxi5ECKnUhmqMu3IiWS6msgyTk5OzJo1C5VKRZEiRTh9+jSzZs3iq6++eu+6e/fuTdWqVYmIiCBPnjxERkaydetWdu/e/cZyEydOpFatWgB89913NGnShBcvXmBsbMy8efPo1asXPXr0AGD06NHs3LmTmJiY945XCJG9GNlZo2dgQFzkA530uHsPMCtS6K3lc1UohWXJIpzqM1In/f6OA9zdsIvnYbcwLeREkfGDqfj3IoKrdwCN5oO2QQghPmcykiOyTOXKlVGp/vfpQZUqVbh8+TJJSUnvXXfFihUpUaIEy5YtA+D333/H2dmZmjVrvrGch4eH9uc8efIAEBkZCcDFixepWLFiiuu8TVxcHE+ePNE5EhR5MyNETubUoy1PTl9MsUlBxJ9bifx7L0/PXOLe5j0cbdkXqwoe2NZ6+98SIcTnTc9AlWlHTiSdHJEtqVQq7fqcZAkJCRmqo3fv3to1PIGBgfTo0UOnU5UaQ8P/LRpOzqt5z09XAwICyJUrl87xpyblomUhRPYRH/UITWIi6ty2OulqB1vi7ka9say+qQl52zfhZuDaN+YDeH79FnH3H2Lm6vxe8QohhNAlnRyRZQ4fPqzz+L///sPNzQ19fX3s7e2JiIjQnrt8+TKxsbEZqv/LL7/kxo0bzJ07l3PnztG9e/f3irdIkSIcPXpUJ+31x6nx8/Pj8ePHOkd7PZv3ikUIkbmUhAQenziLXd0q/0tUqbCtU4Xo/06+sWyeto3QUxtxe8Xmt17HOJ8DRrZWvIi4/74hCyFyOFmTkzGyJkdkmfDwcAYPHkzfvn05ceIE8+bNY8aMGQDUrVuX+fPnU6VKFZKSkhgxYoTOKEt6WFtb07p1a4YNG0bDhg3Jnz//e8X7zTff8NVXX1G+fHmqVq3K6tWrOXXqFIUKvXl+vlqtRq1W66QZquTzBSGyu+uzAym9ZArRx8/w+OgpXHy7Y2Bmws1l6wEoHTiFF7fvcfGHmTrlnHq05d6m3SQ8jNZJ1zczxW2UD3c37CDubhSmhZwoNnkYz67cIGrngY/VLCGE+CxIJ0dkmW7duvH8+XMqVqyIvr4+3377LX369AFgxowZ9OjRgxo1apA3b17mzJnD8ePHM3yNXr16sXLlSp1d0t5Vly5duHbtGkOHDuXFixe0b98eb29vjhw58t51CyGyn4g12zCyt8F9jO/LLwMNPc+Rpr2J///NCEyc8qC8Np3VzL0gNtXLc7hRjxT1KUlJWJZyJ3/XlhhaWfDiTiRRu4O5OGYOmviMTccVQnx+curamcyiUl5f+CBEDrJ8+XIGDRrEnTt3MDIy+uD1N2jQAEdHR5YvX56hclsMi3zwWIQQQgiRuZokXHx7pkzyT8n0bV//LmqeefM03E+RjOSIHCk2NpaIiAgmT55M3759P0gHJzY2loULF+Ll5YW+vj5//PEHu3fvZteuXR8gYiGEEEII8aHIwgCRI02dOpWiRYvi6OiIn5/fB6lTpVKxdetWatasiaenJ3/99Rfr1q2jfv36H6R+IYQQQoi06OmrMu3IiWS6mhBZQKarCSGEEJ+erJyudrB0uUyru3roiUyrO6vIdDUhhBBCCCGyOZVezhxxySwyXU0IIYQQQgiRo8hIjhBCCCGEENmcSl/GJjJCOjlCZIGc+u3CQgghhBDZgXRyhBBCCCGEyOZy6i5omUU6OUIIIYQQQmRzsvFAxsjkPiGEEEIIIUSOIiM5QgghhBBCZHMyXS1jctRIjqIo9OnTBxsbG1QqFSEhIVkdkhBCCCGEEOIjy1GdnO3bt7N06VL+/vtvIiIiKFmy5FvLqFQqNm7cmPnBCSGE+OQ49+1M7fN78HoYStX9q8lVvlSaeStt/43GsRdSHOXXL0w1f8m5Y2kcewGXAd0yKXohRE6i0ldl2pET5ajpalevXiVPnjxUrVr1o187Pj4eIyOjj37dN8nMmBISEjA0NMyUurOKoigkJSVhYJCjXhZCiHeUp80XFJ38HWd9xxJ9NBQXn+5U3LSY/WW+IP7+wxT5T3T6BpXR//4uGtlYUf3wRiLW70iR16F5fawqlubFnXuZ2gYhhPhc5ZiRHG9vb7755hvCw8NRqVS4uLjg4uLC7NmzdfKVKVOGsWPHAuDi4gJAq1attGWS62rZsqVOuYEDB1K7dm3t49q1a+Pj48PAgQOxs7PDy8sLgDNnzvDFF19gbm6Og4MDXbt2JSoqKl1t0Gg0TJ06FVdXV9RqNQUKFGDixIna8yNGjMDd3R1TU1MKFSrEqFGjSEhI0J4fO3YsZcqUYfHixRQsWBBjY2MAoqOj6d27N/b29lhaWlK3bl1CQ0N1rr1p0ybKlSuHsbExhQoVwt/fn8TERO15lUrFggULaN68OWZmZjpxpeXs2bM0bdoUS0tLLCwsqFGjBlevXtW2ddy4ceTPnx+1Wk2ZMmXYvn27tmxYWBgqlYr169dTp04dTE1NKV26NIcOHdK5RnBwMLVr18bU1BRra2u8vLx49OiR9hoBAQEULFgQExMTSpcuzdq1a7Vlg4KCUKlUbNu2DU9PT9RqNQcPHqR27dr4+voyfPhwbGxscHR01P7OwMvO0NixYylQoABqtZq8efPi6+v71vshhPi0FPT15mbgGm4tX0/Mhauc+WYMSc9fkL9bm1TzJzx6TPy9KO1hV7cqSbEvuLt+u04+dd7cFJ/xAyE9hqFJSEy1LiGEeJ1KTy/Tjpwox7Rqzpw52jfNERERHD169K1lkvMEBgamu8yrli1bhpGREcHBwSxcuJDo6Gjq1q1L2bJlOXbsGNu3b+fevXu0b98+XfX5+fkxefJkRo0axblz51i5ciUODg7a8xYWFixdupRz584xZ84cFi1axKxZs3TquHLlCuvWrWP9+vXaNUnt2rUjMjKSbdu2cfz4ccqVK0e9evV4+PDlJ5EHDhygW7dufPvtt5w7d46ff/6ZpUuXpujIjB07llatWnH69Gl69uz5xrbcvn2bmjVrolar2bt3L8ePH6dnz57ajtOcOXOYMWMG06dP59SpU3h5edG8eXMuX76sU8/IkSMZOnQoISEhuLu706lTJ20dISEh1KtXj+LFi3Po0CEOHjxIs2bNSEpKAiAgIIDffvuNhQsXcvbsWQYNGsSXX37J/v37da7x3XffMXnyZM6fP4+Hhwfw8rk1MzPj8OHDTJ06lXHjxrFr1y4A1q1bx6xZs/j555+5fPkyGzdupFSptKewCCE+PSpDQyzLluDBvn//l6goRO09hHWlMumqw6l7WyLWbiUp9vkrFasovXgq12f9Ssz5Kx82aCGEEFo5Zl5Orly5sLCwQF9fH0dHx3SVsbe3B8DKyirdZV7l5ubG1KlTtY8nTJhA2bJlmTRpkjZtyZIlODk5cenSJdzd3dOs6+nTp8yZM4f58+fTvXt3AAoXLkz16tW1eX744Qftzy4uLgwdOpRVq1YxfPhwbXp8fDy//fabtm0HDx7kyJEjREZGolarAZg+fTobN25k7dq19OnTB39/f7777jvtdQsVKsT48eMZPnw4Y8aM0dbduXNnevToka578+OPP5IrVy5WrVqlndb2avunT5/OiBEj6NixIwBTpkxh3759zJ49mx9//FGbb+jQoTRp0gQAf39/SpQowZUrVyhatChTp06lfPny/PTTT9r8JUqUACAuLo5Jkyaxe/duqlSpom3XwYMH+fnnn6lVq5a2zLhx42jQoIFO/B4eHtq2u7m5MX/+fPbs2UODBg0IDw/H0dGR+vXrY2hoSIECBahYsWK67osQ4tNgZGeNnoEBcfce6KTHRUZhXqTgW8vnKl8Ki5LunOo/Uie98JCvUBKTCPtp+QeNVwiR88n35GRMjunkZAVPT0+dx6Ghoezbtw9zc/MUea9evfrGTs758+eJi4ujXr16aeZZvXo1c+fO5erVq8TExJCYmIilpaVOHmdnZ20HJzmmmJgYbG1tdfI9f/5cO3UsNDSU4OBgnZGbpKQkXrx4QWxsLKampgCUL18+zdheFxISQo0aNVJdt/PkyRPu3LlDtWrVdNKrVauWYhpd8sgKQJ48eQCIjIykaNGihISE0K5du1Svf+XKFWJjY1N0XuLj4ylbtqxOWmrtevW6ydeOjIwEXo6MzZ49m0KFCtGoUSMaN25Ms2bN0lzLExcXR1xcnE5agqLBUJVjBlKFEK9x6t6WJ6cv8vjYaW2aZdkSuAzoysGqqU93E0KIN5EtpDMmR3dy9PT0UBRFJ+3VNSzvW87MzEzncUxMDM2aNWPKlCkp8ia/QU+LiYnJG88fOnSILl264O/vj5eXl3aUZMaMGW+NKU+ePAQFBaWo08rKSpvH39+f1q1bp8iTvK4ntbrf5G3tSa9XO0kq1csXt0ajees1YmJiANiyZQv58uXTOZc8opUstXa93jlTqVTa6zo5OXHx4kV2797Nrl276N+/P9OmTWP//v2pduoCAgLw9/fXSetsYEsXQ7s04xdCZK34qEdoEhNRO+h+QKTObUfcvTevs9Q3NSFP28ZcHj9XJ92mqidG9rbUubhXm6ZnYECxySNw8elOULG0P+QSQgiRMTm6k2Nvb09ERIT28ZMnT7h+/bpOHkNDQ+0ajlfLnTlzRictJCTkrbuJlStXjnXr1uHi4pLhHbrc3NwwMTFhz5499O7dO8X5f//9F2dnZ0aO/N/Uhxs3bry13nLlynH37l0MDAy0GyuklufixYu4urpmKOY38fDwYNmyZanuwmZpaUnevHkJDg7WmTYWHBycoWlfHh4e7NmzJ0UHAqB48eKo1WrCw8N1rvGhmJiY0KxZM5o1a8aAAQMoWrQop0+fply5ciny+vn5MXjwYJ20fQ7pHxUTQnx8SkICT06exbZ2Fe79tedlokqFbZ3K3Fi44o1lHVs3Qk9txO1Vf+mk3/5jM1H7dDdPqbh5MbdXbuLW8g0fNH4hRM4j09UyJkd3curWrcvSpUtp1qwZVlZWjB49Gn19fZ08Li4u7Nmzh2rVqqFWq7G2tqZu3bpMmzaN3377jSpVqvD7779z5syZFNOcXjdgwAAWLVpEp06dtDtzXblyhVWrVrF48eIU136VsbExI0aMYPjw4RgZGVGtWjXu37/P2bNn6dWrF25uboSHh7Nq1SoqVKjAli1b2LDh7f8U69evT5UqVWjZsiVTp07F3d2dO3fusGXLFlq1akX58uUZPXo0TZs2pUCBArRt2xY9PT1CQ0M5c+YMEyZMSN/Nfo2Pjw/z5s2jY8eO+Pn5kStXLv777z8qVqxIkSJFGDZsGGPGjKFw4cKUKVOGwMBAQkJCWLHizW8eXuXn50epUqXo378//fr1w8jIiH379tGuXTvs7OwYOnQogwYNQqPRUL16dR4/fkxwcDCWlpba9UfvYunSpSQlJVGpUiVMTU35/fffMTExwdnZOdX8arU6xeiRTFUTIvu7PncpHosm8/jEGaKPnaKgT3cMTE24tXw9AB6LJhN3J5KLY2bqlHPq3oZ7f+0m4WG0TnrCw+gUaZqEROLuRfHssu4HcEIIId5Pjn6n5efnR61atWjatClNmjShZcuWFC5cWCfPjBkz2LVrF05OTtpOjJeXF6NGjWL48OFUqFCBp0+f0q3b27+sLXl0IikpiYYNG1KqVCkGDhyIlZUVeunYnm/UqFEMGTKE0aNHU6xYMTp06KBdB9K8eXMGDRqEj48PZcqU4d9//2XUqFFvrVOlUrF161Zq1qxJjx49cHd3p2PHjty4cUO7c5uXlxd///03O3fupEKFClSuXJlZs2al+aY9PWxtbdm7dy8xMTHUqlULT09PFi1apB3V8fX1ZfDgwQwZMoRSpUqxfft2Nm/ejJubW7qv4e7uzs6dOwkNDaVixYpUqVKFTZs2aUfRxo8fz6hRowgICKBYsWI0atSILVu2ULDg2xcNv4mVlRWLFi2iWrVqeHh4sHv3bv76668U656EEJ+2iHXbuPD9VNxHfUP1/zZi6VGUIy2/Ij7y5WYEJk55UTva65QxcyuITbXy3Fq2LitCFkLkYLKFdMaolNcXnwghMt1W06JZHYIQQgghMqhx7IUsu/apxrUzrW6PrUGZVndWydHT1YQQQgghhMgJZE1OxuTM8alsKDw8HHNz8zSP8PDwrA4xQ/r165dmW/r165fV4QkhhBBCiM+YTFf7SBITEwkLC0vz/LvsyJaVIiMjefLkSarnLC0tyZ0790eO6NMi09WEEEKIT09WTlc726JuptVdYtPet2d6xY8//si0adO4e/cupUuXZt68eW/cITc6OpqRI0eyfv16Hj58iLOzM7Nnz6Zx48bvG3qaPp131Z84AwODD7pFc1bLnTu3dGSEEEIIIT6S7DJdbfXq1QwePJiFCxdSqVIlZs+ejZeXFxcvXkz1vWF8fDwNGjQgd+7crF27lnz58nHjxg3t9zVmFunkCCGEEEIIIdJl5syZfPXVV/To0QOAhQsXsmXLFpYsWcJ3332XIv+SJUt4+PAh//77r3aX3bS+u/FDkjU5QgghhBBCZHOZuYV0XFwcT5480Tni4uJSxBAfH8/x48epX7++Nk1PT4/69etz6NChFPkBNm/eTJUqVRgwYAAODg6ULFmSSZMmkZSUlGn3CmQkR4gsoWeQPYachRBCCCECAgLw9/fXSRszZgxjx47VSYuKiiIpKUn7XYvJHBwcuHAh9fVK165dY+/evXTp0oWtW7dy5coV+vfvT0JCAmPGjPmg7XiVdHKEEEIIIYTI5jJzTY6fnx+DBw/WSVOr1R+kbo1GQ+7cufnll1/Q19fH09OT27dvM23aNOnkCCGEEEIIITKHWq1OV6fGzs4OfX197t27p5N+7949HB0dUy2TJ08eDA0N0dfX16YVK1aMu3fvEh8fj5GR0fsFnwZZkyOEEEIIIUQ2p9JTZdqRXkZGRnh6erJnzx5tmkajYc+ePVSpUiXVMtWqVePKlStoNBpt2qVLl8iTJ0+mdXBAOjlCCCGEEEKIdBo8eDCLFi1i2bJlnD9/nq+//ppnz55pd1vr1q0bfn5+2vxff/01Dx8+5Ntvv+XSpUts2bKFSZMmMWDAgEyNUzo54oMICwtDpVIREhKSpXGoVCo2btz4Ua/p4uLC7NmzP+o1hRBCCPF5yQ4jOQAdOnRg+vTpjB49mjJlyhASEsL27du1mxGEh4cTERGhze/k5MSOHTs4evQoHh4e+Pr68u2336a63fSHJGtyxAfh5OREREQEdnZ26S5Tu3ZtypQpIx0EIUS2VeCrzhT07YmRgx1Pz1zg/LCJPD5+OtW8Fbcsw6ZGym/8jtyxnxPt+qVILz5rDAV6deT8dwHc+Om3Dx67ECJnUelln7EJHx8ffHx8Uj0XFBSUIq1KlSr8999/mRyVLunkiA9CX18/zQVnQgjxKXJs/QVFJ43g7MCxRB87hUv/bpRfv4gDno2Jj3qYIv/JL31R/f8X3QEY2VhR9d8N3NuwPUXe3E3rY1WhNC/u3EtxTgghxPvLPl1Ckam2b99O9erVsbKywtbWlqZNm3L16lXgf1PN1q9fT506dTA1NaV06dI6X+rUs2dPPDw8tF8MFR8fT9myZenWrZtOHa9OVztz5gxffPEF5ubmODg40LVrV6KiogDw9vZm//79zJkzB5VKhUql4vr167i6ujJ9+nSd2ENCQlCpVFy5ciXD7b558ybt27fHysoKGxsbWrRoQVhYGAA7d+7E2NiY6OhonTLffvstdevW1T4+ePAgNWrUwMTEBCcnJ3x9fXn27FmGYxFCfFpcfLpzc9kabq/YwLOLVzk7cCxJz1+Qr2vrVPMnPHpMfGSU9rCtWxVN7Avubtyhk0+dJzfFp43kVO/hKAmJH6MpQogcQE9flWlHTiSdnM/Es2fPGDx4MMeOHWPPnj3o6enRqlUrnZ0uRo4cydChQwkJCcHd3Z1OnTqRmPjyH/DcuXN59uyZdv7kyJEjiY6OZv78+aleLzo6mrp161K2bFmOHTvG9u3buXfvHu3btwdgzpw5VKlSha+++oqIiAgiIiIoUKAAPXv2JDAwUKeuwMBAatasiaura4banJCQgJeXFxYWFhw4cIDg4GDMzc1p1KgR8fHx1KtXDysrK9atW6ctk5SUxOrVq+nSpQsAV69epVGjRrRp04ZTp06xevVqDh48mOYQrRAiZ1AZGmJZpgQP9r3yDd6KwoOgQ1hVLJOuOvJ3bUPEuq0kxT5/pWIVHr9M4frcJcRcyPgHN0IIIdJHpqt9Jtq0aaPzeMmSJdjb23Pu3DnMzc0BGDp0KE2aNAHA39+fEiVKcOXKFYoWLYq5uTm///47tWrVwsLCgtmzZ7Nv3z4sLS1Tvd78+fMpW7YskyZN0rmmk5MTly5dwt3dHSMjI0xNTXWmuXl7ezN69GiOHDlCxYoVSUhIYOXKlSlGd9Jj9erVaDQaFi9ejEr18lOKwMBArKysCAoKomHDhnTs2JGVK1fSq1cvAPbs2UN0dLT2fgUEBNClSxcGDhwIgJubG3PnzqVWrVosWLAAY2PjDMclhMj+jGyt0DMwIP7+A530uMgHmLkXfGv5XJ6lsCjhzhmfH3TSCw3qjZKUxI0Fyz9ovEKInC8zvww0J5KRnM/E5cuX6dSpE4UKFcLS0hIXFxfg5Q4YyTw8PLQ/58mTB4DIyEhtWpUqVRg6dCjjx49nyJAhVK9ePc3rhYaGsm/fPszNzbVH0aJFAbTT5FKTN29emjRpwpIlSwD466+/iIuLo127dhluc2hoKFeuXMHCwkIbg42NDS9evNDG0KVLF4KCgrhz5w4AK1asoEmTJlhZWWnrWLp0qU47vLy80Gg0XL9+PV1xxMXF8eTJE50jXtG8vaAQ4pOVv2sbnp65qLNJgWWZ4jh/3ZXT/fzeUFIIIcSHICM5n4lmzZrh7OzMokWLyJs3LxqNhpIlSxIfH6/NY/jKgtnkkY9Xp7NpNBqCg4PR19d/6/qYmJgYmjVrxpQpU1KcS+5ApaV379507dqVWbNmERgYSIcOHTA1NU1XO1+PwdPTkxUrVqQ4Z29vD0CFChUoXLgwq1at4uuvv2bDhg0sXbpUp46+ffvi6+uboo4CBQqkK46AgAD8/f110roY2fKl2j4DrRFCfEzxD6LRJCZiZG+rk67ObUvcvag3ltU3NcGxTWOuTJqnk25dtTxG9rbUOrdXm6ZnYEDRicNx+bob+0vV/3ANEELkONlpd7VPgXRyPgMPHjzg4sWLLFq0iBo1agAvF9Nn1LRp07hw4QL79+/Hy8uLwMBA7Rc/va5cuXKsW7cOFxcXDAxS/zUzMjIiKSkpRXrjxo0xMzNjwYIFbN++nX/++SfDsSbHsHr1anLnzp3mtDp4OZqzYsUK8ufPj56ennbKXnId586dy/B6oFf5+fkxePBgnbSgfBXeuT4hROZTEhJ4EnIW29qVidzy/9/srVJhW6syN35J+cHJqxxbeqGnNuLO6r900u+s2qy7xgcov2ERd1Zt5vbv6z9o/EII8bmTLuFnwNraGltbW3755ReuXLnC3r17U7zpfpuTJ08yevRoFi9eTLVq1Zg5cybffvst165dSzX/gAEDePjwIZ06deLo0aNcvXqVHTt20KNHD23HxsXFhcOHDxMWFkZUVJR21EhfXx9vb2/8/Pxwc3OjSpUq79TuLl26YGdnR4sWLThw4ADXr18nKCgIX19fbt26pZPvxIkTTJw4kbZt26JWq7XnRowYwb///ouPjw8hISFcvnyZTZs2ZWjjAbVajaWlpc5hpJKXnhDZXdj8ZeTv3o68nVtg5l6IErPGoG9qwu3fNwBQ6ufJuI8ZlKJcvm5tiNyyh4SH0TrpCQ+jiTl/WedQEhKJi4zi2ZWwj9AiIcSnLLt8GeinQt5pfQb09PRYtWoVx48fp2TJkgwaNIhp06alu/yLFy/48ssv8fb2plmzZgD06dOHOnXq0LVr11RHY/LmzUtwcDBJSUk0bNiQUqVKMXDgQKysrND7/+HWoUOHoq+vT/HixbG3t9dZH9SrVy/i4+PTHClKD1NTU/755x8KFChA69atKVasGL169eLFixc6Izuurq5UrFiRU6dOaXdVS+bh4cH+/fu5dOkSNWrUoGzZsowePZq8efO+c1xCiE/D3fXbuPjDVNy+96Va8AYsPIpyrE0f7WYEJvnzoHbUnXZq5uqCTdXy3PptXWpVCiHEO5NOTsaoFEVRsjoIIV534MAB6tWrx82bN3FwcMjqcD647ZbFsjoEIYQQQmRQoyfns+zaN/q0zLS6nX/ZmGl1ZxVZkyOylbi4OO7fv8/YsWNp165djuzgCCGEEEJklGw8kDFyt0S28scff+Ds7Ex0dDRTp07VObdixQqdrZxfPUqUKJFFEQshhBBCiOxGpquJT8bTp0+5d+9equcMDQ1xdnb+yBG9O5muJoQQQnx6snK62s3+bd6e6R05/ZTz1hHKdDXxybCwsMDCwiKrwxBCCCGEENmcdHKEEEIIIYTI5mRNTsbI3RJCCCGEEELkKDKSI4QQQgghRHanypnfZ5NZZCRHCCGEEEIIkaPISI4QQgghhBDZnEpPRnIyQjo5QgghhBBCZHOy8UDGyN0SQgghhBBC5CjSyRHvrHbt2gwcODCrw3hnQUFBqFQqoqOjszoUIYQQQog3UumpMu3IiWS6mvhsVa1alYiICHLlypXVoQghsqkCX3WmoG9PjBzseHrmAueHTeTx8dOp5q24ZRk2NSqmSI/csZ8T7foB4Oo3AMc2jTHO54gSn8DjkHNcHj+bx8dOZWo7hBDicyOdHJFtxcfHY2RklGn1GxkZ4ejomGn1CyE+bY6tv6DopBGcHTiW6GOncOnfjfLrF3HAszHxUQ9T5D/5pS8qQ0PtYyMbK6r+u4F7G7Zr055dCeP80AnEht1E39gY5wHdKb9hMf+U8SLhwaOP0i4hxKdJ1uRkjNwtkS7Pnj2jW7dumJubkydPHmbMmKFzPi4ujqFDh5IvXz7MzMyoVKkSQUFB2vNLly7FysqKjRs34ubmhrGxMV5eXty8eVObZ+zYsZQpU4bFixdTsGBBjI2NAYiOjqZ3797Y29tjaWlJ3bp1CQ0N1ZYLDQ2lTp06WFhYYGlpiaenJ8eOHQPgxo0bNGvWDGtra8zMzChRogRbt24FUp+utm7dOkqUKIFarcbFxSVFO11cXJg0aRI9e/bEwsKCAgUK8Msvv3yQeyyEyF5cfLpzc9kabq/YwLOLVzk7cCxJz1+Qr2vrVPMnPHpMfGSU9rCtWxVN7AvubtyhzROxZgsPgg7xPOwWMReucOH7yRjmssCiZJGP1SwhhPgsSCdHpMuwYcPYv38/mzZtYufOnQQFBXHixAnteR8fHw4dOsSqVas4deoU7dq1o1GjRly+fFmbJzY2lokTJ/Lbb78RHBxMdHQ0HTt21LnOlStXWLduHevXryckJASAdu3aERkZybZt2zh+/DjlypWjXr16PHz48pPULl26kD9/fo4ePcrx48f57rvvMPz/T1MHDBhAXFwc//zzD6dPn2bKlCmYm5un2sbjx4/Tvn17OnbsyOnTpxk7diyjRo1i6dKlOvlmzJhB+fLlOXnyJP379+frr7/m4sWL73uLhRDZiMrQEMsyJXiw79D/EhWFB0GHsKpYJl115O/ahoh1W0mKfZ7mNZy825MQ/YSnpy98gKiFEDmZrMnJGJmuJt4qJiaGX3/9ld9//5169eoBsGzZMvLnzw9AeHg4gYGBhIeHkzdvXgCGDh3K9u3bCQwMZNKkSQAkJCQwf/58KlWqpK2jWLFiHDlyhIoVX85jj4+P57fffsPe3h6AgwcPcuTIESIjI1Gr1QBMnz6djRs3snbtWvr06UN4eDjDhg2jaNGiALi5uWljDw8Pp02bNpQqVQqAQoUKpdnOmTNnUq9ePUaNGgWAu7s7586dY9q0aXh7e2vzNW7cmP79+wMwYsQIZs2axb59+yhSRD6JFSKnMLK1Qs/AgPj7D3TS4yIfYOZe8K3lc3mWwqKEO2d8fkhxzr5RbUovmY6+qQlxd+9ztGUvEh5Gf6jQhRBCICM5Ih2uXr1KfHy8tnMCYGNjo31Tf/r0aZKSknB3d8fc3Fx77N+/n6tXr2rLGBgYUKFCBe3jokWLYmVlxfnz57Vpzs7O2g4OvJyKFhMTg62trU7d169f19Y9ePBgevfuTf369Zk8ebLONX19fZkwYQLVqlVjzJgxnDqV9uLe8+fPU61aNZ20atWqcfnyZZKSkrRpHh4e2p9VKhWOjo5ERkamWW9cXBxPnjzROeIVTZr5hRCfvvxd2/D0zMVUNyl4+M9h/q3emv8adCZq90HKLJ2FkZ1NFkQphPiUyEhOxkgnR7y3mJgY9PX1OX78OCEhIdrj/PnzzJkzJ0N1mZmZpag7T548OvWGhIRw8eJFhg0bBrxcy3P27FmaNGnC3r17KV68OBs2bACgd+/eXLt2ja5du3L69GnKly/PvHnz3qu9hq8sLIaXHR2NJu1OS0BAALly5dI5/ox/kGZ+IUTWi38QjSYxESN7W510dW5b4u5FvbGsvqkJjm0ac2v5ulTPJ8U+J/ZaOI+PhnLG5weUpCTyd2vzwWIXQuRQenqZd+RAObNV4oMqXLgwhoaGHD58WJv26NEjLl26BEDZsmVJSkoiMjISV1dXnePV3csSExO1GwIAXLx4kejoaIoVK5bmtcuVK8fdu3cxMDBIUbednZ02n7u7O4MGDWLnzp20bt2awMBA7TknJyf69evH+vXrGTJkCIsWLUr1WsWKFSM4OFgnLTg4GHd3d/T19dN5t1Ly8/Pj8ePHOkd7I9u3FxRCZBklIYEnIWexrV35f4kqFba1KhN9JOSNZR1beqGnNuLO6r/SdS2Vngo9debtJCmEEJ8jWZMj3src3JxevXoxbNgwbG1tyZ07NyNHjkTv/3v+7u7udOnShW7dujFjxgzKli3L/fv32bNnDx4eHjRp0gR4OQLyzTffMHfuXAwMDPDx8aFy5cra9TipqV+/PlWqVKFly5ZMnToVd3d37ty5w5YtW2jVqhUlSpRg2LBhtG3bloIFC3Lr1i2OHj1KmzYvPxUdOHAgX3zxBe7u7jx69Ih9+/al2akaMmQIFSpUYPz48XTo0IFDhw4xf/58fvrpp/e6f2q1WrueKJmRSj5fECK7C5u/jFILA3h88gyPj53GpX839E1NuP37y5HiUj9PJu7OPS75z9Ipl69bGyK37Emxzkbf1IRCQ/sSuW0fcXfvY2RrRYGvOqPO48DdDTsQQog3Ualy5rSyzCKdHJEu06ZNIyYmhmbNmmFhYcGQIUN4/Pix9nxgYCATJkxgyJAh3L59Gzs7OypXrkzTpk21eUxNTRkxYgSdO3fm9u3b1KhRg19//fWN11WpVGzdupWRI0fSo0cP7t+/j6OjIzVr1sTBwQF9fX0ePHhAt27duHfvHnZ2drRu3Rp/f38AkpKSGDBgALdu3cLS0pJGjRoxa9asVK9Vrlw5/vzzT0aPHs348ePJkycP48aN09l0QAjx+bi7fhtGdta4fe+L2sGOJ6fPc6xNH+1mBCb588BrU1XNXF2wqVqeoy16pahPSUrCzL0QZTu3xMjWmviH0Tw+cZrDjb4k5sKVj9ImIYT4XKgURVGyOgiR8y1dupSBAwfqfCfN52y7ZdpT9IQQQgiRPTV6cv7tmTJJ1OiUH558KHbj3vyh86dI5swIIYQQQgghchSZriaEEEIIIUQ2l1O3es4sMpIjPgpvb2+ZqiaEEEIIIT4KGckRQgghhBAiu8uh32eTWaSTI4QQQgghRDYn09UyRrqEQgghhBBCiBxFRnKEEEIIIYTI5lTyReIZIp0cIbKAkY1hVocghBBCCJFjSSdHCCGEEEKI7E7W5GSIjHsJIYQQQgghchQZyRFCCCGEECKbU8kW0hkid0u8t9q1azNw4MCPfl0XFxdmz579werLqnYIIYQQQogPS0ZyhBBCiDTk69qBAn29MbK3I+b8JS6NCeBp6JlU85Zd9SvWlSukSI/a+w+nevoAYO9Vj3xd2mFRqjiG1lYcadyOmHMXM7UNQoicQb4nJ2OkkyOEEEKkIndTL9x+GMbFH8bz+ORpnHp+SZnfFvJf3eYkPHiYIv/pvoPQM/rfzomGVlZU2LaGyK07tWn6piZEHzvJvS07KTZl7MdohhAip5AtpDNE7pb4IDQaDcOHD8fGxgZHR0fGjh2rPRcdHU3v3r2xt7fH0tKSunXrEhoaqj1/9epVWrRogYODA+bm5lSoUIHdu3fr1B8ZGUmzZs0wMTGhYMGCrFixIkUMM2fOpFSpUpiZmeHk5ET//v2JiYnRyRMcHEzt2rUxNTXF2toaLy8vHj16lK52pKctQoicw6l3N+6sWkfEmk3EXrnGxZHj0Tx/Tt72LVPNn/j4CfH3H2gP6xpV0Dx/QeSWXdo8dzf8Tdjcn3kU/N9HaoUQQnyepJMjPohly5ZhZmbG4cOHmTp1KuPGjWPXrpf/2Nu1a0dkZCTbtm3j+PHjlCtXjnr16vHw4ctPQmNiYmjcuDF79uzh5MmTNGrUiGbNmhEeHq6t39vbm5s3b7Jv3z7Wrl3LTz/9RGRkpE4Menp6zJ07l7Nnz7Js2TL27t3L8OHDtedDQkKoV68exYsX59ChQxw8eJBmzZqRlJSUrnakpy1CiJxBZWiARcliPHy1M6IoPAw+jGW50umqI2/7Vtz7azua588zKUohxOdEpafKtCMnUimKomR1EOLTVrt2bZKSkjhw4IA2rWLFitStW5emTZvSpEkTIiMjUavV2vOurq4MHz6cPn36pFpnyZIl6devHz4+Ply6dIkiRYpw5MgRKlR4Od/9woULFCtWjFmzZqW5WcDatWvp168fUVFRAHTu3Jnw8HAOHjyY4XZMnjyZgwcPvlNbUrPXxSPdeYUQH59RbnuqH9nDsdZf8uTEKW164e8GYVW5PMdbdnljeYvSJamwaSVHW3ROdQ2Pcf68VD24XdbkCPGJqRt26u2ZMsmTmQMzrW7LwbMzre6sIiM54oPw8NB9054nTx4iIyMJDQ0lJiYGW1tbzM3Ntcf169e5evUq8HIkZ+jQoRQrVgwrKyvMzc05f/68diTn/PnzGBgY4Onpqa2/aNGiWFlZ6Vxz9+7d1KtXj3z58mFhYUHXrl158OABsbGxwP9Gct6lHUC62pKauLg4njx5onPEK5o3xiGE+LTl7dCKmPOX0tykQAghMkxPL/OODPrxxx9xcXHB2NiYSpUqceTIkXSVW7VqFSqVipYtW2b4mhklGw+ID8LQ0FDnsUqlQqPREBMTQ548eQgKCkpRJrmTMnToUHbt2sX06dNxdXXFxMSEtm3bEh8fn+7rh4WF0bRpU77++msmTpyIjY0NBw8epFevXsTHx2NqaoqJick7twNIV1tSExAQgL+/v05at1y56W7l8PaGCSGyRMKjR2gSEzGys9VJN7K3Jf5+1BvL6pmY4NC0Eddm/ZSZIQohRJZYvXo1gwcPZuHChVSqVInZs2fj5eXFxYsXyZ07d5rlwsLCGDp0KDVq1PgoccpIjshU5cqV4+7duxgYGODq6qpz2NnZAS83A/D29qZVq1aUKlUKR0dHwsLCtHUULVqUxMREjh8/rk27ePEi0dHR2sfHjx9Ho9EwY8YMKleujLu7O3fu3NGJxcPDgz179mRqW1Lj5+fH48ePdY5OuezfOQ4hROZTEhJ5euY81lUr/S9RpcK6aiWenHjzZiO5mzRApTbi7oa/MzlKIcTnRKVSZdqRETNnzuSrr76iR48eFC9enIULF2JqasqSJUvSLJOUlESXLl3w9/enUKFC73sr0kU6OSJT1a9fnypVqtCyZUt27txJWFgY//77LyNHjuTYsWMAuLm5sX79ekJCQggNDaVz587a0ROAIkWK0KhRI/r27cvhw4c5fvw4vXv31hmZcXV1JSEhgXnz5nHt2jWWL1/OwoULdWLx8/Pj6NGj9O/fn1OnTnHhwgUWLFigXbPzIdqSGrVajaWlpc5hJNtACpHt3Vz8G3k7tcGxTXNMCxekyMQf0Dc14c6ajQAUmzGRQsN9U5TL2741UTv3khj9OMU5g1yWmBcvgpnry3/ypoVcMC9eBCN72xR5hRAiu4mPj+f48ePUr19fm6anp0f9+vU5dOhQmuXGjRtH7ty56dWr18cI82VcH+1K4rOkUqnYunUrNWvWpEePHri7u9OxY0du3LiBg8PL6VozZ87E2tqaqlWr0qxZM7y8vChXrpxOPYGBgeTNm5datWrRunVr+vTpozMkWrp0aWbOnMmUKVMoWbIkK1asICAgQKcOd3d3du7cSWhoKBUrVqRKlSps2rQJA4P0zdpMT1uEEDlH5N87uDJxBoUG9afi1jWYFy9KaPevSYh6uZuicT5H1Ll1R2VNC7lgVbEcd1ZvSLVOuwa1qbh1DaWXvpzKVnL+NCpuXUO+Lu0ztzFCiE9fJq7JSW39cFxcXIoQoqKiSEpKSvG+x8HBgbt376Ya9sGDB/n1119ZtGhRptyWtMjuakJkAdldTQghhPj0ZOXuajE/Dn97pnc0/b5pivXDY8aMSfF9gXfu3CFfvnz8+++/VKlSRZs+fPhw9u/fz+HDh3XyP336FA8PD3766Se++OIL4OXXgkRHR7Nx48ZMaUsy2XhACCGEEEKIz5ifnx+DBw/WSXv16zKS2dnZoa+vz71793TS7927h6OjY4r8V69eJSwsjGbNmmnTkpckGBgYcPHiRQoXLvwhmpCCdHKEEEIIIYTI7jJxPa9arU61U/M6IyMjPD092bNnj3YbaI1Gw549e/Dx8UmRv2jRopw+fVon7YcffuDp06fMmTMHJyenDxJ/aqSTI4QQQgghhEiXwYMH0717d8qXL0/FihWZPXs2z549o0ePHgB069aNfPnyERAQgLGxMSVLltQpn/y1G6+nf2jSyRFCCCGEECK708vYVs+ZpUOHDty/f5/Ro0dz9+5dypQpw/bt27WbEYSHh6P3Dl8w+qHJxgNCZAHZeEAIIYT49GTpxgML/TKtbvN+AW/P9ImRkRwhhBBCCCGyOZV8x16GyN0SQgghhBBC5CgykiNEFjAw18/qEIQQQgjxKckma3I+FdLJEUIIIYQQIptTZYPF/J8SuVtCCCGEEEKIHEVGcoQQQgghhMjuVDJdLSNkJCebq127NgMHDvxg9Y0dO5YyZcp8sPo+pozGvnTpUu0XTr2JSqVi48aN7xyXEEIIIYTIXnJ8JycoKAiVSkV0dHRWh/JO1q9fz/jx47M6jI8utY7H0KFD2bNnT7rr6NChA5cuXdI+TquTFBERwRdffPGuoQohcrA8HdtTcccWqh//jzIrf8OiZIk35te3MMd15HdU2reT6icOU/7vjVjXqP6/86amFBoxlIo7t1Lt2CFK/74U85LFM7sZQoicQE8v844cSKar/b/4+HiMjIyy5NoJCQkYGhqmGo+NjU2WxPQmqcX7MZibm2Nubp7u/CYmJpiYmLw1n6Oj4/uEJYTIoewbNaTw8CFcHjeRp6fOkK9rZ0r+/BPHmrUk4eGjFPlVBgZ4LFpI/MOHnB88jLh7kRjnzUvi06faPG7jRmPm6spFvx+Ii7yPQ7PGeCxayLEWbYiPvP8xmyeEEDnaJ9F102g0BAQEULBgQUxMTChdujRr165FURTq16+Pl5cXiqIA8PDhQ/Lnz8/o0aMJCwujTp06AFhbW6NSqfD29gZeTgPz8fFh4MCB2NnZ4eXlBcDMmTMpVaoUZmZmODk50b9/f2JiYnTiCQ4Opnbt2piammJtbY2XlxePHr38h+fi4sLs2bN18pcpU4axY8dqH6tUKhYsWEDz5s0xMzNj4sSJ2lGGxYsXU7BgQYyNjbVxvjpdLS4ujhEjRuDk5IRarcbV1ZVff/0VSH161saNG1G9YQ7n0aNHadCgAXZ2duTKlYtatWpx4sQJnTypxfsmSUlJ9OrVS/t8FSlShDlz5qTIt2TJEkqUKIFarSZPnjz4+Pho7yFAq1atUKlU2sevjsTs3LkTY2PjFCN03377LXXr1k1xP5YuXYq/vz+hoaGoVCpUKhVLly7Vtu/VUaObN2/Svn17rKyssLGxoUWLFoSFhWnPBwUFUbFiRczMzLCysqJatWrcuHHjjfdECPHpydftSyLWrufexs3EXrvG5XET0bx4gWOrlqnmd2zdEoNclpzzHcyTk6HE3Yng8bHjPLv4ckRZT63Gvn49rs+czePjJ3hx8yY3fvqZ5+E3yduh3UdsmRDik6RSZd6RA30SnZyAgAB+++03Fi5cyNmzZxk0aBBffvkl//zzD8uWLePo0aPMnTsXgH79+pEvXz5Gjx6Nk5MT69atA+DixYtERETovNletmwZRkZGBAcHs3DhQgD09PSYO3cuZ8+eZdmyZezdu5fhw4dry4SEhFCvXj2KFy/OoUOHOHjwIM2aNSMpKSlDbRo7diytWrXi9OnT9OzZE4ArV66wbt061q9fT0hISKrlunXrxh9//MHcuXM5f/48P//8c4ZGN1739OlTunfvzsGDB/nvv/9wc3OjcePGPH3lk8e04k2LRqMhf/78rFmzhnPnzjF69Gi+//57/vzzT22eBQsWMGDAAPr06cPp06fZvHkzrq6uwMuOF0BgYCARERHax6+qV68eVlZW2ucXXnauVq9eTZcuXVLk79ChA0OGDKFEiRJEREQQERFBhw4dUuRLSEjAy8sLCwsLDhw4QHBwMObm5jRq1Ij4+HgSExNp2bIltWrV4tSpUxw6dIg+ffq8sSMphPj0qAwMsChejOj/Dv8vUVGI/u8wFqU9Ui1jW7sWT0JP4TryOyrv343nhjU4fdVTOxVEpa+PysAATVy8TjlNXByW5cpmWluEEOJzlO2nq8XFxTFp0iR2795NlSpVAChUqBAHDx7k559/ZuXKlfz8889069aNu3fvsnXrVk6ePImBwcumJU/3yp07d4pRDjc3N6ZOnaqT9uqoiYuLCxMmTKBfv3789NNPAEydOpXy5ctrHwOUKPHmOdqp6dy5Mz169NBJi4+P57fffsPe3j7VMpcuXeLPP/9k165d1K9fX3sv3kfyqEeyX375BSsrK/bv30/Tpk3fGG9aDA0N8ff31z4uWLAghw4d4s8//6R9+/YATJgwgSFDhvDtt99q81WoUAFA234rK6s0p5Lp6+vTsWNHVq5cSa9evQDYs2cP0dHRtGnTJkV+ExMTzM3NMTAweOP0tNWrV6PRaFi8eLG24xIYGIiVlRVBQUGUL1+ex48f07RpUwoXLgxAsWLF0nVfhBCfDkNra1QGBsQ/eKiTHv/gAbkKuqRaxjh/PqzyVSByyzbOfP0NJgWccP3BD5WBAeELfiEpNpbHIaEU6PcVsdeuE//gAbkbN8KytAfPw29+hFYJIT5l8j05GZPtOzlXrlwhNjaWBg0a6KTHx8dTtuzLT77atWvHhg0bmDx5MgsWLMDNzS1ddXt6eqZI2717NwEBAVy4cIEnT56QmJjIixcviI2NxdTUlJCQENq1e/9pBeXLl0+R5uzsnGYHB16OIunr61OrVq33vn6ye/fu8cMPPxAUFERkZCRJSUnExsYSHh7+1njf5Mcff2TJkiWEh4fz/Plz4uPjtVPNIiMjuXPnDvXq1Xuv2Lt06ULlypW5c+cOefPmZcWKFTRp0iRdO6qlJTQ0lCtXrmBhYaGT/uLFC65evUrDhg3x9vbGy8uLBg0aUL9+fdq3b0+ePHnSrDMuLo64uDidtHiNBiP5YyVEzqKnR/zDh1waOx40GmLOnccod27y9+hG+IJfALjo9wPu48ZSed9OlMREnp6/QOS27VgUlw9LhBBvoZL3DRmR7e9W8nqYLVu2EBISoj3OnTvH2rVrAYiNjeX48ePo6+tz+fLldNdtZmam8zgsLIymTZvi4eHBunXrOH78OD/++CPwslMFvHUhu56ennZ9ULKEhIS3XjuttFd9qGu/qnv37oSEhDBnzhz+/fdfQkJCsLW11bY3vbG9atWqVQwdOpRevXqxc+dOQkJC6NGjR7rvYXpVqFCBwoULs2rVKp4/f86GDRtSnaqWETExMXh6eur8roWEhHDp0iU6d+4MvBzZOXToEFWrVmX16tW4u7vz33//pVlnQEAAuXLl0jlWRN17rziFEJkr4dEjlMREjGx1N38xsrUlPupBqmXi70fxPCwcNBptWuy166jt7VH9/+yCFzdvcapHbw5WqMLh+l8Q0qkrKgMDnt+6nXmNEUKIz1C27+QUL14ctVpNeHg4rq6uOoeTkxMAQ4YMQU9Pj23btjF37lz27t2rLZ+8Y1p61swcP34cjUbDjBkzqFy5Mu7u7ty5c0cnj4eHxxu3Mba3tyciIkL7+MmTJ1y/fj1DbU5LqVKl0Gg07N+/P81rP336lGfPnmnT0lrbkyw4OBhfX18aN26s3QQgKirqveIMDg6matWq9O/fn7Jly+Lq6srVq1e15y0sLHBxcXnjfTQ0NEzXc9alSxdWrFjBX3/9hZ6eHk2aNEkzr5GR0VvrLFeuHJcvXyZ37twpft9y5cqlzVe2bFn8/Pz4999/KVmyJCtXrkyzTj8/Px4/fqxzdLFzeGvbhBBZR0lM5Om581hVqvS/RJUKq0oVeRp6KtUyT0JCMCngpLOI18SlAHGR91ESE3Xyap6/ID4qCgNLC2yqVuXB3qDMaIYQIifRU2XekQNl+06OhYUFQ4cOZdCgQSxbtoyrV69y4sQJ5s2bx7Jly9iyZQtLlixhxYoVNGjQgGHDhtG9e3ftbmfOzs6oVCr+/vtv7t+/n2KntFe5urqSkJDAvHnzuHbtGsuXL9duSJDMz8+Po0eP0r9/f06dOsWFCxdYsGCBtmNQt25dli9fzoEDBzh9+jTdu3dHX1//g9wLFxcXunfvTs+ePdm4cSPXr18nKChIu6C/UqVKmJqa8v3333P16lVWrlyp3UEsLW5ubixfvpzz589z+PBhunTp8t4jLW5ubhw7dowdO3Zw6dIlRo0alWLzgLFjxzJjxgzmzp3L5cuXtc/pq23ds2cPd+/e1T6XqenSpQsnTpxg4sSJtG3bFrVanWZeFxcXrl+/TkhICFFRUSmmkCXXZ2dnR4sWLThw4ID2Hvv6+nLr1i2uX7+On58fhw4d4saNG+zcuZPLly+/cV2OWq3G0tJS55CpakJkf7d/+508bVvh0LwZJoUK4jbqe/RMTLi7cRMARSaNx2XgN9r8EavXYJDLksLfDcfEuQA2NatT4Kte3Fm1WpvHumoVrKtVxThfXqyqVMJjySJir1/n3sbNH719QgiRk30S77TGjx/PqFGjCAgIoFixYjRq1IgtW7bg4uJCr169GDt2LOXKlQPA398fBwcH+vXrB0C+fPnw9/fnu+++w8HBQbtNcWpKly7NzJkzmTJlCiVLlmTFihUEBATo5HF3d2fnzp2EhoZSsWJFqlSpwqZNm7QbHfj5+VGrVi2aNm1KkyZNaNmypXaB+oewYMEC2rZtS//+/SlatChfffWVduTGxsaG33//na1bt1KqVCn++OMPna2rU/Prr7/y6NEjypUrR9euXfH19SV37tzvFWPfvn1p3bo1HTp0oFKlSjx48ID+/fvr5OnevTuzZ8/mp59+okSJEjRt2lRnquGMGTPYtWsXTk5O2rVXqXF1daVixYqcOnXqrVPV2rRpQ6NGjahTpw729vb88ccfKfKYmpryzz//UKBAAVq3bk2xYsXo1asXL168wNLSElNTUy5cuECbNm1wd3enT58+DBgwgL59+2bwLgkhsrv723dybfosnH2+xnPtKsyKFuFMvwEk/P9mBOo8jhjZ2Wnzx929x+m+A7AoWRzP9X9S2G84t39fyc3Fgdo8+hbmuP7wHeX/2kCRSeN5fOIkp/sOSDHSI4QQr1Op9DLtyIlUyuuLOIQQme6fkrJdrBBCCPGpqXnmZJZd+8UfUzKtbuNOIzKt7qyS7XdXE0IIIYQQ4rOXQ9fOZJacOT4lMlW/fv0wNzdP9UieJiiEEEIIIURWkZEckWHjxo1j6NChqZ6ztLT8yNEIIYQQQnwGcujamcwinRyRYblz537vzQmEEEIIIUQGqGS6WkZIl1AIIYQQQgiRo8hIjhBCCCGEENmdfMdehsjdEkIIIYQQQuQoMpIjRBbQ05d5tUIIIYTIANl4IEPkbgkhhBBCCCFyFBnJEUIIIYQQIruTLwPNEBnJEUIIIYQQQuQoMpIjhBBCCCFEdidrcjJEOjlCCCFEGvJ0aE++7t0wsrPl2aVLXJ08lZgzZ9PMr29hjrOPD3b16mCQKxdxERFcmzqdRweDX543NaXAgP7Y1q2DoY01zy5c5NrUacScPfexmiSEEJ8F6eSI9xIfH4+RkdEHrVNRFJKSkjAwyD6/ntkxJiFE5rLzakjBoYO5MmEST0+fJl+XLpRc8CPHW7Qi4eGjFPlVBgaUXLiAhIcPOT90OPGRkajz5CHp6VNtHtexozF1LcylkaOIv3+f3E0aU/LnBZxo3Zb4yPsfs3lCiE+NStbkZISMe+UgtWvXxsfHBx8fH3LlyoWdnR2jRo1CURQA4uLiGDp0KPny5cPMzIxKlSoRFBSkU8fBgwepUaMGJiYmODk54evry7Nnz7TnXVxcGD9+PN26dcPS0pI+ffq8MaawsDBUKhWrVq2iatWqGBsbU7JkSfbv36/NExQUhEqlYtu2bXh6eqJWqzl48CAajYaAgAAKFiyIiYkJpUuXZu3atdpyjx49okuXLtjb22NiYoKbmxuBgYHAy86Xj48PefLkwdjYGGdnZwICAnRiCgkJ0dYVHR2NSqXS3o93jUkIkXPk69qFu+s3ELlpM8+vXefKhIkkvXiBQ8sWqeZ3aNUCg1yWnB80hKchocTdieDJ8RM8u3QZAD21Grt6dQmbNYcnJ07w4uZNwhf+zIubt3Bs1+5jNk0I8SnS08u8IwfKma36jC1btgwDAwOOHDnCnDlzmDlzJosXLwbAx8eHQ4cOsWrVKk6dOkW7du1o1KgRly+//Ad89epVGjVqRJs2bTh16hSrV6/m4MGD+Pj46Fxj+vTplC5dmpMnTzJq1Kh0xTVs2DCGDBnCyZMnqVKlCs2aNePBgwc6eb777jsmT57M+fPn8fDwICAggN9++42FCxdy9uxZBg0axJdffqntII0aNYpz586xbds2zp8/z4IFC7CzswNg7ty5bN68mT///JOLFy+yYsUKXFxcMnw/MxqTECJnUBkYYF6sGNH/Hf5foqIQ/d9hLDw8Ui1jU6sWT0+dprDfd1Tcu4uy6/4kf6+e2jcQKn19VAYGaOLidcolxb0gV9kymdUUIYT4LMncmxzGycmJWbNmoVKpKFKkCKdPn2bWrFl4eXkRGBhIeHg4efPmBWDo0KFs376dwMBAJk2aREBAAF26dGHgwIEAuLm5MXfuXGrVqsWCBQswNjYGoG7dugwZMiRDcfn4+NCmTRsAFixYwPbt2/n1118ZPny4Ns+4ceNo0KAB8HLUadKkSezevZsqVaoAUKhQIQ4ePMjPP/9MrVq1CA8Pp2zZspQvXx5ApxMTHh6Om5sb1atXR6VS4ezsnPGb+Q4xCSFyBkNrK1QGBiQ8eKiTnvDgIaYFXVItY5w/H8Z5KxC5dRtnB/hiUsCJwt9/h8rAgJs//0JSbCxPQkIp0Kc3F69fI/7BQ+y/aISlhwfPb978CK0SQnzSZLpahkgnJ4epXLkyqldeBFWqVGHGjBmcPn2apKQk3N3ddfLHxcVha2sLQGhoKKdOnWLFihXa84qioNFouH79OsWKFQPQdioyIrlTAGBgYED58uU5f/68Tp5X671y5QqxsbHaDkay+Ph4ypYtC8DXX39NmzZtOHHiBA0bNqRly5ZUrVoVAG9vbxo0aECRIkVo1KgRTZs2pWHDhhmOO6MxpSYuLo64uDjdMhoNRjl0eFiIz5VKT4/4hw+5Mm4CaDQ8O38eo9z25O/ejZs//wLApZGjcPMfQ8XdO1ESE4m5cIH723dg/v9/X4UQQnwY0sn5TMTExKCvr8/x48fR19fXOWdubq7N07dvX3x9fVOUL1CggPZnMzOzTInx1XpjYmIA2LJlC/ny5dPJp1arAfjiiy+4ceMGW7duZdeuXdSrV48BAwYwffp0ypUrx/Xr19m2bRu7d++mffv21K9fn7Vr16L3/52L5LVKAAkJCR8kptQEBATg7++vk9YjtyM9HfOkWUYIkbUSHkWjJCZiaGujk25oa0N81INUy8Tfj0JJTASNRpv2/Np1jOztURkYoCQm8uLWLU73+go9E2P0zcxJiIqiyNTJvLh1K1PbI4TIAWQL6QyRTk4Oc/jwYZ3H//33H25ubpQtW5akpCQiIyOpUaNGqmXLlSvHuXPncHV1/eBx/ffff9SsWROAxMREjh8/nmKtz6uKFy+OWq0mPDz8jdPA7O3t6d69O927d6dGjRoMGzaM6dOnA2BpaUmHDh3o0KEDbdu2pVGjRjx8+BB7e3sAIiIitCMwr25C8L4xvc7Pz4/BgwfrpB2rVjPd5YUQH5+SmEjM+fNYVarIw31BLxNVKqwqVSRi1epUyzwJCcX+i0Yvp5T8/4coJs7OxEXef9n5eYXm+Qs0z1+gb2GBdZUqXJ89JzObI4QQnx3p5OQw4eHhDB48mL59+3LixAnmzZvHjBkzcHd3p0uXLnTr1o0ZM2ZQtmxZ7t+/z549e/Dw8KBJkyaMGDGCypUr4+PjQ+/evTEzM+PcuXPs2rWL+fPnv1dcP/74I25ubhQrVoxZs2bx6NEjevbsmWZ+CwsLhg4dyqBBg9BoNFSvXp3Hjx8THByMpaUl3bt3Z/To0Xh6elKiRAni4uL4+++/tVPqZs6cSZ48eShbtix6enqsWbMGR0dHrKys0NPTo3LlykyePJmCBQsSGRnJDz/88NY2pCem1KjV6hQjPTJVTYjs7/byFbiP9yfm7DmenjlL3i87o29iwr2NmwFwnzCOuMhIbsx9+fcx4s815OnYnkIjhnHnj1WYFChA/t49ubNylbZOq6pVABXPb4Rh4uSEy6CBxIaFEblpc1Y0UQjxKZH3DhkinZwcplu3bjx//pyKFSuir6/Pt99+q93mOTAwkAkTJjBkyBBu376NnZ0dlStXpmnTpgB4eHiwf/9+Ro4cSY0aNVAUhcKFC9OhQ4f3jmvy5MlMnjyZkJAQXF1d2bx5s3YntLSMHz8ee3t7AgICuHbtGlZWVpQrV47vv/8eACMjI/z8/AgLC8PExIQaNWqwatXLNxMWFhZMnTqVy5cvo6+vT4UKFdi6dat2qtqSJUvo1asXnp6eFClShKlTp6Zrzc7bYhJC5BxRO3ZiaG1Ngf5fv/wy0IsXOdPfh4SHLzcjUDs6orwyNS3+3j3Ofu1DwWFDKLdmNXGRkdxZ8Qe3Apdq8xiYm+Ps64PawYHEx4+J2rOXG/N+TDHSI4QQ4v2olFcXJohPWu3atSlTpgyzZ8/O6lC0wsLCKFiwICdPnqRMmTJZHU62cbB0uawOQQghhBAZVD30RJZd+8WOXzOtbmOvXplWd1aRkRwhhBBCCCGyO9l4IEPkbon3MmnSJMzNzVM9vvjii6wOTwghhBBCfIZkJCcHCQoK+ujX7NevH+3bt0/1nImJCfny5UNmRAohhBBCvCf5MtAMkU6OeC82NjbY2Ni8PaMQQgghhBAfiXRyhBBCCCGEyO5kC+kMkbslhBBCCCGEyFFkJEcIIYQQQohsTpE1ORkinRwhsoChqWFWhyCEEEIIkWNJJ0cIIYQQQojsTr4nJ0OkkyOEEEIIIUR2J52cDJG7JYQQQgghhEi3H3/8ERcXF4yNjalUqRJHjhxJM++iRYuoUaMG1tbWWFtbU79+/Tfm/1CkkyOEEEIIIUQ2p6hUmXZkxOrVqxk8eDBjxozhxIkTlC5dGi8vLyIjI1PNHxQURKdOndi3bx+HDh3CycmJhg0bcvv27Q9xW9IknRyRqcaOHUuZMmU+yrVUKhUbN278KNdK5uLiwuzZsz/qNYUQQgghssrMmTP56quv6NGjB8WLF2fhwoWYmpqyZMmSVPOvWLGC/v37U6ZMGYoWLcrixYvRaDTs2bMnU+OUNTkiUw0dOpRvvvkmq8MQQoh34tCmLXm6dMHQxpbYK5cJmzmDZ+fOpZlf39wcp35fY12rNgaWlsTdvcuN2bN4fOhfbR5De3sK9B9AripV0TdW8+LWLa5NGM+zCxc+RpOEEJ+qTFyTExcXR1xcnE6aWq1GrVbrpMXHx3P8+HH8/Py0aXp6etSvX59Dhw6l61qxsbEkJCRgY2Pz/oG/gYzkiExlbm6Ora1tVochhBAZZlOvPgV8v+XWr79yxrs7sZevUHTWHAysrVPNrzIwoOiceRg55uHySD9CO7Tn+uRJJNy/r82jb2FBiZ9/QUlM4uLggZzq1JHwuXNJfPr0YzVLCCFSCAgIIFeuXDpHQEBAinxRUVEkJSXh4OCgk+7g4MDdu3fTda0RI0aQN29e6tev/0FiT4t0csQb1a5dG19fX4YPH46NjQ2Ojo6MHTtWez48PJwWLVpgbm6OpaUl7du35969e9rzr09XCwoKomLFipiZmWFlZUW1atW4ceOG9vymTZsoV64cxsbGFCpUCH9/fxITE98p9ps3b9K+fXusrKywsbGhRYsWhIWFAbBz506MjY2Jjo7WKfPtt99St25d7eODBw9So0YNTExMcHJywtfXl2fPnr1TPEKIT0ueTp2I3LyJqC1/8zzsOtenTkYT9wL7ps1SzW/frBkGlpZcHjGMmFOniL8bwdOTJ4m9clmbJ++XXYm7F8m1ieN5du4ccRERPD5ymLhMnpsuhMgBVKpMO/z8/Hj8+LHO8epozYcyefJkVq1axYYNGzA2Nv7g9b9KOjnirZYtW4aZmRmHDx9m6tSpjBs3jl27dqHRaGjRogUPHz5k//797Nq1i2vXrtGhQ4dU60lMTKRly5bUqlWLU6dOcejQIfr06YPq/xe8HThwgG7duvHtt99y7tw5fv75Z5YuXcrEiRMzHHNCQgJeXl5YWFhw4MABgoODMTc3p1GjRsTHx1OvXj2srKxYt26dtkxSUhKrV6+mS5cuAFy9epVGjRrRpk0bTp06xerVqzl48CA+Pj7vcBeFEJ8SlYEBZkWK8uToKzsAKQqPjx7FomSpVMtYV69JzJnTuAwdTrkt2yj1+0rydu8Oev/7V2tdoybPLpzHdeIkym3ZRsllv2HfvEVmN0cIId5IrVZjaWmpc7w+VQ3Azs4OfX19nQ+0Ae7du4ejo+MbrzF9+nQmT57Mzp078fDw+KDxp0bW5Ii38vDwYMyYMQC4ubkxf/587WKx06dPc/36dZycnAD47bffKFGiBEePHqVChQo69Tx58oTHjx/TtGlTChcuDECxYsW05/39/fnuu+/o3r07AIUKFWL8+PEMHz5ce/30Wr16NRqNhsWLF2s7UYGBgVhZWREUFETDhg3p2LEjK1eupFevXgDs2bOH6Oho2rRpA7wcuu3SpQsDBw7Utn3u3LnUqlWLBQsWpPsTiNTmucZrNBjpyWcMQmRXBlZWqAwMSHj4UCc94eFDTJydUy2jzpcXS09Ponbu4MLgQRjnz4/LsOGo9A24veTXl3ny5sWhVWsiVv3BnWVLMStWHJfBg1ESE4jaujXT2yWE+IRlg/cNRkZGeHp6smfPHlq2bAmg3UTgTR8CT506lYkTJ7Jjxw7Kly//UWKVTo54q9d723ny5CEyMpLz58/j5OSk7eAAFC9eHCsrK86fP5+ik2NjY4O3tzdeXl40aNCA+vXr0759e/LkyQNAaGgowcHBOiM3SUlJvHjxgtjYWExNTdMdc2hoKFeuXMHCwkIn/cWLF1y9ehWALl26ULlyZe7cuUPevHlZsWIFTZo0wcrKSlvHqVOnWLFihba8oihoNBquX7+u00F7k4CAAPz9/XXSeuXLy1dO+dPdHiHEJ0ClR8KjR1yfHAAaDbEXL2Bkb0+eLl9qOzno6fHswnluLVwAQOylS5gWKkTulq2lkyOEeKOMbvWcWQYPHkz37t0pX748FStWZPbs2Tx79owePXoA0K1bN/Lly6dd0zNlyhRGjx7NypUrcXFx0a7dMTc3x9zcPNPilE6OeCtDQ0OdxyqVCo1G8051BQYG4uvry/bt21m9ejU//PADu3btonLlysTExODv70/r1q1TlMvovM2YmBg8PT11OijJ7O3tAahQoQKFCxdm1apVfP3112zYsIGlS5fq1NG3b198fX1T1FGgQIF0x+Ln58fgwYN10kIb1Et3eSHEx5cYHY2SmIjha7v/GNrYkPDgYaplEh5EoSQmwit/H5+HhWFkZ4fKwAAlMZGEqCieX7+uU+55WBg2dep8+EYIIUQm6NChA/fv32f06NHcvXuXMmXKsH37du1mBOHh4ei9Muq0YMEC4uPjadu2rU49Y8aM0Vnn/aFJJ0e8s2LFinHz5k1u3rypHc05d+4c0dHRFC9ePM1yZcuWpWzZsvj5+VGlShVWrlxJ5cqVKVeuHBcvXsTV1fW9YytXrhyrV68md+7cWFpappmvS5curFixgvz586Onp0eTJk106jh37tx7x5PaFowyVU2I7E1JTOTZxQtYlq/Ao3/+eZmoUpGrfAXurl2Tapmnp05h17Dhy4W8igKAcYECxN+//7LzAzw9fQrjArrT3YwLFCAunbsSCSE+Y5m4hXRG+fj4pDk9LSgoSOdx8qZPH1v2uVvik1O/fn1KlSpFly5dOHHiBEeOHKFbt27UqlUr1fmW169fx8/Pj0OHDnHjxg127tzJ5cuXtdO+Ro8ezW+//Ya/vz9nz57l/PnzrFq1ih9++CHDsXXp0gU7OztatGjBgQMHuH79OkFBQfj6+nLr1i2dfCdOnGDixIm0bdtWpzMyYsQI/v33X3x8fAgJCeHy5cts2rRJNh4Q4jMR8ccf5G7eArvGjTF2dsFl+Aj0jI25//ffABQaPQanr/tr80euX4eBZS6cBw3G2MkJq6rVyNfdm3vr1mrz3F31B+YlS5K3e3fU+fNj27AhuVu05N7atSmuL4QQ4t3JSI54ZyqVik2bNvHNN99Qs2ZN9PT0aNSoEfPmzUs1v6mpKRcuXGDZsmU8ePCAPHnyMGDAAPr27QuAl5cXf//9N+PGjWPKlCkYGhpStGhRevfuneHYTE1N+eeffxgxYgStW7fm6dOn5MuXj3r16umM7Li6ulKxYkWOHDnC7Nmzderw8PBg//79jBw5kho1aqAoCoULF05z9zghRM7ycM9uDK2tyN+7D4a2tsRevsSFQQNJfPRyuprawUFnalp8ZCQXBvri/O0gci9fQfz9+9z9cxV3li/X5nl2/jyXvxuO09f9ydejF3ERd7gxexYPdu746O0TQnxalGw0kvMpUCnK/4+pCyE+msNVKmV1CEIIIYTIoEqHDmfZtWP+25xpdZtXbp5pdWcVGckRQgghhBAiu8smu6t9KmTcS3wSVqxYod1q8PWjRIkSWR2eEEIIIYTIRmQkR3wSmjdvTqVKqU/xen2LayGEEEKInEbW5GSMdHLEJ8HCwiLFF3sKIYQQQnw2ZLpahkiXUAghhBBCCJGjyEiOEEIIIYQQ2Z1MV8sQ6eQIkQUMjOWlJ4QQQgiRWeSdlhBCCCGEENmcImtyMkTGvYQQQgghhBA5iozkCCGEEEIIkd3JmpwMkbslhBBCCCGEyFGkk5ONubi4MHv27HTlValUbNy4MVPjCQsLQ6VSERIS8sZ8tWvXZuDAge98nbe1JSgoCJVKRXR09DtfQwghhBDiU6KgyrQjJ5Lpah+BSqViw4YNtGzZMqtD+aCCgoKoU6cOjx49wsrK6qNdt2rVqkRERJArV6635s2qGIUQOYN9y9Y4dOiMoY0Nz69eIXzuLGIvnE8zv76ZOXl798G6Ri30LSyJv3eXmz/O5cnhQwDk6d6TvN69dMq8CL/B2e6dM7UdQohPnyLT1TJEOjnik2NkZISjo+NHvaaiKCQlJWFgIC8ZIT4X1nXqkf/rbwifNY1n58+Ru2173KbO5Gy3TiSmMpKsMjDAbfpsEqMfcXXsDyTcv4+RoyNJMTE6+Z5fv8alId9qHytJSZndFCGE+Ox8Vl3C2rVr88033zBw4ECsra1xcHBg0aJFPHv2jB49emBhYYGrqyvbtm3Tljlz5gxffPEF5ubmODg40LVrV6KionTq9PX1Zfjw4djY2ODo6MjYsWO1511cXABo1aoVKpVK+/jq1au0aNECBwcHzM3NqVChArt3736v9kVFRdGqVStMTU1xc3Nj8+bNOuff1pbt27dTvXp1rKyssLW1pWnTply9ejXVa4WFhVGnTh0ArK2tUalUeHt7a89rNJo078n7tuX16Wo3btygWbNmWFtbY2ZmRokSJdi6desbY4yLi8PX15fcuXNjbGxM9erVOXr0aIprbNu2DU9PT9RqNb///jt6enocO3ZMJ9bZs2fj7OyMRqPJUBuFENmbQ7sORG35iwfbt/LiRhjhM6eheRGH7RdNU81v+0VTDCwsufLDdzw7c5r4e3eJCQ3h+dUrOvmUpCQSHz3UHklPHn+M5gghPnUqvcw7cqCc2ao3WLZsGXZ2dhw5coRvvvmGr7/+mnbt2lG1alVOnDhBw4YN6dq1K7GxsURHR1O3bl3Kli3LsWPH2L59O/fu3aN9+/Yp6jQzM+Pw4cNMnTqVcePGsWvXLgDtG+fAwEAiIiK0j2NiYmjcuDF79uzh5MmTNGrUiGbNmhEeHv7ObfP396d9+/acOnWKxo0b06VLFx4+fAiQrrY8e/aMwYMHc+zYMfbs2YOenh6tWrVK9c27k5MT69atA+DixYtEREQwZ86cdN2T923L6wYMGEBcXBz//PMPp0+fZsqUKZibm78xxuHDh7Nu3TqWLVvGiRMncHV1xcvLK8U1vvvuOyZPnsz58+dp3rw59evXJzAwUCdPYGAg3t7e6Ol9di8nIXIslYEBpu5FeHL8fx9+oCg8PXEM8xIlUy1jVbU6MefOUGDgEDzW/UXxJctx7NINXvvboM6Xn1JrNlFyxZ+4jByDYW6HzGyKEEJ8llSKoihZHcTHUrt2bZKSkjhw4AAASUlJ5MqVi9atW/Pbb78BcPfuXfLkycOhQ4fYvXs3Bw4cYMeOHdo6bt26hZOTExcvXsTd3T1FnQAVK1akbt26TJ48GUj/mpySJUvSr18/fHx8gJejQAMHDkzXIn6VSsUPP/zA+PHjgZcdFnNzc7Zt20ajRo2YMGHCW9vyuqioKOzt7Tl9+jQlS5YkLCyMggULcvLkScqUKZPmepf03JP3acvr1/Xw8KBNmzaMGTMmRV2pxfjs2TOsra1ZunQpnTu/nAefkJCgvd/Dhg3Tltu4cSMtWrTQ1vfnn3/Sr18/IiIiUKvVnDhxgvLly3Pt2jXtKN3r4uLiiIuL00k728wLI+kUCZFtGdra4bF2ExcG9OHZubPa9Hx9+2NRugwX+vdJUabEspUYOTrycPdO7m/agDpffgp8O4TI9WuI+O3lhyOWFSujZ2JC3M1wDG1tydOtJ4Z29pzr2RXN89iP1j4hxLvx3BecZdd+FLo/0+q2Ll0r0+rOKp/duywPDw/tz/r6+tja2lKqVCltmoPDy0/UIiMjCQ0NZd++fZibm2uPokWLAuhM43q1ToA8efIQGRn5xjhiYmIYOnQoxYoVw8rKCnNzc86fP/9eIzmvxmFmZoalpaU2jvS05fLly3Tq1IlChQphaWmpfdP+LjG9yz1Jb1te5+vry4QJE6hWrRpjxozh1KlTb6z76tWrJCQkUK1aNW2aoaEhFStW5Px53QXF5cuX13ncsmVL9PX12bBhAwBLly6lTp06aXZwAAICAsiVK5fOEXjj1htjFEJ8glQqEh894saMqcReusijfXuIWLEM++YttVmeHPmP6P37eH7tKk+OHuHKd0MxMDfHuk7drItbCCFyoM9uFbWhoaHOY5VKpZOmUr3cRk+j0RATE0OzZs2YMmVKinry5Mnzxjrftj5j6NCh7Nq1i+nTp+Pq6oqJiQlt27YlPj4+w21KTxzpaUuzZs1wdnZm0aJF5M2bF41GQ8mSJd8ppne5J+9avnfv3nh5ebFlyxZ27txJQEAAM2bM4Jtvvslw3K8zMzPTeWxkZES3bt0IDAykdevWrFy5UmeaXmr8/PwYPHiwTtrZZl7vHZsQIvMkPo5GSUrEwNpGJ93Q2oaENKbOJjx8gJKYCK/8rXpx4waGtnaoDAxenntN0rMYXty6iTpv/g/bACFEjiO7q2XMZ9fJyYhy5cqxbt06XFxc3mtXLUNDQ5Je2z0nODgYb29vWrVqBbzshISFhb1PuG/0trY8ePCAixcvsmjRImrUqAHAwYMH31inkZERQIq2ZQUnJyf69etHv3798PPzY9GiRXzzzTepxli4cGGMjIwIDg7G2dkZeDld7ejRo+maGti7d29KlizJTz/9RGJiIq1bt35jfrVajVqt1kmTqWpCZG9KYiKxly5iWa48j4P/f+qtSoVFOU8iN6xLtUzMmdPY1GsAKhX8/0xwYycn4qOiUu3gAOgZm6DOm4+EXdszpR1CCPG5kndabzBgwAAePnxIp06dOHr0KFevXmXHjh306NEjQ2/sXVxc2LNnD3fv3uXRo0cAuLm5sX79ekJCQggNDaVz586ZujvX29pibW2Nra0tv/zyC1euXGHv3r0pRh9e5+zsjEql4u+//+b+/fvEvLZN6scycOBAduzYwfXr1zlx4gT79u2jWLFiacZoZmbG119/zbBhw9i+fTvnzp3jq6++IjY2ll69er3lalCsWDEqV67MiBEj6NSpEyYmJpndRCFEFri3ZjV2TZth4/UFxgWcKTBoKHrGxjzYvgUAF78fyNu7nzb//U0bMLCwxMlnIOr8TlhWroJj527c3/i/TlG+fgMwL10GIwdHzEqUpPD4ABRNEo/2vN/umkKIz4BKlXlHDiSdnDfImzcvwcHBJCUl0bBhQ0qVKsXAgQOxsrLK0E5aM2bMYNeuXTg5OVG2bFkAZs6cibW1NVWrVqVZs2Z4eXlRrly5zGrKW9uip6fHqlWrOH78OCVLlmTQoEFMmzbtjXXmy5cPf39/vvvuOxwcHLQbJnxsSUlJDBgwgGLFitGoUSPc3d356aef3hjj5MmTadOmDV27dqVcuXJcuXKFHTt2YG1tna5r9urVi/j4eHr27Jlp7RJCZK1H+/Zwa8GP5PXuTbFFSzF1dePyiCEk/v+HVUa5HTC0tdXmT7gfyeXhgzAtWozivy6jgM8gItev4e4fv2vzGNnnpuAP/pT47Q8KjRlP4pPHXBjQl8TH0R+7eUKIT4yi0su0Iyf6rHZXE+JDGT9+PGvWrHnrJgdpOV6n2tszCSGEECJbycrd1R6c+TfT6rYtWTXT6s4qsiZHiAxIXjs1f/58JkyYkNXhCCGEEOIzoZAzp5Vllpw5PpXDrFixQmfr51ePEiVKZHV4GfKpt8XHxwdPT09q164tU9WEEEIIIbIpma72CXj69Cn37t1L9ZyhoaF2h7BPQU5qy/uQ6WpCCCHEpycrp6vdP3s40+q2L1Ep0+rOKjJd7RNgYWGBhYVFVofxQeSktgghhBBCiOxJOjlCCCGEEEJkdzl0q+fMImtyhBBCCCGEEDmKjOQIkQX0DeXzBSGEEEKknyJjExkinRwhhBBCCCGyOUWmq2WIdAmFEEIIIYQQOYqM5AghhBBCCJHNKSoZm8gIuVtCCCGEEEKIHEU6OSLbWLp0KVZWVh+krqCgIFQqFdHR0R+kvqy+jhBCCCE+bwqqTDtyIpmuJt6Lt7c30dHRbNy4MatDEUKID86uWStyt+uEgY0Nz69d5faPs4m9eD7N/Ppm5jj2+AqrarXQt7AgPvIetxfM5enR/wCwbdoSu6YtMXJwBODFjevcXbGUp0cz75vMhRDicySdHCGEECIVVrXqkrevD7fmzuDZhXPYt25HoUkzuNCrM4mpjN6qDAwoPHkmCdHRhI0fRcKD+xjmdiTp2VNtnoSoSO78upC427dQqVRYN2hEwbEBXOrfkxc3wj5e44QQnxxZk5MxcrdEuqxdu5ZSpUphYmKCra0t9evXZ9iwYSxbtoxNmzahUqlQqVQEBQWlOoUrJCQElUpFWFiYNm3p0qUUKFAAU1NTWrVqxYMHD7TnwsLC0NPT49ixYzpxzJ49G2dnZzQaTYbbsG7dOkqUKIFarcbFxYUZM2bonF++fDnly5fHwsICR0dHOnfuTGRkpE6erVu34u7ujomJCXXq1NFpjxAiZ7Fv04EH2/7i4c6txIWHcWvOdDRxL7DxapJqfhuvJuhbWHJ9rB/Pzp0m/t5dnp0O4cW1q9o8T/77l6dH/yP+zi3ibt/k7tJFaJ4/x7RYiY/VLCGE+CxIJ0e8VUREBJ06daJnz56cP3+eoKAgWrduzZgxY2jfvj2NGjUiIiKCiIgIqlatmq46Dx8+TK9evfDx8SEkJIQ6deowYcIE7XkXFxfq169PYGCgTrnAwEC8vb3R08vYr+7x48dp3749HTt25PTp04wdO5ZRo0axdOlSbZ6EhATGjx9PaGgoGzduJCwsDG9vb+35mzdv0rp1a5o1a0ZISMj/sXff8TXd/wPHXzfr5mYPmWQYSQRBiF2NvbVG7dam2qZmKF+1W0ETu0OVUNVqa9VMjQoVxIxSEREiSoiRIRHZvz/yc/U2iSSIRLyfj8d5PJxzPp/PeZ+D5L7vZxyGDx/O5MmTixWHEOLVoNDRwcDFleQzp54czMkh+cxJDAtISEybNCMl/G8qfTyemj//htu3a7Hu+x4U9PNKSwuzFq3R0tcn5cLfJXAXQojyJEehKLGtPJLhaqJQsbGxZGZm0qNHD5ycnADw8PAAQKVSkZaWhq2tbbHaXLJkCR06dGDSpEkAuLq6cuTIEYKCgtRlhg8fzqhRo1i4cCFKpZLTp09z7tw5fvvtt2Lfw8KFC2ndujXTpk1TX+/ChQt88cUX6kRm6NCh6vJVqlRh6dKlNGjQgOTkZIyMjPj666+pWrWqugfIzc2Nc+fOMX/+/GLHI4Qo27RNTFFo65ARf1/jeEZ8PEoHp3zr6NnZY1TXlvg/9nLl04ko7StR6ePxKHS0uf3DGnU5fecquCz5Gi09PbJTU7k6ayppMdEleDdCCPH6kZ4cUag6derQunVrPDw86NWrFytXriQ+Pv652gwPD6dRo0Yax5o0aaKx361bN7S1tdmyZQuQO7ytZcuWODs7P9P1mjVrpnGsWbNmREZGkpWVBeT29nTt2hVHR0eMjY3x9vYGICYmpsgx5yctLY2kpCSNLf0ZhtsJIco4hRaZCQlcX/wFqZGXSDj4B7d/WkeFzt00iqX9E0PEB0O5NPp97u74DaeJU1E6OpdKyEKIV4esrlY8kuSIQmlra7N37152795NjRo1WLZsGW5ubly9ejXf8o+HkuXk5KiPZWRkFPu6enp6DBw4kMDAQNLT0/nxxx81eltepJSUFNq3b4+JiQnr16/nxIkT6uQqPT39udr28/PD1NRUY1t99fqLCFsIUUKykhLJycpE19xC47iuuTmZ9+/lWyfz/j3S/rkO//oS41FMNLqWlih0ngycyMnMJP3mDVIjLxG7egWpVy5j1f2dkrkRIUS5kaPQKrGtPCqfdyVeOIVCQbNmzZg1axZnzpxBT0+PLVu2oKenp+4JeczKygrIHeb2WFhYmEYZd3d3QkM1l0w9duxYnusOHz6cffv28dVXX6mHzD0Ld3d3QkJCNI6FhITg6uqKtrY2Fy9e5N69e8ybN4/mzZtTvXr1PIsOuLu7c/z48UJj/q8pU6aQmJiosQ2t7PBM9yGEeDlyMjN5GHkJo7r1nxxUKDCqW5+U8Pznz6T8fQ6lfUX41/h2ZUUHMu7dJSczs+CLaSnQ0tV7UaELIYRAkhxRBKGhocydO5eTJ08SExPD5s2buXPnDu7u7jg7O/PXX38RERHB3bt3ycjIoFq1ajg4ODBz5kwiIyPZuXNnnpXMRo8eTVBQEP7+/kRGRrJ8+XKN+TiPubu707hxYz755BP69euHSqV6pnuYMGEC+/fvZ86cOVy6dIm1a9eyfPlyfH19AXB0dERPT49ly5Zx5coVtm3bxpw5czTaGDVqFJGRkUycOJGIiAh+/PFHjYULCqJUKjExMdHY9Iq5cIIQ4uW7s+lnLDt1wbxtB5QOTlQaPQEtfRX3f98FgOPEqdgNfV9d/u6OrWgbm1DxgzEoKzpg0rAJNv3e4+62zeoydkPfx9CjDno2tug7V8Fu6PsY1fbk/h97Xvr9CSFeLTJcrXjkk5YolImJCYcOHaJTp064urry6aefEhAQQMeOHRkxYgRubm54eXlhZWVFSEgIurq6/PTTT1y8eJHatWszf/58jZXTABo3bszKlStZsmQJderUYc+ePXz66af5Xn/YsGGkp6c/11C1evXq8csvv7BhwwZq1arF9OnTmT17tnrRASsrK9asWcOvv/5KjRo1mDdvHv7+/hptODo6smnTJrZu3UqdOnX45ptvmDt37jPHJIQo2xIO/sHNb7/CbuAw3L5ejaqqC1em+pKZkDsnUc/aBl0LS3X5jDtxRP1vAgZu1XFbEUjFD8dwZ8tGbv+8Xl1Gx8wMp4lTqb5qPVUXLMbAtTpR/5tA8umTea4vhBDi2Sly/j1xQogyaM6cOfz666/89ddfpR3KCxPWrnlphyCEEEKIYqq7589Su/a1yxEl1rZTNbcSa7u0SE+OKLOSk5M5f/48y5cv5+OPPy7tcIQQQgghxCtCkhxRZvn4+FC/fn1atGiRZ6jaqFGjMDIyyncbNWpUKUUshBBCCFEyytKcnC+//BJnZ2f09fVp1KhRnoWZ/uvXX3+levXq6Ovr4+Hhwa5du571MRSZDFcTr6S4uDiSkpLyPWdiYoK1tfVLjqh4ZLiaEEII8eopzeFq0ZcvlVjbztVci1z2559/ZuDAgXzzzTc0atSIxYsX8+uvvxIREZHv568jR47w5ptv4ufnR5cuXfjxxx+ZP38+p0+fplatWi/yNjRIkiNEKZAkRwghhHj1lGaSczXqcom1XblqtSKXbdSoEQ0aNGD58uUAZGdn4+DgwMcff8zkyZPzlO/Tpw8pKSns2LFDfaxx48bUrVuXb7755vmDL4AMVxNCCCGEEKKMK8nhamlpaSQlJWlsaWlpeWJIT0/n1KlTtGnTRn1MS0uLNm3acPTo0XzjPnr0qEZ5gPbt2xdY/kWRJEcIIYQQQojXmJ+fH6amphqbn59fnnJ3794lKysLGxsbjeM2NjbcunUr37Zv3bpVrPIvik6Jti6EyJexrUlphyCEEEKIV0iOouRe2jllyhTGjx+vcUypVJbY9V4GSXKEEEIIIYR4jSmVyiIlNRUqVEBbW5vbt29rHL99+za2trb51rG1tS1W+RdFhqsJIYQQQghRxuXkKEpsKyo9PT3q16/P/v371ceys7PZv38/TZo0ybdOkyZNNMoD7N27t8DyL4r05AghhBBCCCGKZPz48QwaNAgvLy8aNmzI4sWLSUlJYciQIQAMHDiQihUrquf0jBkzBm9vbwICAujcuTMbNmzg5MmTfPvttyUapyQ5QgghhBBClHE5ZWQAVp8+fbhz5w7Tp0/n1q1b1K1bl6CgIPXiAjExMWhpPYm1adOm/Pjjj3z66af873//w8XFha1bt5boO3JA3pPzQrRo0YK6deuyePHi0g4FKFo8CoWCLVu20K1bt5cWV0kZPHgwCQkJbN26tcAyZe3vKGpg59IOQQghhBDFVPX7naV27cioayXWtktVpxJru7RIT84rLDg4mJYtWxIfH4+ZmVmx6sbGxmJubl4ygQkhRDlh0rozZp16om1qTvr1q9xd9w1pV/J/67jxG22wHjlO41h2ejpXh3dX7xf0AenehlUk7Nr84gIXQpQ7OZTc6mrlkSQ5pSA9PR09Pb1SjaGkV7R4EcrCcxJCvL4MGzWnQv8R3FmznEdREZi174bdxDlcnzSSrAeJ+dbJepjC9U/ef3LgP4Mloj9+V2PfoHZ9rIaNIfnEkRcevxCifJEkp3jKxuC+ciAzMxMfHx9MTU2pUKEC06ZN4/FIQGdnZ+bMmcPAgQMxMTFh5MiRABw+fJjmzZujUqlwcHBg9OjRpKSkqNtct24dXl5eGBsbY2trS//+/YmLiwMgOjqali1bAmBubo5CoWDw4MHqutnZ2UyaNAkLCwtsbW2ZOXOmRrwKhUI9vCs6OhqFQsHmzZtp2bIlBgYG1KlTJ8+baFeuXImDgwMGBgZ0796dhQsXFrkHaebMmdStW5cVK1ao2+jduzeJiU8+KAwePJhu3brx+eefY29vj5ubGwDnzp2jVatWqFQqLC0tGTlyJMnJyXmuMWvWLKysrDAxMWHUqFGkp6cXGE9aWhq+vr5UrFgRQ0NDGjVqRHBwsPr8mjVrMDMzY8eOHbi5uWFgYMA777zDw4cPWbt2Lc7OzpibmzN69GiysrKK9AyEEK8Wsw7dSQoO4sGf+8i4eZ07a5aTk/YIY+92BVfKySErMf7JlpSgcVrjXGI8hvUakxr+F5l3SvaleEII8bqRJOcFWbt2LTo6Ohw/fpwlS5awcOFCvvvuO/V5f39/6tSpw5kzZ5g2bRpRUVF06NCBnj178tdff/Hzzz9z+PBhfHx81HUyMjKYM2cOZ8+eZevWrURHR6sTGQcHBzZt2gRAREQEsbGxLFmyRCMeQ0NDQkNDWbBgAbNnz2bv3r1PvYepU6fi6+tLWFgYrq6u9OvXj8zMTABCQkIYNWoUY8aMISwsjLZt2/L5558X6xldvnyZX375he3btxMUFMSZM2f48MMPNcrs37+fiIgI9u7dy44dO0hJSaF9+/aYm5tz4sQJfv31V/bt26fxnB7XCw8PJzg4mJ9++onNmzcza9asAmPx8fHh6NGjbNiwgb/++otevXrRoUMHIiMj1WUePnzI0qVL2bBhA0FBQQQHB9O9e3d27drFrl27WLduHStWrGDjxo3Feg5CiFeAtg5K52o8/DvsybGcHFIvhKFfrXqB1bT0VTguDMRp0Rpsx05Dt6JjwZcwMcOgTgMeHNrzAgMXQpRXOShKbCuPZLjaC+Lg4MCiRYtQKBS4ublx7tw5Fi1axIgRIwBo1aoVEyZMUJcfPnw4AwYMYOzYsQC4uLiwdOlSvL29+frrr9HX12fo0KHq8lWqVGHp0qU0aNCA5ORkjIyMsLCwAMDa2jpPj0rt2rWZMWOGuu3ly5ezf/9+2rZtW+A9+Pr60rlz7oT4WbNmUbNmTS5fvkz16tVZtmwZHTt2xNfXFwBXV1eOHDnCjh07ivyMHj16xPfff0/FihUBWLZsGZ07dyYgIEA9fM7Q0JDvvvtOPUxt5cqV6nqGhoYALF++nK5duzJ//nz1Sh56enqsXr0aAwMDatasyezZs5k4cSJz5szRWOEDclf9CAwMJCYmBnt7e/W9BwUFERgYyNy5c4HcJPPrr7+matWqALzzzjusW7eO27dvY2RkRI0aNWjZsiUHDhygT58+RX4OQoiyT9vYBIW2dp6emMzEBFR2DvnWSb/1D3HfLSb9ejRaKgPMOvWg4jR/rk/5gKz4e3nKG7/RmuxHqaSclKFqQgjxoklPzgvSuHFjFIonmXCTJk2IjIxUD2Xy8vLSKH/27FnWrFmDkZGRemvfvj3Z2dlcvXoVgFOnTtG1a1ccHR0xNjbG29sbyP2QXpjatWtr7NvZ2amHuhWljp2dHYC6TkREBA0bNtQo/9/9wjg6OqoTHMh9RtnZ2URERKiPeXh4aMzDCQ8Pp06dOuoEB6BZs2Z56tWpUwcDAwONtpOTk7l+/XqeOM6dO0dWVhaurq4az//gwYNERUWpyxkYGKgTHAAbGxucnZ0xMjLSOFbYc01LSyMpKUljS5MhbkKUO2mXL5Ic8gfpMVd4FHGeW0s/J/tBIiatOuZb3vjNtiQfDSYnI+MlRyqEeBVJT07xSE/OS/LvD+kAycnJvP/++4wePTpPWUdHR/Uwrfbt27N+/XqsrKyIiYmhffv2T51r8piurq7GvkKhIDs7u8h1HidshdV50f77nEpCcnIy2tranDp1Cm1tbY1z/05g8nuGz/Jc/fz88gyd+7h2NcbUcX2W8IUQL0HWgyRysrLQNjHTOK5jakZWYnwRG8ki7doVdK3t85zSd62Jnr0Dt7+c/wKiFUII8V+S5LwgoaGhGvvHjh3DxcUlz4fox+rVq8eFCxeoVq1avufPnTvHvXv3mDdvHg4OuUMjTp48qVHmcY/Hy5j47ubmxokTJzSO/Xe/MDExMdy8eVM9ROzYsWNoaWmpFxjIj7u7O2vWrCElJUWdAIWEhOSpd/bsWVJTU1GpVOq2jYyM1M/u3zw9PcnKyiIuLo7mzZsX6x6exZQpUxg/frzGsX8+6F3i1xVCPIesTNKiL2NQsy4PTx/LPaZQoKpRl8R9RRymq9BCr5ITD/86meeUsXc7Hl2NJP361RcYtBCiPMvJKZ89LiVFhqu9IDExMYwfP56IiAh++uknli1bxpgxYwos/8knn3DkyBF8fHwICwsjMjKS3377TT2h3tHRET09PZYtW8aVK1fYtm0bc+bM0WjDyckJhULBjh07uHPnTr4rjr0oH3/8Mbt27WLhwoVERkayYsUKdu/erTFErzD6+voMGjSIs2fP8ueffzJ69Gh69+791OWsBwwYoK53/vx5Dhw4wMcff8x7772nno8DuctNDxs2jAsXLrBr1y5mzJiBj49Pnvk4kDufaMCAAQwcOJDNmzdz9epVjh8/jp+fHzt3vviXfCmVSkxMTDQ2ZQHJrxCi7EgI2oKxd3uM32iNrr0DFQZ9hEKpz4NDuYu4WI8cj0WvQery5m/3Q1XLEx0rW/ScqmI9yhedCtYkBf+u0a5CX4VRwzd48J/jQgghXhxJcl6QgQMHkpqaSsOGDfnoo48YM2aMeqno/NSuXZuDBw9y6dIlmjdvjqenJ9OnT1f3clhZWbFmzRp+/fVXatSowbx58/D399doo2LFisyaNYvJkydjY2OTZ8WxF6lZs2Z88803LFy4kDp16hAUFMS4cePQ19cvchvVqlWjR48edOrUiXbt2lG7dm2++uqrp9YxMDDg999/5/79+zRo0IB33nmH1q1bs3z5co1yrVu3xsXFhTfffJM+ffrw1ltv5Vk2+98CAwMZOHAgEyZMwM3NjW7dunHixAkcHQteCUkI8XpJCf2TextWYd7jXRzmLEPpVIXYL6arFyPQsbRC28xCXV7L0AiroaNxnPcNdhNmoaUy4MYcXzJuas4NNGqcO78y+djBl3YvQohXn8zJKR5FTs5/3lQmRBGNGDGCixcv8ueffxZadubMmWzdupWwsLCSD+wVEDWwc2mHIIQQQohiqvr9ix/xUVTnL5fc+7RqVSv7L4kvLpmTI4rM39+ftm3bYmhoyO7du1m7dm2hPTFCCCGEEEK8bJLkiCI7fvw4CxYs4MGDB+r39gwfPhyAmjVrcu3atXzrrVix4mWGKYQQQghR7pTXYWUlRYariRfi2rVrZBTwrgcbGxuMjY1fckRlmwxXE0IIIV49pTlc7dzl2yXWtkc1m8ILvWKkJ0e8EE5OTqUdghBCCCFEuSVLSBePrK4mhBBCCCGEKFekJ0cIIYQQQogyLlvm5BSLJDlClAKbRjVLOwQhhBBCiHJLkhwhhBBCCCHKOFldrXgkyRFCCCGEEKKMk4UHikcWHhBCCCGEEEKUK9KTI4QQQgghRBknw9WKR3pyXjEtWrRg7NixBZ53dnZm8eLFJR6HQqFg69atJX4dIYQQQgghikt6coQQQogC/HL2Ct+fvsy9h2m4VDBhkndtatma51v2j8s3WX3yEtcTUsjMzsHRzJB3PavR2d1BXebew0csDbnAsZg4HqRlUs/ekkktPHA0M3pZtySEeEXJnJzikSRHlDk5OTlkZWWho1N2/nmWxZiEECVrz6UbLPzzb/7Xqja1bMz5MewKPr8dZfN7rbEwUOYpb6Kvx9AGrlQ2N0ZHS4s/o28xa98ZzA2UNHWyJicnhwk7jqOjpcXCLo0w1NNh/ZkoPthyhI3vtkKlKz9fhBDiRZHhaq+gzMxMfHx8MDU1pUKFCkybNo2cnJx8y8bExPD2229jZGSEiYkJvXv35vbt2xplvv76a6pWrYqenh5ubm6sW7dO43xkZCRvvvkm+vr61KhRg7179xY51ujoaBQKBRs2bKBp06bo6+tTq1YtDh48qC4THByMQqFg9+7d1K9fH6VSyeHDh8nOzsbPz4/KlSujUqmoU6cOGzduVNeLj49nwIABWFlZoVKpcHFxITAwEID09HR8fHyws7NDX18fJycn/Pz8NGIKCwtTt5WQkIBCoSA4OPi5YhJClB8/nLlM91pOvFXDiSqWJvyvVR30dbT57cK1fMt7VapAq6r2VLYwxsHMkP51q1KtgglhN+8BEJOQwrlb8UxpWZuaNuY4mxszpWUd0jKzCIq48TJvTQjxCspBUWJbeSRfG72C1q5dy7Bhwzh+/DgnT55k5MiRODo6MmLECI1y2dnZ6gTn4MGDZGZm8tFHH9GnTx/1h/ktW7YwZswYFi9eTJs2bdixYwdDhgyhUqVKtGzZkuzsbHr06IGNjQ2hoaEkJiY+dU5QQSZOnMjixYupUaMGCxcupGvXrly9ehVLS0t1mcmTJ+Pv70+VKlUwNzfHz8+PH374gW+++QYXFxcOHTrEu+++i5WVFd7e3kybNo0LFy6we/duKlSowOXLl0lNTQVg6dKlbNu2jV9++QVHR0euX7/O9evXix13cWMSQpQPGVnZXIxLZIiXq/qYlkJBQwcrzsXGF1o/JyeHE//c5Vp8MqOb1QAgPSsbAD1tbY029bS1CIu9R/daTi/4LoQQ4vUlSc4ryMHBgUWLFqFQKHBzc+PcuXMsWrQoT5Kzf/9+zp07x9WrV3FwyB0T/v3331OzZk1OnDhBgwYN8Pf3Z/DgwXz44YcAjB8/nmPHjuHv70/Lli3Zt28fFy9e5Pfff8fe3h6AuXPn0rFjx2LF7OPjQ8+ePYHcnqOgoCBWrVrFpEmT1GVmz55N27ZtAUhLS2Pu3Lns27ePJk2aAFClShUOHz7MihUr8Pb2JiYmBk9PT7y8vIDcRRcei4mJwcXFhTfeeAOFQoGT07N9eChuTEKI8iEhNY2snBws/zMszdJASXT8gwLrPUjLoOPq30nPykZboWByi9o0drQGwNncCFtjFcuPXGBqqzqodHOHq91OfsTdlEclej9CiFefzMkpHklyXkGNGzdGoXjyD71JkyYEBASQlZWlUS48PBwHBwd1ggNQo0YNzMzMCA8Pp0GDBoSHhzNy5EiNes2aNWPJkiUabTxOcB5fr7j+XUdHRwcvLy/Cw8M1yjxOVgAuX77Mw4cP1QnGY+np6Xh6egLwwQcf0LNnT06fPk27du3o1q0bTZs2BWDw4MG0bdsWNzc3OnToQJcuXWjXrl2x4y5uTPlJS0sjLS1N41hGRiZKGX8vRLljqKfDT/1a8DAji+PX77Dwz/NUNDXEq1IFdLW18O/ckNn7ztDy291o/3/PUDMna/IfcCyEEE9kl3YArxj5lCXKDENDQ/Wfk5OTAdi5cycVK1bUKKdU5n6z2rFjR65du8auXbvYu3cvrVu35qOPPsLf35969epx9epVdu/ezb59++jduzdt2rRh48aNaGnlTkX79zymjIyMFxJTfvz8/Jg1a5bGsSkdm/K/zs0KrCOEKF1mKiXaCgX3Hmp+QXHvYRoVDPQLrKelUODw/yuluVmZcvX+AwJPXsKrUgUA3K3N+Kl/Sx6kZZCZlY25gZKBPx+khrVZid2LEEK8jmThgVdQaGioxv6xY8dwcXFB+1/jvAHc3d3zzEW5cOECCQkJ1KhRQ10mJCREo15ISIjG+evXrxMbG6txveL6d53MzExOnTqFu7t7geVr1KiBUqkkJiaGatWqaWz/7pmysrJi0KBB/PDDDyxevJhvv/1Wfc7ExIQ+ffqwcuVKfv75ZzZt2sT9+/exsrIC0Linfy9C8Lwx/deUKVNITEzU2Ca0a1To9YQQpUdXW4vq1qacuH5HfSw7J4cT1+/gYZf/EtL5ySF3fs9/GSt1MTdQEpOQTHhcAt5V7F5E2EKIciwnR1FiW3kkPTmvoJiYGMaPH8/777/P6dOnWbZsGQEBAXnKtWnTBg8PDwYMGMDixYvJzMzkww8/xNvbWz0Ma+LEifTu3RtPT0/atGnD9u3b2bx5M/v27VO34erqyqBBg/jiiy9ISkpi6tSpxY75yy+/xMXFBXd3dxYtWkR8fDxDhw4tsLyxsTG+vr6MGzeO7Oxs3njjDRITEwkJCcHExIRBgwYxffp06tevT82aNUlLS2PHjh3qxGnhwoXY2dnh6emJlpYWv/76K7a2tpiZmaGlpUXjxo2ZN28elStXJi4ujk8//bTQeyhKTPlRKpV5enqSZaiaEGXeu57VmLH3NO42Zv+/hHQUqZlZvFXDEYDpe05hZaji4/9fWGD1iUvUsDGjkqkhGVnZHI6+zc6L15nSoo66zb2RNzBXKbE1VnH5bhL+h87RooodTZysS+UehRCivJJPWq+ggQMHkpqaSsOGDdHW1mbMmDF55tUAKBQKfvvtNz7++GPefPNNtLS06NChA8uWLVOX6datG0uWLMHf358xY8ZQuXJlAgMDadGiBQBaWlps2bKFYcOG0bBhQ5ydnVm6dCkdOnQoVszz5s1j3rx5hIWFUa1aNbZt20aFChWeWmfOnDlYWVnh5+fHlStXMDMzo169evzvf/8DQE9PjylTphAdHY1KpaJ58+Zs2LAByE1IFixYQGRkJNra2jRo0IBdu3aph6qtXr2aYcOGUb9+fdzc3FiwYEGR5uwUFpMQovxo51qR+NQ0vjl2kXspabhambDs7cZY/v9wtVsPUjXmRz7KzGLegb+IS05FqaONs7kRn7WrTzvXJ8Nb76Y8YtGf53OHvRnq07m6AyMaur30exNCvHrK61LPJUWRU9ALVoR4AaKjo6lcuTJnzpyhbt26pR1OmZH85aTCCwkhhBCiTDH6aEGpXftIeMErOz6vpu7GJdZ2aZGeHCGEEEIIIcq48jp3pqTIwgPiucydOxcjI6N8t+K+S0cIIYQQQogXQXpyxHMZNWoUvXv3zvecSqWiYsWKyIhIIYQQQojnI3NyikeSHPFcLCwssLCwKO0whBBCCCHKtWz5zrhYZLiaEEIIIYQQolyRnhwhhBBCCCHKOBmuVjyS5AhRCj66Pb60QxBCCCFEMa0t7QBEkUmSI4QQQgghRBknS0gXj8zJEUIIIYQQQpQr0pMjhBBCCCFEGSdv5Cge6ckRQgghhBBClCuS5JQBLVq0YOzYsQA4OzuzePHiZ6pbnq1ZswYzMzP1/syZM6lbt+5T60RHR6NQKAgLCyvR2IQQQgghSlo2ihLbyiMZrlbGnDhxAkNDwyKX37x5M7q6uiUYUdnk6+vLxx9/rN4fPHgwCQkJbN26VX3MwcGB2NhYKlSoUAoRCiHKk+6tjGhRX4WBvhaRMems3Z7E7ftZBZbv1tKI7i2NNI7dvJPJlGV31fumRlr0aWdMzap6qJQKYu9msf1QMicvpJXYfQghXl2y8EDxSJJTxlhZWRWrvIWFRQlFUrYZGRlhZGT01DLa2trY2tq+pIiEEOVVpzcMadvIgJVbErkbn0WPVkb4DjTnf8vvkpFZcL1/bmewYG28ej/rP68rH9nDFAN9BUt+TODBw2ya1Nbno95mzPjmHjG3ntKwEEKIQslwtTLm38PV+vfvT58+fTTOZ2RkUKFCBb7//nsg73A1Z2dn5s6dy9ChQzE2NsbR0ZFvv/1Wo40jR45Qt25d9PX18fLyYuvWrcUa1vX333/TpUsXTExMMDY2pnnz5kRFRQGQnZ3N7NmzqVSpEkqlkrp16xIUFKSu+3gI2ebNm2nZsiUGBgbUqVOHo0ePalxjzZo1ODo6YmBgQPfu3bl3757G+X8PV5s5cyZr167lt99+Q6FQoFAoCA4Ozne42sGDB2nYsCFKpRI7OzsmT55MZuaTDxMtWrRg9OjRTJo0CQsLC2xtbZk5c6b6fE5ODjNnzsTR0RGlUom9vT2jR48u0nMTQrya2jcxYPuhZM5cTOP67Uy+3ZyImbE29arrP7VeVjYkJmert+SHmklONQdd9oY+5MqNDO7EZ7HtYAoPH+VQ2f71650XQhQuJ6fktvJIkpwybMCAAWzfvp3k5GT1sd9//52HDx/SvXv3AusFBATg5eXFmTNn+PDDD/nggw+IiIgAICkpia5du+Lh4cHp06eZM2cOn3zySZFjunHjBm+++SZKpZI//viDU6dOMXToUHWisGTJEgICAvD39+evv/6iffv2vPXWW0RGRmq0M3XqVHx9fQkLC8PV1ZV+/fqp2wgNDWXYsGH4+PgQFhZGy5Yt+eyzzwqMydfXl969e9OhQwdiY2OJjY2ladOm+cbeqVMnGjRowNmzZ/n6669ZtWpVnrbXrl2LoaEhoaGhLFiwgNmzZ7N3714ANm3axKJFi1ixYgWRkZFs3boVDw+PIj8/IcSrxcpcGzNjbf6OSlcfS03L4cqNDKo5PD0ZsbXUZrGvFV+MrcD7PU2xMNX8lXv5egaNauljqFKgUECjWvro6kB4dHoBLQohhCgqSXLKsPbt22NoaMiWLVvUx3788UfeeustjI2NC6zXqVMnPvzwQ6pVq8Ynn3xChQoVOHDggLq+QqFg5cqV1KhRg44dOzJx4sQix/Tll19iamrKhg0b8PLywtXVlSFDhuDm5gaAv78/n3zyCX379sXNzY358+dTt27dPIsp+Pr60rlzZ1xdXZk1axbXrl3j8uXLQG6i1KFDByZNmoSrqyujR4+mffv2BcZkZGSESqVCqVRia2uLra0tenp6ecp99dVXODg4sHz5cqpXr063bt2YNWsWAQEBZGdnq8vVrl2bGTNm4OLiwsCBA/Hy8mL//v0AxMTEYGtrS5s2bXB0dKRhw4aMGDGiyM9PCPFqMTXK/TWZmJytcTwpOUt9Lj9X/kln5ZZEAtbFs3ZHElbm2kwdZom+3pMx9V/+koC2toKvptjw3XQbBr9lwtKfEoh7ylwfIcTrKwdFiW0l5f79+wwYMAATExPMzMwYNmyYxpf3+ZX/+OOPcXNzQ6VS4ejoyOjRo0lMTCz2tSXJKcN0dHTo3bs369evByAlJYXffvuNAQMGPLVe7dq11X9WKBTY2toSFxcHQEREBLVr10Zf/8kwi4YNGxY5prCwMJo3b57vYgdJSUncvHmTZs2aaRxv1qwZ4eHhBcZoZ2cHoI4xPDycRo0aaZRv0qRJkWMsSHh4OE2aNEGhePKfuVmzZiQnJ/PPP//kG9vj+B7H1qtXL1JTU6lSpQojRoxgy5YtGsPd8pOWlkZSUpLGlpUpE4uFKIua1NZnxVRr9aat/Wzt/BWZzom/c4e3nb+czsIf4jHQV9Cw1pOfvT1aGWGgr2D+mvvM/OYevx9J4cPeZlSylumyQojyYcCAAfz999/s3buXHTt2cOjQIUaOHFlg+Zs3b3Lz5k38/f05f/48a9asISgoiGHDhhX72vKTtIwbMGAA3t7exMXFsXfvXlQqFR06dHhqnf8mIAqFQqOn4nmoVKoX0s6/Y3ycdLyoGJ/X056fg4MDERER7Nu3j7179/Lhhx/yxRdfcPDgwQJXufPz82PWrFkax2q/OYG63r4lcwNCiGd25mIaUf88mQOoq53788nUSEujN8fESJuY2Iwit/vwUQ637mVhY5GbNVmba9O2sSH/W3aXG3dyvyi5fjsTVyc9WjcyYO32pBdxO0KIciT7FZs7Ex4eTlBQECdOnMDLywuAZcuW0alTJ/z9/bG3t89Tp1atWmzatEm9X7VqVT7//HPeffddMjMz0dEpeuoiPTllXNOmTXFwcODnn39m/fr19OrV67mWjHZzc+PcuXOkpT3pSThx4kSR69euXZs///yTjIy8v9xNTEywt7cnJCRE43hISAg1atQo8jXc3d0JDQ3VOHbs2LGn1tHT0yMr6+lDPNzd3Tl69Cg5/5phFxISgrGxMZUqVSpyfCqViq5du7J06VKCg4M5evQo586dK7D8lClTSExM1Ng8mn1cYHkhROl5lJ5D3P0s9XbjTiYJD7KoUeXJEFh9pYIqFXW5fL3oSY5ST4G1uTYJD3ITJT3d//9y5z8zfrNzQEtWiRVClANHjx7FzMxMneAAtGnTBi0trTyf854mMTERExOTYiU4IEnOK6F///5888037N27t9ChakVpKzs7m5EjRxIeHs7vv/+Ov78/gMYwroL4+PiQlJRE3759OXnyJJGRkaxbt069sMHEiROZP38+P//8MxEREUyePJmwsDDGjBlT5BhHjx5NUFAQ/v7+REZGsnz5co0V2vLj7OzMX3/9RUREBHfv3s03Cfvwww+5fv06H3/8MRcvXuS3335jxowZjB8/Hi2tov1XWLNmDatWreL8+fNcuXKFH374AZVKhZOTU4F1lEolJiYmGpu2jrJI1xNClL7fjz7kLW8jPN2UVLLWYWQPUxIeZHH64iN1mUmDzWnT0EC937e9MW7OulQw06aagy6j+5mRnQPHzqUCEHs3k1v3MhnylilVKupiba5Nh6YG1Kyix6nwR3liEEKInBxFiW35Da3/9xfiz+LWrVtYW1trHNPR0cHCwoJbt24VqY27d+8yZ86cpw5xK4gkOa+AAQMGcOHCBSpWrJhnvktxmZiYsH37dsLCwqhbty5Tp05l+vTpABrzdApiaWnJH3/8QXJyMt7e3tSvX5+VK1eqe5dGjx7N+PHjmTBhAh4eHgQFBbFt2zZcXFyKHGPjxo1ZuXIlS5YsoU6dOuzZs4dPP/30qXVGjBiBm5sbXl5eWFlZ5elNAqhYsSK7du3i+PHj1KlTh1GjRjFs2LBC2/43MzMzVq5cSbNmzahduzb79u1j+/btWFpaFrkNIcSrZdfhFPaGPmTwWybMeD938QD/dfEa78ixNtfByPDJr1RzEy0+eMeMeaMr8FFvM5IfZjPn23s8+P9lpLOyYeG6eJJSshk7wIzPPrKkWV0VK7ck8lekrK4mhMirJJeQ9vPzw9TUVGPz8/PLN47JkyerX9lR0Hbx4sXnvt+kpCQ6d+5MjRo1NF7nUVSKnJzyujq2KKr169czZMgQEhMTX9icG/F0g6YX7RsMIYQQQpQda2eX3kvGd50u+hDZ4mpdMztPz41SqUSpzDvy5M6dO3neX/hfVapU4YcffmDChAnExz95KXJmZib6+vr8+uuvT30dyoMHD2jfvj0GBgbs2LGjSF/E/5csPPAa+v7776lSpQoVK1bk7NmzfPLJJ/Tu3VsSHCGEEEKIMiq7BJd6LiihyY+VlRVWVlaFlmvSpAkJCQmcOnWK+vXrA/DHH3+QnZ2dZxXdf0tKSqJ9+/YolUq2bdv2TAkOyHC119KtW7d49913cXd3Z9y4cfTq1Ytvv/0WgFGjRmFkZJTvNmrUqFKOXAghhBBCvArc3d3p0KEDI0aM4Pjx44SEhODj40Pfvn3VK6vduHGD6tWrc/z4cSA3wWnXrh0pKSmsWrWKpKQkbt26xa1btwpdYOq/ZLia0BAXF0dSUv5Ll5qYmOSZQCaejQxXE0IIIV49pTlcbfupp7+X73l0rV8yg7vu37+Pj48P27dvR0tLi549e7J06VKMjIwAiI6OpnLlyhw4cIAWLVoQHBxMy5Yt823r6tWrODs7F/naMlxNaLC2tpZERgghhBBCPDcLCwt+/PHHAs87OztrvNqjRYsWvKj+F0lyhBBCCCGEKONycuQlWsUhc3KEEEIIIYQQ5Yr05AhRCh4+SC3tEIQQQgjxCsmWWfTFIj05QgghhBBCiHJFenKEEEIIIYQo42Q95OKRJEcIIYQQQogyLqcEXwZaHslwNSGEEEIIIUS5IkmOeKqZM2dSt27dYtVRKBRs3bq1ROIRQgghhHgdZeeU3FYeyXA18VS+vr58/PHHpR1GmfT4rbzx8fGYmZmVdjhCiBLUp4MZrZsYY6ivxcXoNFb+epdbd5/+9nELU20GdLHA012FUlfBrbuZfLnhDleupwPQq70ZzTwNsTTTITMrhyv/pPPTzngux6S9jFsSQohyTZIc8VRGRkYYGRmVdhhlTkZGRmmHIIR4Sd5uZUrHN01Y/uNd4u5l0LejOZ+OsmXcvBtkZOb/FaihSos5o+34O/IRc7+9RVJyNrZWuqQ8zFaXib2TwarN97h9LxM9XQVdvE2ZNsqWjz+/TlJKdr7tCiFeX7LwQPHIcLVyYuPGjXh4eKBSqbC0tKRNmzakpKSQnZ3N7NmzqVSpEkqlkrp16xIUFKRR959//qFfv35YWFhgaGiIl5cXoaGhQN7haidOnKBt27ZUqFABU1NTvL29OX369DPFnJ6ejo+PD3Z2dujr6+Pk5ISfnx8A0dHRKBQKwsLC1OUTEhJQKBQEBwcDuT0pCoWCnTt3Urt2bfT19WncuDHnz59X11mzZg1mZmZs3boVFxcX9PX1ad++PdevX9eI5euvv6Zq1aro6enh5ubGunXrNM4rFAq+/vpr3nrrLQwNDRkxYgQtW7YEwNzcHIVCweDBg5/pOQghyrbO3iZs2pPAyfMPiYnNYPmPdzA30aaBh0GBdbq1NuVeQhZfbbjL5Zh04u5n8ldEKrfvPen9OXw6hXOXHhF3L5N/bmWwdus9DFRaONrrvYzbEkKIck2SnHIgNjaWfv36MXToUMLDwwkODqZHjx7k5OSwZMkSAgIC8Pf356+//qJ9+/a89dZbREZGApCcnIy3tzc3btxg27ZtnD17lkmTJpGdnf+3iA8ePGDQoEEcPnyYY8eO4eLiQqdOnXjw4EGx4166dCnbtm3jl19+ISIigvXr1+Ps7FzsdiZOnEhAQAAnTpzAysqKrl27avS0PHz4kM8//5zvv/+ekJAQEhIS6Nu3r/r8li1bGDNmDBMmTOD8+fO8//77DBkyhAMHDmhcZ+bMmXTv3p1z584xa9YsNm3aBEBERASxsbEsWbKk2LELIco2a0sdzE10OHfpkfrYw0c5XL6WhpuzssB6XjUNiLqexvhB1nw325EFE+xp3di4wPI62tCmiTEpqVlcu5n+Qu9BCFE+5OSU3FYeyXC1ciA2NpbMzEx69OiBk5MTAB4eHgD4+/vzySefqD/Uz58/nwMHDrB48WK+/PJLfvzxR+7cucOJEyewsLAAoFq1agVeq1WrVhr73377LWZmZhw8eJAuXboUK+6YmBhcXFx44403UCgU6tiLa8aMGbRt2xaAtWvXUqlSJbZs2ULv3r2B3KFly5cvp1GjRuoy7u7uHD9+nIYNG+Lv78/gwYP58MMPARg/fjzHjh3D399f3VsD0L9/f4YMGaLev3r1KgDW1tYyJ0eIcsrMWBuAhOQsjeMJyVnqc/mxttShXVNjdgQnsXlfAtUclQztbkFmVg4HTySry9WroWLcQGv0dBUkJGUx5+tbPJChakII8dykJ6ccqFOnDq1bt8bDw4NevXqxcuVK4uPjSUpK4ubNmzRr1kyjfLNmzQgPDwcgLCwMT09PdYJTmNu3bzNixAhcXFwwNTXFxMSE5ORkYmJiih334MGDCQsLw83NjdGjR7Nnz55itwHQpEkT9Z8tLCxwc3NT3x+Ajo4ODRo0UO9Xr14dMzMzdZnw8PCnPqPHvLy8nim+tLQ0kpKSNLasTJlYLERZ9EY9Q9bNc1JvOtrP9l4KLYWCq/+k89OueKJvpLPv6AP2HXtAu6aavTl/X37ERP8bfLo0lrCLqYwfZI2JkfxqFkLklZ2jKLGtPJKfpOWAtrY2e/fuZffu3dSoUYNly5bh5uam7ml4GpVKVaxrDRo0iLCwMJYsWcKRI0cICwvD0tKS9PTiD6+oV68eV69eZc6cOaSmptK7d2/eeecdALS0cv9p5vyrD7W0J/sbGho+Uz0/Pz9MTU01tosnvn7B0QkhXoSTfz9kov8N9ZaUktuDY2ak2WtjZqRNwoOs/JoAID4pi39ua/7MunE7gwpmmgMo0tJzuHU3k8hraXz9812ysqFVo4KHtQkhXl8yXK14JMkpJxQKBc2aNWPWrFmcOXMGPT099u/fj729PSEhIRplQ0JCqFGjBgC1a9cmLCyM+/fvF+k6ISEhjB49mk6dOlGzZk2USiV379595rhNTEzo06cPK1eu5Oeff2bTpk3cv38fKysrIHco3mP/XoTg344dO6b+c3x8PJcuXcLd3V19LDMzk5MnT6r3IyIiSEhIUJdxd3d/6jMqiJ5e7uTgrKyCP+gATJkyhcTERI2teoMPnlpHCFE6HqXlJh2Pt39uZRCflEktV311GZVSQTUnJRHRBffIRlx9hL21rsYxO2td7sQ/fdlphQJ0dcrnt6pCCPEyyZycciA0NJT9+/fTrl07rK2tCQ0N5c6dO7i7uzNx4kRmzJhB1apVqVu3LoGBgYSFhbF+/XoA+vXrx9y5c+nWrRt+fn7Y2dlx5swZ7O3tNYaBPebi4sK6devw8vIiKSmJiRMnFrs36LGFCxdiZ2eHp6cnWlpa/Prrr9ja2mJmZoaWlhaNGzdm3rx5VK5cmbi4OD799NN825k9ezaWlpbY2NgwdepUKlSoQLdu3dTndXV1+fjjj1m6dCk6Ojr4+PjQuHFjGjZsCOQuXNC7d288PT1p06YN27dvZ/Pmzezbt++p8Ts5OaFQKNixYwedOnVCpVLlu9y2UqlEqdScoKytc6+YT0sIUVp2HkyiZ1szbt3JJO5+Bn06mhOflMWJcw/VZaZ/YMvxcykEHc5dhGXHwUQ+G2NP9zamHA1LoZqjkjaNjVnxS+6XQko9BT3amHHy74fEJ2VhYqhF+zdMsDDV5ujZlFK5TyFE2VZee1xKiiQ55YCJiQmHDh1i8eLFJCUl4eTkREBAAB07dqR9+/YkJiYyYcIE4uLiqFGjBtu2bcPFxQXI7Y3Ys2cPEyZMoFOnTmRmZlKjRg2+/PLLfK+1atUqRo4cSb169XBwcGDu3Ln4+vo+U9zGxsYsWLCAyMhItLW1adCgAbt27VIPVVu9ejXDhg2jfv36uLm5sWDBAtq1a5ennXnz5jFmzBgiIyOpW7cu27dvV/eyABgYGPDJJ5/Qv39/bty4QfPmzVm1apX6fLdu3ViyZAn+/v6MGTOGypUrExgYSIsWLZ4af8WKFZk1axaTJ09myJAhDBw4kDVr1jzTsxBClF2//ZGIvp6C93tbYqDS4uLVND5fcUvjHTk2FXQwNnwypC3qejpfrL7NgM4WvNPOjLj7mazZep/Dp3MTmOxsqGijS4sG1hgbafMgJYuomDSmL4vln1vyHi4hhHheipwcyQvFqyk4OJiWLVsSHx9f4Opma9asYezYsSQkJLzU2ArTa1zh86WEEEIIUbb8uqhyqV37hz9L7iP7u83L3zBZmZMjhBBCCCGEKFckyRElZu7cuRgZGeW7dezYsbTDE0IIIYR4ZeTkKEpsK49kuJooMffv3y9w1TaVSkXFihVfckRlhwxXE0IIIV49pTlcbd2hkmv7vTdLru3SIgsPiBJjYWFR5JeMCiGEEEKIgkm3RPFIkiOEEEIIIUQZly1JTrHInBwhhBBCCCFEuSI9OUIIIYQQQpRxMlyteCTJEaIUpCQml3YIQgghhBDlliQ5QgghhBBClHHSk1M8MidHCCGEEEIIUa5IT44QQgghhBBlnKyuVjxlvidn5syZ1K1bt7TDKDHR0dEoFArCwsJKO5Rn8qL+fl7233NwcDAKhYKEhIQyE5MQQgghhHgxipXktGjRgrFjx5ZQKK+ONWvWYGZmVtphPJVCoWDr1q2lHUa+8ovN19eX/fv3l05ABSiLMQkhXr53u1nzw8LqbPmmJp/7VsbeWq/QOpZmOviOqMSGpe5s+aYmX812wcVZpT6vr9TigwH2fO+f2+43n7nQqYW8PFkIUbCcnJLbyqPXcrhaTk4OWVlZ6Oi8lrdfJOnp6ejpFf6L/EUxMjLCyMjopV2vKMpiTEKIl+udjhV4q00FFn53nVt3M3ivuw1zJlRm1NRLZGTm/8nAyEAL//9V5a+LyUxfFE3ig0zsbZQ8SMlSlxnR14461Q35YuV1bt9Np14tIz56tyL3EjIIDXvwsm5PCPEKyc4u7QheLUXuyRk8eDAHDx5kyZIlKBQKFAoF0dHRnD9/no4dO2JkZISNjQ3vvfced+/eVdcLCgrijTfewMzMDEtLS7p06UJUVJRG2//88w/9+vXDwsICQ0NDvLy8CA0N1Sizbt06nJ2dMTU1pW/fvjx48OSXQHZ2Nn5+flSuXBmVSkWdOnXYuHGj+vzjoUm7d++mfv36KJVKDh8+/NT7PXv2LC1btsTY2BgTExPq16/PyZMnCQ4OZsiQISQmJqqfw8yZM4H8eyjMzMxYs2aNev/48eN4enqir6+Pl5cXZ86cyXPtwp5pixYtGD16NJMmTcLCwgJbW1t1DADOzs4AdO/eHYVCod5/msdDs7777jsqV66Mvr4+AAkJCQwfPhwrKytMTExo1aoVZ8+eLbCdEydO0LZtWypUqICpqSne3t6cPn260Nj+OzQsOzub2bNnU6lSJZRKJXXr1iUoKEh9/vEwv82bN9OyZUsMDAyoU6cOR48eVZe5du0aXbt2xdzcHENDQ2rWrMmuXbs04j116hReXl4YGBjQtGlTIiIi8jyTxwYPHky3bt2YNWuW+nmMGjWK9PT0Qp+vEOLV1K1tBTZsj+NY2AOi/3lEwHfXsTTToUk9kwLrvNPJijv3M1i0+gaXrqZy+24GZ/5O5tadJz8r3KsasP9IAuciUoi7l0HQwXiuXH+EW2WDl3FbQghR7hU5yVmyZAlNmjRhxIgRxMbGEhsbi7GxMa1atcLT05OTJ08SFBTE7du36d27t7peSkoK48eP5+TJk+zfvx8tLS26d+9O9v+no8nJyXh7e3Pjxg22bdvG2bNnmTRpkvo8QFRUFFu3bmXHjh3s2LGDgwcPMm/ePPV5Pz8/vv/+e7755hv+/vtvxo0bx7vvvsvBgwc17mHy5MnMmzeP8PBwateu/dT7HTBgAJUqVeLEiROcOnWKyZMno6urS9OmTVm8eDEmJibq5+Dr61ukZ5icnEyXLl2oUaMGp06dYubMmXnqJiQkFPpMAdauXYuhoSGhoaEsWLCA2bNns3fvXiA30QAIDAwkNjZWvV+Yy5cvs2nTJjZv3qyeI9SrVy/i4uLYvXs3p06dol69erRu3Zr79+/n28aDBw8YNGgQhw8f5tixY7i4uNCpUyd1UlrU2JYsWUJAQAD+/v789ddftG/fnrfeeovIyEiNclOnTsXX15ewsDBcXV3p168fmZmZAHz00UekpaVx6NAhzp07x/z58/P0zEydOpWAgABOnjyJjo4OQ4cOfeoz2r9/P+Hh4QQHB/PTTz+xefNmZs2a9fQHK4R4Jdla6WJhpkvYhSfvtXqYmk3ElYe4Vy04GWlc14TI6FSmfODIj4vdWTajGu3fNNcoEx71kEZ1jbE0yx1RULu6IRVt9Tj9t/TiCCHyJ8PViqfI47VMTU3R09PDwMAAW1tbAD777DM8PT2ZO3euutzq1atxcHDg0qVLuLq60rNnT412Vq9ejZWVFRcuXKBWrVr8+OOP3LlzhxMnTmBhkTseuVq1ahp1srOzWbNmDcbGxgC899577N+/n88//5y0tDTmzp3Lvn37aNKkCQBVqlTh8OHDrFixAm9vb3U7s2fPpm3btkW635iYGCZOnEj16tUBcHFx0XgWCoVC/RyK6scffyQ7O5tVq1ahr69PzZo1+eeff/jggw/UZZYvX17oMwWoXbs2M2bMUMe2fPly9u/fT9u2bbGysgJye5GKE2N6ejrff/+9uv7hw4c5fvw4cXFxKJVKAPz9/dm6dSsbN25k5MiRedpo1aqVxv63336LmZkZBw8epEuXLkWOzd/fn08++YS+ffsCMH/+fA4cOMDixYv58ssv1eV8fX3p3LkzALNmzaJmzZpcvnyZ6tWrExMTQ8+ePfHw8ABy/1381+eff67+NzJ58mQ6d+7Mo0eP1D1Z/6Wnp8fq1asxMDCgZs2azJ49m4kTJzJnzhy0tMr8Oh5CiGIwN9EFID4pU+N4QlIm5qYF//q0tdKjc0sLtvx+l593xuFaWcWo/vZkZuaw/0gCAF+vv8noQRVZt9CdzMwccnJyWLL2BucvPSyx+xFCiNfJc01KOXv2LAcOHMh33kJUVBSurq5ERkYyffp0QkNDuXv3rrqHJiYmhlq1ahEWFoanp6c6wcmPs7OzOsEBsLOzIy4uDsjtfXj48GGe5CU9PR1PT0+NY15eXkW+t/HjxzN8+HDWrVtHmzZt6NWrF1WrVi1y/fw87kH69wfox4nZY0V5pkCenqh/P5Nn5eTkpE5CHseSnJyMpaWlRrnU1NQ8Qw4fu337Np9++inBwcHExcWRlZXFw4cPiYmJKXIcSUlJ3Lx5k2bNmmkcb9asWZ6hcv9+DnZ2dgDExcVRvXp1Ro8ezQcffMCePXto06YNPXv2zPPcCqrv6OiYb2x16tTBwODJN7hNmjQhOTmZ69ev4+TklG+dtLQ00tLSNI5lZaWjrf3y5jwJIQrXorEZHw+0V+/PWHztmdpRKCAyOpW1m28DcCXmEU4V9enUwlKd5LzV2pLqVQ2YuSSauHsZ1HI15MN37bmfkEHYhZTnvhchRPlTXntcSspzJTnJycl07dqV+fPn5zn3+ANj165dcXJyYuXKldjb25OdnU2tWrXU8xhUKlWeuv+lq6ursa9QKDSGuwHs3LmTihUrapR73PvwmKGhYRHvLHc+Rv/+/dm5cye7d+9mxowZbNiwge7duxdYR6FQkPOff4EZGRlFviYU7ZnC05/Js/rv80lOTsbOzo7g4OA8ZQtaXW7QoEHcu3ePJUuW4OTkhFKppEmTJiU2b+Xfz0GhUACon8Pw4cNp3749O3fuZM+ePfj5+REQEMDHH39cpPovip+fX54hbdXqjsLF88MXeh0hxPMJDUsi4sqTnhRdndyfCeYmOsQnPunNMTPR4UrMowLbiU/I5PpNzS82rt9Mo1l9UwD0dBUM6mnDZ8tjOPFX7vC06H8eUdVRnx7trSTJEUKIF6BYSY6enh5ZWU9Wh6lXrx6bNm3C2dk535XK7t27R0REBCtXrqR58+YAeSb8165dm++++4779+8/tTenIDVq1ECpVBITE6MxNO1FcHV1xdXVlXHjxtGvXz8CAwPp3r17nufwmJWVFbGxser9yMhIHj588gvT3d2ddevWaQyHOnbsmEYbhT3TotLV1c03xuKoV68et27dQkdHp0iLFwCEhITw1Vdf0alTJwCuX7+usWhCUWIzMTHB3t6ekJAQjb/TkJAQGjZsWKx7cHBwYNSoUYwaNYopU6awcuVKjSSnuM6ePUtqaqo6OT927BhGRkY4ODgUWGfKlCmMHz9e41ivjyMLKC2EKC2pj7JJfaT5hcz9hAzq1DDiyvXcpEalr4VbFQN2Hsh/XiLAhcsPqWir+SVbRVslcfdy29bWVqCro5XnS7Gs7By0FC/iToQQ5ZG8DLR4ijWJwNnZmdDQUKKjo7l79y4fffQR9+/fp1+/fpw4cYKoqCh+//13hgwZQlZWFubm5lhaWvLtt99y+fJl/vjjjzwf9vr164etrS3dunUjJCSEK1eusGnTJo1Vsp7G2NgYX19fxo0bx9q1a4mKiuL06dMsW7aMtWvXFuf21FJTU/Hx8SE4OJhr164REhLCiRMncHd3Vz+H5ORk9u/fz927d9WJTKtWrVi+fDlnzpzh5MmTjBo1SqOnoH///igUCkaMGMGFCxfYtWsX/v7+Gtcu7JkWlbOzM/v37+fWrVvEx8c/03No06YNTZo0oVu3buzZs4fo6GiOHDnC1KlTOXnyZL51XFxcWLduHeHh4YSGhjJgwIA8vXVFiW3ixInMnz+fn3/+mYiICCZPnkxYWBhjxowpcvxjx47l999/5+rVq5w+fZoDBw6o/w6fVXp6OsOGDVP//c2YMQMfH5+nzsdRKpWYmJhobDJUTYhXw9a9d+nbxZpGdY1xrqjEd3gl7iVkcvR0krrMXN/KdGn1ZFjvlj13qV7FgN6drbCz1qNFI1M6eluw44/cxCj1UTZ/XUxmaC87PNwMsamgS5tmZrRuas6Rf7UrhBDi2RUryfH19UVbW5saNWpgZWVFeno6ISEhZGVl0a5dOzw8PBg7dixmZmZoaWmhpaXFhg0bOHXqFLVq1WLcuHF88cUXGm3q6emxZ88erK2t6dSpEx4eHsybNw9tbe0ixzVnzhymTZuGn58f7u7udOjQgZ07d1K5cuXi3J6atrY29+7dY+DAgbi6utK7d286duyoHnLUtGlTRo0aRZ8+fbCysmLBggUABAQE4ODgQPPmzenfvz++vr4a8zeMjIzYvn07586dw9PTk6lTp+YZlva4B6OgZ1pUAQEB7N27FwcHhzxzk4pKoVCwa9cu3nzzTYYMGYKrqyt9+/bl2rVr2NjY5Ftn1apVxMfHU69ePd577z1Gjx6NtbV1sWMbPXo048ePZ8KECXh4eBAUFMS2bds0FoAoTFZWFh999JH634SrqytfffVV0R9APlq3bo2Liwtvvvkmffr04a233tJYvlsIUb5s3H2X7fvv8vGgiiyeXg19fW2mL7yq8Y4cO2s9TI2f/M6KjE7lsy+v0aKRGV/PcaFvV2tW/HST4GMJ6jLzv7lOZPRDJo504JvPXOnVyYrvN99mV3DBPURCiNdbTk5OiW3lkSKnvN6ZEC/Y4MGDSUhIyPMupGfRaei55w9ICCGEEC/VrtUepXbtZTtL7iP7x53L31hZWfNWCCGEEEIIUa68tklOzZo1MTIyyndbv359aYf3wr1u9yuEEEIIUZ5kZ5fcVh491xLSr7Jdu3YVuLxzQfNNXmWv2/2WhDVr1pR2CEIIIYQQoghe2ySnoBc3llev2/0KIYQQQpQnMou+eF7b4WpCCCGEEEKI8um17ckRQgghhBDiVSEvAy0e6ckRQgghhBBClCvSkyNEKchISy/tEIQQQgjxCpE5OcUjSY4QQgghhBBlXE6JjleTl4EKIYQQQgghRKHu37/PgAEDMDExwczMjGHDhpGcnFykujk5OXTs2BGFQsHWrVuLfW1JcoQQQgghhCjjsnNKbispAwYM4O+//2bv3r3s2LGDQ4cOMXLkyCLVXbx4MQrFs/cwSZLzmmvRogVjx44tkbajo6NRKBSEhYWVSPsvi7OzM4sXLy7tMIQQQgghXhnh4eEEBQXx3Xff0ahRI9544w2WLVvGhg0buHnz5lPrhoWFERAQwOrVq5/5+jInR5QYBwcHYmNjqVChQmmHIoQQz2VQTzs6trTCyFCbvy8ls3R1DDdupxVYft3iWthaKfMc37Y3jmVrrgPQqWUFWjW1oFplAwxV2nQbEUbKw6wSuwchxKutJBceSEtLIy1N82eaUqlEqcz7c6yojh49ipmZGV5eXupjbdq0QUtLi9DQULp3755vvYcPH9K/f3++/PJLbG1tn/n60pMjSoy2tja2trbo6EguLYR4dfXpYkO39tYsCbzGx9Mv8igtG7/JLujqFjyMwmfaRXp/eFa9TZp7CYCDofHqMkqlFif+SuSn32JL/B6EEOJp/Pz8MDU11dj8/Pyeq81bt25hbW2tcUxHRwcLCwtu3bpVYL1x48bRtGlT3n777ee6viQ5gszMTHx8fDA1NaVChQpMmzaNnP//umDdunV4eXlhbGyMra0t/fv3Jy4uTl03Pj6eAQMGYGVlhUqlwsXFhcDAQCD/4Wp///03Xbp0wcTEBGNjY5o3b05UVFShMQ4ePJhu3brh7++PnZ0dlpaWfPTRR2RkZKjLpKWl4evrS8WKFTE0NKRRo0YEBwdrtHP48GGaN2+OSqXCwcGB0aNHk5KSoj4fFxdH165dUalUVK5cmfXr12vUz8nJYebMmTg6OqJUKrG3t2f06NFFftZCiFdP9w42rN96i6OnErl6PZX5X1/F0kyXZvXNCqyT+CCT+MQnW2NPU27cesRf4U8m3G4JiuPn7bcJv5xSYDtCCPFYdnZOiW1TpkwhMTFRY5syZUq+cUyePBmFQvHU7eLFi890j9u2beOPP/54IdME5Ct2wdq1axk2bBjHjx/n5MmTjBw5EkdHR0aMGEFGRgZz5szBzc2NuLg4xo8fz+DBg9m1axcA06ZN48KFC+zevZsKFSpw+fJlUlNT873OjRs3ePPNN2nRogV//PEHJiYmhISEkJmZWaQ4Dxw4gJ2dHQcOHODy5cv06dOHunXrMmLECAB8fHy4cOECGzZswN7eni1bttChQwfOnTuHi4sLUVFRdOjQgc8++4zVq1dz584dfHx88PHxUSdmgwcP5ubNmxw4cABdXV1Gjx6tkdRt2rSJRYsWsWHDBmrWrMmtW7c4e/bs8zx+IUQZZmulh6W5Lmf+TlIfe5iazcWoFGq4GBJ8LP4ptXPpaCto/YYlm3bdLslQhRDimRVnaNqECRMYPHjwU8tUqVIFW1tbjc9QkPvF+v379wschvbHH38QFRWFmZmZxvGePXvSvHnzPF9eP40kOQIHBwcWLVqEQqHAzc2Nc+fOsWjRIkaMGMHQoUPV5apUqcLSpUtp0KABycnJGBkZERMTg6enp3q8pbOzc4HX+fLLLzE1NWXDhg3o6uoC4OrqWuQ4zc3NWb58Odra2lSvXp3OnTuzf/9+RowYQUxMDIGBgcTExGBvbw+Ar68vQUFBBAYGMnfuXPz8/BgwYIB6oQUXFxeWLl2Kt7c3X3/9NTExMezevZvjx4/ToEEDAFatWoW7u7s6hpiYGGxtbWnTpg26uro4OjrSsGHDIt+DEOLVYmGW+7MqPjFD43h8Ygbm/3+uME29zDAy0GbPoXsvPD4hxOujrLwM1MrKCisrq0LLNWnShISEBE6dOkX9+vWB3CQmOzubRo0a5Vtn8uTJDB8+XOOYh4cHixYtomvXrsWKU5IcQePGjTWW6GvSpAkBAQFkZWURFhbGzJkzOXv2LPHx8WRnZwO5H/Zr1KjBBx98QM+ePTl9+jTt2rWjW7duNG3aNN/rhIWF0bx5c3WCU1w1a9ZEW1tbvW9nZ8e5c+cAOHfuHFlZWXmSprS0NCwtLQE4e/Ysf/31l8YQtJycHLKzs7l69SqXLl1CR0dH/R8RoHr16hrfJvTq1YvFixdTpUoVOnToQKdOnejatetT5x3lN5kvOysdLW294j8EIUSJatXUgrHDHNX7n35x+bnb7NjCkuNnE7mXkFF4YSGEKEBZSXKKyt3dnQ4dOjBixAi++eYbMjIy8PHxoW/fvuovpG/cuEHr1q35/vvvadiwIba2tvn28jg6OlK5cuViXV+SHFGgR48e0b59e9q3b8/69euxsrIiJiaG9u3bk56eDkDHjh25du0au3btYu/evbRu3ZqPPvoIf3//PO2pVKrniue/yZFCoVAnXcnJyWhra3Pq1CmNRAjAyMhIXeb999/Pdw6No6Mjly5dKjQGBwcHIiIi2LdvH3v37uXDDz/kiy++4ODBgwUmb35+fsyaNUvjWOVaI6ha+/1CryeEeLmOnk7gYtSTOTK6OrlfAJmb6nI/4cnQWnNTXaKuPSy0PesKenjWMmHW4sLnHgohRHmzfv16fHx8aN26NVpaWvTs2ZOlS5eqz2dkZBAREcHDh4X/PC0uSXIEoaGhGvvHjh3DxcWFixcvcu/ePebNm4eDgwMAJ0+ezFPfysqKQYMGMWjQIJo3b87EiRPzTXJq167N2rVrycjIeObenIJ4enqSlZVFXFwczZs3z7dMvXr1uHDhAtWqVcv3fPXq1cnMzOTUqVPq4WoREREkJCRolFOpVHTt2pWuXbvy0UcfUb16dc6dO0e9evXybXfKlCmMHz9e41j3kX8X8w6FEC9D6qNsUh9p9rzei8/As6YxUddy5xsaqLSoXtWQ7fvuFNpe+zctSUjMJPRMYonEK4R4fWS/al05gIWFBT/++GOB552dndWLXRWksPMFkdXVBDExMYwfP56IiAh++uknli1bxpgxY3B0dERPT49ly5Zx5coVtm3bxpw5czTqTp8+nd9++43Lly/z999/s2PHDo05LP/m4+NDUlISffv25eTJk0RGRrJu3ToiIiKe+x5cXV0ZMGAAAwcOZPPmzVy9epXjx4/j5+fHzp07Afjkk084cuQIPj4+hIWFERkZyW+//YaPjw8Abm5udOjQgffff5/Q0FBOnTrF8OHDNXqg1qxZw6pVqzh//jxXrlzhhx9+QKVS4eTkVGBsSqUSExMTjU2Gqgnx6tgSdJv+3exoUs8UZwd9Jo2qzL2EDEJOJajLLJjiwtttNceoKxTQ3tuSvX/e4/87nTWYm+pQ1UlFRZvcyb6VHVRUdVJhbKidt7AQQohikZ4cwcCBA0lNTaVhw4Zoa2szZswYRo4ciUKhYM2aNfzvf/9j6dKl1KtXD39/f9566y11XT09PaZMmUJ0dDQqlYrmzZuzYcOGfK9jaWnJH3/8wcSJE/H29kZbW5u6devSrFmzF3IfgYGBfPbZZ0yYMIEbN25QoUIFGjduTJcuXYDcnqSDBw8ydepUmjdvTk5ODlWrVqVPnz4abQwfPhxvb29sbGz47LPPmDZtmvq8mZkZ8+bNY/z48WRlZeHh4cH27dvV836EEOXPzztuo6/UYuwwJ4wMtDl/KZkp8yPJyHjy7aKdjRITY81fqfVqGWNTQUnQwbv5ttultRUDe9qr9xdNdwPgixXRskiBECKPnHy+LBEFU+Q8ax+QEOKZtR1wqrRDEEIIIUQx7V1fv/BCJWT2+qK9cuNZTB9Q/vo9yt8dCSGEEEIIUc5Iv0TxyJwcUSYYGRkVuP3555+lHZ4QQgghhHiFSE+OKBPCwsIKPFexYsWXF4gQQgghRBmU3wImomCS5IgyoaBlnYUQQgghhAxXKy4ZriaEEEIIIYQoV6QnRwghhBBCiDIuWzpyikV6coQQQgghhBDlivTkCFEKcuTrGCGEEEIUg3x2KB7pyRFCCCGEEEKUK9KTI4QQQgghRBkni6sVj/TkCCGEEEIIIcoVSXLEa+HWrVu0bdsWQ0NDzMzMSjscIYQQQohiyc7OKbGtPJLhauK1sGjRImJjYwkLC8PU1LRIdWbOnMnWrVsJCwsr2eCEEGXeoHfs6dSqAkaGOvwdkcyS1de4cSutwPI/LPXA1kqZ5/hve+JYFhgDQOdWFWjVzJJqzgYYGmjz9rAzpDzMKrF7EEKI14kkOeK1EBUVRf369XFxcSntUIQQr5g+XW3p3sGaBV9HE3snjSG97Jk32ZWhE8+TkZH/N6AfTQ1H619jJSo7qFgw1Y1Dx+LVx5RKLU6cTeTE2USG96tU0rchhHjF5ciknGKR4WrilbFx40Y8PDxQqVRYWlrSpk0bUlJSOHHiBG3btqVChQqYmpri7e3N6dOn1fWcnZ3ZtGkT33//PQqFgsGDBwOQkJDA8OHDsbKywsTEhFatWnH27FkA1qxZw6xZszh79iwKhQKFQsGaNWsYOnQoXbp00YgrIyMDa2trVq1a9dKehRDi5enR0Zr1W2I5ciqBqzGpzP8qGktzXZp5mRVYJ/FBJvGJT7ZG9cy4cesRZ8MfqMts3h3Hhm23CI9MeQl3IYR41eVkl9xWHklPjnglxMbG0q9fPxYsWED37t158OABf/75Jzk5OTx48IBBgwaxbNkycnJyCAgIoFOnTkRGRmJsbMyJEycYOHAgJiYmLFmyBJVKBUCvXr1QqVTs3r0bU1NTVqxYQevWrbl06RJ9+vTh/PnzBAUFsW/fPgBMTU1xdXXlzTffJDY2Fjs7OwB27NjBw4cP6dOnT6k9HyFEybCz1sPSXI/T55PUx1JSswiPSqGGixHBR+OfUjuXjraCNm9YsHHn7ZIMVQghxL9IkiNeCbGxsWRmZtKjRw+cnJwA8PDwAKBVq1YaZb/99lvMzMw4ePAgXbp0wcrKCqVSiUqlwtbWFoDDhw9z/Phx4uLiUCpzx837+/uzdetWNm7cyMiRIzEyMkJHR0ddB6Bp06a4ubmxbt06Jk2aBEBgYCC9evXCyMioxJ+DEOLlMjfVBSA+MVPjeEJiBhZmukVqo1kDM4wMdNhz6N4Lj08I8frIluFqxSLD1cQroU6dOrRu3RoPDw969erFypUriY/P/Qb19u3bjBgxAhcXF0xNTTExMSE5OZmYmJgC2zt79izJyclYWlpiZGSk3q5evUpUVNRTYxk+fDiBgYHqa+/evZuhQ4cWWD4tLY2kpCSNLTsr/RmeghCipLVqZsH2QE/1pqOjeO42O7aowPGwRO7FZ7yACIUQQhSF9OSIV4K2tjZ79+7lyJEj7Nmzh2XLljF16lRCQ0P54IMPuHfvHkuWLMHJyQmlUkmTJk1ITy84kUhOTsbOzo7g4OA85wpbYnrgwIFMnjyZo0ePcuTIESpXrkzz5s0LLO/n58esWbM0jlWuOYIqHiOfeh0hxMt39FQCFy8/mSOjq5ub5Jib6nA/4UmSYmaqS1T0w0Lbs66gh6eHCbMWPv3LEyGEKIwsPFA8kuSIV4ZCoaBZs2Y0a9aM6dOn4+TkxJYtWwgJCeGrr76iU6dOAFy/fp27d+8+ta169epx69YtdHR0cHZ2zreMnp4eWVl5l3O1tLSkW7duBAYGcvToUYYMGfLUa02ZMoXx48drHOs2/PxT6wghSkfqo2xSH2kuDX0vPh3PWiZEXUsFwEClhXtVQ7bvjSu0vQ7eFUhIzODYmYSSCFcIIUQBJMkRr4TQ0FD2799Pu3btsLa2JjQ0lDt37uDu7o6Liwvr1q3Dy8uLpKQkJk6cqF5coCBt2rShSZMmdOvWjQULFuDq6srNmzfZuXMn3bt3x8vLC2dnZ65evUpYWBiVKlXC2NhYPX9n+PDhdOnShaysLAYNGvTUaymVSnW9x7S09Z7vgQghXprNu+MY0M2OG7cecSsuncG97LkXn0HIyQR1mQVTXQk5Ec9ve+6ojykU0N7bkr2H7pGdz+pF5qY6WJjpYm+b+/OhsoOK1EdZxN1N50GKvC9HCKGpvL60s6RIkiNeCSYmJhw6dIjFixeTlJSEk5MTAQEBdOzYEVtbW0aOHEm9evVwcHBg7ty5+Pr6PrU9hULBrl27mDp1KkOGDOHOnTvY2try5ptvYmNjA0DPnj3ZvHkzLVu2JCEhgcDAQPXy023atMHOzo6aNWtib29f0rcvhChFP2+/hb5Si3HDnTEy0OZ8RDKT513SeEeOvY0SU2PNhQjq1TLBxkrJ7uD8e5a7trFm4DtPfn4snlkdgAVfX5VFCoQQ4jkpcmSAnxDFlpycTMWKFQkMDKRHjx7Frt+m38kSiEoIIYQQJWnfT16ldu2xy5JLrO3FH5e/FWKlJ0eIYsjOzubu3bsEBARgZmbGW2+9VdohCSGEEOI1kCPD1YpFkhwhiiEmJobKlStTqVIl1qxZg46O/BcSQgghhChr5BOaEMXg7OwsSzgKIYQQ4qWTl4EWj7wMVAghhBBCCFGuSE+OEEIIIYQQZZzMySke6ckRQgghhBBClCvSkyOEEEIIIUQZJz05xSNJjhClICtL3mYuhBBCCFFSJMkRQgghhBCijJOOnOKRJEcIIYQQQogyToarFY8sPCCEEEIIIYQoV6QnRwghhBBCiDJOXkZePNKT85ycnZ1ZvHhxiV9HoVCwdevWEr/O89q6dSvVqlVDW1ubsWPHlnY4QgghhBDiNSQ9Oa+I2NhYzM3NSzuMQr3//vsMGTKE0aNHY2xsXNrhCCHECzGkd0U6t7bGyFCH8xcfsOi7q9y4lVZg+Z+W18XWWpnn+Nbfb7NkVTTGhtoM7l0Jrzqm2FRQkpCUQciJeFZv+IeUVFl9UQiRV7bMySkWSXJeEba2tqUdwlNlZGSQlpZGXFwc7du3x97e/pnbSk9PR09P7wVGJ4QQz67v23b06GjLvC+vEBv3iKF9HFgwtTqDx/9FRkb+HzpGTTmPlpZCvV/ZUUXANHeCj94DwNJCjwoWenyzLoZr/6RiU0HJuBHOWJrrMXNh5Eu5LyGEKM/K1XC1oKAg3njjDczMzLC0tKRLly5ERUWpz//zzz/069cPCwsLDA0N8fLyIjQ0FICoqCjefvttbGxsMDIyokGDBuzbt0+j/bi4OLp27YpKpaJy5cqsX78+TwwJCQkMHz4cKysrTExMaNWqFWfPnlWfnzlzJnXr1mX16tU4OjpiZGTEhx9+SFZWFgsWLMDW1hZra2s+//xzjXb/O1ztaffyNI+vv2LFChwcHDAwMKB3794kJiZqlPvuu+9wd3dHX1+f6tWr89VXX6nPRUdHo1Ao+Pnnn/H29kZfX5/169ere25atWqFQqEgODgYgE2bNlGzZk2USiXOzs4EBARoXMvZ2Zk5c+YwcOBATExMGDlyJGvWrMHMzIwdO3bg5uaGgYEB77zzDg8fPmTt2rU4Oztjbm7O6NGjNd45s27dOry8vDA2NsbW1pb+/fsTFxenPh8cHIxCoWD//v14eXlhYGBA06ZNiYiI0Ihp+/btNGjQAH19fSpUqED37t3V59LS0vD19aVixYoYGhrSqFEj9b0KIcqfdzrZsm7zDUJOxnMlJhW/5VFUMNfjjQYF964nPsgkPjFDvTWpZ8aNW484e+EBANHXU5kREMnRUwncvJ3Gmb+TWLXhH5rUN0OrXP1mFkK8KDk5OSW2lUfl6kdpSkoK48eP5+TJk+zfvx8tLS26d+9OdnY2ycnJeHt7c+PGDbZt28bZs2eZNGkS2dnZACQnJ9OpUyf279/PmTNn6NChA127diUmJkbd/uDBg7l+/ToHDhxg48aNfPXVVxofoAF69epFXFwcu3fv5tSpU9SrV4/WrVtz//59dZmoqCh2795NUFAQP/30E6tWraJz5878888/HDx4kPnz5/Ppp58WmLQUdi+FuXz5Mr/88gvbt28nKCiIM2fO8OGHH6rPr1+/nunTp/P5558THh7O3LlzmTZtGmvXrtVoZ/LkyYwZM4bw8HBatmypThQ2bdpEbGwsTZs25dSpU/Tu3Zu+ffty7tw5Zs6cybRp01izZo1GW/7+/tSpU4czZ84wbdo0AB4+fMjSpUvZsGEDQUFBBAcH0717d3bt2sWuXbtYt24dK1asYOPGjep2MjIymDNnDmfPnmXr1q1ER0czePDgPM9g6tSpBAQEcPLkSXR0dBg6dKj63M6dO+nevTudOnXizJkz7N+/n4YNG6rP+/j4cPToUTZs2MBff/1Fr1696NChA5GR8u2rEOWNnbUSS3M9Tv2VpD6WkppF+OVkaroWbUiujraCts0rsPvAnaeWMzTQ5mFqFkX8US6EEOIpytVwtZ49e2rsr169GisrKy5cuMCRI0e4c+cOJ06cwMLCAoBq1aqpy9apU4c6deqo9+fMmcOWLVvYtm0bPj4+XLp0id27d3P8+HEaNGgAwKpVq3B3d1fXOXz4MMePHycuLg6lMncstr+/P1u3bmXjxo2MHDkSgOzsbFavXo2xsTE1atRQJwi7du1CS0sLNzc35s+fz4EDB2jUqFGe+/zxxx+fei+FefToEd9//z0VK1YEYNmyZXTu3JmAgABsbW2ZMWMGAQEB9OjRA4DKlStz4cIFVqxYwaBBg9TtjB07Vl0GcnuxACwsLNTD6xYuXEjr1q3ViYurqysXLlzgiy++0Eg+WrVqxYQJE9T7f/75JxkZGXz99ddUrVoVgHfeeYd169Zx+/ZtjIyM1M/uwIED9OnTB0AjWalSpQpLly6lQYMGJCcnY2RkpD73+eef4+3tDeQma507d+bRo0fo6+vz+eef07dvX2bNmqUu//jfRkxMDIGBgcTExKiH5Pn6+hIUFERgYCBz587N87zT0tJIS9Mcu5+dlY6WtgzJE6KsszDTBSA+MUPjeHxihvpcYd5oaI6RoQ5BwQUnOSbGOrzXsyI79sUVWEYI8XqT9+QUT7nqyYmMjKRfv35UqVIFExMTnJ2dgdwPpmFhYXh6eqqTgv9KTk7G19cXd3d3zMzMMDIyIjw8XN2TEx4ejo6ODvXr11fXqV69OmZmZur9s2fPkpycjKWlJUZGRurt6tWrGsPmnJ2dNSbl29jYUKNGDbT+NUbBxsYmTy/RY4XdS2EcHR3VCQ5AkyZNyM7OJiIigpSUFKKiohg2bJjGPXz22Wca9wDg5eVV6LXCw8Np1qyZxrFmzZoRGRmpMcwsv7YMDAzUCQ7kPhNnZ2eNZOW/z+nUqVN07doVR0dHjI2N1YnMv3vkAGrXrq3+s52dHYC6nbCwMFq3bp3v/Zw7d46srCxcXV01ns/BgwfzPJ/H/Pz8MDU11diuXVybb1khROlq84Ylu773Um862orCKxWiU0srQsMSuBefke95A5U28ya7ce2fVNb8euO5ryeEKJ9ysnNKbCuPylVPTteuXXFycmLlypXY29uTnZ1NrVq1SE9PR6VSPbWur68ve/fuxd/fn2rVqqFSqXjnnXdIT08v8vWTk5Oxs7PLd37Gv5MhXV3Nb/8UCkW+xwoaflbYvTyP5ORkAFauXJmnF0lbW1tj39DQ8IVdN7+2ivucUlJSaN++Pe3bt2f9+vVYWVkRExND+/bt8/w9/rsdhSL3Q8zjdp72fJOTk9HW1ubUqVN5nse/k69/mzJlCuPHj9c41nXI2XzLCiFKV8jJeC5EJqv39XRzv3wyN9XlfsKTJMXcVJfL0Q8Lbc+mgh71apsywz//4awqfS3m/8+Nh6lZTPO/RFZW+fywIYQQL1u5SXLu3btHREQEK1eupHnz5kDu8LHHateuzXfffcf9+/fz7QEJCQlh8ODB6gnmycnJREdHq89Xr16dzMxMTp06pR6uFhERoR6iBVCvXj1u3bqFjo6OuhepJBR2L4WJiYnh5s2b6uFWx44dUw+Ts7Gxwd7enitXrjBgwIDnjtXd3Z2QkBCNYyEhIbi6uuZJEp7XxYsXuXfvHvPmzcPBwQGAkydPFrud2rVrs3//foYMGZLnnKenJ1lZWcTFxan/nRVGqVSqhy8+JkPVhCibUh9lk/pIc3jpvfh06nmYEHUtN6kxUGnjXs2I3/bcLrS9Di2tSEjM4Ojp+DznDFTaLJjqRkZGDlMXXCpwpTYhhADILqcLBJSUcjNczdzcHEtLS7799lsuX77MH3/8ofHteb9+/bC1taVbt26EhIRw5coVNm3axNGjRwFwcXFh8+bNhIWFcfbsWfr376/Rk+Lm5kaHDh14//33CQ0N5dSpUwwfPlzjW/82bdrQpEkTunXrxp49e4iOjubIkSNMnTr1mT5sF6SweymMvr4+gwYN4uzZs/z555+MHj2a3r17q+fRzJo1Cz8/P5YuXcqlS5c4d+4cgYGBLFy4sNixTpgwgf379zNnzhwuXbrE2rVrWb58Ob6+vsVuqzCOjo7o6emxbNkyrly5wrZt25gzZ06x25kxYwY//fQTM2bMIDw8nHPnzjF//nwgd07RgAEDGDhwIJs3b+bq1ascP34cPz8/du7c+aJvSQhRBmzcdYv3elSkaX0zKjuomOJThbvx6Rw+8SRxCZhWnW7tbTTqKRTQoYUVvx+8m2cxAQOVNl9MrY6+UpsvvrmCgUobc1NdzE110Xr+EXJCCPHaKzdJjpaWFhs2bODUqVPUqlWLcePG8cUXX6jP6+npsWfPHqytrenUqRMeHh7MmzdP3ZuwcOFCzM3Nadq0KV27dqV9+/bUq1dP4xqBgYHY29vj7e1Njx49GDlyJNbW1urzCoWCXbt28eabbzJkyBBcXV3p27cv165dw8ZG85ff8yjsXgpTrVo1evToQadOnWjXrh21a9fWWCJ6+PDhfPfddwQGBuLh4YG3tzdr1qyhcuXKxY61Xr16/PLLL2zYsIFatWoxffp0Zs+ene+KZ8/LysqKNWvW8Ouvv1KjRg3mzZuHv79/sdtp0aIFv/76K9u2baNu3bq0atWK48ePq88HBgYycOBAJkyYgJubG926dePEiRM4Ojq+yNsRQpQRG36LZUvQLSa8X5lv/GqhUmrzydwIjZ4Xext9TE00B0fU9zDF1kqZ76pqLpUNqOFqRFUnA9Yvq8vmlfXUm1UF6ekVQuQlc3KKR5FTXhfHFvmaOXMmW7duJSwsrLRDea217F34O42EEEIIUbYc+CXvqrcvy6Dpt0qs7bWzy/ZL559FuenJEUIIIYQQorx6FV8Gev/+fQYMGICJiQlmZmYMGzZMvcjV0xw9epRWrVphaGiIiYkJb775JqmpqcW6tiQ55UzNmjU1ljb+97Z+/frSDk8IIYQQQrwmBgwYwN9//83evXvZsWMHhw4dUr83siBHjx6lQ4cOtGvXjuPHj3PixAl8fHw0XrVSFDJcrZy5du0aGRn5v4vBxsZG4/08ovTIcDUhhBDi1VOaw9XenXqzxNr+4XP7F95meHg4NWrU4MSJE+r3IQYFBdGpUyf++ecf9Sq//9W4cWPatm37TItH/Vu5WUJa5HJycirtEIQQQgghxAtWkgsEpKWlkZamuXx+fq/AKI6jR49iZmam8cL3Nm3aoKWlRWhoqPq1Lf8WFxdHaGgoAwYMoGnTpkRFRVG9enU+//xz3njjjWJdX4arCSGEEEII8Rrz8/PD1NRUY/Pz83uuNm/duqWxCjGAjo4OFhYW3LqV/yIKV65cAXIXyhoxYgRBQUHUq1eP1q1bExmZ/0uVCyJJjhBCCCGEEGVcSS48MGXKFBITEzW2KVOm5BvH5MmTUSgUT90uXrz4TPf4+B2V77//PkOGDMHT05NFixbh5ubG6tWri9WWDFcTohRkpqWXdghCCCGEEEDxhqZNmDCh0PcdVqlSBVtbW+Li4jSOZ2Zmcv/+ffUL6P/Lzs4OgBo1amgcd3d3JyYmpkjxPSZJjhBCCCGEEGVczv/3cpQ2KysrrKysCi3XpEkTEhISOHXqFPXr1wfgjz/+IDs7m0aN8l/AwdnZGXt7eyIiIjSOX7p0iY4dOxYrThmuJoQQQgghhHih3N3d6dChAyNGjOD48eOEhITg4+ND37591Sur3bhxg+rVq3P8+HEAFAoFEydOZOnSpWzcuJHLly8zbdo0Ll68yLBhw4p1fenJEUIIIYQQoozLLsHV1UrK+vXr8fHxoXXr1mhpadGzZ0+WLl2qPp+RkUFERAQPHz5UHxs7diyPHj1i3Lhx3L9/nzp16rB3716qVq1arGvLe3KEKAXN3/6ztEMQQgghRDH9+VvzUrt2H99rJdb2z/7l7xUkMlztNTd48GC6detW2mGUiv/ee4sWLRg7dmypxSOEEEIIUZCSXF2tPJLhakL8v82bN6Orq6ved3Z2ZuzYsZL4CCEY1t+Jrm1tMTLU5tzFJAK+vsw/sY8KLP/Ltw2ws9HPc3zzrpssWhEFwNLPPPD0MNM4vzUoloCvL7/Q2IUQ5UNJvgy0PJIkR4j/Z2FhUdohCCHKoP49KtGzsz1zl0QQe/sRwwY4EzCzFu/5nCI9I/8PHSN9w9D611iJyk6GLJ7twYGQuxrltv0ey6ofnwxBeZRWNlZPEkKIV50MV3tNbNy4EQ8PD1QqFZaWlrRp04aUlJQ85bKzs/Hz86Ny5cqoVCrq1KnDxo0bNcqcP3+ejh07YmRkhI2NDe+99x537z75xd2iRQt8fHzw8fHB1NSUChUqMG3atCJ3h8bFxdG1a1dUKhWVK1dm/fr1ODs7s3jxYgCio6NRKBSEhYWp6yQkJKBQKAgODgYgKyuLYcOGqe/Dzc2NJUuWPPW6/x6u1qJFC65du8a4cePUL7ZKSUnBxMQkz/PYunUrhoaGPHjwoEj3J4R4tfTuWpHvf43h8PH7RF17yOeLI7C0UNK8cYUC6yQkZXA/4cnW1MuCf2JTCTufqFHuUVq2RrmHqVklfTtCiFdUTnZOiW3lkSQ5r4HY2Fj69evH0KFDCQ8PJzg4mB49euSbdPj5+fH999/zzTff8PfffzNu3DjeffddDh48COQmE61atcLT05OTJ08SFBTE7du36d27t0Y7a9euRUdHh+PHj7NkyRIWLlzId999V6R4Bw8ezPXr1zlw4AAbN27kq6++yvMyqcJkZ2dTqVIlfv31Vy5cuMD06dP53//+xy+//FKk+ps3b6ZSpUrMnj2b2NhYYmNjMTQ0pG/fvgQGBmqUDQwM5J133sHY2LhYMQohyj47G30sLfQ4eTZBfSzlYRbhlx5Q061o/+d1dBS0a2HNrn2385xr523N9nWNWbu0Hu+/54xST34tCyHEiyDD1V4DsbGxZGZm0qNHD5ycclfP8PDwyFMuLS2NuXPnsm/fPpo0aQLkvrH28OHDrFixAm9vb5YvX46npydz585V11u9ejUODg5cunQJV1dXABwcHFi0aBEKhQI3NzfOnTvHokWLGDFixFNjvXTpErt37+b48eM0aNAAgFWrVuHu7l6se9bV1WXWrFnq/cqVK3P06FF++eWXPAlZfiwsLNDW1sbY2FjjrbzDhw+nadOmxMbGYmdnR1xcHLt27WLfvn0FtpWWlkZaWprGseysdLS09Yp1T0KIl8/SPHeeXnxCusbx+wnpWJgX7f9w80aWGBnqsOsPzSRn76E73L5znbv306nqbMiogZVxqKji03nhLyZ4IUS5kp0jw1mLQ74yeg3UqVOH1q1b4+HhQa9evVi5ciXx8fF5yl2+fJmHDx/Stm1bjIyM1Nv3339PVFTuRNmzZ89y4MABjfPVq1cHUJcBaNy4MQqFQr3fpEkTIiMjycp6+lCM8PBwdHR01G/GBahevTpmZmbFvu8vv/yS+vXrY2VlhZGREd9++y0xMTHFbuffGjZsSM2aNVm7di0AP/zwA05OTrz55psF1vHz88PU1FRjux75w3PFIYQoGW29rfh9Q1P1pqP9/L8mu7S1JfTUfe7d10yUtu+5xfEzCVy59pC9B+/w+eIIvJtUwN4274IFQgghikd6cl4D2tra7N27lyNHjrBnzx6WLVvG1KlTCQ0N1SiXnJwMwM6dO6lYsaLGOaVSqS7TtWtX5s+fn+c6dnZ2JXQHmrT+fzbvv4fbZWRkaJTZsGEDvr6+BAQE0KRJE4yNjfniiy/y3POzGD58OF9++SWTJ08mMDCQIUOGaCR0/zVlyhTGjx+vcaxj/xPPHYcQ4sU7fPw+FyJOq/d1dXN/3pib6XEv/snPGQszPSKvJhfano2Vkvq1zfh03oVCy164lDuvr5KdPjdvFbxymxDi9VRe586UFElyXhMKhYJmzZrRrFkzpk+fjpOTE1u2bNEoU6NGDZRKJTExMXh7e+fbTr169di0aRPOzs7o6BT8z+e/ycSxY8dwcXFBW1v7qXFWr16dzMxMTp06pR6uFhERQUJCgrqMlZUVkDsMz9PTE0BjEQKAkJAQmjZtyocffqg+9u+epqLQ09PLt+fp3XffZdKkSSxdupQLFy4waNCgp7ajVCrVSeJjMlRNiLIpNTWLG/+Z/H/vfjr1a5tx+WruYi0GKm3cXY3ZGhRbaHudWtuQkJjB0ZP3Cy3rUtlIfT0hhBDPR4arvQZCQ0OZO3cuJ0+eJCYmhs2bN3Pnzp0881yMjY3x9fVl3LhxrF27lqioKE6fPs2yZcvUw7M++ugj7t+/T79+/Thx4gRRUVH8/vvvDBkyRCMhiImJYfz48URERPDTTz+xbNkyxowZU2isbm5udOjQgffff5/Q0FBOnTrF8OHDUalU6jIqlYrGjRszb948wsPDOXjwIJ9++qlGOy4uLpw8eZLff/+dS5cuMW3aNE6cKF7vibOzM4cOHeLGjRsaq8eZm5vTo0cPJk6cSLt27ahUqVKx2hVCvFp+2X6DQb0daNbQgipOBnw61pV799P489iTnwuLZ3vQo5Nmb7ZCkZvk7D5wm6z/DKW3t9VnUG8HXKsaYWutpFlDC6aOdSXsfCJR1x6+jNsSQrxiZHW14pGenNeAiYkJhw4dYvHixSQlJeHk5ERAQAAdO3bk559/1ig7Z84crKys8PPz48qVK5iZmVGvXj3+97//AWBvb09ISAiffPIJ7dq1Iy0tDScnJzp06KAeRgYwcOBAUlNTadiwIdra2owZM4aRI0cWKd7AwECGDx+Ot7c3NjY2fPbZZ0ybNk2jzOrVqxk2bBj169fHzc2NBQsW0K5dO/X5999/nzNnztCnTx8UCgX9+vXjww8/ZPfu3UV+brNnz+b999+natWqpKWlaQyPGzZsGD/++CNDhw4tcntCiFfTj5v/QaWvzcQPXTAy1OFceCK+s/7WeEeOva0+pia6GvW86phha62f76pqmZnZeNUxp1fXiujraxN3N42DR++y9pfrJX4/QohXU1FfxSFyKXLkiYkXrEWLFtStW1f9XpsXwdnZmbFjx6rfY1Pa1q1bx7hx47h58yZ6esUfetb87T9LICohhBBClKQ/f2teatd++4OIEmv7t6/dSqzt0iI9OUIUw8OHD4mNjWXevHm8//77z5TgCCGEEEIUV3a2LCFdHDInR7xUf/75p8by0//dyroFCxZQvXp1bG1tmTJlSmmHI4QQQggh8iHD1cRLlZqayo0bNwo8X61atZcYTemR4WpCCCHEq6c0h6t1GVH4UvTPasfKGiXWdmmR4WripVKpVK9NIiOEEEIIIUqHJDlCCCGEEEKUcTk5MienOGROjhBCCCGEEKJckZ4cIUpBjqyQIoQQQohiKK8v7SwpkuQIIYQQQghRxkmSUzwyXE0IIYQQQghRrkhPjhBCCCGEEGVctiw8UCzSkyOEEEIIIYQoVyTJEc8tOjoahUJBWFiY+lhISAgeHh7o6urSrVu3UotNCCGEEKI8yMnOKbGtPJLhaqJEjB8/nrp167J7926MjIxK9FqDBw8mISGBrVu3luh1hBCvr2EDnOnazhZjQx3OhSfh/1Uk/8SmFlj+1+8aYWejn+f45p03WPjNZfV+TTcTRr7nTA03E7Kzc4i8ksz4GedIT5dhKUII8TwkyRElIioqilGjRlGpUqXSDkUIIZ7LgJ4OvNOlIp8vvkjs7UcMH+DMwtkevPvhCdIz8v8GdMT402j9a6xEFSdDFn9WhwOH76iP1XQzIWCWBz9sjGHxt5fJzMrBpbJRuf1WVQjxfOT1E8Ujw9WE2saNG/Hw8EClUmFpaUmbNm1ISUkB4LvvvsPd3R19fX2qV6/OV199lW8bj4eu3bt3j6FDh6JQKFizZk2h1z5//jwdO3bEyMgIGxsb3nvvPe7evVtobDNnzmTt2rX89ttvKBQKFAoFwcHBAFy/fp3evXtjZmaGhYUFb7/9NtHR0RrXfdp9Pb6XX375hebNm6NSqWjQoAGXLl3ixIkTeHl5YWRkRMeOHblz5w5CiPKp11sV+f6XaxwOvUdUdAqfLbqIpYWS5o0rFFgnISmD+wlPtqYNLPnnZipnzieqy4weXpWN22/ww8brXI15yPUbqfxx+A4ZmZLkCCHE85IkRwAQGxtLv379GDp0KOHh4QQHB9OjRw9ycnJYv34906dP5/PPPyc8PJy5c+cybdo01q5dm6cdBwcHYmNjMTExYfHixcTGxtKnT5+nXjshIYFWrVrh6enJyZMnCQoK4vbt2/Tu3bvQ2Hx9fenduzcdOnQgNjaW2NhYmjZtSkZGBu3bt8fY2Jg///yTkJAQjIyM6NChA+np6QBFvq8ZM2bw6aefcvr0aXR0dOjfvz+TJk1iyZIl/Pnnn1y+fJnp06e/oL8JIURZYm+jTwULJSfC4tXHUh5mceFSErWqmxSpDR0dBe1a2rBz3y31MTNTXWpWNyE+MZ2vF9Rl2/dNWOZXh9o1itamEOL1I3NyikeGqwkgN5HIzMykR48eODk5AeDh4QHkfsgPCAigR48eAFSuXJkLFy6wYsUKBg0apNGOtrY2tra2KBQKTE1NsbW1LfTay5cvx9PTk7lz56qPrV69GgcHBy5dukRycnKBsQGoVCrS0tI0rvXDDz+QnZ3Nd999h0KhACAwMBAzMzOCg4Np165dke/L19eX9u3bAzBmzBj69evH/v37adasGQDDhg0rUm+VEOLVY2GuB0B8QobG8fiEdPW5wrzZuAJGhjrs2v8kyalomztfZ2g/Z75cHUXk1RQ6tLJh8Wd1GPjRyafO9xFCCFE4SXIEAHXq1KF169Z4eHjQvn172rVrxzvvvIOenh5RUVEMGzaMESNGqMtnZmZiamr6Qq599uxZDhw4kO8CBVFRUbRr1y7f2MzNzZ/a5uXLlzE2NtY4/ujRI6KiokhJSSnyfdWuXVv9ZxsbG0AzybKxsSEuLq7AWNLS0khLS9M4lp2VjpZ20T4gCSFenrbe1kz8yFW9P2n2uedus3NbW0JP3efe/XT1scdfvvwWFMuu/bcBiLySTP3aZnRua8uK768+93WFEOVLjrwnp1gkyRFAbg/M3r17OXLkCHv27GHZsmVMnTqV7du3A7By5UoaNWqUp86LkJycTNeuXZk/f36ec3Z2dgXGFhoaSuXKlQtss379+qxfvz7POSsrK5KTk4Gi3Zeurq76z48/mPz3WPZTJgP6+fkxa9YsjWMOLoNwdBtSYB0hROk4fPweFy6dVO/r6eaO6jY30+Ve/JMkxdxMj8tXkgttz8ZKiVcdc6b6/a1x/HFb0ddTNI5f++chNlbKZ45fCFF+ZZfTYWUlRZIcoaZQKGjWrBnNmjVj+vTpODk5ERISgr29PVeuXGHAgAElct169eqxadMmnJ2d0dHJ/59kfrFt2bKF8ePHo6enR1ZWVp42f/75Z6ytrTExyTvG3dTUtMTv67EpU6Ywfvx4jWMd+oaW6DWFEM8mNTWLG6maP0/u3k/Dq445l6/mJiQGKm1quJqwddfNQtvr3MaW+MR0jp64p3E89vYj7txLw7GigcZxB3sVx07FI4QQ4vlIkiMACA0NZf/+/bRr1w5ra2tCQ0O5c+cO7u7uzJo1i9GjBOR6LAAACcRJREFUR2NqakqHDh1IS0vj5MmTxMfH5/nw/iw++ugjVq5cSb9+/Zg0aRIWFhZcvnyZDRs28N1333Hy5MkCYwNwdnbm999/JyIiAktLS0xNTRkwYABffPEFb7/9NrNnz6ZSpUpcu3aNzZs3M2nSJCpVqlTi9/WYUqlEqdT8ZlaGqgnx6vh12w0G9XHk+s3U3CWk33Xm3v00/jz2ZAXIxZ/V5tDRu2ze+STxUSigUxtbgv64TVY+nb0/br7OsP7OXL6aTOTVZDq2ssWpkgGfzrvwMm5LCPGKkSWki0eSHAGAiYkJhw4dYvHixSQlJeHk5ERAQAAdO3YEwMDAgC+++IKJEydiaGiIh4cHY8eOfSHXtre3JyQkhE8++YR27dqRlpaGk5MTHTp0QEtLq9DYRowYQXBwMF5eXiQnJ3PgwAFatGjBoUOH+OSTT+jRowcPHjygYsWKtG7dWt2zM3z48BK9LyFE+bB+03X09bWZ5OOKkaEO5y4kMmHGOY135FS0VWFmoqtRz6uuObbW+uzce+u/TQK5yZNST4uPh1fFxFiXy1eTGTf9L27eelSi9yOEEK8DRU5OjgzwE+Ile6PrwdIOQQghhBDFdHi7d6ld27vHkRJr++DmpiXWdmmR9+QIIYQQQgghyhVJckSJGzVqFEZGRvluo0aNKu3whBBCCCHKvJyc7BLbyiOZkyNK3OzZs/H19c33XH4rnwkhhBBCCPE8JMkRJc7a2hpra+vSDkMIIYQQ4pWVI+/JKRZJcoQQQgghhCjjZAnp4pE5OUIIIYQQQohyRZaQFkIIIV6QtLQ0/Pz8mDJlSp6XAAshhHh5JMkRQgghXpCkpCRMTU1JTEyUhVWEEKIUyXA1IYQQQgghRLkiSY4QQgghhBCiXJEkRwghhBBCCFGuSJIjhBBCvCBKpZIZM2bIogNCCFHKZOEBIYQQQgghRLkiPTlCCCGEEEKIckWSHCGEEEIIIUS5IkmOEEIIIYQQolyRJEcIIYR4iZydnVm8ePFLvWaLFi0YO3bsS72mEEKUJklyhBBClBuDBw+mW7dupR2GEEKIUiZJjhBCiNdORkZGaYcghBCiBEmSI4QQ4pWzceNGPDw8UKlUWFpa0qZNGyZOnMjatWv57bffUCgUKBQKgoODiY6ORqFQ8PPPP+Pt7Y2+vj7r168H4LvvvsPd3R19fX2qV6/OV199pb5Geno6Pj4+2NnZoa+vj5OTE35+fgDk5OQwc+ZMHB0dUSqV2NvbM3r06Ge6l4SEBIYPH46VlRUmJia0atWKs2fPAnDp0iUUCgUXL17UqLNo0SKqVq2q3j9//jwdO3bEyMgIGxsb3nvvPe7evftM8QghRHmgU9oBCCGEEMURGxtLv379WLBgAd27d+fBgwf8+eefDBw4kJiYGJKSkggMDATAwsKCmzdvAjB58mQCAgLw9PRUJzrTp09n+fLleHp6cubMGUaMGIGhoSGDBg1i6dKlbNu2jV9++QVHR0euX7/O9evXAdi0aROLFi1iw4YN1KxZk1u3bqkTk+Lq1asXKpWK3bt3Y2pqyooVK2jdujWXLl3C1dUVLy8v1q9fz5w5c9R11q9fT//+/YHcJKlVq1YMHz6cRYsWkZqayieffELv3r35448/nudRCyHEK0uSHCGEEK+U2NhYMjMz6dGjB05OTgB4eHgAoFKpSEtLw9bWNk+9sWPH0qNHD/X+jBkzCAgIUB+rXLkyFy5cYMWKFQwaNIiYmBhcXFx44403UCgU6msBxMTEYGtrS5s2bdDV1cXR0ZGGDRsW+14OHz7M8ePHiYuLQ6lUAuDv78/WrVvZuHEjI0eOZMCAASxfvlyd5Fy6dIlTp07xww8/AKiTtLlz56rbXb16NQ4ODupESQghXjcyXE0IIcQr5f/auZeQtpY4juPfRC34DgZqEpCIiNVFEEPEFqFgFYmLgBWfuBLtIgoigroQhEIXrdIidJkiXYiID1yUKj6KLxQDLlq6Ep8bpSBUkIgKBu+iNJAr3loovRh/HzhwYGb+zKwOvzNzTm5uLsXFxTgcDqqqqvD5fBwdHf1ynMvlCt2fnJywvb1NY2MjCQkJoevFixdsb28DP35i8PnzZx48eEBrayszMzOh8VVVVZyenpKRkcGzZ8+YmJjg4uLit9fy5csXAoEAZrM5bB67u7uhedTW1rK3t8fa2hrwYxfH6XSSnZ0dqjE/Px82/mfbzxoiIneNdnJERORWiYqKYnZ2ltXVVWZmZnj79i3d3d34/f7/HBcfHx+6DwQCAPh8PgoKCq7UB3A6nezu7jI1NcXc3BzV1dWUlJQwNjZGWloaGxsbzM3NMTs7S3NzM319fSwuLhITE3PjtQQCAaxWKwsLC1faTCYTABaLhSdPnjA0NMTDhw8ZGhrC6/WG1fB4PLx69epKDavVeuO5iIhEEoUcERG5dQwGA4WFhRQWFtLT04PdbmdiYoJ79+4RDAZ/OT41NRWbzcbOzg719fXX9ktKSqKmpoaamhoqKytxu918//6dlJQUYmNj8Xg8eDweWlpayM7O5uvXrzidzhuvw+l08u3bN6Kjo0lPT7+2X319PZ2dndTV1bGzs0NtbW1YjfHxcdLT04mO1mNdRAQUckRE5Jbx+/18+vSJ0tJS7t+/j9/v5/DwkJycHM7OzpienmZjYwOz2UxycvK1dZ4/f05rayvJycm43W7Oz89ZX1/n6OiI9vZ23rx5g9VqJS8vD6PRyOjoKBaLBZPJxPv37wkGgxQUFBAXF8fg4CCxsbFh3+3cRElJCY8ePaK8vJze3l6ysrI4ODjg48ePPH36NHTErqKiAq/Xi9frpaioCJvNFqrR0tKCz+ejrq6Ozs5OUlJS2NraYnh4mHfv3oV2pkRE7hKFHBERuVWSkpJYWlqiv7+f4+Nj7HY7r1+/pqysDJfLxcLCAi6Xi0AgwPz8/LU7JE1NTcTFxdHX10dHRwfx8fE4HA7a2toASExMpLe3l83NTaKiosjPz2dychKj0YjJZOLly5e0t7cTDAZxOBx8+PABs9n8W2sxGAxMTk7S3d1NQ0MDh4eHWCwWHj9+TGpqaqhfYmIiHo+HkZERBgYGwmrYbDZWVlbo6uqitLSU8/Nz7HY7brcbo1Gf3orI3WS4vLy8/L8nISIiIiIi8qfoFY+IiIiIiEQUhRwREZE/ZHl5OexXzv++RETk79BxNRERkT/k9PSU/f39a9szMzP/4mxERO4uhRwREREREYkoOq4mIiIiIiIRRSFHREREREQiikKOiIiIiIhEFIUcERERERGJKAo5IiIiIiISURRyREREREQkoijkiIiIiIhIRFHIERERERGRiPIP3IhDpd4qioIAAAAASUVORK5CYII=\n"},"metadata":{}}],"source":["\n","df_minmax_corr=df_minmax.corr()\n","df_minmax_corr=df_minmax_corr['stress_level'].sort_values(ascending=False)\n","df_minmax_corr=df_minmax_corr.drop('stress_level')\n","plt.figure(figsize=(8,6))\n","sns.heatmap(df_minmax_corr.to_frame(),annot=True,cmap='coolwarm')\n","plt.title('Stress Level Correlation of Features after minmax Scaling')\n","plt.show()"]},{"cell_type":"code","execution_count":null,"metadata":{"id":"cIib4EpuaftE"},"outputs":[],"source":[]},{"cell_type":"markdown","metadata":{"id":"Ed0qgUJOWFa6"},"source":["## Data based on different Stress Level Amounts"]},{"cell_type":"code","execution_count":28,"metadata":{"colab":{"base_uri":"https://localhost:8080/"},"executionInfo":{"elapsed":153,"status":"ok","timestamp":1716216918858,"user":{"displayName":"Daniel Meier","userId":"06365571306976914087"},"user_tz":300},"id":"2vHmwpiYa_N0","outputId":"81ab7aaf-63aa-4757-ab20-a53fbb2b842b"},"outputs":[{"output_type":"stream","name":"stdout","text":["Unique values now in Standardized Scaling Stress Level [ 0.00442758 1.22201077 -1.21315562]\n","Unique values now in Standardized Scaling Mental Health History [-0.98555881 1.0146528 ]\n","Unique values now in Standardized Scaling Blood Pressure [-1.41841629 0.98198051 -0.21821789]\n"]}],"source":["print('Unique values now in Standardized Scaling Stress Level',df_scaled['stress_level'].unique())\n","print('Unique values now in Standardized Scaling Mental Health History',df_scaled['mental_health_history'].unique())\n","print('Unique values now in Standardized Scaling Blood Pressure',df_scaled['blood_pressure'].unique())"]},{"cell_type":"code","execution_count":29,"metadata":{"id":"USOJtZfpWNV6","executionInfo":{"status":"ok","timestamp":1716216920003,"user_tz":300,"elapsed":2,"user":{"displayName":"Daniel Meier","userId":"06365571306976914087"}}},"outputs":[],"source":["high_stress=df_scaled.loc[df_scaled['stress_level']>1]\n","some_stress=df_scaled.loc[(df_scaled['stress_level']>0)&(df_scaled['stress_level']<1)]\n","no_stress=df_scaled.loc[df_scaled['stress_level']<1]\n"]},{"cell_type":"code","execution_count":30,"metadata":{"id":"WEw7lCd8R2JJ","executionInfo":{"status":"ok","timestamp":1716216920898,"user_tz":300,"elapsed":2,"user":{"displayName":"Daniel Meier","userId":"06365571306976914087"}}},"outputs":[],"source":["mm_high_stress=df_minmax.loc[df_minmax['stress_level']>1]\n","mm_some_stress=df_minmax.loc[(df_minmax['stress_level']>=0)&(df_scaled['stress_level']<1)]\n","mm_no_stress=df_minmax.loc[df_scaled['stress_level']<1]"]},{"cell_type":"code","execution_count":31,"metadata":{"colab":{"base_uri":"https://localhost:8080/","height":350},"executionInfo":{"elapsed":166,"status":"ok","timestamp":1716216921933,"user":{"displayName":"Daniel Meier","userId":"06365571306976914087"},"user_tz":300},"id":"-2Ool63gWqKk","outputId":"152d5034-caf2-4966-f57a-1d4d686a1fe6"},"outputs":[{"output_type":"execute_result","data":{"text/plain":[" anxiety_level self_esteem mental_health_history depression \\\n","count 1100.000000 1100.000000 1100.000000 1100.000000 \n","mean 0.368818 0.595372 0.016636 0.413715 \n","std 0.193923 0.287024 0.017503 0.231995 \n","min 0.000000 0.000000 0.000000 0.000000 \n","25% 0.208850 0.346908 0.000000 0.212121 \n","50% 0.406671 0.697734 0.000000 0.429681 \n","75% 0.520191 0.867775 0.032564 0.616495 \n","max 0.887412 0.936586 0.084215 0.910687 \n","\n"," headache blood_pressure sleep_quality breathing_problem \\\n","count 1100.000000 1100.000000 1100.000000 1100.000000 \n","mean 0.085220 0.074124 0.091818 0.093461 \n","std 0.050624 0.033184 0.057268 0.050210 \n","min 0.000000 0.030443 0.000000 0.000000 \n","25% 0.034214 0.040681 0.033168 0.062638 \n","50% 0.084265 0.069254 0.087918 0.084854 \n","75% 0.116916 0.092981 0.133780 0.133921 \n","max 0.422577 0.253546 0.404226 0.421076 \n","\n"," noise_level living_conditions ... basic_needs academic_performance \\\n","count 1100.000000 1100.000000 ... 1100.000000 1100.000000 \n","mean 0.089740 0.086223 ... 0.094540 0.094597 \n","std 0.047104 0.041966 ... 0.051401 0.049713 \n","min 0.000000 0.000000 ... 0.000000 0.000000 \n","25% 0.062676 0.060132 ... 0.059990 0.060071 \n","50% 0.086512 0.089146 ... 0.086347 0.086027 \n","75% 0.117714 0.114582 ... 0.131769 0.132110 \n","max 0.336861 0.308901 ... 0.359908 0.304290 \n","\n"," study_load teacher_student_relationship future_career_concerns \\\n","count 1100.000000 1100.000000 1100.000000 \n","mean 0.088578 0.090413 0.089651 \n","std 0.046101 0.048203 0.052697 \n","min 0.000000 0.000000 0.000000 \n","25% 0.062862 0.057771 0.034401 \n","50% 0.082990 0.079030 0.086146 \n","75% 0.115984 0.128515 0.127057 \n","max 0.404226 0.242536 0.384615 \n","\n"," social_support peer_pressure extracurricular_activities bullying \\\n","count 1100.000000 1100.000000 1100.000000 1100.000000 \n","mean 0.064001 0.091839 0.093612 0.088320 \n","std 0.036473 0.048255 0.049483 0.052311 \n","min 0.000000 0.000000 0.000000 0.000000 \n","25% 0.030861 0.062363 0.062885 0.034085 \n","50% 0.069779 0.081541 0.087289 0.094333 \n","75% 0.098110 0.123886 0.126887 0.125801 \n","max 0.129701 0.337869 0.336861 0.338062 \n","\n"," stress_level \n","count 1100.000000 \n","mean 0.034006 \n","std 0.028911 \n","min 0.000000 \n","25% 0.000000 \n","50% 0.035817 \n","75% 0.058489 \n","max 0.169031 \n","\n","[8 rows x 21 columns]"],"text/html":["\n","
\n","
\n","\n","\n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n","
anxiety_levelself_esteemmental_health_historydepressionheadacheblood_pressuresleep_qualitybreathing_problemnoise_levelliving_conditions...basic_needsacademic_performancestudy_loadteacher_student_relationshipfuture_career_concernssocial_supportpeer_pressureextracurricular_activitiesbullyingstress_level
count1100.0000001100.0000001100.0000001100.0000001100.0000001100.0000001100.0000001100.0000001100.0000001100.000000...1100.0000001100.0000001100.0000001100.0000001100.0000001100.0000001100.0000001100.0000001100.0000001100.000000
mean0.3688180.5953720.0166360.4137150.0852200.0741240.0918180.0934610.0897400.086223...0.0945400.0945970.0885780.0904130.0896510.0640010.0918390.0936120.0883200.034006
std0.1939230.2870240.0175030.2319950.0506240.0331840.0572680.0502100.0471040.041966...0.0514010.0497130.0461010.0482030.0526970.0364730.0482550.0494830.0523110.028911
min0.0000000.0000000.0000000.0000000.0000000.0304430.0000000.0000000.0000000.000000...0.0000000.0000000.0000000.0000000.0000000.0000000.0000000.0000000.0000000.000000
25%0.2088500.3469080.0000000.2121210.0342140.0406810.0331680.0626380.0626760.060132...0.0599900.0600710.0628620.0577710.0344010.0308610.0623630.0628850.0340850.000000
50%0.4066710.6977340.0000000.4296810.0842650.0692540.0879180.0848540.0865120.089146...0.0863470.0860270.0829900.0790300.0861460.0697790.0815410.0872890.0943330.035817
75%0.5201910.8677750.0325640.6164950.1169160.0929810.1337800.1339210.1177140.114582...0.1317690.1321100.1159840.1285150.1270570.0981100.1238860.1268870.1258010.058489
max0.8874120.9365860.0842150.9106870.4225770.2535460.4042260.4210760.3368610.308901...0.3599080.3042900.4042260.2425360.3846150.1297010.3378690.3368610.3380620.169031
\n","

8 rows × 21 columns

\n","
\n","
\n","\n","
\n"," \n","\n"," \n","\n"," \n","
\n","\n","\n","
\n"," \n","\n","\n","\n"," \n","
\n","\n","
\n","
\n"],"application/vnd.google.colaboratory.intrinsic+json":{"type":"dataframe"}},"metadata":{},"execution_count":31}],"source":["df_norm.describe()\n"]},{"cell_type":"code","execution_count":32,"metadata":{"colab":{"base_uri":"https://localhost:8080/","height":350},"executionInfo":{"elapsed":454,"status":"ok","timestamp":1716216924884,"user":{"displayName":"Daniel Meier","userId":"06365571306976914087"},"user_tz":300},"id":"ZkOTZiXFROXJ","outputId":"a3667854-3404-4597-aee1-6438cdb62195"},"outputs":[{"output_type":"execute_result","data":{"text/plain":[" anxiety_level self_esteem mental_health_history depression \\\n","count 1100.000000 1100.000000 1100.000000 1100.000000 \n","mean 0.107359 0.370303 -0.029091 -0.139933 \n","std 1.165249 1.192613 2.000698 1.144742 \n","min -2.000000 -2.000000 -2.000000 -2.000000 \n","25% -0.857143 -0.533333 -2.000000 -1.111111 \n","50% 0.095238 0.533333 -2.000000 -0.222222 \n","75% 1.047619 1.466667 2.000000 0.814815 \n","max 2.000000 2.000000 2.000000 2.000000 \n","\n"," headache blood_pressure sleep_quality breathing_problem \\\n","count 1100.000000 1100.000000 1.100000e+03 1100.000000 \n","mean 0.006545 0.363636 1.280000e-01 0.202909 \n","std 1.127485 1.667149 1.238706e+00 1.120571 \n","min -2.000000 -2.000000 -2.000000e+00 -2.000000 \n","25% -1.200000 -2.000000 -1.200000e+00 -0.400000 \n","50% 0.400000 0.000000 2.220446e-16 0.400000 \n","75% 0.400000 2.000000 1.200000e+00 1.200000 \n","max 2.000000 2.000000 2.000000e+00 2.000000 \n","\n"," noise_level living_conditions ... basic_needs academic_performance \\\n","count 1100.000000 1100.000000 ... 1100.000000 1100.000000 \n","mean 0.119273 0.014545 ... 0.218182 0.218182 \n","std 1.062501 0.895366 ... 1.147009 1.131675 \n","min -2.000000 -2.000000 ... -2.000000 -2.000000 \n","25% -0.400000 -0.400000 ... -0.400000 -0.400000 \n","50% 0.400000 -0.400000 ... 0.400000 -0.400000 \n","75% 0.400000 0.400000 ... 1.200000 1.200000 \n","max 2.000000 2.000000 ... 2.000000 2.000000 \n","\n"," study_load teacher_student_relationship future_career_concerns \\\n","count 1100.000000 1100.000000 1100.000000 \n","mean 0.097455 0.118545 0.119273 \n","std 1.052625 1.107663 1.223500 \n","min -2.000000 -2.000000 -2.000000 \n","25% -0.400000 -0.400000 -1.200000 \n","50% -0.400000 -0.400000 -0.400000 \n","75% 0.400000 1.200000 1.200000 \n","max 2.000000 2.000000 2.000000 \n","\n"," social_support peer_pressure extracurricular_activities bullying \\\n","count 1100.000000 1100.000000 1.100000e+03 1100.000000 \n","mean 0.509091 0.187636 2.138182e-01 0.093818 \n","std 1.397102 1.140212 1.134050e+00 1.224766 \n","min -2.000000 -2.000000 -2.000000e+00 -2.000000 \n","25% -0.666667 -0.400000 -4.000000e-01 -1.200000 \n","50% 0.666667 -0.400000 2.220446e-16 0.400000 \n","75% 2.000000 1.200000 1.200000e+00 1.200000 \n","max 2.000000 2.000000 2.000000e+00 2.000000 \n","\n"," stress_level \n","count 1100.000000 \n","mean -0.007273 \n","std 1.643345 \n","min -2.000000 \n","25% -2.000000 \n","50% 0.000000 \n","75% 2.000000 \n","max 2.000000 \n","\n","[8 rows x 21 columns]"],"text/html":["\n","
\n","
\n","\n","\n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n","
anxiety_levelself_esteemmental_health_historydepressionheadacheblood_pressuresleep_qualitybreathing_problemnoise_levelliving_conditions...basic_needsacademic_performancestudy_loadteacher_student_relationshipfuture_career_concernssocial_supportpeer_pressureextracurricular_activitiesbullyingstress_level
count1100.0000001100.0000001100.0000001100.0000001100.0000001100.0000001.100000e+031100.0000001100.0000001100.000000...1100.0000001100.0000001100.0000001100.0000001100.0000001100.0000001100.0000001.100000e+031100.0000001100.000000
mean0.1073590.370303-0.029091-0.1399330.0065450.3636361.280000e-010.2029090.1192730.014545...0.2181820.2181820.0974550.1185450.1192730.5090910.1876362.138182e-010.093818-0.007273
std1.1652491.1926132.0006981.1447421.1274851.6671491.238706e+001.1205711.0625010.895366...1.1470091.1316751.0526251.1076631.2235001.3971021.1402121.134050e+001.2247661.643345
min-2.000000-2.000000-2.000000-2.000000-2.000000-2.000000-2.000000e+00-2.000000-2.000000-2.000000...-2.000000-2.000000-2.000000-2.000000-2.000000-2.000000-2.000000-2.000000e+00-2.000000-2.000000
25%-0.857143-0.533333-2.000000-1.111111-1.200000-2.000000-1.200000e+00-0.400000-0.400000-0.400000...-0.400000-0.400000-0.400000-0.400000-1.200000-0.666667-0.400000-4.000000e-01-1.200000-2.000000
50%0.0952380.533333-2.000000-0.2222220.4000000.0000002.220446e-160.4000000.400000-0.400000...0.400000-0.400000-0.400000-0.400000-0.4000000.666667-0.4000002.220446e-160.4000000.000000
75%1.0476191.4666672.0000000.8148150.4000002.0000001.200000e+001.2000000.4000000.400000...1.2000001.2000000.4000001.2000001.2000002.0000001.2000001.200000e+001.2000002.000000
max2.0000002.0000002.0000002.0000002.0000002.0000002.000000e+002.0000002.0000002.000000...2.0000002.0000002.0000002.0000002.0000002.0000002.0000002.000000e+002.0000002.000000
\n","

8 rows × 21 columns

\n","
\n","
\n","\n","
\n"," \n","\n"," \n","\n"," \n","
\n","\n","\n","
\n"," \n","\n","\n","\n"," \n","
\n","\n","
\n","
\n"],"application/vnd.google.colaboratory.intrinsic+json":{"type":"dataframe"}},"metadata":{},"execution_count":32}],"source":["df_minmax.describe()"]},{"cell_type":"code","execution_count":null,"metadata":{"id":"fsAZvg_nRWUe"},"outputs":[],"source":[]},{"cell_type":"markdown","metadata":{"id":"vYSpOg38WP4Y"},"source":["### Three different Levels:\n","- 0 = No Stress Level Reported\n","- 1 = Some Stress Level Reported\n","- 2 - High Stress Level Reported\n","\n","#### Singled out the different levels reported and then looked at the average for each column."]},{"cell_type":"markdown","metadata":{"id":"Lz6Goj0jW246"},"source":["### Stress Level 2"]},{"cell_type":"code","execution_count":33,"metadata":{"id":"zL5ERKAZx_h5","executionInfo":{"status":"ok","timestamp":1716216928305,"user_tz":300,"elapsed":167,"user":{"displayName":"Daniel Meier","userId":"06365571306976914087"}}},"outputs":[],"source":["H_stress_mean=high_stress.mean()\n","H_stress_min=high_stress.min()\n","H_stress_max=high_stress.max"]},{"cell_type":"code","execution_count":35,"metadata":{"colab":{"base_uri":"https://localhost:8080/","height":430},"executionInfo":{"elapsed":1940,"status":"ok","timestamp":1716216936361,"user":{"displayName":"Daniel Meier","userId":"06365571306976914087"},"user_tz":300},"id":"tpI4bdP9WPqL","outputId":"4b0a739f-30ea-4435-e185-32070e922487"},"outputs":[{"output_type":"display_data","data":{"text/plain":["
"],"image/png":"iVBORw0KGgoAAAANSUhEUgAAAtcAAAGdCAYAAADZpV/KAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAADKRElEQVR4nOzdeVxUZdvA8d8w7CDggluiuADigktqKo9KikIqJZqaWYriLqnhllmIS+KG4FJpmqhp2WJq7luumLgUpGEYpuKTGpYCojgwy/sHj/M2sQgKDMv1/Xwmm5lz7nPdB5i5zn2ucx+FTqfTIYQQQgghhHhmJsYOQAghhBBCiPJCkmshhBBCCCGKiCTXQgghhBBCFBFJroUQQgghhCgiklwLIYQQQghRRCS5FkIIIYQQoohIci2EEEIIIUQRkeRaCCGEEEKIImJq7ACEqGi0Wi03b96kUqVKKBQKY4cjhBBCiALQ6XTcv3+f2rVrY2KS9/i0JNdClLCbN2/i5ORk7DCEEEII8RRu3LhBnTp18nxfkmshSlilSpWA7D9OOzs7I0cjhBBFT6PRMGDAADIyMowditFZWVnx1VdfoVQqjR2KeEZpaWk4OTnpv8fzIsm1ECXscSmInZ2dJNdCiHJJrVaTlZXFpm6volSU3cu7bj28z7QzB1nUrju1rPNPqHKj0WkJOLadSpUqYWoqKVd58aSSzrL7Gy9KlWvXrqFQKIiNjTVqHAqFgu3bt5foNp2dnYmMjCzRbQohRFmgVJhgalJ2H48PDJ62H2X5wEI8PTmMEkXCycmJW7duUa1atQKv4+XlRcuWLSUxrYDu3r3Ljh07+O9//4upqSmtW7emW7duMrIjxP9oNBp0Op2xw3hqarXa2CGUKsbeHwqFQspSSpB8k4kioVQqqVmzprHDEGXAxYsX2bBhAzqdDktLSx48eMDBgwc5ffo0M2bMwNzc3NghCmFUGo0Gv969eSj1ymWeVqfDRKHA19fXqHFYW1mxc9cuSbBLiCTXFcS+ffuYN28eFy9eRKlU0qFDB5YtW0bDhg25du0a9evXZ+vWraxYsYKYmBhcXFxYtWoVHTp0AGD48OGcO3eOs2fPYmFhQWZmJi+88ALNmzdn48aN+jZ++uknWrZsCWQnUVOnTuXEiRPY2NjQo0cPIiIiqFatGgEBARw7doxjx46xbNkyAH7//Xe6d+/OmDFjmDJlij722NhYWrVqxW+//UajRo0K1e8bN24wefJkDhw4gImJCZ06dWLZsmU4Oztz4MABXn75ZW7fvo2Dg4N+nYkTJ3LhwgW+//57AE6ePMmMGTM4d+4c1apVw9/fn7CwMGxsbJ7hJ1IxabVaNm3ahImJCePHj6du3bpotVr27dvH999/z8aNGxkxYoSxw6ywyvpoaXmhVqt5mJHBxv7DUeYz3VdpplKrGb51vbHDMDqtTodWpzPqz1Kj1TLk63Xyt12CJLmuIB48eEBwcDAeHh6kp6cTEhKCv7+/QY30zJkzWbJkCS4uLsycOZNBgwaRmJiIqakpy5cvp0WLFrzzzjtEREQwc+ZMUlJSWLlyZa7bS0lJoWvXrowYMYKIiAgyMjKYPn06AwYM4Pvvv2fZsmVcvnyZZs2aMWfOHAAcHR0ZPnw4UVFRBsl1VFQUnTt3LnRinZWVhY+PDx06dODEiROYmpoyb948fH19+fnnn+nWrRsODg5s3bqVwMBAIDu5+PLLL/nggw8AuHLlCr6+vsybN49169Zx584dgoKCCAoKIioqqkBxqFQqVCqV/nlaWlqh+lGenD9/HrVazUsvvUTdunUBMDExoWfPnsTGxnL58uVCt1kSCaFWq813TtPyQKPR4N+nj4yWliJKExNMTcrmSKPaRGvsEEoVY/4stdrsn4VGo5HSuxIie7mC6Nevn8HzdevW4ejoSHx8PLa2tgBMmTKFXr16ATB79myaNm1KYmIijRs3xtbWlk2bNtGlSxcqVapEZGQkR44cyXO2i5UrV9KqVSvmz59vsE0nJycuX76Mq6sr5ubmWFtbG5STBAQEEBISwpkzZ2jXrh1ZWVl8/vnnLFmypNB9/vLLL9Fqtaxdu1Z/ZW9UVBQODg4cPXqUHj168Nprr/H555/rk+vDhw+TkpKi319hYWEMHjyYSZMmAeDi4sLy5cvp0qULH3/8MZaWlk+MIywsjNmzZxc6/vLo1q1bALRo0SLHe05OTty9e7dQ7Wk0Gvz8/Hj48GGRxJcXExMT/RdUebdpVHCZHS0tL1TqLALWLjN2GKKcyNRm13urVCosLCyMHE3FIJ+gFcRvv/3GoEGDaNCgAXZ2djg7OwOQlJSkX8bDw0P//7Vq1QIgOTlZ/1qHDh2YMmUKc+fOZfLkyfznP//Jc3txcXEcOXIEW1tb/aNx48ZA9mhwXmrXrk2vXr1Yt24dADt37kSlUtG/f/9C9zkuLo7ExEQqVaqkj6FKlSo8evRIH8PgwYM5evQoN2/eBGDz5s306tVLXyYSFxfH+vXrDfrh4+ODVqvl6tWrBYpjxowZpKam6h83btwodF/Ki8eT7v/444853ktKSpJ6QCGEEGWejFxXEH5+ftSrV481a9ZQu3ZttFotzZo1IzMzU7+MmZmZ/v8fj/T+c7ROq9USHR2NUqkkMTEx3+2lp6fj5+fHwoULc7z3OHHPy4gRI3jzzTeJiIggKiqKgQMHYm1tXaB+/juG559/ns2bN+d4z9HREYC2bdvSsGFDtmzZwtixY9m2bRvr1683aGP06NFMmDAhRxuPyxqexMLCQkYL/qdly5Z88803HDp0iHr16uHm5oZWq2Xbtm3cu3ePpk2bFqo9pVLJzp07pSykCDwuC3njk6XGDkUIUYTMTbJTPfkeKjmSXFcAf//9NwkJCaxZs4ZOnToB2RfpFdbixYv59ddfOXbsGD4+PkRFRTFs2LBcl23dujVbt27F2dk5zxovc3NzNBpNjtd79uyJjY0NH3/8Mfv27eP48eOFjvVxDF9++SXVq1fP92YtgwcPZvPmzdSpUwcTExN9aczjNuLj4wtd7y1yZ2JiwrBhw1izZg1r1qzB3NwctVqNVqvFwcGBwYMHF7pNGe0uGqampuzctUsueioF1Go1vr6+aMpwKVJZjr04GHN/PP6Lls/KkiPJdQVQuXJlqlatyieffEKtWrVISkrinXfeKVQbP/30EyEhIXzzzTd4enqydOlSJk6cSJcuXWjQoEGO5cePH8+aNWsYNGgQ06ZNo0qVKiQmJrJlyxbWrl2LUqnE2dmZmJgYrl27pi/ZMDExQalUEhAQwIwZM3BxcdHPWFJYgwcPZvHixbzyyivMmTOHOnXqcP36db799lumTZumL1EYPHgwoaGhfPDBB7z66qsGR/fTp0+nffv2BAUFMWLECGxsbIiPj+fgwYN5Xswp8ufi4sL777/Prl27uHbtGmZmZrzwwgt4enqW+9Hh0k6+fEsHhUKBtZUVQ75eZ+xQxDMyUSgwUSiM/rO0trJ64l0FRdGR5LoCMDExYcuWLUyYMIFmzZrh5ubG8uXL8fLyKtD6jx494o033iAgIAA/Pz8ARo0axe7du3nzzTdzHVmuXbs20dHRTJ8+nR49eqBSqahXrx6+vr76BGrKlCkMHTqUJk2akJGRwdWrV/W14IGBgcyfPz/PkfGCsLa25vjx40yfPp2+ffty//59nnvuObp162Ywkt2oUSPatWvHmTNnctzQxsPDg2PHjjFz5kw6deqETqejYcOGDBw48KnjElCpUiUGDRpk7DCEKJWUSmWZP4vwePS9ojNRKNDqdOzbt8+oM3XITWRKlkJXlv96Rbl14sQJunXrxo0bN6hRo4axwylSaWlp2Nvbk5qamm+5ihBClFVqtRpvb28+8+qLaRk+I3XzwX0mx+wn/AUfattUKvT6aq2WN49+y6FDh2QavHKgoN/f8pMWpYpKpeLOnTuEhobSv3//cpdYCyFERaLRaaEMl19rdFr9v+qnqJt+vL6oWCS5FqXKF198QWBgIC1btmTjxo0G723evJnRo0fnul69evX45ZdfSiJEIYQQT/C4bjzg2HZjh1Ikpp05+NTrSr1zxSNlIaLMuH//Pn/++Weu75mZmVGvXr0SjujpSFmIEKIiKIm7p5YFUu9cfkhZiCh3KlWqRKVKha95E+Ix+bIvfSTxKL/k5yoqKkmuhRAVgkajwa93Lx5mPDJ2KOIfrK0s2blrtyRiQohyQ5JrIUSFoNPpeJjxiE+7uKEsI/WPtx6qmHHmKmHt6lPLuvzdXU2j0xF4LEHOJgghypWyOz+OKDWuXbuGQqEgNjZW/1p0dDTNmzfHzMyMPn36GC02If5NqVBgalI2Ho8PAspSzE/TPyFKK7VazZ07d3j48GGRt52VlcWDBw/Qyt0syx0ZuRbFIjg4mJYtW7J3715sbW2LdVsBAQGkpKSwffv2Yt2OeHqlodZZrVYbdfsib8X1s5F6bvG0tFotGzduJD4+Xp/8Vq5cmcGDB+tvdva07t27x549e/j555/RaDRUrlyZzp0785///EdmFSknJLkWxeLKlSuMGTNGf4txUXFl1zr35mFGhrFDEaWMVqfDREGx3cnPytKS7Tt2FEuCLYl7+bZixQpu3LhBlSpVaNasGcnJySQkJPDhhx8SHBxMrVq1nqrd+/fv8+GHH6LT6fD19aVKlSrEx8ezY8cOUlNT6d27dxH3RBiDJNdC75tvvmH27NkkJiZibW1Nq1at2LFjBzY2Nqxdu5bw8HD9LconTJjAuHHjcrRx7do16tevD8Dw4cMZPnw4UVFRBAQE5LvtixcvMnXqVE6cOIGNjQ09evQgIiKCatWq5Rvb4sWL2bBhA4D+iP/IkSN4eXlx48YNJk+ezIEDBzAxMaFTp04sW7bMYNQhv3497suXX37JihUrOHfuHM2aNWPz5s2kpqYyduxYfv31Vzp16sTGjRtxdHR81h9BmVLQ0WiVSsXDjAzW9++K0sR4ozIqtYYRW48abfsiJ60u+1EcvxtZGi0jth7Fx8enSNt9rDgT97KmvB1oJCUlcePGDVxdXRk1apT+9Rs3brBs2TK++eYb3nrrradq+8SJEzx69IipU6dib28PQIsWLahevTr79u3jP//5Dw4ODkXRDWFEklwLAG7dusWgQYNYtGgR/v7+3L9/nxMnTqDT6di8eTMhISGsXLmSVq1a8dNPPzFy5EhsbGwYOnSoQTtOTk7cunULNzc35syZw8CBA/UfIHlJSUmha9eujBgxgoiICDIyMpg+fToDBgzg+++/zze2KVOmcOnSJdLS0oiKigKgSpUqZGVl4ePjQ4cOHThx4gSmpqbMmzcPX19ffv75Z8zNzQvcr1mzZhEZGUndunUZPnw4r7/+OpUqVWLZsmVYW1szYMAAQkJC+Pjjj3Ptn0qlQqVS6Z+npaU97Y+p1NBoNPj59ebhw4KPRitNFEa9DbLaROoaS6vi+N1Qa7VodTo2jhqIsojbzlKrGf7pN8WWuJc1VlaWbN9etg408jsgOH78OAADBw40eN3JyQlHR0f++9//PvV2L168SIsWLXJ8L3p6erJ//37i4+Pp2LHjU7cvSgdJrgWQnVyr1Wr69u2rvxlL8+bNgezkMjw8nL59+wJQv3594uPjWb16dY7kWqlUUrNmTRQKBfb29tSsWfOJ236c3M6fP1//2rp163BycuLy5cukp6fnGRuAlZUVKpXKYFubNm1Cq9Wydu1a/Yh2VFQUDg4OHD16lB49ehS4X1OmTNF/iU6cOJFBgwZx+PBhPD09AQgMDGT9+vV59i8sLIzZs2c/cT+UJWq1mocPM1j/9ihMlfknLukZmYz5cF0JRSaEIaWJyRN/RwtLrTFBq9MV6Pe/vMvMUjNi+adl7kDD2tqanTt35ppgP66xtrDIOUOPqanpM10/otVqMTMzy7VdhUIhFzeWE5JcCyD7tFS3bt1o3rw5Pj4+9OjRg1dffRVzc3OuXLlCYGAgI0eO1C+vVqufOCJdUHFxcRw5ciTXCx+vXLlCjx49co2tcuXK+baZmJiY46Yzjx494sqVKzx48KDA/fLw8ND/f40aNQDD5L5GjRokJyfnGcuMGTMIDg7WP09LS8PJySnP5csChUKBuZkZARGfGDsUIfKlKYZkRafTYqJQyO///5iYmEA5mk6xTZs2/Pzzz+zYscNg9Do1NZXbt29TvXr1p27bxcWFuLg4fH19sbS01L/+448/otFocHFxeabYRekgybUAskecDx48yKlTpzhw4AArVqxg5syZ7Ny5E4A1a9bwwgsv5FinKKSnp+Pn58fChQtzvFerVq08Y4uJidHXd+fW5vPPP8/mzZtzvOfo6Eh6ejpQsH79c5Th8Sj4v1/Lb7TBwsIi1xGQsszc3Jy9+/YVuOa6V69eJRCVEP/PBAUmCgVDPvmyWNqXmuv/p9VqsxPsMiS/spAmTZrg4ODA2bNnSU1NpX379vzxxx8cP34cnU7Hyy+//NTb7dy5Mz/++COrVq2ie/fu+gsaDx48SMuWLfUDOKJsk+Ra6CkUCjw9PfH09CQkJIR69eoRHR1N7dq1+f333xk8eHCxbLd169Zs3boVZ2dnTE1z/5XMLbZt27YRHByMubk5Go0mR5tffvkl1atXx87OLkd79vb2xd6v8q6wSYVGqwOMd8oze/uiNCqO3w0d2bOR7Nu3L8/PlWdR3i7iE4aCg4P56KOPuHz5MpcvXwayB1UGDBiAm5vbU7fr6OjI6NGj2bp1q/46IVNTU9q2bftMSbsoXSS5FgDExMRw+PBhevToQfXq1YmJieHOnTu4u7sze/ZsJkyYgL29Pb6+vqhUKs6dO8e9e/cMyh2e1vjx41mzZg2DBg1i2rRpVKlShcTERLZs2cLatWs5d+5cnrEBODs7s3//fhISEqhatSr29vYMHjyYxYsX88orrzBnzhzq1KnD9evX+fbbb5k2bRp16tQp9n6JbAqFAmsrKwK+/t7YoYhSxkSR/Siu3w1rKyvMzMwkCRaFZm1tzZQpU/j777+5fPkyDg4OuLm5FckIfd26dZk0aZL+5jTVq1fH2tq6CKIWpYUk1wIAOzs7jh8/TmRkJGlpadSrV4/w8HBeeuklIPuDZvHixUydOhUbGxuaN2/OpEmTimTbtWvXJjo6munTp9OjRw9UKhX16tXD19cXExOTJ8Y2cuRIjh49Sps2bUhPT9dPxXf8+HGmT59O3759uX//Ps899xzdunXTj2SPGDGiWPslsimVSnbu2lUqbiJTXPMpi6djolCg1SGjy6LUqlq1Kh06dCjydhUKxTPVbovSTaEz9jeeEBVMWloa9vb2pKam5lqyIoqHWq3G29ubT7u4lZnbbt96qGLGmauEtatPLevyVbcPoNHpCDyWwKFDh4oluRZCiKJU0O9v+TQTQlQI2eUplgQeSzB2KIU248xVY4dQbKytLOWWz0KIckWSa1HsxowZw6ZNm3J974033mDVqlUlHJGoiLLLU3YbvTxFGJLSDSFEeSNlIaLYJScn53lXQjs7uwpXdyZlIUIIIUTZI2UhotSoXr16hUughRBCCFExla1Z34UQQgghntLdu3eZOHEid+/eNXYoohyT5FoIIYQQFUJqaipxcXGkpqYaOxRRjklyXYo5OzsTGRlZoGUVCgXbt28v1niuXbuGQqEgNjY23+W8vLyeaa7oJ/Xl6NGjKBQKUlJSnnobQgghhBDFQZLrElASia8xGCvJ7dixI7du3cLe3v6Jy0oiLoQQ4rGsrCyDf4UoDnJBoyhzzM3NqVmzZoluU6fTodFo5EYXolTTaDQy1aAQ+XicVGu1WiNHIsqzCpUpeHl50bx5c5RKJRs2bMDc3Jx58+bx+uuvExQUxDfffEONGjVYsWKF/tbaFy9eZOrUqZw4cQIbGxt69OhBREQE1apV07fp4eGBpaUla9euxdzcnDFjxhAaGgpkl3YA+Pv7A1CvXj2uXbvGlStXCA4O5vTp0zx48AB3d3fCwsLw9vZ+6v799ddf+Pv7s3//fp577jnCw8N5+eWX9e8/qS/79u1j3rx5XLx4EaVSSYcOHVi2bBkNGzbMsa1r167x4osvAlC5cmUAhg4dyvr164HsD65p06bluk+etS9Hjx7lxRdf5N69ezg4OHD9+nWCgoI4efIkmZmZODs7s3jxYpo0aZJnjCqViqlTp7JlyxbS0tJo06YNERERtG3b1mAbe/bs4b333uPChQt88sknDB8+nDNnztCmTRt9rJGRkURERHD16lVMTORkkDAOjUaDX+/ePMzIMHYoQpR6MnItilOFSq4BNmzYwLRp0zhz5gxffvklY8eOZdu2bfj7+/Puu+8SERHBm2++SVJSEpmZmXTt2pURI0YQERFBRkYG06dPZ8CAAXz//fcGbQYHBxMTE8MPP/xAQEAAnp6edO/enbNnz1K9enWioqLw9fXV3ywhPT2dnj178sEHH2BhYcHGjRvx8/MjISGBunXrPlXfZs+ezaJFi1i8eDErVqxg8ODBXL9+nSpVqpCSkvLEvjx48IDg4GA8PDxIT08nJCQEf39/YmNjcySNTk5ObN26lX79+pGQkICdnR1WVlYF2ifP2pd/Gz9+PJmZmRw/fhwbGxvi4+OxtbXNN8Zp06axdetWNmzYQL169Vi0aBE+Pj4kJiYabOOdd95hyZIlNGjQgMqVK+Pt7U1UVJRBch0VFUVAQECeibVKpUKlUumf5zXntxDPQqVS8TAjgxXjuqE0kTseCpGbX6//xfKdsWRmZho7FFGOVbhhthYtWvDee+/h4uLCjBkzsLS0pFq1aowcORIXFxdCQkL4+++/+fnnn1m5ciWtWrVi/vz5NG7cmFatWrFu3TqOHDnC5cuX9W16eHgwa9YsXFxcGDJkCG3atOHw4cMAODo6AuDg4EDNmjX1z1u0aMHo0aNp1qwZLi4uzJ07l4YNG/Ldd989dd8CAgIYNGgQjRo1Yv78+aSnp3PmzBmAAvWlX79+9O3bl0aNGtGyZUvWrVvHhQsXiI+Pz7EtpVKpT0KrV69OzZo1DWqg89snz9qXf0tKSsLT05PmzZvToEEDevfuTefOnfOM8cGDB3z88ccsXryYl156iSZNmrBmzRqsrKz49NNPDdqeM2cO3bt3p2HDhlSpUoURI0bwxRdf6JPlH3/8kQsXLjBs2LA8+xIWFoa9vb3+4eTkVOD9IERBSTmIEAWR/Xcify+iOFW4kWsPDw/9/yuVSqpWrUrz5s31r9WoUQPIvqtgXFwcR44cwdbWNkc7V65cwdXVNUebALVq1SI5OTnfONLT0wkNDWX37t3cunULtVpNRkYGSUlJRdI3Gxsb7Ozs9HEUpC+//fYbISEhxMTE8Ndff+lr0pKSkmjWrNlTxwIF2ycF7cu/TZgwgbFjx3LgwAG8vb3p169fju3/05UrV8jKysLT01P/mpmZGe3atePSpUsGy/5zhBqgT58+jB8/nm3btvHaa6+xfv16XnzxRX35T25mzJhBcHCw/nlaWpok2KLImZmZYW5mxlsfFfwgVoiKSq6fEcWpwv12mZmZGTxXKBQGrykU2adTtVot6enp+Pn5sXDhwhzt1KpVK982n3SxxJQpUzh48CBLliyhUaNGWFlZ8eqrrz7Tqar84ihIX/z8/KhXrx5r1qyhdu3aaLVamjVr9lQxPc0+edr1R4wYgY+PD7t37+bAgQOEhYURHh7OW2+9Vei4/83Gxsbgubm5OUOGDCEqKoq+ffvy+eefs2zZsnzbsLCwwMLC4pljESI/5ubm7N23T0bkhMhHQkIC48ePx9LS0tihiHKswiXXhdG6dWu2bt2Ks7PzMx3lmpmZodFoDF6Ljo4mICBAf6Fjeno6165de5Zw8/Wkvvz9998kJCSwZs0aOnXqBMDJkyfzbdPc3BwgR9+MwcnJiTFjxjBmzBhmzJjBmjVreOutt3KNsWHDhpibmxMdHU29evWA7Itbzp49W6D5uUeMGEGzZs346KOPUKvV9O3bt1j6JERhPb6mQwiRu8cDN3LxuShO8tuVj/Hjx3P37l0GDRrE2bNnuXLlCvv372fYsGGFSiidnZ05fPgwt2/f5t69ewC4uLjw7bffEhsbS1xcHK+//nqxTg30pL5UrlyZqlWr8sknn5CYmMj3339vUMqQm3r16qFQKNi1axd37twhPT292OLPz6RJk9i/fz9Xr17lxx9/5MiRI7i7u+cZo42NDWPHjmXq1Kns27eP+Ph4Ro4cycOHDwkMDHzi9tzd3Wnfvj3Tp09n0KBBBhdyCiGEKL0eJ9f/PjsqRFGS5DoftWvXJjo6Go1GQ48ePWjevDmTJk3CwcGhUEe94eHhHDx4ECcnJ1q1agXA0qVLqVy5Mh07dsTPzw8fHx9at25dXF15Yl9MTEzYsmUL58+fp1mzZrz99tssXrw43zafe+45Zs+ezTvvvEONGjUICgoqtvjzo9FoGD9+PO7u7vj6+uLq6spHH32Ub4wLFiygX79+vPnmm7Ru3ZrExET279+vn7LvSQIDA8nMzGT48OHF1i8hhBBClD0KnRToCVFoc+fO5euvv+bnn38u9LppaWnY29uTmpqKnZ1dMUQnhBAiN1evXmXYsGFERUVRv359Y4cjypiCfn/LyLUQhZCens7FixdZuXJlkVwwKYQQouTY29vTokULg6ljhShqklyXAZs3b8bW1jbXR9OmTY0dXqGU9b4EBQXx/PPP4+XlJSUhQghRxlSpUoVly5blekMyIYqKlIWUAffv3+fPP//M9T0zMzP9jBdlQXnqy9OSshAhRHmh0Whk+scSpFAoZFYgIyro97dMxVcGVKpUiUqVKhk7jCJRnvoihBAVmUajwa93Lx5mPDJ2KBWGtZUlO3ftlgS7lJPkWgghhBCFptPpeJjxiIm9TCkv00bfTdex4YiGoS8qqWKrMHY4BrRaWLb7kZwpKAMkuRZPzcvLi5YtWxIZGWnsUJ7K0aNHefHFF7l37x4ODg7GDkcIIcokExNQmpSuRPRpKRWP/1WUwj5JUl1WSHItKqyOHTty69YtuWq8DLt79y6LFi1CrVbrX6tSpQrvvvuuEaMSwvhKohb6n393ouSUxH6X2u5nI8m1KLUyMzP1ty8vDubm5tSsWbPY2hfF6969e8yfPz/H63fv3mX69OksXLjQCFEJYXxSC10+aXU6FArw9fUt9m1JbfezkeRaFMiDBw8YO3Ys3377LZUqVWLKlCkG76tUKmbOnMkXX3xBSkoKzZo1Y+HChXh5eQGwfv16Jk2axPr165k6dSo3btygS5curF27FicnJwBCQ0PZvn07QUFBfPDBB1y/fh2tVktKSgpTpkxhx44dqFQq2rRpQ0REBC1atAAgLi6OSZMmce7cORQKBS4uLqxevZo2bdpw/fp1goKCOHnyJJmZmTg7O7N48WJ69uyZa1nI1q1bCQkJITExkVq1avHWW28xefJkfT+dnZ0ZNWoUiYmJfP3111SuXJn33nuPUaNGFf8PQRgIDw8HDEeqMzMzeffdd9FoNOzfvx8fH58i367MjvD0tFptoe5uK56OWq3mYcYjZg51LdbShky1lgWf/VZs7QtDOl32o7h/rhqtjg82XCYrK6tQn3Uy2v3/JLkWBTJ16lSOHTvGjh07qF69Ou+++y4//vgjLVu2BLLnf46Pj2fLli3Url2bbdu24evry4ULF3BxcQHg4cOHfPDBB2zcuBFzc3PGjRvHa6+9RnR0tH47iYmJbN26lW+//Vb/R9q/f3+srKzYu3cv9vb2rF69mm7dunH58mWqVKnC4MGDadWqFR9//DFKpZLY2FjMzMwAGD9+PJmZmRw/fhwbGxvi4+OxtbXNtY/nz59nwIABhIaGMnDgQE6dOsW4ceOoWrUqAQEB+uXCw8OZO3cu7777Lt988w1jx46lS5cuuLm55dquSqVCpVLpn6elpT31z0H8v0ePskfl/lkCYm5uztChQ9mwYQPff/99rsn1syTHGo0Gf/8+PHyY8XRBV3AmJgq0WjkwKSlKk+KtGy59NckVQ3H/XLVaHSZPMUJuamrKnj17ivWMc1khybV4ovT0dD799FM2bdpEt27dANiwYQN16tQBICkpiaioKJKSkqhduzYAU6ZMYd++fURFRelP3WdlZbFy5UpeeOEFfRvu7u6cOXOGdu3aAdkjjxs3bsTR0RGAkydPcubMGZKTk7GwsABgyZIlbN++nW+++YZRo0aRlJTE1KlTady4MYA+mX8cW79+/WjevDkADRo0yLOfS5cupVu3brz//vsAuLq6Eh8fz+LFiw2S6549ezJu3DgApk+fTkREBEeOHMkzuQ4LC2P27NkF2tfi2T3+WWu12hzvaTQa/Px6P3NyvPidV1HKCGyhZGapeWfxt8yf8KIkZcUsM0vD+x8eM3YYoozSAVodhfpbfaRSM+vj42RlZUlyjSTXogCuXLlCZmamPimG7FPxj5PJCxcuoNFocHV1NVhPpVJRtWpV/XNTU1Patm2rf964cWMcHBy4dOmSPrmuV6+ePrGG7JKP9PR0g3YAMjIyuHLlCgDBwcGMGDGCzz77DG9vb/r370/Dhg0BmDBhAmPHjuXAgQN4e3vTr18/PDw8cu3npUuXeOWVVwxe8/T0JDIyEo1Gox9J/+f6CoWCmjVrkpycnOf+mzFjBsHBwfrnaWlp+lIY8eySk5OpXr26/vnHH38MkOcZimdlYqJg6oJviqVtIYQoixQKhcG/FZ0k1+KZpaeno1QqOX/+fI56q8ImODY2NjnarlWrFkePHs2x7OM66dDQUF5//XV2797N3r17mTVrFlu2bMHf358RI0bg4+PD7t27OXDgAGFhYYSHh/PWW28VKq5/elxy8phCoch1lPQxCwsL/ai7KDrNmjXj4sWLLFq0CE9PT3r16sXy5cu5ffs2kH1g9W9KpZKdO3c9U8201A0/HY1Gg3+fPry7/IixQxFC5EMBmCgo9N+qtbWVfNf9jyTX4okaNmyImZkZMTEx1K1bF8ieqeHy5ct06dKFVq1aodFoSE5OplOnTnm2o1arOXfunH6UOiEhgZSUFNzd3fNcp3Xr1ty+fRtTU1OcnZ3zXM7V1RVXV1fefvttBg0aRFRUFP7+/gA4OTkxZswYxowZw4wZM1izZk2uybW7u7tB/TdAdHQ0rq6ucpFGKRQQEMCcOXNIS0sjOjra4GfXsWNHKleunOt68rM0DlNTU3buerYDG1EwarUaX19fNMVc317c7YvcFfd+f1wWsm/fPkxNC54mygWN/0+Sa/FEtra2BAYGMnXqVKpWrUr16tWZOXOmfvTO1dWVwYMHM2TIEMLDw2nVqhV37tzh8OHDeHh40KtXLyB7xPett95i+fLlmJqaEhQURPv27fXJdm68vb3p0KEDffr0YdGiRbi6unLz5k12796Nv78/TZs2ZerUqbz66qvUr1+f//73v5w9e5Z+/foBMGnSJF566SVcXV25d+8eR44cyTOZnzx5Mm3btmXu3LkMHDiQH374gZUrV/LRRx8V8R4VRSUkJISrV6+ybt06MjMzqVKlCuPHjy+2khDxbOSLt2QoFAqsrSz5YMNlY4ciipBCkf0oiZ+rtZUlZmZm8jf7lCS5FgWyePFi0tPT8fPzo1KlSkyePJnU1FT9+1FRUcybN4/Jkyfzxx9/UK1aNdq3b0/v3r31y1hbWzN9+nRef/11/vjjDzp16sSnn36a73YVCgV79uxh5syZDBs2jDt37lCzZk06d+5MjRo1UCqV/P333wwZMoQ///yTatWq0bdvX/0FhBqNhvHjx/Pf//4XOzs7fH19iYiIyHVbrVu35quvviIkJIS5c+dSq1Yt5syZY3Axoyh96tevz9y5c40dhhClhlKpZOeu3SVyE5mSmHNZZDNRKNA9xYjy05BR6Gej0Mk5OlECHs9znZKSYuxQjC4tLQ17e3tSU1Oxs7MzdjhCCPFU1Go13t7eTOxlSnm5DOFuuo4NRzQMfVFJFdvSdXGeVgvLdqs5dOhQsSfXIncF/f6Wn44QQgghCu1x+cmy3eXvTpAbjmiMHUKurK0sZUaOMkCSayGEEEIUWkmVn4j/J+UaZYOUhQhRwqQsRAghhCh7pCxECCGEEED2xd0yliaehoyWF54k10IIIUQ5ptFo6N27FxkZ5a82WhQ/KytLdu3aLQl2IUhyLYQQQpRjOp2OjIxHDHnZpNzM6lFUUu/r2HZYh383BfaV5ELBf9NqYeN3j+SsRyFJci2emZeXFy1btiQyMrJEt+vs7MykSZOYNGlSkbRnrH4IIURJMDEBExNJIP8p+2BDh4mJQvZNriSpfhpyDCuEEEKUYxpN6ZxWTpR+2v+NWMvvUOHIyLUQQogyTy7Yy1tWVpaxQxBl1f/+pORvq3AkuRZFQqvVMm3aNNauXYu5uTljxowhNDQUgJSUFKZMmcKOHTtQqVS0adOGiIgIWrRoAcCVK1cIDg7m9OnTPHjwAHd3d8LCwvD29ta3n5ycTGBgIIcOHaJmzZrMmzcvRwxLly4lKiqK33//nSpVquDn58eiRYuwtbXVLxMdHc3MmTM5c+YMFhYWtGvXji1btlC5cuUn9qMgfRHPRhKkvGm1WkykYDZXGo0G/z59eJiRYexQhChXZOT66UhyLYrEhg0bCA4OJiYmhh9++IGAgAA8PT3p3r07/fv3x8rKir1792Jvb8/q1avp1q0bly9fpkqVKqSnp9OzZ08++OADLCws2LhxI35+fiQkJFC3bl0AAgICuHnzJkeOHMHMzIwJEyaQnJxsEIOJiQnLly+nfv36/P7774wbN45p06bx0UcfARAbG0u3bt0YPnw4y5Ytw9TUlCNHjhh8aOTXD+CJfcmNSqVCpVLpn6elpRXpvi8vNBoNfn69efhQEqTcmJgo0GrlwCM/707qjFLqZnPIeJTFko9OGTsMUQap//f1qFKpsLGxMW4wZYjcREY8My8vLzQaDSdOnNC/1q5dO7p27Urv3r3p1asXycnJWFhY6N9v1KgR06ZNY9SoUbm22axZM8aMGUNQUBCXL1/Gzc2NM2fO0LZtWwB+/fVX3N3diYiIyPOCxm+++YYxY8bw119/AfD666+TlJTEyZMnC92PBQsWcPLkyafqS2hoKLNnz87xutxExpAk1082511/lDJ6nUNmlprZC3fwfnAXlErZP/+WkZHJwpXRBPQxkYv2/iX1vo6tB7X0624is4Xk4mGGhi17YevWrVStWtXY4Rid3ERGlCgPDw+D57Vq1SI5OZm4uDjS09Nz/FFmZGRw5coVANLT0wkNDWX37t3cunULtVpNRkYGSUlJAFy6dAlTU1Oef/55/fqNGzfGwcHBoM1Dhw4RFhbGr7/+SlpaGmq1mkePHvHw4UOsra2JjY2lf//+T9UPoEB9yc2MGTMIDg7WP09LS8PJySnfOCoipVLJzp27pCwkFxqNBn//PoTM32bsUEo1jVYHaI0dRqmjkTMe4ik9PpY3NZV0sTBkb4kiYWZmZvBcoVCg1WpJT0+nVq1aHD16NMc6j5PjKVOmcPDgQZYsWUKjRo2wsrLi1VdfJTMzs8Dbv3btGr1792bs2LF88MEHVKlShZMnTxIYGEhmZibW1tZYWVk9dT+AAvUlNxYWFgYj3SJvcpOC3JmamsqBRz4e11zPjzxu7FCEKFckuX46srdEsWrdujW3b9/G1NQUZ2fnXJeJjo4mICAAf39/IDuJvXbtmv79xo0bo1arOX/+vL4sJCEhgZSUFP0y58+fR6vVEh4err/o66uvvjLYjoeHB4cPH861RKOo+iJEcZEDj7yZmpqyc5ccfORFpVLRq1cvY4chyqDsMiKdJNeFJHtLFCtvb286dOhAnz59WLRoEa6urty8eZPdu3fj7+9PmzZtcHFx4dtvv8XPzw+FQsH777+vHy0GcHNzw9fXl9GjR/Pxxx9jamrKpEmTDEaiGzVqRFZWFitWrMDPz4/o6GhWrVplEMuMGTNo3rw548aNY8yYMZibm3PkyBH69+9PtWrViqQvQgjjkIMPIYqeiSI7uZa/r8KRKz9EsVIoFOzZs4fOnTszbNgwXF1dee2117h+/To1atQAsqfQq1y5Mh07dsTPzw8fHx9at25t0E5UVBS1a9emS5cu9O3bl1GjRlG9enX9+y1atGDp0qUsXLiQZs2asXnzZsLCwgzacHV15cCBA8TFxdGuXTs6dOjAjh07CnxEXpC+CCGEEKJik9lChChhBb3aWAghioJarcbb25shL5sgk80YSr2vY9thHf7dFDJbSC60Wtj4nZZDhw5JaQgyW4gQQgghyD7rZmVlycbvHhk7lFJr22Ed+tsRCgNWVpYoFHLgURiSXAshhBDlmFKpZNeu3XLBp3gqCoVCaq4LSZJrIYQQopyT5EiIkiPVV0IIIYQol+7evcvEiRO5e/eusUMRFYgk10IIIYQol1JTU4mLiyM1NdXYoYgKRJLrMsbLy4tJkybl+b6zszORkZHFHodCoWD79u3Fvh0hhBBCiLJEkmshhBBCCCGKiCTXotTR6XSo1Wpjh2GgNMYkhBAif1lZWQb/ClESJLkug9RqNUFBQdjb21OtWjXef//9PKdYSkpK4pVXXsHW1hY7OzsGDBjAn3/+abDMxx9/TMOGDTE3N8fNzY3PPvvM4P3ffvuNzp07Y2lpSZMmTTh48GCBY7127RoKhYItW7bQsWNHLC0tadasGceOHdMvc/ToURQKBXv37uX555/HwsKCkydPotVqCQsLo379+lhZWdGiRQu++eYb/Xr37t1j8ODBODo6YmVlhYuLC1FRUQBkZmYSFBRErVq1sLS0pF69evo7Nj6OKTY2Vt9WSkoKCoWCo0ePPlNMQgghSg+tVmvwrxAlQabiK4M2bNhAYGAgZ86c4dy5c4waNYq6desycuRIg+W0Wq0+sT527BhqtZrx48czcOBAfRK5bds2Jk6cSGRkJN7e3uzatYthw4ZRp04dXnzxRbRaLX379qVGjRrExMSQmpqab813XqZOnUpkZCRNmjRh6dKl+Pn5cfXqVapWrapf5p133mHJkiU0aNCAypUrExYWxqZNm1i1ahUuLi4cP36cN954A0dHR7p06cL7779PfHw8e/fupVq1aiQmJpKRkQHA8uXL+e677/jqq6+oW7cuN27c4MaNG4WOu7Ax5UalUqFSqfTP09LSCh2HEEKIwpORa2EUOlGmdOnSRefu7q7TarX616ZPn65zd3fX6XQ6Xb169XQRERE6nU6nO3DggE6pVOqSkpL0y/7yyy86QHfmzBmdTqfTdezYUTdy5EiDbfTv31/Xs2dPnU6n0+3fv19namqq++OPP/Tv7927Vwfotm3b9sR4r169qgN0CxYs0L+WlZWlq1Onjm7hwoU6nU6nO3LkiA7Qbd++Xb/Mo0ePdNbW1rpTp04ZtBcYGKgbNGiQTqfT6fz8/HTDhg3LdbtvvfWWrmvXrgb76d8x/fTTT/rX7t27pwN0R44ceaaYcjNr1qzHt/4yeKSmpua5jhBCiGd3+vRpXZcuXXSnT582diiiHEhNTS3Q97eUhZRB7du3N7gVaYcOHfjtt9/QaDQGy126dAknJyecnJz0rzVp0gQHBwcuXbqkX8bT09NgPU9PT4P3nZycqF27tsH2Cuuf65iamtKmTRv9Nh5r06aN/v8TExN5+PAh3bt3x9bWVv/YuHEjV65cAWDs2LFs2bKFli1bMm3aNE6dOqVfPyAggNjYWNzc3JgwYQIHDhwodMxPE1NuZsyYQWpqqv7xNCPoQgghhCgbpCxElBo2Njb6/09PTwdg9+7dPPfccwbLWVhYAPDSSy9x/fp19uzZw8GDB+nWrRvjx49nyZIltG7dmqtXr7J3714OHTrEgAED8Pb25ptvvsHEJPuYUvePOvW8ThkWNqbcWFhY5Pu+EEKI4mFtbW3wrxAlQUauy6CYmBiD56dPn8bFxSXH7W3d3d1z1BrHx8eTkpJCkyZN9MtER0cbrBcdHW3w/o0bN7h165bB9grrn+uo1WrOnz+Pu7t7nss3adIECwsLkpKSaNSokcHjnyPxjo6ODB06lE2bNhEZGcknn3yif8/Ozo6BAweyZs0avvzyS7Zu3crdu3dxdHQEMOjTPy9ufNaYhBBClA5mZmYG/wpREmTkugxKSkoiODiY0aNH8+OPP7JixQrCw8NzLOft7U3z5s0ZPHgwkZGRqNVqxo0bR5cuXfTlDlOnTmXAgAG0atUKb29vdu7cybfffsuhQ4f0bbi6ujJ06FAWL15MWloaM2fOLHTMH374IS4uLri7uxMREcG9e/cYPnx4nstXqlSJKVOm8Pbbb6PVavnPf/5Damoq0dHR2NnZMXToUEJCQnj++edp2rQpKpWKXbt26RP2pUuXUqtWLVq1aoWJiQlff/01NWvWxMHBARMTE9q3b8+CBQuoX78+ycnJvPfee0/sQ0FiEkIIUXo8PlP5+F8hSoIk12XQkCFDyMjIoF27diiVSiZOnMioUaNyLKdQKNixYwdvvfUWnTt3xsTEBF9fX1asWKFfpk+fPixbtowlS5YwceJE6tevT1RUFF5eXkD2B9K2bdsIDAykXbt2ODs7s3z5cnx9fQsV84IFC1iwYAGxsbE0atSI7777jmrVquW7zty5c3F0dCQsLIzff/8dBwcHWrduzbvvvguAubk5M2bM4Nq1a1hZWdGpUye2bNkCZCfCixYt4rfffkOpVNK2bVv27Nmj/4Bdt24dgYGBPP/887i5ubFo0SJ69OjxxH48KSYhhBClh4xcC2NQ6HR5TJAsRBG4du0a9evX56effqJly5bGDqdUSEtLw97entTUVOzs7IwdjhBClFtXr15l2LBhREVFUb9+fWOHI8q4gn5/y3kSIYQQQgghiogk1+KZzJ8/32Baun8+XnrpJWOHJ4QQogKzt7enRYsW2NvbGzsUUYFIWYh4Jnfv3uXu3bu5vmdlZZVjyjohZSFCCCFEWVTQ72+5oFE8kypVqlClShVjhyGEEEIIUSpIWYgQQpRyd+/eZeLEiXmeJRJCCFF6SHIthBClXGpqKnFxcaSmpho7FCGEEE8gyXUFFxAQQJ8+fYwdhlH8u+9eXl5MmjTJaPEIIYQQouyTmmsh/ufbb781uNGAs7MzkyZNkoRbCCGEEAUmybUQ/yMXZorSKisrC4CMjAzUarWRoxHC+BQKBUql0thhCJErSa4riG+++YbZs2eTmJiItbU1rVq1YseOHTmW02q1LFy4kE8++YTbt2/j6urK+++/z6uvvqpf5uLFi0ydOpUTJ05gY2NDjx49iIiI0N/O3MvLi2bNmgHw2WefYWZmxtixY5kzZw4KheKJsSYnJxMYGMihQ4eoWbMm8+bNY+bMmfpR5Nzu+piSkkLlypU5cuQIXl5eaDQaRo0axffff8/t27epW7cu48aNY+LEiXlu18vLi5YtWxIZGYmXlxfXr1/n7bff5u233wYgPT2dWrVqsW7dOoP9sX37dgYPHszt27epVKnSk38YokzSaDQYa+bShw8fAjBu3DijbF+I0sbSypId23dU6ARbDjBKL0muK4Bbt24xaNAgFi1ahL+/P/fv3+fEiRO5JgphYWFs2rSJVatW4eLiwvHjx3njjTdwdHSkS5cupKSk0LVrV0aMGEFERAQZGRlMnz6dAQMG8P333+vb2bBhA4GBgZw5c4Zz584xatQo6taty8iRI58Yb0BAADdv3uTIkSOYmZkxYcIEkpOTC9VnrVZLnTp1+Prrr6latSqnTp1i1KhR1KpViwEDBjxx/W+//ZYWLVowatQofcw2Nja89tprREVFGSTXj5/nlVirVCpUKpX+eVpaWqH6Ioyb2D7efh//PmQ8zDBaDAD9AltR2dHGqDEIYWxqtZYN4T/g4+Nj7FCMytraip07d0mCXQpJcl0B3Lp1C7VaTd++falXrx4AzZs3z7GcSqVi/vz5HDp0iA4dOgDQoEEDTp48yerVq+nSpQsrV66kVatWzJ8/X7/eunXrcHJy4vLly7i6ugLg5OREREQECoUCNzc3Lly4QERExBOT68uXL7N3717OnDlD27ZtAfj0009xd3cvVJ/NzMyYPXu2/nn9+vX54Ycf+OqrrwqUXFepUgWlUkmlSpWoWbOm/vURI0bQsWNHbt26Ra1atUhOTmbPnj0cOnQoz7bCwsIMYhGFo9Fo8PPrzUMjJ7YAE2e9gonJk8++FLWkK8ls3XgKhYkCpVKuQxcVm1ajRafTGe3vsTRQq7WsmPsdarVakutSSJLrCqBFixZ069aN5s2b4+PjQ48ePXj11VepXLmywXKJiYk8fPiQ7t27G7yemZlJq1atAIiLi+PIkSPY2trm2M6VK1f0yXX79u0NSkA6dOhAeHg4Go0m3w+CS5cuYWpqyvPPP69/rXHjxjg4OBS63x9++CHr1q0jKSmJjIwMMjMz9WUkT6tdu3Y0bdqUDRs28M4777Bp0ybq1atH586d81xnxowZBAcH65+npaXh5OT0THGIkmdiomDZ7JylVCVJp9Wh0WiNGoMQxqbVZZdEGPvv0dhMTU0LVGopSp4k1xWAUqnk4MGDnDp1igMHDrBixQpmzpxJTEyMwXLp6ekA7N69O8dtyy0sLPTL+Pn5sXDhwhzbqVWrVjH1wJCJSfbI3T/LBB5f8PXYli1bmDJlCuHh4XTo0IFKlSqxePHiHH1+GiNGjODDDz/knXfeISoqimHDhuX7AWdhYaHff6LwlEolO3fuMmpZCGSXGj3+3StpFy9eZNKkSWz99CejbF+I0kZqrqXmujST5LqCUCgUeHp64unpSUhICPXq1WPbtm0GyzRp0gQLCwuSkpLo0qVLru20bt2arVu34uzsjKlp3r8+/05iT58+jYuLyxM/CBo3boxareb8+fP6spCEhARSUlL0yzg6OgLZ5S6PR9RjY2MN2omOjqZjx44GF4BduXIl323/m7m5ORqNJsfrb7zxBtOmTWP58uXEx8czdOjQQrUrCq+if4FYWloC2Wdj3NzcjByNEMYniaUozSS5rgBiYmI4fPgwPXr0oHr16sTExHDnzh3c3d35+eef9ctVqlSJKVOm8Pbbb6PVavnPf/5Damoq0dHR2NnZMXToUMaPH8+aNWsYNGgQ06ZNo0qVKiQmJrJlyxbWrl2r/7BLSkoiODiY0aNH8+OPP7JixQrCw8OfGKubmxu+vr6MHj2ajz/+GFNTUyZNmoSVlZV+GSsrK9q3b8+CBQuoX78+ycnJvPfeewbtuLi4sHHjRvbv30/9+vX57LPPOHv2LPXr1y/wfnN2dub48eO89tprWFhY6GdDqVy5Mn379mXq1Kn06NGDOnXqFLhNIZ7G4xFzMzOzfA9qhRBCGJ9cGVMB2NnZcfz4cXr27Imrqyvvvfce4eHhvPTSSzmWnTt3Lu+//z5hYWG4u7vj6+vL7t279Ulp7dq1iY6ORqPR0KNHD5o3b86kSZNwcHAwOGU+ZMgQMjIyaNeuHePHj2fixImMGjWqQPFGRUVRu3ZtunTpQt++fRk1ahTVq1c3WGbdunWo1Wqef/55Jk2axLx58wzeHz16NH379mXgwIG88MIL/P3334WexmzOnDlcu3aNhg0b6kfLHwsMDCQzM5Phw4cXqk0hnsbjmxv98yZHQgghSieFztiFjKLc+ed80UWltN0t8bPPPuPtt9/m5s2bmJubF2rdtLQ07O3tSU1Nxc7OrpgiFOXJ1atXGTZsGFFRUYU6+yKEEKLoFPT7W84vClEIDx8+5NatWyxYsIDRo0cXOrEW4mnY29vTokUL7O3tjR2KEEKIJ5CyEFGiTpw4ga2tbZ6P0m7RokU0btyYmjVrMmPGDGOHIyqIKlWqsGzZMqpUqWLsUIQQQjyBlIWIEpWRkcEff/yR5/uNGjUqwWiMQ8pChBBCiLJHykJEqWRlZVUhEmghhCgKGo3G6HO8i7JLpiw0DkmuhRBCiFJIo9HQq3cvHmU8MnYoooyytLJk967dkmCXMEmuhRBCiFJIp9PxKOMRNYco5AqpXKhTdfy1Dar5g6m93AY8By3c3vhIznwYgfy5FgEvL69SM0UcFCwehULB9u3bSySe4hYQEECfPn3yXaa0/YyEEKLATEBhopBHLg+QfZPnvpEMz2hk15dhR48eRaFQGNwavKBu3bqV601khBBClA4ajcbYIYgyTKfNHrGW36OSJ2UhRpCZmWn0+ZFr1qxp1O0XRGnYT0KI4iUX7OUtKyvL2CGIckD+vkqeJNdFRK1WExQUxGeffYaZmRljx45lzpw5KBQKnJ2dCQwM5LfffmP79u307duX9evXc/LkSWbMmMG5c+eoVq0a/v7+hIWFYWNjA2TfBXDZsmUkJCRgY2ND165diYyMpHr16ly7do0XX3wRgMqVKwMwdOhQ1q9fD4BWq2XatGmsXbsWc3NzxowZQ2hoqD5ehULBtm3b6NOnD9euXaN+/fps3bqVFStWEBMTg4uLC6tWraJDhw76ddasWcOcOXP4+++/8fHxoVOnTsyZM6dAI+ehoaFs376dsWPHMm/ePP7++2969+7NmjVr9DfGCAgIICUlhbZt2/Lhhx9iYWHB1atXuXDhAhMnTuSHH37A2tqafv36sXTp0hzzYs+ePZuVK1eiUql4/fXXWb58eZ7JuUqlYubMmXzxxRekpKTQrFkzFi5ciJeXFwDr169n0qRJbNq0icmTJ3Pjxg169uzJxo0b+frrr5k1axapqam8+eabREREVOiLRSQ5yp9Wq8XERE4S5kaj0dDHvw8ZDzOMHYoQ5Y5Om/2vjFyXPEmui8iGDRsIDAzkzJkznDt3jlGjRlG3bl1GjhwJwJIlSwgJCWHWrFkAXLlyBV9fX+bNm8e6deu4c+cOQUFBBAUFERUVBWSPWsydOxc3NzeSk5MJDg4mICCAPXv24OTkxNatW+nXrx8JCQnY2dlhZWVlEE9wcDAxMTH88MMPBAQE4OnpSffu3fPsw8yZM1myZAkuLi7MnDmTQYMGkZiYiKmpKdHR0YwZM4aFCxfy8ssvc+jQId5///1C7aPExES++uordu7cSVpaGoGBgYwbN47Nmzfrlzl8+DB2dnYcPHgQgAcPHuDj40OHDh04e/YsycnJjBgxgqCgIP2BxOP1LC0tOXr0KNeuXWPYsGFUrVqVDz74INdYgoKCiI+PZ8uWLdSuXZtt27bh6+vLhQsXcHFxAbLvxrh8+XK2bNnC/fv36du3L/7+/jg4OLBnzx5+//13+vXrh6enJwMHDsyz3yqVCpVKpX+elpZWqP1Wmmk0Gvz8evNQkqM8KUwU+tOzIne93+2MiVIuSPu3zIws9i05ZewwRBmlVWf/q1Kp9IN2omRIcl1EnJyciIiIQKFQ4ObmxoULF4iIiNAn1127dmXy5Mn65UeMGMHgwYP1F9m5uLiwfPlyunTpwscff4ylpSXDhw/XL9+gQQOWL19O27ZtSU9Px9bWVn+3turVq+Pg4GAQj4eHhz6Rd3FxYeXKlRw+fDjf5HrKlCn06tULyB4Fbtq0KYmJiTRu3JgVK1bw0ksvMWXKFABcXV05deoUu3btKvA+evToERs3buS5554DYMWKFfTq1Yvw8HB9mYqNjY1+tB2yR8sfr/f4w2HlypX4+fmxcOFCatSoAYC5uTnr1q3D2tqapk2bMmfOHKZOncrcuXNzjBomJSURFRVFUlIStWvX1vd93759REVFMX/+fCD74Objjz+mYcOGALz66qt89tln/Pnnn9ja2tKkSRNefPFFjhw5km9yHRYWxuzZswu8n0T5otPqeHO2PyZKGb3+N3Wmms1zdhg7DCHKNTmzWPIkuS4i7du3R6H4/5GXDh06EB4erj8d06ZNG4Pl4+Li+Pnnnw1GbXU6HVqtlqtXr+Lu7s758+cJDQ0lLi6Oe/fuodVmn+NJSkqiSZMm+cbj4eFh8LxWrVokJycXeJ1atWoBkJycTOPGjUlISMDf399g+Xbt2hUqua5bt64+sYbsfaTVaklISNAn182bNzco5bh06RItWrQwOOr29PTUr/c4uW7RogXW1tYGbaenp3Pjxg3q1atnEMeFCxfQaDS4uroavK5Sqahatar+ubW1tT6xBqhRowbOzs4G5Sg1atR44n6dMWMGwcHB+udpaWk4OTnlu05ZoVQq2blzl3x45+Fx2cNns7YZO5RSS2GiYNf848YOQ4hyR/G/43kzMzPjBlIBSXJdQv59SiY9PZ3Ro0czYcKEHMvWrVtXXw7h4+PD5s2bcXR0JCkpCR8fHzIzM5+4vX//MSkUCn1yXpB1Hh8oPGmdolYSp67S09NRKpWcP38+R630PxPn3Pbh0+xXCwsLLCwsnjHq0qsi15s/iampKbvk4CNfUpOet0ePHtG7d29jhyHKKJP/ZXgyMUDJk+S6iMTExBg8P336NC4uLnkmHq1btyY+Pj7PW4FfuHCBv//+mwULFuhHOc+dO2ewzOM/mJK4WMHNzY2zZ88avPbv50+SlJTEzZs39aUYp0+fxsTEBDc3tzzXcXd3Z/369Tx48ECfeEdHR+dYLy4ujoyMDH3d+enTp7G1tc11hLhVq1ZoNBqSk5Pp1KlTofogRGHJwYd4WjLiKIrCP8+qi5IhwwVFJCkpieDgYBISEvjiiy9YsWIFEydOzHP56dOnc+rUKYKCgoiNjeW3335jx44dBAUFAdmj1+bm5qxYsYLff/+d7777jrlz5xq0Ua9ePRQKBbt27eLOnTukp6cXW//eeust9uzZw9KlS/ntt99YvXo1e/fuLdQfraWlJUOHDiUuLo4TJ04wYcIEBgwYkO+0gIMHD9avd/HiRY4cOcJbb73Fm2++qS8Jgexp+wIDA4mPj2fPnj3MmjWLoKCgXEfEXF1dGTx4MEOGDOHbb7/l6tWrnDlzhrCwMHbv3l24HSOEEMVEDszEs3h8kx35PSp5klwXkSFDhpCRkUG7du0YP348EydOZNSoUXku7+HhwbFjx7h8+TKdOnWiVatWhISE6Ed1HR0dWb9+PV9//TVNmjRhwYIFLFmyxKCN5557jtmzZ/POO+9Qo0YNfWJeHDw9PVm1ahVLly6lRYsW7Nu3j7fffhtLS8sCt9GoUSP69u1Lz5496dGjBx4eHnz00Uf5rmNtbc3+/fu5e/cubdu25dVXX6Vbt26sXLnSYLlu3brh4uJC586dGThwIC+//LLB1IP/FhUVxZAhQ5g8eTJubm706dOHs2fPUrdu3QL3RwghhBDi3xQ6KQYUT2nkyJH8+uuvnDhx4onLPp7nOjY2tvgDK+XS0tKwt7cnNTUVOzs7Y4cjhCil1Go13t7e1Bwit7LOjTpVx1/boJo/mNpL6UMOWri9UcehQ4cwNZUq4KJQ0O9v2duiwJYsWUL37t2xsbFh7969bNiw4Ykjz0IIIZ6OQqHA0sqS2xsfGTuUUu2vbQAyTpgbSytLqbk2AkmuRYGdOXOGRYsWcf/+ff282yNGjACgadOmXL9+Pdf1Vq9eXZJhCiFEuaBUKtm9a7fMNiOemkKhkJprI5CyEFEkrl+/TlZWVq7v1ahRg0qVKpVwRKWXlIUIIYqSRqORBFwUG0nQ/5+UhYgS9e8btQghhCh+Go2GXr178ygjw9ihiHLK0sqK3bt2SYJdCJJcCyGEEGWUTqfjUUYGJkOagYnU1j6JLlWFbttlFP6uKOzL7829ioxWx6ONF+XMSCHJ9ceiWIWGhtKyZcsS2ZZCoWD79u0lsq3HnJ2diYyMLNFtCiFEDiYKFPIowCN7dylMKAWxlP6HHLA9HUmuRbGaMmUKhw8fNnYYQgghhBAlQspCRLGytbXF1tbW2GEIIUS5pNFojB2CKMd02uxyEI1GI3NlF4KMXIt8eXl5MWHCBKZNm0aVKlWoWbOmwZ0Pk5KSeOWVV7C1tcXOzo4BAwbw559/6t//d1nI0aNHadeuHTY2Njg4OODp6Wkwhd+OHTto3bo1lpaWNGjQgNmzZ6NWq58q9hs3bjBgwAAcHByoUqUKr7zyCteuXQPgwIEDWFpakpKSYrDOxIkT6dq1q/75yZMn6dSpE1ZWVjg5OTFhwgQePHjwVPGIikuj0aBWq+VRwEdmZqbRYygrj7xmaRKiKEnNdeHIYYh4og0bNhAcHExMTAw//PADAQEBeHp60q1bN31ifezYMdRqNePHj2fgwIEcPXo0RztqtZo+ffowcuRIvvjiCzIzMzlz5ox+gvsTJ04wZMgQli9fTqdOnbhy5Yr+FvKzZs0qVMxZWVn4+PjQoUMHTpw4gampKfPmzcPX15eff/6Zbt264eDgwNatWwkMDASyE6Avv/ySDz74AIArV67g6+vLvHnzWLduHXfu3CEoKIigoCCioqIKHItKpUKlUumfp6WlFaovpZFM/VVwGo2GPv59yHgoszkUlMJEoR8xE0IYj06tBSAzMxNLS0sjR1N2SHItnsjDw0Of3Lq4uLBy5Up9HfWFCxe4evUqTk5OAGzcuJGmTZty9uxZ2rZta9BOWloaqamp9O7dm4YNGwLg7u6uf3/27Nm88847DB06FIAGDRowd+5cpk2bVujk+ssvv0Sr1bJ27Vp98h4VFYWDgwNHjx6lR48evPbaa3z++ef65Prw4cOkpKTQr18/AMLCwhg8eDCTJk3S93358uV06dKFjz/+uMAfNGFhYcyePbtQ8ZdmGo2G3n5+ZDx8aOxQypS+c0ZjopSThU+izsxi++y1dHn3dRSyv54oKyOT6CVfGTsMUV797yBXzpAUjiTX4ok8PDwMnteqVYvk5GQuXbqEk5OTPrEGaNKkCQ4ODly6dClHcl2lShUCAgLw8fGhe/fueHt7M2DAAGrVqgVAXFwc0dHR+pFjyE7kHj16xMOHD7G2ti5wzHFxcSQmJua4ec2jR4+4cuUKAIMHD6Z9+/bcvHmT2rVrs3nzZnr16oWDg4O+jZ9//pnNmzfr19fpdGi1Wq5evWpwYJCfGTNmEBwcrH+elpZmsM9E+acwMeHbELlTqRCibJJbqBeOJNfiiczMzAyeKxQKtFrtU7UVFRXFhAkT2LdvH19++SXvvfceBw8epH379qSnpzN79mz69u2bY73Cno5KT0/n+eefN0iMH3N0dASgbdu2NGzYkC1btjB27Fi2bdvG+vXrDdoYPXo0EyZMyNFG3bp1CxyLhYUFFhblZz5VpVLJrp07pSykELRaLSYmMgpbEI/LaI7N/9zYoQghTLM/t8rTd1hJkORaPDV3d3du3LjBjRs39COx8fHxpKSk0KRJkzzXa9WqFa1atWLGjBl06NCBzz//nPbt29O6dWsSEhJo1KjRM8fWunVrvvzyS6pXr57vLUoHDx7M5s2bqVOnDiYmJvTq1cugjfj4+CKJp7yRO3WJ4mJqasqunbvk4K2AHj16RO/evY0dhiinFCYKdMhnfmFJci2emre3N82bN2fw4MFERkaiVqsZN24cXbp0oU2bNjmWv3r1Kp988gkvv/wytWvXJiEhgd9++40hQ4YAEBISQu/evalbty6vvvoqJiYmxMXFcfHiRebNm1eo2AYPHszixYt55ZVXmDNnDnXq1OH69et8++23TJs2jTp16uiXCw0N5YMPPuDVV181ODqfPn067du3JygoiBEjRmBjY0N8fDwHDx5k5cqVz7DnhBD5kS/ygvv3mUUhioOUhRSOnKcUT02hULBjxw4qV65M586d8fb2pkGDBnz55Ze5Lm9tbc2vv/5Kv379cHV1ZdSoUYwfP57Ro0cD4OPjw65duzhw4ABt27alffv2REREUK9evULHZm1tzfHjx6lbty59+/bF3d2dwMBAHj16ZDCS3ahRI9q1a8fPP//M4MGDDdrw8PDg2LFjXL58mU6dOtGqVStCQkKoXbt2oeMRQojiIAciojgp/neHRvk9KxyFTs69CVGi0tLSsLe3JzU1Nd+SFSGEeBK1Wo23tzcmQ5rJraoLQJeqQrftMgp/VxT2Ukf8RFod2o0XOXTokNxEhoJ/f8ueEkIIIcoohUKBpZUVjzZeNHYoZYpu22VkZLFgLK2spCykkCS5FmXC5s2b9eUj/1avXj1++eWXEo5ICCGMT6lUsnuXXAAqio9CoZCykEKS5FqUCS+//DIvvPBCru/JBT1CiIpMEh8hShdJrkWZUKlSpRw3hBHCWOT27yVHRs2EEGWNJNdCCFEIGo2GXr178ygjw9ihVAhKU1O+/uorqlSpYuxQhBCiQCS5FkKIQtDpdDzKyED5ZleZnaGY6e6lo/kuhtTUVEmuhRBlhsxzXQp4eXkxadIkAJydnYmMjHyqdcuz9evX4+DgoH8eGhpKy5Yt813n2rVrKBQKYmNjizU2UUGZKFCYmMijGB9y8CKEKItk5LqUOXv2LDY2NgVe/ttvv62QF/RNmTKFt956S/88ICCAlJQUtm/frn/NycmJW7duUa1aNSNEKMorjUZj7BAqDJ02u65d9rkQoiyR5LqUcXR0LNTyFfVUqa2tLba2tvkuo1QqqVmzZglFJCoKuZCx5KnVatRqtbHDKNfkwlEhio4k16WMs7MzkyZNYtKkSbz++utoNBqD24lnZWVRq1Ytli5dypAhQ/Dy8qJly5b6UhJnZ2dGjRpFYmIiX3/9NZUrV+a9995j1KhR+jZOnTrFuHHj+PXXX2nWrBnvvfce/v7+/PTTT08stQD45ZdfmD59OsePH0en09GyZUvWr19Pw4YN0Wq1zJs3j08++YQ7d+7g7u7OggUL8PX1BbJLNerXr8/WrVtZsWIFMTExuLi4sGrVKjp06KDfxvr16wkJCeGvv/7Cx8eH//znPwYxhIaGsn37dmJjYwkNDWXDhg0A+onujxw5grOzM/Xr1zfo17Fjx5g6dSpxcXFUqVKFoUOHMm/ePP2dp7y8vPDw8MDS0pK1a9dibm7OmDFjCA0NBbITq9mzZ7Nu3Tr+/PNPqlatyquvvsry5csL/kMuRjKLRfFTqVTGDqHCePy7PGbMGCNHUv5ZWlmyY/sOSbBFuWDsg0VJrkuxwYMH079/f9LT0/WjtPv37+fhw4f4+/vnuV54eDhz587l3Xff5ZtvvmHs2LF06dIFNzc30tLS8PPzo2fPnnz++edcv369UDXbf/zxB507d8bLy4vvv/8eOzs7oqOj9aNKy5YtIzw8nNWrV9OqVSvWrVvHyy+/zC+//IKLi4u+nZkzZ7JkyRJcXFyYOXMmgwYNIjExEVNTU2JiYggMDCQsLIw+ffqwb98+Zs2alWdMU6ZM4dKlS6SlpREVFQVkj+jfvHkzR+w9e/YkICCAjRs38uuvvzJy5EgsLS31yTPAhg0bCA4OJiYmhh9++IGAgAA8PT3p3r07W7duJSIigi1bttC0aVNu375NXFxcvvtMpVIZJGRpaWkF3t+FodFo6O3nR8bDh8XSvhAlLzu5bjt6IDaOFfMsXUnQqtWcWLgWHx8fY4ciRJEwNTVlz549mJubG2f7RtmqKBAfHx9sbGzYtm0bb775JgCff/45L7/8cr5zPvfs2ZNx48YBMH36dCIiIjhy5Ahubm58/vnnKBQK1qxZg6WlJU2aNOGPP/5g5MiRBYrpww8/xN7eni1btuhrvV1dXfXvL1myhOnTp/Paa68BsHDhQo4cOUJkZCQffvihfrkpU6bQq1cvAGbPnk3Tpk1JTEykcePGLFu2DF9fX6ZNm6Zv/9SpU+zbty/XmGxtbbGyskKlUuVbBvLRRx/h5OTEypUrUSgUNG7cmJs3bzJ9+nRCQkIwMcm+vtfDw0OfzLu4uLBy5UoOHz5M9+7dSUpKombNmnh7e2NmZkbdunVp165dvvssLCyM2bNn57uMECJvChMFJjKiWmy0/zvj1Xd2sOxnUeZpsrLYNjvSqGdxJbkuxUxNTRkwYACbN2/mzTff5MGDB+zYsYMtW7bku56Hh4f+/xUKBTVr1iQ5ORmAhIQEfdnDY09KDv8pNjaWTp065XoRZVpaGjdv3sTT09PgdU9Pzxyju/+MsVatWgAkJyfTuHFjLl26lGNkvkOHDnkm1wV16dIlOnTooC8deRxbeno6//3vf6lbt26O2B7H93j/9e/fn8jISBo0aICvry89e/bEz89PX1aSmxkzZhAcHKx/npaWhpOT0zP1JTdKpZJdO3dKWUgxS01NpV+/fsYOo0LRaXVo5aLG4qPToVAo+HbWUmNHIkSRsLK2zvd7ubhJcl3KDR48mC5dupCcnMzBgwexsrLS1y/n5d+Jr0KhQKvVFkk8VlZWRdLOP2N8nOwWVYzPKr/95+TkREJCAocOHeLgwYOMGzeOxYsXc+zYsTxnbbGwsMDCwqLY4wa5DXJJ+OeBqShu2Z8NZ1d/+YTlxLOSmmtRnkjNtchXx44dcXJy4ssvv2Tv3r3079//mabec3NzY9OmTahUKn3Cd/bs2QKv7+HhwYYNG8jKysoRh52dHbVr1yY6OpouXbroX4+Oji7U6Li7uzsxMTEGr50+fTrfdczNzZ84XZe7uztbt25F979RmsexVapUiTp16hQ4PisrK/z8/PDz82P8+PE0btyYCxcu0Lp16wK3IcouY46GVDQKhQIdsHr1aho2bGjscMo1YycjQpQn8i1RBrz++uusWrWKy5cvc+TIkWdua+bMmYwaNYp33nmHpKQklixZAmBQLpGXoKAgVqxYwWuvvcaMGTOwt7fn9OnTtGvXDjc3N6ZOncqsWbNo2LAhLVu2JCoqitjYWDZv3lzgGCdMmICnpydLlizhlVdeYf/+/U8sCXF2dmb//v0kJCRQtWpV7O3tcywzbtw4IiMjeeuttwgKCiIhIYFZs2YRHBysr7d+kvXr16PRaHjhhRewtrZm06ZNWFlZUa9evQL3T5RtkoCUHIVJdnJtbm4uBzVCiDJD7tBYBgwePJj4+Hiee+65HPXMhWVnZ8fOnTuJjY2lZcuWzJw5k5CQEKBgp7urVq3K999/T3p6Ol26dOH5559nzZo1+lHsCRMmEBwczOTJk2nevDn79u3ju+++M5gp5Enat2/PmjVrWLZsGS1atODAgQO89957+a4zcuRI3NzcaNOmDY6OjkRHR+dY5rnnnmPPnj2cOXOGFi1aMGbMGAIDA5/Y9j85ODiwZs0aPD098fDw4NChQ+zcuZOqVasWuA0hhBBClF8KnVz9VOFt3ryZYcOGkZqaWmQ11SJvaWlp2Nvbk5qaip2dnbHDEYWkVqvx9vZG+WZXuT13MdPdS0f7XQxRUVHUr1/f2OEIISq4gn5/y3m2Cmjjxo00aNCA5557jri4OKZPn86AAQMksRaiABQKBZZWVjz67Htjh1IhKE1Ncy3zEkKI0kqS6wro9u3bhISEcPv2bWrVqkX//v354IMPgOw7oW3atCnX9d544w1WrVpVkqEKUeoolUp279olUx6WELnQTghR1khZiDCQnJyc5x0E7ezsqF69eglHVP5IWUjFJLemz5sk0EKIskDKQsRTqV69uiTQQhQxjUZDr969eZSRYexQSiWlqSlff/UVVarILc6FEGWfJNdCCFHMdDodjzIyMB38ChRw2seKQpeSimbn96SmpkpyLYQoFyS5FhXC7du3efPNNzl16hRmZmakpKQYOyRREZmYoJDk2oBOIftDCFG+yKeaqBAiIiK4desWsbGxXL58uUDrhIaG0rJly+INTAghhBDlioxciwrhypUrPP/884W6mY0QRUWj0Rg7hFLr8UWeso+EEOWFjFyLMuObb76hefPmWFlZUbVqVby9vXnw4AFnz56le/fuVKtWDXt7e7p06cKPP/6oX8/Z2ZmtW7eyceNGFAoFAQEBAKSkpDBixAgcHR2xs7Oja9euxMXFAdm3OZ89ezZxcXEoFAoUCgXr169n+PDh9O7d2yCurKwsqlevzqefflpi+0KULTJLSH6y941arZZHHg858BCibJGRa1Em3Lp1i0GDBrFo0SL8/f25f/8+J06cQKfTcf/+fYYOHcqKFSvQ6XSEh4fTs2dPfvvtNypVqsTZs2cZMmQIdnZ2LFu2TH+znP79+2NlZcXevXuxt7dn9erVdOvWjcuXLzNw4EAuXrzIvn37OHToEAD29va4urrSuXNnbt26Ra1atQDYtWsXDx8+ZODAgbnGrlKpUKlU+ud5TXVY1slUc3n7589fGNJps/8dM2aMcQMpxSytrNixfbtMV5gHrVaLiVzLkCeZ6rLkSXItyoRbt26hVqvp27cv9erVA6B58+YAdO3a1WDZTz75BAcHB44dO0bv3r1xdHTEwsICKysratasCcDJkyc5c+YMycnJWFhYALBkyRK2b9/ON998w6hRo7C1tcXU1FS/DkDHjh1xc3Pjs88+Y9q0aQBERUXRv39/bG1tc409LCyM2bNnF+0OKWUyMzPp1bs3WZmZxg5FlDnZB2RtRw3FxrGakWMpfbRqNScWLcfHx8fYoZRaChMTdFqtscMotaysrdm1c6ck2CVIDvVEmdCiRQu6detG8+bN6d+/P2vWrOHevXsA/Pnnn4wcORIXFxfs7e2xs7MjPT2dpKSkPNuLi4sjPT2dqlWrYmtrq39cvXqVK1eu5BvLiBEjiIqK0m977969DB8+PM/lZ8yYQWpqqv5x48aNp9gDQgghhCgLZORalAlKpZKDBw9y6tQpDhw4wIoVK5g5cyYxMTGMHTuWv//+m2XLllGvXj0sLCzo0KEDmfmMoqanp1OrVi2OHj2a4z0HB4d8YxkyZAjvvPMOP/zwA6dOnaJ+/fp06tQpz+UtLCz0o+Pllbm5Ofv27pWykDw8ePCAV155xdhhlFIKAM5+ssHIcZReUhaSPykLyZ+UhZQ8Sa5FmaFQKPD09MTT05OQkBDq1avHtm3biI6O5qOPPqJnz54A3Lhxg7/++ivftlq3bs3t27cxNTXF2dk512XMzc1zvZCoatWq9OnTh6ioKH744QeGDRv2zH0rD+TDO2/l/eDqWShMsgtDVq1aRaNGjYwdTqkkyZEQZYsk16JMiImJ4fDhw/To0YPq1asTExPDnTt3cHd3x8XFhc8++4w2bdqQlpbG1KlT9Rct5sXb25sOHTrQp08fFi1ahKurKzdv3mT37t34+/vTpk0bnJ2duXr1KrGxsdSpU4dKlSrpk6QRI0bQu3dvNBoNQ4cOLYldIMowhUJh7BBKsex9Y2pqiqmpfCUJIco+OY8iygQ7OzuOHz9Oz549cXV15b333iM8PJyXXnqJTz/9lHv37tG6dWvefPNNJkyYQPXq1fNtT6FQsGfPHjp37sywYcNwdXXltdde4/r169SoUQOAfv364evry4svvoijoyNffPGFfn1vb29q1aqFj48PtWvXLta+i7JPRh3z9vjAQ/aREKK8UOikSFKIQktPT+e5554jKiqKvn37FmrdtLQ07O3tSU1Nxc7OrpgiFKWJWq3G29sb0zf95fbn/6K9l4rmu0NERUVRv359Y4cjhBB5Kuj3t5yDE6IQtFotf/31F+Hh4Tg4OPDyyy8bOyRRlmi1yGjGv+hkCjUhRPkiybUQhZCUlET9+vWpU6cO69evlxpRUSAKhQJLKysebd5h7FBKJaWpKfb29sYOQwghioRkBkIUgrOzs0w3JwpNqVSye9cu+d3Jg8yGIYQoT6T4TwghhNFIYi2EKG9k5FoIIYqZRqOhV+/ePMrIMHYopY7S1JSvv/qKKlWqGDsUIYQoEpJcCyFEMdPpdDzKyMDs9ddBZgvR06WkoN61i9TUVEmuhRDlhnzKV3BeXl5MmjSpWNq+du0aCoWC2NjYYmm/pDg7OxMZGWnsMER5YGKCQh76B3JzHSFEOSQj16LYODk5cevWLapVq2bsUIQQQgghSoQk16LYKJVKatasaewwhDA6jUZj7BBKpcezp2RmZqJWq40cTekiF3oKUXZJci1Qq9UEBQXx2WefYWZmxtixY5kzZw4KhYLPPvuMZcuWkZCQgI2NDV27diUyMlJ/e/F79+4RFBTEgQMHSE9Pp06dOrz77rsMGzaMa9euUb9+fX766SdatmwJwC+//ML06dM5fvw4Op2Oli1bsn79eho2bJhvjAEBAaSkpPCf//yH8PBwMjMzee2114iMjMTMzAwAlUrFzJkz+eKLL0hJSaFZs2YsXLgQLy8vfTsnT55kxowZnDt3jmrVquHv709YWBg2NjYAJCcnExgYyKFDh6hZsybz5s0ziEOn0zF79mzWrVvHn3/+SdWqVXn11VdZvnx5Ef00yjaNRiPTzeXi0aNHxg6hVNJps28gM3r0aCNHUvpYWlmxY/t2SbBzIQceorST5FqwYcMGAgMDOXPmDOfOnWPUqFHUrVuXkSNHkpWVxdy5c3FzcyM5OZng4GACAgLYs2cPAO+//z7x8fHs3buXatWqkZiYSEYeMyL88ccfdO7cGS8vL77//nvs7OyIjo4u8IjVkSNHqFWrFkeOHCExMZGBAwfSsmVLRo4cCUBQUBDx8fFs2bKF2rVrs23bNnx9fblw4QIuLi5cuXIFX19f5s2bx7p167hz5w5BQUEEBQURFRUFZCfxN2/e5MiRI5iZmTFhwgSSk5P1MWzdupWIiAi2bNlC06ZNuX37NnFxcfnGrVKpUKlU+udpaWkF6m9Zo9Fo6O3nR8bDh8YORZQx7UaNxMbR0dhhlBpatZrjixbj4+Nj7FBKJTnwyJ0cdJQeCp0MM1VoXl5eJCcn88svv6D438VF77zzDt999x3x8fE5lj937hxt27bl/v372Nra8vLLL1OtWjXWrVuXY9l/j1y/++67bNmyhYSEBP1oc0EFBARw9OhRrly5ov/wGDBgACYmJmzZsoWkpCQaNGhAUlIStWvX1q/n7e1Nu3btmD9/PiNGjECpVLJ69Wr9+ydPnqRLly48ePCApKQk3NzcOHPmDG3btgXg119/xd3dnYiICCZNmsTSpUtZvXo1Fy9eLHAfQkNDmT17do7XU1NTsbOzK9R+KM1UKhU+Pj70DQ3FRCnXSv/To/QH7Fq4ELM33si+kE8AoP7rL7R79vDCmNHY/u9smAB1ZibHFiyUv6VcaLLUbJ83T3/WQ/w/K2trdu3cKQl2MUpLS8Pe3v6J398yci1o3769PrEG6NChA+Hh4Wg0GmJjYwkNDSUuLo579+6h/d8HWlJSEk2aNGHs2LH069ePH3/8kR49etCnTx86duyY63ZiY2Pp1KlToRPrx5o2bWrwoVGrVi0uXLgAwIULF9BoNLi6uhqso1KpqFq1KgBxcXH8/PPPbN68Wf++TqdDq9Vy9epVLl++jKmpKc8//7z+/caNG+Pg4KB/3r9/fyIjI2nQoAG+vr707NkTPz+/fG+DPmPGDIKDg/XP09LScHJyeqp9UJopFArMzM35NjTU2KGIMkan1aKVuvT/p9OhUCjkbykPcoAqSjtJrkWeHj16hI+PDz4+PmzevBlHR0eSkpLw8fEhMzMTgJdeeonr16+zZ88eDh48SLdu3Rg/fjxLlizJ0Z6VldUzxfPvpFyhUOiT/fT0dJRKJefPn89x1G5ra6tfZvTo0UyYMCFH23Xr1uXy5ctPjMHJyYmEhAQOHTrEwYMHGTduHIsXL+bYsWN5HjRYWFhgYWFRoD6WZebm5uzbu1dqrnPx4MEDXnnlFWOHUWqd+WSNsUModaT0IW9arRYTSbBzkLKQ0kOSa0FMTIzB89OnT+Pi4sKvv/7K33//zYIFC/QjrefOncuxvqOjI0OHDmXo0KF06tSJqVOn5ppce3h4sGHDBrKysp569DovrVq1QqPRkJycTKdOnXJdpnXr1sTHx9OoUaNc32/cuDFqtZrz58/ry0ISEhJISUkxWM7Kygo/Pz/8/PwYP348jRs35sKFC7Ru3bpI+1QWyQd77irCwdXTeDwCuWrVqjz/LisqSZSEKLskuRYkJSURHBzM6NGj+fHHH1mxYgXh4eHUrVsXc3NzVqxYwZgxY7h48SJz5841WDckJITnn3+epk2bolKp2LVrF+7u7rluJygoiBUrVvDaa68xY8YM7O3tOX36NO3atcPNze2Z+uDq6srgwYMZMmQI4eHhtGrVijt37nD48GE8PDzo1asX06dPp3379gQFBTFixAhsbGyIj4/n4MGDrFy5Ejc3N3x9fRk9ejQff/wxpqamTJo0yWDEff369Wg0Gl544QWsra3ZtGkTVlZW1KtX75niF+WbQm6Wki9TU9N8S6uEEKIskfMqgiFDhpCRkUG7du0YP348EydOZNSoUTg6OrJ+/Xq+/vprmjRpwoIFC3KMSJubmzNjxgw8PDzo3LkzSqWSLVu25LqdqlWr8v3335Oenk6XLl14/vnnWbNmTZGNYkdFRTFkyBAmT56Mm5sbffr04ezZs9StWxfIHjk/duwYly9fplOnTrRq1YqQkBCDCyCjoqKoXbs2Xbp0oW/fvowaNUo/7SCAg4MDa9aswdPTEw8PDw4dOsTOnTv1dd1C5EZGIHP3+KBD9o8QojyR2UKEKGEFvdpYlB9qtRpvb2/MXn8dpFZUT5eSgnrXLqKioqhfv76xwxFCiHzJbCFCCFFKKBQKLK2sePT558YOpdRRmppib29v7DCEEKLISHItSoXHM3rkZu/evXlepChEWaBUKtm9a5fMpJILuXBPCFHeSHItSoXY2Ng833vuuedKLhAhiokkkEIIUTFIci1KBZmGS5RXGo1GRqzzIKPWQojySJJrIYQoJhqNhl69e/MoI8PYoZRKSlNTvv7qK6pUqWLsUIQQoshIci2EEMVEp9PxKCMDy8GjZJaQf9Gm3CVz51ekpqZKci2EKFfk0/4ZOTs7ExkZWezbUSgUbN++vdi386y2b99Oo0aNUCqVTJo0ydjhCFE6mJigMFHK4x8PFPL1I4Qon2Tkuoy4desWlStXNnYYTzR69GiGDRvGhAkTqFSpkrHDEcKoNBqNsUMotXQ6LSD7SAhR/khyXUbUrFnT2CHkKysrC5VKRXJyMj4+PgZ3PSyszMxMzM3NizA6IYxDLmTMT/a+UavVqNVqI8dSOskFn0KUTeUqud63bx/z5s3j4sWLKJVKOnTowLJly2jYsCEA//3vf5k6dSr79+9HpVLh7u7Ohx9+yAsvvMCVK1cIDg7m9OnTPHjwAHd3d8LCwvD29ta3n5ycTGBgIIcOHaJmzZrMmzcvRwwpKSlMmTKFHTt2oFKpaNOmDREREbRo0QKA0NBQtm/fzoQJEwgNDeXu3bsMGTKEFStWEB4eztKlS9FqtUycOJGZM2fq21UoFGzbto0+ffo8sS/5ebz9sWPHMm/ePP7++2969+7NmjVrDG7ksHbtWsLDw7l69SrOzs5MmDCBcePGAXDt2jXq16/Pli1b+Oijj4iJiWHVqlUMGzYMgK5duwJw5MgRvLy82Lp1KyEhISQmJlKrVi3eeustJk+erN+Ws7MzgYGB/Pbbb2zfvp2+ffvi5eXFpEmT2LRpE5MnT+bGjRv07NmTjRs38vXXXzNr1ixSU1N58803iYiI0H8BffbZZyxbtoyEhARsbGzo2rUrkZGR+luYHz16lBdffJFDhw4xffp04uPjadmyJVFRUbi5uelj2rlzJ3PmzOHChQvY2trSqVMntm3bBoBKpWLmzJl88cUXpKSk0KxZMxYuXIiXl1e++748kxkxcqdSqYwdQumlzR65HjNmjJEDKb0srazYsX27JNi50Gq1mMh1DLmSgzLjK1fJ9YMHDwgODsbDw4P09HRCQkLw9/cnNjaWhw8f0qVLF5577jm+++47atasyY8//oj2fx/w6enp9OzZkw8++AALCws2btyIn58fCQkJ1K1bF4CAgABu3rzJkSNHMDMzY8KECSQnJxvE0L9/f6ysrNi7dy/29vasXr2abt26cfnyZf1FO1euXGHv3r3s27ePK1eu8Oqrr/L777/j6urKsWPHOHXqFMOHD8fb2zvXZDk9PT3fvjxJYmIiX331FTt37iQtLY3AwEDGjRvH5s2bAdi8eTMhISGsXLmSVq1a8dNPPzFy5EhsbGwYOnSovp133nmH8PBwWrVqhYmJCQkJCbi5ubF161Y6duxIlSpVOH/+PAMGDCA0NJSBAwdy6tQpxo0bR9WqVQkICNC3tWTJEkJCQpg1axYAJ06c4OHDhyxfvpwtW7Zw//59+vbti7+/Pw4ODuzZs4fff/+dfv364enpycCBA4HsEfS5c+fi5uZGcnIywcHBBAQEsGfPHoN9MHPmTMLDw3F0dGTMmDEMHz6c6OhoAHbv3o2/vz8zZ85k48aNZGZmGqwfFBREfHw8W7ZsoXbt2mzbtg1fX18uXLiAi4tLjv2tUqkMkqy0tLQC/ZzKCo1GQ28/PzIePjR2KKIMaj8qCFvHGsYOo9TRqrM4smgePj4+xg6lVFKYmKAr4HdeRWNlbc2unTslwTYiha4cDzf99ddfODo6cuHCBU6dOsWUKVO4du1aga9Mb9asGWPGjCEoKIjLly/j5ubGmTNnaNu2LQC//vor7u7uREREMGnSJE6ePEmvXr1ITk7GwsJC306jRo2YNm0ao0aNIjQ0lMWLF3P79m19TbKvry8JCQlcuXJFfyTeuHFjAgICeOeddwDDketPPvmk0H15LDQ0lHnz5nH9+nX9zVn27dtHr169+OOPP6hZsyaNGjVi7ty5DBo0SL/evHnz2LNnD6dOndKPXEdGRjJx4kT9MikpKVSuXFk/Yg0wePBg7ty5w4EDB/TLTZs2jd27d/PLL78A2SPXrVq10o8MA6xfv55hw4aRmJioP/MwZswYPvvsM/7880/9HR19fX1xdnZm1apVufb33LlztG3blvv372Nra2swct2tWzcA9uzZQ69evcjIyMDS0pKOHTvSoEEDNm3alKO9pKQkGjRoQFJSkkHpi7e3N+3atWP+/Pm57vPZs2fneD01NRU7O7tc4y5LJLl+Mss3x2RfxCf01H/dJmv3Vkmu86DJyuTIorn0D52PiSRJBjRZWWydFyLJdR4kuS4+aWlp2NvbP/H7u1yNXP/222+EhIQQExPDX3/9pR/JTUpKIjY2llatWuWZjKanpxMaGsru3bu5desWarWajIwMkpKSALh06RKmpqY8//zz+nUaN26Mg4OD/nlcXBzp6elUrVrVoO2MjAyuXLmif+7s7GxwsV+NGjVQKpUGp7hq1KiRY1T8sSf15Unq1q1rcNfDDh06oNVqSUhIoFKlSly5coXAwEBGjhypX0atVhuUjQC0adPmidu6dOkSr7zyisFrnp6eREZGotFo9H/8ubVlbW2tT6whe584Ozsb3Cr93/vp/PnzhIaGEhcXx7179wx+B5o0aaJfzsPDQ///tWrVArLLfurWrUtsbKxB3//pwoULaDQaXF1dDV5XqVQ5fu6PzZgxg+DgYP3ztLQ0nJyccl22LFIqlezauVPKQnKRlpZG3759jR1GqXb6k5XGDqHUUpiY8HXou8YOo1SSkpm8SVmI8ZWr5NrPz4969eqxZs0aateujVarpVmzZmRmZmJlZZXvulOmTOHgwYMsWbKERo0aYWVlxauvvkpmZmaBt5+enk6tWrU4evRojvf+mYSbmZkZvKdQKHJ9La8yjyf15Vmkp6cDsGbNmhwlKf/+Y7WxsSmy7ebWVmH304MHD/Dx8cHHx4fNmzfj6OhIUlISPj4+OX6O/2xHoVAA6NvJb/+mp6ejVCo5f/58jv3xz6T/nywsLAzOZJRH8kGeO2tra2OHUHr9bzBh1apVcofWPEhdcd4kgRSlWblJrv/++28SEhJYs2YNnTp1AuDkyZP69z08PFi7di13797NdcQ3OjqagIAA/P39gewk6tq1a/r3GzdujFqt5vz58/qykISEBFJSUvTLtG7dmtu3b2Nqaoqzs3PRd7KAfXmSpKQkbt68qS9rOH36NCYmJri5uVGjRg1q167N77//zuDBg585Vnd3d30t82PR0dG4uroW+Qfjr7/+yt9//82CBQv0I8Pnzp0rdDseHh4cPnxYf4HmP7Vq1QqNRkNycrL+90yIvDw+cBO5yd43pqammJqWm68iIYQoPzeRqVy5MlWrVuWTTz4hMTGR77//3uBU/KBBg6hZsyZ9+vQhOjqa33//na1bt/LDDz8A4OLiwrfffktsbCxxcXG8/vrrBiPHbm5u+Pr6Mnr0aGJiYjh//jwjRowwGOX09vamQ4cO9OnThwMHDnDt2jVOnTrFzJkznyrJy8uT+vIklpaWDB06lLi4OE6cOMGECRMYMGCAfrq/2bNnExYWxvLly7l8+TIXLlwgKiqKpUuXFjrWyZMnc/jwYebOncvly5fZsGEDK1euZMqUKYVu60nq1q2Lubk5K1as4Pfff+e7775j7ty5hW5n1qxZfPHFF8yaNYtLly5x4cIFFi5cCICrqyuDBw9myJAhfPvtt1y9epUzZ84QFhbG7t27i7pLooyTkbW8Kf53ExnZR0KI8qbcJNcmJiZs2bKF8+fP06xZM95++20WL16sf9/c3JwDBw5QvXp1evbsSfPmzVmwYIH+g33p0qVUrlyZjh074ufnh4+PD61btzbYRlRUFLVr16ZLly707duXUaNG6ad4g+xRqj179tC5c2eGDRuGq6srr732GtevX6dGjaK7YOdJfXmSRo0a0bdvX3r27EmPHj3w8PDgo48+0r8/YsQI1q5dS1RUFM2bN6dLly6sX7+e+vXrFzrW1q1b89VXX7FlyxaaNWtGSEgIc+bMMZgppKg4Ojqyfv16vv76a5o0acKCBQtYsmRJodvx8vLi66+/5rvvvqNly5Z07dqVM2fO6N+PiopiyJAhTJ48GTc3N/r06cPZs2f1s8oIIYQQouIq17OFiJwez3MdGxtr7FAqrIJebSzKPrVajbe3N5aDR+lrjEU2bcpdMnd+RVRU1FMduAshREmrkLOFCCFEaaJQKLC0suLR5k+MHUqppDQ1zTELkRBClHWSXJczTZs25fr167m+t3r16hKORoiKTalUsnvXLpmmMA8y44MQojySspBy5vr162RlZeX6Xo0aNQzm1xbGIWUhQojioNFo5EBOFLuKfFAsZSEVVL169YwdghBCiBKm0Wjo1duPRxlyp1RRvCytrNm9S+4AmR9JroUQQogyTqfT8SjjITZvTJeLZwtIm/o3GTs+weqVUZjY536HXfEvWi0PNi2UMyRPIMm1KDXWr1/PpEmTDG7M87SOHj3Kiy++yL179wzujlnUSmo7QghRICYmKExkRLEgHu8nhYlS9lkBSUpdMHJ4K55JQEAAffr0MXYYQgghhBClgiTXQgghRBmn0WiMHYKoAHT/u3O1/L7lT5JrUSDffPMNzZs3x8rKiqpVq+Lt7c3UqVPZsGEDO3bsQKFQoFAoOHr0KEePHkWhUBiUd8TGxqJQKLh27Zr+tfXr11O3bl2sra3x9/fn77//1r937do1TExMctw2PjIyknr16hncmr6gtm7dStOmTbGwsMDZ2Znw8HCD9z/77DPatGlDpUqVqFmzJq+//jrJyckGy+zZswdXV1esrKx48cUXDfojRH40Gg1qtVoe8iiWR16zRAlRtLILQ6TmOn9Scy2e6NatWwwaNIhFixbh7+/P/fv3OXHiBEOGDCEpKYm0tDSioqIAqFKlCqdOnXpimzExMQQGBhIWFkafPn3Yt28fs2bN0r/v7OyMt7c3UVFRtGnTRv96VFQUAQEBmBTygp3z588zYMAAQkNDGThwIKdOnWLcuHFUrVpVfyv2rKws5s6di5ubG8nJyQQHBxMQEMCePXsAuHHjBn379mX8+PGMGjWKc+fOMXny5CduW6VSoVKp9M/T0tIKFXtpJFN+FU5mZiavvNKHrKxMY4cihBBPTatWA9mfaZaWlkaOpvSS5Fo80a1bt1Cr1fTt21c/1V/z5s0BsLKyQqVSUbNmzUK1uWzZMnx9fZk2bRoArq6unDp1in379umXGTFiBGPGjGHp0qVYWFjw448/cuHCBXbs2FHoPixdupRu3brx/vvv67cXHx/P4sWL9cn18OHD9cs3aNCA5cuX07ZtW9LT07G1teXjjz+mYcOG+hFvNzc3Lly4wMKFC/PddlhYGLNnzy50zKWVRqOht58fGQ9lyq/C6jFjkVw4JYpF1qMMvg9/z9hhiHJOp81OruVMSf6kLEQ8UYsWLejWrRvNmzenf//+rFmzhnv37j1Tm5cuXeKFF14weK1Dhw4Gz/v06YNSqWTbtm1AdhnJiy++iLOz81Ntz9PT0+A1T09PfvvtN33t2Pnz5/Hz86Nu3bpUqlSJLl26AJCUlFTgmHMzY8YMUlNT9Y8bN24UOn4hhBDC+BTZ/1UojBxH6SYj1+KJlEolBw8e5NSpUxw4cIAVK1Ywc+ZMYmJicl3+ccnGP8sGnuYo19zcnCFDhhAVFUXfvn35/PPPWbZs2dN14gkePHiAj48PPj4+bN68GUdHR5KSkvDx8SEz89lO5VtYWGBhYVFEkRqfUqlk186dUhZSCBqNhj7+/hwIm2bsUIQQ4qmZmJoBlKvvtOIgybUoEIVCgaenJ56enoSEhFCvXj22bduGubl5jquGHR0dgexyksqVKwPZFzT+k7u7e47k/PTp0zm2O2LECJo1a8ZHH32kL015Gu7u7kRHRxu8Fh0djaurK0qlkl9//ZW///6bBQsW4OTkBJDjYkp3d3e+++67J8ZcEciduQrH1NRUDkhEsXr06BG9e/c2dhiinFP8b/BMvgPyJ8m1eKKYmBgOHz5Mjx49qF69OjExMdy5cwd3d3cePXrE/v37SUhIoGrVqtjb29OoUSOcnJwIDQ3lgw8+4PLlyzlm5pgwYQKenp4sWbKEV155hf379xvUWz/m7u5O+/btmT59OsOHD8fKyuqp+jB58mTatm3L3LlzGThwID/88AMrV67ko48+AqBu3bqYm5uzYsUKxowZw8WLF5k7d65BG2PGjCE8PJypU6cyYsQIzp8/z/r1658qHlHxyJeRKE5mZmbGDkFUCFIWUhBScy2eyM7OjuPHj9OzZ09cXV157733CA8P56WXXmLkyJG4ubnRpk0bHB0diY6OxszMjC+++IJff/0VDw8PFi5cyLx58wzabN++PWvWrGHZsmW0aNGCAwcO8N57uV+MExgYSGZmpsEFh4XVunVrvvrqK7Zs2UKzZs0ICQlhzpw5+osZHR0dWb9+PV9//TVNmjRhwYIFLFmyxKCNunXrsnXrVrZv306LFi1YtWoV8+fPf+qYhBCiqMjBmygJMnJdMAqdnKcUpdzcuXP5+uuv+fnnn40dSpFIS0vD3t6e1NRU7OzsjB2OEKIcUKvVeHt7Y/PGdCjkVKUVlTb1bzJ2fILVK6Mwsa9q7HDKBq2WB5sWcujQIUxNK17xQ0G/vyvenhFlRnp6OteuXWPlypU5Rr6FEEL8P4VCgaWVNQ825T81qMgpY8cnxg6hTLG0spaykCeQ5FqUWkFBQXzxxRf06dMnR0nImDFj2LRpU67rvfHGG6xataokQhRCiFJBqVSye5dcNCuKn0KhkLKQJ5CyEFEmJScn53mnQzs7O6pXr17CERWclIUIIYQQZY+UhYhyrXr16qU6gRbiSeQW8k8mI2RCiLJIkmshhChhGo2GXr39eJQht5DPj9LUlK+/+ooqVaoYOxQhhCgwSa6FEKKE6XQ6HmU8pMoby8BERmZzo7l3k9Sd80lNTZXkWghRppT6+XpCQ0Np2bKlscMoNteuXUOhUOS4g2FZUVQ/n5L+OR89ehSFQkFKSkqpiUlUQCZKFPLI9SEHHUKIsqpQybWXlxeTJk0qplDKjvXr1+Pg4GDsMPKlUCjYvn27scPIVW6xTZkyhcOHDxsnoDyUxphE+aDRaIwdQqmn02oB2VdCiLKnQpaF6HQ6NBpNhZwAvaAyMzMxNzcvse3Z2tpia2tbYtsriNIYkygf5ELGgsjeR2q1GrVabeRYSi+56FOI0qfA2WVAQADHjh3j2LFjLFu2DICrV6+Snp7O1KlTOXHiBDY2NvTo0YOIiAiqVasGwL59+5g3bx4XL15EqVTSoUMHli1bRsOGDfVt//e//2Xq1Kns378flUqFu7s7H374IS+88IJ+mc8++4z333+fe/fu8dJLL7FmzRoqVaoEgFarZeHChXzyySfcvn0bV1dX3n//fV599VUguwTgxRdfZM+ePbz33ntcuHCBAwcO4OXllWd/4+LimDRpEufOnUOhUODi4sLq1atJT09n2LBhAPpJ1GfNmkVoaCgKhYJt27bRp08ffTsODg5ERkbqb7N95swZRo8ezaVLl2jWrBkzZ87Mse2LFy/mu0+9vLzw8PDA0tKStWvXYm5uzpgxYwgNDQXA2dkZAH9/fwDq1avHtWvX8v35hoaGsn37doKCgvjggw+4fv06Wq2WlJQUpkyZwo4dO1CpVLRp04aIiAhatGiRaztnz57l3Xff5aeffiIrK4uWLVsSERFB69at843t8fYfl8dotVrmzZvHJ598wp07d3B3d2fBggX4+voC2eU09evXZ+vWraxYsYKYmBhcXFxYtWoVHTp0AOD69esEBQVx8uRJMjMzcXZ2ZvHixfTs2VMf7/nz55k+fTrx8fG0bNmSqKgo3NzcDPbJ45gCAgJISUmhVatWrFy5EpVKxeuvv87y5ctL9ECkLJCZMPKnUqmMHUKp9/j3Z8yYMUaOpHSztLJix/btkmDnQw5AREkrcHK9bNkyLl++TLNmzZgzZw4AZmZmtGvXjhEjRhAREUFGRgbTp09nwIABfP/99wA8ePCA4OBgPDw8SE9PJyQkBH9/f2JjYzExMSE9PZ0uXbrw3HPP8d1331GzZk1+/PFHtP87JQhw5coVtm/fzq5du7h37x4DBgxgwYIFfPDBBwCEhYWxadMmVq1ahYuLC8ePH+eNN97A0dGRLl266Nt55513WLJkCQ0aNKBy5cr59nfw4MG0atWKjz/+GKVSSWxsLGZmZnTs2JHIyEhCQkJISEgAKPDoZnp6Or1796Z79+5s2rSJq1evMnHiRINlUlJS6Nq1a777FGDDhg0EBwcTExPDDz/8QEBAAJ6ennTv3p2zZ89SvXp1oqKi8PX1LfCHSmJiIlu3buXbb7/Vr9O/f3+srKzYu3cv9vb2rF69mm7dunH58uVcLzK6f/8+Q4cOZcWKFeh0OsLDw+nZsye//fYblSpVKnBsy5YtIzw8nNWrV9OqVSvWrVvHyy+/zC+//IKLi4t+uZkzZ7JkyRJcXFyYOXMmgwYNIjExEVNTU8aPH09mZibHjx/HxsaG+Pj4HD+rmTNnEh4ejqOjI2PGjGH48OFER0fnuY8OHz6MpaUlR48e5dq1awwbNoyqVavqfxdzo1KpDJKpvObnLi80Gg1+fn48fCgzYYhnkZ1cdxo1BzvH54wcS+mkUWexf9E4fHx8jB1KqWZqasqePXtkEESUmAIn1/b29pibm2NtbU3NmjUBmDdvHq1atWL+/Pn65datW4eTkxOXL1/G1dWVfv36GbSzbt06HB0diY+Pp1mzZnz++efcuXOHs2fP6pO1Ro0aGayj1WpZv369fqT6zTff5PDhw3zwwQeoVCrmz5/PoUOH9COWDRo04OTJk6xevdoguZ4zZw7du3cvUH+TkpKYOnUqjRs3BjBI6Ozt7VEoFPr9UFCff/45Wq2WTz/9FEtLS5o2bcp///tfxo4dq19m5cqVT9ynAB4eHsyaNUsf28qVKzl8+DDdu3fH0dERyB41L0yMmZmZbNy4Ub/+yZMnOXPmDMnJyVhYWADwf+3deVhU5fv48ffMIAjK4gICiYAKrqggLkTuqLjQFzfULJHcUMmFRCVNxQ1UyF1zSTC1tDTNPYVEi3IpxSxLxVD8pIaFQoSCzPD7g5ifxCIoOQj367rmkjNnu88548x9nnOf54SHh7N371527drFmDFjCiyja9eu+YY3bNiAmZkZJ06coG/fviWOLTw8nOnTpzNkyBAAFi9ezPHjx1m+fDlr1qzRTjd16lT69OkDQEhICM2aNSMhIYHGjRuTlJTEgAEDcHJyAnI/F/+2cOFC7WdkxowZ9OnTh4cPH1K1atVC49LX12fz5s0YGRnRrFkz5s2bR1BQEPPnz0epLPwWhtDQUEJCQorcViFE0ZRKFUqVlPAVRqPOJidHw7C5G1FKy2yhsh894uN5Y+VKmniunukb68KFCxw/frzQlttr167h6OjI1atXmT17NqdPn+aPP/7QtkgnJSXRvHlz4uPjcXZ2LrarJTs7O21iDWBlZUVycjKQ29qakZFRIGnOysrC2dk533uurq4l3rbAwEBGjRrF1q1b8fDwYNCgQflKWZ7Gzz//rC3nyJN3QpCnJPsUcpPrxz2+T56Wra2tNvnNiyU9PZ1atWrlm+7Bgwdcu3at0GX8/vvvzJo1i9jYWJKTk1Gr1WRkZJCUlFTiONLS0rh16xbu7u753nd3d+fChQv53nt8P1hZWQG5T29s3LgxEydOZNy4cRw9ehQPDw8GDBhQYL8VNX+9evUKja1ly5YYGRlph93c3EhPT+fmzZvY2toWOk9wcDCBgYH5ts/GxqbI7X/RqVQq9u+XxzAXJzU1tUDDgyicRqNGo5aa68Lk5OSgUCjZPne0rkMp1wyNjOQeK/FcPdOnLT09HS8vLxYvXlxgXF6i4uXlha2tLRs3bsTa2hqNRkPz5s3JysoCwNDQ8InrqVKlSr5hhUKhTdLT09MBOHjwIC+9lP/SYV5ra55q1aqVcMty621fe+01Dh48yOHDh5kzZw47duzQ1goXRqFQFEgoHj16VOJ1Qsn2KRS/T57Wv/dPeno6VlZWxMbGFpi2qN5SfH19+fPPP1mxYgW2trYYGBjg5uamPd5l7fH9kFcDn7cfRo0aRc+ePTl48CBHjx4lNDSUiIgI3nrrrRLNX1YMDAwKfBYrOqlvLF5RV0bE43L/P361YbaO4yjfpOb6yaTmWjxvpUqu9fX183WL5OLiwu7du7Gzsyv0rPDPP//k8uXLbNy4kQ4dOgC5pQaPa9GiBZs2bSIlJeWpHhTQtGlTDAwMSEpKylcCUhYcHR1xdHRkypQpDB06lMjISPr161dgP+QxNzfn9u3b2uGrV6/mqztt0qQJW7duzVd2cOrUqXzLeNI+LakqVao8cxdWLi4u3LlzBz09Pe2NiE8SFxfH2rVrtTcN3rx5kz/++KNUsZmYmGBtbU1cXFy+YxoXF0fbtm1LtQ02Njb4+/vj7+9PcHAwGzduzJdcl9aFCxd48OCB9qTw1KlTVK9evUK3RIuyJ61oT6ZQ5JZZrV+//pmvGlZkkjgKUf6Uqp9rOzs7Tp8+zfXr1/njjz+YMGECKSkpDB06lLNnz3Lt2jW++OIL/Pz8UKvV1KhRg1q1arFhwwYSEhL48ssv810eBxg6dCiWlpZ4e3sTFxfHr7/+yu7du/n2229LFJOxsTFTp05lypQpbNmyhWvXrnHu3DlWrVrFli1bSrN5Wg8ePCAgIIDY2Fhu3LhBXFwcZ8+epUmTJtr9kJ6eTkxMDH/88Yc2ge7atSurV6/m/PnzfPfdd/j7++drGX3ttddQKBSMHj2aS5cucejQIcLDw/Ot+0n7tKTs7OyIiYnhzp073Lt376n2g4eHB25ubnh7e3P06FGuX7/ON998w8yZM/nuu+8KncfBwYGtW7fy888/c/r0aYYNG1bg6kRJYgsKCmLx4sXs3LmTy5cvM2PGDOLj4wvcAFqcyZMn88UXX5CYmMi5c+c4fvy49hg+raysLEaOHKk9fnPmzCEgIKDIemshCiPJ0JMp/vk/pa+vj56enryKeMlnSYjyp1QZwdSpU1GpVDRt2hRzc3OysrKIi4tDrVbTo0cPnJycmDx5MmZmZiiVSpRKJTt27OD777+nefPmTJkyhaVLl+Zbpr6+PkePHsXCwoLevXvj5OREWFhYqb4w5s+fz7vvvktoaChNmjTB09OTgwcPYm9vX5rN01KpVPz5558MHz4cR0dHfHx86NWrl/amtJdffhl/f38GDx6Mubk5S5YsASAiIgIbGxs6dOjAa6+9xtSpU/PV51avXp39+/dz8eJFnJ2dmTlzZoHyj7wW26L2aUlFRERw7NgxbGxsCtSel5RCoeDQoUN07NgRPz8/HB0dGTJkCDdu3KBOnTqFzvPBBx9w7949XFxceOONN5g4cSIWFhaljm3ixIkEBgby9ttv4+TkxJEjR9i3b1++G0ufRK1WM2HCBO1nwtHRkbVr15Z8BxSiW7duODg40LFjRwYPHsyrr76q7QJRCCGEEEKRI3cdCVEief1cP+uTL9PS0jA1NSU1NRUTE5OyCU68ULKzs/Hw8KDm6yvkMd9FUN+7Rer+RURGRj51Q4kQQpSlkv5+S+GfEEI8ZwqFgqqGRqRsK3mZU2Wk0tPD1NRU12EIIUSpVNrkulmzZty4caPQcevXr2fYsGHPOaL/VmXbXiHKM5VKxcED0l3hk8jNekKIF1GlLQu5ceNGkd3k1alTJ1+/2hVBZdve8kzKQoQQomyo1Wo5SUVORJ8XKQt5gqIe+FFRVbbtFUIIUbGlpKTg4+NDdrY8ZMjQ0IgDB/ZLgl1OVNrkWgghhBAvrtTUVLKzs+n8aigmNerqOhyd0WjUHNg6Qlrwy5EKlVzn5OQwduxYdu3axb179zh//jytWrXSdVhCCCGE+I8olSqUygqVzogXXIX6NB45coSoqChiY2OpX78+tWvXfuI8CoWCPXv24O3t/d8HKIQQQpQBqTVGykFEuVWhkutr165hZWXFyy+//NzXnZWVhb6+/nNfb3H+y5gePXqU7+mTFUFOTg5qtVoeTS2EKNfUajV9vbx48M/TgUXllqPRAMjvVzlSYY7CiBEjtI87VygU2hv4Jk+ezOTJk7XTtWrVCm9vb+bOnYudnR0A/fr1A3Jv+rt+/XqhDwuZPHky8fHxxMbGAtC5c2eaN2+Onp4e27Ztw8nJiePHj/Pjjz8SFBTEV199RbVq1ejRowfLli0rUSu6RqMhPDycDRs2cPPmTerUqcPYsWOZOXMmANOnT2fPnj3873//w9LSkmHDhjF79mxtkjt37lz27t1LQEAACxcu5MaNG2g0Gu7fv8/UqVP5/PPPyczMxNXVlWXLltGyZUvtuj///HNCQkK4dOkS1tbW+Pr6MnPmTO1/VIVCwdq1azl8+DAxMTEEBQU98cmEP/30E9OnT+fkyZPk5OTQqlUroqKiaNCgARqNhgULFrBhwwbu3r1LkyZNCAsLw9PTE4Dr169jb2/P7t27WbVqFadPn8bBwYH3338fNzc37Tri4uKYOXMmZ86cwcDAgLZt27Jjxw5q1KiBRqNh8eLFbNiwgTt37uDo6Mi7777LwIEDAYiNjaVLly4cOnSIWbNmcfHiRY4ePcrcuXNp0aIFVatWZdOmTejr6+Pv76/d3pycHEJCQti8eTO///47tWrVYuDAgaxcufKJx1iIpyUtlSJPdnY2DzIyGBHwIcpK/BCiP5Ov8/mOmboOQ+dyyE2u5fuh/KgwyfWKFSto0KABGzZs4OzZs6hUKtq0aVPsPGfPnsXCwoLIyEg8PT1LfZftli1bGDduHHFxcQDcv3+frl27MmrUKJYtW8aDBw+YPn06Pj4+fPnll09cXnBwMBs3bmTZsmW88sor3L59m19++UU73tjYmKioKKytrbl48SKjR4/G2NiYadOmaadJSEhg9+7dfPbZZ9rtGTRoEIaGhhw+fBhTU1PWr19Pt27duHLlCjVr1uSrr75i+PDhrFy5kg4dOnDt2jXGjBkDwJw5c7TLnjt3LmFhYSxfvvyJZ8e//fYbHTt2pHPnznz55ZeYmJgQFxenvYy3YsUKIiIiWL9+Pc7OzmzevJlXX32Vn376Kd8jzmfOnEl4eDgODg7MnDmToUOHkpCQgJ6eHvHx8XTr1o0333yTFStWoKenx/Hjx1Gr1QCEhoaybds23n//fRwcHDh58iSvv/465ubmdOrUSbuOGTNmEB4eTv369alRo4b22AYGBnL69Gm+/fZbRowYgbu7O927d2f37t0sW7aMHTt20KxZM+7cucOFCxeK3BeZmZlkZmZqh9PS0orddyI/SSpz94F3v37SUinyUSpVKFUV5me81CrzicXjHm+5FuVDhflfaWpqirGxMSqVCktLyxLNY25uDoCZmVmJ53mcg4MDS5Ys0Q4vWLAAZ2dnFi1apH1v8+bN2NjYcOXKFRwdHYtc1l9//cWKFStYvXo1vr6+ADRo0IBXXnlFO82sWbO0f9vZ2TF16lR27NiRL7nOysriww8/1G7b119/zZkzZ0hOTsbAwACA8PBw9u7dy65duxgzZgwhISHMmDFDu9769eszf/58pk2bli+5fu211/Dz8yvRvlmzZg2mpqbs2LFD27L++PaHh4czffp0hgwZAsDixYs5fvw4y5cvZ82aNdrppk6dSp8+fQAICQmhWbNmJCQk0LhxY5YsWYKrqytr167VTt+sWTMgN6FdtGgR0dHR2pbu+vXr8/XXX7N+/fp8yfW8efPo3r17vvhbtGih3XYHBwdWr15NTEwM3bt3JykpCUtLSzw8PKhSpQr16tWjbdu2Re6L0NBQQkJCSrTfRH5ZWVn07duXrKwsXYdSLkwK3iYJheDRo0xWLxmh6zBEOaHOzv1+zMzMpFq1ajqORkAFSq51oXXr1vmGL1y4wPHjx6levXqBaa9du1Zscv3zzz+TmZlJt27dipxm586drFy5kmvXrpGenk52dnaBTsxtbW21iXVeTOnp6dSqVSvfdA8ePODatWvaaeLi4li4cKF2vFqt5uHDh2RkZGBkZASAq6trkbH9W3x8PB06dCi0LjstLY1bt27h7u6e7313d/cCLcAtWrTQ/m1lZQVAcnIyjRs3Jj4+nkGDBhW6/oSEBDIyMgokzVlZWTg7O+d7r7Dteny9eetOTk4Gcq8ELF++nPr16+Pp6Unv3r3x8vIqsjU/ODiYwMDAfNtvY2NT6LRCCCGEeLFV6ORaqVQWuJxc1FMKn2a+f58hpqen4+XlxeLFiwtMm5cYFsXQ0LDY8d9++y3Dhg0jJCSEnj17aluFIyIinhiTlZWVtlb8cWZmZtppQkJC6N+/f4FpqlatWuSyi/Ok7Smpx5NzhUIB5NamP2kd6enpABw8eJCXXnop37i8Fvw8hW3Xv08KFAqFdr02NjZcvnyZ6Ohojh07xvjx41m6dCknTpwo9GTCwMCgwDpFyejr63P48GEpC/mnLGRF6Ou6DkUIUc6o9HI7LpDfmfKjQifX5ubm3L59WzuclpZGYmJivmmqVKlSoE7J3NycH3/8Md978fHxT+wdw8XFhd27d2NnZ1fqO3YdHBwwNDQkJiaGUaNGFRj/zTffYGtrq725EXIfaf4kLi4u3LlzBz09Pe0NnIVNc/nyZRo2bFiqmIvTokULtmzZUmivIiYmJlhbWxMXF5evPCMuLq7Y8orC1hETE1NoyUXTpk0xMDAgKSkp3zrKiqGhIV5eXnh5eTFhwgQaN27MxYsXcXFxKfN1VXbyxDHQ09PjwP79lf4kQ+TKzs7G09MTjaZy19hW9u3Po1AqAfmuLE8qdHLdtWtXoqKi8PLywszMjNmzZxf48NnZ2RETE4O7uzsGBgbUqFGDrl27snTpUj788EPc3NzYtm0bP/74Y4Fygn+bMGECGzduZOjQoUybNo2aNWuSkJDAjh072LRpU7Ef/KpVqzJ9+nSmTZuGvr4+7u7u3L17l59++omRI0fi4OBAUlISO3bsoE2bNhw8eJA9e/Y8cR94eHjg5uaGt7c3S5YswdHRkVu3bnHw4EH69euHq6srs2fPpm/fvtSrV4+BAweiVCq5cOECP/74IwsWLCjZzv6XgIAAVq1axZAhQwgODsbU1JRTp07Rtm1bGjVqRFBQEHPmzKFBgwa0atWKyMhI4uPj2b59e4nXERwcjJOTE+PHj8ff3x99fX2OHz/OoEGDqF27NlOnTmXKlCloNBpeeeUVUlNTiYuLw8TERFtf/jSioqJQq9W0a9cOIyMjtm3bhqGhoTxiXvyn5IdT5FEoFBgaGRG1eriuQxHlgILc5Drv6q7QvQqdXAcHB5OYmEjfvn0xNTVl/vz5BVquIyIiCAwMZOPGjbz00ktcv36dnj178u677zJt2jQePnzIm2++yfDhw7l48WKx68trjZ0+fTo9evQgMzMTW1tbPD09Uf5zZlmcd999Fz09PWbPns2tW7ewsrLC398fgFdffZUpU6YQEBBAZmYmffr04d13331id3gKhYJDhw4xc+ZM/Pz8uHv3LpaWlnTs2JE6deoA0LNnTw4cOMC8efNYvHgxVapUoXHjxoW2oJdUrVq1+PLLLwkKCqJTp06oVCpatWqlrbOeOHEiqampvP322yQnJ9O0aVP27duXr6eQJ3F0dOTo0aO88847tG3bFkNDQ9q1a8fQoUMBmD9/Pubm5oSGhvLrr79iZmaGi4sL77zzzlNvF+SW04SFhREYGIharcbJyYn9+/cXqGsXQoj/gkqlkisZQGJiIqNHj9Z1GDonLdfljyKnsv/vFOI5S0tLw9TUlNTU1AI3pAohhCiZxMRE/Pz86Oq9BJMalfcmcY0mm31b3iA6OloeIvMfK+nvtxwFIYQQQrywNBo1Gk3lfRS61J6XP5JcPydJSUk0bdq0yPGXLl2iXr16zzGiZ+Pv78+2bdsKHff666/z/vvvP+eIhBBCVCampqbo6ekRuy9Y16HonKGhkdRclyNSFvKcZGdnc/369SLHP00PI7qUnJxc5JMGTUxMsLCweM4RvTikLEQIIcqGPME1l0KhkJrr50DKQsoZPT29Mu3qTtcsLCwkgRZCCKFTklCK8ujJXVgIIYSosFJSUpg0aRIpKSm6DkUIISoESa6FEKISS01N5cKFC6Smpuo6FCGEqBAkuRbFmjt3Lq1atSrVPAqFgr179/4n8QghhBBClGeSXItiTZ06lZiYGF2HUS7FxsaiUCi4f/++rkMRQgghRDkhNzSKYlWvXp3q1avrOoxy59GjR7oOoUKRO/5158GDB4B8poUQoqxIcl1B7Nq1i5CQEBISEjAyMsLZ2ZnPP/8cQ0NDFixYwIYNG7h79y5NmjQhLCwMT09P7bz/+9//CAoK4osvviAzM5MmTZqwZs0a2rVrx9y5c9m7dy/x8fEAnD17lnfeeYfz58/z6NEjWrVqxbJly3BxcSl1zFlZWQQGBrJ7927u3btHnTp18Pf3Jzg4mOvXr2Nvb8/58+e1ZSn379+nRo0aHD9+nM6dOxMbG0uXLl04cOAAwcHBXLlyhVatWrFp0yaaN28OQFRUFJMnTyYqKoqgoCBu3rxJp06d2LRpEzY2//+JXuvWrSM8PJybN29ib2/PrFmzeOONN7TjFQoFa9eu5fDhw8TExDBo0CC2bNkCQI0aNQDw9fUlKiqq1PuhslOr1Xh5eZGRkaHrUCq1zMxMXYcghBAVgiTXFcDt27cZOnQoS5YsoV+/fvz111989dVX5OTksGLFCiIiIli/fj3Ozs5s3ryZV199lZ9++gkHBwfS09Pp1KkTL730Evv27cPS0pJz586h0WgKXddff/2Fr68vq1atIicnh4iICHr37s3Vq1cxNjYuVdwrV65k3759fPLJJ9SrV4+bN29y8+bNUm9/UFAQK1aswNLSknfeeQcvLy+uXLlClSpVAMjIyGDhwoV8+OGH6OvrM378eIYMGUJcXBwAe/bsYdKkSSxfvhwPDw8OHDiAn58fdevWpUuXLtr1zJ07l7CwMJYvX45KpeLVV19lwIABXL58GRMTEwwNDQuNLzMzM1/iUlT/4JVVdnY2GRkZLHh7OyqldKv1vCVc/4kPPp1PdnblfcKdEEKUJUmuK4Dbt2+TnZ1N//79sbW1BcDJyQmA8PBwpk+fzpAhQwBYvHgxx48fZ/ny5axZs4aPPvqIu3fvcvbsWWrWrAlQbH/cXbt2zTe8YcMGzMzMOHHiBH379i1V3ElJSTg4OPDKK6+gUCi0sZfWnDlz6N69OwBbtmyhbt267NmzBx8fHyD3cvfq1atp166ddpomTZpw5swZ2rZtS3h4OCNGjGD8+PEABAYGcurUKcLDw/Ml16+99hp+fn7a4cTERCC3z28zM7Mi4wsNDSUkJOSptq0yyEvqVEoVKpV8JT13/5TjqNXyCGUhhCgLckNjBdCyZUu6deuGk5MTgwYNYuPGjdy7d4+0tDRu3bqFu7t7vund3d35+eefAYiPj8fZ2VmbWD/J77//zujRo3FwcMDU1BQTExPS09NJSkoqddwjRowgPj6eRo0aMXHiRI4ePVrqZQC4ublp/65ZsyaNGjXSbh/kPsCnTZs22uHGjRtjZmamnebnn38udh/lcXV1far4goODSU1N1b6epnW+Ist7ZK9ao0atzpbXc37l1brLo5OFEKJsSDNRBaBSqTh27BjffPMNR48eZdWqVcycOZNjx449cd6iShmK4uvry59//smKFSuwtbXFwMAANzc3srKySh23i4sLiYmJHD58mOjoaHx8fPDw8GDXrl0olbnnfY/f5KbrG66qVav2VPMZGBhgYGBQxtFUHAYGBhgZGTErYpiuQ6nU9PX1dR2CEEJUCJJcVxAKhQJ3d3fc3d2ZPXs2tra2xMTEYG1tTVxcHJ06ddJOGxcXR9u2bQFo0aIFmzZtIiUlpUSt13Fxcaxdu5bevXsDcPPmTf7444+njtvExITBgwczePBgBg4ciKenJykpKZibmwO5JS/Ozs4A2psq/+3UqVPUq1cPgHv37nHlyhWaNGmiHZ+dnc13332n3ebLly9z//597TRNmjQhLi4OX1/ffNvZtGnTYmPPS0bkcvqzUalU7N+/X3oL0ZHLly8zYcIE7T0KQgghno0k1xXA6dOniYmJoUePHlhYWHD69GltzyBBQUHMmTOHBg0a0KpVKyIjI4mPj2f79u0ADB06lEWLFuHt7U1oaChWVlacP38ea2vrfOUWeRwcHNi6dSuurq6kpaURFBRU6tbvPO+99x5WVlY4OzujVCr59NNPsbS0xMzMDKVSSfv27QkLC8Pe3p7k5GRmzZpV6HLmzZtHrVq1qFOnDjNnzqR27dp4e3trx1epUoW33nqLlStXoqenR0BAAO3bt9cm20FBQfj4+ODs7IyHhwf79+/ns88+Izo6utj4bW1tUSgUHDhwgN69e2NoaCjdFj4llUpuZNSVvKQ672qREEKIZyPfphWAiYkJJ0+epHfv3jg6OjJr1iwiIiLo1asXEydOJDAwkLfffhsnJyeOHDnCvn37cHBwAHJbX48ePYqFhQW9e/fGycmJsLCwIpOdDz74gHv37uHi4sIbb7zBxIkTsbCweKq4jY2NWbJkCa6urrRp04br169z6NAh7Y/85s2byc7OpnXr1kyePJkFCxYUupywsDAmTZpE69atuXPnDvv37893idvIyIjp06fz2muv4e7uTvXq1dm5c6d2vLe3NytWrCA8PJxmzZqxfv16IiMj6dy5c7Hxv/TSS4SEhDBjxgzq1KlDQEDAU+0HIXQpL7mWlmshhCgbihy5FiteUHn9XN+7d6/I3jry+rkuT09RTEtLw9TUlNTUVExMTHQdjqjkEhMT8fPzIzIyEnt7e12HI4QQ5VZJf7+l5VoIISoxU1NTWrZsiampqa5DEUKICkGSa/GfWbRokfbx6f9+9erVS9fhCSHI7b5yxYoVJe6OUwghRPGkLET8Z1JSUkhJSSl0nKGhIS+99NJzjqh8kLIQIYQQ4sVT0t9v6S1E/Gdq1qwprWFCCCH+M2q1WrrxLIJCoZCemHREkmshhBBCvHBSUlLw8fEhOztb16GUS0aGRuw/sF8SbB2Q5FoIIYQQL5zU1FSys7MJbL8Qy+p1dR1OuaLOURMc86a06uuIJNdCCCFEOSalD4XLa7FWKlSolJLO5KPRdQCVm3wahRBCiHJKrVbj1deLjAcZug5FvEA0ObnZtVqtRk9PUr3nTfa4eCZZWVn5noZYFnJycsrdF0J5jEm8mKQVUpRGdnY2GQ8yWDZkCyql1M4+7n8pN1hyZKauwyiXcv5JruW7RjckU6hAOnfuTPPmzQHYunUrVapUYdy4ccybNw+FQkFmZiYzZ87k448/5v79+zRv3pzFixfne8z3119/TXBwMN999x21a9emX79+hIaGUq1aNQDs7OwYOXIkV69eZe/evfTv35+oqKgiY7p+/Tr29vZ8/PHHrFy5knPnztGwYUPWrFlDp06dgP//pMVDhw4xa9YsLl68yNGjR+nYsSOLFy9mw4YN3LlzB0dHR959910GDhwIwL179wgICODo0aOkp6dTt25d3nnnHfz8/MjKyiIwMJDdu3dz79496tSpg7+/P8HBwdqYzp8/T6tWrQC4f/8+NWrU4Pjx43Tu3PmpYxK5JIEsnFqtpp93P2mFFKWmUkrpw7+plPKojqI83nItnj/5n1rBbNmyhZEjR3LmzBm+++47xowZQ7169Rg9ejQBAQFcunSJHTt2YG1tzZ49e/D09OTixYs4ODhw7do1PD09WbBgAZs3b+bu3bsEBAQQEBBAZGSkdh3h4eHMnj2bOXPmlDiuoKAgli9fTtOmTXnvvffw8vIiMTGRWrVqaaeZMWMG4eHh1K9fnxo1ahAaGsq2bdt4//33cXBw4OTJk7z++uuYm5vTqVMn3n33XS5dusThw4epXbs2CQkJPHjwAICVK1eyb98+PvnkE+rVq8fNmze5efNmqfdnaWMqTGZmJpmZmdrhtLS0UsfxIlGr1Xh5eZGRIQlkUVb7b5VWSFEiWY8ymbTRT9dhiBfMI3UWkPv7k9c4Jp4fSa4rGBsbG5YtW4ZCoaBRo0ZcvHiRZcuW0bNnTyIjI0lKSsLa2hqAqVOncuTIESIjI1m0aBGhoaEMGzaMyZMnA+Dg4MDKlSvp1KkT69ato2rVqgB07dqVt99+u1RxBQQEMGDAAADWrVvHkSNH+OCDD5g2bZp2mnnz5tG9e3cg9wth0aJFREdH4+bmBkD9+vX5+uuvWb9+PZ06dSIpKQlnZ2dcXV2B3Fb1PElJSTg4OPDKK6+gUCiwtbUt/c58ipgKExoaSkhIyFOtXwghhCitvCuHcgVRNyS5rmDat2+PQqHQDru5uREREcHFixdRq9U4Ojrmmz4zM1PbenzhwgV++OEHtm/frh2fk5ODRqMhMTGRJk2aAGiT2dLIS0YB9PT0cHV15eeff843zePLTUhIICMjQ5vY5snKysLZ2RmAcePGMWDAAM6dO0ePHj3w9vbm5ZdfBmDEiBF0796dRo0a4enpSd++fenRo0ep4y5tTIUJDg4mMDBQO5yWloaNjU2pY3lRqFQq9u/fL1/qhcjKysL7/7wJeP8NXYcihKjA9FRVAKhSpYqOI6mcJLmuJNLT01GpVHz//fcFOpSvXr26dpqxY8cyceLEAvPXq1dP+/d/dYnp8eWmp6cDcPDgwQKPSTcwMACgV69e3Lhxg0OHDnHs2DG6devGhAkTCA8Px8XFhcTERA4fPkx0dDQ+Pj54eHiwa9culP/U6T2e/D169KhMYiqMgYFBseMrInloQeH09PQ4fOSwnHiIEsvOzsbT0xO1Rmpn/02tkf7miqL3T31+WXc4IEpGkusK5vTp0/mGT506hYODA87OzqjVapKTk+nQoUOh87q4uHDp0iUaNmxY5nGdOnWKjh07Ark/Ft9//z0BAQFFTt+0aVMMDAxISkoqstwCwNzcHF9fX3x9fenQoQNBQUGEh4cDYGJiwuDBgxk8eDADBw7E09OTlJQUzM3NAbh9+7a2xTk+Pv6J21DSmIQojpx4iNJQKBQYGRoxZYevrkMRLxCFQvnPv4onTCn+C5JcVzBJSUkEBgYyduxYzp07x6pVq4iIiMDR0ZFhw4YxfPhwIiIicHZ25u7du8TExNCiRQv69OnD9OnTad++PQEBAYwaNYpq1apx6dIljh07xurVq58prjVr1uDg4ECTJk1YtmwZ9+7d48033yxyemNjY6ZOncqUKVPQaDS88sorpKamEhcXh4mJCb6+vsyePZvWrVvTrFkzMjMzOXDggLZ05b333sPKygpnZ2eUSiWffvoplpaWmJmZoVQqad++PWFhYdjb25OcnMysWbOeuA0liUkIIcqSSqVi/wEpsypMYmIio0eP1nUY5ZLyn+RaTuZ1Q5LrCmb48OE8ePCAtm3bolKpmDRpEmPGjAEgMjKSBQsW8Pbbb/Pbb79Ru3Zt2rdvT9++fQFo0aIFJ06cYObMmXTo0IGcnBwaNGjA4MGDnzmusLAwwsLCiI+Pp2HDhuzbt4/atWsXO8/8+fMxNzcnNDSUX3/9FTMzM1xcXHjnnXeA3MtdeV3rGRoa0qFDB3bs2AHkJsJLlizh6tWrqFQq2rRpw6FDh7QlIZs3b2bkyJG0bt2aRo0asWTJkhLVZD8pJiGEKGuSIBVOnjsgyitFjpwOVxidO3emVatWLF++XNehaBXWp3Rll5aWhqmpKampqZiYmOg6HCGEeCElJibi5+dHYPuFWFavq+twyhV1jprgmDeJjo6Wk5AyVNLfb9njQgghhHjhmJqaoqenx3un5CmNhTEyNJKaax2R5Fo8k0WLFrFo0aJCx3Xo0IF169Y954iEEEJUBjVr1uSLL76QevQiKBQKKSnSESkLEc8kJSWFlJSUQscZGhoW6LJOSFmIEEI8K7VaLUl1ESSp/u9IWYh4LmrWrEnNmjV1HYYQQohKIiUlBR8fH7Kzs3UdSrlkZGjE/gP7JcHWIUmuhRBCCPHCSE1NJTs7mwWNZvOSobWuwylX1DlqRl2YIK36OqbUdQCieJ07d2by5Mlltry5c+e+sL12lDb2qKgozMzMnjidQqFg7969Tx2XEEKI50+pUKKn0JPXYy+VQlqry4MKn1zHxsaiUCi4f/++rkN5Kp999hnz58/XdRjPXWEJ79SpU4mJiSnxMgYPHsyVK1e0w0Ul57dv36ZXr15PG6oQQgghhJaUhfwjKysLfX19naz70aNHVKlSpdB4ymM9c2HxPg/Vq1enevXqJZ7e0NAQQ0PDJ05naWn5LGEJIYR4jtRqta5DKLc0ORogdx9J/9a680K0XGs0GkJDQ7G3t8fQ0JCWLVuya9cucnJy8PDwoGfPntr6opSUFOrWrcvs2bO5fv06Xbp0AaBGjRooFApGjBgB5JZbBAQEMHnyZGrXrk3Pnj2B3MdmOzk5Ua1aNWxsbBg/fjzp6en54omLi6Nz584YGRlRo0YNevbsyb179wCws7Mr8BCXVq1aMXfuXO2wQqFg3bp1vPrqq1SrVo2FCxdqW1U3bdqEvb09VatW1cb5eFlIZmYm06dPx8bGBgMDAxo2bMgHH3wAFF4GsXfv3mL7uTx79izdu3endu3amJqa0qlTJ86dO5dvmsLiLY5arWbkyJHa49WoUSNWrFhRYLrNmzfTrFkzDAwMsLKyIiAgQLsPAfr164dCodAOP97yfPToUapWrVrgisSkSZPo2rVrgf0RFRVFSEgIFy5cQKFQoFAoiIqK0m7f463kN2/exMfHBzMzM2rWrMn//d//cf36de342NhY2rZtS7Vq1TAzM8Pd3Z0bN24Uu08qOrVaTXZ2tryKeGVlZek8BnnJqyK9ROE05OZCUnOtWy/EaU1oaCjbtm3j/fffx8HBgZMnT/L6669jbm7Oli1bcHJyYuXKlUyaNAl/f39eeuklZs+ejUKhYPfu3QwYMIDLly9jYmKSryVzy5YtjBs3jri4OO17SqWSlStXYm9vz6+//sr48eOZNm0aa9euBSA+Pp5u3brx5ptvsmLFCvT09Dh+/Hipz6Tnzp1LWFgYy5cvR09Pj82bN5OQkMDu3bv57LPPirzLd/jw4Xz77besXLmSli1bkpiYyB9//PEUezXXX3/9ha+vL6tWrSInJ4eIiAh69+7N1atXMTY2LjLe4mg0GurWrcunn35KrVq1+OabbxgzZgxWVlb4+PgAsG7dOgIDAwkLC6NXr16kpqZqj8PZs2exsLAgMjIST0/PQvdFt27dMDMzY/fu3YwcORLITfB27txZaPI/ePBgfvzxR44cOUJ0dDSQ+wCCf3v06BE9e/bEzc2Nr776Cj09PRYsWICnpyc//PADSqUSb29vRo8ezccff0xWVhZnzpwp9gQmMzOTzMxM7XBaWlqx++9Fo1ar8fLyIiMjQ9ehlFtKhVLboiSEEP+VbE3uiUdWVpa2kU48f+U+uc7MzGTRokVER0fj5uYGQP369fn6669Zv349H330EevXr2f48OHcuXOHQ4cOcf78eW0CmFdWYWFhUaBV18HBgSVLluR77/FWYjs7OxYsWIC/v782uV6yZAmurq7aYYBmzZqVertee+01/Pz88r2XlZXFhx9+iLm5eaHzXLlyhU8++YRjx47h4eGh3RfPIq+VN8+GDRswMzPjxIkT9O3bt9h4i1KlShVCQkK0w/b29nz77bd88skn2uR6wYIFvP3220yaNEk7XZs2bQC0229mZlZkyYZKpWLIkCF89NFH2uQ6JiaG+/fvM2DAgALTGxoaUr16dfT09IotA9m5cycajYZNmzZpE+bIyEjMzMyIjY3F1dWV1NRU+vbtS4MGDQBo0qRJsfsjNDQ03/6oaLKzs8nIyCBq/AfoKeVmmn97+CiTUevH8uHrH6CS/SPEM7v2RyKzD1Xc79Rn8SgnN7l+9OiRjiOp3Mp9cp2QkEBGRgbdu3fP935WVhbOzs4ADBo0iD179hAWFsa6detwcHAo0bJbt25d4L3o6GhCQ0P55ZdfSEtLIzs7m4cPH5KRkYGRkRHx8fEMGjTombfL1dW1wHu2trZFJtaQ22quUqno1KnTM68/z++//86sWbOIjY0lOTkZtVpNRkYGSUlJT4y3OGvWrGHz5s0kJSXx4MEDsrKytCUdycnJ3Lp1i27duj1T7MOGDaN9+/bcunULa2trtm/fTp8+fUrUQ0hRLly4QEJCQr5We4CHDx9y7do1evTowYgRI+jZsyfdu3fHw8MDHx8frKysilxmcHAwgYGB2uG0tDRsbGyeOsbyRqFQoF9FnxFrR+o6FCGEqNQU5DYKyWPPdavcJ9d59c4HDx4s8LQ/AwMDADIyMvj+++9RqVRcvXq1xMuuVq1avuHr16/Tt29fxo0bx8KFC6lZsyZff/01I0eOJCsrCyMjoyfeIKdUKgvUOhV2BvnvdRf13uPKat2P8/X15c8//2TFihXY2tpiYGCAm5sbWVlZpYrtcTt27GDq1KlERETg5uaGsbExS5cu5fTp0yXajpJq06YNDRo0YMeOHYwbN449e/Zo66ifVnp6Oq1bt2b79u0FxuWd+ERGRjJx4kSOHDnCzp07mTVrFseOHaN9+/aFLtPAwED7Wa2I9PX1OXzksNT4FUGtVtPPux/Dt8nJhxDiv6WvzO1soCL/5rwIyn1y3bRpUwwMDEhKSiqyxfbtt99GqVRy+PBhevfuTZ8+fbTlDnk9gJSkJvr7779Ho9EQERGBUpl7r+cnn3ySb5oWLVoQExNT5GV+c3Nzbt++rR1OS0sjMTHxyRtaAk5OTmg0Gk6cOKEtC/n3uv/66y/+/vtvbTIcHx9f7DLj4uJYu3YtvXv3BnJv5nuWGu68Zb788suMHz9e+961a9e0fxsbG2NnZ0dMTIz2htN/q1KlSomO2bBhw9i+fTt169ZFqVTSp0+fIqfV19d/4jJdXFzYuXMnFhYWxT7a1NnZGWdnZ4KDg3Fzc+Ojjz4qMrmuDORJYEXT09Nj/4H9cvIhRBlJSEjA399f12GUS0pFbu4i38m6Ve6Ta2NjY6ZOncqUKVPQaDS88sor2pvfTExMqF27Nps3b+bbb7/FxcWFoKAgfH19+eGHH6hRowa2trYoFAoOHDhA7969tbW3hWnYsCGPHj1i1apVeHl5ERcXx/vvv59vmuDgYJycnBg/fjz+/v7o6+tz/PhxBg0aRO3atenatStRUVF4eXlhZmbG7Nmzy+xDbmdnh6+vL2+++ab2hsYbN26QnJyMj48P7dq1w8jIiHfeeYeJEydy+vTpJ7bkOjg4sHXrVlxdXUlLSyMoKOiZW5YdHBz48MMP+eKLL7C3t2fr1q2cPXsWe3t77TRz587F398fCwsLevXqxV9//UVcXBxvvfWWdltjYmJwd3fHwMCAGjVqFLquYcOGMXfuXBYuXMjAgQOLPVu3s7MjMTGR+Ph46tati7GxcYHphw0bxtKlS/m///s/5s2bR926dblx4wafffYZ06ZN49GjR2zYsIFXX30Va2trLl++zNWrVxk+fPgz7TNRsckPnRBlR7qYK5pSykLKhReiK7758+fz7rvvEhoaSpMmTfD09OTgwYPY2dkxcuRI5s6di4uLCwAhISHUqVNHe1b70ksvERISwowZM6hTp462u7fCtGzZkvfee4/FixfTvHlztm/fTmhoaL5pHB0dOXr0KBcuXKBt27a4ubnx+eefa/+zBwcH06lTJ/r27UufPn3w9vbW3vhWFtatW8fAgQMZP348jRs3ZvTo0fz9999A7s2b27Zt49ChQzg5OfHxxx/n6wKwMB988AH37t3DxcWFN954g4kTJ2JhYfFMMY4dO5b+/fszePBg2rVrx59//pmvFRtyy1GWL1/O2rVradasGX379s1X0hMREcGxY8ewsbHR1tYXpmHDhrRt25YffviBYcOGFRvXgAED8PT0pEuXLpibm/Pxxx8XmMbIyIiTJ09Sr149+vfvT5MmTRg5ciQPHz7ExMQEIyMjfvnlFwYMGICjoyNjxoxhwoQJjB07tpR7SQghxNOQk9WiSct1+aDIkWuVQjxXaWlpmJqakpqaWmzpiRBCiIISExPx8/NjQaPZvGRoretwyhV1jppRFyYQHR0tLfz/gZL+fsueF0IIIcQLw9TUFD09PWZdnqfrUMolI0MjKQvRMUmuRan5+/uzbdu2Qse9/vrrBerUhRBCiLJSs2ZNvvjiC7lJuAgKhULKQnRMykJEqSUnJxf5lEETE5Nnrtmu6KQsRAghhHjxSFmI+M9YWFhIAi2EEKLcUKvVlb4lW1qsyw9JroUQQgjxwkpJScHHx4fs7Gxdh6JTRoZG7D+wXxLsckCSayGEEEK8sFJTU8nOzmah0zjqGtXRdTg6oc5R8+aZ+ZW+9b68kORa6ETnzp1p1aoVy5cvf6r5r1+/jr29PefPn6dVq1bExsbSpUsX7t27h5mZWannF0KIF5GUQ6BtsVYpVOgpK2mrrUbXAYjHSXItKiUbGxtu375N7dq1dR2KEEI8FbVajVdfLzIeZOg6FKFjmpzc7FqtVkv/1uWAHAFRKalUKiwtLXUdhhClJi2VIk92djYZDzLY4hWKqrK22AI37v/GzBMrdB2GTmn++U6Q74byQZJroTPZ2dkEBASwdetWqlSpwrhx45g3bx4KhQKFQsGePXvw9vbWTm9mZsby5csZMWJEscv9+++/sbKyYvPmzQwcOFD7/t69exk2bBh37tzhzz//LLSsJDo6munTp3Pp0iVatWpFZGQkjRo10i5jwYIFrFy5kgcPHjB48GBq167NkSNHiI+PL+O9I/6tPCSVGo0GpVKps/Wr1Wr6efeTlkqRj0pZicshAGUl3vY8j7dcC92T5FrozJYtWxg5ciRnzpzhu+++Y8yYMdSrV4/Ro0c/03KrVavGkCFDiIyMzJdc5w0bGxvz559/FjrvzJkziYiIwNzcHH9/f958803i4uIA2L59OwsXLmTt2rW4u7uzY8cOIiIisLe3LzaezMxMMjMztcNF9REuiqZWq/Hy8iIjQ7dJpVKpRKPRfXHjVr9llbqlUuTKzM7Cb8tUXYchyoEs9SMg9/emWrVqOo5GSHItdMbGxoZly5ahUCho1KgRFy9eZNmyZc+cXAOMGjWKl19+mdu3b2NlZUVycjKHDh0iOjq62PkWLlxIp06dAJgxYwZ9+vTh4cOHVK1alVWrVjFy5Ej8/PwAmD17NkePHiU9Pb3YZYaGhhISEvLM2yR0T6PRsGXiCp21Ej58lMXINYGVvqVS5MqWz4D4Rw5SFlKeSHItdKZ9+/YoFArtsJubGxEREWVyWatt27Y0a9aMLVu2MGPGDLZt24atrS0dO3Ysdr4WLVpo/7aysgJyn0hZr149Ll++zPjx4wus58svvyx2mcHBwQQGBmqH09LSsLGxKe0mVWoqlYr9+/fr9IcjryTDd+UkncWgjUUjl36FfA7E/6dS5J5oyc2M5YMcBVEuKRSKAonUo0ePSrWMUaNGsWbNGmbMmEFkZCR+fn75kvnCVKlSJV8MwDOXARgYGGBgYPBMyxDo/MEIenp67D9QPhL8NyKn6CwGUf5U9iRbU8m3H9BeyZLkunyQoyB05vTp0/mGT506hYODAyqVCnNzc27fvq0dd/Xq1VLX277++utMmzaNlStXcunSJXx9fZ8p3kaNGnH27FmGDx+ufe/s2bPPtEzxYpEEX5Qn2qsp+4N1HYrQMUmuyxc5CkJnkpKSCAwMZOzYsZw7d45Vq1YREREBQNeuXVm9ejVubm6o1WqmT5+er1W5JGrUqEH//v0JCgqiR48e1K1b95nifeuttxg9ejSurq68/PLL7Ny5kx9++IH69es/03KFKA1dJ/ii/JCTrVyJiYllcq/Oi0ypyO3FSL4fygdJroXODB8+nAcPHtC2bVtUKhWTJk1izJgxAERERODn50eHDh2wtrZmxYoVfP/996Vex8iRI/noo4948803nzneYcOG8euvvzJ16lQePnyIj48PI0aM4MyZM8+8bCGEeBqSTElrrSh/FDmV/ZRXVGhbt25lypQp3Lp1C319/TJffvfu3bG0tGTr1q0lnictLQ1TU1NSU1MxMTEp85iEEKIySUxMxM/Pj4VO46hrVEfX4eiEOkfNm2fmEx0dLScb/6GS/n7LERAVUkZGBrdv3yYsLIyxY8eWSWKdkZHB+++/T8+ePVGpVHz88cdER0dz7NixMohYCCHE0zA1NUVPT4+ZF9fpOhSdMjI0euJN++L5kORaVEhLlixh4cKFdOzYkeDgsrnZR6FQcOjQIRYuXMjDhw9p1KgRu3fvxsPDo0yWL4QQovRq1qzJF198UelrzxUKhZQJlRNSFiLEcyZlIUIIIcSLp6S/38rnGJMQQgghRIWSkpLCpEmTSElJ0XUoopyQ5FoIIYQQ4imlpqZy4cIFUlNTdR2KKCckuRYVip2dHcuXL3+u6+zcuTOTJ09+rusUQgghRPkkybUosREjRuDt7a3rMIQQQgghyi1JrkWZe/Toka5DEEIIIZ6LvN88+e0TeSS5FgXs2rULJycnDA0NqVWrFh4eHgQFBbFlyxY+//xzFAoFCoWC2NhYrl+/jkKhYOfOnXTq1ImqVauyfft2ADZt2kSTJk2oWrUqjRs3Zu3atdp1ZGVlERAQgJWVFVWrVsXW1pbQ0FAAcnJymDt3LvXq1cPAwABra2smTpz4VNty//59Ro0ahbm5OSYmJnTt2pULFy4AcOXKFRQKBb/88ku+eZYtW0aDBg20wz/++CO9evWievXq1KlThzfeeIM//vjjqeIRQghRsWg0mnz/CiH9XIt8bt++zdChQ1myZAn9+vXjr7/+4quvvmL48OEkJSWRlpZGZGQkkNu36K1btwCYMWMGERERODs7axPs2bNns3r1apydnTl//jyjR4+mWrVq+Pr6snLlSvbt28cnn3xCvXr1uHnzJjdv3gRg9+7dLFu2jB07dtCsWTPu3LmjTYhLa9CgQRgaGnL48GFMTU1Zv3493bp148qVKzg6OuLq6sr27duZP3++dp7t27fz2muvAbnJedeuXRk1ahTLli3jwYMHTJ8+HR8fH7788ssSxZCZmUlmZqZ2OC0t7am2RQghRPkjLdfi3yS5Fvncvn2b7Oxs+vfvj62tLQBOTk4AGBoakpmZiaWlZYH5Jk+eTP/+/bXDc+bMISIiQvuevb09ly5dYv369fj6+pKUlISDgwOvvPIKCoVCuy6ApKQkLC0t8fDwoEqVKtSrV4+2bduWelu+/vprzpw5Q3JyMgYGBgCEh4ezd+9edu3axZgxYxg2bBirV6/WJtdXrlzh+++/Z9u2bQDak4NFixZpl7t582ZsbGy0CfqThIaGEhISUur4hRBClH8ZGRn5/hVCykJEPi1btqRbt244OTkxaNAgNm7cyL179544n6urq/bvv//+m2vXrjFy5EiqV6+ufS1YsIBr164BuTdHxsfH06hRIyZOnMjRo0e18w8aNIgHDx5Qv359Ro8ezZ49e8jOzi71tly4cIH09HRq1aqVL47ExERtHEOGDOH69eucOnUKyG21dnFxoXHjxtplHD9+PN/8eePylvEkwcHBpKamal95LfRCCCGEqHik5Vrko1KpOHbsGN988w1Hjx5l1apVzJw5k9OnTxc7X7Vq1bR/p6enA7Bx40batWtXYPkALi4uJCYmcvjwYaKjo/Hx8cHDw4Ndu3ZhY2PD5cuXiY6O5tixY4wfP56lS5dy4sQJqlSpUuJtSU9Px8rKitjY2ALjzMzMALC0tKRr16589NFHtG/fno8++ohx48blW4aXlxeLFy8usAwrK6sSxWFgYKBtORdCCFGxGBkZ5ftXCEmuRQEKhQJ3d3fc3d2ZPXs2tra27NmzB319fdRq9RPnr1OnDtbW1vz6668MGzasyOlMTEwYPHgwgwcPZuDAgXh6epKSkkLNmjUxNDTEy8sLLy8vJkyYQOPGjbl48SIuLi4l3g4XFxfu3LmDnp4ednZ2RU43bNgwpk2bxtChQ/n1118ZMmRIvmXs3r0bOzs79PTkv4sQQoj88hp9StP4Iyo2yRZEPqdPnyYmJoYePXpgYWHB6dOnuXv3Lk2aNOHhw4d88cUXXL58mVq1amFqalrkckJCQpg4cSKmpqZ4enqSmZnJd999x7179wgMDOS9997DysoKZ2dnlEoln376KZaWlpiZmREVFYVaraZdu3YYGRmxbds2DA0N89Vll4SHhwdubm54e3uzZMkSHB0duXXrFgcPHqRfv37aUpb+/fszbtw4xo0bR5cuXbC2ttYuY8KECWzcuJGhQ4cybdo0atasSUJCAjt27GDTpk3alnghhBCVk1KpzPevEJJci3xMTEw4efIky5cvJy0tDVtbWyIiIujVqxeurq7Exsbi6upKeno6x48fL7JFeNSoURgZGbF06VKCgoKoVq0aTk5O2icZGhsbs2TJEq5evYpKpaJNmzYcOnQIpVKJmZkZYWFhBAYGolarcXJyYv/+/dSqVatU26JQKDh06BAzZ87Ez8+Pu3fvYmlpSceOHalTp452OmNjY7y8vPjkk0/YvHlzvmVYW1sTFxfH9OnT6dGjB5mZmdja2uLp6SlfpEIIIaTlWhSgyMnJydF1EEJUJmlpaZiampKamoqJiYmuwxFCCPEMEhMT8fPzIzIyEnt7e12HI/5DJf39lqY3IYQQQgghyoiUhYgXxldffUWvXr2KHJ/XS0l5l3exSB4mI4QQLz6FQkHjxo1RKBTyvV7B5R3fJxV9SFmIeGE8ePCA3377rcjxDRs2fI7RPL3//e9/2NjY6DoMIYQQQjyFmzdvUrdu3SLHS3ItxHOm0Wi4desWxsbGKBQKXYdTamlpadjY2HDz5k2pGS8H5HiUP3JMyh85JuXPi3hMcnJy+Ouvv7C2ti62UwMpCxHiOVMqlcWe8b4oTExMXpgvxMpAjkf5I8ek/JFjUv68aMekuG6I88gNjUIIIYQQQpQRSa6FEEIIIYQoI5JcCyFKxcDAgDlz5mBgYKDrUARyPMojOSbljxyT8qciHxO5oVEIIYQQQogyIi3XQgghhBBClBFJroUQQgghhCgjklwLIYQQQghRRiS5FkIIIYQQooxIci2EeCrXr19n5MiR2NvbY2hoSIMGDZgzZw5ZWVm6Dq1SW7hwIS+//DJGRkaYmZnpOpxKac2aNdjZ2VG1alXatWvHmTNndB1SpXXy5Em8vLywtrZGoVCwd+9eXYdU6YWGhtKmTRuMjY2xsLDA29uby5cv6zqsMiXJtRDiqfzyyy9oNBrWr1/PTz/9xLJly3j//fd55513dB1apZaVlcWgQYMYN26crkOplHbu3ElgYCBz5szh3LlztGzZkp49e5KcnKzr0Cqlv//+m5YtW7JmzRpdhyL+ceLECSZMmMCpU6c4duwYjx49okePHvz999+6Dq3MSFd8Qogys3TpUtatW8evv/6q61AqvaioKCZPnsz9+/d1HUql0q5dO9q0acPq1asB0Gg02NjY8NZbbzFjxgwdR1e5KRQK9uzZg7e3t65DEY+5e/cuFhYWnDhxgo4dO+o6nDIhLddCiDKTmppKzZo1dR2GEDqRlZXF999/j4eHh/Y9pVKJh4cH3377rQ4jE6L8Sk1NBahQvx2SXAshykRCQgKrVq1i7Nixug5FCJ34448/UKvV1KlTJ9/7derU4c6dOzqKSojyS6PRMHnyZNzd3WnevLmuwykzklwLIfKZMWMGCoWi2Ncvv/ySb57ffvsNT09PBg0axOjRo3UUecX1NMdECCHKuwkTJvDjjz+yY8cOXYdSpvR0HYAQonx5++23GTFiRLHT1K9fX/v3rVu36NKlCy+//DIbNmz4j6OrnEp7TIRu1K5dG5VKxe+//57v/d9//x1LS0sdRSVE+RQQEMCBAwc4efIkdevW1XU4ZUqSayFEPubm5pibm5do2t9++40uXbrQunVrIiMjUSrlYth/oTTHROiOvr4+rVu3JiYmRnvTnEajISYmhoCAAN0GJ0Q5kZOTw1tvvcWePXuIjY3F3t5e1yGVOUmuhRBP5bfffqNz587Y2toSHh7O3bt3teOklU53kpKSSElJISkpCbVaTXx8PAANGzakevXqug2uEggMDMTX1xdXV1fatm3L8uXL+fvvv/Hz89N1aJVSeno6CQkJ2uHExETi4+OpWbMm9erV02FkldeECRP46KOP+PzzzzE2Ntbej2BqaoqhoaGOoysb0hWfEOKpREVFFZkwyNeK7owYMYItW7YUeP/48eN07tz5+QdUCa1evZqlS5dy584dWrVqxcqVK2nXrp2uw6qUYmNj6dKlS4H3fX19iYqKev4BCRQKRaHvR0ZGPrH87UUhybUQQgghhBBlRAokhRBCCCGEKCOSXAshhBBCCFFGJLkWQgghhBCijEhyLYQQQgghRBmR5FoIIYQQQogyIsm1EEIIIYQQZUSSayGEEEIIIcqIJNdCCCGEEEKUEUmuhRBCCCGEKCOSXAshhBBCCFFGJLkWQgghhBCijEhyLYQQQgghRBn5f6m4REQmIHKEAAAAAElFTkSuQmCC\n"},"metadata":{}}],"source":["sns.boxenplot(high_stress,orient='y');"]},{"cell_type":"code","execution_count":36,"metadata":{"colab":{"base_uri":"https://localhost:8080/","height":350},"executionInfo":{"elapsed":372,"status":"ok","timestamp":1716216939051,"user":{"displayName":"Daniel Meier","userId":"06365571306976914087"},"user_tz":300},"id":"GnCMrhZabwi4","outputId":"fdfc2cfd-aca8-4820-fea1-aefe6538ac32"},"outputs":[{"output_type":"execute_result","data":{"text/plain":[" anxiety_level self_esteem mental_health_history depression \\\n","count 369.000000 369.000000 369.000000 369.000000 \n","mean 0.872877 -1.006292 0.797828 0.941777 \n","std 0.767377 0.679338 0.622683 0.772034 \n","min -1.809328 -1.988391 -0.985559 -1.625618 \n","25% 0.643746 -1.540990 1.014653 0.575458 \n","50% 1.134361 -1.093590 1.014653 1.093358 \n","75% 1.297899 -0.534339 1.014653 1.481783 \n","max 1.624976 1.367114 1.014653 1.870208 \n","\n"," headache blood_pressure sleep_quality breathing_problem \\\n","count 369.000000 3.690000e+02 369.000000 369.000000 \n","mean 0.889701 9.819805e-01 -0.876459 0.642451 \n","std 0.787605 2.223461e-16 0.660030 0.853594 \n","min -1.780475 9.819805e-01 -1.718703 -1.966776 \n","25% 0.349125 9.819805e-01 -1.072574 0.175964 \n","50% 1.058992 9.819805e-01 -1.072574 0.890211 \n","75% 1.768859 9.819805e-01 -1.072574 1.604458 \n","max 1.768859 9.819805e-01 1.511942 1.604458 \n","\n"," noise_level living_conditions ... basic_needs academic_performance \\\n","count 369.000000 369.000000 ... 369.000000 369.000000 \n","mean 0.862469 -0.705448 ... -0.768009 -0.786082 \n","std 0.842513 0.845074 ... 0.643862 0.634992 \n","min -1.995514 -2.250991 ... -1.934764 -1.960979 \n","25% 0.264334 -1.357096 ... -1.236980 -1.253741 \n","50% 1.017616 -0.463200 ... -0.539196 -0.546502 \n","75% 1.770899 -0.463200 ... -0.539196 -0.546502 \n","max 1.770899 2.218486 ... 1.554154 1.575213 \n","\n"," study_load teacher_student_relationship future_career_concerns \\\n","count 369.000000 369.000000 369.000000 \n","mean 0.808875 -0.730753 0.949303 \n","std 0.905172 0.567927 0.793368 \n","min -1.993501 -1.913497 -1.732927 \n","25% 0.287551 -1.190927 0.883709 \n","50% 1.047901 -0.468357 0.883709 \n","75% 1.808252 -0.468357 1.537869 \n","max 1.808252 0.976783 1.537869 \n","\n"," social_support peer_pressure extracurricular_activities bullying \\\n","count 369.000000 369.000000 369.000000 369.000000 \n","mean -0.911814 0.939639 0.946511 0.939008 \n","std 0.248981 0.863605 0.832193 0.786393 \n","min -1.796742 -1.919495 -1.953023 -1.710343 \n","25% -0.841952 0.888277 0.870006 0.903589 \n","50% -0.841952 0.888277 0.870006 0.903589 \n","75% -0.841952 1.590220 1.575763 1.557071 \n","max -0.841952 1.590220 1.575763 1.557071 \n","\n"," stress_level \n","count 3.690000e+02 \n","mean 1.222011e+00 \n","std 2.223461e-16 \n","min 1.222011e+00 \n","25% 1.222011e+00 \n","50% 1.222011e+00 \n","75% 1.222011e+00 \n","max 1.222011e+00 \n","\n","[8 rows x 21 columns]"],"text/html":["\n","
\n","
\n","\n","\n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n","
anxiety_levelself_esteemmental_health_historydepressionheadacheblood_pressuresleep_qualitybreathing_problemnoise_levelliving_conditions...basic_needsacademic_performancestudy_loadteacher_student_relationshipfuture_career_concernssocial_supportpeer_pressureextracurricular_activitiesbullyingstress_level
count369.000000369.000000369.000000369.000000369.0000003.690000e+02369.000000369.000000369.000000369.000000...369.000000369.000000369.000000369.000000369.000000369.000000369.000000369.000000369.0000003.690000e+02
mean0.872877-1.0062920.7978280.9417770.8897019.819805e-01-0.8764590.6424510.862469-0.705448...-0.768009-0.7860820.808875-0.7307530.949303-0.9118140.9396390.9465110.9390081.222011e+00
std0.7673770.6793380.6226830.7720340.7876052.223461e-160.6600300.8535940.8425130.845074...0.6438620.6349920.9051720.5679270.7933680.2489810.8636050.8321930.7863932.223461e-16
min-1.809328-1.988391-0.985559-1.625618-1.7804759.819805e-01-1.718703-1.966776-1.995514-2.250991...-1.934764-1.960979-1.993501-1.913497-1.732927-1.796742-1.919495-1.953023-1.7103431.222011e+00
25%0.643746-1.5409901.0146530.5754580.3491259.819805e-01-1.0725740.1759640.264334-1.357096...-1.236980-1.2537410.287551-1.1909270.883709-0.8419520.8882770.8700060.9035891.222011e+00
50%1.134361-1.0935901.0146531.0933581.0589929.819805e-01-1.0725740.8902111.017616-0.463200...-0.539196-0.5465021.047901-0.4683570.883709-0.8419520.8882770.8700060.9035891.222011e+00
75%1.297899-0.5343391.0146531.4817831.7688599.819805e-01-1.0725741.6044581.770899-0.463200...-0.539196-0.5465021.808252-0.4683571.537869-0.8419521.5902201.5757631.5570711.222011e+00
max1.6249761.3671141.0146531.8702081.7688599.819805e-011.5119421.6044581.7708992.218486...1.5541541.5752131.8082520.9767831.537869-0.8419521.5902201.5757631.5570711.222011e+00
\n","

8 rows × 21 columns

\n","
\n","
\n","\n","
\n"," \n","\n"," \n","\n"," \n","
\n","\n","\n","
\n"," \n","\n","\n","\n"," \n","
\n","\n","
\n","
\n"],"application/vnd.google.colaboratory.intrinsic+json":{"type":"dataframe"}},"metadata":{},"execution_count":36}],"source":["high_stress.describe()"]},{"cell_type":"code","execution_count":37,"metadata":{"colab":{"base_uri":"https://localhost:8080/"},"executionInfo":{"elapsed":3,"status":"ok","timestamp":1716216940299,"user":{"displayName":"Daniel Meier","userId":"06365571306976914087"},"user_tz":300},"id":"WU6_yaoqf9Ur","outputId":"b7d6e286-f83d-4a3b-cedf-bca2cacc384e"},"outputs":[{"output_type":"execute_result","data":{"text/plain":["stress_level 1.222011\n","blood_pressure 0.981981\n","future_career_concerns 0.949303\n","extracurricular_activities 0.946511\n","depression 0.941777\n","peer_pressure 0.939639\n","bullying 0.939008\n","headache 0.889701\n","anxiety_level 0.872877\n","noise_level 0.862469\n","study_load 0.808875\n","mental_health_history 0.797828\n","breathing_problem 0.642451\n","living_conditions -0.705448\n","teacher_student_relationship -0.730753\n","safety -0.757853\n","basic_needs -0.768009\n","academic_performance -0.786082\n","sleep_quality -0.876459\n","social_support -0.911814\n","self_esteem -1.006292\n","dtype: float64"]},"metadata":{},"execution_count":37}],"source":["high_stress_mean=high_stress.mean()\n","high_stress_mean=high_stress_mean.sort_values(ascending = False)\n","high_stress_mean"]},{"cell_type":"code","execution_count":38,"metadata":{"colab":{"base_uri":"https://localhost:8080/","height":452},"executionInfo":{"elapsed":1153,"status":"ok","timestamp":1716216948153,"user":{"displayName":"Daniel Meier","userId":"06365571306976914087"},"user_tz":300},"id":"kjP9duRgbkRp","outputId":"c744166e-5aff-4b01-ff02-a95a1bb8dfc0"},"outputs":[{"output_type":"display_data","data":{"text/plain":["
"],"image/png":"iVBORw0KGgoAAAANSUhEUgAAAtcAAAGzCAYAAADkAzuMAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAADFxklEQVR4nOzdd1RUV/fw8e+A0psFBZViASsWVCIaBCtYSKxYSBR7QzSK7UlUiAV7T4zRBNBo1NhjrxjBXlAT0SCKmIQEGyIWEJj3D1/uz5EiKIri/qw1azH3nnvuPpcZ2Bz2PaNSq9VqhBBCCCGEEK9Nq7ADEEIIIYQQoqiQ5FoIIYQQQogCIsm1EEIIIYQQBUSSayGEEEIIIQqIJNdCCCGEEEIUEEmuhRBCCCGEKCCSXAshhBBCCFFAJLkWQgghhBCigEhyLYQQQgghRAGR5FoI8U6aPXs2lSpVQltbm7p16xZ2OAofHx9sbW0LtE9bW1t8fHwKtM+iJiAgAJVKVdhhvFRsbCwqlYo5c+YUdigfhJCQEFQqFbGxsYUdinjL3sTP4oIiybUQ77jMXx4qlYrw8PAs+9VqNVZWVqhUKtq3b18IERa8vXv3MnbsWJo0aUJwcDDTp08v7JCKnG+//ZaQkJDCDkO8BZl/mGQ+ihcvjq2tLX5+fiQmJhZ2eHkyffp0tmzZUthhZBEeHk6bNm0oX748enp6WFtb4+npyZo1a5Q2jx49IiAggLCwsMIL9BWpVCp8fX0LO4xXlpGRQUhICJ988glWVlYYGhpSq1Ytpk6dypMnT97YeSW5FuI9oaenp/EDO9Phw4f566+/0NXVLYSo3oyDBw+ipaXFDz/8QK9evWjbtm1hh1TkvG/J9VdffcXjx48LO4z32tKlS1m1ahVLlizBycmJxYsXvzd/kOeUXH/++ec8fvwYGxubtx7TL7/8QtOmTfnvv/8YMWIEixcv5rPPPuPevXssX75caffo0SMCAwPfy+T6fffo0SP69OnDrVu3GDx4MAsWLMDJyYnJkyfTpk0b1Gr1GzlvsTfSqxCiwLVt25ZffvmFRYsWUazY/71116xZQ/369bl9+3YhRlewEhIS0NfXR0dHp7BDEYXs4cOHGBoaUqxYMY3Xvci/Ll26ULp0aQAGDRpE9+7dWbduHSdPnsTJyamQo8tKrVbz5MkT9PX1c2yjra2Ntrb2W4zq/wQEBFCjRg2OHz+e5WdVQkLCK/eb+ZoXr09HR4eIiAgaN26sbBswYAC2trZMnjyZAwcO0LJlywI/r8xcC/Ge6NGjB3fu3GHfvn3KttTUVDZs2EDPnj2zPSYjI4MFCxZQs2ZN9PT0KFu2LIMGDeLevXsa7bZu3Uq7du0oV64curq6VK5cmSlTppCenq7Rzs3NjVq1anHp0iWaNWuGgYEB5cuXZ9asWXkaQ1paGlOmTKFy5cro6upia2vL//73P1JSUpQ2KpWK4OBgHj58qPwbO7cZ1ujoaDp37oyFhQV6enpUqFCB7t27c//+fY12P/30E05OThgYGFCiRAmaNm3K3r17830NspPX66xWq5k6dSoVKlTAwMCAZs2a8ccff+Tp2mWeZ+HChTg4OKCnp4e5uTkeHh6cPn1aaRMcHEzz5s0pU6YMurq61KhRg6VLl2r0Y2tryx9//MHhw4eVa+zm5qbsT0xMZOTIkVhZWaGrq0uVKlWYOXMmGRkZGv3cuXOHzz//HBMTE8zMzOjduzfnz5/P9nt28OBBXFxcMDQ0xMzMjE8//ZSoqCiNNpnlC5cuXaJnz56UKFGCjz/+WGPfi3766Sfq16+Pvr4+JUuWpHv37ty8eVOjTV5fI89btGgR2traGmUTc+fORaVSMWrUKGVbeno6xsbGjBs3Lksf33//vfJab9iwIadOncrS5vLly3Tp0oWSJUuip6dHgwYN2LZtm0abzNKwiIgIRo0ahbm5OYaGhnTs2JFbt27lOIaXcXFxASAmJkZj+4kTJ/Dw8MDU1BQDAwNcXV2JiIjQaJP5/bh8+TJeXl6YmJhQqlQpRowYkeXf7Xl538Oz12X79u3Zs2cPDRo0QF9fn2XLlqFSqXj48CGhoaHK6zXzHoXsaq4z+wkPD8fJyQk9PT0qVarEypUrs1yDCxcu4Orqir6+PhUqVGDq1KkEBwfnqY47JiaGhg0bZjsJUKZMGeBZDb65uTkAgYGBSvwBAQHAs7phIyMjYmJiaNu2LcbGxnh7ewN5/7ly+vRp3N3dKV26NPr6+lSsWJG+fftqtFm7di3169fH2NgYExMTHBwcWLhwYa7jy6u8xNm+fXsqVaqU7fHOzs40aNBAY1te3td5oaOjo5FYZ+rYsSNAlp9BBUWmAYR4T9ja2uLs7MzPP/9MmzZtANi1axf379+ne/fuLFq0KMsxgwYNIiQkhD59+uDn58f169dZsmQJ586dIyIiguLFiwPPfkEZGRkxatQojIyMOHjwIJMmTSIpKYnZs2dr9Hnv3j08PDzo1KkTXl5ebNiwgXHjxuHg4KDElZP+/fsTGhpKly5dGD16NCdOnCAoKIioqCg2b94MwKpVq/j+++85efIkK1asAMj2hyM8++PC3d2dlJQUhg8fjoWFBX///Tfbt28nMTERU1NT4NkvtYCAABo3bszXX3+Njo4OJ06c4ODBg7Ru3Trf1+BVr/OkSZOYOnUqbdu2pW3btpw9e5bWrVuTmpqaa/+Z+vXrR0hICG3atKF///6kpaVx5MgRjh8/rvxyWrp0KTVr1uSTTz6hWLFi/PrrrwwdOpSMjAyGDRsGwIIFCxg+fDhGRkZ8+eWXAJQtWxZ49m9UV1dX/v77bwYNGoS1tTVHjx5lwoQJxMfHs2DBAuDZL1RPT09OnjzJkCFDqFatGlu3bqV3795Z4t6/fz9t2rShUqVKBAQE8PjxYxYvXkyTJk04e/ZslpuSunbtip2dHdOnT8/137bTpk1j4sSJeHl50b9/f27dusXixYtp2rQp586dw8zMLM+vkRe5uLiQkZFBeHi4Ujpx5MgRtLS0OHLkiNLu3LlzJCcn07RpU43j16xZw4MHDxg0aBAqlYpZs2bRqVMnrl27prwe/vjjD5o0aUL58uUZP348hoaGrF+/ng4dOrBx40YlAcg0fPhwSpQoweTJk4mNjWXBggX4+vqybt26HK9RbjKTxxIlSijbDh48SJs2bahfvz6TJ09GS0tL+YPtyJEjWWa4vby8sLW1JSgoiOPHj7No0SLu3bunkcjm5X2f6cqVK/To0YNBgwYxYMAAqlatyqpVq+jfvz9OTk4MHDgQgMqVK+c6tqtXr9KlSxf69etH7969+fHHH/Hx8aF+/frUrFkTgL///ptmzZqhUqmYMGEChoaGrFixIs8ldjY2Nhw4cIC//vqLChUqZNvG3NycpUuXMmTIEDp27EinTp0AqF27ttImLS0Nd3d3Pv74Y+bMmYOBgQGQt58rCQkJtG7dGnNzc8aPH4+ZmRmxsbFs2rRJ6X/fvn306NGDFi1aMHPmTOBZUhkREcGIESPyNNbc5CXObt260atXL06dOkXDhg2VY2/cuMHx48c1fsbm5X39uv79918A5T85BU4thHinBQcHqwH1qVOn1EuWLFEbGxurHz16pFar1equXbuqmzVrplar1WobGxt1u3btlOOOHDmiBtSrV6/W6G/37t1Ztmf297xBgwapDQwM1E+ePFG2ubq6qgH1ypUrlW0pKSlqCwsLdefOnXMdR2RkpBpQ9+/fX2O7v7+/GlAfPHhQ2da7d2+1oaFhrv2p1Wr1uXPn1ID6l19+ybFNdHS0WktLS92xY0d1enq6xr6MjAzl67xeg969e6ttbGyU53m9zgkJCWodHR11u3btNM77v//9Tw2oe/funetYDx48qAbUfn5+Wfa9bBzu7u7qSpUqaWyrWbOm2tXVNUvbKVOmqA0NDdV//vmnxvbx48ertbW11XFxcWq1Wq3euHGjGlAvWLBAaZOenq5u3ry5GlAHBwcr2+vWrasuU6aM+s6dO8q28+fPq7W0tNS9evVStk2ePFkNqHv06JElrsx9mWJjY9Xa2trqadOmabS7ePGiulixYsr2vLxGspOenq42MTFRjx07Vq1WP7vGpUqVUnft2lWtra2tfvDggVqtVqvnzZun1tLSUt+7d0+tVqvV169fVwPqUqVKqe/evav0t3XrVjWg/vXXX5VtLVq0UDs4OGi8vjIyMtSNGzdW29nZKdsyfwa0bNlS43v9xRdfqLW1tdWJiYm5jiXz2l25ckV969YtdWxsrPrHH39U6+vrq83NzdUPHz5Uzm1nZ6d2d3fP8pqqWLGiulWrVln6/OSTTzTONXToUDWgPn/+vFqtzt/73sbGRg2od+/enWUMhoaG2b5HMq/N9evXs/Tz22+/KdsSEhLUurq66tGjRyvbhg8frlapVOpz584p2+7cuaMuWbJklj6z88MPP6gBtY6OjrpZs2bqiRMnqo8cOZLl58ytW7fUgHry5MlZ+ujdu7caUI8fP15je15/rmzevFn5/ZCTESNGqE1MTNRpaWm5jic7gHrYsGE57s9rnPfv389y/dVqtXrWrFlqlUqlvnHjhlqtzvv7Wq3O+rM4P1q2bKk2MTFR3rcFTcpChHiPeHl58fjxY7Zv386DBw/Yvn17jiUhv/zyC6amprRq1Yrbt28rj/r162NkZMShQ4eUts/XND548IDbt2/j4uLCo0ePuHz5ska/RkZGfPbZZ8pzHR0dnJycuHbtWq6x79y5E0DjX+oAo0ePBmDHjh15uAKaMmcd9+zZw6NHj7Jts2XLFjIyMpg0aRJaWpo/8p4vM8jPNXheXq/z/v37SU1NZfjw4RrnHTlyZJ7GunHjRlQqFZMnT86yL6dx3L9/n9u3b+Pq6sq1a9dyLYN4fjwuLi6UKFFCYzwtW7YkPT2d3377DYDdu3dTvHhxBgwYoByrpaWlzI5nio+PJzIyEh8fH0qWLKlsr127Nq1atVJeF88bPHjwS+PctGkTGRkZeHl5acRpYWGBnZ2dct3z8hrJjpaWFo0bN1bGGxUVxZ07dxg/fjxqtZpjx44Bz2aza9WqlWU2rVu3bhozwpklGJnvk7t373Lw4EG8vLyU19vt27e5c+cO7u7uREdH8/fff2v0OXDgQI3vtYuLC+np6dy4cSNPY6patSrm5ubY2trSt29fqlSpwq5du5SZ0sjISKKjo+nZsyd37txRYnr48CEtWrTgt99+y1Ia9OL3e/jw4cD/vd/z+76vWLEi7u7ueRpPbmrUqKFcc3g2g1y1alWNn1O7d+/G2dlZY6nPkiVLKmUZL9O3b192796Nm5sb4eHhTJkyBRcXF+zs7Dh69Gi+4h0yZIjG87z+XMl83W3fvp2nT59m27eZmRkPHz7UKCksKHmN08TEhDZt2rB+/XqN/0atW7eORo0aYW1tDeT9ff06pk+fzv79+5kxY0aBzIJnR8pChHiPmJub07JlS9asWcOjR49IT0+nS5cu2baNjo7m/v37Su3fi56/4eaPP/7gq6++4uDBgyQlJWm0ezEhq1ChQpba1xIlSnDhwoVcY79x4wZaWlpUqVJFY7uFhQVmZmZ5ThCeV7FiRUaNGsW8efNYvXo1Li4ufPLJJ3z22WdKUhUTE4OWlhY1atTIta/8XIPn5fU6Z47Pzs5OY7+5ublGEpaTmJgYypUrp5GgZiciIoLJkydz7NixLMnk/fv3cyyDyBQdHc2FCxeUOtEXPT8eS0tLJTHL9OL3N3PcVatWzdJX9erV2bNnT5YbuCpWrJhrjJlxqtXqLNczU2bpRV5eIzlxcXFRyliOHDmCpaUljo6O1KlThyNHjtCqVSvCw8Px8vLKcmxmspAp83ucWYd69epV1Go1EydOZOLEidmePyEhgfLly+e5z5fZuHEjJiYm3Lp1i0WLFnH9+nWNP8aio6MBsi3tyXT//n2N1+uL179y5cpoaWkpJSf5fd/n5XufFy9eK3h2vZ6/Vjdu3MDZ2TlLuxdjzY27uzvu7u48evSIM2fOsG7dOr777jvat2/P5cuXc/y58LxixYplKSvJ688VV1dXOnfuTGBgIPPnz8fNzY0OHTrQs2dPpbxl6NChrF+/XlkysHXr1nh5eeHh4ZHnceYkP79nunXrxpYtWzh27BiNGzcmJiaGM2fOKKVmmf3l5X39qtatW8dXX31Fv379svxBU5AkuRbiPdOzZ08GDBjAv//+S5s2bXL8yzsjI4MyZcqwevXqbPdnJk+JiYm4urpiYmLC119/TeXKldHT0+Ps2bOMGzcuy0xVTnfmq/O4pFFBfxDI3Llz8fHxYevWrezduxc/Pz+l/jOnOsgX5fcaPC+v1/ltiImJoUWLFlSrVo158+ZhZWWFjo4OO3fuZP78+bmOI1NGRgatWrVi7Nix2e63t7cv6LCzyG11iEwZGRmoVCp27dqV7WvSyMhI+fpVXyMff/wxT58+5dixYxw5ckSZCXVxceHIkSNcvnyZW7duacyQZnrZ+yTze+Hv75/jTO2LSd7rvveaNm2q1Jh6enri4OCAt7c3Z86cQUtLS4lp9uzZOX5w0/PXNTs5vb/z+r7Py/c+L173WuWXgYEBLi4uuLi4ULp0aQIDA9m1a1euf6hk0tXVzfJftbz+XFGpVGzYsIHjx4/z66+/smfPHvr27cvcuXM5fvw4RkZGlClThsjISPbs2cOuXbvYtWsXwcHB9OrVi9DQ0Ncad35+/nl6emJgYMD69etp3Lgx69evR0tLi65du2r0l9f3dX7t27ePXr160a5dO7777rtX7icvJLkW4j3TsWNHBg0axPHjx3O9kaly5crs37+fJk2a5PoLKywsjDt37rBp0yaNm7KuX79eoHHb2NiQkZFBdHQ01atXV7b/999/JCYmvtY6tQ4ODjg4OPDVV19x9OhRmjRpwnfffcfUqVOpXLkyGRkZXLp0KceE4XWuQV6vc+b4oqOjNe6av3XrVp5mHitXrsyePXu4e/dujrPXv/76KykpKWzbtk1j5i67f6XmlOxUrlyZ5OTkly5PZWNjw6FDh3j06JHG7PXVq1eztINnN6q96PLly5QuXfqVlh2rXLkyarWaihUr5inhz+01khMnJyd0dHQ4cuQIR44cYcyYMcCzJHX58uUcOHBAeZ5fma+B4sWLv5GlwF7GyMiIyZMn06dPH9avX0/37t2VmwRNTEzyHFN0dLTGbPPVq1fJyMhQblItqPf9m/h0ThsbmyyvV8j6Gs6vzJuL4+PjgVeLPa8/VzI1atSIRo0aMW3aNNasWYO3tzdr166lf//+wLPyPU9PTzw9PcnIyGDo0KEsW7aMiRMn5mum/nXiNDQ0pH379vzyyy/MmzePdevW4eLiQrly5TT6y8/7Oq9OnDhBx44dadCgAevXr3/jy3pKzbUQ7xkjIyOWLl1KQEAAnp6eObbz8vIiPT2dKVOmZNmXlpamLDGWOTvw/IxOamoq3377bYHGnflBMM//CxBg3rx5ALRr1y7ffSYlJZGWlqaxzcHBAS0tLWWZrw4dOqClpcXXX3+dZeY2c8yvcw3yep1btmxJ8eLFWbx4scZ5XrweOencuTNqtZrAwMAs+3Ibx/379wkODs5yjKGhYbafzufl5cWxY8fYs2dPln2JiYnK9XZ3d+fp06caH5aRkZHBN998o3GMpaUldevWJTQ0VON8v//+O3v37n3lDwjq1KkT2traBAYGZpmNVKvV3LlzB8jbayQnenp6NGzYkJ9//pm4uDiNmevHjx+zaNEiKleujKWlZb7jL1OmDG5ubixbtkxJwp73Okvs5ZW3tzcVKlRQVpCoX78+lStXZs6cOSQnJ+cpphe/34sXLwZQVg4qqPd9Tq/X1+Hu7s6xY8eIjIxUtt29ezfHWdgXZf5x9aLMOvPMUqjMPz7zE39ef67cu3cvy+s/cxIh8/Wd+V7IpKWlpaxW8rL3QEHFmalbt278888/rFixgvPnz9OtWzeN/Xl9X+dHVFQU7dq1w9bWlu3btxfYf0dyIzPXQryH8vKvRldXVwYNGkRQUBCRkZG0bt2a4sWLEx0dzS+//MLChQvp0qULjRs3pkSJEvTu3Rs/Pz9UKhWrVq0q8H+f1qlTh969e/P9998rZRgnT54kNDSUDh060KxZs3z3efDgQXx9fenatSv29vakpaWxatUqtLW16dy5M/DsX+tffvmlcrNRp06d0NXV5dSpU5QrV46goKDXugZ5vc7m5ub4+/sTFBRE+/btadu2LefOnWPXrl15Wg6qWbNmfP755yxatIjo6Gg8PDzIyMjgyJEjNGvWDF9fX1q3bq3MUA0aNIjk5GSWL19OmTJlsiRw9evXZ+nSpUydOpUqVapQpkwZmjdvzpgxY9i2bRvt27dXli57+PAhFy9eZMOGDcTGxlK6dGk6dOiAk5MTo0eP5urVq1SrVo1t27Zx9+5dQHO2bvbs2bRp0wZnZ2f69eunLMVnamqqrPebX5UrV2bq1KlMmDCB2NhYOnTogLGxMdevX2fz5s0MHDgQf3//PL1GcuPi4sKMGTMwNTXFwcEBeJYYV61alStXrijrLb+Kb775ho8//hgHBwcGDBhApUqV+O+//zh27Bh//fUX58+ff+W+86J48eKMGDGCMWPGsHv3bjw8PFixYgVt2rShZs2a9OnTh/Lly/P3339z6NAhTExM+PXXXzX6uH79Op988gkeHh4cO3aMn376iZ49e1KnTh2g4N739evXZ//+/cybN49y5cpRsWJFPvroo9ca/9ixY/npp59o1aoVw4cPV5bis7a25u7duy+dcf7000+pWLEinp6eVK5cmYcPH7J//35+/fVXGjZsqEx+6OvrU6NGDdatW4e9vT0lS5akVq1a1KpVK8e+8/pzJTQ0lG+//ZaOHTtSuXJlHjx4wPLlyzExMVH+sOnfvz93796lefPmVKhQgRs3brB48WLq1q2r8d+EnJw+fTrb//C4ubnlOc5MmWt5+/v7Z/sezOv7Oq8ePHiAu7s79+7dY8yYMVluoK1cuXK2dfev7Y2sQSKEKDDPL8WXmxeX4sv0/fffq+vXr6/W19dXGxsbqx0cHNRjx45V//PPP0qbiIgIdaNGjdT6+vrqcuXKqceOHaves2ePGlAfOnRIaefq6qquWbNmlnPkdUmkp0+fqgMDA9UVK1ZUFy9eXG1lZaWeMGGCxlJkmf3lZSm+a9euqfv27auuXLmyWk9PT12yZEl1s2bN1Pv378/S9scff1TXq1dPraurqy5RooTa1dVVvW/fvnxfg5zGmpfrnJ6erg4MDFRbWlqq9fX11W5uburff/9dbWNj89Kl+NRqtTotLU09e/ZsdbVq1dQ6Ojpqc3NzdZs2bdRnzpxR2mzbtk1du3ZttZ6entrW1lY9c+ZM9Y8//phlabF///1X3a5dO7WxsbEa0FiW78GDB+oJEyaoq1SpotbR0VGXLl1a3bhxY/WcOXPUqampSrtbt26pe/bsqTY2NlabmpqqfXx81BEREWpAvXbtWo3Y9+/fr27SpIlaX19fbWJiovb09FRfunRJo03m8m63bt3KMvYXl+LLtHHjRvXHH3+sNjQ0VBsaGqqrVaumHjZsmPrKlStqtTp/r5Hs7NixQw2o27Rpo7G9f//+akD9ww8/aGzPXIpv9uzZWfoim+XYYmJi1L169VJbWFioixcvri5fvry6ffv26g0bNihtcvoZcOjQoSyvz+zkdl3v37+vNjU11fj+nzt3Tt2pUyd1qVKl1Lq6umobGxu1l5eX+sCBA1n6vHTpkrpLly5qY2NjdYkSJdS+vr7qx48fa5wjr+/7nH6GqdVq9eXLl9VNmzZV6+vrayxdmdNSfNn14+rqmmX5yXPnzqldXFzUurq66goVKqiDgoLUixYtUgPqf//9N9tYMv3888/q7t27qytXrqzW19dX6+npqWvUqKH+8ssv1UlJSRptjx49qq5fv75aR0dH43Xwsp91L/u5cvbsWXWPHj3U1tbWal1dXXWZMmXU7du3V58+fVrpY8OGDerWrVury5Qpo9bR0VFbW1urBw0apI6Pj891fGr1s9dsTo8pU6bkOc7neXt7K0tL5uRl7+vMa/ey3zuZ78ecHnn5ufsqVGr1G6ruF0II8cHZsmULHTt2JDw8nCZNmhR2OOINCQgIIDAwkFu3br25D+IoJCNHjmTZsmUkJycX2keri/eb1FwLIYR4JY8fP9Z4np6ezuLFizExMcHR0bGQohIi7158Dd+5c4dVq1bx8ccfS2ItXpnUXAshhHglw4cP5/Hjxzg7O5OSksKmTZs4evQo06dPfys3DQnxupydnXFzc6N69er8999//PDDDyQlJeW49rgQeSHJtRBCiFfSvHlz5s6dy/bt23ny5AlVqlRh8eLF+Pr6FnZoQuRJ27Zt2bBhA99//z0qlQpHR0d++OGHV1peUYhMUnMthBBCCCFEAZGaayGEEEIIIQqIJNdCCCGEEEIUEKm5FuIty8jI4J9//sHY2PiNfKSvEEIIIQqeWq3mwYMHlCtXDi2tnOenJbkW4i37559/sLKyKuwwhBBCCPEKbt68SYUKFXLcL8m1EG+ZsbEx8OzNaWJiUsjRCPHhavrVz4UdghDiDfhtao830m9SUhJWVlbK7/GcSHItxFuWWQpiYmIiybUQhUhbV9biFqIoetO/W19W0ik3NAohhBBCCFFAJLkWRYqtrS0LFix4q+d0c3Nj5MiRb/WcQgghhHg3SXIt8szHx4cOHToUdhhCCCGEEO8sSa5FgXv69GlhhyCEEEIIUSgkuRZZbNiwAQcHB/T19SlVqhQtW7ZkzJgxhIaGsnXrVlQqFSqVirCwMGJjY1GpVKxbtw5XV1f09PRYvXo1ACtWrKB69ero6elRrVo1vv32W+Ucqamp+Pr6YmlpiZ6eHjY2NgQFBQHP1pEMCAjA2toaXV1dypUrh5+f3yuNJTExkf79+2Nubo6JiQnNmzfn/PnzAPz555+oVCouX76sccz8+fOpXLmy8vz333+nTZs2GBkZUbZsWT7//HNu376d5xhSUlJISkrSeAghhBCiaJLkWmiIj4+nR48e9O3bl6ioKMLCwujUqROTJ0/Gy8sLDw8P4uPjiY+Pp3Hjxspx48ePZ8SIEURFReHu7s7q1auZNGkS06ZNIyoqiunTpzNx4kRCQ0MBWLRoEdu2bWP9+vVcuXKF1atXY2trC8DGjRuZP38+y5YtIzo6mi1btuDg4PBK4+natSsJCQns2rWLM2fO4OjoSIsWLbh79y729vY0aNBA+WMg0+rVq+nZsyfwLDlv3rw59erV4/Tp0+zevZv//vsPLy+vPMcQFBSEqamp8pA1roUQQoiiS5biExri4+NJS0ujU6dO2NjYACiJrb6+PikpKVhYWGQ5buTIkXTq1El5PnnyZObOnatsq1ixIpcuXWLZsmX07t2buLg47Ozs+Pjjj1GpVMq5AOLi4rCwsKBly5YUL14ca2trnJyc8j2W8PBwTp48SUJCArq6ugDMmTOHLVu2sGHDBgYOHIi3tzdLlixhypQpwLPZ7DNnzvDTTz8BsGTJEurVq8f06dOVfn/88UesrKz4888/sbe3f2kcEyZMYNSoUcrzzHUyhRBCCFH0yMy10FCnTh1atGiBg4MDXbt2Zfny5dy7d++lxzVo0ED5+uHDh8TExNCvXz+MjIyUx9SpU4mJiQGe3RwZGRlJ1apV8fPzY+/evcrxXbt25fHjx1SqVIkBAwawefNm0tLS8j2W8+fPk5ycTKlSpTTiuH79uhJH9+7diY2N5fjx48CzWWtHR0eqVaum9HHo0CGN4zP3ZfbxMrq6usqa1rK2tRBCCFG0ycy10KCtrc2+ffs4evQoe/fuZfHixXz55ZecOHEi1+MMDQ2Vr5OTkwFYvnw5H330UZb+ARwdHbl+/Tq7du1i//79eHl50bJlSzZs2ICVlRVXrlxh//797Nu3j6FDhzJ79mwOHz5M8eLF8zyW5ORkLC0tCQsLy7LPzMwMAAsLC5o3b86aNWto1KgRa9asYciQIRp9eHp6MnPmzCx9WFpa5jkWIYQQQnwYJLkWWahUKpo0aUKTJk2YNGkSNjY2bN68GR0dHdLT0196fNmyZSlXrhzXrl3D29s7x3YmJiZ069aNbt260aVLFzw8PLh79y4lS5ZEX18fT09PPD09GTZsGNWqVePixYs4OjrmeRyOjo78+++/FCtWTKnnzo63tzdjx46lR48eXLt2je7du2v0sXHjRmxtbSlWTN4uQgghhMidZAtCw4kTJzhw4ACtW7emTJkynDhxglu3blG9enWePHnCnj17uHLlCqVKlcLU1DTHfgIDA/Hz88PU1BQPDw9SUlI4ffo09+7dY9SoUcybNw9LS0vq1auHlpYWv/zyCxYWFpiZmRESEkJ6ejofffQRBgYG/PTTT+jr62vUZedFy5YtcXZ2pkOHDsyaNQt7e3v++ecfduzYQceOHZVSlk6dOjFkyBCGDBlCs2bNKFeunNLHsGHDWL58OT169GDs2LGULFmSq1evsnbtWlasWKHMxAshhBBCgCTX4gUmJib89ttvLFiwgKSkJGxsbJg7dy5t2rShQYMGhIWF0aBBA5KTkzl06FCOM8L9+/fHwMCA2bNnM2bMGAwNDXFwcFA+ydDY2JhZs2YRHR2NtrY2DRs2ZOfOnWhpaWFmZsaMGTMYNWoU6enpODg48Ouvv1KqVKl8jUWlUrFz506+/PJL+vTpw61bt7CwsKBp06aULVtWaWdsbIynpyfr16/nxx9/1OijXLlyREREMG7cOFq3bk1KSgo2NjZ4eHigpSW3LAghhBBCk0qtVqsLOwghPiRJSUmYmppy//59ublRiEJUf8zKwg5BCPEGnJnd6430m9ff3zJzLYQQ4oP0pn4BCyE+bPJ/bfHeOHLkiMaSeC8+hBBCCCEKm8xci/dGgwYNiIyMLOwwhBBCCCFyJMm1eG/o6+tTpUqVwg5DCFFESM21ENmTkqnXI2UhQgghhBBCFBBJrt8zbm5uynJ22bG1tWXBggVvPA6VSsWWLVve+HmEEEIIId4nklwLIYQQQghRQCS5Fu8ctVpNWlpaYYeh4V2MSQghhBDvHkmu30NpaWn4+vpiampK6dKlmThxIjl9FlBcXByffvopRkZGmJiY4OXlxX///afRZunSpVSuXBkdHR2qVq3KqlWrNPZHR0fTtGlT9PT0qFGjBvv27ctzrLGxsahUKtauXUvjxo3R09OjVq1aHD58WGkTFhaGSqVi165d1K9fH11dXcLDw8nIyCAoKIiKFSuir69PnTp12LBhg3LcvXv38Pb2xtzcHH19fezs7AgODgYgNTUVX19fLC0t0dPTw8bGhqCgII2Ynl95JDExEZVKRVhY2GvFJIQQQogPm6wW8h4KDQ2lX79+nDx5ktOnTzNw4ECsra0ZMGCARruMjAwlsT58+DBpaWkMGzaMbt26KUnk5s2bGTFiBAsWLKBly5Zs376dPn36UKFCBZo1a0ZGRgadOnWibNmynDhxgvv37+da852TMWPGsGDBAmrUqMG8efPw9PTk+vXrGh9pPn78eObMmUOlSpUoUaIEQUFB/PTTT3z33XfY2dnx22+/8dlnn2Fubo6rqysTJ07k0qVL7Nq1i9KlS3P16lUeP34MwKJFi9i2bRvr16/H2tqamzdvcvPmzXzHnd+YspOSkkJKSoryPCkpKd9xCCGEEOL9IMn1e8jKyor58+ejUqmoWrUqFy9eZP78+VmS6wMHDnDx4kWuX7+OlZUVACtXrqRmzZqcOnWKhg0bMmfOHHx8fBg6dCgAo0aN4vjx48yZM4dmzZqxf/9+Ll++zJ49eyhXrhwA06dPp02bNvmK2dfXl86dOwPPZsp3797NDz/8wNixY5U2X3/9Na1atQKeJaTTp09n//79ODs7A1CpUiXCw8NZtmwZrq6uxMXFUa9ePRo0aAA8u5kzU1xcHHZ2dnz88ceoVCpsbGzyFe+rxpSdoKAgAgMDX+n8QgghhHi/SFnIe6hRo0aoVCrlubOzM9HR0aSnp2u0i4qKwsrKSkmsAWrUqIGZmRlRUVFKmyZNmmgc16RJE439VlZWSmKdeb78ev6YYsWK0aBBA+UcmTKTZICrV6/y6NEjWrVqpfEpjCtXriQmJgaAIUOGsHbtWurWrcvYsWM5evSocryPjw+RkZFUrVoVPz8/9u7dm++YXyWm7EyYMIH79+8rj1eZQRdCCCHE+0FmrsU7w9DQUPk6OTkZgB07dlC+fHmNdrq6ugC0adOGGzdusHPnTvbt20eLFi0YNmwYc+bMwdHRkevXr7Nr1y7279+Pl5cXLVu2ZMOGDWhpPfub8vk69adPnxZITNnR1dXNdb8QQgghig6ZuX4PnThxQuP58ePHsbOzQ1tbW2N79erVs9QaX7p0icTERGrUqKG0iYiI0DguIiJCY//NmzeJj4/XOF9+PX9MWloaZ86coXr16jm2r1GjBrq6usTFxVGlShWNx/Mz8ebm5vTu3ZuffvqJBQsW8P333yv7TExM6NatG8uXL2fdunVs3LiRu3fvYm5uDqAxprx8rHpeYxJCCCHEh0tmrt9DcXFxjBo1ikGDBnH27FkWL17M3Llzs7Rr2bIlDg4OeHt7s2DBAtLS0hg6dCiurq5KucOYMWPw8vKiXr16tGzZkl9//ZVNmzaxf/9+pQ97e3t69+7N7NmzSUpK4ssvv8x3zN988w12dnZUr16d+fPnc+/ePfr27Ztje2NjY/z9/fniiy/IyMjg448/5v79+0RERGBiYkLv3r2ZNGkS9evXp2bNmqSkpLB9+3YlYZ83bx6WlpbUq1cPLS0tfvnlFywsLDAzM0NLS4tGjRoxY8YMKlasSEJCAl999dVLx5CXmIQQQgjxYZPk+j3Uq1cvHj9+jJOTE9ra2owYMYKBAwdmaadSqdi6dSvDhw+nadOmaGlp4eHhweLFi5U2HTp0YOHChcyZM4cRI0ZQsWJFgoODcXNzA0BLS4vNmzfTr18/nJycsLW1ZdGiRXh4eOQr5hkzZjBjxgwiIyOpUqUK27Zto3Tp0rkeM2XKFMzNzQkKCuLatWuYmZnh6OjI//73PwB0dHSYMGECsbGx6Ovr4+Liwtq1a4FnifCsWbOIjo5GW1ubhg0bsnPnTqUk5Mcff6Rfv37Ur1+fqlWrMmvWLFq3bv3ScbwsJiGEEEJ82FTqnBZIFqIAxMbGUrFiRc6dO0fdunULO5x3QlJSEqampty/fx8TE5PCDkeID1b9MSsLOwQh3klnZvcq7BDeSXn9/S0z10IIIT5IkkAIId4EuaFRvJbp06drLEv3/CO/a2ELIYQQQrzvpCxEvJa7d+9y9+7dbPfp6+tnWbJOSFmIEEII8T6SshDxVpQsWZKSJUsWdhhCCCGEEO8ESa6FEEJ8kOSGRvEhk3sO3hypuRZCCCGEEKKAFKnkWq1WM3DgQEqWLIlKpcrTp+4JIYQQQghRUIpUcr17925CQkLYvn078fHx1KpV66XHqFQqtmzZ8uaDE0IIIYQQRV6RqrmOiYnB0tKSxo0bv/Vzp6amoqOj89bPm5s3GdPTp08pXrz4G+m7sKjVatLT0ylWrEi9LYQQQgjxFhWZmWsfHx+GDx9OXFwcKpUKW1tbbG1tWbBggUa7unXrEhAQAICtrS0AHTt2VI7J7KtDhw4ax40cOVL5SHAANzc3fH19GTlyJKVLl8bd3R2A33//nTZt2mBkZETZsmX5/PPPuX37dp7GkJGRwaxZs6hSpQq6urpYW1szbdo0Zf+4ceOwt7fHwMCASpUqMXHiRJ4+farsDwgIoG7duqxYsYKKFSuip6cHQGJiIv3798fc3BwTExOaN2/O+fPnNc69detWHB0d0dPTo1KlSgQGBpKWlqbsV6lULF26lE8++QRDQ0ONuHLyxx9/0L59e0xMTDA2NsbFxYWYmBhlrF9//TUVKlRAV1eXunXrsnv3buXY2NhYVCoVmzZtolmzZhgYGFCnTh2OHTumcY6IiAjc3NwwMDCgRIkSuLu7c+/ePeUcQUFBVKxYEX19ferUqcOGDRuUY8PCwlCpVOzatYv69eujq6tLeHg4bm5u+Pn5MXbsWEqWLImFhYXymoFnSXhAQADW1tbo6upSrlw5/Pz8Xno9hBBCCFH0FZnkeuHChUqyFh8fz6lTp156TGab4ODgPB/zvNDQUHR0dIiIiOC7774jMTGR5s2bU69ePU6fPs3u3bv577//8PLyylN/EyZMYMaMGUycOJFLly6xZs0aypYtq+w3NjYmJCSES5cusXDhQpYvX878+fM1+rh69SobN25k06ZNSs15165dSUhIYNeuXZw5cwZHR0datGihrE995MgRevXqxYgRI7h06RLLli0jJCQkSwIdEBBAx44duXjxIn379s11LH///TdNmzZFV1eXgwcPcubMGfr27ask7AsXLmTu3LnMmTOHCxcu4O7uzieffEJ0dLRGP19++SX+/v5ERkZib29Pjx49lD4iIyNp0aIFNWrU4NixY4SHh+Pp6Ul6ejoAQUFBrFy5ku+++44//viDL774gs8++4zDhw9rnGP8+PHMmDGDqKgoateuDTz73hoaGnLixAlmzZrF119/zb59+wDYuHEj8+fPZ9myZURHR7NlyxYcHBxyvBYpKSkkJSVpPIQQQghRNBWZ/3+bmppibGyMtrY2FhYWeTrG3NwcADMzszwf8zw7OztmzZqlPJ86dSr16tVj+vTpyrYff/wRKysr/vzzT+zt7XPs68GDByxcuJAlS5bQu3dvACpXrszHH3+stPnqq6+Ur21tbfH392ft2rWMHTtW2Z6amsrKlSuVsYWHh3Py5EkSEhLQ1dUFYM6cOWzZsoUNGzYwcOBAAgMDGT9+vHLeSpUqMWXKFMaOHcvkyZOVvnv27EmfPn3ydG2++eYbTE1NWbt2rVI+8vz458yZw7hx4+jevTsAM2fO5NChQyxYsIBvvvlGaefv70+7du0ACAwMpGbNmly9epVq1aoxa9YsGjRowLfffqu0r1mzJvAsoZ0+fTr79+/H2dlZGVd4eDjLli3D1dVVOebrr7+mVatWGvHXrl1bGbudnR1LlizhwIEDtGrViri4OCwsLGjZsiXFixfH2toaJyenHK9FUFAQgYGBebpuQgghhHi/FZnkujDUr19f4/n58+c5dOgQRkZGWdrGxMTkmlxHRUWRkpJCixYtcmyzbt06Fi1aRExMDMnJyaSlpWX5hCAbGxslsc6MKTk5mVKlSmm0e/z4sVKicf78eSIiIjRmqtPT03ny5AmPHj3CwMAAgAYNGuQY24siIyNxcXHJti47KSmJf/75hyZNmmhsb9KkSZZylcyZZABLS0sAEhISqFatGpGRkXTt2jXb81+9epVHjx5lSZpTU1OpV6+exrbsxvX8eTPPnZCQADz7T8CCBQuoVKkSHh4etG3bFk9PzxxrtSdMmMCoUaM0xm9lZZVtWyGEEEK834p0cq2lpcWLn+7+fI3y6x5naGio8Tw5ORlPT09mzpyZpW1mYpgTfX39XPcfO3YMb29vAgMDcXd3V2aF586d+9KYLC0tCQsLy9KnmZmZ0iYwMJBOnTplaZNZt51d37l52Xjy6vnkXKVSAc9qqV92juTkZAB27NiR5SPYM2fwM2U3rhf/KFCpVMp5raysuHLlCvv372ffvn0MHTqU2bNnc/jw4Wz/mNDV1c1yTiGEEEIUTUU6uTY3Nyc+Pl55npSUxPXr1zXaFC9eXKnRff6433//XWNbZGTkS1fHcHR0ZOPGjdja2uZ7xQk7Ozv09fU5cOAA/fv3z7L/6NGj2NjY8OWXXyrbbty48dJ+HR0d+ffffylWrJhyw2Z2ba5cuUKVKlXyFXNuateuTWhoaLaripiYmFCuXDkiIiI0yjMiIiJyLa/I7hwHDhzItuSiRo0a6OrqEhcXp3GOgqKvr4+npyeenp4MGzaMatWqcfHiRRwdHQv8XEIIIYR4fxSZGxqz07x5c1atWsWRI0e4ePEivXv3RltbW6ONra0tBw4c4N9//1VWmWjevDmnT59m5cqVREdHM3ny5CzJdnaGDRvG3bt36dGjB6dOnSImJoY9e/bQp0+fLAn8i/T09Bg3bhxjx45l5cqVxMTEcPz4cX744QfgWfIdFxfH2rVriYmJYdGiRWzevPmlMbVs2RJnZ2c6dOjA3r17iY2N5ejRo3z55ZecPn0agEmTJrFy5UoCAwP5448/iIqKYu3atRo13vnl6+tLUlIS3bt35/Tp00RHR7Nq1SquXLkCwJgxY5g5cybr1q3jypUrjB8/nsjISEaMGJHnc0yYMIFTp04xdOhQLly4wOXLl1m6dCm3b9/G2NgYf39/vvjiC0JDQ4mJieHs2bMsXryY0NDQVx4XQEhICD/88AO///47165d46effkJfXx8bG5vX6lcIIYQQ778inVxPmDABV1dX2rdvT7t27ejQoQOVK1fWaDN37lz27duHlZWVUovr7u7OxIkTGTt2LA0bNuTBgwf06tXrpefLnI1NT0+ndevWODg4MHLkSMzMzNDSevmlnjhxIqNHj2bSpElUr16dbt26KXW+n3zyCV988QW+vr7UrVuXo0ePMnHixJf2qVKp2LlzJ02bNqVPnz7Y29vTvXt3bty4oaxE4u7uzvbt29m7dy8NGzakUaNGzJ8//7WSxVKlSnHw4EGSk5NxdXWlfv36LF++XJnF9vPzY9SoUYwePRoHBwd2797Ntm3bsLOzy/M57O3t2bt3L+fPn8fJyQlnZ2e2bt2q/NdgypQpTJw4kaCgIKpXr46Hhwc7duygYsWKrzwueFZOs3z5cpo0aULt2rXZv38/v/76a5a6diGEEEJ8eFTqF4uLhRBvVFJSEqampty/fz/LDalCiLen/piVhR2CEIXmzOyXTxoKTXn9/V2ka66FEEKInEhyIYR4E4p0Wci7JC4uDiMjoxwfcXFxhR1ivgwePDjHsQwePLiwwxNCCCGEKBRSFvKWpKWlERsbm+P+V1lhpDAlJCTk+EmDJiYmlClT5i1H9P6QshAhhBDi/SNlIe+YYsWKFehSd4WtTJkykkALId5rUnMtPlRSEvVmSVmIEEIIIYQQBUSSayGEEEIIIQqIJNfvODc3N0aOHFlg/QUEBFC3bt0C6+9tym/sISEhyke850alUrFly5ZXjksIIYQQIlORT67DwsJQqVQkJiYWdiivZNOmTUyZMqWww3jrskt4/f39OXDgQJ776NatG3/++afyPKfkPD4+njZt2rxqqEIIIYQQCrmh8f9LTU1FR0enUM799OlT5ZMLX4ynZMmShRJTbrKL923IXOovr/T19dHX139pOwsLi9cJSwghhBBC8V7MXGdkZBAUFETFihXR19enTp06bNiwAbVaTcuWLXF3dydzRcG7d+9SoUIFJk2aRGxsLM2aNQOgRIkSqFQqfHx8gGflFr6+vowcOZLSpUvj7u4OwLx583BwcMDQ0BArKyuGDh1KcnKyRjwRERG4ublhYGBAiRIlcHd35969e8CzJfUWLFig0b5u3boEBAQoz1UqFUuXLuWTTz7B0NCQadOmKbOqK1asoGLFiujp6SlxPl8WkpKSwrhx47CyskJXV5cqVarwww8/ANmXQWzZsgWVSpXjtT116hStWrWidOnSmJqa4urqytmzZzXaZBdvbtLT0+nXr5/y/apatSoLFy7M0u7HH3+kZs2a6OrqYmlpia+vr3INATp27IhKpVKePz/zvHfvXvT09LL8R2LEiBE0b948y/UICQkhMDCQ8+fPo1KpUKlUhISEKON7fpb85s2beHl5YWZmRsmSJfn00081llEMCwvDyckJQ0NDzMzMaNKkCTdu3MjxeqSkpJCUlKTxEEIIIUTR9F4k10FBQaxcuZLvvvuOP/74gy+++ILPPvuM3377jdDQUE6dOsWiRYuAZx9uUr58eSZNmoSVlRUbN24E4MqVK8THx2skeaGhoejo6BAREcF3330HgJaWFosWLeKPP/4gNDSUgwcPMnbsWOWYyMhIWrRoQY0aNTh27Bjh4eF4enqSnp6erzEFBATQsWNHLl68SN++fQG4evUqGzduZNOmTURGRmZ7XK9evfj5559ZtGgRUVFRLFu2LF+zuS968OABvXv3Jjw8nOPHj2NnZ0fbtm158ODBS+PNSUZGBhUqVOCXX37h0qVLTJo0if/973+sX79eabN06VKGDRvGwIEDuXjxItu2bVOWKjx16hQAwcHBxMfHK8+f16JFC8zMzJTvLzxL6tetW4e3t3eW9t26dWP06NHUrFmT+Ph44uPj6datW5Z2T58+xd3dHWNjY44cOUJERARGRkZ4eHiQmppKWloaHTp0wNXVlQsXLnDs2DEGDhyY6x8wQUFBmJqaKg8rK6tcr58QQggh3l/vfFlISkoK06dPZ//+/Tg7OwNQqVIlwsPDWbZsGWvWrGHZsmX06tWLf//9l507d3Lu3DnlA1kyyyrKlCmTZVbXzs6OWbNmaWx7fpbY1taWqVOnMnjwYL799lsAZs2aRYMGDZTnADVr1sz3uHr27EmfPn00tqWmprJy5UrMzc2zPebPP/9k/fr17Nu3j5YtWyrX4nVkzvJm+v777zEzM+Pw4cO0b98+13hzUrx4cQIDA5XnFStW5NixY6xfvx4vLy8Apk6dyujRoxkxYoTSrmHDhgDK+M3MzHIs2dDW1qZ79+6sWbOGfv36AXDgwAESExPp3Llzlvb6+voYGRlRrFixXMtA1q1bR0ZGBitWrFAS5uDgYMzMzAgLC6NBgwbcv3+f9u3bU7lyZQCqV6+e6/WYMGECo0aNUp4nJSVJgi2EEEIUUe98cn316lUePXpEq1atNLanpqZSr149ALp27crmzZuZMWMGS5cuxc7OLk99169fP8u2/fv3ExQUxOXLl0lKSiItLY0nT57w6NEjDAwMiIyMpGvXrq89rgYNGmTZZmNjk2NiDc9mzbW1tXF1dX3t82f677//+OqrrwgLCyMhIYH09HQePXqU5ePYs4s3N9988w0//vgjcXFxPH78mNTUVKWkIyEhgX/++YcWLVq8Vuze3t40atSIf/75h3LlyrF69WratWuXpxVCcnL+/HmuXr2KsbGxxvYnT54QExND69at8fHxwd3dnVatWtGyZUu8vLywtLTMsU9dXV10dXVfOSYhhBBCvD/e+eQ6s955x44dlC9fXmNfZsLy6NEjzpw5g7a2NtHR0Xnu29DQUON5bGws7du3Z8iQIUybNo2SJUsSHh5Ov379SE1NxcDA4KU3yGlpafHiJ8o/ffr0pefOadvzCurcz+vduzd37txh4cKF2NjYoKuri7OzM6mpqfmK7Xlr167F39+fuXPn4uzsjLGxMbNnz+bEiRN5GkdeNWzYkMqVK7N27VqGDBnC5s2blTrqV5WcnEz9+vVZvXp1ln2Zf/gEBwfj5+fH7t27WbduHV999RX79u2jUaNGr3VuIYQQQrz/3vnkukaNGujq6hIXF5fjjO3o0aPR0tJi165dtG3blnbt2inlDpkrgOSlJvrMmTNkZGQwd+5ctLSelaM/XycMULt2bQ4cOKBR9vA8c3Nz4uPjledJSUlcv3795QPNAwcHBzIyMjh8+LBSFvLiuR88eMDDhw+VZDin2u1MERERfPvtt7Rt2xZ4djPf7du3XyvOiIgIGjduzNChQ5VtMTExytfGxsbY2tpy4MAB5YbTFxUvXjxP3zNvb29Wr15NhQoV0NLSol27djm21dHReWmfjo6OrFu3jjJlymBiYpJju3r16lGvXj0mTJiAs7Mza9askeRaCCGEEO/+DY3Gxsb4+/vzxRdfEBoaSkxMDGfPnmXx4sWEhoayY8cOfvzxR1avXk2rVq0YM2YMvXv3VlbvsLGxQaVSsX37dm7dupVl5Y/nValShadPn7J48WKuXbvGqlWrlBsdM02YMIFTp04xdOhQLly4wOXLl1m6dKmSkDZv3pxVq1Zx5MgRLl68SO/evdHW1i6Qa2Fra0vv3r3p27cvW7Zs4fr164SFhSl/AHz00UcYGBjwv//9j5iYGNasWfPSmVw7OztWrVpFVFQUJ06cwNvb+7Vnlu3s7Dh9+jR79uzhzz//ZOLEiVluSgwICGDu3LksWrSI6Oho5Xv6/FgPHDjAv//+q3wvs+Pt7c3Zs2eZNm0aXbp0ybX8wtbWluvXrxMZGcnt27dJSUnJtr/SpUvz6aefcuTIEeUa+/n58ddff3H9+nUmTJjAsWPHuHHjBnv37iU6OvqldddCCCGE+DC888k1wJQpU5g4cSJBQUFUr14dDw8PduzYga2tLf369SMgIABHR0cAAgMDKVu2LIMHDwagfPnyBAYGMn78eMqWLass95adOnXqMG/ePGbOnEmtWrVYvXo1QUFBGm3s7e3Zu3cv58+fx8nJCWdnZ7Zu3arcQDlhwgRcXV1p37497dq1o0OHDsqNbwVh6dKldOnShaFDh1KtWjUGDBjAw4cPgWc3b/7000/s3LkTBwcHfv75Z40lALPzww8/cO/ePRwdHfn888/x8/OjTJkyrxXjoEGD6NSpE926deOjjz7izp07GrPY8KwcZcGCBXz77bfUrFmT9u3ba5T0zJ07l3379mFlZaXU1menSpUqODk5ceHChWxXCXle586d8fDwoFmzZpibm/Pzzz9naWNgYMBvv/2GtbU1nTp1onr16vTr148nT55gYmKCgYEBly9fpnPnztjb2zNw4ECGDRvGoEGD8nmVhBBCCFEUqdQvFukKId6opKQkTE1NuX//fq6lJ0IIIYR4d+T19/d7MXMthBBCCCHE+0CSa5FvgwcPVj6K/MVHZjmOEEIIIcSHSMpCRL4lJCTk+BHeJiYmr12zXdRJWYgQQgjx/snr7+93fik+8e4pU6aMJNBCiPde/TErCzsEId66M7N7FXYIRZ6UhQghhBBCCFFAJLkWr8zNzY2RI0cWdhivLCwsDJVKRWJiYmGHIoQQQogiQpJr8cFq3Lgx8fHxmJqaFnYoQgghhCgiJLkW76zU1NQ32r+Ojg4WFhaoVKo3eh4hhBBCfDgkuRZ58vDhQ3r16oWRkRGWlpbMnTtXY39KSgr+/v6UL18eQ0NDPvroI8LCwpT9ISEhmJmZsWXLFuzs7NDT08Pd3Z2bN28qbQICAqhbty4rVqygYsWK6OnpAZCYmEj//v0xNzfHxMSE5s2bc/78eeW48+fP06xZM4yNjTExMaF+/fqcPn0agBs3buDp6UmJEiUwNDSkZs2a7Ny5E8i+LGTjxo3UrFkTXV1dbG1ts4zT1taW6dOn07dvX4yNjbG2tub7778vkGsshBBCiPefJNciT8aMGcPhw4fZunUre/fuJSwsjLNnzyr7fX19OXbsGGvXruXChQt07doVDw8PjY80f/ToEdOmTWPlypVERESQmJhI9+7dNc5z9epVNm7cyKZNm4iMjASga9euJCQksGvXLs6cOYOjoyMtWrTg7t27AHh7e1OhQgVOnTrFmTNnGD9+PMWLFwdg2LBhpKSk8Ntvv3Hx4kVmzpyJkZFRtmM8c+YMXl5edO/enYsXLxIQEMDEiRMJCQnRaDd37lwaNGjAuXPnGDp0KEOGDOHKlSs5XruUlBSSkpI0HkIIIYQommQpPvFSycnJ/PDDD/z000+0aNECgNDQUCpUqABAXFwcwcHBxMXFUa5cOQD8/f3ZvXs3wcHBTJ8+HYCnT5+yZMkSPvroI6WP6tWrc/LkSZycnIBnpSArV67E3NwcgPDwcE6ePElCQgK6uroAzJkzhy1btrBhwwYGDhxIXFwcY8aMoVq1agDY2dkpscfFxdG5c2ccHBwAqFSpUo7jnDdvHi1atGDixIkA2Nvbc+nSJWbPno2Pj4/Srm3btgwdOhSAcePGMX/+fA4dOkTVqlWz7TcoKIjAwMA8XWshhBBCvN9k5lq8VExMDKmpqUpSDFCyZEklmbx48SLp6enY29trfFrj4cOHiYmJUY4pVqwYDRs2VJ5Xq1YNMzMzoqKilG02NjZKYg3PSj6Sk5MpVaqURt/Xr19X+h41ahT9+/enZcuWzJgxQ+Ocfn5+TJ06lSZNmjB58mQuXLiQ4zijoqJo0qSJxrYmTZoQHR1Nenq6sq127drK1yqVCgsLCxISEnLsd8KECdy/f195PF8KI4QQQoiiRWauxWtLTk5GW1ubM2fOoK2trbEvpxKMnBgaGmbp29LSUqN+O5OZmRnwrFa7Z8+e7Nixg127djF58mTWrl1Lx44d6d+/P+7u7uzYsYO9e/cSFBTE3LlzGT58eL7iel5myUkmlUpFRkZGju11dXWVWXchhBBCFG0ycy1eqnLlyhQvXpwTJ04o2+7du8eff/4JQL169UhPTychIYEqVapoPCwsLJRj0tLSlBsNAa5cuUJiYiLVq1fP8dyOjo78+++/FCtWLEvfpUuXVtrZ29vzxRdfsHfvXjp16kRwcLCyz8rKisGDB7Np0yZGjx7N8uXLsz1X9erViYiI0NgWERGBvb19lj8ahBBCCCGyI8m1eCkjIyP69evHmDFjOHjwIL///js+Pj5oaT17+djb2+Pt7U2vXr3YtGkT169f5+TJkwQFBbFjxw6ln+LFizN8+HBOnDjBmTNn8PHxoVGjRkq9dXZatmyJs7MzHTp0YO/evcTGxnL06FG+/PJLTp8+zePHj/H19SUsLIwbN24QERHBqVOnlIR95MiR7Nmzh+vXr3P27FkOHTqUYzI/evRoDhw4wJQpU/jzzz8JDQ1lyZIl+Pv7F+DVFEIIIURRJmUhIk9mz55NcnIynp6eGBsbM3r0aO7fv6/sDw4OZurUqYwePZq///6b0qVL06hRI9q3b6+0MTAwYNy4cfTs2ZO///4bFxcXfvjhh1zPq1Kp2LlzJ19++SV9+vTh1q1bWFhY0LRpU8qWLYu2tjZ37tyhV69e/Pfff5QuXZpOnTopNxCmp6czbNgw/vrrL0xMTPDw8GD+/PnZnsvR0ZH169czadIkpkyZgqWlJV9//bXGzYxCCCGEELlRqdVqdWEHIYq+kJAQRo4cKR81DiQlJWFqasr9+/cxMTEp7HCE+GDVH7OysEMQ4q07M7tXYYfw3srr72+ZuRZCCPFBkiRDCPEmSM21EEIIIYQQBUSSa/FW+Pj4SEmIEEIIIYo8KQsRQgjxQZKaa/EhknKoN09mroUQQgghhCggklwLIYQQQghRQCS5FkIIIYQQooBIci2EEEIIIUQBkeRavJbU1NQC71OtVpOWllbg/b6OdzEmIYQQQrx7JLkuQtzc3PD19cXX1xdTU1NKly7NxIkTyfwQzpSUFPz9/SlfvjyGhoZ89NFHhIWFafQRHh6Oi4sL+vr6WFlZ4efnx8OHD5X9tra2TJkyhV69emFiYsLAgQNzjSk2NhaVSsXatWtp3Lgxenp61KpVi8OHDyttwsLCUKlU7Nq1i/r166Orq0t4eDgZGRkEBQVRsWJF9PX1qVOnDhs2bFCOu3fvHt7e3pibm6Ovr4+dnR3BwcHAs6Tf19cXS0tL9PT0sLGxISgoSCOmyMhIpa/ExERUKpVyPV41puykpKSQlJSk8RBCCCFE0STJdRETGhpKsWLFOHnyJAsXLmTevHmsWLECAF9fX44dO8batWu5cOECXbt2xcPDg+joaABiYmLw8PCgc+fOXLhwgXXr1hEeHo6vr6/GOebMmUOdOnU4d+4cEydOzFNcY8aMYfTo0Zw7dw5nZ2c8PT25c+eORpvx48czY8YMoqKiqF27NkFBQaxcuZLvvvuOP/74gy+++ILPPvtMScwnTpzIpUuX2LVrF1FRUSxdupTSpUsDsGjRIrZt28b69eu5cuUKq1evxtbWNt/XM78xZScoKAhTU1PlYWVlle84hBBCCPF+UKkzpzXFe8/NzY2EhAT++OMPVCoV8Cw53LZtG7t376ZSpUrExcVRrlw55ZiWLVvi5OTE9OnT6d+/P9ra2ixbtkzZHx4ejqurKw8fPkRPTw9bW1vq1avH5s2b8xRTbGwsFStWZMaMGYwbNw6AtLQ0KlasyPDhwxk7dixhYWE0a9aMLVu28OmnnwLPZntLlizJ/v37cXZ2Vvrr378/jx49Ys2aNXzyySeULl2aH3/8Mct5/fz8+OOPP9i/f79yLV6M6dy5c9StWxd4NnNdokQJDh06hJub2yvHlJ2UlBRSUlKU50lJSVhZWXH//n1MTEzydB2FEAVP1rkWHyJZ5/rVJSUlYWpq+tLf3/IhMkVMo0aNNJJJZ2dn5s6dy8WLF0lPT8fe3l6jfUpKCqVKlQLg/PnzXLhwgdWrVyv71Wo1GRkZXL9+nerVqwPQoEGDfMf1fDJarFgxGjRoQFRUlEab5/u9evUqjx49olWrVhptUlNTqVevHgBDhgyhc+fOnD17ltatW9OhQwcaN24MPPtEyFatWlG1alU8PDxo3749rVu3znfc+Y0pO7q6uujq6ub73EIIIYR4/0hy/YFITk5GW1ubM2fOoK2trbHPyMhIaTNo0CD8/PyyHG9tba18bWho+EZifL7f5ORkAHbs2EH58uU12mUmqm3atOHGjRvs3LmTffv20aJFC4YNG8acOXNwdHTk+vXr7Nq1i/379+Pl5UXLli3ZsGEDWlrPqqGe/6fN06dPCyQmIYQQQnzYJLkuYk6cOKHx/Pjx49jZ2VGvXj3S09NJSEjAxcUl22MdHR25dOkSVapUKfC4jh8/TtOmTYFnZSFnzpzJUsv9vBo1aqCrq0tcXByurq45tjM3N6d379707t0bFxcXxowZw5w5cwAwMTGhW7dudOvWjS5duuDh4cHdu3cxNzcHID4+Xplxfv7mxteNSQghhBAfLkmui5i4uDhGjRrFoEGDOHv2LIsXL2bu3LnY29vj7e1Nr169mDt3LvXq1ePWrVscOHCA2rVr065dO8aNG0ejRo3w9fWlf//+GBoacunSJfbt28eSJUteK65vvvkGOzs7qlevzvz587l37x59+/bNsb2xsTH+/v588cUXZGRk8PHHH3P//n0iIiIwMTGhd+/eTJo0ifr161OzZk1SUlLYvn27Uroyb948LC0tqVevHlpaWvzyyy9YWFhgZmaGlpYWjRo1YsaMGVSsWJGEhAS++uqrl44hLzEJIYQQ4sMmyXUR06tXLx4/foyTkxPa2tqMGDFCWS4vODiYqVOnMnr0aP7++29Kly5No0aNaN++PQC1a9fm8OHDfPnll7i4uKBWq6lcuTLdunV77bhmzJjBjBkziIyMpEqVKmzbtk1Z2SMnU6ZMwdzcnKCgIK5du4aZmRmOjo7873//A0BHR4cJEyYQGxuLvr4+Li4urF27FniWCM+aNYvo6Gi0tbVp2LAhO3fuVEpCfvzxR/r160f9+vWpWrUqs2bNylNN9stiEkIIIcSHTVYLKULc3NyoW7cuCxYsKOxQFNmtzPGhy+vdxkKIN0tWCxEfIlkt5NXJaiFCCCFELiTJEEK8CfIhMuK1TJ8+HSMjo2wfbdq0KezwhBBCCCHeKikLEa/l7t273L17N9t9+vr6WZasE1IWIoQQQryPpCxEvBUlS5akZMmShR2GEELkm9Rciw+RlEO9eVIWIoQQQgghRAGR5FoUCjc3N0aOHPnKx8fGxqJSqZQPfwkLC0OlUpGYmPhKxwshhBBCFAQpCxEfJCsrK+Lj41+61rYQQgghRH5Ici0+SNra2lhYWBR2GEIIIYQoYqQsRBSatLQ0fH19MTU1pXTp0kycOJHMxWtUKhVbtmzRaG9mZkZISMhL+3348CEmJiZs2LBBY/uWLVswNDTkwYMHOZaVHDhwgAYNGmBgYEDjxo25cuWKRh9Tp06lTJkyGBsb079/f8aPHy8fjiOEEEIIhSTXotCEhoZSrFgxTp48ycKFC5k3bx4rVqx47X4NDQ3p3r07wcHBGtuDg4Pp0qULxsbGOR775ZdfMnfuXE6fPk2xYsXo27evsm/16tVMmzaNmTNncubMGaytrVm6dOlL40lJSSEpKUnjIYQQQoiiScpCRKGxsrJi/vz5qFQqqlatysWLF5k/fz4DBgx47b779+9P48aNiY+Px9LSkoSEBHbu3Mn+/ftzPW7atGm4uroCMH78eNq1a8eTJ0/Q09Nj8eLF9OvXjz59+gAwadIk9u7dS3Jycq59BgUFERgY+NpjEkIIIcS7T2auRaFp1KgRKpVKee7s7Ex0dDTp6emv3beTkxM1a9YkNDQUgJ9++gkbGxuaNm2a63G1a9dWvra0tAQgISEBgCtXruDk5JTlPC8zYcIE7t+/rzxu3ryZr7EIIYQQ4v0hybV4J6lUKl788NCnT5/mq4/+/fsrNdrBwcH06dNHI5nPTvHixTViAMjIyMjXeV+kq6uLiYmJxkMIIYQQRZMk16LQnDhxQuP58ePHsbOzQ1tbG3Nzc+Lj45V90dHRPHr0KF/9f/bZZ9y4cYNFixZx6dIlevfu/VrxVq1alVOnTmlse/G5EEIIIT5sUnMtCk1cXByjRo1i0KBBnD17lsWLFzN37lwAmjdvzpIlS3B2diY9PZ1x48ZpzCrnRYkSJejUqRNjxoyhdevWVKhQ4bXiHT58OAMGDKBBgwY0btyYdevWceHCBSpVqvRa/QohhBCi6JDkWhSaXr168fjxY5ycnNDW1mbEiBEMHDgQgLlz59KnTx9cXFwoV64cCxcu5MyZM/k+R79+/VizZo3Gqh+vytvbm2vXruHv78+TJ0/w8vLCx8eHkydPvnbfQgghhCgaVOoXC1uFKEJWrVrFF198wT///IOOjk6B99+qVSssLCxYtWpVno9JSkrC1NSU+/fvS/21EIWo/piVhR2CEG/dmdm9CjuE91Zef3/LzLUokh49ekR8fDwzZsxg0KBBBZJYP3r0iO+++w53d3e0tbX5+eef2b9/P/v27SuAiIUQb5skGUKIN0FuaBRF0qxZs6hWrRoWFhZMmDChQPpUqVTs3LmTpk2bUr9+fX799Vc2btxIy5YtC6R/IYQQQrz/pCxEiLdMykKEEEKI909ef3/LzLUQQgghhBAFRGquhRBCfJDkhkZRlMg9BO8OmbkWQgghhBCigEhyLV6bm5sbI0eOfOvntbW1ZcGCBQXWX2GNQwghhBBFhyTXQgghhBBCFBBJroUQQgghhCggklyLApGRkcHYsWMpWbIkFhYWBAQEKPsSExPp378/5ubmmJiY0Lx5c86fP6/sj4mJ4dNPP6Vs2bIYGRnRsGFD9u/fr9F/QkICnp6e6OvrU7FiRVavXp0lhnnz5uHg4IChoSFWVlYMHTqU5ORkjTYRERG4ublhYGBAiRIlcHd35969e3kaR17GIoQQQogPmyTXokCEhoZiaGjIiRMnmDVrFl9//bXyyYVdu3YlISGBXbt2cebMGRwdHWnRogV3794FIDk5mbZt23LgwAHOnTuHh4cHnp6exMXFKf37+Phw8+ZNDh06xIYNG/j2229JSEjQiEFLS4tFixbxxx9/EBoaysGDBxk7dqyyPzIykhYtWlCjRg2OHTtGeHg4np6epKen52kceRlLdlJSUkhKStJ4CCGEEKJokg+REa/Nzc2N9PR0jhw5omxzcnKiefPmtG/fnnbt2pGQkICurq6yv0qVKowdO5aBAwdm22etWrUYPHgwvr6+/Pnnn1StWpWTJ0/SsGFDAC5fvkz16tWZP39+jjchbtiwgcGDB3P79m0AevbsSVxcHOHh4fkex4wZMwgPD3+lsQQEBBAYGJhlu3yIjBCFS5biE0WJLMX35uX1Q2RknWtRIGrXrq3x3NLSkoSEBM6fP09ycjKlSpXS2P/48WNiYmKAZzPXAQEB7Nixg/j4eNLS0nj8+LEycx0VFUWxYsWoX7++cny1atUwMzPT6HP//v0EBQVx+fJlkpKSSEtL48mTJzx69AgDAwMiIyPp2rXrK40DyNNYsjNhwgRGjRqlPE9KSsLKyirXOIQQQgjxfpLkWhSI4sWLazxXqVRkZGSQnJyMpaUlYWFhWY7JTI79/f3Zt28fc+bMoUqVKujr69OlSxdSU1PzfP7Y2Fjat2/PkCFDmDZtGiVLliQ8PJx+/fqRmpqKgYEB+vr6rzwOIE9jyY6urq7GTLcQQgghii5JrsUb5ejoyL///kuxYsWwtbXNtk1ERAQ+Pj507NgReJbExsbGKvurVatGWloaZ86cUcpCrly5QmJiotLmzJkzZGRkMHfuXLS0nt1KsH79eo3z1K5dmwMHDmRbolFQYxFCCCHEh01uaBRvVMuWLXF2dqZDhw7s3buX2NhYjh49ypdffsnp06cBsLOzY9OmTURGRnL+/Hl69uypzBYDVK1aFQ8PDwYNGsSJEyc4c+YM/fv315iJrlKlCk+fPmXx4sVcu3aNVatW8d1332nEMmHCBE6dOsXQoUO5cOECly9fZunSpUpNdkGMRQghhBAfNkmuxRulUqnYuXMnTZs2pU+fPtjb29O9e3du3LhB2bJlgWdL6JUoUYLGjRvj6emJu7s7jo6OGv0EBwdTrlw5XF1d6dSpEwMHDqRMmTLK/jp16jBv3jxmzpxJrVq1WL16NUFBQRp92Nvbs3fvXs6fP4+TkxPOzs5s3bqVYsXy9g+cvIxFCCGEEB82WS1EiLcsr3cbCyHeLFktRBQlslrImyerhQghhBC5kGRECPEmSFmIEEIIIYQQBUSSayGEEEIIIQqIlIUIIYT4IEnNtXjfSWnTu0lmroUQQgghhCggklwLIYQQQghRQCS5FgUiNjYWlUpFZGRkocahUqnYsmXLWz2nra0tCxYseKvnFEIIIcS7SZJrUSCsrKyIj4+nVq1aeT7Gzc2NkSNHvrmghBBCCCHeMrmhURQIbW1tLCwsCjsMIYQQQohCJTPXH4jdu3fz8ccfY2ZmRqlSpWjfvj0xMTHA/5V0bNq0iWbNmmFgYECdOnU4duyYcnzfvn2pXbs2KSkpAKSmplKvXj169eql0cfzZSG///47bdq0wcjIiLJly/L5559z+/ZtAHx8fDh8+DALFy5EpVKhUqm4fv06VapUYc6cORqxR0ZGolKpuHr1ar7HffPmTby8vDAzM6NkyZJ8+umnxMbGArB371709PRITEzUOGbEiBE0b95ceR4eHo6Liwv6+vpYWVnh5+fHw4cP8xxDSkoKSUlJGg8hhBBCFE2SXH8gHj58yKhRozh9+jQHDhxAS0uLjh07kpGRobT58ssv8ff3JzIyEnt7e3r06EFaWhoAixYt4uHDh4wfP15pm5iYyJIlS7I9X2JiIs2bN6devXqcPn2a3bt3899//+Hl5QXAwoULcXZ2ZsCAAcTHxxMfH4+1tTV9+/YlODhYo6/g4GCaNm1KlSpV8jXmp0+f4u7ujrGxMUeOHCEiIgIjIyM8PDxITU2lRYsWmJmZsXHjRuWY9PR01q1bh7e3NwAxMTF4eHjQuXNnLly4wLp16wgPD8fX1zfPcQQFBWFqaqo8rKys8jUOIYQQQrw/pCzkA9G5c2eN5z/++CPm5uZcunQJIyMjAPz9/WnXrh0AgYGB1KxZk6tXr1KtWjWMjIz46aefcHV1xdjYmAULFnDo0CFMTEyyPd+SJUuoV68e06dP1zinlZUVf/75J/b29ujo6GBgYKBRTuLj48OkSZM4efIkTk5OPH36lDVr1mSZzc6LdevWkZGRwYoVK1CpVMCzRN3MzIywsDBat25N9+7dWbNmDf369QPgwIEDJCYmKtcrKCgIb29vpTbczs6ORYsW4erqytKlS9HT03tpHBMmTGDUqFHK86SkJEmwhRBCiCJKZq4/ENHR0fTo0YNKlSphYmKCra0tAHFxcUqb2rVrK19bWloCkJCQoGxzdnbG39+fKVOmMHr0aD7++OMcz3f+/HkOHTqEkZGR8qhWrRqAUo6SnXLlytGuXTt+/PFHAH799VdSUlLo2rVrvsd8/vx5rl69irGxsRJDyZIlefLkiRKDt7c3YWFh/PPPPwCsXr2adu3aYWZmpvQREhKiMQ53d3cyMjK4fv16nuLQ1dXFxMRE4yGEEEKIoklmrj8Qnp6e2NjYsHz5csqVK0dGRga1atUiNTVVaVO8eHHl68yZ3ufLRjIyMoiIiEBbW/ul9c/Jycl4enoyc+bMLPsyE/ec9O/fn88//5z58+cTHBxMt27dMDAwyNM4X4yhfv36rF69Oss+c3NzABo2bEjlypVZu3YtQ4YMYfPmzYSEhGj0MWjQIPz8/LL0YW1tne+YhBBCCFG0SXL9Abhz5w5Xrlxh+fLluLi4AM9u0suv2bNnc/nyZQ4fPoy7uzvBwcH06dMn27aOjo5s3LgRW1tbihXL/mWmo6NDenp6lu1t27bF0NCQpUuXsnv3bn777bd8x5oZw7p16yhTpkyus8Xe3t6sXr2aChUqoKWlpZTGZPZx6dKlfNd7CyGEEOLDJGUhH4ASJUpQqlQpvv/+e65evcrBgwc1aoDz4ty5c0yaNIkVK1bQpEkT5s2bx4gRI7h27Vq27YcNG8bdu3fp0aMHp06dIiYmhj179tCnTx8loba1teXEiRPExsZy+/ZtZZZcW1sbHx8fJkyYgJ2dHc7Ozq80bm9vb0qXLs2nn37KkSNHuH79OmFhYfj5+fHXX39ptDt79izTpk2jS5cu6OrqKvvGjRvH0aNH8fX1JTIykujoaLZu3ZqvGxqFEEII8eGQ5PoDoKWlxdq1azlz5gy1atXiiy++YPbs2Xk+/smTJ3z22Wf4+Pjg6ekJwMCBA2nWrBmff/55trPP5cqVIyIigvT0dFq3bo2DgwMjR47EzMwMLa1nLzt/f3+0tbWpUaMG5ubmGvXf/fr1IzU1NceZ8bwwMDDgt99+w9ramk6dOlG9enX69evHkydPNGayq1SpgpOTExcuXFBWCclUu3ZtDh8+zJ9//omLiwv16tVj0qRJlCtX7pXjEkIIIUTRpVKr1erCDkKIFx05coQWLVpw8+ZNypYtW9jhFKikpCRMTU25f/++3NwohBBCvCfy+vtbaq7FOyUlJYVbt24REBBA165di1xiLYQQQoiiTcpCxDvl559/xsbGhsTERGbNmqWxb/Xq1RpL4j3/qFmzZiFFLIQQQgjxf6QsRLw3Hjx4wH///ZftvuLFi2NjY/OWI3o1UhYihBBCvH+kLEQUOcbGxhgbGxd2GEKIIqL+mJWFHYIQ+XZmdq/CDkG8hJSFCCGEEEIIUUAkuRZvVEBAAHXr1n0r51KpVGzZsuWtnCuTra0tCxYseKvnFEIIIcS7S5Jr8Ub5+/tz4MCBwg5DCCGEEOKtkJpr8UZlruYhhBBCCPEhkJlrkSs3Nzf8/PwYO3YsJUuWxMLCgoCAAGV/XFwcn376KUZGRpiYmODl5aWxoseLZSFhYWE4OTlhaGiImZkZTZo04caNG8r+rVu34ujoiJ6eHpUqVSIwMJC0tLRXiv3mzZt4eXlhZmZGyZIl+fTTT4mNjQVg79696OnpkZiYqHHMiBEjaN68ufI8PDwcFxcX9PX1sbKyws/Pj4cPH75SPEIIIYQo+iS5Fi8VGhqKoaEhJ06cYNasWXz99dfs27ePjIwMPv30U+7evcvhw4fZt28f165do1u3btn2k5aWRocOHXB1deXChQscO3aMgQMHolKpgGefytirVy9GjBjBpUuXWLZsGSEhIUybNi3fMT99+hR3d3eMjY05cuQIERERGBkZ4eHhQWpqKi1atMDMzIyNGzcqx6Snp7Nu3TrlI9BjYmLw8PCgc+fOXLhwgXXr1hEeHo6vr2++YklJSSEpKUnjIYQQQoiiScpCxEvVrl2byZMnA2BnZ8eSJUuUOuqLFy9y/fp1rKysAFi5ciU1a9bk1KlTNGzYUKOfpKQk7t+/T/v27alcuTIA1atXV/YHBgYyfvx4evfuDUClSpWYMmUKY8eOVc6fV+vWrSMjI4MVK1YoyXtwcDBmZmaEhYXRunVrunfvzpo1a+jXrx8ABw4cIDExkc6dOwMQFBSEt7c3I0eOVMa+aNEiXF1dWbp0KXp6enmKJSgoiMDAwHzFL4QQQoj3k8xci5eqXbu2xnNLS0sSEhKIiorCyspKSawBatSogZmZGVFRUVn6KVmyJD4+Pri7u+Pp6cnChQuJj49X9p8/f56vv/5a45MXBwwYQHx8PI8ePcpXzOfPn+fq1asYGxsrfZUsWZInT54QExMDgLe3N2FhYfzzzz/As0+AbNeuHWZmZkofISEhGvG4u7uTkZHB9evX8xzLhAkTuH//vvK4efNmvsYihBBCiPeHzFyLlypevLjGc5VKRUZGxiv1FRwcjJ+fH7t372bdunV89dVX7Nu3j0aNGpGcnExgYCCdOnXKclxeZ4kzJScnU79+fVavXp1ln7m5OQANGzakcuXKrF27liFDhrB582ZCQkI0+hg0aBB+fn5Z+rC2ts5zLLq6uujq6uYrfiGEEEK8nyS5Fq+sevXq3Lx5k5s3byqz15cuXSIxMZEaNWrkeFy9evWoV68eEyZMwNnZmTVr1tCoUSMcHR25cuUKVapUee3YHB0dWbduHWXKlMn1I0q9vb1ZvXo1FSpUQEtLi3bt2mn0cenSpQKJRwghhBAfBikLEa+sZcuWODg44O3tzdmzZzl58iS9evXC1dWVBg0aZGl//fp1JkyYwLFjx7hx4wZ79+4lOjpaqbueNGkSK1euJDAwkD/++IOoqCjWrl3LV199le/YvL29KV26NJ9++ilHjhzh+vXrhIWF4efnx19//aXR7uzZs0ybNo0uXbpozDCPGzeOo0eP4uvrS2RkJNHR0WzdujXfNzQKIYQQ4sMhybV4ZSqViq1bt1KiRAmaNm1Ky5YtqVSpEuvWrcu2vYGBAZcvX6Zz587Y29szcOBAhg0bxqBBgwBwd3dn+/bt7N27l4YNG9KoUSPmz5+PjY1NvmMzMDDgt99+w9ramk6dOlG9enX69evHkydPNGayq1SpgpOTExcuXFBWCclUu3ZtDh8+zJ9//omLiwv16tVj0qRJlCtXLt/xCCGEEOLDoFKr1erCDkKID0lSUhKmpqbcv38/15IVIcSbVX/MysIOQYh8OzO7V2GH8MHK6+9vqbkWQgjxQZIkRQjxJkhZiHgvrF69WmNJvOcfNWvWLOzwhBBCCCEAmbkW74lPPvmEjz76KNt9Ly4VKIQQQghRWCS5Fu8FY2NjjI2NCzsMIUQRIjXX4l0iZUpFh5SFCCGEEEIIUUAkuRZCCCGEEKKASHIt3hkhISGYmZkVSF9hYWGoVCoSExMLpL/CPo8QQggh3g+SXIvX4uPjQ4cOHQo7DCGEEEKId4Ik10IIIYQQQhQQSa5FnmzYsAEHBwf09fUpVaoULVu2ZMyYMYSGhrJ161ZUKhUqlYqwsLBsSyUiIyNRqVTExsYq20JCQrC2tsbAwICOHTty584dZV9sbCxaWlqcPn1aI44FCxZgY2NDRkZGvsewceNGatasia6uLra2tsydO1dj/6pVq2jQoAHGxsZYWFjQs2dPEhISNNrs3LkTe3t79PX1adasmcZ4cpKSkkJSUpLGQwghhBBFkyTX4qXi4+Pp0aMHffv2JSoqirCwMDp16sTkyZPx8vLCw8OD+Ph44uPjady4cZ76PHHiBP369cPX15fIyEiaNWvG1KlTlf22tra0bNmS4OBgjeOCg4Px8fFBSyt/L90zZ87g5eVF9+7duXjxIgEBAUycOJGQkBClzdOnT5kyZQrnz59ny5YtxMbG4uPjo+y/efMmnTp1wtPTk8jISPr378/48eNfeu6goCBMTU2Vh5WVVb5iF0IIIcT7Q9a5Fi8VHx9PWloanTp1wsbGBgAHBwcA9PX1SUlJwcLCIl99Lly4EA8PD8aOHQuAvb09R48eZffu3Uqb/v37M3jwYObNm4euri5nz57l4sWLbN26Nd9jmDdvHi1atGDixInK+S5dusTs2bOVBLpv375K+0qVKrFo0SIaNmxIcnIyRkZGLF26lMqVKysz3lWrVuXixYvMnDkz13NPmDCBUaNGKc+TkpIkwRZCCCGKKJm5Fi9Vp04dWrRogYODA127dmX58uXcu3fvtfqMiorK8omLzs7OGs87dOiAtrY2mzdvBp6VkTRr1gxbW9tXOl+TJk00tjVp0oTo6GjS09OBZ7Pbnp6eWFtbY2xsjKurKwBxcXF5jjk7urq6mJiYaDyEEEIIUTRJci1eSltbm3379rFr1y5q1KjB4sWLqVq1KtevX8+2fWbJhlqtVrY9ffo03+fV0dGhV69eBAcHk5qaypo1azRmlwvSw4cPcXd3x8TEhNWrV3Pq1CklqU9NTX0j5xRCCCFE0SPJtcgTlUpFkyZNCAwM5Ny5c+jo6LB582Z0dHSUmd9M5ubmwLNykkyRkZEabapXr86JEyc0th0/fjzLefv378/+/fv59ttvldKUV1G9enUiIiI0tkVERGBvb4+2tjaXL1/mzp07zJgxAxcXF6pVq5blZsbq1atz8uTJl8YshBBCiA+XJNfipU6cOMH06dM5ffo0cXFxbNq0iVu3blG9enVsbW25cOECV65c4fbt2zx9+pQqVapgZWVFQEAA0dHR7NixI8vKHH5+fuzevZs5c+YQHR3NkiVLNOqtM1WvXp1GjRoxbtw4evTogb6+/iuNYfTo0Rw4cIApU6bw559/EhoaypIlS/D39wfA2toaHR0dFi9ezLVr19i2bRtTpkzR6GPw4MFER0czZswYrly5wpo1azRuiBRCCCGEkORavJSJiQm//fYbbdu2xd7enq+++oq5c+fSpk0bBgwYQNWqVWnQoAHm5uZERERQvHhxfv75Zy5fvkzt2rWZOXOmxkogAI0aNWL58uUsXLiQOnXqsHfvXr766qtsz9+vXz9SU1NfqyTE0dGR9evXs3btWmrVqsWkSZP4+uuvlZsZzc3NCQkJ4ZdffqFGjRrMmDGDOXPmaPRhbW3Nxo0b2bJlC3Xq1OG7775j+vTprxyTEEIIIYoelfr5wlgh3kFTpkzhl19+4cKFC4UdSoFISkrC1NSU+/fvy82NQhSi+mNWFnYIQijOzO5V2CGIl8jr729Zik+8s5KTk4mNjWXJkiVZZr6FEOJ1STIjhHgTpCxEvLN8fX2pX78+bm5uWUpCBg8ejJGRUbaPwYMHF1LEQgghhPjQSVmIeC8lJCTk+DHiJiYmlClT5i1HlHdSFiKEEEK8f6QsRBRpZcqUeacTaCHEu09qrkVhk9KkoknKQoQQQgghhCggkly/w2xtbVmwYEGe2qpUKrZs2fJG44mNjUWlUmX5QJgXubm5MXLkyFc+z8vGEhYWhkqlIjEx8ZXPIYQQQgjxJkhy/Ra8jcS3MBRWktu4cWPi4+MxNTV9aVtJxIUQQgjxNklyLd47Ojo6WFhYoFKp3to51Wo1aWlpb+18QgghhHg/fVDJtZubG8OHD2fkyJGUKFGCsmXLsnz5ch4+fEifPn0wNjamSpUq7Nq1Sznm999/p02bNhgZGVG2bFk+//xzbt++rdGnn58fY8eOpWTJklhYWBAQEKDst7W1BaBjx46oVCrleUxMDJ9++illy5bFyMiIhg0bsn///tca3+3bt+nYsSMGBgbY2dmxbds2jf0vG8vu3bv5+OOPMTMzo1SpUrRv356YmJhszxUbG0uzZs0AKFGiBCqVSvm0Q4CMjIwcr8nrjuXF2egbN27g6elJiRIlMDQ0pGbNmuzcuTPXGFNSUvDz86NMmTLo6enx8ccfc+rUqSzn2LVrF/Xr10dXV5effvoJLS0tTp8+rRHrggULsLGxISMjI19jFEIIIUTR80El1wChoaGULl2akydPMnz4cIYMGULXrl1p3LgxZ8+epXXr1nz++ec8evSIxMREmjdvTr169Th9+jS7d+/mv//+w8vLK0ufhoaGnDhxglmzZvH111+zb98+ACVhCw4OJj4+XnmenJxM27ZtOXDgAOfOncPDwwNPT0/i4uJeeWyBgYF4eXlx4cIF2rZti7e3N3fv3gXI01gePnzIqFGjOH36NAcOHEBLS4uOHTtmmzRaWVmxceNGAK5cuUJ8fDwLFy7M0zV53bG8aNiwYaSkpPDbb79x8eJFZs6ciZGRUa4xjh07lo0bNxIaGsrZs2epUqUK7u7uWc4xfvx4ZsyYQVRUFJ988gktW7YkODhYo01wcDA+Pj5oaWX/dkpJSSEpKUnjIYQQQoii6YNa59rNzY309HSOHDkCQHp6OqampnTq1ImVK58tyfTvv/9iaWnJsWPH2L9/P0eOHGHPnj1KH3/99RdWVlZcuXIFe3v7LH0CODk50bx5c2bMmAE8q7nevHkzHTp0yDW+WrVqMXjwYHx9fYFns94jR47M082BKpWKr776iilTpgDPEmUjIyN27dqFh4cHU6dOfelYXnT79m3Mzc25ePEitWrVIjY2looVK3Lu3Dnq1q1LWFgYzZo14969e5iZmeV4nbO7Jq8zlhfPW7t2bTp37szkyZOz9JVdjA8fPqREiRKEhITQs2dPAJ4+fapc7zFjxijHbdmyhU8//VTpb/369QwePJj4+Hh0dXU5e/YsDRo04Nq1a8p/JV4UEBBAYGBglu2yzrUQhUuW4hOFTZbie7/kdZ3rD27munbt2srX2tralCpVCgcHB2Vb2bJlgWcfUnL+/HkOHTqk8el/1apVA9Aol3i+TwBLS0sSEhJyjSM5ORl/f3+qV6+OmZkZRkZGREVFvdbM9fNxGBoaYmJiosSRl7FER0fTo0cPKlWqhImJiZIsvkpMr3JN8jqWF/n5+TF16lSaNGnC5MmTuXDhQq59x8TE8PTpU5o0aaJsK168OE5OTkRFRWm0bdCggcbzDh06oK2tzebNmwEICQmhWbNmOSbWABMmTOD+/fvK4+bNm7nGJ4QQQoj31wf3ITLFixfXeK5SqTS2Zd4kl5GRQXJyMp6ensycOTNLP5aWlrn2+bL6W39/f/bt28ecOXOoUqUK+vr6dOnShdTU1HyPKS9x5GUsnp6e2NjYsHz5csqVK0dGRga1atV6pZhe5Zq86vH9+/fH3d2dHTt2sHfvXoKCgpg7dy7Dhw/Pd9wvMjQ01Hiuo6NDr169CA4OplOnTqxZs0ajHCY7urq66OrqvnYsQgghhHj3fXDJdX44OjqyceNGbG1tKVbs1S9V8eLFSU9P19gWERGBj48PHTt2BJ4lv7Gxsa8Tbq5eNpY7d+5w5coVli9fjouLCwDh4eG59qmjowOQZWyFwcrKisGDBzN48GAmTJjA8uXLGT58eLYxVq5cGR0dHSIiIrCxsQGelYWcOnUqTyU4/fv3p1atWnz77bekpaXRqVOnNzImIYQQQrx/PriykPwYNmwYd+/epUePHpw6dYqYmBj27NlDnz598pVQ2tracuDAAf7991/u3bsHgJ2dHZs2bSIyMpLz58/Ts2fPN7raxMvGUqJECUqVKsX333/P1atXOXjwIKNGjcq1TxsbG1QqFdu3b+fWrVskJye/sfhzM3LkSPbs2cP169c5e/Yshw4donr16jnGaGhoyJAhQxgzZgy7d+/m0qVLDBgwgEePHtGvX7+Xnq969eo0atSIcePG0aNHD/T19d/0EIUQQgjxnpDkOhflypUjIiKC9PR0WrdujYODAyNHjsTMzCzHlSGyM3fuXPbt24eVlRX16tUDYN68eZQoUYLGjRvj6emJu7s7jo6Ob2ooLx2LlpYWa9eu5cyZM9SqVYsvvviC2bNn59pn+fLlCQwMZPz48ZQtW1a5EfNtS09PZ9iwYVSvXh0PDw/s7e359ttvc41xxowZdO7cmc8//xxHR0euXr3Knj17KFGiRJ7O2a9fP1JTU+nbt+8bG5cQQggh3j8f1GohQhSUKVOm8Msvv7z05sns5PVuYyHEmyWrhYjCJquFvF/y+vtbaq6FyIfM2vglS5YwderUwg5HCPEaJLERQrwJUhbyHli9erXGEnrPP2rWrFnY4eXL+z4WX19f6tevj5ubm5SECCGEECILKQt5Dzx48ID//vsv233FixdXVrx4HxSlsbwqKQsRQggh3j9SFlKEGBsbY2xsXNhhFIiiNBYhhBBCiBdJci2EEOKDJDc0CpDae1HwpOZaCCGEEEKIAiLJdQFwc3PL0yf7vS15iUelUrFly5a3Es+b5uPjQ4cOHXJt8659j4QQQghRNEly/R4LCwtDpVKRmJiY72Pj4+Np06ZNwQclhBBCCPEBk+S6EKSmphZ2CFhYWKCrq1vYYeTqXbhOQgghhBD5Icl1AUlLS8PX1xdTU1NKly7NxIkTyVzl0NbWlilTptCrVy9MTEwYOHAgAOHh4bi4uKCvr4+VlRV+fn48fPhQ6XPVqlU0aNAAY2NjLCws6NmzJwkJCQDExsbSrFkzAEqUKIFKpcLHx0c5NiMjg7Fjx1KyZEksLCwICAjQiPf5spDY2FhUKhWbNm2iWbNmGBgYUKdOHY4dO6ZxzPLly7GyssLAwICOHTsyb948zMzM8nR9AgICqFu3LsuWLVP68PLy4v79+0qbzPKOadOmUa5cOapWrQrAxYsXad68Ofr6+pQqVYqBAweSnJyc5RyBgYGYm5tjYmLC4MGDc03OU1JS8Pf3p3z58hgaGvLRRx8RFham7A8JCcHMzIzt27dTtWpVDAwM6NKlC48ePSI0NBRbW1tKlCiBn58f6enpeboGQgghhCj6JLkuIKGhoRQrVoyTJ0+ycOFC5s2bx4oVK5T9c+bMoU6dOpw7d46JEycSExODh4cHnTt35sKFC6xbt47w8HB8fX2VY54+fcqUKVM4f/48W7ZsITY2Vkmgrays2LhxIwBXrlwhPj6ehQsXasRjaGjIiRMnmDVrFl9//TX79u3LdQxffvkl/v7+REZGYm9vT48ePUhLSwMgIiKCwYMHM2LECCIjI2nVqhXTpk3L1zW6evUq69ev59dff2X37t2cO3eOoUOHarQ5cOAAV65cYd++fWzfvp2HDx/i7u5OiRIlOHXqFL/88gv79+/XuE6Zx0VFRREWFsbPP//Mpk2bCAwMzDEWX19fjh07xtq1a7lw4QJdu3bFw8OD6Ohopc2jR49YtGgRa9euZffu3YSFhdGxY0d27tzJzp07WbVqFcuWLWPDhg25jjslJYWkpCSNhxBCCCGKJvkQmQLg5uZGQkICf/zxByqVCoDx48ezbds2Ll26hK2tLfXq1WPz5s3KMf3790dbW5tly5Yp28LDw3F1deXhw4fo6ellOc/p06dp2LAhDx48wMjIiLCwMJo1a8a9e/c0ZpDd3NxIT0/nyJEjyjYnJyeaN2/OjBkzgGcz15s3b6ZDhw7ExsZSsWJFVqxYQb9+/QC4dOkSNWvWJCoqimrVqtG9e3eSk5PZvn270udnn33G9u3b81TzHRAQwNSpU7lx4wbly5cHYPfu3bRr146///4bCwsLfHx82L17N3Fxcejo6ADPZsvHjRvHzZs3MTQ0BGDnzp14enryzz//ULZsWXx8fPj111+5efMmBgYGAHz33XeMGTOG+/fvo6WlhZubG3Xr1mXBggXExcVRqVIl4uLiKFeunBJjy5YtcXJyYvr06YSEhNCnTx+uXr1K5cqVARg8eDCrVq3iv//+w8jICAAPDw9sbW357rvvch17dom+fIiMEIVLluITIEvxibzL64fIyMx1AWnUqJGSWAM4OzsTHR2tlAw0aNBAo/358+cJCQnR+Phvd3d3MjIyuH79OgBnzpzB09MTa2trjI2NcXV1BSAuLu6l8dSuXVvjuaWlpVJSkpdjLC0tAZRjrly5gpOTk0b7F5+/jLW1tZJYw7NrlJGRwZUrV5RtDg4OSmINEBUVRZ06dZTEGqBJkyZZjqtTp46SWGf2nZyczM2bN7PEcfHiRdLT07G3t9e4/ocPHyYmJkZpZ2BgoCTWAGXLlsXW1lZJrDO3vey6Tpgwgfv37yuP7GISQgghRNEgHyLzljyfHAIkJyczaNAg/Pz8srS1trZWyiHc3d1ZvXo15ubmxMXF4e7unqcb/YoXL67xXKVSkZGRkedjMv9QeNkxBe3F6/QmJCcno62tzZkzZ9DW1tbY93zinN01fJXrqqur+87fPCqEEEKIgiHJdQE5ceKExvPjx49jZ2eXJXnL5OjoyKVLl6hSpUq2+y9evMidO3eYMWMGVlZWwLOykOdlzvC+jRvqqlatyqlTpzS2vfj8ZeLi4vjnn3+UUozjx4+jpaWl3LiYnerVqxMSEsLDhw+VxDsiIiLLcefPn+fx48fo6+srfRsZGSnX7nn16tUjPT2dhIQEXFxc8jUGIYQQQojcSFlIAYmLi2PUqFFcuXKFn3/+mcWLFzNixIgc248bN46jR4/i6+tLZGQk0dHRbN26VblRz9raGh0dHRYvXsy1a9fYtm0bU6ZM0ejDxsYGlUrF9u3buXXrVrYraBSU4cOHs3PnTubNm0d0dDTLli1j165dGqUwL6Onp0fv3r05f/48R44cwc/PDy8vLywsLHI8xtvbWznu999/59ChQwwfPpzPP/+csmXLKu1SU1Pp168fly5dYufOnUyePBlfX1+0tLK+xO3t7fH29qZXr15s2rSJ69evc/LkSYKCgtixY0f+LowQQgghxHMkuS4gvXr14vHjxzg5OTFs2DBGjBihLLmXndq1a3P48GH+/PNPXFxcqFevHpMmTVJmdc3NzQkJCeGXX36hRo0azJgxgzlz5mj0Ub58eQIDAxk/fjxly5bNsoJGQWrSpAnfffcd8+bNo06dOuzevZsvvvgi2xsvc1KlShU6depE27Ztad26NbVr1+bbb7/N9RgDAwP27NnD3bt3adiwIV26dKFFixYsWbJEo12LFi2ws7OjadOmdOvWjU8++STL8oPPCw4OplevXowePZqqVavSoUMHTp06hbW1dZ7HI4QQQgjxIlktRLyyAQMGcPnyZY1VSXISEBDAli1biIyMfPOBvePyerexEOLNktVCBMhqISLv8vr7W2quRZ7NmTOHVq1aYWhoyK5duwgNDX3pzLMQQryrJKkSQrwJklyLPDt58iSzZs3iwYMHVKpUiUWLFtG/f38AatasyY0bN7I97vm1vIUQQgghijIpCxEF4saNGzx9+jTbfWXLlsXY2PgtR/TukrIQIYQQ4v0jZSHirbKxsSnsEMQHSupmxauSshAhxJsgq4UIIYQQQghRQCS5FkIIIYQQooBIcv0OcHNzY+TIkQDY2tqyYMGCVzq2KAsJCcHMzEx5HhAQQN26dXM9JjY2FpVKJcv/CSGEEOKtkZrrd8ypU6eUj/nOi02bNlG8ePE3GNG7yd/fn+HDhyvPfXx8SExMZMuWLco2Kysr4uPjKV26dCFEKIQQQogPkSTX7xhzc/N8tS9ZsuQbiuTdZmRkhJGRUa5ttLW1c/1odSGEEEKIgiZlIe+Y58tCevbsSbdu3TT2P336lNKlS7Ny5bMVEl4sC7G1tWX69On07dsXY2NjrK2t+f777zX6OHr0KHXr1kVPT48GDRqwZcuWfJVP/PHHH7Rv3x4TExOMjY1xcXEhJiYGgIyMDL7++msqVKiArq4udevWZffu3cqxmaUamzZtolmzZhgYGFCnTh2OHTumcY6QkBCsra0xMDCgY8eO3LlzR2P/82UhAQEBhIaGsnXrVlQqFSqVirCwsGzLQg4fPoyTkxO6urpYWloyfvx40tLSlP1ubm74+fkxduxYSpYsiYWFhcbHqKvVagICArC2tkZXV5dy5crh5+eX6/VKSUkhKSlJ4yGEEEKIokmS63eYt7c3v/76K8nJycq2PXv28OjRIzp27JjjcXPnzqVBgwacO3eOoUOHMmTIEK5cuQI8W6PR09MTBwcHzp49y5QpUxg3blyeY/r7779p2rQpurq6HDx4kDNnztC3b18lQV24cCFz585lzpw5XLhwAXd3dz755BOio6M1+vnyyy/x9/cnMjISe3t7evToofRx4sQJ+vXrh6+vL5GRkTRr1oypU6fmGJO/vz9eXl54eHgQHx9PfHw8jRs3zjb2tm3b0rBhQ86fP8/SpUv54YcfsvQdGhqKoaEhJ06cYNasWXz99dfs27cPgI0bNzJ//nyWLVtGdHQ0W7ZswcHBIddrFhQUhKmpqfKwsrJ6+YUWQgghxHtJykLeYe7u7hgaGrJ582Y+//xzANasWcMnn3yS64eytG3blqFDhwIwbtw45s+fz6FDh6hatSpr1qxBpVKxfPly9PT0qFGjBn///TcDBgzIU0zffPMNpqamrF27Vqn1tre3V/bPmTOHcePG0b17dwBmzpzJoUOHWLBgAd98843Szt/fn3bt2gEQGBhIzZo1uXr1KtWqVWPhwoV4eHgwduxYpf+jR49qzIA/z8jICH19fVJSUnItA/n222+xsrJiyZIlqFQqqlWrxj///MO4ceOYNGkSWlrP/tasXbs2kydPBsDOzo4lS5Zw4MABWrVqRVxcHBYWFrRs2ZLixYtjbW2Nk5NTrtdswoQJjBo1SnmelJQkCbYQQghRRMnM9TusWLFieHl5sXr1agAePnzI1q1b8fb2zvW42rVrK1+rVCosLCxISEgA4MqVK9SuXRs9PT2lzcuSw+dFRkbi4uKS7U2USUlJ/PPPPzRp0kRje5MmTYiKisoxRktLSwAlxqioKD766CON9s7OznmOMSdRUVE4OzujUqk0YktOTuavv/7KNrbM+DJj69q1K48fP6ZSpUoMGDCAzZs3a5SVZEdXVxcTExONhxBCCCGKJkmu33He3t4cOHCAhIQEtmzZgr6+Ph4eHrke82Liq1KpyMjIKJB49PX/X3v3Htfj/T9+/PFWStS7SEdSmUosdMDSh8wpmrbYmBhy9hkf0mJ8zHmTQ23M5jNzKMxnbE5jDkMTE1JRTi2JZFs0hyR8HOr9+8PP9fVeB2Ul1fN+u123m/d1va7X9XxdV+397LXndV0GZdLP0zE+SXbLKsa/q7jzZ2NjQ0pKCkuXLsXAwID333+fDh06FPnqdyGEEEJUL5Jcv+TatWuHjY0NGzZsYN26dfTp0+dvPXrPycmJU6dOcf/+fWVdXFxcifdv0aIFv/zyS6HJpFqtxtrampiYGK31MTExNGvWrMTHcHZ2JjY2Vmvd0aNHi91HT0+PvLy8Z/Z75MgRNBqNVmxGRkY0bNiwxPEZGBjg5+fH559/TnR0NEeOHOHUqVMl3l8IIYQQVZck15VA//79+eqrr9i7d+8zS0JK0ld+fj4jR44kOTmZn376ibCwMACtcomijB07lpycHPr160d8fDypqamsXbtWuWFy4sSJzJ8/nw0bNpCSksLkyZNJTExk/PjxJY5x3Lhx7N69m7CwMFJTU/niiy+KrLd+ws7OjpMnT5KSksK1a9cKTf7ff/99Ll++zL/+9S9+/fVXfvjhB2bMmEFwcLBSb/0skZGRrFy5ktOnT3PhwgW++eYbDAwMsLW1LfH4hBBCCFF1SXJdCQwYMICzZ8/SoEGDAvXMpaVWq9m+fTuJiYm0atWKqVOnMn36dACtOuyimJqa8vPPP5Obm4u3tzfu7u4sX75cmU0fN24cwcHBfPDBB7i4uLB79262bduGg4NDiWN87bXXWL58OYsXL6Zly5bs2bOHjz76qNh9RowYgZOTEx4eHpiZmRWYPQdo0KABO3fu5NixY7Rs2ZLRo0czbNiwZ/b9NBMTE5YvX46XlxctWrRg3759bN++HVNT0xL3IYQQQoiqS6V5+v+Ri2pp3bp1DBkyhFu3bpVZTbUoWk5ODsbGxty6dUtubhRCCCEqiZJ+f8uj+KqhNWvW0LhxYxo0aEBSUhIffvghffv2lcRaCCGEEOJvkrKQaujKlSu89957ODs7M2HCBPr06aO8xXH06NHKq8X/uowePbqCIxdCCCGEeLlJWYjQkpWVVeTrudVqNebm5i84oqpHykKEEEKIykfKQsRzMTc3lwRavLTcJ66p6BBEFZKwcFBFhyCEqIKkLEQIIYQQQogy8tIn1zNnzqRVq1YVHUa5SU9PR6VSkZiYWNGhPJeyuj4v+jpHR0ejUqnIzs5+aWISQgghROVXquS6Y8eOBAUFlVMolUdkZCQmJiYVHUaxVCoVW7duregwClVYbCEhIURFRVVMQEV4GWMSQgghxMutWtZcazQa8vLy0NWtlsMvkQcPHqCnp/fCjvfkiSQvk5cxJiGEEEK83Eo8cx0YGMiBAwdYvHgxKpUKlUpFeno6p0+fpkePHhgaGmJhYcHAgQO5du2ast/u3bv5xz/+gYmJCaampvTs2ZO0tDStvn/77TcCAgKoV68ederUwcPDg9jYWK02a9euxc7ODmNjY/r168ft27eVbfn5+YSGhmJvb4+BgQEtW7Zk48aNyvYnJQC7du3C3d0dfX19Dh06VOx4k5KSeP311zEyMkKtVuPu7k58fDzR0dHKC1eenIeZM2cChc/ImpiYEBkZqXw+duwYrq6u1KpVCw8PD06cOFHg2M86px07dmTcuHFMmjSJevXqYWlpqcQAj18FDtCrVy9UKpXyuThPSiBWrFiBvb298rbG7Oxshg8fjpmZGWq1mk6dOpGUlFRkP3FxcXTt2pX69etjbGyMt7c3x48ff2Zsfy3ByM/PZ/bs2TRs2BB9fX1atWql9Qr0J+U0mzdv5vXXX6d27dq0bNmSI0eOKG0uXbqEn58fdevWpU6dOjRv3pydO3dqxZuQkICHhwe1a9emXbt2ymvcC4spMDAQf39/Zs2apZyP0aNH8+DBg2eeXyGEEEJUDyVOrhcvXoynpycjRowgMzOTzMxMjIyM6NSpE66ursTHx7N7926uXr1K3759lf3u3LlDcHAw8fHxREVFUaNGDXr16kV+fj6A8hrt33//nW3btpGUlMSkSZOU7QBpaWls3bqVH3/8kR9//JEDBw4wb948ZXtoaChr1qzhq6++4syZM0yYMIH33nuPAwcOaI1h8uTJzJs3j+TkZFq0aFHseAcMGEDDhg2Ji4sjISGByZMnU7NmTdq1a8eiRYtQq9XKeQgJCSnROczNzaVnz540a9aMhIQEZs6cWWDf7OzsZ55TgNWrV1OnTh1iY2NZsGABs2fPZu/evcDjBBcgIiKCzMxM5fOznD9/nk2bNrF582alBrxPnz5kZWWxa9cuEhIScHNzo3Pnzty4caPQPm7fvs3gwYM5dOgQR48excHBAV9fX+WPoZLGtnjxYsLDwwkLC+PkyZP4+Pjw5ptvkpqaqtVu6tSphISEkJiYiKOjIwEBATx69AiAMWPGcP/+fQ4ePMipU6eYP39+gZnoqVOnEh4eTnx8PLq6ugwdOrTYcxQVFUVycjLR0dF8++23bN68mVmzZhW7z/3798nJydFahBBCCFE1lbguwtjYGD09PWrXro2lpSUAH3/8Ma6ursydO1dpt2rVKmxsbDh37hyOjo68/fbbWv2sWrUKMzMzzp49y6uvvsp///tf/vzzT+Li4qhXrx4ATZo00donPz+fyMhIjIyMABg4cCBRUVF88skn3L9/n7lz57Jv3z48PT0BaNy4MYcOHWLZsmV4e3sr/cyePZuuXbuWaLwZGRlMnDiRpk2bAuDg4KB1LlQqlXIeSuq///0v+fn5rFy5klq1atG8eXN+++03/vnPfyptvvjii2eeU4AWLVowY8YMJbYvvviCqKgounbtipmZGfB41rw0MT548IA1a9Yo+x86dIhjx46RlZWFvr4+AGFhYWzdupWNGzcycuTIAn106tRJ6/PXX3+NiYkJBw4coGfPniWOLSwsjA8//JB+/foBMH/+fPbv38+iRYv48ssvlXYhISG88cYbAMyaNYvmzZtz/vx5mjZtSkZGBm+//TYuLi7A45+Lv/rkk0+Un5HJkyfzxhtv8L///U+Zuf8rPT09Vq1aRe3atWnevDmzZ89m4sSJzJkzhxo1Cv9bNTQ09JkJuBBCCCGqhr/1tJCkpCT279+v9Ra/J8nok9KP1NRUAgICaNy4MWq1WikDyMjIACAxMRFXV1clsS6MnZ2dklgDWFlZkZWVBTyebb179y5du3bVimPNmjUFyk88PDxKPLbg4GCGDx9Oly5dmDdvXoG+nseTGfOnE7cnfxA8UZJzChSYeX/6nDwvW1tbJfl9Ektubi6mpqZa8Vy8eLHI83H16lVGjBiBg4MDxsbGqNVqcnNzletdEjk5Ofzxxx94eXlprffy8iI5OVlr3dPnwcrKCkA5D+PGjePjjz/Gy8uLGTNmcPLkyQLHKm7/wrRs2ZLatWsrnz09PcnNzeXy5ctF7jNlyhRu3bqlLMW1FUIIIUTl9rfu6MvNzcXPz4/58+cX2PYkUfHz88PW1pbly5djbW1Nfn4+r776qlKnamBg8Mzj1KxZU+uzSqXSKisB2LFjBw0aNNBq92S29Yk6deqUcGSP62379+/Pjh072LVrFzNmzGD9+vX06tWryH1UKhV/feHlw4cPS3xMKNk5heLPyfP66/nJzc3FysqK6OjoAm2LelrK4MGDuX79OosXL8bW1hZ9fX08PT3LrS756fOgUqkAlPMwfPhwfHx82LFjB3v27CE0NJTw8HD+9a9/lWj/sqKvr1/gZ1EIIYQQVVOpkms9PT3y8vKUz25ubmzatAk7O7tCn7xx/fp1UlJSWL58Oe3btwcocCNhixYtWLFiBTdu3Ch29roozZo1Q19fn4yMDK0SkLLg6OiIo6MjEyZMICAggIiICHr16lXgPDxhZmZGZmam8jk1NZW7d+8qn52dnVm7dq1W2cHRo0e1+njWOS2pmjVrFhpjabi5uXHlyhV0dXVLdFMkQExMDEuXLsXX1xeAy5cva92MWZLY1Go11tbWxMTEaF3TmJgY2rRpU6ox2NjYMHr0aEaPHs2UKVNYvny5VnJdWklJSdy7d0/5o/Do0aMYGhpiY2Pz3H0KIYQQouooVVmInZ0dsbGxpKenc+3aNcaMGcONGzcICAggLi6OtLQ0fvrpJ4YMGUJeXh5169bF1NSUr7/+mvPnz/Pzzz8THBys1WdAQACWlpb4+/sTExPDhQsX2LRpk9ZTH4pjZGRESEgIEyZMYPXq1aSlpXH8+HGWLFnC6tWrSzM8xb179xg7dizR0dFcunSJmJgY4uLicHZ2Vs5Dbm4uUVFRXLt2TUmgO3XqxBdffMGJEyeIj49n9OjRWjOj/fv3R6VSMWLECM6ePcvOnTsJCwvTOvazzmlJ2dnZERUVxZUrV7h58+ZznYcuXbrg6emJv78/e/bsIT09ncOHDzN16lTi4+ML3cfBwYG1a9eSnJxMbGwsAwYMKPB/J0oS28SJE5k/fz4bNmwgJSWFyZMnk5iYyPjx40scf1BQED/99BMXL17k+PHj7N+/X7mGz+vBgwcMGzZMuX4zZsxg7NixRdZbCyGEEKJ6KVVGEBISgo6ODs2aNcPMzIwHDx4QExNDXl4e3bp1w8XFhaCgIExMTKhRowY1atRg/fr1JCQk8OqrrzJhwgQWLlyo1aeenh579uzB3NwcX19fXFxcmDdvHjo6OiWOa86cOUybNo3Q0FCcnZ3p3r07O3bswN7evjTDU+jo6HD9+nUGDRqEo6Mjffv2pUePHspNae3atWP06NG8++67mJmZsWDBAgDCw8OxsbGhffv29O/fn5CQEK36XENDQ7Zv386pU6dwdXVl6tSpBco/nszYFnVOSyo8PJy9e/diY2ODq6vrc50HlUrFzp076dChA0OGDMHR0ZF+/fpx6dIlLCwsCt1n5cqV3Lx5Ezc3NwYOHMi4ceMwNzcvdWzjxo0jODiYDz74ABcXF3bv3s22bdu0bix9lry8PMaMGaP8TDg6OrJ06dKSn4BCdO7cGQcHBzp06MC7777Lm2++qfUYRCGEEEJUbyrNX4uEhRCFCgwMJDs7+2+/+TInJwdjY2Nu3bqFWq0um+CqCfeJayo6BFGFJCwcVNEhCCEqkZJ+f8srCoUQlYYkQ0IIIV521bZQtHnz5lqPl3t6WbduXUWHV+aq23iFEEIIISpCtS0LuXTpUpGPybOwsNB6rnZVUN3G+zKTshAhhBCi8pGykGewtbWt6BBeqOo2XlH5SX21KG9SZiSEKA/VtixECCGEEEKIsibJtRBCCCGEEGVEkmtRLVy5coWuXbtSp06dIl/dLoQQQgjxd0lyLaqFzz77jMzMTBITEzl37lyJ9pk5cyatWrUq38CEEEIIUaVU2xsaRfWSlpaGu7t7qd7wKIQQQghRWjJzLSqNjRs34uLigoGBAaampnTp0oU7d+4QFxdH165dqV+/PsbGxnh7e3P8+HFlPzs7OzZt2sSaNWtQqVQEBgYCkJ2dzfDhwzEzM0OtVtOpUyeSkpIAiIyMZNasWSQlJaFSqVCpVERGRjJ06FB69uypFdfDhw8xNzdn5cqVhcZ9//59cnJytBYhhBBCVE0ycy0qhczMTAICAliwYAG9evXi9u3b/PLLL2g0Gm7fvs3gwYNZsmQJGo2G8PBwfH19SU1NxcjIiLi4OAYNGoRarWbx4sUYGBgA0KdPHwwMDNi1axfGxsYsW7aMzp07c+7cOd59911Onz7N7t272bdvHwDGxsY4OjrSoUMHMjMzsbKyAuDHH3/k7t27vPvuu4XGHhoayqxZs17MiRJCCCFEhZLkWlQKmZmZPHr0iN69eyvP7HZxcQGgU6dOWm2//vprTExMOHDgAD179sTMzAx9fX0MDAywtLQE4NChQxw7doysrCz09fUBCAsLY+vWrWzcuJGRI0diaGiIrq6usg9Au3btcHJyYu3atUyaNAmAiIgI+vTpg6GhYaGxT5kyheDgYOVzTk4ONjY2ZXRmhBBCCPEykbIQUSm0bNmSzp074+LiQp8+fVi+fDk3b94E4OrVq4wYMQIHBweMjY1Rq9Xk5uaSkZFRZH9JSUnk5uZiamqq9Sr4ixcvkpaWVmwsw4cPJyIiQjn2rl27GDp0aJHt9fX1UavVWosQQgghqiaZuRaVgo6ODnv37uXw4cPs2bOHJUuWMHXqVGJjY/nnP//J9evXWbx4Mba2tujr6+Pp6cmDBw+K7C83NxcrKyuio6MLbHvWo/oGDRrE5MmTOXLkCIcPH8be3p727dv/zREKIYQQoiqQ5FpUGiqVCi8vL7y8vJg+fTq2trZs2bKFmJgYli5diq+vLwCXL1/m2rVrxfbl5ubGlStX0NXVxc7OrtA2enp65OXlFVhvamqKv78/ERERHDlyhCFDhvztsQkhhBCiapDkWlQKsbGxREVF0a1bN8zNzYmNjeXPP//E2dkZBwcH1q5di4eHBzk5OUycOFG5abEoXbp0wdPTE39/fxYsWICjoyN//PEHO3bsoFevXnh4eGBnZ8fFixdJTEykYcOGGBkZKfXZw4cPp2fPnuTl5TF48OAXcQqEEEIIUQlIzbWoFNRqNQcPHsTX1xdHR0c++ugjwsPD6dGjBytXruTmzZu4ubkxcOBAxo0bh7m5ebH9qVQqdu7cSYcOHRgyZAiOjo7069ePS5cuYWFhAcDbb79N9+7def311zEzM+Pbb79V9u/SpQtWVlb4+PhgbW1drmMXQgghROWh0mg0mooOQojKJjc3lwYNGhAREUHv3r1LtW9OTg7GxsbcunVLbm4shvvENRUdgqjiEhYOqugQhBCVSEm/v6UsRIhSyM/P59q1a4SHh2NiYsKbb75Z0SFVWZL4CCGEqIwkuRaiFDIyMrC3t6dhw4ZERkaiqyu/QkIIIYT4P5IZCFEKdnZ2SCWVEEIIIYoiybUQ4qUhddbiRZLSIyFEeZCnhQghhBBCCFFGJLmu5jp27EhQUFC59J2eno5KpSIxMbFc+n9R7OzsWLRoUUWHIYQQQohKQMpCRLmxsbEhMzOT+vXrV3QoQgghhBAvhCTXotzo6OhgaWlZ0WEIIYQQQrwwUhYiePToEWPHjsXY2Jj69eszbdo05YkYT14rbmRkhKWlJf379ycrK0vZ9+bNmwwYMAAzMzMMDAxwcHAgIiICKLws5MyZM/Ts2RO1Wo2RkRHt27cnLS3tmTEGBgbi7+9PWFgYVlZWmJqaMmbMGB4+fKi0uX//PiEhITRo0IA6derQtm1boqOjtfo5dOgQ7du3x8DAABsbG8aNG8edO3eU7VlZWfj5+WFgYIC9vT3r1q3T2l+j0TBz5kwaNWqEvr4+1tbWjBs3rsTnWgghhBBVmyTXgtWrV6Orq8uxY8dYvHgxn376KStWrADg4cOHzJkzh6SkJLZu3Up6ejqBgYHKvtOmTePs2bPs2rWL5ORk/vOf/xRZBvL777/ToUMH9PX1+fnnn0lISGDo0KE8evSoRHHu37+ftLQ09u/fz+rVq4mMjCQyMlLZPnbsWI4cOcL69es5efIkffr0oXv37qSmpgKQlpZG9+7defvttzl58iQbNmzg0KFDjB07VukjMDCQy5cvs3//fjZu3MjSpUu1/pjYtGkTn332GcuWLSM1NZWtW7fi4uJSbNz3798nJydHaxFCCCFE1SSvP6/mOnbsSFZWFmfOnEGlUgEwefJktm3bxtmzZwu0j4+Pp3Xr1ty+fRtDQ0PefPNN6tevz6pVqwq0TU9Px97enhMnTtCqVSv+/e9/s379elJSUqhZs2ap4gwMDCQ6Opq0tDR0dHQA6Nu3LzVq1GD9+vVkZGTQuHFjMjIysLa2Vvbr0qULbdq0Ye7cuQwfPhwdHR2WLVumbD906BDe3t7cuXOHjIwMnJycOHbsGK1btwbg119/xdnZmc8++4ygoCA+/fRTli1bxunTp0s8hpkzZzJr1qwC6+X15wXJo/jEiySP4hNClEZJX38uM9eC1157TUmsATw9PUlNTSUvL4+EhAT8/Pxo1KgRRkZGeHt7A4/fVAjwz3/+k/Xr19OqVSsmTZrE4cOHizxOYmIi7du3L3Vi/UTz5s2VxBrAyspKmVU+deoUeXl5ODo6YmhoqCwHDhxQyk6SkpKIjIzU2u7j40N+fj4XL14kOTkZXV1d3N3dlWM0bdoUExMT5XOfPn24d+8ejRs3ZsSIEWzZsuWZM+9Tpkzh1q1bynL58uXnGr8QQgghXn5yQ6Mo0v/+9z98fHzw8fFh3bp1mJmZkZGRgY+PDw8ePACgR48eXLp0iZ07d7J37146d+7MmDFjCAsLK9CfgYHB34rnr0m5SqUiPz8fgNzcXHR0dEhISNBKwAEMDQ2VNqNGjSq0RrpRo0acO3fumTHY2NiQkpLCvn372Lt3L++//z4LFy7kwIEDRf7RoK+vj76+fonGKIQQQojKTZJrQWxsrNbno0eP4uDgwK+//sr169eZN28eNjY2wOOykL8yMzNj8ODBDB48mPbt2zNx4sRCk+sWLVqwevVqHj58+Nyz10VxdXUlLy+PrKws2rdvX2gbNzc3zp49S5MmTQrd3rRpUx49ekRCQoJSFpKSkkJ2drZWOwMDA/z8/PDz82PMmDE0bdqUU6dO4ebmVqZjEkIIIUTlI2UhgoyMDIKDg0lJSeHbb79lyZIljB8/nkaNGqGnp8eSJUu4cOEC27ZtY86cOVr7Tp8+nR9++IHz589z5swZfvzxR5ydnQs9ztixY8nJyaFfv37Ex8eTmprK2rVrSUlJ+dtjcHR0ZMCAAQwaNIjNmzdz8eJFjh07RmhoKDt27ADgww8/5PDhw4wdO5bExERSU1P54YcflBsanZyc6N69O6NGjSI2NpaEhASGDx+uNeMeGRnJypUrOX36NBcuXOCbb77BwMAAW1vbvz0GIYQQQlR+klwLBg0axL1792jTpg1jxoxh/PjxjBw5EjMzMyIjI/n+++9p1qwZ8+bNKzAjraenx5QpU2jRogUdOnRAR0eH9evXF3ocU1NTfv75Z3Jzc/H29sbd3Z3ly5eX2Sx2REQEgwYN4oMPPsDJyQl/f3/i4uJo1KgR8Hjm/MCBA5w7d4727dvj6urK9OnTtW6AjIiIwNraGm9vb3r37s3IkSMxNzdXtpuYmLB8+XK8vLxo0aIF+/btY/v27ZiampbJGIQQQghRucnTQoR4wUp6t3F1JE8LES+SPC1ECFEaJf3+lpprIcRLQ5IdIYQQlZ2UhYiXwtOPx/vr8ssvv1R0eEIIIYQQJSIz1+Kl8PQr0v+qQYMGLy4QIYQQQoi/QZJr8VIo6vF4QgghhBCViSTXQogKJTcxiooiNf5CiPIgNddCCCGEEEKUEUmu/yY7OzsWLVpU7sdRqVRs3bq13I/zd23dupUmTZqgo6NDUFBQRYcjhBBCCPFCSVlIJZGZmUndunUrOoxnGjVqFEOGDGHcuHEYGRlVdDhCCCGEEC+UJNeVhKWlZUWHUKyHDx9y//59srKy8PHx0XrrYWk9ePAAPT29MoxOCCGEEOLFqFJlIbt37+Yf//gHJiYmmJqa0rNnT9LS0pTtv/32GwEBAdSrV486derg4eFBbGwsAGlpabz11ltYWFhgaGhI69at2bdvn1b/WVlZ+Pn5YWBggL29PevWrSsQQ3Z2NsOHD8fMzAy1Wk2nTp1ISkpSts+cOZNWrVqxatUqGjVqhKGhIe+//z55eXksWLAAS0tLzM3N+eSTT7T6/WtZSHFjKc6T4y9btgwbGxtq165N3759uXXrlla7FStW4OzsTK1atWjatClLly5VtqWnp6NSqdiwYQPe3t7UqlWLdevWKTPVnTp1QqVSER0dDcCmTZto3rw5+vr62NnZER4ernUsOzs75syZw6BBg1Cr1YwcOZLIyEhMTEz48ccfcXJyonbt2rzzzjvcvXuX1atXY2dnR926dRk3bhx5eXlKX2vXrsXDwwMjIyMsLS3p378/WVlZyvbo6GhUKhVRUVF4eHhQu3Zt2rVrR0pKilZM27dvp3Xr1tSqVYv69evTq1cvZdv9+/cJCQmhQYMG1KlTh7Zt2ypjFUIIIUT1VqWS6zt37hAcHEx8fDxRUVHUqFGDXr16kZ+fT25uLt7e3vz+++9s27aNpKQkJk2aRH5+PgC5ubn4+voSFRXFiRMn6N69O35+fmRkZCj9BwYGcvnyZfbv38/GjRtZunSpVuIG0KdPH7Kysti1axcJCQm4ubnRuXNnbty4obRJS0tj165d7N69m2+//ZaVK1fyxhtv8Ntvv3HgwAHmz5/PRx99VGSy/KyxPMv58+f57rvv2L59O7t37+bEiRO8//77yvZ169Yxffp0PvnkE5KTk5k7dy7Tpk1j9erVWv1MnjyZ8ePHk5yczOuvv64kqJs2bSIzM5N27dqRkJBA37596devH6dOnWLmzJlMmzaNyMhIrb7CwsJo2bIlJ06cYNq0aQDcvXuXzz//nPXr17N7926io6Pp1asXO3fuZOfOnaxdu5Zly5axceNGpZ+HDx8yZ84ckpKS2Lp1K+np6QQGBhY4B1OnTiU8PJz4+Hh0dXUZOnSosm3Hjh306tULX19fTpw4QVRUFG3atFG2jx07liNHjrB+/XpOnjxJnz596N69O6mpqYWe7/v375OTk6O1CCGEEKJqUmk0Gk1FB1Ferl27hpmZGadOneLw4cOEhISQnp5OvXr1SrT/q6++yujRoxk7diznzp3DycmJY8eO0bp1awB+/fVXnJ2d+eyzzwgKCuLQoUO88cYbZGVloa+vr/TTpEkTJk2axMiRI5k5cyYLFy7kypUrykxv9+7dSUlJIS0tjRo1Hv+907RpUwIDA5k8eTLweOZ6y5Yt+Pv78/XXX5d6LE/MnDmTjz/+mEuXLikvZ9m9ezdvvPEGv//+O5aWljRp0oQ5c+YQEBCg7Pfxxx+zc+dODh8+THp6Ovb29ixatIjx48crbbKzs6lbty779++nY8eOAAwYMIA///yTPXv2KO0mTZrEjh07OHPmDPB45trV1ZUtW7YobSIjIxkyZAjnz5/nlVdeAWD06NGsXbuWq1evYmhoqJw7Ozs7vvrqq0LHGx8fT+vWrbl9+zaGhoZER0fz+uuvs2/fPjp37gzAzp07eeONN7h37x61atWiXbt2NG7cmG+++aZAfxkZGTRu3JiMjAyt0pcuXbrQpk0b5s6dW+g5nzVrVoH1t27dQq1WFxp3dSKP4hMVRR7FJ4QojZycHIyNjZ/5/V2lZq5TU1MJCAigcePGqNVq7OzsgMcJUWJiIq6urkUmo7m5uYSEhODs7IyJiQmGhoYkJycrM9fJycno6uri7u6u7NO0aVNMTEyUz0lJSeTm5mJqaqr1+u6LFy9qlafY2dlp3exnYWFBs2bNlMT6ybq/zoo/8ayxPEujRo203nro6elJfn4+KSkp3Llzh7S0NIYNG6Y1ho8//lhrDAAeHh7PPFZycjJeXl5a67y8vEhNTdUq5yisr9q1ayuJNTw+J3Z2dkpi/WTd0+cpISEBPz8/GjVqhJGREd7e3gBa/wcCoEWLFsq/raysAJR+EhMTlcT7r06dOkVeXh6Ojo5a5+fAgQMFzs8TU6ZM4datW8py+fLlQtsJIYQQovKrUjc0+vn5YWtry/Lly7G2tiY/P59XX32VBw8eYGBgUOy+ISEh7N27l7CwMJo0aYKBgQHvvPMODx48KPHxc3NzsbKyKrT+9ukkvGbNmlrbVCpVoeuKKvN41lj+jtzcXACWL19O27Zttbbp6Ohofa5Tp06ZHbewvkp7nu7cuYOPjw8+Pj6sW7cOMzMzMjIy8PHxKXAdn+5HpVIBKP0Ud35zc3PR0dEhISGhwPl4Oul/mr6+vtb/yRBCCCFE1VVlkuvr16+TkpLC8uXLad++PQCHDh1Strdo0YIVK1Zw48aNQmd8Y2JiCAwMVG5cy83NJT09XdnetGlTHj16REJCglIWkpKSQnZ2ttLGzc2NK1euoKurq8yal4dnjeVZMjIy+OOPP5SyhqNHj1KjRg2cnJywsLDA2tqaCxcuMGDAgL8dq7OzMzExMVrrYmJicHR0LJCc/l2//vor169fZ968edjY2ACPy0JKq0WLFkRFRTFkyJAC21xdXcnLyyMrK0v5ORNCCCGEeKLKlIXUrVsXU1NTvv76a86fP8/PP/9McHCwsj0gIABLS0v8/f2JiYnhwoULbNq0iSNHjgDg4ODA5s2bSUxMJCkpif79+2vNHDs5OdG9e3dGjRpFbGwsCQkJDB8+XGuWs0uXLnh6euLv78+ePXtIT0/n8OHDTJ069bmSvKI8ayzPUqtWLQYPHkxSUhK//PIL48aNo2/fvsrj/mbNmkVoaCiff/45586d49SpU0RERPDpp5+WOtYPPviAqKgo5syZw7lz51i9ejVffPEFISEhpe7rWRo1aoSenh5LlizhwoULbNu2jTlz5pS6nxkzZvDtt98yY8YMkpOTOXXqFPPnzwfA0dGRAQMGMGjQIDZv3szFixc5duwYoaGh7Nixo6yHJIQQQohKpsok1zVq1GD9+vUkJCTw6quvMmHCBBYuXKhs19PTY8+ePZibm+Pr64uLiwvz5s1TZk8//fRT6tatS7t27fDz88PHxwc3NzetY0RERGBtbY23tze9e/dm5MiRmJubK9tVKhU7d+6kQ4cODBkyBEdHR/r168elS5ewsLAos7E+ayzP0qRJE3r37o2vry/dunWjRYsWWo/aGz58OCtWrCAiIgIXFxe8vb2JjIzE3t6+1LG6ubnx3XffsX79el599VWmT5/O7NmzC32Cx99lZmZGZGQk33//Pc2aNWPevHmEhYWVup+OHTvy/fffs23bNlq1akWnTp04duyYsj0iIoJBgwbxwQcf4OTkhL+/P3FxcTRq1KgshyOEEEKISqhKPy1EFDRz5ky2bt1KYmJiRYdSbZX0buPqQp4WIiqKPC1ECFEaJf3+rjI110KIykkSHCGEEFWJJNdVTPPmzbl06VKh25YtW/aCoxFCCCGEqF6kLKSKuXTpEg8fPix0m4WFhdbztUXFkLIQIYQQovKRspBqytbWtqJDENWE1EqLyk5KkoQQ5aHKPC1ECCGEEEKIiibJtRBCCCGEEGVEkutqLjAwEH9//4oOo0L8dewdO3YkKCiowuIRQgghROUnNddC/H+bN2+mZs2aymc7OzuCgoIk4RZCCCFEiUlyLcT/V69evYoOQQghhBCVnJSFVBMbN27ExcUFAwMDTE1N6dKlC3fu3CnQLj8/n9DQUOzt7TEwMKBly5Zs3LhRq83p06fp0aMHhoaGWFhYMHDgQK5du6Zs79ixI2PHjmXs2LEYGxtTv359pk2bRkmf+piVlYWfnx8GBgbY29uzbt067OzsWLRoEQDp6emoVCqtt0xmZ2ejUqmIjo4GIC8vj2HDhinjcHJyYvHixcUe9+mykI4dO3Lp0iUmTJiASqVCpVJx584d1Gp1gfOxdetW6tSpw+3btwvt9/79++Tk5GgtQgghhKiaJLmuBjIzMwkICGDo0KEkJycTHR1N7969C012Q0NDWbNmDV999RVnzpxhwoQJvPfeexw4cAB4nMR26tQJV1dX4uPj2b17N1evXqVv375a/axevRpdXV2OHTvG4sWL+fTTT1mxYkWJ4g0MDOTy5cvs37+fjRs3snTpUrKysko15vz8fBo2bMj333/P2bNnmT59Ov/+97/57rvvSrT/5s2badiwIbNnzyYzM5PMzEzq1KlDv379iIiI0GobERHBO++8U+QzxENDQzE2NlYWGxubUo1FCCGEEJWHlIVUA5mZmTx69IjevXsrz8F2cXEp0O7+/fvMnTuXffv24enpCUDjxo05dOgQy5Ytw9vbmy+++AJXV1fmzp2r7Ldq1SpsbGw4d+4cjo6OANjY2PDZZ5+hUqlwcnLi1KlTfPbZZ4wYMaLYWM+dO8euXbs4duwYrVu3BmDlypU4OzuXasw1a9Zk1qxZymd7e3uOHDnCd999V+APgcLUq1cPHR0djIyMsLS0VNYPHz6cdu3akZmZiZWVFVlZWezcuZN9+/YV2deUKVMIDg5WPufk5EiCLYQQQlRRMnNdDbRs2ZLOnTvj4uJCnz59WL58OTdv3izQ7vz589y9e5euXbtiaGioLGvWrCEtLQ2ApKQk9u/fr7W9adOmAEobgNdeew2VSqV89vT0JDU1lby8vGJjTU5ORldXF3d3d2Vd06ZNMTExKfW4v/zyS9zd3TEzM8PQ0JCvv/6ajIyMUvfztDZt2tC8eXNWr14NwDfffIOtrS0dOnQoch99fX3UarXWIoQQQoiqSWauqwEdHR327t3L4cOH2bNnD0uWLGHq1KnExsZqtcvNzQVgx44dNGjQQGubvr6+0sbPz4/58+cXOI6VlVU5jUBbjRqP/yZ8uqzlr698X79+PSEhIYSHh+Pp6YmRkRELFy4sMObnMXz4cL788ksmT55MREQEQ4YM0fpDQgghhBDVlyTX1YRKpcLLywsvLy+mT5+Ora0tW7Zs0WrTrFkz9PX1ycjIwNvbu9B+3Nzc2LRpE3Z2dujqFv3j89ck9ujRozg4OKCjo1NsnE2bNuXRo0ckJCQoZSEpKSlkZ2crbczMzIDH5S6urq4AWjc3AsTExNCuXTvef/99Zd3TM+sloaenV+hM+3vvvcekSZP4/PPPOXv2LIMHDy5Vv0IIIYSouqQspBqIjY1l7ty5xMfHk5GRwebNm/nzzz8L1DEbGRkREhLChAkTWL16NWlpaRw/fpwlS5YoZRBjxozhxo0bBAQEEBcXR1paGj/99BNDhgzRSkQzMjIIDg4mJSWFb7/9liVLljB+/Phnxurk5ET37t0ZNWoUsbGxJCQkMHz4cAwMDJQ2BgYGvPbaa8ybN4/k5GQOHDjARx99pNWPg4MD8fHx/PTTT5w7d45p06YRFxdXqvNmZ2fHwYMH+f3337WehlK3bl169+7NxIkT6datGw0bNixVv0IIIYSouiS5rgbUajUHDx7E19cXR0dHPvroI8LDw+nRo0eBtnPmzGHatGmEhobi7OxM9+7d2bFjB/b29gBYW1sTExNDXl4e3bp1w8XFhaCgIExMTJRyDYBBgwZx79492rRpw5gxYxg/fjwjR44sUbwRERFYW1vj7e1N7969GTlyJObm5lptVq1axaNHj3B3dycoKIiPP/5Ya/uoUaPo3bs37777Lm3btuX69etas9glMXv2bNLT03nllVeU2fInhg0bxoMHDxg6dGip+hRCCCFE1abSlPThw0KUUMeOHWnVqpXyXOqy8LK9LXHt2rVMmDCBP/74Az09vVLtm5OTg7GxMbdu3ZKbG4UQQohKoqTf31JzLUQp3L17l8zMTObNm8eoUaNKnVgLIYQQomqTshDxQv3yyy9aj/H76/KyW7BgAU2bNsXS0pIpU6ZUdDhCCCGEeMlIWYh4oe7du8fvv/9e5PYmTZq8wGgqhpSFCCGEEJWPlIWIl5KBgUG1SKCrAveJayo6BCHKVcLCQRUdghCiCpKyECGEEEIIIcqIJNeiWDNnzqRVq1al2kelUrF169ZyiUcIIYQQ4mUmybUoVkhICFFRURUdxkspOjoalUql9fZIIYQQQlRvUnMtilVZnuLxoj18+LCiQxBCCCHES0hmrquIjRs34uLigoGBAaampnTp0oU7d+6Qn5/P7NmzadiwIfr6+rRq1Yrdu3dr7fvbb78REBBAvXr1qFOnDh4eHsTGxgIFy0Li4uLo2rUr9evXx9jYGG9vb44fP/5cMT948ICxY8diZWVFrVq1sLW1JTQ0FID09HRUKhWJiYlK++zsbFQqFdHR0cD/zRzv2LGDFi1aUKtWLV577TVOnz6t7BMZGYmJiQlbt27FwcGBWrVq4ePjw+XLl7Vi+c9//sMrr7yCnp4eTk5OrF27Vmu7SqXiP//5D2+++SZ16tRhxIgRvP7668Dj16GrVCoCAwOf6zwIIYQQouqQ5LoKyMzMJCAggKFDh5KcnEx0dDS9e/dGo9GwePFiwsPDCQsL4+TJk/j4+PDmm2+SmpoKQG5uLt7e3vz+++9s27aNpKQkJk2aRH5+fqHHun37NoMHD+bQoUMcPXoUBwcHfH19uX37dqnj/vzzz9m2bRvfffcdKSkprFu3Djs7u1L3M3HiRMLDw4mLi8PMzAw/Pz+tmeW7d+/yySefsGbNGmJiYsjOzqZfv37K9i1btjB+/Hg++OADTp8+zahRoxgyZAj79+/XOs7MmTPp1asXp06dYtasWWzatAmAlJQUMjMzWbx4caHx3b9/n5ycHK1FCCGEEFWTlIVUAZmZmTx69IjevXtja2sLgIuLCwBhYWF8+OGHSjI5f/589u/fz6JFi/jyyy/573//y59//klcXBz16tUDin/WdKdOnbQ+f/3115iYmHDgwAF69uxZqrgzMjJwcHDgH//4ByqVSom9tGbMmEHXrl0BWL16NQ0bNmTLli307dsXeFzC8cUXX9C2bVuljbOzM8eOHaNNmzaEhYURGBjI+++/D0BwcDBHjx4lLCxMmZ0G6N+/P0OGDFE+X7x4EQBzc3NMTEyKjC80NJRZs2Y919iEEEIIUbnIzHUV0LJlSzp37oyLiwt9+vRh+fLl3Lx5k5ycHP744w+8vLy02nt5eZGcnAxAYmIirq6uSmL9LFevXmXEiBE4ODhgbGyMWq0mNzeXjIyMUscdGBhIYmIiTk5OjBs3jj179pS6DwBPT0/l3/Xq1cPJyUkZH4Curi6tW7dWPjdt2hQTExOlTXJycrHn6AkPD4/nim/KlCncunVLWf5akiKEEEKIqkOS6ypAR0eHvXv3smvXLpo1a8aSJUtwcnJSZlaLY2BgUKpjDR48mMTERBYvXszhw4dJTEzE1NSUBw8elDpuNzc3Ll68yJw5c7h37x59+/blnXfeAaBGjcc/mk+/QLSibyKsU6fOc+2nr6+PWq3WWoQQQghRNUlyXUWoVCq8vLyYNWsWJ06cQE9Pj6ioKKytrYmJidFqGxMTQ7NmzQBo0aIFiYmJ3Lhxo0THiYmJYdy4cfj6+tK8eXP09fW5du3ac8etVqt59913Wb58ORs2bGDTpk3cuHEDMzMz4HHJyxNP39z4tKNHjyr/vnnzJufOncPZ2VlZ9+jRI+Lj45XPKSkpZGdnK22cnZ2LPUdF0dPTAyAvL68EIxVCCCFEdSA111VAbGwsUVFRdOvWDXNzc2JjY/nzzz9xdnZm4sSJzJgxg1deeYVWrVoRERFBYmIi69atAyAgIIC5c+fi7+9PaGgoVlZWnDhxAmtra61yiyccHBxYu3YtHh4e5OTkMHHixFLPfj/x6aefYmVlhaurKzVq1OD777/H0tISExMTatSowWuvvca8efOwt7cnKyuLjz76qNB+Zs+ejampKRYWFkydOpX69evj7++vbK9Zsyb/+te/+Pzzz9HV1WXs2LG89tprtGnTBnh8Q2Tfvn1xdXWlS5cubN++nc2bN7Nv375i47e1tUWlUvHjjz/i6+uLgYGBPLZQCCGEqOZk5roKUKvVHDx4EF9fXxwdHfnoo48IDw+nR48ejBs3juDgYD744ANcXFzYvXs327Ztw8HBAXg8+7pnzx7Mzc3x9fXFxcWFefPmoaOjU+ixVq5cyc2bN3Fzc2PgwIGMGzcOc3Pz54rbyMiIBQsW4OHhQevWrUlPT2fnzp1KSciqVat49OgR7u7uBAUF8fHHHxfaz7x58xg/fjzu7u5cuXKF7du3K7PKALVr1+bDDz+kf//+eHl5YWhoyIYNG5Tt/v7+LF68mLCwMJo3b86yZcuIiIigY8eOxcbfoEEDZs2axeTJk7GwsGDs2LHPdR6EEEIIUXWoNE8XtQpRiURHR/P6669z8+bNIp/WERkZSVBQ0Ev1FsWcnByMjY25devWS11/7T5xTUWHIES5Slg4qKJDEEJUIiX9/payECFEoSTxEEIIIUpPykJEuZk7d67y+vS/Lj169Kjo8IQQQgghypyUhYhyc+PGjSKfQmJgYECDBg1ecEQvh8pSFiKEEEKI/yNlIaLC1atXr8QvpxFlQ+qkhSg5KX0SQpQHKQsRQgghhBCijEhyLYQQQgghRBmR5Fr8benp6ahUKq03KMbExODi4kLNmjW1XugihBBCCFGVSc21KBfBwcG0atWKXbt2lftbCwMDA8nOzmbr1q3lehwhhBBCiGeRmWtRLtLS0ujUqRMNGzYs8gUvQgghhBBVjSTXQrFx40ZcXFwwMDDA1NSULl26cOfOHQBWrFiBs7MztWrVomnTpixdurTQPp6UiFy/fp2hQ4eiUqmIjIx85rFPnz5Njx49MDQ0xMLCgoEDB3Lt2rVnxjZz5kxWr17NDz/8gEqlQqVSER0dDcDly5fp27cvJiYm1KtXj7feeov09HSt4xY3ridj+e6772jfvj0GBga0bt2ac+fOERcXh4eHh/LM7j///LPIsd2/f5+cnBytRQghhBBVkyTXAoDMzEwCAgIYOnQoycnJREdH07t3bzQaDevWrWP69Ol88sknJCcnM3fuXKZNm8bq1asL9GNjY0NmZiZqtZpFixaRmZnJu+++W+yxs7Oz6dSpE66ursTHx7N7926uXr1K3759nxlbSEgIffv2pXv37mRmZpKZmUm7du14+PAhPj4+GBkZ8csvvxATE4OhoSHdu3fnwYMHACUe14wZM/joo484fvw4urq69O/fn0mTJrF48WJ++eUXzp8/z/Tp04scX2hoKMbGxspiY2NT2ssjhBBCiEpCaq4F8DiBffToEb1798bW1hYAFxcX4HFyGR4eTu/evQGwt7fn7NmzLFu2jMGDB2v1o6Ojg6WlJSqVCmNjYywtLZ957C+++AJXV1fmzp2rrFu1ahU2NjacO3eO3NzcImODxy+kuX//vtaxvvnmG/Lz81mxYgUqlQqAiIgITExMiI6Oplu3biUeV0hICD4+PgCMHz+egIAAoqKi8PLyAmDYsGHFzs5PmTKF4OBg5XNOTo4k2EIIIUQVJcm1AKBly5Z07twZFxcXfHx86NatG++88w56enqkpaUxbNgwRowYobR/9OgRxsbGZXLspKQk9u/fX+iNj2lpaXTr1q3Q2OrWrVtsn+fPn8fIyEhr/f/+9z/S0tK4c+dOicfVokUL5d8WFhaAdnJvYWFBVlZWkbHo6+ujr69f5HYhhBBCVB2SXAvg8Yzz3r17OXz4MHv27GHJkiVMnTqV7du3A7B8+XLatm1bYJ+ykJubi5+fH/Pnzy+wzcrKqsjYYmNjsbe3L7JPd3d31q1bV2CbmZkZubm5QMnGVbNmTeXfT2bB/7ouPz+/hKMVQgghRFUmybVQqFQqvLy88PLyYvr06dja2hITE4O1tTUXLlxgwIAB5XJcNzc3Nm3ahJ2dHbq6hf9IFhbbli1bCA4ORk9Pj7y8vAJ9btiwAXNzc9RqdYH+jI2Ny31cQgghhKh+5IZGAUBsbCxz584lPj6ejIwMNm/ezJ9//omzszOzZs0iNDSUzz//nHPnznHq1CkiIiL49NNPy+TYY8aM4caNGwQEBBAXF0daWho//fQTQ4YMIS8vr9jYAOzs7Dh58iQpKSlcu3aNhw8fMmDAAOrXr89bb73FL7/8wsWLF4mOjmbcuHH89ttvAOU+LiGEEEJUPzJzLQBQq9UcPHiQRYsWkZOTg62tLeHh4fTo0QOA2rVrs3DhQiZOnEidOnVwcXEhKCioTI5tbW1NTEwMH374Id26deP+/fvY2trSvXt3atSo8czYRowYQXR0NB4eHuTm5rJ//346duzIwYMH+fDDD+nduze3b9+mQYMGdO7cWZnJHj58eLmOSwghhBDVj0qj0WgqOgghqpOcnByMjY25detWoSUrf4f7xDVl2p8QVVnCwkEVHYIQohIp6fe3zFwL8YI9+Xu2PF4ms3+af5n3KURVJS90EkKUxpP/ZjxrXlqSa1HuRo8ezTfffFPotvfee4+vvvrqBUdUsW7fvg0gz7oWQgghKqHbt28X+zhiKQsR5S4rK6vIGSK1Wo25ufkLjqhi5efn88cff2BkZKQ82q8sPXlJzeXLl8u87EQ8H7kmLx+5Ji8fuSYvH7km2jQaDbdv38ba2poaNYp+JojMXItyZ25uXu0S6OLUqFGDhg0blvtx1Gq1/MfwJSPX5OUj1+TlI9fk5SPX5P+U5AV68ig+IYQQQgghyogk10IIIYQQQpQRSa6FqGL09fWZMWMG+vr6FR2K+P/kmrx85Jq8fOSavHzkmjwfuaFRCCGEEEKIMiIz10IIIYQQQpQRSa6FEEIIIYQoI5JcCyGEEEIIUUYkuRZCCCGEEKKMSHIthBBCCCFEGZHkWohK7pNPPqFdu3bUrl0bExOTEu2j0WiYPn06VlZWGBgY0KVLF1JTU8s30Grkxo0bDBgwALVajYmJCcOGDSM3N7fYfTp27IhKpdJaRo8e/YIirpq+/PJL7OzsqFWrFm3btuXYsWPFtv/+++9p2rQptWrVwsXFhZ07d76gSKuP0lyTyMjIAr8TtWrVeoHRVn0HDx7Ez88Pa2trVCoVW7dufeY+0dHRuLm5oa+vT5MmTYiMjCz3OCsbSa6FqOQePHhAnz59+Oc//1nifRYsWMDnn3/OV199RWxsLHXq1MHHx4f//e9/5Rhp9TFgwADOnDnD3r17+fHHHzl48CAjR4585n4jRowgMzNTWRYsWPACoq2aNmzYQHBwMDNmzOD48eO0bNkSHx8fsrKyCm1/+PBhAgICGDZsGCdOnMDf3x9/f39Onz79giOvukp7TeDxa7ef/p24dOnSC4y46rtz5w4tW7bkyy+/LFH7ixcv8sYbb/D666+TmJhIUFAQw4cP56effirnSCsZjRCiSoiIiNAYGxs/s11+fr7G0tJSs3DhQmVddna2Rl9fX/Ptt9+WY4TVw9mzZzWAJi4uTlm3a9cujUql0vz+++9F7uft7a0ZP378C4iwemjTpo1mzJgxyue8vDyNtbW1JjQ0tND2ffv21bzxxhta69q2basZNWpUucZZnZT2mpT0v2mibACaLVu2FNtm0qRJmubNm2ute/fddzU+Pj7lGFnlIzPXQlQzFy9e5MqVK3Tp0kVZZ2xsTNu2bTly5EgFRlY1HDlyBBMTEzw8PJR1Xbp0oUaNGsTGxha777p166hfvz6vvvoqU6ZM4e7du+UdbpX04MEDEhIStH7Ga9SoQZcuXYr8GT9y5IhWewAfHx/5nSgjz3NNAHJzc7G1tcXGxoa33nqLM2fOvIhwRRHk96RkdCs6ACHEi3XlyhUALCwstNZbWFgo28Tzu3LlCubm5lrrdHV1qVevXrHnt3///tja2mJtbc3Jkyf58MMPSUlJYfPmzeUdcpVz7do18vLyCv0Z//XXXwvd58qVK/I7UY6e55o4OTmxatUqWrRowa1btwgLC6Ndu3acOXOGhg0bvoiwxV8U9XuSk5PDvXv3MDAwqKDIXi4ycy3ES2jy5MkFbuT561LUF5IoH+V9TUaOHImPjw8uLi4MGDCANWvWsGXLFtLS0spwFEJUHp6engwaNIhWrVrh7e3N5s2bMTMzY9myZRUdmhDFkplrIV5CH3zwAYGBgcW2ady48XP1bWlpCcDVq1exsrJS1l+9epVWrVo9V5/VQUmviaWlZYEbtB49esSNGzeUc18Sbdu2BeD8+fO88sorpY63Oqtfvz46OjpcvXpVa/3Vq1eLvAaWlpalai9K53muyV/VrFkTV1dXzp8/Xx4hihIo6vdErVbLrPVTJLkW4iVkZmaGmZlZufRtb2+PpaUlUVFRSjKdk5NDbGxsqZ44Ut2U9Jp4enqSnZ1NQkIC7u7uAPz888/k5+crCXNJJCYmAmj9ASRKRk9PD3d3d6KiovD39wcgPz+fqKgoxo4dW+g+np6eREVFERQUpKzbu3cvnp6eLyDiqu95rslf5eXlcerUKXx9fcsxUlEcT0/PAo+olN+TQlT0HZVCiL/n0qVLmhMnTmhmzZqlMTQ01Jw4cUJz4sQJze3bt5U2Tk5Oms2bNyuf582bpzExMdH88MMPmpMnT2reeustjb29vebevXsVMYQqp3v37hpXV1dNbGys5tChQxoHBwdNQECAsv23337TODk5aWJjYzUajUZz/vx5zezZszXx8fGaixcvan744QdN48aNNR06dKioIVR669ev1+jr62siIyM1Z8+e1YwcOVJjYmKiuXLlikaj0WgGDhyomTx5stI+JiZGo6urqwkLC9MkJydrZsyYoalZs6bm1KlTFTWEKqe012TWrFman376SZOWlqZJSEjQ9OvXT1OrVi3NmTNnKmoIVc7t27eV7wxA8+mnn2pOnDihuXTpkkaj0WgmT56sGThwoNL+woULmtq1a2smTpyoSU5O1nz55ZcaHR0dze7duytqCC8lSa6FqOQGDx6sAQos+/fvV9oAmoiICOVzfn6+Ztq0aRoLCwuNvr6+pnPnzpqUlJQXH3wVdf36dU1AQIDG0NBQo1arNUOGDNH6Y+fixYta1ygjI0PToUMHTb169TT6+vqaJk2aaCZOnKi5detWBY2galiyZImmUaNGGj09PU2bNm00R48eVbZ5e3trBg8erNX+u+++0zg6Omr09PQ0zZs31+zYseMFR1z1leaaBAUFKW0tLCw0vr6+muPHj1dA1FXX/v37C/3+eHIdBg8erPH29i6wT6tWrTR6enqaxo0ba323iMdUGo1GUyFT5kIIIYQQQlQx8rQQIYQQQgghyogk10IIIYQQQpQRSa6FEEIIIYQoI5JcCyGEEEIIUUYkuRZCCCGEEKKMSHIthBBCCCFEGZHkWgghhBBCiDIiybUQQgghhBBlRJJrIYQQQgghyogk10IIIYQQQpQRSa6FEEIIIYQoI/8P2zIw4ZcKEx8AAAAASUVORK5CYII=\n"},"metadata":{}}],"source":["sns.barplot(data=high_stress_mean,orient='y')\n","plt.title('Mean of scaled categories when Reporting Stress Level 2');"]},{"cell_type":"code","execution_count":39,"metadata":{"colab":{"base_uri":"https://localhost:8080/","height":430},"executionInfo":{"elapsed":936,"status":"ok","timestamp":1716216954410,"user":{"displayName":"Daniel Meier","userId":"06365571306976914087"},"user_tz":300},"id":"gFWUgCqzS5ph","outputId":"0ee3b12b-8c34-4ecd-8c6c-b08730eb8bd3"},"outputs":[{"output_type":"display_data","data":{"text/plain":["
"],"image/png":"iVBORw0KGgoAAAANSUhEUgAAAtcAAAGdCAYAAADZpV/KAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAACpwElEQVR4nOzde1zP9//4/9urKJ1ziEIHphKKchga5VhDGzbm8B45zmg5LKePodjkkLPZjK1iNjbnOeTQZIRUFKYlkdrWNKwSViq/P/w8v16rVESq+/VyeV0uns/n4/F43h9Pba97D/fn86l6+PDhQ4QQQgghhBDPTaO8AxBCCCGEEKKykORaCCGEEEKIMiLJtRBCCCGEEGVEkmshhBBCCCHKiCTXQgghhBBClBFJroUQQgghhCgjklwLIYQQQghRRiS5FkIIIYQQooxUK+8AhKhq8vPz+fPPPzEwMEClUpV3OEIIIYQogYcPH3Lnzh3q16+PhkbR69OSXAvxkv3555+Ym5uXdxhCCCGEeAYpKSk0bNiwyOOSXAvxkhkYGACP/uM0NDQs52iEKKjzJ9+XdwhClNgvnw4u7xBEFZGZmYm5ubnyPV4USa6FeMkel4IYGhpKci1eSZraOuUdghAlJv8fFS9bcSWdckOjKBNJSUmoVCpiYmLKNQ6VSsWuXbte6jmtrKxYsWLFSz2nEEIIIV5NklyLMmFubk5qaiotWrQocR9XV1cmTZr04oISQgghhHjJpCxElAlNTU1MTU3LOwwhhBBCiHIlK9dVREhICG+88QbGxsbUrl2bPn36kJiYCPy/ko4dO3bQpUsXdHV1admyJadOnVL6jxw5EgcHB7KzswHIycnB0dGRYcOGqY3xZFnIxYsXefPNN9HX16devXq8//773Lx5EwBPT0+OHTvGypUrUalUqFQqrl27RpMmTQgICFCLPSYmBpVKxZUrV0o975SUFAYOHIixsTG1atXi7bffJikpCYBDhw5Ro0YN0tPT1fpMnDiRrl27KtsnTpygU6dO6OjoYG5ujre3N3fv3i11LEIIIYSo/CS5riLu3r3LlClTiIqKIjQ0FA0NDfr160d+fr7SZtasWfj4+BATE4ONjQ2DBw8mNzcXgFWrVnH37l1mzJihtE1PT2fNmjWFni89PZ2uXbvi6OhIVFQUISEh3Lhxg4EDBwKwcuVKOnTowJgxY0hNTSU1NRULCwtGjhxJYGCg2liBgYF07tyZJk2alGrODx48wM3NDQMDA44fP054eDj6+vq4u7uTk5NDt27dMDY2Zvv27UqfvLw8tm7dytChQwFITEzE3d2dd955h/Pnz7N161ZOnDiBl5dXiePIzs4mMzNT7SOEEEKIyknKQqqId955R237m2++wcTEhEuXLqGvrw+Aj48PvXv3BsDPz4/mzZtz5coVmjZtir6+Pt9++y0uLi4YGBiwYsUKjh49WuRd2mvWrMHR0ZEFCxaondPc3JzLly9jY2ODlpYWurq6auUknp6ezJkzhzNnztCuXTsePHjAd999V2A1uyS2bt1Kfn4+GzZsUO7sDQwMxNjYmLCwMHr27MmgQYP47rvvGDVqFAChoaGkp6cr18vf35+hQ4cqteHW1tasWrUKFxcXvvjiC2rUqFFsHP7+/vj5+ZU6fiGEEEJUPLJyXUUkJCQwePBgGjdujKGhIVZWVgAkJycrbRwcHJQ/m5mZAZCWlqbs69ChAz4+PsyfP5+PP/6YN954o8jzxcbGcvToUfT19ZVP06ZNAZRylMLUr1+f3r1788033wDw008/kZ2dzYABA0o959jYWK5cuYKBgYESQ61atfj333+VGIYOHUpYWBh//vknAJs3b6Z3794YGxsrYwQFBanNw83Njfz8fK5du1aiOGbOnElGRobySUlJKfVchBBCCFExyMp1FeHh4YGlpSXr16+nfv365Ofn06JFC3JycpQ21atXV/78eKX3ybKR/Px8wsPD0dTULLb+OSsrCw8PDxYtWlTg2OPEvSijR4/m/fffZ/ny5QQGBvLee++hq6tbonn+N4bWrVuzefPmAsdMTEwAaNu2La+99hpbtmzhww8/ZOfOnQQFBamN8cEHH+Dt7V1gDAsLixLFoa2tjba2dqnjF0IIIUTFI8l1FXDr1i3i4+NZv349nTp1Ah7dpFdaS5Ys4bfffuPYsWO4ubkRGBjIiBEjCm3r5OTE9u3bsbKyolq1wn/MtLS0yMvLK7C/V69e6Onp8cUXXxASEsIvv/xS6lgfx7B161bq1q371JcMDB06lM2bN9OwYUM0NDSU0pjHY1y6dKnU9d5CCCGEqJqkLKQKqFmzJrVr1+arr77iypUr/Pzzz0yZMqVUY5w7d445c+awYcMGnJ2dWbZsGRMnTuTq1auFtp8wYQK3b99m8ODBREZGkpiYyMGDBxkxYoSSUFtZWREREUFSUhI3b95UVsk1NTXx9PRk5syZWFtb06FDh2ea99ChQ6lTpw5vv/02x48f59q1a4SFheHt7c3vv/+u1u7s2bN89tlnvPvuu2qrzNOnT+fkyZN4eXkRExNDQkICu3fvLtUNjUIIIYSoOiS5rgI0NDTYsmUL0dHRtGjRgsmTJ7NkyZIS9//333/53//+h6enJx4eHgCMHTuWLl268P777xe6+ly/fn3Cw8PJy8ujZ8+e2NvbM2nSJIyNjdHQePRj5+Pjg6amJs2aNcPExESt/nvUqFHk5OQUuTJeErq6uvzyyy9YWFjQv39/7OzsGDVqFP/++6/aSnaTJk1o164d58+fV54S8piDgwPHjh3j8uXLdOrUCUdHR+bMmUP9+vWfOS4hhBBCVF6qhw8fPizvIIT4r+PHj9OtWzdSUlKoV69eeYdTpjIzMzEyMiIjI+Op5SpClJfWUzeWdwhClFj0kmHlHYKoIkr6/S011+KVkp2dzd9//42vry8DBgyodIm1EEIIISo3Sa7FK+X7779n1KhRtGrVio0b1VfPNm/ezAcffFBoP0tLS3799deXEaIQlZ6sBAohxLOTshBRYdy5c4cbN24Ueqx69epYWlq+5IiejZSFCCGEEBWPlIWISsfAwAADA4PyDkMIIYQQokiSXAshiiQ3tlVNUhYihBDPTh7FJ4QQQgghRBmR5Fo8t6SkJFQqFTExMcq+8PBw7O3tqV69On379i232IQQQgghXiYpCxEvxJQpU2jVqhUHDhxAX1//hZ7L09OT9PR0du3a9ULPI4QQQghRHFm5Fi9EYmIiXbt2pWHDhhgbG5d3OEIIIYQQL4Uk10Kxbds27O3t0dHRoXbt2nTv3p27d+8CsGHDBuzs7KhRowZNmzZl7dq1hY7xuETk1q1bjBw5EpVKRVBQULHnvnjxIm+++Sb6+vrUq1eP999/n5s3bxYbm6+vL8HBwezevRuVSoVKpSIsLAyAlJQUBg4ciLGxMbVq1eLtt98mKSlJ7bxPm9fjufzwww906tQJHR0d2rZty+XLl4mMjKRNmzbo6+vz5ptv8vfff5fuYgshhBCiUpLkWgCQmprK4MGDGTlyJHFxcYSFhdG/f38ePnzI5s2bmTNnDp999hlxcXEsWLCA2bNnExwcXGAcc3NzUlNTMTQ0ZMWKFaSmpvLee+899dzp6el07doVR0dHoqKiCAkJ4caNGwwcOLDY2Hx8fBg4cCDu7u6kpqaSmppKx44defDgAW5ubhgYGHD8+HHCw8PR19fH3d2dnJwcgBLPa+7cuXzyySecPXuWatWqMWTIEKZNm8bKlSs5fvw4V65cYc6cOUXOLzs7m8zMTLWPEEIIISonqbkWwKMENjc3l/79+ysvY7G3twceJZdLly6lf//+ADRq1IhLly6xbt06hg8frjaOpqYmpqamqFQqjIyMMDU1Lfbca9aswdHRkQULFij7vvnmG8zNzbl8+TJZWVlFxgago6NDdna22rm+/fZb8vPz2bBhAyqVCoDAwECMjY0JCwujZ8+eJZ6Xj48Pbm5uAEycOJHBgwcTGhqKs7MzAKNGjXrq6ry/vz9+fn7FXgchhBBCVHySXAsAWrZsSbdu3bC3t8fNzY2ePXvy7rvvoqWlRWJiIqNGjWLMmDFK+9zcXIyMjMrk3LGxsRw9erTQGx8TExPp2bNnobHVrFnzqWNeuXKlwEtn/v33XxITE7l7926J5+Xg4KD8uV69eoB6cl+vXj3S0tKKjGXmzJlMmTJF2c7MzMTc3LzI9kIIIYSouCS5FsCjFefDhw9z8uRJDh06xOrVq5k1axY//fQTAOvXr+f1118v0KcsZGVl4eHhwaJFiwocMzMzKzK2iIgIGjVqVOSYrVu3ZvPmzQWOmZiYkJWVBZRsXtWrV1f+/HgV/L/78vPzi5yftrY22traRR4XQgghROUhybVQqFQqnJ2dcXZ2Zs6cOVhaWhIeHk79+vW5evUqQ4cOfSHndXJyYvv27VhZWVGtWuE/koXFtnPnTqZMmYKWlhZ5eXkFxty6dSt169bF0NCwwHhGRkYvfF5CCCGEqHrkhkYBQEREBAsWLCAqKork5GR27NjB33//jZ2dHX5+fvj7+7Nq1SouX77MhQsXCAwMZNmyZWVy7gkTJnD79m0GDx5MZGQkiYmJHDx4kBEjRpCXl/fU2ACsrKw4f/488fHx3Lx5kwcPHjB06FDq1KnD22+/zfHjx7l27RphYWF4e3vz+++/A7zweQkhhBCi6pGVawGAoaEhv/zyCytWrCAzMxNLS0uWLl3Km2++CYCuri5Llixh6tSp6OnpYW9vz6RJk8rk3PXr1yc8PJzp06fTs2dPsrOzsbS0xN3dHQ0NjWJjGzNmDGFhYbRp04asrCyOHj2Kq6srv/zyC9OnT6d///7cuXOHBg0a0K1bN2Ule/To0S90XkIIIYSoelQPHz58WN5BCFGVZGZmYmRkREZGRqElK6+S1lM3lncIohxELxlW3iEIIcQrp6Tf37JyLYQokiRZQgghROlIzbV44caNG4e+vn6hn3HjxpV3eEIIIYQQZUbKQsQLl5aWVuRbCQ0NDalbt+5Ljqh8VaSyECGEEEI8ImUh4pVRt27dKpdACyGEEKJqkuRaCCGEGrmRVYiKSe6TeTVIzbUQQgghhBBlRJLrV5iVlRUrVqwoUVuVSsWuXbteaDxJSUmoVCpiYmKe2s7V1fW5nhVd3FzCwsJQqVSkp6c/8zmEEEIIIV4ESa5fgpeR+JaH8kpyO3bsSGpqKkZGRsW2lURcCCGEEC+TJNeiwtHS0sLU1BSVSvXSzvnw4UNyc3Nf2vmEEEIIUTFVqeTa1dWVjz76iEmTJlGzZk3q1avH+vXruXv3LiNGjMDAwIAmTZpw4MABpc/Fixd588030dfXp169erz//vvcvHlTbUxvb2+mTZtGrVq1MDU1xdfXVzluZWUFQL9+/VCpVMp2YmIib7/9NvXq1UNfX5+2bdty5MiR55rfzZs36devH7q6ulhbW7Nnzx6148XNJSQkhDfeeANjY2Nq165Nnz59SExMLPRcSUlJdOnSBYCaNWuiUqnw9PRUjufn5xd5TZ53Lv9djb5+/ToeHh7UrFkTPT09mjdvzv79+58aY3Z2Nt7e3tStW5caNWrwxhtvEBkZWeAcBw4coHXr1mhra/Ptt9+ioaFBVFSUWqwrVqzA0tKS/Pz8Us1RCCGEEJVPlUquAYKDg6lTpw5nzpzho48+4sMPP2TAgAF07NiRs2fP0rNnT95//33u3btHeno6Xbt2xdHRkaioKEJCQrhx4wYDBw4sMKaenh4REREsXryYefPmcfjwYQAlYQsMDCQ1NVXZzsrKolevXoSGhnLu3Dnc3d3x8PAgOTn5mefm5+fHwIEDOX/+PL169WLo0KHcvn0boERzuXv3LlOmTCEqKorQ0FA0NDTo169foUmjubk527dvByA+Pp7U1FRWrlxZomvyvHP5rwkTJpCdnc0vv/zChQsXWLRoEfr6+k+Ncdq0aWzfvp3g4GDOnj1LkyZNcHNzK3COGTNmsHDhQuLi4njrrbfo3r07gYGBam0CAwPx9PREQ6Pw/5yys7PJzMxU+wghhBCicqpSL5FxdXUlLy+P48ePA5CXl4eRkRH9+/dn48ZHj57666+/MDMz49SpUxw5coTjx49z8OBBZYzff/8dc3Nz4uPjsbGxKTAmQLt27ejatSsLFy4EHtVc79y5k759+z41vhYtWjBu3Di8vLyAR6vekyZNKtHNgSqVik8++YT58+cDjxJlfX19Dhw4gLu7O59++mmxc/mvmzdvYmJiwoULF2jRogVJSUk0atSIc+fO0apVK8LCwujSpQv//PMPxsbGRV7nwq7J88zlv+d1cHDgnXfeYe7cuQXGKizGu3fvUrNmTYKCghgyZAgADx48UK731KlTlX67du3i7bffVsb74YcfGDduHKmpqWhra3P27FnatGnD1atXlX+V+C9fX1/8/PwK7JeXyIhXlTyKT4iKSR7F92KV9CUyVW7l2sHBQfmzpqYmtWvXxt7eXtlXr1494NFbBWNjYzl69Kja67qbNm0KoFYu8eSYAGZmZqSlpT01jqysLHx8fLCzs8PY2Bh9fX3i4uKea+X6yTj09PQwNDRU4ijJXBISEhg8eDCNGzfG0NBQSRafJaZnuSYlnct/eXt78+mnn+Ls7MzcuXM5f/78U8dOTEzkwYMHODs7K/uqV69Ou3btiIuLU2vbpk0bte2+ffuiqanJzp07AQgKCqJLly5FJtYAM2fOJCMjQ/mkpKQ8NT4hhBBCVFxV7iUy1atXV9tWqVRq+x7fJJefn09WVhYeHh4sWrSowDhmZmZPHbO4+lsfHx8OHz5MQEAATZo0QUdHh3fffZecnJxSz6kkcZRkLh4eHlhaWrJ+/Xrq169Pfn4+LVq0eKaYnuWaPGv/0aNH4+bmxr59+zh06BD+/v4sXbqUjz76qNRx/5eenp7atpaWFsOGDSMwMJD+/fvz3XffqZXDFEZbWxttbe3njkUIIYQQr74ql1yXhpOTE9u3b8fKyopq1Z79UlWvXp28vDy1feHh4Xh6etKvXz/gUfKblJT0POE+VXFzuXXrFvHx8axfv55OnToBcOLEiaeOqaWlBVBgbuXB3NyccePGMW7cOGbOnMn69ev56KOPCo3xtddeQ0tLi/DwcCwtLYFHZSGRkZElKsEZPXo0LVq0YO3ateTm5tK/f/8XMichhBBCVDxVriykNCZMmMDt27cZPHgwkZGRJCYmcvDgQUaMGFGqhNLKyorQ0FD++usv/vnnHwCsra3ZsWMHMTExxMbGMmTIkBf6tIni5lKzZk1q167NV199xZUrV/j555+ZMmXKU8e0tLREpVKxd+9e/v77b7Kysl5Y/E8zadIkDh48yLVr1zh79ixHjx7Fzs6uyBj19PT48MMPmTp1KiEhIVy6dIkxY8Zw7949Ro0aVez57OzsaN++PdOnT2fw4MHo6Oi86CkKIYQQooKQ5Pop6tevT3h4OHl5efTs2RN7e3smTZqEsbFxkU+GKMzSpUs5fPgw5ubmODo6ArBs2TJq1qxJx44d8fDwwM3NDScnpxc1lWLnoqGhwZYtW4iOjqZFixZMnjyZJUuWPHXMBg0a4Ofnx4wZM6hXr55yI+bLlpeXx4QJE7Czs8Pd3R0bGxvWrl371BgXLlzIO++8w/vvv4+TkxNXrlzh4MGD1KxZs0TnHDVqFDk5OYwcOfKFzUsIIYQQFU+VelqIEGVl/vz5/Pjjj8XePFmYkt5tLER5kaeFCFExydNCXqySfn9LzbUQpfC4Nn7NmjV8+umn5R2OEC+EfEELIcSzk7KQCmDz5s1qj9B78tO8efPyDq9UKvpcvLy8aN26Na6urlISIoQQQogCpCykArhz5w43btwo9Fj16tWVJ15UBJVpLs9KykKEEEKIikfKQioRAwMDDAwMyjuMMlGZ5iJEZSU11+JZSUmREFIWIoQQQgghRJmR5Fo8M1dX1xK9dOVVFRYWhkqlIj09vbxDEUIIIUQlIcm1qLI6duxIamoqRkZG5R2KEEIIISoJSa7FKysnJ+eFjq+lpYWpqSkqleqFnkcIIYQQVYck16JE7t69y7Bhw9DX18fMzIylS5eqHc/OzsbHx4cGDRqgp6fH66+/TlhYmHI8KCgIY2Njdu3ahbW1NTVq1MDNzY2UlBSlja+vL61atWLDhg00atSIGjVqAJCens7o0aMxMTHB0NCQrl27Ehsbq/SLjY2lS5cuGBgYYGhoSOvWrYmKigLg+vXreHh4ULNmTfT09GjevDn79+8HCi8L2b59O82bN0dbWxsrK6sC87SysmLBggWMHDkSAwMDLCws+Oqrr8rkGgshhBCi4pPkWpTI1KlTOXbsGLt37+bQoUOEhYVx9uxZ5biXlxenTp1iy5YtnD9/ngEDBuDu7k5CQoLS5t69e3z22Wds3LiR8PBw0tPTGTRokNp5rly5wvbt29mxYwcxMTEADBgwgLS0NA4cOEB0dDROTk5069aN27dvAzB06FAaNmxIZGQk0dHRzJgxg+rVqwMwYcIEsrOz+eWXX7hw4QKLFi1CX1+/0DlGR0czcOBABg0axIULF/D19WX27NkEBQWptVu6dClt2rTh3LlzjB8/ng8//JD4+Pgir112djaZmZlqHyGEEEJUTvIoPlGsrKwsvv76a7799lu6desGQHBwMA0bNgQgOTmZwMBAkpOTqV+/PgA+Pj6EhIQQGBjIggULAHjw4AFr1qzh9ddfV8aws7PjzJkztGvXDnhUCrJx40ZMTEwAOHHiBGfOnCEtLQ1tbW0AAgIC2LVrF9u2bWPs2LEkJyczdepUmjZtCoC1tbUSe3JyMu+88w729vYANG7cuMh5Llu2jG7dujF79mwAbGxsuHTpEkuWLMHT01Np16tXL8aPHw/A9OnTWb58OUePHsXW1rbQcf39/fHz8yvRtRZCCCFExSYr16JYiYmJ5OTkKEkxQK1atZRk8sKFC+Tl5WFjY6P2xsVjx46RmJio9KlWrRpt27ZVtps2bYqxsTFxcXHKPktLSyWxhkclH1lZWdSuXVtt7GvXriljT5kyhdGjR9O9e3cWLlyodk5vb28+/fRTnJ2dmTt3LufPny9ynnFxcTg7O6vtc3Z2JiEhgby8PGWfg4OD8meVSoWpqSlpaWlFjjtz5kwyMjKUz5OlMEIIIYSoXGTlWjy3rKwsNDU1iY6ORlNTU+1YUSUYRdHT0yswtpmZmVr99mPGxsbAo1rtIUOGsG/fPg4cOMDcuXPZsmUL/fr1Y/To0bi5ubFv3z4OHTqEv78/S5cu5aOPPipVXE96XHLymEqlIj8/v8j22trayqq7EEIIISo3WbkWxXrttdeoXr06ERERyr5//vmHy5cvA+Do6EheXh5paWk0adJE7WNqaqr0yc3NVW40BIiPjyc9PR07O7siz+3k5MRff/1FtWrVCoxdp04dpZ2NjQ2TJ0/m0KFD9O/fn8DAQOWYubk548aNY8eOHXz88cesX7++0HPZ2dkRHh6uti88PBwbG5sCvzQIIYQQQhRGkmtRLH19fUaNGsXUqVP5+eefuXjxIp6enmhoPPrxsbGxYejQoQwbNowdO3Zw7do1zpw5g7+/P/v27VPGqV69Oh999BERERFER0fj6elJ+/btlXrrwnTv3p0OHTrQt29fDh06RFJSEidPnmTWrFlERUVx//59vLy8CAsL4/r164SHhxMZGakk7JMmTeLgwYNcu3aNs2fPcvTo0SKT+Y8//pjQ0FDmz5/P5cuXCQ4OZs2aNfj4+JTh1RRCCCFEZSZlIaJElixZQlZWFh4eHhgYGPDxxx+TkZGhHA8MDOTTTz/l448/5o8//qBOnTq0b9+ePn36KG10dXWZPn06Q4YM4Y8//qBTp058/fXXTz2vSqVi//79zJo1ixEjRvD3339jampK586dqVevHpqamty6dYthw4Zx48YN6tSpQ//+/ZUbCPPy8pgwYQK///47hoaGuLu7s3z58kLP5eTkxA8//MCcOXOYP38+ZmZmzJs3T+1mRiGEEEKIp1E9fPjwYXkHISq/oKAgJk2aJK8aBzIzMzEyMiIjIwNDQ8PyDkeIAlpP3VjeIYgKKnrJsPIOQYgXpqTf37JyLYQQQo0kSEII8eyk5loIIYQQQogyIsm1eCk8PT2lJEQIIYQQlZ4k10IIIYQQQpQRqbkWQgihRm5oFC+D1PaLykpWroUQQgghhCgjklyL5+bq6sqkSZNe+nmtrKxYsWJFmY1XXvMQQgghROUhybUQQgghhBBlRJJrIYQQQgghyogk16JM5OfnM23aNGrVqoWpqSm+vr7KsfT0dEaPHo2JiQmGhoZ07dqV2NhY5XhiYiJvv/029erVQ19fn7Zt23LkyBG18dPS0vDw8EBHR4dGjRqxefPmAjEsW7YMe3t79PT0MDc3Z/z48WRlZam1CQ8Px9XVFV1dXWrWrImbmxv//PNPieZRkrkIIYQQomqT5FqUieDgYPT09IiIiGDx4sXMmzePw4cPAzBgwADS0tI4cOAA0dHRODk50a1bN27fvg1AVlYWvXr1IjQ0lHPnzuHu7o6HhwfJycnK+J6enqSkpHD06FG2bdvG2rVrSUtLU4tBQ0ODVatW8euvvxIcHMzPP//MtGnTlOMxMTF069aNZs2acerUKU6cOIGHhwd5eXklmkdJ5lKY7OxsMjMz1T5CCCGEqJxUDx8+fFjeQYiKzdXVlby8PI4fP67sa9euHV27dqVPnz707t2btLQ0tLW1leNNmjRh2rRpjB07ttAxW7Rowbhx4/Dy8uLy5cvY2tpy5swZ2rZtC8Bvv/2GnZ0dy5cvL/ImxG3btjFu3Dhu3rwJwJAhQ0hOTubEiROlnsfChQs5ceLEM83F19cXPz+/AvszMjIwNDQstI8Q5UkexSdeBnkUn6hoMjMzMTIyKvb7W55zLcqEg4OD2raZmRlpaWnExsaSlZVF7dq11Y7fv3+fxMRE4NHKta+vL/v27SM1NZXc3Fzu37+vrFzHxcVRrVo1WrdurfRv2rQpxsbGamMeOXIEf39/fvvtNzIzM8nNzeXff//l3r176OrqEhMTw4ABA55pHkCJ5lKYmTNnMmXKFGU7MzMTc3Pzp8YhhBBCiIpJkmtRJqpXr662rVKpyM/PJysrCzMzM8LCwgr0eZwc+/j4cPjwYQICAmjSpAk6Ojq8++675OTklPj8SUlJ9OnThw8//JDPPvuMWrVqceLECUaNGkVOTg66urro6Og88zyAEs2lMNra2mor3UIIIYSovCS5Fi+Uk5MTf/31F9WqVcPKyqrQNuHh4Xh6etKvXz/gURKblJSkHG/atCm5ublER0crZSHx8fGkp6crbaKjo8nPz2fp0qVoaDy6leCHH35QO4+DgwOhoaGFlmiU1VyEEEIIUbXJDY3iherevTsdOnSgb9++HDp0iKSkJE6ePMmsWbOIiooCwNramh07dhATE0NsbCxDhgxRVosBbG1tcXd354MPPiAiIoLo6GhGjx6tthLdpEkTHjx4wOrVq7l69SqbNm3iyy+/VItl5syZREZGMn78eM6fP89vv/3GF198odRkl8VchBBCCFG1SXItXiiVSsX+/fvp3LkzI0aMwMbGhkGDBnH9+nXq1asHPHqEXs2aNenYsSMeHh64ubnh5OSkNk5gYCD169fHxcWF/v37M3bsWOrWrascb9myJcuWLWPRokW0aNGCzZs34+/vrzaGjY0Nhw4dIjY2lnbt2tGhQwd2795NtWol+wecksxFCCGEEFWbPC1EiJespHcbC1Fe5Gkh4mWQp4WIikaeFiKEEOKZSNIjhBDPTspChBBCCCGEKCOSXAshhBBCCFFGpCxECCGEGqm5FkJUZOVd2iYr10IIIYQQQpQRSa4rGFdXVyZNmlTkcSsrK1asWPHC41CpVOzateuFn0cIIYQQoiKR5FoIIYQQQogyIsm1eOU8fPiQ3Nzc8g5DzasYkxBCCCFePZJcV0C5ubl4eXlhZGREnTp1mD17NkW9Cyg5OZm3334bfX19DA0NGThwIDdu3FBr88UXX/Daa6+hpaWFra0tmzZtUjuekJBA586dqVGjBs2aNePw4cMljjUpKQmVSsWWLVvo2LEjNWrUoEWLFhw7dkxpExYWhkql4sCBA7Ru3RptbW1OnDhBfn4+/v7+NGrUCB0dHVq2bMm2bduUfv/88w9Dhw7FxMQEHR0drK2tCQwMBCAnJwcvLy/MzMyoUaMGlpaWyhsbH8cUExOjjJWeno5KpSIsLOy5YhJCCCFE1SZPC6mAgoODGTVqFGfOnCEqKoqxY8diYWHBmDFj1Nrl5+crifWxY8fIzc1lwoQJvPfee0oSuXPnTiZOnMiKFSvo3r07e/fuZcSIETRs2JAuXbqQn59P//79qVevHhEREWRkZDy15rsoU6dOZcWKFTRr1oxly5bh4eHBtWvXqF27ttJmxowZBAQE0LhxY2rWrIm/vz/ffvstX375JdbW1vzyyy/873//w8TEBBcXF2bPns2lS5c4cOAAderU4cqVK9y/fx+AVatWsWfPHn744QcsLCxISUkhJSWl1HGXNqbCZGdnk52drWxnZmaWOg4hhBBCVAySXFdA5ubmLF++HJVKha2tLRcuXGD58uUFkuvQ0FAuXLjAtWvXMDc3B2Djxo00b96cyMhI2rZtS0BAAJ6enowfPx6AKVOmcPr0aQICAujSpQtHjhzht99+4+DBg9SvXx+ABQsW8Oabb5YqZi8vL9555x3g0Up5SEgIX3/9NdOmTVPazJs3jx49egCPEtIFCxZw5MgROnToAEDjxo05ceIE69atw8XFheTkZBwdHWnTpg3w6GbOx5KTk7G2tuaNN95ApVJhaWlZqnifNabC+Pv74+fn90znF0IIIUTFImUhFVD79u1RqVTKdocOHUhISCAvL0+tXVxcHObm5kpiDdCsWTOMjY2Ji4tT2jg7O6v1c3Z2Vjtubm6uJNaPz1daT/apVq0abdq0Uc7x2OMkGeDKlSvcu3ePHj16oK+vr3w2btxIYmIiAB9++CFbtmyhVatWTJs2jZMnTyr9PT09iYmJwdbWFm9vbw4dOlTqmJ8lpsLMnDmTjIwM5fMsK+hCCCGEqBhk5Vq8MvT09JQ/Z2VlAbBv3z4aNGig1k5bWxuAN998k+vXr7N//34OHz5Mt27dmDBhAgEBATg5OXHt2jUOHDjAkSNHGDhwIN27d2fbtm1oaDz6nfLJOvUHDx6USUyF0dbWfupxIYQQQlQesnJdAUVERKhtnz59GmtrazQ1NdX229nZFag1vnTpEunp6TRr1kxpEx4ertYvPDxc7XhKSgqpqalq5yutJ/vk5uYSHR2NnZ1dke2bNWuGtrY2ycnJNGnSRO3z5Eq8iYkJw4cP59tvv2XFihV89dVXyjFDQ0Pee+891q9fz9atW9m+fTu3b9/GxMQEQG1OT97c+LwxCSGEEKLqkpXrCig5OZkpU6bwwQcfcPbsWVavXs3SpUsLtOvevTv29vYMHTqUFStWkJuby/jx43FxcVHKHaZOncrAgQNxdHSke/fu/PTTT+zYsYMjR44oY9jY2DB8+HCWLFlCZmYms2bNKnXMn3/+OdbW1tjZ2bF8+XL++ecfRo4cWWR7AwMDfHx8mDx5Mvn5+bzxxhtkZGQQHh6OoaEhw4cPZ86cObRu3ZrmzZuTnZ3N3r17lYR92bJlmJmZ4ejoiIaGBj/++COmpqYYGxujoaFB+/btWbhwIY0aNSItLY1PPvmk2DmUJCYhhBBCVG2SXFdAw4YN4/79+7Rr1w5NTU0mTpzI2LFjC7RTqVTs3r2bjz76iM6dO6OhoYG7uzurV69W2vTt25eVK1cSEBDAxIkTadSoEYGBgbi6ugKgoaHBzp07GTVqFO3atcPKyopVq1bh7u5eqpgXLlzIwoULiYmJoUmTJuzZs4c6deo8tc/8+fMxMTHB39+fq1evYmxsjJOTE//3f/8HgJaWFjNnziQpKQkdHR06derEli1bgEeJ8OLFi0lISEBTU5O2bduyf/9+pSTkm2++YdSoUbRu3RpbW1sWL15Mz549i51HcTEJIYQQompTPSzqAclClIGkpCQaNWrEuXPnaNWqVXmH80rIzMzEyMiIjIwMDA0NyzscIQpoPXVjeYcghBDPLHrJsBcybkm/v6XmWgghhBBCiDIiZSHiuSxYsIAFCxYUeqxTp0588cUXLzkiIcTzelGrPkIIURVIWYh4Lrdv3+b27duFHtPR0SnwyDohZSFCCCFERVTS729ZuRbPpVatWtSqVau8wxBCCCGEeCVIci1EJSI3oomyIGUhQgjx7OSGRiGEEEIIIcqIJNdVnKenJ3379i3vMMrFf+fu6urKpEmTyi0eIYQQQlR8UhYixP9vx44dVK9eXdm2srJi0qRJknALIYQQosQkuRbi/yc3ZgohhBDieUlZSBWxbds27O3t0dHRoXbt2nTv3p27d+8WaJefn4+/vz+NGjVCR0eHli1bsm3bNrU2Fy9e5M0330RfX5969erx/vvvc/PmTeW4q6srXl5eeHl5YWRkRJ06dZg9ezYlfepjWloaHh4e6Ojo0KhRIzZv3oyVlRUrVqwAHr31UaVSERMTo/RJT09HpVIRFhYGQF5eHqNGjVLmYWtry8qVK5963ifLQlxdXbl+/TqTJ09GpVKhUqm4e/cuhoaGBa7Hrl270NPT486dOyWanxBCCCEqL0muq4DU1FQGDx7MyJEjiYuLIywsjP79+xea7Pr7+7Nx40a+/PJLfv31VyZPnsz//vc/jh07BjxKYrt27YqjoyNRUVGEhIRw48YNBg4cqDZOcHAw1apV48yZM6xcuZJly5axYcOGEsXr6elJSkoKR48eZdu2baxdu5a0tLRSzTk/P5+GDRvy448/cunSJebMmcP//d//8cMPP5So/44dO2jYsCHz5s0jNTWV1NRU9PT0GDRoEIGBgWptAwMDeffddzEwMCh0rOzsbDIzM9U+QgghhKicpCykCkhNTSU3N5f+/ftjaWkJgL29fYF22dnZLFiwgCNHjtChQwcAGjduzIkTJ1i3bh0uLi6sWbMGR0dHtbcyfvPNN5ibm3P58mVsbGwAMDc3Z/ny5ahUKmxtbblw4QLLly9nzJgxT4318uXLHDhwgDNnztC2bVsAvv76a+zs7Eo15+rVq+Pn56dsN2rUiFOnTvHDDz8U+EWgMLVq1UJTUxMDAwNMTU2V/aNHj6Zjx46kpqZiZmZGWloa+/fv58iRI0WO5e/vrxaLEEIIISovWbmuAlq2bEm3bt2wt7dnwIABrF+/nn/++adAuytXrnDv3j169OiBvr6+8tm4cSOJiYkAxMbGcvToUbXjTZs2BVDaALRv3x6VSqVsd+jQgYSEBPLy8p4aa1xcHNWqVaN169bKvqZNm2JsbFzqeX/++ee0bt0aExMT9PX1+eqrr0hOTi71OE9q164dzZs3Jzg4GIBvv/0WS0tLOnfuXGSfmTNnkpGRoXxSUlKeKwYhhBBCvLpk5boK0NTU5PDhw5w8eZJDhw6xevVqZs2aRUREhFq7rKwsAPbt21fgteXa2tpKGw8PDxYtWlTgPGZmZi9oBuo0NB79TvhkWcuDBw/U2mzZsgUfHx+WLl1Khw4dMDAwYMmSJQXm/CxGjx7N559/zowZMwgMDGTEiBFqv0j8l7a2tnL9hBBCCFG5SXJdRahUKpydnXF2dmbOnDlYWlqyc+dOtTbNmjVDW1ub5ORkXFxcCh3HycmJ7du3Y2VlRbVqRf/4/DeJPX36NNbW1mhqaj41zqZNm5Kbm0t0dLRSFhIfH096errSxsTEBHhU7uLo6AigdnMjQHh4OB07dmT8+PHKvidX1ktCS0ur0JX2//3vf0ybNo1Vq1Zx6dIlhg8fXqpxhRBCCFF5SVlIFRAREcGCBQuIiooiOTmZHTt28PfffxeoYzYwMMDHx4fJkycTHBxMYmIiZ8+eZfXq1UoZxIQJE7h9+zaDBw8mMjKSxMREDh48yIgRI9QS0eTkZKZMmUJ8fDzff/89q1evZuLEicXGamtri7u7Ox988AERERFER0czevRodHR0lDY6Ojq0b9+ehQsXEhcXx7Fjx/jkk0/UxrG2tiYqKoqDBw9y+fJlZs+eTWRkZKmum5WVFb/88gt//PGH2tNQatasSf/+/Zk6dSo9e/akYcOGpRpXCCGEEJWXJNdVgKGhIb/88gu9evXCxsaGTz75hKVLl/Lmm28WaDt//nxmz56Nv78/dnZ2uLu7s2/fPho1agRA/fr1CQ8PJy8vj549e2Jvb8+kSZMwNjZWyjUAhg0bxv3792nXrh0TJkxg4sSJjB07tkTxBgYGUr9+fVxcXOjfvz9jx46lbt26am2++eYbcnNzad26NZMmTeLTTz9VO/7BBx/Qv39/3nvvPV5//XVu3bqltopdEvPmzSMpKYnXXntNWS1/bNSoUeTk5DBy5MhSjSmEEEKIyk31sKQPHxaihFxdXWnVqpXyXOqy8Kq9LXHTpk1MnjyZP//8Ey0trVL1zczMxMjIiIyMDAwNDcs0rtZTN5bpeKJqil4yrLxDEEKIV05Jv7+l5lqIUrh37x6pqaksXLiQDz74oNSJ9YsmSZEQQghRvqQsRLxUx48fV3uM338/r7rFixfTtGlTTE1NmTlzZnmHI4QQQohXjJSFiJfq/v37/PHHH0Ueb9KkyUuMpny8yLIQIYQQQrwYUhYiXkk6OjpVIoEWQgghRNUkybUQQgg1cmOsKC2530OI/0dqroUQQgghhCgjklyXAVdX11fmEXFQsnhUKhW7du16KfG8aJ6envTt2/epbV61vyMhhBBCVE6SXFdgYWFhqFQqtVeDl1RqamqhL5ERQgghhBDPTpLrcpCTk1PeIWBqaoq2tnZ5h/FUr8J1EkIIIYQoDUmuy0hubi5eXl4YGRlRp04dZs+ezeOnHFpZWTF//nyGDRuGoaGh8hrwEydO0KlTJ3R0dDA3N8fb25u7d+8qY27atIk2bdpgYGCAqakpQ4YMIS0tDYCkpCS6dOkCQM2aNVGpVHh6eip98/PzmTZtGrVq1cLU1BRfX1+1eJ8sC0lKSkKlUrFjxw66dOmCrq4uLVu25NSpU2p91q9fj7m5Obq6uvTr149ly5ZhbGxcouvj6+tLq1atWLdunTLGwIEDycjIUNo8Lu/47LPPqF+/Pra2tgBcuHCBrl27oqOjQ+3atRk7dixZWVkFzuHn54eJiQmGhoaMGzfuqcl5dnY2Pj4+NGjQAD09PV5//XXCwsKU40FBQRgbG7N3715sbW3R1dXl3Xff5d69ewQHB2NlZUXNmjXx9vYmLy+vRNdACCGEEJWfJNdlJDg4mGrVqnHmzBlWrlzJsmXL2LBhg3I8ICCAli1bcu7cOWbPnk1iYiLu7u688847nD9/nq1bt3LixAm8vLyUPg8ePGD+/PnExsaya9cukpKSlATa3Nyc7du3AxAfH09qaiorV65Ui0dPT4+IiAgWL17MvHnzOHz48FPnMGvWLHx8fIiJicHGxobBgweTm5sLQHh4OOPGjWPixInExMTQo0cPPvvss1JdoytXrvDDDz/w008/ERISwrlz5xg/frxam9DQUOLj4zl8+DB79+7l7t27uLm5UbNmTSIjI/nxxx85cuSI2nV63C8uLo6wsDC+//57duzYgZ+fX5GxeHl5cerUKbZs2cL58+cZMGAA7u7uJCQkKG3u3bvHqlWr2LJlCyEhIYSFhdGvXz/279/P/v372bRpE+vWrWPbtm1PnXd2djaZmZlqHyGEEEJUTvISmTLg6upKWloav/76KyqVCoAZM2awZ88eLl26hJWVFY6OjuzcuVPpM3r0aDQ1NVm3bp2y78SJE7i4uHD37l1q1KhR4DxRUVG0bduWO3fuoK+vT1hYGF26dOGff/5RW0F2dXUlLy+P48ePK/vatWtH165dWbhwIfBo5Xrnzp307duXpKQkGjVqxIYNGxg1ahQAly5donnz5sTFxdG0aVMGDRpEVlYWe/fuVcb83//+x969e0tU8+3r68unn37K9evXadCgAQAhISH07t2bP/74A1NTUzw9PQkJCSE5OVl5rfj69euZPn06KSkp6OnpAbB//348PDz4888/qVevHp6envz000+kpKSgq6sLwJdffsnUqVPJyMhAQ0MDV1dXWrVqxYoVK0hOTqZx48YkJydTv359Jcbu3bvTrl07FixYQFBQECNGjODKlSu89tprAIwbN45NmzZx48YN5W2S7u7uWFlZ8eWXXz517oUl+vISGfGqkkfxidKSR/GJqqCkL5GRlesy0r59eyWxBujQoQMJCQlKyUCbNm3U2sfGxhIUFKT26m83Nzfy8/O5du0aANHR0Xh4eGBhYYGBgQEuLi4AJCcnFxuPg4OD2raZmZlSUlKSPmZmZgBKn/j4eNq1a6fW/r/bxbGwsFASa3h0jfLz84mPj1f22dvbK4k1QFxcHC1btlQSawBnZ+cC/Vq2bKkk1o/HzsrKIiUlpUAcFy5cIC8vDxsbG7Xrf+zYMRITE5V2urq6SmINUK9ePaysrNRe016vXr1ir+vMmTPJyMhQPoXFJIQQQojKQV4i85I8mRwCZGVl8cEHH+Dt7V2grYWFhVIO4ebmxubNmzExMSE5ORk3N7cS3ehXvXp1tW2VSkV+fn6J+zz+RaG4PmXtv9fpRcjKykJTU5Po6Gg0NTXVjj2ZOBd2DZ/lumpra7/yN48KIYQQomxIcl1GIiIi1LZPnz6NtbV1geTtMScnJy5dulTkq8AvXLjArVu3WLhwIebm5sCjspAnPV7hfRk31Nna2hIZGam277/bxUlOTubPP/9USjFOnz6NhoaGcuNiYezs7AgKCuLu3btK4h0eHl6gX2xsLPfv30dHR0cZW19fX7l2T3J0dCQvL4+0tDQ6depUqjkIIYQQQjyNlIWUkeTkZKZMmUJ8fDzff/89q1evZuLEiUW2nz59OidPnsTLy4uYmBgSEhLYvXu3cqOehYUFWlparF69mqtXr7Jnzx7mz5+vNoalpSUqlYq9e/fy999/F/oEjbLy0UcfsX//fpYtW0ZCQgLr1q3jwIEDaqUwxalRowbDhw8nNjaW48eP4+3tzcCBAzE1NS2yz9ChQ5V+Fy9e5OjRo3z00Ue8//771KtXT2mXk5PDqFGjuHTpEvv372fu3Ll4eXmhoVHwR9zGxoahQ4cybNgwduzYwbVr1zhz5gz+/v7s27evdBdGCCGEEOIJklyXkWHDhnH//n3atWvHhAkTmDhxovLIvcI4ODhw7NgxLl++TKdOnXB0dGTOnDnKqq6JiQlBQUH8+OOPNGvWjIULFxIQEKA2RoMGDfDz82PGjBnUq1evwBM0ypKzszNffvkly5Yto2XLloSEhDB58uRCb7wsSpMmTejfvz+9evWiZ8+eODg4sHbt2qf20dXV5eDBg9y+fZu2bdvy7rvv0q1bN9asWaPWrlu3blhbW9O5c2fee+893nrrrQKPH3xSYGAgw4YN4+OPP8bW1pa+ffsSGRmJhYVFiecjhBBCCPFf8rQQ8czGjBnDb7/9pvZUkqL4+vqya9cuYmJiXnxgr7iS3m0sRHmRp4WI0pKnhYiqoKTf31JzLUosICCAHj16oKenx4EDBwgODi525VkIUfFIoiSEEM9OkmtRYmfOnGHx4sXcuXOHxo0bs2rVKkaPHg1A8+bNuX79eqH9nnyWtxBCCCFEZSZlIaJMXL9+nQcPHhR6rF69ehgYGLzkiF5dUhYihBBCVDxSFiJeKktLy/IOQQhRRqTmWpQHKUcSlYU8LUQIIYQQQogyIsm1eKF8fX1p1arVSzmXSqVi165dL+Vcj1lZWbFixYqXek4hhBBCvLokuRYvlI+PD6GhoeUdhhBCCCHESyE11+KF0tfXR19fv7zDEEIIIYR4KWTlWjyVq6sr3t7eTJs2jVq1amFqaqr25sPk5GTefvtt9PX1MTQ0ZODAgdy4cUM5/t+ykLCwMNq1a4eenh7GxsY4OzurPcJv9+7dODk5UaNGDRo3boyfnx+5ubnPFHtKSgoDBw7E2NiYWrVq8fbbb5OUlATAoUOHqFGjBunp6Wp9Jk6cSNeuXZXtEydO0KlTJ3R0dDA3N8fb25u7d+8+UzxCCCGEqPwkuRbFCg4ORk9Pj4iICBYvXsy8efM4fPgw+fn5vP3229y+fZtjx45x+PBhrl69ynvvvVfoOLm5ufTt2xcXFxfOnz/PqVOnGDt2LCqVCoDjx48zbNgwJk6cyKVLl1i3bh1BQUF89tlnpY75wYMHuLm5YWBgwPHjxwkPD0dfXx93d3dycnLo1q0bxsbGbN++XemTl5fH1q1bGTp0KACJiYm4u7vzzjvvcP78ebZu3cqJEydK/Zr57OxsMjMz1T5CCCGEqJykLEQUy8HBgblz5wJgbW3NmjVrlDrqCxcucO3aNczNzQHYuHEjzZs3JzIykrZt26qNk5mZSUZGBn369OG1114DwM7OTjnu5+fHjBkzGD58OACNGzdm/vz5TJs2TTl/SW3dupX8/Hw2bNigJO+BgYEYGxsTFhZGz549GTRoEN999x2jRo0CIDQ0lPT0dN555x0A/P39GTp0KJMmTVLmvmrVKlxcXPjiiy+oUaNGiWLx9/fHz8+vVPELIYQQomKSlWtRLAcHB7VtMzMz0tLSiIuLw9zcXEmsAZo1a4axsTFxcXEFxqlVqxaenp64ubnh4eHBypUrSU1NVY7HxsYyb948pU5bX1+fMWPGkJqayr1790oVc2xsLFeuXMHAwEAZq1atWvz7778kJiYCMHToUMLCwvjzzz8B2Lx5M71798bY2FgZIygoSC0eNzc38vPzuXbtWoljmTlzJhkZGconJSWlVHMRQgghRMUhK9eiWNWrV1fbVqlU5OfnP9NYgYGBeHt7ExISwtatW/nkk084fPgw7du3JysrCz8/P/r371+gX0lXiR/LysqidevWbN68ucAxExMTANq2bctrr73Gli1b+PDDD9m5cydBQUFqY3zwwQd4e3sXGMPCwqLEsWhra6OtrV2q+IUQQghRMUlyLZ6ZnZ0dKSkppKSkKKvXly5dIj09nWbNmhXZz9HREUdHR2bOnEmHDh347rvvaN++PU5OTsTHx9OkSZPnjs3JyYmtW7dSt27dp76idOjQoWzevJmGDRuioaFB79691ca4dOlSmcQjhBBCiKpBykLEM+vevTv29vYMHTqUs2fPcubMGYYNG4aLiwtt2rQp0P7atWvMnDmTU6dOcf36dQ4dOkRCQoJSdz1nzhw2btyIn58fv/76K3FxcWzZsoVPPvmk1LENHTqUOnXq8Pbbb3P8+HGuXbtGWFgY3t7e/P7772rtzp49y2effca7776rtsI8ffp0Tp48iZeXFzExMSQkJLB79+5S39AohBBCiKpDkmvxzFQqFbt376ZmzZp07tyZ7t2707hxY7Zu3Vpoe11dXX777TfeeecdbGxsGDt2LBMmTOCDDz4AwM3Njb1793Lo0CHatm1L+/btWb58OZaWlqWOTVdXl19++QULCwv69++PnZ0do0aN4t9//1VbyW7SpAnt2rXj/PnzylNCHnNwcODYsWNcvnyZTp064ejoyJw5c6hfv36p4xFCCCFE1aB6+PDhw/IOQoiqJDMzEyMjIzIyMp5asiJEeWk9dWN5hyCqoOglw8o7BCGeqqTf31JzLYQQQo0kOUII8eykLERUCJs3b1Z7JN6Tn+bNm5d3eEIIIYQQgKxciwrirbfe4vXXXy/02H8fFSiEEEIIUV4kuRYVgoGBAQYGBuUdhhBCCCHEU0lyLYR4ZcmNdeVDaq6FEOLZSc21EEIIIYQQZUSS61eAq6srkyZNAsDKyooVK1Y8U9/KLCgoCGNjY2Xb19eXVq1aPbVPUlISKpWKmJiYFxqbEEIIIcRjUhbyiomMjERPT6/E7Xfs2FElb+jz8fHho48+UrY9PT1JT09n165dyj5zc3NSU1OpU6dOOUQohBBCiKpIkutXjImJSana16pV6wVF8mp7/Bi+p9HU1MTU1PQlRSSEEEIIIWUhr5wny0KGDBnCe++9p3b8wYMH1KlTh40bH93o9d+yECsrKxYsWMDIkSMxMDDAwsKCr776Sm2MkydP0qpVK2rUqEGbNm3YtWtXqconfv31V/r06YOhoSEGBgZ06tSJxMREAPLz85k3bx4NGzZEW1ubVq1aERISovR9XKqxY8cOunTpgq6uLi1btuTUqVNq5wgKCsLCwgJdXV369evHrVu31I4/WRbi6+tLcHAwu3fvRqVSoVKpCAsLK7Qs5NixY7Rr1w5tbW3MzMyYMWMGubm5ynFXV1e8vb2ZNm0atWrVwtTUFF9fX+X4w4cP8fX1xcLCAm1tberXr4+3t3eJrpsQQgghKj9Jrl9hQ4cO5aeffiIrK0vZd/DgQe7du0e/fv2K7Ld06VLatGnDuXPnGD9+PB9++CHx8fHAo1d3enh4YG9vz9mzZ5k/fz7Tp08vcUx//PEHnTt3Rltbm59//pno6GhGjhypJKgrV65k6dKlBAQEcP78edzc3HjrrbdISEhQG2fWrFn4+PgQExODjY0NgwcPVsaIiIhg1KhReHl5ERMTQ5cuXfj000+LjMnHx4eBAwfi7u5OamoqqampdOzYsdDYe/XqRdu2bYmNjeWLL77g66+/LjB2cHAwenp6REREsHjxYubNm8fhw4cB2L59O8uXL2fdunUkJCSwa9cu7O3tn3rNsrOzyczMVPsIIYQQonKSspBXmJubG3p6euzcuZP3338fgO+++4633nrrqc987tWrF+PHjwdg+vTpLF++nKNHj2Jra8t3332HSqVi/fr11KhRg2bNmvHHH38wZsyYEsX0+eefY2RkxJYtW5RabxsbG+V4QEAA06dPZ9CgQQAsWrSIo0ePsmLFCj7//HOlnY+PD7179wbAz8+P5s2bc+XKFZo2bcrKlStxd3dn2rRpyvgnT55UWwF/kr6+Pjo6OmRnZz+1DGTt2rWYm5uzZs0aVCoVTZs25c8//2T69OnMmTMHDY1Hv2s6ODgwd+5cAKytrVmzZg2hoaH06NGD5ORkTE1N6d69O9WrV8fCwoJ27do99Zr5+/vj5+f31DZCCCGEqBxk5foVVq1aNQYOHMjmzZsBuHv3Lrt372bo0KFP7efg4KD8WaVSYWpqSlpaGgDx8fE4ODhQo0YNpU1xyeGTYmJi6NSpU6E3UWZmZvLnn3/i7Oystt/Z2Zm4uLgiYzQzMwNQYoyLiyvwNsYOHTqUOMaixMXF0aFDB1QqlVpsWVlZ/P7774XG9ji+x7ENGDCA+/fv07hxY8aMGcPOnTvVykoKM3PmTDIyMpRPSkrKc89FCCGEEK8mSa5fcUOHDiU0NJS0tDR27dqFjo4O7u7uT+3z38RXpVKRn59fJvHo6OiUyThPxvg42S2rGJ/X066fubk58fHxrF27Fh0dHcaPH0/nzp158OBBkeNpa2tjaGio9hFCCCFE5STJ9SuuY8eOmJubs3XrVjZv3syAAQOe69F7tra2XLhwgezsbGVfZGRkifs7ODhw/PjxQpNJQ0ND6tevT3h4uNr+8PBwmjVrVuJz2NnZERERobbv9OnTT+2jpaVFXl5eseOeOnWKhw8fqsVmYGBAw4YNSxyfjo4OHh4erFq1irCwME6dOsWFCxdK3F8IIYQQlZck1xXAkCFD+PLLLzl8+HCxJSElGSs/P5+xY8cSFxfHwYMHCQgIAFArlyiKl5cXmZmZDBo0iKioKBISEti0aZNyw+TUqVNZtGgRW7duJT4+nhkzZhATE8PEiRNLHKO3tzchISEEBASQkJDAmjVriqy3fszKyorz588THx/PzZs3C03+x48fT0pKCh999BG//fYbu3fvZu7cuUyZMkWpty5OUFAQX3/9NRcvXuTq1at8++236OjoYGlpWeL5CSGEEKLykuS6Ahg6dCiXLl2iQYMGBeqZS8vQ0JCffvqJmJgYWrVqxaxZs5gzZw6AWh12UWrXrs3PP/9MVlYWLi4utG7dmvXr1yur6d7e3kyZMoWPP/4Ye3t7QkJC2LNnD9bW1iWOsX379qxfv56VK1fSsmVLDh06xCeffPLUPmPGjMHW1pY2bdpgYmJSYPUcoEGDBuzfv58zZ87QsmVLxo0bx6hRo4od+0nGxsasX78eZ2dnHBwcOHLkCD/99BO1a9cu8RhCCCGEqLxUD5/8N3JRJW3evJkRI0aQkZFRZjXVomiZmZkYGRmRkZEh9dfFaD11Y3mHUCVFLxlW3iEIIcQrp6Tf3/Iovipo48aNNG7cmAYNGhAbG8v06dMZOHCgJNbilSNJnhBCiIpGykKqoL/++ov//e9/2NnZMXnyZAYMGKC8xXHcuHHKq8X/+xk3blw5Ry6EEEII8WqTshChJi0trcg3CBoaGlK3bt2XHFHlI2UhQgghRMUjZSHimdStW1cSaPFSSV31q0fKcYQQ4tlJWYgQQgghhBBlRJJrUSX89ddf9OjRAz09PYyNjcs7HCGEEEJUUpJciyph+fLlpKamEhMTw+XLl0vUx9fXl1atWr3YwIQQQghRqUjNtagSEhMTad26daleZiOEEEIIUVqyci0qjG3btmFvb4+Ojg61a9eme/fu3L17l8jISHr06EGdOnUwMjLCxcWFs2fPKv2srKzYvn07GzduRKVS4enpCUB6ejqjR4/GxMQEQ0NDunbtSmxsLPDoNed+fn7ExsaiUqlQqVQEBQUxcuRI+vTpoxbXgwcPqFu3Ll9//fVLuxZCCCGEeDXJyrWoEFJTUxk8eDCLFy+mX79+3Llzh+PHj/Pw4UPu3LnD8OHDWb16NQ8fPmTp0qX06tWLhIQEDAwMiIyMZNiwYRgaGrJy5UrlZTkDBgxAR0eHAwcOYGRkxLp16+jWrRuXL1/mvffe4+LFi4SEhHDkyBEAjIyMsLGxoXPnzqSmpmJmZgbA3r17uXfvHu+9916hsWdnZ5Odna1sF/WoQyGEEEJUfJJciwohNTWV3Nxc+vfvj6WlJQD29vYAdO3aVa3tV199hbGxMceOHaNPnz6YmJigra2Njo4OpqamAJw4cYIzZ86QlpaGtrY2AAEBAezatYtt27YxduxY9PX1qVatmtIHoGPHjtja2rJp0yamTZsGQGBgIAMGDEBfX7/Q2P39/fHz8yvbCyKEEEKIV5KUhYgKoWXLlnTr1g17e3sGDBjA+vXr+eeffwC4ceMGY8aMwdraGiMjIwwNDcnKyiI5ObnI8WJjY8nKyqJ27dpqb6G8du0aiYmJT41l9OjRBAYGKuc+cOAAI0eOLLL9zJkzycjIUD4pKSnPcAWEEEIIURHIyrWoEDQ1NTl8+DAnT57k0KFDrF69mlmzZhEREcGHH37IrVu3WLlyJZaWlmhra9OhQwdycnKKHC8rKwszMzPCwsIKHCvuUX3Dhg1jxowZnDp1ipMnT9KoUSM6depUZHttbW1ldVwIIYQQlZsk16LCUKlUODs74+zszJw5c7C0tGTnzp2Eh4ezdu1aevXqBUBKSgo3b9586lhOTk789ddfVKtWDSsrq0LbaGlpkZeXV2B/7dq16du3L4GBgZw6dYoRI0Y899yEEEIIUTlIci0qhIiICEJDQ+nZsyd169YlIiKCv//+Gzs7O6ytrdm0aRNt2rQhMzOTqVOnKjctFqV79+506NCBvn37snjxYmxsbPjzzz/Zt28f/fr1o02bNlhZWXHt2jViYmJo2LAhBgYGygr06NGj6dOnD3l5eQwfPvxlXAIhhBBCVABScy0qBENDQ3755Rd69eqFjY0Nn3zyCUuXLuXNN9/k66+/5p9//sHJyYn3338fb29v6tat+9TxVCoV+/fvp3PnzowYMQIbGxsGDRrE9evXqVevHgDvvPMO7u7udOnSBRMTE77//nulf/fu3TEzM8PNzY369eu/0LkLIYQQouJQPXz48GF5ByFERZOVlUWDBg0IDAykf//+peqbmZmJkZERGRkZGBoavqAIK47WUzeWdwjiP6KXDCvvEIQQ4pVT0u9vKQsRohTy8/O5efMmS5cuxdjYmLfeequ8QxJCCCHEK0SSayFKITk5mUaNGtGwYUOCgoKoVk3+E3peskoqhBCiMpHMQIhSsLKyQiqphBBCCFEUuaFRCCGEEEKIMiIr10KIciU3NL56pFRHCCGenaxcCyGEEEIIUUYkua7iXF1dmTRp0gsZOykpCZVKRUxMzAsZ/2WxsrJixYoV5R2GEEIIISoAKQsRL4y5uTmpqanUqVOnvEMRQgghhHgpJLkWL4ympiampqblHYYQQgghxEsjZSGC3NxcvLy8MDIyok6dOsyePVt53NymTZto06YNBgYGmJqaMmTIENLS0pS+//zzD0OHDsXExAQdHR2sra0JDAwECi8L+fXXX+nTpw+GhoYYGBjQqVMnEhMTi43R09OTvn37EhAQgJmZGbVr12bChAk8ePBAaZOdnY2Pjw8NGjRAT0+P119/nbCwMLVxTpw4QadOndDR0cHc3Bxvb2/u3r2rHE9LS8PDwwMdHR0aNWrE5s2b1fo/fPgQX19fLCws0NbWpn79+nh7e5f4WgshhBCicpPkWhAcHEy1atU4c+YMK1euZNmyZWzYsAGABw8eMH/+fGJjY9m1axdJSUl4enoqfWfPns2lS5c4cOAAcXFxfPHFF0WWgfzxxx907twZbW1tfv75Z6Kjoxk5ciS5ubklivPo0aMkJiZy9OhRgoODCQoKIigoSDnu5eXFqVOn2LJlC+fPn2fAgAG4u7uTkJAAQGJiIu7u7rzzzjucP3+erVu3cuLECby8vJQxPD09SUlJ4ejRo2zbto21a9eq/TKxfft2li9fzrp160hISGDXrl3Y29s/Ne7s7GwyMzPVPkIIIYSonFQP5Y0YVZqrqytpaWn8+uuvqFQqAGbMmMGePXu4dOlSgfZRUVG0bduWO3fuoK+vz1tvvUWdOnX45ptvCrRNSkqiUaNGnDt3jlatWvF///d/bNmyhfj4eKpXr16qOD09PQkLCyMxMRFNTU0ABg4ciIaGBlu2bCE5OZnGjRuTnJxM/fr1lX7du3enXbt2LFiwgNGjR6Opqcm6deuU4ydOnMDFxYW7d++SnJyMra0tZ86coW3btgD89ttv2NnZsXz5ciZNmsSyZctYt24dFy9eLPEcfH198fPzK7A/IyMDQ0PDUl2HykgexffqkUfxCSFEQZmZmRgZGRX7/S0r14L27dsriTVAhw4dSEhIIC8vj+joaDw8PLCwsMDAwAAXFxfg0WvAAT788EO2bNlCq1atmDZtGidPnizyPDExMXTq1KnUifVjzZs3VxJrADMzM2VV+cKFC+Tl5WFjY4O+vr7yOXbsmFJ2EhsbS1BQkNpxNzc38vPzuXbtGnFxcVSrVo3WrVsr52jatCnGxsbK9oABA7h//z6NGzdmzJgx7Ny5s9iV95kzZ5KRkaF8UlJSnmn+QgghhHj1yQ2Nokj//vsvbm5uuLm5sXnzZkxMTEhOTsbNzY2cnBwA3nzzTa5fv87+/fs5fPgw3bp1Y8KECQQEBBQYT0dH57ni+W9SrlKpyM/PByArKwtNTU2io6PVEnAAfX19pc0HH3xQaI20hYUFly9fLjYGc3Nz4uPjOXLkCIcPH2b8+PEsWbKEY8eOFflLg7a2Ntra2iWaoxBCCCEqNkmuBREREWrbp0+fxtramt9++41bt26xcOFCzM3NgUdlIf9lYmLC8OHDGT58OJ06dWLq1KmFJtcODg4EBwfz4MGDZ169LoqjoyN5eXmkpaXRqVOnQts4OTlx6dIlmjRpUujxpk2bkpubS3R0tFIWEh8fT3p6ulo7HR0dPDw88PDwYMKECTRt2pQLFy7g5ORUpnMSQgghRMUjZSGC5ORkpkyZQnx8PN9//z2rV69m4sSJWFhYoKWlxerVq7l69Sp79uxh/vz5an3nzJnD7t27uXLlCr/++it79+7Fzs6u0PN4eXmRmZnJoEGDiIqKIiEhgU2bNhEfH//cc7CxsWHo0KEMGzaMHTt2cO3aNc6cOYO/vz/79u0DYPr06Zw8eRIvLy9iYmJISEhg9+7dyg2Ntra2uLu788EHHxAREUF0dDSjR49WW3EPCgri66+/5uLFi1y9epVvv/0WHR0dLC0tn3sOQgghhKj4JLkWDBs2jPv379OuXTsmTJjAxIkTGTt2LCYmJgQFBfHjjz/SrFkzFi5cWGBFWktLi5kzZ+Lg4EDnzp3R1NRky5YthZ6ndu3a/Pzzz2RlZeHi4kLr1q1Zv359ma1iBwYGMmzYMD7++GNsbW3p27cvkZGRWFhYAI9Wzo8dO8bly5fp1KkTjo6OzJkzR+0GyMDAQOrXr4+Liwv9+/dn7Nix1K1bVzlubGzM+vXrcXZ2xsHBgSNHjvDTTz9Ru3btMpmDEEIIISo2eVqIEC9ZSe82rirkaSGvHnlaiBBCFFTS72+puRZClCtJ5IQQQlQmUhYiXglPPh7vv5/jx4+Xd3hCCCGEECUiK9filfDkK9L/q0GDBi8vECGEEEKI5yDJtXglFPV4PCGEEEKIikSSayFEuZGbGV9NUgcvhBDPTmquhRBCCCGEKCOSXD8nKysrVqxY8cLPo1Kp2LVr1ws/z/PatWsXTZo0QVNTk0mTJpV3OEIIIYQQL5WUhVQQqamp1KxZs7zDKNYHH3zAiBEj8Pb2xsDAoLzDEUIIIYR4qSS5riBMTU3LO4SnevDgAdnZ2aSlpeHm5qb21sPSysnJQUtLqwyjE0IIIYR4OSpVWUhISAhvvPEGxsbG1K5dmz59+pCYmKgc//333xk8eDC1atVCT0+PNm3aEBERAUBiYiJvv/029erVQ19fn7Zt23LkyBG18dPS0vDw8EBHR4dGjRqxefPmAjGkp6czevRoTExMMDQ0pGvXrsTGxirHfX19adWqFd988w0WFhbo6+szfvx48vLyWLx4MaamptStW5fPPvtMbdz/loU8bS5P8/j869atw9zcHF1dXQYOHEhGRoZauw0bNmBnZ0eNGjVo2rQpa9euVY4lJSWhUqnYunUrLi4u1KhRg82bNysr1V27dkWlUhEWFgbA9u3bad68Odra2lhZWbF06VK1c1lZWTF//nyGDRuGoaEhY8eOJSgoCGNjY/bu3YutrS26urq8++673Lt3j+DgYKysrKhZsybe3t7k5eUpY23atIk2bdpgYGCAqakpQ4YMIS0tTTkeFhaGSqUiNDSUNm3aoKurS8eOHYmPj1eL6aeffqJt27bUqFGDOnXq0K9fP+VYdnY2Pj4+NGjQAD09PV5//XVlrkIIIYSo2ipVcn337l2mTJlCVFQUoaGhaGho0K9fP/Lz88nKysLFxYU//viDPXv2EBsby7Rp08jPzwcgKyuLXr16ERoayrlz53B3d8fDw4Pk5GRlfE9PT1JSUjh69Cjbtm1j7dq1aokbwIABA0hLS+PAgQNER0fj5OREt27duH37ttImMTGRAwcOEBISwvfff8/XX39N7969+f333zl27BiLFi3ik08+KTJZLm4uxbly5Qo//PADP/30EyEhIZw7d47x48crxzdv3sycOXP47LPPiIuLY8GCBcyePZvg4GC1cWbMmMHEiROJi4ujS5cuSoK6fft2UlNT6dixI9HR0QwcOJBBgwZx4cIFfH19mT17NkFBQWpjBQQE0LJlS86dO8fs2bMBuHfvHqtWrWLLli2EhIQQFhZGv3792L9/P/v372fTpk2sW7eObdu2KeM8ePCA+fPnExsby65du0hKSsLT07PANZg1axZLly4lKiqKatWqMXLkSOXYvn376NevH7169eLcuXOEhobSrl075biXlxenTp1iy5YtnD9/ngEDBuDu7k5CQkKh1zs7O5vMzEy1jxBCCCEqJ9XDhw8flncQL8rNmzcxMTHhwoULnDx5Eh8fH5KSkqhVq1aJ+rdo0YJx48bh5eXF5cuXsbW15cyZM7Rt2xaA3377DTs7O5YvX86kSZM4ceIEvXv3Ji0tDW1tbWWcJk2aMG3aNMaOHYuvry9Llizhr7/+UlZ63d3diY+PJzExEQ2NR7/vNG3aFE9PT2bMmAE8WrneuXMnffv25auvvir1XB7z9fXl008/5fr168rLWUJCQujduzd//PEHpqamNGnShPnz5zN48GCl36effsr+/fs5efIkSUlJNGrUiBUrVjBx4kSlTXp6OjVr1uTo0aO4uroCMHToUP7++28OHTqktJs2bRr79u3j119/BR6tXDs6OrJz506lTVBQECNGjODKlSu89tprAIwbN45NmzZx48YN9PX1lWtnZWXFl19+Weh8o6KiaNu2LXfu3EFfX5+wsDC6dOnCkSNH6NatGwD79++nd+/e3L9/nxo1atCxY0caN27Mt99+W2C85ORkGjduTHJyslrpS/fu3WnXrh0LFiwo9Jr7+fkV2J+RkYGhoWGhcVcV8ii+V5M8ik8IIQrKzMzEyMio2O/vSrVynZCQwODBg2ncuDGGhoZYWVkBjxKimJgYHB0di0xGs7Ky8PHxwc7ODmNjY/T19YmLi1NWruPi4qhWrRqtW7dW+jRt2hRjY2NlOzY2lqysLGrXrq32+u5r166pladYWVmp3exXr149mjVrpiTWj/f9d1X8seLmUhwLCwu1tx526NCB/Px84uPjuXv3LomJiYwaNUptDp9++qnaHADatGlT7Lni4uJwdnZW2+fs7ExCQoJaOUdhY+nq6iqJNTy6JlZWVkpi/Xjfk9cpOjoaDw8PLCwsMDAwwMXFBUDtXyAAHBwclD+bmZkBKOPExMQoifd/Xbhwgby8PGxsbNSuz7Fjxwpcn8dmzpxJRkaG8klJSSm0nRBCCCEqvkp1Q6OHhweWlpasX7+e+vXrk5+fT4sWLcjJyUFHR+epfX18fDh8+DABAQE0adIEHR0d3n33XXJyckp8/qysLMzMzAqtv30yCa9evbraMZVKVei+oso8ipvL88jKygJg/fr1vP7662rHNDU11bb19PTK7LyFjVXa63T37l3c3Nxwc3Nj8+bNmJiYkJycjJubW4G/xyfHUalUAMo4T7u+WVlZaGpqEh0dXeB6PJn0P0lbW1vtXzKEEEIIUXlVmuT61q1bxMfHs379ejp16gTAiRMnlOMODg5s2LCB27dvF7riGx4ejqenp3LjWlZWFklJScrxpk2bkpubS3R0tFIWEh8fT3p6utLGycmJv/76i2rVqimr5i9CcXMpTnJyMn/++adS1nD69Gk0NDSwtbWlXr161K9fn6tXrzJ06NDnjtXOzo7w8HC1feHh4djY2BRITp/Xb7/9xq1bt1i4cCHm5ubAo7KQ0nJwcCA0NJQRI0YUOObo6EheXh5paWnKz5kQQgghxGOVpiykZs2a1K5dm6+++oorV67w888/M2XKFOX44MGDMTU1pW/fvoSHh3P16lW2b9/OqVOnALC2tmbHjh3ExMQQGxvLkCFD1FaObW1tcXd354MPPiAiIoLo6GhGjx6ttsrZvXt3OnToQN++fTl06BBJSUmcPHmSWbNmPVOSV5Ti5lKcGjVqMHz4cGJjYzl+/Dje3t4MHDhQedyfn58f/v7+rFq1isuXL3PhwgUCAwNZtmxZqWP9+OOPCQ0NZf78+Vy+fJng4GDWrFmDj49PqccqjoWFBVpaWqxevZqrV6+yZ88e5s+fX+px5s6dy/fff8/cuXOJi4vjwoULLFq0CAAbGxuGDh3KsGHD2LFjB9euXePMmTP4+/uzb9++sp6SEEIIISqYSpNca2hosGXLFqKjo2nRogWTJ09myZIlynEtLS0OHTpE3bp16dWrF/b29ixcuFBZPV22bBk1a9akY8eOeHh44ObmhpOTk9o5AgMDqV+/Pi4uLvTv35+xY8dSt25d5bhKpWL//v107tyZESNGYGNjw6BBg7h+/Tr16tUrs7kWN5fiNGnShP79+9OrVy969uyJg4OD2qP2Ro8ezYYNGwgMDMTe3h4XFxeCgoJo1KhRqWN1cnLihx9+YMuWLbRo0YI5c+Ywb968Qp/g8bxMTEwICgrixx9/pFmzZixcuJCAgIBSj+Pq6sqPP/7Inj17aNWqFV27duXMmTPK8cDAQIYNG8bHH3+Mra0tffv2JTIyEgsLi7KcjhBCCCEqoEr9tBBRkK+vL7t27SImJqa8Q6mySnq3cVUgTwt5NcnTQoQQoqCSfn9XmpprIUTFI0mcEEKIykaS60qmefPmXL9+vdBj69ate8nRCCGEEEJULVIWUslcv36dBw8eFHqsXr16as/XFuVDykKEEEKIikfKQqooS0vL8g5BCFHBSS28eF5S8iWqskrztBAhhBBCCCHKmyTX4pURFBSk9ibL5xEWFoZKpVJ7yc+L8LLOI4QQQoiKQZJr8Vw8PT3p27dveYchhBBCCPFKkORaCCGEEEKIMiLJtSiRbdu2YW9vj46ODrVr16Z79+5MnTqV4OBgdu/ejUqlQqVSERYWVmipRExMDCqViqSkJGVfUFAQFhYW6Orq0q9fP27duqUcS0pKQkNDo8Br41esWIGlpaXaq+lLavv27TRv3hxtbW2srKxYunSp2vFNmzbRpk0bDAwMMDU1ZciQIaSlpam12b9/PzY2Nujo6NClSxe1+QghhBBCSHItipWamsrgwYMZOXIkcXFxhIWF0b9/f+bOncvAgQNxd3cnNTWV1NRUOnbsWKIxIyIiGDVqFF5eXsTExNClSxc+/fRT5biVlRXdu3cnMDBQrV9gYCCenp5oaJTuRzc6OpqBAwcyaNAgLly4gK+vL7NnzyYoKEhp8+DBA+bPn09sbCy7du0iKSlJ7TXtKSkp9O/fHw8PD2JiYhg9ejQzZswo9tzZ2dlkZmaqfYQQQghROcmj+ESxUlNTyc3NpX///sqj/uzt7QHQ0dEhOzsbU1PTUo25cuVK3N3dmTZtGgA2NjacPHmSkJAQpc3o0aMZN24cy5YtQ1tbm7Nnz3LhwgV2795d6jksW7aMbt26MXv2bOV8ly5dYsmSJUoCPXLkSKV948aNWbVqFW3btiUrKwt9fX2++OILXnvtNWXF29bWlgsXLrBo0aKnntvf3x8/P79SxyyEEEKIikdWrkWxWrZsSbdu3bC3t2fAgAGsX7+ef/7557nGjIuL4/XXX1fb16FDB7Xtvn37oqmpyc6dO4FHZSRdunTBysrqmc7n7Oysts/Z2ZmEhATy8vKAR6vbHh4eWFhYYGBggIuLCwDJyckljrkwM2fOJCMjQ/mkpKSUOn4hhBBCVAySXItiaWpqcvjwYQ4cOECzZs1YvXo1tra2XLt2rdD2j0s2nnz5Z1FvjXwaLS0thg0bRmBgIDk5OXz33Xdqq8tl6e7du7i5uWFoaMjmzZuJjIxUkvqcnJznGltbWxtDQ0O1jxBCCCEqJ0muRYmoVCqcnZ3x8/Pj3LlzaGlpsXPnTrS0tJSV38dMTEyAR+Ukj8XExKi1sbOzIyIiQm3f6dOnC5x39OjRHDlyhLVr1yqlKc/Czs6O8PBwtX3h4eHY2NigqanJb7/9xq1bt1i4cCGdOnWiadOmBW5mtLOz48yZM8XGLIQQQoiqS5JrUayIiAgWLFhAVFQUycnJ7Nixg7///hs7OzusrKw4f/488fHx3Lx5kwcPHtCkSRPMzc3x9fUlISGBffv2FXgyh7e3NyEhIQQEBJCQkMCaNWvU6q0fs7Ozo3379kyfPp3Bgwejo6PzTHP4+OOPCQ0NZf78+Vy+fJng4GDWrFmDj48PABYWFmhpabF69WquXr3Knj17mD9/vtoY48aNIyEhgalTpxIfH893332ndkOkEEIIIYQk16JYhoaG/PLLL/Tq1QsbGxs++eQTli5dyptvvsmYMWOwtbWlTZs2mJiYEB4eTvXq1fn+++/57bffcHBwYNGiRWpPAgFo374969evZ+XKlbRs2ZJDhw7xySefFHr+UaNGkZOT81wlIU5OTvzwww9s2bKFFi1aMGfOHObNm6fczGhiYkJQUBA//vgjzZo1Y+HChQQEBKiNYWFhwfbt29m1axctW7bkyy+/ZMGCBc8ckxBCCCEqH9XDJwtjhXgFzZ8/nx9//JHz58+XdyhlIjMzEyMjIzIyMqT+WrySWk/dWN4hiAouesmw8g5BiDJX0u9veRSfeGVlZWWRlJTEmjVrCqx8CyFeHEmMhBDi2UlZiHhleXl50bp1a1xdXQuUhIwbNw59ff1CP+PGjSuniIUQQghR1UlZiKiQ0tLSinzToaGhIXXr1n3JEZWclIUIIYQQFY+UhYhKrW7duq90Ai2EEEKIqkmSayHESyU3y736pOZaCCGendRcCyGEEEIIUUZe+eTa19eXVq1alXcYL0xSUhIqlarAGwwrirL6+3nZf89hYWGoVCrS09NfmZiEEEIIUfGVKrl2dXVl0qRJLyiUiiMoKAhjY+PyDuOpVCoVu3btKu8wClVYbD4+PoSGhpZPQEV4FWMSQgghxKutStZcP3z4kLy8PKpVq5LTL5GcnBy0tLRe2vkeP0bvVfIqxiSEEEKIV1uJV649PT05duwYK1euRKVSoVKpSEpK4uLFi7z55pvo6+tTr1493n//fW7evKn0CwkJ4Y033sDY2JjatWvTp08fEhMT1cb+/fffGTx4MLVq1UJPT482bdoQERGh1mbTpk1YWVlhZGTEoEGDuHPnjnIsPz8ff39/GjVqhI6ODi1btmTbtm3K8cclAAcOHKB169Zoa2tz4sSJp843NjaWLl26YGBggKGhIa1btyYqKoqwsDBGjBhBRkaGch18fX2BwldkjY2NCQoKUrbPnDmDo6MjNWrUoE2bNpw7d67AuYu7pq6urnh7ezNt2jRq1aqFqampEgOAlZUVAP369UOlUinbT/O4BGLDhg00atSIGjVqAJCens7o0aMxMTHB0NCQrl27EhsbW+Q4kZGR9OjRgzp16mBkZISLiwtnz54tNrb/lmDk5+czb948GjZsiLa2Nq1atSIkJEQ5/ricZseOHXTp0gVdXV1atmzJqVOnlDbXr1/Hw8ODmjVroqenR/Pmzdm/f79avNHR0bRp0wZdXV06duxIfHx8gWvymKenJ3379sXPz0+5HuPGjSMnJ6fY6yuEEEKIqqHEyfXKlSvp0KEDY8aMITU1ldTUVAwMDOjatSuOjo5ERUUREhLCjRs3GDhwoNLv7t27TJkyhaioKEJDQ9HQ0KBfv37k5+cDj97C5+Liwh9//MGePXuIjY1l2rRpynGAxMREdu3axd69e9m7dy/Hjh1j4cKFynF/f382btzIl19+ya+//srkyZP53//+x7Fjx9TmMGPGDBYuXEhcXBwODg5Pne/QoUNp2LAhkZGRREdHM2PGDKpXr07Hjh1ZsWIFhoaGynXw8fEp0TXMysqiT58+NGvWjOjoaHx9fQv0TU9PL/aaAgQHB6Onp0dERASLFy9m3rx5HD58GHiU4AIEBgaSmpqqbBfnypUrbN++nR07dig14AMGDCAtLY0DBw4QHR2Nk5MT3bp14/bt24WOcefOHYYPH86JEyc4ffo01tbW9OrVS/llqKSxrVy5kqVLlxIQEMD58+dxc3PjrbfeIiEhQa3drFmz8PHxISYmBhsbGwYPHkxubi4AEyZMIDs7m19++YULFy6waNGiAivRs2bNYunSpURFRVGtWrUCL6v5r9DQUOLi4ggLC+P7779nx44d+Pn5PbVPdnY2mZmZah8hhBBCVE4lroswMjJCS0sLXV1dTE1NAfj0009xdHRkwYIFSrtvvvkGc3NzLl++jI2NDe+8847aON988w0mJiZcunSJFi1a8N133/H3338TGRlJrVq1AGjSpIlan/z8fIKCgjAwMADg/fffJzQ0lM8++4zs7GwWLFjAkSNH6NChAwCNGzfmxIkTrFu3DhcXF2WcefPm0aNHjxLNNzk5malTp9K0aVMArK2t1a6FSqVSrkNJfffdd+Tn5/P1119To0YNmjdvzu+//86HH36otFmzZk2x1xTAwcGBuXPnKrGtWbOG0NBQevTogYmJCfBo1bw0Mebk5LBx40al/4kTJzhz5gxpaWloa2sDEBAQwK5du9i2bRtjx44tMEbXrl3Vtr/66iuMjY05duwYffr0KXFsAQEBTJ8+nUGDBgGwaNEijh49yooVK/j888+Vdj4+PvTu3RsAPz8/mjdvzpUrV2jatCnJycm888472NvbA49+Lv7rs88+U35GZsyYQe/evfn333+Vlfv/0tLS4ptvvkFXV5fmzZszb948pk6dyvz589HQKPx3VX9//2ITcCGEEEJUDs/1tJDY2FiOHj2q9urpx8no49KPhIQEBg8eTOPGjTE0NFTKAJKTkwGIiYnB0dFRSawLY2VlpSTWAGZmZqSlpQGPVlvv3btHjx491OLYuHFjgfKTNm3alHhuU6ZMYfTo0XTv3p2FCxcWGOtZPF4xfzJxe/wLwWMluaZAgZX3J6/Js7K0tFSS38exZGVlUbt2bbV4rl27VuT1uHHjBmPGjMHa2hojIyMMDQ3JyspS/r5LIjMzkz///BNnZ2e1/c7OzsTFxante/I6mJmZASjXwdvbm08//RRnZ2fmzp3L+fPnC5zraf0L07JlS3R1dZXtDh06kJWVRUpKSpF9Zs6cSUZGhvJ5WlshhBBCVGzPdUdfVlYWHh4eLFq0qMCxx4mKh4cHlpaWrF+/nvr165Ofn0+LFi2UOlUdHZ1iz1O9enW1bZVKpVZWArBv3z4aNGig1u7xautjenp6JZzZo3rbIUOGsG/fPg4cOMDcuXPZsmUL/fr1K7KPSqXiv2+Tf/DgQYnPCSW7pvD0a/Ks/nt9srKyMDMzIywsrEDbop6WMnz4cG7dusXKlSuxtLREW1ubDh06vLC65Cevg0qlAlCuw+jRo3Fzc2Pfvn0cOnQIf39/li5dykcffVSi/mVFW1u7wM+iEEIIISqnUiXXWlpa5OXlKdtOTk5s374dKyurQp+8cevWLeLj41m/fj2dOnUCKHAjoYODAxs2bOD27dtPXb0uSrNmzdDW1iY5OVmtBKQs2NjYYGNjw+TJkxk8eDCBgYH069evwHV4zMTEhNTUVGU7ISGBe/fuKdt2dnZs2rRJrezg9OnTamMUd01Lqnr16oXGWBpOTk789ddfVKtWrUQ3RQKEh4ezdu1aevXqBUBKSorazZglic3Q0JD69esTHh6u9ncaHh5Ou3btSjUHc3Nzxo0bx7hx45g5cybr169XS65LKzY2lvv37yu/FJ4+fRp9fX3Mzc2feUwhhBBCVB6lKguxsrIiIiKCpKQkbt68yYQJE7h9+zaDBw8mMjKSxMREDh48yIgRI8jLy6NmzZrUrl2br776iitXrvDzzz8zZcoUtTEHDx6Mqakpffv2JTw8nKtXr7J9+3a1pz48jYGBAT4+PkyePJng4GASExM5e/Ysq1evJjg4uDTTU9y/fx8vLy/CwsK4fv064eHhREZGYmdnp1yHrKwsQkNDuXnzppJAd+3alTVr1nDu3DmioqIYN26c2srokCFDUKlUjBkzhkuXLrF//34CAgLUzl3cNS0pKysrQkND+euvv/jnn3+e6Tp0796dDh060LdvXw4dOkRSUhInT55k1qxZREVFFdrH2tqaTZs2ERcXR0REBEOHDi3wrxMliW3q1KksWrSIrVu3Eh8fz4wZM4iJiWHixIkljn/SpEkcPHiQa9eucfbsWY4ePar8HT6rnJwcRo0apfz9zZ07Fy8vryLrrYUQQghRtZQqI/Dx8UFTU5NmzZphYmJCTk4O4eHh5OXl0bNnT+zt7Zk0aRLGxsZoaGigoaHBli1biI6OpkWLFkyePJklS5aojamlpcWhQ4eoW7cuvXr1wt7enoULF6KpqVniuObPn8/s2bPx9/fHzs4Od3d39u3bR6NGjUozPYWmpia3bt1i2LBh2NjYMHDgQN58803lprSOHTsybtw43nvvPUxMTFi8eDEAS5cuxdzcnE6dOjFkyBB8fHzU6nP19fX56aefuHDhAo6OjsyaNatA+cfjFduirmlJLV26lMOHD2Nubo6jo+MzXQeVSsX+/fvp3LkzI0aMwMbGhkGDBnH9+nXq1atXaJ+vv/6af/75BycnJ95//328vb2pW7duqWPz9vZmypQpfPzxx9jb2xMSEsKePXvUbiwtTl5eHhMmTFB+JmxsbFi7dm3JL0AhunXrhrW1NZ07d+a9997jrbfeUnsMohBCCCGqNtXD/xYJCyEK5enpSXp6+nO/+TIzMxMjIyMyMjIwNDQsm+AqkNZTN5Z3CKIY0UuGlXcIQgjxyinp97e8olAI8VJJ4iaEEKIyq7KFos2bN1d7vNyTn82bN5d3eGWuqs1XCCGEEKI8VNmykOvXrxf5mLx69eqpPVe7Mqhq832VVfWyECGEEKIikrKQYlhaWpZ3CC9VVZuvEOLZSV28EI9IGZt4FlW2LEQIIYQQQoiyVqmS64cPHzJ27Fhq1aqFSqUiJiamvEMSQgghhBBVSKVKrkNCQggKCmLv3r2kpqbSokWLYvuoVKrnfrSaEEIIIYQQUMlqrhMTEzEzM6Njx44v/dw5OTloaWm99PM+zYuM6cGDB2pvn6wMHj58SF5e3nO9dl4IIYQQVVulWbn29PTko48+Ijk5GZVKhZWVFVZWVqxYsUKtXatWrZQ36llZWQHQr18/pc/jsfr27avWb9KkSbi6uirbrq6ueHl5MWnSJOrUqYObmxsAFy9e5M0330RfX5969erx/vvvc/PmzRLNIT8/n8WLF9OkSRO0tbWxsLDgs88+U45Pnz4dGxsbdHV1ady4MbNnz1Z7Aoivry+tWrViw4YNNGrUiBo1agCQnp7O6NGjMTExwdDQkK5duxIbG6t27t27d+Pk5ESNGjVo3Lgxfn5+5ObmKsdVKhVffPEFb731Fnp6empxFeXXX3+lT58+GBoaYmBgQKdOnUhMTFTmOm/ePBo2bIi2tjatWrUiJCRE6ZuUlIRKpWLHjh106dIFXV1dWrZsyalTp9TOER4ejqurK7q6utSsWRM3Nzfller5+fn4+/vTqFEjdHR0aNmyJdu2bVP6hoWFoVKpOHDgAK1bt0ZbW5sTJ07g6uqKt7c306ZNo1atWpiamqq9hfHhw4f4+vpiYWGBtrY29evXx9vbu9jrIYQQQojKr9Ik1ytXrlSStdTUVCIjI4vt87hNYGBgifs8KTg4GC0tLcLDw/nyyy9JT0+na9euODo6EhUVRUhICDdu3GDgwIElGm/mzJksXLiQ2bNnc+nSJb777ju114wbGBgQFBTEpUuXWLlyJevXr2f58uVqY1y5coXt27ezY8cOpeZ8wIABpKWlceDAAaKjo3FycqJbt27cvn0bgOPHjzNs2DAmTpzIpUuXWLduHUFBQQUSaF9fX/r168eFCxcYOXLkU+fyxx9/0LlzZ7S1tfn555+Jjo5m5MiRSsK+cuVKli5dSkBAAOfPn8fNzY233nqLhIQEtXFmzZqFj48PMTEx2NjYMHjwYGWMmJgYunXrRrNmzTh16hQnTpzAw8ODvLw8APz9/dm4cSNffvklv/76K5MnT+Z///sfx44dUzvHjBkzWLhwIXFxcTg4OACP/m719PSIiIhg8eLFzJs3j8OHDwOwfft2li9fzrp160hISGDXrl3Y29sXeS2ys7PJzMxU+wghhBCicqo0//5tZGSEgYEBmpqamJqalqiPiYkJAMbGxiXu8yRra2sWL16sbH/66ac4OjqyYMECZd8333yDubk5ly9fxsbGpsix7ty5w8qVK1mzZg3Dhw8H4LXXXuONN95Q2nzyySfKn62srPDx8WHLli1MmzZN2Z+Tk8PGjRuVuZ04cYIzZ86QlpaGtrY2AAEBAezatYtt27YxduxY/Pz8mDFjhnLexo0bM3/+fKZNm8bcuXOVsYcMGcKIESNKdG0+//xzjIyM2LJli1I+8uT8AwICmD59OoMGDQJg0aJFHD16lBUrVvD5558r7Xx8fOjduzcAfn5+NG/enCtXrtC0aVMWL15MmzZtWLt2rdK+efPmwKOEdsGCBRw5coQOHToo8zpx4gTr1q3DxcVF6TNv3jx69OihFr+Dg4Myd2tra9asWUNoaCg9evQgOTkZU1NTunfvTvXq1bGwsKBdu3ZFXgt/f3/8/PxKdN2EEEIIUbFVmuS6PLRu3VptOzY2lqNHj6Kvr1+gbWJi4lOT67i4OLKzs+nWrVuRbbZu3cqqVatITEwkKyuL3NzcAg8xt7S0VBLrxzFlZWVRu3ZttXb3799XSjRiY2MJDw9XW6nOy8vj33//5d69e+jq6gLQpk2bImP7r5iYGDp16lRoXXZmZiZ//vknzs7OavudnZ0LlKs8XkkGMDMzAyAtLY2mTZsSExPDgAEDCj3/lStXuHfvXoGkOScnB0dHR7V9hc3ryfM+PndaWhrw6F8CVqxYQePGjXF3d6dXr154eHgUWas9c+ZMpkyZojZ/c3PzQtsKIYQQomKr1Mm1hoYG/30BZVFvKXyWfnp6emrbWVlZeHh4sGjRogJtHyeGRdHR0Xnq8VOnTjF06FD8/Pxwc3NTVoWXLl1abExmZmaEhYUVGNPY2Fhp4+fnR//+/Qu0eVy3XdjYT1PcfErqyeRcpVIBj2qpiztHVlYWAPv27aNBgwZqxx6v4D9W2Lz++0uBSqVSzmtubk58fDxHjhzh8OHDjB8/niVLlnDs2LFCf5nQ1tYucE4hhBBCVE6VOrk2MTEhNTVV2c7MzOTatWtqbapXr67U6D7Z7+LFi2r7YmJiin06hpOTE9u3b8fKyqrUT5ywtrZGR0eH0NBQRo8eXeD4yZMnsbS0ZNasWcq+69evFzuuk5MTf/31F9WqVVNu2CysTXx8PE2aNClVzE/j4OBAcHBwoU8VMTQ0pH79+oSHh6uVZ4SHhz+1vKKwc4SGhhZactGsWTO0tbVJTk5WO0dZ0dHRwcPDAw8PDyZMmEDTpk25cOECTk5OZX4uIYQQQlQcleaGxsJ07dqVTZs2cfz4cS5cuMDw4cPR1NRUa2NlZUVoaCh//fWX8pSJrl27EhUVxcaNG0lISGDu3LkFku3CTJgwgdu3bzN48GAiIyNJTEzk4MGDjBgxokAC/181atRg+vTpTJs2jY0bN5KYmMjp06f5+uuvgUfJd3JyMlu2bCExMZFVq1axc+fOYmPq3r07HTp0oG/fvhw6dIikpCROnjzJrFmziIqKAmDOnDls3LgRPz8/fv31V+Li4tiyZYtajXdpeXl5kZmZyaBBg4iKiiIhIYFNmzYRHx8PwNSpU1m0aBFbt24lPj6eGTNmEBMTw8SJE0t8jpkzZxIZGcn48eM5f/48v/32G1988QU3b97EwMAAHx8fJk+eTHBwMImJiZw9e5bVq1cTHBz8zPMCCAoK4uuvv+bixYtcvXqVb7/9Fh0dHXnFvBBCCCEqd3I9c+ZMXFxc6NOnD71796Zv37689tpram2WLl3K4cOHMTc3V2px3dzcmD17NtOmTaNt27bcuXOHYcOGFXu+x6uxeXl59OzZE3t7eyZNmoSxsTEaGsVf6tmzZ/Pxxx8zZ84c7OzseO+995Q637feeovJkyfj5eVFq1atOHnyJLNnzy52TJVKxf79++ncuTMjRozAxsaGQYMGcf36deVJJG5ubuzdu5dDhw7Rtm1b2rdvz/Lly58rWaxduzY///wzWVlZuLi40Lp1a9avX6+sYnt7ezNlyhQ+/vhj7O3tCQkJYc+ePVhbW5f4HDY2Nhw6dIjY2FjatWtHhw4d2L17t/KvBvPnz2f27Nn4+/tjZ2eHu7s7+/bto1GjRs88L3hUTrN+/XqcnZ1xcHDgyJEj/PTTTwXq2oUQQghR9age/re4WAjxQmVmZmJkZERGRkaBG1KFeBW0nrqxvEMQ4pUQvaT4hTVRdZT0+7tSr1wLIYQQQgjxMlXqGxpfJcnJyTRr1qzI45cuXcLCwuIlRvR8xo0bx7ffflvosf/97398+eWXLzkiIURZkdU6IYR4dlIW8pLk5uaSlJRU5PFnecJIeUpLSyvyTYOGhobUrVv3JUdUcUhZiBBCCFHxlPT7u+JkcxVctWrVyvRRd+Wtbt26kkALIYQQQvyHJNdCiOcmN8BVLlIWIoQQz05uaBRCCCGEEKKMSHItnsrX15dWrVqVqo9KpWLXrl0vJB4hhBBCiFeZJNfiqXx8fAgNDS3vMF5JYWFhqFQq0tPTyzsUIYQQQrwipOZaPJW+vj76+vrlHcYr58GDB+UdghBCCCFeQbJyXUls27YNe3t7dHR0qF27Nt27d+fu3bvk5+czb948GjZsiLa2Nq1atSIkJESt7++//87gwYOpVasWenp6tGnThoiICKBgWUhkZCQ9evSgTp06GBkZ4eLiwtmzZ58p5pycHLy8vDAzM6NGjRpYWlri7+8PQFJSEiqVipiYGKV9eno6KpWKsLAw4P+tHO/btw8HBwdq1KhB+/btuXjxotInKCgIY2Njdu3ahbW1NTVq1MDNzY2UlBS1WL744gtee+01tLS0sLW1ZdOmTWrHVSoVX3zxBW+99RZ6enqMGTOGLl26AFCzZk1UKhWenp7PdB2EEEIIUXlIcl0JpKamMnjwYEaOHElcXBxhYWH079+fhw8fsnLlSpYuXUpAQADnz5/Hzc2Nt956i4SEBACysrJwcXHhjz/+YM+ePcTGxjJt2jTy8/MLPdedO3cYPnw4J06c4PTp01hbW9OrVy/u3LlT6rhXrVrFnj17+OGHH4iPj2fz5s1YWVmVepypU6eydOlSIiMjMTExwcPDQ21l+d69e3z22Wds3LiR8PBw0tPTGTRokHJ8586dTJw4kY8//piLFy/ywQcfMGLECI4ePap2Hl9fX/r168eFCxfw8/Nj+/btAMTHx5OamsrKlSsLjS87O5vMzEy1jxBCCCEqJykLqQRSU1PJzc2lf//+WFpaAmBvbw9AQEAA06dPV5LJRYsWcfToUVasWMHnn3/Od999x99//01kZCS1atUCeOrzuLt27aq2/dVXX2FsbMyxY8fo06dPqeJOTk7G2tqaN954A5VKpcReWnPnzqVHjx4ABAcH07BhQ3bu3MnAgQOBRyUca9as4fXXX1fa2NnZcebMGdq1a0dAQACenp6MHz8egClTpnD69GkCAgKU1WmAIUOGMGLECGX72rVrwKNnfhsbGxcZn7+/P35+fs80NyGEEEJULLJyXQm0bNmSbt26YW9vz4ABA1i/fj3//PMPmZmZ/Pnnnzg7O6u1d3Z2Ji4uDoCYmBgcHR2VxLo4N27cYMyYMVhbW2NkZIShoSFZWVkkJyeXOm5PT09iYmKwtbXF29ubQ4cOlXoMgA4dOih/rlWrFra2tsr84NELfNq2batsN23aFGNjY6VNXFzcU6/RY23atHmm+GbOnElGRoby+W9JihBCCCEqD0muKwFNTU0OHz7MgQMHaNasGatXr8bW1lZZWX0aHR2dUp1r+PDhxMTEsHLlSk6ePElMTAy1a9cmJyen1HE7OTlx7do15s+fz/379xk4cCDvvvsuABoaj340Hz58qLQv75sI9fT0nqmftrY2hoaGah8hhBBCVE6SXFcSKpUKZ2dn/Pz8OHfuHFpaWoSGhlK/fn3Cw8PV2oaHh9OsWTMAHBwciImJ4fbt2yU6T3h4ON7e3vTq1YvmzZujra3NzZs3nzluQ0ND3nvvPdavX8/WrVvZvn07t2/fxsTEBHhU8vLYkzc3Pun06dPKn//55x8uX76MnZ2dsi83N5eoqChlOz4+nvT0dKWNnZ3dU69RUbS0tADIy8srwUyFEEIIURVIzXUlEBERQWhoKD179qRu3bpERETw9//X3p3H5ZT3/wN/XZWu9pJ2UiExTWgR5aYQZbvFWKchpuxNGoTGWLotJbKOwT1GDNm3MSMzKkJuQkSDsaTkvpXMoEUUdX5/+HZ+Li3adCWv5+NxPR7OuT6fz/U+n4569+l9znn0CG3btkVgYCDmz5+Pli1bokOHDoiIiEBSUhIiIyMBACNHjsSSJUvg6emJkJAQGBsb4/LlyzAxMZEptyhhaWmJbdu2wcHBATk5OQgMDKzy6neJFStWwNjYGLa2tlBQUMDevXthZGQEHR0dKCgooHPnzggNDYWFhQWysrLw7bffljnOv/71LzRp0gSGhoaYM2cO9PT04OnpKb7fqFEjfPXVV1izZg2UlJTg5+eHzp07w9HREcDrCyKHDRsGW1tbuLm54ZdffsGBAwcQExNTYfxmZmaQSCT49ddf0bdvX6iqqvK2hURERB85rlw3AFpaWjh16hT69u2L1q1b49tvv0V4eDj69OkDf39/TJs2DdOnT4eNjQ1+++03HD58GJaWlgBer74eO3YMBgYG6Nu3L2xsbBAaGgpFRcUyP+vHH3/EkydPYGdnh1GjRsHf3x8GBgbViltTUxNhYWFwcHBAx44dkZaWhqioKLEkZPPmzXj16hXs7e0REBCARYsWlTlOaGgopk6dCnt7e2RmZuKXX34RV5UBQE1NDbNmzcLnn3+OLl26QENDA7t37xbf9/T0xOrVq7F8+XJYW1tj48aNiIiIgKura4XxN23aFMHBwZg9ezYMDQ3h5+dXrXkgIiKihkMivFnUSvQBiYuLQ/fu3fHkyZNy79axZcsWBAQE1KunKObk5EBbWxvZ2dkNpv7aPvAneYdAtShx2Wh5h0BEVO9U9uc3y0KIqMaYjBEREb3GshB6b5YsWSI+Pv3tV58+feQdHhEREVGtY1kIvTePHz8u9y4kqqqqaNq0aR1HVD80xLIQIiKiho5lISR3urq6lX44DREREVFDwOSaiIhk8AJV+pjxGhKqKdZcExERERHVEibXRERERES1hMk1EREREVEtYXJNNVJYWFjrYwqCgFevXtX6uDVRH2MiIiKi+ofJdQPi6uoKPz8/+Pn5QVtbG3p6epg7dy5K7rZYUFCAGTNmoGnTplBXV0enTp0QFxcnM0Z8fDy6du0KVVVVmJqawt/fH8+ePRPfNzc3x8KFCzF69GhoaWlh/PjxFcaUlpYGiUSCXbt2wdnZGSoqKvj0009x8uRJsU1cXBwkEgmOHj0Ke3t7SKVSxMfHo7i4GCEhIbCwsICqqirat2+Pffv2if2ePHkCLy8v6OvrQ1VVFZaWloiIiADwOun38/ODsbExVFRUYGZmhpCQEJmYkpKSxLGePn0KiUQizkd1YyIiIqKPG+8W0sBs3boVPj4+OH/+PC5evIjx48ejefPmGDduHPz8/HD9+nXs2rULJiYmOHjwIDw8PJCcnAxLS0ukpKTAw8MDixYtwubNm/Ho0SMxWS9JWgFg+fLlmDdvHubPn1/puAIDA7Fq1Sp88sknWLFiBQYMGIDU1FQ0adJEbDN79mwsX74cLVq0QOPGjRESEoLt27djw4YNsLS0xKlTp/DFF19AX18fLi4umDt3Lq5fv46jR49CT08Pd+7cwfPnzwEAa9asweHDh7Fnzx40b94c9+/fx/3796s8n1WNqSwFBQUoKCgQt3NycqocBxEREX0Y+BCZBsTV1RVZWVm4du0aJBIJgNfJ4eHDh/Hbb7+hRYsWSE9Ph4mJidjHzc0Njo6OWLJkCXx9faGoqIiNGzeK78fHx8PFxQXPnj2DiooKzM3NYWtri4MHD1YqprS0NFhYWCA0NBSzZs0CALx69QoWFhb46quvMHPmTMTFxaF79+44dOgQBg4cCOB1Qqqrq4uYmBg4OTmJ4/n6+iI/Px87duzAP//5T+jp6WHz5s2lPtff3x/Xrl1DTEyMOBdvx3T58mV06NABwOuV68aNG+PEiRNwdXWtdkxlWbBgAYKDg0vt50NkqL7irfjoY8Zb8VF5+BCZj1Tnzp1lkkknJyeEh4cjOTkZRUVFaN26tUz7goICcfX4ypUruHr1KiIjI8X3BUFAcXExUlNT0bZtWwCAg4NDleN6MxlVUlKCg4MDbty4IdPmzXHv3LmD/Px89OrVS6ZNYWEhbG1tAQCTJk3CZ599hkuXLqF3797w9PSEs7MzAGDMmDHo1asXrKys4OHhgf79+6N3795VjruqMZUlKCgI06ZNE7dzcnJgampa5ViIiIio/mNy/ZHIy8uDoqIiEhMToaioKPOehoaG2GbChAnw9/cv1b958+biv9XV1d9LjG+Om5eXBwA4cuRIqcekS6VSAECfPn1w7949REVFITo6Gj179sSUKVOwfPly2NnZITU1FUePHkVMTAyGDRsGNzc37Nu3DwoKry81ePOPNi9fvqyVmMoilUorfJ+IiIgaDibXDUxCQoLM9rlz52BpaQlbW1sUFRUhKysLXbt2LbOvnZ0drl+/jlatWtV6XOfOnUO3bt0AvC4LSUxMhJ+fX7ntP/nkE0ilUqSnp5dbywwA+vr68Pb2hre3N7p27YrAwEAsX74cAKClpYXhw4dj+PDhGDJkCDw8PPD48WPo6+sDADIyMsQV5zcvbqxpTERERPTxYnLdwKSnp2PatGmYMGECLl26hLVr1yI8PBytW7eGl5cXRo8ejfDwcNja2uLRo0eIjY1Fu3bt0K9fP8yaNQudO3eGn58ffH19oa6ujuvXryM6OhrfffddjeJat24dLC0t0bZtW6xcuRJPnjzBl19+WW57TU1NzJgxA19//TWKi4vxj3/8A9nZ2Thz5gy0tLTg7e2NefPmwd7eHtbW1igoKMCvv/4qlq6sWLECxsbGsLW1hYKCAvbu3QsjIyPo6OhAQUEBnTt3RmhoKCwsLJCVlYVvv/32ncdQmZiIiIjo48bkuoEZPXo0nj9/DkdHRygqKmLq1Kni7fIiIiKwaNEiTJ8+Hf/73/+gp6eHzp07o3///gCAdu3a4eTJk5gzZw66du0KQRDQsmVLDB8+vMZxhYaGIjQ0FElJSWjVqhUOHz4MPT29CvssXLgQ+vr6CAkJwd27d6GjowM7Ozt88803AABlZWUEBQUhLS0Nqqqq6Nq1K3bt2gXgdSIcFhaG27dvQ1FRER07dkRUVJRYErJ582b4+PjA3t4eVlZWCAsLq1RN9rtiIiIioo8b7xbSgLi6uqJDhw5YtWqVvEMRlXVnjo9dZa82JpIX3i2EPma8WwiVh3cLISKiamFyQURUfXxCI9XIkiVLoKGhUearT58+8g6PiIiIqE6xLIRq5PHjx3j8+HGZ76mqqpa6ZR2xLISIiOhDxLIQqhO6urrQ1dWVdxhEVItYc030/7FMiqqKZSFERERERLWEyXU95+rqioCAgFobb8GCBR/sXTuqGvuWLVugo6PzznYSiQSHDh2qdlxEREREJRp8ch0XFweJRIKnT5/KO5RqOXDgABYuXCjvMOpcWQnvjBkzEBsbW+kxhg8fjlu3bonb5SXnGRkZvPiSiIiIagVrrv9PYWEhlJWV5fLZL1++RKNGjcqMpz7WM5cVb10ouQtJZamqqkJVVfWd7YyMjGoSFhEREZHog1i5Li4uRkhICCwsLKCqqor27dtj3759EAQBbm5ucHd3R8lNTx4/foxmzZph3rx5SEtLQ/fu3QEAjRs3hkQiwZgxYwC8Lrfw8/NDQEAA9PT04O7uDuD1Y7NtbGygrq4OU1NTTJ48GXl5eTLxnDlzBq6urlBTU0Pjxo3h7u6OJ0+eAADMzc1LPcSlQ4cOWLBggbgtkUiwfv16/POf/4S6ujoWL14srqpu2rQJFhYWUFFREeN8syykoKAAs2bNgqmpKaRSKVq1aoUff/wRQNllEIcOHYJEIil3bi9cuIBevXpBT08P2tracHFxwaVLl2TalBVvRYqKiuDj4yN+vaysrLB69epS7TZv3gxra2tIpVIYGxvDz89PnEMAGDRoECQSibj95srzsWPHoKKiUuovElOnTkWPHj1KzceWLVsQHByMK1euQCKRQCKRYMuWLeLxvblKfv/+fQwbNgw6OjrQ1dXFwIEDkZaWJr4fFxcHR0dHqKurQ0dHB126dMG9e/cqnBMiIiL6OHwQyXVISAh++uknbNiwAdeuXcPXX3+NL774AqdOncLWrVtx4cIFrFmzBgAwceJENG3aFPPmzYOpqSn2798PALh58yYyMjJkkrytW7dCWVkZZ86cwYYNGwAACgoKWLNmDa5du4atW7fi+PHjmDlzptgnKSkJPXv2xCeffIKzZ88iPj4eAwYMQFFRUZWOacGCBRg0aBCSk5Px5ZdfAgDu3LmD/fv348CBA0hKSiqz3+jRo7Fz506sWbMGN27cwMaNG6u0mvu23NxceHt7Iz4+HufOnYOlpSX69u2L3Nzcd8ZbnuLiYjRr1gx79+7F9evXMW/ePHzzzTfYs2eP2Gb9+vWYMmUKxo8fj+TkZBw+fBitWrUC8DrhB14/rj0jI0PcflPPnj2ho6Mjfn2B10n97t274eXlVar98OHDMX36dFhbWyMjIwMZGRllPtb95cuXcHd3h6amJk6fPo0zZ85AQ0MDHh4eKCwsxKtXr+Dp6QkXFxdcvXoVZ8+exfjx4yv8BaagoAA5OTkyLyIiImqY6n1ZSEFBAZYsWYKYmBg4OTkBAFq0aIH4+Hhs3LgRO3bswMaNGzF69GhkZmYiKioKly9fhpLS60MrKaswMDAotapraWmJsLAwmX1vrhKbm5tj0aJFmDhxIr7//nsAQFhYGBwcHMRtALC2tq7ycX3++ecYO3aszL7CwkL89NNP0NfXL7PPrVu3sGfPHkRHR8PNzU2ci5ooWeUt8e9//xs6Ojo4efIk+vfvX2G85WnUqBGCg4PFbQsLC5w9exZ79uzBsGHDAACLFi3C9OnTMXXqVLFdx44dAUA8fh0dnXJLNhQVFTFixAjs2LEDPj4+AIDY2Fg8ffoUn332Wan2qqqq0NDQgJKSUoVlILt370ZxcTE2bdokJswRERHQ0dFBXFwcHBwckJ2djf79+6Nly5YAgLZt21Y4HyEhITLzQURERA1XvV+5vnPnDvLz89GrVy+Zp//99NNPSElJAQAMHToUgwYNQmhoKJYvXw5LS8tKjW1vb19qX0xMDHr27ImmTZtCU1MTo0aNwt9//438/HwA/3/luqYcHBxK7TMzMys3sS75bEVFRbi4uNT480s8fPgQ48aNg6WlJbS1taGlpYW8vDykp6e/M96KrFu3Dvb29tDX14eGhgb+/e9/i2NmZWXhwYMHNZ5HLy8vxMXF4cGDBwCAyMhI9OvXr1J3CCnPlStXcOfOHWhqaornmq6uLl68eIGUlBTo6upizJgxcHd3x4ABA7B69WpkZGRUOGZQUBCys7PF1/3796sdHxEREdVv9X7luqTe+ciRI6We9ieVSgEA+fn5SExMhKKiIm7fvl3psdXV1WW209LS0L9/f0yaNAmLFy+Grq4u4uPj4ePjg8LCQqipqb3zAjkFBQW8/dDLly9fvvOzy9v3ptr67Dd5e3vj77//xurVq2FmZgapVAonJycUFhZWKbY37dq1CzNmzEB4eDicnJygqamJZcuWISEhoVLHUVkdO3ZEy5YtsWvXLkyaNAkHDx4U66irKy8vD/b29oiMjCz1XskvPhEREfD398dvv/2G3bt349tvv0V0dDQ6d+5c5phSqVQ8V4mIiKhhq/fJ9SeffAKpVIr09PRyV2ynT58OBQUFHD16FH379kW/fv3EcoeSO4BUpiY6MTERxcXFCA8Ph4LC60X9N+uEAaBdu3aIjY0t98/8+vr6MiuZOTk5SE1NffeBVoKNjQ2Ki4tx8uRJsSzk7c/Ozc3Fs2fPxGS4vNrtEmfOnMH333+Pvn37Anh9Md9ff/1VozjPnDkDZ2dnTJ48WdxX8lcGANDU1IS5uTliY2PFC07f1qhRo0p9zby8vBAZGYlmzZpBQUEB/fr1K7etsrLyO8e0s7PD7t27YWBgUOGjTW1tbWFra4ugoCA4OTlhx44d5SbXRERE9PGo92UhmpqamDFjBr7++mts3boVKSkpuHTpEtauXYutW7fiyJEj2Lx5MyIjI9GrVy8EBgbC29tbvHuHmZkZJBIJfv31Vzx69KjUnT/e1KpVK7x8+RJr167F3bt3sW3bNvFCxxJBQUG4cOECJk+ejKtXr+LPP//E+vXrxYS0R48e2LZtG06fPo3k5GR4e3tDUVGxVubC3Nwc3t7e+PLLL3Ho0CGkpqYiLi5O/AWgU6dOUFNTwzfffIOUlBTs2LHjnSu5lpaW2LZtG27cuIGEhAR4eXnVeGXZ0tISFy9exO+//45bt25h7ty5pS5KXLBgAcLDw7FmzRrcvn1b/Jq+eayxsbHIzMwUv5Zl8fLywqVLl7B48WIMGTKkwhVic3NzpKamIikpCX/99RcKCgrKHE9PTw8DBw7E6dOnxTn29/fHf//7X6SmpiIoKAhnz57FvXv3cOzYMdy+ffuddddERET0caj3yTUALFy4EHPnzkVISAjatm0LDw8PHDlyBObm5vDx8cGCBQtgZ2cHAAgODoahoSEmTpwIAGjatCmCg4Mxe/ZsGBoaird7K0v79u2xYsUKLF26FJ9++ikiIyMREhIi06Z169Y4duwYrly5AkdHRzg5OeHnn38WL6AMCgqCi4sL+vfvj379+sHT01O88K02rF+/HkOGDMHkyZPRpk0bjBs3Ds+ePQPw+uLN7du3IyoqCjY2Nti5c6fMLQDL8uOPP+LJkyews7PDqFGj4O/vDwMDgxrFOGHCBAwePBjDhw9Hp06d8Pfff8usYgOvy1FWrVqF77//HtbW1ujfv79MSU94eDiio6NhamoKW1vbcj+rVatWcHR0xNWrV8u8S8ibPvvsM3h4eKB79+7Q19fHzp07S7VRU1PDqVOn0Lx5cwwePBht27aFj48PXrx4AS0tLaipqeHPP//EZ599htatW2P8+PGYMmUKJkyYUMVZIiIiooZIIrxdpEtE71VOTg60tbWRnZ1dYekJkbzYB/4k7xCI6o3EZaPlHQLVE5X9+V3va66JiKhuMZkgIqq+D6IshOqXiRMnytwW8c1XSTkOERER0ceIZSFUZVlZWeU+ZVBLS6vGNdsNHctCiIiIPjwsC6H3xsDAgAk0ERERURmYXBMRkQxe0EgfI15rQLWFNddERERERLWEyTXJhaurKwICAqrdPy0tDRKJRHwCZVxcHCQSCZ4+fVqt/kRERES1gWUh9FEyNTVFRkYG9PT05B0KERERNSBMrumjpKioCCMjI3mHQURERA0My0JIbl69egU/Pz9oa2tDT08Pc+fORcmdISUSCQ4dOiTTXkdHB1u2bHnnuM+ePYOWlhb27dsns//QoUNQV1dHbm5uuWUlsbGxcHBwgJqaGpydnXHz5k2ZMRYtWgQDAwNoamrC19cXs2fPRocOHao7BURERNTAMLkmudm6dSuUlJRw/vx5rF69GitWrMCmTZtqPK66ujpGjBiBiIgImf0REREYMmQINDU1y+07Z84chIeH4+LFi1BSUsKXX34pvhcZGYnFixdj6dKlSExMRPPmzbF+/fp3xlNQUICcnByZFxERETVMLAshuTE1NcXKlSshkUhgZWWF5ORkrFy5EuPGjavx2L6+vnB2dkZGRgaMjY2RlZWFqKgoxMTEVNhv8eLFcHFxAQDMnj0b/fr1w4sXL6CiooK1a9fCx8cHY8eOBQDMmzcPx44dQ15eXoVjhoSEIDg4uMbHRERERPUfV65Jbjp37gyJRCJuOzk54fbt2ygqKqrx2I6OjrC2tsbWrVsBANu3b4eZmRm6detWYb927dqJ/zY2Ngbw+omUAHDz5k04OjqW+px3CQoKQnZ2tvi6f/9+lY6FiIiIPhxMrqlekkgkYv11iZcvX1ZpDF9fX7FGOyIiAmPHjpVJ5svSqFEjmRgAoLi4uEqf+zapVAotLS2ZFxERETVMTK5JbhISEmS2z507B0tLSygqKkJfXx8ZGRnie7dv30Z+fn6Vxv/iiy9w7949rFmzBtevX4e3t3eN4rWyssKFCxdk9r29TURERB831lyT3KSnp2PatGmYMGECLl26hLVr1yI8PBwA0KNHD3z33XdwcnJCUVERZs2aJbOqXBmNGzfG4MGDERgYiN69e6NZs2Y1iverr77CuHHj4ODgAGdnZ+zevRtXr15FixYtajQuERERNRxMrkluRo8ejefPn8PR0RGKioqYOnUqxo8fDwAIDw/H2LFj0bVrV5iYmGD16tVITEys8mf4+Phgx44dMnf9qC4vLy/cvXsXM2bMwIsXLzBs2DCMGTMG58+fr/HYRERE1DBIhLcLW4kakG3btuHrr7/GgwcPoKysXOvj9+rVC0ZGRti2bVul++Tk5EBbWxvZ2dmsv6Z6yT7wJ3mHQFTnEpeNlncIVM9V9uc3V66pQcrPz0dGRgZCQ0MxYcKEWkms8/PzsWHDBri7u0NRURE7d+5ETEwMoqOjayFiovqDSQYRUfXxgkZqkMLCwtCmTRsYGRkhKCioVsaUSCSIiopCt27dYG9vj19++QX79++Hm5tbrYxPREREHz6WhRDVMZaFEBERfXhYFkJERNXCmmsi+pDJu7SNZSFERERERLWEyTU1KObm5li1alWdfqarqysCAgLq9DOJiIiofmJyTZU2ZswYeHp6yjsMIiIionqLyTXVupcvX8o7BCIiIiK5YHJNpezbtw82NjZQVVVFkyZN4ObmhsDAQGzduhU///wzJBIJJBIJ4uLikJaWBolEgt27d8PFxQUqKiqIjIwEAGzatAlt27aFiooK2rRpg++//178jMLCQvj5+cHY2BgqKiowMzNDSEgIAEAQBCxYsADNmzeHVCqFiYkJ/P39q3UsT58+ha+vL/T19aGlpYUePXrgypUrAIBbt25BIpHgzz//lOmzcuVKtGzZUtz+448/0KdPH2hoaMDQ0BCjRo3CX3/9Va14iIiIqGHj3UJIRkZGBkaOHImwsDAMGjQIubm5OH36NEaPHo309HTk5OQgIiICAKCrq4sHDx4AAGbPno3w8HDY2tqKCfa8efPw3XffwdbWFpcvX8a4ceOgrq4Ob29vrFmzBocPH8aePXvQvHlz3L9/H/fv3wcA7N+/HytXrsSuXbtgbW2NzMxMMSGuqqFDh0JVVRVHjx6FtrY2Nm7ciJ49e+LWrVto3bo1HBwcEBkZiYULF4p9IiMj8fnnnwN4nZz36NEDvr6+WLlyJZ4/f45Zs2Zh2LBhOH78eKViKCgoQEFBgbidk5NTrWMhIiKi+o/JNcnIyMjAq1evMHjwYJiZmQEAbGxsAACqqqooKCiAkZFRqX4BAQEYPHiwuD1//nyEh4eL+ywsLHD9+nVs3LgR3t7eSE9Ph6WlJf7xj39AIpGInwUA6enpMDIygpubGxo1aoTmzZvD0dGxyscSHx+P8+fPIysrC1KpFACwfPlyHDp0CPv27cP48ePh5eWF7777Tkyub926hcTERGzfvh0AxF8OlixZIo67efNmmJqaign6u4SEhCA4OLjK8RMREdGHh2UhJKN9+/bo2bMnbGxsMHToUPzwww948uTJO/s5ODiI/3727BlSUlLg4+MDDQ0N8bVo0SKkpKQAeH1xZFJSEqysrODv749jx46J/YcOHYrnz5+jRYsWGDduHA4ePIhXr15V+ViuXLmCvLw8NGnSRCaO1NRUMY4RI0YgLS0N586dA/B61drOzg5t2rQRxzhx4oRM/5L3SsZ4l6CgIGRnZ4uvkhV6IiIiani4ck0yFBUVER0djf/85z84duwY1q5dizlz5iAhIaHCfurq6uK/8/LyAAA//PADOnXqVGp8ALCzs0NqaiqOHj2KmJgYDBs2DG5ubti3bx9MTU1x8+ZNxMTEIDo6GpMnT8ayZctw8uRJNGrUqNLHkpeXB2NjY8TFxZV6T0dHBwBgZGSEHj16YMeOHejcuTN27NiBSZMmyYwxYMAALF26tNQYxsbGlYpDKpWKK+dERETUsDG5plIkEgm6dOmCLl26YN68eTAzM8PBgwehrKyMoqKid/Y3NDSEiYkJ7t69Cy8vr3LbaWlpYfjw4Rg+fDiGDBkCDw8PPH78GLq6ulBVVcWAAQMwYMAATJkyBW3atEFycjLs7OwqfRx2dnbIzMyEkpISzM3Ny23n5eWFmTNnYuTIkbh79y5GjBghM8b+/fthbm4OJSX+dyEiIqKKMVsgGQkJCYiNjUXv3r1hYGCAhIQEPHr0CG3btsWLFy/w+++/4+bNm2jSpAm0tbXLHSc4OBj+/v7Q1taGh4cHCgoKcPHiRTx58gTTpk3DihUrYGxsDFtbWygoKGDv3r0wMjKCjo4OtmzZgqKiInTq1AlqamrYvn07VFVVZeqyK8PNzQ1OTk7w9PREWFgYWrdujQcPHuDIkSMYNGiQWMoyePBgTJo0CZMmTUL37t1hYmIijjFlyhT88MMPGDlyJGbOnAldXV3cuXMHu3btwqZNm8SVeCIiIiKAyTW9RUtLC6dOncKqVauQk5MDMzMzhIeHo0+fPnBwcEBcXBwcHByQl5eHEydOlLsi7OvrCzU1NSxbtgyBgYFQV1eHjY2N+CRDTU1NhIWF4fbt21BUVETHjh0RFRUFBQUF6OjoIDQ0FNOmTUNRURFsbGzwyy+/oEmTJlU6FolEgqioKMyZMwdjx47Fo0ePYGRkhG7dusHQ0FBsp6mpiQEDBmDPnj3YvHmzzBgmJiY4c+YMZs2ahd69e6OgoABmZmbw8PCAggIvWSAiIiJZEkEQBHkHQfQxycnJgba2NrKzs6GlpSXvcIhKsQ/8Sd4hEBFVW+Ky0e9l3Mr+/ObSGxERERFRLWFZCH0wTp8+jT59+pT7fsldSuq7kj8W8WEyVF+dmOsp7xCIiKrtff18LRn3XUUfTK7pg+Hg4ICkpCR5h1Fjubm5AABTU1M5R0JERERVlZubW+FNHVhzTVTHiouL8eDBA2hqakIikVS5f05ODkxNTXH//n3WbFcC56tqOF9Vw/mqOs5Z1XC+quZ9zpcgCMjNzYWJiUmFNzXgyjVRHVNQUECzZs1qPI6Wlha/0VYB56tqOF9Vw/mqOs5Z1XC+quZ9zVdFK9YleEEjEREREVEtYXJNRERERFRLmFwTfWCkUinmz58PqVQq71A+CJyvquF8VQ3nq+o4Z1XD+aqa+jBfvKCRiIiIiKiWcOWaiIiIiKiWMLkmIiIiIqolTK6JiIiIiGoJk2siIiIiolrC5Jqonlu8eDGcnZ2hpqYGHR2dSvURBAHz5s2DsbExVFVV4ebmhtu3b7/fQOuRx48fw8vLC1paWtDR0YGPjw/y8vIq7OPq6gqJRCLzmjhxYh1FXLfWrVsHc3NzqKiooFOnTjh//nyF7ffu3Ys2bdpARUUFNjY2iIqKqqNI64eqzNeWLVtKnUcqKip1GK18nTp1CgMGDICJiQkkEgkOHTr0zj5xcXGws7ODVCpFq1atsGXLlvceZ31R1fmKi4srdX5JJBJkZmbWTcByFhISgo4dO0JTUxMGBgbw9PTEzZs339mvrr+HMbkmqucKCwsxdOhQTJo0qdJ9wsLCsGbNGmzYsAEJCQlQV1eHu7s7Xrx48R4jrT+8vLxw7do1REdH49dff8WpU6cwfvz4d/YbN24cMjIyxFdYWFgdRFu3du/ejWnTpmH+/Pm4dOkS2rdvD3d3d2RlZZXZ/j//+Q9GjhwJHx8fXL58GZ6envD09MQff/xRx5HLR1XnC3j9ZLg3z6N79+7VYcTy9ezZM7Rv3x7r1q2rVPvU1FT069cP3bt3R1JSEgICAuDr64vff//9PUdaP1R1vkrcvHlT5hwzMDB4TxHWLydPnsSUKVNw7tw5REdH4+XLl+jduzeePXtWbh+5fA8TiOiDEBERIWhra7+zXXFxsWBkZCQsW7ZM3Pf06VNBKpUKO3fufI8R1g/Xr18XAAgXLlwQ9x09elSQSCTC//73v3L7ubi4CFOnTq2DCOXL0dFRmDJlirhdVFQkmJiYCCEhIWW2HzZsmNCvXz+ZfZ06dRImTJjwXuOsL6o6X5X9f/oxACAcPHiwwjYzZ84UrK2tZfYNHz5ccHd3f4+R1U+Vma8TJ04IAIQnT57USUz1XVZWlgBAOHnyZLlt5PE9jCvXRA1MamoqMjMz4ebmJu7T1tZGp06dcPbsWTlGVjfOnj0LHR0dODg4iPvc3NygoKCAhISECvtGRkZCT08Pn376KYKCgpCfn/++w61ThYWFSExMlDk3FBQU4ObmVu65cfbsWZn2AODu7v5RnEvVmS8AyMvLg5mZGUxNTTFw4EBcu3atLsL9IH3M51dNdOjQAcbGxujVqxfOnDkj73DkJjs7GwCgq6tbbht5nGNK721kIpKLkto7Q0NDmf2GhoYfRV1eZmZmqT+RKikpQVdXt8Lj//zzz2FmZgYTExNcvXoVs2bNws2bN3HgwIH3HXKd+euvv1BUVFTmufHnn3+W2SczM/OjPZeqM19WVlbYvHkz2rVrh+zsbCxfvhzOzs64du0amjVrVhdhf1DKO79ycnLw/PlzqKqqyimy+snY2BgbNmyAg4MDCgoKsGnTJri6uiIhIQF2dnbyDq9OFRcXIyAgAF26dMGnn35abjt5fA9jck0kB7Nnz8bSpUsrbHPjxg20adOmjiKq/yo7Z9X1Zk22jY0NjI2N0bNnT6SkpKBly5bVHpc+Lk5OTnBychK3nZ2d0bZtW2zcuBELFy6UY2TUEFhZWcHKykrcdnZ2RkpKClauXIlt27bJMbK6N2XKFPzxxx+Ij4+XdyilMLkmkoPp06djzJgxFbZp0aJFtcY2MjICADx8+BDGxsbi/ocPH6JDhw7VGrM+qOycGRkZlbrY7NWrV3j8+LE4N5XRqVMnAMCdO3caTHKtp6cHRUVFPHz4UGb/w4cPy50bIyOjKrVvSKozX29r1KgRbG1tcefOnfcR4gevvPNLS0uLq9aV5OjoWC8TzPfJz89PvFj9XX8Rksf3MNZcE8mBvr4+2rRpU+FLWVm5WmNbWFjAyMgIsbGx4r6cnBwkJCTIrKh9aCo7Z05OTnj69CkSExPFvsePH0dxcbGYMFdGUlISAMj8gvKhU1ZWhr29vcy5UVxcjNjY2HLPDScnJ5n2ABAdHf1Bn0uVVZ35eltRURGSk5Mb1HlUmz7m86u2JCUlfTTnlyAI8PPzw8GDB3H8+HFYWFi8s49czrH3dqkkEdWKe/fuCZcvXxaCg4MFDQ0N4fLly8Lly5eF3NxcsY2VlZVw4MABcTs0NFTQ0dERfv75Z+Hq1avCwIEDBQsLC+H58+fyOIQ65+HhIdja2goJCQlCfHy8YGlpKYwcOVJ8/7///a9gZWUlJCQkCIIgCHfu3BH+9a9/CRcvXhRSU1OFn3/+WWjRooXQrVs3eR3Ce7Nr1y5BKpUKW7ZsEa5fvy6MHz9e0NHRETIzMwVBEIRRo0YJs2fPFtufOXNGUFJSEpYvXy7cuHFDmD9/vtCoUSMhOTlZXodQp6o6X8HBwcLvv/8upKSkCImJicKIESMEFRUV4dq1a/I6hDqVm5srfo8CIKxYsUK4fPmycO/ePUEQBGH27NnCqFGjxPZ3794V1NTUhMDAQOHGjRvCunXrBEVFReG3336T1yHUqarO18qVK4VDhw4Jt2/fFpKTk4WpU6cKCgoKQkxMjLwOoU5NmjRJ0NbWFuLi4oSMjAzxlZ+fL7apD9/DmFwT1XPe3t4CgFKvEydOiG0ACBEREeJ2cXGxMHfuXMHQ0FCQSqVCz549hZs3b9Z98HLy999/CyNHjhQ0NDQELS0tYezYsTK/jKSmpsrMYXp6utCtWzdBV1dXkEqlQqtWrYTAwEAhOztbTkfwfq1du1Zo3ry5oKysLDg6Ogrnzp0T33NxcRG8vb1l2u/Zs0do3bq1oKysLFhbWwtHjhyp44jlqyrzFRAQILY1NDQU+vbtK1y6dEkOUctHya3i3n6VzJG3t7fg4uJSqk+HDh0EZWVloUWLFjLfyxq6qs7X0qVLhZYtWwoqKiqCrq6u4OrqKhw/flw+wctBWXP19s+/+vA9TPJ/wRIRERERUQ2x5pqIiIiIqJYwuSYiIiIiqiVMromIiIiIagmTayIiIiKiWsLkmoiIiIioljC5JiIiIiKqJUyuiYiIiIhqCZNrIiIiIqJawuSaiIiIiKiWMLkmIiIiIqolTK6JiIiIiGoJk2siIiIiolry/wAkX+rsYLYy5AAAAABJRU5ErkJggg==\n"},"metadata":{}}],"source":["sns.barplot(data=mm_high_stress.mean(),orient='y');"]},{"cell_type":"markdown","metadata":{"id":"ftv25SkqW7eR"},"source":["### Stress Level 1"]},{"cell_type":"code","execution_count":40,"metadata":{"colab":{"base_uri":"https://localhost:8080/","height":430},"executionInfo":{"elapsed":1404,"status":"ok","timestamp":1716216959880,"user":{"displayName":"Daniel Meier","userId":"06365571306976914087"},"user_tz":300},"id":"MP3wZgqhbrMq","outputId":"094e1336-a463-4827-caca-b79787f8b3a3"},"outputs":[{"output_type":"display_data","data":{"text/plain":["
"],"image/png":"iVBORw0KGgoAAAANSUhEUgAAAtcAAAGdCAYAAADZpV/KAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAADSzUlEQVR4nOzdeVhUZfvA8e8M6wCyKQoqiAsg7piaSu4mpJK7ZpTivhEabvlqhkupqbm2WuJatrgl7pqaouEWaKkouOCbGpYCogjM8vuDl/k1saswIPfnus6lM2e7n8Ms93nmPs9R6HQ6HUIIIYQQQoinpjR2AEIIIYQQQjwvJLkWQgghhBDiGZHkWgghhBBCiGdEkmshhBBCCCGeEUmuhRBCCCGEeEYkuRZCCCGEEOIZkeRaCCGEEEKIZ0SSayGEEEIIIZ4RU2MHIER5o9VquXXrFhUqVEChUBg7HCGEEEIUgk6n48GDB1StWhWlMu/+aUmuhShht27dwtXV1dhhCCGEEOIJ3Lx5k+rVq+c5X5JrIUpYhQoVgKw3p62trZGjEUL8k0ajoX///qSlpRk7lKeiUqn47rvvMDExMXYoQjw3UlJScHV11X+P50WSayFKWHYpiK2trSTXQpQyarWazMxMNnTqi4mi6Jcl3X70gCkn9/Nhi5dxscr/C7i4aHRago5so0KFCpiayte8EM9aQSWdckGjeCauX7+OQqEgOjraqHEoFAq2bdtWovt0d3dn6dKlJbpPIUTxMlEoMVUWfcpOyJ90/WcxPclJgRDi2ZFTWvFMuLq6cvv2bSpVqlToddq3b0+TJk0kMRVPZMeOHURFRaFWq6lQoQJ9+vShbt26hV4/LS2NU6dOcf36dczNzWncuDFeXl75XqTyb8ePH+fYsWM8fvwYJycnAgIC8q3DE8VPo9Gg0+meeH21Wv0MozGup22LQqGQshIj+vvvv9m+fTt//PEHpqamNGvWjA4dOhT61wi1Ws2GDRu4ePEiWq0WS0tL+vbtS+PGjYs5ciHJtXgmTExMcHZ2NnYYohzQaDTMnj2bhw8fAqBUKrl//z5ffvklLVu2pG/fvgVu486dO3zxxRc8fPgQd3d3EhMTOX36NPXr12fQoEEFJhRarZalS5dy69YtlEolFhYWxMfHs3TpUrp370779u2fRVNFEWk0GgK6d+dRGa+XflpanQ6lQoG/v/9TbcdKpWJHRIQk2EZw7tw51q9fj06nw9LSktTUVPbu3cuJEyd45513MDc3z3d9tVrNjBkzDE6w0tLSWL9+Pb/++itBQUHF3ILyTZLrcmLPnj3MnTuX3377DRMTE1q1asWyZcuoXbs2169fp2bNmmzevJkVK1YQFRWFh4cHn332Ga1atQJg6NChnD59mlOnTmFhYUFGRgYvvvgiDRs2ZN26dfpt/PrrrzRp0gSA3377jcmTJ3P06FGsra3p0qULS5YsoVKlSgQFBXHkyBGOHDnCsmXLALh69Sovv/wyo0ePZtKkSfrYo6Oj8fHx4cqVK9SpU6dI7b558yYTJ05k3759KJVK2rRpw7Jly3B3d2ffvn28+uqr3LlzB3t7e/0648eP5/z58/z0008AHDt2jGnTpnH69GkqVapEr169mDdvHtbW1k/xFxFPav369Tx8+BAXFxfeeustzM3NuXXrFkuXLuWXX36hY8eOODo65rm+Tqdj48aNWFlZERISgr29PTqdjt9//51169bx888/06FDh3xj2LVrF7du3aJhw4YEBgZiamrKvXv3WLJkCRERETRr1gwbG5tn3XRRAJ1Ox6O0NNb1G4pJEX6B+Kd0tZqhm9c828BKmFanQ6vTPdVx0Gi1DPp+9VP9CiCejFarZePGjZiYmBAcHEz16tXRarXs3LmTI0eOsHHjRoYMGZLvNpYtW4Zarcbe3p533nkHU1NT4uLi+Oyzz/jtt99ISkoy+N4Tz5YUZpUTDx8+JDQ0lNOnT3Pw4EGUSiW9evVCq9Xql5k+fTqTJk0iOjoaT09PBg4cqD/rXb58OQ8fPuSdd97RL5uUlMTKlStz3V9SUhIdO3bEx8eH06dPs2fPHv7880/69+8PZL3xW7VqxYgRI7h9+za3b9/Gzc2NoUOHEh4ebrCt8PBw2rZtW+TEOjMzEz8/PypUqMDRo0eJjIzExsYGf39/MjIy6NSpE/b29mzevFm/jkaj4dtvvyUwMBCA+Ph4/P396dOnD+fOnePbb7/l2LFjBAcHFzqO9PR0UlJSDCbx5C5evIhCoWDixIn63puqVavqX1vfffddvuvfvHmT27dvExAQoP9yUSgUNGjQAB8fH6KiogqMIfskc/DgwfqfaB0dHRk0aBAAe/fuzXU9jUaDWq0ulikjI6PYtl1WpvT0dABMlEpMlSZPND1pMloaPc1xyL5cKz093eh/V2NPxfne0mg0Of5uJ06cQKPR8Morr+jLzJRKpf4z69KlSwX+7W/fvg3AjBkz9J9RderUoUuXLgA5vmfFsyU91+VEnz59DB6vXr0aJycnLly4oO9hmzRpEt26dQNg1qxZ1K9fn7i4OOrWrYuNjQ0bNmygXbt2VKhQgaVLl3Lo0KE8R7tYuXIlPj4+fPDBBwb7dHV15fLly3h6emJubo6VlZVBOUlQUBAzZ87k5MmTtGjRgszMTL7++msWLVpU5DZ/++23aLVavvzyS/2VveHh4djb23P48GG6dOnCa6+9xtdff82wYcMAOHjwIElJSfrjNW/ePAIDA5kwYQIAHh4eLF++nHbt2vHpp59iaWlZYBzz5s1j1qxZRY5f5E6j0WBlZZXj+WbNmrFp0ybu37+f7/rZ83Mba9zV1bVQF+U+fvyYypUr53jew8MDyKqVzC3ugIAAHj16VOD2n4RSqTQ4WRbiaah1WpQKhf47oTwrzveWlZUVO3bsMCi9uXPnDgBNmzbNsXy1atX4/fffC7VtMzOzHM916dKFffv2kZyc/IQRi8J4fk7RRb6uXLnCwIEDqVWrFra2tri7uwOQkJCgX6ZRo0b6/7u4uACQmJiof65Vq1ZMmjSJOXPmMHHiRF566aU89xcTE8OhQ4ewsbHRT9kXm8XHx+e5XtWqVenWrRurV68Gsi5aS09Pp1+/fkVuc0xMDHFxcVSoUEEfg6OjI48fP9bHEBgYyOHDh7l16xYAGzdupFu3bvoezZiYGNasWWPQDj8/P7RaLdeuXStUHNOmTSM5OVk/3bx5s8htEf/PxMQk1zGIT5w4AUDFihXzXT97/o0bN3LMu3HjRr4lJdlUKlWuCfTFixcBcHJyKnAbQgiRm+ze6lOnTuWY99///rfQFzRmZmbmeC4iIgIABweHp4hQFER6rsuJgIAAatSowapVq6hatSparZYGDRqQkZGhX+afZ7nZPb3/PFvXarVERkZiYmJCXFxcvvtLTU0lICCABQsW5JiXnbjnZfjw4bz55pssWbKE8PBwBgwYkGtPZUFSU1N54YUX2LhxY4552clP8+bNqV27Nps2bWLMmDFs3bqVNWvWGGxj1KhRhISE5NiGm5tboeKwsLDAwsKiyPGL3DVq1Ihff/2V+fPnM378eFQqFfHx8WzZsgWAAQMG5Lt+tWrVqF69Oj/++CNOTk5UqlQJnU7Hr7/+SnR0NK+++mqBMbRq1Yr9+/fzxRdfEBQUhLm5Obdv32bDhg0oFAr8/PxyrGNiYsKOHTuKrYZVq9UWaaST51F6err0tD4jpgolWp2OnTt3lvvPr+J8b+U2Ikvz5s3ZunUre/fuxc3NjTp16qBWq9myZQvJycmFGu3D1dWVmzdvEhYWxqRJk7CxseHXX3/l8OHDAAwePLg4miP+R5LrcuDvv/8mNjaWVatW0aZNGyDrIr2iWrhwIZcuXeLIkSP4+fkRHh6e50UVTZs2ZfPmzbi7u+d5lm1ubp5rvVnXrl2xtrbm008/Zc+ePfz8889FjjU7hm+//ZbKlSvne7OWwMBANm7cSPXq1VEqlQZfzk2bNuXChQtFrvcWxScwMJCrV6/y119/8e6776JQKPQJa/v27bGzs8t3fYVCwRtvvMHnn3/OggULqF69Og8fPuTevXv4+Pjg6+tbYAx+fn5cuXKFy5cvM336dMzNzfX1vn369MnzZFBGXSgZmqf4Cf9p1i1tnqYt2aeAFhYWciOaEqZUKhk8eDCrV6/ms88+w9zcHLVajVarxdHRkYEDBxa4jXHjxvHuu++SmppKWFiYwbxmzZrJxYzFTN4x5YCDgwMVK1bkiy++wMXFhYSEBP2FiYX166+/MnPmTH744Qd8fX356KOPGD9+PO3ataNWrVo5lh83bhyrVq1i4MCBTJkyBUdHR+Li4ti0aRNffvklJiYmuLu7ExUVxfXr1/UlG0qlEhMTE4KCgpg2bRoeHh76EUuKKjAwkIULF9KjRw9mz55N9erVuXHjBlu2bGHKlCn6n94CAwMJCwvj/fffp2/fvga9NFOnTqVly5YEBwczfPhwrK2tuXDhAvv378/zYk5R/N59910OHjzI0aNHycjIwN7entdee63QvyZUqlRJf/HutWvX9ONc16pVq8A7b2ULDg7W9wSlpaVRu3ZtAgICpCTEiBQKBVYqFYO+X23sUIxKqVCgVCie+jhYqVSFfj+IZ8vb25t3332XHTt2kJCQgJmZGa1ataJVq1aF6kU3NTVl3rx5bN68mVOnTqHVarG2tub111/XXxsiio8k1+WAUqlk06ZNhISE0KBBA7y8vFi+fHmhx+J9/Pgxb7zxBkFBQQQEBAAwcuRIdu7cyZtvvplrz3LVqlWJjIxk6tSpdOnShfT0dGrUqIG/v7/+g2HSpEkMHjyYevXqkZaWxrVr1/S14MOGDeODDz4ocLih/FhZWfHzzz8zdepUevfuzYMHD6hWrRqdOnUy6MmuU6cOLVq04OTJkzluaNOoUSOOHDnC9OnTadOmDTqdjtq1axdYeiCKX6dOnejUqdMTr29hYcGLL77Iiy+++MTb8PHxwcfH54nXF8+WiYkJOyIinvomMk87PrSxKRUKtDode/bseapeZ7mJjHHZ2trqR656Un369MkxoIEofgqdDGIpSqGjR4/SqVMnbt68SZUqVYwdzjOVkpKCnZ0dycnJ+ZarCCFKnlqtpnPnzqxv3xvTJ6izvfXwAROj9rL4RT+qWlcohggLptZqefPwFg4cOCAlHUI8Q4X9/pZ3nShV0tPTuXv3LmFhYfTr1++5S6yFEGWDRqeFJyhZ1ui0+n/VRqrfzo5BCGEcklyLUuWbb75h2LBhNGnShHXr1hnM27hxI6NGjcp1vRo1ahR67E8hhMhLdt120JFtT7WdKSf3P5uAnpDUSwthPFIWIsqMBw8e8Oeff+Y6z8zMjBo1apRwRE9GykKEKN00Gk2Zv+231EsL8exJWYh47lSoUIEKFYxTwyiEKD8Kk5SW9gRcp9OhVqtLZF+SyAthSJJrIYQQogg0Gg0B3bvxKO2xsUMpFaxUluyI2CkJthD/I8m1EEIIUQQ6nY5HaY/5qp0XJkaqa779KJ1pJ68xr0VNXKyMdwdFjU7HsCOxpboXX4iSVr7vlSueievXr6NQKIiOjtY/FxkZScOGDTEzM6Nnz55Gi02ULampqSQkJJCRkWHsUIQokIlCganSOFN2Um/MGP4Zh8jy559/5nlt0L9lZmby8OFDtM/RXUFFFum5FsUiNDSUJk2asHv3bmxsbIp1X0FBQSQlJbFt27Zi3Y8oPrGxsaxdu9Ygqa5cuTITJkzA3NzciJGJsqy46qJLqpa5LCnKMXkea7R/+OEHoqKi9K83hULBiy++SN++fXMse//+fXbt2sW5c+fQaDQ4ODjQtm1bXnrpJRnh5TkhybUoFvHx8YwePVp/i3Eh8nLz5k1WrVoFZN2W3MnJiWvXrpGYmMjcuXOZPXu2kSMUUPov4Ps3jUZDr549eZSWZuxQnmtanQ6lgiLd1VJlacm27dsLlWCXhUR806ZNnD59GoVCob/L8I0bN/jll19Qq9W89tpr+mUfPHjAxx9/jE6nw9/fH0dHRy5cuMD27dtJTk6me/fuRmqFeJYkuRZ6P/zwA7NmzSIuLg4rKyt8fHzYvn071tbWfPnllyxevFh/i/KQkBDGjh2bYxvXr1+nZs2aAAwdOpShQ4cSHh5OUFBQvvv+7bffmDx5MkePHsXa2pouXbqwZMkSKlWqlG9sCxcuZO3atQD6M/5Dhw7Rvn17bt68ycSJE9m3bx9KpZI2bdqwbNky/YcfkG+7stvy7bffsmLFCk6fPk2DBg3YuHEjycnJjBkzhkuXLtGmTRvWrVuHk5PT0/4JyqUNGzYAEBgYaHAr8UWLFnHnzh1OnjxJixYtjBVesZBEteSs6dcRE+Wz7Q1MV2sYvvnwM91mWaXVZU2FPc6ZGi3DNx/Gz8+vUNu3UqnYERFRahNsjUbD6dOnUSqVzJo1C5VKBUBaWhrvvfcep0+fpl+/fvr4jx49yuPHj5k8eTJ2dnYANG7cmMqVK7Nnzx5eeukl7O3tjdUc8YxIci0AuH37NgMHDuTDDz+kV69ePHjwgKNHj6LT6di4cSMzZ85k5cqV+Pj48OuvvzJixAisra0ZPHiwwXZcXV25ffs2Xl5ezJ49mwEDBug/QPKSlJREx44dGT58OEuWLCEtLY2pU6fSv39/fvrpp3xjmzRpEhcvXiQlJYXw8HAAHB0dyczMxM/Pj1atWnH06FFMTU2ZO3cu/v7+nDt3DnNz80K367333mPp0qW4ubkxdOhQXn/9dSpUqMCyZcuwsrKif//+zJw5k08//TTX9qWnp5Oenq5/nJKS8qR/pufSvXv3MDc3N0isAUaMGMGcOXM4fPhwvsm1JKolZ93IAZg8wS3BjSFdrWbol99jolQ80W3M86NWSo3svxX2OKu1WrQ6XaFeS5lqNUFffs/jx4+xsDDeRZuQdw/6b7/9BoC3t7c+sQZQqVR4e3vz+++/89tvv9G4cWP98o0bN87xvejr68vevXu5cOECrVu3LsaWiJIgybUAspJrtVpN79699TdjadiwIZCVXC5evJjevXsDULNmTS5cuMDnn3+eI7k2MTHB2dkZhUKBnZ0dzs7OBe47O7n94IMP9M+tXr0aV1dXLl++TGpqap6xQdaHWHp6usG+NmzYgFar5csvv9T3aIeHh2Nvb8/hw4fp0qVLods1adIkfS/L+PHjGThwIAcPHsTX1xeAYcOGsWbNmjzbN2/ePGbNmlXgcSivdDodyly+ZLO/qPK72Eej0RAQEMCjR4+KLb7isubtkZialI1E9XGGmuHLv8REqSwzMas1ZSPO8qowr6WMTFAqFHTr1q2EosqblZUVO3bsyJFgZ2ZmAuSa/GdfL5K9DGR9npmZmeVY1tTUFIVCIRc3PickuRZA1s9SnTp1omHDhvj5+dGlSxf69u2Lubk58fHxDBs2jBEjRuiXV6vVBfZIF1ZMTAyHDh3K9cLH+Ph4unTpkmtsDg4O+W4zLi4ux01nHj9+THx8PA8fPix0uxo1aqT/f5UqVQDD5L5KlSokJibmGcu0adMIDQ3VP05JScHV1TXP5csbGxsbUlNT+e9//2tQo79u3ToAmjZtaqzQio1SqSBoyRfGDqPINGXoi1+jKzuxlkeFeS2VhV+kGjVqxKZNmzh//jwajUaffGs0Gn2v9j+/Qzw8PIiJicHf3x9LS0v982fPnkWj0eDh4VGyDRDFQpJrAWT1OO/fv5/jx4+zb98+VqxYwfTp09mxYwcAq1at4sUXX8yxzrOQmppKQEAACxYsyDHPxcUlz9iioqL09d25bfOFF15g48aNOeY5OTmRmpoKFK5d/+xlyO4F//dz+fU2WFhYGP0nzdKsT58+rF27lqVLl1K/fn1q167NiRMnuHv3LiYmJnTp0iXPdU1MTNixY0eZ+BL+J61Wm2tvfWmVXcoy6ItvjR2KKOOUKFAqFIV+LRXl4sfilFdZiLm5OTVr1uTatWu8++67+pKO48ePk5mZSc2aNQ1GPGrbti1nz57ls88+4+WXX9Zf0Lh//36aNGmi78ARZZsk10JPoVDg6+uLr68vM2fOpEaNGkRGRlK1alWuXr1KYGBgsey3adOmbN68GXd3d0xNc39J5hbb1q1bCQ0NxdzcHI1Gk2Ob3377LZUrV8bW1jbH9uzs7Iq9XaJwGjZsSLdu3di1axe///47v//+OwCWlpa8/fbbBa5v7C/d8sDU1JQdERFl6iRGrVbj7++PRqsDnm0vdtY2xT8V9jjryBphZM+ePXl+3v9TWRgtZNy4cSxfvpyEhAQOHz6sf97NzY1x48YZLOvk5MSoUaPYvHmz/johU1NTmjdvzquvvlqSYYtiJMm1ACAqKoqDBw/SpUsXKleuTFRUFHfv3sXb25tZs2YREhKCnZ0d/v7+pKenc/r0ae7fv29Q7vCkxo0bx6pVqxg4cCBTpkzB0dGRuLg4Nm3axJdffsnp06fzjA3A3d2dvXv3EhsbS8WKFbGzsyMwMJCFCxfSo0cPZs+eTfXq1blx4wZbtmxhypQpVK9evdjbJQqvQ4cOdOjQQf+3bdCggcGoLsL4SnuC828KhQIrlYqg738ydijPNaUiayrKcbZSqTAzMytzr6n8hISEkJaWxpEjRwBo166dwQWO/+Tm5saECRO4e/cujx49onLlylhZWZVkuKKYSXItALC1teXnn39m6dKlpKSkUKNGDRYvXswrr7wCZF3MsXDhQiZPnoy1tTUNGzZkwoQJz2TfVatWJTIykqlTp9KlSxfS09OpUaMG/v7+KJXKAmMbMWIEhw8fplmzZqSmpuqH4vv555+ZOnUqvXv35sGDB1SrVo1OnTrpe7KHDx9erO0SRffvEh0hnpSJiUmx9bZn94qLrAsOtToK3RMNZaM3+kmoVKpCvy4UCgWVK1cu5oiEsSh0Zel3PiGeAykpKdjZ2ZGcnJxryYoQonRTq9V07tyZr9p5Ge3237cfpTPt5DXmtaiJi5XxrunQ6HQMOxLLgQMHCp1cC1FWFfb7W94JQgghRBFklZxYMuxIrLFDYdrJa8YOASuVpdy2W4h/kORaFLvRo0fr78L3b2+88QafffZZCUckhBBPLqvkZGeZusCzOD2vZR5CPCkpCxHFLjExMc+7Etra2pa7ujMpCxFCCCHKHikLEaVG5cqVy10CLYQxlLVbwQthDNLTLoqbJNdCCPEcuHfvHv3790Ot1hS8sBDlmJXKkh0ROyXBFsVGkmshhHgOJCcno1ZrGN/aDGebsnP3RyFKkkYHM/Y/ll94RLGST+BSzN3dnaVLlxZqWYVCwbZt24o1nuvXr6NQKIiOjs53ufbt2z/VWNEFteXw4cMoFAqSkpKeeB9CPK9MFGCiVMgkk0y5TTKoiSgBklyXgJJIfI3BWElu69atuX37NnZ2dgUuK4m4KC80GikHEaIg2v/1WMv7RRQnSa5FmWNubo6zs3OJjquq0+lQq9Ultj8hikp+5haiYNlvE3m/iOJUrpLr9u3b89ZbbzFhwgQcHByoUqUKq1at4uHDhwwZMoQKFSpQp04ddu/erV/nt99+45VXXsHGxoYqVarw5ptv8tdffxlsMyQkhClTpuDo6IizszNhYWH6+e7u7gD06tULhUKhfxwfH0+PHj2oUqUKNjY2NG/enAMHDjxV+/766y969eqFlZUVHh4e/PjjjwbzC2rLnj17eOmll7C3t6dixYp0796d+Pj4XPd1/fp1OnToAICDgwMKhYKgoCD9fK1Wm+cxedq2/Ls3+saNGwQEBODg4IC1tTX169dn165d+caYnp5OSEgIlStXxtLSkpdeeolTp07l2Mfu3bt54YUXsLCwYMOGDSiVSk6fPm0Q69KlS6lRowZarbZIbRTiWZLXnxAFk55rURLKVXINsHbtWipVqsTJkyd56623GDNmDP369aN169acPXuWLl268Oabb/Lo0SOSkpLo2LEjPj4+nD59mj179vDnn3/Sv3//HNu0trYmKiqKDz/8kNmzZ7N//34AfcIWHh7O7du39Y9TU1Pp2rUrBw8e5Ndff8Xf35+AgAASEhKeuG2zZs2if//+nDt3jq5duxIYGMi9e/cACtWWhw8fEhoayunTpzl48CBKpZJevXrl+qXt6urK5s2bAYiNjeX27dssW7asUMfkadvyb+PGjSM9PZ2ff/6Z8+fPs2DBAmxsbPKNccqUKWzevJm1a9dy9uxZ6tSpg5+fX459vPPOO8yfP5+LFy/y6quv0rlzZ8LDww2WCQ8PJygoCKUy97dTeno6KSkpBpMQz1pGRoaxQxCi1MvUZH2fpaenGzkS8Twrd8l148aNmTFjBh4eHkybNg1LS0sqVarEiBEj8PDwYObMmfz999+cO3eOlStX4uPjwwcffEDdunXx8fFh9erVHDp0iMuXL+u32ahRI9577z08PDwYNGgQzZo14+DBgwA4OTkBYG9vj7Ozs/5x48aNGTVqFA0aNMDDw4M5c+ZQu3btHL3NRREUFMTAgQOpU6cOH3zwAampqZw8eRKgUG3p06cPvXv3pk6dOjRp0oTVq1dz/vx5Lly4kGNfJiYmODo6AlnjWDs7OxvUQOd3TJ62Lf+WkJCAr68vDRs2pFatWnTv3p22bdvmGePDhw/59NNPWbhwIa+88gr16tVj1apVqFQqvvrqK4Ntz549m5dffpnatWvj6OjI8OHD+eabb/QfzGfPnuX8+fMMGTIkz7bMmzcPOzs7/eTq6lro4yBEYcnP3EIUTMpCREkod8l1o0aN9P83MTGhYsWKNGzYUP9clSpVgKy7CsbExHDo0CFsbGz0U926dQEMyiX+uU0AFxcXEhMT840jNTWVSZMm4e3tjb29PTY2Nly8ePGpeq7/GYe1tTW2trb6OArTlitXrjBw4EBq1aqFra2tvoTlSWJ6kmNS2Lb8W0hICHPnzsXX15f33nuPc+fO5bvt+Ph4MjMz8fX11T9nZmZGixYtuHjxosGyzZo1M3jcs2dPTExM2Lp1KwBr1qyhQ4cO+mOVm2nTppGcnKyfbt68mW98QjwJU1MZWVWIgpj+b7gQMzMzI0cinmfl7tP4328ohUJh8Fz2RXJarZbU1FQCAgJYsGBBju24uLjku82C6h8nTZrE/v37WbRoEXXq1EGlUtG3b9+n+mk3vzgK05aAgABq1KjBqlWrqFq1KlqtlgYNGjxRTE9yTJ50/eHDh+Pn58fOnTvZt28f8+bNY/Hixbz11ltFjvvfrK2tDR6bm5szaNAgwsPD6d27N19//bVBOUxuLCwssLCweOpYhMiPJAtCFMz0f+V75ubmRo5EPM/KXXJdFE2bNmXz5s24u7s/Va+QmZlZjosnIiMjCQoKolevXkBW8nv9+vWnCTdfBbXl77//JjY2llWrVtGmTRsAjh07lu82sz+cSsOFIa6urowePZrRo0czbdo0Vq1axVtvvZVrjLVr18bc3JzIyEhq1KgBQGZmJqdOnSrU+NzDhw+nQYMGfPLJJ6jVanr37l0sbRKiKEpy9Bwhyqrst4m8X0RxKndlIUUxbtw47t27x8CBAzl16hTx8fHs3buXIUOGFCmhdHd35+DBg9y5c4f79+8D4OHhwZYtW4iOjiYmJobXX3+9WK/2L6gtDg4OVKxYkS+++IK4uDh++uknQkND891mjRo1UCgUREREcPfuXVJTU4st/vxMmDCBvXv3cu3aNc6ePcuhQ4fw9vbOM0Zra2vGjBnD5MmT2bNnDxcuXGDEiBE8evSIYcOGFbg/b29vWrZsydSpUxk4cCAqlaq4myhEgeRWzkIUTPm/pFreL6I4SXKdj6pVqxIZGYlGo6FLly40bNiQCRMmYG9vn+fIELlZvHgx+/fvx9XVFR8fHwA++ugjHBwcaN26NQEBAfj5+dG0adPiakqBbVEqlWzatIkzZ87QoEED3n77bRYuXJjvNqtVq8asWbN45513qFKlCsHBwcUWf340Gg3jxo3D29sbf39/PD09+eSTT/KNcf78+fTp04c333yTpk2bEhcXx969e3FwcCjUPocNG0ZGRgZDhw4ttnYJIYQQouxR6OSSWSGKbM6cOXz//fcFXjyZm5SUFOzs7EhOTsbW1rYYohPl0bVr1xgyZAjjW5vhbCP9JkLkRqODGfvTOXDggFwELIqssN/f8soSogiya+NXrlzJ3LlzjR2OEHp2dnaYmpqw7HimsUMRolSzUllKzbUoVpJclwEbN25k1KhRuc6rUaMGv//+ewlH9OTKeluCg4P55ptv6Nmzp5SEiFLF0dGRvXv3yfi9QhRAoVBIzbUoVlIWUgY8ePCAP//8M9d5ZmZm+hEvyoLnqS1PSspChCheGo2m1J5kSGInRNklZSHPkQoVKlChQgVjh/FMPE9tEUKUPhqNhoDu3XiU9tjYoeTKSmXJjoidkmAL8RyT5FoIIcRzQ6fT8SjtMeO7mVKEQZ2K7F6qjrWHNAzuYIKjTeHqd7VaWLbzcantVRdCPBtySbl4Yu3bty/UTVdKq8OHD6NQKEhKSjJ2KEKIZ0ypBBOlovim7PGSFYVfpziTfSFE6SE916Lcat26Nbdv38bOzs7YoYgnlJGRwbfffsvFixdRq9VYWVnx0ksv0blz5zzX0Wq1nDp1ilOnTpGcnIyTkxOtW7emQYMG+a6zdetWfv31VzIyMjA3N6dZs2a8+uqrRRrzXhRdUeun1Wp1MUbzbBQ1RqnTFiUhPj6ebdu28eeff6JQKKhSpQp9+vTJ91qomzdv8sMPP3Dnzh10Oh2VK1emZ8+e1KlTpwQjL30kuRalVnYSU1zMzc1xdnYutu2L4pWRkcH777/Pw4cPsbW1xcHBgVu3brFnzx5u3rzJkCFDcqyj1Wr5+uuviY6Oxtvbm9q1axMfH8+aNWt4+eWX8fPzy3WdRYsWkZiYiJWVFW5ubty5c4djx45x9erVAu9kKp5caa+fLiqtTodCAf7+/kVaT+q0RXE7d+4c69atQ6FQ4OzsjE6n49atW6xcuZLhw4fj5eWVY50rV67wxRdfoNPpqFKlCkqlkjt37vDZZ58RGBiov2leeSTJtSiUhw8fMmbMGLZs2UKFChWYNGmSwfz09HSmT5/ON998Q1JSEg0aNGDBggW0b98egDVr1jBhwgTWrFnD5MmTuXnzJu3atePLL7/E1dUVgLCwMLZt20ZwcDDvv/8+N27cQKvVkpSUxKRJk9i+fTvp6ek0a9aMJUuW0LhxYwBiYmKYMGECp0+fRqFQ4OHhweeff06zZs24ceMGwcHBHDt2jIyMDNzd3Vm4cCFdu3bl8OHDdOjQgfv372Nvbw/A5s2bmTlzJnFxcbi4uPDWW28xceJEfTvd3d0ZOXIkcXFxfP/99zg4ODBjxgxGjhxZ/H8EYWD79u08fPgQf39/fU+1Vqtl2bJl/P7779y8eVP/2sp24cIFoqOjefPNN/WvH4B9+/axb98+fHx8qFy5ssE6kZGRJCYm0rRpU15//XX982vWrOG3337j5MmTtGjRohhb+mRK84gZhaVWq3mU9pjpgz0xURaurjlDrWX++ivFHNmT0emypqK0R6PV8f7ay2RmZpbZv6dWq31uf+F5Xn5V+O677zAxMWHq1Kk4OjoCkJiYyKJFi/jmm28ICwvLsc7XX3+NQqFg4sSJ+o6q+/fvs2DBAn744QdJroUoyOTJkzly5Ajbt2+ncuXK/Oc//+Hs2bM0adIEyBr/+cKFC2zatImqVauydetW/P39OX/+PB4eHgA8evSI999/n3Xr1mFubs7YsWN57bXXiIyM1O8nLi6OzZs3s2XLFv0HVr9+/VCpVOzevRs7Ozs+//xzOnXqxOXLl3F0dNSfIX/66aeYmJgQHR2NmZkZAOPGjSMjI4Off/4Za2trLly4gI2NTa5tPHPmDP379ycsLIwBAwZw/Phxxo4dS8WKFQkKCtIvt3jxYubMmcN//vMffvjhB8aMGUO7du1yPbOHrBOP9PR0/eOUlJQn/juI/3f+/HlUKpVBCYhSqSQoKIj333+fAwcO5Oi9Pnv2LNWqVTNIrAE6dOjA0aNH+fXXX3P0Xh8/fhylUslrr71m8Pwbb7zBtGnTOHr0aKGS65JMdjUaDb169eTRo7QS2V9xy65ZLuyypV1R2qPV6lA+QW93aaJUKtBqy+aJQUFUKku2bdteYgl2cSTzCQkJPH78mFatWukTa4DKlSvTuHFjfv31V/766y8qVaqkn3f//n0ePHhA48aNDX4BdnBwoGXLlvpf9mrVqvVMYy0rJLkWBUpNTeWrr75iw4YNdOrUCYC1a9dSvXp1IOuNGR4eTkJCAlWrVgVg0qRJ7Nmzh/DwcD744AMAMjMzWblyJS+++KJ+G97e3gY9fxkZGaxbtw4nJycAjh07xsmTJ0lMTMTCwgKARYsWsW3bNn744QdGjhxJQkICkydPpm7dugD6ZD47tj59+tCwYUOAfN/oH330EZ06deLdd98FwNPTkwsXLrBw4UKD5Lpr166MHTsWgKlTp7JkyRIOHTqUZ3I9b948Zs2aVahjLQovMzMz13p5BwcHFAoFjx49yjEvLS3N4Msjm5mZGba2tqSl5UxGMzIysLCwyNHzZmpqirm5ucGJU140Gg0BAd1LPNld+E5fTMpwj2Ha4wymf7TN2GEYlQ7Q6uCDkA5l4sTh3zIyNbz78ZEy/1rMTaZaw7SFW3ItJysuVlYqduyIeKYJdnJyMkCuZZJVqlTRL/PP5PrBgwcA+u/qf3JxcTHYbnkkybUoUHx8PBkZGfqkGLLuBpedTJ4/fx6NRoOnp6fBeunp6VSsWFH/2NTUlObNm+sf161bF3t7ey5evKhPrmvUqGHwZo2JiSE1NdVgO5CVJMXHxwMQGhrK8OHDWb9+PZ07d6Zfv37Url0bgJCQEMaMGcO+ffvo3Lkzffr0oVGjRrm28+LFi/To0cPgOV9fX5YuXYpGo9F/mP1z/ez6tMTExDyP37Rp0wzqclNSUnKUK4iic3Bw4O7duzx+/BhLS0v982fOnEGn0+Hu7p5jnWrVqhEVFUV6err+ZA3g7t27/Pnnn/oypn+qUqUKly9fJjEx0aBk5I8//iA9Pb3UXrijVCqYPP8HY4chyjmFQoFS8fy+FpVKRdYZUBlWs2ZNAE6fPo2vr6/BvOjoaBQKRY7vLGdnZxQKBefOncvxq8qpU6cA9N/D5ZEk1+KppaamYmJiwpkzZ3KcTedVgpEXa2vrHNt2cXHh8OHDOZbNrpMOCwvj9ddfZ+fOnezevZv33nuPTZs20atXL4YPH46fnx87d+5k3759zJs3j8WLF/PWW28VKa5/yi45yaZQKNBqtXkub2FhYZDIiWeja9eurFmzhgULFvDGG29Qs2ZNIiMj2bFjByYmJrz88ss51mndujWRkZGsXbuWnj174uTkREJCAj/88AN2dnb6Mqd/evXVV1m0aBHLli1jwIABNGrUiF9//ZXvv/9eP78gJiYm7NgRUaI1s89DnWt6ejrdunUzdhhGpQCUCvjP8kPGDuWJlXTpREkq6fdZcZSF2NjYUKNGDW7cuMH69evp06cParWa77//njt37uDh4ZFjcAFzc3O8vLy4dOkSX375Jf3798fU1JQtW7Zw/fp1qlevXq7vQCzJtShQ7dq1MTMzIyoqCjc3NyCr3ury5cu0a9cOHx8fNBoNiYmJtGnTJs/tqNVqTp8+re+ljo2NJSkpCW9v7zzXadq0KXfu3MHU1DTXnshsnp6eeHp68vbbbzNw4EDCw8Pp1asXAK6urowePZrRo0czbdo0Vq1alWty7e3tbVD/DVkXs3l6ej6XXwplXYMGDejYsSM//fQTn376qf55U1NThg8fnutIM46OjgwdOpQNGzbw4YcfYmpqilqtplKlSowYMSLHiRNk9dD06dOHLVu2sG7dOv3zCoWCgQMH5vhVJS/yGnpymiLU6xZlWWMpSozZZSF79uzB1LRsfmU/Lxf9Pc9GjRrFkiVLiImJISYmRv+8s7Mzw4YNy3WdoKAgli9fzqVLl5g9e7b++YoVKzJ69Ohij7k0K5vvVFGibGxsGDZsGJMnT6ZixYpUrlyZ6dOn68/WPT09CQwMZNCgQSxevBgfHx/u3r3LwYMHadSokb7nyczMjLfeeovly5djampKcHAwLVu2zPdisM6dO9OqVSt69uzJhx9+iKenJ7du3WLnzp306tWL+vXrM3nyZPr27UvNmjX573//y6lTp+jTpw8AEyZM4JVXXsHT05P79+9z6NChPJP5iRMn0rx5c+bMmcOAAQM4ceIEK1eu5JNPPnnGR1Q8K127dqVt27bs37+f5ORkatSoQZs2bfJNQjw8PJgxYwYXLlwgJSUFJycnPD098+19atWqFS+88AL79+/n7t27VKlShU6dOhXrUJEiKymzUlny/trLxg7lmVAosqaitsdKZYmZmZkkqKLYmJubM3XqVK5cuUJUVBSQ9UtfftcpmZqaEhoayvXr14mMjESr1dKiRYs8rz8qTyS5FoWycOFCUlNTCQgIoEKFCkycONHgYoXw8HDmzp3LxIkT+eOPP6hUqRItW7ake/fu+mWsrKyYOnUqr7/+On/88Qdt2rThq6++yne/CoWCXbt2MX36dIYMGcLdu3dxdnambdu2VKlSBRMTE/7++28GDRrEn3/+SaVKlejdu7f+AkKNRsO4ceP473//i62tLf7+/ixZsiTXfTVt2pTvvvuOmTNnMmfOHFxcXJg9e7bBxYyi9LGxsdH/SlFYZmZmOUYMKYi5uXm5L1EoaSYmJuyI2Fnkm8iU1pE1lAoFuifohZaeX1FSPDw8DAYFKAx3d/d8f1kujxS6sjpwpihTsse5lluNZ13QaGdnR3JycrmuSROiOKjVajp37sz4bqbFervxe6k61h7SMLiDCY42hR1WD5btVHPgwIEyW+IhRHlW2O9veXcLIYR4bmSXkizbWTJ3dVx7SFOk5a1UligUZW9IPSFE4UlyLYQQ4rnxJKUkJUlKPIR4/klZiBAlTMpChBBCiLJHykKEEEKUGyV5e/mySHrMhSg5klwLIYQo0+7du0f//v1Qq4tW/1yeqFSWRETslARbiBIgybUQQogyLTk5GbVaQ4+OChxs5WLBf9NqYd2Pj6VnX4gSUrbvjStKhfbt2zNhwoQS36+7uztLly59ZtszVjuEEM+GUgFKpUKmHJOx/zJClC/ylhNCCFGmaTRSDpIf7f96rOU4CVEyJLkWQghRpkm5QwH+d3jkOAlRMiS5Fs+EVqtlypQpODo64uzsTFhYmH5eUlISw4cPx8nJCVtbWzp27EhMTIx+fnx8PD169KBKlSrY2NjQvHlzDhw4YLD9xMREAgICUKlU1KxZk40bN+aI4aOPPqJhw4ZYW1vj6urK2LFjSU1NNVgmMjKS9u3bY2VlhYODA35+fty/f79Q7ShMW8TT0Wg0qNVqmXKZMjIyjB5DaZ0yMjKM/dIt1bJ7rtPT043+tyqNk7y38p/kF4+ikwsaxTOxdu1aQkNDiYqK4sSJEwQFBeHr68vLL79Mv379UKlU7N69Gzs7Oz7//HM6derE5cuXcXR0JDU1la5du/L+++9jYWHBunXrCAgIIDY2Fjc3NwCCgoK4desWhw4dwszMjJCQEBITEw1iUCqVLF++nJo1a3L16lXGjh3LlClT+OSTTwCIjo6mU6dODB06lGXLlmFqasqhQ4cMPjjyawdQYFtyk56eTnp6uv5xSkrKMz32zwuNRkNAQHcePUozdiilklKpQKuVnkdRdFpt1lB8PXr0MHYopZK8t/JnZaVix44IGWmmCOQmMuKptW/fHo1Gw9GjR/XPtWjRgo4dO9K9e3e6detGYmIiFhYW+vl16tRhypQpjBw5MtdtNmjQgNGjRxMcHMzly5fx8vLi5MmTNG/eHIBLly7h7e3NkiVL8rwI8YcffmD06NH89ddfALz++uskJCRw7NixIrdj/vz5HDt27InaEhYWxqxZs3I8LzeRMSTJdcFm/6cXJnJ1Wg43bv7FF2uP0KuTAgc7OT7/9vixhq93yesnN5lqDbM/3C7JdT4kuf5/chMZUaIaNWpk8NjFxYXExERiYmJITU2lYsWKBvPT0tKIj48HIDU1lbCwMHbu3Mnt27dRq9WkpaWRkJAAwMWLFzE1NeWFF17Qr1+3bl3s7e0NtnngwAHmzZvHpUuXSElJQa1W8/jxYx49eoSVlRXR0dH069fvidoBFKotuZk2bRqhoaH6xykpKbi6uuYbR3lkYmLCjh0RUheaC41GQ69ePZn5wVZjhyLKIkVWz7W8fnKnUlmybdt2SR7zIDcgKjpJrsUzYWZmZvBYoVCg1WpJTU3FxcWFw4cP51gnOzmeNGkS+/fvZ9GiRdSpUweVSkXfvn2LVEd5/fp1unfvzpgxY3j//fdxdHTk2LFjDBs2jIyMDKysrFCpVE/cDqBQbcmNhYWFQU+3yJt8gOfO1NRUTjzyERsby7hx44wdRqmlVGZdzLh9+3asra2NHU6pI8mjeNYkuRbFqmnTpty5cwdTU1Pc3d1zXSYyMpKgoCB69eoFZCWx169f18+vW7cuarWaM2fO6MtCYmNjSUpK0i9z5swZtFotixcvRvm/nz2/++47g/00atSIgwcP5lqi8azaIkRxkS//vMnJa/6USgWgw9LSElNT+doXorhJ8ZUoVp07d6ZVq1b07NmTffv2cf36dY4fP8706dM5ffo0AB4eHmzZsoXo6GhiYmJ4/fXX9b3FAF5eXvj7+zNq1CiioqI4c+YMw4cPN+iJrlOnDpmZmaxYsYKrV6+yfv16PvvsM4NYpk2bxqlTpxg7diznzp3j0qVLfPrpp/qa7GfRFiFEyZMTj/wpFVl3rZTjJETJkORaFCuFQsGuXbto27YtQ4YMwdPTk9dee40bN25QpUoVIGsIPQcHB1q3bk1AQAB+fn40bdrUYDvh4eFUrVqVdu3a0bt3b0aOHEnlypX18xs3bsxHH33EggULaNCgARs3bmTevHkG2/D09GTfvn3ExMTQokULWrVqxfbt2wvdk1OYtgghhBCifJPRQoQoYYW92lgIUTjXrl1jyJAh9OiowMFWYexwSh2tFtb9qOXAgQNSFiLEU5DRQoQQQpQLdnZ2mJqasP0nDfrbEQoDKpUlCoWceAhREiS5FkIIUaY5Ojqyd+8+GU0lHzIihhAlR5JrIYQQZZ4kjkKI0kIuaBRCiFzcu3eP8ePHc+/ePWOHIoQQogyR5FoIIXKRnJxMTEwMycnJxg5FCCFEGSLJdRnTvn17JkyYkOd8d3d3li5dWuxxKBQKtm3bVuz7EUIIIYQoS6TmWggh8qFWq1Gr1cYOQwjxhORiTlHSJLkWpY5Op0Oj0ZSq8VhLY0yieGVmZgIwYsQII0cihHgaKpUlERE7JcEWJUYyhTJIrVYTHBzM+vXrMTMzY8yYMcyePTvXMUwTEhJ46623OHjwIEqlEn9/f1asWGFwR8FPP/2URYsWcfPmTWrWrMmMGTN488039fOvXLnCsGHDOHnyJLVq1WLZsmWFjvX69evUrFmTb775huXLl3P27Fnq1KnDxx9/TLt27QA4fPgwHTp0YNeuXcyYMYPz58+zb98+2rZty4IFC/jiiy+4c+cOnp6evPvuu/Tt2xeA+/fvExwczL59+0hNTaV69er85z//YciQIWRkZBAaGsrmzZu5f/8+VapUYfTo0UybNk0f06+//kqTJk0ASEpKwsHBgUOHDtG+ffsnjkk8P7RaLQC9+1TFwdHcyNEIIZ6EVqsj/KsbMkyjKFGSXJdBa9eu1Se7p0+fZuTIkbi5ueXoYdNqtfTo0QMbGxuOHDmCWq1m3LhxDBgwgMOHDwOwdetWxo8fz9KlS+ncuTMREREMGTKE6tWr06FDB7RaLb1796ZKlSpERUWRnJycb813XiZPnszSpUupV68eH330EQEBAVy7do2KFSvql3nnnXdYtGgRtWrVwsHBgXnz5rFhwwY+++wzPDw8+Pnnn3njjTdwcnKiXbt2vPvuu1y4cIHdu3dTqVIl4uLiSEtLA2D58uX8+OOPfPfdd7i5uXHz5k1u3rxZ5LiLGlNu0tPTSU9P1z9OSUkpchyi5Gk0GgAUSgVKE7n5hhBlkVablVTLL4+iJMkrrQxydXVlyZIlKBQKvLy8OH/+PEuWLMmRXB88eJDz589z7do1XF1dAVi3bh3169fn1KlTNG/enEWLFhEUFMTYsWMBCA0N5ZdffmHRokV06NCBAwcOcOnSJfbu3UvVqlUB+OCDD3jllVeKFHNwcDB9+vQBsnrK9+zZw1dffcWUKVP0y8yePZuXX34ZyEpIP/jgAw4cOECrVq0AqFWrFseOHePzzz+nXbt2JCQk4OPjQ7NmzYCsizmzJSQk4OHhwUsvvYRCoaBGjRpFivdJY8rNvHnzmDVr1hPtXxhPdlmIEKLsUquzfoFKT0/HwsLCyNGI8kJGCymDWrZsaVAC0qpVK65cuaLvact28eJFXF1d9Yk1QL169bC3t+fixYv6ZXx9fQ3W8/X1NZjv6uqqT6yz91dU/1zH1NSUZs2a6feRLTtJBoiLi+PRo0e8/PLL2NjY6Kd169YRHx8PwJgxY9i0aRNNmjRhypQpHD9+XL9+UFAQ0dHReHl5ERISwr59+4oc85PElJtp06aRnJysn56kB10IIYQQZYP0XItSw9raWv//1NRUAHbu3Em1atUMlsvufXjllVe4ceMGu3btYv/+/XTq1Ilx48axaNEimjZtyrVr19i9ezcHDhygf//+dO7cmR9++AGlMuuc8p81eHn1UhY1ptxYWFhIj0kZZGZmZuwQhBBPydQ06/NePoNFSZLkugyKiooyePzLL7/g4eGR40pob29vfa1xdu/1hQsXSEpKol69evplIiMjGTx4sH69yMhIg/k3b97k9u3buLi46PdXVL/88gtt27YFsi7IPHPmDMHBwXkuX69ePSwsLEhISMiz3ALAycmJwYMHM3jwYNq0acPkyZNZtGgRALa2tgwYMIABAwbQt29f/P39uXfvHk5OTgDcvn0bHx8fAKKjowtsQ2FjEs+H7PeTTqtDq5GLoYQoy2SkEFGSJLkugxISEggNDWXUqFGcPXuWFStWsHjx4hzLde7cmYYNGxIYGMjSpUtRq9WMHTuWdu3a6csdJk+eTP/+/fHx8aFz587s2LGDLVu2cODAAf02PD09GTx4MAsXLiQlJYXp06cXOeaPP/4YDw8PvL29WbJkCffv32fo0KF5Ll+hQgUmTZrE22+/jVar5aWXXiI5OZnIyEhsbW0ZPHgwM2fO5IUXXqB+/fqkp6cTERGBt7c3AB999BEuLi74+PigVCr5/vvvcXZ2xt7eHqVSScuWLZk/fz41a9YkMTGRGTNmFNiGwsQknh/Zv3Bs2XzLyJEIIZ6GSmWZ62haQhQXSa7LoEGDBpGWlkaLFi0wMTFh/PjxjBw5MsdyCoWC7du389Zbb9G2bVuDofiy9ezZk2XLlrFo0SLGjx9PzZo1CQ8Pp3379kBWgrF161aGDRtGixYtcHd3Z/ny5fj7+xcp5vnz5zN//nyio6OpU6cOP/74I5UqVcp3nTlz5uDk5MS8efO4evUq9vb2NG3alP/85z8AmJub64fWU6lUtGnThk2bNgFZifCHH37IlStXMDExoXnz5uzatUufMK1evZphw4bxwgsv4OXlxYcffkiXLl0KbEdBMYnnR3ZZyKpVq6hZs6aRoxFCPCm5iYwoaQqdDP4oilFuY0qXdykpKdjZ2ZGcnIytra2xwxF5uHbtGkOGDCE8PFySayGEEIX+/pbRQoQQQgghhHhGJLkWT+WDDz4wGJbun1NRx8IWojSxs7OjcePG2NnZGTsUIYQQZYiUhYincu/ePe7du5frPJVKlWPIOiFlIUIIIURZVNjvb7mgUTwVR0dHHB0djR2GEKIc0Gg0SH+QXKAnRGknybUQQohS7969e/Tv3w+1WlPwws85lcqSiIidkmALUUpJci2EEKLUS05ORq3W4PMKWNsbOxrj0Wkh8tvH0oMvRCkmyXU5FxQURFJSEtu2bTN2KCXu321v3749TZo0YenSpUaNSwiRN4USlMrye0MQLZJUC1HaSXItxP9s2bJFf+MQAHd3dyZMmMCECROMF5QQQgghyhRJroX4H7kwU4jSS6ORWmvIKgsBSE9PN24gRiYXdYrSTJLrcuKHH35g1qxZxMXFYWVlhY+PD9u3b8+xnFarZcGCBXzxxRfcuXMHT09P3n33Xfr27atf5rfffmPy5MkcPXoUa2trunTpwpIlS/S3M2/fvj0NGjQAYP369ZiZmTFmzBhmz56NQlHwz7mJiYkMGzaMAwcO4OzszNy5c5k+fbq+Fzm3uz4mJSXh4ODAoUOHaN++PRqNhpEjR/LTTz9x584d3NzcGDt2LOPHj89zv/8sC2nfvj03btzg7bff5u233wYgNTUVFxcXVq9ebXA8tm3bRmBgIHfu3KFChQoF/zGEeALlfaSM8p5MZtNqQaGAbt26GTsUo7JUWbJ92/bnMsGWE4eyT5LrcuD27dsMHDiQDz/8kF69evHgwQOOHj2a6xf1vHnz2LBhA5999hkeHh78/PPPvPHGGzg5OdGuXTuSkpLo2LEjw4cPZ8mSJaSlpTF16lT69+/PTz/9pN/O2rVrGTZsGCdPnuT06dOMHDkSNzc3RowYUWC8QUFB3Lp1i0OHDmFmZkZISAiJiYlFarNWq6V69ep8//33VKxYkePHjzNy5EhcXFzo379/getv2bKFxo0bM3LkSH3M1tbWvPbaa4SHhxsk19mP80qs09PTDRKDlJSUIrVFSGKp0Wjo2asnaY/SjB2KMDIdoNPB0Cm+5bb2XK3WsnbxCfz8/IwdSrFQqSzZVogTB0nCSy9JrsuB27dvo1ar6d27NzVq1ACgYcOGOZZLT0/ngw8+4MCBA7Rq1QqAWrVqcezYMT7//HPatWvHypUr8fHx4YMPPtCvt3r1alxdXbl8+TKenp4AuLq6smTJEhQKBV5eXpw/f54lS5YUmFxfvnyZ3bt3c/LkSZo3bw7AV199hbe3d5HabGZmxqxZs/SPa9asyYkTJ/juu+8KlVw7OjpiYmJChQoVcHZ21j8/fPhwWrduze3bt3FxcSExMZFdu3Zx4MCBPLc1b948g1hE0Wg0GgICuvNIEkvGv9ej3CZUfyT8zXdfHTV2GKWGUqnAxKR83mRZq9Gi0+mey/eDWq1l5fs7CnXiYGWlYseOCEmwSyFJrsuBxo0b06lTJxo2bIifnx9dunShb9++ODg4GCwXFxfHo0ePePnllw2ez8jIwMfHB4CYmBgOHTqEjY1Njv3Ex8frk+uWLVsalIC0atWKxYsXo9Fo8v0guHjxIqamprzwwgv65+rWrYu9vX2R2/3xxx+zevVqEhISSEtLIyMjQ19G8qRatGhB/fr1Wbt2Le+88w4bNmygRo0atG3bNs91pk2bRmhoqP5xSkoKrq6uTxWHKH+USgXLZuUs5RLlk1arA7TGDsMotLqsXtvn9f2gVCpkTJgyTpLrcsDExIT9+/dz/Phx9u3bx4oVK5g+fTpRUVEGy6WmpgKwc+fOHLctt7Cw0C8TEBDAggULcuzHxcWlmFpgSKnM6q35Z5lAZmamwTKbNm1i0qRJLF68mFatWlGhQgUWLlyYo81PYvjw4Xz88ce88847hIeHM2TIkHxryS0sLPTHTxSdiYkJO3ZElOuyEMgqdcp+7ZdHsbGxjBs3zthhGJ2CrJrr1R9GGjsUo3qea64L+16XspDSS5LrckKhUODr64uvry8zZ86kRo0abN261WCZevXqYWFhQUJCAu3atct1O02bNmXz5s24u7tjapr3y+ffSewvv/yCh4dHgR8EdevWRa1Wc+bMGX1ZSGxsLElJSfplnJycgKxyl+we9ejoaIPtREZG0rp1a8aOHat/Lj4+Pt99/5u5uXmuIxS88cYbTJkyheXLl3PhwgUGDx5cpO2KopMvEGFubm7sEEoFhTKr5joiIgJLS0tjh2M0kliK0kyS63IgKiqKgwcP0qVLFypXrkxUVBR3797F29ubc+fO6ZerUKECkyZN4u2330ar1fLSSy+RnJxMZGQktra2DB48mHHjxrFq1SoGDhzIlClTcHR0JC4ujk2bNvHll1/qP+wSEhIIDQ1l1KhRnD17lhUrVrB48eICY/Xy8sLf359Ro0bx6aefYmpqyoQJE1CpVPplVCoVLVu2ZP78+dSsWZPExERmzJhhsB0PDw/WrVvH3r17qVmzJuvXr+fUqVPUrFmz0MfN3d2dn3/+mddeew0LCwv9aCgODg707t2byZMn06VLF6pXr17obQohnkxhRhoqD7KPgpmZWb4dHEII4ym/vzGWI7a2tvz888907doVT09PZsyYweLFi3nllVdyLDtnzhzeffdd5s2bh7e3N/7+/uzcuVOflFatWpXIyEg0Gg1dunShYcOGTJgwAXt7e4OfsQYNGkRaWhotWrRg3LhxjB8/npEjRxYq3vDwcKpWrUq7du3o3bs3I0eOpHLlygbLrF69GrVazQsvvMCECROYO3euwfxRo0bRu3dvBgwYwIsvvsjff/9t0ItdGLNnz+b69evUrl1b31uebdiwYWRkZDB06NAibVMI8WSklzKL4n8fs3I8hCi9FLryXsgonrniuI14abtb4vr163n77be5detWkX+uTklJwc7OjuTkZGxtbYspQiGeL9euXWPIkCH4vALW9saOxnh0Woj8Fg4cOCA910KUsMJ+f8s7U4giePToEbdv32b+/PmMGjVK6kCFKCF2dnaYmprw6265U6NKZSllMkKUYpJcixJ19OjRXMtRsmWPWFJaffjhh7z//vu0bduWadOmGTscIcoNR0dH9u7dV+5HjQG5mE+I0k7KQkSJSktL448//shzfp06dUowGuOQshAhhBCi7JGyEFEqqVSqcpFACyEKp7zf2l48HenFF6WRJNdCCCGMQqPR0K17Nx6nPTZ2KKKMslRZsjNipyTYolSR5FoIIYRR6HQ6Hqc9xnmQQgaGzYU6WcdfW6FSLzC1kwsYc9DCnXWP5ZcPUerIx9kz0L59+1IzRBwULh6FQsG2bdtKJJ7iFhQURM+ePfNdprT9jYQQ/6AEhVIhUy4TyLHJ89hIBiNKKXlplmGHDx9GoVAY3Bq8sG7fvp3vqB1CCFHcNBoZVk88OZ02q8daXkeitJGyECPIyMgw+vjIzs7ORt1/YZSG4yTE05IL9vKWmZlp7BDEc0DeX6K0keT6GVGr1QQHB7N+/XrMzMwYM2YMs2fPRqFQ4O7uzrBhw7hy5Qrbtm2jd+/erFmzhmPHjjFt2jROnz5NpUqV6NWrF/PmzcPa2hrIugvgsmXLiI2Nxdramo4dO7J06VIqV67M9evX6dChAwAODg4ADB48mDVr1gCg1WqZMmUKX375Jebm5owePZqwsDB9vAqFgq1bt9KzZ0+uX79OzZo12bx5MytWrCAqKgoPDw8+++wzWrVqpV9n1apVzJ49m7///hs/Pz/atGnD7NmzC9VzHhYWxrZt2xgzZgxz587l77//pnv37qxatQo7Ozsgq7wjKSmJ5s2b8/HHH2NhYcG1a9c4f/4848eP58SJE1hZWdGnTx8++ugjbGxsDPYxa9YsVq5cSXp6Oq+//jrLly/PMzlPT09n+vTpfPPNNyQlJdGgQQMWLFhA+/btAVizZg0TJkxgw4YNTJw4kZs3b9K1a1fWrVvH999/z3vvvUdycjJvvvkmS5YsKdcX00jymDeNRkPPXj1Je5Rm7FCEeO7otFn/pqeny90q8yCjqRiHvBqfkbVr1zJs2DBOnjzJ6dOnGTlyJG5ubowYMQKARYsWMXPmTN577z0A4uPj8ff3Z+7cuaxevZq7d+8SHBxMcHAw4eHhQFavzpw5c/Dy8iIxMZHQ0FCCgoLYtWsXrq6ubN68mT59+hAbG4utrS0qlcogntDQUKKiojhx4gRBQUH4+vry8ssv59mG6dOns2jRIjw8PJg+fToDBw4kLi4OU1NTIiMjGT16NAsWLODVV1/lwIEDvPvuu0U6RnFxcXz33Xfs2LGDlJQUhg0bxtixY9m4caN+mYMHD2Jra8v+/fsBePjwIX5+frRq1YpTp06RmJjI8OHDCQ4O1p9IZK9naWnJ4cOHuX79OkOGDKFixYq8//77ucYSHBzMhQsX2LRpE1WrVmXr1q34+/tz/vx5PDw8gKy7MS5fvpxNmzbx4MEDevfuTa9evbC3t2fXrl1cvXqVPn364Ovry4ABA/Jsd3p6Ounp6frHKSkpRTpupVlGRgbduncjM0N6IPPT/T9tUZrIBWn/lpGWyZ5Fx40dhiijtOqsevQePXoYO5RSy8pKxY4dEZJglzBJrp8RV1dXlixZgkKhwMvLi/Pnz7NkyRJ9ct2xY0cmTpyoX3748OEEBgbqL7Lz8PBg+fLltGvXjk8//RRLS0uGDh2qX75WrVosX76c5s2bk5qaio2NDY6OjgBUrlwZe3t7g3gaNWqkT+Q9PDxYuXIlBw8ezDe5njRpEt26dQOyeoHr169PXFwcdevWZcWKFbzyyitMmjQJAE9PT44fP05EREShj9Hjx49Zt24d1apVA2DFihV069aNxYsX68tUrK2t9b3tkNVbnr1edo/+ypUrCQgIYMGCBVSpUgUAc3NzVq9ejZWVFfXr12f27NlMnjyZOXPmoFQaXlqQkJBAeHg4CQkJVK1aVd/2PXv2EB4ezgcffABkndx8+umn1K5dG4C+ffuyfv16/vzzT2xsbKhXrx4dOnTg0KFD+SbX8+bNY9asWYU+TmWJTqcjMyOTN2f1Qmkil3D8mzpDzcbZ240dhhBCiBIkyfUz0rJlSxSK/++ZatWqFYsXL9ZfaNGsWTOD5WNiYjh37pxBr61Op0Or1XLt2jW8vb05c+YMYWFhxMTEcP/+fbTarN/AEhISqFevXr7xNGrUyOCxi4sLiYmJhV7HxcUFgMTEROrWrUtsbCy9evUyWL5FixZFSq7d3Nz0iTVkHSOtVktsbKw+uW7YsKFBKcfFixdp3LixPrEG8PX11a+XnVw3btwYKysrg22npqZy8+ZNatSoYRDH+fPn0Wg0eHp6Gjyfnp5OxYoV9Y+trKz0iTVAlSpVcHd3NyhHqVKlSoHHddq0aYSGhuofp6Sk4Orqmu86ZYWpqSkqKxXr39tq7FBKLYVSQcQHPxs7DCGeOwpl1kWNW7Zskbvd5kHKQoxDkusS8s/kECA1NZVRo0YREhKSY1k3Nzd9OYSfnx8bN27EycmJhIQE/Pz8yMjIKHB/ZmZmBo8VCoU+OS/MOtknCgWt86z9+zgVh9TUVExMTDhz5kyOD51/Js65HcMnOa4WFhZYWFg8ZdSlk4mJCRE7IqTmOh9arTbHryciy+PHj+nevbuxwxBllPJ/GYyVlZXUXItSRV6Nz0hUVJTB419++QUPD488zxibNm3KhQsX8rwV+Pnz5/n777+ZP3++vpfz9OnTBstk9/CWxDBEXl5enDp1yuC5fz8uSEJCArdu3dKXYvzyyy8olUq8vLzyXMfb25s1a9bw8OFDfeIdGRmZY72YmBjS0tL0dee//PILNjY2ufYQ+/j4oNFoSExMpE2bNkVqg8hJekXEk/r3yaoQT+KfvxoLURpId8ozkpCQQGhoKLGxsXzzzTesWLGC8ePH57n81KlTOX78OMHBwURHR3PlyhW2b99OcHAwkNV7bW5uzooVK7h69So//vgjc+bMMdhGjRo1UCgUREREcPfuXVJTU4utfW+99Ra7du3io48+4sqVK3z++efs3r27SB9qlpaWDB48mJiYGI4ePUpISAj9+/fPd1jAwMBA/Xq//fYbhw4d4q233uLNN9/Ul4RA1oV1w4YN48KFC+zatYv33nuP4ODgXHsMPT09CQwMZNCgQWzZsoVr165x8uRJ5s2bx86dO4t2YIQQT0xOzMTTyL7JjryORGkjyfUzMmjQINLS0mjRogXjxo1j/PjxjBw5Ms/lGzVqxJEjR7h8+TJt2rTBx8eHmTNn6nt1nZycWLNmDd9//z316tVj/vz5LFq0yGAb1apVY9asWbzzzjtUqVJFn5gXB19fXz777DM++ugjGjduzJ49e3j77bextLQs9Dbq1KlD79696dq1K126dKFRo0Z88skn+a5jZWXF3r17uXfvHs2bN6dv37506tSJlStXGizXqVMnPDw8aNu2LQMGDODVV181GHrw38LDwxk0aBATJ07Ey8uLnj17curUKdzc3ArdHiGEEEKIf1PopFhSPKERI0Zw6dIljh49WuCy2eNcR0dHF39gpVxKSgp2dnYkJyfLRTiiXFOr1XTu3BnnQXIr69yok3X8tRUq9QJTOyl9yEELd9bpOHDggNRcixJR2O9veTWKQlu0aBEvv/wy1tbW7N69m7Vr1xbY8yyEEHlRKBRYqiy5s+6xsUMp1f7aCiD9YLmxVFlKzbUodSS5FoV28uRJPvzwQx48eKAfd3v48OEA1K9fnxs3buS63ueff16SYQohyggTExN2RuyU0WbEE5Oh5kRpJGUh4pm4ceMGmZm536WvSpUqVKhQoYQjKr2kLESI/Gk0Gkm4i0ASTCFKhpSFiBL17xu1CCHEk9BoNHTr3p3HaWnGDqXMMDE15fvvvtPftVcIYVySXAshhCg1dDodj9PSUA5qAEqppS2I7v5jNNuvkJycLMm1EKWEXJ8tilVYWBhNmjQpkX0pFAq2bdtWIvvK5u7uztKlS0t0n0KUC0oFCpkKnOQERIjSR5JrUawmTZrEwYMHjR2GEEIIIUSJkLIQUaxsbGywsbExdhhCiDJCo9EYO4QyRafNuvBTjpsQpYf0XIt8tW/fnpCQEKZMmYKjoyPOzs4Gdz5MSEigR48e2NjYYGtrS//+/fnzzz/18/9dFnL48GFatGiBtbU19vb2+Pr6Ggzht337dpo2bYqlpSW1atVi1qxZqNXqJ4r95s2b9O/fH3t7exwdHenRowfXr18HYN++fVhaWpKUlGSwzvjx4+nYsaP+8bFjx2jTpg0qlQpXV1dCQkJ4+PDhE8Ujyi+NRoNarZapEFNeow6J/Bn771aWJjkREcVNeq5FgdauXUtoaChRUVGcOHGCoKAgfH196dSpkz6xPnLkCGq1mnHjxjFgwAAOHz6cYztqtZqePXsyYsQIvvnmGzIyMjh58qT+BgBHjx5l0KBBLF++nDZt2hAfH6+/hfx7771XpJgzMzPx8/OjVatWHD16FFNTU+bOnYu/vz/nzp2jU6dO2Nvbs3nzZoYNGwZkJUDffvst77//PgDx8fH4+/szd+5cVq9ezd27dwkODiY4OJjw8PBCx5Kenk56err+cUpKSpHaUhrJUGmFp9Fo6NmrJ2mPZPQLUQw0WgBGjx5t5EDKDkuVJdu3bZfhCwtJhnosOkmuRYEaNWqkT249PDxYuXKlvo76/PnzXLt2DVdXVwDWrVtH/fr1OXXqFM2bNzfYTkpKCsnJyXTv3p3atWsD4O3trZ8/a9Ys3nnnHQYPHgxArVq1mDNnDlOmTClycv3tt9+i1Wr58ssv9cl7eHg49vb2HD58mC5duvDaa6/x9ddf65PrgwcPkpSURJ8+fQCYN28egYGBTJgwQd/25cuX065dOz799FMsLS0LFcu8efOYNWtWkeIvzTQaDd0DAkh79MjYoZQpvWePQmkiPxYW5HFqGhHz1hg7jDLn5ZAB2FWR0UIKoslUs232l/j5+Rk7lDJDZWVFxI4dkmAXgSTXokCNGjUyeOzi4kJiYiIXL17E1dVVn1gD1KtXD3t7ey5evJgjuXZ0dCQoKAg/Pz9efvllOnfuTP/+/XFxcQEgJiaGyMhIfc8xZCVyjx8/5tGjR1hZWRU65piYGOLi4nLcvObx48fEx8cDEBgYSMuWLbl16xZVq1Zl48aNdOvWDXt7e/02zp07x8aNG/Xr63Q6tFot165dMzgxyM+0adMIDQ3VP05JSTE4ZuL5p1Aq2TJT7lQqis/+5d8aO4QyQ6FUIreTF8VJkmtRIDMzM4PHCoUCrVb7RNsKDw8nJCSEPXv28O233zJjxgz2799Py5YtSU1NZdasWfTu3TvHeoXtJc6WmprKCy+8YJAYZ3NycgKgefPm1K5dm02bNjFmzBi2bt3KmjVrDLYxatQoQkJCcmzDzc2t0LFYWFhgYWFRpPhLMxMTEyJ27JCykCLQarUoldJrXRgPHz6kR48exg6j7PjfL3Mff/wxXl5eRg6mbJD3Y9FIWUjRSXItnpi3tzc3b97k5s2b+p7YCxcukJSURL169fJcz8fHBx8fH6ZNm0arVq34+uuvadmyJU2bNiU2NpY6deo8dWxNmzbl22+/pXLlyvneojQwMJCNGzdSvXp1lEol3bp1M9jGhQsXnkk8zxv5oBXF5Xk6ES0R/xvn2tzcHFNT+UoXojSQUzfxxDp37kzDhg0JDAzk7NmznDx5kkGDBtGuXTuaNWuWY/lr164xbdo0Tpw4wY0bN9i3bx9XrlzRl1fMnDmTdevWMWvWLH7//XcuXrzIpk2bmDFjRpFjCwwMpFKlSvTo0YOjR49y7do1Dh8+TEhICP/9738Nljt79izvv/8+ffv2Nfhinzp1KsePHyc4OJjo6GiuXLnC9u3bCQ4OfoKjJYQojOxrJETRyHETovSQ5Fo8MYVCwfbt23FwcKBt27Z07tyZWrVq8e23udf+WVlZcenSJfr06YOnpycjR45k3LhxjBo1CgA/Pz8iIiLYt28fzZs3p2XLlixZsoQaNWoUOTYrKyt+/vln3Nzc6N27N97e3gwbNozHjx8b9GTXqVOHFi1acO7cOQIDAw220ahRI44cOcLly5dp06YNPj4+zJw5k6pVqxY5HiFE4civIkWj+F/PtRw3IUoPhU4KJ4UoUSkpKdjZ2ZGcnJxvyYoQ5ZFaraZz584oBzWQW3sXgu7+Y3TbrxAeHk7NmjWNHY4Qz7XCfn9LgZYQQohSQ6FQYKlS8Xjdb8YOpcwwMTXFzs7O2GEIIf5HkmtRJmzcuFFfPvJvNWrU4Pfffy/hiIQQxcHExISdEREyGk0RyGgOQpQuklyLMuHVV1/lxRdfzHXev4cKFEKUbZIoCiHKMkmuRZlQoUKFHDeEEUI8/zQajfRilwDp/Rbi2ZHkWgghRKl07949+vXvj0atNnYozz1LlYqdERGSYAvxDEhyLYQQolRKTk5Go1ajfPVFFA42xg7n+aXV8Xj9T/ILgRDPiIxzXQq0b9+eCRMmAODu7s7SpUufaN3n2Zo1a7C3t9c/DgsLo0mTJvmuc/36dRQKBdHR0cUamxCimCkVKJRKmYppkiEPhXi2pOe6lDl16hTW1taFXn7Lli3l8oK+SZMm8dZbb+kfBwUFkZSUxLZt2/TPubq6cvv2bSpVqmSECIUQT0uj0Rg7hHJBp83qsdZoNHILdSGeAXkXlTJOTk5FWt7R0bGYIindbGxssLHJ/2diExMTnJ2dSygiIcSzJmUKJSXrOMvxFuLZkLKQUuafZSGvv/46AwYMMJifmZlJpUqVWLduHZCzLMTd3Z0PPviAoUOHUqFCBdzc3Pjiiy8MtnH8+HGaNGmCpaUlzZo1Y9u2bUUqn/j999/p3r07tra2VKhQgTZt2hAfHw+AVqtl9uzZVK9eHQsLC5o0acKePXv062aXamzZsoUOHTpgZWVF48aNOXHihME+1qxZg5ubG1ZWVvTq1Yu///7bYP4/y0LCwsJYu3Yt27dvR6FQoFAoOHz4cK5lIUeOHKFFixZYWFjg4uLCO++8g/ofF0u1b9+ekJAQpkyZgqOjI87OzoSFhenn63Q6wsLCcHNzw8LCgqpVqxISElKo41YSNBoNarVapmKeMjIyjB5DeZgyMjKM/ZYqF7J7rtPT043+N3/eJ/nsKJnJ2L96Sc91KRYYGEi/fv1ITU3V99Lu3buXR48e0atXrzzXW7x4MXPmzOE///kPP/zwA2PGjKFdu3Z4eXmRkpJCQEAAXbt25euvv+bGjRtFqtn+448/aNu2Le3bt+enn37C1taWyMhI1OqsBHXZsmUsXryYzz//HB8fH1avXs2rr77K77//joeHh34706dPZ9GiRXh4eDB9+nQGDhxIXFwcpqamREVFMWzYMObNm0fPnj3Zs2cP7733Xp4xTZo0iYsXL5KSkkJ4eDiQ1aN/69atHLF37dqVoKAg1q1bx6VLlxgxYgSWlpYGCfTatWsJDQ0lKiqKEydOEBQUhK+vLy+//DKbN29myZIlbNq0ifr163Pnzh1iYmLyPWbp6emkp6frH6ekpBT6eBeFRqOhe0AAaY8eFcv2xf9TKJXotFpjhyHEM6HTalEoFPTo0cPYoTz35LOjZKisrIjYscNoo99Icl2K+fn5YW1tzdatW3nzzTcB+Prrr3n11VfzHfO5a9eujB07FoCpU6eyZMkSDh06hJeXF19//TUKhYJVq1ZhaWlJvXr1+OOPPxgxYkShYvr444+xs7Nj06ZN+lpvT09P/fxFixYxdepUXnvtNQAWLFjAoUOHWLp0KR9//LF+uUmTJtGtWzcAZs2aRf369YmLi6Nu3bosW7YMf39/pkyZot/+8ePHDXrA/8nGxgaVSkV6enq+ZSCffPIJrq6urFy5EoVCQd26dbl16xZTp05l5syZKJVZP+Q0atRIn8x7eHiwcuVKDh48yMsvv0xCQgLOzs507twZMzMz3NzcaNGiRb7HbN68ecyaNSvfZUTZotNq6T0rFKUMW1as/rpxk8OrNhk7jHJAh06nk9d0MdNkZrJtzjJjhyFKgCTXpZipqSn9+/dn48aNvPnmmzx8+JDt27ezaVP+XzaNGjXS/1+hUODs7ExiYiIAsbGxNGrUCEtLS/0yBSWH/xQdHU2bNm1yvYgyJSWFW7du4evra/C8r69vjt7df8bo4uICQGJiInXr1uXixYs5euZbtWqVZ3JdWBcvXqRVq1YoFP9/Zbyvry+pqan897//xc3NLUds2fFlH79+/fqxdOlSatWqhb+/P127diUgICDfi4CmTZtGaGio/nFKSgqurq5P1ZbcmJiYELFjh9RNFjONRkPPXr3Y8t5Hxg5FiGckq5xOXtPFz1KlYvu2bTKeeDEz9k2RJLku5QIDA2nXrh2JiYns378flUqFv79/vuv8O/FVKBRon9HPUCqV6pls558xZie7zyrGp5Xf8XN1dSU2NpYDBw6wf/9+xo4dy8KFCzly5Eieo7ZYWFhgYWFR7HGD3Da6JJiamspJTAmJjY1l3Lhxxg7juadQKtHpdGzfvr1Io1WJojN20idKhiTXpVzr1q1xdXXl22+/Zffu3fTr1++pht7z8vJiw4YNpKen6xO+U6dOFXr9Ro0asXbtWjIzM3PEYWtrS9WqVYmMjKRdu3b65yMjI4vUO+7t7U1UVJTBc7/88ku+65ibmxd4AYO3tzebN29Gp9PpE/rIyEgqVKhA9erVCx2fSqUiICCAgIAAxo0bR926dTl//jxNmzYt9DZE2SZfjiWjpE5KyzuFUokOsLS0lKH4hHgGZLSQMuD111/ns88+Y//+/QQGBj71trRaLSNHjuTixYvs3buXRYsWARiUS+QlODiYlJQUXnvtNU6fPs2VK1dYv349sbGxAEyePJkFCxbw7bffEhsbyzvvvEN0dDTjx48vdIwhISHs2bOHRYsWceXKFVauXFlgSYi7uzvnzp0jNjaWv/76i8zMzBzLjB07lps3b/LWW29x6dIltm/fznvvvUdoaKi+3roga9as4auvvuK3337j6tWrbNiwAZVKRY0aNQrdPiFE4chJTMlQ/O8mMnK8hXg2JLkuAwIDA7lw4QLVqlXLUc9cVLa2tuzYsYPo6GiaNGnC9OnTmTlzJoBBHXZeKlasyE8//URqairt2rXjhRdeYNWqVfpe7JCQEEJDQ5k4cSINGzZkz549/PjjjwYjhRSkZcuWrFq1imXLltG4cWP27dvHjBkz8l1nxIgReHl50axZM5ycnIiMjMyxTLVq1di1axcnT56kcePGjB49mmHDhhW47X+yt7dn1apV+Pr60qhRIw4cOMCOHTuoWLFiobchhBBCiOeXQieFg+Xexo0bGTJkCMnJyc+splrkLSUlBTs7O5KTk7G1tTV2OEKUWteuXWPIkCEoX30RhUP+N40ST0GrQ7P+Jw4cOCBlIULko7Df3/IuKofWrVtHrVq1qFatGjExMUydOpX+/ftLYi2EKFXs7OwwMTVF82NUwQuLp2KpUhWqNFAIUTBJrsuhO3fuMHPmTO7cuYOLiwv9+vXj/fffB2D06NFs2LAh1/XeeOMNPvvss5IMVQhRjjk6OrJv714ZmaUEyCgWQjw7UhYiDCQmJuZ5B0FbW1sqV65cwhE9f6QsRAhDGo1GEuh8SOIrROkgZSHiiVSuXFkSaCFEibl37x79+vdHo1YbO5RSy1KlYmdEhCTYQpQRklwLIYQwmuTkZDRqNSYBHVHY2xk7nNJHq+Xxxu3Ssy9EGSLJtSgX7ty5w5tvvsnx48cxMzMjKSnJ2CEJIf5JoURRyPHmyxNJqYUoe+STTJQLS5Ys4fbt20RHR3P58uVCrRMWFkaTJk2KNzAhhBBCPFek51qUC/Hx8bzwwgtFupmNEKL4aTQaY4dQqum0WX3XGo1GxqAWooyQnmtRZvzwww80bNgQlUpFxYoV6dy5Mw8fPuTUqVO8/PLLVKpUCTs7O9q1a8fZs2f167m7u7N582bWrVuHQqEgKCgIgKSkJIYPH46TkxO2trZ07NiRmJgYIOs257NmzSImJgaFQoFCoWDNmjUMHTqU7t27G8SVmZlJ5cqV+eqrr0rsWIiyR6PRoFarZcplEvnJSq6l5lqIskNOg0WZcPv2bQYOHMiHH35Ir169ePDgAUePHkWn0/HgwQMGDx7MihUr0Ol0LF68mK5du3LlyhUqVKjAqVOnGDRoELa2tixbtkx/s5x+/fqhUqnYvXs3dnZ2fP7553Tq1InLly8zYMAAfvvtN/bs2cOBAweArBtaeHp60rZtW27fvo2LiwsAERERPHr0iAEDBuQae3p6Ounp6frHeQ11WNbJcGp502g09OzVk7RHacYORZQx2T3X6enp5arnWqvVopQa/GdChnIseeXnnSrKtNu3b6NWq+nduzc1atQAoGHDhgB07NjRYNkvvvgCe3t7jhw5Qvfu3XFycsLCwgKVSoWzszMAx44d4+TJkyQmJmJhYQHAokWL2LZtGz/88AMjR47ExsYGU1NT/ToArVu3xsvLi/Xr1zNlyhQAwsPD6devHzY2ud+eed68ecyaNevZHpBSRqPR0D0ggLRHj4wdSqnWbtrbctHevyTfus2v4V8bO4xSS6fVolAo6NGjh7FDKVEKpRKdVmvsMJ4LKisrInbskAS7BMmnvCgTGjduTKdOnWjYsCH9+vVj1apV3L9/H4A///yTESNG4OHhgZ2dHba2tqSmppKQkJDn9mJiYkhNTaVixYrY2Njop2vXrhEfH59vLMOHDyc8PFy/7927dzN06NA8l582bRrJycn66ebNm09wBIQQQghRFkjPtSgTTExM2L9/P8ePH2ffvn2sWLGC6dOnExUVxZgxY/j7779ZtmwZNWrUwMLCglatWpGRkZHn9lJTU3FxceHw4cM55tnb2+cby6BBg3jnnXc4ceIEx48fp2bNmrRp0ybP5S0sLPS9488rExMTInbskLKQPGSXhRyZt8TYoYgyRqFUotXp2L59O9bW1sYOp8RIWcizI2UhJU+Sa1FmKBQKfH198fX1ZebMmdSoUYOtW7cSGRnJJ598QteuXQG4efMmf/31V77batq0KXfu3MHU1BR3d/dclzE3N891JIOKFSvSs2dPwsPDOXHiBEOGDHnqtj0P5MM7b6ampkTsiJCTj1zExcUxevRoY4dRaimUCiDrJL081VwLUZbJO1WUCVFRURw8eJAuXbpQuXJloqKiuHv3Lt7e3nh4eLB+/XqaNWtGSkoKkydP1l+0mJfOnTvTqlUrevbsyYcffoinpye3bt1i586d9OrVi2bNmuHu7s61a9eIjo6mevXqVKhQQd8DPXz4cLp3745Go2Hw4MElcQhEGScnH7mThLEgWcm1QqEwchxCiMKS31xEmWBra8vPP/9M165d8fT0ZMaMGSxevJhXXnmFr776ivv379O0aVPefPNNQkJCqFy5cr7bUygU7Nq1i7Zt2zJkyBA8PT157bXXuHHjBlWqVAGgT58++Pv706FDB5ycnPjmm2/063fu3BkXFxf8/PyoWrVqsbZdiOeZnHTkL7vnWo6TEGWHQie/UwpRZKmpqVSrVo3w8HB69+5dpHVTUlKws7MjOTkZW1vbYopQiLLh2rVrDBkyBJNXO6N0sDN2OKWOTqtFvX4rBw4ckF5+IYyssN/f8k4Vogi0Wi1//fUXixcvxt7enldffdXYIQnxfNBpZei13MgxEaLMkeRaiCJISEigZs2aVK9enTVr1khPkhBPyc7ODhNTUzQ7fjJ2KKWWpUolNddClCFSFiJECZOyECEMyd098ydDqQlROkhZiBBCiFJPEuvcSUItRNklybUQQgij0Gg0dOvencdpacYOpdQxMTXl++++w9HR0dihCCGKSJJrIYQQRqHT6XiclobZ66+D3I1PT5eUhDoiguTkZEmuhSiD5NOsnGvfvj0TJkwolm1fv34dhUJBdHR0sWy/pLi7u7N06VJjhyHE80upRCGTfkIuXhSiTJOea1FsXF1duX37NpUqVTJ2KEIIIYQQJUKSa1FsTExMcHZ2NnYYQohSSqPRGDuEUin7Ak85PkKUTVIWIlCr1QQHB2NnZ0elSpV499139R/u69evp1mzZlSoUAFnZ2def/11EhMT9evev3+fwMBAnJycUKlUeHh4EB4eDuReFvL777/TvXt3bG1tqVChAm3atCE+Pr7AGIOCgujZsyeLFi3CxcWFihUrMm7cODIzM/XLpKenM2nSJKpVq4a1tTUvvvgihw8fNtjOsWPHaNOmDSqVCldXV0JCQnj48KF+fmJiIgEBAahUKmrWrMnGjRsN1tfpdISFheHm5oaFhQVVq1YlJCSk0Mf6eafRaFCr1TLJVKjp8ePHxn7JlkrZN9NJT083+t+oNE5y0iFKO+m5Fqxdu5Zhw4Zx8uRJTp8+zciRI3Fzc2PEiBFkZmYyZ84cvLy8SExMJDQ0lKCgIHbt2gXAu+++y4ULF9i9ezeVKlUiLi6OtDyu/P/jjz9o27Yt7du356effsLW1pbIyEjUanWh4jx06BAuLi4cOnSIuLg4BgwYQJMmTRgxYgQAwcHBXLhwgU2bNlG1alW2bt2Kv78/58+fx8PDg/j4ePz9/Zk7dy6rV6/m7t27BAcHExwcrD8hCAoK4tatWxw6dAgzMzNCQkIMTiY2b97MkiVL2LRpE/Xr1+fOnTvExMTkG3d6ejrp6en6xykpKYVqb1mj0WjoHhBA2qNHxg5FiDItO7keN26ckSMpnSxVKrZv2yZDFf6LDN9YeshNZMq59u3bk5iYyO+//66/A9g777zDjz/+yIULF3Isf/r0aZo3b86DBw+wsbHh1VdfpVKlSqxevTrHstevX6dmzZr8+uuvNGnShP/85z9s2rSJ2NhYzMzMihRnUFAQhw8fJj4+Xv/h0b9/f5RKJZs2bSIhIYFatWqRkJBA1apV9et17tyZFi1a8MEHHzB8+HBMTEz4/PPP9fOPHTtGu3btePjwIQkJCXh5eXHy5EmaN28OwKVLl/D29mbJkiVMmDCBjz76iM8//5zffvut0G0ICwtj1qxZOZ5/3m4ik56ejp+fH73DwlCayI9iomCPUx8SsWABZm+8kXUhnwAgMzER3Z49vBwcjF2VysYOp1TRZKrZNneu/gRE/D+VlRURO3ZIgl2M5CYyotBatmxpcGvdVq1asXjxYjQaDdHR0YSFhRETE8P9+/fR/u8DLSEhgXr16jFmzBj69OnD2bNn6dKlCz179qR169a57ic6Opo2bdoUObHOVr9+fYMPDRcXF86fPw/A+fPn0Wg0eHp6GqyTnp5OxYoVAYiJieHcuXMGpR46nQ6tVsu1a9e4fPkypqamvPDCC/r5devWxd7eXv+4X79+LF26lFq1auHv70/Xrl0JCAjI9zbo06ZNIzQ0VP84JSUFV1fXJzoGpZlCocDM3JwtYWHGDkWI58L+lSuNHUKpJCdiorST5Frk6fHjx/j5+eHn58fGjRtxcnIiISEBPz8/MjIyAHjllVe4ceMGu3btYv/+/XTq1Ilx48axaNGiHNtTqVRPFc+/k3KFQqFP9lNTUzExMeHMmTM5ztptbGz0y4waNSrXGmk3NzcuX75cYAyurq7ExsZy4MAB9u/fz9ixY1m4cCFHjhzJ86TBwsICCwuLQrWxLDM3N2fP7t1ytz1RaA8fPqRHjx7GDqPUUSiV6ICPP/4YLy8vY4dT6mi1WpSSYOcgZSGlhyTXgqioKIPHv/zyCx4eHly6dIm///6b+fPn63taT58+nWN9JycnBg8ezODBg2nTpg2TJ0/ONblu1KgRa9euJTMz84l7r/Pi4+ODRqMhMTGRNm3a5LpM06ZNuXDhAnXq1Ml1ft26dVGr1Zw5c0ZfFhIbG0tSUpLBciqVioCAAAICAhg3bhx169bl/PnzNG3a9Jm2qSySD3ZRFOXhpPNJZPfMmpub5/urmBCidJJTP0FCQgKhoaHExsbyzTffsGLFCsaPH4+bmxvm5uasWLGCq1ev8uOPPzJnzhyDdWfOnMn27duJi4vj999/JyIiAm9v71z3ExwcTEpKCq+99hqnT5/mypUrrF+/ntjY2Kdug6enJ4GBgQwaNIgtW7Zw7do1Tp48ybx589i5cycAU6dO5fjx4wQHBxMdHc2VK1fYvn07wcHBAHh5eeHv78+oUaOIiorizJkzDB8+3KDHfc2aNXz11Vf89ttvXL16lQ0bNqBSqahRo8ZTt0GI8kYhN0vJlxwfIcomSa4FgwYNIi0tjRYtWjBu3DjGjx/PyJEjcXJyYs2aNXz//ffUq1eP+fPn5+iRNjc3Z9q0aTRq1Ii2bdtiYmLCpk2bct1PxYoV+emnn0hNTaVdu3a88MILrFq16pn1YoeHhzNo0CAmTpyIl5cXPXv25NSpU7i5uQFZPedHjhzh8uXLtGnTBh8fH2bOnGlwAWR4eDhVq1alXbt29O7dm5EjR1K58v9fUGRvb8+qVavw9fWlUaNGHDhwgB07dujruoUQhSe/dOQuO6mW4yNE2SSjhQhRwgp7tbEQzzu1Wk3nzp0xe/11kBpaPV1SEuqICMLDw6lZs6axwxFC/I+MFiKEEKJUUygUWKpUPP76a2OHUuqYmJpiZ2dn7DCEEE9AkmtRKmSP6JGb3bt353mRohCi7DIxMWFnRISMMJMLGflBiLJLkmtRKvzzFun/Vq1atZILRAhRoiSBFEI8byS5FqVCXsPjCSGeXxqNRnqt8yG910KUTZJcCyGEKHH37t2jX//+aNRqY4dSalmqVOyMiJAEW4gyRpJrIYQQJS45ORmNWo15QH+U9o7GDqf00Wp5vPEL6dkXogySsY+ekru7O0uXLi32/SgUCrZt21bs+3la27Zto06dOpiYmDBhwgRjhyOEKO0UShRKE5n+NcnQhEKUXdJzXUbcvn0bBwcHY4dRoFGjRjFkyBBCQkKoUKGCscMRQpRSGo3G2CGUajqtFsg6TnILdCHKFnnHlhHOzs7GDiFfmZmZpKenk5iYiJ+fn8FdD4sqIyMDc3PzZxidEKK0kXKHgmQdHzlOQpQ9z9XvTnv27OGll17C3t6eihUr0r17d+Lj4/Xz//vf/zJw4EAcHR2xtramWbNmREVFARAfH0+PHj2oUqUKNjY2NG/enAMHDhhsPzExkYCAAFQqFTVr1mTjxo05YkhKSmL48OE4OTlha2tLx44diYmJ0c8PCwujSZMmrF69Gjc3N2xsbBg7diwajYYPP/wQZ2dnKleuzPvvv2+w3X+XheTXlvxk7//zzz/H1dUVKysr+vfvT3JyssFyX375Jd7e3lhaWlK3bl0++eQT/bzr16+jUCj49ttvadeuHZaWlmzcuFHfU92xY0cUCgWHDx8GYPPmzdSvXx8LCwvc3d1ZvHixwb7c3d2ZM2cOgwYNwtbWlpEjR7JmzRrs7e2JiIjAy8sLKysr+vbty6NHj1i7di3u7u44ODgQEhJi0AO2fv16mjVrRoUKFXB2dub1118nMTFRP//w4cMoFAoOHjxIs2bNsLKyonXr1sTGxhrEtGPHDpo3b46lpSWVKlWiV69e+nnp6elMmjSJatWqYW1tzYsvvqhva3ml0WhQq9Uy5TJlZGQYPYbSOGVkZBj7ZVuqZfdcp6enG/1vVRoneV/lPcmvQsb3XPVcP3z4kNDQUBo1akRqaiozZ86kV69eREdH8+jRI9q1a0e1atX48ccfcXZ25uzZs2j/9wGWmppK165def/997GwsGDdunUEBAQQGxuLm5sbAEFBQdy6dYtDhw5hZmZGSEiIQeIG0K9fP1QqFbt378bOzo7PP/+cTp06cfnyZRwdsy7aiY+PZ/fu3ezZs4f4+Hj69u3L1atX8fT05MiRIxw/fpyhQ4fSuXNnXnzxxRztTE1NzbctBYmLi+O7775jx44dpKSkMGzYMMaOHas/Wdi4cSMzZ85k5cqV+Pj48OuvvzJixAisra0ZPHiwfjvvvPMOixcvxsfHB6VSSWxsLF5eXmzevJnWrVvj6OjImTNn6N+/P2FhYQwYMIDjx48zduxYKlasSFBQkH5bixYtYubMmbz33nsAHD16lEePHrF8+XI2bdrEgwcP6N27N7169cLe3p5du3Zx9epV+vTpg6+vLwMGDACyetDnzJmDl5cXiYmJhIaGEhQUxK5duwyOwfTp01m8eDFOTk6MHj2aoUOHEhkZCcDOnTvp1asX06dPZ926dWRkZBisHxwczIULF9i0aRNVq1Zl69at+Pv7c/78eTw8PHIc7/T0dNLT0/WPU1JSCvV3Kis0Gg3dAwJIe/TI2KGUSgqlUp8oCVFYOq0WhUJJjx49jB1KqSTvq7yprKyI2LFDRpkxIoXuOf7N6a+//sLJyYnz589z/PhxJk2axPXr1/VJbkEaNGjA6NGjCQ4O5vLly3h5eXHy5EmaN28OwKVLl/D29mbJkiVMmDCBY8eO0a1bNxITE7GwsNBvp06dOkyZMoWRI0cSFhbGwoULuXPnjr6n19/fn9jYWOLj41H+7yKWunXrEhQUxDvvvANk9Vxv3bqVnj178sUXXxS5LdnCwsKYO3cuN27c0N+cZc+ePXTr1o0//vgDZ2dn6tSpw5w5cxg4cKB+vblz57Jr1y6OHz/O9evXqVmzJkuXLmX8+PH6ZZKSknBwcODQoUO0b98egMDAQO7evcu+ffv0y02ZMoWdO3fy+++/A1k91z4+PmzdulW/zJo1axgyZAhxcXHUrl0bgNGjR7N+/Xr+/PNP/R0d/f39cXd357PPPsu1vadPn6Z58+Y8ePAAGxsbDh8+TIcOHThw4ACdOnUCYNeuXXTr1o20tDQsLS1p3bo1tWrVYsOGDTm2l5CQQK1atUhISDAofencuTMtWrTggw8+yPWYz5o1K8fzycnJ2Nra5hp3WSLJdcH6hX2AUr7oDNy9cZ2fvvwU81dfw8ShorHDKXXUjx+R+W24vHZyocnMZPPcmZJc50GS6+KTkpKCnZ1dgd/fz1XP9ZUrV5g5cyZRUVH89ddf+p7chIQEoqOj8fHxyTMZTU1NJSwsjJ07d3L79m3UajVpaWkkJCQAcPHiRUxNTXnhhRf069StWxd7e3v945iYGFJTU6lY0fCLIi0tzaA8xd3d3eBivypVqmBiYqJPrLOf+3eveLaC2lIQNzc3g7setmrVCq1WS2xsLBUqVCA+Pp5hw4YxYsQI/TJqtRo7OzuD7TRr1qzAfV28eDFHz4uvry9Lly5Fo9Ho3/y5bcvKykqfWEPWMXF3dze4Vfq/j9OZM2cICwsjJiaG+/fvG7wG6tWrp1+uUaNG+v+7uLgAWWU/bm5uREdHG7T9n86fP49Go8HT09Pg+fT09Bx/92zTpk0jNDRU/zglJQVXV9dcly2LTExMiNixQ2pDc6HRaOjZqxffh/3H2KGIMkihUMprJw+WKhXbt22TBDIXcvMh43uukuuAgABq1KjBqlWrqFq1KlqtlgYNGpCRkYFKpcp33UmTJrF//34WLVpEnTp1UKlU9O3bt0h1gampqbi4uORaf/vPJNzMzMxgnkKhyPW5vMo8CmrL00hNTQVg1apVOUpS/v1mtba2fmb7zW1bRT1ODx8+xM/PDz8/PzZu3IiTkxMJCQn4+fnl+Dv+czsKhQJAv538jm9qaiomJiacOXMmx/H4Z9L/TxYWFga/ZDyP5IM8d6ampnLikYe4uDhGjx5t7DBKLaWpKTqdloiICCwtLY0dTqkjCaQozZ6b5Prvv/8mNjaWVatW0aZNGwCOHTumn9+oUSO+/PJL7t27l2uPb2RkJEFBQfoL11JTU7l+/bp+ft26dVGr1Zw5c0ZfFhIbG0tSUpJ+maZNm3Lnzh1MTU1xd3d/9o0sZFsKkpCQwK1bt/RlDb/88gtKpRIvLy+qVKlC1apVuXr1KoGBgU8dq7e3t76WOVtkZCSenp7P/IPx0qVL/P3338yfP1/fM3z69Okib6dRo0YcPHiQIUOG5Jjn4+ODRqMhMTFR/zoTIj+SAOROhpcrSNZJv5mZmRwrIcqY52a0EAcHBypWrMgXX3xBXFwcP/30k8FP8QMHDsTZ2ZmePXsSGRnJ1atX2bx5MydOnADAw8ODLVu2EB0dTUxMDK+//rpBz7GXlxf+/v6MGjWKqKgozpw5w/Dhww16OTt37kyrVq3o2bMn+/bt4/r16xw/fpzp06c/UZKXl4LaUhBLS0sGDx5MTEwMR48eJSQkhP79++uH+5s1axbz5s1j+fLlXL58mfPnzxMeHs5HH31U5FgnTpzIwYMHmTNnDpcvX2bt2rWsXLmSSZMmFXlbBXFzc8Pc3JwVK1Zw9epVfvzxR+bMmVPk7bz33nt88803vPfee1y8eJHz58+zYMECADw9PQkMDGTQoEFs2bKFa9eucfLkSebNm8fOnTufdZOEeG7JSUf+FP8rE5TjJETZ89wk10qlkk2bNnHmzBkaNGjA22+/zcKFC/Xzzc3N2bdvH5UrV6Zr1640bNiQ+fPn6z+4PvroIxwcHGjdujUBAQH4+fnRtGlTg32Eh4dTtWpV2rVrR+/evRk5ciSVK1fWz1coFOzatYu2bdsyZMgQPD09ee2117hx4wZVqlR5Zm0tqC0FqVOnDr1796Zr16506dKFRo0aGQy1N3z4cL788kvCw8Np2LAh7dq1Y82aNdSsWbPIsTZt2pTvvvuOTZs20aBBA2bOnMns2bMNRgp5VpycnFizZg3ff/899erVY/78+SxatKjI22nfvj3ff/89P/74I02aNKFjx46cPHlSPz88PJxBgwYxceJEvLy86NmzJ6dOndKPKiOEEEKI8uu5Hi1E5BQWFsa2bduIjo42dijlVmGvNhbieXbt2jWGDBmCeUB/lPZPdnH2c02r5fHGLzhw4ICUhQhRSpTL0UKEEEKUDXZ2dpiYmpKx4ztjh1JqWapU+guuhRBlhyTXz5n69etz48aNXOd9/vnnJRyNEELkztHRkX1798pIKvmQETGEKJukLOQ5c+PGDTIzM3OdV6VKFYPxtYVxSFmIEIWj0Wgk+S4CScaFKF5SFlJO1ahRw9ghCCHEU7t37x79+vdHo1YbO5Qyw1Jlxc4IuTOfEMYmybUQQohSJzk5GY1ajSpgOEoHJ2OHU/pptTzcsEB6+oUoBZ6bofhE2bdmzRqDO1k+jcOHD6NQKAxu8lMcSmo/QpRbSiUKpYlMBUwo5etciNJC3o3iqQQFBdGzZ09jhyGEEEIIUSpIci2EEKLU0Wg0xg6hTNH9747CctyEMD6puRaF8sMPPzBr1izi4uKwsrLCx8cHHx8f1q5dC6Afi/XQoUMAdOjQgfv37+vLPKKjo/Hx8eHatWu4u7sDWWUgM2fO5K+//sLPz4+XXnpJv7/r169Tq1YtTp48SbNmzfTPL126lCVLlnDt2jWURfwZdPPmzcycOZO4uDhcXFx46623mDhxon7++vXrWbZsGbGxsVhbW9OxY0eWLl1qcBfOXbt2MWHCBG7evEnLli0ZPHhwkWIQ5ZeMfFE0armQsYiyXluZmZlyQWMRaLXaIn+XlHcyKk3BJLkWBbp9+zYDBw7kww8/pFevXjx48ICjR48yaNAgEhISSElJITw8HMgau/b48eMFbjMqKophw4Yxb948evbsyZ49e3jvvff0893d3encuTPh4eEGyXV4eDhBQUFF/jA8c+YM/fv3JywsjAEDBnD8+HHGjh1LxYoV9bdiz8zMZM6cOXh5eZGYmEhoaChBQUHs2rULgJs3b9K7d2/GjRvHyJEjOX36tEFynpf09HTS09P1j1NSUooUe2kkiWLRaDQaevbqRdqjR8YORTyndFotCoWS7t27GzuUMkWhVOp7/UXhqKysiNgho9LkR5JrUaDbt2+jVqvp3bu3fqi/hg0bAqBSqUhPT8fZ2blI21y2bBn+/v5MmTIFAE9PT44fP86ePXv0ywwfPpzRo0fz0UcfYWFhwdmzZzl//jzbt28vchs++ugjOnXqxLvvvqvf34ULF1i4cKE+uR46dKh++Vq1arF8+XKaN29OamoqNjY2fPrpp9SuXZvFixcD4OXlxfnz51mwYEG++543bx6zZs0qcsyllUajoXtAgCSKT+C1sI9QyhdSody9cY39Xy41dhhliA6dTkuXaR9mXeAoCqTJzODAh9PkfVkE6sxMvps9CbVaLcl1PiS5FgVq3LgxnTp1omHDhvj5+dGlSxf69u2Lg4PDE2/z4sWL9OrVy+C5Vq1aGSTXPXv2ZNy4cWzdupXXXnuNNWvW0KFDB31ZSVH316NHD4PnfH19Wbp0KRqNBhMTE86cOUNYWBgxMTHcv38f7f96MxISEqhXrx4XL17kxRdfzBFzQaZNm0ZoaKj+cUpKCq6urkVugyjbFEolm8JCC15QCFEiFAoFCoW8L4vK1NRUXwoqcifJtSiQiYkJ+/fv5/jx4+zbt48VK1Ywffp0oqKicl0+u2Tjn2UDed01Mj/m5uYMGjSI8PBwevfuzddff82yZcuerBEFePjwIX5+fvj5+bFx40acnJxISEjAz8+PjIyMp9q2hYUFFhYWzyhS4zMxMSFixw4pCykiqe0smtjYWMaNG2fsMMqQrERx37wpxg6kTLFUqdi+bZv0whaB1FwXTJJrUSgKhQJfX198fX2ZOXMmNWrUYOvWrZibm+e4Ot3JKeuGD7dv39b3bkdHRxss4+3tnSM5/+WXX3Lsd/jw4TRo0IBPPvlEX5ryJLy9vYmMjDR4LjIyEk9PT0xMTLh06RJ///038+fP1/cqnz59Osc2fvzxxwJjLg/kg1UUN3Nzc2OHUKYolEp0Oi0RERFYWloaO5wyQxJFURwkuRYFioqK4uDBg3Tp0oXKlSsTFRXF3bt38fb25vHjx+zdu5fY2FgqVqyInZ0dderUwdXVlbCwMN5//30uX76sr1POFhISgq+vL4sWLaJHjx7s3bvXoCQkm7e3Ny1btmTq1KkMHToUlUr1RG2YOHEizZs3Z86cOQwYMIATJ06wcuVKPvnkEwDc3NwwNzdnxYoVjB49mt9++405c+YYbGP06NEsXryYyZMnM3z4cM6cOcOaNWueKB4hRP7kZ+eiyjpeZmZmmJrKV7sQxiS/UYoC2dra8vPPP9O1a1c8PT2ZMWMGixcv5pVXXmHEiBF4eXnRrFkznJyciIyMxMzMjG+++YZLly7RqFEjFixYwNy5cw222bJlS1atWsWyZcto3Lgx+/btY8aMGbnuf9iwYWRkZBhccFhUTZs25bvvvmPTpk00aNCAmTNnMnv2bP3FjE5OTv/X3p2HRVW+DRz/nhmURVlEUTARUHFfAFc0c0PFhcLMLUskdyU1XMncckENEndNE80lK01zXyDRpFxKMctSMRBLTQ2FEAOZ4f2DmNf5sQhKzgD357rmgjNzlvs8Z5Z7nrnPc9iwYQNffPEF9evXZ8GCBYSEhOito3r16uzYsYNdu3bRpEkTVq9ezfz58586JiFE3qQ3sXCUf0uOpN2EMDwlUwonhZGbM2cOX3zxBT/++KOhQykSycnJWFtbk5SUhJWVlaHDEcIoxcXF4e/vj7nPUFQV7AwdjvHTanmweSERERHScy3Ef6Sgn9/yChRGKyUlhfj4eJYvX56j51sIUbJZW1ujNjHh4Z51hg6l2DAzt5ByGiGMgCTXwmgFBATw6aef4uvrm6MkZOTIkWzevDnX5d544w1Wr179PEIUQvxHbG1tOXzokIxKUwhycp4QxkHKQkSxdPv27TyvdGhlZaV3yXJjI2UhQgghRPEjZSGiRKtcubJRJ9BCiGen0Wik5/oJpLdaCOMjybUQQgijk5iYSJ++fdFkZBg6FKNmZm7Bvr17JMEWwohIci2EEMLoJCUlocnIwNrnXdQVqho6HOOk1ZC4eZz07gthZIx+nOtZs2bh5uZm6DD+M/Hx8SiKkuMKhsVFUR2f532co6KiUBSF+/fvG01MQohcqNQocsv1hkp6q4UwRoVKrtu3b8/48eP/o1CKjw0bNmBjY2PoMPKlKAq7du0ydBi5yi22iRMnEhkZaZiA8mCMMQlRWmg0GkOHYPQytVpA2koIY1Mqy0IyMzPRaDQy0H4+0tPTKVu27HPbXvny5Slfvvxz215BGGNMouSQk/XylyG11gWQ9fyR55EQxqXA2eXgwYM5duwYx44dY8mSJUDWFbRSUlKYNGkS33zzDeXKlaNLly4sXryYSpUqAXDw4EHmzp3LTz/9hFqtxtPTkyVLllCzZk3dun///XcmTZrEoUOHSEtLo169eqxYsYKWLVvq5tm0aRPTp0/n3r17dOvWjbVr12JpaQmAVqtl4cKFfPTRR9y6dYvatWszffp0XnvtNSCrBKBDhw7s37+f9957jwsXLnD48GHat2+f5/6eP3+e8ePH8/3336MoCq6urqxZs4aUlBT8/f0BdIP1z5w5k1mzZqEoCjt37sTX11e3HhsbG8LCwnSX2T59+jQjRozgl19+oWHDhkybNi3Htn/66ad827R9+/Y0btwYMzMz1q1bR9myZRk5ciSzZs0CwNnZGYBevXoB4OTkRHx8fL7Hd9asWezatYuAgADmzZvHtWvX0Gq13L9/n4kTJ/LVV1+RlpZGs2bNWLx4MU2aNMl1PWfOnOHdd9/l3LlzPHr0CDc3NxYvXoyHh0e+sWVvP7s8RqvVMnfuXD766CPu3LlDvXr1WLBgAd7e3kBWOY2Liws7duxg2bJlnDp1CldXV1avXo2npycA165dIyAggBMnTpCeno6zszMffPAB3bt318X7ww8/MGXKFC5evIibmxvh4eHUqVNHr02yYxo8eDD379/H3d2d5cuXk5aWxuuvv87SpUuf6xeR4kASx/xpNBp8e/XiYWqqoUMRxVh2z3VaWpp0FuVDRlQRz1uBX41Llizh8uXLNGzYkPfffx+AMmXK0KJFC4YOHcrixYt5+PAhU6ZMoW/fvnz99dcAPHjwgMDAQBo3bkxKSgozZsygV69exMTEoFKpSElJoV27drzwwgvs3r0be3t7zp49i/bfNw2Aq1evsmvXLvbu3cu9e/fo27cvCxYsYN68eQAEBwezefNmVq9ejaurK8ePH+eNN97Azs6Odu3a6dYzdepUQkJCqFGjBhUqVMh3fwcOHIi7uzurVq1CrVYTExNDmTJlaN26NWFhYcyYMYNLly4BFLh3MyUlhZ49e9K5c2c2b95MXFwc48aN05vn/v37dOzYMd82Bdi4cSOBgYGcOnWK7777jsGDB9OmTRs6d+7MmTNnqFy5MuHh4Xh7exf4TSU2NpYdO3bw5Zdf6pbp06cP5ubmHDhwAGtra9asWUOnTp24fPkytra2Odbx999/4+fnx7Jly8jMzCQ0NJTu3btz5coVLC0tCxzbkiVLCA0NZc2aNbi7u7N+/Xpefvllfv75Z1xdXXXzTZs2jZCQEFxdXZk2bRoDBgwgNjYWExMTxowZQ3p6OsePH6dcuXJcvHgxx7GaNm0aoaGh2NnZMXLkSN566y2io6PzbKPIyEjMzMyIiooiPj4ef39/KlasqHsu5iYtLY20tDTddF7jc5cU6enp9OjZk0fp6YYOxeh1C/oIldTN5urejTi+DZcrs+ZHm/EIRaXilVdeMXQoRs3CwoI9e2REFfH8FDi5tra2pmzZslhYWGBvbw/A3LlzcXd3Z/78+br51q9fj6OjI5cvX6Z27dr07t1bbz3r16/Hzs6Oixcv0rBhQ7Zu3cqdO3c4c+aMLlmrVauW3jJarZYNGzboeqrffPNNIiMjmTdvHmlpacyfP5+IiAhdj2WNGjU4ceIEa9as0Uuu33//fTp37lyg/U1ISGDSpEnUrVsXQC+hs7a2RlEUXTsU1NatW9FqtXz88ceYmZnRoEEDfv/9d0aNGqWbZ/ny5U9sU4DGjRszc+ZMXWzLly8nMjKSzp07Y2dnB2T1mhcmxvT0dD755BPd8idOnOD06dPcvn0bU1NTAEJCQti1axfbt29n+PDhOdbRsWNHvemPPvoIGxsbjh07Rs+ePQscW0hICFOmTKF///4ALFy4kKNHjxIWFsaKFSt0802cOJEePXoAMHv2bBo0aEBsbCx169YlISGB3r1706hRIyDrefG/5s2bp3uOTJ06lR49evDPP/9gZmaWa1xly5Zl/fr1WFhY0KBBA95//30mTZrEnDlzUKlyP4UhODiY2bNn57mvJU1mZiaP0tMZOGstKvkwy1VGehqfzhmFSqVGpZYex9zIl46CkF+HhDBGz/Sufv78eY4ePZprz+3Vq1epXbs2V65cYcaMGZw6dYq7d+/qeqQTEhJo2LAhMTExuLu759oLms3Z2VmXWAM4ODhw+/ZtIKu3NTU1NUfSnJ6ejru7u959zZo1K/C+BQYGMnToUDZt2oSXlxd9+vTRK2V5Gr/88ouunCNb9heCbAVpU8hKrh/3eJs8LScnJ13ymx1LSkoKFStW1Jvv4cOHXL16Ndd1/Pnnn7z33ntERUVx+/ZtNBoNqampJCQkFDiO5ORkbty4QZs2bfTub9OmDefPn9e77/F2cHBwALKu3li3bl3Gjh3LqFGjOHz4MF5eXvTu3TtHu+W1fPXq1XONrUmTJlhYWOimPT09SUlJ4fr16zg5OeW6TFBQEIGBgXr75+jomOf+F3cmJiaYW1iwZdYwQ4di9LRaOREtL9I2T6ao1GRqtezYsQNra2tDh2O0pCxEPG/PlFynpKTg4+PDwoULczyWnaj4+Pjg5OTE2rVrqVq1KlqtloYNG5L+70/G5ubmT9xOmTJl9KYVRdEl6SkpKQDs27ePF154QW++7N7WbOXKlSvgnmXV277++uvs27ePAwcOMHPmTLZt26arFc6Noig56kwfPXpU4G1CwdoU8m+Tp/W/7ZOSkoKDgwNRUVE55s1rtBQ/Pz/++usvlixZgpOTE6ampnh6euqOd1F7vB2ya+Cz22Ho0KF07dqVffv2cfjwYYKDgwkNDeXtt98u0PJFxdTUNMdzsSRTq9Xs3bNHaq7zkV1zfSA4568/QhSU8m/vvpmZmdRcC2FECvVqLFu2rN6QPx4eHuzYsQNnZ+dcX9h//fUXly5dYu3atbRt2xbIKjV4XOPGjVm3bh2JiYn59l7npX79+piampKQkKBXAlIUateuTe3atXnnnXcYMGAA4eHh9OrVK0c7ZLOzs+PmzZu66StXrpD62AlL9erVY9OmTXplBydPntRbx5PatKDKlCnzzMMzeXh4cOvWLUxMTHQnIj5JdHQ0K1eu1J00eP36de7evVuo2KysrKhatSrR0dF6xzQ6OpoWLVoUah8cHR0ZOXIkI0eOJCgoiLVr1+ol14V1/vx5Hj58qPtSePLkScqXL1+ie6KfhvQS5c/ExES+gDzB1atXGTFihKHDMGrZybUk1kIYl0KNc+3s7MypU6eIj4/n7t27jBkzhsTERAYMGMCZM2e4evUqhw4dwt/fH41GQ4UKFahYsSIfffQRsbGxfP3113o/jwMMGDAAe3t7fH19iY6O5rfffmPHjh189913BYrJ0tKSiRMn8s4777Bx40auXr3K2bNnWbZsGRs3bizM7uk8fPiQgIAAoqKiuHbtGtHR0Zw5c4Z69erp2iElJYXIyEju3r2rS6A7duzI8uXLOXfuHN9//z0jR47U6xl9/fXXURSFYcOGcfHiRfbv309ISIjetp/UpgXl7OxMZGQkt27d4t69e0/VDl5eXnh6euLr68vhw4eJj4/n22+/Zdq0aXz//fe5LuPq6sqmTZv45ZdfOHXqFAMHDszx60RBYps0aRILFy7ks88+49KlS0ydOpWYmJgcJ4DmZ/z48Rw6dIi4uDjOnj3L0aNHdcfwaaWnpzNkyBDd8Zs5cyYBAQF51lsLkRe1Wo2JiYnc8rjJCDxPpvz7viNfZoUwLoXKCCZOnIharaZ+/frY2dmRnp5OdHQ0Go2GLl260KhRI8aPH4+NjQ0qlQqVSsW2bdv44YcfaNiwIe+88w4ffPCB3jrLli3L4cOHqVy5Mt27d6dRo0YsWLCgUG8Wc+bMYfr06QQHB1OvXj28vb3Zt28fLi4uhdk9HbVazV9//cWgQYOoXbs2ffv2pVu3brqT0lq3bs3IkSPp168fdnZ2LFq0CIDQ0FAcHR1p27Ytr7/+OhMnTtSrzy1fvjx79uzhwoULuLu7M23atBzlH9k9tnm1aUGFhoZy5MgRHB0dc9SeF5SiKOzfv5+XXnoJf39/ateuTf/+/bl27RpVqlTJdZmPP/6Ye/fu4eHhwZtvvsnYsWOpXLlyoWMbO3YsgYGBTJgwgUaNGnHw4EF2796td2Lpk2g0GsaMGaN7TtSuXZuVK1cWvAFy0alTJ1xdXXnppZfo168fL7/8sm4IRCGEEEIIJVN+lxSiQLLHuX7WK18mJydjbW1NUlISVlZWRROcECVMXFwc/v7+WPu8i7pCVUOHY5y0GhI3jyMiIkJKQ4R4Dgr6+S2vRiGEEEbH2toatYkJSXvmP3nmUszM3EJ3MrYQwjiU2uS6QYMGXLt2LdfH1qxZw8CBA59zRP+t0ra/QojizdbWlsOHDslJn08gw8wJYXxKbVnItWvX8hwmr0qVKnrjapcEpW1/jZmUhQjx9DQajSTcSFIthCFIWcgT5HXBj5KqtO2vEKLkSUxMpG/fvmRkZBg6FIMzN7dg7165pLcQxqjUJtdCCCGKl6SkJDIyMmj/cjBWFaoZOhyD0Wo17N00WHrwhTBSJSq5zszMZMSIEWzfvp179+5x7tw53NzcDB2WEEKIIqRSqVGpStTHlxCiBClRV744ePAgGzZsYO/evdy8eZOGDRs+cRlFUZ55aDUhhBBCCCGghPVcX716FQcHB1q3bv3ct52enm50VxT7L2N69OiR3tUnS4LMzEw0Go2MFyuEkSrMVWpLskytFkDer4QwUiWm53rw4MG8/fbbJCQkoCgKzs7OODs7ExYWpjefm5ub7op6zs7OAPTq1Uu3TPa6fH199ZYbP3487du31023b9+egIAAxo8fT6VKlejatSsAP/30E926daN8+fJUqVKFN998k7t37xZoH7RaLYsWLaJWrVqYmppSvXp15s2bp3t8ypQp1K5dGwsLC2rUqMH06dP1RgCZNWsWbm5urFu3DhcXF8zMzAC4f/8+Q4cOxc7ODisrKzp27Mj58+f1tv3VV1/h4eGBmZkZNWrUYPbs2XonDSmKwqpVq3j55ZcpV66cXlx5+fnnn+nZsydWVlZYWlrStm1brl69qtvX999/n2rVqmFqaoqbmxsHDx7ULRsfH4+iKHz55Zd06NABCwsLmjRpwnfffae3jejoaNq3b4+FhQUVKlSga9euukuqa7VagoODcXFxwdzcnCZNmrB9+3bdslFRUSiKwoEDB2jatCmmpqacOHGC9u3bM3bsWCZPnoytrS329vZ6V2HMzMxk1qxZVK9eHVNTU6pWrcrYsWOf2B5CiGcjNcZZMslKrh89ekRGRkaxucmXI1FalJivvEuWLKFmzZp89NFHnDlzBrVaTfPmzfNd5syZM1SuXJnw8HC8vb0Lfdb1xo0bGTVqFNHR0UBWEtuxY0eGDh3K4sWLefjwIVOmTKFv3758/fXXT1xfUFAQa9euZfHixbz44ovcvHmTX3/9Vfe4paUlGzZsoGrVqly4cIFhw4ZhaWnJ5MmTdfPExsayY8cOvvzyS93+9OnTB3Nzcw4cOIC1tTVr1qyhU6dOXL58GVtbW7755hsGDRrE0qVLdQnw8OHDAZg5c6Zu3bNmzWLBggWEhYU9sbfkjz/+4KWXXqJ9+/Z8/fXXWFlZER0drUvYlyxZQmhoKGvWrMHd3Z3169fz8ssv8/PPP+td4nzatGmEhITg6urKtGnTGDBgALGxsZiYmBATE0OnTp146623WLJkCSYmJhw9elT3Bh4cHMzmzZtZvXo1rq6uHD9+nDfeeAM7OzvatWun28bUqVMJCQmhRo0aVKhQQXdsAwMDOXXqFN999x2DBw+mTZs2dO7cmR07drB48WK2bdtGgwYNuHXrVo4vK49LS0sjLS1NN52cnJxv2wl9MvRa4Wi1WlSqEtNvoic9Pd3QIRiFTK0WRVHRs2dPQ4dSKObm5uzatatIRzgpyc/3wpChGY1LiUmura2tsbS0RK1WY29vX6Bl7OzsALCxsSnwMo9zdXVl0aJFuum5c+fi7u7O/Pn/f0Wx9evX4+joyOXLl6ldu3ae6/r7779ZsmQJy5cvx8/PD4CaNWvy4osv6uZ57733dP87OzszceJEtm3bppdcp6en88knn+j27cSJE5w+fZrbt29jamoKQEhICLt27WL79u0MHz6c2bNnM3XqVN12a9SowZw5c5g8ebJecv3666/j7+9foLZZsWIF1tbWbNu2TVc+8vj+h4SEMGXKFPr37w/AwoULOXr0KGFhYaxYsUI338SJE+nRowcAs2fPpkGDBsTGxlK3bl0WLVpEs2bNWLlypW7+Bg0aAFkJ7fz584mIiMDT01O3XydOnGDNmjV6yfX7779P586d9eJv3Lixbt9dXV1Zvnw5kZGRdO7cmYSEBOzt7fHy8qJMmTJUr16dFi1a5NkWwcHBzJ49u0DtJvRpNBp8fHxITU01dCjFhkqlQvtv2YAomTLRkpmpZVzQZlSq4pFQZWQ8YvmiwbpfeYuKPN+zWFhYsGePDM1oLEpMcm0ITZs21Zs+f/48R48epXz58jnmvXr1ar7J9S+//EJaWhqdOnXKc57PPvuMpUuXcvXqVVJSUsjIyMgxiLmTk5Musc6OKSUlhYoVK+rN9/DhQ12Jxvnz54mOjtYr9dBoNPzzzz+kpqZiYWEBQLNmzfKM7X/FxMTQtm3bXOuyk5OTuXHjBm3atNG7v02bNjl6gBs3bqz738HBAYDbt29Tt25dYmJi6NOnT67bj42NJTU1NUfSnJ6ejru7u959ue3X49vN3vbt27eBrF8CwsLCqFGjBt7e3nTv3h0fH588e/ODgoIIDAzU239HR8dc5xVCCCFE8Vaik2uVSpXj5+S8rlL4NMuVK1dObzolJQUfHx8WLlyYY97sxDAv5ubm+T7+3XffMXDgQGbPnk3Xrl11vcKhoaFPjMnBwYGoqKgc67SxsdHNM3v2bF599dUc82TXbee27vw8aX8K6vHkXFEUAF0vRX7bSElJAWDfvn288MILeo9l9+Bny22//vdLgaIouu06Ojpy6dIlIiIiOHLkCKNHj+aDDz7g2LFjuX6ZMDU1zbFNUTBqtZo9e/ZIWUghlOSfyS9dusSYMWMMHYbBKahQFBVLgt8wdCiFImUh/x0pCzEuJTq5trOz4+bNm7rp5ORk4uLi9OYpU6ZMjpMs7Ozs+Omnn/Tui4mJeeLoGB4eHuzYsQNnZ+dCn8Ht6uqKubk5kZGRDB06NMfj3377LU5OTkybNk1337Vr1564Xg8PD27duoWJiYnuhM3c5rl06RK1atUqVMz5ady4MRs3bsx1VBErKyuqVq1KdHS0XnlGdHR0vuUVuW0jMjIy15KL+vXrY2pqSkJCgt42ioq5uTk+Pj74+PgwZswY6taty4ULF/Dw8CjybZV28oEhshnbiEyGoqhUZGZq2bt3r14HiLGTBFCUFiU6ue7YsSMbNmzAx8cHGxsbZsyYkeOF7ezsTGRkJG3atMHU1JQKFSrQsWNHPvjgAz755BM8PT3ZvHkzP/30U45ygv81ZswY1q5dy4ABA3QjTcTGxrJt2zbWrVuX75uKmZkZU6ZMYfLkyZQtW5Y2bdpw584dfv75Z4YMGYKrqysJCQls27aN5s2bs2/fPnbu3PnENvDy8sLT0xNfX18WLVpE7dq1uXHjBvv27aNXr140a9aMGTNm0LNnT6pXr85rr72GSqXi/Pnz/PTTT8ydO7dgjf0/AgICWLZsGf379ycoKAhra2tOnjxJixYtqFOnDpMmTWLmzJnUrFkTNzc3wsPDiYmJYcuWLQXeRlBQEI0aNWL06NGMHDmSsmXLcvToUfr06UOlSpWYOHEi77zzDlqtlhdffJGkpCSio6OxsrLS1Zc/jQ0bNqDRaGjZsiUWFhZs3rwZc3NzucS8EP+x7F+vSjvl34G+ypQpI0PxCWGESvRvKUFBQbRr146ePXvSo0cPfH19qVmzpt48oaGhHDlyBEdHR13y3LVrV6ZPn87kyZNp3rw5f//9N4MGDXri9rJ7YzUaDV26dKFRo0aMHz8eGxubAv1sNX36dCZMmMCMGTOoV68e/fr109X5vvzyy7zzzjsEBATg5ubGt99+y/Tp05+4TkVR2L9/Py+99BL+/v7Url2b/v37c+3aNapUqaLb371793L48GGaN29Oq1atWLx48TMlixUrVuTrr78mJSWFdu3a0bRpU9auXavrxR47diyBgYFMmDCBRo0acfDgQXbv3q03UsiT1K5dm8OHD3P+/HlatGiBp6cnX331le7DZs6cOUyfPp3g4GDq1auHt7c3+/btw8XF5an3C7LKadauXUubNm1o3LgxERER7NmzJ0dduxCiaEmvZxbl388TaQ8hjJOSKcWMQjxXycnJWFtbk5SUlOOEVCFE3uLi4vD396ej7yKsKpTek4K12gx2b3yTiIgI6bkW4jkq6Oe3vCqFEEIUK1qtBq0248kzllBarVyMRQhjJsn1c5KQkED9+vXzfPzixYtUr179OUb0bEaOHMnmzZtzfeyNN95g9erVzzkiIURJZ21tjYmJCVG7gwwdisGZm1tIDboQRkrKQp6TjIwM4uPj83z8aUYYMaTbt2/neaVBKysrKleu/JwjKj6kLESIpydX7MwiI28I8fxJWYiRMTExKdKh7gytcuXKkkALIZ67kppQFvZLQ2ZmJhkZpbc0pqjJlxVRlCS5FkIIIQwoMTGRvn37SrJsQBbmFuzZK5cPF0VDkmshhBDCgJKSksjIyODNLguoaF3N0OGUOlqthqU7/KTcSBQZSa5FvmbNmsWuXbuIiYkp8DKKorBz5058fX3/s7iEEKKkUVQq1Cr5WBaiuJNXscjXxIkTefvttw0dhlGKioqiQ4cO3Lt3DxsbG0OHI8RTk5MEDUvKQYQoWSS5FvkqX7485cuXN3QYRufRo0eGDqFEkeTOcDQaDb18e5H6MNXQoQhhENpMLZD1WihOo3YJ4yXPohJi+/btzJ49m9jYWCwsLHB3d+err77C3NycuXPn8tFHH3Hnzh3q1avHggUL8Pb21i37+++/M2nSJA4dOkRaWhr16tVjxYoVtGzZMkdZyJkzZ3j33Xc5d+4cjx49ws3NjcWLF+Ph4VHomNPT0wkMDGTHjh3cu3ePKlWqMHLkSIKCgoiPj8fFxYVz587h5uYGwP3796lQoQJHjx6lffv2up7jvXv3EhQUxOXLl3Fzc2PdunU0bNgQgA0bNjB+/Hg2bNjApEmTuH79Ou3atWPdunU4Ov7/Fd5WrVpFSEgI169fx8XFhffee48333xT97iiKKxcuZIDBw4QGRlJnz592LhxIwAVKlQAwM/Pjw0bNhS6HUo7jUaDj48PqamS3BnSu0M3oVbJyVyGcPOveNbteNfQYZRamn8vSJSRkYGpqamBoxElgSTXJcDNmzcZMGAAixYtolevXvz999988803ZGZmsmTJEkJDQ1mzZg3u7u6sX7+el19+mZ9//hlXV1dSUlJo164dL7zwArt378be3p6zZ8+i1Wpz3dbff/+Nn58fy5YtIzMzk9DQULp3786VK1ewtLQsVNxLly5l9+7dfP7551SvXp3r169z/fr1Qu//pEmTWLJkCfb29rz77rv4+Phw+fJlypQpA0Bqairz5s3jk08+oWzZsowePZr+/fsTHR0NwM6dOxk3bhxhYWF4eXmxd+9e/P39qVatGh06dNBtZ9asWSxYsICwsDDUajUvv/wyvXv35tKlS1hZWWFubp5rfGlpaaSlpemm8xofvLTKyMggNTWVuRO2SHJnAOmP0pgZ5odapUatlo8EQ1Ar8rw3pMeTayGKgryTlgA3b94kIyODV199FScnJwAaNWoEQEhICFOmTKF///4ALFy4kKNHjxIWFsaKFSvYunUrd+7c4cyZM9ja2gLkOx53x44d9aY/+ugjbGxsOHbsGD179ixU3AkJCbi6uvLiiy+iKIou9sKaOXMmnTt3BmDjxo1Uq1aNnTt30rdvXyCrhGP58uW0bNlSN0+9evU4ffo0LVq0ICQkhMGDBzN69GgAAgMDOXnyJCEhIXrJ9euvv46/v79uOi4uDsga8zu/muvg4GBmz579VPtWGmR/oElyZxhqjSQUonST5FoUNZWhAxDPrkmTJnTq1IlGjRrRp08f1q5dy71790hOTubGjRu0adNGb/42bdrwyy+/ABATE4O7u7susX6SP//8k2HDhuHq6oq1tTVWVlakpKSQkJBQ6LgHDx5MTEwMderUYezYsRw+fLjQ6wDw9PTU/W9ra0udOnV0+wdZF/Bp3ry5brpu3brY2Njo5vnll1/ybaNszZo1e6r4goKCSEpK0t2epne+JMu+hLNGq0GjyZDb875pNQZ+BghhWIqi+vevXE5eFA3pJioB1Go1R44c4dtvv+Xw4cMsW7aMadOmceTIkScum1cpQ178/Pz466+/WLJkCU5OTpiamuLp6Ul6enqh4/bw8CAuLo4DBw4QERFB37598fLyYvv27ahUWW92j5/kZuiTCMuVK/dUy5mamkodXz5MTU2xsLDgvdCBhg5FCFEKlVGXBZD3aVFkJLkuIRRFoU2bNrRp04YZM2bg5OREZGQkVatWJTo6mnbt2unmjY6OpkWLFgA0btyYdevWkZiYWKDe6+joaFauXEn37t0BuH79Onfv3n3quK2srOjXrx/9+vXjtddew9vbm8TEROzs7ICskhd3d3eAPMfaPnnyJNWrVwfg3r17XL58mXr16ukez8jI4Pvvv9ft86VLl7h//75unnr16hEdHY2fn5/eftavXz/f2MuWzXpD1mik5+9ZqNVq9uzZI6OFGEhGRgbe3t7Sg21Amkxpe0NS/dtzLVdnFEVFkusS4NSpU0RGRtKlSxcqV67MqVOndCODTJo0iZkzZ1KzZk3c3NwIDw8nJiaGLVu2ADBgwADmz5+Pr68vwcHBODg4cO7cOapWrapXbpHN1dWVTZs20axZM5KTk5k0aVKhe7+zffjhhzg4OODu7o5KpeKLL77A3t4eGxsbVCoVrVq1YsGCBbi4uHD79m3ee++9XNfz/vvvU7FiRapUqcK0adOoVKmS3gVsypQpw9tvv83SpUsxMTEhICCAVq1a6ZLtSZMm0bdvX9zd3fHy8mLPnj18+eWXRERE5Bu/k5MTiqKwd+9eunfvjrm5uQxb+JTkQ81wFEXBwtyC+evefPLMQpRAUhYiipok1yWAlZUVx48fJywsjOTkZJycnAgNDaVbt2507dqVpKQkJkyYwO3bt6lfvz67d+/G1dUVyOp9PXz4MBMmTKB79+5kZGRQv359VqxYkeu2Pv74Y4YPH46HhweOjo7Mnz+fiRMnPlXclpaWLFq0iCtXrqBWq2nevDn79+/XlYSsX7+eIUOG0LRpU+rUqcOiRYvo0qVLjvUsWLCAcePGceXKFdzc3NizZ4+uVxnAwsKCKVOm8Prrr/PHH3/Qtm1bPv74Y93jvr6+LFmyhJCQEMaNG4eLiwvh4eG0b98+3/hfeOEFZs+ezdSpU/H392fQoEEyFJ8odtRqNXv2yi8HhhQXF8ewYcMMHUapJT3XoqgpmfKOKoqpglwhMXuc6/v37z/X2PKTnJyMtbU1SUlJWFlZGTocIYSBxcXF4e/vz5tdFlDRupqhwyl1tFoNS3f4ERERIReREfkq6Oe3PIuEEEIIA7K2tsbExIRNh6caOpRSy8LcQspCRJGR5Fr8Z+bPn8/8+fNzfaxt27YcOHDgOUckhBDGx9bWlkOHDklpjgEpiiJlIaLISFmI+M8kJiaSmJiY62Pm5ua88MILzzki4yBlIUIIIUTxI2UhwuBsbW0LfHEaIUTpptFopOc2D9KrKkTxIsm1EEIIg0pMTKRv375y+ek8WJhbsGfvHkmwhSgmJLkWQghhUElJSWRkZBDYah725WW0jMdpMjUERb4lvfpCFCOSXAshhDAKKkWNWiUfS3q0hg5ACFFYKkMHIIQQonTTaOTy33nRZmZl19JGQhQfklyLZ5Kenl7k68zMzDS62ktjjEmIkkJKHvKW+W9yLW0kRPEhyXUJ0r59ewICAggICMDa2ppKlSoxffp03ZtyWloaEydO5IUXXqBcuXK0bNmSqKgovXWcOHGCtm3bYm5ujqOjI2PHjuXBgwe6x52dnZkzZw6DBg3CysqK4cOH5xtTfHw8iqKwbds2WrdujZmZGQ0bNuTYsWO6eaKiolAUhQMHDtC0aVNMTU05ceIEWq2W4OBgXFxcMDc3p0mTJmzfvl233L179xg4cCB2dnaYm5vj6upKeHg4kJX0BwQE4ODggJmZGU5OTgQHB+vFFBMTo1vX/fv3URRF1x5PG5PIotFoyMjIkFsut/T0dIPHYGy3/+JLekmR3XOdlpZm8ONkjDd5PeV9k187DEeK20qYjRs3MmTIEE6fPs3333/P8OHDqV69OsOGDSMgIICLFy+ybds2qlatys6dO/H29ubChQu4urpy9epVvL29mTt3LuvXr+fOnTu6ZD07aQUICQlhxowZzJw5s8BxTZo0ibCwMOrXr8+HH36Ij48PcXFxVKxYUTfP1KlTCQkJoUaNGlSoUIHg4GA2b97M6tWrcXV15fjx47zxxhvY2dnRrl07pk+fzsWLFzlw4ACVKlUiNjaWhw8fArB06VJ2797N559/TvXq1bl+/TrXr18vdHsWNqbcpKWlkZaWpptOTk4udBzFiUajwcfHh9TUVEOHYpRUKhVarRTSioLRaDNQKSpeeeUVQ4dilOT1lDcLCwv27JFRZgxBkusSxtHRkcWLF6MoCnXq1OHChQssXryYrl27Eh4eTkJCAlWrVgVg4sSJHDx4kPDwcObPn09wcDADBw5k/PjxALi6urJ06VLatWvHqlWrMDMzA6Bjx45MmDChUHEFBATQu3dvAFatWsXBgwf5+OOPmTx5sm6e999/n86dOwNZCen8+fOJiIjA09MTgBo1anDixAnWrFlDu3btSEhIwN3dnWbNmgFZverZEhIScHV15cUXX0RRFJycnArfmE8RU26Cg4OZPXv2U21flDxarZaVEzaiVsvbb7bfrl9m4afyGslNZmYm2kx5zuTm0aN0xoYNMXQYQuQgr9QSplWrViiKopv29PQkNDSUCxcuoNFoqF27tt78aWlput7j8+fP8+OPP7Jlyxbd45mZmWi1WuLi4qhXrx6ALpktjOxkFMDExIRmzZrxyy+/6M3z+HpjY2NJTU3VJbbZ0tPTcXd3B2DUqFH07t2bs2fP0qVLF3x9fWndujUAgwcPpnPnztSpUwdvb2969uxJly5dCh13YWPKTVBQEIGBgbrp5ORkHB0dCx1LcaFWq9mzZ4/UiOZCo9HQq1cvRof6GToUUUyoVGpUikqeM3kwNzdn165d0jubC7n4kOFIcl1KpKSkoFar+eGHH3K82MqXL6+bZ8SIEYwdOzbH8tWrV9f9X65cuf8kxsfXm5KSAsC+fftyXCbd1NQUgG7dunHt2jX279/PkSNH6NSpE2PGjCEkJAQPDw/i4uI4cOAAERER9O3bFy8vL7Zv345KlXWqwePJ36NHj4okptyYmprm+3hJJG/ouTMxMZEvHrmIjY1l5MiRhg7DKJmoTNBmatm7d6/u10Px/ySBFMZIkusS5tSpU3rTJ0+exNXVFXd3dzQaDbdv36Zt27a5Luvh4cHFixepVatWkcd18uRJXnrpJQAyMjL44YcfCAgIyHP++vXrY2pqSkJCQp7lFgB2dnb4+fnh5+dH27ZtmTRpEiEhIQBYWVnRr18/+vXrx2uvvYa3tzeJiYnY2dkBcPPmTV2P8+MnNz5rTELkRxKBnExM5KMoL4qS1RlQpkwZaSchigl5pZYwCQkJBAYGMmLECM6ePcuyZcsIDQ2ldu3aDBw4kEGDBhEaGoq7uzt37twhMjKSxo0b06NHD6ZMmUKrVq0ICAhg6NChlCtXjosXL3LkyBGWL1/+THGtWLECV1dX6tWrx+LFi7l37x5vvfVWnvNbWloyceJE3nnnHbRaLS+++CJJSUlER0djZWWFn58fM2bMoGnTpjRo0IC0tDT27t2rK1358MMPcXBwwN3dHZVKxRdffIG9vT02NjaoVCpatWrFggULcHFx4fbt27z33ntP3IeCxCSEKDz5wpE31b/JtbSREMWHJNclzKBBg3j48CEtWrRArVYzbtw43XB54eHhzJ07lwkTJvDHH39QqVIlWrVqRc+ePQFo3Lgxx44dY9q0abRt25bMzExq1qxJv379njmuBQsWsGDBAmJiYqhVqxa7d++mUqVK+S4zZ84c7OzsCA4O5rfffsPGxgYPDw/effddAMqWLUtQUBDx8fGYm5vTtm1btm3bBmQlwosWLeLKlSuo1WqaN2/O/v37dSUh69evZ8iQITRt2pQ6deqwaNGiAtVkPykmIYQQQpRuSqYU/5UY7du3x83NjbCwMEOHohMfH4+Liwvnzp3Dzc3N0OEYheTkZKytrUlKSsLKysrQ4QhhcHFxcfj7+xPYah725asZOhyjosnUEBT5FhEREVIWIoSBFfTzW16pQgghDMra2hoTExM+PDnN0KEYJQtzC71RoIQQxk2Sa/FM5s+fz/z583N9rG3btqxateo5RySEKG5sbW05dOiQjKKSBxkRQ4jiRcpCxDNJTEwkMTEx18fMzc1zDFknpCxEiMdpNBpJqvMgSbUQxkXKQsRzYWtri62traHDEEIUQ4mJifTt25eMjAxDh2KULMwt2LNXLl8tRHEjybUQQgiDSEpKIiMjg7l1ZvCCeVVDh2NUNJkahp4fI736QhRDKkMHIPLXvn17xo8fX2TrmzVrVrEdtaOwsW/YsAEbG5snzqcoCrt27XrquIQQz0alqDBRTOT22E2tSG+1EMVViU+uo6KiUBSF+/fvGzqUp/Lll18yZ84cQ4fx3OWW8E6cOJHIyMgCr6Nfv35cvnxZN51Xcn7z5k26dev2tKEKIYQQQuhIWci/0tPTKVu2rEG2/ejRI8qUKZNrPMZYz5xbvM9D+fLlKV++fIHnNzc3x9zc/Inz2dvbP0tYQoinpNFoDB2C0dJmaoGsNpLxrYUoXopFz7VWqyU4OBgXFxfMzc1p0qQJ27dvJzMzEy8vL7p27aqrS0tMTKRatWrMmDGD+Ph4OnToAECFChVQFIXBgwcDWeUWAQEBjB8/nkqVKtG1a1cg67LZjRo1oly5cjg6OjJ69GhSUlL04omOjqZ9+/ZYWFhQoUIFunbtyr179wBwdnbOcREXNzc3Zs2apZtWFIVVq1bx8ssvU65cOebNm6frVV23bh0uLi6YmZnp4ny8LCQtLY0pU6bg6OiIqakptWrV4uOPPwZyL4PYtWtXvuOjnjlzhs6dO1OpUiWsra1p164dZ8+e1Zsnt3jzo9FoGDJkiO541alThyVLluSYb/369TRo0ABTU1McHBwICAjQtSFAr169UBRFN/14z/Phw4cxMzPL8YvEuHHj6NixY4722LBhA7Nnz+b8+fMoioKiKGzYsEG3f4/3kl+/fp2+fftiY2ODra0tr7zyCvHx8brHo6KiaNGiBeXKlcPGxoY2bdpw7dq1fNtElG4ajYaMjAy55XITudOS9Zn26NEjgx8jY7zJFzNhzIrF1+Hg4GA2b97M6tWrcXV15fjx47zxxhvY2dmxceNGGjVqxNKlSxk3bhwjR47khRdeYMaMGSiKwo4dO+jduzeXLl3CyspKrydz48aNjBo1iujoaN19KpWKpUuX4uLiwm+//cbo0aOZPHkyK1euBCAmJoZOnTrx1ltvsWTJEkxMTDh69GihX+izZs1iwYIFhIWFYWJiwvr164mNjWXHjh18+eWXeZ4dPmjQIL777juWLl1KkyZNiIuL4+7du0/Rqln+/vtv/Pz8WLZsGZmZmYSGhtK9e3euXLmCpaVlnvHmR6vVUq1aNb744gsqVqzIt99+y/Dhw3FwcKBv374ArFq1isDAQBYsWEC3bt1ISkrSHYczZ85QuXJlwsPD8fb2zrUtOnXqhI2NDTt27GDIkCFAVgLz2Wef5Zr89+vXj59++omDBw8SEREBZF244n89evSIrl274unpyTfffIOJiQlz587F29ubH3/8EZVKha+vL8OGDePTTz8lPT2d06dP5/sFJi0tjbS0NN10cnJyvu1XHMlwannTaDT08u1F6sNUQ4ciipEMbQYqRUXPnj0NHYpRMjc3Z9euXTKSSi5kCEfDM/rkOi0tjfnz5xMREYGnpycANWrU4MSJE6xZs4atW7eyZs0aBg0axK1bt9i/fz/nzp3TJYDZZRWVK1fO0avr6urKokWL9O57vJfY2dmZuXPnMnLkSF1yvWjRIpo1a6abBmjQoEGh9+v111/H399f77709HQ++eQT7Ozscl3m8uXLfP755xw5cgQvLy9dWzyL7F7ebB999BE2NjYcO3ZM7009t3jzUqZMGWbPnq2bdnFx4bvvvuPzzz/XJddz585lwoQJjBs3Tjdf8+bNAXT7b2Njk2fJhlqtpn///mzdulWXXEdGRnL//n169+6dY35zc3PKly+PiYlJvmUgn332GVqtlnXr1ukS5vDwcGxsbIiKiqJZs2YkJSXRs2dPatasCUC9evXybY/g4GC99ihpNBoNPj4+pKZK8pifDaM/xkQlH3iPu3wzlvd3zDV0GEZJgxZtplaeN7lIz3jE0DUjdL84C30WFhbs2SNDOBqS0SfXsbGxpKam0rlzZ73709PTcXd3B6BPnz7s3LmTBQsWsGrVKlxdXQu07qZNm+a4LyIiguDgYH799VeSk5PJyMjgn3/+ITU1FQsLC2JiYujTp88z71ezZs1y3Ofk5JRnYg1ZveZqtZp27do98/az/fnnn7z33ntERUVx+/ZtNBoNqampJCQkPDHe/KxYsYL169eTkJDAw4cPSU9P15V03L59mxs3btCpU6dnin3gwIG0atWKGzduULVqVbZs2UKPHj0KNEJIXs6fP09sbKxerz3AP//8w9WrV+nSpQuDBw+ma9eudO7cGS8vL/r27YuDg0Oe6wwKCiIwMFA3nZycjKOj41PHKIoflUrF4JVDDB2GKEYUFFSKPG/yolKpQH4sE0bK6JPr7Hrnffv25bjan6mpKQCpqan88MMPqNVqrly5UuB1lytXTm86Pj6enj17MmrUKObNm4etrS0nTpxgyJAhpKenY2Fh8cQT5FQqVY6fxx89evTEbed13+OKatuP8/Pz46+//mLJkiU4OTlhamqKp6cn6enphYrtcdu2bWPixImEhobi6emJpaUlH3zwAadOnSrQfhRU8+bNqVmzJtu2bWPUqFHs3LlTV0f9tFJSUmjatClbtmzJ8Vj2F5/w8HDGjh3LwYMH+eyzz3jvvfc4cuQIrVq1ynWdpqamuudqSaRWq9mzZ4+UheRDq9VmJQNCz6VLlxgzZoyhwzBKJooabaaWr776qlDvv6WFvKbyJmUhhmf0yXX9+vUxNTUlISEhzx7bCRMmoFKpOHDgAN27d6dHjx66cofsEUAKUhP9ww8/oNVqCQ0N1b1oP//8c715GjduTGRkZJ4/89vZ2XHz5k3ddHJyMnFxcU/e0QJo1KgRWq2WY8eO6cpC/nfbf//9Nw8ePNC9GcfExOS7zujoaFauXEn37t2BrJP5nqWGO3udrVu3ZvTo0br7rl69qvvf0tISZ2dnIiMjdSec/q8yZcoU6JgNHDiQLVu2UK1aNVQqFT169Mhz3rJlyz5xnR4eHnz22WdUrlw530uburu74+7uTlBQEJ6enmzdujXP5Lo0kDdy8TQMNUJTcaBSsj6DTE1NZbQQIYoZo//aZ2lpycSJE3nnnXfYuHEjV69e5ezZsyxbtoyNGzeyb98+1q9fz5YtW+jcuTOTJk3Cz89PN3qHk5MTiqKwd+9e7ty5k2Pkj8fVqlWLR48esWzZMn777Tc2bdrE6tWr9eYJCgrizJkzjB49mh9//JFff/2VVatW6RLSjh07smnTJr755hsuXLiAn59fkSUezs7O+Pn58dZbb7Fr1y7i4uKIiorSfQFo2bIlFhYWvPvuu1y9epWtW7c+sSfX1dWVTZs28csvv3Dq1CkGDhz4zD3Lrq6ufP/99xw6dIjLly8zffp0zpw5ozfPrFmzCA0NZenSpVy5ckV3TB/f18jISG7duqU7lrkZOHAgZ8+eZd68ebz22mv59hA7OzsTFxdHTEwMd+/e1TvJ8PH1VapUiVdeeYVvvvlG18Zjx47l999/Jy4ujqCgIL777juuXbvG4cOHuXLlyhPrroUQOeV3InBppyKrbaSNhCh+jD65BpgzZw7Tp08nODiYevXq4e3tzb59+3B2dmbIkCHMmjULDw8PAGbPnk2VKlUYOXIkAC+88AKzZ89m6tSpVKlSRTfcW26aNGnChx9+yMKFC2nYsCFbtmwhODhYb57atWtz+PBhzp8/T4sWLfD09OSrr77S9SwEBQXRrl07evbsSY8ePfD19dWd+FYUVq1axWuvvcbo0aOpW7cuw4YN48GDB0DWyZubN29m//79NGrUiE8//VRvCMDcfPzxx9y7dw8PDw/efPNNxo4dS+XKlZ8pxhEjRvDqq6/Sr18/WrZsyV9//aXXiw1Z5ShhYWGsXLmSBg0a0LNnT72SntDQUI4cOYKjo6Outj43tWrVokWLFvz4448MHDgw37h69+6Nt7c3HTp0wM7Ojk8//TTHPBYWFhw/fpzq1avz6quvUq9ePYYMGcI///yDlZUVFhYW/Prrr/Tu3ZvatWszfPhwxowZw4gRIwrZSkII+cUjb9k919JGQhQ/SqYUSgrxXCUnJ2NtbU1SUlK+pSdClHRxcXH4+/szt84MXjCvauhwjIomU8PQ82OIiIiQshAhjERBP7/lFSuEEMIgrK2tMTEx4b1L7xs6FKNkYW4hZSFCFEOSXItCGzlyJJs3b871sTfeeCNHnboQQuTG1taWQ4cOyUgzeZBRH4QonqQsRBTa7du387zKoJWV1TPXbJd0UhYihBBCFD9SFiL+M5UrV5YEWghhUBqNRnq8kd5tIYyRJNdCCCGKFY1Gg09PH1Ifpho6FIMzMTHh888/x9bW1tChCCH+Jcm1EEKIYiUzM5PUh6msbzEdtVJ6e21/T/2TaRdWkZSUJMm1EEakWIxzLUqe9u3bM378+KdePj4+HkVRdFegjIqKQlEU7t+//1TLCyGKH7WixkRVem+l+YuFEMZMeq5FqeTo6MjNmzepVKmSoUMRQhSSRqMxdAhGQZupBaQ9hDA2klyLUkmtVmNvb2/oMIQQT0FOZMyS3Q7SHkIYF0muhcFkZGQQEBDApk2bKFOmDKNGjeL9999HURQURWHnzp34+vrq5rexsSEsLIzBgwfnu94HDx7g4ODA+vXree2113T379q1i4EDB3Lr1i3++usvXFxcOHfuHG5ubkRFRdGhQwciIiKYMmUKFy9exM3NjfDwcOrUqaNbx9y5c1m6dCkPHz6kX79+VKpUiYMHD0p5yXNQ0NEhtFotKpVUvJVkaWlphg7BKGjJej2kp6eTkZFh4GjEf6Wg72kycozxkORaGMzGjRsZMmQIp0+f5vvvv2f48OFUr16dYcOGPdN6y5UrR//+/QkPD9dLrrOnLS0t+euvv3Jddtq0aYSGhmJnZ8fIkSN56623iI6OBmDLli3MmzePlStX0qZNG7Zt20ZoaCguLi75xpOWlqaXDOQ1RrjIm0ajwcfHh9TUJ48OoVKp0Gq1zyEqIQwrQ5tVDjJmzBgDRyL+SwV9T7OwsGDPnj2SYBsBSa6FwTg6OrJ48WIURaFOnTpcuHCBxYsXP3NyDTB06FBat27NzZs3cXBw4Pbt2+zfv5+IiIh8l5s3bx7t2rUDYOrUqfTo0YN//vkHMzMzli1bxpAhQ/D39wdgxowZHD58mJSUlHzXGRwczOzZs595n0TBaLVaNo5dgolKPmBKqqQHKYxeO9XQYRiBrJ7rBW++i2PFqgaORfwX0jMeMWTFBEOHIQpJkmthMK1atUJRFN20p6cnoaGhRXJyTosWLWjQoAEbN25k6tSpbN68GScnJ1566aV8l2vcuLHufwcHByDripTVq1fn0qVLjB49Osd2vv7663zXGRQURGBgoG46OTkZR0fHwu5SqaZWq9mzZ88Ty0I0Gg29fHvht3Tcc4pMCEPKev+cumm+geMQ/yVzc3N27dr1xB5pKQsxHpJcC6OkKEqOROrRo0eFWsfQoUNZsWIFU6dOJTw8HH9/f71kPjdlypTRiwF45hIDU1NTTE1Nn2kdggJ9aJiYmLBn75OTcFG8PXjwgFdeecXQYRhc9q8zK1as0Ds3RJQskjQXP5JcC4M5deqU3vTJkydxdXVFrVZjZ2fHzZs3dY9duXKlQPW2j3vjjTeYPHkyS5cu5eLFi/j5+T1TvHXq1OHMmTMMGjRId9+ZM2eeaZ2i6MmHUMlnZmZm6BCMglrJOsnN1NQUExP5OBfCWMirURhMQkICgYGBjBgxgrNnz7Js2TJCQ0MB6NixI8uXL8fT0xONRsOUKVP0epULokKFCrz66qtMmjSJLl26UK1atWeK9+2332bYsGE0a9aM1q1b89lnn/Hjjz9So0aNZ1qvEKJw5AtUFtW/ybW0hxDGRZJrYTCDBg3i4cOHtGjRArVazbhx4xg+fDgAoaGh+Pv707ZtW6pWrcqSJUv44YcfCr2NIUOGsHXrVt56661njnfgwIH89ttvTJw4kX/++Ye+ffsyePBgTp8+/czrFkIIIUTJoGRKcaIowTZt2sQ777zDjRs3KFu2bJGvv3Pnztjb27Np06YCL5OcnIy1tTVJSUlYWVkVeUxClHQZGRl4eXmxvsX0Un0J8N9T/2TahVWEh4c/cUhQIcSzK+jnt/RcixIpNTWVmzdvsmDBAkaMGFEkiXVqaiqrV6+ma9euqNVqPv30UyIiIjhy5EgRRCyEKChFUbAwt+Ct03MMHYrBmZiYYG1tbegwhBCPkeRalEiLFi1i3rx5vPTSSwQFBRXJOhVFYf/+/cybN49//vmHOnXqsGPHDry8vIpk/UKIglGr1TIqzL9kJAkhjI+UhQjxnElZiBBCCFH8FPTz+8kXqxdCCCFEoSQmJjJu3DgSExMNHYoQ4jmT5FoIIYQoYklJSZw/f56kpCRDhyKEeM4kuRYlirOzM2FhYc91m+3bt2f8+PHPdZtCCCGEME6SXIsCGzx4ML6+voYOQwghhBDCaElyLYrco0ePDB2CEEIYVPb7oLwfClH6SHItcti+fTuNGjXC3NycihUr4uXlxaRJk9i4cSNfffUViqKgKApRUVHEx8ejKAqfffYZ7dq1w8zMjC1btgCwbt066tWrh5mZGXXr1mXlypW6baSnpxMQEICDgwNmZmY4OTkRHBwMQGZmJrNmzaJ69eqYmppStWpVxo4d+1T7cv/+fYYOHYqdnR1WVlZ07NiR8+fPA3D58mUUReHXX3/VW2bx4sXUrFlTN/3TTz/RrVs3ypcvT5UqVXjzzTe5e/fuU8UjhCgdtFqt3l8hROkh41wLPTdv3mTAgAEsWrSIXr168ffff/PNN98waNAgEhISSE5OJjw8HABbW1tu3LgBwNSpUwkNDcXd3V2XYM+YMYPly5fj7u7OuXPnGDZsGOXKlcPPz4+lS5eye/duPv/8c6pXr87169e5fv06ADt27GDx4sVs27aNBg0acOvWLV1CXFh9+vTB3NycAwcOYG1tzZo1a+jUqROXL1+mdu3aNGvWjC1btjBnzv9fjGLLli28/vrrQFZy3rFjR4YOHcrixYt5+PAhU6ZMoW/fvnz99dcFiiEtLY20tDTddHJy8lPtixCi+JCeayFKL0muhZ6bN2+SkZHBq6++ipOTEwCNGjUCwNzcnLS0NOzt7XMsN378eF599VXd9MyZMwkNDdXd5+LiwsWLF1mzZg1+fn4kJCTg6urKiy++iKIoum0BJCQkYG9vj5eXF2XKlKF69eq0aNGi0Pty4sQJTp8+ze3btzE1NQUgJCSEXbt2sX37doYPH87AgQNZvny5Lrm+fPkyP/zwA5s3bwbQfTmYP3++br3r16/H0dFRl6A/SXBwMLNnzy50/EKI4is1NVXvrxCi9JCyEKGnSZMmdOrUiUaNGtGnTx/Wrl3LvXv3nrhcs2bNdP8/ePCAq1evMmTIEMqXL6+7zZ07l6tXrwJZJ0fGxMRQp04dxo4dy+HDh3XL9+nTh4cPH1KjRg2GDRvGzp07ycjIKPS+nD9/npSUFCpWrKgXR1xcnC6O/v37Ex8fz8mTJ4GsXmsPDw/q1q2rW8fRo0f1ls9+LHsdTxIUFERSUpLult1DL4QQQoiSR3quhR61Ws2RI0f49ttvOXz4MMuWLWPatGmcOnUq3+XKlSun+z8lJQWAtWvX0rJlyxzrB/Dw8CAuLo4DBw4QERFB37598fLyYvv27Tg6OnLp0iUiIiI4cuQIo0eP5oMPPuDYsWOUKVOmwPuSkpKCg4MDUVFROR6zsbEBwN7eno4dO7J161ZatWrF1q1bGTVqlN46fHx8WLhwYY51ODg4FCgOU1NTXc+5EKJ0sLCw0PsrhCg9JLkWOSiKQps2bWjTpg0zZszAycmJnTt3UrZsWTQazROXr1KlClWrVuW3335j4MCBec5nZWVFv3796NevH6+99hre3t4kJiZia2uLubk5Pj4++Pj4MGbMGOrWrcuFCxfw8PAo8H54eHhw69YtTExMcHZ2znO+gQMHMnnyZAYMGMBvv/1G//799daxY8cOnJ2dMTGRl4sQomCyOwIK0yEghCgZJFsQek6dOkVkZCRdunShcuXKnDp1ijt37lCvXj3++ecfDh06xKVLl6hYsSLW1tZ5rmf27NmMHTsWa2trvL29SUtL4/vvv+fevXsEBgby4Ycf4uDggLu7OyqVii+++AJ7e3tsbGzYsGEDGo2Gli1bYmFhwebNmzE3N9eryy4ILy8vPD098fX1ZdGiRdSuXZsbN26wb98+evXqpStlefXVVxk1ahSjRo2iQ4cOVK1aVbeOMWPGsHbtWgYMGMDkyZOxtbUlNjaWbdu2sW7dOl1PvBBCPE6lUun9FUKUHpJcCz1WVlYcP36csLAwkpOTcXJyIjQ0lG7dutGsWTOioqJo1qwZKSkpHD16NM8e4aFDh2JhYcEHH3zApEmTKFeuHI0aNdJdydDS0pJFixZx5coV1Go1zZs3Z//+/ahUKmxsbFiwYAGBgYFoNBoaNWrEnj17qFixYqH2RVEU9u/fz7Rp0/D39+fOnTvY29vz0ksvUaVKFd18lpaW+Pj48Pnnn7N+/Xq9dVStWpXo6GimTJlCly5dSEtLw8nJCW9vb/nQFELkSXquhSi9lMzMzExDByFEaZKcnIy1tTVJSUlYWVkZOhwhxH8gLi4Of39/wsPDcXFxMXQ4QogiUNDPb+l6E0IIIYQQoohIWYgoNr755hu6deuW5+PZo5QYu+wfi+RiMkKUXIqiULduXRRFkde6ECVE9mv5SUUfUhYiio2HDx/yxx9/5Pl4rVq1nmM0T+/333/H0dHR0GEIIYQQ4ilcv36datWq5fm4JNdCPGdarZYbN25gaWmJoiiGDqfQkpOTcXR05Pr161IzbgTkeBgfOSbGR46J8SmOxyQzM5O///6bqlWr5juogZSFCPGcqVSqfL/xFhdWVlbF5g2xNJDjYXzkmBgfOSbGp7gdk/yGIc4mJzQKIYQQQghRRCS5FkIIIYQQoohIci2EKBRTU1NmzpyJqampoUMRyPEwRnJMjI8cE+NTko+JnNAohBBCCCFEEZGeayGEEEIIIYqIJNdCCCGEEEIUEUmuhRBCCCGEKCKSXAshhBBCCFFEJLkWQjyV+Ph4hgwZgouLC+bm5tSsWZOZM2eSnp5u6NBKtXnz5tG6dWssLCywsbExdDil0ooVK3B2dsbMzIyWLVty+vRpQ4dUah0/fhwfHx+qVq2Koijs2rXL0CGVesHBwTRv3hxLS0sqV66Mr68vly5dMnRYRUqSayHEU/n111/RarWsWbOGn3/+mcWLF7N69WreffddQ4dWqqWnp9OnTx9GjRpl6FBKpc8++4zAwEBmzpzJ2bNnadKkCV27duX27duGDq1UevDgAU2aNGHFihWGDkX869ixY4wZM4aTJ09y5MgRHj16RJcuXXjw4IGhQysyMhSfEKLIfPDBB6xatYrffvvN0KGUehs2bGD8+PHcv3/f0KGUKi1btqR58+YsX74cAK1Wi6OjI2+//TZTp041cHSlm6Io7Ny5E19fX0OHIh5z584dKleuzLFjx3jppZcMHU6RkJ5rIUSRSUpKwtbW1tBhCGEQ6enp/PDDD3h5eenuU6lUeHl58d133xkwMiGMV1JSEkCJ+uyQ5FoIUSRiY2NZtmwZI0aMMHQoQhjE3bt30Wg0VKlSRe/+KlWqcOvWLQNFJYTx0mq1jB8/njZt2tCwYUNDh1NkJLkWQuiZOnUqiqLke/v111/1lvnjjz/w9vamT58+DBs2zECRl1xPc0yEEMLYjRkzhp9++olt27YZOpQiZWLoAIQQxmXChAkMHjw433lq1Kih+//GjRt06NCB1q1b89FHH/3H0ZVOhT0mwjAqVaqEWq3mzz//1Lv/zz//xN7e3kBRCWGcAgIC2Lt3L8ePH6datWqGDqdISXIthNBjZ2eHnZ1dgeb9448/6NChA02bNiU8PByVSn4M+y8U5pgIwylbtixNmzYlMjJSd9KcVqslMjKSgIAAwwYnhJHIzMzk7bffZufOnURFReHi4mLokIqcJNdCiKfyxx9/0L59e5ycnAgJCeHOnTu6x6SXznASEhJITEwkISEBjUZDTEwMALVq1aJ8+fKGDa4UCAwMxM/Pj2bNmtGiRQvCwsJ48OAB/v7+hg6tVEpJSSE2NlY3HRcXR0xMDLa2tlSvXt2AkZVeY8aMYevWrXz11VdYWlrqzkewtrbG3NzcwNEVDRmKTwjxVDZs2JBnwiBvK4YzePBgNm7cmOP+o0eP0r59++cfUCm0fPlyPvjgA27duoWbmxtLly6lZcuWhg6rVIqKiqJDhw457vfz82PDhg3PPyCBoii53h8eHv7E8rfiQpJrIYQQQgghiogUSAohhBBCCFFEJLkWQgghhBCiiEhyLYQQQgghRBGR5FoIIYQQQogiIsm1EEIIIYQQRUSSayGEEEIIIYqIJNdCCCGEEEIUEUmuhRBCCCGEKCKSXAshhBBCCFFEJLkWQgghhBCiiEhyLYQQQgghRBGR5FoIIYQQQogi8n8jtPhVxo76IQAAAABJRU5ErkJggg==\n"},"metadata":{}}],"source":["sns.boxenplot(some_stress,orient='y');"]},{"cell_type":"code","execution_count":41,"metadata":{"colab":{"base_uri":"https://localhost:8080/","height":350},"executionInfo":{"elapsed":7,"status":"ok","timestamp":1716216961948,"user":{"displayName":"Daniel Meier","userId":"06365571306976914087"},"user_tz":300},"id":"xyNEnDfPhM8Y","outputId":"7c61e3f4-56d9-41b6-a65a-a809f8a18eb7"},"outputs":[{"output_type":"execute_result","data":{"text/plain":[" anxiety_level self_esteem mental_health_history depression \\\n","count 358.000000 358.000000 358.000000 358.000000 \n","mean 0.059942 0.166131 -0.007802 -0.088192 \n","std 0.481891 0.548633 1.001255 0.469954 \n","min -1.645790 -1.764691 -0.985559 -1.625618 \n","25% -0.173945 -0.086938 -0.985559 -0.330868 \n","50% -0.010407 0.248612 -0.985559 -0.071918 \n","75% 0.316670 0.584163 1.014653 0.057558 \n","max 1.624976 1.367114 1.014653 1.870208 \n","\n"," headache blood_pressure sleep_quality breathing_problem \\\n","count 358.000000 358.000000 358.000000 358.000000 \n","mean -0.033568 -1.029525 -0.083528 0.124092 \n","std 0.592790 0.885691 0.552637 0.865418 \n","min -1.780475 -1.418416 -1.718703 -1.966776 \n","25% -0.360741 -1.418416 -0.426445 -0.538282 \n","50% -0.360741 -1.418416 -0.426445 0.175964 \n","75% 0.349125 -1.418416 0.219684 0.890211 \n","max 1.768859 0.981981 1.511942 1.604458 \n","\n"," noise_level living_conditions ... basic_needs academic_performance \\\n","count 358.000000 358.000000 ... 358.000000 358.000000 \n","mean -0.103891 -0.013756 ... -0.205898 -0.198810 \n","std 0.609152 0.716706 ... 0.597000 0.571942 \n","min -1.995514 -2.250991 ... -1.934764 -1.960979 \n","25% -0.488949 -0.463200 ... -0.539196 -0.546502 \n","50% 0.264334 -0.463200 ... 0.158587 -0.546502 \n","75% 0.264334 0.430695 ... 0.158587 0.160736 \n","max 1.770899 2.218486 ... 1.554154 1.575213 \n","\n"," study_load teacher_student_relationship future_career_concerns \\\n","count 358.000000 358.000000 358.000000 \n","mean -0.067138 -0.210008 -0.082911 \n","std 0.647756 0.543843 0.535599 \n","min -1.993501 -1.913497 -1.732927 \n","25% -0.472800 -0.468357 -0.424609 \n","50% -0.472800 -0.468357 -0.424609 \n","75% 0.287551 0.254213 0.229550 \n","max 1.808252 0.976783 1.537869 \n","\n"," social_support peer_pressure extracurricular_activities bullying \\\n","count 358.000000 358.000000 358.000000 358.000000 \n","mean 0.283528 -0.194049 -0.202429 -0.040128 \n","std 0.893387 0.576581 0.560741 0.566601 \n","min -1.796742 -1.919495 -1.953023 -1.710343 \n","25% 0.112839 -0.515609 -0.541508 -0.403377 \n","50% 0.112839 -0.515609 -0.541508 0.250106 \n","75% 1.067629 0.186334 0.164249 0.250106 \n","max 1.067629 1.590220 1.575763 1.557071 \n","\n"," stress_level \n","count 3.580000e+02 \n","mean 4.427575e-03 \n","std 8.685757e-19 \n","min 4.427575e-03 \n","25% 4.427575e-03 \n","50% 4.427575e-03 \n","75% 4.427575e-03 \n","max 4.427575e-03 \n","\n","[8 rows x 21 columns]"],"text/html":["\n","
\n","
\n","\n","\n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n","
anxiety_levelself_esteemmental_health_historydepressionheadacheblood_pressuresleep_qualitybreathing_problemnoise_levelliving_conditions...basic_needsacademic_performancestudy_loadteacher_student_relationshipfuture_career_concernssocial_supportpeer_pressureextracurricular_activitiesbullyingstress_level
count358.000000358.000000358.000000358.000000358.000000358.000000358.000000358.000000358.000000358.000000...358.000000358.000000358.000000358.000000358.000000358.000000358.000000358.000000358.0000003.580000e+02
mean0.0599420.166131-0.007802-0.088192-0.033568-1.029525-0.0835280.124092-0.103891-0.013756...-0.205898-0.198810-0.067138-0.210008-0.0829110.283528-0.194049-0.202429-0.0401284.427575e-03
std0.4818910.5486331.0012550.4699540.5927900.8856910.5526370.8654180.6091520.716706...0.5970000.5719420.6477560.5438430.5355990.8933870.5765810.5607410.5666018.685757e-19
min-1.645790-1.764691-0.985559-1.625618-1.780475-1.418416-1.718703-1.966776-1.995514-2.250991...-1.934764-1.960979-1.993501-1.913497-1.732927-1.796742-1.919495-1.953023-1.7103434.427575e-03
25%-0.173945-0.086938-0.985559-0.330868-0.360741-1.418416-0.426445-0.538282-0.488949-0.463200...-0.539196-0.546502-0.472800-0.468357-0.4246090.112839-0.515609-0.541508-0.4033774.427575e-03
50%-0.0104070.248612-0.985559-0.071918-0.360741-1.418416-0.4264450.1759640.264334-0.463200...0.158587-0.546502-0.472800-0.468357-0.4246090.112839-0.515609-0.5415080.2501064.427575e-03
75%0.3166700.5841631.0146530.0575580.349125-1.4184160.2196840.8902110.2643340.430695...0.1585870.1607360.2875510.2542130.2295501.0676290.1863340.1642490.2501064.427575e-03
max1.6249761.3671141.0146531.8702081.7688590.9819811.5119421.6044581.7708992.218486...1.5541541.5752131.8082520.9767831.5378691.0676291.5902201.5757631.5570714.427575e-03
\n","

8 rows × 21 columns

\n","
\n","
\n","\n","
\n"," \n","\n"," \n","\n"," \n","
\n","\n","\n","
\n"," \n","\n","\n","\n"," \n","
\n","\n","
\n","
\n"],"application/vnd.google.colaboratory.intrinsic+json":{"type":"dataframe"}},"metadata":{},"execution_count":41}],"source":["some_stress.describe()"]},{"cell_type":"code","execution_count":42,"metadata":{"colab":{"base_uri":"https://localhost:8080/"},"executionInfo":{"elapsed":191,"status":"ok","timestamp":1716216963395,"user":{"displayName":"Daniel Meier","userId":"06365571306976914087"},"user_tz":300},"id":"H_ILDoASsHsk","outputId":"ef498b1c-3b54-4c47-b88c-685c97204ba8"},"outputs":[{"output_type":"execute_result","data":{"text/plain":["social_support 0.283528\n","self_esteem 0.166131\n","breathing_problem 0.124092\n","anxiety_level 0.059942\n","stress_level 0.004428\n","mental_health_history -0.007802\n","living_conditions -0.013756\n","headache -0.033568\n","bullying -0.040128\n","study_load -0.067138\n","future_career_concerns -0.082911\n","sleep_quality -0.083528\n","depression -0.088192\n","noise_level -0.103891\n","peer_pressure -0.194049\n","academic_performance -0.198810\n","extracurricular_activities -0.202429\n","basic_needs -0.205898\n","teacher_student_relationship -0.210008\n","safety -0.228434\n","blood_pressure -1.029525\n","dtype: float64"]},"metadata":{},"execution_count":42}],"source":["some_stress_mean=some_stress.mean()\n","some_stress_mean=some_stress_mean.sort_values(ascending = False)\n","some_stress_mean"]},{"cell_type":"code","execution_count":43,"metadata":{"colab":{"base_uri":"https://localhost:8080/"},"executionInfo":{"elapsed":305,"status":"ok","timestamp":1716216965667,"user":{"displayName":"Daniel Meier","userId":"06365571306976914087"},"user_tz":300},"id":"LA8QWcZDWlng","outputId":"8c18a2b2-4947-49b6-8b49-4c5ca3d5c2bf"},"outputs":[{"output_type":"execute_result","data":{"text/plain":["social_support 0.905028\n","self_esteem 0.568343\n","breathing_problem 0.341899\n","anxiety_level 0.177175\n","bullying 0.044693\n","study_load 0.026816\n","sleep_quality 0.024581\n","future_career_concerns 0.017877\n","noise_level 0.008939\n","living_conditions 0.002235\n","stress_level 0.000000\n","academic_performance -0.006704\n","extracurricular_activities -0.015642\n","basic_needs -0.017877\n","headache -0.031285\n","peer_pressure -0.033520\n","mental_health_history -0.044693\n","safety -0.067039\n","teacher_student_relationship -0.113966\n","depression -0.240844\n","blood_pressure -1.351955\n","dtype: float64"]},"metadata":{},"execution_count":43}],"source":["mm_some_stress_mean=mm_some_stress.mean()\n","mm_some_stress_mean=mm_some_stress_mean.sort_values(ascending = False)\n","mm_some_stress_mean"]},{"cell_type":"code","execution_count":45,"metadata":{"colab":{"base_uri":"https://localhost:8080/","height":452},"executionInfo":{"elapsed":1025,"status":"ok","timestamp":1716216971128,"user":{"displayName":"Daniel Meier","userId":"06365571306976914087"},"user_tz":300},"id":"W4ustv7ox_Wq","outputId":"31df4375-b16f-4beb-a36a-8e7579fde262"},"outputs":[{"output_type":"display_data","data":{"text/plain":["
"],"image/png":"iVBORw0KGgoAAAANSUhEUgAAAuIAAAGzCAYAAABq2XLwAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAADKWUlEQVR4nOzdeVxO+f/4/8dV2ldLVKRsEZMtDBpkLUszGBo0CFmGxJDtYytb9n3GGGYqhmHGOmbsS4bsSzEjSSN5zzSyVbJEdX5/+HW+Li3KIMvzfrtdN65zXud1nq/TtTx79TznaBRFURBCCCGEEEK8VjpFHYAQQgghhBDvI0nEhRBCCCGEKAKSiAshhBBCCFEEJBEXQgghhBCiCEgiLoQQQgghRBGQRFwIIYQQQogiIIm4EEIIIYQQRUAScSGEEEIIIYqAJOJCCCGEEEIUAUnEhXiPOTg44OPj81r25ePjg4ODg9YyjUZDYGDga9l/tsDAQDQazWvdZ0Hkdnz+q9f5831bvamvh2fFx8ej0WiYO3duUYfyXggNDUWj0RAfH1/UoYjX7FV8FudHEnEhXrLz58/TpUsX7O3tMTQ0pGzZsrRu3ZolS5ZotZsxYwZbtmwpmiCFeEW+/vprQkNDizoM8Rpk/xKT/dDT08PBwQF/f3+Sk5OLOrwCeVM/hw8fPkzbtm0pW7YshoaGlC9fHk9PT9auXau2uX//PoGBgYSHhxddoC9Io9Hg5+dX1GH8JydOnGDw4MG4uLigp6f3wr/QSyIuxEt05MgR6tWrR1RUFP3792fp0qX4+vqio6PDokWLtNq+qV8Ar9ODBw+YMGFCUYchXqK3LRGfMGECDx48KOow3mrLli1j9erVLF26lAYNGrBkyRI6dOhQ1GEVSF6fwz179uTBgwfY29u/9ph+/vlnmjZtyvXr1xk2bBhLlizh888/586dO6xYsUJtd//+fYKCgt7KRPxdsH37dlauXIlGo6FixYov3E+xlxiTEO+96dOnY2FhwcmTJ7G0tNRal5SUVDRBvSYPHz5EX18fHZ2C/35vaGj4CiMSIm/37t3DxMSEYsWKUayYfBX+F126dKFUqVIADBw4kG7durF+/XpOnDhBgwYNiji6nBRF4eHDhxgZGeXZRldXF11d3dcY1f8TGBhI9erVOXbsGPr6+lrr/sv3SPZrXrwcX3zxBWPGjMHIyAg/Pz8uXbr0Qv3IjLgQL1FcXBw1atTIkYQDlC5dWv2/RqPh3r17hIWFqX/Wza7lvXr1KoMHD6Zq1aoYGRlRsmRJunbtmqNWMbuGMSIighEjRmBlZYWJiQmdOnXixo0bWm0VRWHatGmUK1cOY2Njmjdvzp9//pkjxtu3bxMQEICzszOmpqaYm5vTtm1boqKitNqFh4ej0WhYt24dEyZMoGzZshgbG5OamgrAli1b+OCDDzA0NOSDDz5g8+bNuR6vp2vEs2tg83o87fjx43h4eGBhYYGxsTHNmjUjIiIiR/+HDx+mfv36GBoaUqlSJZYvX55rHLmJjY3l008/xdraGkNDQ8qVK0e3bt1ISUnRavfDDz/QoEEDjI2NKV68OE2bNmX37t3q+q1bt9K+fXtsbW0xMDCgUqVKTJ06lczMzOfGkJWVxcKFC6lRowaGhoaUKVOGgQMHcufOHa12Bf355refRYsW4ezsjKGhIVZWVnh4eHDq1Cm1TUhICC1atKB06dIYGBhQvXp1li1bptWPg4MDf/75JwcPHlR/bm5ubur65ORkhg8fjp2dHQYGBlSuXJlZs2aRlZWl1c+tW7fo2bMn5ubmWFpa0rt3b6KiotBoNDlm2/fv30+TJk0wMTHB0tKSTz75hOjoaK022SUUFy5coEePHhQvXpyPPvpIa92zfvjhB1xcXDAyMqJEiRJ069aNa9euabUp6GvkaYsXL0ZXV1erdGPevHloNBpGjBihLsvMzMTMzIwxY8bk6OPbb7+lUqVKGBgYUL9+fU6ePJmjzcWLF+nSpQslSpTA0NCQevXq8csvv2i1KcxnSGE0adIEePJ5+LSCvG+zfx4XL17Ey8sLc3NzSpYsybBhw3j48KFW24yMDKZOnaoeCwcHB/7v//6P9PR0rXYODg506NCBXbt2Ua9ePYyMjFi+fHm+n8O51Yhn93P48GEaNGiAoaEhFStWZNWqVTmOwblz52jWrBlGRkaUK1eOadOmERISUqC687i4OOrXr58jCYf/9z0SHx+PlZUVAEFBQWr82Z+nPj4+mJqaEhcXR7t27TAzM8Pb2xso+OfKqVOncHd3p1SpUhgZGVGhQgX69u2r1WbdunW4uLhgZmaGubk5zs7OOf76+6IKEmeHDh3ynI1u1KgR9erV01pWkPd1QZUpUybfX+YKSqYBhHiJ7O3tOXr0KH/88QcffPBBnu1Wr16Nr68vDRo0YMCAAQBUqlQJgJMnT3LkyBG6detGuXLliI+PZ9myZbi5uXHhwgWMjY21+ho6dCjFixdn8uTJxMfHs3DhQvz8/Fi/fr3aZtKkSUybNo127drRrl07zpw5Q5s2bXj06JFWX3/99Rdbtmyha9euVKhQgevXr7N8+XKaNWvGhQsXsLW11Wo/depU9PX1CQgIID09HX19fXbv3s2nn35K9erVCQ4O5tatW/Tp04dy5crle+ysrKxYvXq11rLHjx/z5Zdfan0h7d+/n7Zt2+Li4sLkyZPR0dFRk8RDhw6pM3Dnz5+nTZs2WFlZERgYSEZGBpMnT6ZMmTL5xgHw6NEj3N3dSU9PZ+jQoVhbW/P333/z66+/kpycjIWFBfDkCzAwMJDGjRszZcoU9PX1OX78OPv376dNmzbAky90U1NTRowYgampKfv372fSpEmkpqYyZ86cfOMYOHAgoaGh9OnTB39/f65cucLSpUs5e/YsERER6OnpAQX/+ealX79+hIaG0rZtW3x9fcnIyODQoUMcO3ZM/SJbtmwZNWrU4OOPP6ZYsWJs27aNwYMHk5WVxZAhQwBYuHAhQ4cOxdTUlPHjxwOox/v+/fs0a9aMv//+m4EDB1K+fHmOHDnCuHHjSExMZOHChcCTL19PT09OnDjBF198QbVq1di6dSu9e/fOEffevXtp27YtFStWJDAwkAcPHrBkyRJcXV05c+ZMjhOuunbtSpUqVZgxYwaKouR5PKZPn87EiRPx8vLC19eXGzdusGTJEpo2bcrZs2extLQs8GvkWU2aNCErK4vDhw+r5RuHDh1CR0eHQ4cOqe3Onj1LWloaTZs21dp+7dq13L17l4EDB6LRaJg9ezadO3fmr7/+Ul8Pf/75J66urpQtW5axY8diYmLCTz/9RMeOHdm4cSOdOnXS6rMgnyGFkZ1oFi9eXF1W0PdtNi8vLxwcHAgODubYsWMsXryYO3fuaCW9vr6+hIWF0aVLF0aOHMnx48cJDg4mOjo6xy//MTExdO/enYEDB9K/f3+qVq2a7+dwXi5fvkyXLl3o168fvXv35vvvv8fHxwcXFxdq1KgBwN9//03z5s3RaDSMGzcOExMTVq5ciYGBQYGOn729Pfv27eN///tfnp+bVlZWLFu2jC+++IJOnTrRuXNnAGrWrKm2ycjIwN3dnY8++oi5c+eq3x0F+VxJSkpSPz/Hjh2LpaUl8fHxbNq0Se1/z549dO/enZYtWzJr1iwAoqOjiYiIYNiwYQUaa34KEudnn31Gr169OHnyJPXr11e3vXr1KseOHdP6jC3I+7pIKEKIl2b37t2Krq6uoqurqzRq1EgZPXq0smvXLuXRo0c52pqYmCi9e/fOsfz+/fs5lh09elQBlFWrVqnLQkJCFEBp1aqVkpWVpS7/8ssvFV1dXSU5OVlRFEVJSkpS9PX1lfbt22u1+7//+z8F0Irh4cOHSmZmpta+r1y5ohgYGChTpkxRlx04cEABlIoVK+aIt3bt2oqNjY26/+zjAij29vZabQFl8uTJOcabbfDgwYqurq6yf/9+RVEUJSsrS6lSpYri7u6uNZb79+8rFSpUUFq3bq0u69ixo2JoaKhcvXpVXXbhwgVFV1dXed5H39mzZxVA+fnnn/NsExsbq+jo6CidOnXKccyeje1ZAwcOVIyNjZWHDx+qy3r37q11fA4dOqQAypo1a7S23blzp9bywvx8c7N//34FUPz9/XOse9443N3dlYoVK2otq1GjhtKsWbMcbadOnaqYmJgoly5d0lo+duxYRVdXV0lISFAURVE2btyoAMrChQvVNpmZmUqLFi0UQAkJCVGX165dWyldurRy69YtdVlUVJSio6Oj9OrVS102efJkBVC6d++eI67sddni4+MVXV1dZfr06Vrtzp8/rxQrVkxdXpDXSG4yMzMVc3NzZfTo0YqiPDnGJUuWVLp27aro6uoqd+/eVRRFUebPn6/o6Ogod+7cURTlyfsQUEqWLKncvn1b7W/r1q0KoGzbtk1d1rJlS8XZ2Vnr9ZWVlaU0btxYqVKlirqsoJ8heck+djExMcqNGzeU+Ph45fvvv1eMjIwUKysr5d69e+q+C/q+ze7z448/1trX4MGDFUCJiopSFEVRIiMjFUDx9fXVahcQEKAA6meGoiiKvb29Aig7d+7MMYa8Poezj82VK1dy9PP777+ry5KSkhQDAwNl5MiR6rKhQ4cqGo1GOXv2rLrs1q1bSokSJXL0mZvvvvtOARR9fX2lefPmysSJE5VDhw7l+Jy5ceNGnp+hvXv3VgBl7NixWssL+rmyefNmBVBOnjyZZ5zDhg1TzM3NlYyMjHzHkxtAGTJkSJ7rCxpnSkpKjuOvKIoye/ZsRaPRqJ//BX1fK0rOz+KCGDJkyHO/V/IipSlCvEStW7fm6NGjfPzxx0RFRTF79mzc3d0pW7Zsjj8L5+XpP3U9fvyYW7duUblyZSwtLTlz5kyO9gMGDND603qTJk3IzMzk6tWrwJNZw0ePHjF06FCtdsOHD8/Rl4GBgVrjnZmZya1btzA1NaVq1aq57rt3795a8SYmJhIZGUnv3r21ZgRbt25N9erVCzT+bKtWreLrr79m9uzZNG/eHIDIyEhiY2Pp0aMHt27d4ubNm9y8eZN79+7RsmVLfv/9d7KyssjMzGTXrl107NiR8uXLq306OTnh7u7+3H1nx75r1y7u37+fa5stW7aQlZXFpEmTctTFP32cnz4+d+/e5ebNmzRp0oT79+9z8eLFPGP4+eefsbCwoHXr1uo4b968iYuLC6amphw4cAAo3M83Nxs3bkSj0TB58uQc6/IaR0pKCjdv3qRZs2b89ddf+ZZiPD2eJk2aULx4ca3xtGrViszMTH7//XcAdu7ciZ6eHv3791e31dHRUWfds2W/1nx8fChRooS6vGbNmrRu3Zrt27fniGHQoEHPjXPTpk1kZWXh5eWlFae1tTVVqlRRj3tBXiO50dHRoXHjxup4o6OjuXXrFmPHjkVRFI4ePQo8mSX/4IMPcszSffbZZ1ozzdllIH/99RfwpLxs//79eHl5qa+3mzdvcuvWLdzd3YmNjeXvv//W6vN5nyHPU7VqVaysrHBwcKBv375UrlyZHTt2qDOwBX3fPu3Zn/fQoUMB1J9r9r9Pl/MAjBw5EoDffvtNa3mFChUK9N5/nurVq6vHHJ7MTFetWlU9/vDkNdyoUSNq166tLitRooRaGvI8ffv2ZefOnbi5uXH48GGmTp1KkyZNqFKlCkeOHClUvF988YXW84J+rmS/7n799VceP36ca9+Wlpbcu3ePPXv2FCqmgihonNnlkz/99JPWX7nWr19Pw4YN1c//gr6vi4KUpgjxktWvX59Nmzbx6NEjoqKi2Lx5MwsWLKBLly5ERkY+NyF98OABwcHBhISE8Pfff2t9uOSW8DydaML/+3Nwdh1d9pdplSpVtNpZWVlpfaHD/6sV/vrrr7ly5YpWHXPJkiVz7LtChQpaz/PaF5BnMp+byMhIBg0aRPfu3bW+aGNjYwFyLVPIlpKSQnp6Og8ePMgzjtyStKdVqFCBESNGMH/+fNasWUOTJk34+OOP+fzzz9UELC4uDh0dnef+PP/8808mTJjA/v371Rr6p2PNS2xsLCkpKVrnFjwt+6Stwvx8cxMXF4etra1WMpubiIgIJk+ezNGjR3MknikpKXmWYmSLjY3l3Llzal3rs54ej42NTY4SrMqVK2s9zx531apVc/Tl5OTErl27cpyc9uzrNa84FUXJ9bUDqOUfBXmN5KVJkyZqKc2hQ4ewsbGhbt261KpVi0OHDtG6dWsOHz6Ml5dXjm2f936/fPkyiqIwceJEJk6cmOv+k5KSKFu2bIH7fJ6NGzdibm7OjRs3WLx4MVeuXNH6xa2g79unX6/PHv9KlSqho6Ojlr1cvXoVHR2dHK8La2trLC0tc/wSUZCffUE8e6zgyfF6+lhdvXqVRo0a5Wj3bKz5cXd3x93dnfv373P69GnWr1/PN998Q4cOHbh48WKenwtPK1asWI7SloJ+rjRr1oxPP/2UoKAgFixYgJubGx07dqRHjx5qic3gwYP56aef1MsstmnTBi8vLzw8PAo8zrwUNE548svpli1bOHr0KI0bNyYuLo7Tp0+r5W7Z/RXkfV0UJBEX4hXR19enfv361K9fH0dHR/r06cPPP/+c68zj04YOHUpISAjDhw+nUaNGWFhYoNFo6NatW45ZIyDPM/uVfGpg8zJjxgwmTpxI3759mTp1KiVKlEBHR4fhw4fnuu+XcaLKs+7cucOnn36Ko6MjK1eu1FqXHcOcOXO0ZpueZmpqmuNkrRcxb948fHx82Lp1K7t378bf31+tV31evXu25ORkmjVrhrm5OVOmTKFSpUoYGhpy5swZxowZk+sxzZaVlUXp0qVZs2ZNruvzSmhfhbi4OFq2bEm1atWYP38+dnZ26Ovrs337dhYsWJDvOLJlZWXRunVrRo8enet6R0fHlx12DgV5vWZlZaHRaNixY0eu7y1TU1P1/y/6Gvnoo494/PgxR48e5dChQ+oMa5MmTTh06BAXL17kxo0bWjOv2Z73fs/+WQQEBOQ5A/xsQvhfP0OaNm2qXjXF09MTZ2dnvL29OX36NDo6OgV+3+Ynr2s0F/TazS/rs+plft4WhLGxMU2aNKFJkyaUKlWKoKAgduzYke8vNdme/gtntoJ+rmg0GjZs2MCxY8fYtm0bu3btom/fvsybN49jx45hampK6dKliYyMZNeuXezYsYMdO3YQEhJCr169CAsL+0/jLsznn6enJ8bGxvz00080btyYn376CR0dHbp27arVX0Hf16+bJOJCvAbZJ7wlJiaqy/L6AtmwYQO9e/dm3rx56rKHDx++8A0ysq+DGxsbq3V2+Y0bN3LMeG3YsIHmzZvz3XffaS1PTk5Wv2gLuq9nxcTEPHf7rKwsvL29SU5OZu/evTlmRbNPpDI3N6dVq1Z59mNlZYWRkdELx5HN2dkZZ2dnJkyYwJEjR3B1deWbb75h2rRpVKpUiaysLC5cuJBnchEeHs6tW7fYtGmT1kl3V65cee6+K1WqxN69e3F1dc03iSjMzzev/ezatYvbt2/nOSu+bds20tPT+eWXX7RmBHP7c25er+tKlSqRlpaW788tezwHDhzg/v37Wj//y5cv52gHuf88L168SKlSpV7oUm2VKlVCURQqVKhQoF8O8nuN5KVBgwbo6+tz6NAhDh06xKhRo4AnCe2KFSvYt2+f+rywsl8Denp6zz3Wr4KpqSmTJ0+mT58+/PTTT3Tr1q3A79unxcbGas1iX758maysLPUEXHt7e7KysoiNjcXJyUltd/36dZKTkwt8/e9XcVdVe3v7HK9XyPkaLqxnv0deJPaCfq5ka9iwIQ0bNmT69OmsXbsWb29v1q1bh6+vL/BkwsnT0xNPT0+ysrIYPHgwy5cvZ+LEiYX6C8B/idPExIQOHTrw888/M3/+fNavX0+TJk20Li5Q2Pf16yQ14kK8RAcOHMh1ZiS7FOLpP6ObmJjkmlzr6urm6GPJkiUFutxdblq1aoWenh5LlizR6vfpP9vlt++ff/45R01pXmxsbKhduzZhYWFaZRd79uzhwoULz90+KCiIXbt28eOPP+b6p2QXFxcqVarE3LlzSUtLy7E++5Jrurq6uLu7s2XLFhISEtT10dHR7Nq167lxpKamkpGRobXM2dkZHR0ddba9Y8eO6OjoMGXKlBwzwtnHMHvm5elj+ujRI77++uvnxuDl5UVmZiZTp07NsS4jI0N97RTm55ubTz/9FEVRCAoKyrEuv3GkpKQQEhKSY5u8XtdeXl4cPXo01+OfnJysHm93d3ceP36sdeOSrKwsvvrqK61tnn6tPb2/P/74g927d9OuXbt8Rp23zp07o6urS1BQUI73gqIo3Lp1CyjYayQvhoaG1K9fnx9//JGEhAStGfEHDx6wePFiKlWqhI2NTaHjL126NG5ubixfvlzrF/9s/+WyhAXl7e1NuXLl1CtpFPR9+7Rnf97ZdyZu27YtgPrzffZ1Pn/+fADat29foFjzer3+F+7u7hw9epTIyEh12e3bt/Oc3X1W9i9iz3r2eyT7F9XCxF/Qz5U7d+7keP1nTzhkv76z3wvZdHR01Ku2/Ne/ShY0zmyfffYZ//zzDytXriQqKorPPvtMa31B39dFQWbEhXiJhg4dyv379+nUqRPVqlXj0aNHHDlyhPXr1+Pg4ECfPn3Uti4uLuzdu5f58+dja2tLhQoV+PDDD+nQoQOrV6/GwsKC6tWrc/ToUfbu3ZtrjXZBWFlZERAQQHBwMB06dKBdu3acPXuWHTt25Jjl7tChA1OmTKFPnz40btyY8+fPs2bNmkLdNSw4OJj27dvz0Ucf0bdvX27fvs2SJUuoUaNGrl/C2c6fP8/UqVNp2rQpSUlJ/PDDD1rrP//8c3R0dFi5ciVt27alRo0a9OnTh7Jly/L3339z4MABzM3N2bZtG/Akqd+5cydNmjRh8ODBZGRkqHGcO3cu3zHs378fPz8/unbtiqOjIxkZGaxevRpdXV0+/fRT4Mmf98ePH6+eSNW5c2cMDAw4efIktra2BAcH07hxY4oXL07v3r3x9/dHo9GwevXqAv0Zu1mzZgwcOJDg4GAiIyNp06YNenp6xMbG8vPPP7No0SK6dOlSqJ9vbpo3b07Pnj1ZvHgxsbGxeHh4kJWVxaFDh2jevDl+fn60adNGnfkaOHAgaWlprFixgtKlS+dI9lxcXFi2bBnTpk2jcuXKlC5dmhYtWjBq1Ch++eUXOnTooF7u7d69e5w/f54NGzYQHx9PqVKl6NixIw0aNGDkyJFcvnyZatWq8csvv3D79m1AexZwzpw5tG3blkaNGtGvXz/18oUWFhbq9ZQLq1KlSkybNo1x48YRHx9Px44dMTMz48qVK2zevJkBAwYQEBBQoNdIfpo0acLMmTOxsLDA2dkZeJJEV61alZiYGPV61i/iq6++4qOPPsLZ2Zn+/ftTsWJFrl+/ztGjR/nf//6X474AL5uenh7Dhg1j1KhR7Ny5Ew8PjwK/b7NduXKFjz/+GA8PD44ePcoPP/xAjx49qFWrFgC1atWid+/efPvtt2oJ2IkTJwgLC6Njx47qCd7Pk9fn8H8xevRofvjhB1q3bs3QoUPVyxeWL1+e27dvP3cm+5NPPqFChQp4enpSqVIl7t27x969e9m2bRv169fH09MTeFJuU716ddavX4+joyMlSpTggw8+yPfSuQX9XAkLC+Prr7+mU6dOVKpUibt377JixQrMzc3VX4J8fX25ffs2LVq0oFy5cly9epUlS5ZQu3Ztrb9S5OXUqVO5/uXIzc2twHFmy75WekBAQK7vwYK+rwvj6tWr6iV3s++5kD0ee3t7evbsWbCOXuhaK0KIXO3YsUPp27evUq1aNcXU1FTR19dXKleurAwdOlS5fv26VtuLFy8qTZs2VYyMjLQuM3fnzh2lT58+SqlSpRRTU1PF3d1duXjxomJvb691ma3sy2s9e3mp7EsLHjhwQF2WmZmpBAUFKTY2NoqRkZHi5uam/PHHHzn6fPjwoTJy5Ei1naurq3L06FGlWbNmWpeky95HXpdu27hxo+Lk5KQYGBgo1atXVzZt2pTrJaF46tJb2X3m9Xja2bNnlc6dOyslS5ZUDAwMFHt7e8XLy0vZt2+fVruDBw8qLi4uir6+vlKxYkXlm2++yXG5utz89ddfSt++fZVKlSophoaGSokSJZTmzZsre/fuzdH2+++/V+rUqaMYGBgoxYsXV5o1a6bs2bNHXR8REaE0bNhQMTIyUmxtbdVLWj77M8rrklnffvut4uLiohgZGSlmZmaKs7OzMnr0aOWff/5R2xT055uXjIwMZc6cOUq1atUUfX19xcrKSmnbtq1y+vRptc0vv/yi1KxZUzE0NFQcHByUWbNmKd9//32Oy7H9+++/Svv27RUzMzMF0Hrd3L17Vxk3bpxSuXJlRV9fXylVqpTSuHFjZe7cuVqX+Lxx44bSo0cPxczMTLGwsFB8fHyUiIgIBVDWrVunFfvevXsVV1dXxcjISDE3N1c8PT2VCxcuaLXJ/pnfuHEjx9jzej1s3LhR+eijjxQTExPFxMREqVatmjJkyBAlJiZGUZTCvUZy89tvvymA0rZtW63lvr6+CqB89913WsuzL184Z86cHH09/T7KFhcXp/Tq1UuxtrZW9PT0lLJlyyodOnRQNmzYoLYpzGdIbvI7rikpKYqFhYXWz78g79vsPi9cuKB06dJFMTMzU4oXL674+fkpDx480NrH48ePlaCgIKVChQqKnp6eYmdnp4wbN07rso2K8uSyg+3bt891DHl9Dud1+cLc+nn28zF7rE2aNFEMDAyUcuXKKcHBwcrixYsVQPn3339zjSXbjz/+qHTr1k2pVKmSYmRkpBgaGirVq1dXxo8fr6Smpmq1PXLkiPoZ9/TroHfv3oqJiUme+3je58qZM2eU7t27K+XLl1cMDAyU0qVLKx06dFBOnTql9rFhwwalTZs2SunSpRV9fX2lfPnyysCBA5XExMR8x6coSr6f9VOnTi1wnE/z9vZWL8eZl+e9r7OPXUEuX5jfd1Zul3DNi+b/PyBCCCHEG2vLli106tSJw4cP4+rqWtThiFckMDCQoKAgbty4UaC/6LxNhg8fzvLly0lLS8vzpE/x/pEacSGEEG+UBw8eaD3PzMxkyZIlmJubU7du3SKKSoiCe/Y1fOvWLVavXs1HH30kSbjQIjXiQggh3ihDhw7lwYMHNGrUiPT0dDZt2sSRI0eYMWPGK7lkphAvW6NGjXBzc8PJyYnr16/z3XffkZqamue13cX7SxJxIYQQb5QWLVowb948fv31Vx4+fEjlypVZsmQJfn5+RR2aEAXSrl07NmzYwLfffotGo6Fu3bp89913L3RJSvFukxpxIYQQQgghioDUiAshhBBCCFEEJBEXQgghhBCiCEiNuBCvWVZWFv/88w9mZmav5PbKQgghhHj5FEXh7t272NraoqPzcuayJREX4jX7559/sLOzK+owhBBCCPECrl27Rrly5V5KX5KIC/GamZmZAU/eyObm5kUcjRBCiJep6YQfizqE997v07q/kn5TU1Oxs7NTv8dfBknEhXjNsstRzM3NJREXQoh3jK6BXOu+qL3q79aXWVYqJ2sKIYQQQghRBCQRF/kKDAykdu3ahdpGo9GwZcuWVxKPEEIIIcS7QhJxka+AgAD27dtX1GG8kcLDw9FoNCQnJxd1KEIIIYR4C0mNuMiXqakppqamRR3GG+fx48dFHYIQQggh3nIyI/6O2LBhA87OzhgZGVGyZElatWrFvXv3yMrKYsqUKZQrVw4DAwNq167Nzp07tbb93//+R/fu3SlRogQmJibUq1eP48ePAzlLU06ePEnr1q0pVaoUFhYWNGvWjDNnzrxQzI8ePcLPzw8bGxsMDQ2xt7cnODgYgPj4eDQaDZGRkWr75ORkNBoN4eHhwP+bkf7tt9+oWbMmhoaGNGzYkD/++EPdJjQ0FEtLS7Zs2UKVKlUwNDTE3d2da9euacWybNkyKlWqhL6+PlWrVmX16tVa6zUaDcuWLePjjz/GxMSE/v3707x5cwCKFy+ORqPBx8cn13Gmp6eTmpqq9RBCCCGEkET8HZCYmEj37t3p27cv0dHRhIeH07lzZxRFYdGiRcybN4+5c+dy7tw53N3d+fjjj4mNjQUgLS2NZs2a8ffff/PLL78QFRXF6NGjycrKynVfd+/epXfv3hw+fJhjx45RpUoV2rVrx927dwsd9+LFi/nll1/46aefiImJYc2aNTg4OBS6n1GjRjFv3jxOnjyJlZUVnp6eWjPW9+/fZ/r06axatYqIiAiSk5Pp1q2bun7z5s0MGzaMkSNH8scffzBw4ED69OnDgQMHtPYTGBhIp06dOH/+PEFBQWzcuBGAmJgYEhMTWbRoUa7xBQcHY2FhoT7kGuJCCCGEAClNeSckJiaSkZFB586dsbe3B8DZ2RmAuXPnMmbMGDXxnDVrFgcOHGDhwoV89dVXrF27lhs3bnDy5ElKlCgBQOXKlfPcV4sWLbSef/vtt1haWnLw4EE6dOhQqLgTEhKoUqUKH330ERqNRo29sCZPnkzr1q0BCAsLo1y5cmzevBkvLy/gSRnJ0qVL+fDDD9U2Tk5OnDhxggYNGjB37lx8fHwYPHgwACNGjODYsWPMnTtXnfUG6NGjB3369FGfX7lyBYDSpUtjaWmZZ3zjxo1jxIgR6vPs65AKIYQQ4v0mM+LvgFq1atGyZUucnZ3p2rUrK1as4M6dO6SmpvLPP//g6uqq1d7V1ZXo6GgAIiMjqVOnjpqEP8/169fp378/VapUwcLCAnNzc9LS0khISCh03D4+PkRGRlK1alX8/f3ZvXt3ofsAaNSokfr/EiVKULVqVXV8AMWKFaN+/frq82rVqmFpaam2iY6OzvcYZatXr94LxWdgYKBeM1yuHS6EEEKIbJKIvwN0dXXZs2cPO3bsoHr16ixZsoSqVauqM7b5MTIq3I0HevfuTWRkJIsWLeLIkSNERkZSsmRJHj16VOi469aty5UrV5g6dSoPHjzAy8uLLl26AKCj8+SlqSiK2r6oT5A0MTEp0v0LIYQQ4t0iifg7QqPR4OrqSlBQEGfPnkVfX599+/Zha2tLRESEVtuIiAiqV68OQM2aNYmMjOT27dsF2k9ERAT+/v60a9eOGjVqYGBgwM2bN184bnNzcz777DNWrFjB+vXr2bhxI7dv38bKygp4UnaT7ekTN5927Ngx9f937tzh0qVLODk5qcsyMjI4deqU+jwmJobk5GS1jZOTU77HKC/6+voAZGZmFmCkQgghhBDapEb8HXD8+HH27dtHmzZtKF26NMePH+fGjRs4OTkxatQoJk+eTKVKlahduzYhISFERkayZs0aALp3786MGTPo2LEjwcHB2NjYcPbsWWxtbbVKPrJVqVKF1atXU69ePVJTUxk1alShZ9WzzZ8/HxsbG+rUqYOOjg4///wz1tbWWFpaoqOjQ8OGDZk5cyYVKlQgKSmJCRMm5NrPlClTKFmyJGXKlGH8+PGUKlWKjh07quv19PQYOnQoixcvplixYvj5+dGwYUMaNGgAPDnZ08vLizp16tCqVSu2bdvGpk2b2Lt3b77x29vbo9Fo+PXXX2nXrh1GRkZyqUchhBBCFJjMiL8DzM3N+f3332nXrh2Ojo5MmDCBefPm0bZtW/z9/RkxYgQjR47E2dmZnTt38ssvv1ClShXgyazu7t27KV26NO3atcPZ2ZmZM2eiq6ub676+++477ty5Q926denZsyf+/v6ULl36heI2MzNj9uzZ1KtXj/r16xMfH8/27dvVspTvv/+ejIwMXFxcGD58ONOmTcu1n5kzZzJs2DBcXFz4999/2bZtmzpbDWBsbMyYMWPo0aMHrq6umJqasn79enV9x44dWbRoEXPnzqVGjRosX76ckJAQ3Nzc8o2/bNmyBAUFMXbsWMqUKYOfn98LHQchhBBCvJ80ytNFuEK8RcLDw2nevDl37tzJ86oloaGhDB8+/I26+2VqaioWFhakpKTIiZtCCPGOcRm1qqhDeO+dntPrlfT7Kr6/pTRFCCGEEOIleVVJoHg3SWmKeGVmzJiBqalpro+2bdsWdXhCCCGEEEVKSlPEK3P79u08r8ZiZGRE2bJlX3NEbwYpTRFCCCHePlKaIt4qJUqUKPCNgoQQQoh3wftQIy7lNy+PlKYIIYQQQghRBCQRF/9ZfHw8Go1G64Y7ERERODs7o6enp3VNbyGEEEII8YSUpohXYsSIEdSuXZsdO3a88pvc+Pj4kJyczJYtW17pfoQQQgghXiaZERevRFxcHC1atKBcuXJ5XuNbCCGEEOJ9Jom4UG3YsAFnZ2eMjIwoWbIkrVq14t69ewCsXLkSJycnDA0NqVatGl9//XWufWSXqdy6dYu+ffui0WgIDQ197r7/+OMP2rZti6mpKWXKlKFnz57cvHnzubEFBgYSFhbG1q1b0Wg0aDQawsPDAbh27RpeXl5YWlpSokQJPvnkE+Lj47X2m9+4ssfy008/0aRJE4yMjKhfvz6XLl3i5MmT1KtXT70U440bNwp3sIUQQgjx3pNEXACQmJhI9+7d6du3L9HR0YSHh9O5c2cURWHNmjVMmjSJ6dOnEx0dzYwZM5g4cSJhYWE5+rGzsyMxMRFzc3MWLlxIYmIin332Wb77Tk5OpkWLFtSpU4dTp06xc+dOrl+/jpeX13NjCwgIwMvLCw8PDxITE0lMTKRx48Y8fvwYd3d3zMzMOHToEBEREZiamuLh4cGjR48ACjyuyZMnM2HCBM6cOUOxYsXo0aMHo0ePZtGiRRw6dIjLly8zadKkPMeXnp5Oamqq1kMIIYQQQmrEBfAk2c3IyKBz587Y29sD4OzsDDxJROfNm0fnzp0BqFChAhcuXGD58uX07t1bqx9dXV2sra3RaDRYWFhgbW393H0vXbqUOnXqMGPGDHXZ999/j52dHZcuXSItLS3P2ODJNcnT09O19vXDDz+QlZXFypUr0Wg0AISEhGBpaUl4eDht2rQp8LgCAgJwd3cHYNiwYXTv3p19+/bh6uoKQL9+/fKd9Q8ODiYoKOi5x0EIIYQQ7xdJxAUAtWrVomXLljg7O+Pu7k6bNm3o0qUL+vr6xMXF0a9fP/r376+2z8jIwMLC4qXsOyoqigMHDuR6UmdcXBxt2rTJNbbixYvn2+fly5cxMzPTWv7w4UPi4uK4d+9egcdVs2ZN9f9lypQBtH8RKFOmDElJSXnGMm7cOEaMGKE+T01Nxc7OLs/2QgghhHg/SCIugCcz2Xv27OHIkSPs3r2bJUuWMH78eLZt2wbAihUr+PDDD3Ns8zKkpaXh6enJrFmzcqyzsbHJM7bjx49ToUKFPPt0cXFhzZo1OdZZWVmRlpYGFGxcenp66v+zZ9efXZaVlZXn+AwMDDAwMMhzvRBCCCHeT5KIC5VGo8HV1RVXV1cmTZqEvb09ERER2Nra8tdff+Ht7f1K9lu3bl02btyIg4MDxYrl/pLMLbbNmzczYsQI9PX1yczMzNHn+vXrKV26dK63obWwsHjl4xJCCCGEyI+crCkAOH78ODNmzODUqVMkJCSwadMmbty4gZOTE0FBQQQHB7N48WIuXbrE+fPnCQkJYf78+S9l30OGDOH27dt0796dkydPEhcXx65du+jTpw+ZmZn5xgbg4ODAuXPniImJ4ebNmzx+/Bhvb29KlSrFJ598wqFDh7hy5Qrh4eH4+/vzv//9D+CVj0sIIYQQIj8yIy4AMDc35/fff2fhwoWkpqZib2/PvHnzaNu2LQDGxsbMmTOHUaNGYWJigrOzM8OHD38p+7a1tSUiIoIxY8bQpk0b0tPTsbe3x8PDAx0dnefG1r9/f8LDw6lXrx5paWkcOHAANzc3fv/9d8aMGUPnzp25e/cuZcuWpWXLluoMua+v7ysdlxBCCCFEfjSKoihFHYQQ75PU1FQsLCxISUnJtWxGCCHE28tl1KqiDuGVOz2nV1GHUCRexfe3zIgLIYQQQrwk72uSKl6M1IiLV27QoEGYmprm+hg0aFBRhyeEEEIIUSSkNEW8cklJSXneTdLc3JzSpUu/5oiKlpSmCCGEEG8fKU0Rb6XSpUu/d8m2EEIIIcTzSCIuhBBCCPGSvC0na0ot+5tBasSFEEIIIYQoApKIvwRubm5v1LWnCxKPRqNhy5YtryWeV83Hx4eOHTvm2+ZN+xkJIYQQQkgi/hYLDw9Ho9GQnJxc6G0TExPVG+IIIYQQQojXTxLxIvDo0aOiDgFra2sMDAyKOox8vQnHSQghhBDiVZFE/CXJyMjAz88PCwsLSpUqxcSJE8m+MqSDgwNTp06lV69emJubM2DAAAAOHz5MkyZNMDIyws7ODn9/f+7du6f2uXr1aurVq4eZmRnW1tb06NGDpKQkAOLj42nevDkAxYsXR6PR4OPjo26blZXF6NGjKVGiBNbW1gQGBmrF+3RpSnx8PBqNhk2bNtG8eXOMjY2pVasWR48e1dpmxYoV2NnZYWxsTKdOnZg/fz6WlpYFOj6BgYHUrl2b5cuXq314eXmRkpKitskuMZk+fTq2trZUrVoVgPPnz9OiRQuMjIwoWbIkAwYMIC0tLcc+goKCsLKywtzcnEGDBuWbyKenpxMQEEDZsmUxMTHhww8/JDw8XF0fGhqKpaUlv/76K1WrVsXY2JguXbpw//59wsLCcHBwoHjx4vj7+5OZmVmgYyCEEEII8TRJxF+SsLAwihUrxokTJ1i0aBHz589n5cqV6vq5c+dSq1Ytzp49y8SJE4mLi8PDw4NPP/2Uc+fOsX79eg4fPoyfn5+6zePHj5k6dSpRUVFs2bKF+Ph4Ndm2s7Nj48aNAMTExJCYmMiiRYu04jExMeH48ePMnj2bKVOmsGfPnnzHMH78eAICAoiMjMTR0ZHu3buTkZEBQEREBIMGDWLYsGFERkbSunVrpk+fXqhjdPnyZX766Se2bdvGzp07OXv2LIMHD9Zqs2/fPmJiYtizZw+//vor9+7dw93dneLFi3Py5El+/vln9u7dq3WcsreLjo4mPDycH3/8kU2bNhEUFJRnLH5+fhw9epR169Zx7tw5unbtioeHB7GxsWqb+/fvs3jxYtatW8fOnTsJDw+nU6dObN++ne3bt7N69WqWL1/Ohg0b8h13eno6qampWg8hhBBCCLmhz0vg5uZGUlISf/75JxqNBoCxY8fyyy+/cOHCBRwcHKhTpw6bN29Wt/H19UVXV5fly5eryw4fPkyzZs24d+8ehoaGOfZz6tQp6tevz927dzE1NSU8PJzmzZtz584drZlpNzc3MjMzOXTokLqsQYMGtGjRgpkzZwJPZsQ3b95Mx44diY+Pp0KFCqxcuZJ+/foBcOHCBWrUqEF0dDTVqlWjW7dupKWl8euvv6p9fv755/z6668FqlEPDAxk2rRpXL16lbJlywKwc+dO2rdvz99//421tTU+Pj7s3LmThIQE9PX1gSez8GPGjOHatWuYmJgAsH37djw9Pfnnn38oU6YMPj4+bNu2jWvXrmFsbAzAN998w6hRo0hJSUFHRwc3Nzdq167NwoULSUhIoGLFiiQkJGBra6vG2KpVKxo0aMCMGTMIDQ2lT58+XL58mUqVKgFP7hC6evVqrl+/jqmpKQAeHh44ODjwzTff5Dv23H4pkBv6CCHEu0cuX/juehU39JEZ8ZekYcOGahIO0KhRI2JjY9WyhXr16mm1j4qKIjQ0VOt27+7u7mRlZXHlyhUATp8+jaenJ+XLl8fMzIxmzZoBkJCQ8Nx4atasqfXcxsZGLWspyDY2NjYA6jYxMTE0aNBAq/2zz5+nfPnyahIOT45RVlYWMTEx6jJnZ2c1CQeIjo6mVq1aahIO4OrqmmO7WrVqqUl4dt9paWlcu3YtRxznz58nMzMTR0dHreN/8OBB4uLi1HbGxsZqEg5QpkwZHBwc1CQ8e9nzjuu4ceNISUlRH7nFJIQQQoj3j9zQ5zV5OpEESEtLY+DAgfj7++doW758ebUkw93dnTVr1mBlZUVCQgLu7u4FOolRT09P67lGoyErK6vA22T/UvG8bV62Z4/Tq5CWloauri6nT59GV1dXa93TSXZux/BFjquBgcEbf2KsEEIIIV4/ScRfkuPHj2s9P3bsGFWqVMmR6GWrW7cuFy5coHLlyrmuP3/+PLdu3WLmzJnY2dkBT0pTnpY9c/w6ThasWrUqJ0+e1Fr27PPnSUhI4J9//lHLQY4dO4aOjo56UmZunJycCA0N5d69e2qSHhERkWO7qKgoHjx4gJGRkdq3qampeuyeVqdOHTIzM0lKSqJJkyaFGoMQQgghxMsipSkvSUJCAiNGjCAmJoYff/yRJUuWMGzYsDzbjxkzhiNHjuDn50dkZCSxsbFs3bpVPQmxfPny6Ovrs2TJEv766y9++eUXpk6dqtWHvb09Go2GX3/9lRs3buR6JZGXZejQoWzfvp358+cTGxvL8uXL2bFjh1Y5zvMYGhrSu3dvoqKiOHToEP7+/nh5eWFtbZ3nNt7e3up2f/zxBwcOHGDo0KH07NmTMmXKqO0ePXpEv379uHDhAtu3b2fy5Mn4+fmho5PzJe7o6Ii3tze9evVi06ZNXLlyhRMnThAcHMxvv/1WuAMjhBBCCPGCJBF/SXr16sWDBw9o0KABQ4YMYdiwYeplCnNTs2ZNDh48yKVLl2jSpAl16tRh0qRJ6myxlZUVoaGh/Pzzz1SvXp2ZM2cyd+5crT7Kli1LUFAQY8eOpUyZMjmuJPIyubq68s033zB//nxq1arFzp07+fLLL3M9qTQvlStXpnPnzrRr1442bdpQs2ZNvv7663y3MTY2ZteuXdy+fZv69evTpUsXWrZsydKlS7XatWzZkipVqtC0aVM+++wzPv744xyXbHxaSEgIvXr1YuTIkVStWpWOHTty8uRJypcvX+DxCCGEEEL8F3LVFPHC+vfvz8WLF7WuzpKXwMBAtmzZQmRk5KsP7A33Ks66FkII8WaQq6a8u17F97fUiIsCmzt3Lq1bt8bExIQdO3YQFhb23BltIYQQ4n0iCa4oDEnERYGdOHGC2bNnc/fuXSpWrMjixYvx9fUFoEaNGly9ejXX7Z6+VroQQgghhHhCSlPES3H16lUeP36c67oyZcpgZmb2miN6c0lpihBCCPH2kdIU8cayt7cv6hCEEEKIIveya8Sl1OXdJldNEUIIIYQQoghIIi6EEEIIIUQRkERcvBTx8fFoNJoivzyhRqNhy5Ytr3WfDg4OLFy48LXuUwghhBBvP0nExUthZ2dHYmIiH3zwQYG3cXNzY/jw4a8uKCGEEEKIN5icrCleCl1d3XxvVS+EEEIIIbTJjPh7YufOnXz00UdYWlpSsmRJOnToQFxcHPD/yko2bdpE8+bNMTY2platWhw9elTdvm/fvtSsWZP09HQAHj16RJ06dejVq5dWH0+Xpvzxxx+0bdsWU1NTypQpQ8+ePbl58yYAPj4+HDx4kEWLFqHRaNBoNFy5coXKlSszd+5crdgjIyPRaDRcvny50OO+du0aXl5eWFpaUqJECT755BPi4+MB2L17N4aGhiQnJ2ttM2zYMFq0aKE+P3z4ME2aNMHIyAg7Ozv8/f25d+9egWNIT08nNTVV6yGEEEIIIYn4e+LevXuMGDGCU6dOsW/fPnR0dOjUqRNZWVlqm/HjxxMQEEBkZCSOjo50796djIwMABYvXsy9e/cYO3as2jY5OZmlS5fmur/k5GRatGhBnTp1OHXqFDt37uT69et4eXkBsGjRIho1akT//v1JTEwkMTGR8uXL07dvX0JCQrT6CgkJoWnTplSuXLlQY378+DHu7u6YmZlx6NAhIiIiMDU1xcPDg0ePHtGyZUssLS3ZuHGjuk1mZibr16/H29sbgLi4ODw8PPj00085d+4c69ev5/Dhw/j5+RU4juDgYCwsLNSHnZ1docYhhBBCiHeTlKa8Jz799FOt599//z1WVlZcuHABU1NTAAICAmjfvj0AQUFB1KhRg8uXL1OtWjVMTU354YcfaNasGWZmZixcuJADBw7keUH7pUuXUqdOHWbMmKG1Tzs7Oy5duoSjoyP6+voYGxtrlbT4+PgwadIkTpw4QYMGDXj8+DFr167NMUteEOvXrycrK4uVK1ei0WiAJ0m9paUl4eHhtGnThm7durF27Vr69esHwL59+0hOTlaPV3BwMN7e3mote5UqVVi8eDHNmjVj2bJlGBoaPjeOcePGMWLECPV5amqqJONCCCGEkBnx90VsbCzdu3enYsWKmJub4+DgAEBCQoLapmbNmur/bWxsAEhKSlKXNWrUiICAAKZOncrIkSP56KOP8txfVFQUBw4cwNTUVH1Uq1YNQC2JyY2trS3t27fn+++/B2Dbtm2kp6fTtWvXQo85KiqKy5cvY2ZmpsZQokQJHj58qMbg7e1NeHg4//zzDwBr1qyhffv2WFpaqn2EhoZqjcPd3Z2srCyuXLlSoDgMDAwwNzfXegghhBBCyIz4e8LT0xN7e3tWrFiBra0tWVlZfPDBBzx69Ehto6enp/4/ewb56dKVrKwsIiIi0NXVfW69dlpaGp6ensyaNSvHuuwkPy++vr707NmTBQsWEBISwmeffYaxsXGBxvlsDC4uLqxZsybHOisrKwDq169PpUqVWLduHV988QWbN28mNDRUq4+BAwfi7++fo4/y5csXOiYhhBBCiGySiL8Hbt26RUxMDCtWrKBJkybAkxMQC2vOnDlcvHiRgwcP4u7uTkhICH369Mm1bd26ddm4cSMODg4UK5b7y0xfX5/MzMwcy9u1a4eJiQnLli1j586d/P7774WONTuG9evXU7p06Xxnob29vVmzZg3lypVDR0dHLc/J7uPChQuFrk8XQgghhHgeKU15DxQvXpySJUvy7bffcvnyZfbv369Vs1wQZ8+eZdKkSaxcuRJXV1fmz5/PsGHD+Ouvv3JtP2TIEG7fvk337t05efIkcXFx7Nq1iz59+qjJt4ODA8ePHyc+Pp6bN2+qs++6urr4+Pgwbtw4qlSpQqNGjV5o3N7e3pQqVYpPPvmEQ4cOceXKFcLDw/H39+d///ufVrszZ84wffp0unTpgoGBgbpuzJgxHDlyBD8/PyIjI4mNjWXr1q2FOllTCCGEECI3koi/B3R0dFi3bh2nT5/mgw8+4Msvv2TOnDkF3v7hw4d8/vnn+Pj44OnpCcCAAQNo3rw5PXv2zHVW29bWloiICDIzM2nTpg3Ozs4MHz4cS0tLdHSevOwCAgLQ1dWlevXqWFlZadWr9+vXj0ePHuU5414QxsbG/P7775QvX57OnTvj5OREv379ePjwodYMeeXKlWnQoAHnzp1Tr5aSrWbNmhw8eJBLly7RpEkT6tSpw6RJk7C1tX3huIQQQgghADSKoihFHYQQzzp06BAtW7bk2rVrlClTpqjDealSU1OxsLAgJSVFTtwUQggh3hKv4vtbasTFGyU9PZ0bN24QGBhI165d37kkXAghhBAim5SmiDfKjz/+iL29PcnJycyePVtr3Zo1a7QuI/j0o0aNGkUUsRBCCCHEi5HSFPHWuHv3LtevX891nZ6eHvb29q85ohcjpSlCCCHE20dKU8R7zczMDDMzs6IOQwghhMiTy6hVnJ7Tq6jDEG8JKU0RQgghhBCiCEgiLt4pDg4OLFy48LXu083NjeHDh7/WfQohhBDi7SeJuCgwHx8fOnbsWNRhCCGEEEK8EyQRFy/d48ePizoEIYQQQog3niTiIocNGzbg7OyMkZERJUuWpFWrVowaNYqwsDC2bt2KRqNBo9EQHh5OfHw8Go2G9evX06xZMwwNDVmzZg0AK1euxMnJCUNDQ6pVq8bXX3+t7uPRo0f4+flhY2ODoaEh9vb2BAcHA6AoCoGBgZQvXx4DAwNsbW3x9/d/obEkJyfj6+uLlZUV5ubmtGjRgqioKAAuXbqERqPh4sWLWtssWLCASpUqqc//+OMP2rZti6mpKWXKlKFnz57cvHnzheIRQgghhMgmV00RWhITE+nevTuzZ8+mU6dO3L17l0OHDtGrVy8SEhJITU0lJCQEgBIlSvDPP/8AMHbsWObNm0edOnXUZHzSpEksXbqUOnXqcPbsWfr374+JiQm9e/dm8eLF/PLLL/z000+UL1+ea9euce3aNQA2btzIggULWLduHTVq1ODff/9Vk+fC6tq1K0ZGRuzYsQMLCwuWL19Oy5YtuXTpEo6OjtSrV481a9YwdepUdZs1a9bQo0cP4Eki36JFC3x9fVmwYAEPHjxgzJgxeHl5sX///gLFkJ6eTnp6uvo8NTX1hcYihBBCiHeLJOJCS2JiIhkZGXTu3Fm9LrezszMARkZGpKenY21tnWO74cOH07lzZ/X55MmTmTdvnrqsQoUKXLhwgeXLl9O7d28SEhKoUqUKH330ERqNRusa4AkJCVhbW9OqVSv09PQoX748DRo0KPRYDh8+zIkTJ0hKSsLAwACAuXPnsmXLFjZs2MCAAQPw9vZm6dKlaiJ+6dIlTp8+zQ8//ACg/iIxY8YMtd/vv/8eOzs7NZl/nuDgYIKCggodvxBCCCHebVKaIrTUqlWLli1b4uzsTNeuXVmxYgV37tx57nb16tVT/3/v3j3i4uLo16+f1t0vp02bRlxcHPDkxM/IyEiqVq2Kv78/u3fvVrfv2rUrDx48oGLFivTv35/NmzeTkZFR6LFERUWRlpZGyZIlteK4cuWKGke3bt2Ij4/n2LFjwJPZ8Lp161KtWjW1jwMHDmhtn70uu4/nGTduHCkpKeoje+ZfCCGEEO83mREXWnR1ddmzZw9Hjhxh9+7dLFmyhPHjx3P8+PF8tzMxMVH/n5aWBsCKFSv48MMPc/QPULduXa5cucKOHTvYu3cvXl5etGrVig0bNmBnZ0dMTAx79+5lz549DB48mDlz5nDw4EH09PQKPJa0tDRsbGwIDw/Psc7S0hIAa2trWrRowdq1a2nYsCFr167liy++0OrD09OTWbNm5ejDxsamQHEYGBioM/JCCCGEENkkERc5aDQaXF1dcXV1ZdKkSdjb27N582b09fXJzMx87vZlypTB1taWv/76C29v7zzbmZub89lnn/HZZ5/RpUsXPDw8uH37NiVKlMDIyAhPT088PT0ZMmQI1apV4/z589StW7fA46hbty7//vsvxYoVw8HBIc923t7ejB49mu7du/PXX3/RrVs3rT42btyIg4MDxYrJ20UIIYQQL49kFkLL8ePH2bdvH23atKF06dIcP36cGzdu4OTkxMOHD9m1axcxMTGULFkSCwuLPPsJCgrC398fCwsLPDw8SE9P59SpU9y5c4cRI0Ywf/58bGxsqFOnDjo6Ovz8889YW1tjaWlJaGgomZmZfPjhhxgbG/PDDz9gZGSkVUdeEK1ataJRo0Z07NiR2bNn4+joyD///MNvv/1Gp06d1HKazp0788UXX/DFF1/QvHlzbG1t1T6GDBnCihUr6N69O6NHj6ZEiRJcvnyZdevWsXLlSnWGXwghhBCisCQRF1rMzc35/fffWbhwIampqdjb2zNv3jzatm1LvXr1CA8Pp169eqSlpXHgwIE8Z5p9fX0xNjZmzpw5jBo1ChMTE5ydndU7UJqZmTF79mxiY2PR1dWlfv36bN++HR0dHSwtLZk5cyYjRowgMzMTZ2dntm3bRsmSJQs1Fo1Gw/bt2xk/fjx9+vThxo0bWFtb07RpU8qUKaO2MzMzw9PTk59++onvv/9eqw9bW1siIiIYM2YMbdq0IT09HXt7ezw8PNDRkVMshBBCCPHiNIqiKEUdhBDvk9TUVCwsLEhJScHc3LyowxFCCPESuYxaxek5vYo6DPEKvIrvb5nSE0IIIYR4SSQJF4Uhibh4axw6dEjrMoLPPoQQQggh3iZSIy7eGvXq1SMyMrKowxBCCCGEeCkkERdvDSMjIypXrlzUYQghhBBaXEatUv8vpSmiMKQ0RQghhBBCiCIgibgQQgghhBBFQBLxN5iDgwMLFy4sUFuNRsOWLVteaTzx8fFoNJrn1mm7ubmp1wt/Ec8bS3h4OBqNhuTk5BfehxBCCCFEUZNE/DV4HUlyUSiqhLhx48YkJibme2fPbJK0CyGEEOJNJYm4eOvo6+tjbW2NRqN5bftUFIWMjIzXtj8hhBBCvPveq0Tczc2NoUOHMnz4cIoXL06ZMmVYsWIF9+7do0+fPpiZmVG5cmV27NihbvPHH3/Qtm1bTE1NKVOmDD179uTmzZtaffr7+zN69GhKlCiBtbU1gYGB6vrsW8B36tQJjUajPo+Li+OTTz6hTJkymJqaUr9+ffbu3fufxnfz5k06deqEsbExVapU4ZdfftFa/7yx7Ny5k48++ghLS0tKlixJhw4diIuLy3Vf8fHxNG/eHIDixYuj0Wjw8fFR12dlZeV5TP7rWJ6d5b569Sqenp4UL14cExMTatSowfbt2/ONMT09HX9/f0qXLo2hoSEfffQRJ0+ezLGPHTt24OLigoGBAT/88AM6OjqcOnVKK9aFCxdib29PVlZWrmNJT08nNTVV6yGEEEII8V4l4gBhYWGUKlWKEydOMHToUL744gu6du1K48aNOXPmDG3atKFnz57cv3+f5ORkWrRoQZ06dTh16hQ7d+7k+vXreHl55ejTxMSE48ePM3v2bKZMmcKePXsA1OQuJCSExMRE9XlaWhrt2rVj3759nD17Fg8PDzw9PUlISHjhsQUFBeHl5cW5c+do164d3t7e3L59G6BAY7l37x4jRozg1KlT7Nu3Dx0dHTp16pRrgmlnZ8fGjRsBiImJITExkUWLFhXomPzXsTxryJAhpKen8/vvv3P+/HlmzZqFqalpvjGOHj2ajRs3EhYWxpkzZ6hcuTLu7u459jF27FhmzpxJdHQ0H3/8Ma1atSIkJESrTUhICD4+Pujo5P52Cg4OxsLCQn3Y2dkV+DgIIYQQ4h2mvEeaNWumfPTRR+rzjIwMxcTEROnZs6e6LDExUQGUo0ePKlOnTlXatGmj1ce1a9cUQImJicm1T0VRlPr16ytjxoxRnwPK5s2bnxtfjRo1lCVLlqjP7e3tlQULFhRobIAyYcIE9XlaWpoCKDt27FAURSnQWJ5148YNBVDOnz+vKIqiXLlyRQGUs2fPKoqiKAcOHFAA5c6dO1rbFeSY/JexPLtfZ2dnJTAwMNe+cosxLS1N0dPTU9asWaMue/TokWJra6vMnj1ba7stW7Zo9bd+/XqlePHiysOHDxVFUZTTp08rGo1GuXLlSp7jefjwoZKSkqI+so97SkpKgY6HEEKIN1vdgDD1Id5dKSkpL/37+72bEa9Zs6b6f11dXUqWLImzs7O6rEyZMgAkJSURFRXFgQMHtG6jXq1aNQCtko2n+wSwsbEhKSkp3zjS0tIICAjAyckJS0tLTE1NiY6O/k8z4k/HYWJigrm5uRpHQcYSGxtL9+7dqVixIubm5moZzYvE9CLHpKBjeZa/vz/Tpk3D1dWVyZMnc+7cuXz7jouL4/Hjx7i6uqrL9PT0aNCgAdHR0Vpt69Wrp/W8Y8eO6OrqsnnzZgBCQ0Np3ry5eqxyY2BggLm5udZDCCGEEOK9u7Omnp6e1nONRqO1LPsEwKysLNLS0vD09GTWrFk5+rGxscm3z7zqhbMFBASwZ88e5s6dS+XKlTEyMqJLly48evSo0GMqSBwFGYunpyf29vasWLECW1tbsrKy+OCDD14ophc5Ji+6va+vL+7u7vz222/s3r2b4OBg5s2bx9ChQwsd97NMTEy0nuvr69OrVy9CQkLo3Lkza9eu1SrJEUIIIYQoqPcuES+MunXrsnHjRhwcHChW7MUPlZ6eHpmZmVrLIiIi8PHxoVOnTsCTRDk+Pv6/hJuv543l1q1bxMTEsGLFCpo0aQLA4cOH8+1TX18fIMfYioKdnR2DBg1i0KBBjBs3jhUrVjB06NBcY6xUqRL6+vpERERgb28PwOPHjzl58mSBrn/u6+vLBx98wNdff01GRgadO3d+JWMSQgghxLvtvStNKYwhQ4Zw+/ZtunfvzsmTJ4mLi2PXrl306dOnUMmng4MD+/bt499//+XOnTsAVKlShU2bNhEZGUlUVBQ9evQo1IxxYT1vLMWLF6dkyZJ8++23XL58mf379zNixIh8+7S3t0ej0fDrr79y48YN0tLSXln8+Rk+fDi7du3iypUrnDlzhgMHDuDk5JRnjCYmJnzxxReMGjWKnTt3cuHCBfr378/9+/fp16/fc/fn5OREw4YNGTNmDN27d8fIyOhVD1EIIYQQ7yBJxPNha2tLREQEmZmZtGnTBmdnZ4YPH46lpWWeV8jIzbx589izZw92dnbUqVMHgPnz51O8eHEaN26Mp6cn7u7u1K1b91UN5blj0dHRYd26dZw+fZoPPviAL7/8kjlz5uTbZ9myZQkKCmLs2LGUKVMGPz+/VxZ/fjIzMxkyZAhOTk54eHjg6OjI119/nW+MM2fO5NNPP6Vnz57UrVuXy5cvs2vXLooXL16gffbr149Hjx7Rt2/fVzYuIYQQQrzbNIqiKEUdhBBvm6lTp/Lzzz8/98TQ3KSmpmJhYUFKSoqcuCmEEO8Al1Gr1P+fntOrCCMRr9Kr+P6WGnEhCiG7ln/p0qVMmzatqMMRQgjxBpDkW7woKU15C6xZs0brsoNPP2rUqFHU4RXK2z4WPz8/XFxccHNzk7IUIYQQQvwnUpryFrh79y7Xr1/PdZ2enp565Y+3wbs0lhclpSlCCCHE20dKU95TZmZmmJmZFXUYL8W7NBYhhBDvt6drw7NJmYooDClNEUIIIYQQoghIIv4GcHNzU28k4+DgwMKFC19o23dZaGgolpaW6vPAwEBq166d7zbx8fFoNBoiIyNfaWxCCCGEEC9CSlPeMCdPnsxxW/X8bNq0Kcft4N8HAQEBWrew9/HxITk5mS1btqjL7OzsSExMpFSpUkUQoRBCCCFE/iQRf8NYWVkVqn2JEiVeUSRvtuwrreRHV1cXa2vr1xSREEIIIUThSGnKG+bp0pQePXrw2Wefaa1//PgxpUqVYtWqJyeIPFua4uDgwIwZM+jbty9mZmaUL1+eb7/9VquPI0eOULt2bQwNDalXrx5btmwpVAnHn3/+SYcOHTA3N8fMzIwmTZoQFxcHQFZWFlOmTKFcuXIYGBhQu3Ztdu7cqW6bXS6yadMmmjdvjrGxMbVq1eLo0aNa+wgNDaV8+fIYGxvTqVMnbt26pbX+6dKUwMBAwsLC2Lp1KxqNBo1GQ3h4eK6lKQcPHqRBgwYYGBhgY2PD2LFjycjIUNe7ubnh7+/P6NGjKVGiBNbW1gQGBqrrFUUhMDCQ8uXLY2BggK2tLf7+/gU6bkIIIYQQT5NE/A3m7e3Ntm3bSEtLU5ft2rWL+/fv06lTpzy3mzdvHvXq1ePs2bMMHjyYL774gpiYGODJpXc8PT1xdnbmzJkzTJ06lTFjxhQ4pr///pumTZtiYGDA/v37OX36NH379lWT2UWLFjFv3jzmzp3LuXPncHd35+OPPyY2Nlarn/HjxxMQEEBkZCSOjo50795d7eP48eP069cPPz8/IiMjad68eb43zwkICMDLywsPDw8SExNJTEykcePGucberl076tevT1RUFMuWLeO7777L0XdYWBgmJiYcP36c2bNnM2XKFPbs2QPAxo0bWbBgAcuXLyc2NpYtW7bg7Oyc7zFLT08nNTVV6yGEEEIIIaUpbzB3d3dMTEzYvHkzPXv2BGDt2rV8/PHH+V4CsF27dgwePBiAMWPGsGDBAg4cOEDVqlVZu3YtGo2GFStWYGhoSPXq1fn777/p379/gWL66quvsLCwYN26dWptuqOjo7p+7ty5jBkzhm7dugEwa9YsDhw4wMKFC/nqq6/UdgEBAbRv3x6AoKAgatSoweXLl6lWrRqLFi3Cw8OD0aNHq/0fOXJEa2b9aaamphgZGZGenp5vKcrXX3+NnZ0dS5cuRaPRUK1aNf755x/GjBnDpEmT0NF58ntpzZo1mTx5MgBVqlRh6dKl7Nu3j9atW5OQkIC1tTWtWrVCT0+P8uXL06BBg3yPWXBwMEFBQfm2EUIIIcT7R2bE32DFihXDy8uLNWvWAHDv3j22bt2Kt7d3vtvVrFlT/b9Go8Ha2pqkpCQAYmJiqFmzJoaGhmqb5yWST4uMjKRJkya5niCamprKP//8g6urq9ZyV1dXoqOj84zRxsYGQI0xOjqaDz/8UKt9o0aNChxjXqKjo2nUqBEajUYrtrS0NP73v//lGlt2fNmxde3alQcPHlCxYkX69+/P5s2btUpbcjNu3DhSUlLUx7Vr1/7zWIQQQgjx9pNE/A3n7e3Nvn37SEpKYsuWLRgZGeHh4ZHvNs8myRqNhqysrJcSj5GR0Uvp5+kYsxPjlxXjf5Xf8bOzsyMmJoavv/4aIyMjBg8eTNOmTXn8+HGe/RkYGGBubq71EEIIIYSQRPwN17hxY+zs7Fi/fj1r1qyha9eu/+lyhVWrVuX8+fOkp6ery06ePFng7WvWrMmhQ4dyTTzNzc2xtbUlIiJCa3lERATVq1cv8D6cnJw4fvy41rJjx47lu42+vj6ZmZnP7ffo0aMoiqIVm5mZGeXKlStwfEZGRnh6erJ48WLCw8M5evQo58+fL/D2QgghhBAgifhboUePHnzzzTfs2bPnuWUpBekrKyuLAQMGEB0dza5du5g7dy6AVslGXvz8/EhNTaVbt26cOnWK2NhYVq9erZ4MOmrUKGbNmsX69euJiYlh7NixREZGMmzYsALH6O/vz86dO5k7dy6xsbEsXbo0z/rwbA4ODpw7d46YmBhu3ryZ6y8KgwcP5tq1awwdOpSLFy+ydetWJk+ezIgRI9T68OcJDQ3lu+++448//uCvv/7ihx9+wMjICHt7+wKPTwghhBACJBF/K3h7e3PhwgXKli2bo/66sMzNzdm2bRuRkZHUrl2b8ePHM2nSJACtuvG8lCxZkv3795OWlkazZs1wcXFhxYoV6iy9v78/I0aMYOTIkTg7O7Nz505++eUXqlSpUuAYGzZsyIoVK1i0aBG1atVi9+7dTJgwId9t+vfvT9WqValXrx5WVlY5ZuUBypYty/bt2zlx4gS1atVi0KBB9OvX77l9P83S0pIVK1bg6upKzZo12bt3L9u2baNkyZIF7kMIIYQQAkCjPP13evFeWrNmDX369CElJeWl1YCLvKWmpmJhYUFKSorUiwshxFvMZdSqHMtOz+lVBJGI1+FVfH/L5QvfQ6tWraJixYqULVuWqKgoxowZg5eXlyThQgghRCFI0i3+KylNeQ/9+++/fP755zg5OfHll1/StWtX9e6bgwYNUm8f/+xj0KBBRRy5EEIIIcS7Q0pThJakpKQ87/xobm5O6dKlX3NE7x4pTRFCCCHePlKaIl650qVLS7IthBBCCPEaSCIuhBBCCJGH3E7IzI/UjYvCkBpxIYQQQgghioAk4uI/c3NzY/jw4a99vw4ODixcuPCl9VdU4xBCCCHE+0kScSGEEEIIIYqAJOJCCCGEEEIUAUnExUuRlZXF6NGjKVGiBNbW1gQGBqrrkpOT8fX1xcrKCnNzc1q0aEFUVJS6Pi4ujk8++YQyZcpgampK/fr12bt3r1b/SUlJeHp6YmRkRIUKFVizZk2OGObPn4+zszMmJibY2dkxePBg0tLStNpERETg5uaGsbExxYsXx93dnTt37hRoHAUZixBCCCFEQUkiLl6KsLAwTExMOH78OLNnz2bKlCns2bMHgK5du5KUlMSOHTs4ffo0devWpWXLlty+fRuAtLQ02rVrx759+zh79iweHh54enqSkJCg9u/j48O1a9c4cOAAGzZs4OuvvyYpKUkrBh0dHRYvXsyff/5JWFgY+/fvZ/To0er6yMhIWrZsSfXq1Tl69CiHDx/G09OTzMzMAo2jIGPJTXp6OqmpqVoPIYQQQgi5oY/4z9zc3MjMzOTQoUPqsgYNGtCiRQs6dOhA+/btSUpKwsDAQF1fuXJlRo8ezYABA3Lt84MPPmDQoEH4+flx6dIlqlatyokTJ6hfvz4AFy9exMnJiQULFuR5guWGDRsYNGgQN2/eBKBHjx4kJCRw+PDhQo9j5syZHD58+IXGEhgYSFBQUI7lckMfIYR488nlC0U2uaGPeGPVrFlT67mNjQ1JSUlERUWRlpZGyZIltdY/ePCAuLg44MmMeGBgIL/99huJiYlkZGTw4MEDdUY8OjqaYsWK4eLiom5frVo1LC0ttfrcu3cvwcHBXLx4kdTUVDIyMnj48CH379/H2NiYyMhIunbt+kLjAAo0ltyMGzeOESNGqM9TU1Oxs7PLNw4hhBBCvPskERcvhZ6entZzjUZDVlYWaWlp2NjYEB4enmOb7EQ6ICCAPXv2MHfuXCpXroyRkRFdunTh0aNHBd5/fHw8HTp04IsvvmD69OmUKFGCw4cP069fPx49eoSxsTFGRkYvPA6gQGPJjYGBgdYMuhBCCCEESCIuXrG6devy77//UqxYMRwcHHJtExERgY+PD506dQKeJLzx8fHq+mrVqpGRkcHp06fV0pSYmBiSk5PVNqdPnyYrK4t58+aho/Pk1IeffvpJaz81a9Zk3759uZaJvKyxCCGEEEIUlJysKV6pVq1a0ahRIzp27Mju3buJj4/nyJEjjB8/nlOnTgFQpUoVNm3aRGRkJFFRUfTo0UOdhQaoWrUqHh4eDBw4kOPHj3P69Gl8fX21ZrgrV67M48ePWbJkCX/99RerV6/mm2++0Ypl3LhxnDx5ksGDB3Pu3DkuXrzIsmXL1BrylzEWIYQQQoiCkkRcvFIajYbt27fTtGlT+vTpg6OjI926dePq1auUKVMGeHLZweLFi9O4cWM8PT1xd3enbt26Wv2EhIRga2tLs2bN6Ny5MwMGDKB06dLq+lq1ajF//nxmzZrFBx98wJo1awgODtbqw9HRkd27dxMVFUWDBg1o1KgRW7dupVixgv1hqCBjEUIIIYQoKLlqihCv2as461oIIcSrIVdNEdnkqilCCCGEEK+RJNbiVZLSFCGEEEIIIYqAJOJCCCGEEEIUASlNEUIIIYR4RmFrw7NJKYsoDJkRF0IIIYQQoghIIi6KhJubG8OHD3/h7ePj49FoNERGRgIQHh6ORqPRuslPYbYXQgghhHjdpDRFvJfs7OxITEykVKlSRR2KEEIIId5TkoiL95Kuri7W1tZFHYYQQggh3mNSmiKKTEZGBn5+flhYWFCqVCkmTpxI9v2lNBoNW7Zs0WpvaWlJaGjoc/u9d+8e5ubmbNiwQWv5li1bMDEx4e7du3mWtuzbt4969ephbGxM48aNiYmJ0epj2rRplC5dGjMzM3x9fRk7diy1a9d+0UMghBBCiPeYJOKiyISFhVGsWDFOnDjBokWLmD9/PitXrvzP/ZqYmNCtWzdCQkK0loeEhNClSxfMzMzy3Hb8+PHMmzePU6dOUaxYMfr27auuW7NmDdOnT2fWrFmcPn2a8uXLs2zZsufGk56eTmpqqtZDCCGEEEJKU0SRsbOzY8GCBWg0GqpWrcr58+dZsGAB/fv3/899+/r60rhxYxITE7GxsSEpKYnt27ezd+/efLebPn06zZo1A2Ds2LG0b9+ehw8fYmhoyJIlS+jXrx99+vQBYNKkSezevZu0tLR8+wwODiYoKOg/j0kIIYQQ7xaZERdFpmHDhmg0GvV5o0aNiI2NJTMz8z/33aBBA2rUqEFYWBgAP/zwA/b29jRt2jTf7WrWrKn+38bGBoCkpCQAYmJiaNCgQY79PM+4ceNISUlRH9euXSvUWIQQQgjxbpJEXLyRNBqNWi+e7fHjx4Xqw9fXV60pDwkJoU+fPlqJf2709PS0YgDIysoq1H6fZWBggLm5udZDCCGEEEIScVFkjh8/rvX82LFjVKlSBV1dXaysrEhMTFTXxcbGcv/+/UL1//nnn3P16lUWL17MhQsX6N2793+Kt2rVqpw8eVJr2bPPhRBCCCEKSmrERZFJSEhgxIgRDBw4kDNnzrBkyRLmzZsHQIsWLVi6dCmNGjUiMzOTMWPGaM1WF0Tx4sXp3Lkzo0aNok2bNpQrV+4/xTt06FD69+9PvXr1aNy4MevXr+fcuXNUrFjxP/UrhBBCiPeTJOKiyPTq1YsHDx7QoEEDdHV1GTZsGAMGDABg3rx59OnThyZNmmBra8uiRYs4ffp0offRr18/1q5dq3X1kxfl7e3NX3/9RUBAAA8fPsTLywsfHx9OnDjxn/sWQgghxPtHozxbiCvEO2T16tV8+eWX/PPPP+jr67/0/lu3bo21tTWrV68u8DapqalYWFiQkpIi9eJCCPGGchm16oW2Oz2n10uORLwpXsX3t8yIi3fS/fv3SUxMZObMmQwcOPClJOH379/nm2++wd3dHV1dXX788Uf27t3Lnj17XkLEQggh3iSSUIvXQU7WFO+k2bNnU61aNaytrRk3btxL6VOj0bB9+3aaNm2Ki4sL27ZtY+PGjbRq1eql9C+EEEKI94uUpgjxmklpihBCCPH2eRXf3zIjLoQQQgghRBGQGnEhhBBCvFde9ETMgpDaclEYMiMuhBBCCCFEEZBEXLwxQkNDsbS0fCl9hYeHo9FoSE5Ofin9FfV+hBBCCPHukURc/Cc+Pj507NixqMMQQgghhHjrSCIuhBBCCCFEEZBEXBTIhg0bcHZ2xsjIiJIlS9KqVStGjRpFWFgYW7duRaPRoNFoCA8Pz7VcIzIyEo1GQ3x8vLosNDSU8uXLY2xsTKdOnbh165a6Lj4+Hh0dHU6dOqUVx8KFC7G3tycrK6vQY9i4cSM1atTAwMAABwcH5s2bp7V+9erV1KtXDzMzM6ytrenRowdJSUlabbZv346joyNGRkY0b95cazxCCCGEEIUhibh4rsTERLp3707fvn2Jjo4mPDyczp07M3nyZLy8vPDw8CAxMZHExEQaN25coD6PHz9Ov3798PPzIzIykubNmzNt2jR1vYODA61atSIkJERru5CQEHx8fNDRKdxL9/Tp03h5edGtWzfOnz9PYGAgEydOJDQ0VG3z+PFjpk6dSlRUFFu2bCE+Ph4fHx91/bVr1+jcuTOenp5ERkbi6+vL2LFjn7vv9PR0UlNTtR5CCCGEEHL5QvFciYmJZGRk0LlzZ+zt7QFwdnYGwMjIiPT0dKytrQvV56JFi/Dw8GD06NEAODo6cuTIEXbu3Km28fX1ZdCgQcyfPx8DAwPOnDnD+fPn2bp1a6HHMH/+fFq2bMnEiRPV/V24cIE5c+aoyXbfvn3V9hUrVmTx4sXUr1+ftLQ0TE1NWbZsGZUqVVJn0qtWrcr58+eZNWtWvvsODg4mKCio0DELIYQQ4t0mM+LiuWrVqkXLli1xdnama9eurFixgjt37vynPqOjo/nwww+1ljVq1EjreceOHdHV1WXz5s3Ak1KW5s2b4+Dg8EL7c3V11Vrm6upKbGwsmZmZwJNZc09PT8qXL4+ZmRnNmjUDICEhocAx52bcuHGkpKSoj2vXrhU6fiGEEEK8eyQRF8+lq6vLnj172LFjB9WrV2fJkiVUrVqVK1eu5No+u2xEURR12ePHjwu9X319fXr16kVISAiPHj1i7dq1WrPWL9O9e/dwd3fH3NycNWvWcPLkSfUXgEePHv2nvg0MDDA3N9d6CCGEEEJIIi4KRKPR4OrqSlBQEGfPnkVfX5/Nmzejr6+vzihns7KyAp6UtGSLjIzUauPk5MTx48e1lh07dizHfn19fdm7dy9ff/21Wh7zIpycnIiIiNBaFhERgaOjI7q6uly8eJFbt24xc+ZMmjRpQrVq1XKcqOnk5MSJEyeeG7MQQgghREFIIi6e6/jx48yYMYNTp06RkJDApk2buHHjBk5OTjg4OHDu3DliYmK4efMmjx8/pnLlytjZ2REYGEhsbCy//fZbjiuU+Pv7s3PnTubOnUtsbCxLly7Vqg/P5uTkRMOGDRkzZgzdu3fHyMjohcYwcuRI9u3bx9SpU7l06RJhYWEsXbqUgIAAAMqXL4++vj5Llizhr7/+4pdffmHq1KlafQwaNIjY2FhGjRpFTEwMa9eu1TrZUwghhBCiMCQRF89lbm7O77//Trt27XB0dGTChAnMmzePtm3b0r9/f6pWrUq9evWwsrIiIiICPT09fvzxRy5evEjNmjWZNWuW1hVRABo2bMiKFStYtGgRtWrVYvfu3UyYMCHX/ffr149Hjx79p7KUunXr8tNPP7Fu3To++OADJk2axJQpU9QTNa2srAgNDeXnn3+mevXqzJw5k7lz52r1Ub58eTZu3MiWLVuoVasW33zzDTNmzHjhmIQQQgjxftMoTxfyCvEGmjp1Kj///DPnzp0r6lBeitTUVCwsLEhJSZF6cSGEKAIuo1a9sr5Pz+n1yvoWRetVfH/L5QvFGystLY34+HiWLl2aY0ZdCCGEeFGSLIs3hZSmiDeWn58fLi4uuLm55ShLGTRoEKamprk+Bg0aVEQRCyGEEEIUnJSmiLdSUlJSnneoNDc3p3Tp0q85ooKT0hQhhBDi7SOlKUL8/0qXLv1GJ9tCCCGK3qusBc+LlL2IwpDSFCGEEEIIIYqAJOJCCCGEEEIUgXcqEVcUhQEDBlCiRAk0Gk2OuzkKIYQQQgjxpninEvGdO3cSGhrKr7/+SmJiIh988MFzt9FoNGzZsuXVByeEEEIIIcRT3qmTNePi4rCxsaFx48avfd+PHj1CX1//te83P68ypsePH6Onp/dK+i4qiqKQmZlJsWLv1NtCCCGEEG+od2ZG3MfHh6FDh5KQkIBGo8HBwQEHBwcWLlyo1a527doEBgYC4ODgAECnTp3UbbL76tixo9Z2w4cPx83NTX3u5uaGn58fw4cPp1SpUri7uwPwxx9/0LZtW0xNTSlTpgw9e/bk5s2bBRpDVlYWs2fPpnLlyhgYGFC+fHmmT5+urh8zZgyOjo4YGxtTsWJFJk6cyOPHj9X1gYGB1K5dm5UrV1KhQgUMDQ0BSE5OxtfXFysrK8zNzWnRogVRUVFa+966dSt169bF0NCQihUrEhQUREZGhrpeo9GwbNkyPv74Y0xMTLTiysuff/5Jhw4dMDc3x8zMjCZNmhAXF6eOdcqUKZQrVw4DAwNq167Nzp071W3j4+PRaDRs2rSJ5s2bY2xsTK1atTh69KjWPiIiInBzc8PY2JjixYvj7u7OnTt31H0EBwdToUIFjIyMqFWrFhs2bFC3DQ8PR6PRsGPHDlxcXDAwMODw4cO4ubnh7+/P6NGjKVGiBNbW1uprBp4k7IGBgZQvXx4DAwNsbW3x9/fP8zikp6eTmpqq9RBCCCGEeGcS8UWLFqmJXWJiIidPnnzuNtltQkJCCrzN08LCwtDX1yciIoJvvvmG5ORkWrRoQZ06dTh16hQ7d+7k+vXreHl5Fai/cePGMXPmTCZOnMiFCxdYu3YtZcqUUdebmZkRGhrKhQsXWLRoEStWrGDBggVafVy+fJmNGzeyadMmtUa+a9euJCUlsWPHDk6fPk3dunVp2bIlt2/fBuDQoUP06tWLYcOGceHCBZYvX05oaGiOZDswMJBOnTpx/vz5HDfYedbff/9N06ZNMTAwYP/+/Zw+fZq+ffuqyf2iRYuYN28ec+fO5dy5c7i7u/Pxxx8TGxur1c/48eMJCAggMjISR0dHunfvrvYRGRlJy5YtqV69OkePHuXw4cN4enqSmZkJQHBwMKtWreKbb77hzz//5Msvv+Tzzz/n4MGDWvsYO3YsM2fOJDo6mpo1awJPfrYmJiYcP36c2bNnM2XKFPbs2QPAxo0bWbBgAcuXLyc2NpYtW7bg7Oyc57EIDg7GwsJCfdjZ2eV77IQQQgjxfnhn/gZvYWGBmZkZurq6WFtbF2gbKysrACwtLQu8zdOqVKnC7Nmz1efTpk2jTp06zJgxQ132/fffY2dnx6VLl3B0dMyzr7t377Jo0SKWLl1K7969AahUqRIfffSR2mbChAnq/x0cHAgICGDdunWMHj1aXf7o0SNWrVqlju3w4cOcOHGCpKQkDAwMAJg7dy5btmxhw4YNDBgwgKCgIMaOHavut2LFikydOpXRo0czefJkte8ePXrQp0+fAh2br776CgsLC9atW6eWsDw9/rlz5zJmzBi6desGwKxZszhw4AALFy7kq6++UtsFBATQvn17AIKCgqhRowaXL1+mWrVqzJ49m3r16vH111+r7WvUqAE8mYWeMWMGe/fupVGjRuq4Dh8+zPLly2nWrJm6zZQpU2jdurVW/DVr1lTHXqVKFZYuXcq+ffto3bo1CQkJWFtb06pVK/T09ChfvjwNGjTI81iMGzeOESNGqM9TU1MlGRdCCCHEu5OIFwUXFxet51FRURw4cABTU9McbePi4vJNxKOjo0lPT6dly5Z5tlm/fj2LFy8mLi6OtLQ0MjIyctzZyd7eXk3Cs2NKS0ujZMmSWu0ePHiglolERUURERGhNQOemZnJw4cPuX//PsbGxgDUq1cvz9ieFRkZSZMmTXKtI09NTeWff/7B1dVVa7mrq2uOkpnsGWoAGxsb4MldNatVq0ZkZCRdu3bNdf+XL1/m/v37ORLsR48eUadOHa1luY3r6f1m7zspKQl48heGhQsXUrFiRTw8PGjXrh2enp551pYbGBiovwQJIYQQQmR7pxNxHR0dFEXRWvZ0TfV/3c7ExETreVpaGp6ensyaNStH2+wkMi9GRkb5rj969Cje3t4EBQXh7u6uzjbPmzfvuTHZ2NgQHh6eo09LS0u1TVBQEJ07d87RJrvOPLe+8/O88RTU04m8RqMBntR+P28faWlpAPz222+ULVtWa92zSXFu43r2FwiNRqPu187OjpiYGPbu3cuePXsYPHgwc+bM4eDBg+/cCaxCCCGEeHXe6UTcysqKxMRE9XlqaipXrlzRaqOnp6fWFD+93R9//KG1LDIy8rlJVt26ddm4cSMODg6FvvJGlSpVMDIyYt++ffj6+uZYf+TIEezt7Rk/fry67OrVq8/tt27duvz7778UK1ZMPRk1tzYxMTFUrly5UDHnp2bNmoSFheV6dRVzc3NsbW2JiIjQKhGJiIjIt8Qjt33s27ePoKCgHOuqV6+OgYEBCQkJWvt4WYyMjPD09MTT05MhQ4ZQrVo1zp8/T926dV/6voQQQgjxbnpnTtbMTYsWLVi9ejWHDh3i/Pnz9O7dG11dXa02Dg4O7Nu3j3///Ve92kaLFi04deoUq1atIjY2lsmTJ+dIzHMzZMgQbt++Tffu3Tl58iRxcXHs2rWLPn365Ej2n2VoaMiYMWMYPXo0q1atIi4ujmPHjvHdd98BTxL1hIQE1q1bR1xcHIsXL2bz5s3PjalVq1Y0atSIjh07snv3buLj4zly5Ajjx4/n1KlTAEyaNIlVq1YRFBTEn3/+SXR0NOvWrdOqSS8sPz8/UlNT6datG6dOnSI2NpbVq1cTExMDwKhRo5g1axbr168nJiaGsWPHEhkZybBhwwq8j3HjxnHy5EkGDx7MuXPnuHjxIsuWLePmzZuYmZkREBDAl19+SVhYGHFxcZw5c4YlS5YQFhb2wuMCCA0N5bvvvuOPP/7gr7/+4ocffsDIyAh7e/v/1K8QQggh3i/vdCI+btw4mjVrRocOHWjfvj0dO3akUqVKWm3mzZvHnj17sLOzU2uH3d3dmThxIqNHj6Z+/frcvXuXXr16PXd/2bO8mZmZtGnTBmdnZ4YPH46lpSU6Os8/1BMnTmTkyJFMmjQJJycnPvvsM7Uu+eOPP+bLL7/Ez8+P2rVrc+TIESZOnPjcPjUaDdu3b6dp06b06dMHR0dHunXrxtWrV9Ursri7u/Prr7+ye/du6tevT8OGDVmwYMF/SixLlizJ/v37SUtLo1mzZri4uLBixQp1dtzf358RI0YwcuRInJ2d2blzJ7/88gtVqlQp8D4cHR3ZvXs3UVFRNGjQgEaNGrF161b1rxFTp05l4sSJBAcH4+TkhIeHB7/99hsVKlR44XHBk5KeFStW4OrqSs2aNdm7dy/btm3LUYcvhBBCCJEfjfJsMbQQ4pVKTU3FwsKClJSUHCfbCiGEeHlcRq167fs8Pef5E3fi7fQqvr/f6RpxIYQQQry/JCkWb7p3ujTlTZKQkICpqWmej4SEhKIOsVAGDRqU51gGDRpU1OEJIYQQQrzxpDTlNcnIyCA+Pj7P9S9ypZWilJSUlOet2s3NzSlduvRrjujtIaUpQgghxNtHSlPeYsWKFXuplwcsaqVLl5ZkWwghxBtNasTFm05KU4QQQgghhCgCkoi/53x8fOjYsWNRh1Eknh27m5sbw4cPL7J4hBBCCPF+kdIUIf5/mzZt0roLqIODA8OHD5fkXAghhBCvhCTiQvz/SpQoUdQhCCGEEOI9IqUp74kNGzbg7OyMkZERJUuWpFWrVty7dy9Hu6ysLIKDg6lQoQJGRkbUqlWLDRs2aLX5448/aNu2LaamppQpU4aePXty8+ZNdb2bmxt+fn74+flhYWFBqVKlmDhxIgW9QE9SUhKenp4YGRlRoUIF1qxZg4ODAwsXLgQgPj4ejUZDZGSkuk1ycjIajYbw8HAAMjMz6devnzqOqlWrsmjRonz3+3RpipubG1evXuXLL79Eo9Gg0Wi4d+8e5ubmOY7Hli1bMDEx4e7duwUanxBCCCEESCL+XkhMTKR79+707duX6OhowsPD6dy5c66JcXBwMKtWreKbb77hzz//5Msvv+Tzzz/n4MGDwJOEt0WLFtSpU4dTp06xc+dOrl+/jpeXl1Y/YWFhFCtWjBMnTrBo0SLmz5/PypUrCxSvj48P165d48CBA2zYsIGvv/6apKSkQo05KyuLcuXK8fPPP3PhwgUmTZrE//3f//HTTz8VaPtNmzZRrlw5pkyZQmJiIomJiZiYmNCtWzdCQkK02oaEhNClSxfMzMxy7Ss9PZ3U1FSthxBCCCGElKa8BxITE8nIyKBz587Y29sD4OzsnKNdeno6M2bMYO/evTRq1AiAihUrcvjwYZYvX06zZs1YunQpderUYcaMGep233//PXZ2dly6dAlHR0cA7OzsWLBgARqNhqpVq3L+/HkWLFhA//7984310qVL7NixgxMnTlC/fn0AvvvuO5ycnAo1Zj09PYKCgtTnFSpU4OjRo/z00085fmnITYkSJdDV1cXMzAxra2t1ua+vL40bNyYxMREbGxuSkpLYvn07e/fuzbOv4OBgrViEEEIIIUBmxN8LtWrVomXLljg7O9O1a1dWrFjBnTt3crS7fPky9+/fp3Xr1lp3yly1ahVxcXEAREVFceDAAa311apVA1DbADRs2BCNRqM+b9SoEbGxsWRmZuYba3R0NMWKFcPFxUVdVq1aNSwtLQs97q+++goXFxesrKwwNTXl22+//c93MG3QoAE1atQgLCwMgB9++AF7e3uaNm2a5zbjxo0jJSVFfVy7du0/xSCEEEKId4PMiL8HdHV12bNnD0eOHGH37t0sWbKE8ePHc/z4ca12aWlpAPz222+ULVtWa52BgYHaxtPTk1mzZuXYj42NzSsagTYdnSe/Pz5dWvP48WOtNuvWrSMgIIB58+bRqFEjzMzMmDNnTo4xvwhfX1+++uorxo4dS0hICH369NH6peNZBgYG6vETQgghhMgmifh7QqPR4OrqiqurK5MmTcLe3p7NmzdrtalevToGBgYkJCTQrFmzXPupW7cuGzduxMHBgWLF8n75PJvwHjt2jCpVqqCrq5tvnNWqVSMjI4PTp0+rpSkxMTEkJyerbaysrIAnJTd16tQB0DpxEyAiIoLGjRszePBgddnTM/YFoa+vn+sM/ueff87o0aNZvHgxFy5coHfv3oXqVwghhBACpDTlvXD8+HFmzJjBqVOnSEhIYNOmTdy4cSNH3bWZmRkBAQF8+eWXhIWFERcXx5kzZ1iyZIlaijFkyBBu375N9+7dOXnyJHFxcezatYs+ffpoJa0JCQmMGDGCmJgYfvzxR5YsWcKwYcOeG2vVqlXx8PBg4MCBHD9+nNOnT+Pr64uRkZHaxsjIiIYNGzJz5kyio6M5ePAgEyZM0OqnSpUqnDp1il27dnHp0iUmTpzIyZMnC3XcHBwc+P333/n777+1rgpTvHhxOnfuzKhRo2jTpg3lypUrVL9CCCGEECCJ+HvB3Nyc33//nXbt2uHo6MiECROYN28ebdu2zdF26tSpTJw4keDgYJycnPDw8OC3336jQoUKANja2hIREUFmZiZt2rTB2dmZ4cOHY2lpqZaMAPTq1YsHDx7QoEEDhgwZwrBhwxgwYECB4g0JCcHW1pZmzZrRuXNnBgwYQOnSpbXafP/992RkZODi4sLw4cOZNm2a1vqBAwfSuXNnPvvsMz788ENu3bqlNTteEFOmTCE+Pp5KlSqps/DZ+vXrx6NHj+jbt2+h+hRCCCGEyKZRCnpxZyEKyM3Njdq1a6vX/X4Z3rS7XK5evZovv/ySf/75B319/UJtm5qaioWFBSkpKZibm7+iCIUQQriMWvXa93l6Tq/Xvk/xeryK72+pEReiEO7fv09iYiIzZ85k4MCBhU7ChRBCvD6SFIs3nZSmiNfq0KFDWpc+fPbxpps9ezbVqlXD2tqacePGFXU4QgghhHiLSWmKeK0ePHjA33//nef6ypUrv8ZoioaUpgghhBBvHylNEW89IyOj9yLZFkIIIYR4HknEhRBCCPHOKYoTNUHq0kXhSI24EEIIIYQQRUAScfHC3Nzc3pjLCb6I8PBwNBqN1l07hRBCCCFeF0nExXurcePGJCYmYmFhUdShCCGEEOI9JIm4eGM9evTolfavr6+PtbU1Go3mle5HCCGEECI3koiLArl37x69evXC1NQUGxsb5s2bp7U+PT2dgIAAypYti4mJCR9++CHh4eHq+tDQUCwtLdmyZQtVqlTB0NAQd3d3rl27prYJDAykdu3arFy5kgoVKmBoaAhAcnIyvr6+WFlZYW5uTosWLYiKilK3i4qKonnz5piZmWFubo6LiwunTp0C4OrVq3h6elK8eHFMTEyoUaMG27dvB3IvTdm4cSM1atTAwMAABweHHON0cHBgxowZ9O3bFzMzM8qXL8+33377Uo6xEEIIId4vkoiLAhk1ahQHDx5k69at7N69m/DwcM6cOaOu9/Pz4+jRo6xbt45z587RtWtXPDw8iI2NVdvcv3+f6dOns2rVKiIiIkhOTqZbt25a+7l8+TIbN25k06ZNREZGAtC1a1eSkpLYsWMHp0+fpm7durRs2ZLbt28D4O3tTbly5Th58iSnT59m7Nix6OnpATBkyBDS09P5/fffOX/+PLNmzcrzxkGnT5/Gy8uLbt26cf78eQIDA5k4cSKhoaFa7ebNm0e9evU4e/YsgwcP5osvviAmJibPY5eenk5qaqrWQwghhBBCLl8onistLY3vvvuOH374gZYtWwIQFhZGuXLlAEhISCAkJISEhARsbW0BCAgIYOfOnYSEhDBjxgwAHj9+zNKlS/nwww/VPpycnDhx4gQNGjQAnpSjrFq1CisrKwAOHz7MiRMnSEpKwsDAAIC5c+eyZcsWNmzYwIABA0hISGDUqFFUq1YNgCpVqqixJyQk8Omnn+Ls7AxAxYoV8xzn/PnzadmyJRMnTgTA0dGRCxcuMGfOHHx8fNR27dq1Y/DgwQCMGTOGBQsWcODAAapWrZprv8HBwQQFBRXoWAshhBDi/SEz4uK54uLiePTokZpAA5QoUUJNPM+fP09mZiaOjo5at6s/ePAgcXFx6jbFihWjfv366vNq1aphaWlJdHS0usze3l5NwuFJ2UlaWholS5bU6vvKlStq3yNGjMDX15dWrVoxc+ZMrX36+/szbdo0XF1dmTx5MufOnctznNHR0bi6umotc3V1JTY2lszMTHVZzZo11f9rNBqsra1JSkrKs99x48aRkpKiPp4uxxFCCCHE+0tmxMV/lpaWhq6uLqdPn0ZXV1drXV5lIHkxMTHJ0beNjY1WvXk2S0tL4ElteY8ePfjtt9/YsWMHkydPZt26dXTq1AlfX1/c3d357bff2L17N8HBwcybN4+hQ4cWKq6nZZe9ZNNoNGRlZeXZ3sDAQJ3NF0IIIYTIJjPi4rkqVaqEnp4ex48fV5fduXOHS5cuAVCnTh0yMzNJSkqicuXKWg9ra2t1m4yMDPUkSoCYmBiSk5NxcnLKc99169bl33//pVixYjn6LlWqlNrO0dGRL7/8kt27d9O5c2dCQkLUdXZ2dgwaNIhNmzYxcuRIVqxYkeu+nJyciIiI0FoWERGBo6Njjl8whBBCCCH+K0nExXOZmprSr18/Ro0axf79+/njjz/w8fFBR+fJy8fR0RFvb2969erFpk2buHLlCidOnCA4OJjffvtN7UdPT4+hQ4dy/PhxTp8+jY+PDw0bNlTrw3PTqlUrGjVqRMeOHdm9ezfx8fEcOXKE8ePHc+rUKR48eICfnx/h4eFcvXqViIgITp48qSb3w4cPZ9euXVy5coUzZ85w4MCBPBP/kSNHsm/fPqZOncqlS5cICwtj6dKlBAQEvMSjKYQQQgjxhJSmiAKZM2cOaWlpeHp6YmZmxsiRI0lJSVHXh4SEMG3aNEaOHMnff/9NqVKlaNiwIR06dFDbGBsbM2bMGHr06MHff/9NkyZN+O677/Ldr0ajYfv27YwfP54+ffpw48YNrK2tadq0KWXKlEFXV5dbt27Rq1cvrl+/TqlSpejcubN6cmRmZiZDhgzhf//7H+bm5nh4eLBgwYJc91W3bl1++uknJk2axNSpU7GxsWHKlClaJ2oKIYQQQrwsGkVRlKIOQrz7QkNDGT58uNxOHkhNTcXCwoKUlBTMzc2LOhwhhHgnuYxaVST7PT2nV5HsV7x6r+L7W2bEhRBCCPHOkYRYvA2kRlwIIYQQQogiIIm4eC18fHykLEUIIYQQ4ilSmiKEEEKIt1ZR1YLnRUpiRGHIjLgQQgghhBBFQBJxIYQQQgghioAk4uKVCgwMpHbt2q9lXxqNhi1btryWfWVzcHBg4cKFr3WfQgghhHg3SCIuXqmAgAD27dtX1GEIIYQQQrxx5GRN8UqZmppiampa1GEIIYQQQrxxZEZc5MvNzQ1/f39Gjx5NiRIlsLa2JjAwUF2fkJDAJ598gqmpKebm5nh5eXH9+nV1/bOlKeHh4TRo0AATExMsLS1xdXXl6tWr6vqtW7dSt25dDA0NqVixIkFBQWRkZLxQ7NeuXcPLywtLS0tKlCjBJ598Qnx8PAC7d+/G0NAwxyUVhw0bRosWLdTnhw8fpkmTJhgZGWFnZ4e/vz/37t0rVBzp6emkpqZqPYQQQgghJBEXzxUWFoaJiQnHjx9n9uzZTJkyhT179pCVlcUnn3zC7du3OXjwIHv27OGvv/7is88+y7WfjIwMOnbsSLNmzTh37hxHjx5lwIABaDQaAA4dOkSvXr0YNmwYFy5cYPny5YSGhjJ9+vRCx/z48WPc3d0xMzPj0KFDREREYGpqioeHB48ePaJly5ZYWlqyceNGdZvMzEzWr1+Pt7c3AHFxcXh4ePDpp59y7tw51q9fz+HDh/Hz8ytULMHBwVhYWKgPOzu7Qo9HCCGEEO8eKU0Rz1WzZk0mT54MQJUqVVi6dKla933+/HmuXLmiJperVq2iRo0anDx5kvr162v1k5qaSkpKCh06dKBSpUoAODk5qeuDgoIYO3YsvXv3BqBixYpMnTqV0aNHq/svqPXr15OVlcXKlSvVRD8kJARLS0vCw8Np06YN3bp1Y+3atfTr1w+Affv2kZyczKeffgo8SaC9vb0ZPny4OvbFixfTrFkzli1bhqGhYYFiGTduHCNGjNA6DpKMCyGEEEIScfFcNWvW1HpuY2NDUlIS0dHR2NnZaSWV1atXx9LSkujo6ByJeIkSJfDx8cHd3Z3WrVvTqlUrvLy8sLGxASAqKoqIiAitGfDMzEwePnzI/fv3MTY2LnDMUVFRXL58GTMzM63lDx8+JC4uDgBvb28aNmzIP//8g62tLWvWrKF9+/ZYWlqqfZw7d441a9ao2yuKQlZWFleuXNH6JSI/BgYGGBgYFDh2IYQQQrwfJBEXz6Wnp6f1XKPRkJWV9UJ9hYSE4O/vz86dO1m/fj0TJkxgz549NGzYkLS0NIKCgujcuXOO7Qo6+5wtLS0NFxcXrSQ6m5WVFQD169enUqVKrFu3ji+++ILNmzcTGhqq1cfAgQPx9/fP0Uf58uULFY8QQgghxLMkERcvzMnJiWvXrnHt2jV1VvzChQskJydTvXr1PLerU6cOderUYdy4cTRq1Ii1a9fSsGFD6tatS0xMDJUrV/7PsdWtW5f169dTunRpzM3N82zn7e3NmjVrKFeuHDo6OrRv316rjwsXLryUeIQQQgghniUna4oX1qpVK5ydnfH29ubMmTOcOHGCXr160axZM+rVq5ej/ZUrVxg3bhxHjx7l6tWr7N69m9jYWLXEY9KkSaxatYqgoCD+/PNPoqOjWbduHRMmTCh0bN7e3pQqVYpPPvmEQ4cOceXKFcLDw/H39+d///ufVrszZ84wffp0unTpolVCMmbMGI4cOYKfnx+RkZHExsaydevWQp+sKYQQQgiRG0nExQvTaDRs3bqV4sWL07RpU1q1akXFihX/v/buPa7H+3/8+ONd9O5cDpFDKVPJuYNDLDlk5bSFYdYmZ0YfZ8Y2ZEbNct5sZhRmYk4zp6HJVghRmmNSsi2aY8JK9f794df19V5FISnP++32vt12Xdfrer2f1+vd9Hy/el6vi/Xr1xfY3tDQkLNnz9KrVy/s7e0ZNmwYo0aNYvjw4QB4eXmxfft29uzZQ/PmzWnVqhULFiygTp06xY7N0NCQ3377DWtra3r27ImjoyODBw/m33//1Zohr1evHi1atODkyZPKail5mjRpwoEDBzh//jzu7u44OTkxffp0atasWex4hBBCCCH+S6XRaDSlHYQQr5L09HTMzMy4ffv2Y8tmhBBCCPHyKInf3zIjLoQQQgghRCmQRFyUCWvXrsXY2LjAV8OGDUs7PCGEEEKIYpNVU0SZ8Oabb9KyZcsCj/13eUUhhBBCiLJAEnFRJpiYmOR7OI8QQoiXg8uk1aUdwksj5ov+pR2CKEOkNEUIIYQQQohSIIm4EEIIIYQQpUAScSGEEEIIIUqBJOLimWRlZT33PjUaDdnZ2c+932fxMsYkhBBCiLJNEvFypF27dvj7++Pv74+ZmRlVq1Zl2rRp5D2zKTMzk4kTJ1KrVi2MjIxo2bIlERERWn1ERkbi7u6OgYEBVlZWjB49mrt37yrHbWxsmDVrFv3798fU1JRhw4Y9Nqbk5GRUKhVhYWG0bt0afX19GjVqxIEDB5Q2ERERqFQqdu3ahYuLC2q1msjISHJzcwkMDMTW1hYDAwOaNm3Kxo0blfNu3ryJr68vFhYWGBgYYGdnR0hICPDwC4K/vz81atRAX1+fOnXqEBgYqBVTbGys0tetW7dQqVTKeDxtTEIIIYQQRSWrppQzq1atYvDgwRw5coRjx44xbNgwrK2tGTp0KP7+/pw+fZqwsDBq1qzJli1b8Pb2Jj4+Hjs7OxITE/H29uazzz5j5cqV/PPPP0pin5fgAgQHBzN9+nRmzJhR5LgmTZrEwoULadCgAfPnz6d79+4kJSVRpUoVpc2UKVMIDg6mbt26VKpUicDAQL7//nu++eYb7Ozs+O2333jvvfewsLDAw8ODadOmcfr0aXbt2kXVqlW5cOEC9+/fB2Dx4sVs27aNDRs2YG1tzeXLl7l8+XKxx7O4MRUkMzOTzMxMZTs9Pb3YcQghhBCi/JFH3Jcj7dq1Iy0tjVOnTqFSqYCHieS2bdvYvXs3devWJSUlhZo1ayrneHp60qJFC+bMmcOQIUPQ1dVl2bJlyvHIyEg8PDy4e/cu+vr62NjY4OTkxJYtW4oUU3JyMra2tgQFBfHhhx8CkJ2dja2tLf/73/+YPHkyERERtG/fnq1bt/LWW28BD5PXypUrs2/fPtzc3JT+hgwZwr179/jhhx948803qVq1KitXrsz3vqNHj+bUqVPs27dPGYv/xnTixAmaNWsGPJwRr1SpEvv376ddu3ZPHVNBAgICmDlzZr798oh7IUR5IcsX/h9ZvrD8KolH3MuMeDnTqlUrrcTTzc2NefPmER8fT05ODvb29lrtMzMzlVnpuLg4Tp48ydq1a5XjGo2G3NxckpKScHR0BMDV1bXYcT2auFaoUAFXV1fOnDmj1ebRfi9cuMC9e/fo1KmTVpusrCycnJwA+OCDD+jVqxfHjx/njTfewMfHh9atWwMwYMAAOnXqhIODA97e3nTr1o033nij2HEXN6aCTJ06lfHjxyvb6enpWFlZFTsWIYQQQpQvkoi/IjIyMtDV1SUmJgZdXV2tY8bGxkqb4cOHM3r06HznW1tbK/9tZGRUIjE+2m9GRgYAO3bsoFatWlrt1Go1AJ07d+bSpUvs3LmTvXv30rFjR0aNGkVwcDDOzs4kJSWxa9cu9u3bR58+ffD09GTjxo3o6Dy8NeLRPwY9ePDgucRUELVa/djjQgghhHg1SSJezkRHR2ttHz58GDs7O5ycnMjJySEtLQ13d/cCz3V2dub06dPUq1fvucd1+PBh2rZtCzwsTYmJicHf37/Q9g0aNECtVpOSklJo7TWAhYUFfn5++Pn54e7uzqRJkwgODgbA1NSUvn370rdvX95++228vb25ceMGFhYWAKSmpioz2Y/euPmsMQkhhBBCFIUk4uVMSkoK48ePZ/jw4Rw/fpwlS5Ywb9487O3t8fX1pX///sybNw8nJyf++ecfwsPDadKkCV27duXDDz+kVatW+Pv7M2TIEIyMjDh9+jR79+7lyy+/fKa4vvrqK+zs7HB0dGTBggXcvHmTQYMGFdrexMSEiRMnMm7cOHJzc3n99de5ffs2UVFRmJqa4ufnx/Tp03FxcaFhw4ZkZmayfft2pXxm/vz51KhRAycnJ3R0dPjxxx+xtLTE3NwcHR0dWrVqRVBQELa2tqSlpfHJJ5888RqKEpMQQgghRFFJIl7O9O/fn/v379OiRQt0dXUZM2aMssRgSEgIn332GRMmTOCvv/6iatWqtGrVim7dugHQpEkTDhw4wMcff4y7uzsajYbXXnuNvn37PnNcQUFBBAUFERsbS7169di2bRtVq1Z97DmzZs3CwsKCwMBALl68iLm5Oc7Oznz00UcA6OnpMXXqVJKTkzEwMMDd3Z2wsDDgYdI8d+5cEhIS0NXVpXnz5uzcuVMpS1m5ciWDBw/GxcUFBwcH5s6dW6Qa8ifFJIQQQghRVLJqSjnSrl07mjVrxsKFC0s7FEVBK5S86krirmshhChNsmrK/5FVU8ovWTVFCCGEEC8dST6FeDryZE3xTObMmYOxsXGBr86dO5d2eEIIIYQQLy0pTRHP5MaNG9y4caPAYwYGBvmW+RNSmiKEEEKURVKaIl46lStXpnLlyqUdhhBCiFIi9eHapExHFIeUpgghhBBCCFEKJBEXQgghhBCiFEgi/oxsbGxeyHKBKpWKrVu3lvj7PKutW7dSr149dHV1GTt2bGmHI4QQQgjx0pIa8TIiNTWVSpUqlXYYTzR8+HAGDhzI6NGjMTExKe1whBBCCCFeWpKIlxGWlpalHcJjPXjwgMzMTNLS0vDy8qJmzZpP3VdWVhZ6enrPMTohhBBCiJdPuSpN2b17N6+//jrm5uZUqVKFbt26kZiYqBz/888/6devH5UrV8bIyAhXV1eio6MBSExM5K233qJ69eoYGxvTvHlz9u3bp9V/Wloa3bt3x8DAAFtbW9auXZsvhlu3bjFkyBAsLCwwNTWlQ4cOxMXFKccDAgJo1qwZK1euxNraGmNjY0aOHElOTg5z587F0tKSatWqMXv2bK1+/1ua8rhreZy891+2bBlWVlYYGhrSp08fbt++rdXuu+++w9HREX19ferXr8/SpUuVY8nJyahUKtavX4+Hhwf6+vqsXbtWmQHv0KEDKpWKiIgIADZt2kTDhg1Rq9XY2Ngwb948rfeysbFh1qxZ9O/fH1NTU4YNG0ZoaCjm5uZs374dBwcHDA0Nefvtt7l37x6rVq3CxsaGSpUqMXr0aHJycpS+1qxZg6urKyYmJlhaWvLuu++SlpamHI+IiEClUhEeHo6rqyuGhoa0bt2ac+fOacX0888/07x5c/T19alatSo9evRQjmVmZjJx4kRq1aqFkZERLVu2VK61IJmZmaSnp2u9hBBCCCHKVSJ+9+5dxo8fz7FjxwgPD0dHR4cePXqQm5tLRkYGHh4e/PXXX2zbto24uDgmT55Mbm4uABkZGXTp0oXw8HBOnDiBt7c33bt3JyUlRel/wIABXL58mf3797Nx40aWLl2qleQB9O7dm7S0NHbt2kVMTAzOzs507NhRa63txMREdu3axe7du1m3bh0rVqyga9eu/Pnnnxw4cIDPP/+cTz75pNDE+knX8iQXLlxgw4YN/Pzzz+zevZsTJ04wcuRI5fjatWuZPn06s2fP5syZM8yZM4dp06axatUqrX6mTJnCmDFjOHPmDO3bt1eS2U2bNpGamkrr1q2JiYmhT58+vPPOO8THxxMQEMC0adMIDQ3V6is4OJimTZty4sQJpk2bBsC9e/dYvHgxYWFh7N69m4iICHr06MHOnTvZuXMna9asYdmyZWzcuFHp58GDB8yaNYu4uDi2bt1KcnIyAwYMyDcGH3/8MfPmzePYsWNUqFCBQYMGKcd27NhBjx496NKlCydOnCA8PJwWLVoox/39/Tl06BBhYWGcPHmS3r174+3tTUJCQoHjHRgYiJmZmfKysrIq0uckhBBCiPKtXD/Q59q1a1hYWBAfH8/BgweZOHEiycnJRV73ulGjRowYMQJ/f3/Onz+Pg4MDR44coXnz5gCcPXsWR0dHFixYwNixY4mMjKRr166kpaWhVquVfurVq8fkyZMZNmwYAQEBfPHFF1y5ckWZQfb29ubcuXMkJiaio/Pwu1H9+vUZMGAAU6ZMAR7OiG/ZsgUfHx++/fbbYl9LnoCAAD777DMuXbqkPGxn9+7ddO3alb/++gtLS0vq1avHrFmz6Nevn3LeZ599xs6dOzl48CDJycnY2tqycOFCxowZo7S5desWlSpVYv/+/bRr1w4AX19f/vnnH/bs2aO0mzx5Mjt27ODUqVPAwxlxJycntmzZorQJDQ1l4MCBXLhwgddeew2AESNGsGbNGq5evYqxsbEydjY2NnzzzTcFXu+xY8do3rw5d+7cwdjYmIiICNq3b8++ffvo2LEjADt37qRr167cv38ffX19WrduTd26dfn+++/z9ZeSkkLdunVJSUnRKr/x9PSkRYsWzJkzJ985mZmZZGZmKtvp6elYWVnJA32EEOWCrCOuTdYRL7/kgT5PkJCQwPTp04mOjubatWvKDHFKSgqxsbE4OTkVmrhmZGQQEBDAjh07SE1NJTs7m/v37ysz4mfOnKFChQq4uLgo59SvXx9zc3NlOy4ujoyMDKpUqaLV9/3797VKZGxsbLRuZKxevTq6urpKEp6377+z7XmedC1PYm1trfXESzc3N3Jzczl37hwmJiYkJiYyePBghg4dqrTJzs7GzMxMqx9XV9cnvteZM2d46623tPa1adOGhQsXkpOTg66ubqF9GRoaKkk4PBwTGxsbJQnP2/foOMXExBAQEEBcXBw3b97U+hlo0KCB0q5JkybKf9eoUQN4WHpkbW1NbGys1rU/Kj4+npycHOzt7bX2Z2Zm5vvc86jVaq0vZkIIIYQQUM4S8e7du1OnTh2WL19OzZo1yc3NpVGjRmRlZWFgYPDYcydOnMjevXsJDg6mXr16GBgY8Pbbb5OVlVXk98/IyKBGjRoF1gs/mrBXrFhR65hKpSpwX2GlJk+6lmeRkZEBwPLly2nZsqXWsbykOY+RkdFze9+C+iruON29excvLy+8vLxYu3YtFhYWpKSk4OXlle9zfLQflUoFoPTzuPHNyMhAV1eXmJiYfOPx6BcEIYQQQognKTeJ+PXr1zl37hzLly/H3d0dgMjISOV4kyZN+O6777hx40aBM8lRUVEMGDBAuSkvIyOD5ORk5Xj9+vXJzs4mJiZGKU05d+4ct27dUto4Oztz5coVKlSogI2NzfO/yCJey5OkpKTw999/K6UVhw8fRkdHBwcHB6pXr07NmjW5ePEivr6+zxyro6MjUVFRWvuioqKwt7fPl8g+q7Nnz3L9+nWCgoKUOuxjx44Vu58mTZoQHh7OwIED8x1zcnIiJyeHtLQ05edMCCGEEOJplJubNStVqkSVKlX49ttvuXDhAr/++ivjx49Xjvfr1w9LS0t8fHyIiori4sWLbNq0iUOHDgFgZ2fH5s2biY2NJS4ujnfffVdrRtrBwQFvb2+GDx9OdHQ0MTExDBkyRGv21NPTEzc3N3x8fNizZw/JyckcPHiQjz/++KkSwsI86VqeRF9fHz8/P+Li4vj9998ZPXo0ffr0UZZInDlzJoGBgSxevJjz588THx9PSEgI8+fPL3asEyZMIDw8nFmzZnH+/HlWrVrFl19+ycSJE4vd15NYW1ujp6fHkiVLuHjxItu2bWPWrFnF7mfGjBmsW7eOGTNmcObMGeLj4/n8888BsLe3x9fXl/79+7N582aSkpI4cuQIgYGB7Nix43lfkhBCCCHKsXKTiOvo6BAWFkZMTAyNGjVi3LhxfPHFF8pxPT099uzZQ7Vq1ejSpQuNGzcmKChImZWdP38+lSpVonXr1nTv3h0vLy+cnZ213iMkJISaNWvi4eFBz549GTZsGNWqVVOOq1Qqdu7cSdu2bRk4cCD29va88847XLp0ierVqz+3a33StTxJvXr16NmzJ126dOGNN96gSZMmWssTDhkyhO+++46QkBAaN26Mh4cHoaGh2NraFjtWZ2dnNmzYQFhYGI0aNWL69Ol8+umnBa5k8qwsLCwIDQ3lxx9/pEGDBgQFBREcHFzsftq1a8ePP/7Itm3baNasGR06dODIkSPK8ZCQEPr378+ECRNwcHDAx8eHo0ePYm1t/TwvRwghhBDlXLleNUXkFxAQwNatW4mNjS3tUF5ZJXHXtRBClBZZNUWbrJpSfsmqKUIIIYR4qUjiKcTTk0S8nGnYsCGXLl0q8NiyZctecDRCCCGEEKIwUppSzly6dIkHDx4UeKx69epa65eL0iGlKUIIIUTZI6Up4onq1KlT2iEIIYR4BUhteMGkVEcUR7lZNUUIIYQQQoiyRBLxl1y7du0YO3bsc+svICCAZs2aPbf+XqTixh4aGqr1RNPCqFQqtm7d+tRxCSGEEEI8jXKfiEdERKBSqbSegFmWbN68+akeSlPWFZQcT5w4kfDw8CL30bdvX86fP69sF5bIp6am0rlz56cNVQghhBDiqUiN+P+XlZWFnp5eqbz3gwcPqFixYoHxPM0j7EtaQfG+CMbGxhgbGxe5vYGBgdaTTwuT90RRIYQQQogXqUzMiOfm5hIYGIitrS0GBgY0bdqUjRs3otFo8PT0xMvLi7zFX27cuEHt2rWZPn06ycnJtG/fHoBKlSqhUqmUJzq2a9cOf39/xo4dS9WqVfHy8gIePmGzcePGGBkZYWVlxciRI8nIyNCKJyoqinbt2mFoaEilSpXw8vLi5s2bANjY2LBw4UKt9s2aNSMgIEDZVqlUfP3117z55psYGRkxe/ZsZbb2u+++w9bWFn19fSXOR0tTMjMz+fDDD7GyskKtVlOvXj1WrFgBFFyKsXXrVlQqVaFje/ToUTp16kTVqlUxMzPDw8OD48ePa7UpKN7HycnJYfDgwcrn5eDgwKJFi/K1W7lyJQ0bNkStVlOjRg38/f2VMQTo0aMHKpVK2X50RnvPnj3o6+vn+0vHmDFj6NChQ77xCA0NZebMmcTFxaFSqVCpVISGhirX9+js++XLl+nTpw/m5uZUrlyZt956i+TkZOV4REQELVq0wMjICHNzc9q0aVPokpFCCCGEEIUpE4l4YGAgq1ev5ptvvuHUqVOMGzeO9957j99++41Vq1Zx9OhRFi9eDMCIESOoVasW06dPx8rKik2bNgFw7tw5UlNTtRLCVatWoaenR1RUFN988w0AOjo6LF68mFOnTrFq1Sp+/fVXJk+erJwTGxtLx44dadCgAYcOHSIyMpLu3buTk5NTrGsKCAigR48exMfHM2jQIAAuXLjApk2b2Lx5c6FPvuzfvz/r1q1j8eLFnDlzhmXLlhVrlvi/7ty5g5+fH5GRkRw+fBg7Ozu6dOnCnTt3nhhvYXJzc6lduzY//vgjp0+fZvr06Xz00Uds2LBBafP1118zatQohg0bRnx8PNu2baNevXrAwy8H8PBR8qmpqcr2ozp27Ii5ubny+cLDLwDr16/H19c3X/u+ffsyYcIEGjZsSGpqKqmpqfTt2zdfuwcPHuDl5YWJiQm///47UVFRGBsb4+3tTVZWFtnZ2fj4+ODh4cHJkyc5dOgQw4YNe+yXnczMTNLT07VeQgghhBAvfWlKZmYmc+bMYd++fbi5uQFQt25dIiMjWbZsGT/88APLli2jf//+XLlyhZ07d3LixAkqVHh4aXmlHdWqVcs3W2xnZ8fcuXO19j06+2xjY8Nnn33GiBEjWLp0KQBz587F1dVV2YaHD9EprnfffZeBAwdq7cvKymL16tVYWFgUeM758+fZsGEDe/fuxdPTUxmLZ5E3e5zn22+/xdzcnAMHDtCtW7fHxluYihUrMnPmTGXb1taWQ4cOsWHDBvr06QPAZ599xoQJExgzZozSrnnz5gDK9ZubmxdaNqKrq8s777zDDz/8wODBgwEIDw/n1q1b9OrVK197AwMDjI2NqVChwmNLUdavX09ubi7fffedklyHhIRgbm5OREQErq6u3L59m27duvHaa68B4Ojo+NjxCAwM1BoPIYQQQggoAzPiFy5c4N69e3Tq1EmpETY2Nmb16tUkJiYC0Lt3b3r06EFQUBDBwcHY2dkVqW8XF5d8+/bt20fHjh2pVasWJiYmvP/++1y/fp179+4B/zcj/qxcXV3z7atTp06hSXjee+vq6uLh4fHM75/n6tWrDB06FDs7O8zMzDA1NSUjI4OUlJQnxvs4X331FS4uLlhYWGBsbMy3336r9JmWlsbff//9zOPo6+tLREQEf//9NwBr166la9euRVoppTBxcXFcuHABExMT5WetcuXK/PvvvyQmJlK5cmUGDBiAl5cX3bt3Z9GiRaSmpj62z6lTp3L79m3ldfny5aeOTwghhBDlx0s/I55Xn71jxw5q1aqldUytVgNw7949YmJi0NXVJSEhoch9GxkZaW0nJyfTrVs3PvjgA2bPnk3lypWJjIxk8ODBZGVlYWho+MSb/3R0dPjvw0oLetLlf9+7sH2Pel7v/Sg/Pz+uX7/OokWLqFOnDmq1Gjc3N7KysooV26PCwsKYOHEi8+bNw83NDRMTE7744guio6OLdB1F1bx5c1577TXCwsL44IMP2LJli1L3/bQyMjJwcXFh7dq1+Y7lfUkKCQlh9OjR7N69m/Xr1/PJJ5+wd+9eWrVqVWCfarVa+VkVQgghhMjz0ifiDRo0QK1Wk5KSUuhM8IQJE9DR0WHXrl106dKFrl27KiUXeSuhFKWGOyYmhtzcXObNm4eOzsM/Fjxa1wzQpEkTwsPDCy01sLCw0JohTU9PJykp6ckXWgSNGzcmNzeXAwcOKKUp/33vO3fucPfuXSVxLqzWPE9UVBRLly6lS5cuwMMbFa9du/ZMcUZFRdG6dWtGjhyp7Mv76wWAiYkJNjY2hIeHKzfT/lfFihWL9Jn5+vqydu1aateujY6ODl27di20rZ6e3hP7dHZ2Zv369VSrVu2xj691cnLCycmJqVOn4ubmxg8//FBoIi6EEEIIUZCXvjTFxMSEiRMnMm7cOFatWkViYiLHjx9nyZIlrFq1ih07drBy5UrWrl1Lp06dmDRpEn5+fsoqJnXq1EGlUrF9+3b++eeffCugPKpevXo8ePCAJUuWcPHiRdasWaPcxJln6tSpHD16lJEjR3Ly5EnOnj3L119/rSSvHTp0YM2aNfz+++/Ex8fj5+eHrq7ucxkLGxsb/Pz8GDRoEFu3biUpKYmIiAjly0LLli0xNDTko48+IjExkR9++OGJM8R2dnasWbOGM2fOEB0dja+v7zPPWNvZ2XHs2DF++eUXzp8/z7Rp0/LdcBkQEMC8efNYvHgxCQkJymf66LWGh4dz5coV5bMsiK+vL8ePH2f27Nm8/fbbj515trGxISkpidjYWK5du0ZmZmaB/VWtWpW33nqL33//XRnj0aNH8+eff5KUlMTUqVM5dOgQly5dYs+ePSQkJDyxTlwIIYQQ4r9e+kQcYNasWUybNo3AwEAcHR3x9vZmx44d2NjYMHjwYAICAnB2dgZg5syZVK9enREjRgBQq1YtZs6cyZQpU6hevbqyRF5BmjZtyvz58/n8889p1KgRa9euJTAwUKuNvb09e/bsIS4ujhYtWuDm5sZPP/2k3Bw6depUPDw86NatG127dsXHx0e5qe95+Prrr3n77bcZOXIk9evXZ+jQody9exd4eGPq999/z86dO2ncuDHr1q3TWjaxICtWrODmzZs4Ozvz/vvvM3r0aKpVq/ZMMQ4fPpyePXvSt29fWrZsyfXr17Vmx+FhSczChQtZunQpDRs2pFu3blplRfPmzWPv3r1YWVnh5ORU6HvVq1ePFi1acPLkyQJXS3lUr1698Pb2pn379lhYWLBu3bp8bQwNDfntt9+wtramZ8+eODo6MnjwYP79919MTU0xNDTk7Nmz9OrVC3t7e4YNG8aoUaMYPnx4MUdJCCGEEK86lea/RcVCiBKVnp6OmZkZt2/ffmz5ixBCvMxcJq0u7RBeSjFf9C/tEEQJKYnf3y99jbgQQgghXj6ScArx7MpEaYp4uYwYMUJrKclHX3klQUIIIYQQ4vGkNEUUW1paWqFPhzQ1NX3mGvPyTkpThBBCiLJHSlPES6FatWqSbAshhBBCPCNJxIUQQghRLHKjZuGkdl4Uh9SICyGEEEIIUQokEX/FtWvXjrFjx5ZI38nJyahUqic+3fNlZ2Njw8KFC0s7DCGEEEKUM1KaIkqMlZUVqampVK1atbRDEUIIIYR46UgiLkqMrq4ulpaWpR2GEEIIIcRLSUpTBNnZ2fj7+2NmZkbVqlWZNm0aeatarlmzBldXV0xMTLC0tOTdd98lLS1NOffmzZv4+vpiYWGBgYEBdnZ2hISEAAWXppw6dYpu3bphamqKiYkJ7u7uJCYmPjHGAQMG4OPjQ3BwMDVq1KBKlSqMGjWKBw8eKG0yMzOZOHEitWrVwsjIiJYtWxIREaHVT2RkJO7u7hgYGGBlZcXo0aO5e/eucjwtLY3u3btjYGCAra0ta9eu1Tpfo9EQEBCAtbU1arWamjVrMnr06CKPtRBCCCFEHknEBatWraJChQocOXKERYsWMX/+fL777jsAHjx4wKxZs4iLi2Pr1q0kJyczYMAA5dxp06Zx+vRpdu3axZkzZ/j6668LLUX566+/aNu2LWq1ml9//ZWYmBgGDRpEdnZ2keLcv38/iYmJ7N+/n1WrVhEaGkpoaKhy3N/fn0OHDhEWFsbJkyfp3bs33t7eJCQkAJCYmIi3tze9evXi5MmTrF+/nsjISPz9/ZU+BgwYwOXLl9m/fz8bN25k6dKlWl88Nm3axIIFC1i2bBkJCQls3bqVxo0bPzbuzMxM0tPTtV5CCCGEEPJAn1dcu3btSEtL49SpU6hUKgCmTJnCtm3bOH36dL72x44do3nz5ty5cwdjY2PefPNNqlatysqVK/O1TU5OxtbWlhMnTtCsWTM++ugjwsLCOHfuHBUrVixWnAMGDCAiIoLExER0dXUB6NOnDzo6OoSFhZGSkkLdunVJSUmhZs2aynmenp60aNGCOXPmMGTIEHR1dVm2bJlyPDIyEg8PD+7evUtKSgoODg4cOXKE5s2bA3D27FkcHR1ZsGABY8eOZf78+Sxbtow//vijyNcQEBDAzJkz8+2XB/oIIcoqWb6wcLJ8YflVEg/0kRlxQatWrZQkHMDNzY2EhARycnKIiYmhe/fuWFtbY2JigoeHBwApKSkAfPDBB4SFhdGsWTMmT57MwYMHC32f2NhY3N3di52E52nYsKGShAPUqFFDma2Oj48nJycHe3t7jI2NldeBAweU0pe4uDhCQ0O1jnt5eZGbm0tSUhJnzpyhQoUKuLi4KO9Rv359zM3Nle3evXtz//596taty9ChQ9myZcsTZ/SnTp3K7du3ldfly5ef6vqFEEIIUb7IzZqiUP/++y9eXl54eXmxdu1aLCwsSElJwcvLi6ysLAA6d+7MpUuX2LlzJ3v37qVjx46MGjWK4ODgfP0ZGBg8Uzz/TeBVKhW5ubkAZGRkoKurS0xMjFayDmBsbKy0GT58eIE13dbW1pw/f/6JMVhZWXHu3Dn27dvH3r17GTlyJF988QUHDhwo9AuGWq1GrVYX6RqFEEII8eqQRFwQHR2ttX348GHs7Ow4e/Ys169fJygoCCsrK+Bhacp/WVhY4Ofnh5+fH+7u7kyaNKnARLxJkyasWrWKBw8ePPWseGGcnJzIyckhLS0Nd3f3Ats4Oztz+vRp6tWrV+Dx+vXrk52dTUxMjFKacu7cOW7duqXVzsDAgO7du9O9e3dGjRpF/fr1iY+Px9nZ+blekxBCCCHKNylNEaSkpDB+/HjOnTvHunXrWLJkCWPGjMHa2ho9PT2WLFnCxYsX2bZtG7NmzdI6d/r06fz0009cuHCBU6dOsX37dhwdHQt8H39/f9LT03nnnXc4duwYCQkJrFmzhnPnzj3zNdjb2+Pr60v//v3ZvHkzSUlJHDlyhMDAQHbs2AHAhx9+yMGDB/H39yc2NpaEhAR++ukn5WZNBwcHvL29GT58ONHR0cTExDBkyBCtmfzQ0FBWrFjBH3/8wcWLF/n+++8xMDCgTp06z3wNQgghhHi1SCIu6N+/P/fv36dFixaMGjWKMWPGMGzYMCwsLAgNDeXHH3+kQYMGBAUF5Zvp1tPTY+rUqTRp0oS2bduiq6tLWFhYge9TpUoVfv31VzIyMvDw8MDFxYXly5c/t9nxkJAQ+vfvz4QJE3BwcMDHx4ejR49ibW0NPJyRP3DgAOfPn8fd3R0nJyemT5+udXNnSEgINWvWxMPDg549ezJs2DCqVaumHDc3N2f58uW0adOGJk2asG/fPn7++WeqVKnyXK5BCCGEEK8OWTVFiBesJO66FkKIF0lWTSmcrJpSfpXE72+pERdCCCFEsUiyKcTzIaUp4qXw6JKC/339/vvvpR2eEEIIIcRzJzPi4qUQGxtb6LFatWq9uECEEEIIIV4QScTFS6GwJQWFEEK8XKQ+/PGkbEcUh5SmCCGEEEIIUQokERdCCCGEEKIUvPSJeEBAAM2aNSvtMEpMcnIyKpXqsTXSL7Pn9fm86M85IiIClUqV76mZpRmTEEIIIV4txUrE27Vrx9ixY0solLIjNDQUc3Pz0g7jsVQqFVu3bi3tMApUUGwTJ04kPDy8dAIqxMsYkxBCCCHKj1fyZk2NRkNOTg4VKrySl18kWVlZ6OnpvbD3y1uq8GXyMsYkhBBCiPKjyDPiAwYM4MCBAyxatAiVSoVKpSI5OZk//viDzp07Y2xsTPXq1Xn//fe5du2act7u3bt5/fXXMTc3p0qVKnTr1o3ExEStvv/880/69etH5cqVMTIywtXVlejoaK02a9aswcbGBjMzM9555x3u3LmjHMvNzSUwMBBbW1sMDAxo2rQpGzduVI7nlSHs2rULFxcX1Go1kZGRj73euLg42rdvj4mJCaampri4uHDs2DEiIiIYOHAgt2/fVsYhICAAKHim19zcnNDQUGX7yJEjODk5oa+vj6urKydOnMj33k8a03bt2jF69GgmT55M5cqVsbS0VGIAsLGxAaBHjx6oVCpl+3HyyjC+++47bG1t0dfXB+DWrVsMGTIECwsLTE1N6dChA3FxcYX2c/ToUTp16kTVqlUxMzPDw8OD48ePPzG2/5aB5Obm8umnn1K7dm3UajXNmjVj9+7dyvG8kp7NmzfTvn17DA0Nadq0KYcOHVLaXLp0ie7du1OpUiWMjIxo2LAhO3fu1Io3JiYGV1dXDA0Nad26NefOncs3JnkGDBiAj48PM2fOVMZjxIgRZGVlPXZsMzMzSU9P13oJIYQQQhQ5EV+0aBFubm4MHTqU1NRUUlNTMTExoUOHDjg5OXHs2DF2797N1atX6dOnj3Le3bt3GT9+PMeOHSM8PBwdHR169OhBbm4uABkZGXh4ePDXX3+xbds24uLimDx5snIcIDExka1bt7J9+3a2b9/OgQMHCAoKUo4HBgayevVqvvnmG06dOsW4ceN47733OHDggNY1TJkyhaCgIM6cOUOTJk0ee72+vr7Url2bo0ePEhMTw5QpU6hYsSKtW7dm4cKFmJqaKuMwceLEIo1hRkYG3bp1o0GDBsTExBAQEJDv3Fu3bj1xTAFWrVqFkZER0dHRzJ07l08//ZS9e/cCD5NhgJCQEFJTU5XtJ7lw4QKbNm1i8+bNSs167969SUtLY9euXcTExODs7EzHjh25ceNGgX3cuXMHPz8/IiMjOXz4MHZ2dnTp0kX54lTU2BYtWsS8efMIDg7m5MmTeHl58eabb5KQkKDV7uOPP2bixInExsZib29Pv379yM7OBmDUqFFkZmby22+/ER8fz+eff55vhvvjjz9m3rx5HDt2jAoVKjBo0KDHjlF4eDhnzpwhIiKCdevWsXnzZmbOnPnYcwIDAzEzM1NeVlZWj20vhBBCiFdDkWszzMzM0NPTw9DQEEtLSwA+++wznJycmDNnjtJu5cqVWFlZcf78eezt7enVq5dWPytXrsTCwoLTp0/TqFEjfvjhB/755x+OHj1K5cqVgfxrSufm5hIaGoqJiQkA77//PuHh4cyePZvMzEzmzJnDvn37cHNzA6Bu3bpERkaybNkyPDw8lH4+/fRTOnXqVKTrTUlJYdKkSdSvXx8AOzs7rbFQqVTKOBTVDz/8QG5uLitWrEBfX5+GDRvy559/8sEHHyhtvvzyyyeOKUCTJk2YMWOGEtuXX35JeHg4nTp1wsLCAng4G1+cGLOysli9erVyfmRkJEeOHCEtLQ21Wg1AcHAwW7duZePGjQwbNixfHx06dNDa/vbbbzE3N+fAgQN069atyLEFBwfz4Ycf8s477wDw+eefs3//fhYuXMhXX32ltJs4cSJdu3YFYObMmTRs2JALFy5Qv359UlJS6NWrF40bNwYe/lz81+zZs5WfkSlTptC1a1f+/fdf5S8C/6Wnp8fKlSsxNDSkYcOGfPrpp0yaNIlZs2aho1Pw99qpU6cyfvx4ZTs9PV2ScSGEEEI826opcXFx7N+/X+tx5HmJa175SUJCAv369aNu3bqYmpoqpQgpKSnAwycqOjk5KUl4QWxsbJQkHKBGjRqkpaUBD2dx7927R6dOnbTiWL16db4SGFdX1yJf2/jx4xkyZAienp4EBQXl6+tp5M3EP5rk5X15yFOUMQXyzeg/OiZPq06dOkqinBdLRkYGVapU0YonKSmp0PG4evUqQ4cOxc7ODjMzM0xNTcnIyFA+76JIT0/n77//pk2bNlr727Rpw5kzZ7T2PToONWrUAFDGYfTo0Xz22We0adOGGTNmcPLkyXzv9bjzC9K0aVMMDQ2VbTc3NzIyMrh8+XKh56jVakxNTbVeQgghhBDPdLdiRkYG3bt35/PPP893LC+p6d69O3Xq1GH58uXUrFmT3NxcGjVqpNTVGhgYPPF9KlasqLWtUqm0SlsAduzYke9R6HmzuHmMjIyKeGUP64PfffddduzYwa5du5gxYwZhYWH06NGj0HNUKhUajUZr34MHD4r8nlC0MYXHj8nT+u/4ZGRkUKNGDSIiIvK1LWzVGD8/P65fv86iRYuoU6cOarUaNze3J9ZRP61Hx0GlUgEo4zBkyBC8vLzYsWMHe/bsITAwkHnz5vG///2vSOcLIYQQQpSkYiXienp65OTkKNvOzs5s2rQJGxubAlcguX79OufOnWP58uW4u7sD5LtJskmTJnz33XfcuHHjsbPihWnQoAFqtZqUlBStMpTnwd7eHnt7e8aNG0e/fv0ICQmhR48e+cYhj4WFBampqcp2QkIC9+7dU7YdHR1Zs2aNVunD4cOHtfp40pgWVcWKFQuMsTicnZ25cuUKFSpUKNINnwBRUVEsXbqULl26AHD58mWtG02LEpupqSk1a9YkKipK6zONioqiRYsWxboGKysrRowYwYgRI5g6dSrLly/XSsSLKy4ujvv37ytfIA8fPoyxsbGUmgghhBCi2IpVmmJjY0N0dDTJyclcu3aNUaNGcePGDfr168fRo0dJTEzkl19+YeDAgeTk5FCpUiWqVKnCt99+y4ULF/j111+1amUB+vXrh6WlJT4+PkRFRXHx4kU2bdqktfrF45iYmDBx4kTGjRvHqlWrSExM5Pjx4yxZsoRVq1YV5/IU9+/fx9/fn4iICC5dukRUVBRHjx7F0dFRGYeMjAzCw8O5du2akmx36NCBL7/8khMnTnDs2DFGjBihNeP67rvvolKpGDp0KKdPn2bnzp0EBwdrvfeTxrSobGxsCA8P58qVK9y8efOpxsHT0xM3Nzd8fHzYs2cPycnJHDx4kI8//phjx44VeI6dnR1r1qzhzJkzREdH4+vrm++vHkWJbdKkSXz++eesX7+ec+fOMWXKFGJjYxkzZkyR4x87diy//PILSUlJHD9+nP379yuf4dPKyspi8ODByuc3Y8YM/P39C60PF0IIIYQoTLGyh4kTJ6Krq0uDBg2wsLAgKyuLqKgocnJyeOONN2jcuDFjx47F3NwcHR0ddHR0CAsLIyYmhkaNGjFu3Di++OILrT719PTYs2cP1apVo0uXLjRu3JigoCB0dXWLHNesWbOYNm0agYGBODo64u3tzY4dO7C1tS3O5Sl0dXW5fv06/fv3x97enj59+tC5c2dldYzWrVszYsQI+vbti4WFBXPnzgVg3rx5WFlZ4e7uzrvvvsvEiRO16omNjY35+eefiY+Px8nJiY8//jhfCUreTHBhY1pU8+bNY+/evVhZWeHk5PRU46BSqdi5cydt27Zl4MCB2Nvb884773Dp0iWqV69e4DkrVqzg5s2bODs78/777zN69GiqVatW7NhGjx7N+PHjmTBhAo0bN2b37t1s27ZN66bZJ8nJyWHUqFHKz4S9vT1Lly4t+gAUoGPHjtjZ2dG2bVv69u3Lm2++qbV0pBBCCCFEUak0/y1qFkIUaMCAAdy6deuZn1ianp6OmZkZt2/flhs3hRBCiDKiJH5/y9/ThRBCCCGEKAWvbCLesGFDrSX5Hn2tXbu2tMN77l616xVCCCGEeNm9sqUply5dKnRpwerVq2utW14evGrX+zKT0hQhhBCi7CmJ39/PtI54WVanTp3SDuGFetWuVwghxNNzmbS6tEMos2K+6F/aIYgy5JUtTRFCCCGEEKI0SSIuXglXrlyhU6dOGBkZFfpUUCGEEEKIF0kScfFKWLBgAampqcTGxnL+/PkinRMQEECzZs1KNjAhhBBCvLJe2Rpx8WpJTEzExcWlWA8EEkIIIYQoSTIjLsqMjRs30rhxYwwMDKhSpQqenp7cvXuXo0eP0qlTJ6pWrYqZmRkeHh4cP35cOc/GxoZNmzaxevVqVCoVAwYMAODWrVsMGTIECwsLTE1N6dChA3FxcQCEhoYyc+ZM4uLiUKlUqFQqQkNDGTRoEN26ddOK68GDB1SrVo0VK1a8sLEQQgghRNknM+KiTEhNTaVfv37MnTuXHj16cOfOHX7//Xc0Gg137tzBz8+PJUuWoNFomDdvHl26dCEhIQETExOOHj1K//79MTU1ZdGiRRgYGADQu3dvDAwM2LVrF2ZmZixbtoyOHTty/vx5+vbtyx9//MHu3bvZt28fAGZmZtjb29O2bVtSU1OpUaMGANu3b+fevXv07du3wNgzMzPJzMxUttPT00t4tIQQQghRFkgiLsqE1NRUsrOz6dmzp7IUY+PGjQHo0KGDVttvv/0Wc3NzDhw4QLdu3bCwsECtVmNgYIClpSUAkZGRHDlyhLS0NNRqNQDBwcFs3bqVjRs3MmzYMIyNjalQoYJyDkDr1q1xcHBgzZo1TJ48GYCQkBB69+6NsbFxgbEHBgYyc+bM5zsgQgghhCjzpDRFlAlNmzalY8eONG7cmN69e7N8+XJu3rwJwNWrVxk6dCh2dnaYmZlhampKRkYGKSkphfYXFxdHRkYGVapU0XrKaFJSEomJiY+NZciQIYSEhCjvvWvXLgYNGlRo+6lTp3L79m3ldfny5acYASGEEEKUNzIjLsoEXV1d9u7dy8GDB9mzZw9Llizh448/Jjo6mg8++IDr16+zaNEi6tSpg1qtxs3NjaysrEL7y8jIoEaNGkREROQ79qTlDfv378+UKVM4dOgQBw8exNbWFnd390Lbq9VqZdZdCCGEECKPJOKizFCpVLRp04Y2bdowffp06tSpw5YtW4iKimLp0qV06dIFgMuXL3Pt2rXH9uXs7MyVK1eoUKECNjY2BbbR09MjJycn3/4qVarg4+NDSEgIhw4dYuDAgc98bUIIIYR49UgiLsqE6OhowsPDeeONN6hWrRrR0dH8888/ODo6Ymdnx5o1a3B1dSU9PZ1JkyYpN2QWxtPTEzc3N3x8fJg7dy729vb8/fff7Nixgx49euDq6oqNjQ1JSUnExsZSu3ZtTExMlJntIUOG0K1bN3JycvDz83sRQyCEEEKIckZqxEWZYGpqym+//UaXLl2wt7fnk08+Yd68eXTu3JkVK1Zw8+ZNnJ2def/99xk9ejTVqlV7bH8qlYqdO3fStm1bBg4ciL29Pe+88w6XLl2ievXqAPTq1Qtvb2/at2+PhYUF69atU8739PSkRo0aeHl5UbNmzRK9diGEEEKUTyqNRqMp7SCEKGsyMjKoVasWISEh9OzZs1jnpqenY2Zmxu3btzE1NS2hCIUQ4um5TFpd2iGUWTFf9C/tEEQJKYnf31KaIkQx5Obmcu3aNebNm4e5uTlvvvlmaYckhBDPnSSTQrwYkogLUQwpKSnY2tpSu3ZtQkNDqVBB/hcSQgghxNORLEKIYrCxsUGquYQQQgjxPEgiLkQ5InWdQghRuqSsRxSHrJoihBBCCCFEKZBEXAghhBBCiFIgiXgZ065dO8aOHVvocRsbGxYuXFjicahUKrZu3Vri7yOEEEIIUV5JIi6EEEIIIUQpkERcvHQ0Gg3Z2dmlHYaWlzEmIYQQQpRtkoiXQdnZ2fj7+2NmZkbVqlWZNm1aoUvqpaSk8NZbb2FsbIypqSl9+vTh6tWrWm2+/vprXnvtNfT09HBwcGDNmjVaxxMSEmjbti36+vo0aNCAvXv3FjnW5ORkVCoVYWFhtG7dGn19fRo1asSBAweUNhEREahUKnbt2oWLiwtqtZrIyEhyc3MJDAzE1tYWAwMDmjZtysaNG5Xzbt68ia+vLxYWFhgYGGBnZ0dISAgAWVlZ+Pv7U6NGDfT19alTpw6BgYFaMcXGxip93bp1C5VKRURExDPFVJDMzEzS09O1XkIIIYQQsnxhGbRq1SoGDx7MkSNHOHbsGMOGDcPa2pqhQ4dqtcvNzVWS8AMHDpCdnc2oUaPo27evknBu2bKFMWPGsHDhQjw9Pdm+fTsDBw6kdu3atG/fntzcXHr27En16tWJjo7m9u3bj61RL8ykSZNYuHAhDRo0YP78+XTv3p2kpCSqVKmitJkyZQrBwcHUrVuXSpUqERgYyPfff88333yDnZ0dv/32G++99x4WFhZ4eHgwbdo0Tp8+za5du6hatSoXLlzg/v37ACxevJht27axYcMGrK2tuXz5MpcvXy523MWNqSCBgYHMnDmz2O8thBBCiPJNEvEyyMrKigULFqBSqXBwcCA+Pp4FCxbkS8TDw8OJj48nKSkJKysrAFavXk3Dhg05evQozZs3Jzg4mAEDBjBy5EgAxo8fz+HDhwkODqZ9+/bs27ePs2fP8ssvv1CzZk0A5syZQ+fOnYsVs7+/P7169QIezsDv3r2bFStWMHnyZKXNp59+SqdOnYCHs8hz5sxh3759uLm5AVC3bl0iIyNZtmwZHh4epKSk4OTkhKurK/DwRtU8KSkp2NnZ8frrr6NSqahTp06x4n3amAoydepUxo8fr2ynp6crn4cQQgghXl1SmlIGtWrVCpVKpWy7ubmRkJBATk6OVrszZ85gZWWllfQ1aNAAc3Nzzpw5o7Rp06aN1nlt2rTROm5lZaUk4XnvV1yPnlOhQgVcXV2V98iTl1ADXLhwgXv37tGpUyeMjY2V1+rVq0lMTATggw8+ICwsjGbNmjF58mQOHjyonD9gwABiY2NxcHBg9OjR7Nmzp9gxP01MBVGr1Ziammq9hBBCCCFkRly8NIyMjJT/zsjIAGDHjh3UqlVLq51arQagc+fOXLp0iZ07d7J37146duzIqFGjCA4OxtnZmaSkJHbt2sW+ffvo06cPnp6ebNy4ER2dh98/H62rf/DgwXOJSQghhBCiqGRGvAyKjo7W2j58+DB2dnbo6upq7Xd0dMxXG3369Glu3bpFgwYNlDZRUVFa50VFRWkdv3z5MqmpqVrvV1yPnpOdnU1MTAyOjo6Ftm/QoAFqtZqUlBTq1aun9Xp0ht/CwgI/Pz++//57Fi5cyLfffqscMzU1pW/fvixfvpz169ezadMmbty4gYWFBYDWNT164+azxiSEEEIIURQyI14GpaSkMH78eIYPH87x48dZsmQJ8+bNy9fO09OTxo0b4+vry8KFC8nOzmbkyJF4eHgoJReTJk2iT58+ODk54enpyc8//8zmzZvZt2+f0oe9vT1+fn588cUXpKen8/HHHxc75q+++go7OzscHR1ZsGABN2/eZNCgQYW2NzExYeLEiYwbN47c3Fxef/11bt++TVRUFKampvj5+TF9+nRcXFxo2LAhmZmZbN++XUnu58+fT40aNXByckJHR4cff/wRS0tLzM3N0dHRoVWrVgQFBWFra0taWhqffPLJE6+hKDEJIYQQQhSVJOJlUP/+/bl//z4tWrRAV1eXMWPGMGzYsHztVCoVP/30E//73/9o27YtOjo6eHt7s2TJEqWNj48PixYtIjg4mDFjxmBra0tISAjt2rUDQEdHhy1btjB48GBatGiBjY0Nixcvxtvbu1gxBwUFERQURGxsLPXq1WPbtm1UrVr1sefMmjULCwsLAgMDuXjxIubm5jg7O/PRRx8BoKenx9SpU0lOTsbAwAB3d3fCwsKAh0nz3LlzSUhIQFdXl+bNm7Nz506lLGXlypUMHjwYFxcXHBwcmDt3Lm+88cYTr+NJMQkhhBBCFJVKU9gC1EI8B8nJydja2nLixAmaNWtW2uG8FNLT0zEzM+P27dvP/cZNl0mrn2t/Qgghiifmi/6lHYIoISXx+1tmxIV4wfK++5bEg332T/N57n0KIYQoOnloW/mV99k+zzlsScTFM5kzZw5z5swp8Ji7uztff/31C47o5Xfnzh0AucFTCCGEKIPu3LmDmZnZc+lLSlPEM7lx4wY3btwo8JiBgUG+Zf7Ewyee/v3335iYmGitB/+i5D1Q6PLly7Km+f8nY5KfjIk2GY/8ZEzykzHRVt7GQ6PRcOfOHWrWrKncc/asZEZcPJPKlStTuXLl0g6jTNHR0aF27dqlHYY8XKgAMib5yZhok/HIT8YkPxkTbeVpPJ7XTHgeWUdcCCGEEEKIUiCJuBBCCCGEEKVAEnEhXjFqtZoZM2agVqtLO5SXhoxJfjIm2mQ88pMxyU/GRJuMx5PJzZpCCCGEEEKUApkRF0IIIYQQohRIIi6EEEIIIUQpkERcCCGEEEKIUiCJuBBCCCGEEKVAEnEhhBBCCCFKgSTiQrwCZs+eTevWrTE0NMTc3LxI52g0GqZPn06NGjUwMDDA09OThISEkg30Bbpx4wa+vr6Ymppibm7O4MGDycjIeOw5V65c4f3338fS0hIjIyOcnZ3ZtGnTC4q4ZD3NeAAcOnSIDh06YGRkhKmpKW3btuX+/fsvIOKS97RjAg///+ncuTMqlYqtW7eWbKAvUHHH5MaNG/zvf//DwcEBAwMDrK2tGT16NLdv336BUT9fX331FTY2Nujr69OyZUuOHDny2PY//vgj9evXR19fn8aNG7Nz584XFOmLUZzxWL58Oe7u7lSqVIlKlSrh6en5xPEr7yQRF+IVkJWVRe/evfnggw+KfM7cuXNZvHgx33zzDdHR0RgZGeHl5cW///5bgpG+OL6+vpw6dYq9e/eyfft2fvvtN4YNG/bYc/r378+5c+fYtm0b8fHx9OzZkz59+nDixIkXFHXJeZrxOHToEN7e3rzxxhscOXKEo0eP4u/vj45O+fjV8jRjkmfhwoWoVKoSjvDFK+6Y/P333/z9998EBwfzxx9/EBoayu7duxk8ePALjPr5Wb9+PePHj2fGjBkcP36cpk2b4uXlRVpaWoHtDx48SL9+/Rg8eDAnTpzAx8cHHx8f/vjjjxccecko7nhERETQr18/9u/fz6FDh7CysuKNN97gr7/+esGRv0Q0QohXRkhIiMbMzOyJ7XJzczWWlpaaL774Qtl369YtjVqt1qxbt64EI3wxTp8+rQE0R48eVfbt2rVLo1KpNH/99Veh5xkZGWlWr16tta9y5cqa5cuXl1isL8LTjkfLli01n3zyyYsI8YV72jHRaDSaEydOaGrVqqVJTU3VAJotW7aUcLQvxrOMyaM2bNig0dPT0zx48KAkwixRLVq00IwaNUrZzsnJ0dSsWVMTGBhYYPs+ffpounbtqrWvZcuWmuHDh5donC9Kccfjv7KzszUmJiaaVatWlVSIL73yMW0hhHiukpKSuHLlCp6enso+MzMzWrZsyaFDh0oxsufj0KFDmJub4+rqquzz9PRER0eH6OjoQs9r3bo169ev58aNG+Tm5hIWFsa///5Lu3btXkDUJedpxiMtLY3o6GiqVatG69atqV69Oh4eHkRGRr6osEvU0/6M3Lt3j3fffZevvvoKS0vLFxHqC/O0Y/Jft2/fxtTUlAoVKpREmCUmKyuLmJgYrX8XdXR08PT0LPTfxUOHDmm1B/Dy8ioX/44+zXj8171793jw4AGVK1cuqTBfepKICyHyuXLlCgDVq1fX2l+9enXlWFl25coVqlWrprWvQoUKVK5c+bHXt2HDBh48eECVKlVQq9UMHz6cLVu2UK9evZIOuUQ9zXhcvHgRgICAAIYOHcru3btxdnamY8eO5eJegqf9GRk3bhytW7fmrbfeKukQX7inHZNHXbt2jVmzZhW5xOdlcu3aNXJycor17+KVK1fK7b+jTzMe//Xhhx9Ss2bNfF9WXiWSiAtRRk2ZMgWVSvXY19mzZ0s7zBeqpMdk2rRp3Lp1i3379nHs2DHGjx9Pnz59iI+Pf45X8fyU5Hjk5uYCMHz4cAYOHIiTkxMLFizAwcGBlStXPs/LeK5Kcky2bdvGr7/+ysKFC59v0CXsRf1bkp6eTteuXWnQoAEBAQHPHrgo04KCgggLC2PLli3o6+uXdjilpmz9XUgIoZgwYQIDBgx4bJu6des+Vd95f1K/evUqNWrUUPZfvXqVZs2aPVWfL0JRx8TS0jLfzUTZ2dncuHGj0HKCxMREvvzyS/744w8aNmwIQNOmTfn999/56quv+Oabb57LNTxPJTkeeT8XDRo00Nrv6OhISkrK0wddwkpyTH799VcSExPzrUzUq1cv3N3diYiIeIbIS05JjkmeO3fu4O3tjYmJCVu2bKFixYrPGvYLV7VqVXR1dbl69arW/qtXrxZ6/ZaWlsVqX5Y8zXjkCQ4OJigoiH379tGkSZOSDPOlJ4m4EGWUhYUFFhYWJdK3ra0tlpaWhIeHK4l3eno60dHRxVp55UUr6pi4ublx69YtYmJicHFxAR4mUbm5ubRs2bLAc+7duweQb0UQXV1dZXb4ZVOS42FjY0PNmjU5d+6c1v7z58/TuXPnZw++hJTkmEyZMoUhQ4Zo7WvcuDELFiyge/fuzx58CSnJMYGH/3Z4eXmhVqvZtm1bmZ391NPTw8XFhfDwcHx8fICHfxkKDw/H39+/wHPc3NwIDw9n7Nixyr69e/fi5ub2AiIuWU8zHvBwRa7Zs2fzyy+/aN1v8Moq7btFhRAl79KlS5oTJ05oZs6cqTE2NtacOHFCc+LECc2dO3eUNg4ODprNmzcr20FBQRpzc3PNTz/9pDl58qTmrbfe0tja2mru379fGpfw3Hl7e2ucnJw00dHRmsjISI2dnZ2mX79+yvE///xT4+DgoImOjtZoNBpNVlaWpl69ehp3d3dNdHS05sKFC5rg4GCNSqXS7Nixo7Qu47kp7nhoNBrNggULNKamppoff/xRk5CQoPnkk080+vr6mgsXLpTGJTx3TzMm/0U5WjVFoyn+mNy+fVvTsmVLTePGjTUXLlzQpKamKq/s7OzSuoynFhYWplGr1ZrQ0FDN6dOnNcOGDdOYm5trrly5otFoNJr3339fM2XKFKV9VFSUpkKFCprg4GDNmTNnNDNmzNBUrFhREx8fX1qX8FwVdzyCgoI0enp6mo0bN2r9LDz6u+hVI4m4EK8APz8/DZDvtX//fqUNoAkJCVG2c3NzNdOmTdNUr15do1arNR07dtScO3fuxQdfQq5fv67p16+fxtjYWGNqaqoZOHCg1i+DpKSkfGN0/vx5Tc+ePTXVqlXTGBoaapo0aZJvOcOy6mnGQ6PRaAIDAzW1a9fWGBoaatzc3DS///77C4685DztmDyqvCXixR2T/fv3F/hvD6BJSkoqnYt4RkuWLNFYW1tr9PT0NC1atNAcPnxYOebh4aHx8/PTar9hwwaNvb29Rk9PT9OwYcNy8cX9UcUZjzp16hT4szBjxowXH/hLQqXRaDQvcAJeCCGEEEIIgayaIoQQQgghRKmQRFwIIYQQQohSIIm4EEIIIYQQpUAScSGEEEIIIUqBJOJCCCGEEEKUAknEhRBCCCGEKAWSiAshhBBCCFEKJBEXQgghhBCiFEgiLoQQQgghRCmQRFwIIYQQQohSIIm4EEIIIYQQpeD/AR4SZkmLaXwHAAAAAElFTkSuQmCC\n"},"metadata":{}}],"source":["sns.barplot(data=some_stress_mean,orient='y')\n","plt.title('Standardized scaled categories when Reporting Stress Level 1');"]},{"cell_type":"code","execution_count":46,"metadata":{"colab":{"base_uri":"https://localhost:8080/","height":452},"executionInfo":{"elapsed":2192,"status":"ok","timestamp":1716216976502,"user":{"displayName":"Daniel Meier","userId":"06365571306976914087"},"user_tz":300},"id":"-PG2tSqzWumy","outputId":"0f4192a6-719d-4e69-eedf-686c40b72a4f"},"outputs":[{"output_type":"display_data","data":{"text/plain":["
"],"image/png":"iVBORw0KGgoAAAANSUhEUgAAAt8AAAGzCAYAAAD31Ht4AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAADHnElEQVR4nOzdeVhP6f/48ee7aN8skUjZt8nOoKHIyDIZDBEzZDeY7NvHIGv2fRjDjGIydjFj37JkX4ohSUpmNLKWLEWd3x++nZ+3dkuh1+O6znV1zrnPfV736b3c3b3OfTSKoigIIYQQQggh3jud3A5ACCGEEEKIvEI630IIIYQQQuQQ6XwLIYQQQgiRQ6TzLYQQQgghRA6RzrcQQgghhBA5RDrfQgghhBBC5BDpfAshhBBCCJFDpPMthBBCCCFEDpHOtxBCCCGEEDlEOt9CfAQ0Gg1eXl65HcZHY/Xq1VSsWJH8+fNjYWGR2+GovLy80Gg077ROJycnnJyc3mmdnxofHx80Gg2RkZG5HUqmNBoNAwcOzO0w8oSAgAA0Gg0BAQG5HYrIYe/jszg7pPMtRA5J6QBoNBqOHj2aar+iKNjY2KDRaPjqq6/eayweHh5oNBrMzMx4+vRpqv1hYWFqrLNnz36vsbxrV65cwcPDgzJlyrB8+XJ++eWX3A7pk7NmzRrmz5+f22GIHPDq55ZGoyFfvnwUL14cDw8P/v3339wOL0uWLFmCj49PboeRysWLF2nfvj22trYYGBhQvHhxvvzySxYtWqRVbtq0afj7++dOkG/Bzs7uvX+XvW+hoaEMGTKEBg0aYGBg8M7+iM/39qEJIbLDwMCANWvW8MUXX2htP3ToEP/88w/6+vqpjnn69Cn58r3bt2u+fPl48uQJf/75J25ublr7/Pz8MDAw4NmzZ+/0nDkhICCA5ORkFixYQNmyZXM7nE/SmjVr+Pvvvxk8eHBuh5Il3333HZ06dUrzvSWyZtKkSZQqVYpnz55x4sQJfHx8OHr0KH///TcGBga5HV6GlixZQuHChfHw8NDa3qhRI54+fYqenl6Ox3Ts2DEaN25MyZIl6d27N1ZWVty8eZMTJ06wYMECfvjhB7XstGnTaN++PW3atMnxOPO648ePs3DhQipXrkylSpUICgp6J/VK51uIHNayZUs2bNjAwoULtTrUa9asoVatWty9ezfVMe/jy01fXx8HBwf++OOPVJ3vNWvW0KpVKzZt2vTOz/u+xcTEAHxQ6SYidzx+/BhjY2N0dXXR1dXN7XA+ai1atKB27doA9OrVi8KFCzNjxgy2bduW6vPjQ/HkyROMjIzS3a+jo5NrfzhMnToVc3NzTp8+neqzKuUz7E2kvObFu9G6dWsePnyIqakps2fPfmedb0k7ESKHubu7c+/ePfbu3atuS0xMZOPGjXTu3DnNY17P+U7JV7t27RoeHh5YWFhgbm5O9+7defLkSZZj6dy5Mzt37uThw4fqttOnTxMWFpZmLPfv32f48OHY29tjYmKCmZkZLVq0IDg4WKtct27dMDAwICQkRGu7i4sLBQoU4NatW1mO8VVLliyhSpUq6OvrY21tzYABA7Rit7OzY8KECQBYWlpmmiv/33//0b17d0qUKIG+vj7FihXj66+/TvVvxZ07d+Lo6IipqSlmZmbUqVOHNWvWqPuPHDlChw4dKFmyJPr6+tjY2DBkyJA0U3rS8vvvv1OrVi0MDQ0pWLAgnTp14ubNm6nK/fLLL5QpUwZDQ0Pq1q3LkSNHslT/q+epW7cuRkZGFChQgEaNGrFnzx51/9atW2nVqhXW1tbo6+tTpkwZJk+eTFJSklrGycmJ7du3c+PGDTUVwc7OTt2fkJDAhAkTKFu2rHotRo4cSUJCglYsT58+xdPTk8KFC2Nqakrr1q35999/0/ydnT9/nhYtWmBmZoaJiQnOzs6cOHFCq0xKesShQ4fo378/RYoUoUSJElr70vq9NmzYEGNjY0xNTWnVqhWXLl3SKpPV18irtm3bhkaj4cKFC+q2TZs2odFoaNeunVbZSpUq0bFjx1R1+Pv789lnn6Gvr0+VKlXYtWtXqjL//vsvPXr0oGjRomq53377TatMSl7z+vXrmTp1KiVKlMDAwABnZ2euXbuWbhsy07BhQwDCw8O1tl+5coX27dtTsGBBDAwMqF27Ntu2bdMqk/L7OHz4MH379qVQoUKYmZnRtWtXHjx4kOpcmb3v4eXr8rPPPuPs2bM0atQIIyMj/ve//2FnZ8elS5c4dOiQ+npNuUcirZzvlHouX75M48aNMTIyonjx4sycOTNVXDdu3KB169YYGxtTpEgRhgwZwu7du7OURx4eHk6VKlXSHCQoUqSI+rNGo+Hx48f4+vqq8aeM4Kd8D1y+fJnOnTtToEABrf+oZuVzJSwsjG+++QYrKysMDAwoUaIEnTp1IjY2Vi2zd+9evvjiCywsLDAxMaFChQr873//y7B92ZFZnAMHDsTExCTN7zZ3d3esrKy0PqOy8r7OqoIFC2JqavpGx2ZERr6FyGF2dnbUr1+fP/74gxYtWgAvPyxiY2Pp1KkTCxcuzHJdbm5ulCpVCm9vb86dO8eKFSsoUqQIM2bMyNLx7dq1o1+/fmzevJkePXoAL0e9K1asSM2aNVOVv379Ov7+/nTo0IFSpUpx+/Ztli1bhqOjI5cvX8ba2hqABQsWcODAAbp168bx48fR1dVl2bJl7Nmzh9WrV6vlssPLy4uJEyfStGlTvv/+e0JDQ1m6dCmnT58mMDCQ/PnzM3/+fFatWsWWLVtYunQpJiYmVK1aNd06v/nmGy5dusQPP/yAnZ0dMTEx7N27l6ioKLVD6ePjQ48ePahSpQpjxozBwsKC8+fPs2vXLvUPlA0bNvDkyRO+//57ChUqxKlTp1i0aBH//PMPGzZsyLBdU6dOZdy4cbi5udGrVy/u3LnDokWLaNSoEefPn1e/nH/99Vf69u1LgwYNGDx4MNevX6d169YULFgQGxubTK/fxIkT8fLyokGDBkyaNAk9PT1OnjzJgQMHaNasmdpWExMThg4diomJCQcOHGD8+PHExcUxa9YsAMaOHUtsbCz//PMP8+bNA8DExASA5ORkWrduzdGjR+nTpw+VKlXi4sWLzJs3j6tXr2rlrXp4eLB+/Xq+++476tWrx6FDh2jVqlWquC9dukTDhg0xMzNj5MiR5M+fn2XLluHk5MShQ4f4/PPPtcr3798fS0tLxo8fz+PHj9O9HqtXr6Zbt264uLgwY8YMnjx5wtKlS/niiy84f/68+vvPymvkdV988YXauUx5/R05cgQdHR2t+z3u3LnDlStXUt1gefToUTZv3kz//v0xNTVl4cKFfPPNN0RFRVGoUCEAbt++Tb169dQbNC0tLdm5cyc9e/YkLi4uVUrQ9OnT0dHRYfjw4cTGxjJz5ky6dOnCyZMn071GGUn546NAgQLqtkuXLuHg4EDx4sUZPXo0xsbGrF+/njZt2rBp0ybatm2rVcfAgQOxsLDAy8tLfT/fuHFD7RRD1t73Ke7du0eLFi3o1KkT3377LUWLFsXJyYkffvgBExMTxo4dC0DRokUzbNuDBw9o3rw57dq1w83NjY0bNzJq1Cjs7e3Vz+zHjx/TpEkToqOjGTRoEFZWVqxZs4aDBw9m6frZ2tpy/Phx/v77bz777LN0y61evZpevXpRt25d+vTpA0CZMmW0ynTo0IFy5coxbdo0FEUBsva5kpiYiIuLCwkJCfzwww9YWVnx77//8tdff/Hw4UPMzc25dOkSX331FVWrVmXSpEno6+tz7do1AgMDs9TOzGQlzo4dO/LTTz+xfft2OnTooB6bkjbp4eGh/mcrq+/rXKcIIXLEypUrFUA5ffq0snjxYsXU1FR58uSJoiiK0qFDB6Vx48aKoiiKra2t0qpVK61jAWXChAnq+oQJExRA6dGjh1a5tm3bKoUKFco0lm7duinGxsaKoihK+/btFWdnZ0VRFCUpKUmxsrJSJk6cqERERCiAMmvWLPW4Z8+eKUlJSVp1RUREKPr6+sqkSZO0tu/evVsBlClTpijXr19XTExMlDZt2mQaW1piYmIUPT09pVmzZlrnX7x4sQIov/32m7ot5drcuXMnwzofPHiQqn2ve/jwoWJqaqp8/vnnytOnT7X2JScnqz+n/B5f5e3trWg0GuXGjRupYksRGRmp6OrqKlOnTtU69uLFi0q+fPnU7YmJiUqRIkWU6tWrKwkJCWq5X375RQEUR0fHDNsaFham6OjoKG3btk31+8usHX379lWMjIyUZ8+eqdtatWql2Nrapiq7evVqRUdHRzly5IjW9p9//lkBlMDAQEVRFOXs2bMKoAwePFirnIeHR6rXeps2bRQ9PT0lPDxc3Xbr1i3F1NRUadSokbot5f31xRdfKC9evNCqN2VfRESEoiiK8ujRI8XCwkLp3bu3Vrn//vtPMTc3V7dn5TWSnipVqihubm7qes2aNZUOHToogBISEqIoiqJs3rxZAZTg4GC1HKDo6ekp165dU7cFBwcrgLJo0SJ1W8+ePZVixYopd+/e1Tpvp06dFHNzc/V3efDgQQVQKlWqpPXaWbBggQIoFy9ezLAdKddu3759yp07d5SbN28qGzduVCwtLRV9fX3l5s2ballnZ2fF3t5e67WSnJysNGjQQClXrlyqOmvVqqUkJiaq22fOnKkAytatWxVFyd773tHRUQGUn3/+OVUbqlSpkuZ7JOXaHDx4MFU9q1atUrclJCQoVlZWyjfffKNumzNnjgIo/v7+6ranT58qFStWTFVnWvbs2aPo6uoqurq6Sv369ZWRI0cqu3fv1roeKYyNjZVu3bql2p7yeeLu7q61PaufK+fPn1cAZcOGDenGOW/evCx9nqYlre+yN4kzOTlZKV68uNb1VxRFWb9+vQIohw8fVhQl6+9rRUn9WZwVs2bN0voceRuSdiJELnBzc+Pp06f89ddfPHr0iL/++ivdlJOM9OvXT2u9YcOG3Lt3j7i4uCzX0blzZwICAvjvv/84cOAA//33X7qx6Ovro6Pz8mMjKSmJe/fuqf+GPHfunFbZZs2a0bdvXyZNmkS7du0wMDBg2bJl2WzhS/v27SMxMZHBgwer5wfo3bs3ZmZmbN++Pdt1GhoaoqenR0BAQJr/6oaX/2599OgRo0ePTpUb+uo0VYaGhurPjx8/5u7duzRo0ABFUTh//ny6MWzevJnk5GTc3Ny4e/euulhZWVGuXDl1FO3MmTPExMTQr18/rZvDPDw8MDc3z7St/v7+JCcnM378eK3rl1E7Hj16xN27d2nYsCFPnjzhypUrmZ5nw4YNVKpUiYoVK2q1p0mTJgBqe1JSKPr37691/Ks3mcHL19iePXto06YNpUuXVrcXK1aMzp07c/To0VSv9d69e2ea3713714ePnyIu7u7Vpy6urp8/vnnapxZeY2kp2HDhmpa0KNHjwgODqZPnz4ULlxY3X7kyBEsLCxSjXw2bdpUa3SzatWqmJmZcf36deDlzEibNm3C1dUVRVG02uDi4kJsbGyq92P37t21XjspaSMpdWamadOmWFpaYmNjQ/v27TE2Nmbbtm1qas/9+/c5cOAAbm5u6mvn7t273Lt3DxcXF8LCwlLNjtKnTx+tkevvv/+efPnysWPHDiD773t9fX26d++epfZkxMTEhG+//VZd19PTo27dulrXateuXRQvXpzWrVur2wwMDOjdu3eWzvHll19y/PhxWrduTXBwMDNnzsTFxYXixYunStPJzOvfA1n9XEn57Ni9e3e66Yop/3nbunUrycnJ2YorM1mNU6PR0KFDB3bs2EF8fLx6/Lp16yhevLiaapPV9/WHQNJOhMgFlpaWNG3alDVr1vDkyROSkpJo3759tuspWbKk1nrKv4AfPHiAmZlZlupo2bIlpqamrFu3jqCgIOrUqUPZsmXTzGlNmUVkyZIlREREaOXZpfw7/FWzZ89m69atBAUFsWbNGq1cxuy4ceMGABUqVNDarqenR+nSpdX92aGvr8+MGTMYNmwYRYsWpV69enz11Vd07doVKysr4P/ns2b0b2GAqKgoxo8fz7Zt21J10l7NnXxdWFgYiqJQrly5NPendExS2vd6ufz582t1StMTHh6Ojo4OlStXzrDcpUuX+PHHHzlw4ECqTm1G7UgRFhZGSEgIlpaWae5PuZHsxo0b6OjoUKpUKa39r89Oc+fOHZ48eZLq9w4vc6WTk5O5efMmVapUUbe/Xmd6cQLqHwWvS3nvZOU1kp6GDRvy888/c+3aNcLDw9FoNNSvX1/tlPfu3ZsjR47g4OCQ6g+i19/X8PK9nfLaunPnDg8fPuSXX35JdyrN12/ay+izIit++uknypcvT2xsLL/99huHDx/Wmj3m2rVrKIrCuHHjGDduXLoxFS9eXF1//fVsYmJCsWLF1M+e7L7vixcv/k5mLilRokSqOaALFCiglcN/48YNypQpk6pcdmZYqlOnDps3byYxMZHg4GC2bNnCvHnzaN++PUFBQZm+X1O8/prP6udKqVKlGDp0KHPnzsXPz4+GDRvSunVrvv32W7Vj3rFjR1asWEGvXr0YPXo0zs7OtGvXjvbt26d63WZXVuNMiWP+/Pls27aNzp07Ex8fz44dO+jbt6/6O8jq+/pDIJ1vIXJJ586d6d27N//99x8tWrR4o9k50hvhU/4v7y8r9PX1adeuHb6+vly/fj3DGxSnTZvGuHHj6NGjB5MnT6ZgwYLo6OgwePDgNEdFzp8/r3YCLl68iLu7e5bjygmDBw/G1dUVf39/du/ezbhx4/D29ubAgQPUqFEjS3UkJSXx5Zdfcv/+fUaNGkXFihUxNjbm33//xcPDI8PRouTkZDQaDTt37kzzd5mSS50THj58iKOjI2ZmZkyaNIkyZcpgYGDAuXPnGDVqVJZGvZKTk7G3t2fu3Llp7s9KbvrbenX0Pj0pbVm9enWanehXZyF609dIymjc4cOHuX79OjVr1sTY2JiGDRuycOFC4uPjOX/+PFOnTk11bGbv65T4v/32W7p165Zm2dfvdXjbz4q6deuqs520adOGL774gs6dOxMaGoqJiYka0/Dhw3FxcUmzjvc99WdWfvdZ8S4+V7NDT0+POnXqUKdOHcqXL0/37t3ZsGGDevN4Zl5vd3Y+V+bMmYOHhwdbt25lz549eHp64u3tzYkTJyhRogSGhoYcPnyYgwcPsn37dnbt2sW6deto0qQJe/bseatZhLITZ7169bCzs2P9+vV07tyZP//8k6dPn2rdrJyd93Vu+3AiESKPadu2LX379uXEiROsW7cuV2Pp3Lkzv/32Gzo6OnTq1Cndchs3bqRx48b8+uuvWtsfPnxI4cKFtbY9fvyY7t27U7lyZRo0aMDMmTNp27YtderUyXZ8tra2wMsHHrw60puYmEhERARNmzbNdp0pypQpw7Bhwxg2bBhhYWFUr16dOXPm8Pvvv6v/+v/777/T7ThcvHiRq1ev4uvrS9euXdXtr85mk9G5FUWhVKlSlC9fPt1yKe0PCwvTGtV5/vw5ERERVKtWLdPzJCcnc/nyZapXr55mmYCAAO7du8fmzZtp1KiRuj0iIiJV2fSeDFemTBmCg4NxdnbO8Olxtra2JCcnExERoTXq9frsG5aWlhgZGREaGpqqjitXrqCjo/NGHfqU32uRIkWy9NrJ6DWSnpIlS1KyZEmOHDnC9evX1TSPRo0aMXToUDZs2EBSUpLWtc4qS0tLTE1NSUpKeqvX/pvS1dXF29ubxo0bs3jxYkaPHq2+L/Pnz5/lmMLCwmjcuLG6Hh8fT3R0NC1btgTe3fv+fTzJ0NbWlsuXL6Moilb9bzODDKD+gRMdHa1uy278Wf1cSWFvb4+9vT0//vgjx44dw8HBgZ9//pkpU6YAL6dkdHZ2xtnZmblz5zJt2jTGjh3LwYMH3/qzNztxurm5sWDBAuLi4li3bh12dnbUq1dPqz7I+vs6N0nOtxC5xMTEhKVLl+Ll5YWrq2uuxtK4cWMmT57M4sWLM/x3uq6ubqrRnw0bNqT5pLtRo0YRFRWFr68vc+fOxc7Ojm7duqWaci4rmjZtip6eHgsXLtQ6/6+//kpsbGyas2Rk5smTJ6keIlSmTBlMTU3VGJs1a4apqSne3t6pyqbEkTJi82pciqKwYMGCTGNo164durq6TJw4MdV1VRSFe/fuAS+/kC0tLfn5559JTExUy/j4+KSaci0tbdq0QUdHh0mTJqUawc6oHYmJiSxZsiRVfcbGxmmmobi5ufHvv/+yfPnyVPuePn2qzj6SMjL6et2vP9lPV1eXZs2asXXrVq00qNu3b6sPqnqTfyW7uLhgZmbGtGnTeP78ear9d+7cAbL2GslIw4YNOXDgAKdOnVI739WrV8fU1JTp06djaGhIrVq1sh2/rq4u33zzDZs2beLvv/9ON/73ycnJibp16zJ//nyePXtGkSJFcHJyYtmyZVodx4xi+uWXX7Su/9KlS3nx4oU6o8i7et8bGxtn6X2SHS4uLvz7779a+dnPnj1L87WfloMHD6Y5kp6S7/5qqk1248/q50pcXBwvXrzQ2m9vb4+Ojo76+r5//36q+lP+gH+Tz/I3iTNFx44dSUhIwNfXl127dqWaXz6r7+sPgYx8C5GL0vuXcU7T0dHhxx9/zLTcV199xaRJk+jevTsNGjTg4sWL+Pn5pco7PnDgAEuWLGHChAnqlIUrV67EycmJcePGpTlnbkYsLS0ZM2YMEydOpHnz5rRu3ZrQ0FCWLFlCnTp1tG6OyqqrV6/i7OyMm5sblStXJl++fGzZsoXbt2+ro/9mZmbMmzePXr16UadOHXUu3eDgYJ48eYKvry8VK1akTJkyDB8+nH///RczMzM2bdqUpVzaMmXKMGXKFMaMGUNkZCRt2rTB1NSUiIgItmzZQp8+fRg+fDj58+dnypQp9O3blyZNmtCxY0ciIiJYuXJllnK+y5Yty9ixY5k8eTINGzakXbt26Ovrc/r0aaytrfH29qZBgwYUKFCAbt264enpiUajYfXq1Wl2EGrVqsW6desYOnQoderUwcTEBFdXV7777jvWr19Pv379OHjwIA4ODiQlJXHlyhXWr1/P7t27qV27NrVq1eKbb75h/vz53Lt3T51q8OrVq4D2SN+UKVPUeYb79+9Pvnz5WLZsGQkJCdl+HaUwMzNj6dKlfPfdd9SsWZNOnTphaWlJVFQU27dvx8HBgcWLF2fpNZKRhg0b4ufnh0ajUdNQdHV1adCgAbt378bJyemNc5SnT5/OwYMH+fzzz+nduzeVK1fm/v37nDt3jn379qXZaXrXRowYQYcOHfDx8aFfv3789NNPfPHFF9jb29O7d29Kly7N7du3OX78OP/880+q5wEkJiaq1zfl/fzFF1+oNzG+q/d9rVq1WLp0KVOmTKFs2bIUKVIk3bzgrOrbty+LFy/G3d2dQYMGUaxYMfXJwJD5aPUPP/zAkydPaNu2LRUrViQxMZFjx46pI7qv3jhaq1Yt9u3bx9y5c7G2tqZUqVKppth8VVY/Vw4cOMDAgQPp0KED5cuX58WLF6xevVr94w5ePtn08OHDtGrVCltbW2JiYliyZAklSpRI9ZTmtFy7dk0dQX9VjRo1aNWqVZbiTFGzZk31sywhISHV/PhZfV9nR2xsrDookDK94uLFi7GwsMDCwiLVNKFZ9tbzpQghsuTVqQYzkp2pBl+f/un1KdXS8+pUg+lJb6rBYcOGKcWKFVMMDQ0VBwcH5fjx44qjo6M6lVdcXJxia2ur1KxZU3n+/LlWnUOGDFF0dHSU48ePZ3ju9CxevFipWLGikj9/fqVo0aLK999/rzx48ECrTFanGrx7964yYMAApWLFioqxsbFibm6ufP7558r69etTld22bZvSoEEDxdDQUDEzM1Pq1q2r/PHHH+r+y5cvK02bNlVMTEyUwoULK71791anh1u5cmWq2F63adMm5YsvvlCMjY0VY2NjpWLFisqAAQOU0NBQrXJLlixRSpUqpejr6yu1a9dWDh8+rHXtM/Pbb78pNWrUUPT19ZUCBQoojo6Oyt69e9X9gYGBSr169RRDQ0PF2tpanf6M16ZOi4+PVzp37qxYWFgogNa0g4mJicqMGTOUKlWqqOepVauWMnHiRCU2NlYt9/jxY2XAgAFKwYIF1WkoQ0NDFUCZPn26Vtznzp1TXFxcFBMTE8XIyEhp3LixcuzYMa0yGb2/0ntfHDx4UHFxcVHMzc0VAwMDpUyZMoqHh4dy5swZRVGy9xpJy6VLl9Rp/l41ZcoUBVDGjRuX6hhAGTBgQKrttra2qaabu337tjJgwADFxsZGyZ8/v2JlZaU4Ozsrv/zyi1YbSWM6uZT396uvz7RkdF2TkpKUMmXKKGXKlFGndwwPD1e6du2qWFlZKfnz51eKFy+ufPXVV8rGjRtT1Xno0CGlT58+SoECBRQTExOlS5cuyr1791KdJyvve0dHR6VKlSpptuG///5TWrVqpZiammpNzZneVINp1dOtW7dU02tev35dadWqlWJoaKhYWloqw4YNUzZt2qQAyokTJ9KMJcXOnTuVHj16KBUrVlRMTEwUPT09pWzZssoPP/yg3L59W6vslStXlEaNGimGhoYKoL4OMvusy+xz5fr160qPHj2UMmXKKAYGBkrBggWVxo0bK/v27VPr2L9/v/L1118r1tbWip6enmJtba24u7srV69ezbB9ivLyNQukufTs2TPLcb5q7NixCqCULVs23fNm9r5+9dplJuV9ktaS1nSrWaVRlPd0B4EQQgiRDUFBQdSoUYPff/+dLl265HY44j3x8fGhe/funD59Ws1x/lTMnz+fIUOG8M8//2jN7CLEqyTnWwghRI57+vRpqm3z589HR0fnjW5CFCKnvf4afvbsGcuWLaNcuXLS8RYZkpxvIYQQOW7mzJmcPXuWxo0bky9fPnbu3MnOnTvp06dPjkxJKMTbateuHSVLlqR69erExsby+++/c+XKFfz8/HI7NPGBk863EEKIHNegQQP27t3L5MmTiY+Pp2TJknh5eTF27NjcDk2ILHFxcWHFihX4+fmRlJRE5cqVWbt2baobAYV4neR8CyGEEEIIkUMk51sIIYQQQogcIp1vIYQQQgghcojkfAuRw5KTk7l16xampqbv5bHHQgghhHj3FEXh0aNHWFtbo6Pz5uPX0vkWIofdunVLZnMQQgghPlI3b96kRIkSb3y8dL6FyGGmpqbAyzevmZlZLkcjhMjrGv34R26HIMQ7dXiK+3upNy4uDhsbG/V7/E1J51uIHJaSamJmZiadbyFErtPVN8ztEIR4p973d+vbpozKDZdCCCGEEELkEOl8iwx5eXlRvXr1bB2j0Wjw9/d/L/EIIYQQQnzMpPMtMjR8+HD279+f22F8kAICAtBoNDx8+DC3QxFCCCHER0JyvkWGTExMMDExye0wPjjPnz/P7RCEEEII8RGSke9PxMaNG7G3t8fQ0JBChQrRtGlTHj9+THJyMpMmTaJEiRLo6+tTvXp1du3apXXsP//8g7u7OwULFsTY2JjatWtz8uRJIHXayenTp/nyyy8pXLgw5ubmODo6cu7cuTeKOTExkYEDB1KsWDEMDAywtbXF29sbgMjISDQaDUFBQWr5hw8fotFoCAgIAP7/yPP27dupWrUqBgYG1KtXj7///ls9xsfHBwsLC/z9/SlXrhwGBga4uLhw8+ZNrViWLl1KmTJl0NPTo0KFCqxevVprv0ajYenSpbRu3RpjY2N69+5N48aNAShQoAAajQYPD48025mQkEBcXJzWIoQQQoi8STrfn4Do6Gjc3d3p0aMHISEhBAQE0K5dOxRFYcGCBcyZM4fZs2dz4cIFXFxcaN26NWFhYQDEx8fj6OjIv//+y7Zt2wgODmbkyJEkJyenea5Hjx7RrVs3jh49yokTJyhXrhwtW7bk0aNH2Y574cKFbNu2jfXr1xMaGoqfnx92dnbZrmfEiBHMmTOH06dPY2lpiaurq9bI9JMnT5g6dSqrVq0iMDCQhw8f0qlTJ3X/li1bGDRoEMOGDePvv/+mb9++dO/enYMHD2qdx8vLi7Zt23Lx4kUmTpzIpk2bAAgNDSU6OpoFCxakGZ+3tzfm5ubqInN8CyGEEHmXpJ18AqKjo3nx4gXt2rXD1tYWAHt7ewBmz57NqFGj1M7mjBkzOHjwIPPnz+enn35izZo13Llzh9OnT1OwYEEAypYtm+65mjRporX+yy+/YGFhwaFDh/jqq6+yFXdUVBTlypXjiy++QKPRqLFn14QJE/jyyy8B8PX1pUSJEmzZsgU3NzfgZYrI4sWL+fzzz9UylSpV4tSpU9StW5fZs2fj4eFB//79ARg6dCgnTpxg9uzZ6ug2QOfOnenevbu6HhERAUCRIkWwsLBIN74xY8YwdOhQdT1lnlAhhBBC5D0y8v0JqFatGs7Oztjb29OhQweWL1/OgwcPiIuL49atWzg4OGiVd3BwICQkBICgoCBq1Kihdrwzc/v2bXr37k25cuUwNzfHzMyM+Ph4oqKish23h4cHQUFBVKhQAU9PT/bs2ZPtOgDq16+v/lywYEEqVKigtg8gX7581KlTR12vWLEiFhYWapmQkJAMr1GK2rVrv1F8+vr66pzeMre3EEIIkbdJ5/sToKury969e9m5cyeVK1dm0aJFVKhQQR2ZzYihYfYertCtWzeCgoJYsGABx44dIygoiEKFCpGYmJjtuGvWrElERASTJ0/m6dOnuLm50b59ewB0dF6+NBVFUcvn9k2OxsbGuXp+IYQQQnz8pPP9idBoNDg4ODBx4kTOnz+Pnp4e+/fvx9ramsDAQK2ygYGBVK5cGYCqVasSFBTE/fv3s3SewMBAPD09admyJVWqVEFfX5+7d+++cdxmZmZ07NiR5cuXs27dOjZt2sT9+/extLQEXqbUpHj15stXnThxQv35wYMHXL16lUqVKqnbXrx4wZkzZ9T10NBQHj58qJapVKlShtcoPXp6egAkJSVloaVCCCGEEJLz/Uk4efIk+/fvp1mzZhQpUoSTJ09y584dKlWqxIgRI5gwYQJlypShevXqrFy5kqCgIPz8/ABwd3dn2rRptGnTBm9vb4oVK8b58+extrbWSudIUa5cOVavXk3t2rWJi4tjxIgR2R49TzF37lyKFStGjRo10NHRYcOGDVhZWWFhYYGOjg716tVj+vTplCpVipiYGH788cc065k0aRKFChWiaNGijB07lsKFC9OmTRt1f/78+fnhhx9YuHAh+fLlY+DAgdSrV4+6desCL2/YdHNzo0aNGjRt2pQ///yTzZs3s2/fvgzjt7W1RaPR8Ndff9GyZUsMDQ1lWkYhhBBCZEhGvj8BZmZmHD58mJYtW1K+fHl+/PFH5syZQ4sWLfD09GTo0KEMGzYMe3t7du3axbZt2yhXrhzwcvR2z549FClShJYtW2Jvb8/06dPR1dVN81y//vorDx48oGbNmnz33Xd4enpSpEiRN4rb1NSUmTNnUrt2berUqUNkZCQ7duxQU05+++03Xrx4Qa1atRg8eDBTpkxJs57p06czaNAgatWqxX///ceff/6pjkoDGBkZMWrUKDp37oyDgwMmJiasW7dO3d+mTRsWLFjA7NmzqVKlCsuWLWPlypU4OTllGH/x4sWZOHEio0ePpmjRogwcOPCNroMQQggh8g6N8mpSrRAfkYCAABo3bsyDBw/SnW3Ex8eHwYMHf1BPoYyLi8Pc3JzY2Fi5+VIIketqjViV2yEI8U6dndX1vdT7rr6/Je1ECCGEyMPeV0dFCJE2STsR7820adPUx9O/vrRo0SK3wxNCCCGEyHGSdiLem/v376c7i4qhoSHFixfP4Yg+DJJ2IoQQQnx8JO1EfPAKFiyY5Yf3CCGEyB2S8/1pkPShj4eknQghhBBCCJFDpPMt3lpkZCQajUbrITiBgYHY29uTP39+rTm3hRBCCCHyMkk7Ee/F0KFDqV69Ojt37nzvD57x8PDg4cOH+Pv7v9fzCCGEEEK8LRn5Fu9FeHg4TZo0oUSJEunOwS2EEEIIkddI51uoNm7ciL29PYaGhhQqVIimTZvy+PFjAFasWEGlSpUwMDCgYsWKLFmyJM06UlJQ7t27R48ePdBoNPj4+GR67r///psWLVpgYmJC0aJF+e6777h7926msXl5eeHr68vWrVvRaDRoNBoCAgIAuHnzJm5ublhYWFCwYEG+/vprIiMjtc6bUbtS2rJ+/XoaNmyIoaEhderU4erVq5w+fZratWur0ybeuXMnexdbCCGEEHmSdL4FANHR0bi7u9OjRw9CQkIICAigXbt2KIqCn58f48ePZ+rUqYSEhDBt2jTGjRuHr69vqnpsbGyIjo7GzMyM+fPnEx0dTceOHTM898OHD2nSpAk1atTgzJkz7Nq1i9u3b+Pm5pZpbMOHD8fNzY3mzZsTHR1NdHQ0DRo04Pnz57i4uGBqasqRI0cIDAzExMSE5s2bk5iYCJDldk2YMIEff/yRc+fOkS9fPjp37szIkSNZsGABR44c4dq1a4wfPz7d9iUkJBAXF6e1CCGEECJvkpxvAbzs4L548YJ27dpha2sLgL29PfCy8zlnzhzatWsHQKlSpbh8+TLLli2jW7duWvXo6upiZWWFRqPB3NwcKyurTM+9ePFiatSowbRp09Rtv/32GzY2Nly9epX4+Ph0Y4OXc4YnJCRonev3338nOTmZFStWoNFoAFi5ciUWFhYEBATQrFmzLLdr+PDhuLi4ADBo0CDc3d3Zv38/Dg4OAPTs2TPD0X1vb28mTpyY6XUQQgghxKdPOt8CgGrVquHs7Iy9vT0uLi40a9aM9u3bo6enR3h4OD179qR3795q+RcvXmBubv5Ozh0cHMzBgwfTvDEzPDycZs2apRlbgQIFMqzz2rVrmJqaam1/9uwZ4eHhPH78OMvtqlq1qvpz0aJFAe3Of9GiRYmJiUk3ljFjxjB06FB1PS4uDhsbm3TLCyGEEOLTJZ1vAbwcsd67dy/Hjh1jz549LFq0iLFjx/Lnn38CsHz5cj7//PNUx7wL8fHxuLq6MmPGjFT7ihUrlm5sJ0+epFSpUunWWatWLfz8/FLts7S0JD4+Hshau/Lnz6/+nDKK/vq25OTkdNunr6+Pvr5+uvuFEEIIkXdI51uoNBoNDg4OODg4MH78eGxtbQkMDMTa2prr16/TpUuX93LemjVrsmnTJuzs7MiXL+2XZFqxbdmyhaFDh6Knp0dSUlKqOtetW0eRIkXSfASsubn5e2+XEEIIIcTr5IZLAcDJkyeZNm0aZ86cISoqis2bN3Pnzh0qVarExIkT8fb2ZuHChVy9epWLFy+ycuVK5s6d+07OPWDAAO7fv4+7uzunT58mPDyc3bt30717d5KSkjKMDcDOzo4LFy4QGhrK3bt3ef78OV26dKFw4cJ8/fXXHDlyhIiICAICAvD09OSff/4BeO/tEkIIIYR4nYx8CwDMzMw4fPgw8+fPJy4uDltbW+bMmUOLFi0AMDIyYtasWYwYMQJjY2Ps7e0ZPHjwOzm3tbU1gYGBjBo1imbNmpGQkICtrS3NmzdHR0cn09h69+5NQEAAtWvXJj4+noMHD+Lk5MThw4cZNWoU7dq149GjRxQvXhxnZ2d1JLxXr17vtV1CCCGEEK/TKIqi5HYQQuQlcXFxmJubExsbm2ZKjBBC5KRaI1bldgjiHTg7q2tuh/DJe1ff3zLyLYQQQuRh0mkTImdJzrd47/r164eJiUmaS79+/XI7PCGEEEKIHCNpJ+K9i4mJSfepjmZmZhQpUiSHI8pdknYihBBCfHwk7UR8NIoUKZLnOthCCCGEEGmRzrcQQgiRh8kNl6lJHrx4nyTnWwghhBBCiBwine93wMnJ6YOaGzor8Wg0Gvz9/XMknvfNw8ODNm3aZFjmQ/sdCSGEECJvks73RywgIACNRsPDhw+zfWx0dLT6kBohhBBCCJEzpPOdCxITE3M7BKysrNDX18/tMDL0IVwnIYQQQoh3STrf78iLFy8YOHAg5ubmFC5cmHHjxpEyi6OdnR2TJ0+ma9eumJmZ0adPHwCOHj1Kw4YNMTQ0xMbGBk9PTx4/fqzWuXr1amrXro2pqSlWVlZ07tyZmJgYACIjI2ncuDEABQoUQKPR4OHhoR6bnJzMyJEjKViwIFZWVnh5eWnF+2raSWRkJBqNhs2bN9O4cWOMjIyoVq0ax48f1zpm+fLl2NjYYGRkRNu2bZk7dy4WFhZZuj5eXl5Ur16dZcuWqXW4ubkRGxurlklJH5k6dSrW1tZUqFABgIsXL9KkSRMMDQ0pVKgQffr0IT4+PtU5Jk6ciKWlJWZmZvTr1y/DzntCQgLDhw+nePHiGBsb8/nnnxMQEKDu9/HxwcLCgr/++osKFSpgZGRE+/btefLkCb6+vtjZ2VGgQAE8PT1JSkrK0jUQQgghhJDO9zvi6+tLvnz5OHXqFAsWLGDu3LmsWLFC3T979myqVavG+fPnGTduHOHh4TRv3pxvvvmGCxcusG7dOo4ePcrAgQPVY54/f87kyZMJDg7G39+fyMhItYNtY2PDpk2bAAgNDSU6OpoFCxZoxWNsbMzJkyeZOXMmkyZNYu/evRm2YezYsQwfPpygoCDKly+Pu7s7L168ACAwMJB+/foxaNAggoKC+PLLL5k6dWq2rtG1a9dYv349f/75J7t27eL8+fP0799fq8z+/fsJDQ1l7969/PXXXzx+/BgXFxcKFCjA6dOn2bBhA/v27dO6TinHhYSEEBAQwB9//MHmzZuZOHFiurEMHDiQ48ePs3btWi5cuECHDh1o3rw5YWFhapknT56wcOFC1q5dy65duwgICKBt27bs2LGDHTt2sHr1apYtW8bGjRszbHdCQgJxcXFaixBCCCHyJnnIzjvg5ORETEwMly5dQqPRADB69Gi2bdvG5cuXsbOzo0aNGmzZskU9plevXujq6rJs2TJ129GjR3F0dOTx48cYGBikOs+ZM2eoU6cOjx49wsTEhICAABo3bsyDBw+0RqCdnJxISkriyJEj6ra6devSpEkTpk+fDrwc+d6yZQtt2rQhMjKSUqVKsWLFCnr27AnA5cuXqVKlCiEhIVSsWJFOnToRHx/PX3/9pdb57bff8tdff2Up59zLy4spU6Zw48YNihcvDsCuXbto1aoV//77L1ZWVnh4eLBr1y6ioqLQ09MDXo62jxo1ips3b2JsbAzAjh07cHV15datWxQtWhQPDw/+/PNPbt68iZGREQA///wzI0aMIDY2Fh0dHZycnKhevTrz588nKiqK0qVLExUVhbW1tRpj06ZNqVu3LtOmTcPHx4fu3btz7do1ypQpA7x8Uufq1au5ffs2JiYmADRv3hw7Ozt+/vnnDNue1h8C8pAdIcSHQKYaTE2mGhRpeVcP2ZGR73ekXr16ascboH79+oSFhakpCbVr19YqHxwcjI+Pj9aj1l1cXEhOTiYiIgKAs2fP4urqSsmSJTE1NcXR0RGAqKioTOOpWrWq1nqxYsXUlJWsHFOsWDEA9ZjQ0FDq1q2rVf719cyULFlS7XjDy2uUnJxMaGious3e3l7teAOEhIRQrVo1teMN4ODgkOq4atWqqR3vlLrj4+O5efNmqjguXrxIUlIS5cuX17r+hw4dIjw8XC1nZGSkdrwBihYtip2dndrxTtmW2XUdM2YMsbGx6pJWTEIIIYTIG+QhOznk1c4jQHx8PH379sXT0zNV2ZIlS6rpFi4uLvj5+WFpaUlUVBQuLi5ZuhExf/78WusajYbk5OQsH5Pyh0Rmx7xrr1+n9yE+Ph5dXV3Onj2Lrq6u1r5XO9ZpXcM3ua76+vof/M2tQgghhMgZ0vl+R06ePKm1fuLECcqVK5eqc5eiZs2aXL58mbJly6a5/+LFi9y7d4/p06djY2MDvEw7eVXKCHFO3PBXoUIFTp8+rbXt9fXMREVFcevWLTXV48SJE+jo6Kg3VqalUqVK+Pj48PjxY7VjHhgYmOq44OBgnj59iqGhoVq3iYmJeu1eVaNGDZKSkoiJiaFhw4bZaoMQQgghxNuQtJN3JCoqiqFDhxIaGsoff/zBokWLGDRoULrlR40axbFjxxg4cCBBQUGEhYWxdetW9UbCkiVLoqenx6JFi7h+/Trbtm1j8uTJWnXY2tqi0Wj466+/uHPnTpozgLwrP/zwAzt27GDu3LmEhYWxbNkydu7cqZVqkxkDAwO6detGcHAwR44cwdPTEzc3N6ysrNI9pkuXLupxf//9NwcPHuSHH37gu+++o2jRomq5xMREevbsyeXLl9mxYwcTJkxg4MCB6OikfomXL1+eLl260LVrVzZv3kxERASnTp3C29ub7du3Z+/CCCGEEEJkg3S+35GuXbvy9OlT6taty4ABAxg0aJA6pWBaqlatyqFDh7h69SoNGzakRo0ajB8/Xh0VtrS0xMfHhw0bNlC5cmWmT5/O7NmzteooXrw4EydOZPTo0RQtWjTVDCDvkoODAz///DNz586lWrVq7Nq1iyFDhqR5Y2h6ypYtS7t27WjZsiXNmjWjatWqLFmyJMNjjIyM2L17N/fv36dOnTq0b98eZ2dnFi9erFXO2dmZcuXK0ahRIzp27Ejr1q1TTa/4qpUrV9K1a1eGDRtGhQoVaNOmDadPn6ZkyZJZbo8QQgghRHbJbCfijfXu3ZsrV65ozaqSHi8vL/z9/QkKCnr/gX3g3tXd0kII8S7IbCepyWwnIi3v6vtbcr5Fls2ePZsvv/wSY2Njdu7cia+vb6Yj10IIIT5s0tEUImdJ51tk2alTp5g5cyaPHj2idOnSLFy4kF69egFQpUoVbty4keZxr85lLoQQQgiRl0naiXgnbty4wfPnz9PcV7RoUUxNTXM4og+XpJ0IIYQQHx9JOxEfFFtb29wOQQghxBv40HK+JQ1GfOpkthMhhBBCCCFyiHS+hRBCCCGEyCHS+RbvRGRkJBqNJtenEtRoNPj7++foOe3s7Jg/f36OnlMIIYQQHyfpfIt3wsbGhujoaD777LMsH+Pk5MTgwYPfX1BCCCGEEB8YueFSvBO6uroZPiZeCCGEEELIyHeesWvXLr744gssLCwoVKgQX331FeHh4cD/TxnZvHkzjRs3xsjIiGrVqnH8+HH1+B49elC1alUSEhIASExMpEaNGnTt2lWrjlfTTv7++29atGiBiYkJRYsW5bvvvuPu3bsAeHh4cOjQIRYsWIBGo0Gj0RAREUHZsmWZPXu2VuxBQUFoNBquXbuW7XbfvHkTNzc3LCwsKFiwIF9//TWRkZEA7NmzBwMDAx4+fKh1zKBBg2jSpIm6fvToURo2bIihoSE2NjZ4enry+PHjLMeQkJBAXFyc1iKEEEKIvEk633nE48ePGTp0KGfOnGH//v3o6OjQtm1bkpOT1TJjx45l+PDhBAUFUb58edzd3Xnx4gUACxcu5PHjx4wePVot+/DhQxYvXpzm+R4+fEiTJk2oUaMGZ86cYdeuXdy+fRs3NzcAFixYQP369enduzfR0dFER0dTsmRJevTowcqVK7XqWrlyJY0aNaJs2bLZavPz589xcXHB1NSUI0eOEBgYiImJCc2bNycxMRFnZ2csLCzYtGmTekxSUhLr1q2jS5cuAISHh9O8eXO++eYbLly4wLp16zh69CgDBw7Mchze3t6Ym5uri42NTbbaIYQQQohPh6Sd5BHffPON1vpvv/2GpaUlly9fxsTEBIDhw4fTqlUrACZOnEiVKlW4du0aFStWxMTEhN9//x1HR0dMTU2ZP38+Bw8eTHeS+cWLF1OjRg2mTZumdU4bGxuuXr1K+fLl0dPTw8jISCtdxcPDg/Hjx3Pq1Cnq1q3L8+fPWbNmTarR8KxYt24dycnJrFixAo1GA7zsyFtYWBAQEECzZs3o1KkTa9asoWfPngDs37+fhw8fqtfL29ubLl26qLnp5cqVY+HChTg6OrJ06VIMDAwyjWPMmDEMHTpUXY+Li5MOuBBCCJFHych3HhEWFoa7uzulS5fGzMwMOzs7AKKiotQyVatWVX8uVqwYADExMeq2+vXrM3z4cCZPnsywYcP44osv0j1fcHAwBw8exMTERF0qVqwIoKa7pMXa2ppWrVrx22+/AfDnn3+SkJBAhw4dst3m4OBgrl27hqmpqRpDwYIFefbsmRpDly5dCAgI4NatWwD4+fnRqlUrLCws1Dp8fHy02uHi4kJycjIRERFZikNfXx8zMzOtRQghhBB5k4x85xGurq7Y2tqyfPlyrK2tSU5O5rPPPiMxMVEtkz9/fvXnlJHiV9NSkpOTCQwMRFdXN9P86/j4eFxdXZkxY0aqfSkd+/T06tWL7777jnnz5rFy5Uo6duyIkZFRltr5egy1atXCz88v1T5LS0sA6tSpQ5kyZVi7di3ff/89W7ZswcfHR6uOvn374unpmaqOkiVLZjsmIYQQQuRt0vnOA+7du0doaCjLly+nYcOGwMubCLNr1qxZXLlyhUOHDuHi4sLKlSvp3r17mmVr1qzJpk2bsLOzI1++tF9menp6JCUlpdresmVLjI2NWbp0Kbt27eLw4cPZjjUlhnXr1lGkSJEMR5u7dOmCn58fJUqUQEdHR029Sanj8uXL2c43F0IIIYRIi6Sd5AEFChSgUKFC/PLLL1y7do0DBw5o5SBnxfnz5xk/fjwrVqzAwcGBuXPnMmjQIK5fv55m+QEDBnD//n3c3d05ffo04eHh7N69m+7du6sdbjs7O06ePElkZCR3795VR9l1dXXx8PBgzJgxlCtXjvr1679Ru7t06ULhwoX5+uuvOXLkCBEREQQEBODp6ck///yjVe7cuXNMnTqV9u3bo6+vr+4bNWoUx44dY+DAgQQFBREWFsbWrVuzdcOlEEIIIUQK6XznATo6Oqxdu5azZ8/y2WefMWTIEGbNmpXl4589e8a3336Lh4cHrq6uAPTp04fGjRvz3XffpTl6bW1tTWBgIElJSTRr1gx7e3sGDx6MhYUFOjovX3bDhw9HV1eXypUrY2lpqZV/3rNnTxITE9MdWc8KIyMjDh8+TMmSJWnXrh2VKlWiZ8+ePHv2TGskvGzZstStW5cLFy6os5ykqFq1KocOHeLq1as0bNiQGjVqMH78eKytrd84LiGEEELkXRpFUZTcDkKI1x05cgRnZ2du3rxJ0aJFczucdyouLg5zc3NiY2Pl5kshhBDiI/Guvr8l51t8UBISErhz5w5eXl506NDhk+t4CyGEECJvk7QT8UH5448/sLW15eHDh8ycOVNrn5+fn9aUf68uVapUyaWIhRBCCCGyTtJOxEfj0aNH3L59O819+fPnx9bWNocjejOSdiKEEEJ8fCTtROQ5pqammJqa5nYYQgjxSak1YlWmZc7O6poDkQiRN0jaiRBCCCGEEDlEOt8iVzg5OTF48OA3Pj4yMhKNRkNQUBAAAQEBaDQaHj58+EbHCyGEEELkBEk7EXmSjY0N0dHRFC5cOLdDEUIIIUQeIp1vkSfp6upiZWWV22EIIYQQIo+RtBORa168eMHAgQMxNzencOHCjBs3jpTJdzQaDf7+/lrlLSws8PHxybTex48fY2ZmxsaNG7W2+/v7Y2xszKNHj9JNW9m/fz+1a9fGyMiIBg0aEBoaqlXHlClTKFKkCKampvTq1YvRo0dTvXr1N70EQgghhMhjpPMtco2vry/58uXj1KlTLFiwgLlz57JixYq3rtfY2JhOnTqxcuVKre0rV66kffv2Gc6YMnbsWObMmcOZM2fIly8fPXr0UPf5+fkxdepUZsyYwdmzZylZsiRLly7NNJ6EhATi4uK0FiGEEELkTZJ2InKNjY0N8+bNQ6PRUKFCBS5evMi8efPo3bv3W9fdq1cvGjRoQHR0NMWKFSMmJoYdO3awb9++DI+bOnUqjo6OAIwePZpWrVrx7NkzDAwMWLRoET179qR79+4AjB8/nj179hAfH59hnd7e3kycOPGt2ySEEEKIj5+MfItcU69ePTQajbpev359wsLCSEpKeuu669atS5UqVfD19QXg999/x9bWlkaNGmV4XNWqVdWfixUrBkBMTAwAoaGh1K1bN9V5MjNmzBhiY2PV5ebNm9lqixBCCCE+HdL5Fh8kjUbD6w9fff78ebbq6NWrl5ojvnLlSrp3767V2U9L/vz5tWIASE5OztZ5X6evr4+ZmZnWIoQQQoi8STrfItecPHlSa/3EiROUK1cOXV1dLC0tiY6OVveFhYXx5MmTbNX/7bffcuPGDRYuXMjly5fp1q3bW8VboUIFTp8+rbXt9XUhhBBCiIxIzrfINVFRUQwdOpS+ffty7tw5Fi1axJw5cwBo0qQJixcvpn79+iQlJTFq1CitUemsKFCgAO3atWPEiBE0a9aMEiVKvFW8P/zwA71796Z27do0aNCAdevWceHCBUqXLv1W9QohhBAi75DOt8g1Xbt25enTp9StWxddXV0GDRpEnz59AJgzZw7du3enYcOGWFtbs2DBAs6ePZvtc/Ts2ZM1a9ZozVryprp06cL169cZPnw4z549w83NDQ8PD06dOvXWdQshhBAib9AoryfWCvEJWb16NUOGDOHWrVvo6em98/q//PJLrKysWL16dZaPiYuLw9zcnNjYWMn/FkLkulojVmVa5uysrjkQiRAftnf1/S0j3+KT9OTJE6Kjo5k+fTp9+/Z9Jx3vJ0+e8PPPP+Pi4oKuri5//PEH+/btY+/eve8gYiGEyB3SsRYiZ8kNl+KTNHPmTCpWrIiVlRVjxox5J3VqNBp27NhBo0aNqFWrFn/++SebNm2iadOm76R+IYQQQnz6JO1EiBwmaSdCCCHEx0fSToQQQgjx1tLL+ZZ0FCHeD0k7EUIIIYQQIodI51sIIYQQQogcIp1v8cHw8fHBwsLindQVEBCARqPh4cOH76S+3D6PEEIIIT4N0vkWb8XDw4M2bdrkdhhCCCGEEB8F6XwLIYQQQgiRQ6TzLbJk48aN2NvbY2hoSKFChWjatCkjRozA19eXrVu3otFo0Gg0BAQEpJmKERQUhEajITIyUt3m4+NDyZIlMTIyom3btty7d0/dFxkZiY6ODmfOnNGKY/78+dja2pKcnJztNmzatIkqVaqgr6+PnZ0dc+bM0dq/evVqateujampKVZWVnTu3JmYmBitMjt27KB8+fIYGhrSuHFjrfakJyEhgbi4OK1FCCGEEHmTdL5FpqKjo3F3d6dHjx6EhIQQEBBAu3btmDBhAm5ubjRv3pzo6Giio6Np0KBBluo8efIkPXv2ZODAgQQFBdG4cWOmTJmi7rezs6Np06asXLlS67iVK1fi4eGBjk72Xrpnz57Fzc2NTp06cfHiRby8vBg3bhw+Pj5qmefPnzN58mSCg4Px9/cnMjISDw8Pdf/Nmzdp164drq6uBAUF0atXL0aPHp3pub29vTE3N1cXGxubbMUuhBBCiE+HzPMtMhUdHc2LFy9o164dtra2ANjb2wNgaGhIQkICVlZW2apzwYIFNG/enJEjRwJQvnx5jh07xq5du9QyvXr1ol+/fsydOxd9fX3OnTvHxYsX2bp1a7bbMHfuXJydnRk3bpx6vsuXLzNr1iy1g92jRw+1fOnSpVm4cCF16tQhPj4eExMTli5dSpkyZdQR8woVKnDx4kVmzJiR4bnHjBnD0KFD1fW4uDjpgAshhBB5lIx8i0xVq1YNZ2dn7O3t6dChA8uXL+fBgwdvVWdISAiff/651rb69etrrbdp0wZdXV22bNkCvExTady4MXZ2dm90PgcHB61tDg4OhIWFkZSUBLwcHXd1daVkyZKYmpri6OgIQFRUVJZjTou+vj5mZmZaixBCCCHyJul8i0zp6uqyd+9edu7cSeXKlVm0aBEVKlQgIiIizfIpKSGKoqjbnj9/nu3z6unp0bVrV1auXEliYiJr1qzRGp1+lx4/foyLiwtmZmb4+flx+vRptdOfmJj4Xs4phBBCiLxHOt8iSzQaDQ4ODkycOJHz58+jp6fHli1b0NPTU0eOU1haWgIv01VSBAUFaZWpVKkSJ0+e1Np24sSJVOft1asX+/btY8mSJWrqy5uoVKkSgYGBWtsCAwMpX748urq6XLlyhXv37jF9+nQaNmxIxYoVU91sWalSJU6dOpVpzEIIIYQQ6ZHOt8jUyZMnmTZtGmfOnCEqKorNmzdz584dKlWqhJ2dHRcuXCA0NJS7d+/y/PlzypYti42NDV5eXoSFhbF9+/ZUM4t4enqya9cuZs+eTVhYGIsXL9bK905RqVIl6tWrx6hRo3B3d8fQ0PCN2jBs2DD279/P5MmTuXr1Kr6+vixevJjhw4cDULJkSfT09Fi0aBHXr19n27ZtTJ48WauOfv36ERYWxogRIwgNDWXNmjVaN2wKIYQQQmRGOt8iU2ZmZhw+fJiWLVtSvnx5fvzxR+bMmUOLFi3o3bs3FSpUoHbt2lhaWhIYGEj+/Pn5448/uHLlClWrVmXGjBlaM5kA1KtXj+XLl7NgwQKqVavGnj17+PHHH9M8f8+ePUlMTHyrlJOaNWuyfv161q5dy2effcb48eOZNGmSerOlpaUlPj4+bNiwgcqVKzN9+nRmz56tVUfJkiXZtGkT/v7+VKtWjZ9//plp06a9cUxCCCGEyHs0yquJuUJ8gCZPnsyGDRu4cOFCbofyTsTFxWFubk5sbKzcfCmEyHW1RqxKc/vZWV1zOBIhPmzv6vtbphoUH6z4+HgiIyNZvHhxqpFzIYQQ74Z0soXIWZJ2Ij5YAwcOpFatWjg5OaVKOenXrx8mJiZpLv369culiIUQQgghMiZpJ+KjFBMTk+5j2s3MzChSpEgOR5R1knYihBBCfHwk7UTkaUWKFPmgO9hCCPGxSCvnW1JRhHh/JO1ECCGEEEKIHCKd7zzOw8ODNm3a5HYYueL1tjs5OTF48OBci0cIIYQQnz5JOxHi/2zevJn8+fOr63Z2dgwePFg65EIIIYR4Z6TzLcT/KViwYG6HIIQQQohPnKSd5BEbN27E3t4eQ0NDChUqRNOmTXn8+HGqcsnJyXh7e1OqVCkMDQ2pVq0aGzdu1Crz999/06JFC0xMTChatCjfffcdd+/eVfc7OTkxcOBABg4ciLm5OYULF2bcuHFkdWKdmJgYXF1dMTQ0pFSpUvj5+WFnZ8f8+fMBiIyMRKPREBQUpB7z8OFDNBoNAQEBACQlJdGzZ0+1HRUqVGDBggUZnvfVtBMnJydu3LjBkCFD0Gg0aDQaHj9+jJmZWarr4e/vj7GxMY8ePcpS+4QQQgiRd0nnOw+Ijo7G3d2dHj16EBISQkBAAO3atUuzM+zt7c2qVav4+eefuXTpEkOGDOHbb7/l0KFDwMtObpMmTahRowZnzpxh165d3L59Gzc3N616fH19yZcvH6dOnWLBggXMnTuXFStWZCleDw8Pbt68ycGDB9m4cSNLliwhJiYmW21OTk6mRIkSbNiwgcuXLzN+/Hj+97//sX79+iwdv3nzZkqUKMGkSZOIjo4mOjoaY2NjOnXqxMqVK7XKrly5kvbt22NqappmXQkJCcTFxWktQgghhMibJO0kD4iOjubFixe0a9cOW1tbAOzt7VOVS0hIYNq0aezbt4/69esDULp0aY4ePcqyZctwdHRk8eLF1KhRg2nTpqnH/fbbb9jY2HD16lXKly8PgI2NDfPmzUOj0VChQgUuXrzIvHnz6N27d4axXr16lZ07d3Lq1Cnq1KkDwK+//kqlSpWy1eb8+fMzceJEdb1UqVIcP36c9evXp/pDIS0FCxZEV1cXU1NTrKys1O29evWiQYMGREdHU6xYMWJiYtixYwf79u1Lty5vb2+tWIQQQgiRd8nIdx5QrVo1nJ2dsbe3p0OHDixfvpwHDx6kKnft2jWePHnCl19+qfXEyFWrVhEeHg5AcHAwBw8e1NpfsWJFALUMQL169dBoNOp6/fr1CQsLIykpKcNYQ0JCyJcvH7Vq1VK3VaxYEQsLi2y3+6effqJWrVpYWlpiYmLCL7/8QlRUVLbreVXdunWpUqUKvr6+APz+++/Y2trSqFGjdI8ZM2YMsbGx6nLz5s23ikEIIYQQHy8Z+c4DdHV12bt3L8eOHWPPnj0sWrSIsWPHcvLkSa1y8fHxAGzfvp3ixYtr7dPX11fLuLq6MmPGjFTnKVas2HtqgTYdnZd/M76aNvP8+XOtMmvXrmX48OHMmTOH+vXrY2pqyqxZs1K1+U306tWLn376idGjR7Ny5Uq6d++u9YfG6/T19dXrJ4QQQoi8TTrfeYRGo8HBwQEHBwfGjx+Pra0tW7Zs0SpTuXJl9PX1iYqKwtHRMc16atasyaZNm7CzsyNfvvRfPq93ck+cOEG5cuXQ1dXNMM6KFSvy4sULzp49q6adhIaG8vDhQ7WMpaUl8DKdpkaNGgBaN18CBAYG0qBBA/r3769ue3VkPiv09PTSHKn/9ttvGTlyJAsXLuTy5ct069YtW/UKIYQQIu+StJM84OTJk0ybNo0zZ84QFRXF5s2buXPnTqo8alNTU4YPH86QIUPw9fUlPDycc+fOsWjRIjXNYsCAAdy/fx93d3dOnz5NeHg4u3fvpnv37lod1aioKIYOHUpoaCh//PEHixYtYtCgQZnGWqFCBZo3b07fvn05efIkZ8+epVevXhgaGqplDA0NqVevHtOnTyckJIRDhw7x448/atVTrlw5zpw5w+7du7l69Srjxo3j9OnT2bpudnZ2HD58mH///VdrNpcCBQrQrl07RowYQbNmzShRokS26hVCCCFE3iWd7zzAzMyMw4cP07JlS8qXL8+PP/7InDlzaNGiRaqykydPZty4cXh7e1OpUiWaN2/O9u3bKVWqFADW1tYEBgaSlJREs2bNsLe3Z/DgwVhYWKjpIABdu3bl6dOn1K1blwEDBjBo0CD69OmTpXhXrlyJtbU1jo6OtGvXjj59+lCkSBGtMr/99hsvXrygVq1aDB48mClTpmjt79u3L+3ataNjx458/vnn3Lt3T2sUPCsmTZpEZGQkZcqUUUfbU/Ts2ZPExER69OiRrTqFEEIIkbdplKxOvixEFjk5OVG9enV1Xu534UN72uTq1asZMmQIt27dQk9PL1vHxsXFYW5uTmxsLGZmZu8pQiGEyJpaI1al2nZ2VtdciESID9u7+v6WnG8hsuHJkydER0czffp0+vbtm+2OtxBCfGikoy1EzpK0E5Gjjhw5ojVN4evLh27mzJlUrFgRKysrxowZk9vhCCGEEOIjI2knIkc9ffqUf//9N939ZcuWzcFocoeknQghhBAfH0k7ER8lQ0PDPNHBFkIIIYRIi3S+hRBCiDzs9RsuJQdciPdLcr6FEEIIIYTIIZ9U51tRFPr06UPBggXRaDSpnnoohBBCCCFEbvqkOt+7du3Cx8eHv/76i+joaD777LNMj9FoNPj7+7//4IQQQgghRJ73SeV8h4eHU6xYMRo0aJDj505MTPzg5nx+nzE9f/6c/Pnzv5e6c4uiKCQlJZEv3yf1thBCCCHEB+STGfn28PDghx9+ICoqCo1Gg52dHXZ2dqmesli9enW8vLyAl09NBGjbtq16TEpdbdq00Tpu8ODBODk5qetOTk4MHDiQwYMHU7hwYVxcXAD4+++/adGiBSYmJhQtWpTvvvuOu3fvZqkNycnJzJw5k7Jly6Kvr0/JkiWZOnWqun/UqFGUL18eIyMjSpcuzbhx43j+/Lm638vLi+rVq7NixQpKlSqFgYEBAA8fPqRXr15YWlpiZmZGkyZNCA4O1jr31q1bqVmzJgYGBpQuXZqJEyfy4sULdb9Go2Hp0qW0bt0aY2NjrbjSc+nSJb766ivMzMwwNTWlYcOGhIeHq22dNGkSJUqUQF9fn+rVq7Nr1y712MjISDQaDZs3b6Zx48YYGRlRrVo1jh8/rnWOwMBAnJycMDIyokCBAri4uPDgwQP1HN7e3pQqVQpDQ0OqVavGxo0b1WMDAgLQaDTs3LmTWrVqoa+vz9GjR3FycsLT05ORI0dSsGBBrKys1NcMvOyke3l5UbJkSfT19bG2tsbT0zPT6yGEEEII8cl0vhcsWKB25qKjozl9+nSmx6SUWblyZZaPeZWvry96enoEBgby888/8/DhQ5o0aUKNGjU4c+YMu3bt4vbt27i5uWWpvjFjxjB9+nTGjRvH5cuXWbNmDUWLFlX3m5qa4uPjw+XLl1mwYAHLly9n3rx5WnVcu3aNTZs2sXnzZjXnvUOHDsTExLBz507Onj1LzZo1cXZ25v79+8DLB9907dqVQYMGcfnyZZYtW4aPj0+qDraXlxdt27bl4sWL9OjRI8O2/PvvvzRq1Ah9fX0OHDjA2bNn6dGjh9qhX7BgAXPmzGH27NlcuHABFxcXWrduTVhYmFY9Y8eOZfjw4QQFBVG+fHnc3d3VOoKCgnB2dqZy5cocP36co0eP4urqSlJSEgDe3t6sWrWKn3/+mUuXLjFkyBC+/fZbDh06pHWO0aNHM336dEJCQqhatSrw8ndrbGzMyZMnmTlzJpMmTWLv3r0AbNq0iXnz5rFs2TLCwsLw9/fH3t4+3WuRkJBAXFyc1iKEEEKIPEr5hMybN0+xtbVV121tbZV58+ZplalWrZoyYcIEdR1QtmzZolWmW7duytdff621bdCgQYqjo6O67ujoqNSoUUOrzOTJk5VmzZppbbt586YCKKGhoRnGHhcXp+jr6yvLly/PsNyrZs2apdSqVUtdnzBhgpI/f34lJiZG3XbkyBHFzMxMefbsmdaxZcqUUZYtW6YoiqI4Ozsr06ZN09q/evVqpVixYuo6oAwePDjLsY0ZM0YpVaqUkpiYmOZ+a2trZerUqVrb6tSpo/Tv319RFEWJiIhQAGXFihXq/kuXLimAEhISoiiKori7uysODg5p1v/s2TPFyMhIOXbsmNb2nj17Ku7u7oqiKMrBgwcVQPH399cq4+joqHzxxRepYhs1apSiKIoyZ84cpXz58um27XUTJkxQgFRLbGxslo4XQoj3qeZwX61FCJG22NjYd/L9Lcmtb6FWrVpa68HBwRw8eDDNx6SHh4dTvnz5dOsKCQkhISEBZ2fndMusW7eOhQsXEh4eTnx8PC9evEj1hCVbW1ssLS21YoqPj6dQoUJa5Z4+faqmgAQHBxMYGKg10p2UlMSzZ8948uQJRkZGANSuXTvd2F4XFBREw4YN08wLj4uL49atWzg4OGhtd3BwSJUOkzISDVCsWDEAYmJiqFixIkFBQXTo0CHN81+7do0nT57w5Zdfam1PTEykRo0aWtvSater5005d0xMDPDyPwnz58+ndOnSNG/enJYtW+Lq6ppurviYMWMYOnSoVvttbGzSLCuEEEKIT9sn3fnW0dFBURStba/mSL/tccbGxlrr8fHxuLq6MmPGjFRlUzqO6TE0NMxw//Hjx+nSpQsTJ07ExcUFc3Nz1q5dy5w5czKNqVixYgQEBKSq08LCQi0zceJE2rVrl6pMSt54WnVnJLP2ZNWrnXeNRgO8zOXO7Bzx8fEAbN++neLFi2vt09fX11pPq12v/9Gg0WjU89rY2BAaGsq+ffvYu3cv/fv3Z9asWRw6dCjNPzb09fVTnVMIIYQQedMn3fm2tLQkOjpaXY+LiyMiIkKrTP78+dUc4VeP+/vvv7W2BQUFZTq7R82aNdm0aRN2dnbZnjGjXLlyGBoasn//fnr16pVq/7Fjx7C1tWXs2LHqths3bmRab82aNfnvv//Ily+fekNpWmVCQ0Pf6WPfq1atiq+vb5qzopiZmWFtbU1gYCCOjo7q9sDAQOrWrZutc+zfv5+JEyem2le5cmX09fWJiorSOse7YmhoiKurK66urgwYMICKFSty8eJFatas+c7PJYQQQohPxydzw2VamjRpwurVqzly5AgXL16kW7du6OrqapWxs7Nj//79/Pfff+osGU2aNOHMmTOsWrWKsLAwJkyYkKoznpYBAwZw//593N3dOX36NOHh4ezevZvu3bun6uC/zsDAgFGjRjFy5EhWrVpFeHg4J06c4NdffwVeds6joqJYu3Yt4eHhLFy4kC1btmQaU9OmTalfvz5t2rRhz549REZGcuzYMcaOHcuZM2cAGD9+PKtWrWLixIlcunSJkJAQ1q5dy48//php/ekZOHAgcXFxdOrUiTNnzhAWFsbq1asJDQ0FYMSIEcyYMYN169YRGhrK6NGjCQoKYtCgQVk+x5gxYzh9+jT9+/fnwoULXLlyhaVLl3L37l1MTU0ZPnw4Q4YMwdfXl/DwcM6dO8eiRYvw9fV943YB+Pj48Ouvv/L3339z/fp1fv/9dwwNDbG1tX2reoUQQgjx6fukO99jxozB0dGRr776ilatWtGmTRvKlCmjVWbOnDns3bsXGxsbNRfYxcWFcePGMXLkSOrUqcOjR4/o2rVrpudLGc1NSkqiWbNm2NvbM3jwYCwsLNDRyfxSjxs3jmHDhjF+/HgqVapEx44d1Tzj1q1bM2TIEAYOHEj16tU5duwY48aNy7ROjUbDjh07aNSoEd27d6d8+fJ06tSJGzduqDOpuLi48Ndff7Fnzx7q1KlDvXr1mDdv3lt1JgsVKsSBAweIj4/H0dGRWrVqsXz5cnUU3NPTk6FDhzJs2DDs7e3ZtWsX27Zto1y5clk+R/ny5dmzZw/BwcHUrVuX+vXrs3XrVvW/DpMnT2bcuHF4e3tTqVIlmjdvzvbt2ylVqtQbtwtepussX74cBwcHqlatyr59+/jzzz9T5dULIYQQQrxOo7ye3CyEeK/i4uIwNzcnNjY21Q2zQgiR02qNWKW1fnZW5oNNQuRF7+r7+5PO+RZCCCFExqSzLUTO+qTTTj4kUVFRmJiYpLtERUXldojZ0q9fv3Tb0q9fv9wOTwghhBDigyRpJznkxYsXREZGprv/TWZIyU0xMTHpPqnRzMyMIkWK5HBEHw9JOxFCCCE+PpJ28pHJly/fO53KL7cVKVJEOthCCPEJSMn5lvQTIXKGpJ0IIYQQQgiRQ6TzLYQQQgghRA6Rzrd4r7y8vKhevXqOnEuj0eDv758j50phZ2fH/Pnzc/ScQgghhPh4SedbvFfDhw9n//79uR2GEEIIIcQHQW64FO9VyvSDQgghhBBCRr5FJpycnPD09GTkyJEULFgQKysrvLy81P1RUVF8/fXXmJiYYGZmhpubG7dv31b3v552EhAQQN26dTE2NsbCwgIHBwdu3Lih7t+6dSs1a9bEwMCA0qVLM3HiRF68ePFGsd+8eRM3NzcsLCwoWLAgX3/9tTrd4549ezAwMODhw4daxwwaNIgmTZqo60ePHqVhw4YYGhpiY2ODp6cnjx8/zlYcCQkJxMXFaS1CCCGEyJuk8y0y5evri7GxMSdPnmTmzJlMmjSJvXv3kpyczNdff839+/c5dOgQe/fu5fr163Ts2DHNel68eEGbNm1wdHTkwoULHD9+nD59+qDRaAA4cuQIXbt2ZdCgQVy+fJlly5bh4+PD1KlTsx3z8+fPcXFxwdTUlCNHjhAYGIiJiQnNmzcnMTERZ2dnLCws2LRpk3pMUlIS69ato0uXLgCEh4fTvHlzvvnmGy5cuMC6des4evQoAwcOzFYs3t7emJubq4uNjU222yOEEEKIT4QiRAYcHR2VL774QmtbnTp1lFGjRil79uxRdHV1laioKHXfpUuXFEA5deqUoiiKMmHCBKVatWqKoijKvXv3FEAJCAhI81zOzs7KtGnTtLatXr1aKVasWJZiBZQtW7aox1WoUEFJTk5W9yckJCiGhobK7t27FUVRlEGDBilNmjRR9+/evVvR19dXHjx4oCiKovTs2VPp06eP1jmOHDmi6OjoKE+fPlUURVFsbW2VefPmZRjXs2fPlNjYWHW5efOmAiixsbFZapcQQrxPNYf7KjWH++Z2GEJ88GJjY9/J97fkfItMVa1aVWu9WLFixMTEEBISgo2NjdZIbuXKlbGwsCAkJIQ6depoHVewYEE8PDxwcXHhyy+/pGnTpri5uVGsWDEAgoODCQwM1BrpTkpK4tmzZzx58gQjI6MsxxwcHMy1a9cwNTXV2v7s2TPCw8MB6NKlC/Xq1ePWrVtYW1vj5+dHq1atsLCwUOu4cOECfn5+6vGKopCcnExERASVKlXKUiz6+vro6+tnOXYhhBBCfLqk8y0ylT9/fq11jUZDcnLyG9W1cuVKPD092bVrF+vWrePHH39k79691KtXj/j4eCZOnEi7du1SHWdgYJCt88THx1OrVi2tjnMKS0tLAOrUqUOZMmVYu3Yt33//PVu2bMHHx0erjr59++Lp6ZmqjpIlS2YrHiGEEEIIkM63eAuVKlXi5s2b3Lx5Ux39vnz5Mg8fPqRy5crpHlejRg1q1KjBmDFjqF+/PmvWrKFevXrUrFmT0NBQypYt+9ax1axZk3Xr1lGkSBHMzMzSLdelSxf8/PwoUaIEOjo6tGrVSquOy5cvv5N4hBBCCCFAbrgUb6Fp06bY29vTpUsXzp07x6lTp+jatSuOjo7Url07VfmIiAjGjBnD8ePHuXHjBnv27CEsLExN3xg/fjyrVq1i4sSJXLp0iZCQENauXcuPP/6Y7di6dOlC4cKF+frrrzly5AgREREEBATg6enJP//8o1Xu3LlzTJ06lfbt22ulh4waNYpjx44xcOBAgoKCCAsLY+vWrdm+4VIIIYQQIoV0vsUb02g0bN26lQIFCtCoUSOaNm1K6dKlWbduXZrljYyMuHLlCt988w3ly5enT58+DBgwgL59+wLg4uLCX3/9xZ49e6hTpw716tVj3rx52NraZjs2IyMjDh8+TMmSJWnXrh2VKlWiZ8+ePHv2TGskvGzZstStW5cLFy6os5ykqFq1KocOHeLq1as0bNiQGjVqMH78eKytrbMdjxBCCCEEgEZRFCW3gxAiL4mLi8Pc3JzY2NgMU2KEEEII8eF4V9/fMvIthBBCCCFEDpHOt/go+Pn5qY+qf32pUqVKbocnhBBCCJElMtuJ+Ci0bt2azz//PM19r0+FKIQQQgjxoZLOt/gomJqapnpgjhBCiLdXa8Qqzs7qmtthCJFnSNqJEEIIIYQQOUQ63x8AJycnBg8eDICdnR3z589/o2M/ZT4+Pupj3wG8vLyoXr16hsdERkai0WgICgp6r7EJIYQQQmSVpJ18YE6fPo2xsXGWy2/evDlP5jwPHz6cH374QV338PDg4cOH+Pv7q9tsbGyIjo6mcOHCuRChEEIIIURq0vn+wFhaWmarfMGCBd9TJB+2lJlOMqKrq4uVlVUORSSEEEIIkTlJO/nAvJp20rlzZzp27Ki1//nz5xQuXJhVq1YBqdNO7OzsmDZtGj169MDU1JSSJUvyyy+/aNVx7NgxqlevjoGBAbVr18bf3z9b6RmXLl3iq6++wszMDFNTUxo2bEh4eDgAycnJTJo0iRIlSqCvr0/16tXZtWuXemxKKsjmzZtp3LgxRkZGVKtWjePHj2udw8fHh5IlS2JkZETbtm25d++e1v5X0068vLzw9fVl69ataDQaNBoNAQEBaaadHDp0iLp166Kvr0+xYsUYPXo0L168UPc7OTnh6enJyJEjKViwIFZWVnh5ean7FUXBy8uLkiVLoq+vj7W1NZ6enlm6bkIIIYQQ0vn+gHXp0oU///yT+Ph4ddvu3bt58uQJbdu2Tfe4OXPmULt2bc6fP0///v35/vvvCQ0NBV4+ncnV1RV7e3vOnTvH5MmTGTVqVJZj+vfff2nUqBH6+vocOHCAs2fP0qNHD7UDu2DBAubMmcPs2bO5cOECLi4utG7dmrCwMK16xo4dy/DhwwkKCqJ8+fK4u7urdZw8eZKePXsycOBAgoKCaNy4MVOmTEk3puHDh+Pm5kbz5s2Jjo4mOjqaBg0apBl7y5YtqVOnDsHBwSxdupRff/01Vd2+vr4YGxtz8uRJZs6cyaRJk9i7dy8AmzZtYt68eSxbtoywsDD8/f2xt7fP8JolJCQQFxentQghhBAij1JErnN0dFQGDRqkKIqi2NraKvPmzVMURVGeP3+uFC5cWFm1apVa1t3dXenYsWOax6Yc/+2336rrycnJSpEiRZSlS5cqiqIoS5cuVQoVKqQ8ffpULbN8+XIFUM6fP59prGPGjFFKlSqlJCYmprnf2tpamTp1qta2OnXqKP3791cURVEiIiIUQFmxYoW6/9KlSwqghISEqG1s2bKlVh0dO3ZUzM3N1fUJEyYo1apVU9e7deumfP3111rHpJwrpV3/+9//lAoVKijJyclqmZ9++kkxMTFRkpKSFEV5eT2/+OKLVPGPGjVKURRFmTNnjlK+fPl025+WCRMmKECqJTY2Nst1CCHE+1JzuG9uhyDERyE2NvadfH/LyPcHLF++fLi5ueHn5wfA48eP2bp1K126dMnwuKpVq6o/azQarKysiImJASA0NJSqVatiYGCglqlbt26WYwoKCqJhw4Zp3uQZFxfHrVu3cHBw0Nru4OBASEhIujEWK1YMQI0xJCQk1QN16tevn+UY0xMSEkL9+vXRaDRascXHx/PPP/+kGVtKfCmxdejQgadPn1K6dGl69+7Nli1btNJW0jJmzBhiY2PV5ebNm2/dFiGEEEJ8nKTz/YHr0qUL+/fvJyYmBn9/fwwNDWnevHmGx7zeMdZoNCQnJ7+TeAwNDd9JPa/GmNIZflcxvq2Mrp+NjQ2hoaEsWbIEQ0ND+vfvT6NGjXj+/Hm69enr62NmZqa1CCGEECJvks73B65BgwbY2Niwbt06/Pz86NChw1tNLVihQgUuXrxIQkKCuu306dNZPr5q1aocOXIkzc6mmZkZ1tbWBAYGam0PDAykcuXKWT5HpUqVOHnypNa2EydOZHiMnp4eSUlJmdZ7/PhxFEXRis3U1JQSJUpkOT5DQ0NcXV1ZuHAhAQEBHD9+nIsXL2b5eCGEEELkXdL5/gh07tyZn3/+mb1792aacpKVupKTk+nTpw8hISHs3r2b2bNnA2ilY6Rn4MCBxMXF0alTJ86cOUNYWBirV69Wb+gcMWIEM2bMYN26dYSGhjJ69GiCgoIYNGhQlmP09PRk165dzJ49m7CwMBYvXqw1Y0pa7OzsuHDhAqGhody9ezfNPw769+/PzZs3+eGHH7hy5Qpbt25lwoQJDB06FB2drL0VfHx8+PXXX/n777+5fv06v//+O4aGhtja2ma5fUIIIYTIu6Tz/RHo0qULly9fpnjx4qnyqbPLzMyMP//8k6CgIKpXr87YsWMZP348gFYeeHoKFSrEgQMHiI+Px9HRkVq1arF8+XJ1NN7T05OhQ4cybNgw7O3t2bVrF9u2baNcuXJZjrFevXosX76cBQsWUK1aNfbs2cOPP/6Y4TG9e/emQoUK1K5dG0tLy1Sj7wDFixdnx44dnDp1imrVqtGvXz969uyZad2vsrCwYPny5Tg4OFC1alX27dvHn3/+SaFChbJchxBCCCHyLo3y6v/gRZ7k5+dH9+7diY2NfWc53SJ9cXFxmJubExsbK/nfQohcV2vEKs7O6prbYQjxwXtX39/yhMs8aNWqVZQuXZrixYsTHBzMqFGjcHNzk463EELkQdLxFiJnSdpJHvTff//x7bffUqlSJYYMGUKHDh3Up2D269dPfXT760u/fv1yOXIhhBBCiI+bpJ0ILTExMek+gdHMzIwiRYrkcESfHkk7EUIIIT4+knYi3osiRYpIB1sIIYQQ4j2RtBMhhBBCCCFyiHS+hRBCCCGEyCHS+RafFDs7O+bPn5+j53RycmLw4ME5ek4hhBBCfJyk8y2yzMPDgzZt2uR2GEIIIYQQHy3pfIt3Lq1HuwshhBBCCOl8izRs3LgRe3t7DA0NKVSoEE2bNmXEiBH4+vqydetWNBoNGo2GgIAAIiMj0Wg0rFu3DkdHRwwMDPDz8wNgxYoVVKpUCQMDAypWrMiSJUvUcyQmJjJw4ECKFSuGgYEBtra2eHt7A6AoCl5eXpQsWRJ9fX2sra3x9PR8o7Y8fPiQXr16YWlpiZmZGU2aNCE4OBiAq1evotFouHLlitYx8+bNo0yZMur633//TYsWLTAxMaFo0aJ899133L17N8sxJCQkEBcXp7UIIYQQIm+SzrfQEh0djbu7Oz169CAkJISAgADatWvHhAkTcHNzo3nz5kRHRxMdHU2DBg3U40aPHs2gQYMICQnBxcUFPz8/xo8fz9SpUwkJCWHatGmMGzcOX19fABYuXMi2bdtYv349oaGh+Pn5YWdnB8CmTZuYN28ey5YtIywsDH9/f+zt7d+oPR06dCAmJoadO3dy9uxZatasibOzM/fv36d8+fLUrl1b/WMhhZ+fH507dwZedt6bNGlCjRo1OHPmDLt27eL27du4ubllOQZvb2/Mzc3VxcbG5o3aIoQQQohPgCLEK86ePasASmRkZKp93bp1U77++mutbREREQqgzJ8/X2t7mTJllDVr1mhtmzx5slK/fn1FURTlhx9+UJo0aaIkJyenOs+cOXOU8uXLK4mJidmO39bWVpk3b56iKIpy5MgRxczMTHn27Fmq2JYtW6YoiqLMmzdPKVOmjLovNDRUAZSQkBA15mbNmmkdf/PmTQVQQkNDFUVRFEdHR2XQoEHpxvTs2TMlNjZWXVKOj42NzXb7hBBCCJE7YmNj38n3t4x8Cy3VqlXD2dkZe3t7OnTowPLly3nw4EGmx9WuXVv9+fHjx4SHh9OzZ0+tx9NPmTKF8PBw4OXNm0FBQVSoUAFPT0/27NmjHt+hQweePn1K6dKl6d27N1u2bOHFixfZbktwcDDx8fEUKlRIK46IiAg1jk6dOhEZGcmJEyeAl6PeNWvWpGLFimodBw8e1Do+ZV9KHZnR19fHzMxMaxFCCCFE3iRPuBRadHV12bt3L8eOHWPPnj0sWrSIsWPHcvLkyQyPMzY2Vn+Oj48HYPny5Xz++eep6geoWbMmERER7Ny5k3379uHm5kbTpk3ZuHEjNjY2hIaGsm/fPvbu3Uv//v2ZNWsWhw4dIn/+/FluS3x8PMWKFSMgICDVPgsLCwCsrKxo0qQJa9asoV69eqxZs4bvv/9eqw5XV1dmzJiRqo5ixYplORYhhBBCCJDOt0iDRqPBwcEBBwcHxo8fj62tLVu2bEFPT4+kpKRMjy9atCjW1tZcv36dLl26pFvOzMyMjh070rFjR9q3b0/z5s25f/8+BQsWxNDQEFdXV1xdXRkwYAAVK1bk4sWL1KxZM8vtqFmzJv/99x/58uVT88nT0qVLF0aOHIm7uzvXr1+nU6dOWnVs2rQJOzs78uWTt4sQQggh3o70JoSWkydPsn//fpo1a0aRIkU4efIkd+7coVKlSjx79ozdu3cTGhpKoUKFMDc3T7eeiRMn4unpibm5Oc2bNychIYEzZ87w4MEDhg4dyty5cylWrBg1atRAR0eHDRs2YGVlhYWFBT4+PiQlJfH5559jZGTE77//jqGhIba2ttlqS9OmTalfvz5t2rRh5syZlC9fnlu3brF9+3batm2rpsq0a9eO77//nu+//57GjRtjbW2t1jFgwACWL1+Ou7s7I0eOpGDBgly7do21a9eyYsUKdSRfCCGEECIrpPMttJiZmXH48GHmz59PXFwctra2zJkzhxYtWlC7dm0CAgKoXbs28fHxHDx4MN0R5V69emFkZMSsWbMYMWIExsbG2Nvbq0+CNDU1ZebMmYSFhaGrq0udOnXYsWMHOjo6WFhYMH36dIYOHUpSUhL29vb8+eefFCpUKFtt0Wg07Nixg7Fjx9K9e3fu3LmDlZUVjRo1omjRomo5U1NTXF1dWb9+Pb/99ptWHdbW1gQGBjJq1CiaNWtGQkICtra2NG/eHB0duWVCCCGEENmjURRFye0ghMhL4uLiMDc3JzY2Vm6+FEIIIT4S7+r7W4buhBBCCCGEyCHS+RYfjSNHjmhN+ff6IoQQQgjxoZOcb/HRqF27NkFBQbkdhhBCCCHEG5POt/hoGBoaUrZs2dwOQwghPhm1Rqzi7KyuuR2GEHmKpJ0IIYQQQgiRQ6Tz/Zbs7OyYP3/+ez+PRqPB39//vZ/nbfn7+1O2bFl0dXXVaQWFEEIIIcRLknbykYiOjqZAgQK5HUam+vbtS/fu3fH09MTU1DS3wxFCCCGE+KBI5/sjYWVlldshZOj58+ckJCQQExODi4uL1lMisysxMRE9Pb13GJ0QQgghxIfhk0o72bVrF1988QUWFhYUKlSIr776ivDwcHX/P//8g7u7OwULFsTY2JjatWtz8uRJAMLDw/n6668pWrQoJiYm1KlTh3379mnVHxMTg6urK4aGhpQqVQo/P79UMTx8+JBevXphaWmJmZkZTZo0ITg4WN3v5eVF9erV+e233yhZsiQmJib079+fpKQkZs6ciZWVFUWKFGHq1Kla9b6edpJRWzKScv5ly5ZhY2ODkZERbm5uxMbGapVbsWIFlSpVwsDAgIoVK7JkyRJ1X2RkJBqNhnXr1uHo6IiBgQF+fn7qSHeTJk3QaDQEBAQAsGnTJqpUqYK+vj52dnbMmTNH61x2dnZMnjyZrl27YmZmRp8+ffDx8cHCwoK//vqLChUqYGRkRPv27Xny5Am+vr7Y2dlRoEABPD09SUpKUutavXo1tWvXxtTUFCsrKzp37kxMTIy6PyAgAI1Gw/79+6lduzZGRkY0aNCA0NBQrZj+/PNP6tSpg4GBAYULF6Zt27bqvoSEBIYPH07x4sUxNjbm888/V9sqhBBCCJGRT6rz/fjxY4YOHcqZM2fYv38/Ojo6tG3bluTkZOLj43F0dOTff/9l27ZtBAcHM3LkSJKTkwGIj4+nZcuW7N+/n/Pnz9O8eXNcXV2JiopS6/fw8ODmzZscPHiQjRs3smTJEq2OHUCHDh2IiYlh586dnD17lpo1a+Ls7Mz9+/fVMuHh4ezcuZNdu3bxxx9/8Ouvv9KqVSv++ecfDh06xIwZM/jxxx/T7Uxn1pbMXLt2jfXr1/Pnn3+ya9cuzp8/T//+/dX9fn5+jB8/nqlTpxISEsK0adMYN24cvr6+WvWMHj2aQYMGERISQuPGjdUO7KZNm4iOjqZBgwacPXsWNzc3OnXqxMWLF/Hy8mLcuHH4+Pho1TV79myqVavG+fPnGTduHABPnjxh4cKFrF27ll27dhEQEEDbtm3ZsWMHO3bsYPXq1SxbtoyNGzeq9Tx//pzJkycTHByMv78/kZGReHh4pLoGY8eOZc6cOZw5c4Z8+fLRo0cPdd/27dtp27YtLVu25Pz58+zfv5+6deuq+wcOHMjx48dZu3YtFy5coEOHDjRv3pywsLA0r3dCQgJxcXFaixBCCCHyKOUTdufOHQVQLl68qCxbtkwxNTVV7t27l+Xjq1SpoixatEhRFEUJDQ1VAOXUqVPq/pCQEAVQ5s2bpyiKohw5ckQxMzNTnj17plVPmTJllGXLlimKoigTJkxQjIyMlLi4OHW/i4uLYmdnpyQlJanbKlSooHh7e6vrgLJlyxZFUZQ3akuKCRMmKLq6uso///yjbtu5c6eio6OjREdHq/GuWbNG67jJkycr9evXVxRFUSIiIhRAmT9/vlaZBw8eKIBy8OBBdVvnzp2VL7/8UqvciBEjlMqVK6vrtra2Sps2bbTKrFy5UgGUa9euqdv69u2rGBkZKY8ePVK3ubi4KH379k23vadPn1YA9ZiDBw8qgLJv3z61zPbt2xVAefr0qaIoilK/fn2lS5cuadZ348YNRVdXV/n333+1tjs7OytjxoxJ85gJEyYoQKolNjY23biFECIn1Bzum9shCPHRiI2NfSff35/UyHdYWBju7u6ULl0aMzMz7OzsAIiKiiIoKIgaNWpQsGDBNI+Nj49n+PDhVKpUCQsLC0xMTAgJCVFHvkNCQsiXLx+1atVSj6lYsSIWFhbqenBwMPHx8RQqVEjryYsRERFa6S92dnZaNyMWLVqUypUro6Ojo7Xt9VH1FJm1JTMlS5akePHi6nr9+vVJTk4mNDSUx48fEx4eTs+ePbXaMGXKFK02wMuH3mQmJCQEBwcHrW0ODg6EhYVppYukVZeRkRFlypRR14sWLYqdnZ3W0yxfv05nz57F1dWVkiVLYmpqiqOjI4DWfzAAqlatqv5crFgxALWeoKAgnJ2d02zPxYsXSUpKonz58lrX59ChQ6muT4oxY8YQGxurLjdv3kyznBBCCCE+fZ/UDZeurq7Y2tqyfPlyrK2tSU5O5rPPPiMxMRFDQ8MMjx0+fDh79+5l9uzZlC1bFkNDQ9q3b09iYmKWzx8fH0+xYsXSzP99tZOeP39+rX0ajSbNbemlkWTWlrcRHx8PwPLly/n888+19unq6mqtGxsbv7PzplVXdq/T48ePcXFxwcXFBT8/PywtLYmKisLFxSXV7/HVejQaDYBaT0bXNz4+Hl1dXc6ePZvqeqT3iHt9fX309fXTrVMIIYQQeccn0/m+d+8eoaGhLF++nIYNGwJw9OhRdX/VqlVZsWIF9+/fT3PEODAwEA8PD/XGuvj4eCIjI9X9FStW5MWLF5w9e5Y6deoAEBoaysOHD9UyNWvW5L///iNfvnzqqPv7kFlbMhMVFcWtW7fUGUlOnDiBjo4OFSpUoGjRolhbW3P9+nW6dOny1rFWqlSJwMBArW2BgYGUL18+Vef1bV25coV79+4xffp0bGxsADhz5ky266latSr79++ne/fuqfbVqFGDpKQkYmJi1NeZEEIIIURWfTJpJwUKFKBQoUL88ssvXLt2jQMHDjB06FB1v7u7O1ZWVrRp04bAwECuX7/Opk2bOH78OADlypVj8+bNBAUFERwcTOfOnbVGnitUqEDz5s3p27cvJ0+e5OzZs/Tq1UtrlLRp06bUr1+fNm3asGfPHiIjIzl27Bhjx459o05gejJrS2YMDAzo1q0bwcHBHDlyBE9PT9zc3NTpDCdOnIi3tzcLFy7k6tWrXLx4kZUrVzJ37txsxzps2DD279/P5MmTuXr1Kr6+vixevJjhw4dnu67MlCxZEj09PRYtWsT169fZtm0bkydPznY9EyZM4I8//mDChAmEhIRw8eJFZsyYAUD58uXp0qULXbt2ZfPmzURERHDq1Cm8vb3Zvn37u26SEEIIIT4xn0znW0dHh7Vr13L27Fk+++wzhgwZwqxZs9T9enp67NmzhyJFitCyZUvs7e2ZPn26Ovo6d+5cChQoQIMGDXB1dcXFxYWaNWtqnWPlypVYW1vj6OhIu3bt6NOnD0WKFFH3azQaduzYQaNGjejevTvly5enU6dO3Lhxg6JFi76ztmbWlsyULVuWdu3a0bJlS5o1a0bVqlW1phLs1asXK1asYOXKldjb2+Po6IiPjw+lSpXKdqw1a9Zk/fr1rF27ls8++4zx48czadKkNGcgeVuWlpb4+PiwYcMGKleuzPTp05k9e3a263FycmLDhg1s27aN6tWr06RJE06dOqXuX7lyJV27dmXYsGFUqFCBNm3acPr0aUqWLPkumyOEEEKIT5BGURQlt4MQOcfLywt/f3+CgoJyO5Q8Ky4uDnNzc2JjYzEzM8vtcIQQeVitEas4O6trbochxEfhXX1/fzIj30IIIYTIHul4C5HzPpkbLsVLVapU4caNG2nuW7ZsWQ5HI4QQQgghXiVpJ5+YGzdu8Pz58zT3FS1aVGt+cZE7JO1ECCGE+Pi8q+9vGfn+xNja2uZ2CEIIIYQQIh3S+RZCCCHymFojVqk/S963EDlLbrgUQgghhBAih0jn+wPn5OTE4MGD31l9Xl5eVK9e/Z3Vl5OyG7uPjw8WFhaZltNoNPj7+79xXEIIIYQQWfXJd74DAgLQaDRaj4H/mGzevPmNntL4sUurQzx8+HD279+f5To6duzI1atX1fX0Ou/R0dG0aNHiTUMVQgghhMgyyfn+P4mJiejp6eXKuZ8/f07+/PnTjKdgwYK5ElNG0oo3J5iYmGBiYpLl8oaGhhgaGmZazsrK6m3CEkIIIYTIso9i5Ds5ORlvb29KlSqFoaEh1apVY+PGjSiKQtOmTXFxcSFlxsT79+9TokQJxo8fT2RkJI0bNwagQIECaDQa9bHmTk5ODBw4kMGDB1O4cGFcXFyAl4+Zt7e3x9jYGBsbG/r37098fLxWPIGBgTg5OWFkZESBAgVwcXHhwYMHANjZ2TF//nyt8tWrV8fLy0td12g0LF26lNatW2NsbMzUqVPVUdkVK1ZQqlQpDAwM1DhfTTtJSEhg1KhR2NjYoK+vT9myZfn111+BtNMs/P390Wg06V7b06dP8+WXX1K4cGHMzc1xdHTk3LlzWmXSijcjSUlJ9OzZU/19VahQgQULFqQq99tvv1GlShX09fUpVqwYAwcOVK8hQNu2bdFoNOr6qyPXe/bswcDAINV/NAYNGkSTJk1SXQ8fHx8mTpxIcHAwGo0GjUaDj4+P2r5XR9lv3ryJm5sbFhYWFCxYkK+//prIyEh1f0BAAHXr1sXY2BgLCwscHBzSnVtdCCGEEOJVH0Xn29vbm1WrVvHzzz9z6dIlhgwZwrfffsvhw4fx9fXl9OnTLFy4EIB+/fpRvHhxxo8fj42NDZs2bQIgNDSU6OhorU6gr68venp6BAYG8vPPPwOgo6PDwoULuXTpEr6+vhw4cICRI0eqxwQFBeHs7EzlypU5fvw4R48exdXVlaSkpGy1ycvLi7Zt23Lx4kV69OgBwLVr19i0aRObN29O9/HvXbt25Y8//mDhwoWEhISwbNmybI0Gv+7Ro0d069aNo0ePcuLECcqVK0fLli159OhRpvGmJzk5mRIlSrBhwwYuX77M+PHj+d///sf69evVMkuXLmXAgAH06dOHixcvsm3bNsqWLQu8/IMAYOXKlURHR6vrr3J2dsbCwkL9/cLLTv+6devo0qVLqvIdO3Zk2LBhVKlShejoaKKjo+nYsWOqcs+fP8fFxQVTU1OOHDlCYGAgJiYmNG/enMTERF68eEGbNm1wdHTkwoULHD9+nD59+mT4B05CQgJxcXFaixBCCCHypg8+7SQhIYFp06axb98+6tevD0Dp0qU5evQoy5YtY82aNSxbtoyuXbvy33//sWPHDs6fP0++fC+blpK2UaRIkVSjwuXKlWPmzJla214dZbazs2PKlCn069ePJUuWADBz5kxq166trsPLp0pmV+fOnenevbvWtsTERFatWoWlpWWax1y9epX169ezd+9emjZtql6Lt5EySpzil19+wcLCgkOHDvHVV19lGG968ufPz8SJE9X1UqVKcfz4cdavX4+bmxsAU6ZMYdiwYQwaNEgtV6dOHQC1/RYWFummhOjq6tKpUyfWrFlDz549Adi/fz8PHz7km2++SVXe0NAQExMT8uXLl2Gaybp160hOTmbFihVqh3rlypVYWFgQEBBA7dq1iY2N5auvvqJMmTIAVKpUKcPr4e3trXU9hBBCCJF3ffAj39euXePJkyd8+eWXas6viYkJq1atIjw8HIAOHTrQtm1bpk+fzuzZsylXrlyW6q5Vq1aqbfv27cPZ2ZnixYtjamrKd999x71793jy5Anw/0e+31bt2rVTbbO1tU23451ybl1dXRwdHd/6/Clu375N7969KVeuHObm5piZmREfH09UVFSm8Wbkp59+olatWlhaWmJiYsIvv/yi1hkTE8OtW7fe+jp26dKFgIAAbt26BYCfnx+tWrXK0gwn6QkODubatWuYmpqqr7WCBQvy7NkzwsPDKViwIB4eHri4uODq6sqCBQuIjo7OsM4xY8YQGxurLjdv3nzj+IQQQgjxcfvgR75T8q23b99O8eLFtfbp6+sD8OTJE86ePYuuri5hYWFZrtvY2FhrPTIykq+++orvv/+eqVOnUrBgQY4ePUrPnj1JTEzEyMgo0xv4dHR01PzzFGk97v31c6e37VXv6tyv6tatG/fu3WPBggXY2tqir69P/fr1SUxMzFZsr1q7di3Dhw9nzpw51K9fH1NTU2bNmsXJkyez1I6sqlOnDmXKlGHt2rV8//33bNmyRc3jflPx8fHUqlULPz+/VPtS/jBauXIlnp6e7Nq1i3Xr1vHjjz+yd+9e6tWrl2ad+vr66mtVCCGEEHnbB9/5rly5Mvr6+kRFRaU74jts2DB0dHTYuXMnLVu2pFWrVmo6RcoMJlnJyT579izJycnMmTMHHZ2X/xR4NU8ZoGrVquzfvz/dNAJLS0utkdC4uDgiIiIyb2gW2Nvbk5yczKFDh9S0k9fP/ejRIx4/fqx2ltPLHU8RGBjIkiVLaNmyJfDyZsO7d+++VZyBgYE0aNCA/v37q9tS/ksBYGpqip2dHfv371dviH1d/vz5s/Q769KlC35+fpQoUQIdHR1atWqVblk9Pb1M66xZsybr1q2jSJEimJmZpVuuRo0a1KhRgzFjxlC/fn3WrFmTbudbCCGEECLFB592YmpqyvDhwxkyZAi+vr6Eh4dz7tw5Fi1ahK+vL9u3b+e3337Dz8+PL7/8khEjRtCtWzd19hFbW1s0Gg1//fUXd+7cSTVzyavKli3L8+fPWbRoEdevX2f16tXqjZgpxowZw+nTp+nfvz8XLlzgypUrLF26VO2wNmnShNWrV3PkyBEuXrxIt27d0NXVfSfXws7Ojm7dutGjRw/8/f2JiIggICBA/QPh888/x8jIiP/973+Eh4ezZs2aTEeCy5Urx+rVqwkJCeHkyZN06dLlrUemy5Urx5kzZ9i9ezdXr15l3LhxqW6a9PLyYs6cOSxcuJCwsDD1d/pqW/fv389///2n/i7T0qVLF86dO8fUqVNp3759hiPMdnZ2REREEBQUxN27d0lISEizvsKFC/P1119z5MgR9Rp7enryzz//EBERwZgxYzh+/Dg3btxgz/9r787DsqjXx4+/H1AekdUFARUBExR3wA0NccFAk3LJ/aiYe6K5gMvXY24lqOCS7Wag5slKzTwqbiR2QEVFQVMyJBBPByUXQNRAYH5/+HMunwQEFxC4X9c11+U885nP3J8Z6Ln5dM/MgQMkJiY+se5bCCGEEAIqQPINsHTpUhYsWEBgYCBOTk54e3uzZ88e7OzsGDt2LIsWLcLFxQWAxYsXY2lpyaRJkwBo0KABixcvZu7cuVhaWqqPsytMmzZtWLVqFcuXL6dly5Zs2bKFwMBAnTaOjo4cOHCA+Ph4OnTogJubGz/++KN6g+e8efPw8PCgb9++vP766/Tr10+9Me95+PTTT3nrrbd45513aNasGePHj+fOnTvAg5tLv/76a/bu3UurVq345ptvdB5xWJgNGzZw69YtXFxcGDlyJNOmTaNevXrPFOPEiRMZMGAAQ4YMoWPHjty4cUNnFhwelLusWbOGTz75hBYtWtC3b1+dkqGQkBAOHjyIjY0Nzs7ORR6rSZMmdOjQgbNnzxb6lJNHDRw4EG9vb7p3746FhQXffPPNY21q1qzJzz//TKNGjRgwYABOTk6MHTuWv/76C1NTU2rWrMmvv/7KwIEDcXR0ZMKECUyZMoWJEyeW8iwJIYQQoirSKH8vEhZCvFBZWVmYmZmRmZlZbGmLEEK8KK4Bm9R/x64cVY6RCFFxPK/v75e+5lsIIYQQz5ck3EKUnwpRdiJeLpMmTdJ57OOjy8NyHyGEEEII8TgpOxGllp6eXuRbGk1NTZ+5Zryyk7ITIYQQouKRshNRburVqycJthBCVGBS8y1E+ZGyEyGEEEIIIcqIJN9CCCGEEEKUEUm+q7hu3boxffr0F9J3SkoKGo3miW/ZfNnZ2dmxZs2a8g5DCCGEEJWA1HyLF8bGxoa0tDTq1q1b3qEIIYQQQrwUJPkWL4y+vj5WVlblHYYQQgghxEtDyk4EeXl5+Pn5YWZmRt26dVmwYAEPn0C5efNm2rVrh4mJCVZWVgwfPpz09HR131u3bjFixAgsLCwwNDTEwcGB0NBQoPCyk/Pnz9O3b19MTU0xMTHB3d2dpKSkJ8bo6+tLv379CA4Oxtramjp16jBlyhTu37+vtsnJycHf358GDRpgZGREx44diYyM1OknKioKd3d3DA0NsbGxYdq0ady5c0fdnp6ejo+PD4aGhtjb27Nlyxad/RVFYdGiRTRq1AitVkv9+vWZNm1asbHn5OSQlZWlswghhBCiapLkW7Bx40aqVavGiRMnWLt2LatWreLLL78E4P79+yxdupT4+Hh27txJSkoKvr6+6r4LFizgwoULhIeHk5CQwKefflpkmckff/xB165d0Wq1/PTTT8TGxvL222+Tl5dXojgPHz5MUlIShw8fZuPGjYSFhREWFqZu9/Pz49ixY2zdupWzZ88yaNAgvL29SUxMBCApKQlvb28GDhzI2bNn+fbbb4mKisLPz0/tw9fXlytXrnD48GG2bdvGJ598ovPHxvbt21m9ejWff/45iYmJ7Ny5k1atWhUbd2BgIGZmZupiY2NTovEKIYQQovKRl+xUcd26dSM9PZ3z58+j0WgAmDt3Lrt27eLChQuPtT916hTt27fn9u3bGBsb88Ybb1C3bl2++uqrx9qmpKRgb2/PmTNnaNu2Lf/3f//H1q1buXjxItWrVy9VnL6+vkRGRpKUlIS+vj4AgwcPRk9Pj61bt5Kamkrjxo1JTU2lfv366n6enp506NCBZcuWMW7cOPT19fn888/V7VFRUXh4eHDnzh1SU1Np2rQpJ06coH379gD8+uuvODk5sXr1aqZPn86qVav4/PPP+eWXX0o8hpycHHJyctT1rKwsbGxs5CU7QohyI8/5FqL0ntdLdmTmW9CpUyc18QZwc3MjMTGR/Px8YmNj8fHxoVGjRpiYmODh4QFAamoqAJMnT2br1q20bduW2bNnc/To0SKPExcXh7u7e6kT74datGihJt4A1tbW6qz0uXPnyM/Px9HRUed190eOHFHLWuLj4wkLC9PZ7uXlRUFBAcnJySQkJFCtWjVcXV3VYzRr1gxzc3N1fdCgQdy7d4/GjRszfvx4fvjhhyfO3Gu1WkxNTXUWIYQQQlRNcsOlKNJff/2Fl5cXXl5ebNmyBQsLC1JTU/Hy8iI3NxeA3r17c/nyZfbu3cvBgwfp2bMnU6ZMITg4+LH+DA0NnymevyftGo2GgoICALKzs9HX1yc2NlYnQQcwNjZW20ycOLHQGu1GjRrx22+/PTEGGxsbLl68yKFDhzh48CDvvPMOK1eu5MiRI0/9R4UQQgghqg5JvgUxMTE668ePH8fBwYFff/2VGzduEBQUpNYpnzp16rH9LSwsGD16NKNHj8bd3Z2AgIBCk+/WrVuzceNG7t+//9wTVWdnZ/Lz80lPT8fd3b3QNi4uLly4cIEmTZoUur1Zs2bk5eURGxurlp1cvHiRjIwMnXaGhob4+Pjg4+PDlClTaNasGefOncPFxeW5jkkIIYQQlY+UnQhSU1OZOXMmFy9e5JtvvmHdunW8++67NGrUCAMDA9atW8fvv//Orl27WLp0qc6+7733Hj/++COXLl3i/Pnz7N69Gycnp0KP4+fnR1ZWFkOHDuXUqVMkJiayefNmLl68+MxjcHR0ZMSIEYwaNYodO3aQnJzMiRMnCAwMZM+ePQDMmTOHo0eP4ufnR1xcHImJifz444/qDZdNmzbF29ubiRMnEhMTQ2xsLOPGjdOZsQ8LC2PDhg388ssv/P7773z99dcYGhpia2v7zGMQQgghROUnybdg1KhR3Lt3jw4dOjBlyhTeffddJkyYgIWFBWFhYXz//fc0b96coKCgx2a0DQwMmDdvHq1bt6Zr167o6+uzdevWQo9Tp04dfvrpJ7Kzs/Hw8MDV1ZX169c/t1nw0NBQRo0axaxZs2jatCn9+vXj5MmTNGrUCHgw837kyBF+++033N3dcXZ25r333tO5QTM0NJT69evj4eHBgAEDmDBhAvXq1VO3m5ubs379erp06ULr1q05dOgQ//73v6lTp85zGYMQQgghKjd52okQZex53S0thBBCiLIjTzsRQgghhBCigpHkW7wUHn3839+X//znP+UdnhBCCCHEcyFPOxEvhUdfQf93DRo0KLtAhBBCCCFeIEm+xUuhqMf/CSGEeD4efavlo+QNl0KULSk7EUIIIYQQooxI8i2eWbdu3Zg+fXqZH9fOzo41a9Y8t/7KaxxCCCGEqDok+RZCCCGEEKKMSPIthBBCCCFEGZHkWzwXBQUFzJ49m9q1a2NlZcWiRYvUbRkZGYwbNw4LCwtMTU3p0aMH8fHx6vakpCTefPNNLC0tMTY2pn379hw6dEin//T0dHx8fDA0NMTe3p4tW7Y8FsOqVato1aoVRkZG2NjY8M4775Cdna3TJjo6mm7dulGzZk1q1aqFl5cXt27dKtE4SjIWIYQQQojiSPItnouNGzdiZGRETEwMK1asYMmSJRw8eBCAQYMGkZ6eTnh4OLGxsbi4uNCzZ09u3rwJQHZ2Nn369CEiIoIzZ87g7e2Nj48Pqampav++vr5cuXKFw4cPs23bNj755BPS09N1YtDT0+PDDz/k/PnzbNy4kZ9++onZs2er2+Pi4ujZsyfNmzfn2LFjREVF4ePjQ35+fonGUZKxFCYnJ4esrCydRQghhBBVk7xeXjyzbt26kZ+fr/MynA4dOtCjRw/69u3L66+/Tnp6OlqtVt3epEkTZs+ezYQJEwrts2XLlkyaNAk/Pz9+++03mjZtyokTJ2jfvj0Av/76K05OTqxevbrImyS3bdvGpEmTuH79OgDDhw8nNTWVqKioUo8jKCiIqKiopxrLokWLWLx48WOfy+vlhRBlSR41KMSzeV6vl5fnfIvnonXr1jrr1tbWpKenEx8fT3Z2NnXq1NHZfu/ePZKSkoAHM9+LFi1iz549pKWlkZeXx71799SZ74SEBKpVq4arq6u6f7NmzTA3N9fp89ChQwQGBvLrr7+SlZVFXl4ef/31F3fv3qVmzZrExcUxaNCgpxoHUKKxFGbevHnMnDlTXc/KysLGxqbYOIQQQghROUnyLZ6L6tWr66xrNBoKCgrIzs7G2tqayMjIx/Z5mDz7+/tz8OBBgoODadKkCYaGhrz11lvk5uaW+PgpKSn07duXyZMn88EHH1C7dm2ioqIYO3Ysubm51KxZE0NDw6ceB1CisRRGq9XqzJQLIYQQouqS5Fu8UC4uLly9epVq1aphZ2dXaJvo6Gh8fX3p378/8CDJTUlJUbc3a9aMvLw8YmNj1bKTixcvkpGRobaJjY2loKCAkJAQ9PQe3Mrw3Xff6RyndevWREREFFoC8rzGIoQQQghRHLnhUrxQnp6euLm50a9fPw4cOEBKSgpHjx5l/vz5nDp1CgAHBwd27NhBXFwc8fHxDB8+XJ1tBmjatCne3t5MnDiRmJgYYmNjGTdunM5MdpMmTbh//z7r1q3j999/Z/PmzXz22Wc6scybN4+TJ0/yzjvvcPbsWX799Vc+/fRTtSb8eYxFCCGEEKI4knyLF0qj0bB37166du3KmDFjcHR0ZOjQoVy+fBlLS0vgwSMCa9WqRefOnfHx8cHLywsXFxedfkJDQ6lfvz4eHh4MGDCACRMmUK9ePXV7mzZtWLVqFcuXL6dly5Zs2bKFwMBAnT4cHR05cOAA8fHxdOjQATc3N3788UeqVSvZ/wAqyViEEEIIIYojTzsRoow9r7ulhRCiNORpJ0I8G3naiRBCCCFKTJJsIV4OUnYihBBCCCFEGZHkWwghhBBCiDIiZSdCCCFEFSA130K8HGTmWwghhBBCiDIiybcQQgghhBBlRJJvIYQQQgghyogk30IIIYQQQpQRSb7FM8nNzX3ufSqKQl5e3nPv91m8jDEJIYQQouKR5LsS6datG35+fvj5+WFmZkbdunVZsGABD19impOTg7+/Pw0aNMDIyIiOHTsSGRmp00dUVBTu7u4YGhpiY2PDtGnTuHPnjrrdzs6OpUuXMmrUKExNTZkwYUKxMaWkpKDRaNi6dSudO3emRo0atGzZkiNHjqhtIiMj0Wg0hIeH4+rqilarJSoqioKCAgIDA7G3t8fQ0JA2bdqwbds2db9bt24xYsQILCwsMDQ0xMHBgdDQUODBHwV+fn5YW1tTo0YNbG1t1dfNP4wpLi5O7SsjIwONRqOej6eNqTA5OTlkZWXpLEIIIYSomiT5rmQ2btxItWrVOHHiBGvXrmXVqlV8+eWXAPj5+XHs2DG2bt3K2bNnGTRoEN7e3iQmJgKQlJSEt7c3AwcO5OzZs3z77bdERUXh5+enc4zg4GDatGnDmTNnWLBgQYniCggIYNasWZw5cwY3Nzd8fHy4ceOGTpu5c+cSFBREQkICrVu3JjAwkE2bNvHZZ59x/vx5ZsyYwT/+8Q81cV+wYAEXLlwgPDychIQEPv30U+rWrQvAhx9+yK5du/juu++4ePEiW7Zswc7OrtTns7QxFSYwMBAzMzN1sbGxKXUcQgghhKgkFFFpeHh4KE5OTkpBQYH62Zw5cxQnJyfl8uXLir6+vvLHH3/o7NOzZ09l3rx5iqIoytixY5UJEybobP/Pf/6j6OnpKffu3VMURVFsbW2Vfv36lTim5ORkBVCCgoLUz+7fv680bNhQWb58uaIoinL48GEFUHbu3Km2+euvv5SaNWsqR48e1elv7NixyrBhwxRFURQfHx9lzJgxhR536tSpSo8ePXTOxd9jOnPmjPrZrVu3FEA5fPjwM8VUmL/++kvJzMxUlytXriiAkpmZWeQ+QgjxvLn4byx0EUKUTGZm5nP5/paX7FQynTp1QqPRqOtubm6EhIRw7tw58vPzcXR01Gmfk5NDnTp1AIiPj+fs2bNs2bJF3a4oCgUFBSQnJ+Pk5ARAu3btSh2Xm5ub+u9q1arRrl07EhISdNo82u+lS5e4e/cuvXr10mmTm5uLs7MzAJMnT2bgwIGcPn2a1157jX79+tG5c2cAfH196dWrF02bNsXb25u+ffvy2muvlTru0sZUGK1Wi1arLfWxhRBCCFH5SPJdRWRnZ6Ovr09sbCz6+vo624yNjdU2EydOZNq0aY/t36hRI/XfRkZGLyTGR/vNzs4GYM+ePTRo0ECn3cNEtnfv3ly+fJm9e/dy8OBBevbsyZQpUwgODsbFxYXk5GTCw8M5dOgQgwcPxtPTk23btqGn96DaSvn/tfAA9+/ffy4xCSGEEEIUR5LvSiYmJkZn/fjx4zg4OODs7Ex+fj7p6em4u7sXuq+LiwsXLlygSZMmzz2u48eP07VrVwDy8vKIjY19rJb8Uc2bN0er1ZKamoqHh0eR7SwsLBg9ejSjR4/G3d2dgIAAgoODATA1NWXIkCEMGTKEt956C29vb27evImFhQUAaWlp6oz1ozdfPmtMQgghhBBFkeS7kklNTWXmzJlMnDiR06dPs27dOkJCQnB0dGTEiBGMGjWKkJAQnJ2d+fPPP4mIiKB169a8/vrrzJkzh06dOuHn58e4ceMwMjLiwoULHDx4kI8++uiZ4vr4449xcHDAycmJ1atXc+vWLd5+++0i25uYmODv78+MGTMoKCjg1VdfJTMzk+joaExNTRk9ejTvvfcerq6utGjRgpycHHbv3q2WxqxatQpra2ucnZ3R09Pj+++/x8rKCnNzc/T09OjUqRNBQUHY29uTnp7OP//5zyeOoSQxCSGEEEIUR5LvSmbUqFHcu3ePDh06oK+vz7vvvqs+DjA0NJT333+fWbNm8ccff1C3bl06depE3759AWjdujVHjhxh/vz5uLu7oygKr7zyCkOGDHnmuIKCgggKCiIuLo4mTZqwa9cu9ckkRVm6dCkWFhYEBgby+++/Y25ujouLC//3f/8HgIGBAfPmzSMlJQVDQ0Pc3d3ZunUr8CBRXrFiBYmJiejr69O+fXv27t2rlpx89dVXjB07FldXV5o2bcqKFStKVBP+pJiEEEIIIYqjUR4tfBUVWrdu3Wjbti1r1qwp71BUKSkp2Nvbc+bMGdq2bVve4bwUsrKyMDMzIzMzE1NT0/IORwhRRbgGbCr089iVo8o4EiEqpuf1/S0z30IIIUQVIEm2EC8HecmOeCbLli3D2Ni40KV3797lHZ4QQgghxEtFyk7EM7l58yY3b94sdJuhoeFjj+QTUnYihBBCVERSdiJeCrVr16Z27drlHYYQQohCFFXn/SgpRxGibEnZiRBCCCGEEGVEku+XmJ2dXYmfXKLRaNi5c+cLjSclJQWNRvPEF9J069aN6dOnP/VxnjSWyMhINBoNGRkZT30MIYQQQojyIMl3GSiLxLg8lFcS3LlzZ9LS0jAzM3tiW0nUhRBCCPEykeRbVDgGBgZYWVmh0WjK7JiKopCXl1dmxxNCCCFE5VSlku9u3boxdepUpk+fTq1atbC0tGT9+vXcuXOHMWPGYGJiQpMmTQgPD1f3+eWXX+jduzfGxsZYWloycuRIrl+/rtPntGnTmD17NrVr18bKyopFixap2+3s7ADo378/Go1GXU9KSuLNN9/E0tISY2Nj2rdvz6FDh55pfNevX6d///7UrFkTBwcHdu3apbP9SWPZt28fr776Kubm5tSpU4e+ffuSlJRU6LFSUlLo3r07ALVq1UKj0eDr66tuLygoKPKcPOtY/j6bffnyZXx8fKhVqxZGRka0aNGCvXv3FhtjTk4O06ZNo169etSoUYNXX32VkydPPnaM8PBwXF1d0Wq1fP311+jp6XHq1CmdWNesWYOtrS0FBQWlGqMQQgghqp4qlXwDbNy4kbp163LixAmmTp3K5MmTGTRoEJ07d+b06dO89tprjBw5krt375KRkUGPHj1wdnbm1KlT7Nu3j2vXrjF48ODH+jQyMiImJoYVK1awZMkSDh48CKAmdKGhoaSlpanr2dnZ9OnTh4iICM6cOYO3tzc+Pj6kpqY+9dgWL17M4MGDOXv2LH369GHEiBHqYwBLMpY7d+4wc+ZMTp06RUREBHp6evTv37/QpNLGxobt27cDcPHiRdLS0li7dm2JzsmzjuXvpkyZQk5ODj///DPnzp1j+fLlGBsbFxvj7Nmz2b59Oxs3buT06dM0adIELy+vx44xd+5cgoKCSEhI4I033sDT05PQ0FCdNqGhofj6+qqvrv+7nJwcsrKydBYhhBBCVFFKFeLh4aG8+uqr6npeXp5iZGSkjBw5Uv0sLS1NAZRjx44pS5cuVV577TWdPq5cuaIAysWLFwvtU1EUpX379sqcOXPUdUD54YcfnhhfixYtlHXr1qnrtra2yurVq0s0NkD55z//qa5nZ2crgBIeHq4oilKisfzdn3/+qQDKuXPnFEVRlOTkZAVQzpw5oyiKohw+fFgBlFu3bunsV5Jz8ixj+ftxW7VqpSxatKjQvgqLMTs7W6levbqyZcsW9bPc3Fylfv36yooVK3T227lzp05/3377rVKrVi3lr7/+UhRFUWJjYxWNRqMkJycXOZ6FCxcqwGNLZmZmic6HEEI8LRf/jU9chBAlk5mZ+Vy+v6vczHfr1q3Vf+vr61OnTh1atWqlfmZpaQlAeno68fHxHD58WOetjc2aNQPQKcd4tE8Aa2tr0tPTi40jOzsbf39/nJycMDc3x9jYmISEhGea+X40DiMjI0xNTdU4SjKWxMREhg0bRuPGjTE1NVVLZJ4mpqc5JyUdy99NmzaN999/ny5durBw4ULOnj1bbN9JSUncv3+fLl26qJ9Vr16dDh06kJCQoNO2Xbt2Ouv9+vVDX1+fH374AYCwsDC6d++unqvCzJs3j8zMTHW5cuVKsfEJIYQQovKqci/ZqV69us66RqPR+ezhTXwFBQVkZ2fj4+PD8uXLH+vH2tq62D6fVP/r7+/PwYMHCQ4OpkmTJhgaGvLWW2+Rm5tb6jGVJI6SjMXHxwdbW1vWr19P/fr1KSgooGXLlk8V09Ock6fdf9y4cXh5ebFnzx4OHDhAYGAgISEhTJ06tdRx/52RkZHOuoGBAaNGjSI0NJQBAwbwr3/9S6fcpjBarRatVvvMsQghhBCi4qtyyXdpuLi4sH37duzs7KhW7elPVfXq1cnPz9f5LDo6Gl9fX/r37w88SI5TUlKeJdxiPWksN27c4OLFi6xfvx53d3cAoqKiiu3TwMAA4LGxlQcbGxsmTZrEpEmTmDdvHuvXr2fq1KmFxvjKK69gYGBAdHQ0tra2ANy/f5+TJ0+W6Pnk48aNo2XLlnzyySfk5eUxYMCAFzImIYQQQlQ+Va7spDSmTJnCzZs3GTZsGCdPniQpKYn9+/czZsyYUiWcdnZ2REREcPXqVW7dugWAg4MDO3bsIC4ujvj4eIYPH/5Cn5bxpLHUqlWLOnXq8MUXX3Dp0iV++uknZs6cWWyftra2aDQadu/ezZ9//kl2dvYLi78406dPZ//+/SQnJ3P69GkOHz6Mk5NTkTEaGRkxefJkAgIC2LdvHxcuXGD8+PHcvXuXsWPHPvF4Tk5OdOrUiTlz5jBs2DAMDQ1f9BCFEEIIUUlI8l2M+vXrEx0dTX5+Pq+99hqtWrVi+vTpmJubF/lki8KEhIRw8OBBbGxscHZ2BmDVqlXUqlWLzp074+Pjg5eXFy4uLi9qKE8ci56eHlu3biU2NpaWLVsyY8YMVq5cWWyfDRo0YPHixcydOxdLS0v8/PxeWPzFyc/PZ8qUKTg5OeHt7Y2joyOffPJJsTEGBQUxcOBARo4ciYuLC5cuXWL//v3UqlWrRMccO3Ysubm5vP322y9sXEIIIYSofDSKoijlHYQQFc3SpUv5/vvvn3hzZ2GysrIwMzMjMzMTU1PTFxCdEEI84Bqw6YltYleOKoNIhKj4ntf3t9R8C1EKD2vzP/roI95///3yDkcIIYolibUQLx8pO6kAtmzZovOIwEeXFi1alHd4pVLRx+Ln54erqyvdunWTkhMhhBBClJqUnVQAt2/f5tq1a4Vuq169uvrEjoqgMo3laUnZiRBCCFHxSNlJFWJiYoKJiUl5h/FcVKaxCCGEEEKUliTfQgghRCVRkhss/07qwoUoW1LzLYQQQgghRBmR5FtUCVevXqVXr14YGRlhbm5e3uEIIYQQooqS5FtUCatXryYtLY24uDh+++23Eu2zaNEi2rZt+2IDE0IIIUSVIjXfokpISkrC1dUVBweH8g5FCCGEEFWYzHyLCmPbtm20atUKQ0ND6tSpg6enJ3fu3OHkyZP06tWLunXrYmZmhoeHB6dPn1b3s7OzY/v27WzatAmNRoOvry8AGRkZjBs3DgsLC0xNTenRowfx8fEAhIWFsXjxYuLj49FoNGg0GsLCwnj77bfp27evTlz379+nXr16bNiwoczOhRBCCCEqJpn5FhVCWloaw4YNY8WKFfTv35/bt2/zn//8B0VRuH37NqNHj2bdunUoikJISAh9+vQhMTERExMTTp48yahRozA1NWXt2rUYGhoCMGjQIAwNDQkPD8fMzIzPP/+cnj178ttvvzFkyBB++eUX9u3bx6FDhwAwMzPD0dGRrl27kpaWhrW1NQC7d+/m7t27DBkypNDYc3JyyMnJUdezsrJe8NkSQgghxMtKkm9RIaSlpZGXl8eAAQPUF/G0atUKgB49eui0/eKLLzA3N+fIkSP07dsXCwsLtFothoaGWFlZARAVFcWJEydIT09Hq9UCEBwczM6dO9m2bRsTJkzA2NiYatWqqfsAdO7cmaZNm7J582Zmz54NQGhoKIMGDcLY2LjQ2AMDA1m8ePHzPSFCCCGEqJCk7ERUCG3atKFnz560atWKQYMGsX79em7dugXAtWvXGD9+PA4ODpiZmWFqakp2djapqalF9hcfH092djZ16tTRecV9cnIySUlJxcYybtw4QkND1WOHh4cX+6r5efPmkZmZqS5Xrlx5ijMghBBCiMpAZr5FhaCvr8/Bgwc5evQoBw4cYN26dcyfP5+YmBgmT57MjRs3WLt2Lba2tmi1Wtzc3MjNzS2yv+zsbKytrYmMjHxs25MeRThq1Cjmzp3LsWPHOHr0KPb29ri7uxfZXqvVqrPrQgghhKjaJPkWFYZGo6FLly506dKF9957D1tbW3744Qeio6P55JNP6NOnDwBXrlzh+vXrxfbl4uLC1atXqVatGnZ2doW2MTAwID8//7HP69SpQ79+/QgNDeXYsWOMGTPmmccmhBBCiKpBkm9RIcTExBAREcFrr71GvXr1iImJ4c8//8TJyQkHBwc2b95Mu3btyMrKIiAgQL2psiienp64ubnRr18/VqxYgaOjI//73//Ys2cP/fv3p127dtjZ2ZGcnExcXBwNGzbExMREncEeN24cffv2JT8/n9GjR5fFKRBCCCFEJSA136JCMDU15eeff6ZPnz44Ojryz3/+k5CQEHr37s2GDRu4desWLi4ujBw5kmnTplGvXr1i+9NoNOzdu5euXbsyZswYHB0dGTp0KJcvX8bS0hKAgQMH4u3tTffu3bGwsOCbb75R9/f09MTa2hovLy/q16//QscuhBBCiMpDoyiKUt5BCFHRZGdn06BBA0JDQxkwYECp9s3KysLMzIzMzExMTU1fUIRCiKrINWBTqfeJXTnqBUQiROXzvL6/pexEiFIoKCjg+vXrhISEYG5uzhtvvFHeIQkhhEoSaSFefpJ8C1EKqamp2Nvb07BhQ8LCwqhWTX6FhBBCCFFykjkIUQp2dnZIpZYQQgghnpYk30IIIUQF8DT13CUhpSpClC152okQQgghhBBlRJJvIYQQQgghyshLn3wvWrSItm3blncYL0xKSgoajYa4uLjyDuWpPK/rU9bXOTIyEo1GQ0ZGxksTkxBCCCEqv1Il3926dWP69OkvKJSKIywsDHNz8/IOo1gajYadO3eWdxiFKiw2f39/IiIiyiegIryMMQkhhBCiYquSN1wqikJ+fr48Jq4Yubm5GBgYlNnxjI2NMTY2LrPjlcTLGJMQQgghKrYSz3z7+vpy5MgR1q5di0ajQaPRkJKSwi+//ELv3r0xNjbG0tKSkSNHcv36dXW/ffv28eqrr2Jubk6dOnXo27cvSUlJOn3/97//ZdiwYdSuXRsjIyPatWtHTEyMTpvNmzdjZ2eHmZkZQ4cO5fbt2+q2goICAgMDsbe3x9DQkDZt2rBt2zZ1+8MSg/DwcFxdXdFqtURFRRU73vj4eLp3746JiQmmpqa4urpy6tQpIiMjGTNmDJmZmep5WLRoEVD4jK65uTlhYWHq+okTJ3B2dqZGjRq0a9eOM2fOPHbsJ53Tbt26MW3aNGbPnk3t2rWxsrJSY4AHj8MD6N+/PxqNRl0vzsMSiy+//BJ7e3tq1KgBQEZGBuPGjcPCwgJTU1N69OhBfHx8kf2cPHmSXr16UbduXczMzPDw8OD06dNPjO3vJR4FBQUsWbKEhg0botVqadu2Lfv27VO3PyzX2bFjB927d6dmzZq0adOGY8eOqW0uX76Mj48PtWrVwsjIiBYtWrB3716deGNjY2nXrh01a9akc+fOXLx48bFz8pCvry/9+vVj8eLF6vmYNGkSubm5xZ7bnJwcsrKydBYhhBBCVE0lTr7Xrl2Lm5sb48ePJy0tjbS0NExMTOjRowfOzs6cOnWKffv2ce3aNQYPHqzud+fOHWbOnMmpU6eIiIhAT0+P/v37U1BQADx4TbeHhwd//PEHu3btIj4+ntmzZ6vbAZKSkti5cye7d+9m9+7dHDlyhKCgIHV7YGAgmzZt4rPPPuP8+fPMmDGDf/zjHxw5ckRnDHPnziUoKIiEhARat25d7HhHjBhBw4YNOXnyJLGxscydO5fq1avTuXNn1qxZg6mpqXoe/P39S3QOs7Oz6du3L82bNyc2NpZFixY9tm9GRsYTzynAxo0bMTIyIiYmhhUrVrBkyRIOHjwIPEiAAUJDQ0lLS1PXn+TSpUts376dHTt2qDXogwYNIj09nfDwcGJjY3FxcaFnz57cvHmz0D5u377N6NGjiYqK4vjx4zg4ONCnTx/1j6WSxrZ27VpCQkIIDg7m7NmzeHl58cYbb5CYmKjTbv78+fj7+xMXF4ejoyPDhg0jLy8PgClTppCTk8PPP//MuXPnWL58+WMz2fPnzyckJIRTp05RrVo13n777WLPUUREBAkJCURGRvLNN9+wY8cOFi9eXOw+gYGBmJmZqYuNjU2x7YUQQghReZW47sLMzAwDAwNq1qyJlZUVAO+//z7Ozs4sW7ZMbffVV19hY2PDb7/9hqOjIwMHDtTp56uvvsLCwoILFy7QsmVL/vWvf/Hnn39y8uRJateuDUCTJk109ikoKCAsLAwTExMARo4cSUREBB988AE5OTksW7aMQ4cO4ebmBkDjxo2Jiori888/x8PDQ+1nyZIl9OrVq0TjTU1NJSAggGbNmgHg4OCgcy40Go16HkrqX//6FwUFBWzYsIEaNWrQokUL/vvf/zJ58mS1zUcfffTEcwrQunVrFi5cqMb20UcfERERQa9evbCwsAAezLqXJsbc3Fw2bdqk7h8VFcWJEydIT09Hq9UCEBwczM6dO9m2bRsTJkx4rI8ePXrorH/xxReYm5tz5MgR+vbtW+LYgoODmTNnDkOHDgVg+fLlHD58mDVr1vDxxx+r7fz9/Xn99dcBWLx4MS1atODSpUs0a9aM1NRUBg4cSKtWrYAHPxd/98EHH6g/I3PnzuX111/nr7/+Umf+/87AwICvvvqKmjVr0qJFC5YsWUJAQABLly5FT6/wv2XnzZvHzJkz1fWsrCxJwIUQQogq6pmedhIfH8/hw4fV2lhjY2M1WX1YWpKYmMiwYcNo3LgxpqamaplBamoqAHFxcTg7O6uJd2Hs7OzUxBvA2tqa9PR04MFs7d27d+nVq5dOHJs2bXqsvKVdu3YlHtvMmTMZN24cnp6eBAUFPdbX03g44/5oYvfwD4aHSnJOgcdm7h89J0/L1tZWTY4fxpKdnU2dOnV04klOTi7yfFy7do3x48fj4OCAmZkZpqamZGdnq9e7JLKysvjf//5Hly5ddD7v0qULCQkJOp89eh6sra0B1PMwbdo03n//fbp06cLChQs5e/bsY8cqbv/CtGnThpo1a6rrbm5uZGdnc+XKlSL30Wq1mJqa6ixCCCGEqJqe6Y7D7OxsfHx8WL58+WPbHiYyPj4+2Nrasn79eurXr09BQQEtW7ZU62QNDQ2feJzq1avrrGs0Gp2yFYA9e/bQoEEDnXYPZ2sfMjIyKuHIHtT7Dh8+nD179hAeHs7ChQvZunUr/fv3L3IfjUbz2KvH79+/X+JjQsnOKRR/Tp7W389PdnY21tbWREZGPta2qKe9jB49mhs3brB27VpsbW3RarW4ubk9sS76aT16HjQaDYB6HsaNG4eXlxd79uzhwIEDBAYGEhISwtSpU0u0vxBCCCHE81aq5NvAwID8/Hx13cXFhe3bt2NnZ1fok0Nu3LjBxYsXWb9+Pe7u7gCP3ejYunVrvvzyS27evFns7HdRmjdvjlarJTU1VafE5HlwdHTE0dGRGTNmMGzYMEJDQ+nfv/9j5+EhCwsL0tLS1PXExETu3r2rrjs5ObF582adsobjx4/r9PGkc1pS1atXLzTG0nBxceHq1atUq1atRDdtAkRHR/PJJ5/Qp08fAK5cuaJzs2hJYjM1NaV+/fpER0frXNPo6Gg6dOhQqjHY2NgwadIkJk2axLx581i/fr1O8l1a8fHx3Lt3T/2j8fjx4xgbG0sZiRBCCCFKpFRlJ3Z2dsTExJCSksL169eZMmUKN2/eZNiwYZw8eZKkpCT279/PmDFjyM/Pp1atWtSpU4cvvviCS5cu8dNPP+nUvgIMGzYMKysr+vXrR3R0NL///jvbt2/XeWpFcUxMTPD392fGjBls3LiRpKQkTp8+zbp169i4cWNphqe6d+8efn5+REZGcvnyZaKjozl58iROTk7qecjOziYiIoLr16+rCXaPHj346KOPOHPmDKdOnWLSpEk6M6vDhw9Ho9Ewfvx4Lly4wN69ewkODtY59pPOaUnZ2dkRERHB1atXuXXr1lOdB09PT9zc3OjXrx8HDhwgJSWFo0ePMn/+fE6dOlXoPg4ODmzevJmEhARiYmIYMWLEY/93oySxBQQEsHz5cr799lsuXrzI3LlziYuL49133y1x/NOnT2f//v0kJydz+vRpDh8+rF7Dp5Wbm8vYsWPV67dw4UL8/PyKrPcWQgghhHhUqTIGf39/9PX1ad68ORYWFuTm5hIdHU1+fj6vvfYarVq1Yvr06Zibm6Onp4eenh5bt24lNjaWli1bMmPGDFauXKnTp4GBAQcOHKBevXr06dOHVq1aERQUhL6+fonjWrp0KQsWLCAwMBAnJye8vb3Zs2cP9vb2pRmeSl9fnxs3bjBq1CgcHR0ZPHgwvXv3Vp9q0blzZyZNmsSQIUOwsLBgxYoVAISEhGBjY4O7uzvDhw/H399fpz7Y2NiYf//735w7dw5nZ2fmz5//WHnJwxnfos5pSYWEhHDw4EFsbGxwdnZ+qvOg0WjYu3cvXbt2ZcyYMTg6OjJ06FAuX76MpaVlofts2LCBW7du4eLiwsiRI5k2bRr16tUrdWzTpk1j5syZzJo1i1atWrFv3z527dqlc+Prk+Tn5zNlyhT1Z8LR0ZFPPvmk5CegED179sTBwYGuXbsyZMgQ3njjDZ3HPAohhBBCFEej/L1IWQhRKF9fXzIyMp75zaFZWVmYmZmRmZkpN18KIYQQFcTz+v6W/1cuhBBCCCFEGamyyXeLFi10Hp/36LJly5byDu+5q2rjFUIIIYR4GVXZspPLly8X+RhAS0tLneeKVwZVbbwvMyk7EUIIISqe5/X9/UzP+a7IbG1tyzuEMlXVxiuEEGXFNWBTeYfwTGJXjirvEISoUqps2YkQQgghhBBlTZJv8dS6devG9OnTyzuMpxYZGYlGoyEjI6O8QxFCCCFEFSHJt6iyOnfuTFpaGmZmZuUdihBCCCGqCEm+xUsrNzf3hfZvYGCAlZUVGo3mhR5HCCGEEOIhSb5Fidy5c4dRo0ZhbGyMtbU1ISEhOttzcnLw9/enQYMGGBkZ0bFjRyIjI9XtYWFhmJubs3PnThwcHKhRowZeXl5cuXJFbbNo0SLatm3Ll19+ib29PTVq1AAgIyODcePGYWFhgampKT169CA+Pl7dLz4+nu7du2NiYoKpqSmurq6cOnUKePCUFx8fH2rVqoWRkREtWrRg7969QOFlJ9u3b6dFixZotVrs7OweG6ednR3Lli3j7bffxsTEhEaNGvHFF188l3MshBBCiMpPkm9RIgEBARw5coQff/yRAwcOEBkZyenTp9Xtfn5+HDt2jK1bt3L27FkGDRqEt7c3iYmJapu7d+/ywQcfsGnTJqKjo8nIyGDo0KE6x7l06RLbt29nx44dxMXFATBo0CDS09MJDw8nNjYWFxcXevbsyc2bNwEYMWIEDRs25OTJk8TGxjJ37lyqV68OwJQpU8jJyeHnn3/m3LlzLF++HGNj40LHGBsby+DBgxk6dCjnzp1j0aJFLFiwgLCwMJ12ISEhtGvXjjNnzvDOO+8wefJkLl68WOS5y8nJISsrS2cRQgghRNVUZR81KEouOzubDRs28PXXX9OzZ08ANm7cSMOGDQFITU0lNDSU1NRU6tevD4C/vz/79u0jNDSUZcuWAXD//n0++ugjOnbsqPbh5OTEiRMn6NChA/Cg1GTTpk1YWFgAEBUVxYkTJ0hPT0er1QIQHBzMzp072bZtGxMmTCA1NZWAgACaNWsGgIODgxp7amoqAwcOpFWrVgA0bty4yHGuWrWKnj17smDBAgAcHR25cOECK1euxNfXV23Xp08f3nnnHQDmzJnD6tWrOXz4ME2bNi2038DAQBYvXlyicy2EEEKIyk1mvsUTJSUlkZubqybNALVr11aTzXPnzpGfn4+jo6POmzOPHDlCUlKSuk+1atVo3769ut6sWTPMzc1JSEhQP7O1tVUTb3hQUpKdnU2dOnV0+k5OTlb7njlzJuPGjcPT05OgoCCdY06bNo3333+fLl26sHDhQs6ePVvkOBMSEujSpYvOZ126dCExMZH8/Hz1s9atW6v/1mg0WFlZkZ6eXmS/8+bNIzMzU10eLbURQgghRNUiM9/imWVnZ6Ovr09sbCz6+vo624oq8SiKkZHRY31bW1vr1I8/ZG5uDjyoFR8+fDh79uwhPDychQsXsnXrVvr378+4cePw8vJiz549HDhwgMDAQEJCQpg6dWqp4nrUw5KWhzQaDQUFBUW212q16qy9EEIIIao2mfkWT/TKK69QvXp1YmJi1M9u3brFb7/9BoCzszP5+fmkp6fTpEkTncXKykrdJy8vT70REuDixYtkZGTg5ORU5LFdXFy4evUq1apVe6zvunXrqu0cHR2ZMWMGBw4cYMCAAYSGhqrbbGxsmDRpEjt27GDWrFmsX7++0GM5OTkRHR2t81l0dDSOjo6P/VEhhBBCCPE0JPkWT2RsbMzYsWMJCAjgp59+4pdffsHX1xc9vQc/Po6OjowYMYJRo0axY8cOkpOTOXHiBIGBgezZs0ftp3r16kydOpWYmBhiY2Px9fWlU6dOar13YTw9PXFzc6Nfv34cOHCAlJQUjh49yvz58zl16hT37t3Dz8+PyMhILl++THR0NCdPnlQT+unTp7N//36Sk5M5ffo0hw8fLjLZnzVrFhERESxdupTffvuNjRs38tFHH+Hv7/8cz6YQQgghqjIpOxElsnLlSrKzs/Hx8cHExIRZs2aRmZmpbg8NDeX9999n1qxZ/PHHH9StW5dOnTrRt29ftU3NmjWZM2cOw4cP548//sDd3Z0NGzYUe1yNRsPevXuZP38+Y8aM4c8//8TKyoquXbtiaWmJvr4+N27cYNSoUVy7do26desyYMAA9QbH/Px8pkyZwn//+19MTU3x9vZm9erVhR7LxcWF7777jvfee4+lS5dibW3NkiVLdG62FEIIIYR4FhpFUZTyDkJUfmFhYUyfPl1e5Q5kZWVhZmZGZmYmpqam5R2OEOIZuQZsKu8QnknsylHlHYIQFcLz+v6WmW8hhBDiGUjyKoQoDan5FkIIIYQQooxI8i3KhK+vr5ScCCGEEKLKk7ITISqRil57KoQoe1I2I0TZkplvIYQQQgghyogk30IIIYQQQpQRSb4rmG7dujF9+vQit9vZ2bFmzZoXHodGo2Hnzp0v/DhCCCGEEJWJJN9CCCGEEEKUEUm+xUtHURTy8vLKOwwdL2NMQgghhKh4JPmugPLy8vDz88PMzIy6deuyYMECinpRaWpqKm+++SbGxsaYmpoyePBgrl27ptPm008/5ZVXXsHAwICmTZuyefNmne2JiYl07dqVGjVq0Lx5cw4ePFjiWFNSUtBoNGzdupXOnTtTo0YNWrZsyZEjR9Q2kZGRaDQawsPDcXV1RavVEhUVRUFBAYGBgdjb22NoaEibNm3Ytm2but+tW7cYMWIEFhYWGBoa4uDgQGhoKAC5ubn4+flhbW1NjRo1sLW1JTAwUCemuLg4ta+MjAw0Gg2RkZHPFFNhcnJyyMrK0lmEEEIIUTXJowYroI0bNzJ27FhOnDjBqVOnmDBhAo0aNWL8+PE67QoKCtTE+8iRI+Tl5TFlyhSGDBmiJpk//PAD7777LmvWrMHT05Pdu3czZswYGjZsSPfu3SkoKGDAgAFYWloSExNDZmZmsTXnRQkICGDNmjU0b96cVatW4ePjQ3JyMnXq1FHbzJ07l+DgYBo3bkytWrUIDAzk66+/5rPPPsPBwYGff/6Zf/zjH1hYWODh4cGCBQu4cOEC4eHh1K1bl0uXLnHv3j0APvzwQ3bt2sV3331Ho0aNuHLlCleuXCl13KWNqTCBgYEsXry41McWQgghROUjyXcFZGNjw+rVq9FoNDRt2pRz586xevXqx5LviIgIzp07R3JyMjY2NgBs2rSJFi1acPLkSdq3b09wcDC+vr688847AMycOZPjx48THBxM9+7dOXToEL/++iv79++nfv36ACxbtozevXuXKmY/Pz8GDhwIPJhp37dvHxs2bGD27NlqmyVLltCrVy/gwWzxsmXLOHToEG5ubgA0btyYqKgoPv/8czw8PEhNTcXZ2Zl27doBD242fSg1NRUHBwdeffVVNBoNtra2pYr3aWMqzLx585g5c6a6npWVpV4PIYQQQlQtUnZSAXXq1AmNRqOuu7m5kZiYSH5+vk67hIQEbGxsdBK95s2bY25uTkJCgtqmS5cuOvt16dJFZ7uNjY2aeD88Xmk9uk+1atVo166deoyHHibRAJcuXeLu3bv06tULY2Njddm0aRNJSUkATJ48ma1bt9K2bVtmz57N0aNH1f19fX2Ji4ujadOmTJs2jQMHDpQ65qeJqTBarRZTU1OdRQghhBBVk8x8i5eGkZGR+u/s7GwA9uzZQ4MGDXTaabVaAHr37s3ly5fZu3cvBw8epGfPnkyZMoXg4GBcXFxITk4mPDycQ4cOMXjwYDw9Pdm2bRt6eg/+5ny0Tv7+/fvPJSYhhBBCiOLIzHcFFBMTo7N+/PhxHBwc0NfX1/ncycnpsVrnCxcukJGRQfPmzdU20dHROvtFR0frbL9y5QppaWk6xyutR/fJy8sjNjYWJyenIts3b94crVZLamoqTZo00Vkencm3sLBg9OjRfP3116xZs4YvvvhC3WZqasqQIUNYv3493377Ldu3b+fmzZtYWFgA6Izp0ZsvnzUmIYQQQoiiyMx3BZSamsrMmTOZOHEip0+fZt26dYSEhDzWztPTk1atWjFixAjWrFlDXl4e77zzDh4eHmo5RUBAAIMHD8bZ2RlPT0/+/e9/s2PHDg4dOqT24ejoyOjRo1m5ciVZWVnMnz+/1DF//PHHODg44OTkxOrVq7l16xZvv/12ke1NTEzw9/dnxowZFBQU8Oqrr5KZmUl0dDSmpqaMHj2a9957D1dXV1q0aEFOTg67d+9WE/pVq1ZhbW2Ns7Mzenp6fP/991hZWWFubo6enh6dOnUiKCgIe3t70tPT+ec///nEMZQkJiGEEEKI4kjyXQGNGjWKe/fu0aFDB/T19Xn33XeZMGHCY+00Gg0//vgjU6dOpWvXrujp6eHt7c26devUNv369WPt2rUEBwfz7rvvYm9vT2hoKN26dQNAT0+PH374gbFjx9KhQwfs7Oz48MMP8fb2LlXMQUFBBAUFERcXR5MmTdi1axd169Ytdp+lS5diYWFBYGAgv//+O+bm5ri4uPB///d/ABgYGDBv3jxSUlIwNDTE3d2drVu3Ag8S5RUrVpCYmIi+vj7t27dn7969asnJV199xdixY3F1daVp06asWLGC11577YnjeFJMQgghhBDF0ShFPSBaiOcgJSUFe3t7zpw5Q9u2bcs7nJdCVlYWZmZmZGZmPvebL10DNj3X/oQQlV/sylHlHYIQFcLz+v6WmW8hytjDv3dfxMt2Di/o99z7FEJUbvLiLyFK5uHvyrPOW0vyLZ7JsmXLWLZsWaHb3N3d+fTTT8s4opff7du3AeQmTSGEEKICun37NmZmZk+9v5SdiGdy8+ZNbt68Weg2Q0PDxx7JJx68efR///sfJiYmOs9rFy/OwxcbXblyRZ6zXs7kWrxc5Hq8XOR6vFz+fj0UReH27dvUr19fvYfsacjMt3gmtWvXpnbt2uUdRoWip6dHw4YNyzuMKklecvTykGvxcpHr8XKR6/FyefR6PMuM90PynG8hhBBCCCHKiCTfQgghhBBClBFJvoUQlZ5Wq2XhwoVotdryDqXKk2vxcpHr8XKR6/FyeVHXQ264FEIIIYQQoozIzLcQQgghhBBlRJJvIYQQQgghyogk30IIIYQQQpQRSb6FEEIIIYQoI5J8CyGEEEIIUUYk+RZCVDoffPABnTt3pmbNmpibm5doH0VReO+997C2tsbQ0BBPT08SExNfbKBVxM2bNxkxYgSmpqaYm5szduxYsrOzi92nW7duaDQanWXSpEllFHHl8vHHH2NnZ0eNGjXo2LEjJ06cKLb9999/T7NmzahRowatWrVi7969ZRRp1VCa6xEWFvbY70GNGjXKMNrK7eeff8bHx4f69euj0WjYuXPnE/eJjIzExcUFrVZLkyZNCAsLK/VxJfkWQlQ6ubm5DBo0iMmTJ5d4nxUrVvDhhx/y2WefERMTg5GREV5eXvz1118vMNKqYcSIEZw/f56DBw+ye/dufv75ZyZMmPDE/caPH09aWpq6rFixogyirVy+/fZbZs6cycKFCzl9+jRt2rTBy8uL9PT0QtsfPXqUYcOGMXbsWM6cOUO/fv3o168fv/zySxlHXjmV9nrAg1ebP/p7cPny5TKMuHK7c+cObdq04eOPPy5R++TkZF5//XW6d+9OXFwc06dPZ9y4cezfv790B1aEEKKSCg0NVczMzJ7YrqCgQLGyslJWrlypfpaRkaFotVrlm2++eYERVn4XLlxQAOXkyZPqZ+Hh4YpGo1H++OOPIvfz8PBQ3n333TKIsHLr0KGDMmXKFHU9Pz9fqV+/vhIYGFho+8GDByuvv/66zmcdO3ZUJk6c+ELjrCpKez1K+t8w8ewA5Ycffii2zezZs5UWLVrofDZkyBDFy8urVMeSmW8hRJWXnJzM1atX8fT0VD8zMzOjY8eOHDt2rBwjq/iOHTuGubk57dq1Uz/z9PRET0+PmJiYYvfdsmULdevWpWXLlsybN4+7d+++6HArldzcXGJjY3V+rvX09PD09Czy5/rYsWM67QG8vLzk9+A5eJrrAZCdnY2trS02Nja8+eabnD9/vizCFYV4Xr8f1Z5nUEIIURFdvXoVAEtLS53PLS0t1W3i6Vy9epV69erpfFatWjVq165d7LkdPnw4tra21K9fn7NnzzJnzhwuXrzIjh07XnTIlcb169fJz88v9Of6119/LXSfq1evyu/BC/I016Np06Z89dVXtG7dmszMTIKDg+ncuTPnz5+nYcOGZRG2eERRvx9ZWVncu3cPQ0PDEvUjM99CiAph7ty5j9149PelqC8w8fy96OsxYcIEvLy8aNWqFSNGjGDTpk388MMPJCUlPcdRCPFyc3NzY9SoUbRt2xYPDw927NiBhYUFn3/+eXmHJp6BzHwLISqEWbNm4evrW2ybxo0bP1XfVlZWAFy7dg1ra2v182vXrtG2bdun6rOyK+n1sLKyeuxmsry8PG7evKme95Lo2LEjAJcuXeKVV14pdbxVUd26ddHX1+fatWs6n1+7dq3Ic29lZVWq9qLknuZ6/F316tVxdnbm0qVLLyJE8QRF/X6YmpqWeNYbJPkWQlQQFhYWWFhYvJC+7e3tsbKyIiIiQk22s7KyiImJKdUTU6qSkl4PNzc3MjIyiI2NxdXVFYCffvqJgoICNaEuibi4OACdP45E8QwMDHB1dSUiIoJ+/foBUFBQQEREBH5+foXu4+bmRkREBNOnT1c/O3jwIG5ubmUQceX2NNfj7/Lz8zl37hx9+vR5gZGKori5uT326M2n+v0o7d2gQgjxsrt8+bJy5swZZfHixYqxsbFy5swZ5cyZM8rt27fVNk2bNlV27NihrgcFBSnm5ubKjz/+qJw9e1Z58803FXt7e+XevXvlMYRKxdvbW3F2dlZiYmKUqKgoxcHBQRk2bJi6/b///a/StGlTJSYmRlEURbl06ZKyZMkS5dSpU0pycrLy448/Ko0bN1a6du1aXkOosLZu3apotVolLCxMuXDhgjJhwgTF3NxcuXr1qqIoijJy5Ehl7ty5avvo6GilWrVqSnBwsJKQkKAsXLhQqV69unLu3LnyGkKlUtrrsXjxYmX//v1KUlKSEhsbqwwdOlSpUaOGcv78+fIaQqVy+/Zt9fsBUFatWqWcOXNGuXz5sqIoijJ37lxl5MiRavvff/9dqVmzphIQEKAkJCQoH3/8saKvr6/s27evVMeV5FsIUemMHj1aAR5bDh8+rLYBlNDQUHW9oKBAWbBggWJpaalotVqlZ8+eysWLF8s++Eroxo0byrBhwxRjY2PF1NRUGTNmjM4fQsnJyTrXJzU1VenatatSu3ZtRavVKk2aNFECAgKUzMzMchpBxbZu3TqlUaNGioGBgdKhQwfl+PHj6jYPDw9l9OjROu2/++47xdHRUTEwMFBatGih7Nmzp4wjrtxKcz2mT5+utrW0tFT69OmjnD59uhyirpwOHz5c6HfFw2swevRoxcPD47F92rZtqxgYGCiNGzfW+R4pKY2iKMqzTcILIYQQQgghSkKediKEEEIIIUQZkeRbCCGEEEKIMiLJtxBCCCGEEGVEkm8hhBBCCCHKiCTfQgghhBBClBFJvoUQQgghhCgjknwLIYQQQghRRiT5FkIIIYQQooxI8i2EEEIIIUQZkeRbCCGEEEKIMiLJtxBCCCGEEGXk/wEhuZTikw+GbAAAAABJRU5ErkJggg==\n"},"metadata":{}}],"source":["sns.barplot(data=mm_some_stress_mean,orient='y')\n","plt.title('Min Max of scaled categories when Reporting Stress Level 1');"]},{"cell_type":"markdown","metadata":{"id":"bez0AAJRW-eb"},"source":["### Stress Level 0"]},{"cell_type":"code","execution_count":47,"metadata":{"colab":{"base_uri":"https://localhost:8080/","height":430},"executionInfo":{"elapsed":3080,"status":"ok","timestamp":1716216981199,"user":{"displayName":"Daniel Meier","userId":"06365571306976914087"},"user_tz":300},"id":"C_eFgnVylF1j","outputId":"ea44690a-8387-4239-b817-87b81396f712"},"outputs":[{"output_type":"display_data","data":{"text/plain":["
"],"image/png":"iVBORw0KGgoAAAANSUhEUgAAAtcAAAGdCAYAAADZpV/KAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAADMGUlEQVR4nOzdd1yV5fvA8c9zmIftQEFFcQBOFFNTyZGakEqKM7MU9yIzcmSm4kRTwlVmljjLhitx5MgVlqsw+2quVPx+1bASCIUDZ/z+IM+vE0NQ4Rzger9e56XnPOu6H864zn2u574Vg8FgQAghhBBCCPHYVOYOQAghhBBCiNJCkmshhBBCCCGeEEmuhRBCCCGEeEIkuRZCCCGEEOIJkeRaCCGEEEKIJ0SSayGEEEIIIZ4QSa6FEEIIIYR4QiS5FkIIIYQQ4gmxNncAQpQ1er2emzdv4uzsjKIo5g5HCCGEEAVgMBj466+/qFKlCipV3v3TklwLUcxu3ryJl5eXucMQQgghxCO4ceMG1apVy3O5JNdCFDNnZ2cg+8Xp4uJi5miEJdDpdPTt25f09HRzhyIshFqt5vPPP8fKysrcoQgh/paamoqXl5fxczwvklwLUcwelIK4uLhIci0A0Gq1ZGVlsaFjb6wUuRTmUd26/xeTTuzjnRbP4emQ/4efJdMZ9IQd3oazszPW1vIxLYSleVhJp7xqxRNx7do1atasyY8//kiTJk3MFoeiKGzdupUePXoU2zG9vb0ZP34848ePL7ZjitLJSlFhnU8dn8jfgy8mJf486s0dgBDicUhyLZ4ILy8vbt26RcWKFQu8Tfv27WnSpAmLFy8uusCEKACdTofBYDDb8bVardmOLSzX4zwvFEWRkhIhzESSa/FEWFlZ4eHhYe4whCg0nU5HSLdu3Jd6Z2Eh9AYDKkUhODj4kffhoFazIy5OEmwhzECS6zJiz549zJkzh59//hkrKytatWrFkiVLqF27trGkY/PmzSxbtozjx4/j4+PDBx98QKtWrQAYMmQIp06d4uTJk9jZ2ZGZmcnTTz9No0aNWLduXa5lIT///DMTJ07k6NGjODo60rlzZ2JiYqhYsSJhYWEcPnyYw4cPs2TJEgB+/fVXnnvuOUaNGsWECROMsSckJBAQEMClS5eoU6dOodp948YN3njjDfbu3YtKpaJNmzYsWbIEb29v9u7dywsvvMDt27dxc3MzbvPaa69x9uxZvvnmGwC+/fZbpkyZwqlTp6hYsSKhoaFERUXh6Oj4GH8R8aQ8bq+zVqvlfno66/oMwcpMpQQarZYhm9eY5djC8ugNBvQGwyM/J3V6PQO/WE1WVtZjvTak91uIRyPJdRlx7949IiIi8Pf3Jy0tjenTpxMaGkpCQoJxnalTp7Jo0SJ8fHyYOnUq/fv35/Lly1hbW7N06VIaN27Mm2++SUxMDFOnTiU5OZnly5fnerzk5GQ6dOjAsGHDiImJIT09ncmTJ9O3b1+++eYblixZwsWLF2nYsCGzZs0CwN3dnSFDhhAbG2uSXMfGxtK2bdtCJ9ZZWVkEBQXRqlUrjh49irW1NXPmzCE4OJiffvqJjh074ubmxubNmxk6dCiQnah99tlnzJ07F4ArV64QHBzMnDlzWL16NXfu3CE8PJzw8HBiY2MLFIdGo0Gj0Rjvp6amFqodpd3jJMc6nY7QHj2eSK+zlUqFtco8iYRWJUW2IqdHfU7q9frH7vkGUNur2bZ9myTYj0mv1+c7JnJx7EO+KBUvSa7LiF69epncX716Ne7u7pw7dw4nJycAJkyYQNeuXQGYOXMmDRo04PLly9StWxcnJyc2bNhAu3btcHZ2ZvHixRw8eDDP0S6WL19OQEAA8+bNMzmml5cXFy9exNfXF1tbWxwcHEzKScLCwpg+fTonTpygRYsWZGVl8cknn7Bo0aJCt/mzzz5Dr9fz0UcfGa/sjY2Nxc3NjUOHDtG5c2defPFFPvnkE2NyfeDAAZKTk43nKyoqigEDBhgvVvTx8WHp0qW0a9eOFStWYG9v/9A4oqKimDlzZqHjLwvS09MJ6dYNrU73WPvZMCLikXudNdoswj5a8ljHF8KS6Mnu/X6c10WWVkvYx0sICgp6ssGVQSqVCr3+8b5AP+4+HBwc2LFjhyTYxaQEX04tCuPSpUv079+fWrVq4eLigre3NwCJiYnGdfz9/Y3/9/T0BCApKcn4WKtWrZgwYQKzZ8/mjTfe4JlnnsnzeGfOnOHgwYM4OTkZb3Xr1gWye4PzUqVKFbp27crq1asB2LFjBxqNhj59+hS6zWfOnOHy5cs4OzsbYyhfvjwZGRnGGAYMGMChQ4e4efMmABs3bqRr167GMpEzZ86wZs0ak3YEBQWh1+u5evVqgeKYMmUKKSkpxtuNGzcK3RYhhBBClAzSc11GhISEUKNGDVatWkWVKlXQ6/U0bNiQzMxM4zo2NjbG/z/o6f3nN2W9Xk98fDxWVlZcvnw53+OlpaUREhLCggULcix7kLjnZdiwYbzyyivExMQQGxtLv379cHBwKFA7/x3DU089xcaNG3Msc3d3B6B58+bUrl2bTZs2MXr0aLZu3cqaNWtM9jFy5EjGjRuXYx/Vq1cvUBx2dnbY2dkVOv6yQK1W8/XevY9dFvLyh+8+4ciEKLlUgEpRHvt1IWUhT4aUhZQ9klyXAX/88QcXLlxg1apVtGnTBsi+SK+wFi5cyC+//MLhw4cJCgoiNjaWwYMH57pu06ZN2bx5M97e3nlOgmBra4sul3KALl264OjoyIoVK9izZw9HjhwpdKwPYvjss8+oVKlSvpO1DBgwgI0bN1KtWjVUKpWxNObBPs6dO1foem9RcI/zhm9tbc2OuLjHvqAxODgY3WP+bPs4zHlsYbke9XlhILssZM+ePY81CY0kZEI8Gkmuy4By5cpRoUIFPvzwQzw9PUlMTOTNN98s1D5+/PFHpk+fzpdffklgYCDvvvsur732Gu3ataNWrVo51h87diyrVq2if//+TJo0ifLly3P58mU2bdrERx99hJWVFd7e3hw/fpxr164ZSzZUKhVWVlaEhYUxZcoUfHx8jCOWFNaAAQNYuHAh3bt3Z9asWVSrVo3r16+zZcsWJk2aRLVq1YzrRUZGMnfuXHr37m3Syzx58mRatmxJeHg4w4YNw9HRkXPnzrFv3748L+YUxetxP/wVRcFBrWbgF6ufUERCPB6VoqBSlMd6Tjqo1djY2EhyLIQZSHJdBqhUKjZt2sS4ceNo2LAhfn5+LF26lPbt2xdo+4yMDF5++WXCwsIICQkBYMSIEezcuZNXXnkl157lKlWqEB8fz+TJk+ncuTMajYYaNWoQHBxs/GlrwoQJDBo0iPr165Oens7Vq1eNteBDhw5l3rx5efaMF4SDgwNHjhxh8uTJ9OzZk7/++ouqVavSsWNHk57sOnXq0KJFC06cOJFjQht/f38OHz7M1KlTadOmDQaDgdq1a9OvX79HjktYFisrq8fu/X5cD3rPhYDs5Ppxe56l11kI81EM5vxEESIPR48epWPHjty4cYPKlSubO5wnKjU1FVdXV1JSUvItVxFlh1arpVOnTqxv37NkT9ttZjfv/cUbx78m+ukgqjg6mzucR6bV63nl0Bb279//WGUdQognq6Cf3/KqFRZFo9Fw584dIiMj6dOnT6lLrIXIj86gzx5HTTwSnUFv/FdbguvYH7RDCFEySXItLMqnn37K0KFDadKkCevWrTNZtnHjRkaOHJnrdjVq1OA///lPcYQoxBP3oO477PA2c4dSKkw6sc/cITw2B7XaOGqTEKJkkbIQUWL89ddf/Pbbb7kus7GxoUaNGsUc0aORshCRm8edxl2ULlIzLYTlkbIQUeo4Ozvj7Fxy6yiFyI8kUqXXo3xxMhgMaLXaIopIyJcXUZQkuRZCCCGKiE6nI6RbV+6nZ5g7FPEPDmp7dsTtlARbFAlJroUQQogiYjAYuJ+ewcft/LCSGmpu3dcw5cRVolrUxNPBPDPX6gwGhh6+IGVYosjImE/isV27dg1FUUhISDA+Fh8fT6NGjbCxsaFHjx5mi008eTqdjhs3bpCSklKg9TMyMkhPTy/iqISwbFaKgrVKbg++YJjzfMiXHFHUpOdaFImIiAiaNGnC7t27cXJyKtJjhYWFkZyczLZt24r0OGWdTqdj+fLl3Lhxw/iYtbU1vXv3plmzZjnWv3r1Krt37+bXX38FwMvLi6CgIOrWrVtsMQtRUEV1QanUTVuuovrbSD23kORaFIkrV64watQo4xTjouSbP38+d+/excbGhtq1a3P37l1+++03Nm3ahL29PQ0bNjSu++uvv7Jy5Uo8PT3p06cPVlZWnDhxgo8//phBgwaZrCtKhtI8molOpyO0Rw/uyy8sZYLeYEClUGSzoqrt7dm2fXuBEmxJxEsnSa6F0ZdffsnMmTO5fPkyDg4OBAQEsH37dhwdHfnoo4+Ijo42TlE+btw4xowZk2Mf165do2bNmgAMGTKEIUOGEBsbS1hYWL7H/vnnn5k4cSJHjx7F0dGRzp07ExMTQ8WKFfONbeHChaxduxbAOCbswYMHad++PTdu3OCNN95g7969qFQq2rRpw5IlS4xTrAP5tutBWz777DOWLVvGqVOnaNiwIRs3biQlJYXRo0fzyy+/0KZNG9atW4e7u/vj/gks1tWrV7l79y6urq5MmzbN+PiVK1dYsWIFn3/+uUnCvGvXLqpWrcqYMWOMM8w1bdqU1atXExcXR/369VGVopkIS3PiCWUn+VzTpwNWqidbMqDR6hi2+dAT3ad4PHpD9q0o/t5ZOj3DNh8iKCioQOs7qNXsiIuTBLuUkeRaAHDr1i369+/PO++8Q2hoKH/99RdHjx7FYDCwceNGpk+fzvLlywkICODHH39k+PDhODo6MmjQIJP9eHl5cevWLfz8/Jg1axb9+vXD1dU132MnJyfToUMHhg0bRkxMDOnp6UyePJm+ffvyzTff5BvbhAkTOH/+PKmpqcTGxgJQvnx5srKyCAoKolWrVhw9ehRra2vmzJlDcHAwP/30E7a2tgVu14wZM1i8eDHVq1dnyJAhvPTSSzg7O7NkyRIcHBzo27cv06dPZ8WKFbm2T6PRoNFojPdTU1Mf9c9kNnv27AHglVdeMXm8du3aODo6cu/ePeNj9+7d49q1a/Tv399k6uYHX3BWrVpFUlISHh4euR6rsImqXq83a6JeVhJPgHUj+mFVir4UPaDRahny0RdYqZQnPv28ViWzLVqqIvl76/XoDYYCvVaytFrCPvoCrVYryXUpI8m1ALKTa61WS8+ePY2TsTRq1AjITi6jo6Pp2bMnADVr1uTcuXOsXLkyR3JtZWWFh4cHiqLg6uqaZwL1Tw+S23nz5hkfW716NV5eXly8eJG0tLQ8YwNQq9VoNBqTY23YsAG9Xs9HH31k7NGOjY3Fzc2NQ4cO0blz5wK3a8KECcZeiNdee43+/ftz4MABAgMDARg6dChr1qzJs31RUVHMnDnzoefBkul0OoBc6+f//aHwYN1/JtYPPHhMn8/U1OvWrTP+GlEQtrY2ZGZmFXj9orLm9RFYW5W+xBMgI1PLsKUfYaVSlco2anWlr03CvAryWnnwtqXVarGzM8/IKaJoSHItAGjcuDEdO3akUaNGBAUF0blzZ3r37o2trS1Xrlxh6NChDB8+3Li+Vqt9aI90QZ05c4aDBw/mmrhduXKFzp075xpbuXLl8t3n5cuXc0w6k5GRwZUrV7h3716B2+Xv72/8f+XKlQHT5L5y5cokJSXlGcuUKVOIiIgw3k9NTcXLyyvP9S3RM888w7Vr11i3bp1JW1JSUkhNTcXW1tb4mLOzM5UrV+bkyZP4+/ubTOF88uRJXFxcjOcxNwMHDszRQ54XnU5HaGio2ZNrlUohLOZDs8ZQHHT5fCkqyXSG0tkuYT4Fea08+IVOprkvfSS5FkB27+O+ffs4duwYe/fuZdmyZUydOpUdO3YAsGrVKp5++ukc2zwJaWlphISEsGDBghzLPD0984zt+PHjxvru3Pb51FNPsXHjxhzL3N3dSUtLAwrWLhsbG+P/H7wJ/vux/Hpi7ezsSnyvRJMmTfjiiy+4efMmc+bM4ZlnnuF///ufcfjFf14YpCgKnTt3Zv369WzYsIFnnnkGKysrjh8/zqlTpwgNDc33uVOY55W1tTU7duwwe72zuUtTitqD0peBH35m7lCEsGgqFFSKUuDXioNaXeI/H0ROklwLI0VRCAwMJDAwkOnTp1OjRg3i4+OpUqUKv/76KwMGDCiS4zZt2pTNmzfj7e2daylBXrFt3bqViIgIbG1tjaUI/9znZ599RqVKlXBxccmxP1dX1yJvV2kzZcoUFi5cSHJyMnFxccbH27RpQ9u2bU3Wbdy4MVqtll27dnHmzBkAHB0d6dGjB61bt36icUmtYtGztrZmR1yc2b/EFBWtVktwcDA6vQF4sr3Y2fsUlqgo/t4Gskcj2bNnT56fZ/8ko4WUTpJcCwCOHz/OgQMH6Ny5M5UqVeL48ePcuXOHevXqMXPmTMaNG4erqyvBwcFoNBpOnTrF3bt3TUoEHtXYsWNZtWoV/fv3Z9KkSZQvX57Lly+zadMmPvroI06dOpVnbADe3t58/fXXXLhwgQoVKuDq6sqAAQNYuHAh3bt3Z9asWVSrVo3r16+zZcsWJk2aRLVq1Yq8XaWNk5MTM2fO5NatW5w+fRpXV1dat26d5wfDU089RZMmTbh58yYGg4EqVaoU6MNGWKbSnAAoioKDWk3YF9+YOxRRDFRK9q2o/t4OajU2Njal+jUj8iefdAIAFxcXjhw5wuLFi0lNTaVGjRpER0fz/PPPA+Dg4MDChQuZOHEijo6ONGrUiPHjxz+RY1epUoX4+HgmT55M586d0Wg01KhRg+DgYFQq1UNjGz58OIcOHaJZs2akpaUZh+I7cuQIkydPpmfPnvz1119UrVqVjh07Gnuyhw0bVqTtKq08PT3p1q1bgda1srIqcfXlouyxsrIqsp75B73iwnKoFAW9gQL3LheW9EYLxVBaf+cTwkKlpqbi6upKSkpKriUrQojSQ6vV0qlTJz5u5yfTbgO37muYcuIqUS1q4ulgnlpjncHA0MMX2L9/v/yaJgqloJ/f8qwSQgghikh2yYk9Qw9fMHcoFmXKiatmPb6D2l5G6RBFRpJrUeRGjRrFhg0bcl328ssv88EHHxRzREIIUTyyS052ltqLQUsqKd0QRUnKQkSRS0pKynNWQhcXFypVqlTMEZmXlIUIIYQQJY+UhQiLUalSpTKXQAthDoWdOl6Iskh6rUVRk+RaCCFKgT///JO+ffug1eoevrIQZZiD2p4dcTslwRZFRpJrIYQoBVJSUtBqdbzW2gYPp9I7W6QQj0NngLf3ZcgvPKJIyTuwBfP29mbx4sUFWldRFLZt21ak8Vy7dg1FUYxTXuelffv2jzVW9MPacujQIRRFITk5+ZGPIURpZaWAlUqRm9zklttNBggRxUCS62JQHImvOZgryW3dujW3bt3C1dX1oetKIi7KCp1OykGEeBj93z3W8noRRUmSa1Hi2Nra4uHhUaxjlBoMBrRabbEdT4jCkp+5hXi4By8Teb2IolSmkuv27dvz6quvMn78eMqVK0flypVZtWoV9+7dY/DgwTg7O1OnTh12795t3Obnn3/m+eefx8nJicqVK/PKK6/w+++/m+xz3LhxTJo0ifLly+Ph4UFkZKRxube3NwChoaEoimK8f+XKFbp3707lypVxcnKiefPm7N+//7Ha9/vvvxMaGoqDgwM+Pj589dVXJssf1pY9e/bwzDPP4ObmRoUKFejWrRtXrlzJ9VjXrl3j2WefBaBcuXIoikJYWJhxuV6vz/OcPG5b/t0bff36dUJCQihXrhyOjo40aNCAXbt25RujRqNh3LhxVKpUCXt7e5555hlOnjyZ4xi7d+/mqaeews7Ojg0bNqBSqTh16pRJrIsXL6ZGjRro9fpCtVGIJ0mef0I8nPRci+JQppJrgLVr11KxYkVOnDjBq6++yujRo+nTpw+tW7fmhx9+oHPnzrzyyivcv3+f5ORkOnToQEBAAKdOnWLPnj389ttv9O3bN8c+HR0dOX78OO+88w6zZs1i3759AMaELTY2llu3bhnvp6Wl0aVLFw4cOMCPP/5IcHAwISEhJCYmPnLbZs6cSd++ffnpp5/o0qULAwYM4M8//wQoUFvu3btHREQEp06d4sCBA6hUKkJDQ3P90Pby8mLz5s0AXLhwgVu3brFkyZICnZPHbcu/jR07Fo1Gw5EjRzh79iwLFizAyckp3xgnTZrE5s2bWbt2LT/88AN16tQhKCgoxzHefPNN5s+fz/nz53nhhRfo1KkTsbGxJuvExsYSFhaGSpX7y0mj0ZCammpyE+JJS09PN3cIQlg8zd+j6dy/f9/MkYjSrMwl140bN+btt9/Gx8eHKVOmYG9vT8WKFRk+fDg+Pj5Mnz6dP/74g59++only5cTEBDAvHnzqFu3LgEBAaxevZqDBw9y8eJF4z79/f2ZMWMGPj4+DBw4kGbNmnHgwAEA3N3dAXBzc8PDw8N4v3HjxowcOZKGDRvi4+PD7NmzqV27do7e5sIICwujf//+1KlTh3nz5pGWlsaJEycACtSWXr160bNnT+rUqUOTJk1YvXo1Z8+e5dy5czmOZWVlRfny5YHscaw9PDxMaqDzOyeP25Z/S0xMJDAwkEaNGlGrVi26detG27Zt84zx3r17rFixgoULF/L8889Tv359Vq1ahVqt5uOPPzbZ96xZs3juueeoXbs25cuXZ9iwYXz66adoNBoAfvjhB86ePcvgwYPzbEtUVBSurq7Gm5eXV4HPgxBCiCdHykJEcShzybW/v7/x/1ZWVlSoUIFGjRoZH6tcuTKQPavgmTNnOHjwIE5OTsZb3bp1AUzKJf65TwBPT0+SkpLyjSMtLY0JEyZQr1493NzccHJy4vz584/Vc/3POBwdHXFxcTHGUZC2XLp0if79+1OrVi1cXFyMJSyPEtOjnJOCtuXfxo0bx5w5cwgMDGTGjBn89NNP+e77ypUrZGVlERgYaHzMxsaGFi1acP78eZN1mzVrZnK/R48eWFlZsXXrVgDWrFnDs88+azxXuZkyZQopKSnG240bN/KNT4hHYWtra+4QhLB4ttbZaY+9vb2ZIxGlWZkb59rGxsbkvqIoJo89uEhOr9eTlpZGSEgICxYsyLEfT0/PfPf5sPrHCRMmsG/fPhYtWkSdOnVQq9X07t2bzMzMQrepIHEUpC0hISHUqFGDVatWUaVKFfR6PQ0bNnykmB7lnDzq9sOGDSMoKIidO3eyd+9eoqKiiI6O5tVXXy103P/m6Ohoct/W1paBAwcSGxtLz549+eSTT0zKYXJjZ2eHnZ3dY8ciRH7+/ZoRQuRk/Xf5nnwZFUWpzCXXhdG0aVM2b96Mt7c31taPfqpsbGxyXDwRHx9PWFgYoaGhQHbye+3atccJN18Pa8sff/zBhQsXWLVqFW3atAHg22+/zXefD96cLOHCEC8vL0aNGsWoUaOYMmUKq1at4tVXX801xtq1a2Nra0t8fDw1atQAICsri5MnTxZofO5hw4bRsGFD3n//fbRaLT179iySNglRGMU5eo4QJdWDl4m8XkRRKnNlIYUxduxY/vzzT/r378/Jkye5cuUKX3/9NYMHDy5UQunt7c2BAwe4ffs2d+/eBcDHx4ctW7aQkJDAmTNneOmll4r0av+HtaVcuXJUqFCBDz/8kMuXL/PNN98QERGR7z5r1KiBoijExcVx584d0tLSiiz+/IwfP56vv/6aq1ev8sMPP3Dw4EHq1auXZ4yOjo6MHj2aiRMnsmfPHs6dO8fw4cO5f/8+Q4cOfejx6tWrR8uWLZk8eTL9+/dHrVYXdROFeCiZylmIh1P9nVTL60UUJUmu81GlShXi4+PR6XR07tyZRo0aMX78eNzc3PIcGSI30dHR7Nu3Dy8vLwICAgB49913KVeuHK1btyYkJISgoCCaNm1aVE15aFtUKhWbNm3i9OnTNGzYkNdff52FCxfmu8+qVasyc+ZM3nzzTSpXrkx4eHiRxZ8fnU7H2LFjqVevHsHBwfj6+vL+++/nG+P8+fPp1asXr7zyCk2bNuXy5ct8/fXXlCtXrkDHHDp0KJmZmQwZMqTI2iWEEEKIkkcxyCWzQhTa7Nmz+eKLLx568WRuUlNTcXV1JSUlBRcXlyKITpRFV69eZfDgwbzW2gYPJ+k3ESI3OgO8vU/D/v37H6vcU5RNBf38lmeWEIXwoDZ++fLlzJkzx9zhCGHk6uqKtbUVS45lmTsUISyag9peaq5FkZLkugTYuHEjI0eOzHVZjRo1+M9//lPMET26kt6W8PBwPv30U3r06CElIcKilC9fnq+/3ivj9wrxEIqiSM21KFJSFlIC/PXXX/z222+5LrOxsTGOeFESlKa2PCopCxFFSafTSYJdTCRJE6JskbKQUsTZ2RlnZ2dzh/FElKa2CGFpdDodId26cj89w9yhlAkOant2xO2UBFsIYUKSayGEKCUMBgP30zN4ras1hRjQyGL9mWZg7UEdg561oryTZdXI6vWwZGeG/EoghMhBkmvxyNq3b0+TJk1YvHixuUN5JIcOHeLZZ5/l7t27uLm5mTscIZ4YlQqsVJaVjD4KK+XBv4oFtkeSaiFE7iS5FmVW69atuXXrFq6uruYORZQgllzTrNVqzR1CmVMc51xqu4WlOnLkCHFxccZJ8BRFoUOHDjz//PNmjsy8JLkWFiszM9M4fXlRsLW1xcPDo8j2L0ofqWkWD+gNBhQFgoODi/xYUtstLFFcXByHDh0C/n86eYPBwIEDB/j999955ZVXzBideUlyLQrk3r17jB49mi1btuDs7MyECRNMlms0GqZOncqnn35KcnIyDRs2ZMGCBbRv3x6ANWvWMH78eNasWcPEiRO5ceMG7dq146OPPsLLywuAyMhItm3bRnh4OHPnzuX69evo9XqSk5OZMGEC27dvR6PR0KxZM2JiYmjcuDEAZ86cYfz48Zw6dQpFUfDx8WHlypU0a9aM69evEx4ezrfffktmZibe3t4sXLiQLl265FoWsnnzZqZPn87ly5fx9PTk1Vdf5Y033jC209vbmxEjRnD58mW++OILypUrx9tvv82IESOK/o8g8vUoPcp6vb5Qs61qtVrup2cwdZCvBZYpQKZWz/z1l8wdRplgMGTfivq5oNMbmLv2IllZWRb7i8mTUNjXoqUpi78uPEis+/btS4sWLQC4cOECq1at4syZM5JcC/EwEydO5PDhw2zfvp1KlSrx1ltv8cMPP9CkSRMge/znc+fOsWnTJqpUqcLWrVsJDg7m7Nmz+Pj4AHD//n3mzp3LunXrsLW1ZcyYMbz44ovEx8cbj3P58mU2b97Mli1bjG9Uffr0Qa1Ws3v3blxdXVm5ciUdO3bk4sWLlC9fngEDBhAQEMCKFSuwsrIiISEBGxsbAMaOHUtmZiZHjhzB0dGRc+fO4eTklGsbT58+Td++fYmMjKRfv34cO3aMMWPGUKFCBcLCwozrRUdHM3v2bN566y2+/PJLRo8eTbt27fDz88t1vxqNBo1GY7yfmpr6yH8HkTudTkdISDfu308v1HYqlYJeX/iExUpliTXApaPOuqQp6ueCXm9AVUw95Ob0qK9FS6FW27Nt23aLTLAf5YvLw74sXLhwAQB7e3tjYg3g5+eHm5sbycnJfP311wQFBT1a0CWcJNfiodLS0vj444/ZsGEDHTt2BGDt2rVUq1YNgMTERGJjY0lMTKRKlSoATJgwgT179hAbG8u8efMAyMrKYvny5Tz99NPGfdSrV48TJ04YX5yZmZmsW7cOd3d3AL799ltOnDhBUlISdnZ2ACxatIht27bx5ZdfMmLECBITE5k4cSJ169YFMCbzD2Lr1asXjRo1AqBWrVp5tvPdd9+lY8eOTJs2DQBfX1/OnTvHwoULTZLrLl26MGbMGAAmT55MTEwMBw8ezDO5joqKYubMmQU61+LRaLVa7t9PZ+GbvbEq4IdIZpaWNxduYd64ZwucHGVm6Zj23uHHCVWIQjEAegOFep6WNA9eV4V5/VqSLK2OKQu3WGwiaW1tXehrAwYNGsTgwYPzXH7r1i2AXK9Z8vDwIDk5Oc85LcoCSa7FQ125coXMzExjUgzZs8E9SCbPnj2LTqfD19fXZDuNRkOFChWM962trWnevLnxft26dXFzc+P8+fPG5LpGjRrGxBqySz7S0tJM9gOQnp7OlStXAIiIiGDYsGGsX7+eTp060adPH2rXrg3AuHHjGD16NHv37qVTp0706tULf3//XNt5/vx5unfvbvJYYGAgixcvRqfTGb/F/3N7RVHw8PAgKSkpz/M3ZcoUIiIijPdTU1ONpTDiyVAUBVtbGybO/9LcoQghCklRFFSKUqJfvyqVYrEDyNjYWLNzZ+Fq9h82PXxAQABxcXG5fvZdupRdmta2bdvCBVqKSHItHltaWhpWVlacPn06x4s3rxKMvDg6OubYt6enp7G2658e1ElHRkby0ksvsXPnTnbv3s2MGTPYtGkToaGhDBs2jKCgIHbu3MnevXuJiooiOjqaV199tVBx/dODkpMHFEUxXimdGzs7O2Ovuygatra27N69p1A1qTqdjtAePXhr6cEijEyIx6MAKoVS/zy15LKKgrDkmvGiqAd3dXXFxsaGrKwspkyZwsiRI7Gzs+P9999Hp9OhUqnw9vZ+oscsSSS5Fg9Vu3ZtbGxsOH78ONWrVwfg7t27XLx4kXbt2hEQEIBOpyMpKYk2bdrkuR+tVsupU6dMLnxITk6mXr16eW7TtGlTbt++jbW1db4vVF9fX3x9fXn99dfp378/sbGxhIaGAuDl5cWoUaMYNWoUU6ZMYdWqVbkm1/Xq1TOp/waIj4/H19e3xL7hlyWF/RtZW1uzIy6uUAm5VqslODgYnYXWhlpqXKVZUZ/zB2Uhe/bswdq69H5kl8ULAku6adOmMWPGDGPJ5z9NnjzZTFFZhtL7ShVPjJOTE0OHDmXixIlUqFCBSpUqMXXqVOO3dF9fXwYMGMDAgQOJjo4mICCAO3fucODAAfz9/enatSuQ3eP76quvsnTpUqytrQkPD6dly5YmF0P8W6dOnWjVqhU9evTgnXfewdfXl5s3b7Jz505CQ0Np0KABEydOpHfv3tSsWZP//ve/nDx5kl69egEwfvx4nn/+eXx9fbl79y4HDx7MM5l/4403aN68ObNnz6Zfv3589913LF++nPfff/8Jn1FhKQr7Ya4oCg5qe+auvVhEEYmSQlGyb8XxXHBQ22NjYyPJp7AoDg4OLFy4kAMHDnD48GH0ej0tWrTghRdeMHdoZifJtSiQhQsXkpaWRkhICM7OzrzxxhukpKQYl8fGxjJnzhzeeOMN/ve//1GxYkVatmxJt27djOs4ODgwefJkXnrpJf73v//Rpk0bPv7443yPqygKu3btYurUqQwePJg7d+7g4eFB27ZtqVy5MlZWVvzxxx8MHDiQ3377jYoVK9KzZ0/jBYQ6nY6xY8fy3//+FxcXF4KDg4mJicn1WE2bNuXzzz9n+vTpzJ49G09PT2bNmmVyMaMo26ysrNgRt9Nih0R70LMuip5KUTAUU4+y9OoKS9axY0fjYAcim2Kw1E8JUao8GOc6OTnZ3KGYXWpqKq6urqSkpODi4mLucEQpotVq6dSpE691tcZCyz8L5c80A2sP6hj0rBXlnSxrpAy9Hpbs1LJ///5SXa4hhPh/Bf38lncEIYQoJR6UrSzZWbpmkFx7UGfuEHLloLZ/6KgKQoiyR5JrIYQoJSy9bKW0kXINIURupCxEiGImZSFCCCFEySNlIUIIUYrodDrpkRaPTHrZhSg+klwLIYSF0+l0dOvWlfT00lVLLYqPWm1PXFzhZukTQjwaSa6FEMLCGQwG0tMzGPiCqlSMAvKkpfxlYOsBA6EdFVyd5QLDf9PrYd1XGfLLhxDFRJJr8djat29PkyZNWLx4cbEe19vbm/HjxzN+/Pgnsj9ztUOIglKpQKWS5PHfsr9wGFCpFDk/uZKkWojiJH0gQghh4XQ6yxyKTpQM+r97rOV5JETxkORaCCEsnPycLx7L308feR4JUTwkuRZPhF6vZ9KkSZQvXx4PDw8iIyONy5KTkxk2bBju7u64uLjQoUMHzpw5Y1x+5coVunfvTuXKlXFycqJ58+bs37/fZP9JSUmEhISgVqupWbMmGzduzBHDu+++S6NGjXB0dMTLy4sxY8aQlpZmsk58fDzt27fHwcGBcuXKERQUxN27dwvUjoK0RTwenU6HVqst9bfMzMxCra/RaMz9pxEl2IOea41GY/bnfmm6FfZ1XFJv8otH4UnNtXgi1q5dS0REBMePH+e7774jLCyMwMBAnnvuOfr06YNarWb37t24urqycuVKOnbsyMWLFylfvjxpaWl06dKFuXPnYmdnx7p16wgJCeHChQtUr14dgLCwMG7evMnBgwexsbFh3LhxJCUlmcSgUqlYunQpNWvW5Ndff2XMmDFMmjSJ999/H4CEhAQ6duzIkCFDWLJkCdbW1hw8eNDkjSO/dgAPbUtuNBqNSXKUmpr6RM99aaHT6QgJ6cb9++nmDqXIqVQKer30IorioddnD8XXvXt3c4dSqpSV17GDg5odO+JkpJlCkElkxGNr3749Op2Oo0ePGh9r0aIFHTp0oFu3bnTt2pWkpCTs7OyMy+vUqcOkSZMYMWJErvts2LAho0aNIjw8nIsXL+Ln58eJEydo3rw5AL/88gv16tUjJiYmzwsav/zyS0aNGsXvv/8OwEsvvURiYiLffvttodsxf/58vv3220dqS2RkJDNnzszxuEwiY6osJdcAs94KxaqAQ3+k3csgKmYnYT1UcsFeLlL+MrB5n55ez6lktJBcZGTo+GRX4Z5zIn9ZWh2z3tkuyXUZI5PIiGLl7+9vct/T05OkpCTOnDlDWloaFSpUMFmenp7OlStXAEhLSyMyMpKdO3dy69YttFot6enpJCYmAnD+/Hmsra156qmnjNvXrVsXNzc3k33u37+fqKgofvnlF1JTU9FqtWRkZHD//n0cHBxISEigT58+j9QOoEBtyc2UKVOIiIgw3k9NTcXLyyvfOMoiKysrduyIK/V1oTqdjtDQHkyft9XcoYiyQsnuuZbn3JOlVtuzbdv2Up90ygREhSfJtXgibGxsTO4rioJeryctLQ1PT08OHTqUY5sHyfGECRPYt28fixYtok6dOqjVanr37k1mZmaBj3/t2jW6devG6NGjmTt3LuXLl+fbb79l6NChZGZm4uDggFqtfuR2AAVqS27s7OxMerpF3srCG7i1tXWhv0Tcu3dPftIXj0ylyr6Ycfv27Tg6Opo7nFJDkk6RF0muRZFq2rQpt2/fxtraGm9v71zXiY+PJywsjNDQUCA7ib127Zpxed26ddFqtZw+fdpYFnLhwgWSk5ON65w+fRq9Xk90dDSqv3/2/Pzzz02O4+/vz4EDB3It0XhSbRGiIAr7gWxvb19EkYiyILuUyIC9vT3W1vKxL0RRk+IrUaQ6depEq1at6NGjB3v37uXatWscO3aMqVOncurUKQB8fHzYsmULCQkJnDlzhpdeesnYWwzg5+dHcHAwI0eO5Pjx45w+fZphw4aZ9ETXqVOHrKwsli1bxq+//sr69ev54IMPTGKZMmUKJ0+eZMyYMfz000/88ssvrFixwliT/STaIkRRkN4x8ThUSnYdujyPhCgeklyLIqUoCrt27aJt27YMHjwYX19fXnzxRa5fv07lypWB7CH0ypUrR+vWrQkJCSEoKIimTZua7Cc2NpYqVarQrl07evbsyYgRI6hUqZJxeePGjXn33XdZsGABDRs2ZOPGjURFRZnsw9fXl71793LmzBlatGhBq1at2L59e4F7cgrSFiGEEEKUbTJaiBDFrKBXGwvxgFarpVOnTgx8QYUM9pBTyl8Gth4wENpRkdFCcqHXw7qv9Ozfv1/KQoR4DDJaiBBClBKKoqBW27Puqwxzh2LRth4wYJyOUJhQq+1RFPniIURxkORaCCEsnJWVFXFxO0v9MIWi6MjIFkIUH0muhRAiDzqdThLaUk6STiHEkybJtRBC5EKn09GtW1fS06UUozSztrbi88+/oHz58uYORQhRSkhyLYQQuTAYDKSnZxASilxEWEqlpsDB/TpSUlIkuRZCPDHykVHCtG/fnvHjx+e53Nvbm8WLFxd5HIqisG3btiI/jhDmplLJrbTeFPkEFEIUAem5FkIIUaZptVq0Wq25wxBFROrqRXGT5FpYHIPBgE6ns6jxWC0xJlG0dDqduUMQRe3va1WHDx9u3jhEkVKr7YmL2ykJtig2kimUQFqtlvDwcNavX4+NjQ2jR49m1qxZuY5hmpiYyKuvvsqBAwdQqVQEBwezbNkykxkFV6xYwaJFi7hx4wY1a9bk7bff5pVXXjEuv3TpEkOHDuXEiRPUqlWLJUuWFDjWa9euUbNmTT799FOWLl3KDz/8QJ06dXjvvfdo164dAIcOHeLZZ59l165dvP3225w9e5a9e/fStm1bFixYwIcffsjt27fx9fVl2rRp9O7dG4C7d+8SHh7O3r17SUtLo1q1arz11lsMHjyYzMxMIiIi2Lx5M3fv3qVy5cqMGjWKKVOmGGP68ccfadKkCQDJycmUK1eOgwcP0r59+0eOSZQeMkpI6ffgT9yzVxXKlbc1bzCiSOj1BmI/vi6vZ1GsJLkugdauXWtMdk+dOsWIESOoXr16jt4XvV5P9+7dcXJy4vDhw2i1WsaOHUu/fv04dOgQAFu3buW1115j8eLFdOrUibi4OAYPHky1atV49tln0ev19OzZk8qVK3P8+HFSUlLyrfnOy8SJE1m8eDH169fn3XffJSQkhKtXr1KhQgXjOm+++SaLFi2iVq1alCtXjqioKDZs2MAHH3yAj48PR44c4eWXX8bd3Z127doxbdo0zp07x+7du6lYsSKXL18mPT0dgKVLl/LVV1/x+eefU716dW7cuMGNGzcKHXdhY8qNRqNBo9EY76emphY6DlH8pOe67FBUCiormWClNNLrs5Nq+eVRFCd5ppVAXl5exMTEoCgKfn5+nD17lpiYmBzJ9YEDBzh79ixXr17Fy8sLgHXr1tGgQQNOnjxJ8+bNWbRoEWFhYYwZMwaAiIgIvv/+exYtWsSzzz7L/v37+eWXX/j666+pUqUKAPPmzeP5558vVMzh4eH06tULyO4p37NnDx9//DGTJk0yrjNr1iyee+45IDshnTdvHvv376dVq1YA1KpVi2+//ZaVK1fSrl07EhMTCQgIoFmzZkD2xZwPJCYm4uPjwzPPPIOiKNSoUaNQ8T5qTLmJiopi5syZj3R8YT737983dwhCiMeUmZn9Jfn+/fvY2dmZORpRVsi10iVQy5YtTUpAWrVqxaVLl3L0tJ0/fx4vLy9jYg1Qv3593NzcOH/+vHGdwMBAk+0CAwNNlnt5eRkT6wfHK6x/bmNtbU2zZs2Mx3jgQZIMcPnyZe7fv89zzz2Hk5OT8bZu3TquXLkCwOjRo9m0aRNNmjRh0qRJHDt2zLh9WFgYCQkJ+Pn5MW7cOPbu3VvomB8lptxMmTKFlJQU4+1RetCFEEIIUTJIz7WwGI6Ojsb/p6WlAbBz506qVq1qst6D3ofnn3+e69evs2vXLvbt20fHjh0ZO3YsixYtomnTply9epXdu3ezf/9++vbtS6dOnfjyyy9R/T1o8T9r8LKysp5ITLmxs7OTHpMSyMHBwdwhCCEek61t9kWM8noWxUmS6xLo+PHjJve///57fHx8clwJXa9ePWOt8YPe63PnzpGcnEz9+vWN68THxzNo0CDjdvHx8SbLb9y4wa1bt/D09DQer7C+//572rZtC2RfkHn69GnCw8PzXL9+/frY2dmRmJiYZ7kFgLu7O4MGDWLQoEG0adOGiRMnsmjRIgBcXFzo168f/fr1o3fv3gQHB/Pnn3/i7u4OwK1btwgICAAgISHhoW0oaEyidJCRBcoOg96AXicXvJVm8noWxUmS6xIoMTGRiIgIRo4cyQ8//MCyZcuIjo7OsV6nTp1o1KgRAwYMYPHixWi1WsaMGUO7du2M5Q4TJ06kb9++BAQE0KlTJ3bs2MGWLVvYv3+/cR++vr4MGjSIhQsXkpqaytSpUwsd83vvvYePjw/16tUjJiaGu3fvMmTIkDzXd3Z2ZsKECbz++uvo9XqeeeYZUlJSiI+Px8XFhUGDBjF9+nSeeuopGjRogEajIS4ujnr16gHw7rvv4unpSUBAACqVii+++AIPDw/c3NxQqVS0bNmS+fPnU7NmTZKSknj77bcf2oaCxCRKj9xG3xGly4M/8ZbNN80biChSarW9vJ5FsZLkugQaOHAg6enptGjRAisrK1577TVGjBiRYz1FUdi+fTuvvvoqbdu2NRmK74EePXqwZMkSFi1axGuvvUbNmjWJjY2lffv2AKhUKrZu3crQoUNp0aIF3t7eLF26lODg4ELFPH/+fObPn09CQgJ16tThq6++omLFivluM3v2bNzd3YmKiuLXX3/Fzc2Npk2b8tZbbwFga2trHFpPrVbTpk0bNm3aBGQnwu+88w6XLl3CysqK5s2bs2vXLmNJyOrVqxk6dChPPfUUfn5+vPPOO3Tu3Pmh7XhYTKL0kJ6uMuDvfGvVqlXUrFnTvLGIIiOTyIjiphhk8EdRhHIbU7qsS01NxdXVlZSUFFxcXMwdjsiDVqulU6dOdO+VPVW2KH1SUuCbvRAbGyvJtRDioQr6+S0910IIkQ+93twRiKJikL+tEKIISHItHsu8efOYN29ersvatGnDihUrijkiIZ4MRVFQq+3ZsTXD3KGIImRtbYWrq6u5wxBClCJSFiIey59//smff/6Z6zK1Wp1jyDohZSEliU6nk2mTSzmpxxVCFJSUhYhiUb58ecqXL2/uMIQoEpJ0WZai+LJjMBjQarVPdJ+i6MmXImHJJLkWQghh8XQ6Hd26dSU9Xcp0RPbwenFxOyXBFhZJkmshhBAWz2AwkJ6eQWA/UMrw6C33U+GHndC0KziU0aoygx7iP8uQki1hsSS5LuPCwsJITk5m27Zt5g6l2P277e3bt6dJkyYsXrzYrHEJIfKmqEClKrsTgqhUhr//LbvnQY8k1cKySXItxN+2bNmCjY2N8b63tzfjx49n/Pjx5gtKCCFErsp6rbzUnVsuSa6F+JtcmCmE5dLpdOYOQVgIgz576vrCzhRc2kjdueWS5LqM+PLLL5k5cyaXL1/GwcGBgIAAtm/fnmM9vV7PggUL+PDDD7l9+za+vr5MmzaN3r17G9f5+eefmThxIkePHsXR0ZHOnTsTExNjnM68ffv2NGzYEID169djY2PD6NGjmTVrFory8J8xk5KSGDp0KPv378fDw4M5c+YwdepUYy9ybrM+JicnU65cOQ4ePEj79u3R6XSMGDGCb775htu3b1O9enXGjBnDa6+9ludx/1kW0r59e65fv87rr7/O66+/DkBaWhqenp6sXr3a5Hxs27aNAQMGcPv2bZydnR/+xxDiEZT1YQEzMuRCRpHNABgMEDqqZpktjdFp9Wz78BparVaSawskyXUZcOvWLfr3788777xDaGgof/31F0ePHs31gzoqKooNGzbwwQcf4OPjw5EjR3j55Zdxd3enXbt2JCcn06FDB4YNG0ZMTAzp6elMnjyZvn378s033xj3s3btWoYOHcqJEyc4deoUI0aMoHr16gwfPvyh8YaFhXHz5k0OHjyIjY0N48aNIykpqVBt1uv1VKtWjS+++IIKFSpw7NgxRowYgaenJ3379n3o9lu2bKFx48aMGDHCGLOjoyMvvvgisbGxJsn1g/t5JdYajQaNRmO8n5qaWqi2CEksdTodPUJ7kH4/3dyhCGExVCoFlVUZTa6zsv/VarXY2dmZNxiRgyTXZcCtW7fQarX07NmTGjVqANCoUaMc62k0GubNm8f+/ftp1aoVALVq1eLbb79l5cqVtGvXjuXLlxMQEGAyK+Pq1avx8vLi4sWL+Pr6AuDl5UVMTAyKouDn58fZs2eJiYl5aHJ98eJFdu/ezYkTJ2jevDkAH3/8MfXq1StUm21sbJg5c6bxfs2aNfnuu+/4/PPPC5Rcly9fHisrK5ydnfHw8DA+PmzYMFq3bs2tW7fw9PQkKSmJXbt2sX///jz3FRUVZRKLKBydTkdISDfuS2LJazO6l9meunv3NHz4zm5zhyGERdDrsjsbynrduaWS5LoMaNy4MR07dqRRo0YEBQXRuXNnevfuTbly5UzWu3z5Mvfv3+e5554zeTwzM5OAgAAAzpw5w8GDB3FycspxnCtXrhiT65YtW5qUgLRq1Yro6Gh0Ol2+P2GdP38ea2trnnrqKeNjdevWxc3NrdDtfu+991i9ejWJiYmkp6eTmZlpLCN5VC1atKBBgwasXbuWN998kw0bNlCjRg3atm2b5zZTpkwhIiLCeD81NRUvL6/HikOUPSqVwpKZOUu5hBBlz4OP14KUWoriJ8l1GWBlZcW+ffs4duwYe/fuZdmyZUydOpXjx4+brJeWlgbAzp07c0xb/uBnp7S0NEJCQliwYEGO43h6ehZRC0ypVNmD3P6zTCArK8tknU2bNjFhwgSio6Np1aoVzs7OLFy4MEebH8WwYcN47733ePPNN4mNjWXw4MH5vsHZ2dnJz3aPwcrKih074sp0WQhklzo9eO6XRffu3aN79+7mDkMIi2Blk/1eIJ8tlkmS6zJCURQCAwMJDAxk+vTp1KhRg61bt5qsU79+fezs7EhMTKRdu3a57qdp06Zs3rwZb29vrK3zfvr8O4n9/vvv8fHxeeiFF3Xr1kWr1XL69GljWciFCxdITk42ruPu7g5kl7s86FFPSEgw2U98fDytW7dmzJgxxseuXLmS77H/zdbWNtcRCl5++WUmTZrE0qVLOXfuHIMGDSrUfkXhyQU7QpII8W96fdn9wv2g5fLeaJkkuS4Djh8/zoEDB+jcuTOVKlXi+PHj3Llzh3r16vHTTz8Z13N2dmbChAm8/vrr6PV6nnnmGVJSUoiPj8fFxYVBgwYxduxYVq1aRf/+/Zk0aRLly5fn8uXLbNq0iY8++sj4Qk9MTCQiIoKRI0fyww8/sGzZMqKjox8aq5+fH8HBwYwcOZIVK1ZgbW3N+PHjUavVxnXUajUtW7Zk/vz51KxZk6SkJN5++22T/fj4+LBu3Tq+/vpratasyfr16zl58iQ1a9Ys8Hnz9vbmyJEjvPjii9jZ2RlHQylXrhw9e/Zk4sSJdO7cmWrVqhV4n0KIRyM/f4sHFLLLIrZ+cNXcoZiVWm0vrwsLJcl1GeDi4sKRI0dYvHgxqamp1KhRg+joaJ5//nk+++wzk3Vnz56Nu7s7UVFR/Prrr7i5udG0aVPeeustAKpUqUJ8fDyTJ0+mc+fOaDQaatSoQXBwsMlP1gMHDiQ9PZ0WLVpgZWXFa6+9xogRIwoUb2xsLMOGDaNdu3ZUrlyZOXPmMG3aNJN1Vq9ezdChQ3nqqafw8/PjnXfeoXPnzsblI0eO5Mcff6Rfv34oikL//v0ZM2YMu3cX/IKoWbNmMXLkSGrXro1GozEpSxg6dCiffPIJQ4YMKfD+hBCPTnroxAOKKnsovj179uT7C2ppJ5PIWC7FUNYLGcUTVxTTiFvabInr16/n9ddf5+bNm9ja2hZq29TUVFxdXUlJScHFxaWIIhSidNFqtXTq1InAftnJVVl1PxV+2AlNu4JDGX37MOgh/jPYv39/mU6uRfEr6Oe3PCuFKIT79+9z69Yt5s+fz8iRIwudWAshHo2iKKjV9sR/JpPJQHaCXZZJSYSwZJJci2J19OhRnn/++TyXPxixxFK98847zJ07l7Zt2zJlyhRzhyNEmWFlZUVc3M4yP2qMyCYlEcKSSVmIKFbp6en873//y3N5nTp1ijEa85CyECGEEKLkkbIQYZHUanWZSKCFeKCsT90uRFGSHmxhiSS5FkKIIqLT6ejarSsZ6VInLERRsFfbszNupyTYwqJIci2EEEXEYDCQkZ6Bx0AFyvAIF3nRphj4fStUDAVrV7k4TRSSHm6vy5BfhoTFkeT6CSiKoeceR0HiURSFrVu30qNHj2KLq6iEhYWRnJzMtm3b8lzH0v5GooxRgaKS5PHfsofUM6CoFDk/otAMSFItLJP0pZRghw4dQlEUk6nBC+rWrVv5jtohhHh8Op3O3CEIUWoZ/p7+XF5nwtJIcm0GmZmZ5g4BDw8P7OzszB1GvizhPAnxOOTnaiGKnrzOhKWR5PoJ0Wq1hIeH4+rqSsWKFZk2bZrxBe/t7c3s2bMZOHAgLi4uxmnAv/32W9q0aYNarcbLy4tx48Zx79494z7Xr19Ps2bNcHZ2xsPDg5deeomkpCQArl27xrPPPgtAuXLlUBSFsLAw47Z6vZ5JkyZRvnx5PDw8iIyMNIlXURRjGcW1a9dQFIUtW7bw7LPP4uDgQOPGjfnuu+9Mtlm1ahVeXl44ODgQGhrKu+++i5ubW4HOT2RkJE2aNGHlypXGffTt25eUlBTjOmFhYfTo0YO5c+dSpUoV/Pz8ADh79iwdOnRArVZToUIFRowYket42DNnzsTd3R0XFxdGjRqVb3Ku0WiYMGECVatWxdHRkaeffppDhw4Zl69ZswY3Nzfi4uLw8/PDwcGB3r17c//+fdauXYu3tzflypVj3LhxZb7XRKfTodVq5ZbLTaPRmPvPI0SpZdBn/6vRaMz+WrfUW1n/fDIXqbl+QtauXcvQoUM5ceIEp06dYsSIEVSvXp3hw4cDsGjRIqZPn86MGTMAuHLlCsHBwcyZM4fVq1dz584dwsPDCQ8PJzY2FoCsrCxmz56Nn58fSUlJREREEBYWxq5du/Dy8mLz5s306tWLCxcu4OLiglqtNoknIiKC48eP89133xEWFkZgYCDPPfdcnm2YOnUqixYtwsfHh6lTp9K/f38uX76MtbU18fHxjBo1igULFvDCCy+wf/9+pk2bVqhzdPnyZT7//HN27NhBamoqQ4cOZcyYMWzcuNG4zoEDB3BxcWHfvn0A3Lt3j6CgIFq1asXJkydJSkpi2LBhhIeHs2bNGpPt7O3tOXToENeuXWPw4MFUqFCBuXPn5hpLeHg4586dY9OmTVSpUoWtW7cSHBzM2bNn8fHxAbJnY1y6dCmbNm3ir7/+omfPnoSGhuLm5sauXbv49ddf6dWrF4GBgfTr1y/Pdms0GpMkKzU1tVDnzZKlp6fTLaQbOq28gQshipdBn91R1L17d3OHYrEURWHXrl0m+YEoepJcPyFeXl7ExMSgKAp+fn6cPXuWmJgYY3LdoUMH3njjDeP6w4YNY8CAAYwfPx4AHx8fli5dSrt27VixYgX29vYMGTLEuH6tWrVYunQpzZs3Jy0tDScnJ8qXLw9ApUqVcvQg+/v7GxN5Hx8fli9fzoEDB/JNridMmEDXrl2B7F7gBg0acPnyZerWrcuyZct4/vnnmTBhAgC+vr4cO3aMuLi4Ap+jjIwM1q1bR9WqVQFYtmwZXbt2JTo6Gg8PDwAcHR356KOPjNOKr1q1yrido6MjAMuXLyckJIQFCxZQuXJlAGxtbVm9ejUODg40aNCAWbNmMXHiRGbPno1KZfoDTWJiIrGxsSQmJlKlShVj2/fs2UNsbCzz5s0Dsr/crFixgtq1awPQu3dv1q9fz2+//YaTkxP169fn2Wef5eDBg/km11FRUcycObPA56kkMRgM6LQ6XpkZispKfgj7t4y0DD6bX8bnqRaiCBkMBnn/yUOmRsuns7dL2YwZSHL9hLRs2RJF+f+r3Vu1akV0dLTxJ5lmzZqZrH/mzBl++uknk15bg8GAXq/n6tWr1KtXj9OnTxMZGcmZM2e4e/cuen32b2CJiYnUr18/33j8/f1N7nt6ehpLSgqyjaenJwBJSUnUrVuXCxcuEBoaarJ+ixYtCpVcV69e3ZhYQ/Y50uv1XLhwwZhcN2rUyJhYA5w/f57GjRsbE2uAwMBA43YPkuvGjRvj4OBgsu+0tDRu3LhBjRo1TOI4e/YsOp0OX19fk8c1Gg0VKlQw3ndwcDAm1gCVK1fG29sbJycnk8cedl6nTJlCRESE8X5qaipeXl75blNS2NnZoXZQs37GVnOHIoQogxRFkfeffKgd1BZ/fVVpJMl1MflncgiQlpbGyJEjGTduXI51q1evbiyHCAoKYuPGjbi7u5OYmEhQUFCBLvSzsbExua8oijE5L8g2D74oPGybJ+3f56kopKWlYWVlxenTp3NMPPDPxDm3c/go59XOzq7UvrlZWVkRtyNOekbykJGRQbdu3cwdhhClkso6u1MqLi4Oe3t7c4djkWQGS/OQ5PoJOX78uMn977//Hh8fnzyf1E2bNuXcuXN5TgV+9uxZ/vjjD+bPn2/s5Tx16pTJOg96eIvjggU/Pz9Onjxp8ti/7z9MYmIiN2/eNJZifP/996hUKuOFi7mpV68ea9as4d69e8bEOz4+Psd2Z86cIT093VhX9v333+Pk5JRrD3FAQAA6nY6kpCTatGlTqDaInOSNO2///jImhHjybGxssLaWdEZYDilSekISExOJiIjgwoULfPrppyxbtozXXnstz/UnT57MsWPHCA8PJyEhgUuXLrF9+3bCw8OB7N5rW1tbli1bxq+//spXX33F7NmzTfZRo0YNFEUhLi6OO3fu5DqCxpPy6quvsmvXLt59910uXbrEypUr2b17t0kpzMPY29szaNAgzpw5w9GjRxk3bhx9+/Y1loTkZsCAAcbtfv75Zw4ePMirr77KK6+8YiwJgexh+4YOHcq5c+fYtWsXM2bMIDw8PEe9NWTXiw8YMICBAweyZcsWrl69yokTJ4iKimLnTqmPFU+OfPEQoug8mHhIXmfC0khy/YQMHDiQ9PR0WrRowdixY3nttdeMQ+7lxt/fn8OHD3Px4kXatGlDQEAA06dPN/bquru7s2bNGr744gvq16/P/PnzWbRokck+qlatysyZM3nzzTepXLmyMTEvCoGBgXzwwQe8++67NG7cmD179vD6668X6qe4OnXq0LNnT7p06ULnzp3x9/fn/fffz3cbBwcHvv76a/7880+aN29O79696dixI8uXLzdZr2PHjvj4+NC2bVv69evHCy+8kGP4wX+KjY1l4MCBvPHGG/j5+dGjRw9OnjxJ9erVC9weIYQQQoh/UwxSLCke0fDhw/nll184evToQ9eNjIxk27ZtJCQkFH1gFi41NRVXV1dSUlJwcXExdziiCGm1Wjp16oTHQEW6MnKhTTHw+1aoGArWrjL9uSgkPdxeZ2D//v1SFiKKRUE/v+XZKAps0aJFPPfcczg6OrJ7927Wrl370J5nIcoyRVGwV9tze12GuUOxaL9vBZB+HlF49mr7QpUnClEcJLkWBXbixAneeecd/vrrL+O428OGDQOgQYMGXL9+PdftVq5cWZxhCmExrKys2Bm3U0ZTEaKIyGgYwhJJWYh4Iq5fv05WVlauyypXroyzs3MxR2S5pCyk7NHpdJJgiyIjCaYQxUPKQkSx+vdELUKIbDqdjq7dupGRnm7uUEQpZa9WszMuThJsISyEJNdCCFGEDAYDGenpqAY2BJXUhj6MIUWDYetFlFBfFNfSOfnSE6U3kLHuZ/llRAgLIteviyIVGRlJkyZNiuVYiqKwbdu2YjnWA97e3ixevLhYjylKKJWCIrcC3LJPl6LCAmKx/Jt8YRPC8khyLYrUhAkTOHDggLnDEEIIIYQoFlIWIoqUk5MTTk5O5g5DCLPR6XTmDkGUYgZ9djmITqeTsZ6FsBDScy3y1b59e8aNG8ekSZMoX748Hh4eJjMfJiYm0r17d5ycnHBxcaFv37789ttvxuX/Lgs5dOgQLVq0wNHRETc3NwIDA02G8Nu+fTtNmzbF3t6eWrVqMXPmTLRa7SPFfuPGDfr27Yubmxvly5ene/fuXLt2DYC9e/dib29PcnKyyTavvfYaHTp0MN7/9ttvadOmDWq1Gi8vL8aNG8e9e/ceKZ7SRKfTodVq5VaAW16j6AjxJGVlZZn9uS630nmTDoLCk6+54qHWrl1LREQEx48f57vvviMsLIzAwEA6duxoTKwPHz6MVqtl7Nix9OvXj0OHDuXYj1arpUePHgwfPpxPP/2UzMxMTpw4YZwA4OjRowwcOJClS5fSpk0brly5YpxCfsaMGYWKOSsri6CgIFq1asXRo0extrZmzpw5BAcH89NPP9GxY0fc3NzYvHkzQ4cOBbITxs8++4y5c+cCcOXKFYKDg5kzZw6rV6/mzp07hIeHEx4eTmxsbIFj0Wg0aDQa4/3U1NRCtcXS6HQ6uoV0I/2+jH4hhLkZtHoURaFbt27mDkWUUmoHNXE7ZDSawpDkWjyUv7+/Mbn18fFh+fLlxjrqs2fPcvXqVby8vABYt24dDRo04OTJkzRv3txkP6mpqaSkpNCtWzdq164NQL169YzLZ86cyZtvvsmgQYMAqFWrFrNnz2bSpEmFTq4/++wz9Ho9H330kTF5j42Nxc3NjUOHDtG5c2defPFFPvnkE2NyfeDAAZKTk+nVqxcAUVFRDBgwgPHjxxvbvnTpUtq1a8eKFSuwt7cvUCxRUVHMnDmzUPFbMq1WS/r9dHrOGonKSn78epiMtHTiotaYOwxRihkMBnk9iiKhy9KyNXIVWq1WkutCkORaPJS/v7/JfU9PT5KSkjh//jxeXl7GxBqgfv36uLm5cf78+RzJdfny5QkLCyMoKIjnnnuOTp060bdvXzw9PQE4c+YM8fHxxp5jyO4lzcjI4P79+zg4OBQ45jNnznD58uUck9dkZGRw5coVAAYMGEDLli25efMmVapUYePGjXTt2hU3NzfjPn766Sc2btxo3N5gMKDX67l69arJF4P8TJkyhYiICOP91NRUk3NW0iiKgo2tDVumy8ybQlgCRVHk9SiKjLW1tUwxX0iSXIuHsrGxMbmvKAp6vf6R9hUbG8u4cePYs2cPn332GW+//Tb79u2jZcuWpKWlMXPmTHr27Jlju4L2Ej+QlpbGU089ZZIYP+Du7g5A8+bNqV27Nps2bWL06NFs3bqVNWvWmOxj5MiRjBs3Lsc+qlevXuBY7OzssLMrPeP12trasmf3HhlXt4Du3btH9+7dzR2GKK1UCgaDge3bt+Po6GjuaEQpJDOAFp4k1+KR1atXjxs3bnDjxg1jT+y5c+dITk6mfv36eW4XEBBAQEAAU6ZMoVWrVnzyySe0bNmSpk2bcuHCBerUqfPYsTVt2pTPPvuMSpUq5TtF6YABA9i4cSPVqlVDpVLRtWtXk32cO3fuicRT2sgbbcGVpi9WwvIoKgUD2c8zGS1ECMsgBVrikXXq1IlGjRoxYMAAfvjhB06cOMHAgQNp164dzZo1y7H+1atXmTJlCt999x3Xr19n7969XLp0yVheMX36dNatW8fMmTP5z3/+w/nz59m0aRNvv/12oWMbMGAAFStWpHv37hw9epSrV69y6NAhxo0bx3//+1+T9X744Qfmzp1L7969TRKhyZMnc+zYMcLDw0lISODSpUts376d8PDwRzhboqySn1NFcZDnmRCWQ5Jr8cgURWH79u2UK1eOtm3b0qlTJ2rVqsVnn32W6/oODg788ssv9OrVC19fX0aMGMHYsWMZOXIkAEFBQcTFxbF3716aN29Oy5YtiYmJoUaNGoWOzcHBgSNHjlC9enV69uxJvXr1GDp0KBkZGSY92XXq1KFFixb89NNPDBgwwGQf/v7+HD58mIsXL9KmTRsCAgKYPn06VapUKXQ8ouySXn5RlJS/Z2iU55kQlkMxSOGkEMUqNTUVV1dXUlJS8i1ZEaWDVqulU6dOqAY2lKmqC8CQosGw9SJKqC+Kq5TUPJTegH7dz+zfv1/KQoQoYgX9/JZXohBCFCFFUbBXq8lY97O5QylRDFsvIj0/BWOvVktZiBAWRJJrUSJs3LjRWD7ybzVq1OA///lPMUckRMFYWVmxMy5ORlcRRUZGcxDCskhyLUqEF154gaeffjrXZf8eKlAISyOJjxBClB2SXIsSwdnZOceEMEKI0k+n00mvvyg15FeGskGSayGEEBZJp9PRtVs3MtLTzR2KEE+EvVrNzrg4SbBLOUmuhRBCWCSDwUBGejpWr3SQkVaKkCHlHvpt36Pq0RLFVWZ5LDJ6Axnrv5FfYsoAGefaArRv357x48cD4O3tzeLFix9p29JszZo1uLm5Ge9HRkbSpEmTfLe5du0aiqKQkJBQpLEJIYqYSkFRqeRWhDfA7DGU9pt8QSw7pOfawpw8eRJHx4L3HGzZsqVMXtA3YcIEXn31VeP9sLAwkpOT2bZtm/ExLy8vbt26RcWKFc0QoRDicel0OnOHIMQTY9Bn91jrdDoZk7yUk7+uhXF3dy/U+uXLly+iSCybk5MTTk5O+a5jZWWFh4dHMUUkhHjS5OdzUbpkP5/leV36SVmIhflnWchLL71Ev379TJZnZWVRsWJF1q1bB+QsC/H29mbevHkMGTIEZ2dnqlevzocffmiyj2PHjtGkSRPs7e1p1qwZ27ZtK1T5xH/+8x+6deuGi4sLzs7OtGnThitXrgCg1+uZNWsW1apVw87OjiZNmrBnzx7jtg9KNbZs2cKzzz6Lg4MDjRs35rvvvjM5xpo1a6hevToODg6Ehobyxx9/mCyP/EdZSGRkJGvXrmX79u0oioKiKBw6dCjXspDDhw/TokUL7Ozs8PT05M0330Sr1RqXt2/fnnHjxjFp0iTKly+Ph4cHkZGRxuUGg4HIyEiqV6+OnZ0dVapUYdy4cQU6b8VBp9Oh1WrlVsS3zMxMs8dQFm4ajcbcLykhnpgHPdcajcbsr63SfjP3r17Sc23BBgwYQJ8+fUhLSzP20n799dfcv3+f0NDQPLeLjo5m9uzZvPXWW3z55ZeMHj2adu3a4efnR2pqKiEhIXTp0oVPPvmE69evF6pm+3//+x9t27alffv2fPPNN7i4uBAfH49Wm52gLlmyhOjoaFauXElAQACrV6/mhRde4D//+Q8+Pj7G/UydOpVFixbh4+PD1KlT6d+/P5cvX8ba2prjx48zdOhQoqKi6NGjB3v27GHGjBl5xjRhwgTOnz9PamoqsbGxQHaP/s2bN3PE3qVLF8LCwli3bh2//PILw4cPx97e3iSBXrt2LRERERw/fpzvvvuOsLAwAgMDee6559i8eTMxMTFs2rSJBg0acPv2bc6cOZPvOdNoNCZJQmpqaoHPd2HodDq6hYSQfv9+kexf/D9FpcKg15s7DCFECWLQ6lBUCt27dzd3KKWe2sGBuB07zDYqiyTXFiwoKAhHR0e2bt3KK6+8AsAnn3zCCy+8kO+Yz126dGHMmDEATJ48mZiYGA4ePIifnx+ffPIJiqKwatUq7O3tqV+/Pv/73/8YPnx4gWJ67733cHV1ZdOmTcZab19fX+PyRYsWMXnyZF588UUAFixYwMGDB1m8eDHvvfeecb0JEybQtWtXAGbOnEmDBg24fPkydevWZcmSJQQHBzNp0iTj/o8dO2bSA/5PTk5OqNVqNBpNvmUg77//Pl5eXixfvhxFUahbty43b95k8uTJTJ8+HdXfF/X4+/sbk3kfHx+WL1/OgQMHeO6550hMTMTDw4NOnTphY2ND9erVadGiRb7nLCoqipkzZ+a7jihZDHo9PWdGoJLhtIpURloacfNXmDsMIZ4QKQcpKyS5tmDW1tb07duXjRs38sorr3Dv3j22b9/Opk2b8t3O39/f+H9FUfDw8CApKQmACxcu4O/vj729vXGdhyWH/5SQkECbNm1yvYgyNTWVmzdvEhgYaPJ4YGBgjt7df8bo6ekJQFJSEnXr1uX8+fM5euZbtWqVZ3JdUOfPn6dVq1Yoyv9fsR0YGEhaWhr//e9/qV69eo7YHsT34Pz16dOHxYsXU6tWLYKDg+nSpQshISH5XpwyZcoUIiIijPdTU1Px8vJ6rLbkxsrKirgdO6Ser4jpdDp6hIayZca75g5FCFGSqFQY9AY2b96Mq6uruaMp1cw9WY8k1xZuwIABtGvXjqSkJPbt24darSY4ODjfbf6d+CqKgv4J/YStVqufyH7+GeODZPdJxfi48jt/Xl5eXLhwgf3797Nv3z7GjBnDwoULOXz4cJ6jttjZ2WFnZ1fkcYNMs10crK2t5UtMMbl37578hC5KDUWlwgDY29vLaCGlnPx1LVzr1q3x8vLis88+Y/fu3fTp0+exht7z8/Njw4YNaDQaY8J38uTJAm/v7+/P2rVrycrKyhGHi4sLVapUIT4+nnbt2hkfj4+PL1TveL169Th+/LjJY99//32+29ja2j70AoZ69eqxefNmDAaDMaGPj4/H2dmZatWqFTg+tVpNSEgIISEhjB07lrp163L27FmaNm1a4H2Ikk2+xBSPf/7CJkRJ9yC5lsS69JPRQkqAl156iQ8++IB9+/YxYMCAx96XXq9nxIgRnD9/nq+//ppFixYBmJRL5CU8PJzU1FRefPFFTp06xaVLl1i/fj0XLlwAYOLEiSxYsIDPPvuMCxcu8Oabb5KQkMBrr71W4BjHjRvHnj17WLRoEZcuXWL58uUPLQnx9vbmp59+4sKFC/z+++9kZWXlWGfMmDHcuHGDV199lV9++YXt27czY8YMIiIijPXWD7NmzRo+/vhjfv75Z3799Vc2bNiAWq2mRo0aBW6fEKJg5EuMKE2UvyeRked16SfJdQkwYMAAzp07R9WqVXPUMxeWi4sLO3bsICEhgSZNmjB16lSmT58OFKyXqEKFCnzzzTekpaXRrl07nnrqKVatWmXsxR43bhwRERG88cYbNGrUiD179vDVV1+ZjBTyMC1btmTVqlUsWbKExo0bs3fvXt5+++18txk+fDh+fn40a9YMd3d34uPjc6xTtWpVdu3axYkTJ2jcuDGjRo1i6NChD933P7m5ubFq1SoCAwPx9/dn//797NixgwoVKhR4H0IIIYQovRSDFA6WeRs3bmTw4MGkpKQ8sZpqkbfU1FRcXV1JSUnBxcXF3OEIYbG0Wi2dOnXC6pUOMnV0ETKk3EO/7XtUPVqiuBZ8hmBRSHoDuvXfsH//fikNKaEK+vktf90yaN26ddSqVYuqVaty5swZJk+eTN++fSWxFkJYFEVRsFeryVj/jblDKRP02/K/tkU8Pnu1ukAlmKJkk+S6DLp9+zbTp0/n9u3beHp60qdPH+bOnQvAqFGj2LBhQ67bvfzyy3zwwQfFGaoQogyzsrJiZ1ycjMwiSg1zDxEnioeUhQgTSUlJec4g6OLiQqVKlYo5otJHykKEMKXT6SSBFo9MElZRXKQsRDySSpUqSQIthCg2Op2Ort26kZGebu5QRAllr1azMy5OEmxhMSS5FkIIYTYGg4GM9HSsB3SHAg6JWZYYUv5C99V+rF7ohOLqbO5wLI9eT8bG7fLLh7AoklyLMuH27du88sorHDt2DBsbG5KTk80dkhDin1QqFEmuc/r7nChyfnIlKbWwRJJcizIhJiaGW7dukZCQgKura4G2iYyMZNu2bSQkJBRtcEIIIR6LVqs1dwgWS2rSi58k16JMuHLlCk899VShJrMRQhQ9nU5n7hBECWbQG0BRCA4ONncoFsveQc3OHVKTXpwkuRYlxpdffsnMmTO5fPkyDg4OBAQEsH37ds6dO8dbb73Fjz/+SFZWFk2aNCEmJoamTZsC2VOjX79+Hcge43vQoEGsWbOG5ORkJkyYwPbt29FoNDRr1oyYmBgaN27MmjVrmDlzJvD/08LHxsZy5MgRkpKSiIuLM8aVlZVF1apViYqKYujQocV8VkRJISNi5C4rK8vcIYgSzQAGAz7hQ6RsJhcGvZ5Ly1fLe08xk+RalAi3bt2if//+vPPOO4SGhvLXX39x9OhRDAYDf/31F4MGDWLZsmUYDAaio6Pp0qULly5dwtnZmZMnTzJw4EBcXFxYsmSJcbKcPn36oFar2b17N66urqxcuZKOHTty8eJF+vXrx88//8yePXvYv38/AK6urvj6+tK2bVtu3bqFp6cnAHFxcdy/f59+/frlGrtGo0Gj0Rjv5zXUYUknyWPedDodPUJ7kH5fRsQQoigoKhWKlSTX/2bQ64Hs9yCZFbL4yJkWJcKtW7fQarX07NmTGjVqANCoUSMAOnToYLLuhx9+iJubG4cPH6Zbt264u7tjZ2eHWq3Gw8MDgG+//ZYTJ06QlJSEnZ0dAIsWLWLbtm18+eWXjBgxAicnJ6ytrY3bALRu3Ro/Pz/Wr1/PpEmTgOwe7T59+uDk5JRr7FFRUcZe8NIqMzOTrt26kZWZae5QLFq7Ka9L79q/ZGVkEB/9nrnDEKJU0mmy35Pv379v/KwTRU/e5UWJ0LhxYzp27EijRo3o06cPq1at4u7duwD89ttvDB8+HB8fH1xdXXFxcSEtLY3ExMQ893fmzBnS0tKoUKECTk5OxtvVq1e5cuVKvrEMGzaM2NhY47F3797NkCFD8lx/ypQppKSkGG83btx4hDMghBBCiJJAeq5FiWBlZcW+ffs4duwYe/fuZdmyZUydOpXjx48zevRo/vjjD5YsWUKNGjWws7OjVatWZObTi5qWloanpyeHDh3KsczNzS3fWAYOHMibb77Jd999x7Fjx6hZsyZt2rTJc307O7tS32Nga2vLnt27pSwkDw/KQg5HxZg7FCFEGWJlZwuAg4ODmSMpWyS5FiWGoigEBgYSGBjI9OnTqVGjBlu3biU+Pp7333+fLl26AHDjxg1+//33fPfVtGlTbt++jbW1Nd7e3rmuY2trm+tIBhUqVKBHjx7Exsby3XffMXjw4MduW2kgV6LnzdramrgdcfLlIxcZGRl069bN3GGIEu5BbbHInbw/Fy9JrkWJcPz4cQ4cOEDnzp2pVKkSx48f586dO9SrVw8fHx/Wr19Ps2bNSE1NZeLEicaLFvPSqVMnWrVqRY8ePXjnnXfw9fXl5s2b7Ny5k9DQUJo1a4a3tzdXr14lISGBatWq4ezsbOyBHjZsGN26dUOn0zFo0KDiOAWihJMPt9zZ2NiYOwRRoimgKFxavtrcgVgsewe1cdQrUTwkuRYlgouLC0eOHGHx4sWkpqZSo0YNoqOjef755/Hw8GDEiBE0bdoULy8v5s2bx4QJE/Ldn6Io7Nq1i6lTpzJ48GDu3LmDh4cHbdu2pXLlygD06tWLLVu28Oyzz5KcnExsbCxhYWFAdnLu6elJgwYNqFKlSlE3X4hSS750iMehqBQwGNizZ4+MhpEHmUSm+CkG+Z1SiEJLS0ujatWqxMbG0rNnz0Jtm5qaiqurKykpKbi4uBRRhEKUDFqtlk6dOmH9SqiMpJILQ8pfaLftxbpHZxRXZ3OHY3EMej3a9VvZv3+/JNeiyBX081ueiUIUgl6v5/fffyc6Oho3NzdeeOEFc4ckROmg1yM9PTk9qCU26PUgdcU5yTkRFkiSayEKITExkZo1a1KtWjXWrFkjPSVCPCZFUbBXq8nYuN3coVg03Vf7zR2CxbJXS02xsCySGQhRCN7e3jLigxBPkJWVFTvjZCQV8eikplhYGkmuhRBCmI1Op5PEWhSKJNPC0klyLYQQwix0Oh1du3UjIz3d3KGIEsRerWZnXJwk2MJiSXIthBDCLAwGAxnp6di89BLISCFGhpQUtDt2YB0SguLqau5wLIteT8Ynn8ivHcKiybtZGde+fXvGjx9fJPu+du0aiqKQkJBQJPsvLt7e3ixevNjcYQhReqlUKHIzuQFmj8ESb/IlTJQE0nMtioyXlxe3bt2iYsWK5g5FCCFEKaLVas0dgsWRWnTLIcm1KDJWVlZ4eHiYOwwhhIXS6XTmDkGUMAa9HhSF4OBgc4dicaQW3XJIci3QarWEh4ezfv16bGxsGD16NLNmzUJRFNavX8+SJUu4cOECjo6OdOjQgcWLF1OpUiUA7t69S3h4OHv37iUtLY1q1arx1ltvMXjwYK5du0bNmjX58ccfadKkCQD/+c9/mDx5MkeOHMFgMNCkSRPWrFlD7dq1840xLCyM5ORknnnmGaKjo8nMzOTFF19k8eLF2NjYAKDRaJg6dSqffvopycnJNGzYkAULFtC+fXvjfr799lumTJnCqVOnqFixIqGhoURFReHo6AhAUlISQ4cOZf/+/Xh4eDBnzhyTOAwGAzNnzmT16tX89ttvVKhQgd69e7N06dIn9Nco2WTkB1EYGRkZ5g5BlEQGA75jxxjLZwTotVourfgArVYrybUFkORasHbtWoYOHcqJEyc4deoUI0aMoHr16gwfPpysrCxmz56Nn58fSUlJREREEBYWxq5duwCYNm0a586dY/fu3VSsWJHLly+TnseV///73/9o27Yt7du355tvvsHFxYX4+PgC/7x38OBBPD09OXjwIJcvX6Zfv340adKE4cOHAxAeHs65c+fYtGkTVapUYevWrQQHB3P27Fl8fHy4cuUKwcHBzJkzh9WrV3Pnzh3Cw8MJDw8nNjYWyE7ib968ycGDB7GxsWHcuHEkJSUZY9i8eTMxMTFs2rSJBg0acPv2bc6cOZNv3BqNBo1GY7yfmppaoPaWNDqdjm4hIaTfv2/uUIQQpZyiUqFIEvn/srKA7M4yOzs7MwcjJLkWeHl5ERMTg6Io+Pn5cfbsWWJiYhg+fDhDhgwxrlerVi2WLl1K8+bNSUtLw8nJicTERAICAmjWrBmQffFfXt577z1cXV3ZtGmTsbfZ19e3wHGWK1eO5cuXY2VlRd26denatSsHDhxg+PDhJCYmEhsbS2JiIlWqVAFgwoQJ7Nmzh9jYWObNm0dUVBQDBgwwXsDp4+PD0qVLadeuHStWrCAxMZHdu3dz4sQJmjdvDsDHH39MvXr1jDEkJibi4eFBp06dsLGxoXr16rRo0SLfuKOiopg5c2aB21lSabVa0u/fp2dkJCor6VESD5eRdo+4BQvMHYYQJZ7h7xIrqUW3DJJcC1q2bGkydWyrVq2Ijo5Gp9ORkJBAZGQkZ86c4e7du+j1eiA7yaxfvz6jR4+mV69e/PDDD3Tu3JkePXrQunXrXI+TkJBAmzZtjIl1YTVo0MDk5y5PT0/Onj0LwNmzZ9HpdDmSdY1GQ4UKFQA4c+YMP/30Exs3bjQuNxgM6PV6rl69ysWLF7G2tuapp54yLq9bty5ubm7G+3369GHx4sXUqlWL4OBgunTpQkhISL7ToE+ZMoWIiAjj/dTUVLy8vB7pHFgyRVGwsbVlS2SkuUMRQoiy5e/PcJkG3jJIci3ylJGRQVBQEEFBQWzcuBF3d3cSExMJCgoiMzMTgOeff57r16+za9cu9u3bR8eOHRk7diyLFi3KsT+1Wv1Y8fw7KVcUxZjsp6WlYWVlxenTp3PUmzk5ORnXGTlyJOPGjcux7+rVq3Px4sWHxuDl5cWFCxfYv38/+/btY8yYMSxcuJDDhw/n+aXBzs6uTPxMZ2try57du6XmWhTYvXv36N69u7nDEKLEU/39+VMWPmtKAkmuBcePHze5//333+Pj48Mvv/zCH3/8wfz58409radOncqxvbu7O4MGDWLQoEG0adOGiRMn5ppc+/v7s3btWrKysh659zovAQEB6HQ6kpKSaNOmTa7rNG3alHPnzlGnTp1cl9etWxetVsvp06eNZSEXLlwgOTnZZD21Wk1ISAghISGMHTuWunXrcvbsWZo2bfpE21QSyYU0ojAkERCPyvB3x4owJe/BlkGSa0FiYiIRERGMHDmSH374gWXLlhEdHU316tWxtbVl2bJljBo1ip9//pnZs2ebbDt9+nSeeuopGjRogEajIS4uzqRG+Z/Cw8NZtmwZL774IlOmTMHV1ZXvv/+eFi1a4Ofn91ht8PX1ZcCAAQwcOJDo6GgCAgK4c+cOBw4cwN/fn65duzJ58mRatmxJeHg4w4YNw9HRkXPnzrFv3z6WL1+On58fwcHBjBw5khUrVmBtbc348eNNetzXrFmDTqfj6aefxsHBgQ0bNqBWq6lRo8ZjxS9EWSQ/YYtHoihcfO99c0dhcezVanlNWQhJrgUDBw4kPT2dFi1aYGVlxWuvvcaIESNQFIU1a9bw1ltvsXTpUpo2bcqiRYt44YUXjNva2toyZcoUrl27hlqtpk2bNmzatCnX41SoUIFvvvmGiRMn0q5dO6ysrGjSpAmBgYFPpB2xsbHMmTOHN954g//9739UrFiRli1b0q1bNyC75/zw4cNMnTqVNm3aYDAYqF27Nv369TPZx7Bhw2jXrh2VK1dmzpw5TJs2zbjczc2N+fPnExERgU6no1GjRuzYscNY1y2EKDjpZROFpahUYDCwZ8+efK91KYtkEhnLoRikQFKIYpWamoqrqyspKSm4uLiYOxwhzEar1WaPvPPSSzKt9T8YUlLQ7tiBdUgIiqurucOxLHo9WZ98wv79+yW5FsWuoJ/f8swUQghhFoqiYK9Wk/HJJ+YOxSJpd+wwdwgWScofhKWT5FpYhAcjeuRm9+7deV6kKIQouaysrNgZFycjzIhCkfIHYekkuRYWISEhIc9lVatWLb5AhBDFSpIkIURpI8m1sAh5DY8nhCi9dDqd9FqLRyK918KSSXIthBCi2Ol0Orp260ZGerq5QxElkL1azc64OEmwhUWS5FoIIUSxMxgMZKSnYz9ghIwUkgt9SjKZX23C9oUXUbm6mTscy6LXk7HxQ/nVQ1gsSa4fk7e3N+PHj2f8+PFFehxFUdi6dSs9evQo0uM8rm3btjFhwgSuXr3Kq6++yuLFi80dkhDCkqlUKCrpffw35e8vHIqcnxwepNRardascVgqKZkxP0muS4hbt25Rrlw5c4fxUCNHjmTw4MGMGzcOZ2dnc4cjhLBQOp3O3CGIEsqg14OiEBwcbO5QLJK92oGdcTskwTYjSa5LCA8PD3OHkK+srCw0Gg1JSUkEBQVRpUqVR95XZmYmtra2TzA6IYSlkZ/0xaMzgMFA3bETjT38IptBr+eX9xbK68vMStWzcs+ePTzzzDO4ublRoUIFunXrxpUrV4zL//vf/9K/f3/Kly+Po6MjzZo14/jx4wBcuXKF7t27U7lyZZycnGjevDn79+832X9SUhIhISGo1Wpq1qzJxo0bc8SQnJzMsGHDcHd3x8XFhQ4dOnDmzBnj8sjISJo0acLq1aupXr06Tk5OjBkzBp1OxzvvvIOHhweVKlVi7ty5JvtVFIVt27YVqC35eXD8lStX4uXlhYODA3379iUlJcVkvY8++oh69ephb29P3bp1ef/9943Lrl27hqIofPbZZ7Rr1w57e3s2btxo7Knu0KEDiqJw6NAhADZv3kyDBg2ws7PD29ub6Ohok2N5e3sze/ZsBg4ciIuLCyNGjGDNmjW4ubkRFxeHn58fDg4O9O7dm/v377N27Vq8vb0pV64c48aNM+kBW79+Pc2aNcPZ2RkPDw9eeuklkpKSjMsPHTqEoigcOHCAZs2a4eDgQOvWrblw4YJJTDt27KB58+bY29tTsWJFQkNDjcs0Gg0TJkygatWqODo68vTTTxvbWlbpdDq0Wq3ccrllZmaaPQZLvGk0GnM/bUUJp6hUKFZWcvvH7QH5Zci8SlXP9b1794iIiMDf35+0tDSmT59OaGgoCQkJ3L9/n3bt2lG1alW++uorPDw8+OGHH9Dr9QCkpaXRpUsX5s6di52dHevWrSMkJIQLFy5QvXp1AMLCwrh58yYHDx7ExsaGcePGmSRuAH369EGtVrN7925cXV1ZuXIlHTt25OLFi5QvXx7ITuR3797Nnj17uHLlCr179+bXX3/F19eXw4cPc+zYMYYMGUKnTp14+umnc7QzLS0t37Y8zOXLl/n888/ZsWMHqampDB06lDFjxhi/LGzcuJHp06ezfPlyAgIC+PHHHxk+fDiOjo4MGjTIuJ8333yT6OhoAgICUKlUXLhwAT8/PzZv3kzr1q0pX748p0+fpm/fvkRGRtKvXz+OHTvGmDFjqFChAmFhYcZ9LVq0iOnTpzNjxgwAjh49yv3791m6dCmbNm3ir7/+omfPnoSGhuLm5sauXbv49ddf6dWrF4GBgfTr1w/I7kGfPXs2fn5+JCUlERERQVhYGLt27TI5B1OnTiU6Ohp3d3dGjRrFkCFDiI+PB2Dnzp2EhoYydepU1q1bR2Zmpsn24eHhnDt3jk2bNlGlShW2bt1KcHAwZ8+excfHJ8f51mg0JolEampqgf5OJUVmZiZdu3UjKzPT3KFYJEWlyv4ZWwghipju78+a+/fvY2dnZ+Zoyq5SlVz36tXL5P7q1atxd3fn3LlzHDt2jDt37nDy5EljkvvPsZUbN25M48aNjfdnz57N1q1b+eqrrwgPD+fixYvs3r2bEydO0Lx5cwA+/vhj6tWrZ9zm22+/5cSJEyQlJRmf1IsWLWLbtm18+eWXjBgxAgC9Xs/q1atxdnamfv36PPvss1y4cIFdu3ahUqnw8/NjwYIFHDx4MNfk+pNPPsm3LQ+TkZHBunXrjJOzLFu2jK5duxIdHY2HhwczZswgOjqanj17AlCzZk3OnTvHypUrTZLr8ePHG9eB7F57gPLlyxvLWN599106duzItGnTAPD19eXcuXMsXLjQJLnu0KEDb7zxhvH+0aNHycrKYsWKFdSuXRuA3r17s379en777TecnJyM5+7gwYPG5HrIkCHGfdSqVYulS5fSvHlz0tLSTGaBnDt3Lu3atQOyvyR07dqVjIwM7O3tmTt3Li+++CIzZ840rv/guZGYmEhsbCyJiYnG0pcJEyawZ88eYmNjmTdvXo7zHRUVZbIvUbYY9Hr6RM5DJfWPJjLS0ti+YLa5wxCidPm7HETKQsyrVCXXly5dYvr06Rw/fpzff//d2JObmJhIQkICAQEBxmT039LS0oiMjGTnzp3cunULrVZLeno6iYmJAJw/fx5ra2ueeuop4zZ169bFzc3NeP/MmTOkpaVRoUIFk32np6eblKd4e3ubXOxXuXJlrKysUP2jdqxy5co5esUfeFhbHqZ69eomsx62atUKvV7PhQsXcHZ25sqVKwwdOpThw4cb19Fqtbi6uprsp1mzZg891vnz5+nevbvJY4GBgSxevBidTme84CK3fTk4OBgTa8g+J97e3iZJ8r/P0+nTp4mMjOTMmTPcvXvX5DlQv35943r+/v7G/3t6egLZZT/Vq1cnISHBpO3/dPbsWXQ6Hb6+viaPazSaHH/3B6ZMmUJERITxfmpqKl5eXrmuWxLZ2tqyZ/dueTPPhU6no0doKF9EvmXuUIQQZYDq7+uV7O3tzRxJ2VaqkuuQkBBq1KjBqlWrqFKlCnq9noYNG5KZmYlarc532wkTJrBv3z4WLVpEnTp1UKvV9O7dm8xC/NSdlpaGp6dnrvW3/0zCbWxsTJYpipLrY3mVeTysLY8jLS0NgFWrVuXoNf/3lceOjo5P7Li57auw5+nevXsEBQURFBTExo0bcXd3JzExkaCgoBx/x3/uR1EUAON+8ju/aWlpWFlZcfr06Rzn459J/z/Z2dmV+p/n5Kr03FlbWxO3Y4d88chFRkYG3bp1M3cYogSTcqucHlzgKYMCmFepSa7/+OMPLly4wKpVq2jTpg2QXabxgL+/Px999BF//vlnrj2+8fHxhIWFGS9cS0tL49q1a8bldevWRavVcvr0aWNZyIULF4ylEABNmzbl9u3bWFtb4+3t/eQbWcC2PExiYiI3b940ljV8//33xnKUypUrU6VKFX799VcGDBjw2LHWq1fPWMv8QHx8PL6+vk88Ifvll1/4448/mD9/vrFn+NSpU4Xej7+/PwcOHGDw4ME5lgUEBKDT6UhKSjI+z4TIj3zxyN2/vygLUXAKKAq/vLfQ3IFYJHu1g7HTSJhHqUmuy5UrR4UKFfjwww/x9PQkMTGRN99807i8f//+zJs3jx49ehAVFYWnpyc//vgjVapUoVWrVvj4+LBlyxZCQkJQFIVp06aZ9Bz7+fkRHBzMyJEjWbFiBdbW1owfP96kl7NTp060atWKHj168M477+Dr68vNmzeNF8gVpIyiIB7Wloext7dn0KBBLFq0iNTUVMaNG0ffvn2NddIzZ85k3LhxuLq6EhwcjEaj4dSpU9y9e9ekvKEg3njjDZo3b87s2bPp168f3333HcuXLzcZfeRJqV69Ora2tixbtoxRo0bx888/M3t24Ws6Z8yYQceOHalduzYvvvgiWq2WXbt2MXnyZHx9fRkwYAADBw40Xsx5584dDhw4gL+/P127dn3i7RKiNJIvHeJRKSoVGAzs2bMHa+tSk8Y8MTKJjPmVmqH4VCoVmzZt4vTp0zRs2JDXX3+dhQv//1utra0te/fupVKlSnTp0oVGjRoxf/584xPw3XffpVy5crRu3ZqQkBCCgoJo2rSpyTFiY2OpUqUK7dq1o2fPnowYMYJKlSoZlyuKwq5du2jbti2DBw/G19eXF198kevXr1O5cuUn1taHteVh6tSpQ8+ePenSpQudO3fG39/fJNkdNmwYH330EbGxsTRq1Ih27dqxZs0aatasWehYmzZtyueff86mTZto2LAh06dPZ9asWSYXMz4p7u7urFmzhi+++IL69eszf/58Fi1aVOj9tG/fni+++IKvvvqKJk2a0KFDB06cOGFcHhsby8CBA3njjTfw8/OjR48enDx50jiqjBBCiKJnbW0tt1xuklibn2KQYsAyJTIykm3btpGQkGDuUMqs1NRUXF1dSUlJwcXFxdzhCGEWWq2WTp06YT9gBMhEIDnoU5LJ/GoTti+8iMrVzdzhWBa9noyNH7J//37puRbFqqCf3/KsFEIIUewURcFerSZj44fmDsWiZX61ydwhWCR7tVrqioXFkuS6lGnQoAHXr1/PddnKlSuLORohhMidlZUVO+PiZCQV8UikrlhYMikLKWWuX79OVlZWrssqV65sMr62MA8pCymbdDqdJJKiSEnCKUTRkrKQMqpGjRrmDkEI8S86nY6u3ULISL9v7lBEKWavdmBn3A5JsIUwM0muhRCiiBkMBjLS7+P48mS5eK+A9Cl/kL79Q9TdR6ByzX32U/EPej33NiyQX0eEsACSXAuLsWbNGsaPH28yMc+jOnToEM8++yx37941mR3zSSuu44hSQqVCUUmvYkE8OE+KykrOWQFISi2E5ZAuFPFYwsLC6NGjh7nDEEIIIYSwCJJcCyFEEdPpdOYOQZRyhr9nFJbnmhDmJ2UhokC+/PJLZs6cyeXLl3FwcCAgIICAgADWrl0LYBxv9ODBgwA5SiUSEhIICAjg6tWreHt7A9llINOnT+f3338nKCiIZ555xni8a9euUatWLU6cOGEybfzixYuJiYnh6tWrqApZu7p582amT5/O5cuX8fT05NVXX+WNN94wLl+/fj1LlizhwoULODo60qFDBxYvXmwyC+euXbsYP348N27coGXLlgwaNKhQMZQWMvJF4eQ1go8QT0726zErK0suaCwEvV5f6M+Ssk5GpXk4Sa7FQ926dYv+/fvzzjvvEBoayl9//cXRo0cZOHAgiYmJpKamEhsbC0D58uU5duzYQ/d5/Phxhg4dSlRUFD169GDPnj3MmDHDuNzb25tOnToRGxtrklzHxsYSFhZW6DfD06dP07dvXyIjI+nXrx/Hjh1jzJgxVKhQwTgVe1ZWFrNnz8bPz4+kpCQiIiIICwtj165dANy4cYOePXsyduxYRowYwalTp0yS87xoNBo0Go3xfmpqaqFitzQ6nY5uISGk35eRL4SwFAa9HkVR0a1bN3OHUqIoKpWx118UjNrBgbgdMipNfiS5Fg9169YttFotPXv2NA7116hRIwDUajUajQYPD49C7XPJkiUEBwczadIkAHx9fTl27Bh79uwxrjNs2DBGjRrFu+++i52dHT/88ANnz55l+/bthW7Du+++S8eOHZk2bZrxeOfOnWPhwoXG5HrIkCHG9WvVqsXSpUtp3rw5aWlpODk5sWLFCmrXrk10dDQAfn5+nD17lgULFuR77KioKGbOnFnomC2VVqsl/f59Xox8F5W8uRZIRloaWxZMNXcYolQzYDDo6TzlHbkAtIB0WZnsf2eKvJcVgjYri89nTUCr1UpynQ9JrsVDNW7cmI4dO9KoUSOCgoLo3LkzvXv3ply5co+8z/PnzxMaGmryWKtWrUyS6x49ejB27Fi2bt3Kiy++yJo1a3j22WeNZSWFPV737t1NHgsMDGTx4sXodDqsrKw4ffo0kZGRnDlzhrt376L/uzcjMTGR+vXrc/78eZ5++ukcMT/MlClTiIiIMN5PTU3Fy8ur0G2wFIqiYGNry6bIiIevLIQQFkpRFBRFJe9lhWRtbS1Tzz+EJNfioaysrNi3bx/Hjh1j7969LFu2jKlTp3L8+PFc139QsvHPmtxHqTm1tbVl4MCBxMbG0rNnTz755BOWLFnyaI14iHv37hEUFERQUBAbN27E3d2dxMREgoKCyMzMfKx929nZYWdn94QiNT9bW1v27N4tNdeFcO/evRxf7oR4srITxb1Rk8wdSIlir1azfds26YUtBKm5fjhJrkWBKIpCYGAggYGBTJ8+nRo1arB161ZsbW1zXJ3u7u4OZJeTPOjdTkhIMFmnXr16OZLz77//Psdxhw0bRsOGDXn//feNpSmPol69esTHx5s8Fh8fj6+vL1ZWVvzyyy/88ccfzJ8/39irfOrUqRz7+Oqrrx4ac1kgb6yFU5q+XAnLpKhUGAx64uLisLe3N3c4JYYkiqIoSHItHur48eMcOHCAzp07U6lSJY4fP86dO3eoV68eGRkZfP3111y4cIEKFSrg6upKnTp18PLyIjIykrlz53Lx4kVjnfID48aNIzAwkEWLFtG9e3e+/vprk5KQB+rVq0fLli2ZPHkyQ4YMQa1WP1Ib3njjDZo3b87s2bPp168f3333HcuXL+f9998HoHr16tja2rJs2TJGjRrFzz//zOzZs032MWrUKKKjo5k4cSLDhg3j9OnTrFmz5pHiEWWL/IQqil72c8zGxgZra/loF8KcZPwZ8VAuLi4cOXKELl264Ovry9tvv010dDTPP/88w4cPx8/Pj2bNmuHu7k58fDw2NjZ8+umn/PLLL/j7+7NgwQLmzJljss+WLVuyatUqlixZQuPGjdm7dy9vv/12rscfOnQomZmZJhccFlbTpk35/PPP2bRpEw0bNmT69OnMmjXLeDGju7s7a9as4YsvvqB+/frMnz+fRYsWmeyjevXqbN68mW3bttG4cWM++OAD5s2b98gxibJDesZEUVP+LseT55oQ5qcYpHBSWLjZs2fzxRdf8NNPP5k7lCciNTUVV1dXUlJScHFxMXc4ohhotVo6deqE48uTQcbULRB9yh+kb/8QdfcRqFwrmDscy6fXc2/DAvbv3y8910IUkYJ+fssrUFistLQ0rl27xvLly3P0fAtRkiiKgr3agXsb8h+2UeSUvv1Dc4dQYtirHaQESQgLIMm1sFjh4eF8+umn9OjRI0dJyKhRo9iwYUOu27388st88MEHxRGiEAViZWXFzrgdMsKKKFJycZ4QlkHKQkSJlJSUlOdMhy4uLiZTllsaKQsRQgghSh4pCxGlWqVKlSw6gRZCPD6dTie9/eKxSY++KG6SXAshhLA4Op2Ort1CyEi/b+5QRAlnr3ZgZ9wOSbBFsZHkWgghhMUxGAxkpN+n/MtLQCVJUW50Kb+Rsn02rt2nYeVa2dzhWCa9jj83vCa/gIhiZfHJdWRkJNu2bcsxw19pce3aNWrWrMmPP/5IkyZNzB1OoT2pv09x/50PHTrEs88+y927d3Fzc7OImIQQuVBZoUhynasHY1srKpWcozw8SKm1Wq1Z47B0UjrzZBUquW7fvj1NmjRh8eLFRRROybBmzRrGjx9PcnKyuUPJk6IobN26lR49epg7lBxyi23ChAm8+uqr5gsqF5YYkxBlhU6nM3cIohQw6PWgqAgODjZ3KBZN7eBA3A4pnXlSLL7nuigYDAZ0Op0MtJ+PzMxMbG1ti+14Tk5OODk5FdvxCsISYxKlh1ysl7+srCxzhyBKBQMY9ASEvy+9+3kw6HX8uHyMvB89QQXOLsPCwjh8+DCHDx9myZIlAFy9epW0tDQmTpzI0aNHcXR0pHPnzsTExFCxYkUA9uzZw5w5c/j555+xsrKiVatWLFmyhNq1axv3/d///peJEyfy9ddfo9FoqFevHu+99x5PP/20cZ3169czbdo07t69y/PPP8+qVatwdnYGQK/Xs2DBAj788ENu376Nr68v06ZNo3fv3sD/lwDs2rWLt99+m7Nnz7J3717at2+fZ3vPnDnD+PHjOXXqFIqi4OPjw8qVK0lLS2Pw4MEAxsH6Z8yYQWRkZK49sm5ubixevNg4zfaJEycYOXIk58+fp2HDhkydOjXHsX/++ed8z2n79u3x9/fH3t6ejz76CFtbW0aNGkVkZCQA3t7eAISGhgJQo0YNrl27lu/f90EJRHh4OHPnzuX69evo9XqSk5OZMGEC27dvR6PR0KxZM2JiYmjcuHGu+zl58iRvvfUWP/74I1lZWTRp0oSYmBiaNm2ab2z/LsHQ6/XMmTOHDz/8kDt37lCvXj3mz59v7H14UE6zefNmli1bxvHjx/Hx8eGDDz6gVatWAFy/fp3w8HC+/fZbMjMz8fb2ZuHChXTp0sUY7+nTp5k8eTLnzp2jSZMmxMbG4ufnZ3JOHsQUFhZGcnIyAQEBLF++HI1Gw0svvcTSpUuL9YtISSCJY/50Oh09QkNJvy8X6wlRHBSVFYqVdKjlxqDXA0in4xNU4LO4ZMkSLl68SMOGDZk1axYANjY2tGjRgmHDhhETE0N6ejqTJ0+mb9++fPPNNwDcu3ePiIgI/P39SUtLY/r06YSGhpKQkIBKpSItLY127dpRtWpVvvrqKzw8PPjhhx/Q//3HBrhy5Qrbtm0jLi6Ou3fv0rdvX+bPn8/cuXMBiIqKYsOGDXzwwQf4+Phw5MgRXn75Zdzd3WnXrp1xP2+++SaLFi2iVq1alCtXLt/2DhgwgICAAFasWIGVlRUJCQnY2NjQunVrFi9ezPTp07lw4QJAgXs309LS6NatG8899xwbNmzg6tWrvPbaaybrJCcn06FDh3zPKcDatWuJiIjg+PHjfPfdd4SFhREYGMhzzz3HyZMnqVSpErGxsQQHBxf4Z57Lly+zefNmtmzZYtymT58+qNVqdu/ejaurKytXrqRjx45cvHiR8uXL59jHX3/9xaBBg1i2bBkGg4Ho6Gi6dOnCpUuXcHZ2LnBsS5YsITo6mpUrVxIQEMDq1at54YUX+M9//oOPj49xvalTp7Jo0SJ8fHyYOnUq/fv35/Lly1hbWzN27FgyMzM5cuQIjo6OnDt3LsffaurUqURHR+Pu7s6oUaMYMmQI8fHxeZ6jAwcOYG9vz6FDh7h27RqDBw+mQoUKxudibjQaDRqNxng/r/G5S4vMzEy6dutGVmamuUOxeM9P+RCV9KblKjPjPvuipSxLiKKm//tXIo1Gg52dnZmjKR0KnFy7urpia2uLg4MDHh4eAMyZM4eAgADmzZtnXG/16tV4eXlx8eJFfH196dWrl8l+Vq9ejbu7O+fOnaNhw4Z88skn3Llzh5MnTxqTtTp16phso9frWbNmjbGn+pVXXuHAgQPMnTsXjUbDvHnz2L9/v7HHslatWnz77besXLnSJLmeNWsWzz33XIHam5iYyMSJE6lbty6ASULn6uqKoijG81BQn3zyCXq9no8//hh7e3saNGjAf//7X0aPHm1cZ/ny5Q89pwD+/v7MmDHDGNvy5cs5cOAAzz33HO7u7kB2r3lhYszMzGTdunX/1959x1VV/w8cf517UbgXGQ5USJYKrlBAHEhuVByUZa4s0Rw5SA0nmYMcmEFuzTTRryPrq2k5vwqJJeWoxGy50rDUsFQQUZB77+8P4v68MQQlLuP9fDx4PDj3rPc55473+Zz3+Rzj/EeOHOH48eMkJycbP3BRUVHs3LmTbdu2MXLkyFzL6NSpk8nwe++9h729PYcPH6ZXr16Fji0qKoqpU6cyYMAAAN566y0OHTrE4sWLWbFihXG6SZMm0bNnTwAiIiJo0qQJ58+fp2HDhiQlJdGnTx+8vLyA7PfFP82bN8/4Hpk2bRo9e/bk3r17WFlZ5RlX5cqVWbduHVqtliZNmvDmm28yefJk5syZg+rvm4v+KTIykoiIiHy3tbwxGAzcz8xk0Ow1qKR+L09ZmRl8MGc0KpUalbSm5UlOOoQoIX9fZZSrjcXnsb7VT506xaFDh/Jsub1w4QKenp6cO3eOmTNncuzYMf78809ji3RSUhJPPvkkiYmJ+Pj45NkKmsPNzc2YWAM4OjqSnJwMZLe2pqen50qaMzMz8fHxMXnNz8+v0NsWFhbG8OHD2bhxI4GBgfTt29eklOVR/PTTT8Zyjhw5JwQ5CrNPITu5ftCD++RRubq6GpPfnFjS0tKoXr26yXR3797lwoULeS7jjz/+4I033iA+Pp7k5GR0Oh3p6ekkJSUVOo7U1FSuXLlCQECAyesBAQGcOnXK5LUH94OjoyOQ/fTGhg0bMm7cOEaPHs2BAwcIDAykT58+ufZbfvO7uLjkGVuzZs3QarXGYX9/f9LS0rh8+TKurq55zhMeHk5YWJjJ9jk7O+e7/WWdhYUFGq2WzbNHmDuUUk+vl5v28iP7RoiSofzdCCIlIcXnsfZkWloawcHBvPXWW7nG5SQqwcHBuLq6smbNGpycnNDr9Tz55JNk/n3JWKPRPHQ9lSpVMhlWFMWYpKelpQGwZ88ennjiCZPp/nl5w9raupBbll1v+8ILL7Bnzx727dvHrFmz2Lp1q7FWOC+KouQ68yvqTTmF2adQ8D55VP/cP2lpaTg6OhIfH59r2vy6rwsJCeGvv/5iyZIluLq6Ymlpib+/v/F4F7cH90NODXzOfhg+fDjdunVjz549HDhwgMjISKKjo016AClo/uJiaWlZoS61qdVqdu/aJa0gBcipud4XmfvqjxCi+BnkZC1/2T99klwXoyLtycqVK5t0j+Tr68v27dtxc3PL86D89ddfnDlzhjVr1tC2bVsgu9TgQU2bNmXt2rXcuHGjwNbr/DRu3BhLS0uSkpJMSkCKg6enJ56enrz22msMHDiQmJgYnn322Vz7IYeDgwNXr141Dp87d470B25YatSoERs3bjQpOzh69KjJMh62TwurUqVKj92Vla+vL9euXcPCwsJ4I+LDJCQksHLlSuNNg5cvX+bPP/8sUmy2trY4OTmRkJBgckwTEhJo2bJlkbbB2dmZUaNGMWrUKMLDw1mzZs1jda936tQp7t69azwpPHr0KFWqVCnXLdGPQrpzKpiFhYWcgDxERkaGseRLiEengKLi5PIx5g6kVNNotZJcF6Mi7Uk3NzeOHTvGpUuXqFKlCmPHjmXNmjUMHDiQKVOmUK1aNc6fP8/WrVtZu3YtVatWpXr16rz33ns4OjqSlJTEtGnTTJY5cOBA5s+fT+/evYmMjMTR0ZGTJ0/i5OSUq2QiLzY2NkyaNInXXnsNvV7PU089RUpKCgkJCdja2hISElK0PUJ22cPkyZN5/vnncXd357fffuPEiRPG+nE3NzfS0tKIi4szlglotVo6derE8uXL8ff3R6fTMXXqVJOW0RdeeIHp06czYsQIwsPDuXTpElFRUSbrftg+LWzS4ubmRlxcHAEBAVhaWj70Bs68BAYG4u/vT+/evVm4cCGenp5cuXKFPXv28Oyzz+ZZZuPh4cHGjRvx8/MjNTWVyZMn57o6UZjYJk+ezKxZs6hXr56xF4/ExEQ2b95c6PgnTJhA9+7d8fT05ObNmxw6dIhGjRoVeT88KDMzk2HDhvHGG29w6dIlZs2aRWhoaL711kLkR05AhPj3KSoVGPTs379fkscCyENkileRMoJJkyahVqtp3LgxDg4OZGZmkpCQgE6no2vXrnh5eTFhwgTs7e1RqVSoVCq2bt3KN998w5NPPslrr73G22+/bbLMypUrc+DAAWrWrEmPHj3w8vJiwYIFRTrIc+bMYcaMGURGRtKoUSOCgoLYs2cP7u7uRdk8I7VazV9//cXgwYPx9PSkX79+dO/e3XhTWps2bRg1ahT9+/fHwcGBhQsXAhAdHY2zszNt27blhRdeYNKkSSb1uVWqVGHXrl2cPn0aHx8fpk+fnqv8I6fFNr99WljR0dEcPHgQZ2fnXLXnhaUoCnv37qVdu3YMHToUT09PBgwYwK+//kqtWnk/avf999/n5s2b+Pr68tJLLzFu3Dhq1qxZ5NjGjRtHWFgYEydOxMvLi/379/Ppp5+a3Fj6MDqdjrFjxxrfE56enqxcubLwOyAPnTt3xsPDg3bt2tG/f3+efvppYxeIQgghSicLCwv5K+BPEuvipRjkuqQQhZLTz/XOnTsfazmpqanY2dmRkpKCra1t8QQnRDmTlZVFYGAg1V5cAtJzSJ50KX+Q8skc7J6Zgdou7waPCk+v48am8cTGxkrLtXhshf39lneaEEKIUkdRFKw0Wm5sGv/wiSu4lE/mmDuEUs1KozXesC5ESaiwyXWTJk349ddf8xy3evVqBg0aVMIR/bsq2vYKIco2tVrNnt1y06d4fFJPLEpahS0L+fXXX/PtJq9WrVom/WqXBxVte0szKQsRj0IeKS8eJAmjECVPykIeIr8HfpRXFW17hShPdDodvXoFc/du+sMnFhWCRqNl9+5dkmALUQpV2ORaCCHKCoPBwN276fR6aX2Ffix4WspVPts5hU69F1LFzvHhM5RTer2O3RuHyJUMIUqpcpVcGwwGXnnlFbZt28bNmzc5efIk3t7e5g5LCCGKhUqlRqUqV1/bRaL8fWKhVPD9IIQo3crVky/279/P+vXr2b17N1evXuXJJ5986DyKojx212pCCCGEEEJAOWu5vnDhAo6OjrRp06bE152ZmUnlypVLfL0F+Tdjun//vsnTJ8sDg8GATqeTvlBFqaPT6cwdgihFDHo9gHxfCVFKlZuW6yFDhvDqq6+SlJSEoii4ubnh5ubG4sWLTabz9vY2PlHPzc0NgGeffdY4T86yevfubTLfhAkT6NChg3G4Q4cOhIaGMmHCBGrUqEG3bt0A+P777+nevTtVqlShVq1avPTSS/z555+F2ga9Xs/ChQupX78+lpaWuLi4MG/ePOP4qVOn4unpiVarpW7dusyYMcOkB5DZs2fj7e3N2rVrcXd3x8rKCoBbt24xfPhwHBwcsLW1pVOnTpw6dcpk3Z988gm+vr5YWVlRt25dIiIiyMrKMo5XFIVVq1bx9NNPY21tbRJXfn744Qd69eqFra0tNjY2tG3blgsXLhi39c0336ROnTpYWlri7e3N/v37jfNeunQJRVH4+OOP6dixI1qtlmbNmvHVV1+ZrCMhIYEOHTqg1WqpWrUq3bp14+bNm8Z1REZG4u7ujkajoVmzZmzbts04b3x8PIqisG/fPpo3b46lpSVHjhyhQ4cOjBs3zvj4+dq1a5s8hdFgMDB79mxcXFywtLTEycmJcePGPXR/CPGopLZWPMhAdnJ9//59srKyKvSfnHiK0qjcnPIuWbKEevXq8d5773HixAnUajUtWrQocJ4TJ05Qs2ZNYmJiCAoKKvJd1xs2bGD06NEkJCQA2Ulsp06dGD58OIsWLeLu3btMnTqVfv368dlnnz10eeHh4axZs4ZFixbx1FNPcfXqVX7++WfjeBsbG9avX4+TkxOnT59mxIgR2NjYMGXKFOM058+fZ/v27Xz88cfG7enbty8ajYZ9+/ZhZ2fH6tWr6dy5M2fPnqVatWp88cUXDB48mKVLlxoT4JEjRwIwa9Ys47Jnz57NggULWLx48UNbS37//XfatWtHhw4d+Oyzz7C1tSUhIcGYsC9ZsoTo6GhWr16Nj48P69at4+mnn+aHH34wecT59OnTiYqKwsPDg+nTpzNw4EDOnz+PhYUFiYmJdO7cmZdffpklS5ZgYWHBoUOHjF+2kZGRbNq0iXfffRcPDw8+//xzXnzxRRwcHGjfvr1xHdOmTSMqKoq6detStWpV47ENCwvj2LFjfPXVVwwZMoSAgAC6dOnC9u3bWbRoEVu3bqVJkyZcu3Yt18nKgzIyMsjIyDAOp6amFrjvhCnpgg6T948QBr0eRVHRq1cvc4didhqNhp07d1b4XlOka8bSpdwk13Z2dtjY2KBWq6ldu3ah5nFwcADA3t6+0PM8yMPDg4ULFxqH586di4+PD/Pnzze+tm7dOpydnTl79iyenp75Luv27dssWbKE5cuXExISAkC9evV46qmnjNO88cYbxv/d3NyYNGkSW7duNUmuMzMz+c9//mPctiNHjnD8+HGSk5OxtLQEICoqip07d7Jt2zZGjhxJREQE06ZNM663bt26zJkzhylTppgk1y+88AJDhw4t1L5ZsWIFdnZ2bN261Vg+8uD2R0VFMXXqVAYMGADAW2+9xaFDh1i8eDErVqwwTjdp0iR69uwJQEREBE2aNOH8+fM0bNiQhQsX4ufnx8qVK43TN2nSBMhORubPn09sbCz+/v7G7Tpy5AirV682Sa7ffPNNunTpYhJ/06ZNjdvu4eHB8uXLiYuLo0uXLiQlJVG7dm0CAwOpVKkSLi4utGzZMt99ERkZSURERKH2mzCVmZlJr169yMzMNHcoQpQaBvQYDHrGh2+q0L3HZGXdZ/nCIcYrxxWZoijs3bsXjUZj7lAE5Si5NofmzZubDJ86dYpDhw5RpUqVXNNeuHChwOT6p59+IiMjg86dO+c7zYcffsjSpUu5cOECaWlpZGVl5erE3NXV1ZhY58SUlpZG9erVTaa7e/eusUTj1KlTJCQkmJR66HQ67t27R3p6OlqtFgA/P798Y/unxMRE2rZtm2dddmpqKleuXCEgIMDk9YCAgFwtwE2bNjX+7+iY3fVWcnIyDRs2JDExkb59++a5/vPnz5Oenp4rac7MzMTHx8fktby268H15qw7OTkZyL4SsHjxYurWrUtQUBA9evQgODg439b88PBwwsLCTLbf2dk5z2mFEEIIUbaV6+RapVLlupyc31MKH2U+a2trk+G0tDSCg4N56623ck2bkxjm52Fnm1999RWDBg0iIiKCbt26GVuFo6OjHxqTo6Mj8fHxuZZpb29vnCYiIoLnnnsu1zQ5ddt5LbsgxXX2/GByrigKkF1L/bB1pKWlAbBnzx6eeOIJk3E5Lfg58tquf54UKIpiXK+zszNnzpwhNjaWgwcPMmbMGN5++20OHz6c58mEpaVlrnWKwqlcuTL79u2r8GUhd+7c4ZlnnjF3GKKUUFChKCqWRL5o7lDMTspCsklZSOlSrpNrBwcHrl69ahxOTU3l4sWLJtNUqlQp1w0RDg4OfP/99yavJSYmPrR3DF9fX7Zv346bm1uR7+D28PBAo9EQFxfH8OHDc43/8ssvcXV1Zfr06cbXfv3114cu19fXl2vXrmFhYWG8YTOvac6cOUP9+vWLFHNBmjZtyoYNG/LsVcTW1hYnJycSEhJMyjMSEhIKLK/Iax1xcXF5llw0btwYS0tLkpKSTNZRXDQaDcHBwQQHBzN27FgaNmzI6dOn8fX1LfZ1VXTyg5H7hFBUbIpKhcGgZ/fu3SYNIBWRJJWiNCrXyXWnTp1Yv349wcHB2NvbM3PmzFwfQjc3N+Li4ggICMDS0pKqVavSqVMn3n77bf7zn//g7+/Ppk2b+P7773OVE/zT2LFjWbNmDQMHDjT2NHH+/Hm2bt3K2rVrC/wCsLKyYurUqUyZMoXKlSsTEBDA9evX+eGHHxg2bBgeHh4kJSWxdetWWrRowZ49e9ixY8dD90FgYCD+/v707t2bhQsX4unpyZUrV9izZw/PPvssfn5+zJw5k169euHi4sLzzz+PSqXi1KlTfP/998ydO7dwO/sfQkNDWbZsGQMGDCA8PBw7OzuOHj1Ky5YtadCgAZMnT2bWrFnUq1cPb29vYmJiSExMZPPmzYVeR3h4OF5eXowZM4ZRo0ZRuXJlDh06RN++falRowaTJk3itddeQ6/X89RTT5GSkkJCQgK2trbG+vJHsX79enQ6Ha1atUKr1bJp0yY0Go08Yl78a3Ku2ggB2S3XkN04JF3xCVH6lJuu+PISHh5O+/bt6dWrFz179qR3797Uq1fPZJro6GgOHjyIs7OzMXnu1q0bM2bMYMqUKbRo0YLbt28zePDgh64vpzVWp9PRtWtXvLy8mDBhAvb29qhUD9/VM2bMYOLEicycOZNGjRrRv39/Y53v008/zWuvvUZoaCje3t58+eWXzJgx46HLzLnJoV27dgwdOhRPT08GDBjAr7/+Sq1atYzbu3v3bg4cOECLFi1o3bo1ixYteqxksXr16nz22WekpaXRvn17mjdvzpo1a4yt2OPGjSMsLIyJEyfi5eXF/v37+fTTT016CnkYT09PDhw4wKlTp2jZsiX+/v588sknxh+bOXPmMGPGDCIjI2nUqBFBQUHs2bMHd3f3R94uyC6nWbNmDQEBATRt2pTY2Fh27dqVq65diOIiLXPiQcrfvyfyvhCidFIMFb2YUYgSlpqaip2dHSkpKbluSBUiL1lZWQQGBvJ0yMYK/djv2ylXiPt4Ip2fi8bGzsnc4ZiNXp/FpxteIjY2VlquhShBhf39lk+lEEKUEXp9xX5ghuHv7Tfodej1WQ+Zuvyq6O8DIUo7Sa5LSFJSEo0bN853/I8//oiLi0sJRvR4Ro0axaZNm/Ic9+KLL/Luu++WcERClF+KoqDRaNm9cYi5QykVPts55eETlXMajVZq8YUopaQspIRkZWVx6dKlfMc/Sg8j5pScnJzvkwZtbW2pWbNmCUdUdkhZiHgU8qRK8SDpJUOIkidlIaWMhYVFsXZ1Z241a9aUBFqIEiSJVPlW1JMng8FAVlbFLY0pbnKyIoqTJNdCCCGEGel0OoJ7BZN+N93coVRYFhYWfPTRR1SrVs3coYhyQJJrIYQQwowMBgPpd9MZ12cDKpW0npa0v1J+Y+OBaaSkpEhyLYqFJNeiQLNnz2bnzp0kJiYWeh5FUdixYwe9e/f+1+ISQojyRqVSo67AXS2ai1KI51AIURTyKRYFmjRpEq+++qq5wyiV4uPj6dixIzdv3sTe3t7c4QjxyORmSfOS2mkhyhdJrkWBqlSpQpUqVcwdRqlz//59c4dQrkhyZz46nY5nez8r9b6iwsr57tHppP9wUTwkuS4ntm3bRkREBOfPn0er1eLj48Mnn3yCRqNh7ty5vPfee1y/fp1GjRqxYMECgoKCjPP+9ttvTJ48mf/9739kZGTQqFEjVqxYQatWrXKVhZw4cYLXX3+dkydPcv/+fby9vVm0aBG+vr5FjjkzM5OwsDC2b9/OzZs3qVWrFqNGjSI8PJxLly7h7u7OyZMn8fb2BuDWrVtUrVqVQ4cO0aFDB2PL8e7duwkPD+fs2bN4e3uzdu1annzySQDWr1/PhAkTWL9+PZMnT+by5cu0b9+etWvX4uzsbIxl1apVREVFcfnyZdzd3XnjjTd46aWXjOMVRWHlypXs27ePuLg4+vbty4YNGwCoWrUqACEhIaxfv77I+6Gi0+l0BAcHk54uyZ05vT58I2qp9zWLzKwM3lo31NxhVFi6vx9IJMm1KC6SXJcDV69eZeDAgSxcuJBnn32W27dv88UXX2AwGFiyZAnR0dGsXr0aHx8f1q1bx9NPP80PP/yAh4cHaWlptG/fnieeeIJPP/2U2rVr8+2336LX6/Nc1+3btwkJCWHZsmUYDAaio6Pp0aMH586dw8bGpkhxL126lE8//ZSPPvoIFxcXLl++zOXLl4u8/ZMnT2bJkiXUrl2b119/neDgYM6ePUulSpUASE9PZ968efznP/+hcuXKjBkzhgEDBpCQkADAjh07GD9+PIsXLyYwMJDdu3czdOhQ6tSpQ8eOHY3rmT17NgsWLGDx4sWo1Wqefvpp+vTpw5kzZ7C1tUWj0eQZX0ZGBhkZGcbh/PoHr6iysrJIT09n7sTNktyZQeb9DGYtDkGtUqNWy0+COagr8NMmS4OcJ15KeY4oLvJNWg5cvXqVrKwsnnvuOVxdXQHw8vICICoqiqlTpzJgwAAA3nrrLQ4dOsTixYtZsWIFW7Zs4fr165w4ccJ4l3RB/XF36tTJZPi9997D3t6ew4cP06tXryLFnZSUhIeHB0899RSKohhjL6pZs2bRpUsXADZs2ECdOnXYsWMH/fr1A7JLOJYvX06rVq2M0zRq1Ijjx4/TsmVLoqKiGDJkCGPGjAEgLCyMo0ePEhUVZZJcv/DCCwwd+v+tSxcvXgSy+/wuqOY6MjKSiIiIR9q2iiDnB02SO/NQ6yShEBWbzpCdXEvLtSgucotsOdCsWTM6d+6Ml5cXffv2Zc2aNdy8eZPU1FSuXLlCQECAyfQBAQH89NNPACQmJuLj41Po7of++OMPRowYgYeHB3Z2dtja2pKWlkZSUlKR4x4yZAiJiYk0aNCAcePGceDAgSIvA8Df39/4f7Vq1WjQoIFx+yC7/9IWLVoYhxs2bIi9vb1xmp9++qnAfZTDz8/vkeILDw8nJSXF+PcorfPlWc4jnHV6HTpdlvyV9J9eEgpRsSlkfwfJ4+RFcZFmonJArVZz8OBBvvzySw4cOMCyZcuYPn06Bw8efOi8+ZUy5CckJIS//vqLJUuW4OrqiqWlJf7+/mRmZhY5bl9fXy5evMi+ffuIjY2lX79+BAYGsm3bNlR/d4304E1u5r6J0Nra+pHms7S0xNLSspijKT8sLS3RarW8ET3I3KEIISogC3V2CWHlypXNHIkoLyS5LicURSEgIICAgABmzpyJq6srcXFxODk5kZCQQPv27Y3TJiQk0LJlSwCaNm3K2rVruXHjRqFarxMSEli5ciU9evQA4PLly/z555+PHLetrS39+/enf//+PP/88wQFBXHjxg0cHByA7JIXHx8fgHz72j569CguLi4A3Lx5k7Nnz9KoUSPj+KysLL7++mvjNp85c4Zbt24Zp2nUqBEJCQmEhISYbGfjxo0LjD3ni1guJT4etVrNrl27pLcQM8nKyiIoKEhasM1I9r15qZTsxhyV9Hctiokk1+XAsWPHiIuLo2vXrtSsWZNjx44ZewaZPHkys2bNol69enh7exMTE0NiYiKbN28GYODAgcyfP5/evXsTGRmJo6MjJ0+exMnJyaTcIoeHhwcbN27Ez8+P1NRUJk+eXOTW7xzvvPMOjo6O+Pj4oFKp+O9//0vt2rWxt7dHpVLRunVrFixYgLu7O8nJybzxxht5LufNN9+kevXq1KpVi+nTp1OjRg2TB9hUqlSJV199laVLl2JhYUFoaCitW7c2JtuTJ0+mX79++Pj4EBgYyK5du/j444+JjY0tMH5XV1cURWH37t306NEDjUYj3RY+IrVabmQ0F0VR0Gq0zF/70sMnFqIcUv5OrqUsRBQXSa7LAVtbWz7//HMWL15Mamoqrq6uREdH0717d7p160ZKSgoTJ04kOTmZxo0b8+mnn+Lh4QFkt74eOHCAiRMn0qNHD7KysmjcuDErVqzIc13vv/8+I0eOxNfXF2dnZ+bPn8+kSZMeKW4bGxsWLlzIuXPnUKvVtGjRgr179xpbD9atW8ewYcNo3rw5DRo0YOHChXTt2jXXchYsWMD48eM5d+4c3t7e7Nq1y+TynlarZerUqbzwwgv8/vvvtG3blvfff984vnfv3ixZsoSoqCjGjx+Pu7s7MTExdOjQocD4n3jiCSIiIpg2bRpDhw5l8ODB0hWfKHPUajW7dsuVA3PKuXogzCMnqZaTfFFcFIN8o4oyqjBPSMzp5/rWrVslGltBUlNTsbOzIyUlBVtbW3OHI4Qws6ysLAIDAxnXZwMq6Y6yxP2V8hsbD0wjJiYGd3d3c4cjSrHC/n5Ly7UQQghhRjmlOUu3hzx8YvGvsLCwwM7OztxhiHJCkmvxr5k/fz7z58/Pc1zbtm3Zt29fCUckhBClj5TmmJ+iKFIWIoqNlIWIf82NGze4ceNGnuM0Gg1PPPFECUdUOkhZiBBCCFH2SFmIMLtq1aoV+uE0QlQUOp1OWihFkUirqhBliyTXQghRQnQ6HcG9gkm/m27uUEQZotVo2bV7lyTYQpQRklwLIUQJMRgMpN9NJ7LzOtSKJEo5ku9cJeqraUzyX0BNa0dzh1Oq6Aw6wuNelqsdQpQhklwLIUQJUytq1Cr5+s2h/rv7ObVK9ksuenMHIIQoKnnWpxBClBCdTh5zLYpGb8jOruW9I0TZIcm1eCyZmZnFvkyDwUBWVlaxL/dxlMaYRNkjl/ZFURn+Tq7lvSNE2SHJdTnSoUMHQkNDCQ0Nxc7Ojho1ajBjxgzjl3JGRgaTJk3iiSeewNramlatWhEfH2+yjCNHjtC2bVs0Gg3Ozs6MGzeOO3fuGMe7ubkxZ84cBg8ejK2tLSNHjiwwpkuXLqEoClu3bqVNmzZYWVnx5JNPcvjwYeM08fHxKIrCvn37aN68OZaWlhw5cgS9Xk9kZCTu7u5oNBqaNWvGtm3bjPPdvHmTQYMG4eDggEajwcPDg5iYGCA76Q8NDcXR0RErKytcXV2JjIw0iSkxMdG4rFu3bqEoinF/PGpMIptOpyMrK0v+/vGXkZFh7kMjypicluuMjAyzv39L419mZqbZYyitf3K1w3ykuK2c2bBhA8OGDeP48eN8/fXXjBw5EhcXF0aMGEFoaCg//vgjW7duxcnJiR07dhAUFMTp06fx8PDgwoULBAUFMXfuXNatW8f169eNyXpO0goQFRXFzJkzmTVrVqHjmjx5MosXL6Zx48a88847BAcHc/HiRapXr26cZtq0aURFRVG3bl2qVq1KZGQkmzZt4t1338XDw4PPP/+cF198EQcHB9q3b8+MGTP48ccf2bdvHzVq1OD8+fPcvXsXgKVLl/Lpp5/y0Ucf4eLiwuXLl7l8+XKR92dRY8pLRkaGSVKVmppa5DjKkrt37xLcK5gsnbT0C/G4dPosVIqKZ555xtyhlEoqlQq9XgrT82JhYcHevXupXLmyuUOpcCS5LmecnZ1ZtGgRiqLQoEEDTp8+zaJFi+jWrRsxMTEkJSXh5OQEwKRJk9i/fz8xMTHMnz+fyMhIBg0axIQJEwDw8PBg6dKltG/fnlWrVmFlZQVAp06dmDhxYpHiCg0NpU+fPgCsWrWK/fv38/777zNlyhTjNG+++SZdunQBshPS+fPnExsbi7+/PwB169blyJEjrF69mvbt25OUlISPjw9+fn5Adqt6jqSkJDw8PHjqqadQFAVXV9ei78xHiCkvkZGRREREPNL6yyKDwUCWLouVEzegVstXzIPS0lKYuHKMucMQZYjBYEBv0MvnKQ/372cybvEwc4chRC7ySS1nWrdujaIoxmF/f3+io6M5ffo0Op0OT09Pk+kzMjKMrcenTp3iu+++Y/PmzcbxBoMBvV7PxYsXadSoEYAxmS2KnGQUss+m/fz8+Omnn0ymeXC558+fJz093ZjY5sjMzMTHxweA0aNH06dPH7799lu6du1K7969adOmDQBDhgyhS5cuNGjQgKCgIHr16kXXrl2LHHdRY8pLeHg4YWFhxuHU1FScnZ2LHEtZYWlpiVarZUx0iLlDEaLMU6nUqBSVfJ7yodFo2Llzp/QBngd5+JD5SHJdQaSlpaFWq/nmm29yfdiqVKlinOaVV15h3LhxueZ3cXEx/m9tbf2vxPjgctPS0gDYs2dPrsekW1paAtC9e3d+/fVX9u7dy8GDB+ncuTNjx44lKioKX19fLl68yL59+4iNjaVfv34EBgaybds2VKrsWw0evEHo/v37xRJTXiwtLQscX96o1Wp27dolN2Dl4d69e/Tq1cvcYYgyxEJlgd6gZ/fu3carh+L/SQIpSiNJrsuZY8eOmQwfPXoUDw8PfHx80Ol0JCcn07Zt2zzn9fX15ccff6R+/frFHtfRo0dp164dAFlZWXzzzTeEhobmO33jxo2xtLQkKSkp33ILAAcHB0JCQggJCaFt27ZMnjyZqKgoAGxtbenfvz/9+/fn+eefJygoiBs3buDg4ADA1atXjS3OD97c+LgxCeTHLh+VKlUydwiijFGU7MaASpUqYWEhP9lClAXySS1nkpKSCAsL45VXXuHbb79l2bJlREdH4+npyaBBgxg8eDDR0dH4+Phw/fp14uLiaNq0KT179mTq1Km0bt2a0NBQhg8fjrW1NT/++CMHDx5k+fLljxXXihUr8PDwoFGjRixatIibN2/y8ssv5zu9jY0NkyZN4rXXXkOv1/PUU0+RkpJCQkICtra2hISEMHPmTJo3b06TJk3IyMhg9+7dxtKVd955B0dHR3x8fFCpVPz3v/+ldu3a2Nvbo1KpaN26NQsWLMDd3Z3k5GTeeOONh25DYWISoiBy0iGKSvV3ci3vHSHKDkmuy5nBgwdz9+5dWrZsiVqtZvz48cbu8mJiYpg7dy4TJ07k999/p0aNGrRu3dp4mbpp06YcPnyY6dOn07ZtWwwGA/Xq1aN///6PHdeCBQtYsGABiYmJ1K9fn08//ZQaNWoUOM+cOXNwcHAgMjKSX375BXt7e3x9fXn99dcBqFy5MuHh4Vy6dAmNRkPbtm3ZunUrkJ0IL1y4kHPnzqFWq2nRogV79+41loSsW7eOYcOG0bx5cxo0aMDChQsLVZP9sJiEEEIIUbEpBimMLDc6dOiAt7c3ixcvNncoRpcuXcLd3Z2TJ0/i7e1t7nBKhdTUVOzs7EhJScHW1tbc4YgSlJWVRWBgIJGd16FWpCUyR/Kdq0R9NY1J/guoae1o7nBKFZ1BR3jcy8TGxkpZiBBmVtjfb/mkCiFECVEUBa1GS3hc/iVRFVnUV9PMHUKppNVoTXqBEkKUbpJci8cyf/585s+fn+e4tm3bsmrVqhKOSIjSS61Ws2u39KQiikZ6xBCibJGyEPFYbty4wY0bN/Icp9FocnVZJ6QspCLS6XSSUIsik6RaiNJFykJEiahWrRrVqlUzdxhClFo6nY7gXsGk3003dyiijNFqtOzavUsSbCHKGEmuhRDiX2QwGEi/m87aZivkJsZ/uHrvGq//PJv5DWfjaFXb3OGUKjqDjuGnxsoVDyHKIEmuS7ni7gFk9uzZ7Ny5s1APTSltihr7+vXrmTBhArdu3SpwOkVR2LFjB717937sGIXIj1pRY6HIV+6DcvaHhWIh+0YIUW6ozB3Avy0+Ph5FUR6aYJVWH3/8MXPmzDF3GCVOURR27txp8tqkSZOIi4sr9DL69+/P2bNnjcOzZ8/OszvAq1ev0r1790cNVQghhBDCSJoK/paZmUnlypXNsu779+/neixyTjylsZ45r3hLQpUqVahSpUqhp9doNGg0modOV7u2XI4W/x6dTmfuEEQZpDfogez3j/RvLUTZUiZarvV6PZGRkbi7u6PRaGjWrBnbtm3DYDAQGBhIt27djHVpN27coE6dOsycOZNLly7RsWNHAKpWrYqiKAwZMgTILrcIDQ1lwoQJ1KhRg27dugHZj8328vLC2toaZ2dnxowZQ1pamkk8CQkJdOjQAa1WS9WqVenWrRs3b94EwM3NLVcJh7e3N7NnzzYOK4rCqlWrePrpp7G2tmbevHnGVtW1a9fi7u6OlZWVMc4JEyYY583IyGDq1Kk4OztjaWlJ/fr1ef/994HsMgh7e3uTde/cubPA/lFPnDhBly5dqFGjBnZ2drRv355vv/3WZJq84i2ITqdj2LBhxuPVoEEDlixZkmu6devW0aRJEywtLXF0dCQ0NNS4DwGeffZZFEUxDj/Y8nzgwAGsrKxyXZEYP348nTp1yrU/1q9fT0REBKdOnUJRFBRFYf369cbte7CV/PLly/Tr1w97e3uqVavGM888w6VLl4zj4+PjadmyJdbW1tjb2xMQEMCvv/5a4D4RFZfUzIpHoSf7fXP//n2ysrLk7x9/ctIqSrMycTocGRnJpk2bePfdd/Hw8ODzzz/nxRdfxMHBgQ0bNuDl5cXSpUsZP348o0aN4oknnmDmzJkoisL27dvp06cPZ86cwdbW1qQlc8OGDYwePZqEhATjayqViqVLl+Lu7s4vv/zCmDFjmDJlCitXrgQgMTGRzp078/LLL7NkyRIsLCw4dOhQkT/os2fPZsGCBSxevBgLCwvWrVvH+fPn2b59Ox9//HG+d4cPHjyYr776iqVLl9KsWTMuXrzIn3/++Qh7Ndvt27cJCQlh2bJlGAwGoqOj6dGjB+fOncPGxibfeAui1+upU6cO//3vf6levTpffvklI0eOxNHRkX79+gGwatUqwsLCWLBgAd27dyclJcV4HE6cOEHNmjWJiYkhKCgoz33RuXNn7O3t2b59O8OGDQOyk/oPP/wwz+S/f//+fP/99+zfv5/Y2FgA7Ozsck13//59unXrhr+/P1988QUWFhbMnTuXoKAgvvvuO1QqFb1792bEiBF88MEHZGZmcvz48QJPYDIyMsjIyDAOp6amFrj/yiLpai5/6enSS4gouix9FipFRa9evcwdSqmk0WjYuXOn9KSSB+nC0fxKfXKdkZHB/PnziY2Nxd/fH4C6dety5MgRVq9ezZYtW1i9ejWDBw/m2rVr7N27l5MnTxoTwJyyipo1a+Zq1fXw8GDhwoUmrz3YSuzm5sbcuXMZNWqUMbleuHAhfn5+xmGAJk2aFHm7XnjhBYYOHWryWmZmJv/5z39wcHDIc56zZ8/y0UcfcfDgQQIDA4374nHktPLmeO+997C3t+fw4cMmX+p5xZufSpUqERERYRx2d3fnq6++4qOPPjIm13PnzmXixImMHz/eOF2LFi0AjNtvb2+fb8mGWq1mwIABbNmyxZhcx8XFcevWLfr06ZNreo1GQ5UqVbCwsCiwDOTDDz9Er9ezdu1aY8IcExODvb098fHx+Pn5kZKSQq9evahXrx4AjRo1KnB/REZGmuyP8kan0xEcHCxJpBDFSIcevUHP+jHvY6GSROlBmVn3Gb76FeMVZ2FKq9Wya5d04WhOpT65Pn/+POnp6XTp0sXk9czMTHx8fADo27cvO3bsYMGCBaxatQoPD49CLbt58+a5XouNjSUyMpKff/6Z1NRUsrKyuHfvHunp6Wi1WhITE+nbt+9jb5efn1+u11xdXfNNrCG71VytVtO+ffvHXn+OP/74gzfeeIP4+HiSk5PR6XSkp6eTlJT00HgLsmLFCtatW0dSUhJ3794lMzPTWNKRnJzMlStX6Ny582PFPmjQIFq3bs2VK1dwcnJi8+bN9OzZM9dJVFGcOnWK8+fPm7TaA9y7d48LFy7QtWtXhgwZQrdu3ejSpQuBgYH069cPR0fHfJcZHh5OWFiYcTg1NRVnZ+dHjlEIUf4pKKgUFUNWDjN3KKWSSqUCuVgmSqlSn1zn1Dvv2bMn19P+LC0tgezLrt988w1qtZpz584VetnW1tYmw5cuXaJXr16MHj2aefPmUa1aNY4cOcKwYcPIzMxEq9U+9AY5lUqV6/L4/fv3H7ru/F57UHGt+0EhISH89ddfLFmyBFdXVywtLfH39yczM7NIsT1o69atTJo0iejoaPz9/bGxseHtt9/m2LFjhdqOwmrRogX16tVj69atjB49mh07dhjrqB9VWloazZs3Z/PmzbnG5Zz4xMTEMG7cOPbv38+HH37IG2+8wcGDB2ndunWey7S0tDS+V8sjtVrNrl3ySO/83Llzh2eeecbcYYgyxkJRozfo+eSTT4r0/VtR6PX67ARb5CJlIeZX6pPrxo0bY2lpSVJSUr4tthMnTkSlUrFv3z569OhBz549jeUOOT2AFKYm+ptvvkGv1xMdHW380H700Ucm0zRt2pS4uLh8L/M7ODhw9epV43BqaioXL158+IYWgpeXF3q9nsOHDxvLQv657tu3b3Pnzh3jl/HD+oROSEhg5cqV9OjRA8i+me9xarhzltmmTRvGjBljfO3ChQvG/21sbHBzcyMuLs54w+k/VapUqVDHbNCgQWzevJk6deqgUqno2bNnvtNWrlz5ocv09fXlww8/pGbNmgU+2tTHxwcfHx/Cw8Px9/dny5Yt+SbXFYF8keevPJ9YiX+PSsn+DbK0tJTeQoQoY0r9aZ+NjQ2TJk3itddeY8OGDVy4cIFvv/2WZcuWsWHDBvbs2cO6devYvHkzXbp0YfLkyYSEhBh773B1dUVRFHbv3s3169dz9fzxoPr163P//n2WLVvGL7/8wsaNG3n33XdNpgkPD+fEiROMGTOG7777jp9//plVq1YZE9JOnTqxceNGvvjiC06fPk1ISEixJR5ubm6EhITw8ssvs3PnTi5evEh8fLzxBKBVq1ZotVpef/11Lly4wJYtWx7akuvh4cHGjRv56aefOHbsGIMGDXrslmUPDw++/vpr/ve//3H27FlmzJjBiRMnTKaZPXs20dHRLF26lHPnzhmP6YPbGhcXx7Vr14zHMi+DBg3i22+/Zd68eTz//PMFJjJubm5cvHiRxMRE/vzzT5ObDB9cXo0aNXjmmWf44osvjPt43Lhx/Pbbb1y8eJHw8HC++uorfv31Vw4cOMC5c+ceWnctKq6CbnYVIj8qst838v4Rouwp9ck1wJw5c5gxYwaRkZE0atSIoKAg9uzZg5ubG8OGDWP27Nn4+voCEBERQa1atRg1ahQATzzxBBEREUybNo1atWoZu3vLS7NmzXjnnXd46623ePLJJ9m8eTORkZEm03h6enLgwAFOnTpFy5Yt8ff355NPPjG2LISHh9O+fXt69epFz5496d27t/HGt+KwatUqnn/+ecaMGUPDhg0ZMWIEd+7cAbJv3ty0aRN79+7Fy8uLDz74wKQLwLy8//773Lx5E19fX1566SXGjRtHzZo1HyvGV155heeee47+/fvTqlUr/vrrL5NWbMguR1m8eDErV66kSZMm9OrVy6SkJzo6moMHD+Ls7Gysrc9L/fr1admyJd999x2DBg0qMK4+ffoQFBREx44dcXBw4IMPPsg1jVar5fPPP8fFxYXnnnuORo0aMWzYMO7du4etrS1arZaff/6ZPn364OnpyciRIxk7diyvvPJKEfeSqCikVV88ipyWa3n/CFH2KAYplBSiRKWmpmJnZ0dKSkqBpSeifMjKyiIwMJC1zVagViRRetDVe9d4/efZzG84G0creZjTg3QGHcNPjSU2NlbKQoQoJQr7+y2fWCGE+BcpioJWo2X4qbHmDqXUev3n2eYOoVTSarRSFiJEGSTJtSiyUaNGsWnTpjzHvfjii7nq1IWoyNRqNbt2S28qouik1wchyiYpCxFFlpycnO9TBm1tbR+7Zru8k7IQIYQQouyRshDxr6lZs6Yk0EKYiTxqXjxIWreFKH0kuRZCiDJCp9MR3CuY9LvyqHmRTavRsmu3POpaiNJEkmshhCgjDAYD6XfTWddyRoXueeTq3T+Z9t1yFjQNxVFTw9zhmI3OoOPl43PkSoYQpYwk18IsOnTogLe3N4sXL36k+S9duoS7uzsnT57E29ub+Ph4OnbsyM2bN7G3ty/y/EKUJWpFjYWq4ibX6r+foKtWqSr0fkBv7gCEEHmR5FpUSM7Ozly9epUaNSpuq5coe3Q6nblDEKWI3pCdXet0OukLW4hSRD6NokJSq9XUri0PrRBli1z+Fw/S//1+kPeFEKVLmXj8uSifsrKyCA0Nxc7Ojho1ajBjxgzjj4SiKOzcudNkent7e9avX//Q5d65cwdbW1u2bdtm8vrOnTuxtrbm9u3bXLp0CUVRSExMBCA+Ph5FUYiLi8PPzw+tVkubNm04c+aMyTLmzp1LzZo1sbGxYfjw4UybNk3KSkqITqcjKyurQv9lZGSY+zCIUiSn5TojI8Ps7035M/+fXNkqPaTlWpjNhg0bGDZsGMePH+frr79m5MiRuLi4MGLEiMdarrW1NQMGDCAmJobnn3/e+HrOsI2NDX/99Vee806fPp3o6GgcHBwYNWoUL7/8MgkJCQBs3ryZefPmsXLlSgICAti6dSvR0dG4u7sXGE9GRoZJUpRfH+Eif5mZmfTq2YvM+5nmDkWIUiNLr0OlqHjmmWfMHYooBSwsLNi7dy+VK1c2dygVniTXwmycnZ1ZtGgRiqLQoEEDTp8+zaJFix47uQYYPnw4bdq04erVqzg6OpKcnMzevXuJjY0tcL558+bRvn17AKZNm0bPnj25d+8eVlZWLFu2jGHDhjF06FAAZs6cyYEDB0hLSytwmZGRkURERDz2NlVkBoOBzPuZbBi3pELfwJZyJ40xa6aZOwxRShgwoDfoK/znQkBm1n2GLn9NSoRKCUmuhdm0bt0aRVGMw/7+/kRHRxfLpa2WLVvSpEkTNmzYwLRp09i0aROurq60a9euwPmaNm1q/N/R0RHIfiKli4sLZ86cYcyYMbnW89lnnxW4zPDwcMLCwozDqampODs7F3WTKjQLCwu0Wi0hS8ebOxQhSg0FBZWiks+FAECr1cqNraWEHAVRKimKkusM/P79+0VaxvDhw1mxYgXTpk0jJiaGoUOHmiTzealUqZJJDAB6/eP1d2VpaYmlpeVjLaOiU6vV7Nq1q8K3yty5c0dKAISRhUqN3qDnk08+wdra2tzhCDOTp3WWHpJcC7M5duyYyfDRo0fx8PBArVbj4ODA1atXjePOnTtHenrRnkr34osvMmXKFJYuXcqPP/5ISEjIY8XboEEDTpw4weDBg42vnThx4rGWKQpPfjTAysrK3CGIUiSnFMTKykpaLIUoReTTKMwmKSmJsLAwXnnlFb799luWLVtGdHQ0AJ06dWL58uX4+/uj0+mYOnWqSatyYVStWpXnnnuOyZMn07VrV+rUqfNY8b766quMGDECPz8/2rRpw4cffsh3331H3bp1H2u5QhSWnGCIB6mUvx+mI+8LIUoVSa6F2QwePJi7d+/SsmVL1Go148ePZ+TIkQBER0czdOhQ2rZti5OTE0uWLOGbb74p8jqGDRvGli1bePnllx873kGDBvHLL78wadIk7t27R79+/RgyZAjHjx9/7GULIYQQonyQ5FqYRXx8vPH/VatW5Rrv5OTE//73P5PXbt26Zfzfzc3NpP62Q4cOedbj/v7771SvXj1XnWph5vf29s712owZM5gxY4ZxuEuXLtSvXz+PLRTi36Mz6Cr0o691f98HodPrydJX3L59dYaKu+1ClGaSXItyKT09natXr7JgwQJeeeWVYun3Mz09nXfffZdu3bqhVqv54IMPiI2N5eDBg8UQsRAPpygKWo2Wl4/PMXcopcK075abOwSz02q0D71RWwhRsiS5FuXSwoULmTdvHu3atSM8PLxYlqkoCnv37mXevHncu3ePBg0asH37dgIDA4tl+UI8jFqtZtdu6TVF/D/pIUKI0kcxyLe0ECUqNTUVOzs7UlJSsLW1NXc4ooTpdDpJjisISXyFKF8K+/stLddCCFFCbty4Qb9+/cjKyjJ3KKIEaDUadu3eLQm2EBWMJNdCCFFCUlJSyMrKYr7PAOpYVzd3OOJfpDPoGZqwSq5SCFEBSXItyhU3NzcmTJjAhAkTSmydHTp0wNvbm8WLF5fYOkXZplZUxgeAiHKqAvfmIkRFpzJ3AKLsGDJkCL179zZ3GEIIIYQQpZYk16LY3b9/39whCFEq6XTSL3FFoTf83Re3HHMhKhxJrkUu27Ztw8vLC41GQ/Xq1QkMDGTy5Mls2LCBTz75BEVRUBSF+Ph4Ll26hKIofPjhh7Rv3x4rKys2b94MwNq1a2nUqBFWVlY0bNiQlStXGteRmZlJaGgojo6OWFlZ4erqSmRkJAAGg4HZs2fj4uKCpaUlTk5OjBs37pG25datWwwfPhwHBwdsbW3p1KkTp06dAuDs2bMoisLPP/9sMs+iRYuoV6+ecfj777+ne/fuVKlShVq1avHSSy/x559/PlI8omKT+tuKQ//3sZZjLkTFIzXXwsTVq1cZOHAgCxcu5Nlnn+X27dt88cUXDB48mKSkJFJTU4mJiQGgWrVqXLlyBYBp06YRHR2Nj4+PMcGeOXMmy5cvx8fHh5MnTzJixAisra0JCQlh6dKlfPrpp3z00Ue4uLhw+fJlLl++DMD27dtZtGgRW7dupUmTJly7ds2YEBdV37590Wg07Nu3Dzs7O1avXk3nzp05e/Ysnp6e+Pn5sXnzZubM+f+HcmzevJkXXngByE7OO3XqxPDhw1m0aBF3795l6tSp9OvXj88++6xQMWRkZJCRkWEcTk1NfaRtEWWfXi+FuBWFtFwLUXFJci1MXL16laysLJ577jlcXV0B8PLyAkCj0ZCRkUHt2rVzzTdhwgSee+454/CsWbOIjo42vubu7s6PP/7I6tWrCQkJISkpCQ8PD5566ikURTGuCyApKYnatWsTGBhIpUqVcHFxoWXLlkXeliNHjnD8+HGSk5OxtLQEICoqip07d7Jt2zZGjhzJoEGDWL58uTG5Pnv2LN988w2bNm0CMJ4czJ8/37jcdevW4ezsbEzQHyYyMpKIiIgixy/Kn7t375o7BFFC7mVln1Cnp6djbW1t5miEECVJykKEiWbNmtG5c2e8vLzo27cva9as4ebNmw+dz8/Pz/j/nTt3uHDhAsOGDaNKlSrGv7lz53LhwgUg++bIxMREGjRowLhx4zhw4IBx/r59+3L37l3q1q3LiBEj2LFjxyP1C3zq1CnS0tKoXr26SRwXL140xjFgwAAuXbrE0aNHgexWa19fXxo2bGhcxqFDh0zmzxmXs4yHCQ8PJyUlxfiX00IvhBBCiPJHWq6FCbVazcGDB/nyyy85cOAAy5YtY/r06Rw7dqzA+R5smUlLSwNgzZo1tGrVKtfyAXx9fbl48SL79u0jNjaWfv36ERgYyLZt23B2dubMmTPExsZy8OBBxowZw9tvv83hw4epVKlSobclLS0NR0dH4uPjc42zt7cHoHbt2nTq1IktW7bQunVrtmzZwujRo02WERwczFtvvZVrGY6OjoWKw9LS0thyLio2jUZj7hBECbGyyP7Ma7VaM0cihChpklyLXBRFISAggICAAGbOnImrqys7duygcuXKhaofrFWrFk5OTvzyyy8MGjQo3+lsbW3p378//fv35/nnnycoKIgbN25QrVo1NBoNwcHBBAcHM3bsWBo2bMjp06fx9fUt9Hb4+vpy7do1LCwscHNzy3e6QYMGMWXKFAYOHMgvv/zCgAEDTJaxfft23NzcsLCQj4t4PCqVXCysKFRK9rGWpzMKUfFItiBMHDt2jLi4OLp27UrNmjU5duwY169fp1GjRty7d4///e9/nDlzhurVq2NnZ5fvciIiIhg3bhx2dnYEBQWRkZHB119/zc2bNwkLC+Odd97B0dERHx8fVCoV//3vf6lduzb29vasX78enU5Hq1at0Gq1bNq0CY1GY1KXXRiBgYH4+/vTu3dvFi5ciKenJ1euXGHPnj08++yzxlKW5557jtGjRzN69Gg6duyIk5OTcRljx45lzZo1DBw4kClTplCtWjXOnz/P1q1bWbt2rfxwiiJRFMXcIYgSovr7WMsxF6LikeRamLC1teXzzz9n8eLFpKam4urqSnR0NN27d8fPz4/4+Hj8/PxIS0vj0KFD+bYIDx8+HK1Wy9tvv83kyZOxtrbGy8vL+OREGxsbFi5cyLlz51Cr1bRo0YK9e/eiUqmwt7dnwYIFhIWFodPp8PLyYteuXVSvXrTHRSuKwt69e5k+fTpDhw7l+vXr1K5dm3bt2lGrVi3jdDY2NgQHB/PRRx+xbt06k2U4OTmRkJDA1KlT6dq1KxkZGbi6uhIUFCStkKLI5GSs4pCWayEqLsUgnXAKUaJSU1Oxs7MjJSUFW1tbc4cjStDFixcZOnQob/m+gHOVGuYOR/yLsvQ6Bh9ZQWxsrJSUCVFOFPb3Wz7xQghRwnQGPVl66f+4PNMZpE9zISoqSa5FmfHFF1/QvXv3fMfn9FJS2uVcLJKHyVQ8OfW3U05sMnMkoiRoNBpu374tpSFClBM5v9sPK/qQshBRZty9e5fff/893/H169cvwWge3W+//Yazs7O5wxBCCCHEI7h8+TJ16tTJd7wk10KUML1ez5UrV7CxsSmTPQmkpqbi7OzM5cuXpWa8FJDjUfrIMSl95JiUPmXxmBgMBm7fvo2Tk1OBnRpIWYgQJUylUhV4xltW2NralpkvxIpAjkfpI8ek9JFjUvqUtWNSUDfEOaQvMSGEEEIIIYqJJNdCCCGEEEIUE0muhRBFYmlpyaxZs7C0tDR3KAI5HqWRHJPSR45J6VOej4nc0CiEEEIIIUQxkZZrIYQQQgghiokk10IIIYQQQhQTSa6FEEIIIYQoJpJcCyGEEEIIUUwkuRZCPJJLly4xbNgw3N3d0Wg01KtXj1mzZpGZmWnu0Cq0efPm0aZNG7RaLfb29uYOp0JasWIFbm5uWFlZ0apVK44fP27ukCqszz//nODgYJycnFAUhZ07d5o7pAovMjKSFi1aYGNjQ82aNenduzdnzpwxd1jFSpJrIcQj+fnnn9Hr9axevZoffviBRYsW8e677/L666+bO7QKLTMzk759+zJ69Ghzh1Ihffjhh4SFhTFr1iy+/fZbmjVrRrdu3UhOTjZ3aBXSnTt3aNasGStWrDB3KOJvhw8fZuzYsRw9epSDBw9y//59unbtyp07d8wdWrGRrviEEMXm7bffZtWqVfzyyy/mDqXCW79+PRMmTODWrVvmDqVCadWqFS1atGD58uUA6PV6nJ2defXVV5k2bZqZo6vYFEVhx44d9O7d29yhiAdcv36dmjVrcvjwYdq1a2fucIqFtFwLIYpNSkoK1apVM3cYQphFZmYm33zzDYGBgcbXVCoVgYGBfPXVV2aMTIjSKyUlBaBc/XZIci2EKBbnz59n2bJlvPLKK+YORQiz+PPPP9HpdNSqVcvk9Vq1anHt2jUzRSVE6aXX65kwYQIBAQE8+eST5g6n2EhyLYQwMW3aNBRFKfDv559/Npnn999/JygoiL59+zJixAgzRV5+PcoxEUKI0m7s2LF8//33bN261dyhFCsLcwcghChdJk6cyJAhQwqcpm7dusb/r1y5QseOHWnTpg3vvffevxxdxVTUYyLMo0aNGqjVav744w+T1//44w9q165tpqiEKJ1CQ0PZvXs3n3/+OXXq1DF3OMVKkmshhAkHBwccHBwKNe3vv/9Ox44dad68OTExMahUcjHs31CUYyLMp3LlyjRv3py4uDjjTXN6vZ64uDhCQ0PNG5wQpYTBYODVV19lx44dxMfH4+7ubu6Qip0k10KIR/L777/ToUMHXF1diYqK4vr168Zx0kpnPklJSdy4cYOkpCR0Oh2JiYkA1K9fnypVqpg3uAogLCyMkJAQ/Pz8aNmyJYsXL+bOnTsMHTrU3KFVSGlpaZw/f944fPHiRRITE6lWrRouLi5mjKziGjt2LFu2bOGTTz7BxsbGeD+CnZ0dGo3GzNEVD+mKTwjxSNavX59vwiBfK+YzZMgQNmzYkOv1Q4cO0aFDh5IPqAJavnw5b7/9NteuXcPb25ulS5fSqlUrc4dVIcXHx9OxY8dcr4eEhLB+/fqSD0igKEqer8fExDy0/K2skORaCCGEEEKIYiIFkkIIIYQQQhQTSa6FEEIIIYQoJpJcCyGEEEIIUUwkuRZCCCGEEKKYSHIthBBCCCFEMZHkWgghhBBCiGIiybUQQgghhBDFRJJrIYQQQgghiokk10IIIYQQQhQTSa6FEEIIIYQoJpJcCyGEEEIIUUwkuRZCCCGEEKKY/B+gJLld56WeSQAAAABJRU5ErkJggg==\n"},"metadata":{}}],"source":["sns.boxenplot(no_stress,orient='y');"]},{"cell_type":"code","execution_count":48,"metadata":{"colab":{"base_uri":"https://localhost:8080/","height":350},"executionInfo":{"elapsed":216,"status":"ok","timestamp":1716216983387,"user":{"displayName":"Daniel Meier","userId":"06365571306976914087"},"user_tz":300},"id":"AUtKGYEMegKt","outputId":"e767001e-8bc1-4aa8-c5a2-470619741c57"},"outputs":[{"output_type":"execute_result","data":{"text/plain":[" anxiety_level self_esteem mental_health_history depression \\\n","count 731.000000 731.000000 731.000000 731.000000 \n","mean -0.440618 0.507964 -0.402734 -0.475398 \n","std 0.794011 0.709902 0.909516 0.729203 \n","min -1.809328 -1.988391 -0.985559 -1.625618 \n","25% -1.155175 0.024912 -0.985559 -0.978243 \n","50% -0.337484 0.696013 -0.985559 -0.460343 \n","75% 0.153131 1.031564 1.014653 -0.071918 \n","max 1.624976 1.367114 1.014653 1.870208 \n","\n"," headache blood_pressure sleep_quality breathing_problem \\\n","count 731.000000 731.000000 731.000000 731.000000 \n","mean -0.449111 -0.495692 0.442426 -0.324301 \n","std 0.769442 0.879418 0.838410 0.908622 \n","min -1.780475 -1.418416 -1.718703 -1.966776 \n","25% -1.070608 -1.418416 -0.426445 -1.252529 \n","50% -0.360741 -0.218218 0.219684 -0.538282 \n","75% 0.349125 -0.218218 0.865813 0.890211 \n","max 1.768859 0.981981 1.511942 1.604458 \n","\n"," noise_level living_conditions ... basic_needs academic_performance \\\n","count 731.000000 731.000000 ... 731.000000 731.000000 \n","mean -0.435364 0.356102 ... 0.387682 0.396805 \n","std 0.763685 0.876528 ... 0.921527 0.912999 \n","min -1.995514 -2.250991 ... -1.934764 -1.960979 \n","25% -1.242232 -0.463200 ... -0.539196 -0.546502 \n","50% -0.488949 0.430695 ... 0.158587 0.160736 \n","75% 0.264334 1.324591 ... 0.856371 0.867974 \n","max 1.770899 2.218486 ... 1.554154 1.575213 \n","\n"," study_load teacher_student_relationship future_career_concerns \\\n","count 731.000000 731.000000 731.000000 \n","mean -0.408310 0.368876 -0.479197 \n","std 0.772103 0.968541 0.709984 \n","min -1.993501 -1.913497 -1.732927 \n","25% -1.233150 -0.468357 -1.078768 \n","50% -0.472800 0.254213 -0.424609 \n","75% 0.287551 0.976783 0.229550 \n","max 1.808252 1.699353 1.537869 \n","\n"," social_support peer_pressure extracurricular_activities bullying \\\n","count 731.000000 731.000000 731.000000 731.000000 \n","mean 0.460273 -0.474318 -0.477787 -0.474000 \n","std 0.918259 0.677712 0.690136 0.724167 \n","min -1.796742 -1.919495 -1.953023 -1.710343 \n","25% 0.112839 -1.217552 -1.247265 -1.056860 \n","50% 1.067629 -0.515609 -0.541508 -0.403377 \n","75% 1.067629 0.186334 0.164249 0.250106 \n","max 1.067629 1.590220 1.575763 1.557071 \n","\n"," stress_level \n","count 731.000000 \n","mean -0.616856 \n","std 0.609080 \n","min -1.213156 \n","25% -1.213156 \n","50% -1.213156 \n","75% 0.004428 \n","max 0.004428 \n","\n","[8 rows x 21 columns]"],"text/html":["\n","
\n","
\n","\n","\n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n","
anxiety_levelself_esteemmental_health_historydepressionheadacheblood_pressuresleep_qualitybreathing_problemnoise_levelliving_conditions...basic_needsacademic_performancestudy_loadteacher_student_relationshipfuture_career_concernssocial_supportpeer_pressureextracurricular_activitiesbullyingstress_level
count731.000000731.000000731.000000731.000000731.000000731.000000731.000000731.000000731.000000731.000000...731.000000731.000000731.000000731.000000731.000000731.000000731.000000731.000000731.000000731.000000
mean-0.4406180.507964-0.402734-0.475398-0.449111-0.4956920.442426-0.324301-0.4353640.356102...0.3876820.396805-0.4083100.368876-0.4791970.460273-0.474318-0.477787-0.474000-0.616856
std0.7940110.7099020.9095160.7292030.7694420.8794180.8384100.9086220.7636850.876528...0.9215270.9129990.7721030.9685410.7099840.9182590.6777120.6901360.7241670.609080
min-1.809328-1.988391-0.985559-1.625618-1.780475-1.418416-1.718703-1.966776-1.995514-2.250991...-1.934764-1.960979-1.993501-1.913497-1.732927-1.796742-1.919495-1.953023-1.710343-1.213156
25%-1.1551750.024912-0.985559-0.978243-1.070608-1.418416-0.426445-1.252529-1.242232-0.463200...-0.539196-0.546502-1.233150-0.468357-1.0787680.112839-1.217552-1.247265-1.056860-1.213156
50%-0.3374840.696013-0.985559-0.460343-0.360741-0.2182180.219684-0.538282-0.4889490.430695...0.1585870.160736-0.4728000.254213-0.4246091.067629-0.515609-0.541508-0.403377-1.213156
75%0.1531311.0315641.014653-0.0719180.349125-0.2182180.8658130.8902110.2643341.324591...0.8563710.8679740.2875510.9767830.2295501.0676290.1863340.1642490.2501060.004428
max1.6249761.3671141.0146531.8702081.7688590.9819811.5119421.6044581.7708992.218486...1.5541541.5752131.8082521.6993531.5378691.0676291.5902201.5757631.5570710.004428
\n","

8 rows × 21 columns

\n","
\n","
\n","\n","
\n"," \n","\n"," \n","\n"," \n","
\n","\n","\n","
\n"," \n","\n","\n","\n"," \n","
\n","\n","
\n","
\n"],"application/vnd.google.colaboratory.intrinsic+json":{"type":"dataframe"}},"metadata":{},"execution_count":48}],"source":["no_stress.describe()"]},{"cell_type":"code","execution_count":49,"metadata":{"colab":{"base_uri":"https://localhost:8080/"},"executionInfo":{"elapsed":196,"status":"ok","timestamp":1716216984984,"user":{"displayName":"Daniel Meier","userId":"06365571306976914087"},"user_tz":300},"id":"0PQrCUSBTdgU","outputId":"7e75dc04-d23a-4ff0-8e12-76209b6be10a"},"outputs":[{"output_type":"execute_result","data":{"text/plain":["self_esteem 0.507964\n","social_support 0.460273\n","sleep_quality 0.442426\n","academic_performance 0.396805\n","basic_needs 0.387682\n","safety 0.382555\n","teacher_student_relationship 0.368876\n","living_conditions 0.356102\n","breathing_problem -0.324301\n","mental_health_history -0.402734\n","study_load -0.408310\n","noise_level -0.435364\n","anxiety_level -0.440618\n","headache -0.449111\n","bullying -0.474000\n","peer_pressure -0.474318\n","depression -0.475398\n","extracurricular_activities -0.477787\n","future_career_concerns -0.479197\n","blood_pressure -0.495692\n","stress_level -0.616856\n","dtype: float64"]},"metadata":{},"execution_count":49}],"source":["no_stress_mean=no_stress.mean()\n","no_stress_mean=no_stress_mean.sort_values(ascending = False)\n","no_stress_mean"]},{"cell_type":"code","execution_count":50,"metadata":{"colab":{"base_uri":"https://localhost:8080/"},"executionInfo":{"elapsed":124,"status":"ok","timestamp":1716216986716,"user":{"displayName":"Daniel Meier","userId":"06365571306976914087"},"user_tz":300},"id":"Jb3RwX1WVhrU","outputId":"815db14b-966e-4a74-c0e6-47143f75a4cb"},"outputs":[{"output_type":"execute_result","data":{"text/plain":["social_support 1.151847\n","self_esteem 0.975832\n","sleep_quality 0.675787\n","academic_performance 0.667031\n","basic_needs 0.662654\n","safety 0.619973\n","teacher_student_relationship 0.526949\n","living_conditions 0.333242\n","breathing_problem -0.160328\n","extracurricular_activities -0.327770\n","study_load -0.332148\n","noise_level -0.343092\n","peer_pressure -0.352941\n","anxiety_level -0.405837\n","blood_pressure -0.462380\n","future_career_concerns -0.466758\n","bullying -0.486457\n","headache -0.499590\n","depression -0.683893\n","mental_health_history -0.834473\n","stress_level -1.020520\n","dtype: float64"]},"metadata":{},"execution_count":50}],"source":["mm_no_stress_mean=mm_no_stress.mean()\n","mm_no_stress_mean=mm_no_stress_mean.sort_values(ascending = False)\n","mm_no_stress_mean"]},{"cell_type":"code","execution_count":51,"metadata":{"colab":{"base_uri":"https://localhost:8080/","height":452},"executionInfo":{"elapsed":2139,"status":"ok","timestamp":1716216991979,"user":{"displayName":"Daniel Meier","userId":"06365571306976914087"},"user_tz":300},"id":"VbSTAY7BTlmS","outputId":"5fc1b6e7-3690-4a43-bab9-8d7779784155"},"outputs":[{"output_type":"display_data","data":{"text/plain":["
"],"image/png":"iVBORw0KGgoAAAANSUhEUgAAAtcAAAGzCAYAAADkAzuMAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAAC/AElEQVR4nOzde1zP9//4/9urKJ1z6IQODkUoIuYwymFyanOew0bIYdNiltPHUIwwjPG2OWzVzMYcx5BDkxFSUWxa0iTbmpySsFK9fn/49fx6rYMiUu7Xy+V1uXg9n4/n43l/PHule4/uz8dTpVar1QghhBBCCCGemVZ5ByCEEEIIIURlIcm1EEIIIYQQZUSSayGEEEIIIcqIJNdCCCGEEEKUEUmuhRBCCCGEKCOSXAshhBBCCFFGJLkWQgghhBCijEhyLYQQQgghRBmR5FoIIYQQQogyIsm1EEK8YHZ2dnh5eb2Qc3l5eWFnZ/dCzvU0VCoV/v7+ZdZfeHg4KpWK8PDwMutTVHwv+/eBqFwkuRZCVArnz59n4MCB2NraUq1aNerUqcMbb7zBqlWrNNotXLiQXbt2lU+QL7G8vDy++eYbXnvtNWrUqIGRkREODg6MGDGCU6dOlXd4ZS44OBiVSkW1atX466+/Cux3d3enWbNmZXrO48eP07NnT+rUqUO1atWwsbHB09OT7777Tmlz//59/P39K+QvByqVCh8fn/IO45m4u7ujUqmwt7cvdP+hQ4dQqVSoVCq2bdv2gqMTFYUk10KICu/EiRO4uroSFxfH2LFjWb16Nd7e3mhpabFy5UqNtpJcF87X15eRI0diZWWFv78/ixcvpmfPnpw6dYrQ0NDyDu+5ycrKYtGiRc/9PFu3bqVTp05cu3aNSZMmsWrVKt555x1u377N+vXrlXb3798nICCgQibXlUW1atW4dOkSp0+fLrBv06ZNVKtWrRyiEhVJlfIOQAghntWCBQswMTEhKioKU1NTjX1paWnlE9QL8u+//6Kjo4OW1tPPlVy7do01a9YwduxY1q1bp7FvxYoVXL9+/VnDfGm1aNGC9evXM3PmTGrXrv3czuPv70+TJk04deoUOjo6Gvue5TN67949DAwMnjU88ZgGDRqQk5PD999/T5s2bZTt//77Lzt37qR3795s3769HCMULzuZuRZCVHhJSUk0bdq0QGINYG5urvxbpVJx7949QkJClD/t5tc+X7lyhffff59GjRqhp6dHzZo1GTRoEMnJyRr95ZcTREREMGXKFMzMzDAwMKBfv34FklC1Ws0nn3xC3bp10dfXp3Pnzvz2228FYrx16xZ+fn44OTlhaGiIsbExPXv2JC4uTqNdfj3x5s2b+fjjj6lTpw76+vpkZGQAsGvXLpo1a0a1atVo1qwZO3fuLNH1u3z5Mmq1mg4dOhTYp1KpNK4hQHp6Oh9++CF2dnbo6upSt25dRowYwY0bNwDIzs5mzpw5tGrVChMTEwwMDOjYsSNHjhwpUTx//fUXo0ePxsLCAl1dXZo2bcrXX39doN2ff/5J3759MTAwwNzcnA8//JCsrKwSnSPf//3f/5Gbm1ui2eucnBzmz59PgwYN0NXVxc7Ojv/7v/8r0TmTkpJo3bp1gcQa/t9nNDk5GTMzMwACAgKUz2h+TbqXlxeGhoYkJSXRq1cvjIyMGD58OPCorGfFihU0bdqUatWqYWFhwfjx47l9+7bGuaKjo/Hw8KBWrVro6elRr149Ro8erdFm8+bNtGrVCiMjI4yNjXFycirwF6CnVZI4+/TpQ/369Qs9vl27dri6umps+/bbb2nVqhV6enrUqFGDIUOGcPXq1WeKc+jQoWzZsoW8vDxl2549e7h//z6DBw8u9JiSfG5L+r2RnJyMSqVi6dKlrFu3TvnMtW7dmqioKI22//zzD6NGjaJu3bro6upiZWXFW2+9VeD/LvHiyMy1EKLCs7W15eTJk/z666/F1slu3LgRb29v2rRpw7hx44BHs1QAUVFRnDhxgiFDhlC3bl2Sk5P54osvcHd358KFC+jr62v09cEHH1C9enXmzp1LcnIyK1aswMfHhy1btiht5syZwyeffEKvXr3o1asXZ86coXv37mRnZ2v09ccff7Br1y4GDRpEvXr1uHbtGmvXrsXNzY0LFy4UmFGdP38+Ojo6+Pn5kZWVhY6ODgcPHmTAgAE0adKEwMBAbt68qfzALcn1g0elC4MGDSow1sdlZmbSsWNH4uPjGT16NC1btuTGjRvs3r2bP//8k1q1apGRkcGGDRsYOnQoY8eO5e7du3z11Vd4eHhw+vRpWrRoUWT/165do23btkr9rpmZGfv372fMmDFkZGQwefJkAB48eEDXrl1JSUnB19eX2rVrs3HjRn7++ecnjvdx9erVY8SIEaxfv54ZM2YUO3vt7e1NSEgIAwcO5KOPPiIyMpLAwEDi4+Of+IuMra0tYWFh/Pnnn0V+TczMzPjiiy9477336NevH/379wfA2dlZaZOTk4OHhwevv/46S5cuVb5W48ePJzg4mFGjRuHr68vly5dZvXo1Z8+eJSIigqpVq5KWlkb37t0xMzNjxowZmJqakpyczI4dO5T+Dx06xNChQ+natSuLFy8GID4+noiICCZNmlSyi1qMksT59ttvM2LECKKiomjdurVy7JUrVzh16hSffvqpsm3BggXMnj2bwYMH4+3tzfXr11m1ahWdOnXi7Nmzhf7CXRLDhg1Tat+7dOkCwHfffUfXrl0L/LIJJf/clvZ747vvvuPu3buMHz8elUrFkiVL6N+/P3/88QdVq1YFYMCAAfz222988MEH2NnZkZaWxqFDh0hJSZGbOMuLWgghKriDBw+qtbW11dra2up27dqpp02bpj5w4IA6Ozu7QFsDAwP1yJEjC2y/f/9+gW0nT55UA+pvvvlG2RYUFKQG1N26dVPn5eUp2z/88EO1tra2Oj09Xa1Wq9VpaWlqHR0dde/evTXa/d///Z8a0Ijh33//Vefm5mqc+/Lly2pdXV31vHnzlG1HjhxRA+r69esXiLdFixZqKysr5fz51wVQ29raFhjbf40YMUINqKtXr67u16+feunSper4+PgC7ebMmaMG1Dt27CiwL3+cOTk56qysLI19t2/fVltYWKhHjx6tsR1Qz507V3k/ZswYtZWVlfrGjRsa7YYMGaI2MTFRxr1ixQo1oP7hhx+UNvfu3VM3bNhQDaiPHDlS7Hjzv45RUVHqpKQkdZUqVdS+vr7Kfjc3N3XTpk2V97GxsWpA7e3trdGPn5+fGlD//PPPxZ7vq6++UgNqHR0ddefOndWzZ89WHzt2rMDX/fr16wWuSb6RI0eqAfWMGTM0th87dkwNqDdt2qSxPTQ0VGP7zp07lTEXZdKkSWpjY2N1Tk5OseMpDKCeOHFikftLGuedO3fUurq66o8++kij3ZIlS9QqlUp95coVtVqtVicnJ6u1tbXVCxYs0Gh3/vx5dZUqVTS2jxw5skTfB49/3V1dXdVjxoxRq9WPPr86OjrqkJAQ5ftw69atynEl/dyW9Hvj8uXLakBds2ZN9a1bt5TtP/74oxpQ79mzRzkWUH/66adPHJt4caQsRAhR4b3xxhucPHmSN998k7i4OJYsWYKHhwd16tRh9+7dJepDT09P+ffDhw+5efMmDRs2xNTUlDNnzhRoP27cOFQqlfK+Y8eO5ObmcuXKFQAOHz5MdnY2H3zwgUa7/Bmsx+nq6io107m5udy8eRNDQ0MaNWpU6LlHjhypEW9qaiqxsbGMHDkSExMTjevSpEmTEo0/KCiI1atXU69ePXbu3Imfnx+Ojo507dpVYzWN7du307x5c/r161egj/xxamtrK+UPeXl53Lp1i5ycHFxdXQsdTz61Ws327dvx9PRErVZz48YN5eXh4cGdO3eU4/ft24eVlRUDBw5UjtfX11f+IlEa9evX591332XdunWkpqYW2mbfvn0ATJkyRWP7Rx99BMDevXuLPcfo0aMJDQ3F3d2d48ePM3/+fDp27Ii9vT0nTpwoVbzvvfeexvutW7diYmLCG2+8oXHNWrVqhaGhoVJykD+L+9NPP/Hw4cNC+zY1NeXevXscOnSoVDGVREnjzC+L+uGHH1Cr1crxW7ZsoW3bttjY2ACwY8cO8vLyGDx4sEZ/lpaW2Nvbl7gMqSjDhg1jx44dZGdns23bNrS1tQv93Jfmc1va7423336b6tWrK+87duwIPPprFzz6f0tHR4fw8PACJUCi/EhyLYSoFFq3bs2OHTu4ffs2p0+fZubMmdy9e5eBAwdy4cKFJx7/4MED5syZg7W1Nbq6utSqVQszMzPS09O5c+dOgfb5P+Dz5f8AzP8Bl59k/3dJLzMzM40flvDoh+xnn32Gvb29xrnPnTtX6Lnr1aun8b6ocwE0atSo2HHn09LSYuLEicTExHDjxg1+/PFHevbsyc8//8yQIUOUdklJSSVaoi4kJARnZ2eqVatGzZo1MTMzY+/evYWOJ9/169dJT09n3bp1mJmZabxGjRoF/L+b/65cuULDhg01fnEpzXj/6+OPPyYnJ6fI2usrV66gpaVFw4YNNbZbWlpiamqqfA2K4+HhwYEDB0hPT+eXX35h4sSJXLlyhT59+pT4psYqVaoUKCtJTEzkzp07mJubF7humZmZSt9ubm4MGDCAgIAAatWqxVtvvUVQUJBGzfj777+Pg4MDPXv2pG7dusovBWWhpHHCo6Ty6tWrnDx5Enj0uYuJieHtt9/W6E+tVmNvb1+gv/j4+Ge+mXnIkCHcuXOH/fv3s2nTJvr06YORkVGBdqX53ELpvjee9P+Mrq4uixcvZv/+/VhYWNCpUyeWLFnCP//880xjF89Gaq6FEJWKjo4OrVu3pnXr1jg4ODBq1Ci2bt3K3Llziz3ugw8+ICgoiMmTJ9OuXTtMTExQqVQMGTJE46amfNra2oX28/hMW0ktXLiQ2bNnM3r0aObPn0+NGjXQ0tJi8uTJhZ778Vnr56FmzZq8+eabvPnmm7i7u3P06FGuXLmi1GY/ybfffouXlxd9+/Zl6tSpmJubo62tTWBgIElJSUUelz/Wd955h5EjRxba5vH647JUv3593nnnHdatW8eMGTOKbPffZP5p6Ovr07FjRzp27EitWrUICAhg//79RY75cY//lSNfXl4e5ubmbNq0qdBj8m+SzF+b+dSpU+zZs4cDBw4wevRoli1bxqlTpzA0NMTc3JzY2FgOHDjA/v372b9/P0FBQYwYMYKQkJBnGndJ4wTw9PREX1+fH374gfbt2/PDDz+gpaXFoEGDNPpTqVTs37+/0O9HQ0PDZ4rXysoKd3d3li1bRkRERJErhJTmc1va742S/D8zefJkPD092bVrFwcOHGD27NkEBgby888/4+LiUqoxi7IhybUQotLKX1Xg8T/1F5Ucbdu2jZEjR7Js2TJl27///kt6evpTnTs/EU1MTNRY+eD69esF/ny7bds2OnfuzFdffaWxPT09nVq1apXqXP+VkJBQ6tgf5+rqytGjR0lNTcXW1pYGDRrw66+/FnvMtm3bqF+/Pjt27NC43k/6BcfMzAwjIyNyc3Pp1q1bsW1tbW359ddfUavVGud4lvF+/PHHfPvtt8qNfP89X15eHomJiTg6Oirbr127Rnp6eol/8fiv/35GnyZ5b9CgAYcPH6ZDhw4l+sWrbdu2tG3blgULFvDdd98xfPhwNm/ejLe3N/DoF1RPT088PT3Jy8vj/fffZ+3atcyePbvAzP3zitPAwIA+ffqwdetWli9fzpYtW+jYsaPGDacNGjRArVZTr149HBwcnjqu4gwbNgxvb29MTU3p1atXoW1K87l92u+NJ2nQoAEfffQRH330EYmJibRo0YJly5bx7bffPlO/4ulIWYgQosI7cuRIoTPG+XWyj5cKGBgYFJowa2trF+hj1apV5ObmPlVM3bp1o2rVqqxatUqj3xUrVpTo3Fu3bi30yYGFsbKyokWLFoSEhGj8afnQoUMlKon5559/Cm2XnZ1NWFiYRjnEgAEDiIuLK3R1jPwx5M+2PT6myMhI5U/8RdHW1mbAgAFs37690AT+8aUOe/Xqxd9//63xlLz79+8XWKe7NBo0aMA777zD2rVrC/xZPT+x+u/Xb/ny5QD07t272L7DwsIK3f7fz2j+6h+l+aVu8ODB5ObmMn/+/AL7cnJylL5u375d4HOWvzpFfmnIzZs3NfZraWkps66lXebwaePM9/bbb/P333+zYcMG4uLiNEpCAPr374+2tjYBAQEFxqVWqwuM5WkMHDiQuXPnsmbNmkKXUYTSfW6f9nujKPfv3+fff//V2NagQQOMjIye+eslnp7MXAshKrwPPviA+/fv069fPxo3bkx2djYnTpxgy5Yt2NnZKXWPAK1ateLw4cMsX76c2rVrU69ePV577TX69OnDxo0bMTExoUmTJpw8eZLDhw9Ts2bNp4rJzMwMPz8/AgMD6dOnD7169eLs2bPs37+/wGx0nz59mDdvHqNGjaJ9+/acP3+eTZs2FbnWb2ECAwPp3bs3r7/+OqNHj+bWrVusWrWKpk2bkpmZWeyxf/75J23atKFLly507doVS0tL0tLS+P7774mLi2Py5MlKzFOnTmXbtm0MGjSI0aNH06pVK27dusXu3bv58ssvad68OX369GHHjh3069eP3r17c/nyZb788kuaNGnyxFgWLVrEkSNHeO211xg7dixNmjTh1q1bnDlzhsOHD3Pr1i0A5UmcI0aMICYmBisrKzZu3FjsMoIlMWvWLDZu3EhCQgJNmzZVtjdv3pyRI0eybt060tPTcXNz4/Tp04SEhNC3b186d+5cbL9vvfUW9erVw9PTkwYNGnDv3j0OHz7Mnj17aN26NZ6ensCjkp8mTZqwZcsWHBwcqFGjBs2aNSu2zt3NzY3x48cTGBhIbGws3bt3p2rVqiQmJrJ161ZWrlzJwIEDCQkJYc2aNfTr148GDRpw9+5d1q9fj7GxsfLLg7e3N7du3aJLly7UrVuXK1eusGrVKlq0aKExY1+U6OhoPvnkkwLb3d3dSxxnvvy1vP38/JQE9nENGjTgk08+YebMmSQnJ9O3b1+MjIy4fPkyO3fuZNy4cfj5+T0x5uKYmJgo64wXp6Sf22f53ijMxYsX6dq1K4MHD6ZJkyZUqVKFnTt3cu3aNY17JcQL9mIXJxFCiLK3f/9+9ejRo9WNGzdWGxoaqnV0dNQNGzZUf/DBB+pr165ptP3999/VnTp1Uuvp6WksiXf79m31qFGj1LVq1VIbGhqqPTw81L///rva1tZWY9m8x5dwe1z+8lyPLwGXm5urDggIUFtZWan19PTU7u7u6l9//bVAn//++6/6o48+Utp16NBBffLkSbWbm5vazc2twDkeXwLscdu3b1c7OjqqdXV11U2aNFHv2LGjREuQZWRkqFeuXKn28PBQ161bV121alW1kZGRul27dur169drLCWoVqvVN2/eVPv4+Kjr1Kmj1tHRUdetW1c9cuRIZRmyvLw89cKFC9W2trZqXV1dtYuLi/qnn34qNBYKWXbu2rVr6okTJ6qtra3VVatWVVtaWqq7du2qXrdunUa7K1euqN988021vr6+ulatWupJkyYpy7qVZim+/8pf8u7xpfjUarX64cOH6oCAAHW9evXUVatWVVtbW6tnzpyp/vfff4s9l1qtVn///ffqIUOGqBs0aKDW09NTV6tWTd2kSRP1rFmz1BkZGRptT5w4oW7VqpVaR0dH4/qMHDlSbWBgUOQ51q1bp27VqpVaT09PbWRkpHZyclJPmzZN/ffff6vVarX6zJkz6qFDh6ptbGzUurq6anNzc3WfPn3U0dHRSh/btm1Td+/eXW1ubq7W0dFR29jYqMePH69OTU194hiBIl/z588vcZyPGz58uLL0ZVG2b9+ufv3119UGBgZqAwMDdePGjdUTJ05UJyQkKG2eZim+ohT1fViSz21Jvzfyl+IrbIm9xz8TN27cUE+cOFHduHFjtYGBgdrExET92muvaSxRKV48lVr9FHffCCGEEEIIIQqQmmshhBBCCCHKiCTXQgghhBBClBFJroUQQgghhCgjklwLIYQQQghRRiS5FkIIIYQQooxIci2EEEIIIUQZkYfICPGC5eXl8ffff2NkZPRUjzoWQgghxIunVqu5e/cutWvXRkur6PlpSa6FeMH+/vtvrK2tyzsMIYQQQjyFq1evUrdu3SL3S3ItxAtmZGQEPPrmNDY2LudohBAVRaePvy/vEISoEH75ZOhz6TcjIwNra2vl53hRJLkW4gXLLwUxNjaW5FoIUWLaunrlHYIQFcLz/tn6pJJOuaFRCCGEEEKIMiLJtXhmycnJqFQqYmNjlW0RERE4OTlRtWpV+vbtW26xCSGEEEK8SFIWIp6LKVOm0KJFC/bv34+hoeFzPZeXlxfp6ens2rXruZ5HCCGEEOJJZOZaPBdJSUl06dKFunXrYmpqWt7hCCGEEEK8EJJcC8W2bdtwcnJCT0+PmjVr0q1bN+7duwfAhg0bcHR0pFq1ajRu3Jg1a9YU2kd+icjNmzcZPXo0KpWK4ODgJ577119/pWfPnhgaGmJhYcG7777LjRs3nhibv78/ISEh/Pjjj6hUKlQqFeHh4cCj1TgGDx6MqakpNWrU4K233iI5OVnjvMWNK38sP/zwAx07dkRPT4/WrVtz8eJFoqKicHV1xdDQkJ49e3L9+vUix5aVlUVGRobGSwghhBCVkyTXAoDU1FSGDh3K6NGjiY+PJzw8nP79+6NWq9m0aRNz5sxhwYIFxMfHs3DhQmbPnk1ISEiBfqytrUlNTcXY2JgVK1aQmprK22+/Xey509PT6dKlCy4uLkRHRxMaGsq1a9cYPHjwE2Pz8/Nj8ODB9OjRg9TUVFJTU2nfvj0PHz7Ew8MDIyMjjh07RkREBIaGhvTo0YPs7GyAEo9r7ty5fPzxx5w5c4YqVaowbNgwpk2bxsqVKzl27BiXLl1izpw5RY4vMDAQExMT5SVrXAshhBCVl9RcC+BRApuTk0P//v2xtbUFwMnJCXiUXC5btoz+/fsDUK9ePS5cuMDatWsZOXKkRj/a2tpYWlqiUqkwMTHB0tLyiedevXo1Li4uLFy4UNn29ddfY21tzcWLF8nMzCwyNgA9PT2ysrI0zvXtt9+Sl5fHhg0blCVzgoKCMDU1JTw8nO7du5d4XH5+fnh4eAAwadIkhg4dSlhYGB06dABgzJgxxc7Oz5w5kylTpijv89fJFEIIIUTlI8m1AKB58+Z07doVJycnPDw86N69OwMHDkRHR4ekpCTGjBnD2LFjlfY5OTmYmJiUybnj4uI4cuRIoTc+JiUl0b1790Jjq169erF9Xrp0qcBC7//++y9JSUncu3evxONydnZW/m1hYQFoJvcWFhakpaUVGYuuri66urpF7hdCCCFE5SHJtQAezTgfOnSIEydOcPDgQVatWsWsWbPYs2cPAOvXr+e1114rcExZyMzMxNPTk8WLFxfYZ2VlVWRskZGR1KtXr8g+W7VqxaZNmwrsMzMzIzMzEyjZuKpWrar8O38W/L/b8vLySjhaIYQQQlRmklwLhUqlokOHDnTo0IE5c+Zga2tLREQEtWvX5o8//mD48OHP5bwtW7Zk+/bt2NnZUaVK4R/JwmLbuXMnU6ZMQUdHh9zc3AJ9btmyBXNz80Kf1GRiYvLcxyWEEEKIV4/c0CgAiIyMZOHChURHR5OSksKOHTu4fv06jo6OBAQEEBgYyOeff87Fixc5f/48QUFBLF++vEzOPXHiRG7dusXQoUOJiooiKSmJAwcOMGrUKHJzc4uNDcDOzo5z586RkJDAjRs3ePjwIcOHD6dWrVq89dZbHDt2jMuXLxMeHo6vry9//vknwHMflxBCCCFePTJzLQAwNjbml19+YcWKFWRkZGBra8uyZcvo2bMnAPr6+nz66adMnToVAwMDnJycmDx5cpmcu3bt2kRERDB9+nS6d+9OVlYWtra29OjRAy0trSfGNnbsWMLDw3F1dSUzM5MjR47g7u7OL7/8wvTp0+nfvz93796lTp06dO3aVZnJ9vb2fq7jEkIIIcSrR6VWq9XlHYQQr5KMjAxMTEy4c+dOoSUrQghRmFZTvynvEISoEGI+HfFc+i3pz2+ZuRZCCCEqgOeVMAghypbUXIvnbsKECRgaGhb6mjBhQnmHJ4QQQghRZqQsRDx3aWlpRT7y29jYGHNz8xccUfmSshAhhBCi4pGyEPHSMDc3f+USaCGEKGtScy0qs8pU9iRlIUIIIYQQQpQRSa5Fsfz9/WnRokWpjlGpVOzateu5xCOEEEII8TKT5FoUy8/Pj7CwsPIO46UUHh6OSqUiPT29vEMRQgghxEtCaq5FsfJX9RCaHj58WN4hCCGEEOIlJDPXlcS2bdtwcnJCT0+PmjVr0q1bN+7du0deXh7z5s2jbt266Orq0qJFC0JDQzWO/fPPPxk6dCg1atTAwMAAV1dXIiMjgYJlIVFRUbzxxhvUqlULExMT3NzcOHPmzFPFnJ2djY+PD1ZWVlSrVg1bW1sCAwMBSE5ORqVSERsbq7RPT09HpVIRHh4O/L+Z47179+Ls7Ey1atVo27Ytv/76q3JMcHAwpqam7Nq1C3t7e6pVq4aHhwdXr17ViOWLL76gQYMG6Ojo0KhRIzZu3KixX6VS8cUXX/Dmm29iYGDA2LFj6dy5MwDVq1dHpVLh5eX1VNdBCCGEEJWHJNeVQGpqKkOHDmX06NHEx8cTHh5O//79UavVrFy5kmXLlrF06VLOnTuHh4cHb775JomJiQBkZmbi5ubGX3/9xe7du4mLi2PatGnk5eUVeq67d+8ycuRIjh8/zqlTp7C3t6dXr17cvXu31HF//vnn7N69mx9++IGEhAQ2bdqEnZ1dqfuZOnUqy5YtIyoqCjMzMzw9PTVmlu/fv8+CBQv45ptviIiIID09nSFDhij7d+7cyaRJk/joo4/49ddfGT9+PKNGjeLIkSMa5/H396dfv36cP3+egIAAtm/fDkBCQgKpqamsXLmy0PiysrLIyMjQeAkhhBCicpKykEogNTWVnJwc+vfvj62tLQBOTk4ALF26lOnTpyvJ5OLFizly5AgrVqzgf//7H9999x3Xr18nKiqKGjVqANCwYcMiz9WlSxeN9+vWrcPU1JSjR4/Sp0+fUsWdkpKCvb09r7/+OiqVSom9tObOncsbb7wBQEhICHXr1mXnzp0MHjwYeFTCsXr1al577TWljaOjI6dPn6ZNmzYsXboULy8v3n//fQCmTJnCqVOnWLp0qTI7DTBs2DBGjRqlvL98+TLwaKlBU1PTIuMLDAwkICDgqcYmhBBCiIpFZq4rgebNm9O1a1ecnJwYNGgQ69ev5/bt22RkZPD333/ToUMHjfYdOnQgPj4egNjYWFxcXJTE+kmuXbvG2LFjsbe3x8TEBGNjYzIzM0lJSSl13F5eXsTGxtKoUSN8fX05ePBgqfsAaNeunfLvGjVq0KhRI2V8AFWqVKF169bK+8aNG2Nqaqq0iY+PL/Ya5XN1dX2q+GbOnMmdO3eU139LUoQQQghReUhyXQloa2tz6NAh9u/fT5MmTVi1ahWNGjVSZlaLo6enV6pzjRw5ktjYWFauXMmJEyeIjY2lZs2aZGdnlzruli1bcvnyZebPn8+DBw8YPHgwAwcOBEBL69FH8/EHiJb3TYQGBgZPdZyuri7GxsYaLyGEEEJUTpJcVxIqlYoOHToQEBDA2bNn0dHRISwsjNq1axMREaHRNiIigiZNmgDg7OxMbGwst27dKtF5IiIi8PX1pVevXjRt2hRdXV1u3Ljx1HEbGxvz9ttvs379erZs2cL27du5desWZmZmwKOSl3yP39z4uFOnTin/vn37NhcvXsTR0VHZlpOTQ3R0tPI+ISGB9PR0pY2jo2Ox16goOjo6AOTm5pZgpEIIIYR4FUjNdSUQGRlJWFgY3bt3x9zcnMjISK5fv46joyNTp05l7ty5NGjQgBYtWhAUFERsbCybNm0CYOjQoSxcuJC+ffsSGBiIlZUVZ8+epXbt2hrlFvns7e3ZuHEjrq6uZGRkMHXq1FLPfudbvnw5VlZWuLi4oKWlxdatW7G0tMTU1BQtLS3atm3LokWLqFevHmlpaXz88ceF9jNv3jxq1qyJhYUFs2bNolatWvTt21fZX7VqVT744AM+//xzqlSpgo+PD23btqVNmzbAoxsiBw8ejIuLC926dWPPnj3s2LGDw4cPFxu/ra0tKpWKn376iV69eqGnpyfLFgohhBCvOJm5rgSMjY355Zdf6NWrFw4ODnz88ccsW7aMnj174uvry5QpU/joo49wcnIiNDSU3bt3Y29vDzyafT148CDm5ub06tULJycnFi1ahLa2dqHn+uqrr7h9+zYtW7bk3XffxdfXF3Nz86eK28jIiCVLluDq6krr1q1JTk5m3759SknI119/TU5ODq1atWLy5Ml88sknhfazaNEiJk2aRKtWrfjnn3/Ys2ePMqsMoK+vz/Tp0xk2bBgdOnTA0NCQLVu2KPv79u3LypUrWbp0KU2bNmXt2rUEBQXh7u5ebPx16tQhICCAGTNmYGFhgY+Pz1NdByGEEEJUHir140WtQlQg4eHhdO7cmdu3bxe5WkdwcDCTJ09+qZ6imJGRgYmJCXfu3JH6ayFEibWa+k15hyDEcxPz6YjyDuGJSvrzW8pChBBCiAqgIiQfQggpCxHP0cKFC5XHp//31bNnz/IOTwghhBCizElZiHhubt26VeQqJHp6etSpU+cFR/RykLIQIYQQouKRshBR7mrUqFHih9MIIYQQQlQGklwLIYQQFYDc0CgqulflvgGpuRZCCCGEEKKMSHL9ivPy8tJ44Mqr5L9jd3d3Z/LkyeUWjxBCCCEqPikLEeL/t2PHDqpWraq8t7OzY/LkyZJwCyGEEKLEJLkW4v8nN18KIYQQ4llJWcgrYtu2bTg5OaGnp0fNmjXp1q0b9+7dK9AuLy+PwMBA6tWrh56eHs2bN2fbtm0abX799Vd69uyJoaEhFhYWvPvuu9y4cUPZ7+7ujo+PDz4+PpiYmFCrVi1mz55NSVd9TEtLw9PTEz09PerVq8emTZuws7NjxYoVACQnJ6NSqYiNjVWOSU9PR6VSER4eDkBubi5jxoxRxtGoUSNWrlxZ7HkfLwtxd3fnypUrfPjhh6hUKlQqFffu3cPY2LjA9di1axcGBgbcvXu3ROMTQgghROUlyfUrIDU1laFDhzJ69Gji4+MJDw+nf//+hSa7gYGBfPPNN3z55Zf89ttvfPjhh7zzzjscPXoUeJTEdunSBRcXF6KjowkNDeXatWsMHjxYo5+QkBCqVKnC6dOnWblyJcuXL2fDhg0litfLy4urV69y5MgRtm3bxpo1a0hLSyvVmPPy8qhbty5bt27lwoULzJkzh//7v//jhx9+KNHxO3bsoG7dusybN4/U1FRSU1MxMDBgyJAhBAUFabQNCgpi4MCBGBkZFdpXVlYWGRkZGi8hhBBCVE5SFvIKSE1NJScnh/79+2NrawuAk5NTgXZZWVksXLiQw4cP065dOwDq16/P8ePHWbt2LW5ubqxevRoXFxcWLlyoHPf1119jbW3NxYsXcXBwAMDa2prPPvsMlUpFo0aNOH/+PJ999hljx44tNtaLFy+yf/9+Tp8+TevWrQH46quvcHR0LNWYq1atSkBAgPK+Xr16nDx5kh9++KHALwKFqVGjBtra2hgZGWFpaals9/b2pn379qSmpmJlZUVaWhr79u3j8OHDRfYVGBioEYsQQgghKi+ZuX4FNG/enK5du+Lk5MSgQYNYv349t2/fLtDu0qVL3L9/nzfeeEPjUeXffPMNSUlJAMTFxXHkyBGN/Y0bNwZQ2gC0bdsWlUqlvG/Xrh2JiYnk5uYWG2t8fDxVqlShVatWyrbGjRtjampa6nH/73//o1WrVpiZmWFoaMi6detISUkpdT+Pa9OmDU2bNiUkJASAb7/9FltbWzp16lTkMTNnzuTOnTvK6+rVq88UgxBCCCFeXjJz/QrQ1tbm0KFDnDhxgoMHD7Jq1SpmzZpFZGSkRrvMzEwA9u7dW+DR5Lq6ukobT09PFi9eXOA8VlZWz2kEmrS0Hv1O+HhZy8OHDzXabN68GT8/P5YtW0a7du0wMjLi008/LTDmp+Ht7c3//vc/ZsyYQVBQEKNGjdL4ReK/dHV1lesnhBBCiMpNkutXhEqlokOHDnTo0IE5c+Zga2vLzp07Ndo0adIEXV1dUlJScHNzK7Sfli1bsn37duzs7KhSpeiPz3+T2FOnTmFvb4+2tnaxcTZu3JicnBxiYmKUspCEhATS09OVNmZmZsCjchcXFxcAjZsbASIiImjfvj3vv/++su3xmfWS0NHRKXSm/Z133mHatGl8/vnnXLhwgZEjR5aqXyGEEEJUXlIW8gqIjIxk4cKFREdHk5KSwo4dO7h+/XqBOmYjIyP8/Pz48MMPCQkJISkpiTNnzrBq1SqlDGLixIncunWLoUOHEhUVRVJSEgcOHGDUqFEaiWhKSgpTpkwhISGB77//nlWrVjFp0qQnxtqoUSN69OjB+PHjiYyMJCYmBm9vb/T09JQ2enp6tG3blkWLFhEfH8/Ro0f5+OOPNfqxt7cnOjqaAwcOcPHiRWbPnk1UVFSprpudnR2//PILf/31l8ZqKNWrV6d///5MnTqV7t27U7du3VL1K4QQQojKS5LrV4CxsTG//PILvXr1wsHBgY8//phly5bRs2fPAm3nz5/P7NmzCQwMxNHRkR49erB3717q1asHQO3atYmIiCA3N5fu3bvj5OTE5MmTMTU1Vco1AEaMGMGDBw9o06YNEydOZNKkSYwbN65E8QYFBVG7dm3c3Nzo378/48aNw9zcXKPN119/TU5ODq1atWLy5Ml88sknGvvHjx9P//79efvtt3nttde4efOmxix2ScybN4/k5GQaNGigzJbnGzNmDNnZ2YwePbpUfQohhBCiclOpS7r4sBAl5O7uTosWLZR1qcvCy/a0xI0bN/Lhhx/y999/o6OjU6pjMzIyMDEx4c6dOxgbGz+nCIUQlU2rqd+UdwhCPJOYT0eUdwjPpKQ/v6XmWohSuH//PqmpqSxatIjx48eXOrEWQoinVdETEyFeFVIWIl6oY8eOaSzj99/Xy27JkiU0btwYS0tLZs6cWd7hCCGEEOIlI2Uh4oV68OABf/31V5H7GzZs+AKjKR9SFiKEEEJUPFIWIl5Kenp6r0QCLYQQZU1qrkV5kZKk0pGyECGEEEIIIcqIJNdCCCGEEEKUEUmun5GdnV2ZLjlXFJVKxa5du577eZ7Vrl27aNiwIdra2i/NsnlCCCGEEC+K1FxXEKmpqVSvXr28w3ii8ePHM2rUKHx9fTEyMirvcIQQQgghXihJrisIS0vL8g6hWA8fPiQrK4u0tDQ8PDyoXbv2U/eVnZ0t60cLIYQQokKqVGUhoaGhvP7665iamlKzZk369OlDUlKSsv/PP/9k6NCh1KhRAwMDA1xdXYmMjAQgKSmJt956CwsLCwwNDWndujWHDx/W6D8tLQ1PT0/09PSoV68emzZtKhBDeno63t7emJmZYWxsTJcuXYiLi1P2+/v706JFC77++mtsbGwwNDTk/fffJzc3lyVLlmBpaYm5uTkLFizQ6Pe/ZSHFjaU4+edfu3Yt1tbW6OvrM3jwYO7cuaPRbsOGDTg6OlKtWjUaN27MmjVrlH3JycmoVCq2bNmCm5sb1apVY9OmTcpMdZcuXVCpVISHhwOwfft2mjZtiq6uLnZ2dixbtkzjXHZ2dsyfP58RI0ZgbGzMuHHjCA4OxtTUlJ9++olGjRqhr6/PwIEDuX//PiEhIdjZ2VG9enV8fX3Jzc1V+tq4cSOurq4YGRlhaWnJsGHDSEtLU/aHh4ejUqkICwvD1dUVfX192rdvT0JCgkZMe/bsoXXr1lSrVo1atWrRr18/ZV9WVhZ+fn7UqVMHAwMDXnvtNWWshcnKyiIjI0PjJYQQQojKqVIl1/fu3WPKlClER0cTFhaGlpYW/fr1Iy8vj8zMTNzc3Pjrr7/YvXs3cXFxTJs2jby8PAAyMzPp1asXYWFhnD17lh49euDp6UlKSorSv5eXF1evXuXIkSNs27aNNWvWaCRuAIMGDSItLY39+/cTExNDy5Yt6dq1K7du3VLaJCUlsX//fkJDQ/n+++/56quv6N27N3/++SdHjx5l8eLFfPzxx0Umy08ay5NcunSJH374gT179hAaGsrZs2d5//33lf2bNm1izpw5LFiwgPj4eBYuXMjs2bMJCQnR6GfGjBlMmjSJ+Ph4OnfurCSo27dvJzU1lfbt2xMTE8PgwYMZMmQI58+fx9/fn9mzZxMcHKzR19KlS2nevDlnz55l9uzZwKOnIX7++eds3ryZ0NBQwsPD6devH/v27WPfvn1s3LiRtWvXsm3bNqWfhw8fMn/+fOLi4ti1axfJycl4eXkVuAazZs1i2bJlREdHU6VKFUaPHq3s27t3L/369aNXr16cPXuWsLAw2rRpo+z38fHh5MmTbN68mXPnzjFo0CB69OhBYmJiodc7MDAQExMT5WVtbV2ir5MQQgghKp5K/RCZGzduYGZmxvnz5zlx4gR+fn4kJydTo0aNEh3frFkzJkyYgI+PDxcvXqRRo0acPn2a1q1bA/D777/j6OjIZ599xuTJkzl+/Di9e/cmLS0NXV1dpZ+GDRsybdo0xo0bh7+/P59++in//POPMtPbo0cPEhISSEpKQkvr0e87jRs3xsvLixkzZgCPZq537txJ3759WbduXanHks/f359PPvmEK1euUKdOHeDRjH/v3r3566+/sLS0pGHDhsyfP5+hQ4cqx33yySfs27ePEydOkJycTL169VixYgWTJk1S2qSnp1O9enWOHDmCu7s7AMOHD+f69escPHhQaTdt2jT27t3Lb7/9BjyauXZxcWHnzp1Km+DgYEaNGsWlS5do0KABABMmTGDjxo1cu3ZNeZpjjx49sLOz48svvyx0vNHR0bRu3Zq7d+9iaGhIeHg4nTt35vDhw3Tt2hWAffv20bt3bx48eEC1atVo37499evX59tvvy3QX0pKCvXr1yclJUWj9KVbt260adOGhQsXFjgmKyuLrKws5X1GRgbW1tbyEBkhRKnIOteivMg614+8kg+RSUxMZM6cOURGRnLjxg1lJjclJYXY2FhcXFyKTEYzMzPx9/dn7969pKamkpOTw4MHD5SZ6/j4eKpUqUKrVq2UYxo3boypqanyPi4ujszMTGrWrKnR94MHDzTKU+zs7DRu9rOwsEBbW1tJrPO3/XdWPN+TxvIkNjY2SmIN0K5dO/Ly8khISMDIyIikpCTGjBnD2LFjlTY5OTmYmJho9OPq6vrEc8XHx/PWW29pbOvQoQMrVqwgNzcXbW3tIvvS19dXEmt4dE3s7Ow0HpP+3+sUExODv78/cXFx3L59W+Mz0KRJE6Wds7Oz8m8rKyvgUdmPjY0NsbGxGmN/3Pnz58nNzcXBwUFje1ZWVoGvez5dXV2NX7aEEEIIUXlVquTa09MTW1tb1q9fT+3atcnLy6NZs2ZkZ2ejp6dX7LF+fn4cOnSIpUuX0rBhQ/T09Bg4cCDZ2dklPn9mZiZWVlaF1t8+noRXrVpVY59KpSp0W1FlHk8ay7PIzMwEYP369bz22msa+/IT4XwGBgZldt7C+irtdbp37x4eHh54eHiwadMmzMzMSElJwcPDo8DX8fF+VCoVgNJPcdc3MzMTbW1tYmJiClyPx5N+IYQQQryaKk1yffPmTRISEli/fj0dO3YE4Pjx48p+Z2dnNmzYwK1btwqd8Y2IiMDLy0u5cS0zM5Pk5GRlf+PGjcnJySEmJkYpC0lISCA9PV1p07JlS/755x+qVKmCnZ1d2Q+yhGN5kpSUFP7++2+lrOHUqVNoaWnRqFEjLCwsqF27Nn/88QfDhw9/5lgdHR2JiIjQ2BYREYGDg0OB5PRZ/f7779y8eZNFixYpdc3R0dGl7sfZ2ZmwsDBGjRpVYJ+Liwu5ubmkpaUpnzMhhBBCiHyV5obG6tWrU7NmTdatW8elS5f4+eefmTJlirJ/6NChWFpa0rdvXyIiIvjjjz/Yvn07J0+eBMDe3p4dO3YQGxtLXFwcw4YN05g5btSoET169GD8+PFERkYSExODt7e3xixnt27daNeuHX379uXgwYMkJydz4sQJZs2a9VRJXlGeNJYnqVatGiNHjiQuLo5jx47h6+vL4MGDleX+AgICCAwM5PPPP+fixYucP3+eoKAgli9fXupYP/roI8LCwpg/fz4XL14kJCSE1atX4+fnV+q+nsTGxgYdHR1WrVrFH3/8we7du5k/f36p+5k7dy7ff/89c+fOJT4+nvPnz7N48WIAHBwcGD58OCNGjGDHjh1cvnyZ06dPExgYyN69e8t6SEIIIYSoYCpNcq2lpcXmzZuJiYmhWbNmfPjhh3z66afKfh0dHQ4ePIi5uTm9evXCycmJRYsWKbOny5cvp3r16rRv3x5PT088PDxo2bKlxjmCgoKoXbs2bm5u9O/fn3HjxmFubq7sV6lU7Nu3j06dOjFq1CgcHBwYMmQIV65cwcLCoszG+qSxPEnDhg3p378/vXr1onv37jg7O2ssteft7c2GDRsICgrCyckJNzc3goODqVevXqljbdmyJT/88AObN2+mWbNmzJkzh3nz5hW6gsezMjMzIzg4mK1bt9KkSRMWLVrE0qVLS92Pu7s7W7duZffu3bRo0YIuXbpw+vRpZX9QUBAjRozgo48+olGjRvTt25eoqChsbGzKcjhCCCGEqIAq9WohoiB/f3927dpFbGxseYfyyirp3cZCCCGEeHmU9Od3pZm5FkIIIYQQorxVmhsaxSNNmzblypUrhe5bu3btC45GCCGEEOLVImUhlcyVK1d4+PBhofssLCw01tcW5UPKQoQQQoiK55V8iIwAW1vb8g5BCCHEcyBPaBQvijyR8dlIzbUQQgghhBBlRJLrV5y7uzuTJ09+Ln0nJyejUqkq/MokdnZ2rFixorzDEEIIIUQFIGUh4rmxtrYmNTWVWrVqlXcoQgghhBAvhCTX4rnR1tZWnvoohBBCCPEqkLIQQU5ODj4+PpiYmFCrVi1mz55N/iIyGzduxNXVFSMjIywtLRk2bBhpaWnKsbdv32b48OGYmZmhp6eHvb09QUFBQOFlIb/99ht9+vTB2NgYIyMjOnbsSFJS0hNj9PLyom/fvixduhQrKytq1qzJxIkTNVZGycrKws/Pjzp16mBgYMBrr71GeHi4Rj/Hjx+nY8eO6OnpYW1tja+vL/fu3VP2p6Wl4enpiZ6eHvXq1WPTpk0ax6vVavz9/bGxsUFXV5fatWvj6+tb4msthBBCiMpNkmtBSEgIVapU4fTp06xcuZLly5ezYcMGAB4+fMj8+fOJi4tj165dJCcnazy6fPbs2Vy4cIH9+/cTHx/PF198UWQZyF9//UWnTp3Q1dXl559/JiYmhtGjR5OTk1OiOI8cOUJSUhJHjhwhJCSE4OBggoODlf0+Pj6cPHmSzZs3c+7cOQYNGkSPHj1ITEwEICkpiR49ejBgwADOnTvHli1bOH78OD4+PkofXl5eXL16lSNHjrBt2zbWrFmj8cvE9u3b+eyzz1i7di2JiYns2rULJyenYuPOysoiIyND4yWEEEKIyknWuX7Fubu7k5aWxm+//YZKpQJgxowZ7N69mwsXLhRoHx0dTevWrbl79y6Ghoa8+eab1KpVi6+//rpA2+TkZOrVq8fZs2dp0aIF//d//8fmzZtJSEigatWqpYrTy8uL8PBwkpKS0NbWBmDw4MFoaWmxefNmUlJSqF+/PikpKdSuXVs5rlu3brRp04aFCxfi7e2Ntra2xsN0jh8/jpubG/fu3SMlJYVGjRpx+vRpWrduDcDvv/+Oo6Mjn332GZMnT2b58uWsXbuWX3/9tcRj8Pf3JyAgoMB2WedaCFEashSfeFFkKb7CyePPRYm1bdtWSawB2rVrR2JiIrm5ucTExODp6YmNjQ1GRka4ubkBkJKSAsB7773H5s2badGiBdOmTePEiRNFnic2NpaOHTuWOrHO17RpUyWxBrCyslJmlc+fP09ubi4ODg4YGhoqr6NHjyplJ3FxcQQHB2vs9/DwIC8vj8uXLxMfH0+VKlVo1aqVco7GjRtjamqqvB80aBAPHjygfv36jB07lp07dz5x5n3mzJncuXNHeV29evWpxi+EEEKIl5/c0CiK9O+//+Lh4YGHhwebNm3CzMyMlJQUPDw8yM7OBqBnz55cuXKFffv2cejQIbp27crEiRNZunRpgf709PSeKZ7/JuUqlYq8vDwAMjMz0dbWJiYmRiMBBzA0NFTajB8/vtAaaRsbGy5evPjEGKytrUlISODw4cMcOnSI999/n08//ZSjR48W+UuDrq4uurq6JRqjEEIIISo2Sa4FkZGRGu9PnTqFvb09v//+Ozdv3mTRokVYW1sDj8pC/svMzIyRI0cycuRIOnbsyNSpUwtNrp2dnQkJCeHhw4dPPXtdFBcXF3Jzc0lLS6Njx46FtmnZsiUXLlygYcOGhe5v3LgxOTk5xMTEKGUhCQkJpKena7TT09PD09MTT09PJk6cSOPGjTl//jwtW7Ys0zEJIYQQouKRshBBSkoKU6ZMISEhge+//55Vq1YxadIkbGxs0NHRYdWqVfzxxx/s3r2b+fPnaxw7Z84cfvzxRy5dusRvv/3GTz/9hKOjY6Hn8fHxISMjgyFDhhAdHU1iYiIbN24kISHhmcfg4ODA8OHDGTFiBDt27ODy5cucPn2awMBA9u7dC8D06dM5ceIEPj4+xMbGkpiYyI8//qjc0NioUSN69OjB+PHjiYyMJCYmBm9vb40Z9+DgYL766it+/fVX/vjjD7799lv09PTksfNCCCGEACS5FsCIESN48OABbdq0YeLEiUyaNIlx48ZhZmZGcHAwW7dupUmTJixatKjAjLSOjg4zZ87E2dmZTp06oa2tzebNmws9T82aNfn555/JzMzEzc2NVq1asX79+jKbxQ4KCmLEiBF89NFHNGrUiL59+xIVFYWNjQ3waOb86NGjXLx4kY4dO+Li4sKcOXM0boAMCgqidu3auLm50b9/f8aNG4e5ubmy39TUlPXr19OhQwecnZ05fPgwe/bsoWbNmmUyBiGEEEJUbLJaiBAvWEnvNhZCiMfJaiHiRZHVQgpX0p/fUnMthBBCVACS8AhRMUhZiHgpPL483n9fx44dK+/whBBCCCFKRGauxUvh8Uek/1edOnVeXCBCCCGEEM9AkmvxUihqeTwhhBCPSM21eN6k9KhsSFmIEEIIIYQQZUSSayGEEEIIIcqIJNfilfDPP//wxhtvYGBggKmpaXmHI4QQQohKSpJr8Ur47LPPSE1NJTY2losXL5boGH9/f1q0aPF8AxNCCCFEpSI3NIpXQlJSEq1atcLe3r68QxFCCCFEJSYz16LC2LZtG05OTujp6VGzZk26devGvXv3iIqK4o033qBWrVqYmJjg5ubGmTNnlOPs7OzYvn0733zzDSqVCi8vLwDS09Px9vbGzMwMY2NjunTpQlxcHADBwcEEBAQQFxeHSqVCpVIRHBzM6NGj6dOnj0ZcDx8+xNzcnK+++qrQuLOyssjIyNB4CSGEEKJykplrUSGkpqYydOhQlixZQr9+/bh79y7Hjh1DrVZz9+5dRo4cyapVq1Cr1SxbtoxevXqRmJiIkZERUVFRjBgxAmNjY1auXImenh4AgwYNQk9Pj/3792NiYsLatWvp2rUrFy9e5O233+bXX38lNDSUw4cPA2BiYoKDgwOdOnUiNTUVKysrAH766Sfu37/P22+/XWjsgYGBBAQEvJgLJYQQQohyJcm1qBBSU1PJycmhf//+2NraAuDk5ARAly5dNNquW7cOU1NTjh49Sp8+fTAzM0NXVxc9PT0sLS0BOH78OKdPnyYtLQ1dXV0Ali5dyq5du9i2bRvjxo3D0NCQKlWqKMcAtG/fnkaNGrFx40amTZsGQFBQEIMGDcLQ0LDQ2GfOnMmUKVOU9xkZGVhbW5fRlRFCCCHEy0TKQkSF0Lx5c7p27YqTkxODBg1i/fr13L59G4Br164xduxY7O3tMTExwdjYmMzMTFJSUorsLy4ujszMTGrWrKnxqPXLly+TlJRUbCze3t4EBQUp596/fz+jR48usr2uri7GxsYaLyGEEEJUTjJzLSoEbW1tDh06xIkTJzh48CCrVq1i1qxZREZG8t5773Hz5k1WrlyJra0turq6tGvXjuzs7CL7y8zMxMrKivDw8AL7nrRU34gRI5gxYwYnT57kxIkT1KtXj44dOz7jCIUQQghRGUhyLSoMlUpFhw4d6NChA3PmzMHW1padO3cSERHBmjVr6NWrFwBXr17lxo0bxfbVsmVL/vnnH6pUqYKdnV2hbXR0dMjNzS2wvWbNmvTt25egoCBOnjzJqFGjnnlsQgghhKgcJLkWFUJkZCRhYWF0794dc3NzIiMjuX79Oo6Ojtjb27Nx40ZcXV3JyMhg6tSpyk2LRenWrRvt2rWjb9++LFmyBAcHB/7++2/27t1Lv379cHV1xc7OjsuXLxMbG0vdunUxMjJS6rO9vb3p06cPubm5jBw58kVcAiGEEEJUAFJzLSoEY2NjfvnlF3r16oWDgwMff/wxy5Yto2fPnnz11Vfcvn2bli1b8u677+Lr64u5uXmx/alUKvbt20enTp0YNWoUDg4ODBkyhCtXrmBhYQHAgAED6NGjB507d8bMzIzvv/9eOb5bt25YWVnh4eFB7dq1n+vYhRBCCFFxqNRqtbq8gxCiosnMzKROnToEBQXRv3//Uh2bkZGBiYkJd+7ckZsbhRAl1mrqN+UdgqjkYj4dUd4hvNRK+vNbykKEKIW8vDxu3LjBsmXLMDU15c033yzvkIQQrwhJfISoGCS5FqIUUlJSqFevHnXr1iU4OJgqVeRbSAghhBD/j2QGQpSCnZ0dUkklhBBCiKJIci2EEEJUAFJzLcqKlBg9X7JaiBBCCCGEEGXkpU+u/f39adGiRXmH8dwkJyejUqmIjY0t71CeSll9fV701zk8PByVSkV6evpLE5MQQgghKr5SJdfu7u5Mnjz5OYVScQQHBz/xEdnlTaVSsWvXrvIOo1CFxebn50dYWFj5BFSElzEmIYQQQrzcXsmaa7VaTW5urqz0UIzs7Gx0dHRe2PkMDQ0xNDR8YecriZcxJiGEEEK83Eo8c+3l5cXRo0dZuXIlKpUKlUpFcnIyv/76Kz179sTQ0BALCwveffddbty4oRwXGhrK66+/jqmpKTVr1qRPnz4kJSVp9P3nn38ydOhQatSogYGBAa6urkRGRmq02bhxI3Z2dpiYmDBkyBDu3r2r7MvLyyMwMJB69eqhp6dH8+bN2bZtm7I/vwRg//79tGrVCl1dXY4fP17seOPi4ujcuTNGRkYYGxvTqlUroqOjCQ8PZ9SoUdy5c0e5Dv7+/kDhM7KmpqYEBwcr70+fPo2LiwvVqlXD1dWVs2fPFjj3k66pu7s7vr6+TJs2jRo1amBpaanEAI9WtADo168fKpVKeV+c/BKIDRs2UK9ePapVqwZAeno63t7emJmZYWxsTJcuXYiLiyuyn6ioKN544w1q1aqFiYkJbm5unDlz5omx/bcEIy8vj3nz5lG3bl10dXVp0aIFoaGhyv78cpodO3bQuXNn9PX1ad68OSdPnlTaXLlyBU9PT6pXr46BgQFNmzZl3759GvHGxMTg6uqKvr4+7du3JyEhocA1yefl5UXfvn0JCAhQrseECRPIzs5+4vUVQgghxKuhxMn1ypUradeuHWPHjiU1NZXU1FSMjIzo0qULLi4uREdHExoayrVr1xg8eLBy3L1795gyZQrR0dGEhYWhpaVFv379yMvLAx496c7NzY2//vqL3bt3ExcXx7Rp05T9AElJSezatYuffvqJn376iaNHj7Jo0SJlf2BgIN988w1ffvklv/32Gx9++CHvvPMOR48e1RjDjBkzWLRoEfHx8Tg7Oxc73uHDh1O3bl2ioqKIiYlhxowZVK1alfbt27NixQqMjY2V6+Dn51eia5iZmUmfPn1o0qQJMTEx+Pv7Fzg2PT39idcUICQkBAMDAyIjI1myZAnz5s3j0KFDwKMEFyAoKIjU1FTl/ZNcunSJ7du3s2PHDqUGfNCgQaSlpbF//35iYmJo2bIlXbt25datW4X2cffuXUaOHMnx48c5deoU9vb29OrVS/llqKSxrVy5kmXLlrF06VLOnTuHh4cHb775JomJiRrtZs2ahZ+fH7GxsTg4ODB06FBycnIAmDhxIllZWfzyyy+cP3+exYsXF5iJnjVrFsuWLSM6OpoqVaowevToYq9RWFgY8fHxhIeH8/3337Njxw4CAgKKPSYrK4uMjAyNlxBCCCEqpxLXRZiYmKCjo4O+vj6WlpYAfPLJJ7i4uLBw4UKl3ddff421tTUXL17EwcGBAQMGaPTz9ddfY2ZmxoULF2jWrBnfffcd169fJyoqiho1agDQsGFDjWPy8vIIDg7GyMgIgHfffZewsDAWLFhAVlYWCxcu5PDhw7Rr1w6A+vXrc/z4cdauXYubm5vSz7x583jjjTdKNN6UlBSmTp1K48aNAbC3t9e4FiqVSrkOJfXdd9+Rl5fHV199RbVq1WjatCl//vkn7733ntJm9erVT7ymAM7OzsydO1eJbfXq1YSFhfHGG29gZmYGPJo1L02M2dnZfPPNN8rxx48f5/Tp06SlpaGrqwvA0qVL2bVrF9u2bWPcuHEF+ujSpYvG+3Xr1mFqasrRo0fp06dPiWNbunQp06dPZ8iQIQAsXryYI0eOsGLFCv73v/8p7fz8/OjduzcAAQEBNG3alEuXLtG4cWNSUlIYMGAATk5OwKPPxX8tWLBA+YzMmDGD3r178++//yoz9/+lo6PD119/jb6+Pk2bNmXevHlMnTqV+fPno6VV+O+qgYGBT0zAhRBCCFE5PNNqIXFxcRw5ckSpTTU0NFSS0fzSj8TERIYOHUr9+vUxNjZWygBSUlIAiI2NxcXFRUmsC2NnZ6ck1gBWVlakpaUBj2Zb79+/zxtvvKERxzfffFOg/MTV1bXEY5syZQre3t5069aNRYsWFejraeTPmD+euOX/QpCvJNcUKDDz/vg1eVq2trZK8psfS2ZmJjVr1tSI5/Lly0Vej2vXrjF27Fjs7e0xMTHB2NiYzMxM5etdEhkZGfz999906NBBY3uHDh2Ij4/X2Pb4dbCysgJQroOvry+ffPIJHTp0YO7cuZw7d67AuYo7vjDNmzdHX19fed+uXTsyMzO5evVqkcfMnDmTO3fuKK/i2gohhBCiYnumO/oyMzPx9PRk8eLFBfblJyqenp7Y2tqyfv16ateuTV5eHs2aNVPqVPX09J54nqpVq2q8V6lUGmUlAHv37qVOnToa7fJnW/MZGBiUcGSP6m2HDRvG3r172b9/P3PnzmXz5s3069evyGNUKlWBp/c9fPiwxOeEkl1TKP6aPK3/Xp/MzEysrKwIDw8v0Lao1VJGjhzJzZs3WblyJba2tujq6tKuXbvnVpf8+HVQqVQAynXw9vbGw8ODvXv3cvDgQQIDA1m2bBkffPBBiY4vK7q6ugU+i0IIIYSonEqVXOvo6JCbm6u8b9myJdu3b8fOzq7QlTdu3rxJQkIC69evp2PHjgAFbiR0dnZmw4YN3Lp1q9jZ66I0adIEXV1dUlJSNEpAyoKDgwMODg58+OGHDB06lKCgIPr161fgOuQzMzMjNTVVeZ+YmMj9+/eV946OjmzcuFGj7ODUqVMafTzpmpZU1apVC42xNFq2bMk///xDlSpVSnRTJEBERARr1qyhV69eAFy9elXjZsySxGZsbEzt2rWJiIjQ+JpGRETQpk2bUo3B2tqaCRMmMGHCBGbOnMn69es1kuvSiouL48GDB8ovhadOncLQ0BBra+un7lMIIYQQlUepykLs7OyIjIwkOTmZGzduMHHiRG7dusXQoUOJiooiKSmJAwcOMGrUKHJzc6levTo1a9Zk3bp1XLp0iZ9//pkpU6Zo9Dl06FAsLS3p27cvERER/PHHH2zfvl1j1YfiGBkZ4efnx4cffkhISAhJSUmcOXOGVatWERISUprhKR48eICPjw/h4eFcuXKFiIgIoqKicHR0VK5DZmYmYWFh3LhxQ0mgu3TpwurVqzl79izR0dFMmDBBY2Z02LBhqFQqxo4dy4ULF9i3bx9Lly7VOPeTrmlJ2dnZERYWxj///MPt27ef6jp069aNdu3a0bdvXw4ePEhycjInTpxg1qxZREdHF3qMvb09GzduJD4+nsjISIYPH17grxMliW3q1KksXryYLVu2kJCQwIwZM4iNjWXSpEkljn/y5MkcOHCAy5cvc+bMGY4cOaJ8DZ9WdnY2Y8aMUb5+c+fOxcfHp8h6ayGEEEK8WkqVEfj5+aGtrU2TJk0wMzMjOzubiIgIcnNz6d69O05OTkyePBlTU1O0tLTQ0tJi8+bNxMTE0KxZMz788EM+/fRTjT51dHQ4ePAg5ubm9OrVCycnJxYtWoS2tnaJ45o/fz6zZ88mMDAQR0dHevTowd69e6lXr15phqfQ1tbm5s2bjBgxAgcHBwYPHkzPnj2Vm9Lat2/PhAkTePvttzEzM2PJkiUALFu2DGtrazp27MiwYcPw8/PTqM81NDRkz549nD9/HhcXF2bNmlWg/CN/xraoa1pSy5Yt49ChQ1hbW+Pi4vJU10GlUrFv3z46derEqFGjcHBwYMiQIVy5cgULC4tCj/nqq6+4ffs2LVu25N1338XX1xdzc/NSx+br68uUKVP46KOPcHJyIjQ0lN27d2vcWPokubm5TJw4UflMODg4sGbNmpJfgEJ07doVe3t7OnXqxNtvv82bb76psQyiEEIIIV5tKvV/i4SFEIXy8vIiPT39mZ98mZGRgYmJCXfu3MHY2LhsghNCVHqtpn5T3iGISiLm0xHlHUKFVNKf3/KIQiGEEKICkIRIiIrhlS0Ubdq0qcbyco+/Nm3aVN7hlblXbbxCCCGEEOXhlS0LuXLlSpHL5FlYWGisq10ZvGrjfZlJWYgQQghR8UhZyBPY2tqWdwgv1Ks2XiGEEEKI8vDKJtdCCCFERSI3NIqnIbX6L94rW3MthBBCCCFEWZPk+iXg7u7O5MmTgUcPWFmxYsVTHVuZBQcHazxy3d/fnxYtWhR7THJyMiqVitjY2OcamxBCCCFEPikLeclERUVhYGBQ4vY7duzQeArkq8LPz0/jMeaFrUFtbW1NamoqtWrVKocIhRBCCPEqkuT6JWNmZlaq9jVq1HhOkbzc8pcRLI62tjaWlpYvKCIhhBBCCCkLeek8XhYybNgw3n77bY39Dx8+pFatWnzzzaMbW/5bFmJnZ8fChQsZPXo0RkZG2NjYsG7dOo0+Tpw4QYsWLahWrRqurq7s2rWrVOUTv/32G3369MHY2BgjIyM6duxIUlISAHl5ecybN4+6deuiq6tLixYtCA0NVY7NL9XYsWMHnTt3Rl9fn+bNm3Py5EmNcwQHB2NjY4O+vj79+vXj5s2bGvsfLwvx9/cnJCSEH3/8EZVKhUqlIjw8vNCykKNHj9KmTRt0dXWxsrJixowZ5OTkKPvd3d3x9fVl2rRp1KhRA0tLS43Hm6vVavz9/bGxsUFXV5fatWvj6+tbousmhBBCiMpPkuuX2PDhw9mzZw+ZmZnKtgMHDnD//n369etX5HHLli3D1dWVs2fP8v777/Pee++RkJAAPFqj0dPTEycnJ86cOcP8+fOZPn16iWP666+/6NSpE7q6uvz888/ExMQwevRoJUFduXIly5YtY+nSpZw7dw4PDw/efPNNEhMTNfqZNWsWfn5+xMbG4uDgwNChQ5U+IiMjGTNmDD4+PsTGxtK5c2c++eSTImPy8/Nj8ODB9OjRg9TUVFJTU2nfvn2hsffq1YvWrVsTFxfHF198wVdffVWg75CQEAwMDIiMjGTJkiXMmzePQ4cOAbB9+3Y+++wz1q5dS2JiIrt27cLJyanYa5aVlUVGRobGSwghhBCVk5SFvMQ8PDwwMDBg586dvPvuuwB89913vPnmm8U+9KVXr168//77AEyfPp3PPvuMI0eO0KhRI7777jtUKhXr16+nWrVqNGnShL/++ouxY8eWKKb//e9/mJiYsHnzZqXW28HBQdm/dOlSpk+fzpAhQwBYvHgxR44cYcWKFfzvf/9T2vn5+dG7d28AAgICaNq0KZcuXaJx48asXLmSHj16MG3aNKX/EydOaMyAP87Q0BA9PT2ysrKKLQNZs2YN1tbWrF69GpVKRePGjfn777+ZPn06c+bMQUvr0e+azs7OzJ07FwB7e3tWr15NWFgYb7zxBikpKVhaWtKtWzeqVq2KjY0Nbdq0KfaaBQYGEhAQUGwbIYQQQlQOMnP9EqtSpQqDBw9WHk9+7949fvzxR4YPH17scc7Ozsq/VSoVlpaWpKWlAZCQkICzszPVqlVT2jwpOXxcbGwsHTt2LPQmyoyMDP7++286dOigsb1Dhw7Ex8cXGaOVlRWAEmN8fDyvvfaaRvt27dqVOMaixMfH065dO1QqlUZsmZmZ/Pnnn4XGlh9ffmyDBg3iwYMH1K9fn7Fjx7Jz506NspLCzJw5kzt37iivq1evPvNYhBBCCPFykuT6JTd8+HDCwsJIS0tj165d6Onp0aNHj2KP+W/iq1KpyMvLK5N49PT0yqSfx2PMT3bLKsZnVdz1s7a2JiEhgTVr1qCnp8f7779Pp06diny0PICuri7GxsYaLyGEEEJUTpJcv+Tat2+PtbU1W7ZsYdOmTQwaNOiZlt5r1KgR58+fJysrS9kWFRVV4uOdnZ05duxYocmksbExtWvXJiIiQmN7REQETZo0KfE5HB0diYyM1Nh26tSpYo/R0dEhNzf3if2ePHkStVqtEZuRkRF169YtcXx6enp4enry+eefEx4ezsmTJzl//nyJjxdCCCFE5SXJdQUwbNgwvvzySw4dOvTEkpCS9JWXl8e4ceOIj4/nwIEDLF26FECjXKIoPj4+ZGRkMGTIEKKjo0lMTGTjxo3KDZNTp05l8eLFbNmyhYSEBGbMmEFsbCyTJk0qcYy+vr6EhoaydOlSEhMTWb16dZH11vns7Ow4d+4cCQkJ3Lhxo9Dk//333+fq1at88MEH/P777/z444/MnTuXKVOmKPXWTxIcHMxXX33Fr7/+yh9//MG3336Lnp4etra2JR6fEEIIISovSa4rgOHDh3PhwgXq1KlToJ65tIyNjdmzZw+xsbG0aNGCWbNmMWfOHACNOuyi1KxZk59//pnMzEzc3Nxo1aoV69evV2bTfX19mTJlCh999BFOTk6Ehoaye/du7O3tSxxj27ZtWb9+PStXrqR58+YcPHiQjz/+uNhjxo4dS6NGjXB1dcXMzKzA7DlAnTp12LdvH6dPn6Z58+ZMmDCBMWPGPLHvx5mamrJ+/Xo6dOiAs7Mzhw8fZs+ePdSsWbPEfQghhBCi8lKpH/8buXglbdq0iVGjRnHnzp0yq6kWRcvIyMDExIQ7d+5I/bUQosRaTf2mvEMQFVDMpyPKO4RKo6Q/v2UpvlfQN998Q/369alTpw5xcXFMnz6dwYMHS2IthBAvMUmShKgYpCzkFfTPP//wzjvv4OjoyIcffsigQYOUpzhOmDBBebT4f18TJkwo58iFEEIIIV5uUhYiNKSlpRX5BEFjY2PMzc1fcESVj5SFCCGEEBWPlIWIp2Jubi4JtBAvGam1FSBlIUJUFFIWIoQQQgghRBmR5FoIIYQQQogyIsl1GXB3d2fy5MnlHYaiJPGoVCp27dr1QuJ53ry8vOjbt2+xbV62r5EQQgghKidJriuw8PBwVCoV6enppT42NTWVnj17ln1QQgghhBCvMEmuy0F2dnZ5h4ClpSW6urrlHUaxXobrJIQQQghRGpJcl5GcnBx8fHwwMTGhVq1azJ49m/xVDu3s7Jg/fz4jRozA2NiYcePGAXD8+HE6duyInp4e1tbW+Pr6cu/ePaXPjRs34urqipGREZaWlgwbNoy0tDQAkpOT6dy5MwDVq1dHpVLh5eWlHJuXl8e0adOoUaMGlpaW+Pv7a8T7eFlIcnIyKpWKHTt20LlzZ/T19WnevDknT57UOGb9+vVYW1ujr69Pv379WL58OaampiW6Pv7+/rRo0YK1a9cqfQwePJg7d+4obfLLOxYsWEDt2rVp1KgRAOfPn6dLly7o6elRs2ZNxo0bR2ZmZoFzBAQEYGZmhrGxMRMmTCg2Oc/KysLPz486depgYGDAa6+9Rnh4uLI/ODgYU1NTfvrpJxo1aoS+vj4DBw7k/v37hISEYGdnR/Xq1fH19SU3N7fYsWdlZZGRkaHxEkIIIUTlJMl1GQkJCaFKlSqcPn2alStXsnz5cjZs2KDsX7p0Kc2bN+fs2bPMnj2bpKQkevTowYABAzh37hxbtmzh+PHj+Pj4KMc8fPiQ+fPnExcXx65du0hOTlYSaGtra7Zv3w5AQkICqamprFy5UiMeAwMDIiMjWbJkCfPmzePQoUPFjmHWrFn4+fkRGxuLg4MDQ4cOJScnB4CIiAgmTJjApEmTiI2N5Y033mDBggWlukaXLl3ihx9+YM+ePYSGhnL27Fnef/99jTZhYWEkJCRw6NAhfvrpJ+7du4eHhwfVq1cnKiqKrVu3cvjwYY3rlH9cfHw84eHhfP/99+zYsYOAgIAiY/Hx8eHkyZNs3ryZc+fOMWjQIHr06EFiYqLS5v79+3z++eds3ryZ0NBQwsPD6devH/v27WPfvn1s3LiRtWvXsm3btmLHHRgYiImJifKytrYu1XUTQgghRMUhD5EpA+7u7qSlpfHbb7+hUqkAmDFjBrt37+bChQvY2dnh4uLCzp07lWO8vb3R1tZm7dq1yrbjx4/j5ubGvXv3qFatWoHzREdH07p1a+7evYuhoSHh4eF07tyZ27dva8wgu7u7k5uby7Fjx5Rtbdq0oUuXLixatAh4NHO9c+dO+vbtS3JyMvXq1WPDhg2MGTMGgAsXLtC0aVPi4+Np3LgxQ4YMITMzk59++knp85133uGnn34qUc23v78/n3zyCVeuXKFOnToAhIaG0rt3b/766y8sLS3x8vIiNDSUlJQUdHR0gEez5dOnT+fq1asYGBgAsG/fPjw9Pfn777+xsLDAy8uLPXv2cPXqVfT19QH48ssvmTp1Knfu3EFLSwt3d3datGjBihUrSElJoX79+qSkpFC7dm0lxm7dutGmTRsWLlxIcHAwo0aN4tKlSzRo0AB49PTKjRs3cu3aNQwNDQHo0aMHdnZ2fPnll0WOPSsri6ysLOV9RkYG1tbW8hAZUWKyzrUAWedaiPJW0ofIyMx1GWnbtq2SWAO0a9eOxMREpWTA1dVVo31cXBzBwcEajxf38PAgLy+Py5cvAxATE4Onpyc2NjYYGRnh5uYGQEpKyhPjcXZ21nhvZWWllJSU5BgrKysA5ZiEhATatGmj0f6/75/ExsZGSazh0TXKy8sjISFB2ebk5KQk1gDx8fE0b95cSawBOnToUOC45s2bK4l1ft+ZmZlcvXq1QBznz58nNzcXBwcHjet/9OhRkpKSlHb6+vpKYg1gYWGBnZ2dkljnb3vSddXV1cXY2FjjJYQQQojKSZ7Q+II8nhwCZGZmMn78eHx9fQu0tbGxUcohPDw82LRpE2ZmZqSkpODh4VGiG/2qVq2q8V6lUpGXl1fiY/J/UXjSMWXtv9fpecjMzERbW5uYmBi0tbU19j2eOBd2DZ/mugohhBDi1SHJdRmJjIzUeH/q1Cns7e0LJG/5WrZsyYULF2jYsGGh+8+fP8/NmzdZtGiRUqMbHR2t0SZ/hvdJN9SVhUaNGhEVFaWx7b/vnyQlJYW///5bKcU4deoUWlpayo2LhXF0dCQ4OJh79+4piXdERESB4+Li4njw4AF6enpK34aGhoXWN7u4uJCbm0taWhodO3Ys1RiEEEIIIYojZSFlJCUlhSlTppCQkMD333/PqlWrmDRpUpHtp0+fzokTJ/Dx8SE2NpbExER+/PFH5UY9GxsbdHR0WLVqFX/88Qe7d+9m/vz5Gn3Y2tqiUqn46aefuH79eqEraJSVDz74gH379rF8+XISExNZu3Yt+/fv1yiFeZJq1aoxcuRI4uLiOHbsGL6+vgwePBhLS8sijxk+fLhy3K+//sqRI0f44IMPePfdd7GwsFDaZWdnM2bMGC5cuMC+ffuYO3cuPj4+aGkV/Ig7ODgwfPhwRowYwY4dO7h8+TKnT58mMDCQvXv3lu7CCCGEEEI8RpLrMjJixAgePHhAmzZtmDhxIpMmTVKW3CuMs7MzR48e5eLFi3Ts2BEXFxfmzJmjzOqamZkRHBzM1q1badKkCYsWLWLp0qUafdSpU4eAgABmzJiBhYVFgRU0ylKHDh348ssvWb58Oc2bNyc0NJQPP/yw0Bsvi9KwYUP69+9Pr1696N69O87OzqxZs6bYY/T19Tlw4AC3bt2idevWDBw4kK5du7J69WqNdl27dsXe3p5OnTrx9ttv8+abbxZYfvBxQUFBjBgxgo8++ohGjRrRt29foqKisLGxKfF4hBBCCCH+S1YLEU9t7Nix/P777xqrkhTF39+fXbt2ERsb+/wDe8mV9G5jIYQQQrw8SvrzW2quRYktXbqUN954AwMDA/bv309ISMgTZ56FEEIIIV4lklyLEjt9+jRLlizh7t271K9fn88//xxvb28AmjZtypUrVwo97vG1vIUQQgghKjMpCxFl4sqVKzx8+LDQfRYWFhgZGb3giF5eUhYihBBCVDxSFiJeKFtb2/IOQYjnRp6QKF4G8oRGISoGWS1ECCGEEEKIMiLJ9UvMzs6OFStWlKitSqVi165dzzWe5ORkVCrVE1f8cHd3Z/LkyU99nieNJTw8HJVKRXp6+lOfQwghhBDieZDk+gV4EYlveSivJLd9+/akpqZiYmLyxLaSiAshhBDiRZLkWlQ4Ojo6WFpalurpkM9KrVaTk5Pzws4nhBBCiIrplUqu3d3d+eCDD5g8eTLVq1fHwsKC9evXc+/ePUaNGoWRkRENGzZk//79yjG//vorPXv2xNDQEAsLC959911u3Lih0aevry/Tpk2jRo0aWFpaajwZ0M7ODoB+/fqhUqmU90lJSbz11ltYWFhgaGhI69atOXz48DON78aNG/Tr1w99fX3s7e3ZvXu3xv4njSU0NJTXX38dU1NTatasSZ8+fUhKSir0XMnJyXTu3BmA6tWro1Kp8PLyUvbn5eUVeU2edSz/nY2+cuUKnp6eVK9eHQMDA5o2bcq+ffuKjTErKwtfX1/Mzc2pVq0ar7/+OlFRUQXOsX//flq1aoWuri7ffvstWlpaREdHa8S6YsUKbG1tycvLK9UYhRBCCFH5vFLJNUBISAi1atXi9OnTfPDBB7z33nsMGjSI9u3bc+bMGbp37867777L/fv3SU9Pp0uXLri4uBAdHU1oaCjXrl1j8ODBBfo0MDAgMjKSJUuWMG/ePA4dOgSgJGxBQUGkpqYq7zMzM+nVqxdhYWGcPXuWHj164OnpSUpKylOPLSAggMGDB3Pu3Dl69erF8OHDuXXrFkCJxnLv3j2mTJlCdHQ0YWFhaGlp0a9fv0KTRmtra7Zv3w5AQkICqamprFy5skTX5FnH8l8TJ04kKyuLX375hfPnz7N48WIMDQ2LjXHatGls376dkJAQzpw5Q8OGDfHw8ChwjhkzZrBo0SLi4+N588036datG0FBQRptgoKC8PLyQkur8G+nrKwsMjIyNF5CCCGEqJxeqXWu3d3dyc3NVR7XnZubi4mJCf379+ebbx4ttfXPP/9gZWXFyZMnOXz4MMeOHePAgQNKH3/++SfW1tYkJCTg4OBQoE+ANm3a0KVLFxYtWgQ8qrneuXMnffv2LTa+Zs2aMWHCBHx8fIBHs96TJ08u0c2BKpWKjz/+mPnz5wOPEmVDQ0P2799Pjx49+OSTT544lv+6ceMGZmZmnD9/nmbNmpGcnEy9evU4e/YsLVq0IDw8nM6dO3P79m1MTU2LvM6FXZNnGct/z+vs7MyAAQOYO3dugb4Ki/HevXtUr16d4OBghg0bBsDDhw+V6z116lTluF27dvHWW28p/f3www9MmDCB1NRUdHV1OXPmDK6urvzxxx/KXyX+y9/fn4CAgALbZZ3rikOW4hMvA1mKT4jyVdJ1rl+5mWtnZ2fl39ra2tSsWRMnJydlm4WFBQBpaWnExcVx5MgRDA0NlVfjxo0BNMolHu8TwMrKirS0tGLjyMzMxM/PD0dHR0xNTTE0NCQ+Pv6ZZq4fj8PAwABjY2MljpKMJTExkaFDh1K/fn2MjY2VZPFpYnqaa1LSsfyXr68vn3zyCR06dGDu3LmcO3eu2L6TkpJ4+PAhHTp0ULZVrVqVNm3aEB8fr9HW1dVV433fvn3R1tZm586dAAQHB9O5c+ciE2uAmTNncufOHeV19erVYuMTQgghRMX1yj1EpmrVqhrvVSqVxrb8m+Ty8vLIzMzE09OTxYsXF+jHysqq2D6fVH/r5+fHoUOHWLp0KQ0bNkRPT4+BAweSnZ1d6jGVJI6SjMXT0xNbW1vWr19P7dq1ycvLo1mzZk8V09Nck6c93tvbGw8PD/bu3cvBgwcJDAxk2bJlfPDBB6WO+78MDAw03uvo6DBixAiCgoLo378/3333nUY5TGF0dXXR1dV95liEEEII8fJ75ZLr0mjZsiXbt2/Hzs6OKlWe/lJVrVqV3NxcjW0RERF4eXnRr18/4FHym5yc/CzhFutJY7l58yYJCQmsX7+ejh07AnD8+PFi+9TR0QEoMLbyYG1tzYQJE5gwYQIzZ85k/fr1fPDBB4XG2KBBA3R0dIiIiFCeLPnw4UOioqJKVILj7e1Ns2bNWLNmDTk5OfTv3/+5jEkIIYQQFc8rVxZSGhMnTuTWrVsMHTqUqKgokpKSOHDgAKNGjSpVQmlnZ0dYWBj//PMPt2/fBsDe3p4dO3YQGxtLXFwcw4YNe66rTTxpLNWrV6dmzZqsW7eOS5cu8fPPPzNlypRi+7S1tUWlUvHTTz9x/fp1MjMzn1v8xZk8eTIHDhzg8uXLnDlzhiNHjuDo6FhkjAYGBrz33ntMnTqV0NBQLly4wNixY7l//z5jxox54vkcHR1p27Yt06dPZ+jQoejp6T3vIQohhBCigpDkuhi1a9cmIiKC3NxcunfvjpOTE5MnT8bU1LTIlSEKs2zZMg4dOoS1tTUuLi4ALF++nOrVq9O+fXs8PT3x8PCgZcuWz2soTxyLlpYWmzdvJiYmhmbNmvHhhx/y6aefFttnnTp1CAgIYMaMGVhYWCg3Yr5oubm5TJw4EUdHR3r06IGDgwNr1qwpNsZFixYxYMAA3n33XVq2bMmlS5c4cOAA1atXL9E5x4wZQ3Z2NqNHj35u4xJCCCFExfNKrRYiRFmZP38+W7dufeLNk4Up6d3G4uUhq4WIl4GsFiJE+Srpz2+puRaiFPJr41evXs0nn3xS3uGIF0SSGiGEECUlZSEVwKZNmzSW0Hv81bRp0/IOr1Qq+lh8fHxo1aoV7u7uUhIihBBCiAKkLKQCuHv3LteuXSt0X9WqVZUVLyqCyjSWpyVlIUIIIUTFI2UhlYiRkRFGRkblHUaZqExjEZWf1FqLl4mUJwlRMUhZiBBCCCGEEGVEkmshhBBCCCHKiCTX4qURHByMqalpmfQVHh6OSqUiPT29TPor7/MIIYQQomKQ5Fo8Ey8vL/r27VveYQghhBBCvBQkuRZCCCGEEKKMSHItSmTbtm04OTmhp6dHzZo16datG1OnTiUkJIQff/wRlUqFSqUiPDy80FKJ2NhYVCoVycnJyrbg4GBsbGzQ19enX79+3Lx5U9mXnJyMlpYW0dHRGnGsWLECW1tb8vLySj2G7du307RpU3R1dbGzs2PZsmUa+zdu3IirqytGRkZYWloybNgw0tLSNNrs27cPBwcH9PT06Ny5s8Z4ipKVlUVGRobGSwghhBCVkyTX4olSU1MZOnQoo0ePJj4+nvDwcPr378/cuXMZPHgwPXr0IDU1ldTUVNq3b1+iPiMjIxkzZgw+Pj7ExsbSuXNnjSce2tnZ0a1bN4KCgjSOCwoKwsvLCy2t0n10Y2JiGDx4MEOGDOH8+fP4+/sze/ZsgoODlTYPHz5k/vz5xMXFsWvXLpKTk/Hy8lL2X716lf79++Pp6UlsbCze3t7MmDHjiecODAzExMREeVlbW5cqdiGEEEJUHLLOtXii1NRUcnJy6N+/v/KQFycnJwD09PTIysrC0tKyVH2uXLmSHj16MG3aNAAcHBw4ceIEoaGhShtvb28mTJjA8uXL0dXV5cyZM5w/f54ff/yx1GNYvnw5Xbt2Zfbs2cr5Lly4wKeffqok0I8/cbF+/fp8/vnntG7dmszMTAwNDfniiy9o0KCBMuPdqFEjzp8/z+LFi4s998yZM5kyZYryPiMjQxJsIYQQopKSmWvxRM2bN6dr1644OTkxaNAg1q9fz+3bt5+pz/j4eF577TWNbe3atdN437dvX7S1tdm5cyfwqIykc+fO2NnZPdX5OnTooLGtQ4cOJCYmkpubCzya3fb09MTGxgYjIyPc3NwASElJKXHMhdHV1cXY2FjjJYQQQojKSZJr8UTa2tocOnSI/fv306RJE1atWkWjRo24fPlyoe3zSzbUarWy7eHDh6U+r46ODiNGjCAoKIjs7Gy+++47jdnlsnTv3j08PDwwNjZm06ZNREVFKUl9dnb2czmnEEIIISofSa5FiahUKjp06EBAQABnz55FR0eHnTt3oqOjo8z85jMzMwMelZPki42N1Wjj6OhIZGSkxrZTp04VOK+3tzeHDx9mzZo1SmnK03B0dCQiIkJjW0REBA4ODmhra/P7779z8+ZNFi1aRMeOHWncuHGBmxkdHR05ffr0E2MWQgghxKtLkmvxRJGRkSxcuJDo6GhSUlLYsWMH169fx9HRETs7O86dO0dCQgI3btzg4cOHNGzYEGtra/z9/UlMTGTv3r0FVubw9fUlNDSUpUuXkpiYyOrVqzXqrfM5OjrStm1bpk+fztChQ9HT03uqMXz00UeEhYUxf/58Ll68SEhICKtXr8bPzw8AGxsbdHR0WLVqFX/88Qe7d+9m/vz5Gn1MmDCBxMREpk6dSkJCAt99953GDZFCCCGEEJJciycyNjbml19+oVevXjg4OPDxxx+zbNkyevbsydixY2nUqBGurq6YmZkRERFB1apV+f777/n9999xdnZm8eLFGiuBALRt25b169ezcuVKmjdvzsGDB/n4448LPf+YMWPIzs5+ppKQli1b8sMPP7B582aaNWvGnDlzmDdvnnIzo5mZGcHBwWzdupUmTZqwaNEili5dqtGHjY0N27dvZ9euXTRv3pwvv/yShQsXPnVMQgghhKh8VOrHC2OFeAnNnz+frVu3cu7cufIOpUxkZGRgYmLCnTt35ObGl1yrqd+UdwhCKGI+HVHeIQjxSivpz29Zik+8tDIzM0lOTmb16tUFZr6FeBEkmRFCCFFaUhYiXlo+Pj60atUKd3f3AiUhEyZMwNDQsNDXhAkTyiliIYQQQrzqpCxEVEhpaWlFPkbc2NgYc3PzFxxRyUlZiBBCCFHxSFmIqNTMzc1f6gRavLykjlpUVFKmJETFIGUhQgghhBBClBFJrsVz5e/vT4sWLV7IuVQqFbt27Xoh58pnZ2fHihUrXug5hRBCCPHykuRaPFd+fn6EhYWVdxhCCCGEEC+E1FyL5yp/BQ8hhBBCiFeBzFyLYrm7u+Pr68u0adOoUaMGlpaW+Pv7K/tTUlJ46623MDQ0xNjYmMGDB3Pt2jVl/3/LQsLDw2nTpg0GBgaYmprSoUMHrly5ouz/8ccfadmyJdWqVaN+/foEBASQk5PzVLFfvXqVwYMHY2pqSo0aNXjrrbdITk4G4ODBg1SrVo309HSNYyZNmkSXLl2U98ePH6djx47o6elhbW2Nr68v9+7de6p4hBBCCFH5SXItnigkJAQDAwMiIyNZsmQJ8+bN49ChQ+Tl5fHWW29x69Ytjh49yqFDh/jjjz94++23C+0nJyeHvn374ubmxrlz5zh58iTjxo1DpVIBcOzYMUaMGMGkSZO4cOECa9euJTg4mAULFpQ65ocPH+Lh4YGRkRHHjh0jIiICQ0NDevToQXZ2Nl27dsXU1JTt27crx+Tm5rJlyxaGDx8OQFJSEj169GDAgAGcO3eOLVu2cPz4cXx8fEoVS1ZWFhkZGRovIYQQQlROUhYinsjZ2Zm5c+cCYG9vz+rVq5U66vPnz3P58mWsra0B+Oabb2jatClRUVG0bt1ao5+MjAzu3LlDnz59aNCgAQCOjo7K/oCAAGbMmMHIkSMBqF+/PvPnz2fatGnK+Utqy5Yt5OXlsWHDBiV5DwoKwtTUlPDwcLp3786QIUP47rvvGDNmDABhYWGkp6czYMAAAAIDAxk+fDiTJ09Wxv7555/j5ubGF198QbVq1UoUS2BgIAEBAaWKXwghhBAVk8xciydydnbWeG9lZUVaWhrx8fFYW1sriTVAkyZNMDU1JT4+vkA/NWrUwMvLCw8PDzw9PVm5ciWpqanK/ri4OObNm6fxtMWxY8eSmprK/fv3SxVzXFwcly5dwsjISOmrRo0a/PvvvyQlJQEwfPhwwsPD+fvvvwHYtGkTvXv3xtTUVOkjODhYIx4PDw/y8vK4fPlyiWOZOXMmd+7cUV5Xr14t1ViEEEIIUXHIzLV4oqpVq2q8V6lU5OXlPVVfQUFB+Pr6EhoaypYtW/j44485dOgQbdu2JTMzk4CAAPr371/guJLOEufLzMykVatWbNq0qcA+MzMzAFq3bk2DBg3YvHkz7733Hjt37iQ4OFijj/Hjx+Pr61ugDxsbmxLHoquri66ubqniF0IIIUTFJMm1eGqOjo5cvXqVq1evKrPXFy5cID09nSZNmhR5nIuLCy4uLsycOZN27drx3Xff0bZtW1q2bElCQgINGzZ85thatmzJli1bMDc3L/YRpcOHD2fTpk3UrVsXLS0tevfurdHHhQsXyiQeIYQQQrwapCxEPLVu3brh5OTE8OHDOXPmDKdPn2bEiBG4ubnh6upaoP3ly5eZOXMmJ0+e5MqVKxw8eJDExESl7nrOnDl88803BAQE8NtvvxEfH8/mzZv5+OOPSx3b8OHDqVWrFm+99RbHjh3j8uXLhIeH4+vry59//qnR7syZMyxYsICBAwdqzDBPnz6dEydO4OPjQ2xsLImJifz444+lvqFRCCGEEK8OSa7FU1OpVPz4449Ur16dTp060a1bN+rXr8+WLVsKba+vr8/vv//OgAEDcHBwYNy4cUycOJHx48cD4OHhwU8//cTBgwdp3bo1bdu25bPPPsPW1rbUsenr6/PLL79gY2ND//79cXR0ZMyYMfz7778aM9kNGzakTZs2nDt3TlklJJ+zszNHjx7l4sWLdOzYERcXF+bMmUPt2rVLHY8QQgghXg0qtVqtLu8ghHiVZGRkYGJiwp07d4otWRHPR6up35R3CEI8lZhPR5R3CEK80kr681tqroUQrxRJUIQQQjxPUhYiKoRNmzZpLIn3+Ktp06blHZ4QQgghBCAz16KCePPNN3nttdcK3fffpQKFEEIIIcqLJNeiQjAyMsLIyKi8wxBCCCGEKJYk10KIV4LcyCgqOrlfQIiKQWquhRBCCCGEKCOSXIsykZycjEqlIjY2tlzjUKlU7Nq164We087OjhUrVrzQcwohhBDi5STJtSgT1tbWpKam0qxZsxIf4+7uzuTJk59fUEIIIYQQL5jUXIsyoa2tjaWlZXmHIYQQQghRrmTm+hURGhrK66+/jqmpKTVr1qRPnz4kJSUB/6+kY8eOHXTu3Bl9fX2aN2/OyZMnleNHjx6Ns7MzWVlZAGRnZ+Pi4sKIESM0+ni8LOTXX3+lZ8+eGBoaYmFhwbvvvsuNGzcA8PLy4ujRo6xcuRKVSoVKpeLy5cs0bNiQpUuXasQeGxuLSqXi0qVLpR731atXGTx4MKamptSoUYO33nqL5ORkAA4ePEi1atVIT0/XOGbSpEl06dJFeX/8+HE6duyInp4e1tbW+Pr6cu/evVLHIoQQQojKT5LrV8S9e/eYMmUK0dHRhIWFoaWlRb9+/cjLy1PazJo1Cz8/P2JjY3FwcGDo0KHk5OQA8Pnnn3Pv3j1mzJihtE1PT2f16tWFni89PZ0uXbrg4uJCdHQ0oaGhXLt2jcGDBwOwcuVK2rVrx9ixY0lNTSU1NRUbGxtGjx5NUFCQRl9BQUF06tSJhg0blmrMDx8+xMPDAyMjI44dO0ZERASGhob06NGD7OxsunbtiqmpKdu3b1eOyc3NZcuWLQwfPhyApKQkevTowYABAzh37hxbtmzh+PHj+Pj4lDiOrKwsMjIyNF5CCCGEqJykLOQVMWDAAI33X3/9NWZmZly4cAFDQ0MA/Pz86N27NwABAQE0bdqUS5cu0bhxYwwNDfn2229xc3PDyMiIFStWcOTIEYyNjQs93+rVq3FxcWHhwoUa57S2tubixYs4ODigo6ODvr6+RjmJl5cXc+bM4fTp07Rp04aHDx/y3XffFZjNLoktW7aQl5fHhg0bUKlUwKNE3dTUlPDwcLp3786QIUP47rvvGDNmDABhYWGkp6cr1yswMJDhw4crteH29vZ8/vnnuLm58cUXX1CtWrUnxhEYGEhAQECp4xdCCCFExSMz16+IxMREhg4dSv369TE2NsbOzg6AlJQUpY2zs7PybysrKwDS0tKUbe3atcPPz4/58+fz0Ucf8frrrxd5vri4OI4cOaLxmPLGjRsDKOUohalduza9e/fm66+/BmDPnj1kZWUxaNCgUo85Li6OS5cuYWRkpMRQo0YN/v33XyWG4cOHEx4ezt9//w08esx67969MTU1VfoIDg7WGIeHhwd5eXlcvny5RHHMnDmTO3fuKK+rV6+WeixCCCGEqBhk5voV4enpia2tLevXr6d27drk5eXRrFkzsrOzlTaPP0Y8f6b38bKRvLw8IiIi0NbWfmL9c2ZmJp6enixevLjAvvzEvSje3t68++67fPbZZwQFBfH222+jr69fonH+N4ZWrVqxadOmAvvMzMwAaN26NQ0aNGDz5s2899577Ny5k+DgYI0+xo8fj6+vb4E+bGxsShSHrq4uurq6pY5fCCGEEBWPJNevgJs3b5KQkMD69evp2LEj8OgmvdL69NNP+f333zl69CgeHh4EBQUxatSoQtu2bNmS7du3Y2dnR5UqhX/MdHR0yM3NLbC9V69eGBgY8MUXXxAaGsovv/xS6ljzY9iyZQvm5uZFlq/Ao9nrTZs2UbduXbS0tJTSmPw+Lly4UOp6byGEEEK8mqQs5BVQvXp1atasybp167h06RI///wzU6ZMKVUfZ8+eZc6cOWzYsIEOHTqwfPlyJk2axB9//FFo+4kTJ3Lr1i2GDh1KVFQUSUlJHDhwgFGjRikJtZ2dHZGRkSQnJ3Pjxg1lllxbWxsvLy9mzpyJvb097dq1e6pxDx8+nFq1avHWW29x7NgxLl++THh4OL6+vvz5558a7c6cOcOCBQsYOHCgxizz9OnTOXHiBD4+PsTGxpKYmMiPP/5YqhsahRBCCPHqkOT6FaClpcXmzZuJiYmhWbNmfPjhh3z66aclPv7ff//lnXfewcvLC09PTwDGjRtH586deffddwudfa5duzYRERHk5ubSvXt3nJycmDx5MqampmhpPfrY+fn5oa2tTZMmTTAzM9Oo/x4zZgzZ2dlFzoyXhL6+Pr/88gs2Njb0798fR0dHxowZw7///qsxk92wYUPatGnDuXPnlFVC8jk7O3P06FEuXrxIx44dcXFxYc6cOdSuXfup4xJCCCFE5aVSq9Xq8g5CiP86duwYXbt25erVq1hYWJR3OGUqIyMDExMT7ty5U2y5iihbraZ+U94hCPFMYj4dUd4hCPFKK+nPb6m5Fi+VrKwsrl+/jr+/P4MGDap0ibUoP5KYCCGEeBGkLES8VL7//ntsbW1JT09nyZIlGvs2bdqksSTe46+mTZuWU8RCCCGEEP+PlIWICuPu3btcu3at0H1Vq1bF1tb2BUf0dKQsRAghhKh4pCxEVDpGRkYYGRmVdxiiApE6a1GZSGmTEBWDlIUIIYQQQghRRiS5Fs/M3d2dyZMnv/Dz2tnZsWLFijLrr7zGIYQQQojKQ5JrIYQQQgghyogk10IIIYQQQpQRSa5FmcjLy2PatGnUqFEDS0tL/P39lX3p6el4e3tjZmaGsbExXbp0IS4uTtmflJTEW2+9hYWFBYaGhrRu3ZrDhw9r9J+Wloanpyd6enrUq1ePTZs2FYhh+fLlODk5YWBggLW1Ne+//z6ZmZkabSIiInB3d0dfX5/q1avj4eHB7du3SzSOkoxFCCGEEK82Sa5FmQgJCcHAwIDIyEiWLFnCvHnzOHToEACDBg0iLS2N/fv3ExMTQ8uWLenatSu3bt0CIDMzk169ehEWFsbZs2fp0aMHnp6eGo9D9/Ly4urVqxw5coRt27axZs0a0tLSNGLQ0tLi888/57fffiMkJISff/6ZadOmKftjY2Pp2rUrTZo04eTJkxw/fhxPT0+Nx7cXN46SjKUwWVlZZGRkaLyEEEIIUTnJOtfimbm7u5Obm8uxY8eUbW3atKFLly706dOH3r17k5aWhq6urrK/YcOGTJs2jXHjxhXaZ7NmzZgwYQI+Pj5cvHiRRo0acfr0aVq3bg3A77//jqOjI5999lmRNyFu27aNCRMmcOPGDQCGDRtGSkoKx48fL/U4Fi1axPHjx59qLP7+/gQEBBTYLutcP3+yFJ+oTGQpPiHKl6xzLV4oZ2dnjfdWVlakpaURFxdHZmYmNWvW1Nj/4MEDkpKSgEcz1/7+/uzdu5fU1FRycnJ48OCBMnMdHx9PlSpVaNWqlXJ848aNMTU11ejz8OHDBAYG8vvvv5ORkUFOTg7//vsv9+/fR19fn9jYWAYNGvRU4wBKNJbCzJw5kylTpijvMzIysLa2LjYOIYQQQlRMklyLMlG1alWN9yqViry8PDIzM7GysiI8PLzAMfnJsZ+fH4cOHWLp0qU0bNgQPT09Bg4cSHZ2donPn5ycTJ8+fXjvvfdYsGABNWrU4Pjx44wZM4bs7Gz09fXR09N76nEAJRpLYXR1dTVmuoUQQghReUlyLZ6rli1b8s8//1ClShXs7OwKbRMREYGXlxf9+vUDHiWxycnJyv7GjRuTk5NDTEyMUhaSkJBAenq60iYmJoa8vDyWLVuGltajWwl++OEHjfM4OzsTFhZWaIlGWY1FCCGEEK82uaFRPFfdunWjXbt29O3bl4MHD5KcnMyJEyeYNWsW0dHRANjb27Njxw5iY2OJi4tj2LBhymwxQKNGjejRowfjx48nMjKSmJgYvL29NWaiGzZsyMOHD1m1ahV//PEHGzdu5Msvv9SIZebMmURFRfH+++9z7tw5fv/9d7744gulJrssxiKEEEKIV5sk1+K5UqlU7Nu3j06dOjFq1CgcHBwYMmQIV65cwcLCAni0hF716tVp3749np6eeHh40LJlS41+goKCqF27Nm5ubvTv359x48Zhbm6u7G/evDnLly9n8eLFNGvWjE2bNhEYGKjRh4ODAwcPHiQuLo42bdrQrl07fvzxR6pUKdkfcEoyFiGEEEK82mS1ECFesJLebSyenawWIioTWS1EiPIlq4UIIV55kowIIYR40aQsRAghhBBCiDIiybUQQgghhBBlRJJrIYQQQgghyojUXAshKhy5UVG8iuQeAiEqBpm5FkIIIYQQooxIci3Khbu7O5MnT37q45OTk1GpVMTGxgIQHh6OSqXSeGpjaY4XQgghhCgLUhYiXknW1takpqZSq1at8g5FCCGEEJWIJNfilaStrY2lpWV5hyGEEEKISkbKQkS5ycnJwcfHBxMTE2rVqsXs2bPJf2CoSqVi165dGu1NTU0JDg5+Yr/37t3D2NiYbdu2aWzftWsXBgYG3L17t8iykrCwMFxdXdHX16d9+/YkJCRo9PHJJ59gbm6OkZER3t7ezJgxgxYtWjztJRBCCCFEJSPJtSg3ISEhVKlShdOnT7Ny5UqWL1/Ohg0bnrlfAwMDhgwZQlBQkMb2oKAgBg4ciJGRUZHHzpo1i2XLlhEdHU2VKlUYPXq0sm/Tpk0sWLCAxYsXExMTg42NDV988cUT48nKyiIjI0PjJYQQQojKScpCRLmxtrbms88+Q/X/tXfvcT3e/+PHH++id+koRSHlUMRCBxFzjjLajDmtTcgYmvNxlsOMGuW8mTHktJjTbA6jJlvNMcJoJCWfydqG0lhU798fvl0/71VI0cHzfru9b7eu63q9Xtfzemnr2avndV0qFQ0bNuTcuXMsWrSI9957r9hjDx06lNatW5Oamoq1tTVpaWns3buXiIiIx/abO3cu7du3B2Dq1Kl0796df//9F319fZYtW4a/vz+DBw8GYMaMGRw4cIDMzMzHjhkUFMTs2bOLfU1CCCGEKPtk5VqUmlatWqFSqZRtDw8PEhISyMnJKfbY7u7uNGnShLCwMAA2btyIra0t7dq1e2y/pk2bKl9bW1sDkJaWBsDFixdxd3fPd54nmTZtGunp6crn2rVrRboWIYQQQpQfklyLMkmlUin113kePHhQpDGGDh2q1GivXbuWwYMHayXzBalcubJWDAC5ublFOu9/qdVqTExMtD5CCCGEqJgkuRal5tixY1rbR48exd7eHl1dXSwtLUlNTVWOJSQkcPfu3SKN/84773D16lWWLl3KhQsX8PPzK1a8DRs25MSJE1r7/rsthBBCiJeb1FyLUpOSksL48eMZPnw4p06dYtmyZYSGhgLQqVMnli9fjoeHBzk5OUyZMkVrVflpVK1alV69ejFp0iS6du1K7dq1ixXvBx98wHvvvYebmxutW7dmy5YtnD17lnr16hVrXCGEEEJUHJJci1IzcOBA7t27h7u7O7q6uowZM4Zhw4YBEBoayuDBg2nbti01a9ZkyZIlxMbGFvkc/v7+bN68WeupH8/K19eXK1euMHHiRP7991/69u3LoEGDOH78eLHHFkIIIUTFoNL8t7BViApkw4YNjBs3juvXr6Onp1fi43fp0gUrKys2bNjw1H0yMjIwNTUlPT1d6q+fkeuk9aUdghAvXOyCgaUdghAvtaf9+S0r16JCunv3LqmpqQQHBzN8+PASSazv3r3LF198gZeXF7q6unz99ddERERw8ODBEohYFIUkGUIIIcoquaFRVEjz58+nUaNGWFlZMW3atBIZU6VSsXfvXtq1a4erqyvfffcd27dvx9PTs0TGF0IIIUT5J2UhQrxgUhYihBBClD9SFiKEqJCk3lq8rKQcSojyQcpChBBCCCGEKCGSXAshhBBCCFFCJLkWQgghhBCihEhyLYQQQgghRAmR5FoUy/3790t8TI1GQ3Z2domPWxxlMSYhhBBClD2SXFcgHTp0ICAggICAAExNTbGwsCAwMJC8py1mZWUxceJEatWqhaGhIS1btiQqKkprjOjoaNq2bYuBgQE2NjaMHj2af/75RzluZ2fHnDlzGDhwICYmJsrryguTnJyMSqUiPDyc1q1bo6+vzyuvvMLhw4eVNlFRUahUKvbt24erqytqtZro6Ghyc3MJCgqibt26GBgY0KxZM7Zt26b0u3XrFr6+vlhaWmJgYIC9vT1r164FHib9AQEBWFtbo6+vj62tLUFBQVoxxcXFKWPdvn0blUqlzMezxlSQrKwsMjIytD5CCCGEqJgkua5gwsLCqFSpEsePH2fJkiUsXLiQ1atXAxAQEMCRI0cIDw/n7Nmz9OnTB29vbxISEgBITEzE29ub3r17c/bsWbZs2UJ0dDQBAQFa5wgJCaFZs2acPn2awMDAp4pr0qRJTJgwgdOnT+Ph4YGPjw9///23VpupU6cSHBxMfHw8TZs2JSgoiPXr1/PFF19w/vx5xo0bxzvvvKMk5oGBgVy4cIF9+/YRHx/PihUrsLCwAGDp0qXs3r2brVu3cvHiRTZt2oSdnV2R57OoMRUkKCgIU1NT5WNjY1PkOIQQQghRPshLZCqQDh06kJaWxvnz51GpVMDD5HD37t3s37+fevXqkZKSQs2aNZU+np6euLu7M2/ePIYOHYquri4rV65UjkdHR9O+fXv++ecf9PX1sbOzw9nZmZ07dz5VTMnJydStW5fg4GCmTJkCQHZ2NnXr1uWDDz5g8uTJREVF0bFjR3bt2sUbb7wBPFztNTc3JyIiAg8PD2W8oUOHcvfuXTZv3szrr7+OhYUFa9asyXfe0aNHc/78eSIiIpS5+G9Mp0+fpnnz5sDDleuqVaty6NAhOnTo8MwxFSQrK4usrCxlOyMjAxsbG3mJzDOS51yLl5U851qI0iUvkXlJtWrVSiuZ9PDwIDQ0lHPnzpGTk4ODg4NW+6ysLKpVqwbAmTNnOHv2LJs2bVKOazQacnNzSUpKwtHREQA3N7cix/VoMlqpUiXc3NyIj4/XavPouJcvX+bu3bt06dJFq839+/dxdnYGYMSIEfTu3ZtTp07RtWtXevbsSevWrQEYNGgQXbp0oWHDhnh7e9OjRw+6du1a5LiLGlNB1Go1arW6yOcWQgghRPkjyfVLIjMzE11dXWJjY9HV1dU6ZmRkpLQZPnw4o0ePzte/Tp06yteGhobPJcZHx83MzARgz5491KpVS6tdXqLarVs3rl69yt69ezl48CCdO3dm1KhRhISE4OLiQlJSEvv27SMiIoK+ffvi6enJtm3b0NF5WA316B9tHjx4UCIxCSGEEOLlJsl1BXPs2DGt7aNHj2Jvb4+zszM5OTmkpaXRtm3bAvu6uLhw4cIFGjRoUOJxHT16lHbt2gEPy0JiY2Pz1XI/qnHjxqjValJSUmjfvn2h7SwtLfHz88PPz4+2bdsyadIkQkJCADAxMaFfv37069ePt956C29vb27evImlpSUAqampyorzozc3FjcmIYQQQry8JLmuYFJSUhg/fjzDhw/n1KlTLFu2jNDQUBwcHPD19WXgwIGEhobi7OzMn3/+SWRkJE2bNqV79+5MmTKFVq1aERAQwNChQzE0NOTChQscPHiQ5cuXFyuuzz77DHt7exwdHVm0aBG3bt1iyJAhhbY3NjZm4sSJjBs3jtzcXF599VXS09OJiYnBxMQEPz8/ZsyYgaurK02aNCErK4vvv/9eKV1ZuHAh1tbWODs7o6OjwzfffIOVlRVmZmbo6OjQqlUrgoODqVu3LmlpaXz00UdPvIaniUkIIYQQLzdJriuYgQMHcu/ePdzd3dHV1WXMmDHK4/LWrl3LJ598woQJE/j999+xsLCgVatW9OjRA4CmTZty+PBhpk+fTtu2bdFoNNSvX59+/foVO67g4GCCg4OJi4ujQYMG7N69W3myR2HmzJmDpaUlQUFBXLlyBTMzM1xcXPjwww8B0NPTY9q0aSQnJ2NgYEDbtm0JDw8HHibC8+fPJyEhAV1dXVq0aMHevXuVkpA1a9bg7++Pq6srDRs2ZP78+U9Vk/2kmIQQQgjxcpOnhVQgHTp0oHnz5ixevLi0Q1EU9GSOl93T3m0sCiZPCxEvK3laiBClS54WIoSokCTBEEIIUZbJS2REscybNw8jI6MCP926dSvt8IQQQgghXigpCxHFcvPmTW7evFngMQMDg3yPrBNSFiKEEEKUR1IWIl4Ic3NzzM3NSzsM8RKRmmvxspKSKCHKBykLEUIIIYQQooRIci2eWYcOHRg7dmxph/HMoqKiUKlU3L59u7RDEUIIIUQFIcm1eGm1bt2a1NRUTE1NSzsUIYQQQlQQklyLMuv+/fvPdXw9PT2srKxQqVTP9TxCCCGEeHlIci2eyj///MPAgQMxMjLC2tqa0NBQreNZWVlMnDiRWrVqYWhoSMuWLYmKilKOr1u3DjMzM3bt2oW9vT36+vp4eXlx7do1pc2sWbNo3rw5q1evpm7duujr6wNw+/Zthg4diqWlJSYmJnTq1IkzZ84o/c6cOUPHjh0xNjbGxMQEV1dXTp48CcDVq1fx8fGhatWqGBoa0qRJE/bu3QsUXBayfft2mjRpglqtxs7OLt912tnZMW/ePIYMGYKxsTF16tThyy+/LJE5FkIIIUT5J8m1eCqTJk3i8OHDfPvttxw4cICoqChOnTqlHA8ICODIkSOEh4dz9uxZ+vTpg7e3NwkJCUqbu3fvMnfuXNavX09MTAy3b9+mf//+Wue5fPky27dvZ8eOHcTFxQHQp08f0tLS2LdvH7Gxsbi4uNC5c2flEYC+vr7Url2bEydOEBsby9SpU6lcuTIAo0aNIisri59++olz587x6aefYmRkVOA1xsbG0rdvX/r378+5c+eYNWsWgYGBrFu3TqtdaGgobm5unD59mpEjRzJixAguXrxY6NxlZWWRkZGh9RFCCCFExSSP4hNPlJmZyVdffcXGjRvp3LkzAGFhYdSuXRuAlJQU1q5dS0pKCjVr1gRg4sSJ7N+/n7Vr1zJv3jwAHjx4wPLly2nZsqUyhqOjI8ePH8fd3R14WAqyfv16LC0tAYiOjub48eOkpaWhVqsBCAkJYdeuXWzbto1hw4aRkpLCpEmTaNSoEQD29vZK7CkpKfTu3RsnJycA6tWrV+h1Lly4kM6dOxMYGAiAg4MDFy5cYMGCBQwaNEhp99prrzFy5EgApkyZwqJFizh06BANGzYscNygoCBmz579VHMthBBCiPJNVq7FEyUmJnL//n0lKYaHz7fOSybPnTtHTk4ODg4OWm9oPHz4MImJiUqfSpUq0aJFC2W7UaNGmJmZER8fr+yztbVVEmt4WPKRmZlJtWrVtMZOSkpSxh4/fjxDhw7F09OT4OBgrXOOHj2aTz75hDZt2jBz5kzOnj1b6HXGx8fTpk0brX1t2rQhISGBnJwcZV/Tpk2Vr1UqFVZWVqSlpRU67rRp00hPT1c+j5bCCCGEEKJikZVrUWyZmZno6uoSGxuLrq6u1rHCSjAKY2homG9sa2trrfrtPGZmZsDDWu23336bPXv2sG/fPmbOnEl4eDhvvvkmQ4cOxcvLiz179nDgwAGCgoIIDQ3lgw8+KFJcj8orOcmjUqnIzc0ttL1arVZW3YUQQghRscnKtXii+vXrU7lyZY4dO6bsu3XrFpcuXQLA2dmZnJwc0tLSaNCggdbHyspK6ZOdna3caAhw8eJFbt++jaOjY6HndnFx4caNG1SqVCnf2BYWFko7BwcHxo0bx4EDB+jVqxdr165VjtnY2PD++++zY8cOJkyYwKpVqwo8l6OjIzExMVr7YmJicHBwyPdLgxBCCCFEQSS5Fk9kZGSEv78/kyZN4scff+TXX39l0KBB6Og8/PZxcHDA19eXgQMHsmPHDpKSkjh+/DhBQUHs2bNHGady5cp88MEHHDt2jNjYWAYNGkSrVq2UeuuCeHp64uHhQc+ePTlw4ADJycn88ssvTJ8+nZMnT3Lv3j0CAgKIiori6tWrxMTEcOLECSVhHzt2LD/88ANJSUmcOnWKQ4cOFZrMT5gwgcjISObMmcOlS5cICwtj+fLlTJw4sQRnUwghhBAVmZSFiKeyYMECMjMz8fHxwdjYmAkTJpCenq4cX7t2LZ988gkTJkzg999/x8LCglatWtGjRw+lTZUqVZgyZQpvv/02v//+O23btuWrr7567HlVKhV79+5l+vTpDB48mD///BMrKyvatWtHjRo10NXV5e+//2bgwIH88ccfWFhY0KtXL+UGwpycHEaNGsX//vc/TExM8Pb2ZtGiRQWey8XFha1btzJjxgzmzJmDtbU1H3/8sdbNjEIIIYQQj6PSaDSa0g5CVHzr1q1j7Nix8qpxICMjA1NTU9LT0zExMSntcMod10nrSzsEIUpF7IKBpR2CEC+1p/35LSvXQohyRRIMIYQQZZnUXAshhBBCCFFCJLkWL8SgQYOkJEQIIYQQFZ4k10IIIYQQQpQQqbkWQpQbcjOjeJnJ/QZClA+yci2EEEIIIUQJkeS6jOvQoQNjx44tsfFmzZpF8+bNS2y8F6mosa9bt055RfrjqFQqdu3a9cxxCSGEEELkqfDJdVRUFCqVqtzeTLdjxw7mzJlT2mG8cAUlvBMnTiQyMvKpx+jXr5/yinYoPDlPTU2lW7duzxqqEEIIIYRCaq7/z/3799HT0yuVcz948IDKlSsXGI+5uXmpxPQ4BcX7IhgZGWFkZPTU7Q0MDDAwMHhiOysrq+KEJYQQQgihKBcr17m5uQQFBVG3bl0MDAxo1qwZ27ZtQ6PR4OnpiZeXF3kvmrx58ya1a9dmxowZJCcn07FjRwCqVq2KSqVSXmXdoUMHAgICGDt2LBYWFnh5eQGwcOFCnJycMDQ0xMbGhpEjR5KZmakVT0xMDB06dKBKlSpUrVoVLy8vbt26BYCdnR2LFy/Wat+8eXNmzZqlbKtUKlasWMHrr7+OoaEhc+fOVVZVV69eTd26ddHX11fifLQsJCsriylTpmBjY4NaraZBgwbKK8QLKoPYtWsXKpWq0Lk9ceIEXbp0wcLCAlNTU9q3b8+pU6e02hQU7+Pk5OTg7++v/Hs1bNiQJUuW5Gu3Zs0amjRpglqtxtramoCAAGUOAd58801UKpWy/ejK84EDB9DX18/3F4kxY8bQqVOnfPOxbt06Zs+ezZkzZ1CpVKhUKtatW6dc36Or5NeuXaNv376YmZlhbm7OG2+8QXJysnI8KioKd3d3DA0NMTMzo02bNly9evWxcyKEEEKIl0O5SK6DgoJYv349X3zxBefPn2fcuHG88847/PTTT4SFhXHixAmWLl0KwPvvv0+tWrWYMWMGNjY2bN++HYCLFy+SmpqqleSFhYWhp6dHTEwMX3zxBQA6OjosXbqU8+fPExYWxo8//sjkyZOVPnFxcXTu3JnGjRtz5MgRoqOj8fHxIScnp0jXNGvWLN58803OnTvHkCFDALh8+TLbt29nx44dxMXFFdhv4MCBfP311yxdupT4+HhWrlxZpNXc/7pz5w5+fn5ER0dz9OhR7O3tee2117hz584T4y1Mbm4utWvX5ptvvuHChQvMmDGDDz/8kK1btyptVqxYwahRoxg2bBjnzp1j9+7dNGjQAHiY8AOsXbuW1NRUZftRnTt3xszMTPn3hYdJ/ZYtW/D19c3Xvl+/fkyYMIEmTZqQmppKamoq/fr1y9fuwYMHeHl5YWxszM8//0xMTAxGRkZ4e3tz//59srOz6dmzJ+3bt+fs2bMcOXKEYcOGPfYXmKysLDIyMrQ+QgghhKiYynxZSFZWFvPmzSMiIgIPDw8A6tWrR3R0NCtXrmTz5s2sXLmSgQMHcuPGDfbu3cvp06epVOnhpeWVVVSvXj3fqq69vT3z58/X2vfoKrGdnR2ffPIJ77//Pp9//jkA8+fPx83NTdkGaNKkSZGv6+2332bw4MFa++7fv8/69euxtLQssM+lS5fYunUrBw8exNPTU5mL4shb5c3z5ZdfYmZmxuHDh+nRo8dj4y1M5cqVmT17trJdt25djhw5wtatW+nbty8An3zyCRMmTGDMmDFKuxYtWgAo129mZlZoyYauri79+/dn8+bN+Pv7AxAZGcnt27fp3bt3vvYGBgYYGRlRqVKlx5aBbNmyhdzcXFavXq0kzGvXrsXMzIyoqCjc3NxIT0+nR48e1K9fHwBHR8fHzkdQUJDWfAghhBCi4irzK9eXL1/m7t27dOnSRam5NTIyYv369SQmJgLQp08f3nzzTYKDgwkJCcHe3v6pxnZ1dc23LyIigs6dO1OrVi2MjY159913+fvvv7l79y7w/1eui8vNzS3fPltb20IT67xz6+rq0r59+2KfP88ff/zBe++9h729PaamppiYmJCZmUlKSsoT432czz77DFdXVywtLTEyMuLLL79UxkxLS+P69evFnkdfX1+ioqK4fv06AJs2baJ79+5P9YSQwpw5c4bLly9jbGysfK+Zm5vz77//kpiYiLm5OYMGDcLLywsfHx+WLFlCamrqY8ecNm0a6enpyufatWvPHJ8QQgghyrYyv3KdV++8Z88eatWqpXVMrVYDcPfuXWJjY9HV1SUhIeGpxzY0NNTaTk5OpkePHowYMYK5c+dibm5OdHQ0/v7+3L9/nypVqjzxBjkdHR2l/jvPgwcPnnjuwvY9qqTO/Sg/Pz/+/vtvlixZgq2tLWq1Gg8PD+7fv1+k2B4VHh7OxIkTCQ0NxcPDA2NjYxYsWMCxY8ee6jqeVosWLahfvz7h4eGMGDGCnTt3KnXUzyozMxNXV1c2bdqU71jeLz5r165l9OjR7N+/ny1btvDRRx9x8OBBWrVqVeCYarVa+V4VQgghRMVW5pPrxo0bo1arSUlJKXTFdsKECejo6LBv3z5ee+01unfvrpQ75D0B5GlqomNjY8nNzSU0NBQdnYeL+o/WCQM0bdqUyMjIQv/Mb2lpqbWSmZGRQVJS0pMv9Ck4OTmRm5vL4cOHlbKQ/577zp07/PPPP0oyXFjtdp6YmBg+//xzXnvtNeDhzXx//fVXseKMiYmhdevWjBw5UtmX91cGAGNjY+zs7IiMjFRuOP2vypUrP9W/ma+vL5s2baJ27dro6OjQvXv3Qtvq6ek9cUwXFxe2bNlC9erVMTExKbSds7Mzzs7OTJs2DQ8PDzZv3lxoci2EEEKIl0eZLwsxNjZm4sSJjBs3jrCwMBITEzl16hTLli0jLCyMPXv2sGbNGjZt2kSXLl2YNGkSfn5+ytM7bG1tUalUfP/99/z555/5nvzxqAYNGvDgwQOWLVvGlStX2LBhg3KjY55p06Zx4sQJRo4cydmzZ/ntt99YsWKFkpB26tSJDRs28PPPP3Pu3Dn8/PzQ1dUtkbmws7PDz8+PIUOGsGvXLpKSkoiKilJ+AWjZsiVVqlThww8/JDExkc2bNz9xJdfe3p4NGzYQHx/PsWPH8PX1LfbKsr29PSdPnuSHH37g0qVLBAYG5rspcdasWYSGhrJ06VISEhKUf9NHrzUyMpIbN24o/5YF8fX15dSpU8ydO5e33nrrsSvEdnZ2JCUlERcXx19//UVWVlaB41lYWPDGG2/w888/K3M8evRo/ve//5GUlMS0adM4cuQIV69e5cCBAyQkJDyx7loIIYQQL4cyn1wDzJkzh8DAQIKCgnB0dMTb25s9e/ZgZ2eHv78/s2bNwsXFBYDZs2dTo0YN3n//fQBq1arF7NmzmTp1KjVq1FAe91aQZs2asXDhQj799FNeeeUVNm3aRFBQkFYbBwcHDhw4wJkzZ3B3d8fDw4Nvv/1WuYFy2rRptG/fnh49etC9e3d69uyp3PhWElasWMFbb73FyJEjadSoEe+99x7//PMP8PDmzY0bN7J3716cnJz4+uuvtR4BWJCvvvqKW7du4eLiwrvvvsvo0aOpXr16sWIcPnw4vXr1ol+/frRs2ZK///5baxUbHpajLF68mM8//5wmTZrQo0cPrZKe0NBQDh48iI2NDc7OzoWeq0GDBri7u3P27NkCnxLyqN69e+Pt7U3Hjh2xtLTk66+/ztemSpUq/PTTT9SpU4devXrh6OiIv78///77LyYmJlSpUoXffvuN3r174+DgwLBhwxg1ahTDhw8v4iwJIYQQoiJSaf5bpCuEeK4yMjIwNTUlPT39saUnIj/XSetLOwQhSk3sgoGlHYIQL7Wn/fld5muuhRAijyQXQgghyrpyURYiypb3339f67GIj37yynGEEEIIIV5GUhYiiiwtLa3QtwyamJgUu2a7opOyECGEEKL8kbIQ8dxUr15dEmjxwkm9tXjZSVmUEOWDlIUIIYQQQghRQiS5FkIIIYQQooRUqORao9EwbNgwzM3NUalUT3w7oRBCCCGEECWpQiXX+/fvZ926dXz//fekpqbyyiuvPLGPSqVi165dzz84IYQQQghR4VWoGxoTExOxtramdevWL/zc9+/fR09P74Wf93GeZ0wPHjygcuXKz2Xs0qLRaMjJyVHetimEEEIIUVQVZuV60KBBfPDBB6SkpKBSqbCzs8POzo7FixdrtWvevLnySnA7OzsA3nzzTaVP3lg9e/bU6jd27Fg6dOigbHfo0IGAgADGjh2LhYUFXl5eAPz6669069YNIyMjatSowbvvvstff/31VNeQm5vL/PnzadCgAWq1mjp16jB37lzl+JQpU3BwcKBKlSrUq1ePwMBAHjx4oByfNWsWzZs3Z/Xq1dStWxd9fX0Abt++zdChQ7G0tMTExIROnTpx5swZrXN/++23uLi4oK+vT7169Zg9ezbZ2dnKcZVKxYoVK3j99dcxNDTUiqsw58+fp0ePHpiYmGBsbEzbtm1JTExUrvXjjz+mdu3aqNVqmjdvzv79+5W+ycnJqFQqduzYQceOHalSpQrNmjXjyJEjWueIiYmhQ4cOVKlShapVq+Ll5cWtW7eUcwQFBVG3bl0MDAxo1qwZ27ZtU/pGRUWhUqnYt28frq6uqNVqoqOj6dChA6NHj2by5MmYm5tjZWWl9Rp5jUbDrFmzqFOnDmq1mpo1azJ69OhC5yErK4uMjAytjxBCCCEqpgqTXC9ZskRJ1lJTUzlx4sQT++S1Wbt27VP3eVRYWBh6enrExMTwxRdfcPv2bTp16oSzszMnT55k//79/PHHH/Tt2/epxps2bRrBwcEEBgZy4cIFNm/eTI0aNZTjxsbGrFu3jgsXLrBkyRJWrVrFokWLtMa4fPky27dvZ8eOHUrNeZ8+fUhLS2Pfvn3Exsbi4uJC586duXnzJgA///wzAwcOZMyYMVy4cIGVK1eybt26fAn0rFmzePPNNzl37hxDhgx57LX8/vvvtGvXDrVazY8//khsbCxDhgxREvYlS5YQGhpKSEgIZ8+excvLi9dff52EhAStcaZPn87EiROJi4vDwcGBAQMGKGPExcXRuXNnGjduzJEjR4iOjsbHx4ecnBwAgoKCWL9+PV988QXnz59n3LhxvPPOOxw+fFjrHFOnTiU4OJj4+HiaNm0KPPy3NTQ05NixY8yfP5+PP/6YgwcPArB9+3YWLVrEypUrSUhIYNeuXTg5ORU6F0FBQZiamiofGxubx86dEEIIIcqvCvP3b1NTU4yNjdHV1cXKyuqp+lhaWgJgZmb21H0eZW9vz/z585XtTz75BGdnZ+bNm6fsW7NmDTY2Nly6dAkHB4dCx7pz5w5Llixh+fLl+Pn5AVC/fn1effVVpc1HH32kfG1nZ8fEiRMJDw9n8uTJyv779++zfv165dqio6M5fvw4aWlpqNVqAEJCQti1axfbtm1j2LBhzJ49m6lTpyrnrVevHnPmzGHy5MnMnDlTGfvtt99m8ODBTzU3n332GaampoSHhyvlI49ef0hICFOmTKF///4AfPrppxw6dIjFixfz2WefKe0mTpxI9+7dAZg9ezZNmjTh8uXLNGrUiPnz5+Pm5sbnn3+utG/SpAnwcLV43rx5RERE4OHhoVxXdHQ0K1eupH379kqfjz/+mC5dumjF37RpU+Xa7e3tWb58OZGRkXTp0oWUlBSsrKzw9PSkcuXK1KlTB3d390LnYtq0aYwfP17ZzsjIkARbCCGEqKAqTHJdGlxdXbW2z5w5w6FDhzAyMsrXNjEx8bHJdXx8PFlZWXTu3LnQNlu2bGHp0qUkJiaSmZlJdnZ2vjcE2draKol1XkyZmZlUq1ZNq929e/eUEo0zZ84QExOjtVKdk5PDv//+y927d6lSpQoAbm5uhcb2X3FxcbRt27bAuuyMjAyuX79OmzZttPa3adMmX7lK3koygLW1NfDwDZGNGjUiLi6OPn36FHj+y5cvc/fu3XxJ8/3793F2dtbaV9B1PXrevHOnpaUBD/8SsHjxYurVq4e3tzevvfYaPj4+hdZqq9Vq5RcbIYQQQlRsFTq51tHR4b9vd3+0Rrm4/QwNDbW2MzMz8fHx4dNPP83XNi8xLIyBgcFjjx85cgRfX19mz56Nl5eXsiocGhr6xJisra2JiorKN6aZmZnSZvbs2fTq1Stfm7y67YLGfpwnXc/TejQ5V6lUwMNa6iedIzMzE4A9e/ZQq1YtrWP/TXQLuq7//lKgUqmU89rY2HDx4kUiIiI4ePAgI0eOZMGCBRw+fLjC3eQphBBCiKKp0Mm1paUlqampynZGRgZJSUlabSpXrqzU6D7a79dff9XaFxcX98TEycXFhe3bt2NnZ1fkJ07Y29tjYGBAZGQkQ4cOzXf8l19+wdbWlunTpyv7rl69+sRxXVxcuHHjBpUqVVJu2CyozcWLF2nQoEGRYn6cpk2bEhYWVuBTRUxMTKhZsyYxMTFa5RkxMTGPLa8o6ByRkZHMnj0737HGjRujVqtJSUnROkdJMTAwwMfHBx8fH0aNGkWjRo04d+4cLi4uJX4uIYQQQpQfFeaGxoJ06tSJDRs28PPPP3Pu3Dn8/PzQ1dXVamNnZ0dkZCQ3btxQnjLRqVMnTp48yfr160lISGDmzJn5ku2CjBo1ips3bzJgwABOnDhBYmIiP/zwA4MHD86XwP+Xvr4+U6ZMYfLkyaxfv57ExESOHj3KV199BTxMvlNSUggPDycxMZGlS5eyc+fOJ8bk6emJh4cHPXv25MCBAyQnJ/PLL78wffp0Tp48CcCMGTNYv349s2fP5vz588THxxMeHq5V411UAQEBZGRk0L9/f06ePElCQgIbNmzg4sWLAEyaNIlPP/2ULVu2cPHiRaZOnUpcXBxjxox56nNMmzaNEydOMHLkSM6ePctvv/3GihUr+OuvvzA2NmbixImMGzeOsLAwEhMTOXXqFMuWLSMsLOyZrwtg3bp1fPXVV/z6669cuXKFjRs3YmBggK2tbbHGFUIIIUT5V6GT62nTptG+fXt69OhB9+7d6dmzJ/Xr19dqExoaysGDB7GxsVFqcb28vAgMDGTy5Mm0aNGCO3fuMHDgwCeeL281Nicnh65du+Lk5MTYsWMxMzNDR+fJUx0YGMiECROYMWMGjo6O9OvXT6nzff311xk3bhwBAQE0b96cX375hcDAwCeOqVKp2Lt3L+3atWPw4ME4ODjQv39/rl69qjyJxMvLi++//54DBw7QokULWrVqxaJFi4qVLFarVo0ff/yRzMxM2rdvj6urK6tWrVJWsUePHs348eOZMGECTk5O7N+/n927d2Nvb//U53BwcODAgQOcOXMGd3d3PDw8+Pbbb5W/GsyZM4fAwECCgoJwdHTE29ubPXv2ULdu3We+LnhYTrNq1SratGlD06ZNiYiI4LvvvstX1y6EEEKIl49K89/iYiHEc5WRkYGpqSnp6en5bkgVQgghRNn0tD+/K/TKtRBCCCGEEC+SJNcvSEpKCkZGRoV+UlJSSjvEInn//fcLvZb333+/tMMTQgghhCgVUhbygmRnZ5OcnFzo8Wd5wkhpSktLK/Q13iYmJlSvXv0FR1R+SFmIEEIIUf487c/v8pPNlXOVKlUq0Ufdlbbq1atLAi2eC9dJ60s7BCHKpNgFT76xXghR+qQsRAghhBBCiBIiyXU506FDB8aOHVvocTs7OxYvXvzc41CpVOzateu5n0cIIYQQojyR5FoIIYQQQogSIsm1KHM0Gg3Z2dmlHYaWshiTEEIIIcoeSa7LoezsbAICAjA1NcXCwoLAwEAKe+hLSkoKb7zxBkZGRpiYmNC3b1/++OMPrTYrVqygfv366Onp0bBhQzZs2KB1PCEhgXbt2qGvr0/jxo05ePDgU8eanJyMSqUiPDyc1q1bo6+vzyuvvMLhw4eVNlFRUahUKvbt24erqytqtZro6Ghyc3MJCgqibt26GBgY0KxZM7Zt26b0u3XrFr6+vlhaWmJgYIC9vT1r164F4P79+wQEBGBtbY2+vj62trYEBQVpxRQXF6eMdfv2bVQqFVFRUcWKSQghhBAvN3laSDkUFhaGv78/x48f5+TJkwwbNow6derw3nvvabXLzc1VEuvDhw+TnZ3NqFGj6Nevn5JE7ty5kzFjxrB48WI8PT35/vvvGTx4MLVr16Zjx47k5ubSq1cvatSowbFjx0hPT39szXdhJk2axOLFi2ncuDELFy7Ex8eHpKQkrVeGT506lZCQEOrVq0fVqlUJCgpi48aNfPHFF9jb2/PTTz/xzjvvYGlpSfv27QkMDOTChQvs27cPCwsLLl++zL179wBYunQpu3fvZuvWrdSpU4dr165x7dq1Isdd1JgKkpWVRVZWlrJd2CMMhRBCCFH+SXJdDtnY2LBo0SJUKhUNGzbk3LlzLFq0KF9yHRkZyblz50hKSsLGxgaA9evX06RJE06cOEGLFi0ICQlh0KBBjBw5EoDx48dz9OhRQkJC6NixIxEREfz222/88MMP1KxZE4B58+bRrVu3IsUcEBBA7969gYcr5fv37+err75i8uTJSpuPP/6YLl26AA8T0nnz5hEREYGHhwcA9erVIzo6mpUrV9K+fXtSUlJwdnbGzc0NeHgzZ56UlBTs7e159dVXUalU2NraFineZ42pIEFBQcyePfuZzi+EEEKI8kXKQsqhVq1aoVKplG0PDw8SEhLIycnRahcfH4+NjY2SWAM0btwYMzMz4uPjlTZt2rTR6temTRut4zY2NkpinXe+onq0T6VKlXBzc1POkScvSQa4fPkyd+/epUuXLlpvf1y/fj2JiYkAjBgxgvDwcJo3b87kyZP55ZdflP6DBg0iLi6Ohg0bMnr0aA4cOFDkmJ8lpoJMmzaN9PR05fMsK+hCCCGEKB9k5VqUGYaGhsrXmZmZAOzZs4datWpptVOr1QB069aNq1evsnfvXg4ePEjnzp0ZNWoUISEhuLi4kJSUxL59+4iIiKBv3754enqybds2dHQe/k75aJ36gwcPSiSmgqjV6sceF0IIIUTFISvX5dCxY8e0to8ePYq9vT26urpa+x0dHfPVGl+4cIHbt2/TuHFjpU1MTIxWv5iYGK3j165dIzU1Vet8RfVon+zsbGJjY3F0dCy0fePGjVGr1aSkpNCgQQOtz6Mr8ZaWlvj5+bFx40YWL17Ml19+qRwzMTGhX79+rFq1ii1btrB9+3Zu3ryJpaUlgNY1PXpzY3FjEkIIIcTLS1auy6GUlBTGjx/P8OHDOXXqFMuWLSM0NDRfO09PT5ycnPD19WXx4sVkZ2czcuRI2rdvr5Q7TJo0ib59++Ls7IynpyffffcdO3bsICIiQhnDwcEBPz8/FixYQEZGBtOnTy9yzJ999hn29vY4OjqyaNEibt26xZAhQwptb2xszMSJExk3bhy5ubm8+uqrpKenExMTg4mJCX5+fsyYMQNXV1eaNGlCVlYW33//vZKwL1y4EGtra5ydndHR0eGbb77BysoKMzMzdHR0aNWqFcHBwdStW5e0tDQ++uijJ17D08QkhBBCiJebJNfl0MCBA7l37x7u7u7o6uoyZswYhg0blq+dSqXi22+/5YMPPqBdu3bo6Ojg7e3NsmXLlDY9e/ZkyZIlhISEMGbMGOrWrcvatWvp0KEDADo6OuzcuRN/f3/c3d2xs7Nj6dKleHt7Fynm4OBggoODiYuLo0GDBuzevRsLC4vH9pkzZw6WlpYEBQVx5coVzMzMcHFx4cMPPwRAT0+PadOmkZycjIGBAW3btiU8PBx4mAjPnz+fhIQEdHV1adGiBXv37lVKQtasWYO/vz+urq40bNiQ+fPn07Vr1ydex5NiEkIIIcTLTaUp7AHJQpSA5ORk6taty+nTp2nevHlph1MmZGRkYGpqSnp6OiYmJqUdTpnjOml9aYcgRJkUu2BgaYcgxEvtaX9+y8q1EKJMkQRCCCFEeSY3NIpimTdvntZj6R79FPVZ2EIIIYQQ5Z2UhYhiuXnzJjdv3izwmIGBQb5H1gkpCxFCCCHKIykLES+Eubk55ubmpR2G+D9SryxExSUlU0KUD1IWIoQQQgghRAmR5FoIIYQQQogSIsm1qFDs7OxYvHjxCz1nhw4dGDt27As9pxBCCCHKJkmuxVMbNGgQPXv2LO0whBBCCCHKLEmuRYl78OBBaYcghBBCCFEqJLkW+Wzbtg0nJycMDAyoVq0anp6eTJo0ibCwML799ltUKhUqlYqoqCiSk5NRqVRs2bKF9u3bo6+vz6ZNmwBYvXo1jo6O6Ovr06hRIz7//HPlHPfv3ycgIABra2v09fWxtbUlKCgIAI1Gw6xZs6hTpw5qtZqaNWsyevToZ7qW27dvM3ToUCwtLTExMaFTp06cOXMGgEuXLqFSqfjtt9+0+ixatIj69esr27/++ivdunXDyMiIGjVq8O677/LXX389dQxZWVlkZGRofYQQQghRMUlyLbSkpqYyYMAAhgwZQnx8PFFRUfTq1YuZM2fSt29fvL29SU1NJTU1ldatWyv9pk6dypgxY4iPj8fLy4tNmzYxY8YM5s6dS3x8PPPmzSMwMJCwsDAAli5dyu7du9m6dSsXL15k06ZN2NnZAbB9+3YWLVrEypUrSUhIYNeuXTg5OT3T9fTp04e0tDT27dtHbGwsLi4udO7cmZs3b+Lg4ICbm5vyy0CeTZs28fbbbwMPk/NOnTrh7OzMyZMn2b9/P3/88Qd9+/Z96hiCgoIwNTVVPjY2Ns90LUIIIYQo++Q510JLamoq2dnZ9OrVC1tbWwAlsTUwMCArKwsrK6t8/caOHUuvXr2U7ZkzZxIaGqrsq1u3LhcuXGDlypX4+fmRkpKCvb09r776KiqVSjkXQEpKClZWVnh6elK5cmXq1KmDu7t7ka8lOjqa48ePk5aWhlqtBiAkJIRdu3axbds2hg0bhq+vL8uXL2fOnDnAw9Xs2NhYNm7cCMDy5ctxdnZm3rx5yrhr1qzBxsaGS5cu4eDg8MQ4pk2bxvjx45XtjIwMSbCFEEKICkpWroWWZs2a0blzZ5ycnOjTpw+rVq3i1q1bT+zn5uamfP3PP/+QmJiIv7+/1uvQP/nkExITE4GHN0fGxcXRsGFDRo8ezYEDB5T+ffr04d69e9SrV4/33nuPnTt3kp2dXeRrOXPmDJmZmVSrVk0rjqSkJCWO/v37k5yczNGjR4GHq9YuLi40atRIGePQoUNa/fOO5Y3xJGq1GhMTE62PEEIIISomWbkWWnR1dTl48CC//PILBw4cYNmyZUyfPp1jx449tp+hoaHydWZmJgCrVq2iZcuW+cYHcHFxISkpiX379hEREUHfvn3x9PRk27Zt2NjYcPHiRSIiIjh48CAjR45kwYIFHD58mMqVKz/1tWRmZmJtbU1UVFS+Y2ZmZgBYWVnRqVMnNm/eTKtWrdi8eTMjRozQGsPHx4dPP/003xjW1tZPHYsQQgghXg6SXIt8VCoVbdq0oU2bNsyYMQNbW1t27tyJnp4eOTk5T+xfo0YNatasyZUrV/D19S20nYmJCf369aNfv3689dZbeHt7c/PmTczNzTEwMMDHxwcfHx9GjRpFo0aNOHfuHC4uLk99HS4uLty4cYNKlSop9dwF8fX1ZfLkyQwYMIArV67Qv39/rTG2b9+OnZ0dlSrJfy5CCCGEeDzJFoSWY8eOERkZSdeuXalevTrHjh3jzz//xNHRkX///ZcffviBixcvUq1aNUxNTQsdZ/bs2YwePRpTU1O8vb3Jysri5MmT3Lp1i/Hjx7Nw4UKsra1xdnZGR0eHb775BisrK8zMzFi3bh05OTm0bNmSKlWqsHHjRgwMDLTqsp+Gp6cnHh4e9OzZk/nz5+Pg4MD169fZs2cPb775plLK0qtXL0aMGMGIESPo2LEjNWvWVMYYNWoUq1atYsCAAUyePBlzc3MuX75MeHg4q1evVlbihRBCCCFAkmvxHyYmJvz0008sXryYjIwMbG1tCQ0NpVu3bri5uREVFYWbmxuZmZkcOnSo0BXhoUOHUqVKFRYsWMCkSZMwNDTEyclJeZOhsbEx8+fPJyEhAV1dXVq0aMHevXvR0dHBzMyM4OBgxo8fT05ODk5OTnz33XdUq1atSNeiUqnYu3cv06dPZ/Dgwfz5559YWVnRrl07atSoobQzNjbGx8eHrVu3smbNGq0xatasSUxMDFOmTKFr165kZWVha2uLt7c3Ojpyy4IQQgghtKk0Go2mtIMQ4mWSkZGBqakp6enpJX5zo+uk9SU6nhCi7IhdMLC0QxDipfa0P79l5VqIFyzv99nn8TKZQ4E9S3xMIUTZIC+gEqJ05f03+KR1aUmuRbnx888/061bt0KP5z2lpKy7c+cOgDzrWgghhCiH7ty589j7zqQsRJQb9+7d4/fffy/0eIMGDV5gNM8uNzeX69evY2xsjEqleiHnzHtxzbVr1+Q5289A5q94ZP6KT+aweGT+ikfm7yGNRsOdO3eoWbPmY++7kpVrUW4YGBiUmwT6cXR0dKhdu3apnFteYlM8Mn/FI/NXfDKHxSPzVzwyfzx2xTqPPO5ACCGEEEKIEiLJtRBCCCGEECVEkmshXgJqtZqZM2eiVqtLO5RySeaveGT+ik/msHhk/opH5q9o5IZGIYQQQgghSoisXAshhBBCCFFCJLkWQgghhBCihEhyLYQQQgghRAmR5FoIIYQQQogSIsm1EEIIIYQQJUSSayEqqJs3b+Lr64uJiQlmZmb4+/uTmZn5xH5HjhyhU6dOGBoaYmJiQrt27bh3794LiLhsedb5g4evyO3WrRsqlYpdu3Y930DLqKLO382bN/nggw9o2LAhBgYG1KlTh9GjR5Oenv4Coy49n332GXZ2dujr69OyZUuOHz/+2PbffPMNjRo1Ql9fHycnJ/bu3fuCIi27ijKHq1atom3btlStWpWqVavi6en5xDmv6Ir6PZgnPDwclUpFz549n2+A5Ygk10JUUL6+vpw/f56DBw/y/fff89NPPzFs2LDH9jly5Aje3t507dqV48ePc+LECQICAtDRefn+V/Es85dn8eLFqFSq5xxh2VbU+bt+/TrXr18nJCSEX3/9lXXr1rF//378/f1fYNSlY8uWLYwfP56ZM2dy6tQpmjVrhpeXF2lpaQW2/+WXXxgwYAD+/v6cPn2anj170rNnT3799dcXHHnZUdQ5jIqKYsCAARw6dIgjR45gY2ND165d+f33319w5GVDUecvT3JyMhMnTqRt27YvKNJyQiOEqHAuXLigATQnTpxQ9u3bt0+jUqk0v//+e6H9WrZsqfnoo49eRIhl2rPOn0aj0Zw+fVpTq1YtTWpqqgbQ7Ny58zlHW/YUZ/4etXXrVo2enp7mwYMHzyPMMsPd3V0zatQoZTsnJ0dTs2ZNTVBQUIHt+/btq+nevbvWvpYtW2qGDx/+XOMsy4o6h/+VnZ2tMTY21oSFhT2vEMu0Z5m/7OxsTevWrTWrV6/W+Pn5ad54440XEGn58PItRwnxEjhy5AhmZma4ubkp+zw9PdHR0eHYsWMF9klLS+PYsWNUr16d1q1bU6NGDdq3b090dPSLCrvMeJb5A7h79y5vv/02n332GVZWVi8i1DLpWefvv9LT0zExMaFSpUrPI8wy4f79+8TGxuLp6ans09HRwdPTkyNHjhTY58iRI1rtAby8vAptX9E9yxz+1927d3nw4AHm5ubPK8wy61nn7+OPP6Z69eovxV+XikqSayEqoBs3blC9enWtfZUqVcLc3JwbN24U2OfKlSsAzJo1i/fee4/9+/fj4uJC586dSUhIeO4xlyXPMn8A48aNo3Xr1rzxxhvPO8Qy7Vnn71F//fUXc+bMeepSnPLqr7/+Iicnhxo1amjtr1GjRqFzdePGjSK1r+ieZQ7/a8qUKdSsWTPfLy0vg2eZv+joaL766itWrVr1IkIsdyS5FqIcmTp1KiqV6rGf33777ZnGzs3NBWD48OEMHjwYZ2dnFi1aRMOGDVmzZk1JXkapeZ7zt3v3bn788UcWL15cskGXIc9z/h6VkZFB9+7dady4MbNmzSp+4EI8RnBwMOHh4ezcuRN9ff3SDqfMu3PnDu+++y6rVq3CwsKitMMpkyru39qEqIAmTJjAoEGDHtumXr16WFlZ5bsRJTs7m5s3bxZarmBtbQ1A48aNtfY7OjqSkpLy7EGXIc9z/n788UcSExMxMzPT2t+7d2/atm1LVFRUMSIvG57n/OW5c+cO3t7eGBsbs3PnTipXrlzcsMs0CwsLdHV1+eOPP7T2//HHH4XOlZWVVZHaV3TPMod5QkJCCA4OJiIigqZNmz7PMMusos5fYmIiycnJ+Pj4KPvyFmcqVarExYsXqV+//vMNuoyT5FqIcsTS0hJLS8sntvPw8OD27dvExsbi6uoKPEz+cnNzadmyZYF97OzsqFmzJhcvXtTaf+nSJbp161b84MuA5zl/U6dOZejQoVr7nJycWLRokdYPofLsec4fPFyx9vLyQq1Ws3v37pdiFVFPTw9XV1ciIyOVR5nl5uYSGRlJQEBAgX08PDyIjIxk7Nixyr6DBw/i4eHxAiIue55lDgHmz5/P3Llz+eGHH7TuD3jZFHX+GjVqxLlz57T2ffTRR9y5c4clS5ZgY2PzIsIu20r7jkohxPPh7e2tcXZ21hw7dkwTHR2tsbe31wwYMEA5/r///U/TsGFDzbFjx5R9ixYt0piYmGi++eYbTUJCguajjz7S6Ovray5fvlwal1CqnmX+/ouX9GkhGk3R5y89PV3TsmVLjZOTk+by5cua1NRU5ZOdnV1al/FChIeHa9RqtWbdunWaCxcuaIYNG6YxMzPT3LhxQ6PRaDTvvvuuZurUqUr7mJgYTaVKlTQhISGa+Ph4zcyZMzWVK1fWnDt3rrQuodQVdQ6Dg4M1enp6mm3btml9r925c6e0LqFUFXX+/kueFqJNkmshKqi///5bM2DAAI2RkZHGxMREM3jwYK0fHElJSRpAc+jQIa1+QUFBmtq1a2uqVKmi8fDw0Pz8888vOPKy4Vnn71Evc3Jd1Pk7dOiQBijwk5SUVDoX8QItW7ZMU6dOHY2enp7G3d1dc/ToUeVY+/btNX5+flrtt27dqnFwcNDo6elpmjRpotmzZ88LjrjsKcoc2traFvi9NnPmzBcfeBlR1O/BR0lyrU2l0Wg0L369XAghhBBCiIpHnhYihBBCCCFECZHkWgghhBBCiBIiybUQQgghhBAlRJJrIYQQQgghSogk10IIIYQQQpQQSa6FEEIIIYQoIZJcCyGEEEIIUUIkuRZCCCGEEKKESHIthBBCCCFECZHkWgghhBBCiBIiybUQQgghhBAl5P8B4Dj8m3Q2z40AAAAASUVORK5CYII=\n"},"metadata":{}}],"source":["sns.barplot(data=no_stress_mean,orient='y')\n","plt.title('Standard Scaled No Stress Level Means');"]},{"cell_type":"code","execution_count":52,"metadata":{"colab":{"base_uri":"https://localhost:8080/","height":452},"executionInfo":{"elapsed":1078,"status":"ok","timestamp":1716216997298,"user":{"displayName":"Daniel Meier","userId":"06365571306976914087"},"user_tz":300},"id":"i1SnJjT4V5oW","outputId":"805680a8-0987-4ec7-d137-02d49262b2b1"},"outputs":[{"output_type":"display_data","data":{"text/plain":["
"],"image/png":"iVBORw0KGgoAAAANSUhEUgAAAtcAAAGzCAYAAADkAzuMAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAAC+C0lEQVR4nOzdeVxO6f/48dddtG+iZElZihAiBg3ZyzZjzfYZshv6xJDtYytbGIxtZhhGxdj33aCRIWQtZjRJJEMzjSUJU6r794df5+vWoojI+/l43I9xn3Od67yvU03v++p9rqNSq9VqhBBCCCGEEG9Mq7ADEEIIIYQQoqiQ5FoIIYQQQogCIsm1EEIIIYQQBUSSayGEEEIIIQqIJNdCCCGEEEIUEEmuhRBCCCGEKCCSXAshhBBCCFFAJLkWQgghhBCigEhyLYQQQgghRAGR5FoIIQCVSoWvr29hh/HRiI2NRaVSERgYWGB9BgYGolKpiI2NLbA+xYevWbNmNGvWrLDDEB8RSa6FEEVGZnKlUqk4ceJElv1qtRpra2tUKhUdOnR4Z3H5+vqiUqnQ0tLi1q1bWfYnJSWhr6+PSqXCy8vrncWVKTU1lcWLF+Pk5ISJiQlmZmbUqFGDIUOG8Mcff7zzeN62zK9H6dKlefLkSZb9tra2Bf79sWfPHlxdXbG0tMTAwIBKlSrh4eHBwYMHlTZ37tzB19eX8PDwAj3325b5QWn+/PmFHcobsbW1RaVS0apVq2z3r1y5Uvn/y7lz595xdOJDIsm1EKLI0dPTY/369Vm2Hzt2jD///BNdXd0s+54+fcrkyZPfaly6urps2LAhy/bt27e/1fO+SteuXRkzZgw1a9Zkzpw5+Pn50bRpUw4cOMDp06cLNba3KSEhge+///6tn2f+/Pl89tlnqFQqJk6cyDfffEPXrl2Jjo5m48aNSrs7d+7g5+f3wSXXRYmenh5Hjx7lr7/+yrJv3bp16OnpFUJU4kNTrLADEEKIgtauXTu2bNnCkiVLKFbs//43t379eurVq8fdu3ezHPMufmm2a9eODRs2MG7cOI3t69evp3379mzbtu2tx/Cys2fPsnfvXmbNmsX//vc/jX3Lli0jMTHxncf0rtSpU4evv/6a4cOHo6+v/1bOkZaWxowZM2jdujWHDh3Ksj8hIeG1+37y5AkGBgZvEp54iYuLC2fPnmXTpk2MHDlS2f7nn39y/PhxOnfuXCg/p+LDIjPXQogip1evXty7d4/Dhw8r21JTU9m6dSu9e/fO9piXa64zSweuXbuGp6cnZmZmmJqa0r9//2xLCfKid+/ehIeHa5Ra/PXXX/zyyy/ZxpWamsrUqVOpV68epqamGBoa0qRJE44eParRbtq0aWhpaREcHKyxfciQIejo6BAREZFjTDExMcDzpOJl2tralCxZUmPb7du3GThwIGXLlkVXV5eKFSvy5ZdfkpqaCsD9+/fx8fHB0dERIyMjTExMaNu2ba4xvOiPP/6gW7dumJubo6enh7OzM7t3787S7vfff6dFixbo6+tTvnx5Zs6cSUZGRp7OkWnq1Kn8/fffeZq9fvz4MWPGjMHa2hpdXV2qVq3K/PnzUavVuR539+5dkpKSsr2+AJaWlgCEhIRQv359APr376+UH2TWpDdr1oyaNWty/vx5mjZtioGBgfJhKCUlhWnTplGlShV0dXWxtrZm3LhxpKSkaJzr8OHDfPrpp5iZmWFkZETVqlWzfKBaunQpNWrUwMDAgBIlSuDs7JztX4FeR17irFmzJs2bN89ybEZGBuXKlaNbt24a2xYtWkSNGjXQ09OjdOnSDB06lAcPHrx2jHp6enTp0iXLmDds2ECJEiVwc3PL9ri8fN/m9WcjJCQElUrF5s2bmTVrFuXLl0dPT4+WLVty7do1jbbR0dF07doVKysr9PT0KF++PD179uThw4evfQ3Em5OZayFEkWNra0ujRo3YsGEDbdu2BeDAgQM8fPiQnj17smTJkjz35eHhQcWKFfH39+fChQusWrUKS0tL5s6dm++4mjZtSvny5Vm/fj3Tp08HYNOmTRgZGdG+ffss7ZOSkli1ahW9evVi8ODBPHr0iB9//BE3NzfOnDlDnTp1AJg8eTJ79uxh4MCBXL58GWNjY37++WdWrlzJjBkzqF27do4x2djYAM//5O3i4qIx0/+yO3fu0KBBAxITExkyZAjVqlXj9u3bbN26lSdPnqCjo8P169fZuXMn3bt3p2LFivz999+sWLECV1dXrly5QtmyZXPs//fff8fFxYVy5coxYcIEDA0N2bx5M506dWLbtm107twZeP6BpHnz5qSlpSntfvjhh3zPPjdp0oQWLVowb948vvzyyxyPV6vVfPbZZxw9epSBAwdSp04dfv75Z8aOHcvt27f55ptvcjyHpaUl+vr67Nmzh//+97+Ym5tn287BwYHp06czdepUhgwZQpMmTQBo3Lix0ubevXu0bduWnj178p///IfSpUuTkZHBZ599xokTJxgyZAgODg5cvnyZb775hqtXr7Jz507l2nbo0IFatWoxffp0dHV1uXbtGqGhoUr/K1euxNvbm27dujFy5Ej+/fdfLl26RFhYWI4fSvMqr3H26NEDX19f/vrrL6ysrJTjT5w4wZ07d+jZs6eybejQoQQGBtK/f3+8vb25ceMGy5Yt4+LFi4SGhlK8ePHXirV37960adOGmJgYKleuDDz/61K3bt2y7TOv37f5/dmYM2cOWlpa+Pj48PDhQ+bNm0efPn0ICwsDnn/4dnNzIyUlhf/+979YWVlx+/Zt9u7dS2JiIqampq81flEA1EIIUUQEBASoAfXZs2fVy5YtUxsbG6ufPHmiVqvV6u7du6ubN2+uVqvVahsbG3X79u01jgXU06ZNU95PmzZNDagHDBig0a5z587qkiVL5iuuzL7++ecftY+Pj7pKlSrKvvr166v79++vxDBixAhlX1pamjolJUWjrwcPHqhLly6dJa7Lly+rdXR01IMGDVI/ePBAXa5cObWzs7P62bNnucaWkZGhdnV1VQPq0qVLq3v16qX+9ttv1Tdv3szStm/fvmotLS312bNns+1HrVar//33X3V6errGvhs3bqh1dXXV06dP19gGqAMCApRtLVu2VDs6Oqr//fdfjX4bN26strOzU7aNGjVKDajDwsKUbQkJCWpTU1M1oL5x40auY37x63Hs2DE1oF64cKGy/+Xvj507d6oB9cyZMzX66datm1qlUqmvXbuW6/mmTp2qBtSGhobqtm3bqmfNmqU+f/58lnZnz57Nck0yZX6Nli9frrF97dq1ai0tLfXx48c1ti9fvlwNqENDQ9VqtVr9zTffKGPOyeeff66uUaNGrmPJTubX8uuvv86xTV7jjIqKUgPqpUuXarQbPny42sjISPl5Pn78uBpQr1u3TqPdwYMHs2x3dXVVu7q6vnIcmV/3tLQ0tZWVlXrGjBlqtVqtvnLlihpQHzt2TOP/MZny+n2b15+No0ePqgG1g4ODxs//4sWL1YD68uXLarVarb548aIaUG/ZsuWVYxPvlpSFCCGKJA8PD54+fcrevXt59OgRe/fufa3Zt2HDhmm8b9KkCffu3SMpKem14urduzfXrl3j7Nmzyn9ziktbWxsdHR3g+czf/fv3SUtLw9nZmQsXLmi0rVmzJn5+fqxatQo3Nzfu3r1LUFBQrjPR8Lwc5ueff2bmzJmUKFGCDRs2MGLECGxsbOjRo4dSc52RkcHOnTvp2LEjzs7O2fYDz2/a1NJ6/qslPT2de/fuKSUIL8f8ovv37/PLL7/g4eHBo0ePuHv3Lnfv3uXevXu4ubkRHR3N7du3Adi/fz8NGzakQYMGyvEWFhb06dMn17Fmp2nTpjRv3px58+bx9OnTbNvs378fbW1tvL29NbaPGTMGtVrNgQMHcj2Hn58f69evx8nJiZ9//plJkyZRr1496tatS2RkZJ5j1dXVpX///hrbtmzZgoODA9WqVVOu2d27d2nRogWAUkJkZmYGwK5du3IsnzEzM+PPP//k7NmzeY4pr/Iap729PXXq1GHTpk3Ksenp6WzdupWOHTsqf13YsmULpqamtG7dWqO/evXqYWRklKV0Kj+0tbXx8PBQbj5et24d1tbWyl8TXpSf79v8/mz0799f+fkHlPNfv34dQJmZ/vnnn1+7VE28HZJcCyGKJAsLC1q1asX69evZvn076enpGvWaeVWhQgWN9yVKlAB47bpOJycnqlWrxvr161m3bh1WVlZKgpGdoKAgatWqhZ6eHiVLlsTCwoJ9+/ZlW1M5duxYateuzZkzZ5g2bRrVq1fPU0y6urpMmjSJyMhI7ty5w4YNG2jYsCGbN29Wlgb8559/SEpKombNmrn2lZGRwTfffIOdnR26urqUKlUKCwsLLl26lGsd6LVr11Cr1UyZMgULCwuN17Rp04D/u/nv5s2b2NnZZemjatWqeRrvyzLLEJYvX57t/ps3b1K2bFmMjY01tjs4OCj7X6VXr14cP36cBw8ecOjQIXr37s3Fixfp2LEj//77b57iLFeunEayBc9rbn///fcs18ze3h74v2vWo0cPXFxcGDRoEKVLl6Znz55s3rxZI9EeP348RkZGNGjQADs7O0aMGKFRNvIm8hpnZqyhoaFKUhoSEkJCQgI9evTQ6O/hw4dYWlpm6TM5OfmNbhSF5x+Cr1y5QkREBOvXr6dnz57KB8gX5ef7Nr8/G6/6f0/FihUZPXo0q1atolSpUri5ufHtt99KvfV7QGquhRBFVu/evRk8eDB//fUXbdu2VWbv8kNbWzvb7epX3Mj2qri+//57jI2N6dGjhzKb9bKffvoJT09POnXqxNixY7G0tERbWxt/f3/lRsQXXb9+nejoaAAuX778WrGVKVOGnj170rVrV2rUqMHmzZvz9aCX2bNnM2XKFAYMGMCMGTMwNzdHS0uLUaNG5XrDYeY+Hx+fHG8aq1KlSr7GkldNmzalWbNmzJs3L8tfKgqaiYkJrVu3pnXr1hQvXpygoCDCwsJwdXV95bHZ1YRnZGTg6OjIwoULsz3G2tpaOfbXX3/l6NGj7Nu3j4MHD7Jp0yZatGjBoUOH0NbWxsHBgaioKPbu3cvBgwfZtm0b3333HVOnTsXPz++Nxp3XOOF5cj1x4kS2bNnCqFGj2Lx5M6ampri7u2v0Z2lpybp167Ltz8LC4o3i/eSTT6hcuTKjRo3ixo0bOf51KT/ft/n92cjL/3sWLFiAp6cnu3bt4tChQ3h7e+Pv78/p06cpX758vsYsCo4k10KIIqtz584MHTqU06dPa/yZubD17t2bqVOnEh8fz9q1a3Nst3XrVipVqsT27ds1Zs0yZ8RelJGRgaenJyYmJowaNYrZs2fTrVs3unTp8loxFi9enFq1ahEdHc3du3extLTExMSE3377Ldfjtm7dSvPmzfnxxx81ticmJlKqVKkcj6tUqZJy3pwe4pHJxsZG+RDxoqioqFyPy42vry/NmjVjxYoV2Z7vyJEjPHr0SGP2OnPVl8ybQvPL2dmZoKAg4uPjAbKdGX2VypUrExERQcuWLV95vJaWFi1btqRly5YsXLiQ2bNnM2nSJI4ePapcc0NDQ3r06EGPHj1ITU2lS5cuzJo1i4kTJ77RcpX5ibNixYo0aNCATZs24eXlxfbt2+nUqZPG+vSVK1fmyJEjuLi4vLVlFHv16sXMmTNxcHBQbh5+WX6+b1/3Z+NVHB0dcXR0ZPLkyZw8eRIXFxeWL1/OzJkzX7tP8WakLEQIUWQZGRnx/fff4+vrS8eOHQs7HEXlypVZtGgR/v7+GnXDL8ucuXpxpiosLIxTp05labtw4UJOnjzJDz/8wIwZM2jcuDFffvlltmt6vyg6Opq4uLgs2xMTEzl16hQlSpTAwsICLS0tOnXqxJ49e7J9Ol1mjNra2llm9bds2aL8iT8nlpaWSnKbmWy+6J9//lH+3a5dO06fPs2ZM2c09uc0i5kXrq6uNGvWjLlz52Yp02jXrh3p6eksW7ZMY/s333yDSqVSVqTJzpMnT7L9egFKrXZmOYuhoSFAvtYW9/Dw4Pbt26xcuTLLvqdPn/L48WPgeW3wyzITxsyl8O7du6exX0dHh+rVq6NWq3n27FmeY3qTODP16NGD06dPs3r1au7evatREpLZX3p6OjNmzMjSX1paWoGszz5o0CCmTZvGggULcmyTn+/b1/3ZyElSUhJpaWka2xwdHdHS0sqyDKN4t2TmWghRpPXr16+wQ8jWiw+oyEmHDh3Yvn07nTt3pn379ty4cYPly5dTvXp1kpOTlXaRkZFMmTIFT09P5UNEYGAgderUYfjw4WzevDnHc0RERNC7d2/atm1LkyZNMDc35/bt2wQFBXHnzh0WLVqkJPmzZ8/m0KFDuLq6KsupxcfHs2XLFk6cOIGZmRkdOnRg+vTp9O/fn8aNG3P58mXWrVunzPDl5ttvv+XTTz/F0dGRwYMHU6lSJf7++29OnTrFn3/+qawHPG7cONauXYu7uzsjR45UluKzsbHh0qVLrzxPTqZNm5btGssdO3akefPmTJo0idjYWGrXrs2hQ4fYtWsXo0aNUpZry86TJ09o3LgxDRs2xN3dHWtraxITE9m5cyfHjx+nU6dOODk5Ac8/dJmZmbF8+XKMjY0xNDTkk08+oWLFijn2/8UXX7B582aGDRvG0aNHcXFxIT09nT/++IPNmzfz888/4+zszPTp0/n1119p3749NjY2JCQk8N1331G+fHk+/fRTANq0aYOVlRUuLi6ULl2ayMhIli1bRvv27bPUm2cnODg42/rxTp065TnOTB4eHvj4+ODj44O5uXmWWWFXV1eGDh2Kv78/4eHhtGnThuLFixMdHc2WLVtYvHjxa91j8SIbGxuNte9zktfv2zf52cjOL7/8gpeXF927d8fe3p60tDTWrl2LtrY2Xbt2fa0+RQEprGVKhBCioGW3TFZ28rMU38tLl2We41XLvb0op75exktL8WVkZKhnz56ttrGxUevq6qqdnJzUe/fuVffr109tY2OjVqufL9dXv359dfny5dWJiYka/WUu3bVp06Ycz/n333+r58yZo3Z1dVWXKVNGXaxYMXWJEiXULVq0UG/dujVL+5s3b6r79u2rtrCwUOvq6qorVaqkHjFihLJk2L///qseM2aMukyZMmp9fX21i4uL+tSpU1mWQ8tuKT61Wq2OiYlR9+3bV21lZaUuXry4uly5cuoOHTpkieXSpUtqV1dXtZ6enrpcuXLqGTNmqH/88cd8L8X3sswl717+/nj06JH6q6++UpctW1ZdvHhxtZ2dnfrrr79WliDMybNnz9QrV65Ud+rUSfk6GhgYqJ2cnNRff/11lqUWd+3apa5evbq6WLFiGtfH1dU1x2XyUlNT1XPnzlXXqFFDraurqy5RooS6Xr16aj8/P/XDhw/VarVaHRwcrP7888/VZcuWVevo6KjLli2r7tWrl/rq1atKPytWrFA3bdpUXbJkSbWurq66cuXK6rFjxyp95CTza5nTa+3atXmO80UuLi5qQD1o0KAcz/3DDz+o69Wrp9bX11cbGxurHR0d1ePGjVPfuXNHaZPfpfhyk9P/Y/LyfZvXn43MpfheXmLv5Z+Z69evqwcMGKCuXLmyWk9PT21ubq5u3ry5+siRI68cq3i7VGr1G9yVI4QQQgghhFBIzbUQQgghhBAFRGquhRDiNT18+DDHB49kevERzkIIIYo+KQsRQojX5OnpSVBQUK5t5H+xQgjxcZHkWgghXtOVK1e4c+dOrm1etfatEEKIokWSayGEEEIIIQqI3NAohBBCCCFEAZEbGoV4xzIyMrhz5w7Gxsav9bhjIYQQQrx7arWaR48eUbZsWbS0cp6fluRaiHfszp07WFtbF3YYQgghhHgNt27donz58jnul+RaiHcs8zHCt27dwsTEpJCjEULkpOnkDYUdghDiNfw6s9db6TcpKQlra2vl93hOJLkW4h3LLAUxMTGR5FqI95i2rn5hhyCEeA1v+3frq0o65YZGIYQQQgghCogk1yJXvr6+1KlTJ1/HqFQqdu7c+VbiEUIIIYR4n0lyLXLl4+NDcHBwYYfxXgoJCUGlUpGYmFjYoQghhBDiPSE11yJXRkZGGBkZFXYY751nz54VdghCCCGEeA/JzHURsXXrVhwdHdHX16dkyZK0atWKx48fk5GRwfTp0ylfvjy6urrUqVOHgwcPahz7559/0qtXL8zNzTE0NMTZ2ZmwsDAga1nI2bNnad26NaVKlcLU1BRXV1cuXLjwWjGnpqbi5eVFmTJl0NPTw8bGBn9/fwBiY2NRqVSEh4cr7RMTE1GpVISEhAD/N3O8b98+atWqhZ6eHg0bNuS3335TjgkMDMTMzIydO3diZ2eHnp4ebm5u3Lp1SyOW77//nsqVK6Ojo0PVqlVZu3atxn6VSsX333/PZ599hqGhIYMHD6Z58+YAlChRApVKhaenZ7bjTElJISkpSeMlhBBCiKJJkusiID4+nl69ejFgwAAiIyMJCQmhS5cuqNVqFi9ezIIFC5g/fz6XLl3Czc2Nzz77jOjoaACSk5NxdXXl9u3b7N69m4iICMaNG0dGRka253r06BH9+vXjxIkTnD59Gjs7O9q1a8ejR4/yHfeSJUvYvXs3mzdvJioqinXr1mFra5vvfsaOHcuCBQs4e/YsFhYWdOzYUWNm+cmTJ8yaNYs1a9YQGhpKYmIiPXv2VPbv2LGDkSNHMmbMGH777TeGDh1K//79OXr0qMZ5fH196dy5M5cvX8bPz49t27YBEBUVRXx8PIsXL842Pn9/f0xNTZWXrHEthBBCFF1SFlIExMfHk5aWRpcuXbCxsQHA0dERgPnz5zN+/HglmZw7dy5Hjx5l0aJFfPvtt6xfv55//vmHs2fPYm5uDkCVKlVyPFeLFi003v/www+YmZlx7NgxOnTokK+44+LisLOz49NPP0WlUimx59e0adNo3bo1AEFBQZQvX54dO3bg4eEBPC/hWLZsGZ988onSxsHBgTNnztCgQQPmz5+Pp6cnw4cPB2D06NGcPn2a+fPnK7PTAL1796Z///7K+xs3bgBgaWmJmZlZjvFNnDiR0aNHK+8z18kUQgghRNEjM9dFQO3atWnZsiWOjo50796dlStX8uDBA5KSkrhz5w4uLi4a7V1cXIiMjAQgPDwcJycnJbF+lb///pvBgwdjZ2eHqakpJiYmJCcnExcXl++4PT09CQ8Pp2rVqnh7e3Po0KF89wHQqFEj5d/m5uZUrVpVGR9AsWLFqF+/vvK+WrVqmJmZKW0iIyNzvUaZnJ2dXys+XV1dZU1rWdtaCCGEKNokuS4CtLW1OXz4MAcOHKB69eosXbqUqlWrKjOrudHXz99DEvr160d4eDiLFy/m5MmThIeHU7JkSVJTU/Mdd926dblx4wYzZszg6dOneHh40K1bNwC0tJ5/a6rVaqV9Yd9EaGhoWKjnF0IIIcT7T5LrIkKlUuHi4oKfnx8XL15ER0eH4OBgypYtS2hoqEbb0NBQqlevDkCtWrUIDw/n/v37eTpPaGgo3t7etGvXjho1aqCrq8vdu3dfO24TExN69OjBypUr2bRpE9u2beP+/ftYWFgAz0teMr14c+OLTp8+rfz7wYMHXL16FQcHB2VbWloa586dU95HRUWRmJiotHFwcMj1GuVER0cHgPT09DyMVAghhBAfA6m5LgLCwsIIDg6mTZs2WFpaEhYWxj///IODgwNjx45l2rRpVK5cmTp16hAQEEB4eDjr1q0DoFevXsyePZtOnTrh7+9PmTJluHjxImXLltUot8hkZ2fH2rVrcXZ2JikpibFjx+Z79jvTwoULKVOmDE5OTmhpabFlyxasrKwwMzNDS0uLhg0bMmfOHCpWrEhCQgKTJ0/Otp/p06dTsmRJSpcuzaRJkyhVqhSdOnVS9hcvXpz//ve/LFmyhGLFiuHl5UXDhg1p0KAB8PyGSA8PD5ycnGjVqhV79uxh+/btHDlyJNf4bWxsUKlU7N27l3bt2qGvry/LFgohhBAfOZm5LgJMTEz49ddfadeuHfb29kyePJkFCxbQtm1bvL29GT16NGPGjMHR0ZGDBw+ye/du7OzsgOezr4cOHcLS0pJ27drh6OjInDlz0NbWzvZcP/74Iw8ePKBu3bp88cUXeHt7Y2lp+VpxGxsbM2/ePJydnalfvz6xsbHs379fKQlZvXo1aWlp1KtXj1GjRjFz5sxs+5kzZw4jR46kXr16/PXXX+zZs0eZVQYwMDBg/Pjx9O7dGxcXF4yMjNi0aZOyv1OnTixevJj58+dTo0YNVqxYQUBAAM2aNcs1/nLlyuHn58eECRMoXbo0Xl5er3UdhBBCCFF0qNQvFrUK8QEJCQmhefPmPHjwIMfVOgIDAxk1atR79RTFpKQkTE1NefjwodzcKMR7rN7YNYUdghDiNZz/uu9b6Tevv7+lLEQIIYTIxtv6BS2EKNqkLES8NbNnz1Yen/7yq23btoUdnhBCCCFEgZOyEPHW3L9/P8dVSPT19SlXrtw7juj9IGUhQgghxIdHykJEoTM3N8/zw2mEEOJ9IzXXQuSNlFBpkrIQIYQQQgghCogk1+KNxcbGolKpNB7yEhoaiqOjI8WLF9dYc1oIIYQQoiiTshDxVowePZo6depw4MCBt/5gFU9PTxITE9m5c+dbPY8QQgghxKvIzLV4K2JiYmjRogXly5fPcQ1qIYQQQoiiRpJrodi6dSuOjo7o6+tTsmRJWrVqxePHjwFYtWoVDg4O6OnpUa1aNb777rts+8gsEbl37x4DBgxApVIRGBj4ynP/9ttvtG3bFiMjI0qXLs0XX3zB3bt3Xxmbr68vQUFB7Nq1C5VKhUqlIiQkBIBbt27h4eGBmZkZ5ubmfP7558TGxmqcN7dxZY5l8+bNNGnSBH19ferXr8/Vq1c5e/Yszs7OyrKC//zzT/4uthBCCCGKJEmuBQDx8fH06tWLAQMGEBkZSUhICF26dEGtVrNu3TqmTp3KrFmziIyMZPbs2UyZMoWgoKAs/VhbWxMfH4+JiQmLFi0iPj6eHj165HruxMREWrRogZOTE+fOnePgwYP8/fffeHh4vDI2Hx8fPDw8cHd3Jz4+nvj4eBo3bsyzZ89wc3PD2NiY48ePExoaipGREe7u7qSmpgLkeVzTpk1j8uTJXLhwgWLFitG7d2/GjRvH4sWLOX78ONeuXWPq1Kk5ji8lJYWkpCSNlxBCCCGKJqm5FsDzBDYtLY0uXbpgY2MDgKOjI/A8uVywYAFdunQBoGLFily5coUVK1bQr18/jX60tbWxsrJCpVJhamqKlZXVK8+9bNkynJycmD17trJt9erVWFtbc/XqVZKTk3OMDZ6vmZ2SkqJxrp9++omMjAxWrVqFSqUCICAgADMzM0JCQmjTpk2ex+Xj44ObmxsAI0eOpFevXgQHB+Pi4gLAwIEDc52d9/f3x8/P75XXQQghhBAfPkmuBQC1a9emZcuWODo64ubmRps2bejWrRs6OjrExMQwcOBABg8erLRPS0vD1NS0QM4dERHB0aNHs73xMSYmhjZt2mQbW4kSJXLt89q1axgbG2ts//fff4mJieHx48d5HletWrWUf5cuXRrQTO5Lly5NQkJCjrFMnDiR0aNHK++TkpKwtrbOsb0QQgghPlySXAvg+Yzz4cOHOXnyJIcOHWLp0qVMmjSJPXv2ALBy5Uo++eSTLMcUhOTkZDp27MjcuXOz7CtTpkyOsYWFhVGxYsUc+6xXrx7r1q3Lss/CwoLk5GQgb+MqXry48u/MWfCXt2VkZOQ4Pl1dXXR1dXPcL4QQQoiiQ5JroVCpVLi4uODi4sLUqVOxsbEhNDSUsmXLcv36dfr06fNWzlu3bl22bduGra0txYpl/y2ZXWw7duxg9OjR6OjokJ6enqXPTZs2YWlpme0jSk1NTd/6uIQQQgjx8ZEbGgUAYWFhzJ49m3PnzhEXF8f27dv5559/cHBwwM/PD39/f5YsWcLVq1e5fPkyAQEBLFy4sEDOPWLECO7fv0+vXr04e/YsMTEx/Pzzz/Tv35/09PRcYwOwtbXl0qVLREVFcffuXZ49e0afPn0oVaoUn3/+OcePH+fGjRuEhITg7e3Nn3/+CfDWxyWEEEKIj4/MXAsATExM+PXXX1m0aBFJSUnY2NiwYMEC2rZtC4CBgQFff/01Y8eOxdDQEEdHR0aNGlUg5y5btiyhoaGMHz+eNm3akJKSgo2NDe7u7mhpab0ytsGDBxMSEoKzszPJyckcPXqUZs2a8euvvzJ+/Hi6dOnCo0ePKFeuHC1btlRmsgcNGvRWxyWEEEKIj49KrVarCzsIIT4mSUlJmJqa8vDhw2xLVoQQ74d6Y9cUdghCfBDOf923sEN4J/L6+1tmroUQQohsfCwJgxCiYEnNtXjrhg0bhpGRUbavYcOGFXZ4QgghhBAFRspCxFuXkJCQ41MJTUxMsLS0fMcRFS4pCxFCCCE+PFIWIt4blpaWH10CLYQQQoiPkyTXQgghRDbkhkaRH1KjLzJJzbUQQgghhBAFRJLrj5ynpyedOnUq7DAKxctjb9asmaxxLYQQQog3ImUhQvx/27dvp3jx4sp7W1tbRo0aJQm3EEIIIfJMkmsh/j9zc/PCDkEIIYQQHzgpC/lIbN26FUdHR/T19SlZsiStWrXi8ePHWdplZGTg7+9PxYoV0dfXp3bt2mzdulWjzW+//Ubbtm0xMjKidOnSfPHFF9y9e1fZ36xZM7y8vPDy8sLU1JRSpUoxZcoU8rrqY0JCAh07dkRfX5+KFSuybt06bG1tWbRoEQCxsbGoVCrCw8OVYxITE1GpVISEhACQnp7OwIEDlXFUrVqVxYsX53reF8tCmjVrxs2bN/nqq69QqVSoVCoeP36MiYlJluuxc+dODA0NefToUZ7GJ4QQQoiiS5Lrj0B8fDy9evViwIABREZGEhISQpcuXbJNdv39/VmzZg3Lly/n999/56uvvuI///kPx44dA54nsS1atMDJyYlz585x8OBB/v77bzw8PDT6CQoKolixYpw5c4bFixezcOFCVq1alad4PT09uXXrFkePHmXr1q189913JCQk5GvMGRkZlC9fni1btnDlyhWmTp3K//73PzZv3pyn47dv30758uWZPn068fHxxMfHY2hoSM+ePQkICNBoGxAQQLdu3TA2Ns62r5SUFJKSkjReQgghhCiapCzkIxAfH09aWhpdunTBxsYGAEdHxyztUlJSmD17NkeOHKFRo0YAVKpUiRMnTrBixQpcXV1ZtmwZTk5OzJ49Wzlu9erVWFtbc/XqVezt7QGwtrbmm2++QaVSUbVqVS5fvsw333zD4MGDc4316tWrHDhwgDNnzlC/fn0AfvzxRxwcHPI15uLFi+Pn56e8r1ixIqdOnWLz5s1ZPghkx9zcHG1tbYyNjbGyslK2Dxo0iMaNGxMfH0+ZMmVISEhg//79HDlyJMe+/P39NWIRQgghRNElM9cfgdq1a9OyZUscHR3p3r07K1eu5MGDB1naXbt2jSdPntC6dWuNR5SvWbOGmJgYACIiIjh69KjG/mrVqgEobQAaNmyISqVS3jdq1Ijo6GjS09NzjTUyMpJixYpRr149ZVu1atUwMzPL97i//fZb6tWrh4WFBUZGRvzwww/ExcXlu58XNWjQgBo1ahAUFATATz/9hI2NDU2bNs3xmIkTJ/Lw4UPldevWrTeKQQghhBDvL5m5/ghoa2tz+PBhTp48yaFDh1i6dCmTJk0iLCxMo11ycjIA+/bto1y5chr7dHV1lTYdO3Zk7ty5Wc5TpkyZtzQCTVpazz8TvljW8uzZM402GzduxMfHhwULFtCoUSOMjY35+uuvs4z5dQwaNIhvv/2WCRMmEBAQQP/+/TU+SLxMV1dXuX5CCCGEKNokuf5IqFQqXFxccHFxYerUqdjY2LBjxw6NNtWrV0dXV5e4uDhcXV2z7adu3bps27YNW1tbihXL+dvn5ST29OnT2NnZoa2tnWuc1apVIy0tjfPnzytlIVFRUSQmJiptLCwsgOflLk5OTgAaNzcChIaG0rhxY4YPH65se3FmPS90dHSynWn/z3/+w7hx41iyZAlXrlyhX79++epXCCGEEEWXlIV8BMLCwpg9ezbnzp0jLi6O7du3888//2SpYzY2NsbHx4evvvqKoKAgYmJiuHDhAkuXLlXKIEaMGMH9+/fp1asXZ8+eJSYmhp9//pn+/ftrJKJxcXGMHj2aqKgoNmzYwNKlSxk5cuQrY61atSru7u4MHTqUsLAwzp8/z6BBg9DX11fa6Ovr07BhQ+bMmUNkZCTHjh1j8uTJGv3Y2dlx7tw5fv75Z65evcqUKVM4e/Zsvq6bra0tv/76K7dv39ZYDaVEiRJ06dKFsWPH0qZNG8qXL5+vfoUQQghRdEly/REwMTHh119/pV27dtjb2zN58mQWLFhA27Zts7SdMWMGU6ZMwd/fHwcHB9zd3dm3bx8VK1YEoGzZsoSGhpKenk6bNm1wdHRk1KhRmJmZKeUaAH379uXp06c0aNCAESNGMHLkSIYMGZKneAMCAihbtiyurq506dKFIUOGYGlpqdFm9erVpKWlUa9ePUaNGsXMmTM19g8dOpQuXbrQo0cPPvnkE+7du6cxi50X06dPJzY2lsqVKyuz5ZkGDhxIamoqAwYMyFefQgghhCjaVOq8Lj4sRB41a9aMOnXqKOtSF4T37WmJa9eu5auvvuLOnTvo6Ojk69ikpCRMTU15+PAhJiYmbylCIcSbqjd2TWGHID4g57/uW9ghiLcsr7+/peZaiHx48uQJ8fHxzJkzh6FDh+Y7sRZCfDgkWRJCvA4pCxHv1PHjxzWW8Xv59b6bN28e1apVw8rKiokTJxZ2OEIIIYR4z0hZiHinnj59yu3bt3PcX6VKlXcYTeGQshAhhBDiwyNlIeK9pK+v/1Ek0EKID5/UXIu8khIi8SIpCxFCCCGEEKKASHIthBBCCCFEAZHk+g3Z2toW6JJzOVGpVOzcufOtn+dN7dy5kypVqqCtrf3eLJsnhBBCCPGuSM31ByI+Pp4SJUoUdhivNHToUPr374+3tzfGxsaFHY4QQgghxDslyfUHwsrKqrBDyNWzZ89ISUkhISEBNzc3ypYt+9p9paamyvrRQgghhPggFamykIMHD/Lpp59iZmZGyZIl6dChAzExMcr+P//8k169emFubo6hoSHOzs6EhYUBEBMTw+eff07p0qUxMjKifv36HDlyRKP/hIQEOnbsiL6+PhUrVmTdunVZYkhMTGTQoEFYWFhgYmJCixYtiIiIUPb7+vpSp04dVq9eTYUKFTAyMmL48OGkp6czb948rKyssLS0ZNasWRr9vlwWkttYcpN5/hUrVmBtbY2BgQEeHh48fPhQo92qVatwcHBAT0+PatWq8d133yn7YmNjUalUbNq0CVdXV/T09Fi3bp0yU92iRQtUKhUhISEAbNu2jRo1aqCrq4utrS0LFizQOJetrS0zZsygb9++mJiYMGTIEAIDAzEzM2Pv3r1UrVoVAwMDunXrxpMnTwgKCsLW1pYSJUrg7e1Nenq60tfatWtxdnbG2NgYKysrevfuTUJCgrI/JCQElUpFcHAwzs7OGBgY0LhxY6KiojRi2rNnD/Xr10dPT49SpUrRuXNnZV9KSgo+Pj6UK1cOQ0NDPvnkE2Ws2UlJSSEpKUnjJYQQQoiiqUgl148fP2b06NGcO3eO4OBgtLS06Ny5MxkZGSQnJ+Pq6srt27fZvXs3ERERjBs3joyMDACSk5Np164dwcHBXLx4EXd3dzp27EhcXJzSv6enJ7du3eLo0aNs3bqV7777TiNxA+jevTsJCQkcOHCA8+fPU7duXVq2bMn9+/eVNjExMRw4cICDBw+yYcMGfvzxR9q3b8+ff/7JsWPHmDt3LpMnT84xWX7VWF7l2rVrbN68mT179nDw4EEuXrzI8OHDlf3r1q1j6tSpzJo1i8jISGbPns2UKVMICgrS6GfChAmMHDmSyMhImjdvriSo27ZtIz4+nsaNG3P+/Hk8PDzo2bMnly9fxtfXlylTphAYGKjR1/z586lduzYXL15kypQpwPOnIS5ZsoSNGzdy8OBBQkJC6Ny5M/v372f//v2sXbuWFStWsHXrVqWfZ8+eMWPGDCIiIti5cyexsbF4enpmuQaTJk1iwYIFnDt3jmLFijFgwABl3759++jcuTPt2rXj4sWLBAcH06BBA2W/l5cXp06dYuPGjVy6dInu3bvj7u5OdHR0ttfb398fU1NT5WVtbZ2nr5MQQgghPjxF+iEyd+/excLCgsuXL3Py5El8fHyIjY3F3Nw8T8fXrFmTYcOG4eXlxdWrV6latSpnzpyhfv36APzxxx84ODjwzTffMGrUKE6cOEH79u1JSEhAV1dX6adKlSqMGzeOIUOG4Ovry9dff81ff/2lzPS6u7sTFRVFTEwMWlrPP+9Uq1YNT09PJkyYADyfud6xYwedOnXihx9+yPdYMvn6+jJz5kxu3rxJuXLlgOcz/u3bt+f27dtYWVlRpUoVZsyYQa9evZTjZs6cyf79+zl58iSxsbFUrFiRRYsWMXLkSKVNYmIiJUqU4OjRozRr1gyAPn368M8//3Do0CGl3bhx49i3bx+///478Hzm2snJiR07dihtAgMD6d+/P9euXaNy5coADBs2jLVr1/L3338rT3N0d3fH1taW5cuXZzvec+fOUb9+fR49eoSRkREhISE0b96cI0eO0LJlSwD2799P+/btefr0KXp6ejRu3JhKlSrx008/ZekvLi6OSpUqERcXp1H60qpVKxo0aMDs2bOzHJOSkkJKSoryPikpCWtra3mIjBDvOVnnWuSVrHP9cfgoHyITHR3N1KlTCQsL4+7du8pMblxcHOHh4Tg5OeWYjCYnJ+Pr68u+ffuIj48nLS2Np0+fKjPXkZGRFCtWjHr16inHVKtWDTMzM+V9REQEycnJlCxZUqPvp0+fapSn2NraatzsV7p0abS1tZXEOnPby7PimV41llepUKGCklgDNGrUiIyMDKKiojA2NiYmJoaBAwcyePBgpU1aWhqmpqYa/Tg7O7/yXJGRkXz++eca21xcXFi0aBHp6eloa2vn2JeBgYGSWMPza2Jra6vxmPSXr9P58+fx9fUlIiKCBw8eaHwPVK9eXWlXq1Yt5d9lypQBnpf9VKhQgfDwcI2xv+jy5cukp6djb2+vsT0lJSXL1z2Trq6uxoctIYQQQhRdRSq57tixIzY2NqxcuZKyZcuSkZFBzZo1SU1NRV9fP9djfXx8OHz4MPPnz6dKlSro6+vTrVs3UlNT83z+5ORkypQpk2397YtJePHixTX2qVSqbLflVObxqrG8ieTkZABWrlzJJ598orEvMxHOZGhoWGDnza6v/F6nx48f4+bmhpubG+vWrcPCwoK4uDjc3NyyfB1f7EelUgEo/eR2fZOTk9HW1ub8+fNZrseLSb8QQgghPk5FJrm+d+8eUVFRrFy5kiZNmgBw4sQJZX+tWrVYtWoV9+/fz3bGNzQ0FE9PT+XGteTkZGJjY5X91apVIy0tjfPnzytlIVFRUSQmJipt6taty19//UWxYsWwtbUt+EHmcSyvEhcXx507d5SyhtOnT6OlpUXVqlUpXbo0ZcuW5fr16/Tp0+eNY3VwcCA0NFRjW2hoKPb29lmS0zf1xx9/cO/ePebMmaPUNZ87dy7f/dSqVYvg4GD69++fZZ+TkxPp6ekkJCQo32dCCCGEEJmKzA2NJUqUoGTJkvzwww9cu3aNX375hdGjRyv7e/XqhZWVFZ06dSI0NJTr16+zbds2Tp06BYCdnR3bt28nPDyciIgIevfurTFzXLVqVdzd3Rk6dChhYWGcP3+eQYMGacxytmrVikaNGtGpUycOHTpEbGwsJ0+eZNKkSa+V5OXkVWN5FT09Pfr160dERATHjx/H29sbDw8PZbk/Pz8//P39WbJkCVevXuXy5csEBASwcOHCfMc6ZswYgoODmTFjBlevXiUoKIhly5bh4+OT775epUKFCujo6LB06VKuX7/O7t27mTFjRr77mTZtGhs2bGDatGlERkZy+fJl5s6dC4C9vT19+vShb9++bN++nRs3bnDmzBn8/f3Zt29fQQ9JCCGEEB+YIpNca2lpsXHjRs6fP0/NmjX56quv+Prrr5X9Ojo6HDp0CEtLS9q1a4ejoyNz5sxRZk8XLlxIiRIlaNy4MR07dsTNzY26detqnCMgIICyZcvi6upKly5dGDJkCJaWlsp+lUrF/v37adq0Kf3798fe3p6ePXty8+ZNSpcuXWBjfdVYXqVKlSp06dKFdu3a0aZNG2rVqqWx1N6gQYNYtWoVAQEBODo64urqSmBgIBUrVsx3rHXr1mXz5s1s3LiRmjVrMnXqVKZPn57tCh5vysLCgsDAQLZs2UL16tWZM2cO8+fPz3c/zZo1Y8uWLezevZs6derQokULzpw5o+wPCAigb9++jBkzhqpVq9KpUyfOnj1LhQoVCnI4QgghhPgAFenVQkRWvr6+7Ny5k/Dw8MIO5aOV17uNhRBCCPH+yOvv7yIzcy2EEEIIIURhKzI3NIrnatSowc2bN7Pdt2LFinccjRBCCCHEx0XKQoqYmzdv8uzZs2z3lS5dWmN9bVE4pCxECCGE+PB8lA+REWBjY1PYIQghRJEgT2gUeSFPZxQvk5prIYQQQgghCogk1x+5Zs2aMWrUqLfSd2xsLCqV6oNfmcTW1pZFixYVdhhCCCGE+ABIWYh4a6ytrYmPj6dUqVKFHYoQQgghxDshybV4a7S1tZWnPgohhBBCfAykLESQlpaGl5cXpqamlCpViilTppC5iMzatWtxdnbG2NgYKysrevfuTUJCgnLsgwcP6NOnDxYWFujr62NnZ0dAQACQfVnI77//TocOHTAxMcHY2JgmTZoQExPzyhg9PT3p1KkT8+fPp0yZMpQsWZIRI0ZorIySkpKCj48P5cqVw9DQkE8++YSQkBCNfk6cOEGTJk3Q19fH2toab29vHj9+rOxPSEigY8eO6OvrU7FiRdatW6dxvFqtxtfXlwoVKqCrq0vZsmXx9vbO87UWQgghRNEmybUgKCiIYsWKcebMGRYvXszChQtZtWoVAM+ePWPGjBlERESwc+dOYmNjNR5dPmXKFK5cucKBAweIjIzk+++/z7EM5Pbt2zRt2hRdXV1++eUXzp8/z4ABA0hLS8tTnEePHiUmJoajR48SFBREYGAggYGByn4vLy9OnTrFxo0buXTpEt27d8fd3Z3o6GgAYmJicHd3p2vXrly6dIlNmzZx4sQJvLy8lD48PT25desWR48eZevWrXz33XcaHya2bdvGN998w4oVK4iOjmbnzp04OjrmGndKSgpJSUkaLyGEEEIUTbLO9UeuWbNmJCQk8Pvvv6NSqQCYMGECu3fv5sqVK1nanzt3jvr16/Po0SOMjIz47LPPKFWqFKtXr87SNjY2looVK3Lx4kXq1KnD//73PzZu3EhUVBTFixfPV5yenp6EhIQQExODtrY2AB4eHmhpabFx40bi4uKoVKkScXFxlC1bVjmuVatWNGjQgNmzZzNo0CC0tbU1HqZz4sQJXF1defz4MXFxcVStWpUzZ85Qv359AP744w8cHBz45ptvGDVqFAsXLmTFihX89ttveR6Dr68vfn5+WbbLOtdCvN9kKT6RF7IU38dDHn8u8qxhw4ZKYg3QqFEjoqOjSU9P5/z583Ts2JEKFSpgbGyMq6srAHFxcQB8+eWXbNy4kTp16jBu3DhOnjyZ43nCw8Np0qRJvhPrTDVq1FASa4AyZcoos8qXL18mPT0de3t7jIyMlNexY8eUspOIiAgCAwM19ru5uZGRkcGNGzeIjIykWLFi1KtXTzlHtWrVMDMzU953796dp0+fUqlSJQYPHsyOHTteOfM+ceJEHj58qLxu3br1WuMXQgghxPtPbmgUOfr3339xc3PDzc2NdevWYWFhQVxcHG5ubqSmpgLQtm1bbt68yf79+zl8+DAtW7ZkxIgRzJ8/P0t/+vr6bxTPy0m5SqUiIyMDgOTkZLS1tTl//rxGAg5gZGSktBk6dGi2NdIVKlTg6tWrr4zB2tqaqKgojhw5wuHDhxk+fDhff/01x44dy/FDg66uLrq6unkaoxBCCCE+bJJcC8LCwjTenz59Gjs7O/744w/u3bvHnDlzsLa2Bp6XhbzMwsKCfv360a9fP5o0acLYsWOzTa5r1apFUFAQz549e+3Z65w4OTmRnp5OQkICTZo0ybZN3bp1uXLlClWqVMl2f7Vq1UhLS+P8+fNKWUhUVBSJiYka7fT19enYsSMdO3ZkxIgRVKtWjcuXL1O3bt0CHZMQQgghPjxSFiKIi4tj9OjRREVFsWHDBpYuXcrIkSOpUKECOjo6LF26lOvXr7N7925mzJihcezUqVPZtWsX165d4/fff2fv3r04ODhkex4vLy+SkpLo2bMn586dIzo6mrVr1xIVFfXGY7C3t6dPnz707duX7du3c+PGDc6cOYO/vz/79u0DYPz48Zw8eRIvLy/Cw8OJjo5m165dyg2NVatWxd3dnaFDhxIWFsb58+cZNGiQxox7YGAgP/74I7/99hvXr1/np59+Ql9fXx47L4QQQghAkmsB9O3bl6dPn9KgQQNGjBjByJEjGTJkCBYWFgQGBrJlyxaqV6/OnDlzssxI6+joMHHiRGrVqkXTpk3R1tZm48aN2Z6nZMmS/PLLLyQnJ+Pq6kq9evVYuXJlgc1iBwQE0LdvX8aMGUPVqlXp1KkTZ8+epUKFCsDzmfNjx45x9epVmjRpgpOTE1OnTtW4ATIgIICyZcvi6upKly5dGDJkCJaWlsp+MzMzVq5ciYuLC7Vq1eLIkSPs2bOHkiVLFsgYhBBCCPFhk9VChHjH8nq3sRCicMlqISIvZLWQj0def39LzbUQQgiRDUmahBCvQ8pCxHvhxeXxXn4dP368sMMTQgghhMgTmbkW74UXH5H+snLlyr27QIQQQggh3oAk1+K9kNPyeEIIUVik5lpIaZB4HVIWIoQQQgghRAGR5FoIIYQQQogCIsm1+Cj89ddftG7dGkNDQ8zMzAo7HCGEEEIUUZJci4/CN998Q3x8POHh4Vy9ejVPx/j6+lKnTp23G5gQQgghihS5oVF8FGJiYqhXrx52dnaFHYoQQgghijCZuRYfjK1bt+Lo6Ii+vj4lS5akVatWPH78mLNnz9K6dWtKlSqFqakprq6uXLhwQTnO1taWbdu2sWbNGlQqFZ6engAkJiYyaNAgLCwsMDExoUWLFkRERAAQGBiIn58fERERqFQqVCoVgYGBDBgwgA4dOmjE9ezZMywtLfnxxx+zjTslJYWkpCSNlxBCCCGKJpm5Fh+E+Ph4evXqxbx58+jcuTOPHj3i+PHjqNVqHj16RL9+/Vi6dClqtZoFCxbQrl07oqOjMTY25uzZs/Tt2xcTExMWL16Mvr4+AN27d0dfX58DBw5gamrKihUraNmyJVevXqVHjx789ttvHDx4kCNHjgBgamqKvb09TZs2JT4+njJlygCwd+9enjx5Qo8ePbKN3d/fHz8/v3dzoYQQQghRqCS5Fh+E+Ph40tLS6NKlCzY2NgA4OjoC0KJFC422P/zwA2ZmZhw7dowOHTpgYWGBrq4u+vr6WFlZAXDixAnOnDlDQkICurq6AMyfP5+dO3eydetWhgwZgpGREcWKFVOOAWjcuDFVq1Zl7dq1jBs3DoCAgAC6d++OkZFRtrFPnDiR0aNHK++TkpKwtrYuoCsjhBBCiPeJlIWID0Lt2rVp2bIljo6OdO/enZUrV/LgwQMA/v77bwYPHoydnR2mpqaYmJiQnJxMXFxcjv1FRESQnJxMyZIlNR61fuPGDWJiYnKNZdCgQQQEBCjnPnDgAAMGDMixva6uLiYmJhovIYQQQhRNMnMtPgja2tocPnyYkydPcujQIZYuXcqkSZMICwvjyy+/5N69eyxevBgbGxt0dXVp1KgRqampOfaXnJxMmTJlCAkJybLvVUv19e3blwkTJnDq1ClOnjxJxYoVadKkyRuOUAghhBBFgSTX4oOhUqlwcXHBxcWFqVOnYmNjw44dOwgNDeW7776jXbt2ANy6dYu7d+/m2lfdunX566+/KFasGLa2ttm20dHRIT09Pcv2kiVL0qlTJwICAjh16hT9+/d/47EJIYQQomiQ5Fp8EMLCwggODqZNmzZYWloSFhbGP//8g4ODA3Z2dqxduxZnZ2eSkpIYO3asctNiTlq1akWjRo3o1KkT8+bNw97enjt37rBv3z46d+6Ms7Mztra23Lhxg/DwcMqXL4+xsbFSnz1o0CA6dOhAeno6/fr1exeXQAghhBAfAKm5Fh8EExMTfv31V9q1a4e9vT2TJ09mwYIFtG3blh9//JEHDx5Qt25dvvjiC7y9vbG0tMy1P5VKxf79+2natCn9+/fH3t6enj17cvPmTUqXLg1A165dcXd3p3nz5lhYWLBhwwbl+FatWlGmTBnc3NwoW7bsWx27EEIIIT4cKrVarS7sIIT40CQnJ1OuXDkCAgLo0qVLvo5NSkrC1NSUhw8fys2NQrzH6o1dU9ghiEJ2/uu+hR2CeI/k9fe3lIUIkQ8ZGRncvXuXBQsWYGZmxmeffVbYIQkh3hJJrIQQr0OSayHyIS4ujooVK1K+fHkCAwMpVkx+hIQQQgjxfyQzECIfbG1tkUoqIYQQQuREkmshhBAiG1Jz/eGRUh7xPpDVQoQQQgghhCgg731y7evrS506dQo7jLcmNjYWlUpFeHh4YYfyWgrq6/Ouv84hISGoVCoSExPfm5iEEEII8eHLV3LdrFkzRo0a9ZZC+XAEBga+8hHZhU2lUrFz587CDiNb2cXm4+NDcHBw4QSUg/cxJiGEEEK83z7Kmmu1Wk16erqs9JCL1NRUdHR03tn5jIyMMDIyemfny4v3MSYhhBBCvN/yPHPt6enJsWPHWLx4MSqVCpVKRWxsLL/99htt27bFyMiI0qVL88UXX3D37l3luIMHD/Lpp59iZmZGyZIl6dChAzExMRp9//nnn/Tq1Qtzc3MMDQ1xdnYmLCxMo83atWuxtbXF1NSUnj178ujRI2VfRkYG/v7+VKxYEX19fWrXrs3WrVuV/ZklAAcOHKBevXro6upy4sSJXMcbERFB8+bNMTY2xsTEhHr16nHu3DlCQkLo378/Dx8+VK6Dr68vkP2MrJmZGYGBgcr7M2fO4OTkhJ6eHs7Ozly8eDHLuV91TZs1a4a3tzfjxo3D3NwcKysrJQZ4vqIFQOfOnVGpVMr73GSWQKxatYqKFSuip6cHQGJiIoMGDcLCwgITExNatGhBREREjv2cPXuW1q1bU6pUKUxNTXF1deXChQuvjO3lEoyMjAymT59O+fLl0dXVpU6dOhw8eFDZn1lOs337dpo3b46BgQG1a9fm1KlTSpubN2/SsWNHSpQogaGhITVq1GD//v0a8Z4/fx5nZ2cMDAxo3LgxUVFRWa5JJk9PTzp16oSfn59yPYYNG0Zqauorr68QQgghPg55Tq4XL15Mo0aNGDx4MPHx8cTHx2NsbEyLFi1wcnLi3LlzHDx4kL///hsPDw/luMePHzN69GjOnTtHcHAwWlpadO7cmYyMDOD5k+5cXV25ffs2u3fvJiIignHjxin7AWJiYti5cyd79+5l7969HDt2jDlz5ij7/f39WbNmDcuXL+f333/nq6++4j//+Q/Hjh3TGMOECROYM2cOkZGR1KpVK9fx9unTh/Lly3P27FnOnz/PhAkTKF68OI0bN2bRokWYmJgo18HHxydP1zA5OZkOHTpQvXp1zp8/j6+vb5ZjExMTX3lNAYKCgjA0NCQsLIx58+Yxffp0Dh8+DDxPcAECAgKIj49X3r/KtWvX2LZtG9u3b1dqwLt3705CQgIHDhzg/Pnz1K1bl5YtW3L//v1s+3j06BH9+vXjxIkTnD59Gjs7O9q1a6d8GMprbIsXL2bBggXMnz+fS5cu4ebmxmeffUZ0dLRGu0mTJuHj40N4eDj29vb06tWLtLQ0AEaMGEFKSgq//vorly9fZu7cuVlmoidNmsSCBQs4d+4cxYoVY8CAAbleo+DgYCIjIwkJCWHDhg1s374dPz+/XI9JSUkhKSlJ4yWEEEKIoinPdRGmpqbo6OhgYGCAlZUVADNnzsTJyYnZs2cr7VavXo21tTVXr17F3t6erl27avSzevVqLCwsuHLlCjVr1mT9+vX8888/nD17FnNzcwCqVKmicUxGRgaBgYEYGxsD8MUXXxAcHMysWbNISUlh9uzZHDlyhEaNGgFQqVIlTpw4wYoVK3B1dVX6mT59Oq1bt87TeOPi4hg7dizVqlUDwM7OTuNaqFQq5Trk1fr168nIyODHH39ET0+PGjVq8Oeff/Lll18qbZYtW/bKawpQq1Ytpk2bpsS2bNkygoODad26NRYWFsDzWfP8xJiamsqaNWuU40+cOMGZM2dISEhAV1cXgPnz57Nz5062bt3KkCFDsvTRokULjfc//PADZmZmHDt2jA4dOuQ5tvnz5zN+/Hh69uwJwNy5czl69CiLFi3i22+/Vdr5+PjQvn17APz8/KhRowbXrl2jWrVqxMXF0bVrVxwdHYHn3xcvmzVrlvI9MmHCBNq3b8+///6rzNy/TEdHh9WrV2NgYECNGjWYPn06Y8eOZcaMGWhpZf9Z1d/f/5UJuBBCCCGKhjdaLSQiIoKjR48qtalGRkZKMppZ+hEdHU2vXr2oVKkSJiYmShlAXFwcAOHh4Tg5OSmJdXZsbW2VxBqgTJkyJCQkAM9nW588eULr1q014lizZk2W8hNnZ+c8j2306NEMGjSIVq1aMWfOnCx9vY7MGfMXE7fMDwSZ8nJNgSwz7y9ek9dlY2OjJL+ZsSQnJ1OyZEmNeG7cuJHj9fj7778ZPHgwdnZ2mJqaYmJiQnJysvL1zoukpCTu3LmDi4uLxnYXFxciIyM1tr14HcqUKQOgXAdvb29mzpyJi4sL06ZN49KlS1nOldvx2alduzYGBgbK+0aNGpGcnMytW7dyPGbixIk8fPhQeeXWVgghhBAftje6oy85OZmOHTsyd+7cLPsyE5WOHTtiY2PDypUrKVu2LBkZGdSsWVOpU9XX13/leYoXL67xXqVSaZSVAOzbt49y5cpptMucbc1kaGiYx5E9r7ft3bs3+/bt48CBA0ybNo2NGzfSuXPnHI9RqVRZnt737NmzPJ8T8nZNIfdr8rpevj7JycmUKVOGkJCQLG1zWi2lX79+3Lt3j8WLF2NjY4Ouri6NGjV6a3XJL14HlUoFoFyHQYMG4ebmxr59+zh06BD+/v4sWLCA//73v3k6vqDo6upm+V4UQgghRNGUr+RaR0eH9PR05X3dunXZtm0btra22a68ce/ePaKioli5ciVNmjQByHIjYa1atVi1ahX379/PdfY6J9WrV0dXV5e4uDiNEpCCYG9vj729PV999RW9evUiICCAzp07Z7kOmSwsLIiPj1feR0dH8+TJE+W9g4MDa9eu1Sg7OH36tEYfr7qmeVW8ePFsY8yPunXr8tdff1GsWLE83RQJEBoaynfffUe7du0AuHXrlsbNmHmJzcTEhLJlyxIaGqrxNQ0NDaVBgwb5GoO1tTXDhg1j2LBhTJw4kZUrV2ok1/kVERHB06dPlQ+Fp0+fxsjICGtr69fuUwghhBBFR77KQmxtbQkLCyM2Npa7d+8yYsQI7t+/T69evTh79iwxMTH8/PPP9O/fn/T0dEqUKEHJkiX54YcfuHbtGr/88gujR4/W6LNXr15YWVnRqVMnQkNDuX79Otu2bdNY9SE3xsbG+Pj48NVXXxEUFERMTAwXLlxg6dKlBAUF5Wd4iqdPn+Ll5UVISAg3b94kNDSUs2fP4uDgoFyH5ORkgoODuXv3rpJAt2jRgmXLlnHx4kXOnTvHsGHDNGZGe/fujUqlYvDgwVy5coX9+/czf/58jXO/6prmla2tLcHBwfz11188ePDgta5Dq1ataNSoEZ06deLQoUPExsZy8uRJJk2axLlz57I9xs7OjrVr1xIZGUlYWBh9+vTJ8teJvMQ2duxY5s6dy6ZNm4iKimLChAmEh4czcuTIPMc/atQofv75Z27cuMGFCxc4evSo8jV8XampqQwcOFD5+k2bNg0vL68c662FEEII8XHJV0bg4+ODtrY21atXx8LCgtTUVEJDQ0lPT6dNmzY4OjoyatQozMzM0NLSQktLi40bN3L+/Hlq1qzJV199xddff63Rp46ODocOHcLS0pJ27drh6OjInDlz0NbWznNcM2bMYMqUKfj7++Pg4IC7uzv79u2jYsWK+RmeQltbm3v37tG3b1/s7e3x8PCgbdu2yk1pjRs3ZtiwYfTo0QMLCwvmzZsHwIIFC7C2tqZJkyb07t0bHx8fjfpcIyMj9uzZw+XLl3FycmLSpElZyj8yZ2xzuqZ5tWDBAg4fPoy1tTVOTk6vdR1UKhX79++nadOm9O/fH3t7e3r27MnNmzcpXbp0tsf8+OOPPHjwgLp16/LFF1/g7e2NpaVlvmPz9vZm9OjRjBkzBkdHRw4ePMju3bs1bix9lfT0dEaMGKF8T9jb2/Pdd9/l/QJko2XLltjZ2dG0aVN69OjBZ599prEMohBCCCE+bir1y0XCQohseXp6kpiY+MZPvkxKSsLU1JSHDx9iYmJSMMEJIQpcvbFrCjsEkU/nv+5b2CGIIiyvv7/lEYVCCCFENiRRE0K8jo+2ULRGjRoay8u9+Fq3bl1hh1fgPrbxCiGEEEIUho+2LOTmzZs5LpNXunRpjXW1i4KPbbzvMykLEUIIIT48UhbyCjY2NoUdwjv1sY1XCCGEEKIwfLTJtRBCCJEbuaExK6lDF+LVPtqaayGEEEIIIQqaJNfvgWbNmjFq1Cjg+QNWFi1a9FrHFmWBgYEaj1z39fWlTp06uR4TGxuLSqUiPDz8rcYmhBBCCJFJykLeM2fPnsXQ0DDP7bdv367xFMiPhY+Pj8ZjzLNbg9ra2pr4+HhKlSpVCBEKIYQQ4mMkyfV7xsLCIl/tzc3N31Ik77fMZQRzo62tjZWV1TuKSAghhBBCykLeOy+WhfTu3ZsePXpo7H/27BmlSpVizZrnN9q8XBZia2vL7NmzGTBgAMbGxlSoUIEffvhBo4+TJ09Sp04d9PT0cHZ2ZufOnfkqn/j999/p0KEDJiYmGBsb06RJE2JiYgDIyMhg+vTplC9fHl1dXerUqcPBgweVYzNLNbZv307z5s0xMDCgdu3anDp1SuMcgYGBVKhQAQMDAzp37sy9e/c09r9YFuLr60tQUBC7du1CpVKhUqkICQnJtizk2LFjNGjQAF1dXcqUKcOECRNIS0tT9jdr1gxvb2/GjRuHubk5VlZWGo83V6vV+Pr6UqFCBXR1dSlbtize3t55um5CCCGEKPokuX6P9enThz179pCcnKxs+/nnn3ny5AmdO3fO8bgFCxbg7OzMxYsXGT58OF9++SVRUVHA8zUaO3bsiKOjIxcuXGDGjBmMHz8+zzHdvn2bpk2boquryy+//ML58+cZMGCAkqAuXryYBQsWMH/+fC5duoSbmxufffYZ0dHRGv1MmjQJHx8fwsPDsbe3p1evXkofYWFhDBw4EC8vL8LDw2nevDkzZ87MMSYfHx88PDxwd3cnPj6e+Ph4GjdunG3s7dq1o379+kRERPD999/z448/Zuk7KCgIQ0NDwsLCmDdvHtOnT+fw4cMAbNu2jW+++YYVK1YQHR3Nzp07cXR0zPWapaSkkJSUpPESQgghRNEkZSHvMTc3NwwNDdmxYwdffPEFAOvXr+ezzz7L9aEv7dq1Y/jw4QCMHz+eb775hqNHj1K1alXWr1+PSqVi5cqV6OnpUb16dW7fvs3gwYPzFNO3336LqakpGzduVGq97e3tlf3z589n/Pjx9OzZE4C5c+dy9OhRFi1axLfffqu08/HxoX379gD4+flRo0YNrl27RrVq1Vi8eDHu7u6MGzdO6f/kyZMaM+AvMjIyQl9fn5SUlFzLQL777jusra1ZtmwZKpWKatWqcefOHcaPH8/UqVPR0nr+WbNWrVpMmzYNADs7O5YtW0ZwcDCtW7cmLi4OKysrWrVqRfHixalQoQINGjTI9Zr5+/vj5+eXaxshhBBCFA0yc/0eK1asGB4eHsrjyR8/fsyuXbvo06dPrsfVqlVL+bdKpcLKyoqEhAQAoqKiqFWrFnp6ekqbVyWHLwoPD6dJkybZ3kSZlJTEnTt3cHFx0dju4uJCZGRkjjGWKVMGQIkxMjKSTz75RKN9o0aN8hxjTiIjI2nUqBEqlUojtuTkZP78889sY8uMLzO27t278/TpUypVqsTgwYPZsWOHRllJdiZOnMjDhw+V161bt954LEIIIYR4P0ly/Z7r06cPwcHBJCQksHPnTvT19XF3d8/1mJcTX5VKRUZGRoHEo6+vXyD9vBhjZrJbUDG+qdyun7W1NVFRUXz33Xfo6+szfPhwmjZtmuOj5QF0dXUxMTHReAkhhBCiaJLk+j3XuHFjrK2t2bRpE+vWraN79+5vtPRe1apVuXz5MikpKcq2s2fP5vn4WrVqcfz48WyTSRMTE8qWLUtoaKjG9tDQUKpXr57nczg4OBAWFqax7fTp07keo6OjQ3p6+iv7PXXqFGq1WiM2Y2Njypcvn+f49PX16dixI0uWLCEkJIRTp05x+fLlPB8vhBBCiKJLkusPQO/evVm+fDmHDx9+ZUlIXvrKyMhgyJAhREZG8vPPPzN//nwAjXKJnHh5eZGUlETPnj05d+4c0dHRrF27VrlhcuzYscydO5dNmzYRFRXFhAkTCA8PZ+TIkXmO0dvbm4MHDzJ//nyio6NZtmxZjvXWmWxtbbl06RJRUVHcvXs32+R/+PDh3Lp1i//+97/88ccf7Nq1i2nTpjF69Gil3vpVAgMD+fHHH/ntt9+4fv06P/30E/r6+tjY2OR5fEIIIYQouiS5/gD06dOHK1euUK5cuSz1zPllYmLCnj17CA8Pp06dOkyaNImpU6cCaNRh56RkyZL88ssvJCcn4+rqSr169Vi5cqUym+7t7c3o0aMZM2YMjo6OHDx4kN27d2NnZ5fnGBs2bMjKlStZvHgxtWvX5tChQ0yePDnXYwYPHkzVqlVxdnbGwsIiy+w5QLly5di/fz9nzpyhdu3aDBs2jIEDB76y7xeZmZmxcuVKXFxcqFWrFkeOHGHPnj2ULFkyz30IIYQQouhSqV/8G7n4KK1bt47+/fvz8OHDAqupFjlLSkrC1NSUhw8fSv21EO+xemPXFHYI753zX/ct7BCEKDR5/f0tS/F9hNasWUOlSpUoV64cERERjB8/Hg8PD0mshRDiBZJICiFeh5SFfIT++usv/vOf/+Dg4MBXX31F9+7dlac4Dhs2THm0+MuvYcOGFXLkQgghhBDvNykLERoSEhJyfIKgiYkJlpaW7ziiokfKQoQQQogPj5SFiNdiaWkpCbQQotC9D/XOUhYihHgdUhYihBBCCCFEAZHkWgghhBBCiAIiyXUBaNasGaNGjSrsMBR5iUelUrFz5853Es/b5unpSadOnXJt8759jYQQQghRNEly/QELCQlBpVKRmJiY72Pj4+Np27ZtwQclhBBCCPERk+S6EKSmphZ2CFhZWaGrq1vYYeTqfbhOQgghhBD5Icl1AUlLS8PLywtTU1NKlSrFlClTyFzl0NbWlhkzZtC3b19MTEwYMmQIACdOnKBJkybo6+tjbW2Nt7c3jx8/Vvpcu3Ytzs7OGBsbY2VlRe/evUlISAAgNjaW5s2bA1CiRAlUKhWenp7KsRkZGYwbNw5zc3OsrKzw9fXViPfFspDY2FhUKhXbt2+nefPmGBgYULt2bU6dOqVxzMqVK7G2tsbAwIDOnTuzcOFCzMzM8nR9fH19qVOnDitWrFD68PDw4OHDh0qbzPKOWbNmUbZsWapWrQrA5cuXadGiBfr6+pQsWZIhQ4aQnJyc5Rx+fn5YWFhgYmLCsGHDck3OU1JS8PHxoVy5chgaGvLJJ58QEhKi7A8MDMTMzIy9e/dStWpVDAwM6NatG0+ePCEoKAhbW1tKlCiBt7c36enpuY49JSWFpKQkjZcQQgghiiZJrgtIUFAQxYoV48yZMyxevJiFCxeyatUqZf/8+fOpXbs2Fy9eZMqUKcTExODu7k7Xrl25dOkSmzZt4sSJE3h5eSnHPHv2jBkzZhAREcHOnTuJjY1VEmhra2u2bdsGQFRUFPHx8SxevFgjHkNDQ8LCwpg3bx7Tp0/n8OHDuY5h0qRJ+Pj4EB4ejr29Pb169SItLQ2A0NBQhg0bxsiRIwkPD6d169bMmjUrX9fo2rVrbN68mT179nDw4EEuXrzI8OHDNdoEBwcTFRXF4cOH2bt3L48fP8bNzY0SJUpw9uxZtmzZwpEjRzSuU+ZxkZGRhISEsGHDBrZv346fn1+OsXh5eXHq1Ck2btzIpUuX6N69O+7u7kRHRyttnjx5wpIlS9i4cSMHDx4kJCSEzp07s3//fvbv38/atWtZsWIFW7duzXXc/v7+mJqaKi9ra+t8XTchhBBCfDjkITIFoFmzZiQkJPD777+jUqkAmDBhArt37+bKlSvY2tri5OTEjh07lGMGDRqEtrY2K1asULadOHECV1dXHj9+jJ6eXpbznDt3jvr16/Po0SOMjIwICQmhefPmPHjwQGMGuVmzZqSnp3P8+HFlW4MGDWjRogVz5swBns9c79ixg06dOhEbG0vFihVZtWoVAwcOBODKlSvUqFGDyMhIqlWrRs+ePUlOTmbv3r1Kn//5z3/Yu3dvnmq+fX19mTlzJjdv3qRcuXIAHDx4kPbt23P79m2srKzw9PTk4MGDxMXFoaOjAzyfLR8/fjy3bt3C0NAQgP3799OxY0fu3LlD6dKl8fT0ZM+ePdy6dQsDAwMAli9fztixY3n48CFaWlo0a9aMOnXqsGjRIuLi4qhUqRJxcXGULVtWibFVq1Y0aNCA2bNnExgYSP/+/bl27RqVK1cGnj+9cu3atfz9998YGRkB4O7ujq2tLcuXL89x7CkpKaSkpCjvk5KSsLa2lofICJELWedaCPG+yetDZGTmuoA0bNhQSawBGjVqRHR0tFIy4OzsrNE+IiKCwMBAjceLu7m5kZGRwY0bNwA4f/48HTt2pEKFChgbG+Pq6gpAXFzcK+OpVauWxvsyZcooJSV5OaZMmTIAyjFRUVE0aNBAo/3L71+lQoUKSmINz69RRkYGUVFRyjZHR0clsQaIjIykdu3aSmIN4OLikuW42rVrK4l1Zt/JycncunUrSxyXL18mPT0de3t7jet/7NgxYmJilHYGBgZKYg1QunRpbG1tlcQ6c9urrquuri4mJiYaLyGEEEIUTfKExnfkxeQQIDk5maFDh+Lt7Z2lbYUKFZRyCDc3N9atW4eFhQVxcXG4ubnl6Ua/4sWLa7xXqVRkZGTk+ZjMDwqvOqagvXyd3obk5GS0tbU5f/482traGvteTJyzu4avc12FEEII8fGQ5LqAhIWFabw/ffo0dnZ2WZK3THXr1uXKlStUqVIl2/2XL1/m3r17zJkzR6nRPXfunEabzBneV91QVxCqVq3K2bNnNba9/P5V4uLiuHPnjlKKcfr0abS0tJQbF7Pj4OBAYGAgjx8/VhLv0NDQLMdFRETw9OlT9PX1lb6NjIyyrW92cnIiPT2dhIQEmjRpkq8xCCGEEELkRspCCkhcXByjR48mKiqKDRs2sHTpUkaOHJlj+/Hjx3Py5Em8vLwIDw8nOjqaXbt2KTfqVahQAR0dHZYuXcr169fZvXs3M2bM0OjDxsYGlUrF3r17+eeff7JdQaOg/Pe//2X//v0sXLiQ6OhoVqxYwYEDBzRKYV5FT0+Pfv36ERERwfHjx/H29sbDwwMrK6scj+nTp49y3G+//cbRo0f573//yxdffEHp0qWVdqmpqQwcOJArV66wf/9+pk2bhpeXF1paWb/F7e3t6dOnD3379mX79u3cuHGDM2fO4O/vz759+/J3YYQQQgghXiDJdQHp27cvT58+pUGDBowYMYKRI0cqS+5lp1atWhw7doyrV6/SpEkTnJycmDp1qjKra2FhQWBgIFu2bKF69erMmTOH+fPna/RRrlw5/Pz8mDBhAqVLl86ygkZBcnFxYfny5SxcuJDatWtz8OBBvvrqq2xvvMxJlSpV6NKlC+3ataNNmzbUqlWL7777LtdjDAwM+Pnnn7l//z7169enW7dutGzZkmXLlmm0a9myJXZ2djRt2pQePXrw2WefZVl+8EUBAQH07duXMWPGULVqVTp16sTZs2epUKFCnscjhBBCCPEyWS1EvLbBgwfzxx9/aKxKkhNfX1927txJeHj42w/sPZfXu42FEEII8f7I6+9vqbkWeTZ//nxat26NoaEhBw4cICgo6JUzz0IIIYQQHxNJrkWenTlzhnnz5vHo0SMqVarEkiVLGDRoEAA1atTg5s2b2R734lreQgghhBBFmZSFiAJx8+ZNnj17lu2+0qVLY2xs/I4jen9JWYgQQgjx4ZGyEPFO2djYFHYIQog39D48FfF9Ik9oFEK8DlktRAghhBBCiAIiyfV7rlmzZowaNarA+vP19aVOnToF1t+7lN/YAwMDMTMze2U7lUrFzp07XzsuIYQQQohMRT65DgkJQaVSkZiYWNihvJbt27dneXjMxyC7hNfHx4fg4OA899GjRw+uXr2qvM8pOY+Pj6dt27avG6oQQgghhEJqrv+/1NRU5XHi79qzZ88oXrx4tvGYm5sXSky5yS7ed8HIyAgjI6M8t9fX11ceh56b3J4QKYQQQgiRHx/EzHVGRgb+/v5UrFgRfX19ateuzdatW1Gr1bRq1Qo3NzcyFz25f/8+5cuXZ+rUqcTGxtK8eXMASpQogUqlwtPTE3hebuHl5cWoUaMoVaoUbm5uACxcuBBHR0cMDQ2xtrZm+PDhWR4rHhoaSrNmzTAwMKBEiRK4ubnx4MEDAGxtbVm0aJFG+zp16mg8LVClUvH999/z2WefYWhoyKxZs5RZ1VWrVlGxYkXlyYcvl4WkpKQwfvx4rK2t0dXVpUqVKvz4449A9mUQO3fuzPUR5WfPnqV169aUKlUKU1NTXF1duXDhgkab7OLNTXp6OgMHDlS+XlWrVmXx4sVZ2q1evZoaNWqgq6tLmTJllCdM2traAtC5c2dUKpXy/sWZ50OHDqGnp5flLxIjR46kRYsWWa5HYGAgfn5+REREoFKpUKlUBAYGKuN7cZb81q1beHh4YGZmhrm5OZ9//jmxsbHK/pCQEBo0aIChoSFmZma4uLjkuAyhEEIIIT4uH0Ry7e/vz5o1a1i+fDm///47X331Ff/5z3/49ddfCQoK4uzZsyxZsgSAYcOGUa5cOaZOnYq1tTXbtm0DICoqivj4eI0kLygoCB0dHUJDQ1m+fDkAWlpaLFmyhN9//52goCB++eUXxo0bpxwTHh5Oy5YtqV69OqdOneLEiRN07NiR9PT0fI3J19eXzp07c/nyZQYMGADAtWvX2LZtG9u3b8/xSYZ9+/Zlw4YNLFmyhMjISFasWJGv2dyXPXr0iH79+nHixAlOnz6NnZ0d7dq149GjR6+MNycZGRmUL1+eLVu2cOXKFaZOncr//vc/Nm/erLT5/vvvGTFiBEOGDOHy5cvs3r2bKlWqAM8Tfnj+iPL4+Hjl/YtatmyJmZmZ8vWF50n9pk2b6NOnT5b2PXr0YMyYMdSoUYP4+Hji4+Pp0aNHlnbPnj3Dzc0NY2Njjh8/TmhoKEZGRri7u5OamkpaWhqdOnXC1dWVS5cucerUKYYMGZLrB5iUlBSSkpI0XkIIIYQomt77spCUlBRmz57NkSNHaNSoEQCVKlXixIkTrFixgvXr17NixQr69u3LX3/9xf79+7l48SLFij0fWmZZhaWlZZZZXTs7O+bNm6ex7cVZYltbW2bOnMmwYcOUJxHOmzcPZ2dnjScT1qhRI9/j6t27N/3799fYlpqaypo1a7CwsMj2mKtXr7J582YOHz5Mq1atlGvxJjJneTP98MMPmJmZcezYMTp06JBrvDkpXrw4fn5+yvuKFSty6tQpNm/ejIeHBwAzZ85kzJgxjBw5UmlXv359AGX8ZmZmOZZsaGtr07NnT9avX8/AgQMBCA4OJjExka5du2Zpr6+vj5GREcWKFcu1DGTTpk1kZGSwatUqJWEOCAjAzMyMkJAQnJ2defjwIR06dKBy5coAODg45Ho9/P39Na6HEEIIIYqu937m+tq1azx58oTWrVsrNbdGRkasWbOGmJgYALp3707nzp2ZM2cO8+fPx87OLk9916tXL8u2I0eO0LJlS8qVK4exsTFffPEF9+7d48mTJ8D/zVy/KWdn5yzbbGxsckysM8+tra2Nq6vrG58/099//83gwYOxs7PD1NQUExMTkpOTiYuLe2W8ufn222+pV68eFhYWGBkZ8cMPPyh9JiQkcOfOnTe+jn369CEkJIQ7d+4AsG7dOtq3b5+nFUJyEhERwbVr1zA2Nla+18zNzfn333+JiYnB3NwcT09P3Nzc6NixI4sXLyY+Pj7XPidOnMjDhw+V161bt147PiGEEEK83977mevMeud9+/ZRrlw5jX26uroAPHnyhPPnz6OtrU10dHSe+zY0NNR4HxsbS4cOHfjyyy+ZNWsW5ubmnDhxgoEDB5KamoqBgcErb5DT0tLi5YdeZvfkwpfPndO2FxXUuV/Ur18/7t27x+LFi7GxsUFXV5dGjRqRmpqar9hetHHjRnx8fFiwYAGNGjXC2NiYr7/+mrCwsDyNI6/q169P5cqV2bhxI19++SU7duxQ6qhfV3JyMvXq1WPdunVZ9mV+8AkICMDb25uDBw+yadMmJk+ezOHDh2nYsGG2ferq6irfq0IIIYQo2t775Lp69ero6uoSFxeX44ztmDFj0NLS4sCBA7Rr14727dsr5Q6ZK4DkpSb6/PnzZGRksGDBArS0nk/qv1gnDFCrVi2Cg4Nz/DO/hYWFxkxmUlISN27cePVA88DR0ZGMjAyOHTumlIW8fO5Hjx7x+PFjJRnOqXY7U2hoKN999x3t2rUDnt/Md/fu3TeKMzQ0lMaNGzN8+HBlW+ZfGQCMjY2xtbUlODhYueH0ZcWLF8/T16xPnz6sW7eO8uXLo6WlRfv27XNsq6Oj88o+69aty6ZNm7C0tMz10aZOTk44OTkxceJEGjVqxPr163NMroUQQgjx8Xjvy0KMjY3x8fHhq6++IigoiJiYGC5cuMDSpUsJCgpi3759rF69mnXr1tG6dWvGjh1Lv379lNU7bGxsUKlU7N27l3/++SfLyh8vqlKlCs+ePWPp0qVcv36dtWvXKjc6Zpo4cSJnz55l+PDhXLp0iT/++IPvv/9eSUhbtGjB2rVrOX78OJcvX6Zfv35oa2sXyLWwtbWlX79+DBgwgJ07d3Ljxg1CQkKUDwCffPIJBgYG/O9//yMmJob169e/cibXzs6OtWvXEhkZSVhYGH369HnjmWU7OzvOnTvHzz//zNWrV5kyZUqWmxJ9fX1ZsGABS5YsITo6WvmavjjW4OBg/vrrL+VrmZ0+ffpw4cIFZs2aRbdu3XKdIba1teXGjRuEh4dz9+5dUlJSsu2vVKlSfP755xw/fly5xt7e3vz555/cuHGDiRMncurUKW7evMmhQ4eIjo5+Zd21EEIIIT4O731yDTBjxgymTJmCv78/Dg4OuLu7s2/fPmxtbRk4cCC+vr7UrVsXAD8/P0qXLs2wYcMAKFeuHH5+fkyYMIHSpUsry71lp3bt2ixcuJC5c+dSs2ZN1q1bh7+/v0Ybe3t7Dh06REREBA0aNKBRo0bs2rVLuYFy4sSJuLq60qFDB9q3b0+nTp2UG98Kwvfff0+3bt0YPnw41apVY/DgwTx+/Bh4fvPmTz/9xP79+3F0dGTDhg0aSwBm58cff+TBgwfUrVuXL774Am9vbywtLd8oxqFDh9KlSxd69OjBJ598wr179zRmseF5OcqiRYv47rvvqFGjBh06dNAo6VmwYAGHDx/G2toaJyenHM9VpUoVGjRowKVLl7JdJeRFXbt2xd3dnebNm2NhYcGGDRuytDEwMODXX3+lQoUKdOnSBQcHBwYOHMi///6LiYkJBgYG/PHHH3Tt2hV7e3uGDBnCiBEjGDp0aD6vkhBCCCGKIpX65SJdIcRblZSUhKmpKQ8fPsy19ESId63e2DWFHcJ75fzXfQs7BCHEeySvv7/f+5prIYQQ74Ykk0II8eY+iLIQ8X4ZNmyYxrKIL74yy3GEEEIIIT5GUhYi8i0hISHHpwyamJi8cc12USdlIUIIIcSHR8pCxFtjaWkpCbQQRYzUW2clZTJCiNchZSFCCCGEEEIUEEmuhRBCCCGEKCCSXIv3RmBgIGZmZgXSV0hICCqVisTExALpr7DPI4QQQogPgyTX4o14enrSqVOnwg5DCCGEEOK9IMm1EEIIIYQQBUSSa5EnW7duxdHREX19fUqWLEmrVq0YO3YsQUFB7Nq1C5VKhUqlIiQkJNtSifDwcFQqFbGxscq2wMBAKlSogIGBAZ07d+bevXvKvtjYWLS0tDh37pxGHIsWLcLGxoaMjIx8j2Hbtm3UqFEDXV1dbG1tWbBggcb+tWvX4uzsjLGxMVZWVvTu3ZuEhASNNvv378fe3h59fX2aN2+uMZ6cpKSkkJSUpPESQgghRNEkybV4pfj4eHr16sWAAQOIjIwkJCSELl26MG3aNDw8PHB3dyc+Pp74+HgaN26cpz7DwsIYOHAgXl5ehIeH07x5c2bOnKnst7W1pVWrVgQEBGgcFxAQgKenJ1pa+fvWPX/+PB4eHvTs2ZPLly/j6+vLlClTCAwMVNo8e/aMGTNmEBERwc6dO4mNjcXT01PZf+vWLbp06ULHjh0JDw9n0KBBTJgw4ZXn9vf3x9TUVHlZW1vnK3YhhBBCfDhknWvxSvHx8aSlpdGlSxdsbGwAcHR0BEBfX5+UlBSsrKzy1efixYtxd3dn3LhxANjb23Py5EkOHjyotBk0aBDDhg1j4cKF6OrqcuHCBS5fvsyuXbvyPYaFCxfSsmVLpkyZopzvypUrfP3110oCPWDAAKV9pUqVWLJkCfXr1yc5ORkjIyO+//57KleurMx4V61alcuXLzN37txczz1x4kRGjx6tvE9KSpIEWwghhCiiZOZavFLt2rVp2bIljo6OdO/enZUrV/LgwYM36jMyMpJPPvlEY1ujRo003nfq1AltbW127NgBPC8jad68Oba2tq91PhcXF41tLi4uREdHk56eDjyf3e7YsSMVKlTA2NgYV1dXAOLi4vIcc3Z0dXUxMTHReAkhhBCiaJLkWryStrY2hw8f5sCBA1SvXp2lS5dStWpVbty4kW37zJINtVqtbHv27Fm+z6ujo0Pfvn0JCAggNTWV9evXa8wuF6THjx/j5uaGiYkJ69at4+zZs0pSn5qa+lbOKYQQQoiiR5JrkScqlQoXFxf8/Py4ePEiOjo67NixAx0dHWXmN5OFhQXwvJwkU3h4uEYbBwcHwsLCNLadPn06y3kHDRrEkSNH+O6775TSlNfh4OBAaGioxrbQ0FDs7e3R1tbmjz/+4N69e8yZM4cmTZpQrVq1LDczOjg4cObMmVfGLIQQQoiPlyTX4pXCwsKYPXs2586dIy4uju3bt/PPP//g4OCAra0tly5dIioqirt37/Ls2TOqVKmCtbU1vr6+REdHs2/fviwrc3h7e3Pw4EHmz59PdHQ0y5Yt06i3zuTg4EDDhg0ZP348vXr1Ql9f/7XGMGbMGIKDg5kxYwZXr14lKCiIZcuW4ePjA0CFChXQ0dFh6dKlXL9+nd27dzNjxgyNPoYNG0Z0dDRjx44lKiqK9evXa9wQKYQQQgghybV4JRMTE3799VfatWuHvb09kydPZsGCBbRt25bBgwdTtWpVnJ2dsbCwIDQ0lOLFi7Nhwwb++OMPatWqxdy5czVWAgFo2LAhK1euZPHixdSuXZtDhw4xefLkbM8/cOBAUlNT36gkpG7dumzevJmNGzdSs2ZNpk6dyvTp05WbGS0sLAgMDGTLli1Ur16dOXPmMH/+fI0+KlSowLZt29i5cye1a9dm+fLlzJ49+7VjEkIIIUTRo1K/WBgrxHtoxowZbNmyhUuXLhV2KAUiKSkJU1NTHj58KDc3ivdGvbFrCjuE9875r/sWdghCiPdIXn9/y1J84r2VnJxMbGwsy5YtyzLzLYQoWJJICiFEwZCyEPHe8vLyol69ejRr1ixLSciwYcMwMjLK9jVs2LBCilgIIYQQHzspCxEfpISEhBwfI25iYoKlpeU7jijvpCxECCGE+PBIWYgo0iwtLd/rBFqID4XUWudMSmWEEK9DykKEEEIIIYQoIJJci7fK19eXOnXqvJNzqVQqdu7c+U7OlcnW1pZFixa903MKIYQQ4v0lybV4q3x8fAgODi7sMIQQQggh3gmpuRZvVeYKHkIIIYQQHwOZuRa5atasGd7e3owbNw5zc3OsrKzw9fVV9sfFxfH5559jZGSEiYkJHh4e/P3338r+l8tCQkJCaNCgAYaGhpiZmeHi4sLNmzeV/bt27aJu3bro6elRqVIl/Pz8SEtLe63Yb926hYeHB2ZmZpibm/P5558TGxsLwKFDh9DT0yMxMVHjmJEjR9KiRQvl/YkTJ2jSpAn6+vpYW1vj7e3N48ePXyseIYQQQhR9klyLVwoKCsLQ0JCwsDDmzZvH9OnTOXz4MBkZGXz++efcv3+fY8eOcfjwYa5fv06PHj2y7SctLY1OnTrh6urKpUuXOHXqFEOGDEGlUgFw/Phx+vbty8iRI7ly5QorVqwgMDCQWbNm5TvmZ8+e4ebmhrGxMcePHyc0NBQjIyPc3d1JTU2lZcuWmJmZsW3bNuWY9PR0Nm3aRJ8+fQCIiYnB3d2drl27cunSJTZt2sSJEyfw8vLKVywpKSkkJSVpvIQQQghRNElZiHilWrVqMW3aNADs7OxYtmyZUkd9+fJlbty4gbW1NQBr1qyhRo0anD17lvr162v0k5SUxMOHD+nQoQOVK1cGwMHBQdnv5+fHhAkT6NevHwCVKlVixowZjBs3Tjl/Xm3atImMjAxWrVqlJO8BAQGYmZkREhJCmzZt6NmzJ+vXr2fgwIEABAcHk5iYSNeuXQHw9/enT58+jBo1Shn7kiVLcHV15fvvv0dPTy9Psfj7++Pn55ev+IUQQgjxYZKZa/FKtWrV0nhfpkwZEhISiIyMxNraWkmsAapXr46ZmRmRkZFZ+jE3N8fT0xM3Nzc6duzI4sWLiY+PV/ZHREQwffp0jactDh48mPj4eJ48eZKvmCMiIrh27RrGxsZKX+bm5vz777/ExMQA0KdPH0JCQrhz5w4A69ato3379piZmSl9BAYGasTj5uZGRkYGN27cyHMsEydO5OHDh8rr1q1b+RqLEEIIIT4cMnMtXql48eIa71UqFRkZGa/VV0BAAN7e3hw8eJBNmzYxefJkDh8+TMOGDUlOTsbPz48uXbpkOS6vs8SZkpOTqVevHuvWrcuyz8LCAoD69etTuXJlNm7cyJdffsmOHTsIDAzU6GPo0KF4e3tn6aNChQp5jkVXVxddXd18xS+EEEKID5Mk1+K1OTg4cOvWLW7duqXMXl+5coXExESqV6+e43FOTk44OTkxceJEGjVqxPr162nYsCF169YlKiqKKlWqvHFsdevWZdOmTVhaWub6iNI+ffqwbt06ypcvj5aWFu3bt9fo48qVKwUSjxBCCCE+DlIWIl5bq1atcHR0pE+fPly4cIEzZ87Qt29fXF1dcXZ2ztL+xo0bTJw4kVOnTnHz5k0OHTpEdHS0Unc9depU1qxZg5+fH7///juRkZFs3LiRyZMn5zu2Pn36UKpUKT7//HOOHz/OjRs3CAkJwdvbmz///FOj3YULF5g1axbdunXTmGEeP348J0+exMvLi/DwcKKjo9m1a1e+b2gUQgghxMdDkmvx2lQqFbt27aJEiRI0bdqUVq1aUalSJTZt2pRtewMDA/744w+6du2Kvb09Q4YMYcSIEQwdOhQANzc39u7dy6FDh6hfvz4NGzbkm2++wcbGJt+xGRgY8Ouvv1KhQgW6dOmCg4MDAwcO5N9//9WYya5SpQoNGjTg0qVLyiohmWrVqsWxY8e4evUqTZo0wcnJialTp1K2bNl8xyOEEEKIj4NKrVarCzsIIT4mSUlJmJqa8vDhw1xLVoR4F+qNXVPYIby3zn/dt7BDEEK8R/L6+1tqroUQ4iMmCaQQQhQsKQsRH4R169ZpLIn34qtGjRqFHZ4QQgghBCAz1+ID8dlnn/HJJ59ku+/lpQKFEEIIIQqLJNfig2BsbIyxsXFhhyGEEEIIkStJroUQ4iMkNzK+mtSjCyFeh9RcCyGEEEIIUUAkuRZCCCGEEKKASHIthBBCCCFEAZHkWryR1NTUAu9TrVaTlpZW4P2+ifcxJiGEEEK8fyS5LkKaNWuGl5cXXl5emJqaUqpUKaZMmULmQzhTUlLw8fGhXLlyGBoa8sknnxASEqLRx4kTJ2jSpAn6+vpYW1vj7e3N48ePlf22trbMmDGDvn37YmJiwpAhQ3KNKTY2FpVKxcaNG2ncuDF6enrUrFmTY8eOKW1CQkJQqVQcOHCAevXqoaury4kTJ8jIyMDf35+KFSuir69P7dq12bp1q3LcgwcP6NOnDxYWFujr62NnZ0dAQADwPOn38vKiTJky6OnpYWNjg7+/v0ZM4eHhSl+JiYmoVCrlerxuTEIIIYT4uMlqIUVMUFAQAwcO5MyZM5w7d44hQ4ZQoUIFBg8ejJeXF1euXGHjxo2ULVuWHTt24O7uzuXLl7GzsyMmJgZ3d3dmzpzJ6tWr+eeff5RkPTNpBZg/fz5Tp05l2rRpeY5r7NixLFq0iOrVq7Nw4UI6duzIjRs3KFmypNJmwoQJzJ8/n0qVKlGiRAn8/f356aefWL58OXZ2dvz666/85z//wcLCAldXV6ZMmcKVK1c4cOAApUqV4tq1azx9+hSAJUuWsHv3bjZv3kyFChW4desWt27dyvf1zG9M2UlJSSElJUV5n5SUlO84hBBCCPFhUKkzpzXFB69Zs2YkJCTw+++/o1KpgOfJ4e7duzl48CCVKlUiLi6OsmXLKse0atWKBg0aMHv2bAYNGoS2tjYrVqxQ9p84cQJXV1ceP36Mnp4etra2ODk5sWPHjjzFFBsbS8WKFZkzZw7jx48HIC0tjYoVK/Lf//6XcePGERISQvPmzdm5cyeff/458DwhNTc358iRIzRq1Ejpb9CgQTx58oT169fz2WefUapUKVavXp3lvN7e3vz+++8cOXJEuRYvx3Tx4kXq1KkDPJ+5LlGiBEePHqVZs2avHVN2fH198fPzy7L94cOHmJiY5Ok6ClHQZCm+V5Ol+IQQL0pKSsLU1PSVv79l5rqIadiwoUYy2ahRIxYsWMDly5dJT0/H3t5eo31KSooyexwREcGlS5dYt26dsl+tVpORkcGNGzdwcHAAwNnZOd9xvZiMFitWDGdnZyIjIzXavNjvtWvXePLkCa1bt9Zok5qaipOTEwBffvklXbt25cKFC7Rp04ZOnTrRuHFjADw9PWndujVVq1bF3d2dDh060KZNm3zHnd+YsjNx4kRGjx6tvE9KSsLa2jrfsQghhBDi/SfJ9UciOTkZbW1tzp8/j7a2tsY+IyMjpc3QoUPx9vbOcnyFChWUfxsaGr6VGF/sNzk5GYB9+/ZRrlw5jXa6uroAtG3blps3b7J//34OHz5My5YtGTFiBPPnz6du3brcuHGDAwcOcOTIETw8PGjVqhVbt25FS+v5rQYv/tHm2bNnBRJTdnR1dXPdL4QQQoiiQ5LrIiYsLEzj/enTp7Gzs8PJyYn09HQSEhJo0qRJtsfWrVuXK1euUKVKlQKP6/Tp0zRt2hR4XhZy/vx5vLy8cmxfvXp1dHV1iYuLy7GWGcDCwoJ+/frRr18/mjRpwtixY5k/fz4AJiYm9OjRgx49etCtWzfc3d25f/8+FhYWAMTHxyszzi/e3PimMQkhhBDi4yXJdRETFxfH6NGjGTp0KBcuXGDp0qUsWLAAe3t7+vTpQ9++fVmwYAFOTk78888/BAcHU6tWLdq3b8/48eNp2LAhXl5eDBo0CENDQ65cucLhw4dZtmzZG8X17bffYmdnh4ODA9988w0PHjxgwIABObY3NjbGx8eHr776ioyMDD799FMePnxIaGgoJiYm9OvXj6lTp1KvXj1q1KhBSkoKe/fuVUpXFi5cSJkyZXByckJLS4stW7ZgZWWFmZkZWlpaNGzYkDlz5lCxYkUSEhKYPHnyK8eQl5iEEEII8XGT5LqI6du3L0+fPqVBgwZoa2szcuRIZbm8gIAAZs6cyZgxY7h9+zalSpWiYcOGdOjQAYBatWpx7NgxJk2aRJMmTVCr1VSuXJkePXq8cVxz5sxhzpw5hIeHU6VKFXbv3k2pUqVyPWbGjBlYWFjg7+/P9evXMTMzo27duvzvf/8DQEdHh4kTJxIbG4u+vj5NmjRh48aNwPNEeN68eURHR6OtrU39+vXZv3+/UhKyevVqBg4cSL169ahatSrz5s3LU032q2ISQgghxMdNVgspQpo1a0adOnVYtGhRYYeiyG5ljo9dXu82FuJtktVCXk1WCxFCvEhWCxFCCJEjSRyFEOLtkCc0ijcye/ZsjIyMsn21bdu2sMMTQgghhHinpCxEvJH79+9z//79bPfp6+tnWbJOSFmIEEII8SGSshDxTpibm2Nubl7YYQghkDrqgialM0KI1yFlIUIIIYQQQhQQSa6FEEIIIYQoIJJciwIRGxuLSqXK05MO3yaVSsXOnTvf6TltbW3fq+UPhRBCCFF4JLkWBcLa2pr4+Hhq1qyZ52OaNWvGqFGj3l5QQgghhBDvmNzQKAqEtrY2VlZWhR2GEEIIIUShkpnrj8TBgwf59NNPMTMzo2TJknTo0IGYmBjg/0o6tm/fTvPmzTEwMKB27dqcOnVKOX7AgAHUqlWLlJQUAFJTU3FycqJv374afbxYFvLbb7/Rtm1bjIyMKF26NF988QV3794FwNPTk2PHjrF48WJUKhUqlYobN25QpUoV5s+frxF7eHg4KpWKa9eu5Xvct27dwsPDAzMzM8zNzfn888+JjY0F4NChQ+jp6ZGYmKhxzMiRI2nRooXy/sSJEzRp0gR9fX2sra3x9vbm8ePHeY4hJSWFpKQkjZcQQgghiiZJrj8Sjx8/ZvTo0Zw7d47g4GC0tLTo3LkzGRkZSptJkybh4+NDeHg49vb29OrVi7S0NACWLFnC48ePmTBhgtI2MTGRZcuWZXu+xMREWrRogZOTE+fOnePgwYP8/fffeHh4ALB48WIaNWrE4MGDiY+PJz4+ngoVKjBgwAACAgI0+goICKBp06ZUqVIlX2N+9uwZbm5uGBsbc/z4cUJDQzEyMsLd3Z3U1FRatmyJmZkZ27ZtU45JT09n06ZN9OnTB4CYmBjc3d3p2rUrly5dYtOmTZw4cQIvL688x+Hv74+pqanysra2ztc4hBBCCPHhkLKQj0TXrl013q9evRoLCwuuXLmCkZERAD4+PrRv3x4APz8/atSowbVr16hWrRpGRkb89NNPuLq6YmxszKJFizh69GiOi6gvW7YMJycnZs+erXFOa2trrl69ir29PTo6OhgYGGiUk3h6ejJ16lTOnDlDgwYNePbsGevXr88ym50XmzZtIiMjg1WrVqFSqYDnibqZmRkhISG0adOGnj17sn79egYOHAhAcHAwiYmJyvXy9/enT58+Sm24nZ0dS5YswdXVle+//x49Pb1XxjFx4kRGjx6tvE9KSpIEWwghhCiiZOb6IxEdHU2vXr2oVKkSJiYm2NraAhAXF6e0qVWrlvLvMmXKAJCQkKBsa9SoET4+PsyYMYMxY8bw6aef5ni+iIgIjh49qvE49GrVqgEo5SjZKVu2LO3bt2f16tUA7Nmzh5SUFLp3757vMUdERHDt2jWMjY2VGMzNzfn333+VGPr06UNISAh37twBYN26dbRv3x4zMzOlj8DAQI1xuLm5kZGRwY0bN/IUh66uLiYmJhovIYQQQhRNMnP9kejYsSM2NjasXLmSsmXLkpGRQc2aNUlNTVXaFC9eXPl35kzvi2UjGRkZhIaG/r/27j2ux/t//Pjj3enduRzS4SOFipCpiBhCU2xt2JjDUNPMWcypr49DTjnlvKNtxdjHNsdtzpocYiHCSEsk26IZSkNU798fbq6ft4pKpHreb7frduu6rtf1up6v91V69vK8rgtdXd2n1j9nZ2cTEBDAvHnzCux7mLgXJTg4mP79+7N48WIiIyN59913MTY2LtY4H4/B09OTtWvXFthnZWUFQIsWLahfvz7r1q1j6NChbNq0iaioKK0+PvzwQ0aNGlWgjzp16pQ4JiGEEEJUbpJcVwH//PMPSUlJrFy5krZt2wIPbtIrqQULFnDu3Dn27duHn58fkZGRBAUFFdrWw8ODDRs24OjoiJ5e4d9mBgYG5OXlFdjetWtXTExM+PTTT9mxYwf79+8vcawPY/juu++oVavWE2eL+/Xrx9q1a6lduzY6OjpKaczDPs6ePVviem8hhBBCVE1SFlIFVKtWjRo1avDFF19w/vx5fvnlF60a4OI4ceIEU6dO5csvv6RNmzYsWrSI0aNHc+HChULbDx8+nOvXr9OnTx+OHj1KSkoKO3fuJCgoSEmoHR0diYuLIzU1lWvXrimz5Lq6ugQGBhIaGoqzszPe3t6lGne/fv2oWbMmb731FgcOHODixYvExMQwatQo/vjjD612x48fZ/bs2bzzzjuo1Wpl38SJEzl06BAjRowgISGB5ORktmzZUqIbGoUQQghRdUhyXQXo6Oiwbt064uPjadKkCWPGjGHBggXFPv7u3bu89957BAYGEhAQAMDgwYPp0KED/fv3L3T22c7OjtjYWPLy8ujcuTNubm6EhIRgaWmJjs6Db7tx48ahq6tLo0aNsLKy0qr/HjRoEPfu3StyZrw4jI2N2b9/P3Xq1KFHjx64uroyaNAg7t69qzWT7eTkhJeXF6dOnVKeEvJQ06ZN2bdvH7///jtt27bF3d2dqVOnYmdnV+q4hBBCCFF5qTQajaa8gxDicQcOHKBTp05cvnwZa2vr8g6nTGVlZWFhYUFmZqbc3CiEEEJUEMX9/S011+KlkpOTw99//8306dPp2bNnpUushRBCCFG5SVmIeKn873//w8HBgZs3bzJ//nytfWvXrtV6JN6jS+PGjcspYiGEEEKI/0/KQkSFcevWLa5evVroPn19fRwcHF5wRKUjZSFCCCFExSNlIaLSMTMzw8zMrLzDEOKF8Ry/urxDqNLiFwwo7xCEEBWQlIUIIYQQQghRRiS5rmB8fHwICQkpcr+joyNLlix57nGoVCo2b9783M8jhBBCCFGRSHIthBBCCCFEGZHkWrx0NBoNubm55R2GlpcxJiGEEEK8fCS5roByc3MZMWIEFhYW1KxZkylTplDUQ1/S0tJ46623MDU1xdzcnF69ehV44sann35K/fr1MTAwoEGDBnzzzTda+5OTk2nXrh2GhoY0atSI3bt3FzvW1NRUVCoV69ato3Xr1hgaGtKkSRP27duntImJiUGlUrF9+3Y8PT1Rq9UcPHiQ/Px8wsPDqVu3LkZGRrzyyiusX79eOe7GjRv069cPKysrjIyMcHZ2JjIyEoB79+4xYsQIbG1tMTQ0xMHBgfDwcK2YEhISlL5u3ryJSqUiJibmmWISQgghRNUmTwupgFatWsWgQYM4cuQIx44dY/DgwdSpU4cPPvhAq11+fr6SWO/bt4/c3FyGDx/Ou+++qySRmzZtYvTo0SxZsgRfX19+/vlngoKCqF27Nh06dCA/P58ePXpgbW1NXFwcmZmZT6z5Lsr48eNZsmQJjRo1YtGiRQQEBHDx4kVq1KihtJk0aRILFy6kXr16VKtWjfDwcNasWcNnn32Gs7Mz+/fv57333sPKyor27dszZcoUzp49y/bt26lZsybnz5/nzp07ACxbtowff/yR77//njp16nD58mUuX75c4rhLGlNhcnJyyMnJUdazsrJKHIcQQgghKgZJrisge3t7Fi9ejEqlokGDBpw+fZrFixcXSK6jo6M5ffo0Fy9exN7eHoDVq1fTuHFjjh49SosWLVi4cCGBgYEMGzYMgLFjx/Lrr7+ycOFCOnTowJ49ezh37hw7d+7Ezs4OgDlz5tClS5cSxTxixAjefvtt4MFM+Y4dO/jqq6+YMGGC0mbGjBm89tprwIOEdM6cOezZswdvb28A6tWrx8GDB/n8889p3749aWlpuLu707x5c+DBzZwPpaWl4ezszKuvvopKpSr1M7BLGlNhwsPDCQsLK9X5hRBCCFGxSFlIBdSqVStUKpWy7u3tTXJyMnl5eVrtEhMTsbe3VxJrgEaNGmFpaUliYqLSpk2bNlrHtWnTRmu/vb29klg/PF9JPXqMnp4ezZs3V87x0MMkGeD8+fPcvn2b1157TetNjKtXryYlJQWAoUOHsm7dOpo1a8aECRM4dOiQcnxgYCAJCQk0aNCAUaNGsWvXrhLHXJqYChMaGkpmZqaylGYGXQghhBAVg8xci5eGiYmJ8nV2djYAW7du5T//+Y9WO7VaDUCXLl24dOkS27ZtY/fu3XTq1Inhw4ezcOFCPDw8uHjxItu3b2fPnj306tULX19f1q9fj47Og78pH61Tv3//fpnEVBi1Wv3E/UIIIYSoPGTmugKKi4vTWv/1119xdnZGV1dXa7urq2uBWuOzZ89y8+ZNGjVqpLSJjY3VOi42NlZr/+XLl0lPT9c6X0k9ekxubi7x8fG4uroW2b5Ro0ao1WrS0tJwcnLSWh6dibeysmLgwIGsWbOGJUuW8MUXXyj7zM3Neffdd1m5ciXfffcdGzZs4Pr161hZWQFojenRmxufNSYhhBBCVF0yc10BpaWlMXbsWD788EOOHz/O8uXLiYiIKNDO19cXNzc3+vXrx5IlS8jNzWXYsGG0b99eKXcYP348vXr1wt3dHV9fX3766Sc2btzInj17lD5cXFwYOHAgCxYsICsri8mTJ5c45o8//hhnZ2dcXV1ZvHgxN27c4P333y+yvZmZGePGjWPMmDHk5+fz6quvkpmZSWxsLObm5gwcOJCpU6fi6elJ48aNycnJ4eeff1YS9kWLFmFra4u7uzs6Ojr88MMP2NjYYGlpiY6ODq1atWLu3LnUrVuXjIwM/vvf/z51DMWJSQghhBBVmyTXFdCAAQO4c+cOXl5e6OrqMnr0aAYPHlygnUqlYsuWLYwcOZJ27dqho6ODv78/y5cvV9p069aNpUuXsnDhQkaPHk3dunWJjIzEx8cHAB0dHTZt2sSgQYPw8vLC0dGRZcuW4e/vX6KY586dy9y5c0lISMDJyYkff/yRmjVrPvGYmTNnYmVlRXh4OBcuXMDS0hIPDw/+7//+DwADAwNCQ0NJTU3FyMiItm3bsm7dOuBBIjx//nySk5PR1dWlRYsWbNu2TSkJ+frrrxk0aBCenp40aNCA+fPn07lz56eO42kxCSGEEKJqU2mKekCyEGUgNTWVunXrcuLECZo1a1be4bwUsrKysLCwIDMzE3Nz8/IOR7zEPMevLu8QqrT4BQPKOwQhxEukuL+/ZeZaCCFeUpLcCSFExSM3NIpnMmfOHK3H0j26lPRZ2EIIIYQQFZ2UhYhncv36da5fv17oPiMjowKPrBNSFiKEEEJURFIWIl6I6tWrU7169fIOQ4hKR+qty5+U5QghSkPKQoQQQgghhCgjklwLIYQQQghRRipVcq3RaBg8eDDVq1dHpVIV6617QgghhBBClJVKlVzv2LGDqKgofv75Z9LT02nSpMlTj1GpVGzevPn5ByeEEEIIISq9SnVDY0pKCra2trRu3fqFn/vevXsYGBi88PM+yfOM6f79++jr6z+XvsuLRqMhLy8PPb1K9WMhhBBCiBeo0sxcBwYGMnLkSNLS0lCpVDg6OuLo6MiSJUu02jVr1ozp06cD4OjoCED37t2VYx721a1bN63jQkJClFeCA/j4+DBixAhCQkKoWbMmfn5+APz222906dIFU1NTrK2t6d+/P9euXSvWGPLz85k/fz5OTk6o1Wrq1KnD7Nmzlf0TJ07ExcUFY2Nj6tWrx5QpU7h//76yf/r06TRr1owvv/ySunXrYmhoCMDNmzcJDg7GysoKc3NzOnbsyMmTJ7XOvWXLFjw8PDA0NKRevXqEhYWRm5ur7FepVHz66ae8+eabmJiYaMVVlDNnzvDGG29gbm6OmZkZbdu2JSUlRRnrjBkzqF27Nmq1mmbNmrFjxw7l2NTUVFQqFRs3bqRDhw4YGxvzyiuvcPjwYa1zxMbG4uPjg7GxMdWqVcPPz48bN24o5wgPD6du3boYGRnxyiuvsH79euXYmJgYVCoV27dvx9PTE7VazcGDB/Hx8WHUqFFMmDCB6tWrY2Njo3zPwIMkfPr06dSpUwe1Wo2dnR2jRo0q8nPIyckhKytLaxFCCCFE5VRpkuulS5cqyVp6ejpHjx596jEP20RGRhb7mEetWrUKAwMDYmNj+eyzz7h58yYdO3bE3d2dY8eOsWPHDq5evUqvXr2K1V9oaChz585lypQpnD17lm+//RZra2tlv5mZGVFRUZw9e5alS5eycuVKFi9erNXH+fPn2bBhAxs3blRqznv27ElGRgbbt28nPj4eDw8POnXqpDyf+sCBAwwYMIDRo0dz9uxZPv/8c6Kiogok0NOnT6d79+6cPn2a999//4lj+fPPP2nXrh1qtZpffvmF+Ph43n//fSVhX7p0KRERESxcuJBTp07h5+fHm2++SXJyslY/kydPZty4cSQkJODi4kKfPn2UPhISEujUqRONGjXi8OHDHDx4kICAAPLy8gAIDw9n9erVfPbZZ5w5c4YxY8bw3nvvsW/fPq1zTJo0iblz55KYmEjTpk2BB9fWxMSEuLg45s+fz4wZM9i9ezcAGzZsYPHixXz++eckJyezefNm3NzcivwswsPDsbCwUBZ7e/snfnZCCCGEqLgqzf9/W1hYYGZmhq6uLjY2NsU6xsrKCgBLS8tiH/MoZ2dn5s+fr6zPmjULd3d35syZo2z7+uuvsbe35/fff8fFxaXIvm7dusXSpUtZsWIFAwcOBKB+/fq8+uqrSpv//ve/yteOjo6MGzeOdevWMWHCBGX7vXv3WL16tTK2gwcPcuTIETIyMlCr1QAsXLiQzZs3s379egYPHkxYWBiTJk1SzluvXj1mzpzJhAkTmDZtmtJ33759CQoKKtZn8/HHH2NhYcG6deuU8pFHx79w4UImTpxI7969AZg3bx579+5lyZIlfPzxx0q7cePG8frrrwMQFhZG48aNOX/+PA0bNmT+/Pk0b96cTz75RGnfuHFj4MFs8Zw5c9izZw/e3t7KuA4ePMjnn39O+/btlWNmzJjBa6+9phV/06ZNlbE7OzuzYsUKoqOjee2110hLS8PGxgZfX1/09fWpU6cOXl5eRX4WoaGhjB07VlnPysqSBFsIIYSopCpNcl0ePD09tdZPnjzJ3r17MTU1LdA2JSXlicl1YmIiOTk5dOrUqcg23333HcuWLSMlJYXs7Gxyc3MLvCHIwcFBSawfxpSdnU2NGjW02t25c0cp0Th58iSxsbFaM9V5eXncvXuX27dvY2xsDEDz5s2LjO1xCQkJtG3bttC67KysLP766y/atGmjtb1NmzYFylUeziQD2NraApCRkUHDhg1JSEigZ8+ehZ7//Pnz3L59u0DSfO/ePdzd3bW2FTauR8/78NwZGRnAg/8JWLJkCfXq1cPf35+uXbsSEBBQZK22Wq1W/rARQgghROVWqZNrHR0dHn+7+6M1ys96nImJidZ6dnY2AQEBzJs3r0Dbh4lhUYyMjJ64//Dhw/Tr14+wsDD8/PyUWeGIiIinxmRra0tMTEyBPi0tLZU2YWFh9OjRo0Cbh3XbhfX9JE8bT3E9mpyrVCrgQS31086RnZ0NwNatWwu8gv3xRLewcT3+R4FKpVLOa29vT1JSEnv27GH37t0MGzaMBQsWsG/fvkp3k6cQQgghSqZSJ9dWVlakp6cr61lZWVy8eFGrjb6+vlKj++hxv/32m9a2hISEpyZOHh4ebNiwAUdHxxI/ccLZ2RkjIyOio6MJDg4usP/QoUM4ODgwefJkZdulS5ee2q+HhwdXrlxBT09PuWGzsDZJSUk4OTmVKOYnadq0KatWrSr0qSLm5ubY2dkRGxurVZ4RGxv7xPKKws4RHR1NWFhYgX2NGjVCrVaTlpamdY6yYmRkREBAAAEBAQwfPpyGDRty+vRpPDw8yvxcQgghhKg4Ks0NjYXp2LEj33zzDQcOHOD06dMMHDgQXV1drTaOjo5ER0dz5coV5SkTHTt25NixY6xevZrk5GSmTZtWINkuzPDhw7l+/Tp9+vTh6NGjpKSksHPnToKCggok8I8zNDRk4sSJTJgwgdWrV5OSksKvv/7KV199BTxIvtPS0li3bh0pKSksW7aMTZs2PTUmX19fvL296datG7t27SI1NZVDhw4xefJkjh07BsDUqVNZvXo1YWFhnDlzhsTERNatW6dV411SI0aMICsri969e3Ps2DGSk5P55ptvSEpKAmD8+PHMmzeP7777jqSkJCZNmkRCQgKjR48u9jlCQ0M5evQow4YN49SpU5w7d45PP/2Ua9euYWZmxrhx4xgzZgyrVq0iJSWF48ePs3z5clatWlXqcQFERUXx1Vdf8dtvv3HhwgXWrFmDkZERDg4Oz9SvEEIIISq+Sp1ch4aG0r59e9544w1ef/11unXrRv369bXaREREsHv3buzt7ZVaXD8/P6ZMmcKECRNo0aIFt27dYsCAAU8938PZ2Ly8PDp37oybmxshISFYWlqio/P0j3rKlCl89NFHTJ06FVdXV959912lzvfNN99kzJgxjBgxgmbNmnHo0CGmTJny1D5VKhXbtm2jXbt2BAUF4eLiQu/evbl06ZLyJBI/Pz9+/vlndu3aRYsWLWjVqhWLFy9+pmSxRo0a/PLLL2RnZ9O+fXs8PT1ZuXKlMos9atQoxo4dy0cffYSbmxs7duzgxx9/xNnZudjncHFxYdeuXZw8eRIvLy+8vb3ZsmWL8r8GM2fOZMqUKYSHh+Pq6oq/vz9bt26lbt26pR4XPCinWblyJW3atKFp06bs2bOHn376qUBduxBCCCGqHpXm8eJiIcRzlZWVhYWFBZmZmQVuSBXiIc/xq8s7hCovfsHTJ1WEEFVHcX9/V+qaayGEqKgksRNCiIqpUpeFvEzS0tIwNTUtcklLSyvvEEtkyJAhRY5lyJAh5R2eEEIIIUS5kLKQFyQ3N5fU1NQi95fmCSPlKSMjo8jXeJubm1OrVq0XHFHFIWUhQgghRMUjZSEvGT09vTJ91F15q1WrliTQQpQhqbF++UhpjhCiNKQsRAghhBBCiDIiybUoFz4+PoSEhJT6+NTUVFQqFQkJCQDExMSgUqm4efNmqY4XQgghhCgLUhYiqiR7e3vS09OpWbNmeYcihBBCiEpEkmtRJenq6mJjY1PeYQghhBCikpGyEFFucnNzGTFiBBYWFtSsWZMpU6bw8OE1KpWKzZs3a7W3tLQkKirqqf3++++/mJubs379eq3tmzdvxsTEhFu3bhVZVhIdHU3z5s0xNjamdevWyuvaH5o1axa1atXCzMyM4OBgJk2aRLNmzUr7EQghhBCikpHkWpSbVatWoaenx5EjR1i6dCmLFi3iyy+/fOZ+TUxM6N27N5GRkVrbIyMjeeeddzAzMyvy2MmTJxMREcGxY8fQ09Pj/fffV/atXbuW2bNnM2/ePOLj46lTpw6ffvrpU+PJyckhKytLaxFCCCFE5SRlIaLc2Nvbs3jxYlQqFQ0aNOD06dMsXryYDz744Jn7Dg4OpnXr1qSnp2Nra0tGRgbbtm1jz549Tzxu9uzZtG/fHoBJkybx+uuvc/fuXQwNDVm+fDmDBg0iKCgIgKlTp7Jr1y6ys7Of2Gd4eDhhYWHPPCYhhBBCvPxk5lqUm1atWqFSqZR1b29vkpOTycvLe+a+vby8aNy4MatWrQJgzZo1ODg40K5duyce17RpU+VrW1tb4MELcwCSkpLw8vIqcJ6nCQ0NJTMzU1kuX75corEIIYQQouKQ5Fq8lFQqFY+/PPT+/fsl6iM4OFip0Y6MjCQoKEgrmS+Mvr6+VgwA+fn5JTrv49RqNebm5lqLEEIIISonSa5FuYmLi9Na//XXX3F2dkZXVxcrKyvS09OVfcnJydy+fbtE/b/33ntcunSJZcuWcfbsWQYOHPhM8TZo0ICjR49qbXt8XQghhBBVm9Rci3KTlpbG2LFj+fDDDzl+/DjLly8nIiICgI4dO7JixQq8vb3Jy8tj4sSJWrPKxVGtWjV69OjB+PHj6dy5M7Vr136meEeOHMkHH3xA8+bNad26Nd999x2nTp2iXr16z9SvEEIIISoPSa5FuRkwYAB37tzBy8sLXV1dRo8ezeDBgwGIiIggKCiItm3bYmdnx9KlS4mPjy/xOQYNGsS3336r9dSP0urXrx8XLlxg3Lhx3L17l169ehEYGMiRI0eeuW8hhBBCVA4qzeOFrUJUIt988w1jxozhr7/+wsDAoMz7f+2117CxseGbb74p9jFZWVlYWFiQmZkp9ddC4Tl+dXmHIB4Tv2BAeYcghHiJFPf3t8xci0rp9u3bpKenM3fuXD788MMySaxv377NZ599hp+fH7q6uvzvf/9jz5497N69uwwiFlWdJHJCCFE5yA2NolKaP38+DRs2xMbGhtDQ0DLpU6VSsW3bNtq1a4enpyc//fQTGzZswNfXt0z6F0IIIUTFJ2UhQrxgUhYihBBCVDzF/f0tM9dCCCGEEEKUEam5FkKIciI3Mb7cpA5eCFEaMnMthBBCCCFEGZHkWjwzHx8fQkJCXvh5HR0dWbJkSZn1V17jEEIIIUTlIcm1EEIIIYQQZUSSayGEEEIIIcqIJNeiTOTn5zNhwgSqV6+OjY0N06dPV/bdvHmT4OBgrKysMDc3p2PHjpw8eVLZn5KSwltvvYW1tTWmpqa0aNGCPXv2aPWfkZFBQEAARkZG1K1bl7Vr1xaIYdGiRbi5uWFiYoK9vT3Dhg0jOztbq01sbCw+Pj4YGxtTrVo1/Pz8uHHjRrHGUZyxCCGEEKJqk+RalIlVq1ZhYmJCXFwc8+fPZ8aMGcqbC3v27ElGRgbbt28nPj4eDw8POnXqxPXr1wHIzs6ma9euREdHc+LECfz9/QkICCAtLU3pPzAwkMuXL7N3717Wr1/PJ598QkZGhlYMOjo6LFu2jDNnzrBq1Sp++eUXJkyYoOxPSEigU6dONGrUiMOHD3Pw4EECAgLIy8sr1jiKM5bC5OTkkJWVpbUIIYQQonKSl8iIZ+bj40NeXh4HDhxQtnl5edGxY0feeOMNXn/9dTIyMlCr1cp+JycnJkyYwODBgwvts0mTJgwZMoQRI0bw+++/06BBA44cOUKLFi0AOHfuHK6urixevLjImxDXr1/PkCFDuHbtGgB9+/YlLS2NgwcPlngcc+fO5eDBg6Uay/Tp0wkLCyuwXV4iI+RRfC83eRSfEOJRxX2JjDznWpSJpk2baq3b2tqSkZHByZMnyc7OpkaNGlr779y5Q0pKCvBg5nr69Ols3bqV9PR0cnNzuXPnjjJznZiYiJ6eHp6ensrxDRs2xNLSUqvPPXv2EB4ezrlz58jKyiI3N5e7d+9y+/ZtjI2NSUhIoGfPnqUaB1CssRQmNDSUsWPHKutZWVnY29s/MQ4hhBBCVEySXIsyoa+vr7WuUqnIz88nOzsbW1tbYmJiChzzMDkeN24cu3fvZuHChTg5OWFkZMQ777zDvXv3in3+1NRU3njjDYYOHcrs2bOpXr06Bw8eZNCgQdy7dw9jY2OMjIxKPQ6gWGMpjFqt1prpFkIIIUTlJcm1eK48PDy4cuUKenp6ODo6FtomNjaWwMBAunfvDjxIYlNTU5X9DRs2JDc3l/j4eKUsJCkpiZs3bypt4uPjyc/PJyIiAh2dB7cSfP/991rnadq0KdHR0YWWaJTVWIQQQghRtckNjeK58vX1xdvbm27durFr1y5SU1M5dOgQkydP5tixYwA4OzuzceNGEhISOHnyJH379lVmiwEaNGiAv78/H374IXFxccTHxxMcHKw1E+3k5MT9+/dZvnw5Fy5c4JtvvuGzzz7TiiU0NJSjR48ybNgwTp06xblz5/j000+VmuyyGIsQQgghqjZJrsVzpVKp2LZtG+3atSMoKAgXFxd69+7NpUuXsLa2Bh48Qq9atWq0bt2agIAA/Pz88PDw0OonMjISOzs72rdvT48ePRg8eDC1atVS9r/yyissWrSIefPm0aRJE9auXUt4eLhWHy4uLuzatYuTJ0/i5eWFt7c3W7ZsQU+veP+BU5yxCCGEEKJqk6eFCPGCFfduY1H5ydNCXm7ytBAhxKPkaSFCCPGSk+RNCCEqHykLEUIIIYQQooxIci2EEEIIIUQZkbIQIUSlJ7XNojSkbEcIURoycy2EEEIIIUQZkeRalJqPjw8hISHlHUapxcTEoFKptF5GI4QQQgjxLCS5FlVW69atSU9Px8LCorxDEUIIIUQlIcm1eGndu3fvufZvYGCAjY0NKpXquZ5HCCGEEFWHJNeiWP79918GDBiAqakptra2REREaO3Pyclh3Lhx/Oc//8HExISWLVsSExOj7I+KisLS0pLNmzfj7OyMoaEhfn5+XL58WWkzffp0mjVrxpdffkndunUxNDQE4ObNmwQHB2NlZYW5uTkdO3bk5MmTynEnT56kQ4cOmJmZYW5ujqenp/I68kuXLhEQEEC1atUwMTGhcePGbNu2DSi8LGTDhg00btwYtVqNo6NjgXE6OjoyZ84c3n//fczMzKhTpw5ffPFFmXzGQgghhKj4JLkWxTJ+/Hj27dvHli1b2LVrFzExMRw/flzZP2LECA4fPsy6des4deoUPXv2xN/fn+TkZKXN7du3mT17NqtXryY2NpabN2/Su3dvrfOcP3+eDRs2sHHjRhISEgDo2bMnGRkZbN++nfj4eDw8POjUqRPXr18HoF+/ftSuXZujR48SHx/PpEmT0NfXB2D48OHk5OSwf/9+Tp8+zbx58zA1NS10jPHx8fTq1YvevXtz+vRppk+fzpQpU4iKitJqFxERQfPmzTlx4gTDhg1j6NChJCUlFfnZ5eTkkJWVpbUIIYQQonKSR/GJp8rOzuarr75izZo1dOrUCYBVq1ZRu3ZtANLS0oiMjCQtLQ07OzsAxo0bx44dO4iMjGTOnDkA3L9/nxUrVtCyZUulD1dXV44cOYKXlxfwoBRk9erVWFlZAXDw4EGOHDlCRkYGarUagIULF7J582bWr1/P4MGDSUtLY/z48TRs2BAAZ2dnJfa0tDTefvtt3NzcAKhXr16R41y0aBGdOnViypQpALi4uHD27FkWLFhAYGCg0q5r164MGzYMgIkTJ7J48WL27t1LgwYNCu03PDycsLCwYn3WQgghhKjYZOZaPFVKSgr37t1TkmKA6tWrK8nk6dOnycvLw8XFBVNTU2XZt28fKSkpyjF6enq0aNFCWW/YsCGWlpYkJiYq2xwcHJTEGh6UfGRnZ1OjRg2tvi9evKj0PXbsWIKDg/H19WXu3Lla5xw1ahSzZs2iTZs2TJs2jVOnThU5zsTERNq0aaO1rU2bNiQnJ5OXl6dsa9q0qfK1SqXCxsaGjIyMIvsNDQ0lMzNTWR4thRFCCCFE5SIz1+KZZWdno6urS3x8PLq6ulr7iirBKIqJiUmBvm1tbbXqtx+ytLQEHtRq9+3bl61bt7J9+3amTZvGunXr6N69O8HBwfj5+bF161Z27dpFeHg4ERERjBw5skRxPephyclDKpWK/Pz8Itur1Wpl1l0IIYQQlZvMXIunql+/Pvr6+sTFxSnbbty4we+//w6Au7s7eXl5ZGRk4OTkpLXY2Ngox+Tm5io3GgIkJSVx8+ZNXF1dizy3h4cHV65cQU9Pr0DfNWvWVNq5uLgwZswYdu3aRY8ePYiMjFT22dvbM2TIEDZu3MhHH33EypUrCz2Xq6srsbGxWttiY2NxcXEp8EeDEEIIIURhJLkWT2VqasqgQYMYP348v/zyC7/99huBgYHo6Dz49nFxcaFfv34MGDCAjRs3cvHiRY4cOUJ4eDhbt25V+tHX12fkyJHExcURHx9PYGAgrVq1UuqtC+Pr64u3tzfdunVj165dpKamcujQISZPnsyxY8e4c+cOI0aMICYmhkuXLhEbG8vRo0eVhD0kJISdO3dy8eJFjh8/zt69e4tM5j/66COio6OZOXMmv//+O6tWrWLFihWMGzeuDD9NIYQQQlRmUhYiimXBggVkZ2cTEBCAmZkZH330EZmZmcr+yMhIZs2axUcffcSff/5JzZo1adWqFW+88YbSxtjYmIkTJ9K3b1/+/PNP2rZty1dfffXE86pUKrZt28bkyZMJCgri77//xsbGhnbt2mFtbY2uri7//PMPAwYM4OrVq9SsWZMePXooNxDm5eUxfPhw/vjjD8zNzfH392fx4sWFnsvDw4Pvv/+eqVOnMnPmTGxtbZkxY4bWzYxCCCGEEE+i0mg0mvIOQlR+UVFRhISEyKvGgaysLCwsLMjMzMTc3Ly8w6kSPMevLu8QRAUUv2BAeYcghHiJFPf3t8xcCyEqPUmShBBCvChScy2EEEIIIUQZkeRavBCBgYFSEiKEEEKISk+SayGEEEIIIcqI1FwLIV4IualQVDRSqy+EKA2ZuRZCCCGEEKKMSHL9EnN0dGTJkiXFaqtSqdi8efNzjSc1NRWVSkVCQsIT2/n4+BASElLq8zxtLDExMahUKqnhFkIIIcRLR5LrF+BFJL7lobyS3NatW5Oeno6FhcVT20oiLoQQQogXSZJrUeEYGBhgY2ODSqV6YefUaDTk5ua+sPMJIYQQomKqUsm1j48PI0eOJCQkhGrVqmFtbc3KlSv5999/CQoKwszMDCcnJ7Zv364c89tvv9GlSxdMTU2xtramf//+XLt2TavPUaNGMWHCBKpXr46NjQ3Tp09X9js6OgLQvXt3VCqVsp6SksJbb72FtbU1pqamtGjRgj179jzT+K5du0b37t0xNjbG2dmZH3/8UWv/08ayY8cOXn31VSwtLalRowZvvPEGKSkphZ4rNTWVDh06AFCtWjVUKpXWa8Lz8/OL/EyedSyPz0ZfunSJgIAAqlWrhomJCY0bN2bbtm1PjDEnJ4dRo0ZRq1YtDA0NefXVVzl69GiBc2zfvh1PT0/UajVr1qxBR0eHY8eOacW6ZMkSHBwcyM/PL9EYhRBCCFH5VKnkGmDVqlXUrFmTI0eOMHLkSIYOHUrPnj1p3bo1x48fp3PnzvTv35/bt29z8+ZNOnbsiLu7O8eOHWPHjh1cvXqVXr16FejTxMSEuLg45s+fz4wZM9i9ezeAkrBFRkaSnp6urGdnZ9O1a1eio6M5ceIE/v7+BAQEkJaWVuqxhYWF0atXL06dOkXXrl3p168f169fByjWWP7991/Gjh3LsWPHiI6ORkdHh+7duxeaNNrb27NhwwYAkpKSSE9PZ+nSpcX6TJ51LI8bPnw4OTk57N+/n9OnTzNv3jxMTU2fGOOECRPYsGEDq1at4vjx4zg5OeHn51fgHJMmTWLu3LkkJiby5ptv4uvrS2RkpFabyMhIAgMD0dEp/McpJyeHrKwsrUUIIYQQlZNKo9FoyjuIF8XHx4e8vDwOHDgAQF5eHhYWFvTo0YPVqx88JuzKlSvY2tpy+PBh9uzZw4EDB9i5c6fSxx9//IG9vT1JSUm4uLgU6BPAy8uLjh07MnfuXOBBzfWmTZvo1q3bE+Nr0qQJQ4YMYcSIEcCDWe+QkJBi3RyoUqn473//y8yZM4EHibKpqSnbt2/H39+fWbNmPXUsj7t27RpWVlacPn2aJk2akJqaSt26dTlx4gTNmjUjJiaGDh06cOPGDSwtLYv8nAv7TJ5lLI+ft2nTprz99ttMmzatQF+Fxfjvv/9SrVo1oqKi6Nu3LwD3799XPu/x48crx23evJm33npL6e/7779nyJAhpKeno1arOX78OM2bN+fChQvK/0o8bvr06YSFhRXYnpmZibm5+VM/j8pCHsUnKhp5FJ8Q4lFZWVlYWFg89fd3lZu5btq0qfK1rq4uNWrUwM3NTdlmbW0NQEZGBidPnmTv3r2YmpoqS8OGDQG0yiUe7RPA1taWjIyMJ8aRnZ3NuHHjcHV1xdLSElNTUxITE59p5vrROExMTDA3N1fiKM5YkpOT6dOnD/Xq1cPc3FxJFksTU2k+k+KO5XGjRo1i1qxZtGnThmnTpnHq1Kkn9p2SksL9+/dp06aNsk1fXx8vLy8SExO12jZv3lxrvVu3bujq6rJp0yYAoqKi6NChQ5GJNUBoaCiZmZnKcvny5SfGJ4QQQoiKq8q9REZfX19rXaVSaW17eJNcfn4+2dnZBAQEMG/evAL92NraPrHPp9Xfjhs3jt27d7Nw4UKcnJwwMjLinXfe4d69eyUeU3HiKM5YAgICcHBwYOXKldjZ2ZGfn0+TJk1KFVNpPpPSHh8cHIyfnx9bt25l165dhIeHExERwciRI0sc9+NMTEy01g0MDBgwYACRkZH06NGDb7/9VqscpjBqtRq1Wv3MsQghhBDi5VflkuuS8PDwYMOGDTg6OqKnV/qPSl9fn7y8PK1tsbGxBAYG0r17d+BB8puamvos4T7R08byzz//kJSUxMqVK2nbti0ABw8efGKfBgYGAAXGVh7s7e0ZMmQIQ4YMITQ0lJUrVzJy5MhCY6xfvz4GBgbExsbi4OAAPCgLOXr0aLFKcIKDg2nSpAmffPIJubm59OjR47mMSQghhBAVT5UrCymJ4cOHc/36dfr06cPRo0dJSUlh586dBAUFlSihdHR0JDo6mitXrnDjxg0AnJ2d2bhxIwkJCZw8eZK+ffs+16dNPG0s1apVo0aNGnzxxRecP3+eX375hbFjxz6xTwcHB1QqFT///DN///032dnZzy3+JwkJCWHnzp1cvHiR48ePs3fvXlxdXYuM0cTEhKFDhzJ+/Hh27NjB2bNn+eCDD7h9+zaDBg166vlcXV1p1aoVEydOpE+fPhgZGT3vIQohhBCigpDk+gns7OyIjY0lLy+Pzp074+bmRkhICJaWlkU+GaIwERER7N69G3t7e9zd3QFYtGgR1apVo3Xr1gQEBODn54eHh8fzGspTx6Kjo8O6deuIj4+nSZMmjBkzhgULFjyxz//85z+EhYUxadIkrK2tlRsxX7S8vDyGDx+Oq6sr/v7+uLi48Mknnzwxxrlz5/L222/Tv39/PDw8OH/+PDt37qRatWrFOuegQYO4d+8e77///nMblxBCCCEqnir1tBAhysrMmTP54YcfnnrzZGGKe7dxZSNPCxEVjTwtRAjxqOL+/paaayFK4GFt/IoVK5g1a1Z5h1OhSKIihBCiKpCykApg7dq1Wo/Qe3Rp3LhxeYdXIhV9LCNGjMDT0xMfHx8pCRFCCCFEAVIWUgHcunWLq1evFrpPX19feeJFRVCZxlJaVbUsRAghhKjIpCykEjEzM8PMzKy8wygTlWksLyOpaxai7EgpkxCiNKQsRAghhBBCiDIiybUQQgghhBBlRJJrUak4OjqyZMmSF3pOHx+fYr3ZUQghhBCVnyTXotgCAwPp1q1beYchhBBCCPHSkuRalLn79++XdwhCCCGEEOVCkmtRwPr163Fzc8PIyIgaNWrg6+vL+PHjWbVqFVu2bEGlUqFSqYiJiSE1NRWVSsV3331H+/btMTQ0ZO3atQB8+eWXuLq6YmhoSMOGDZVXkgPcu3ePESNGYGtri6GhIQ4ODoSHhwOg0WiYPn06derUQa1WY2dnx6hRo0o1lps3bxIcHIyVlRXm5uZ07NiRkydPAvD777+jUqk4d+6c1jGLFy+mfv36yvpvv/1Gly5dMDU1xdramv79+3Pt2rVix5CTk0NWVpbWIoQQQojKSZJroSU9PZ0+ffrw/vvvk5iYSExMDD169GDatGn06tULf39/0tPTSU9Pp3Xr1spxkyZNYvTo0SQmJuLn58fatWuZOnUqs2fPJjExkTlz5jBlyhRWrVoFwLJly/jxxx/5/vvvSUpKYu3atTg6OgKwYcMGFi9ezOeff05ycjKbN2/Gzc2tVOPp2bMnGRkZbN++nfj4eDw8POjUqRPXr1/HxcWF5s2bK38MPLR27Vr69u0LPEjOO3bsiLu7O8eOHWPHjh1cvXqVXr16FTuG8PBwLCwslMXe3r5UYxFCCCHEy0+ecy20pKenk5ubS48ePZQXujxMbI2MjMjJycHGxqbAcSEhIfTo0UNZnzZtGhEREcq2unXrcvbsWT7//HMGDhxIWloazs7OvPrqq6hUKq2Xx6SlpWFjY4Ovry/6+vrUqVMHLy+vEo/l4MGDHDlyhIyMDNRqNQALFy5k8+bNrF+/nsGDB9OvXz9WrFjBzJkzgQez2fHx8axZswaAFStW4O7uzpw5c5R+v/76a+zt7fn9999xcXF5ahyhoaGMHTtWWc/KypIEWwghhKikZOZaaHnllVfo1KkTbm5u9OzZk5UrV3Ljxo2nHte8eXPl63///ZeUlBQGDRqk9XrzWbNmkZKSAjy4OTIhIYEGDRowatQodu3apRzfs2dP7ty5Q7169fjggw/YtGkTubm5JR7LyZMnyc7OpkaNGlpxXLx4UYmjd+/epKam8uuvvwIPZq09PDxo2LCh0sfevXu1jn+472EfT6NWqzE3N9dahBBCCFE5ycy10KKrq8vu3bs5dOgQu3btYvny5UyePJm4uLgnHmdiYqJ8nZ2dDcDKlStp2bJlgf4BPDw8uHjxItu3b2fPnj306tULX19f1q9fj729PUlJSezZs4fdu3czbNgwFixYwL59+9DX1y/2WLKzs7G1tSUmJqbAPktLSwBsbGzo2LEj3377La1ateLbb79l6NChWn0EBAQwb968An3Y2toWOxYhhBBCVA2SXIsCVCoVbdq0oU2bNkydOhUHBwc2bdqEgYEBeXl5Tz3e2toaOzs7Lly4QL9+/YpsZ25uzrvvvsu7777LO++8g7+/P9evX6d69eoYGRkREBBAQEAAw4cPp2HDhpw+fRoPD49ij8PDw4MrV66gp6en1HMXpl+/fkyYMIE+ffpw4cIFevfurdXHhg0bcHR0RE9PflyEEEII8WSSLQgtcXFxREdH07lzZ2rVqkVcXBx///03rq6u3L17l507d5KUlESNGjWwsLAosp+wsDBGjRqFhYUF/v7+5OTkcOzYMW7cuMHYsWNZtGgRtra2uLu7o6Ojww8//ICNjQ2WlpZERUWRl5dHy5YtMTY2Zs2aNRgZGWnVZReHr68v3t7edOvWjfnz5+Pi4sJff/3F1q1b6d69u1LK0qNHD4YOHcrQoUPp0KEDdnZ2Sh/Dhw9n5cqV9OnThwkTJlC9enXOnz/PunXr+PLLL5WZeCGEEEIIkORaPMbc3Jz9+/ezZMkSsrKycHBwICIigi5dutC8eXNiYmJo3rw52dnZ7N27t8gZ4eDgYIyNjVmwYAHjx4/HxMQENzc35U2GZmZmzJ8/n+TkZHR1dWnRogXbtm1DR0cHS0tL5s6dy9ixY8nLy8PNzY2ffvqJGjVqlGgsKpWKbdu2MXnyZIKCgvj777+xsbGhXbt2WFtbK+3MzMwICAjg+++/5+uvv9bqw87OjtjYWCZOnEjnzp3JycnBwcEBf39/dHTklgUhhBBCaFNpNBpNeQchRFWSlZWFhYUFmZmZZX5zo+f41WXanxBVWfyCAeUdghDiJVLc398ycy3EC/bw79nn8TKZvVO6lXmfQlRV8sInIcSjHv6b8LR5aUmuRYVx4MABunTpUuT+h08pedndunULQJ51LYQQQlRAt27deuJ9Z1IWIiqMO3fu8Oeffxa538nJ6QVGU3r5+fn89ddfmJmZoVKpnuu5Hr6w5vLly/J87ZeMXJuXm1yfl5tcn5dbZb0+Go2GW7duYWdn98T7rmTmWlQYRkZGFSaBfhIdHR1q1679Qs8pL695ecm1ebnJ9Xm5yfV5uVXG6/OkGeuH5HEHQgghhBBClBFJroUQQgghhCgjklwLUYmp1WqmTZuGWq0u71DEY+TavNzk+rzc5Pq83Kr69ZEbGoUQQgghhCgjMnMthBBCCCFEGZHkWgghhBBCiDIiybUQQgghhBBlRJJrIYQQQgghyogk10IIIYQQQpQRSa6FqERmz55N69atMTY2xtLSsljHaDQapk6diq2tLUZGRvj6+pKcnPx8A62irl+/Tr9+/TA3N8fS0pJBgwaRnZ39xGN8fHxQqVRay5AhQ15QxJXbxx9/jKOjI4aGhrRs2ZIjR448sf0PP/xAw4YNMTQ0xM3NjW3btr2gSKumklyfqKioAj8nhoaGLzDaqmP//v0EBARgZ2eHSqVi8+bNTz0mJiYGDw8P1Go1Tk5OREVFPfc4y5Mk10JUIvfu3aNnz54MHTq02MfMnz+fZcuW8dlnnxEXF4eJiQl+fn7cvXv3OUZaNfXr148zZ86we/dufv75Z/bv38/gwYOfetwHH3xAenq6ssyfP/8FRFu5fffdd4wdO5Zp06Zx/PhxXnnlFfz8/MjIyCi0/aFDh+jTpw+DBg3ixIkTdOvWjW7duvHbb7+94MirhpJeH3jwqu1Hf04uXbr0AiOuOv79919eeeUVPv7442K1v3jxIq+//jodOnQgISGBkJAQgoOD2blz53OOtBxphBCVTmRkpMbCwuKp7fLz8zU2NjaaBQsWKNtu3rypUavVmv/973/PMcKq5+zZsxpAc/ToUWXb9u3bNSqVSvPnn38WeVz79u01o0ePfgERVi1eXl6a4cOHK+t5eXkaOzs7TXh4eKHte/XqpXn99de1trVs2VLz4YcfPtc4q6qSXp/i/psnyhag2bRp0xPbTJgwQdO4cWOtbe+++67Gz8/vOUZWvmTmWogq7OLFi1y5cgVfX19lm4WFBS1btuTw4cPlGFnlc/jwYSwtLWnevLmyzdfXFx0dHeLi4p547Nq1a6lZsyZNmjQhNDSU27dvP+9wK7V79+4RHx+v9X2vo6ODr69vkd/3hw8f1moP4OfnJz8nz0Fprg9AdnY2Dg4O2Nvb89Zbb3HmzJkXEa54iqr4s6NX3gEIIcrPlStXALC2ttbabm1trewTZePKlSvUqlVLa5uenh7Vq1d/4mfdt29fHBwcsLOz49SpU0ycOJGkpCQ2btz4vEOutK5du0ZeXl6h3/fnzp0r9JgrV67Iz8kLUprr06BBA77++muaNm1KZmYmCxcupHXr1pw5c4batWu/iLBFEYr62cnKyuLOnTsYGRmVU2TPj8xcC/GSmzRpUoEbdR5fivqFI56/5319Bg8ejJ+fH25ubvTr14/Vq1ezadMmUlJSynAUQlRs3t7eDBgwgGbNmtG+fXs2btyIlZUVn3/+eXmHJqogmbkW4iX30UcfERgY+MQ29erVK1XfNjY2AFy9ehVbW1tl+9WrV2nWrFmp+qxqint9bGxsCtyMlZuby/Xr15XrUBwtW7YE4Pz589SvX7/E8QqoWbMmurq6XL16VWv71atXi7wWNjY2JWovSq801+dx+vr6uLu7c/78+ecRoiiBon52zM3NK+WsNUhyLcRLz8rKCisrq+fSd926dbGxsSE6OlpJprOysoiLiyvRE0eqsuJeH29vb27evEl8fDyenp4A/PLLL+Tn5ysJc3EkJCQAaP0xJErGwMAAT09PoqOj6datGwD5+flER0czYsSIQo/x9vYmOjqakJAQZdvu3bvx9vZ+ARFXLaW5Po/Ly8vj9OnTdO3a9TlGKorD29u7wGMrK/3PTnnfUSmEKDuXLl3SnDhxQhMWFqYxNTXVnDhxQnPixAnNrVu3lDYNGjTQbNy4UVmfO3euxtLSUrNlyxbNqVOnNG+99Zambt26mjt37pTHECo1f39/jbu7uyYuLk5z8OBBjbOzs6ZPnz7K/j/++EPToEEDTVxcnEaj0WjOnz+vmTFjhubYsWOaixcvarZs2aKpV6+epl27duU1hEpj3bp1GrVarYmKitKcPXtWM3jwYI2lpaXmypUrGo1Go+nfv79m0qRJSvvY2FiNnp6eZuHChZrExETNtGnTNPr6+prTp0+X1xAqtZJen7CwMM3OnTs1KSkpmvj4eE3v3r01hoaGmjNnzpTXECqtW7duKb9bAM2iRYs0J06c0Fy6dEmj0Wg0kyZN0vTv319pf+HCBY2xsbFm/PjxmsTERM3HH3+s0dXV1ezYsaO8hvDcSXItRCUycOBADVBg2bt3r9IG0ERGRirr+fn5milTpmisra01arVa06lTJ01SUtKLD74K+OeffzR9+vTRmJqaaszNzTVBQUFaf/hcvHhR63qlpaVp2rVrp6levbpGrVZrnJycNOPHj9dkZmaW0wgql+XLl2vq1KmjMTAw0Hh5eWl+/fVXZV/79u01AwcO1Gr//fffa1xcXDQGBgaaxo0ba7Zu3fqCI65aSnJ9QkJClLbW1taarl27ao4fP14OUVd+e/fuLfT3zMPrMXDgQE379u0LHNOsWTONgYGBpl69elq/gyojlUaj0ZTLlLkQQgghhBCVjDwtRAghhBBCiDIiybUQQgghhBBlRJJrIYQQQgghyogk10IIIYQQQpQRSa6FEEIIIYQoI5JcCyGEEEIIUUYkuRZCCCGEEKKMSHIthBBCCCFEGZHkWgghhBBCiDIiybUQQgghhBBlRJJrIYQQQgghysj/AyjDNcgTwRqrAAAAAElFTkSuQmCC\n"},"metadata":{}}],"source":["sns.barplot(data=mm_no_stress_mean,orient='y')\n","plt.title('Min_Max Scaled No Stress Level Means');"]},{"cell_type":"code","execution_count":53,"metadata":{"colab":{"base_uri":"https://localhost:8080/","height":452},"executionInfo":{"elapsed":1378,"status":"ok","timestamp":1716217002031,"user":{"displayName":"Daniel Meier","userId":"06365571306976914087"},"user_tz":300},"id":"PN7SMAkrx_GG","outputId":"2ecdfa4f-3a5d-4bf2-ca90-9a64398a0168"},"outputs":[{"output_type":"display_data","data":{"text/plain":["
"],"image/png":"iVBORw0KGgoAAAANSUhEUgAAAtcAAAGzCAYAAADkAzuMAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAAC/wUlEQVR4nOzde1zP9//4/9ur0vmIVOjgUIQipzks5VgObWSaw0bORmKW08dQTmGO420z2wqzYY6bQ06TEYuiMEmaZNPksCSsVK/fH36eX68V1RYp9+vl8rxcvJ7Px/PxvD+etXXv0f35eKrUarUaIYQQQgghxH+mVdYBCCGEEEIIUVFIci2EEEIIIUQpkeRaCCGEEEKIUiLJtRBCCCGEEKVEkmshhBBCCCFKiSTXQgghhBBClBJJroUQQgghhCglklwLIYQQQghRSiS5FkIIIYQQopRIci2EEC+Iv78/Dg4Opdqng4MD/v7+pdpneVPe7kFwcDAqlYpbt26VdSjiFaFSqQgODi7rMMQLIsm1EOK1cO7cOd555x3s7e3R19enRo0adO7cmRUrVpR1aC+ESqXS2ExNTfHw8GD37t1lHVqxHD9+nODgYDIyMso6lAopJyeH5cuX4+bmhqmpKebm5jRs2JARI0Zw8eJFpV15/TqEh4ejUqmIiYkp61D+s6+++gpnZ2f09fVxdHSssP/PqkgkuRZCVHjHjx+nefPmxMfHM3z4cFauXMmwYcPQ0tJi+fLlZR3eC9O5c2fWr1/PunXrmDRpEpcvX8bHx4d9+/aVdWhFOn78OCEhIYUmdYmJiaxZs+blB1WB9O7dm48++ohGjRoxf/58QkJCaNeuHXv37uWXX35R2j3v6yBevNWrVzNs2DAaNmzIihUraN26NYGBgSxYsKCsQxPPoVPWAQghxIs2d+5czMzMOHXqFObm5hrH0tPTyyaol8DJyYn33ntP+dy7d28aNGjA8uXL8fLyKsPInu3+/fsYGRk9t42ent5LiqZiOnXqFLt27WLu3Ln83//9n8axlStX/utEOj8/n5ycHPT19UshSvHw4UOmTZtG9+7d2bJlCwDDhw8nPz+f2bNnM2LECCwsLMo4SlEYmbkWQlR4ycnJNGzYsEBiDVCtWrUC+7755htatmyJoaEhFhYWtGvXjv379yvHd+7cSffu3alevTp6enrUqVOH2bNnk5eXV2Qs+fn5LFu2jIYNG6Kvr4+VlRUjR47kr7/+0minVquZM2cONWvWxNDQkPbt2/Prr7+WfPBPcXZ2pmrVqiQnJ2vsz87OZubMmdStWxc9PT1sbW2ZNGkS2dnZGu1UKhUBAQFs2LCBevXqoa+vT7Nmzfj5558LXOvMmTN07doVU1NTjI2N6dixo8aMKPy/P90fOXKE0aNHU61aNWrWrElwcDATJ04EoFatWkppS0pKClCw5vpJP1FRUUyYMAFLS0uMjIzo1asXN2/e1Lhmfn4+wcHBVK9eXbmvFy5cKFYdd9OmTfH19dXY5+Ligkql4uzZs8q+TZs2oVKpSEhI0GibkZGBv78/5ubmmJmZMXjwYB48eFDgOt988w3NmjXDwMCAypUr07dvX65du6bRxtPTk0aNGnHhwgXat2+PoaEhNWrUYOHChc8dA6B8/du2bVvgmLa2NlWqVAEo8uvw9PdDw4YN0dPTIyIiAoA//viDIUOGYGVlhZ6eHg0bNuTrr78ucL0VK1bQsGFD5b+15s2b8+233yrH7927x/jx43FwcEBPT49q1arRuXNnTp8+XeQ4i6OoOG/cuIGOjg4hISEFzk1MTESlUrFy5UplX0ZGBuPHj8fW1hY9PT3q1q3LggULyM/PL3Fshw8f5vbt24wePVpj/5gxY7h//365KfF6HcnMtRCiwrO3t+fEiROcP3+eRo0aPbdtSEgIwcHBtGnThlmzZqGrq0t0dDQ//fQTXbp0AR4nc8bGxkyYMAFjY2N++uknZsyYQWZmJp988slz+x85ciTh4eEMHjyYwMBArly5wsqVKzlz5gxRUVFUqlQJgBkzZjBnzhy6detGt27dOH36NF26dCEnJ+df34e7d+/y119/UadOHWVffn4+b731FseOHWPEiBE4Oztz7tw5li5dyqVLl9ixY4dGH0eOHGHTpk0EBgaip6fHqlWr8Pb25uTJk8q9/fXXX3F3d8fU1JRJkyZRqVIlVq9ejaenJ0eOHOGNN97Q6HP06NFYWloyY8YM7t+/T9euXbl06RLfffcdS5cupWrVqgBYWlo+d3xjx47FwsKCmTNnkpKSwrJlywgICGDTpk1Km6lTp7Jw4UJ8fHzw8vIiPj4eLy8v/v777yLvn7u7O999953y+c6dO/z6669oaWlx9OhRXF1dATh69CiWlpY4OztrnO/n50etWrUIDQ3l9OnTfPnll1SrVk3jT/xz585l+vTp+Pn5MWzYMG7evMmKFSto164dZ86c0fgF8a+//sLb2xtfX1/8/PzYsmULkydPxsXFha5duz5zHPb29gBs2LCBtm3boqNTeCrg6+tb5Nfhp59+YvPmzQQEBFC1alUcHBy4ceMGrVq1UpJvS0tL9u7dy9ChQ8nMzGT8+PEArFmzhsDAQN555x3GjRvH33//zdmzZ4mOjqZ///4AjBo1ii1bthAQEECDBg24ffs2x44dIyEhgaZNmxb1JXuu4sRpZWWFh4cHmzdvZubMmRrnb9q0CW1tbfr06QPAgwcP8PDw4I8//mDkyJHY2dlx/Phxpk6dSlpaGsuWLStRfGfOnAGgefPmGvubNWuGlpYWZ86c0fjLlHiFqIUQooLbv3+/WltbW62tra1u3bq1etKkSep9+/apc3JyNNolJSWptbS01L169VLn5eVpHMvPz1f+/eDBgwLXGDlypNrQ0FD9999/K/sGDRqktre3Vz4fPXpUDag3bNigcW5ERITG/vT0dLWurq66e/fuGtf9v//7PzWgHjRoUJFjBtRDhw5V37x5U52enq6OiYlRe3t7qwH1J598orRbv369WktLS3306FGN8z///HM1oI6KitLoE1DHxMQo+65evarW19dX9+rVS9nXs2dPta6urjo5OVnZd/36dbWJiYm6Xbt2yr6wsDA1oH7zzTfVubm5Gtf/5JNP1ID6ypUrBcZmb2+vcQ+e9NOpUyeN+/Xhhx+qtbW11RkZGWq1Wq3+888/1To6OuqePXtq9BccHFys+/r999+rAfWFCxfUarVa/cMPP6j19PTUb731lvrdd99V2rm6umrcj5kzZ6oB9ZAhQzT669Wrl7pKlSrK55SUFLW2trZ67ty5Gu3OnTun1tHR0djv4eGhBtTr1q1T9mVnZ6utra3VvXv3fu448vPzlfOtrKzU/fr1U//vf/9TX716tUDb530dALWWlpb6119/1dg/dOhQtY2NjfrWrVsa+/v27as2MzNT/vt5++231Q0bNnxurGZmZuoxY8Y8t01hnnxPnDp16pltihvn6tWr1YD63LlzGu0aNGig7tChg/J59uzZaiMjI/WlS5c02k2ZMkWtra2tTk1NVfYB6pkzZz53DGPGjFFra2sXeszS0lLdt2/f554vyo6UhQghKrzOnTtz4sQJ3nrrLeLj41m4cCFeXl7UqFGDH374QWm3Y8cO8vPzmTFjBlpamv97VKlUyr8NDAyUf9+7d49bt27h7u7OgwcPNFZa+Kfvv/8eMzMzOnfuzK1bt5StWbNmGBsbc/jwYQAOHjxITk4OY8eO1bjukxm/4vrqq6+wtLSkWrVqNG/enEOHDjFp0iQmTJigEZOzszP169fXiKlDhw4ASkxPtG7dmmbNmimf7ezsePvtt9m3bx95eXnk5eWxf/9+evbsSe3atZV2NjY29O/fn2PHjpGZmanR5/Dhw9HW1i7R2AozYsQIjfvl7u5OXl4eV69eBeDQoUPk5uYW+DP72LFji9W/u7s7gFIGc/ToUVq0aEHnzp05evQo8Lgs4Pz580rbp40aNapAf7dv31bux7Zt28jPz8fPz0/ja2FtbY2jo2OBr4WxsbHGzKWuri4tW7bkt99+e+44VCoV+/btY86cOVhYWPDdd98xZswY7O3teffdd0tUc+3h4UGDBg2Uz2q1mq1bt+Lj44NardYYh5eXF3fv3lVKOszNzfn99985derUM/s3NzcnOjqa69evFzum4ihJnL6+vujo6Gj8BeT8+fNcuHCBd999V9n3/fff4+7ujoWFhUZ/nTp1Ii8vr9Dyqed5+PAhurq6hR7T19fn4cOH/2Lk4mWQ5FoI8Vpo0aIF27Zt46+//uLkyZNMnTqVe/fu8c4773DhwgXgcS2qlpaWRrJQmF9//ZVevXphZmaGqakplpaWSpJz9+7dZ56XlJTE3bt3qVatGpaWlhpbVlaW8nDlk2TQ0dFR43xLS8sSPcD09ttvc+DAAXbv3q2stfzgwQONXxySkpL49ddfC8Tj5OQEFHzg858xweMHJx88eMDNmze5efMmDx48oF69egXaOTs7k5+fX6B+uFatWsUe0/PY2dlpfH5yr57Usz+5r3Xr1tVoV7ly5WLdVysrKxwdHZVE+ujRo7i7u9OuXTuuX7/Ob7/9RlRUFPn5+YUm10XFl5SUhFqtxtHRscDXIyEhocDXombNmhq/TDzp85/1+4XR09Nj2rRpJCQkcP36db777jtatWqllHgU1z+/djdv3iQjI4MvvviiwBgGDx4M/L/vqcmTJ2NsbEzLli1xdHRkzJgxREVFafS3cOFCzp8/j62tLS1btiQ4OLjIXx6KoyRxVq1alY4dO7J582bl/E2bNqGjo6NRg5+UlERERESB/jp16qTRX3EZGBg8swzs77//1vglX7xapOZaCPFa0dXVpUWLFrRo0QInJycGDx7M999/X6Ce8lkyMjLw8PDA1NSUWbNmUadOHfT19Tl9+jSTJ09+7oNL+fn5VKtWjQ0bNhR6vKia4pKqWbOm8oO9W7duVK1alYCAANq3b68kBfn5+bi4uLBkyZJC+7C1tS3VmApTWknCs2a/1Wp1qfQP8Oabb3Lo0CEePnxIbGwsM2bMoFGjRpibm3P06FESEhIwNjbGzc2txPHl5+ejUqnYu3dvoW2NjY1L1F9x2djY0LdvX3r37k3Dhg3ZvHkz4eHhz6zFfto/v3ZPvv/fe+89Bg0aVOg5T2rTnZ2dSUxMZNeuXURERLB161ZWrVrFjBkzlAcI/fz8cHd3Z/v27ezfv59PPvmEBQsWsG3btufWlRelJHEC9O3bl8GDBxMXF0eTJk3YvHkzHTt2VOrQn/TZuXNnJk2aVGh/T35hLS4bGxvy8vJIT0/XePA6JyeH27dvU7169RL1J14eSa6FEK+tJw8KpaWlAVCnTh3y8/O5cOECTZo0KfScyMhIbt++zbZt22jXrp2y/8qVK0Ver06dOhw8eJC2bds+N6F88sBZUlKSRmnFzZs3izUr+SwjR45k6dKlfPzxx/Tq1QuVSkWdOnWIj4+nY8eOBWZBC5OUlFRg36VLlzA0NFR+OTA0NCQxMbFAu4sXL6KlpVWshL04sZTUk/t6+fJljRnX27dvF/u+uru7ExYWxsaNG8nLy6NNmzZoaWnx5ptvKsl1mzZt/lWZS506dVCr1dSqVavEiVhpqFSpEq6uriQlJSnlKCX9OlhaWmJiYkJeXp7yi93zGBkZ8e677/Luu++Sk5ODr68vc+fOZerUqcqSfjY2NowePZrRo0eTnp5O06ZNmTt37n9KrksaZ8+ePRk5cqRSGnLp0iWmTp2q0aZOnTpkZWUVq7/iePL/oJiYGLp166bsj4mJIT8//5n/jxJlT8pChBAV3uHDhwudzduzZw+AUsLQs2dPtLS0mDVrVoEZ6CfnP0manu4vJyeHVatWFRmHn58feXl5zJ49u8Cx3Nxcpda1U6dOVKpUiRUrVmhcp6SrDfyTjo4OH330EQkJCezcuVOJ6Y8//ij0pSwPHz7k/v37GvtOnDihsQzatWvX2LlzJ126dEFbWxttbW26dOnCzp07lSXb4PHKDN9++y1vvvkmpqamRcb6ZK3r0nx5SceOHdHR0eGzzz7T2P/0UmpFeVLusWDBAlxdXTEzM1P2Hzp0iJiYmEJLQorD19cXbW1tQkJCCny/qtVqbt++/a/6/aekpCRSU1ML7M/IyODEiRNYWFgovyiV9Ougra1N79692bp1K+fPny9w/OmlEf85Hl1dXRo0aIBarebRo0fk5eUVKLOqVq0a1atXL7BMZEmVJE54XPvt5eXF5s2b2bhxI7q6uvTs2VOjjZ+fHydOnCj0JU0ZGRnk5uaWKMYOHTpQuXLlAt+vn332GYaGhnTv3r1E/YmXR2auhRAV3tixY3nw4AG9evWifv365OTkcPz4cTZt2oSDg4NSY1m3bl2mTZvG7NmzcXd3x9fXFz09PU6dOkX16tUJDQ2lTZs2WFhYMGjQIAIDA1GpVKxfv75Yf4r38PBg5MiRhIaGEhcXR5cuXahUqRJJSUl8//33LF++nHfeeQdLS0uCgoIIDQ2lR48edOvWjTNnzrB3716NP0P/G/7+/syYMYMFCxbQs2dP3n//fTZv3syoUaM4fPgwbdu2JS8vj4sXL7J582b27dunsRRYo0aN8PLy0liKD9BYB3jOnDkcOHCAN998k9GjR6Ojo8Pq1avJzs4u1jrMgPLQ5LRp0+jbty+VKlXCx8enyBfMPI+VlRXjxo1j8eLFvPXWW3h7exMfH6/c1+LM0tatWxdra2sSExM1HoRs164dkydPBvjXyXWdOnWYM2cOU6dOJSUlhZ49e2JiYsKVK1fYvn07I0aMICgo6F/1/bT4+Hj69+9P165dcXd3p3Llyvzxxx+sXbuW69evs2zZMuWXyH/zdZg/fz6HDx/mjTfeYPjw4TRo0IA7d+5w+vRpDh48yJ07dwDo0qUL1tbWtG3bFisrKxISEli5ciXdu3fHxMSEjIwMatasyTvvvEPjxo0xNjbm4MGDnDp1isWLFxdrrF9//bWy9vbTxo0bV+w4n3j33Xd57733WLVqFV5eXgXWzZ84cSI//PADPXr0wN/fn2bNmnH//n3OnTvHli1bSElJKdF/vwYGBsyePZsxY8bQp08fvLy8OHr0KN988w1z586lcuXKxe5LvGQvfX0SIYR4yfbu3aseMmSIun79+mpjY2O1rq6uum7duuqxY8eqb9y4UaD9119/rXZzc1Pr6empLSws1B4eHuoDBw4ox6OiotStWrVSGxgYqKtXr64s7QeoDx8+rLT751J8T3zxxRfqZs2aqQ0MDNQmJiZqFxcX9aRJk9TXr19X2uTl5alDQkLUNjY2agMDA7Wnp6f6/PnzBZahexbgmUuYPVl67kmsOTk56gULFqgbNmyojLlZs2bqkJAQ9d27dwv0+c0336gdHR3Venp6ajc3N40xP3H69Gm1l5eX2tjYWG1oaKhu3769+vjx4xptiloubfbs2eoaNWqotbS0NJaDe9ZSfP/s5/DhwwW+Jrm5uerp06erra2t1QYGBuoOHTqoExIS1FWqVFGPGjXqGXdTU58+fdSAetOmTcq+nJwctaGhoVpXV1f98OFDjfZPluK7efNmoeP/5zJ3W7duVb/55ptqIyMjtZGRkbp+/frqMWPGqBMTE5U2Hh4ehS5j96zvuafduHFDPX/+fLWHh4faxsZGraOjo7awsFB36NBBvWXLlgLtn/V1eN732I0bN9RjxoxR29raqitVqqS2trZWd+zYUf3FF18obVavXq1u166dukqVKmo9PT11nTp11BMnTlS+57Kzs9UTJ05UN27cWG1iYqI2MjJSN27cWL1q1arnjk+t/n/39lnbtWvXih3nE5mZmWoDAwM1oP7mm28Kve69e/fUU6dOVdetW1etq6urrlq1qrpNmzbqRYsWaSz9STGW4nviiy++UNerV0+tq6urrlOnjnrp0qUaS06KV49KrS7FJz2EEEJUWCqVijFjxpSojKI8yMjIwMLCgjlz5jBt2rSyDkcIUc5JzbUQQojXRmFrAz+pZff09Hy5wQghKiSpuRZCCPHa2LRpE+Hh4XTr1g1jY2OOHTvGd999R5cuXWjbtm1ZhyeEqAAkuRZCCPHacHV1RUdHh4ULF5KZmak85DhnzpyyDk0IUUFIzbUQQgghhBClRGquhRBCCCGEKCWSXAshhBBCCFFKpOZaiJcsPz+f69evY2Ji8kJe8SyEEEKI0qdWq7l37x7Vq1dHS+vZ89OSXAvxkl2/fh1bW9uyDkMIIYQQ/8K1a9eoWbPmM49Lci3ES2ZiYgI8/o/T1NS0jKN5ffw5f3VZhyDEf2I9ZWRZhyDEay0zMxNbW1vl5/izSHItxEv2pBTE1NRUkuuX6L6+QVmHIMR/Iv+/EOLVUFRJpzzQKIQQQgghRCmR5FqUipSUFFQqFXFxcWUah0qlYseOHS/1mg4ODsrrk4UQQgjxepPkWpQKW1tb0tLSaNSoUbHP8fT0ZPz48S8uKCGEEEKIl0xqrkWp0NbWxtrauqzDEEIIIYQoUzJz/ZqIiIjgzTffxNzcnCpVqtCjRw+Sk5OB/1fSsW3bNtq3b4+hoSGNGzfmxIkTyvlDhgzB1dWV7OxsAHJycnBzc2PgwIEafTxdFnL+/Hm6du2KsbExVlZWvP/++9y6dQsAf39/jhw5wvLly1GpVKhUKq5cuULdunVZtGiRRuxxcXGoVCouX75c4nFfu3YNPz8/zM3NqVy5Mm+//TYpKSkA7N+/H319fTIyMjTOGTduHB06dFA+Hzt2DHd3dwwMDLC1tSUwMJD79+8XO4bs7GwyMzM1NiGEEEJUTJJcvybu37/PhAkTiImJ4dChQ2hpadGrVy/y8/OVNtOmTSMoKIi4uDicnJzo168fubm5AHz66afcv3+fKVOmKG0zMjJYuXJlodfLyMigQ4cOuLm5ERMTQ0REBDdu3MDPzw+A5cuX07p1a4YPH05aWhppaWnY2dkxZMgQwsLCNPoKCwujXbt21K1bt0RjfvToEV5eXpiYmHD06FGioqIwNjbG29ubnJwcOnbsiLm5OVu3blXOycvLY9OmTQwYMACA5ORkvL296d27N2fPnmXTpk0cO3aMgICAYscRGhqKmZmZsska10IIIUTFJWUhr4nevXtrfP7666+xtLTkwoULGBsbAxAUFET37t0BCAkJoWHDhly+fJn69etjbGzMN998g4eHByYmJixbtozDhw8/c2molStX4ubmxrx58zSuaWtry6VLl3ByckJXVxdDQ0ONchJ/f39mzJjByZMnadmyJY8ePeLbb78tMJtdHJs2bSI/P58vv/xSWTYnLCwMc3NzIiMj6dKlC3379uXbb79l6NChABw6dIiMjAzlfoWGhjJgwAClNtzR0ZFPP/0UDw8PPvvsM/T19YuMY+rUqUyYMEH5/GSdTCGEEEJUPDJz/ZpISkqiX79+1K5dG1NTUxwcHABITU1V2ri6uir/trGxASA9PV3Z17p1a4KCgpg9ezYfffQRb7755jOvFx8fz+HDhzE2Nla2+vXrAyjlKIWpXr063bt35+uvvwbgxx9/JDs7mz59+pR4zPHx8Vy+fBkTExMlhsqVK/P3338rMQwYMIDIyEiuX78OwIYNG+jevTvm5uZKH+Hh4Rrj8PLyIj8/nytXrhQrDj09PWVNa1nbWgghhKjYZOb6NeHj44O9vT1r1qyhevXq5Ofn06hRI3JycpQ2lSpVUv79ZKb36bKR/Px8oqKi0NbWLrL+OSsrCx8fHxYsWFDg2JPE/VmGDRvG+++/z9KlSwkLC+Pdd9/F0NCwWOP8ZwzNmjVjw4YNBY5ZWloC0KJFC+rUqcPGjRv54IMP2L59O+Hh4Rp9jBw5ksDAwAJ92NnZlTgmIYQQQlRskly/Bm7fvk1iYiJr1qzB3d0dePyQXkl98sknXLx4kSNHjuDl5UVYWBiDBw8utG3Tpk3ZunUrDg4O6OgU/m2mq6tLXl5egf3dunXDyMiIzz77jIiICH7++ecSx/okhk2bNlGtWrXnzhYPGDCADRs2ULNmTbS0tJTSmCd9XLhwocT13kIIIYR4PUlZyGvAwsKCKlWq8MUXX3D58mV++uknjRrg4jhz5gwzZszgyy+/pG3btixZsoRx48bx22+/Fdp+zJgx3Llzh379+nHq1CmSk5PZt28fgwcPVhJqBwcHoqOjSUlJ4datW8osuba2Nv7+/kydOhVHR0dat279r8Y9YMAAqlatyttvv83Ro0e5cuUKkZGRBAYG8vvvv2u0O336NHPnzuWdd95BT09POTZ58mSOHz9OQEAAcXFxJCUlsXPnzhI90CiEEEKI14ck168BLS0tNm7cSGxsLI0aNeLDDz/kk08+Kfb5f//9N++99x7+/v74+PgAMGLECNq3b8/7779f6Oxz9erViYqKIi8vjy5duuDi4sL48eMxNzdHS+vxt11QUBDa2to0aNAAS0tLjfrvoUOHkpOT88yZ8eIwNDTk559/xs7ODl9fX5ydnRk6dCh///23xkx23bp1admyJWfPnlVWCXnC1dWVI0eOcOnSJdzd3XFzc2PGjBlUr179X8clhBBCiIpLpVar1WUdhBD/dPToUTp27Mi1a9ewsrIq63BKVWZmJmZmZty9e1cebnyJ0mYVvmykEOWFzQz5i5kQZam4P7+l5lq8UrKzs7l58ybBwcH06dOnwiXWouxIYiKEEOJlkLIQ8Ur57rvvsLe3JyMjg4ULF2oc27Bhg8aSeE9vDRs2LKOIhRBCCCH+HykLEeXGvXv3uHHjRqHHKlWqhL29/UuO6N+RshAhhBCi/JGyEFHhmJiYYGJiUtZhCCFEmfh91gdlHYIQ5ULNGZ+V6fWlLEQIIYQQQohSIsm1+M9SUlJQqVTExcUp+6KionBxcaFSpUr07NmzzGITQgghhHiZpCxEvBATJkygSZMm7N27F2Nj4xd6LX9/fzIyMtixY8cLvY4QQgghRFFk5lq8EMnJyXTo0IGaNWtibm5e1uEIIYQQQrwUklwLxZYtW3BxccHAwIAqVarQqVMn7t+/D8CXX36Js7Mz+vr61K9fn1WrVhXax5MSkdu3bzNkyBBUKhXh4eFFXvv8+fN07doVY2NjrKyseP/997l161aRsQUHB7N27Vp27tyJSqVCpVIRGRkJwLVr1/Dz88Pc3JzKlSvz9ttvk5KSonHd543ryVg2b96Mu7s7BgYGtGjRgkuXLnHq1CmaN2+OsbExXbt25ebNmyW72UIIIYSokCS5FgCkpaXRr18/hgwZQkJCApGRkfj6+qJWq9mwYQMzZsxg7ty5JCQkMG/ePKZPn87atWsL9GNra0taWhqmpqYsW7aMtLQ03n333edeOyMjgw4dOuDm5kZMTAwRERHcuHEDPz+/ImMLCgrCz88Pb29v0tLSSEtLo02bNjx69AgvLy9MTEw4evQoUVFRGBsb4+3tTU5ODkCxxzVz5kw+/vhjTp8+jY6ODv3792fSpEksX76co0ePcvnyZWbMmPHM8WVnZ5OZmamxCSGEEKJikpprATxOYHNzc/H19VXWi3ZxcQEeJ5eLFy/G19cXgFq1anHhwgVWr17NoEGDNPrR1tbG2toalUqFmZkZ1tbWRV575cqVuLm5MW/ePGXf119/ja2tLZcuXSIrK+uZsQEYGBiQnZ2tca1vvvmG/Px8vvzyS1QqFQBhYWGYm5sTGRlJly5dij2uoKAgvLy8ABg3bhz9+vXj0KFDtG3bFoChQ4c+d3Y+NDSUkJCQIu+DEEIIIco/Sa4FAI0bN6Zjx464uLjg5eVFly5deOedd9DV1SU5OZmhQ4cyfPhwpX1ubi5mZmalcu34+HgOHz5c6IOPycnJdOnSpdDYLCwsntvn5cuXC6yL/ffff5OcnMz9+/eLPS5XV1fl309ex/50cm9lZUV6evozY5k6dSoTJkxQPmdmZmJra/vM9kIIIYQovyS5FsDjGecDBw5w/Phx9u/fz4oVK5g2bRo//vgjAGvWrOGNN94ocE5pyMrKwsfHhwULFhQ4ZmNj88zYoqOjqVWr1jP7bNasGRs2bChwzNLSkqysLKB446pUqZLy7yez4P/cl5+f/8zx6enpoaen98zjQgghhKg4JLkWCpVKRdu2bWnbti0zZszA3t6eqKgoqlevzm+//caAAQNeyHWbNm3K1q1bcXBwQEen8G/JwmLbvn07EyZMQFdXl7y8vAJ9btq0iWrVqhX6ilIzM7MXPi4hhBBCvH7kgUYBQHR0NPPmzSMmJobU1FS2bdvGzZs3cXZ2JiQkhNDQUD799FMuXbrEuXPnCAsLY8mSJaVy7TFjxnDnzh369evHqVOnSE5OZt++fQwePJi8vLznxgbg4ODA2bNnSUxM5NatWzx69IgBAwZQtWpV3n77bY4ePcqVK1eIjIwkMDCQ33//HeCFj0sIIYQQrx+ZuRYAmJqa8vPPP7Ns2TIyMzOxt7dn8eLFdO3aFQBDQ0M++eQTJk6ciJGRES4uLowfP75Url29enWioqKYPHkyXbp0ITs7G3t7e7y9vdHS0ioytuHDhxMZGUnz5s3Jysri8OHDeHp68vPPPzN58mR8fX25d+8eNWrUoGPHjspM9rBhw17ouIQQQgjx+lGp1Wp1WQchxOskMzMTMzMz7t69W2jJihBCFOb3WR+UdQhClAs1Z3z2Qvot7s9vmbkWQgghyoEXlTAIIUqX1FyLF27UqFEYGxsXuo0aNaqswxNCCCGEKDVSFiJeuPT09Ge+ldDU1JRq1aq95IjKlpSFCCGEEOWPlIWIV0a1atVeuwRaCCGEEK8nSa6FEKIIJ+d7l3UIQtBySkRZhyCEKAapuRZCCCGEEKKUSHL9CnNwcGDZsmXFaqtSqdixY8cLjSclJQWVSkVcXNxz23l6ev6ntaKLGktkZCQqlYqMjIx/fQ0hhBBCiBdBkuuX4GUkvmWhrJLcNm3akJaWhpmZWZFtJREXQgghxMskybUod3R1dbG2tkalUr20a6rVanJzc1/a9YQQQghRPr1WybWnpydjx45l/PjxWFhYYGVlxZo1a7h//z6DBw/GxMSEunXrsnfvXuWc8+fP07VrV4yNjbGysuL999/n1q1bGn0GBgYyadIkKleujLW1NcHBwcpxBwcHAHr16oVKpVI+Jycn8/bbb2NlZYWxsTEtWrTg4MGD/2l8t27dolevXhgaGuLo6MgPP/ygcbyosURERPDmm29ibm5OlSpV6NGjB8nJyYVeKyUlhfbt2wNgYWGBSqXC399fOZ6fn//Me/Jfx/LP2eirV6/i4+ODhYUFRkZGNGzYkD179jw3xuzsbAIDA6lWrRr6+vq8+eabnDp1qsA19u7dS7NmzdDT0+Obb75BS0uLmJgYjViXLVuGvb09+fn5JRqjEEIIISqe1yq5Bli7di1Vq1bl5MmTjB07lg8++IA+ffrQpk0bTp8+TZcuXXj//fd58OABGRkZdOjQATc3N2JiYoiIiODGjRv4+fkV6NPIyIjo6GgWLlzIrFmzOHDgAICSsIWFhZGWlqZ8zsrKolu3bhw6dIgzZ87g7e2Nj48Pqamp/3psISEh+Pn5cfbsWbp168aAAQO4c+cOQLHGcv/+fSZMmEBMTAyHDh1CS0uLXr16FZo02trasnXrVgASExNJS0tj+fLlxbon/3Us/zRmzBiys7P5+eefOXfuHAsWLMDY2Pi5MU6aNImtW7eydu1aTp8+Td26dfHy8ipwjSlTpjB//nwSEhJ466236NSpE2FhYRptwsLC8Pf3R0ur8P+csrOzyczM1NiEEEIIUTG9Vi+R8fT0JC8vj6NHjwKQl5eHmZkZvr6+rFu3DoA///wTGxsbTpw4wcGDBzl69Cj79u1T+vj999+xtbUlMTERJyenAn0CtGzZkg4dOjB//nzgcc319u3b6dmz53Pja9SoEaNGjSIgIAB4POs9fvz4Yj0cqFKp+Pjjj5k9ezbwOFE2NjZm7969eHt7M2fOnCLH8k+3bt3C0tKSc+fO0ahRI1JSUqhVqxZnzpyhSZMmREZG0r59e/766y/Mzc2feZ8Luyf/ZSz/vK6rqyu9e/dm5syZBfoqLMb79+9jYWFBeHg4/fv3B+DRo0fK/Z44caJy3o4dO3j77beV/jZv3syoUaNIS0tDT0+P06dP07x5c3777TflrxL/FBwcTEhISIH98hKZ8kOW4hOvAlmKT4iyVdyXyLx2M9eurq7Kv7W1talSpQouLi7KPisrK+DxWwXj4+M5fPiwxuu669evD6BRLvF0nwA2Njakp6c/N46srCyCgoJwdnbG3NwcY2NjEhIS/tPM9dNxGBkZYWpqqsRRnLEkJSXRr18/ateujampqZIs/puY/s09Ke5Y/ikwMJA5c+bQtm1bZs6cydmzZ5/bd3JyMo8ePaJt27bKvkqVKtGyZUsSEhI02jZv3lzjc8+ePdHW1mb79u0AhIeH0759+2cm1gBTp07l7t27ynbt2rXnxieEEEKI8uu1e4lMpUqVND6rVCqNfU8eksvPzycrKwsfHx8WLFhQoB8bG5vn9llU/W1QUBAHDhxg0aJF1K1bFwMDA9555x1ycnJKPKbixFGcsfj4+GBvb8+aNWuoXr06+fn5NGrU6F/F9G/uyb89f9iwYXh5ebF79272799PaGgoixcvZuzYsSWO+5+MjIw0Puvq6jJw4EDCwsLw9fXl22+/1SiHKYyenh56enr/ORYhhBBCvPpeu+S6JJo2bcrWrVtxcHBAR+ff36pKlSqRl5ensS8qKgp/f3969eoFPE5+U1JS/ku4z1XUWG7fvk1iYiJr1qzB3d0dgGPHjj23T11dXYACYysLtra2jBo1ilGjRjF16lTWrFnD2LFjC42xTp066OrqEhUVhb29PfC4LOTUqVPFKsEZNmwYjRo1YtWqVeTm5uLr6/tCxiSEEEKI8ue1KwspiTFjxnDnzh369evHqVOnSE5OZt++fQwePLhECaWDgwOHDh3izz//5K+//gLA0dGRbdu2ERcXR3x8PP3793+hq00UNRYLCwuqVKnCF198weXLl/npp5+YMGHCc/u0t7dHpVKxa9cubt68SVZW1guL/3nGjx/Pvn37uHLlCqdPn+bw4cM4Ozs/M0YjIyM++OADJk6cSEREBBcuXGD48OE8ePCAoUOHFnk9Z2dnWrVqxeTJk+nXrx8GBgYveohCCCGEKCckuX6O6tWrExUVRV5eHl26dMHFxYXx48djbm7+zJUhCrN48WIOHDiAra0tbm5uACxZsgQLCwvatGmDj48PXl5eNG3a9EUNpcixaGlpsXHjRmJjY2nUqBEffvghn3zyyXP7rFGjBiEhIUyZMgUrKyvlQcyXLS8vjzFjxuDs7Iy3tzdOTk6sWrXquTHOnz+f3r178/7779O0aVMuX77Mvn37sLCwKNY1hw4dSk5ODkOGDHlh4xJCCCFE+fNarRYiRGmZPXs233//fZEPTxamuE8bi1eHrBYiXgWyWogQZau4P7+l5lqIEnhSG79y5UrmzJlT1uGIl0SSGiGEEMUlZSHlwIYNGzSW0Ht6a9iwYVmHVyLlfSwBAQE0a9YMT09PKQkRQgghRAFSFlIO3Lt3jxs3bhR6rFKlSsqKF+VBRRrLvyVlIUIIIUT5I2UhFYiJiQkmJiZlHUapqEhjEWVj19LOZR2CEGWix4cHyjoEIUQxSFmIEEIIIYQQpUSSa/GveXp6FuulK6+qyMhIVCoVGRkZZR2KEEIIISoISa7Fa6tNmzakpaVhZmZW1qEIIYQQooKQ5Fq8snJycl5o/7q6ulhbW6NSqV7odYQQQgjx+pDkWhTL/fv3GThwIMbGxtjY2LB48WKN49nZ2QQFBVGjRg2MjIx44403iIyMVI6Hh4djbm7Ojh07cHR0RF9fHy8vL65du6a0CQ4OpkmTJnz55ZfUqlULfX19ADIyMhg2bBiWlpaYmprSoUMH4uPjlfPi4+Np3749JiYmmJqa0qxZM2JiYgC4evUqPj4+WFhYYGRkRMOGDdmzZw9QeFnI1q1badiwIXp6ejg4OBQYp4ODA/PmzWPIkCGYmJhgZ2fHF198USr3WAghhBDlnyTXolgmTpzIkSNH2LlzJ/v37ycyMpLTp08rxwMCAjhx4gQbN27k7Nmz9OnTB29vb5KSkpQ2Dx48YO7cuaxbt46oqCgyMjLo27evxnUuX77M1q1b2bZtG3FxcQD06dOH9PR09u7dS2xsLE2bNqVjx47cuXMHgAEDBlCzZk1OnTpFbGwsU6ZMoVKlSgCMGTOG7Oxsfv75Z86dO8eCBQswNjYudIyxsbH4+fnRt29fzp07R3BwMNOnTyc8PFyj3eLFi2nevDlnzpxh9OjRfPDBByQmJj7z3mVnZ5OZmamxCSGEEKJikqX4RJGysrL46quv+Oabb+jYsSMAa9eupWbNmgCkpqYSFhZGamoq1atXByAoKIiIiAjCwsKYN28eAI8ePWLlypW88cYbSh/Ozs6cPHmSli1bAo9LQdatW4elpSUAx44d4+TJk6Snp6OnpwfAokWL2LFjB1u2bGHEiBGkpqYyceJE6tevD4Cjo6MSe2pqKr1798bFxQWA2rVrP3OcS5YsoWPHjkyfPh0AJycnLly4wCeffIK/v7/Srlu3bowePRqAyZMns3TpUg4fPky9evUK7Tc0NJSQkJBi3WshhBBClG8ycy2KlJycTE5OjpIUA1SuXFlJJs+dO0deXh5OTk4ab1w8cuQIycnJyjk6Ojq0aNFC+Vy/fn3Mzc1JSEhQ9tnb2yuJNTwu+cjKyqJKlSoafV+5ckXpe8KECQwbNoxOnToxf/58jWsGBgYyZ84c2rZty8yZMzl79uwzx5mQkEDbtm019rVt25akpCTy8vKUfa6ursq/VSoV1tbWpKenP7PfqVOncvfuXWV7uhRGCCGEEBWLzFyL/ywrKwttbW1iY2PR1tbWOPasEoxnMTIyKtC3jY2NRv32E+bm5sDjWu3+/fuze/du9u7dy8yZM9m4cSO9evVi2LBheHl5sXv3bvbv309oaCiLFy9m7NixJYrraU9KTp5QqVTk5+c/s72enp4y6y6EEEKIik1mrkWR6tSpQ6VKlYiOjlb2/fXXX1y6dAkANzc38vLySE9Pp27duhqbtbW1ck5ubq7yoCFAYmIiGRkZODs7P/PaTZs25c8//0RHR6dA31WrVlXaOTk58eGHH7J//358fX0JCwtTjtna2jJq1Ci2bdvGRx99xJo1awq9lrOzM1FRURr7oqKicHJyKvBLgxBCCCFEYSS5FkUyNjZm6NChTJw4kZ9++onz58/j7++Pltbjbx8nJycGDBjAwIED2bZtG1euXOHkyZOEhoaye/dupZ9KlSoxduxYoqOjiY2Nxd/fn1atWin11oXp1KkTrVu3pmfPnuzfv5+UlBSOHz/OtGnTiImJ4eHDhwQEBBAZGcnVq1eJiori1KlTSsI+fvx49u3bx5UrVzh9+jSHDx9+ZjL/0UcfcejQIWbPns2lS5dYu3YtK1euJCgoqBTvphBCCCEqMikLEcXyySefkJWVhY+PDyYmJnz00UfcvXtXOR4WFsacOXP46KOP+OOPP6hatSqtWrWiR48eShtDQ0MmT55M//79+eOPP3B3d+err7567nVVKhV79uxh2rRpDB48mJs3b2JtbU27du2wsrJCW1ub27dvM3DgQG7cuEHVqlXx9fVVHiDMy8tjzJgx/P7775iamuLt7c3SpUsLvVbTpk3ZvHkzM2bMYPbs2djY2DBr1iyNhxmFEEIIIZ5HpVar1WUdhKj4wsPDGT9+vLxqHMjMzMTMzIy7d+9iampa1uGUO7uWdi7rEIQoEz0+PFDWIQjxWivuz2+ZuRZClCuSYAghhHiVSc21EEIIIYQQpUSSa/FS+Pv7S0mIEEIIISo8Sa6FEEIIIYQoJVJzLYSosNZ92rGsQxCi1AwMPFTWIQghikFmroUQQgghhCglklyL/8zT05Px48e/9Os6ODiwbNmyUuuvrMYhhBBCiIpDkmshhBBCCCFKiSTXQgghhBBClBJJrkWpyM/PZ9KkSVSuXBlra2uCg4OVYxkZGQwbNgxLS0tMTU3p0KED8fHxyvHk5GTefvttrKysMDY2pkWLFhw8eFCj//T0dHx8fDAwMKBWrVps2LChQAxLlizBxcUFIyMjbG1tGT16NFlZWRptoqKi8PT0xNDQEAsLC7y8vPjrr7+KNY7ijEUIIYQQrzdJrkWpWLt2LUZGRkRHR7Nw4UJmzZrFgQOP36TXp08f0tPT2bt3L7GxsTRt2pSOHTty584dALKysujWrRuHDh3izJkzeHt74+PjQ2pqqtK/v78/165d4/Dhw2zZsoVVq1aRnp6uEYOWlhaffvopv/76K2vXruWnn35i0qRJyvG4uDg6duxIgwYNOHHiBMeOHcPHx4e8vLxijaM4YylMdnY2mZmZGpsQQgghKiaVWq1Wl3UQonzz9PQkLy+Po0ePKvtatmxJhw4d6NGjB927dyc9PR09PT3leN26dZk0aRIjRowotM9GjRoxatQoAgICuHTpEvXq1ePkyZO0aNECgIsXL+Ls7MzSpUuf+RDili1bGDVqFLdu3QKgf//+pKamcuzYsRKPY/78+Rw7duxfjSU4OJiQkJAC++/evYupqWmh54jSIUvxiYpEluITomxlZmZiZmZW5M9vWedalApXV1eNzzY2NqSnpxMfH09WVhZVqlTROP7w4UOSk5OBxzPXwcHB7N69m7S0NHJzc3n48KEyc52QkICOjg7NmjVTzq9fvz7m5uYafR48eJDQ0FAuXrxIZmYmubm5/P333zx48ABDQ0Pi4uLo06fPvxoHUKyxFGbq1KlMmDBB+ZyZmYmtre1z4xBCCCFE+STJtSgVlSpV0visUqnIz88nKysLGxsbIiMjC5zzJDkOCgriwIEDLFq0iLp162JgYMA777xDTk5Osa+fkpJCjx49+OCDD5g7dy6VK1fm2LFjDB06lJycHAwNDTEwMPjX4wCKNZbC6Onpacx0CyGEEKLikuRavFBNmzblzz//REdHBwcHh0LbREVF4e/vT69evYDHSWxKSopyvH79+uTm5hIbG6uUhSQmJpKRkaG0iY2NJT8/n8WLF6Ol9fhRgs2bN2tcx9XVlUOHDhVaolFaYxFCCCHE600eaBQvVKdOnWjdujU9e/Zk//79pKSkcPz4caZNm0ZMTAwAjo6ObNu2jbi4OOLj4+nfv78yWwxQr149vL29GTlyJNHR0cTGxjJs2DCNmei6devy6NEjVqxYwW+//cb69ev5/PPPNWKZOnUqp06dYvTo0Zw9e5aLFy/y2WefKTXZpTEWIYQQQrzeJLkWL5RKpWLPnj20a9eOwYMH4+TkRN++fbl69SpWVlbA4yX0LCwsaNOmDT4+Pnh5edG0aVONfsLCwqhevToeHh74+voyYsQIqlWrphxv3LgxS5YsYcGCBTRq1IgNGzYQGhqq0YeTkxP79+8nPj6eli1b0rp1a3bu3ImOTvH+gFOcsQghhBDi9SarhQjxkhX3aWPx38lqIaIikdVChChbslqIEOK1J8mIEEKIl03KQoQQQgghhCglklwLIYQQQghRSqQsRAjxSln+P8+yDkGIV9K4MZFlHYIQohhk5loIIYQQQohSIsm1EEIIIYQQpUSS63LG09OT8ePHP/O4g4MDy5Yte+FxqFQqduzY8cKvI4QQQghRnkhyLYQQQgghRCmR5Fq8ctRqNbm5uWUdhoZXMSYhhBBCvHokuS6HcnNzCQgIwMzMjKpVqzJ9+nSe9aLN1NRU3n77bYyNjTE1NcXPz48bN25otPnss8+oU6cOurq61KtXj/Xr12scT0pKol27dujr69OgQQMOHDhQ7FhTUlJQqVRs3LiRNm3aoK+vT6NGjThy5IjSJjIyEpVKxd69e2nWrBl6enocO3aM/Px8QkNDqVWrFgYGBjRu3JgtW7Yo5/31118MGDAAS0tLDAwMcHR0JCwsDICcnBwCAgKwsbFBX18fe3t75XXoT2KKi4tT+srIyEClUhEZGfmfYipMdnY2mZmZGpsQQgghKiZZiq8cWrt2LUOHDuXkyZPExMQwYsQI7OzsGD58uEa7/Px8JbE+cuQIubm5jBkzhnfffVdJIrdv3864ceNYtmwZnTp1YteuXQwePJiaNWvSvn178vPz8fX1xcrKiujoaO7evfvcmu9nmThxIsuWLaNBgwYsWbIEHx8frly5QpUqVZQ2U6ZMYdGiRdSuXRsLCwtCQ0P55ptv+Pzzz3F0dOTnn3/mvffew9LSEg8PD6ZPn86FCxfYu3cvVatW5fLlyzx8+BCATz/9lB9++IHNmzdjZ2fHtWvXuHbtWonjLmlMhQkNDSUkJKTE1xZCCCFE+SPJdTlka2vL0qVLUalU1KtXj3PnzrF06dICyfWhQ4c4d+4cV65cwdbWFoB169bRsGFDTp06RYsWLVi0aBH+/v6MHj0agAkTJvDLL7+waNEi2rdvz8GDB7l48SL79u2jevXqAMybN4+uXbuWKOaAgAB69+4NPJ4pj4iI4KuvvmLSpElKm1mzZtG5c2fg8WzvvHnzOHjwIK1btwagdu3aHDt2jNWrV+Ph4UFqaipubm40b94cePww5xOpqak4Ojry5ptvolKpsLe3L1G8/zamwkydOpUJEyYonzMzM5WvhxBCCCEqFikLKYdatWqFSqVSPrdu3ZqkpCTy8vI02iUkJGBra6uRyDVo0ABzc3MSEhKUNm3bttU4r23bthrHbW1tlcT6yfVK6ulzdHR0aN68uXKNJ54kyQCXL1/mwYMHdO7cGWNjY2Vbt24dycnJAHzwwQds3LiRJk2aMGnSJI4fP66c7+/vT1xcHPXq1SMwMJD9+/eXOOZ/E1Nh9PT0MDU11diEEEIIUTHJzLV4ZRgZGSn/zsrKAmD37t3UqFFDo52enh4AXbt25erVq+zZs4cDBw7QsWNHxowZw6JFi2jatClXrlxh7969HDx4ED8/Pzp16sSWLVvQ0nr8O+XTdeqPHj0qlZiEEEII8XqTmetyKDo6WuPzL7/8gqOjI9ra2hr7nZ2dC9QaX7hwgYyMDBo0aKC0iYqK0jgvKipK4/i1a9dIS0vTuF5JPX1Obm4usbGxODs7P7N9gwYN0NPTIzU1lbp162psT8/EW1paMmjQIL755huWLVvGF198oRwzNTXl3XffZc2aNWzatImtW7dy584dLC0tATTG9PTDjf81JiGEEEK8vmTmuhxKTU1lwoQJjBw5ktOnT7NixQoWL15coF2nTp1wcXFhwIABLFu2jNzcXEaPHo2Hh4dS7jBx4kT8/Pxwc3OjU6dO/Pjjj2zbto2DBw8qfTg5OTFo0CA++eQTMjMzmTZtWolj/t///oejoyPOzs4sXbqUv/76iyFDhjyzvYmJCUFBQXz44Yfk5+fz5ptvcvfuXaKiojA1NWXQoEHMmDGDZs2a0bBhQ7Kzs9m1a5eSsC9ZsgQbGxvc3NzQ0tLi+++/x9raGnNzc7S0tGjVqhXz58+nVq1apKen8/HHHxc5huLEJIQQQojXmyTX5dDAgQN5+PAhLVu2RFtbm3HjxjFixIgC7VQqFTt37mTs2LG0a9cOLS0tvL29WbFihdKmZ8+eLF++nEWLFjFu3Dhq1apFWFgYnp6eAGhpabF9+3aGDh1Ky5YtcXBw4NNPP8Xb27tEMc+fP5/58+cTFxdH3bp1+eGHH6hatepzz5k9ezaWlpaEhoby22+/YW5uTtOmTfm///s/AHR1dZk6dSopKSkYGBjg7u7Oxo0bgceJ8MKFC0lKSkJbW5sWLVqwZ88epSTk66+/ZujQoTRr1ox69eqxcOFCunTpUuQ4iopJCCGEEK83lfpZCyQLUQpSUlKoVasWZ86coUmTJmUdzishMzMTMzMz7t69Kw83FmL5/zzLOgQhXknjxkSWdQhCvNaK+/NbZq6FEK8USSCEEEKUZ/JAo/hP5s2bp7Es3dNbSdfCFkIIIYQo76QsRPwnd+7c4c6dO4UeMzAwKLBknZCyECGEEKI8krIQ8VJUrlyZypUrl3UYQghR4c1Y076sQxDiP5k1/HBZh/BSSFmIEEIIIYQQpUSS69ecv78/PXv2LOswysQ/x+7p6cn48ePLLB4hhBBClH9SFiLE/2/btm1UqlRJ+ezg4MD48eMl4RZCCCFEsUlyLcT/T2rHhRBCCPFfSVnIa2LLli24uLhgYGBAlSpV6NSpE/fv3y/QLj8/n9DQUGrVqoWBgQGNGzdmy5YtGm3Onz9P165dMTY2xsrKivfff59bt24pxz09PQkICCAgIAAzMzOqVq3K9OnTKe7CNOnp6fj4+GBgYECtWrXYsGEDDg4OLFu2DHj8YhqVSkVcXJxyTkZGBiqVisjISADy8vIYOnSoMo569eqxfPny51736bIQT09Prl69yocffohKpUKlUnH//n1MTU0L3I8dO3ZgZGTEvXv3ijU+IYQQQlRckly/BtLS0ujXrx9DhgwhISGByMhIfH19C012Q0NDWbduHZ9//jm//vorH374Ie+99x5HjhwBHiexHTp0wM3NjZiYGCIiIrhx4wZ+fn4a/axduxYdHR1OnjzJ8uXLWbJkCV9++WWx4vX39+fatWscPnyYLVu2sGrVKtLT00s05vz8fGrWrMn333/PhQsXmDFjBv/3f//H5s2bi3X+tm3bqFmzJrNmzSItLY20tDSMjIzo27cvYWFhGm3DwsJ45513MDExKbSv7OxsMjMzNTYhhBBCVExSFvIaSEtLIzc3F19fX+zt7QFwcXEp0C47O5t58+Zx8OBBWrduDUDt2rU5duwYq1evxsPDg5UrV+Lm5sa8efOU877++mtsbW25dOkSTk5OANja2rJ06VJUKhX16tXj3LlzLF26lOHDhz831kuXLrF3715OnjxJixYtAPjqq69wdnYu0ZgrVapESEiI8rlWrVqcOHGCzZs3F/hFoDCVK1dGW1sbExMTrK2tlf3Dhg2jTZs2pKWlYWNjQ3p6Onv27OHgwYPP7Cs0NFQjFiGEEEJUXDJz/Rpo3LgxHTt2xMXFhT59+rBmzRr++uuvAu0uX77MgwcP6Ny5s8abFtetW0dycjIA8fHxHD58WON4/fr1AZQ2AK1atUKlUimfW7duTVJSEnl5ec+NNSEhAR0dHZo1a6bsq1+/Pubm5iUe9//+9z+aNWuGpaUlxsbGfPHFF6Smppa4n6e1bNmShg0bsnbtWgC++eYb7O3tadeu3TPPmTp1Knfv3lW2a9eu/acYhBBCCPHqkpnr14C2tjYHDhzg+PHj7N+/nxUrVjBt2jSio6M12mVlZQGwe/fuAm9W1NPTU9r4+PiwYMGCAtexsbF5QSPQpKX1+HfCp8taHj16pNFm48aNBAUFsXjxYlq3bo2JiQmffPJJgTH/G8OGDeN///sfU6ZMISwsjMGDB2v8IvFPenp6yv0TQgghRMUmyfVrQqVS0bZtW9q2bcuMGTOwt7dn+/btGm0aNGiAnp4eqampeHh4FNpP06ZN2bp1Kw4ODujoPPvb559J7C+//IKjoyPa2trPjbN+/frk5uYSGxurlIUkJiaSkZGhtLG0tAQel7u4ubkBaDzcCBAVFUWbNm0YPXq0su/pmfXi0NXVLXSm/b333mPSpEl8+umnXLhwgUGDBpWoXyGEEEJUXFIW8hqIjo5m3rx5xMTEkJqayrZt27h582aBOmYTExOCgoL48MMPWbt2LcnJyZw+fZoVK1YoZRBjxozhzp079OvXj1OnTpGcnMy+ffsYPHiwRiKamprKhAkTSExM5LvvvmPFihWMGzeuyFjr1auHt7c3I0eOJDo6mtjYWIYNG4aBgYHSxsDAgFatWjF//nwSEhI4cuQIH3/8sUY/jo6OxMTEsG/fPi5dusT06dM5depUie6bg4MDP//8M3/88YfGaigWFhb4+voyceJEunTpQs2aNUvUrxBCCCEqLkmuXwOmpqb8/PPPdOvWDScnJz7++GMWL15M165dC7SdPXs206dPJzQ0FGdnZ7y9vdm9eze1atUCoHr16kRFRZGXl0eXLl1wcXFh/PjxmJubK+UaAAMHDuThw4e0bNmSMWPGMG7cOEaMGFGseMPCwqhevToeHh74+voyYsQIqlWrptHm66+/Jjc3l2bNmjF+/HjmzJmjcXzkyJH4+vry7rvv8sYbb3D79m2NWezimDVrFikpKdSpU0eZLX9i6NCh5OTkMGTIkBL1KYQQQoiKTaUu7uLDQhSTp6cnTZo0UdalLg2v2tsS169fz4cffsj169fR1dUt0bmZmZmYmZlx9+5dTE1NX1CEQoiKZsaa9mUdghD/yazhh8s6hP+kuD+/peZaiBJ48OABaWlpzJ8/n5EjR5Y4sRZCiH+rvCcmQrwupCxEvFRHjx7VWMbvn9urbuHChdSvXx9ra2umTp1a1uEIIYQQ4hUjZSHipXr48CF//PHHM4/XrVv3JUZTNqQsRAghhCh/pCxEvJIMDAxeiwRaCCGEEK8nSa6FEOIV129dh7IOQbwCvhv4U1mHIIQoBqm5FkIIIYQQopRIcl0KPD09X5kl4qB48ahUKnbs2PFS4nnR/P396dmz53PbvGpfIyGEEEJUTJJcl2ORkZGoVCqNV4MXV1paWqEvkRFCCCGEEP+eJNdlICcnp6xDwNraGj09vbIO47lehfskhBBCCFESklyXktzcXAICAjAzM6Nq1apMnz6dJ6scOjg4MHv2bAYOHIipqanyGvBjx47h7u6OgYEBtra2BAYGcv/+faXP9evX07x5c0xMTLC2tqZ///6kp6cDkJKSQvv2j9/WZWFhgUqlwt/fXzk3Pz+fSZMmUblyZaytrQkODtaI9+mykJSUFFQqFdu2baN9+/YYGhrSuHFjTpw4oXHOmjVrsLW1xdDQkF69erFkyRLMzc2LdX+Cg4Np0qQJq1evVvrw8/Pj7t27Spsn5R1z586levXq1KtXD4Bz587RoUMHDAwMqFKlCiNGjCArK6vANUJCQrC0tMTU1JRRo0Y9NznPzs4mKCiIGjVqYGRkxBtvvEFkZKRyPDw8HHNzc3bt2kW9evUwNDTknXfe4cGDB6xduxYHBwcsLCwIDAwkLy+vWPdACCGEEBWfJNelZO3atejo6HDy5EmWL1/OkiVL+PLLL5XjixYtonHjxpw5c4bp06eTnJyMt7c3vXv35uzZs2zatIljx44REBCgnPPo0SNmz55NfHw8O3bsICUlRUmgbW1t2bp1KwCJiYmkpaWxfPlyjXiMjIyIjo5m4cKFzJo1iwMHDjx3DNOmTSMoKIi4uDicnJzo168fubm5AERFRTFq1CjGjRtHXFwcnTt3Zu7cuSW6R5cvX2bz5s38+OOPREREcObMGUaPHq3R5tChQyQmJnLgwAF27drF/fv38fLywsLCglOnTvH9999z8OBBjfv05LyEhAQiIyP57rvv2LZtGyEhIc+MJSAggBMnTrBx40bOnj1Lnz598Pb2JikpSWnz4MEDPv30UzZu3EhERASRkZH06tWLPXv2sGfPHtavX8/q1avZsmXLc8ednZ1NZmamxiaEEEKIikleIlMKPD09SU9P59dff0WlUgEwZcoUfvjhBy5cuICDgwNubm5s375dOWfYsGFoa2uzevVqZd+xY8fw8PDg/v376OvrF7hOTEwMLVq04N69exgbGxMZGUn79u3566+/NGaQPT09ycvL4+jRo8q+li1b0qFDB+bPnw88nrnevn07PXv2JCUlhVq1avHll18ydOhQAC5cuEDDhg1JSEigfv369O3bl6ysLHbt2qX0+d5777Fr165i1XwHBwczZ84crl69So0aNQCIiIige/fu/PHHH1hbW+Pv709ERASpqanKa8XXrFnD5MmTuXbtGkZGRgDs2bMHHx8frl+/jpWVFf7+/vz4449cu3YNQ0NDAD7//HMmTpzI3bt30dLSwtPTkyZNmrBs2TJSU1OpXbs2qampVK9eXYmxU6dOtGzZknnz5hEeHs7gwYO5fPkyderUAWDUqFGsX7+eGzduKG+T9Pb2xsHBgc8///y5Yy8s0ZeXyIjikqX4BMhSfEKUteK+REZmrktJq1atlMQaoHXr1iQlJSklA82bN9doHx8fT3h4uMarv728vMjPz+fKlSsAxMbG4uPjg52dHSYmJnh4eACQmppaZDyurq4an21sbJSSkuKcY2NjA6Cck5iYSMuWLTXa//NzUezs7JTEGh7fo/z8fBITE5V9Li4uSmINkJCQQOPGjZXEGqBt27YFzmvcuLGSWD/pOysri2vXrhWI49y5c+Tl5eHk5KRx/48cOUJycrLSztDQUEmsAaysrHBwcNB4TbuVlVWR93Xq1KncvXtX2QqLSQghhBAVg7xE5iV5OjkEyMrKYuTIkQQGBhZoa2dnp5RDeHl5sWHDBiwtLUlNTcXLy6tYD/pVqlRJ47NKpSI/P7/Y5zz5RaGoc0rbP+/Ti5CVlYW2tjaxsbFoa2trHHs6cS7sHv6b+6qnp/fKPzwqhBBCiNIhyXUpiY6O1vj8yy+/4OjoWCB5e6Jp06ZcuHDhma8CP3fuHLdv32b+/PnY2toCj8tCnvZkhvdlPFBXr149Tp06pbHvn5+LkpqayvXr15VSjF9++QUtLS3lwcXCODs7Ex4ezv3795XEOyoqqsB58fHxPHz4EAMDA6VvY2Nj5d49zc3Njby8PNLT03F3dy/RGIQQQgghnkfKQkpJamoqEyZMIDExke+++44VK1Ywbty4Z7afPHkyx48fJyAggLi4OJKSkti5c6fyoJ6dnR26urqsWLGC3377jR9++IHZs2dr9GFvb49KpWLXrl3cvHmz0BU0SsvYsWPZs2cPS5YsISkpidWrV7N3716NUpii6OvrM2jQIOLj4zl69CiBgYH4+flhbW39zHMGDBignHf+/HkOHz7M2LFjef/997GyslLa5eTkMHToUC5cuMCePXuYOXMmAQEBaGkV/BZ3cnJiwIABDBw4kG3btnHlyhVOnjxJaGgou3fvLtmNEUIIIYR4iiTXpWTgwIE8fPiQli1bMmbMGMaNG6csuVcYV1dXjhw5wqVLl3B3d8fNzY0ZM2Yos7qWlpaEh4fz/fff06BBA+bPn8+iRYs0+qhRowYhISFMmTIFKyurAitolKa2bdvy+eefs2TJEho3bkxERAQffvhhoQ9ePkvdunXx9fWlW7dudOnSBVdXV1atWvXccwwNDdm3bx937tyhRYsWvPPOO3Ts2JGVK1dqtOvYsSOOjo60a9eOd999l7feeqvA8oNPCwsLY+DAgXz00UfUq1ePnj17curUKezs7Io9HiGEEEKIf5LVQsS/Nnz4cC5evKixKsmzBAcHs2PHDuLi4l58YK+44j5tLMQTslqIAFktRIiyVtyf31JzLYpt0aJFdO7cGSMjI/bu3cvatWuLnHkWQvx3klQJIUT5Icm1KLaTJ0+ycOFC7t27R+3atfn0008ZNmwYAA0bNuTq1auFnvf0Wt5CCCGEEBWZlIWIUnH16lUePXpU6DErKytMTExeckSvLikLEUIIIcofKQsRL5W9vX1ZhyBEsXRcV3BteSHKg0MDPy3rEIQQxSCrhQghhBBCCFFKJLkWQgghhBCilEhyLV6o4OBgmjRp8lKupVKp2LFjx0u51hMODg4sW7bspV5TCCGEEK8uSa7FCxUUFMShQ4fKOgwhhBBCiJdCHmgUL5SxsTHGxsZlHYYQQgghxEshM9fiuTw9PQkMDGTSpElUrlwZa2trjdeKp6am8vbbb2NsbIypqSl+fn7cuHFDOf7PspDIyEhatmyJkZER5ubmtG3bVmN97J07d9K0aVP09fWpXbs2ISEh5Obm/qvYr127hp+fH+bm5lSuXJm3336blJQUAPbv34++vj4ZGRka54wbN44OHf7f2/COHTuGu7s7BgYG2NraEhgYyP3790sUR3Z2NpmZmRqbEEIIISomSa5FkdauXYuRkRHR0dEsXLiQWbNmceDAAfLz83n77be5c+cOR44c4cCBA/z222+8++67hfaTm5tLz5498fDw4OzZs5w4cYIRI0agUqkAOHr0KAMHDmTcuHFcuHCB1atXEx4ezty5c0sc86NHj/Dy8sLExISjR48SFRWFsbEx3t7e5OTk0LFjR8zNzdm6datyTl5eHps2bWLAgAEAJCcn4+3tTe/evTl79iybNm3i2LFjBAQElCiW0NBQzMzMlM3W1rbE4xFCCCFE+SBlIaJIrq6uzJw5EwBHR0dWrlyp1FGfO3eOK1euKAnjunXraNiwIadOnaJFixYa/WRmZnL37l169OhBnTp1AHB2dlaOh4SEMGXKFAYNGgRA7dq1mT17NpMmTVKuX1ybNm0iPz+fL7/8Uknew8LCMDc3JzIyki5dutC3b1++/fZbhg4dCsChQ4fIyMigd+/ewOOkeMCAAYwfP14Z+6effoqHhwefffYZ+vr6xYpl6tSpTJgwQeM+SIIthBBCVEySXIsiubq6any2sbEhPT2dhIQEbG1tNRLFBg0aYG5uTkJCQoHkunLlyvj7++Pl5UXnzp3p1KkTfn5+2NjYABAfH09UVJTGTHVeXh5///03Dx48wNDQsNgxx8fHc/ny5QJvhvz7779JTk4GYMCAAbRq1Yrr169TvXp1NmzYQPfu3TE3N1f6OHv2LBs2bFDOV6vV5Ofnc+XKFY1fDJ5HT08PPT29YscuhBBCiPJLkmtRpEqVKml8VqlU5Ofn/6u+wsLCCAwMJCIigk2bNvHxxx9z4MABWrVqRVZWFiEhIfj6+hY4r7izxE9kZWXRrFkzjcT4CUtLSwBatGhBnTp12LhxIx988AHbt28nPDxco4+RI0cSGFjwjX52dnYlikcIIYQQrwdJrsW/5uzszLVr17h27Zoye33hwgUyMjJo0KDBM89zc3PDzc2NqVOn0rp1a7799ltatWpF06ZNSUxMpG7duv85tqZNm7Jp0yaqVauGqanpM9sNGDCADRs2ULNmTbS0tOjevbtGHxcuXCiVeIQQQgjxepAHGsW/1qlTJ1xcXBgwYACnT5/m5MmTDBw4EA8PD5o3b16g/ZUrV5g6dSonTpzg6tWr7N+/n6SkJKW8YsaMGaxbt46QkBB+/fVXEhIS2LhxIx9//HGJYxswYABVq1bl7bff5ujRo1y5coXIyEgCAwP5/fffNdqdPn2auXPn8s4772iUb0yePJnjx48TEBBAXFwcSUlJ7Ny5s8QPNAohhBDi9SHJtfjXVCoVO3fuxMLCgnbt2tGpUydq167Npk2bCm1vaGjIxYsX6d27N05OTowYMYIxY8YwcuRIALy8vNi1axf79++nRYsWtGrViqVLl2Jvb1/i2AwNDfn555+xs7PD19cXZ2dnhg4dyt9//60xk123bl1atmzJ2bNnlVVCnnB1deXIkSNcunQJd3d33NzcmDFjBtWrVy9xPEIIIYR4PajUarW6rIMQ4nWSmZmJmZkZd+/efW7JihBCCCFeHcX9+S0z10IIIYQQQpQSSa5FubBhwwblVer/3Bo2bFjW4QkhhBBCALJaiCgn3nrrLd54441Cj/1zqUAhhBBCiLIiybUoF0xMTAq8EEYIIV4nndbOLbqREP9wcNC0sg7htSNlIUIIIYQQQpQSSa5fAZ6enowfPx4ABwcHli1b9q/OrcjCw8OV15IDBAcH06RJk+eek5KSgkqlIi4u7oXGJoQQQgjxhJSFvGJOnTqFkZFRsdtv27bttaw5DgoKYuzYscpnf39/MjIy2LFjh7LP1taWtLQ0qlatWgYRCiGEEOJ1JMn1K8bS0rJE7StXrvyCInm1PVkp5Hm0tbWxtrZ+SREJIYQQQkhZyCvn6bKQ/v378+6772ocf/ToEVWrVmXdunVAwbIQBwcH5s2bx5AhQzAxMcHOzo4vvvhCo4/jx4/TpEkT9PX1ad68OTt27ChR+cSvv/5Kjx49MDU1xcTEBHd3d5KTkwHIz89n1qxZ1KxZEz09PZo0aUJERIRy7pNSjW3bttG+fXsMDQ1p3LgxJ06c0LhGeHg4dnZ2GBoa0qtXL27fvq1x/OmykODgYNauXcvOnTtRqVSoVCoiIyMLLQs5cuQILVu2RE9PDxsbG6ZMmUJubq5y3NPTk8DAQCZNmkTlypWxtrYmODhYOa5WqwkODsbOzg49PT2qV69OYGBgse6bEEIIISo+Sa5fYQMGDODHH38kKytL2bdv3z4ePHhAr169nnne4sWLad68OWfOnGH06NF88MEHJCYmAo/fLuTj44OLiwunT59m9uzZTJ48udgx/fHHH7Rr1w49PT1++uknYmNjGTJkiJKgLl++nMWLF7No0SLOnj2Ll5cXb731FklJSRr9TJs2jaCgIOLi4nBycqJfv35KH9HR0QwdOpSAgADi4uJo3749c+bMeWZMQUFB+Pn54e3tTVpaGmlpabRp06bQ2Lt160aLFi2Ij4/ns88+46uvvirQ99q1azEyMiI6OpqFCxcya9YsDhw4AMDWrVtZunQpq1evJikpiR07duDi4vLce5adnU1mZqbGJoQQQoiKScpCXmFeXl4YGRmxfft23n//fQC+/fZb3nrrrecuS9etWzdGjx4NwOTJk1m6dCmHDx+mXr16fPvtt6hUKtasWYO+vj4NGjTgjz/+YPjw4cWK6X//+x9mZmZs3LhRqfV2cnJSji9atIjJkyfTt29fABYsWMDhw4dZtmwZ//vf/5R2QUFBdO/eHYCQkBAaNmzI5cuXqV+/PsuXL8fb25tJkyYp/R8/flxjBvxpxsbGGBgYkJ2d/dwykFWrVmFra8vKlStRqVTUr1+f69evM3nyZGbMmIGW1uPfNV1dXZk5cyYAjo6OrFy5kkOHDtG5c2dSU1OxtramU6dOVKpUCTs7O1q2bPncexYaGkpISMhz2wghhBCiYpCZ61eYjo4Ofn5+bNiwAYD79++zc+dOBgwY8NzzXF1dlX+rVCqsra1JT08HIDExEVdXV/T19ZU2RSWHT4uLi8Pd3b3QhygzMzO5fv06bdu21djftm1bEhISnhmjjY0NgBJjQkJCgRfGtG7dutgxPktCQgKtW7dGpVJpxJaVlcXvv/9eaGxP4nsSW58+fXj48CG1a9dm+PDhbN++XaOspDBTp07l7t27ynbt2rX/PBYhhBBCvJokuX7FDRgwgEOHDpGens6OHTswMDDA29v7uef8M/FVqVTk5+eXSjwGBgal0s/TMT5Jdksrxv/qeffP1taWxMREVq1ahYGBAaNHj6Zdu3Y8evTomf3p6elhamqqsQkhhBCiYpLk+hXXpk0bbG1t2bRpExs2bKBPnz7/aem9evXqce7cObKzs5V9p06dKvb5rq6uHD16tNBk0tTUlOrVqxMVFaWxPyoqigYNGhT7Gs7OzkRHR2vs++WXX557jq6uLnl5eUX2e+LECdRqtUZsJiYm1KxZs9jxGRgY4OPjw6effkpkZCQnTpzg3LlzxT5fCCGEEBWXJNflQP/+/fn88885cOBAkSUhxekrPz+fESNGkJCQwL59+1i0aBGARrnEswQEBJCZmUnfvn2JiYkhKSmJ9evXKw9MTpw4kQULFrBp0yYSExOZMmUKcXFxjBs3rtgxBgYGEhERwaJFi0hKSmLlypXPrLd+wsHBgbNnz5KYmMitW7cKTf5Hjx7NtWvXGDt2LBcvXmTnzp3MnDmTCRMmKPXWRQkPD+err77i/Pnz/Pbbb3zzzTcYGBhgb29f7PEJIYQQouKS5LocGDBgABcuXKBGjRoF6plLytTUlB9//JG4uDiaNGnCtGnTmDFjBoBGHfazVKlShZ9++omsrCw8PDxo1qwZa9asUWbTAwMDmTBhAh999BEuLi5ERETwww8/4OjoWOwYW7VqxZo1a1i+fDmNGzdm//79fPzxx889Z/jw4dSrV4/mzZtjaWlZYPYcoEaNGuzZs4eTJ0/SuHFjRo0axdChQ4vs+2nm5uasWbOGtm3b4urqysGDB/nxxx+pUqVKsfsQQgghRMWlUj/9N3LxWtqwYQODBw/m7t27pVZTLZ4tMzMTMzMz7t69K/XXQohi67R2blmHIMqhg4OmlXUIFUZxf37LUnyvoXXr1lG7dm1q1KhBfHw8kydPxs/PTxJrIYR4hUmSJET5IGUhr6E///yT9957D2dnZz788EP69OmjvMVx1KhRyqvF/7mNGjWqjCMXQgghhHi1SVmI0JCenv7MNwiamppSrVq1lxxRxSNlIUIIIUT5I2Uh4l+pVq2aJNBCCPEK6hy2oqxDEBXcgcFjyzqECkHKQoQQQgghhCglklwLIYQQQghRSiS5Fq+FP//8k86dO2NkZIS5uXlZhyOEEEKICkqSa/FaWLp0KWlpacTFxXHp0qVinRMcHEyTJk1ebGBCCCGEqFDkgUbxWkhOTqZZs2YlelOkEEIIIURJycy1KDe2bNmCi4sLBgYGVKlShU6dOnH//n1OnTpF586dqVq1KmZmZnh4eHD69GnlPAcHB7Zu3cq6detQqVT4+/sDkJGRwbBhw7C0tMTU1JQOHToQHx8PQHh4OCEhIcTHx6NSqVCpVISHhzNkyBB69OihEdejR4+oVq0aX331VaFxZ2dnk5mZqbEJIYQQomKSmWtRLqSlpdGvXz8WLlxIr169uHfvHkePHkWtVnPv3j0GDRrEihUrUKvVLF68mG7dupGUlISJiQmnTp1i4MCBmJqasnz5cuVNlH369MHAwIC9e/diZmbG6tWr6dixI5cuXeLdd9/l/PnzREREcPDgQQDMzMxwcnKiXbt2pKWlYWNjA8CuXbt48OAB7777bqGxh4aGEhIS8nJulBBCCCHKlCTXolxIS0sjNzcXX19f7O3tAXBxcQGgQ4cOGm2/+OILzM3NOXLkCD169MDS0hI9PT0MDAywtrYG4NixY5w8eZL09HT09PQAWLRoETt27GDLli2MGDECY2NjdHR0lHMA2rRpQ7169Vi/fj2TJk0CICwsjD59+mBsbFxo7FOnTmXChAnK58zMTGxtbUvpzgghhBDiVSJlIaJcaNy4MR07dsTFxYU+ffqwZs0a/vrrLwBu3LjB8OHDcXR0xMzMDFNTU7KyskhNTX1mf/Hx8WRlZVGlShWNV7xfuXKF5OTk58YybNgwwsLClGvv3buXIUOGPLO9np4epqamGpsQQgghKiaZuRblgra2NgcOHOD48ePs37+fFStWMG3aNKKjo/nggw+4ffs2y5cvx97eHj09PVq3bk1OTs4z+8vKysLGxobIyMgCx4paqm/gwIFMmTKFEydOcPz4cWrVqoW7u/t/HKEQQgghKgJJrkW5oVKpaNu2LW3btmXGjBnY29uzfft2oqKiWLVqFd26dQPg2rVr3Lp167l9NW3alD///BMdHR0cHBwKbaOrq0teXl6B/VWqVKFnz56EhYVx4sQJBg8e/J/HJoQQQoiKQZJrUS5ER0dz6NAhunTpQrVq1YiOjubmzZs4Ozvj6OjI+vXrad68OZmZmUycOFF5aPFZOnXqROvWrenZsycLFy7EycmJ69evs3v3bnr16kXz5s1xcHDgypUrxMXFUbNmTUxMTJT67GHDhtGjRw/y8vIYNGjQy7gFQgghhCgHpOZalAumpqb8/PPPdOvWDScnJz7++GMWL15M165d+eqrr/jrr79o2rQp77//PoGBgVSrVu25/alUKvbs2UO7du0YPHgwTk5O9O3bl6tXr2JlZQVA79698fb2pn379lhaWvLdd98p53fq1AkbGxu8vLyoXr36Cx27EEIIIcoPlVqtVpd1EEKUN1lZWdSoUYOwsDB8fX1LdG5mZiZmZmbcvXtXHm4UQhRb57AVZR2CqOAODB5b1iG80or781vKQoQogfz8fG7dusXixYsxNzfnrbfeKuuQhBCvCUl8hCgfJLkWogRSU1OpVasWNWvWJDw8HB0d+U9ICCGEEP+PZAZClICDgwNSSSWEEEKIZ5HkWgghhCgHunz9dVmHIF4T+5/zYjRRNFktRAghhBBCiFIiyfVrztPTk/Hjx7+QvlNSUlCpVMTFxb2Q/l8WBwcHli1bVtZhCCGEEKIckLIQ8cLY2tqSlpZG1apVyzoUIYQQQoiXQpJr8cJoa2tjbW1d1mEIIYQQQrw0UhYiyM3NJSAgADMzM6pWrcr06dOVFTGevFbcxMQEa2tr+vfvT3p6unLuX3/9xYABA7C0tMTAwABHR0fCwsKAwstCfv31V3r06IGpqSkmJia4u7uTnJxcZIz+/v707NmTRYsWYWNjQ5UqVRgzZgyPHj1S2mRnZxMUFESNGjUwMjLijTfeIDIyUqOfY8eO4e7ujoGBAba2tgQGBnL//n3leHp6Oj4+PhgYGFCrVi02bNigcb5arSY4OBg7Ozv09PSoXr06gYGBxb7XQgghhKjYJLkWrF27Fh0dHU6ePMny5ctZsmQJX375JQCPHj1i9uzZxMfHs2PHDlJSUvD391fOnT59OhcuXGDv3r0kJCTw2WefPbMM5I8//qBdu3bo6enx008/ERsby5AhQ8jNzS1WnIcPHyY5OZnDhw+zdu1awsPDCQ8PV44HBARw4sQJNm7cyNmzZ+nTpw/e3t4kJSUBkJycjLe3N7179+bs2bNs2rSJY8eOERAQoPTh7+/PtWvXOHz4MFu2bGHVqlUav0xs3bqVpUuXsnr1apKSktixYwcuLi7PjTs7O5vMzEyNTQghhBAVk7z+/DXn6elJeno6v/76KyqVCoApU6bwww8/cOHChQLtY2JiaNGiBffu3cPY2Ji33nqLqlWr8nUhS0SlpKRQq1Ytzpw5Q5MmTfi///s/Nm7cSGJiIpUqVSpRnP7+/kRGRpKcnIy2tjYAfn5+aGlpsXHjRlJTU6lduzapqalUr15dOa9Tp060bNmSefPmMWzYMLS1tVm9erVy/NixY3h4eHD//n1SU1OpV68eJ0+epEWLFgBcvHgRZ2dnli5dyvjx41myZAmrV6/m/PnzxR5DcHAwISEhBfbL68+FECUhS/GJl0WW4itccV9/LjPXglatWimJNUDr1q1JSkoiLy+P2NhYfHx8sLOzw8TEBA8PD+DxmwoBPvjgAzZu3EiTJk2YNGkSx48ff+Z14uLicHd3L3Fi/UTDhg2VxBrAxsZGmVU+d+4ceXl5ODk5YWxsrGxHjhxRyk7i4+MJDw/XOO7l5UV+fj5XrlwhISEBHR0dmjVrplyjfv36mJubK5/79OnDw4cPqV27NsOHD2f79u1FzrxPnTqVu3fvKtu1a9f+1fiFEEII8eqTBxrFM/399994eXnh5eXFhg0bsLS0JDU1FS8vL3JycgDo2rUrV69eZc+ePRw4cICOHTsyZswYFi1aVKA/AwOD/xTPP5NylUpFfn4+AFlZWWhraxMbG6uRgAMYGxsrbUaOHFlojbSdnR2XLl0qMgZbW1sSExM5ePAgBw4cYPTo0XzyySccOXLkmb806OnpoaenV6wxCiGEEKJ8k+RaEB0drfH5l19+wdHRkYsXL3L79m3mz5+Pra0t8Lgs5J8sLS0ZNGgQgwYNwt3dnYkTJxaaXLu6urJ27VoePXr0r2evn8XNzY28vDzS09Nxd3cvtE3Tpk25cOECdevWLfR4/fr1yc3NJTY2VikLSUxMJCMjQ6OdgYEBPj4++Pj4MGbMGOrXr8+5c+do2rRpqY5JCCGEEOWPlIUIUlNTmTBhAomJiXz33XesWLGCcePGYWdnh66uLitWrOC3337jhx9+YPbs2Rrnzpgxg507d3L58mV+/fVXdu3ahbOzc6HXCQgIIDMzk759+xITE0NSUhLr168nMTHxP4/BycmJAQMGMHDgQLZt28aVK1c4efIkoaGh7N69G4DJkydz/PhxAgICiIuLIykpiZ07dyoPNNarVw9vb29GjhxJdHQ0sbGxDBs2TGPGPTw8nK+++orz58/z22+/8c0332BgYIC9vf1/HoMQQgghyj9JrgUDBw7k4cOHtGzZkjFjxjBu3DhGjBiBpaUl4eHhfP/99zRo0ID58+cXmJHW1dVl6tSpuLq60q5dO7S1tdm4cWOh16lSpQo//fQTWVlZeHh40KxZM9asWVNqs9hhYWEMHDiQjz76iHr16tGzZ09OnTqFnZ0d8Hjm/MiRI1y6dAl3d3fc3NyYMWOGxgOQYWFhVK9eHQ8PD3x9fRkxYgTVqlVTjpubm7NmzRratm2Lq6srBw8e5Mcff6RKlSqlMgYhhBBClG+yWogQL1lxnzYWQoinyWoh4mWR1UIKV9yf31JzLYQQQpQDkvAIUT5IWYh4JTy9PN4/t6NHj5Z1eEIIIYQQxSIz1+KV8PQr0v+pRo0aLy8QIYQQQoj/QJJr8Up41vJ4QgghhBDliSTXQgghRDnQNez7sg5BvKb2Du5T1iGUK1JzLYQQQgghRCmR5Po/cnBwYNmyZS/8OiqVih07drzw6/xXO3bsoG7dumhrazN+/PiyDkcIIYQQ4qWSspByIi0tDQsLi7IOo0gjR45k8ODBBAYGYmJiUtbhCCGEEEK8VJJclxPW1tZlHcJzPXr0iOzsbNLT0/Hy8tJ462FJ5eTkoKurW4rRCSGEEEK8HBWqLCQiIoI333wTc3NzqlSpQo8ePUhOTlaO//777/Tr14/KlStjZGRE8+bNiY6OBiA5OZm3334bKysrjI2NadGiBQcPHtToPz09HR8fHwwMDKhVqxYbNmwoEENGRgbDhg3D0tISU1NTOnToQHx8vHI8ODiYJk2a8PXXX2NnZ4exsTGjR48mLy+PhQsXYm1tTbVq1Zg7d65Gv/8sC3neWJ7nyfVXr16Nra0thoaG+Pn5cffuXY12X375Jc7Ozujr61O/fn1WrVqlHEtJSUGlUrFp0yY8PDzQ19dnw4YNykx1hw4dUKlUREZGArB161YaNmyInp4eDg4OLF68WONaDg4OzJ49m4EDB2JqasqIESMIDw/H3NycXbt2Ua9ePQwNDXnnnXd48OABa9euxcHBAQsLCwIDA8nLy1P6Wr9+Pc2bN8fExARra2v69+9Penq6cjwyMhKVSsWhQ4do3rw5hoaGtGnThsTERI2YfvzxR1q0aIG+vj5Vq1alV69eyrHs7GyCgoKoUaMGRkZGvPHGG8pYhRBCCPF6q1DJ9f3795kwYQIxMTEcOnQILS0tevXqRX5+PllZWXh4ePDHH3/www8/EB8fz6RJk8jPzwcgKyuLbt26cejQIc6cOYO3tzc+Pj6kpqYq/fv7+3Pt2jUOHz7Mli1bWLVqlUbiBtCnTx/S09PZu3cvsbGxNG3alI4dO3Lnzh2lTXJyMnv37iUiIoLvvvuOr776iu7du/P7779z5MgRFixYwMcff/zMZLmosRTl8uXLbN68mR9//JGIiAjOnDnD6NGjleMbNmxgxowZzJ07l4SEBObNm8f06dNZu3atRj9Tpkxh3LhxJCQk0L59eyVB3bp1K2lpabRp04bY2Fj8/Pzo27cv586dIzg4mOnTpxMeHq7R16JFi2jcuDFnzpxh+vTpADx48IBPP/2UjRs3EhERQWRkJL169WLPnj3s2bOH9evXs3r1arZs2aL08+jRI2bPnk18fDw7duwgJSUFf3//Avdg2rRpLF68mJiYGHR0dBjy1JvPdu/eTa9evejWrRtnzpzh0KFDtGzZUjkeEBDAiRMn2LhxI2fPnqVPnz54e3uTlJRU6P3Ozs4mMzNTYxNCCCFExaRSq9Xqsg7iRbl16xaWlpacO3eO48ePExQUREpKCpUrVy7W+Y0aNWLUqFEEBARw6dIl6tWrx8mTJ2nRogUAFy9exNnZmaVLlzJ+/HiOHTtG9+7dSU9PR09PT+mnbt26TJo0iREjRhAcHMwnn3zCn3/+qcz0ent7k5iYSHJyMlpaj3/fqV+/Pv7+/kyZMgV4PHO9fft2evbsyRdffFHisTwRHBzMnDlzuHr1qvJyloiICLp3784ff/yBtbU1devWZfbs2fTr1085b86cOezZs4fjx4+TkpJCrVq1WLZsGePGjVPaZGRkYGFhweHDh/H09ARgwIAB3Lx5k/379yvtJk2axO7du/n111+BxzPXbm5ubN++XWkTHh7O4MGDuXz5MnXq1AFg1KhRrF+/nhs3bmBsbKzcOwcHBz7//PNCxxsTE0OLFi24d+8exsbGREZG0r59ew4ePEjHjh0B2LNnD927d+fhw4fo6+vTpk0bateuzTfffFOgv9TUVGrXrk1qaqpG6UunTp1o2bIl8+bNK/Seh4SEFNh/9+5dTE1NC41bCCH+SZbiE2VFluJ7LDMzEzMzsyJ/fleomeukpCT69etH7dq1MTU1xcHBAXicEMXFxeHm5vbMZDQrK4ugoCCcnZ0xNzfH2NiYhIQEZeY6ISEBHR0dmjVrppxTv359zM3Nlc/x8fFkZWVRpUoVjdd3X7lyRaM8xcHBQeNhPysrKxo0aKAk1k/2/XNW/ImixlIUOzs7jbcetm7dmvz8fBITE7l//z7JyckMHTpUYwxz5szRGANA8+bNi7xWQkICbdu21djXtm1bkpKSNMo5CuvL0NBQSazh8T1xcHBQEusn+56+T7Gxsfj4+GBnZ4eJiQkeHh4AGn+BAHB1dVX+bWNjA6D0ExcXpyTe/3Tu3Dny8vJwcnLSuD9HjhwpcH+emDp1Knfv3lW2a9euFdpOCCGEEOVfhXqg0cfHB3t7e9asWUP16tXJz8+nUaNG5OTkYGBg8Nxzg4KCOHDgAIsWLaJu3boYGBjwzjvvkJOTU+zrZ2VlYWNjU2j97dNJeKVKlTSOqVSqQvc9q8yjqLH8F1lZWQCsWbOGN954Q+OYtra2xmcjI6NSu25hfZX0Pt2/fx8vLy+8vLzYsGEDlpaWpKam4uXlVeDr+HQ/KpUKQOnnefc3KysLbW1tYmNjC9yPp5P+p+np6Wn8JUMIIYQQFVeFSa5v375NYmIia9aswd3dHYBjx44px11dXfnyyy+5c+dOoTO+UVFR+Pv7Kw+uZWVlkZKSohyvX78+ubm5xMbGKmUhiYmJZGRkKG2aNm3Kn3/+iY6OjjJr/iIUNZaipKamcv36daWs4ZdffkFLS4t69ephZWVF9erV+e233xgwYMB/jtXZ2ZmoqCiNfVFRUTg5ORVITv+rixcvcvv2bebPn4+trS3wuCykpFxdXTl06BCDBw8ucMzNzY28vDzS09OV7zMhhBBCiCcqTFmIhYUFVapU4YsvvuDy5cv89NNPTJgwQTner18/rK2t6dmzJ1FRUfz2229s3bqVEydOAODo6Mi2bduIi4sjPj6e/v37a8wc16tXD29vb0aOHEl0dDSxsbEMGzZMY5azU6dOtG7dmp49e7J//35SUlI4fvw406ZN+1dJ3rMUNZai6OvrM2jQIOLj4zl69CiBgYH4+fkpy/2FhIQQGhrKp59+yqVLlzh37hxhYWEsWbKkxLF+9NFHHDp0iNmzZ3Pp0iXWrl3LypUrCQoKKnFfRbGzs0NXV5cVK1bw22+/8cMPPzB79uwS9zNz5ky+++47Zs6cSUJCAufOnWPBggUAODk5MWDAAAYOHMi2bdu4cuUKJ0+eJDQ0lN27d5f2kIQQQghRzlSY5FpLS4uNGzcSGxtLo0aN+PDDD/nkk0+U47q6uuzfv59q1arRrVs3XFxcmD9/vjJ7umTJEiwsLGjTpg0+Pj54eXnRtGlTjWuEhYVRvXp1PDw88PX1ZcSIEVSrVk05rlKp2LNnD+3atWPw4ME4OTnRt29frl69ipWVVamNtaixFKVu3br4+vrSrVs3unTpgqurq8ZSe8OGDePLL78kLCwMFxcXPDw8CA8Pp1atWiWOtWnTpmzevJmNGzfSqFEjZsyYwaxZswpdweO/srS0JDw8nO+//54GDRowf/58Fi1aVOJ+PD09+f777/nhhx9o0qQJHTp04OTJk8rxsLAwBg4cyEcffUS9evXo2bMnp06dws7OrjSHI4QQQohyqEKvFiIKCg4OZseOHcTFxZV1KK+t4j5tLIQQT5PVQkRZkdVCHivuz+8KU3MthBBCVGSS4AhRPkhyXcE0bNiQq1evFnps9erVLzkaIYQQQojXi5SFVDBXr17l0aNHhR6zsrLSWF9blA0pCxFCCCHKHykLeU3Z29uXdQhCVBg9wg+WdQhCKHb5dyrrEIQQxVBhVgsRQgghhBCirElyLYQQQgghRCmR5Fq8MsLDwzVeE/9fREZGolKpNN6g+SK8rOsIIYQQonyQ5Fr8J/7+/vTs2bOswxBCCCGEeCVIci2EEEIIIUQpkeRaFMuWLVtwcXHBwMCAKlWq0KlTJyZOnMjatWvZuXMnKpUKlUpFZGRkoaUScXFxqFQqUlJSlH3h4eHY2dlhaGhIr169uH37tnIsJSUFLS0tYmJiNOJYtmwZ9vb25Ofnl3gMW7dupWHDhujp6eHg4MDixYs1jq9fv57mzZtjYmKCtbU1/fv3Jz09XaPNnj17cHJywsDAgPbt22uM51mys7PJzMzU2IQQQghRMUlyLYqUlpZGv379GDJkCAkJCURGRuLr68vMmTPx8/PD29ubtLQ00tLSaNOmTbH6jI6OZujQoQQEBBAXF0f79u2ZM2eOctzBwYFOnToRFhamcV5YWBj+/v5oaZXsWzc2NhY/Pz/69u3LuXPnCA4OZvr06YSHhyttHj16xOzZs4mPj2fHjh2kpKTg7++vHL927Rq+vr74+PgQFxfHsGHDmDJlSpHXDg0NxczMTNlsbW1LFLsQQgghyg9Z51oUKS0tjdzcXHx9fZV1tF1cXAAwMDAgOzsba2vrEvW5fPlyvL29mTRpEgBOTk4cP36ciIgIpc2wYcMYNWoUS5YsQU9Pj9OnT3Pu3Dl27txZ4jEsWbKEjh07Mn36dOV6Fy5c4JNPPlES6CFDhijta9euzaeffkqLFi3IysrC2NiYzz77jDp16igz3vXq1ePcuXMsWLDgudeeOnUqEyZMUD5nZmZKgi2EEEJUUDJzLYrUuHFjOnbsiIuLC3369GHNmjX89ddf/6nPhIQE3njjDY19rVu31vjcs2dPtLW12b59O/C4jKR9+/Y4ODj8q+u1bdtWY1/btm1JSkoiLy8PeDy77ePjg52dHSYmJnh4eACQmppa7JgLo6enh6mpqcYmhBBCiIpJkmtRJG1tbQ4cOMDevXtp0KABK1asoF69ely5cqXQ9k9KNtRqtbLvWa9kfx5dXV0GDhxIWFgYOTk5fPvttxqzy6Xp/v37eHl5YWpqyoYNGzh16pSS1Ofk5LyQawohhBCi4pHkWhSLSqWibdu2hISEcObMGXR1ddm+fTu6urrKzO8TlpaWwONykifi4uI02jg7OxMdHa2x75dffilw3WHDhnHw4EFWrVqllKb8G87OzkRFRWnsi4qKwsnJCW1tbS5evMjt27eZP38+7u7u1K9fv8DDjM7Ozpw8ebLImIUQQgjx+pLkWhQpOjqaefPmERMTQ2pqKtu2bePmzZs4Ozvj4ODA2bNnSUxM5NatWzx69Ii6detia2tLcHAwSUlJ7N69u8DKHIGBgURERLBo0SKSkpJYuXKlRr31E87OzrRq1YrJkyfTr18/DAwM/tUYPvroIw4dOsTs2bO5dOkSa9euZeXKlQQFBQFgZ2eHrq4uK1as4LfffuOHH35g9uzZGn2MGjWKpKQkJk6cSGJiIt9++63GA5FCCCGEEJJciyKZmpry888/061bN5ycnPj4449ZvHgxXbt2Zfjw4dSrV4/mzZtjaWlJVFQUlSpV4rvvvuPixYu4urqyYMECjZVAAFq1asWaNWtYvnw5jRs3Zv/+/Xz88ceFXn/o0KHk5OT8p5KQpk2bsnnzZjZu3EijRo2YMWMGs2bNUh5mtLS0JDw8nO+//54GDRowf/58Fi1apNGHnZ0dW7duZceOHTRu3JjPP/+cefPm/euYhBBCCFHxqNRPF8YK8QqaPXs233//PWfPni3rUEpFZmYmZmZm3L17Vx5uFEIIIcqJ4v78lplr8crKysri/PnzrFy5krFjx5Z1OEIIIYQQRZLkWryyAgICaNasGZ6engVKQkaNGoWxsXGh26hRo8ooYiGEEEK87qQsRJRL6enpz3yNuKmpKdWqVXvJERWflIUIIYQQ5U9xf37LGxpFuVStWrVXOoEWQojS1js8oaxDEBXEVn/nsg6hQpOyECGEEEIIIUrJK59cBwcH06RJk7IO44VJSUlBpVIVeMlKeVFaX5+X/XWOjIxEpVKRkZHxysQkhBBCiPKvRMm1p6cn48ePf0GhlB/h4eGYm5uXdRjPpVKp2LFjR1mHUajCYgsKCuLQoUNlE9AzvIoxCSGEEOLV9lrWXKvVavLy8tDReS2HXyw5OTno6uq+tOs9WenjVfIqxiSEEEKIV1uxZ679/f05cuQIy5cvR6VSoVKpSElJ4fz583Tt2hVjY2OsrKx4//33uXXrlnJeREQEb775Jubm5lSpUoUePXqQnJys0ffvv/9Ov379qFy5MkZGRjRv3pzo6GiNNuvXr8fBwQEzMzP69u3LvXv3lGP5+fmEhoZSq1YtDAwMaNy4MVu2bFGOPykB2Lt3L82aNUNPT49jx449d7zx8fG0b98eExMTTE1NadasGTExMURGRjJ48GDu3r2r3Ifg4GCg8BlZc3NzjVdknzx5Ejc3N/T19WnevDlnzpwpcO2i7qmnpyeBgYFMmjSJypUrY21trcQA4ODgAECvXr1QqVTK5+d5UgLx5ZdfUqtWLfT19QHIyMhg2LBhWFpaYmpqSocOHYiPj39mP6dOnaJz585UrVoVMzMzPDw8OH36dJGx/bMEIz8/n1mzZlGzZk309PRo0qSJxuvRn5TTbNu2jfbt22NoaEjjxo05ceKE0ubq1av4+PhgYWGBkZERDRs2ZM+ePRrxxsbG0rx5cwwNDWnTpg2JiYkF7skT/v7+9OzZk5CQEOV+jBo1ipycnCLvrxBCCCFeD8VOrpcvX07r1q0ZPnw4aWlppKWlYWJiQocOHXBzcyMmJoaIiAhu3LiBn5+fct79+/eZMGECMTExHDp0CC0tLXr16kV+fj7w+EUhHh4e/PHHH/zwww/Ex8czadIk5ThAcnIyO3bsYNeuXezatYsjR44wf/585XhoaCjr1q3j888/59dff+XDDz/kvffe48iRIxpjmDJlCvPnzychIQFXV9fnjnfAgAHUrFmTU6dOERsby5QpU6hUqRJt2rRh2bJlmJqaKvchKCioWPcwKyuLHj160KBBA2JjYwkODi5wbkZGRpH3FGDt2rUYGRkRHR3NwoULmTVrFgcOHAAeJ7gAYWFhpKWlKZ+LcvnyZbZu3cq2bduUGvA+ffqQnp7O3r17iY2NpWnTpnTs2JE7d+4U2se9e/cYNGgQx44d45dffsHR0ZFu3bopvwwVN7bly5ezePFiFi1axNmzZ/Hy8uKtt94iKSlJo920adMICgoiLi4OJycn+vXrR25uLgBjxowhOzubn3/+mXPnzrFgwYICM9HTpk1j8eLFxMTEoKOjU+Qr1g8dOkRCQgKRkZF89913bNu2jZCQkOeek52dTWZmpsYmhBBCiIqp2HURZmZm6OrqYmhoiLW1NQBz5szBzc2NefPmKe2+/vprbG1tuXTpEk5OTvTu3Vujn6+//hpLS0suXLhAo0aN+Pbbb7l58yanTp2icuXKANStW1fjnPz8fMLDwzExMQHg/fff59ChQ8ydO5fs7GzmzZvHwYMHad26NQC1a9fm2LFjrF69Gg8PD6WfWbNm0blz52KNNzU1lYkTJ1K/fn0AHB0dNe6FSqVS7kNxffvtt+Tn5/PVV1+hr69Pw4YN+f333/nggw+UNitXrizyngK4uroyc+ZMJbaVK1dy6NAhOnfujKWlJfB41rwkMebk5LBu3Trl/GPHjnHy5EnS09PR09MDYNGiRezYsYMtW7YwYsSIAn106NBB4/MXX3yBubk5R44coUePHsWObdGiRUyePJm+ffsCsGDBAg4fPsyyZcv43//+p7QLCgqie/fuAISEhNCwYUMuX75M/fr1SU1NpXfv3ri4uACPvy/+ae7cucr3yJQpU+jevTt///23MnP/T7q6unz99dcYGhrSsGFDZs2axcSJE5k9ezZaWoX/rhoaGlpkAi6EEEKIiuE/rRYSHx/P4cOHNd6O9yQZfVL6kZSURL9+/ahduzampqZKGUBqaioAcXFxuLm5KYl1YRwcHJTEGsDGxob09HTg8Wzrgwf/X3v3Htfj/T9+/PEuenfQwaFUpByKWCg5xBxGlONic97kzGg5H/o4NodiNcfNfBhiDGPM5jA02WrktDAsSclnsmYhjZXq/fvDr+vrrYNOlDzvt9v7duu6rtf1up7XK1vPXj2v1/WQzp07a8WxefPmHOUnrq6uBb63yZMnM3LkSNzd3QkMDMzRV1Fkz5g/nbhl/0KQrSBjCuSYeX96TIrK1tZWSX6zY0lNTaVq1apa8cTFxeU5Hn/++SejRo3C3t4eU1NTTExMSE1NVb7fBZGSksKtW7do06aN1v42bdpw5Yr2Oq9Pj4OVlRWAMg6+vr4sXLiQNm3aMG/ePC5cuJDjWvmdn5smTZpgaGiobLu5uZGamsrNmzfzPMfPz4/79+8rn/zaCiGEEOLVVqwn+lJTU+nZsydLlizJcSw7UenZsye2trasW7cOa2trsrKyeOONN5Q6VQMDg+dep2LFilrbKpVKq6wEYP/+/dSoUUOrXfZsazYjI6MC3tmTettBgwaxf/9+Dh48yLx589i+fTu9e/fO8xyVSsWzL7x8/Phxga8JBRtTyH9MiurZ8UlNTcXKyoqwsLAcbfNaLcXb25u///6bFStWYGtri1qtxs3N7YXVJT89DiqVCkAZh5EjR+Lh4cH+/fs5fPgwAQEBBAcH8+GHHxbo/JKiVqtz/FsUQgghRPlUqORaT0+PzMxMZdvFxYXdu3djZ2eX68obf//9N9HR0axbt462bdsC5HiQsHHjxqxfv57k5OR8Z6/z0rBhQ9RqNQkJCVolICXBwcEBBwcHJk2axMCBA9m4cSO9e/fOMQ7ZzM3NSUxMVLZjYmJ4+PChsu3o6MiWLVu0yg5Onjyp1cfzxrSgKlasmGuMheHi4sLt27epUKFCgR6KBIiIiOCzzz6jW7duANy8eVPrYcyCxGZiYoK1tTURERFa39OIiAhatGhRqHuwsbFh7NixjB07Fj8/P9atW6eVXBfW+fPnefTokfJL4cmTJ6lUqRI2NjZF7lMIIYQQ5UehykLs7OyIjIwkPj6eO3fuMH78eJKTkxk4cCCnT58mNjaWH374gWHDhpGZmUnlypWpWrUq//3vf7l27Ro//vgjkydP1upz4MCBWFpa4uXlRUREBNevX2f37t1aqz7kx9jYmKlTpzJp0iRCQkKIjY3l3LlzrFq1ipCQkMLcnuLRo0f4+PgQFhbGjRs3iIiI4PTp0zg6OirjkJqaSmhoKHfu3FES6I4dO7J69Wp+/fVXzpw5w9ixY7VmRgcNGoRKpWLUqFFcvnyZAwcOEBQUpHXt541pQdnZ2REaGsrt27e5e/dukcbB3d0dNzc3vLy8OHz4MPHx8fzyyy/MmjWLM2fO5HqOvb09W7Zs4cqVK0RGRjJ48OAcf50oSGzTpk1jyZIl7Nixg+joaGbOnElUVBQTJkwocPwTJ07khx9+IC4ujnPnznHs2DHle1hU6enpjBgxQvn+zZs3Dx8fnzzrrYUQQgjxeilURjB16lR0dXVp2LAh5ubmpKenExERQWZmJl26dMHJyYmJEydiZmaGjo4OOjo6bN++nbNnz/LGG28wadIkPv74Y60+9fT0OHz4MBYWFnTr1g0nJycCAwPR1dUtcFwLFixgzpw5BAQE4OjoiKenJ/v376d27dqFuT2Frq4uf//9N0OGDMHBwYF+/frRtWtX5aG01q1bM3bsWPr374+5uTlLly4FIDg4GBsbG9q2bcugQYOYOnWqVn1upUqV+O6777h48SLOzs7MmjUrR/lH9oxtXmNaUMHBwRw5cgQbGxucnZ2LNA4qlYoDBw7Qrl07hg0bhoODAwMGDODGjRtUr14913O++OIL7t69i4uLC++//z6+vr5YWFgUOjZfX18mT57MlClTcHJy4tChQ+zbt0/rwdLnyczMZPz48cq/CQcHBz777LOCD0AuOnXqhL29Pe3ataN///706tVLaxlEIYQQQrzeVJpni4SFELkaOnQo9+7dK/abL1NSUjA1NeX+/fuYmJiUTHBCiHLvnU1Xnt9IiALYPbR4f8V9XRX057e8olAIIYR4BUhCJMSr4bUtFG3UqJHW8nJPf7Zu3Vra4ZW41+1+hRBCCCFKw2tbFnLjxo08l8mrXr261rra5cHrdr9lmZSFCCGEEK8eKQt5Dltb29IO4aV63e5XlD/LQxKf30iIcmyit9XzGwkhSt1rWxYihBBCCCFESZPkWgghhBBCiBJSrpJrjUbD6NGjqVKlCiqViqioqNIOSQghhBBCvEbKVXJ96NAhNm3axPfff09iYiJvvPHGc89RqVTFXrdYCCGEEEIIKGcPNMbGxmJlZUXr1q1f+rXT09PR09N76dfNz4uM6fHjx1qvdi8PNBoNmZmZVKhQrv6zEEIIIcRLVG5mrocOHcqHH35IQkICKpUKOzs77OzsWL58uVa7pk2bKq+rtrOzA6B3797KOdl9eXl5aZ03ceJEOnTooGx36NABHx8fJk6cSLVq1fDw8ADgt99+o2vXrlSqVInq1avz/vvvc+fOnQLdQ1ZWFkuXLqVevXqo1Wpq1arFokWLlOMzZszAwcEBQ0ND6tSpw5w5c7SW15s/fz5NmzZl/fr11K5dG319fQDu3bvHyJEjMTc3x8TEhI4dO3L+/Hmta3/77be4uLigr69PnTp18Pf3JyMjQzmuUqlYs2YNvXr1wsjISCuuvFy6dIkePXpgYmKCsbExbdu2JTY2VrnXjz76iJo1a6JWq2natCmHDh1Szo2Pj0elUvHNN9/w1ltvYWhoSJMmTThx4oTWNSIiIujQoQOGhoZUrlwZDw8P7t69q1wjICCA2rVrY2BgQJMmTdi1a5dyblhYGCqVioMHD9KsWTPUajXh4eF06NABX19fpk+fTpUqVbC0tNR6xblGo2H+/PnUqlULtVqNtbU1vr6+eY5DWloaKSkpWh8hhBBClE/lJrlesWKFkqwlJiZy+vTp556T3Wbjxo0FPudpISEh6OnpERERweeff869e/fo2LEjzs7OnDlzhkOHDvHnn3/Sr1+/AvXn5+dHYGAgc+bM4fLly2zbto3q1asrx42Njdm0aROXL19mxYoVrFu3jmXLlmn1ce3aNXbv3s0333yj1Jz37duXpKQkDh48yNmzZ3FxcaFTp04kJycD8PPPPzNkyBAmTJjA5cuXWbt2LZs2bcqRQM+fP5/evXtz8eJFhg8fnu+9/PHHH7Rr1w61Ws2PP/7I2bNnGT58uJKwr1ixguDgYIKCgrhw4QIeHh706tWLmJgYrX5mzZrF1KlTiYqKwsHBgYEDByp9REVF0alTJxo2bMiJEycIDw+nZ8+eZGZmAhAQEMDmzZv5/PPPuXTpEpMmTeK9997j+PHjWteYOXMmgYGBXLlyhcaNGwNPvrdGRkZERkaydOlSPvroI44cOQLA7t27WbZsGWvXriUmJoa9e/fi5OSU51gEBARgamqqfGxsbPIdOyGEEEK8usrN379NTU0xNjZGV1cXS0vLAp1jbm4OgJmZWYHPeZq9vT1Lly5VthcuXIizszOLFy9W9m3YsAEbGxuuXr2Kg4NDnn09ePCAFStWsHr1ary9vQGoW7cub775ptJm9uzZytd2dnZMnTqV7du3M336dGV/eno6mzdvVu4tPDycU6dOkZSUhFqtBiAoKIi9e/eya9cuRo8ejb+/PzNnzlSuW6dOHRYsWMD06dOZN2+e0vegQYMYNmxYgcbm008/xdTUlO3btyvlI0/ff1BQEDNmzGDAgAEALFmyhGPHjrF8+XI+/fRTpd3UqVPp3r07AP7+/jRq1Ihr167RoEEDli5diqurK5999pnSvlGjRsCT2eLFixdz9OhR3NzclPsKDw9n7dq1tG/fXjnno48+onPnzlrxN27cWLl3e3t7Vq9eTWhoKJ07dyYhIQFLS0vc3d2pWLEitWrVokWLFnmOhZ+fH5MnT1a2U1JSJMEWQgghyqlyk1yXhmbNmmltnz9/nmPHjlGpUqUcbWNjY/NNrq9cuUJaWhqdOnXKs82OHTtYuXIlsbGxpKamkpGRkeMNQba2tkpinR1TamoqVatW1Wr36NEjpUTj/PnzREREaM1UZ2Zm8u+///Lw4UMMDQ0BcHV1zTO2Z0VFRdG2bdtc67JTUlK4desWbdq00drfpk2bHOUq2TPJAFZWT16gkJSURIMGDYiKiqJv3765Xv/atWs8fPgwR9Kcnp6Os7Oz1r7c7uvp62ZfOykpCXjyl4Dly5dTp04dPD096datGz179syzVlutViu/2AghhBCifCvXybWOjg7Pvt09r1eAF+U8IyMjre3U1FR69uzJkiVLcrTNTgzzYmBgkO/xEydOMHjwYPz9/fHw8FBmhYODg58bk5WVFWFhYTn6NDMzU9r4+/vTp0+fHG2y67Zz6zs/z7ufgno6OVepVMCTWurnXSM1NRWA/fv3U6NGDa1jzya6ud3Xs78UqFQq5bo2NjZER0dz9OhRjhw5wrhx4/j44485fvx4uXvIUwghhBCFU66Ta3NzcxIT/++VySkpKcTFxWm1qVixolKj+/R5v/32m9a+qKio5yZOLi4u7N69Gzs7u0KvOGFvb4+BgQGhoaGMHDkyx/FffvkFW1tbZs2apey7cePGc/t1cXHh9u3bVKhQQXlgM7c20dHR1KtXr1Ax56dx48aEhITkuqqIiYkJ1tbWREREaJVnRERE5Ftekds1QkND8ff3z3GsYcOGqNVqEhIStK5RUgwMDOjZsyc9e/Zk/PjxNGjQgIsXL+Li4lLi1xJCCCHEq6PcPNCYm44dO7JlyxZ+/vlnLl68iLe3N7q6ulpt7OzsCA0N5fbt28oqEx07duTMmTNs3ryZmJgY5s2blyPZzs348eNJTk5m4MCBnD59mtjYWH744QeGDRuWI4F/lr6+PjNmzGD69Ols3ryZ2NhYTp48yRdffAE8Sb4TEhLYvn07sbGxrFy5kj179jw3Jnd3d9zc3PDy8uLw4cPEx8fzyy+/MGvWLM6cOQPA3Llz2bx5M/7+/ly6dIkrV66wfft2rRrvwvLx8SElJYUBAwZw5swZYmJi2LJlC9HR0QBMmzaNJUuWsGPHDqKjo5k5cyZRUVFMmDChwNfw8/Pj9OnTjBs3jgsXLvD777+zZs0a7ty5g7GxMVOnTmXSpEmEhIQQGxvLuXPnWLVqFSEhIUW+L4BNmzbxxRdf8Ntvv3H9+nW+/PJLDAwMsLW1LVa/QgghhHj1levk2s/Pj/bt29OjRw+6d++Ol5cXdevW1WoTHBzMkSNHsLGxUWpxPTw8mDNnDtOnT6d58+Y8ePCAIUOGPPd62bOxmZmZdOnSBScnJyZOnIiZmRk6Os8f6jlz5jBlyhTmzp2Lo6Mj/fv3V+p8e/XqxaRJk/Dx8aFp06b88ssvzJkz57l9qlQqDhw4QLt27Rg2bBgODg4MGDCAGzduKCuReHh48P3333P48GGaN29Oq1atWLZsWbGSxapVq/Ljjz+SmppK+/btadasGevWrVNmsX19fZk8eTJTpkzBycmJQ4cOsW/fPuzt7Qt8DQcHBw4fPsz58+dp0aIFbm5ufPvtt8pfDRYsWMCcOXMICAjA0dERT09P9u/fT+3atYt8X/CknGbdunW0adOGxo0bc/ToUb777rscde1CCCGEeP2oNM8WFwshXqiUlBRMTU25f/9+jgdSRd6WhyQ+v5EQ5dhE7/yf3RFCvFgF/fldrmuuhRDlhyQWQgghXgXluiykLElISKBSpUp5fhISEko7xEIZO3ZsnvcyduzY0g5PCCGEEKJUSFnIS5KRkUF8fHyex4uywkhpSkpKyvM13iYmJlhYWLzkiF4dUhYihBBCvHqkLKSMqVChQokudVfaLCwsJIEWQoiX6Ls1t0s7BCFemJ4fFP5N2WWVlIUIIYQQQghRQiS5FvmaP38+TZs2LdQ5KpWKvXv3vpB4hBBCCCHKMkmuRb6mTp1KaGhoaYdRJoWFhaFSqbh3715phyKEEEKIMkJqrkW+slcAEdoeP35c2iEIIYQQogySmetyYteuXTg5OWFgYEDVqlVxd3fnn3/+ISsri48++oiaNWuiVqtp2rQphw4d0jr3f//7HwMHDqRKlSoYGRnh6upKZGQkkLMs5PTp03Tu3Jlq1aphampK+/btOXfuXJFiTk9Px8fHBysrK/T19bG1tSUgIACA+Ph4VCoVUVFRSvt79+6hUqkICwsD/m/meP/+/TRu3Bh9fX1atWql9ar6TZs2YWZmxt69e7G3t0dfXx8PDw9u3rypFcuaNWuoW7cuenp61K9fny1btmgdV6lUrFmzhl69emFkZMSoUaN46623AKhcuTIqlYqhQ4cWaRyEEEIIUX5Icl0OJCYmMnDgQIYPH86VK1cICwujT58+aDQaVqxYQXBwMEFBQVy4cAEPDw969epFTEwMgPJ68j/++IN9+/Zx/vx5pk+fTlZWVq7XevDgAd7e3oSHh3Py5Ens7e3p1q0bDx48KHTcK1euZN++fezcuZPo6Gi2bt2KnZ1dofuZNm0awcHBnD59GnNzc3r27Kk1s/zw4UMWLVrE5s2biYiI4N69ewwYMEA5vmfPHiZMmMCUKVP47bffGDNmDMOGDePYsWNa15k/fz69e/fm4sWL+Pv7s3v3bgCio6NJTExkxYoVucaXlpZGSkqK1kcIIYQQ5ZOUhZQDiYmJZGRk0KdPH2xtbQFwcnICICgoiBkzZijJ5JIlSzh27BjLly/n008/Zdu2bfz111+cPn2aKlWqAOS7ZGDHjh21tv/73/9iZmbG8ePH6dGjR6HiTkhIwN7enjfffBOVSqXEXljz5s2jc+fOAISEhFCzZk327NlDv379gCclHKtXr6Zly5ZKG0dHR06dOkWLFi0ICgpi6NChjBs3DoDJkydz8uRJgoKClNlpgEGDBjFs2DBlOy4uDniyLKGZmVme8QUEBODv71+kexNCCCHEq0VmrsuBJk2a0KlTJ5ycnOjbty/r1q3j7t27pKSkcOvWLdq0aaPVvk2bNly5cgWAqKgonJ2dlcT6ef78809GjRqFvb09pqammJiYkJqaWqQ3TA4dOpSoqCjq16+Pr68vhw8fLnQfAG5ubsrXVapUoX79+sr9wZM1xps3b65sN2jQADMzM6XNlStX8h2jbK6urkWKz8/Pj/v37yufZ0tShBBCCFF+SHJdDujq6nLkyBEOHjxIw4YNWbVqFfXr11dmVvNjYGBQqGt5e3sTFRXFihUr+OWXX4iKiqJq1aqkp6cXOm4XFxfi4uJYsGABjx49ol+/frz77rsA6Og8+af59AtES/shQiMjoyKdp1arMTEx0foIIYQQonyS5LqcUKlUtGnTBn9/f3799Vf09PQIDQ3F2tqaiIgIrbYRERE0bNgQgMaNGxMVFUVycnKBrhMREYGvry/dunWjUaNGqNVq7ty5U+S4TUxM6N+/P+vWrWPHjh3s3r2b5ORkzM3NgSclL9mefrjxaSdPnlS+vnv3LlevXsXR0VHZl5GRwZkzZ5Tt6Oho7t27p7RxdHTMd4zyoqenB0BmZmYB7lQIIYQQrwOpuS4HIiMjCQ0NpUuXLlhYWBAZGclff/2Fo6Mj06ZNY968edStW5emTZuyceNGoqKi2Lp1KwADBw5k8eLFeHl5ERAQgJWVFb/++ivW1tZa5RbZ7O3t2bJlC66urqSkpDBt2rRCz35n++STT7CyssLZ2RkdHR2+/vprLC0tMTMzQ0dHh1atWhEYGEjt2rVJSkpi9uzZufbz0UcfUbVqVapXr86sWbOoVq0aXl5eyvGKFSvy4YcfsnLlSipUqICPjw+tWrWiRYsWwJMHIvv164ezszPu7u589913fPPNNxw9ejTf+G1tbVGpVHz//fd069YNAwMDWbZQCCGEeM3JzHU5YGJiwk8//US3bt1wcHBg9uzZBAcH07VrV3x9fZk8eTJTpkzBycmJQ4cOsW/fPuzt7YEns6+HDx/GwsKCbt264eTkRGBgILq6urle64svvuDu3bu4uLjw/vvv4+vri4WFRZHiNjY2ZunSpbi6utK8eXPi4+M5cOCAUhKyYcMGMjIyaNasGRMnTmThwoW59hMYGMiECRNo1qwZt2/f5rvvvlNmlQEMDQ2ZMWMGgwYNok2bNlSqVIkdO3Yox728vFixYgVBQUE0atSItWvXsnHjRjp06JBv/DVq1MDf35+ZM2dSvXp1fHx8ijQOQgghhCg/VJqni1qFeIWEhYXx1ltvcffu3TxX69i0aRMTJ04sU29RTElJwdTUlPv370v9tRCiwL5bc7u0QxDihen5gWVph/BcBf35LWUhQgghxCvgVUg+hBBSFiJeoMWLFyuvT3/207Vr19IOTwghhBCixElZiHhhkpOT81yFxMDAgBo1arzkiMoGKQsRQgghXj1SFiJKXZUqVQr8chohhBBCiPJAkmshxCvl7OI/SjsEIUpFs/+8nn/tE+JVIzXXQgghhBBClBBJroUQQgghhCghklwLIYQQQghRQiS5FsWSnp5e4n1qNBoyMjJKvN/iKIsxCSGEEKLskeS6HOnQoQM+Pj74+PhgampKtWrVmDNnDtmrLaalpTF16lRq1KiBkZERLVu2JCwsTKuP8PBw2rZti4GBATY2Nvj6+vLPP/8ox+3s7FiwYAFDhgzBxMSE0aNH5xtTfHw8KpWK7du307p1a/T19XnjjTc4fvy40iYsLAyVSsXBgwdp1qwZarWa8PBwsrKyCAgIoHbt2hgYGNCkSRN27dqlnHf37l0GDx6Mubk5BgYG2Nvbs3HjRuBJ0u/j44OVlRX6+vrY2toSEBCgFVNUVJTS171791CpVMp4FDUmIYQQQrzeZLWQciYkJIQRI0Zw6tQpzpw5w+jRo6lVqxajRo3Cx8eHy5cvs337dqytrdmzZw+enp5cvHgRe3t7YmNj8fT0ZOHChWzYsIG//vpLSdazk1aAoKAg5s6dy7x58woc17Rp01i+fDkNGzbkk08+oWfPnsTFxVG1alWlzcyZMwkKCqJOnTpUrlyZgIAAvvzySz7//HPs7e356aefeO+99zA3N6d9+/bMmTOHy5cvc/DgQapVq8a1a9d49OgRACtXrmTfvn3s3LmTWrVqcfPmTW7evFno8SxsTLlJS0sjLS1N2U5JSSl0HEIIIYR4NchLZMqRDh06kJSUxKVLl1CpVMCT5HDfvn0cOnSIOnXqkJCQgLW1tXKOu7s7LVq0YPHixYwcORJdXV3Wrl2rHA8PD6d9+/b8888/6OvrY2dnh7OzM3v27ClQTPHx8dSuXZvAwEBmzJgBQEZGBrVr1+bDDz9k+vTphIWF8dZbb7F3717efvtt4ElCWqVKFY4ePYqbm5vS38iRI3n48CHbtm2jV69eVKtWjQ0bNuS4rq+vL5cuXeLo0aPKWDwb06+//krTpk2BJzPXlStX5tixY3To0KHIMeVm/vz5+Pv759gvL5EpGlmKT7yuZCk+IUqXvETmNdWqVSutZNLNzY3g4GAuXrxIZmYmDg4OWu3T0tKU2ePz589z4cIFtm7dqhzXaDRkZWURFxeHo6MjAK6uroWO6+lktEKFCri6unLlyhWtNk/3e+3aNR4+fEjnzp212qSnp+Ps7AzABx98wDvvvMO5c+fo0qULXl5etG7dGoChQ4fSuXNn6tevj6enJz169KBLly6FjruwMeXGz8+PyZMnK9spKSnY2NgUOhYhhBBClH2SXL8mUlNT0dXV5ezZs+jq6modq1SpktJmzJgx+Pr65ji/Vq1aytdGRkYvJMan+01NTQVg//79OV6TrlarAejatSs3btzgwIEDHDlyhE6dOjF+/HiCgoJwcXEhLi6OgwcPcvToUfr164e7uzu7du1CR+fJowZP/9Hm8ePHJRJTbtRqdb7HhRBCCFF+SHJdzkRGRmptnzx5Ent7e5ydncnMzCQpKYm2bdvmeq6LiwuXL1+mXr16JR7XyZMnadeuHfCkLOTs2bP4+Pjk2b5hw4ao1WoSEhLyrGUGMDc3x9vbG29vb9q2bcu0adMICgoCwMTEhP79+9O/f3/effddPD09SU5OxtzcHIDExERlxvnphxuLG5MQQgghXl+SXJczCQkJTJ48mTFjxnDu3DlWrVpFcHAwDg4ODB48mCFDhhAcHIyzszN//fUXoaGhNG7cmO7duzNjxgxatWqFj48PI0eOxMjIiMuXL3PkyBFWr15drLg+/fRT7O3tcXR0ZNmyZdy9e5fhw4fn2d7Y2JipU6cyadIksrKyePPNN7l//z4RERGYmJjg7e3N3LlzadasGY0aNSItLY3vv/9eKV355JNPsLKywtnZGR0dHb7++mssLS0xMzNDR0eHVq1aERgYSO3atUlKSmL27NnPvYeCxCSEEEKI15sk1+XMkCFDePToES1atEBXV5cJEyYoy+Vt3LiRhQsXMmXKFP744w+qVatGq1at6NGjBwCNGzfm+PHjzJo1i7Zt26LRaKhbty79+/cvdlyBgYEEBgYSFRVFvXr12LdvH9WqVcv3nAULFmBubk5AQADXr1/HzMwMFxcX/vOf/wCgp6eHn58f8fHxGBgY0LZtW7Zv3w48SYSXLl1KTEwMurq6NG/enAMHDiglIRs2bGDEiBE0a9aM+vXrs3Tp0gLVZD8vJiGEEEK83mS1kHKkQ4cONG3alOXLl5d2KIrcVuZ43RX0aWORO1ktRLyuZLUQIUqXrBYihCiXJMEQQghRlskbGkWxLF68mEqVKuX66dq1a2mHJ4QQQgjxUklZiCiW5ORkkpOTcz1mYGCQY8k6IWUhQgghxKtIykLES1GlShWqVKlS2mGI18TNSddKOwQhSo3NspJfJlUIUfKkLEQIIYQQQogSIsm1EEIIIYQQJUSS6zKuQ4cOTJw4scT6mz9//iu7JF5hY9+0aRNmZmbPbadSqdi7d2+R4xJCCCGEyFbuk+uwsDBUKhX37t0r7VCK5JtvvmHBggWlHcZLl1vCO3XqVEJDQwvcR//+/bl69aqynVdynpiYKCubCCGEEKJEyAON/196ejp6enqlcu3Hjx9TsWLFXOMpiw8L5hbvy5C9xF9BGRgYYGBg8Nx2lpaWxQlLCCGEEELxSsxcZ2VlERAQQO3atTEwMKBJkybs2rULjUaDu7s7Hh4eZK8omJycTM2aNZk7dy7x8fG89dZbAFSuXBmVSsXQoUOBJ+UWPj4+TJw4kWrVquHh4QHAJ598gpOTE0ZGRtjY2DBu3DhSU1O14omIiKBDhw4YGhpSuXJlPDw8uHv3LgB2dnY53pDYtGlT5s+fr2yrVCrWrFlDr169MDIyYtGiRcqs6vr166lduzb6+vpKnE+XhaSlpTFjxgxsbGxQq9XUq1ePL774Asi9DGLv3r2oVKo8x/b06dN07tyZatWqYWpqSvv27Tl37pxWm9zizU9mZiYjRoxQvl/169dnxYoVOdpt2LCBRo0aoVarsbKywsfHRxlDgN69e6NSqZTtp2eeDx8+jL6+fo6/SEyYMIGOHTvmGI9Nmzbh7+/P+fPnUalUqFQqNm3apNzf07PkN2/epF+/fpiZmVGlShXefvtt4uPjleNhYWG0aNECIyMjzMzMaNOmDTdu3MhzPNLS0khJSdH6CCGEEKJ8eiWS64CAADZv3sznn3/OpUuXmDRpEu+99x4//fQTISEhnD59mpUrVwIwduxYatSowdy5c7GxsWH37t0AREdHk5iYqJXkhYSEoKenR0REBJ9//jkAOjo6rFy5kkuXLhESEsKPP/7I9OnTlXOioqLo1KkTDRs25MSJE4SHh9OzZ08yMzMLdU/z58+nd+/eXLx4keHDhwNw7do1du/ezTfffENUVFSu5w0ZMoSvvvqKlStXcuXKFdauXVuo2dxnPXjwAG9vb8LDwzl58iT29vZ069aNBw8ePDfevGRlZVGzZk2+/vprLl++zNy5c/nPf/7Dzp07lTZr1qxh/PjxjB49mosXL7Jv3z7q1XuyzNTp06cB2LhxI4mJicr20zp16oSZmZny/YUnSf2OHTsYPHhwjvb9+/dnypQpNGrUiMTERBITE+nfv3+Odo8fP8bDwwNjY2N+/vlnIiIiqFSpEp6enqSnp5ORkYGXlxft27fnwoULnDhxgtGjR+f7C0xAQACmpqbKx8bGJt/xE0IIIcSrq8yXhaSlpbF48WKOHj2Km5sbAHXq1CE8PJy1a9eybds21q5dy5AhQ7h9+zYHDhzg119/pUKFJ7eWXVZhYWGRY1bX3t6epUuXau17epbYzs6OhQsXMnbsWD777DMAli5diqurq7IN0KhRo0Lf16BBgxg2bJjWvvT0dDZv3oy5uXmu51y9epWdO3dy5MgR3N3dlbEojuxZ3mz//e9/MTMz4/jx4/To0SPfePNSsWJF/P39le3atWtz4sQJdu7cSb9+/QBYuHAhU6ZMYcKECUq75s2bAyj3b2ZmlmfJhq6uLgMGDGDbtm2MGDECgNDQUO7du8c777yTo72BgQGVKlWiQoUK+ZaB7Nixg6ysLNavX68kzBs3bsTMzIywsDBcXV25f/8+PXr0oG7dugA4OjrmOx5+fn5MnjxZ2U5JSZEEWwghhCinynxyfe3aNR4+fEjnzp219qenp+Ps7AxA37592bNnD4GBgaxZswZ7e/sC9d2sWbMc+44ePUpAQAC///47KSkpZGRk8O+///Lw4UMMDQ2Jioqib9++xb4vV1fXHPtsbW3zTKzhyay5rq4u7du3L/b1s/3555/Mnj2bsLAwkpKSyMzM5OHDhyQkJDw33vx8+umnbNiwgYSEBB49ekR6erpS0pGUlMStW7fo1KlTsWIfPHgwrVq14tatW1hbW7N161a6d+9eoBVC8nL+/HmuXbuGsbGx1v5///2X2NhYunTpwtChQ/Hw8KBz5864u7vTr18/rKys8uxTrVajVquLHJMQQgghXh1lPrnOrnfev39/jldpZycsDx8+5OzZs+jq6hITE1Pgvo2MjLS24+Pj6dGjBx988AGLFi2iSpUqhIeHM2LECNLT0zE0NHzuA3I6Ojo8+0b5x48fP/faee17Wkld+2ne3t78/fffrFixAltbW9RqNW5ubqSnpxcqtqdt376dqVOnEhwcjJubG8bGxnz88cdERkYW6D4Kqnnz5tStW5ft27fzwQcfsGfPHqWOuqhSU1Np1qwZW7duzXEs+xefjRs34uvry6FDh9ixYwezZ8/myJEjtGrVqljXFkIIIcSrr8wn1w0bNkStVpOQkJDnjO2UKVPQ0dHh4MGDdOvWje7duyvlDtkrgBSkJvrs2bNkZWURHByMjs6TcvSn64QBGjduTGhoqFbZw9PMzc1JTExUtlNSUoiLi3v+jRaAk5MTWVlZHD9+XCkLefbaDx484J9//lGS4bxqt7NFRETw2Wef0a1bN+DJw3x37twpVpwRERG0bt2acePGKftiY2OVr42NjbGzsyM0NFR54PRZFStWLND3bPDgwWzdupWaNWuio6ND9+7d82yrp6f33D5dXFzYsWMHFhYWmJiY5NnO2dkZZ2dn/Pz8cHNzY9u2bZJcCyGEEKLsP9BobGzM1KlTmTRpEiEhIcTGxnLu3DlWrVpFSEgI+/fvZ8OGDWzdupXOnTszbdo0vL29ldU7bG1tUalUfP/99/z11185Vv54Wr169Xj8+DGrVq3i+vXrbNmyRXnQMZufnx+nT59m3LhxXLhwgd9//501a9YoCWnHjh3ZsmULP//8MxcvXsTb2xtdXd0SGQs7Ozu8vb0ZPnw4e/fuJS4ujrCwMOUXgJYtW2JoaMh//vMfYmNj2bZt23Nncu3t7dmyZQtXrlwhMjKSwYMHF3tm2d7enjNnzvDDDz9w9epV5syZk+OhxPnz5xMcHMzKlSuJiYlRvqdP32toaCi3b99Wvpe5GTx4MOfOnWPRokW8++67+ZZf2NnZERcXR1RUFHfu3CEtLS3X/qpVq8bbb7/Nzz//rIyxr68v//vf/4iLi8PPz48TJ05w48YNDh8+TExMzHPrroUQQgjxeijzyTXAggULmDNnDgEBATg6OuLp6cn+/fuxs7NjxIgRzJ8/HxcXFwD8/f2pXr06Y8eOBaBGjRr4+/szc+ZMqlevriz3lpsmTZrwySefsGTJEt544w22bt1KQECAVhsHBwcOHz7M+fPnadGiBW5ubnz77bfKA5R+fn60b9+eHj160L17d7y8vJQH30rCmjVrePfddxk3bhwNGjRg1KhR/PPPP8CThze//PJLDhw4gJOTE1999ZXWEoC5+eKLL7h79y4uLi68//77+Pr6YmFhUawYx4wZQ58+fejfvz8tW7bk77//1prFhiflKMuXL+ezzz6jUaNG9OjRQ6ukJzg4mCNHjmBjY6PU1uemXr16tGjRggsXLuS6SsjT3nnnHTw9PXnrrbcwNzfnq6++ytHG0NCQn376iVq1atGnTx8cHR0ZMWIE//77LyYmJhgaGvL777/zzjvv4ODgwOjRoxk/fjxjxowp5CgJIYQQojxSaZ4t0hVCvFApKSmYmppy//79fEtPhBBCCFF2FPTn9ysxcy2EEEIIIcSrQJJrUWhjx45VXkX+7Ce7HEcIIYQQ4nUkZSGi0JKSkvJ8hbeJiUmxa7bLOykLEUIIIV49Bf35XeaX4hNlj4WFhSTQolT94fdzaYcgxEtXI6BtaYcghCgAKQsRQgghhBCihEhyLUpFhw4dmDhxYpHPj4+PR6VSKS/JCQsLQ6VSce/evSKdL4QQQghREqQsRLyWbGxsSExMpFq1aqUdihBCCCHKEUmuxWtJV1cXS0vL0g5DCCGEEOWMlIWIUpORkYGPjw+mpqZUq1aNOXPmkL14jUqlYu/evVrtzczMnvs6d4B//vkHExMTdu3apbV/7969GBkZ8eDBgzzLSkJDQ3F1dcXQ0JDWrVsTHR2t1cfChQuxsLDA2NiYkSNHMnPmTJo2bVrUIRBCCCFEOSPJtSg1ISEhVKhQgVOnTrFixQo++eQT1q9fX+x+jYyMGDBgABs3btTav3HjRt59912MjY3zPHfWrFkEBwdz5swZKlSowPDhw5VjW7duZdGiRSxZsoSzZ89Sq1Yt1qxZ89x40tLSSElJ0foIIYQQonySshBRamxsbFi2bBkqlYr69etz8eJFli1bxqhRo4rd98iRI2ndujWJiYlYWVmRlJTEgQMHOHr0aL7nLVq0iPbt2wMwc+ZMunfvzr///ou+vj6rVq1ixIgRDBs2DIC5c+dy+PBhUlNT8+0zICAAf3//Yt+TEEIIIco+mbkWpaZVq1aoVCpl283NjZiYGDIzM4vdd4sWLWjUqBEhISEAfPnll9ja2tKuXbt8z2vcuLHytZWVFfDkpTkA0dHRtGjRIsd1nsfPz4/79+8rn5s3bxbqXoQQQgjx6pDkWpRJKpWKZ18e+vjx40L1MXLkSKVGe+PGjQwbNkwrmc9NxYoVtWIAyMrKKtR1n6VWqzExMdH6CCGEEKJ8kuRalJrIyEit7ZMnT2Jvb4+uri7m5uYkJiYqx2JiYnj48GGh+n/vvfe4ceMGK1eu5PLly3h7excr3vr163P69Gmtfc9uCyGEEOL1JjXXotQkJCQwefJkxowZw7lz51i1ahXBwcEAdOzYkdWrV+Pm5kZmZiYzZszQmlUuiMqVK9OnTx+mTZtGly5dqFmzZrHi/fDDDxk1ahSurq60bt2aHTt2cOHCBerUqVOsfoUQQghRfkhyLUrNkCFDePToES1atEBXV5cJEyYwevRoAIKDgxk2bBht27bF2tqaFStWcPbs2UJfY8SIEWzbtk1r1Y+iGjx4MNevX2fq1Kn8+++/9OvXj6FDh3Lq1Kli9y2EEEKI8kGlebawVYhyZMuWLUyaNIlbt26hp6dX4v137twZS0tLtmzZUuBzUlJSMDU15f79+1J/XUR/+P1c2iEI8dLVCGhb2iEI8Vor6M9vmbkW5dLDhw9JTEwkMDCQMWPGlEhi/fDhQz7//HM8PDzQ1dXlq6++4ujRoxw5cqQEIhaFIUmGEEKIskoeaBTl0tKlS2nQoAGWlpb4+fmVSJ8qlYoDBw7Qrl07mjVrxnfffcfu3btxd3cvkf6FEEII8eqTshAhXjIpCxFCCCFePVIWIsRr6Nbcb0o7BCHEC2L9UZ/SDkEIUQBSFiKEEEIIIUQJkeRaCCGEEEKIEiLJtShX7OzsWL58+Uu9ZocOHZg4ceJLvaYQQgghyiZJrkWBDR06FC8vr9IOQwghhBCizJLkWpS4x48fl3YIQgghhBClQpJrkcOuXbtwcnLCwMCAqlWr4u7uzrRp0wgJCeHbb79FpVKhUqkICwsjPj4elUrFjh07aN++Pfr6+mzduhWA9evX4+joiL6+Pg0aNOCzzz5TrpGeno6Pjw9WVlbo6+tja2tLQEAAABqNhvnz51OrVi3UajXW1tb4+voW6V7u3bvHyJEjMTc3x8TEhI4dO3L+/HkArl69ikql4vfff9c6Z9myZdStW1fZ/u233+jatSuVKlWievXqvP/++9y5c6fAMaSlpZGSkqL1EUIIIUT5JMm10JKYmMjAgQMZPnw4V65cISwsjD59+jBv3jz69euHp6cniYmJJCYm0rp1a+W8mTNnMmHCBK5cuYKHhwdbt25l7ty5LFq0iCtXrrB48WLmzJlDSEgIACtXrmTfvn3s3LmT6Ohotm7dip2dHQC7d+9m2bJlrF27lpiYGPbu3YuTk1OR7qdv374kJSVx8OBBzp49i4uLC506dSI5ORkHBwdcXV2VXwaybd26lUGDBgFPkvOOHTvi7OzMmTNnOHToEH/++Sf9+vUrcAwBAQGYmpoqHxsbmyLdixBCCCHKPlnnWmhJTEwkIyODPn36YGtrC6AktgYGBqSlpWFpaZnjvIkTJ9Knz/+twTpv3jyCg4OVfbVr1+by5cusXbsWb29vEhISsLe3580330SlUinXAkhISMDS0hJ3d3cqVqxIrVq1aNGiRaHvJTw8nFOnTpGUlIRarQYgKCiIvXv3smvXLkaPHs3gwYNZvXo1CxYsAJ7MZp89e5Yvv/wSgNWrV+Ps7MzixYuVfjds2ICNjQ1Xr17FwcHhuXH4+fkxefJkZTslJUUSbCGEEKKckplroaVJkyZ06tQJJycn+vbty7p167h79+5zz3N1dVW+/ueff4iNjWXEiBFUqlRJ+SxcuJDY2FjgycORUVFR1K9fH19fXw4fPqyc37dvXx49ekSdOnUYNWoUe/bsISMjo9D3cv78eVJTU6latapWHHFxcUocAwYMID4+npMnTwJPZq1dXFxo0KCB0sexY8e0zs8+lt3H86jVakxMTLQ+QgghhCifZOZaaNHV1eXIkSP88ssvHD58mFWrVjFr1iwiIyPzPc/IyEj5OjU1FYB169bRsmXLHP0DuLi4EBcXx8GDBzl69Cj9+vXD3d2dXbt2YWNjQ3R0NEePHuXIkSOMGzeOjz/+mOPHj1OxYsUC30tqaipWVlaEhYXlOGZmZgaApaUlHTt2ZNu2bbRq1Ypt27bxwQcfaPXRs2dPlixZkqMPKyurAscihBBCiNeDJNciB5VKRZs2bWjTpg1z587F1taWPXv2oKenR2Zm5nPPr169OtbW1ly/fp3Bgwfn2c7ExIT+/fvTv39/3n33XTw9PUlOTqZKlSoYGBjQs2dPevbsyfjx42nQoAEXL17ExcWlwPfh4uLC7du3qVChglLPnZvBgwczffp0Bg4cyPXr1xkwYIBWH7t378bOzo4KFeQ/FyGEEELkT7IFoSUyMpLQ0FC6dOmChYUFkZGR/PXXXzg6OvLvv//yww8/EB0dTdWqVTE1Nc2zH39/f3x9fTE1NcXT05O0tDTOnDnD3bt3mTx5Mp988glWVlY4Ozujo6PD119/jaWlJWZmZmzatInMzExatmyJoaEhX375JQYGBlp12QXh7u6Om5sbXl5eLF26FAcHB27dusX+/fvp3bu3UsrSp08fPvjgAz744APeeustrK2tlT7Gjx/PunXrGDhwINOnT6dKlSpcu3aN7du3s379emUmXgghhBACJLkWzzAxMeGnn35i+fLlpKSkYGtrS3BwMF27dsXV1ZWwsDBcXV1JTU3l2LFjec4Ijxw5EkNDQz7++GOmTZuGkZERTk5OypsMjY2NWbp0KTExMejq6tK8eXMOHDiAjo4OZmZmBAYGMnnyZDIzM3FycuK7776jatWqhboXlUrFgQMHmDVrFsOGDeOvv/7C0tKSdu3aUb16daWdsbExPXv2ZOfOnWzYsEGrD2trayIiIpgxYwZdunQhLS0NW1tbPD090dGRRxaEEEIIoU2l0Wg0pR2EEK+TlJQUTE1NuX//fok/3Hhr7jcl2p8Qouyw/qjP8xsJIV6Ygv78lplrIV6y7N9nX8TLZCpNdS/xPoUQZYO8gEqI0pX93+Dz5qUluRavjJ9//pmuXbvmeTx7lZKy7sGDBwCy1rUQQgjxCnrw4EG+z51JWYh4ZTx69Ig//vgjz+P16tV7idEUXVZWFrdu3cLY2BiVSvVSrpn94pqbN2/KOttFIONXPDJ+xSdjWDwyfsUj4/eERqPhwYMHWFtb5/vclcxci1eGgYHBK5NA50dHR4eaNWuWyrXlJTbFI+NXPDJ+xSdjWDwyfsUj40e+M9bZZLkDIYQQQgghSogk10IIIYQQQpQQSa6FeA2o1WrmzZuHWq0u7VBeSTJ+xSPjV3wyhsUj41c8Mn6FIw80CiGEEEIIUUJk5loIIYQQQogSIsm1EEIIIYQQJUSSayGEEEIIIUqIJNdCCCGEEEKUEEmuhRBCCCGEKCGSXAtRTiUnJzN48GBMTEwwMzNjxIgRpKamPve8EydO0LFjR4yMjDAxMaFdu3Y8evToJURcthR1/ODJK3K7du2KSqVi7969LzbQMqqw45ecnMyHH35I/fr1MTAwoFatWvj6+nL//v2XGHXp+fTTT7Gzs0NfX5+WLVty6tSpfNt//fXXNGjQAH19fZycnDhw4MBLirTsKswYrlu3jrZt21K5cmUqV66Mu7v7c8e8vCvsv8Fs27dvR6VS4eXl9WIDfIVIci1EOTV48GAuXbrEkSNH+P777/npp58YPXp0vuecOHECT09PunTpwqlTpzh9+jQ+Pj7o6Lx+/6soyvhlW758OSqV6gVHWLYVdvxu3brFrVu3CAoK4rfffmPTpk0cOnSIESNGvMSoS8eOHTuYPHky8+bN49y5czRp0gQPDw+SkpJybf/LL78wcOBARowYwa+//oqXlxdeXl789ttvLznysqOwYxgWFsbAgQM5duwYJ06cwMbGhi5duvDHH3+85MjLhsKOX7b4+HimTp1K27ZtX1KkrwiNEKLcuXz5sgbQnD59Wtl38OBBjUql0vzxxx95nteyZUvN7NmzX0aIZVpRx0+j0Wh+/fVXTY0aNTSJiYkaQLNnz54XHG3ZU5zxe9rOnTs1enp6msePH7+IMMuMFi1aaMaPH69sZ2ZmaqytrTUBAQG5tu/Xr5+me/fuWvtatmypGTNmzAuNsywr7Bg+KyMjQ2NsbKwJCQl5USGWaUUZv4yMDE3r1q0169ev13h7e2vefvvtlxDpq+H1m44S4jVw4sQJzMzMcHV1Vfa5u7ujo6NDZGRkruckJSURGRmJhYUFrVu3pnr16rRv357w8PCXFXaZUZTxA3j48CGDBg3i008/xdLS8mWEWiYVdfyedf/+fUxMTKhQocKLCLNMSE9P5+zZs7i7uyv7dHR0cHd358SJE7mec+LECa32AB4eHnm2L++KMobPevjwIY8fP6ZKlSovKswyq6jj99FHH2FhYfFa/HWpsCS5FqIcun37NhYWFlr7KlSoQJUqVbh9+3au51y/fh2A+fPnM2rUKA4dOoSLiwudOnUiJibmhcdclhRl/AAmTZpE69atefvtt190iGVaUcfvaXfu3GHBggUFLsV5Vd25c4fMzEyqV6+utb969ep5jtXt27cL1b68K8oYPmvGjBlYW1vn+KXldVCU8QsPD+eLL75g3bp1LyPEV44k10K8QmbOnIlKpcr38/vvvxep76ysLADGjBnDsGHDcHZ2ZtmyZdSvX58NGzaU5G2Umhc5fvv27ePHH39k+fLlJRt0GfIix+9pKSkpdO/enYYNGzJ//vziBy5EPgIDA9m+fTt79uxBX1+/tMMp8x48eMD777/PunXrqFatWmmHUyaV37+1CVEOTZkyhaFDh+bbpk6dOlhaWuZ4ECUjI4Pk5OQ8yxWsrKwAaNiwodZ+R0dHEhISih50GfIix+/HH38kNjYWMzMzrf3vvPMObdu2JSwsrBiRlw0vcvyyPXjwAE9PT4yNjdmzZw8VK1YsbthlWrVq1dDV1eXPP//U2v/nn3/mOVaWlpaFal/eFWUMswUFBREYGMjRo0dp3LjxiwyzzCrs+MXGxhIfH0/Pnj2VfdmTMxUqVCA6Opq6deu+2KDLOEmuhXiFmJubY25u/tx2bm5u3Lt3j7Nnz9KsWTPgSfKXlZVFy5Ytcz3Hzs4Oa2troqOjtfZfvXqVrl27Fj/4MuBFjt/MmTMZOXKk1j4nJyeWLVum9UPoVfYixw+ezFh7eHigVqvZt2/fazGLqKenR7NmzQgNDVWWMsvKyiI0NBQfH59cz3FzcyM0NJSJEycq+44cOYKbm9tLiLjsKcoYAixdupRFixbxww8/aD0f8Lop7Pg1aNCAixcvau2bPXs2Dx48YMWKFdjY2LyMsMu20n6iUgjxYnh6emqcnZ01kZGRmvDwcI29vb1m4MCByvH//e9/mvr162siIyOVfcuWLdOYmJhovv76a01MTIxm9uzZGn19fc21a9dK4xZKVVHG71m8pquFaDSFH7/79+9rWrZsqXFyctJcu3ZNk5iYqHwyMjJK6zZeiu3bt2vUarVm06ZNmsuXL2tGjx6tMTMz09y+fVuj0Wg077//vmbmzJlK+4iICE2FChU0QUFBmitXrmjmzZunqVixoubixYuldQulrrBjGBgYqNHT09Ps2rVL69/agwcPSusWSlVhx+9ZslqINkmuhSin/v77b83AgQM1lSpV0piYmGiGDRum9YMjLi5OA2iOHTumdV5AQICmZs2aGkNDQ42bm5vm559/fsmRlw1FHb+nvc7JdWHH79ixYxog109cXFzp3MRLtGrVKk2tWrU0enp6mhYtWmhOnjypHGvfvr3G29tbq/3OnTs1Dg4OGj09PU2jRo00+/fvf8kRlz2FGUNbW9tc/63Nmzfv5QdeRhT23+DTJLnWptJoNJqXP18uhBBCCCFE+SOrhQghhBBCCFFCJLkWQgghhBCihEhyLYQQQgghRAmR5FoIIYQQQogSIsm1EEIIIYQQJUSSayGEEEIIIUqIJNdCCCGEEEKUEEmuhRBCCCGEKCGSXAshhBBCCFFCJLkWQgghhBCihEhyLYQQQgghRAn5f3CcljfEspt5AAAAAElFTkSuQmCC\n"},"metadata":{}}],"source":["sns.barplot(data=no_stress,orient='y',errorbar=None)\n","plt.title('Scaled Reporting when Stress Level 0');"]},{"cell_type":"code","execution_count":null,"metadata":{"id":"gIuWAZqkhE1W"},"outputs":[],"source":[]},{"cell_type":"code","execution_count":54,"metadata":{"colab":{"base_uri":"https://localhost:8080/","height":444},"executionInfo":{"elapsed":161,"status":"ok","timestamp":1716217004667,"user":{"displayName":"Daniel Meier","userId":"06365571306976914087"},"user_tz":300},"id":"RoAvbDW4mEef","outputId":"998607c4-dcd1-4cb6-a719-89fde8d0f8bd"},"outputs":[{"output_type":"execute_result","data":{"text/plain":[" anxiety_level self_esteem mental_health_history depression headache \\\n","0 0.487122 0.695889 0.000000 0.382739 0.069589 \n","1 0.567758 0.302804 0.037851 0.567758 0.189253 \n","2 0.439057 0.658586 0.036588 0.512233 0.073176 \n","3 0.569976 0.427482 0.035624 0.534353 0.142494 \n","4 0.452911 0.792594 0.000000 0.198148 0.056614 \n","... ... ... ... ... ... \n","1095 0.414873 0.641167 0.000000 0.528020 0.113147 \n","1096 0.470438 0.627250 0.000000 0.418167 0.000000 \n","1097 0.138178 0.898155 0.000000 0.103633 0.034544 \n","1098 0.676014 0.000000 0.032191 0.611632 0.160956 \n","1099 0.663039 0.221013 0.036835 0.552532 0.110506 \n","\n"," blood_pressure sleep_quality breathing_problem noise_level \\\n","0 0.034794 0.069589 0.139178 0.069589 \n","1 0.113552 0.037851 0.151402 0.113552 \n","2 0.036588 0.073176 0.073176 0.073176 \n","3 0.106871 0.035624 0.106871 0.142494 \n","4 0.084921 0.141535 0.028307 0.084921 \n","... ... ... ... ... \n","1095 0.037716 0.113147 0.075431 0.075431 \n","1096 0.156813 0.000000 0.000000 0.000000 \n","1097 0.069089 0.172722 0.069089 0.069089 \n","1098 0.096573 0.032191 0.128765 0.096573 \n","1099 0.110506 0.000000 0.110506 0.110506 \n","\n"," living_conditions ... basic_needs academic_performance study_load \\\n","0 0.104383 ... 0.069589 0.104383 0.069589 \n","1 0.037851 ... 0.075701 0.037851 0.151402 \n","2 0.073176 ... 0.073176 0.073176 0.109764 \n","3 0.071247 ... 0.071247 0.071247 0.142494 \n","4 0.056614 ... 0.084921 0.113228 0.084921 \n","... ... ... ... ... ... \n","1095 0.075431 ... 0.113147 0.075431 0.075431 \n","1096 0.052271 ... 0.209083 0.000000 0.052271 \n","1097 0.103633 ... 0.138178 0.172722 0.034544 \n","1098 0.032191 ... 0.032191 0.064382 0.160956 \n","1099 0.000000 ... 0.110506 0.110506 0.147342 \n","\n"," teacher_student_relationship future_career_concerns social_support \\\n","0 0.104383 0.104383 0.069589 \n","1 0.037851 0.189253 0.037851 \n","2 0.109764 0.073176 0.073176 \n","3 0.035624 0.142494 0.035624 \n","4 0.028307 0.056614 0.028307 \n","... ... ... ... \n","1095 0.075431 0.113147 0.113147 \n","1096 0.052271 0.052271 0.052271 \n","1097 0.138178 0.034544 0.103633 \n","1098 0.032191 0.128765 0.032191 \n","1099 0.110506 0.110506 0.036835 \n","\n"," peer_pressure extracurricular_activities bullying stress_level \n","0 0.104383 0.104383 0.069589 0.034794 \n","1 0.151402 0.189253 0.189253 0.075701 \n","2 0.109764 0.073176 0.073176 0.036588 \n","3 0.142494 0.142494 0.178118 0.071247 \n","4 0.141535 0.000000 0.141535 0.028307 \n","... ... ... ... ... \n","1095 0.075431 0.113147 0.113147 0.037716 \n","1096 0.156813 0.209083 0.156813 0.104542 \n","1097 0.034544 0.069089 0.034544 0.000000 \n","1098 0.128765 0.128765 0.128765 0.064382 \n","1099 0.184177 0.036835 0.147342 0.073671 \n","\n","[1100 rows x 21 columns]"],"text/html":["\n","
\n","
\n","\n","\n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n","
anxiety_levelself_esteemmental_health_historydepressionheadacheblood_pressuresleep_qualitybreathing_problemnoise_levelliving_conditions...basic_needsacademic_performancestudy_loadteacher_student_relationshipfuture_career_concernssocial_supportpeer_pressureextracurricular_activitiesbullyingstress_level
00.4871220.6958890.0000000.3827390.0695890.0347940.0695890.1391780.0695890.104383...0.0695890.1043830.0695890.1043830.1043830.0695890.1043830.1043830.0695890.034794
10.5677580.3028040.0378510.5677580.1892530.1135520.0378510.1514020.1135520.037851...0.0757010.0378510.1514020.0378510.1892530.0378510.1514020.1892530.1892530.075701
20.4390570.6585860.0365880.5122330.0731760.0365880.0731760.0731760.0731760.073176...0.0731760.0731760.1097640.1097640.0731760.0731760.1097640.0731760.0731760.036588
30.5699760.4274820.0356240.5343530.1424940.1068710.0356240.1068710.1424940.071247...0.0712470.0712470.1424940.0356240.1424940.0356240.1424940.1424940.1781180.071247
40.4529110.7925940.0000000.1981480.0566140.0849210.1415350.0283070.0849210.056614...0.0849210.1132280.0849210.0283070.0566140.0283070.1415350.0000000.1415350.028307
..................................................................
10950.4148730.6411670.0000000.5280200.1131470.0377160.1131470.0754310.0754310.075431...0.1131470.0754310.0754310.0754310.1131470.1131470.0754310.1131470.1131470.037716
10960.4704380.6272500.0000000.4181670.0000000.1568130.0000000.0000000.0000000.052271...0.2090830.0000000.0522710.0522710.0522710.0522710.1568130.2090830.1568130.104542
10970.1381780.8981550.0000000.1036330.0345440.0690890.1727220.0690890.0690890.103633...0.1381780.1727220.0345440.1381780.0345440.1036330.0345440.0690890.0345440.000000
10980.6760140.0000000.0321910.6116320.1609560.0965730.0321910.1287650.0965730.032191...0.0321910.0643820.1609560.0321910.1287650.0321910.1287650.1287650.1287650.064382
10990.6630390.2210130.0368350.5525320.1105060.1105060.0000000.1105060.1105060.000000...0.1105060.1105060.1473420.1105060.1105060.0368350.1841770.0368350.1473420.073671
\n","

1100 rows × 21 columns

\n","
\n","
\n","\n","
\n"," \n","\n"," \n","\n"," \n","
\n","\n","\n","
\n"," \n","\n","\n","\n"," \n","
\n","\n","
\n"," \n"," \n"," \n","
\n","\n","
\n","
\n"],"application/vnd.google.colaboratory.intrinsic+json":{"type":"dataframe","variable_name":"df_norm"}},"metadata":{},"execution_count":54}],"source":["from sklearn.preprocessing import Normalizer\n","\n","data_norm = Normalizer()\n","Normalize = data_norm.fit_transform(df[cols].iloc[:,range(0,21)].values)\n","df_norm=pd.DataFrame(data_norm.fit_transform(Normalize),columns=cols)\n","df_norm"]},{"cell_type":"code","execution_count":null,"metadata":{"id":"XJyrkWkEIJg9"},"outputs":[],"source":[]},{"cell_type":"markdown","metadata":{"id":"RDedsyotT8H4"},"source":["## Looking at how data looks when factors involved are the greatest based on correlation values (positive correlation would look at higher amounts, negative correlation would look at lower amounts)"]},{"cell_type":"code","execution_count":55,"metadata":{"colab":{"base_uri":"https://localhost:8080/"},"executionInfo":{"elapsed":228,"status":"ok","timestamp":1716217007274,"user":{"displayName":"Daniel Meier","userId":"06365571306976914087"},"user_tz":300},"id":"fKjJIbIimISJ","outputId":"db288d5d-beb0-4fe3-e577-63d7be7dcf11"},"outputs":[{"output_type":"stream","name":"stdout","text":["Pyschological Factors:\n"," anxiety_level self_esteem mental_health_history depression\n","count 1.100000e+03 1.100000e+03 1.100000e+03 1.100000e+03\n","mean 2.341561e-17 -3.229740e-18 2.260818e-17 3.068253e-17\n","std 1.000455e+00 1.000455e+00 1.000455e+00 1.000455e+00\n","min -1.809328e+00 -1.988391e+00 -9.855588e-01 -1.625618e+00\n","25% -8.280983e-01 -7.580391e-01 -9.855588e-01 -8.487679e-01\n","50% -1.040698e-02 1.367622e-01 -9.855588e-01 -7.191751e-02\n","75% 8.072843e-01 9.197134e-01 1.014653e+00 8.344079e-01\n","max 1.624976e+00 1.367114e+00 1.014653e+00 1.870208e+00\n","\n","\n","Physiological Factors:\n"," headache blood_pressure sleep_quality breathing_problem\n","count 1.100000e+03 1.100000e+03 1.100000e+03 1.100000e+03\n","mean -4.683123e-17 -4.844610e-17 -5.490558e-17 -3.391227e-17\n","std 1.000455e+00 1.000455e+00 1.000455e+00 1.000455e+00\n","min -1.780475e+00 -1.418416e+00 -1.718703e+00 -1.966776e+00\n","25% -1.070608e+00 -1.418416e+00 -1.072574e+00 -5.382823e-01\n","50% 3.491253e-01 -2.182179e-01 -1.033806e-01 1.759644e-01\n","75% 3.491253e-01 9.819805e-01 8.658128e-01 8.902111e-01\n","max 1.768859e+00 9.819805e-01 1.511942e+00 1.604458e+00\n","\n","\n","Enviromental Factors:\n"," noise_level living_conditions safety basic_needs\n","count 1.100000e+03 1.100000e+03 1.100000e+03 1.100000e+03\n","mean -4.037175e-17 1.130409e-17 -1.291896e-17 -2.099331e-17\n","std 1.000455e+00 1.000455e+00 1.000455e+00 1.000455e+00\n","min -1.995514e+00 -2.250991e+00 -1.947500e+00 -1.934764e+00\n","25% -4.889489e-01 -4.632004e-01 -5.245507e-01 -5.391964e-01\n","50% 2.643337e-01 -4.632004e-01 -5.245507e-01 1.585872e-01\n","75% 2.643337e-01 4.306951e-01 8.983982e-01 8.563708e-01\n","max 1.770899e+00 2.218486e+00 1.609873e+00 1.554154e+00\n","\n","\n","Academic Factors:\n"," academic_performance study_load teacher_student_relationship \\\n","count 1.100000e+03 1.100000e+03 1.100000e+03 \n","mean -8.881784e-18 -5.006097e-17 -8.074349e-18 \n","std 1.000455e+00 1.000455e+00 1.000455e+00 \n","min -1.960979e+00 -1.993501e+00 -1.913497e+00 \n","25% -5.465023e-01 -4.727998e-01 -4.683567e-01 \n","50% -5.465023e-01 -4.727998e-01 -4.683567e-01 \n","75% 8.679743e-01 2.875508e-01 9.767832e-01 \n","max 1.575213e+00 1.808252e+00 1.699353e+00 \n","\n"," future_career_concerns \n","count 1.100000e+03 \n","mean 2.745279e-17 \n","std 1.000455e+00 \n","min -1.732927e+00 \n","25% -1.078768e+00 \n","50% -4.246087e-01 \n","75% 8.837095e-01 \n","max 1.537869e+00 \n","\n","\n","Social Factors:\n"," social_support peer_pressure extracurricular_activities bullying\n","count 1.100000e+03 1.100000e+03 1.100000e+03 1.100000e+03\n","mean 9.689219e-18 1.453383e-17 1.776357e-17 1.130409e-17\n","std 1.000455e+00 1.000455e+00 1.000455e+00 1.000455e+00\n","min -1.796742e+00 -1.919495e+00 -1.953023e+00 -1.710343e+00\n","25% -8.419517e-01 -5.156090e-01 -5.415083e-01 -1.056860e+00\n","50% 1.128389e-01 -5.156090e-01 -1.886297e-01 2.501057e-01\n","75% 1.067629e+00 8.882770e-01 8.700062e-01 9.035886e-01\n","max 1.067629e+00 1.590220e+00 1.575763e+00 1.557071e+00\n"]}],"source":["Pyschological=['anxiety_level','self_esteem','mental_health_history','depression']\n","Physiological=['headache','blood_pressure','sleep_quality','breathing_problem']\n","Envriomental=['noise_level','living_conditions','safety','basic_needs']\n","Academic=['academic_performance','study_load','teacher_student_relationship','future_career_concerns']\n","Social=['social_support','peer_pressure','extracurricular_activities','bullying']\n","print('Pyschological Factors:\\n',df_scaled[Pyschological].describe())\n","print('\\n\\nPhysiological Factors:\\n',df_scaled[Physiological].describe())\n","print('\\n\\nEnviromental Factors:\\n',df_scaled[Envriomental].describe())\n","print('\\n\\nAcademic Factors:\\n',df_scaled[Academic].describe())\n","print('\\n\\nSocial Factors:\\n',df_scaled[Social].describe())\n","\n","\n"]},{"cell_type":"code","execution_count":56,"metadata":{"id":"P7opE8ZiCID8","executionInfo":{"status":"ok","timestamp":1716217010024,"user_tz":300,"elapsed":191,"user":{"displayName":"Daniel Meier","userId":"06365571306976914087"}}},"outputs":[],"source":["pysch=pd.DataFrame(df_scaled[Pyschological])\n","pysch['stress_level']=df_scaled['stress_level']\n","\n","physio=pd.DataFrame(df_scaled[Physiological])\n","physio['stress_level']=df_scaled['stress_level']\n","\n","enviro=pd.DataFrame(df_scaled[Envriomental])\n","enviro['stress_level']=df_scaled['stress_level']\n","\n","acad=pd.DataFrame(df_scaled[Academic])\n","acad['stress_level']=df_scaled['stress_level']\n","\n","social=pd.DataFrame(df_scaled[Social])\n","social['stress_level']=df_scaled['stress_level']\n"]},{"cell_type":"markdown","metadata":{"id":"H17Tm14sUEAD"},"source":["### Psychological"]},{"cell_type":"code","execution_count":57,"metadata":{"colab":{"base_uri":"https://localhost:8080/"},"executionInfo":{"elapsed":5,"status":"ok","timestamp":1716217011411,"user":{"displayName":"Daniel Meier","userId":"06365571306976914087"},"user_tz":300},"id":"5s_TCPB4lB8p","outputId":"9fb445ee-191b-42e2-daed-7d6491fa4143"},"outputs":[{"output_type":"stream","name":"stdout","text":["\n","RangeIndex: 1100 entries, 0 to 1099\n","Data columns (total 5 columns):\n"," # Column Non-Null Count Dtype \n","--- ------ -------------- ----- \n"," 0 anxiety_level 1100 non-null float64\n"," 1 self_esteem 1100 non-null float64\n"," 2 mental_health_history 1100 non-null float64\n"," 3 depression 1100 non-null float64\n"," 4 stress_level 1100 non-null float64\n","dtypes: float64(5)\n","memory usage: 43.1 KB\n"]}],"source":["pysch.info()"]},{"cell_type":"code","execution_count":58,"metadata":{"colab":{"base_uri":"https://localhost:8080/","height":300},"executionInfo":{"elapsed":7,"status":"ok","timestamp":1716217012412,"user":{"displayName":"Daniel Meier","userId":"06365571306976914087"},"user_tz":300},"id":"3LsOOVqfCIpT","outputId":"220e8cae-f959-48c1-c5ef-17769b383e2e"},"outputs":[{"output_type":"execute_result","data":{"text/plain":[" anxiety_level self_esteem mental_health_history depression \\\n","count 1.100000e+03 1.100000e+03 1.100000e+03 1.100000e+03 \n","mean 2.341561e-17 -3.229740e-18 2.260818e-17 3.068253e-17 \n","std 1.000455e+00 1.000455e+00 1.000455e+00 1.000455e+00 \n","min -1.809328e+00 -1.988391e+00 -9.855588e-01 -1.625618e+00 \n","25% -8.280983e-01 -7.580391e-01 -9.855588e-01 -8.487679e-01 \n","50% -1.040698e-02 1.367622e-01 -9.855588e-01 -7.191751e-02 \n","75% 8.072843e-01 9.197134e-01 1.014653e+00 8.344079e-01 \n","max 1.624976e+00 1.367114e+00 1.014653e+00 1.870208e+00 \n","\n"," stress_level \n","count 1.100000e+03 \n","mean -2.260818e-17 \n","std 1.000455e+00 \n","min -1.213156e+00 \n","25% -1.213156e+00 \n","50% 4.427575e-03 \n","75% 1.222011e+00 \n","max 1.222011e+00 "],"text/html":["\n","
\n","
\n","\n","\n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n","
anxiety_levelself_esteemmental_health_historydepressionstress_level
count1.100000e+031.100000e+031.100000e+031.100000e+031.100000e+03
mean2.341561e-17-3.229740e-182.260818e-173.068253e-17-2.260818e-17
std1.000455e+001.000455e+001.000455e+001.000455e+001.000455e+00
min-1.809328e+00-1.988391e+00-9.855588e-01-1.625618e+00-1.213156e+00
25%-8.280983e-01-7.580391e-01-9.855588e-01-8.487679e-01-1.213156e+00
50%-1.040698e-021.367622e-01-9.855588e-01-7.191751e-024.427575e-03
75%8.072843e-019.197134e-011.014653e+008.344079e-011.222011e+00
max1.624976e+001.367114e+001.014653e+001.870208e+001.222011e+00
\n","
\n","
\n","\n","
\n"," \n","\n"," \n","\n"," \n","
\n","\n","\n","
\n"," \n","\n","\n","\n"," \n","
\n","\n","
\n","
\n"],"application/vnd.google.colaboratory.intrinsic+json":{"type":"dataframe","summary":"{\n \"name\": \"pysch\",\n \"rows\": 8,\n \"fields\": [\n {\n \"column\": \"anxiety_level\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 388.8705868496516,\n \"min\": -1.80932790248059,\n \"max\": 1100.0,\n \"num_unique_values\": 8,\n \"samples\": [\n 2.34156128830033e-17,\n -0.010406980540151285,\n 1100.0\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"self_esteem\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 388.87601060975794,\n \"min\": -1.9883908368439764,\n \"max\": 1100.0,\n \"num_unique_values\": 8,\n \"samples\": [\n -3.2297397080004554e-18,\n 0.13676224370008427,\n 1100.0\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"mental_health_history\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 388.9061354171172,\n \"min\": -0.9855588084302995,\n \"max\": 1100.0,\n \"num_unique_values\": 5,\n \"samples\": [\n 2.260817795600319e-17,\n 1.0146527953950317,\n 1.0004548556068737\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"depression\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 388.85174077440246,\n \"min\": -1.6256182065790672,\n \"max\": 1100.0,\n \"num_unique_values\": 8,\n \"samples\": [\n 3.0682527226004327e-17,\n -0.07191750953731156,\n 1100.0\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"stress_level\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 388.85832663067225,\n \"min\": -1.2131556235498353,\n \"max\": 1100.0,\n \"num_unique_values\": 6,\n \"samples\": [\n 1100.0,\n -2.260817795600319e-17,\n 1.2220107740866955\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n }\n ]\n}"}},"metadata":{},"execution_count":58}],"source":["pysch.describe()"]},{"cell_type":"code","execution_count":59,"metadata":{"colab":{"base_uri":"https://localhost:8080/","height":206},"executionInfo":{"elapsed":189,"status":"ok","timestamp":1716217014003,"user":{"displayName":"Daniel Meier","userId":"06365571306976914087"},"user_tz":300},"id":"yKHW7PqrK8Fs","outputId":"2b26e0cf-444e-47ad-f20d-b6a84950d60c"},"outputs":[{"output_type":"execute_result","data":{"text/plain":[" anxiety_level self_esteem mental_health_history \\\n","anxiety_level 1.000000 -0.672745 0.634450 \n","self_esteem -0.672745 1.000000 -0.603502 \n","mental_health_history 0.634450 -0.603502 1.000000 \n","depression 0.694340 -0.699602 0.615882 \n","stress_level 0.736795 -0.756195 0.648644 \n","\n"," depression stress_level \n","anxiety_level 0.694340 0.736795 \n","self_esteem -0.699602 -0.756195 \n","mental_health_history 0.615882 0.648644 \n","depression 1.000000 0.734379 \n","stress_level 0.734379 1.000000 "],"text/html":["\n","
\n","
\n","\n","\n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n","
anxiety_levelself_esteemmental_health_historydepressionstress_level
anxiety_level1.000000-0.6727450.6344500.6943400.736795
self_esteem-0.6727451.000000-0.603502-0.699602-0.756195
mental_health_history0.634450-0.6035021.0000000.6158820.648644
depression0.694340-0.6996020.6158821.0000000.734379
stress_level0.736795-0.7561950.6486440.7343791.000000
\n","
\n","
\n","\n","
\n"," \n","\n"," \n","\n"," \n","
\n","\n","\n","
\n"," \n","\n","\n","\n"," \n","
\n","\n","
\n","
\n"],"application/vnd.google.colaboratory.intrinsic+json":{"type":"dataframe","summary":"{\n \"name\": \"pysch\",\n \"rows\": 5,\n \"fields\": [\n {\n \"column\": \"anxiety_level\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 0.6585878408604332,\n \"min\": -0.672745269467342,\n \"max\": 1.0,\n \"num_unique_values\": 5,\n \"samples\": [\n -0.672745269467342,\n 0.7367954226953105,\n 0.634449621491476\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"self_esteem\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 0.7546653391549688,\n \"min\": -0.7561950866283421,\n \"max\": 1.0,\n \"num_unique_values\": 5,\n \"samples\": [\n 1.0,\n -0.7561950866283421,\n -0.6035019402875822\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"mental_health_history\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 0.6150103277784161,\n \"min\": -0.6035019402875822,\n \"max\": 1.0,\n \"num_unique_values\": 5,\n \"samples\": [\n -0.6035019402875822,\n 0.64864399624545,\n 1.0\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"depression\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 0.6690234606888238,\n \"min\": -0.6996017571411519,\n \"max\": 1.0,\n \"num_unique_values\": 5,\n \"samples\": [\n -0.6996017571411519,\n 0.7343785737506849,\n 0.6158823442183484\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"stress_level\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 0.6995367715463082,\n \"min\": -0.7561950866283421,\n \"max\": 1.0,\n \"num_unique_values\": 5,\n \"samples\": [\n -0.7561950866283421,\n 1.0,\n 0.64864399624545\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n }\n ]\n}"}},"metadata":{},"execution_count":59}],"source":["pysch.corr()"]},{"cell_type":"code","execution_count":60,"metadata":{"colab":{"base_uri":"https://localhost:8080/","height":545},"executionInfo":{"elapsed":502,"status":"ok","timestamp":1716217016053,"user":{"displayName":"Daniel Meier","userId":"06365571306976914087"},"user_tz":300},"id":"AZ_kmPi4LLra","outputId":"38ddc8d3-f79a-4bd2-f1bd-cab475ae0b12"},"outputs":[{"output_type":"display_data","data":{"text/plain":["
"],"image/png":"iVBORw0KGgoAAAANSUhEUgAAAwkAAAIQCAYAAADKNSJrAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAABqzklEQVR4nO3deXhN1/7H8c/JHIkkQmQgEnPMM1XUlBJVrXmoS6OGWzVUg+LXW1NbqZpb1UEr9NJLa2xLzVSraqypNAhKVcxBDBn37w/XuXaTkIMIx/v1PPt5ZJ21115rZ3C+57vW2hbDMAwBAAAAwH855HYHAAAAADxcCBIAAAAAmBAkAAAAADAhSAAAAABgQpAAAAAAwIQgAQAAAIAJQQIAAAAAE4IEAAAAACYECQAAAABMCBIAPNRGjhwpi8WS293IEZGRkQoNDb2vbc6cOVMWi0VHjx69r+3eb+PGjVOxYsXk6OioypUr50ofjh49KovFopkzZ+bK9R+U0NBQPfvss/etvQd130JDQxUZGZlj7VssFo0cOTLH2gcedQQJQDbs2bNHbdu2VUhIiNzc3FSoUCE9/fTT+uCDD0z1xowZo8WLF+dOJ+/B/X4TkZvWr1+v1q1bKyAgQC4uLipYsKBatGihhQsX5nbX7qtH9WdNklauXKnXX39dderUUUxMjMaMGXPHc7777jtFREQof/78cnNzU6lSpTRo0CCdO3fuAfQ4e24GaDePm/3s27evTp06ldvdw124GRBldjzxxBP3/XqP8u817I9TbncAeNj9/PPPatiwoYoUKaKePXsqICBAx48f1y+//KIpU6aoX79+1rpjxoxR27Zt1bJly9zr8GNsxIgRGj16tEqWLKl//vOfCgkJ0blz57Rs2TK1adNGc+bM0QsvvJDb3bwvsvpZ69Klizp27ChXV9fc6Vg2rF27Vg4ODvr888/l4uJyx/qDBg3ShAkTVKlSJQ0ZMkS+vr7asWOHpk6dqrlz52rNmjUqXbr0A+h59owePVpFixbV9evX9dNPP+mjjz7SsmXLtHfvXuXJkye3u/fIiI2NlYPDw/FZZqdOnfTMM8+Yyvz8/O77dfg/BA8TggTgDt555x15e3tr69at8vHxMb12+vTpu273ypUr8vDwuMfe4ab58+dr9OjRatu2rb788ks5OztbXxs8eLBWrFihlJSUe75Oamqq0tPTM31z+zB8Tx0dHeXo6JirfbiT06dPy93dPVsBwn/+8x9NmDBBHTp00Jw5c0xji4yMVMOGDdWuXTvt2LFDTk4Px39pzZo1U/Xq1SVJPXr0UP78+TVx4kQtWbJEnTp1yuXePToepkC3atWq+sc//pHb3bgrD8PfJTyaHo4QHXiIxcXFqVy5chkCBEkqWLCg9d8Wi0VXrlzRrFmzrOnom/Npb86r37dvn1544QXly5dPdevWtZ47e/ZsVatWTe7u7vL19VXHjh11/Phx07UOHjyoNm3aKCAgQG5ubipcuLA6duyoixcvWuusWrVKdevWlY+Pjzw9PVW6dGn93//93327F3fqZ9++feXp6amrV69mOLdTp04KCAhQWlqatez7779XvXr15OHhobx586p58+b67bff7qpvb775pnx9fTVjxgxTgHBT06ZNTVOqTp8+re7du8vf319ubm6qVKmSZs2aZTrn5lSD8ePHa/LkySpevLhcXV21b9+++/I9zcz48eP15JNPKn/+/HJ3d1e1atU0f/58U53b/axltSZh2rRpKleunFxdXRUUFKQ+ffooISHBVKdBgwYqX7689u3bp4YNGypPnjwqVKiQ3nvvvTv2W7oRQL311lvW+xQaGqr/+7//U1JSkqnvMTExunLlirXvt5vbPmrUKOXLl0+ffvpphuCnZs2aGjJkiPbs2WO6R3c7jpiYGFksFv36668ZXhszZowcHR114sSJbN2LWzVq1EiSdOTIEUlSfHy8unXrpsKFC8vV1VWBgYF6/vnnrd+zF198UQUKFMg0qG3SpEmGrMns2bNVs2ZN5cmTR/ny5dNTTz2llStXZjj3p59+Us2aNeXm5qZixYrpiy++yFDn8OHDateunXx9fZUnTx498cQTWrp0abbGuXbtWuvvs4+Pj55//nnt378/Q73169erevXqcnNzU/HixfXJJ59kuvYoszUJCQkJeu211xQaGipXV1cVLlxYXbt21dmzZyVJycnJGj58uKpVqyZvb295eHioXr16WrduXbbGYCtbrpeenq4pU6aoQoUKcnNzk5+fnyIiIrRt2zZJt/+9lqRff/1VzZo1k5eXlzw9PdW4cWP98ssvpmvc/P3/4Ycf9Morr6hgwYIqXLiwJOny5csaMGCA9d4VLFhQTz/9tHbs2JEj9waPPoIE4A5CQkK0fft27d2797b1/v3vf8vV1VX16tXTv//9b/373//WP//5T1Oddu3a6erVqxozZox69uwp6UamomvXripZsqQmTpyoAQMGaM2aNXrqqaesb+KSk5PVtGlT/fLLL+rXr58+/PBD9erVS4cPH7bW+e233/Tss88qKSlJo0eP1oQJE/Tcc89p48aN9+U+ZKefHTp00JUrVzK8qbh69aq+/fZbtW3b1vpG79///reaN28uT09PjR07Vm+++ab27dununXr2rzo9uDBg/r999/VsmVL5c2b9471r127pgYNGujf//63OnfurHHjxsnb21uRkZGaMmVKhvoxMTH64IMP1KtXL02YMEG+vr7W1+72e5qVKVOmqEqVKho9erTGjBkjJycntWvXznRPs/OzdquRI0eqT58+CgoK0oQJE9SmTRt98sknatKkSYY3ohcuXFBERIQqVaqkCRMmKCwsTEOGDNH3339/x/vao0cPDR8+XFWrVtWkSZNUv359RUdHq2PHjqa+16tXT66urta+P/XUU5m2d/DgQcXGxur555+Xl5dXpnW6du0q6caahXsdR9u2beXu7q45c+ZkeG3OnDlq0KCBChUqdMf78HdxcXGSpPz580uS2rRpo0WLFqlbt26aNm2a+vfvr8uXL+vYsWOSbkwZO3funFasWGFqJz4+XmvXrjV9oj1q1Ch16dJFzs7OGj16tEaNGqXg4GCtXbvWdO6hQ4fUtm1bPf3005owYYLy5cunyMhIU1B+6tQpPfnkk1qxYoVeeeUVvfPOO7p+/bqee+45LVq06LZjXL16tZo2barTp09r5MiRioqK0s8//6w6deqYfp9//fVXRURE6Ny5cxo1apS6d++u0aNHZ2sefmJiourVq6cPPvhATZo00ZQpU/Tyyy/r999/159//ilJunTpkj777DM1aNBAY8eO1ciRI3XmzBk1bdpUO3fuvOM1snL16lWdPXvWdKSkpNh0ve7du2vAgAEKDg7W2LFjNXToULm5uVnf6N/u9/q3335TvXr1tGvXLr3++ut68803deTIETVo0ECbN2/O0N9XXnlF+/bt0/DhwzV06FBJ0ssvv6yPPvpIbdq00bRp0zRo0CC5u7tnGsgBkiQDwG2tXLnScHR0NBwdHY3atWsbr7/+urFixQojOTk5Q10PDw/jxRdfzFA+YsQIQ5LRqVMnU/nRo0cNR0dH45133jGV79mzx3BycrKW//rrr4Yk4+uvv86yn5MmTTIkGWfOnLF5jCEhIUbz5s2zfD27/UxPTzcKFSpktGnTxlTvq6++MiQZGzZsMAzDMC5fvmz4+PgYPXv2NNWLj483vL29TeU3793tLFmyxJBkTJo06Y5jNQzDmDx5siHJmD17trUsOTnZqF27tuHp6WlcunTJMAzDOHLkiCHJ8PLyMk6fPm1q416/p4ZhGC+++KIREhJiqnf16lXT18nJyUb58uWNRo0amcqz+lmLiYkxJBlHjhwxDMMwTp8+bbi4uBhNmjQx0tLSrPWmTp1qSDJmzJhhLatfv74hyfjiiy+sZUlJSUZAQECG7+nf7dy505Bk9OjRw1Q+aNAgQ5Kxdu1a07g9PDxu255hGMbixYuz9X318vIyqlatavM4bn5/Y2JirGWdOnUygoKCTPdqx44dGepl5ua9X716tXHmzBnj+PHjxty5c438+fMb7u7uxp9//mlcuHDBkGSMGzcuy3bS0tKMwoULGx06dDCVT5w40bBYLMbhw4cNwzCMgwcPGg4ODkarVq1M/TWMG7+LN4WEhJh+/wzjxs+Fq6urMXDgQGvZgAEDDEnGjz/+aC27fPmyUbRoUSM0NNR6jczuW+XKlY2CBQsa586ds5bt2rXLcHBwMLp27Wota9GihZEnTx7jxIkT1rKDBw8aTk5OGX7PQ0JCTD/jw4cPNyQZCxcuzHDPbo43NTXVSEpKMr124cIFw9/f33jppZdM5ZKMESNGZGjrVjfHmtmxbt26bF9v7dq1hiSjf//+WfbdMLL+vW7ZsqXh4uJixMXFWcv++usvI2/evMZTTz1lLbv5M1i3bl0jNTXV1Ia3t7fRp0+f244XuBWZBOAOnn76aW3atEnPPfecdu3apffee09NmzZVoUKF9M0339jU1ssvv2z6euHChUpPT1f79u1Nn1AFBASoZMmS1pS1t7e3JGnFihWZTuWRZJ0OtWTJEqWnp9s4ytvLbj8tFovatWunZcuWKTEx0Xr+vHnzVKhQIet0nFWrVikhIUGdOnUytefo6KhatWrZPDXg0qVLkpStLIIkLVu2TAEBAab54c7Ozurfv78SExP1ww8/mOq3adMmy0WKd/s9zYq7u7v13xcuXNDFixdVr169u54SsHr1aiUnJ2vAgAGmRaA9e/aUl5dXhqyPp6en6ZNqFxcX1axZU4cPH77tdZYtWyZJioqKMpUPHDhQkrI9ZeVWly9flnTn72vevHmtPwM33e04unbtqr/++sv0fZozZ47c3d3Vpk2bbPU7PDxcfn5+Cg4OVseOHeXp6alFixapUKFC1rUY69ev14ULFzI938HBQZ07d9Y333xjvQc3+/Hkk0+qaNGikqTFixcrPT1dw4cPz7DA9+9Td8qWLat69epZv/bz81Pp0qVN92PZsmWqWbOmadqcp6enevXqpaNHj2rfvn2Z9vfkyZPauXOnIiMjTVm2ihUr6umnn7b+bKSlpWn16tVq2bKlgoKCrPVKlCihZs2aZX4zb7FgwQJVqlRJrVq1yvDazfE6Ojpa17qkp6fr/PnzSk1NVfXq1e9pWk2vXr20atUq01GpUqVsX2/BggWyWCwaMWJEln3PSlpamlauXKmWLVuqWLFi1vLAwEC98MIL+umnnzL8/Pfs2TPD9DwfHx9t3rxZf/31l83jx+OJIAHIhho1amjhwoW6cOGCtmzZomHDhuny5ctq27Ztlv9xZubmf+43HTx4UIZhqGTJkvLz8zMd+/fvty6MLlq0qKKiovTZZ5+pQIECatq0qT788EPTeoQOHTqoTp066tGjh/z9/dWxY0d99dVX9yVgyG4/b/bj2rVr1gAqMTFRy5YtU7t27az/GR48eFDSjbnaf29v5cqVNi8IvzkV5dY3VLfzxx9/qGTJkhneWJUpU8b6+q3+/n273Wu23KvMfPfdd3riiSfk5uYmX19f+fn56aOPPjJ9r21xcyx/n8fu4uKiYsWKZRhr4cKFM7xpyZcvX5ZvaG+9joODg0qUKGEqDwgIkI+PT4brZMfN4OBO39fLly9nCCTudhxPP/20AgMDrVOO0tPT9Z///EfPP/98toPQDz/8UKtWrdK6deu0b98+HT58WE2bNpV0YzHu2LFj9f3338vf319PPfWU3nvvPcXHx5va6Nq1q65du2ad5hMbG6vt27erS5cu1jpxcXFycHBQ2bJl79inIkWKZCj7+/34448/Mt0lKqvfi1vPkzL+jN089+zZs7py5YpOnz6ta9euZfgZkZRp2d/FxcWpfPnyd6w3a9YsVaxYUW5ubsqfP7/8/Py0dOnSu/4dkqSSJUsqPDzcdOTLly/b14uLi1NQUJApiMquM2fO6OrVq1ne3/T09AzrnTL7m/Xee+9p7969Cg4OVs2aNTVy5Mg7Bs14vD0cW0EAjwgXFxfVqFFDNWrUUKlSpdStWzd9/fXXmX46lJlbPyWWbrwBsVgs+v777zPdkcbT09P67wkTJigyMlJLlizRypUr1b9/f0VHR+uXX35R4cKF5e7urg0bNmjdunVaunSpli9frnnz5qlRo0ZauXLlPe14Y0s/n3jiCYWGhuqrr77SCy+8oG+//VbXrl1Thw4dTO1JN+bgBgQEZGjP1l1qwsLCJN14nkVO+Pv37Xav2XKv/u7HH3/Uc889p6eeekrTpk1TYGCgnJ2dFRMToy+//PLuB2CDrH5ODMPI1vn388F3N9+c7t69O8s6f/zxhy5dupThjfLdjsPR0VEvvPCCpk+frmnTpmnjxo3666+/bNrZpmbNmtbdjTIzYMAAtWjRQosXL9aKFSv05ptvKjo6WmvXrlWVKlUk3fjkv1q1apo9e7a6du2q2bNny8XFRe3bt892P/4+rsxk9/v6qJg9e7YiIyPVsmVLDR48WAULFpSjo6Oio6Ota0Me5etlV2Z/s9q3b6969epp0aJFWrlypcaNG6exY8dq4cKF2crk4PFDkADcpZtvAk6ePGkts/UNUvHixWUYhooWLapSpUrdsX6FChVUoUIF/etf/7IuCvz444/19ttvS7oxTaFx48Zq3LixJk6cqDFjxuiNN97QunXrFB4eblPf7qWf7du315QpU3Tp0iXNmzdPoaGhpgcPFS9eXNKN3aHupV83lSpVSqVLl9aSJUs0ZcqU274Rl24sRt+9e7fS09NN2YTff//d+vrdsvVe3WrBggVyc3PTihUrTNs/xsTEZKib3Z+1m2OJjY01TVVITk7WkSNH7sv9v3md9PR0HTx40PrmXrqxGDYhIeGu7mmpUqVUqlQpLV68WFOmTMn0k/ybO/Tcz4cBdu3aVRMmTNC3336r77//Xn5+ftZMwP1SvHhxDRw4UAMHDtTBgwdVuXJlTZgwQbNnzzb1IyoqSidPntSXX36p5s2bWz+9vtlGenq69u3bd1+eWh0SEqLY2NgM5Xf6vbj1ZyyzcwsUKCAPDw+5ubnJzc1Nhw4dylAvs7K/K168+B03kJg/f76KFSumhQsXmn5HsvtBjq2ye73ixYtrxYoVOn/+/G2zCZn9Xvv5+SlPnjxZ3l8HBwcFBwdnq7+BgYF65ZVX9Morr+j06dOqWrWq3nnnHYIEZIrpRsAdrFu3LtNP227Os701Bezh4XHH3Wtu1bp1azk6OmrUqFEZrmEYhvVpspcuXVJqaqrp9QoVKsjBwcG6veT58+cztH/zjcOtW1Dejez286YOHTooKSlJs2bN0vLlyzN8+tm0aVN5eXlpzJgxmW7zeObMGZv7OGrUKJ07d049evTIcK+kG0/5vbkDzjPPPKP4+HjNmzfP+npqaqo++OADeXp6qn79+jZf/yZb79WtHB0dZbFYTNvEHj16NNOdX7L7sxYeHi4XFxe9//77pv58/vnnunjxopo3b37nQWXDzQdNTZ482VQ+ceJESbrr6wwfPlwXLlzQyy+/bLovkrR9+3aNHTtW5cuXz/Z6geyoWLGiKlasqM8++0wLFixQx44d79szGK5evarr16+byooXL668efNm+D3t1KmTLBaLXn31VR0+fDhDNqNly5ZycHDQ6NGjM0wrvJsMwTPPPKMtW7Zo06ZN1rIrV67o008/VWhoaJbTmgIDA1W5cmXNmjXL9DO5d+9erVy50vqz4ejoqPDwcC1evNg0L/7QoUPZ2j2rTZs22rVrV6Y7Ld0c782Mya3j37x5s2lM91N2r9emTRsZhqFRo0ZlaOPWczP7vXZ0dFSTJk20ZMkS005Rp06d0pdffqm6detmufvXTWlpaRmmWxUsWFBBQUH3/P8D7BeZBOAO+vXrp6tXr6pVq1YKCwtTcnKyfv75Z+sn5N26dbPWrVatmlavXq2JEycqKChIRYsWVa1atbJsu3jx4nr77bc1bNgwHT161LqF55EjR7Ro0SL16tVLgwYN0tq1a9W3b1+1a9dOpUqVUmpqqv7973/L0dHR+uZo9OjR2rBhg5o3b66QkBCdPn1a06ZNU+HChU0LEbNy6NAha0biVlWqVFHz5s2z1c+bqlatqhIlSuiNN95QUlKSaaqRdGMNwUcffaQuXbqoatWq6tixo/z8/HTs2DEtXbpUderU0dSpU+/Y51t16NBBe/bs0TvvvKNff/1VnTp1sj5xefny5VqzZo11yk6vXr30ySefKDIyUtu3b1doaKjmz5+vjRs3avLkydmee56Z7H5PM9O8eXNNnDhREREReuGFF3T69Gl9+OGHKlGiRIYpN9n9WfPz89OwYcM0atQoRURE6LnnnlNsbKymTZumGjVq3LcHRFWqVEkvvviiPv30UyUkJKh+/frasmWLZs2apZYtW6phw4Z31W7nzp21detWTZkyRfv27VPnzp2VL18+7dixQzNmzFD+/Pk1f/78TJ+NcS+6du1q/T7dz4doHThwQI0bN1b79u1VtmxZOTk5adGiRTp16pRpq1hJ1n30v/76a/n4+GQItG7+jr311luqV6+eWrduLVdXV23dulVBQUGKjo62qW9Dhw7Vf/7zHzVr1kz9+/eXr6+vZs2apSNHjmjBggW3ffrxuHHj1KxZM9WuXVvdu3fXtWvX9MEHH8jb21sjR4601hs5cqRWrlypOnXqqHfv3kpLS9PUqVNVvnz5O25ROnjwYM2fP1/t2rXTSy+9pGrVqun8+fP65ptv9PHHH6tSpUp69tlntXDhQrVq1UrNmzfXkSNH9PHHH6ts2bKmzRTul+xer2HDhurSpYvef/99HTx4UBEREUpPT9ePP/6ohg0bqm/fvpKy/r1+++23rc/BeeWVV+Tk5KRPPvlESUlJ2XqOyeXLl1W4cGG1bdtWlSpVkqenp1avXq2tW7dqwoQJ9/2+wE48wJ2UgEfS999/b7z00ktGWFiY4enpabi4uBglSpQw+vXrZ5w6dcpU9/fffzeeeuopw93d3ZBk3cru5naZWW1PumDBAqNu3bqGh4eH4eHhYYSFhRl9+vQxYmNjDcMwjMOHDxsvvfSSUbx4ccPNzc3w9fU1GjZsaKxevdraxpo1a4znn3/eCAoKMlxcXIygoCCjU6dOxoEDB+44xptbJGZ2dO/ePdv9vNUbb7xhSDJKlCiR5XXXrVtnNG3a1PD29jbc3NyM4sWLG5GRkca2bdusdbKzBeqtbt6HggULGk5OToafn5/RokULY8mSJaZ6p06dMrp162YUKFDAcHFxMSpUqJBhi8ub2x9mtl3lvX5PDSPzLVA///xzo2TJkoarq6sRFhZmxMTEZHoPsvpZ+/sWqDdNnTrVCAsLM5ydnQ1/f3+jd+/exoULF0x16tevb5QrVy7DWDLrZ2ZSUlKMUaNGGUWLFjWcnZ2N4OBgY9iwYcb169cztJedLVBvtXjxYuPpp5828uXLZ7i6uholSpQwBg4cmOn9z+44MtvK86aTJ08ajo6ORqlSpbLdx5v3fuvWrVnWOXv2rNGnTx8jLCzM8PDwMLy9vY1atWoZX331Vab1b24f3KtXryzbnDFjhlGlShXD1dXVyJcvn1G/fn1j1apV1tez2uK4fv36Rv369U1lcXFxRtu2bQ0fHx/Dzc3NqFmzpvHdd9+Z6mR131avXm3UqVPHcHd3N7y8vIwWLVoY+/bty3DdNWvWGFWqVDFcXFyM4sWLG5999pkxcOBAw83NzVTv71ugGoZhnDt3zujbt69RqFAhw8XFxShcuLDx4osvGmfPnjUM48Z2omPGjDFCQkIMV1dXo0qVKsZ3332X6c+wbNgCNasta225XmpqqjFu3DgjLCzMcHFxMfz8/IxmzZoZ27dvt9bJ6vfaMG5sxdu0aVPD09PTyJMnj9GwYUPj559/Nl0jq5/BpKQkY/DgwUalSpWMvHnzGh4eHkalSpWMadOm3Xb8eLxZDMPOVi0BAHCPzp49q8DAQA0fPlxvvvlmrvVjyZIlatmypTZs2GDawtTetGzZUr/99pt15zMAuY81CQAA/M3MmTOVlpZm2nI0N0yfPl3FihXL1pTBR8W1a9dMXx88eFDLli1TgwYNcqdDADLFmgQAAP5r7dq12rdvn9555x21bNlSoaGhudKPuXPnavfu3Vq6dKmmTJlyX7eWzW3FihVTZGSk9TkdH330kVxcXPT666/ndtcA3ILpRgAA/FeDBg2s2wvPnj1bhQoVypV+WCwWeXp6qkOHDvr444/v2+5KD4Nu3bpp3bp1io+Pl6urq2rXrq0xY8aoatWqud01ALcgSAAAAABgwpoEAAAAACYECQAAAABMCBIAAAAAmNjPSig8VpY6l87tLgAAABs1T4nNtWvn5HuH3BxXTiGTAAAAAMCETAIAAADsnsXZfp438iCQSQAAAABgQiYBAAAAds/BiUyCLcgkAAAAADAhkwAAAAC7Z3Hms3FbECQAAADA7jHdyDaEVAAAAABMyCQAAADA7rEFqm3IJAAAAAAwIZMAAAAAu8eaBNuQSQAAAABgQiYBAAAAdo81CbYhkwAAAADAhEwCAAAA7B5rEmxDkAAAAAC7Z3EkSLAF040AAAAAmJBJAAAAgN1zIJNgEzIJAAAAAEzIJAAAAMDuWRzIJNiCTAIAAAAAEzIJAAAAsHsWRz4btwV3CwAAAIAJmQQAAADYPXY3sg1BAgAAAOweC5dtw3QjAAAAACZkEgAAAGD3mG5kGzIJAAAAAEzIJAAAAMDuWcgk2IRMAgAAAAATMgkAAACwexYHPhu3BXcLAAAAgAmZBAAAANg9npNgG4IEAAAA2D22QLUN040AAAAAmJBJAAAAgN1jupFtyCQAAAAAMCFIAAAAgN2zODjk2HE3PvzwQ4WGhsrNzU21atXSli1bbls/ISFBffr0UWBgoFxdXVWqVCktW7bsrq6dHUw3AgAAAB6gefPmKSoqSh9//LFq1aqlyZMnq2nTpoqNjVXBggUz1E9OTtbTTz+tggULav78+SpUqJD++OMP+fj45FgfCRIAAABg9x6mNQkTJ05Uz5491a1bN0nSxx9/rKVLl2rGjBkaOnRohvozZszQ+fPn9fPPP8vZ2VmSFBoamqN9ZLoRAAAAcA+SkpJ06dIl05GUlJRp3eTkZG3fvl3h4eHWMgcHB4WHh2vTpk2ZnvPNN9+odu3a6tOnj/z9/VW+fHmNGTNGaWlpOTIeiSABAAAAjwEHR0uOHdHR0fL29jYd0dHRmfbj7NmzSktLk7+/v6nc399f8fHxmZ5z+PBhzZ8/X2lpaVq2bJnefPNNTZgwQW+//fZ9v083Md0IAAAAdi8npxsNGzZMUVFRpjJXV9f71n56eroKFiyoTz/9VI6OjqpWrZpOnDihcePGacSIEfftOrciSAAAAADugaura7aDggIFCsjR0VGnTp0ylZ86dUoBAQGZnhMYGChnZ2c5Ojpay8qUKaP4+HglJyfLxcXl7jufBaYbAQAAwO49LFuguri4qFq1alqzZo21LD09XWvWrFHt2rUzPadOnTo6dOiQ0tPTrWUHDhxQYGBgjgQIEkECAAAA8EBFRUVp+vTpmjVrlvbv36/evXvrypUr1t2OunbtqmHDhlnr9+7dW+fPn9err76qAwcOaOnSpRozZoz69OmTY31kuhEAAADs3sO0BWqHDh105swZDR8+XPHx8apcubKWL19uXcx87NgxOdySoQgODtaKFSv02muvqWLFiipUqJBeffVVDRkyJMf6aDEMw8ix1oEcstS5dG53AQAA2Kh5SmyuXfv3dk1yrO2wr1fmWNu5hUwCAAAA7N7DlEl4FLAmAQAAAIAJQcJD5OjRo7JYLNq5c2eu9sNisWjx4sUP9JqhoaGaPHnyA70mAAB4fFgcLDl22COChIdIcHCwTp48qfLly2f7nAYNGmjAgAE51ykAuEchvV9Qw4NrFHF5t57c+JW8a1TIsu4Tq79Q85TYDEeNJZ9kWr/8h6PUPCVWof1fzKnuA7ATD8sWqI8K1iQ8RBwdHbN8iAYAPIoC2zVTmXHDtLfPCCVs2aWi/V9UraWfa325CCWfOZ+h/vZ2/eTg4mz92jm/j+ptX6KTC5ZnqOv/fLh8alXS9ROnMrwGALg39hn65JDly5erbt268vHxUf78+fXss88qLi5O0v+mCi1cuFANGzZUnjx5VKlSJW3atMl6/ksvvaSKFSsqKSlJkpScnKwqVaqoa9eupjZunW60d+9eNWvWTJ6envL391eXLl109uxZSVJkZKR++OEHTZkyRRaLRRaLRUeOHFGJEiU0fvx4U9937twpi8WiQ4cO2Tzu48ePq3379vLx8ZGvr6+ef/55HT16VJK0cuVKubm5KSEhwXTOq6++qkaNGlm//umnn1SvXj25u7srODhY/fv315UrV2zuC4BHS9EB3XT886/056yFStwfpz2vjFDa1esKjmyTaf2UCxeVdOqs9SgQXkdpV6/r5HxzkOAaVFDlJr+pnV0HKT0l5UEMBcAjzsHRkmOHPSJIsMGVK1cUFRWlbdu2ac2aNXJwcFCrVq1MT7974403NGjQIO3cuVOlSpVSp06dlJqaKkl6//33deXKFQ0dOtRaNyEhQVOnTs30egkJCWrUqJGqVKmibdu2afny5Tp16pTat28vSZoyZYpq166tnj176uTJkzp58qSKFCmil156STExMaa2YmJi9NRTT6lEiRI2jTklJUVNmzZV3rx59eOPP2rjxo3y9PRURESEkpOT1bhxY/n4+GjBggXWc9LS0jRv3jx17txZkhQXF6eIiAi1adNGu3fv1rx58/TTTz+pb9++NvUFwKPF4uws76rldHbNz/8rNAydXfuzfJ6okq02gru10cmvlirt6rVbGrao8sxxOjzxcyXus/2DDwDAnTHdyAZt2pg/+ZoxY4b8/Py0b98+eXp6SpIGDRqk5s2bS5JGjRqlcuXK6dChQwoLC5Onp6dmz56t+vXrK2/evJo8ebLWrVsnLy+vTK83depUValSRWPGjDFdMzg4WAcOHFCpUqXk4uKiPHnymKYpRUZGavjw4dqyZYtq1qyplJQUffnllxmyC9kxb948paen67PPPpPFciNSjomJkY+Pj9avX68mTZqoY8eO+vLLL9W9e3dJ0po1a5SQkGC9X9HR0ercubN17UTJkiX1/vvvq379+vroo4/k5uZmc78APPxcCuSTg5OTkk6fM5UnnTonj9LF7ni+d40K8ipfWrt7vWEqLz64p4zUVB394Iv72l8A9s1eFxjnFDIJNjh48KA6deqkYsWKycvLS6GhoZJuPBXvpooVK1r/HRgYKEk6ffq0tax27doaNGiQ3nrrLQ0cOFB169bN8nq7du3SunXr5OnpaT3CwsIkyTrNKTNBQUFq3ry5ZsyYIUn69ttvlZSUpHbt2tk85l27dunQoUPKmzevtQ++vr66fv26tQ+dO3fW+vXr9ddff0mS5syZo+bNm8vHx8faxsyZM03jaNq0qdLT03XkyJE79iEpKUmXLl0yHSlG+h3PA/BoC+7WVpf2xOri1j3WMq+q5RTar6t2dR+Wiz0DAPtHJsEGLVq0UEhIiKZPn66goCClp6erfPnySk5OttZxdv7fgrubn7zfOh0pPT1dGzdulKOj4x3XByQmJqpFixYaO3ZshtduBiBZ6dGjh7p06aJJkyYpJiZGHTp0UJ48ebI1zr/3oVq1apozZ06G1/z8/CRJNWrUUPHixTV37lz17t1bixYt0syZM01t/POf/1T//v0ztFGkSJE79iE6OlqjRo0ylXWy+KqzYwEbRwPgQUo+e0HpqalyLZjfVO7qn19J8Wdve65jHncFtW+uA6PeN5X71q0u14L51ejwOmuZg5OTyr43REX7ddW6ko3v3wAA2BV73YUopxAkZNO5c+cUGxur6dOnq169epJuLMa11bhx4/T777/rhx9+UNOmTRUTE6Nu3bplWrdq1apasGCBQkND5eSU+bfKxcVFaWlpGcqfeeYZeXh46KOPPtLy5cu1YcMGm/t6sw/z5s1TwYIFs5wWJd3IJsyZM0eFCxeWg4ODdcrVzTb27dtn83qIm4YNG6aoqChT2VrfanfVFoAHx0hJ0cUdv6lAo9o69c2aG4UWi/I3rK0/ps2+7bmBbSPk4OqiE3O+MZWfmL3EvMZBUq2ln+vPOUv056yF97X/APA4I6TKpnz58il//vz69NNPdejQIa1duzbDG9c7+fXXXzV8+HB99tlnqlOnjiZOnKhXX31Vhw8fzrR+nz59dP78eXXq1Elbt25VXFycVqxYoW7dulkDg9DQUG3evFlHjx7V2bNnrVkLR0dHRUZGatiwYSpZsqRq1659V+Pu3LmzChQooOeff14//vijjhw5ovXr16t///76888/TfV27Nihd955R23btpWrq6v1tSFDhujnn39W3759tXPnTh08eFBLlizJ9sJlV1dXeXl5mQ5nCz+6wKPgyOQYBXdvr0JdWsozrJjKfzhSTh7uOv7fN/SVYsaq9NsZ/5YGd2urU0tWK+V8gqk85XyCEn87aDrSU1KUdOqsrhy48/RFAI8vHqZmG95pZZODg4Pmzp2r7du3q3z58nrttdc0bty4bJ9//fp1/eMf/1BkZKRatGghSerVq5caNmyoLl26ZJoNCAoK0saNG5WWlqYmTZqoQoUKGjBggHx8fOTw35TZoEGD5OjoqLJly8rPz8+0PqJ79+5KTk7OMlORHXny5NGGDRtUpEgRtW7dWmXKlFH37t11/fp1U2ahRIkSqlmzpnbv3m3d1eimihUr6ocfftCBAwdUr149ValSRcOHD1dQUNBd9wvAo+Hk199r/5CxKjWiv+puWyKvSmW05dkeSv7vYmb34EC5BvqZzvEoVVS+davreMz83OgyADtFkGAbi2EYRm53Ajnjxx9/VOPGjXX8+HH5+/vndnfuq6XOpXO7CwAAwEbNU2Jz7dp/9GqZY22HfLo4x9rOLaxJsENJSUk6c+aMRo4cqXbt2tldgAAAAGArFi7bhrtlh/7zn/8oJCRECQkJeu+990yvzZkzx7QV6a1HuXLlcqnHAAAAeJgw3egxc/nyZZ06dSrT15ydnRUSEvKAe3R3mG4EAMCjJzenGx1/pc2dK92l4GkLcqzt3MJ0o8dM3rx5lTdv3tzuBgAAAB5iBAkAAACwe6xJsA13CwAAAIAJmQQAAADYP4t9Ps8gp5BJAAAAAGBCJgEAAAB2z16fjJxTCBIAAABg91i4bBvuFgAAAAATMgkAAACwe0w3sg2ZBAAAAAAmZBIAAABg91iTYBvuFgAAAAATMgkAAACwe6xJsA2ZBAAAAAAmZBIAAABg98gk2IYgAQAAAPaPhcs24W4BAAAAMCGTAAAAALtnsTDdyBZkEgAAAACYkEkAAACA3eNharbhbgEAAAAwIZMAAAAAu8cWqLYhkwAAAADAhEwCAAAA7B9rEmxCkAAAAAC7x3Qj2xBSAQAAADAhkwAAAAC7Z7Hw2bgtuFsAAAAATMgkAAAAwP6xJsEmZBIAAAAAmJBJAAAAgN2zsAWqTbhbAAAAAEzIJAAAAMDu8ZwE2xAkAAAAwP6xBapNuFsAAADAA/bhhx8qNDRUbm5uqlWrlrZs2ZKt8+bOnSuLxaKWLVvmaP8IEgAAAGD3LA6WHDtsNW/ePEVFRWnEiBHasWOHKlWqpKZNm+r06dO3Pe/o0aMaNGiQ6tWrd7e3IdsIEgAAAIAHaOLEierZs6e6deumsmXL6uOPP1aePHk0Y8aMLM9JS0tT586dNWrUKBUrVizH+0iQAAAAAPvn4JBjR1JSki5dumQ6kpKSMu1GcnKytm/frvDw8Fu65qDw8HBt2rQpy+6PHj1aBQsWVPfu3e/7rckMQQIAAABwD6Kjo+Xt7W06oqOjM6179uxZpaWlyd/f31Tu7++v+Pj4TM/56aef9Pnnn2v69On3ve9ZYXcjAAAA2D2LJee2QB02bJiioqJMZa6urvel7cuXL6tLly6aPn26ChQocF/azA6CBAAAAOAeuLq6ZjsoKFCggBwdHXXq1ClT+alTpxQQEJChflxcnI4ePaoWLVpYy9LT0yVJTk5Oio2NVfHixe+h95ljuhEAAADsXw6uSbCFi4uLqlWrpjVr1ljL0tPTtWbNGtWuXTtD/bCwMO3Zs0c7d+60Hs8995waNmyonTt3Kjg4+J5vTWbIJAAAAMDuPUxPXI6KitKLL76o6tWrq2bNmpo8ebKuXLmibt26SZK6du2qQoUKKTo6Wm5ubipfvrzpfB8fH0nKUH4/ESQAAAAAD1CHDh105swZDR8+XPHx8apcubKWL19uXcx87NgxOdiYobjfLIZhGLnaA+AuLHUundtdAAAANmqeEptr106cNjTH2vZ85d0cazu3sCYBAAAAgAnTjQAAAGD/HqI1CY8CMgkAAAAATMgkAAAAwO5ZLHw2bgvuFgAAAAATMgkAAACwf6xJsAlBAgAAAOyeJZefO/Co4W4BAAAAMCGTAAAAAPtnYbqRLcgkAAAAADAhkwAAAAD7x5oEm3C3AAAAAJiQSQAAAID9Y02CTcgkAAAAADAhkwAAAAC7x3MSbEOQAAAAAPtnIUiwBXcLAAAAgAmZBAAAANg/BxYu24JMAgAAAAATMgkAAACwexbWJNiEuwUAAADAhEwCAAAA7B9rEmxCJgEAAACACZkEAAAA2D/WJNiEIAEAAAD2z8J0I1sQUgEAAAAwIZMAAAAA++fAZ+O24G4BAAAAMCGTAAAAAPvHwmWbcLcAAAAAmJBJAAAAgP3jYWo2IZMAAAAAwIRMAgAAAOwfaxJswt0CAAAAYEImAQAAAPaPJy7bhCABAAAA9o+HqdmEuwUAAADAhEwCAAAA7B/TjWxCJgEAAACACZkEAAAA2D+2QLUJdwsAAACACZkEAAAA2D92N7IJdwsAAACACZkEAAAA2D92N7IJQQIAAADsHwuXbcLdAgAAAGBCJgEAAAD2j+lGNiGTAAAAAMCETAIAAADsH1ug2oS7BQAAAMCETAIAAADsnsGaBJuQSQAAAAAesA8//FChoaFyc3NTrVq1tGXLlizrTp8+XfXq1VO+fPmUL18+hYeH37b+/UCQAAAAAPtncci5w0bz5s1TVFSURowYoR07dqhSpUpq2rSpTp8+nWn99evXq1OnTlq3bp02bdqk4OBgNWnSRCdOnLjXu5Ili2EYRo61DuSQpc6lc7sLAADARs1TYnPt2tfW/yfH2nZv0Mmm+rVq1VKNGjU0depUSVJ6erqCg4PVr18/DR069I7np6WlKV++fJo6daq6du16V32+EzIJAAAAwD1ISkrSpUuXTEdSUlKmdZOTk7V9+3aFh4dbyxwcHBQeHq5NmzZl63pXr15VSkqKfH1970v/M0OQAAAAALtnWCw5dkRHR8vb29t0REdHZ9qPs2fPKi0tTf7+/qZyf39/xcfHZ2ssQ4YMUVBQkCnQuN8IEnJZgwYNNGDAgNzuxl1bv369LBaLEhIScrsrAAAAuWLYsGG6ePGi6Rg2bFiOXOvdd9/V3LlztWjRIrm5ueXINSS2QMU9evLJJ3Xy5El5e3vndlcAPKRCer+gYlHd5Rrgp0u7f9dvA97Sxa17Mq37xOovlL9+rQzlp5et19bn/ylJKvlmXwW1by634AAZySm6uOM3xQ6fpIQtu3N0HAAecXexwDi7XF1d5erqmq26BQoUkKOjo06dOmUqP3XqlAICAm577vjx4/Xuu+9q9erVqlix4l33NzvIJNi55OTkHG3fxcVFAQEBsrD3MIBMBLZrpjLjhung2x/qp5qtdHn376q19HO5+GU+j3Z7u35aXbiO9fihUnOlp6bq5ILl1jpXDh7V3ldHa0OVFvq5wQu6+scJ1Vw2Qy4F8j2oYQHAXXNxcVG1atW0Zs0aa1l6errWrFmj2rVrZ3nee++9p7feekvLly9X9erVc7yfBAkP0JUrV9S1a1d5enoqMDBQEyZMML2elJSkQYMGqVChQvLw8FCtWrW0fv166+szZ86Uj4+PFi9erJIlS8rNzU1NmzbV8ePHrXVGjhypypUr67PPPlPRokWtaaiEhAT16NFDfn5+8vLyUqNGjbRr1y7rebt27VLDhg2VN29eeXl5qVq1atq2bZsk6Y8//lCLFi2UL18+eXh4qFy5clq2bJmkzKcbLViwQOXKlZOrq6tCQ0MzjDM0NFRjxozRSy+9pLx586pIkSL69NNP78s9BvBwKTqgm45//pX+nLVQifvjtOeVEUq7el3BkW0yrZ9y4aKSTp21HgXC6yjt6nWdnP+/IOGvud/p3NpNunbkTyXuO6T9g6Ll7J1XeSuw6xmA27BYcu6wUVRUlKZPn65Zs2Zp//796t27t65cuaJu3bpJkrp27WqarjR27Fi9+eabmjFjhkJDQxUfH6/4+HglJibet9vzdwQJD9DgwYP1ww8/aMmSJVq5cqXWr1+vHTt2WF/v27evNm3apLlz52r37t1q166dIiIidPDgQWudq1ev6p133tEXX3yhjRs3KiEhQR07djRd59ChQ1qwYIEWLlyonTt3SpLatWun06dP6/vvv9f27dtVtWpVNW7cWOfPn5ckde7cWYULF9bWrVu1fft2DR06VM7OzpKkPn36KCkpSRs2bNCePXs0duxYeXp6ZjrG7du3q3379urYsaP27NmjkSNH6s0339TMmTNN9SZMmKDq1avr119/1SuvvKLevXsrNjb3tkUDcP9ZnJ3lXbWczq75+X+FhqGza3+WzxNVstVGcLc2OvnVUqVdvZblNYr06KCUhEu6tJu/IQAeDR06dND48eM1fPhwVa5cWTt37tTy5cuti5mPHTumkydPWut/9NFHSk5OVtu2bRUYGGg9xo8fn2N9ZE3CA5KYmKjPP/9cs2fPVuPGjSVJs2bNUuHChSXd+GGIiYnRsWPHFBQUJEkaNGiQli9frpiYGI0ZM0aSlJKSoqlTp6pWrVrWNsqUKaMtW7aoZs2akm5MMfriiy/k5+cnSfrpp5+0ZcsWnT592jpfbvz48Vq8eLHmz5+vXr166dixYxo8eLDCwsIkSSVLlrT2/dixY2rTpo0qVKggSSpWrFiW45w4caIaN26sN998U5JUqlQp7du3T+PGjVNkZKS13jPPPKNXXnlF0o0V+pMmTdK6detUunTGTwKTkpIybCOWYqTLOQfnFgK4dy4F8snByUlJp8+ZypNOnZNH6az/jtzkXaOCvMqX1u5eb2R4reAzDVRlzkQ55nFX0skz2tzsJaWcu3Df+g7ADjk8XO8b+vbtq759+2b62q0zSSTp6NGjOd+hv3m47pYdi4uLU3JysvXNvST5+vpa3xTv2bNHaWlpKlWqlDw9Pa3HDz/8oLi4OOs5Tk5OqlGjhvXrsLAw+fj4aP/+/daykJAQa4Ag3ZhKlJiYqPz585vaPnLkiLXtqKgo9ejRQ+Hh4Xr33XdN1+zfv7/efvtt1alTRyNGjNDu3VkvDty/f7/q1KljKqtTp44OHjyotLQ0a9mti20sFosCAgKyfMpgZtuKfZV+Pss+ALAPwd3a6tKe2EwXOZ9bv1k/Vm+pn5/qqDMrf1TVLydnuc4BAKSc3QLVHhEkPCQSExPl6Oio7du3a+fOndZj//79mjJlik1teXh4ZGg7MDDQ1O7OnTsVGxurwYMHS7qxluG3335T8+bNtXbtWpUtW1aLFi2SJPXo0UOHDx9Wly5dtGfPHlWvXl0ffPDBPY335lSmmywWi9LT0zOtm9m2Yu0deDMAPOySz15QemqqXAvmN5W7+udXUvzZ257rmMddQe2b63jM/ExfT7t6TVfjjilh8y7t7vWGjNRUBXdre9/6DgCPO4KEB6R48eJydnbW5s2brWUXLlzQgQMHJElVqlRRWlqaTp8+rRIlSpiOW7fDSk1NtS4olqTY2FglJCSoTJkyWV67atWqio+Pl5OTU4a2CxQoYK1XqlQpvfbaa1q5cqVat26tmJgY62vBwcF6+eWXtXDhQg0cOFDTp0/P9FplypTRxo0bTWUbN25UqVKl5OjomM27Zebq6iovLy/TwVQj4OFnpNzYnrRAo1t267BYlL9hbSX88uttzw1sGyEHVxedmPNN9i7m4CAHV5d76C0Au2dxyLnDDrEm4QHx9PRU9+7dNXjwYOXPn18FCxbUG2+8IYf/zo8rVaqUOnfurK5du2rChAmqUqWKzpw5ozVr1qhixYpq3ry5pBufwPfr10/vv/++nJyc1LdvXz3xxBPW9QiZCQ8PV+3atdWyZUu99957KlWqlP766y8tXbpUrVq1Urly5TR48GC1bdtWRYsW1Z9//qmtW7eqTZsbu48MGDBAzZo1U6lSpXThwgWtW7cuy6Bk4MCBqlGjht566y116NBBmzZt0tSpUzVt2rT7fEcBPAqOTI5RpRljlbB9ry5u3a3Q/i/KycNdx2ctlCRVihmr6ydOKfZfE03nBXdrq1NLVivlfIKp3DGPu0oMe1mnvlurpJNn5Fwgn0J7d5ZbIX/TNqkAgHtDkPAAjRs3TomJiWrRooXy5s2rgQMH6uLFi9bXY2Ji9Pbbb2vgwIE6ceKEChQooCeeeELPPvustU6ePHk0ZMgQvfDCCzpx4oTq1aunzz///LbXtVgsWrZsmd544w1169ZNZ86cUUBAgJ566in5+/vL0dFR586dU9euXXXq1CkVKFBArVu31qhRoyRJaWlp6tOnj/788095eXkpIiJCkyZNyvRaVatW1VdffaXhw4frrbfeUmBgoEaPHm1atAzg8XHy6+/l4uerUiP633iY2q792vJsDyX/dzGze3CgjL9NNfQoVVS+datrc0S3DO0ZaWnyLF1Mhbu0knOBfEo5l6CEbXu0qWFnJe479EDGBODRZNjpJ/45xWIYhpHbnUD2zJw5UwMGDDA9k+BxtdSZ/dABAHjUNE/Jva2KE3/J5vTFu+D5xHM51nZuIZMAAAAA+2enuxDlFPIuAAAAAEwIEh4hkZGRTDUCAAC4C4bFIccOe8R0IwAAANg/phvZxD5DHwAAAAB3jUwCAAAA7J+dTgvKKdwtAAAAACZkEgAAAGD3DNYk2IRMAgAAAAATMgkAAACwf6xJsAl3CwAAAIAJmQQAAADYPUOsSbAFQQIAAADsnr0+GTmncLcAAAAAmJBJAAAAgP0jk2AT7hYAAAAAEzIJAAAAsHs8TM02ZBIAAAAAmJBJAAAAgN1jdyPbcLcAAAAAmJBJAAAAgP1jTYJNCBIAAABg95huZBvuFgAAAAATMgkAAACwe4aYbmQLMgkAAAAATMgkAAAAwO6xJsE23C0AAAAAJmQSAAAAYP/YAtUmZBIAAAAAmJBJAAAAgN0z+GzcJgQJAAAAsHsG041sQkgFAAAAwIRMAgAAAOweW6DahrsFAAAAwIRMAgAAAOyeIdYk2IJMAgAAAAATMgkAAACwe6xJsA13CwAAAIAJmQQAAADYPZ6TYBsyCQAAAABMyCQAAADA7rG7kW0IEgAAAGD3WLhsG+4WAAAAABMyCQAAALB7TDeyDZkEAAAAACYECQAAALB7hsUhx4678eGHHyo0NFRubm6qVauWtmzZctv6X3/9tcLCwuTm5qYKFSpo2bJld3Xd7CJIAAAAAB6gefPmKSoqSiNGjNCOHTtUqVIlNW3aVKdPn860/s8//6xOnTqpe/fu+vXXX9WyZUu1bNlSe/fuzbE+WgzDMHKsdSCHLHUundtdAAAANmqeEptr1z566ECOtR1aopRN9WvVqqUaNWpo6tSpkqT09HQFBwerX79+Gjp0aIb6HTp00JUrV/Tdd99Zy5544glVrlxZH3/88b11PgtkEgAAAIB7kJSUpEuXLpmOpKSkTOsmJydr+/btCg8Pt5Y5ODgoPDxcmzZtyvScTZs2mepLUtOmTbOsfz8QJAAAAMDu5eSahOjoaHl7e5uO6OjoTPtx9uxZpaWlyd/f31Tu7++v+Pj4TM+Jj4+3qf79wBaoAAAAsHs5uQXqsGHDFBUVZSpzdXXNses9CAQJAAAAwD1wdXXNdlBQoEABOTo66tSpU6byU6dOKSAgINNzAgICbKp/PxAk4JFUsFa+3O4CAAB4hBiWh+Nhai4uLqpWrZrWrFmjli1bSrqxcHnNmjXq27dvpufUrl1ba9as0YABA6xlq1atUu3atXOsnwQJAAAAwAMUFRWlF198UdWrV1fNmjU1efJkXblyRd26dZMkde3aVYUKFbKua3j11VdVv359TZgwQc2bN9fcuXO1bds2ffrppznWR4IEAAAA2D3DeDgyCdKNLU3PnDmj4cOHKz4+XpUrV9by5cuti5OPHTsmB4f/7S/05JNP6ssvv9S//vUv/d///Z9KliypxYsXq3z58jnWR56TgEfS1rpP5HYXAACAjWr89EuuXftQ3JEca7tE8aI51nZuIZMAAAAAu2ew879NuFsAAAAATMgkAAAAwO7l5HMS7BFBAgAAAOweQYJtmG4EAAAAwIRMAgAAAOwemQTbkEkAAAAAYEImAQAAAHaPTIJtyCQAAAAAMCGTAAAAALtnGGQSbEEmAQAAAIAJmQQAAADYPdYk2IYgAQAAAHaPIME2TDcCAAAAYEImAQAAAHaPTIJtyCQAAAAAMCGTAAAAALvHFqi2IZMAAAAAwIRMAgAAAOxeOmsSbEImAQAAAIAJmQQAAADYPXY3sg1BAgAAAOweC5dtw3QjAAAAACZkEgAAAGD3mG5kGzIJAAAAAEzIJAAAAMDusSbBNmQSAAAAAJiQSQAAAIDdY02CbcgkAAAAADAhkwAAAAC7x5oE2xAkAAAAwO6l53YHHjFMNwIAAABgQiYBAAAAdo/pRrYhkwAAAADAhEwCAAAA7B5boNqGTAIAAAAAEzIJAAAAsHusSbANmQQAAAAAJmQSAAAAYPdYk2AbggQAAADYvXQjt3vwaGG6EQAAAAATMgkAAACwe0w3sg2ZBAAAAAAmZBIAAABg99gC1TZkEgAAAACYkEkAAACA3TPY3cgmZBIAAAAAmNh1kBAaGqrJkydnq67FYtHixYtztD9Hjx6VxWLRzp07b1uvQYMGGjBgwF1f505jWb9+vSwWixISEu76GgAAAI+SdFly7LBHj0SQ8CDewOeG3Hqz/uSTT+rkyZPy9va+Y10CCgD3qmDrNqr49SJVW/ODynz6uTzKlL1tfUdPTxWJGqRKi79TtbUbVOE/X8n7idrW14Ne6qEaP/1iOsrPmZvTwwDwiDMMS44d9og1CY8hFxcXBQQEPNBrGoahtLQ0OTnxIwc8TnwbhSu476v6Y/xYJe77Tf7tO6rUxMna06mDUhMuZKhvcXJS6UnvK+XCBcW9+X9KPnNGrgEBSk28bKp39XCcYgf0+19BWlpODwUAHis2ZRIaNGigfv36acCAAcqXL5/8/f01ffp0XblyRd26dVPevHlVokQJff/999Zz9u7dq2bNmsnT01P+/v7q0qWLzp49a2qzf//+ev311+Xr66uAgACNHDnS+npoaKgkqVWrVrJYLNav4+Li9Pzzz8vf31+enp6qUaOGVq9effd3QtLZs2fVqlUr5cmTRyVLltQ333xjev1OY1m+fLnq1q0rHx8f5c+fX88++6zi4uIyvdbRo0fVsGFDSVK+fPlksVgUGRlpfT09PT3Le3KvY/l7duCPP/5QixYtlC9fPnl4eKhcuXJatmzZbfuYlJSk/v37q2DBgnJzc1PdunW1devWDNf4/vvvVa1aNbm6umr27NlycHDQtm3bTH2dPHmyQkJClJ6ebtMYATz8/Dt20plvl+jssqW6fvSo/hg3VunXr6vAs89mWr9A8xZy9PLSoWGvK3HPbiXHn9Tlnb/q2qFD5oppaUo9f/5/x8WLD2A0AB5lhpFzhz2yebrRrFmzVKBAAW3ZskX9+vVT79691a5dOz355JPasWOHmjRpoi5duujq1atKSEhQo0aNVKVKFW3btk3Lly/XqVOn1L59+wxtenh4aPPmzXrvvfc0evRorVq1SpKsbzxjYmJ08uRJ69eJiYl65plntGbNGv3666+KiIhQixYtdOzYsbu+GaNGjVL79u21e/duPfPMM+rcubPOnz8vSdkay5UrVxQVFaVt27ZpzZo1cnBwUKtWrTJ98xscHKwFCxZIkmJjY3Xy5ElNmTIlW/fkXsfyd3369FFSUpI2bNigPXv2aOzYsfL09LxtH19//XUtWLBAs2bN0o4dO1SiRAk1bdo0wzWGDh2qd999V/v379dzzz2n8PBwxcTEmOrExMQoMjJSDg6PxOw3ANlkcXKSR6nSurTtfx8gyDB0adtWeZarkOk5PnXr6crevSoycLAqf7NM5b6Yo8AuL0p/+/vgWjhYlRZ/qwpfLVCx4aPk4u+fk0MBgFxz/vx5de7cWV5eXvLx8VH37t2VmJh42/r9+vVT6dKl5e7uriJFiqh///66aOOHKTa/K6tUqZL+9a9/qWTJkho2bJjc3NxUoEAB9ezZUyVLltTw4cN17tw57d69W1OnTlWVKlU0ZswYhYWFqUqVKpoxY4bWrVunAwcOWNusWLGiRowYoZIlS6pr166qXr261qxZI0ny8/OTJPn4+CggIMD6daVKlfTPf/5T5cuXV8mSJfXWW2+pePHiGT79t0VkZKQ6deqkEiVKaMyYMUpMTNSWLVskKVtjadOmjVq3bq0SJUqocuXKmjFjhvbs2aN9+/ZluJajo6N8fX0lSQULFlRAQIBpjcDt7sm9juXvjh07pjp16qhChQoqVqyYnn32WT311FNZ9vHKlSv66KOPNG7cODVr1kxly5bV9OnT5e7urs8//9zU9ujRo/X000+rePHi8vX1VY8ePfSf//xHSUlJkqQdO3Zoz5496tatW7bHBuDR4OTtI4uTk1L+9uFByvkLcs6fP9NzXIOClK9BQ1kcHHRg8Gs6OTNGAR1fUNCL//sbcWXfbzoy5i0dGPia/hj/nlwDAxX24cdycM+To+MB8GgzZMmxIyd17txZv/32m1atWqXvvvtOGzZsUK9evbKs/9dff+mvv/7S+PHjtXfvXs2cOVPLly9X9+7dbbquzUFCxYoVrf92dHRU/vz5VaHC/z4R8v/vpzmnT5/Wrl27tG7dOnl6elqPsLAwSTJNw7m1TUkKDAzU6dOnb9uPxMREDRo0SGXKlJGPj488PT21f//+e8ok3NoPDw8PeXl5WfuRnbEcPHhQnTp1UrFixeTl5WWdGnU3fbqbe5Ldsfxd//799fbbb6tOnToaMWKEdu/efdu24+LilJKSojp16ljLnJ2dVbNmTe3fv99Ut3r16qavW7ZsKUdHRy1atEiSNHPmTDVs2NB6rzKTlJSkS5cumY5kpiYBdsni4KCUhAs6+t67uhobq/NrV+uvL2bK7/lW1joXf9mkC+vW6lrcIV3aslkHBkfJ0TOvfBs1zsWeA8D9t3//fi1fvlyfffaZatWqpbp16+qDDz7Q3Llz9ddff2V6Tvny5bVgwQK1aNFCxYsXV6NGjfTOO+/o22+/VWpqaravbXOQ4OzsbPraYrGYyiyWG9FUenq6EhMT1aJFC+3cudN0HDx4UE899dRt27zT/PRBgwZp0aJFGjNmjH788Uft3LlTFSpUUHJysq1DylY/sjOWFi1a6Pz585o+fbo2b96szZs3S9Jd9elu7sndnt+jRw8dPnxYXbp00Z49e1S9enV98MEHNvc5Mx4eHqavXVxc1LVrV8XExCg5OVlffvmlXnrppdu2ER0dLW9vb9Mx88/MfzEAPDxSLybISE2V838zkjc5++ZTyrlzmZ6TfPasrh8/Lt3y9+r6H0flUqCALFlsfJCWmKik48fkVrjw/es8ALuTbuTckdkHmjdnTdyLTZs2ycfHx/Sha3h4uBwcHKzvM7Pj4sWL8vLysmkDmRydBF61alX99ttvCg0NVYkSJUzH39883o6zs7PS/rZzxcaNGxUZGalWrVqpQoUKCggI0NGjR+/zCP7nTmM5d+6cYmNj9a9//UuNGzdWmTJldOFCxp07buXi4iJJGcaWG4KDg/Xyyy9r4cKFGjhwoKZPny4p8z4WL15cLi4u2rhxo7UsJSVFW7duVdmyt9/aULoRlKxevVrTpk1TamqqWrdufdv6w4YN08WLF01HZOGguxkmgAfISE3VlQOx8qpW43+FFou8qtVQ4m97Mj0ncc9uuRUqLFn+l753Cw5W8tkzMrL4BMzB3V2uhQopOYvAAwByWmYfaEZHR99zu/Hx8SpYsKCpzMnJSb6+voqPj89WG2fPntVbb7112ylKmcnRIKFPnz46f/68OnXqpK1btyouLk4rVqxQt27dbHpjHBoaqjVr1ig+Pt76xrtkyZJauHChdu7cqV27dumFF17I0d1x7jSWfPnyKX/+/Pr000916NAhrV27VlFRUbdtMyQkRBaLRd99953OnDlz20UoOWnAgAFasWKFjhw5oh07dmjdunUqU6ZMln308PBQ7969NXjwYC1fvlz79u1Tz549dfXq1WzNdytTpoyeeOIJDRkyRJ06dZK7u/tt67u6usrLy8t0uLDIGXgknJr7H/m1eE75I56RW0ioQga9Lgd3N51dulSSVPRfw1X4n72t9c8sXignLy8VeTVKrsHB8q79pAK7ROr0wgXWOsF9+ilv5SpyCQiUZ/kKKjFmrIy0dJ1fvfKBjw/AoyMnn5OQ2Qeaw4YNy7IvQ4cOlcViue3x+++/3/OYL126pObNm6ts2bI275SZo5vWBwUFaePGjRoyZIiaNGmipKQkhYSEKCIiwqadbCZMmKCoqChNnz5dhQoV0tGjRzVx4kS99NJLevLJJ1WgQAENGTJEly5dyrWxWCwWzZ07V/3791f58uVVunRpvf/++2rQoEGWbRYqVEijRo3S0KFD1a1bN3Xt2lUzZ87MsTFkJS0tTX369NGff/4pLy8vRUREaNKkSbft47vvvqv09HR16dJFly9fVvXq1bVixQrly5cvW9fs3r27fv755ztONQLwaDu/drWcfHxUqEdPOfvm19VDB3Vg4GtKvXBjMbOLf8CNXP1/JZ8+rdioV1Wk/wCVnzlbyWfP6NTX83Ryzr+tdZz9CqrYyNFy8vJWakKCLu/epf3/7KFUHvoI4DZycqtSV1dXubq6Zrv+wIEDTVvfZ6ZYsWIKCAjIsKY0NTVV58+fv+Mzry5fvqyIiAjlzZtXixYtyjAV/U4shmGvu7viYfbWW2/p66+/vuMi6axsrfvEfe4RAADIaTV++iXXrr1sR0qOtf1MVdvegGfX/v37VbZsWW3btk3VqlWTJK1cuVIRERH6888/FRSU+fTrS5cuqWnTpnJ1ddWyZcuUJ4/tu78xZwMPVGJiovbu3aupU6eqX79+dz4BAADgPkiXJceOnFKmTBlFRESoZ8+e2rJlizZu3Ki+ffuqY8eO1gDhxIkTCgsLs251f+nSJTVp0kRXrlzR559/rkuXLik+Pl7x8fE2Tfd/LIKEOXPmmLYuvfUoV65cbnfPJo/6WPr27atq1aqpQYMGTDUCAAC4gzlz5igsLEyNGzfWM888o7p16+rTTz+1vp6SkqLY2FhdvXpV0o1nUG3evFl79uxRiRIlFBgYaD2OHz+e7es+FtONLl++rFOnTmX6mrOzs0JCQh5wj+6ePY3lXjDdCACAR09uTjf6dnv2nxFgqxbVcnSZb66wvxFlIm/evMqbN29ud+O+sKexAAAA4OH0WAQJAAAAeLwZRs6tHbBHj8WaBAAAAADZRyYBAAAAdi/d7lfh3l9kEgAAAACYkEkAAACA3bP//TzvL4IEAAAA2D0jBx96Zo+YbgQAAADAhEwCAAAA7B4Ll21DJgEAAACACZkEAAAA2D0WLtuGTAIAAAAAEzIJAAAAsHtkEmxDJgEAAACACZkEAAAA2L10g+ck2IIgAQAAAHaP6Ua2YboRAAAAABMyCQAAALB7ZBJsQyYBAAAAgAmZBAAAANi9dDIJNiGTAAAAAMCETAIAAADsnsEWqDYhkwAAAADAhEwCAAAA7B67G9mGIAEAAAB2j4XLtmG6EQAAAAATMgkAAACwe0w3sg2ZBAAAAAAmZBIAAABg98gk2IZMAgAAAAATMgkAAACwe+xuZBsyCQAAAABMyCQAAADA7rEmwTYECQAAALB76em53YNHC9ONAAAAAJiQSQAAAIDdY7qRbcgkAAAAADAhkwAAAAC7RybBNmQSAAAAAJiQSQAAAIDd42FqtiGTAAAAAMCETAIAAADsnpGjixIsOdh27iBIAAAAgN1j4bJtmG4EAAAAwIRMAgAAAOxeenpu9+DRQiYBAAAAgAmZBAAAANg91iTYhkwCAAAAABMyCQAAALB7PEzNNmQSAAAAAJiQScAj6bV8Y3O7CwAAwEY/5eK1WZNgGzIJAAAAsHtGupFjR046f/68OnfuLC8vL/n4+Kh79+5KTEzM3pgNQ82aNZPFYtHixYttui5BAgAAAPCQ6ty5s3777TetWrVK3333nTZs2KBevXpl69zJkyfLYrHc1XWZbgQAAAC79yguXN6/f7+WL1+urVu3qnr16pKkDz74QM8884zGjx+voKCgLM/duXOnJkyYoG3btikwMNDma5NJAAAAAO5BUlKSLl26ZDqSkpLuud1NmzbJx8fHGiBIUnh4uBwcHLR58+Ysz7t69apeeOEFffjhhwoICLiraxMkAAAAwO4ZRs4d0dHR8vb2Nh3R0dH33Of4+HgVLFjQVObk5CRfX1/Fx8dned5rr72mJ598Us8///xdX5vpRgAAAMA9GDZsmKKiokxlrq6uWdYfOnSoxo69/U6N+/fvv6u+fPPNN1q7dq1+/fXXuzr/JoIEAAAA2L30HFyU4Orqetug4O8GDhyoyMjI29YpVqyYAgICdPr0aVN5amqqzp8/n+U0orVr1youLk4+Pj6m8jZt2qhevXpav359tvpIkAAAAAA8QH5+fvLz87tjvdq1ayshIUHbt29XtWrVJN0IAtLT01WrVq1Mzxk6dKh69OhhKqtQoYImTZqkFi1aZLuPBAkAAACwe4/iw9TKlCmjiIgI9ezZUx9//LFSUlLUt29fdezY0bqz0YkTJ9S4cWN98cUXqlmzpgICAjLNMhQpUkRFixbN9rVZuAwAAAC7l5MLl3PSnDlzFBYWpsaNG+uZZ55R3bp19emnn1pfT0lJUWxsrK5evXpfr0smAQAAAHhI+fr66ssvv8zy9dDQUBl3iFTu9HpmCBIAAABg99IfxflGuYjpRgAAAABMyCQAAADA7hnpud2DRwuZBAAAAAAmZBIAAABg9+5m8e7jjEwCAAAAABMyCQAAALB76axJsAlBAgAAAOwe041sw3QjAAAAACZkEgAAAGD30kkk2IRMAgAAAAATMgkAAACwewapBJuQSQAAAABgQiYBAAAAdo/NjWxDJgEAAACACZkEAAAA2L101iTYhEwCAAAAABMyCQAAALB7PHHZNgQJAAAAsHtGem734NHCdCMAAAAAJmQSAAAAYPfSmW5kEzIJAAAAAEzIJAAAAMDusXDZNmQSAAAAAJiQSQAAAIDd42FqtiGTAAAAAMCETAIAAADsHksSbEOQAAAAALtnMN3IJkw3AgAAAGBCJgEAAAB2j4ep2YZMAgAAAAATMgkAAACwe6xJsA2ZBAAAAAAmZBIAAABg98gk2IZMAgAAAAATMgkAAACweyQSbEOQAAAAALvHdCPbMN0IAAAAgAmZBAAAANg9g4ep2YRMwkPg6NGjslgs2rlzp7Vs48aNqlChgpydndWyZctc6xsAAAAeP2QSHlJRUVGqXLmyvv/+e3l6eubotSIjI5WQkKDFixfn6HUAPL66dw5ViyYByuvhpD37L2n8tIP68+S1LOt//VktBfq7ZShfuPSEJn58yPp1udJe6tUlVGVLeyk93dDBw4mKGrFHycnpOTIOAI+udNYk2IQg4SEVFxenl19+WYULF87trgDAPencJlhtny2kdyb/rpOnrqtH51BNHF1B/3hlq5JTMv9Pu2fUDjnckusuFuKhyW9X0rqfzljLypX20oRRFTR7/jFN/vSQUtMMlSzqyeJEALgPmG50H82fP18VKlSQu7u78ufPr/DwcF25ckWS9Nlnn6lMmTJyc3NTWFiYpk2blmkbN6cenTt3Ti+99JIsFotmzpx5x2vv3btXzZo1k6enp/z9/dWlSxedPXv2jn0bOXKkZs2apSVLlshischisWj9+vWSpOPHj6t9+/by8fGRr6+vnn/+eR09etR03duN6+ZYvvrqK9WrV0/u7u6qUaOGDhw4oK1bt6p69ery9PRUs2bNdObMGQGwT+2eK6QvvvpDP20+p7ijV/T2pN+V39dV9Z4okOU5CZdSdD7hf8eTNfLrz7+u6de9F611+vcorvnfntDs+cd15NhVHT9xTWt/OqOUVIIEABkZhpFjhz0iSLhPTp48qU6dOumll17S/v37tX79erVu3VqGYWjOnDkaPny43nnnHe3fv19jxozRm2++qVmzZmVoJzg4WCdPnpSXl5cmT56skydPqkOHDre9dkJCgho1aqQqVapo27ZtWr58uU6dOqX27dvfsW+DBg1S+/btFRERoZMnT+rkyZN68sknlZKSoqZNmypv3rz68ccftXHjRnl6eioiIkLJycmSlO1xjRgxQv/617+0Y8cOOTk56YUXXtDrr7+uKVOm6Mcff9ShQ4c0fPjw+/SdAPAwCfJ3UwFfV23decFaduVqmvYduKTyYV7ZasPJyaImDf21dHW8tczH21nlwrx04WKyPnqvsr75orY+iK6kimWz1yYA4PaYbnSfnDx5UqmpqWrdurVCQkIkSRUqVJB0403yhAkT1Lp1a0lS0aJFtW/fPn3yySd68cUXTe04OjoqICBAFotF3t7eCggIuOO1p06dqipVqmjMmDHWshkzZig4OFgHDhxQYmJiln2TJHd3dyUlJZmuNXv2bKWnp+uzzz6TxWKRJMXExMjHx0fr169XkyZNsj2uQYMGqWnTppKkV199VZ06ddKaNWtUp04dSVL37t1vmy1JSkpSUlKSqSw9LVkOji53vDcAcpdvvhu/pxcSUkzlFxKSra/dyVNPFJCnh5OWrflfkFAo4MZ6hZc6herDGXE6eOSKIhr5a/LbldS1z7bbrncA8HhiKqJtCBLuk0qVKqlx48aqUKGCmjZtqiZNmqht27ZycXFRXFycunfvrp49e1rrp6amytvb+75ce9euXVq3bl2mC5zj4uLUpEmTTPuWL1++27Z56NAh5c2b11R+/fp1xcXF6cqVK9keV8WKFa3/9vf3l2QOUvz9/XX69Oks+xIdHa1Ro0aZyoJLvqgipbtleQ6A3PF0/YIa3KeU9evXR++55zabPx2gzdvP69z5ZGvZzQ8vliw/qWVrTkmSDh5OVLWKPmr+dIA++eLIPV8XgH0hSLANQcJ94ujoqFWrVunnn3/WypUr9cEHH+iNN97Qt99+K0maPn26atWqleGc+yExMVEtWrTQ2LFjM7wWGBiYZd82b96sokWLZtlmtWrVNGfOnAyv+fn5KTExUVL2xuXs7Gz9983/2P9elp6e9U4kw4YNU1RUlKksouPmLOsDyD0/bTmnfQe2Wb92cb4xqzWfj7POXfjfm/x8Pi46dDjxju35+7mqeqV8eiP6N1P5zbaOHr9iKv/jz6vy93O96/4DAG4gSLiPLBaL6tSpozp16mj48OEKCQnRxo0bFRQUpMOHD6tz5845ct2qVatqwYIFCg0NlZNT5t/SzPq2aNEiRUVFycXFRWlpaRnanDdvngoWLCgvr4xzfL29vXN8XDe5urrK1dX8nz5TjYCH07VraTpxzfz35Oz5JFWvlE+Hjtx4Q5/H3VFlS3lp8bK/7the8/AAXbiYrE1bz5nKT566rjPnklSkUB5TeXCQu37ZfkEA8HfpdrrAOKewcPk+2bx5s8aMGaNt27bp2LFjWrhwoc6cOaMyZcpo1KhRio6O1vvvv68DBw5oz549iomJ0cSJE+/Ltfv06aPz58+rU6dO2rp1q+Li4rRixQp169ZNaWlpt+2bJIWGhmr37t2KjY3V2bNnlZKSos6dO6tAgQJ6/vnn9eOPP+rIkSNav369+vfvrz///FOScnxcAOzD19+c0IsdiqhOzfwqFuKhf0WF6dz5JP34y/92YJv8dkW1bh5kOs9ikZ4JD9DytaeUlkmy8cuFx9W2RSE1eLKACgW6qUfnUIUUzqPvVp3M6SEBgN0jk3CfeHl5acOGDZo8ebIuXbqkkJAQTZgwQc2aNZMk5cmTR+PGjdPgwYPl4eGhChUqaMCAAffl2kFBQdq4caOGDBmiJk2aKCkpSSEhIYqIiJCDg8Md+9azZ0+tX79e1atXV2JiotatW6cGDRpow4YNGjJkiFq3bq3Lly+rUKFCaty4sTWz0KNHjxwdFwD7MGfBcbm5Oer1vqXk6eGkPfsuauCIPaZnJBQKcJePl7PpvOqV8ymgoJuWror/e5OSbgQfri4O6tejuLzyOuvQkUS9Nny3/oq/nqPjAfBoYk2CbSyGvW7uCrtWt8UPud0FAABgo5++rZ9r135xeOYfONwPs0bfeTfKu3X+/Hn169dP3377rRwcHNSmTRtNmTIl0w1rbrVp0ybrGlRHR0dVrlxZK1askLu7e7auy3QjAAAA2L1H9WFqnTt31m+//aZVq1bpu+++04YNG9SrV6/bnrNp0yZFRESoSZMm2rJli7Zu3aq+ffvKwSH7b/2ZbvQIePnllzV79uxMX/vHP/6hjz/++AH3CAAAADlt//79Wr58ubZu3arq1atLkj744AM988wzGj9+vIKCgjI977XXXlP//v01dOhQa1np0qVtujZBwiNg9OjRGjRoUKavZbbzEAAAAMzSH8E1CZs2bZKPj481QJCk8PBwOTg4aPPmzWrVqlWGc06fPq3Nmzerc+fOevLJJxUXF6ewsDC98847qlu3bravTZDwCChYsKAKFiyY290AAAB4ZOXkwuWkpCQlJSWZyjLbwt1W8fHxGd4DOjk5ydfXV/Hxma+xOHz4sCRp5MiRGj9+vCpXrqwvvvhCjRs31t69e1WyZMlsXZs1CQAAAMA9iI6Olre3t+mIjo7Osv7QoUNlsVhue/z+++931ZebD6j95z//qW7duqlKlSqaNGmSSpcurRkzZmS7HTIJAAAAsHs5ucB42LBhioqKMpXdLoswcOBARUZG3rbNYsWKKSAgQKdPnzaVp6am6vz58woIyHxHpcDAQElS2bJlTeVlypTRsWPHbnvNWxEkAAAAAPfA1qlFfn5+8vPzu2O92rVrKyEhQdu3b1e1atUkSWvXrlV6erpq1aqV6TmhoaEKCgpSbGysqfzAgQPWZ2RlB9ONAAAAYPeM9PQcO3JKmTJlFBERoZ49e2rLli3auHGj+vbtq44dO1p3Njpx4oTCwsK0ZcsWSZLFYtHgwYP1/vvva/78+Tp06JDefPNN/f777+revXu2r00mAQAAAHhIzZkzR3379lXjxo2tD1N7//33ra+npKQoNjZWV69etZYNGDBA169f12uvvabz58+rUqVKWrVqlYoXL57t6/LEZTySeOIyAACPntx84nKHQX/kWNvzxofkWNu5helGAAAAAEyYbgQAAAC7x+QZ2xAkAAAAwO7l5MPU7BHTjQAAAACYkEkAAACA3SOTYBsyCQAAAABMyCQAAADA7qUbOffQM3tEJgEAAACACZkEAAAA2D3WJNiGTAIAAAAAEzIJAAAAsHtkEmxDkAAAAAC7xxOXbcN0IwAAAAAmZBIAAABg99LT2QLVFmQSAAAAAJiQSQAAAIDdY+GybcgkAAAAADAhkwAAAAC7ZxisSbAFmQQAAAAAJmQSAAAAYPdYk2AbggQAAADYPYIE2zDdCAAAAIAJmQQAAADYvXQWLtuETAIAAAAAEzIJAAAAsHusSbANmQQAAAAAJmQSAAAAYPeMdNYk2IJMAgAAAAATMgkAAACwe6xJsA2ZBAAAAAAmZBIAAABg9wyek2ATggQAAADYvXSmG9mE6UYAAAAATMgkAAAAwO6xBaptyCQAAAAAMCGTAAAAALvHFqi2IZMAAAAAwIRMAgAAAOweW6DahkwCAAAAABMyCQAAALB7rEmwDUECAAAA7B5boNqG6UYAAAAATCyGYZB7AQA8FJKSkhQdHa1hw4bJ1dU1t7sDAI8tggQAwEPj0qVL8vb21sWLF+Xl5ZXb3QGAxxbTjQAAAACYECQAAAAAMCFIAAAAAGBCkAAAeGi4urpqxIgRLFoGgFzGwmUAAAAAJmQSAAAAAJgQJAAAAAAwIUgAAAAAYEKQAAB4pISGhmry5MkP9JoNGjTQgAEDHug1ASA3ESQAAKwiIyPVsmXL3O4GACCXESQAAGyWkpKS210AAOQgggQAeAzNnz9fFSpUkLu7u/Lnz6/w8HANHjxYs2bN0pIlS2SxWGSxWLR+/XodPXpUFotF8+bNU/369eXm5qY5c+ZIkj777DOVKVNGbm5uCgsL07Rp06zXSE5OVt++fRUYGCg3NzeFhIQoOjpakmQYhkaOHKkiRYrI1dVVQUFB6t+//12NJSEhQT169JCfn5+8vLzUqFEj7dq1S5J04MABWSwW/f7776ZzJk2apOLFi1u/3rt3r5o1ayZPT0/5+/urS5cuOnv27F31BwDsgVNudwAA8GCdPHlSnTp10nvvvadWrVrp8uXL+vHHH9W1a1cdO3ZMly5dUkxMjCTJ19dXf/31lyRp6NChmjBhgqpUqWINFIYPH66pU6eqSpUq+vXXX9WzZ095eHjoxRdf1Pvvv69vvvlGX331lYoUKaLjx4/r+PHjkqQFCxZo0qRJmjt3rsqVK6f4+HjrG3tbtWvXTu7u7vr+++/l7e2tTz75RI0bN9aBAwdUqlQpVa9eXXPmzNFbb71lPWfOnDl64YUXJN0IMho1aqQePXpo0qRJunbtmoYMGaL27dtr7dq193KrAeCRRZAAAI+ZkydPKjU1Va1bt1ZISIgkqUKFCpIkd3d3JSUlKSAgIMN5AwYMUOvWra1fjxgxQhMmTLCWFS1aVPv27dMnn3yiF198UceOHVPJkiVVt25dWSwW67Uk6dixYwoICFB4eLicnZ1VpEgR1axZ0+ax/PTTT9qyZYtOnz5tfUrz+PHjtXjxYs2fP1+9evVS586dNXXqVGuQcODAAW3fvl2zZ8+WJGuQM2bMGGu7M2bMUHBwsDXQAIDHDdONAOAxU6lSJTVu3FgVKlRQu3btNH36dF24cOGO51WvXt367ytXriguLk7du3eXp6en9Xj77bcVFxcn6cYi6J07d6p06dLq37+/Vq5caT2/Xbt2unbtmooVK6aePXtq0aJFSk1NtXksu3btUmJiovLnz2/qx5EjR6z96Nixo44ePapffvlF0o0sQtWqVRUWFmZtY926dabzb752sw0AeNyQSQCAx4yjo6NWrVqln3/+WStXrtQHH3ygN954Q5s3b77teR4eHtZ/JyYmSpKmT5+uWrVqZWhfkqpWraojR47o+++/1+rVq9W+fXuFh4dr/vz5Cg4OVmxsrFavXq1Vq1bplVde0bhx4/TDDz/I2dk522NJTExUYGCg1q9fn+E1Hx8fSVJAQIAaNWqkL7/8Uk888YS+/PJL9e7d29RGixYtNHbs2AxtBAYGZrsvAGBPCBIA4DFksVhUp04d1alTR8OHD1dISIgWLVokFxcXpaWl3fF8f39/BQUF6fDhw+rcuXOW9by8vNShQwd16NBBbdu2VUREhM6fPy9fX1+5u7urRYsWatGihfr06aOwsDDt2bNHVatWzfY4qlatqvj4eDk5OSk0NDTLep07d9brr7+uTp066fDhw+rYsaOpjQULFig0NFROTvy3CAASQQIAPHY2b96sNWvWqEmTJipYsKA2b96sM2fOqEyZMrp+/bpWrFih2NhY5c+fX97e3lm2M2rUKPXv31/e3t6KiIhQUlKStm3bpgsXLigqKkoTJ05UYGCgqlSpIgcHB3399dcKCAiQj4+PZs6cqbS0NNWqVUt58uTR7Nmz5e7ublq3kB3h4eGqXbu2WrZsqffee0+lSpXSX3/9paVLl6pVq1bWKVKtW7dW79691bt3bzVs2FBBQUHWNvr06aPp06erU6dOev311+Xr66tDhw5p7ty5+uyzz6yZEQB4nBAkAMBjxsvLSxs2bNDkyZN16dIlhYSEaMKECWrWrJmqV6+u9evXq3r16kpMTNS6deuy/IS+R48eypMnj8aNG6fBgwfLw8NDFSpUsD6ZOG/evHrvvfd08OBBOTo6qkaNGlq2bJkcHBzk4+Ojd999V1FRUUpLS1OFChX07bffKn/+/DaNxWKxaNmyZXrjjTfUrVs3nTlzRgEBAXrqqafk7+9vrZc3b161aNFCX331lWbMmGFqIygoSBs3btSQIUPUpEkTJSUlKSQkRBEREXJwYOkegMeTxTAMI7c7AQAAAODhwUckAAAAAEwIEgAAD40ff/zRtBXp3w8AwIPBdCMAwEPj2rVrOnHiRJavlyhR4gH2BgAeXwQJAAAAAEyYbgQAAADAhCABAAAAgAlBAgAAAAATggQAAAAAJgQJAAAAAEwIEgAAAACYECQAAAAAMCFIAAAAAGDy/2ljM9paCNeUAAAAAElFTkSuQmCC\n"},"metadata":{}}],"source":["pysch_corr=pysch.corr()\n","pysch_corr=pysch_corr['stress_level'].sort_values(ascending=False)\n","pysch_corr=pysch_corr.drop('stress_level')\n","plt.figure(figsize=(8,6))\n","sns.heatmap(pysch_corr.to_frame(),annot=True,cmap='coolwarm')\n","plt.title('Stress Level Correlation of Only Psychological Factors')\n","plt.show()"]},{"cell_type":"code","execution_count":62,"metadata":{"colab":{"base_uri":"https://localhost:8080/","height":537},"executionInfo":{"elapsed":716,"status":"ok","timestamp":1716217022004,"user":{"displayName":"Daniel Meier","userId":"06365571306976914087"},"user_tz":300},"id":"36513o7zIshr","outputId":"f5fbf111-8949-424f-aeb4-6ee5d3b24e82"},"outputs":[{"output_type":"stream","name":"stderr","text":[":1: FutureWarning: \n","\n","Passing `palette` without assigning `hue` is deprecated and will be removed in v0.14.0. Assign the `y` variable to `hue` and set `legend=False` for the same effect.\n","\n"," sns.barplot(pysch_corr,orient='y',palette='Spectral');\n"]},{"output_type":"display_data","data":{"text/plain":["
"],"image/png":"iVBORw0KGgoAAAANSUhEUgAAAq8AAAGxCAYAAABMVV/rAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAAA4e0lEQVR4nO3deXzNZ97/8ffJiqzWLBWJtQzRBqWo1nYT7WQQpSU3jVqGWiZVSkdrqRa1lHa0c09jhD7KoLW0M/YiRWpi326KRAxtY6tGhEpIvr8//Jy7qYQksl3yej4e5/HI+Z7v97o+n3NI3q5c57BZlmUJAAAAMIBDSRcAAAAA5BXhFQAAAMYgvAIAAMAYhFcAAAAYg/AKAAAAYxBeAQAAYAzCKwAAAIxBeAUAAIAxnEq6ACC/srKy9OOPP8rDw0M2m62kywEAAHlgWZauXr0qf39/OTgUfP2U8Arj/PjjjwoICCjpMgAAQAGcPXtW1atXL/D1hFcYx8PDQ9LtP/yenp4lXA0AAMiL1NRUBQQE2H+OFxThFca5s1XA09OT8AoAgGEedMsfb9gCAACAMQivAAAAMAbhFQAAAMYgvAIAAMAYhFcAAAAYg/AKAAAAY/BRWQCAUivpz31KugSgTKo5dUlJl5ArVl4BAABgDMIrAAAAjEF4BQAAgDEIrwAAADAG4RUAAADGILwCAADAGIRXAAAAGIPwCgAAAGMQXgEAAGAMwisAAACMQXgFAACAMQivAAAAMAbhFQAAAMYgvAIAAMAYhFcAAAAYg/AKAAAAYxBeAQAAYAzCKwAAAIxBeAUAAIAxCK8AAAAwBuEVAAAAxiC8AgAAwBiEVwAAABiD8AoAAABjEF4BAABgDMIrAAAAjEF4BQAAgDEIrwAAADAG4RUAAADGILwCAADAGIRXAAAAGIPwWoqcPn1aNptNBw4cKNE6bDabVq9eXaxzBgUFae7cucU6JwAAMA/htRQJCAhQcnKyGjVqlOdr2rZtq6ioqKIrCgAAoBRxKukC8H8cHR3l6+tb0mUAAACUWqy85sP69ev11FNPydvbW5UrV9bvf/97JSYmSvq/X/mvXLlS7dq1U4UKFfTYY49p586d9utffvllNW7cWOnp6ZKkjIwMhYSEqF+/ftnG+PW2gSNHjqhLly5yd3eXj4+P+vbtq0uXLkmSIiMj9c033+iDDz6QzWaTzWZTUlKS6tSpo1mzZmWr/cCBA7LZbEpISMh332fPnlWvXr3k7e2tSpUqqWvXrjp9+rQkaePGjSpXrpxSUlKyXfOnP/1J7du3t9/fsWOH2rRpo/LlyysgIEAjR47UtWvX8l0LAAAo2wiv+XDt2jWNGjVKe/bs0ebNm+Xg4KDu3bsrKyvLfs748eM1evRoHThwQPXq1VPv3r1169YtSdKHH36oa9euady4cfZzU1JSNG/evBznS0lJUfv27RUSEqI9e/Zo/fr1On/+vHr16iVJ+uCDD9SyZUsNGjRIycnJSk5OVo0aNfTyyy8rJiYm21gxMTF6+umnVadOnXz1fPPmTXXu3FkeHh7avn274uLi5O7urtDQUGVkZKhDhw7y9vbWihUr7NdkZmZq2bJlioiIkCQlJiYqNDRUPXr00KFDh7Rs2TLt2LFDw4cPz1MN6enpSk1NzXYDAABlE9sG8qFHjx7Z7i9YsEBVq1bV0aNH5e7uLkkaPXq0nnvuOUnS5MmT1bBhQyUkJKh+/fpyd3fXZ599pmeeeUYeHh6aO3eutm7dKk9PzxznmzdvnkJCQjR16tRscwYEBOjEiROqV6+eXFxcVKFChWzbDSIjIzVhwgTt2rVLzZs3182bN7VkyZK7VmPzYtmyZcrKytL8+fNls9kk3Q7C3t7eio2NVadOnfTiiy9qyZIlGjBggCRp8+bNSklJsT9f06ZNU0REhH1vbt26dfXhhx/qmWee0V//+leVK1funjVMmzZNkydPznftAADg4cPKaz6cPHlSvXv3Vq1ateTp6amgoCBJ0pkzZ+znNG7c2P61n5+fJOnChQv2Yy1bttTo0aM1ZcoUvfbaa3rqqadyne/gwYPaunWr3N3d7bf69etLkn27Qk78/f313HPPacGCBZKkf/7zn0pPT1fPnj3z3fPBgweVkJAgDw8Pew2VKlXSjRs37DVEREQoNjZWP/74oyRp8eLFeu655+Tt7W0fY+HChdn66Ny5s7KyspSUlHTfGt544w1duXLFfjt79my++wAAAA8HVl7zISwsTIGBgYqOjpa/v7+ysrLUqFEjZWRk2M9xdna2f31npfLX2wqysrIUFxcnR0fH++4/TUtLU1hYmN577727HrsTjHMzcOBA9e3bV3PmzFFMTIxeeOEFVahQIU99/raGpk2bavHixXc9VrVqVUnSE088odq1a2vp0qUaOnSoVq1apYULF2Yb449//KNGjhx51xg1atS4bw2urq5ydXXNd+0AAODhQ3jNo59++knHjx9XdHS02rRpI+n2m5Dya+bMmfruu+/0zTffqHPnzoqJiVH//v1zPLdJkyZasWKFgoKC5OSU80vl4uKizMzMu44/++yzcnNz01//+letX79e27Zty3etd2pYtmyZqlWrluv2Bun26uvixYtVvXp1OTg42LdO3Bnj6NGj+d5vCwAA8FtsG8ijihUrqnLlyvrkk0+UkJCgLVu2aNSoUfkaY//+/ZowYYLmz5+v1q1b6/3339ef/vQnnTp1Ksfzhw0bpsuXL6t3797avXu3EhMTtWHDBvXv398eWIOCghQfH6/Tp0/r0qVL9lVeR0dHRUZG6o033lDdunXVsmXLAvUdERGhKlWqqGvXrtq+fbuSkpIUGxurkSNH6vvvv8923r59+/Tuu+/q+eefz7ZSOnbsWH377bcaPny4Dhw4oJMnT+rLL7/M8xu2AAAA7iC85pGDg4OWLl2qvXv3qlGjRnr11Vc1c+bMPF9/48YN/fd//7ciIyMVFhYmSRo8eLDatWunvn375rh66u/vr7i4OGVmZqpTp04KDg5WVFSUvL295eBw+6UbPXq0HB0d9bvf/U5Vq1bNtv92wIABysjIyHVlNy8qVKigbdu2qUaNGgoPD1eDBg00YMAA3bhxI9tKbJ06ddS8eXMdOnTI/ikDdzRu3FjffPONTpw4oTZt2igkJEQTJkyQv79/gesCAABlk82yLKuki0DR2L59uzp06KCzZ8/Kx8enpMspNKmpqfLy8tKVK1fuuZUBgPmS/tynpEsAyqSaU5cU+piF9fObPa8PofT0dF28eFGTJk1Sz549H6rgCgAAyja2DTyE/vGPfygwMFApKSmaMWNGtscWL16c7SOrfn1r2LBhCVUMAACQN6y8PoQiIyMVGRmZ42N/+MMf1KJFixwf+/XHfAEAAJRGhNcyxsPDQx4eHiVdBgAAQIGwbQAAAADGILwCAADAGIRXAAAAGIPwCgAAAGMQXgEAAGAMwisAAACMQXgFAACAMQivAAAAMAbhFQAAAMYgvAIAAMAYhFcAAAAYg/AKAAAAYxBeAQAAYAzCKwAAAIxBeAUAAIAxCK8AAAAwBuEVAAAAxiC8AgAAwBiEVwAAABiD8AoAAABjEF4BAABgDMIrAAAAjEF4BQAAgDEIrwAAADAG4RUAAADGILwCAADAGE4lXQAAALmpOXVJSZcAoJRh5RUAAADGILwCAADAGIRXAAAAGIPwCgAAAGMQXgEAAGAMwisAAACMQXgFAACAMQivAAAAMAbhFQAAAMYgvAIAAMAYhFcAAAAYg/AKAAAAYxBeAQAAYAzCKwAAAIxBeAUAAIAxCK8AAAAwBuEVAAAAxiC8AgAAwBhOJV0AAAC5uXLik5IuAShzvOoNLukS7omVVwAAABiD8AoAAABjEF4BAABgDMIrAAAAjEF4BQAAgDEIrwAAADAG4RUAAADGILwCAADAGIRXAAAAGIPwCgAAAGMQXgEAAGAMwisAAACMQXgFAACAMQivAAAAMAbhFQAAAMYgvAIAAMAYhFcAAAAYg/AKAAAAYxBeAQAAYAzCKwAAAIxBeAUAAIAxCK8AAAAwBuEVAAAAxiC8AgAAwBiEVwAAABiD8AoAAABjEF4BAABgDMIrAAAAjEF4BQAAgDEIrwAAADAG4bWEtW3bVlFRUSVdRoHFxsbKZrMpJSWlpEsBAABlAOEVD6RVq1ZKTk6Wl5dXSZcCAADKAMLrQy4jI6NIx3dxcZGvr69sNluRzgMAACARXovVtWvX1K9fP7m7u8vPz0+zZ8/O9nh6erpGjx6tRx55RG5ubmrRooViY2Ptjy9cuFDe3t5avXq16tatq3Llyqlz5846e/as/ZxJkybp8ccf1/z581WzZk2VK1dOkpSSkqKBAweqatWq8vT0VPv27XXw4EH7dQcPHlS7du3k4eEhT09PNW3aVHv27JEk/ec//1FYWJgqVqwoNzc3NWzYUGvXrpWU87aBFStWqGHDhnJ1dVVQUNBdfQYFBWnq1Kl6+eWX5eHhoRo1auiTTz4plOcYAAA83AivxWjMmDH65ptv9OWXX2rjxo2KjY3Vvn377I8PHz5cO3fu1NKlS3Xo0CH17NlToaGhOnnypP2c69ev691339Wnn36quLg4paSk6MUXX8w2T0JCglasWKGVK1fqwIEDkqSePXvqwoULWrdunfbu3asmTZqoQ4cOunz5siQpIiJC1atX1+7du7V3716NGzdOzs7OkqRhw4YpPT1d27Zt0+HDh/Xee+/J3d09xx737t2rXr166cUXX9Thw4c1adIkvfXWW1q4cGG282bPnq1mzZpp//79euWVVzR06FAdP378QZ9iAADwkHMq6QLKirS0NP3973/XZ599pg4dOkiSFi1apOrVq0uSzpw5o5iYGJ05c0b+/v6SpNGjR2v9+vWKiYnR1KlTJUk3b97UvHnz1KJFC/sYDRo00K5du9S8eXNJt7cKfPrpp6pataokaceOHdq1a5cuXLggV1dXSdKsWbO0evVqffHFFxo8eLDOnDmjMWPGqH79+pKkunXr2ms/c+aMevTooeDgYElSrVq1cu3z/fffV4cOHfTWW29JkurVq6ejR49q5syZioyMtJ/37LPP6pVXXpEkjR07VnPmzNHWrVv16KOP3jVmenq60tPT7fdTU1Pv/4QDAICHEiuvxSQxMVEZGRn20ClJlSpVsoe1w4cPKzMzU/Xq1ZO7u7v99s033ygxMdF+jZOTk5544gn7/fr168vb21vHjh2zHwsMDLQHV+n2loC0tDRVrlw529hJSUn2sUeNGqWBAweqY8eOmj59erY5R44cqXfeeUetW7fWxIkTdejQoVz7PHbsmFq3bp3tWOvWrXXy5EllZmbajzVu3Nj+tc1mk6+vry5cuJDjmNOmTZOXl5f9FhAQkOv8AADg4cbKaymRlpYmR0dH7d27V46Ojtkey+1X9Llxc3O7a2w/P79s+2fv8Pb2lnR7r2yfPn20Zs0arVu3ThMnTtTSpUvVvXt3DRw4UJ07d9aaNWu0ceNGTZs2TbNnz9aIESPyVdev3dmScIfNZlNWVlaO577xxhsaNWqU/X5qaioBFgCAMoqV12JSu3ZtOTs7Kz4+3n7s559/1okTJyRJISEhyszM1IULF1SnTp1sN19fX/s1t27dsr+RSpKOHz+ulJQUNWjQINe5mzRponPnzsnJyemusatUqWI/r169enr11Ve1ceNGhYeHKyYmxv5YQECAhgwZopUrV+q1115TdHR0jnM1aNBAcXFx2Y7FxcWpXr16d4XyvHJ1dZWnp2e2GwAAKJsIr8XE3d1dAwYM0JgxY7RlyxYdOXJEkZGRcnC4/RLUq1dPERER6tevn1auXKmkpCTt2rVL06ZN05o1a+zjODs7a8SIEYqPj9fevXsVGRmpJ5980r7fNScdO3ZUy5Yt1a1bN23cuFGnT5/Wt99+q/Hjx2vPnj365ZdfNHz4cMXGxuo///mP4uLitHv3bnsgjoqK0oYNG5SUlKR9+/Zp69atuYbl1157TZs3b9aUKVN04sQJLVq0SPPmzdPo0aML8dkEAABlFdsGitHMmTOVlpamsLAweXh46LXXXtOVK1fsj8fExOidd97Ra6+9ph9++EFVqlTRk08+qd///vf2cypUqKCxY8eqT58++uGHH9SmTRv9/e9/v+e8NptNa9eu1fjx49W/f39dvHhRvr6+evrpp+Xj4yNHR0f99NNP6tevn86fP68qVaooPDxckydPliRlZmZq2LBh+v777+Xp6anQ0FDNmTMnx7maNGmi5cuXa8KECZoyZYr8/Pz09ttvZ3uzFgAAQEHZLMuySroI5M3ChQsVFRVV5v8r1tTUVHl5eenKlStsIQAecldO8BnQQHHzqje4SMYtrJ/fbBsAAACAMQivAAAAMAbh1SCRkZFlfssAAAAo2wivAAAAMAbhFQAAAMYgvAIAAMAYhFcAAAAYg/AKAAAAYxBeAQAAYAzCKwAAAIxBeAUAAIAxCK8AAAAwBuEVAAAAxiC8AgAAwBiEVwAAABiD8AoAAABjEF4BAABgDMIrAAAAjEF4BQAAgDEIrwAAADAG4RUAAADGILwCAADAGIRXAAAAGIPwCgAAAGMQXgEAAGAMwisAAACMQXgFAACAMQivAAAAMAbhFQAAAMYgvAIAAMAYhFcAAAAYw6mkCwAAIDde9QaXdAkAShlWXgEAAGAMwisAAACMQXgFAACAMQivAAAAMAbhFQAAAMYgvAIAAMAYhFcAAAAYg/AKAAAAYxBeAQAAYAzCKwAAAIxBeAUAAIAxCK8AAAAwBuEVAAAAxiC8AgAAwBiEVwAAABiD8AoAAABjEF4BAABgDKeSLgAAgNwkXVhc0iUApUbNahElXUKpwMorAAAAjEF4BQAAgDEIrwAAADAG4RUAAADGILwCAADAGIRXAAAAGIPwCgAAAGMQXgEAAGAMwisAAACMQXgFAACAMQivAAAAMAbhFQAAAMYgvAIAAMAYhFcAAAAYg/AKAAAAYxBeAQAAYAzCKwAAAIxBeAUAAIAxCK8AAAAwBuEVAAAAxiC8AgAAwBiEVwAAABiD8AoAAABjEF4BAABgDMIrAAAAjEF4BQAAgDEIrwAAADAG4RUAAADGILwCAADAGIRXAAAAGIPwCgAAAGM81OE1KChIc+fOzdO5NptNq1evLtJ6Tp8+LZvNpgMHDtzzvLZt2yoqKqrA89yvl9jYWNlsNqWkpBR4DgAAgJJgRHgtjmBZEkoqRLZq1UrJycny8vK677kEXQAAUJoYEV5RuFxcXOTr6yubzVZsc1qWpVu3bhXbfAAA4OGUr/Datm1bjRgxQlFRUapYsaJ8fHwUHR2ta9euqX///vLw8FCdOnW0bt06+zVHjhxRly5d5O7uLh8fH/Xt21eXLl3KNubIkSP1+uuvq1KlSvL19dWkSZPsjwcFBUmSunfvLpvNZr+fmJiorl27ysfHR+7u7nriiSf09ddfF/yZkHTp0iV1795dFSpUUN26dfXVV19le/x+vaxfv15PPfWUvL29VblyZf3+979XYmJijnOdPn1a7dq1kyRVrFhRNptNkZGR9sezsrJyfU4etJffrqb+5z//UVhYmCpWrCg3Nzc1bNhQa9euvWeN6enpGjlypKpVq6Zy5crpqaee0u7du++aY926dWratKlcXV312WefycHBQXv27MlW69y5cxUYGKisrKx89QgAAMqefK+8Llq0SFWqVNGuXbs0YsQIDR06VD179lSrVq20b98+derUSX379tX169eVkpKi9u3bKyQkRHv27NH69et1/vx59erV664x3dzcFB8frxkzZujtt9/Wpk2bJMkeiGJiYpScnGy/n5aWpmeffVabN2/W/v37FRoaqrCwMJ05c6bAT8bkyZPVq1cvHTp0SM8++6wiIiJ0+fJlScpTL9euXdOoUaO0Z88ebd68WQ4ODurevXuOoSwgIEArVqyQJB0/flzJycn64IMP8vScPGgvvzVs2DClp6dr27ZtOnz4sN577z25u7vfs8bXX39dK1as0KJFi7Rv3z7VqVNHnTt3vmuOcePGafr06Tp27Jj+8Ic/qGPHjoqJicl2TkxMjCIjI+XgkPMfx/T0dKWmpma7AQCAsslmWZaV15Pbtm2rzMxMbd++XZKUmZkpLy8vhYeH69NPP5UknTt3Tn5+ftq5c6e+/vprbd++XRs2bLCP8f333ysgIEDHjx9XvXr17hpTkpo3b6727dtr+vTpt4u02bRq1Sp169btnvU1atRIQ4YM0fDhwyXdXrWNiorK05ufbDab3nzzTU2ZMkXS7SDq7u6udevWKTQ0VO+88859e/mtS5cuqWrVqjp8+LAaNWqk06dPq2bNmtq/f78ef/xxxcbGql27dvr555/l7e2d6/Oc03PyIL38dt7GjRurR48emjhx4l1j5VTjtWvXVLFiRS1cuFB9+vSRJN28edP+fI8ZM8Z+3erVq9W1a1f7eMuXL9eQIUOUnJwsV1dX7du3T82aNdOpU6fsq+q/NWnSJE2ePPmu41euXJGnp+d9nw8A5kq6sLikSwBKjZrVIkq6hAeSmpoqLy+vB/75ne+V18aNG9u/dnR0VOXKlRUcHGw/5uPjI0m6cOGCDh48qK1bt8rd3d1+q1+/viRl+3X6r8eUJD8/P124cOGedaSlpWn06NFq0KCBvL295e7urmPHjj3Qyuuv63Bzc5Onp6e9jrz0cvLkSfXu3Vu1atWSp6enPYwVpKaCPCd57eW3Ro4cqXfeeUetW7fWxIkTdejQoXuOnZiYqJs3b6p169b2Y87OzmrevLmOHTuW7dxmzZplu9+tWzc5Ojpq1apVkqSFCxeqXbt2uQZXSXrjjTd05coV++3s2bP3rA8AADy8nPJ7gbOzc7b7Npst27E7bwLKyspSWlqawsLC9N577901jp+f3z3HvN/+x9GjR2vTpk2aNWuW6tSpo/Lly+v5559XRkZGflvKUx156SUsLEyBgYGKjo6Wv7+/srKy1KhRowLVVJDnpKDXDxw4UJ07d9aaNWu0ceNGTZs2TbNnz9aIESPyXfdvubm5Zbvv4uKifv36KSYmRuHh4VqyZEm27RI5cXV1laur6wPXAgAAzJfv8JofTZo00YoVKxQUFCQnp4JP5ezsrMzMzGzH4uLiFBkZqe7du0u6HS5Pnz79IOXe0/16+emnn3T8+HFFR0erTZs2kqQdO3bcc0wXFxdJuqu3khAQEKAhQ4ZoyJAheuONNxQdHa0RI0bkWGPt2rXl4uKiuLg4BQYGSrq9bWD37t152qIxcOBANWrUSB9//LFu3bql8PDwIukJAAA8fIr0o7KGDRumy5cvq3fv3tq9e7cSExO1YcMG9e/fP1+BLSgoSJs3b9a5c+f0888/S5Lq1q2rlStX6sCBAzp48KD69OlTpO9Wv18vFStWVOXKlfXJJ58oISFBW7Zs0ahRo+45ZmBgoGw2m/71r3/p4sWLSktLK7L67yUqKkobNmxQUlKS9u3bp61bt6pBgwa51ujm5qahQ4dqzJgxWr9+vY4ePapBgwbp+vXrGjBgwH3na9CggZ588kmNHTtWvXv3Vvny5Yu6RQAA8JAo0vDq7++vuLg4ZWZmqlOnTgoODlZUVJS8vb1zfWd5TmbPnq1NmzYpICBAISEhkqT3339fFStWVKtWrRQWFqbOnTurSZMmRdXKfXtxcHDQ0qVLtXfvXjVq1EivvvqqZs6cec8xH3nkEU2ePFnjxo2Tj4+P/Y1mxS0zM1PDhg1TgwYNFBoaqnr16unjjz++Z43Tp09Xjx491LdvXzVp0kQJCQnasGGDKlasmKc5BwwYoIyMDL388stF1hcAAHj45OvTBoDCMmXKFH3++ef3fXNYTgrr3YoASj8+bQD4P3zawG38D1soVmlpaTpy5IjmzZtXKG8IAwAAZUuZCK+LFy/O9hFXv741bNiwpMvLF9N7GT58uJo2baq2bduyZQAAAORbmdg2cPXqVZ0/fz7Hx5ydne3vmDfBw9RLQbFtACg72DYA/B+2DdxWpB+VVVp4eHjIw8OjpMsoFA9TLwAAAPlVJrYNAAAA4OFAeAUAAIAxCK8AAAAwBuEVAAAAxiC8AgAAwBiEVwAAABiD8AoAAABjEF4BAABgDMIrAAAAjEF4BQAAgDEIrwAAADAG4RUAAADGILwCAADAGIRXAAAAGIPwCgAAAGMQXgEAAGAMwisAAACMQXgFAACAMQivAAAAMAbhFQAAAMYgvAIAAMAYhFcAAAAYg/AKAAAAYxBeAQAAYAzCKwAAAIxBeAUAAIAxnEq6AAAAclOzWkRJlwCglGHlFQAAAMYgvAIAAMAYhFcAAAAYg/AKAAAAYxBeAQAAYAzCKwAAAIxBeAUAAIAxCK8AAAAwBuEVAAAAxiC8AgAAwBiEVwAAABiD8AoAAABjEF4BAABgDMIrAAAAjEF4BQAAgDEIrwAAADAG4RUAAADGcCrpAoDS5rV1n5Z0CQD+v9ld+pV0CQBKGVZeAQAAYAzCKwAAAIxBeAUAAIAxCK8AAAAwBuEVAAAAxiC8AgAAwBiEVwAAABiD8AoAAABjEF4BAABgDMIrAAAAjEF4BQAAgDEIrwAAADAG4RUAAADGILwCAADAGIRXAAAAGIPwCgAAAGMQXgEAAGAMwisAAACMQXgFAACAMQivAAAAMAbhFQAAAMYgvAIAAMAYhFcAAAAYg/AKAAAAYxBeAQAAYAzCKwAAAIxBeAUAAIAxCK8AAAAwBuEVAAAAxiC8AgAAwBiEVwAAABiD8FoKnD59WjabTQcOHLAfi4uLU3BwsJydndWtW7cSqw0AAKA0cSrpApCzUaNG6fHHH9e6devk7u5epHNFRkYqJSVFq1evLtJ5AAAAHhQrr6VUYmKi2rdvr+rVq8vb27ukywEAACgVCK+F6IsvvlBwcLDKly+vypUrq2PHjrp27Zokaf78+WrQoIHKlSun+vXr6+OPP85xjDtbCH766Se9/PLLstlsWrhw4X3nPnLkiLp06SJ3d3f5+Piob9++unTp0n1rmzRpkhYtWqQvv/xSNptNNptNsbGxkqSzZ8+qV69e8vb2VqVKldS1a1edPn0627z36utOL8uXL1ebNm1Uvnx5PfHEEzpx4oR2796tZs2ayd3dXV26dNHFixfz92QDAIAyifBaSJKTk9W7d2+9/PLLOnbsmGJjYxUeHi7LsrR48WJNmDBB7777ro4dO6apU6fqrbfe0qJFi+4aJyAgQMnJyfL09NTcuXOVnJysF1544Z5zp6SkqH379goJCdGePXu0fv16nT9/Xr169bpvbaNHj1avXr0UGhqq5ORkJScnq1WrVrp586Y6d+4sDw8Pbd++XXFxcXJ3d1doaKgyMjIkKc99TZw4UW+++ab27dsnJycn9enTR6+//ro++OADbd++XQkJCZowYUKu/aWnpys1NTXbDQAAlE3seS0kycnJunXrlsLDwxUYGChJCg4OlnQ7vM2ePVvh4eGSpJo1a+ro0aP629/+ppdeeinbOI6OjvL19ZXNZpOXl5d8fX3vO/e8efMUEhKiqVOn2o8tWLBAAQEBOnHihNLS0nKtTZLKly+v9PT0bHN99tlnysrK0vz582Wz2SRJMTEx8vb2VmxsrDp16pTnvkaPHq3OnTtLkv70pz+pd+/e2rx5s1q3bi1JGjBgwD1Xl6dNm6bJkyff93kAAAAPP8JrIXnsscfUoUMHBQcHq3PnzurUqZOef/55ubi4KDExUQMGDNCgQYPs59+6dUteXl6FMvfBgwe1devWHN/YlZiYqE6dOuVYW8WKFe85ZkJCgjw8PLIdv3HjhhITE3Xt2rU899W4cWP71z4+PpKyh2cfHx9duHAh11reeOMNjRo1yn4/NTVVAQEBuZ4PAAAeXoTXQuLo6KhNmzbp22+/1caNG/WXv/xF48eP1z//+U9JUnR0tFq0aHHXNYUhLS1NYWFheu+99+56zM/PL9fa4uPjVbNmzVzHbNq0qRYvXnzXY1WrVlVaWpqkvPXl7Oxs//rOKu5vj2VlZeXan6urq1xdXXN9HAAAlB2E10Jks9nUunVrtW7dWhMmTFBgYKDi4uLk7++vU6dOKSIiokjmbdKkiVasWKGgoCA5OeX8kuZU26pVqzRq1Ci5uLgoMzPzrjGXLVumatWqydPT867xvLy8irwvAACA3+INW4UkPj5eU6dO1Z49e3TmzBmtXLlSFy9eVIMGDTR58mRNmzZNH374oU6cOKHDhw8rJiZG77//fqHMPWzYMF2+fFm9e/fW7t27lZiYqA0bNqh///7KzMy8Z22SFBQUpEOHDun48eO6dOmSbt68qYiICFWpUkVdu3bV9u3blZSUpNjYWI0cOVLff/+9JBV5XwAAAL/Fymsh8fT01LZt2zR37lylpqYqMDBQs2fPVpcuXSRJFSpU0MyZMzVmzBi5ubkpODhYUVFRhTK3v7+/4uLiNHbsWHXq1Enp6ekKDAxUaGioHBwc7lvboEGDFBsbq2bNmiktLU1bt25V27ZttW3bNo0dO1bh4eG6evWqHnnkEXXo0MG+Ejtw4MAi7QsAAOC3bJZlWSVdBJAfqamp8vLy0pUrV3Lc0vCgXlv3aaGPCaBgZnfpV9IlACgkhfXzm20DAAAAMAbh1QBDhgyRu7t7jrchQ4aUdHkAAADFhj2vBnj77bc1evToHB8ril+bAwAAlFaEVwNUq1ZN1apVK+kyAAAAShzbBgAAAGAMwisAAACMQXgFAACAMQivAAAAMAbhFQAAAMYgvAIAAMAYhFcAAAAYg/AKAAAAYxBeAQAAYAzCKwAAAIxBeAUAAIAxCK8AAAAwBuEVAAAAxiC8AgAAwBiEVwAAABiD8AoAAABjEF4BAABgDMIrAAAAjEF4BQAAgDEIrwAAADAG4RUAAADGILwCAADAGIRXAAAAGIPwCgAAAGMQXgEAAGAMwisAAACM4VTSBQClzewu/Uq6BAAAkAtWXgEAAGAMwisAAACMQXgFAACAMQivAAAAMAbhFQAAAMYgvAIAAMAYhFcAAAAYg/AKAAAAY/CfFMA4lmVJklJTU0u4EgAAkFd3fm7f+TleUIRXGOfq1auSpICAgBKuBAAA5NfVq1fl5eVV4Ott1oPGX6CYZWVl6ccff5SHh4dsNluu56WmpiogIEBnz56Vp6dnMVZYMuj34VfWei5r/Uplr2f6ffj9umcPDw9dvXpV/v7+cnAo+M5VVl5hHAcHB1WvXj3P53t6epaZbxIS/ZYFZa3nstavVPZ6pt+H352eH2TF9Q7esAUAAABjEF4BAABgDMIrHlqurq6aOHGiXF1dS7qUYkG/D7+y1nNZ61cqez3T78OvKHrmDVsAAAAwBiuvAAAAMAbhFQAAAMYgvAIAAMAYhFc8NC5fvqyIiAh5enrK29tbAwYMUFpa2j2vOXfunPr27StfX1+5ubmpSZMmWrFiRTFV/OAK0rMk7dy5U+3bt5ebm5s8PT319NNP65dffimGih9MQfuVbv93hF26dJHNZtPq1auLttBCkt9+L1++rBEjRujRRx9V+fLlVaNGDY0cOVJXrlwpxqrz56OPPlJQUJDKlSunFi1aaNeuXfc8//PPP1f9+vVVrlw5BQcHa+3atcVUaeHIT7/R0dFq06aNKlasqIoVK6pjx473fX5Ko/y+xncsXbpUNptN3bp1K9oCC1l++01JSdGwYcPk5+cnV1dX1atX76H+cy1Jc+fOtX+fCggI0KuvvqobN27kfUILeEiEhoZajz32mPXvf//b2r59u1WnTh2rd+/e97zmv/7rv6wnnnjCio+PtxITE60pU6ZYDg4O1r59+4qp6gdTkJ6//fZby9PT05o2bZp15MgR67vvvrOWLVtm3bhxo5iqLriC9HvH+++/b3Xp0sWSZK1atapoCy0k+e338OHDVnh4uPXVV19ZCQkJ1ubNm626detaPXr0KMaq827p0qWWi4uLtWDBAut///d/rUGDBlne3t7W+fPnczw/Li7OcnR0tGbMmGEdPXrUevPNNy1nZ2fr8OHDxVx5weS33z59+lgfffSRtX//fuvYsWNWZGSk5eXlZX3//ffFXHnB5bfnO5KSkqxHHnnEatOmjdW1a9fiKbYQ5Lff9PR0q1mzZtazzz5r7dixw0pKSrJiY2OtAwcOFHPlBZffnhcvXmy5urpaixcvtpKSkqwNGzZYfn5+1quvvprnOQmveCgcPXrUkmTt3r3bfmzdunWWzWazfvjhh1yvc3Nzsz799NNsxypVqmRFR0cXWa2FpaA9t2jRwnrzzTeLo8RCVdB+Lcuy9u/fbz3yyCNWcnKyMeH1Qfr9teXLl1suLi7WzZs3i6LMB9K8eXNr2LBh9vuZmZmWv7+/NW3atBzP79Wrl/Xcc89lO9aiRQvrj3/8Y5HWWVjy2+9v3bp1y/Lw8LAWLVpUVCUWuoL0fOvWLatVq1bW/PnzrZdeesmo8Jrffv/6179atWrVsjIyMoqrxEKX356HDRtmtW/fPtuxUaNGWa1bt87znGwbwENh586d8vb2VrNmzezHOnbsKAcHB8XHx+d6XatWrbRs2TJdvnxZWVlZWrp0qW7cuKG2bdsWQ9UPpiA9X7hwQfHx8apWrZpatWolHx8fPfPMM9qxY0dxlV1gBX2Nr1+/rj59+uijjz6Sr69vcZRaKAra729duXJFnp6ecnIqXf8beEZGhvbu3auOHTvajzk4OKhjx47auXNnjtfs3Lkz2/mS1Llz51zPL00K0u9vXb9+XTdv3lSlSpWKqsxCVdCe3377bVWrVk0DBgwojjILTUH6/eqrr9SyZUsNGzZMPj4+atSokaZOnarMzMziKvuBFKTnVq1aae/evfatBadOndLatWv17LPP5nne0vXdDCigc+fOqVq1atmOOTk5qVKlSjp37lyu1y1fvlwvvPCCKleuLCcnJ1WoUEGrVq1SnTp1irrkB1aQnk+dOiVJmjRpkmbNmqXHH39cn376qTp06KAjR46obt26RV53QRX0NX711VfVqlUrde3atahLLFQF7ffXLl26pClTpmjw4MFFUeIDuXTpkjIzM+Xj45PtuI+Pj7777rscrzl37lyO5+f1+ShJBen3t8aOHSt/f/+7AnxpVZCed+zYob///e86cOBAMVRYuArS76lTp7RlyxZFRERo7dq1SkhI0CuvvKKbN29q4sSJxVH2AylIz3369NGlS5f01FNPybIs3bp1S0OGDNGf//znPM/LyitKtXHjxslms93zltdv/Dl56623lJKSoq+//lp79uzRqFGj1KtXLx0+fLgQu8ifouw5KytLkvTHP/5R/fv3V0hIiObMmaNHH31UCxYsKMw28qwo+/3qq6+0ZcsWzZ07t3CLfgBF/Wf6jtTUVD333HP63e9+p0mTJj144ShR06dP19KlS7Vq1SqVK1eupMspElevXlXfvn0VHR2tKlWqlHQ5xSIrK0vVqlXTJ598oqZNm+qFF17Q+PHj9T//8z8lXVqRiY2N1dSpU/Xxxx9r3759WrlypdasWaMpU6bkeQxWXlGqvfbaa4qMjLznObVq1ZKvr68uXLiQ7fitW7d0+fLlXH9VnJiYqHnz5unIkSNq2LChJOmxxx7T9u3b9dFHH5XYN4+i7NnPz0+S9Lvf/S7b8QYNGujMmTMFL/oBFGW/W7ZsUWJiory9vbMd79Gjh9q0aaPY2NgHqLxgirLfO65evarQ0FB5eHho1apVcnZ2ftCyC12VKlXk6Oio8+fPZzt+/vz5XPvz9fXN1/mlSUH6vWPWrFmaPn26vv76azVu3LgoyyxU+e05MTFRp0+fVlhYmP3YnX9wOzk56fjx46pdu3bRFv0ACvIa+/n5ydnZWY6OjvZjDRo00Llz55SRkSEXF5cirflBFaTnt956S3379tXAgQMlScHBwbp27ZoGDx6s8ePHy8Hh/uuqhFeUalWrVlXVqlXve17Lli2VkpKivXv3qmnTppJuB5esrCy1aNEix2uuX78uSXf9RXF0dLR/wywJRdlzUFCQ/P39dfz48WzHT5w4oS5dujx48QVQlP2OGzfO/g3yjuDgYM2ZMyfbD8jiVJT9SrdXXDt37ixXV1d99dVXpXaVzsXFRU2bNtXmzZvtH4WUlZWlzZs3a/jw4Tle07JlS23evFlRUVH2Y5s2bVLLli2LoeIHU5B+JWnGjBl69913tWHDhmz7n02Q357r169/12+93nzzTV29elUffPCBAgICiqPsAivIa9y6dWstWbJEWVlZ9p9FJ06ckJ+fX6kPrlLBer5+/XqOP3el2x9pmCcFeWcZUBqFhoZaISEhVnx8vLVjxw6rbt262T5W6Pvvv7ceffRRKz4+3rIsy8rIyLDq1KljtWnTxoqPj7cSEhKsWbNmWTabzVqzZk1JtZEv+e3Zsixrzpw5lqenp/X5559bJ0+etN58802rXLlyVkJCQkm0kC8F6fe3ZMinDVhW/vu9cuWK1aJFCys4ONhKSEiwkpOT7bdbt26VVBu5Wrp0qeXq6motXLjQOnr0qDV48GDL29vbOnfunGVZltW3b19r3Lhx9vPj4uIsJycna9asWdaxY8esiRMnGvdRWfnpd/r06ZaLi4v1xRdfZHstr169WlIt5Ft+e/4t0z5tIL/9njlzxvLw8LCGDx9uHT9+3PrXv/5lVatWzXrnnXdKqoV8y2/PEydOtDw8PKx//OMf1qlTp6yNGzdatWvXtnr16pXnOQmveGj89NNPVu/evS13d3fL09PT6t+/f7Zv8klJSZYka+vWrfZjJ06csMLDw61q1apZFSpUsBo3bnzXR2eVZgXp2bIsa9q0aVb16tWtChUqWC1btrS2b99ezJUXTEH7/TWTwmt++926daslKcdbUlJSyTRxH3/5y1+sGjVqWC4uLlbz5s2tf//73/bHnnnmGeull17Kdv7y5cutevXqWS4uLlbDhg2N+YfmHfnpNzAwMMfXcuLEicVf+API72v8a6aFV8vKf7/ffvut1aJFC8vV1dWqVauW9e6775bKf2zeS356vnnzpjVp0iSrdu3aVrly5ayAgADrlVdesX7++ec8z2ezrLyu0QIAAAAli08bAAAAgDEIrwAAADAG4RUAAADGILwCAADAGIRXAAAAGIPwCgAAAGMQXgEAAGAMwisAAACMQXgFABglKChIc+fOLdY527Ztq6ioqGKdE0DOCK8AALvIyEh169atpMsAgFwRXgEA+Xbz5s2SLgFAGUV4BYAy6IsvvlBwcLDKly+vypUrq2PHjhozZowWLVqkL7/8UjabTTabTbGxsTp9+rRsNpuWLVumZ555RuXKldPixYslSfPnz1eDBg1Urlw51a9fXx9//LF9joyMDA0fPlx+fn4qV66cAgMDNW3aNEmSZVmaNGmSatSoIVdXV/n7+2vkyJEF6iUlJUUDBw5U1apV5enpqfbt2+vgwYOSpBMnTshms+m7777Lds2cOXNUu3Zt+/0jR46oS5cucnd3l4+Pj/r27atLly4VqB4ARcuppAsAABSv5ORk9e7dWzNmzFD37t119epVbd++Xf369dOZM2eUmpqqmJgYSVKlSpX0448/SpLGjRun2bNnKyQkxB5gJ0yYoHnz5ikkJET79+/XoEGD5ObmppdeekkffvihvvrqKy1fvlw1atTQ2bNndfbsWUnSihUrNGfOHC1dulQNGzbUuXPn7IEzv3r27Kny5ctr3bp18vLy0t/+9jd16NBBJ06cUL169dSsWTMtXrxYU6ZMsV+zePFi9enTR9Lt8Nu+fXsNHDhQc+bM0S+//KKxY8eqV69e2rJly4M81QCKAOEVAMqY5ORk3bp1S+Hh4QoMDJQkBQcHS5LKly+v9PR0+fr63nVdVFSUwsPD7fcnTpyo2bNn24/VrFlTR48e1d/+9je99NJLOnPmjOrWraunnnpKNpvNPpcknTlzRr6+vurYsaOcnZ1Vo0YNNW/ePN+97NixQ7t27dKFCxfk6uoqSZo1a5ZWr16tL774QoMHD1ZERITmzZtnD68nTpzQ3r179dlnn0mSPXxPnTrVPu6CBQsUEBBgD8AASg+2DQBAGfPYY4+pQ4cOCg4OVs+ePRUdHa2ff/75vtc1a9bM/vW1a9eUmJioAQMGyN3d3X575513lJiYKOn2m78OHDigRx99VCNHjtTGjRvt1/fs2VO//PKLatWqpUGDBmnVqlW6detWvns5ePCg0tLSVLly5Wx1JCUl2et48cUXdfr0af373/+WdHvVtUmTJqpfv759jK1bt2a7/s5jd8YAUHqw8goAZYyjo6M2bdqkb7/9Vhs3btRf/vIXjR8/XvHx8fe8zs3Nzf51WlqaJCk6OlotWrS4a3xJatKkiZKSkrRu3Tp9/fXX6tWrlzp27KgvvvhCAQEBOn78uL7++mtt2rRJr7zyimbOnKlvvvlGzs7Oee4lLS1Nfn5+io2Nvesxb29vSZKvr6/at2+vJUuW6Mknn9SSJUs0dOjQbGOEhYXpvffeu2sMPz+/PNcCoHgQXgGgDLLZbGrdurVat26tCRMmKDAwUKtWrZKLi4syMzPve72Pj4/8/f116tQpRURE5Hqep6enXnjhBb3wwgt6/vnnFRoaqsuXL6tSpUoqX768wsLCFBYWpmHDhql+/fo6fPiwmjRpkuc+mjRponPnzsnJyUlBQUG5nhcREaHXX39dvXv31qlTp/Tiiy9mG2PFihUKCgqSkxM/FoHSjr+lAFDGxMfHa/PmzerUqZOqVaum+Ph4Xbx4UQ0aNNCNGze0YcMGHT9+XJUrV5aXl1eu40yePFkjR46Ul5eXQkNDlZ6erj179ujnn3/WqFGj9P7778vPz08hISFycHDQ559/Ll9fX3l7e2vhwoXKzMxUixYtVKFCBX322WcqX758tn2xedGxY0e1bNlS3bp104wZM1SvXj39+OOPWrNmjbp3727f6hAeHq6hQ4dq6NChateunfz9/e1jDBs2TNHR0erdu7def/11VapUSQkJCVq6dKnmz59vX0kGUDoQXgGgjPH09NS2bds0d+5cpaamKjAwULNnz1aXLl3UrFkzxcbGqlmzZkpLS9PWrVtzXdEcOHCgKlSooJkzZ2rMmDFyc3NTcHCw/X+i8vDw0IwZM3Ty5Ek5OjrqiSee0Nq1a+Xg4CBvb29Nnz5do0aNUmZmpoKDg/XPf/5TlStXzlcvNptNa9eu1fjx49W/f39dvHhRvr6+evrpp+Xj42M/z8PDQ2FhYVq+fLkWLFiQbQx/f3/FxcVp7Nix6tSpk9LT0xUYGKjQ0FA5OPDWEKC0sVmWZZV0EQAAAEBe8E9KAAAAGIPwCgAoNbZv357tI6t+ewMAtg0AAEqNX375RT/88EOuj9epU6cYqwFQGhFeAQAAYAy2DQAAAMAYhFcAAAAYg/AKAAAAYxBeAQAAYAzCKwAAAIxBeAUAAIAxCK8AAAAwBuEVAAAAxvh/7vHFfRWmenAAAAAASUVORK5CYII=\n"},"metadata":{}}],"source":["sns.barplot(pysch_corr,orient='y',palette='Spectral');\n"]},{"cell_type":"markdown","metadata":{"id":"ynFv5DkeUYs0"},"source":["###Physiological"]},{"cell_type":"code","execution_count":63,"metadata":{"colab":{"base_uri":"https://localhost:8080/"},"executionInfo":{"elapsed":633,"status":"ok","timestamp":1716217025265,"user":{"displayName":"Daniel Meier","userId":"06365571306976914087"},"user_tz":300},"id":"CZb1bFERlHyY","outputId":"6f48e850-646b-40e2-f467-34c44af49de6"},"outputs":[{"output_type":"stream","name":"stdout","text":["\n","RangeIndex: 1100 entries, 0 to 1099\n","Data columns (total 5 columns):\n"," # Column Non-Null Count Dtype \n","--- ------ -------------- ----- \n"," 0 headache 1100 non-null float64\n"," 1 blood_pressure 1100 non-null float64\n"," 2 sleep_quality 1100 non-null float64\n"," 3 breathing_problem 1100 non-null float64\n"," 4 stress_level 1100 non-null float64\n","dtypes: float64(5)\n","memory usage: 43.1 KB\n"]}],"source":["physio.info()"]},{"cell_type":"code","execution_count":64,"metadata":{"colab":{"base_uri":"https://localhost:8080/","height":300},"executionInfo":{"elapsed":169,"status":"ok","timestamp":1716217026398,"user":{"displayName":"Daniel Meier","userId":"06365571306976914087"},"user_tz":300},"id":"aGkqr37IKFPz","outputId":"6f913ae8-5ed1-4c07-b81c-4109ee7989e2"},"outputs":[{"output_type":"execute_result","data":{"text/plain":[" headache blood_pressure sleep_quality breathing_problem \\\n","count 1.100000e+03 1.100000e+03 1.100000e+03 1.100000e+03 \n","mean -4.683123e-17 -4.844610e-17 -5.490558e-17 -3.391227e-17 \n","std 1.000455e+00 1.000455e+00 1.000455e+00 1.000455e+00 \n","min -1.780475e+00 -1.418416e+00 -1.718703e+00 -1.966776e+00 \n","25% -1.070608e+00 -1.418416e+00 -1.072574e+00 -5.382823e-01 \n","50% 3.491253e-01 -2.182179e-01 -1.033806e-01 1.759644e-01 \n","75% 3.491253e-01 9.819805e-01 8.658128e-01 8.902111e-01 \n","max 1.768859e+00 9.819805e-01 1.511942e+00 1.604458e+00 \n","\n"," stress_level \n","count 1.100000e+03 \n","mean -2.260818e-17 \n","std 1.000455e+00 \n","min -1.213156e+00 \n","25% -1.213156e+00 \n","50% 4.427575e-03 \n","75% 1.222011e+00 \n","max 1.222011e+00 "],"text/html":["\n","
\n","
\n","\n","\n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n","
headacheblood_pressuresleep_qualitybreathing_problemstress_level
count1.100000e+031.100000e+031.100000e+031.100000e+031.100000e+03
mean-4.683123e-17-4.844610e-17-5.490558e-17-3.391227e-17-2.260818e-17
std1.000455e+001.000455e+001.000455e+001.000455e+001.000455e+00
min-1.780475e+00-1.418416e+00-1.718703e+00-1.966776e+00-1.213156e+00
25%-1.070608e+00-1.418416e+00-1.072574e+00-5.382823e-01-1.213156e+00
50%3.491253e-01-2.182179e-01-1.033806e-011.759644e-014.427575e-03
75%3.491253e-019.819805e-018.658128e-018.902111e-011.222011e+00
max1.768859e+009.819805e-011.511942e+001.604458e+001.222011e+00
\n","
\n","
\n","\n","
\n"," \n","\n"," \n","\n"," \n","
\n","\n","\n","
\n"," \n","\n","\n","\n"," \n","
\n","\n","
\n","
\n"],"application/vnd.google.colaboratory.intrinsic+json":{"type":"dataframe","summary":"{\n \"name\": \"physio\",\n \"rows\": 8,\n \"fields\": [\n {\n \"column\": \"headache\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 388.8791787981618,\n \"min\": -1.7804747330364354,\n \"max\": 1100.0,\n \"num_unique_values\": 7,\n \"samples\": [\n 1100.0,\n -4.68312257660066e-17,\n 0.3491253463474851\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"blood_pressure\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 388.91459297399035,\n \"min\": -1.4184162865339505,\n \"max\": 1100.0,\n \"num_unique_values\": 6,\n \"samples\": [\n 1100.0,\n -4.844609562000683e-17,\n 0.9819805060619656\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"sleep_quality\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 388.88579770834843,\n \"min\": -1.7187030800020355,\n \"max\": 1100.0,\n \"num_unique_values\": 8,\n \"samples\": [\n -5.4905575036007744e-17,\n -0.10338063639109984,\n 1100.0\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"breathing_problem\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 388.85137232664005,\n \"min\": -1.966775725036701,\n \"max\": 1100.0,\n \"num_unique_values\": 8,\n \"samples\": [\n -3.3912266934004784e-17,\n 0.17596441778968172,\n 1100.0\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"stress_level\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 388.85832663067225,\n \"min\": -1.2131556235498353,\n \"max\": 1100.0,\n \"num_unique_values\": 6,\n \"samples\": [\n 1100.0,\n -2.260817795600319e-17,\n 1.2220107740866955\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n }\n ]\n}"}},"metadata":{},"execution_count":64}],"source":["physio.describe()"]},{"cell_type":"code","execution_count":65,"metadata":{"colab":{"base_uri":"https://localhost:8080/","height":206},"executionInfo":{"elapsed":215,"status":"ok","timestamp":1716217027543,"user":{"displayName":"Daniel Meier","userId":"06365571306976914087"},"user_tz":300},"id":"I0h9ALv0KKan","outputId":"337be619-180a-4e20-cfb6-51dfe703fb49"},"outputs":[{"output_type":"execute_result","data":{"text/plain":[" headache blood_pressure sleep_quality breathing_problem \\\n","headache 1.000000 0.361986 -0.638771 0.461719 \n","blood_pressure 0.361986 1.000000 -0.300323 0.162308 \n","sleep_quality -0.638771 -0.300323 1.000000 -0.541687 \n","breathing_problem 0.461719 0.162308 -0.541687 1.000000 \n","stress_level 0.713484 0.394200 -0.749068 0.573984 \n","\n"," stress_level \n","headache 0.713484 \n","blood_pressure 0.394200 \n","sleep_quality -0.749068 \n","breathing_problem 0.573984 \n","stress_level 1.000000 "],"text/html":["\n","
\n","
\n","\n","\n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n","
headacheblood_pressuresleep_qualitybreathing_problemstress_level
headache1.0000000.361986-0.6387710.4617190.713484
blood_pressure0.3619861.000000-0.3003230.1623080.394200
sleep_quality-0.638771-0.3003231.000000-0.541687-0.749068
breathing_problem0.4617190.162308-0.5416871.0000000.573984
stress_level0.7134840.394200-0.7490680.5739841.000000
\n","
\n","
\n","\n","
\n"," \n","\n"," \n","\n"," \n","
\n","\n","\n","
\n"," \n","\n","\n","\n"," \n","
\n","\n","
\n","
\n"],"application/vnd.google.colaboratory.intrinsic+json":{"type":"dataframe","summary":"{\n \"name\": \"physio\",\n \"rows\": 5,\n \"fields\": [\n {\n \"column\": \"headache\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 0.6205859331166649,\n \"min\": -0.6387708500001319,\n \"max\": 1.0,\n \"num_unique_values\": 5,\n \"samples\": [\n 0.36198625087513886,\n 0.7134840400213889,\n -0.6387708500001319\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"blood_pressure\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 0.46884704028483376,\n \"min\": -0.30032340185267375,\n \"max\": 1.0,\n \"num_unique_values\": 5,\n \"samples\": [\n 1.0,\n 0.3941998626466492,\n -0.30032340185267375\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"sleep_quality\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 0.7159336259137585,\n \"min\": -0.7490678608072434,\n \"max\": 1.0,\n \"num_unique_values\": 5,\n \"samples\": [\n -0.30032340185267375,\n -0.7490678608072434,\n 1.0\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"breathing_problem\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 0.5730898544847798,\n \"min\": -0.5416866352334451,\n \"max\": 1.0,\n \"num_unique_values\": 5,\n \"samples\": [\n 0.16230840582892772,\n 0.5739836669821393,\n -0.5416866352334451\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"stress_level\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 0.6723140245094781,\n \"min\": -0.7490678608072434,\n \"max\": 1.0,\n \"num_unique_values\": 5,\n \"samples\": [\n 0.3941998626466492,\n 1.0,\n -0.7490678608072434\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n }\n ]\n}"}},"metadata":{},"execution_count":65}],"source":["physio.corr()"]},{"cell_type":"code","execution_count":66,"metadata":{"colab":{"base_uri":"https://localhost:8080/","height":545},"executionInfo":{"elapsed":501,"status":"ok","timestamp":1716217030374,"user":{"displayName":"Daniel Meier","userId":"06365571306976914087"},"user_tz":300},"id":"KvuFis4iKREN","outputId":"80bd3692-e416-479e-b57e-685d6400c2ce"},"outputs":[{"output_type":"display_data","data":{"text/plain":["
"],"image/png":"iVBORw0KGgoAAAANSUhEUgAAAvMAAAIQCAYAAAAM1eH7AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAABxFElEQVR4nO3dd3gUVdvH8d+mh4QQAiGhJvTQS+hID02MAtJRijSRakQEUaoSUUoEFBQFUeGhiYBU6dKbgCi9xgeBgDRDSUh23j94sw9LEsgCMbvw/VzXXJozZ86cmd0Zzt57z1mTYRiGAAAAADgcp4zuAAAAAIBHw2AeAAAAcFAM5gEAAAAHxWAeAAAAcFAM5gEAAAAHxWAeAAAAcFAM5gEAAAAHxWAeAAAAcFAM5gEAAAAHxWAeT5Xhw4fLZDJldDfSRadOnRQcHPxE2/zmm29kMpl0+vTpJ9ruk/bJJ5+oQIECcnZ2VtmyZTO6O8+8pPfN7t27M7orNqtdu7ZKliz5r+7zce5LtWvXVu3atZ9sh+6T3vfN9Lh3PWs6deokb2/vjO4G7BSD+XRw4MABtWjRQkFBQfLw8FDu3LlVv359TZo0yare6NGjtWjRoozp5GMIDg7WCy+8kNHdeCI2bNig5s2bKzAwUG5ubsqRI4fCw8O1cOHCjO7aE+Wo7zVJ+vnnnzVw4EBVr15dM2bM0OjRo1Ot26lTJ5lMphSXlStXpkv/Zs+eraioqHRpG2lXu3Ztq9fbz89PFStW1PTp02U2mzO6e0iD+1/De5fDhw8/0X0tX75cw4cPf6JtPq6bN29q+PDh2rBhQ0Z3Rb/99ps6d+6s/Pnzy8PDQ97e3ipbtqwGDhyokydPZli/Pv/8c33zzTfpuo+DBw9q+PDhdh/kupdLRnfgabN161bVqVNH+fLlU7du3RQYGKg///xT27dv16effqo+ffpY6o4ePVotWrRQ06ZNM67Dz7Bhw4Zp5MiRKly4sHr06KGgoCD9/fffWr58uV5++WXNmjVL7dq1y+huPhGpvddeffVVtWnTRu7u7hnTsTRYt26dnJyc9PXXX8vNze2h9d3d3fXVV18lKy9Tpkx6dE+zZ8/W77//rv79+6dL+0i7PHnyKDIyUpJ08eJFffvtt+rSpYuOHj2qjz76KMP69d5772nQoEEZtv+Hsaf+3fsa3itXrlxPdD/Lly/XZ599ZlcD+ps3b2rEiBGSlO7fxjzItGnT1LNnT2XPnl3t27dXSEiIEhIS9Pvvv+vbb79VVFSUbt26JWdn53+9b59//rmyZ8+uTp06pds+Dh48qBEjRqh27doO840Sg/kn7MMPP1SWLFm0a9cu+fr6Wq2LiYl55HZv3LghLy+vx+wdkixYsEAjR45UixYtNHv2bLm6ulrWvf3221q1apXu3Lnz2PtJSEiQ2WxOcRBqD6+ps7NzhtyQbRETEyNPT880DeQlycXFRa+88ko69yr93bx5U5kyZcrobjiULFmyWL32PXr0UNGiRTV58mSNGjXK6jr/N7m4uMjFxX7/ubWn/t3/GjoSs9ms+Ph4eXh4ZHRXHtnWrVvVs2dPVa9eXUuXLlXmzJmt1o8bN04ffvjhQ9vh/vXvIs3mCTtx4oRKlCiRbCAvSTly5LD8v8lk0o0bNzRz5kzL14hJnzST8hcPHjyodu3aKWvWrHruuecs237//fcKDQ2Vp6en/Pz81KZNG/35559W+zp27JhefvllBQYGysPDQ3ny5FGbNm107do1S53Vq1frueeek6+vr7y9vVW0aFG9++67T+xcPKyfvXv3lre3t27evJls27Zt2yowMFCJiYmWshUrVqhGjRry8vJS5syZ1aRJE/3xxx+P1Lf3339ffn5+mj59eor/wDds2NAqlSgmJkZdunRRQECAPDw8VKZMGc2cOdNqm9OnT8tkMmns2LGKiopSwYIF5e7ubvnK7nFf05SMHTtW1apVU7Zs2eTp6anQ0FAtWLDAqs6D3mup5cx//vnnKlGihNzd3ZUrVy716tVLV69etaqTlHt88OBB1alTR5kyZVLu3Ln18ccfP7Tf0t0POqNGjbKcp+DgYL377ruKi4uz6vuMGTN048YNS98f9ytWs9msqKgolShRQh4eHgoICFCPHj105coVq3qLFy9WkyZNlCtXLrm7u6tgwYIaNWqU1Xuydu3aWrZsmc6cOWPpX1IkJ7Vzu2HDBplMJquv0pPO5Z49e1SzZk1lypTJci3GxcVp2LBhKlSokNzd3ZU3b14NHDjQ6jxJj3Y9N2/eXOXLl7cqCw8Pl8lk0pIlSyxlO3bskMlk0ooVK6zqxsXFKSIiQv7+/vLy8lKzZs108eLFZPtJy7WblBN89uxZNW3aVN7e3vL399eAAQOszrktMmXKpCpVqujGjRvJ+vWg921sbKy8vLzUr1+/ZG3+97//lbOzsyV6fOfOHY0YMUKFCxeWh4eHsmXLpueee06rV6+2bJNSTnpa3v+pScv9SJL+/vtvvfrqq/Lx8ZGvr686duyo/fv3J7uOUsuZ//7771WpUiVlypRJWbNmVc2aNfXzzz9b1qflGnmSbNnfjh079Pzzzytr1qzy8vJS6dKl9emnn0q6+1777LPPJMkqlSfJjRs39NZbbylv3rxyd3dX0aJFNXbsWBmGYbUPk8mk3r17a9asWZb7ZVI635w5cxQaGqrMmTPLx8dHpUqVsuw/JadPn5a/v78kacSIEZY+3f/NQVquj7Te41KStO9Zs2YlG8hLkoeHh0aNGmUVBHoS968ZM2aobt26ypEjh9zd3VW8eHFNmTLFqk5wcLD++OMPbdy40XJ+7v0G4+rVq+rfv7/ldStUqJDGjBmTLM3uQa/NN998o5YtW0qS6tSpY9mPPaQ+PYh9fBR/igQFBWnbtm36/fffH/iQ1XfffaeuXbuqUqVK6t69uySpYMGCVnVatmypwoULa/To0ZabyIcffqj3339frVq1UteuXXXx4kVNmjRJNWvW1N69e+Xr66v4+Hg1bNhQcXFx6tOnjwIDA3X27FktXbpUV69eVZYsWfTHH3/ohRdeUOnSpTVy5Ei5u7vr+PHj2rJlyxM5D2npZ+vWrfXZZ59p2bJllotHuvuJ/qefflKnTp0sN4zvvvtOHTt2VMOGDTVmzBjdvHlTU6ZM0XPPPae9e/fa9FXYsWPHdPjwYb322msp3qzud+vWLdWuXVvHjx9X7969lT9/fs2fP1+dOnXS1atXk/2DP2PGDN2+fVvdu3eXu7u7/Pz8LOse9TVNzaeffqoXX3xR7du3V3x8vObMmaOWLVtq6dKlatKkieXcPey9dq/hw4drxIgRCgsLU8+ePXXkyBFNmTJFu3bt0pYtW6w+/Fy5ckWNGjVS8+bN1apVKy1YsEDvvPOOSpUqpcaNGz/wvHbt2lUzZ85UixYt9NZbb2nHjh2KjIzUoUOH9OOPP1r6/uWXX2rnzp2W1Jlq1ao9sF1JunTpktXfrq6uypIli6S70dpvvvlGnTt3Vt++fXXq1ClNnjxZe/futTq+b775Rt7e3oqIiJC3t7fWrVunoUOH6vr16/rkk08kSUOGDNG1a9f03//+VxMmTJCkR35I7e+//1bjxo3Vpk0bvfLKKwoICJDZbNaLL76ozZs3q3v37ipWrJgOHDigCRMm6OjRo5bnIB71eq5Ro4YWL16s69evy8fHR4ZhaMuWLXJyctKmTZv04osvSpI2bdokJycnVa9e3Wr7Pn36KGvWrBo2bJhOnz6tqKgo9e7dW3PnzrXUseXaTUxMVMOGDVW5cmWNHTtWa9as0bhx41SwYEH17Nnzkc7ryZMn5ezsbHUdPex96+3trWbNmmnu3LkaP3681cDlP//5jwzDUPv27SXdvV4iIyMt19j169e1e/du/frrr6pfv36q/UrL+z8lab0fmc1mhYeHa+fOnerZs6dCQkK0ePFidezYMU3nbcSIERo+fLiqVaumkSNHys3NTTt27NC6devUoEEDSWm7RmyVmJiY7PpNytlO6/5Wr16tF154QTlz5lS/fv0UGBioQ4cOaenSperXr5969Oihv/76S6tXr9Z3331ntS/DMPTiiy9q/fr16tKli8qWLatVq1bp7bff1tmzZy3XeZJ169Zp3rx56t27t7Jnz67g4GCtXr1abdu2Vb169TRmzBhJ0qFDh7Rly5YUPyBKkr+/v6ZMmaKePXuqWbNmat68uSSpdOnSVucmLddHWu9x97t586bWrVun2rVrK0+ePA97qaw8zv1LkqZMmaISJUroxRdflIuLi3766Se98cYbMpvN6tWrlyQpKipKffr0kbe3t4YMGSJJCggIsPS9Vq1aOnv2rHr06KF8+fJp69atGjx4sM6dO2d5rulhr03NmjXVt29fTZw4Ue+++66KFSsmSZb/2i0DT9TPP/9sODs7G87OzkbVqlWNgQMHGqtWrTLi4+OT1fXy8jI6duyYrHzYsGGGJKNt27ZW5adPnzacnZ2NDz/80Kr8wIEDhouLi6V87969hiRj/vz5qfZzwoQJhiTj4sWLNh9jUFCQ0aRJk1TXp7WfZrPZyJ07t/Hyyy9b1Zs3b54hyfjll18MwzCMf/75x/D19TW6detmVe/8+fNGlixZrMqTzt2DLF682JBkTJgw4aHHahiGERUVZUgyvv/+e0tZfHy8UbVqVcPb29u4fv26YRiGcerUKUOS4ePjY8TExFi18bivqWEYRseOHY2goCCrejdv3rT6Oz4+3ihZsqRRt25dq/LU3mszZswwJBmnTp0yDMMwYmJiDDc3N6NBgwZGYmKipd7kyZMNScb06dMtZbVq1TIkGd9++62lLC4uzggMDEz2mt5v3759hiSja9euVuUDBgwwJBnr1q2zOm4vL68HtndvXUnJllq1ahmGYRibNm0yJBmzZs2y2m7lypXJyu8/t4ZhGD169DAyZcpk3L5921LWpEmTZK+LYSQ/t0nWr19vSDLWr19vKUs6l1OnTrWq+9133xlOTk7Gpk2brMqnTp1qSDK2bNliGMajX8+7du0yJBnLly83DMMwfvvtN0OS0bJlS6Ny5cqWei+++KJRrly5ZMcWFhZmmM1mS/mbb75pODs7G1evXjUMw7ZrN+m1GzlypFXdcuXKGaGhoQ89llq1ahkhISHGxYsXjYsXLxqHDh0y+vbta0gywsPDreql5X27atUqQ5KxYsUKq/2ULl3a8n4yDMMoU6bMA++HhpH8vmTL+79WrVpW+0vr/eiHH34wJBlRUVGWeomJiUbdunUNScaMGTNS7d+xY8cMJycno1mzZlb3AcMwrF7vtF4jKd27UpL02ty/JN270rK/hIQEI3/+/EZQUJBx5cqVVPveq1evFP+tWLRokSHJ+OCDD6zKW7RoYZhMJuP48eOWMkmGk5OT8ccff1jV7devn+Hj42MkJCQ89JjvdfHiRUOSMWzYsGTr0np92HKPu9/+/fsNSUb//v2Trfv7778t19bFixeNuLg4y7rHvX8ZRsqvbcOGDY0CBQpYlZUoUcLqekgyatQow8vLyzh69KhV+aBBgwxnZ2cjOjraMIy0vTbz589Pdo+2d6TZPGH169fXtm3b9OKLL2r//v36+OOP1bBhQ+XOndvqa+u0eP31163+Xrhwocxms1q1aqVLly5ZlsDAQBUuXFjr16+XJEsEctWqVSmmsEiyRKkWL178xGd6SGs/TSaTWrZsqeXLlys2Ntay/dy5c5U7d25LGsrq1at19epVtW3b1qo9Z2dnVa5c2dJeWl2/fl2S0hSVl+4+KBUYGKi2bdtaylxdXdW3b1/FxsZq48aNVvVffvlly9el93vU1zQ1np6elv+/cuWKrl27pho1aujXX39N07Hdb82aNYqPj1f//v3l5PS/20O3bt3k4+OjZcuWWdX39va2ym91c3NTpUqVHjrbwfLlyyVJERERVuVvvfWWJCXbjy08PDy0evVqq2XcuHGSpPnz5ytLliyqX7++1fkODQ2Vt7e31fm+99z+888/unTpkmrUqKGbN28+8Zk1pLsP7nbu3NmqbP78+SpWrJhCQkKs+lu3bl1JsvT3Ua/ncuXKydvbW7/88oukuxH4PHnyqEOHDvr111918+ZNGYahzZs3q0aNGsm27969u1V6Qo0aNZSYmKgzZ85IerRr9/5rpEaNGmmePePw4cPy9/eXv7+/ihUrpkmTJqlJkyaaPn26Vb20vG/DwsKUK1cuzZo1y1L2+++/67fffrPa1tfXV3/88YeOHTuWpj5Kj/f+T+v9aOXKlXJ1dVW3bt0s9ZycnCxRzgdZtGiRzGazhg4danUfkGT1eqfHNZIU2b53GThwYJr3t3fvXp06dUr9+/dP9q1mWqbfXL58uZydndW3b1+r8rfeekuGYSRLNatVq5aKFy9uVebr66sbN25YpVo9KQ+7Pmy5x90v6d/GlL5dLFCggOXa8vf3TzaeeZz7l2T92l67dk2XLl1SrVq1dPLkSav04NTMnz9fNWrUUNasWa32FRYWpsTERMs9Lj1fm4xEmk06qFixohYuXKj4+Hjt379fP/74oyZMmKAWLVpo3759yS781OTPn9/q72PHjskwDBUuXDjF+klfneXPn18REREaP368Zs2apRo1aujFF1/UK6+8Yhnot27dWl999ZW6du2qQYMGqV69emrevLlatGiR7OZtq7T2M6kfUVFRWrJkidq1a6fY2FgtX75cPXr0sNx4k/6RTLoB3M/Hx8em/iXV/+eff9JU/8yZMypcuHCy85L0tVvSwCXJ/a/bg9bZcq5SsnTpUn3wwQfat29fslzzR5F0LEWLFrUqd3NzU4ECBZIda548eZLtK2vWrPrtt98euh8nJycVKlTIqjwwMFC+vr7J9mMLZ2dnhYWFpbju2LFjunbtmtXzK/e69yH1P/74Q++9957WrVtn+UcuSVr+cbFV7ty5kz3ke+zYMR06dCjVD4dJ/X3U69nZ2VlVq1bVpk2bJN0dzNeoUUPPPfecEhMTtX37dgUEBOjy5cspDubz5ctn9XfWrFklyZKba+u16+HhkexYs2bNmqZcX+nuQHDatGkymUzy8PBQ4cKFU3yt0/K+dXJyUvv27TVlyhTLw3yzZs2Sh4eHVVrgyJEj9dJLL6lIkSIqWbKkGjVqpFdffdUqPeJ+j/P+T+v96MyZM8qZM2eyhxDv32dKTpw4IScnp4f+W5Ue14iXl1eq129a9nfixAlJeuTfEjhz5oxy5cqVLNhjy/3+jTfe0Lx589S4cWPlzp1bDRo0UKtWrdSoUaNH6lOStFwfttzj7pd0zPcG15IsXrxYd+7c0f79+zVgwIBk6x/n/iVJW7Zs0bBhw7Rt27ZkQchr165Zxi6pOXbsmH777beH7iu9XpuMxmA+Hbm5ualixYqqWLGiihQpos6dO2v+/PkaNmxYmra/95OqdDcHMukhtJRmILn30/S4cePUqVMnLV68WD///LP69u2ryMhIbd++XXny5JGnp6d++eUXrV+/XsuWLdPKlSs1d+5c1a1bVz///PNjzXBiSz+rVKmi4OBgzZs3T+3atdNPP/2kW7duqXXr1lbtSXdzbwMDA5O1Z+ssDCEhIZLu/h5Aerj/dXvQOlvO1f2Scppr1qypzz//XDlz5pSrq6tmzJih2bNnP/oB2CC194lx34Niqfm3f+DLbDYrR44cVtHWeyX9Q3D16lXVqlVLPj4+GjlypAoWLCgPDw/9+uuveuedd9IU/U7t2FJ7ODCl943ZbFapUqU0fvz4FLfJmzevZdtHvZ6fe+45ffjhh7p9+7Y2bdqkIUOGyNfXVyVLltSmTZssOakpDeYf9vrbeu0+7sxKDxoIpmU/979vO3TooE8++USLFi1S27ZtNXv2bL3wwgtWA4uaNWvqxIkTlnvtV199pQkTJmjq1Knq2rXrA/vhyD9w9ySuEXveX1qldN3myJFD+/bt06pVq7RixQqtWLFCM2bMUIcOHVJ8UDmt0nJ9pPUel5JChQrJxcVFv//+e7J1tWrVkpT6v7ePc/86ceKE6tWrp5CQEI0fP1558+aVm5ubli9frgkTJqTptTWbzapfv77lW5z7FSlSRFL6vTYZjcH8v6RChQqSpHPnzlnKbL2RFyxYUIZhKH/+/JY35oOUKlVKpUqV0nvvvaetW7eqevXqmjp1qj744ANJdyNP9erVU7169TR+/HiNHj1aQ4YM0fr169P0D+KT6merVq306aef6vr165o7d66Cg4NVpUoVq/akuxfh4/QrSZEiRVS0aFEtXrxYn3766UMfWAwKCtJvv/0ms9lsFQ1L+lo3KCjokfti67m61w8//CAPDw+tWrXKap74GTNmJKub1vda0rEcOXJEBQoUsJTHx8fr1KlTT+T8J+3HbDbr2LFjVg8WXbhwQVevXn2sc/ogBQsW1Jo1a1S9evUHfujasGGD/v77by1cuFA1a9a0lJ86dSpZ3dTObVKU+v5ZgGz51qFgwYLav3+/6tWr99DX8FGv5xo1aig+Pl7/+c9/dPbsWcugvWbNmpbBfJEiRSyDels86Wv331ayZEmVK1dOs2bNUp48eRQdHZ3sx/8kyc/PT507d1bnzp0VGxurmjVravjw4akO5h/n/Z/W+1FQUJDWr1+fbIrA48ePP/S4CxYsKLPZrIMHD6b6i8u2XCNPQlr3l/Se+/333x/4nkvtegoKCtKaNWv0zz//WEXnbb3fu7m5KTw8XOHh4TKbzXrjjTf0xRdf6P3330/125En8eEurfe4lHh5eal27drauHGjzp49q9y5cz92X9Jy//rpp58UFxenJUuWWH3bl1JKUGrtFCxYULGxsWm6zzzstXHED9nkzD9h69evTzEqmZQjeW/6gpeXV7J/6B+kefPmcnZ21ogRI5LtwzAM/f3335Lu5r0lJCRYrS9VqpScnJwsqRiXL19O1n7STTstU6M9iX4mad26teLi4jRz5kytXLlSrVq1slrfsGFD+fj4aPTo0SnO/Z7SVHgPM2LECP3999/q2rVrsnMl3f3V0aVLl0qSnn/+eZ0/f95qho6EhARNmjRJ3t7elojFo7D1XN3L2dlZJpPJKtJ7+vTpFH/pNa3vtbCwMLm5uWnixIlW/fn666917do1yww5j+v555+XpGS/nJoUwXlS+7lfq1atlJiYqFGjRiVbl5CQYDlHSRGwe89BfHy8Pv/882TbeXl5pZhSkDSoSMrVlO5G5b/88kub+nv27FlNmzYt2bpbt27pxo0bkh7veq5cubJcXV01ZswY+fn5qUSJEpLuDvK3b9+ujRs3phiVT4v0uHb/ba+++qp+/vlnRUVFKVu2bMlmabr/GvX29lahQoUeeN4f5/2f1vtRw4YNdefOHav3jtlstkzJ+CBNmzaVk5OTRo4cmSwqmnRN2HKNPAlp3V/58uWVP39+RUVFJbvn3btt0m983F/n+eefV2JioiZPnmxVPmHCBJlMpofO0iUlf084OTlZ0q4e9L5I+tBly7jgfmm9x6Vm6NChSkxM1CuvvJJiuk1av3VN6kta7l8pvbbXrl1LMTCV2r9lrVq10rZt27Rq1apk665evWr5dz4tr01q7w17RmT+CevTp49u3rypZs2aKSQkRPHx8dq6dasl4nzvAyKhoaFas2aNxo8fr1y5cil//vyqXLlyqm0XLFhQH3zwgQYPHqzTp0+radOmypw5s06dOqUff/xR3bt314ABA7Ru3Tr17t1bLVu2VJEiRZSQkKDvvvtOzs7OevnllyXdzfP85Zdf1KRJEwUFBSkmJkaff/658uTJYzX/eWqOHz9uifDfq1y5cmrSpEma+pmkfPnyKlSokIYMGaK4uDirFBvpbl7tlClT9Oqrr6p8+fJq06aN/P39FR0drWXLlql69erJbrwP07p1ax04cEAffvih9u7dq7Zt21p+AXblypVau3atJVWle/fu+uKLL9SpUyft2bNHwcHBWrBggbZs2aKoqKg0P0ibkrS+pilp0qSJxo8fr0aNGqldu3aKiYnRZ599pkKFCiXLWU/re83f31+DBw/WiBEj1KhRI7344os6cuSIPv/8c1WsWPGJ/ZhLmTJl1LFjR3355ZeWr8937typmTNnqmnTpqpTp84T2c/9atWqpR49eigyMlL79u1TgwYN5OrqqmPHjmn+/Pn69NNP1aJFC1WrVk1Zs2ZVx44d1bdvX5lMJn333Xcp/kMWGhqquXPnKiIiQhUrVpS3t7fCw8NVokQJValSRYMHD9bly5fl5+enOXPmpPjhMTWvvvqq5s2bp9dff13r169X9erVlZiYqMOHD2vevHlatWqVKlSo8FjXc6ZMmRQaGqrt27db5piX7kbmb9y4oRs3bjzyYD49rt1/W7t27TRw4ED9+OOP6tmzZ7LnWIoXL67atWsrNDRUfn5+2r17txYsWKDevXun2ubjvP/Tej9q2rSpKlWqpLfeekvHjx9XSEiIlixZYvng96DoY9L9eNSoUapRo4aaN28ud3d37dq1S7ly5VJkZKRN18iTkNb9OTk5acqUKQoPD1fZsmXVuXNn5cyZU4cPH9Yff/xhGeyFhoZKkvr27auGDRvK2dlZbdq0UXh4uOrUqaMhQ4bo9OnTKlOmjH7++WctXrxY/fv3f+C0vkm6du2qy5cvq27dusqTJ4/OnDmjSZMmqWzZsg+c4tDT01PFixfX3LlzVaRIEfn5+alkyZI25f+n9R6Xmho1amjy5Mnq06ePChcubPkF2Pj4eB09elSzZs2Sm5tbimlz90vr/atBgwaWaHmPHj0UGxuradOmKUeOHFbZDNLd123KlCn64IMPVKhQIeXIkUN169bV22+/rSVLluiFF15Qp06dFBoaqhs3bujAgQNasGCBTp8+rezZs6fptSlbtqycnZ01ZswYXbt2Te7u7pY58O3WvzJnzjNkxYoVxmuvvWaEhIQY3t7ehpubm1GoUCGjT58+xoULF6zqHj582KhZs6bh6elpNf1W0jRhqU0z98MPPxjPPfec4eXlZXh5eRkhISFGr169jCNHjhiGYRgnT540XnvtNaNgwYKGh4eH4efnZ9SpU8dYs2aNpY21a9caL730kpErVy7Dzc3NyJUrl9G2bdtk0zqlJCgoKMXpwyQZXbp0SXM/7zVkyBBDklGoUKFU97t+/XqjYcOGRpYsWQwPDw+jYMGCRqdOnYzdu3db6qRlasp7JZ2HHDlyGC4uLoa/v78RHh5uLF682KrehQsXjM6dOxvZs2c33NzcjFKlSllN7WYY/5ua8pNPPkm2n8d9TQ0j5endvv76a6Nw4cKGu7u7ERISYsyYMSPFc5Daey216RMnT55shISEGK6urkZAQIDRs2fPZNO81apVyyhRokSyY0nrNHR37twxRowYYeTPn99wdXU18ubNawwePNhqSruk9myZmjItdb/88ksjNDTU8PT0NDJnzmyUKlXKGDhwoPHXX39Z6mzZssWoUqWK4enpaeTKlcsyzazum7IsNjbWaNeuneHr62tIsjr2EydOGGFhYYa7u7sREBBgvPvuu8bq1atTnJoypXNpGHenHRwzZoxRokQJw93d3ciaNasRGhpqjBgxwrh27ZphGI93PRuGYbz99tuGJGPMmDFW5YUKFTIkGSdOnLAqT3rf7Nq1y6o8pWk3k8ofdu2m9tql9Zp+0DlMS70HvW+ff/55Q5KxdevWZOs++OADo1KlSoavr6/h6elphISEGB9++KHVdMQpHUNa3//3T01pGGm7HxnG3akO27VrZ2TOnNnIkiWL0alTJ2PLli2GJGPOnDkP7J9hGMb06dONcuXKWd53tWrVMlavXm1Zn9ZrxJapKR/0GqZ1f4ZhGJs3bzbq169vZM6c2fDy8jJKly5tTJo0ybI+ISHB6NOnj+Hv72+YTCar4//nn3+MN99808iVK5fh6upqFC5c2Pjkk0+sprY0jLtTU/bq1StZPxcsWGA0aNDAyJEjh+Hm5mbky5fP6NGjh3Hu3LmHnoOtW7caoaGhhpubm9U0lbZeH2m5xz3I3r17jQ4dOhj58uUz3NzcLOfwrbfespqe0zAe//5lGIaxZMkSo3Tp0oaHh4cRHBxsjBkzxpg+fXqyf5/Onz9vNGnSxMicObPVtMOGcfd1Gzx4sFGoUCHDzc3NyJ49u1GtWjVj7Nixlusxra/NtGnTjAIFChjOzs4OMU2lyTDS6WM0AABPgWbNmunAgQNpyje3d4sWLVKzZs20efPmZD8CBsAxkTMPAEAqzp07p2XLlunVV1/N6K7Y7NatW1Z/JyYmatKkSfLx8VH58uUzqFcAnjRy5gEAuM+pU6e0ZcsWffXVV3J1dVWPHj0yuks269Onj27duqWqVasqLi5OCxcu1NatWzV69GibZzoBYL8YzAMAcJ+NGzeqc+fOypcvn2bOnJmmB/7sTd26dTVu3DgtXbpUt2/fVqFChTRp0qQHPpwLwPGQMw8AAAA4KHLmAQAAAAfFYB4AAABwUAzmAQAAAAfFA7BIV8tci2Z0FwAAgI2a3DmSYftOz7FDRh5XeiEyDwAAADgoIvMAAACwGyZXU0Z3waEQmQcAAAAcFJF5AAAA2A0nFyLztiAyDwAAADgoIvMAAACwGyZXYs22YDAPAAAAu0GajW346AMAAAA4KCLzAAAAsBtMTWkbIvMAAACAgyIyDwAAALtBzrxtiMwDAAAADorIPAAAAOwGOfO2ITIPAAAAOCgi8wAAALAb5MzbhsE8AAAA7IbJmcG8LUizAQAAABwUkXkAAADYDSci8zYhMg8AAAA4KCLzAAAAsBsmJyLztiAyDwAAADgoIvMAAACwGyZnYs224GwBAAAADorIPAAAAOwGs9nYhsE8AAAA7AYPwNqGNBsAAADAQRGZBwAAgN0gzcY2ROYBAAAAB0VkHgAAAHbDRGTeJkTmAQAAAAdFZB4AAAB2w+RErNkWnC0AAAAgBZ999pmCg4Pl4eGhypUra+fOnQ+sf/XqVfXq1Us5c+aUu7u7ihQpouXLl6drH4nMAwAAwG7Yyzzzc+fOVUREhKZOnarKlSsrKipKDRs21JEjR5QjR45k9ePj41W/fn3lyJFDCxYsUO7cuXXmzBn5+vqmaz8ZzAMAAMBu2MvUlOPHj1e3bt3UuXNnSdLUqVO1bNkyTZ8+XYMGDUpWf/r06bp8+bK2bt0qV1dXSVJwcHC695M0GwAAADwT4uLidP36daslLi4uWb34+Hjt2bNHYWFhljInJyeFhYVp27ZtKba9ZMkSVa1aVb169VJAQIBKliyp0aNHKzExMd2OR2IwDwAAADticjKl2xIZGaksWbJYLZGRkcn6cOnSJSUmJiogIMCqPCAgQOfPn0+x3ydPntSCBQuUmJio5cuX6/3339e4ceP0wQcfpMt5SkKaDQAAAJ4JgwcPVkREhFWZu7v7E2nbbDYrR44c+vLLL+Xs7KzQ0FCdPXtWn3zyiYYNG/ZE9pESBvMAAACwG+k5NaW7u3uaBu/Zs2eXs7OzLly4YFV+4cIFBQYGprhNzpw55erqKmdnZ0tZsWLFdP78ecXHx8vNze3xOp8K0mwAAACAe7i5uSk0NFRr1661lJnNZq1du1ZVq1ZNcZvq1avr+PHjMpvNlrKjR48qZ86c6TaQlxjMAwAAwI6kZ868LSIiIjRt2jTNnDlThw4dUs+ePXXjxg3L7DYdOnTQ4MGDLfV79uypy5cvq1+/fjp69KiWLVum0aNHq1evXk/0/NyPNBsAAADgPq1bt9bFixc1dOhQnT9/XmXLltXKlSstD8VGR0fL6Z6UoLx582rVqlV68803Vbp0aeXOnVv9+vXTO++8k679NBmGYaTrHvBMW+ZaNKO7AAAAbNTkzpEM2/cfL9VNt7ZLLF6Xbm1nFCLzAAAAsBv28guwjoKceQAAAMBBEZkHAACA3UjPqSmfRpwtAAAAwEERmQcAAIDdIGfeNkTmAQAAAAdFZB4AAAB2g8i8bYjMAwAAAA6KwbwNateurf79+//r+w0ODlZUVNQTay+jjgMAAOBhTE6mdFueRqTZAAAU1LOdCkR0kXugv67/dlh/9B+la7sOpFi3yppvla1W5WTlMcs3aNdLPSRJgU3rK1/3NspSvoTcsmXVpgov6fr+w+l6DACeDkxNaRvOFgA843K2bKxinwzWsQ8+0+ZKzfTPb4dVednXcvP3S7H+npZ9tCZPdcuysUwTmRMSdO6HlZY6zl6ZdHnLrzr87th/6zAA4JnEYN5GZrNZAwcOlJ+fnwIDAzV8+HDLuqtXr6pr167y9/eXj4+P6tatq/3791vWnzhxQi+99JICAgLk7e2tihUras2aNVbtx8TEKDw8XJ6ensqfP79mzZqVrA/jx49XqVKl5OXlpbx58+qNN95QbGysVZ0tW7aodu3aypQpk7JmzaqGDRvqypUraTqOtBwLgKdH/v6d9efX8/TfmQsVe+iEDrwxTIk3bytvp5dTrH/nyjXFXbhkWbKHVVfizds6t+B/g/mzsxbr+Ief6dLabf/WYQB4Sjg5m9JteRoxmLfRzJkz5eXlpR07dujjjz/WyJEjtXr1aklSy5YtFRMToxUrVmjPnj0qX7686tWrp8uXL0uSYmNj9fzzz2vt2rXau3evGjVqpPDwcEVHR1va79Spk/7880+tX79eCxYs0Oeff66YmBirPjg5OWnixIn6448/NHPmTK1bt04DBw60rN+3b5/q1aun4sWLa9u2bdq8ebPCw8OVmJiYpuNIy7EAeDqYXF2VpXwJXVq79X+FhqFL67bKt0q5NLWRt/PLOjdvmRJv3kqnXgIAUmMyDMPI6E44itq1aysxMVGbNm2ylFWqVEl169bVCy+8oCZNmigmJkbu7u6W9YUKFdLAgQPVvXv3FNssWbKkXn/9dfXu3VtHjx5V0aJFtXPnTlWsWFGSdPjwYRUrVkwTJkxI9aHVBQsW6PXXX9elS5ckSe3atVN0dLQ2b95s83F89NFH2rx58yMdS0qWuRZNc10A/z73nDkUFr1JW2q01tXt+yzlIZFvy69mRW2t3uqB22epWErPbV2gzdVapJhj7xmUW3WPryNnHnAwTe4cybB9n+z0Qrq1XeCbpenWdkbhAVgblS5d2urvnDlzKiYmRvv371dsbKyyZctmtf7WrVs6ceKEpLuR+eHDh2vZsmU6d+6cEhISdOvWLUtk/tChQ3JxcVFoaKhl+5CQEPn6+lq1uWbNGkVGRurw4cO6fv26EhISdPv2bd28eVOZMmXSvn371LJly0c6DklpOpaUxMXFKS4uzqrsjmGWq4kvgICnVd7OLXT9wJFUH5YFAKQvBvM2cnV1tfrbZDLJbDYrNjZWOXPm1IYNG5JtkzQYHzBggFavXq2xY8eqUKFC8vT0VIsWLRQfH5/m/Z8+fVovvPCCevbsqQ8//FB+fn7avHmzunTpovj4eGXKlEmenp6PfByS0nQsKYmMjNSIESOsytqa/NTeOfvDDwxAhoi/dEXmhAS557D+8O4ekE1x5y89cFvnTJ7K1aqJjo6YmJ5dBPCMYTYb2zCYf0LKly+v8+fPy8XFRcHBwSnW2bJlizp16qRmzZpJujtoPn36tGV9SEiIEhIStGfPHkuazZEjR3T16lVLnT179shsNmvcuHFy+v83+7x586z2U7p0aa1duzbZwPpJHktKBg8erIiICKuydX6hqdQGYA+MO3d07dc/lL1uVV1YsvZuocmkbHWq6szn3z9w25wtGsnJ3U1nZy35F3oKAEgJH32ekLCwMFWtWlVNmzbVzz//rNOnT2vr1q0aMmSIdu/eLUkqXLiwFi5cqH379mn//v1q166dJRouSUWLFlWjRo3Uo0cP7dixQ3v27FHXrl2tIu2FChXSnTt3NGnSJJ08eVLfffedpk6datWXwYMHa9euXXrjjTf022+/6fDhw5oyZYolp/5JHEtK3N3d5ePjY7WQYgPYv1NRM5S3SyvlfrWpvEMKqORnw+Xi5ak/Zy6UJJWZMUZFP4hItl3ezi10YfEa3bl8Ndk616xZ5FMmRN7FCkqSvIrkl0+ZELkH8E0dgAfjR6Nsw0jrCTGZTFq+fLlq1qypzp07q0iRImrTpo3OnDmjgIAASXenlMyaNauqVaum8PBwNWzYUOXLl7dqZ8aMGcqVK5dq1aql5s2bq3v37sqRI4dlfZkyZTR+/HiNGTNGJUuW1KxZsxQZGWnVRpEiRfTzzz9r//79qlSpkqpWrarFixfLxSVtX8Sk5VgAPD3OzV+hQ++MUZFhffXc7sXyKVNMO1/oqviYvyVJnnlzyj2nv9U2XkXyy++5CvpzxoIU2wwIr6sauxer0k/TJEnlZ0epxu7Fyte9TfoeDACHx2DeNsxmg3TFbDYAADiejJzN5kz3punWdtCXi9Kt7YxCzjwAAADsBg/A2oazBQAAADgoIvMAAACwG09rbnt6ITIPAAAAOCgi8wAAALAb5MzbhrMFAAAAOCgi8wAAALAfJnLmbUFkHgAAAHBQROYBAABgN5jNxjYM5gEAAGA3eADWNpwtAAAAwEERmQcAAIDdIM3GNkTmAQAAAAdFZB4AAAB2g5x523C2AAAAAAdFZB4AAAB2g5x52xCZBwAAABwUkXkAAADYDSLztmEwDwAAAPvBA7A24WwBAAAADorIPAAAAOyGyUSajS2IzAMAAAAOisg8AAAA7AY/GmUbzhYAAADgoIjMAwAAwG4wNaVtiMwDAAAADorIPAAAAOwHOfM2YTAPAAAAu0GajW346AMAAAA4KCLzAAAAsBsmE7FmW3C2AAAAAAdFZB4AAAD2g5x5mxCZBwAAAFLw2WefKTg4WB4eHqpcubJ27tyZpu3mzJkjk8mkpk2bpm8HxWAeAAAAdsTk5JRuiy3mzp2riIgIDRs2TL/++qvKlCmjhg0bKiYm5oHbnT59WgMGDFCNGjUe5zSkGYN5AAAA4D7jx49Xt27d1LlzZxUvXlxTp05VpkyZNH369FS3SUxMVPv27TVixAgVKFDgX+kng3kAAADYDZOTKd2WuLg4Xb9+3WqJi4tL1of4+Hjt2bNHYWFhljInJyeFhYVp27ZtqfZ95MiRypEjh7p06ZIu5yYlDOYBAABgP0xO6bZERkYqS5YsVktkZGSyLly6dEmJiYkKCAiwKg8ICND58+dT7PbmzZv19ddfa9q0aelyWlLDbDYAAAB4JgwePFgRERFWZe7u7o/d7j///KNXX31V06ZNU/bs2R+7PVswmAcAAIDdMKXj1JTu7u5pGrxnz55dzs7OunDhglX5hQsXFBgYmKz+iRMndPr0aYWHh1vKzGazJMnFxUVHjhxRwYIFH7P3KSPNBgAAALiHm5ubQkNDtXbtWkuZ2WzW2rVrVbVq1WT1Q0JCdODAAe3bt8+yvPjii6pTp4727dunvHnzpltficwDAADAftg4hWR6iYiIUMeOHVWhQgVVqlRJUVFRunHjhjp37ixJ6tChg3Lnzq3IyEh5eHioZMmSVtv7+vpKUrLyJ43BPAAAAHCf1q1b6+LFixo6dKjOnz+vsmXLauXKlZaHYqOjo+VkBx88TIZhGBndCTy9lrkWzeguAAAAGzW5cyTD9v3Pp2+lW9uZ+41Lt7YzSsZ/nAAAAADwSEizAQAAgP2wg9QVR8JgHgAAAHYjPaemfBrx0QcAAABwUETmAQAAYD9MxJptwdkCAAAAHBSReQAAANgPcuZtQmQeAAAAcFBE5gEAAGA3TOTM24SzBQAAADgoIvNIV/lfyJPRXQAAAI6EnHmbMJgHAACA3TDxC7A24WwBAAAADorIPAAAAOyHiTQbWxCZBwAAABwUkXkAAADYD3LmbcLZAgAAABwUkXkAAADYD3LmbUJkHgAAAHBQROYBAABgN5hn3jYM5gEAAGA/TAzmbcHZAgAAABwUkXkAAADYDycegLUFkXkAAADAQRGZBwAAgN0wkTNvE84WAAAA4KCIzAMAAMB+kDNvEyLzAAAAgIMiMg8AAAD7Qc68TRjMAwAAwH6YSLOxBR99AAAAAAdFZB4AAAD2w4lYsy04WwAAAICDIjIPAAAA+8EDsDbhbAEAAAAOisg8AAAA7Ac/GmUTIvMAAACAgyIyDwAAAPtBzrxNOFsAAACAgyIyDwAAAPvBL8DahME8AAAA7Ac/GmUTzhYAAADgoIjMAwAAwH6QZmMTIvMAAACAgyIyDwAAAPvB1JQ24WwBAAAADorIPAAAAOwHs9nYhLMFAAAAOCgi8wAAALAfzGZjEwbzAAAAsB88AGsTzhYAAADgoIjMAwAAwH6QZmMTIvMAAABACj777DMFBwfLw8NDlStX1s6dO1OtO23aNNWoUUNZs2ZV1qxZFRYW9sD6TwqDeQAAANgPJ6f0W2wwd+5cRUREaNiwYfr1119VpkwZNWzYUDExMSnW37Bhg9q2bav169dr27Ztyps3rxo0aKCzZ88+ibOSKpNhGEa67gHPtIPN6mV0FwAAgI2K/7g2w/Z9e+236da2R70Oaa5buXJlVaxYUZMnT5Ykmc1m5c2bV3369NGgQYMeun1iYqKyZs2qyZMnq0OHtO/XVuTMAwAAwG4Y6ZgzHxcXp7i4OKsyd3d3ubu7W5XFx8drz549Gjx4sKXMyclJYWFh2rZtW5r2dfPmTd25c0d+fn6P3/EHIM0GAAAAz4TIyEhlyZLFaomMjExW79KlS0pMTFRAQIBVeUBAgM6fP5+mfb3zzjvKlSuXwsLCnkjfU0NkHgAAAPYjHeeZHzx4sCIiIqzK7o/KPwkfffSR5syZow0bNsjDw+OJt38vBvMAAACwH+k4mE8ppSYl2bNnl7Ozsy5cuGBVfuHCBQUGBj5w27Fjx+qjjz7SmjVrVLp06cfqb1qQZgMAAADcw83NTaGhoVq79n8PApvNZq1du1ZVq1ZNdbuPP/5Yo0aN0sqVK1WhQoV/o6tE5gEAAGA/0vMBWFtERESoY8eOqlChgipVqqSoqCjduHFDnTt3liR16NBBuXPntuTcjxkzRkOHDtXs2bMVHBxsya339vaWt7d3uvXTpsh87dq11b9//3Tqiu3S0h+TyaRFixb9K/1Jb506dVLTpk0fWMfeXiMAAABH1Lp1a40dO1ZDhw5V2bJltW/fPq1cudLyUGx0dLTOnTtnqT9lyhTFx8erRYsWypkzp2UZO3ZsuvbTISLzGzZsUJ06dXTlyhX5+vratO25c+eUNWvW9OkYADwlsjZ+SdmatpKLr5/iTp/Qua8m6faxIynWzVKnoXL3HWhVZo6P1+HWjS1/pzZH9YWZX+jvRfOeXMcBPH3SMWfeVr1791bv3r1TXLdhwwarv0+fPp3+HUpBug7m4+Pj5ebmlp67eKiHPaRgD+zhPAF4dvlUr62Azq/r3NQo3Tp6WNnCmyto6Bgd791JideuprhN4o1YHe/d6X8F9/384JHOLaz+9i5fSbl6DdD1bZuebOcB4Bln80efhIQE9e7dW1myZFH27Nn1/vvvK+lHZIODgzVq1Ch16NBBPj4+6t69uyRp8+bNqlGjhjw9PZU3b1717dtXN27csLT53XffqUKFCsqcObMCAwPVrl07y0/lnj59WnXq1JEkZc2aVSaTSZ06dbJsazabNXDgQPn5+SkwMFDDhw+36u+9aTanT5+WyWTSwoULVadOHWXKlEllypRJNvn/tGnTlDdvXmXKlEnNmjXT+PHj0/yNwPDhw1W2bFl98cUXljZatWqla9euWeokpct8+OGHypUrl4oWLSpJOnDggOrWrStPT09ly5ZN3bt3V2xsbLJ9jBgxQv7+/vLx8dHrr7+u+Pj4VPsTFxenAQMGKHfu3PLy8lLlypWtPkl+88038vX11dKlS1W0aFFlypRJLVq00M2bNzVz5kwFBwcra9as6tu3rxITE9N0DgA4lmwvttDV1ct1bd0qxf/3jM5NjZI5Lk6+9Ro9cLvEq1f+t1y7kvq6q1eUuVJ13fx9n+5cOJdKawDw/0ym9FueQjYP5mfOnCkXFxft3LlTn376qcaPH6+vvvrKsn7s2LEqU6aM9u7dq/fff18nTpxQo0aN9PLLL+u3337T3LlztXnzZquvLO7cuaNRo0Zp//79WrRokU6fPm0ZsOfNm1c//PCDJOnIkSM6d+6cPv30U6v+eHl5aceOHfr44481cuRIrV69+oHHMGTIEA0YMED79u1TkSJF1LZtWyUkJEiStmzZotdff139+vXTvn37VL9+fX344Yc2naPjx49r3rx5+umnn7Ry5Urt3btXb7zxhlWdtWvX6siRI1q9erWWLl2qGzduqGHDhsqaNat27dql+fPna82aNcm+2lm7dq0OHTqkDRs26D//+Y8WLlyoESNGpNqX3r17a9u2bZozZ45+++03tWzZUo0aNdKxY8csdW7evKmJEydqzpw5WrlypTZs2KBmzZpp+fLlWr58ub777jt98cUXWrBggU3nAYADcHGRR8EiurH/1/+VGYZu/ParMhUtnupmTh6eKvTFbBWe9h/lHTxS7nmDUq3rnCWrModW1pU1K55kzwEAeoQ0m7x582rChAkymUwqWrSoDhw4oAkTJqhbt26SpLp16+qtt96y1O/atavat29veSizcOHCmjhxomrVqqUpU6bIw8NDr732mqV+gQIFNHHiRFWsWFGxsbHy9va2/Axujhw5kkXIS5curWHDhlnanjx5stauXav69eunegwDBgxQkyZNJN2NcpcoUULHjx9XSEiIJk2apMaNG2vAgAGSpCJFimjr1q1aunRpms/R7du39e233yp37tySpEmTJqlJkyYaN26cJe3Hy8tLX331lSW9Ztq0aZbtvLy8JEmTJ09WeHi4xowZY3nYws3NTdOnT1emTJlUokQJjRw5Um+//bZGjRolJyfrz2bR0dGaMWOGoqOjlStXLsuxr1y5UjNmzNDo0aMl3f0wNWXKFBUsWFCS1KJFC3333Xe6cOGCvL29Vbx4cdWpU0fr169X69atUz3ulH4iOT7RLDdn+8l9A2DNJXMWmZydlXBfZD3h6hW5586b4jbxf/2pvyZ/otunT8rZy0vZXmql4MiJOtGvixL+vpSsvm+dBjLfuql/tpNiAyANnBg32MLms1WlShWZ7vmaomrVqjp27JglBeP+OTX379+vb775xjItj7e3txo2bCiz2axTp05Jkvbs2aPw8HDly5dPmTNnVq1atSTdHYw+zP2T8efMmdOSopOWbXLmzClJlm2OHDmiSpUqWdW//++HyZcvn2UgL909R2azWUeO/O9hslKlSlnlyR86dEhlypSxDOQlqXr16sm2K1OmjDJlymTVdmxsrP78889k/Thw4IASExNVpEgRq/O/ceNGnThxwlIvU6ZMloG8dPenioODg62mUQoICHjoeU3pJ5KnHT39wG0AOJ5bRw7q2obVijt9Qjf/+E1/jhmmxOvXlLXBCynW963XSNd+WSvjzp1/uacAHJFhMqXb8jR64g/A3jsYlaTY2Fj16NFDffv2TVY3X758lvSShg0batasWfL391d0dLQaNmz4wFzwJK6urlZ/m0wmmc3mNG+T9MHkYds8afefp/QQGxsrZ2dn7dmzR87Ozlbr7h2op3QOH+W8pvQTySdfeelRug7gX5LwzzUZiYlyyWI965eLb1YlXL2ctkYSE3X71HG55cydbFWmYqXknief/jtu1JPoLgDgPjYP5nfs2GH19/bt21W4cOFkg8Uk5cuX18GDB1WoUKEU1x84cEB///23PvroI+XNe/cr3d27d1vVSYpg/xsPYBYtWlS7du2yKrv/74eJjo7WX3/9ZUlt2b59u5ycnCwPuqakWLFi+uabb3Tjxg3LQH/Lli3Jttu/f79u3bolT09PS9ve3t6Wc3evcuXKKTExUTExMapRo4ZNx/AoUvqJZFJsADuXkKDbJ47Kq3Q5/bNzy90yk0lepcrp8opFaWvDyUnu+fIr9tedyVb5hjXWreNHFHf65JPrM4Cnmx1NTekIbD5b0dHRioiI0JEjR/Sf//xHkyZNUr9+/VKt/84772jr1q3q3bu39u3bp2PHjmnx4sWWBzvz5csnNzc3TZo0SSdPntSSJUs0apR1BCcoKEgmk0lLly7VxYsXU5zh5Unp06ePli9frvHjx+vYsWP64osvtGLFCqvUoofx8PBQx44dtX//fm3atEl9+/ZVq1atHjhNZvv27S3b/f7771q/fr369OmjV1991ZIvL92dxrJLly46ePCgli9frmHDhql3797J8uWlu/n+7du3V4cOHbRw4UKdOnVKO3fuVGRkpJYtW2bbiQHw1Pp7yQL51m+iLHUayC1PPuXs0V9OHh66unaVJClX33eU45UulvrZW70qrzKhcg3IKY8ChZW7/2C5+gfoyurlVu06eWaST7WaurrGuhwA8OTYPJjv0KGDbt26pUqVKqlXr17q16+fZQrKlJQuXVobN27U0aNHVaNGDZUrV05Dhw61RK39/f31zTffaP78+SpevLg++uijZL+UlTt3bo0YMUKDBg1SQEBAqpP3PwnVq1fX1KlTNX78eJUpU0YrV67Um2++KQ8PjzS3UahQITVv3lzPP/+8GjRooNKlS+vzzz9/4DaZMmXSqlWrdPnyZVWsWFEtWrRQvXr1NHnyZKt69erVU+HChVWzZk21bt1aL774YrLpOO81Y8YMdejQQW+99ZaKFi2qpk2bateuXcqXL1+ajwfA0+36lg268M1U+bfppALjv5BH/oKKHjnIMt2kq38OuWTNZqnv7OWtnG+8pYKTpivfe6Pl5JlJpwf3Vfx/z1i16/NcHclk0rVN6//V4wHg2AyTU7otTyOTkTRJPFLVrVs3HT58WJs2PXwmhuHDh2vRokXat29f+nfMARxsVi+juwAAAGyU2q84/xtity9Jt7a9q7yYbm1nlHT9BVhHNXbsWNWvX19eXl5asWKFZs6c+dDIOgAAAJ6Ap3TWmfTCYD4FO3fu1Mcff6x//vnHMu99165dJUklSpTQmTNnUtzuiy+++De7CQAAgGccaTY2OnPmjO6kMldyQECAMmfO/C/3yL6RZgMAgOPJyDSbf3am3yQdmSs1Sbe2MwqReRsFBaX+k+UAAAB4TKTZ2OTpfKwXAAAAeAYQmQcAAID9eEqnkEwvnC0AAADAQRGZBwAAgN0wyJm3CZF5AAAAwEERmQcAAID9IGfeJpwtAAAAwEERmQcAAIDdMETOvC0YzAMAAMBuGKTZ2ISzBQAAADgoIvMAAACwH0TmbcLZAgAAABwUkXkAAADYDX40yjZE5gEAAAAHRWQeAAAAdoPZbGzD2QIAAAAcFJF5AAAA2A9y5m3CYB4AAAB2gzQb23C2AAAAAAdFZB4AAAB2wxBpNrYgMg8AAAA4KCLzAAAAsBvkzNuGswUAAAA4KCLzAAAAsB9MTWkTIvMAAACAgyIyDwAAALthEGu2CYN5AAAA2A2DNBub8NEHAAAAcFBE5gEAAGA3mJrSNpwtAAAAwEERmQcAAIDdMETOvC2IzAMAAAAOisg8AAAA7AY587bhbAEAAAAOisg8AAAA7AbzzNuGyDwAAADgoIjMAwAAwG4wm41tGMwDAADAbvAArG04WwAAAEAKPvvsMwUHB8vDw0OVK1fWzp07H1h//vz5CgkJkYeHh0qVKqXly5enex8ZzAMAAMBuGDKl22KLuXPnKiIiQsOGDdOvv/6qMmXKqGHDhoqJiUmx/tatW9W2bVt16dJFe/fuVdOmTdW0aVP9/vvvT+K0pMpkGIaRrnvAM+1gs3oZ3QUAAGCj4j+uzbB9Rx87lG5t5ytcLM11K1eurIoVK2ry5MmSJLPZrLx586pPnz4aNGhQsvqtW7fWjRs3tHTpUktZlSpVVLZsWU2dOvXxO58KIvMAAACwG4bJKd2WtIqPj9eePXsUFhZmKXNyclJYWJi2bduW4jbbtm2zqi9JDRs2TLX+k8IDsAAAAHgmxMXFKS4uzqrM3d1d7u7uVmWXLl1SYmKiAgICrMoDAgJ0+PDhFNs+f/58ivXPnz//BHqeOiLzAAAAsBvpmTMfGRmpLFmyWC2RkZEZfciPhcg8AAAAngmDBw9WRESEVdn9UXlJyp49u5ydnXXhwgWr8gsXLigwMDDFtgMDA22q/6QQmQcAAIDdSM+ceXd3d/n4+FgtKQ3m3dzcFBoaqrVr//cgsNls1tq1a1W1atUU+121alWr+pK0evXqVOs/KUTmAQAAYDfs5RdgIyIi1LFjR1WoUEGVKlVSVFSUbty4oc6dO0uSOnTooNy5c1vSdPr166datWpp3LhxatKkiebMmaPdu3fryy+/TNd+MpgHAAAA7tO6dWtdvHhRQ4cO1fnz51W2bFmtXLnS8pBrdHS0nJz+l+RSrVo1zZ49W++9957effddFS5cWIsWLVLJkiXTtZ/MM490dW1sv4zuAgAAsFGWAZ9m2L5PnDyZbm0XLFAg3drOKOTMAwAAAA6KNBsAAADYDcOwj5x5R0FkHgAAAHBQROYBAABgNwxizTbhbAEAAAAOisg8AAAA7Ia9zDPvKBjMAwAAwG4wmLcNaTYAAACAgyIyDwAAALtBZN42ROYBAAAAB0VkHgAAAHaDyLxtiMwDAAAADorIPAAAAOyGYRCZtwWReQAAAMBBEZkHAACA3SBn3jYM5gEAAGA3GMzbhjQbAAAAwEERmQcAAIDdIDJvGyLzAAAAgIMiMg8AAAC7wdSUtiEyDwAAADgoIvMAAACwG2Zy5m1CZB4AAABwUETmAQAAYDeYzcY2DOYBAABgN3gA1jak2QAAAAAOisg8AAAA7AZpNrYhMg8AAAA4KCLzAAAAsBvkzNuGyDwAAADgoIjMAwAAwG6QM28bIvMAAACAgyIyDwAAALtBzrxtGMwDAADAbpgzugMOhjQbAAAAwEERmQcAAIDdIM3GNkTmAQAAAAdFZB4AAAB2g6kpbUNkHgAAAHBQROYBAABgN8iZtw2ReQAAAMBBEZkHAACA3SBn3jYM5gEAAGA3zEZG98CxkGYDAAAAOCgi8wAAALAbpNnYhsg8AAAA4KCIzAMAAMBuMDWlbYjMAwAAAA6KyDwAAADshsFsNjYhMg8AAAA4KLsdzNeuXVv9+/dPdX1wcLCioqLSvR8mk0mLFi1K9/0AAABAMsuUbsvTiDQbAIDcyj4n94p1ZfLyUeLFs7q99gclno9Osa5L4dJyr1xfzr7ZJWdnma9cVNzu9bpzcLeljilTZnnUDJdLcIhM7p5K+O8J3V77g8xXL/5bhwTAQfEArG3sNjL/LDAMQwkJCRndDSv22CcA6cu1aDl51G6m29tWKfa7T2SO+UteLXrKlMk7xfrG7ZuK275asbOjFPvNGMX/vlOejdrJJTjEUidT0y5yypJNNxd9pdhvP5H5+mV5tXpDcnX7tw4LAP41ly9fVvv27eXj4yNfX1916dJFsbGxD6zfp08fFS1aVJ6ensqXL5/69u2ra9eu2bxvux7MJyQkqHfv3sqSJYuyZ8+u999/X0YqT0VER0frpZdekre3t3x8fNSqVStduHDBqs6UKVNUsGBBubm5qWjRovruu++s1h87dkw1a9aUh4eHihcvrtWrV6e5r6dPn5bJZNKcOXNUrVo1eXh4qGTJktq4caOlzoYNG2QymbRixQqFhobK3d1dmzdvltlsVmRkpPLnzy9PT0+VKVNGCxYssGx35coVtW/fXv7+/vL09FThwoU1Y8YMSVJ8fLx69+6tnDlzysPDQ0FBQYqMjLTq0759+yxtXb16VSaTSRs2bHisPgF4erhVqK34A1t15/cdMv99QbdWz5NxJ15uJaukWD/xz+NKOP6bzJcvyHztb8X/ulHmi3/JOXcBSZJTVn+55MqvW2vmK/F8tMxXYnR79XzJxVWuIeX/zUMD4IAMI/2W9NK+fXv98ccfWr16tZYuXapffvlF3bt3T7X+X3/9pb/++ktjx47V77//rm+++UYrV65Uly5dbN63XafZzJw5U126dNHOnTu1e/dude/eXfny5VO3bt2s6pnNZstAfuPGjUpISFCvXr3UunVry6D1xx9/VL9+/RQVFaWwsDAtXbpUnTt3Vp48eVSnTh2ZzWY1b95cAQEB2rFjh65du/bAnP3UvP3224qKilLx4sU1fvx4hYeH69SpU8qWLZulzqBBgzR27FgVKFBAWbNmVWRkpL7//ntNnTpVhQsX1i+//KJXXnlF/v7+qlWrlt5//30dPHhQK1asUPbs2XX8+HHdunVLkjRx4kQtWbJE8+bNU758+fTnn3/qzz//tLnftvYJwFPCyVnOAXkVt2PNPYWGEqKPyjlXcJqacM5XRE5+OZT4y0//X/D//7Qk3LFqUwkJcsldQHcObH8SPQcAu3Do0CGtXLlSu3btUoUKFSRJkyZN0vPPP6+xY8cqV65cybYpWbKkfvjhB8vfBQsW1IcffqhXXnlFCQkJcnFJ+xDdrgfzefPm1YQJE2QymVS0aFEdOHBAEyZMSDaYX7t2rQ4cOKBTp04pb968kqRvv/1WJUqU0K5du1SxYkWNHTtWnTp10htvvCFJioiI0Pbt2zV27FjVqVNHa9as0eHDh7Vq1SrLSR89erQaN25sU5979+6tl19+WdLdbwJWrlypr7/+WgMHDrTUGTlypOrXry9JiouL0+jRo7VmzRpVrVpVklSgQAFt3rxZX3zxhWrVqqXo6GiVK1fO8gYJDg62tBUdHa3ChQvrueeek8lkUlBQkE39fdQ+AXg6mDy9ZHJylnHjH6ty48Y/cvLLkfqGbh7yeX3k3YG7YdatNfOVcOaIJN2N2F+/LPea4br181zpTrzcKtSWk09Wmbx80vNwADwFDAd7UHXbtm3y9fW1jNMkKSwsTE5OTtqxY4eaNWuWpnauXbsmHx8fmwbykp0P5qtUqSKT6X8vaNWqVTVu3DglJiZa1Tt06JDy5s1rGchLUvHixeXr66tDhw6pYsWKOnToULKvO6pXr65PP/3Uqo17Pz0lDWRtce82Li4uqlChgg4dOmRV594X+/jx47p586ZlIJ0kPj5e5cqVkyT17NlTL7/8sn799Vc1aNBATZs2VbVq1SRJnTp1Uv369VW0aFE1atRIL7zwgho0aGBzv23tU0ri4uIUFxdnXZaQIHcb35QAHEB8nGK//VhydZdLUBF51m4q87W/lfjnccls1o3FXytTw7bK0ucjGeZEJZw5qjsnD8rB/o0G8JRJaazi7u4ud3f3R27z/PnzypHDOvjh4uIiPz8/nT9/Pk1tXLp0SaNGjXpgak5qGGVlAC8vL8v/Jz0csWzZMuXOnduqXtIbq3Hjxjpz5oyWL1+u1atXq169eurVq5fGjh2r8uXL69SpU1qxYoXWrFmjVq1aKSwsTAsWLJCT091HIu59zuDOnTtKia19SklkZKRGjBhhVfZO/Uoa3CDlvFsAGc+4dUOGOVEmr8xW5SavzMmi9fdtKfPVS5Kk+Itn5ewXIPdKYbr553FJkvnCfxX77SeSm4dMzs4ybt2QV/s3lXje9jRAAM8Wczrmtqc0Vhk2bJiGDx+erO6gQYM0ZsyYB7Z3f8D2UVy/fl1NmjRR8eLFU+zHw9j1YH7Hjh1Wf2/fvl2FCxeWs7OzVXmxYsUsueJJ0fmDBw/q6tWrKl68uKXOli1b1LFjR8t2W7ZssVr/559/6ty5c8qZM6dlf7bavn27atasKenuA7x79uxR7969U61fvHhxubu7Kzo6+oHpK/7+/urYsaM6duyoGjVq6O2339bYsWMlST4+PmrdurVat26tFi1aqFGjRrp8+bL8/f0lSefOnbNE1O99GPZx+3S/wYMHKyIiwqrs9ueD07w9gAxgTlTihT/lkq+IEo4f+P9Ck1zyFVH83k1pb8dkkimlb+Hib8uQ5OTrL+eAfIrbvPxJ9BoAHklKY5XUApVvvfWWOnXq9MD2ChQooMDAQMXExFiVJyQk6PLlywoMDHzg9v/8848aNWqkzJkz68cff5Srq+vDD+I+dj2Yj46OVkREhHr06KFff/1VkyZN0rhx45LVCwsLU6lSpdS+fXtFRUUpISFBb7zxhmrVqmVJH3n77bfVqlUrlStXTmFhYfrpp5+0cOFCrVmzxtJGkSJF1LFjR33yySe6fv26hgwZYnOfP/vsMxUuXFjFihXThAkTdOXKFb322mup1s+cObMGDBigN998U2azWc8995yuXbumLVu2yMfHRx07dtTQoUMVGhqqEiVKKC4uTkuXLlWxYsUkSePHj1fOnDlVrlw5OTk5af78+QoMDJSvr6+cnJxUpUoVffTRR8qfP79iYmL03nvvPfQY0tKnlKT0NZVBig1g9+J3b5Bn4/ZKvBCtxHPRcgutJZOrm+J/vxtQ8WzcXubYa4rbtFSS5F4pTIkX/lTi1UsyObvIpUBxuRavqFtr5lnadClSVsatWJmvX5Fz9pzyrNtcCccPWPLqASA16TnPvLu7W5pTavz9/S2B0QepWrWqrl69qj179ig0NFSStG7dOpnNZlWuXDnV7a5fv66GDRvK3d1dS5YskYeHR9oO4j52PdLq0KGDbt26pUqVKsnZ2Vn9+vVLMZfIZDJp8eLF6tOnj2rWrCknJyc1atRIkyZNstRp2rSpPv30U40dO1b9+vVT/vz5NWPGDNWuXVuS5OTkpB9//FFdunRRpUqVFBwcrIkTJ6pRo0Y29fmjjz7SRx99pH379qlQoUJasmSJsmfP/sBtRo0aJX9/f0VGRurkyZPy9fVV+fLl9e6770qS3NzcNHjwYJ0+fVqenp6qUaOG5syZI+nuwPvjjz/WsWPH5OzsrIoVK2r58uWWFJvp06erS5cuCg0NVdGiRfXxxx+nKaf+YX0C8PS4c2SvTJm85VH9eZky+Sjx4n91Y8FUGTfvptk4+WS1ntPN1U0eYS3l5J1FRsIdmS/H6Nby73TnyF5LFScvH7nXbvr/6TrXFf/HLsVtW/VvHxoAB5SeU0imh2LFiqlRo0bq1q2bpk6dqjt37qh3795q06aN5VnMs2fPql69evr2229VqVIlXb9+XQ0aNNDNmzf1/fff6/r167p+/bqkux8i7s9CeRCTkdrE7bDJ6dOnlT9/fu3du1dly5bN6O7YjWtj+2V0FwAAgI2yDPg0w/a9/NeUn+97Ep4vb3saS1pcvnxZvXv31k8//SQnJye9/PLLmjhxory97/74XtI4cf369apdu7Y2bNigOnXqpNjWqVOnrGYufBi7jswDAADg2WJ2wGmv/Pz8NHv27FTXBwcHW01IUrt27VR/CNVWdv0LsPZk9OjR8vb2TnGxdS56AAAA4EkgMp9Gr7/+ulq1apXiOk9PT+XOnfuJfcICAAB4VjGcsg2D+TTy8/OTn59fRncDAAAAsGAwDwAAALuRnlNTPo3ImQcAAAAcFJF5AAAA2A0zOfM2ITIPAAAAOCgi8wAAALAbzGZjGwbzAAAAsBuGA/5oVEYizQYAAABwUETmAQAAYDd4ANY2ROYBAAAAB0VkHgAAAHaDB2BtQ2QeAAAAcFBE5gEAAGA3iMzbhsg8AAAA4KCIzAMAAMBumA3mmbcFg3kAAADYDdJsbEOaDQAAAOCgiMwDAADAbhCZtw2ReQAAAMBBEZkHAACA3TATmbcJkXkAAADAQRGZBwAAgN0wmJrSJkTmAQAAAAdFZB4AAAB2g9lsbMNgHgAAAHaDB2BtQ5oNAAAA4KCIzAMAAMBukGZjGyLzAAAAgIMiMg8AAAC7QWTeNkTmAQAAAAdFZB4AAAB2g9lsbENkHgAAAHBQROYBAABgN8iZtw2DeQAAANgNszmje+BYSLMBAAAAHBSReQAAANgN0mxsQ2QeAAAAcFBE5gEAAGA3iMzbhsg8AAAA4KCIzAMAAMBu8KNRtiEyDwAAADgoIvMAAACwG0a6Js2b0rHtjMFgHgAAAHaDB2BtQ5oNAAAA4KCIzAMAAMBumM0Z3QPHQmQeAAAAcFBE5gEAAGA3yJm3DZF5AAAAwEERmQcAAIDd4EejbENkHgAAAHBQROaRrppsbJ7RXQAAADbaPCDj9k3OvG2IzAMAAMBuGGYj3Zb0cvnyZbVv314+Pj7y9fVVly5dFBsbm7bjNQw1btxYJpNJixYtsnnfDOYBAACAx9C+fXv98ccfWr16tZYuXapffvlF3bt3T9O2UVFRMplMj7xv0mwAAABgNxztAdhDhw5p5cqV2rVrlypUqCBJmjRpkp5//nmNHTtWuXLlSnXbffv2ady4cdq9e7dy5sz5SPsnMg8AAIBnQlxcnK5fv261xMXFPVab27Ztk6+vr2UgL0lhYWFycnLSjh07Ut3u5s2bateunT777DMFBgY+8v4ZzAMAAMBuGEb6LZGRkcqSJYvVEhkZ+Vj9PX/+vHLkyGFV5uLiIj8/P50/fz7V7d58801Vq1ZNL7300mPtnzQbAAAAPBMGDx6siIgIqzJ3d/cU6w4aNEhjxox5YHuHDh16pH4sWbJE69at0969ex9p+3sxmAcAAIDdMKdj0ry7u3uqg/f7vfXWW+rUqdMD6xQoUECBgYGKiYmxKk9ISNDly5dTTZ9Zt26dTpw4IV9fX6vyl19+WTVq1NCGDRvS1EeJwTwAAACQjL+/v/z9/R9ar2rVqrp69ar27Nmj0NBQSXcH62azWZUrV05xm0GDBqlr165WZaVKldKECRMUHh5uUz8ZzAMAAMBuONqPRhUrVkyNGjVSt27dNHXqVN25c0e9e/dWmzZtLDPZnD17VvXq1dO3336rSpUqKTAwMMWofb58+ZQ/f36b9s8DsAAAALAb6fkAbHqZNWuWQkJCVK9ePT3//PN67rnn9OWXX1rW37lzR0eOHNHNmzef+L6JzAMAAACPwc/PT7Nnz051fXBwsIyHfJp42PrUMJgHAACA3TA7Wp5NBiPNBgAAAHBQROYBAABgNwxzRvfAsRCZBwAAABwUkXkAAADYjUd9EPRZRWQeAAAAcFBE5gEAAGA3zOTM24TBPAAAAOwGaTa2Ic0GAAAAcFBE5gEAAGA3zATmbUJkHgAAAHBQROYBAABgNwxC8zYhMg8AAAA4KCLzAAAAsBtMZmMbIvMAAACAgyIyDwAAALthJmfeJkTmAQAAAAdFZB4AAAB2g1+AtQ2DeQAAANgNw5zRPXAspNkAAAAADorIPAAAAOyGmTQbmxCZBwAAABwUkXkAAADYDR6AtQ2ReQAAAMBBEZkHAACA3eBHo2xDZB4AAABwUETmAQAAYDdImbcNg3kAAADYDYM0G5uQZgMAAAA4KCLzAAAAsBv8aJRtiMwDAAAADorIPAAAAOwGOfO2ITIPAAAAOCgi8wAAALAbROZtQ2QeAAAAcFBE5gEAAGA3CMzbhsE8AAAA7AZpNrYhzQYAAABwUETmAQAAYDcMfjTKJs9MZL5Tp05q2rRpRncjQ9x/7LVr11b//v0zrD8AAAB4MojMP4MWLlwoV1dXy9/BwcHq378/A3zgGdelfbDCGwQqs5eLDhy6rrGfH9N/z91Ktf78ryorZ4BHsvKFy85q/NTjkqRJo8uoXClfq/WLVvylsZ8fe6J9B/D0MJMzbxMG888gPz+/jO4CADvT/uW8avFCbn0YdVjnLtxW1/bBGj+ylF55Y5fi76T8D2u3iF/ldM/3uwWCvBT1QRmt33zRqt6SlX/pq1mnLX/fjjOnxyEAwDPpqUuzWbBggUqVKiVPT09ly5ZNYWFhunHjRrJ6ZrNZkZGRyp8/vzw9PVWmTBktWLDAqs7vv/+uxo0by9vbWwEBAXr11Vd16dIly/ratWurd+/e6t27t7JkyaLs2bPr/fffT3OuV0xMjMLDw+Xp6an8+fNr1qxZCg4OVlRUlCTp9OnTMplM2rdvn2Wbq1evymQyacOGDZKkxMREdenSxXIcRYsW1aeffvrA/d6bZlO7dm2dOXNGb775pkwmk0wmk27cuCEfH59k52PRokXy8vLSP//8k6bjA+A4Wr6YW9/OO6PNO/7WidM39MGEw8rm564aVbKnus3V63d0+er/lmoVs+m/f93S3t+vWdW7HWe2qnfzVmJ6Hw4AB2YYRrotT6OnajB/7tw5tW3bVq+99poOHTqkDRs2qHnz5im+eJGRkfr22281depU/fHHH3rzzTf1yiuvaOPGjZLuDprr1q2rcuXKaffu3Vq5cqUuXLigVq1aWbUzc+ZMubi4aOfOnfr00081fvx4ffXVV2nqb6dOnfTnn39q/fr1WrBggT7//HPFxMTYdMxms1l58uTR/PnzdfDgQQ0dOlTvvvuu5s2bl6btFy5cqDx58mjkyJE6d+6czp07Jy8vL7Vp00YzZsywqjtjxgy1aNFCmTNntqmPAOxbrgAPZfdz1659VyxlN24m6uDR6yoZ4pOmNlxcTGpQJ0DL1pxPtq5+7RxaOquavp1cQT065Je7+1P1Tw8AZKinKs3m3LlzSkhIUPPmzRUUFCRJKlWqVLJ6cXFxGj16tNasWaOqVatKkgoUKKDNmzfriy++UK1atTR58mSVK1dOo0ePtmw3ffp05c2bV0ePHlWRIkUkSXnz5tWECRNkMplUtGhRHThwQBMmTFC3bt0e2NejR49qxYoV2rlzpypWrChJ+vrrr1WsWDGbjtnV1VUjRoyw/J0/f35t27ZN8+bNS/bBIyV+fn5ydnZW5syZFRgYaCnv2rWrqlWrpnPnzilnzpyKiYnR8uXLtWbNmlTbiouLU1xcnFWZOTFeTs5uNh0TgH+XX9a71+iVq3esyq9cjbese5iaVbLL28tFy9daD+ZXb4zR+ZjbunQ5XgWDvdSzUwHly+2pIZEHn0znATx1mGfeNk9VeKRMmTKqV6+eSpUqpZYtW2ratGm6cuVKsnrHjx/XzZs3Vb9+fXl7e1uWb7/9VidOnJAk7d+/X+vXr7daHxISIkmWOpJUpUoVmUwmy99Vq1bVsWPHlJj44K+RDx06JBcXF4WGhlrKQkJC5Ovra/Nxf/bZZwoNDZW/v7+8vb315ZdfKjo62uZ27lWpUiWVKFFCM2fOlCR9//33CgoKUs2aNVPdJjIyUlmyZLFa/nt81mP1A8CTV79WDv087znL4uJievhGD9GkfqB27Lmsvy/HW5UvWXVOO/de0ckzN7R6Y4w+mHBYtar5K1dg8gdnAUC6O5hPr+Vp9FRF5p2dnbV69Wpt3bpVP//8syZNmqQhQ4Zox44dVvViY2MlScuWLVPu3Lmt1rm7u1vqhIeHa8yYMcn2kzNnznQ6AmtO//9k2b1pQnfuWEfO5syZowEDBmjcuHGqWrWqMmfOrE8++STZMT+Krl276rPPPtOgQYM0Y8YMde7c2eqDy/0GDx6siIgIq7JGbR6/HwCerM07/9bBo7stf7u53r3XZPV11d9X/jcYz+rrpuMnYx/aXoC/uyqUyaohkX88tO7BI9clSXlyeuqv87dt7ToA4D5P1WBekkwmk6pXr67q1atr6NChCgoK0o8//mhVp3jx4nJ3d1d0dLRq1aqVYjvly5fXDz/8oODgYLm4pH6a7h80b9++XYULF5azs/MD+xkSEqKEhATt2bPHkmZz5MgRXb161VLH399f0t30oXLlykmS1cOwkrRlyxZVq1ZNb7zxhqXs3m8O0sLNzS3FbxJeeeUVDRw4UBMnTtTBgwfVsWPHB7bj7u5u+TCUhBQbwP7cupWos/c9hHrpcpwqlMmq46fuThiQydNZxYv4aNHyvx7aXpOwQF25Fq9tu/5+aN3CBbwlyepDAwDcy/yUPqiaXp6qNJsdO3Zo9OjR2r17t6Kjo7Vw4UJdvHgxWR565syZNWDAAL355puaOXOmTpw4oV9//VWTJk2ypJX06tVLly9fVtu2bbVr1y6dOHFCq1atUufOna0GvtHR0YqIiNCRI0f0n//8R5MmTVK/fv0e2teiRYuqUaNG6tGjh3bs2KE9e/aoa9eu8vT0tNTx9PRUlSpV9NFHH+nQoUPauHGj3nvvPat2ChcurN27d2vVqlU6evSo3n//fe3atcum8xYcHKxffvlFZ8+etZqtJ2vWrGrevLnefvttNWjQQHny5LGpXQCOY/6Ss+rYOp+qV8qmAkFeei8iRH9fjtOm7f+7J0R9UFrNm+Sy2s5kkp4PC9TKdReUeN+Mk7kCPdSxdT4VLeitwBzuql4pm957M0R7f7+qE6eTzzIGALDdUxWZ9/Hx0S+//KKoqChdv35dQUFBGjdunBo3bqy5c+da1R01apT8/f0VGRmpkydPytfXV+XLl9e7774rScqVK5e2bNmid955Rw0aNFBcXJyCgoLUqFEjS/qLJHXo0EG3bt1SpUqV5OzsrH79+ql79+5p6u+MGTPUtWtX1apVSwEBAfrggw/0/vvvW9WZPn26unTpotDQUBUtWlQff/yxGjRoYFnfo0cP7d27V61bt5bJZFLbtm31xhtvaMWKFWk+byNHjlSPHj1UsGBBxcXFWaX1dOnSRbNnz9Zrr72W5vYAOJ5ZP/wpDw9nDexdRN5eLjpw8JreGnbAao753IGe8vVxtdquQtmsCszhoWWrk89ik5BgqELZrGr1Yh55eDgr5tJtbdh6STPnnkn34wHguJ7W3Pb0YjKe1kk3/wW1a9dW2bJlLfPCPwn29mus3333nd5880399ddfcnOzPWXmufCN6dArAACQnjb/lHIa8r+h49DkwYEnZebIwIdXcjBPVWQeT87Nmzd17tw5ffTRR+rRo8cjDeQBAABsRZzZNk9Vzrw92bRpk9W0lvcv9u7jjz9WSEiIAgMDNXjw4IzuDgAAgN26fPmy2rdvLx8fH/n6+qpLly6W2RMfZNu2bapbt668vLzk4+OjmjVr6tatWzbtmzSbdHLr1i2dPXs21fWFChX6F3uTcUizAQDA8WRkms0rQx4+i9aj+v7DXA+v9AgaN26sc+fO6YsvvtCdO3fUuXNnVaxYUbNnz051m23btqlRo0YaPHiwwsPD5eLiov379+ull15KNjvggzCYR7piMA8AgOPJyMF8+8GpB0Mf16zI3A+vZKNDhw6pePHi2rVrlypUqCBJWrlypZ5//nn997//Va5cKX+AqFKliurXr69Ro0Y91v5JswEAAMAzIS4uTtevX7da4uLiHqvNbdu2ydfX1zKQl6SwsDA5OTml+iOeMTEx2rFjh3LkyKFq1aopICBAtWrV0ubNm23eP4N5AAAA2A3DMNJtiYyMVJYsWayWyMjIx+rv+fPnlSNHDqsyFxcX+fn56fz5lGfmOXnypCRp+PDh6tatm1auXKny5curXr16OnbsmE37ZzAPAACAZ8LgwYN17do1qyW1iT4GDRokk8n0wOXw4cOP1A+z+e6v7PXo0UOdO3dWuXLlNGHCBBUtWlTTp0+3qS2mpgQAAIDdMMzmh1d6RO7u7ml+uPStt95Sp06dHlinQIECCgwMVExMjFV5QkKCLl++rMDAlOe1z5kzpySpePHiVuXFihVTdHR0mvqXhME8AAAAcB9/f3/5+/s/tF7VqlV19epV7dmzR6GhoZKkdevWyWw2q3LlyiluExwcrFy5cunIkSNW5UePHlXjxo1t6idpNgAAALAbZrORbkt6KFasmBo1aqRu3bpp586d2rJli3r37q02bdpYZrI5e/asQkJCtHPnTkmSyWTS22+/rYkTJ2rBggU6fvy43n//fR0+fFhdunSxaf9E5gEAAIDHMGvWLPXu3Vv16tWTk5OTXn75ZU2cONGy/s6dOzpy5Ihu3rxpKevfv79u376tN998U5cvX1aZMmW0evVqFSxY0KZ9M8880hXzzAMA4Hgycp75Vm+dTre2540LTre2MwqReQAAANgNI53SYZ5W5MwDAAAADorIPAAAAOwGkXnbEJkHAAAAHBSReQAAANgNs5F+Pxr1NCIyDwAAADgoIvMAAACwG+TM24bIPAAAAOCgiMwDAADAbhCZtw2DeQAAANgNw2AwbwvSbAAAAAAHRWQeAAAAdsNsZmpKWxCZBwAAABwUkXkAAADYDR6AtQ2ReQAAAMBBEZkHAACA3TAMcuZtQWQeAAAAcFBE5gEAAGA3yJm3DYN5AAAA2A0G87YhzQYAAABwUETmAQAAYDfMPABrEyLzAAAAgIMiMg8AAAC7Qc68bYjMAwAAAA6KyDwAAADshmEmZ94WROYBAAAAB0VkHgAAAHaDnHnbEJkHAAAAHBSReQAAANgNg3nmbcJgHgAAAHbDTJqNTUizAQAAABwUkXkAAADYDaamtA2ReQAAAMBBEZkHAACA3WBqStsQmQcAAAAcFJF5AAAA2A2mprQNkXkAAADAQRGZBwAAgN0gZ942DOYBAABgN5ia0jak2QAAAAAOymQYBt9lAABsEhcXp8jISA0ePFju7u4Z3R0AeGYxmAcA2Oz69evKkiWLrl27Jh8fn4zuDgA8s0izAQAAABwUg3kAAADAQTGYBwAAABwUg3kAgM3c3d01bNgwHn4FgAzGA7AAAACAgyIyDwAAADgoBvMAAACAg2IwDwAAADgoBvMAgHQRHBysqKiof3WftWvXVv/+/f/VfQJARmIwDwAOqFOnTmratGlGdwMAkMEYzAPAU+zOnTsZ3QUAQDpiMA8AdmzBggUqVaqUPD09lS1bNoWFhentt9/WzJkztXjxYplMJplMJm3YsEGnT5+WyWTS3LlzVatWLXl4eGjWrFmSpK+++krFihWTh4eHQkJC9Pnnn1v2ER8fr969eytnzpzy8PBQUFCQIiMjJUmGYWj48OHKly+f3N3dlStXLvXt2/eRjuXq1avq2rWr/P395ePjo7p162r//v2SpKNHj8pkMunw4cNW20yYMEEFCxa0/P3777+rcePG8vb2VkBAgF599VVdunTpkfoDAE8Dl4zuAAAgZefOnVPbtm318ccfq1mzZvrnn3+0adMmdejQQdHR0bp+/bpmzJghSfLz89Nff/0lSRo0aJDGjRuncuXKWQb0Q4cO1eTJk1WuXDnt3btX3bp1k5eXlzp27KiJEydqyZIlmjdvnvLly6c///xTf/75pyTphx9+0IQJEzRnzhyVKFFC58+ftwzAbdWyZUt5enpqxYoVypIli7744gvVq1dPR48eVZEiRVShQgXNmjVLo0aNsmwza9YstWvXTtLdDwN169ZV165dNWHCBN26dUvvvPOOWrVqpXXr1j3OqQYAh8VgHgDs1Llz55SQkKDmzZsrKChIklSqVClJkqenp+Li4hQYGJhsu/79+6t58+aWv4cNG6Zx48ZZyvLnz6+DBw/qiy++UMeOHRUdHa3ChQvrueeek8lksuxLkqKjoxUYGKiwsDC5uroqX758qlSpks3HsnnzZu3cuVMxMTGWX40dO3asFi1apAULFqh79+5q3769Jk+ebBnMHz16VHv27NH3338vSZYPI6NHj7a0O336dOXNm9fygQAAnjWk2QCAnSpTpozq1aunUqVKqWXLlpo2bZquXLny0O0qVKhg+f8bN27oxIkT6tKli7y9vS3LBx98oBMnTki6+zDtvn37VLRoUfXt21c///yzZfuWLVvq1q1bKlCggLp166Yff/xRCQkJNh/L/v37FRsbq2zZsln149SpU5Z+tGnTRqdPn9b27dsl3Y3Kly9fXiEhIZY21q9fb7V90rqkNgDgWUNkHgDslLOzs1avXq2tW7fq559/1qRJkzRkyBDt2LHjgdt5eXlZ/j82NlaSNG3aNFWuXDlZ+5JUvnx5nTp1SitWrNCaNWvUqlUrhYWFacGCBcqbN6+OHDmiNWvWaPXq1XrjjTf0ySefaOPGjXJ1dU3zscTGxipnzpzasGFDsnW+vr6SpMDAQNWtW1ezZ89WlSpVNHv2bPXs2dOqjfDwcI0ZMyZZGzlz5kxzXwDgacJgHgDsmMlkUvXq1VW9enUNHTpUQUFB+vHHH+Xm5qbExMSHbh8QEKBcuXLp5MmTat++far1fHx81Lp1a7Vu3VotWrRQo0aNdPnyZfn5+cnT01Ph4eEKDw9Xr169FBISogMHDqh8+fJpPo7y5cvr/PnzcnFxUXBwcKr12rdvr4EDB6pt27Y6efKk2rRpY9XGDz/8oODgYLm48M8XAEgM5gHAbu3YsUNr165VgwYNlCNHDu3YsUMXL15UsWLFdPv2ba1atUpHjhxRtmzZlCVLllTbGTFihPr27assWbKoUaNGiouL0+7du3XlyhVFRERo/Pjxypkzp8qVKycnJyfNnz9fgYGB8vX11TfffKPExERVrlxZmTJl0vfffy9PT0+rvPq0CAsLU9WqVdW0aVN9/PHHKlKkiP766y8tW7ZMzZo1s6QGNW/eXD179lTPnj1Vp04d5cqVy9JGr169NG3aNLVt21YDBw6Un5+fjh8/rjlz5uirr76yfNMAAM8SBvMAYKd8fHz0yy+/KCoqStevX1dQUJDGjRunxo0bq0KFCtqwYYMqVKig2NhYrV+/PtWId9euXZUpUyZ98sknevvtt+Xl5aVSpUpZfik1c+bM+vjjj3Xs2DE5OzurYsWKWr58uZycnOTr66uPPvpIERERSkxMVKlSpfTTTz8pW7ZsNh2LyWTS8uXLNWTIEHXu3FkXL15UYGCgatasqYCAAEu9zJkzKzw8XPPmzdP06dOt2siVK5e2bNmid955Rw0aNFBcXJyCgoLUqFEjOTnxCBiAZ5PJMAwjozsBAAAAwHaEMgAAAAAHxWAeAGCzTZs2WU0Ref8CAPh3kGYDALDZrVu3dPbs2VTXFypU6F/sDQA8uxjMAwAAAA6KNBsAAADAQTGYBwAAABwUg3kAAADAQTGYBwAAABwUg3kAAADAQTGYBwAAABwUg3kAAADAQTGYBwAAABzU/wFjtpu02TQJLwAAAABJRU5ErkJggg==\n"},"metadata":{}}],"source":["physio_corr=physio.corr()\n","physio_corr=physio_corr['stress_level'].sort_values(ascending=False)\n","physio_corr=physio_corr.drop('stress_level')\n","plt.figure(figsize=(8,6))\n","sns.heatmap(physio_corr.to_frame(),annot=True,cmap='coolwarm')\n","plt.title('Stress Level Correlation of Features when Physiological Factors the Greatest')\n","plt.show()"]},{"cell_type":"code","execution_count":67,"metadata":{"colab":{"base_uri":"https://localhost:8080/","height":537},"executionInfo":{"elapsed":527,"status":"ok","timestamp":1716217035163,"user":{"displayName":"Daniel Meier","userId":"06365571306976914087"},"user_tz":300},"id":"jYw-KU47KUec","outputId":"9fdabe81-d43b-40b0-e717-8a44bc62a396"},"outputs":[{"output_type":"stream","name":"stderr","text":[":1: FutureWarning: \n","\n","Passing `palette` without assigning `hue` is deprecated and will be removed in v0.14.0. Assign the `y` variable to `hue` and set `legend=False` for the same effect.\n","\n"," sns.barplot(physio_corr,orient='y',palette='Spectral');\n"]},{"output_type":"display_data","data":{"text/plain":["
"],"image/png":"iVBORw0KGgoAAAANSUhEUgAAApEAAAGxCAYAAAA6b+1gAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAAA3SklEQVR4nO3deXTNd/7H8ddNIhGRxRJZCKGIpaGxNgxS0op28qtqUdVaxtaS2qZVBi3VilFbqQ7VsbTVURRVW4uKiiWWwWjtIY2paNqxRFAk+f7+cNzj1pZPZBPPxzn3nN7v9/P53vf7pm1ePp/7vWyWZVkCAAAADDgVdAEAAAC4/xAiAQAAYIwQCQAAAGOESAAAABgjRAIAAMAYIRIAAADGCJEAAAAwRogEAACAMZeCLgBFV1ZWlk6ePClPT0/ZbLaCLgcAAGSDZVk6f/68AgMD5eR0+/VGQiTyzMmTJxUUFFTQZQAAgBw4ceKEKlSocNvzhEjkGU9PT0nX/iX08vIq4GoAAEB2pKWlKSgoyP57/HYIkcgz17ewvby8CJEAANxn7vZRNG6sAQAAgDFCJAAAAIwRIgEAAGCMEAkAAABjhEgAAAAYI0QCAADAGF/xAwDINcf/9kJBlwA8MCqP/bxAX5+VSAAAABgjRAIAAMAYIRIAAADGCJEAAAAwRogEAACAMUIkAAAAjBEiAQAAYIwQCQAAAGOESAAAABgjRAIAAMAYIRIAAADGCJEAAAAwRogEAACAMUIkAAAAjBEiAQAAYIwQCQAAAGOESAAAABgjRAIAAMAYIRIAAADGCJEAAAAwRogEAACAMUIkAAAAjBEiAQAAYIwQCQAAAGOESAAAABgjRAIAAMAYIRIAAADGCJEAAAAwRogEAACAMUIkAAAAjBEiAQAAYIwQaSAiIkIDBw7M99cNDg7WlClTcu16BdUHAAAoOgiRAAAAMEaIBAAAgDFCpKGsrCwNGTJEpUuXlr+/v0aNGmU/d/bsWfXs2VO+vr7y8vJSy5YttXfvXvv5xMREPf300/Lz81PJkiXVsGFDrVu3zuH6qampio6Olru7uypXrqz58+ffVMOkSZMUGhoqDw8PBQUFqW/fvkpPT3cYs3nzZkVERKhEiRIqVaqUWrdurTNnzmSrj+z0AgAAHmyESEPz5s2Th4eHEhISNH78eL399ttau3atJKl9+/ZKTU3V6tWrtWvXLtWrV0+tWrXS6dOnJUnp6el68skntX79eu3evVtRUVGKjo5WcnKy/frdunXTiRMntGHDBi1evFgffvihUlNTHWpwcnLS1KlT9eOPP2revHn67rvvNGTIEPv5PXv2qFWrVqpVq5a2bt2q+Ph4RUdHKzMzM1t9ZKeXW7l8+bLS0tIcHgAAoGiyWZZlFXQR94uIiAhlZmZq06ZN9mONGjVSy5Yt9ec//1lPPfWUUlNT5ebmZj9ftWpVDRkyRL17977lNR9++GG9/PLLiomJ0eHDhxUSEqLt27erYcOGkqSDBw+qZs2amjx58m1vhlm8eLFefvll/fbbb5KkF154QcnJyYqPjzfuY9y4cYqPj89RL6NGjdLo0aNvOn7u3Dl5eXndcg6AouX4314o6BKAB0blsZ/nyXXT0tLk7e1919/fLnny6kVYnTp1HJ4HBAQoNTVVe/fuVXp6usqUKeNw/tKlS0pMTJR0bSVy1KhRWrlypVJSUpSRkaFLly7ZVyIPHDggFxcX1a9f3z6/Ro0a8vHxcbjmunXrFBsbq4MHDyotLU0ZGRn6/fffdfHiRZUoUUJ79uxR+/btc9SHpGz1civDhg3T4MGD7c/T0tIUFBR0xzoAAMD9iRBpqFixYg7PbTabsrKylJ6eroCAAMXFxd0053oIfO2117R27VpNmDBBVatWlbu7u5577jlduXIl26+flJSkP//5z3rllVf07rvvqnTp0oqPj1ePHj105coVlShRQu7u7jnuQ1K2erkVNzc3h5VLAABQdBEic0m9evV06tQpubi4KDg4+JZjNm/erG7duumZZ56RdC2sJSUl2c/XqFFDGRkZ2rVrl307+9ChQzp79qx9zK5du5SVlaWJEyfKyenaR1oXLlzo8Dp16tTR+vXrb7m1nFu9AACABxs31uSSyMhIhYeHq23btvr222+VlJSkLVu2aPjw4dq5c6ckqVq1alqyZIn27NmjvXv36oUXXrCv/klSSEiIoqKi1KdPHyUkJGjXrl3q2bOnw8pi1apVdfXqVU2bNk3Hjh3Tp59+qhkzZjjUMmzYMO3YsUN9+/bVf/7zHx08eFD/+Mc/7J+ZzI1eAADAg40QmUtsNptWrVql5s2bq3v37qpevbqef/55/fTTT/Lz85N07at5SpUqpSZNmig6OlqtW7dWvXr1HK4zZ84cBQYGqkWLFmrXrp169+6tcuXK2c/XrVtXkyZN0t///nc9/PDDmj9/vmJjYx2uUb16dX377bfau3evGjVqpPDwcH311VdyccnewnN2egEAAA827s5Gnsnu3V0Aig7uzgbyT0Hfnc1KJAAAAIwRIgEAAGCMEAkAAABjhEgAAAAYI0QCAADAGCESAAAAxgiRAAAAMEaIBAAAgDFCJAAAAIwRIgEAAGCMEAkAAABjhEgAAAAYI0QCAADAGCESAAAAxgiRAAAAMEaIBAAAgDFCJAAAAIwRIgEAAGCMEAkAAABjhEgAAAAYI0QCAADAGCESAAAAxgiRAAAAMEaIBAAAgDFCJAAAAIwRIgEAAGCMEAkAAABjhEgAAAAYI0QCAADAGCESAAAAxlwKugAAQNFReeznBV0CgHzCSiQAAACMESIBAABgjBAJAAAAY4RIAAAAGCNEAgAAwBghEgAAAMYIkQAAADBGiAQAAIAxQiQAAACMESIBAABgjBAJAAAAY4RIAAAAGCNEAgAAwBghEgAAAMYIkQAAADBGiAQAAIAxQiQAAACMESIBAABgzKWgCwAAFB3nDn9U0CUA98S7eu+CLuG+wUokAAAAjBEiAQAAYIwQCQAAAGOESAAAABgjRAIAAMAYIRIAAADGCJEAAAAwRogEAACAMUIkAAAAjBEiAQAAYIwQCQAAAGOESAAAABgjRAIAAMAYIRIAAADGCJEAAAAwRogEAACAMUIkAAAAjBEiAQAAYIwQCQAAAGOESAAAABgjRAIAAMAYIRIAAADGCJEAAAAwRogEAACAMUIkAAAAjBEiAQAAYIwQCQAAAGOESAAAABgjRAIAAMAYIRIAAADGjEJkRESEBg4cmEelmMtOPTabTcuWLcuXevJat27d1LZt2zuOKWw/IwAAUDTdFyuRcXFxstlsOnv2rPHclJQUtWnTJveLAgAAeIDlaYi8cuVKXl4+W/z9/eXm5lbQZdxRYXifAAAATBiHyIyMDMXExMjb21tly5bVyJEjZVmWJCk4OFhjxoxRly5d5OXlpd69e0uS4uPj1axZM7m7uysoKEj9+/fXhQsX7Nf89NNP1aBBA3l6esrf318vvPCCUlNTJUlJSUl67LHHJEmlSpWSzWZTt27d7HOzsrI0ZMgQlS5dWv7+/ho1apRDvTduZyclJclms2nJkiV67LHHVKJECdWtW1dbt251mDNr1iwFBQWpRIkSeuaZZzRp0iT5+Phk6/0ZNWqUHnnkEc2cOdN+jQ4dOujcuXP2Mde3pd99910FBgYqJCREkrRv3z61bNlS7u7uKlOmjHr37q309PSbXmP06NHy9fWVl5eXXn755TuG0MuXL+u1115T+fLl5eHhocaNGysuLs5+fu7cufLx8dGKFSsUEhKiEiVK6LnnntPFixc1b948BQcHq1SpUurfv78yMzOz9R4AAICizzhEzps3Ty4uLtq+fbvef/99TZo0SR9//LH9/IQJE1S3bl3t3r1bI0eOVGJioqKiovTss8/qP//5j7744gvFx8crJibGPufq1asaM2aM9u7dq2XLlikpKckeFIOCgvTll19Kkg4dOqSUlBS9//77DvV4eHgoISFB48eP19tvv621a9fesYfhw4frtdde0549e1S9enV16tRJGRkZkqTNmzfr5Zdf1oABA7Rnzx49/vjjevfdd43eo6NHj2rhwoX6+uuvtWbNGu3evVt9+/Z1GLN+/XodOnRIa9eu1YoVK3ThwgW1bt1apUqV0o4dO7Ro0SKtW7fO4X26Pu/AgQOKi4vTv/71Ly1ZskSjR4++bS0xMTHaunWrFixYoP/85z9q3769oqKidOTIEfuYixcvaurUqVqwYIHWrFmjuLg4PfPMM1q1apVWrVqlTz/9VDNnztTixYuN3gcAAFB02azry4jZEBERodTUVP3444+y2WySpKFDh2r58uXav3+/goODFRYWpqVLl9rn9OzZU87Ozpo5c6b9WHx8vFq0aKELFy6oePHiN73Ozp071bBhQ50/f14lS5ZUXFycHnvsMZ05c8ZhRTAiIkKZmZnatGmT/VijRo3UsmVLjRs37lqDNpuWLl2qtm3bKikpSZUrV9bHH3+sHj16SJL279+v2rVr68CBA6pRo4aef/55paena8WKFfZrvvjii1qxYkW2PpM5atQovfPOO/rpp59Uvnx5SdKaNWv01FNP6eeff5a/v7+6deumNWvWKDk5Wa6urpKurX6+8cYbOnHihDw8PCRJq1atUnR0tE6ePCk/Pz9169ZNX3/9tU6cOKESJUpIkmbMmKHXX39d586dk5OTkyIiIvTII49oypQpSk5OVpUqVZScnKzAwEB7jZGRkWrUqJHGjh2ruXPnqnv37jp69KgeeughSdLLL7+sTz/9VL/88otKliwpSYqKilJwcLBmzJhx294vX76sy5cv25+npaUpKChI586dk5eX113fOwD3v3OHPyroEoB74l29d0GXUODS0tLk7e1919/fxiuRjz76qD1ASlJ4eLiOHDli3+ps0KCBw/i9e/dq7ty5KlmypP3RunVrZWVl6fjx45KkXbt2KTo6WhUrVpSnp6datGghSUpOTr5rPXXq1HF4HhAQYN8Kz86cgIAASbLPOXTokBo1auQw/o/P76ZixYr2AClde4+ysrJ06NAh+7HQ0FB7gJSkAwcOqG7duvYAKUlNmza9aV7dunXtAfL6tdPT03XixImb6ti3b58yMzNVvXp1h/d/48aNSkxMtI8rUaKEPUBKkp+fn4KDg+0B8vqxu72vsbGx8vb2tj+CgoLuOB4AANy/XHL7gjeGIElKT09Xnz591L9//5vGVqxY0b6N27p1a82fP1++vr5KTk5W69ats3XDSbFixRye22w2ZWVlZXvO9UB8tzm57Y/vU15IT0+Xs7Ozdu3aJWdnZ4dzNwbEW72HOXlfhw0bpsGDB9ufX1+JBAAARY9xiExISHB4vm3bNlWrVu2mkHJdvXr1tH//flWtWvWW5/ft26f//e9/GjdunD1w7Ny502HM9RW7/LixIyQkRDt27HA49sfnd5OcnKyTJ0/at5C3bdsmJycn+w00t1KzZk3NnTtXFy5csAfMzZs33zRv7969unTpktzd3e3XLlmy5C3DWlhYmDIzM5WamqpmzZoZ9ZATbm5uhf5OeAAAkDuMt7OTk5M1ePBgHTp0SP/61780bdo0DRgw4Lbj33jjDW3ZskUxMTHas2ePjhw5oq+++sp+w0jFihXl6uqqadOm6dixY1q+fLnGjBnjcI1KlSrJZrNpxYoV+vXXX295x3JuefXVV7Vq1SpNmjRJR44c0cyZM7V69WqHLfy7KV68uLp27aq9e/dq06ZN6t+/vzp06CB/f//bzuncubN93g8//KANGzbo1Vdf1UsvvSQ/Pz/7uCtXrqhHjx7av3+/Vq1apbfeeksxMTFycrr5R1m9enV17txZXbp00ZIlS3T8+HFt375dsbGxWrlypdkbAwAAcAPjENmlSxddunRJjRo1Ur9+/TRgwAD7V/ncSp06dbRx40YdPnxYzZo1U1hYmN588037Kp2vr6/mzp2rRYsWqVatWho3bpwmTJjgcI3y5ctr9OjRGjp0qPz8/G66Yzk3NW3aVDNmzNCkSZNUt25drVmzRoMGDbrlDUC3U7VqVbVr105PPvmknnjiCdWpU0cffvjhHeeUKFFC33zzjU6fPq2GDRvqueeeU6tWrfTBBx84jGvVqpWqVaum5s2bq2PHjvq///u/m77W6EZz5sxRly5d9Ne//lUhISFq27atduzYoYoVK2a7HwAAgD8yujv7QdWrVy8dPHjQ4S7w2xk1apSWLVumPXv25H1hhVx27+4CUHRwdzbud9ydnf3f37l+Y01RMGHCBD3++OPy8PDQ6tWrNW/evLuuJAIAADxICJG3sH37do0fP17nz59XlSpVNHXqVPXs2VOSVLt2bf3000+3nHfjd2ECAAAUZWxnG/rpp5909erVW57z8/OTp6dnPldUeLGdDTx42M7G/Y7tbLaz80ylSpUKugQAAIACZ3x3NgAAAECIBAAAgDFCJAAAAIwRIgEAAGCMEAkAAABjhEgAAAAYI0QCAADAGCESAAAAxgiRAAAAMEaIBAAAgDFCJAAAAIwRIgEAAGCMEAkAAABjhEgAAAAYI0QCAADAGCESAAAAxgiRAAAAMEaIBAAAgDFCJAAAAIwRIgEAAGCMEAkAAABjhEgAAAAYI0QCAADAGCESAAAAxgiRAAAAMEaIBAAAgDFCJAAAAIy5FHQBAICiw7t674IuAUA+YSUSAAAAxgiRAAAAMEaIBAAAgDFCJAAAAIwRIgEAAGCMEAkAAABjhEgAAAAYI0QCAADAGCESAAAAxgiRAAAAMEaIBAAAgDFCJAAAAIwRIgEAAGCMEAkAAABjhEgAAAAYI0QCAADAGCESAAAAxlwKugAAQNFxPHV+QZeAfFC5XOeCLgGFACuRAAAAMEaIBAAAgDFCJAAAAIwRIgEAAGCMEAkAAABjhEgAAAAYI0QCAADAGCESAAAAxgiRAAAAMEaIBAAAgDFCJAAAAIwRIgEAAGCMEAkAAABjhEgAAAAYI0QCAADAGCESAAAAxgiRAAAAMEaIBAAAgDFCJAAAAIwRIgEAAGCMEAkAAABjhEgAAAAYI0QCAADAGCESAAAAxgiRAAAAMEaIBAAAgDFCJAAAAIwRIgEAAGCMEAkAAABjhEgAAAAYI0QCAADAWKENkRERERo4cOBtzwcHB2vKlCl5XofNZtOyZcvy/HUAAADuJ4U2RAIAAKDwIkQWIMuylJGRUdBlOCiMNQEAgMKnUIfIjIwMxcTEyNvbW2XLltXIkSNlWdYtxyYnJ+vpp59WyZIl5eXlpQ4dOuiXX35xGPOPf/xDDz30kFxdXRUSEqJPP/3U4fyRI0fUvHlzFS9eXLVq1dLatWuzXWtSUpJsNpsWLFigJk2aqHjx4nr44Ye1ceNG+5i4uDjZbDatXr1a9evXl5ubm+Lj45WVlaXY2FhVrlxZ7u7uqlu3rhYvXmyfd+bMGXXu3Fm+vr5yd3dXtWrVNGfOHEnSlStXFBMTo4CAABUvXlyVKlVSbGysQ0179uyxX+vs2bOy2WyKi4u7p5oAAMCDzaWgC7iTefPmqUePHtq+fbt27typ3r17q2LFiurVq5fDuKysLHuA3LhxozIyMtSvXz917NjRHpaWLl2qAQMGaMqUKYqMjNSKFSvUvXt3VahQQY899piysrLUrl07+fn5KSEhQefOnbvjZzJv5/XXX9eUKVNUq1YtTZo0SdHR0Tp+/LjKlCljHzN06FBNmDBBVapUUalSpRQbG6vPPvtMM2bMULVq1fT999/rxRdflK+vr1q0aKGRI0dq//79Wr16tcqWLaujR4/q0qVLkqSpU6dq+fLlWrhwoSpWrKgTJ07oxIkTxnWb1nQrly9f1uXLl+3P09LSjOsAAAD3h0IdIoOCgjR58mTZbDaFhIRo3759mjx58k0hcv369dq3b5+OHz+uoKAgSdInn3yi2rVra8eOHWrYsKEmTJigbt26qW/fvpKkwYMHa9u2bZowYYIee+wxrVu3TgcPHtQ333yjwMBASdLYsWPVpk0bo5pjYmL07LPPSrq28rlmzRr985//1JAhQ+xj3n77bT3++OOSrgWvsWPHat26dQoPD5ckValSRfHx8Zo5c6ZatGih5ORkhYWFqUGDBpKu3VR0XXJysqpVq6Y//elPstlsqlSpklG9Oa3pVmJjYzV69OgcvT4AALi/FOrt7EcffVQ2m83+PDw8XEeOHFFmZqbDuAMHDigoKMgeICWpVq1a8vHx0YEDB+xjmjZt6jCvadOmDueDgoLsAfL665m6cY6Li4saNGhgf43rrodBSTp69KguXryoxx9/XCVLlrQ/PvnkEyUmJkqSXnnlFS1YsECPPPKIhgwZoi1bttjnd+vWTXv27FFISIj69++vb7/91rjmnNR0K8OGDdO5c+fsj5ysiAIAgPtDoV6JLKo8PDzs/5yeni5JWrlypcqXL+8wzs3NTZLUpk0b/fTTT1q1apXWrl2rVq1aqV+/fpowYYLq1aun48ePa/Xq1Vq3bp06dOigyMhILV68WE5O1/6McOPnSK9evZorNd2Km5vbHc8DAICio1CvRCYkJDg837Ztm6pVqyZnZ2eH4zVr1rzps4D79+/X2bNnVatWLfuYzZs3O8zbvHmzw/kTJ04oJSXF4fVM3TgnIyNDu3btUs2aNW87vlatWnJzc1NycrKqVq3q8LhxZdXX11ddu3bVZ599pilTpuijjz6yn/Py8lLHjh01a9YsffHFF/ryyy91+vRp+fr6SpJDTzfeZHOvNQEAgAdXoV6JTE5O1uDBg9WnTx/9+9//1rRp0zRx4sSbxkVGRio0NFSdO3fWlClTlJGRob59+6pFixb2bdrXX39dHTp0UFhYmCIjI/X1119ryZIlWrdunf0a1atXV9euXfXee+8pLS1Nw4cPN655+vTpqlatmmrWrKnJkyfrzJkz+stf/nLb8Z6ennrttdc0aNAgZWVl6U9/+pPOnTunzZs3y8vLS127dtWbb76p+vXrq3bt2rp8+bJWrFhhD6aTJk1SQECAwsLC5OTkpEWLFsnf318+Pj5ycnLSo48+qnHjxqly5cpKTU3ViBEj7tpDdmoCAAAPtkIdIrt06aJLly6pUaNGcnZ21oABA9S7d++bxtlsNn311Vd69dVX1bx5czk5OSkqKkrTpk2zj2nbtq3ef/99TZgwQQMGDFDlypU1Z84cRURESJKcnJy0dOlS9ejRQ40aNVJwcLCmTp2qqKgoo5rHjRuncePGac+ePapataqWL1+usmXL3nHOmDFj5Ovrq9jYWB07dkw+Pj6qV6+e/va3v0mSXF1dNWzYMCUlJcnd3V3NmjXTggULJF0LfOPHj9eRI0fk7Oyshg0batWqVfat7NmzZ6tHjx6qX7++QkJCNH78eD3xxBN37eNuNQEAgAebzbrdFy/CSFJSkipXrqzdu3frkUceKehyCoW0tDR5e3vr3Llz8vLyKuhyAOSD46nzC7oE5IPK5ToXdAnIQ9n9/V2oPxMJAACAwokQmU1jx451+LqbGx+m3yUJAABwvyvUn4ksTF5++WV16NDhlufc3d1Vvnz52/6VjAAAAEUNITKbSpcurdKlSxd0GQAAAIUC29kAAAAwRogEAACAMUIkAAAAjBEiAQAAYIwQCQAAAGOESAAAABgjRAIAAMAYIRIAAADGCJEAAAAwRogEAACAMUIkAAAAjBEiAQAAYIwQCQAAAGOESAAAABgjRAIAAMAYIRIAAADGCJEAAAAwRogEAACAMUIkAAAAjBEiAQAAYIwQCQAAAGOESAAAABgjRAIAAMAYIRIAAADGCJEAAAAwRogEAACAMZeCLgAAUHRULte5oEsAkE9YiQQAAIAxQiQAAACMESIBAABgjBAJAAAAY4RIAAAAGCNEAgAAwBghEgAAAMYIkQAAADBGiAQAAIAxQiQAAACMESIBAABgjBAJAAAAY4RIAAAAGCNEAgAAwBghEgAAAMYIkQAAADBGiAQAAIAxl4IuAMiJv67+pKBLAHALE9t0KegSAOQTViIBAABgjBAJAAAAY4RIAAAAGCNEAgAAwBghEgAAAMYIkQAAADBGiAQAAIAxQiQAAACMESIBAABgjBAJAAAAY4RIAAAAGCNEAgAAwBghEgAAAMYIkQAAADBGiAQAAIAxQiQAAACMESIBAABgjBAJAAAAY4RIAAAAGCNEAgAAwBghEgAAAMYIkQAAADBGiAQAAIAxQiQAAACMESIBAABgjBAJAAAAY4RIAAAAGCNEAgAAwBghEgAAAMYIkQAAADBGiAQAAICxByZEduvWTW3bti3oMgrEH3uPiIjQwIEDC6weAABw/3Mp6AKQ/5YsWaJixYrZnwcHB2vgwIEESwAAkG2EyAdQ6dKlC7oEAABwnyty29mLFy9WaGio3N3dVaZMGUVGRurChQs3jcvKylJsbKwqV64sd3d31a1bV4sXL3YY88MPP6hNmzYqWbKk/Pz89NJLL+m3336zn4+IiFBMTIxiYmLk7e2tsmXLauTIkbIsK1u1pqamKjo6Wu7u7qpcubLmz5+v4OBgTZkyRZKUlJQkm82mPXv22OecPXtWNptNcXFxkqTMzEz16NHD3kdISIjef//9O77ujdvZERER+umnnzRo0CDZbDbZbDZduHBBXl5eN70fy5Ytk4eHh86fP5+t/gAAQNFVpEJkSkqKOnXqpL/85S86cOCA4uLi1K5du1uGutjYWH3yySeaMWOGfvzxRw0aNEgvvviiNm7cKOlaWGvZsqXCwsK0c+dOrVmzRr/88os6dOjgcJ158+bJxcVF27dv1/vvv69Jkybp448/zla93bp104kTJ7RhwwYtXrxYH374oVJTU416zsrKUoUKFbRo0SLt379fb775pv72t79p4cKF2Zq/ZMkSVahQQW+//bZSUlKUkpIiDw8PPf/885ozZ47D2Dlz5ui5556Tp6fnLa91+fJlpaWlOTwAAEDRVKS2s1NSUpSRkaF27dqpUqVKkqTQ0NCbxl2+fFljx47VunXrFB4eLkmqUqWK4uPjNXPmTLVo0UIffPCBwsLCNHbsWPu82bNnKygoSIcPH1b16tUlSUFBQZo8ebJsNptCQkK0b98+TZ48Wb169bpjrYcPH9bq1au1fft2NWzYUJL0z3/+UzVr1jTquVixYho9erT9eeXKlbV161YtXLjwpsB7K6VLl5azs7M8PT3l7+9vP96zZ081adJEKSkpCggIUGpqqlatWqV169bd9lqxsbEOtQAAgKKrSK1E1q1bV61atVJoaKjat2+vWbNm6cyZMzeNO3r0qC5evKjHH39cJUuWtD8++eQTJSYmSpL27t2rDRs2OJyvUaOGJNnHSNKjjz4qm81mfx4eHq4jR44oMzPzjrUeOHBALi4uql+/vv1YjRo15OPjY9z39OnTVb9+ffn6+qpkyZL66KOPlJycbHydGzVq1Ei1a9fWvHnzJEmfffaZKlWqpObNm992zrBhw3Tu3Dn748SJE/dUAwAAKLyK1Eqks7Oz1q5dqy1btujbb7/VtGnTNHz4cCUkJDiMS09PlyStXLlS5cuXdzjn5uZmHxMdHa2///3vN71OQEBAHnXgyMnpWsa/cTv+6tWrDmMWLFig1157TRMnTlR4eLg8PT313nvv3dRzTvTs2VPTp0/X0KFDNWfOHHXv3t0hMP+Rm5ub/f0DAABFW5EKkZJks9nUtGlTNW3aVG+++aYqVaqkpUuXOoypVauW3NzclJycrBYtWtzyOvXq1dOXX36p4OBgubjc/m36Y1jbtm2bqlWrJmdn5zvWWaNGDWVkZGjXrl327exDhw7p7Nmz9jG+vr6Srm3Th4WFSZLDTTaStHnzZjVp0kR9+/a1H7txpTQ7XF1db7ly+uKLL2rIkCGaOnWq9u/fr65duxpdFwAAFF1Fajs7ISFBY8eO1c6dO5WcnKwlS5bo119/velzhp6ennrttdc0aNAgzZs3T4mJifr3v/+tadOm2bdv+/Xrp9OnT6tTp07asWOHEhMT9c0336h79+4OgSs5OVmDBw/WoUOH9K9//UvTpk3TgAED7lprSEiIoqKi1KdPHyUkJGjXrl3q2bOn3N3d7WPc3d316KOPaty4cTpw4IA2btyoESNGOFynWrVq2rlzp7755hsdPnxYI0eO1I4dO4zet+DgYH3//ff6+eefHe4+L1WqlNq1a6fXX39dTzzxhCpUqGB0XQAAUHQVqRDp5eWl77//Xk8++aSqV6+uESNGaOLEiWrTps1NY8eMGaORI0cqNjZWNWvWVFRUlFauXKnKlStLkgIDA7V582ZlZmbqiSeeUGhoqAYOHCgfHx/7NrMkdenSRZcuXVKjRo3Ur18/DRgwQL17985WvXPmzFFgYKBatGihdu3aqXfv3ipXrpzDmNmzZysjI0P169fXwIED9c477zic79Onj9q1a6eOHTuqcePG+t///uewKpkdb7/9tpKSkvTQQw/ZVz+v69Gjh65cuaK//OUvRtcEAABFm83K7pca4iYRERF65JFH7N/rmBsK298e8+mnn2rQoEE6efKkXF1djeampaXJ29tb586dk5eXV67W9dfVn+Tq9QDkjoltuhR0CQDuUXZ/fxe5z0Qid1y8eFEpKSkaN26c+vTpYxwgAQBA0VaktrMLk02bNjl8PdAfH4Xd+PHjVaNGDfn7+2vYsGEFXQ4AAChk2M7OI5cuXdLPP/982/NVq1bNx2oKBtvZwIOH7Wzg/sd2dgFzd3d/IIIiAAB4MLGdDQAAAGOESAAAABgjRAIAAMAYIRIAAADGCJEAAAAwRogEAACAMUIkAAAAjBEiAQAAYIwQCQAAAGOESAAAABgjRAIAAMAYIRIAAADGCJEAAAAwRogEAACAMUIkAAAAjBEiAQAAYIwQCQAAAGOESAAAABgjRAIAAMAYIRIAAADGCJEAAAAwRogEAACAMUIkAAAAjBEiAQAAYIwQCQAAAGOESAAAABhzKegCgJyY2KZLQZcAAMADjZVIAAAAGCNEAgAAwBghEgAAAMYIkQAAADBGiAQAAIAxQiQAAACMESIBAABgjBAJAAAAY3zZOPKMZVmSpLS0tAKuBAAAZNf139vXf4/fDiESeeb8+fOSpKCgoAKuBAAAmDp//ry8vb1ve95m3S1mAjmUlZWlkydPytPTUzabzX48LS1NQUFBOnHihLy8vAqwwvxF3w9O3w9izxJ9P0h9P4g9Sw9O35Zl6fz58woMDJST0+0/+chKJPKMk5OTKlSocNvzXl5eRfo/wtuh7wfHg9izRN8PkgexZ+nB6PtOK5DXcWMNAAAAjBEiAQAAYIwQiXzn5uamt956S25ubgVdSr6i7wen7wexZ4m+H6S+H8SepQe379vhxhoAAAAYYyUSAAAAxgiRAAAAMEaIBAAAgDFCJPLF6dOn1blzZ3l5ecnHx0c9evRQenr6HeecOnVKL730kvz9/eXh4aF69erpyy+/zKeKc0dO+pakrVu3qmXLlvLw8JCXl5eaN2+uS5cu5UPF9y6nPUvXvuC2TZs2stlsWrZsWd4WmstM+z59+rReffVVhYSEyN3dXRUrVlT//v117ty5fKza3PTp0xUcHKzixYurcePG2r59+x3HL1q0SDVq1FDx4sUVGhqqVatW5VOlucuk71mzZqlZs2YqVaqUSpUqpcjIyLu+T4WR6c/6ugULFshms6lt27Z5W2AeMe377Nmz6tevnwICAuTm5qbq1avft/+eG7OAfBAVFWXVrVvX2rZtm7Vp0yaratWqVqdOne445/HHH7caNmxoJSQkWImJidaYMWMsJycn69///nc+VX3vctL3li1bLC8vLys2Ntb64YcfrIMHD1pffPGF9fvvv+dT1fcmJz1fN2nSJKtNmzaWJGvp0qV5W2guM+173759Vrt27azly5dbR48etdavX29Vq1bNevbZZ/OxajMLFiywXF1drdmzZ1s//vij1atXL8vHx8f65Zdfbjl+8+bNlrOzszV+/Hhr//791ogRI6xixYpZ+/bty+fK741p3y+88II1ffp0a/fu3daBAwesbt26Wd7e3tZ///vffK4850x7vu748eNW+fLlrWbNmllPP/10/hSbi0z7vnz5stWgQQPrySeftOLj463jx49bcXFx1p49e/K58oJBiESe279/vyXJ2rFjh/3Y6tWrLZvNZv3888+3nefh4WF98sknDsdKly5tzZo1K89qzU057btx48bWiBEj8qPEXJfTni3Lsnbv3m2VL1/eSklJue9C5L30faOFCxdarq6u1tWrV/OizHvWqFEjq1+/fvbnmZmZVmBgoBUbG3vL8R06dLCeeuoph2ONGze2+vTpk6d15jbTvv8oIyPD8vT0tObNm5dXJea6nPSckZFhNWnSxPr444+trl273pch0rTvf/zjH1aVKlWsK1eu5FeJhQrb2chzW7dulY+Pjxo0aGA/FhkZKScnJyUkJNx2XpMmTfTFF1/o9OnTysrK0oIFC/T7778rIiIiH6q+dznpOzU1VQkJCSpXrpyaNGkiPz8/tWjRQvHx8flV9j3J6c/64sWLeuGFFzR9+nT5+/vnR6m5Kqd9/9G5c+fk5eUlF5fC9zfSXrlyRbt27VJkZKT9mJOTkyIjI7V169Zbztm6davDeElq3br1bccXRjnp+48uXryoq1evqnTp0nlVZq7Kac9vv/22ypUrpx49euRHmbkuJ30vX75c4eHh6tevn/z8/PTwww9r7NixyszMzK+yCxQhEnnu1KlTKleunMMxFxcXlS5dWqdOnbrtvIULF+rq1asqU6aM3Nzc1KdPHy1dulRVq1bN65JzRU76PnbsmCRp1KhR6tWrl9asWaN69eqpVatWOnLkSJ7XfK9y+rMeNGiQmjRpoqeffjqvS8wTOe37Rr/99pvGjBmj3r1750WJ9+y3335TZmam/Pz8HI77+fndtsdTp04ZjS+MctL3H73xxhsKDAy8KVAXVjnpOT4+Xv/85z81a9as/CgxT+Sk72PHjmnx4sXKzMzUqlWrNHLkSE2cOFHvvPNOfpRc4AiRyLGhQ4fKZrPd8XHw4MEcX3/kyJE6e/as1q1bp507d2rw4MHq0KGD9u3bl4tdmMvLvrOysiRJffr0Uffu3RUWFqbJkycrJCREs2fPzs02jORlz8uXL9d3332nKVOm5G7RuSCv/x2/Li0tTU899ZRq1aqlUaNG3XvhKDTGjRunBQsWaOnSpSpevHhBl5Mnzp8/r5deekmzZs1S2bJlC7qcfJWVlaVy5crpo48+Uv369dWxY0cNHz5cM2bMKOjS8kXh2zPBfeOvf/2runXrdscxVapUkb+/v1JTUx2OZ2Rk6PTp07fdukxMTNQHH3ygH374QbVr15Yk1a1bV5s2bdL06dML9D/QvOw7ICBAklSrVi2H4zVr1lRycnLOi75Hednzd999p8TERPn4+Dgcf/bZZ9WsWTPFxcXdQ+X3Ji/7vu78+fOKioqSp6enli5dqmLFit1r2XmibNmycnZ21i+//OJw/Jdffrltj/7+/kbjC6Oc9H3dhAkTNG7cOK1bt0516tTJyzJzlWnPiYmJSkpKUnR0tP3Y9T8Qu7i46NChQ3rooYfytuhckJOfdUBAgIoVKyZnZ2f7sZo1a+rUqVO6cuWKXF1d87TmgkaIRI75+vrK19f3ruPCw8N19uxZ7dq1S/Xr15d0LThkZWWpcePGt5xz8eJFSdc+j3IjZ2dn+/+cCkpe9h0cHKzAwEAdOnTI4fjhw4fVpk2bey8+h/Ky56FDh6pnz54Ox0JDQzV58mSHX0oFIS/7lq6tQLZu3Vpubm5avnx5oV6pcnV1Vf369bV+/Xr7V7dkZWVp/fr1iomJueWc8PBwrV+/XgMHDrQfW7t2rcLDw/Oh4tyRk74lafz48Xr33Xf1zTffOHxW9n5g2nONGjVu2iEaMWKEzp8/r/fff19BQUH5UfY9y8nPumnTpvr888+VlZVl/311+PBhBQQEFPkAKYmv+EH+iIqKssLCwqyEhAQrPj7eqlatmsPXn/z3v/+1QkJCrISEBMuyLOvKlStW1apVrWbNmlkJCQnW0aNHrQkTJlg2m81auXJlQbVhzLRvy7KsyZMnW15eXtaiRYusI0eOWCNGjLCKFy9uHT16tCBaMJaTnv9I99nd2ZZl3ve5c+esxo0bW6GhodbRo0etlJQU+yMjI6Og2rijBQsWWG5ubtbcuXOt/fv3W71797Z8fHysU6dOWZZlWS+99JI1dOhQ+/jNmzdbLi4u1oQJE6wDBw5Yb7311n37FT8mfY8bN85ydXW1Fi9e7PBzPX/+fEG1YMy05z+6X+/ONu07OTnZ8vT0tGJiYqxDhw5ZK1assMqVK2e98847BdVCviJEIl/873//szp16mSVLFnS8vLysrp37+7wP9Tjx49bkqwNGzbYjx0+fNhq166dVa5cOatEiRJWnTp1bvrKn8IuJ31blmXFxsZaFSpUsEqUKGGFh4dbmzZtyufKcy6nPd/ofgyRpn1v2LDBknTLx/HjxwumiWyYNm2aVbFiRcvV1dVq1KiRtW3bNvu5Fi1aWF27dnUYv3DhQqt69eqWq6urVbt27fvqD4E3Mum7UqVKt/y5vvXWW/lf+D0w/Vnf6H4NkZZl3veWLVusxo0bW25ublaVKlWsd999t9D+QTC32SzLsvJ9+RMAAAD3Ne7OBgAAgDFCJAAAAIwRIgEAAGCMEAkAAABjhEgAAAAYI0QCAADAGCESAAAAxgiRAAAAMEaIBADkieDgYE2ZMiVfXzMiIsLh7+oGkHcIkQBwH+rWrZvatm1b0GUAeIARIgGgCLt69WpBlwCgiCJEAkAhtnjxYoWGhsrd3V1lypRRZGSkXn/9dc2bN09fffWVbDabbDab4uLilJSUJJvNpi+++EItWrRQ8eLFNX/+fEnSxx9/rJo1a6p48eKqUaOGPvzwQ/trXLlyRTExMQoICFDx4sVVqVIlxcbGSpIsy9KoUaNUsWJFubm5KTAwUP37989RL2fPnlXPnj3l6+srLy8vtWzZUnv37pUkHT58WDabTQcPHnSYM3nyZD300EP25z/88IPatGmjkiVLys/PTy+99JJ+++23HNUD4N64FHQBAIBbS0lJUadOnTR+/Hg988wzOn/+vDZt2qQuXbooOTlZaWlpmjNnjiSpdOnSOnnypCRp6NChmjhxosLCwuxB8s0339QHH3ygsLAw7d69W7169ZKHh4e6du2qqVOnavny5Vq4cKEqVqyoEydO6MSJE5KkL7/8UpMnT9aCBQtUu3ZtnTp1yh78TLVv317u7u5avXq1vL29NXPmTLVq1UqHDx9W9erV1aBBA82fP19jxoyxz5k/f75eeOEFSddCaMuWLdWzZ09NnjxZly5d0htvvKEOHTrou+++u5e3GkAOECIBoJBKSUlRRkaG2rVrp0qVKkmSQkNDJUnu7u66fPmy/P39b5o3cOBAtWvXzv78rbfe0sSJE+3HKleurP3792vmzJnq2rWrkpOTVa1aNf3pT3+SzWazv5YkJScny9/fX5GRkSpWrJgqVqyoRo0aGfcSHx+v7du3KzU1VW5ubpKkCRMmaNmyZVq8eLF69+6tzp0764MPPrCHyMOHD2vXrl367LPPJMkegseOHWu/7uzZsxUUFGQPogDyD9vZAFBI1a1bV61atVJoaKjat2+vWbNm6cyZM3ed16BBA/s/X7hwQYmJierRo4dKlixpf7zzzjtKTEyUdO0mnT179igkJET9+/fXt99+a5/fvn17Xbp0SVWqVFGvXr20dOlSZWRkGPeyd+9epaenq0yZMg51HD9+3F7H888/r6SkJG3btk3StVXIevXqqUaNGvZrbNiwwWH+9XPXrwEg/7ASCQCFlLOzs9auXastW7bo22+/1bRp0zR8+HAlJCTccZ6Hh4f9n9PT0yVJs2bNUuPGjW+6viTVq1dPx48f1+rVq7Vu3Tp16NBBkZGRWrx4sYKCgnTo0CGtW7dOa9euVd++ffXee+9p48aNKlasWLZ7SU9PV0BAgOLi4m465+PjI0ny9/dXy5Yt9fnnn+vRRx/V559/rldeecXhGtHR0fr73/9+0zUCAgKyXQuA3EGIBIBCzGazqWnTpmratKnefPNNVapUSUuXLpWrq6syMzPvOt/Pz0+BgYE6duyYOnfufNtxXl5e6tixozp27KjnnntOUVFROn36tEqXLi13d3dFR0crOjpa/fr1U40aNbRv3z7Vq1cv233Uq1dPp06dkouLi4KDg287rnPnzhoyZIg6deqkY8eO6fnnn3e4xpdffqng4GC5uPDrCyho/FcIAIVUQkKC1q9fryeeeELlypVTQkKCfv31V9WsWVO///67vvnmGx06dEhlypSRt7f3ba8zevRo9e/fX97e3oqKitLly5e1c+dOnTlzRoMHD9akSZMUEBCgsLAwOTk5adGiRfL395ePj4/mzp2rzMxMNW7cWCVKlNBnn30md3d3h89NZkdkZKTCw8PVtm1bjR8/XtWrV9fJkye1cuVKPfPMM/Yt+Hbt2umVV17RK6+8oscee0yBgYH2a/Tr10+zZs1Sp06dNGTIEJUuXVpHjx7VggUL9PHHH9tXVgHkD0IkABRSXl5e+v777zVlyhSlpaWpUqVKmjhxotq0aaMGDRooLi5ODRo0UHp6ujZs2HDbFb6ePXuqRIkSeu+99/T666/Lw8NDoaGh9r/ZxdPTU+PHj9eRI0fk7Oyshg0batWqVXJycpKPj4/GjRunwYMHKzMzU6Ghofr6669VpkwZo15sNptWrVql4cOHq3v37vr111/l7++v5s2by8/Pzz7O09NT0dHRWrhwoWbPnu1wjcDAQG3evFlvvPGGnnjiCV2+fFmVKlVSVFSUnJz4iD+Q32yWZVkFXQQAAADuL/zRDQAAAMYIkQAAY5s2bXL4qp0/PgAUfWxnAwCMXbp0ST///PNtz1etWjUfqwFQEAiRAAAAMMZ2NgAAAIwRIgEAAGCMEAkAAABjhEgAAAAYI0QCAADAGCESAAAAxgiRAAAAMEaIBAAAgLH/B8jHswiQO5ULAAAAAElFTkSuQmCC\n"},"metadata":{}}],"source":["sns.barplot(physio_corr,orient='y',palette='Spectral');"]},{"cell_type":"markdown","metadata":{"id":"HLEgw1nGUyhV"},"source":["### Environmental"]},{"cell_type":"code","execution_count":68,"metadata":{"colab":{"base_uri":"https://localhost:8080/"},"executionInfo":{"elapsed":6,"status":"ok","timestamp":1716217037846,"user":{"displayName":"Daniel Meier","userId":"06365571306976914087"},"user_tz":300},"id":"oanJts0ClM0y","outputId":"ea680eb3-e794-4b11-f197-63095e0fa715"},"outputs":[{"output_type":"stream","name":"stdout","text":["\n","RangeIndex: 1100 entries, 0 to 1099\n","Data columns (total 5 columns):\n"," # Column Non-Null Count Dtype \n","--- ------ -------------- ----- \n"," 0 noise_level 1100 non-null float64\n"," 1 living_conditions 1100 non-null float64\n"," 2 safety 1100 non-null float64\n"," 3 basic_needs 1100 non-null float64\n"," 4 stress_level 1100 non-null float64\n","dtypes: float64(5)\n","memory usage: 43.1 KB\n"]}],"source":["enviro.info()"]},{"cell_type":"code","execution_count":69,"metadata":{"colab":{"base_uri":"https://localhost:8080/","height":300},"executionInfo":{"elapsed":210,"status":"ok","timestamp":1716217039401,"user":{"displayName":"Daniel Meier","userId":"06365571306976914087"},"user_tz":300},"id":"IqvHGppyQt-f","outputId":"9a46bd70-a571-4b42-9b5e-b58160c6b64c"},"outputs":[{"output_type":"execute_result","data":{"text/plain":[" noise_level living_conditions safety basic_needs \\\n","count 1.100000e+03 1.100000e+03 1.100000e+03 1.100000e+03 \n","mean -4.037175e-17 1.130409e-17 -1.291896e-17 -2.099331e-17 \n","std 1.000455e+00 1.000455e+00 1.000455e+00 1.000455e+00 \n","min -1.995514e+00 -2.250991e+00 -1.947500e+00 -1.934764e+00 \n","25% -4.889489e-01 -4.632004e-01 -5.245507e-01 -5.391964e-01 \n","50% 2.643337e-01 -4.632004e-01 -5.245507e-01 1.585872e-01 \n","75% 2.643337e-01 4.306951e-01 8.983982e-01 8.563708e-01 \n","max 1.770899e+00 2.218486e+00 1.609873e+00 1.554154e+00 \n","\n"," stress_level \n","count 1.100000e+03 \n","mean -2.260818e-17 \n","std 1.000455e+00 \n","min -1.213156e+00 \n","25% -1.213156e+00 \n","50% 4.427575e-03 \n","75% 1.222011e+00 \n","max 1.222011e+00 "],"text/html":["\n","
\n","
\n","\n","\n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n","
noise_levelliving_conditionssafetybasic_needsstress_level
count1.100000e+031.100000e+031.100000e+031.100000e+031.100000e+03
mean-4.037175e-171.130409e-17-1.291896e-17-2.099331e-17-2.260818e-17
std1.000455e+001.000455e+001.000455e+001.000455e+001.000455e+00
min-1.995514e+00-2.250991e+00-1.947500e+00-1.934764e+00-1.213156e+00
25%-4.889489e-01-4.632004e-01-5.245507e-01-5.391964e-01-1.213156e+00
50%2.643337e-01-4.632004e-01-5.245507e-011.585872e-014.427575e-03
75%2.643337e-014.306951e-018.983982e-018.563708e-011.222011e+00
max1.770899e+002.218486e+001.609873e+001.554154e+001.222011e+00
\n","
\n","
\n","\n","
\n"," \n","\n"," \n","\n"," \n","
\n","\n","\n","
\n"," \n","\n","\n","\n"," \n","
\n","\n","
\n","
\n"],"application/vnd.google.colaboratory.intrinsic+json":{"type":"dataframe","summary":"{\n \"name\": \"enviro\",\n \"rows\": 8,\n \"fields\": [\n {\n \"column\": \"noise_level\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 388.86908120748325,\n \"min\": -1.9955141109760526,\n \"max\": 1100.0,\n \"num_unique_values\": 7,\n \"samples\": [\n 1100.0,\n -4.0371746350005693e-17,\n 0.26433371545530415\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"living_conditions\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 388.8870032737353,\n \"min\": -2.2509912555222042,\n \"max\": 1100.0,\n \"num_unique_values\": 7,\n \"samples\": [\n 1100.0,\n 1.1304088978001594e-17,\n 0.43069507777139654\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"safety\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 388.8844624071598,\n \"min\": -1.9474995819657146,\n \"max\": 1100.0,\n \"num_unique_values\": 7,\n \"samples\": [\n 1100.0,\n -1.2918958832001822e-17,\n 0.8983981797908925\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"basic_needs\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 388.8548695216942,\n \"min\": -1.9347635846183007,\n \"max\": 1100.0,\n \"num_unique_values\": 8,\n \"samples\": [\n -2.099330810200296e-17,\n 0.15858717906707376,\n 1100.0\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"stress_level\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 388.85832663067225,\n \"min\": -1.2131556235498353,\n \"max\": 1100.0,\n \"num_unique_values\": 6,\n \"samples\": [\n 1100.0,\n -2.260817795600319e-17,\n 1.2220107740866955\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n }\n ]\n}"}},"metadata":{},"execution_count":69}],"source":["enviro.describe()"]},{"cell_type":"code","execution_count":70,"metadata":{"colab":{"base_uri":"https://localhost:8080/","height":206},"executionInfo":{"elapsed":8,"status":"ok","timestamp":1716217040690,"user":{"displayName":"Daniel Meier","userId":"06365571306976914087"},"user_tz":300},"id":"syBDMINFRcgM","outputId":"db39f919-5c3e-4604-8b4a-dc161fbf074f"},"outputs":[{"output_type":"execute_result","data":{"text/plain":[" noise_level living_conditions safety basic_needs \\\n","noise_level 1.000000 -0.452362 -0.536630 -0.572327 \n","living_conditions -0.452362 1.000000 0.563571 0.503275 \n","safety -0.536630 0.563571 1.000000 0.624774 \n","basic_needs -0.572327 0.503275 0.624774 1.000000 \n","stress_level 0.663371 -0.581723 -0.709602 -0.708968 \n","\n"," stress_level \n","noise_level 0.663371 \n","living_conditions -0.581723 \n","safety -0.709602 \n","basic_needs -0.708968 \n","stress_level 1.000000 "],"text/html":["\n","
\n","
\n","\n","\n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n","
noise_levelliving_conditionssafetybasic_needsstress_level
noise_level1.000000-0.452362-0.536630-0.5723270.663371
living_conditions-0.4523621.0000000.5635710.503275-0.581723
safety-0.5366300.5635711.0000000.624774-0.709602
basic_needs-0.5723270.5032750.6247741.000000-0.708968
stress_level0.663371-0.581723-0.709602-0.7089681.000000
\n","
\n","
\n","\n","
\n"," \n","\n"," \n","\n"," \n","
\n","\n","\n","
\n"," \n","\n","\n","\n"," \n","
\n","\n","
\n","
\n"],"application/vnd.google.colaboratory.intrinsic+json":{"type":"dataframe","summary":"{\n \"name\": \"enviro\",\n \"rows\": 5,\n \"fields\": [\n {\n \"column\": \"noise_level\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 0.7513552196092096,\n \"min\": -0.5723266182999943,\n \"max\": 1.0,\n \"num_unique_values\": 5,\n \"samples\": [\n -0.45236160148913096,\n 0.6633713207736838,\n -0.5366296307077912\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"living_conditions\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 0.6893133475126099,\n \"min\": -0.5817230764553158,\n \"max\": 1.0,\n \"num_unique_values\": 5,\n \"samples\": [\n 1.0,\n -0.5817230764553158,\n 0.5635709654584948\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"safety\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 0.7618965431974407,\n \"min\": -0.7096016121623494,\n \"max\": 1.0,\n \"num_unique_values\": 5,\n \"samples\": [\n 0.5635709654584948,\n -0.7096016121623494,\n 1.0\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"basic_needs\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 0.7632861231455119,\n \"min\": -0.7089675916451607,\n \"max\": 1.0,\n \"num_unique_values\": 5,\n \"samples\": [\n 0.5032750416523945,\n -0.7089675916451607,\n 0.6247744935034447\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"stress_level\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 0.8309527053785292,\n \"min\": -0.7096016121623494,\n \"max\": 1.0,\n \"num_unique_values\": 5,\n \"samples\": [\n -0.5817230764553158,\n 1.0,\n -0.7096016121623494\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n }\n ]\n}"}},"metadata":{},"execution_count":70}],"source":["enviro.corr()"]},{"cell_type":"code","execution_count":71,"metadata":{"colab":{"base_uri":"https://localhost:8080/","height":545},"executionInfo":{"elapsed":620,"status":"ok","timestamp":1716217042601,"user":{"displayName":"Daniel Meier","userId":"06365571306976914087"},"user_tz":300},"id":"x3nBGsLhRt5m","outputId":"102b57f6-09cf-427b-ab7b-68f83dc31d29"},"outputs":[{"output_type":"display_data","data":{"text/plain":["
"],"image/png":"iVBORw0KGgoAAAANSUhEUgAAAqsAAAIQCAYAAACmFidHAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAAByzElEQVR4nO3deXhM59sH8O9km0T2iCQECbEEiS0pYi8h9tpjaYXaflprtEWVoEjVXtS+1VJ7qVJb0FpiKWLfxdIQESEhIds87x/eTI1MJEMmZ8z5fq7rXOSZs9xnmcmde57zHIUQQoCIiIiIyACZSB0AEREREVFOmKwSERERkcFiskpEREREBovJKhEREREZLCarRERERGSwmKwSERERkcFiskpEREREBovJKhEREREZLCarRERERGSwmKx+QMaNGweFQiF1GHrRs2dPeHp65us6V6xYAYVCgdu3b+frevPb1KlTUbp0aZiamqJq1apShyN7WdfNP//8I3UoBkGhUGDcuHFSh2Hwbt++DYVCgRUrVkgdygcr6xhOmzZN6lDIwOicrJ4/fx4dO3aEh4cHLC0t4e7ujiZNmmDOnDka802ePBlbt27NrzgLjKenJ1q1aiV1GPni4MGDaN++Pdzc3GBhYQEXFxe0bt0aW7ZskTq0fPWhXmsAsGfPHnzzzTeoU6cOli9fjsmTJ+c4b8+ePaFQKLROu3bt0kt8a9euxaxZs/Sybsq7hg0b5njuvb29pQ7PKPz8888FkmgePHgwx3PZpUuXfN1WSkoKxo0bh4MHD+bret/Xzp07DeIPoNTUVMyZMwd169aFo6MjLCwsUKxYMbRp0wa//vorMjMzJYnr0qVLGDdunN4LLQV1zecHM11mPnr0KD7++GOULFkSffv2hZubG+7du4djx45h9uzZGDRokHreyZMno2PHjmjbtm1+x0x5EBYWhgkTJqBs2bLo378/PDw88PjxY+zcuRMdOnTAmjVr0K1bN6nDzBc5XWufffYZunTpAqVSKU1gebB//36YmJhg6dKlsLCwyHV+pVKJJUuWZGuvUqWKPsLD2rVrceHCBQwdOlQv66e8K168OMLDw7O129vb63W7L168gJmZTr8qPkg///wznJ2d0bNnzwLZ3uDBg/HRRx9ptOX3t0spKSkYP348gFd/8BiKnTt3Yt68eZImrI8ePULz5s1x6tQpBAUF4bvvvoOTkxNiY2Oxb98+dOvWDTdu3MCYMWMKPLZLly5h/PjxaNiwYb5fE68r6Gv+fej0CTRp0iTY29vj5MmTcHBw0HgtLi7unYNITk6GtbX1Oy9PmjZt2oQJEyagY8eOWLt2LczNzdWvff3119i9ezfS09PfezsZGRlQqVRakyxDOKempqYwNTWVNIbcxMXFwcrKKk+JKgCYmZnh008/1XNU+peSkoJChQpJHcYHxd7eXpJzb2lpmes8hvB+/9DUq1cPHTt2lDqMd2IM5/uzzz7DmTNnsHnzZrRv317jtVGjRuGff/7B1atX37qOly9fwsLCAiYm7FGpd0IH5cuXFw0bNsx1PgDZppCQECGEEGFhYQKAuHjxoujatatwcHAQVatWVS+7atUqUb16dWFpaSkcHR1FcHCwuHv3rsb6r127Jtq3by9cXV2FUqkU7u7uIjg4WDx9+lQ9z549e0SdOnWEvb29sLa2FuXKlROjRo3KNXYPDw/RsmXLXOfLLc4vv/xSWFtbi+Tk5GzLdunSRbi6uoqMjAx1286dO0XdunVFoUKFhI2NjWjRooW4cOGCxnJZxy433t7ewsnJSSQlJeU6rxBCPHz4UHz++efCxcVFKJVKUblyZbFixQqNeaKjowUAMXXqVDFz5kxRunRpYWJiIs6cOZMv5zQkJER4eHhotE2dOlUEBAQIJycnYWlpKapXry42btyoMc/brrXly5cLACI6OlpjmXnz5omKFSsKCwsLUbRoUfHFF1+IJ0+eaMzToEEDUalSJXHx4kXRsGFDYWVlJYoVKyamTJmSp2Oanp4uJkyYIEqXLi0sLCyEh4eHGDVqlHj58uVbY1++fHmO6wwJCRHW1tZv3W5mZqaYOXOmqFixolAqlcLFxUX069dPJCQkaMy3detW0aJFC1G0aFFhYWEhSpcuLSZMmKBxTTZo0CBbfFnnKKdje+DAAQFAHDhwQGM9lSpVEv/884+oV6+esLKyEkOGDBFCCPHy5UsxduxY4eXlJSwsLETx4sXF119/rXGchHi393O7du1EtWrVNNpatWolAIht27ap244dOyYAiJ07d2rs2+HDh8WwYcOEs7OzKFSokGjbtq2Ii4vLtp28vHezzt2///4rPvnkE2FtbS2cnZ3F8OHDNY55TrKOYW6y3ovXr18XISEhwt7eXtjZ2YmePXtqfBZVqlRJ62d5ZmamKFasmOjQoYO6DYAICwvLtg1t7/e8XPdC/Pc5e+DAAeHn5ycsLS2Fj4+P+rrZvHmz8PHxEUqlUlSvXl2cPn06W6yXL18WHTp0EI6OjkKpVAo/Pz+N8ypE3s+lh4dHtmu9QYMGQgghHj9+LIYPHy58fHyEtbW1sLW1Fc2aNRNRUVEa28r6jHzbe1iI/94jb36WZcnr9oQQ4sWLFyIsLEyULVtWKJVK4ebmJtq1aydu3LihjufN6fVzGRERob527e3tRZs2bcSlS5c0tvG28/3gwQPRs2dP4e7uLiwsLISbm5to06ZNts+F14WEhGiN6/VjOHXqVLFw4UL1deTv7y9OnDiRbV15uQa0OXr0qAAg/ve//+U6b5as8/brr7+K0aNHi2LFigmFQqH+3XHs2DERFBQk7OzshJWVlahfv744fPiwxjpu374tBgwYIMqVKycsLS2Fk5OT6Nixo8bxyrpm35xe/0zNy2dObufmbde8IdKpsurh4YHIyEhcuHABPj4+Oc63atUq9OnTBzVq1EC/fv0AAF5eXhrzdOrUCWXLlsXkyZMhhADwqnI7ZswYdO7cGX369MGjR48wZ84c1K9fH2fOnIGDgwPS0tIQFBSE1NRUDBo0CG5uboiJicEff/yBp0+fwt7eHhcvXkSrVq1QuXJlTJgwAUqlEjdu3MCRI0d02d0c5SXO4OBgzJs3Dzt27ECnTp3Uy6akpGD79u3o2bOnuuq3atUqhISEICgoCFOmTEFKSgrmz5+PunXr4syZMzp9DXD9+nVcuXIFn3/+OWxtbXOd/8WLF2jYsCFu3LiBgQMHolSpUti4cSN69uyJp0+fYsiQIRrzL1++HC9fvkS/fv2gVCrh5OSkfu1dz2lOZs+ejTZt2qB79+5IS0vDunXr0KlTJ/zxxx9o2bKl+tjldq29bty4cRg/fjwCAwMxYMAAXL16FfPnz8fJkydx5MgRjSr0kydP0KxZM7Rv3x6dO3fGpk2bMGLECPj6+qJ58+ZvPa59+vTBypUr0bFjRwwfPhzHjx9HeHg4Ll++jN9++00d+6JFi3DixAn1V/u1a9d+63oBID4+XuNnc3Nz9VfB/fv3x4oVK9CrVy8MHjwY0dHRmDt3Ls6cOaOxfytWrICNjQ1CQ0NhY2OD/fv3Y+zYsUhKSsLUqVMBAKNHj0ZiYiL+/fdfzJw5EwBgY2OTa3zaPH78GM2bN0eXLl3w6aefwtXVFSqVCm3atMHhw4fRr18/VKhQAefPn8fMmTNx7do1dT/kd30/16tXD9u2bUNSUhLs7OwghMCRI0dgYmKCQ4cOoU2bNgCAQ4cOwcTEBHXq1NFYftCgQXB0dERYWBhu376NWbNmYeDAgVi/fr16Hl3eu5mZmQgKCkLNmjUxbdo07Nu3D9OnT4eXlxcGDBiQ6zHMzMzMdu4BwMrKKluVq3PnzihVqhTCw8Nx+vRpLFmyBC4uLpgyZQoAIDg4GOPGjUNsbCzc3NzUyx0+fBj379/PU99Jbe/3vFz3WW7cuIFu3bqhf//++PTTTzFt2jS0bt0aCxYswLfffosvvvgCABAeHo7OnTvj6tWr6grWxYsXUadOHbi7u2PkyJGwtrbGhg0b0LZtW2zevBnt2rXT2FZu53LWrFkYNGgQbGxsMHr0aACAq6srAODWrVvYunUrOnXqhFKlSuHhw4dYuHAhGjRogEuXLqFYsWK5Hittnj17lu18Ojk55Xl7mZmZaNWqFSIiItClSxcMGTIEz549w969e3HhwgUEBgZi/vz5GDBgANq1a6euHlauXBkAsG/fPjRv3hylS5fGuHHj8OLFC8yZMwd16tTB6dOns/3e0Xa+O3TogIsXL2LQoEHw9PREXFwc9u7di7t37+b4e6t///64f/8+9u7di1WrVmmdZ+3atXj27Bn69+8PhUKBH3/8Ee3bt8etW7fUn2G6XgOv2759OwC80zcV33//PSwsLPDVV18hNTUVFhYW2L9/P5o3bw4/Pz+EhYXBxMQEy5cvR6NGjXDo0CHUqFEDAHDy5EkcPXoUXbp0QfHixXH79m3Mnz8fDRs2xKVLl1CoUCHUr18fgwcPxk8//YRvv/0WFSpUAAD1v3n9zMnt3LztmjdIumS2e/bsEaampsLU1FQEBASIb775RuzevVukpaVlm9fa2lpd4Xpd1l9pXbt21Wi/ffu2MDU1FZMmTdJoP3/+vDAzM1O3nzlz5q1/lQohxMyZMwUA8ejRI112TwiRe2U1r3GqVCrh7u6uUaEQQogNGzYIAOLvv/8WQgjx7Nkz4eDgIPr27asxX2xsrLC3t9doz0tlddu2bQKAmDlzZq77KoQQs2bNEgDE6tWr1W1paWkiICBA2NjYqKuzWX/x2tnZZasuve85FUJ7ZTUlJUXj57S0NOHj4yMaNWqk0Z7TtfZm9S8uLk5YWFiIpk2biszMTPV8c+fOFQDEsmXL1G1ZVcVffvlF3Zaamirc3NyyndM3RUVFCQCiT58+Gu1fffWVACD279+vsd+5VUtfnxda/uLO+mv40KFDAoBYs2aNxnK7du3K1v7msRVCiP79+4tChQppVMFatmyZ7bwIoXtlFYBYsGCBxryrVq0SJiYm4tChQxrtCxYsEADEkSNHhBDv/n4+efKkRsX03LlzAoDo1KmTqFmzpnq+Nm3aaFRgs/YtMDBQqFQqdfuwYcOEqamp+hscXd67WeduwoQJGvNWq1ZN+Pn55bov2qrcWVP//v3V82W9Fz///HON5du1aycKFy6s/vnq1asCgJgzZ47GfF988YWwsbHRuD6QQ2X1zfe7Ltd9VlXn6NGj6rbdu3cLAMLKykrcuXNH3b5w4cJs11Tjxo2Fr6+vxrWqUqlE7dq1RdmyZdVteT2XQryqNmurLL18+VLj80KIV5+HSqVS43zqWlnVNkVHR+d5e8uWLRMAxIwZM7JtI2tfHz16lO38ZalatapwcXERjx8/VredPXtWmJiYiB49eqjbcjrfT548UVdBdfXll19q/V2WdQwLFy6s8W1Q1u+17du3q9vyeg1o065dOwFA4/wL8apS/ejRI/X0+jduWeetdOnSGu8PlUolypYtK4KCgjSusZSUFFGqVCnRpEkTjbY3RUZGZvtds3HjxmzXvBB5/8zJ67nJ6Zo3RDp1tGjSpAkiIyPRpk0bnD17Fj/++COCgoLg7u6O33//XZdV4X//+5/Gz1u2bIFKpULnzp0RHx+vntzc3FC2bFkcOHAAwH83E+zevRspKSla151Vrdu2bRtUKpVOceUmr3EqFAp06tQJO3fuxPPnz9XLr1+/Hu7u7qhbty4AYO/evXj69Cm6du2qsT5TU1PUrFlTvb68SkpKAoA8VVWBVx3d3dzc0LVrV3Wbubk5Bg8ejOfPn+Ovv/7SmL9Dhw4oUqSI1nW96znNiZWVlfr/T548QWJiIurVq4fTp0/nad/etG/fPqSlpWHo0KEafYz69u0LOzs77NixQ2N+Gxsbjb+8LSwsUKNGDdy6deut29m5cycAIDQ0VKN9+PDhAJBtO7qwtLTE3r17Nabp06cDADZu3Ah7e3s0adJE43j7+fnBxsZG43i/fmyzKjz16tVDSkoKrly58s7x5USpVKJXr14abRs3bkSFChXg7e2tEW+jRo0AQB3vu76fq1WrBhsbG/z9998AXlVQixcvjh49euD06dNISUmBEAKHDx9GvXr1si3fr18/jaHi6tWrh8zMTNy5cwfAu71333yP1KtXL9frKYunp2e2c793716tN79p287jx4/Vnw/lypVD1apVNarEmZmZ2LRpE1q3bq1xfeTkzW3oet1XrFgRAQEB6p9r1qwJAGjUqBFKliyZrT3rOCUkJGD//v3o3Lmz+tqNj4/H48ePERQUhOvXryMmJkZjW7mdy7dRKpXqz4vMzEw8fvwYNjY2KF++/Dt/FgHA2LFjs51LNze3PG9v8+bNcHZ21rixOUtuQxw+ePAAUVFR6Nmzp8a3Y5UrV0aTJk3U5/J1b57vrL72Bw8exJMnT3Ta99wEBwfD0dFR/XPW+/N9roHXZb0P3vymaMGCBShSpIh6yvo9/bqQkBCN90dUVBSuX7+Obt264fHjx+pYkpOT0bhxY/z999/qz63Xl0tPT8fjx49RpkwZODg45Olayutnjj7PjVR0vsXzo48+wpYtW5CWloazZ8/it99+w8yZM9GxY0dERUWhYsWKeVpPqVKlNH6+fv06hBAoW7as1vmzSv+lSpVCaGgoZsyYgTVr1qBevXpo06YNPv30U3UiGxwcjCVLlqBPnz4YOXIkGjdujPbt26Njx47v3RE6r3FmxTFr1iz8/vvv6NatG54/f46dO3eqv9rIWh8A9S/oN9nZ2ekUX9b8z549y9P8d+7cQdmyZbMdl6yvHN78MH/zvL3tNV2OlTZ//PEHJk6ciKioKKSmpqrb33Ws2ax9KV++vEa7hYUFSpcunW1fixcvnm1bjo6OOHfuXK7bMTExQZkyZTTa3dzc4ODgkKdfkDkxNTVFYGCg1teuX7+OxMREuLi4aH399ZsgL168iO+++w779+9Xf3BnSUxMfOf4cuLu7p7tJrLr16/j8uXLOf7xkxXvu76fTU1NERAQgEOHDgF4lazWq1cPdevWRWZmJo4dOwZXV1ckJCRoTVZfT5gAqH95Zn346/retbS0zLavjo6Oef5lYm1tneO5f9PbYs+KKzg4GN9++y1iYmLg7u6OgwcPIi4uDsHBwXnaxpvvd12v+zdjzPr8LlGihNb2rON048YNCCEwZsyYHO/UjouLg7u7e47bevNcvo1KpcLs2bPx888/Izo6WmM4o8KFC+e6fE58fX21ns+8bu/mzZsoX778O43UkNNnIfDqs3/37t3ZbqJ683wrlUpMmTIFw4cPh6urK2rVqoVWrVqhR48eGl1L3kVu5+tdroHXZRVznj9/rjGaRocOHdRdHIcPH6516Cptv+eAV0lsThITE+Ho6IgXL14gPDwcy5cvR0xMjLo7RdY8ucnrZ44+z41U3nk8EgsLC3z00Uf46KOPUK5cOfTq1QsbN25EWFhYnpZ/8y93lUoFhUKBP//8U+sd3K//BTR9+nT07NkT27Ztw549ezB48GCEh4fj2LFjKF68OKysrPD333/jwIED2LFjB3bt2oX169ejUaNG2LNnz3vdIa5LnLVq1YKnpyc2bNiAbt26Yfv27Xjx4oXGL4Osv7hWrVql9SLS9YMoa8zF8+fP67RcXr2t4vI+5/RNWX0K69evj59//hlFixaFubk5li9fjrVr1777Duggp+vk9Q+YtynoBzioVCq4uLhgzZo1Wl/PSpSePn2KBg0awM7ODhMmTICXlxcsLS1x+vRpjBgxIk/Vy5z2LadxCbVdNyqVCr6+vpgxY4bWZbKSlvd5P9etWxeTJk3Cy5cvcejQIYwePRoODg7w8fHBoUOH1H20tCWruZ1/Xd+7BTkyRV6u3eDgYIwaNQobN27E0KFDsWHDBtjb26NZs2Z52kZOnwV5ve5zijGvx/2rr75CUFCQ1nnfTJjf5708efJkjBkzBp9//jm+//57ODk5wcTEBEOHDs33b+6k2F5eaTvfQ4cORevWrbF161bs3r0bY8aMQXh4OPbv349q1aq987b0cQ28Luv35IULFzT6qpcoUUL9uePo6JhjH/HXZcUyderUHB/qkvW7btCgQVi+fDmGDh2KgIAA2Nvbq8fXzcu51eUzR1/nRir5Mniev78/gFdfLWTR9Re1l5cXhBAoVaoUypUrl+v8vr6+8PX1xXfffYejR4+iTp06WLBgASZOnAgAMDExQePGjdG4cWPMmDEDkydPxujRo3HgwIE8VyfyI87OnTtj9uzZSEpKwvr16+Hp6YlatWpprA8AXFxc3iuuLOXKlUP58uWxbds2zJ49O9cbYjw8PHDu3DmoVCqNKlXWV8EeHh7vHIuux+p1mzdvhqWlJXbv3q0xTury5cuzzZvXay1rX65evYrSpUur29PS0hAdHZ0vxz9rOyqVCtevX1dXqAHg4cOHePr06Xsd07fx8vLCvn37UKdOnbf+UXHw4EE8fvwYW7ZsQf369dXt0dHR2ebN6dhmVTqePn2q0a5L1djLywtnz55F48aNcz2H7/p+rlevHtLS0vDrr78iJiZGnZTWr19fnayWK1funW4syO/3bkErVaoUatSogfXr12PgwIHYsmUL2rZt+87jEhfUdZ/13jU3N8/X457TNbhp0yZ8/PHHWLp0qUb706dP4ezsnG/b13V7Xl5eOH78ONLT03P8liqnfXr9s/BNV65cgbOzc56HpvLy8sLw4cMxfPhwXL9+HVWrVsX06dOxevXqHJd53z/k3/caaNWqFX744QesWbMm242Vusr6HLCzs8s1lk2bNiEkJETddQt4NfzVm5+jOR0fXT9zcjs3H9ITMXX6TvzAgQNa/xLN6t/y+lcK1tbW2U7A27Rv3x6mpqYYP358tm0IIfD48WMAr/qaZGRkaLzu6+sLExMT9VfFCQkJ2daf9RfP618nv4u8xpklODgYqampWLlyJXbt2oXOnTtrvB4UFAQ7OztMnjxZ69injx490jnG8ePH4/Hjx+jTp0+2YwW8emrSH3/8AQBo0aIFYmNjNfquZWRkYM6cObCxsUGDBg103n4WXY/V60xNTaFQKDQqdbdv39b6pKq8XmuBgYGwsLDATz/9pBHP0qVLkZiYqB5h4H21aNECALI9+Smrgphf23lT586dkZmZie+//z7baxkZGepjlFW1eP0YpKWl4eeff862nLW1tdavp7I+NLP6gwKvqqqLFi3SKd6YmBgsXrw422svXrxAcnIygPd7P9esWRPm5uaYMmUKnJycUKlSJQCvkthjx47hr7/+0lpVzQt9vHcLWnBwMI4dO4Zly5YhPj4+z10AtCmo697FxQUNGzbEwoULNQokWd71uOf0OWJqaprt82vjxo1v7RP5PvK6vQ4dOiA+Ph5z587Nto6s5bPGMn5zv4oWLYqqVati5cqVGq9duHABe/bsUZ/Lt0lJScHLly812ry8vGBra5vr+zIrEdYlR3jd+14DderUQZMmTbBo0SJs27ZN6zx5/QbNz88PXl5emDZtmsb9Kdpi0XZu58yZk+0bqZyOT14/c/J6bnTN06SkU2V10KBBSElJQbt27eDt7Y20tDQcPXpUXTF8/QYKPz8/7Nu3DzNmzECxYsVQqlQpdUd5bby8vDBx4kSMGjUKt2/fRtu2bWFra4vo6Gj89ttv6NevH7766ivs378fAwcORKdOnVCuXDlkZGRg1apVMDU1RYcOHQAAEyZMwN9//42WLVvCw8MDcXFx+Pnnn1G8eHGtHabfdOPGDXWF9nXVqlVDy5Yt8xRnlurVq6NMmTIYPXo0UlNTs/0ysLOzw/z58/HZZ5+hevXq6NKlC4oUKYK7d+9ix44dqFOnjtYPo7cJDg7G+fPnMWnSJJw5cwZdu3ZVP8Fq165diIiIUH+V3q9fPyxcuBA9e/bEqVOn4OnpiU2bNuHIkSOYNWtWnm/U0iav51Sbli1bYsaMGWjWrBm6deuGuLg4zJs3D2XKlMnWZzSv11qRIkUwatQojB8/Hs2aNUObNm1w9epV/Pzzz/joo4/ybcD1KlWqICQkBIsWLVJ/5X7ixAmsXLkSbdu2xccff5wv23lTgwYN0L9/f4SHhyMqKgpNmzaFubk5rl+/jo0bN2L27Nno2LEjateuDUdHR4SEhGDw4MFQKBRYtWqV1g9nPz8/rF+/HqGhofjoo49gY2OD1q1bo1KlSqhVqxZGjRqFhIQEODk5Yd26dVr/OMrJZ599hg0bNuB///sfDhw4gDp16iAzMxNXrlzBhg0bsHv3bvj7+7/X+7lQoULw8/PDsWPH0Lp1a3UloX79+khOTkZycvI7J6v6eO++TWJiYo7Vqne9djt37oyvvvoKX331FZycnN6rUlmQ1/28efNQt25d+Pr6om/fvihdujQePnyIyMhI/Pvvvzh79qzO6/Tz88P8+fMxceJElClTBi4uLmjUqBFatWqFCRMmoFevXqhduzbOnz+PNWvWaHw7k5/yur0ePXrgl19+QWhoKE6cOIF69eohOTkZ+/btwxdffIFPPvkEVlZWqFixItavX49y5crByckJPj4+8PHxwdSpU9G8eXMEBASgd+/e6qGr7O3t8/RkqWvXrqFx48bo3LkzKlasCDMzM/z22294+PBhrkOf+fn5AXj1FK+goCCYmprq/KjZ970GVq9ejWbNmqFt27Zo3rw5AgMD4ejoqH6C1d9//53rEIXAq299lixZgubNm6NSpUro1asX3N3dERMTgwMHDsDOzk49VFarVq2watUq2Nvbo2LFioiMjMS+ffuy9X2uWrUqTE1NMWXKFCQmJkKpVKJRo0ZwcXHJ02dOXs9NTte8QdJl6IA///xTfP7558Lb21vY2NgICwsLUaZMGTFo0CDx8OFDjXmvXLki6tevL6ysrASQ/aEAOQ1Ds3nzZlG3bl1hbW0trK2thbe3t/jyyy/F1atXhRBC3Lp1S3z++efCy8tLPajuxx9/LPbt26deR0REhPjkk09EsWLFhIWFhShWrJjo2rWruHbtWq77qG2g3Kypd+/eeY7zdaNHjxYARJkyZXLc7oEDB0RQUJCwt7cXlpaWwsvLS/Ts2VP8888/6nny+lCAN4+Di4uLMDMzE0WKFBGtW7fONmjyw4cPRa9evYSzs7OwsLAQvr6+2YZfeX2w5je97zkVQvvQVUuXLlUPdu3t7S2WL1+u9RjkdK3lNLzS3Llzhbe3tzA3Nxeurq5iwIABOT4U4E3a4tQmPT1djB8/XpQqVUqYm5uLEiVKaB0cXdehq/Iy76JFi4Sfn5+wsrIStra2wtfXV3zzzTfi/v376nmOHDkiatWqpX7YQdYwdHhjuJTnz5+Lbt26CQcHBwFAY99v3rwpAgMDhVKpFK6uruLbb78Ve/fu1Tp0VU4D2qelpYkpU6aISpUqCaVSKRwdHYWfn58YP368SExMFEK83/tZCCG+/vprASDbAx3KlCkjAIibN29qtGddNydPntRo1zYsV1Z7bu/dnM5dXt/Tbxu66vXlc3ov5vReEEKIOnXqaB1yKgtyGLpK2/s9r9d9TkMEAhBffvmlRltOnz03b94UPXr0EG5ubsLc3Fy4u7uLVq1aiU2bNmXb77ycy9jYWNGyZUtha2sr8NqQcC9fvhTDhw8XRYsWFVZWVqJOnToiMjJSNGjQQGPYn/x6KEBetyfEq6GQRo8erT7ebm5uomPHjhrX9NGjR4Wfn5+wsLDIdi737dsn6tSpI6ysrISdnZ1o3bp1jg8FePN8x8fHiy+//FJ4e3sLa2trYW9vL2rWrCk2bNjw1v0XQoiMjAwxaNAgUaRIEaFQKNTX8Nt+z7wZuxB5uwbe5sWLF2LWrFkiICBA2NnZCTMzM+Hm5iZatWol1qxZo/HAjtzO25kzZ0T79u1F4cKFhVKpFB4eHqJz584iIiJCPc+TJ0/Uv2ttbGxEUFCQuHLlivDw8Mg2/OLixYtF6dKlhampabZrNbfPnLyem5yueUOkECKPtW4iIiIiogLGB9oSERERkcFiskpEREREBovJKhEREREZLCarRERERGSwmKwSERERkcFiskpEREREBovJKhEREREZLJ2eYEXZ7TAvn/tMREREZFBapl+VbNv6zB2k3C99YWWViIiIiAwWK6tEREREBUhhrpA6hA8KK6tEREREZLBYWSUiIiIqQCZmrKzqgpVVIiIiIjJYrKwSERERFSCFOWuFumCySkRERFSA2A1AN0ztiYiIiMhgsbJKREREVIA4dJVuWFklIiIiIoPFyioRERFRAWKfVd2wskpEREREBouVVSIiIqICxD6rumFllYiIiIgMFiurRERERAWIfVZ1w2SViIiIqAApTJms6oLdAIiIiIhkat68efD09ISlpSVq1qyJEydOvHX+p0+f4ssvv0TRokWhVCpRrlw57Ny5U68xsrJKREREVIBMDKSyun79eoSGhmLBggWoWbMmZs2ahaCgIFy9ehUuLi7Z5k9LS0OTJk3g4uKCTZs2wd3dHXfu3IGDg4Ne42SySkRERCRDM2bMQN++fdGrVy8AwIIFC7Bjxw4sW7YMI0eOzDb/smXLkJCQgKNHj8Lc3BwA4Onpqfc42Q2AiIiIqAApTBR6m1JTU5GUlKQxpaamZoshLS0Np06dQmBgoLrNxMQEgYGBiIyM1Br377//joCAAHz55ZdwdXWFj48PJk+ejMzMTL0dK4DJKhEREZHRCA8Ph729vcYUHh6ebb74+HhkZmbC1dVVo93V1RWxsbFa133r1i1s2rQJmZmZ2LlzJ8aMGYPp06dj4sSJetmXLOwGQERERFSAFKb6qxWOGjUKoaGhGm1KpTJf1q1SqeDi4oJFixbB1NQUfn5+iImJwdSpUxEWFpYv29DG6JPVn376Kc/zDh48WI+REBEREemXUqnMU3Lq7OwMU1NTPHz4UKP94cOHcHNz07pM0aJFYW5uDlNTU3VbhQoVEBsbi7S0NFhYWLxf8Dkw+mR15syZeZpPoVAwWSUiIiK9M4TRACwsLODn54eIiAi0bdsWwKvKaUREBAYOHKh1mTp16mDt2rVQqVQwMXlVHb527RqKFi2qt0QVkEGyGh0dLXUIRERERGoKE+mTVQAIDQ1FSEgI/P39UaNGDcyaNQvJycnq0QF69OgBd3d3dZ/XAQMGYO7cuRgyZAgGDRqE69evY/LkyXov9hl9sqpNWloaoqOj4eXlBTMzWR4CIiIikrng4GA8evQIY8eORWxsLKpWrYpdu3apb7q6e/euuoIKACVKlMDu3bsxbNgwVK5cGe7u7hgyZAhGjBih1zgVQgih1y0YkJSUFAwaNAgrV64E8Kp0Xbp0aQwaNAju7u5axxTLzQ7z8vkdJhEREelZy/Srkm37ZN1aelv3R4eP6W3dUpHV0FWjRo3C2bNncfDgQVhaWqrbAwMDsX79egkjIyIiIiJtZPUd+NatW7F+/XrUqlULCsV//UUqVaqEmzdvShgZERERyYXCAG6w+pDIqrL66NEjrc+6TU5O1kheiYiIiMgwyCpZ9ff3x44dO9Q/ZyWoS5YsQUBAgFRhERERkYwoTEz0NhkjWXUDmDx5Mpo3b45Lly4hIyMDs2fPxqVLl3D06FH89ddfUodHRERERG8wzhQ8B3Xr1kVUVBQyMjLg6+uLPXv2wMXFBZGRkfDz85M6PCIiIpIBhYlCb5MxklVlFQC8vLywePFiqcMgIiIimTKEJ1h9SGRVWQ0MDMSKFSuQlJQkdShERERElAeySlYrVaqEUaNGwc3NDZ06dcK2bduQnp4udVhEREQkI+wGoBtZJauzZ89GTEwMtm7dCmtra/To0QOurq7o168fb7AiIiIiMkCySlYBwMTEBE2bNsWKFSvw8OFDLFy4ECdOnECjRo2kDo2IiIhkgENX6UZ2N1hliY2Nxbp167B69WqcO3cONWrUkDokIiIiInqDrJLVpKQkbN68GWvXrsXBgwdRunRpdO/eHevXr4eXl5fU4REREZEMGGvfUn2RVbLq6uoKR0dHBAcHIzw8HP7+/lKHRERERERvIatk9ffff0fjxo1hYqR9OoiIiMjwcZxV3cgqa2vSpAlUKhX27duHhQsX4tmzZwCA+/fv4/nz5xJHR0RERHLAoat0I6vK6p07d9CsWTPcvXsXqampaNKkCWxtbTFlyhSkpqZiwYIFUodIRERERK+RVWV1yJAh8Pf3x5MnT2BlZaVub9euHSIiIiSMjIiIiOSCQ1fpRlaV1UOHDuHo0aOwsLDQaPf09ERMTIxEURERERFRTmSVrKpUKmRmZmZr//fff2FraytBRERERCQ3xtq3VF+Ms16cg6ZNm2LWrFnqnxUKBZ4/f46wsDC0aNFCusCIiIiISCtZVVanT5+OoKAgVKxYES9fvkS3bt1w/fp1ODs749dff5U6PCIiIpIBVlZ1I6tktXjx4jh79izWrVuHc+fO4fnz5+jduze6d++uccMVERERERkGWSWrAGBmZoZPP/1U6jCIiIhIplhZ1Y3RJ6u///57nudt06aNHiMhIil5DOiG0qG9oXQrgqRzV3Bx6PdIPHk+x/nN7G1R/vthcGvbBOZODnhxJwaXhk/Go11/q+dRFnNBhfCvUSSoHkwLWSH55h2c6/MtEk9dKIhdIqIPlLEOMaUvRp+stm3bNk/zKRQKrSMFENGHr2in5qgwdRQufBmGpyfOotTgENTcsRQHKzVD2qOEbPMrzM1Rc9dypMU9xukuQ/Ay5iGsShZDemKSeh4zBzvU/utXPP7rOE607ou0R09gXcYD6U8SC3LXiIiMntEnqyqVSuoQiEhipYb2wr2lG/Dvyi0AgPNfhMGleUOU6NkBN6cuzjZ/iV4dYO5oj6P1ukBkZAAAXtzRHIvZ6+u+ePlvLM71+Vbd9uL2v3rcCyIyFiam7AagC9ahtfD19cW9e/ekDoOI8oHC3Bz21SshPuLof41CIH7/UTjUqqZ1GddWjfD0eBR85oxF4L9HUP/MdniN6A+89tWda6tGeHrqAqr/OhuBMUdR9+RvKNG7k753h4hIdpisanH79m2kp6dLHQYR5QMLZ0eYmJkhNe6xRnvqw8dQujlrXaZQqRJwax8EhakpTrTph+uTf0bpYb1Q9tsB/81TugQ8+ndF8o3bONGyN+4s/BWVZn4H98/a6nN3iMgIKEwUepuMkdF3A8hPqampSE1N1WhLFyqYK5jzExkVEwXS4h7j3P/GACoVkk5fhKW7K0qH9sb1ifMAvPplk3jqAq6OmQkASIq6DNtKZeHRrwtiVm2VMHgiIuPCLEsH4eHhsLe315g2qLLfnEFEhiMt/glUGRlQuhTWaFe6FkZqbLzWZVJjHyH5+m3gtT7vzy/fgmVRFyjMzQEALx88wrPLNzWWe37lFqxKFMvfHSAio6MwMdHbZIyMc6/0ZNSoUUhMTNSYOps4SR0WEb2FSE9H4umLcG4U8F+jQoHCHwfg6bEzWpd5cvQ0CnmVBBT/faVmXc4TL+/HQfx/F6EnR0/DplwpjeWsy3rixV3NG7GIiOj9MFnVgVKphJ2dncbELgBEhi961nKU6N0Z7p+1hY13afjMGwczayvc+//RAaosn4LyE0PV899Z+CvMnRxQaeZoWJf1hEvzBigzoj/uzF/z3zp/WgmHmlXgNaI/CnmVRLEurVCyT2fcnr+2wPePiD4s7LOqG/ZZJSKj92Djn7Ao4oRyYYNfPRTg7GWcaNUHaf9/05VViaIQr33l//LfWJxo2RsVp41CvdO/42XMQ0TP+UVjmKvEf87jVMeBKD8pFGW/+xIvov/FpeGTcf/X7QW+f0T0YTHWpFJfFEIIIXUQUnj58iUsLS21vrZ27Vp88sknsLa2znU9O8zL53doREREpGct069Ktu07/drqbd0ei7bqbd1SkdV32CqVCt9//z3c3d1hY2ODW7duAQDGjBmDpUuXqufr1q1bnhJVIiIiIl3xBivdGOde5WDixIlYsWIFfvzxR1hYWKjbfXx8sGTJEgkjIyIiIiJtZJWs/vLLL1i0aBG6d+8OU1NTdXuVKlVw5coVCSMjIiIiueANVrqRVbIaExODMmXKZGtXqVR8YhURERGRAZLVaAAVK1bEoUOH4OHhodG+adMmVKum/RnhRERERPnJWPuW6ousktWxY8ciJCQEMTExUKlU2LJlC65evYpffvkFf/zxh9ThEREREdEbZJXaf/LJJ9i+fTv27dsHa2trjB07FpcvX8b27dvRpEkTqcMjIiIiOVAo9DcZIVlVVgGgXr162Lt3r9RhEBEREVEeyCpZvXfvHhQKBYoXLw4AOHHiBNauXYuKFSuiX79+EkdHREREcmCsd+3ri6y6AXTr1g0HDhwAAMTGxiIwMBAnTpzA6NGjMWHCBImjIyIiIjngQwF0Y5x7lYMLFy6gRo0aAIANGzbA19cXR48exZo1a7BixQppgyMiIiKibGTVDSA9PR1KpRIAsG/fPrRp0wYA4O3tjQcPHkgZGhEREckEuwHoRlaV1UqVKmHBggU4dOgQ9u7di2bNmgEA7t+/j8KFC0scHRERERG9SVbJ6pQpU7Bw4UI0bNgQXbt2RZUqVQAAv//+u7p7ABEREZE+sc+qbmTVDaBhw4aIj49HUlISHB0d1e39+vVDoUKFJIyMiIiIiLSRVbIKAKamphqJKgB4enpKEwwRERHJDvus6sbok9Xq1asjIiICjo6OqFatGhRvebrD6dOnCzAyIiIiIsqN0Sern3zyiXoEgLZt20obDBEREckeK6u6UQghhNRBfMh2mJeXOgQiIiLSUcv0q5JtO250T72t22XSCr2tWypGX1nV5tSpU7h8+TKAV8NZVatWTeKIiIiIiEgbWSWrcXFx6NKlCw4ePAgHBwcAwNOnT/Hxxx9j3bp1KFKkiLQBEhERkdF72/0zlJ1xDsiVg0GDBuHZs2e4ePEiEhISkJCQgAsXLiApKQmDBw+WOjwiIiKiAjVv3jx4enrC0tISNWvWxIkTJ/K03Lp166BQKArkfiBZJau7du3Czz//jAoVKqjbKlasiHnz5uHPP/+UMDIiIiKSC0N5KMD69esRGhqKsLAwnD59GlWqVEFQUBDi4uLeutzt27fx1VdfoV69eu9zGPJMVsmqSqWCubl5tnZzc3OoVCoJIiIiIiKSxowZM9C3b1/06tULFStWxIIFC1CoUCEsW7Ysx2UyMzPRvXt3jB8/HqVLly6QOGWVrDZq1AhDhgzB/fv31W0xMTEYNmwYGjduLGFkREREJBcKE4XeprxKS0vDqVOnEBgYqG4zMTFBYGAgIiMjc1xuwoQJcHFxQe/evd/rGOhCVjdYzZ07F23atIGnpydKlCgBALh79y58fX2xevVqiaMjIiIiej+pqalITU3VaFMqleox57PEx8cjMzMTrq6uGu2urq64cuWK1nUfPnwYS5cuRVRUVL7GnBtZJaslSpTA6dOnERERoR66qkKFChp/VRARERHplY59S3URHh6O8ePHa7SFhYVh3Lhx77XeZ8+e4bPPPsPixYvh7Oz8XuvSlaySVQDYv38/9u/fj7i4OKhUKpw5cwZr164FgLf20SAiIiLKD/p8gtWoEaMQGhqq0fZmVRUAnJ2dYWpqiocPH2q0P3z4EG5ubtnmv3nzJm7fvo3WrVur27Lu9zEzM8PVq1fh5eWVH7uQjayS1fHjx2PChAnw9/dH0aJFOc4ZERERGRVtX/lrY2FhAT8/P0RERKiHn1KpVIiIiMDAgQOzze/t7Y3z589rtH333Xd49uwZZs+ere5eqQ+ySlYXLFiAFStW4LPPPpM6FCIiIpIphcIw7m8PDQ1FSEgI/P39UaNGDcyaNQvJycno1asXAKBHjx5wd3dHeHg4LC0t4ePjo7F81gOW3mzPb7JKVtPS0lC7dm2pwyAiIiKSXHBwMB49eoSxY8ciNjYWVatWxa5du9Q3Xd29excmeuxfm1cKIYSQOoiCMmLECNjY2GDMmDH5ts4d5uXzbV1ERERUMFqmX5Vs20/Cv9Dbuh1H/ay3dUtFVpXVly9fYtGiRdi3bx8qV66c7QEBM2bMkCgyIiIiItJGVsnquXPnULVqVQDAhQsXNF7jzVZERERUEHR9LKrcySpZPXDggNQhEBEREZEOZJWsEhEREUlNn+OsGiMmq0REREQFyUCGrvpQ8GgRERERkcFiZZWIiIioALEbgG5YWSUiIiIig8XKKhEREVFB4tBVOuHRIiIiIiKDxcoqERERUQHig4h0w8oqERERERksVlaJiIiIChL7rOqEySoRERFRAeLQVbphak9EREREBouVVSIiIqKCxMet6oRHi4iIiIgMFiurRERERAWJfVZ1wsoqERERERksVlaJiIiICpCCfVZ1wqNFRERERAaLldX39MuQPVKHQERERDpqKeXG2WdVJ0xWiYiIiAqQgk+w0gmPFhEREREZLFknq5mZmYiKisKTJ0+kDoWIiIjkQqHQ32SEZJWsDh06FEuXLgXwKlFt0KABqlevjhIlSuDgwYPSBkdERERE2cgqWd20aROqVKkCANi+fTuio6Nx5coVDBs2DKNHj5Y4OiIiIpIFExP9TUbIOPcqB/Hx8XBzcwMA7Ny5E506dUK5cuXw+eef4/z58xJHR0RERERvklWy6urqikuXLiEzMxO7du1CkyZNAAApKSkwNTWVODoiIiKSBfZZ1Ymshq7q1asXOnfujKJFi0KhUCAwMBAAcPz4cXh7e0scHRERERG9SVbJ6rhx4+Dj44N79+6hU6dOUCqVAABTU1OMHDlS4uiIiIhIDjjOqm5klawCQMeOHbO1hYSESBAJERERyZKCyaouZJesRkREICIiAnFxcVCpVBqvLVu2TKKoiIiIiEgbWSWr48ePx4QJE+Dv76/ut0pERERUoEyYf+hCVsnqggULsGLFCnz22WdSh0JEREREeSCrZDUtLQ21a9eWOgwiIiKSMQX7rOpEVkerT58+WLt2rdRhEBEREVEeyaqy+vLlSyxatAj79u1D5cqVYW5urvH6jBkzJIqMiIiIZIN9VnUiq2T13LlzqFq1KgDgwoULGq/xZisiIiIiwyOrZPXAgQNSh0BERERyxz6rOpFVsvq6f//9FwBQvHhxiSMhIiIiWeG3uTqRVWqvUqkwYcIE2Nvbw8PDAx4eHnBwcMD333+f7QEBRERERCQ9WVVWR48ejaVLl+KHH35AnTp1AACHDx/GuHHj8PLlS0yaNEniCImIiMjomciqVvjeZJWsrly5EkuWLEGbNm3UbZUrV4a7uzu++OILJqtEREREBkZWyWpCQgK8vb2ztXt7eyMhIUGCiIiIiEh2eIOVTmR1tKpUqYK5c+dma587dy6qVKkiQURERERE9Dayqqz++OOPaNmyJfbt24eAgAAAQGRkJO7du4edO3dKHB0RERHJAh8KoBNZVVYbNGiAa9euoV27dnj69CmePn2K9u3b4+rVq6hXr57U4RERERHRG2RVWQWAYsWK8UYqIiIikg77rOrE6JPVc+fOwcfHByYmJjh37txb561cuXIBRUVEREREeWH0yWrVqlURGxsLFxcXVK1aFQqFAkKIbPMpFApkZmZKECERERHJCp9gpROjT1ajo6NRpEgR9f+JiIiIJMWHAujE6JNVDw8P9f/v3LmD2rVrw8xMc7czMjJw9OhRjXmJiIiISHqySu0//vhjrYP/JyYm4uOPP5YgIiIiIpIdhUJ/kxGSVbIqhIBCy4l8/PgxrK2tJYiIiIiIiN7G6LsBAED79u0BvLqJqmfPnlAqlerXMjMzce7cOdSuXVuq8IiIiEhOOHSVTmSRrNrb2wN4VVm1tbWFlZWV+jULCwvUqlULffv2lSo8IiIiIsqBLJLV5cuXAwA8PT3x1Vdf8St/IiIiko4BjQYwb948TJ06FbGxsahSpQrmzJmDGjVqaJ138eLF+OWXX3DhwgUAgJ+fHyZPnpzj/PnFcI5WAQgLC2OiSkRERARg/fr1CA0NRVhYGE6fPo0qVaogKCgIcXFxWuc/ePAgunbtigMHDiAyMhIlSpRA06ZNERMTo9c4FULbCPlGpHr16oiIiICjoyOqVaum9QarLKdPn9Z5/cFf3Xmf8IiIiEgC66dJN1zly91L9bZuy6DeeZ63Zs2a+OijjzB37lwAgEqlQokSJTBo0CCMHDky1+UzMzPh6OiIuXPnokePHu8cc26MvhvAJ598or6hqm3bttIGQ0RERKTHG6xSU1ORmpqq0aZUKjVuLgeAtLQ0nDp1CqNGjVK3mZiYIDAwEJGRkXnaVkpKCtLT0+Hk5PT+gb+F0SerYWFhWv9PREREZGzCw8Mxfvx4jbawsDCMGzdOoy0+Ph6ZmZlwdXXVaHd1dcWVK1fytK0RI0agWLFiCAwMfK+Yc2P0ySoRERGRQdHj4P2jRo1CaGioRtubVdX88MMPP2DdunU4ePAgLC0t8339rzP6ZNXR0fGt/VRfp+3pVkREREQfCm1f+Wvj7OwMU1NTPHz4UKP94cOHcHNze+uy06ZNww8//IB9+/ahcuXK7xVvXhh9sjpr1iz1/x8/foyJEyciKCgIAQEBAIDIyEjs3r0bY8aMkShCIiIikhUDGLrKwsICfn5+iIiIUN/To1KpEBERgYEDB+a43I8//ohJkyZh9+7d8Pf3L5BYjT5ZDQkJUf+/Q4cOmDBhgsZJGDx4MObOnYt9+/Zh2LBhUoRIREREVOBCQ0MREhICf39/1KhRA7NmzUJycjJ69eoFAOjRowfc3d0RHh4OAJgyZQrGjh2LtWvXwtPTE7GxsQAAGxsb2NjY6C1Oo09WX7d7925MmTIlW3uzZs3yNEQDERER0fsSeuyzqovg4GA8evQIY8eORWxsLKpWrYpdu3apb7q6e/cuTF6rAs+fPx9paWno2LGjxnq03cCVn2SVrBYuXBjbtm3D8OHDNdq3bduGwoULSxQVERERkTQGDhyY49f+Bw8e1Pj59u3b+g9IC1klq+PHj0efPn1w8OBB1KxZEwBw/Phx7Nq1C4sXL5Y4OiIiIpIFPY6zaoxklaz27NkTFSpUwE8//YQtW7YAACpUqIDDhw+rk1ciIiIivWKyqhNZJavAq0eLrVmzRuowiIiIiCgPZJesqlQq3LhxA3FxcVCpVBqv1a9fX6KoiIiISC4M5QarD4WsktVjx46hW7duuHPnDoQQGq8pFApkZmZKFBkRERERaSOrZPV///sf/P39sWPHDhQtWjTPT7YiIuPQKcgejWvawNrKBFejU7FkSwJi4zNynL9jU3t0auqg0RYTl47QH++rf7a3NcGnrRxRuawVLC0VeBCXji0RSThxPkVfu0FEHzr2WdWJrJLV69evY9OmTShTpozUoRBRAWvzsR2a17XDz+viEZeQgc5BDvi2rwuGT72P9JzzVdyLTcP3C/97HKHqjS9gvuziDGsrE/y4PA7PklWoW80awz5zxqhZD3D7frqe9oaISD5kldrXrFkTN27ckDoMIpJAi3q22LIvEf9cfIG7D9Ixb108HO3M8JFPobcul5kJJD5TqadnKZp93ct7KrHr8DPcvJeGuIQMbIlIRPILFUoXz/3Z3EQkUwqF/iYjJKvK6qBBgzB8+HDExsbC19cX5ubmGq9XrlxZosiISJ9cnMzgaGeG89dfqNtevBS4cTcVZT2UOBqV81f2bkXMMH+MO9IzBK7fScPanU/w+Ol/5dWrt1MRULUQTl9+gZSXKgRUKQRzcwUu3nyp130iIpILWSWrHTp0AAB8/vnn6jaFQgEhRJ5usEpNTUVqaqpGW2ZGKkzNWEEhMmQOtqYAXlVIX5f4PFP9mjY37qZi/rrHuP8oHY62pujQ1B7jv3TDV9Pu42Xqq5s0Z616hKGfFcGy70sgI1MgLU1g+opHePj4LX0LiEjeTGT1xfZ7k1WyGh0d/V7Lh4eHY/z48RptFQOGwKf2sPdaLxHlr7rVrNG3o5P65x+Wxr3TeqKu/FcdvfsgHdfvpmLe6OIIqGKNAyeeAwCCmzmgkJUJvl/wEM+SM/GRTyEM/awIwubF4l4s+6wSUXYcuko3skpWPTw83mv5UaNGITQ0VKPt87Gx77VOIsp//1xKwfUZ/30LYm726heDva0Jnj777xsUextT3L6fluf1prwUeBCfDrfCrz46XQuboVldOwyfeh//PnyVmN55kAjvUkoE1bHFks0J+bE7RESyJqtkFQBu3ryJWbNm4fLlywCAihUrYsiQIfDy8sp1WaVSCaVS8yt/U7MneomTiN7dy1SBl6maX8M/ScqAb1lL3Pn/O/StlAqUKanE3shneV6v0kIB18Jm+Pv/E14L81dJ8JvjNquE0d7nQET5gUNX6URWR2v37t2oWLEiTpw4gcqVK6Ny5co4fvw4KlWqhL1790odHhHp0c5Dz9CusT38KlqhhJs5vuzqjCdJGTh54b+bq77r74KgOrbqnz9t5YAKpZUo4miKch5KfNWzCFQq4MiZZADA/bh0PHiUjr4dC8OrhAVcC5uhVQNb+Ja11FgvERG9O1lVVkeOHIlhw4bhhx9+yNY+YsQINGnSRKLIiEjffj+QBKWFAv06FkYhKxNcjX6J8MVxGmOsuhY2h631f90HCtubYXB3Z9hamyLpeSauRqfiuzmxeJb86katTNWr/rDdWjjgm89dYKlU4GF8Bn5e91ijvysR0esEK6s6UYg3v78yYpaWljh//jzKli2r0X7t2jVUrlwZL1/q/ssl+Ks7+RUeERERFZD1097vPpb38fzY73pbt02tNnpbt1RkldoXKVIEUVFR2dqjoqLg4uJS8AERERGR/PChADqRVTeAvn37ol+/frh16xZq164NADhy5AimTJmS7S5/IiIiIpKerJLVMWPGwNbWFtOnT8eoUaMAAMWKFcO4ceMwePBgiaMjIiIiOWCfVd3IKllVKBQYNmwYhg0bhmfPXg1XY2trm8tSRERERPnISL+u1xdZJavR0dHIyMhA2bJlNZLU69evw9zcHJ6entIFR0RERETZyKoO3bNnTxw9ejRb+/Hjx9GzZ8+CD4iIiIjkR2Giv8kIGede5eDMmTOoU6dOtvZatWppHSWAiIiIiKQlq24ACoVC3Vf1dYmJicjMzNSyBBEREVH+EuyzqhNZVVbr16+P8PBwjcQ0MzMT4eHhqFu3roSREREREZE2sqqsTpkyBfXr10f58uVRr149AMChQ4eQlJSE/fv3SxwdERERyYKR9i3VF1kdrYoVK+LcuXPo3Lkz4uLi8OzZM/To0QNXrlyBj4+P1OERERER0RtkVVkFXj0EYPLkyW+d54svvsCECRPg7OxcQFERERGRXAiwz6ouZFVZzavVq1cjKSlJ6jCIiIjICAmFid4mY2Sce/WehBBSh0BEREREkGE3ACIiIiJJGWkFVF94tIiIiIjIYLGySkRERFSA+FAA3bCySkREREQGi5VVLT799FPY2dlJHQYREREZIWO9a19fZJWsnjt3Tmu7QqGApaUlSpYsCaVSifnz5xdwZERERESkjayS1apVq0Lxln4i5ubmCA4OxsKFC2FpaVmAkREREZFssM+qTmRVh/7tt99QtmxZLFq0CFFRUYiKisKiRYtQvnx5rF27FkuXLsX+/fvx3XffSR0qERERGSk+FEA3sqqsTpo0CbNnz0ZQUJC6zdfXF8WLF8eYMWNw4sQJWFtbY/jw4Zg2bZqEkRIRERERILNk9fz58/Dw8MjW7uHhgfPnzwN41VXgwYMHBR0aERERyYQAuwHowjjrxTnw9vbGDz/8gLS0NHVbeno6fvjhB3h7ewMAYmJi4OrqKlWIRERERPQaWVVW582bhzZt2qB48eKoXLkygFfV1szMTPzxxx8AgFu3buGLL76QMkwiIiIyYsbat1RfZJWs1q5dG9HR0VizZg2uXbsGAOjUqRO6desGW1tbAMBnn30mZYhERERE9BpZJasAYGtri//9739Sh0FERERyxaGrdCK7ZPX69es4cOAA4uLioFKpNF4bO3asRFERERERkTaySlYXL16MAQMGwNnZGW5ubhoPCFAoFExWiYiISO+EvO5vf2+ySlYnTpyISZMmYcSIEVKHQkRERDIl2A1AJ7JK7Z88eYJOnTpJHQYRERER5ZGsktVOnTphz549UodBREREMsbHrepGVt0AypQpgzFjxuDYsWPw9fWFubm5xuuDBw+WKDIiIiIi0kYhhBBSB1FQSpUqleNrCoUCt27d0nmdwV/deZ+QiIiISALrp2V//HpBeXAlSm/rLupdVW/rloqsKqvR0dFSh0BEREREOpBVskpEREQkNWPtW6ovRp+shoaG4vvvv4e1tTVCQ0PfOu+MGTMKKCoiIiIiygujT1bPnDmD9PR09f9zouCYZ0RERFQAOM6qbow+WT1w4IDW/xMRERGR4ZNVp4nVq1cjJSVF6jCIiIhIxgQUept0NW/ePHh6esLS0hI1a9bEiRMn3jr/xo0b4e3tDUtLS/j6+mLnzp3vehjyTFbJ6rBhw+Di4oJu3bph586dyMzMlDokIiIikhlDeSjA+vXrERoairCwMJw+fRpVqlRBUFAQ4uLitM5/9OhRdO3aFb1798aZM2fQtm1btG3bFhcuXMiPw5IjWY2zmpGRgV27duHXX3/Ftm3bUKhQIXTq1Andu3dH7dq132mdHGeViIjowyPlOKv3rl/S27pLlK2Y53lr1qyJjz76CHPnzgUAqFQqlChRAoMGDcLIkSOzzR8cHIzk5GT88ccf6rZatWqhatWqWLBgwfsHnwNZVVbNzMzQqlUrrFmzBnFxcZg5cyZu376Njz/+GF5eXlKHR0RERDKgz24AqampSEpK0phSU1OzxZCWloZTp04hMDBQ3WZiYoLAwEBERkZqjTsyMlJjfgAICgrKcf78Iqtk9XWFChVCUFAQmjdvjrJly+L27dtSh0RERET0XsLDw2Fvb68xhYeHZ5svPj4emZmZcHV11Wh3dXVFbGys1nXHxsbqNH9+MfrRAN6UkpKC3377DWvWrEFERARKlCiBrl27YtOmTVKHRkRERDKgz4cCjBo1Ktu48kqlUm/bKwiySla7dOmCP/74A4UKFULnzp0xZswYBAQESB0WERERUb5QKpV5Sk6dnZ1hamqKhw8farQ/fPgQbm5uWpdxc3PTaf78IqtuAKamptiwYQMePHiAuXPnMlElIiKiAmcIQ1dZWFjAz88PERER6jaVSoWIiIgc86OAgACN+QFg7969es+nZFVZXbNmjdQhEBERERmE0NBQhISEwN/fHzVq1MCsWbOQnJyMXr16AQB69OgBd3d3dZ/XIUOGoEGDBpg+fTpatmyJdevW4Z9//sGiRYv0GqfRJ6s//fQT+vXrB0tLS/z0009vnXfw4MEFFBURERHJlT77rOoiODgYjx49wtixYxEbG4uqVati165d6puo7t69CxOT/2KtXbs21q5di++++w7ffvstypYti61bt8LHx0evcRr9OKulSpXCP//8g8KFC6NUqVI5zqdQKHDr1i2d189xVomIiD48Uo6zeuvmTb2tu7QRDsVp9JXV6Ohorf8nIiIiIsNn9Mnqm8M35EShUGD69Ok6rz/m6m2dlyEiIiKpSVdZFYq83whFMkhWz5w5k6f5FLxwiIiIiAyO0SerBw4ckDoEIiIiIjUhWCDThWHcjkZEREREpIXRV1aJiIiIDIlgrVAnPFpEREREZLBYWSUiIiIqQLo8FpWYrBIREREVKCarumE3ACIiIiIyWKysEhERERUgVlZ1w8oqERERERksVlaJiIiIChArq7phZZWIiIiIDBYrq0REREQFiI9b1Q0rq0RERERksFhZJSIiIipA7LOqGyarRERERAWIyapu2A2AiIiIiAwWK6tEREREBYiVVd3IurKamZmJqKgoPHnyROpQiIiIiEgLWSWrQ4cOxdKlSwG8SlQbNGiA6tWro0SJEjh48KC0wREREZEsCKHQ22SMZJWsbtq0CVWqVAEAbN++HdHR0bhy5QqGDRuG0aNHSxwdEREREb1JVslqfHw83NzcAAA7d+5Ep06dUK5cOXz++ec4f/68xNERERGRHKig0NtkjGSVrLq6uuLSpUvIzMzErl270KRJEwBASkoKTE1NJY6OiIiIiN4kq9EAevXqhc6dO6No0aJQKBQIDAwEABw/fhze3t4SR0dERERywNEAdCOrZHXcuHHw8fHBvXv30KlTJyiVSgCAqakpRo4cKXF0REREJAfGeiOUvsgqWQWAjh07ZmsLCQmRIBIiIiIiyo3RJ6s//fRTnucdPHiwHiMhIiIiYjcAXRl9sjpz5kyNnx89eoSUlBQ4ODgAAJ4+fYpChQrBxcWFySoRERGRgTH60QCio6PV06RJk1C1alVcvnwZCQkJSEhIwOXLl1G9enV8//33UodKREREMsCHAuhGIYQQUgdRULy8vLBp0yZUq1ZNo/3UqVPo2LEjoqOjdV5n3dZ/5Vd4REREVEAOb28g2bb/uaq/x7z7l3fU27qlYvTdAF734MEDZGRkZGvPzMzEw4cPJYiIiIiI5IZ9VnVj9N0AXte4cWP0798fp0+fVredOnUKAwYMUI+5SkRERESGQ1bJ6rJly+Dm5gZ/f38olUoolUrUqFEDrq6uWLJkidThERERkQywz6puZNUNoEiRIti5cyeuXbuGK1euAAC8vb1Rrlw5iSMjIiIiuVBJHcAHRlbJahZPT08IIeDl5QUzM1keAiIiIqIPgqy6AaSkpKB3794oVKgQKlWqhLt37wIABg0ahB9++EHi6IiIiEgO2A1AN7JKVkeNGoWzZ8/i4MGDsLS0VLcHBgZi/fr1EkZGRERERNrI6jvwrVu3Yv369ahVqxYUiv/++qhUqRJu3rwpYWREREQkFxy6Sjeyqqw+evQILi4u2dqTk5M1klciIiIiMgyySlb9/f2xY8cO9c9ZCeqSJUsQEBAgVVhEREQkI+yzqhtZdQOYPHkymjdvjkuXLiEjIwOzZ8/GpUuXcPToUfz1Fx+bSkRERGRoZFVZrVu3LqKiopCRkQFfX1/s2bMHLi4uiIyMhJ+fn9ThERERkQwIKPQ2GSNZVVYBwMvLC4sXL5Y6DCIiIpIplZA6gg+LrCqrAHDz5k1899136NatG+Li4gAAf/75Jy5evChxZERERET0Jlklq3/99Rd8fX1x/PhxbN68Gc+fPwcAnD17FmFhYRJHR0RERHLAbgC6kVWyOnLkSEycOBF79+6FhYWFur1Ro0Y4duyYhJERERERkTay6rN6/vx5rF27Nlu7i4sL4uPjJYiIiIiI5MZYh5jSF1lVVh0cHPDgwYNs7WfOnIG7u7sEERERERHR28gqWe3SpQtGjBiB2NhYKBQKqFQqHDlyBF999RV69OghdXhEREQkA0LobzJGskpWJ0+eDG9vb5QoUQLPnz9HxYoVUb9+fdSuXRvfffed1OERERER0Rtk1WfVwsICixcvxpgxY3DhwgU8f/4c1apVQ9myZaUOjYiIiGRCZaR37euLrJLVLCVLlkTJkiWlDoOICljv7p5o3dQNttZmOH85CdN+vo5/H7zIcf6NS2qiqKtltvYtO2IwY8ENAECboKJo0sAF5bxsYF3IDM26HMbz5Ey97QMRffh4g5VuZJWsZmZmYsWKFYiIiEBcXBxUKpXG6/v375coMiLSt+4dSqBjK3dMmnUFDx6+RJ/unpgxwReffnESaenaO3r1DT0Nk9c6S5X2sMasiVVw4PAjdZtSaYLjpxNw/HQC/hdSWt+7QUQkO7JKVocMGYIVK1agZcuW8PHxgULBv2yI5KJTG3f8suEODh9/DACYOPMKfl9VG/VqOSPi0COtyzxNStf4+dOOhfHv/Rc4cyFR3bbx9xgAQDUfez1FTkTGxlhvhNIXWSWr69atw4YNG9CiRQupQyGiAlTM1RLOTkqcjHqibktOycSla0nw8bbLMVl9nZmZAk0/dsX6rf/qM1QiIoOUkJCAQYMGYfv27TAxMUGHDh0we/Zs2NjY5Dh/WFgY9uzZg7t376JIkSJo27Ytvv/+e9jb6/bHvaySVQsLC5QpU0bqMIiogDk5vnpi3ZOnmpXSJ0/T1K/lpn4tZ9hYm2FnRGy+x0dE8vIhPha1e/fuePDgAfbu3Yv09HT06tUL/fr10/qwJQC4f/8+7t+/j2nTpqFixYq4c+cO/ve//+H+/fvYtGmTTtuWVbI6fPhwzJ49G3Pnzn2nLgCpqalITU3VaFNlpsHENG+/7IioYDRp4IKvvyyn/vmbCeffe50tm7jh+KkEPE5Ie+91ERF9SC5fvoxdu3bh5MmT8Pf3BwDMmTMHLVq0wLRp01CsWLFsy/j4+GDz5s3qn728vDBp0iR8+umnyMjIgJlZ3lNQWSWrhw8fxoEDB/Dnn3+iUqVKMDc313h9y5Ytb10+PDwc48eP12grUTYEJcv3yvdYiejdHT7xGJeu/aP+2cL81V1Sjg7mePzkv2TT0cECN249z3V9rkWU8K/iiNHhF/M/WCKSHdUH1mc1MjISDg4O6kQVAAIDA2FiYoLjx4+jXbt2eVpPYmIi7OzsdEpUAZklqw4ODnk+oNqMGjUKoaGhGm3Nuhx/37CIKJ+9eJGJmBeaw0fFJ6TCv4ojbkQnAwAKWZmiYjk7bN15P9f1tQx0w5PENESefKyXeImI8ou2b4GVSiWUSuU7rzM2NhYuLi4abWZmZnByckJsbN66RsXHx+P7779Hv379dN6+rJLV5cuX52m+I0eOwN/fP9uJ1Xay2QWA6MOw8fcYhASXxL37L14NXfWpJx4npOLQsXj1PLMmVsbfkfHYsuO/BFahAFoEumHX/ofIVGVfr5ODOZwcLeBezAoAUNrDBikvMvDwUSqePc/Q+34R0YdHn+OshodPzvYtcFhYGMaNG5dt3pEjR2LKlClvXd/ly5ffO6akpCS0bNkSFStW1BpHbmSVrOZV8+bNERUVhdKlOWYikbFYs/keLC1N8c3AcrCxNsP5S4kYHnZeY4xVdzcrONhpdg/yr+oINxdL7NirvXrQtnkxfN7NU/3zz1OqAgAmzbqCPyMe5vt+ENGHT59DV2n7Fjinqurw4cPRs2fPt66vdOnScHNzQ1xcnEZ7RkYGEhIS4Obm9tblnz17hmbNmsHW1ha//fZbti6YeaEQgqN9vcnW1hZnz57NU7Jat/VfBRARERER5afD2xtItu2dp9Nzn+kdtaiuezKYm8uXL6NixYr4559/4OfnBwDYs2cPmjVrhn///VfrDVbAq4pqUFAQlEoldu7ciUKFCr3T9k1yn4WIiIiI8osKCr1N+lChQgU0a9YMffv2xYkTJ3DkyBEMHDgQXbp0USeqMTEx8Pb2xokTJwC8SlSbNm2K5ORkLF26FElJSYiNjUVsbCwyM3V7JDW7ARARERHRW61ZswYDBw5E48aN1Q8F+Omnn9Svp6en4+rVq0hJSQEAnD59GsePv7oJ/c0x7qOjo+Hp6ZnnbTNZJSIiIipAH2IHTCcnpxwfAAAAnp6eeL1nacOGDZFfPU3ZDUCLd3lgABERERHlP1ZWteA9Z0RERKQv+hy6yhjJKlmNjo5GRkYGypYtq9F+/fp1mJubq/tPPHv2TILoiIiIiOhNsuoG0LNnTxw9ejRb+/Hjx3MdZ4yIiIgoP6iE/iZjJKtk9cyZM6hTp0629lq1aiEqKqrgAyIiIiKit5JVNwCFQqH1K/7ExESdx/wiIiIiehe8NUY3sqqs1q9fH+Hh4RqJaWZmJsLDw1G3bl0JIyMiIiK5EFDobTJGsqqsTpkyBfXr10f58uVRr149AMChQ4eQlJSE/fv3SxwdEREREb1JVpXVihUr4ty5c+jcuTPi4uLw7Nkz9OjRA1euXIGPj4/U4REREZEM8AYr3ciqsgoAxYoVw+TJk6UOg4iIiIjywOiT1XPnzsHHxwcmJiY4d+7cW+etXLlyAUVFREREcsUbrHRj9Mlq1apVERsbCxcXF1StWhUKhULrE6oUCgVHBCAiIiIyMEafrEZHR6NIkSLq/xMRERFJiZVV3Rh9surh4aH1/0RERERk+GQ1GsDKlSuxY8cO9c/ffPMNHBwcULt2bdy5c0fCyIiIiEguVEKht8kYySpZnTx5MqysrAAAkZGRmDt3Ln788Uc4Oztj2LBhEkdHREREciCE/iZjZPTdAF537949lClTBgCwdetWdOzYEf369UOdOnXQsGFDaYMjIiIiomxkVVm1sbHB48ePAQB79uxBkyZNAACWlpZ48eKFlKERERGRTLCyqhtZVVabNGmCPn36oFq1arh27RpatGgBALh48SI8PT2lDY6IiIiIspFVZXXevHkICAjAo0ePsHnzZhQuXBgAcOrUKXTt2lXi6IiIiEgO+LhV3SiEthHyKc/qtv5L6hCIiIhIR4e3N5Bs26sP6S/1+rSe8Y0IIKtuAFlSUlJw9+5dpKWlabTzcatERESkb8JIh5jSF1klq48ePULPnj2xa9cura/zcatEREREhkVWfVaHDh2KxMREHD9+HFZWVti1axdWrlyJsmXL4vfff5c6PCIiIpIBjgagG1lVVvfv349t27bB398fJiYm8PDwQJMmTWBnZ4fw8HC0bNlS6hCJiIjIyBnrjVD6IqvKanJyMlxcXAAAjo6OePToEQDA19cXp0+fljI0IiIiItJCVslq+fLlcfXqVQBAlSpVsHDhQsTExGDBggUoWrSoxNERERGRHLAbgG5k1Q1gyJAhePDgAQAgLCwMzZo1w+rVq2FhYYGVK1dKHB0RERERvUlWyeqnn36q/n/16tVx584dXLlyBSVLloSzs7OEkREREZFcGGsFVF9k1Q0AAJYuXQofHx9YWlrC0dERPXr0wNatW6UOi4iIiIi0kFVldezYsZgxYwYGDRqEgIAAAEBkZCSGDRuGu3fvYsKECRJHSERERMaOowHoRlbJ6vz587F48WJ07dpV3damTRtUrlwZgwYNYrJKREREZGBklaymp6fD398/W7ufnx8yMjIkiIiIiIjkhn1WdSOrPqufffYZ5s+fn6190aJF6N69uwQRERERkdyoVPqbjJHRV1ZDQ0PV/1coFFiyZAn27NmDWrVqAQCOHz+Ou3fvokePHlKFSEREREQ5MPpk9cyZMxo/+/n5AQBu3rwJAHB2doazszMuXrxY4LERERGR/LAbgG6MPlk9cOCA1CEQERER0Tsy+mSViIiIyJCwsqobWd1gRUREREQfFlZWiYiIiAoQHwqgG1ZWiYiIiMhgsbJKREREVICEXjutKvS4bmkwWSUiIiIqQLzBSjfsBkBEREREBouVVSIiIqICZKyPRdUXVlaJiIiIyGCxskpERERUgNhnVTesrBIRERGRwWJllYiIiKgA8aEAumFllYiIiIgMFiurRERERAWIfVZ1w2SViIiIqAAJvfYDML4nWLEbABEREREZLFZWiYiIiAoQb7DSDSurRERERGSwWFklIiIiKkC8wUo3rKwSERERkcFiskpERERUgFQqobdJXxISEtC9e3fY2dnBwcEBvXv3xvPnz/O0rBACzZs3h0KhwNatW3XeNpNVIiIiInqr7t274+LFi9i7dy/++OMP/P333+jXr1+elp01axYUincfUot9VomIiIgK0IfWZ/Xy5cvYtWsXTp48CX9/fwDAnDlz0KJFC0ybNg3FihXLcdmoqChMnz4d//zzD4oWLfpO22dllYiIiKgACaG/KTU1FUlJSRpTamrqe8UbGRkJBwcHdaIKAIGBgTAxMcHx48dzXC4lJQXdunXDvHnz4Obm9s7bZ7JKREREZCTCw8Nhb2+vMYWHh7/XOmNjY+Hi4qLRZmZmBicnJ8TGxua43LBhw1C7dm188skn77V9dgMgIiIiKkAqPfYDGDVqFEJDQzXalEql1nlHjhyJKVOmvHV9ly9ffqc4fv/9d+zfvx9nzpx5p+Vfx2SViIiIyEgolcock9M3DR8+HD179nzrPKVLl4abmxvi4uI02jMyMpCQkJDj1/v79+/HzZs34eDgoNHeoUMH1KtXDwcPHsxTjACTVSIiIqICJVRSR/BKkSJFUKRIkVznCwgIwNOnT3Hq1Cn4+fkBeJWMqlQq1KxZU+syI0eORJ8+fTTafH19MXPmTLRu3VqnOJmsEhEREVGOKlSogGbNmqFv375YsGAB0tPTMXDgQHTp0kU9EkBMTAwaN26MX375BTVq1ICbm5vWqmvJkiVRqlQpnbbPG6yIiIiICpAQQm+TvqxZswbe3t5o3LgxWrRogbp162LRokXq19PT03H16lWkpKTk+7ZZWSUiIiKit3JycsLatWtzfN3T0zPXZPldk2kmq0REREQFSGUgfVY/FExWiYiIiAqQPr+uN0bss0pEREREBouVVSIiIqICpGJhVSesrBIRERGRwWJllYiIiKgACZZWdcLKKhEREREZLFZWiYiIiAoQBwPQDSurRERERGSwWFklIiIiKkAq9lnVCSurRERERGSwWFklIiIiKkB8gpVumKwSERERFSChkjqCDwu7ARARERGRwWJllYiIiKgAqdgNQCesrBIRERGRwWJllYiIiKgA8QYr3bCySkREREQGi5VVIiIiogLEhwLohpVVIiIiIjJYskpWly9fjpSUFKnDICIiIhkTQn+TMZJVsjpy5Ei4ubmhd+/eOHr0qNThEBERkQwJldDbZIxklazGxMRg5cqViI+PR8OGDeHt7Y0pU6YgNjZW6tCIiIiISAtZJatmZmZo164dtm3bhnv37qFv375Ys2YNSpYsiTZt2mDbtm1QqfgMNCIiItIflRB6m4yRrJLV17m6uqJu3boICAiAiYkJzp8/j5CQEHh5eeHgwYNSh0dEREREkGGy+vDhQ0ybNg2VKlVCw4YNkZSUhD/++APR0dGIiYlB586dERISInWYREREZKTYZ1U3skpWW7dujRIlSmDFihXo27cvYmJi8OuvvyIwMBAAYG1tjeHDh+PevXsSR0pEREREgMweCuDi4oK//voLAQEBOc5TpEgRREdHF2BUREREJCfGWgHVF1lVVhs0aIDq1atna09LS8Mvv/wCAFAoFPDw8Cjo0IiIiIhIC1klq7169UJiYmK29mfPnqFXr14SRERERERyoxL6m4yRrLoBCCGgUCiytf/777+wt7eXICIiIiKSG3YD0I0sktVq1apBoVBAoVCgcePGMDP7b7czMzMRHR2NZs2aSRghEREREWkji2S1bdu2AICoqCgEBQXBxsZG/ZqFhQU8PT3RoUMHiaIjIiIiORFGOni/vsgiWQ0LCwMAeHp6Ijg4GJaWlhJHRERERER5IYtkNUtISAiePn2K1atX4+bNm/j666/h5OSE06dPw9XVFe7u7lKHSER61Lu7J1o3dYOttRnOX07CtJ+v498HL3Kcf+OSmijqmv2P2y07YjBjwQ0AQJugomjSwAXlvGxgXcgMzbocxvPkTL3tAxF9+FTss6oTWSWr586dQ2BgIOzt7XH79m307dsXTk5O2LJlC+7evasevoqIjE/3DiXQsZU7Js26ggcPX6JPd0/MmOCLT784ibR07b84+oaehslrY6aU9rDGrIlVcODwI3WbUmmC46cTcPx0Av4XUlrfu0FEJDuyGrpq2LBh6NmzJ65fv67RFaBFixb4+++/JYyMiPStUxt3/LLhDg4ff4ybt5MxceYVFHZSol4t5xyXeZqUjoSn/021PyqMf++/wJkL/w2Bt/H3GKzedA8XryQVxG4QkREQQuhtMkaySlb/+ecf9O/fP1u7u7s7YmNjJYiIiApCMVdLODspcTLqibotOSUTl64lwcfbLk/rMDNToOnHrtixj58VREQFSVbdAJRKJZKSslc/rl27hiJFiuS6fGpqKlJTUzXaVJlpMDG1yLcYiSj/OTm+eo8+eZqu0f7kaZr6tdzUr+UMG2sz7IxgskpE74fjrOpGVpXVNm3aYMKECUhPf/ULS6FQ4O7duxgxYkSehq4KDw+Hvb29xvTvjTX6DpuIdNSkgQv2bKirnszMsj8MRFctm7jh+KkEPE5Iy4cIiUjOhErobTJGskpWp0+fjufPn8PFxQUvXrxAgwYNUKZMGdja2mLSpEm5Lj9q1CgkJiZqTMXLdC+AyIlIF4dPPEavIf+op8SkV3+gOjqYa8zn6GCBhCe5J5+uRZTwr+KI7Xse6CVeIiLKmay6Adjb22Pv3r04cuQIzp49i+fPn6N69eoIDAzM0/JKpRJKpVKjjV0AiAzPixeZiHmhOXxUfEIq/Ks44kZ0MgCgkJUpKpazw9ad93NdX8tANzxJTEPkycd6iZeI5EVlpDdC6YvRJ6tOTk64du0anJ2d8fnnn2P27NmoU6cO6tSpI3VoRFSANv4eg5Dgkrh3/8Wroas+9cTjhFQcOhavnmfWxMr4OzIeW3b8l8AqFECLQDfs2v8Qmars63VyMIeTowXci1kBAEp72CDlRQYePkrFs+cZet8vIiJjZ/TJalpaGpKSkuDs7IyVK1diypQpsLW1lTosIipgazbfg6WlKb4ZWA421mY4fykRw8POa4yx6u5mBQc7za4C/lUd4eZiiR17td9Y1bZ5MXzezVP9889TqgIAJs26gj8jHub7fhDRh89Y+5bqi0IY66Bc/69JkyZ4+PAh/Pz8sHLlSgQHB8PKykrrvMuWLdN5/XVb//W+IRIREVEBO7y9gWTbDhmrv1FFVk5w09u6pWL0ldXVq1dj5syZuHnzJhQKBRITE/Hy5UupwyIiIiKZMvI6Yb4z+mTV1dUVP/zwAwCgVKlSWLVqFQoXLixxVERERESUF0afrL4uOjpa6hCIiIhI5lTss6oTWSWrAJCcnIy//voLd+/eRVqa5viKgwcPligqIiIikgveYKUbWSWrZ86cQYsWLZCSkoLk5GQ4OTkhPj4ehQoVgouLC5NVIiIiIgMjqydYDRs2DK1bt8aTJ09gZWWFY8eO4c6dO/Dz88O0adOkDo+IiIhkQAiht8kYySpZjYqKwvDhw2FiYgJTU1OkpqaiRIkS+PHHH/Htt99KHR4RERERvUFWyaq5uTlMTF7tsouLC+7evQvg1WNY7927J2VoREREJBNCpdLbZIxk1We1WrVqOHnyJMqWLYsGDRpg7NixiI+Px6pVq+Dj4yN1eERERET0BllVVidPnoyiRYsCACZNmgRHR0cMGDAA8fHxWLhwocTRERERkRyoVEJvkzGSVWW1UqVK6s7HLi4uWLBgAX777TdUrFgRVatWlTY4IiIiIspGVpXVTz75BL/88gsA4OnTp6hVqxZmzJiBtm3bYv78+RJHR0RERHLwIY4GkJCQgO7du8POzg4ODg7o3bs3nj9/nutykZGRaNSoEaytrWFnZ4f69evjxYsXOm1bVsnq6dOnUa9ePQDApk2b4Orqijt37uCXX37BTz/9JHF0REREJAdCJfQ26Uv37t1x8eJF7N27F3/88Qf+/vtv9OvX763LREZGolmzZmjatClOnDiBkydPYuDAgeqb3fNKVt0AUlJSYGtrCwDYs2cP2rdvDxMTE9SqVQt37tyRODoiIiIiw3P58mXs2rULJ0+ehL+/PwBgzpw5aNGiBaZNm4ZixYppXW7YsGEYPHgwRo4cqW4rX768ztuXVWW1TJky2Lp1K+7du4fdu3ejadOmAIC4uDjY2dlJHB0RERHJgT4rq6mpqUhKStKYUlNT3yveyMhIODg4qBNVAAgMDISJiQmOHz+udZm4uDgcP34cLi4uqF27NlxdXdGgQQMcPnxY5+3LKlkdO3YsvvrqK3h6eqJmzZoICAgA8KrKWq1aNYmjIyIiIno/4eHhsLe315jCw8Pfa52xsbFwcXHRaDMzM4OTkxNiY2O1LnPr1i0AwLhx49C3b1/s2rUL1atXR+PGjXH9+nWdti+rbgAdO3ZE3bp18eDBA1SpUkXd3rhxY7Rr107CyIiIiEguVEJ/g/ePGjUKoaGhGm1KpVLrvCNHjsSUKVPeur7Lly+/Uxyq/39AQf/+/dGrVy8Ar8a7j4iIwLJly3RKoGWVrAKAm5sb3NzcNNpq1KghUTRERERE+UepVOaYnL5p+PDh6Nmz51vnKV26NNzc3BAXF6fRnpGRgYSEhGw5VZasce0rVqyo0V6hQgX1E0TzSnbJKhEREZGU9HnXvi6KFCmCIkWK5DpfQEAAnj59ilOnTsHPzw8AsH//fqhUKtSsWVPrMp6enihWrBiuXr2q0X7t2jU0b95cpzhl1WeViIiIiHRToUIFNGvWDH379sWJEydw5MgRDBw4EF26dFGPBBATEwNvb2+cOHECAKBQKPD111/jp59+wqZNm3Djxg2MGTMGV65cQe/evXXaPiurRERERAXIUCqrulizZg0GDhyIxo0bw8TEBB06dNAYoz49PR1Xr15FSkqKum3o0KF4+fIlhg0bhoSEBFSpUgV79+6Fl5eXTttWCH0+7kAG6rb+S+oQiIiISEeHtzeQbNufDLia+0zvaNt83ccxNXTsBkBEREREBovdAIiIiIgKUNawTpQ3rKwSERERkcFiZZWIiIioAH2IN1hJiZVVIiIiIjJYrKwSERERFSChx8etGiNWVomIiIjIYLGySkRERFSA2GdVN0xWiYiIiAoQk1XdsBsAERERERksVlaJiIiICpCKN1jphJVVIiIiIjJYrKwSERERFSD2WdUNK6tEREREZLBYWSUiIiIqQELFPqu6YGWViIiIiAwWK6tEREREBYh9VnXDyioRERERGSxWVomIiIgKkOA4qzphskpERERUgFTsBqATdgMgIiIiIoPFyioRERFRAeLQVbphZZWIiIiIDBYrq0REREQFiENX6YaVVSIiIiIyWKysEhERERUgDl2lG1ZWiYiIiMhgsbJKREREVIDYZ1U3TFaJiIiIChCHrtINuwEQERERkcFSCCFYiyYiekNqairCw8MxatQoKJVKqcMhIpItJqtERFokJSXB3t4eiYmJsLOzkzocIiLZYjcAIiIiIjJYTFaJiIiIyGAxWSUiIiIig8VklYhIC6VSibCwMN5cRUQkMd5gRUREREQGi5VVIiIiIjJYTFaJiIiIyGAxWSUiIiIig8VklYjoHXl6emLWrFkFus2GDRti6NChBbpNIiIpMVklIoPUs2dPtG3bVuowiIhIYkxWieiDlp6eLnUIRESkR0xWiUhSmzZtgq+vL6ysrFC4cGEEBgbi66+/xsqVK7Ft2zYoFAooFAocPHgQt2/fhkKhwPr169GgQQNYWlpizZo1AIAlS5agQoUKsLS0hLe3N37++Wf1NtLS0jBw4EAULVoUlpaW8PDwQHh4OABACIFx48ahZMmSUCqVKFasGAYPHvxO+/L06VP06dMHRYoUgZ2dHRo1aoSzZ88CAK5duwaFQoErV65oLDNz5kx4eXmpf75w4QKaN28OGxsbuLq64rPPPkN8fPw7xUNEZAzMpA6AiOTrwYMH6Nq1K3788Ue0a9cOz549w6FDh9CjRw/cvXsXSUlJWL58OQDAyckJ9+/fBwCMHDkS06dPR7Vq1dQJ69ixYzF37lxUq1YNZ86cQd++fWFtbY2QkBD89NNP+P3337FhwwaULFkS9+7dw7179wAAmzdvxsyZM7Fu3TpUqlQJsbGx6gRTV506dYKVlRX+/PNP2NvbY+HChWjcuDGuXbuGcuXKwd/fH2vWrMH333+vXmbNmjXo1q0bgFfJbqNGjdCnTx/MnDkTL168wIgRI9C5c2fs37//fQ41EdEHi8kqEUnmwYMHyMjIQPv27eHh4QEA8PX1BQBYWVkhNTUVbm5u2ZYbOnQo2rdvr/45LCwM06dPV7eVKlUKly5dwsKFCxESEoK7d++ibNmyqFu3LhQKhXpbAHD37l24ubkhMDAQ5ubmKFmyJGrUqKHzvhw+fBgnTpxAXFyc+qlX06ZNw9atW7Fp0yb069cP3bt3x9y5c9XJ6rVr13Dq1CmsXr0aANTJ9uTJk9XrXbZsGUqUKKFOeImI5IbdAIhIMlWqVEHjxo3h6+uLTp06YfHixXjy5Emuy/n7+6v/n5ycjJs3b6J3796wsbFRTxMnTsTNmzcBvLpZKyoqCuXLl8fgwYOxZ88e9fKdOnXCixcvULp0afTt2xe//fYbMjIydN6Xs2fP4vnz5yhcuLBGHNHR0eo4unTpgtu3b+PYsWMAXlVVq1evDm9vb/U6Dhw4oLF81mtZ6yAikhtWVolIMqampti7dy+OHj2KPXv2YM6cORg9ejSOHz/+1uWsra3V/3/+/DkAYPHixahZs2a29QNA9erVER0djT///BP79u1D586dERgYiE2bNqFEiRK4evUq9u3bh7179+KLL77A1KlT8ddff8Hc3DzP+/L8+XMULVoUBw8ezPaag4MDAMDNzQ2NGjXC2rVrUatWLaxduxYDBgzQWEfr1q0xZcqUbOsoWrRonmMhIjImTFaJSFIKhQJ16tRBnTp1MHbsWHh4eOC3336DhYUFMjMzc13e1dUVxYoVw61bt9C9e/cc57Ozs0NwcDCCg4PRsWNHNGvWDAkJCXBycoKVlRVat26N1q1b48svv4S3tzfOnz+P6tWr53k/qlevjtjYWJiZmcHT0zPH+bp3745vvvkGXbt2xa1bt9ClSxeNdWzevBmenp4wM+PHMxERwGSViCR0/PhxREREoGnTpnBxccHx48fx6NEjVKhQAS9fvsTu3btx9epVFC5cGPb29jmuZ/z48Rg8eDDs7e3RrFkzpKam4p9//sGTJ08QGhqKGTNmoGjRoqhWrRpMTEywceNGuLm5wcHBAStWrEBmZiZq1qyJQoUKYfXq1bCystLo15oXgYGBCAgIQNu2bfHjjz+iXLlyuH//Pnbs2IF27dqpuy60b98eAwYMwIABA/Dxxx+jWLFi6nV8+eWXWLx4Mbp27YpvvvkGTk5OuHHjBtatW4clS5aoK8VERHLCZJWIJGNnZ4e///4bs2bNQlJSEjw8PDB9+nQ0b94c/v7+OHjwIPz9/fH8+XMcOHAgx4plnz59UKhQIUydOhVff/01rK2t4evrq37Sk62tLX788Udcv34dpqam+Oijj7Bz506YmJjAwcEBP/zwA0JDQ5GZmQlfX19s374dhQsX1mlfFAoFdu7cidGjR6NXr1549OgR3NzcUL9+fbi6uqrns7W1RevWrbFhwwYsW7ZMYx3FihXDkSNHMGLECDRt2hSpqanw8PBAs2bNYGLCWwyISJ4UQgghdRBERERERNrwT3UiIiIiMlhMVomItDh06JDGEFJvTkREVDDYDYCISIsXL14gJiYmx9fLlClTgNEQEckXk1UiIiIiMljsBkBEREREBovJKhEREREZLCarRERERGSwmKwSERERkcFiskpEREREBovJKhEREREZLCarRERERGSwmKwSERERkcH6PxtjcKZmhiniAAAAAElFTkSuQmCC\n"},"metadata":{}}],"source":["enviro_corr=enviro.corr()\n","enviro_corr=enviro_corr['stress_level'].sort_values(ascending=False)\n","enviro_corr=enviro_corr.drop('stress_level')\n","plt.figure(figsize=(8,6))\n","sns.heatmap(enviro_corr.to_frame(),annot=True,cmap='coolwarm')\n","plt.title('Stress Level Correlation of Features when Enviromental Factors the Greatest')\n","plt.show()"]},{"cell_type":"code","execution_count":72,"metadata":{"colab":{"base_uri":"https://localhost:8080/","height":537},"executionInfo":{"elapsed":908,"status":"ok","timestamp":1716217045941,"user":{"displayName":"Daniel Meier","userId":"06365571306976914087"},"user_tz":300},"id":"AratWVc-QegR","outputId":"78bf9c8f-38fd-4843-ba2c-938a6c607b7e"},"outputs":[{"output_type":"stream","name":"stderr","text":[":1: FutureWarning: \n","\n","Passing `palette` without assigning `hue` is deprecated and will be removed in v0.14.0. Assign the `y` variable to `hue` and set `legend=False` for the same effect.\n","\n"," sns.barplot(enviro_corr,orient='y',palette='Spectral');\n"]},{"output_type":"display_data","data":{"text/plain":["
"],"image/png":"iVBORw0KGgoAAAANSUhEUgAAAoEAAAGxCAYAAAAdwWyIAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAAAzIklEQVR4nO3deVhUdf//8dcoCigM5IKAsmSJS1/MBbe8kFJKLE3T25VvarmUadTd4nLnbZqVZRraehuVWOGNZblUWq6YC6FZuKQiIgYlZpsgZi5wfn/0dX6RooLACJ/n47rmumLmnDPv+aT57JyZ0WZZliUAAAAYpZqzBwAAAEDFIwIBAAAMRAQCAAAYiAgEAAAwEBEIAABgICIQAADAQEQgAACAgYhAAAAAA7k4ewBcvQoLC3X48GF5enrKZrM5exwAAHAZLMvS8ePH5e/vr2rVij/fRwSiWIcPH1ZAQICzxwAAAKWQnZ2tRo0aFfs4EYhieXp6SvrzF5HdbnfyNAAA4HLk5eUpICDA8ed4cYhAFOvcJWC73U4EAgBQyVzqrVx8MAQAAMBARCAAAICBiEAAAAADEYEAAAAGIgIBAAAMRAQCAAAYiK+IAQCcJ/NfQ5w9AlDlXfvsQqc+P2cCAQAADEQEAgAAGIgIBAAAMBARCAAAYCAiEAAAwEBEIAAAgIGIQAAAAAMRgQAAAAYiAgEAAAxEBAIAABiICAQAADAQEQgAAGAgIhAAAMBARCAAAICBiEAAAAADEYEAAAAGIgIBAAAMRAQCAAAYiAgEAAAwEBEIAABgICIQAADAQEQgAACAgYhAAAAAAxGBAAAABiICAQAADEQEAgAAGIgIBAAAMBARCAAAYCAiEAAAwEBEIAAAgIGIQAAAAAMRgf9n6tSpatWqVYU8l81m09KlSyvkuc4JDg7WnDlzKvQ5AQDA1YsI/D+PPfaY1q5d6+wxAAAAKoSLswe4Wnh4eMjDw8PZYwAAAFSIKnMm8Oabb1ZMTIzGjx+vOnXqyNfXV1OnTnU8npWVpd69e8vDw0N2u10DBgzQjz/+6Hj875eDk5KS1L59e9WuXVve3t7q3LmzvvvuO8fjy5YtU5s2beTm5qbGjRtr2rRpOnv2bKlmz87O1oABA+Tt7a06deqod+/eOnTokCRp1apVcnNz07Fjx4rs89BDD6lr166Onzdt2qTw8HC5u7srICBAMTExOnHiRKnmAQAAVV+ViUBJWrBggWrXrq2UlBTNnDlTTz31lFavXq3CwkL17t1bv/76qzZs2KDVq1fr4MGDGjhw4AWPc/bsWfXp00cRERHauXOnkpOTNXr0aNlsNknSxo0bNXToUD300EPas2eP5s2bp/j4eD3zzDMlnvnMmTPq3r27PD09tXHjRm3evFkeHh6KiorS6dOn1a1bN3l7e+vDDz907FNQUKBFixYpOjpakpSRkaGoqCj169dPO3fu1KJFi7Rp0yaNGzeuRLOcOnVKeXl5RW4AAKBqqlKXg1u2bKknn3xSktSkSRO98sorjvf57dq1S5mZmQoICJAkvfPOO7rhhhu0bds2tWvXrshx8vLylJubq549e+q6666TJDVv3tzx+LRp0zRx4kQNGzZMktS4cWNNnz5d48ePdzz/5Vq0aJEKCwv15ptvOiJz/vz58vb2VlJSkm677TYNGjRICxcu1IgRIyRJa9eu1bFjx9SvXz9J0owZMxQdHa2HH37Y8dpfeuklRURE6PXXX5ebm9tlzTJjxgxNmzatRPMDAIDKqUqdCWzZsmWRn/38/HT06FHt3btXAQEBjgCUpBYtWsjb21t79+497zh16tTR8OHD1b17d/Xq1Utz585VTk6O4/EdO3boqaeecryP0MPDQ6NGjVJOTo5+//33Es28Y8cOHThwQJ6eno5j1alTR3/88YcyMjIkSdHR0UpKStLhw4clSQkJCbrjjjvk7e3tOEZ8fHyRebp3767CwkJlZmZe9iyTJk1Sbm6u45adnV2i1wIAACqPKnUmsEaNGkV+ttlsKiwsLNWx5s+fr5iYGH322WdatGiRJk+erNWrV6tjx47Kz8/XtGnT1Ldv3/P2u9yzbufk5+erbdu2SkhIOO+x+vXrS5LatWun6667TomJiRozZoyWLFmi+Pj4Ise47777FBMTc94xAgMDL3sWV1dXubq6lmh+AABQOVWpCCxO8+bNlZ2drezsbMfZwD179ujYsWNq0aJFsfu1bt1arVu31qRJk9SpUyctXLhQHTt2VJs2bZSWlqbrr7/+imdr06aNFi1aJB8fH9nt9mK3i46OVkJCgho1aqRq1arpjjvuKHKMPXv2lMk8AADADFXqcnBxIiMjFRoaqujoaH399dfaunWrhg4dqoiICIWFhZ23fWZmpiZNmqTk5GR99913WrVqldLT0x3vC5wyZYreeecdTZs2Td9++6327t2rxMRETZ48ucSzRUdHq169eurdu7c2btyozMxMJSUlKSYmRt9//32R7b7++ms988wz+sc//lHkjN2ECRO0ZcsWjRs3TqmpqUpPT9eyZctK/MEQAABgDiMi0GazadmyZbrmmmvUpUsXRUZGqnHjxlq0aNEFt69Vq5b27dunfv36KSQkRKNHj9bYsWN13333SZK6d++uTz75RKtWrVK7du3UsWNHxcbGKigoqMSz1apVS1988YUCAwPVt29fNW/eXCNGjNAff/xR5Mzg9ddfr/bt22vnzp2OTwWf07JlS23YsEH79+9XeHi4WrdurSlTpsjf37/E8wAAADPYLMuynD0Erk55eXny8vJSbm7uRS9VA6h6Mv81xNkjAFXetc8uLJfjXu6f30acCQQAAEBRRGAZS0hIKPJVLX+93XDDDc4eDwAAQJIhnw6uSHfeeac6dOhwwcf+/hU2AAAAzkIEljFPT095eno6ewwAAICL4nIwAACAgYhAAAAAAxGBAAAABiICAQAADEQEAgAAGIgIBAAAMBARCAAAYCAiEAAAwEBEIAAAgIGIQAAAAAMRgQAAAAYiAgEAAAxEBAIAABiICAQAADAQEQgAAGAgIhAAAMBARCAAAICBiEAAAAADEYEAAAAGIgIBAAAMRAQCAAAYiAgEAAAwEBEIAABgICIQAADAQEQgAACAgYhAAAAAA7k4ewAAwNXn2mcXOnsEAOWMM4EAAAAGIgIBAAAMRAQCAAAYiAgEAAAwEBEIAABgICIQAADAQEQgAACAgYhAAAAAAxGBAAAABiICAQAADEQEAgAAGIgIBAAAMBARCAAAYCAiEAAAwEBEIAAAgIGIQAAAAAMRgQAAAAYiAgEAAAzk4uwBgKtZ7v43nD0C4BReIaOdPQKAcsaZQAAAAAMRgQAAAAYiAgEAAAxEBAIAABiICAQAADAQEQgAAGAgIhAAAMBARCAAAICBiEAAAAADEYEAAAAGIgIBAAAMRAQCAAAYiAgEAAAwEBEIAABgICIQAADAQEQgAACAgYhAAAAAAxGBAAAABiICAQAADEQEAgAAGIgIBAAAMBARCAAAYCAiEAAAwEBEIAAAgIGIQAAAAAMRgQAAAAYiAgEAAAxEBAIAABiICAQAADAQEQgAAGCgEkXgzTffrIcffliSFBwcrDlz5pRq36osPj5e3t7ejp+nTp2qVq1aXXSfQ4cOyWazKTU1tVxnAwAAOMeltDtu27ZNtWvXvuztP/roI9WoUaO0T1dpPfbYY3rwwQcdPw8fPlzHjh3T0qVLHfcFBAQoJydH9erVc8KEAADARKWOwPr165do+zp16pT2qSo1Dw8PeXh4XHSb6tWry9fXt4ImAgAAuIL3BP71cvCQIUM0cODAIo+fOXNG9erV0zvvvCPp/MvBwcHBevbZZ3XvvffK09NTgYGBeuONN4ocY8uWLWrVqpXc3NwUFhampUuXluiy6bfffquePXvKbrfL09NT4eHhysjIkCQVFhbqqaeeUqNGjeTq6qpWrVrps88+c+x77hLtRx99pFtuuUW1atXSjTfeqOTk5CLPER8fr8DAQNWqVUt33XWXfvnllyKP//Vy8NSpU7VgwQItW7ZMNptNNptNSUlJF7wcvGHDBrVv316urq7y8/PTxIkTdfbsWcfjN998s2JiYjR+/HjVqVNHvr6+mjp1quNxy7I0depUBQYGytXVVf7+/oqJibmsdQMAAFVfmXwwJDo6Wh9//LHy8/Md933++ef6/fffdddddxW73+zZsxUWFqZvvvlGDzzwgMaMGaO0tDRJUl5ennr16qXQ0FB9/fXXmj59uiZMmHDZM/3www/q0qWLXF1dtW7dOm3fvl333nuvI6Tmzp2r2bNna9asWdq5c6e6d++uO++8U+np6UWO88QTT+ixxx5TamqqQkJCNHjwYMcxUlJSNGLECI0bN06pqam65ZZb9PTTTxc702OPPaYBAwYoKipKOTk5ysnJ0U033XTB2W+//Xa1a9dOO3bs0Ouvv6633nrrvGMvWLBAtWvXVkpKimbOnKmnnnpKq1evliR9+OGHio2N1bx585Senq6lS5cqNDT0stcPAABUbaW+HPxX3bt3V+3atbVkyRLdfffdkqSFCxfqzjvvlKenZ7H73X777XrggQckSRMmTFBsbKzWr1+vpk2bauHChbLZbIqLi5Obm5tatGihH374QaNGjbqsmV599VV5eXkpMTHR8V7EkJAQx+OzZs3ShAkTNGjQIEnS888/r/Xr12vOnDl69dVXHds99thjuuOOOyRJ06ZN0w033KADBw6oWbNmmjt3rqKiojR+/HjH8bds2VLkjOJfeXh4yN3dXadOnbro5d/XXntNAQEBeuWVV2Sz2dSsWTMdPnxYEyZM0JQpU1St2p/t3rJlSz355JOSpCZNmuiVV17R2rVrdeuttyorK0u+vr6KjIxUjRo1FBgYqPbt2190zU6dOqVTp045fs7Ly7vo9gAAoPIqkzOBLi4uGjBggBISEiRJJ06c0LJlyxQdHX3R/Vq2bOn4Z5vNJl9fXx09elSSlJaWppYtW8rNzc2xzaUi5q9SU1MVHh5+wQ+j5OXl6fDhw+rcuXOR+zt37qy9e/cWO6Ofn58kOWbcu3evOnToUGT7Tp06XfaMxdm7d686deokm81WZLb8/Hx9//33F5zt3HznZuvfv79Onjypxo0ba9SoUVqyZEmRy8kXMmPGDHl5eTluAQEBV/xaAADA1anMvicwOjpaa9eu1dGjR7V06VK5u7srKirqovv8PdBsNpsKCwvLZB53d/cyOc5fZzwXZWU145W62PoFBAQoLS1Nr732mtzd3fXAAw+oS5cuOnPmTLHHmzRpknJzcx237Ozscp0fAAA4T5lF4E033aSAgAAtWrRICQkJ6t+//xV9JUzTpk21a9euIpcnt23bdtn7t2zZUhs3brxg9Njtdvn7+2vz5s1F7t+8ebNatGhx2c/RvHlzpaSkFLnvyy+/vOg+NWvWVEFBwSWPm5ycLMuyiszm6empRo0aXfZ87u7u6tWrl1566SUlJSUpOTlZu3btKnZ7V1dX2e32IjcAAFA1lenfGDJkyBD95z//0erVqy95KfhyjlVYWKjRo0dr7969+vzzzzVr1ixJKnKZtDjjxo1TXl6eBg0apK+++krp6el69913HR88efzxx/X8889r0aJFSktL08SJE5WamqqHHnrosmeMiYnRZ599plmzZik9PV2vvPJKse8HPCc4OFg7d+5UWlqafv755wtG6gMPPKDs7Gw9+OCD2rdvn5YtW6Ynn3xSjzzyiOP9gJcSHx+vt956S7t379bBgwf13nvvyd3dXUFBQZf9+gAAQNVVphEYHR2tPXv2qGHDhue9366k7Ha7Pv74Y6WmpqpVq1Z64oknNGXKFEkq8j7B4tStW1fr1q1Tfn6+IiIi1LZtW8XFxTnOTsbExOiRRx7Ro48+qtDQUH322Wdavny5mjRpctkzduzYUXFxcZo7d65uvPFGrVq1SpMnT77oPqNGjVLTpk0VFham+vXrn3c2UpIaNmyoFStWaOvWrbrxxht1//33a8SIEZc89l95e3srLi5OnTt3VsuWLbVmzRp9/PHHqlu37mUfAwAAVF0266/XHK9yCQkJuueee5Sbm1tm7/lD8fLy8uTl5aXc3FxjLw3n7n/j0hsBVZBXyGhnjwCglC73z+8y+YqY8vLOO++ocePGatiwoXbs2KEJEyZowIABBCAAAMAVKtPLwWXtyJEj+t///V81b95c//znP9W/f3/H3ypy//33O/5Ktr/f7r//fidPDgAAcHWrVJeD/+ro0aPFfpmx3W6Xj49PBU9U9XA5mMvBMBeXg4HKq0pcDr4YHx8fQg8AAKCUrurLwQAAACgfRCAAAICBiEAAAAADEYEAAAAGIgIBAAAMRAQCAAAYiAgEAAAwEBEIAABgICIQAADAQEQgAACAgYhAAAAAAxGBAAAABiICAQAADEQEAgAAGIgIBAAAMBARCAAAYCAiEAAAwEBEIAAAgIGIQAAAAAMRgQAAAAYiAgEAAAxEBAIAABiICAQAADAQEQgAAGAgIhAAAMBARCAAAICBiEAAAAADuTh7AOBq5hUy2tkjAABQLjgTCAAAYCAiEAAAwEBEIAAAgIGIQAAAAAMRgQAAAAYiAgEAAAxEBAIAABiICAQAADAQEQgAAGAgIhAAAMBARCAAAICBiEAAAAADEYEAAAAGIgIBAAAMRAQCAAAYiAgEAAAwEBEIAABgIBdnDwAzZR5NcPYIAC7iWp9oZ48AoJxxJhAAAMBARCAAAICBiEAAAAADEYEAAAAGIgIBAAAMRAQCAAAYiAgEAAAwEBEIAABgICIQAADAQEQgAACAgYhAAAAAAxGBAAAABiICAQAADEQEAgAAGIgIBAAAMBARCAAAYCAiEAAAwEBEIAAAgIGIQAAAAAMRgQAAAAYiAgEAAAxEBAIAABiICAQAADAQEQgAAGAgIhAAAMBARCAAAICBiEAAAAADEYEAAAAGIgIBAAAMRAQCAAAYiAgEAAAwUKWJwJtvvlkPP/xwuRz70KFDstlsSk1NLZfjV5Tg4GDNmTPH2WMAAIBKwMXZA1wNAgIClJOTo3r16jl7FAAAgApBBEqqXr26fH19nT0GAABAhak0l4Ml6ezZsxo3bpy8vLxUr149/fvf/5ZlWZKkd999V2FhYfL09JSvr6+GDBmio0ePOvb97bffFB0drfr168vd3V1NmjTR/PnzJV34cvC3336rnj17ym63y9PTU+Hh4crIyLjkjMOHD1efPn00a9Ys+fn5qW7duho7dqzOnDnj2ObUqVN67LHH1LBhQ9WuXVsdOnRQUlJSkeNs2rRJ4eHhcnd3V0BAgGJiYnTixAnH40ePHlWvXr3k7u6ua6+9VgkJCUX2tyxLU6dOVWBgoFxdXeXv76+YmJjLXmsAAFC1VaoIXLBggVxcXLR161bNnTtXL774ot58801J0pkzZzR9+nTt2LFDS5cu1aFDhzR8+HDHvv/+97+1Z88erVy5Unv37tXrr79e7OXfH374QV26dJGrq6vWrVun7du3695779XZs2cva87169crIyND69ev14IFCxQfH6/4+HjH4+PGjVNycrISExO1c+dO9e/fX1FRUUpPT5ckZWRkKCoqSv369dPOnTu1aNEibdq0SePGjXMcY/jw4crOztb69eu1ePFivfbaa0Wi98MPP1RsbKzmzZun9PR0LV26VKGhoRed+9SpU8rLyytyAwAAVZPNOncq7Sp388036+jRo/r2229ls9kkSRMnTtTy5cu1Z8+e87b/6quv1K5dOx0/flweHh668847Va9ePb399tvnbXvo0CFde+21+uabb9SqVSv961//UmJiotLS0lSjRo0SzTl8+HAlJSUpIyND1atXlyQNGDBA1apVU2JiorKystS4cWNlZWXJ39/fsV9kZKTat2+vZ599ViNHjlT16tU1b948x+ObNm1SRESETpw4oaysLDVt2lRbt25Vu3btJEn79u1T8+bNFRsbq4cfflgvvvii5s2bp927d1/2a5g6daqmTZt23v25ubmy2+0lWodLyTyacOmNADjNtT7Rzh4BQCnl5eXJy8vrkn9+V6ozgR07dnQEoCR16tRJ6enpKigo0Pbt29WrVy8FBgbK09NTERERkqSsrCxJ0pgxY5SYmKhWrVpp/Pjx2rJlS7HPk5qaqvDw8BIH4Dk33HCDIwAlyc/Pz3GWbteuXSooKFBISIg8PDwctw0bNjguN+/YsUPx8fFFHu/evbsKCwuVmZmpvXv3ysXFRW3btnU8R7NmzeTt7e34uX///jp58qQaN26sUaNGacmSJZc8kzlp0iTl5uY6btnZ2aV6/QAA4OpXJT4Y8scff6h79+7q3r27EhISVL9+fWVlZal79+46ffq0JKlHjx767rvvtGLFCq1evVrdunXT2LFjNWvWrPOO5+7ufkXz/D0ebTabCgsLJUn5+fmqXr26tm/fXiQUJcnDw8OxzX333XfB9/AFBgZq//79l5whICBAaWlpWrNmjVavXq0HHnhAL7zwgjZs2FBs3Lq6usrV1fWyXiMAAKjcKlUEpqSkFPn5yy+/VJMmTbRv3z798ssveu655xQQECDpz8vBf1e/fn0NGzZMw4YNU3h4uB5//PELRmDLli21YMECnTlzptRnA4vTunVrFRQU6OjRowoPD7/gNm3atNGePXt0/fXXX/DxZs2a6ezZs9q+fbvjcnBaWpqOHTtWZDt3d3f16tVLvXr10tixY9WsWTPt2rVLbdq0KdPXBAAAKp9KdTk4KytLjzzyiNLS0vTf//5XL7/8sh566CEFBgaqZs2aevnll3Xw4EEtX75c06dPL7LvlClTtGzZMh04cEDffvutPvnkEzVv3vyCzzNu3Djl5eVp0KBB+uqrr5Senq53331XaWlpV/waQkJCFB0draFDh+qjjz5SZmamtm7dqhkzZujTTz+VJE2YMEFbtmzRuHHjlJqaqvT0dC1btszxwZCmTZsqKipK9913n1JSUrR9+3aNHDmyyBnM+Ph4vfXWW9q9e7cOHjyo9957T+7u7goKCrri1wAAACq/ShWBQ4cO1cmTJ9W+fXuNHTtWDz30kEaPHq369esrPj5eH3zwgVq0aKHnnnvuvDN8NWvW1KRJk9SyZUt16dJF1atXV2Ji4gWfp27dulq3bp3y8/MVERGhtm3bKi4urszOCs6fP19Dhw7Vo48+qqZNm6pPnz7atm2bAgMDJf15JnLDhg3av3+/wsPD1bp1a02ZMqXIB0nmz58vf39/RUREqG/fvho9erR8fHwcj3t7eysuLk6dO3dWy5YttWbNGn388ceqW7dumbwGAABQuVWaTwej4l3up4tKg08HA1c3Ph0MVF5V8tPBAAAAKBtEYAn99Wtb/n7buHGjs8cDAAC4LJXq08FXg7/+1XJ/17Bhw4obBAAA4AoQgSVU3Ne2AAAAVCZcDgYAADAQEQgAAGAgIhAAAMBARCAAAICBiEAAAAADEYEAAAAGIgIBAAAMRAQCAAAYiAgEAAAwEBEIAABgICIQAADAQEQgAACAgYhAAAAAAxGBAAAABiICAQAADEQEAgAAGIgIBAAAMBARCAAAYCAiEAAAwEBEIAAAgIGIQAAAAAMRgQAAAAYiAgEAAAxEBAIAABiICAQAADAQEQgAAGAgF2cPADNd6xPt7BEAADAaZwIBAAAMRAQCAAAYiAgEAAAwEBEIAABgICIQAADAQEQgAACAgYhAAAAAAxGBAAAABiICAQAADEQEAgAAGIgIBAAAMBARCAAAYCAiEAAAwEBEIAAAgIGIQAAAAAMRgQAAAAYiAgEAAAzk4uwBYKZHV77j7BEAXMTsHkOdPQKAcsaZQAAAAAMRgQAAAAYiAgEAAAxEBAIAABiICAQAADAQEQgAAGAgIhAAAMBARCAAAICBiEAAAAADEYEAAAAGIgIBAAAMRAQCAAAYiAgEAAAwEBEIAABgICIQAADAQEQgAACAgYhAAAAAAxGBAAAABiICAQAADEQEAgAAGIgIBAAAMBARCAAAYCAiEAAAwEBEIAAAgIGIQAAAAAMRgQAAAAYiAgEAAAxEBAIAABiICAQAADAQEQgAAGAgIhAAAMBAROBV5siRI7r11ltVu3ZteXt7O3scAABQRRGBV5nY2Fjl5OQoNTVV+/fvv6x9pk6dqlatWpXvYAAAoEpxcfYAKCojI0Nt27ZVkyZNnD0KAACowjgTWA4WL16s0NBQubu7q27duoqMjNSJEye0bds23XrrrapXr568vLwUERGhr7/+2rFfcHCwPvzwQ73zzjuy2WwaPny4JOnYsWMaOXKk6tevL7vdrq5du2rHjh2SpPj4eE2bNk07duyQzWaTzWZTfHy87r33XvXs2bPIXGfOnJGPj4/eeuutClsLAABwdeJMYBnLycnR4MGDNXPmTN111106fvy4Nm7cKMuydPz4cQ0bNkwvv/yyLMvS7Nmzdfvttys9PV2enp7atm2bhg4dKrvdrrlz58rd3V2S1L9/f7m7u2vlypXy8vLSvHnz1K1bN+3fv18DBw7U7t279dlnn2nNmjWSJC8vL4WEhKhLly7KycmRn5+fJOmTTz7R77//roEDB15w9lOnTunUqVOOn/Py8sp5tQAAgLMQgWUsJydHZ8+eVd++fRUUFCRJCg0NlSR17dq1yLZvvPGGvL29tWHDBvXs2VP169eXq6ur3N3d5evrK0natGmTtm7dqqNHj8rV1VWSNGvWLC1dulSLFy/W6NGj5eHhIRcXF8c+knTTTTepadOmevfddzV+/HhJ0vz589W/f395eHhccPYZM2Zo2rRpZbsgAADgqsTl4DJ24403qlu3bgoNDVX//v0VFxen3377TZL0448/atSoUWrSpIm8vLxkt9uVn5+vrKysYo+3Y8cO5efnq27duvLw8HDcMjMzlZGRcdFZRo4cqfnz5zuee+XKlbr33nuL3X7SpEnKzc113LKzs0uxAgAAoDLgTGAZq169ulavXq0tW7Zo1apVevnll/XEE08oJSVFY8aM0S+//KK5c+cqKChIrq6u6tSpk06fPl3s8fLz8+Xn56ekpKTzHrvUV8gMHTpUEydOVHJysrZs2aJrr71W4eHhxW7v6urqONsIAACqNiKwHNhsNnXu3FmdO3fWlClTFBQUpCVLlmjz5s167bXXdPvtt0uSsrOz9fPPP1/0WG3atNGRI0fk4uKi4ODgC25Ts2ZNFRQUnHd/3bp11adPH82fP1/Jycm65557rvi1AQCAqoEILGMpKSlau3atbrvtNvn4+CglJUU//fSTmjdvriZNmujdd99VWFiY8vLy9Pjjjzs+/FGcyMhIderUSX369NHMmTMVEhKiw4cP69NPP9Vdd92lsLAwBQcHKzMzU6mpqWrUqJE8PT0dZ/RGjhypnj17qqCgQMOGDauIJQAAAJUA7wksY3a7XV988YVuv/12hYSEaPLkyZo9e7Z69Oiht956S7/99pvatGmju+++WzExMfLx8bno8Ww2m1asWKEuXbronnvuUUhIiAYNGqTvvvtODRo0kCT169dPUVFRuuWWW1S/fn3997//dewfGRkpPz8/de/eXf7+/uX62gEAQOVhsyzLcvYQKD/5+flq2LCh5s+fr759+5Zo37y8PHl5eSk3N1d2u71M53p05TtlejwAZWt2j6HOHgFAKV3un99cDq6iCgsL9fPPP2v27Nny9vbWnXfe6eyRAADAVYQIrKKysrJ07bXXqlGjRoqPj5eLC/+qAQDA/0cZVFHBwcHiSj8AACgOHwwBAAAwEBEIAABgICIQAADAQEQgAACAgYhAAAAAAxGBAAAABiICAQAADEQEAgAAGIgIBAAAMBARCAAAYCAiEAAAwEBEIAAAgIGIQAAAAAMRgQAAAAYiAgEAAAxEBAIAABiICAQAADAQEQgAAGAgIhAAAMBARCAAAICBiEAAAAADEYEAAAAGIgIBAAAMRAQCAAAYiAgEAAAwEBEIAABgICIQAADAQC7OHgBmmt1jqLNHAADAaJwJBAAAMBARCAAAYCAiEAAAwEBEIAAAgIGIQAAAAAMRgQAAAAYiAgEAAAxEBAIAABiIL4tGsSzLkiTl5eU5eRIAAHC5zv25fe7P8eIQgSjW8ePHJUkBAQFOngQAAJTU8ePH5eXlVezjNutSmQhjFRYW6vDhw/L09JTNZnP2OOUmLy9PAQEBys7Olt1ud/Y4TsM6/Il1YA3OYR3+xDpUvjWwLEvHjx+Xv7+/qlUr/p1/nAlEsapVq6ZGjRo5e4wKY7fbK8Vv7vLGOvyJdWANzmEd/sQ6VK41uNgZwHP4YAgAAICBiEAAAAADEYEwnqurq5588km5uro6exSnYh3+xDqwBuewDn9iHaruGvDBEAAAAANxJhAAAMBARCAAAICBiEAAAAADEYEw0q+//qro6GjZ7XZ5e3trxIgRys/Pv+R+ycnJ6tq1q2rXri273a4uXbro5MmTFTBx+SjtOkh/fhlpjx49ZLPZtHTp0vIdtByVdA1+/fVXPfjgg2ratKnc3d0VGBiomJgY5ebmVuDUV+7VV19VcHCw3Nzc1KFDB23duvWi23/wwQdq1qyZ3NzcFBoaqhUrVlTQpOWrJOsQFxen8PBwXXPNNbrmmmsUGRl5yXWrDEr6a+GcxMRE2Ww29enTp3wHrCAlXYdjx45p7Nix8vPzk6urq0JCQirf7wsLMFBUVJR14403Wl9++aW1ceNG6/rrr7cGDx580X22bNli2e12a8aMGdbu3butffv2WYsWLbL++OOPCpq67JVmHc558cUXrR49eliSrCVLlpTvoOWopGuwa9cuq2/fvtby5cutAwcOWGvXrrWaNGli9evXrwKnvjKJiYlWzZo1rbffftv69ttvrVGjRlne3t7Wjz/+eMHtN2/ebFWvXt2aOXOmtWfPHmvy5MlWjRo1rF27dlXw5GWrpOswZMgQ69VXX7W++eYba+/evdbw4cMtLy8v6/vvv6/gyctOSdfgnMzMTKthw4ZWeHi41bt374oZthyVdB1OnTplhYWFWbfffru1adMmKzMz00pKSrJSU1MrePIrQwTCOHv27LEkWdu2bXPct3LlSstms1k//PBDsft16NDBmjx5ckWMWCFKuw6WZVnffPON1bBhQysnJ6dSR+CVrMFfvf/++1bNmjWtM2fOlMeYZa59+/bW2LFjHT8XFBRY/v7+1owZMy64/YABA6w77rijyH0dOnSw7rvvvnKds7yVdB3+7uzZs5anp6e1YMGC8hqx3JVmDc6ePWvddNNN1ptvvmkNGzasSkRgSdfh9ddftxo3bmydPn26okYsF1wOhnGSk5Pl7e2tsLAwx32RkZGqVq2aUlJSLrjP0aNHlZKSIh8fH910001q0KCBIiIitGnTpooau8yVZh0k6ffff9eQIUP06quvytfXtyJGLTelXYO/y83Nld1ul4vL1f83cZ4+fVrbt29XZGSk475q1aopMjJSycnJF9wnOTm5yPaS1L1792K3rwxKsw5/9/vvv+vMmTOqU6dOeY1Zrkq7Bk899ZR8fHw0YsSIihiz3JVmHZYvX65OnTpp7NixatCggf7nf/5Hzz77rAoKCipq7DJBBMI4R44ckY+PT5H7XFxcVKdOHR05cuSC+xw8eFCSNHXqVI0aNUqfffaZ2rRpo27duik9Pb3cZy4PpVkHSfrnP/+pm266Sb179y7vEctdadfgr37++WdNnz5do0ePLo8Ry9zPP/+sgoICNWjQoMj9DRo0KPY1HzlypETbVwalWYe/mzBhgvz9/c8L5MqiNGuwadMmvfXWW4qLi6uIEStEadbh4MGDWrx4sQoKCrRixQr9+9//1uzZs/X0009XxMhlhghElTFx4kTZbLaL3vbt21eqYxcWFkqS7rvvPt1zzz1q3bq1YmNj1bRpU7399ttl+TKuWHmuw/Lly7Vu3TrNmTOnbIcuY+W5Bn+Vl5enO+64Qy1atNDUqVOvfHBUGs8995wSExO1ZMkSubm5OXucCnH8+HHdfffdiouLU7169Zw9jlMVFhbKx8dHb7zxhtq2bauBAwfqiSee0H/+8x9nj1YiV/+1C+AyPfrooxo+fPhFt2ncuLF8fX119OjRIvefPXtWv/76a7GXN/38/CRJLVq0KHJ/8+bNlZWVVfqhy0F5rsO6deuUkZEhb2/vIvf369dP4eHhSkpKuoLJy055rsE5x48fV1RUlDw9PbVkyRLVqFHjSseuEPXq1VP16tX1448/Frn/xx9/LPY1+/r6lmj7yqA063DOrFmz9Nxzz2nNmjVq2bJleY5Zrkq6BhkZGTp06JB69erluO/c/yC7uLgoLS1N1113XfkOXQ5K82vBz89PNWrUUPXq1R33NW/eXEeOHNHp06dVs2bNcp25zDj7TYlARTv3YYCvvvrKcd/nn39+0Q8DFBYWWv7+/ud9MKRVq1bWpEmTynXe8lKadcjJybF27dpV5CbJmjt3rnXw4MGKGr3MlGYNLMuycnNzrY4dO1oRERHWiRMnKmLUMtW+fXtr3Lhxjp8LCgqshg0bXvSDIT179ixyX6dOnarEB0NKsg6WZVnPP/+8ZbfbreTk5IoYsdyVZA1Onjx53u//3r17W127drV27dplnTp1qiJHL1Ml/bUwadIkKygoyCooKHDcN2fOHMvPz6/cZy1LRCCMFBUVZbVu3dpKSUmxNm3aZDVp0qTI14J8//33VtOmTa2UlBTHfbGxsZbdbrc++OADKz093Zo8ebLl5uZmHThwwBkvoUyUZh3+TpX408GWVfI1yM3NtTp06GCFhoZaBw4csHJychy3s2fPOutllEhiYqLl6upqxcfHW3v27LFGjx5teXt7W0eOHLEsy7Luvvtua+LEiY7tN2/ebLm4uFizZs2y9u7daz355JNV5itiSrIOzz33nFWzZk1r8eLFRf69Hz9+3Fkv4YqVdA3+rqp8Orik65CVlWV5enpa48aNs9LS0qxPPvnE8vHxsZ5++mlnvYRSIQJhpF9++cUaPHiw5eHhYdntduuee+4p8h/yzMxMS5K1fv36IvvNmDHDatSokVWrVi2rU6dO1saNGyt48rJV2nX4q8oegSVdg/Xr11uSLnjLzMx0zosohZdfftkKDAy0atasabVv39768ssvHY9FRERYw4YNK7L9+++/b4WEhFg1a9a0brjhBuvTTz+t4InLR0nWISgo6IL/3p988smKH7wMlfTXwl9VlQi0rJKvw5YtW6wOHTpYrq6uVuPGja1nnnmm0vyP4Dk2y7Ksir0ADQAAAGfj08EAAAAGIgIBAAAMRAQCAAAYiAgEAAAwEBEIAABgICIQAADAQEQgAACAgYhAAAAAAxGBAIALCg4O1pw5cyr0OW+++WY9/PDDFfqcgKmIQABwguHDh6tPnz7OHgOAwYhAALiKnTlzxtkjAKiiiEAAKEeLFy9WaGio3N3dVbduXUVGRurxxx/XggULtGzZMtlsNtlsNiUlJenQoUOy2WxatGiRIiIi5ObmpoSEBEnSm2++qebNm8vNzU3NmjXTa6+95niO06dPa9y4cfLz85Obm5uCgoI0Y8YMSZJlWZo6daoCAwPl6uoqf39/xcTElOq1HDt2TCNHjlT9+vVlt9vVtWtX7dixQ5K0f/9+2Ww27du3r8g+sbGxuu666xw/7969Wz169JCHh4caNGigu+++Wz///HOp5gFwZVycPQAAVFU5OTkaPHiwZs6cqbvuukvHjx/Xxo0bNXToUGVlZSkvL0/z58+XJNWpU0eHDx+WJE2cOFGzZ89W69atHSE4ZcoUvfLKK2rdurW++eYbjRo1SrVr19awYcP00ksvafny5Xr//fcVGBio7OxsZWdnS5I+/PBDxcbGKjExUTfccIOOHDniCLeS6t+/v9zd3bVy5Up5eXlp3rx56tatm/bv36+QkBCFhYUpISFB06dPd+yTkJCgIUOGSPozIrt27aqRI0cqNjZWJ0+e1IQJEzRgwACtW7fuSpYaQGlYAIBysX37dkuSdejQofMeGzZsmNW7d+8i92VmZlqSrDlz5hS5/7rrrrMWLlxY5L7p06dbnTp1sizLsh588EGra9euVmFh4XnPM3v2bCskJMQ6ffp0iecPCgqyYmNjLcuyrI0bN1p2u936448/zptt3rx5lmVZVmxsrHXdddc5HktLS7MkWXv37nXMfNtttxXZPzs725JkpaWlWZZlWREREdZDDz1U4lkBlByXgwGgnNx4443q1q2bQkND1b9/f8XFxem333675H5hYWGOfz5x4oQyMjI0YsQIeXh4OG5PP/20MjIyJP35IZPU1FQ1bdpUMTExWrVqlWP//v376+TJk2rcuLFGjRqlJUuW6OzZsyV+LTt27FB+fr7q1q1bZI7MzEzHHIMGDdKhQ4f05ZdfSvrzLGCbNm3UrFkzxzHWr19fZP9zj507BoCKw+VgACgn1atX1+rVq7VlyxatWrVKL7/8sp544gmlpKRcdL/atWs7/jk/P1+SFBcXpw4dOpx3fElq06aNMjMztXLlSq1Zs0YDBgxQZGSkFi9erICAAKWlpWnNmjVavXq1HnjgAb3wwgvasGGDatSocdmvJT8/X35+fkpKSjrvMW9vb0mSr6+vunbtqoULF6pjx45auHChxowZU+QYvXr10vPPP3/eMfz8/C57FgBlgwgEgHJks9nUuXNnde7cWVOmTFFQUJCWLFmimjVrqqCg4JL7N2jQQP7+/jp48KCio6OL3c5ut2vgwIEaOHCg/vGPfygqKkq//vqr6tSpI3d3d/Xq1Uu9evXS2LFj1axZM+3atUtt2rS57NfRpk0bHTlyRC4uLgoODi52u+joaI0fP16DBw/WwYMHNWjQoCLH+PDDDxUcHCwXF/74AZyN34UAUE5SUlK0du1a3XbbbfLx8VFKSop++uknNW/eXH/88Yc+//xzpaWlqW7duvLy8ir2ONOmTVNMTIy8vLwUFRWlU6dO6auvvtJvv/2mRx55RC+++KL8/PzUunVrVatWTR988IF8fX3l7e2t+Ph4FRQUqEOHDqpVq5bee+89ubu7KygoqESvJTIyUp06dVKfPn00c+ZMhYSE6PDhw/r000911113OS5h9+3bV2PGjNGYMWN0yy23yN/f33GMsWPHKi4uToMHD9b48eNVp04dHThwQImJiXrzzTcdZzYBVAwiEADKid1u1xdffKE5c+YoLy9PQUFBmj17tnr06KGwsDAlJSUpLCxM+fn5Wr9+fbFn2EaOHKlatWrphRde0OOPP67atWsrNDTU8TdreHp6aubMmUpPT1f16tXVrl07rVixQtWqVZO3t7eee+45PfLIIyooKFBoaKg+/vhj1a1bt0SvxWazacWKFXriiSd0zz336KeffpKvr6+6dOmiBg0aOLbz9PRUr1699P777+vtt98ucgx/f39t3rxZEyZM0G233aZTp04pKChIUVFRqlaNt6gDFc1mWZbl7CEAAABQsfhfLwAAAAMRgQBgoI0bNxb5qpa/3wBUfVwOBgADnTx5Uj/88EOxj19//fUVOA0AZyACAQAADMTlYAAAAAMRgQAAAAYiAgEAAAxEBAIAABiICAQAADAQEQgAAGAgIhAAAMBARCAAAICB/h88kjOhErPrzQAAAABJRU5ErkJggg==\n"},"metadata":{}}],"source":["sns.barplot(enviro_corr,orient='y',palette='Spectral');"]},{"cell_type":"markdown","metadata":{"id":"ixPR4LLKU94R"},"source":["### Academic"]},{"cell_type":"code","execution_count":73,"metadata":{"colab":{"base_uri":"https://localhost:8080/"},"executionInfo":{"elapsed":286,"status":"ok","timestamp":1716217048596,"user":{"displayName":"Daniel Meier","userId":"06365571306976914087"},"user_tz":300},"id":"MlOkiqzxlRGd","outputId":"bacdb237-fc8d-4f6d-a633-a23c69c0bb96"},"outputs":[{"output_type":"stream","name":"stdout","text":["\n","RangeIndex: 1100 entries, 0 to 1099\n","Data columns (total 5 columns):\n"," # Column Non-Null Count Dtype \n","--- ------ -------------- ----- \n"," 0 academic_performance 1100 non-null float64\n"," 1 study_load 1100 non-null float64\n"," 2 teacher_student_relationship 1100 non-null float64\n"," 3 future_career_concerns 1100 non-null float64\n"," 4 stress_level 1100 non-null float64\n","dtypes: float64(5)\n","memory usage: 43.1 KB\n"]}],"source":["acad.info()"]},{"cell_type":"code","execution_count":74,"metadata":{"colab":{"base_uri":"https://localhost:8080/","height":300},"executionInfo":{"elapsed":172,"status":"ok","timestamp":1716217050149,"user":{"displayName":"Daniel Meier","userId":"06365571306976914087"},"user_tz":300},"id":"hFK277vNQtca","outputId":"6d033b44-013e-4775-8b2e-2e540c363186"},"outputs":[{"output_type":"execute_result","data":{"text/plain":[" academic_performance study_load teacher_student_relationship \\\n","count 1.100000e+03 1.100000e+03 1.100000e+03 \n","mean -8.881784e-18 -5.006097e-17 -8.074349e-18 \n","std 1.000455e+00 1.000455e+00 1.000455e+00 \n","min -1.960979e+00 -1.993501e+00 -1.913497e+00 \n","25% -5.465023e-01 -4.727998e-01 -4.683567e-01 \n","50% -5.465023e-01 -4.727998e-01 -4.683567e-01 \n","75% 8.679743e-01 2.875508e-01 9.767832e-01 \n","max 1.575213e+00 1.808252e+00 1.699353e+00 \n","\n"," future_career_concerns stress_level \n","count 1.100000e+03 1.100000e+03 \n","mean 2.745279e-17 -2.260818e-17 \n","std 1.000455e+00 1.000455e+00 \n","min -1.732927e+00 -1.213156e+00 \n","25% -1.078768e+00 -1.213156e+00 \n","50% -4.246087e-01 4.427575e-03 \n","75% 8.837095e-01 1.222011e+00 \n","max 1.537869e+00 1.222011e+00 "],"text/html":["\n","
\n","
\n","\n","\n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n","
academic_performancestudy_loadteacher_student_relationshipfuture_career_concernsstress_level
count1.100000e+031.100000e+031.100000e+031.100000e+031.100000e+03
mean-8.881784e-18-5.006097e-17-8.074349e-182.745279e-17-2.260818e-17
std1.000455e+001.000455e+001.000455e+001.000455e+001.000455e+00
min-1.960979e+00-1.993501e+00-1.913497e+00-1.732927e+00-1.213156e+00
25%-5.465023e-01-4.727998e-01-4.683567e-01-1.078768e+00-1.213156e+00
50%-5.465023e-01-4.727998e-01-4.683567e-01-4.246087e-014.427575e-03
75%8.679743e-012.875508e-019.767832e-018.837095e-011.222011e+00
max1.575213e+001.808252e+001.699353e+001.537869e+001.222011e+00
\n","
\n","
\n","\n","
\n"," \n","\n"," \n","\n"," \n","
\n","\n","\n","
\n"," \n","\n","\n","\n"," \n","
\n","\n","
\n","
\n"],"application/vnd.google.colaboratory.intrinsic+json":{"type":"dataframe","summary":"{\n \"name\": \"acad\",\n \"rows\": 8,\n \"fields\": [\n {\n \"column\": \"academic_performance\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 388.89063893976055,\n \"min\": -1.960978935678983,\n \"max\": 1100.0,\n \"num_unique_values\": 7,\n \"samples\": [\n 1100.0,\n -8.881784197001253e-18,\n 0.8679742830054515\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"study_load\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 388.90240296981375,\n \"min\": -1.9935009727423016,\n \"max\": 1100.0,\n \"num_unique_values\": 7,\n \"samples\": [\n 1100.0,\n -5.006096547400706e-17,\n 0.28755076444549144\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"teacher_student_relationship\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 388.86861586149485,\n \"min\": -1.913496660309814,\n \"max\": 1100.0,\n \"num_unique_values\": 7,\n \"samples\": [\n 1100.0,\n -8.074349270001138e-18,\n 0.9767832248131457\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"future_career_concerns\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 388.90090806515076,\n \"min\": -1.732926941845735,\n \"max\": 1100.0,\n \"num_unique_values\": 8,\n \"samples\": [\n 2.7452787518003872e-17,\n -0.42460872905897556,\n 1100.0\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"stress_level\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 388.85832663067225,\n \"min\": -1.2131556235498353,\n \"max\": 1100.0,\n \"num_unique_values\": 6,\n \"samples\": [\n 1100.0,\n -2.260817795600319e-17,\n 1.2220107740866955\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n }\n ]\n}"}},"metadata":{},"execution_count":74}],"source":["acad.describe()"]},{"cell_type":"code","execution_count":75,"metadata":{"colab":{"base_uri":"https://localhost:8080/","height":206},"executionInfo":{"elapsed":7,"status":"ok","timestamp":1716217051267,"user":{"displayName":"Daniel Meier","userId":"06365571306976914087"},"user_tz":300},"id":"_-qcan_ZRcWv","outputId":"ef41e82d-faf4-42e7-8c2d-531c010e38a3"},"outputs":[{"output_type":"execute_result","data":{"text/plain":[" academic_performance study_load \\\n","academic_performance 1.000000 -0.520417 \n","study_load -0.520417 1.000000 \n","teacher_student_relationship 0.669469 -0.514123 \n","future_career_concerns -0.643805 0.576078 \n","stress_level -0.720922 0.634156 \n","\n"," teacher_student_relationship \\\n","academic_performance 0.669469 \n","study_load -0.514123 \n","teacher_student_relationship 1.000000 \n","future_career_concerns -0.670255 \n","stress_level -0.680163 \n","\n"," future_career_concerns stress_level \n","academic_performance -0.643805 -0.720922 \n","study_load 0.576078 0.634156 \n","teacher_student_relationship -0.670255 -0.680163 \n","future_career_concerns 1.000000 0.742619 \n","stress_level 0.742619 1.000000 "],"text/html":["\n","
\n","
\n","\n","\n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n","
academic_performancestudy_loadteacher_student_relationshipfuture_career_concernsstress_level
academic_performance1.000000-0.5204170.669469-0.643805-0.720922
study_load-0.5204171.000000-0.5141230.5760780.634156
teacher_student_relationship0.669469-0.5141231.000000-0.670255-0.680163
future_career_concerns-0.6438050.576078-0.6702551.0000000.742619
stress_level-0.7209220.634156-0.6801630.7426191.000000
\n","
\n","
\n","\n","
\n"," \n","\n"," \n","\n"," \n","
\n","\n","\n","
\n"," \n","\n","\n","\n"," \n","
\n","\n","
\n","
\n"],"application/vnd.google.colaboratory.intrinsic+json":{"type":"dataframe","summary":"{\n \"name\": \"acad\",\n \"rows\": 5,\n \"fields\": [\n {\n \"column\": \"academic_performance\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 0.8130088236882451,\n \"min\": -0.7209223607715071,\n \"max\": 1.0,\n \"num_unique_values\": 5,\n \"samples\": [\n -0.5204166469504522,\n -0.7209223607715071,\n 0.669469318465743\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"study_load\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 0.7058193176507404,\n \"min\": -0.5204166469504522,\n \"max\": 1.0,\n \"num_unique_values\": 5,\n \"samples\": [\n 1.0,\n 0.6341555002197949,\n -0.514122793599599\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"teacher_student_relationship\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 0.8088207353015467,\n \"min\": -0.6801627386730837,\n \"max\": 1.0,\n \"num_unique_values\": 5,\n \"samples\": [\n -0.514122793599599,\n -0.6801627386730837,\n 1.0\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"future_career_concerns\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 0.7976866458381138,\n \"min\": -0.6702549617707259,\n \"max\": 1.0,\n \"num_unique_values\": 5,\n \"samples\": [\n 0.5760782158735538,\n 0.7426186047951912,\n -0.6702549617707259\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"stress_level\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 0.8284914279683915,\n \"min\": -0.7209223607715071,\n \"max\": 1.0,\n \"num_unique_values\": 5,\n \"samples\": [\n 0.6341555002197949,\n 1.0,\n -0.6801627386730837\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n }\n ]\n}"}},"metadata":{},"execution_count":75}],"source":["acad.corr()"]},{"cell_type":"code","execution_count":76,"metadata":{"colab":{"base_uri":"https://localhost:8080/","height":545},"executionInfo":{"elapsed":275,"status":"ok","timestamp":1716217053029,"user":{"displayName":"Daniel Meier","userId":"06365571306976914087"},"user_tz":300},"id":"d6yms4uiRtw5","outputId":"5a18be2c-a008-41f9-a5b0-aaa14931483f"},"outputs":[{"output_type":"display_data","data":{"text/plain":["
"],"image/png":"iVBORw0KGgoAAAANSUhEUgAAAzkAAAIQCAYAAACixqBTAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAAB+LUlEQVR4nO3deXiM1///8dckkUlktWRBSWwR+xJL7UXaKOKL2n1atKiWKqrKR+2t1E5pq9VaqpSWFrUVsbT2paJa+5pWEbvGkkRy//7wy3yMJGSQZkyfj+u6rys597nPfe4zcydz5n3OuU2GYRgCAAAAAAfhlN0VAAAAAIDHiU4OAAAAAIdCJwcAAACAQ6GTAwAAAMCh0MkBAAAA4FDo5AAAAABwKHRyAAAAADgUOjkAAAAAHAqdHAAAAAAOhU4OgAwNGzZMJpMpu6uRJTp16qTg4ODHWuasWbNkMpl08uTJx1ru4zZ27FgVKVJEzs7OqlChQnZX518v9X2za9eu7K6K3crOv0VPyn39pNuwYYNMJpMWLlyY3VWBg6CTA7u3b98+tWzZUkFBQXJzc1OBAgX07LPPasqUKVb5Ro0apcWLF2dPJR9BcHCwmjRpkt3VeCw2bNigFi1aKDAwUK6urvL391dkZKS+++677K7aY/WkvtckafXq1erfv79q1qypmTNnatSoURnm7dSpk0wmU7rbqlWrsqR+8+bN06RJk7KkbDycqlWrymQy6ZNPPsnuqjzxUjtM6W0DBgx4rOf666+/NGzYMMXExDzWch+Vvdzj165d0/vvv6/KlSvLx8dHZrNZQUFBatOmjZYvX55t9dqyZYuGDRumK1euZOl5nuT/Y5nlkt0VAO5ny5YtqlevngoVKqSuXbsqMDBQf/zxh7Zt26bJkyfrjTfesOQdNWqUWrZsqWbNmmVfhf/Fhg4dqhEjRqh48eJ69dVXFRQUpIsXL2rFihV64YUXNHfuXLVv3z67q/lYZPRee/HFF9W2bVuZzebsqVgmrFu3Tk5OTvriiy/k6ur6wPxms1mff/55mvTy5ctnRfU0b948/fbbb+rdu3eWlA/bHDlyRDt37lRwcLDmzp2r1157Lbur9I/Livt6xIgRKly4sFVamTJlHlv50p1OzvDhwxUcHGxXEVt7uMePHj2qiIgInTp1Ss2bN9dLL70kT09P/fHHH1qxYoWaNGmiL7/8Ui+++OI/XrctW7Zo+PDh6tSpk3x9fbPsPP+Gz0x0cmDX3n//ffn4+Gjnzp1pbva4uLiHLvf69evy8PB4xNoh1cKFCzVixAi1bNlS8+bNU44cOSz73n77bf34449KSkp65PPcvn1bKSkp6X44t4fX1NnZWc7OztlahweJi4uTu7t7pjo4kuTi4qL//Oc/WVyrrHfjxg3lzJkzu6vxxPnqq6/k7++v8ePHq2XLljp58uRjH+Zp77Livn7++edVuXLlx1rmP8Ue/tY+itu3b6t58+Y6d+6cNm7cqJo1a1rtHzp0qFavXq3k5OT7lvOkt8O/AcPVYNeOHTum0qVLp/tthr+/v+Vnk8mk69eva/bs2ZbQf6dOnST9byz3/v371b59e+XKlUu1atWyHPvVV18pLCxM7u7uyp07t9q2bas//vjD6lxHjhzRCy+8oMDAQLm5uempp55S27ZtdfXqVUueNWvWqFatWvL19ZWnp6dKlCih//73v4+tLR5Uz549e8rT01M3btxIc2y7du0UGBho9Ud75cqVql27tjw8POTl5aXGjRvr999/f6i6DR48WLlz59aMGTOsOjipIiIirIbkxcXF6ZVXXlFAQIDc3NxUvnx5zZ492+qYkydPymQyady4cZo0aZKKFi0qs9ms/fv3P5bXND3jxo1TjRo1lCdPHrm7uyssLCzN+PD7vdcyGrv/8ccfq3Tp0jKbzcqfP7969OiRZijCM888ozJlymj//v2qV6+ecubMqQIFCmjMmDEPrLd05x/3yJEjLe0UHBys//73v0pISLCq+8yZM3X9+nVL3WfNmpWp8jOSkpKiSZMmqXTp0nJzc1NAQIBeffVVXb582SrfkiVL1LhxY+XPn19ms1lFixbVyJEjrd6TzzzzjJYvX65Tp05Z6pf6gTqjtk0dx79hwwarcsqUKaPdu3erTp06ypkzp+VeTEhI0NChQ1WsWDGZzWYVLFhQ/fv3t2on6eHu5xYtWqhSpUpWaZGRkTKZTFq6dKklbfv27TKZTFq5cqVV3oSEBPXt21d+fn7y8PBQ8+bNdf78+TTnycy926lTJ3l6eur06dNq1qyZPD095efnp379+j3ww9vd5s2bp5YtW6pJkyby8fHRvHnz0s23fft2NWrUSLly5ZKHh4fKlSunyZMnW/b/+uuv6tSpk4oUKSI3NzcFBgbq5Zdf1sWLF9OUtWnTJlWpUkVubm4qWrSoPv300wzrl5l7PfX98Ouvv6pu3brKmTOnihUrZrm3N27cqGrVqsnd3V0lSpTQ2rVrrY7P6L23cuVK1a1bV15eXvL29laVKlUybJ/MOnXqlF5//XWVKFFC7u7uypMnj1q1apXufKArV66oT58+Cg4Oltls1lNPPaWXXnpJFy5c0IYNG1SlShVJUufOndO937/99ltL2+XNm1f/+c9/dPr0aatzpL6Pjh07pkaNGsnLy0sdOnSQlLn/i/e63z2eKiUlRe+//76eeuopubm5qUGDBjp69GiasrZv366GDRvKx8dHOXPmVN26dbV58+YHtvG3336r3377TYMHD07TwUn13HPP6fnnn7f8nvoe2Lhxo15//XX5+/vrqaeesuzPzD2ZmXtg2LBhevvttyVJhQsXtrTR3a//4/jMcr//Y46ESA7sWlBQkLZu3arffvvtvqH8OXPmqEuXLqpataq6desmSSpatKhVnlatWql48eIaNWqUDMOQdCdSNHjwYLVu3VpdunTR+fPnNWXKFNWpU0d79uyRr6+vEhMTFRERoYSEBL3xxhsKDAzU6dOntWzZMl25ckU+Pj76/fff1aRJE5UrV04jRoyQ2WzW0aNHM/UHNzMyU882bdroo48+0vLly9WqVSvLsTdu3NAPP/ygTp06Wb6NnDNnjjp27KiIiAiNHj1aN27c0CeffKJatWppz549Nn1Te+TIER08eFAvv/yyvLy8Hpj/5s2beuaZZ3T06FH17NlThQsX1rfffqtOnTrpypUrevPNN63yz5w5U7du3VK3bt1kNpuVO3duy76HfU0zMnnyZDVt2lQdOnRQYmKi5s+fr1atWmnZsmVq3Lixpe0e9F6727BhwzR8+HCFh4frtdde06FDh/TJJ59o586d2rx5s1Wn8PLly2rYsKFatGih1q1ba+HChXrnnXdUtmxZq3+46enSpYtmz56tli1b6q233tL27dsVFRWlAwcO6Pvvv7fU/bPPPtOOHTssQ9Bq1Khx33Il6cKFC1a/58iRQz4+PpKkV199VbNmzVLnzp3Vq1cvnThxQlOnTtWePXusrm/WrFny9PRU37595enpqXXr1mnIkCG6du2axo4dK0kaNGiQrl69qj///FMTJ06UJHl6ej6wfum5ePGinn/+ebVt21b/+c9/FBAQoJSUFDVt2lSbNm1St27dVLJkSe3bt08TJ07U4cOHLePTH/Z+rl27tpYsWaJr167J29tbhmFo8+bNcnJy0s8//6ymTZtKkn7++Wc5OTml+YD1xhtvKFeuXBo6dKhOnjypSZMmqWfPnlqwYIEljy33bnJysiIiIlStWjWNGzdOa9eu1fjx41W0aNFMDTvbvn27jh49qpkzZ8rV1VUtWrTQ3Llz03T21qxZoyZNmihfvnx68803FRgYqAMHDmjZsmWW+3nNmjU6fvy4OnfurMDAQP3+++/67LPP9Pvvv2vbtm2WRQX27dun5557Tn5+fho2bJhu376toUOHKiAgIE39bLnXL1++rCZNmqht27Zq1aqVPvnkE7Vt21Zz585V79691b17d7Vv315jx45Vy5Yt9ccff9z379msWbP08ssvq3Tp0ho4cKB8fX21Z88erVq1KlPDcq9evZrmvsqbN6927typLVu2qG3btnrqqad08uRJffLJJ3rmmWe0f/9+SzQyPj5etWvX1oEDB/Tyyy+rUqVKunDhgpYuXao///xTJUuW1IgRIzRkyBB169ZNtWvXlvS/+z31nq1SpYqioqJ07tw5TZ48WZs3b07Tdrdv31ZERIRq1aqlcePGKWfOnJn6v5iezNzjH3zwgZycnNSvXz9dvXpVY8aMUYcOHbR9+3ZLnnXr1un5559XWFiYhg4dKicnJ82cOVP169fXzz//rKpVq2bY9j/88IMkPVSE+vXXX5efn5+GDBmi69evS8r8PZmZe6BFixY6fPiwvv76a02cOFF58+aVJPn5+Ul6fJ9ZbP0/9sQyADu2evVqw9nZ2XB2djaqV69u9O/f3/jxxx+NxMTENHk9PDyMjh07pkkfOnSoIclo166dVfrJkycNZ2dn4/3337dK37dvn+Hi4mJJ37NnjyHJ+PbbbzOs58SJEw1Jxvnz522+xqCgIKNx48YZ7s9sPVNSUowCBQoYL7zwglW+b775xpBk/PTTT4ZhGMbff/9t+Pr6Gl27drXKd/bsWcPHx8cqPbXt7mfJkiWGJGPixIkPvFbDMIxJkyYZkoyvvvrKkpaYmGhUr17d8PT0NK5du2YYhmGcOHHCkGR4e3sbcXFxVmU86mtqGIbRsWNHIygoyCrfjRs3rH5PTEw0ypQpY9SvX98qPaP32syZMw1JxokTJwzDMIy4uDjD1dXVeO6554zk5GRLvqlTpxqSjBkzZljS6tata0gyvvzyS0taQkKCERgYmOY1vVdMTIwhyejSpYtVer9+/QxJxrp166yu28PD477l3Z1XUpqtbt26hmEYxs8//2xIMubOnWt13KpVq9Kk39u2hmEYr776qpEzZ07j1q1blrTGjRuneV0MI23bplq/fr0hyVi/fr0lLbUtp02bZpV3zpw5hpOTk/Hzzz9bpU+bNs2QZGzevNkwjIe/n3fu3GlIMlasWGEYhmH8+uuvhiSjVatWRrVq1Sz5mjZtalSsWDHNtYWHhxspKSmW9D59+hjOzs7GlStXDMOw7d5Nfe1GjBhhlbdixYpGWFhYpq6nZ8+eRsGCBS11Wr16tSHJ2LNnjyXP7du3jcKFCxtBQUHG5cuXrY6/+1rSe/2//vprq79NhmEYzZo1M9zc3IxTp05Z0vbv3284Oztb/S2y5V5PfT/MmzfPknbw4EFDkuHk5GRs27bNkv7jjz8akoyZM2da0u597125csXw8vIyqlWrZty8eTPDa05PalnpbRm109atW9P8bRgyZIghyfjuu+/S5E+tQ+r78e5rMYw7f9f8/f2NMmXKWNV/2bJlhiRjyJAhlrTU99GAAQOsysjM/8WMZHSPp97LJUuWNBISEizpkydPNiQZ+/bts1xf8eLFjYiIiDTvscKFCxvPPvvsfc9fsWJFw9fXN016fHy8cf78ect29epVy77U161WrVrG7du3Lem23JOZvQfGjh2b7t+6x/mZxTAy/j/mSBiuBrv27LPPauvWrWratKn27t2rMWPGKCIiQgUKFLAa/pEZ3bt3t/r9u+++U0pKilq3bq0LFy5YtsDAQBUvXlzr16+XJMs3Uj/++GO6Q8EkWb71WrJkiVJSUmy8yvvLbD1NJpNatWqlFStWKD4+3nL8ggULVKBAActwrjVr1ujKlStq166dVXnOzs6qVq2apbzMunbtmiRlKoojSStWrFBgYKDatWtnScuRI4d69eql+Ph4bdy40Sr/Cy+8YPkW614P+5pmxN3d3fLz5cuXdfXqVdWuXVu//PJLpq7tXmvXrlViYqJ69+4tJ6f//bnt2rWrvL2906zg4+npafXtoqurq6pWrarjx4/f9zwrVqyQJPXt29cq/a233pKkR1opyM3NTWvWrLHaxo8fL+nOsA8fHx89++yzVu0dFhYmT09Pq/a+u23//vtvXbhwQbVr19aNGzd08ODBh65fRsxmszp37myV9u2336pkyZIKDQ21qm/9+vUlyVLfh72fK1asKE9PT/3000+S7kRsUocQ/fLLL7px44YMw9CmTZss36zfrVu3blbLJNeuXVvJyck6deqUpIe7d++9R2rXrv3A95N059v7BQsWqE2bNpY61a9fX/7+/po7d64l3549e3TixAn17t07TZT07mu5+/W/deuWLly4oKefflqSLPdXcnKyfvzxRzVr1kyFChWy5C9ZsqQiIiKsyrb1Xvf09FTbtm0tv5coUUK+vr4qWbKkqlWrZklP/fl+bbRmzRr9/fffGjBggNzc3DK85vv56KOP0txXknU7JSUl6eLFiypWrJh8fX2t/g4tWrRI5cuXV/PmzdOU/aA67Nq1S3FxcXr99det6t+4cWOFhoam+/fi3shfZv4vPqzOnTtbzRlMvVdSX5OYmBgdOXJE7du318WLFy2v/fXr19WgQQP99NNP971vr127lm6EeNCgQfLz87Ns6UXkunbtajU/y5Z7MjP3wP08zs8s/xYMV4Pdq1Klir777jslJiZq7969+v777zVx4kS1bNlSMTExKlWqVKbKuXclmyNHjsgwDBUvXjzd/KnDbAoXLqy+fftqwoQJmjt3rmrXrq2mTZvqP//5j+WPSZs2bfT555+rS5cuGjBggBo0aKAWLVqoZcuWVh9uH0Zm65laj0mTJmnp0qVq37694uPjtWLFCr366quWf3xHjhyRJMsHu3t5e3vbVL/U/H///Xem8p86dUrFixdP0y4lS5a07L/bva/b/fbZ0lbpWbZsmd577z3FxMSkmcvyMFKvpUSJElbprq6uKlKkSJprfeqpp9KcK1euXPr1118feB4nJycVK1bMKj0wMFC+vr5pzmMLZ2dnhYeHp7vvyJEjunr1qtX8uLvdvTjI77//rnfffVfr1q2zdIxT3W8M/8MqUKBAmsUVjhw5ogMHDmTYaU6t78Pez87Ozqpevbp+/vlnSXc6ObVr11atWrWUnJysbdu2KSAgQJcuXUq3k3P3B3vpzmsvyTK/ydZ7183NLc215sqVK818qfSsXr1a58+fV9WqVa3mQ9SrV09ff/21Ro8eLScnJx07dkzSg1cGu3TpkoYPH6758+enWTQm9fU/f/68bt68me79W6JECUtnXrL9Xk/v3vLx8VHBggXTpEm6bxtl9prvp2rVqukuPHDz5k1FRUVp5syZOn36tGUYrmR9nxw7dkwvvPDCQ507o79LkhQaGqpNmzZZpbm4uFjNP5Ey93/xYWX2PujYsWOGZVy9etVy3L28vLzSnQv2+uuvW+aOZjSULb3/OVLm7snM3AP38zg/s/xb0MnBE8PV1VVVqlRRlSpVFBISos6dO+vbb7/V0KFDM3X83d+iSHcmN6ZO/k1v5Zy7v+kZP368OnXqpCVLlmj16tXq1auXoqKitG3bNj311FNyd3fXTz/9pPXr12v58uVatWqVFixYoPr162v16tWPtDKPLfV8+umnFRwcrG+++Ubt27fXDz/8oJs3b6pNmzZW5Ul3xhEHBgamKc/FxbY/C6GhoZLujKXPCve+bvfbZ0tb3St1zkSdOnX08ccfK1++fMqRI4dmzpz5yJOJMyuj98ndH3Tu559+WGJKSkqab/bvlvoB+8qVK6pbt668vb01YsQIFS1aVG5ubvrll1/0zjvvZCpaktG1ZTSJPr33TUpKisqWLasJEyake0zqB95HuZ9r1aql999/X7du3dLPP/+sQYMGydfXV2XKlNHPP/9smVuSXifnQa+/rffuo/zdSX1NW7dune7+jRs3ql69epkur3Xr1tqyZYvefvttVahQQZ6enkpJSVHDhg0fKvpt672eUVs86j33uL3xxhuaOXOmevfurerVq8vHx0cmk0lt27Z97KMEMstsNqfbuX/Q/8WHldn7YOzYsRkujX2/v/WhoaGKiYnR6dOnVaBAAUt6SEiIQkJCJClNhC5Vev9zpMzdk496DzzOzyz/FnRy8ERK/QbszJkzljRbP+AVLVpUhmGocOHClj9s91O2bFmVLVtW7777rrZs2aKaNWtq2rRpeu+99yRJTk5OatCggRo0aKAJEyZo1KhRGjRokNavX5/hN+FZUc/WrVtr8uTJunbtmhYsWKDg4GBLSDy1POnO6nSPUq9UISEhKlGihJYsWaLJkyc/cKJ4UFCQfv31V6WkpFj940wdshQUFPTQdbG1re62aNEiubm56ccff7R6HsbMmTPT5M3sey31Wg4dOqQiRYpY0hMTE3XixInH0v6p50lJSdGRI0csETFJOnfunK5cufJIbXo/RYsW1dq1a1WzZs37dkY3bNigixcv6rvvvlOdOnUs6SdOnEiTN6O2Tf1W9t5V6WyJUhUtWlR79+5VgwYNHvgaPuz9XLt2bSUmJurrr7/W6dOnLZ2ZOnXqWDo5ISEh6U6kz0z9pcd372bk+vXrWrJkidq0aaOWLVum2d+rVy/NnTtX9erVs9Tpt99+y7BOly9fVnR0tIYPH64hQ4ZY0lO/BU/l5+cnd3f3NOnSnXvobo9yrz+qu6/53ujpo1q4cKE6duxoGRIq3RnadO/7vmjRovrtt9/uW1ZG7/G7/y7dG4E4dOiQTX8vHvR/0ZZ6ZVZq+3t7ez/UfdCkSRPNnz9fc+fOVf/+/R9LXR50T2b2HpAybp/H/Znln/5SLDswJwd2bf369el+o5Y6bOHucLuHh4dNTwhu0aKFnJ2dNXz48DTnMAzDEs6+du2abt++bbW/bNmycnJysgxpunTpUpryU79hundpWltltp6p2rRpo4SEBM2ePVurVq1K801sRESEvL29NWrUqHSfXZPekrUPMnz4cF28eFFdunRJ01bSnaEvy5YtkyQ1atRIZ8+etVox6vbt25oyZYo8PT1Vt25dm8+fyta2upuzs7NMJpNVZODkyZPpPhE6s++18PBwubq66sMPP7SqzxdffKGrV69aVmx7VI0aNZKkNE8RT41YPK7z3Kt169ZKTk7WyJEj0+y7ffu2pY1Sv3W8uw0SExP18ccfpznOw8Mj3aEbqR8mUue7SHeiOJ999plN9T19+rSmT5+eZt/NmzctqyU9yv1crVo15ciRQ6NHj1bu3LlVunRpSXc6P9u2bdPGjRvTjeJkRlbcu+n5/vvvdf36dfXo0UMtW7ZMszVp0kSLFi1SQkKCKlWqpMKFC2vSpElp7onU1zu9119K+351dnZWRESEFi9erNjYWEv6gQMH9OOPP1rlfZR7/VE999xz8vLyUlRUlG7dupXm3I/C2dk5TRlTpkxJE7F84YUXLMO375V6fOozXO59XSpXrix/f39NmzbN6v28cuVKHThwIFN/LzLzfzEjGd3jmRUWFqaiRYtq3LhxVvNPUz3oPmjdurVKlSqlkSNHatu2benmyezrmNl7MrP3gJTx6/Y4P7OknseWz0xPIiI5sGtvvPGGbty4oebNmys0NFSJiYnasmWLJUJx98TisLAwrV27VhMmTFD+/PlVuHBhqwml9ypatKjee+89DRw4UCdPnlSzZs3k5eWlEydO6Pvvv1e3bt3Ur18/rVu3Tj179lSrVq0UEhKi27dva86cOXJ2draMiR4xYoR++uknNW7cWEFBQYqLi9PHH3+sp556yur5LRk5evRout98VaxYUY0bN85UPVNVqlRJxYoV06BBg5SQkGA1VE268+3XJ598ohdffFGVKlVS27Zt5efnp9jYWC1fvlw1a9bU1KlTH1jnu7Vp00b79u3T+++/rz179qhdu3YKCgrSxYsXtWrVKkVHR1uGfHXr1k2ffvqpOnXqpN27dys4OFgLFy7U5s2bNWnSpEwvYJCezL6m6WncuLEmTJighg0bqn379oqLi9NHH32kYsWKpZkTk9n3mp+fnwYOHKjhw4erYcOGatq0qQ4dOqSPP/5YVapUeWwP2Sxfvrw6duyozz77zDI0bMeOHZo9e7aaNWtm07AiW9StW1evvvqqoqKiFBMTo+eee045cuTQkSNH9O2332ry5Mlq2bKlatSooVy5cqljx47q1auXTCaT5syZk+4HibCwMC1YsEB9+/ZVlSpV5OnpqcjISJUuXVpPP/20Bg4cqEuXLil37tyaP39+up3qjLz44ov65ptv1L17d61fv141a9ZUcnKyDh48qG+++UY//vijKleu/Ej3c86cORUWFqZt27ZZnpEj3YnkXL9+XdevX3/oTk5W3LvpmTt3rvLkyZPh8uJNmzbV9OnTtXz5crVo0UKffPKJIiMjVaFCBXXu3Fn58uXTwYMH9fvvv+vHH3+Ut7e36tSpozFjxigpKUkFChTQ6tWr043kDR8+XKtWrVLt2rX1+uuvW74AKV26tNV9+Cj3+qPy9vbWxIkT1aVLF1WpUsXyrK69e/fqxo0baZ75ZYsmTZpozpw58vHxUalSpbR161atXbtWefLkscr39ttva+HChWrVqpVefvllhYWF6dKlS1q6dKmmTZum8uXLq2jRovL19dW0adPk5eUlDw8PVatWTYULF9bo0aPVuXNn1a1bV+3atbMsIR0cHKw+ffo8sJ6Z+b+YkYzu8cxycnLS559/rueff16lS5dW586dVaBAAZ0+fVrr16+Xt7e3ZZno9OTIkUPff/+9ZVnsFi1aWJ5xc/r0aS1dulSxsbGZ6uxl9p605R4ICwuTdGchhLZt2ypHjhyKjIx8rJ9ZUs9jy2emJ1KWrt0GPKKVK1caL7/8shEaGmp4enoarq6uRrFixYw33njDOHfunFXegwcPGnXq1DHc3d0NSZalEVOXG85oOdhFixYZtWrVMjw8PAwPDw8jNDTU6NGjh3Ho0CHDMAzj+PHjxssvv2wULVrUcHNzM3Lnzm3Uq1fPWLt2raWM6Oho4//+7/+M/PnzG66urkb+/PmNdu3aGYcPH37gNQYFBWW4pOgrr7yS6XrebdCgQYYko1ixYhmed/369UZERITh4+NjuLm5GUWLFjU6depk7Nq1y5InM0tI3y21Hfz9/Q0XFxfDz8/PiIyMNJYsWWKV79y5c0bnzp2NvHnzGq6urkbZsmXTLHOauoT02LFj05znUV9Tw0h/CekvvvjCKF68uGE2m43Q0FBj5syZ6bZBRu+1jJY5njp1qhEaGmrkyJHDCAgIMF577bU0y+3WrVvXKF26dJprSa+e6UlKSjKGDx9uFC5c2MiRI4dRsGBBY+DAgVbLM6eWZ8sS0pnJ+9lnnxlhYWGGu7u74eXlZZQtW9bo37+/8ddff1nybN682Xj66acNd3d3I3/+/Jbl4HXP8s/x8fFG+/btDV9fX0OS1bUfO3bMCA8PN8xmsxEQEGD897//NdasWZPuEtLptaVh3Fk+d/To0Ubp0qUNs9ls5MqVywgLCzOGDx9uWTL2Ue5nwzCMt99+25BkjB492iq9WLFihiTj2LFjVump75udO3dapae3PHZq+oPu3Yxeuwfd0+fOnTNcXFyMF198McM8N27cMHLmzGk0b97ckrZp0ybj2WefNby8vAwPDw+jXLlyxpQpUyz7//zzT6N58+aGr6+v4ePjY7Rq1cr466+/DEnG0KFDrcrfuHGjERYWZri6uhpFihQxpk2blmG9M3OvZ/R+yGj5fklGjx49LL9ndF8vXbrUqFGjhuHu7m54e3sbVatWNb7++usM2+3usu59rVNdvnzZ8rfR09PTiIiIMA4ePGgEBQWlWe734sWLRs+ePY0CBQoYrq6uxlNPPWV07NjRuHDhgiXPkiVLjFKlShkuLi5plpNesGCBUbFiRcNsNhu5c+c2OnToYPz5559W58jofZSZ/4sZyegeT32/37v0cer/gnv/R+zZs8do0aKFkSdPHsNsNhtBQUFG69atjejo6AfWwTDuLAU+YsQIo2LFipbPFwULFjRatmxp/PDDD1Z5H/S6ZeaetOUeGDlypFGgQAHDyckpzXvvcXxmMYyM/485EpNhZNPsOgAAAADIAszJAQAAAOBQ6OQAAAAAcCh0cgAAAAA4FDo5AAAAABwKnRwAAAAADoVODgAAAACHQicHAAAAgENxye4KAP9Gy3OUyO4qAAAAGzVOOpRt587Kzw7ZeV1ZhUgOAAAAAIdCJAcAAACwc6YcpuyuwhOFSA4AAAAAh0IkBwAAALBzTi5EcmxBJAcAAACAQyGSAwAAANg5Uw5iE7agkwMAAADYOYar2YYuIQAAAACHQiQHAAAAsHMsIW0bIjkAAAAAHAqRHAAAAMDOMSfHNkRyAAAAADgUIjkAAACAnWNOjm2I5AAAAABwKERyAAAAADvHnBzb0MkBAAAA7JzJmU6OLRiuBgAAAMChEMkBAAAA7JwTkRybEMkBAAAA4FCI5AAAAAB2zuREJMcWRHIAAAAAOBQiOQAAAICdMzkTm7AFrQUAAADAoRDJAQAAAOwcq6vZhk4OAAAAYOdYeMA2DFcDAAAA4FCI5AAAAAB2juFqtiGSAwAAAMChEMkBAAAA7JyJSI5NiOQAAAAAcChEcgAAAAA7Z3IiNmELWgsAAACAQyGSAwAAANg5npNjGzo5AAAAgJ1jCWnbMFwNAAAAgEMhkgMAAADYOYar2YZIDgAAAACHQiQHAAAAsHMsIW0bWgsAAACAQyGSAwAAANg55uTYhkgOAAAAgEz76KOPFBwcLDc3N1WrVk07duy4b/4rV66oR48eypcvn8xms0JCQrRixYosrSORHAAAAMDO2ctzchYsWKC+fftq2rRpqlatmiZNmqSIiAgdOnRI/v7+afInJibq2Weflb+/vxYuXKgCBQro1KlT8vX1zdJ60skBAAAA7Jy9DFebMGGCunbtqs6dO0uSpk2bpuXLl2vGjBkaMGBAmvwzZszQpUuXtGXLFuXIkUOSFBwcnOX1ZLgaAAAA8C+WkJCga9euWW0JCQlp8iUmJmr37t0KDw+3pDk5OSk8PFxbt25Nt+ylS5eqevXq6tGjhwICAlSmTBmNGjVKycnJWXY9Ep0cAAAAwO6ZnJyybIuKipKPj4/VFhUVlaYOFy5cUHJysgICAqzSAwICdPbs2XTrffz4cS1cuFDJyclasWKFBg8erPHjx+u9997LknZKxXA1AAAA4F9s4MCB6tu3r1Wa2Wx+LGWnpKTI399fn332mZydnRUWFqbTp09r7NixGjp06GM5R3ro5AAAAAB2Livn5JjN5kx1avLmzStnZ2edO3fOKv3cuXMKDAxM95h8+fIpR44ccnZ2tqSVLFlSZ8+eVWJiolxdXR+t8hlguBoAAACAB3J1dVVYWJiio6MtaSkpKYqOjlb16tXTPaZmzZo6evSoUlJSLGmHDx9Wvnz5sqyDI9HJAQAAAOyeycmUZZst+vbtq+nTp2v27Nk6cOCAXnvtNV2/ft2y2tpLL72kgQMHWvK/9tprunTpkt58800dPnxYy5cv16hRo9SjR4/H2j73YrgaAAAAgExp06aNzp8/ryFDhujs2bOqUKGCVq1aZVmMIDY2Vk5O/4ujFCxYUD/++KP69OmjcuXKqUCBAnrzzTf1zjvvZGk9TYZhGFl6hn+QYRh69dVXtXDhQl2+fFl79uxRhQoVsrtaQBrLc5TI7ioAAAAbNU46lG3nPtyuYZaVHfL1qiwrO7s41HC1VatWadasWVq2bJnOnDmjMmXKPPAYk8mkxYsXZ33lAABPnKDX2qvekWg1/PtX1dj8jXyqlM0w79Nrv1TjpENptipLPk03f5mPhqtx0iEF9+qYVdUH4ECycglpR+RQw9WOHTumfPnyqUaNGv/4ubNydYiHlZV1SkpKsjy11lEYhqHk5GS5uDjUbQHgIeVr9bxKjh2o33oM1ZUde1W4V0dVW/6FNpRuqMTzl9Lk393qDTm5/u/vYo48vqq9e4nOLEr7DWnA/4XLt1p53Tp9Ls0+AMCjc5iuW6dOnfTGG28oNjZWJpNJwcHBCg4O1qRJk6zyVahQQcOGDZMkBQcHS5KaN29uOSa1rGbNmlkd17t3bz3zzDOW35955hn17NlTvXv3Vt68eRURESFJ+u233/T888/L09NTAQEBevHFF3XhwoVMXUNKSorGjBmjYsWKyWw2q1ChQnr//fct+9955x2FhIQoZ86cKlKkiAYPHqykpCTL/mHDhqlChQr6/PPPVbhwYbm5uUmSrly5oi5dusjPz0/e3t6qX7++9u7da3XuJUuWqFKlSnJzc1ORIkU0fPhw3b5927LfZDLpk08+UdOmTeXh4WFVr4z8/vvvatKkiby9veXl5aXatWvr2LFjlmsdMWKEnnrqKZnNZst4zlQnT56UyWTSd999p3r16ilnzpwqX758mqfpbt68Wc8884xy5sypXLlyKSIiQpcvX7acIyoqSoULF5a7u7vKly+vhQsXWo7dsGGDTCaTVq5cqbCwMJnNZm3atEnPPPOMevXqpf79+yt37twKDAy0vGekO52hYcOGqVChQjKbzcqfP7969er1wPYA8GQp3Luz/vjiG/05+zvFHzimfa8PVfKNWyrY6YV08yddvqqEcxcsW97wmkq+cUtnFlp3csz5/VV60mDFvNRPKXf9DQeA+3FyNmXZ5ogcppMzefJky4fmM2fOaOfOnQ88JjXPzJkzM33M3WbPni1XV1dt3rxZ06ZN05UrV1S/fn1VrFhRu3bt0qpVq3Tu3Dm1bt06U+UNHDhQH3zwgQYPHqz9+/dr3rx5Vk+U9fLy0qxZs7R//35NnjxZ06dP18SJE63KOHr0qBYtWqTvvvtOMTExkqRWrVopLi5OK1eu1O7du1WpUiU1aNBAly7d+Sby559/1ksvvaQ333xT+/fv16effqpZs2al6cgMGzZMzZs31759+/Tyyy/f91pOnz6tOnXqyGw2a926ddq9e7defvllS8dp8uTJGj9+vMaNG6dff/1VERERatq0qY4cOWJVzqBBg9SvXz/FxMQoJCRE7dq1s5QRExOjBg0aqFSpUtq6das2bdqkyMhIJScnS5KioqL05Zdfatq0afr999/Vp08f/ec//9HGjRutzjFgwAB98MEHOnDggMqVKyfpzmvr4eGh7du3a8yYMRoxYoTWrFkjSVq0aJEmTpyoTz/9VEeOHNHixYtVtmzGQ1gAPHlMOXLIp1JpXYje8r9Ew9CFdVvk+3TFTJVRsPMLOvPNciXfuHlXwSZVmDVWxyd8ofj9Rx9zrQEAqRxmXI6Pj4+8vLzk7Oyc4cOI7uXn5ydJ8vX1zfQxdytevLjGjBlj+f29995TxYoVNWrUKEvajBkzVLBgQR0+fFghISEZlvX3339r8uTJmjp1qjp2vDM+u2jRoqpVq5Ylz7vvvmv5OTg4WP369dP8+fPVv39/S3piYqK+/PJLy7Vt2rRJO3bsUFxcnOUhT+PGjdPixYu1cOFCdevWTcOHD9eAAQMs5y1SpIhGjhyp/v37Wz2Jtn379pblAR/ko48+ko+Pj+bPn28Z1nb39Y8bN07vvPOO2rZtK0kaPXq01q9fr0mTJumjjz6y5OvXr58aN24sSRo+fLhKly6to0ePKjQ0VGPGjFHlypX18ccfW/KXLl1akpSQkKBRo0Zp7dq1lnXbixQpok2bNunTTz9V3bp1LceMGDFCzz77rFX9y5UrZ7n24sWLa+rUqYqOjtazzz6r2NhYBQYGKjw8XDly5FChQoVUtWrVTLULgCeDa95ccnJxUULcRav0hHMX5VGiyAOP96lSVt5lSujXboOs0ou+3VXG7ds6OeXLx1pfAI4vKx8G6ogcppOTHcLCwqx+37t3r9avXy9PT880eY8dO3bfTs6BAweUkJCgBg0aZJhnwYIF+vDDD3Xs2DHFx8fr9u3b8vb2tsoTFBRk6eCk1ik+Pl558uSxynfz5k3L0LG9e/dq8+bNVpGb5ORk3bp1Szdu3FDOnDklSZUrV86wbveKiYlR7dq10523c+3aNf3111+qWbOmVXrNmjXTDKNLjaxId56YK0lxcXEKDQ1VTEyMWrVqle75jx49qhs3bqTpvCQmJqpiRetvYdO7rrvPm3ruuLg4SXciY5MmTVKRIkXUsGFDNWrUSJGRkRnO5UlISFBCQoJVWpKRohwmhwmkArhHwc4tdW3fIV3duc+S5l2ptILfeEmbqrbIxpoBwL+DQ3dynJycdO8K2UmZGP+c2eM8PDysfo+Pj1dkZKRGjx6dJm/qB/SMuLu733f/1q1b1aFDBw0fPlwRERGWKMn48eMfWKd8+fJpw4YNacr09fW15Bk+fLhatEj7jzd1Xk96Zd/Pg64ns+7uJJlMd77BSH1i7v3OER8fL0lavny5ChQoYLUvNaKVKr3rurdzZjKZLOctWLCgDh06pLVr12rNmjV6/fXXNXbsWG3cuDHdTl1UVJSGDx9uldbOlFsdnPNmWH8A2SvxwmWl3L4ts7/1F0TmgDxKOHv/eZbOOd2Vv3VjHR7+oVV67lqVZfbPo/rH11vSnFxcVGrMOyr8xktaXzzjL7kAwFFXQcsqDt3J8fPz05kzZyy/X7t2TSdOnLDKkyNHDsscjruP++2336zSYmJiHriaWKVKlbRo0SIFBwfbvEJX8eLF5e7urujoaHXp0iXN/i1btigoKEiDBv1v6MOpU6ceWG6lSpV09uxZubi4WBZWSC/PoUOHVKxYMZvqfD/lypXT7Nmz012FzdvbW/nz59fmzZutho1t3rzZpmFf5cqVU3R0dJoOhCSVKlVKZrNZsbGxVud4XNzd3RUZGanIyEj16NFDoaGh2rdvnypVqpQm78CBA9W3b1+rtHW5w9LkA2A/jKQkXf3ld+WtX13nlkbfSTSZlKdedZ36+Kv7HpuvZUM5mV11eu5Sq/TTXy2xnuMjqdryL/Tn3CX6c/Z3j7X+APBv59CdnPr162vWrFmKjIyUr6+vhgwZImdnZ6s8wcHBio6OVs2aNWU2m5UrVy7Vr19fY8eO1Zdffqnq1avrq6++0m+//ZZmmNO9evTooenTp6tdu3aWlbmOHj2q+fPn6/PPP09z7ru5ubnpnXfeUf/+/eXq6qqaNWvq/Pnz+v333/XKK6+oePHiio2N1fz581WlShUtX75c33///QPbIDw8XNWrV1ezZs00ZswYhYSE6K+//tLy5cvVvHlzVa5cWUOGDFGTJk1UqFAhtWzZUk5OTtq7d69+++03vffee5lr7Hv07NlTU6ZMUdu2bTVw4ED5+Pho27Ztqlq1qkqUKKG3335bQ4cOVdGiRVWhQgXNnDlTMTExmjt3bqbPMXDgQJUtW1avv/66unfvLldXV61fv16tWrVS3rx51a9fP/Xp00cpKSmqVauWrl69qs2bN8vb29sy/+hhzJo1S8nJyapWrZpy5sypr776Su7u7goKCko3v9lsThM9YqgaYP9OTJqp8jNG68ru33R1568K7tVRLh7u+uP/d0jKzxytW6fP6dC7E6yOK9i5pc4tWaukS1es0pMuXUmTlpKUpIRzF3T9sPUXcABwL+bk2MahP2kNHDhQdevWVZMmTdS4cWM1a9ZMRYsWtcozfvx4rVmzRgULFrR0YiIiIjR48GD1799fVapU0d9//62XXnrpgedLjU4kJyfrueeeU9myZdW7d2/5+vrKKRMhxsGDB+utt97SkCFDVLJkSbVp08YyD6Rp06bq06ePevbsqQoVKmjLli0aPHjwA8s0mUxasWKF6tSpo86dOyskJERt27bVqVOnLCu3RUREaNmyZVq9erWqVKmip59+WhMnTszwQ3tm5MmTR+vWrVN8fLzq1q2rsLAwTZ8+3RLV6dWrl/r27au33npLZcuW1apVq7R06VIVL1480+cICQnR6tWrtXfvXlWtWlXVq1fXkiVLLFG0kSNHavDgwYqKilLJkiXVsGFDLV++XIULF37o65LuDPObPn26atasqXLlymnt2rX64Ycf0sx7AvBkO/PtSh14Z7RChvZSrV1L5F2+pHY06aLE/78YgXvBfDLn87M6xiOksHLXqqw/Zi5Mr0gAeGgmJ1OWbY7IZNw7+QRAllueo0R2VwEAANiocdKhbDv3qW7NsqzsoM8WZ1nZ2cWhh6sBAAAAjoCFB2xDa/1DYmNj5enpmeEWGxub3VW0Sffu3TO8lu7du2d39QAAAPAvRiTnH5I/f37FxMTcd/+TZMSIEerXr1+6++59dg8AAAAejaPOnckqdHL+IS4uLo91iebs5u/vL39//+yuBgAAAJAGnRwAAADAzjEnxza0FgAAAACHQiQHAAAAsHcm5uTYgkgOAAAAAIdCJAcAAACwc6yuZhs6OQAAAICdY+EB29BaAAAAABwKkRwAAADAzjFczTZEcgAAAAA4FCI5AAAAgJ1jTo5taC0AAAAADoVIDgAAAGDnmJNjGyI5AAAAABwKkRwAAADAzhHJsQ2dHAAAAMDesfCATWgtAAAAAA6FSA4AAABg50wmhqvZgkgOAAAAAIdCJAcAAACwczwM1Da0FgAAAACHQiQHAAAAsHMsIW0bIjkAAAAAHAqRHAAAAMDeMSfHJnRyAAAAADvHcDXb0CUEAAAA4FCI5AAAAAB2zmQiNmELWgsAAACAQyGSAwAAANg75uTYhEgOAAAAAIdCJAcAAACwcyaWkLYJrQUAAADAoRDJAQAAAOwcz8mxDZ0cAAAAwN6xhLRNaC0AAAAADoVIDgAAAGDnGK5mGyI5AAAAABwKkRwAAADA3rGEtE1oLQAAAACZ9tFHHyk4OFhubm6qVq2aduzYkanj5s+fL5PJpGbNmmVtBUUnBwAAALB7JpMpyzZbLFiwQH379tXQoUP1yy+/qHz58oqIiFBcXNx9jzt58qT69eun2rVrP0ozZBqdHAAAAACZMmHCBHXt2lWdO3dWqVKlNG3aNOXMmVMzZszI8Jjk5GR16NBBw4cPV5EiRf6RetLJAQAAAOydk1OWbQkJCbp27ZrVlpCQkKYKiYmJ2r17t8LDw++qlpPCw8O1devWDKs+YsQI+fv765VXXsmSpkkPnRwAAADAzpmcTFm2RUVFycfHx2qLiopKU4cLFy4oOTlZAQEBVukBAQE6e/ZsuvXetGmTvvjiC02fPj1L2iUjrK4GAAAA/IsNHDhQffv2tUozm82PXO7ff/+tF198UdOnT1fevHkfuTxb0MkBAAAA7J0p6wZgmc3mTHVq8ubNK2dnZ507d84q/dy5cwoMDEyT/9ixYzp58qQiIyMtaSkpKZIkFxcXHTp0SEWLFn3E2qeP4WoAAAAAHsjV1VVhYWGKjo62pKWkpCg6OlrVq1dPkz80NFT79u1TTEyMZWvatKnq1aunmJgYFSxYMMvqSiQHAAAAsHdOti31nFX69u2rjh07qnLlyqpataomTZqk69evq3PnzpKkl156SQUKFFBUVJTc3NxUpkwZq+N9fX0lKU3640YnBwAAAECmtGnTRufPn9eQIUN09uxZVahQQatWrbIsRhAbGysnp+wfLGYyDMPI7koA/zbLc5TI7ioAAAAbNU46lG3nvv7poCwr2+PV97Os7OyS/d0sAAAAAHiMGK4GZIN8dfyyuwoAAOBJYidzcp4UdHIAAAAAO2eyg3kuTxJaCwAAAIBDIZIDAAAA2DsTw9VsQSQHAAAAgEMhkgMAAADYO+bk2ITWAgAAAOBQiOQAAAAA9o45OTYhkgMAAADAoRDJAQAAAOwcz8mxDZ0cAAAAwN6Z6OTYgtYCAAAA4FCI5AAAAAD2zomFB2xBJAcAAACAQyGSAwAAANg5E3NybEJrAQAAAHAoRHIAAAAAe8ecHJsQyQEAAADgUIjkAAAAAPaOOTk2oZMDAAAA2DsTw9VsQZcQAAAAgEMhkgMAAADYOydiE7agtQAAAAA4FCI5AAAAgL1j4QGb0FoAAAAAHAqRHAAAAMDe8TBQmxDJAQAAAOBQiOQAAAAA9o45OTahtQAAAAA4FCI5AAAAgL0zMSfHFnRyAAAAAHvHw0BtQmsBAAAAcChEcgAAAAB7x3A1mxDJAQAAAOBQiOQAAAAA9o4lpG1CawEAAABwKERyAAAAAHvH6mo2obUAAAAAOBQiOQAAAIC9Y3U1m9DJAQAAAOwdCw/YhNYCAAAA4FCI5AAAAAD2juFqNiGSAwAAAMChEMkBAAAA7B1LSNuE1gIAAADgUIjkAAAAAHbOYE6OTYjkAAAAAHAoRHIAAAAAe8dzcmxCJwcAAACwd3RybEJrAQAAAHAoRHIAAAAAO8fCA7YhkgO7MWvWLPn6+j6WsjZs2CCTyaQrV648lvKy+zwAAAD24qOPPlJwcLDc3NxUrVo17dixI8O806dPV+3atZUrVy7lypVL4eHh983/uBDJwSPp1KmTrly5osWLF2d3VQDgscv7fy0U0LqdcuTOrZvHjumPKRN149CBDPM7e3gq/yvd5Furjpy9vJUYd05/fjRZ13Zsu1NeZDP5NW0m14B8kqSbp07o7JxZlv0AkCE7mZOzYMEC9e3bV9OmTVO1atU0adIkRURE6NChQ/L390+Tf8OGDWrXrp1q1KghNzc3jR49Ws8995x+//13FShQIMvqaR+tBQCAncn1TH091b2nznw5Uwe7v6Kbx46q2OgJcskg4mxycVGxMRPlGhCo48MHa3+n9oodP1pJFy5Y8iRdOK/T06fp4Guv6ODrXRS/5xcVGRElt6DC/9BVAcCjmTBhgrp27arOnTurVKlSmjZtmnLmzKkZM2akm3/u3Ll6/fXXVaFCBYWGhurzzz9XSkqKoqOjs7SedHKQKQsXLlTZsmXl7u6uPHnyKDw8XG+//bZmz56tJUuWyGQyyWQyacOGDekO4YqJiZHJZNLJkyctabNmzVKhQoWUM2dONW/eXBcvXrTsO3nypJycnLRr1y6rekyaNElBQUFKSUmx+RoWLVqk0qVLy2w2Kzg4WOPHj7faP2fOHFWuXFleXl4KDAxU+/btFRcXZ5VnxYoVCgkJkbu7u+rVq2d1PQAci3/Ltrqw4gdd+nGFbp06qdhJY5WScEt5GjZJN3+eho3l4u2tY0MG6vrv+5R47qzif43RzeNHLXmubt2sazu2KeH0n0r48w/9NeMzpdy8KY9Spf6pywLwpDKZsmxLSEjQtWvXrLaEhIQ0VUhMTNTu3bsVHh5uSXNyclJ4eLi2bt2aqcu4ceOGkpKSlDt37sfWNOmhk4MHOnPmjNq1a6eXX35ZBw4c0IYNG9SiRQsNHTpUrVu3VsOGDXXmzBmdOXNGNWrUyFSZ27dv1yuvvKKePXsqJiZG9erV03vvvWfZHxwcrPDwcM2cOdPquJkzZ6pTp05ycrLtrbt79261bt1abdu21b59+zRs2DANHjxYs2bNsuRJSkrSyJEjtXfvXi1evFgnT55Up06dLPv/+OMPtWjRQpGRkYqJiVGXLl00YMAAm+oB4MlgcnFRzpAQ/f3LXV+0GIb+/mWXPEqVTvcYnxq1dH3/byrU6y2VXbhUJT//UgHtX5Qy+nvl5KRc9RrIyc1N1/f/ngVXAQCZExUVJR8fH6stKioqTb4LFy4oOTlZAQEBVukBAQE6e/Zsps71zjvvKH/+/FYdpazAnBw80JkzZ3T79m21aNFCQUFBkqSyZctKktzd3ZWQkKDAwECbypw8ebIaNmyo/v37S5JCQkK0ZcsWrVq1ypKnS5cu6t69uyZMmCCz2axffvlF+/bt05IlS2y+hgkTJqhBgwYaPHiw5Xz79+/X2LFjLR2Zl19+2ZK/SJEi+vDDD1WlShXFx8fL09NTn3zyiYoWLWqJAJUoUUL79u3T6NGj73vuhISENN+GJKakyNXGjhqAf46Lj49Mzi66ffmSVfrty5fkVjAo3WPM+fLLtWIlXYpeo6MD35ZbgQIq+OZbMjm76Oyc/31h41a4iEpMmSYnV1cl37yp40P/q1unTmbl5QBwBFn4uWHgwIHq27evVZrZbH7s5/nggw80f/58bdiwQW5ubo+9/LvxKQsPVL58eTVo0EBly5ZVq1atNH36dF2+fPmRyjxw4ICqVatmlVa9enWr35s1ayZnZ2d9//33ku4Mb6tXr56Cg4Mf6nw1a9a0SqtZs6aOHDmi5ORkSXeiPZGRkSpUqJC8vLxUt25dSVJsbGym65ye9L4dmXnyT5uvAYCdc3LS7ctXFDthjG4eOaTLG9bp7Nwv5Rf5f1bZEv6I1cFunXWwx6u6sHSxgt4ZJLeg4OypM4AnhmEyZdlmNpvl7e1ttaXXycmbN6+cnZ117tw5q/Rz58498AvvcePG6YMPPtDq1atVrly5x9o26aGTgwdydnbWmjVrtHLlSpUqVUpTpkxRiRIldOLEiXTzpw4lMwzDkpaUlGTzeV1dXfXSSy9p5syZSkxM1Lx586yiLY/T9evXFRERIW9vb82dO1c7d+60dK4SExMfqeyBAwfq6tWrVlvn4KceR7UBZJHbV6/KSL4tl1zWY8ZdcuVW0qWL6R6TdPGCbv35h3TXnMFbsaeUI09emVz+N3DCuH1bCX+d1s0jh/TXF5/q5rFj8mvRKmsuBAAeI1dXV4WFhVktGpC6iMD9vvgdM2aMRo4cqVWrVqly5cr/RFXp5CBzTCaTatasqeHDh2vPnj1ydXXV999/L1dXV0skJJWfn5+kO8PcUsXExFjlKVmypLZv326Vtm1b2iVUu3TporVr1+rjjz+2DJl7GCVLltTmzZut0jZv3qyQkBA5Ozvr4MGDunjxoj744APVrl1boaGhaRYdKFmyZJp13dOr873S+3aEoWqAfTNu39aNw4flVTHsf4kmk7wqhmU4f+b67/tkLlDgzkTe/8/8VEElXrgg4/btDM9lcjLJKUeOx1Z3AA7K5JR1mw369u2r6dOna/bs2Tpw4IBee+01Xb9+XZ07d5YkvfTSSxo4cKAl/+jRozV48GDNmDFDwcHBOnv2rM6ePav4+PjH2jz34pMWHmj79u0aNWqUdu3apdjYWH333Xc6f/68SpYsqeDgYP366686dOiQLly4oKSkJBUrVkwFCxbUsGHDdOTIES1fvjzNSma9evXSqlWrNG7cOB05ckRTp061mo+TqmTJknr66af1zjvvqF27dnJ3d3+oa3jrrbcUHR2tkSNH6vDhw5o9e7amTp2qfv36SZIKFSokV1dXTZkyRcePH9fSpUs1cuRIqzK6d++uI0eO6O2339ahQ4c0b948q4ULADiWuIXzlbdxpHI/11BuhYJUsHc/Obm56+KPyyVJQe+8q/yvvGrJf37pYrl4eeupHm/K/FRBeVerrsD2L+rCku8sefK/8qo8y5aXa0Cg3AoXufN7+Yq6FL36H78+AHgYbdq00bhx4zRkyBBVqFBBMTExWrVqlWUxgtjYWKsvuj/55BMlJiaqZcuWypcvn2UbN25cltbTZNw9pghIx4EDB9SnTx/98ssvunbtmoKCgvTGG2+oZ8+eOn/+vDp06KCtW7cqPj5e69ev1zPPPKPNmzfrtdde05EjR1SlShX16tVLrVq10okTJyxzambMmKGhQ4fq4sWLCg8PV926dTVy5EirpadT873yyivasWOHqlSpkqk6b9iwQfXq1dPly5fl+/+fabFo0SINGTJER44cUb58+fTGG29YOjmS9PXXX+u///2vzpw5o0qVKmngwIFq2rSp9uzZowoVKkiSli1bpj59+uiPP/5Q1apV1blzZ7388stW58mMXxrUynReANnH7/9ayL9Ne+XIlVs3jx3VH1Mn6cbB/ZKk4uOnKPHcGZ0aM8qS36NUaT31Wi+5FyumpAsXdGHlMp2bP9cyhK1QvwHyqhimHLnzKPn6dd08fkznFnylv3fvSvf8AOxLpehN2Xbu+G1Ls6xsz6ebZlnZ2YVODuzeyJEj9e233+rXX3/N7qo8NnRyAAB48tDJeXKwhDTsVnx8vE6ePKmpU6daPUMHAADgX+eu+X54MObkwG717NlTYWFheuaZZ9Ksqta9e3d5enqmu3Xv3j2bagwAAAB7wHA1PJHi4uJ07dq1dPd5e3vL39//H66RbRiuBgDAkyc7h6v9vWN5lpXtVbVxlpWdXRiuhieSv7+/3XdkAAAAHhuGq9mE4WoAAAAAHAqRHAAAAMDe2fjQzn87WgsAAACAQyGSAwAAANg5gzk5NiGSAwAAAMChEMkBAAAA7B1zcmxCawEAAABwKERyAAAAADtniDk5tqCTAwAAANg5g+FqNqG1AAAAADgUIjkAAACAvSOSYxNaCwAAAIBDIZIDAAAA2DkeBmobIjkAAAAAHAqRHAAAAMDOsbqabWgtAAAAAA6FSA4AAABg75iTYxM6OQAAAICdY7iabWgtAAAAAA6FSA4AAABg5wwxXM0WRHIAAAAAOBQiOQAAAICdY06ObWgtAAAAAA6FSA4AAABg71hC2iZEcgAAAAA4FCI5AAAAgJ0ziE3YhE4OAAAAYOcMhqvZhC4hAAAAAIdCJAcAAACwcywhbRtaCwAAAIBDIZIDAAAA2DlDzMmxBZEcAAAAAA6FSA4AAABg55iTYxtaCwAAAIBDIZIDAAAA2Dmek2MbIjkAAAAAHAqRHAAAAMDOsbqabejkAAAAAHaOhQdsQ2sBAAAAcChEcgAAAAA7x3A12xDJAQAAAOBQiOQAAAAAdo45ObahtQAAAAA4FCI5AAAAgJ1jTo5tiOQAAAAAcChEcgAAAAA7x5wc29DJAQAAAOwcw9VsQ5cQAAAAQKZ99NFHCg4Olpubm6pVq6YdO3bcN/+3336r0NBQubm5qWzZslqxYkWW15FIDpAN+vtPyu4qAAAAG63NxnMbJvuI5CxYsEB9+/bVtGnTVK1aNU2aNEkRERE6dOiQ/P390+TfsmWL2rVrp6ioKDVp0kTz5s1Ts2bN9Msvv6hMmTJZVk+TYRhGlpUOIF3h7XZldxUAAICN1n5dOdvOfez48Swru2iRIpnOW61aNVWpUkVTp06VJKWkpKhgwYJ64403NGDAgDT527Rpo+vXr2vZsmWWtKeffloVKlTQtGnTHr3yGWC4GgAAAGDnDMOUZVtmJSYmavfu3QoPD7ekOTk5KTw8XFu3bk33mK1bt1rll6SIiIgM8z8uDFcDAAAA/sUSEhKUkJBglWY2m2U2m63SLly4oOTkZAUEBFilBwQE6ODBg+mWffbs2XTznz179jHUPGNEcgAAAAA7Z8gpy7aoqCj5+PhYbVFRUdl9yY+ESA4AAADwLzZw4ED17dvXKu3eKI4k5c2bV87Ozjp37pxV+rlz5xQYGJhu2YGBgTblf1yI5AAAAAB2zpApyzaz2Sxvb2+rLb1Ojqurq8LCwhQdHW1JS0lJUXR0tKpXr55uvatXr26VX5LWrFmTYf7HhUgOAAAAYOfs5WGgffv2VceOHVW5cmVVrVpVkyZN0vXr19W5c2dJ0ksvvaQCBQpYhru9+eabqlu3rsaPH6/GjRtr/vz52rVrlz777LMsrSedHAAAAACZ0qZNG50/f15DhgzR2bNnVaFCBa1atcqyuEBsbKycnP43WKxGjRqaN2+e3n33Xf33v/9V8eLFtXjx4ix9Ro7Ec3KAbMFzcgAAePJk53NyDh77M8vKDi36VJaVnV2YkwMAAADAoTBcDQAAALBz9jIn50lBJAcAAACAQyGSAwAAANg5wyCSYwsiOQAAAAAcCpEcAAAAwM4xJ8c2dHIAAAAAO0cnxzYMVwMAAADgUIjkAAAAAHaOSI5tiOQAAAAAcChEcgAAAAA7xxLStiGSAwAAAMChEMkBAAAA7FwKc3JsQiQHAAAAgEMhkgMAAADYOVZXsw2dHAAAAMDOsfCAbRiuBgAAAMChEMkBAAAA7BzD1WxDJAcAAACAQyGSAwAAANg55uTYhkgOAAAAAIdCJAcAAACwc8zJsQ2RHAAAAAAOhUgOAAAAYOeYk2MbOjkAAACAnUvJ7go8YRiuBgAAAMChEMkBAAAA7BzD1WxDJAcAAACAQyGSAwAAANg5lpC2DZEcAAAAAA6FSA4AAABg55iTYxsiOQAAAAAcCpEcAAAAwM4xJ8c2dHIAAAAAO5diZHcNniwMVwMAAADgUIjkAAAAAHaO4Wq2IZIDAAAAwKEQyQEAAADsHEtI24ZIDgAAAACHQiQHAAAAsHMGq6vZhEgOAAAAAIdi952cYcOGqUKFCtldjSxz8uRJmUwmxcTEZHdVHsrjen3+6dd5w4YNMplMunLlit3UCQAAICMpMmXZ5ohs6uQ888wz6t27dxZV5ckxa9Ys+fr6Znc17stkMmnx4sXZXY10pVe3fv36KTo6OnsqlAF7rBOAf17Hlvm14ONyWj67ksb8N0QFAs0PPCZPrhwa0KOwvvusgpbPrqTpo0sppEhOy343s5N6diqkr6feKfeLsaXVJNwvKy8DwBPOMExZtjmif+WcHMMwlJycLBeXf+XlZ0piYqJcXV3/sfN5enrK09PzHztfZthjnQD8s9pEBqp5Q3+N+eSkzpxPUOdW+fXBgBC9/PZvSkpKf4C8p4ezJg8PVczvf2vg6CO6ei1JBQLd9Hd8siXPay8WVIXSXvrgoxM6ez5Blct5q9fLQbp4OVFbd1/9py4PABxWpiM5nTp10saNGzV58mSZTCaZTCadPHlSv/32m55//nl5enoqICBAL774oi5cuGA5btWqVapVq5Z8fX2VJ08eNWnSRMeOHbMq+88//1S7du2UO3dueXh4qHLlytq+fbtVnjlz5ig4OFg+Pj5q27at/v77b8u+lJQURUVFqXDhwnJ3d1f58uW1cOFCy/7UoUkrV65UWFiYzGazNm3adN/r3bt3r+rVqycvLy95e3srLCxMu3bt0oYNG9S5c2ddvXrV0g7Dhg2TlH6EwtfXV7NmzbL8vmPHDlWsWFFubm6qXLmy9uzZk+bcD2rTZ555Rr169VL//v2VO3duBQYGWuogScHBwZKk5s2by2QyWX6/n9ShWZ9//rkKFy4sNzc3SdKVK1fUpUsX+fn5ydvbW/Xr19fevXszLGfnzp169tlnlTdvXvn4+Khu3br65ZdfHli3e4eGpaSkaMSIEXrqqadkNptVoUIFrVq1yrI/dZjfd999p3r16ilnzpwqX768tm7daslz6tQpRUZGKleuXPLw8FDp0qW1YsUKq/ru3r1blStXVs6cOVWjRg0dOnQoTZuk6tSpk5o1a6bhw4db2qN79+5KTEx8YPsCeDK1eN5fc78/oy27r+hE7E2N/vik8uTKoZqVfTM8pm1koM5fTNS4T0/q0LHrOns+Ubv3XdOZuARLnlIhnlr900XtPfC3zl1I1PJ1F3Ts1A2FFvX4B64KwJPIMLJuc0SZ7uRMnjxZ1atXV9euXXXmzBmdOXNGXl5eql+/vipWrKhdu3Zp1apVOnfunFq3bm057vr16+rbt6927dql6OhoOTk5qXnz5kpJSZEkxcfHq27dujp9+rSWLl2qvXv3qn///pb9knTs2DEtXrxYy5Yt07Jly7Rx40Z98MEHlv1RUVH68ssvNW3aNP3+++/q06eP/vOf/2jjxo1W1zBgwAB98MEHOnDggMqVK3ff6+3QoYOeeuop7dy5U7t379aAAQOUI0cO1ahRQ5MmTZK3t7elHfr165epNoyPj1eTJk1UqlQp7d69W8OGDUtz7JUrVx7YppI0e/ZseXh4aPv27RozZoxGjBihNWvWSLrT0ZCkmTNn6syZM5bfH+To0aNatGiRvvvuO8scoVatWikuLk4rV67U7t27ValSJTVo0ECXLl1Kt4y///5bHTt21KZNm7Rt2zYVL15cjRo1snRKM1u3yZMna/z48Ro3bpx+/fVXRUREqGnTpjpy5IhVvkGDBqlfv36KiYlRSEiI2rVrp9u3b0uSevTooYSEBP3000/at2+fRo8enSYyM2jQII0fP167du2Si4uLXn755fu2UXR0tA4cOKANGzbo66+/1nfffafhw4ffv2EBPJHy+bsqTy5X/fLbNUva9ZvJOnDsukoVzzjKWz3MV4eP39DgN4vo22nlNS2qlBrVz2uVZ//heNUI81WeXDkkSeVLeempfG7a9eu19IoEANgo0+O1fHx85Orqqpw5cyowMFCS9N5776lixYoaNWqUJd+MGTNUsGBBHT58WCEhIXrhhResypkxY4b8/Py0f/9+lSlTRvPmzdP58+e1c+dO5c6dW5JUrFgxq2NSUlI0a9YseXl5SZJefPFFRUdH6/3331dCQoJGjRqltWvXqnr16pKkIkWKaNOmTfr0009Vt25dSzkjRozQs88+m6nrjY2N1dtvv63Q0FBJUvHixa3awmQyWdohs+bNm6eUlBR98cUXcnNzU+nSpfXnn3/qtddes+SZOnXqA9tUksqVK6ehQ4da6jZ16lRFR0fr2WeflZ/fnXHdvr6+NtUxMTFRX375peX4TZs2aceOHYqLi5PZfGcM+rhx47R48WItXLhQ3bp1S1NG/fr1rX7/7LPP5Ovrq40bN6pJkyaZrtu4ceP0zjvvqG3btpKk0aNHa/369Zo0aZI++ugjS75+/fqpcePGkqThw4erdOnSOnr0qEJDQxUbG6sXXnhBZcuWlXTnfXGv999/3/IeGTBggBo3bqxbt25ZIln3cnV11YwZM5QzZ06VLl1aI0aM0Ntvv62RI0fKycnu1/EAYINcPnc6IJev3rZKv3I1Sbl9c2R4XD5/syLD/bRwxTl9veSMShTxUI+OhZR029Cany5KkqbOilWfrkFa8HF53b6dohRDmjj9lPYdjM+6CwLwRDMcdIGArPJIk1L27t2r9evXpztv4dixYwoJCdGRI0c0ZMgQbd++XRcuXLBEaGJjY1WmTBnFxMSoYsWKlg5OeoKDgy0dHEnKly+f4uLiJN2JPty4cSNN5yUxMVEVK1a0SqtcuXKmr61v377q0qWL5syZo/DwcLVq1UpFixbN9PHpSY0g3f0BOrVjliozbSopTSTq7jZ5WEFBQZZOSGpd4uPjlSdPHqt8N2/eTDPkMNW5c+f07rvvasOGDYqLi1NycrJu3Lih2NjYTNfj2rVr+uuvv1SzZk2r9Jo1a6YZKnd3O+TLl0+SFBcXp9DQUPXq1UuvvfaaVq9erfDwcL3wwgtp2i2j4wsVKpRu3cqXL6+cOf83ebh69eqKj4/XH3/8oaCgoHSPSUhIUEJCglVaSnKinJz/uTlPAB6sfs3c6tPlf/fxoDFH7pM7YyYn6fDxG5qx4LQk6ejJmwou6K7IBn6WTk6zCH+VLOapd8ce0bkLiSoX6qk3OhfSxcuJ+uW3v+9XPAAgEx6pkxMfH6/IyEiNHj06zb7UD4yRkZEKCgrS9OnTlT9/fqWkpKhMmTKWeQzu7u4PPE+OHNbfmJlMJqvhbpK0fPlyFShQwCpfavQhlYdH5sc6Dxs2TO3bt9fy5cu1cuVKDR06VPPnz1fz5s0zPMZkMsm4Z2BjUlJSps8pZa5Npfu3ycO6t33i4+OVL18+bdiwIU3ejFaX69ixoy5evKjJkycrKChIZrNZ1atXz7J5K3e3g8l05xuO1Hbo0qWLIiIitHz5cq1evVpRUVEaP3683njjjUwd/7hERUWlGdJWuHRXFSmbNhIGIPts3X1FB49et/yeI8edvwm5fFx06cr//pb7+uTQsZM3Mizn0uUknfrzplVa7Olbql01lyTJNYdJL7ctoGETjmn7njuLDJyIvamiQTnVqkkgnRwA6Upx0LkzWcWmTo6rq6uSk/+3OkylSpW0aNEiBQcHp7tS2cWLF3Xo0CFNnz5dtWvXlqQ0E/7LlSunzz//XJcuXbpvNCcjpUqVktlsVmxsrNXQtMchJCREISEh6tOnj9q1a6eZM2eqefPmadohlZ+fn86cOWP5/ciRI7px43//CEuWLKk5c+ZYDYfatm2bVRkPatPMypEjR7p1tEWlSpV09uxZubi4ZGrxAknavHmzPv74YzVq1EiS9Mcff1gtmpCZunl7eyt//vzavHmz1Wu6efNmVa1a1aZrKFiwoLp3767u3btr4MCBmj59ulUnx1Z79+7VzZs3LZ3zbdu2ydPTUwULFszwmIEDB6pv375Wac26/PbQdQCQNW7eStHNW9ZR14uXE1WxjLeOnbrTacnp7qSSRT30w5qMI+e/H45XwfzWQ16fyuemcxfufNnj4mJSDhcnpdzziSUlRTIxGgUAHgubJhEEBwdr+/btOnnypC5cuKAePXro0qVLateunXbu3Kljx47pxx9/VOfOnZWcnKxcuXIpT548+uyzz3T06FGtW7cuzYe9du3aKTAwUM2aNdPmzZt1/PhxLVq0yGqVrPvx8vJSv3791KdPH82ePVvHjh3TL7/8oilTpmj27Nm2XJ7FzZs31bNnT23YsEGnTp3S5s2btXPnTpUsWdLSDvHx8YqOjtaFCxcsHZn69etr6tSp2rNnj3bt2qXu3btbRQrat28vk8mkrl27av/+/VqxYoXGjRtnde4HtWlmBQcHKzo6WmfPntXly5cfqh3Cw8NVvXp1NWvWTKtXr9bJkye1ZcsWDRo0SLt27Ur3mOLFi2vOnDk6cOCAtm/frg4dOqSJ1mWmbm+//bZGjx6tBQsW6NChQxowYIBiYmL05ptvZrr+vXv31o8//qgTJ07ol19+0fr16y2v4cNKTEzUK6+8Ynn9hg4dqp49e953Po7ZbJa3t7fVxlA14Mnw3co4dWiWT9XDfFS4oLveea2wLl5O0uZdVyx5xgwK0f8997+hvotWnFPJYh5q93+Byh9gVv0audWofl4tWX2nY3TjZor27v9b3ToUVPmSXgr0c9VzdfLo2Tp5tHnnFQFAenhOjm1s6uT069dPzs7OKlWqlPz8/JSYmKjNmzcrOTlZzz33nMqWLavevXvL19dXTk5OcnJy0vz587V7926VKVNGffr00dixY63KdHV11erVq+Xv769GjRqpbNmy+uCDD+Ts7Jzpeo0cOVKDBw9WVFSUSpYsqYYNG2r58uUqXLiwLZdn4ezsrIsXL+qll15SSEiIWrdureeff94y5KhGjRrq3r272rRpIz8/P40ZM0aSNH78eBUsWFC1a9dW+/bt1a9fP6v5G56envrhhx+0b98+VaxYUYMGDUozLC01gpFRm2bW+PHjtWbNGhUsWDDN3KTMMplMWrFiherUqaPOnTsrJCREbdu21alTpxQQEJDuMV988YUuX76sSpUq6cUXX1SvXr3k7+9vc9169eqlvn376q233lLZsmW1atUqLV261GoBiAdJTk5Wjx49LO+JkJAQffzxx5lvgHQ0aNBAxYsXV506ddSmTRs1bdrUavluAI5lwQ9ntfjHOPXpEqyP3ispdzdnDfjgsNUzcvIHmOXj9b8vtA4dv6GhE46pfo3c+nxMaXVokU+fzPlD6zb/b1XK9z48pkPHrmtgz8L6YlwZtW0aqBkLTuuHtef/0esD8ORgCWnbmIx7J5EASFenTp105cqVNM9Cehjh7dKPhAEAAPu19uvML2L1uK34xbZ53rZoVCnjFSMfxaVLl/TGG2/ohx9+kJOTk1544QVNnjw5w4etX7p0SUOHDtXq1asVGxsrPz8/NWvWTCNHjpSPj49N536khQcAAAAAZL2UJ3AJ6Q4dOujMmTNas2aNkpKS1LlzZ3Xr1k3z5s1LN/9ff/2lv/76S+PGjVOpUqV06tQpde/eXX/99ZcWLlxo07n/tZ2c0qVL69SpU+nu+/TTT9WhQ4d/uEZZ6992vQAAAMg+Bw4c0KpVq7Rz507LY1ymTJmiRo0aady4ccqfP3+aY8qUKaNFixZZfi9atKjef/99/ec//9Ht27dtWpTrX9vJWbFiRYbLO2c03+RJ9m+73qwwa9as7K4CAAD4l3rSJphs3bpVvr6+Vs+pDA8Pl5OTk7Zv337fx7Lc7erVq/L29rZ51eF/bScnowc3Oqp/2/UCAAAgc9J7cLnZbE7zzElbnD17Ns3iUy4uLsqdO7fOnj2bqTIuXLigkSNHqls3258taNPqagAAAAD+eVm5hHRUVJR8fHystqioqHTrMWDAAJlMpvtuBw8efOTrvXbtmho3bqxSpUo91Eq2/9pIDgAAAID0H1yeURTnrbfeUqdOne5bXpEiRRQYGKi4OOsHJ9++fVuXLl1SYGDgfY//+++/1bBhQ3l5een777+3eu5kZtHJAQAAAOxcShbOybFlaJqfn5/8/PwemK969eq6cuWKdu/erbCwMEnSunXrlJKSomrVqmV43LVr1xQRESGz2aylS5fKzc0tcxdxD4arAQAAAHisUh/G3rVrV+3YsUObN29Wz5491bZtW8vKaqdPn1ZoaKh27Ngh6U4H57nnntP169f1xRdf6Nq1azp79qzOnj2r5ORkm85PJAcAAACwc0/a6mqSNHfuXPXs2VMNGjSwPAz0ww8/tOxPSkrSoUOHdOPGDUnSL7/8ou3bt0uSihUrZlXWiRMnFBwcnOlz08kBAAAA7JzxBD4MNHfu3Bk++FOSgoODZdzVe3vmmWesfn8UDFcDAAAA4FCI5AAAAAB2LisXHnBERHIAAAAAOBQiOQAAAICdexIXHshORHIAAAAAOBQiOQAAAICdI5JjGyI5AAAAABwKkRwAAADAzqUYT95zcrITnRwAAADAzjFczTYMVwMAAADgUIjkAAAAAHaOSI5tiOQAAAAAcChEcgAAAAA7l0IkxyZEcgAAAAA4FCI5AAAAgJ0zWELaJkRyAAAAADgUIjkAAACAnWN1NdvQyQEAAADsHAsP2IbhagAAAAAcCpEcAAAAwM4xXM02RHIAAAAAOBQiOQAAAICdI5JjGyI5AAAAABwKkRwAAADAzrG6mm2I5AAAAABwKERyAAAAADvHnBzb0MkBAAAA7FxKSnbX4MnCcDUAAAAADoVIDgAAAGDnGK5mGyI5AAAAABwKkRwAAADAzhHJsQ2RHAAAAAAOhUgOAAAAYOd4GKhtiOQAAAAAcChEcgAAAAA7Z2TppBxTFpadPejkAAAAAHaOhQdsw3A1AAAAAA6FSA4AAABg51JSsrsGTxYiOQAAAAAcCpEcAAAAwM4xJ8c2RHIAAAAAOBQiOQAAAICd42GgtiGSAwAAAMChEMkBssGt+OvZXQUAAPAEYU6ObejkAAAAAHbOyNLxaqYsLDt7MFwNAAAAgEMhkgMAAADYORYesA2RHAAAAAAOhUgOAAAAYOdYeMA2RHIAAAAAOBQiOQAAAICdS2FSjk2I5AAAAABwKERyAAAAADvHnBzbEMkBAAAA7JxhZN2WVS5duqQOHTrI29tbvr6+euWVVxQfH5/J6zX0/PPPy2QyafHixTafm04OAAAAgMeuQ4cO+v3337VmzRotW7ZMP/30k7p165apYydNmiSTyfTQ52a4GgAAAGDnUp6w8WoHDhzQqlWrtHPnTlWuXFmSNGXKFDVq1Ejjxo1T/vz5Mzw2JiZG48eP165du5QvX76HOj+RHAAAAOBfLCEhQdeuXbPaEhISHqnMrVu3ytfX19LBkaTw8HA5OTlp+/btGR5348YNtW/fXh999JECAwMf+vx0cgAAAAA7Z6Rk3RYVFSUfHx+rLSoq6pHqe/bsWfn7+1ulubi4KHfu3Dp79myGx/Xp00c1atTQ//3f/z3S+RmuBgAAAPyLDRw4UH379rVKM5vN6eYdMGCARo8efd/yDhw48FD1WLp0qdatW6c9e/Y81PF3o5MDAAAA2DkjC+fkmM3mDDs193rrrbfUqVOn++YpUqSIAgMDFRcXZ5V++/ZtXbp0KcNhaOvWrdOxY8fk6+trlf7CCy+odu3a2rBhQ6bqKNHJAQAAAJBJfn5+8vPze2C+6tWr68qVK9q9e7fCwsIk3enEpKSkqFq1aukeM2DAAHXp0sUqrWzZspo4caIiIyNtqiedHAAAAMDOpaRkdw1sU7JkSTVs2FBdu3bVtGnTlJSUpJ49e6pt27aWldVOnz6tBg0a6Msvv1TVqlUVGBiYbpSnUKFCKly4sE3nZ+EBAAAAwM4ZhpFlW1aZO3euQkND1aBBAzVq1Ei1atXSZ599ZtmflJSkQ4cO6caNG4/93ERyAAAAADx2uXPn1rx58zLcHxwc/MBO1sN2wujkAAAAAHYu5cl6Fmi2Y7gaAAAAAIdCJAcAAACwcwahHJsQyQEAAADgUIjkAAAAAHYuCxdBc0hEcgAAAAA4FCI5AAAAgJ1LYU6OTYjkAAAAAHAoRHIAAAAAO/ewD8X8t6KTAwAAANg5IyW7a/BkYbgaAAAAAIdCJAcAAACwcykMV7MJkRwAAAAADoVIDgAAAGDnWHjANkRyAAAAADgUIjkAAACAneNhoLYhkgMAAADAoRDJAQAAAOwcU3JsQycHAAAAsHMGw9VswnA1AAAAAA6FSA4AAABg53gYqG2I5AAAAABwKERyAAAAADvHnBzbEMkBAAAA4FCI5AAAAAB2jkiObYjkAAAAAHAoRHIAAAAAO0cgxzZ0cgAAAAA7x3A12zBcDQAAAIBDIZIDAAAA2DmDh4HahEjOIwoODtakSZOy/Dwmk0mLFy/O8vM8qsWLF6tYsWJydnZW7969s7s6AAAA+BcikvOEOHPmjHLlypXd1XigV199VZ07d1avXr3k5eWV3dUBgMfilQ7BinwuUF4eLtp34JrGfXxEf565mWH+bz+vpnwBbmnSv1t+WhOmHZWXp4teaR+sqhVzKcDPrCvXkvTTtgv6/KuTun4jOSsvBcATKoU5OTahk/OECAwMzO4q3FdSUpISEhIUFxeniIgI5c+f/6HLSkxMlKur62OsHQA8vA4vFFTLJgX0/qSDOnPulrp0CNaEEWX1n9d3KjEp/Q8dXfv+Iqe7xkoUCfLQpPfKa/2m85KkvLldlTePqz6acVwn/riuQH83vf16ceXNbdbgD/b/E5cFAA7NoYarrVq1SrVq1ZKvr6/y5MmjJk2a6NixY5b9f/75p9q1a6fcuXPLw8NDlStX1vbt2yVJx44d0//93/8pICBAnp6eqlKlitauXWtVflxcnCIjI+Xu7q7ChQtr7ty5aepw5coVdenSRX5+fvL29lb9+vW1d+9ey/5hw4apQoUKmjFjhgoVKiRPT0+9/vrrSk5O1pgxYxQYGCh/f3+9//77VuXeO1ztftdyP6nn//TTT1WwYEHlzJlTrVu31tWrV63yff755ypZsqTc3NwUGhqqjz/+2LLv5MmTMplMWrBggerWrSs3NzfNnTvXErmpX7++TCaTNmzYIElatGiRSpcuLbPZrODgYI0fP97qXMHBwRo5cqReeukleXt7q1u3bpo1a5Z8fX21bNkylShRQjlz5lTLli1148YNzZ49W8HBwcqVK5d69eql5OT/fes5Z84cVa5cWV5eXgoMDFT79u0VFxdn2b9hwwaZTCZFR0ercuXKypkzp2rUqKFDhw5Z1emHH35QlSpV5Obmprx586p58+aWfQkJCerXr58KFCggDw8PVatWzXKtABxPq6YF9OU3p7Rp+0UdO3ld7008qDy5zar9dN4Mj7lyLUmXrvxvq1Elj/7866b2/Hbnb+2J2Bt6N2q/Nu+8qL/O3tIvv17RZ3NOqGbVPHJ2qP/MAB4XwzCybHNEDvWn9Pr16+rbt6927dql6OhoOTk5qXnz5kpJSVF8fLzq1q2r06dPa+nSpdq7d6/69++vlJQUSVJ8fLwaNWqk6Oho7dmzRw0bNlRkZKRiY2Mt5Xfq1El//PGH1q9fr4ULF+rjjz+2+gAtSa1atVJcXJxWrlyp3bt3q1KlSmrQoIEuXbpkyXPs2DGtXLlSq1at0tdff60vvvhCjRs31p9//qmNGzdq9OjRevfddzPstDzoWh7k6NGj+uabb/TDDz9o1apV2rNnj15//XXL/rlz52rIkCF6//33deDAAY0aNUqDBw/W7NmzrcoZMGCA3nzzTR04cED16tWzdBQWLVqkM2fOqEaNGtq9e7dat26ttm3bat++fRo2bJgGDx6sWbNmWZU1btw4lS9fXnv27NHgwYMlSTdu3NCHH36o+fPna9WqVdqwYYOaN2+uFStWaMWKFZozZ44+/fRTLVy40FJOUlKSRo4cqb1792rx4sU6efKkOnXqlKYNBg0apPHjx2vXrl1ycXHRyy+/bNm3fPlyNW/eXI0aNdKePXsUHR2tqlWrWvb37NlTW7du1fz58/Xrr7+qVatWatiwoY4cOZKp9gfw5Mgf4Ka8uc3aGXPZknb9RrL2H76mMqHemSrDxcWk5+oFaPnas/fN5+Hhous3bis5c3/KAQD34VDD1V544QWr32fMmCE/Pz/t379fW7Zs0fnz57Vz507lzp1bklSsWDFL3vLly6t8+fKW30eOHKnvv/9eS5cuVc+ePXX48GGtXLlSO3bsUJUqVSRJX3zxhUqWLGk5ZtOmTdqxY4fi4uJkNpsl3fnwvnjxYi1cuFDdunWTJKWkpGjGjBny8vJSqVKlLB2EFStWyMnJSSVKlNDo0aO1fv16VatWLc11zps3777X8iC3bt3Sl19+qQIFCkiSpkyZosaNG2v8+PEKDAzU0KFDNX78eLVo0UKSVLhwYe3fv1+ffvqpOnbsaCmnd+/eljzSnSiWJOXOndsyvG7ChAlq0KCBpeMSEhKi/fv3a+zYsVadj/r16+utt96y/P7zzz8rKSlJn3zyiYoWLSpJatmypebMmaNz587J09PT0nbr169XmzZtJMmqs1KkSBF9+OGHqlKliuLj4+Xp6WnZ9/7776tu3bqS7nTWGjdurFu3bsnNzU3vv/++2rZtq+HDh1vyp743YmNjNXPmTMXGxlqG5PXr10+rVq3SzJkzNWrUqDTtnZCQoISEBKu0lOREOTkzJA+wd7lz3blPL19Jskq/fCXRsu9B6jydV54eLloRnXEnx8fbRZ3aBOmHH888fGUBODSek2Mbh4rkHDlyRO3atVORIkXk7e2t4OBgSXc+mMbExKhixYqWTsG94uPj1a9fP5UsWVK+vr7y9PTUgQMHLJGcAwcOyMXFRWFhYZZjQkND5evra/l97969io+PV548eeTp6WnZTpw4YTVsLjg42GpSfkBAgEqVKiWnuwZwBwQEpIkSpXrQtTxIoUKFLB0cSapevbpSUlJ06NAhXb9+XceOHdMrr7xidQ3vvfee1TVIUuXKlR94rgMHDqhmzZpWaTVr1tSRI0eshpmlV1bOnDktHRzpTpsEBwdbdVbubafdu3crMjJShQoVkpeXl6Ujc3dETpLKlStn+TlfvnySZCknJiZGDRo0SPd69u3bp+TkZIWEhFi1z8aNG9O0T6qoqCj5+PhYbX8eTTvUEUD2e7auv1Z/U8uyubiYHrnMxs8GavvuS7p4KTHd/TndnTV2SFmd/OOGvph36pHPB8AxGSlGlm2OyKEiOZGRkQoKCtL06dOVP39+paSkqEyZMkpMTJS7u/t9j+3Xr5/WrFmjcePGqVixYnJ3d1fLli2VmJj+P6X0xMfHK1++fOnOz7i7M5QjRw6rfSaTKd20jIafPehaHkV8fLwkafr06WmiSM7Ozla/e3h4PLbzpleWre10/fp1RUREKCIiQnPnzpWfn59iY2MVERGR5nW8uxyT6c6HmNRy7te+8fHxcnZ21u7du9O0x92dr7sNHDhQffv2tUpr2PbB86cA/PM27bio/Yd3WX53zXHny6dcvjl08fL//o7k8nXV0ePxDywvwM+syuVzaVDU7+nud3d31vjhZXXjZrL++/5vSk52zA8bAPBPc5hOzsWLF3Xo0CFNnz5dtWvXlnRn+FiqcuXK6fPPP9elS5fSjYBs3rxZnTp1skwwj4+P18mTJy37Q0NDdfv2be3evdsyXO3QoUOWIVqSVKlSJZ09e1YuLi6WKFJWeNC1PEhsbKz++usvy3Crbdu2WYbJBQQEKH/+/Dp+/Lg6dOjwyHUtWbKkNm/ebJW2efNmhYSEpOkkPKqDBw/q4sWL+uCDD1SwYEFJ0q5dux5wVFrlypVTdHS0OnfunGZfxYoVlZycrLi4OMv77EHMZrNl+GIqhqoB9unmzWSdvmm9hPOFSwmqXD6Xjp64LulO5KVUiLcWr/jrgeU1Dg/U5auJ2rrzYpp9Od2dNWFEOSUlpeid937LcKU2AJCkFAddICCrOMxwtVy5cilPnjz67LPPdPToUa1bt87q2/N27dopMDBQzZo10+bNm3X8+HEtWrRIW7dulSQVL15c3333nWJiYrR37161b9/eKpJSokQJNWzYUK+++qq2b9+u3bt3q0uXLlbf+oeHh6t69epq1qyZVq9erZMnT2rLli0aNGjQQ33YzsiDruVB3Nzc1LFjR+3du1c///yzevXqpdatW1vm0QwfPlxRUVH68MMPdfjwYe3bt08zZ87UhAkTbK7rW2+9pejoaI0cOVKHDx/W7NmzNXXqVPXr18/msh6kUKFCcnV11ZQpU3T8+HEtXbpUI0eOtLmcoUOH6uuvv9bQoUN14MAB7du3T6NHj5Z0Z05Rhw4d9NJLL+m7777TiRMntGPHDkVFRWn58uWP+5IA2IFvl55WxzaFVLNqHhUJ8tC7fUN18VKCft52wZJn0nvl1KKx9dL5JpPUKDxQq9adS7OYQE53Z00cUU5uZidFfXhIHu7Oyu2bQ7l9c1gtPQ0AeDgO86fUyclJ8+fP1+7du1WmTBn16dNHY8eOtex3dXXV6tWr5e/vr0aNGqls2bL64IMPLNGECRMmKFeuXKpRo4YiIyMVERGhSpUqWZ1j5syZyp8/v+rWrasWLVqoW7du8vf3t+w3mUxasWKF6tSpo86dOyskJERt27bVqVOnFBAQ8Niu9UHX8iDFihVTixYt1KhRIz333HMqV66c1RLRXbp00eeff66ZM2eqbNmyqlu3rmbNmqXChQvbXNdKlSrpm2++0fz581WmTBkNGTJEI0aMSHfFs0fl5+enWbNm6dtvv1WpUqX0wQcfaNy4cTaX88wzz+jbb7/V0qVLVaFCBdWvX187duyw7J85c6ZeeuklvfXWWypRooSaNWumnTt3qlChQo/zcgDYibmL/tDCZX+pf88QTZ9QSTndnPXW0H1WkZcCge7y9bYeTlu5Qi4F+rtp+Zq0Cw6UKOqp0qHeKlbYU99Mr6alc2pYNv+85jT5AYA5ObYxGY66ODbSNWzYMC1evFgxMTHZXZV/tVqRG7O7CgAAwEabfqibbefuOOT+y9A/itkj7Puh8w/DYebkAAAAAI6KuIRt6OQ4mNKlS+vUqfSXIP3000//4doAAAAA/zw6OQ5mxYoVSkpKSndfQECAvLy8NGzYsH+2UgAAAHgkKQ46dyar0MlxMEFBQdldBQAAADxmjrpAQFZxmNXVAAAAAEAikgMAAADYPRYesA2RHAAAAAAOhUgOAAAAYOeMlJTsrsIThUgOAAAAAIdCJAcAAACwcywhbRsiOQAAAAAeu0uXLqlDhw7y9vaWr6+vXnnlFcXHxz/wuK1bt6p+/fry8PCQt7e36tSpo5s3b9p0bjo5AAAAgJ0zDCPLtqzSoUMH/f7771qzZo2WLVumn376Sd26dbvvMVu3blXDhg313HPPaceOHdq5c6d69uwpJyfbui0MVwMAAADs3JP2MNADBw5o1apV2rlzpypXrixJmjJliho1aqRx48Ypf/786R7Xp08f9erVSwMGDLCklShRwubzE8kBAAAA/sUSEhJ07do1qy0hIeGRyty6dat8fX0tHRxJCg8Pl5OTk7Zv357uMXFxcdq+fbv8/f1Vo0YNBQQEqG7dutq0aZPN56eTAwAAANg5I8XIsi0qKko+Pj5WW1RU1CPV9+zZs/L397dKc3FxUe7cuXX27Nl0jzl+/LgkadiwYeratatWrVqlSpUqqUGDBjpy5IhN56eTAwAAAPyLDRw4UFevXrXaBg4cmG7eAQMGyGQy3Xc7ePDgQ9Uj5f8/C+jVV19V586dVbFiRU2cOFElSpTQjBkzbCqLOTkAAACAnUsxsu5hoGazWWazOVN533rrLXXq1Om+eYoUKaLAwEDFxcVZpd++fVuXLl1SYGBgusfly5dPklSqVCmr9JIlSyo2NjZT9UtFJwcAAABApvj5+cnPz++B+apXr64rV65o9+7dCgsLkyStW7dOKSkpqlatWrrHBAcHK3/+/Dp06JBV+uHDh/X888/bVE+GqwEAAAB2Livn5GSFkiVLqmHDhuratat27NihzZs3q2fPnmrbtq1lZbXTp08rNDRUO3bskCSZTCa9/fbb+vDDD7Vw4UIdPXpUgwcP1sGDB/XKK6/YdH4iOQAAAAAeu7lz56pnz55q0KCBnJyc9MILL+jDDz+07E9KStKhQ4d048YNS1rv3r1169Yt9enTR5cuXVL58uW1Zs0aFS1a1KZzm4ysfAIQgHTVityY3VUAAAA22vRD3Ww7d7PXD2dZ2Ys/DsmysrMLkRwAAADAzhGXsA1zcgAAAAA4FCI5AAAAgJ1LfYYMModIDgAAAACHQiQHAAAAsHNZtdSzoyKSAwAAAMChEMkBAAAA7JxhMCfHFkRyAAAAADgUIjkAAACAnWNOjm3o5AAAAAB2jk6ObRiuBgAAAMChEMkBAAAA7FwKCw/YhEgOAAAAAIdCJAcAAACwc8zJsQ2RHAAAAAAOhUgOAAAAYOeMFObk2IJIDgAAAACHQiQHAAAAsHPMybENkRwAAAAADoVIDgAAAGDnDJ6TYxM6OQAAAICdS2G4mk0YrgYAAADAoRDJAQAAAOwcS0jbhkgOAAAAAIdCJAcAAACwcywhbRsiOQAAAAAcCpEcAAAAwM6xhLRtiOQAAAAAcChEcgAAAAA7x5wc29DJAQAAAOwcS0jbhuFqAAAAAByKyTAMYl8AADwGCQkJioqK0sCBA2U2m7O7OgDwr0UnBwCAx+TatWvy8fHR1atX5e3tnd3VAYB/LYarAQAAAHAodHIAAAAAOBQ6OQAAAAAcCp0cAAAeE7PZrKFDh7LoAABkMxYeAAAAAOBQiOQAAAAAcCh0cgAAAAA4FDo5AAAAABwKnRwAAP5BwcHBmjRp0j96zmeeeUa9e/f+R88JANmJTg4AwGF06tRJzZo1y+5qAACyGZ0cAMC/TlJSUnZXAQCQhejkAACeOAsXLlTZsmXl7u6uPHnyKDw8XG+//bZmz56tJUuWyGQyyWQyacOGDTp58qRMJpMWLFigunXrys3NTXPnzpUkff755ypZsqTc3NwUGhqqjz/+2HKOxMRE9ezZU/ny5ZObm5uCgoIUFRUlSTIMQ8OGDVOhQoVkNpuVP39+9erV66Gu5cqVK+rSpYv8/Pzk7e2t+vXra+/evZKkw4cPy2Qy6eDBg1bHTJw4UUWLFrX8/ttvv+n555+Xp6enAgIC9OKLL+rChQsPVR8AcAQu2V0BAABscebMGbVr105jxoxR8+bN9ffff+vnn3/WSy+9pNjYWF27dk0zZ86UJOXOnVt//fWXJGnAgAEaP368KlasaOnoDBkyRFOnTlXFihW1Z88ede3aVR4eHurYsaM+/PBDLV26VN98840KFSqkP/74Q3/88YckadGiRZo4caLmz5+v0qVL6+zZs5aOia1atWold3d3rVy5Uj4+Pvr000/VoEEDHT58WCEhIapcubLmzp2rkSNHWo6ZO3eu2rdvL+lOJ6l+/frq0qWLJk6cqJs3b+qdd95R69attW7dukdpagB4YtHJAQA8Uc6cOaPbt2+rRYsWCgoKkiSVLVtWkuTu7q6EhAQFBgamOa53795q0aKF5fehQ4dq/PjxlrTChQtr//79+vTTT9WxY0fFxsaqePHiqlWrlkwmk+VckhQbG6vAwECFh4crR44cKlSokKpWrWrztWzatEk7duxQXFyczGazJGncuHFavHixFi5cqG7duqlDhw6aOnWqpZNz+PBh7d69W1999ZUkWTppo0aNspQ7Y8YMFSxY0NJRAoB/G4arAQCeKOXLl1eDBg1UtmxZtWrVStOnT9fly5cfeFzlypUtP1+/fl3Hjh3TK6+8Ik9PT8v23nvv6dixY5LuLGIQExOjEiVKqFevXlq9erXl+FatWunmzZsqUqSIunbtqu+//163b9+2+Vr27t2r+Ph45cmTx6oeJ06csNSjbdu2OnnypLZt2ybpThSnUqVKCg0NtZSxfv16q+NT96WWAQD/NkRyAABPFGdnZ61Zs0ZbtmzR6tWrNWXKFA0aNEjbt2+/73EeHh6Wn+Pj4yVJ06dPV7Vq1dKUL0mVKlXSiRMntHLlSq1du1atW7dWeHi4Fi5cqIIFC+rQoUNau3at1qxZo9dff11jx47Vxo0blSNHjkxfS3x8vPLly6cNGzak2efr6ytJCgwMVP369TVv3jw9/fTTmjdvnl577TWrMiIjIzV69Og0ZeTLly/TdQEAR0InBwDwxDGZTKpZs6Zq1qypIUOGKCgoSN9//71cXV2VnJz8wOMDAgKUP39+HT9+XB06dMgwn7e3t9q0aaM2bdqoZcuWatiwoS5duqTcuXPL3d1dkZGRioyMVI8ePRQaGqp9+/apUqVKmb6OSpUq6ezZs3JxcVFwcHCG+Tp06KD+/furXbt2On78uNq2bWtVxqJFixQcHCwXF/6tA4BEJwcA8ITZvn27oqOj9dxzz8nf31/bt2/X+fPnVbJkSd26dUs//vijDh06pDx58sjHxyfDcoYPH65evXrJx8dHDRs2VEJCgnbt2qXLly+rb9++mjBhgvLly6eKFSvKyclJ3377rQIDA+Xr66tZs2YpOTlZ1apVU86cOfXVV1/J3d3dat5OZoSHh6t69epq1qyZxowZo5CQEP31119avny5mjdvbhli16JFC7322mt67bXXVK9ePeXPn99SRo8ePTR9+nS1a9dO/fv3V+7cuXX06FHNnz9fn3/+uSUyBQD/JnRyAABPFG9vb/3000+aNGmSrl27pqCgII0fP17PP/+8KleurA0bNqhy5cqKj4/X+vXrM4yQdOnSRTlz5tTYsWP19ttvy8PDQ2XLllXv3r0lSV5eXhozZoyOHDkiZ2dnValSRStWrJCTk5N8fX31wQcfqG/fvkpOTlbZsmX1ww8/KE+ePDZdi8lk0ooVKzRo0CB17txZ58+fV2BgoOrUqaOAgABLPi8vL0VGRuqbb77RjBkzrMrInz+/Nm/erHfeeUfPPfecEhISFBQUpIYNG8rJiam3AP6dTIZhGNldCQAAAAB4XPiKBwAAAIBDoZMDAMBj8vPPP1st5XzvBgD4ZzBcDQCAx+TmzZs6ffp0hvuLFSv2D9YGAP696OQAAAAAcCgMVwMAAADgUOjkAAAAAHAodHIAAAAAOBQ6OQAAAAAcCp0cAAAAAA6FTg4AAAAAh0InBwAAAIBDoZMDAAAAwKH8P24Zhpn32TH4AAAAAElFTkSuQmCC\n"},"metadata":{}}],"source":["acad_corr=acad.corr()\n","acad_corr=acad_corr['stress_level'].sort_values(ascending=False)\n","acad_corr=acad_corr.drop('stress_level')\n","plt.figure(figsize=(8,6))\n","sns.heatmap(acad_corr.to_frame(),annot=True,cmap='coolwarm')\n","plt.title('Stress Level Correlation of Features when Academic Factors the Greatest')\n","plt.show()"]},{"cell_type":"code","execution_count":77,"metadata":{"colab":{"base_uri":"https://localhost:8080/","height":537},"executionInfo":{"elapsed":578,"status":"ok","timestamp":1716217057028,"user":{"displayName":"Daniel Meier","userId":"06365571306976914087"},"user_tz":300},"id":"xjNjWORwSwL-","outputId":"35e2e149-604e-47a5-a084-78ab9728f0c9"},"outputs":[{"output_type":"stream","name":"stderr","text":[":1: FutureWarning: \n","\n","Passing `palette` without assigning `hue` is deprecated and will be removed in v0.14.0. Assign the `y` variable to `hue` and set `legend=False` for the same effect.\n","\n"," sns.barplot(acad_corr,orient='y',palette='Spectral');\n"]},{"output_type":"display_data","data":{"text/plain":["
"],"image/png":"iVBORw0KGgoAAAANSUhEUgAAAt0AAAGxCAYAAAC+6QpOAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAABES0lEQVR4nO3de3zP9f//8ft7Zic7obGtZiPGMGxWPqNyLKfWB58PGZ8cSj4+8RFa0lcyh5wilPokYvjQKqeUEZb5ZFgsWytrGGuqaUnMUsb2+v3h4v3zztiB1+Zwu14u78ul9+vwfD0er8nue+75frEYhmEIAAAAgGnsKrsAAAAA4HZH6AYAAABMRugGAAAATEboBgAAAExG6AYAAABMRugGAAAATEboBgAAAExG6AYAAABMZl/ZBQB3mqKiIv34449yc3OTxWKp7HIAAEApGIahM2fOyNfXV3Z2ZZ+3JnQDFezHH3+Un59fZZcBAADK4dixY7rnnnvKfB6hG6hgbm5uki7+T+vu7l7J1QAAgNLIy8uTn5+f9ft4WRG6gQp2aUmJu7s7oRsAgFtMeZeG8kFKAAAAwGSEbgAAAMBkhG4AAADAZIRuAAAAwGSEbgAAAMBkhG4AAADAZDwyEACA63D0//pVdgkALlN32qrKLqFYzHQDAAAAJiN0AwAAACYjdAMAAAAmI3QDAAAAJiN0AwAAACYjdAMAAAAmI3QDAAAAJiN0AwAAACYjdAMAAAAmI3QDAAAAJiN0AwAAACYjdAMAAAAmI3QDAAAAJiN0AwAAACYjdAMAAAAmI3QDAAAAJiN0AwAAACYjdAMAAAAmI3QDAAAAJiN0AwAAACYjdAMAAAAmI3QDAAAAJiN0AwAAACYjdAMAAAAmI3QDAAAAJiN0AwAAACYjdAMAAAAmI3QDAAAAJiN0AwAAACYjdAMAAAAmI3QDAAAAJrutQrdhGBo6dKhq1Kghi8WilJSUyi4JAAAAuL1C9+bNmxUTE6NPPvlEOTk5atq0aYnnWCwWrV+/3vziAAAAcMeyr+wCbqTMzEz5+PiodevWFX7tgoICOTg4VPh1r8XMms6fP6+qVauaMnZlMQxDhYWFsre/rf63AAAAN4HbZqZ70KBB+ve//63s7GxZLBYFBAQoICBA8+bNszmuRYsWio6OliQFBARIknr27Gk959JYPXr0sDlv1KhRateunfV9u3btNGLECI0aNUp33XWXOnfuLEn6+uuv1bVrV7m6uqp27dp64okndOLEiVL1UFRUpFmzZql+/fpydHRUnTp19Morr1j3v/DCCwoMDJSLi4vq1aunCRMm6Pz589b90dHRatGihRYvXqy6devKyclJknTq1CkNGTJEXl5ecnd3V4cOHZSammpz7Y8++kihoaFycnJSvXr1NGnSJF24cMG632Kx6D//+Y8ee+wxVatWzaauq/nmm2/06KOPyt3dXW5ubnrwwQeVmZlp7XXy5Mm655575OjoqBYtWmjz5s3Wc7OysmSxWLR27Vq1b99eLi4uat68uXbv3m1zjcTERLVr104uLi6qXr26OnfurF9//dV6jenTp6tu3bpydnZW8+bNtXr1auu5CQkJslgs2rRpk1q2bClHR0ft3LlT7dq108iRIzV27FjVqFFD3t7e1j8z0sVwHh0drTp16sjR0VG+vr4aOXJkifcDAADcuW6b0D1//nxriMvJydHevXtLPOfSMUuXLi31OZdbtmyZHBwclJiYqLffflunTp1Shw4dFBISon379mnz5s366aef1KdPn1KN9+KLL2rGjBmaMGGCDhw4oFWrVql27drW/W5uboqJidGBAwc0f/58LVq0SHPnzrUZ4/Dhw1qzZo3Wrl1rXdPeu3dv5ebmatOmTUpOTlZoaKg6duyokydPSpI+//xzDRgwQM8++6wOHDighQsXKiYm5opgHR0drZ49eyotLU1PPvnkNXv54Ycf9NBDD8nR0VGfffaZkpOT9eSTT1qD/Pz58zVnzhzNnj1bX331lTp37qzHHntMhw4dshln/PjxioqKUkpKigIDAxUZGWkdIyUlRR07dlTjxo21e/du7dy5UxERESosLJQkTZ8+XcuXL9fbb7+tb775RqNHj9Y//vEP7dixw+Ya48aN04wZM5Senq5mzZpJuvi1rVatmpKSkjRr1ixNnjxZW7dulSStWbNGc+fO1cKFC3Xo0CGtX79ewcHBV70X586dU15ens0LAADcWW6b36N7eHjIzc1NVapUkbe3d6nO8fLykiR5enqW+pzLNWjQQLNmzbK+nzp1qkJCQjRt2jTrtiVLlsjPz08HDx5UYGDgVcc6c+aM5s+frwULFmjgwIGSpHvvvVcPPPCA9ZiXXnrJ+t8BAQGKiopSbGysxo4da91eUFCg5cuXW3vbuXOnvvjiC+Xm5srR0VGSNHv2bK1fv16rV6/W0KFDNWnSJI0bN8563Xr16mnKlCkaO3asJk6caB27X79+Gjx4cKnuzZtvvikPDw/FxsZal6Fc3v/s2bP1wgsvqG/fvpKkmTNnavv27Zo3b57efPNN63FRUVHq3r27JGnSpElq0qSJDh8+rEaNGmnWrFkKCwvTW2+9ZT2+SZMmki4G3WnTpmnbtm0KDw+39rVz504tXLhQbdu2tZ4zefJkPfzwwzb1N2vWzNp7gwYNtGDBAsXHx+vhhx9Wdna2vL291alTJ1WtWlV16tTR/ffff9V7MX36dE2aNKlU9w0AANyebpvQXRlatmxp8z41NVXbt2+Xq6vrFcdmZmZeM3Snp6fr3Llz6tix41WPef/99/X6668rMzNT+fn5unDhgtzd3W2O8ff3twbuSzXl5+erZs2aNsf9/vvv1qUeqampSkxMtJnZLiws1B9//KGzZ8/KxcVFkhQWFnbV2v4sJSVFDz74YLHrvvPy8vTjjz+qTZs2NtvbtGlzxbKXSzPPkuTj4yNJys3NVaNGjZSSkqLevXsXe/3Dhw/r7NmzV4TpgoIChYSE2Gwrrq/Lr3vp2rm5uZIu/uZg3rx5qlevnrp06aJu3bopIiLiqmvBX3zxRY0ZM8amfz8/v2KPBQAAt6fbOnTb2dnJMAybbZevgb7e86pVq2bzPj8/XxEREZo5c+YVx14KjFfj7Ox8zf27d+9W//79NWnSJHXu3Nk6izxnzpwSa/Lx8VFCQsIVY3p6elqPmTRpknr16nXFMZfWhRc39rWU1E9pXR7aLRaLpItrtUu6Rn5+viRp48aNuvvuu232XZrxv6S4vv78w4LFYrFe18/PTxkZGdq2bZu2bt2qZ555Rq+++qp27NhR7A8Zjo6OV1wTAADcWW7r0O3l5aWcnBzr+7y8PB09etTmmKpVq1rXAF9+3tdff22zLSUlpcSndYSGhmrNmjUKCAgo8xMwGjRoIGdnZ8XHx2vIkCFX7N+1a5f8/f01fvx467bvvvuuxHFDQ0N1/Phx2dvbWz8oWtwxGRkZql+/fplqvpZmzZpp2bJlxT7lxN3dXb6+vkpMTLRZ5pGYmHjNZRrFXSM+Pr7YpRuNGzeWo6OjsrOzba5xozg7OysiIkIREREaPny4GjVqpLS0NIWGht7wawEAgFvfbfNByuJ06NBBK1as0Oeff660tDQNHDhQVapUsTkmICBA8fHxOn78uPWpFx06dNC+ffu0fPlyHTp0SBMnTrwihBdn+PDhOnnypCIjI7V3715lZmbq008/1eDBg68I9n/m5OSkF154QWPHjtXy5cuVmZmpPXv26N1335V0MZRnZ2crNjZWmZmZev3117Vu3boSa+rUqZPCw8PVo0cPbdmyRVlZWdq1a5fGjx+vffv2SZJefvllLV++XJMmTdI333yj9PR0xcbG2qwhL6sRI0YoLy9Pffv21b59+3To0CGtWLFCGRkZkqTnn39eM2fO1Pvvv6+MjAyNGzdOKSkpevbZZ0t9jRdffFF79+7VM888o6+++krffvut/vOf/+jEiRNyc3NTVFSURo8erWXLlikzM1Nffvml3njjDS1btqzcfUlSTEyM3n33XX399dc6cuSI/vvf/8rZ2Vn+/v7XNS4AALh93dah+8UXX1Tbtm316KOPqnv37urRo4fuvfdem2PmzJmjrVu3ys/Pz7rWt3PnzpowYYLGjh2r++67T2fOnNGAAQNKvN6l2dvCwkI98sgjCg4O1qhRo+Tp6Sk7u5Jv9YQJE/Tcc8/p5ZdfVlBQkB5//HHrOuLHHntMo0eP1ogRI9SiRQvt2rVLEyZMKHFMi8WiuLg4PfTQQxo8eLACAwPVt29ffffdd9Yno3Tu3FmffPKJtmzZovvuu09/+ctfNHfu3OsKkTVr1tRnn32m/Px8tW3bVi1bttSiRYuss94jR47UmDFj9Nxzzyk4OFibN2/Whg0b1KBBg1JfIzAwUFu2bFFqaqruv/9+hYeH66OPPrL+lmHKlCmaMGGCpk+frqCgIHXp0kUbN25U3bp1y92XdHFZzqJFi9SmTRs1a9ZM27Zt08cff3zFunkAAIBLLMafFy8DMFVeXp48PDx0+vTpKz4IC+DWc/T/+lV2CQAuU3faKlPGvd7v37f1TDcAAABwMyB0V5Ds7Gy5urpe9ZWdnV3ZJZbJsGHDrtrLsGHDKrs8AACAm8pt/fSSm4mvr6/1X4i82v5byeTJkxUVFVXsPpZMAAAA2CJ0VxB7e/sb+ki+ylarVi3VqlWrsssAAAC4JbC8BAAAADAZoRsAAAAwGaEbAAAAMBmhGwAAADAZoRsAAAAwGaEbAAAAMBmhGwAAADAZoRsAAAAwGaEbAAAAMBmhGwAAADAZoRsAAAAwGaEbAAAAMBmhGwAAADAZoRsAAAAwGaEbAAAAMBmhGwAAADAZoRsAAAAwGaEbAAAAMBmhGwAAADAZoRsAAAAwGaEbAAAAMBmhGwAAADAZoRsAAAAwGaEbAAAAMBmhGwAAADAZoRsAAAAwmX1lFwAAwK2s7rRVlV0CgFsAM90AAACAyQjdAAAAgMkI3QAAAIDJCN0AAACAyQjdAAAAgMkI3QAAAIDJCN0AAACAyQjdAAAAgMkI3QAAAIDJCN0AAACAyQjdAAAAgMkI3QAAAIDJCN0AAACAyQjdAAAAgMkI3QAAAIDJCN0AAACAyQjdAAAAgMkI3QAAAIDJ7Cu7AAAAbmWnD75T2SUANw2PwKGVXcJNi5luAAAAwGSEbgAAAMBkhG4AAADAZIRuAAAAwGSEbgAAAMBkhG4AAADAZIRuAAAAwGSEbgAAAMBkhG4AAADAZIRuAAAAwGSEbgAAAMBkhG4AAADAZIRuAAAAwGSEbgAAAMBkhG4AAADAZIRuAAAAwGSEbgAAAMBkhG4AAADAZIRuAAAAwGSEbgAAAMBkhG4AAADAZIRuAAAAwGSEbgAAAMBkhG4AAADAZIRuAAAAwGSEbgAAAMBkhG4AAADAZIRuAAAAwGSEbgAAAMBkhG4AAADAZIRu3DRiYmLk6el5Q8ZKSEiQxWLRqVOnbsh4lX0dAABwayN047oMGjRIPXr0qOwyAAAAbmqEbgAAAMBkhG6UyurVqxUcHCxnZ2fVrFlTnTp10vPPP69ly5bpo48+ksVikcViUUJCQrFLLlJSUmSxWJSVlWXdFhMTozp16sjFxUU9e/bUL7/8Yt2XlZUlOzs77du3z6aOefPmyd/fX0VFRWXuYc2aNWrSpIkcHR0VEBCgOXPm2OxfsWKFwsLC5ObmJm9vb/Xr10+5ubk2x8TFxSkwMFDOzs5q3769TT8AAABXQ+hGiXJychQZGaknn3xS6enpSkhIUK9evTRx4kT16dNHXbp0UU5OjnJyctS6detSjZmUlKSnnnpKI0aMUEpKitq3b6+pU6da9wcEBKhTp05aunSpzXlLly7VoEGDZGdXtj+6ycnJ6tOnj/r27au0tDRFR0drwoQJiomJsR5z/vx5TZkyRampqVq/fr2ysrI0aNAg6/5jx46pV69eioiIUEpKioYMGaJx48aVqQ4AAHBnsq/sAnDzy8nJ0YULF9SrVy/5+/tLkoKDgyVJzs7OOnfunLy9vcs05vz589WlSxeNHTtWkhQYGKhdu3Zp8+bN1mOGDBmiYcOG6bXXXpOjo6O+/PJLpaWl6aOPPipzD6+99po6duyoCRMmWK934MABvfrqq9Zg/eSTT1qPr1evnl5//XXdd999ys/Pl6urq/7zn//o3nvvtc6QN2zYUGlpaZo5c+Y1r33u3DmdO3fO+j4vL6/M9QMAgFsbM90oUfPmzdWxY0cFBwerd+/eWrRokX799dfrGjM9PV2tWrWy2RYeHm7zvkePHqpSpYrWrVsn6eJylPbt2ysgIKBc12vTpo3NtjZt2ujQoUMqLCyUdHE2PCIiQnXq1JGbm5vatm0rScrOzi51zcWZPn26PDw8rC8/P78y1w8AAG5thG6UqEqVKtq6das2bdqkxo0b64033lDDhg119OjRYo+/tPTDMAzrtvPnz5f5ug4ODhowYICWLl2qgoICrVq1ymY2+kb67bff1LlzZ7m7u2vlypXau3evNewXFBRc19gvvviiTp8+bX0dO3bsRpQMAABuISwvQalYLBa1adNGbdq00csvvyx/f3+tW7dODg4O1pniS7y8vCRdXJZSvXp1SRc/SHm5oKAgJSUl2Wzbs2fPFdcdMmSImjZtqrfeesu6xKU8goKClJiYaLMtMTFRgYGBqlKlir799lv98ssvmjFjhnUm+s8f4gwKCtKGDRtKrPnPHB0d5ejoWK66AQDA7YGZbpQoKSlJ06ZN0759+5Sdna21a9fq559/VlBQkAICAvTVV18pIyNDJ06c0Pnz51W/fn35+fkpOjpahw4d0saNG694UsjIkSO1efNmzZ49W4cOHdKCBQts1nNfEhQUpL/85S964YUXFBkZKWdn53L18Nxzzyk+Pl5TpkzRwYMHtWzZMi1YsEBRUVGSpDp16sjBwUFvvPGGjhw5og0bNmjKlCk2YwwbNkyHDh3S888/r4yMDK1atcrmg5gAAABXQ+hGidzd3fW///1P3bp1U2BgoF566SXNmTNHXbt21dNPP62GDRsqLCxMXl5eSkxMVNWqVfXee+/p22+/VbNmzTRz5kybJ5NI0l/+8hctWrRI8+fPV/PmzbVlyxa99NJLxV7/qaeeUkFBwXUtLQkNDdUHH3yg2NhYNW3aVC+//LImT55s/RCll5eXYmJi9OGHH6px48aaMWOGZs+ebTNGnTp1tGbNGq1fv17NmzfX22+/rWnTppW7JgAAcOewGJcvvAVuQlOmTNGHH36or776qrJLuSHy8vLk4eGh06dPy93dvbLLAXCdTh98p7JLAG4aHoFDK7sE01zv929munHTys/P19dff60FCxbo3//+d2WXAwAAUG6Ebty0RowYoZYtW6pdu3ZXLC0ZNmyYXF1di30NGzaskioGAAAoHstLcEvKzc296j8y4+7urlq1alVwRaXH8hLg9sLyEuD/Y3nJ1fHIQNySatWqdVMHawAAgMuxvAQAAAAwGaEbAAAAMBmhGwAAADAZoRsAAAAwGaEbAAAAMBmhGwAAADAZoRsAAAAwGaEbAAAAMBmhGwAAADAZoRsAAAAwGaEbAAAAMBmhGwAAADAZoRsAAAAwGaEbAAAAMBmhGwAAADAZoRsAAAAwGaEbAAAAMBmhGwAAADAZoRsAAAAwGaEbAAAAMBmhGwAAADAZoRsAAAAwGaEbAAAAMBmhGwAAADAZoRsAAAAwGaEbAAAAMBmhGwAAADCZfWUXAADArcwjcGhllwDgFsBMNwAAAGAyQjcAAABgMkI3AAAAYDJCNwAAAGAyQjcAAABgMkI3AAAAYDJCNwAAAGAyQjcAAABgMkI3AAAAYDJCNwAAAGAyQjcAAABgMkI3AAAAYDJCNwAAAGAyQjcAAABgMkI3AAAAYDJCNwAAAGAyQjcAAABgMvvKLgBA5Tqau7KySwBuaXVr9a/sEgDcApjpBgAAAExG6AYAAABMRugGAAAATEboBgAAAExG6AYAAABMRugGAAAATEboBgAAAExG6AYAAABMRugGAAAATEboBgAAAExG6AYAAABMRugGAAAATEboBgAAAExG6AYAAABMRugGAAAATEboBgAAAExG6AYAAABMRugGAAAATEboBgAAAExG6AYAAABMRugGAAAATEboBgAAAExG6AYAAABMRugGAAAATEboBgAAAExG6AYAAABMRugGAAAATEboBgAAAExG6AYAAABMRugGAAAATEboBgAAAEx204fu6OhotWjRorLLME1WVpYsFotSUlIqu5RyuVFfn4r+OickJMhisejUqVM3TU0AAOD2VabQ3a5dO40aNcqkUm4dMTEx8vT0rOwyrslisWj9+vWVXUaxiqstKipK8fHxlVPQVdyMNQEAgFuTfWUXUBkMw1BhYaHs7e/I9kuloKBADg4OFXY9V1dXubq6Vtj1SuNmrAkAANyaSj3TPWjQIO3YsUPz58+XxWKRxWJRVlaWvv76a3Xt2lWurq6qXbu2nnjiCZ04ccJ63ubNm/XAAw/I09NTNWvW1KOPPqrMzEybsb///ntFRkaqRo0aqlatmsLCwpSUlGRzzIoVKxQQECAPDw/17dtXZ86cse4rKirS9OnTVbduXTk7O6t58+ZavXq1df+lpQSbNm1Sy5Yt5ejoqJ07d16z39TUVLVv315ubm5yd3dXy5YttW/fPiUkJGjw4ME6ffq09T5ER0dLKn4G19PTUzExMdb3X3zxhUJCQuTk5KSwsDDt37//imuXdE/btWunkSNHauzYsapRo4a8vb2tNUhSQECAJKlnz56yWCzW99dyaSnF4sWLVbduXTk5OUmSTp06pSFDhsjLy0vu7u7q0KGDUlNTrzrO3r179fDDD+uuu+6Sh4eH2rZtqy+//LLE2v68lKOoqEiTJ0/WPffcI0dHR7Vo0UKbN2+27r+0LGft2rVq3769XFxc1Lx5c+3evdt6zHfffaeIiAhVr15d1apVU5MmTRQXF2dTb3JyssLCwuTi4qLWrVsrIyPjintyyaBBg9SjRw9NmjTJej+GDRumgoKCEu8vAAC4s5U6dM+fP1/h4eF6+umnlZOTo5ycHLm5ualDhw4KCQnRvn37tHnzZv3000/q06eP9bzffvtNY8aM0b59+xQfHy87Ozv17NlTRUVFkqT8/Hy1bdtWP/zwgzZs2KDU1FSNHTvWul+SMjMztX79en3yySf65JNPtGPHDs2YMcO6f/r06Vq+fLnefvttffPNNxo9erT+8Y9/aMeOHTY9jBs3TjNmzFB6erqaNWt2zX779++ve+65R3v37lVycrLGjRunqlWrqnXr1po3b57c3d2t9yEqKqpU9zA/P1+PPvqoGjdurOTkZEVHR19x7qlTp0q8p5K0bNkyVatWTUlJSZo1a5YmT56srVu3SroYfCVp6dKlysnJsb4vyeHDh7VmzRqtXbvWusa8d+/eys3N1aZNm5ScnKzQ0FB17NhRJ0+eLHaMM2fOaODAgdq5c6f27NmjBg0aqFu3btYfkkpb2/z58zVnzhzNnj1bX331lTp37qzHHntMhw4dsjlu/PjxioqKUkpKigIDAxUZGakLFy5IkoYPH65z587pf//7n9LS0jRz5swrZq7Hjx+vOXPmaN++fbK3t9eTTz55zXsUHx+v9PR0JSQk6L333tPatWs1adKka55z7tw55eXl2bwAAMCdpdTrKzw8POTg4CAXFxd5e3tLkqZOnaqQkBBNmzbNetySJUvk5+engwcPKjAwUH/7299sxlmyZIm8vLx04MABNW3aVKtWrdLPP/+svXv3qkaNGpKk+vXr25xTVFSkmJgYubm5SZKeeOIJxcfH65VXXtG5c+c0bdo0bdu2TeHh4ZKkevXqaefOnVq4cKHatm1rHWfy5Ml6+OGHS9Vvdna2nn/+eTVq1EiS1KBBA5t7YbFYrPehtFatWqWioiK9++67cnJyUpMmTfT999/rX//6l/WYBQsWlHhPJalZs2aaOHGitbYFCxYoPj5eDz/8sLy8vCRdnGUvS40FBQVavny59fydO3fqiy++UG5urhwdHSVJs2fP1vr167V69WoNHTr0ijE6dOhg8/6dd96Rp6enduzYoUcffbTUtc2ePVsvvPCC+vbtK0maOXOmtm/frnnz5unNN9+0HhcVFaXu3btLkiZNmqQmTZro8OHDatSokbKzs/W3v/1NwcHBki7+ufizV155xfpnZNy4cerevbv++OMP60z/nzk4OGjJkiVycXFRkyZNNHnyZD3//POaMmWK7OyK/xl2+vTpJQZzAABwe7uup5ekpqZq+/bt1rWvrq6u1pB6aQnJoUOHFBkZqXr16snd3d26nCA7O1uSlJKSopCQEGvgLk5AQIA1cEuSj4+PcnNzJV2cnT179qwefvhhmzqWL19+xTKWsLCwUvc2ZswYDRkyRJ06ddKMGTOuGKs8Ls2wXx7oLv2gcElp7qmkK2bqL78n5eXv728NxZdqyc/PV82aNW3qOXr06FXvx08//aSnn35aDRo0kIeHh9zd3ZWfn2/9epdGXl6efvzxR7Vp08Zme5s2bZSenm6z7fL74OPjI0nW+zBy5EhNnTpVbdq00cSJE/XVV19dca1rnV+c5s2by8XFxfo+PDxc+fn5Onbs2FXPefHFF3X69Gnr61rHAgCA29N1fZIwPz9fERERmjlz5hX7LgWYiIgI+fv7a9GiRfL19VVRUZGaNm1qXQfr7Oxc4nWqVq1q895isdgsT5GkjRs36u6777Y57tLs7CXVqlUrZWcX1/P269dPGzdu1KZNmzRx4kTFxsaqZ8+eVz3HYrHIMAybbefPny/1NaXS3VPp2vekvP58f/Lz8+Xj46OEhIQrjr3a01sGDhyoX375RfPnz5e/v78cHR0VHh5u2rrny++DxWKRJOt9GDJkiDp37qyNGzdqy5Ytmj59uubMmaN///vfpTr/RnF0dLzizyIAALizlCl0Ozg4qLCw0Po+NDRUa9asUUBAQLFPAvnll1+UkZGhRYsW6cEHH5SkKz7A2KxZMy1evFgnT5685mz31TRu3FiOjo7Kzs62WUpyIwQGBiowMFCjR49WZGSkli5dqp49e15xHy7x8vJSTk6O9f2hQ4d09uxZ6/ugoCCtWLHCZvnCnj17bMYo6Z6WVtWqVYutsSxCQ0N1/Phx2dvbl+rDmJKUmJiot956S926dZMkHTt2zOZDoKWpzd3dXb6+vkpMTLT5miYmJur+++8vUw9+fn4aNmyYhg0bphdffFGLFi2yCd1llZqaqt9//936w+KePXvk6uoqPz+/co8JAABuf2VaXhIQEKCkpCRlZWXpxIkTGj58uE6ePKnIyEjt3btXmZmZ+vTTTzV48GAVFhaqevXqqlmzpt555x0dPnxYn332mcaMGWMzZmRkpLy9vdWjRw8lJibqyJEjWrNmjc1TKK7Fzc1NUVFRGj16tJYtW6bMzEx9+eWXeuONN7Rs2bKytGf1+++/a8SIEUpISNB3332nxMRE7d27V0FBQdb7kJ+fr/j4eJ04ccIarDt06KAFCxZo//792rdvn4YNG2Yzk9qvXz9ZLBY9/fTTOnDggOLi4jR79myba5d0T0srICBA8fHxOn78uH799ddy3YdOnTopPDxcPXr00JYtW5SVlaVdu3Zp/Pjx2rdvX7HnNGjQQCtWrFB6erqSkpLUv3//K36bUZrann/+ec2cOVPvv/++MjIyNG7cOKWkpOjZZ58tdf2jRo3Sp59+qqNHj+rLL7/U9u3brV/D8iooKNBTTz1l/fpNnDhRI0aMuOp6bgAAAKmMoTsqKkpVqlRR48aN5eXlpYKCAiUmJqqwsFCPPPKIgoODNWrUKHl6esrOzk52dnaKjY1VcnKymjZtqtGjR+vVV1+1GdPBwUFbtmxRrVq11K1bNwUHB2vGjBmqUqVKqeuaMmWKJkyYoOnTpysoKEhdunTRxo0bVbdu3bK0Z1WlShX98ssvGjBggAIDA9WnTx917drV+mG41q1ba9iwYXr88cfl5eWlWbNmSZLmzJkjPz8/Pfjgg+rXr5+ioqJs1v+6urrq448/VlpamkJCQjR+/PgrlpFcmuG92j0trTlz5mjr1q3y8/NTSEhIue6DxWJRXFycHnroIQ0ePFiBgYHq27evvvvuO9WuXbvYc9599139+uuvCg0N1RNPPKGRI0eqVq1aZa5t5MiRGjNmjJ577jkFBwdr8+bN2rBhg80HWktSWFio4cOHW/9MBAYG6q233ir9DShGx44d1aBBAz300EN6/PHH9dhjj9k8rhEAAKA4FuPPi5ABFGvQoEE6derUdf9Ln3l5efLw8NDp06fl7u5+Y4q7DkdzV1Z2CcAtrW6t/pVdAoAKcL3fv/mdOAAAAGCyOzZ0N2nSxOYxeJe/Vq68/Wb+7rR+AQAAbibX9cjAW1lcXNxVH+d3tfXKt7I7rV8zxMTEVHYJAADgFnXHhm5/f//KLqFC3Wn9AgAA3Ezu2OUlAAAAQEUhdAMAAAAmI3QDAAAAJiN0AwAAACYjdAMAAAAmI3QDAAAAJiN0AwAAACYjdAMAAAAmI3QDAAAAJiN0AwAAACYjdAMAAAAmI3QDAAAAJiN0AwAAACYjdAMAAAAmI3QDAAAAJiN0AwAAACYjdAMAAAAmI3QDAAAAJiN0AwAAACYjdAMAAAAmI3QDAAAAJiN0AwAAACYjdAMAAAAmI3QDAAAAJiN0AwAAACYjdAMAAAAms6/sAgBUrrq1+ld2CQAA3PaY6QYAAABMRugGAAAATEboBgAAAExG6AYAAABMRugGAAAATEboBgAAAExG6AYAAABMRugGAAAATEboBgAAAExG6AYAAABMRugGAAAATEboBgAAAExG6AYAAABMRugGAAAATEboBgAAAExG6AYAAABMRugGAAAATGZf2QUAuHGe27S8sksA7jhzug6o7BIA3AKY6QYAAABMRugGAAAATEboBgAAAExG6AYAAABMRugGAAAATEboBgAAAExG6AYAAABMRugGAAAATEboBgAAAExG6AYAAABMRugGAAAATEboBgAAAExG6AYAAABMRugGAAAATEboBgAAAExG6AYAAABMRugGAAAATEboBgAAAExG6AYAAABMRugGAAAATEboBgAAAExG6AYAAABMRugGAAAATEboBgAAAExG6AYAAABMRugGAAAATEboBgAAAExG6AYAAABMRugGAAAATEboBgAAAExG6AYAAABMRui+TgEBAZo3b57p17FYLFq/fr3p17le69evV/369VWlShWNGjWqsssBAAC4KdhXdgEonZycHFWvXr2yyyjRP//5Tw0ePFgjR46Um5tbZZcDAABwUyB03yK8vb0ru4RrOn/+vM6dO6fc3Fx17txZvr6+5R6roKBADg4ON7A6AACAynVbLS/ZvHmzHnjgAXl6eqpmzZp69NFHlZmZad3//fffKzIyUjVq1FC1atUUFhampKQkSVJmZqb++te/qnbt2nJ1ddV9992nbdu22Yyfm5uriIgIOTs7q27dulq5cuUVNZw6dUpDhgyRl5eX3N3d1aFDB6Wmplr3R0dHq0WLFlqyZInq1KkjV1dXPfPMMyosLNSsWbPk7e2tWrVq6ZVXXrEZ98/LS67Vy7Vcuv7ChQvl5+cnFxcX9enTR6dPn7Y5bvHixQoKCpKTk5MaNWqkt956y7ovKytLFotF77//vtq2bSsnJyetXLnSOrPdoUMHWSwWJSQkSJLWrFmjJk2ayNHRUQEBAZozZ47NtQICAjRlyhQNGDBA7u7uGjp0qGJiYuTp6alPPvlEDRs2lIuLi/7+97/r7NmzWrZsmQICAlS9enWNHDlShYWF1rFWrFihsLAwubm5ydvbW/369VNubq51f0JCgiwWi+Lj4xUWFiYXFxe1bt1aGRkZNjV9/PHHuu++++Tk5KS77rpLPXv2tO47d+6coqKidPfdd6tatWpq1aqVtVcAAIDi3Fah+7ffftOYMWO0b98+xcfHy87OTj179lRRUZHy8/PVtm1b/fDDD9qwYYNSU1M1duxYFRUVSZLy8/PVrVs3xcfHa//+/erSpYsiIiKUnZ1tHX/QoEE6duyYtm/frtWrV+utt96yCXSS1Lt3b+Xm5mrTpk1KTk5WaGioOnbsqJMnT1qPyczM1KZNm7R582a99957evfdd9W9e3d9//332rFjh2bOnKmXXnrpqiG6pF5KcvjwYX3wwQf6+OOPtXnzZu3fv1/PPPOMdf/KlSv18ssv65VXXlF6erqmTZumCRMmaNmyZTbjjBs3Ts8++6zS09PVvn17a3Bds2aNcnJy1Lp1ayUnJ6tPnz7q27ev0tLSFB0drQkTJigmJsZmrNmzZ6t58+bav3+/JkyYIEk6e/asXn/9dcXGxmrz5s1KSEhQz549FRcXp7i4OK1YsUILFy7U6tWrreOcP39eU6ZMUWpqqtavX6+srCwNGjToinswfvx4zZkzR/v27ZO9vb2efPJJ676NGzeqZ8+e6tatm/bv36/4+Hjdf//91v0jRozQ7t27FRsbq6+++kq9e/dWly5ddOjQoWLv97lz55SXl2fzAgAAdxaLYRhGZRdhlhMnTsjLy0tpaWnatWuXoqKilJWVpRo1apTq/KZNm2rYsGEaMWKEDh48qIYNG+qLL77QfffdJ0n69ttvFRQUpLlz52rUqFHauXOnunfvrtzcXDk6OlrHqV+/vsaOHauhQ4cqOjpar776qo4fP26dGe7SpYsyMjKUmZkpO7uLPwc1atRIgwYN0rhx4yRdnOlet26devTooXfeeafMvVwSHR2tqVOn6rvvvtPdd98t6eJvCLp3764ffvhB3t7eql+/vqZMmaLIyEjreVOnTlVcXJx27dqlrKws1a1bV/PmzdOzzz5rPebUqVOqXr26tm/frnbt2kmS+vfvr59//llbtmyxHjd27Fht3LhR33zzjaSLM90hISFat26d9ZiYmBgNHjxYhw8f1r333itJGjZsmFasWKGffvpJrq6u1nsXEBCgt99+u9h+9+3bp/vuu09nzpyRq6urEhIS1L59e23btk0dO3aUJMXFxal79+76/fff5eTkpNatW6tevXr673//e8V42dnZqlevnrKzs22W0HTq1En333+/pk2bVuw9nzRp0hXbT58+LXd392LrLq/nNi2/oeMBKNmcrgMquwQAFSAvL08eHh7l/v59W810Hzp0SJGRkapXr57c3d0VEBAg6WJQSklJUUhIyFVDan5+vqKiohQUFCRPT0+5uroqPT3dOtOdnp4ue3t7tWzZ0npOo0aN5OnpaX2fmpqq/Px81axZU66urtbX0aNHbZa5BAQE2HzIsHbt2mrcuLE1cF/a9udZ9EtK6qUkderUsQZuSQoPD1dRUZEyMjL022+/KTMzU0899ZRND1OnTrXpQZLCwsJKvFZ6erratGljs61NmzY6dOiQzbKQ4sZycXGxBm7p4j0JCAiwBu5L2y6/T8nJyYqIiFCdOnXk5uamtm3bSpLNbywkqVmzZtb/9vHxkSTrOCkpKdZA/mdpaWkqLCxUYGCgzf3ZsWPHFffnkhdffFGnT5+2vo4dO1bscQAA4PZ1W32QMiIiQv7+/lq0aJF8fX1VVFSkpk2bqqCgQM7Oztc8NyoqSlu3btXs2bNVv359OTs76+9//7sKCgpKff38/Hz5+PgUu7738nBetWpVm30Wi6XYbVdbLlJSL9cjPz9fkrRo0SK1atXKZl+VKlVs3lerVu2GXbe4scp6n3777Td17txZnTt31sqVK+Xl5aXs7Gx17tz5iq/j5eNYLBZJso5zrfubn5+vKlWqKDk5+Yr7cfkPA5dzdHS0+c0HAAC489w2ofuXX35RRkaGFi1apAcffFCStHPnTuv+Zs2aafHixTp58mSxM8SJiYkaNGiQ9QNz+fn5ysrKsu5v1KiRLly4oOTkZOvykoyMDJ06dcp6TGhoqI4fPy57e3vrLLsZSuqlJNnZ2frxxx+tyyP27NkjOzs7NWzYULVr15avr6+OHDmi/v37X3etQUFBSkxMtNmWmJiowMDAK0Lr9fr222/1yy+/aMaMGfLz85N0cXlJWTVr1kzx8fEaPHjwFftCQkJUWFio3Nxc658zAACAktw2y0uqV6+umjVr6p133tHhw4f12WefacyYMdb9kZGR8vb2Vo8ePZSYmKgjR45ozZo12r17tySpQYMGWrt2rVJSUpSamqp+/frZzDQ3bNhQXbp00T//+U8lJSUpOTlZQ4YMsZkV7dSpk8LDw9WjRw9t2bJFWVlZ2rVrl8aPH1+u8Hc1JfVSEicnJw0cOFCpqan6/PPPNXLkSPXp08f6WMJJkyZp+vTpev3113Xw4EGlpaVp6dKleu2118pc63PPPaf4+HhNmTJFBw8e1LJly7RgwQJFRUWVeayS1KlTRw4ODnrjjTd05MgRbdiwQVOmTCnzOBMnTtR7772niRMnKj09XWlpaZo5c6YkKTAwUP3799eAAQO0du1aHT16VF988YWmT5+ujRs33uiWAADAbeK2Cd12dnaKjY1VcnKymjZtqtGjR+vVV1+17ndwcNCWLVtUq1YtdevWTcHBwZoxY4Z1tvW1115T9erV1bp1a0VERKhz584KDQ21ucbSpUvl6+urtm3bqlevXho6dKhq1apl3W+xWBQXF6eHHnpIgwcPVmBgoPr27avvvvtOtWvXvmG9ltRLSerXr69evXqpW7dueuSRR9SsWTObRwIOGTJEixcv1tKlSxUcHKy2bdsqJiZGdevWLXOtoaGh+uCDDxQbG6umTZvq5Zdf1uTJk4t9osj18vLyUkxMjD788EM1btxYM2bM0OzZs8s8Trt27fThhx9qw4YNatGihTp06KAvvvjCun/p0qUaMGCAnnvuOTVs2FA9evTQ3r17VadOnRvZDgAAuI3c1k8vwZWio6O1fv16paSkVHYpd6zr/fTztfD0EqDi8fQS4M7A00sAAACAm9xt80FKXNSkSRN99913xe5buHBhBVcDAAAAidB924mLi9P58+eL3Ve7dm25ubkpOjq6YosCAAC4wxG6bzP+/v6VXQIAAAD+hDXdAAAAgMkI3QAAAIDJCN0AAACAyQjdAAAAgMkI3QAAAIDJCN0AAACAyQjdAAAAgMkI3QAAAIDJCN0AAACAyQjdAAAAgMkI3QAAAIDJCN0AAACAyQjdAAAAgMkI3QAAAIDJCN0AAACAyQjdAAAAgMkI3QAAAIDJCN0AAACAyQjdAAAAgMkI3QAAAIDJCN0AAACAyQjdAAAAgMkI3QAAAIDJCN0AAACAyQjdAAAAgMkI3QAAAIDJ7Cu7AAA3zpyuAyq7BAAAUAxmugEAAACTEboBAAAAkxG6AQAAAJMRugEAAACTEboBAAAAkxG6AQAAAJMRugEAAACTEboBAAAAk/GP4wAVzDAMSVJeXl4lVwIAAErr0vftS9/Hy4rQDVSwM2fOSJL8/PwquRIAAFBWZ86ckYeHR5nPsxjljesAyqWoqEg//vij3NzcZLFYKrsc0+Xl5cnPz0/Hjh2Tu7t7ZZdTIe7EnqU7s+87sWeJvu+kvu/EnqXi+zYMQ2fOnJGvr6/s7Mq+QpuZbqCC2dnZ6Z577qnsMiqcu7v7HfUXtnRn9izdmX3fiT1L9H0nuRN7lq7suzwz3JfwQUoAAADAZIRuAAAAwGSEbgCmcnR01MSJE+Xo6FjZpVSYO7Fn6c7s+07sWaLvO6nvO7FnyZy++SAlAAAAYDJmugEAAACTEboBAAAAkxG6AQAAAJMRugHcUCdPnlT//v3l7u4uT09PPfXUU8rPzy/xvN27d6tDhw6qVq2a3N3d9dBDD+n333+vgIpvjPL2LV38Bxe6du0qi8Wi9evXm1voDVTWnk+ePKl///vfatiwoZydnVWnTh2NHDlSp0+frsCqy+7NN99UQECAnJyc1KpVK33xxRfXPP7DDz9Uo0aN5OTkpODgYMXFxVVQpTdWWfpetGiRHnzwQVWvXl3Vq1dXp06dSrxPN6uyfr0viY2NlcViUY8ePcwt0ARl7fnUqVMaPny4fHx85OjoqMDAwFvyz3lZ+543b5717y8/Pz+NHj1af/zxR+kvaADADdSlSxejefPmxp49e4zPP//cqF+/vhEZGXnNc3bt2mW4u7sb06dPN77++mvj22+/Nd5//33jjz/+qKCqr195+r7ktddeM7p27WpIMtatW2duoTdQWXtOS0szevXqZWzYsME4fPiwER8fbzRo0MD429/+VoFVl01sbKzh4OBgLFmyxPjmm2+Mp59+2vD09DR++umnYo9PTEw0qlSpYsyaNcs4cOCA8dJLLxlVq1Y10tLSKrjy61PWvvv162e8+eabxv79+4309HRj0KBBhoeHh/H9999XcOXXp6x9X3L06FHj7rvvNh588EHjr3/9a8UUe4OUtedz584ZYWFhRrdu3YydO3caR48eNRISEoyUlJQKrvz6lLXvlStXGo6OjsbKlSuNo0ePGp9++qnh4+NjjB49utTXJHQDuGEOHDhgSDL27t1r3bZp0ybDYrEYP/zww1XPa9WqlfHSSy9VRImmKG/fhmEY+/fvN+6++24jJyfnlgrd19Pz5T744APDwcHBOH/+vBllXrf777/fGD58uPV9YWGh4evra0yfPr3Y4/v06WN0797dZlurVq2Mf/7zn6bWeaOVte8/u3DhguHm5mYsW7bMrBJNUZ6+L1y4YLRu3dpYvHixMXDgwFsudJe15//85z9GvXr1jIKCgooq0RRl7Xv48OFGhw4dbLaNGTPGaNOmTamvyfISADfM7t275enpqbCwMOu2Tp06yc7OTklJScWek5ubq6SkJNWqVUutW7dW7dq11bZtW+3cubOiyr5u5elbks6ePat+/frpzTfflLe3d0WUesOUt+c/O336tNzd3WVvb29GmdeloKBAycnJ6tSpk3WbnZ2dOnXqpN27dxd7zu7du22Ol6TOnTtf9fibUXn6/rOzZ8/q/PnzqlGjhlll3nDl7Xvy5MmqVauWnnrqqYoo84YqT88bNmxQeHi4hg8frtq1a6tp06aaNm2aCgsLK6rs61aevlu3bq3k5GTrEpQjR44oLi5O3bp1K/V1b76/5QDcso4fP65atWrZbLO3t1eNGjV0/PjxYs85cuSIJCk6OlqzZ89WixYttHz5cnXs2FFff/21GjRoYHrd16s8fUvS6NGj1bp1a/31r381u8Qbrrw9X+7EiROaMmWKhg4dakaJ1+3EiRMqLCxU7dq1bbbXrl1b3377bbHnHD9+vNjjS3tPbgbl6fvPXnjhBfn6+l7xA8jNrDx979y5U++++65SUlIqoMIbrzw9HzlyRJ999pn69++vuLg4HT58WM8884zOnz+viRMnVkTZ1608fffr108nTpzQAw88IMMwdOHCBQ0bNkz/93//V+rrMtMNoETjxo2TxWK55qu034z/rKioSJL0z3/+U4MHD1ZISIjmzp2rhg0basmSJTeyjTIzs+8NGzbos88+07x5825s0dfJzJ4vl5eXp+7du6tx48aKjo6+/sJx05gxY4ZiY2O1bt06OTk5VXY5pjlz5oyeeOIJLVq0SHfddVdll1NhioqKVKtWLb3zzjtq2bKlHn/8cY0fP15vv/12ZZdmqoSEBE2bNk1vvfWWvvzyS61du1YbN27UlClTSj0GM90ASvTcc89p0KBB1zymXr168vb2Vm5urs32Cxcu6OTJk1ddPuHj4yNJaty4sc32oKAgZWdnl7/oG8DMvj/77DNlZmbK09PTZvvf/vY3Pfjgg0pISLiOysvPzJ4vOXPmjLp06SI3NzetW7dOVatWvd6yTXHXXXepSpUq+umnn2y2//TTT1ft0dvbu0zH34zK0/cls2fP1owZM7Rt2zY1a9bMzDJvuLL2nZmZqaysLEVERFi3XZpEsLe3V0ZGhu69915zi75O5fla+/j4qGrVqqpSpYp1W1BQkI4fP66CggI5ODiYWvONUJ6+J0yYoCeeeEJDhgyRJAUHB+u3337T0KFDNX78eNnZlTyPTegGUCIvLy95eXmVeFx4eLhOnTql5ORktWzZUtLFcFlUVKRWrVoVe05AQIB8fX2VkZFhs/3gwYPq2rXr9Rd/Hczse9y4cda/vC8JDg7W3Llzbb6JVzQze5YuznB37txZjo6O2rBhw009E+rg4KCWLVsqPj7e+hi4oqIixcfHa8SIEcWeEx4ervj4eI0aNcq6bevWrQoPD6+Aim+M8vQtSbNmzdIrr7yiTz/91Gat/62irH03atRIaWlpNtteeuklnTlzRvPnz5efn19FlH1dyvO1btOmjVatWqWioiJr0Dx48KB8fHxuicAtla/vs2fPXhGsL/3gYRhG6S5cnk98AsDVdOnSxQgJCTGSkpKMnTt3Gg0aNLB5jNz3339vNGzY0EhKSrJumzt3ruHu7m58+OGHxqFDh4yXXnrJcHJyMg4fPlwZLZRLefr+M91CTy8xjLL3fPr0aaNVq1ZGcHCwcfjwYSMnJ8f6unDhQmW1cU2xsbGGo6OjERMTYxw4cMAYOnSo4enpaRw/ftwwDMN44oknjHHjxlmPT0xMNOzt7Y3Zs2cb6enpxsSJE2/ZRwaWpe8ZM2YYDg4OxurVq22+rmfOnKmsFsqlrH3/2a349JKy9pydnW24ubkZI0aMMDIyMoxPPvnEqFWrljF16tTKaqFcytr3xIkTDTc3N+O9994zjhw5YmzZssW49957jT59+pT6moRuADfUL7/8YkRGRhqurq6Gu7u7MXjwYJtvvEePHjUkGdu3b7c5b/r06cY999xjuLi4GOHh4cbnn39ewZVfn/L2fblbLXSXteft27cbkop9HT16tHKaKIU33njDqFOnjuHg4GDcf//9xp49e6z72rZtawwcONDm+A8++MAIDAw0HBwcjCZNmhgbN26s4IpvjLL07e/vX+zXdeLEiRVf+HUq69f7crdi6DaMsve8a9cuo1WrVoajo6NRr14945VXXrlpf3C+lrL0ff78eSM6Otq49957DScnJ8PPz8945plnjF9//bXU17MYRmnnxAEAAACUB08vAQAAAExG6AYAAABMRugGAAAATEboBgAAAExG6AYAAABMRugGAAAATEboBgAAAExG6AYAAABMRugGAKACBQQEaN68eRV6zXbt2mnUqFEVek0AtgjdAIDbxqBBg9SjR4/KLgMArkDoBgDccc6fP1/ZJQC4wxC6AQC3nNWrVys4OFjOzs6qWbOmOnXqpOeff17Lli3TRx99JIvFIovFooSEBGVlZclisej9999X27Zt5eTkpJUrV0qSFi9erKCgIDk5OalRo0Z66623rNcoKCjQiBEj5OPjIycnJ/n7+2v69OmSJMMwFB0drTp16sjR0VG+vr4aOXJkuXo5deqUhgwZIi8vL7m7u6tDhw5KTU2VJB08eFAWi0XffvutzTlz587Vvffea33/9ddfq2vXrnJ1dVXt2rX1xBNP6MSJE+WqB4A57Cu7AAAAyiInJ0eRkZGaNWuWevbsqTNnzujzzz/XgAEDlJ2drby8PC1dulSSVKNGDf3444+SpHHjxmnOnDkKCQmxBu+XX35ZCxYsUEhIiPbv36+nn35a1apV08CBA/X6669rw4YN+uCDD1SnTh0dO3ZMx44dkyStWbNGc+fOVWxsrJo0aaLjx49bg3JZ9e7dW87Oztq0aZM8PDy0cOFCdezYUQcPHlRgYKDCwsK0cuVKTZkyxXrOypUr1a9fP0kXQ3uHDh00ZMgQzZ07V7///rteeOEF9enTR5999tn13GoANxChGwBwS8nJydGFCxfUq1cv+fv7S5KCg4MlSc7Ozjp37py8vb2vOG/UqFHq1auX9f3EiRM1Z84c67a6devqwIEDWrhwoQYOHKjs7Gw1aNBADzzwgCwWi/VakpSdnS1vb2916tRJVatWVZ06dXT//feXuZedO3fqiy++UG5urhwdHSVJs2fP1vr167V69WoNHTpU/fv314IFC6yh++DBg0pOTtZ///tfSbL+0DBt2jTruEuWLJGfn581uAOofCwvAQDcUpo3b66OHTsqODhYvXv31qJFi/Trr7+WeF5YWJj1v3/77TdlZmbqqaeekqurq/U1depUZWZmSrr4ocyUlBQ1bNhQI0eO1JYtW6zn9+7dW7///rvq1aunp59+WuvWrdOFCxfK3Etqaqry8/NVs2ZNmzqOHj1qraNv377KysrSnj17JF2c5Q4NDVWjRo2sY2zfvt3m/Ev7Lo0BoPIx0w0AuKVUqVJFW7du1a5du7Rlyxa98cYbGj9+vJKSkq55XrVq1az/nZ+fL0latGiRWrVqdcX4khQaGqqjR49q06ZN2rZtm/r06aNOnTpp9erV8vPzU0ZGhrZt26atW7fqmWee0auvvqodO3aoatWqpe4lPz9fPj4+SkhIuGKfp6enJMnb21sdOnTQqlWr9Je//EWrVq3Sv/71L5sxIiIiNHPmzCvG8PHxKXUtAMxF6AYA3HIsFovatGmjNm3a6OWXX5a/v7/WrVsnBwcHFRYWlnh+7dq15evrqyNHjqh///5XPc7d3V2PP/64Hn/8cf39739Xly5ddPLkSdWoUUPOzs6KiIhQRESEhg8frkaNGiktLU2hoaGl7iM0NFTHjx+Xvb29AgICrnpc//79NXbsWEVGRurIkSPq27evzRhr1qxRQECA7O35tg7crPi/EwBwS0lKSlJ8fLweeeQR1apVS0lJSfr5558VFBSkP/74Q59++qkyMjJUs2ZNeXh4XHWcSZMmaeTIkfLw8FCXLl107tw57du3T7/++qvGjBmj1157TT4+PgoJCZGdnZ0+/PBDeXt7y9PTUzExMSosLFSrVq3k4uKi//73v3J2drZZ910anTp1Unh4uHr06KFZs2YpMDBQP/74ozZu3KiePXtal8T06tVL//rXv/Svf/1L7du3l6+vr3WM4cOHa9GiRYqMjNTYsWNVo0YNHT58WLGxsVq8eLF15h5A5SJ0AwBuKe7u7vrf//6nefPmKS8vT/7+/pozZ466du2qsLAwJSQkKCwsTPn5+dq+fftVZ5CHDBkiFxcXvfrqq3r++edVrVo1BQcHW//lRjc3N82aNUuHDh1SlSpVdN999ykuLk52dnby9PTUjBkzNGbMGBUWFio4OFgff/yxatasWaZeLBaL4uLiNH78eA0ePFg///yzvL299dBDD6l27drW49zc3BQREaEPPvhAS5YssRnD19dXiYmJeuGFF/TII4/o3Llz8vf3V5cuXWRnx0e3gJuFxTAMo7KLAAAAAG5n/AgMAAAAmIzQDQDADfL555/bPLrvzy8Ady6WlwAAcIP8/vvv+uGHH666v379+hVYDYCbCaEbAAAAMBnLSwAAAACTEboBAAAAkxG6AQAAAJMRugEAAACTEboBAAAAkxG6AQAAAJMRugEAAACTEboBAAAAk/0/2+Ws0qrNmXUAAAAASUVORK5CYII=\n"},"metadata":{}}],"source":["sns.barplot(acad_corr,orient='y',palette='Spectral');"]},{"cell_type":"markdown","metadata":{"id":"wt8Q8gs4VGkZ"},"source":["### Social"]},{"cell_type":"code","execution_count":78,"metadata":{"colab":{"base_uri":"https://localhost:8080/"},"executionInfo":{"elapsed":5,"status":"ok","timestamp":1716217059588,"user":{"displayName":"Daniel Meier","userId":"06365571306976914087"},"user_tz":300},"id":"iCTPMrPwlUUK","outputId":"ee0a52d8-e5d4-4d20-ce05-16366150393e"},"outputs":[{"output_type":"stream","name":"stdout","text":["\n","RangeIndex: 1100 entries, 0 to 1099\n","Data columns (total 5 columns):\n"," # Column Non-Null Count Dtype \n","--- ------ -------------- ----- \n"," 0 social_support 1100 non-null float64\n"," 1 peer_pressure 1100 non-null float64\n"," 2 extracurricular_activities 1100 non-null float64\n"," 3 bullying 1100 non-null float64\n"," 4 stress_level 1100 non-null float64\n","dtypes: float64(5)\n","memory usage: 43.1 KB\n"]}],"source":["social.info()"]},{"cell_type":"code","execution_count":79,"metadata":{"colab":{"base_uri":"https://localhost:8080/","height":300},"executionInfo":{"elapsed":157,"status":"ok","timestamp":1716217060961,"user":{"displayName":"Daniel Meier","userId":"06365571306976914087"},"user_tz":300},"id":"oa_5r3tjQtPP","outputId":"2e911e26-583d-425e-9961-24ddc6c87173"},"outputs":[{"output_type":"execute_result","data":{"text/plain":[" social_support peer_pressure extracurricular_activities \\\n","count 1.100000e+03 1.100000e+03 1.100000e+03 \n","mean 9.689219e-18 1.453383e-17 1.776357e-17 \n","std 1.000455e+00 1.000455e+00 1.000455e+00 \n","min -1.796742e+00 -1.919495e+00 -1.953023e+00 \n","25% -8.419517e-01 -5.156090e-01 -5.415083e-01 \n","50% 1.128389e-01 -5.156090e-01 -1.886297e-01 \n","75% 1.067629e+00 8.882770e-01 8.700062e-01 \n","max 1.067629e+00 1.590220e+00 1.575763e+00 \n","\n"," bullying stress_level \n","count 1.100000e+03 1.100000e+03 \n","mean 1.130409e-17 -2.260818e-17 \n","std 1.000455e+00 1.000455e+00 \n","min -1.710343e+00 -1.213156e+00 \n","25% -1.056860e+00 -1.213156e+00 \n","50% 2.501057e-01 4.427575e-03 \n","75% 9.035886e-01 1.222011e+00 \n","max 1.557071e+00 1.222011e+00 "],"text/html":["\n","
\n","
\n","\n","\n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n","
social_supportpeer_pressureextracurricular_activitiesbullyingstress_level
count1.100000e+031.100000e+031.100000e+031.100000e+031.100000e+03
mean9.689219e-181.453383e-171.776357e-171.130409e-17-2.260818e-17
std1.000455e+001.000455e+001.000455e+001.000455e+001.000455e+00
min-1.796742e+00-1.919495e+00-1.953023e+00-1.710343e+00-1.213156e+00
25%-8.419517e-01-5.156090e-01-5.415083e-01-1.056860e+00-1.213156e+00
50%1.128389e-01-5.156090e-01-1.886297e-012.501057e-014.427575e-03
75%1.067629e+008.882770e-018.700062e-019.035886e-011.222011e+00
max1.067629e+001.590220e+001.575763e+001.557071e+001.222011e+00
\n","
\n","
\n","\n","
\n"," \n","\n"," \n","\n"," \n","
\n","\n","\n","
\n"," \n","\n","\n","\n"," \n","
\n","\n","
\n","
\n"],"application/vnd.google.colaboratory.intrinsic+json":{"type":"dataframe","summary":"{\n \"name\": \"social\",\n \"rows\": 8,\n \"fields\": [\n {\n \"column\": \"social_support\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 388.87924545889524,\n \"min\": -1.796742324454651,\n \"max\": 1100.0,\n \"num_unique_values\": 7,\n \"samples\": [\n 1100.0,\n 9.689219124001367e-18,\n 0.11283888994159641\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"peer_pressure\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 388.8836099110088,\n \"min\": -1.9194950367621784,\n \"max\": 1100.0,\n \"num_unique_values\": 7,\n \"samples\": [\n 1100.0,\n 1.453382868600205e-17,\n 0.8882769585016463\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"extracurricular_activities\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 388.8717138144518,\n \"min\": -1.953022699258553,\n \"max\": 1100.0,\n \"num_unique_values\": 8,\n \"samples\": [\n 1.7763568394002505e-17,\n -0.18862965623587863,\n 1100.0\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"bullying\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 388.8625593353785,\n \"min\": -1.7103429367886338,\n \"max\": 1100.0,\n \"num_unique_values\": 8,\n \"samples\": [\n 1.1304088978001594e-17,\n 0.25010572295519795,\n 1100.0\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"stress_level\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 388.85832663067225,\n \"min\": -1.2131556235498353,\n \"max\": 1100.0,\n \"num_unique_values\": 6,\n \"samples\": [\n 1100.0,\n -2.260817795600319e-17,\n 1.2220107740866955\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n }\n ]\n}"}},"metadata":{},"execution_count":79}],"source":["social.describe()"]},{"cell_type":"code","execution_count":80,"metadata":{"colab":{"base_uri":"https://localhost:8080/","height":206},"executionInfo":{"elapsed":5,"status":"ok","timestamp":1716217062954,"user":{"displayName":"Daniel Meier","userId":"06365571306976914087"},"user_tz":300},"id":"p-ZTP5RPRcTR","outputId":"4349cae5-8cea-4f16-afe8-39dced363819"},"outputs":[{"output_type":"execute_result","data":{"text/plain":[" social_support peer_pressure \\\n","social_support 1.000000 -0.490172 \n","peer_pressure -0.490172 1.000000 \n","extracurricular_activities -0.530047 0.618371 \n","bullying -0.567078 0.661058 \n","stress_level -0.632497 0.690684 \n","\n"," extracurricular_activities bullying stress_level \n","social_support -0.530047 -0.567078 -0.632497 \n","peer_pressure 0.618371 0.661058 0.690684 \n","extracurricular_activities 1.000000 0.651979 0.692977 \n","bullying 0.651979 1.000000 0.751162 \n","stress_level 0.692977 0.751162 1.000000 "],"text/html":["\n","
\n","
\n","\n","\n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n","
social_supportpeer_pressureextracurricular_activitiesbullyingstress_level
social_support1.000000-0.490172-0.530047-0.567078-0.632497
peer_pressure-0.4901721.0000000.6183710.6610580.690684
extracurricular_activities-0.5300470.6183711.0000000.6519790.692977
bullying-0.5670780.6610580.6519791.0000000.751162
stress_level-0.6324970.6906840.6929770.7511621.000000
\n","
\n","
\n","\n","
\n"," \n","\n"," \n","\n"," \n","
\n","\n","\n","
\n"," \n","\n","\n","\n"," \n","
\n","\n","
\n","
\n"],"application/vnd.google.colaboratory.intrinsic+json":{"type":"dataframe","summary":"{\n \"name\": \"social\",\n \"rows\": 5,\n \"fields\": [\n {\n \"column\": \"social_support\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 0.6973645250487153,\n \"min\": -0.6324969908829025,\n \"max\": 1.0,\n \"num_unique_values\": 5,\n \"samples\": [\n -0.49017172460992653,\n -0.6324969908829025,\n -0.530047353305875\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"peer_pressure\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 0.5715485839144862,\n \"min\": -0.49017172460992653,\n \"max\": 1.0,\n \"num_unique_values\": 5,\n \"samples\": [\n 1.0,\n 0.6906839575310748,\n 0.6183705944346195\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"extracurricular_activities\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 0.5883146205112574,\n \"min\": -0.530047353305875,\n \"max\": 1.0,\n \"num_unique_values\": 5,\n \"samples\": [\n 0.6183705944346195,\n 0.6929768658962863,\n 1.0\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"bullying\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 0.6125304270774785,\n \"min\": -0.5670783393907547,\n \"max\": 1.0,\n \"num_unique_values\": 5,\n \"samples\": [\n 0.6610577465087627,\n 0.7511622514986331,\n 0.6519786112147621\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"stress_level\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 0.6459936670034317,\n \"min\": -0.6324969908829025,\n \"max\": 1.0,\n \"num_unique_values\": 5,\n \"samples\": [\n 0.6906839575310748,\n 1.0,\n 0.6929768658962863\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n }\n ]\n}"}},"metadata":{},"execution_count":80}],"source":["social.corr()"]},{"cell_type":"code","execution_count":81,"metadata":{"colab":{"base_uri":"https://localhost:8080/","height":545},"executionInfo":{"elapsed":541,"status":"ok","timestamp":1716217064933,"user":{"displayName":"Daniel Meier","userId":"06365571306976914087"},"user_tz":300},"id":"9VbdsBR9Rtg0","outputId":"ed63edbf-40fa-41a5-b5c7-362a178444c5"},"outputs":[{"output_type":"display_data","data":{"text/plain":["
"],"image/png":"iVBORw0KGgoAAAANSUhEUgAAAxsAAAIQCAYAAADpbnO+AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAABpFUlEQVR4nO3dd3QU1fvH8c8mIYWEJIQkhBISSui9B0QQAqGIIh1RihRFImgAJRaqEuVLL4KiICIoiIpIkyYqSJOuQiiCFAOhBQglbef3Bz9W1iSwC1lDeb/OmXPYu3fuPDO7G/buc+8dk2EYhgAAAAAgmznldAAAAAAAHkx0NgAAAAA4BJ0NAAAAAA5BZwMAAACAQ9DZAAAAAOAQdDYAAAAAOASdDQAAAAAOQWcDAAAAgEPQ2QAAAADgEHQ2AOA/MmzYMJlMppwOwyG6deum0NDQbG3zk08+kclk0pEjR7K13ez2v//9T8WKFZOzs7MqV678nx7bZDJp2LBh/+kxs9vdfC4aNGigBg0aZG9AALIVnQ3gIbNnzx61bdtWISEhcnd3V6FChdS4cWNNnjzZqt6oUaO0aNGinAnyLoSGhurxxx/P6TCyxbp169S6dWsFBQXJ1dVVgYGBatmypb7++uucDi1b3a/vNUlauXKlXn31VdWtW1ezZs3SqFGjcjqku3LkyBF1795dxYsXl7u7u4KCgvToo49q6NChOR3aXQkNDZXJZMp0u3btWrYea968eZowYUK2tgncz1xyOgAA/51ffvlFjz32mIoUKaJevXopKChIx44d06ZNmzRx4kS99NJLlrqjRo1S27Zt1apVq5wL+CE2dOhQjRgxQmFhYXr++ecVEhKis2fPatmyZWrTpo3mzp2rp59+OqfDzBZZvdeeffZZdezYUW5ubjkTmA3Wrl0rJycnffzxx3J1dc3pcO7KwYMHVaNGDXl4eOi5555TaGio4uPjtX37dr333nsaPny4Q4775ptvavDgwQ5p+2aVK1fWgAEDMpRn9+s2b948/fbbb3r55ZeztV3gfkVnA3iIvPPOO/Lx8dHWrVvl6+tr9VxCQsIdt3v58mV5enreZXS4YeHChRoxYoTatm2refPmKVeuXJbnBg0apO+//16pqal3fZy0tDSZzeZMv2zdC6+ps7OznJ2dczSG20lISJCHh8d939GQpPHjxyspKUk7d+5USEiI1XN38/fhdlxcXOTi4vivI4UKFdIzzzzj8OM4wq0+q8C9jmFUwEPk0KFDKleuXIaOhiQFBgZa/m0ymXT58mXNnj3bMtSgW7dukv4ZX/3HH3/o6aefVt68efXII49Y9v3ss89UrVo1eXh4yM/PTx07dtSxY8esjnXgwAG1adNGQUFBcnd3V+HChdWxY0dduHDBUmfVqlV65JFH5OvrKy8vL5UqVUqvv/56tl2L28UZFRUlLy8vXblyJcO+nTp1UlBQkNLT0y1ly5cvV7169eTp6ak8efKoRYsW+v333+8otrfeekt+fn6aOXOmVUfjhsjISKuhYgkJCerRo4fy588vd3d3VapUSbNnz7ba58iRIzKZTBozZowmTJig4sWLy83NTX/88Ue2vKaZGTNmjOrUqaN8+fLJw8ND1apV08KFC63q3Oq9ltWcjffff1/lypWTm5ubChYsqL59+yoxMdGqToMGDVS+fHn98ccfeuyxx5Q7d24VKlRIo0ePvm3c0vUvdyNHjrRcp9DQUL3++utKTk62in3WrFm6fPmyJfZPPvnklu1++eWXlmvp7++vZ555RidOnLCq061bN3l5eenEiRNq1aqVvLy8FBAQoIEDB1q95/7thx9+kMlk0jfffJPhuXnz5slkMmnjxo1Z7n/o0CEVLlw4Q0dDsv77cIMtr4Mkbd68Wc2bN1fevHnl6empihUrauLEiZbnM5uzMWvWLDVs2FCBgYFyc3NT2bJlNW3atCxjv1v2HG/58uWqX7++8uTJI29vb9WoUUPz5s2TdP19t3TpUv3111+W98TNc5nu9rMqSZMnT1a5cuWUO3du5c2bV9WrV7ccH7gXkdkAHiIhISHauHGjfvvtN5UvXz7LenPmzFHPnj1Vs2ZN9e7dW5JUvHhxqzrt2rVTWFiYRo0aJcMwJF3PnLz11ltq3769evbsqdOnT2vy5Ml69NFHtWPHDvn6+iolJUWRkZFKTk7WSy+9pKCgIJ04cUJLlixRYmKifHx89Pvvv+vxxx9XxYoVNWLECLm5uengwYPasGFDtlwHW+Ls0KGDpk6dqqVLl6pdu3aWfa9cuaLvvvtO3bp1s/zqPmfOHHXt2lWRkZF67733dOXKFU2bNk2PPPKIduzYYdfE6QMHDmjfvn167rnnlCdPntvWv3r1qho0aKCDBw8qKipKRYsW1Zdffqlu3bopMTFR/fv3t6o/a9YsXbt2Tb1795abm5v8/Pwsz93pa5qViRMn6oknnlDnzp2VkpKiL774Qu3atdOSJUvUokULy7W73XvtZsOGDdPw4cMVERGhPn36KC4uTtOmTdPWrVu1YcMGq87Z+fPn1bRpU7Vu3Vrt27fXwoUL9dprr6lChQpq1qzZLa9rz549NXv2bLVt21YDBgzQ5s2bFRsbq71791q+zM+ZM0cffvihtmzZoo8++kiSVKdOnSzb/OSTT9S9e3fVqFFDsbGxOnXqlCZOnKgNGzZkuJbp6emKjIxUrVq1NGbMGK1evVpjx45V8eLF1adPn0zbb9CggYKDgzV37lw99dRTVs/NnTtXxYsXV3h4eJbxhYSEaPXq1Vq7dq0aNmx4y+tj6+uwatUqPf744ypQoID69++voKAg7d27V0uWLMnw3rzZtGnTVK5cOT3xxBNycXHRd999pxdffFFms1l9+/a9ZWxZSU1N1ZkzZ6zKcufOrdy5c9t8vE8++UTPPfecypUrp5iYGPn6+mrHjh1asWKFnn76ab3xxhu6cOGCjh8/rvHjx0uSvLy8JGXPZ3XGjBnq16+f2rZtq/79++vatWvavXu3Nm/e/MAMq8QDyADw0Fi5cqXh7OxsODs7G+Hh4carr75qfP/990ZKSkqGup6enkbXrl0zlA8dOtSQZHTq1Mmq/MiRI4azs7PxzjvvWJXv2bPHcHFxsZTv2LHDkGR8+eWXWcY5fvx4Q5Jx+vRpu88xJCTEaNGiRZbP2xqn2Ww2ChUqZLRp08aq3oIFCwxJxk8//WQYhmFcunTJ8PX1NXr16mVV7+TJk4aPj49V+Y1rdyvffvutIckYP378bc/VMAxjwoQJhiTjs88+s5SlpKQY4eHhhpeXl3Hx4kXDMAzj8OHDhiTD29vbSEhIsGrjbl9TwzCMrl27GiEhIVb1rly5YvU4JSXFKF++vNGwYUOr8qzea7NmzTIkGYcPHzYMwzASEhIMV1dXo0mTJkZ6erql3pQpUwxJxsyZMy1l9evXNyQZn376qaUsOTnZCAoKyvCa/tvOnTsNSUbPnj2tygcOHGhIMtauXWt13p6enrds78a5BwYGGuXLlzeuXr1qKV+yZIkhyRgyZIhVm5KMESNGWLVRpUoVo1q1alZlkoyhQ4daHsfExBhubm5GYmKipSwhIcFwcXGxqpeZ3377zfDw8DAkGZUrVzb69+9vLFq0yLh8+bJVPVtfh7S0NKNo0aJGSEiIcf78eas2zGaz5d+ZfS7+/d4xDMOIjIw0ihUrZlVWv359o379+rc8L8O4/ndBUobtxjWx5XiJiYlGnjx5jFq1alm9hv8+nxYtWmT4LBhG9nxWn3zySaNcuXK3PV/gXsIwKuAh0rhxY23cuFFPPPGEdu3apdGjRysyMlKFChXS4sWL7WrrhRdesHr89ddfy2w2q3379jpz5oxlCwoKUlhYmH744QdJko+PjyTp+++/z3SIkiTLL7zffvutzGaznWd5a7bGaTKZ1K5dOy1btkxJSUmW/efPn69ChQpZhhmtWrVKiYmJ6tSpk1V7zs7OqlWrlqU9W128eFGSbMpqSNKyZcsUFBSkTp06Wcpy5cqlfv36KSkpST/++KNV/TZt2iggICDTtu70Nc2Kh4eH5d/nz5/XhQsXVK9ePW3fvt2mc/u31atXKyUlRS+//LKcnP7576tXr17y9vbW0qVLrep7eXlZjdF3dXVVzZo19eeff97yOMuWLZMkRUdHW5XfmFz87+PY4tdff1VCQoJefPFFubu7W8pbtGih0qVLZ9rmv1+PevXq3Tb2Ll26KDk52Wq42vz585WWlnbb+QrlypXTzp079cwzz+jIkSOaOHGiWrVqpfz582vGjBmWera+Djt27NDhw4f18ssvZ8iA3W6p25vfOxcuXNCZM2dUv359/fnnn1bDLe1Rq1YtrVq1ymrr0qWLzcdbtWqVLl26pMGDB1u9hracj5Q9n1VfX18dP35cW7dute/kgRxEZwN4yNSoUUNff/21zp8/ry1btigmJkaXLl1S27ZtLWOCbVG0aFGrxwcOHJBhGAoLC1NAQIDVtnfvXssE06JFiyo6OlofffSR/P39FRkZqalTp1p9gejQoYPq1q2rnj17Kn/+/OrYsaMWLFiQLR0PW+O8EcfVq1ctHbGkpCQtW7ZM7dq1s3y5OHDggCSpYcOGGdpbuXKl3RNrvb29JUmXLl2yqf5ff/2lsLAwqy99klSmTBnL8zf79+t2q+fsuVaZWbJkiWrXri13d3f5+fkpICBA06ZNu+MvizfOpVSpUlblrq6uKlasWIZzLVy4cIYvgXnz5tX58+dvexwnJyeVKFHCqjwoKEi+vr4ZjnM3sUtS6dKlM7Tp7u6e4YumLbGXLl1aNWrU0Ny5cy1lc+fOVe3atTOcT2ZKliypOXPm6MyZM9q9e7dGjRolFxcX9e7dW6tXr77lufz7dTh06JAk3XLIZlY2bNigiIgIeXp6ytfXVwEBAZY5W3f6/vH391dERITVVqxYMZuPdzfnI2XPZ/W1116Tl5eXatasqbCwMPXt2zfbhpcCjsKcDeAh5erqqho1aqhGjRoqWbKkunfvri+//NLm9fRv/iVQksxms0wmk5YvX57pCkI3xi1L0tixY9WtWzd9++23Wrlypfr166fY2Fht2rRJhQsXloeHh3766Sf98MMPWrp0qVasWKH58+erYcOGWrly5V2tUGRPnLVr11ZoaKgWLFigp59+Wt99952uXr2qDh06WLUnXR+/HxQUlKE9e1fZKV26tKTr90NxhH+/brd6zp5r9W8///yznnjiCT366KN6//33VaBAAeXKlUuzZs36zyazZvU+Mf5/Psrt5OQNGO/mPd6lSxf1799fx48fV3JysjZt2qQpU6bYffwKFSqoQoUKCg8P12OPPaa5c+cqIiLijuOy1aFDh9SoUSOVLl1a48aNU3BwsFxdXbVs2TKNHz8+27Od//XxbJXZZ7VMmTKKi4vTkiVLtGLFCn311Vd6//33NWTIEIctTQzcLTobAFS9enVJUnx8vKXM3i9axYsXl2EYKlq0qEqWLHnb+je+yLz55pv65ZdfVLduXU2fPl1vv/22JMnJyUmNGjVSo0aNNG7cOI0aNUpvvPGGfvjhh7v6wmNvnO3bt9fEiRN18eJFzZ8/X6Ghoapdu7ZVe9L11Xqy44tYyZIlVapUKX377beaOHHiLb/QS9cn9e7evVtms9nqF9N9+/ZZnr9T9l6rm3311Vdyd3fX999/b3WfjFmzZmWoa+t77ca5xMXFWX6RlqSUlBQdPnw4274Ih4SEyGw268CBA5ZfnSXp1KlTSkxMvKNrenPs/558HRcXd1ev07917NhR0dHR+vzzz3X16lXlypXLqoNsr3//fbD1dbjx2fjtt9/sem2+++47JScna/HixSpSpIil3N4hidl9vJvP51ZZoqzez9n1WfX09FSHDh3UoUMHpaSkqHXr1nrnnXcUExOTYXgXcC9gGBXwEPnhhx8y/VX3xhj1m4dFeHp6ZrqMZVZat24tZ2dnDR8+PMMxDMPQ2bNnJV2fk5CWlmb1fIUKFeTk5GRZVvTcuXMZ2q9cubIkWS09eidsjfOGDh06KDk5WbNnz9aKFSvUvn17q+cjIyPl7e2tUaNGZXrvi9OnT9sd4/Dhw3X27Fn17Nkzw7WSrt+1esmSJZKk5s2b6+TJk5o/f77l+bS0NE2ePFleXl6qX7++3ce/wd5rdTNnZ2eZTCarpVqPHDmS6Z3CbX2vRUREyNXVVZMmTbKK5+OPP9aFCxcsK1zdrebNm0tShrtAjxs3TpLu6DjVq1dXYGCgpk+fbvUeXr58ufbu3ZttsUvXhws1a9ZMn332mebOnaumTZvK39//tvv9/PPPmb6H//33wdbXoWrVqipatKgmTJiQ4fW9VXbpRlbn5joXLlzItKOaHWw9XpMmTZQnTx7FxsZmuOv4zft6enpmOtQrOz6r//7Mubq6qmzZsjIMI1vuvQM4ApkN4CHy0ksv6cqVK3rqqadUunRppaSk6JdffrH8Yt+9e3dL3WrVqmn16tUaN26cChYsqKJFi6pWrVpZtl28eHG9/fbbiomJ0ZEjR9SqVSvlyZNHhw8f1jfffKPevXtr4MCBWrt2raKiotSuXTuVLFlSaWlpmjNnjpydndWmTRtJ0ogRI/TTTz+pRYsWCgkJUUJCgt5//30VLlzY6v4PWTl48KAlQ3KzKlWqqEWLFjbFeUPVqlVVokQJvfHGG0pOTs7wC7G3t7emTZumZ599VlWrVlXHjh0VEBCgo0ePaunSpapbt67dQ1g6dOigPXv26J133tGOHTvUqVMnyx3EV6xYoTVr1liGIvXu3VsffPCBunXrpm3btik0NFQLFy7Uhg0bNGHCBJsnmmfG1tc0My1atNC4cePUtGlTPf3000pISNDUqVNVokQJ7d6926qure+1gIAAxcTEaPjw4WratKmeeOIJxcXF6f3331eNGjWy7YZtlSpVUteuXfXhhx8qMTFR9evX15YtWzR79my1atVKjz32mN1t5sqVS++99566d++u+vXrq1OnTpalb0NDQ/XKK69kS+w3dOnSRW3btpUkjRw50qZ93nvvPW3btk2tW7dWxYoVJUnbt2/Xp59+Kj8/P8sdsW19HZycnDRt2jS1bNlSlStXVvfu3VWgQAHt27dPv//+u77//vtM42jSpIlcXV3VsmVLPf/880pKStKMGTMUGBholX3NLrYez9vbW+PHj1fPnj1Vo0YNyz1pdu3apStXrljul1GtWjXNnz9f0dHRqlGjhry8vNSyZcts+aw2adJEQUFBqlu3rvLnz6+9e/dqypQpatGixV191gGH+k/XvgKQo5YvX24899xzRunSpQ0vLy/D1dXVKFGihPHSSy8Zp06dsqq7b98+49FHH7UshXljadIby1RmtSztV199ZTzyyCOGp6en4enpaZQuXdro27evERcXZxiGYfz555/Gc889ZxQvXtxwd3c3/Pz8jMcee8xYvXq1pY01a9YYTz75pFGwYEHD1dXVKFiwoNGpUydj//79tz3HrJa4lGT06NHD5jhv9sYbbxiSjBIlSmR53B9++MGIjIw0fHx8DHd3d6N48eJGt27djF9//dVSx5alb2924zoEBgYaLi4uRkBAgNGyZUvj22+/tap36tQpo3v37oa/v7/h6upqVKhQwZg1a5ZVnRvLaf7vf//LcJy7fU0NI/Olbz/++GMjLCzMcHNzM0qXLm3MmjUr02uQ1Xvt30vf3jBlyhSjdOnSRq5cuYz8+fMbffr0ybC0av369TNdIjSzODOTmppqDB8+3ChatKiRK1cuIzg42IiJiTGuXbuWoT1blr69Yf78+UaVKlUMNzc3w8/Pz+jcubNx/Phxm9rM7NrpX0vf3pCcnGzkzZvX8PHxybBMa1Y2bNhg9O3b1yhfvrzh4+Nj5MqVyyhSpIjRrVs349ChQxnq2/I6GIZhrF+/3mjcuLGRJ08ew9PT06hYsaIxefLkW57X4sWLjYoVKxru7u5GaGio8d577xkzZ87M8H6wZ+nbWy2JbevxbtStU6eO4eHhYXh7exs1a9Y0Pv/8c8vzSUlJxtNPP234+voakqzeb3f7Wf3ggw+MRx991MiXL5/h5uZmFC9e3Bg0aJBx4cKF214DIKeYDMPGmXIAAOC+kJaWpoIFC6ply5b6+OOPczocAA8x5mwAAPCAWbRokU6fPm25jwQA5BQyGwAAPCA2b96s3bt3a+TIkfL397/jGygCQHYhswEAwANi2rRp6tOnjwIDA/Xpp5/mdDgAQGYDAAAAgGOQ2QAAAADgEHQ2AAAAADgEnQ0AAAAADsEdxPFQW5qrVE6HAAAA7NQiNS7Hju3I7w45eV6OQmYDAAAAgEOQ2QAAAABsZMplyukQ7itkNgAAAAA4BJkNAAAAwEZOLmQ27EFmAwAAAIBDkNkAAAAAbGTKxW/19qCzAQAAANiIYVT2oWsGAAAAwCHIbAAAAAA2Yulb+5DZAAAAAOAQZDYAAAAAGzFnwz5kNgAAAAA4BJkNAAAAwEbM2bAPmQ0AAAAADkFmAwAAALARczbsQ2cDAAAAsJHJmc6GPRhGBQAAAMAhyGwAAAAANnIis2EXMhsAAAAAHILMBgAAAGAjkxOZDXuQ2QAAAADgEGQ2AAAAABuZnPmt3h5cLQAAAAAOQWYDAAAAsBGrUdmHzgYAAABgIyaI24dhVAAAAAAcgswGAAAAYCOGUdmHzAYAAAAAhyCzAQAAANjIRGbDLmQ2AAAAADgEmQ0AAADARiYnfqu3B1cLAAAAgEOQ2QAAAABsxH027ENnAwAAALARS9/ah2FUAAAAAByCzAYAAABgI4ZR2YfMBgAAAACHILMBAAAA2Iilb+3D1QIAAADgEGQ2AAAAABsxZ8M+ZDYAAAAAOASZDQAAAMBG3GfDPnQ2AAAAABsxjMo+DKMCAAAA4BBkNgAAAAAbsfStfbhaAAAAwH1q6tSpCg0Nlbu7u2rVqqUtW7bcsn5iYqL69u2rAgUKyM3NTSVLltSyZcscFh+ZDQAAAMBG99Kcjfnz5ys6OlrTp09XrVq1NGHCBEVGRiouLk6BgYEZ6qekpKhx48YKDAzUwoULVahQIf3111/y9fV1WIx0NgAAAID70Lhx49SrVy91795dkjR9+nQtXbpUM2fO1ODBgzPUnzlzps6dO6dffvlFuXLlkiSFhoY6NEaGUQEAAAA2MjmZHLbZIyUlRdu2bVNERISlzMnJSREREdq4cWOm+yxevFjh4eHq27ev8ufPr/Lly2vUqFFKT0+/q2tyK2Q2AAAAgHtAcnKykpOTrcrc3Nzk5uaWoe6ZM2eUnp6u/PnzW5Xnz59f+/bty7T9P//8U2vXrlXnzp21bNkyHTx4UC+++KJSU1M1dOjQ7DuRm5DZeMg1aNBAL7/88h3vf+TIEZlMJu3cuVOStG7dOplMJiUmJt7R/gAAAPcyR2Y2YmNj5ePjY7XFxsZmW+xms1mBgYH68MMPVa1aNXXo0EFvvPGGpk+fnm3H+DcyG8hRwcHBio+Pl7+/f06HAuAeF9LnaRWL7iG3oABd3L1Pv788Uhe27sm0bu3Vnypf/VoZyhOWrdPWJ5+XJFX8OFbBXVpbP//9z9r6eM/sDx7AA8ORS9/GxMQoOjraqiyzrIYk+fv7y9nZWadOnbIqP3XqlIKCgjLdp0CBAsqVK5ecnZ0tZWXKlNHJkyeVkpIiV1fXuzyDjOhsIEc5Oztn+YEAgBsKtGumMv+L0W99hypxyy4V7ddVtZZ+rHXlmirl9LkM9be1e0lOrrksj3Pl81W9bd8q/qsVVvUSVvyk3T1jLI/Tk1McdxIAcBtZDZnKjKurq6pVq6Y1a9aoVatWkq5nLtasWaOoqKhM96lbt67mzZsns9ksp//vNO3fv18FChRwSEdDYhgVJKWlpSkqKko+Pj7y9/fXW2+9JcMwJEkmk0mLFi2yqu/r66tPPvnktu1evnxZ3t7eWrhwoVX5okWL5OnpqUuXLmU5DGvNmjWqXr26cufOrTp16iguLs6qjbfffluBgYHKkyePevbsqcGDB6ty5cp3egkA3OOKvtxdxz5eoOOzv1bS3kPa8+JQpV+5puBubTKtn3r+gpJPnbFs/hF1lX7lmuIXWnc2zMkpVvXSEi/+F6cD4D7m5Gxy2Gav6OhozZgxQ7Nnz9bevXvVp08fXb582bI6VZcuXRQT888PKn369NG5c+fUv39/7d+/X0uXLtWoUaPUt2/fbLs+/0ZnA5o9e7ZcXFy0ZcsWTZw4UePGjdNHH3101+16enqqY8eOmjVrllX5rFmz1LZtW+XJkyfLfd944w2NHTtWv/76q1xcXPTcc89Znps7d67eeecdvffee9q2bZuKFCmiadOm3XW8AO5Nply55FO1nM6s+eWfQsPQmbW/yLd2FZvaCO7eRvELlir9ylWr8nz1ayrixC+q/9sKlZ8yTLn8fLMxcgBwrA4dOmjMmDEaMmSIKleurJ07d2rFihWWSeNHjx5VfHy8pX5wcLC+//57bd26VRUrVlS/fv3Uv3//TJfJzS4Mo4KCg4M1fvx4mUwmlSpVSnv27NH48ePVq1evu267Z8+eqlOnjuLj41WgQAElJCRo2bJlWr169S33e+edd1S/fn1J0uDBg9WiRQtdu3ZN7u7umjx5snr06GHptQ8ZMkQrV65UUlLSXccL4N7j6p9XTi4uSk44a1WefOqsPEsVu+3+PjUqyLt8Ke3u/YZV+envf9bJb1bp6pHjyl0sWKVGRqvmkhna8EgHyWzO1nMA8OC4l27qJ0lRUVFZDptat25dhrLw8HBt2rTJwVH9g8wGVLt2bZlM/3xwwsPDdeDAgWxZc7lmzZoqV66cZs+eLUn67LPPFBISokcfffSW+1WsWNHy7wIFCkiSEhISJElxcXGqWbNmhuPcTnJysi5evGi1pRp8oQAedMHd2+rinrgMk8njFyxTwpK1uvTbfp1avEZbWz0v3xoVla/+7f+eAABsQ2cDt2QymSzzN25ITU21q42ePXta5njMmjVL3bt3t+rcZObGXS1vxCBdn/R0NzJbTm6BOePEUgD3lpQz52VOS5NbYD6rcrf8+ZR88swt93XO7aGC7Vvo2KyFt6wnSVcPH1fy6XPyLBFyV/ECeLCZnJwctj2IHsyzgl02b95s9XjTpk0KCwuTs7OzAgICrMb6HThwQFeuXLGr/WeeeUZ//fWXJk2apD/++ENdu3a9q3hLlSqlrVu3WpX9+3FmYmJidOHCBautvZPfXcUCwPGM1FRd2P67/BuG/1NoMinfY+FK3LTjlvsWaNtUTm6uOjF38W2P414ov1zz+epa/Om7DRkA8P+YswEdPXpU0dHRev7557V9+3ZNnjxZY8eOlSQ1bNhQU6ZMUXh4uNLT0/Xaa69ZZR1skTdvXrVu3VqDBg1SkyZNVLhw4buK96WXXlKvXr1UvXp11alTR/Pnz9fu3btVrNitx25ntpxcLhP9beB+cHjCLFWa+Z4St/2mC1t3K7RfV7l4eujY7K8lSZVmvadrJ04p7s1xVvsFd2+rU9+uVuq5RKtyZ8/cCnsrSie/+V7JJ88od7FglXl3kC4f/EtnVv78X50WgPvQvTZn415HZwPq0qWLrl69qpo1a8rZ2Vn9+/dX7969JUljx45V9+7dVa9ePRUsWFATJ07Utm3b7D5Gjx49NG/ePKtVpe5U586d9eeff2rgwIG6du2a2rdvr27dumnLli133TaAe1P8l8vlGuCnkkP7Xb+p36692vJ4T6X8/6Rxj+ACMv411NKzZFH5PVJdm5t2z9CekZ4u7wolVfjZVsrlm0fX/k7QmdUbFDd0oswp9g0VBfBwobNhH5Px7wH5gAPMmTNHr7zyiv7++2+H3DSmcePGCgoK0pw5c+zab2muUtkeCwAAcKwWqXG3r+Qgf/Vu5bC2Qz5c5LC2cwqZDTjUlStXFB8fr3fffVfPP/98tnQ0rly5ounTpysyMlLOzs76/PPPtXr1aq1atSobIgYAAMjagzqR21G4WnCo0aNHq3Tp0goKCrK6g+XdMJlMWrZsmR599FFVq1ZN3333nb766itFRERkS/sAAADIHgyjwkONYVQAANx/cnIY1bEX2zis7eD3v3JY2zmFzAYAAAAAh2DOBgAAAGAj5mzYh6sFAAAAwCHIbAAAAAC2MnGfDXuQ2QAAAADgEGQ2AAAAABtxB3H70NkAAAAAbMQEcftwtQAAAAA4BJkNAAAAwEYMo7IPmQ0AAAAADkFmAwAAALARczbsw9UCAAAA4BBkNgAAAAAbMWfDPmQ2AAAAADgEmQ0AAADARmQ27ENnAwAAALAVE8TtwtUCAAAA4BBkNgAAAAAbmUwMo7IHmQ0AAAAADkFmAwAAALARN/WzD1cLAAAAgEOQ2QAAAABsxNK39iGzAQAAAMAhyGwAAAAAtmLOhl3obAAAAAA2YhiVfeiaAQAAAHAIMhsAAACAjUwmfqu3B1cLAAAAgEOQ2QAAAABsxZwNu5DZAAAAAOAQZDYAAAAAG5lY+tYuXC0AAAAADkFmAwAAALAR99mwD50NAAAAwFYsfWsXrhYAAAAAhyCzAQAAANiIYVT2IbMBAAAAwCHIbAAAAAC2Yulbu3C1AAAAADgEmQ0AAADARiYTczbsQWYDAAAAgEOQ2QAAAABsxZwNu9DZAAAAAGzE0rf2oWsGAAAAwCHIbAAAAAC2MvFbvT24WgAAAAAcgswGAAAAYCvmbNiFzAYAAABwn5o6dapCQ0Pl7u6uWrVqacuWLTbt98UXX8hkMqlVq1YOjY/OBgAAAGAjk8nJYZu95s+fr+joaA0dOlTbt29XpUqVFBkZqYSEhFvud+TIEQ0cOFD16tW708tgMzobAAAAwH1o3Lhx6tWrl7p3766yZctq+vTpyp07t2bOnJnlPunp6ercubOGDx+uYsWKOTxG5mzgoeZT1jOnQwAAAPcTB87ZSE5OVnJyslWZm5ub3NzcMtRNSUnRtm3bFBMT809oTk6KiIjQxo0bszzGiBEjFBgYqB49eujnn3/OvuCzQGYDAAAAsJHJyclhW2xsrHx8fKy22NjYTOM4c+aM0tPTlT9/fqvy/Pnz6+TJk5nus379en388ceaMWNGtl+XrJDZAAAAAO4BMTExio6OtirLLKtxJy5duqRnn31WM2bMkL+/f7a0aQs6GwAAAICtTI4bRpXVkKnM+Pv7y9nZWadOnbIqP3XqlIKCgjLUP3TokI4cOaKWLVtaysxmsyTJxcVFcXFxKl68+F1EnzmGUQEAAAD3GVdXV1WrVk1r1qyxlJnNZq1Zs0bh4eEZ6pcuXVp79uzRzp07LdsTTzyhxx57TDt37lRwcLBD4iSzAQAAANjK6d75rT46Olpdu3ZV9erVVbNmTU2YMEGXL19W9+7dJUldunRRoUKFFBsbK3d3d5UvX95qf19fX0nKUJ6d6GwAAAAA96EOHTro9OnTGjJkiE6ePKnKlStrxYoVlknjR48elVMOd45MhmEYORoBkIPWV6qa0yEAAAA7PbJre44d+8rsEQ5rO3fXIQ5rO6fcO3kgAAAAAA8UhlEBAAAANjLdQ3M27gd0NgAAAABbmehs2IOrBQAAAMAhyGwAAAAAtnJy3E39HkRkNgAAAAA4BJkNAAAAwEYm5mzYhasFAAAAwCHIbAAAAAC2Ys6GXchsAAAAAHAIMhsAAACArZizYRc6GwAAAICtTAyjsgddMwAAAAAOQWYDAAAAsJUTv9Xbg6sFAAAAwCHIbAAAAAC2YoK4XbhaAAAAAByCzAYAAABgK27qZxcyGwAAAAAcgswGAAAAYCvmbNiFqwUAAADAIchsAAAAALbiDuJ2obMBAAAA2Iqb+tmFqwUAAADAIchsAAAAALZiGJVdyGwAAAAAcAgyGwAAAICtWPrWLlwtAAAAAA5BZgMAAACwFatR2YWrBQAAAMAhyGwAAAAAtmI1KrvQ2QAAAABsxQRxu3C1AAAAADgEmQ0AAADAVgyjsguZDQAAAAAOQWYDAAAAsBVL39qFqwUAAADAIchsAAAAADYymLNhFzIbAAAAAByCzAYAAABgK+6zYRc6GwAAAICt6GzYhasFAAAAwCHIbAAAAAA2YoK4fchs2KFBgwZ6+eWXs629YcOGqXLlytnW3n/J3tg/+eQT+fr63raeyWTSokWL7jguAAAA3Dv+087GunXrZDKZlJiY+F8eNtt8/fXXGjlyZE6H8Z/LrAMwcOBArVmzxuY2OnTooP3791seZ9VZiY+PV7Nmze40VAAPqAId2qv6siWqs2WjKn02W17ly92yvnMeLxWLGayaq79Xna2bVG3xN8r7SN1/ns+dW0UHDVT15UsVvvkXVZw9S17lyjr6NAA8CExOjtseQPfkMKqUlBS5urrmyLFTU1OVK1euTOPx8/PLkZhuJbN4/wteXl7y8vKyub6Hh4c8PDxuWy8oKOhuwgLwAPKPbKKiA6N18O1RurRnjwp17qzy06Zq25NPKfXc+Qz1TS4uKj99mlLPndPega8qJSFBbgUKKP3SJUudEsOGKHeJ4tr/xltKOX1agS2aq/wH07S9dVulJJz+L08PAB5odnehzGazYmNjVbRoUXl4eKhSpUpauHChDMNQRESEIiMjZRiGJOncuXMqXLiwhgwZoiNHjuixxx6TJOXNm1cmk0ndunWTdH14UlRUlF5++WX5+/srMjJSkjRu3DhVqFBBnp6eCg4O1osvvqikpCSreDZs2KAGDRood+7cyps3ryIjI3X+/PX/fEJDQzVhwgSr+pUrV9awYcMsj00mk6ZNm6YnnnhCnp6eeueddyy/un/00UcqWrSo3N3dLXHePIwqOTlZr732moKDg+Xm5qYSJUro448/lpT5sKFFixbJdItxflu3blXjxo3l7+8vHx8f1a9fX9u3b7eqk1m8t5Kenq4ePXpYXq9SpUpp4sSJGerNnDlT5cqVk5ubmwoUKKCoqCjLNZSkp556SiaTyfL45szEypUr5e7uniFj1b9/fzVs2DDD9fjkk080fPhw7dq1SyaTSSaTSZ988onl/G7Oohw7dkzt27eXr6+v/Pz89OSTT+rIkSOW59etW6eaNWvK09NTvr6+qlu3rv76669bXhMA95dCz3bWya+/UcK3i3X1z8M6+PY7Sr92TflbPZlp/fxPPSkXH2/tfWWALu3cpeS/43Vx23Zd3n9AkuTk5ib/Rg11ZPxEXdy+XdeOHdPR6R/o2rHjCmrX7r88NQD3I5PJcdsDyO7ORmxsrD799FNNnz5dv//+u1555RU988wz+umnnzR79mxt3bpVkyZNkiS98MILKlSokIYMGaLg4GB99dVXkqS4uDjFx8dbfemdPXu2XF1dtWHDBk2fPv16cE5OmjRpkn7//XfNnj1ba9eu1auvvmrZZ+fOnWrUqJHKli2rjRs3av369WrZsqXS09PtOqdhw4bpqaee0p49e/Tcc89Jkg4ePKivvvpKX3/9tXbu3Jnpfl26dNHnn3+uSZMmae/evfrggw/s+rX/3y5duqSuXbtq/fr12rRpk8LCwtS8eXNduunXuKzizYrZbFbhwoX15Zdf6o8//tCQIUP0+uuva8GCBZY606ZNU9++fdW7d2/t2bNHixcvVokSJSRd7wBJ0qxZsxQfH295fLNGjRrJ19fX8vpK1zs58+fPV+fOnTPU79ChgwYMGKBy5copPj5e8fHx6tChQ4Z6qampioyMVJ48efTzzz9rw4YN8vLyUtOmTZWSkqK0tDS1atVK9evX1+7du7Vx40b17t37lh06APcXk4uLvMqUUeKmzf8UGoYSN21WnooVM93Hr359Xdq9R8VjBqvm2lWq8tUCFe7xnOR0/b88k7OzTC4uMienWO2XnnxNPlUqO+pUAOChZNcwquTkZI0aNUqrV69WeHi4JKlYsWJav369PvjgA82bN08ffPCBunTpopMnT2rZsmXasWOHXFyuH+bGMKTAwMAMv/qHhYVp9OjRVmU3ZxFCQ0P19ttv64UXXtD7778vSRo9erSqV69ueSxJ5crdehxvZp5++ml1797dqiwlJUWffvqpAgICMt1n//79WrBggVatWqWIiAjLtbgbN7IAN3z44Yfy9fXVjz/+qMcff/yW8WYlV65cGj58uOVx0aJFtXHjRi1YsEDt27eXJL399tsaMGCA+vfvb6lXo0YNSbKcv6+vb5ZDnJydndWxY0fNmzdPPXr0kCStWbNGiYmJatOmTYb6Hh4e8vLykouLyy2HTc2fP19ms1kfffSRpQMxa9Ys+fr6at26dapevbouXLigxx9/XMWLF5cklSlTJsv2kpOTlZycbFWWYjbL1enBHCMJPAhy5fWVycVFqWfPWZWnnj2n3EVDM93HvXAhuResoYRly/V7337yKBKs4q8PlsnFRcc++FDpV67o4s5dKtK7p+IO/6mUs+cU0KypvCtW1NVjx/6DswJwX+N7g13suloHDx7UlStX1LhxY8uYfS8vL3366ac6dOiQJKldu3Z66qmn9O6772rMmDEKCwuzqe1q1aplKFu9erUaNWqkQoUKKU+ePHr22Wd19uxZXblyRdI/mY27Vb169QxlISEhWXY0bhzb2dlZ9evXv+vj33Dq1Cn16tVLYWFh8vHxkbe3t5KSknT06NHbxnsrU6dOVbVq1RQQECAvLy99+OGHljYTEhL0999/3/V17Ny5s9atW6e///5bkjR37ly1aNHCphWosrJr1y4dPHhQefLksbzX/Pz8dO3aNR06dEh+fn7q1q2bIiMj1bJlS02cOFHx8fFZthcbGysfHx+r7bOEU3ccH4B7k8nJSSnnzungiLd1ee9enfl+pY599LEKtPvnx4/9b7wlmUyquXql6m7dpIJPd9TpFd9LZiMHIwdwPzBMJodtDyK7Mhs35kssXbpUhQoVsnrOzc1NknTlyhVt27ZNzs7OOnDggM1te3p6Wj0+cuSIHn/8cfXp00fvvPOO/Pz8tH79evXo0UMpKSnKnTv3bSccOzk5WeaP3JCamnrbY2dVdrPsOvbNunbtqrNnz2rixIkKCQmRm5ubwsPDlZJineq/XWw3++KLLzRw4ECNHTtW4eHhypMnj/73v/9p8+bNNp2HrWrUqKHixYvriy++UJ8+ffTNN99Y5mHcqaSkJFWrVk1z587N8NyNjuCsWbPUr18/rVixQvPnz9ebb76pVatWqXbt2hn2iYmJUXR0tFXZr3UfvasYAThW6vlEGWlpypXPeoGOXPn8lHLmbKb7pJw+IyMtTTKbLWVX/zws14AAmVxcZKSl6drx49rTo5ecPNzl7Oml1DNnVGr0u7p2/LhDzwcAHjZ2ZTbKli0rNzc3HT16VCVKlLDagoODJUkDBgyQk5OTli9frkmTJmnt2rWW/W+sMGXLnIpt27bJbDZr7Nixql27tkqWLGn51fyGihUr3nL51YCAAKtfui9evKjDhw/bc8pZqlChgsxms3788ccsj33p0iVdvnzZUpbV3I8bNmzYoH79+ql58+aWydpnzpy5qzg3bNigOnXq6MUXX1SVKlVUokQJSxZKkvLkyaPQ0NBbXsdcuXLZ9Jp17txZc+fO1XfffScnJye1aNEiy7qurq63bbNq1ao6cOCAAgMDM7zffHx8LPWqVKmimJgY/fLLLypfvrzmzZuXaXtubm7y9va22hhCBdzbjLQ0Je3dK99aNf8pNJnkW6umLu3enek+F3fukntwsNVkS4+QECUnnL7eCbmJ+eo1pZ45I+c8eZQ3PFxn12X+Nx0ALFj61i52nVWePHk0cOBAvfLKK5o9e7YOHTqk7du3a/LkyZo9e7aWLl2qmTNnau7cuWrcuLEGDRqkrl27WlaHCgkJkclk0pIlS3T69OkMK0vdrESJEkpNTdXkyZP1559/as6cOZaJ4zfExMRo69atevHFF7V7927t27dP06ZNs3xBb9iwoebMmaOff/5Ze/bsUdeuXeXs7GzvNcpUaGiounbtqueee06LFi3S4cOHtW7dOsvE61q1ail37tx6/fXXdejQIc2bN++2v/SHhYVpzpw52rt3rzZv3qzOnTvfdeYhLCxMv/76q77//nvt379fb731VoZJ3sOGDdPYsWM1adIkHThwwPKa3nyua9as0cmTJy2vZWY6d+6s7du365133lHbtm0t2a7MhIaG6vDhw9q5c6fOnDmTYS7Fjfb8/f315JNP6ueff7Zc4379+un48eM6fPiwYmJitHHjRv31119auXKlDhw4cMt5GwDuPyfmzFVQ66cU2PJxeRQtquJvvi5nDw+dWrRYklTy7REK6RdlqR+/4Eu5+Hir2GuD5B5SRHnrPaLCPZ9T/Px/FsbwrRMu3zp15FaooHxr11KFjz7UlSNHlPDt4v/8/ADgQWZ3F2rkyJF66623FBsbqzJlyqhp06ZaunSpQkND1aNHDw0bNkxVq1aVJA0fPlz58+fXCy+8IEkqVKiQhg8frsGDByt//vyW5VUzU6lSJY0bN07vvfeeypcvr7lz5yo2NtaqTsmSJbVy5Urt2rVLNWvWVHh4uL799lvLhPSYmBjVr19fjz/+uFq0aKFWrVpZJhJnh2nTpqlt27Z68cUXVbp0afXq1cuSyfDz89Nnn32mZcuWqUKFCvr888+tltzNzMcff6zz58+ratWqevbZZ9WvXz8FBgbeVYzPP/+8WrdurQ4dOqhWrVo6e/asXnzxRas6Xbt21YQJE/T++++rXLlyevzxx62GwI0dO1arVq1ScHCwqlSpkuWxSpQooZo1a2r37t2ZrkJ1szZt2qhp06Z67LHHFBAQoM8//zxDndy5c+unn35SkSJF1Lp1a5UpU0Y9evTQtWvX5O3trdy5c2vfvn1q06aNSpYsqd69e6tv3756/vnn7bxKAO5lZ75fqcPjJqjIi31UZcHn8ipVUr+9GKXUc9cnjbsFBcnV399SP+XUKf3eJ0pe5cqp6pfzVey1Qfp77uc6PnOWpY6Ll5eKv/6aqi36WiXfHqGLO3fq9z59M2Q+AODfDJOTw7YHkcn498QC4CGyvlLVnA4BAADY6ZFd229fyUGSNjkuA+pV+wmHtZ1T7sk7iAMAAAD3pAd01ShHeTDzNQ+RF154wWoZ4pu3G8PXAAAA8GCaOnWqQkND5e7urlq1amnLli1Z1p0xY4bq1aunvHnzKm/evIqIiLhl/exAZuM+N2LECA0cODDT57y9vf/jaAAAAB5s99Lcivnz5ys6OlrTp09XrVq1NGHCBEVGRiouLi7Teb/r1q1Tp06dVKdOHbm7u+u9995TkyZN9Pvvv2e4rUV2Yc4GHmrM2QAA4P6Tk3M2Lm1d5rC289Roblf9WrVqqUaNGpoyZYokyWw2Kzg4WC+99JIGDx582/3T09OVN29eTZkyRV26dLmjmG/n3umaAQAAAA+x5ORkXbx40WrL7PYAkpSSkqJt27YpIiLCUubk5KSIiAht3LjRpuNduXJFqamp8vPzu33lO0RnAwAAALCVA2/qFxsbKx8fH6vt37d+uOHMmTNKT09X/vz5rcrz58+vkydP2nQqr732mgoWLGjVYcluzNkAAAAA7gExMTGKjo62KrvVTZLvxrvvvqsvvvhC69atk7u7u0OOIdHZAAAAAGxmOHDpWzc3N5s7F/7+/nJ2dtapU6esyk+dOqWgoKBb7jtmzBi9++67Wr16tSpWrHjH8dqCYVQAAADAfcbV1VXVqlXTmjVrLGVms1lr1qxReHh4lvuNHj1aI0eO1IoVK1S9enWHx0lmAwAAALDVPbT0bXR0tLp27arq1aurZs2amjBhgi5fvqzu3btLkrp06aJChQpZ5n289957GjJkiObNm6fQ0FDL3I4b92hzBDobAAAAwH2oQ4cOOn36tIYMGaKTJ0+qcuXKWrFihWXS+NGjR+Xk9E/naNq0aUpJSVHbtm2t2hk6dKiGDRvmkBi5zwYeatxnAwCA+09O3mfjwvbVDmvbp6rjVoXKKWQ2AAAAABvdS3cQvx9wtQAAAAA4BJkNAAAAwFZkNuzC1QIAAADgEGQ2AAAAABs58qZ+DyIyGwAAAAAcgswGAAAAYCNWo7IPVwsAAACAQ5DZAAAAAGzFnA270NkAAAAAbMQwKvtwtQAAAAA4BJkNAAAAwEaGGEZlDzIbAAAAAByCzAYAAABgI+Zs2IerBQAAAMAhyGwAAAAAtmLpW7uQ2QAAAADgEGQ2AAAAABsZ/FZvFzobAAAAgI0MhlHZha4ZAAAAAIcgswEAAADYiKVv7cPVAgAAAOAQZDYAAAAAGxlizoY9yGwAAAAAcAgyGwAAAICNmLNhH64WAAAAAIcgswEAAADYiPts2IfMBgAAAACHILMBAAAA2IjVqOxDZwMAAACwERPE7cPVAgAAAOAQZDYAAAAAGzGMyj5kNgAAAAA4BJkNAAAAwEbM2bAPVwsAAACAQ5DZAAAAAGzEnA37kNkAAAAA4BBkNgAAAAAbMWfDPnQ2AAAAABsxjMo+dM0AAAAAOASZDTzUTE78OgEAAGxnmPjuYA8yGwAAAAAcgswGAAAAYCPDILNhDzIbAAAAAByCzAYAAABgI4Pf6u3C1QIAAADgEGQ2AAAAABtxnw370NkAAAAAbERnwz4MowIAAADgEGQ2AAAAABuR2bAPmQ0AAAAADkFmAwAAALARmQ37kNkAAAAA4BBkNgAAAAAbGQaZDXuQ2QAAAADgEGQ2AAAAABsxZ8M+ZDYAAAAAGxkyOWy7E1OnTlVoaKjc3d1Vq1Ytbdmy5Zb1v/zyS5UuXVru7u6qUKGCli1bdkfHtRWdDQAAAOA+NH/+fEVHR2vo0KHavn27KlWqpMjISCUkJGRa/5dfflGnTp3Uo0cP7dixQ61atVKrVq3022+/OSxGk2EYhsNaB+5xG6pUy+kQAACAneru2JZjx95z8JTD2q5QIr9d9WvVqqUaNWpoypQpkiSz2azg4GC99NJLGjx4cIb6HTp00OXLl7VkyRJLWe3atVW5cmVNnz797oLPApkNAAAA4B6QnJysixcvWm3JycmZ1k1JSdG2bdsUERFhKXNyclJERIQ2btyY6T4bN260qi9JkZGRWdbPDnQ2AAAAABsZhslhW2xsrHx8fKy22NjYTOM4c+aM0tPTlT+/dTYkf/78OnnyZKb7nDx50q762YHVqAAAAIB7QExMjKKjo63K3Nzcciia7EFnAwAAALCR2YFL37q5udncufD395ezs7NOnbKeQ3Lq1CkFBQVluk9QUJBd9bMDw6gAAACA+4yrq6uqVaumNWvWWMrMZrPWrFmj8PDwTPcJDw+3qi9Jq1atyrJ+diCzAQAAANjoXrqpX3R0tLp27arq1aurZs2amjBhgi5fvqzu3btLkrp06aJChQpZ5n30799f9evX19ixY9WiRQt98cUX+vXXX/Xhhx86LEY6GwAAAICNDOPe6Wx06NBBp0+f1pAhQ3Ty5ElVrlxZK1assEwCP3r0qJyc/hnIVKdOHc2bN09vvvmmXn/9dYWFhWnRokUqX768w2LkPht4qHGfDQAA7j85eZ+N7fvPOqztqiXzOaztnEJmAwAAALDRvTSM6n7ABHEAAAAADkFmAwAAALDRvTRn435AZgMAAACAQ5DZAAAAAGzEnA37kNkAAAAA4BBkNgAAAAAbMWfDPnQ2AAAAABuZczqA+wzDqAAAAAA4BJkNAAAAwEYMo7IPmQ0AAAAADkFmAwAAALARS9/ah8wGAAAAAIcgswEAAADYiDkb9iGzAQAAAMAhyGwAAAAANmLOhn3obAAAAAA2Mhs5HcH9hWFUAAAAAByCzAYAAABgI4ZR2YfMBgAAAACHILMBAAAA2Iilb+1DZgMAAACAQ5DZAAAAAGxksBqVXchsAAAAAHAIMhsAAACAjcysRmUXOhsAgHteUPt2KtS1i1zz5dPl/Qf053ujlfT771nWd/byUkhUX+Vr2FAuPt5Kjo/X4TFjdX79huvP586tIi/2kV/Dx5Qrb15djovT4dFjlPTHH//VKQG4TzFB3D50Nh4QKSkpcnV1zdY2DcNQenq6XFzunbfJvRgTAMfyb9JYRQdE69A7o3Tpt99U8OmnVe79KdreqrVSz5/PUN/k4qJy099X6rnz2jfoVaUkJMitYAGlXbpkqVNiyFvKXaK4Drz5llJOn1ZA8+YqN32adrRpq5TTp//L0wOABxpzNhygQYMGioqKUlRUlHx8fOTv76+33npLxv/PKEpOTtbAgQNVqFAheXp6qlatWlq3bp1VG+vXr1e9evXk4eGh4OBg9evXT5cvX7Y8HxoaqpEjR6pLly7y9vZW7969bxnTkSNHZDKZ9MUXX6hOnTpyd3dX+fLl9eOPP1rqrFu3TiaTScuXL1e1atXk5uam9evXy2w2KzY2VkWLFpWHh4cqVaqkhQsXWvY7f/68OnfurICAAHl4eCgsLEyzZs2SdL0TFBUVpQIFCsjd3V0hISGKjY21imnnzp2WthITE2UymSzX405jAvDgKPjMMzr19TdKWPydrv55WIfeGaX0a9cU2OrJTOvnb/WkXLx9tC96gC7t2qXk+Hhd3LZdV/YfkCQ5ubkpX6OGOjJhki5u36Frx47r2Acf6tqxYwpq1/a/PDUA9yHDcNz2IKKz4SCzZ8+Wi4uLtmzZookTJ2rcuHH66KOPJElRUVHauHGjvvjiC+3evVvt2rVT06ZNdeDA9f8IDx06pKZNm6pNmzbavXu35s+fr/Xr1ysqKsrqGGPGjFGlSpW0Y8cOvfXWWzbFNWjQIA0YMEA7duxQeHi4WrZsqbNnz1rVGTx4sN59913t3btXFStWVGxsrD799FNNnz5dv//+u1555RU988wzlo7KW2+9pT/++EPLly/X3r17NW3aNPn7+0uSJk2apMWLF2vBggWKi4vT3LlzFRoaavf1tDcmAA8Gk4uLvMqUVuLmLf8UGoYubN6iPBUrZLpP3vqP6tLu3So2+DXVWL1Slb+cr8LPdZecrv+XZ3J2lsnFReaUZKv9zMnJ8q5S2VGnAgAPJcaiOEhwcLDGjx8vk8mkUqVKac+ePRo/frwiIyM1a9YsHT16VAULFpQkDRw4UCtWrNCsWbM0atQoxcbGqnPnznr55ZclSWFhYZo0aZLq16+vadOmyd3dXZLUsGFDDRgwwK64oqKi1KZNG0nStGnTtGLFCn388cd69dVXLXVGjBihxo0bS7qehRk1apRWr16t8PBwSVKxYsW0fv16ffDBB6pfv76OHj2qKlWqqHr16pJk1Zk4evSowsLC9Mgjj8hkMikkJMT+i3kHMQF4MOTK6yuTi4tSz1n/KJJy9qx8svjhwr1QYbnXKKDTy5frj5f6ySM4WMViBsvk4qJjH85Q+pUrurhrl4J79dTVw4eVcvacAppGKk/FCrp27Nh/cFYA7mcGE8TtQmfDQWrXri2T6Z83Y3h4uMaOHas9e/YoPT1dJUuWtKqfnJysfPnySZJ27dql3bt3a+7cuZbnDcOQ2WzW4cOHVaZMGUmyfLm3x40v55Lk4uKi6tWra+/evVZ1bm734MGDunLliuWL/g0pKSmqUqWKJKlPnz5q06aNtm/friZNmqhVq1aqU6eOJKlbt25q3LixSpUqpaZNm+rxxx9XkyZN7I7b3pgyk5ycrORk618yU8xmuTqR4AMeJCYnk1LPndfBke9IZrMu790n18BAFerSRcc+nCFJOvDmEJUYNkQ1Vn4vIy1NSfv26fSK7+X1/39fAQDZg87GfywpKUnOzs7atm2bnJ2drZ7z8vKy1Hn++efVr1+/DPsXKVLE8m9PT0+HxHhzu0lJSZKkpUuXqlChQlb13NzcJEnNmjXTX3/9pWXLlmnVqlVq1KiR+vbtqzFjxqhq1ao6fPiwli9frtWrV6t9+/aKiIjQwoUL5fT/X/KNmwYppqamZktMmYmNjdXw4cOtyrrnD1KPAgWz3AdAzko9nygjLU25/PJZlbvmy6eUs2cy3SflzBkZaWmS2Wwpu3L4sFwD/GVycZGRlqZrx4/rt5695eTuLmcvL6WeOaNS78bq2okTDj0fAPc/8wM6t8JR6Gw4yObNm60eb9q0SWFhYapSpYrS09OVkJCgevXqZbpv1apV9ccff6hEiRLZHtemTZv06KOPSpLS0tK0bdu2DHNBbla2bFm5ubnp6NGjtxyeFBAQoK5du6pr166qV6+eBg0apDFjxkiSvL291aFDB3Xo0EFt27ZV06ZNde7cOQUEBEiS4uPjLRmJmyeL321M/xYTE6Po6Girsm31GHIF3MuMtDQl7d0nn1o1dO7GQhomk3xq1lD8/AWZ7nNx5y4FNGsqmUyWGZceRUKUcvr09U7ITczXrsl87Zqc8+SRb51wHZkw0ZGnAwAPHTobDnL06FFFR0fr+eef1/bt2zV58mSNHTtWJUuWVOfOndWlSxeNHTtWVapU0enTp7VmzRpVrFhRLVq00GuvvabatWsrKipKPXv2lKenp/744w+tWrVKU6ZMuau4pk6dqrCwMJUpU0bjx4/X+fPn9dxzz2VZP0+ePBo4cKBeeeUVmc1mPfLII7pw4YI2bNggb29vde3aVUOGDFG1atVUrlw5JScna8mSJZahXuPGjVOBAgVUpUoVOTk56csvv1RQUJB8fX3l5OSk2rVr691331XRokWVkJCgN99887bnYEtMmXFzc8uQ+WAIFXDv+/uzzxQ2YriS/tirpP9f+tbZw0MJ3y6WJIWNHK6UhNP6a/L1v48nv1yoAh3aq+irAxX/+Xx5FCmiwj26K/7zLyxt+oaHSybp6pG/5B4crNBX+uvq4SNKWPxdjpwjgPsH99mwD50NB+nSpYuuXr2qmjVrytnZWf3797csTztr1iy9/fbbGjBggE6cOCF/f3/Vrl1bjz/+uCSpYsWK+vHHH/XGG2+oXr16MgxDxYsXV4cOHe46rnfffVfvvvuudu7cqRIlSmjx4sWWlaOyMnLkSAUEBCg2NlZ//vmnfH19VbVqVb3++uuSJFdXV8XExOjIkSPy8PBQvXr19MUX1/9Tz5Mnj0aPHq0DBw7I2dlZNWrU0LJlyyxDqGbOnKkePXqoWrVqKlWqlEaPHm3TnI7bxQTgwXFm5Sq55M2rIn1euH5Tv7j9+r3vS0o9d06S5BYUJOOmcQ0pp07pj75RKjpggIIWfKHkhNOKn/e5jn8y21LH2ctLIS9FyS1/oNIuXNTZNWv019T3M2Q+AODfHtQlah3FZBhcsuzWoEEDVa5cWRMmTMjpUCyOHDmiokWLaseOHapcuXJOh3PP2FClWk6HAAAA7FR3x7YcO/ay7ZnPL80OzavmcljbOYXMBgAAAGAjM0vf2oUB6w+IUaNGycvLK9OtWbNmOR0eAAAAHkIMo3pAnDt3Tuf+f/zyv3l4eGRYIhbXMYwKAID7T04Oo/pum+PmdrWs9uANOnrwzugh5efnJz8/v5wOAwAAALCgswEAAADYiKVv7cOcDQAAAAAOQWYDAAAAsJGZ2c52IbMBAAAAwCHIbAAAAAA2Yh1X+9DZAAAAAGxkcFM/uzCMCgAAAIBDkNkAAAAAbMQEcfuQ2QAAAADgEGQ2AAAAABsxQdw+ZDYAAAAAOASZDQAAAMBGZDbsQ2YDAAAAgEOQ2QAAAABsZDa4z4Y96GwAAAAANmIYlX0YRgUAAAA8wM6dO6fOnTvL29tbvr6+6tGjh5KSkm5Z/6WXXlKpUqXk4eGhIkWKqF+/frpw4YLdxyazAQAAANjofsxsdO7cWfHx8Vq1apVSU1PVvXt39e7dW/Pmzcu0/t9//62///5bY8aMUdmyZfXXX3/phRde0N9//62FCxfadWyTYdyPlwzIHhuqVMvpEAAAgJ3q7tiWY8eet95xX52ffiT754Ps3btXZcuW1datW1W9enVJ0ooVK9S8eXMdP35cBQsWtKmdL7/8Us8884wuX74sFxfb8xUMowIAAABsZDYctznCxo0b5evra+loSFJERIScnJy0efNmm9u5cOGCvL297epoSAyjAgAAAO4JycnJSk5Otipzc3OTm5vbHbd58uRJBQYGWpW5uLjIz89PJ0+etKmNM2fOaOTIkerdu7fdxyezAQAAANjIMEwO22JjY+Xj42O1xcbGZhrH4MGDZTKZbrnt27fvrs/34sWLatGihcqWLathw4bZvT+ZDQAAAOAeEBMTo+joaKuyrLIaAwYMULdu3W7ZXrFixRQUFKSEhASr8rS0NJ07d05BQUG33P/SpUtq2rSp8uTJo2+++Ua5cuW6/Un8C50NAAAAwEaOXFrJniFTAQEBCggIuG298PBwJSYmatu2bapW7frCOGvXrpXZbFatWrWy3O/ixYuKjIyUm5ubFi9eLHd3d9tO4l8YRgUAAADY6H6bIF6mTBk1bdpUvXr10pYtW7RhwwZFRUWpY8eOlpWoTpw4odKlS2vLli2Srnc0mjRposuXL+vjjz/WxYsXdfLkSZ08eVLp6el2HZ/MBgAAAPAAmzt3rqKiotSoUSM5OTmpTZs2mjRpkuX51NRUxcXF6cqVK5Kk7du3W1aqKlGihFVbhw8fVmhoqM3HprMBAAAA2Oh+vEOdn59fljfwk6TQ0FDdfOu9Bg0aKLtuxccwKgAAAAAOQWYDAAAAsNH9mNnISWQ2AAAAADgEmQ0AAADARo5aNepBRWYDAAAAgEOQ2QAAAABsxJwN+9DZAAAAAGxkNud0BPcXhlEBAAAAcAgyGwAAAICNGEZlHzIbAAAAAByCzAYAAABgIzIb9iGzAQAAAMAhyGwAAAAANuKmfvYhswEAAADAIchsAAAAADYyHDppw+TAtnMGnQ0AAADARkwQtw/DqAAAAAA4BJkNAAAAwEZmc05HcH8hswEAAADAIchsAAAAADZizoZ9yGwAAAAAcAgyGwAAAICNuKmffchsAAAAAHAIMht4qL1WeFxOhwAAAOy0PgePzZwN+9DZAAAAAGxkOHQc1YN3B3GGUQEAAABwCDIbAAAAgI2YIG4fMhsAAAAAHILMBgAAAGAjJojbh8wGAAAAAIcgswEAAADYyMykDbuQ2QAAAADgEGQ2AAAAABsxZ8M+dDYAAAAAG9HZsA/DqAAAAAA4BJkNAAAAwEZmUht2IbMBAAAAwCHIbAAAAAA2Msw5HcH9hcwGAAAAAIcgswEAAADYyGDOhl3IbAAAAABwCDIbAAAAgI3MzNmwC50NAAAAwEYMo7IPw6gAAAAAOASZDQAAAMBGZhIbdiGzAQAAAMAhyGwAAAAANjJIbdiFzAYAAAAAhyCzAQAAANiIxajsQ2YDAAAAgEOQ2QAAAABsZGbOhl3IbAAAAABwCDIbAAAAgI24g7h96GwAAAAANjLMOR3B/YVhVAAAAAAcgswGAAAAYCMzw6jsQmYDAAAAeICdO3dOnTt3lre3t3x9fdWjRw8lJSXZtK9hGGrWrJlMJpMWLVpk97HpbAAAAAA2MgzDYZujdO7cWb///rtWrVqlJUuW6KefflLv3r1t2nfChAkymUx3fGyGUQEAAAAPqL1792rFihXaunWrqlevLkmaPHmymjdvrjFjxqhgwYJZ7rtz506NHTtWv/76qwoUKHBHxyezAQAAANjIbDYctjnCxo0b5evra+loSFJERIScnJy0efPmLPe7cuWKnn76aU2dOlVBQUF3fHwyGwAAAMA9IDk5WcnJyVZlbm5ucnNzu+M2T548qcDAQKsyFxcX+fn56eTJk1nu98orr6hOnTp68skn7/jYEpkNAAAAwGaG4bgtNjZWPj4+VltsbGymcQwePFgmk+mW2759++7oHBcvXqy1a9dqwoQJd3GlriOzAQAAANjIcNBwJ0mKiYlRdHS0VVlWWY0BAwaoW7dut2yvWLFiCgoKUkJCglV5Wlqazp07l+XwqLVr1+rQoUPy9fW1Km/Tpo3q1aundevW3fK4N6OzAQAAANwD7BkyFRAQoICAgNvWCw8PV2JiorZt26Zq1apJut6ZMJvNqlWrVqb7DB48WD179rQqq1ChgsaPH6+WLVvaFN8NdDYAAAAAG91vN/UrU6aMmjZtql69emn69OlKTU1VVFSUOnbsaFmJ6sSJE2rUqJE+/fRT1axZU0FBQZlmPYoUKaKiRYvadXzmbAAAAAAPsLlz56p06dJq1KiRmjdvrkceeUQffvih5fnU1FTFxcXpypUr2X5sMhsAAACAjRw5Z8NR/Pz8NG/evCyfDw0Nve1NBe/0poNkNgAAAAA4BJkNAAAAwEb3Y2YjJ5HZAAAAAOAQZDYAAAAAG5HYsA+dDQAAAMBGDKOyD8OoAAAAADgEmQ0AAADARne6BOzDiszGfWLYsGGqXLmyXfuYTCYtWrTIIfEAAAAAt0Nm4z4xcOBAvfTSSzkdxj1p3bp1euyxx3T+/Hn5+vrmdDgAHKhH51C1bBKkPJ4u2rP3osa8f0DH46/ech9/P1f16VZMtav5yd3NScfjr2rUxDjFHUySJD3XKUSNHg1UoL+b0tLMijuYpA/nHNYf+y/9F6cE4D5jZs6GXehs3Ce8vLzk5eWV02Hcc1JTU3M6BAD/kc5tgtX28UJ6Z8I+xZ+6pp6dQzVuRAU98+JWpaRm/p9/Hk8XTRtdRdv3JGrgsD1KvJiqwgU9dCkpzVLn2N9XNX76Af198prc3JzU/snCGjeiojr23qLEi/yNAYC7wTCqbLZw4UJVqFBBHh4eypcvnyIiInT58mWZzWaNGDFChQsXlpubmypXrqwVK1ZY7Xv8+HF16tRJfn5+8vT0VPXq1bV582ZJGYdRbd26VY0bN5a/v798fHxUv359bd++/Y5iTklJUVRUlAoUKCB3d3eFhIQoNjZWknTkyBGZTCbt3LnTUj8xMVEmk0nr1q2TdD2zYDKZtHTpUlWsWFHu7u6qXbu2fvvtN8s+n3zyiXx9fbVo0SKFhYXJ3d1dkZGROnbsmFUs06ZNU/HixeXq6qpSpUppzpw5Vs+bTCZNmzZNTzzxhDw9PdWrVy899thjkqS8efPKZDKpW7dud3QdANzb2j1RSJ8u+EvrN5/VoSOX9fb4fcrn56Z6tf2z3Kdz22AlnElW7MQ47T1wSfGnrmnrjvP6++Q1S51VPybo112J+vvUNR0+ekWTPzokL08XFQ/1/C9OC8B9xjAMh20PIjob2Sg+Pl6dOnXSc889p71792rdunVq3bq1DMPQxIkTNXbsWI0ZM0a7d+9WZGSknnjiCR04cECSlJSUpPr16+vEiRNavHixdu3apVdffVVmsznTY126dEldu3bV+vXrtWnTJoWFhal58+a6dMn+tP+kSZO0ePFiLViwQHFxcZo7d65CQ0PtbmfQoEEaO3astm7dqoCAALVs2dIq83DlyhW98847+vTTT7VhwwYlJiaqY8eOlue/+eYb9e/fXwMGDNBvv/2m559/Xt27d9cPP/xgdZxhw4bpqaee0p49ezR8+HB99dVXkqS4uDjFx8dr4sSJdscO4N5WML+7/P3ctHXneUvZ5Svp+mP/RZUv7Z3lfnVr5tO+g5c08rWy+m5OuGZOqKqWTYKyrO/iYtKTTQvoUlKaDh5JytZzAICHEcOoslF8fLzS0tLUunVrhYSESJIqVKggSRozZoxee+01y5fr9957Tz/88IMmTJigqVOnat68eTp9+rS2bt0qPz8/SVKJEiWyPFbDhg2tHn/44Yfy9fXVjz/+qMcff9yuuI8ePaqwsDA98sgjMplMltjtNXToUDVu3FiSNHv2bBUuXFjffPON2rdvL+n6kKcpU6aoVq1aljplypTRli1bVLNmTY0ZM0bdunXTiy++KEmKjo7Wpk2bNGbMGEv2QpKefvppde/e3fL48OHDkqTAwMBbztlITk5WcnKyVZk5PUVOzq53dL4A/jt+ea9/Ts8nWg9rOp+YYnkuMwWDPNSqmYfmLzquT788qjJhefRy7xJKTTO0Yu0pS706Nfw0bFBZubs56ez5FL0yZLcuXEzLsl0ADy/us2EfMhvZqFKlSmrUqJEqVKigdu3aacaMGTp//rwuXryov//+W3Xr1rWqX7duXe3du1eStHPnTlWpUsXS0bidU6dOqVevXgoLC5OPj4+8vb2VlJSko0eP2h13t27dtHPnTpUqVUr9+vXTypUr7W5DksLDwy3/9vPzU6lSpSznJ0kuLi6qUaOG5XHp0qXl6+trqbN3795bXqMbqlevfkfxxcbGysfHx2o7fnDuHbUFwLEa1w/UygWPWDYXF9MdteNkkvYfuqQP5xzWgT+TtPj7eC1eGa9WzQpa1du+O1Hd+/+qPq/u0OZt5zTitTLy9cmVHacC4AFjmA2HbQ8iOhvZyNnZWatWrdLy5ctVtmxZTZ48WaVKlbL88n4rHh4edh2ra9eu2rlzpyZOnKhffvlFO3fuVL58+ZSSkmJ33FWrVtXhw4c1cuRIXb16Ve3bt1fbtm0lSU5O198iN48jzOlJ2Z6edzaOOiYmRhcuXLDaCpfonM3RAcgO67ecVff+v1q2C/8/UTuvr3UHIK+vq86dz/rv3tnzKTpy7IpV2V/Hrih/gJtV2bVks07EX9PvcZf07uT9Sk839HjjrIdbAQBsQ2cjm5lMJtWtW1fDhw/Xjh075OrqqjVr1qhgwYLasGGDVd0NGzaobNmykqSKFStq586dOnfunE3H2bBhg/r166fmzZurXLlycnNz05kzZ+44bm9vb3Xo0EEzZszQ/Pnz9dVXX+ncuXMKCAiQdH2I2A03Txa/2aZNmyz/Pn/+vPbv368yZcpYytLS0vTrr79aHsfFxSkxMdFSp0yZMre8Rllxdb0+hCI9Pf2W9dzc3OTt7W21MYQKuDddvZquE/HXLNvho1d05lyyqlfKa6mT28NZZUt667d9F7NsZ8/eCypSKLdVWXCh3DqZcC2LPa5zMpnkmov/IgFkZDYMh20PIuZsZKPNmzdrzZo1atKkiQIDA7V582adPn1aZcqU0aBBgzR06FAVL15clStX1qxZs7Rz507NnXt9GE+nTp00atQotWrVSrGxsSpQoIB27NihggULWg1PuiEsLExz5sxR9erVdfHiRQ0aNMju7MgN48aNU4ECBVSlShU5OTnpyy+/VFBQkHx9feXk5KTatWvr3XffVdGiRZWQkKA333wz03ZGjBihfPnyKX/+/HrjjTfk7++vVq1aWZ7PlSuXXnrpJU2aNEkuLi6KiopS7dq1VbNmTUnXJ5i3b99eVapUUUREhL777jt9/fXXWr169S3jDwkJkclk0pIlS9S8eXN5eHiwTDDwAPpy8Ql17VBEx/6+en3p22dCdfZcsn7e9M8PLRPerqifNp7R10v/liTN//aEpo+urGfbFdHa9QkqW9JbT0QW0Ogp+yVJ7m5O6tI+RBu2nNGZcyny9c6l1i0Kyj+fm37YcDpHzhMAHiR0NrKRt7e3fvrpJ02YMEEXL15USEiIxo4dq2bNmikyMlIXLlzQgAEDlJCQoLJly2rx4sUKCwuTdP3X+ZUrV2rAgAFq3ry50tLSVLZsWU2dOjXTY3388cfq3bu3qlatquDgYI0aNUoDBw68o7jz5Mmj0aNH68CBA3J2dlaNGjW0bNkyyxCqmTNnqkePHqpWrZpKlSql0aNHq0mTJhnaeffdd9W/f38dOHBAlStX1nfffWfJOkhS7ty59dprr+npp5/WiRMnVK9ePX388ceW51u1aqWJEydqzJgx6t+/v4oWLapZs2apQYMGt4y/UKFCGj58uAYPHqzu3burS5cu+uSTT+7oWgC4d8396pjc3Z31alRJeXm6aM8fFzRg6B6re2wUCvKQr/c/Q632Hbik10f9rue7FFW3jiGKP3VVk2Yc1KofEyRdvzlXSGEPNWtUTj7euXTxYqr2HrikvoN36vDRKxliAIAHdW6Fo5iMB3VRX/xnbLmD9yeffKKXX35ZiYmJ/2lst/NIyx9zOgQAAGCn9d/Vz7Fjdx1y0mFtzx7x4M0VI7MBAAAA2Ijf6e3D7LeHwKhRo+Tl5ZXp1qxZs5wODwAAAA8ohlE9BM6dO5flKlceHh4qVKjQfxzRvYNhVAAA3H9ychjVM2/87bC2P3un4O0r3WcYRvUQ8PPzs/lmgQAAAMgaE8TtwzAqAAAAAA5BZgMAAACwETMQ7ENmAwAAAIBDkNkAAAAAbGSYzTkdwn2FzAYAAAAAhyCzAQAAANjIzGpUdiGzAQAAAMAhyGwAAAAANmI1KvvQ2QAAAABsxE397MMwKgAAAAAOQWYDAAAAsBGZDfuQ2QAAAADgEGQ2AAAAABuZDW7qZw8yGwAAAAAcgswGAAAAYCPmbNiHzAYAAAAAhyCzAQAAANiIzIZ96GwAAAAANuIO4vZhGBUAAAAAhyCzAQAAANjIbGbpW3uQ2QAAAADgEGQ2AAAAABsxQdw+ZDYAAAAAOASZDQAAAMBGhsGcDXuQ2QAAAADgEGQ2AAAAABsxZ8M+dDYAAAAAG9HZsA/DqAAAAAA4BJkNAAAAwEZmJojbhcwGAAAAAIcgswEAAADYiDkb9iGzAQAAAMAhyGwAAAAANjLMzNmwB5kNAAAA4AF27tw5de7cWd7e3vL19VWPHj2UlJR02/02btyohg0bytPTU97e3nr00Ud19epVu45NZwMAAACwkWE2HLY5SufOnfX7779r1apVWrJkiX766Sf17t37lvts3LhRTZs2VZMmTbRlyxZt3bpVUVFRcnKyr/tgMgyDWS54aD3S8secDgEAANhp/Xf1c+zYEZ1+dVjbqz+vnu1t7t27V2XLltXWrVtVvfr19lesWKHmzZvr+PHjKliwYKb71a5dW40bN9bIkSPv6vhkNgAAAAAbGYbZYVtycrIuXrxotSUnJ99VvBs3bpSvr6+loyFJERERcnJy0ubNmzPdJyEhQZs3b1ZgYKDq1Kmj/Pnzq379+lq/fr3dx6ezAQAAANjIbDYctsXGxsrHx8dqi42Nvat4T548qcDAQKsyFxcX+fn56eTJk5nu8+eff0qShg0bpl69emnFihWqWrWqGjVqpAMHDth1fDobAAAAwD0gJiZGFy5csNpiYmIyrTt48GCZTKZbbvv27bujOMz/v+LW888/r+7du6tKlSoaP368SpUqpZkzZ9rVFkvfAgAAADZy5NK3bm5ucnNzs6nugAED1K1bt1vWKVasmIKCgpSQkGBVnpaWpnPnzikoKCjT/QoUKCBJKlu2rFV5mTJldPToUZviu4HOBgAAAHCfCQgIUEBAwG3rhYeHKzExUdu2bVO1atUkSWvXrpXZbFatWrUy3Sc0NFQFCxZUXFycVfn+/fvVrFkzu+JkGBUAAABgo/tt6dsyZcqoadOm6tWrl7Zs2aINGzYoKipKHTt2tKxEdeLECZUuXVpbtmyRJJlMJg0aNEiTJk3SwoULdfDgQb311lvat2+fevToYdfxyWwAAAAAD7C5c+cqKipKjRo1kpOTk9q0aaNJkyZZnk9NTVVcXJyuXLliKXv55Zd17do1vfLKKzp37pwqVaqkVatWqXjx4nYdm/ts4KHGfTYAALj/5OR9Nh59yv7lX2310zePOKztnMIwKgAAAAAOwTAqAAAAwEaOmlvxoKKzAQAAANjIkUvfPogYRgUAAADAIZggDgB44CQnJys2NlYxMTE23yALAJD96GwAAB44Fy9elI+Pjy5cuCBvb++cDgcAHloMowIAAADgEHQ2AAAAADgEnQ0AAAAADkFnAwDwwHFzc9PQoUOZHA4AOYwJ4gAAAAAcgswGAAAAAIegswEAAADAIehsAAAAAHAIOhsAgIdSaGioJkyY8J8es0GDBnr55Zf/02MCQE6iswEAyHbdunVTq1atcjoMAEAOo7MBAMgxqampOR0CAMCB6GwAAO7YwoULVaFCBXl4eChfvnyKiIjQoEGDNHv2bH377bcymUwymUxat26djhw5IpPJpPnz56t+/fpyd3fX3LlzJUkfffSRypQpI3d3d5UuXVrvv/++5RgpKSmKiopSgQIF5O7urpCQEMXGxkqSDMPQsGHDVKRIEbm5ualgwYLq16/fHZ1LYmKievbsqYCAAHl7e6thw4batWuXJGn//v0ymUzat2+f1T7jx49X8eLFLY9/++03NWvWTF5eXsqfP7+effZZnTlz5o7iAYAHgUtOBwAAuD/Fx8erU6dOGj16tJ566ildunRJP//8s7p06aKjR4/q4sWLmjVrliTJz89Pf//9tyRp8ODBGjt2rKpUqWLpcAwZMkRTpkxRlSpVtGPHDvXq1Uuenp7q2rWrJk2apMWLF2vBggUqUqSIjh07pmPHjkmSvvrqK40fP15ffPGFypUrp5MnT1o6CPZq166dPDw8tHz5cvn4+OiDDz5Qo0aNtH//fpUsWVLVq1fX3LlzNXLkSMs+c+fO1dNPPy3pemelYcOG6tmzp8aPH6+rV6/qtddeU/v27bV27dq7udQAcN+iswEAuCPx8fFKS0tT69atFRISIkmqUKGCJMnDw0PJyckKCgrKsN/LL7+s1q1bWx4PHTpUY8eOtZQVLVpUf/zxhz744AN17dpVR48eVVhYmB555BGZTCbLsSTp6NGjCgoKUkREhHLlyqUiRYqoZs2adp/L+vXrtWXLFiUkJFjuOj5mzBgtWrRICxcuVO/evdW5c2dNmTLF0tnYv3+/tm3bps8++0ySLJ2lUaNGWdqdOXOmgoODLR0WAHjYMIwKAHBHKlWqpEaNGqlChQpq166dZsyYofPnz992v+rVq1v+ffnyZR06dEg9evSQl5eXZXv77bd16NAhSdcnm+/cuVOlSpVSv379tHLlSsv+7dq109WrV1WsWDH16tVL33zzjdLS0uw+l127dikpKUn58uWziuPw4cOWODp27KgjR45o06ZNkq5nNapWrarSpUtb2vjhhx+s9r/x3I02AOBhQ2YDAHBHnJ2dtWrVKv3yyy9auXKlJk+erDfeeEObN2++5X6enp6WfyclJUmSZsyYoVq1amVoX5KqVq2qw4cPa/ny5Vq9erXat2+viIgILVy4UMHBwYqLi9Pq1au1atUqvfjii/rf//6nH3/8Ubly5bL5XJKSklSgQAGtW7cuw3O+vr6SpKCgIDVs2FDz5s1T7dq1NW/ePPXp08eqjZYtW+q9997L0EaBAgVsjgUAHiR0NgAAd8xkMqlu3bqqW7euhgwZopCQEH3zzTdydXVVenr6bffPnz+/ChYsqD///FOdO3fOsp63t7c6dOigDh06qG3btmratKnOnTsnPz8/eXh4qGXLlmrZsqX69u2r0qVLa8+ePapatarN51G1alWdPHlSLi4uCg0NzbJe586d9eqrr6pTp076888/1bFjR6s2vvrqK4WGhsrFhf9eAUCiswEAuEObN2/WmjVr1KRJEwUGBmrz5s06ffq0ypQpo2vXrun7779XXFyc8uXLJx8fnyzbGT58uPr16ycfHx81bdpUycnJ+vXXX3X+/HlFR0dr3LhxKlCggKpUqSInJyd9+eWXCgoKkq+vrz755BOlp6erVq1ayp07tz777DN5eHhYzeuwRUREhMLDw9WqVSuNHj1aJUuW1N9//62lS5fqqaeesgz9at26tfr06aM+ffroscceU8GCBS1t9O3bVzNmzFCnTp306quvys/PTwcPHtQXX3yhjz76yJKpAYCHCZ0NAMAd8fb21k8//aQJEybo4sWLCgkJ0dixY9WsWTNVr15d69atU/Xq1ZWUlKQffvghy4xBz549lTt3bv3vf//ToEGD5OnpqQoVKljutJ0nTx6NHj1aBw4ckLOzs2rUqKFly5bJyclJvr6+evfddxUdHa309HRVqFBB3333nfLly2fXuZhMJi1btkxvvPGGunfvrtOnTysoKEiPPvqo8ufPb6mXJ08etWzZUgsWLNDMmTOt2ihYsKA2bNig1157TU2aNFFycrJCQkLUtGlTOTkxRRLAw8lkGIaR00EAAAAAePDwUwsAAAAAh6CzAQB44Pz8889WS9D+ewMA/DcYRgUAeOBcvXpVJ06cyPL5EiVK/IfRAMDDi84GAAAAAIdgGBUAAAAAh6CzAQAAAMAh6GwAAAAAcAg6GwAAAAAcgs4GAAAAAIegswEAAADAIehsAAAAAHAIOhsAAAAAHOL/AJA+zbz9OgoFAAAAAElFTkSuQmCC\n"},"metadata":{}}],"source":["social_corr=social.corr()\n","social_corr=social_corr['stress_level'].sort_values(ascending=False)\n","social_corr=social_corr.drop('stress_level')\n","plt.figure(figsize=(8,6))\n","sns.heatmap(social_corr.to_frame(),annot=True,cmap='coolwarm')\n","plt.title('Stress Level Correlation of only Social Factors')\n","plt.show()"]},{"cell_type":"code","execution_count":82,"metadata":{"colab":{"base_uri":"https://localhost:8080/","height":537},"executionInfo":{"elapsed":668,"status":"ok","timestamp":1716217068512,"user":{"displayName":"Daniel Meier","userId":"06365571306976914087"},"user_tz":300},"id":"3tD9WLPOSx_h","outputId":"61aee244-c1a5-4bef-8bc3-19d9532962e4"},"outputs":[{"output_type":"stream","name":"stderr","text":[":1: FutureWarning: \n","\n","Passing `palette` without assigning `hue` is deprecated and will be removed in v0.14.0. Assign the `y` variable to `hue` and set `legend=False` for the same effect.\n","\n"," sns.barplot(social_corr,orient='y',palette='Spectral');\n"]},{"output_type":"display_data","data":{"text/plain":["
"],"image/png":"iVBORw0KGgoAAAANSUhEUgAAAr4AAAGxCAYAAACEObU9AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAAA5pUlEQVR4nO3deXRN5/7H8c9JIoPIICQEMcfYqJAaq5SouVVtKS6hppZUjUW1hhqirhirqlpDlaKUq8UtUmlRVBHVUmOUVhTXkJhiyP79YTk/MZ/IgOf9Wuus5eyz97O/+5twPp48Z8dmWZYlAAAA4DHnlNUFAAAAAJmB4AsAAAAjEHwBAABgBIIvAAAAjEDwBQAAgBEIvgAAADACwRcAAABGIPgCAADACC5ZXQCQVVJSUnTkyBF5eXnJZrNldTkAAOA+WJalpKQk5cuXT05Ojs3hEnxhrCNHjigoKCirywAAAGlw+PBhFShQwKFjCL4wlpeXl6Rrf3G8vb2zuBoAAHA/EhMTFRQUZH8fdwTBF8a6vrzB29ub4AsAwCMmLcsU+XAbAAAAjEDwBQAAgBEIvgAAADACwRcAAABGIPgCAADACARfAAAAGIHbmQEAHhrx77TK6hIApJMiI+dmdQm3YMYXAAAARiD4AgAAwAgEXwAAABiB4AsAAAAjEHwBAABgBIIvAAAAjEDwBQAAgBEIvgAAADACwRcAAABGIPgCAADACARfAAAAGIHgCwAAACMQfAEAAGAEgi8AAACMQPAFAACAEQi+AAAAMALBFwAAAEYg+AIAAMAIBF8AAAAYgeALAAAAIxB8AQAAYASCLwAAAIxA8AUAAIARCL4AAAAwAsEXAAAARiD4AgAAwAgEXwAAABiB4AsAAAAjEHwBAABgBIIvAAAAjEDwBQAAgBEIvoarVauWevTokebjDx48KJvNpri4OElSbGysbDabTp8+nabjAQAAMopLVhcAswUFBSkhIUG5c+fO6lIAAMBjjuCLLOXs7Ky8efNmdRkAAMAALHWArly5osjISPn4+Ch37tx67733ZFmWJMlms2nJkiWp9vf19dXMmTPvOe65c+fk7e2thQsXptq+ZMkSeXp6Kikp6Y5LJWJiYhQWFqbs2bOrWrVq2r17d6oxhg8froCAAHl5ealjx47q37+/ypcvn9YWAAAAAxB8oVmzZsnFxUU///yzJkyYoLFjx+rTTz994HE9PT316quvasaMGam2z5gxQy+//LK8vLzueOzAgQMVHR2tX375RS4uLnrttdfsr82ZM0cjRozQBx98oC1btqhgwYKaMmXKPetJTk5WYmJiqgcAADAHSx2goKAgjRs3TjabTSVLltSOHTs0btw4derU6YHH7tixo6pVq6aEhAQFBgbq2LFjWr58uVavXn3X40aMGKGaNWtKkvr3769GjRrp4sWLcnd316RJk9ShQwe1b99ekjRo0CCtXLlSZ8+eveuYUVFRGjp06ANfEwAAeDQx4wtVqVJFNpvN/rxq1arau3evrl69+sBjV6pUSWXLltWsWbMkSV988YUKFSqkZ5555q7HlStXzv7nwMBASdKxY8ckSbt371alSpVuOc+9DBgwQGfOnLE/Dh8+7NC1AACARxvBF3dls9ns632vu3z5skNjdOzY0b4meMaMGWrfvn2qoH072bJlS1WDJKWkpDh03pu5ubnJ29s71QMAAJiD4Att2rQp1fONGzcqODhYzs7O8vf3V0JCgv21vXv36vz58w6N/69//Ut//vmnJk6cqJ07dyoiIuKB6i1ZsqQ2b96catvNzwEAAG7GGl/o0KFD6tWrl7p06aKtW7dq0qRJio6OliTVrl1bH374oapWraqrV6+qX79+qWZj70fOnDnVrFkz9e3bV88995wKFCjwQPW++eab6tSpk8LCwlStWjXNnz9fv/76q4oWLfpA4wIAgMcbwRdq27atLly4oEqVKsnZ2VlvvfWWOnfuLEmKjo5W+/btVaNGDeXLl08TJkzQli1bHD5Hhw4dNHfu3FR3Z0ir1q1b68CBA+rTp48uXryo5s2bq127dvr5558feGwAAPD4slk3L+AEMsDs2bPVs2dPHTlyRK6uruk+ft26dZU3b17Nnj37vo9JTEyUj4+Pzpw5w3pf4CER/06rrC4BQDopMnJuhoz7IO/fzPgiQ50/f14JCQkaNWqUunTpki6h9/z58/r4449Vr149OTs768svv9Tq1au1atWqdKgYAAA8rvhwGzLU6NGjVapUKeXNm1cDBgxIlzFtNpuWL1+uZ555RhUrVtQ333yjRYsWKTw8PF3GBwAAjyeWOsBYLHUAHj4sdQAeHw/jUgdmfAEAAGAEgi8AAACMQPAFAACAEQi+AAAAMALBFwAAAEYg+AIAAMAIBF8AAAAYgeALAAAAIxB8AQAAYASCLwAAAIxA8AUAAIARCL4AAAAwAsEXAAAARiD4AgAAwAgEXwAAABiB4AsAAAAjEHwBAABgBIIvAAAAjEDwBQAAgBEIvgAAADACwRcAAABGIPgCAADACARfAAAAGIHgCwAAACMQfAEAAGAEgi8AAACMQPAFAACAEVyyugAAAK4rMnJuVpcA4DHGjC8AAACMQPAFAACAEQi+AAAAMALBFwAAAEYg+AIAAMAIBF8AAAAYgeALAAAAIxB8AQAAYASCLwAAAIxA8AUAAIARCL4AAAAwAsEXAAAARiD4AgAAwAgEXwAAABiB4AsAAAAjEHwBAABgBIIvAAAAjEDwBQAAgBFcsroAAACuO7Pnk6wuATCaT4nOWV1ChmLGFwAAAEYg+AIAAMAIBF8AAAAYgeALAAAAIxB8AQAAYASCLwAAAIxA8AUAAIARCL4AAAAwAsEXAAAARiD4AgAAwAgEXwAAABiB4AsAAAAjEHwBAABgBIIvAAAAjEDwBQAAgBEIvgAAADACwRcAAABGIPgCAADACARfAAAAGIHgCwAAACMQfAEAAGAEgi8AAACMQPAFAACAEQi+AAAAMALBFwAAAEYg+AIAAMAIBF8AAAAYgeALAAAAIxB8AQAAYASCLwAAAIxA8HVArVq11KNHj3Qbb8iQISpfvny6jZeZHK195syZ8vX1ved+NptNS5YsSXNdAAAAd5KpwTc2NlY2m02nT5/OzNOmm6+//lrDhg3L6jIy3e3CaJ8+fRQTE3PfY7Ro0UJ79uyxP79TcE5ISFCDBg3SWioAAMAduWR1Abdz6dIlubq6Zsm5L1++rGzZst22Hj8/vyyp6W5uV29myJEjh3LkyHHf+3t4eMjDw+Oe++XNm/dBygIAALgjh2d8U1JSFBUVpSJFisjDw0NPPvmkFi5cKMuyFB4ernr16smyLEnSyZMnVaBAAQ0aNEgHDx7Us88+K0nKmTOnbDab2rVrJ+naEoLIyEj16NFDuXPnVr169SRJY8eOVUhIiDw9PRUUFKSuXbvq7NmzqepZv369atWqpezZsytnzpyqV6+eTp06JUkqXLiwxo8fn2r/8uXLa8iQIfbnNptNU6ZM0fPPPy9PT0+NGDHCPhv56aefqkiRInJ3d7fXeeNSh+TkZPXr109BQUFyc3NT8eLF9dlnn0m6/Y/2lyxZIpvNdsfebt68WXXr1lXu3Lnl4+OjmjVrauvWran2uV29d3P16lV16NDB/vUqWbKkJkyYcMt+06dPV9myZeXm5qbAwEBFRkbaeyhJL774omw2m/35jTO2K1eulLu7+y0z+W+99ZZq1659Sz9mzpypoUOHavv27bLZbLLZbJo5c6b9+m6cXT58+LCaN28uX19f+fn56YUXXtDBgwftr8fGxqpSpUry9PSUr6+vqlevrj///POuPQEAAGZyOPhGRUXp888/18cff6zff/9dPXv21L/+9S/9+OOPmjVrljZv3qyJEydKkl5//XXlz59fgwYNUlBQkBYtWiRJ2r17txISElIFsFmzZsnV1VXr16/Xxx9/fK04JydNnDhRv//+u2bNmqXvv/9eb7/9tv2YuLg41alTR2XKlNGGDRu0bt06NWnSRFevXnXomoYMGaIXX3xRO3bs0GuvvSZJ2rdvnxYtWqSvv/5acXFxtz2ubdu2+vLLLzVx4kTt2rVLU6dOdWgW9GZJSUmKiIjQunXrtHHjRgUHB6thw4ZKSkq6Z713kpKSogIFCuirr77Szp07NWjQIL3zzjtasGCBfZ8pU6aoW7du6ty5s3bs2KGlS5eqePHikq6FcUmaMWOGEhIS7M9vVKdOHfn6+tq/vtK1wD1//ny1bt36lv1btGih3r17q2zZskpISFBCQoJatGhxy36XL19WvXr15OXlpbVr12r9+vXKkSOH6tevr0uXLunKlStq2rSpatasqV9//VUbNmxQ586d7/qfCwAAYC6HljokJydr5MiRWr16tapWrSpJKlq0qNatW6epU6dq7ty5mjp1qtq2baujR49q+fLl2rZtm1xcrp3m+lKBgICAW2ZDg4ODNXr06FTbbpxdLVy4sIYPH67XX39dH330kSRp9OjRCgsLsz+XpLJlyzpySZKkVq1aqX379qm2Xbp0SZ9//rn8/f1ve8yePXu0YMECrVq1SuHh4fZePIjrs6PXffLJJ/L19dUPP/ygxo0b37XeO8mWLZuGDh1qf16kSBFt2LBBCxYsUPPmzSVJw4cPV+/evfXWW2/Z93vqqackyX79vr6+d1yG4OzsrFdffVVz585Vhw4dJEkxMTE6ffq0XnrppVv29/DwUI4cOeTi4nLXpQ3z589XSkqKPv30U3uYnTFjhnx9fRUbG6uwsDCdOXNGjRs3VrFixSRJpUuXvuN4ycnJSk5Otj9PTEy8474AAODx49CM7759+3T+/HnVrVvXvsYzR44c+vzzz7V//35J0iuvvKIXX3xRo0aN0pgxYxQcHHxfY1esWPGWbatXr1adOnWUP39+eXl5qU2bNvrf//6n8+fPS/r/Gd8HFRYWdsu2QoUK3TH0Xj+3s7Ozatas+cDnv+6ff/5Rp06dFBwcLB8fH3l7e+vs2bM6dOjQPeu9m8mTJ6tixYry9/dXjhw59Mknn9jHPHbsmI4cOfLAfWzdurViY2N15MgRSdKcOXPUqFGj+7qTw51s375d+/btk5eXl/17zc/PTxcvXtT+/fvl5+endu3aqV69emrSpIkmTJighISEO44XFRUlHx8f+yMoKCjNtQEAgEePQ8H3+vraZcuWKS4uzv7YuXOnFi5cKEk6f/68tmzZImdnZ+3du/e+x/b09Ez1/ODBg2rcuLHKlSunRYsWacuWLZo8ebKka7Oxku75YSknJyf7euPrLl++fM9z32nbjdLr3DeKiIhQXFycJkyYoJ9++klxcXHKlSuX/Xrvt7YbzZs3T3369FGHDh20cuVKxcXFqX379vfdw/v11FNPqVixYpo3b54uXLigxYsX33aZgyPOnj2rihUrpvpei4uL0549e9SqVStJ12aAN2zYoGrVqmn+/PkqUaKENm7ceNvxBgwYoDNnztgfhw8ffqD6AADAo8WhpQ5lypSRm5ubDh06dMeZzt69e8vJyUkrVqxQw4YN1ahRI/uP8K/fqeF+1uBu2bJFKSkpio6OlpPTtXx+47pUSSpXrpxiYmJS/Sj/Rv7+/qlmABMTExUfH3/vC70PISEhSklJ0Q8//GBf6nDzuZOSknTu3Dl7UL3TWuHr1q9fr48++kgNGzaUdO2DXSdOnHigOtevX69q1aqpa9eu9m3XZ+clycvLS4ULF1ZMTIz9w4c3y5Yt2319zVq3bq05c+aoQIECcnJyUqNGje64r6ur6z3HrFChgubPn6+AgAB5e3vfcb/Q0FCFhoZqwIABqlq1qubOnasqVarcsp+bm5vc3NzueR0AAODx5NCMr5eXl/r06aOePXtq1qxZ2r9/v7Zu3apJkyZp1qxZWrZsmaZPn645c+aobt266tu3ryIiIux3WShUqJBsNpu+/fZbHT9+/JY7NNyoePHiunz5siZNmqQDBw5o9uzZ9g+9XTdgwABt3rxZXbt21a+//qo//vhDU6ZMsYfF2rVra/bs2Vq7dq127NihiIgIOTs7O9qj2ypcuLAiIiL02muvacmSJYqPj1dsbKw9nFeuXFnZs2fXO++8o/3792vu3Ln2OxfcSXBwsGbPnq1du3Zp06ZNat269QPPyAYHB+uXX37Rd999pz179ui999675QNqQ4YMUXR0tCZOnKi9e/fav6Y3XmtMTIyOHj1q/1reTuvWrbV161aNGDFCL7/88l1DZuHChRUfH6+4uDidOHEi1drbG8fLnTu3XnjhBa1du9be4+7du+uvv/5SfHy8BgwYoA0bNujPP//UypUrtXfv3ruu8wUAAOZy+K4Ow4YN03vvvaeoqCiVLl1a9evX17Jly1S4cGF16NBBQ4YMUYUKFSRJQ4cOVZ48efT6669LkvLnz6+hQ4eqf//+ypMnj/2WWbfz5JNPauzYsfrggw/0xBNPaM6cOYqKikq1T4kSJbRy5Upt375dlSpVUtWqVfWf//zH/mG6AQMGqGbNmmrcuLEaNWqkpk2b2j8ElR6mTJmil19+WV27dlWpUqXUqVMnnTt3TtK1D/J98cUXWr58uUJCQvTll1+muo3a7Xz22Wc6deqUKlSooDZt2qh79+4KCAh4oBq7dOmiZs2aqUWLFqpcubL+97//pZr9la4tsRg/frw++ugjlS1bVo0bN061TCU6OlqrVq1SUFCQQkND73iu4sWLq1KlSvr111/vuczhpZdeUv369fXss8/K399fX3755S37ZM+eXT/++KMKFiyoZs2aqXTp0urQoYMuXrwob29vZc+eXX/88YdeeukllShRQp07d1a3bt3UpUsXB7sEAABMYLNuXogKGCIxMVE+Pj46c+bMXZdSAMg8Z/Z8ktUlAEbzKdE5q0u4pwd5/87UX1kMAAAAZBWC7yPu9ddfT3VruRsf15eYAAAAwMG7OuDh8/7776tPnz63fY0f3wMAAPw/gu8jLiAg4IE/AAcAAGACljoAAADACARfAAAAGIHgCwAAACMQfAEAAGAEgi8AAACMQPAFAACAEQi+AAAAMALBFwAAAEYg+AIAAMAIBF8AAAAYgeALAAAAIxB8AQAAYASCLwAAAIxA8AUAAIARCL4AAAAwAsEXAAAARiD4AgAAwAgEXwAAABiB4AsAAAAjEHwBAABgBIIvAAAAjEDwBQAAgBEIvgAAADACwRcAAABGIPgCAADACARfAAAAGIHgCwAAACO4ZHUBAABc51Oic1aXAOAxxowvAAAAjEDwBQAAgBEIvgAAADACwRcAAABGIPgCAADACARfAAAAGIHgCwAAACMQfAEAAGAEgi8AAACMQPAFAACAEQi+AAAAMALBFwAAAEYg+AIAAMAIBF8AAAAYgeALAAAAIxB8AQAAYASCLwAAAIzgktUFAABwXfyxOVldAmC0IgGts7qEDMWMLwAAAIxA8AUAAIARCL4AAAAwAsEXAAAARiD4AgAAwAgEXwAAABiB4AsAAAAjEHwBAABgBIIvAAAAjEDwBQAAgBEIvgAAADACwRcAAABGIPgCAADACARfAAAAGIHgCwAAACMQfAEAAGAEgi8AAACMQPAFAACAEQi+AAAAMALBFwAAAEYg+AIAAMAIBF8AAAAYgeALAAAAIxB8AQAAYASCLwAAAIxA8AUAAIARCL4AAAAwAsEXAAAARiD4AgAAwAgEXwAAABiB4AsAAAAjEHwBAABgBIIvAAAAjEDwfUxcunQp3ce0LEtXrlxJ93EfxMNYEwAAeDQQfDNArVq1FBkZqcjISPn4+Ch37tx67733ZFmWJCk5OVl9+vRR/vz55enpqcqVKys2NjbVGOvWrVONGjXk4eGhoKAgde/eXefOnbO/XrhwYQ0bNkxt27aVt7e3OnfufNeaDh48KJvNpnnz5qlatWpyd3fXE088oR9++MG+T2xsrGw2m1asWKGKFSvKzc1N69atU0pKiqKiolSkSBF5eHjoySef1MKFC+3HnTp1Sq1bt5a/v788PDwUHBysGTNmSLoWyCMjIxUYGCh3d3cVKlRIUVFRqWqKi4uzj3X69GnZbDZ7P9JaEwAAwM1csrqAx9WsWbPUoUMH/fzzz/rll1/UuXNnFSxYUJ06dVJkZKR27typefPmKV++fFq8eLHq16+vHTt2KDg4WPv371f9+vU1fPhwTZ8+XcePH7cH6euBUpLGjBmjQYMGafDgwfddV9++fTV+/HiVKVNGY8eOVZMmTRQfH69cuXLZ9+nfv7/GjBmjokWLKmfOnIqKitIXX3yhjz/+WMHBwfrxxx/1r3/9S/7+/qpZs6bee+897dy5UytWrFDu3Lm1b98+XbhwQZI0ceJELV26VAsWLFDBggV1+PBhHT582OF+OlrT7SQnJys5Odn+PDEx0eE6AADAo8tmXZ+GRLqpVauWjh07pt9//102m03SteC2dOlS/fe//1XRokV16NAh5cuXz35MeHi4KlWqpJEjR6pjx45ydnbW1KlT7a+vW7dONWvW1Llz5+Tu7q7ChQsrNDRUixcvvq+aDh48qCJFimjUqFHq16+fJOnKlSsqUqSI3nzzTb399tuKjY3Vs88+qyVLluiFF16QdC0s+vn5afXq1apatap9vI4dO+r8+fOaO3eunn/+eeXOnVvTp0+/5bzdu3fX77//rtWrV9t7cXNN27ZtU/ny5SVdm/HNmTOn1qxZo1q1aqW5ptsZMmSIhg4desv2M2fOyNvb+776CCBjxR+bk9UlAEYrEtA6q0u4p8TERPn4+KTp/ZsZ3wxSpUqVVEGvatWqio6O1o4dO3T16lWVKFEi1f7Jycn2Wdft27fr119/1Zw5//8GYFmWUlJSFB8fr9KlS0uSwsLCHK7rxqDo4uKisLAw7dq1K9U+N467b98+nT9/XnXr1k21z6VLlxQaGipJeuONN/TSSy9p69ateu6559S0aVNVq1ZNktSuXTvVrVtXJUuWVP369dW4cWM999xzDtftaE23M2DAAPXq1cv+PDExUUFBQQ7XAgAAHk0E30x29uxZOTs7a8uWLXJ2dk71Wo4cOez7dOnSRd27d7/l+IIFC9r/7OnpmSE13jju2bNnJUnLli1T/vz5U+3n5uYmSWrQoIH+/PNPLV++XKtWrVKdOnXUrVs3jRkzRhUqVFB8fLxWrFih1atXq3nz5goPD9fChQvl5HRtifmNP3S4fPlyutR0O25ubnd9HQAAPN4Ivhlk06ZNqZ5v3LhRwcHBCg0N1dWrV3Xs2DHVqFHjtsdWqFBBO3fuVPHixdO9ro0bN+qZZ56RdG2pw5YtWxQZGXnH/cuUKSM3NzcdOnTojmtnJcnf318RERGKiIhQjRo11LdvX40ZM0aS5O3trRYtWqhFixZ6+eWXVb9+fZ08eVL+/v6SpISEBPtM7Y0fdHvQmgAAAG5E8M0ghw4dUq9evdSlSxdt3bpVkyZNUnR0tEqUKKHWrVurbdu2io6OVmhoqI4fP66YmBiVK1dOjRo1Ur9+/VSlShVFRkaqY8eO8vT01M6dO7Vq1Sp9+OGHD1TX5MmTFRwcrNKlS2vcuHE6deqUXnvttTvu7+XlpT59+qhnz55KSUnR008/rTNnzmj9+vXy9vZWRESEBg0apIoVK6ps2bJKTk7Wt99+a1+OMXbsWAUGBio0NFROTk766quvlDdvXvn6+srJyUlVqlTRqFGjVKRIER07dkzvvvvuPa/hfmoCAAC4GcE3g7Rt21YXLlxQpUqV5OzsrLfeest+y7EZM2Zo+PDh6t27t/7++2/lzp1bVapUUePGjSVJ5cqV0w8//KCBAweqRo0asixLxYoVU4sWLR64rlGjRmnUqFGKi4tT8eLFtXTpUuXOnfuuxwwbNkz+/v6KiorSgQMH5OvrqwoVKuidd96RJLm6umrAgAE6ePCgPDw8VKNGDc2bN0/StZA6evRo7d27V87Oznrqqae0fPly+zKH6dOnq0OHDqpYsaJKliyp0aNH39ca4HvVBAAAcDPu6pABatWqpfLly2v8+PFZXYrd7e6gYLoH+VQogIzBXR2ArPW439WBX2ABAAAAIxB8HxMjR45Ujhw5bvto0KBBVpcHAACQ5Vjq8Jg4efKkTp48edvXPDw8brntF1jqADyMWOoAZK3HfakDH257TPj5+cnPzy+rywAAAHhosdQBAAAARiD4AgAAwAgEXwAAABiB4AsAAAAjEHwBAABgBIIvAAAAjEDwBQAAgBEIvgAAADACwRcAAABGIPgCAADACARfAAAAGIHgCwAAACMQfAEAAGAEgi8AAACMQPAFAACAEQi+AAAAMALBFwAAAEYg+AIAAMAIBF8AAAAYgeALAAAAIxB8AQAAYASCLwAAAIxA8AUAAIARCL4AAAAwAsEXAAAARiD4AgAAwAguWV0AAADXFQlondUlAHiMMeMLAAAAIxB8AQAAYASCLwAAAIxA8AUAAIARCL4AAAAwAsEXAAAARiD4AgAAwAgEXwAAABiB4AsAAAAjEHwBAABgBIIvAAAAjEDwBQAAgBEIvgAAADACwRcAAABGIPgCAADACARfAAAAGIHgCwAAACO4ZHUBwOOq94rPs7oE4JET3aBtVpcA4DHGjC8AAACMQPAFAACAEQi+AAAAMALBFwAAAEYg+AIAAMAIBF8AAAAYgeALAAAAIxB8AQAAYASCLwAAAIxA8AUAAIARCL4AAAAwAsEXAAAARiD4AgAAwAgEXwAAABiB4AsAAAAjEHwBAABgBIIvAAAAjEDwBQAAgBEIvgAAADACwRcAAABGIPgCAADACARfAAAAGIHgCwAAACMQfAEAAGAEgi8AAACMQPAFAACAEQi+AAAAMALBFwAAAEYg+AIAAMAIBF8AAAAYgeALAAAAIxB8HxFDhgxR+fLlHTrGZrNpyZIlGVIPAADAo4bg+4jo06ePYmJisrqMh1JsbKxsNptOnz6d1aUAAICHmEtWF4D7kyNHDuXIkSOry3joXL58OatLAAAAjwhmfNPZwoULFRISIg8PD+XKlUvh4eE6d+6cUlJS9P7776tAgQJyc3NT+fLl9d///jfVsX/99ZdatmwpPz8/eXp6KiwsTJs2bZJ061KHzZs3q27dusqdO7d8fHxUs2ZNbd26NU01X7p0SZGRkQoMDJS7u7sKFSqkqKgoSdLBgwdls9kUFxdn3//06dOy2WyKjY2V9P8zrsuWLVO5cuXk7u6uKlWq6LfffrMfM3PmTPn6+mrJkiUKDg6Wu7u76tWrp8OHD6eqZcqUKSpWrJhcXV1VsmRJzZ49O9XrNptNU6ZM0fPPPy9PT0916tRJzz77rCQpZ86cstlsateuXZr6AAAAHm8E33SUkJCgli1b6rXXXtOuXbsUGxurZs2aybIsTZgwQdHR0RozZox+/fVX1atXT88//7z27t0rSTp79qxq1qypv//+W0uXLtX27dv19ttvKyUl5bbnSkpKUkREhNatW6eNGzcqODhYDRs2VFJSksN1T5w4UUuXLtWCBQu0e/duzZkzR4ULF3Z4nL59+yo6OlqbN2+Wv7+/mjRpkmpG9vz58xoxYoQ+//xzrV+/XqdPn9arr75qf33x4sV666231Lt3b/3222/q0qWL2rdvrzVr1qQ6z5AhQ/Tiiy9qx44dGjp0qBYtWiRJ2r17txISEjRhwoTb1pecnKzExMRUDwAAYA6WOqSjhIQEXblyRc2aNVOhQoUkSSEhIZKkMWPGqF+/fvag98EHH2jNmjUaP368Jk+erLlz5+r48ePavHmz/Pz8JEnFixe/47lq166d6vknn3wiX19f/fDDD2rcuLFDdR86dEjBwcF6+umnZbPZ7LU7avDgwapbt64kadasWSpQoIAWL16s5s2bS7q2LOHDDz9U5cqV7fuULl1aP//8sypVqqQxY8aoXbt26tq1qySpV69e2rhxo8aMGWOf1ZWkVq1aqX379vbn8fHxkqSAgAD5+vresb6oqCgNHTo0TdcGAAAefcz4pqMnn3xSderUUUhIiF555RVNmzZNp06dUmJioo4cOaLq1aun2r969eratWuXJCkuLk6hoaH20Hsv//zzjzp16qTg4GD5+PjI29tbZ8+e1aFDhxyuu127doqLi1PJkiXVvXt3rVy50uExJKlq1ar2P/v5+alkyZL265MkFxcXPfXUU/bnpUqVkq+vr32fXbt23bVH14WFhaWpvgEDBujMmTP2x83LLAAAwOON4JuOnJ2dtWrVKq1YsUJlypTRpEmTVLJkSfuM5N14eHg4dK6IiAjFxcVpwoQJ+umnnxQXF6dcuXLp0qVLDtddoUIFxcfHa9iwYbpw4YKaN2+ul19+WZLk5HTtW8SyLPv+Wf2BMk9PzzQd5+bmJm9v71QPAABgDoJvOrPZbKpevbqGDh2qbdu2ydXVVTExMcqXL5/Wr1+fat/169erTJkykqRy5copLi5OJ0+evK/zrF+/Xt27d1fDhg1VtmxZubm56cSJE2mu29vbWy1atNC0adM0f/58LVq0SCdPnpS/v7+ka8s4rrvxg2432rhxo/3Pp06d0p49e1S6dGn7titXruiXX36xP9+9e7dOnz5t36d06dJ37dGduLq6SpKuXr16H1cKAABMxRrfdLRp0ybFxMToueeeU0BAgDZt2qTjx4+rdOnS6tu3rwYPHqxixYqpfPnymjFjhuLi4jRnzhxJUsuWLTVy5Eg1bdpUUVFRCgwM1LZt25QvX75USwiuCw4O1uzZsxUWFqbExET17dvX4Vnj68aOHavAwECFhobKyclJX331lfLmzStfX185OTmpSpUqGjVqlIoUKaJjx47p3Xffve0477//vnLlyqU8efJo4MCByp07t5o2bWp/PVu2bHrzzTc1ceJEubi4KDIyUlWqVFGlSpUkXftwXPPmzRUaGqrw8HB98803+vrrr7V69eq71l+oUCHZbDZ9++23atiwoTw8PLj1GwAAuAUzvunI29tbP/74oxo2bKgSJUro3XffVXR0tBo0aKDu3burV69e6t27t0JCQvTf//5XS5cuVXBwsKRrs5YrV65UQECAGjZsqJCQEI0aNUrOzs63Pddnn32mU6dOqUKFCmrTpo26d++ugICANNXt5eWl0aNHKywsTE899ZQOHjyo5cuX25c5TJ8+XVeuXFHFihXVo0cPDR8+/LbjjBo1Sm+99ZYqVqyoo0eP6ptvvrHPxkpS9uzZ1a9fP7Vq1UrVq1dXjhw5NH/+fPvrTZs21YQJEzRmzBiVLVtWU6dO1YwZM1SrVq271p8/f34NHTpU/fv3V548eRQZGZmmPgAAgMebzbpx8SaQBrGxsXr22Wd16tSpO95VYebMmerRo8dD9dvVEhMT5ePjozNnzmTIet/eKz5P9zGBx110g7ZZXQKAh9yDvH8z4wsAAAAjEHwNMHLkSPuvPL750aBBg6wuDwAAIFOw1MEAJ0+evOPdIjw8PJQ/f/5MrujhwFIH4OHDUgcA9/Ig79/c1cEAfn5+9/2LMQAAAB5XLHUAAACAEQi+AAAAMALBFwAAAEYg+AIAAMAIBF8AAAAYgeALAAAAIxB8AQAAYASCLwAAAIxA8AUAAIARCL4AAAAwAsEXAAAARiD4AgAAwAgEXwAAABiB4AsAAAAjEHwBAABgBIIvAAAAjEDwBQAAgBEIvgAAADACwRcAAABGIPgCAADACARfAAAAGIHgCwAAACMQfAEAAGAEgi8AAACMQPAFAACAEQi+AAAAMIJLVhcAPK6iG7TN6hIAAMANmPEFAACAEQi+AAAAMALBFwAAAEYg+AIAAMAIBF8AAAAYgeALAAAAIxB8AQAAYASCLwAAAIzAL7CAsSzLkiQlJiZmcSUAAOB+XX/fvv4+7giCL4yVlJQkSQoKCsriSgAAgKOSkpLk4+Pj0DE2Ky1xGXgMpKSk6MiRI/Ly8pLNZsuSGhITExUUFKTDhw/L29s7S2rIavSAHlxHH+iBRA8keiDdvQeWZSkpKUn58uWTk5Njq3aZ8YWxnJycVKBAgawuQ5Lk7e1t7D9u19EDenAdfaAHEj2Q6IF05x44OtN7HR9uAwAAgBEIvgAAADACwRfIQm5ubho8eLDc3NyyupQsQw/owXX0gR5I9ECiB1LG9YAPtwEAAMAIzPgCAADACARfAAAAGIHgCwAAACMQfIFMdvLkSbVu3Vre3t7y9fVVhw4ddPbs2Xset2HDBtWuXVuenp7y9vbWM888owsXLmRCxekvrT2Qrt24vEGDBrLZbFqyZEnGFpqBHO3ByZMn9eabb6pkyZLy8PBQwYIF1b17d505cyYTq35wkydPVuHCheXu7q7KlSvr559/vuv+X331lUqVKiV3d3eFhIRo+fLlmVRpxnGkB9OmTVONGjWUM2dO5cyZU+Hh4ffs2aPA0e+D6+bNmyebzaamTZtmbIGZwNEenD59Wt26dVNgYKDc3NxUokSJR/7vg6M9GD9+vP3fwKCgIPXs2VMXL1507KQWgExVv35968knn7Q2btxorV271ipevLjVsmXLux7z008/Wd7e3lZUVJT122+/WX/88Yc1f/586+LFi5lUdfpKSw+uGzt2rNWgQQNLkrV48eKMLTQDOdqDHTt2WM2aNbOWLl1q7du3z4qJibGCg4Otl156KROrfjDz5s2zXF1drenTp1u///671alTJ8vX19f6559/brv/+vXrLWdnZ2v06NHWzp07rXfffdfKli2btWPHjkyuPP042oNWrVpZkydPtrZt22bt2rXLateuneXj42P99ddfmVx5+nG0B9fFx8db+fPnt2rUqGG98MILmVNsBnG0B8nJyVZYWJjVsGFDa926dVZ8fLwVGxtrxcXFZXLl6cfRHsyZM8dyc3Oz5syZY8XHx1vfffedFRgYaPXs2dOh8xJ8gUy0c+dOS5K1efNm+7YVK1ZYNpvN+vvvv+94XOXKla133303M0rMcGntgWVZ1rZt26z8+fNbCQkJj3TwfZAe3GjBggWWq6urdfny5YwoM91VqlTJ6tatm/351atXrXz58llRUVG33b958+ZWo0aNUm2rXLmy1aVLlwytMyM52oObXblyxfLy8rJmzZqVUSVmuLT04MqVK1a1atWsTz/91IqIiHjkg6+jPZgyZYpVtGhR69KlS5lVYoZztAfdunWzateunWpbr169rOrVqzt0XpY6AJlow4YN8vX1VVhYmH1beHi4nJyctGnTptsec+zYMW3atEkBAQGqVq2a8uTJo5o1a2rdunWZVXa6SksPJOn8+fNq1aqVJk+erLx582ZGqRkmrT242ZkzZ+Tt7S0Xl4f/t89funRJW7ZsUXh4uH2bk5OTwsPDtWHDhtses2HDhlT7S1K9evXuuP/DLi09uNn58+d1+fJl+fn5ZVSZGSqtPXj//fcVEBCgDh06ZEaZGSotPVi6dKmqVq2qbt26KU+ePHriiSc0cuRIXb16NbPKTldp6UG1atW0ZcsW+3KIAwcOaPny5WrYsKFD5374/7UEHiNHjx5VQEBAqm0uLi7y8/PT0aNHb3vMgQMHJElDhgzRmDFjVL58eX3++eeqU6eOfvvtNwUHB2d43ekpLT2QpJ49e6patWp64YUXMrrEDJfWHtzoxIkTGjZsmDp37pwRJaa7EydO6OrVq8qTJ0+q7Xny5NEff/xx22OOHj162/3vt0cPm7T04Gb9+vVTvnz5bvkPwaMiLT1Yt26dPvvsM8XFxWVChRkvLT04cOCAvv/+e7Vu3VrLly/Xvn371LVrV12+fFmDBw/OjLLTVVp60KpVK504cUJPP/20LMvSlStX9Prrr+udd95x6NzM+ALpoH///rLZbHd93O8b281SUlIkSV26dFH79u0VGhqqcePGqWTJkpo+fXp6XsYDycgeLF26VN9//73Gjx+fvkWns4zswY0SExPVqFEjlSlTRkOGDHnwwvFIGDVqlObNm6fFixfL3d09q8vJFElJSWrTpo2mTZum3LlzZ3U5WSYlJUUBAQH65JNPVLFiRbVo0UIDBw7Uxx9/nNWlZZrY2FiNHDlSH330kbZu3aqvv/5ay5Yt07BhwxwahxlfIB307t1b7dq1u+s+RYsWVd68eXXs2LFU269cuaKTJ0/e8cf3gYGBkqQyZcqk2l66dGkdOnQo7UWns4zswffff6/9+/fL19c31faXXnpJNWrUUGxs7ANUnn4ysgfXJSUlqX79+vLy8tLixYuVLVu2By07U+TOnVvOzs76559/Um3/559/7njNefPmdWj/h11aenDdmDFjNGrUKK1evVrlypXLyDIzlKM92L9/vw4ePKgmTZrYt12fDHBxcdHu3btVrFixjC06naXl+yAwMFDZsmWTs7OzfVvp0qV19OhRXbp0Sa6urhlac3pLSw/ee+89tWnTRh07dpQkhYSE6Ny5c+rcubMGDhwoJ6f7m8sl+ALpwN/fX/7+/vfcr2rVqjp9+rS2bNmiihUrSroW6lJSUlS5cuXbHlO4cGHly5dPu3fvTrV9z549atCgwYMXn04ysgf9+/e3/2N3XUhIiMaNG5fqDTGrZWQPpGszvfXq1ZObm5uWLl36SM36ubq6qmLFioqJibHfiiolJUUxMTGKjIy87TFVq1ZVTEyMevToYd+2atUqVa1aNRMqTn9p6YEkjR49WiNGjNB3332Xal34o8jRHpQqVUo7duxIte3dd99VUlKSJkyYoKCgoMwoO12l5fugevXqmjt3rlJSUuwBb8+ePQoMDHzkQq+Uth6cP3/+lnB7/T8ClmXd/8kd/RQegAdTv359KzQ01Nq0aZO1bt06Kzg4ONVtrP766y+rZMmS1qZNm+zbxo0bZ3l7e1tfffWVtXfvXuvdd9+13N3drX379mXFJTywtPTgZnqE7+pgWY734MyZM1blypWtkJAQa9++fVZCQoL9ceXKlay6DIfMmzfPcnNzs2bOnGnt3LnT6ty5s+Xr62sdPXrUsizLatOmjdW/f3/7/uvXr7dcXFysMWPGWLt27bIGDx78WNzOzJEejBo1ynJ1dbUWLlyY6muelJSUVZfwwBztwc0eh7s6ONqDQ4cOWV5eXlZkZKS1e/du69tvv7UCAgKs4cOHZ9UlPDBHezB48GDLy8vL+vLLL60DBw5YK1eutIoVK2Y1b97cofMSfIFM9r///c9q2bKllSNHDsvb29tq3759qjex+Ph4S5K1Zs2aVMdFRUVZBQoUsLJnz25VrVrVWrt2bSZXnn7S2oMbPerB19EerFmzxpJ020d8fHzWXEQaTJo0ySpYsKDl6upqVapUydq4caP9tZo1a1oRERGp9l+wYIFVokQJy9XV1Spbtqy1bNmyTK44/TnSg0KFCt32az548ODMLzwdOfp9cKPHIfhaluM9+Omnn6zKlStbbm5uVtGiRa0RI0Y8Mv/pvRNHenD58mVryJAhVrFixSx3d3crKCjI6tq1q3Xq1CmHzmmzLEfmhwEAAIBHE3d1AAAAgBEIvgAAADACwRcAAABGIPgCAADACARfAAAAGIHgCwAAACMQfAEAAGAEgi8AAACMQPAFABipcOHCGj9+fKaes1atWurRo0emnhPA/yP4AgDSXbt27dS0adOsLgMAUiH4AgCyzOXLl7O6BAAGIfgCANJs4cKFCgkJkYeHh3LlyqXw8HD17dtXs2bN0n/+8x/ZbDbZbDbFxsbq4MGDstlsmj9/vmrWrCl3d3fNmTNHkvTpp5+qdOnScnd3V6lSpfTRRx/Zz3Hp0iVFRkYqMDBQ7u7uKlSokKKioiRJlmVpyJAhKliwoNzc3JQvXz517949Tddy+vRpdezYUf7+/vL29lbt2rW1fft2SdKePXtks9n0xx9/pDpm3LhxKlasmP35b7/9pgYNGihHjhzKkyeP2rRpoxMnTqSpHgDpzyWrCwAAPJoSEhLUsmVLjR49Wi+++KKSkpK0du1atW3bVocOHVJiYqJmzJghSfLz89ORI0ckSf3791d0dLRCQ0Pt4XfQoEH68MMPFRoaqm3btqlTp07y9PRURESEJk6cqKVLl2rBggUqWLCgDh8+rMOHD0uSFi1apHHjxmnevHkqW7asjh49ag+rjnrllVfk4eGhFStWyMfHR1OnTlWdOnW0Z88elShRQmFhYZozZ46GDRtmP2bOnDlq1aqVpGvBuXbt2urYsaPGjRunCxcuqF+/fmrevLm+//77B2k1gHRC8AUApElCQoKuXLmiZs2aqVChQpKkkJAQSZKHh4eSk5OVN2/eW47r0aOHmjVrZn8+ePBgRUdH27cVKVJEO3fu1NSpUxUREaFDhw4pODhYTz/9tGw2m/1cknTo0CHlzZtX4eHhypYtmwoWLKhKlSo5fC3r1q3Tzz//rGPHjsnNzU2SNGbMGC1ZskQLFy5U586d1bp1a3344Yf24Ltnzx5t2bJFX3zxhSTZg/vIkSPt406fPl1BQUH28Awga7HUAQCQJk8++aTq1KmjkJAQvfLKK5o2bZpOnTp1z+PCwsLsfz537pz279+vDh06KEeOHPbH8OHDtX//fknXPigXFxenkiVLqnv37lq5cqX9+FdeeUUXLlxQ0aJF1alTJy1evFhXrlxx+Fq2b9+us2fPKleuXKnqiI+Pt9fx6quv6uDBg9q4caOka7O9FSpUUKlSpexjrFmzJtXx11+7PgaArMWMLwAgTZydnbVq1Sr99NNPWrlypSZNmqSBAwdq06ZNdz3O09PT/uezZ89KkqZNm6bKlSvfMr4kVahQQfHx8VqxYoVWr16t5s2bKzw8XAsXLlRQUJB2796t1atXa9WqVeratav+/e9/64cfflC2bNnu+1rOnj2rwMBAxcbG3vKar6+vJClv3ryqXbu25s6dqypVqmju3Ll64403Uo3RpEkTffDBB7eMERgYeN+1AMg4BF8AQJrZbDZVr15d1atX16BBg1SoUCEtXrxYrq6uunr16j2Pz5Mnj/Lly6cDBw6odevWd9zP29tbLVq0UIsWLfTyyy+rfv36OnnypPz8/OTh4aEmTZqoSZMm6tatm0qVKqUdO3aoQoUK930dFSpU0NGjR+Xi4qLChQvfcb/WrVvr7bffVsuWLXXgwAG9+uqrqcZYtGiRChcuLBcX3l6BhxF/MwEAabJp0ybFxMToueeeU0BAgDZt2qTjx4+rdOnSunjxor777jvt3r1buXLlko+Pzx3HGTp0qLp37y4fHx/Vr19fycnJ+uWXX3Tq1Cn16tVLY8eOVWBgoEJDQ+Xk5KSvvvpKefPmla+vr2bOnKmrV6+qcuXKyp49u7744gt5eHikWgd8P8LDw1W1alU1bdpUo0ePVokSJXTkyBEtW7ZML774on15RrNmzfTGG2/ojTfe0LPPPqt8+fLZx+jWrZumTZumli1b6u2335afn5/27dunefPm6dNPP7XPYAPIOgRfAECaeHt768cff9T48eOVmJioQoUKKTo6Wg0aNFBYWJhiY2MVFhams2fPas2aNXecSe3YsaOyZ8+uf//73+rbt688PT0VEhJi/w1nXl5eGj16tPbu3StnZ2c99dRTWr58uZycnOTr66tRo0apV69eunr1qkJCQvTNN98oV65cDl2LzWbT8uXLNXDgQLVv317Hjx9X3rx59cwzzyhPnjz2/by8vNSkSRMtWLBA06dPTzVGvnz5tH79evXr10/PPfeckpOTVahQIdWvX19OTnykBngY2CzLsrK6CAAAACCj8V9QAAAAGIHgCwB47KxduzbVbcVufgAwE0sdAACPnQsXLujvv/++4+vFixfPxGoAPCwIvgAAADACSx0AAABgBIIvAAAAjEDwBQAAgBEIvgAAADACwRcAAABGIPgCAADACARfAAAAGIHgCwAAACP8Hw5AuALK5SKNAAAAAElFTkSuQmCC\n"},"metadata":{}}],"source":["sns.barplot(social_corr,orient='y',palette='Spectral');"]},{"cell_type":"code","execution_count":83,"metadata":{"colab":{"base_uri":"https://localhost:8080/","height":1000},"executionInfo":{"elapsed":3539,"status":"ok","timestamp":1716217073672,"user":{"displayName":"Daniel Meier","userId":"06365571306976914087"},"user_tz":300},"id":"ZZ8wblTv6IsU","outputId":"f0d09ea3-8c9b-46c6-d6bf-e216e0be1a06"},"outputs":[{"output_type":"display_data","data":{"text/plain":["
"],"image/png":"iVBORw0KGgoAAAANSUhEUgAABY8AAAR4CAYAAABO7CljAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOzdd3QUVePG8WfTO0kgQMCQANJ7lyZVAREFpYqUSFEhUiIWfr5SFSx0UFCQouKLiAgoCFKVJlWa9EAANXQChJK28/uDNyvLJiHZkASW7+ecOceduTNzZ7OYZ29uMRmGYQgAAAAAAAAAgNs45XYFAAAAAAAAAAD3HxqPAQAAAAAAAAA2aDwGAAAAAAAAANig8RgAAAAAAAAAYIPGYwAAAAAAAACADRqPAQAAAAAAAAA2aDwGAAAAAAAAANig8RgAAAAAAAAAYIPGYwAAAAAAAACADRqPASATunfvLh8fn3t6zbCwMHXv3v2eXvNO3bt3V1hYWLZdv2HDhmrYsGG2XT83ZcfPJ7t/HgAAAJk1e/ZsmUwmbd++PcfuGR0dLZPJpNmzZ2f63JT6RkdH3/N6pchK/TJi3bp1MplMWrduXbZcPzdlx88nu38eAFJH4zGA+1JK2EjZPDw8VLJkSUVEROjMmTO5XT1kQXJysmbNmqWGDRsqMDBQ7u7uCgsLU3h4eI5+Wclu//zzj4YNG6Zdu3bldlUAAMBDjFztOKKiovTyyy+rWLFi8vDwkJ+fn+rWrauJEyfqxo0buV29e+abb77RhAkTcrsaAP7HJbcrAADpGTFihIoWLaqbN29qw4YNmjp1qpYtW6Z9+/bJy8srt6v3wJg+fbrMZnNuV0M3btzQc889p+XLl+vxxx/X//3f/ykwMFDR0dGaP3++5syZo5MnT+qRRx7J7apm2T///KPhw4crLCxMlStXtjp2v/w8AADAw+N+zNWhoaG6ceOGXF1dc+X+d3M/1W/p0qVq166d3N3d1bVrV5UvX14JCQnasGGD3njjDf3555/6/PPPc7ua98Q333yjffv2acCAAVb776efB/AwofEYwH2tRYsWql69uiSpZ8+eyps3r8aNG6fFixerU6dOuVy7B8f9ErDeeOMNLV++XOPHj7cJg0OHDtX48ePvyX2uXbsmb2/vVI9dv3491//wcL/8PAAAwMPjfszVKT2h71f3S/2OHz+ujh07KjQ0VGvWrFFwcLDlWN++fXX06FEtXbo0y/cxDEM3b96Up6enzbGbN2/Kzc1NTk65N4D9fvl5AA8bpq0A8EBp3LixpFsB6tixYzKZTKk2OG7atEkmk0n//e9/JUlXr17VgAEDFBYWJnd3d+XPn19PPPGEdu7caXXeli1b9NRTTykgIEDe3t6qWLGiJk6caHP9v//+W61bt5aPj4+CgoI0aNAgJScnW5W5du2aXn/9dYWEhMjd3V2lSpXSmDFjZBjGXZ/z2LFjateunQIDA+Xl5aXHHnss1UB44sQJPfPMM/L29lb+/Pk1cOBArVixwmbutNTm2DWbzZo4caIqVKggDw8PBQUFqXnz5lZTR8yaNUuNGzdW/vz55e7urrJly2rq1Kl3rX9q/vrrL3322Wd64oknbBqOJcnZ2VmDBg2y6nX8xx9/qEWLFvLz85OPj4+aNGmi33//3eq8lKGYv/76q/r06aP8+fNbrtGwYUOVL19eO3bs0OOPPy4vLy/93//9nyQpPj5eQ4cO1aOPPip3d3eFhITozTffVHx8fLrPcfHiRQ0aNEgVKlSQj4+P/Pz81KJFC+3evdtSZt26dapRo4YkKTw83DJMNGV+ttR+Hhn9vJhMJkVERGjRokUqX7683N3dVa5cOS1fvjzdegMAANzu9lx9u/j4eEVGRiooKEje3t5q06aNzp07ZznerVs35cuXT4mJiTbXfPLJJ1WqVCnL65UrV6pevXry9/eXj4+PSpUqZcliUtpz2K5Zs0b169eXt7e3/P399eyzz+rAgQMZeq5PP/1U5cqVk7u7uwoVKqS+ffsqNjbWptwnn3yiYsWKydPTUzVr1tT69ett1vFIq34HDx5U+/btFRQUJE9PT5UqVUrvvPOO5fiJEyfUp08flSpVSp6ensqbN6/atWtn9/y/H330keLi4vTFF19YNRynePTRR9W/f3/L66SkJI0cOVLFixe3TBH3f//3fzY5NywsTE8//bRWrFih6tWry9PTU5999pllLuZ58+bpP//5jwoXLiwvLy9duXJF0q3vTM2bN1eePHnk5eWlBg0aaOPGjXd9jsWLF6tly5YqVKiQ3N3dVbx4cY0cOdLqe1TDhg21dOlSnThxwpKhU3JzVj4vw4YNk8lk0tGjR9W9e3f5+/srT548Cg8P1/Xr1+9ad+BhRs9jAA+UqKgoSVLevHlVrFgx1a1bV3PnztXAgQOtys2dO1e+vr569tlnJUmvvPKKFixYoIiICJUtW1YXLlzQhg0bdODAAVWtWlXSrXD79NNPKzg4WP3791fBggV14MAB/fTTT1ZhLDk5Wc2aNVOtWrU0ZswYrVq1SmPHjlXx4sX16quvSrr1V/tnnnlGa9euVY8ePVS5cmWtWLFCb7zxhv7+++90e9ieOXNGderU0fXr19WvXz/lzZtXc+bM0TPPPKMFCxaoTZs2km41NjZu3FgxMTGW+n7zzTdau3Ztht7LHj16aPbs2WrRooV69uyppKQkrV+/Xr///rulV8rUqVNVrlw5PfPMM3JxcdGPP/6oPn36yGw2q2/fvhm6T4qff/5ZSUlJ6tKlS4bK//nnn6pfv778/Pz05ptvytXVVZ999pkaNmyoX3/9VbVq1bIq36dPHwUFBWnIkCG6du2aZf+FCxfUokULdezYUS+++KIKFCggs9msZ555Rhs2bFDv3r1VpkwZ7d27V+PHj9fhw4e1aNGiNOt17NgxLVq0SO3atVPRokV15swZffbZZ2rQoIH279+vQoUKqUyZMhoxYoSGDBmi3r17q379+pKkOnXqpHrNzH5eNmzYoIULF6pPnz7y9fXVpEmT9Pzzz+vkyZPKmzdvht5fAADwcLs9V9/utddeU0BAgIYOHaro6GhNmDBBERER+vbbbyVJXbp00ZdffqkVK1bo6aeftpx3+vRprVmzRkOHDpV0K8s9/fTTqlixokaMGCF3d3cdPXr0ro2Mq1atUosWLVSsWDENGzZMN27c0OTJk1W3bl3t3Lkz3UWHhw0bpuHDh6tp06Z69dVXdejQIU2dOlXbtm3Txo0bLaO/pk6dqoiICNWvX18DBw5UdHS0WrdurYCAgLtOn7Znzx7Vr19frq6u6t27t8LCwhQVFaUff/xR77//viRp27Zt2rRpkzp27KhHHnlE0dHRmjp1qho2bKj9+/dnehTcjz/+qGLFiqWZJe/Us2dPzZkzR23bttXrr7+uLVu2aPTo0Tpw4IB++OEHq7KHDh1Sp06d9PLLL6tXr15Wjf8jR46Um5ubBg0apPj4eLm5uWnNmjVq0aKFqlWrpqFDh8rJycnS4WT9+vWqWbNmmvWaPXu2fHx8FBkZKR8fH61Zs0ZDhgzRlStX9PHHH0uS3nnnHV2+fFl//fWXJQOnt2B5Zj8v7du3V9GiRTV69Gjt3LlTM2bMUP78+fXhhx9m6L0FHkoGANyHZs2aZUgyVq1aZZw7d844deqUMW/ePCNv3ryGp6en8ddffxmGYRifffaZIck4cOCA5dyEhAQjX758Rrdu3Sz78uTJY/Tt2zfN+yUlJRlFixY1QkNDjUuXLlkdM5vNlv/u1q2bIckYMWKEVZkqVaoY1apVs7xetGiRIcl47733rMq1bdvWMJlMxtGjRy37QkNDreo6YMAAQ5Kxfv16y76rV68aRYsWNcLCwozk5GTDMAxj7NixhiRj0aJFlnI3btwwSpcubUgy1q5da1Xv0NBQy+s1a9YYkox+/frZvBe3P+/169dtjjdr1swoVqyY1b4GDRoYDRo0sCl7u4EDBxqSjD/++CPdcilat25tuLm5GVFRUZZ9//zzj+Hr62s8/vjjln0pn5V69eoZSUlJNvWSZEybNs1q/1dffWU4OTlZvceGYRjTpk0zJBkbN2607Lvz53Pz5k3LzyDF8ePHDXd3d6vPxbZt2wxJxqxZs2ye7c6fR2Y+L5IMNzc3q327d+82JBmTJ0+2uRcAAHi4ZTRXp5Rr2rSpVR4cOHCg4ezsbMTGxhqGYRjJycnGI488YnTo0MHqPuPGjTNMJpNx7NgxwzAMY/z48YYk49y5c2nW7fjx4zZ5qXLlykb+/PmNCxcuWPbt3r3bcHJyMrp27WrzXMePHzcMwzDOnj1ruLm5GU8++aRVVpsyZYohyZg5c6ZhGIYRHx9v5M2b16hRo4aRmJhoKTd79mxDklWmTa1+jz/+uOHr62ucOHHC6lnulqE3b95sSDK+/PJLy761a9fa5PY7Xb582ZBkPPvss2mWud2uXbsMSUbPnj2t9g8aNMiQZKxZs8ayLzQ01JBkLF++3KpsSr2KFStm9Sxms9koUaKE0axZM5vnLVq0qPHEE09Y9t3580kpd6eXX37Z8PLyMm7evGnZ17JlS6usnCIrn5ehQ4cakoyXXnrJ6ppt2rQx8ubNa3MvAP9i2goA97WmTZsqKChIISEh6tixo3x8fPTDDz+ocOHCkm795djDw0Nz5861nLNixQqdP39eL774omWfv7+/tmzZon/++SfV+/zxxx86fvy4BgwYIH9/f6tjJpPJpvwrr7xi9bp+/fo6duyY5fWyZcvk7Oysfv36WZV7/fXXZRiGfv755zSfedmyZapZs6bq1atn2efj46PevXsrOjpa+/fvlyQtX75chQsX1jPPPGMp5+HhoV69eqV57RTff/+9TCaTpWfI7W5/3tvnO7t8+bLOnz+vBg0a6NixY7p8+fJd73O7lGFuvr6+dy2bnJysX375Ra1bt1axYsUs+4ODg/XCCy9ow4YNluul6NWrl5ydnW2u5e7urvDwcKt93333ncqUKaPSpUvr/Pnzli1l+GZ6vbfd3d0tc70lJyfrwoULlmGYd06DklGZ/bw0bdpUxYsXt7yuWLGi/Pz8rD6DAAAAt7tbrk7Ru3dvqzxYv359JScn68SJE5IkJycnde7cWUuWLNHVq1ct5ebOnas6deqoaNGikmTJ1IsXL87wQsExMTHatWuXunfvrsDAQMv+ihUr6oknntCyZcvSPHfVqlVKSEjQgAEDrObl7dWrl/z8/CxTwG3fvl0XLlxQr1695OLy72Dszp07KyAgIN36nTt3Tr/99pteeuklFSlSxOpYWhk6MTFRFy5c0KOPPip/f/9M58XMZGhJlvcoMjLSav/rr78uSTZT4RUtWlTNmjVL9VrdunWzepZdu3bpyJEjeuGFF3ThwgVLhr527ZqaNGmi3377Ld2f9e3Xunr1qs6fP6/69evr+vXrOnjwYIae73b2fF5S+x534cIFm+8WAP5F4zGA+9onn3yilStXau3atdq/f7+OHTtmFW78/f3VqlUrffPNN5Z9c+fOVeHChS0NgdKtecL27dunkJAQ1axZU8OGDbNqaEsZtle+fPm71illfuDbBQQE6NKlS5bXJ06cUKFChWxCXpkyZSzH03LixAmr4WJpnXvixAkVL17cpnH70UcfveszREVFqVChQlYhKzUbN25U06ZNLfOHBQUFWeapy2zjsZ+fnyRZfclIy7lz53T9+vU03wez2axTp05Z7U/5onKnwoULy83NzWrfkSNH9OeffyooKMhqK1mypCTp7NmzadbNbDZr/PjxKlGihNzd3ZUvXz4FBQVpz549mX5PUmT283LnlxXJ9jMIAABwu7vl6hR35oyUBtXbc0bXrl1148YNyxQIhw4d0o4dO6ymJ+vQoYPq1q2rnj17qkCBAurYsaPmz5+fbuNiSuZJKwOmNFRm5lw3NzcVK1bMKkNLtpnZxcUl3SkxJFm+P9ztO8ONGzc0ZMgQy1oWKXkxNjY2WzO0dOv5nJycbJ6vYMGC8vf3t8mVaWXo1I4dOXJE0q1G5Ttz9IwZMxQfH5/u8/35559q06aN8uTJIz8/PwUFBVk6/NiTo+35vGTk8w3AGnMeA7iv1axZ0zL/blq6du2q7777Tps2bVKFChW0ZMkS9enTx6rHQfv27VW/fn398MMP+uWXX/Txxx/rww8/1MKFC9WiRYtM1Sm13q2OKCoqSk2aNFHp0qU1btw4hYSEyM3NTcuWLdP48eMz3IMkRenSpSVJe/fuVeXKle95fVNbFTqt/WazWRUqVNC4ceNSPSckJCTN+4waNUrvvvuuXnrpJY0cOVKBgYFycnLSgAEDMv2e2Cutz6CRgcUYAQDAwykjuVrKWM4oW7asqlWrpq+//lpdu3bV119/LTc3N7Vv395SxtPTU7/99pvWrl2rpUuXavny5fr222/VuHFj/fLLLw6dqV977TXNmjVLAwYMUO3atZUnTx6ZTCZ17Ngx03nRz89PhQoV0r59+zJ1XmqjJ1OTVoZO7VhK3T/++OM083xa8xPHxsaqQYMG8vPz04gRI1S8eHF5eHho586deuutt8jRwH2MxmMAD7zmzZsrKChIc+fOVa1atXT9+vVUF2ULDg5Wnz591KdPH509e1ZVq1bV+++/rxYtWlimANi3b5+aNm2a5TqFhoZq1apVunr1qlVv0pThWKGhoemee+jQIZv9d54bGhqq/fv3yzAMq3B49OjRu9avePHiWrFihS5evJhm7+Mff/xR8fHxWrJkidVf6DO6IN+dWrRoIWdnZ3399dd3XTQvKChIXl5eab4PTk5O6Tbw3k3x4sW1e/duNWnSJMPBOsWCBQvUqFEjffHFF1b7Y2NjlS9fPsvrzFw3K58XAACA3NC1a1dFRkYqJiZG33zzjVq2bGkz7YOTk5OaNGmiJk2aaNy4cRo1apTeeecdrV27NtXMnZJ50sqA+fLlk7e3d6r1uf3c26c9S0hI0PHjxy33Syl39OhRNWrUyFIuKSlJ0dHRqlixYprPnHLduzXkLliwQN26ddPYsWMt+27evKnY2Nh0z0vL008/rc8//1ybN29W7dq10y0bGhoqs9msI0eOWEaxSbcW5Y6Njc1Srkz5zuTn55fp70zr1q3ThQsXtHDhQj3++OOW/cePH7cpm9EcnZXPC4CMY9oKAA88FxcXderUSfPnz9fs2bNVoUIFq9CXnJxsMwwqf/78KlSokOLj4yVJVatWVdGiRTVhwgSbUGfPX6GfeuopJScna8qUKVb7x48fL5PJlG5v56eeekpbt27V5s2bLfuuXbumzz//XGFhYSpbtqwkqVmzZvr777+1ZMkSS7mbN29q+vTpd63f888/L8MwNHz4cJtjKc+b8lf525//8uXLmjVr1l2vn5qQkBD16tVLv/zyiyZPnmxz3Gw2a+zYsfrrr7/k7OysJ598UosXL1Z0dLSlzJkzZ/TNN9+oXr16liF89mjfvr3+/vvvVN+rGzdupDkcUrr1vtz5mfjuu+/0999/W+1LCaoZ+ZKQlc8LAABAbujUqZNMJpP69++vY8eOWa03IkkXL160OSelt2pKBr9TcHCwKleurDlz5lhlqH379umXX37RU089lWZ9mjZtKjc3N02aNMkqq33xxRe6fPmyWrZsKUmqXr268ubNq+nTpyspKclSbu7cuXeduiAoKEiPP/64Zs6cqZMnT1odu/2eqeXFyZMnKzk5Od3rp+XNN9+Ut7e3evbsqTNnztgcj4qK0sSJEyXJ8h5NmDDBqkzKiLuU98Ee1apVU/HixTVmzBjFxcXZHD937lya56b23SIhIUGffvqpTVlvb+8MTWORlc8LgIyj5zEAh9C1a1dNmjRJa9eu1Ycffmh17OrVq3rkkUfUtm1bVapUST4+Plq1apW2bdtm6Q3g5OSkqVOnqlWrVqpcubLCw8MVHBysgwcP6s8//9SKFSsyVZ9WrVqpUaNGeueddxQdHa1KlSrpl19+0eLFizVgwACrxc7u9Pbbb+u///2vWrRooX79+ikwMFBz5szR8ePH9f3331um43j55Zc1ZcoUderUSf3791dwcLDmzp0rDw8PSen/xb5Ro0bq0qWLJk2apCNHjqh58+Yym81av369GjVqpIiICD355JNyc3NTq1at9PLLLysuLk7Tp09X/vz5FRMTk6n3I8XYsWMVFRWlfv36aeHChXr66acVEBCgkydP6rvvvtPBgwfVsWNHSdJ7772nlStXql69eurTp49cXFz02WefKT4+Xh999JFd90/RpUsXzZ8/X6+88orWrl2runXrKjk5WQcPHtT8+fO1YsWKNId1Pv300xoxYoTCw8NVp04d7d27V3PnzrXq4SLd6pnh7++vadOmydfXV97e3qpVq1aq88pl5fMCAACQG4KCgtS8eXN999138vf3t2mUHDFihH777Te1bNlSoaGhOnv2rD799FM98sgjVgtD3+njjz9WixYtVLt2bfXo0UM3btzQ5MmTlSdPHg0bNizd+gwePFjDhw9X8+bN9cwzz+jQoUP69NNPVaNGDUvjtpubm4YNG6bXXntNjRs3Vvv27RUdHa3Zs2enup7InSZNmqR69eqpatWq6t27t4oWLaro6GgtXbpUu3btknQrL3711VfKkyePypYtq82bN2vVqlXKmzdvxt7cOxQvXlzffPONOnTooDJlyqhr164qX768EhIStGnTJn333Xfq3r27JKlSpUrq1q2bPv/8c8tUEVu3btWcOXPUunVrq97WmeXk5KQZM2aoRYsWKleunMLDw1W4cGH9/fffWrt2rfz8/PTjjz+mem6dOnUUEBCgbt26qV+/fjKZTPrqq69S7ahTrVo1ffvtt4qMjFSNGjXk4+OjVq1apXpdez8vADLBAID70KxZswxJxrZt2zJ8Trly5QwnJyfjr7/+stofHx9vvPHGG0alSpUMX19fw9vb26hUqZLx6aef2lxjw4YNxhNPPGEpV7FiRWPy5MmW4926dTO8vb1tzhs6dKhx5/9Sr169agwcONAoVKiQ4erqapQoUcL4+OOPDbPZbFUuNDTU6Natm9W+qKgoo23btoa/v7/h4eFh1KxZ0/jpp59s7nvs2DGjZcuWhqenpxEUFGS8/vrrxvfff29IMn7//XereoeGhlqdm5SUZHz88cdG6dKlDTc3NyMoKMho0aKFsWPHDkuZJUuWGBUrVjQ8PDyMsLAw48MPPzRmzpxpSDKOHz9uKdegQQOjQYMGNvVLTVJSkjFjxgyjfv36Rp48eQxXV1cjNDTUCA8PN/744w+rsjt37jSaNWtm+Pj4GF5eXkajRo2MTZs2WZVJ77PSoEEDo1y5cqnWIyEhwfjwww+NcuXKGe7u7kZAQIBRrVo1Y/jw4cbly5ct5e78+dy8edN4/fXXjeDgYMPT09OoW7eusXnz5lTfg8WLFxtly5Y1XFxcDEnGrFmzDMNI/eeR0c+LJKNv3742z5Pa5wgAACCjuTqtcmvXrjUkGWvXrrU5Z/78+YYko3fv3jbHVq9ebTz77LNGoUKFDDc3N6NQoUJGp06djMOHD1vKHD9+3CojpVi1apVRt25dw9PT0/Dz8zNatWpl7N+/P9X63p5JDcMwpkyZYpQuXdpwdXU1ChQoYLz66qvGpUuXbOo3adIkIzQ01HB3dzdq1qxpbNy40ahWrZrRvHnzu9Zv3759Rps2bSxZvVSpUsa7775rOX7p0iUjPDzcyJcvn+Hj42M0a9bMOHjwoE1eS++9Tc3hw4eNXr16GWFhYYabm5vh6+tr1K1b15g8ebJx8+ZNS7nExERj+PDhRtGiRQ1XV1cjJCTEGDx4sFUZw7iVH1u2bGlzn5R6fffdd6nW448//jCee+45I2/evIa7u7sRGhpqtG/f3li9erWlTGo/n40bNxqPPfaY4enpaRQqVMh48803jRUrVti8B3FxccYLL7xg+Pv7G5IsuTkrn5eU72vnzp2z2p/W5wjAv0yGwazgABxDlSpVFBgYqNWrV+d2VXLVhAkTNHDgQP31118qXLhwblcHAAAADmrx4sVq3bq1fvvtN9WvXz+3q5MlZrNZQUFBeu655zI0DRwAPCyY8xiAQ9i+fbt27dqlrl275nZVctSNGzesXt+8eVOfffaZSpQoQcMxAAAAstX06dNVrFixdKehuB/dvHnTZrqEL7/8UhcvXlTDhg1zp1IAcJ9izmMAD7R9+/Zpx44dGjt2rIKDg9WhQ4fcrlKOeu6551SkSBFVrlxZly9f1tdff62DBw9q7ty5uV01AAAAOKh58+Zpz549Wrp0qSZOnHjXeYLvN7///rsGDhyodu3aKW/evNq5c6e++OILlS9fXu3atcvt6gHAfYXGYwAPtAULFmjEiBEqVaqU/vvf/1oWi3tYNGvWTDNmzNDcuXOVnJyssmXLat68eQ9dIzoAAAByTqdOneTj46MePXqoT58+uV2dTAsLC1NISIgmTZqkixcvKjAwUF27dtUHH3wgNze33K4eANxXmPMYAAAAAAAAAGCDOY8BAAAAAAAAADZoPAYAAAAAAAAA2KDxGAAAAAAAAABggwXz8FBb6loqt6sAAHhItEw8lCP3yervtpyqJ4AHH1kaAJCTciKnkqVt0XgMAADgQEyuptyuAgAAAPBAIkvbYtoKAAAAAAAAAIANeh4DAAA4ECcXeksAAAAA9iBL26LxGAAAwIGYXBlYBgAAANiDLG2LxmMAAAAHQm8JAAAAwD5kaVs0HgMAADgQFvkAAAAA7EOWtkVfbAAAAAAAAACADXoeAwAAOBCG2gEAAAD2IUvbovEYAADAgTDUDgAAALAPWdoWjccAAAAOhN4SAAAAgH3I0rZoPAYAAHAgJmcCLwAAAGAPsrQtFswDAAAAAAAAANig5zEAAIADcaK3BAAAAGAXsrQtGo8BAAAciMmJwAsAAADYgyxti8ZjAAAAB2JyZlYyAAAAwB5kaVs0HgMAADgQhtoBAAAA9iFL26LxGAAAwIEw1A4AAACwD1naFn2xAQAAAAAAAAA26HkMAADgQBhqBwAAANiHLG2LnscAAAAOxORsytIGAAAAPKxyI0t/8sknCgsLk4eHh2rVqqWtW7emWz42NlZ9+/ZVcHCw3N3dVbJkSS1btsyue2cEPY8BAAAciMmJvgEAAACAPXI6S3/77beKjIzUtGnTVKtWLU2YMEHNmjXToUOHlD9/fpvyCQkJeuKJJ5Q/f34tWLBAhQsX1okTJ+Tv759tdaTxGAAAwIGwyAcAAABgn5zO0uPGjVOvXr0UHh4uSZo2bZqWLl2qmTNn6u2337YpP3PmTF28eFGbNm2Sq6urJCksLCxb60jXFAAAAAAAAADIQQkJCdqxY4eaNm1q2efk5KSmTZtq8+bNqZ6zZMkS1a5dW3379lWBAgVUvnx5jRo1SsnJydlWT3oeAwAAOBAW+QAAAADsk9UsHR8fr/j4eKt97u7ucnd3tyl7/vx5JScnq0CBAlb7CxQooIMHD6Z6/WPHjmnNmjXq3Lmzli1bpqNHj6pPnz5KTEzU0KFDs1T3tNDzGAAAwIGYnExZ2uxxvy/yAQAAAGREVrP06NGjlSdPHqtt9OjR96x+ZrNZ+fPn1+eff65q1aqpQ4cOeueddzRt2rR7do870fMYAADAgbDIBwAAAGCfrGbpwYMHKzIy0mpfar2OJSlfvnxydnbWmTNnrPafOXNGBQsWTPWc4OBgubq6ytnZ2bKvTJkyOn36tBISEuTm5pal+qeGnscAAAAOJKd7Ht++yEfZsmU1bdo0eXl5aebMmamWT1nkY9GiRapbt67CwsLUoEEDVapUKauPDgAAAGRJVrO0u7u7/Pz8rLa0Go/d3NxUrVo1rV692rLPbDZr9erVql27dqrn1K1bV0ePHpXZbLbsO3z4sIKDg7Ol4Vii8RgAAAC3iY+P15UrV6y2O+dtS/GgLPIBAAAA3I8iIyM1ffp0zZkzRwcOHNCrr76qa9euKTw8XJLUtWtXDR482FL+1Vdf1cWLF9W/f38dPnxYS5cu1ahRo9S3b99sqyPTVgAAADiQrC7yMXr0aA0fPtxq39ChQzVs2DCbsg/KIh8AAABARuT04tMdOnTQuXPnNGTIEJ0+fVqVK1fW8uXLLfn65MmTcrptKo2QkBCtWLFCAwcOVMWKFVW4cGH1799fb731VrbVkcZjAAAAB2LvoncpMjNPmz1uX+TD2dlZ1apV099//62PP/6YxmMAAADkqqxmaXtEREQoIiIi1WPr1q2z2Ve7dm39/vvv2Vyrf9F4DAAA4ECyusiHu7t7hhuLH5RFPgAAAICMyOnFpx8EvCMAAAAOJCcXzHtQFvkAAAAAMiKnF59+ENB47GCio6NlMpm0a9euXK2HyWTSokWLcvSeYWFhmjBhQo7eEwCAh92DsMgHkFENGzbUgAEDcvy+9zrH5tZzAAAAx8O0FQ4mJCREMTExypcvX4bPadiwoSpXrkzDK/CQCn31BRWL7CH3gkG6sueg/hwwUpe37U217GOrvlTeBrVs9p9dtk7bnn3ZZn/5T4YrtHdH/fn6KEVPmnPP6w7AVk73eHgQFvkAACC73OssXbD1EyrSu6PyVC0nt7wBWl/9WV3ZnfoitADuPUftPZwVNB47GGdn5zTnGASAOwW3a6EyHw/Wvr5DFbt1t4r266ZaS7/QunLNlXDuok35He1ek5Obq+W1a15/1d+xWDHfL7cpW+DZpvKvVUk3/z5jcwxA9mGRDwAAckZ2ZGlnby9d3LhTMQt+VsXP3s+R5wDwLxqPbTFtRQ5bvny56tWrJ39/f+XNm1dPP/20oqKiJP075cTChQvVqFEjeXl5qVKlStq8ebPl/JdeekkVK1ZUfHy8JCkhIUFVqlRR165dra5x+7QV+/btU4sWLeTj46MCBQqoS5cuOn/+vCSpe/fu+vXXXzVx4kSZTCaZTCYdP35cjz76qMaMGWNV9127dslkMuno0aOZfu5Tp06pffv28vf3V2BgoJ599llFR0dLkn755Rd5eHgoNjbW6pz+/furcePGltcbNmxQ/fr15enpqZCQEPXr10/Xrl3LdF0A/KvogHCd+mK+/pqzUHEHorS3z1AlX7+pkO7Pp1o+8dJlxZ85b9nyNa2r5Os3FbPAuvHYvVB+lZvwrnZ1HSRzYmJOPAqA/zE5OWVpAx52ZrNZb775pgIDA1WwYEENGzbMciw2NlY9e/ZUUFCQ/Pz81LhxY+3evdtyPCoqSs8++6wKFCggHx8f1ahRQ6tWrbK6/tmzZ9WqVSt5enqqaNGimjt3rk0dxo0bpwoVKsjb21shISHq06eP4uLirMps3LhRDRs2lJeXlwICAtSsWTNdunQpQ8+RkWcBcHfZkaX/nrtYR9//ROdXb071GgCyF1nalmM+1X3s2rVrioyM1Pbt27V69Wo5OTmpTZs2VovGvPPOOxo0aJB27dqlkiVLqlOnTkpKSpIkTZo0SdeuXdPbb79tKRsbG6spU6aker/Y2Fg1btxYVapU0fbt27V8+XKdOXNG7du3lyRNnDhRtWvXVq9evRQTE6OYmBgVKVJEL730kmbNmmV1rVmzZunxxx/Xo48+mqlnTkxMVLNmzeTr66v169dr48aN8vHxUfPmzZWQkKAmTZrI399f33//veWc5ORkffvtt+rcubOkW0G8efPmev7557Vnzx59++232rBhQ5q9nADcncnVVXmqltP51Zv+3WkYOr9mk/wfq5Kha4SEP6+Y+UuVfP3GbRc2qfLsj3Vs3BeK25/5PzYByBonZ1OWNuBhN2fOHHl7e2vLli366KOPNGLECK1cuVKS1K5dO509e1Y///yzduzYoapVq6pJkya6ePFWD8O4uDg99dRTWr16tf744w81b95crVq10smTJy3X7969u06dOqW1a9dqwYIF+vTTT3X27FmrOjg5OWnSpEn6888/NWfOHK1Zs0Zvvvmm5fiuXbvUpEkTlS1bVps3b9aGDRvUqlUrJScnZ+g5MvIsANKXbVkaQK4iS9ti2ooc9vzz1n+BnDlzpoKCgrR//375+PhIkgYNGqSWLVtKkoYPH65y5crp6NGjKl26tHx8fPT111+rQYMG8vX11YQJE7R27Vr5+fmler8pU6aoSpUqGjVqlNU9Q0JCdPjwYZUsWVJubm7y8vKymu6ie/fuGjJkiLZu3aqaNWsqMTFR33zzjU1v5Iz49ttvZTabNWPGDJlMt/4hzZo1S/7+/lq3bp2efPJJdezYUd9884169OghSVq9erViY2Mt79fo0aPVuXNny8IfJUqU0KRJk9SgQQNNnTpVHh4ema4X8LBzyxcgJxcXxZ+9YLU//swFeZcqdtfz89SoIL/ypbSn9ztW+4u/0UtGUpKiJ395T+sLAEBOqFixooYOHSrpVuacMmWKVq9eLU9PT23dulVnz56Vu7u7JGnMmDFatGiRFixYoN69e6tSpUqqVKmS5VojR47UDz/8oCVLligiIkKHDx/Wzz//rK1bt6pGjRqSpC+++EJlypSxqsPti92FhYXpvffe0yuvvKJPP/1UkvTRRx+pevXqlteSVK5cuQw9xxNPPKENGzbc9VkApC+7sjQA3G9oPM5hR44c0ZAhQ7RlyxadP3/e0uP45MmTKlu2rKRbQS9FcHCwpFvD20qXLi3p1jyBgwYN0siRI/XWW2+pXr16ad5v9+7dWrt2raVh+nZRUVEqWbJkqucVKlRILVu21MyZM1WzZk39+OOPio+PV7t27TL9zLt379bRo0fl6+trtf/mzZuWKTs6d+6sxx57TP/8848KFSqkuXPnqmXLlvL397dcY8+ePVbD+gzDkNls1vHjx20Cd2ri4+Mt032kSDTMcjXRAR+wR0h4W13Ze8hqQRC/quUU9lpXbaj5XC7WDHi4MU8bkDW3Z3HpVh4/e/asdu/erbi4OOXNm9fq+I0bNyyZNi4uTsOGDdPSpUsVExOjpKQk3bhxw9Lz+MCBA3JxcVG1atUs55cuXdqSeVOsWrVKo0eP1sGDB3XlyhUlJSXp5s2bun79ury8vLRr16675vK0nkNShp7lTmRp4N5KLUsDyH1kaVs0HuewVq1aKTQ0VNOnT1ehQoVkNptVvnx5JSQkWMq4uv47gX5KT93bp7Uwm83auHGjnJ2d7zr/cFxcnFq1aqUPP/zQ5lhKw3RaevbsqS5dumj8+PGaNWuWOnToIC8vrww95511qFatWqrzuQUFBUmSatSooeLFi2vevHl69dVX9cMPP2j27NlW13j55ZfVr18/m2sUKVIkQ/UYPXq0hg8fbrWvkylQnZ3zZeJpAMeRcP6SzElJcs9v/cXRvUBexZ8+n+65zl6eKtS+pQ4Pn2S1P7Bedbnnz6vGx9Za9jm5uKjsR2+p6GtdtbZEk3v3AABS5ahzrQE55fYsLt3K42azWXFxcQoODk51EciUxt9BgwZp5cqVGjNmjB599FF5enqqbdu2Vln/bqKjo/X000/r1Vdf1fvvv6/AwEBt2LBBPXr0UEJCgry8vOTp6Wn3c0jK0LPciSwNWMuOLA0g95GlbdF4nIMuXLigQ4cOafr06apfv76kW4vAZdbHH3+sgwcP6tdff1WzZs00a9YshYeHp1q2atWq+v777xUWFiYXl9R/3G5ublbzo6V46qmn5O3tralTp2r58uX67bffMl3XlDp8++23yp8/f5rTa0i3eh/PnTtXjzzyiJycnCxTd6RcY//+/Zmeb/l2gwcPVmRkpNW+NYHV0igNOD4jMVGXd/6pfI1r68yS1bd2mkzK26i2Tnz6dbrnBrdtLid3N/09d4nV/r+/Xmw975ukWku/0F9zF+uvOQvvaf0BpI7eEkD2qFq1qk6fPi0XFxeFhYWlWmbjxo3q3r272rRpI+lWI23KItHSrV7GSUlJ2rFjh2XaikOHDlktHL1jxw6ZzWaNHTtWTv/7Ajt//nyr+1SsWFGrV6+2acy9l89yJ7I0YC07sjSA3EeWtkVzeg4KCAhQ3rx59fnnn+vo0aNas2aNTQC7mz/++ENDhgzRjBkzVLduXY0bN079+/fXsWPHUi3ft29fXbx4UZ06ddK2bdsUFRWlFStWKDw83NJgHBYWpi1btig6OtpqKg1nZ2d1795dgwcPVokSJVS7dm27nrtz587Kly+fnn32Wa1fv17Hjx/XunXr1K9fP/31119W5Xbu3Kn3339fbdu2tcy/JklvvfWWNm3apIiICO3atUtHjhzR4sWLM7Vgnru7u/z8/Kw2htnhYXd8wiyF9Givwl1ay6d0MZX/ZJhcvD116n8NvZVmfahS79n+fyokvK3OLF6lxIuxVvsTL8Yq7s8jVps5MVHxZ87r2uHjOfFIwEPP5GTK0gYgdU2bNlXt2rXVunVr/fLLL4qOjtamTZv0zjvvaPv27ZJuzS28cOFC7dq1S7t379YLL7xgNYKwVKlSat68uV5++WVt2bJFO3bsUM+ePa16Ej/66KNKTEzU5MmTdezYMX311VeaNm2aVV0GDx6sbdu2qU+fPtqzZ48OHjyoqVOn6vz59Hs7ZuZZ7kSWBmzd6ywtSa4BeeRXqbR8yhSXJHmXLCq/SqXlXoBe/kBOIEvb4rd9DnJyctK8efO0Y8cOlS9fXgMHDtTHH3+c4fNv3rypF198Ud27d1erVq0kSb1791ajRo3UpUuXVHsPFypUSBs3blRycrKefPJJVahQQQMGDJC/v7+lJ8OgQYPk7OyssmXLKigoyGo16JThcWn1bM4ILy8v/fbbbypSpIiee+45lSlTRj169NDNmzeteiI/+uijqlmzpvbs2aPOnTtbXaNixYr69ddfdfjwYdWvX19VqlTRkCFDVKhQIbvrBUCK+e5nHXjrQ5Uc2k/1ti+WX6Uy2vp0TyX8b+EPz5BguQcHWZ3jXbKoAutV16lZC3KjygDuwuTklKUNQOpMJpOWLVumxx9/XOHh4SpZsqQ6duyoEydOqECBApKkcePGKSAgQHXq1FGrVq3UrFkzVa1a1eo6s2bNUqFChdSgQQM999xz6t27t/Lnz285XqlSJY0bN04ffvihypcvr7lz52r06NFW1yhZsqR++eUX7d69WzVr1lTt2rW1ePHiNEca2vMsAO4uO7J0gVaNVX/7YtX8cbokqeo3E1R/+2IV6d0xex8GgCSydGpMhmEYuV0J3L/Wr1+vJk2a6NSpUw4ZJJe6lsrtKgAAHhItEw/lyH1OvpK1BSuLTGOKGQAZQ5YGAOSknMjTZGlbzHmMVMXHx+vcuXMaNmyY2rVr55ANxwAAOCJHHS4HAAAAZDeytC3H7E+NLPvvf/+r0NBQxcbG6qOPPrI6NnfuXPn4+KS6lStXLpdqDAAAJIbaAQAAAPYiS9ui5zFS1b17d3Xv3j3VY88884xq1aqV6jFXV9dsrBUAALgrE70lAAAAALuQpW3QeIxM8/X1la+vb25XAwAApIKhdgAAAIB9yNK2HLM/NQAAAAAAAAAgS+h5DAAA4EAcda41AAAAILuRpW3ReAwAAOBAGGoHAAAA2IcsbYvGYwAAAAdCbwkAAADAPmRpWzQeAwAAOBB6SwAAAAD2IUvbojkdAAAAAAAAAGCDnscAAAAOhN4SAAAAgH3I0rZoPAYAAHAkzNMGAAAA2IcsbYPGYwAAAAdiMtFbAgAAALAHWdoWjccAAAAOhBWiAQAAAPuQpW3xjgAAAAAAAAAAbNDzGAAAwIGwyAcAAABgH7K0LRqPAQAAHAlD7QAAAAD7kKVt0HgMAADgQOgtAQAAANiHLG2LxmMAAAAHYjLRWwIAAACwB1naFu8IAAAAAAAAAOSCTz75RGFhYfLw8FCtWrW0devWDJ03b948mUwmtW7dOlvrR+MxAACAI3EyZW0DAAAAHlY5nKW//fZbRUZGaujQodq5c6cqVaqkZs2a6ezZs+meFx0drUGDBql+/fr2PmmG0XgMAADgQExOTlnaAAAAgIdVTmfpcePGqVevXgoPD1fZsmU1bdo0eXl5aebMmWmek5ycrM6dO2v48OEqVqxYVh43Q/iGAAAA4EBMTqYsbfa434faAQAAABmR1SwdHx+vK1euWG3x8fGp3ishIUE7duxQ06ZNLfucnJzUtGlTbd68Oc06jhgxQvnz51ePHj3u+fOnhsZjAAAAR2JyytqWSQ/CUDsAAAAgQ7KYpUePHq08efJYbaNHj071VufPn1dycrIKFChgtb9AgQI6ffp0quds2LBBX3zxhaZPn37PHz0tNB4DAAA4kJzuefwgDLUDAAAAMiKrWXrw4MG6fPmy1TZ48OB7UrerV6+qS5cumj59uvLly3dPrpkRLjl2JwAAADiUlKF2twfizA61W79+fU5UFQAAAMh27u7ucnd3z1DZfPnyydnZWWfOnLHaf+bMGRUsWNCmfFRUlKKjo9WqVSvLPrPZLElycXHRoUOHVLx48SzUPnU0HgMAADiSLC56Fx8fbzMvW1ohOL2hdgcPHkz1+ilD7Xbt2pWlegIAAAD3XA4uIO3m5qZq1app9erVljVAzGazVq9erYiICJvypUuX1t69e632/ec//9HVq1c1ceJEhYSEZEs9mbYCAADAgZhMpixtmZmnLbNya6gdAAAAkBFZzdKZFRkZqenTp2vOnDk6cOCAXn31VV27dk3h4eGSpK5du1pG+Xl4eKh8+fJWm7+/v3x9fVW+fHm5ubnd0/ciBT2PAQAAHEkWe0sMHjxYkZGRVvvSGnr3oAy1AwAAADIkB3seS1KHDh107tw5DRkyRKdPn1blypW1fPlyy8i+kydPyimH63QnGo8BAAAciD2L3t0uM/O0PShD7QAAAICMyGqWtkdERESq2VmS1q1bl+65s2fPvvcVugONxwAAALBbZGSkunXrpurVq6tmzZqaMGGCzVC7woULa/To0Zahdrfz9/eXJJv9AAAAAHIfjccAAACOxMRQOwAAAMAuOZylHwQ0HgMAADgShtoBAAAA9smFLH2/o/EYAADAgZjoLQEAAADYhSxti8ZjAAAAR0JvCQA5pOjTj+R2FQAAuLfI0jZoTgcAAAAAAAAA2KDnMQAAgAMxsTgdAAAAYBeytC0ajwEAAByJiaF2AAAAgF3I0jZoPAYAAHAk9JYAAAAA7EOWtkHjMQAAgCOhtwQAAABgH7K0DZrTAQAAAAAAAAA26HkMAADgQFjkAwAAALAPWdoWjccAAACOxETgBQAAAOxClrZB4zEAAIAjcWKeNgAAAMAuZGkbNB4DAAA4EBO9JQAAAAC7kKVt8Y4AAAAAAAAAAGzQ8xgAAMCRMNQOAAAAsA9Z2gaNxwAAAI6EoXYAAACAfcjSNmg8BgAAcCQmeksAAAAAdiFL26DxGAAAwJE40VsCAAAAsAtZ2gbvCAAAAAAAAADABj2PAQAAHAnztAEAAAD2IUvboPEYAADAkbBCNAAAAGAfsrQNGo8BAAAcCb0lAAAAAPuQpW3QeAwAAOBIWCEaAAAAsA9Z2gaNxwAAAI6EFaIBAAAA+5ClbfCOAAAAAAAAAABs0PMYAADAkTDUDgAAALAPWdoGjccAAACOhEU+AAAAAPuQpW3QeAwAAOBImKcNAAAAsA9Z2gaNxwAAAI6EoXYAAACAfcjSNmhOBwAAAAAAAADYoPEYAADAkZicsrYBAAAAD6tcyNKffPKJwsLC5OHhoVq1amnr1q1plp0+fbrq16+vgIAABQQEqGnTpumWvxf4hgAAAOBITKasbQAAAMDDKoez9LfffqvIyEgNHTpUO3fuVKVKldSsWTOdPXs21fLr1q1Tp06dtHbtWm3evFkhISF68skn9ffff2f1ydNE4zEAAIAjcXLK2gYAAAA8rHI4S48bN069evVSeHi4ypYtq2nTpsnLy0szZ85MtfzcuXPVp08fVa5cWaVLl9aMGTNkNpu1evXqrD55mviGAAAA4EAMkylLmz3u96F2AAAAQEZkNUvHx8frypUrVlt8fHyq90pISNCOHTvUtGlTyz4nJyc1bdpUmzdvzlB9r1+/rsTERAUGBt6T508NjccAAACw24Mw1A4AAADICaNHj1aePHmsttGjR6da9vz580pOTlaBAgWs9hcoUECnT5/O0P3eeustFSpUyKoB+l6j8dgBNGzYUAMGDMjtatht3bp1MplMio2Nze2qAADw4MvhRT4ehKF2yLj7LVdmpD4mk0mLFi3Kkfpkt+7du6t169bplrnffkYAADiULGbpwYMH6/Lly1bb4MGDs6WqH3zwgebNm6cffvhBHh4e2XIPSXLJtisDGVSnTh3FxMQoT548uV0V4KEU+uoLKhbZQ+4Fg3Rlz0H9OWCkLm/bm2rZx1Z9qbwNatnsP7tsnbY9+7IkqcS7ESrUvqU8QgrKSEjU5Z1/6tCQ8YrduidbnwPA/9i5ynOK+Ph4m6F17u7ucnd3tymbMtTu9kB8Pw61w/1v3bp1atSokS5duiR/f/9MnRsTE6OAgIDsqRgAZEBAi2eVt3V7ufgHKj46SjEzJuvmkUOpls3TqJkK93vTap85IUEHO7SwvC77Q+p/UD0z5zNdWDT/3lUcgK0sZum0cnNq8uXLJ2dnZ505c8Zq/5kzZ1SwYMF0zx0zZow++OADrVq1ShUrVrS7vhlB4zHuKiEhQW5ubtl2fTc3t7v+owCQPYLbtVCZjwdrX9+hit26W0X7dVOtpV9oXbnmSjh30ab8jnavycnN1fLaNa+/6u9YrJjvl1v2XTsSrX39R+j68VNy9vRQ0f7dVXPZTK0r/YQSzl/KkecCHmb2zlucYvTo0Ro+fLjVvqFDh2rYsGE2ZdMbanfw4MEM3S8nhtoh+2R3TsyIByFH3g/vE4Ds4Ve3oQqEv6KYaRN04/BB5W31nEKHfKijEd2VfDk21XOSr8XpaET3f3cY1scPhbe1eu1TtaYK9R2kK5vX39vKA7CR1SydGW5ubqpWrZpWr15tGXmUMiIvIiIizfM++ugjvf/++1qxYoWqV6+e7fVk2ooHzLVr19S1a1f5+PgoODhYY8eOtToeHx+vQYMGqXDhwvL29latWrW0bt06y/HZs2fL399fixYtUokSJeTh4aFmzZrp1KlTljLDhg1T5cqVNWPGDBUtWtTS9T02NlY9e/ZUUFCQ/Pz81LhxY+3evdty3u7du9WoUSP5+vrKz89P1apV0/bt2yVJJ06cUKtWrRQQECBvb2+VK1dOy5Ytk5T6tBXff/+9ypUrJ3d3d4WFhdk8Z1hYmEaNGqWXXnpJvr6+KlKkiD7//PN78h4DD5OiA8J16ov5+mvOQsUdiNLePkOVfP2mQro/n2r5xEuXFX/mvGXL17Sukq/fVMyCfxuP/5n3ky6s2awbx/9S3P6jOjBotFzz+Mq3Qqmceizg4cZQO2RRUlKSIiIilCdPHuXLl0/vvvuuDONWy0ZYWJhGjhyprl27ys/PT71795YkbdiwQfXr15enp6dCQkLUr18/Xbt2zXLNr776StWrV5evr68KFiyoF154wTIvdnR0tBo1aiRJCggIkMlkUvfu3S3nms1mvfnmmwoMDFTBggVt/pBx+7QV0dHRMplMWrhwoRo1aiQvLy9VqlTJpif89OnTFRISIi8vL7Vp00bjxo3LcI/nlKz82WefWa7Rvn17Xb582VImZfqJ999/X4UKFVKpUrd+B+7du1eNGzeWp6en8ubNq969eysuLs7mHsOHD7dk7ldeeUUJCQlp1iej+f+nn35SqVKl5OXlpbZt2+r69euaM2eOwsLCFBAQoH79+ik5OTlD7wGAf+V9pq1iVy7T5TUrlPDXCcVMmyBzfLz8mzRP97zk2Ev/bpcvpX0s9pJ8a9bV9X27lHgmJjsfBYCU41PARUZGavr06ZozZ44OHDigV199VdeuXVN4eLgkqWvXrlZZ/MMPP9S7776rmTNnKiwsTKdPn9bp06dTzRP3Co3HD5g33nhDv/76qxYvXqxffvlF69at086dOy3HIyIitHnzZs2bN0979uxRu3bt1Lx5cx05csRS5vr163r//ff15ZdfauPGjYqNjVXHjh2t7nP06FF9//33WrhwoXbt2iVJateunc6ePauff/5ZO3bsUNWqVdWkSRNdvHird2Lnzp31yCOPaNu2bdqxY4fefvttubre6qHYt29fxcfH67ffftPevXv14YcfysfHJ9Vn3LFjh9q3b6+OHTtq7969GjZsmN59913Nnj3bqtzYsWNVvXp1/fHHH+rTp49effVVHTqU+tAgALZMrq7KU7Wczq/e9O9Ow9D5NZvk/1iVDF0jJPx5xcxfquTrN9K8R5GeHZQYe0VX9vDvE3gQuLu7y8/Pz2pLa+jdvRhq98svv2T7UDtkzpw5c+Ti4qKtW7dq4sSJGjdunGbMmGE5PmbMGFWqVEl//PGH3n33XUVFRal58+Z6/vnntWfPHn377bfasGGDVY+ZxMREjRw5Urt379aiRYsUHR1taSAOCQnR999/L0k6dOiQYmJiNHHiRKv6eHt7a8uWLfroo480YsQIrVy5Mt1neOeddzRo0CDt2rVLJUuWVKdOnZSUlCRJ2rhxo1555RX1799fu3bt0hNPPKH3338/U+/R0aNHNX/+fP34449avny5JY/ebvXq1Tp06JBWrlypn376SdeuXVOzZs0UEBCgbdu26bvvvtOqVatsehatXr1aBw4c0Lp16/Tf//5XCxcutBkNcLuM5v9JkyZp3rx5Wr58udatW6c2bdpo2bJlWrZsmb766it99tlnWrBgQabeB+Ch5+Iij+IldW33v9/JZRi6tmenvEqVTfM0Jw9PPfrZNyox/b8KGTxC7iGhaZZ1zhMg32q1dGnVz/ey5gDuEx06dNCYMWM0ZMgQVa5cWbt27dLy5cstI/tOnjypmJh//3A0depUJSQkqG3btgoODrZsY8aMybY6Mm3FAyQuLk5ffPGFvv76azVp0kTSrTD9yCOPSLr1gZo1a5ZOnjypQoUKSZIGDRqk5cuXa9asWRo1apSkW+F9ypQpqlWrluUaZcqU0datW1WzZk1Jt4bWffnllwoKCpJ0qzfJ1q1bdfbsWcsXyDFjxmjRokVasGCBevfurZMnT+qNN95Q6dKlJUklSpSw1P3kyZN6/vnnVaFCBUlSsWLF0nzOcePGqUmTJnr33XclSSVLltT+/fv18ccfW/VCeeqppywh/a233tL48eO1du1aS88OAOlzyxcgJxcXxZ+9YLU//swFeZdK+99oijw1KsivfCnt6f2OzbH8TzVUlbnj5OzlqfiYc9rS4iUlXmDKCiBHMNQOWRQSEqLx48fLZDKpVKlS2rt3r8aPH69evXpJkho3bqzXX3/dUr5nz57q3LmzZRG3EiVKaNKkSWrQoIGmTp0qDw8PvfTSS5byxYoV06RJk1SjRg3FxcXJx8fHMud1/vz5bXoAV6xYUUOHDrVce8qUKVq9erWeeOKJNJ9h0KBBatmypaRbvXjLlSuno0ePqnTp0po8ebJatGihQYMGSbqVNTdt2qSffvopw+/RzZs39eWXX6pw4cKSpMmTJ6tly5YaO3as5Q8n3t7emjFjhmW6iunTp1vO8/b2liRNmTJFrVq10ocffmj5kujm5qaZM2fKy8tL5cqV04gRI/TGG29o5MiRcnKy7vuTmfw/depUFS9eXJLUtm1bffXVVzpz5ox8fHxUtmxZNWrUSGvXrlWHDh0y/D4ADzsX3zwyOTsr6Y6ew0mxl+ReOCTVcxL+OaV/pnysm9HH5OztrbzPtlfY6EmK6t9DSRfO25T3b/SkzDeu6+rvTFkB5IgczNIpIiIi0szOt48mkm6Nsspp9Dx+gERFRSkhIcHS6CtJgYGBVsPgkpOTVbJkSfn4+Fi2X3/9VVFRUZZzXFxcVKNGDcvr0qVLy9/fXwcOHLDsCw0NtTQcS7empIiLi1PevHmtrn38+HHLtSMjI9WzZ081bdpUH3zwgdU9+/Xrp/fee09169bV0KFDtWdP2gtnHThwQHXr1rXaV7duXR05csRqKN3tvZRMJpMKFixoGf6Ymvj4eF25csVqSzTMaZYHkL6Q8La6svdQqovrXVi3Reurt9amxzvq3C/rVfWbCXILYjEsIEc4OWVty6QHYagdMuexxx6T6bYvTrVr17bKYXc2+O/evVuzZ8+2yojNmjWT2WzW8ePHJd0aWdaqVSsVKVJEvr6+atCggaRbjZ93c2fP9ODg4HQz353nBAcHS5LlnEOHDlk6TKS48/XdFClSxNJwLN16j8xms9UouAoVKljNc3zgwAFVqlTJ0nAs3cq4d55XqVIleXl5WV07Li7Oapq5FBnN/15eXpaGY+nWvORhYWFWIwELFCiQ6SydkEyWBjLrxqH9urxupeKjo3T9zz069eFQJV+5rIAnn061vH+T5rr822oZiYk5XFPgIZXDWfpBQM9jBxIXFydnZ2ft2LFDzs7OVsfSmiIiLbeH2pRrBwcH2/zFQ5Kld8iwYcP0wgsvaOnSpfr55581dOhQzZs3T23atFHPnj3VrFkzLV26VL/88otGjx6tsWPH6rXXXstUvW6XMiVGCpPJJLM57QCb2gJAnUyB6uycz+46AA+yhPOXZE5Kknv+vFb73QvkVfxp214Pt3P28lSh9i11ePikVI8nX7+h61EndT3qpGK37FbD/SsUEt5WUR8xNzmQ3XJykQ/p1lC7c+fOaciQITp9+rQqV65sM9Tu9t6Stw+1u11ai/Lh/pNaTnz55ZfVr18/m7JFihSxTNfQrFkzzZ07V0FBQTp58qSaNWuW7ly+KTKb+e48J6Uh/G7n3Gt3vk/ZIaP5P7X38F5k6T6lwtS3zN1HKwGOKunqZRnJyXLJE2C138U/QEmxtotPpyo5WTePH5VbcGGbQ15lKsj9kSL6a+zIe1FdABmQ01n6QUDj8QOkePHicnV11ZYtW1SkSBFJ0qVLl3T48GE1aNBAVapUUXJyss6ePav69euneZ2kpCRt377d0sPi0KFDio2NVZkyZdI8p2rVqjp9+rRcXFwUFhaWZrmSJUuqZMmSGjhwoDp16qRZs2apTZs2km4NgXzllVf0yiuvaPDgwZo+fXqqjcdlypTRxo0brfZt3LhRJUuWtAnFmTF48GBFRkZa7VsTWM3u6wEPOiMxUZd3/ql8jWvrzJLVt3aaTMrbqLZOfPp1uucGt20uJ3c3/T13ScZu5uQkJ3dWmQdyhB0LdWTV/T7UDpmzZcsWq9e///67SpQokWYOq1q1qvbv369HH3001eN79+7VhQsX9MEHHygk5NYw7pRFlVOk9NDNiQXbSpUqpW3btlntu/P13Zw8eVL//POPZaqI33//XU5OTulOn1amTBnNnj1b165dszQsb9y40ea83bt368aNG/L09LRc28fHx/Le3S6j+f9eSC1LH3vx2Wy9J3DfS0rSzajD8q5YRVe3/u87rMkk7wpVdPHnRRm7hpOT3IsUVdzOrTaH/Ju20I2jhxQffeze1RlA+nIhS9/veEceID4+PurRo4feeOMNrVmzRvv27VP37t0tvXlKliypzp07q2vXrlq4cKGOHz+urVu3avTo0Vq6dKnlOq6urnrttde0ZcsW7dixQ927d9djjz2W7nC9pk2bqnbt2mrdurV++eUXRUdHa9OmTXrnnXe0fft23bhxQxEREVq3bp1OnDihjRs3atu2bZYG6QEDBmjFihU6fvy4du7cqbVr16bZWP36669r9erVGjlypA4fPqw5c+ZoypQplnnp7JXaAkCu/E8BD7njE2YppEd7Fe7SWj6li6n8J8Pk4u2pU3MWSpIqzfpQpd6LtDkvJLytzixepcSLsVb7nb08VWrkQPnXqiTPIoXkV7WcKk4fJY/CBRTz/fKceCQAQBadPHlSkZGROnTokP773/9q8uTJ6t+/f5rl33rrLW3atEkRERHatWuXjhw5osWLF1v+oFCkSBG5ublp8uTJOnbsmJYsWaKRI6170YWGhspkMumnn37SuXPnsnUak9dee03Lli3TuHHjdOTIEX322Wf6+eefrabquBsPDw9169ZNu3fv1vr169WvXz+1b98+3YUiO3fubDlv3759Wrt2rV577TV16dLF0lNfurX2SI8ePbR//34tW7ZMQ4cOVUREhM18x1LG8/+9kFqWdnMmSwMXliyQ/xMtlafRk3J7pIiCXx4gJw8Pxa5eIUkq1O8t5X+xh6V8vvZd5F2pmlwLBMujWAkVHjBYrkEFdGnlMqvrOnl6ya/O44pdZb0fAHIaPY8fMB9//LHi4uLUqlUr+fr66vXXX9fly5ctx2fNmqX33ntPr7/+uv7++2/ly5dPjz32mJ5++t/5k7y8vPTWW2/phRde0N9//6369evriy++SPe+JpNJy5Yt0zvvvKPw8HCdO3dOBQsW1OOPP64CBQrI2dlZFy5cUNeuXXXmzBnly5dPzz33nGVoW3Jysvr27au//vpLfn5+at68ucaPH5/qvapWrar58+dryJAhGjlypIKDgzVixAirxfIA3Bsx3/0st6BAlRzaT+4Fg3Rl9wFtfbqnEv63iJ5nSLCMO4awepcsqsB61bWlebjN9YzkZPmUKqZHurSRa74AJV6IVez2vdrcqLPi9h/NkWcCHnYGfxhFFnXt2lU3btxQzZo15ezsrP79+6t3795plq9YsaJ+/fVXvfPOO6pfv74Mw1Dx4sUtC68FBQVp9uzZ+r//+z9NmjRJVatW1ZgxY/TMM89YrlG4cGENHz5cb7/9tsLDw9W1a1fNnj07W56vbt26mjZtmoYPH67//Oc/atasmQYOHKgpU6Zk+BqPPvqonnvuOT311FO6ePGinn76aX366afpnuPl5aUVK1aof//+qlGjhry8vPT8889r3LhxVuWaNGmiEiVK6PHHH1d8fLw6deqU7pQuGcn/ALLPlY3r5OyXR0Edu8slIEDxx6N0csTbSv7fInquQfklw7CUd/b2UXCf1+USECBzXJxuRB1W9OB+SvjrhNV1/eo1kkwmXV6/NkefB3jYkaVtmQzjtv+LweHNnj1bAwYMUGxsbG5X5b6w1DXtoYUAANxLLRMP3b3QPRC35ccsne9Tq9U9qgnw4OjVq5cOHjyo9evX37XssGHDtGjRIu3atSv7K3af29+mSW5XAQDwECn7w+psvwdZ2hY9jwEAABwIvSWAuxszZoyeeOIJeXt76+eff9acOXPu2nMYAAA4PrK0LRqPAQAAHAkrRAN3tXXrVn300Ue6evWqihUrpkmTJqlnz56SpHLlyunEiROpnvfZZ5/lZDUBAEBOI0vbYNoKPNSYtgIAkFNyatqKq9uztjilb/Xm96gmwIPpxIkTSkxMTPVYgQIF5Ovrm8M1un8xbQUAICflxLQVZGlb9DwGAAAAgP8JDQ3N7SoAAADcN2g8BgAAcCAGQ+0AAAAAu5ClbdF4DAAA4EhY5AMAAACwD1naBo3HAAAADsQQvSUAAAAAe5ClbdF4DAAA4EAMeksAAAAAdiFL2+IdAQAAAAAAAADYoOcxAACAI6G3BAAAAGAfsrQNGo8BAAAcCCtEAwAAAPYhS9ui8RgAAMCBME8bAAAAYB+ytC0ajwEAABwJvSUAAAAA+5ClbdCcDgAAAAAAAACwQc9jAAAAB8JQOwAAAMA+ZGlbNB4DAAA4EEMMtQMAAADsQZa2ReMxAACAA6G3BAAAAGAfsrQtGo8BAAAcCYt8AAAAAPYhS9ugOR0AAAAAAAAAYIOexwAAAA7EoG8AAAAAYBeytC0ajwEAAByIwVA7AAAAwC5kaVs0HgMAADgQFvkAAAAA7EOWtkXjMQAAgAMxRG8JAAAAwB5kaVs0pwMAAAAAAAAAbNDzGAAAwIEw1A4AAACwD1naFo3HAAAADoRFPgAAAAD7kKVt0XgMAADgQJinDQAAALAPWdoWfbEBAAAciGFyytIGAAAAPKxyI0t/8sknCgsLk4eHh2rVqqWtW7emW/67775T6dKl5eHhoQoVKmjZsmV23Tej+IYAAADgQAyZsrTZ434PvAAAAEBG5HSW/vbbbxUZGamhQ4dq586dqlSpkpo1a6azZ8+mWn7Tpk3q1KmTevTooT/++EOtW7dW69attW/fvqw+eppoPAYAAIDdHoTACwAAANyPxo0bp169eik8PFxly5bVtGnT5OXlpZkzZ6ZafuLEiWrevLneeOMNlSlTRiNHjlTVqlU1ZcqUbKsjjccAAAAOJKeH2j0IgRcAAADIiKxm6fj4eF25csVqi4+PT/VeCQkJ2rFjh5o2bWrZ5+TkpKZNm2rz5s2pnrN582ar8pLUrFmzNMvfCzQeAwAAOJCcHGr3oAReAAAAICOymqVHjx6tPHnyWG2jR49O9V7nz59XcnKyChQoYLW/QIECOn36dKrnnD59OlPl7wWXbLsyAAAAclxWF72Lj4+36R3h7u4ud3d3m7LpBd6DBw+mev3cCLwAAABARmQ1Sw8ePFiRkZFW+1LL0Q8Seh4DAAA4kJzsLQEAAAA4kqxmaXd3d/n5+VltaTUe58uXT87Ozjpz5ozV/jNnzqhgwYKpnlOwYMFMlb8XaDwGAACAxeDBg3X58mWrbfDgwamWfVACLwAAAHC/cXNzU7Vq1bR69WrLPrPZrNWrV6t27dqpnlO7dm2r8pK0cuXKNMvfC0xbgYda/loBuV0FAADuKcOUuXmL75TWFBWpuT3wtm7dWtK/gTciIiLVc1IC74ABAyz7sjvwAsgeheuWz+0qAABwT2U1S2dWZGSkunXrpurVq6tmzZqaMGGCrl27pvDwcElS165dVbhwYctIwP79+6tBgwYaO3asWrZsqXnz5mn79u36/PPPs62ONB4DAAA4EMMg8AIAAAD2yOks3aFDB507d05DhgzR6dOnVblyZS1fvtyyRsjJkyfl5PTvxBF16tTRN998o//85z/6v//7P5UoUUKLFi1S+fLZ9wddGo8BAAAciJHDs5I9CIEXAAAAyIicztKSFBERkeaovXXr1tnsa9eundq1a5fNtfqXyTAMI8fuBtxnttV7LLerAAB4SNTY8HuO3Odw1MksnV+yeJF7VBMAju7ymP65XQUAwEMkz6CJ2X4PsrQtFswDAAAAAAAAANhg2goAAAAHYihn52kDAAAAHAVZ2haNxwAAAA6EwAsAAADYhyxti8ZjAAAAB0LgBQAAAOxDlrZF4zEAAIADMQwCLwAAAGAPsrQtFswDAAAAAAAAANig5zEAAIADYagdAAAAYB+ytC0ajwEAABwIgRcAAACwD1naFo3HAAAADoTACwAAANiHLG2LxmMAAAAHwiIfAAAAgH3I0rZYMA8AAAAAAAAAYIOexwAAAA7EzFA7AAAAwC5kaVs0HgMAADgQ5mkDAAAA7EOWtkXjMQAAgANhnjYAAADAPmRpWzQeAwAAOBB6SwAAAAD2IUvbovEYAADAgdBbAgAAALAPWdqWU25XAAAAAAAAAABw/6HnMQAAgANhqB0AAABgH7K0LRqPAQAAHAhD7QAAAAD7kKVt0XgMAADgQMy5XQEAAADgAUWWtkXjMQAAgAOhtwQAAABgH7K0LRbMAwAAAAAAAADYoOcxAACAA2GRDwAAAMA+ZGlbNB4DAAA4EIbaAQAAAPYhS9ui8RgAAMCB0FsCAAAAsA9Z2haNxwAAAA7EbOR2DQAAAIAHE1naFgvmAQAAAAAAAABs0PMYAADAgTDUDgAAALAPWdoWjccAAAAOhEU+AAAAAPuQpW0xbUUGhIWFacKECRkqazKZtGjRomytT3R0tEwmk3bt2pVuuYYNG2rAgAF23+duz7Ju3TqZTCbFxsbafQ8AuS//c8+r4nc/qNrqX1Xm8y/kXaZsuuWdfXxUJHKQKi36SdXW/KYK/52vPI/Vthwv9FJP1djwu9VWfu687H4MAP9jGFnbgJxwt5yamfydFTmR3QE4NrfK9eTba4j8BoyRd+eBci5YJM2yLiUqyvvF1+UXMVp+/T+ST9c35Fq2ulUZk5evPJu/IN9XRsiv/8fyev4VOfkHZfdjAPgfsrSth6rnsclk0g8//KDWrVvndlXuqXXr1qlRo0a6dOmS/P39c+y+derUUUxMjPLkyXPXsrlVRwDpC2zcVCER/XVizIeK2/+nCrTvqJLjJmhvpw5Kir1kU97k4qJS4ycp8dIlRb37f0o4d07uBQsqKe6qVbnrx6J0aMBr/+5ITs7uRwHwP2aG2gEAkCNcS1WRR8M2urFqvpJjouVetaG8276qqzPfl3E9zqa8cfO64n9fKfPFM1JyklyKl5dn8xdkXI9TUvRBSZJX6x5ScrKuL5ohI/6m3Ko3lHf7Pro6a7SUmJDTjwg8dMjStuh5DLu5ubmpYMGCMply7h+WYRhKSkrKsfsBjq5Ax0469+NinV+2VDejo3Xi4w9lvnlT+Z5+OtXy+Vq2krOfn44OflNxe/co4XSMru76QzeOHrUumJyspIsX/90uX86BpwEA4P5xP+bW+7FOwIPMrXpDJezdpMR9W2S+cEY3Vs6XkZggt/KPpVo++dRRJR3dI/PFMzJfvqCEnb/KfO4fORcuJklyCgiSS6GiurHqOyWfPinzpbO6ufI7ycVVrqWr5uSjAbgPXbx4UZ07d5afn5/8/f3Vo0cPxcXZ/qHq9vKvvfaaSpUqJU9PTxUpUkT9+vXT5Ux+P8+VxuOGDRvqtdde04ABAxQQEKACBQpo+vTpunbtmsLDw+Xr66tHH31UP//8s+Wcffv2qUWLFvLx8VGBAgXUpUsXnT9/3uqa/fr105tvvqnAwEAVLFhQw4YNsxwPCwuTJLVp00Ymk8nyOioqSs8++6wKFCggHx8f1ahRQ6tWrcrS850/f15t2rSRl5eXSpQooSVLllgdv9uzLF++XPXq1ZO/v7/y5s2rp59+WlFRUaneKzo6Wo0aNZIkBQQEyGQyqXv37pbjZrM5zfckq89y57QVJ06cUKtWrRQQECBvb2+VK1dOy5YtS7eO8fHx6tevn/Lnzy8PDw/Vq1dP27Zts7nHzz//rGrVqsnd3V1ff/21nJyctH37dqu6TpgwQaGhoTKbzZl6RuBhZXJxkXfJUrqy/d9/czIMXdm+TT7lKqR6jn+9+rq2b5+KvP6GKi9ZpnJfzlVwl26Sk/WvE/dHQlRp0Y+qMP97FRsyXG4FCmTnowC4jWGYsrRll9wKu7h/JSUlKSIiQnny5FG+fPn07rvvykhjvOfJkyf17LPPysfHR35+fmrfvr3OnDljVWbq1KkqXry43NzcVKpUKX311VdWx48cOaLHH39cHh4eKlu2rFauXJnhuqZMGzdv3jzVqVNHHh4eKl++vH799VdLmdRy64YNG2Q2mzV69GgVLVpUnp6eqlSpkhYsWGA579KlS+rcubOCgoLk6empEiVKaNasWZKkhIQERUREKDg4WB4eHgoNDdXo0aOt6nT7VHaxsbEymUxat25dluoEIAOcnOVcIERJJw7fttNQ0snDci4UlqFLOBcpKafA/Er+63/f953/Nzg8KdHqmkpKksv/GpgBZK/7NUtLUufOnfXnn39q5cqV+umnn/Tbb7+pd+/eaZb/559/9M8//2jMmDHat2+fZs+ereXLl6tHjx6Zum+u9TyeM2eO8uXLp61bt+q1117Tq6++qnbt2qlOnTrauXOnnnzySXXp0kXXr19XbGysGjdurCpVqmj79u1avny5zpw5o/bt29tc09vbW1u2bNFHH32kESNGWEJhSoPkrFmzFBMTY3kdFxenp556SqtXr9Yff/yh5s2bq1WrVjp58qTdzzZ8+HC1b99ee/bs0VNPPaXOnTvr4sWLkpShZ7l27ZoiIyO1fft2rV69Wk5OTmrTpk2qjaIhISH6/vvvJUmHDh1STEyMJk6cmKH3JKvPcqe+ffsqPj5ev/32m/bu3asPP/xQPj4+6dbxzTff1Pfff685c+Zo586devTRR9WsWTObe7z99tv64IMPdODAAT3zzDNq2rSpJVSnmDVrlrp37y4nJzrUAxnhksdfJhcXJd7x7y3x4iW55s2b6jnuhQopoGEjmZycdPiNgYqZPUsFO76gQt3CLWWu7f9Tx0eN1OHXB+rEmI/kHhys0p9Mk5OnV7Y+D4Bb7td52nIr7OL+NWfOHLm4uGjr1q2aOHGixo0bpxkzZtiUM5vNevbZZ3Xx4kX9+uuvWrlypY4dO6YOHTpYyvzwww/q37+/Xn/9de3bt08vv/yywsPDtXbtWss1nnvuObm5uWnLli2aNm2a3nrrrUzX+Y033tDrr7+uP/74Q7Vr11arVq104cIFqzK359aKFStq9OjR+vLLLzVt2jT9+eefGjhwoF588UVLw/O7776r/fv36+eff9aBAwc0depU5cuXT5I0adIkLVmyRPPnz9ehQ4c0d+5cSyeYzMhsnQDcncnTWyYnZxnXrKdvM65dlcnbN+0T3Tzk1+8j+Q0cJ+/neuvG6u+VdOKQJN3qkXzlotwfbyW5e0pOznKr2UROfgEyeftl5+MA+J/7NUsfOHBAy5cv14wZM1SrVi3Vq1dPkydP1rx58/TPP/+kek758uX1/fffq1WrVipevLgaN26s999/Xz/++GOmRiLl2pzHlSpV0n/+8x9J0uDBg/XBBx8oX7586tWrlyRpyJAhmjp1qvbs2aNVq1apSpUqGjVqlOX8mTNnKiQkRIcPH1bJkiUlSRUrVtTQoUMlSSVKlNCUKVO0evVqPfHEEwoKujXBvL+/vwoWLGhVj0qVKllejxw5Uj/88IOWLFmiiIgIu56te/fu6tSpkyRp1KhRmjRpkrZu3armzZtrypQpd32W559/3up6M2fOVFBQkPbv36/y5ctbHXN2dlZgYKAkKX/+/DbzCaf3nmT1We508uRJPf/886pQ4VaPxWLF/v3LaGp1vHbtmqZOnarZs2erRYsWkqTp06dr5cqV+uKLL/TGG29Yzh8xYoRVnXv27KlXXnlF48aNk7u7u3bu3Km9e/dq8eLFaT5LfHy84uPjrfYlmM1yo7EZyDCTk5MSYy8p+qMPJLNZ1w8dkmtQkAp26qx/Zn0hSbr8+2ZL+RtRR3Vt/5+quGCRAhs30fmlP+ZW1YGHhnEfztOWEna3bdum6tVvLQw0efJkPfXUUxozZowKFSpkc05K2E1RvHhxvf/++3rxxReVlJQkF5eHaukOhxQSEqLx48fLZDKpVKlS2rt3r8aPH2/5PpBi9erV2rt3r44fP66QkBBJ0pdffqly5cpp27ZtqlGjhsaMGaPu3burT58+kqTIyEj9/vvvGjNmjBo1aqRVq1bp4MGDWrFiheXzNmrUKEsGzaiIiAhLVp86daqWL1+uL774Qm+++aalzO25NT4+XqNGjdKqVatUu/atxWWLFSumDRs26LPPPlODBg108uRJValSxfJv4/bG4ZMnT6pEiRKqV6+eTCaTQkNDM1Vfe+uUmtSydHxSktz5twhkTkK84r78SHJ1l0toSXk2bC3z5QtKPnVUMpt1bfEX8mrWSXle+0CGOVlJJw4r8dh+3Ye/3gGHlNUsndrvS3d3d7m7u2fpups3b5a/v78lL0hS06ZN5eTkpC1btqhNmzYZus7ly5fl5+eXqSyda61mFStWtPy3s7Oz8ubNa2l0lKQC/xvifPbsWe3evVtr166Vj4+PZStdurQkWU3ncPs1JSk4OFhnz55Ntx5xcXEaNGiQypQpI39/f/n4+OjAgQNZ6nl8ez28vb3l5+dnqUdGnuXIkSPq1KmTihUrJj8/P0uAtKdO9rwnGX2WO/Xr10/vvfee6tatq6FDh2rPnj3pXjsqKkqJiYmqW7euZZ+rq6tq1qypAwcOWJW9/R+HJLVu3VrOzs764YcfJEmzZ89Wo0aN0u2JMXr0aOXJk8dqm/1X6n+dAR4GSZdjZSQlyfV/f9xJ4RoYoMQ7elGlSDh/XjdPnZJuGwlx80S03PLlkymNXz7JcXGKP3VSHo88cu8qDyBNZiNrW3x8vK5cuWK13RmAM+tuYTej7Am7uH899thjVmtn1K5dW0eOHFHyHYusHjhwQCEhIZaGY0kqW7as/P39LZnxwIEDVplSkurWrWt1PCQkxOoPFSkNp5lx+zkuLi6qXr16urn16NGjun79up544gmr/P/ll19asv+rr76qefPmqXLlynrzzTe1adMmy/ndu3fXrl27VKpUKfXr10+//PJLputsT51Sk1qWHrdme5rlAUdn3Lgmw5xs08vY5O1r0xv5jjNljj0v87m/lbB9rRIP75Z7zaaWo+Yzfynuy491edJbujr1XV3/fppMnl4yx6aezwHcW1nN0qn9vkyZciorTp8+rfz581vtc3FxUWBgoE6fPp2ha5w/f14jR45Md/RfanKt8djV1dXqtclkstqXEiTNZrPi4uLUqlUr7dq1y2pLmbcsvWvebf7bQYMG6YcfftCoUaO0fv167dq1SxUqVFBCgv2rmKZXj4w8S6tWrXTx4kVNnz5dW7ZssXypsqdO9rwn9p7fs2dPHTt2TF26dNHevXtVvXp1TZ48OdN1To23t7fVazc3N3Xt2lWzZs1SQkKCvvnmG7300kvpXmPw4MG6fPmy1db9EdueTsDDwkhK0rXDh+RXrca/O00m+VWrobg/96Z6TtzePfIo/Ih025d9j5AQJZw/JyONYS9Onp5yL1xYCWk0SAO4v2RH4M3NsAvktNtza8q83kuXLrXK/vv377fMMdyiRQudOHFCAwcO1D///KMmTZpo0KBBkqSqVavq+PHjGjlypG7cuKH27durbdu2kmSZqu32eaITE2+fJ9X+OqUmtSwd2bh6muUBh2dOVvKZU3IpUvK2nSa5FCmp5H+iM34dkyn1ThgJN2XcuCYn/yA5FyiipKOp53MA95fUfl8OHjw4zfJvv/22TCZTutvBgwezXK8rV66oZcuWKlu2bKbXQ3sgum1UrVpV33//vcLCwrLU08TV1dWmJ8PGjRvVvXt3S/fuuLg4RUdHZ6W66brbs1y4cEGHDh3S9OnTVb9+fUnShg0b0r2mm5ubJNk8W24ICQnRK6+8oldeeUWDBw/W9OnT9dprr6Vax5QFTTZu3GgZgpeYmKht27ZpwIABd71Xz549Vb58eX366adKSkrSc889l2751IYJMGUFHnZn5v1XRd95V9cOHtC1A/tVoH0HOXl66PzSpZKkov8ZosRz5/TXZ1MlSecWLVSB59upSP9Infl+vjweCVFwl+46s2C+5ZohfV9T7MYNij99Wm758qlQj14yks26uMq+3lIAMierC3UMHjxYkZGRVvvSGmb39ttv68MPP0z3enf2yrRHVsIu7l939jr//fffVaJECTk7O1vtL1OmjE6dOqVTp05Zeh/v379fsbGxKlu2rKXMxo0b1a1bN8t5GzdutDp+6tQpxcTEKDg42HK/zPr9998tHT6SkpK0Y8eOdKe6K1u2rNzd3XXy5Mk0p4OQpKCgIHXr1k3dunVT/fr19cYbb2jMmDGSJD8/P3Xo0EEdOnRQ27Zt1bx5c128eNEyLV9MTIyqVKkiSVaL52W1TndKLUsbjALAQy5h+zp5tuis5DMnlRxzUm7VGsjk6qaEfbf+/+bZorPMcZcVv/4nSZJ7zaZKPnNKybHnZXJ2kUuxsnItW0M3Vv2bpV1KVpZxI07mK5fknC9Yno2fU9LRvZZ5kQFkr6xmaXd3t0xNUfH666+re/fu6ZYpVqyYChYsaDMTQFJSki5evGg1PW9qrl69qubNm8vX11c//PCDTUfRu3kgftv37dtX06dPV6dOnfTmm28qMDBQR48e1bx58zRjxgybgJmWsLAwrV69WnXr1pW7u7sCAgJUokQJLVy4UK1atZLJZNK7776bqZ659/pZAgIClDdvXn3++ecKDg7WyZMn9fbbb6d7zdDQUJlMJv3000966qmn5OnpKR8fn2x7hrQMGDBALVq0UMmSJXXp0iWtXbtWZcqUSbeOr776qt544w0FBgaqSJEi+uijj3T9+vUMLYZTpkwZPfbYY3rrrbf00ksvydPTM7sfEXA4F9eskou/vwr37CXXwLy6fvSIDr8+UEmXbi2i51ag4K2xN/+TcPasDkX2V5F+A1R+9tdKOH9OZ777VjFz/13R3jUov4oNGyEXvzxKio3V1T27deDlnkqKjc3pxwMeSlldqCMzc7I9CGEX96+TJ08qMjJSL7/8snbu3KnJkydr7NixNuWaNm2qChUqqHPnzpowYYKSkpLUp08fNWjQwDIdwxtvvKH27durSpUqatq0qX788UctXLhQq1atslyjZMmS6tatmz7++GNduXJF77zzTqbr/Mknn6hEiRIqU6aMxo8fr0uXLqU7+s3X11eDBg3SwIEDZTabVa9ePV2+fFkbN26Un5+funXrpiFDhqhatWoqV66c4uPj9dNPP1ky9Lhx4xQcHKwqVarIyclJ3333nQoWLCh/f385OTnpscce0wcffKCiRYvq7NmzljVl0pOROgHImMRDf8jk5SOPuk/J5OWn5HN/6dqCaTKu35q2wskvwPoXs6ubPJq2k5NPHhlJiTJfPKsby75S4qE/LEWcvP3k3rD1/6a/uKKEP7cpfvOKnH404KGVnYvepSYoKMjyB+H01K5dW7GxsdqxY4eqVasmSVqzZo3MZrNq1aqV5nlXrlxRs2bN5O7uriVLlsjDwyPTdXwgGo8LFSqkjRs36q233tKTTz6p+Ph4hYaGqnnz5pbhWhkxduxYRUZGavr06SpcuLCio6M1btw4vfTSS6pTp47y5cunt956S1euXMm1ZzGZTJo3b5769eun8uXLq1SpUpo0aZIaNmyY5jULFy6s4cOH6+2331Z4eLi6du2q2bNnZ9szpCU5OVl9+/bVX3/9JT8/PzVv3lzjx49Pt44ffPCBzGazunTpoqtXr6p69epasWKFAgICMnTPHj16aNOmTXedsgJA2s4uXKCzC1MfpnrotT42+679uU8HXu6Z5vWODXv3ntUNQOaZc3BFnQch7OL+1bVrV924cUM1a9aUs7Oz+vfvn+q0JCaTSYsXL9Zrr72mxx9/XE5OTmrevLnV9GitW7fWxIkTNWbMGPXv319FixbVrFmzLBnayclJP/zwg3r06KGaNWsqLCxMkyZNSnUR6PR88MEH+uCDD7Rr1y49+uijWrJkifLly5fuOSNHjlRQUJBGjx6tY8eOyd/fX1WrVtX//d//Sbo1inDw4MGKjo6Wp6en6tevr3nz5km61dD70Ucf6ciRI3J2dlaNGjW0bNkyy3egmTNnqkePHqpWrZpKlSqljz76SE8++eRdn+NudQKQcQl/rFfCH+tTPXbt2ylWr+M3LlP8xmV3ud5vSvjjt3tWPwCZk5NZOjPKlCmj5s2bq1evXpo2bZoSExMVERGhjh07WtZ0+Pvvv9WkSRN9+eWXqlmzpq5cuaInn3xS169f19dff21Zz0S6leMz2hnXZBg53aYO3DsjR47Ud999d9fF+dKyrd5j97hGAACkrsaGzA+Rt8ePO1KffzyjWlXLnr4FLVq00JkzZyxhNzw8XNWrV9c333wjKf2w+8MPP1jN2ZqZsAvcC9HR0SpatKj++OMPVa5cOberc9+4PKZ/blcBAPAQyTNoYrbf437N0pJ08eJFRURE6Mcff5STk5Oef/55TZo0yTL7QEpeWbt2rRo2bKh169apUaNGqV7r+PHjCgsLy9B9H4iex8CdUuamnjJlit57773crg4AAPeNrM7Tll3mzp2riIgINWnSxCrspkhMTNShQ4d0/fp1SdLOnTstc+I++uijVtfKTNgFAAAAMup+zdKSFBgYaOl4kZqwsDCrhXQbNmyoe9FnmNXCMmHu3Lny8fFJdStXrlxuVy9THvRniYiIULVq1dSwYUOmrAAA4AGQEnavXr2qy5cva+bMmVZrNKSE3ZRpBlLCbmobDce410aNGpVmNm7RokVuVw8AACDXMG1FJly9elVnzpxJ9Zirq6tCQ0NzuEb2c6RnyQqmrQAA5JScmrZi0bbkLJ3fugbTQeDhc/HiRV28eDHVY56enipcuHAO1+jBwLQVAICclBPTVpClbTFtRSb4+vrK19c3t6txTzjSswAAgH/RLQDIvMDAQAUGBuZ2NQAAQC4jS9ui8RgAAMCBGPfpCtEAAADA/Y4sbYvGYwAAAAdiprcEAAAAYBeytC0WzAMAAAAAAAAA2KDnMQAAgANhnjYAAADAPmRpWzQeAwAAOBACLwAAAGAfsrQtGo8BAAAciNlgkQ8AAADAHmRpWzQeAwAAOBB6SwAAAAD2IUvbYsE8AAAAAAAAAIANeh4DAAA4EHpLAAAAAPYhS9ui8RgAAMCBmAm8AAAAgF3I0rZoPAYAAHAgBot8AAAAAHYhS9ui8RgAAMCBMNQOAAAAsA9Z2hYL5gEAAAAAAAAAbNDzGAAAwIEwTxsAAABgH7K0LRqPAQAAHAhD7QAAAAD7kKVt0XgMAADgQAi8AAAAgH3I0rZoPAYAAHAgDLUDAAAA7EOWtsWCeQAAAAAAAAAAG/Q8BgAAcCAMtQMAAADsQ5a2ReMxAACAAzGbc7sGAAAAwIOJLG2LxmMAAAAHQm8JAAAAwD5kaVs0HgMAADgQAi8AAABgH7K0LRbMAwAAAAAAAADYoOcxAACAAzHTWwIAAACwC1naFo3HAAAADsTI8lg70z2pBwAAAPCgIUvbovEYAADAgTBPGwAAAGAfsrQtGo8BAAAciNmc2zUAAAAAHkxkaVs0HgMAADgQeksAAAAA9iFL23LK7QoAAAAAAAAAAO4/NB4DAAA4ELORtS27XLx4UZ07d5afn5/8/f3Vo0cPxcXFZehcwzDUokULmUwmLVq0KPsqCQAAgIfa/ZqlpdzL00xbgYfawIAPc7sKAICHxIYcus/9OtSuc+fOiomJ0cqVK5WYmKjw8HD17t1b33zzzV3PnTBhgkwmx1u5GnjQtfz1udyuAgDgIbJhUPbf437N0lLu5WkajwEAAByIkeUuD/e+kfbAgQNavny5tm3bpurVq0uSJk+erKeeekpjxoxRoUKF0jx3165dGjt2rLZv367g4OB7XjcAAAAgxf2YpaXczdNMWwEAAOBA7sehdps3b5a/v78l6EpS06ZN5eTkpC1btqR53vXr1/XCCy/ok08+UcGCBbOncgAAAMD/3I9ZWsrdPE3PYwAAAFjEx8crPj7eap+7u7vc3d3tvubp06eVP39+q30uLi4KDAzU6dOn0zxv4MCBqlOnjp599lm77w0AAADklOzI0lLu5ml6HgMAADgQw8jaNnr0aOXJk8dqGz16dKr3evvtt2UymdLdDh48aNdzLFmyRGvWrNGECROy8G4AAAAAGZeTWVp6MPI0PY8BAAAciDmL4+UGDx6syMhIq31p9ZR4/fXX1b1793SvV6xYMRUsWFBnz5612p+UlKSLFy+mOXxuzZo1ioqKkr+/v9X+559/XvXr19e6devSvS8AAACQWTmZpaUHI0/TeAwAAOBAsrpCdGaG1QUFBSkoKOiu5WrXrq3Y2Fjt2LFD1apVk3QrzJrNZtWqVSvVc95++2317NnTal+FChU0fvx4tWrVKkP1AwAAADIjJ7O09GDkaRqPAQAAHEhWA292KFOmjJo3b65evXpp2rRpSkxMVEREhDp27GhZGfrvv/9WkyZN9OWXX6pmzZoqWLBgqr0oihQpoqJFi+b0IwAAAOAhcD9maSl38zRzHgMAACDbzZ07V6VLl1aTJk301FNPqV69evr8888txxMTE3Xo0CFdv349F2sJAAAA3J9yK0/T8xgAAMCBmO/T7hKBgYH65ptv0jweFhYm4y51v9txAAAAICvu1ywt5V6epvEYAADAgRjm3K4BAAAA8GAiS9ui8RgAAMCB0DsXAAAAsA9Z2haNxwAAAA7ETG8JAAAAwC5kaVssmAcAAAAAAAAAsEHPYwAAAAfCUDsAAADAPmRpWzQeAwAAOBAzeRcAAACwC1naFo3HAAAADsQg8QIAAAB2IUvbovEYAADAgTDSDgAAALAPWdoWC+YBAAAAAAAAAGzQ8xgAAMCBmBlqBwAAANiFLG2LxmMAAAAHwgrRAAAAgH3I0rZoPAYAAHAghjm3awAAAAA8mMjStmg8BgAAcCBmeksAAAAAdiFL26LxGAAAwIEw1A4AAACwD1nallNuVwAAAAAAAAAAcP+h5zEAAIADYYVoAAAAwD5kaVs0HgMAADgQRtoBAAAA9iFL26LxGAAAwIEY9JYAAAAA7EKWtkXjMQAAgANhhWgAAADAPmRpWyyYBwAAAAAAAACwQc9jAAAAB8JQOwAAAMA+ZGlbNB4DAAA4EAIvAAAAYB+ytC0ajwEAABwIeRcAAACwD1naFnMeO5Do6GiZTCbt2rXLsm/jxo2qUKGCXF1d1bp161yrGwAAyBmG2cjSBjyounfv/tDm3TufvWHDhhowYECu1QcAgAcVWdoWPY8dXGRkpCpXrqyff/5ZPj4+2Xqv7t27KzY2VosWLcrW+wC493p0DlOrJwvK19tFew9c0ZhPj+ivmBtplv9uRi0FF/Cw2b9w6d8aN+2o5XW5Un7q3SVMZUv5yWw2dORYnCKH7lVCgjlbngMAAEgLFy6Uq6ur5XVYWJgGDBhAgzKQjbIjT08eVUlVKvhbHV/08z8a8+mRe1p3AEgPjccOLioqSq+88ooeeeSR3K4KgPtU5+dD1Pbpwnp/wkHFnLmpnp3DNG5EBb3YZ5sSElP/y2mvyJ1yum3sSrFQb014r5LWbjhn2VeulJ/GDq+grxec1ITPjyop2VCJoj4O+9dY4H5hGPwbAx52gYGBuV0F4KGSXXlakpYs/0cz5kZbXt+MpxMGkJ3I0raYtuI+tGDBAlWoUEGenp7KmzevmjZtqmvXrkmSZsyYoTJlysjDw0OlS5fWp59+muo1UqawuHDhgl566SWZTCbNnj37rvfet2+fWrRoIR8fHxUoUEBdunTR+fPn71q3YcOGac6cOVq8eLFMJpNMJpPWrVsnSTp16pTat28vf39/BQYG6tlnn1V0dLTVfdN7rpRnmT9/vurXry9PT0/VqFFDhw8f1rZt21S9enX5+PioRYsWOnfO+hctgLtr90xhfTn/hDZsuaCo6Gt6b/xB5Q10V/3H8qV5TuyVRF2M/XerUyOv/vrnhv7Yd9lSpl/P4lrw49/6esEpHT95Xaf+vqE1G84pMYlfxkB2MpuNLG3A/S69rHw7s9ms0aNHq2jRovL09FSlSpW0YMECqzJ3y74NGzZURESEIiIilCdPHuXLl0/vvvtuhr9Ynj17Vq1atZKnp6eKFi2quXPnKiwsTBMmTJCU+rRzsbGxVlk6OTlZPXr0sDxHqVKlNHHixHTve/u0FQ0bNtSJEyc0cOBAS06/du2a/Pz8bN6PRYsWydvbW1evXs3Q8wG4JbvytHSrsfj2ctdvJGf34wAPNbK0LRqP7zMxMTHq1KmTXnrpJR04cEDr1q3Tc889J8MwNHfuXA0ZMkTvv/++Dhw4oFGjRundd9/VnDlzbK4TEhKimJgY+fn5acKECYqJiVGHDh3SvXdsbKwaN26sKlWqaPv27Vq+fLnOnDmj9u3b37VugwYNUvv27dW8eXPFxMQoJiZGderUUWJiopo1ayZfX1+tX79eGzdulI+Pj5o3b66EhARJyvBzDR06VP/5z3+0c+dOubi46IUXXtCbb76piRMnav369Tp69KiGDBlyj34SwMOhUAEP5Qt017Zdlyz7rl1P1v7DV1S+tF+GruHiYtKTjQpo6arTln3+eVxVrrSfLl1O0NSPKmvJl7U1eXQlVSybsWsCsJ9hGFnagPtZenn0TqNHj9aXX36padOm6c8//9TAgQP14osv6tdff5V09+ybYs6cOXJxcdHWrVs1ceJEjRs3TjNmzMhQfbt3765Tp05p7dq1WrBggT799FOdPXs2U89sNpv1yCOP6LvvvtP+/fs1ZMgQ/d///Z/mz5+fofMXLlyoRx55RCNGjLDkdG9vb3Xs2FGzZs2yKjtr1iy1bdtWvr6+maoj8DDLrjyd4omG+fXT3Dr6ckp1vdy1qNzdacYBshNZ2hbTVtxnYmJilJSUpOeee06hoaGSpAoVKki61Xg6duxYPffcc5KkokWLav/+/frss8/UrVs3q+s4OzurYMGCMplMypMnjwoWLHjXe0+ZMkVVqlTRqFGjLPtmzpypkJAQHT58WHFxcWnWTZI8PT0VHx9vda+vv/5aZrNZM2bMkMlkknQrlPr7+2vdunV68sknM/xcgwYNUrNmzSRJ/fv3V6dOnbR69WrVrVtXktSjR48M9a4G8K/AADdJ0qXYRKv9l2ITLMfu5vHH8snH20XLVv8bdgsXvDV/20udwvTJzCgdOX5NzRsX0IT3Kqlr3+3pzv8GIGuYGgaOLL2sfLv4+HiNGjVKq1atUu3atSVJxYoV04YNG/TZZ5+pQYMGd82+JUuWlHSrU8b48eNlMplUqlQp7d27V+PHj1evXr3Srevhw4f1888/a+vWrapRo4Yk6YsvvlCZMmUy9cyurq4aPny45XXRokW1efNmzZ8/36ahOzWBgYFydnaWr6+vVU7v2bOn6tSpo5iYGAUHB+vs2bNatmyZVq1alan6AQ+77MrTkrTy17M6ffamzl9MUPEwb73avZiKFPbUO6P335vKA7BBlrZF4/F9plKlSmrSpIkqVKigZs2a6cknn1Tbtm3l5uamqKgo9ejRwyqoJiUlKU+ePPfk3rt379batWtTXVgvKipKTz75ZKp1CwgISPeaR48etem9cPPmTUVFRenatWsZfq6KFSta/rtAgQKSrL8sFChQIN2eHPHx8YqPj7faZ05OkJNzxn6hA47giQb59UbfkpbXb47Ym+VrtnyioLbsuKgLFxMs+1L+WLR4eYyWrT4jSTpyLE7VKvqr5RMF9dmXx7N8XwDAwyetrHxnHj169KiuX7+uJ554wmp/QkKCqlSpIunu2Tel8fixxx6z/F6TpNq1a2vs2LFKTk6Ws7NzmnU9cOCAXFxcVK1aNcu+0qVLy9/fP9PP/cknn2jmzJk6efKkbty4oYSEBFWuXDnT17ldzZo1Va5cOc2ZM0dvv/22vv76a4WGhurxxx9PtTxZGrglp/K0JC1ZEWP572MnrunCpQRNer+SChX00D+nb2b5vgCQETQe32ecnZ21cuVKbdq0Sb/88osmT56sd955Rz/++KMkafr06apVq5bNOfdCXFycWrVqpQ8//NDmWHBwcJp127Jli4oWLZrmNatVq6a5c+faHAsKClJcXJykjD3X7StGpwT4O/eZzWkvHjB69GirXhuSFFKim4qUCk/zHMDRbNh6QfsPb7e8dnO9NewtwN9VFy79G1YD/N109FjcXa9XIMhd1SsF6J3Rf1rtT7lW9CnrOShP/HVdBYLc7a4/gLujtwQcWXp59HYpGXPp0qUqXLiw1TF3d3dLmfSyb05w+t9qWbcPc01MtO69OG/ePA0aNEhjx45V7dq15evrq48//tjmme3Rs2dPffLJJ3r77bc1a9YshYeHWzWU344sDdySU3k6NfsPXZEkPRLsSeMxkE3I0rZoPL4PmUwm1a1bV3Xr1tWQIUMUGhqqjRs3qlChQjp27Jg6d+6cLfetWrWqvv/+e4WFhcnFJfWPRmp1++GHHxQZGSk3NzclJyfbXPPbb79V/vz55ednO99Tnjx5sv25UgwePFiRkZFW+5p3zHroBh4kN24k6+87Ftk4fzFe1SsF6OjxWw29Xp7OKlvST4uW/XPX67VsWlCXLido87YLVvtjztzUuQvxKlLYy2p/SCFP/b7jkgBkH7ODzrUGpEgrj96ubNmycnd318mTJ9WgQYNUr5OR7CvJppH2999/V4kSJe7agaN06dJKSkrSjh07LNNWHDp0SLGxsZYyQUFBkm5Nx5HSI/r2xfMkaePGjapTp4769Olj2RcVFZXuve+UWk6XpBdffFFvvvmmJk2apP3799tMhXc7sjRwS07l6dSUKHZrpMTtjdQA7i2ytC1mWr/PbNmyRaNGjdL27dt18uRJLVy4UOfOnVOZMmU0fPhwjR49WpMmTdLhw4e1d+9ezZo1S+PGjbsn9+7bt68uXryoTp06adu2bYqKitKKFSsUHh6u5OTkdOsmSWFhYdqzZ48OHTqk8+fPKzExUZ07d1a+fPn07LPPav369Tp+/LjWrVunfv366a+//pKkbH+uFO7u7vLz87PaGGYHSN8t+VvdOhRR3Zp5VSzUW/+JLK0LF+O1/vd/V5uf8F5FPdeykNV5JpP0VNOCWr7mjJJT6fT/zcJTatuqsBrWyafCwR7q2TlMoY946aeVMbaFAdwzhtnI0pZdLl68qM6dO8vPz0/+/v7q0aOHpXdoejZv3qzGjRvL29tbfn5+evzxx3XjBvOmP6zulkdT+Pr6atCgQRo4cKDmzJmjqKgo7dy5U5MnT7Ysyny37Jvi5MmTioyM1KFDh/Tf//5XkydPVv/+/e9a11KlSql58+Z6+eWXtWXLFu3YsUM9e/aUp6enpYynp6cee+wxffDBBzpw4IB+/fVX/ec//7G6TokSJf6fvfuOr/H8/zj+PlknCZIYGUZI7T1TqqpWKpSoaq361qZW0dSs2v0Kala1VGu1UUpR/VJFitao2aC1R6RFxCZGEsn5/eGXU8dJyJJwvJ6Px/1oz3Vf931f902bz/nkuj+Xdu/erZ9//llHjx7V8OHDtWvXrjQ9Nz8/P/366686c+aMLl789+d77ty51aJFCw0cOFANGzZUoUKFUjwHsTSQsscRTxfwcVaH1oVVqlhO+XgZVat6Xn34Xmn98edVnYiwfLsPQOZ5UmPp7MTM4yeMm5ubfv31V02bNk3Xr19XkSJFNHnyZDVu3FiS5Orqqo8//lgDBw5Ujhw5VKFCBfXv3z9Trl2gQAFt3bpVgwcPVsOGDRUbG6siRYqoUaNGsrOze+TYunXrpk2bNsnf318xMTHauHGj6tatq19//VWDBw9WixYtdOPGDRUsWFANGjQwz0Tu2rXrY70vAA8X+v3fcna216A+JZUzh4MOHLym90ceUFz8vz/4Cvq4yMPN0eI4/8q55ePlrNXrrVeFlu4F0UYnO73btZjccjnq+KkYvTdiP6/YAY/Zk7rKc7t27XTu3DmtX79e8fHx6tSpk7p3765FixaleMz27dvVqFEjDR06VDNmzJCDg4P27dtnftUfz56HxaNLliyx6Dt27Fh5enoqJCREJ0+elIeHh6pWraoPPvhA0qNj3yTt27fX7du3Vb16ddnb26tfv37q3r17qsY7b948de3aVXXq1JG3t7c++ugjDR8+3KLP3Llz1aVLF1WrVk2lSpXSxIkT1bBhQ/P+d955R3/88Ydat24tg8Ggtm3bqlevXvrpp59S/dzGjBmjd955R8WKFVNsbKzF/ye6dOmiRYsWqXPnzqk+HwBLjyOevnvXJP/KudWqWSE5O9sr+uIdbdp2UQuWnH7s9wM8y57UWFq6Nxnj3Xff1Y8//ig7Ozu98cYbmj59erLrN9xv+/bt5jJf9vb2qly5sn7++WeLX2g/jMH0JD8V4DF7KWhzdg8BAPCM2PJj8q/OZ7b2wzM2u3/h2Myv9Xro0CGVLVtWu3btkr+/vyRp7dq1evXVV/XPP/+oQIECyR73wgsv6JVXXtHYsWMzfUxAatStW1eVK1fWtGnTMu2cfn5+6t+//xMzUeLrr7/We++9p7Nnz8rJKW0ziYmlAQBZKSvi6Scxlk7SuHFjnTt3TrNnzzZPxnj++edTPRkjKCjIPBnjtddeM68D8ShM2wAAALAhiYmmDG2xsbG6fv26xRYbG5uhMW3fvl0eHh7mxLEkBQQEyM7OLsVFv6Kjo7Vjxw55eXnpxRdflLe3t+rUqaMtW7ZkaCwA7rl165ZOnDih8ePH65133klz4hgAAFuU0Vj6cTl06JDWrl2rL7/8UjVq1NBLL72kGTNmaPHixTp7NuX66u+995769u2rIUOGqFy5cipVqpRatWqV6sSxRPL4mdKjRw/lzJkz2a1Hjx7ZPTwAAJAJMlqnLSQkRO7u7hZbSEhIhsYUFRUlLy8vizYHBwflyZNHUVHJl745efKkJGnUqFHq1q2b1q5dq6pVq6pBgwY6duxYhsYDZIbffvstxdj6Ua+PPgkmTpyo0qVLy8fHR0OHDs3u4QAA8ETIaCz9OCZiSNk7GYOax8+QMWPGaMCAAcnuS6o/DAAAnm4ZrUg2dOhQBQcHW7SlNDNhyJAhmjBhwkPPd+jQoXSNIzHx3spB77zzjjp16iRJqlKlisLCwjR37twMJ7SB1Ni0aVOK+/z9/RUeHp7mc0ZERKR7PJlp1KhRGjVqVHYPAwCAJ0pGY+mQkBCNHj3aom3kyJEZ/pmb0ckYkyZNUuXKlbVw4UI1aNBAf/75p0qUKJGqa5M8foZ4eXlZ/UUDAAC2xZSY+OhOD2E0GlP9Gtv777+vjh07PrRP0aJF5ePjo+joaIv2u3fv6vLly/Lx8Un2uPz579WLK1u2rEV7mTJlFBkZmarxAY+Ti4uLihcvnt3DAAAAmSijsXRaJmJIT8dkDJLHAAAANuRx1lp7kKenpzw9PR/Zr2bNmrp69ar27NmjatWqSZJ++eUXJSYmqkaNGske4+fnpwIFCujIkSMW7UePHlXjxo0zPngAAADgARmNpdMyEUN6OiZjkDwGAADAY1WmTBk1atRI3bp106xZsxQfH68+ffqoTZs2KlCggCTpzJkzatCggRYuXKjq1avLYDBo4MCBGjlypCpVqqTKlStrwYIFOnz4sJYtW5bNdwQAAABk3NMwGYPkMQAAgA3JaJ22xyU0NFR9+vRRgwYNZGdnpzfeeEOffPKJeX98fLyOHDmiW7dumdv69++vO3fu6L333tPly5dVqVIlrV+/XsWKFcuOWwAAAICNe1Jj6eycjEHyGAAAwIaYsrBsRVrkyZNHixYtSnG/n59fssH6kCFDNGTIkMc5NAAAAEDSkxtLS9k3GYPkMQAAgA15kgNeAAAA4En2JMfS2TUZg+QxAACADUk0ZWyFaAAAAOBZRSxtzS67BwAAAAAAAAAAePIw8xgAAMCGPMmv2gEAAABPMmJpaySPAQAAbAgBLwAAAJA+xNLWSB4DAADYkOQWyQAAAADwaMTS1kgeAwAA2JDERBb5AAAAANKDWNoaC+YBAAAAAAAAAKww8xgAAMCGUKcNAAAASB9iaWskjwEAAGyIycSrdgAAAEB6EEtbI3kMAABgQ5gtAQAAAKQPsbQ1kscAAAA2hIAXAAAASB9iaWssmAcAAAAAAAAAsMLMYwAAABuSSJ02AAAAIF2Ipa2RPAYAALAhvGoHAAAApA+xtDWSxwAAADbElMhsCQAAACA9iKWtkTwGAACwIcyWAAAAANKHWNoaC+YBAAAAAAAAAKww8xgAAMCGmFjkAwAAAEgXYmlrJI8BAABsSCKv2gEAAADpQixtjeQxAACADWGRDwAAACB9iKWtkTwGAACwISzyAQAAAKQPsbQ1kscAAAA2hDptAAAAQPoQS1uzy+4BAAAAAAAAAACePMw8BgAAsCG8agcAAACkD7G0NZLHAAAANoRFPgAAAID0IZa2ZjCZTKTUAQCpFhsbq5CQEA0dOlRGozG7hwMAAAA8NYilATxtSB4DANLk+vXrcnd317Vr1+Tm5pbdwwEAAACeGsTSAJ42LJgHAAAAAAAAALBC8hgAAAAAAAAAYIXkMQAAAAAAAADACsljAECaGI1GjRw5kgU+AAAAgDQilgbwtGHBPAAAAAAAAACAFWYeAwAAAAAAAACskDwGAAAAAAAAAFgheQwAAAAAAAAAsELyGACQ6fz8/DRt2rQsvWbdunXVv3//LL0mAAAAkNmIpQE8SUgeA8BTpmPHjmrevHl2DwMAAAB46hBLA0DakDwGABsVHx+f3UMAAAAAnkrE0gBwD8ljAHhCLVu2TBUqVJCLi4vy5s2rgIAADRw4UAsWLNAPP/wgg8Egg8GgTZs2KSIiQgaDQUuWLFGdOnXk7Oys0NBQSdKXX36pMmXKyNnZWaVLl9Znn31mvkZcXJz69Omj/Pnzy9nZWUWKFFFISIgkyWQyadSoUSpcuLCMRqMKFCigvn37puterl69qq5du8rT01Nubm6qX7++9u3bJ0k6evSoDAaDDh8+bHHM1KlTVaxYMfPnP//8U40bN1bOnDnl7e2tt99+WxcvXkzXeAAAAGDbiKWJpQFkDofsHgAAwNq5c+fUtm1bTZw4Ua+//rpu3Lih3377Te3bt1dkZKSuX7+uefPmSZLy5Mmjs2fPSpKGDBmiyZMnq0qVKuagd8SIEfr0009VpUoV/fHHH+rWrZty5MihDh066JNPPtGqVav03XffqXDhwvr777/1999/S5K+//57TZ06VYsXL1a5cuUUFRVlDlLTqmXLlnJxcdFPP/0kd3d3zZ49Ww0aNNDRo0dVsmRJ+fv7KzQ0VGPHjjUfExoaqrfeekvSvYC5fv366tq1q6ZOnarbt29r8ODBatWqlX755ZeMPGoAAADYGGJpYmkAmYfkMQA8gc6dO6e7d++qRYsWKlKkiCSpQoUKkiQXFxfFxsbKx8fH6rj+/furRYsW5s8jR47U5MmTzW3PPfecDh48qNmzZ6tDhw6KjIxUiRIl9NJLL8lgMJivJUmRkZHy8fFRQECAHB0dVbhwYVWvXj3N97Jlyxbt3LlT0dHRMhqNkqRJkyZp5cqVWrZsmbp376527drp008/NQe8R48e1Z49e/TNN99IkjlgHzdunPm8c+fOla+vrzloBgAAACRiaWJpAJmJshUA8ASqVKmSGjRooAoVKqhly5aaM2eOrly58sjj/P39zf9+8+ZNnThxQl26dFHOnDnN20cffaQTJ05IurdgSHh4uEqVKqW+fftq3bp15uNbtmyp27dvq2jRourWrZtWrFihu3fvpvle9u3bp5iYGOXNm9diHKdOnTKPo02bNoqIiNDvv/8u6d5MiapVq6p06dLmc2zcuNHi+KR9SecAAAAAJGJpYmkAmYmZxwDwBLK3t9f69eu1bds2rVu3TjNmzNCwYcO0Y8eOhx6XI0cO87/HxMRIkubMmaMaNWpYnV+SqlatqlOnTumnn37Shg0b1KpVKwUEBGjZsmXy9fXVkSNHtGHDBq1fv169evXSxx9/rM2bN8vR0THV9xITE6P8+fNr06ZNVvs8PDwkST4+Pqpfv74WLVqkF154QYsWLVLPnj0tzhEUFKQJEyZYnSN//vypHgsAAABsH7E0sTSAzEPyGACeUAaDQbVq1VKtWrU0YsQIFSlSRCtWrJCTk5MSEhIeeby3t7cKFCigkydPql27din2c3NzU+vWrdW6dWu9+eabatSokS5fvqw8efLIxcVFQUFBCgoKUu/evVW6dGkdOHBAVatWTfV9VK1aVVFRUXJwcJCfn1+K/dq1a6dBgwapbdu2OnnypNq0aWNxju+//15+fn5ycOBHFwAAAB6OWJpYGkDm4P8aAPAE2rFjh8LCwtSwYUN5eXlpx44dunDhgsqUKaM7d+7o559/1pEjR5Q3b165u7uneJ7Ro0erb9++cnd3V6NGjRQbG6vdu3frypUrCg4O1pQpU5Q/f35VqVJFdnZ2Wrp0qXx8fOTh4aH58+crISFBNWrUkKurq7755hu5uLhY1HJLjYCAANWsWVPNmzfXxIkTVbJkSZ09e1arV6/W66+/bn49sEWLFurZs6d69uypevXqqUCBAuZz9O7dW3PmzFHbtm01aNAg5cmTR8ePH9fixYv15Zdfmmd/AAAAAMTSxNIAMg/JYwB4Arm5uenXX3/VtGnTdP36dRUpUkSTJ09W48aN5e/vr02bNsnf318xMTHauHFjirMQunbtKldXV3388ccaOHCgcuTIoQoVKqh///6SpFy5cmnixIk6duyY7O3t9fzzz2vNmjWys7OTh4eHxo8fr+DgYCUkJKhChQr68ccflTdv3jTdi8Fg0Jo1azRs2DB16tRJFy5ckI+Pj15++WV5e3ub++XKlUtBQUH67rvvNHfuXItzFChQQFu3btXgwYPVsGFDxcbGqkiRImrUqJHs7CjfDwAAgH8RSxNLA8g8BpPJZMruQQAAAAAAAAAAniz8igkAAAAAAAAAYIXkMQAgTX777TflzJkzxQ0AAABA8oilATxtKFsBAEiT27dv68yZMynuL168eBaOBgAAAHh6EEsDeNqQPAYAAAAAAAAAWKFsBQAAAAAAAADACsljAAAAAAAAAIAVkscAAAAAAAAAACskjwEAAAAAAAAAVkgeAwAAAAAAAACskDwGAAAAAAAAAFgheQwAAAAAAAAAsELyGAAAAAAAAABgheQxAAAAAAAAAMAKyWMAAAAAAAAAgBWSxwAAAAAAAAAAKySPAQAAAAAAAABWSB4DAAAAAAAAAKyQPAYAAAAAAAAAWCF5DAAAAAAAAACwQvIYAJLRsWNH+fn5Zfcwngp169ZV3bp1s3sYj4Wfn586duyYqefk7xYAAEDaREREyGAwaP78+dlyfYPBoFGjRmXLtZ8Ej+P+bfk7BGBrSB4DeGLNnz9fBoMhxe3333/P7iE+9bZt26ZRo0bp6tWrWXK9hIQEzZs3T3Xr1lWePHlkNBrl5+enTp06affu3Vkyhqxw9uxZjRo1SuHh4dk9FAAAgAz57LPPZDAYVKNGjeweis24c+eOpk6dqho1asjd3V3Ozs4qWbKk+vTpo6NHj2b38DLNwYMHNWrUKEVERGT3UABkgEN2DwAAHmXMmDF67rnnrNqLFy/+2K45Z84cJSYmPrbzPym2bdum0aNHq2PHjvLw8His17p9+7ZatGihtWvX6uWXX9YHH3ygPHnyKCIiQt99950WLFigyMhIFSpU6LGOIyucPXtWo0ePlp+fnypXrmyx71n5uwUAAGxDaGio/Pz8tHPnTh0/fvyxxuBPqtu3b8vBIXPSJxcvXlSjRo20Z88eNW3aVG+99ZZy5sypI0eOaPHixfriiy8UFxeXKdfKbgcPHtTo0aNVt25dqzfv1q1blz2DApBmJI8BPPEaN24sf3//LL2mo6PjI/vcvXtXiYmJcnJyyoIRPf0GDhyotWvXaurUqerfv7/FvpEjR2rq1KmZcp2bN28qR44cye67deuWXF1dM+U66ZWav1sAAABPglOnTmnbtm1avny53nnnHYWGhmrkyJHZPaws5+zsnGnn6tixo/744w8tW7ZMb7zxhsW+sWPHatiwYZlynZRiYpPJpDt37sjFxSVTrpNefIcCnh6UrQDw1EuqgTZp0iR98cUXKlasmIxGo55//nnt2rXL3G/SpEkyGAw6ffq01TmGDh0qJycnXblyRZJ1Xdr7rzFt2jTzNQ4ePChJ+uWXX1S7dm3lyJFDHh4eeu2113To0CGLa4waNUoGg0FHjx7Vf/7zH7m7u8vT01PDhw+XyWTS33//rddee01ubm7y8fHR5MmTrcYZGxurkSNHqnjx4jIajfL19dWgQYMUGxtr0c9gMKhPnz5auXKlypcvL6PRqHLlymnt2rUW4xk4cKAk6bnnnjOXA0l6rWzevHmqX7++vLy8ZDQaVbZsWX3++edp+JP51z///KPZs2frlVdesUocS5K9vb0GDBhgMev4jz/+UOPGjeXm5qacOXOqQYMGVqVKkkqbbN68Wb169ZKXl5f5HHXr1lX58uW1Z88evfzyy3J1ddUHH3yQpuf4oMuXL2vAgAGqUKGCcubMKTc3NzVu3Fj79u0z99m0aZOef/55SVKnTp3MzzWpRl9yNY9v3ryp999/X76+vjIajSpVqpQmTZokk8lk0S81f64AAACZJTQ0VLlz51aTJk305ptvKjQ0NNl+V69e1XvvvSc/Pz8ZjUYVKlRI7du318WLFyVJcXFxGjFihKpVqyZ3d3flyJFDtWvX1saNG5M9V8eOHeXu7i4PDw916NAhxRJrhw8f1ptvvqk8efLI2dlZ/v7+WrVqlUWfpHhxy5Yt6tu3rzw9PeXh4aF33nlHcXFxunr1qtq3b6/cuXMrd+7cGjRoULIx2IM1f8+cOaMuXbqoQIECMhqNeu6559SzZ8+HzhresWOHVq9erS5dulgljiXJaDRq0qRJFm1p+Z5x8OBBvfXWW8qdO7deeuklSffW8GjatKl+/vln+fv7y8XFRbNnzzY/6/79+5tj0OLFi2vChAmPfEvu9OnT6tWrl0qVKiUXFxflzZtXLVu2tChPMX/+fLVs2VKSVK9ePXNMvGnTJknJ1zyOjo5Wly5d5O3tLWdnZ1WqVEkLFiyw6JPa734AMg8zjwE88a5du2YOPJMYDAblzZvXom3RokW6ceOG3nnnHRkMBk2cOFEtWrTQyZMn5ejoqFatWmnQoEH67rvvzEnTJN99950aNmyo3LlzP3Qs8+bN0507d9S9e3cZjUblyZNHGzZsUOPGjVW0aFGNGjVKt2/f1owZM1SrVi3t3bvXKlHYunVrlSlTRuPHj9fq1av10UcfKU+ePJo9e7bq16+vCRMmKDQ0VAMGDNDzzz+vl19+WZKUmJioZs2aacuWLerevbvKlCmjAwcOaOrUqTp69KhWrlxpcZ0tW7Zo+fLl6tWrl3LlyqVPPvlEb7zxhiIjI5U3b161aNFCR48e1bfffqupU6cqX758kiRPT09J0ueff65y5cqpWbNmcnBw0I8//qhevXopMTFRvXv3TtWfXZKffvpJd+/e1dtvv52q/n/99Zdq164tNzc3DRo0SI6Ojpo9e7bq1q2rzZs3W9Xc69Wrlzw9PTVixAjdvHnT3H7p0iU1btxYbdq00X/+8x95e3un+Tne7+TJk1q5cqVatmyp5557TufPn9fs2bNVp04dHTx4UAUKFFCZMmU0ZswYjRgxQt27d1ft2rUlSS+++GKy5zSZTGrWrJk2btyoLl26qHLlyvr55581cOBAnTlzxmpG9qP+XAEAADJLaGioWrRoIScnJ7Vt21aff/65du3aZf5FuSTFxMSodu3aOnTokDp37qyqVavq4sWLWrVqlf755x/ly5dP169f15dffqm2bduqW7duunHjhr766isFBgZq586d5jJfJpNJr732mrZs2aIePXqoTJkyWrFihTp06GA1tr/++ku1atVSwYIFNWTIEOXIkUPfffedmjdvru+//16vv/66Rf93331XPj4+Gj16tH7//Xd98cUX8vDw0LZt21S4cGGNGzdOa9as0ccff6zy5curffv2KT6Xs2fPqnr16rp69aq6d++u0qVL68yZM1q2bJlu3bqV4qzapMR2amPitH7PaNmypUqUKKFx48ZZJMCPHDmitm3b6p133lG3bt1UqlQp3bp1S3Xq1NGZM2f0zjvvqHDhwtq2bZuGDh2qc+fOadq0aSmOa9euXdq2bZvatGmjQoUKKSIiQp9//rnq1q2rgwcPytXVVS+//LL69u2rTz75RB988IHKlCkjSeZ/Puj27duqW7eujh8/rj59+ui5557T0qVL1bFjR129elX9+vWz6P+o734AMpEJAJ5Q8+bNM0lKdjMajeZ+p06dMkky5c2b13T58mVz+w8//GCSZPrxxx/NbTVr1jRVq1bN4jo7d+40STItXLjQ3NahQwdTkSJFrK7h5uZmio6Otji+cuXKJi8vL9OlS5fMbfv27TPZ2dmZ2rdvb24bOXKkSZKpe/fu5ra7d++aChUqZDIYDKbx48eb269cuWJycXExdejQwdz29ddfm+zs7Ey//fabxfVnzZplkmTaunWruU2SycnJyXT8+HGLMUkyzZgxw9z28ccfmySZTp06ZXrQrVu3rNoCAwNNRYsWtWirU6eOqU6dOlZ97/fee++ZJJn++OOPh/ZL0rx5c5OTk5PpxIkT5razZ8+acuXKZXr55ZfNbUl/R1566SXT3bt3rcYlyTRr1iyL9rQ8xyJFilj8Gdy5c8eUkJBgcdypU6dMRqPRNGbMGHPbrl27TJJM8+bNs7q3B/9urVy50iTJ9NFHH1n0e/PNN00Gg8HizzC1f64AAAAZtXv3bpMk0/r1600mk8mUmJhoKlSokKlfv34W/UaMGGGSZFq+fLnVORITE00m072YNzY21mLflStXTN7e3qbOnTub25LiookTJ5rb7t69a6pdu7ZVbNWgQQNThQoVTHfu3LG43osvvmgqUaKEuS0pXgwMDDSPx2S6973AYDCYevToYXGtQoUKWcW2kkwjR440f27fvr3Jzs7OtGvXrhTvOTmvv/66SZLpypUrKfa5X1q/Z7Rt29bqHEWKFDFJMq1du9aifezYsaYcOXKYjh49atE+ZMgQk729vSkyMtLc9uD9J/c9Yfv27VbfqZYuXWqSZNq4caNV/we/Q0ybNs0kyfTNN9+Y2+Li4kw1a9Y05cyZ03T9+nWTyZS2734AMgdlKwA88WbOnKn169dbbD/99JNVv9atW1vMHE6a8Xny5EmLPnv27NGJEyfMbUuWLJHRaNRrr732yLG88cYb5pm5knTu3DmFh4erY8eOypMnj7m9YsWKeuWVV7RmzRqrc3Tt2tX87/b29vL395fJZFKXLl3M7R4eHipVqpTF2JcuXaoyZcqodOnSunjxonmrX7++JFm99hcQEKBixYpZjMnNzc3inA9zfx20pNnfderU0cmTJ3Xt2rVUnSPJ9evXJUm5cuV6ZN+EhAStW7dOzZs3V9GiRc3t+fPn11tvvaUtW7aYz5ekW7dusre3tzqX0WhUp06dLNrS+hwfPJ+dnZ15nJcuXVLOnDlVqlQp7d2795H3lpw1a9bI3t5effv2tWh///33ZTKZrP6uZ/TPFQAAIDVCQ0Pl7e2tevXqSbr35l/r1q21ePFiJSQkmPt9//33qlSpktVM36RjpHsxb9Js3MTERF2+fFl3796Vv7+/RQy1Zs0aOTg4qGfPnuY2e3t7vfvuuxbnvXz5sn755Re1atVKN27cMMdzly5dUmBgoI4dO6YzZ85YHNOlSxfzeCSpRo0aVjF4Umz+sLgqMTFRK1euVFBQULLrstx/jQelJSZOz/eMHj16JHuu5557ToGBgRZtS5cuVe3atZU7d26LmDggIEAJCQn69ddfUxzb/d8T4uPjdenSJRUvXlweHh4Ziol9fHzUtm1bc5ujo6P69u2rmJgYbd682aJ/ar77AcgclK0A8MSrXr16qhbMK1y4sMXnpGAiqY6xdO9VruDgYC1ZskQffPCBTCaTli5daq6t+yjPPfecxeek+smlSpWy6lumTBn9/PPPVotVPDhOd3d3OTs7m8tG3N9+6dIl8+djx47p0KFDFsnr+0VHR1t8fvA60r1ncv/zeJitW7dq5MiR2r59u27dumWx79q1a3J3d0/VeSSZn+2NGzce2ffChQu6detWis80MTFRf//9t8qVK2duf/DPJUnBggWtXhtM63O8X2JioqZPn67PPvtMp06dsvjilN6SEadPn1aBAgWsvkQkvdL3YI3ujP65AgAAPEpCQoIWL16sevXq6dSpU+b2GjVqaPLkyQoLC1PDhg0lSSdOnEi2fu+DFixYoMmTJ+vw4cOKj483t98fx50+fVr58+dXzpw5LY59MC48fvy4TCaThg8fruHDhyd7vejoaBUsWND8ObkYXJJ8fX2t2h8WV124cEHXr19X+fLlU+yTkvtjYg8Pj4f2Tc/3jJRi4uTajx07pv3796crJr59+7ZCQkI0b948nTlzxqJERlonmSQ5ffq0SpQoYZ6okSS1MXFy3/0AZA6SxwBsRnIzTyVZBDMFChRQ7dq19d133+mDDz7Q77//rsjISE2YMCFV18iMVYmTG2dqxp6YmKgKFSpoypQpyfZ9MPBNzTlTcuLECTVo0EClS5fWlClT5OvrKycnJ61Zs0ZTp0595CIaDypdurQk6cCBA+aadpkppT+X5NrT+hzvN27cOA0fPlydO3fW2LFjlSdPHtnZ2al///5pfibplZE/VwAAgNT45ZdfdO7cOS1evFiLFy+22h8aGmpOHqfGN998o44dO6p58+YaOHCgvLy8ZG9vr5CQEIs3AlMrKe4aMGCA1YzaJMWLF7f4nFIMlVz744qr7o+Jk2bKZqa0xsSvvPKKBg0alOwxJUuWTPE67777rubNm6f+/furZs2acnd3l8FgUJs2bYiJARtE8hjAM6d169bq1auXjhw5oiVLlsjV1VVBQUHpOleRIkUk3VuE4kGHDx9Wvnz5LGYDZESxYsW0b98+NWjQ4KGvw6VFSuf58ccfFRsbq1WrVln8Vv9hJR0epnHjxrK3t9c333zzyAVCPD095erqmuIztbOze2iC91Ey8hyXLVumevXq6auvvrJov3r1qsXM8bSct0iRItqwYYNu3LhhMfv48OHD5v0AAABZKTQ0VF5eXpo5c6bVvuXLl2vFihWaNWuWXFxcVKxYMf35558PPd+yZctUtGhRLV++3CJOGjlypEW/IkWKKCwsTDExMRazjx+MC5NKmzk6OiogICDN95cRnp6ecnNze+Q9JycoKEghISH65ptvHpk8ftzfM4oVK6aYmJh0Pb9ly5apQ4cOmjx5srntzp07unr1qkW/tMbE+/fvV2JiosXsY2JiIPtR8xjAM+eNN96Qvb29vv32Wy1dulRNmzZNd+CVP39+Va5cWQsWLLAIlv7880+tW7dOr776aiaNWmrVqpXOnDmjOXPmWO27ffu2bt68meZzJt33g4Fe0m/yH3wFbd68eWm+hnRvNm+3bt20bt06zZgxw2p/YmKiJk+erH/++Uf29vZq2LChfvjhB0VERJj7nD9/XosWLdJLL72UqhIjKcnIc7S3t7eazbB06VKrmnopPdfkvPrqq0pISNCnn35q0T516lQZDAY1btz4kecAAADILLdv39by5cvVtGlTvfnmm1Zbnz59dOPGDa1atUrSvdh63759WrFihdW5kuKm5GLLHTt2aPv27Rb9X331Vd29e1eff/65uS0hIcEqfvTy8lLdunU1e/ZsnTt3zuq6Fy5cSOfdP5qdnZ2aN2+uH3/8Ubt377ba/7CZrzVr1lSjRo305ZdfauXKlVb74+LiNGDAAEmP/3tGq1attH37dv38889W+65evaq7d++meGxyMfGMGTMsSrpJaY+Jo6KitGTJEnPb3bt3NWPGDOXMmVN16tR55DkAPB7MPAbwxPvpp5/Mv3G+34svvmixoFpqeXl5qV69epoyZYpu3Lih1q1bZ2h8H3/8sRo3bqyaNWuqS5cuun37tmbMmCF3d3eNGjUqQ+e+39tvv63vvvtOPXr00MaNG1WrVi0lJCTo8OHD+u677/Tzzz+nqjb0/apVqyZJGjZsmNq0aSNHR0cFBQWpYcOGcnJyUlBQkN555x3FxMRozpw58vLySjZAT43JkyfrxIkT6tu3r/kLSe7cuRUZGamlS5fq8OHDatOmjSTpo48+0vr16/XSSy+pV69ecnBw0OzZsxUbG6uJEyem6/pJMvIcmzZtqjFjxqhTp0568cUXdeDAAYWGhlr9PSxWrJg8PDw0a9Ys5cqVSzly5FCNGjWSrTcXFBSkevXqadiwYYqIiFClSpW0bt06/fDDD+rfv7/F4ngAAACP26pVq3Tjxg01a9Ys2f0vvPCCPD09FRoaqtatW2vgwIFatmyZWrZsqc6dO6tatWq6fPmyVq1apVmzZqlSpUpq2rSpli9frtdff11NmjTRqVOnNGvWLJUtW1YxMTHmcwcFBalWrVoaMmSIIiIiVLZsWS1fvjzZOrozZ87USy+9pAoVKqhbt24qWrSozp8/r+3bt+uff/7Rvn37HtszGjdunNatW6c6deqoe/fuKlOmjM6dO6elS5dqy5YtD61nvHDhQjVs2FAtWrRQUFCQGjRooBw5cujYsWNavHixzp07p0mTJkl6vN8zBg4cqFWrVqlp06bq2LGjqlWrpps3b+rAgQNatmyZIiIirNZkSdK0aVN9/fXXcnd3V9myZbV9+3Zt2LDBag2QypUry97eXhMmTNC1a9dkNBpVv359eXl5WZ2ze/fumj17tjp27Kg9e/bIz89Py5Yt09atWzVt2rRULTII4PEgeQzgiTdixIhk2+fNm5eu5LF0r3TFhg0blCtXrgz/1j4gIEBr167VyJEjNWLECDk6OqpOnTqaMGFCiotWpIednZ1WrlypqVOnauHChVqxYoVcXV1VtGhR9evX76F1yVLy/PPPa+zYsZo1a5bWrl2rxMREnTp1SqVKldKyZcv04YcfasCAAfLx8VHPnj3l6empzp07p2v8rq6u+umnnzR//nwtWLBAY8eO1a1bt1SgQAHVr19foaGh5kVNypUrp99++01Dhw5VSEiIEhMTVaNGDX3zzTeqUaNGuq6fJCPP8YMPPtDNmze1aNEiLVmyRFWrVtXq1as1ZMgQi36Ojo5asGCBhg4dqh49euju3buaN29esn8f7OzstGrVKo0YMUJLlizRvHnz5Ofnp48//ljvv/9+hu4VAAAgrUJDQ+Xs7KxXXnkl2f12dnZq0qSJQkNDdenSJeXNm1e//fabRo4cqRUrVmjBggXy8vJSgwYNVKhQIUlSx44dFRUVpdmzZ+vnn39W2bJl9c0332jp0qXatGmTxblXrVql/v3765tvvpHBYFCzZs00efJkValSxWIcZcuW1e7duzV69GjNnz9fly5dkpeXl6pUqZLi94fMUrBgQe3YsUPDhw9XaGiorl+/roIFC6px48ZydXV96LGenp7atm2bPvvsMy1ZskTDhg1TXFycihQpombNmqlfv37mvo/ze4arq6s2b96scePGaenSpVq4cKHc3NxUsmRJjR49+qGLY0+fPl329vYKDQ3VnTt3VKtWLW3YsMGq/rSPj49mzZqlkJAQdenSRQkJCdq4cWOyyWMXFxdt2rRJQ4YM0YIFC3T9+nWVKlVK8+bNU8eOHTN0rwAyxmCimjgAAAAAAAAA4AHUPAYAAAAAAAAAWCF5DAAAAAAAAACwQvIYAAAAAAAAAGCF5DEAAAAAAAAAwArJYwAAAAAAAACAFZLHAAAAAAAAAAArJI8BAAAAAAAAAFZIHgMAAAAAAAAArDhk9wCA7LTasVR2DwEA8IxoEn8kS66T0Z9tWTVOAE8/YmkAQFbKijiVWNoayWMAAAAbYnA0ZPcQAAAAgKcSsbQ1kscAAAA2xM6BgBcAAABID2JpaySPAQAAbIjBkSUtAAAAgPQglrbGEwEAAAAAAAAAWGHmMQAAgA3hVTsAAAAgfYilrZE8BgAAsCEs8gEAAACkD7G0NZLHAAAANoTZEgAAAED6EEtbI3kMAABgQ5gtAQAAAKQPsbQ1FswDAAAAAAAAAFgheQwAAGBD7BwMGdrSY+bMmfLz85Ozs7Nq1KihnTt3PrT/1atX1bt3b+XPn19Go1ElS5bUmjVr0nVtAAAAILNkRyz9pKNsBQAAgA0x2Gdt0LpkyRIFBwdr1qxZqlGjhqZNm6bAwEAdOXJEXl5eVv3j4uL0yiuvyMvLS8uWLVPBggV1+vRpeXh4ZOm4AQAAgAdldSz9NCB5DAAAYEPssjjgnTJlirp166ZOnTpJkmbNmqXVq1dr7ty5GjJkiFX/uXPn6vLly9q2bZscHR0lSX5+flk5ZAAAACBZWR1LPw0oWwEAAGBDDHaGDG2xsbG6fv26xRYbG5vsteLi4rRnzx4FBASY2+zs7BQQEKDt27cne8yqVatUs2ZN9e7dW97e3ipfvrzGjRunhISEx/I8AAAAgNTKaCxti0geAwAA2BCDvV2GtpCQELm7u1tsISEhyV7r4sWLSkhIkLe3t0W7t7e3oqKikj3m5MmTWrZsmRISErRmzRoNHz5ckydP1kcffZTpzwIAAABIi4zG0raIshUAAAAwGzp0qIKDgy3ajEZjpp0/MTFRXl5e+uKLL2Rvb69q1arpzJkz+vjjjzVy5MhMuw4AAACAjCN5DAAAYEMyWqfNaDSmOlmcL18+2dvb6/z58xbt58+fl4+PT7LH5M+fX46OjrK3tze3lSlTRlFRUYqLi5OTk1P6Bw8AAABkADWPrdnmfGoAAIBnVFbWaXNyclK1atUUFhZmbktMTFRYWJhq1qyZ7DG1atXS8ePHlZiYaG47evSo8ufPT+IYAAAA2Yqax9ZIHgMAANgQO3tDhra0Cg4O1pw5c7RgwQIdOnRIPXv21M2bN9WpUydJUvv27TV06FBz/549e+ry5cvq16+fjh49qtWrV2vcuHHq3bt3pj0DAAAAID2yOpZ+GlC2AgAAwIYYsjhobd26tS5cuKARI0YoKipKlStX1tq1a82L6EVGRsrO7t/5Cr6+vvr555/13nvvqWLFiipYsKD69eunwYMHZ+m4AQAAgAdldSz9NDCYTCZTdg8CyC6rHUtl9xAAAM+IJvFHsuQ6u+skXy4itfw3b8+kkQCwdcTSAICslBXxNLG0NWYeAwAA2BCDHVXJAAAAgPQglrZG8hgAAMCG2OpCHQAAAMDjRixtjeQxAACADbHVhToAAACAx41Y2hrJYwAAABvCbAkAAAAgfYilrVHIAwAAAAAAAABgheQxAACADTHY2WVoAwAAAJ5V2RFLz5w5U35+fnJ2dlaNGjW0c+fOh/a/evWqevfurfz588toNKpkyZJas2ZNuq6dGpStAAAAsCG8agcAAACkT1bH0kuWLFFwcLBmzZqlGjVqaNq0aQoMDNSRI0fk5eVl1T8uLk6vvPKKvLy8tGzZMhUsWFCnT5+Wh4fHYxsjyWMAAAAbwiIfAAAAQPpkdSw9ZcoUdevWTZ06dZIkzZo1S6tXr9bcuXM1ZMgQq/5z587V5cuXtW3bNjk6OkqS/Pz8HusYeTcRAADAhhjsDBnaAAAAgGdVVsbScXFx2rNnjwICAsxtdnZ2CggI0Pbt25M9ZtWqVapZs6Z69+4tb29vlS9fXuPGjVNCQkKG7vthmHkMAAAAAAAAABkUGxur2NhYizaj0Sij0WjV9+LFi0pISJC3t7dFu7e3tw4fPpzs+U+ePKlffvlF7dq105o1a3T8+HH16tVL8fHxGjlyZObdyH2YeQwAAGBDWDAPAAAASJ+MxtIhISFyd3e32EJCQjJtfImJifLy8tIXX3yhatWqqXXr1ho2bJhmzZqVadd4EDOPAQAAbAilJwAAAID0yWgsPXToUAUHB1u0JTfrWJLy5csne3t7nT9/3qL9/Pnz8vHxSfaY/Pnzy9HRUfb29ua2MmXKKCoqSnFxcXJycsrQ+JPD9JJnyKhRo1S5cuUsuZbBYNDKlSuz5FpJ/Pz8NG3atCy9JmALivR8S/WOhanRjf16cet3cn++wkP7O7jnUrlPRqhB5G9qFHNAdf5aK89GL1v0MRbwUuUFH+uVqN/V6Po+1f5jldyrlX+ctwHg/1Hz+OlnMpnUvXt35cmTRwaDQeHh4dk9JADAQ6Qlnn5hw0I1iT9itT3/w+xk+5efOVpN4o/Ir2+HxzV8APfJaCxtNBrl5uZmsaWUPHZyclK1atUUFhZmbktMTFRYWJhq1qyZ7DG1atXS8ePHlZiYaG47evSo8ufP/1gSxxLJ42fKgAEDLP5CAkD+lo1V5uOhOvbRTG2p/rpu7D+sGqu/kpNnnmT7GxwdVWPtPLkWKai9bfppc7lGOtBjuO6c/fc3pQ4ebnpx87dKjI/XzqBu2lyxiQ4NnKD4K9ey6raAZxrJ46ff2rVrNX/+fP3vf//TuXPnVL78o3/5lh2/uAcApD2e3tPyXW0oVMu8ba7URIl37+rc92ut+nq/FiCPGpV058z5ZM4E4HHI6lg6ODhYc+bM0YIFC3To0CH17NlTN2/eVKdOnSRJ7du319ChQ839e/bsqcuXL6tfv346evSoVq9erXHjxql3796Z9gweRNmKZ0jOnDmVM2fO7B4GgCfIc/076e+vvtM/C5ZLkg70GimvxnXl2/ENnfh4jlV/305vyDG3u7bVbiPT3buSpNunz1j0KTawm+78E6X9XT8wt92O+Ocx3gUA2JYTJ04of/78evHFF7P82o/rdceMeJxjio+Pl6Oj42M5d3YxmUxKSEiQgwNf9YCskNZ4+sEJFflbN1HCrTs6t8wyeWws4KVy04ZrZ5MuKc5KBvD0a926tS5cuKARI0YoKipKlStX1tq1a82L6EVGRsruvnVJfH199fPPP+u9995TxYoVVbBgQfXr10+DBw9+bGNk5vFTpG7duurbt68GDRqkPHnyyMfHR6NGjTLvj4yM1GuvvaacOXPKzc1NrVq1sqib8mDZik2bNql69erKkSOHPDw8VKtWLZ0+fdq8/4cfflDVqlXl7OysokWLavTo0br7/8mitPr777/VqlUreXh4KE+ePHrttdcUEREhSVq3bp2cnZ119epVi2P69eun+vXrmz9v2bJFtWvXlouLi3x9fdW3b1/dvHkzXeMBcG8WsXvVcroYtu3fRpNJF3/ZJo8XqiR7jHfT+rq6I1zlZ4xQwD9b9fIfP6rY4Hek+36YeTetr6t7/lTVb6cr4Mw2vbRrhXy7tHzctwPg/7Fg3tOtY8eOevfddxUZGSmDwSA/P79kS3NVrlzZHAf6+flJkl5//XXzMUnnat68ucVx/fv3V926dc2f69atqz59+qh///7Kly+fAgMDJUl//vmnGjdurJw5c8rb21tvv/22Ll68mKp7SExM1MSJE1W8eHEZjUYVLlxY//3vf837Bw8erJIlS8rV1VVFixbV8OHDFR8fb96fFLN++eWXeu655+Ts7CxJunr1qrp27SpPT0+5ubmpfv362rdvn8W1HxW/GgwGff7552rWrJly5MhhMa6U/PXXX2ratKnc3NyUK1cu1a5dWydOnDDf65gxY1SoUCEZjUbzF74kERERMhgMWr58uerVqydXV1dVqlRJ27dvt7jG1q1bVbduXbm6uip37twKDAzUlStXzNcICQnRc889JxcXF1WqVEnLli0zH7tp0yYZDAb99NNPqlatmoxGo7Zs2fLI7w4mk0mjRo1S4cKFZTQaVaBAAfXt2/eRzwPAv9ITTz/It9MbOvfdaiXcun3fiQ2qPP9jnZzylWIOHs/kUQN4mOyIpfv06aPTp08rNjZWO3bsUI0aNcz7Nm3apPnz51v0r1mzpn7//XfduXNHJ06c0AcffGBRAzmz8Q3hKbNgwQLlyJFDO3bs0MSJEzVmzBitX79eiYmJeu2113T58mVt3rxZ69ev18mTJ9W6detkz3P37l01b95cderU0f79+7V9+3Z1795dBsO9Kfa//fab2rdvr379+ungwYOaPXu25s+fn6oA+0Hx8fEKDAxUrly59Ntvv2nr1q3KmTOnGjVqpLi4ODVo0EAeHh76/vvvzcckJCRoyZIlateunaR7M3AaNWqkN954Q/v379eSJUu0ZcsW9enTJx1PEYAkOeXLLTsHB8VGX7Jojz1/SUaffMke4/qcr3xaBMpgb6+dzbrr2LjPVPS9TirxQc9/+xT1VZF32urm8QjtbNJFp2d/q3JTP1TBt5s/ztsB8P/s7A0Z2pC9pk+fbk5Gnjt3Trt27XrkMUl95s2bl+pj7rdgwQI5OTlp69atmjVrlq5evar69eurSpUq2r17t9auXavz58+rVatWqTrf0KFDNX78eA0fPlwHDx7UokWLzLNnJClXrlyaP3++Dh48qOnTp2vOnDmaOnWqxTmOHz+u77//XsuXLzfXfG7ZsqWio6P1008/ac+ePapataoaNGigy5cvS0p9/Dpq1Ci9/vrrOnDggDp37vzQezlz5oxefvllGY1G/fLLL9qzZ486d+5sTkhPnz5dkydP1qRJk7R//34FBgaqWbNmOnbsmMV5hg0bpgEDBig8PFwlS5ZU27ZtzecIDw9XgwYNVLZsWW3fvl1btmxRUFCQEhISJEkhISFauHChZs2apb/++kvvvfee/vOf/2jz5s0W1xgyZIjGjx+vQ4cOqWLFipJS/u4gSd9//72mTp2q2bNn69ixY1q5cqUqVHj4ugcALKUnnr6f+/MV5Fa+lCLnLrVoLzawm0x37ypixsJMHS+ARyOWtsa7TE+ZihUrauTIkZKkEiVK6NNPPzXXMT5w4IBOnTolX19fSdLChQtVrlw57dq1S88//7zFea5fv65r166padOmKlasmKR7qzMmGT16tIYMGaIOHe4V5S9atKjGjh2rQYMGma+fWkuWLFFiYqK+/PJLc3J63rx58vDw0KZNm9SwYUO1adNGixYtUpcuXSRJYWFhunr1qt544w1J94Lmdu3aqX///uZ7/+STT1SnTh19/vnn5hkpDxMbG6vY2FiLtnhTohwN/A4FSDU7g+KiL2l/j+FSYqKu7/1LzgW9VTS4i459NFPSvRpR1/b8qSPD7yUCrocfUq5yJVSkexud+XplNg4eeDZQt/jp5u7urly5csne3j7FVbYf5OnpKUny8PBI9TH3K1GihCZOnGj+/NFHH6lKlSoaN26cuW3u3Lny9fXV0aNHVbJkyRTPdePGDU2fPl2ffvqpOY4sVqyYXnrpJXOfDz/80Pzvfn5+GjBggBYvXqxBgwaZ2+Pi4rRw4ULzvW3ZskU7d+5UdHS0edGZSZMmaeXKlVq2bJm6d++e6vj1rbfeMtcRfJSZM2fK3d1dixcvNpe3uP/+J02apMGDB6tNmzaSpAkTJmjjxo2aNm2aZs6cae43YMAANWnSRNK9OLtcuXI6fvy4SpcurYkTJ8rf31+fffaZuX+5cuUk3Ytfx40bpw0bNpgXzilatKi2bNmi2bNnq06dOuZjxowZo1deecVi/Cl9d3jllVcUGRkpHx8fBQQEyNHRUYULF1b16tVTfBbE0kDm8+30pq4fOKJruw6Y29yqlpPfu+21pXqLbBwZ8OwilrZG8vgpkzSLIEn+/PkVHR2tQ4cOydfX15w4lqSyZcvKw8NDhw4dskoe58mTRx07dlRgYKBeeeUVBQQEqFWrVsqfP78kad++fdq6davFTI2EhATduXNHt27dkqura6rHvG/fPh0/fly5cuWyaE+aXi9J7dq10wsvvKCzZ8+qQIECCg0NVZMmTeTh4WE+x/79+xUaGmo+3mQyKTExUadOnbJIfKckJCREo0ePtmhra8ijdvaP/o0wYIviLl5R4t27MnrltWg3eudVbFTyrybHRl2QKf6udN/KrjGHTso5v5cMjo4yxcfrzrkLunHohMVxMYdPKv/rgZl/EwCsUHoCaVWtWjWLz/v27dPGjRuTXSvjxIkTD00eHzp0SLGxsWrQoEGKfZYsWaJPPvlEJ06cUExMjO7evSs3NzeLPkWKFDEnjpPGFBMTo7x5LX9m3b592xxPpjZ+9ff3T3FsDwoPD1ft2rWTrYt8/fp1nT17VrVq1bJor1WrllU5jftj+KR4Ozo6WqVLl1Z4eLhatky+vNPx48d169Ytq6RwXFycqlSxfCU+uftK6buDdG8m97Rp01S0aFE1atRIr776qoKCglKslUwsDVhLTzydxN7VRQVaNdHR0Z9YtOd5yV9Gr7yqf3Kjuc3OwUFlJw7Wc++218YSKf//FUDGEUtbI3n8lHkwcDUYDEq8L4mTFvPmzVPfvn21du1aLVmyRB9++KHWr1+vF154QTExMRo9erRatLD+bWdqZvneLyYmRtWqVbNI/CZJ+lLw/PPPq1ixYlq8eLF69uypFStWWNR0iYmJ0TvvvJNsHbbChQunahxDhw5VcHCwRdsveaql0Buwfab4eF3b+5fy1a+p86vuvcEgg0F569XU6c++SfaYK9v2qkCbppLBIJlMkqQcJf1052y0TP9fr/LKtr3KWfI5i+NylPDT7cgzVucDkPmYLWF77OzsZPr//+cmub9GcEaPy5Ejh8XnmJgYBQUFacKECVZ9kxKfKXFxcXno/u3bt6tdu3YaPXq0AgMDzbN6J0+e/Mgx5c+fX5s2bbI6Z9Jkg9TGrw+e+2EedT+pdX8Mn/QmXlIM/7BrxMTESJJWr16tggULWuxLmoGdJLn7eth3B19fXx05ckQbNmzQ+vXr1atXL3388cfavHlzsslyYmnAWnri6ST532wkO6OTzoSusmg/880PljWUJdVY/ZX+Cf3BvCgfgMeHWNoayWMbUaZMGf3999/6+++/zbOPDx48qKtXr6ps2bIpHlelShVVqVJFQ4cOVc2aNbVo0SK98MILqlq1qo4cOaLixYtneGxVq1bVkiVL5OXlZTWr5H7t2rVTaGioChUqJDs7O/OrfUnnOHjwYIbGYzQarYJsXrPDs+7UtHmqNHeCru75U9d27Zdf3w5yyOGiv/8/MK00b4LunDmvIx9OkSSdnv2tivT6j8pNHaaImd8oR/EiKj74HUV8+vW/5/xkgV789VsVG/yOzi37SR7PV1Thrq10oOeIbLlHAHjaeXp66ty5c+bP169f16lTpyz6ODo6mmvk3n/cn3/+adEWHh6ebGLwflWrVtX3338vPz+/FGehpqREiRJycXFRWFiYunbtarV/27ZtKlKkiIYNG2Zuu3/B5oeNKSoqSg4ODuYFAZPrk1nxa5KKFStqwYIFio+Pt3pubm5uKlCggLZu3WpRPmLr1q0PLf+Q3DXCwsKsZvVK994kNBqNioyMtLhGZnFxcVFQUJCCgoLUu3dvlS5dWgcOHFDVqlWt+hJLA8lLazydxLfTmzr/wwbFX75q0R5/+apVW2J8vGLPX9TNo5b/7weArMBPexsREBCgChUqqF27dtq7d6927typ9u3bq06dOsm+wnbq1CkNHTpU27dv1+nTp7Vu3TodO3bMXP5hxIgRWrhwoUaPHq2//vpLhw4d0uLFiy1q1KVWu3btlC9fPr322mv67bffdOrUKW3atEl9+/bVP//8Y9Fv7969+u9//6s333zTIjgdPHiwtm3bpj59+ig8PFzHjh3TDz/8wIJ5QAadW/qTDg2eoJIj++ql3T/IrVIZ7WzaVXH/v+iHi29+GfP/+9rwnX+itLNJF7n7V1DtvatUduqHOjVjoY5P/MLc59ruA9rzZh8VaNNEL4f/TyU+6KWD74/T2W9/zPL7A55FBjtDhjY8eerXr6+vv/5av/32mw4cOKAOHTpYrajt5+ensLAwRUVF6cqVK+bjdu/erYULF+rYsWMaOXKkVTI5Ob1799bly5fVtm1b7dq1SydOnNDPP/+sTp06WSWoH+Ts7KzBgwdr0KBBWrhwoU6cOKHff/9dX331laR7yeXIyEgtXrxYJ06c0CeffKIVK1Y8ckwBAQGqWbOmmjdvrnXr1ikiIkLbtm3TsGHDtHv3bkmZG78m6dOnj65fv642bdpo9+7dOnbsmL7++msdOXJEkjRw4EBNmDBBS5Ys0ZEjRzRkyBCFh4erX79+qb7G0KFDtWvXLvXq1Uv79+/X4cOH9fnnn+vixYvKlSuXBgwYoPfee08LFizQiRMntHfvXs2YMUMLFixI931J0vz58/XVV1/pzz//1MmTJ/XNN9/IxcVFRYoUydB5gWdNWuNpScpR8jnleclff89blh1DBvAQxNLWmHlsIwwGg3744Qe9++67evnll2VnZ6dGjRppxowZyfZ3dXXV4cOHtWDBAl26dEn58+dX79699c4770iSAgMD9b///U9jxozRhAkT5OjoqNKlSyc7g+RRXF1d9euvv2rw4MFq0aKFbty4oYIFC6pBgwYWM5GLFy+u6tWra+fOnZo2bZrFOSpWrKjNmzdr2LBhql27tkwmk4oVK6bWrVuneTwALJ3+LFSnP7MuKyNJvwe0t2q7+nu4tr308P/2otdsUvSaTZkxPABpRJ022zN06FCdOnVKTZs2lbu7u8aOHWs183jy5MkKDg7WnDlzVLBgQUVERCgwMFDDhw/XoEGDdOfOHXXu3Fnt27fXgQMHUrjSPUmzaQcPHqyGDRsqNjZWRYoUUaNGjWSXir9fw4cPl4ODg0aMGKGzZ88qf/786tGjhySpWbNmeu+999SnTx/FxsaqSZMmGj58uEaNGvXQcxoMBq1Zs0bDhg1Tp06ddOHCBfn4+Ojll1+Wt7e3pMyNX5PkzZtXv/zyiwYOHKg6derI3t5elStXNtc57tu3r65du6b3339f0dHRKlu2rFatWqUSJUqk+holS5bUunXr9MEHH6h69epycXFRjRo11LZtW0nS2LFj5enpqZCQEJ08eVIeHh6qWrWqPvjgg3Tfl3Sv3Mf48eMVHByshIQEVahQQT/++KNVXWkAj5bWePrm0VNa7Vgq1eenzjGQdYilrRlMDxZCA54hafmBDQBARjSJP5Il1/m71xsZOt73s+8zaSQAbB2xNAAgK2VFPE0sbY2ZxwAAADaE2RIAAABA+hBLW+OJIM1CQ0OVM2fOZLdy5cpl9/AAAADwmERGRqYYB+bMmVORkZHZPcQ06dGjR4r3klRqAwAA4FnGzGOkWbNmzVSjRo1k9z1q9W4AAPCYGWxzoQ48GQoUKKDw8PCH7n+ajBkzRgMGDEh23/1rcwAAgGcEsbQVksdIs1y5cilXrlzZPQwAAJAMW13lGU8GBwcHFS9ePLuHkWm8vLzk5eWV3cMAAABPCGJpaySPAQAAbAh12gAAAID0IZa2RvIYAADAhjBbAgAAAEgfYmlrpNMBAAAAAAAAAFaYeQwAAGBDeNUOAAAASB9iaWskjwEAAGwIr9oBAAAA6UMsbY3kMQAAgA0h4AUAAADSh1jaGsljAAAAW8KrdgAAAED6EEtb4YkAAAAgQ2bOnCk/Pz85OzurRo0a2rlzZ6qOW7x4sQwGg5o3b/54BwgAAAAgXUgeAwAA2BCDwZChLa2WLFmi4OBgjRw5Unv37lWlSpUUGBio6Ojohx4XERGhAQMGqHbt2um9VQAAACBTZXUs/TQgeQwAAGBDDHZ2GdrSasqUKerWrZs6deqksmXLatasWXJ1ddXcuXNTPCYhIUHt2rXT6NGjVbRo0YzcLgAAAJBpsjqWfhrY5l0BAAA8owx2hgxtsbGxun79usUWGxub7LXi4uK0Z88eBQQEmNvs7OwUEBCg7du3pzjGMWPGyMvLS126dMn0+wcAAADSK6OxtC0ieQwAAGBL7OwytIWEhMjd3d1iCwkJSfZSFy9eVEJCgry9vS3avb29FRUVlewxW7Zs0VdffaU5c+Zk+q0DAAAAGZLBWNoWOWT3AAAAAPDkGDp0qIKDgy3ajEZjppz7xo0bevvttzVnzhzly5cvU84JAAAA4PEheQwAAGBDMvq6nNFoTHWyOF++fLK3t9f58+ct2s+fPy8fHx+r/idOnFBERISCgoLMbYmJiZIkBwcHHTlyRMWKFcvA6AEAAID0s9XSExlhm/OpAQAAnlEGg12GtrRwcnJStWrVFBYWZm5LTExUWFiYatasadW/dOnSOnDggMLDw81bs2bNVK9ePYWHh8vX1zfD9w8AAACkV1bG0k8LZh4DAADYkiyeLREcHKwOHTrI399f1atX17Rp03Tz5k116tRJktS+fXsVLFhQISEhcnZ2Vvny5S2O9/DwkCSrdgAAACDLMfPYCsljAAAAG2LI4oU6WrdurQsXLmjEiBGKiopS5cqVtXbtWvMiepGRkbKz0cVDAAAAYFuyOpZ+GpA8BgAAsCHZUaetT58+6tOnT7L7Nm3a9NBj58+fn/kDAgAAANKBmsfWSKcDAAAAAAAAAKww8xgAAMCW2OhCHQAAAMBjRyxtheQxAACADeFVOwAAACB9iKWtkU4HAACwJXZ2GdsAAACAZ1U2xNIzZ86Un5+fnJ2dVaNGDe3cuTNVxy1evFgGg0HNmzdP13VTi28IAAAANsRgMGRoAwAAAJ5VWR1LL1myRMHBwRo5cqT27t2rSpUqKTAwUNHR0Q89LiIiQgMGDFDt2rXTe6upRvIYAAAAAAAAALLYlClT1K1bN3Xq1Elly5bVrFmz5Orqqrlz56Z4TEJCgtq1a6fRo0eraNGij32MJI8BAABsCWUrAAAAgPTJYCwdGxur69evW2yxsbHJXiouLk579uxRQEDAfZe3U0BAgLZv357iEMeMGSMvLy916dIl028/OXxDAAAAsCEGO0OGNgAAAOBZldFYOiQkRO7u7hZbSEhIste6ePGiEhIS5O3tbdHu7e2tqKioZI/ZsmWLvvrqK82ZMyfT7z0lDll2JQAAADx+BuYGAAAAAOmSwVh66NChCg4OtmgzGo0ZOmeSGzdu6O2339acOXOUL1++TDlnapA8BgAAsCXMHgYAAADSJ4OxtNFoTHWyOF++fLK3t9f58+ct2s+fPy8fHx+r/idOnFBERISCgoLMbYmJiZIkBwcHHTlyRMWKFcvA6JPH1BQAAAAAAAAAyEJOTk6qVq2awsLCzG2JiYkKCwtTzZo1rfqXLl1aBw4cUHh4uHlr1qyZ6tWrp/DwcPn6+j6WcTLzGAAAwIYYKFsBAAAApEtWx9LBwcHq0KGD/P39Vb16dU2bNk03b95Up06dJEnt27dXwYIFFRISImdnZ5UvX97ieA8PD0myas9MJI/xTFvYb112DwEA8IxoklUXomwFgCyS/2XP7B4CAACZK4tj6datW+vChQsaMWKEoqKiVLlyZa1du9a8iF5kZKTs7LJ3cgjJYwAAABtiyObgEgAAAHhaZUcs3adPH/Xp0yfZfZs2bXrosfPnz8/8AT2A5DEAAIAtMTDzGAAAAEgXYmkrTE0BAAAAAAAAAFhh5jEAAIAtoWwFAAAAkD7E0lZIHgMAANgSXrUDAAAA0odY2grJYwAAABvCgnkAAABA+hBLWyN5DAAAYEsMBLwAAABAuhBLW+GJAAAAAAAAAACsMPMYAADAlthRpw0AAABIF2JpKySPAQAAbIiBV+0AAACAdCGWtkbyGAAAwJYwWwIAAABIH2JpKySPAQAAbAmzJQAAAID0IZa2QvIYAADAlhiYLQEAAACkC7G0FdLpAAAAAAAAAAArzDwGAACwJXbMDQAAAADShVjaCsljAAAAW0KdNgAAACB9iKWtkDwGAACwJawQDQAAAKQPsbQVkscAAAC2hNkSAAAAQPoQS1vhiQAAAAAAAAAArDDzGAAAwJYYeNUOAAAASBdiaSskjwEAAGwJK0QDAAAA6UMsbYXkMQAAgC1htgQAAACQPsTSVkinAwAA2BKDXca2dJg5c6b8/Pzk7OysGjVqaOfOnSn2nTNnjmrXrq3cuXMrd+7cCggIeGh/AAAAIMtkQyz9pLPNuwIAAECWWLJkiYKDgzVy5Ejt3btXlSpVUmBgoKKjo5Ptv2nTJrVt21YbN27U9u3b5evrq4YNG+rMmTNZPHIAAAAAj0LyGAAAwJbY2WVsS6MpU6aoW7du6tSpk8qWLatZs2bJ1dVVc+fOTbZ/aGioevXqpcqVK6t06dL68ssvlZiYqLCwsIzeOQAAAJAxWRxLPw1s864AAACeVQZDxrY0iIuL0549exQQEGBus7OzU0BAgLZv356qc9y6dUvx8fHKkydPmq4NAAAAZLosjKWfFiyYBwAAYEsyWGstNjZWsbGxFm1Go1FGo9Gq78WLF5WQkCBvb2+Ldm9vbx0+fDhV1xs8eLAKFChgkYAGAAAAsoWN1i3OCJ4IAACALcngbImQkBC5u7tbbCEhIY9lqOPHj9fixYu1YsUKOTs7P5ZrAAAAAKnGzGMrzDwGAACA2dChQxUcHGzRltysY0nKly+f7O3tdf78eYv28+fPy8fH56HXmTRpksaPH68NGzaoYsWKGRs0AAAAgMeCmccAAAC2JIOLfBiNRrm5uVlsKSWPnZycVK1aNYvF7pIWv6tZs2aKQ5w4caLGjh2rtWvXyt/fP9MfAQAAAJAuLJhnhZnHAAAANsSUxa/LBQcHq0OHDvL391f16tU1bdo03bx5U506dZIktW/fXgULFjSXvpgwYYJGjBihRYsWyc/PT1FRUZKknDlzKmfOnFk6dgAAAOB+WR1LPw1IHgMAANiSLF7ko3Xr1rpw4YJGjBihqKgoVa5cWWvXrjUvohcZGSm7+2ZhfP7554qLi9Obb75pcZ6RI0dq1KhRWTl0AAAAwBIL5lnhiTygbt266t+/vyTJz89P06ZNS9extmz+/Pny8PAwfx41apQqV6780GMiIiJkMBgUHh7+WMcGAMAzz2CXsS0d+vTpo9OnTys2NlY7duxQjRo1zPs2bdqk+fPnmz9HRETIZDJZbSSOYUsejJczYtOmTTIYDLp69WqmnC+7rwMAwBMtG2LpJx0zjx9i165dypEjR6r7L1++XI6Ojo9xRE+mAQMG6N133zV/7tixo65evaqVK1ea23x9fXXu3Dnly5cvG0YI4FFaBrqrQY2cyuFipyOnYvXl8suKung3xf5vNnRXy4YeFm1nouMVPPGs+bN7Ljv9p2luVSzhImdng85Fx2t52HXtPHDrcd0GAADpllwMCwCPku+1FvJu1VaOefLo9okT+nvGVN06cijF/vY5cqpAl+7yeOll2edyU1z0ef0zc7qu7/z93vmCmsuzWXM5eeeXJN0+fUpRX8837wdge2bOnKmPP/5YUVFRqlSpkmbMmKHq1asn23fOnDlauHCh/vzzT0lStWrVNG7cuBT7ZwaSxw/h6emZpv558uR5TCN5sqWmRqG9vf0jV10HkD2a1XNT45fc9Nnii4q+fFetAj30QTcvvf/xWcWnnD/W31FxGjv7vPlzYoLl/t5t8imHi50mzovWjZuJeqlKDr33dj4NnXZOEWfjH9PdAKBOGwAAWSN33foq1KOPIqdN0q3DB+XVopWKT5iigx3b6m4ys/gNDg4qPnGq7l69opOjhyv+4gU5efsoISbG3Cf+4gWdmTNLsWf+kQwG5W3YWEXHhOjwO5115/SpLLw74NmU1bH0kiVLFBwcrFmzZqlGjRqaNm2aAgMDdeTIEXl5eVn137Rpk9q2basXX3xRzs7OmjBhgho2bKi//vpLBQsWfCxjtM351Jnk/rIVb731llq3bm2xPz4+Xvny5dPChQslWZet8PPz07hx49S5c2flypVLhQsX1hdffGFxjm3btqly5cpydnaWv7+/Vq5cmabyDn/99ZeaNm0qNzc35cqVS7Vr19aJEyck3VvtfMyYMSpUqJCMRqO5BmGSpFISy5cvV7169eTq6qpKlSpp+/btFteYP3++ChcuLFdXV73++uu6dOmSxf77y1aMGjVKCxYs0A8//CCDwSCDwaBNmzYlW7Zi8+bNql69uoxGo/Lnz68hQ4bo7t1/M1V169ZV3759NWjQIOXJk0c+Pj4Wr7QmveJauHBhGY1GFShQQH379k3VcwPwr1dr59LyDde0+6/bijwXr5mLLyq3m4OeL+/60OMSEqRrNxLN241biRb7S/kZtXbLDZ34O07Rl+9qedg13bydqKKFjI/zdgDwqh3wUMuWLVOFChXk4uKivHnzKiAgQAMHDkw2hk2ulEN4eLgMBoMiIiLMbQ+LlyMiImRnZ6fdu3dbjGPatGkqUqSIEhMtf36mxvfff69y5crJaDTKz89PkydPttj/9ddfy9/fX7ly5ZKPj4/eeustRUdHW/RZs2aNSpYsKRcXF9WrV8/ifgCkjtebbXRxzY+6/PMa3TkdochpHysx9o7yNmqabP+8jZrIwc1NJ0YM1c2/DijufJRi9ofr9snj5j7Xtm/V9Z2/K/bMP4r952+dnfuFEm/fVo6yZbPqtoBnWxbH0lOmTFG3bt3UqVMnlS1bVrNmzZKrq6vmzp2bbP/Q0FD16tVLlStXVunSpfXll18qMTFRYWFhGb3zFPENIZXatWunH3/8UTH3/Ubw559/1q1bt/T666+neNzkyZPl7++vP/74Q7169VLPnj115MgRSdL169cVFBSkChUqaO/evRo7dqwGDx6c6jGdOXNGL7/8soxGo3755Rft2bNHnTt3Nidgp0+frsmTJ2vSpEnav3+/AgMD1axZMx07dsziPMOGDdOAAQMUHh6ukiVLqm3btuZz7NixQ126dFGfPn0UHh6uevXq6aOPPkpxTAMGDFCrVq3UqFEjnTt3TufOndOLL76Y7NhfffVVPf/889q3b58+//xzffXVV1bnXrBggXLkyKEdO3Zo4sSJGjNmjNavXy/pXtA8depUzZ49W8eOHdPKlStVoUKFVD8/AJJXHgfldnPQgWO3zW2375h0PDJWJYo8PMnr4+mgz4cX1CdDC+jdt/Ipr4e9xf4jEbGqWdlVOVzsZDBIL1Z2laOjQX+duPNY7gXA/zMYMrYBNuzcuXNq27atOnfurEOHDmnTpk1q0aKFRo4cmaoYNjmPipf9/PwUEBCgefPmWRw3b948dezY0WJBydTYs2ePWrVqpTZt2ujAgQMaNWqUhg8fblFbPD4+XmPHjtW+ffu0cuVKRUREqGPHjub9f//9t1q0aKGgoCCFh4era9euGjJkSJrGATzrDA4Oci1ZUjf23veLIZNJN/buVo6y5ZI9xv3Fl3Tz4J8q3Pd9VVi2SmW+XCjvt96WUvr/gJ2dctdrIDtnZ908+NdjuAsAVjIYS8fGxur69esWW2xsbLKXiouL0549exQQEGBus7OzU0BAgNXEzpTcunVL8fHxj7UaAmUrUikwMFA5cuTQihUr9Pbbb0uSFi1apGbNmilXrlwpHvfqq6+qV69ekqTBgwdr6tSp2rhxo0qVKqVFixbJYDBozpw5cnZ2VtmyZXXmzBl169YtVWOaOXOm3N3dtXjxYnOt5ZIlS5r3T5o0SYMHD1abNm0kSRMmTNDGjRs1bdo0zZw509xvwIABatKkiSRp9OjRKleunI4fP67SpUtr+vTpatSokQYNGmQ+/7Zt2yxmMN8vZ86ccnFxUWxs7EPLVHz22Wfy9fXVp59+KoPBoNKlS+vs2bMaPHiwRowYYQ6iK1asqJEjR0qSSpQooU8//VRhYWF65ZVXFBkZKR8fHwUEBMjR0VGFCxd+rDVeAFvkketewvfaDctZT9diEsz7knM8MlafL76ksxfilTuXvd5o6K7RvX00YNJZ3Yk1SZKmfX1B/d/21NyxvrqbYFJcnEmT51/Q+UsPqYUBIOPSmIgCniXnzp3T3bt31aJFCxUpUkSSzJMPUhPDJic18XLXrl3Vo0cPTZkyRUajUXv37tWBAwf0ww8/pPkepkyZogYNGmj48OHm6x08eFAff/yxOUHcuXNnc/+iRYvqk08+0fPPP6+YmBjlzJlTn3/+uYoVK2aesVyqVCkdOHBAEyZMSPN4gGeVg7u7DPYOunvlskX73SuX5exbJNljjPkLyKlKVV0OW6/jQwfKuWBB+fZ7XwZ7B0V9/e8vmJyfK6pSM2bJzslJCbdv6+TID3TndMTjvB0ASTIYS4eEhGj06NEWbSNHjkx2ceiLFy8qISFB3t7eFu3e3t46fPhwqq43ePBgFShQwCIBndn4dpFKDg4OatWqlUJDQyVJN2/e1A8//KB27do99LiKFSua/91gMMjHx8f8ytiRI0dUsWJFOTs7m/ukJfkZHh6u2rVrJ7tI3/Xr13X27FnVqlXLor1WrVo6dMiyeP/9Y8yf/15R/qQxHjp0yGLFdEmqWbNmqseYkkOHDqlmzZoy3DfDqVatWoqJidE///yT7NiSxpc0tpYtW+r27dsqWrSounXrphUrVliUvXhQcr/9Sbib/G9/AFv1UpUcWvBfX/Nmn3J++KHCD9/R7/tvKfJcvPYdvaPxX0Yrh7Odalb6d5HR1o085Opip7GzzuuDaee0+tfr6v+2p3x9nr2FRQEAT4ZKlSqpQYMGqlChglq2bKk5c+boypUrGTpnauLl5s2by97eXitWrJB0r8xFvXr15Ofnl67rJRfjHzt2TAkJ9xYg2LNnj4KCglS4cGHlypVLderUkSRFRkameswPSi6WjktHyQ3gmWZnp7tXripyykTdPnZEVzb9oqjQhfIMes2iW+zfkTrcvZMO935HF1etVJHBw+RcxC97xgwgTYYOHapr165ZbEOHDn0s1xo/frwWL16sFStWWOQWMxvJ4zRo166dwsLCFB0drZUrV8rFxUWNGjV66DEPJnYNBkO66polx8XFJVPOc/8Yk5K5mTXGjHrY8/P19dWRI0f02WefycXFRb169dLLL7+s+PjkF+IKCQmRu7u7xXZo52eP/R6AJ8nug7c0aMo583bj5r3/ntxzWf44cM9pr6s3EpI7RbJu3THp3MV4+eS990KLd14HNXrJTbOWXNKfx+/o9Ll4LVt/TSf/jlVgrZTf1gCQcSaDIUMbYMvs7e21fv16/fTTTypbtqxmzJihUqVK6dSp5BehSnobzmQymdtSijUfxsnJSe3bt9e8efMUFxenRYsWWcwOzkw3b95UYGCg3NzcFBoaql27dpmT1nFxcek+b3Kx9LyIfx59IGCj7l67JlPCXTnktnxV3CF3HsVfvpTsMfGXLurOP39L933fvhN5Wo5588ng8O+L4aa7dxV79oxuHzuis1/N1u0TJ+TZouXjuREAFjIaSxuNRrm5uVlsRmPyJSHz5csne3t7nT9/3qL9/Pnzj3wTatKkSRo/frzWrVtnNfEys5E8ToMXX3xRvr6+WrJkiUJDQ9WyZctkZ/2mVtLrYffXPtm1a1eqj69YsaJ+++23ZANYNzc3FShQQFu3brVo37p1q8qmodB+mTJltGPHDou233///aHHODk5mWc9POy827dvtwjEt27dqly5cqlQoUKpHp+Li4uCgoL0ySefaNOmTdq+fbsOHDiQbN/kfvtTpnqvVF8LsAV3Yk06f+muefvnfLyuXL+rCiX+/S2li9Gg4oWNOnY69TPzjU4Geed10JX/Tzg7Od5LQN3/37gkJZooqQo8diyYBzyUwWBQrVq1NHr0aP3xxx9ycnLSihUrko1hPT09Jd0rd5HkwYWtUxsvd+3aVRs2bNBnn31mLp2RHmXKlEk2xi9ZsqTs7e11+PBhXbp0SePHj1ft2rVVunRpq8XyypQpo507dz5yzPdLLpbu5Jf6uB2wNaa7d3Xr6FHlqlLt30aDQbmqVEuxPvHNvw7IWLCgRUBsLOSruIsXZXrIW7QGO4PsMpB7AJAGWRhLOzk5qVq1ahaL3SUtfvewN4ImTpyosWPHau3atfL390/3raYW3xDS6K233tKsWbO0fv36R5asSM25EhMT1b17dx06dEg///yzJk2aJEkW5RxS0qdPH12/fl1t2rTR7t27dezYMX399dfmBfkGDhyoCRMmaMmSJTpy5IiGDBmi8PBw9evXL9Vj7Nu3r9auXatJkybp2LFj+vTTT1Osd5zEz89P+/fv15EjR3Tx4sVkk9u9evXS33//rXfffVeHDx/WDz/8oJEjRyo4ODjVi4bMnz9fX331lf7880+dPHlS33zzjVxcXMz16x6U3G9/7B0eviAY8CxY89sNvd7AXdXKusjXx1G92+bTlet3tevPW+Y+H77jZTFj+D9NPVSmqFGeue1VsohRAzp6KjFR2vrHTUnS2eh4nbsQr25v5lUxXyd553VQ0zq5VKGEs8V5AWQ+k8EuQxtgy3bs2KFx48Zp9+7dioyM1PLly3XhwgWVKVMm2Ri2ePHi8vX11ahRo3Ts2DGtXr3aXCc4SWrj5TJlyuiFF17Q4MGD1bZt23S/Rfj+++8rLCxMY8eO1dGjR7VgwQJ9+umnGjBggCSpcOHCcnJy0owZM3Ty5EmtWrVKY8eOtThHjx49dOzYMQ0cOFBHjhzRokWLLBbcS05ysbQTNdbxjItetlj5mgQpT8NGci5cRL79B8jO2UWXfl4tSSoy+EMV6PKOuf+FVSvlkMtNhXr3k7GQr9xq1JTPW2/r4g/LzX0KdHlHOStUkpO3j5yfK3rvc6Uquhy2LsvvD3gWZXUsHRwcrDlz5mjBggU6dOiQevbsqZs3b6pTp06SpPbt21uUvZgwYYKGDx+uuXPnys/PT1FRUYqKilJMTEymPYMH8dM+jdq1a6eDBw+qYMGCVrXG0srNzU0//vijwsPDVblyZQ0bNkwjRoyQpFTVKsmbN69++eUXxcTEqE6dOqpWrZrmzJljng3dt29fBQcH6/3331eFChW0du1arVq1SiVKlEj1GF944QXNmTNH06dPV6VKlbRu3Tp9+OGHDz2mW7duKlWqlPz9/eXp6Wk1M0KSChYsqDVr1mjnzp2qVKmSevTooS5dujzy3Pfz8PDQnDlzVKtWLVWsWFEbNmzQjz/+qLx586b6HACkVRuva+3WG+r+Zl6N65dfzk4GhcyJVvx9kx+88zoqV45/f2TkdXdQ33b5NHVwQfV/O59ibibqwxlR5jIYCYnS+K+idT0mQYM6e2ni+/n1crWc+mzxJYUfvpPVtwg8WzK4QjRgy9zc3PTrr7/q1VdfVcmSJfXhhx9q8uTJaty4cbIxrKOjo7799lsdPnxYFStW1IQJE/TRRx9ZnDMt8XKXLl0UFxeXoZIVVatW1XfffafFixerfPnyGjFihMaMGWNeLM/T01Pz58/X0qVLVbZsWY0fP948QSVJ4cKF9f3332vlypWqVKmSZs2apXHjxqV7TMCz6sqmX3Rm1kzl79hVpWfPk2uxEjo+5H3d/f9a6k5e3nK87/tp/IVoHR8SrBylyqjMnPny7dNf0cuXKmrxN+Y+Drlzq8iQD1V2/iKV+Hi6XEuV0fEhwbqxZ3eW3x/wTMriWLp169aaNGmSRowYocqVKys8PFxr1641L6IXGRlp8QbU559/rri4OL355pvKnz+/eXvwZ31mMpgefKcY2So0NFSdOnXStWvXMq2mMVLWesDp7B4CAOAZsWRS8m/GZLYbO1dn6Phc1Ztk0kgAPGjs2LFaunSp9u/fn91DyRR7G7yU3UMAADxDqoZteezXIJa25vDoLnicFi5cqKJFi6pgwYLat2+fBg8erFatWpE4BgAAAGxETEyMIiIi9Omnn1rNXAYAAHiSUbYim0VFRek///mPypQpo/fee08tW7bUF198IeleLbKcOXMmu/Xo0SObRw4AAJ5IlK0Anjh9+vRRtWrVVLduXauSFcT8AAA8QYilrVC24gkWHR2t69evJ7vPzc1NXl5eWTwi20PZCgBAVsmyshW7H76w7aPk8m+USSMBkBpPc8xP2QoAQFbKkrIVxNJWKFvxBPPy8nqig0UAAPDkMdnojAfAVhHzAwDw5CCWtkbyGAAAwJYYqEoGAAAApAuxtBWeCAAAAAAAAADACjOPAQAAbIhJvGoHAAAApAextDWSxwAAADbExKt2AAAAQLoQS1sjeQwAAGBLCHgBAACA9CGWtkLyGAAAwIawQjQAAACQPsTS1kinAwAAAAAAAACsMPMYAADAhlCnDQAAAEgfYmlrJI8BAABsCa/aAQAAAOlDLG2F5DEAAIANYbYEAAAAkD7E0tZIHgMAANgQk5gtAQAAAKQHsbQ10ukAAAAAAAAAACvMPAYAALAhvGoHAAAApA+xtDWSxwAAALaERT4AAACA9CGWtkLyGAAAwIaYqEoGAAAApAuxtDWSxwAAADbExGwJAAAAIF2Ipa2RTgcAAAAAAAAAWGHmMQAAgA1hkQ8AAAAgfYilrZE8BgAAsCEm8aodAAAAkB7E0tZIHgMAANgQZksAAAAA6UMsbY0nAgAAYENMBkOGtvSYOXOm/Pz85OzsrBo1amjnzp0P7b906VKVLl1azs7OqlChgtasWZOu6wIAAACZKTti6ScdyWMAAAAbYpIhQ1taLVmyRMHBwRo5cqT27t2rSpUqKTAwUNHR0cn237Ztm9q2basuXbrojz/+UPPmzdW8eXP9+eefGb11AAAAIEOyOpZ+GpA8BgAAQLpNmTJF3bp1U6dOnVS2bFnNmjVLrq6umjt3brL9p0+frkaNGmngwIEqU6aMxo4dq6pVq+rTTz/N4pEDAAAAeBSSxwAAADbEZLDL0JYWcXFx2rNnjwICAsxtdnZ2CggI0Pbt25M9Zvv27Rb9JSkwMDDF/gAAAEBWycpY+mnBgnkAAAA2JKOvy8XGxio2NtaizWg0ymg0WvW9ePGiEhIS5O3tbdHu7e2tw4cPJ3v+qKioZPtHRUVlaNwAAABARtlq6YmMsM2UOAAAwDMqo7MlQkJC5O7ubrGFhIRk920BAAAAjx0zj60x8xgAAMCGZHS2xNChQxUcHGzRltysY0nKly+f7O3tdf78eYv28+fPy8fHJ9ljfHx80tQfAAAAyCrMPLZmmylxAAAApIvRaJSbm5vFllLy2MnJSdWqVVNYWJi5LTExUWFhYapZs2ayx9SsWdOivyStX78+xf4AAAAAsg/JYwAAABuS1a/aBQcHa86cOVqwYIEOHTqknj176ubNm+rUqZMkqX379ho6dKi5f79+/bR27VpNnjxZhw8f1qhRo7R792716dMn054BAAAAkB7ZUbZi5syZ8vPzk7Ozs2rUqKGdO3c+tP/SpUtVunRpOTs7q0KFClqzZk26rptaJI8BAABsiEmGDG1p1bp1a02aNEkjRoxQ5cqVFR4errVr15oXxYuMjNS5c+fM/V988UUtWrRIX3zxhSpVqqRly5Zp5cqVKl++fKY9AwAAACA9sjqWXrJkiYKDgzVy5Ejt3btXlSpVUmBgoKKjo5Ptv23bNrVt21ZdunTRH3/8oebNm6t58+b6888/M3rrKTKYTCbTYzs78IR7KWhzdg8BAPCM2PJjnSy5zomTJzN0fLGiRTNpJABsXUDb3dk9BADAM2TDt/6P/RpZHUvXqFFDzz//vD799FNJ90rA+fr66t1339WQIUOs+rdu3Vo3b97U//73P3PbCy+8oMqVK2vWrFkZGntKmHkMAABgQ0wmQ4Y2AAAA4FmV0Vg6NjZW169ft9hiY2OTvVZcXJz27NmjgIAAc5udnZ0CAgK0ffv2ZI/Zvn27RX9JCgwMTLF/ZiB5DAAAAAAAAAAZFBISInd3d4stJCQk2b4XL15UQkKCudxbEm9vb0VFRSV7TFRUVJr6ZwaHx3ZmAAAAZDkTcwMAAACAdMloLD106FAFBwdbtBmNxgydM7uRPAYAALAh6VmoAwAAAEDGY2mj0ZjqZHG+fPlkb2+v8+fPW7SfP39ePj4+yR7j4+OTpv6ZgakpAAAANiSrV4gGAAAAbEVWxtJOTk6qVq2awsLCzG2JiYkKCwtTzZo1kz2mZs2aFv0laf369Sn2zwzMPAYAALAhJIABAACA9MnqWDo4OFgdOnSQv7+/qlevrmnTpunmzZvq1KmTJKl9+/YqWLCguW5yv379VKdOHU2ePFlNmjTR4sWLtXv3bn3xxRePbYwkjwEAAAAAAAAgi7Vu3VoXLlzQiBEjFBUVpcqVK2vt2rXmRfEiIyNlZ/dv4YgXX3xRixYt0ocffqgPPvhAJUqU0MqVK1W+fPnHNkaDyWQyPbazA0+4l4I2Z/cQAADPiC0/1smS6xw6cSZDx5cpVjCTRgLA1gW03Z3dQwAAPEM2fOv/2K9BLG2NmccAAAA2xGSibAUAAACQHsTS1kgeAwAA2BBqHgMAAADpQyxtjeQxAACADSHgBQAAANKHWNqa3aO7AAAAAAAAAACeNcw8BgAAsCHMlgAAAADSh1jaGsljAAAAG8IiHwAAAED6EEtbI3kMAABgQxKZLQEAAACkC7G0NZLHAAAANoRX7QAAAID0IZa2RvIYAADAhvCqHQAAAJA+xNLW7LJ7AAAAAAAAAACAJw8zjwEAAGwIr9oBAAAA6UMsbY3kMQAAgA3hVTsAAAAgfYilrZE8BgAAsCHMlgAAAADSh1jaGsljAAAAG8JsCQAAACB9iKWtsWAeAAAAAAAAAMAKM48BAABsSGJ2DwAAAAB4ShFLWyN5DAAAYEN41Q4AAABIH2JpaySPAQAAbAiLfAAAAADpQyxtjeQxAACADWG2BAAAAJA+xNLWWDAPAAAAAAAAAGCFmccAAAA2hFftAAAAgPQhlrZG8hgAAMCGJJqyewQAAADA04lY2hrJYwAAABvCbAkAAAAgfYilrZE8BgAAsCEs8gEAAACkD7G0NRbMe4LUrVtX/fv3fyznjoiIkMFgUHh4+GM5f1bx8/PTtGnTsnsYAAAAaTZq1ChVrlw5u4fx2Dzt8WZm/flk9Z/zpk2bZDAYdPXq1SdmTAAAwHYw8/gZ4evrq3PnzilfvnzZPRQAT6Au7fwU1NBHuXI46MCh65r02TH9c+52iv2XfllD+b2drdqXrz6jKbOOS5KaBebXK3W8VLJYTuVwdVCjNlsUczPhsd0DgHtM1GlLlbp166py5crP/C+l58+fr/79+z808ZjdDAaDVqxYoebNm2f3UKwkN7YBAwbo3Xffzb5BJeNJHBNgazq8WUCv1s+nnDkc9NeRGE2fe1pnomIfekze3I7q9lYhVa/kLqPRTmej7ujj2RE6evKWJMnZaKeubQuplr+H3HI5KCo6Vit+jtb/NlzIilsCnknE0tZIHj8j7O3t5ePjk93DAPAEaveGr95sWlD/nXZY587fUdd2fpoypoL+02uX4uKT/8nZLXiv7O57d6VokRya9lElbdzybyBrNNppx97L2rH3snp0KPq4bwPA/0ukTtszxWQyKSEhQQ4OhPUpiYuLk5OTU5ZdL2fOnMqZM2eWXS81nsQxAbakdZCPXm/kpYmfR+jchVh1allA44eUVOeBfyo+hXg6Zw57TR9dWuF/3dDQCcd07Xq8Cvo460bMv5Mter7tq8rlcmn8zFOKuhAr/4pu6tu5iC5didP2Pdey6vaAZwqxtDXKVjxh7t69qz59+sjd3V358uXT8OHDZfr/X3t8/fXX8vf3V65cueTj46O33npL0dHR5mOvXLmidu3aydPTUy4uLipRooTmzZsnKfnXCP/66y81bdpUbm5uypUrl2rXrq0TJ048cowdO3ZU8+bNNWnSJOXPn1958+ZV7969FR8fb+4TGxurAQMGqGDBgsqRI4dq1KihTZs2WZxny5Ytql27tlxcXOTr66u+ffvq5s2b5v3R0dEKCgqSi4uLnnvuOYWGhlocbzKZNGrUKBUuXFhGo1EFChRQ3759U/2sAdzTsllBLfzutLbsuKQTETf10dTDypvHqNovpPymwtXr8bp89d/txefz6p+zt/XHn/8GsUtXndE3y/7WX4evZ8VtAPh/JpMhQ9uzoGPHjtq8ebOmT58ug8Egg8GgiIgI/fnnn2rcuLFy5swpb29vvf3227p48aL5uLVr1+qll16Sh4eH8ubNq6ZNm1rFTv/884/atm2rPHnyKEeOHPL399eOHTss+nz99dfy8/OTu7u72rRpoxs3bpj3JSYmKiQkRM8995xcXFxUqVIlLVu2zLw/qUTBTz/9pGrVqsloNGrLli0Pvd99+/apXr16ypUrl9zc3FStWjXt3r1bmzZtUqdOnXTt2jXzcxg1apSkezNqV65caXEeDw8PzZ8/3/x5586dqlKlipydneXv768//vjD6tqPeqZ169ZV3759NWjQIOXJk0c+Pj7mMUj3SpZJ0uuvvy6DwWD+/DBJJRq+/PJLPffcc3J2vvemzNWrV9W1a1d5enrKzc1N9evX1759+1I8z65du/TKK68oX758cnd3V506dbR3795Hju3BEhGJiYkaM2aMChUqJKPRqMqVK2vt2rXm/Ulx+vLly1WvXj25urqqUqVK2r59u7nP6dOnFRQUpNy5cytHjhwqV66c1qxZYzHePXv2yN/fX66urnrxxRd15MgRq2eSJCmeHz16tPl59OjRQ3FxcY98vgCstWjspdAV57Rtz1WdirytCZ9FKG9uR9Xy90jxmDZBPrpwKU6TZkfoyImbiroQpz0Hrutc9L+zlcuWzKl1v17SvkM3dP5inFb/clEnTt9S6WI5suCugGcTsbQ1ksdPmAULFsjBwUE7d+7U9OnTNWXKFH355ZeSpPj4eI0dO1b79u3TypUrFRERoY4dO5qPHT58uA4ePKiffvpJhw4d0ueff55imYozZ87o5ZdfltFo1C+//KI9e/aoc+fOunv3bqrGuXHjRp04cUIbN27UggULNH/+fIsvE3369NH27du1ePFi7d+/Xy1btlSjRo107NgxSdKJEyfUqFEjvfHGG9q/f7+WLFmiLVu2qE+fPuZzdOzYUX///bc2btyoZcuW6bPPPrNIln///feaOnWqZs+erWPHjmnlypWqUKFCah81AEkFvJ2VL49Ru8KvmNtu3krQwaPXVb60W6rO4eBgUMN63lq9IepxDRNAGphMGdsel8uXL6tdu3Zyc3OTh4eHunTpopiYmIf2f/fdd1WqVCm5uLiocOHC6tu3r65dy/hMq+nTp6tmzZrq1q2bzp07p3PnzilXrlyqX7++qlSpot27d2vt2rU6f/68WrVqZT7u5s2bCg4O1u7duxUWFiY7Ozu9/vrrSkxMlCTFxMSoTp06OnPmjFatWqV9+/Zp0KBB5v3SvRho5cqV+t///qf//e9/2rx5s8aPH2/eHxISooULF2rWrFn666+/9N577+k///mPNm/ebHEPQ4YM0fjx43Xo0CFVrFjxoffbrl07FSpUSLt27dKePXs0ZMgQOTo66sUXX9S0adPk5uZmfg4DBgxI1TOMiYlR06ZNVbZsWe3Zs0ejRo2yOvbq1auPfKbSvfg3R44c2rFjhyZOnKgxY8Zo/fr1ku4lcCVp3rx5OnfunPnzoxw/flzff/+9li9fbp480bJlS0VHR+unn37Snj17VLVqVTVo0ECXL19O9hw3btxQhw4dtGXLFv3+++8qUaKEXn31VXOyP7Vjmz59uiZPnqxJkyZp//79CgwMVLNmzcxxcZJhw4ZpwIABCg8PV8mSJdW2bVtzbN67d2/Fxsbq119/1YEDBzRhwgSrmcTDhg3T5MmTtXv3bjk4OKhz584PfUZhYWE6dOiQNm3apG+//VbLly/X6NGjH/5gAVjJ7+WkvLmdtPfPfydM3LydoEMnbqpsiZRn/Nes5qGjJ29peL+iWjqrkmaFlNWr9S2/vx88GqMXq3kob25HSVKlsrlUKL+zdu9ncgbwuDypsXR24v22J4yvr6+mTp0qg8GgUqVK6cCBA5o6daq6detmEQAWLVpUn3zyiZ5//nnFxMQoZ86cioyMVJUqVeTv7y9JD52ZMXPmTLm7u2vx4sVydLz3g6hkyZKpHmfu3Ln16aefyt7eXqVLl1aTJk0UFhambt26KTIyUvPmzVNkZKQKFCgg6V6dtbVr12revHkaN26cQkJC1K5dO/MCgSVKlNAnn3yiOnXq6PPPP1dkZKR++ukn7dy5U88//7wk6auvvlKZMmXMY4iMjJSPj48CAgLk6OiowoULq3r16qm+BwBSntz3XuO9cjXeov3K1Tjzvkd5+YV7td3WhJE8BpCydu3a6dy5c1q/fr3i4+PVqVMnde/eXYsWLUq2/9mzZ3X27FlNmjRJZcuW1enTp9WjRw+dPXvWYiZueri7u8vJyUmurq7msl4fffSRqlSponHjxpn7zZ07V76+vjp69KhKliypN954w+I8c+fOlaenpw4ePKjy5ctr0aJFunDhgnbt2qU8efJIkooXL25xTGJioubPn69cuXJJkt5++22FhYXpv//9r2JjYzVu3Dht2LBBNWvWlHQv5tuyZYtmz56tOnXqmM8zZswYvfLKK6m638jISA0cOFClS5eWdC/uuv9ZGAyGNJc3W7RokRITE/XVV1/J2dlZ5cqV0z///KOePXua+3z66aePfKaSVLFiRY0cOdI8tk8//VRhYWF65ZVX5OnpKenerOe0jDEuLk4LFy40H79lyxbt3LlT0dHRMhqNkqRJkyZp5cqVWrZsmbp37251jvr161t8/uKLL+Th4aHNmzeradOmqR7bpEmTNHjwYLVp00aSNGHCBG3cuFHTpk3TzJkzzf0GDBigJk2aSJJGjx6tcuXK6fjx4ypdurQiIyP1xhtvmCdKFC1qXQ7qv//9r/nvyJAhQ9SkSRPduXPHPPP6QU5OTpo7d65cXV1Vrlw5jRkzRgMHDtTYsWNlZ8ccIyC1crvf+z595ZrlRKyr1+KVx8MxxePyexkVFOCpZWvO69sfzqlU0Rzq3aGw4u+atP7XS5KkT+dH6r1uRbTks0q6ezdRiSZp6pzTOnA45V++AkBmI3n8hHnhhRdkMPw7zb1mzZqaPHmyEhISFB4erlGjRmnfvn26cuWKeRZLZGSkypYtq549e+qNN97Q3r171bBhQzVv3lwvvvhistcJDw9X7dq1zYnjtCpXrpzs7e3Nn/Pnz68DBw5Ikg4cOKCEhASrZHRsbKzy5s0r6d7rk/v377coRWEymZSYmKhTp07p6NGjcnBwULVq1cz7S5cuLQ8PD/Pnli1batq0aSpatKgaNWqkV199VUFBQSnW/IuNjVVsrOWCBYkJcbKzz7oaeEB2e6WOlwb2/ve/zUFjDmT4nE1e8dGOPZd16TKvugJPAtMTWKft0KFDWrt2rXbt2mX+JfeMGTP06quvatKkSeZfNt+vfPny+v77782fixUrpv/+97/6z3/+o7t372Z6jd99+/Zp48aNydaFPXHihEqWLKljx45pxIgR2rFjhy5evGgRi5UvX17h4eGqUqWKOXGcHD8/P3PiWLoXQyW9WXX8+HHdunXLKikcFxenKlWqWLQlPcfUCA4OVteuXfX1118rICBALVu2VLFixVJ9fHKSZjzfn5hMSngnSc0zlWQ1c/r+Z5JeRYoUMSd3k8YSExNjjkWT3L59O8WybefPn9eHH36oTZs2KTo6WgkJCbp165YiIyNTPY7r16/r7NmzqlWrlkV7rVq1rEpm3P8c8ufPL+leGbfSpUurb9++6tmzp9atW6eAgAC98cYbVs8tpeMLFy6c7NgqVaokV1dX8+eaNWsqJiZGf//9t4oUKWLVn1gauKd+rTx6r+u//40Mm3jsIb1TZrCTjp68pblLzkiSjkfclp+vi4IaeJqTx80DvVSmeE59+PExnb8Yp4qlc+rdToV16Uqc9v5542GnB5BOT2Isnd1IHj8l7ty5o8DAQAUGBio0NFSenp6KjIxUYGCguTZZ48aNdfr0aa1Zs0br169XgwYN1Lt3b02aNMnqfC4uLhkaz4NJZ4PBYPHKpr29vfbs2WORYJZk/vIQExOjd955J9kaxYULF9bRo0cfOQZfX18dOXJEGzZs0Pr169WrVy99/PHH2rx5c7JJ8ZCQEKtX8XxLdFDhUp0eeS3AVmzZeUkHj+42f3ZyvDezKLeHoy5d+Tf5m9vDScdPPnpGg7enUf6VcmtYyF+ZP1gA6ZKYwdflkksQGY1G82zN9Ni+fbs8PDwsEp4BAQGys7PTjh079Prrr6fqPNeuXZObm9tjWRwuJiZGQUFBmjBhgtW+pERcUFCQihQpojlz5qhAgQJKTExU+fLlzbFYauKrR8VQkrR69WoVLFjQot+Dzz9HjtTXuxw1apTeeustrV69Wj/99JNGjhypxYsXP/S5GwwG87obSe5f3yI1UvNMpYc/k/R68PnExMQof/78VmtwSLKYnHC/Dh066NKlS5o+fbqKFCkio9GomjVrPra6wPc/h6TJJEnPoWvXrgoMDNTq1au1bt06hYSEaPLkyXr33XdTdXxmSC6Wfq5cNxWtYD1rG7Bl2/dc1eHj/67V4+h477+33O4Ounzf23we7o46EXErxfNcvhKv0//ctmiLPHNHtavnliQ5ORrUuU1BjZpyQjv+uFey6VTkbRUr4qqWTX1IHgOPSUZjaVvE+0hPmAcXVEmqFzfZbQABAABJREFUr3b48GFdunRJ48ePV+3atVW6dOlkZ2R4enqqQ4cO+uabbzRt2jR98cUXyV6nYsWK+u2339L8JSA1qlSpooSEBEVHR6t48eIWW9IrfVWrVtXBgwet9hcvXlxOTk4qXbq07t69qz179pjPe+TIEV29etXiWi4uLgoKCtInn3yiTZs2afv27eYZ0A8aOnSorl27ZrEVKt4u0+8feJLdvp2gM+fumLdTkbd08XKs/CvlNvdxdbFX2ZJu+jMVC901CfDRlWtx2r7r0uMcNoA0yOgiHyEhIXJ3d7fYQkJCMjSmqKgoeXl5WbQ5ODgoT548iopKXcmbixcvauzYscmWF0gPJycnJST8u6J91apV9ddff8nPz88qNsmRI4cuXbqkI0eO6MMPP1SDBg1UpkwZXblyxeKcFStWVHh4eIo1dB+lbNmyMhqNioyMtBqDr69vhu63ZMmSeu+997Ru3Tq1aNHCvKjyg88hiaenp86dO2f+fOzYMd269W8SpEyZMtq/f7/u3Lljbvv9998tzvGoZ5pajo6OyY4xLapWraqoqCg5ODhYjSWlNUK2bt2qvn376tVXX1W5cuVkNBotFvtLzdjc3NxUoEABbd261ercZcuWTdM9+Pr6qkePHlq+fLnef/99zZkzJ03HP2jfvn26ffvfxNXvv/+unDlzpvh3LblY2q9sxwyNAXga3b6TqLPnY83b6X/u6NKVOFUp/+96Ia4udipTLIcOHkt5MsZfR2PkW8CyrEyh/M46f/HeL6gcHAxydLBT4gOZrMREycDESOCxYcE8aySPnzCRkZEKDg7WkSNH9O2332rGjBnq16+fChcuLCcnJ82YMUMn/4+9O4+rOfv/AP667XsppSIVWiyFZF+iUJaMfWuGEGZI9qWvQcaSfR+zWCpk7LtkSTFiQpQt2WWIbCHR+vn94eczrtteKtfr+Xh8HjP3fM45n/O5hfd93/M5584d7Nu3D7NmzZJqO336dOzduxe3bt3C1atXceDAAak1gj/l7e2N169fo2/fvjh//jxu3ryJjRs3Su3KXFTW1tbw8PDAgAEDsGvXLty9exdnz56Fv78/Dh48CACYPHkyTp8+DW9vb8TExODmzZvYu3evuGGejY0N3NzcMHz4cERFRSE6OhpeXl5SM3oCAwOxbt06XLlyBXfu3MGmTZugrq6e42N2wIcZOzo6OlIHH7MjArbve4iBfaqieSMDVDPXxM/jbPH8RRr+/ue/D8jLZtujeyfpx8olEqBjW2OEHn+CrBwmNunrKaOGpSYqm374c1vNXAs1LDWhrcWHXoi+pOJu8pFTgsjX1zfHa02ZMgUSiSTP4/r168W+p9evX6NTp06oVasW/Pz8it0f8GH5iKioKNy7dw/Pnj3DyJEj8eLFC/Tr1w/nzp3D7du3cfjwYQwaNAhZWVmoUKECDAwM8Oeff+LWrVs4fvw4xo0bJ9Vnv379YGxsjK5duyIyMhJ37tzBzp07cebMmQKNSVtbGxMmTMDYsWMRFBSE27dv48KFC1i5ciWCgoKKdJ/v3r2Dt7c3IiIicP/+fURGRuLcuXNijGhhYYGUlBSEhYXh2bNnYoLY2dkZq1atwsWLF3H+/Hn8+OOPUjNb+/fvD4lEgqFDh+LatWsICQmRedotv/e0oCwsLBAWFobHjx/LJOwLqm3btmjatCm6du2KI0eO4N69ezh9+jSmTp2K8+fP59jGysoKGzduRFxcHKKiouDh4SEzu7wgY5s4cSLmz5+PrVu3Ij4+HlOmTEFMTAxGjx5d4PGPGTMGhw8fxt27d3HhwgWEh4fnGucXVHp6OoYMGSL+/GbMmAFvb+9c1ztmLE2Uu12HkuDR1QRNG+jC0kwdk3+yxPOXGYg8nyzWWTDVGt+1/285nZ0hT1Czhib6fWcM00qqcG6mj47OFbH3yIdJYqnvshF77Q2GeZihbk1tGBuqoH0rA7RrZYDIc8kgoi+jPG+YV1YbUDN5XM4MGDAA7969Q6NGjTBy5EiMHj0aw4YNg6GhIQIDA7F9+3bUqlUL8+bNkwnQVVRU4OvrC3t7e7Rq1QqKiorYsmVLjtcxMDDA8ePHxV3BGzRogDVr1hR5DeTPBQQEYMCAARg/fjxsbGzQtWtXnDt3Tlxzzd7eHidOnMCNGzfQsmVL1K9fH9OnT5da8zAgIACmpqZwcnJC9+7dMWzYMKlZS3p6elizZg2aN28Oe3t7HDt2DPv375dZy46I8ha88wF2HHiESd7WWLPEARpqihg/4zLSM/77l6+ysTr0dKT/fnCsVwHGRmo4eDTnWYNdO5gicIUjpoyyAQCsnl8PgSsc0aIx/4wSfUnZkBTryClBlNuSFePHj0dcXFyeR7Vq1WBsbCzzxFRmZiZevHiR7yZob968gZubG7S1tbF79+4Si1UmTJgARUVF1KpVC4aGhkhPT0dkZCSysrLQvn172NnZYcyYMdDT04OCggIUFBSwZcsWREdHo06dOhg7diwWLlwo1aeKigqOHDkCIyMjdOzYEXZ2dpg3b57MMl55mTVrFqZNmwZ/f3/UrFkTbm5uOHjwICwtLYt0n4qKinj+/DkGDBgAa2tr9O7dGx06dBCXH2jWrBl+/PFH9OnTB4aGhliwYAEAYPHixTAzM0PLli3Rv39/TJgwQWp9XC0tLezfvx+XL19G/fr1MXXqVJnlKT7OuM3tPS2oxYsX4+jRozAzM5NZ+7mgJBIJQkJC0KpVKwwaNAjW1tbo27cv7t+/j0qVKuXYZt26dXj58iUcHBzwww8/wMfHR2YGfUHG5uPjg3HjxmH8+PGws7NDaGgo9u3bJ7VxYX6ysrIwcuRI8XfC2toaq1evLvgbkAMXFxdYWVmhVatW6NOnD7p06VJiX84QfWu27n+MPYeTMNbLAr/Orgl1NUVMmXcDGZ/E06aVVKGr/d+/YfF3UjFjyW04N9PH2gW14dHdBL9tfIDjkf89vTJ7xW3E334LX29LrFtUB327GGP91ofYf+xpqd4f0bekuLH0l+Th4YGrV6/i6NGjOHDgAE6ePJnnU3mfbkB95coVBAYGIjQ0FEOGDCnUdSXC54uZEX1DWrifKOshEBHRN+LUfqdSuc6BC5n5V8pDZ4eSfzogLi4OtWrVwvnz58XNcI8cOQI3Nzf8+++/OW6YB3yYcezq6gpVVVWEhIRIJS+JqOg8PT2RnJyMPXv2FKuftv1ynrVNRET0JRz7q+AbBhdVeYylgf/i6U83oA4NDUXHjh3zjKc/t337dnz//fd4+/ZtgfcR4cxjIiIiIjlSHh+1+zhbcujQoTh79iwiIyPh7e2Nvn37ioHuw4cPYWtri7NnzwL4kDhu37493r59i3Xr1uH169d4/PgxHj9+XOz1b4mIiIiIclLcWDotLQ2vX7+WOj7fjLoo8tuAuqCKsgE1k8ckQ0tLK9fj77//LuvhERERUR7K6yYfwcHBsLW1hYuLCzp27IgWLVpIbeybkZGB+Ph4cc3dCxcuICoqCpcvX0aNGjVgYmIiHg8ePPhi4/wa1a5dO9fYLTg4uKyHV+K+tfslIiKi0lMeN58GynYDau5aRDJiYmJyPVe5cuXSGwgREREVWvYXmj1cXPr6+ti8eXOu5y0sLPDpamqtW7cGV1crmJCQEGRkZOR4Lrf1fL9m39r9fgmBgYFlPQQiIqJyqbixtK+vr8ymyrntHwJ82ID6830jPhcXF1e8QaF4G1AzeUwyatSoUdZDICIioiJivvXbY25uXtZDKFXf2v0SERFR6SluLK2qqppnsvhz48ePh6enZ551ynoDaiaPiYiIiIiIiIiIiEqZoaEhDA0N863XtGlTJCcnIzo6WtyA+vjx48jOzkbjxo1zbffpBtT79u2DmppaocfINY+JiIiI5IgASbEOIiIiIqJvVXmNpctyA2rOPCYiIiKSI+V1zWMiIiIiovKuPMfSwcHB8Pb2houLCxQUFNCjRw+sWLFCPJ/bBtSA7BK1d+/ehYWFRYGuy+QxERERkRzhmsdEREREREVTnmPpstqAmsljIiIiIjlSngNeIiIiIqLyjLG0LK55TEREREREREREREQyOPOYiIiISI5kC9z0joiIiIioKBhLy2LymIiIiEiO8FE7IiIiIqKiYSwti8ljIiIiIjnCgJeIiIiIqGgYS8ti8piIiIhIjmQz4CUiIiIiKhLG0rK4YR4RERERERERERERyeDMYyIiIiI5InCTDyIiIiKiImEsLYvJYyIiIiI5wnXaiIiIiIiKhrG0LCaPiYiIiOQI12kjIiIiIioaxtKymDwmIiIikiOcLUFEREREVDSMpWVxwzwiIiIiIiIiIiIiksGZx0RERERyhLMliIiIiIiKhrG0LCaPiYiIiOQI12kjIiIiIioaxtKymDwmIiIikiOcLUFEREREVDSMpWUxeUxEREQkR7Kzy3oERERERERfJ8bSspg8JiIiIpIjnC1BRERERFQ0jKVlKZT1AIiIiIiIiIiIiIio/OHMYyIiIiI5wtkSRERERERFw1haFpPHRERERHKEO0QTERERERUNY2lZTB4TERERyRGh2NMlJCUyDiIiIiKirw1jaVlMHhMRERHJET5qR0RERERUNIylZXHDPCIiIiIiIiIiIiKSwZnHRERERHIkO7usR0BERERE9HViLC2LyWMiIiIiOcJH7YiIiIiIioaxtCwmj4mIiIjkCHeIJiIiIiIqGsbSspg8JiIiIpIjnC1BRKXlfcrbsh4CERFRiWIsLYsb5hERERERERERERGRDM48JiIiIpIjQrGftZOUyDiIiIiIiL42jKVlMXlMREREJEe4ThsRERERUdEwlpbFZSuIiIiI5IggFO/4Ul68eAEPDw/o6OhAT08PQ4YMQUpKSgHvSUCHDh0gkUiwZ8+eLzdIIiIiIvqmlddYuixx5jERERGRHMkup9MlPDw8kJiYiKNHjyIjIwODBg3CsGHDsHnz5nzbLlu2DBKJ/D0CSERERETlS3mNpcsSZx4TERER0RcVFxeH0NBQrF27Fo0bN0aLFi2wcuVKbNmyBY8ePcqzbUxMDBYvXoz169eX0miJiIiIiMqfsnqSj8ljIiIiIjlS3Eft0tLS8Pr1a6kjLS2tWGM6c+YM9PT04OjoKJa1bdsWCgoKiIqKyrVdamoq+vfvj19//RXGxsbFGgMRERERUX7K87IVHh4euHr1Ko4ePYoDBw7g5MmTGDZsWIHaFudJPiaPiYiIiORIcQNef39/6OrqSh3+/v7FGtPjx49hZGQkVaakpAR9fX08fvw413Zjx45Fs2bN8N133xXr+kREREREBVFek8dl+SQf1zwmIiIikiPZxYxafX19MW7cOKkyVVXVHOtOmTIF8+fPz7O/uLi4Io1j3759OH78OC5evFik9kREREREhVXcWDotLU3mqT1VVdVc4+mCyu9Jvm7duuXYriSe5GPymIiIiEiOCNnFa1+Y4Hb8+PHw9PTMs061atVgbGyMpKQkqfLMzEy8ePEi1yD2+PHjuH37NvT09KTKe/TogZYtWyIiIqJAYyQiIiIiKqjixtL+/v6YOXOmVNmMGTPg5+dXrH7L8kk+Jo+JiIiIqEgMDQ1haGiYb72mTZsiOTkZ0dHRaNCgAYAPyeHs7Gw0btw4xzZTpkyBl5eXVJmdnR2WLl0Kd3f34g+eiIiIiKiEFeYpPuDreJKPyWMiIiIiOSJ86Z06iqBmzZpwc3PD0KFD8fvvvyMjIwPe3t7o27cvTE1NAQAPHz6Ei4sLNmzYgEaNGsHY2DjHWclVq1aFpaVlad8CEREREX0DihtLF3aJiq/hST4mj4mIiIjkSHYxH7X7UoKDg+Ht7Q0XFxcoKCigR48eWLFihXg+IyMD8fHxSE1NLcNREhEREdG3rLRj6a/hST4mj4mIiIjkSHmceQwA+vr62Lx5c67nLSws8h17eb03IiIiIpIP5TXeLMsn+Zg8JiIiIpIj2eUz3iUiIiIiKvfKcyxdVk/yMXlMREREREREREREVI6V1ZN8TB4TERERyRGhPE+XICIiIiIqxxhLy2LymIiIiEiOlNNl2oiIiIiIyj3G0rKYPCYiIiKSI9mcLUFEREREVCSMpWUxeUxEREQkR8rrDtFEREREROUdY2lZTB4TERERyREhu6xHQERERET0dWIsLUuhrAdAREREREREREREROUPZx4TERERyZFsPmpHRERERFQkjKVlMXlMREREJEe4ThsRERERUdEwlpbF5DERERGRHOEO0URERERERcNYWhaTx0RERERyhJMliIiIiIiKhrG0LG6YR0REREREREREREQyOPOYiIiISI4IfNSOiIiIiKhIGEvLYvKYiIiISI5wh2giIiIioqJhLC2LyWMiIiIiOcLZEkRERERERcNYWhaTx0RERERyhAEvEREREVHRMJaWxQ3ziIiIiIiIiIiIiEgGk8dUqh4/fox27dpBU1MTenp6ZT0cIiIiuZMtFO+gb5OFhQWWLVv2xa8jkUiwZ8+eL36d4tqzZw9q1KgBRUVFjBkzpqyHQ0RERKWEsbQsLltBpWrp0qVITExETEwMdHV1C9TGz88Pe/bsQUxMzJcdHNE3bIiHBdzbG0NbUwmX415j0eqb+DfxXa71t69tDJNKajLluw4+xJLfbwEAuriaoJ2TEayra0FTQwlufU8h5W3WF7sHIvqAj9pReZaYmIgKFSqU9TDyNXz4cAwaNAg+Pj7Q1tYu6+EQ0VegpONpbS0lDOlvgUb1K6CSoSqSX2fg5D/PsHbTPbxNZUxN9KUwlpbF5DGVqtu3b6NBgwawsrIq66EQ0f/z6GGGnp0rY86y60h88h5eHhZY8osdvh9xDukZOf/DOXTcBSh88uxKNXNNLJtdF+GnnoplqqoKiLrwAlEXXuDHgdW+9G0Q0f8TuEM0lWPGxsZlPYQ8ZWRkIC0tDUlJSXB1dYWpqWmR+0pPT4eKikoJjo6IyqsvEU9X1FdBRQMV/Lr+Du4+eAtjIzVMHGGFivqqmDbvWmncFtE3ibG0LC5bQYW2Y8cO2NnZQV1dHQYGBmjbti3evn2Lc+fOoV27dqhYsSJ0dXXh5OSECxcuiO0sLCywc+dObNiwARKJBJ6engCA5ORkeHl5wdDQEDo6OnB2dkZsbCwAIDAwEDNnzkRsbCwkEgkkEgkCAwMxePBgdO7cWWpcGRkZMDIywrp160rtvSCSB726VMaGbfdxKuo5bt97i9lLr8NAXxUtm1TMtU3y6wy8SP7vaNbQAP8+eoeLV16Jdbbve4hNOx7g6vXXpXEbRPT/srOFYh1U9kJDQ9GiRQvo6enBwMAAnTt3xu3bt8Xz//77L/r16wd9fX1oamrC0dERUVFRAD58Uf/dd9+hUqVK0NLSQsOGDXHs2DGp/pOSkuDu7g51dXVYWloiODhYZgx5xWfAhyfD6tWrh/Xr16Nq1arQ0tLCiBEjkJWVhQULFsDY2BhGRkaYM2eOVL+fL1uR173k5eP1//jjD5iZmUFDQwO9e/fGq1evpOqtXbsWNWvWhJqaGmxtbbF69Wrx3L179yCRSLB161Y4OTlBTU0NwcHB4kxjZ2dnSCQSREREAAB27tyJ2rVrQ1VVFRYWFli8eLHUtSwsLDBr1iwMGDAAOjo6GDZsGAIDA6Gnp4cDBw7AxsYGGhoa6NmzJ1JTUxEUFAQLCwtUqFABPj4+yMr6bybhxo0b4ejoCG1tbRgbG6N///5ISkoSz0dEREAikSAsLAyOjo7Q0NBAs2bNEB8fLzWm/fv3o2HDhlBTU0PFihXRrVs38VxaWhomTJiAypUrQ1NTE40bNxbvlYgK50vE03cTUvGz/zVEnnuOR4/f48KlZPy58S6aNzKAIjM5RF8MY2lZ/CuHCiUxMRH9+vXD4MGDERcXh4iICHTv3h2CIODNmzcYOHAgTp06hX/++QdWVlbo2LEj3rx5AwA4d+4c3Nzc0Lt3byQmJmL58uUAgF69eiEpKQmHDh1CdHQ0HBwc4OLighcvXqBPnz4YP348ateujcTERCQmJqJPnz7w8vJCaGgoEhMTxbEdOHAAqamp6NOnT5m8N0RfI9NKaqior4pzMS/FsrepWbh24zXq2OoUqA8lJQnat6mEg8cef6lhEhF9U96+fYtx48bh/PnzCAsLg4KCArp164bs7GykpKTAyckJDx8+xL59+xAbG4tJkyYhOzsbAJCSkoKOHTsiLCwMFy9ehJubG9zd3ZGQkCD27+npiQcPHiA8PBw7duzA6tWrpRKTQN7x2Ue3b9/GoUOHEBoair/++gvr1q1Dp06d8O+//+LEiROYP38+fv7551yTwfndS35u3bqFbdu2Yf/+/QgNDcXFixcxYsQI8XxwcDCmT5+OOXPmIC4uDnPnzsW0adMQFBQk1c+UKVMwevRoxMXFoU2bNmICdufOnUhMTESzZs0QHR2N3r17o2/fvrh8+TL8/Pwwbdo0BAYGSvW1aNEi1K1bFxcvXsS0adMAAKmpqVixYgW2bNmC0NBQREREoFu3bggJCUFISAg2btyIP/74Azt27BD7ycjIwKxZsxAbG4s9e/bg3r174sSLT02dOhWLFy/G+fPnoaSkhMGDB4vnDh48iG7duqFjx464ePEiwsLC0KhRI/G8t7c3zpw5gy1btuDSpUvo1asX3NzccPPmzQK9/0T0QWnG05qaSnibmomsgv01SURUIrhsBRVKYmIiMjMz0b17d5ibmwMA7OzsAHyYnfGpP//8E3p6ejhx4gQ6d+4MQ0NDqKqqQl1dXXxk8dSpUzh79iySkpKgqqoK4EPQvWfPHuzYsQPDhg2DlpYWlJSUpB5zbNasGWxsbLBx40ZMmjQJABAQEIBevXpBS0vri78PRPJCv8KHx2lfJmdIlb9MThfP5adVk4rQ0lRCSBiTx0TlAR+1+/r16NFD6vX69ethaGiIa9eu4fTp03j69CnOnTsHfX19AECNGjXEunXr1kXdunXF17NmzcLu3buxb98+eHt748aNGzh06BDOnj2Lhg0bAgDWrVuHmjVrim0KEp8BQHZ2NtavXw9tbW3UqlVLTLyGhIRAQUEBNjY2mD9/PsLDw9G4cWOZ+9y8eXOe95Kf9+/fY8OGDahcuTIAYOXKlejUqRMWL14MY2NjzJgxA4sXL0b37t0BAJaWlrh27Rr++OMPDBw4UOxnzJgxYh3gw6xrANDX1xfjzyVLlsDFxUVMCFtbW+PatWtYuHChVFLX2dkZ48ePF1///fffyMjIwG+//Ybq1asDAHr27ImNGzfiyZMn0NLSEt+78PBwcRLEp0ngatWqYcWKFWjYsCFSUlKkYt05c+bAyckJwIckeKdOnfD+/Xuoqalhzpw56Nu3L2bOnCnW//i7kZCQgICAACQkJIhLc0yYMAGhoaEICAjA3LlzC/xzIPrWlVY8raujBM8+5th/ODHXOkRUfIylZTF5TIVSt25duLi4wM7ODq6urmjfvj169uyJChUq4MmTJ/j5558RERGBpKQkZGVlITU1VWqmy+diY2ORkpICAwMDqfJ3795JPZ6ZEy8vL/z555+YNGkSnjx5gkOHDuH48eO51k9LS0NaWppUWXZWOhQUuRYdfTvaORlh4khr8fWkXy4Xu89O7YwRFf0Cz1+kF7svIio+bvLx9bt58yamT5+OqKgoPHv2TJyJm5CQgJiYGNSvX19Mtn4uJSUFfn5+OHjwoPil/7t378R4LC4uDkpKSmjQoIHYxtbWFnp6euLrgsZnFhYWUpvJVapUCYqKilD4ZBHPSpUqycxq/ii/e8lP1apVxcQxADRt2hTZ2dmIj4+HtrY2bt++jSFDhmDo0KFinczMTJlNmx0dHfO9VlxcHL777jupsubNm2PZsmXIysqCoqJirn1paGiIiWPgw3tiYWEhlQT+/H2Kjo6Gn58fYmNj8fLlS6nfgVq1aon17O3txf83MTEB8GFZkqpVqyImJkbq3j91+fJlZGVlwdraWqo8LS1N5uf+6TnG0kRlE09rqCti4XQ73HuQinWb7xf7ekSUO8bSspg8pkJRVFTE0aNHcfr0aRw5cgQrV67E1KlTERUVhZ9++gnPnz/H8uXLYW5uDlVVVTRt2hTp6bknlFJSUmBiYpLj+mqffojJyYABAzBlyhScOXMGp0+fhqWlJVq2bJlrfX9/f6mZFwBgZjUQVW0G5XkdInly6uxzXLtxXnytovzhA34FPWU8f/nfn9UKeiq4dScl3/4qGarCsW4FTPW/WvKDJaIiYcD79XN3d4e5uTnWrFkDU1NTZGdno06dOkhPT4e6unqebSdMmICjR49i0aJFqFGjBtTV1dGzZ88847HPFTQ+U1ZWljonkUhyLMttGYr87qU4UlI+/Bu2Zs0amVnPHxO9H2lqapbYdXPqq7Dv09u3b+Hq6gpXV1cEBwfD0NAQCQkJcHV1lfk5ftqPRCIBALGfvN7flJQUKCoqIjo6Wub9yO0pPsbSRB+Udjytrq6IxTPtkPouC/+bcwVZWfx3nuhLYiwti8ljKjSJRILmzZujefPmmD59OszNzbF7925ERkZi9erV6NixIwDgwYMHePbsWZ59OTg44PHjx1BSUoKFhUWOdVRUVKQ2EPnIwMAAXbt2RUBAAM6cOYNBg/IOXH19fTFu3DipMre++W/IQiRP3r3LwsN30n+enr1Ig2PdCrh19y2ADzMbalnrYE/Io3z769TWGC9fpePMuedfZLxEVHjZfNTuq/b8+XPEx8djzZo14pfip06dEs/b29tj7dq1ePHiRY4zdiMjI+Hp6SlujJaSkoJ79+6J521tbZGZmYno6Ghx2Yr4+HhxqQagYPFZScjvXvKTkJCAR48eicsu/PPPP+JyGZUqVYKpqSnu3LkDDw+PYo+1Zs2aiIyMlCqLjIyEtbW1TPK1uK5fv47nz59j3rx5MDMzAwCcP38+n1ay7O3tERYWlmOMXL9+fWRlZSEpKSnPyRefYixN9EFpxtMa6opY8os9MjKyMXn2FaRn8N94oi+NsbQsbphHhRIVFYW5c+fi/PnzSEhIwK5du/D06VPUrFkTVlZW2LhxI+Li4hAVFQUPD498Z5S0bdsWTZs2RdeuXXHkyBHcu3cPp0+fxtSpU8Ug2cLCAnfv3kVMTAyePXsm9bicl5cXgoKCEBcXJ7V2XU5UVVWho6MjdfAxOyJg+76HGNinKpo3MkA1c038PM4Wz1+k4e9//vvyZ9lse3TvZCrVTiIBOrY1RujxJzlu2qGvp4walpqobPrh74Fq5lqoYakJbS1+b0lElJsKFSrAwMAAf/75J27duoXjx49LJez69esHY2NjdO3aFZGRkbhz5w527tyJM2fOAACsrKywa9cuxMTEIDY2Fv3795ea+WtjYwM3NzcMHz4cUVFRiI6OhpeXl1TMVpD4rCTkdy/5UVNTw8CBAxEbG4u///4bPj4+6N27t7hO8cyZM+Hv748VK1bgxo0buHz5MgICArBkyZJCj3X8+PEICwvDrFmzcOPGDQQFBWHVqlWYMGFCofvKT9WqVaGiooKVK1fizp072LdvH2bNmlXofmbMmIG//voLM2bMQFxcHC5fvoz58+cD+LBms4eHBwYMGIBdu3bh7t27OHv2LPz9/XHw4MEc+2MsTZS7LxFPa6grYukv9lBTVYD/inhoqitCX08Z+nrKUGAmh4hKEf/KoULR0dHByZMn0bFjR1hbW+Pnn3/G4sWL0aFDB6xbtw4vX76Eg4MDfvjhB/j4+MDIyCjP/iQSCUJCQtCqVSsMGjQI1tbW6Nu3L+7fv49KlSoB+LBpjJubG9q0aQNDQ0P89ddfYvu2bdvCxMQErq6u4qwTIiqc4J0PsOPAI0zytsaaJQ7QUFPE+BmXpWY2VDZWh56O9CO2jvUqwNhIDQeP5ryxR9cOpghc4Ygpo2wAAKvn10PgCke0aJzzWopEVDKEbKFYB5UtBQUFbNmyBdHR0ahTpw7Gjh2LhQsXiudVVFRw5MgRGBkZoWPHjrCzs8O8efPE2a9LlixBhQoV0KxZM7i7u8PV1RUODg5S1wgICICpqSmcnJzQvXt3DBs2TCpmK0h8VhLyu5f81KhRA927d0fHjh3Rvn172NvbY/Xq1eJ5Ly8vrF27FgEBAbCzs4OTkxMCAwNhaWlZ6LE6ODhg27Zt2LJlC+rUqYPp06fjl19+kdosr6QYGhoiMDAQ27dvR61atTBv3jwsWrSo0P20bt0a27dvx759+1CvXj04Ozvj7Nmz4vmAgAAMGDAA48ePh42NDbp27Ypz586hatWqJXk7RN+ELxFP21TXQm1bHdSw1MK2NY2xb2Mz8TCqqPrF74noW8VYWpZE4DaC9BVLSUlB5cqVERAQILVLdkG1cD/xBUZFREQk69R+p1K5zoBpxduFfcMskxIaCdGX4+fnhz179iAmJqash/JNYyxNRESlqTTiacbSsvjsMH2VsrOz8ezZMyxevBh6enro0qVLWQ+JiIioXMiW0xkPRERERERfGmNpWUwe01cpISEBlpaWqFKlCgIDA6GkxF9lIiIigDtEk3yoXbs27t+/n+O5P/74o5RHQ0RERN8KxtKymHGjr5KFhQW44goREZEs/vtI8iAkJAQZGRk5nqtUqRK0tbXh5+dXuoMiIiIiucdYWhaTx0REREREVK6Ym5uX9RCIiIiICIBCWQ+AiIiIiEqOkJ1drIOIiIiI6FtVnmPpFy9ewMPDAzo6OtDT08OQIUOQkpKSb7szZ87A2dkZmpqa0NHRQatWrfDu3bsCX5fJYyIiIiI5kp0tFOv4Usoq2CUiIiIiKqjyGksDgIeHB65evYqjR4/iwIEDOHnyJIYNG5ZnmzNnzsDNzQ3t27fH2bNnce7cOXh7e0NBoeApYS5bQURERCRHyus6bR4eHkhMTMTRo0eRkZGBQYMGYdiwYdi8eXOubT4Gu76+vli5ciWUlJQQGxtbqGCXiIiIiKigymssHRcXh9DQUJw7dw6Ojo4AgJUrV6Jjx45YtGgRTE1Nc2w3duxY+Pj4YMqUKWKZjY1Noa7NyJuIiIhIjgjZQrGOL+FjsLt27Vo0btwYLVq0wMqVK7FlyxY8evQo13afBru1a9eGjY0NevfuDVVV1S8yTiIiIiL6thU3lk5LS8Pr16+ljrS0tGKP68yZM9DT0xMTxwDQtm1bKCgoICoqKsc2SUlJiIqKgpGREZo1a4ZKlSrByckJp06dKtS1mTwmIiIiItGXCHjLMtglIiIiIiot/v7+0NXVlTr8/f2L3e/jx49hZGQkVaakpAR9fX08fvw4xzZ37twBAPj5+WHo0KEIDQ2Fg4MDXFxccPPmzQJfm8ljIiIiIjlS3NkSXyLgLctgl4iIiIiooIobS/v6+uLVq1dSh6+vb67XmzJlCiQSSZ7H9evXi3Qv2f+/gd/w4cMxaNAg1K9fH0uXLoWNjQ3Wr19f4H645jERERGRHMkWirfLs6+vL8aNGydVltsyEVOmTMH8+fPz7C8uLq5I4/g82AWA+vXrIywsDOvXry+RGRxERERERJ8qbiytqqpaqCXWxo8fD09PzzzrVKtWDcbGxkhKSpIqz8zMxIsXL2BsbJxjOxMTEwBArVq1pMpr1qyJhISEAo+RyWMiIiIiOVLcdYsLE/B+DcEuEREREVFBfak9QHJjaGgIQ0PDfOs1bdoUycnJiI6ORoMGDQAAx48fR3Z2Nho3bpxjGwsLC5iamiI+Pl6q/MaNG+jQoUOBx8jkMREREZEcKc2A92sIdomIiIiICqq0k8cFVbNmTbi5uWHo0KH4/fffkZGRAW9vb/Tt2xempqYAgIcPH8LFxQUbNmxAo0aNIJFIMHHiRMyYMQN169ZFvXr1EBQUhOvXr2PHjh0FvjaTx0RERET0RZVlsEtEREREJA+Cg4Ph7e0NFxcXKCgooEePHlixYoV4PiMjA/Hx8UhNTRXLxowZg/fv32Ps2LF48eIF6tati6NHj6J69eoFvi6Tx0RERERyRBDK52yJsgp2iYiIiIgKqrzG0gCgr6+PzZs353rewsIix/FPmTIFU6ZMKfJ1mTwmIiIikiMfN5orb8oq2CUiIiIiKqjyGkuXJSaPiYiIiORIeV2njYiIiIiovGMsLYvJYyIiIiI5IgicLUFEREREVBSMpWUplPUAiIiIiIiIiIiIiKj84cxjIiIiIjnCR+2IiIiIiIqGsbQsJo+JiIiI5AgDXiIiIiKiomEsLYvJYyIiIiI5ks112oiIiIiIioSxtCwmj4mIiIjkCGdLEBEREREVDWNpWdwwj4iIiIiIiIiIiIhkcOYxERERkRwRsvmoHRERERFRUTCWlsXkMREREZEc4aN2RERERERFw1haFpPHRERERHJE4CYfRERERERFwlhaFpPHRERERHIkm7MliIiIiIiKhLG0LCaPiYiIiOQI12kjIiIiIioaxtKyFMp6AERERERERERERERU/nDmMREREZEc4SYfRERERERFw1haFpPHRERERHKEm3wQERERERUNY2lZTB4TERERyRHOliAiIiIiKhrG0rKYPCYiIiKSI9zkg4iIiIioaBhLy+KGeUREREREREREREQkQyIIAudjExFRgaWlpcHf3x++vr5QVVUt6+EQEREREX01GEsT0deGyWMiIiqU169fQ1dXF69evYKOjk5ZD4eIiIiI6KvBWJqIvjZctoKIiIiIiIiIiIiIZDB5TEREREREREREREQymDwmIiIiIiIiIiIiIhlMHhMRUaGoqqpixowZ3OCDiIiIiKiQGEsT0deGG+YRERERERERERERkQzOPCYiIiIiIiIiIiIiGUweExEREREREREREZEMJo+JiIiIiIiIiIiISAaTx0REVOIsLCywbNmyUr1m69atMWbMmFK9JhERERFRSWMsTUTlCZPHRERfGU9PT3Tt2rWsh0FERERE9NVhLE1EVDhMHhMRyamMjIyyHgIRERER0VeJsTQR0QdMHhMRlVM7duyAnZ0d1NXVYWBggLZt22LixIkICgrC3r17IZFIIJFIEBERgXv37kEikWDr1q1wcnKCmpoagoODAQBr165FzZo1oaamBltbW6xevVq8Rnp6Ory9vWFiYgI1NTWYm5vD398fACAIAvz8/FC1alWoqqrC1NQUPj4+RbqX5ORkeHl5wdDQEDo6OnB2dkZsbCwA4MaNG5BIJLh+/bpUm6VLl6J69eri6ytXrqBDhw7Q0tJCpUqV8MMPP+DZs2dFGg8RERERyTfG0oyliahkKJX1AIiISFZiYiL69euHBQsWoFu3bnjz5g3+/vtvDBgwAAkJCXj9+jUCAgIAAPr6+nj06BEAYMqUKVi8eDHq168vBr3Tp0/HqlWrUL9+fVy8eBFDhw6FpqYmBg4ciBUrVmDfvn3Ytm0bqlatigcPHuDBgwcAgJ07d2Lp0qXYsmULateujcePH4tBamH16tUL6urqOHToEHR1dfHHH3/AxcUFN27cgLW1NRwdHREcHIxZs2aJbYKDg9G/f38AHwJmZ2dneHl5YenSpXj37h0mT56M3r174/jx48V5q4mIiIhIzjCWZixNRCWHyWMionIoMTERmZmZ6N69O8zNzQEAdnZ2AAB1dXWkpaXB2NhYpt2YMWPQvXt38fWMGTOwePFisczS0hLXrl3DH3/8gYEDByIhIQFWVlZo0aIFJBKJeC0ASEhIgLGxMdq2bQtlZWVUrVoVjRo1KvS9nDp1CmfPnkVSUhJUVVUBAIsWLcKePXuwY8cODBs2DB4eHli1apUY8N64cQPR0dHYtGkTAIgB+9y5c8V+169fDzMzMzFoJiIiIiICGEszliaiksRlK4iIyqG6devCxcUFdnZ26NWrF9asWYOXL1/m287R0VH8/7dv3+L27dsYMmQItLS0xGP27Nm4ffs2gA8bhsTExMDGxgY+Pj44cuSI2L5Xr1549+4dqlWrhqFDh2L37t3IzMws9L3ExsYiJSUFBgYGUuO4e/euOI6+ffvi3r17+OeffwB8mCnh4OAAW1tbsY/w8HCp9h/PfeyDiIiIiAhgLM1YmohKEmceExGVQ4qKijh69ChOnz6NI0eOYOXKlZg6dSqioqLybKepqSn+f0pKCgBgzZo1aNy4sUz/AODg4IC7d+/i0KFDOHbsGHr37o22bdtix44dMDMzQ3x8PI4dO4ajR49ixIgRWLhwIU6cOAFlZeUC30tKSgpMTEwQEREhc05PTw8AYGxsDGdnZ2zevBlNmjTB5s2b8dNPP0n14e7ujvnz58v0YWJiUuCxEBEREZH8YyzNWJqISg6Tx0RE5ZREIkHz5s3RvHlzTJ8+Hebm5ti9ezdUVFSQlZWVb/tKlSrB1NQUd+7cgYeHR671dHR00KdPH/Tp0wc9e/aEm5sbXrx4AX19fairq8Pd3R3u7u4YOXIkbG1tcfnyZTg4OBT4PhwcHPD48WMoKSnBwsIi13oeHh6YNGkS+vXrhzt37qBv375SfezcuRMWFhZQUuI/XURERESUN8bSjKWJqGTwbw0ionIoKioKYWFhaN++PYyMjBAVFYWnT5+iZs2aeP/+PQ4fPoz4+HgYGBhAV1c3135mzpwJHx8f6Orqws3NDWlpaTh//jxevnyJcePGYcmSJTAxMUH9+vWhoKCA7du3w9jYGHp6eggMDERWVhYaN24MDQ0NbNq0Cerq6lJruRVE27Zt0bRpU3Tt2hULFiyAtbU1Hj16hIMHD6Jbt27i44Hdu3fHTz/9hJ9++glt2rSBqamp2MfIkSOxZs0a9OvXD5MmTYK+vj5u3bqFLVu2YO3ateLsDyIiIiIixtKMpYmo5DB5TERUDuno6ODkyZNYtmwZXr9+DXNzcyxevBgdOnSAo6MjIiIi4OjoiJSUFISHh+c6C8HLywsaGhpYuHAhJk6cCE1NTdjZ2WHMmDEAAG1tbSxYsAA3b96EoqIiGjZsiJCQECgoKEBPTw/z5s3DuHHjkJWVBTs7O+zfvx8GBgaFuheJRIKQkBBMnToVgwYNwtOnT2FsbIxWrVqhUqVKYj1tbW24u7tj27ZtWL9+vVQfpqamiIyMxOTJk9G+fXukpaXB3Nwcbm5uUFDg8v1ERERE9B/G0oyliajkSARBEMp6EERERERERERERERUvvArJiIiIiIiIiIiIiKSweQxEREVyt9//w0tLa1cDyIiIiIiyhljaSL62nDZCiIiKpR3797h4cOHuZ6vUaNGKY6GiIiIiOjrwViaiL42TB4TERERERERERERkQwuW0FEREREREREREREMpg8JiIiIiIiIiIiIiIZTB4TERERERERERERkQwmj4mIiIiIiIiIiIhIBpPHRERERERERERERCSDyWMiIiIiIiIiIiIiksHkMRERERERERERERHJYPKYiIiIiIiIiIiIiGQweUxEREREREREREREMpg8JiIiIiIiIiIiIiIZTB4TERERERERERERkQwmj4mIiIiIiIiIiIhIBpPHRERERERERERERCSDyWMiIiIiIiIiIiIiksHkMRERERERERERERHJYPKYiKgc8fT0hIWFRZHaWlhYwNPTs0THU15IJBL4+fmVaJ+tW7dG69atS7RPIiIiIio6Pz8/SCSSsh7GF1GcOD83gYGBkEgkuHfvXon2W9IWLlyIatWqQVFREfXq1SuRPiMiIiCRSBARESGWfYn3mIiYPCYiytXly5fRs2dPmJubQ01NDZUrV0a7du2wcuXKsh5asb1//x5Lly5F48aNoaurCzU1NVhbW8Pb2xs3btwo6+GVmGvXrsHPz6/cB9RERERUfhQ0Bpw7dy727NlTNoMsBgsLC3Tu3Lmsh1EiIiIi0L17dxgbG0NFRQVGRkZwd3fHrl27ynpoJepr/V0DgCNHjmDSpElo3rw5AgICMHfu3AK16927NyQSCSZPnlziY2rdujUkEkmOx/Xr10v0WiEhISU+CYaotCmV9QCIiMqj06dPo02bNqhatSqGDh0KY2NjPHjwAP/88w+WL1+OUaNGfZHrrlmzBtnZ2V+k74+ePXsGNzc3REdHo3Pnzujfvz+0tLQQHx+PLVu24M8//0R6evoXHUNpuXbtGmbOnInWrVvLzEI4cuRI2QyKiIiIyq3CxIBz585Fz5490bVr17Ib8DdsxowZ+OWXX2BlZYXhw4fD3Nwcz58/R0hICHr06IHg4GD079+/rIdZInL7Xfvhhx/Qt29fqKqqls3ACuD48eNQUFDAunXroKKiUqA2r1+/xv79+2FhYYG//voL8+bNK/EZ6VWqVIG/v79MuampaYleJyQkBL/++isTyPRVY/KYiCgHc+bMga6uLs6dOwc9PT2pc0lJSV/susrKyl+s7488PT1x8eJF7NixAz169JA6N2vWLEydOrVErvP27VtoamrKlAuCgPfv30NdXb1ErlNUBQ1eiYiI6NvxpWLA3OIiKpodO3bgl19+Qc+ePbF582apGHrixIk4fPgwMjIyin2dzMxMZGdn5xg3loefqaKiIhQVFct0DPlJSkqCurp6oWLvnTt3IisrC+vXr4ezszNOnjwJJyenEh2Xrq4uvv/++xLts7RkZ2cjPT0dampqZT0U+kZw2Qoiohzcvn0btWvXlvnQAABGRkZSrzMzMzFr1ixUr14dqqqqsLCwwP/+9z+kpaXJtD106BCcnJygra0NHR0dNGzYEJs3bxbP57RO16JFi9CsWTMYGBhAXV0dDRo0wI4dO4p0X1FRUTh48CCGDBkikzgGAFVVVSxatEiq7Pjx42jZsiU0NTWhp6eH7777DnFxcVJ1Pq5Pd+3aNfTv3x8VKlRAixYtAPz3aOThw4fh6OgIdXV1/PHHHwCA5ORkjBkzBmZmZlBVVUWNGjUwf/78fGdf379/HyNGjICNjQ3U1dVhYGCAXr16SS1PERgYiF69egEA2rRpIz6K9nFdtJzWPE5KSsKQIUNQqVIlqKmpoW7duggKCpKqc+/ePUgkEixatAh//vmn+HNv2LAhzp07l+e4iYiIqHwraAwokUjw9u1bBAUFiTHGx70n8oqLAGDTpk1o0KAB1NXVoa+vj759++LBgwdS17p58yZ69OgBY2NjqKmpoUqVKujbty9evXol1jl69ChatGgBPT09aGlpwcbGBv/73/9K7L3Ib5ze3t7Q0tJCamqqTNt+/frB2NgYWVlZYtmhQ4fEmFJbWxudOnXC1atXizS2adOmQV9fH+vXr89x8oWrq6vU0hyFjfGWLVsmxngfl0Er7s80JwWJ8/P6XcttzePVq1ejdu3aUFVVhampKUaOHInk5GSpOq1bt0adOnVw7do1tGnTBhoaGqhcuTIWLFiQ77iBgn0GkkgkCAgIwNu3b8WxBwYG5tt3cHAw2rVrhzZt2qBmzZoIDg4u0JhKyt69e9GpUyeYmppCVVUV1atXx6xZs6R+nz+KiopCx44dUaFCBWhqasLe3h7Lly8H8OGz3a+//goAUktjfPT27VuMHz9e/CxkY2ODRYsWQRAEqWtIJBJ4e3sjODhY/LmGhoYCALZs2YIGDRqIny/t7OzE6xOVFM48JiLKgbm5Oc6cOYMrV66gTp06edb18vJCUFAQevbsifHjxyMqKgr+/v6Ii4vD7t27xXqBgYEYPHgwateuDV9fX+jp6eHixYsIDQ3N85G65cuXo0uXLvDw8EB6ejq2bNmCXr164cCBA+jUqVOh7mvfvn0APjziVhDHjh1Dhw4dUK1aNfj5+eHdu3dYuXIlmjdvjgsXLsgkunv16gUrKyvMnTtXKuiJj49Hv379MHz4cAwdOhQ2NjZITU2Fk5MTHj58iOHDh6Nq1ao4ffo0fH19kZiYiGXLluU6rnPnzuH06dPo27cvqlSpgnv37uG3335D69atce3aNWhoaKBVq1bw8fHBihUr8L///Q81a9YEAPG/n3v37h1at26NW7duwdvbG5aWlti+fTs8PT2RnJyM0aNHS9XfvHkz3rx5g+HDh0MikWDBggXo3r077ty5UyozyImIiKjkFTQG3LhxI7y8vNCoUSMMGzYMAFC9enWpOjnFRXPmzMG0adPQu3dveHl54enTp1i5ciVatWqFixcvQk9PD+np6XB1dUVaWhpGjRoFY2NjPHz4EAcOHEBycjJ0dXVx9epVdO7cGfb29vjll1+gqqqKW7duITIyskTeh4KMs0+fPvj1119x8OBB8Qt7AEhNTcX+/fvh6ekpzorduHEjBg4cCFdXV8yfPx+pqan47bff0KJFC1y8eLFQm5zdvHkT169fx+DBg6GtrZ1v/cLGeAEBAXj//j2GDRsGVVVV6Ovri+eK+jPNTUHi/IL8rn3Kz88PM2fORNu2bfHTTz8hPj4ev/32G86dO4fIyEipOPXly5dwc3ND9+7d0bt3b+zYsQOTJ0+GnZ0dOnTokOf7WpDPQBs3bsSff/6Js2fPYu3atQCAZs2a5dnvo0ePEB4eLib3+/Xrh6VLl2LVqlUl+uRgVlYWnj17JlWmpqYGLS0tBAYGQktLC+PGjYOWlhaOHz+O6dOn4/Xr11i4cKFY/+jRo+jcuTNMTEwwevRoGBsbIy4uDgcOHMDo0aMxfPhwPHr0CEePHsXGjRulriUIArp06YLw8HAMGTIE9erVw+HDhzFx4kQ8fPgQS5culap//PhxbNu2Dd7e3qhYsSIsLCxw9OhR9OvXDy4uLpg/fz4AIC4uDpGRkTK/10TFIhARkYwjR44IioqKgqKiotC0aVNh0qRJwuHDh4X09HSpejExMQIAwcvLS6p8woQJAgDh+PHjgiAIQnJysqCtrS00btxYePfunVTd7Oxs8f8HDhwomJubS51PTU2Vep2eni7UqVNHcHZ2lio3NzcXBg4cmOd9devWTQAgvHz5Ms96H9WrV08wMjISnj9/LpbFxsYKCgoKwoABA8SyGTNmCACEfv36yfRhbm4uABBCQ0OlymfNmiVoamoKN27ckCqfMmWKoKioKCQkJIhlAIQZM2aIrz9/TwRBEM6cOSMAEDZs2CCWbd++XQAghIeHy9R3cnISnJycxNfLli0TAAibNm0Sy9LT04WmTZsKWlpawuvXrwVBEIS7d+8KAAQDAwPhxYsXYt29e/cKAIT9+/fLXIuIiIi+DgWNAQVBEDQ1NXOMvXKLi+7duycoKioKc+bMkSq/fPmyoKSkJJZfvHhRACBs374913EuXbpUACA8ffq00Pdobm4udOrUKdfzBR1ndna2ULlyZaFHjx5S9bZt2yYAEE6ePCkIgiC8efNG0NPTE4YOHSpV7/Hjx4Kurq5U+cf3Li8fY66lS5fme6+CUPgYT0dHR0hKSpLqo7g/U0EoXpyf2+9aQECAAEC4e/euIAiCkJSUJKioqAjt27cXsrKyxHqrVq0SAAjr168Xy5ycnGRi57S0NMHY2FjmZ/q5gn4G+njfmpqaefb3qUWLFgnq6uriz+XGjRsCAGH37t1S9cLDw2Xi/Jze45x8vPfPj4/vcU6fNYYPHy5oaGgI79+/FwRBEDIzMwVLS0vB3Nxc5rPVp5/vRo4cmePv9J49ewQAwuzZs6XKe/bsKUgkEuHWrVtiGQBBQUFBuHr1qlTd0aNHCzo6OkJmZma+90xUHFy2gogoB+3atcOZM2fQpUsXxMbGYsGCBXB1dUXlypXF2bvAhw0QAGDcuHFS7cePHw8AOHjwIIAP30q/efMGU6ZMkVmbKr/NHz5dG/jly5d49eoVWrZsiQsXLhT6vl6/fg0ABZqlkZiYiJiYGHh6ekrNuLC3t0e7du3Ee//Ujz/+mGNflpaWcHV1lSrbvn07WrZsiQoVKuDZs2fi0bZtW2RlZeHkyZO5ju3T9yQjIwPPnz9HjRo1oKenV6T3BfjwszQ2Nka/fv3EMmVlZfj4+CAlJQUnTpyQqt+nTx9UqFBBfN2yZUsAwJ07d4p0fSIiIip7BY0BC+LzuGjXrl3Izs5G7969pWIfY2NjWFlZITw8HMCHtVgB4PDhwzkuCQFAnM26d+/eEt9suaDjlEgk6NWrF0JCQpCSkiK237p1KypXriwu63D06FEkJyejX79+Uv0pKiqicePGYn8FVZh4Fih8jNejRw8YGhrm2FdRf6a5Kck4H/jw1GB6ejrGjBkDBYX/0j1Dhw6Fjo6O+NnkIy0tLal1f1VUVNCoUaN849mCfgYqiuDgYHTq1En8+VpZWaFBgwYlvnTFx5m7nx6TJk0CIP1zefPmDZ49e4aWLVsiNTUV169fBwBcvHgRd+/exZgxY2Rmlxdkc7+QkBAoKirCx8dHqnz8+PEQBAGHDh2SKndyckKtWrWkyvT09PD27VscPXq0wPdNVBRctoKIKBcNGzbErl27kJ6ejtjYWOzevRtLly5Fz549ERMTg1q1auH+/ftQUFBAjRo1pNoaGxtDT08P9+/fB/Bh/TwA+S6BkZMDBw5g9uzZiImJkVlDrLB0dHQAfAiC8nqEDoA4dhsbG5lzNWvWxOHDh2U2CrG0tMyxr5zKb968iUuXLuUanOe1Kc27d+/g7++PgIAAPHz4UGqJjE/XAiyM+/fvw8rKSirQBv5b5uLj+/FR1apVpV5/TCS/fPmySNcnIiKi8qEgMWBBfB7/3Lx5E4IgwMrKKsf6H5cTsLS0xLhx47BkyRIEBwejZcuW6NKlC77//nsxsdynTx+sXbsWXl5emDJlClxcXNC9e3f07NlTJpYprIKO8+M4li1bhn379qF///5ISUlBSEiIuKzXx/4AwNnZOcf+PsanBfVpPFsQhY3xcotnczpXmPcqJyUZ5wO5x+8qKiqoVq2azL1WqVJF5loVKlTApUuX8r1OQT4DFVZcXBwuXryIAQMG4NatW2J569at8euvv+L169eF/n3JjaamJtq2bZvjuatXr+Lnn3/G8ePHxS8rPvr4WaM4n++AD++hqampzJcghfm9HDFiBLZt24YOHTqgcuXKaN++PXr37g03N7cijYkoN0weExHlQ0VFBQ0bNkTDhg1hbW2NQYMGYfv27ZgxY4ZYp6gBXn7+/vtvdOnSBa1atcLq1athYmICZWVlBAQESG20V1C2trYAgMuXL4szZUvSp9/S51eenZ2Ndu3aid/wf87a2jrX64waNQoBAQEYM2YMmjZtCl1dXUgkEvTt27fEZ9/kJredrYXPNrggIiKir1NBYsC8fB7/ZGdnQyKR4NChQznGEVpaWuL/L168GJ6enti7dy+OHDkCHx8f+Pv7459//kGVKlWgrq6OkydPIjw8HAcPHkRoaCi2bt0KZ2dnHDlyJNc4pSAKM84mTZrAwsIC27ZtQ//+/bF//368e/cOffr0keoP+LD+rbGxsUx/SkqFS0t8Gs9+CbnFszmdK8x79bmSjvOLorjxbEl/Btq0aRMAYOzYsRg7dqzM+Z07d2LQoEEles3PJScnw8nJCTo6Ovjll19QvXp1qKmp4cKFC5g8eXKpfdb4XE6/l0ZGRoiJicHhw4dx6NAhHDp0CAEBARgwYIDMhpBExcHkMRFRITg6OgL4sKQD8GFTlezsbNy8eVNqI7YnT54gOTkZ5ubmAP7b1OLKlSsy39DnZefOnVBTU8Phw4ehqqoqlgcEBBRp/O7u7vD398emTZvyTR5/HHt8fLzMuevXr6NixYpSs44Lq3r16khJScn1G/+87NixAwMHDsTixYvFsvfv38vsIl2YgNbc3ByXLl1Cdna21MyUj4+mfXw/iIiI6NvzeQwIFD5xVr16dQiCAEtLyzy/JP/Izs4OdnZ2+Pnnn3H69Gk0b94cv//+O2bPng0AUFBQgIuLC1xcXLBkyRLMnTsXU6dORXh4eJHiq6KOs3fv3li+fDlev36NrVu3wsLCAk2aNJHqD/iQ6CrOuD6ytraGjY0N9u7di+XLl+eZoAW+bIxX2PfqU4WJ8wv6u/Zp/F6tWjWxPD09HXfv3i2R9//jdQryGagwBEHA5s2b0aZNG4wYMULm/KxZsxAcHPzFk8cRERF4/vw5du3ahVatWonld+/elar36ee7vN7X3H525ubmOHbsGN68eSM1+7iwv5cqKipwd3eHu7s7srOzMWLECPzxxx+YNm1aoT53EuWFax4TEeUgPDw8x2/cP67v9fFRsI4dOwIAli1bJlVvyZIlACDukty+fXtoa2vD398f79+/l6qb1zf7ioqKkEgkyMrKEsvu3buHPXv2FO6G/l/Tpk3h5uaGtWvX5thHeno6JkyYAAAwMTFBvXr1EBQUJJWUvXLlCo4cOSLee1H17t0bZ86cweHDh2XOJScnIzMzM9e2ioqKMu/bypUrpd4nAGJy+/Okck46duyIx48fY+vWrWJZZmYmVq5cCS0tLTg5OeXbBxEREX3dChoDAh/ijILEGB91794dioqKmDlzpsw1BEHA8+fPAXxY0/fzOMjOzg4KCgri0gYvXryQ6b9evXoAILX8QVEUdJwf9enTB2lpaQgKCkJoaCh69+4tdd7V1RU6OjqYO3cuMjIyZK739OnTQo9x5syZeP78Oby8vHKMGY8cOYIDBw4A+LIxXmHfq08VJs4v6O9a27ZtoaKighUrVkiNZ926dXj16pX42aS4CvoZqDAiIyNx7949DBo0CD179pQ5+vTpg/DwcDx69KjY48/Lx9nYn75/6enpWL16tVQ9BwcHWFpaYtmyZTI/m0/b5vZ5pGPHjsjKysKqVaukypcuXQqJRIIOHTrkO9bPf78UFBRgb28PoPh/DxB9ijOPiYhyMGrUKKSmpqJbt26wtbVFeno6Tp8+Lc6m+PiNd926dTFw4ED8+eef4iNOZ8+eRVBQELp27Yo2bdoA+LA229KlS+Hl5YWGDRuif//+qFChAmJjY5GamprrY0WdOnXCkiVL4Obmhv79+yMpKQm//voratSoke9aZLnZsGED2rdvj+7du8Pd3R0uLi7Q1NTEzZs3sWXLFiQmJmLRokUAgIULF6JDhw5o2rQphgwZgnfv3mHlypXQ1dWFn59fka7/0cSJE7Fv3z507twZnp6eaNCgAd6+fYvLly9jx44duHfvHipWrJhj286dO2Pjxo3Q1dVFrVq1cObMGRw7dgwGBgZS9erVqwdFRUXMnz8fr169gqqqKpydnWFkZCTT57Bhw/DHH3/A09MT0dHRsLCwwI4dOxAZGYlly5YVeFMWIiIi+noVNAYEgAYNGuDYsWNYsmQJTE1NYWlpicaNG+fad/Xq1TF79mz4+vri3r176Nq1K7S1tXH37l3s3r0bw4YNw4QJE3D8+HF4e3ujV69esLa2RmZmJjZu3AhFRUX06NEDAPDLL7/g5MmT6NSpE8zNzZGUlITVq1ejSpUq4kZ1ebl165Y4g/lT9evXR6dOnQo0zo8cHBxQo0YNTJ06FWlpaVJLVgAf4uDffvsNP/zwAxwcHNC3b18YGhoiISEBBw8eRPPmzWUSaPnp06cPLl++jDlz5uDixYvo168fzM3N8fz5c4SGhiIsLExc+uFLxngF/ZnmpDBxfkF/1wwNDeHr64uZM2fCzc0NXbp0QXx8PFavXo2GDRtKbY5XHAX9DFQYwcHBUFRUzDXx3KVLF0ydOhVbtmyR2aivJDVr1gwVKlTAwIED4ePjA4lEgo0bN8p8OaCgoIDffvsN7u7uqFevHgYNGgQTExNcv34dV69eFSfINGjQAADg4+MDV1dXKCoqom/fvnB3d0ebNm0wdepU3Lt3D3Xr1sWRI0ewd+9ejBkzRpzZnBcvLy+8ePECzs7OqFKlCu7fv4+VK1eiXr16UjPCiYpNICIiGYcOHRIGDx4s2NraClpaWoKKiopQo0YNYdSoUcKTJ0+k6mZkZAgzZ84ULC0tBWVlZcHMzEzw9fUV3r9/L9Pvvn37hGbNmgnq6uqCjo6O0KhRI+Gvv/4Szw8cOFAwNzeXarNu3TrByspKUFVVFWxtbYWAgABhxowZwud/hZubmwsDBw4s0P2lpqYKixYtEho2bCjen5WVlTBq1Cjh1q1bUnWPHTsmNG/eXByzu7u7cO3aNak6H8fz9OlTmWuZm5sLnTp1ynEcb968EXx9fYUaNWoIKioqQsWKFYVmzZoJixYtEtLT08V6AIQZM2aIr1++fCkMGjRIqFixoqClpSW4uroK169fz/E9WLNmjVCtWjVBUVFRACCEh4cLgiAITk5OgpOTk1TdJ0+eiP2qqKgIdnZ2QkBAgFSdu3fvCgCEhQsXytzP5+MkIiKir0thYsDr168LrVq1EtTV1QUAYgySV1wkCIKwc+dOoUWLFoKmpqagqakp2NraCiNHjhTi4+MFQRCEO3fuCIMHDxaqV68uqKmpCfr6+kKbNm2EY8eOiX2EhYUJ3333nWBqaiqoqKgIpqamQr9+/YQbN27ke4/m5uYCgByPIUOGFHicn5o6daoAQKhRo0au1w0PDxdcXV0FXV1dQU1NTahevbrg6ekpnD9/XqyTU4ybl4/vg5GRkaCkpCQYGhoK7u7uwt69e6XqFTfGK+7PVBCKF+fn9rsWEBAgABDu3r0rVX/VqlWCra2toKysLFSqVEn46aefhJcvX0rVcXJyEmrXri1zLzmNMycF/Qw0cOBAQVNTM8++0tPTBQMDA6Fly5Z51rO0tBTq168vCMKH36dPY/vCjD23e/8oMjJSaNKkiaCuri6YmpoKkyZNEg4fPixzPUEQhFOnTgnt2rUTtLW1BU1NTcHe3l5YuXKleD4zM1MYNWqUYGhoKEgkEqmf7Zs3b4SxY8cKpqamgrKysmBlZSUsXLhQyM7OlroGAGHkyJEy49yxY4fQvn17wcjISFBRURGqVq0qDB8+XEhMTMz3PSAqDIkgcGcfIiIiIiIiIiIiIpLGNY+JiIiIiIiIiIiISAaTx0REREREREREREQkg8ljIiIiIiIiIiIiIpLB5DERERERERERERERyWDymIiIiIiIiIiIiIhkMHlMRERERERERERERDKYPCYiIiIiIiIiIiIiGUplPQCisnRQ2aash0BERN+IThnxpXKd4v7bVlrjJKKvH2NpIiIqTaURpzKWlsWZx0RERERyRKIsKdZBRIXTunVrjBkzpsjt7927B4lEgpiYGABAREQEJBIJkpOTi9SeiIiIio6xtCzOPCYiIiIiIvpKmZmZITExERUrVizroRB9s8x/6o9q44ZA1dgQry9dx9Uxs/Dq3OUc6zY5tgEGTo1lypNCInDuu+EAAPt1/jAb0F36/OG/ca6zV8kPnogoH0weExEREckRBSX5nPFARDlTVFSEsbFxWQ+D6Jtl0qsDai70xZWRM5B8NhaWPgPR+OA6RNR2Q/rTFzL1o3uNgoKKsvha2UAPLaP3InFnqFS9pNCTuOTlK77OSkv/cjdBRCLG0rK4bAURERGRHJEoKxTrIKLCy8zMhLe3N3R1dVGxYkVMmzYNgiAAACQSCfbs2SNVX09PD4GBgfn2+/btW+jo6GDHjh1S5Xv27IGmpibevHmT67IXYWFhcHR0hIaGBpo1a4b4eOk1GGfPng0jIyNoa2vDy8sLU6ZMQb169Yr6FhB9syzHDMKDddvwb9AupMTdxuURM5CV+h5mnj1yrJ/x8hXSnjwTj4ptmyMr9T0Sd0gnj7PT0qXqZSa/Lo3bIfrmMZaWJZ93RURERPSNUlCSFOsgosILCgqCkpISzp49i+XLl2PJkiVYu3ZtsfvV1NRE3759ERAQIFUeEBCAnj17QltbO9e2U6dOxeLFi3H+/HkoKSlh8ODB4rng4GDMmTMH8+fPR3R0NKpWrYrffvut2OMl+tZIlJWh61Abz8JO/1coCHh2/DT0mtQvUB9mg3ogcdtBZKW+kyo3cGqEtg9Pw+lKKOqs8oOyvl4JjpyIcsNYWhaXrSAiIiKSI/K6UQdReWZmZoalS5dCIpHAxsYGly9fxtKlSzF06NBi9+3l5YVmzZohMTERJiYmSEpKQkhICI4dO5Znuzlz5sDJyQkAMGXKFHTq1Anv37+HmpoaVq5ciSFDhmDQoEEAgOnTp+PIkSNISUkp9niJviUqFStAQUkJaUnPpcrTnjyHpk21fNvrNrSDTh0bXBo2Var86eG/8Xj3Uby79y80qpnBZtY4NDqwBpEt+gDZ2SV6D0QkjbG0LM48JiIiIiIiKoYmTZpAIvnvw2bTpk1x8+ZNZGVlFbvvRo0aoXbt2ggKCgIAbNq0Cebm5mjVqlWe7ezt7cX/NzExAQAkJSUBAOLj49GoUSOZ6+QlLS0Nr1+/ljoyBCaxiIrDbFBPvL4cL7O5XuK2ECQdOI43V27gyb4wnOs6HHoN7WHglPefUyKiL4HJYyIiIiI5wkftiMoXiUQirn/8UUZGRqH68PLyEtdIDggIwKBBg6SS1TlRVv5vQ66PdbOLMWPR398furq6Use2bNnNwIi+JenPXiI7MxOqRgZS5aqVDJD2+FmebRU11GHauxMeBOzIsx4AvLv7L9KevoBmDfNijZeI8sdYWhaTx0RERERyRKIsKdZBRIUXFRUl9fqff/6BlZUVFBUVYWhoiMTERPHczZs3kZqaWqj+v//+e9y/fx8rVqzAtWvXMHDgwGKN18bGBufOnZMq+/z153x9ffHq1Supo7eCfrHGQfS1EzIy8OrCVVR0bvpfoUQCgzZNkfzPxTzbmvR0g4KqCh4G78v3OmqVK0HFQA/vE58Wd8hElA/G0rK45jERERGRHJHXGQ9E5VlCQgLGjRuH4cOH48KFC1i5ciUWL14MAHB2dsaqVavQtGlTZGVlYfLkyVKzgguiQoUK6N69OyZOnIj27dujSpUqxRrvqFGjMHToUDg6OqJZs2bYunUrLl26hGrVcl+jVVVVFaqqqlJlyhLORSK6uywAddfPR3L0Fbw6dwkWPgOhpKmOB0G7AAB1A+bj/cMniP95iVQ7s0E98WTvMWS8SJYqV9TUgNU0bzzefRhpj59Bo5oZas6biLe37uPZkb9L67aIvlmMpWUxeUxEREQkRySKDHiJStuAAQPw7t07NGrUCIqKihg9ejSGDRsGAFi8eDEGDRqEli1bwtTUFMuXL0d0dHShrzFkyBBs3rwZgwcPLvZ4PTw8cOfOHUyYMAHv379H79694enpibNnzxa7b6JvTeL2Q1Ax1If1DB+oGhvidWwcznb2Qvr/b6KnbmYC4bMlYzStLaHfwhFRboNk+hOysqBjZ40qP3SFsp423j9KwrNjkYifsRzZ6YVb8oaICo+xtCyJ8PkCXETfkIPKNmU9BCIi+kZ0yogvleucqutQrPYtYi+U0EiIqCRt3LgRY8eOxaNHj6CiolLi/bdr1w7GxsbYuHFjgdswliYiotJUGvE0Y2lZnHlMRERERERUTqWmpiIxMRHz5s3D8OHDSyRxnJqait9//x2urq5QVFTEX3/9hWPHjuHo0aMlMGIiIiKSJ1ykioiIiEiOSBQkxTqIqHxZsGABbG1tYWxsDF9f3xLpUyKRICQkBK1atUKDBg2wf/9+7Ny5E23bti2R/omIiL5WjKVlceYxERERkRyRKHJuAJE88fPzg5+fX4n2qa6ujmPHjpVon0RERPKAsbQsJo+JiIiI5IgCN/kgolIiUebfN0REJF8YS8tiOp2IiIhIjvBRu6+fIAgYNmwY9PX1IZFIEBMTU9ZDIiIiIvomMJaWxeQxEREREVE5EhoaisDAQBw4cACJiYmoU6dOvm0kEgn27Nnz5QdHREQyzIf3R+u4MLi+iEWzE1uh62iXa93GoRvQMfW6zOG46/cc69dZ4YeOqddhMXLAFxo9EVHeuGwFERERkRzho3Zfv9u3b8PExATNmjUr9Wunp6dDRUWl1K+bly85poyMDCgrK3+RvsuKIAjIysqCkhI/6hGVBpMeHWA7bwqu+vgh+VwsLLwHotHetThRrwPSn76QqX+h3yhIVP77e0dFXw8tovYgcddhmbqVurSFXqO6eP/oyRe9ByL6D2NpWZx5TERERCRHJIqSYh1Utjw9PTFq1CgkJCRAIpHAwsICFhYWWLZsmVS9evXqiZuoWVhYAAC6desmtvnYV9euXaXajRkzBq1btxZft27dGt7e3hgzZgwqVqwIV1dXAMCVK1fQoUMHaGlpoVKlSvjhhx/w7NmzAt1DdnY2FixYgBo1akBVVRVVq1bFnDlzxPOTJ0+GtbU1NDQ0UK1aNUybNg0ZGRnieT8/P9SrVw9r166FpaUl1NTUAADJycnw8vKCoaEhdHR04OzsjNjYWKlr7927Fw4ODlBTU0O1atUwc+ZMZGZmiuclEgl+++03dOnSBZqamlLjys3Vq1fRuXNn6OjoQFtbGy1btsTt27fFe/3ll19QpUoVqKqqol69eggNDRXb3rt3DxKJBLt27UKbNm2goaGBunXr4syZM1LXiIyMROvWraGhoYEKFSrA1dUVL1++FK/h7+8PS0tLqKuro27dutixY4fYNiIiAhKJBIcOHUKDBg2gqqqKU6dOoXXr1vDx8cGkSZOgr68PY2NjqY33BEGAn58fqlatClVVVZiamsLHxyff94OIpFn6eOJBwHb8u3EXUq7fxpVRM5D17j2qDOiRY/2Ml6+Q/uSZeFR0boas1Pd4vCtUqp6qqRFqLf4ZMYMmIjsjM8e+iKjkMZaWxeQxERERkRyRKCgU66CytXz5cjEZmZiYiHPnzuXb5mOdgICAArf5VFBQEFRUVBAZGYnff/8dycnJcHZ2Rv369XH+/HmEhobiyZMn6N27d4H68/X1xbx58zBt2jRcu3YNmzdvRqVKlcTz2traCAwMxLVr17B8+XKsWbMGS5culerj1q1b2LlzJ3bt2iWu+dyrVy8kJSXh0KFDiI6OhoODA1xcXPDixYeZfX///TcGDBiA0aNH49q1a/jjjz8QGBgokyD28/NDt27dcPnyZQwePDjPe3n48CFatWoFVVVVHD9+HNHR0Rg8eLCYkF6+fDkWL16MRYsW4dKlS3B1dUWXLl1w8+ZNqX6mTp2KCRMmICYmBtbW1ujXr5/YR0xMDFxcXFCrVi2cOXMGp06dgru7O7KysgAA/v7+2LBhA37//XdcvXoVY8eOxffff48TJ05IXWPKlCmYN28e4uLiYG9vD+DDz1ZTUxNRUVFYsGABfvnlFxw9ehQAsHPnTixduhR//PEHbt68iT179sDOLvdH7YlIlkRZGTr1a+N5+On/CgUBz46fQYXG9QrUh9nAnkjcEYKs1HefdCxB3bULcHfpOqTE3SrZQRNRnhhLy+KzTERERERyRF436vhW6OrqQltbG4qKijA2Ni5QG0NDQwCAnp5egdt8ysrKCgsWLBBfz549G/Xr18fcuXPFsvXr18PMzAw3btyAtbV1rn29efMGy5cvx6pVqzBw4EAAQPXq1dGiRQuxzs8//yz+v4WFBSZMmIAtW7Zg0qRJYnl6ejo2bNgg3tupU6dw9uxZJCUlQVVVFQCwaNEi7NmzBzt27MCwYcMwc+ZMTJkyRbxutWrVMGvWLEyaNAkzZswQ++7fvz8GDRpUoPfm119/ha6uLrZs2SIub/Hp/S9atAiTJ09G3759AQDz589HeHg4li1bhl9//VWsN2HCBHTq1AkAMHPmTNSuXRu3bt2Cra0tFixYAEdHR6xevVqsX7t2bQBAWloa5s6di2PHjqFp06bifZ06dQp//PEHnJycxDa//PIL2rVrJzV+e3t78d6trKywatUqhIWFoV27dkhISICxsTHatm0LZWVlVK1aFY0aNSrQ+0JEH6hUrAAFJSWkPXkuVZ6W9AxaNpb5ttd1tIN2HWtcGjFVqrz6+KEQMrNwb/XGEh0vEeWPsbQsJo+JiIiIiL5hDRo0kHodGxuL8PBwaGlpydS9fft2nsnjuLg4pKWlwcXFJdc6W7duxYoVK3D79m2kpKQgMzMTOjo6UnXMzc3FxPHHMaWkpMDAwECq3rt378QlJGJjYxEZGSk10zgrKwvv379HamoqNDQ0AACOjo65ju1zMTExaNmyZY7rIr9+/RqPHj1C8+bNpcqbN28us5zGx5nAAGBiYgIASEpKgq2tLWJiYtCrV68cr3/r1i2kpqbKJIXT09NRv359qbKc7uvT6368dlJSEoAPM7mXLVuGatWqwc3NDR07doS7u3uuayWnpaUhLS1NqixDyIayRD5nWRGVBrOBPfH6cjxenb8slunUrw2LkT/gVLOcl70gIiptTB4TERERyRFu8iF/FBQUIAiCVNmnawQXt52mpqbU65SUFLi7u2P+/PkydT8mPnOjrq6e5/kzZ87Aw8MDM2fOhKurqzird/HixfmOycTEBBERETJ96unpiXVmzpyJ7t27y9T5uG5yTn3nJb/7KahPk88SyYc/o9nZ2fleIyUlBQBw8OBBVK5cWercxxnYH+V0X58nvSUSiXhdMzMzxMfH49ixYzh69ChGjBiBhQsX4sSJEzkmy/39/TFz5kypsv5KBvBQrpjr+InkXfqzl8jOzIRqJekvtlSNKiLtSd7rxCtqqMOkZ0fcnLVCqly/WQOoGBqgTfxxsUxBSQk1502GhfdARNTM/cs5Iio+xtKymDwmIiIikiN81E7+GBoaIjExUXz9+vVr3L17V6qOsrKyuEbup+2uXLkiVRYTE5NjYvBTDg4O2LlzJywsLHKdhZobKysrqKurIywsDF5eXjLnT58+DXNzc0yd+t8j2vfv38+3XwcHBzx+/BhKSkrihoA51YmPj0eNGjUKNea82NvbIygoCBkZGTLvm46ODkxNTREZGSm1fERkZGShln+wt7dHWFiYTGIWAGrVqgVVVVUkJCRIXaOkqKurw93dHe7u7hg5ciRsbW1x+fJlODg4yNT19fXFuHHjpMrCKxV8FjeRPBIyMvD64lUYtG6KJ/vDPhRKJDBo0wT3fw/Os61xdzcoqKrg4Zb9UuUP/9qHZ+HSm2o22rcWDzfvxb8bd5fo+IlIFmNpWUweExEREckRed2o41vm7OyMwMBAuLu7Q09PD9OnT4eioqJUHQsLC4SFhaF58+ZQVVVFhQoV4OzsjIULF2LDhg1o2rQpNm3ahCtXrsgsd/C5kSNHYs2aNejXrx8mTZoEfX193Lp1C1u2bMHatWtlrv0pNTU1TJ48GZMmTYKKigqaN2+Op0+f4urVqxgyZAisrKyQkJCALVu2oGHDhjh48CB2784/GdK2bVs0bdoUXbt2xYIFC2BtbY1Hjx7h4MGD6NatGxwdHTF9+nR07twZVatWRc+ePaGgoIDY2FhcuXIFs2fPLtib/Rlvb2+sXLkSffv2ha+vL3R1dfHPP/+gUaNGsLGxwcSJEzFjxgxUr14d9erVQ0BAAGJiYhAcnHfS6FO+vr6ws7PDiBEj8OOPP0JFRQXh4eHo1asXKlasiAkTJmDs2LHIzs5GixYt8OrVK0RGRkJHR0dc37koAgMDkZWVhcaNG0NDQwObNm2Curo6zM3Nc6yvqqoqM9uZS1YQAXdXBMJ+zTy8unAFyecvwdJ7IJQ01PHvxl0AAPs185D2KAnxM5ZItTMb2ANP9h9DxotkqfKMF8kyZdkZmUh78gxvb0p/cUhEJY+xtCy+I0RERERyRKIgKdZB5Y+vry+cnJzQuXNndOrUCV27dkX16tWl6ixevBhHjx6FmZmZmBx2dXXFtGnTMGnSJDRs2BBv3rzBgAED8r3ex9m0WVlZaN++Pezs7DBmzBjo6elBoQAfqKZNm4bx48dj+vTpqFmzJvr06SOus9ulSxeMHTsW3t7eqFevHk6fPo1p06bl26dEIkFISAhatWqFQYMGwdraGn379sX9+/dRqVIl8X4PHDiAI0eOoGHDhmjSpAmWLl2aazK0IAwMDHD8+HGkpKTAyckJDRo0wJo1a8RZyD4+Phg3bhzGjx8POzs7hIaGYt++fbCysirwNaytrXHkyBHExsaiUaNGaNq0Kfbu3SvO+p41axamTZsGf39/1KxZE25ubjh48CAsLfPfjCsvenp6WLNmDZo3bw57e3scO3YM+/fvl1lXmojylrjzEK7/bwGsp41Ci3/2QMfeFme7DkV60odN9NTNTKFqbCjVRtPKEvrNHfFv0M6yGDIR5YGxtCyJ8PlCaETfkIPKNmU9BCIi+kZ0yogvletc7tymWO3tDoSX0EiISN6FaNiW9RCIiOgb0jH1+he/RlnE0r/++isWLlyIx48fo27duli5cmWeS2AlJydj6tSp2LVrF168eAFzc3MsW7YMHTt2LM7Qc8VlK4iIiIjkCDf5ICIiIiIqmtKOpbdu3Ypx48bh999/R+PGjbFs2TK4uroiPj4eRkZGMvXT09PRrl07GBkZYceOHahcuTLu378vbiD8JXDZCiIiIiI5UhaP2v3666+wsLCAmpoaGjdujLNnz+ZZPzk5GSNHjoSJiQlUVVVhbW2NkJCQIl2bSldCQgK0tLRyPRISEsp6iIXy448/5novP/74Y1kPj4iIiEpZacfSS5YswdChQzFo0CDUqlULv//+OzQ0NLB+/foc669fvx4vXrzAnj170Lx5c1hYWMDJyQl169Yt7q3nijOPiYiIiORIaW/y8TXMlqCSY2pqipiYmDzPf01++eUXTJgwIcdzOjo6pTwaIiIiKmvFjaXT0tKQlpYmVZbTprPAh7g4Ojoavr6+YpmCggLatm2LM2fO5Nj/vn370LRpU4wcORJ79+6FoaEh+vfvj8mTJ+e5qXFxMHlMREREJEdKe6OOT2dLAMDvv/+OgwcPYv369ZgyZYpM/Y+zJU6fPi1uOmZhYVGaQ6ZiUFJSQo0aNcp6GCXGyMgoxy85qGAUlLhMDhERyZfixtL+/v6YOXOmVNmMGTPg5+cnU/fZs2fIysoSN//9qFKlSrh+Pef1ne/cuYPjx4/Dw8MDISEhuHXrFkaMGIGMjAzMmDGjWGPPDZet+Ma1bt0aY8aMKXL7e/fuQSKRiDNQIiIiIJFIkJycXKT2RERE9PX4OFuibdu2YllhZktUqlQJderUwdy5c5GVlVVawybKU3mJTyUSCfbs2VOq17SwsMCyZctK9ZpERETyxNfXF69evZI6Pp1ZXFzZ2dkwMjLCn3/+iQYNGqBPnz6YOnUqfv/99xK7xuc485jKlJmZGRITE1GxYsWyHgrRN8v8p/6oNm4IVI0N8frSdVwdMwuvzl3OsW6TYxtg4NRYpjwpJALnvhsOALBf5w+zAd2lzx/+G+c6e5X84IlIRnFnSxTmUbuvZbYEUWEUJT5t3bo16tWrx8Qr0Teq6tD+sPQZDJVKFfHmynXETZyDV9E5x9ONDgZBv2UjmfKkwydwoZfsWuu1ls5A1SF9ETfFH/dXbyjxsRORtOLG0rnFzTmpWLEiFBUV8eTJE6nyJ0+ewNjYOMc2JiYmUFZWllqiombNmnj8+DHS09OhoqJS9MHngjOPqUwpKirC2NgYSkr8HoOoLJj06oCaC31xc/avONWoG95cuo7GB9dBxVA/x/rRvUbhWJXm4nGibidkZ2YicWeoVL2k0JNS9S5+P640boeIUPxNPvz9/aGrqyt1+Pv7l9j4ymK2BFFhMD4losIw7t4BtnMn49a8X3G6ZQ+8uRwPx11roFIx53j64vc+OF6jpXicauSO7MxMPNkdKlPXqHNb6DWsi/ePnuTQExF9CaW5YZ6KigoaNGiAsLAwsSw7OxthYWFo2rRpjm2aN2+OW7duITs7Wyy7ceMGTExMvkjiGGDymABkZmbC29sburq6qFixIqZNmwZBEADk/Licnp4eAgMD8+337du30NHRwY4dO6TK9+zZA01NTbx58ybXZS/CwsLg6OgIDQ0NNGvWDPHx8VJ9zJ49G0ZGRtDW1oaXlxemTJmCevXqFfUtIPpmWY4ZhAfrtuHfoF1IibuNyyNmICv1Pcw8e+RYP+PlK6Q9eSYeFds2R1bqeyTukA52s9PSpeplJr8ujdshInzY5KM4R2EetSvqbAlra+tcZ0sQ5Sc0NBQtWrSAnp4eDAwM0LlzZ9y+fRvAf0tO7Nq1C23atIGGhgbq1q0rtYzK4MGDYW9vL86wT09PR/369TFgwACpPj5dtuLKlSvo0KEDtLS0UKlSJfzwww949uwZAMDT0xMnTpzA8uXLIZFIIJFIcPfuXdSoUQOLFi2SGntMTAwkEglu3bpV6Pt+8OABevfuDT09Pejr6+O7777DvXv3AABHjhyBmpqazNJxo0ePhrOzs/j61KlTaNmyJdTV1WFmZgYfHx+8ffu20GMhov9YeA/Eg6DteBi8G2/jb+PqGD9kvXuPyj90z7F+xstXSE96Jh4Gzs2Qnfoej/cclqqnamKEWgun4pLXJAgZmaVxK0SE4sfShTVu3DisWbMGQUFBiIuLw08//YS3b9+K+4kMGDBAKhb/6aef8OLFC4wePRo3btzAwYMHMXfuXIwcObLE3oPPMXlMCAoKgpKSEs6ePYvly5djyZIlWLt2bbH71dTURN++fREQECBVHhAQgJ49e0JbWzvXtlOnTsXixYtx/vx5KCkpYfDgweK54OBgzJkzB/Pnz0d0dDSqVq2K3377rdjjJfrWSJSVoetQG8/CTv9XKAh4dvw09JrUL1AfZoN6IHHbQWSlvpMqN3BqhLYPT8PpSijqrPKDsr5eCY6ciPKioCgp1qGqqgodHR2pI7dH776W2RIkX96+fYtx48bh/PnzCAsLg4KCArp16yb1OzV16lRMmDABMTExsLa2Rr9+/ZCZ+SH5smLFCrx9+1bc0HHq1KlITk7GqlWrcrxecnIynJ2dUb9+fZw/fx6hoaF48uQJevfuDQBYvnw5mjZtiqFDhyIxMRGJiYmoWrUqBg8enGMc3KpVq0JvOpiRkQFXV1doa2vj77//RmRkJLS0tODm5ob09HS4uLhAT08PO3fuFNtkZWVh69at8PDwAADcvn0bbm5u6NGjBy5duoStW7fi1KlT8Pb2LtRYiOg/EmVl6NSrjefhn6zzLwh4HnEGeo3qFaiPKj/0QOLOEOl4WiKB/Z/zcXfFeqRcL/yXTURUdMWNpQurT58+WLRoEaZPn4569eohJiYGoaGh4rJwCQkJSExMFOubmZnh8OHDOHfuHOzt7eHj44PRo0fnuFF1SeGzWAQzMzMsXboUEokENjY2uHz5MpYuXYqhQ4cWu28vLy80a9YMiYmJMDExQVJSEkJCQnDs2LE8282ZMwdOTk4AgClTpqBTp054//491NTUsHLlSgwZMkT8Fmb69Ok4cuQIUlJSij1eom+JSsUKUFBSQlrSc6nytCfPoWlTLd/2ug3toFPHBpeGTZUqf3r4bzzefRTv7v0LjWpmsJk1Do0OrEFkiz7AJx/siejLKO46bYU1btw4DBw4EI6OjmjUqBGWLVsmM1uicuXK4tIXP/30E1atWoXRo0dj1KhRuHnzJubOnQsfH59SHTd9vXr0kH46Zv369TA0NMS1a9egpaUFAJgwYQI6deoEAJg5cyZq166NW7duwdbWFlpaWti0aROcnJygra2NZcuWITw8HDo6Ojleb9WqVahfvz7mzp0rdU0zMzPcuHED1tbWUFFRgYaGhtSMe09PT0yfPh1nz55Fo0aNkJGRgc2bN8vMRi6IrVu3Ijs7G2vXroVE8uHPeEBAAPT09BAREYH27dujb9++2Lx5M4YMGQIACAsLQ3Jysvh++fv7w8PDQ9ws28rKCitWrICTkxN+++03qKmpFXpcRN86FQM9KCgpIf3pZ/F00nNoWlvm2163gR20a1vjivfPUuXVxnpByMrC/d82luh4iSh/pR1LA4C3t3euX+ZGRETIlDVt2hT//PPPFx7VfzjzmNCkSRMxCAU+/BLevHmzRHY9b9SoEWrXro2goCAAwKZNm2Bubo5WrVrl2c7e3l78fxMTEwBAUlISACA+Ph6NGklvMPD565ykpaXh9evXUkeGwEQWUVGZDeqJ15fjZTbXS9wWgqQDx/Hmyg082ReGc12HQ6+hPQyc8v9zSkRfn69htgTJl5s3b6Jfv36oVq0adHR0YGFhAeDD79pHecWSwId4d8KECZg1axbGjx+PFi1a5Hq92NhYhIeHQ0tLSzxsbW0BQFwuIyempqbo1KkT1q9fDwDYv38/0tLS0KtXr0Lfc2xsLG7dugVtbW1xDPr6+nj//r04Bg8PD0RERODRo0cAPjyt16lTJ+jp6Yl9BAYGSt2Hq6srsrOzcffu3XzHkFMsnc5YmqhYqvzQA2+uxEttrqdTrxbMf/oBl3/MeckoIqLSxpnHlCeJRCKuf/xRRkZGofrw8vLCr7/+iilTpiAgIACDBg2SSlbnRFlZWWoMAKQeRSwKf39/zJw5U6qsn0QfHooF30mbSJ6kP3uJ7MxMqBoZSJWrVjJA2uNnebZV1FCHae9OuDFzRb7XeXf3X6Q9fQHNGuZ4Hl56344SfauKstZacZX32RIkX9zd3WFubo41a9bA1NQU2dnZqFOnjtSa2fnFktnZ2YiMjISiomK+6w+npKTA3d0d8+fPlzn3MTGdGy8vL/zwww9YunQpAgIC0KdPH2hoaBToPj8fQ4MGDRAcHCxzztDQEADQsGFDVK9eHVu2bMFPP/2E3bt3S+1TkpKSguHDh+c4y79q1ar5jiGnWNpDxQDfqxoW8m6I5Ef682RkZ2ZCxfCzeNrIAGlP8o+njXt0xK25K6XKKzRzhIqhAZyuHRfLFJSUYDtnEix+GoATdm1L7gaISEZZxNLlHZPHhKioKKnX//zzD6ysrKCoqAhDQ0Op2UI3b95Eampqofr//vvvMWnSJKxYsQLXrl3DwIEDizVeGxsbnDt3TtzUBADOnTuXbztfX1+MGzdOquy4foNijYXoayZkZODVhauo6NwUT/b9/3qlEgkM2jTF/dWb8mxr0tMNCqoqeBi8L9/rqFWuBBUDPbxPfFoSwyaifJTFo3ZEpeX58+eIj4/HmjVr0LJlSwAfNoErrIULF+L69es4ceIEXF1dxQkOOXFwcMDOnTthYWEBJaWcPz6pqKjk+NRex44doampid9++w2hoaE4efJkocf6cQxbt26FkZFRrstrAB9mHwcHB6NKlSpQUFAQl+742Me1a9cKvd7yRznF0hGVGxapLyJ5IWRk4HXMVRi0boKkg5/E005NcP9P2S97PmXc1RUKqip4tHW/VPmjLfuk11AG4Lh7DR5t2YeHm3aV6PiJSBZjaVlMpxMSEhIwbtw4xMfH46+//sLKlSsxevRoAICzszNWrVqFixcv4vz58/jxxx+lZnIURIUKFdC9e3dMnDgR7du3R5UqVYo13lGjRmHdunUICgrCzZs3MXv2bFy6dCnf2cw5bQCkLOEfAfq23V0WALMhvVH5h67Qsq2GOr/6QUlTHQ+CPgSmdQPmw2b2OJl2ZoN64sneY8h4kSxVrqipAdt5k6DXuC7UzSvDoE0TOO5ajbe37uPZkb9L45aIvnkSBUmxDqLyrEKFCjAwMMCff/6JW7du4fjx4zIJzfxcvHgR06dPx9q1a9G8eXMsWbIEo0ePxp07d3KsP3LkSLx48QL9+vXDuXPncPv2bRw+fBiDBg0SE8YWFhaIiorCvXv38OzZM3GWs6KiIjw9PeHr6wsrK6tcN5LMj4eHBypWrIjvvvsOf//9N+7evYuIiAj4+Pjg33//lap34cIFzJkzBz179pTa7HLy5Mk4ffo0vL29ERMTg5s3b2Lv3r0F3jAvp1hahbE0Ee6tCkKVgb1g2v87aFpXQ+2lM6CooY6Hm3YDAOz+mAfrGWNl2lUe0ANJB8Nk4umMF8lIibspdQgZmUhLeoa3t+6Vwh0RfdsYS8viv/aEAQMG4N27d2jUqBFGjhyJ0aNHY9iwYQCAxYsXw8zMDC1btkT//v0xYcKEIj1qN2TIEKSnp2Pw4MHFHq+Hhwd8fX0xYcIEODg44O7du/D09OQmH0RFkLj9EOImz4f1DB+0OL8XOnVr4mxnL6T//yZ66mYmUDWRfhxV09oS+i0c8SBgh0x/QlYWdOys4bjrN7S+Fgr7P+fg1YWrONPGA9nphVvyhoiKRqKgUKyDqDxTUFDAli1bEB0djTp16mDs2LFYuHBhgdu/f/8e33//PTw9PeHu7g4AGDZsGNq0aYMffvghx9nDpqamiIyMRFZWFtq3bw87OzuMGTMGenp6UPj/PzMTJkyAoqIiatWqBUNDQ6n1lz/GwbnNbC4IDQ0NnDx5ElWrVkX37t1Rs2ZNDBkyBO/fv5eaiVyjRg00atQIly5dgoeHh1Qf9vb2OHHiBG7cuIGWLVuifv36mD59OkxNTYs8LiICHu86hPifF8Dqfz5oHrkb2va2ON9jmLiJnnoVE6gafxZP17CAfjNH/LthZ1kMmYjywFhalkT4fEFboi9g48aNGDt2LB49egQVFZUS779du3YwNjbGxo2F2432oLJNiY+FiIgoJ50y4kvlOgk/di9W+6q/85FYopL0999/w8XFBQ8ePBA3kpQXoTo1y3oIRET0DXF7HffFr8FYWhbXPKYvKjU1FYmJiZg3bx6GDx9eIonj1NRU/P7773B1dYWioiL++usvHDt2DEePHi2BERMREX3d5PVxOaKvTVpaGp4+fQo/Pz/06tVL7hLHRERE8oixtCz5nE9N5caCBQtga2sLY2Nj+Pr6lkifEokEISEhaNWqFRo0aID9+/dj586daNuWu84SERHxUTui8uGvv/6Cubk5kpOTsWDBAqlzwcHB0NLSyvGoXbt2GY2YiIiIGEvL4rIV9E3jshVERFRaSmvZin9H9S5W+yort5XQSIgoN2/evMGTJ09yPKesrAxzc/NSHlHRcNkKIiIqTaWxbAVjaVlctoKIiIhIjvBRO6LyT1tbG9ra2mU9DCIiIvoMY2lZ8jmfmoiIiIiIqIBat26NMWPGlPUwiiwiIgISiQTJycllPRQiIiKSM5x5TERERCRH5HWtNSLKXbNmzZCYmAhdXd2yHgrRN6nq0P6w9BkMlUoV8ebKdcRNnINX0ZdzrNvoYBD0WzaSKU86fAIXev0IAKjhOxLGPTpCrbIxhPQMvIq5hpuzluHV+Utf9D6IiLF0Tpg8JiIiIpIjfNSOqPxJT0+HiorKF+tfRUUFxsbGX6x/IsqdcfcOsJ07GVfH+CH5/CVYjBgAx11r8HeDjkh/9kKm/sXvfSBRVhZfq+jrodnp3XiyO1Qse3vrHuImzEbqvQdQVFOD+ciBcNy9FifruSLj+ctSuS+ibxVjaVlMpxMRERHJEe4QTZS3t2/fYsCAAdDS0oKJiQkWL14sdT4tLQ0TJkxA5cqVoampicaNGyMiIkI8HxgYCD09PezZswdWVlZQU1ODq6srHjx4INbx8/NDvXr1sHbtWlhaWkJNTQ0AkJycDC8vLxgaGkJHRwfOzs6IjY0V28XGxqJNmzbQ1taGjo4OGjRogPPnzwMA7t+/D3d3d1SoUAGampqoXbs2QkJCAOS8bMXOnTtRu3ZtqKqqwsLCQuY+LSwsMHfuXAwePBja2tqoWrUq/vzzzxJ5j4m+JRbeA/EgaDseBu/G2/jbuDrGD1nv3qPyD91zrJ/x8hXSk56Jh4FzM2SnvsfjPYfFOonbD+J5xBm8u/cvUq7fwvX/zYOyrja063DDd6IvjbG0LPm8KyIiIqJvlERBUqyDSN5NnDgRJ06cwN69e3HkyBFERETgwoUL4nlvb2+cOXMGW7ZswaVLl9CrVy+4ubnh5s2bYp3U1FTMmTMHGzZsQGRkJJKTk9G3b1+p69y6dQs7d+7Erl27EBMTAwDo1asXkpKScOjQIURHR8PBwQEuLi548eLD7EQPDw9UqVIF586dQ3R0NKZMmQLl/5+hOHLkSKSlpeHkyZO4fPky5s+fDy0trRzvMTo6Gr1790bfvn1x+fJl+Pn5Ydq0aQgMDJSqt3jxYjg6OuLixYsYMWIEfvrpJ8THxxf3LSb6ZkiUlaFTrzaeh5/5r1AQ8DziDPQa1StQH1V+6IHEnSHISn2X6zXMPHsjI/k13ly+XgKjJqK8MJaWxWUriIiIiIjom5CSkoJ169Zh06ZNcHFxAQAEBQWhSpUqAICEhAQEBAQgISEBpqamAIAJEyYgNDQUAQEBmDt3LgAgIyMDq1atQuPGjcU+atasibNnz6JRow9rmaanp2PDhg0wNDQEAJw6dQpnz55FUlISVFVVAQCLFi3Cnj17sGPHDgwbNgwJCQmYOHEibG1tAQBWVlbi2BMSEtCjRw/Y2dkBAKpVq5brfS5ZsgQuLi6YNm0aAMDa2hrXrl3DwoUL4enpKdbr2LEjRowYAQCYPHkyli5divDwcNjYcHYjUUGoGOhBQUkJ6U+fS5WnJT2HprVlvu11G9hBu7Y1rnj/LHPO0K016q5fBEUNdaQ9fopzXYcg40VySQ2diKjAOPOYiIiISI5wtgRR7m7fvo309HQx6QsA+vr6YrL08uXLyMrKgrW1NbS0tMTjxIkTuH37tthGSUkJDRs2FF/b2tpCT08PcXFxYpm5ubmYOAY+LEmRkpICAwMDqb7v3r0r9j1u3Dh4eXmhbdu2mDdvntQ1fXx8MHv2bDRv3hwzZszApUu5b5wVFxeH5s2bS5U1b94cN2/eRFZWllhmb28v/r9EIoGxsTGSkpJy7DMtLQ2vX7+WOtKF7FzHQET5q/JDD7y5Ep/j5novTkbhdIvu+Kddfzw7dgr1ApdCpaJ+GYyS6NvCWFoWk8dERERE8kRBoXgH0TcsJSUFioqKiI6ORkxMjHjExcVh+fLlhepLU1NTpm8TExOpfmNiYhAfH4+JEycC+LBW8tWrV9GpUyccP34ctWrVwu7duwEAXl5euHPnDn744QdcvnwZjo6OWLlyZbHuV/mTTbuADwnk7OycE8L+/v7Q1dWVOralP8+xLtG3Iv15MrIzM6FiaCBVrmpkgLQnz/Jsq6ihDuMeHfHvxp05ns9KfYfUOwl4dS4WV7x/hpCVhSoDepTY2IkoF4ylZcjnXRERERF9oyQSSbEOInlWvXp1KCsrIyoqSix7+fIlbty4AQCoX78+srKykJSUhBo1akgdxsbGYpvMzExxIzsAiI+PR3JyMmrWrJnrtR0cHPD48WMoKSnJ9F2xYkWxnrW1NcaOHYsjR46ge/fuCAgIEM+ZmZnhxx9/xK5duzB+/HisWbMmx2vVrFkTkZGRUmWRkZGwtraGoqJiAd8tab6+vnj16pXU0VvFIP+GRHJMyMjA65irMGjd5L9CiQQGTk2QfDYmz7bGXV2hoKqCR1v3F+haEgUJFFRVijFaIioIxtKyuOYxERERkRyR112eiUqClpYWhgwZgokTJ8LAwABGRkaYOnUqFP7/z421tTU8PDwwYMAALF68GPXr18fTp08RFhYGe3t7dOrUCcCHGbujRo3CihUroKSkBG9vbzRp0kRc7zgnbdu2RdOmTdG1a1csWLAA1tbWePToEQ4ePIhu3bqhdu3amDhxInr27AlLS0v8+++/OHfuHHr0+DDTcMyYMejQoQOsra3x8uVLhIeH55qsHj9+PBo2bIhZs2ahT58+OHPmDFatWoXVq1cX+b1TVVUV12r+SEXCv2+I7q0Kgt3v/nh18Qpenb8MixEDoKihjoebPjw1YPfHPKQ9eoIbM5dKtas8oAeSDobJrGOsqKGOahOGI+lQONIeP4WKgR6qDu0PVZNKeLz7cGndFtE3i7G0LCaPiYiIiIjom7Fw4UKkpKTA3d0d2traGD9+PF69eiWeDwgIwOzZszF+/Hg8fPgQFStWRJMmTdC5c2exjoaGBiZPnoz+/fvj4cOHaNmyJdatW5fndSUSCUJCQjB16lQMGjQIT58+hbGxMVq1aoVKlSpBUVERz58/x4ABA/DkyRNUrFgR3bt3x8yZMwEAWVlZGDlyJP7991/o6OjAzc0NS5cuzfFaDg4O2LZtG6ZPn45Zs2bBxMQEv/zyi9RmeURUMh7vOgSVihVg9T8fqFaqiNeX43C+xzBxEz31KibAZ8vBaNawgH4zR5z7bohMf0JWFjStq6F+/65QMaiA9BfJeHXhMqLcvkfK9Vulck9ERJ+SCIIglPUgiMrKQWXuJE1ERKWjU0Z8qVznuZ9Xsdob+K0toZEQyafAwECMGTMGycnJZT2UMheqk/syHURERCXN7XVc/pWKibG0LM48JiIiIpInfNSOiIiIiKhoGEvLYPKYiIiISI5IFORzow4iIiIioi+NsbQsJo+JiIiI5IiEG1gRfVGenp5cO/j/qegrl/UQiIiIShRjaVlMHhMRERHJE86WICIiIiIqGsbSMphOJyIiIiIiAtC6dWuMGTOm1K9rYWGBZcuWlVh/ZXUfREREJH8485iIiIhIjki4yQcREVGpqfxDH1Qd7gkVw4pIibuBGzP88Sb2So51629ZhwpNGsqUPzt+EpcGewMADF1dUNmjF7TtakG5gh7OduyFlGvxX/QeiOg/jKVlMXlMREREJEe4yQcREVHpMOrsCqufJyL+51l4dfEyzAZ/j3obfsc/zl2Q8fyFTP3Lw8dCQeW/tcKV9fTQ8NB2JIUcEcsUNdSRfP4inhw8gprz/UrjNojoE4ylZTGdTkRERCRPJArFO4i+cdnZ2Zg0aRL09fVhbGwMPz8/8VxycjK8vLxgaGgIHR0dODs7IzY2Vjx/+/ZtfPfdd6hUqRK0tLTQsGFDHDt2TKr/pKQkuLu7Q11dHZaWlggODpYZw5IlS2BnZwdNTU2YmZlhxIgRSElJkaoTGRmJ1q1bQ0NDAxUqVICrqytevnxZoPsoyL0QUf7MvAbg0ZadSNy+F6m37iB+6ixkv3sH095dc6yf+eo10p8+F48KLZsi+917JB08KtZ5vPsA7q34Ay8j/ymluyAiKYylZcjnXRERERF9oyQKkmIdRN+6oKAgaGpqIioqCgsWLMAvv/yCo0c/JHZ69eqFpKQkHDp0CNHR0XBwcICLiwtevPgwwzAlJQUdO3ZEWFgYLl68CDc3N7i7uyMhIUHs39PTEw8ePEB4eDh27NiB1atXIykpSWoMCgoKWLFiBa5evYqgoCAcP34ckyZNEs/HxMTAxcUFtWrVwpkzZ3Dq1Cm4u7sjKyurQPdRkHshorxJlJWgXacmXnya5BUEvIiMgo5D3QL1Ydq7G57sD0X2u3dfaJREVFiMpWUxeUxERERERPT/7O3tMWPGDFhZWWHAgAFwdHREWFgYTp06hbNnz2L79u1wdHSElZUVFi1aBD09PezYsQMAULduXQwfPhx16tSBlZUVZs2aherVq2Pfvn0AgBs3buDQoUNYs2YNmjRpggYNGmDdunV491niaMyYMWjTpg0sLCzg7OyM2bNnY9u2beL5BQsWwNHREatXr0bdunXxf+zdd1yV1R/A8c8F5LIFBUERRAUVVBCcOFJz4SpHakWBI0dKaoiDclti/nDvLFe5t5mbwpLcCpIiLhBNFFEcoF7m7w/y6pUhiKDB9/16Pa+X9zznPM/3PK7Duef5npo1a+Lj44O5uflL+wHkqS8vUqlUPHjwQONIzkh/rc9eiP+SUmZmaOnokBx/R6M8+fYddC3Mc2j1jLFLLYxqOHBj/ZbCClEI8R+xYMEC7Ozs0NPTo2HDhhw7dixP7datW4dCoaBLly6FGp9MHgshhBBCFCdaWgU7hCjhnJ2dNT6XL1+euLg4wsLCSExMpGzZshgZGamPqKgoLl++DGSuPPbz88PR0RFTU1OMjIyIiIhQrzyOiIhAR0eHunXrqq9fo0YNTE1NNe554MABWrVqhbW1NcbGxnz66afcuXOHR48eAc9WHr9KP4A89eVFAQEBlC5dWuNYe//2S56mECInFXp1JTHiQo6b6wkh3pAiHkuvX78eX19fJkyYwKlTp3BxcaFdu3ZZ3kp6UXR0NH5+fjRr1uxVe5pnsmGeEEIIIUQxolAUz9flhCgqpUqV0visUChIT08nMTGR8uXLExwcnKXN08lfPz8/9u/fT2BgIPb29ujr6/PBBx+QnJyc5/tHR0fTqVMnPv/8c7799lvKlCnDoUOH6NevH8nJyRgYGKCvr//K/QDy1JcX+fv74+vrq1H2V+3GeeuUEMVQSkIC6amp6JqX1SjXtShL8u34XNtq6etj2cmDK7MWFmaIQohXUNRj6ZkzZ9K/f3/69OkDwOLFi/n1119ZtmwZY8aMybZNWloanp6eTJo0iT///JN79+4VaowyeSyEEEIIUZzI6mEhCoWbmxs3b95ER0cHOzu7bOuEhITQu3dvunbtCmRO0kZHR6vP16hRg9TUVE6ePEn9+vUBiIyM1Pih7+TJk6SnpzNjxgy0/v37/HzKCshcVRwUFMSkSZMKrS8vUiqVKJVKjTLdYroxkBB5kZGSysO/IzBr3JD4fb9nFioUmDVuyD+r1ubatlzHNiiUutzcurMIIhVC5EsBx9IqlQqVSqVRlt3/oQDJycmcPHkSf3//526vRevWrTl8+HCO95g8eTLlypWjX79+/PnnnwWKNy/kf3shhBBCiGJENvkQonC0bt0ad3d3unTpwr59+4iOjuavv/7i66+/5sSJEwA4ODiwZcsWQkNDCQsL4+OPP1av9gWoXr06Hh4eDBw4kKNHj3Ly5Ek+++wzjZXE9vb2pKSkMG/ePK5cucJPP/3E4sWLNWLx9/fn+PHjDB48mDNnznD+/HkWLVpEfHzuqx3z0xchxMtd+2EVFT7qjlX39zCoWpnq345F20CfGxu3AeA441uqjBqapV2Fnt2I3/cbqffuZzmnU9oEI6fqGNpXAcCgih1GTtXRtSibpa4Q4vUr6Fg6uzRPAQEB2d4rPj6etLQ0LC0tNcotLS25efNmtm0OHTrEjz/+yNKlS19733Mik8dCCCGEEEII8RIKhYJdu3bxzjvv0KdPH6pVq8aHH37I1atX1T/0zZw5EzMzMxo3bkznzp1p164dbm5uGtdZvnw5FSpUoHnz5nTr1o0BAwZQrlw59XkXFxdmzpzJd999R61atVi9enWWHzqrVavGvn37CAsLo0GDBri7u7N9+3Z0dPL2Ymle+iKEeLm4nXu59O0Mqnw5mAa7NmLkVIMw789Jib8LgJ61FcpyFhptDKrYYdrAjRvrt2Z7TfM2LWiwayMuKzJTWtSa/z8a7NqItWfPwu2MEOK18Pf35/79+xrH8yuLC+Lhw4d8+umnLF26VGOT3MKmyMjIyCiyuwnxlvm1VPU3HYIQQogSomNKZJHcJ3Fh9rnR8spo8LR8t1mwYAH/+9//uHnzJi4uLsybN48GDRq8tN26dev46KOPeP/999m2bdsrRCuEeJN+s3N+eSUhhBDiNXk3+kyh36Mox9JP9zLYtGkTXbp0UZd7e3tz7949tm/frlE/NDQUV1dXtLW11WVP33DS0tIiMjKSqlWrFij+7MjKYyGEEEKI4kRLUbAjn/4LO0QLIYQQQgiRJ0U4ltbV1aVu3boEBQWpy9LT0wkKCsLd3T1L/Ro1ahAeHk5oaKj6eO+992jZsiWhoaHY2NgUuPvZkQ3zhBBCCCGKEUURb2D1X9ghWgghhBBCiLwo6rG0r68v3t7e1KtXjwYNGjB79mySkpLUY2svLy+sra0JCAhAT0+PWrVqabQ3NTUFyFL+OsnksSjRSjsZvukQhBBCiNerCDe9+6/sEC2EKBw6RtovrySEEEL8lxTxBtK9evXi9u3bjB8/nps3b1KnTh327Nmj3oMgJiYGLa03mzhCJo+FEEIIIYSaSqVCpVJplCmVSpRKZZa6ue0Qff78+Wyv/3SH6NDQ0NcWsxBCCCGEEP9VPj4++Pj4ZHsuODg417YrVqx4/QG9QHIeCyGEEEIUIwotrQIdAQEBlC5dWuMICAh4LbG9qR2ixduhRYsWDB8+/LVdb+LEidSpU+e1Xa8o5Tf2FStWqF9LzY1CoZDNJ4UoYuU/7EmDvb/S9OQR6qxZhXGtmrnW1zY2wv7rMTT8fR9NTx2l3s5tmDVr+uy8gQFVRvvRYN8umpw4jMvPKzCq5VTY3RBC/KugY+niSFYeCyGEEEIUJ4qCvWrn7++Pr6+vRll2q44BzM3N0dbW5tatWxrlt27dwsrKKkv9y5cvEx0dTefOndVlT3eI1tHRKbQdoouL4OBgWrZsSUJCQp4mEt82W7ZsoVSpUm86jCKnUCjYunWrxi7qfn5+fPHFF3m+Rq9evejQoYP688SJE9m2bVuWFfyxsbGYmZkVNGQhRB5ZeLSl6qgRXJz8LQ/P/I31px9Ta8lCTnTuQsrdhCz1FTo6OC9dTPLdu0T4jkR1Kw69ChVIffhQXcdh8ngM7e2J9B+LKu42lp074Lx0MSfe705y3O2i7J4QJVMBx9LFkUweCyGEEEIUJwVc8ZBTiorsPL9D9NOJsac7RGf36t3THaKfN3bsWB4+fMicOXMKbYfokiY5ORldXd03cu+UlJQsE8RP4ylTpswbiSk32cVbFIyMjDAyMspzfX19ffT19V9aL7svbYQQhcfa6xNiN23h1rYdAFyc/C1l3mmGVdcuXPtxeZb6Vt26oFPahNBPepORmgqA6kas+ryWUolF61acHfol90+eAuDqwiWUaf4OFXr1IHrewiLolRAlXDFdPVwQ8kSEEEIIIYoThaJgRz75+vqydOlSVq5cSUREBJ9//nmWHaKfbqj3dIfo5w9TU1OMjY2pVavWG5vwLErp6ekEBARQuXJl9PX1cXFxYdOmTWRkZNC6dWvatWtHRkYGAHfv3qVixYqMHz+e6OhoWrZsCYCZmRkKhYLevXsDmekgfHx8GD58OObm5rRr1w6AmTNnUrt2bQwNDbGxsWHw4MEkJiZqxBMSEkKLFi0wMDDAzMyMdu3akZCQuVrOzs6O2bNna9SvU6cOEydOVH9WKBQsWrSI9957D0NDQ7799lt1SoYffviBypUro6enp47z+bQVKpWK0aNHY2Njg1KpxN7enh9//BHIPk3Dtm3bUOTyZ/T48eO0adMGc3NzSpcuTfPmzTl16pRGnezizU1aWhr9+vVT/35Vr16dOXPmZKm3bNkyatasiVKppHz58uovT+zs7ADo2rUrCoVC/fn5tBX79u1DT0+Pe/fuaVxz2LBhvPvuu1mex4oVK5g0aRJhYWEoFAoUCoU63+GLaSuuXbtGz549MTU1pUyZMrz//vtER0erzwcHB9OgQQMMDQ0xNTWlSZMmXL16NddnIoTIpNDRwdjJkXtHjj4rzMjg3pGjGLs4Z9umbIvmPAg7g/3XY2h08AB1t27Epn9f9WSVQlsbhY4O6apkjXbpKhUmbq6F1hchxHOKeCz9XyCTx0IIIYQQ4pX16tWLwMBAxo8fT506dQgNDc2yQ3RsbOxLrlJyBAQEsGrVKhYvXszZs2f58ssv+eSTT/jjjz9YuXIlx48fZ+7cuQAMGjQIa2trxo8fj42NDZs3bwYgMjKS2NhYjUnMlStXoqurS0hICIsXLwZAS0uLuXPncvbsWVauXMlvv/3GqFGj1G1CQ0Np1aoVTk5OHD58mEOHDtG5c2fS0tLy1aeJEyfStWtXwsPD6du3LwCXLl1i8+bNbNmyJcfNEb28vFi7di1z584lIiKCJUuW5Gs17osePnyIt7c3hw4d4siRIzg4ONChQwcePvc6eE7x5iQ9PZ2KFSuyceNGzp07x/jx4/nqq6/YsGGDus6iRYsYMmQIAwYMIDw8nB07dmBvbw9kTmgDLF++nNjYWPXn57Vq1QpTU1P17y9kTlqvX78eT0/PLPV79erFiBEjqFmzJrGxscTGxtKrV68s9VJSUmjXrh3Gxsb8+eefhISEYGRkhIeHB8nJyaSmptKlSxeaN2/OmTNnOHz4MAMGDMh1gl4I8UwpMzMUOjok37mrUZ585w665mWzbaNX0RqLNq1RaGvz9+dfELNkKRW9P8V24GcApD16xP3QMGwH9UfXwgK0tCjXqQMmLs7oyl4BQog3RNJWCCGEEEIUI29io463fYfot4VKpWLq1KkcOHAAd3d3AKpUqcKhQ4dYsmQJa9asYcmSJXh5eXHz5k127drF6dOn0dHJHLI/TftQrly5LKtyHRwcmD59ukbZ86t87ezs+Oabbxg0aBALF2a+9jx9+nTq1aun/gxQs2buGz1l5+OPP1avNH8qOTmZVatWYWFhkW2bCxcusGHDBvbv30/r1q3Vz6Ignq7Sfer777/H1NSUgwcP0qlTp1zjzUmpUqWYNGmS+nPlypU5fPgwGzZsoGfPngB88803jBgxgmHDhqnr1a9fH0Ddf1NT0xxTSmhra/Phhx+yZs0a+vXrB0BQUBD37t2je/fuWerr6+tjZGSEjo5Ormkq1q9fT3p6Oj/88IN6Qnj58uWYmpoSHBxMvXr1uH//Pp06dVLnGnd0dMzxeiqVCpVKpVGWnJ6OrrzeK0TeaWmRfPcuFyZOgfR0Es9FoFuuHBX7eBGz6HsAIv3HUm3yRBr9vo+M1FQeRpwnbvcejJ1y/vsphHh9iuumdwUhk8dCCCGEEMWJQga8b6tLly7x6NEj2rRpo1GenJyMq2vm68g9evRg69atTJs2jUWLFuHg4JCna9etWzdL2YEDBwgICOD8+fM8ePCA1NRUnjx5wqNHjzAwMCA0NJQePXoUuF/16tXLUlapUqUcJ44hc9WztrY2zZs3L/D9n7p16xZjx44lODiYuLg40tLSePToETExMS+NNzcLFixg2bJlxMTE8PjxY5KTk9UpJ+Li4rhx4watWrUqUOyenp40atSIGzduUKFCBVavXk3Hjh0LtDFiWFgYly5dwtjYWKP8yZMnXL58mbZt29K7d2/atWtHmzZtaN26NT179qR8+fLZXi8gIEBjIh2gt4UlfcplX1+I4i4lIYGM1FR0y2rmc9ctW5bk+DvZtkm+HZ+Z6/jfzWIBHl2JQmlhgUJHh4zUVJ5cu86ZPp+hpa+HjqERyfHx1AicxuPr/xRqf4QQ/5KxdBbyRIQQQgghihMtRcEOUWie5hv+9ddfCQ0NVR/nzp1j06ZNADx69IiTJ0+ira3NxYsX83xtQ0NDjc/R0dF06tQJZ2dnNm/ezMmTJ1mwYAGQOVkNvHQDNi0tLXX+5adSUlJeeu+cyp73uu79PG9vb0JDQ5kzZw5//fUXoaGhlC1bVt3fvMb2vHXr1uHn50e/fv3Yt28foaGh9OnTJ8/PMK/q169P1apVWbduHY8fP2br1q3ZpqzIj8TEROrWravxZy00NJQLFy7w8ccfA5krkQ8fPkzjxo1Zv3491apV48iRI9lez9/fn/v372scnuaWBYpRiP+yjNRUHp6LwLRhw2eFCgWmDRvwMOxMtm0ehIaib2ujkRdV384WVdxt9QZ6T6U/fkJyfDw6JsaUadyYO78FF0Y3hBAvkrF0FrLyWAghhBCiGFHIaom3lpOTE0qlkpiYmBxX3I4YMQItLS12795Nhw4d6Nixozodw9MNBfOSk/jkyZOkp6czY8YMtP59/fL5PL0Azs7OBAUFZVlN+pSFhYVGvuoHDx4QFRX18o7mQe3atUlPT+fgwYPqtBUv3vvhw4ckJSWpJ3tzyp38VEhICAsXLqRDhw5A5mZx8fHxBYozJCSExo0bM3jwYHXZ5cuX1b82NjbGzs6OoKAg9YaGLypVqlSefs88PT1ZvXo1FStWREtLi44dO+ZYV1dX96XXdHNzY/369ZQrVw4TE5Mc67m6uuLq6oq/vz/u7u6sWbOGRo0aZamnVCpRKpWaccirvaKE+2fVz1T/djKJZ8/x4O+/qfjJx2jp63Nz23YAqk+dgioujujZ8wCIXb+RCh/1ouqYUdxYsxb9SrbY9u/HP6vXqq9p1tgdFAoeR0ejZ2tDlRFf8igqilvbdryRPgpR0shYOiuZPBZCCCGEKE6K6YqH4sDY2Bg/Pz++/PJL0tPTadq0Kffv3yckJAQTExPMzc1ZtmwZhw8fxs3NjZEjR+Lt7c2ZM2cwMzOjUqVKKBQKdu7cSYcOHdS5b7Njb29PSkoK8+bNo3Pnzhob6T3l7+9P7dq1GTx4MIMGDUJXV5fff/+dHj16YG5uzrvvvsuKFSvo3LkzpqamjB8/Hm1t7dfyLOzs7PD29qZv377MnTsXFxcXrl69SlxcHD179qRhw4YYGBjw1VdfMXToUI4ePfrS/NgODg789NNP1KtXjwcPHjBy5MgCrwx2cHBg1apV7N27l8qVK/PTTz9x/PhxKleurK4zceJEBg0aRLly5Wjfvj0PHz4kJCSEL774Qt3XoKAgmjRpglKpxMzMLNt7eXp6MnHiRL799ls++OCDLBO1z7OzsyMqKorQ0FAqVqyIsbFxlvqenp7873//4/3332fy5MlUrFiRq1evsmXLFkaNGkVKSgrff/897733HhUqVCAyMpKLFy/i5eVVoGcmRElye88+SpmZUcnnc3TNy5J4PpK/Bw0h5d9N9JTlrch4LkWF6uYtwgcOoeqoEdTdsgFVXBz//LyGaz+uUNfRNjai8vAvUFpaknL/PvH7g4ieuyDLymQhRCGRsXQWMp0uhBBCCCFEEZkyZQrjxo0jICAAR0dHPDw8+PXXX7Gzs6Nfv35MnDgRNzc3ACZNmoSlpSWDBg0CwNramkmTJjFmzBgsLS1z3KQQwMXFhZkzZ/Ldd99Rq1YtVq9eTUBAgEadatWqsW/fPsLCwmjQoAHu7u5s375dvUGfv78/zZs3p1OnTnTs2JEuXbqoN1Z7HRYtWsQHH3zA4MGDqVGjBv379ycpKQnI3Bzw559/ZteuXdSuXZu1a9cyceLEXK/3448/kpCQgJubG59++ilDhw6lXLlyBYpx4MCBdOvWjV69etGwYUPu3LmjsQoZMtNlzJ49m4ULF1KzZk06deqkkXJkxowZ7N+/HxsbG3Vu6+zY29vToEEDzpw589KUFd27d8fDw4OWLVtiYWHB2rVrs9QxMDDgjz/+wNbWlm7duuHo6Ei/fv148uQJJiYmGBgYcP78ebp37061atUYMGAAQ4YMYeDAgfl8SkKUbDfWrudY2w4ccmtI6MdePAz/W33uTJ/+XBg7QaP+w7AzhHp6c6huI463f49rS5dp5ECO37uf4+3f45BbQ462bMvlqd+R9m/aIyGEeBMUGS8mExOiBDnk4vamQxBCCFFCNA07VST3ebIhsEDt9Xr6vaZIhBDF3R+1cp4MF0IIIV63d/4+Xej3kLF0VpK2QgghhBCiOFHIq3ZCCCGEEEK8EhlLZyFpK4QQQgghihMtrYIdQpQggwYNwsjIKNvjaboQIYQQQpQgMpbOQlYeCyGEEEIUJ7JDtBB5NnnyZPz8sn+91MTEpIij+e/R0pbVWUIIIYoZGUtnIZPHQgghhBBCiBKpXLlyBd5UTwghhBCiOJPJYyGEEEKI4kRLVgIKIYQQRaV8r55Ye3uha16WpAsXuDxtOol/n82xvraxEZV8fDBv1RKd0qVRxcZyZXogCYdCMs8bGGA7ZDBl321JqTJmJJ2P5Mr0/5F49lxRdUmIkk3G0lnI5LEQQgghRHEir9oJkW/Jycno6uq+1mtmZGSQlpaGjs7b8yPX2xiTEP9l5u3aUtnPl0vfTOVheDjWnp7UWrSAk+93JeVuQpb6Ch0dai1eRMrdu0T4jSI5Lg5l+fKkPXyormM/cTwG9lW58PU4km/fplzHDtRasohT3T4gOe52UXZPiJJJxtJZyBMRQgghhChOFIqCHUK8YS1atMDHxwcfHx9Kly6Nubk548aNIyMjAwCVSoWfnx/W1tYYGhrSsGFDgoODNa5x6NAhmjVrhr6+PjY2NgwdOpSkpCT1eTs7O6ZMmYKXlxcmJiYMGDAg15iio6NRKBSsW7eOxo0bo6enR61atTh48KC6TnBwMAqFgt27d1O3bl2USiWHDh0iPT2dgIAAKleujL6+Pi4uLmzatEndLiEhAU9PTywsLNDX18fBwYHly5cDmZPaPj4+lC9fHj09PSpVqkRAQIBGTKGhoepr3bt3D4VCoX4erxqTECJvrD/15OaWrcRt38HjK1Fc+uZb0p48wbLL+9nWt+z6PjqlTYj4cgQPQ8NQ3YjlwclTJF24CICWUol5q3eJnjWHB6dO8eTaNWIWL+HJtetY9ehRlF0TouSSsXQW8pWzEEIIIURxUkx3eRYly8qVK+nXrx/Hjh3jxIkTDBgwAFtbW/r374+Pjw/nzp1j3bp1VKhQga1bt+Lh4UF4eDgODg5cvnwZDw8PvvnmG5YtW8bt27fVk9FPJ2UBAgMDGT9+PBMmTMhzXCNHjmT27Nk4OTkxc+ZMOnfuTFRUFGXLllXXGTNmDIGBgVSpUgUzMzMCAgL4+eefWbx4MQ4ODvzxxx988sknWFhY0Lx5c8aNG8e5c+fYvXs35ubmXLp0icePHwMwd+5cduzYwYYNG7C1teXatWtcu3Yt388zvzEJIV5OoaODkaMj13589u8KGRncO3IUY2fnbNuUad6ch2fCqeo/hjItm5OSkMDtXXu4vnwFpKej0NZGoaNDuipZo12a6gmlXesUXmeEEM/IWDoLmTwWQgghhBBCvFVsbGyYNWsWCoWC6tWrEx4ezqxZs2jXrh3Lly8nJiaGChUqAODn58eePXtYvnw5U6dOJSAgAE9PT4YPHw6Ag4MDc+fOpXnz5ixatAg9PT0A3n33XUaMGJGvuHx8fOjevTsAixYtYs+ePfz444+MGjVKXWfy5Mm0adMGyFwlPXXqVA4cOIC7uzsAVapU4dChQyxZsoTmzZsTExODq6sr9erVAzJXRT8VExODg4MDTZs2RaFQUKlSpfw/zFeISQjxcqXMTFHo6JBy565GecqduxhUtsu2jV5Fa/Qq1Cdu127ODhmKvq0NVb8ag0JHh2tLvift0SMehIZhO+AzIqOukHznLhbtPTBxdubxK3xxJIQQr4NMHgshhBBCFCfF9HU5UbI0atQIxXN/lt3d3ZkxYwbh4eGkpaVRrVo1jfoqlUq9+jcsLIwzZ86wevVq9fmMjAzS09OJiorC0dERQD1Zmx9PJ1sBdHR0qFevHhERERp1nr/upUuXePTokXri9qnk5GRcXV0B+Pzzz+nevTunTp2ibdu2dOnShcaNGwPQu3dv2rRpQ/Xq1fHw8KBTp060bds233HnN6bsqFQqVCqVZpv0dHRlhZYQeabQ0iL57l0uTf4G0tNJiohAt5wFFb29uLbkewAufD0Oh0kTaHBgHxmpqSSeP8/tPXsx+vffLiFEIZOxdBYyeSyEEEIIUZzIJh+iGEtMTERbW5uTJ0+ira2tcc7IyEhdZ+DAgQwdOjRLe1tbW/WvDQ0NCyXG56+bmJgIwK+//oq1tbVGPaVSCUD79u25evUqu3btYv/+/bRq1YohQ4YQGBiIm5sbUVFR7N69mwMHDtCzZ09at27Npk2b0Pp30vZpLmiAlJSU1xJTdgICApg0aZJGWZ9yVvS1Kp9jGyGKs5SEe2SkplKqbBmN8lJly5AcfyfbNsm348lITYX0dHXZ4ytR6FpYoNDRISM1lSfXrxPerz9a+npoGxqREh9P9enTeHL9eqH2RwjxLxlLZyGTx0IIIYQQxYmsAhTFwNGjRzU+HzlyBAcHB1xdXUlLSyMuLo5mzZpl29bNzY1z585hb2//2uM6cuQI77zzDgCpqamcPHkSHx+fHOs7OTmhVCqJiYnJNR2EhYUF3t7eeHt706xZM0aOHElgYCAAJiYm9OrVi169evHBBx/g4eHB3bt3sbCwACA2Nla9Yvj5zfMKGtOL/P398fX11Sg70eSdPLcXorjJSE0lMSIC04YNuPt7cGahQoFpwwbErlufbZsHoWFYtPfIXNn47xc/+pUqoYq7nTmp/Jz0x09If/wEbWNjzNzdiZo9pzC7I4R4SsbSWcjksRBCCCFEcSKv2oliICYmBl9fXwYOHMipU6eYN28eM2bMoFq1anh6euLl5cWMGTNwdXXl9u3bBAUF4ezsTMeOHRk9ejSNGjXCx8eHzz77DENDQ86dO8f+/fuZP39+geJasGABDg4OODo6MmvWLBISEujbt2+O9Y2NjfHz8+PLL78kPT2dpk2bcv/+fUJCQjAxMcHb25vx48dTt25datasiUqlYufOnerUGjNnzqR8+fK4urqipaXFxo0bsbKywtTUFC0tLRo1asS0adOoXLkycXFxjB079qV9yEtM2VEqlVlWJkvKClHS/fPTaqpNmUTi2XM8/PssFT75GG19fW5t2wFAtW8mo4qL4+rczH97YjdspPyHPakyeiQ31q5D39aWip/15caadeprmjZ2BxQ8vhqNvo0Ndl8O51F0NHHbd7yJLgpR8shYOguZPBZCCCGEEEK8Vby8vHj8+DENGjRAW1ubYcOGMWDAAACWL1/ON998w4gRI/jnn38wNzenUaNGdOrUCQBnZ2cOHjzI119/TbNmzcjIyKBq1ar06tWrwHFNmzaNadOmERoair29PTt27MDc3DzXNlOmTMHCwoKAgACuXLmCqakpbm5ufPXVVwDo6uri7+9PdHQ0+vr6NGvWjHXrMieSjI2NmT59OhcvXkRbW5v69euza9cudcqKZcuW0a9fP+rWrUv16tWZPn16nnIivywmIUTexO/dRykzM2wHf46ueVmSIiP5e7APKXczN9FTWlmR8VyKiuRbtzj7uQ+VR47AbeN6VHFx3Fi9luvLV6jr6BgZUWmoD0pLS1Lv3yc+6DeuzluQZWWyEEIUFUXG80myhChhDrm4vekQhBBClBBNw04VyX2e7FteoPZ6bfu8pkiEeDUtWrSgTp06zJ49+02HohYdHU3lypU5ffo0derUedPhvDVkLC2EEKIoFcV4WsbSWcnKYyGEEEKI4kRetRNCCCGEEOLVyFg6C0lSJYQQQghRnGhpFewQogSaOnUqRkZG2R7t27d/0+EJIYQQoqjIWDoLWXkshBBCCFGMZMhqCfEfFxwcXOT3HDRoED179sz2nL6+PtbW1ki2PyGEEKL4k7F0VjJ5LIQQQgghhCjRypQpQ5kyZd50GP85pQxKvekQhBBCCFHIiud66kLSokULhg8f/tquN3HixP/shhv5jX3FihWYmpq+tJ5CoWDbtm2vHJcQQghR4im0CnYIIbJVlGP3NzEmtrOze6s2KRRCCCHeiDcwll6wYAF2dnbo6enRsGFDjh07lmPdpUuX0qxZM8zMzDAzM6N169a51n8divQnhODgYBQKBffu3SvK2742W7ZsYcqUKW86jCKX3eDVz8+PoKCgPF+jV69eXLhwQf05p8F3bGys5JUTooiV79WTert20vjYYVx+XolRrZq51tc2NqKK/xgaHNhL4+NHqLtjK2ZNmzw7b2BA5ZF+1Nv9K+5H/8J55XKMajoVdjeEEE/J5LEQhSK/418hRMlg2f0D6mzZSv3gP6j5w48YOuU+7tU2MsLObySuv/xK/YN/4rx+I6XdG2vUKWVhQdUJE3Hbs4/6wQep/fNqDGvUKMxuCCGeKuKx9Pr16/H19WXChAmcOnUKFxcX2rVrR1xcXLb1g4OD+eijj/j99985fPgwNjY2tG3bln/++aegPc/RW5m2Ijk5GV1d3Tdy75SUFEqV0nz96mk8b+OrbNnFWxSebiCSV/r6+ujr67+0npWVVUHCEkLkk3m7tlT28+XSN1N5GB6OtacntRYt4OT7XUm5m5ClvkJHh1qLF5Fy9y4RfqNIjotDWb48aQ8fquvYTxyPgX1VLnw9juTbtynXsQO1liziVLcPSI67XZTdE6JEkjxtQhSO/I5/hRDFX5lWrbEdOoyo6d+RdPYsVr0+pMasOYR92JPUhOzH0jXmzCMlIYGLX/uTHHcbZXkr0h4mqutoGxtTc8n3PDh5ikjf4aQmJKBnY0vqc+NtIUThKeqx9MyZM+nfvz99+vQBYPHixfz6668sW7aMMWPGZKm/evVqjc8//PADmzdvJigoCC8vr0KJMd9T4unp6QQEBFC5cmX09fVxcXFh06ZNZGRk0Lp1a9q1a6feTOLu3btUrFiR8ePHEx0dTcuWLQEwMzNDoVDQu3dvIDMdhI+PD8OHD8fc3Jx27doBmQ+wdu3aGBoaYmNjw+DBg0lMTNSIJyQkhBYtWmBgYICZmRnt2rUj4d9/pLN79apOnTpMnDhR/VmhULBo0SLee+89DA0N+fbbb9WrYn/44QcqV66Mnp6eOs7n01aoVCpGjx6NjY0NSqUSe3t7fvzxRyD7NA3btm1DkcsfwuPHj9OmTRvMzc0pXbo0zZs359SpUxp1sos3N2lpafTr10/9+1W9enXmzJmTpd6yZcuoWbMmSqWS8uXL4+Pjo36GAF27dkWhUKg/P79yeN++fejp6WVZUT5s2DDefffdLM9jxYoVTJo0ibCwMBQKBQqFghUrVqj79/wq52vXrtGzZ09MTU0pU6YM77//PtHR0erzwcHBNGjQAENDQ0xNTWnSpAlXr17N9ZkIIZ6x/tSTm1u2Erd9B4+vRHHpm29Je/IEyy7vZ1vfsuv76JQ2IeLLETwMDUN1I5YHJ0+RdOEiAFpKJeat3iV61hwenDrFk2vXiFm8hCfXrmPVo0dRdk2IkktWHguRrRYtWjB06FBGjRpFmTJlsLKy0vi5ICYmhvfffx8jIyNMTEzo2bMnt27dUp9/8c25l41Dt2/fjpubG3p6elSpUoVJkyaRmpr6SrHnNibOy1gc4NChQzRr1gx9fX1sbGwYOnQoSUlJrxSPECJT+Y8+Im7HduJ/3cnj6Ciipk8jXfUEi06ds61v0bkzOiYmXBw9ksQzZ0i+GcvD06d5dOmiuk6FTz5FdSuOK99OIencOVSxsdw/dhRVIa4qFEI8p4BjaZVKxYMHDzQOlUqV7a2Sk5M5efIkrVu3VpdpaWnRunVrDh8+nKdwHz16REpKSqEueM33TwgBAQGsWrWKxYsXc/bsWb788ks++eQT/vjjD1auXMnx48eZO3cukLlrsbW1NePHj8fGxobNmzcDEBkZSWxsrMYk5sqVK9HV1SUkJITFixdnBqelxdy5czl79iwrV67kt99+Y9SoUeo2oaGhtGrVCicnJw4fPsyhQ4fo3LkzaWlp+erTxIkT6dq1K+Hh4fTt2xeAS5cusXnzZrZs2UJoaGi27by8vFi7di1z584lIiKCJUuWFGg1wsOHD/H29ubQoUMcOXIEBwcHOnTowMMXvmHMLt6cpKenU7FiRTZu3Mi5c+cYP348X331FRs2bFDXWbRoEUOGDGHAgAGEh4ezY8cO7O3tgcwJbYDly5cTGxur/vy8Vq1aYWpqqv79hcxJ6/Xr1+Pp6Zmlfq9evRgxYgQ1a9YkNjaW2NhYevXqlaVeSkoK7dq1w9jYmD///JOQkBCMjIzw8PAgOTmZ1NRUunTpQvPmzTlz5gyHDx9mwIABuU7QCyGeUejoYOToyL0jR58VZmRw78hRjJ2ds21TpnlzHp4Jp6r/GBr8th/XzRuo2K8vaGX+d6LQ1kaho0O6KlmjXZrqCaVd6xRWV4QQz1MoCnYIUYytXLkSQ0NDjh49yvTp05k8eTL79+8nPT2d999/n7t373Lw4EH279/PlStXsh2jAi8dh/755594eXkxbNgwzp07x5IlS1ixYsVLF35k52Vj4ryMxS9fvoyHhwfdu3fnzJkzrF+/nkOHDqkXjAgh8k+ho4Nh9Ro8OP5crtGMDO4fP45xrdrZtjFr+g6Jf4dj5zcKt193U/vnNVTw9laPpQHMmr1D0vkI7L+dituvu6m1chUW72W/sEMIUQgKOJYOCAigdOnSGkdAQEC2t4qPjyctLQ1LS0uNcktLS27evJmncEePHk2FChU0JqBft3ylrVCpVEydOpUDBw7g7u4OQJUqVTh06BBLlixhzZo1LFmyBC8vL27evMmuXbs4ffo0OjqZt3k6C16uXLksq3IdHByYPn26Rtnzq3zt7Oz45ptvGDRoEAsXLgRg+vTp1KtXT/0ZoGbN3HN1Zufjjz9WLw9/Kjk5mVWrVmFhYZFtmwsXLrBhwwb279+v/g2qUqVKvu/9vOdXBgB8//33mJqacvDgQTp16pRrvDkpVaoUkyZNUn+uXLkyhw8fZsOGDfTs2ROAb775hhEjRjBs2DB1vfr16wOo+29qappjSgltbW0+/PBD1qxZQ79+/QAICgri3r17dO/ePUt9fX19jIyM0NHRyTVNxfr160lPT+eHH35QD8SXL1+OqakpwcHB1KtXj/v379OpUyeqVq0KgKOjY56eixACSpmZotDRIeXOXY3ylDt3Mahsl20bvYrW6FWoT9yu3ZwdMhR9WxuqfjUGhY4O15Z8T9qjRzwIDcN2wGdERl0h+c5dLNp7YOLszONr14qgV0IIIUTOnJ2dmTBhApD588f8+fPVeYzDw8OJiorCxsYGgFWrVlGzZk2OHz+uHhs/9eDBg1zHoZMmTWLMmDF4e3sDmT8nTJkyhVGjRqnvn1cvGxO3bdv2pWPxgIAAPD091T9fOTg4MHfuXJo3b86iRYvUb1oKIfJOx/TfsfTdF8bSd++iX6lStm2U1hUwqVuX+H17Oe/7JXoVK2I3chQKbR3+WZb5FrOyQgUsu3Yjdt1abqxcgaGjE3a+vmSkphC/a1eh90sIUTD+/v74+vpqlCmVykK517Rp01i3bh3BwcGF+n95viaPL126xKNHj2jTpo1GeXJyMq6urgD06NGDrVu3Mm3aNBYtWoSDg0Oerl23bt0sZQcOHCAgIIDz58/z4MEDUlNTefLkCY8ePcLAwIDQ0FB6vIbXoOvVq5elrFKlSjlOHEPmqmdtbW2aN29e4Ps/devWLcaOHUtwcDBxcXGkpaXx6NEjYmJiXhpvbhYsWMCyZcuIiYnh8ePHJCcnq1+5i4uL48aNG7Rq1apAsXt6etKoUSNu3LhBhQoVWL16NR07dszyJUF+hIWFcenSJYyNjTXKnzx5wuXLl2nbti29e/emXbt2tGnThtatW9OzZ0/Kly+f7fVUKlWWVwWS09PR1cr3AnwhSiyFlhbJd+9yafI3kJ5OUkQEuuUsqOjtxbUl3wNw4etxOEyaQIMD+8hITSXx/Hlu79mLkXy5I0TRkP/XhMiR8wtv1pQvX564uDgiIiKwsbFRTxwDODk5YWpqSkRERJbJ4zJlyuQ6Dg0LCyMkJERjpXFaWprGzzJ59bIxMbx8LB4WFsaZM2c08iRmZGSQnp5OVFRUnhZgyFhaiNdAoUVKQgJR0wIgPZ1HkefRtbCgvOcn6sljtLRIOh/B9cWLAHh04QIGVapQrks3mTwWoigU8P81pVKZ58lic3NztLW1NdJkQeb84Mv2BAsMDGTatGkcOHAgy/jmdcvXE3mab/jXX38lNDRUfZw7d45NmzYBmbk2Tp48iba2NhcvXsztchoMDQ01PkdHR9OpUyecnZ3ZvHkzJ0+eZMGCBUDmZDXw0g3YtLS01PmXn0pJSXnpvXMqe97ruvfzvL29CQ0NZc6cOfz111+EhoZStmxZdX/zGtvz1q1bh5+fH/369WPfvn2EhobSp0+fPD/DvKpfvz5Vq1Zl3bp1PH78mK1bt2absiI/EhMTqVu3rsaftdDQUC5cuMDHH38MZK66OHz4MI0bN2b9+vVUq1aNI0eOZHu97F4d+DnuVrZ1hSgJUhLukZGaSqmymrmRSpUtQ3L8nWzbJN+O58nVGEhPV5c9vhKFroUFin/fMnly/Trh/frzV6PGHGvXgTBPLxQ6Ojy5fr3wOiOEUMtQKAp0CFGcvbjRtEKhIP25/9PyI7dxaGJiIpMmTdIYw4aHh3Px4sV8rwzKy5j4ZWPxxMREBg4cqNE+LCyMixcvqldOv0x2Y+mV/9zIV1+EKE5S7/07ln4hz2ipMmWyvNn3VMqdeJ5ce2EsHR2Nrrm5eiydEh/P46gojXaPo6NRWmm+1i6EKBxFOZbW1dWlbt266regIDP9bFBQkDrjQ3amT5/OlClT2LNnT74XmL6KfK08dnJyQqlUEhMTk+OK2xEjRqClpcXu3bvp0KEDHTt2VKdj0NXVBchTTuKTJ0+Snp7OjBkz0Pp31v/5PL2QuXIgKChIIy3D8ywsLIiNjVV/fvDgAVEv/CP8qmrXrk16ejoHDx7MNq+IhYUFDx8+JCkpST3Zm1Pu5KdCQkJYuHAhHTp0ADI3xoiPjy9QnCEhITRu3JjBgwery56uUAAwNjbGzs6OoKAg9YaGLypVqlSefs88PT1ZvXo1FStWREtLi44dO+ZYV1dX96XXdHNzY/369ZQrVw4TE5Mc67m6uuLq6oq/vz/u7u6sWbOGRo0aZamX3asDJ5q885JeCVF8ZaSmkhgRgWnDBtz9PTizUKHAtGEDYtetz7bNg9AwLNp7ZOZz+vcLMv1KlVDF3SbjhU2A0h8/If3xE7SNjTFzdydqdtbNOoUQhUA2vRMi3xwdHbl27RrXrl1Trz4+d+4c9+7dw8nJKcd2OY1D3dzciIyMVO8jUhB5HRPnNhZ3c3Pj3LlzBYonu7F0WJuCvb0oxH9ZRmoqSZHnMalXn4Q//sgsVCgoXa8+NzdtzLbNwzNnMG/bVmMsrWdrS/LtZ2Pph+Fn0LPVTHuhZ2uLKo/5T4UQBVTEY2lfX1+8vb2pV68eDRo0YPbs2SQlJanT1Xp5eWFtba3Om/zdd98xfvx41qxZg52dnTo3spGRUYH2YctNvp6IsbExfn5+fPnll6xcuZLLly9z6tQp5s2bx8qVK/n1119ZtmwZq1evpk2bNowcORJvb28SEhKAzFQQCoWCnTt3cvv2bfVK5uzY29uTkpLCvHnzuHLlCj/99JN6I72n/P39OX78OIMHD+bMmTOcP3+eRYsWqSdc3333XX766Sf+/PNPwsPD8fb2RltbO7/PKFt2dnZ4e3vTt29ftm3bRlRUFMHBweoJ7oYNG2JgYMBXX33F5cuXWbNmDStWrMj1mg4ODvz0009ERERw9OhRPD09C7wy2MHBgRMnTrB3714uXLjAuHHjsmx6N3HiRGbMmMHcuXO5ePGi+vf0+b4GBQVx8+ZN9e9ldjw9PTl16hTffvstH3zwQa7L9O3s7IiKiiI0NJT4+Phsd5709PTE3Nyc999/nz///FP9jIcOHcr169eJiorC39+fw4cPc/XqVfbt28fFixdzfO1OqVRiYmKicchrdqKk++en1Vh160q5zp3Qr1yZqmO/Qltfn1vbdgBQ7ZvJVBr6bDOd2A0b0SltQpXRI9GrZItZs6ZU/Kwvseuffbln2tgd08aNUVpXwLRRQ2r/8D2PoqOJ276jyPsnREmUodAq0CFESdS6dWtq166tHs8eO3YMLy8vmjdvnu2KnpeNQ8ePH8+qVauYNGkSZ8+eJSIignXr1jF27Nh8x/ayMfHz9XIai48ePZq//voLHx8fQkNDuXjxItu3b8/XhnkylhYiq9i1ayn33vuYd+iAXiU77EaNRktPj9s7dwJQZfwEbD5/tpArbstmdExKU+lLX/RsbDBt3ARr797c2rxJXefmurUY1apFBW9vlBUrUrZtW8q934VbmzZlub8Q4vUr6rF0r169CAwMZPz48dSpU4fQ0FD27Nmj3kQvJiZGY2HsokWLSE5O5oMPPqB8+fLqIzAw8LU9gxflu1dTpkxh3LhxBAQE4OjoiIeHB7/++it2dnb069ePiRMn4ubmBmRuFGFpacmgQYMAsLa2Vm8eYWlpmetgxcXFhZkzZ/Ldd99Rq1YtVq9enWV3wmrVqrFv3z7CwsJo0KAB7u7ubN++Xb1Bn7+/P82bN6dTp0507NiRLl265Pm1rLxYtGgRH3zwAYMHD6ZGjRr079+fpKQkIDMP2s8//8yuXbuoXbs2a9euZeLEible78cffyQhIQE3Nzc+/fRThg4dSrly5QoU48CBA+nWrRu9evWiYcOG3LlzR2MVMmSmy5g9ezYLFy6kZs2adOrUSSPlyIwZM9i/fz82Njbq3NbZsbe3p0GDBpw5c+alKSu6d++Oh4cHLVu2xMLCgrVr12apY2BgwB9//IGtrS3dunXD0dGRfv368eTJE0xMTDAwMOD8+fN0796datWqMWDAAIYMGcLAgQPz+ZSEKLni9+4jauZsbAd/juuGtRhVr8bfg33UG38orazQNTdX10++dYuzn/tgVLMmbhvXU2X0SG6sXsv1ZcvVdXSMjKj61WjqbttCtW8m8yA0lLOfD8myMlkIUXwsWLAAOzs79PT0aNiwIceOHcux7tKlS2nWrBlmZmaYmZnRunXrXOsLURQUCgXbt2/HzMyMd955h9atW1OlShXWr8/+TZyXjUPbtWvHzp072bdvH/Xr16dRo0bMmjWLSjlsopWbl42Jn8ptLO7s7MzBgwe5cOECzZo1w9XVlfHjx1OhQoV8xyOEeOZu0AFi5s+l4mcDqL3qJwwdHDj/5XBSE/4dS1taUqpsWXX95Lg4zg8fipGjE7V/Wk2lL325uWEdN35apa6TFBHBxTGjKNumLc4/r8G6T1+uzp7FnX17i7x/Qoii4ePjw9WrV1GpVBw9epSGDRuqzwUHB2ssRo2OjiYjIyPL8bI5x4JQZLyYmFeIEuSQi9ubDkEIIUQJ0TTsVJHcJ/HoLwVqb9Swc77qr1+/Hi8vLxYvXkzDhg2ZPXs2GzduJDIyMtsvwT09PWnSpAmNGzdGT0+P7777jq1bt3L27Fmsra0LFLsQomgddW/48kpCCCHEa9Lw8NFCv0dRj6X/C+Q9IyGEEEKIYqSoX7WbOXMm/fv3p0+fPjg5ObF48WIMDAxYtmxZtvVXr17N4MGDqVOnDjVq1OCHH35QbwwihBBCCCHEmyQp4LIqnr0qQQYNGqROiv3i8TRdiBBCCCFKEIWiQIdKpeLBgwcaR3Z7EwAkJydz8uRJjc2DtbS0aN26NYcPH85TuI8ePSIlJYUyL+xWL0RxtXr16hzH7zVr1nzT4QkhhBAlWwHH0sWRzpsOQBTM5MmT8fPzy/ZcbrsxCyGEEKKYKuCKh4CAACZNmqRRNmHChGzzqMXHx5OWlqbe0OMpS0tLzp8/n6f7jR49mgoVKmhMQAtRnL333nsauQyfV6pUqSKORgghhBAaiunq4YKQyeP/uHLlyhV4Uz0hhBBCiKf8/f3x9fXVKFMqlYVyr2nTprFu3TqCg4PR09MrlHsI8bYxNjbG2Nj4TYfxWujoyY+TQgghRHEn0+lCCCGEEMVIhkJRoEOpVGJiYqJx5DR5bG5ujra2Nrdu3dIov3XrFlZWVrnGGRgYyLRp09i3bx/Ozs6vrf/i7WNnZ8fs2bPzVFehULBt27ZCjSc6OhqFQkFoaGiu9Vq0aMHw4cNf+T4v60twcDAKhYJ79+698j2EEEII8XoVdCxdHMnksRBCCCFEcaLQKtiRD7q6utStW1djs7unm9+5u7vn2G769OlMmTKFPXv2UK9evVfuqihaRTGx+ya8qUncxo0bExsbS+nSpV9aVyaahXh7WXTpRq21m3Dd+xs1Fn6PQQ3HXOtrGxphM8wX503bcd37OzVXrcWk4bP/M8t796Xu7yEaR82Vawq7G0KIp4pwLP1fIe8ZCSGEEEIUIxkU7YoHX19fvL29qVevHg0aNGD27NkkJSXRp08fALy8vLC2tiYgIACA7777jvHjx7NmzRrs7Oy4efMmgHrDMCFKCl1d3Zeu0H/dMjIySEtLQ0dHfgwU4nUwa9mKip9/Qcys/5EUcY5yH/TEYfpMznp9RGo2X/YodHRwCJxN6r0ELk8cS8rt2+haWZGWmKhR73HUFS6MGKb+nJGWVthdEUL8q6jH0v8FxXNKXAghhBCihMpQaBXoyK9evXoRGBjI+PHjqVOnDqGhoezZs0e9iV5MTAyxsbHq+osWLSI5OZkPPviA8uXLq4/AwMDX9gyKuxYtWvDFF18wfPhwzMzMsLS0ZOnSpepJe2NjY+zt7dm9e7e6zd9//0379u0xMjLC0tKSTz/9lPj4eI1rDh06lFGjRlGmTBmsrKw0Nkm0s7MDoGvXrigUCvXny5cv8/7772NpaYmRkRH169fnwIEDBepffHw8Xbt2xcDAAAcHB3bs2KFx/mV92bNnD02bNsXU1JSyZcvSqVMnLl++nO29oqOjadmyJQBmZmYoFAp69+6tPp+enp7jMyloX15cTXz16lU6d+6MmZkZhoaG1KxZk127duUao0qlYujQoZQrVw49PT2aNm3K8ePHs9xj9+7d1K1bF6VSyc8//4yWlhYnTpzQiHX27NlUqlSJ9PT0fPVRiJLMskcv4n/9hTt7dvHkajQxM/9H+hMVZdt3yrZ+2fad0DE24dLYMST9HU7yrZskhoXy+PIljXoZaWmkJtxVH2kP7hdFd4QQFP1Y+r+gePZKCCGEEEIUGR8fH65evYpKpeLo0aM0bNhQfS44OJgVK1aoP0dHR5ORkZHlyO+kXEm3cuVKzM3NOXbsGF988QWff/45PXr0oHHjxpw6dYq2bdvy6aef8ujRI+7du8e7776Lq6srJ06cYM+ePdy6dYuePXtmuaahoSFHjx5l+vTpTJ48mf379wOoJySXL19ObGys+nNiYiIdOnQgKCiI06dP4+HhQefOnYmJiXnlvk2aNImePXty5swZOnTogKenJ3fv3gXIU1+SkpLw9fXlxIkTBAUFoaWlRdeuXbOdFLWxsWHz5s0AREZGEhsby5w5c/L0TAralxcNGTIElUrFH3/8QXh4ON999x1GRka5xjhq1Cg2b97MypUrOXXqFPb29rRr1y7LPcaMGcO0adOIiIjgvffeo3Xr1ixfvlyjzvLly+nduzdaWvIjohB5odDRwaBadR6cfPaFDRkZPDx1AqOatbJtY9q4KYnn/sZ2+AicN/+C07KfsPL0ghf+3imtK1J743Zqrd6A3dcTKFXOsjC7IoQQuZKRgRBCCCFEcSJ52koEFxcXxo4di4ODA/7+/ujp6WFubk7//v1xcHBg/Pjx3LlzhzNnzjB//nxcXV2ZOnUqNWrUwNXVlWXLlvH7779z4cIF9TWdnZ2ZMGECDg4OeHl5Ua9ePXU+awsLCwBMTU2xsrJSf3ZxcWHgwIHUqlULBwcHpkyZQtWqVbOsFs6P3r1789FHH2Fvb8/UqVNJTEzk2LFjAHnqS/fu3enWrRv29vbUqVOHZcuWER4ezrlz57LcS1tbmzJlygBQrlw5rKysNHIQ5/ZMCtqXF8XExNCkSRNq165NlSpV6NSpE++8806OMSYlJbFo0SL+97//0b59e5ycnFi6dCn6+vr8+OOPGteePHkybdq0oWrVqpQpU4bPPvuMtWvXolKpADh16hTh4eHqdDNCiJfTKW2KQluH1ATNL2tSEu5S6t+/sy9SVqiAWfMWKLS0uOTvR+xPK7Ds8SHlP/FW10mKOEf0d99yabQvMbMDUVqVp/qchWjpGxRqf4QQ/5KxdBbFs1dCCCGEECWU7BBdMjg7O6t/ra2tTdmyZaldu7a67GnakLi4OMLCwvj999/VeaWNjIyoUaMGgEY6h+evCVC+fHni4uJyjSMxMRE/Pz8cHR0xNTXFyMiIiIiIAq08fj4OQ0NDTExM1HHkpS8XL17ko48+okqVKpiYmKhTbLxKTK/yTPLalxcNHTqUb775hiZNmjBhwgTOnDmT67UvX75MSkoKTZo0UZeVKlWKBg0aEBERoVH3xY0pu3Tpgra2Nlu3bgVgxYoVtGzZUv2ssqNSqXjw4IHGkSwpLoTIH4WC1IQErs6YzqMLkST8HkTs6pVYvNdFXeXBsSPcO/g7j69c5sHxY1wa44eOkRFmLd99c3ELUYLIWDormTwWQgghhChGJE9byVCqVCmNzwqFQqNM8e8PL+np6SQmJtK5c2dCQ0M1josXL/LOO+/kes2X5b/18/Nj69atTJ06lT///JPQ0FBq165NcnLya+3b0zjy0pfOnTtz9+5dli5dytGjRzl69CjAK8X0Ks/kVdt/9tlnXLlyhU8//ZTw8HDq1avHvHnz8h1zdgwNDTU+6+rq4uXlxfLly0lOTmbNmjX07ds312sEBARQunRpjWP51euvJT4h/otS798jIy0VHTPNVcalzMqQkkN6mpS7d3hy/Ro89+/Ak6tXKVXWHEUOG1mmJSXy5Po1lBUqvr7ghRA5krF0VsWzV0IIIYQQJZVCUbBDFDtubm6cPXsWOzs77O3tNY4XJxVzU6pUKdLS0jTKQkJC6N27N127dqV27dpYWVkRHR39mnvwzMv6cufOHSIjIxk7diytWrXC0dGRhISEXK+pq6sLkKVvb4KNjQ2DBg1iy5YtjBgxgqVLlwLZx1i1alV0dXUJCQlRl6WkpHD8+HGcnJxeeq/PPvuMAwcOsHDhQlJTU+nWrVuu9f39/bl//77G0aeSTGaJkisjNZVHFyIxcXtuZb9CgbFbXRLP/p1tm8S/w1FaV9T4/1bPxobk+HgyUlOzbaOlp4+ygjUpd+OzPS+EeM1kLJ2FTB4LIYQQQghRjA0ZMoS7d+/y0Ucfcfz4cS5fvszevXvp06dPviZM7ezsCAoK4ubNm+oJWQcHB7Zs2UJoaChhYWF8/PHH+VqZm18v64uZmRlly5bl+++/59KlS/z222/4+vrmes1KlSqhUCjYuXMnt2/fJjExsdDiz83w4cPZu3cvUVFRnDp1it9//x1HR8ccYzQ0NOTzzz9n5MiR7Nmzh3PnztG/f38ePXpEv379Xno/R0dHGjVqxOjRo/noo4/Q19fPtb5SqcTExETj0JXN9UQJd2vjesw7daZMu/bo2VbC9ks/tPT0uLPnVwDs/MdS4bNB6vq3t29Fx9gEG5/hKCvaYNLIHauPvbi9bbO6jvWgIRi51EHX0grDmrWoOiWAjPQ0EoIOFHn/hBACZPJYCCGEEKJYkVftxIsqVKhASEgIaWlptG3bltq1azN8+HBMTU3Rysfk34wZM9i/fz82Nja4uroCMHPmTMzMzGjcuDGdO3emXbt2uLm5FVZXXtoXLS0t1q1bx8mTJ6lVqxZffvkl//vf/3K9prW1NZMmTWLMmDFYWlri4+NTaPHnJi0tjSFDhuDo6IiHhwfVqlVj4cKFucY4bdo0unfvzqeffoqbmxuXLl1i7969mJmZ5eme/fr1Izk5+aUpK4QQ2Uv4PYjrixZQofdnOC5dgYG9AxdHjyD13y/YdMtZUqpsWXX9lNtxXBz1JQY1HHH6cSW2Pl8St2UjN9f+rK6ja1GOymMnUXPVWqpMmELqg/ucHzKQ1Pv3irp7QpRIMpbOSpGRkZHxpoMQ4k055FJ4P9wIIYQQz2sadqpI7hP/9+ECtTev5f6aIhFCvO2mTJnCxo0bX7o5X05Otmzy8kpCCCHEa1L395CXVyogGUtnlX1GdiGEEEII8Z9UXFc8CCFen8TERKKjo5k/fz7ffPPNmw5HCCGEeGvIWDoreSJCCCGEEMWJbPIh3lKrV6/GyMgo26NmzZpvOrx8+a/3xcfHh7p169KiRQtJWSGEEEI8T8bSWcjKYyGEEEIIIUShe++992jYsGG250qVKlXE0RTMf70vK1asYMWKFW86DCGEEEL8B8jksRBCCCFEMZIhL5aJt5SxsTHGxsZvOozXojj1pSC0S8m/N0IIIYoXGUtnJU9ECCGEEKIYyVAoCnQIIQpuxYoVmJqavpZrBQcHo1AouHfv3mu53pu+jxBCCPE2k7F0VrLyWAghhBCiGJFNPoR4Nb179+bevXts27btTYcihPgPMe/clXI9PkKnTBkeX7nMPwtm8ygyIsf62oZGWPXpj2mT5mgbG5Mcd4t/Fs3l4fEjAJTt1AXzTl3QtbQC4MnVKG6uXsHD40eLpD9ClHQyls5KJo+FEEIIIYqRDIrnigchhBDibWPa/F0qDPTh+twZJJ0/h0W3HlSZOoPz/T4mNZtV/AodHapOm0nKvXtETxlHyp3blCpnRVrSQ3WdlPg4bvy4GNU/11EoFJi18aDyxAAuDO7Lk6vRRdc5IUooGUtnJdPpQgghhBDFSIZCq0CHEMXdpk2bqF27Nvr6+pQtW5bWrVszcuRIVq5cyfbt21EoFCgUCoKDg7NN5RAaGopCoSA6OlpdtmLFCmxtbTEwMKBr167cuXNHfS46OhotLS1OnDihEcfs2bOpVKkS6enp+e7D5s2bqVmzJkqlEjs7O2bMmKFx/qeffqJevXoYGxtjZWXFxx9/TFxcnEadXbt2Ua1aNfT19WnZsqVGf4QQeWPRvRd3dv/C3X27UMVEc31OIOmqJ5Rp1zHb+mXadUTb2ISoif4knQsn+dZNksJDeXLlsrrOgyN/8fD4EZJvXEf1zzVurlhK+uPHGDjWLKpuCVGiyVg6q+LZKyGEEEIIIYR4QWxsLB999BF9+/YlIiKC4OBgunXrxoQJE+jZsyceHh7ExsYSGxtL48aN83TNo0eP0q9fP3x8fAgNDaVly5Z888036vN2dna0bt2a5cuXa7Rbvnw5vXv3Rksrfz+SnTx5kp49e/Lhhx8SHh7OxIkTGTduHCtWrFDXSUlJYcqUKYSFhbFt2zaio6Pp3bu3+vy1a9fo1q0bnTt3JjQ0lM8++4wxY8bkKw4hSjqFjg4GDtVIPH3yWWFGBomnT2CYw0RvafcmJEWcpeIXvtRcv53q36+k3IefQk7/DmhpYdqiFVp6eiSdO1sIvRBCiJeTtBVCCCGEEMVIcd2oQ4jXITY2ltTUVLp160alSpUAqF27NgD6+vqoVCqsrKzydc05c+bg4eHBqFGjAKhWrRp//fUXe/bsUdf57LPPGDRoEDNnzkSpVHLq1CnCw8PZvn17vvswc+ZMWrVqxbhx49T3O3fuHP/73//UE8R9+/ZV169SpQpz586lfv36JCYmYmRkxKJFi6hatap6xXL16tUJDw/nu+++y3c8QpRU2ialUWjrkJJwV6M8JSEBpU2lbNvolq+AUR0rEn7bz5WxI1FWqEjFL3xR6Ghz6+cV6np6dlVwmLMILV1d0h8/JmrS16hioguxN0KIp2QsnZWsPBZCCCGEKEYyUBToEKI4c3FxoVWrVtSuXZsePXqwdOlSEhISCnTNiIgIGjZsqFHm7u6u8blLly5oa2uzdetWIDPNRcuWLbGzs3ul+zVp0kSjrEmTJly8eJG0tDQgc3Vy586dsbW1xdjYmObNmwMQExOT55hfpFKpePDggcaR/AopN4Qo0RRapN67x7XZ/+PxxQvcO/gbt9b+hHnHLhrVVNdjiPy8LxeGDiR+53Yqjfwapa3dGwlZiJJGxtJZyeSxEEIIIUQxInnahMiZtrY2+/fvZ/fu3Tg5OTFv3jyqV69OVFRUtvWfppTIyMhQl6WkpOT7vrq6unh5ebF8+XKSk5NZs2aNxurg1ykpKYl27dphYmLC6tWrOX78uHrSOjk5+ZWvGxAQQOnSpTWOZVHXXlfYQvznpD24T0ZaKqXMymiUlzIzI/XunWzbpN69g+r6NXjui5cnMdGUKlsWhc6zF8MzUlNJvvEPjy9eIHbZEh5fuYRF1w8KpyNCCA0yls6qePZKCCGEEKKEktUSQuROoVDQpEkTJk2axOnTp9HV1WXr1q3o6uqqV+4+ZWFhAWSmu3gqNDRUo46joyNHjx7VKDty5EiW+3722WccOHCAhQsXqlNnvApHR0dCQkI0ykJCQqhWrRra2tqcP3+eO3fuMG3aNJo1a0aNGjWybJbn6OjIsWPHXhrz8/z9/bl//77G0beyzSv1QYjiICM1lUcXL2BUp+6zQoUCozp1SYrIPj9x0tlwlBWs4bnX4pXWNqTciScjNTXnm2kp0Cql+7pCF0LkQsbSWcnksRBCCCGEEKJEOHr0KFOnTuXEiRPExMSwZcsWbt++jaOjI3Z2dpw5c4bIyEji4+NJSUnB3t4eGxsbJk6cyMWLF/n111/VeYKfGjp0KHv27CEwMJCLFy8yf/58jXzHTzk6OtKoUSNGjx7NRx99hL6+/iv1YcSIEQQFBTFlyhQuXLjAypUrmT9/Pn5+fgDY2tqiq6vLvHnzuHLlCjt27GDKlCka1xg0aBAXL15k5MiRREZGsmbNGo0N97KjVCoxMTHROHTzudmfEMXN7c3rKduhE2ZtPFDaVKLi0BFo6elzd+8uAGxHfk35vgPV9eN3bkPb2ATrz4ehtLbBpIE7lh99SvyOLeo65fsOxLC2C7qWVujZVaF834EYObty97d9Rd4/IYQAmTwWQgghhChW5FU7IXJmYmLCH3/8QYcOHahWrRpjx45lxowZtG/fnv79+1O9enXq1auHhYUFISEhlCpVirVr13L+/HmcnZ357rvv+OabbzSu2ahRI5YuXcqcOXNwcXFh3759jB07Ntv79+vXj+Tk5AKlrHBzc2PDhg2sW7eOWrVqMX78eCZPnqzeLM/CwoIVK1awceNGnJycmDZtGoGBgRrXsLW1ZfPmzWzbtg0XFxcWL17M1KlTXzkmIUqqewd/48b3Cynv1Y/qi5ahX9WBK1/7kXovM5e6bjlLSpUpq66fcjuOy1+NwKB6DaovWY714GHc3rqJW+tXq+vomJpSaeTX1PhxNVWnz8agWg0ufzWCxFMnirx/QpREb2IsvWDBAuzs7NDT06Nhw4ZZ3g560caNG6lRowZ6enrUrl2bXbt2vdJ980qR8XwCLyFKmEMubm86BCGEECVE07BTRXKf6EsXCtTezr7aa4pECPGiKVOmsHHjRs6cOfOmQ3ktQts2e9MhCCGEKEHq7Puz0O9R1GPp9evX4+XlxeLFi2nYsCGzZ89m48aNREZGUq5cuSz1//rrL9555x0CAgLo1KkTa9as4bvvvuPUqVPUqlWrQLHnRJaXCCGEEEIUI7LyWIi3T2JiIn///Tfz58/niy++eNPhCCGEECIHRT2WnjlzJv3796dPnz44OTmxePFiDAwMWLZsWbb158yZg4eHByNHjsTR0ZEpU6bg5ubG/PnzC9r1HMlPCEIIIYQQxYhs8iHE28fHx4e6devSokWLLCkrBg0ahJGRUbbHoEGD3lDEQgghRMlU0LG0SqXiwYMHGodKpcr2XsnJyZw8eZLWrVury7S0tGjdujWHDx/Ots3hw4c16gO0a9cux/qvg06hXVkIIYQQQgghBCtWrMhxQ7rJkyerN7t7kYmJSSFGJYQQQojXLSAggEmTJmmUTZgwgYkTJ2apGx8fT1paGpaWlhrllpaWnD9/Ptvr37x5M9v6N2/eLFjguZDJY1GiKbRkhZUQQojiJUMh/7cJ8V9Srly5bHMa/hcYW8nkthBCiOKloGNpf39/fH19NcqUSmWBrvmmSdoKIYQQQohiJCNDUaBDlGwtWrRg+PDhbzoMtbzEo1Ao2LZtW5HEU9h69+5Nly5dcq3ztv0eCSGEEMVJQcfSSqUSExMTjSOnyWNzc3O0tbW5deuWRvmtW7ewsrLKto2VlVW+6r8OsvJYCCGEEKIYyZC1AeI/KDg4mJYtW5KQkICpqWm+2sbGxmJmZlY4gQkhRB6YtOqIaYfuaJc2I/laFPE/LUZ15UK2dY2btqbcgC81ytKTk4n6rKv6c9VVv2bb9s66H7m3a8vrC1wIkUVRjqV1dXWpW7cuQUFB6i+P09PTCQoKwsfHJ9s27u7uBAUFaXyRvH//ftzd3QstTpk8FkIIIYQoRmTTO1GUkpOT0dXVfaMxFOZKm9flbXhOQojCYdiwGeYf9+f2ivk8uRyJabsulB85hWujBpD28H62bdIeJXFt9MBnBRkZGuejv/hE47OBc10s+g0j8fhfrz1+IYSmoh5L+/r64u3tTb169WjQoAGzZ88mKSmJPn36AODl5YW1tTUBAQEADBs2jObNmzNjxgw6duzIunXrOHHiBN9//32hxShLU4QQQgghhBBqqamp+Pj4ULp0aczNzRk3bhwZ/05s2NnZMWXKFLy8vDAxMWHAgAEAHDp0iGbNmqGvr4+NjQ1Dhw4lKSlJfc2ffvqJevXqYWxsjJWVFR9//DFxcXEAREdH07JlSwDMzMxQKBT07t1b3TY9PZ1Ro0ZRpkwZrKyssmw483zaiujoaBQKBVu2bKFly5YYGBjg4uKSZQfypUuXYmNjg4GBAV27dmXmzJl5XvE8ceJE6tSpw5IlS9TX6NmzJ/fvP5skepp+4ttvv6VChQpUr14dgPDwcN5991309fUpW7YsAwYMIDExMcs9Jk2ahIWFBSYmJgwaNIjk5OQc41GpVPj5+WFtbY2hoSENGzYkODhYfX7FihWYmpqyc+dOqlevjoGBAR988AGPHj1i5cqV2NnZYWZmxtChQ0lLS8vTMxBCPGPq0ZUHwXt4+OcBUm5c4/aK+WSonmDcvG3OjTIySLuf8Ox4cE/jtMa5+wkYujXiccQZUm8X3oZYQog3o1evXgQGBjJ+/Hjq1KlDaGgoe/bsUW+KFxMTQ2xsrLp+48aNWbNmDd9//z0uLi5s2rSJbdu2UatWrUKLUSaPhRBCCCGKkQwUBTqEWLlyJTo6Ohw7dow5c+Ywc+ZMfvjhB/X5wMBAXFxcOH36NOPGjePy5ct4eHjQvXt3zpw5w/r16zl06JDG65YpKSlMmTKFsLAwtm3bRnR0tHqC2MbGhs2bNwMQGRlJbGwsc+bM0YjH0NCQo0ePMn36dCZPnsz+/ftz7cPXX3+Nn58foaGhVKtWjY8++ojU1FQAQkJCGDRoEMOGDSM0NJQ2bdrw7bff5usZXbp0iQ0bNvDLL7+wZ88eTp8+zeDBgzXqBAUFERkZyf79+9m5cydJSUm0a9cOMzMzjh8/zsaNGzlw4ECW11KDgoKIiIggODiYtWvXsmXLliy7tj/Px8eHw4cPs27dOs6cOUOPHj3w8PDg4sWL6jqPHj1i7ty5rFu3jj179hAcHEzXrl3ZtWsXu3bt4qeffmLJkiVs2rQpX89BiBJPWwelnT2PzoY+K8vI4PG5UPTsa+TYTEtPH9uZy6k0awVWw8dRyto251uYmGLgUp+Hf+x7jYELIXLyJsbSPj4+XL16FZVKxdGjR2nYsKH6XHBwMCtWrNCo36NHDyIjI1GpVPz999906NChIF1+KUlbIYQQQghRjMgEsCgoGxsbZs2ahUKhoHr16oSHhzNr1iz69+8PwLvvvsuIESPU9T/77DM8PT3VufccHByYO3cuzZs3Z9GiRejp6dG3b191/SpVqjB37lzq169PYmIiRkZGlClTBoBy5cplWQHs7OzMhAkT1NeeP38+QUFBtGnTJsc++Pn50bFjRyBzFW/NmjW5dOkSNWrUYN68ebRv3x4/Pz8AqlWrxl9//cXOnTvz/IyePHnCqlWrsLa2BmDevHl07NiRGTNmqNNoGBoa8sMPP6jTVSxdulTdztDQEID58+fTuXNnvvvuO/UKI11dXZYtW4aBgQE1a9Zk8uTJjBw5kilTpqClpbn2JyYmhuXLlxMTE0OFChXUfd+zZw/Lly9n6tSpQObk/aJFi6hatSoAH3zwAT/99BO3bt3CyMgIJycnWrZsye+//06vXr3y/ByEKOm0jU1QaGtnWTmcev8e+uVtsm2TfPM6cT/MJvlaNFr6Bph26Ib1uECu+X9OWsKdLPWNm7Yi/cljkk5IygohioKMpbOSlcdCCCGEEMWIrDwWBdWoUSMUimd/Ftzd3bl48aI6pUG9evU06oeFhbFixQqMjIzUR7t27UhPTycqKgqAkydP0rlzZ2xtbTE2NqZ58+ZA5uTnyzg7O2t8Ll++vDrlRV7alC9fHkDdJjIykgYNGmjUf/Hzy9ja2qonjiHzGaWnpxMZGakuq127tkae44iICFxcXNQTxwBNmjTJ0s7FxQUDAwONaycmJnLt2rUscYSHh5OWlka1atU0nv/Bgwe5fPmyup6BgYF64hjA0tISOzs7jIyMNMpye64qlYoHDx5oHCpJcyFEvqkunScx5DeSY67wJPJvbs79lvSH9zF5t3229Y3faUPi4WAyUlKKOFIhSiYZS2clK4+FEEIIIYqRjIziOWgVb4/nJz8BEhMTGThwIEOHDs1S19bWVp2uoV27dqxevRoLCwtiYmJo165drrl8nypVqpTGZ4VCQXp6ep7bPJ0If1mb1+3F51QYEhMT0dbW5uTJk2hra2uce35iOLtnmN/nGhAQkCV9xhfO9gxzqfaq4Qvxn5f28AEZaWlom5hqlOuUNiXtfkIeL5KG6uoVSpWrkOWUXrWa6Faw4daC715DtEKIvJCxdFay8lgIIYQQQhTIggULsLOzQ09Pj4YNG3Ls2LFc62/cuJEaNWqgp6dH7dq12bVrVxFFKvLi6NGjGp+PHDmCg4NDlsnJp9zc3Dh37hz29vZZDl1dXc6fP8+dO3eYNm0azZo1o0aNGllWuD5doVsUG7ZVr16d48ePa5S9+PllYmJiuHHjhvrzkSNH0NLSUm+Mlx1HR0fCwsI0NhIMCQnJ0i4sLIzHjx9rXNvIyAgbm6yvwLu6upKWlkZcXFyWZ/80fcbr4u/vz/379zWOQbWqvryhEMVZWiqq6EsY1KzzrEyhQN+pDk8unc/bNRRa6FasRNr9u1lOGTdvy5OoiyRfi3o98QohxCuQyWMhhBBCiGKkqF+1W79+Pb6+vkyYMIFTp07h4uJCu3btcnz9/a+//uKjjz6iX79+nD59mi5dutClSxf+/vvvgnZdvCYxMTH4+voSGRnJ2rVrmTdvHsOGDcux/ujRo/nrr7/w8fEhNDSUixcvsn37dvVGcLa2tujq6jJv3jyuXLnCjh07mDJlisY1KlWqhEKhYOfOndy+fZvExMRC698XX3zBrl27mDlzJhcvXmTJkiXs3r1bI1XHy+jp6eHt7U1YWBh//vknQ4cOpWfPnrlO2Hp6eqrb/f333/z+++988cUXfPrpp+p8xwDJycn069ePc+fOsWvXLiZMmICPj0+WfMeQma/Z09MTLy8vtmzZQlRUFMeOHSMgIIBff/01fw/mJZRKJSYmJhqHMocvFIQoSe7t2Ypx83YYN21FqQo2mHsPQaHU4+EfmRt7lhvgS5ke3ur6Zu9/hH4tV3QsrNCtVJVyg/zQMS/Hg+C9GtdV6Olj1KApD18oF0IULklbkZVMHgshhBBCFCNFPeCdOXMm/fv3p0+fPjg5ObF48WIMDAxYtmxZtvXnzJmDh4cHI0eOxNHRkSlTpuDm5sb8+fML2nXxmnh5efH48WMaNGjAkCFDGDZsGAMGDMixvrOzMwcPHuTChQs0a9YMV1dXxo8fr97AzcLCghUrVrBx40acnJyYNm0agYGBGtewtrZm0qRJjBkzBktLS/XEc2Fo0qQJixcvZubMmbi4uLBnzx6+/PJL9PT08nwNe3t7unXrRocOHWjbti3Ozs4sXLgw1zYGBgbs3buXu3fvUr9+fT744ANatWqV5c9+q1atcHBw4J133qFXr1689957TJw4McfrLl++HC8vL0aMGEH16tXp0qULx48fx9bWNs/9EUK8uqSjf3Jn3Y+YdfsEmynzUFaqQuz/xqs30dMpa4G2aRl1fS1DIyz6DsV22mLKj5iElr4B/0zxI+WGZl5zo0aZueETjxwssr4IIWTyODuKjIyMjDcdhBBvSohr3TcdghBCiBKiyemTRXKf8Eu3CtS+mo0pKpVKo0ypVKJUKrPUTU5OxsDAgE2bNtGlSxd1ube3N/fu3WP79u1Z2tja2uLr68vw4cPVZRMmTGDbtm2EhYUVKHYhXlX//v05f/48f/7550vrTpw4kW3bthEaGlr4gb3lLnt1fNMhCCGEKEGqrnq9b9Vkp6Bj6dr2li+v9B8jK4+FEEIIIYqRjAxFgY6AgABKly6tcQQEBGR7r/j4eNLS0jReuQewtLTk5s2b2ba5efNmvuoLURgCAwMJCwvj0qVLzJs3j5UrV+Lt7f3yhkIIIYQo1go6li6OdN50AEIIIYQQ4vVJL+Drcv7+/vj6+mqUZbfqWIj/smPHjjF9+nQePnxIlSpVmDt3Lp999hkANWvW5OrVq9m2W7JkSVGGKYQQQogiVtCxdHEkk8dCCCGEEEItpxQV2TE3N0dbW5tbtzRf77t161aOG4dZWVnlq74QhWHDhg05ntu1axcpKSnZnrO0tMTY2DjXHMQliWXDmm86BCGEEEIUMpk8FkIIIYQoRopyow5dXV3q1q1LUFCQOudxeno6QUFBOW545u7uTlBQkEbO4/379+Pu7l4EEQvxcpUqVXrTIQghhBDiDSmum94VhOQ8FkIIIYQoRoo6T5uvry9Lly5l5cqVRERE8Pnnn5OUlESfPn0A8PLywt/fX11/2LBh7NmzhxkzZnD+/HkmTpzIiRMncpxsFsVTixYtNL5AeJGdnR2zZ88u9DgUCgXbtm0r9PsIIYQQ4r9Bch5nJSuPhRBCCCGKkaJeLdGrVy9u377N+PHjuXnzJnXq1GHPnj3qTfFiYmLQ0nq2XqFx48asWbOGsWPH8tVXX+Hg4MC2bduoVatWkcYthBBCvA4bwq6w6tQl7jxS4WBuwqjmztSyMsu27m+XbrDsxAWu3UsiNT0DW1NDPnG1p6OjjbrOnUdPmBtyjiMxcTxUpeJWoSyjWtTG1tSoqLokRIkmK4+zksljIYQQQohi5E2sePDx8clx5XBwcHCWsh49etCjR49CjkqINysjI4O0tDR0dN6eH7nexpiE+C/bd+EfZv55lq/edaaWpRlrQq/gs/0wWz5tRRmDrPsHmOjp0rd+NSqbGaOjpcWf0TeZdOA0ZgZKGlcqR0ZGBiN2HkNHS4uZnRpiqKvD6tOX+XzrX2z65F30S8nfXSEKW3FdPVwQkrZCCCGEEEIIUeRSU1Px8fGhdOnSmJubM27cODIyMrKtGxMTw/vvv4+RkREmJib07Nkzy8aLixYtomrVqujq6lK9enV++uknjfMXL17knXfeQU9PDycnJ/bv35/nWKOjo1EoFKxbt47GjRujp6dHrVq1OHjwoLpOcHAwCoWC3bt3U7duXZRKJYcOHSI9PZ2AgAAqV66Mvr4+Li4ubNq0Sd0uISEBT09PLCws0NfXx8HBgeXLlwOQnJyMj48P5cuXR09Pj0qVKhEQEKARU2hoqPpa9+7dQ6FQqL+0edWYhBB58/PpS3StVYn3nCpRpawJX73rgp6ONtvPXc22fr2K5rxbtQKVyxhjY2rIx3WqYm9uQuiNOwDE3Esi/GYC/i2dqWlphp2ZMf4tXVClprEn8p+i7JoQQqjJ11ZCCCGEEMWIvGon/itWrlxJv379OHbsGCdOnGDAgAHY2trSv39/jXrp6enqieODBw+SmprKkCFD6NWrl3qSdOvWrQwbNozZs2fTunVrdu7cSZ8+fahYsSItW7YkPT2dbt26YWlpydGjR7l//36uOZdzMnLkSGbPno2TkxMzZ86kc+fOREVFUbZsWXWdMWPGEBgYSJUqVTAzMyMgIICff/6ZxYsX4+DgwB9//MEnn3yChYUFzZs3Z9y4cZw7d47du3djbm7OpUuXePz4MQBz585lx44dbNiwAVtbW65du8a1a9fyHXd+YxJCvFxKWjrn4+7Tp141dZmWQkEDGwvCYxNe2j4jI4Pj1+O5mpDI0CZOACSnpQOgq62tcU1dbS1CY+/QtZZs6ClEYZOxdFYyeSyEEEIIUYzIq3biv8LGxoZZs2ahUCioXr064eHhzJo1K8vkcVBQEOHh4URFRWFjk5kXdNWqVdSsWZPjx49Tv359AgMD6d27N4MHDwYyN3I8cuQIgYGBtGzZkgMHDnD+/Hn27t1LhQoVAJg6dSrt27fPV8w+Pj50794dyFzpvGfPHn788UdGjRqlrjN58mTatGkDgEqlYurUqRw4cAB3d3cAqlSpwqFDh1iyZAnNmzcnJiYGV1dX6tWrB2RuFvhUTEwMDg4ONG3aFIVCQaVKrzZxlN+YsqNSqVCpVBplKSmpKOU1elFC3XusIi0jg7IvpKcoa6AkOuFhju0eqlJov2wvyWnpaCsUjGnhTCPbcgDYmRlhZazP/L/O8fW7LuiXykxbcSvxCfFJTwq1P0KITDKWzkrSVgghhBBCFCPpBTyEKCqNGjVCoXj2A5q7uzsXL14kLS1No15ERAQ2NjbqiWMAJycnTE1NiYiIUNdp0qSJRrsmTZponLexsVFPHD+9X34930ZHR4d69eqp7/HU00lggEuXLvHo0SPatGmDkZGR+li1ahWXL18G4PPPP2fdunXUqVOHUaNG8ddff6nb9+7dm9DQUKpXr87QoUPZt29fvmN+lZiyExAQQOnSpTWOGfuOvlI8QpRkhro6rP2oBT/1as5gd0dm/vk3J67HA1BKW4vAjg2IuZdIy+9302ThTk5cj6dJpXJoKWRCS4iiIGPprORrYiGEEEKIYkRWSwjxZhkaGqp/nZiYCMCvv/6KtbW1Rj2lMnO1Yvv27bl69Sq7du1i//79tGrViiFDhhAYGIibmxtRUVHs3r2bAwcO0LNnT1q3bs2mTZvQ0spcB/R8nuiUlJTXElN2/P398fX11ShLWTYxx/pCFHem+kq0FQruPNJckX/nkQpzA70c22kpFNiYGgFQ3aI0UXcfsvzEBepVNAfAsZwpaz9uyUNVCqlp6ZgZKPFafxCncqaF1hchxDMyls5KVh4LIYQQQgghitzRo5qrVo8cOYKDgwPaz+X6BHB0dMyS6/fcuXPcu3cPJycndZ2QkBCNdiEhIRrnr127RmxsrMb98uv5NqmpqZw8eRJHR8cc6zs5OaFUKomJicHe3l7jeH4ltYWFBd7e3vz888/Mnj2b77//Xn3OxMSEXr16sXTpUtavX8/mzZu5e/cuFhYWABp9en7zvILG9CKlUomJiYnGISkrRElWSluLGuVKc/zabXVZekYGx6/dpnZ5szxfJ4PM/MkvMlaWwsxAScy9RCLi7tG8SvnXEbYQQuSb/G8vhBBCCFGMyCYf4r8iJiYGX19fBg4cyKlTp5g3bx4zZszIUq9169bUrl0bT09PZs+eTWpqKoMHD6Z58+bqdAwjR46kZ8+euLq60rp1a3755Re2bNnCgQMH1NeoVq0a3t7e/O9//+PBgwd8/fXX+Y55wYIFODg44OjoyKxZs0hISKBv37451jc2NsbPz48vv/yS9PR0mjZtyv379wkJCcHExARvb2/Gjx9P3bp1qVmzJiqVip07d6onpGfOnEn58uVxdXVFS0uLjRs3YmVlhampKVpaWjRq1Ihp06ZRuXJl4uLiGDt27Ev7kJeYhBB584mrPRP2n8LR0pRalmasCb3M49Q03nOyBWD8vpNYGOrzxb8b4i07fgEnS1MqljYkJS2dQ9G3+PX8NfxbuKivuf/iP5jpK7Ey1udS/AMC/winRZXyuFcq90b6KERJI2PprGTyWAghhBCiGJFX7cR/hZeXF48fP6ZBgwZoa2szbNgwBgwYkKWeQqFg+/btfPHFF7zzzjtoaWnh4eHBvHnz1HW6dOnCnDlzCAwMZNiwYVSuXJnly5fTokULALS0tNi6dSv9+vWjQYMG2NnZMXfuXDw8PPIV87Rp05g2bRqhoaHY29uzY8cOzM3Nc20zZcoULCwsCAgI4MqVK5iamuLm5sZXX30FgK6uLv7+/kRHR6Ovr0+zZs1Yt24dkDnRO336dC5evIi2tjb169dn165d6pQVy5Yto1+/ftStW5fq1aszffp02rZt+9J+vCwmIUTetK1mTcJjFYuPnOdOkopqFibMe78RZf9NW3Hz4WON3O5PUtOY9vsZ4hIfo9TRxs7MiG/a1qVttWcpZOKTnjDrz78z018Y6tGxhg39G1Qv8r4JUVLJWDorRcbzSbKEKGFCXOu+6RCEEEKUEE1OnyyS+xw6l1Sg9k2dDF9eSYgSJjo6msqVK3P69Gnq1KnzpsN5ayQuGPWmQxBCCFGCGA2ZXuj3kLF0VrLyWAghhBCiGEmXZQFCCCGEEEK8EhlLZyUb5gkhhBBCCCFKtKlTp2JkZJTt0b59+zcdnhBCCCHEGyMrj4UQQgghihHZ5EOI/Bs0aBA9e/bM9py+vj7W1tZItr+shtzyfdMhCCGEKEFWFsE9ZCydlUweCyGEEEIUI7LJhxD5V6ZMGcqUKfOmwxBCCCHEGyZj6axk8lgIIUo4q549sPb2QrdsWZIuXOTKd9NJPHs2x/raRkZU8hlC2XffRae0CarYWKICZ5BwKCTzvIEBtoM/p8y7LSllZkZSZCRR0wNJPHeuqLokRIkmiyPFm9SiRQvq1KnD7NmzsbOzY/jw4QwfPjzfbYuzFStWMHz4cO7duwfAxIkT2bZtG6GhoTm2kQ37hHj7dX3XiBZ19THQ0+JiTDIrf3nArbtpOdbv0tKIri2NNMpu3E7Ff168+nNpIy16tTWmZlVd9JUKYuPT+OWPRE6cUxVaP4Qo6WQsnZVMHhcTycnJ6OrqvtZrZmRkkJaWho7O2/PH5G2MSYj/MvO2bag8wpfL307l4d9/U+Hjj6m5cD6nunQjJSEhS32Fjg41Fy8k5W4C50eOIjkuDmWF8qQ+fKiuYz9+HAb2Vbk4dhzJt29j0aEDNRcv4nT3D0i+fbsouydEiZQur9qJt8Tx48cxNMz7juNbtmyhVKlShRjR28nPz48vvvhC/bl3797cu3ePbdu2qctsbGyIjY3F3Nz8DUQohHiZDk0NadPQgKVb7xOfkEa3d43w8zLjq/nxpKTm3O76rRSmr3w25k57YaeuAd1KY6CnYM6aezx8lI67sx5DepoyYfEdYm7mcmEhxCuTsXRWsmFeIWjRogU+Pj74+PhQunRpzM3NGTdunDpPmkqlws/PD2trawwNDWnYsCHBwcEa1zh06BDNmjVDX18fGxsbhg4dSlJSkvq8nZ0dU6ZMwcvLCxMTEwYMGJBrTNHR0SgUCtatW0fjxo3R09OjVq1aHDx4UF0nODgYhULB7t27qVu3LkqlkkOHDpGenk5AQACVK1dGX18fFxcXNm3apG6XkJCAp6cnFhYW6Ovr4+DgwPLly4HMSW0fHx/Kly+Pnp4elSpVIiAgQCOm51dZ3Lt3D4VCoX4erxqTECJvKnzyCbe2bCVuxy88vhLF5W+nkvbkCeW6vJ9tfcsu76NjUprzviN4GBaGKjaWBydP8ejCRQC0lErKtnqX6NlzeXDqNE+uXefaku95cu0aVj0+KMquCSGEeMMsLCwwMDDIc/0yZcpgbGxciBG9nYyMjChbtmyudbS1tbGyspIFFEK8pdq5G/DLH4mcPq/i2q1Uvt9yH1Njbdxq6OXaLi0d7iemq4/ER5qTx/Y2pdh/9BFX/knhdkIaOw4m8ehJBpUrlLwv2oQQb45MHheSlStXoqOjw7Fjx5gzZw4zZ87khx9+AMDHx4fDhw+zbt06zpw5Q48ePfDw8ODixczJl8uXL+Ph4UH37t05c+YM69ev59ChQ/j4+GjcIzAwEBcXF06fPs24cePyFNfIkSMZMWIEp0+fxt3dnc6dO3Pnzh2NOmPGjGHatGlERETg7OxMQEAAq1atYvHixZw9e5Yvv/ySTz75RD3xPG7cOM6dO8fu3buJiIhg0aJF6lURc+fOZceOHWzYsIHIyEhWr16NnZ1dvp9nfmMSQrycQkcHI8ca3Dt67FlhRgb3jx7D2Ll2tm3Mmr/DwzNnqDJmNPUP7KPOxvVU7NsHtDL/O1Foa6PQ0SE9WfNVunSVChPXOoXVFSHEczIyFAU6hHhd7Ozs1CkoPv74Y3r16qVxPiUlBXNzc1atWgVkLsB4PsWFnZ0dU6dOpW/fvhgbG2Nra8v333+vcY2//vqLOnXqoKenR7169di2bVuWxQm5OXv2LJ06dcLExARjY2OaNWvG5cuXAUhPT2fy5MlUrFgRpVJJnTp12LNnj7rt04UQW7ZsoWXLlhgYGODi4sLhw4c17rFixQpsbW0xMDCga9euWcbeEydOVKeimDhxIitXrmT79u0oFAr1oorsFl0cPHiQBg0aoFQqKV++PGPGjCE19dlKxBYtWjB06FBGjRpFmTJlsLKyYuLEierzGRkZTJw4EVtbW5RKJRUqVGDo0KF5em5CiGcszLQxNdbm7OVkddljVQZX/knB3ib3SV6rstrM9rPgf8PNGdi9NGVKa07RXLqWQsNaehjqK1AooGEtPUrpQER0cg5XFEIUlIyls5LJ40JiY2PDrFmzqF69Op6ennzxxRfMmjWLmJgYli9fzsaNG2nWrBlVq1bFz8+Ppk2bqlfrBgQE4OnpyfDhw3FwcKBx48bMnTuXVatW8eTJE/U93n33XUaMGEHVqlWpWrVqnuLy8fGhe/fuODo6smjRIkqXLs2PP/6oUWfy5Mm0adOGqlWrYmhoyNSpU1m2bBnt2rWjSpUq9O7dm08++YQlS5YAEBMTg6urK/Xq1cPOzo7WrVvTuXNn9TkHBweaNm1KpUqVaNq0KR999FG+n2d+YxJCvFwpM1MUOjqk3NX8ITb5zh10y2b/WqyedUXMW7dCoa3FuS+Gcn3pD1T49BNsPusHQNqjRzwIC8Om/2foWpiDlhYWHdpj7FwbXXnVVogikZFRsEOIwuDp6ckvv/xCYmKiumzv3r08evSIrl275thuxowZ1KtXj9OnTzN48GA+//xzIiMjAXjw4AGdO3emdu3anDp1iilTpjB69Og8x/TPP//wzjvvoFQq+e233zh58iR9+/ZVT8DOmTOHGTNmEBgYyJkzZ2jXrh3vvfeeesHHU19//TV+fn6EhoZSrVo1PvroI/U1jh49Sr9+/fDx8SE0NJSWLVvyzTff5BiTn58fPXv2xMPDg9jYWGJjY2ncuHG2sXfo0IH69esTFhbGokWL+PHHH7Nce+XKlRgaGnL06FGmT5/O5MmT2b9/PwCbN29m1qxZLFmyhIsXL7Jt2zZq187+y2MhRM5KG2VOq9xPTNcof5CYpj6XnSvXk1m69T4zfkpg5c4HWJhp83W/sujpPpt8WrDhHtraChb6W/LDeEt6v2fC3LX3iMsll7IQomDe5rH03bt38fT0xMTEBFNTU/r166cxtsqu/hdffEH16tXR19fH1taWoUOHcv/+/XzdV957KiSNGjVCoXj2j767uzszZswgPDyctLQ0qlWrplFfpVKpX1cLCwvjzJkzrF69Wn0+IyOD9PR0oqKicHR0BKBevXr5jsvd3V39ax0dHerVq0dERIRGneeve+nSJR49ekSbNm006iQnJ+Pq6grA559/Tvfu3Tl16hRt27alS5cu6kFu7969adOmDdWrV8fDw4NOnTrRtm3bfMed35iyo1KpUKk0V0Mmp6ejqyXfoQiRVwotBSl3E7g05VtITycp4jy65cph7eXFte+XAnBx7HjsJ46n/r69ZKSmknj+PLf37MXo33+7hBCFK0PytIm3ULt27TA0NGTr1q18+umnAKxZs4b33nsv11QVHTp0YPDgwQCMHj2aWbNm8fvvv1O9enXWrFmDQqFg6dKl6Onp4eTkxD///EP//v3zFNOCBQsoXbo069atU+dafn6MHhgYyOjRo/nwww8B+O677/j999+ZPXs2CxYsUNfz8/OjY8eOAEyaNImaNWty6dIlatSowZw5c/Dw8GDUqFHq6//1118aK5ifZ2RkhL6+PiqVCisrqxxjX7hwITY2NsyfPx+FQkGNGjW4ceMGo0ePZvz48Wj9O751dnZmwoQJADg4ODB//nyCgoJo06YNMTExWFlZ0bp1a0qVKoWtrS0NGjTI8Z7ZjaXTUlVo6yhzbCNEceTurEfvzibqzzNXZ90nJC/OXHy2evjaLbhyPYEZvhY0qKXHH6ceA9DtXSMM9BR8t+IuD5PSqeuoZHBPU6b+eJfrcZLzWIjC8DaPpT09PYmNjWX//v2kpKTQp08fBgwYwJo1a7Ktf+PGDW7cuEFgYCBOTk5cvXqVQYMGcePGjXylfpXJ4yKWmJiItrY2J0+eRFtbW+OckZGRus7AgQOzfW3M1tZW/ev8bECSH89f9+k3GL/++ivW1tYa9ZTKzIFi+/btuXr1Krt27WL//v20atWKIUOGEBgYiJubG1FRUezevZsDBw7Qs2dPWrduzaZNm9SD2oznvppJSUl5LTFlJyAggEmTJmmU9bG0ol/5Cjm2EaI4S0m4R0ZqKqXKaOZZ1C1bluQ78dm2SY6PJyM1FdKfrax4FBWFroU5Ch0dMlJTeXL9On9/NgAtPT20jYxIiY+n+rQAnvzzT6H2RwiRKV1WD4u3kI6ODj179mT16tV8+umnJCUlsX37dtatW5drO2dnZ/WvFQoFVlZWxMXFARAZGYmzszN6es9yiuY2+fmi0NBQmjVrlu0mfQ8ePODGjRs0adJEo7xJkyaEhYXlGGP58uUBiIuLo0aNGkRERGRZWe3u7p7j5HFeRURE4O7urrFYpUmTJiQmJnL9+nX1zwzPx/Y0vqfPr0ePHsyePZsqVarg4eFBhw4d6Ny5c455lbMbSzu/M4I6zf0K1Bch/mtOn1dx+fqzN/dKaWf+PSxtpKWx+tjESJuY2Ox/vs3OoycZ3LyThmWZzHmCcmbatGlkyFfz4vnnduZE8bVbqVSrpEurhgas/OXB6+iOEOIFb+tYOiIigj179nD8+HH1Ast58+bRoUMHAgMDqVAh69xWrVq12Lx5s/pz1apV+fbbb/nkk09ITU3N814KsuSykBw9elTj85EjR3BwcMDV1ZW0tDTi4uKwt7fXOJ6uLnBzc+PcuXNZztvb26Orq1uguI4cOaL+dWpqKidPnlSvZM6Ok5MTSqWSmJiYLLHY2Nio61lYWODt7c3PP//M7NmzNfLRmZiY0KtXL5YuXcr69evZvHkzd+/excLCAoDY2Fh13bzkp8trTC/y9/fn/v37Gsenljmv6BCiuMtITSUx4jylG9Z/VqhQULpBfR6eCc+2zYPQMPRsbOC5H1b1bSuRfPt25qTyc9KfPCElPh5tY2NMG7tz94WNQYUQhUPytIm3laenJ0FBQcTFxbFt2zb09fXx8PDItc2LE7sKhYL09PQcauePvr7+a7nO8zE+ncx9XTEWVG7Pz8bGhsjISBYuXIi+vj6DBw/mnXfeyXExR3Zj6dpNvij0PgjxtnmSnEHc3TT18c/tVO49TMOpyrOf1fWUCqpYl+LStbxPHit1FZQz0+bew8y/o7ql/v335IX34NMzQEv+uxai0BR0LK1SqXjw4IHG8eKbO6/i8OHDmJqaaryZ37p1a7S0tLLMQebm/v37mJiY5GsTXll5XEhiYmLw9fVl4MCBnDp1innz5jFjxgyqVauGp6cnXl5ezJgxA1dXV27fvk1QUBDOzs507NiR0aNH06hRI3x8fPjss88wNDTk3Llz7N+/n/nz5xcorgULFuDg4ICjoyOzZs0iISGBvn375ljf2NgYPz8/vvzyS9LT02natCn3798nJCQEExMTvL29GT9+PHXr1qVmzZqoVCp27typnpCeOXMm5cuXx9XVFS0tLTZu3IiVlRWmpqZoaWnRqFEjpk2bRuXKlYmLi2Ps2LEv7UNeYsqOUqnMsjJZUlaIku7Gzz/jMHkSieciSPz7byp8/DHa+vrEbd8BgMOUSSTH3ebqvMx/e25u3ET5Xj2pPMqP2LXr0be1pWK/PsSufbZyzNTdHRTwOPoqejY22H05jMdR0cTt+OWN9FEIIcTboXHjxtjY2LB+/Xp2795Njx49sl31m1fVq1fn559/RqVSqcd4x48fz3N7Z2dnVq5cSUpKSpY4TExMqFChAiEhIRNuvXMAAHMESURBVDRv3lxdHhISkq/VzY6OjtkuKsmNrq4uaWm55zN1dHRk8+bNZGRkqCesQ0JCMDY2pmLFinmOT19fn86dO9O5c2eGDBlCjRo1CA8Px83NLUvd7MbS2jqP8nwvIYqzvYcf8V5zI27dSeN2QhrdWhlx72Eap84/27NoVG8zTp1TceBY5t+bD9sZczryCXfupWNqrEXXd41Iz4Aj4ZkpK2LjU7l5J5U+75Vm3d6HJD5Kx81RSc0qusx6xVQZQojCl92bOhMmTNDYtPZV3Lx5k3LlymmU6ejoUKZMGW7evJmna8THxzNlyhQGDBiQr3vL5HEh8fLy4vHjxzRo0ABtbW2GDRum/s1Zvnw533zzDSNGjOCff/7B3NycRo0a0alTJyBzIHvw4EG+/vprmjVrRkZGBlWrVs2yQ/WrmDZtGtOmTSM0NBR7e3t27NiB+Us2sZoyZQoWFhYEBARw5coVTE1NcXNz46uvvgIyB7j+/v5ER0ejr69Ps2bN1K8gGhsbM336dC5evIi2tjb169dn165d6pQVy5Yto1+/ftStW5fq1aszffr0POVEfllMQoi8id+3Hx0zM2w/H4Ru2bIkRV7g7JAvSLl7FwCllRUZz723k3zrFueG+FB5xAisNqxDFXeb2DVrub5ipbqOtpERlb7wQWlZjtT7D7gTFMTVBQuzrEwWQhQO2fROvM0+/vhjFi9ezIULF/j9998LfK2vv/6aAQMGMGbMGGJiYggMDATQSOeQEx8fH+bNm8eHH36Iv78/pUuX5siRIzRo0IDq1aszcuRIJkyYQNWqValTpw7Lly8nNDRUY1+Slxk6dChNmjQhMDCQ999/n7179740ZYWdnR179+4lMjKSsmXLUrp06Sx1Bg8ezOzZs/niiy/w8fEhMjKSCRMm4Ovrqx5nv8yKFStIS0ujYcOGGBgY8PPPP6Ovr0+lSpXy3D8hRKZdh5JQ6iro/Z4JBnpaXIxJJvCnBFKeG/6WM9PByPDZSmQzEy0+/8AUIwMtHialcyEmmSnf3+Hho8z/yNPSYeZPCfRoY8xwT1P0dBXcupvG0q33NfIlCyFer4KOpf39/fH19dUoyy3F6pgxY/juu+9yveaLe5W9igcPHtCxY0ecnJzyPZEtk8eFpFSpUsyePZtFixZle27SpElZvol4Xv369dm3b1+O56Ojo18pruxWPzzVokULjfzDTykUCoYNG8awYcOybTd27NgcVwz3798/101LHB0d+euvvzTKno/hVWMSQuTdzfUbuLl+Q7bn/u4/MEvZwzPhnPHuneP17uzfz51/d3IXQhS99Ld4kw8hPD09+fbbb6lUqVKWfML5ZWJiwi+//MLnn39OnTp1qF27NuPHj+fjjz/WyIOck7Jly/Lbb78xcuRImjdvjra2NnXq1FHH9XQ38hEjRhAXF4eTkxM7duzAwcEhzzE2atSIpUuXMmHCBMaPH0/r1q0ZO3YsU6ZMybFN//79CQ4Opl69eiQmJvL7779jZ2enUcfa2ppdu3YxcuRIXFxcKFOmDP369cvTW3xPmZqaMm3aNHx9fUlLS6N27dr88ssv6k28hRD5s/W3RLb+lpjjeb9ZtzU+L9p4/6XXvHU3jfnr7xU0NCFEPhR0LJ3dmzq5GTFiBL179861TpUqVTT2fXgqNTWVu3fv5rrJLsDDhw/x8PDA2NiYrVu35vvNL0VGdjNzokBatGhBnTp1mD179psORS06OprKlStz+vRp6tSp86bDeWuEuNZ90yEIIYQoIZqcPlkk9/nlZMFW+XeuK2sLxH/X6tWr6dOnD/fv339tOY1FzrzH5+01WSGEEOJ1WDm58PetelvH0hERETg5OXHixAnq1s2cy9q3bx8eHh5cv3492w3zIHPFcbt27VAqlezatQsDA4N831sSvhYTU6dOxcjIKNujffv2bzo8IYQQQhQR2TBPlCSrVq3i0KFDREVFsW3bNkaPHk3Pnj1l4lgIIYQQr+RtHUs7Ojri4eFB//79OXbsGCEhIfj4+PDhhx+qJ47/+ecfatSowbFjx4DMieO2bduSlJTEjz/+yIMHD7h58yY3b9586f4Kz5OlJYUgODi4yO85aNAgevbsme05fX19rK2ts03/IIQQQgghxH/VzZs3GT9+PDdv3qR8+fL06NGDb7/9FsgcH//888/Ztvvkk09YvHhxUYYqhBBCCFEgq1evxsfHh1atWqGlpUX37t2ZO3eu+nxKSgqRkZE8epS5MeepU6fUqWvt7e01rhUVFZUlLVZOJG2FKNEkbYUQQoiiUlRpK7Ydz/sqgux0qa/9miIR4s2Ki4vjwYMH2Z4zMTHJsmO5yL8eX0a96RCEEEKUIBtnVS70e8hYOitZeSyEEEIIUYzIsgAhMpUrV049QTxx4kS2bdtGaGhontsrFAq2bt1Kly5dCidAIYQQQrx1ZCydlUweC/H/9u47Lqvyf/z462Yj6xZkOgAVAQ0VxJ05cCBFOXJSituKzFn6tZwpapCzYZY40qxcHyc50URFQDEHoqKIA0QFRETZvz/4edsdoCAqiO/n43EeD+9zrnOd9zkO3r7v61yXEEIIUYnkl3GFaCEqo/Hjx/Ppp5+WdxgVUkhICO3btyclJQWlUlne4QjxyurjqcSjpREGehqci8tk2Z+3Sbz95IW3TE008XnHFFdnfXS1FSTezuG7dbe4dDULgF5dlLR2NcBMqUVObj6XrmXx2/YULsZnvoxbEuK1JLl0YVI8FkIIIYSoRPJktIQQhTxaSFqoy87OLu8QhKgU3utgQte3jFmy9jZJd7Lp27UqX460Ysyc62TnFP2D2UBfg5mjrDlz4SGzf0okLT0PK3Nt7mfkqdok3Mrml413uHknBx1tBe+0NeGrkVZ8OusqaffziuxXCFE2kksXplHeAQghhBBCCCEEwPr163FxcUFfXx8zMzM6duzI/fv3ycvLY8aMGdSoUQNdXV0aN25McHCw2rnXrl2jX79+mJqaYmBggLu7u2qRmGnTptG4cWNV2/DwcDp16kS1atUwMTGhbdu2HD9+/JlizsrKws/PD2tra/T09LC1tcXf3x+AuLg4FAqF2nQZqampKBQK1SLbISEhKBQKtm/fTsOGDdHT06NFixacPn1adc6KFStQKpVs3rwZBwcH9PT06NKlC1evXlWL5YcffqBOnTro6Ojg6OjI6tWr1Y4rFAp++OEH3n33XQwMDBg2bBjt27cHoGrVqigUCnx9fZ/pOQjxOnu7rTEbdqUScTqD+IRslqy9RVVjTZq6VCn2nG4eJtxJzeX7dbe5GJ9FUnIO/8Q84Oadx6OVDx2/z6nzD0m6k8O1xGxWbr5DFX0NatnovIzbEkIIQIrHQgghhBCVSn5+2TYhyktCQgL9+vVj8ODBREdHExISQo8ePcjPz2fhwoUEBgYSEBDAP//8Q5cuXXj33Xe5cOECAOnp6bRt25br16+zZcsWTp48yeeff05eXtEj8+7du8fAgQM5dOgQR48excHBAS8vL+7du1fquBctWsSWLVv4448/iImJYc2aNSVevfzfJkyYQGBgIOHh4Zibm+Pt7a02MjgjI4NZs2axatUqQkNDSU1NpW/fvqrjmzZt4rPPPmPcuHGcPn2aESNGMGjQIPbv3692nWnTptG9e3dOnTrF9OnT2bBhAwAxMTEkJCSwcOHCUscuxOvMwkyLqsZanDr/ULUv42E+F69k4minW+x57g2qEHs1k7EDLfh5Ri3mjbPBo4VRse21NKFjSyPuP8jlyo2s53oPQojHJJcuTKatEEIIIYSoRCpr0ioqv4SEBHJycujRowe2trYAuLi4ABAQEMAXX3yhKpbOnTuX/fv3s2DBAr777jvWrl3LrVu3CA8Px9TUFIC6desWe60OHTqoff7pp59QKpUcOHCAd955p1Rxx8fH4+DgwJtvvolCoVDFXlpTp06lU6dOAKxcuZIaNWqwadMmevfuDRRMMbFkyRKaN2+uauPs7MyxY8do1qwZAQEB+Pr68vHHHwMwduxYjh49SkBAgGp0MUD//v0ZNGiQ6vPly5eBggUGZc5jIUpPaaQJQGp6rtr+1PRc1bGiWJhp0bmVEdtC0ti4J5W6tXQZ3N2UnNx8DoSnq9q51ddnzAALdLQVpKblMvOHRO7JlBVCvDCSSxcmI4+FEEIIISqRvHxFmTYhykujRo3w8PDAxcWFXr16sWzZMlJSUkhLS+PGjRu0bt1arX3r1q2Jjo4GICoqCldXV1Xh+Glu3rzJsGHDcHBwwMTEBGNjY9LT04mPjy913L6+vkRFReHo6MioUaPYtWtXqfsAaNmyperXpqamODo6qu4PQEtLi6ZNm6o+Ozk5oVQqVW2io6Of+IwecXd3f6b4MjMzSUtLU9tyc2TRLvH6edPNgNVzbFWbluaz/ezUUCi4fC2L33akEHc9iz1H7rHn6D06t1IffXzm4kMmBFzny0UJRJ17wNiBFhgbSilHiBdFcunC5F8cIYQQQohKpKK+apecnIyPjw/GxsYolUqGDBlCenr6E9t/+umnODo6oq+vT61atRg1ahR37959cUGKcqWpqcnu3bvZuXMn9evXZ/HixTg6OqpGxj6Jvr5+qa41cOBAoqKiWLhwIYcPHyYqKgozMzOyskr/KribmxuXL19m5syZPHjwgN69e/P+++8DoKFR8N+t/H/95SrvReoMDAye6Tx/f39MTEzUtnPhPzzn6ISo+CLOZDAh4LpqS7tfMOJYaag+ylhpqEnqvdyiugAgJS2XazfV/z24fjObakr1F8Qzs/JJvJ3DhSuZ/PD7bXLzoEPz4qe3EEKUTUXNpcuTFI+FEEIIIcQL5+Pjw5kzZ9i9ezfbtm3j4MGDDB8+vNj2N27c4MaNGwQEBHD69GlWrFhBcHAwQ4YMeYlRi5dNoVDQunVrpk+fzokTJ9DR0WHv3r3Y2NgQGhqq1jY0NJT69esD0LBhQ6KiokhOTi7RdUJDQxk1ahReXl40aNAAXV1dbt++/cxxGxsb06dPH5YtW8bvv//Ohg0bSE5OxtzcHCiYkuORfy+e929Hjx5V/TolJYXz58/j7Oys2peTk0NERITqc0xMDKmpqao2zs7OT3xGxdHRKVh4Kze3+CIXwKRJk7h7967a5tT0oyeeI0Rl9DCzoJj7aLuWmE1KWg5v1NNTtdHXVVDXVpeYuOJH58dcfoiNhbbaPmsLbW6l5BRzRgGFArS1KufoRiFExSRzHgshhBBCVCIVccRDdHQ0wcHBhIeHq16ZX7x4MV5eXgQEBGBjY1PonDfeeEO1kBdAnTp1mDVrFh988AE5OTloaUkaW9mEhYWxd+9eOnfujIWFBWFhYdy6dQtnZ2cmTJjA1KlTqVOnDo0bNyYoKIioqCjWrFkDQL9+/Zg9ezbdunXD398fa2trTpw4gY2Njdp0EI84ODiwevVq3N3dSUtLY8KECaUevfzIt99+i7W1Na6urmhoaPDnn39iZWWFUqlEQ0ODFi1aMGfOHOzt7UlKSuLLL78ssp8ZM2ZgZmaGpaUlkydPplq1anTr1k11XFtbm08//ZRFixahpaWFn58fLVq0oFmzZkDBgnu9e/fG1dWVjh07snXrVjZu3MiePXueGL+trS0KhYJt27bh5eWFvr4+hoaGhdrp6uqiq6u++Jem1p1SPi0hKqftB9Lo2UlJ4q0ckpKz6dO1KilpuYSfylC1mfKRFcdO3Sf4UMHCnNsO3OXrz2zo3tGEI1H3qVtLl44tjFj6R8EXWbo6Cnp0VBJxJoOUtFyMDTTo8qYxpiaaHDl5v1zuU4jXQUXMpcubZN1CCCGEEJVIXhkT3szMTDIz1UdKFVU0Ko0jR46gVCrV5lrt2LEjGhoahIWF0b179xL1c/fuXYyNjaVwXEkZGxtz8OBBFixYQFpaGra2tgQGBtK1a1e6dOnC3bt3GTduHElJSdSvX58tW7bg4OAAFIye3bVrF+PGjcPLy4ucnBzq16/Pd999V+S1fvnlF4YPH46bmxs1a9Zk9uzZjB8//pniNjIyYt68eVy4cAFNTU2aNm3Kjh07VFNWLF++nCFDhtCkSRMcHR2ZN28enTt3LtTPnDlz+Oyzz7hw4QKNGzdm69atqlHBAFWqVOGLL76gf//+XL9+nTZt2vDLL7+ojnfr1o2FCxcSEBDAZ599hr29PUFBQbRr1+6J8VevXp3p06czceJEBg0axIABA1ixYsUzPQshXlf/23cXPR0FI3qbUUVfg3OXM5m1NJHsnMc/lC2raWFk8Hhqi9irWXyz/CY+b5vyfmclSck5rNiczKHjBYXhvDyobqlNu6YWGBlqcu9+LrHxmUxZnMC1xPKd/kaIyqysuXRlpMjPl5q6eH2FujYp7xCEEEK8JlqfiHwp11l9sGznx+6bxvTp09X2TZ06lWnTpj1zn7Nnz2blypXExMSo7bewsGD69Ol89NHTX32/ffs2TZo04YMPPmDWrFnPHIsQFU1ISAjt27cnJSUFpVJZZJsVK1YwevRoUlNTX2psT9NrzNPnoxZCCCGelz/n27/wa5Q1l/7wrecTR0Uicx4LIYQQQlQiZV3ko6h5TSdNmlTktSZOnIhCoXjidu7cuTLfU1paGm+//Tb169cvUxFbCCGEEEKIJ5EF8wqTd/6EEEIIIYRKaaaoGDduHL6+vk9sU7t2baysrEhKSlLbn5OTQ3JyMlZWVk88/969e3h6emJkZMSmTZvQ1tZ+YnshnrfZs2cze/bsIo+1adOGnTt3vuSIhBBCCCFeHikeCyGEEEJUIi9znjZzc3PMzc2f2q5ly5akpqYSGRlJkyYFU0bt27ePvLw8mjdvXux5aWlpdOnSBV1dXbZs2YKenl6xbYV4UUaOHEnv3r2LPPasi+z9W7t27XjaTIK+vr5P/aJGCCGEEGUncx4XJsVjIYQQQohKpCK+Lufs7IynpyfDhg3jxx9/JDs7Gz8/P/r27YuNjQ0A169fx8PDg1WrVtGsWTPS0tLo3LkzGRkZ/Prrr6SlpZGWlgYUFK01NTWfdEkhnhtTU1NMTU3LO4wK6f7d9PIOQQghhHiuKmIuXd5kzmMhhBBCiEqkos7TtmbNGpycnPDw8MDLy4s333yTn376SXU8OzubmJgYMjIyADh+/DhhYWGcOnWKunXrYm1trdquXr364gJ9gaZNm0bjxo3LO4wXJi4uDoVCQVRUVHmH8kye1+/Py/59DgkJQaFQPHExvcr+Z08IIYR4XipqLl2eZOSxEEIIIUQlUlFftTM1NWXt2rXFHrezs1N7db8kr/KXRbt27WjcuDELFix4Ydd4FaxYsYLRo0c/sfBY3hQKBZs2baJbt27lHUohRcU2fvx4Pv300/ILqggVMSYhKpsPulng+ZYpBlU0OXsxg+9WXedGUtYTzzFTajGolxXuLkbo6miQkJTF/OXXuBD3AAA9XQ0GvW9FS1djjAw1uXk7iy177rAjJPll3JIQr6WKmkuXJykeCyGEEEJUIpV1xIMoWn5+Prm5uWhpSVpfnKysLHR0dF7a9QwNDTE0NHxp1yuJihiTEJXJ+12r8W7Hanz781USb2fzYXdLZo6zZ+Tk82TnFP2D2bCKBgH/V4d/zqUzZX4cd+/lYGOpy737uao2w/pa08jJgG+WXeXm7Szc3jDkkw+qcyc1m7Coey/r9oR4rUguXZhMWyGEEEIIIV4rvr6+HDhwgIULF6JQKFAoFMTFxXH69Gm6du2KoaEhlpaWfPjhh9y+fVt1XnBwMG+++SZKpRIzMzPeeecdYmNj1fq+du0a/fr1w9TUFAMDA9zd3QkLC1Nrs3r1auzs7DAxMaFv377cu/e4AJCXl4e/vz/29vbo6+vTqFEj1q9frzr+aIqCnTt30qRJE3R1dTl06NAT7/fkyZO0b98eIyMjjI2NadKkCREREYSEhDBo0CDu3r2reg7Tpk0DCkbUbt68Wa0fpVLJihUrVJ+PHTuGq6srenp6uLu7c+LEiULXftozbdeuHaNGjeLzzz/H1NQUKysrVQxQMCIdoHv37igUCtXnJ3k0RcPPP/+Mvb29aqHF1NRUhg4dirm5OcbGxnTo0IGTJ08W2094eDidOnWiWrVqmJiY0LZtW44fP/7U2P47RUReXh4zZsygRo0a6Orq0rhxY4KDg1XHH033sXHjRtq3b0+VKlVo1KgRR44cUbW5cuUK3t7eVK1aFQMDAxo0aMCOHTvU4o2MjMTd3Z0qVarQqlUrYmJiCj2TR3x9fenWrRvTp09XPY+RI0eSlfXkUZJCiKJ161SNdVuTOBp1j7hrDwn8+SpmSi1auhkXe877XubcSs5m/vLrnL/8gJu3szlxJp3EW4//HjrXqcLew6mcirlP0p1sgg+kcOnqQxztq7yM2xJCCECKx0IIIYQQlUpeXtm218HChQtp2bIlw4YNIyEhgYSEBIyMjOjQoQOurq5EREQQHBzMzZs36d27t+q8+/fvM3bsWCIiIti7dy8aGhp0796dvP//4NLT02nbti3Xr19ny5YtnDx5ks8//1x1HCA2NpbNmzezbds2tm3bxoEDB5gzZ47quL+/P6tWreLHH3/kzJkzjBkzhg8++IADBw6o3cPEiROZM2cO0dHRNGzY8In36+PjQ40aNQgPDycyMpKJEyeira1Nq1atWLBgAcbGxqrnMH78+BI9w/T0dN555x3q169PZGQk06ZNK3RuamrqU58pwMqVKzEwMCAsLIx58+YxY8YMdu/eDRQUcAGCgoJISEhQfX6aixcvsmHDBjZu3Kiag7lXr14kJSWxc+dOIiMjcXNzw8PDg+Tkol//vnfvHgMHDuTQoUMcPXoUBwcHvLy8VMX+ksa2cOFCAgMDCQgI4J9//qFLly68++67XLhwQa3d5MmTGT9+PFFRUdSrV49+/fqRk5MDwCeffEJmZiYHDx7k1KlTzJ07t9BI4smTJxMYGEhERARaWloMHjz4ic9o7969REdHExISwm+//cbGjRuZPn36kx+sEKIQK3NtTJXaRJ19vIBkxoM8Yi5l4Fyn+CJvi8bGXIh7wKSParF2gTOLp9aly1tV1dpEx2bQvLERZsqCt0saOhlQ3UqH42dk1LEQL4rk0oXJ+21CCCGEEJWIvGr3dCYmJujo6FClShWsrKwA+Prrr3F1dWX27NmqdsuXL6dmzZqcP3+eevXq0bNnT7V+li9fjrm5OWfPnuWNN95g7dq13Lp1i/DwcExNTQGoW7eu2jl5eXmsWLECIyMjAD788EP27t3LrFmzyMzMZPbs2ezZs4eWLVsCULt2bQ4dOsTSpUtp27atqp8ZM2bQqVOnEt1vfHw8EyZMwMnJCQAHBwe1Z6FQKFTPoaTWrl1LXl4ev/zyC3p6ejRo0IBr167x0UcfqdosWbLkqc8UoGHDhkydOlUV25IlS9i7dy+dOnXC3NwcKBj1XJoYs7KyWLVqler8Q4cOcezYMZKSktDV1QUgICCAzZs3s379eoYPH16ojw4dOqh9/umnn1AqlRw4cIB33nmnxLEFBATwxRdf0LdvXwDmzp3L/v37WbBgAd99952q3fjx43n77bcBmD59Og0aNODixYs4OTkRHx9Pz549cXFxAQr+XPzXrFmzVH9GJk6cyNtvv83Dhw9VI6//S0dHh+XLl1OlShUaNGjAjBkzmDBhAjNnzkRDQ8YYCVFSVY21AUhJy1Hbn5qWQ1WT4ksuVuY6vN3elE1/3eb37UnUs9dnZH8bcnLy2Xs4FYAf1txg1MDqrP7WmZycfPLz81m48jqnz2e8sPsR4nUnuXRhUjwWQgghhKhEJOF9NidPnmT//v1FzgsbGxtLvXr1uHDhAlOmTCEsLIzbt2+rRhTHx8fzxhtvEBUVhaurq6pwXBQ7OztV4RjA2tqapKQkoGC0bEZGRqGicFZWFq6urmr73N3dS3xvY8eOZejQoaxevZqOHTvSq1cv6tSpU+Lzi/JoxPO/C5OPCt6PlOSZAoVGTv/7mTwrW1tbVXH3USzp6emYmZmptXvw4EGhqUceuXnzJl9++SUhISEkJSWRm5tLRkYG8fHxJY4jLS2NGzdu0Lp1a7X9rVu3LjRlxr+fg7W1NQBJSUk4OTkxatQoPvroI3bt2kXHjh3p2bNnoedW3Pm1atUqMrZGjRpRpcrjUZEtW7YkPT2dq1evYmtrW6h9ZmYmmZmZavtyc7PQ1Hx580kLURG0a6Hk0wE2qs9TF1x5pn4UCrgQ94CVG28CcCn+IbbV9fBqZ6YqHr/rYYZTnSpMWxhH0p1s3qhnwMcf2JCcmk3U2ftlvhchRGGSSxcmxWMhhBBCiEpEVoh+Nunp6Xh7ezN37txCxx4V4ry9vbG1tWXZsmXY2NiQl5fHG2+8oZonVl9f/6nX0dbWVvusUCjUpr0A2L59O9WrV1dr92i07CMGBgYlvLOC+W779+/P9u3b2blzJ1OnTmXdunV079692HMUCgX5//nfU3Z2domvCSV7pvDkZ/Ks/vt80tPTsba2JiQkpFBbpVJZZB8DBw7kzp07LFy4EFtbW3R1dWnZsuULmxf4389BoVAAqJ7D0KFD6dKlC9u3b2fXrl34+/sTGBjIp59+WqLznwd/f/9C01rUbTwSB9ePn9s1hHgVhEWlEXPp8chfba2Cv29VjbVIuft49LHSWItL8Q+L7SclNYerN9S/kLl6I5PWTUwA0NFWMLCnJV8viSf8n4JpKuKuPaROLT16dDGX4rEQL4jk0oVJ8VgIIYQQQrx2dHR0yM19vKK9m5sbGzZswM7ODi2twinynTt3iImJYdmyZbRp0wag0EJ1DRs25OeffyY5OfmJo4+LU79+fXR1dYmPj1ebouJ5qFevHvXq1WPMmDH069ePoKAgunfvXug5PGJubk5CQoLq84ULF8jIeFwscXZ2ZvXq1WrTIhw9elStj6c905LS1tYuMsbScHNzIzExES0trRItugcQGhrK999/j5eXFwBXr15VW+yvJLEZGxtjY2NDaGio2u9paGgozZo1K9U91KxZk5EjRzJy5EgmTZrEsmXL1IrHpXXy5EkePHig+tLj6NGjGBoaUrNmzSLbT5o0ibFjx6rt6/XphSLbClGZPXiYx4OH6l8iJadm06i+IZeuFhSL9fU0cKxdhe37i55THeDsxQyqW6l/MVjdSpekOwV9a2oq0NbSKPRFXm5ePhqK53EnQghRMjKZlRBCCCFEJZKfn1+m7XVhZ2dHWFgYcXFx3L59m08++YTk5GT69etHeHg4sbGx/PXXXwwaNIjc3FyqVq2KmZkZP/30ExcvXmTfvn2FCmn9+vXDysqKbt26ERoayqVLl9iwYQNHjhwpUUxGRkaMHz+eMWPGsHLlSmJjYzl+/DiLFy9m5cqVz3SfDx48wM/Pj5CQEK5cuUJoaCjh4eE4OzurnkN6ejp79+7l9u3bqgJxhw4dWLJkCSdOnCAiIoKRI0eqjWzt378/CoWCYcOGcfbsWXbs2EFAQIDatZ/2TEvKzs6OvXv3kpiYSEpKyjM9h44dO9KyZUu6devGrl27iIuL4/Dhw0yePJmIiIgiz3FwcGD16tVER0cTFhaGj49PodHlJYltwoQJzJ07l99//52YmBgmTpxIVFQUn332WYnjHz16NH/99ReXL1/m+PHj7N+/X/V7+KyysrIYMmSI6vdv6tSp+Pn5FTvfsa6uLsbGxmqbTFkhRIHNu2/T9x0Lmjc2wq66LuOH1uBOag5Hjqep2sweb887HR5PnbNp122caleh99vmWFvo0K65CV3bmrJtX0HB+cHDPP45l87gXta4OBpgWU2bjq2VeLSqyuF/9SuEeL4kly5MisdCCCGEEJVIfn7ZttfF+PHj0dTUpH79+pibm5OVlUVoaCi5ubl07twZFxcXRo8ejVKpRENDAw0NDdatW0dkZCRvvPEGY8aM4ZtvvlHrU0dHh127dmFhYYGXlxcuLi7MmTMHTU3NEsc1c+ZMvvrqK/z9/XF2dsbT05Pt27djb2//TPepqanJnTt3GDBgAPXq1aN379507dpVNf1Aq1atGDlyJH369MHc3Jx58+YBEBgYSM2aNWnTpg39+/dn/PjxavPjGhoasnXrVk6dOoWrqyuTJ08uND3FoxG3xT3TkgoMDGT37t3UrFmz0NzPJaVQKNixYwdvvfUWgwYNol69evTt25crV65gaWlZ5Dm//PILKSkpuLm58eGHHzJq1CgsLCxKHduoUaMYO3Ys48aNw8XFheDgYLZs2aK2cOHT5Obm8sknn6j+TNSrV4/vv/++5A+gCB4eHjg4OPDWW2/Rp08f3n33XaZNm1amPoV4Xa3feZute2/z6cDqLJhSFz09TaZ8e5nsnMc/WK0tdDAxevzz4ELcA77+7grtmiv5YaYDfb0tWPrbDUKOpqrazP3xKhfiMpgwvCY/fl2PXl7mrNp4kx0hxY9oFkKUjeTShSnyK2tZXIgSCHVtUt4hCCGEeE20PhH5Uq6zcGvZUrvPvOVdWCEqO19fX1JTU9m8eXOZ+vEafOr5BCSEEEKUwI7lLi/8GpJLFyZzHgshhBBCVCIyLEAIIYQQQohnI7l0YTJthRBCCCGEEK+wBg0aYGhoWOS2Zs2a8g7vuXvd7lcIIYQQojzJyGMhhBBCiEokT0ZLvHZ27NhBdnZ2kceKm8/3Vfa63e+LsGLFivIOQQghhKiQJJcuTIrH4rX2RY1vyzsEIYQQr4lDL+k68qrd68fW1ra8Q3ipXrf7rciyM7PKOwQhhBDiuarIuXRycjKffvopW7duRUNDg549e7Jw4UIMDQ2fem5+fj5eXl4EBwezadMmunXrVuLryrQVQgghhBCVSH5efpk2IV5V7dq1Y/To0S+k77i4OBQKBVFRUS+k/5fFzs6OBQsWlHcYQgghRIVVkXNpHx8fzpw5w+7du9m2bRsHDx5k+PDhJTp3wYIFKBTPtpifjDwWQgghhKhEpP4rxPNXs2ZNEhISqFatWnmHIoSooAb2tKZre3MMDTQ5cz6dRcvjuX4zs9j2qxe8gZW5bqH9W3YnsXjFVQC82lejQytT6tpXwUBfk27DorifkfvC7kEIUXFz6ejoaIKDgwkPD8fd3R2AxYsX4+XlRUBAADY2NsWeGxUVRWBgIBEREVhbW5f62lI8FkIIIYQQQogn0NTUxMrKqrzDEEJUUH3esaRbFwvmLY0jMSkL3142+E90YMjnZ8jOLroS5ffVOTT+9S64XQ195v1fPQ6Epaj26epqEP7PXcL/ucvQvjVe9G0IIZ6DzMxMMjPVvzjS1dVFV7fwl0WlceTIEZRKpapwDNCxY0c0NDQICwuje/fuRZ6XkZFB//79+e677545l5FpK4QQQgghKpH8/LJtQrzKcnJy8PPzw8TEhGrVqvHVV1+R////YK9evRp3d3eMjIywsrKif//+JCUlqc5NSUnBx8cHc3Nz9PX1cXBwICgoCCh62oozZ87wzjvvYGxsjJGREW3atCE2NvapMfr6+tKtWzcCAgKwtrbGzMyMTz75RG0RwMzMTMaPH0/16tUxMDCgefPmhISEqPVz6NAh2rRpg76+PjVr1mTUqFHcv39fdTwpKQlvb2/09fWxt7dnzZo1aufn5+czbdo0atWqha6uLjY2NowaNarEz1oI8Vh3T0vWbE7kSORdLl99wNwfLmOm1KZ1E2Wx59y9l0PK3cdbC1cTric+5J/odFWbTcFJ/L71JtEX7xfbjxDi+SprLu3v74+JiYna5u/vX+a4EhMTsbCwUNunpaWFqakpiYmJxZ43ZswYWrVqxXvvvffM15bisRBCCCFEJZKXl1+mTYhX2cqVK9HS0uLYsWMsXLiQb7/9lp9//hmA7OxsZs6cycmTJ9m8eTNxcXH4+vqqzv3qq684e/YsO3fuJDo6mh9++KHYaSquX7/OW2+9ha6uLvv27SMyMpLBgweTk5NTojj3799PbGws+/fvZ+XKlaxYsYIVK1aojvv5+XHkyBHWrVvHP//8Q69evfD09OTChQsAxMbG4unpSc+ePfnnn3/4/fffOXToEH5+fqo+fH19uXr1Kvv372f9+vV8//33asXyDRs2MH/+fJYuXcqFCxfYvHkzLi4uJX3UQoj/z8pcB7Oq2pw4k6bal/Egj3Ox96nvYFCiPrQ0FXi8acZfB+68qDCFECVU1lx60qRJ3L17V22bNGlSsdebOHEiCoXiidu5c+ee6V62bNnCvn37yrzegUxbIYQQQghRicjoYfE6q1mzJvPnz0ehUODo6MipU6eYP38+w4YNY/Dgwap2tWvXZtGiRTRt2pT09HQMDQ2Jj4/H1dVV9TqonZ1dsdf57rvvMDExYd26dWhrawNQr169EsdZtWpVlixZgqamJk5OTrz99tvs3buXYcOGER8fT1BQEPHx8ar5C8ePH09wcDBBQUHMnj0bf39/fHx8VAsEOjg4sGjRItq2bcsPP/xAfHw8O3fu5NixYzRt2hSAX375BWdnZ1UM8fHxWFlZ0bFjR7S1talVqxbNmjUr8T0IIQqYKgv+DUi5m622P+VuNlX//7GnaeWuxLCKJrsOSvFYiPJW1ly6tFNUjBs3Tu3L7KLUrl0bKysrtS+BoeCNq+Tk5GKno9i3bx+xsbEolUq1/T179qRNmzaF3moqjhSPhRBCCCEqESkei9dZixYt1FYSb9myJYGBgeTm5hIVFcW0adM4efIkKSkp5OXlAQVF1Pr16/PRRx/Rs2dPjh8/TufOnenWrRutWrUq8jpRUVG0adNGVTgurQYNGqCpqan6bG1tzalTpwA4deoUubm5hYrRmZmZmJmZAXDy5En++ecftako8vPzycvL4/Lly5w/fx4tLS2aNGmiOu7k5KT2n8devXqxYMECateujaenJ15eXnh7e6OlVfR/EYuawzEvNwsNTZ1negZCvKo6tDJl9JBaqs9ffnOxzH12bWfGsZN3uZOa/fTGQogX6mXn0ubm5pibmz+1XcuWLUlNTSUyMlL1833fvn3k5eXRvHnzIs+ZOHEiQ4cOVdvn4uLC/Pnz8fb2LnGMUjwWQgghhBBCVGoPHz6kS5cudOnShTVr1mBubk58fDxdunQhKysLgK5du3LlyhV27NjB7t278fDw4JNPPiEgIKBQf/r6+mWK579FZ4VCoSpmp6eno6mpSWRkpFqBGcDQ0FDVZsSIEUXOUVyrVi3Onz//1Bhq1qxJTEwMe/bsYffu3Xz88cd88803HDhwoMiiuL+/P9OnT1fbZ//GMOo0HPHUawlRmRw5nsq52MdzEGtrFXxhVdVEm+TUx1PXVDXRJvZKxlP7s6img+sbxkxf8PQ504UQry9nZ2c8PT0ZNmwYP/74I9nZ2fj5+dG3b1/Vm0rXr1/Hw8ODVatW0axZM6ysrIoclVyrVi3s7e1LfG0pHgshhBBCVCJ5MvRYvMbCwsLUPh89ehQHBwfOnTvHnTt3mDNnDjVr1gQgIiKi0Pnm5uYMHDiQgQMH0qZNGyZMmFBk8bhhw4asXLmS7OzsZx59XBxXV1dyc3NJSkqiTZs2RbZxc3Pj7Nmz1K1bt8jjTk5O5OTkEBkZqZq2IiYmhtTUVLV2+vr6eHt74+3tzSeffIKTkxOnTp3Czc2tUJ+TJk1i7Nixavu6Dz/zDHcoxKvtwcM8HjxUH4V/JyUb1wZGxF55AEAVfQ2c6hiwdc+tp/bX5S0zUu/mEHbi7guJVwhROhU5l16zZg1+fn54eHigoaFBz549WbRokep4dnY2MTExZGQ8/Yur0pDisRBCCCFEJZKfV94RCFF+4uPjGTt2LCNGjOD48eMsXryYwMBAatWqhY6ODosXL2bkyJGcPn2amTNnqp07ZcoUmjRpQoMGDcjMzGTbtm1qcwT/m5+fH4sXL6Zv375MmjQJExMTjh49SrNmzXB0dCzTPdSrVw8fHx8GDBhAYGAgrq6u3Lp1i71799KwYUPefvttvvjiC1q0aIGfnx9Dhw7FwMCAs2fPsnv3bpYsWYKjoyOenp6MGDGCH374AS0tLUaPHq02YnrFihXk5ubSvHlzqlSpwq+//oq+vj62trZFxlXUHI4yZYUQBTYF36R/N2uuJ2aScCsT3/ercyc1m9DIVFWbeZMcCI1I5X+7HxeUFQro0taM3X/fIa+In99VTbQwVWpT3bLg7559TX0ePMwl6XYW9+7nvujbEuK1VJFzaVNTU9auXVvscTs7O/KfUvx+2vGiSPFYCCGEEKISeZaEUIjKYsCAATx48IBmzZqhqanJZ599xvDhw1EoFKxYsYL/+7//Y9GiRbi5uREQEMC7776rOldHR4dJkyYRFxeHvr4+bdq0Yd26dUVex8zMjH379jFhwgTatm2LpqYmjRs3pnXr1s/lPoKCgvj6668ZN24c169fp1q1arRo0YJ33nkHKBj5fODAASZPnkybNm3Iz8+nTp069OnTR62PoUOH0rZtWywtLfn666/56quvVMeVSiVz5sxh7Nix5Obm4uLiwtatW1XzKgshSu73bTfR09Vg9BBbDKtocvp8OpPmXiA7+/HPZGtLXYyN1Eswbm8YYVlNl+ADt4vs9x0Pcwb0tFF9nj+l4Mupb5bGyeJ6QrwgkksXpsiXpyJeY296HyjvEIQQQrwmDm1t+1KuM3VV2RbbmT7g+b6CL4SovDr5RJZ3CEIIIV4ju9c0eXqjMpJcujAZeSyEEEIIUYnIuAAhhBBCCCGejeTShWmUdwBCCCGEEEIIUVkYGhoWu/3999/lHZ4QQgghRKnIyGMhhBBCiEokTwZLCFGuoqKiij1WvXr1lxeIEEIIIUpNcunCpHgshBBCCFGJ5EvGK0S5qlu3bnmH8NLIvzdCCCEqG/nZVphMWyGEEEIIUYnk55dtE0JUXImJiXTq1AkDAwOUSmV5hyOEEEJUOpJLFyYjj4UQQgghKpE8GS0hRKU1f/58EhISiIqKwsTEpETnTJs2jc2bNz9xOg0hRNkNfN8Grw7VMDTQ4kxMOguXX+F6Ymax7X9d5IKVuW6h/f/blcTioHgA3u5QjQ6tzahrVwWDKpq8N+QE9zNyX9g9CCEkly6KFI+FEEIIIYQQ4hUQGxtLkyZNcHBwKO9QhBD/0sfbiu6eFsz7IY6EW5kM6mXDnIn1GDzhNNnZRReiPpkcjca/3gW3r6nPvMmOHDyaotqnq6tB+Mm7hJ+8y9B+NV70bQghRJFk2gohhBBCiEokPz+/TJsQ4sVav349Li4u6OvrY2ZmRseOHbl//z7h4eF06tSJatWqYWJiQtu2bTl+/LjqPDs7OzZs2MCqVatQKBT4+voCkJqaytChQzE3N8fY2JgOHTpw8uRJAFasWMH06dM5efIkCoUChULBihUrGDx4MO+8845aXNnZ2VhYWPDLL7+8tGchRGXRo6sFazYlcDgylcvxD5j7fRxmVbVp7a4s9py793JIuft4a+6m5HriQ05G31O12bgziXVbEom+cP8l3IUQAiSXLoqMPBZCCCGEqETy88o7AiFEcRISEujXrx/z5s2je/fu3Lt3j7///pv8/Hzu3bvHwIEDWbx4Mfn5+QQGBuLl5cWFCxcwMjIiPDycAQMGYGxszMKFC9HX1wegV69e6Ovrs3PnTkxMTFi6dCkeHh6cP3+ePn36cPr0aYKDg9mzZw8AJiYm1KtXj7feeouEhASsra0B2LZtGxkZGfTp06fcno8QryJrCx3Mqupw/HSaat/9B7lEx96nvoMhIUdSnnB2AS1NBR3fNGX99psvMlQhRAlILl2YjDwWQgghhKhE8vLzy7S9KMnJyfj4+GBsbIxSqWTIkCGkp6eX6Nz8/Hy6du2KQqFg8+bNLyxGIV60hIQEcnJy6NGjB3Z2dri4uPDxxx9jaGhIhw4d+OCDD3BycsLZ2ZmffvqJjIwMDhw4AIC5uTm6urro6+tjZWWFiYkJhw4d4tixY/z555+4u7vj4OBAQEAASqWS9evXo6+vj6GhIVpaWlhZWWFlZYW+vj6tWrXC0dGR1atXq2ILCgqiV69eGBoaltfjEeKVVNVEG4CUuzlq+1PvZmOq1C5RH62bKjGsosWug3eee3xCiNKpqLl0eZLisRBCCCFEJVJRX7Xz8fHhzJkz7N69m23btnHw4EGGDx9eonMXLFiAQqF4YbEJ8bI0atQIDw8PXFxc6NWrF8uWLSMlpWBU4s2bNxk2bBgODg6YmJhgbGxMeno68fHxxfZ38uRJ0tPTMTMzw9DQULVdvnyZ2NjYJ8YydOhQgoKCVNfeuXMngwcPLrZ9ZmYmaWlpaltebtYzPAUhXm0dWpuyNchVtWlplf3nU9d21TgWdZc7KdnPIUIhRFlU1Fy6PMm0FUIIIYQQ4oWKjo4mODiY8PBw3N3dAVi8eDFeXl4EBARgY2NT7LlRUVEEBgYSERGher1eiFeVpqYmu3fv5vDhw+zatYvFixczefJkwsLC+Oijj7hz5w4LFy7E1tYWXV1dWrZsSVZW8QXa9PR0rK2tCQkJKXRMqVQ+MZYBAwYwceJEjhw5wuHDh7G3t6dNmzbFtvf392f69Olq++wbDKO2S8m+BBKisjgSmcq5i4/nINbWLigeVzXRIjn1cfFXaaJNbFzGU/uzqKaDq4sx07998hc+QghRXqR4LIQQQghRieTllW3EQ2ZmJpmZmWr7dHV10dXVfeY+jxw5glKpVBWOATp27IiGhgZhYWF07969yPMyMjLo378/3333HVZWVs98fSEqEoVCQevWrWndujVTpkzB1taWTZs2ERoayvfff4+XlxcAV69e5fbt20/sy83NjcTERLS0tLCzsyuyjY6ODrm5uYX2m5mZ0a1bN4KCgjhy5AiDBg164rUmTZrE2LFj1fZ1G3r6iecIURk9eJjHg4fqPyfvpGTh+oYxsVceAFBFXwPnOgZs3Z301P4821Yj9W42R0+kvohwhRClVNZcujKSaSuEEEIIISqR/Pyybf7+/piYmKht/v7+ZYopMTERCwsLtX1aWlqYmpqSmJhY7HljxoyhVatWvPfee2W6vhAVRVhYGLNnzyYiIoL4+Hg2btzIrVu3cHZ2xsHBgdWrVxMdHU1YWBg+Pj6qRfGK07FjR1q2bEm3bt3YtWsXcXFxHD58mMmTJxMREQGAnZ0dly9fJioqitu3b6t9OTR06FBWrlxJdHQ0AwcOfOK1dHV1MTY2Vts0NHXK/lCEqAQ27kzCp5s1LZuYYF9Tny8+sudOSjahEamqNvMm1+O9zuZq5ykU0KWtGbsP3iGviEW6qppoUcdWHxurgi9w7WvqU8dWHyMDzRd5O0K81sqaS1dGMvJYCCGEEKISyS/jaImiRhcWN+p44sSJzJ0794n9RUdHP1McW7ZsYd++fZw4ceKZzheiIjI2NubgwYMsWLCAtLQ0bG1tCQwMpGvXrlhZWTF8+HDc3NyoWbMms2fPZvz48U/sT6FQsGPHDiZPnsygQYO4desWVlZWvPXWW1haWgLQs2dPNm7cSPv27UlNTSUoKAhfX1+goPhsbW1NgwYNnjh9jBDiyX7fmoiergZjhtphWEWT0zHpTJxznuzsxz+TbSx1MTFSX0DP7Q1jLM112RlS9FsG3h0tGPD+47+bC6Y5ATDvh8uyuJ4QL0hZc+nKSJFfWWdzFqIE3vQ+UN4hCCGEeE0c2tr2pVzn0wVpZTp/8WjjEre9desWd+48+T+vtWvX5tdff2XcuHGqhcEAcnJy0NPT488//yxy2orRo0ezaNEiNDQevyiXm5uLhoYGbdq0KXKOVyFE6aSnp1O9enWCgoLo0aNHqc/v2C/iBUQlhBBCFG3Pb+5Pb1RGLzOXflXIyGMhhBBCCPFMzM3NMTc3f2q7li1bkpqaSmRkJE2aNAFg37595OXl0bx58yLPmThxIkOHDlXb5+Liwvz58/H29i578EK8xvLy8rh9+zaBgYEolUrefffd8g5JCCGEEBWUFI+FEEIIISqRiviqnbOzM56engwbNowff/yR7Oxs/Pz86Nu3r+pV+evXr+Ph4cGqVato1qwZVlZWRS6SV6tWLezt7V/2LQhRqcTHx2Nvb0+NGjVYsWIFWlry30IhhBACKmYuXd4kSxBCCCGEqEQqasK7Zs0a/Pz88PDwQENDg549e7Jo0SLV8ezsbGJiYsjIyCjHKIV4PdjZ2SGzFwohhBCFVdRcujxJ8VgIIYQQohKpqPmuqakpa9euLfZ4SYpZUuwSomLJzc0t7xCEEEKI56qi5tLlSePpTURFMG3aNBo3blyqcxQKBZs3b34h8QghhBCiYsrPyy/TJl5PdnZ2LFiw4IVf51XJTzdv3kzdunXR1NRk9OjR5R2OEEIIIV4SyaULk5HHr4jx48fz6aeflncYFVJISAjt27cnJSUFpVJZ3uEI8Uoa4mOHd2crjAy0OBWdRsD3F7iW8OCJ51Qz1eEj39q0aGKKnq4G1xIeMHthDDEX0wEY3M8Wj7cssKimS05OHjEX0/lp9WXOnr/3Mm5JCCFEBZSQkEDVqlXLO4ynGjFiBIMGDWLUqFEYGRmVdzhCiFfAoN7VedvDAkMDLU6fu8f8ny9zPTGz2Pa/LWmMlYVuof2b/7rJwl/iMDLQxLd3DdwbmWBZTZfUtGxCw1NYvu4a9x/IqH8hxMsjxeNXhKGhIYaGhuUdRoWTnZ1d3iEI8crz6VmT99+pzqwF50i4+ZChPnZ8O8OFDz4OJyu76G9OjQy0+GGeK8dPpTJ+2ilS07KpYaPPvfQcVZurNx4w/8cL3Eh8iK6uBr3fq8G3MxrSd/gxUtPk764QL4pM7SAqsqIWQaxIsrOzyczMJCkpiS5duqgWdHwWWVlZ6OjoPMfohBAVVd/3rOnR1Yo5310iIekhg/vUZN5kJ3zH/kN2Mfn0yEmn0dBQqD7b19In8CtnQo7cAcDMVIdqpjr8uDqeK9ceYFlNlzHD7DCrqsO0by+8lPsS4nUkuXRhMm3Fc7Z+/XpcXFzQ19fHzMyMjh07cv/+ffLy8pgxYwY1atRAV1eXxo0bExwcrHbutWvX6NevH6amphgYGODu7k5YWBhQeNqK8PBwOnXqRLVq1TAxMaFt27YcP378mWLOysrCz88Pa2tr9PT0sLW1xd/fH4C4uDgUCgVRUVGq9qmpqSgUCkJCQoCCkb8KhYLt27fTsGFD9PT0aNGiBadPn1ads2LFCpRKJZs3b8bBwQE9PT26dOnC1atX1WL54YcfqFOnDjo6Ojg6OrJ69Wq14wqFgh9++IF3330XAwMDhg0bRvv27QGoWrUqCoUCX1/fZ3oOQryuer1bnVV/XOFQ2B1i4+7z9fxzmJnq0qZFtWLP8Xm/Jkm3M/FfGEP0hXsk3HxI+IkUbiQ+VLXZfSCJiJOp3Lj5kMvxGSz+ORZDAy3q2Bm8jNsS4rWVl5dfpk2Uv+DgYN58802USiVmZma88847xMbGqo4/KWeMjY3lvffew9LSEkNDQ5o2bcqePXvU+k9KSsLb2xt9fX3s7e1Zs2ZNoRhSU1MZOnQo5ubmGBsb06FDB06ePKk6/ig3Xb58ObVq1cLQ0JCPP/6Y3Nxc5s2bh5WVFRYWFsyaNUut3/9OW/Gke3mSR9dfunQpNWvWpEqVKvTu3Zu7d++qtfv5559xdnZGT08PJycnvv/+e9WxR3nu77//Ttu2bdHT02PNmjWqkcYdOnRQy3k3bNhAgwYN0NXVxc7OjsDAQLVr2dnZMXPmTAYMGICxsTHDhw9X5cDbtm3D0dGRKlWq8P7775ORkcHKlSuxs7OjatWqjBo1Sm3+4NWrV+Pu7o6RkRFWVlb079+fpKQk1fFH+ffevXtxd3enSpUqtGrVipiYGLWYtm7dStOmTdHT06NatWp0795ddSwzM5Px48dTvXp1DAwMaN68uepehRCl876XFas3Xic0IoVL8Q/wXxJLtao6vNm0+Dct7t7LIeVutmpr6abkeuJDTp4teEsv7uoDpgZe4EhkKjduZnLiTBq/rLtGyyZKNKSSI8QLI7l0YfJPznOUkJBAv379GDx4MNHR0YSEhNCjRw/y8/NZuHAhgYGBBAQE8M8//9ClSxfeffddLlwo+MYwPT2dtm3bcv36dbZs2cLJkyf5/PPPycvLK/Ja9+7dY+DAgRw6dIijR4/i4OCAl5cX9+6V/nXwRYsWsWXLFv744w9iYmJYs2YNdnZ2pe5nwoQJBAYGEh4ejrm5Od7e3mojgzMyMpg1axarVq0iNDSU1NRU+vbtqzq+adMmPvvsM8aNG8fp06dVrwvu379f7TrTpk2je/funDp1iunTp7NhwwYAYmJiSEhIYOHChaWOXYjXlY2lHtVMdQmPSlHtu5+Ry9nzabzhZFzsea2bmXHu4j1mflGfratbsnyBG96dix9NpqWl4D1Pa+6l53AxLv253oMQQl1+fn6ZNlH+7t+/z9ixY4mIiGDv3r1oaGjQvXt38vLynpozpqen4+Xlxd69ezlx4gSenp54e3sTHx+v6t/X15erV6+yf/9+1q9fz/fff69WmATo1asXSUlJ7Ny5k8jISNzc3PDw8CA5OVnVJjY2lp07dxIcHMxvv/3GL7/8wttvv821a9c4cOAAc+fO5csvvyy2GFza/Pe/Ll68yB9//MHWrVsJDg7mxIkTfPzxx6rja9asYcqUKcyaNYvo6Ghmz57NV199xcqVK9X6mThxIp999hnR0dG0b99eVYDdsGEDCQkJtGrVisjISHr37k3fvn05deoU06ZN46uvvmLFihVqfQUEBNCoUSNOnDjBV199BRTkwIsWLWLdunUEBwcTEhJC9+7d2bFjBzt27GD16tUsXbqU9evXq/rJzs5m5syZnDx5ks2bNxMXF1fkAInJkycTGBhIREQEWlpaDB48WHVs+/btdO/eHS8vL06cOMHevXtp1qyZ6rifnx9Hjhxh3bp1/PPPP/Tq1QtPT0/V/0+EECVjbaGLWVUdIv9JU+27/yCX6IvpNKhXsmlvtDQVdGpTjZ37bz2xnUEVTTIe5FLCfyaFEM9AcunCZNqK5yghIYGcnBx69OiBra0tAC4uLkBBIvnFF1+oiqVz585l//79LFiwgO+++461a9dy69YtwsPDMTU1BaBu3brFXqtDhw5qn3/66SeUSiUHDhzgnXfeKVXc8fHxODg48Oabb6JQKFSxl9bUqVPp1KkTACtXrqRGjRps2rSJ3r17AwVJ8JIlS2jevLmqjbOzM8eOHaNZs2YEBATg6+urSvrHjh3L0aNHCQgIUI0uBujfvz+DBg1Sfb58+TIAFhYWMuexEKVkWrXgddqUVPVpJFJSs1THimJjpU+3rvr8vvkaq/6Mx9nBiNHD65Kdk0/wvpuqdq2amjJtQn30dDW4k5LFmCn/cDctp9h+hRBlV1kX6nid9OzZU+3z8uXLMTc35+zZsxw+fPiJOWOjRo1o1KiR6vPMmTPZtGkTW7Zswc/Pj/Pnz7Nz506OHTtG06ZNAfjll19wdnZWnXPo0CGOHTtGUlISuroF83EGBASwefNm1q9fz/DhwwHIy8tj+fLlGBkZUb9+fVXhdceOHWhoaODo6KjKeR/lf/9W2vz3vx4+fMiqVauoXr06AIsXL+btt98mMDAQKysrpk6dSmBgID169ADA3t6es2fPsnTpUgYOHKjqZ/To0ao2UDDqGsDU1FQ1zca3336Lh4eHqiBcr149zp49yzfffKNW1O3QoQPjxo1Tff7777/Jzs5WvV0H8P7777N69Wpu3ryJoaGh6tnt37+fPn36AKgVgWvXrs2iRYto2rQp6enpalPZzZo1i7Zt2wIFRfC3336bhw8foqenx6xZs+jbty/Tp09XtX/0ZyM+Pp6goCDi4+NVU3OMHz+e4OBggoKCmD17dol/H4R43ZkqtQFIufuffPputurY07zZrCqGBloEhxRfPDY20uLDntXZtiep2DZCiLKTXLowGXn8HDVq1AgPDw9cXFzo1asXy5YtIyUlhbS0NG7cuEHr1q3V2rdu3Zro6GgAoqKicHV1VSXOT3Pz5k2GDRuGg4MDJiYmGBsbk56erjaqpKR8fX2JiorC0dGRUaNGsWvXrlL3AdCyZUvVr01NTXF0dFTdH4CWlpbqPykATk5OKJVKVZvo6OgnPqNH3N3dnym+zMxM0tLS1La83Kxn6kuIV1Wnthbs+uNN1aalpXj6SUXQUMD52Hv8tPoyFy6ls+WvBLbsSqBbV/W5IY//k8qgzyL46PMThEUmM+MLZ5QmJUuihRDidXXhwgX69etH7dq1MTY2Vr0RFh8f/9ScMT09nfHjx+Ps7IxSqcTQ0JDo6GhVjhgdHY2WlhZNmjRRnfMoJ3vk5MmTpKenY2Zmplp3w9DQkMuXL6tNn2FnZ6e2mJylpSX169dH41/vU1taWhYa1fxIafPf/6pVq5aqcAwFuWheXh4xMTHcv3+f2NhYhgwZonYPX3/9tdo9QMlyy+Ly1AsXLqhNN1FUX1WqVFEVjqHgmdjZ2akVgf/7nCIjI/H29qZWrVoYGRmpCsT/zfUbNmyo+rW1tTWAqp+oqCg8PDyKvJ9Tp06Rm5tLvXr11J7PgQMHCj2fRySXFqJAxzfN2LHKXbVpaT5bPv1vXu3NCYtK5U5K0euCVNHXZM5ER65ce8CKP6+X+XpCCFEaMvL4OdLU1GT37t0cPnyYXbt2sXjxYiZPnszu3bufeq6+vn6prjVw4EDu3LnDwoULsbW1RVdXl5YtW5KVVfoEzs3NjcuXL7Nz50727NlD79696dixI+vXr1cl//8eel/ei9QZGDzbfKn+/v5qIy8AajoMpJbjoGLOEKLyOXTsDmfPR6g+62gX/B2vqtTmTsrjfz+qKnW4eKn46SXupGQRdzVDbd+Vqxm0a2Wutu9hZh7XEx5yPeEhZ2Lu8dvSprzTyYpf16vPdy6EeH5ktMSrz9vbG1tbW5YtW4aNjQ15eXm88cYbZGVlPTVnHD9+PLt37yYgIIC6deuir6/P+++/X6ocMT09HWtr6yLnv/13kVlbW/3LQIVCUeS+4qahKG3+Wxrp6QU/w5YtW1Zo1LOmpqba52fNLYtSVF+lfU7379+nS5cudOnShTVr1mBubk58fDxdunQp9Pv4734UioIC1qN+nvR809PT0dTUJDIystDzKG6R7qJyadv6Q7BvMKzY6whRGYVGpHD2wuM8WZVPm2iT/K+3+aqaaHMxLqPQ+f9lWU0Ht4YmTA0oesoYfT0N5v6fIxkPcvkq4Dy5ufJzXogXSXLpwmTk8XOmUCho3bo106dP58SJE+jo6LB3715sbGwIDQ1VaxsaGkr9+vWBglEDUVFRavPIPUloaCijRo3Cy8tLtXDH7du3nzluY2Nj+vTpw7Jly/j999/ZsGEDycnJmJsXFIISEhJUbf+9eN6/HT16VPXrlJQUzp8/r/YKZE5ODhERj4tWMTExpKamqto4Ozs/8RkV59Eq1v8e9VGUSZMmcffuXbWtRl2fJ54jRGXz4EGuqph7PaFgIbvbyZm4N3q8mEcVfU3q1zPm9Lm0Yvs5FX2XWtWrqO2rWb0KiUkPizmjgIZCoUqwhRAvRl5+fpk2Ub7u3LlDTEwMX375JR4eHjg7O5OS8nhe+qfljKGhofj6+tK9e3dcXFywsrIiLi5OddzJyYmcnBwiIyNV+x7lZI+4ubmRmJiIlpYWdevWVduqVSt+MdXSKm3++1/x8fHcuHFD9fno0aOq6TIsLS2xsbHh0qVLhe7B3t6+1NcqLk+tV69eoeJrWZ07d447d+4wZ84c2rRpg5OTU7Gjt5+kYcOG7N27t8hjrq6u5ObmkpSUVOj5PJqq47+KyqVtnQYW2VaIyuzBwzxu3MxUbXHXHnAnJQs3l8frhVTR18S5riFnzj99TSLP9uak3s3myPGUQseq6GvyzZdO5OTkM3neebKz5ee0EC+a5NKFyf/gn6OwsDBmz55NREQE8fHxbNy4kVu3buHs7MyECROYO3cuv//+OzExMUycOJGoqCg+++wzAPr164eVlRXdunUjNDSUS5cusWHDBo4cOVLktRwcHFi9ejXR0dGEhYXh4+PzzKM3vv32W3777TfOnTvH+fPn+fPPP7GyskKpVKKvr0+LFi2YM2cO0dHRHDhwgC+//LLIfmbMmMHevXs5ffo0vr6+VKtWjW7duqmOa2tr8+mnnxIWFkZkZCS+vr60aNFCtXDHhAkTWLFiBT/88AMXLlzg22+/ZePGjYwfP/6J8dva2qJQKNi2bRu3bt1SjTT5L11dXYyNjdU2Dc3i53QV4nXx55brDOxTi9bNzKhta8CXY524k5zJ30cffyG14OuG9Hj78ZQUv//vOg0cjfiwVy2qW+vRqa0F73axZuP2gv/E6+lqMPxDexo4GmFprotjHUMmjapHNTNd9oc+eSEQIUTZ5Ofll2kT5atq1aqYmZnx008/cfHiRfbt28fYsWNVx5+WMzo4OLBx40aioqI4efIk/fv3Vxv56+joiKenJyNGjFDlZEOHDlXLIzt27EjLli3p1q0bu3btIi4ujsOHDzN58mS1gQBlVdr897/09PQYOHAgJ0+e5O+//2bUqFH07t1bVfycPn06/v7+LFq0iPPnz3Pq1CmCgoL49ttvSx3ruHHj2Lt3LzNnzuT8+fOsXLmSJUuWPDVPfRa1atVCR0eHxYsXc+nSJbZs2cLMmTNL3c/UqVP57bffmDp1KtHR0Zw6dYq5c+cCBXM2+/j4MGDAADZu3Mjly5c5duwY/v7+bN++vcj+JJcWonjrdyTyYY/qtGqixL6mPpP8anM7JYtD4Y8LwoFfOdGti6XaeQoFeLYz568DtwstgldFX5NvJjuhp6vJNz9eooq+JlVNtKlqoo1G2WfKEEIUoyLn0snJyfj4+GBsbIxSqWTIkCHF1sD+7ciRI3To0AEDAwOMjY156623ePDgQYmvK8Xj58jY2JiDBw/i5eVFvXr1+PLLLwkMDKRr166MGjWKsWPHMm7cOFxcXAgODmbLli04ODgABaNnd+3ahYWFBV5eXri4uDBnzpxiRzL88ssvpKSk4ObmxocffsioUaOwsLB4priNjIyYN28e7u7uNG3alLi4ONVCJ1CwSEtOTg5NmjRh9OjRfP3110X2M2fOHD777DOaNGlCYmIiW7duVY0KhoL53r744gv69+9P69atMTQ05Pfff1cd79atGwsXLiQgIIAGDRqwdOlSgoKCaNeu3RPjr169OtOnT2fixIlYWlri5+f3TM9BiNfVmg1XWb/tBp/71WPZt25U0dNk3NRTZP1rZEN1K32Uxo9fjT134R7/N/sMHd8yZ9WSpgzsU4tFyy6y+0DByKi8vHxsa+jz9aQG/La0GXO/egNjI20+mRjF5finv74nhHh2skL0q01DQ4N169YRGRnJG2+8wZgxY/jmm29Ux5+WM3777bdUrVqVVq1a4e3tTZcuXXBzc1O7RlBQEDY2NrRt25YePXowfPhwtTxSoVCwY8cO3nrrLQYNGkS9evXo27cvV65cwdJSvfBRFqXNf/+rbt269OjRAy8vLzp37kzDhg35/vvvVceHDh3Kzz//TFBQEC4uLrRt25YVK1Y808hjNzc3/vjjD9atW8cbb7zBlClTmDFjhtpiec+Lubk5K1as4M8//6R+/frMmTOHgICAUvfTrl07/vzzT7Zs2ULjxo3p0KEDx44dUx0PCgpiwIABjBs3DkdHR7p160Z4eDi1atV6nrcjxGth3f8S2BScyLgR9vzo/wb6upp8MTtGbaSwjaUeJsbqM4c2cTHBylyXnfsLD65wsK9C/XqG1LGtwprFjdm4zE21mVeTL26EeFEqci7t4+PDmTNn2L17N9u2bePgwYOqhYyLc+TIETw9PencuTPHjh0jPDwcPz8/tTUqnkaRL/9LEGUUEhJC+/btSUlJUZsH799WrFjB6NGj1V6JrAje9D5Q3iEIIYR4TRza2valXOeDyTee3ugJfp1l8/RGQpSzadOmsXnz5mKnUxMvR/veYeUdghBCiNfI/j+aP71RGVXUXDo6Opr69esTHh6uWqA3ODgYLy8vrl27ho1N0ddt0aIFnTp1eqa3mB6RkcdCCCGEEEIIIYQQQghRRpmZmaSlpaltmZmZZe73yJEjKJVKVeEYCqYa09DQICys6C9zk5KSCAsLw8LCglatWmFpaUnbtm05dOhQqa4txePXwOzZszE0NCxy69q1a3mHJ4QQQojnqCLP0yZESTVo0KDY/HXNmjXlHZ4QQgghKqmy5tL+/v6YmJiobf7+/mWOKzExsdB0tVpaWpiampKYmFjkOZcuXQIK3tgaNmwYwcHBuLm54eHhwYULF0p8ba2nNxGvupEjR9K7d+8ijz3rInv/1q5du6fO6+Lr6/tC5oQTQgghhDqZkUxUBjt27CA7O7vIY5aWlhgZGTFt2rSXG5QoJCczq7xDEEIIIZ6rsubSkyZNUlvsGAoWnS3OxIkTVQvaFic6OvqZYnm0aPKIESMYNGgQAK6uruzdu5fly5eXuKgtxePXgKmpKaampuUdhhBCCCFegvz/LtcuxCvI1ta2vEMQQgghxGuorLm0rq7uE4vF/zVu3LinDrasXbs2VlZWJCUlqe3PyckhOTkZKyurIs+ztrYGoH79+mr7nZ2diY+PL3GMUjwWQgghhKhE8mTqCfGa8vX1JTU1lc2bN5d3KC/df++9Xbt2NG7cmAULFpRrXEIIIcSr5mXn0ubm5pibmz+1XcuWLUlNTSUyMpImTZoAsG/fPvLy8mjevOiFBO3s7LCxsSEmJkZt//nz50s1ja0Uj4UQQgghhBCiEtm4cSPa2tqqz3Z2dowePZrRo0eXX1BCVHJD+tvi3ckKQwNNTp1LI/CHi1xLeFhs+z9+aoq1pV6h/Rt33GD+0lgAFn3tgquLUu345uAEAn+4+FxjF0JUfM7Oznh6ejJs2DB+/PFHsrOz8fPzo2/fvtjY2ABw/fp1PDw8WLVqFc2aNUOhUDBhwgSmTp1Ko0aNaNy4MStXruTcuXOsX7++xNeW4rEQQgghRCUicx4LIWTKOiFerv49atDzbRtmL4wh4eZDhvjYETjtDT70iyQru+ify8PHR6Gh8fizva0BC2a4sD/0tlq7LX8l8MvaK6rPDzNleiohXqSKnEuvWbMGPz8/PDw80NDQoGfPnixatEh1PDs7m5iYGDIyMlT7Ro8ezcOHDxkzZgzJyck0atSI3bt3U6dOnRJfV+PpTYQQQgghxKuirCtEC1HRrV+/HhcXF/T19TEzM6Njx47cv3+/ULu8vDz8/f2xt7dHX1+fRo0aFRplc/r0abp27YqhoSGWlpZ8+OGH3L79uHDTrl07/Pz88PPzw8TEhGrVqvHVV1+V+D+WSUlJeHt7o6+vj729PWvWrMHOzk41nURcXBwKhYKoqCjVOampqSgUCkJCQgDIzc1lyJAhqvtwdHRk4cKFT7xuu3btVKOM27Vrx5UrVxgzZgwKhQKFQsH9+/cxNjYu9Dw2b96MgYEB9+7dK9H9CSEK9Pauzqo/4zl0LJnYKxnMWhCDmakubVpUK/ac1LRsklMfb63cTbmW8ICo03fV2j3MzFNrl/Eg90XfjhCvtYqcS5uamrJ27Vru3bvH3bt3Wb58OYaGhqrjdnZ25Ofn065dO7XzJk6cyNWrV7l//z6HDx/mzTffLNV1pXgshBBCCFGJVOSEV4iySkhIoF+/fgwePJjo6GhCQkLo0aNHkcVcf39/Vq1axY8//siZM2cYM2YMH3zwAQcOHAAKirQdOnTA1dWViIgIgoODuXnzJr1791brZ+XKlWhpaXHs2DEWLlzIt99+y88//1yieH19fbl69Sr79+9n/fr1fP/994UWu3mavLw8atSowZ9//snZs2eZMmUK//d//8cff/xRovM3btxIjRo1mDFjBgkJCSQkJGBgYEDfvn0JCgpSaxsUFMT777+PkZFRqWIU4nVmbamHmakOESdTVfvuZ+QSff4eDRxL9ndJS0tB53YW7Nhzs9Cxzm0t2Lq6BSsXuTHiQzt0daSMI8SLJLl0YTJthRBCCCFEJZKXL6+zisorISGBnJwcevToga2tLQAuLi6F2mVmZjJ79mz27NlDy5YtgYKVyg8dOsTSpUtp27YtS5YswdXVldmzZ6vOW758OTVr1uT8+fPUq1cPgJo1azJ//nwUCgWOjo6cOnWK+fPnM2zYsCfGev78eXbu3MmxY8do2rQpAL/88gvOzs6lumdtbW2mT5+u+mxvb8+RI0f4448/ChW6i2JqaoqmpiZGRkZqq7EPHTqUVq1akZCQgLW1NUlJSezYsYM9e/YU2U9mZiaZmZlq+/Jys9DQ1CnV/QhR2ZhVLZhfPCU1S21/cmoWplVL9vejTXMzDA202LFPvXi8++Atbt66yu3kLOrYGTBygD01q+vz5Zzo5xO8EKIQyaULk6+shBBCCCGEEK+ERo0a4eHhgYuLC7169WLZsmWkpKQUanfx4kUyMjLo1KkThoaGqm3VqlXExhYsRHXy5En279+vdtzJyQlA1QagRYsWKBQK1eeWLVty4cIFcnOf/Op4dHQ0WlpaqhXRAZycnFAqlaW+7++++44mTZpgbm6OoaEhP/30E/Hx8aXu59+aNWtGgwYNWLlyJQC//vortra2vPXWW0W29/f3x8TERG27euHXMsUgxKuoU1tz/lrXSrVpaZa9rPJOJyvCIpO5k6xegN66K5FjJ1K5dCWD3QduMWtBDG1bVsPGqvBCe0II8aLIyGMhhBBCiEqksr4uJwSApqYmu3fv5vDhw+zatYvFixczefJkwsLC1Nqlp6cDsH37dqpXr652TFdXV9XG29ubuXPnFrqOtbX1C7oDdRr/f7Wsf0+7kZ2drdZm3bp1jB8/nsDAQFq2bImRkRHffPNNoXt+FkOHDuW7775j4sSJBAUFMWjQILVC+b9NmjSJsWPHqu3r2j+8zDEI8ao5dCyZszHHVZ+1tQv+HldV6nAn5fHfX1OlDhcupz+1P0tzXZo0VPLlnLNPbXv2fMF85DWs9biR+LC0oQshSkBy6cKkeCyEEEIIUYlIwisqO4VCQevWrWndujVTpkzB1taWTZs2qbWpX78+urq6xMfH07Zt2yL7cXNzY8OGDdjZ2aGlVfx/i/5bpD169CgODg5oamo+MU4nJydycnKIjIxUTVsRExNDamqqqo25uTlQMB2Hq6srgNrieQChoaG0atWKjz/+WLXv3yOjS0JHR6fIkdIffPABn3/+OYsWLeLs2bMMHDiw2D50dXVVhfdHZMoK8Tp68CCX6/9ZtO5OchZNGiq5eLlg8c4q+po41zNic3DCU/vz8rAk9W42RyKSn9rWwd5QdT0hxIshuXRhMm2FEEIIIUQlkp+fX6ZNiIosLCyM2bNnExERQXx8PBs3buTWrVuF5hE2MjJi/PjxjBkzhpUrVxIbG8vx48dZvHixapqGTz75hOTkZPr160d4eDixsbH89ddfDBo0SK3QGh8fz9ixY4mJieG3335j8eLFfPbZZ0+N1dHREU9PT0aMGEFYWBiRkZEMHToUfX19VRt9fX1atGjBnDlziI6O5sCBA3z55Zdq/Tg4OBAREcFff/3F+fPn+eqrrwgPL92IXzs7Ow4ePMj169e5ffu2an/VqlXp0aMHEyZMoHPnztSoUaNU/QohCvyx9ToDe9ekdTNTattW4cvR9biTnMnfRx//fVsww4UeXupvNSgUBcXjnftvkvufaVZtrPQY2Lsm9eoYYmWhS+tmpkweXY+o03eJvZLxMm5LiNeS5NKFychjIYQQQohKJC9PFvkQlZexsTEHDx5kwYIFpKWlYWtrS2BgIF27duX3339Xaztz5kzMzc3x9/fn0qVLKJVK3Nzc+L//+z8AbGxsCA0N5YsvvqBz585kZmZia2uLp6enajoJgAEDBvDgwQOaNWuGpqYmn332GcOHDy9RvEFBQQwdOpS2bdtiaWnJ119/zVdffaXWZvny5QwZMoQmTZrg6OjIvHnz6Ny5s+r4iBEjOHHiBH369EGhUNCvXz8+/vhjdu7cWeLnNmPGDEaMGEGdOnXIzMxU+8/tkCFDWLt2LYMHDy5xf0IIdWs3XkNfT5MJHztgaKDFqei7jJ9+hqzsx3/XbKz0MDHWVjvPvZESKws9duy5+d8uycnJw71RVXp5V0dPT5Ok25kcOHKblX9cfeH3I8TrTHLpwhT5lbUsLkQJvOl9oLxDEEII8Zo4tLXoV+efN+8RZVuBfetS56c3EuI10a5dOxo3bsyCBQueW592dnaMHj2a0aNHP7c+y2L16tWMGTOGGzduoKNTumko2rz39wuKSgghhCjs7/+1eeHXkFy6MBl5LIQQQghRicg8bUKIksjIyCAhIYE5c+YwYsSIUheOhRBCiMpIcunCZM5jIYQQQohKJD8/r0ybEKJk/v77bwwNDYvdKrp58+bh5OSElZUVkyZNKu9whBBCiApBcunCZOSxEEIIIUQlIqMlhHh+QkJCij3m7u5OVFRUqfuMi4t75niep2nTpjFt2rQy9ZEv80IKIYSoZCSXLkyKx0IIIYQQlYgkvEI8m7i4OOzt7Tlx4gSNGzcGIDQ0lJEjR3Lu3DnefvttNm/erGqvr69P3bp1yydYIYQQQrwQkksXJsVjIYQQQgghhCjC2LFjady4MTt37nzhU1H4+vqSmpqqVqAWQrw6hvjY4d3ZCiMDLU5FpxHw/QWuJTwotv2fPzfH2lKv0P6N26/z7Y8XVZ8bOBoz/EM76jsak5eXz4VL6YydeoqsLBn5L4R4OaR4LIQQQghRieRV0rnWhCgPsbGxjBw5kho1apR3KEKICsynZ03ef6c6sxacI+HmQ4b62PHtDBc++DicrOyiRzEOG3scjX+tQlXb1oAFXzdi/6Fbqn0NHI0JnO7Cr+vjWfDTRXJy83GwN5SRkUK8QJJLFyYL5gkhhBBCVCL5efll2l6U5ORkfHx8MDY2RqlUMmTIENLT05963pEjR+jQoQMGBgYYGxvz1ltv8eBB8SO5hFi/fj0uLi7o6+tjZmZGx44duX//PgA///wzzs7O6Onp4eTkxPfff19kH3FxcSgUCu7cucPgwYNRKBSsWLHiqdc+ffo0Xbt2xdDQEEtLSz788ENu37791NimTZvGypUr+d///odCoUChUKjmW7569Sq9e/dGqVRiamrKe++9V2je5Cfd16N7+eOPP2jTpg36+vo0bdqU8+fPEx4ejru7O4aGhnTt2pVbt24hhCi9Xu9WZ9UfVzgUdofYuPt8Pf8cZqa6tGlRrdhzUtOySU59vLVqasa1Gw84cfquqs2ooXVYv/U6v66/yuX4DK5ef8C+Q7fIzpHisRAvSkXNpcuTFI+FEEIIISqR/Ly8Mm0vio+PD2fOnGH37t1s27aNgwcPMnz48Ceec+TIETw9PencuTPHjh0jPDwcPz8/NDQkhRVFS0hIoF+/fgwePJjo6GhCQkLo0aMH+fn5rFmzhilTpjBr1iyio6OZPXs2X331FStXrizUT82aNUlISMDY2JgFCxaQkJBAnz59nnjt1NRUOnTogKurKxEREQQHB3Pz5k169+791NjGjx9P79698fT0JCEhgYSEBFq1akV2djZdunTByMiIv//+m9DQUAwNDfH09CQrKwugxPc1depUvvzyS44fP46Wlhb9+/fn888/Z+HChfz9999cvHiRKVOmPKffCSFeHzaWelQz1SU8KkW1735GLmfPp/GGk3GJ+tDSUtC5vSXb9ySq9ilNtGngZEzK3Sx+mNeYLatasti/EQ3rl6xPIcSzqai5dHmSaSuEEEIIISqRijjiITo6muDgYNUoR4DFixfj5eVFQEAANjY2RZ43ZswYRo0axcSJE1X7HB0dX0rM4tWUkJBATk4OPXr0wNbWFgAXFxegoHgaGBhIjx49ALC3t+fs2bMsXbqUgQMHqvWjqamJlZUVCoUCExMTrKysnnrtJUuW4OrqyuzZs1X7li9fTs2aNTl//jzp6enFxgYFC/BlZmaqXevXX38lLy+Pn3/+GYVCAUBQUBBKpZKQkBA6d+5c4vsaP348Xbp0AeCzzz6jX79+7N27l9atWwMwZMiQEo2uFkKoM62qA0BKarba/pTULNWxp3mrRTUMDbTYsfdx8bi6VcF8yIP72fHd8lguXL6PZwdLFnzdiAGfRDxxPmUhxLOriLl0eZPisRBCCCFEJZJfAedpO3LkCEqlUlU4BujYsSMaGhqEhYXRvXv3QuckJSURFhaGj48PrVq1IjY2FicnJ2bNmsWbb775MsMXr5BGjRrh4eGBi4sLXbp0oXPnzrz//vvo6OgQGxvLkCFDGDZsmKp9Tk4OJiYmz+XaJ0+eZP/+/UUurBcbG0vnzp2LjK1q1apP7PPixYsYGRmp7X/48CGxsbHcv3+/xPfVsGFD1a8tLS0B9eK1paUlSUlJxcaSmZlJZmam2r683Cw0NEtWHBOisujU1oIJn9RTff58xqky9/l2JyvCIpO5k5yl2vfoC6P/BSewY+9NAC5cSqdJQyVvd7Ji6arLZb6uEKKwiphLlzcpHgshhBBCCJWiCkS6urro6uo+c5+JiYlYWFio7dPS0sLU1JTExMQiz7l06RIA06ZNIyAggMaNG7Nq1So8PDw4ffo0Dg4OzxyPqLw0NTXZvXs3hw8fZteuXSxevJjJkyezdetWAJYtW0bz5s0LnfM8pKen4+3tzdy5cwsds7a2Lja2sLAw7O3ti+2zSZMmrFmzptAxc3Nz1bzhJbkvbW1t1a8fFaX+uy/vCa/b+vv7M336dLV9NR0GUstxULHnCFEZHTp2h7PnI1SfdbQLplKqqtTmTsrj4m9VpQ4XLz19bn9Lc13cG1Vlsv8Ztf2P+oq7el9t/5VrGViaP/vPZCGEKC2ZME4IIYQQohLJy8sv0+bv74+JiYna5u/vX+S1Jk6cqFrcq7jt3Llzz3gfBUWsESNGMGjQIFxdXZk/fz6Ojo4sX778mZ+PqPwUCgWtW7dm+vTpnDhxAh0dHUJDQ7GxseHSpUvUrVtXbSuucFtabm5unDlzBjs7u0LXMDAwKDa2TZs2AaCjo0Nubm6hPi9cuICFhUWhPk1MTLC0tHzh9/XIpEmTuHv3rtpWo67Pc72GEK+CBw9yuZ7wULVdjs/gdnIm7o0ev0VQRV+T+vWMOX0u7an9vd3RipS7WRwJv6O2P+HmQ27dyaRW9Spq+2va6JOYpP4lrxDi+SlrLl0ZychjIYQQQohKpKwLdUyaNImxY8eq7Stu1PG4cePw9fV9Yn+1a9fGysqq0OvwOTk5JCcnFzuXrLW1NQD169dX2+/s7Ex8fPwTryleX2FhYezdu5fOnTtjYWFBWFgYt27dwtnZmenTpzNq1ChMTEzw9PQkMzOTiIgIUlJSCv2ZfxaffPIJy5Yto1+/fnz++eeYmppy8eJF1q1bx88//0xERESxsQHY2dnx119/ERMTg5mZGSYmJvj4+PDNN9/w3nvvMWPGDGrUqMGVK1fYuHEjn3/+OTVq1Hjh9/VIUW8gyJQVQhT4c8t1BvapxdUbD0i4+ZChH9hxJzmTv4/eVrVZ8HVDDh65zcbtN1T7FArw6mhF8L6b5Bbx43vtxqsM6W/HxcvpXLicTtcOVtjWqMKXc86+jNsS4rVUWRe9KwspHgshhBBCVCJlXeSjNFNUmJubY25u/tR2LVu2JDU1lcjISJo0aQLAvn37yMvLK/Sq/SN2dnbY2NgQExOjtv/8+fN07dq1RPGJ14+xsTEHDx5kwYIFpKWlYWtrS2BgoOrPTJUqVfjmm2+YMGECBgYGuLi4MHr06OdybRsbG0JDQ/niiy/o3LkzmZmZ2Nra4unpiYaGxlNjGzZsGCEhIbi7u5Oens7+/ftp164dBw8e5IsvvqBHjx7cu3eP6tWr4+HhgbGxMQBDhw59ofclhHi6NRuuoqenyed+9TA00OLU2buMm3qKrOzHP5OrW+mjNNZWO8+9cVWsLPTYvrvoKZz+3HIdXR0NPh1aB2MjbS5eTmfMlH+4kfjwhd6PEK8zWTCvMEV+fr48FfHaetP7QHmHIIQQ4jVxaGvbl3Kdt7ofKtP5Bze9mMXounbtys2bN/nxxx/Jzs5m0KBBuLu7s3btWgCuX7+Oh4cHq1atolmzZgAsWLCAqVOn8ssvv9C4cWNWrlxJQEAAp0+fpk6dOi8kTiFEyUkuLYQQ4mV6Gfl0Rc2ly5OMPBZCCCGEEC/cmjVr8PPzw8PDAw0NDXr27MmiRYtUx7Ozs4mJiSEjI0O1b/To0Tx8+JAxY8aQnJxMo0aN2L17txSOhRBCCCGEeEmkeCyEEEIIUYlU1FftTE1NVaOMi2JnZ0dRL8RNnDiRiRMnvsjQhCiRkSNH8uuvvxZ57IMPPuDHH398yREJIYQQ4nmrqLl0eZLisRBCCCFEJSKLfAjxYsyYMYPx48cXeezR/MNCCCGEeLVJLl2YzHkshBCiVDIzM/H392fSpEklXlRLCCGEEEIIIbm0EOLVI8VjIYQQpZKWloaJiQl3796VkVZCCCGEEEKUguTSQohXjUZ5ByCEEEIIIYQQQgghhBCi4pHisRBCCCGEEEIIIYQQQohCpHgshBBCCCGEEEIIIYQQohApHgshhCgVXV1dpk6dKgt8CCGEEEIIUUqSSwshXjWyYJ4QQgghhBBCCCGEEEKIQmTksRBCCCGEEEIIIYQQQohCpHgshBBCCCGEEEIIIYQQohApHgshhBBCCCGEEEIIIYQoRIrHQgghnjs7OzsWLFjwUq/Zrl07Ro8e/VKvKYQQQgghxPMmubQQoiKR4rEQQrxifH196datW3mHIYQQQgghxCtHcmkhhCgdKR4LIUQllZ2dXd4hCCGEEEII8UqSXFoIIQpI8VgIISqo9evX4+Ligr6+PmZmZnTs2JEJEyawcuVK/ve//6FQKFAoFISEhBAXF4dCoeD333+nbdu26OnpsWbNGgB+/vlnnJ2d0dPTw8nJie+//151jaysLPz8/LC2tkZPTw9bW1v8/f0ByM/PZ9q0adSqVQtdXV1sbGwYNWrUM91LamoqQ4cOxdzcHGNjYzp06MDJkycBOH/+PAqFgnPnzqmdM3/+fOrUqaP6fPr0abp27YqhoSGWlpZ8+OGH3L59+5niEUIIIYQQlZvk0pJLCyGeD63yDkAIIURhCQkJ9OvXj3nz5tG9e3fu3bvH33//zYABA4iPjyctLY2goCAATE1NuXHjBgATJ04kMDAQV1dXVdI7ZcoUlixZgqurKydOnGDYsGEYGBgwcOBAFi1axJYtW/jjjz+oVasWV69e5erVqwBs2LCB+fPns27dOho0aEBiYqIqSS2tXr16oa+vz86dOzExMWHp0qV4eHhw/vx56tWrh7u7O2vWrGHmzJmqc9asWUP//v2BgoS5Q4cODB06lPnz5/PgwQO++OILevfuzb59+8ryqIUQQgghRCUjubTk0kKI50eKx0IIUQElJCSQk5NDjx49sLW1BcDFxQUAfX19MjMzsbKyKnTe6NGj6dGjh+rz1KlTCQwMVO2zt7fn7NmzLF26lIEDBxIfH4+DgwNvvvkmCoVCdS2A+Ph4rKys6NixI9ra2tSqVYtmzZqV+l4OHTrEsWPHSEpKQldXF4CAgAA2b97M+vXrGT58OD4+PixZskSV8J4/f57IyEh+/fVXAFXCPnv2bFW/y5cvp2bNmqqkWQghhBBCCJBcWnJpIcTzJNNWCCFEBdSoUSM8PDxwcXGhV69eLFu2jJSUlKee5+7urvr1/fv3iY2NZciQIRgaGqq2r7/+mtjYWKBgwZCoqCgcHR0ZNWoUu3btUp3fq1cvHjx4QO3atRk2bBibNm0iJyen1Pdy8uRJ0tPTMTMzU4vj8uXLqjj69u1LXFwcR48eBQpGSri5ueHk5KTqY//+/WrnPzr2qA8hhBBCCCFAcmnJpYUQz5OMPBZCiApIU1OT3bt3c/jwYXbt2sXixYuZPHkyYWFhTzzPwMBA9ev09HQAli1bRvPmzQv1D+Dm5sbly5fZuXMne/bsoXfv3nTs2JH169dTs2ZNYmJi2LNnD7t37+bjjz/mm2++4cCBA2hra5f4XtLT07G2tiYkJKTQMaVSCYCVlRUdOnRg7dq1tGjRgrVr1/LRRx+p9eHt7c3cuXML9WFtbV3iWIQQQgghROUnubTk0kKI50eKx0IIUUEpFApat25N69atmTJlCra2tmzatAkdHR1yc3Ofer6lpSU2NjZcunQJHx+fYtsZGxvTp08f+vTpw/vvv4+npyfJycmYmpqir6+Pt7c33t7efPLJJzg5OXHq1Cnc3NxKfB9ubm4kJiaipaWFnZ1dse18fHz4/PPP6devH5cuXaJv375qfWzYsAE7Ozu0tORHlxBCCCGEeDLJpSWXFkI8H/KvhhBCVEBhYWHs3buXzp07Y2FhQVhYGLdu3cLZ2ZmHDx/y119/ERMTg5mZGSYmJsX2M336dEaNGoWJiQmenp5kZmYSERFBSkoKY8eO5dtvv8Xa2hpXV1c0NDT4888/sbKyQqlUsmLFCnJzc2nevDlVqlTh119/RV9fX20ut5Lo2LEjLVu2pFu3bsybN4969epx48YNtm/fTvfu3VWvB/bo0YOPPvqIjz76iPbt22NjY6Pq45NPPmHZsmX069ePzz//HFNTUy5evMi6dev4+eefVaM/hBBCCCGEkFxacmkhxPMjxWMhhKiAjI2NOXjwIAsWLCAtLQ1bW1sCAwPp2rUr7u7uhISE4O7uTnp6Ovv37y92FMLQoUOpUqUK33zzDRMmTMDAwAAXFxdGjx4NgJGREfPmzePChQtoamrStGlTduzYgYaGBkqlkjlz5jB27Fhyc3NxcXFh69atmJmZlepeFAoFO3bsYPLkyQwaNIhbt25hZWXFW2+9haWlpaqdkZER3t7e/PHHHyxfvlytDxsbG0JDQ/niiy/o3LkzmZmZ2Nra4unpiYaGTN8vhBBCCCEek1xacmkhxPOjyM/Pzy/vIIQQQgghhBBCCCGEEEJULPIVkxBCCCGEEEIIIYQQQohCpHgshBCiVP7++28MDQ2L3YQQQgghhBBFk1xaCPGqkWkrhBBClMqDBw+4fv16scfr1q37EqMRQgghhBDi1SG5tBDiVSPFYyGEEEIIIYQQQgghhBCFyLQVQgghhBBCCCGEEEIIIQqR4rEQQgghhBBCCCGEEEKIQqR4LIQQQgghhBBCCCGEEKIQKR4LIYQQQgghhBBCCCGEKESKx0IIIYQQQgghhBBCCCEKkeKxEEIIIYQQQgghhBBCiEKkeCyEEEIIIYQQQgghhBCiECkeCyGEEEIIIYQQQgghhCjk/wG05orCJpG82wAAAABJRU5ErkJggg==\n"},"metadata":{}}],"source":["fig, ax = plt.subplots(ncols=2,nrows=3,figsize=(16,14))\n","fig.subplots_adjust(wspace=0.4)\n","pysch_grp_corr=sns.heatmap(pysch_corr.to_frame(),ax=ax[0,0],annot=True,cmap='coolwarm')\n","ax[0,0].set_title('Pyschological Correlation')\n","\n","physio_grp_corr=sns.heatmap(physio_corr.to_frame(),ax=ax[0,1],annot=True,cmap='coolwarm')\n","ax[0,1].set_title('Physiological Correlation')\n","\n","enviro_grp_corr=sns.heatmap(enviro_corr.to_frame(),ax=ax[1,0],annot=True,cmap='coolwarm')\n","ax[1,0].set_title('Enviromental Correlation')\n","\n","acad_grp_corr=sns.heatmap(acad_corr.to_frame(),ax=ax[1,1],annot=True,cmap='coolwarm')\n","ax[1,1].set_title('Academic Correlation')\n","\n","social_grp_corr=sns.heatmap(social_corr.to_frame(),ax=ax[2,0],annot=True,cmap='coolwarm')\n","ax[2,0].set_title('Social Correlation')\n","\n","all_grp_corr=sns.heatmap(df_scaled_corr.to_frame(),ax=ax[2,1],annot=True,cmap='coolwarm')\n","ax[2,1].set_title('Scaled Correlation')\n","plt.title('Stress Level Correlation of All Factors')\n","plt.show()\n"]},{"cell_type":"markdown","metadata":{"id":"z1VrEeP0i9iQ"},"source":["## Accounting for all exploratory options into dataset\n","\n","* Scaled Data\n"," * changes the distribution across many features\n","* Reviewed Data at different stress levels\n"," * At highest stress level, positive and negative stress levels values (min, max, mean) are farthest apart when compared to some stress and no stress levels.\n","* Created sub groups for surrounding features\n"," * Psychological - 3 of the 4 strongly impact a positive/increase in stress levels.\n"," * Physiological - 3 of the 4 strongly impact a positive/increase in stress levels\n"," * Environmental - 3 of the 4 strongly impact a negative/decrease in stess levels\n"," * Academic - 2 features negatively and 2 positively impact stress\n"," * Social - 3 of the 4 strongly impact a postive / increase in stress levels.\n"]},{"cell_type":"code","execution_count":null,"metadata":{"id":"yv4hiPO5kApm"},"outputs":[],"source":[]},{"cell_type":"markdown","metadata":{"id":"h4qc7dOdEV77"},"source":["# EDA Results and interpretation for: \n","##What are the key factors influencing stress levels amount students?\n","\n","* Contributing factors for ***increased stress levels*** in students in order of highest impact with exception to blood pressure which needs further analysis:\n"," * By individual factor:\n"," * **Future Career Concerns, Extracurricular Activities, Depression, Peer Pressure and Bullying** are consistently reported high when stress levels are also elevated.\n"," * **Self Esteem, ,Social Support, Sleep Quality, Academic Performance and Basic Needs** are the consistently reported low when stress levels are highest.\n","\n"," * By Sub Groups\n"," * The highest impacting factor for students to report high levels in stess is **Psychological factors** such as high anxiety level, low self_esteem issues, past mental health history and increased depression.\n"," * Very closely behing Psychological factors are **Physiologocial factors** such as increased Headaches, Higher Blood Pressure, and Breathing Problems with decreased Sleep Quality.\n"," * The third highest factor are the **Social factors** such as low levels of social support with increased peer pressure, extracurricular activities and bullying.\n"," * Next highest are **Academic factors** like low academic performance and low teacher-student relationships with increased study loads and future career concerns. \n"," * The lowest impact to stress levels seems to be the **Enviromental factors** such where noise levels have increased and there are less reported high levels of living conditions, safety and basic needs.\n","* Contributing factors for ***decreased stress levels*** in students in order of highest impact:\n"," * By Individual Factor:\n"," * **Self Esteem, Social Support, Sleep Quality, Academic Performance, Basic Needs, and Safety** are often reported as higher levels when stress levels are lowest.\n"," * Whereas **Anxiety, depression, bullying, future career concerns and headaches** are at the lowest correlation for contributing to a lesser stress level.\n"," * By Sub Groups\n"," * The highest impacting factor for students to report the lowest levels of stress are those in the **Physiologicial factors** report lower headaches, blood pressure and breathing problems with increased levels of sleep quality.\n"," * In the second highest impact for reporting lower levels of stress comes from the **Psychological factors** with reports of lower anxiety levels, higher self esteem levels, less mental health history and decreased depression.\n"," * Coming in third for decresased levels in stress are the **Enviromental factors** with reports of lower levels of noise and higher levels of living conditions, safety and basic needs.\n"," * The last two categorys of **Academic and Social Factors** show simliar results when academic factors have higher reported academic performance and teacher-student relationship levels,lower study loads and fewer future career concerns. Social factors include higher levels of social support, less peer pressure, fewer extracurricular activites and lower levels of bullying."]},{"cell_type":"markdown","metadata":{"id":"DJ3ko04ZDhpt"},"source":["# Preparing for modeling."]},{"cell_type":"code","execution_count":null,"metadata":{"id":"MBalWx9UDhM4"},"outputs":[],"source":[]},{"cell_type":"code","execution_count":84,"metadata":{"id":"_CNHiZEKCdkx","executionInfo":{"status":"ok","timestamp":1716217083667,"user_tz":300,"elapsed":654,"user":{"displayName":"Daniel Meier","userId":"06365571306976914087"}}},"outputs":[],"source":["from sklearn import preprocessing\n","from sklearn.preprocessing import StandardScaler\n","from sklearn.model_selection import GridSearchCV\n","from sklearn.model_selection import train_test_split\n","from sklearn.ensemble import RandomForestClassifier\n","from sklearn.neighbors import KNeighborsClassifier\n","from sklearn.svm import SVC\n","from sklearn import metrics\n","from sklearn.metrics import confusion_matrix, classification_report\n","from sklearn.metrics import r2_score, mean_squared_error, mean_absolute_error\n","from sklearn.metrics import accuracy_score\n","\n","import warnings\n","warnings.filterwarnings('ignore')\n","\n","import os\n","%matplotlib inline"]},{"cell_type":"markdown","metadata":{"id":"SqzwBOurX3JQ"},"source":["## Random Forest Classifier"]},{"cell_type":"markdown","metadata":{"id":"tVYUVwvnhcSN"},"source":["### Iteration 1)\n"," * Random Forest Classifier\n"," * Unscaled data\n"," * All Features"]},{"cell_type":"code","execution_count":85,"metadata":{"id":"mYXBg6uBWZZK","executionInfo":{"status":"ok","timestamp":1716217085997,"user_tz":300,"elapsed":119,"user":{"displayName":"Daniel Meier","userId":"06365571306976914087"}}},"outputs":[],"source":["rfc_X=df.drop(['stress_level'],axis=1)\n","rfc_y=df.stress_level\n","\n","rfc_X_train,rfc_X_test,rfc_y_train,rfc_y_test=train_test_split(rfc_X,rfc_y,test_size=.1,random_state=43)"]},{"cell_type":"code","execution_count":86,"metadata":{"colab":{"base_uri":"https://localhost:8080/"},"executionInfo":{"elapsed":373,"status":"ok","timestamp":1716217087699,"user":{"displayName":"Daniel Meier","userId":"06365571306976914087"},"user_tz":300},"id":"EcKkeOtgRWtV","outputId":"c4d1c3ea-a6bf-4436-b13b-9dd6a4fd0ec8"},"outputs":[{"output_type":"stream","name":"stdout","text":["Non Scaled Random Forest Classification Training Score: 1.0\n","Non Scaled Random Forest Classification Testing Score: 0.8636363636363636\n","[[25 2 6]\n"," [ 1 33 1]\n"," [ 5 0 37]]\n"]}],"source":["rfc_model=RandomForestClassifier().fit(rfc_X_train,rfc_y_train)\n","rfc_y_pred=rfc_model.predict(rfc_X_test)\n","print('Non Scaled Random Forest Classification Training Score:',rfc_model.score(rfc_X_train,rfc_y_train))\n","print('Non Scaled Random Forest Classification Testing Score:',rfc_model.score(rfc_X_test,rfc_y_test))\n","print(confusion_matrix(rfc_y_test,rfc_y_pred))"]},{"cell_type":"code","execution_count":87,"metadata":{"colab":{"base_uri":"https://localhost:8080/","height":677},"executionInfo":{"elapsed":271,"status":"ok","timestamp":1716217090397,"user":{"displayName":"Daniel Meier","userId":"06365571306976914087"},"user_tz":300},"id":"wMTMr7w0eYzF","outputId":"ea6003c4-1674-4315-92f7-79490063d7dc"},"outputs":[{"output_type":"execute_result","data":{"text/plain":[" 0\n","blood_pressure 0.134233\n","sleep_quality 0.088009\n","headache 0.072716\n","academic_performance 0.062386\n","teacher_student_relationship 0.061093\n","anxiety_level 0.058176\n","social_support 0.058140\n","depression 0.055449\n","safety 0.053888\n","extracurricular_activities 0.052910\n","bullying 0.050501\n","peer_pressure 0.050155\n","basic_needs 0.046876\n","future_career_concerns 0.044726\n","self_esteem 0.038379\n","noise_level 0.024182\n","study_load 0.019534\n","living_conditions 0.011821\n","breathing_problem 0.011384\n","mental_health_history 0.005441"],"text/html":["\n","
\n","
\n","\n","\n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n","
0
blood_pressure0.134233
sleep_quality0.088009
headache0.072716
academic_performance0.062386
teacher_student_relationship0.061093
anxiety_level0.058176
social_support0.058140
depression0.055449
safety0.053888
extracurricular_activities0.052910
bullying0.050501
peer_pressure0.050155
basic_needs0.046876
future_career_concerns0.044726
self_esteem0.038379
noise_level0.024182
study_load0.019534
living_conditions0.011821
breathing_problem0.011384
mental_health_history0.005441
\n","
\n","
\n","\n","
\n"," \n","\n"," \n","\n"," \n","
\n","\n","\n","
\n"," \n","\n","\n","\n"," \n","
\n","\n","
\n","
\n"],"application/vnd.google.colaboratory.intrinsic+json":{"type":"dataframe","summary":"{\n \"name\": \"pd\",\n \"rows\": 20,\n \"fields\": [\n {\n \"column\": 0,\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 0.029218439588864893,\n \"min\": 0.0054408438280761865,\n \"max\": 0.1342325304988937,\n \"num_unique_values\": 20,\n \"samples\": [\n 0.1342325304988937,\n 0.0118213487109477,\n 0.024182246768814402\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n }\n ]\n}"}},"metadata":{},"execution_count":87}],"source":["pd.DataFrame(rfc_model.feature_importances_,index=rfc_X_train.columns).sort_values(by=0,ascending=False)"]},{"cell_type":"code","execution_count":88,"metadata":{"colab":{"base_uri":"https://localhost:8080/"},"executionInfo":{"elapsed":172,"status":"ok","timestamp":1716217094596,"user":{"displayName":"Daniel Meier","userId":"06365571306976914087"},"user_tz":300},"id":"dJS2me_oRdEu","outputId":"f815acdd-64a8-4829-bf29-25640e2945f9"},"outputs":[{"output_type":"stream","name":"stdout","text":[" precision recall f1-score support\n","\n"," 0 0.81 0.76 0.78 33\n"," 1 0.94 0.94 0.94 35\n"," 2 0.84 0.88 0.86 42\n","\n"," accuracy 0.86 110\n"," macro avg 0.86 0.86 0.86 110\n","weighted avg 0.86 0.86 0.86 110\n","\n"]}],"source":["print(classification_report(rfc_y_test,rfc_y_pred))"]},{"cell_type":"code","execution_count":89,"metadata":{"colab":{"base_uri":"https://localhost:8080/"},"executionInfo":{"elapsed":147,"status":"ok","timestamp":1716217097498,"user":{"displayName":"Daniel Meier","userId":"06365571306976914087"},"user_tz":300},"id":"5we0ArrQRqaP","outputId":"dd8b79dc-b212-47f9-9c00-9cdd15e5df04"},"outputs":[{"output_type":"stream","name":"stdout","text":["Random Forest Classifier No Scaled Data Accuracy Score: 0.8636363636363636\n"]}],"source":["rfc_accuracy=accuracy_score(rfc_y_test,rfc_y_pred)\n","print(\"Random Forest Classifier No Scaled Data Accuracy Score:\",rfc_accuracy)\n"]},{"cell_type":"markdown","metadata":{"id":"btNImQZug43s"},"source":["### Iteration 2)\n"," * Random Forest Classifier\n"," * Unscaled Data\n"," * Grid Search with syntax assistance from Daniel Meier"]},{"cell_type":"code","execution_count":90,"metadata":{"colab":{"base_uri":"https://localhost:8080/"},"id":"dUOvG3o7b7e6","outputId":"7600f71e-0cb8-40f9-8995-6db62bf7a887","executionInfo":{"status":"ok","timestamp":1716217272321,"user_tz":300,"elapsed":172132,"user":{"displayName":"Daniel Meier","userId":"06365571306976914087"}}},"outputs":[{"output_type":"stream","name":"stdout","text":["Fitting 5 folds for each of 648 candidates, totalling 3240 fits\n","[CV 1/5] END bootstrap=True, max_depth=2, max_features=sqrt, min_samples_leaf=2, min_samples_split=2, n_estimators=5;, score=0.884 total time= 0.0s\n","[CV 2/5] END bootstrap=True, max_depth=2, max_features=sqrt, min_samples_leaf=2, min_samples_split=2, n_estimators=5;, score=0.899 total time= 0.0s\n","[CV 3/5] END bootstrap=True, max_depth=2, max_features=sqrt, min_samples_leaf=2, min_samples_split=2, n_estimators=5;, score=0.894 total time= 0.0s\n","[CV 4/5] END bootstrap=True, max_depth=2, max_features=sqrt, min_samples_leaf=2, min_samples_split=2, n_estimators=5;, score=0.854 total time= 0.0s\n","[CV 5/5] END bootstrap=True, max_depth=2, max_features=sqrt, min_samples_leaf=2, min_samples_split=2, n_estimators=5;, score=0.889 total time= 0.0s\n","[CV 1/5] END bootstrap=True, max_depth=2, max_features=sqrt, min_samples_leaf=2, min_samples_split=2, n_estimators=10;, score=0.874 total time= 0.0s\n","[CV 2/5] END bootstrap=True, max_depth=2, max_features=sqrt, min_samples_leaf=2, min_samples_split=2, n_estimators=10;, score=0.884 total time= 0.0s\n","[CV 3/5] END bootstrap=True, max_depth=2, max_features=sqrt, min_samples_leaf=2, min_samples_split=2, n_estimators=10;, score=0.899 total time= 0.0s\n","[CV 4/5] END bootstrap=True, max_depth=2, max_features=sqrt, min_samples_leaf=2, min_samples_split=2, n_estimators=10;, score=0.854 total time= 0.0s\n","[CV 5/5] END bootstrap=True, max_depth=2, max_features=sqrt, min_samples_leaf=2, min_samples_split=2, n_estimators=10;, score=0.869 total time= 0.0s\n","[CV 1/5] END bootstrap=True, max_depth=2, max_features=sqrt, min_samples_leaf=2, min_samples_split=2, n_estimators=20;, score=0.884 total time= 0.0s\n","[CV 2/5] END bootstrap=True, max_depth=2, max_features=sqrt, min_samples_leaf=2, min_samples_split=2, n_estimators=20;, score=0.874 total time= 0.0s\n","[CV 3/5] END bootstrap=True, max_depth=2, max_features=sqrt, min_samples_leaf=2, min_samples_split=2, n_estimators=20;, score=0.874 total time= 0.0s\n","[CV 4/5] END bootstrap=True, max_depth=2, max_features=sqrt, min_samples_leaf=2, min_samples_split=2, n_estimators=20;, score=0.884 total time= 0.1s\n","[CV 5/5] END bootstrap=True, max_depth=2, max_features=sqrt, min_samples_leaf=2, min_samples_split=2, n_estimators=20;, score=0.894 total time= 0.1s\n","[CV 1/5] END bootstrap=True, max_depth=2, max_features=sqrt, min_samples_leaf=2, min_samples_split=2, n_estimators=30;, score=0.869 total time= 0.1s\n","[CV 2/5] END bootstrap=True, max_depth=2, max_features=sqrt, min_samples_leaf=2, min_samples_split=2, n_estimators=30;, score=0.869 total time= 0.1s\n","[CV 3/5] END bootstrap=True, max_depth=2, max_features=sqrt, min_samples_leaf=2, min_samples_split=2, n_estimators=30;, score=0.884 total time= 0.1s\n","[CV 4/5] END bootstrap=True, max_depth=2, max_features=sqrt, min_samples_leaf=2, min_samples_split=2, n_estimators=30;, score=0.843 total time= 0.1s\n","[CV 5/5] END bootstrap=True, max_depth=2, max_features=sqrt, min_samples_leaf=2, min_samples_split=2, n_estimators=30;, score=0.869 total time= 0.1s\n","[CV 1/5] END bootstrap=True, max_depth=2, max_features=sqrt, min_samples_leaf=2, min_samples_split=4, n_estimators=5;, score=0.874 total time= 0.0s\n","[CV 2/5] END bootstrap=True, max_depth=2, max_features=sqrt, min_samples_leaf=2, min_samples_split=4, n_estimators=5;, score=0.899 total time= 0.0s\n","[CV 3/5] END bootstrap=True, max_depth=2, max_features=sqrt, min_samples_leaf=2, min_samples_split=4, n_estimators=5;, score=0.899 total time= 0.0s\n","[CV 4/5] END bootstrap=True, max_depth=2, max_features=sqrt, min_samples_leaf=2, min_samples_split=4, n_estimators=5;, score=0.838 total time= 0.0s\n","[CV 5/5] END bootstrap=True, max_depth=2, max_features=sqrt, min_samples_leaf=2, min_samples_split=4, n_estimators=5;, score=0.874 total time= 0.0s\n","[CV 1/5] END bootstrap=True, max_depth=2, max_features=sqrt, min_samples_leaf=2, min_samples_split=4, n_estimators=10;, score=0.854 total time= 0.0s\n","[CV 2/5] END bootstrap=True, max_depth=2, max_features=sqrt, min_samples_leaf=2, min_samples_split=4, n_estimators=10;, score=0.879 total time= 0.0s\n","[CV 3/5] END bootstrap=True, max_depth=2, max_features=sqrt, min_samples_leaf=2, min_samples_split=4, n_estimators=10;, score=0.894 total time= 0.0s\n","[CV 4/5] END bootstrap=True, max_depth=2, max_features=sqrt, min_samples_leaf=2, min_samples_split=4, n_estimators=10;, score=0.869 total time= 0.0s\n","[CV 5/5] END bootstrap=True, max_depth=2, max_features=sqrt, min_samples_leaf=2, min_samples_split=4, n_estimators=10;, score=0.879 total time= 0.0s\n","[CV 1/5] END bootstrap=True, max_depth=2, max_features=sqrt, min_samples_leaf=2, min_samples_split=4, n_estimators=20;, score=0.864 total time= 0.0s\n","[CV 2/5] END bootstrap=True, max_depth=2, max_features=sqrt, min_samples_leaf=2, min_samples_split=4, n_estimators=20;, score=0.874 total time= 0.0s\n","[CV 3/5] END bootstrap=True, max_depth=2, max_features=sqrt, min_samples_leaf=2, min_samples_split=4, n_estimators=20;, score=0.889 total time= 0.0s\n","[CV 4/5] END bootstrap=True, max_depth=2, max_features=sqrt, min_samples_leaf=2, min_samples_split=4, n_estimators=20;, score=0.889 total time= 0.0s\n","[CV 5/5] END bootstrap=True, max_depth=2, max_features=sqrt, min_samples_leaf=2, min_samples_split=4, n_estimators=20;, score=0.899 total time= 0.0s\n","[CV 1/5] END bootstrap=True, max_depth=2, max_features=sqrt, min_samples_leaf=2, min_samples_split=4, n_estimators=30;, score=0.874 total time= 0.1s\n","[CV 2/5] END bootstrap=True, max_depth=2, max_features=sqrt, min_samples_leaf=2, min_samples_split=4, n_estimators=30;, score=0.879 total time= 0.1s\n","[CV 3/5] END bootstrap=True, max_depth=2, max_features=sqrt, min_samples_leaf=2, min_samples_split=4, n_estimators=30;, score=0.879 total time= 0.1s\n","[CV 4/5] END bootstrap=True, max_depth=2, max_features=sqrt, min_samples_leaf=2, min_samples_split=4, n_estimators=30;, score=0.869 total time= 0.1s\n","[CV 5/5] END bootstrap=True, max_depth=2, max_features=sqrt, min_samples_leaf=2, min_samples_split=4, n_estimators=30;, score=0.884 total time= 0.1s\n","[CV 1/5] END bootstrap=True, max_depth=2, max_features=sqrt, min_samples_leaf=2, min_samples_split=6, n_estimators=5;, score=0.869 total time= 0.0s\n","[CV 2/5] END bootstrap=True, max_depth=2, max_features=sqrt, min_samples_leaf=2, min_samples_split=6, n_estimators=5;, score=0.874 total time= 0.0s\n","[CV 3/5] END bootstrap=True, max_depth=2, max_features=sqrt, min_samples_leaf=2, min_samples_split=6, n_estimators=5;, score=0.869 total time= 0.0s\n","[CV 4/5] END bootstrap=True, max_depth=2, max_features=sqrt, min_samples_leaf=2, min_samples_split=6, n_estimators=5;, score=0.864 total time= 0.0s\n","[CV 5/5] END bootstrap=True, max_depth=2, max_features=sqrt, min_samples_leaf=2, min_samples_split=6, n_estimators=5;, score=0.894 total time= 0.0s\n","[CV 1/5] END bootstrap=True, max_depth=2, max_features=sqrt, min_samples_leaf=2, min_samples_split=6, n_estimators=10;, score=0.874 total time= 0.0s\n","[CV 2/5] END bootstrap=True, max_depth=2, max_features=sqrt, min_samples_leaf=2, min_samples_split=6, n_estimators=10;, score=0.884 total time= 0.0s\n","[CV 3/5] END bootstrap=True, max_depth=2, max_features=sqrt, min_samples_leaf=2, min_samples_split=6, n_estimators=10;, score=0.889 total time= 0.0s\n","[CV 4/5] END bootstrap=True, max_depth=2, max_features=sqrt, min_samples_leaf=2, min_samples_split=6, n_estimators=10;, score=0.859 total time= 0.0s\n","[CV 5/5] END bootstrap=True, max_depth=2, max_features=sqrt, min_samples_leaf=2, min_samples_split=6, n_estimators=10;, score=0.879 total time= 0.0s\n","[CV 1/5] END bootstrap=True, max_depth=2, max_features=sqrt, min_samples_leaf=2, min_samples_split=6, n_estimators=20;, score=0.848 total time= 0.1s\n","[CV 2/5] END bootstrap=True, max_depth=2, max_features=sqrt, min_samples_leaf=2, min_samples_split=6, n_estimators=20;, score=0.879 total time= 0.1s\n","[CV 3/5] END bootstrap=True, max_depth=2, max_features=sqrt, min_samples_leaf=2, min_samples_split=6, n_estimators=20;, score=0.869 total time= 0.1s\n","[CV 4/5] END bootstrap=True, max_depth=2, max_features=sqrt, min_samples_leaf=2, min_samples_split=6, n_estimators=20;, score=0.879 total time= 0.1s\n","[CV 5/5] END bootstrap=True, max_depth=2, max_features=sqrt, min_samples_leaf=2, min_samples_split=6, n_estimators=20;, score=0.889 total time= 0.1s\n","[CV 1/5] END bootstrap=True, max_depth=2, max_features=sqrt, min_samples_leaf=2, min_samples_split=6, n_estimators=30;, score=0.869 total time= 0.1s\n","[CV 2/5] END bootstrap=True, max_depth=2, max_features=sqrt, min_samples_leaf=2, min_samples_split=6, n_estimators=30;, score=0.874 total time= 0.1s\n","[CV 3/5] END bootstrap=True, max_depth=2, max_features=sqrt, min_samples_leaf=2, min_samples_split=6, n_estimators=30;, score=0.884 total time= 0.1s\n","[CV 4/5] END bootstrap=True, max_depth=2, max_features=sqrt, min_samples_leaf=2, min_samples_split=6, n_estimators=30;, score=0.874 total time= 0.1s\n","[CV 5/5] END bootstrap=True, max_depth=2, max_features=sqrt, min_samples_leaf=2, min_samples_split=6, n_estimators=30;, score=0.879 total time= 0.1s\n","[CV 1/5] END bootstrap=True, max_depth=2, max_features=sqrt, min_samples_leaf=4, min_samples_split=2, n_estimators=5;, score=0.874 total time= 0.0s\n","[CV 2/5] END bootstrap=True, max_depth=2, max_features=sqrt, min_samples_leaf=4, min_samples_split=2, n_estimators=5;, score=0.894 total time= 0.0s\n","[CV 3/5] END bootstrap=True, max_depth=2, max_features=sqrt, min_samples_leaf=4, min_samples_split=2, n_estimators=5;, score=0.889 total time= 0.0s\n","[CV 4/5] END bootstrap=True, max_depth=2, max_features=sqrt, min_samples_leaf=4, min_samples_split=2, n_estimators=5;, score=0.848 total time= 0.0s\n","[CV 5/5] END bootstrap=True, max_depth=2, max_features=sqrt, min_samples_leaf=4, min_samples_split=2, n_estimators=5;, score=0.919 total time= 0.0s\n","[CV 1/5] END bootstrap=True, max_depth=2, max_features=sqrt, min_samples_leaf=4, min_samples_split=2, n_estimators=10;, score=0.869 total time= 0.0s\n","[CV 2/5] END bootstrap=True, max_depth=2, max_features=sqrt, min_samples_leaf=4, min_samples_split=2, n_estimators=10;, score=0.899 total time= 0.0s\n","[CV 3/5] END bootstrap=True, max_depth=2, max_features=sqrt, min_samples_leaf=4, min_samples_split=2, n_estimators=10;, score=0.914 total time= 0.0s\n","[CV 4/5] END bootstrap=True, max_depth=2, max_features=sqrt, min_samples_leaf=4, min_samples_split=2, n_estimators=10;, score=0.874 total time= 0.0s\n","[CV 5/5] END bootstrap=True, max_depth=2, max_features=sqrt, min_samples_leaf=4, min_samples_split=2, n_estimators=10;, score=0.889 total time= 0.0s\n","[CV 1/5] END bootstrap=True, max_depth=2, max_features=sqrt, min_samples_leaf=4, min_samples_split=2, n_estimators=20;, score=0.864 total time= 0.1s\n","[CV 2/5] END bootstrap=True, max_depth=2, max_features=sqrt, min_samples_leaf=4, min_samples_split=2, n_estimators=20;, score=0.899 total time= 0.1s\n","[CV 3/5] END bootstrap=True, max_depth=2, max_features=sqrt, min_samples_leaf=4, min_samples_split=2, n_estimators=20;, score=0.884 total time= 0.1s\n","[CV 4/5] END bootstrap=True, max_depth=2, max_features=sqrt, min_samples_leaf=4, min_samples_split=2, n_estimators=20;, score=0.848 total time= 0.1s\n","[CV 5/5] END bootstrap=True, max_depth=2, max_features=sqrt, min_samples_leaf=4, min_samples_split=2, n_estimators=20;, score=0.884 total time= 0.3s\n","[CV 1/5] END bootstrap=True, max_depth=2, max_features=sqrt, min_samples_leaf=4, min_samples_split=2, n_estimators=30;, score=0.869 total time= 0.5s\n","[CV 2/5] END bootstrap=True, max_depth=2, max_features=sqrt, min_samples_leaf=4, min_samples_split=2, n_estimators=30;, score=0.889 total time= 0.3s\n","[CV 3/5] END bootstrap=True, max_depth=2, max_features=sqrt, min_samples_leaf=4, min_samples_split=2, n_estimators=30;, score=0.904 total time= 0.1s\n","[CV 4/5] END bootstrap=True, max_depth=2, max_features=sqrt, min_samples_leaf=4, min_samples_split=2, n_estimators=30;, score=0.859 total time= 0.1s\n","[CV 5/5] END bootstrap=True, max_depth=2, max_features=sqrt, min_samples_leaf=4, min_samples_split=2, n_estimators=30;, score=0.879 total time= 0.1s\n","[CV 1/5] END bootstrap=True, max_depth=2, max_features=sqrt, min_samples_leaf=4, min_samples_split=4, n_estimators=5;, score=0.879 total time= 0.0s\n","[CV 2/5] END bootstrap=True, max_depth=2, max_features=sqrt, min_samples_leaf=4, min_samples_split=4, n_estimators=5;, score=0.879 total time= 0.0s\n","[CV 3/5] END bootstrap=True, max_depth=2, max_features=sqrt, min_samples_leaf=4, min_samples_split=4, n_estimators=5;, score=0.909 total time= 0.0s\n","[CV 4/5] END bootstrap=True, max_depth=2, max_features=sqrt, min_samples_leaf=4, min_samples_split=4, n_estimators=5;, score=0.869 total time= 0.0s\n","[CV 5/5] END bootstrap=True, max_depth=2, max_features=sqrt, min_samples_leaf=4, min_samples_split=4, n_estimators=5;, score=0.864 total time= 0.0s\n","[CV 1/5] END bootstrap=True, max_depth=2, max_features=sqrt, min_samples_leaf=4, min_samples_split=4, n_estimators=10;, score=0.869 total time= 0.0s\n","[CV 2/5] END bootstrap=True, max_depth=2, max_features=sqrt, min_samples_leaf=4, min_samples_split=4, n_estimators=10;, score=0.889 total time= 0.0s\n","[CV 3/5] END bootstrap=True, max_depth=2, max_features=sqrt, min_samples_leaf=4, min_samples_split=4, n_estimators=10;, score=0.904 total time= 0.1s\n","[CV 4/5] END bootstrap=True, max_depth=2, max_features=sqrt, min_samples_leaf=4, min_samples_split=4, n_estimators=10;, score=0.854 total time= 0.0s\n","[CV 5/5] END bootstrap=True, max_depth=2, max_features=sqrt, min_samples_leaf=4, min_samples_split=4, n_estimators=10;, score=0.899 total time= 0.0s\n","[CV 1/5] END bootstrap=True, max_depth=2, max_features=sqrt, min_samples_leaf=4, min_samples_split=4, n_estimators=20;, score=0.869 total time= 0.1s\n","[CV 2/5] END bootstrap=True, max_depth=2, max_features=sqrt, min_samples_leaf=4, min_samples_split=4, n_estimators=20;, score=0.874 total time= 0.1s\n","[CV 3/5] END bootstrap=True, max_depth=2, max_features=sqrt, min_samples_leaf=4, min_samples_split=4, n_estimators=20;, score=0.879 total time= 0.1s\n","[CV 4/5] END bootstrap=True, max_depth=2, max_features=sqrt, min_samples_leaf=4, min_samples_split=4, n_estimators=20;, score=0.869 total time= 0.1s\n","[CV 5/5] END bootstrap=True, max_depth=2, max_features=sqrt, min_samples_leaf=4, min_samples_split=4, n_estimators=20;, score=0.889 total time= 0.1s\n","[CV 1/5] END bootstrap=True, max_depth=2, max_features=sqrt, min_samples_leaf=4, min_samples_split=4, n_estimators=30;, score=0.854 total time= 0.1s\n","[CV 2/5] END bootstrap=True, max_depth=2, max_features=sqrt, min_samples_leaf=4, min_samples_split=4, n_estimators=30;, score=0.909 total time= 0.1s\n","[CV 3/5] END bootstrap=True, max_depth=2, max_features=sqrt, min_samples_leaf=4, min_samples_split=4, n_estimators=30;, score=0.909 total time= 0.1s\n","[CV 4/5] END bootstrap=True, max_depth=2, max_features=sqrt, min_samples_leaf=4, min_samples_split=4, n_estimators=30;, score=0.859 total time= 0.1s\n","[CV 5/5] END bootstrap=True, max_depth=2, max_features=sqrt, min_samples_leaf=4, min_samples_split=4, n_estimators=30;, score=0.889 total time= 0.1s\n","[CV 1/5] END bootstrap=True, max_depth=2, max_features=sqrt, min_samples_leaf=4, min_samples_split=6, n_estimators=5;, score=0.864 total time= 0.0s\n","[CV 2/5] END bootstrap=True, max_depth=2, max_features=sqrt, min_samples_leaf=4, min_samples_split=6, n_estimators=5;, score=0.864 total time= 0.0s\n","[CV 3/5] END bootstrap=True, max_depth=2, max_features=sqrt, min_samples_leaf=4, min_samples_split=6, n_estimators=5;, score=0.869 total time= 0.0s\n","[CV 4/5] END bootstrap=True, max_depth=2, max_features=sqrt, min_samples_leaf=4, min_samples_split=6, n_estimators=5;, score=0.864 total time= 0.0s\n","[CV 5/5] END bootstrap=True, max_depth=2, max_features=sqrt, min_samples_leaf=4, min_samples_split=6, n_estimators=5;, score=0.884 total time= 0.0s\n","[CV 1/5] END bootstrap=True, max_depth=2, max_features=sqrt, min_samples_leaf=4, min_samples_split=6, n_estimators=10;, score=0.869 total time= 0.0s\n","[CV 2/5] END bootstrap=True, max_depth=2, max_features=sqrt, min_samples_leaf=4, min_samples_split=6, n_estimators=10;, score=0.884 total time= 0.0s\n","[CV 3/5] END bootstrap=True, max_depth=2, max_features=sqrt, min_samples_leaf=4, min_samples_split=6, n_estimators=10;, score=0.899 total time= 0.0s\n","[CV 4/5] END bootstrap=True, max_depth=2, max_features=sqrt, min_samples_leaf=4, min_samples_split=6, n_estimators=10;, score=0.864 total time= 0.0s\n","[CV 5/5] END bootstrap=True, max_depth=2, max_features=sqrt, min_samples_leaf=4, min_samples_split=6, n_estimators=10;, score=0.879 total time= 0.0s\n","[CV 1/5] END bootstrap=True, max_depth=2, max_features=sqrt, min_samples_leaf=4, min_samples_split=6, n_estimators=20;, score=0.854 total time= 0.1s\n","[CV 2/5] END bootstrap=True, max_depth=2, max_features=sqrt, min_samples_leaf=4, min_samples_split=6, n_estimators=20;, score=0.884 total time= 0.0s\n","[CV 3/5] END bootstrap=True, max_depth=2, max_features=sqrt, min_samples_leaf=4, min_samples_split=6, n_estimators=20;, score=0.869 total time= 0.0s\n","[CV 4/5] END bootstrap=True, max_depth=2, max_features=sqrt, min_samples_leaf=4, min_samples_split=6, n_estimators=20;, score=0.828 total time= 0.0s\n","[CV 5/5] END bootstrap=True, max_depth=2, max_features=sqrt, min_samples_leaf=4, min_samples_split=6, n_estimators=20;, score=0.874 total time= 0.1s\n","[CV 1/5] END bootstrap=True, max_depth=2, max_features=sqrt, min_samples_leaf=4, min_samples_split=6, n_estimators=30;, score=0.859 total time= 0.1s\n","[CV 2/5] END bootstrap=True, max_depth=2, max_features=sqrt, min_samples_leaf=4, min_samples_split=6, n_estimators=30;, score=0.889 total time= 0.1s\n","[CV 3/5] END bootstrap=True, max_depth=2, max_features=sqrt, min_samples_leaf=4, min_samples_split=6, n_estimators=30;, score=0.889 total time= 0.1s\n","[CV 4/5] END bootstrap=True, max_depth=2, max_features=sqrt, min_samples_leaf=4, min_samples_split=6, n_estimators=30;, score=0.864 total time= 0.1s\n","[CV 5/5] END bootstrap=True, max_depth=2, max_features=sqrt, min_samples_leaf=4, min_samples_split=6, n_estimators=30;, score=0.874 total time= 0.1s\n","[CV 1/5] END bootstrap=True, max_depth=2, max_features=sqrt, min_samples_leaf=6, min_samples_split=2, n_estimators=5;, score=0.884 total time= 0.0s\n","[CV 2/5] END bootstrap=True, max_depth=2, max_features=sqrt, min_samples_leaf=6, min_samples_split=2, n_estimators=5;, score=0.899 total time= 0.0s\n","[CV 3/5] END bootstrap=True, max_depth=2, max_features=sqrt, min_samples_leaf=6, min_samples_split=2, n_estimators=5;, score=0.864 total time= 0.0s\n","[CV 4/5] END bootstrap=True, max_depth=2, max_features=sqrt, min_samples_leaf=6, min_samples_split=2, n_estimators=5;, score=0.889 total time= 0.0s\n","[CV 5/5] END bootstrap=True, max_depth=2, max_features=sqrt, min_samples_leaf=6, min_samples_split=2, n_estimators=5;, score=0.884 total time= 0.0s\n","[CV 1/5] END bootstrap=True, max_depth=2, max_features=sqrt, min_samples_leaf=6, min_samples_split=2, n_estimators=10;, score=0.848 total time= 0.0s\n","[CV 2/5] END bootstrap=True, max_depth=2, max_features=sqrt, min_samples_leaf=6, min_samples_split=2, n_estimators=10;, score=0.859 total time= 0.0s\n","[CV 3/5] END bootstrap=True, max_depth=2, max_features=sqrt, min_samples_leaf=6, min_samples_split=2, n_estimators=10;, score=0.889 total time= 0.0s\n","[CV 4/5] END bootstrap=True, max_depth=2, max_features=sqrt, min_samples_leaf=6, min_samples_split=2, n_estimators=10;, score=0.869 total time= 0.0s\n","[CV 5/5] END bootstrap=True, max_depth=2, max_features=sqrt, min_samples_leaf=6, min_samples_split=2, n_estimators=10;, score=0.874 total time= 0.0s\n","[CV 1/5] END bootstrap=True, max_depth=2, max_features=sqrt, min_samples_leaf=6, min_samples_split=2, n_estimators=20;, score=0.874 total time= 0.1s\n","[CV 2/5] END bootstrap=True, max_depth=2, max_features=sqrt, min_samples_leaf=6, min_samples_split=2, n_estimators=20;, score=0.899 total time= 0.0s\n","[CV 3/5] END bootstrap=True, max_depth=2, max_features=sqrt, min_samples_leaf=6, min_samples_split=2, n_estimators=20;, score=0.869 total time= 0.0s\n","[CV 4/5] END bootstrap=True, max_depth=2, max_features=sqrt, min_samples_leaf=6, min_samples_split=2, n_estimators=20;, score=0.879 total time= 0.0s\n","[CV 5/5] END bootstrap=True, max_depth=2, max_features=sqrt, min_samples_leaf=6, min_samples_split=2, n_estimators=20;, score=0.859 total time= 0.0s\n","[CV 1/5] END bootstrap=True, max_depth=2, max_features=sqrt, min_samples_leaf=6, min_samples_split=2, n_estimators=30;, score=0.864 total time= 0.1s\n","[CV 2/5] END bootstrap=True, max_depth=2, max_features=sqrt, min_samples_leaf=6, min_samples_split=2, n_estimators=30;, score=0.894 total time= 0.1s\n","[CV 3/5] END bootstrap=True, max_depth=2, max_features=sqrt, min_samples_leaf=6, min_samples_split=2, n_estimators=30;, score=0.884 total time= 0.1s\n","[CV 4/5] END bootstrap=True, max_depth=2, max_features=sqrt, min_samples_leaf=6, min_samples_split=2, n_estimators=30;, score=0.864 total time= 0.1s\n","[CV 5/5] END bootstrap=True, max_depth=2, max_features=sqrt, min_samples_leaf=6, min_samples_split=2, n_estimators=30;, score=0.879 total time= 0.1s\n","[CV 1/5] END bootstrap=True, max_depth=2, max_features=sqrt, min_samples_leaf=6, min_samples_split=4, n_estimators=5;, score=0.854 total time= 0.0s\n","[CV 2/5] END bootstrap=True, max_depth=2, max_features=sqrt, min_samples_leaf=6, min_samples_split=4, n_estimators=5;, score=0.884 total time= 0.0s\n","[CV 3/5] END bootstrap=True, max_depth=2, max_features=sqrt, min_samples_leaf=6, min_samples_split=4, n_estimators=5;, score=0.884 total time= 0.0s\n","[CV 4/5] END bootstrap=True, max_depth=2, max_features=sqrt, min_samples_leaf=6, min_samples_split=4, n_estimators=5;, score=0.869 total time= 0.0s\n","[CV 5/5] END bootstrap=True, max_depth=2, max_features=sqrt, min_samples_leaf=6, min_samples_split=4, n_estimators=5;, score=0.864 total time= 0.0s\n","[CV 1/5] END bootstrap=True, max_depth=2, max_features=sqrt, min_samples_leaf=6, min_samples_split=4, n_estimators=10;, score=0.869 total time= 0.0s\n","[CV 2/5] END bootstrap=True, max_depth=2, max_features=sqrt, min_samples_leaf=6, min_samples_split=4, n_estimators=10;, score=0.889 total time= 0.0s\n","[CV 3/5] END bootstrap=True, max_depth=2, max_features=sqrt, min_samples_leaf=6, min_samples_split=4, n_estimators=10;, score=0.894 total time= 0.0s\n","[CV 4/5] END bootstrap=True, max_depth=2, max_features=sqrt, min_samples_leaf=6, min_samples_split=4, n_estimators=10;, score=0.859 total time= 0.0s\n","[CV 5/5] END bootstrap=True, max_depth=2, max_features=sqrt, min_samples_leaf=6, min_samples_split=4, n_estimators=10;, score=0.894 total time= 0.0s\n","[CV 1/5] END bootstrap=True, max_depth=2, max_features=sqrt, min_samples_leaf=6, min_samples_split=4, n_estimators=20;, score=0.874 total time= 0.0s\n","[CV 2/5] END bootstrap=True, max_depth=2, max_features=sqrt, min_samples_leaf=6, min_samples_split=4, n_estimators=20;, score=0.894 total time= 0.0s\n","[CV 3/5] END bootstrap=True, max_depth=2, max_features=sqrt, min_samples_leaf=6, min_samples_split=4, n_estimators=20;, score=0.879 total time= 0.0s\n","[CV 4/5] END bootstrap=True, max_depth=2, max_features=sqrt, min_samples_leaf=6, min_samples_split=4, n_estimators=20;, score=0.869 total time= 0.1s\n","[CV 5/5] END bootstrap=True, max_depth=2, max_features=sqrt, min_samples_leaf=6, min_samples_split=4, n_estimators=20;, score=0.894 total time= 0.0s\n","[CV 1/5] END bootstrap=True, max_depth=2, max_features=sqrt, min_samples_leaf=6, min_samples_split=4, n_estimators=30;, score=0.848 total time= 0.1s\n","[CV 2/5] END bootstrap=True, max_depth=2, max_features=sqrt, min_samples_leaf=6, min_samples_split=4, n_estimators=30;, score=0.874 total time= 0.1s\n","[CV 3/5] END bootstrap=True, max_depth=2, max_features=sqrt, min_samples_leaf=6, min_samples_split=4, n_estimators=30;, score=0.884 total time= 0.1s\n","[CV 4/5] END bootstrap=True, max_depth=2, max_features=sqrt, min_samples_leaf=6, min_samples_split=4, n_estimators=30;, score=0.869 total time= 0.1s\n","[CV 5/5] END bootstrap=True, max_depth=2, max_features=sqrt, min_samples_leaf=6, min_samples_split=4, n_estimators=30;, score=0.879 total time= 0.1s\n","[CV 1/5] END bootstrap=True, max_depth=2, max_features=sqrt, min_samples_leaf=6, min_samples_split=6, n_estimators=5;, score=0.854 total time= 0.0s\n","[CV 2/5] END bootstrap=True, max_depth=2, max_features=sqrt, min_samples_leaf=6, min_samples_split=6, n_estimators=5;, score=0.864 total time= 0.0s\n","[CV 3/5] END bootstrap=True, max_depth=2, max_features=sqrt, min_samples_leaf=6, min_samples_split=6, n_estimators=5;, score=0.879 total time= 0.0s\n","[CV 4/5] END bootstrap=True, max_depth=2, max_features=sqrt, min_samples_leaf=6, min_samples_split=6, n_estimators=5;, score=0.848 total time= 0.0s\n","[CV 5/5] END bootstrap=True, max_depth=2, max_features=sqrt, min_samples_leaf=6, min_samples_split=6, n_estimators=5;, score=0.889 total time= 0.0s\n","[CV 1/5] END bootstrap=True, max_depth=2, max_features=sqrt, min_samples_leaf=6, min_samples_split=6, n_estimators=10;, score=0.869 total time= 0.0s\n","[CV 2/5] END bootstrap=True, max_depth=2, max_features=sqrt, min_samples_leaf=6, min_samples_split=6, n_estimators=10;, score=0.894 total time= 0.0s\n","[CV 3/5] END bootstrap=True, max_depth=2, max_features=sqrt, min_samples_leaf=6, min_samples_split=6, n_estimators=10;, score=0.899 total time= 0.0s\n","[CV 4/5] END bootstrap=True, max_depth=2, max_features=sqrt, min_samples_leaf=6, min_samples_split=6, n_estimators=10;, score=0.879 total time= 0.0s\n","[CV 5/5] END bootstrap=True, max_depth=2, max_features=sqrt, min_samples_leaf=6, min_samples_split=6, n_estimators=10;, score=0.884 total time= 0.0s\n","[CV 1/5] END bootstrap=True, max_depth=2, max_features=sqrt, min_samples_leaf=6, min_samples_split=6, n_estimators=20;, score=0.869 total time= 0.1s\n","[CV 2/5] END bootstrap=True, max_depth=2, max_features=sqrt, min_samples_leaf=6, min_samples_split=6, n_estimators=20;, score=0.879 total time= 0.0s\n","[CV 3/5] END bootstrap=True, max_depth=2, max_features=sqrt, min_samples_leaf=6, min_samples_split=6, n_estimators=20;, score=0.884 total time= 0.0s\n","[CV 4/5] END bootstrap=True, max_depth=2, max_features=sqrt, min_samples_leaf=6, min_samples_split=6, n_estimators=20;, score=0.864 total time= 0.0s\n","[CV 5/5] END bootstrap=True, max_depth=2, max_features=sqrt, min_samples_leaf=6, min_samples_split=6, n_estimators=20;, score=0.909 total time= 0.0s\n","[CV 1/5] END bootstrap=True, max_depth=2, max_features=sqrt, min_samples_leaf=6, min_samples_split=6, n_estimators=30;, score=0.848 total time= 0.1s\n","[CV 2/5] END bootstrap=True, max_depth=2, max_features=sqrt, min_samples_leaf=6, min_samples_split=6, n_estimators=30;, score=0.869 total time= 0.1s\n","[CV 3/5] END bootstrap=True, max_depth=2, max_features=sqrt, min_samples_leaf=6, min_samples_split=6, n_estimators=30;, score=0.879 total time= 0.1s\n","[CV 4/5] END bootstrap=True, max_depth=2, max_features=sqrt, min_samples_leaf=6, min_samples_split=6, n_estimators=30;, score=0.869 total time= 0.1s\n","[CV 5/5] END bootstrap=True, max_depth=2, max_features=sqrt, min_samples_leaf=6, min_samples_split=6, n_estimators=30;, score=0.874 total time= 0.1s\n","[CV 1/5] END bootstrap=True, max_depth=2, max_features=log2, min_samples_leaf=2, min_samples_split=2, n_estimators=5;, score=0.874 total time= 0.0s\n","[CV 2/5] END bootstrap=True, max_depth=2, max_features=log2, min_samples_leaf=2, min_samples_split=2, n_estimators=5;, score=0.884 total time= 0.0s\n","[CV 3/5] END bootstrap=True, max_depth=2, max_features=log2, min_samples_leaf=2, min_samples_split=2, n_estimators=5;, score=0.879 total time= 0.0s\n","[CV 4/5] END bootstrap=True, max_depth=2, max_features=log2, min_samples_leaf=2, min_samples_split=2, n_estimators=5;, score=0.864 total time= 0.0s\n","[CV 5/5] END bootstrap=True, max_depth=2, max_features=log2, min_samples_leaf=2, min_samples_split=2, n_estimators=5;, score=0.899 total time= 0.0s\n","[CV 1/5] END bootstrap=True, max_depth=2, max_features=log2, min_samples_leaf=2, min_samples_split=2, n_estimators=10;, score=0.869 total time= 0.0s\n","[CV 2/5] END bootstrap=True, max_depth=2, max_features=log2, min_samples_leaf=2, min_samples_split=2, n_estimators=10;, score=0.864 total time= 0.0s\n","[CV 3/5] END bootstrap=True, max_depth=2, max_features=log2, min_samples_leaf=2, min_samples_split=2, n_estimators=10;, score=0.889 total time= 0.0s\n","[CV 4/5] END bootstrap=True, max_depth=2, max_features=log2, min_samples_leaf=2, min_samples_split=2, n_estimators=10;, score=0.879 total time= 0.0s\n","[CV 5/5] END bootstrap=True, max_depth=2, max_features=log2, min_samples_leaf=2, min_samples_split=2, n_estimators=10;, score=0.894 total time= 0.0s\n","[CV 1/5] END bootstrap=True, max_depth=2, max_features=log2, min_samples_leaf=2, min_samples_split=2, n_estimators=20;, score=0.864 total time= 0.0s\n","[CV 2/5] END bootstrap=True, max_depth=2, max_features=log2, min_samples_leaf=2, min_samples_split=2, n_estimators=20;, score=0.879 total time= 0.0s\n","[CV 3/5] END bootstrap=True, max_depth=2, max_features=log2, min_samples_leaf=2, min_samples_split=2, n_estimators=20;, score=0.884 total time= 0.0s\n","[CV 4/5] END bootstrap=True, max_depth=2, max_features=log2, min_samples_leaf=2, min_samples_split=2, n_estimators=20;, score=0.854 total time= 0.1s\n","[CV 5/5] END bootstrap=True, max_depth=2, max_features=log2, min_samples_leaf=2, min_samples_split=2, n_estimators=20;, score=0.869 total time= 0.0s\n","[CV 1/5] END bootstrap=True, max_depth=2, max_features=log2, min_samples_leaf=2, min_samples_split=2, n_estimators=30;, score=0.864 total time= 0.1s\n","[CV 2/5] END bootstrap=True, max_depth=2, max_features=log2, min_samples_leaf=2, min_samples_split=2, n_estimators=30;, score=0.884 total time= 0.1s\n","[CV 3/5] END bootstrap=True, max_depth=2, max_features=log2, min_samples_leaf=2, min_samples_split=2, n_estimators=30;, score=0.869 total time= 0.1s\n","[CV 4/5] END bootstrap=True, max_depth=2, max_features=log2, min_samples_leaf=2, min_samples_split=2, n_estimators=30;, score=0.843 total time= 0.1s\n","[CV 5/5] END bootstrap=True, max_depth=2, max_features=log2, min_samples_leaf=2, min_samples_split=2, n_estimators=30;, score=0.884 total time= 0.1s\n","[CV 1/5] END bootstrap=True, max_depth=2, max_features=log2, min_samples_leaf=2, min_samples_split=4, n_estimators=5;, score=0.864 total time= 0.0s\n","[CV 2/5] END bootstrap=True, max_depth=2, max_features=log2, min_samples_leaf=2, min_samples_split=4, n_estimators=5;, score=0.904 total time= 0.0s\n","[CV 3/5] END bootstrap=True, max_depth=2, max_features=log2, min_samples_leaf=2, min_samples_split=4, n_estimators=5;, score=0.899 total time= 0.0s\n","[CV 4/5] END bootstrap=True, max_depth=2, max_features=log2, min_samples_leaf=2, min_samples_split=4, n_estimators=5;, score=0.874 total time= 0.0s\n","[CV 5/5] END bootstrap=True, max_depth=2, max_features=log2, min_samples_leaf=2, min_samples_split=4, n_estimators=5;, score=0.894 total time= 0.0s\n","[CV 1/5] END bootstrap=True, max_depth=2, max_features=log2, min_samples_leaf=2, min_samples_split=4, n_estimators=10;, score=0.854 total time= 0.0s\n","[CV 2/5] END bootstrap=True, max_depth=2, max_features=log2, min_samples_leaf=2, min_samples_split=4, n_estimators=10;, score=0.879 total time= 0.0s\n","[CV 3/5] END bootstrap=True, max_depth=2, max_features=log2, min_samples_leaf=2, min_samples_split=4, n_estimators=10;, score=0.894 total time= 0.0s\n","[CV 4/5] END bootstrap=True, max_depth=2, max_features=log2, min_samples_leaf=2, min_samples_split=4, n_estimators=10;, score=0.874 total time= 0.0s\n","[CV 5/5] END bootstrap=True, max_depth=2, max_features=log2, min_samples_leaf=2, min_samples_split=4, n_estimators=10;, score=0.889 total time= 0.0s\n","[CV 1/5] END bootstrap=True, max_depth=2, max_features=log2, min_samples_leaf=2, min_samples_split=4, n_estimators=20;, score=0.879 total time= 0.0s\n","[CV 2/5] END bootstrap=True, max_depth=2, max_features=log2, min_samples_leaf=2, min_samples_split=4, n_estimators=20;, score=0.889 total time= 0.0s\n","[CV 3/5] END bootstrap=True, max_depth=2, max_features=log2, min_samples_leaf=2, min_samples_split=4, n_estimators=20;, score=0.894 total time= 0.0s\n","[CV 4/5] END bootstrap=True, max_depth=2, max_features=log2, min_samples_leaf=2, min_samples_split=4, n_estimators=20;, score=0.864 total time= 0.0s\n","[CV 5/5] END bootstrap=True, max_depth=2, max_features=log2, min_samples_leaf=2, min_samples_split=4, n_estimators=20;, score=0.874 total time= 0.0s\n","[CV 1/5] END bootstrap=True, max_depth=2, max_features=log2, min_samples_leaf=2, min_samples_split=4, n_estimators=30;, score=0.854 total time= 0.1s\n","[CV 2/5] END bootstrap=True, max_depth=2, max_features=log2, min_samples_leaf=2, min_samples_split=4, n_estimators=30;, score=0.869 total time= 0.1s\n","[CV 3/5] END bootstrap=True, max_depth=2, max_features=log2, min_samples_leaf=2, min_samples_split=4, n_estimators=30;, score=0.874 total time= 0.1s\n","[CV 4/5] END bootstrap=True, max_depth=2, max_features=log2, min_samples_leaf=2, min_samples_split=4, n_estimators=30;, score=0.864 total time= 0.1s\n","[CV 5/5] END bootstrap=True, max_depth=2, max_features=log2, min_samples_leaf=2, min_samples_split=4, n_estimators=30;, score=0.879 total time= 0.1s\n","[CV 1/5] END bootstrap=True, max_depth=2, max_features=log2, min_samples_leaf=2, min_samples_split=6, n_estimators=5;, score=0.884 total time= 0.0s\n","[CV 2/5] END bootstrap=True, max_depth=2, max_features=log2, min_samples_leaf=2, min_samples_split=6, n_estimators=5;, score=0.874 total time= 0.0s\n","[CV 3/5] END bootstrap=True, max_depth=2, max_features=log2, min_samples_leaf=2, min_samples_split=6, n_estimators=5;, score=0.904 total time= 0.0s\n","[CV 4/5] END bootstrap=True, max_depth=2, max_features=log2, min_samples_leaf=2, min_samples_split=6, n_estimators=5;, score=0.869 total time= 0.0s\n","[CV 5/5] END bootstrap=True, max_depth=2, max_features=log2, min_samples_leaf=2, min_samples_split=6, n_estimators=5;, score=0.879 total time= 0.0s\n","[CV 1/5] END bootstrap=True, max_depth=2, max_features=log2, min_samples_leaf=2, min_samples_split=6, n_estimators=10;, score=0.859 total time= 0.0s\n","[CV 2/5] END bootstrap=True, max_depth=2, max_features=log2, min_samples_leaf=2, min_samples_split=6, n_estimators=10;, score=0.854 total time= 0.0s\n","[CV 3/5] END bootstrap=True, max_depth=2, max_features=log2, min_samples_leaf=2, min_samples_split=6, n_estimators=10;, score=0.874 total time= 0.0s\n","[CV 4/5] END bootstrap=True, max_depth=2, max_features=log2, min_samples_leaf=2, min_samples_split=6, n_estimators=10;, score=0.854 total time= 0.0s\n","[CV 5/5] END bootstrap=True, max_depth=2, max_features=log2, min_samples_leaf=2, min_samples_split=6, n_estimators=10;, score=0.889 total time= 0.0s\n","[CV 1/5] END bootstrap=True, max_depth=2, max_features=log2, min_samples_leaf=2, min_samples_split=6, n_estimators=20;, score=0.884 total time= 0.0s\n","[CV 2/5] END bootstrap=True, max_depth=2, max_features=log2, min_samples_leaf=2, min_samples_split=6, n_estimators=20;, score=0.874 total time= 0.0s\n","[CV 3/5] END bootstrap=True, max_depth=2, max_features=log2, min_samples_leaf=2, min_samples_split=6, n_estimators=20;, score=0.894 total time= 0.0s\n","[CV 4/5] END bootstrap=True, max_depth=2, max_features=log2, min_samples_leaf=2, min_samples_split=6, n_estimators=20;, score=0.864 total time= 0.1s\n","[CV 5/5] END bootstrap=True, max_depth=2, max_features=log2, min_samples_leaf=2, min_samples_split=6, n_estimators=20;, score=0.894 total time= 0.0s\n","[CV 1/5] END bootstrap=True, max_depth=2, max_features=log2, min_samples_leaf=2, min_samples_split=6, n_estimators=30;, score=0.874 total time= 0.1s\n","[CV 2/5] END bootstrap=True, max_depth=2, max_features=log2, min_samples_leaf=2, min_samples_split=6, n_estimators=30;, score=0.879 total time= 0.1s\n","[CV 3/5] END bootstrap=True, max_depth=2, max_features=log2, min_samples_leaf=2, min_samples_split=6, n_estimators=30;, score=0.884 total time= 0.1s\n","[CV 4/5] END bootstrap=True, max_depth=2, max_features=log2, min_samples_leaf=2, min_samples_split=6, n_estimators=30;, score=0.869 total time= 0.1s\n","[CV 5/5] END bootstrap=True, max_depth=2, max_features=log2, min_samples_leaf=2, min_samples_split=6, n_estimators=30;, score=0.864 total time= 0.1s\n","[CV 1/5] END bootstrap=True, max_depth=2, max_features=log2, min_samples_leaf=4, min_samples_split=2, n_estimators=5;, score=0.854 total time= 0.0s\n","[CV 2/5] END bootstrap=True, max_depth=2, max_features=log2, min_samples_leaf=4, min_samples_split=2, n_estimators=5;, score=0.894 total time= 0.0s\n","[CV 3/5] END bootstrap=True, max_depth=2, max_features=log2, min_samples_leaf=4, min_samples_split=2, n_estimators=5;, score=0.904 total time= 0.0s\n","[CV 4/5] END bootstrap=True, max_depth=2, max_features=log2, min_samples_leaf=4, min_samples_split=2, n_estimators=5;, score=0.874 total time= 0.0s\n","[CV 5/5] END bootstrap=True, max_depth=2, max_features=log2, min_samples_leaf=4, min_samples_split=2, n_estimators=5;, score=0.874 total time= 0.0s\n","[CV 1/5] END bootstrap=True, max_depth=2, max_features=log2, min_samples_leaf=4, min_samples_split=2, n_estimators=10;, score=0.859 total time= 0.0s\n","[CV 2/5] END bootstrap=True, max_depth=2, max_features=log2, min_samples_leaf=4, min_samples_split=2, n_estimators=10;, score=0.889 total time= 0.0s\n","[CV 3/5] END bootstrap=True, max_depth=2, max_features=log2, min_samples_leaf=4, min_samples_split=2, n_estimators=10;, score=0.889 total time= 0.0s\n","[CV 4/5] END bootstrap=True, max_depth=2, max_features=log2, min_samples_leaf=4, min_samples_split=2, n_estimators=10;, score=0.879 total time= 0.0s\n","[CV 5/5] END bootstrap=True, max_depth=2, max_features=log2, min_samples_leaf=4, min_samples_split=2, n_estimators=10;, score=0.874 total time= 0.0s\n","[CV 1/5] END bootstrap=True, max_depth=2, max_features=log2, min_samples_leaf=4, min_samples_split=2, n_estimators=20;, score=0.864 total time= 0.0s\n","[CV 2/5] END bootstrap=True, max_depth=2, max_features=log2, min_samples_leaf=4, min_samples_split=2, n_estimators=20;, score=0.914 total time= 0.0s\n","[CV 3/5] END bootstrap=True, max_depth=2, max_features=log2, min_samples_leaf=4, min_samples_split=2, n_estimators=20;, score=0.874 total time= 0.0s\n","[CV 4/5] END bootstrap=True, max_depth=2, max_features=log2, min_samples_leaf=4, min_samples_split=2, n_estimators=20;, score=0.859 total time= 0.0s\n","[CV 5/5] END bootstrap=True, max_depth=2, max_features=log2, min_samples_leaf=4, min_samples_split=2, n_estimators=20;, score=0.879 total time= 0.0s\n","[CV 1/5] END bootstrap=True, max_depth=2, max_features=log2, min_samples_leaf=4, min_samples_split=2, n_estimators=30;, score=0.859 total time= 0.1s\n","[CV 2/5] END bootstrap=True, max_depth=2, max_features=log2, min_samples_leaf=4, min_samples_split=2, n_estimators=30;, score=0.894 total time= 0.1s\n","[CV 3/5] END bootstrap=True, max_depth=2, max_features=log2, min_samples_leaf=4, min_samples_split=2, n_estimators=30;, score=0.894 total time= 0.1s\n","[CV 4/5] END bootstrap=True, max_depth=2, max_features=log2, min_samples_leaf=4, min_samples_split=2, n_estimators=30;, score=0.864 total time= 0.1s\n","[CV 5/5] END bootstrap=True, max_depth=2, max_features=log2, min_samples_leaf=4, min_samples_split=2, n_estimators=30;, score=0.894 total time= 0.1s\n","[CV 1/5] END bootstrap=True, max_depth=2, max_features=log2, min_samples_leaf=4, min_samples_split=4, n_estimators=5;, score=0.879 total time= 0.0s\n","[CV 2/5] END bootstrap=True, max_depth=2, max_features=log2, min_samples_leaf=4, min_samples_split=4, n_estimators=5;, score=0.894 total time= 0.0s\n","[CV 3/5] END bootstrap=True, max_depth=2, max_features=log2, min_samples_leaf=4, min_samples_split=4, n_estimators=5;, score=0.879 total time= 0.0s\n","[CV 4/5] END bootstrap=True, max_depth=2, max_features=log2, min_samples_leaf=4, min_samples_split=4, n_estimators=5;, score=0.879 total time= 0.0s\n","[CV 5/5] END bootstrap=True, max_depth=2, max_features=log2, min_samples_leaf=4, min_samples_split=4, n_estimators=5;, score=0.894 total time= 0.0s\n","[CV 1/5] END bootstrap=True, max_depth=2, max_features=log2, min_samples_leaf=4, min_samples_split=4, n_estimators=10;, score=0.864 total time= 0.0s\n","[CV 2/5] END bootstrap=True, max_depth=2, max_features=log2, min_samples_leaf=4, min_samples_split=4, n_estimators=10;, score=0.904 total time= 0.0s\n","[CV 3/5] END bootstrap=True, max_depth=2, max_features=log2, min_samples_leaf=4, min_samples_split=4, n_estimators=10;, score=0.889 total time= 0.0s\n","[CV 4/5] END bootstrap=True, max_depth=2, max_features=log2, min_samples_leaf=4, min_samples_split=4, n_estimators=10;, score=0.869 total time= 0.0s\n","[CV 5/5] END bootstrap=True, max_depth=2, max_features=log2, min_samples_leaf=4, min_samples_split=4, n_estimators=10;, score=0.884 total time= 0.0s\n","[CV 1/5] END bootstrap=True, max_depth=2, max_features=log2, min_samples_leaf=4, min_samples_split=4, n_estimators=20;, score=0.838 total time= 0.0s\n","[CV 2/5] END bootstrap=True, max_depth=2, max_features=log2, min_samples_leaf=4, min_samples_split=4, n_estimators=20;, score=0.859 total time= 0.1s\n","[CV 3/5] END bootstrap=True, max_depth=2, max_features=log2, min_samples_leaf=4, min_samples_split=4, n_estimators=20;, score=0.899 total time= 0.1s\n","[CV 4/5] END bootstrap=True, max_depth=2, max_features=log2, min_samples_leaf=4, min_samples_split=4, n_estimators=20;, score=0.894 total time= 0.0s\n","[CV 5/5] END bootstrap=True, max_depth=2, max_features=log2, min_samples_leaf=4, min_samples_split=4, n_estimators=20;, score=0.884 total time= 0.0s\n","[CV 1/5] END bootstrap=True, max_depth=2, max_features=log2, min_samples_leaf=4, min_samples_split=4, n_estimators=30;, score=0.874 total time= 0.1s\n","[CV 2/5] END bootstrap=True, max_depth=2, max_features=log2, min_samples_leaf=4, min_samples_split=4, n_estimators=30;, score=0.879 total time= 0.1s\n","[CV 3/5] END bootstrap=True, max_depth=2, max_features=log2, min_samples_leaf=4, min_samples_split=4, n_estimators=30;, score=0.879 total time= 0.1s\n","[CV 4/5] END bootstrap=True, max_depth=2, max_features=log2, min_samples_leaf=4, min_samples_split=4, n_estimators=30;, score=0.864 total time= 0.1s\n","[CV 5/5] END bootstrap=True, max_depth=2, max_features=log2, min_samples_leaf=4, min_samples_split=4, n_estimators=30;, score=0.884 total time= 0.1s\n","[CV 1/5] END bootstrap=True, max_depth=2, max_features=log2, min_samples_leaf=4, min_samples_split=6, n_estimators=5;, score=0.869 total time= 0.0s\n","[CV 2/5] END bootstrap=True, max_depth=2, max_features=log2, min_samples_leaf=4, min_samples_split=6, n_estimators=5;, score=0.884 total time= 0.0s\n","[CV 3/5] END bootstrap=True, max_depth=2, max_features=log2, min_samples_leaf=4, min_samples_split=6, n_estimators=5;, score=0.889 total time= 0.0s\n","[CV 4/5] END bootstrap=True, max_depth=2, max_features=log2, min_samples_leaf=4, min_samples_split=6, n_estimators=5;, score=0.874 total time= 0.0s\n","[CV 5/5] END bootstrap=True, max_depth=2, max_features=log2, min_samples_leaf=4, min_samples_split=6, n_estimators=5;, score=0.889 total time= 0.0s\n","[CV 1/5] END bootstrap=True, max_depth=2, max_features=log2, min_samples_leaf=4, min_samples_split=6, n_estimators=10;, score=0.859 total time= 0.0s\n","[CV 2/5] END bootstrap=True, max_depth=2, max_features=log2, min_samples_leaf=4, min_samples_split=6, n_estimators=10;, score=0.894 total time= 0.0s\n","[CV 3/5] END bootstrap=True, max_depth=2, max_features=log2, min_samples_leaf=4, min_samples_split=6, n_estimators=10;, score=0.894 total time= 0.0s\n","[CV 4/5] END bootstrap=True, max_depth=2, max_features=log2, min_samples_leaf=4, min_samples_split=6, n_estimators=10;, score=0.884 total time= 0.0s\n","[CV 5/5] END bootstrap=True, max_depth=2, max_features=log2, min_samples_leaf=4, min_samples_split=6, n_estimators=10;, score=0.879 total time= 0.0s\n","[CV 1/5] END bootstrap=True, max_depth=2, max_features=log2, min_samples_leaf=4, min_samples_split=6, n_estimators=20;, score=0.869 total time= 0.0s\n","[CV 2/5] END bootstrap=True, max_depth=2, max_features=log2, min_samples_leaf=4, min_samples_split=6, n_estimators=20;, score=0.884 total time= 0.0s\n","[CV 3/5] END bootstrap=True, max_depth=2, max_features=log2, min_samples_leaf=4, min_samples_split=6, n_estimators=20;, score=0.879 total time= 0.0s\n","[CV 4/5] END bootstrap=True, max_depth=2, max_features=log2, min_samples_leaf=4, min_samples_split=6, n_estimators=20;, score=0.879 total time= 0.1s\n","[CV 5/5] END bootstrap=True, max_depth=2, max_features=log2, min_samples_leaf=4, min_samples_split=6, n_estimators=20;, score=0.889 total time= 0.0s\n","[CV 1/5] END bootstrap=True, max_depth=2, max_features=log2, min_samples_leaf=4, min_samples_split=6, n_estimators=30;, score=0.864 total time= 0.1s\n","[CV 2/5] END bootstrap=True, max_depth=2, max_features=log2, min_samples_leaf=4, min_samples_split=6, n_estimators=30;, score=0.899 total time= 0.1s\n","[CV 3/5] END bootstrap=True, max_depth=2, max_features=log2, min_samples_leaf=4, min_samples_split=6, n_estimators=30;, score=0.884 total time= 0.1s\n","[CV 4/5] END bootstrap=True, max_depth=2, max_features=log2, min_samples_leaf=4, min_samples_split=6, n_estimators=30;, score=0.854 total time= 0.1s\n","[CV 5/5] END bootstrap=True, max_depth=2, max_features=log2, min_samples_leaf=4, min_samples_split=6, n_estimators=30;, score=0.874 total time= 0.1s\n","[CV 1/5] END bootstrap=True, max_depth=2, max_features=log2, min_samples_leaf=6, min_samples_split=2, n_estimators=5;, score=0.879 total time= 0.0s\n","[CV 2/5] END bootstrap=True, max_depth=2, max_features=log2, min_samples_leaf=6, min_samples_split=2, n_estimators=5;, score=0.904 total time= 0.0s\n","[CV 3/5] END bootstrap=True, max_depth=2, max_features=log2, min_samples_leaf=6, min_samples_split=2, n_estimators=5;, score=0.874 total time= 0.0s\n","[CV 4/5] END bootstrap=True, max_depth=2, max_features=log2, min_samples_leaf=6, min_samples_split=2, n_estimators=5;, score=0.869 total time= 0.0s\n","[CV 5/5] END bootstrap=True, max_depth=2, max_features=log2, min_samples_leaf=6, min_samples_split=2, n_estimators=5;, score=0.874 total time= 0.0s\n","[CV 1/5] END bootstrap=True, max_depth=2, max_features=log2, min_samples_leaf=6, min_samples_split=2, n_estimators=10;, score=0.869 total time= 0.0s\n","[CV 2/5] END bootstrap=True, max_depth=2, max_features=log2, min_samples_leaf=6, min_samples_split=2, n_estimators=10;, score=0.894 total time= 0.0s\n","[CV 3/5] END bootstrap=True, max_depth=2, max_features=log2, min_samples_leaf=6, min_samples_split=2, n_estimators=10;, score=0.889 total time= 0.0s\n","[CV 4/5] END bootstrap=True, max_depth=2, max_features=log2, min_samples_leaf=6, min_samples_split=2, n_estimators=10;, score=0.874 total time= 0.0s\n","[CV 5/5] END bootstrap=True, max_depth=2, max_features=log2, min_samples_leaf=6, min_samples_split=2, n_estimators=10;, score=0.884 total time= 0.0s\n","[CV 1/5] END bootstrap=True, max_depth=2, max_features=log2, min_samples_leaf=6, min_samples_split=2, n_estimators=20;, score=0.864 total time= 0.0s\n","[CV 2/5] END bootstrap=True, max_depth=2, max_features=log2, min_samples_leaf=6, min_samples_split=2, n_estimators=20;, score=0.889 total time= 0.0s\n","[CV 3/5] END bootstrap=True, max_depth=2, max_features=log2, min_samples_leaf=6, min_samples_split=2, n_estimators=20;, score=0.899 total time= 0.1s\n","[CV 4/5] END bootstrap=True, max_depth=2, max_features=log2, min_samples_leaf=6, min_samples_split=2, n_estimators=20;, score=0.879 total time= 0.0s\n","[CV 5/5] END bootstrap=True, max_depth=2, max_features=log2, min_samples_leaf=6, min_samples_split=2, n_estimators=20;, score=0.884 total time= 0.0s\n","[CV 1/5] END bootstrap=True, max_depth=2, max_features=log2, min_samples_leaf=6, min_samples_split=2, n_estimators=30;, score=0.864 total time= 0.1s\n","[CV 2/5] END bootstrap=True, max_depth=2, max_features=log2, min_samples_leaf=6, min_samples_split=2, n_estimators=30;, score=0.869 total time= 0.1s\n","[CV 3/5] END bootstrap=True, max_depth=2, max_features=log2, min_samples_leaf=6, min_samples_split=2, n_estimators=30;, score=0.874 total time= 0.1s\n","[CV 4/5] END bootstrap=True, max_depth=2, max_features=log2, min_samples_leaf=6, min_samples_split=2, n_estimators=30;, score=0.879 total time= 0.1s\n","[CV 5/5] END bootstrap=True, max_depth=2, max_features=log2, min_samples_leaf=6, min_samples_split=2, n_estimators=30;, score=0.869 total time= 0.1s\n","[CV 1/5] END bootstrap=True, max_depth=2, max_features=log2, min_samples_leaf=6, min_samples_split=4, n_estimators=5;, score=0.899 total time= 0.0s\n","[CV 2/5] END bootstrap=True, max_depth=2, max_features=log2, min_samples_leaf=6, min_samples_split=4, n_estimators=5;, score=0.879 total time= 0.0s\n","[CV 3/5] END bootstrap=True, max_depth=2, max_features=log2, min_samples_leaf=6, min_samples_split=4, n_estimators=5;, score=0.884 total time= 0.0s\n","[CV 4/5] END bootstrap=True, max_depth=2, max_features=log2, min_samples_leaf=6, min_samples_split=4, n_estimators=5;, score=0.854 total time= 0.0s\n","[CV 5/5] END bootstrap=True, max_depth=2, max_features=log2, min_samples_leaf=6, min_samples_split=4, n_estimators=5;, score=0.879 total time= 0.0s\n","[CV 1/5] END bootstrap=True, max_depth=2, max_features=log2, min_samples_leaf=6, min_samples_split=4, n_estimators=10;, score=0.848 total time= 0.0s\n","[CV 2/5] END bootstrap=True, max_depth=2, max_features=log2, min_samples_leaf=6, min_samples_split=4, n_estimators=10;, score=0.889 total time= 0.0s\n","[CV 3/5] END bootstrap=True, max_depth=2, max_features=log2, min_samples_leaf=6, min_samples_split=4, n_estimators=10;, score=0.879 total time= 0.0s\n","[CV 4/5] END bootstrap=True, max_depth=2, max_features=log2, min_samples_leaf=6, min_samples_split=4, n_estimators=10;, score=0.843 total time= 0.0s\n","[CV 5/5] END bootstrap=True, max_depth=2, max_features=log2, min_samples_leaf=6, min_samples_split=4, n_estimators=10;, score=0.879 total time= 0.0s\n","[CV 1/5] END bootstrap=True, max_depth=2, max_features=log2, min_samples_leaf=6, min_samples_split=4, n_estimators=20;, score=0.874 total time= 0.1s\n","[CV 2/5] END bootstrap=True, max_depth=2, max_features=log2, min_samples_leaf=6, min_samples_split=4, n_estimators=20;, score=0.914 total time= 0.0s\n","[CV 3/5] END bootstrap=True, max_depth=2, max_features=log2, min_samples_leaf=6, min_samples_split=4, n_estimators=20;, score=0.869 total time= 0.0s\n","[CV 4/5] END bootstrap=True, max_depth=2, max_features=log2, min_samples_leaf=6, min_samples_split=4, n_estimators=20;, score=0.859 total time= 0.0s\n","[CV 5/5] END bootstrap=True, max_depth=2, max_features=log2, min_samples_leaf=6, min_samples_split=4, n_estimators=20;, score=0.884 total time= 0.0s\n","[CV 1/5] END bootstrap=True, max_depth=2, max_features=log2, min_samples_leaf=6, min_samples_split=4, n_estimators=30;, score=0.869 total time= 0.1s\n","[CV 2/5] END bootstrap=True, max_depth=2, max_features=log2, min_samples_leaf=6, min_samples_split=4, n_estimators=30;, score=0.899 total time= 0.1s\n","[CV 3/5] END bootstrap=True, max_depth=2, max_features=log2, min_samples_leaf=6, min_samples_split=4, n_estimators=30;, score=0.874 total time= 0.1s\n","[CV 4/5] END bootstrap=True, max_depth=2, max_features=log2, min_samples_leaf=6, min_samples_split=4, n_estimators=30;, score=0.874 total time= 0.1s\n","[CV 5/5] END bootstrap=True, max_depth=2, max_features=log2, min_samples_leaf=6, min_samples_split=4, n_estimators=30;, score=0.879 total time= 0.1s\n","[CV 1/5] END bootstrap=True, max_depth=2, max_features=log2, min_samples_leaf=6, min_samples_split=6, n_estimators=5;, score=0.874 total time= 0.0s\n","[CV 2/5] END bootstrap=True, max_depth=2, max_features=log2, min_samples_leaf=6, min_samples_split=6, n_estimators=5;, score=0.899 total time= 0.0s\n","[CV 3/5] END bootstrap=True, max_depth=2, max_features=log2, min_samples_leaf=6, min_samples_split=6, n_estimators=5;, score=0.899 total time= 0.0s\n","[CV 4/5] END bootstrap=True, max_depth=2, max_features=log2, min_samples_leaf=6, min_samples_split=6, n_estimators=5;, score=0.889 total time= 0.0s\n","[CV 5/5] END bootstrap=True, max_depth=2, max_features=log2, min_samples_leaf=6, min_samples_split=6, n_estimators=5;, score=0.869 total time= 0.0s\n","[CV 1/5] END bootstrap=True, max_depth=2, max_features=log2, min_samples_leaf=6, min_samples_split=6, n_estimators=10;, score=0.843 total time= 0.0s\n","[CV 2/5] END bootstrap=True, max_depth=2, max_features=log2, min_samples_leaf=6, min_samples_split=6, n_estimators=10;, score=0.864 total time= 0.0s\n","[CV 3/5] END bootstrap=True, max_depth=2, max_features=log2, min_samples_leaf=6, min_samples_split=6, n_estimators=10;, score=0.889 total time= 0.0s\n","[CV 4/5] END bootstrap=True, max_depth=2, max_features=log2, min_samples_leaf=6, min_samples_split=6, n_estimators=10;, score=0.869 total time= 0.0s\n","[CV 5/5] END bootstrap=True, max_depth=2, max_features=log2, min_samples_leaf=6, min_samples_split=6, n_estimators=10;, score=0.874 total time= 0.0s\n","[CV 1/5] END bootstrap=True, max_depth=2, max_features=log2, min_samples_leaf=6, min_samples_split=6, n_estimators=20;, score=0.864 total time= 0.0s\n","[CV 2/5] END bootstrap=True, max_depth=2, max_features=log2, min_samples_leaf=6, min_samples_split=6, n_estimators=20;, score=0.864 total time= 0.0s\n","[CV 3/5] END bootstrap=True, max_depth=2, max_features=log2, min_samples_leaf=6, min_samples_split=6, n_estimators=20;, score=0.879 total time= 0.1s\n","[CV 4/5] END bootstrap=True, max_depth=2, max_features=log2, min_samples_leaf=6, min_samples_split=6, n_estimators=20;, score=0.833 total time= 0.1s\n","[CV 5/5] END bootstrap=True, max_depth=2, max_features=log2, min_samples_leaf=6, min_samples_split=6, n_estimators=20;, score=0.874 total time= 0.1s\n","[CV 1/5] END bootstrap=True, max_depth=2, max_features=log2, min_samples_leaf=6, min_samples_split=6, n_estimators=30;, score=0.869 total time= 0.1s\n","[CV 2/5] END bootstrap=True, max_depth=2, max_features=log2, min_samples_leaf=6, min_samples_split=6, n_estimators=30;, score=0.899 total time= 0.1s\n","[CV 3/5] END bootstrap=True, max_depth=2, max_features=log2, min_samples_leaf=6, min_samples_split=6, n_estimators=30;, score=0.879 total time= 0.1s\n","[CV 4/5] END bootstrap=True, max_depth=2, max_features=log2, min_samples_leaf=6, min_samples_split=6, n_estimators=30;, score=0.884 total time= 0.1s\n","[CV 5/5] END bootstrap=True, max_depth=2, max_features=log2, min_samples_leaf=6, min_samples_split=6, n_estimators=30;, score=0.884 total time= 0.1s\n","[CV 1/5] END bootstrap=True, max_depth=2, max_features=None, min_samples_leaf=2, min_samples_split=2, n_estimators=5;, score=0.864 total time= 0.0s\n","[CV 2/5] END bootstrap=True, max_depth=2, max_features=None, min_samples_leaf=2, min_samples_split=2, n_estimators=5;, score=0.904 total time= 0.0s\n","[CV 3/5] END bootstrap=True, max_depth=2, max_features=None, min_samples_leaf=2, min_samples_split=2, n_estimators=5;, score=0.899 total time= 0.0s\n","[CV 4/5] END bootstrap=True, max_depth=2, max_features=None, min_samples_leaf=2, min_samples_split=2, n_estimators=5;, score=0.859 total time= 0.0s\n","[CV 5/5] END bootstrap=True, max_depth=2, max_features=None, min_samples_leaf=2, min_samples_split=2, n_estimators=5;, score=0.899 total time= 0.0s\n","[CV 1/5] END bootstrap=True, max_depth=2, max_features=None, min_samples_leaf=2, min_samples_split=2, n_estimators=10;, score=0.894 total time= 0.0s\n","[CV 2/5] END bootstrap=True, max_depth=2, max_features=None, min_samples_leaf=2, min_samples_split=2, n_estimators=10;, score=0.874 total time= 0.0s\n","[CV 3/5] END bootstrap=True, max_depth=2, max_features=None, min_samples_leaf=2, min_samples_split=2, n_estimators=10;, score=0.894 total time= 0.0s\n","[CV 4/5] END bootstrap=True, max_depth=2, max_features=None, min_samples_leaf=2, min_samples_split=2, n_estimators=10;, score=0.848 total time= 0.1s\n","[CV 5/5] END bootstrap=True, max_depth=2, max_features=None, min_samples_leaf=2, min_samples_split=2, n_estimators=10;, score=0.884 total time= 0.0s\n","[CV 1/5] END bootstrap=True, max_depth=2, max_features=None, min_samples_leaf=2, min_samples_split=2, n_estimators=20;, score=0.879 total time= 0.1s\n","[CV 2/5] END bootstrap=True, max_depth=2, max_features=None, min_samples_leaf=2, min_samples_split=2, n_estimators=20;, score=0.889 total time= 0.1s\n","[CV 3/5] END bootstrap=True, max_depth=2, max_features=None, min_samples_leaf=2, min_samples_split=2, n_estimators=20;, score=0.884 total time= 0.1s\n","[CV 4/5] END bootstrap=True, max_depth=2, max_features=None, min_samples_leaf=2, min_samples_split=2, n_estimators=20;, score=0.848 total time= 0.1s\n","[CV 5/5] END bootstrap=True, max_depth=2, max_features=None, min_samples_leaf=2, min_samples_split=2, n_estimators=20;, score=0.889 total time= 0.1s\n","[CV 1/5] END bootstrap=True, max_depth=2, max_features=None, min_samples_leaf=2, min_samples_split=2, n_estimators=30;, score=0.859 total time= 0.1s\n","[CV 2/5] END bootstrap=True, max_depth=2, max_features=None, min_samples_leaf=2, min_samples_split=2, n_estimators=30;, score=0.894 total time= 0.1s\n","[CV 3/5] END bootstrap=True, max_depth=2, max_features=None, min_samples_leaf=2, min_samples_split=2, n_estimators=30;, score=0.894 total time= 0.1s\n","[CV 4/5] END bootstrap=True, max_depth=2, max_features=None, min_samples_leaf=2, min_samples_split=2, n_estimators=30;, score=0.848 total time= 0.1s\n","[CV 5/5] END bootstrap=True, max_depth=2, max_features=None, min_samples_leaf=2, min_samples_split=2, n_estimators=30;, score=0.889 total time= 0.1s\n","[CV 1/5] END bootstrap=True, max_depth=2, max_features=None, min_samples_leaf=2, min_samples_split=4, n_estimators=5;, score=0.864 total time= 0.0s\n","[CV 2/5] END bootstrap=True, max_depth=2, max_features=None, min_samples_leaf=2, min_samples_split=4, n_estimators=5;, score=0.879 total time= 0.0s\n","[CV 3/5] END bootstrap=True, max_depth=2, max_features=None, min_samples_leaf=2, min_samples_split=4, n_estimators=5;, score=0.899 total time= 0.0s\n","[CV 4/5] END bootstrap=True, max_depth=2, max_features=None, min_samples_leaf=2, min_samples_split=4, n_estimators=5;, score=0.848 total time= 0.0s\n","[CV 5/5] END bootstrap=True, max_depth=2, max_features=None, min_samples_leaf=2, min_samples_split=4, n_estimators=5;, score=0.889 total time= 0.0s\n","[CV 1/5] END bootstrap=True, max_depth=2, max_features=None, min_samples_leaf=2, min_samples_split=4, n_estimators=10;, score=0.874 total time= 0.0s\n","[CV 2/5] END bootstrap=True, max_depth=2, max_features=None, min_samples_leaf=2, min_samples_split=4, n_estimators=10;, score=0.889 total time= 0.1s\n","[CV 3/5] END bootstrap=True, max_depth=2, max_features=None, min_samples_leaf=2, min_samples_split=4, n_estimators=10;, score=0.889 total time= 0.0s\n","[CV 4/5] END bootstrap=True, max_depth=2, max_features=None, min_samples_leaf=2, min_samples_split=4, n_estimators=10;, score=0.838 total time= 0.0s\n","[CV 5/5] END bootstrap=True, max_depth=2, max_features=None, min_samples_leaf=2, min_samples_split=4, n_estimators=10;, score=0.889 total time= 0.1s\n","[CV 1/5] END bootstrap=True, max_depth=2, max_features=None, min_samples_leaf=2, min_samples_split=4, n_estimators=20;, score=0.869 total time= 0.1s\n","[CV 2/5] END bootstrap=True, max_depth=2, max_features=None, min_samples_leaf=2, min_samples_split=4, n_estimators=20;, score=0.904 total time= 0.1s\n","[CV 3/5] END bootstrap=True, max_depth=2, max_features=None, min_samples_leaf=2, min_samples_split=4, n_estimators=20;, score=0.879 total time= 0.1s\n","[CV 4/5] END bootstrap=True, max_depth=2, max_features=None, min_samples_leaf=2, min_samples_split=4, n_estimators=20;, score=0.854 total time= 0.1s\n","[CV 5/5] END bootstrap=True, max_depth=2, max_features=None, min_samples_leaf=2, min_samples_split=4, n_estimators=20;, score=0.869 total time= 0.1s\n","[CV 1/5] END bootstrap=True, max_depth=2, max_features=None, min_samples_leaf=2, min_samples_split=4, n_estimators=30;, score=0.879 total time= 0.1s\n","[CV 2/5] END bootstrap=True, max_depth=2, max_features=None, min_samples_leaf=2, min_samples_split=4, n_estimators=30;, score=0.909 total time= 0.1s\n","[CV 3/5] END bootstrap=True, max_depth=2, max_features=None, min_samples_leaf=2, min_samples_split=4, n_estimators=30;, score=0.884 total time= 0.1s\n","[CV 4/5] END bootstrap=True, max_depth=2, max_features=None, min_samples_leaf=2, min_samples_split=4, n_estimators=30;, score=0.843 total time= 0.1s\n","[CV 5/5] END bootstrap=True, max_depth=2, max_features=None, min_samples_leaf=2, min_samples_split=4, n_estimators=30;, score=0.889 total time= 0.1s\n","[CV 1/5] END bootstrap=True, max_depth=2, max_features=None, min_samples_leaf=2, min_samples_split=6, n_estimators=5;, score=0.874 total time= 0.0s\n","[CV 2/5] END bootstrap=True, max_depth=2, max_features=None, min_samples_leaf=2, min_samples_split=6, n_estimators=5;, score=0.879 total time= 0.0s\n","[CV 3/5] END bootstrap=True, max_depth=2, max_features=None, min_samples_leaf=2, min_samples_split=6, n_estimators=5;, score=0.884 total time= 0.0s\n","[CV 4/5] END bootstrap=True, max_depth=2, max_features=None, min_samples_leaf=2, min_samples_split=6, n_estimators=5;, score=0.864 total time= 0.0s\n","[CV 5/5] END bootstrap=True, max_depth=2, max_features=None, min_samples_leaf=2, min_samples_split=6, n_estimators=5;, score=0.909 total time= 0.0s\n","[CV 1/5] END bootstrap=True, max_depth=2, max_features=None, min_samples_leaf=2, min_samples_split=6, n_estimators=10;, score=0.869 total time= 0.0s\n","[CV 2/5] END bootstrap=True, max_depth=2, max_features=None, min_samples_leaf=2, min_samples_split=6, n_estimators=10;, score=0.909 total time= 0.0s\n","[CV 3/5] END bootstrap=True, max_depth=2, max_features=None, min_samples_leaf=2, min_samples_split=6, n_estimators=10;, score=0.889 total time= 0.0s\n","[CV 4/5] END bootstrap=True, max_depth=2, max_features=None, min_samples_leaf=2, min_samples_split=6, n_estimators=10;, score=0.828 total time= 0.0s\n","[CV 5/5] END bootstrap=True, max_depth=2, max_features=None, min_samples_leaf=2, min_samples_split=6, n_estimators=10;, score=0.869 total time= 0.0s\n","[CV 1/5] END bootstrap=True, max_depth=2, max_features=None, min_samples_leaf=2, min_samples_split=6, n_estimators=20;, score=0.864 total time= 0.1s\n","[CV 2/5] END bootstrap=True, max_depth=2, max_features=None, min_samples_leaf=2, min_samples_split=6, n_estimators=20;, score=0.884 total time= 0.1s\n","[CV 3/5] END bootstrap=True, max_depth=2, max_features=None, min_samples_leaf=2, min_samples_split=6, n_estimators=20;, score=0.874 total time= 0.1s\n","[CV 4/5] END bootstrap=True, max_depth=2, max_features=None, min_samples_leaf=2, min_samples_split=6, n_estimators=20;, score=0.848 total time= 0.1s\n","[CV 5/5] END bootstrap=True, max_depth=2, max_features=None, min_samples_leaf=2, min_samples_split=6, n_estimators=20;, score=0.874 total time= 0.0s\n","[CV 1/5] END bootstrap=True, max_depth=2, max_features=None, min_samples_leaf=2, min_samples_split=6, n_estimators=30;, score=0.869 total time= 0.1s\n","[CV 2/5] END bootstrap=True, max_depth=2, max_features=None, min_samples_leaf=2, min_samples_split=6, n_estimators=30;, score=0.889 total time= 0.1s\n","[CV 3/5] END bootstrap=True, max_depth=2, max_features=None, min_samples_leaf=2, min_samples_split=6, n_estimators=30;, score=0.884 total time= 0.1s\n","[CV 4/5] END bootstrap=True, max_depth=2, max_features=None, min_samples_leaf=2, min_samples_split=6, n_estimators=30;, score=0.848 total time= 0.1s\n","[CV 5/5] END bootstrap=True, max_depth=2, max_features=None, min_samples_leaf=2, min_samples_split=6, n_estimators=30;, score=0.884 total time= 0.1s\n","[CV 1/5] END bootstrap=True, max_depth=2, max_features=None, min_samples_leaf=4, min_samples_split=2, n_estimators=5;, score=0.864 total time= 0.0s\n","[CV 2/5] END bootstrap=True, max_depth=2, max_features=None, min_samples_leaf=4, min_samples_split=2, n_estimators=5;, score=0.899 total time= 0.0s\n","[CV 3/5] END bootstrap=True, max_depth=2, max_features=None, min_samples_leaf=4, min_samples_split=2, n_estimators=5;, score=0.894 total time= 0.0s\n","[CV 4/5] END bootstrap=True, max_depth=2, max_features=None, min_samples_leaf=4, min_samples_split=2, n_estimators=5;, score=0.828 total time= 0.0s\n","[CV 5/5] END bootstrap=True, max_depth=2, max_features=None, min_samples_leaf=4, min_samples_split=2, n_estimators=5;, score=0.879 total time= 0.0s\n","[CV 1/5] END bootstrap=True, max_depth=2, max_features=None, min_samples_leaf=4, min_samples_split=2, n_estimators=10;, score=0.869 total time= 0.0s\n","[CV 2/5] END bootstrap=True, max_depth=2, max_features=None, min_samples_leaf=4, min_samples_split=2, n_estimators=10;, score=0.889 total time= 0.0s\n","[CV 3/5] END bootstrap=True, max_depth=2, max_features=None, min_samples_leaf=4, min_samples_split=2, n_estimators=10;, score=0.894 total time= 0.0s\n","[CV 4/5] END bootstrap=True, max_depth=2, max_features=None, min_samples_leaf=4, min_samples_split=2, n_estimators=10;, score=0.828 total time= 0.0s\n","[CV 5/5] END bootstrap=True, max_depth=2, max_features=None, min_samples_leaf=4, min_samples_split=2, n_estimators=10;, score=0.884 total time= 0.0s\n","[CV 1/5] END bootstrap=True, max_depth=2, max_features=None, min_samples_leaf=4, min_samples_split=2, n_estimators=20;, score=0.864 total time= 0.0s\n","[CV 2/5] END bootstrap=True, max_depth=2, max_features=None, min_samples_leaf=4, min_samples_split=2, n_estimators=20;, score=0.899 total time= 0.1s\n","[CV 3/5] END bootstrap=True, max_depth=2, max_features=None, min_samples_leaf=4, min_samples_split=2, n_estimators=20;, score=0.889 total time= 0.0s\n","[CV 4/5] END bootstrap=True, max_depth=2, max_features=None, min_samples_leaf=4, min_samples_split=2, n_estimators=20;, score=0.854 total time= 0.1s\n","[CV 5/5] END bootstrap=True, max_depth=2, max_features=None, min_samples_leaf=4, min_samples_split=2, n_estimators=20;, score=0.874 total time= 0.1s\n","[CV 1/5] END bootstrap=True, max_depth=2, max_features=None, min_samples_leaf=4, min_samples_split=2, n_estimators=30;, score=0.869 total time= 0.1s\n","[CV 2/5] END bootstrap=True, max_depth=2, max_features=None, min_samples_leaf=4, min_samples_split=2, n_estimators=30;, score=0.904 total time= 0.1s\n","[CV 3/5] END bootstrap=True, max_depth=2, max_features=None, min_samples_leaf=4, min_samples_split=2, n_estimators=30;, score=0.889 total time= 0.1s\n","[CV 4/5] END bootstrap=True, max_depth=2, max_features=None, min_samples_leaf=4, min_samples_split=2, n_estimators=30;, score=0.848 total time= 0.1s\n","[CV 5/5] END bootstrap=True, max_depth=2, max_features=None, min_samples_leaf=4, min_samples_split=2, n_estimators=30;, score=0.879 total time= 0.6s\n","[CV 1/5] END bootstrap=True, max_depth=2, max_features=None, min_samples_leaf=4, min_samples_split=4, n_estimators=5;, score=0.869 total time= 0.1s\n","[CV 2/5] END bootstrap=True, max_depth=2, max_features=None, min_samples_leaf=4, min_samples_split=4, n_estimators=5;, score=0.914 total time= 0.1s\n","[CV 3/5] END bootstrap=True, max_depth=2, max_features=None, min_samples_leaf=4, min_samples_split=4, n_estimators=5;, score=0.874 total time= 0.0s\n","[CV 4/5] END bootstrap=True, max_depth=2, max_features=None, min_samples_leaf=4, min_samples_split=4, n_estimators=5;, score=0.864 total time= 0.0s\n","[CV 5/5] END bootstrap=True, max_depth=2, max_features=None, min_samples_leaf=4, min_samples_split=4, n_estimators=5;, score=0.894 total time= 0.0s\n","[CV 1/5] END bootstrap=True, max_depth=2, max_features=None, min_samples_leaf=4, min_samples_split=4, n_estimators=10;, score=0.869 total time= 0.0s\n","[CV 2/5] END bootstrap=True, max_depth=2, max_features=None, min_samples_leaf=4, min_samples_split=4, n_estimators=10;, score=0.909 total time= 0.0s\n","[CV 3/5] END bootstrap=True, max_depth=2, max_features=None, min_samples_leaf=4, min_samples_split=4, n_estimators=10;, score=0.879 total time= 0.1s\n","[CV 4/5] END bootstrap=True, max_depth=2, max_features=None, min_samples_leaf=4, min_samples_split=4, n_estimators=10;, score=0.838 total time= 0.0s\n","[CV 5/5] END bootstrap=True, max_depth=2, max_features=None, min_samples_leaf=4, min_samples_split=4, n_estimators=10;, score=0.904 total time= 0.0s\n","[CV 1/5] END bootstrap=True, max_depth=2, max_features=None, min_samples_leaf=4, min_samples_split=4, n_estimators=20;, score=0.879 total time= 0.1s\n","[CV 2/5] END bootstrap=True, max_depth=2, max_features=None, min_samples_leaf=4, min_samples_split=4, n_estimators=20;, score=0.899 total time= 0.1s\n","[CV 3/5] END bootstrap=True, max_depth=2, max_features=None, min_samples_leaf=4, min_samples_split=4, n_estimators=20;, score=0.899 total time= 0.1s\n","[CV 4/5] END bootstrap=True, max_depth=2, max_features=None, min_samples_leaf=4, min_samples_split=4, n_estimators=20;, score=0.848 total time= 0.1s\n","[CV 5/5] END bootstrap=True, max_depth=2, max_features=None, min_samples_leaf=4, min_samples_split=4, n_estimators=20;, score=0.859 total time= 0.1s\n","[CV 1/5] END bootstrap=True, max_depth=2, max_features=None, min_samples_leaf=4, min_samples_split=4, n_estimators=30;, score=0.869 total time= 0.1s\n","[CV 2/5] END bootstrap=True, max_depth=2, max_features=None, min_samples_leaf=4, min_samples_split=4, n_estimators=30;, score=0.879 total time= 0.1s\n","[CV 3/5] END bootstrap=True, max_depth=2, max_features=None, min_samples_leaf=4, min_samples_split=4, n_estimators=30;, score=0.889 total time= 0.1s\n","[CV 4/5] END bootstrap=True, max_depth=2, max_features=None, min_samples_leaf=4, min_samples_split=4, n_estimators=30;, score=0.833 total time= 0.1s\n","[CV 5/5] END bootstrap=True, max_depth=2, max_features=None, min_samples_leaf=4, min_samples_split=4, n_estimators=30;, score=0.889 total time= 0.1s\n","[CV 1/5] END bootstrap=True, max_depth=2, max_features=None, min_samples_leaf=4, min_samples_split=6, n_estimators=5;, score=0.848 total time= 0.0s\n","[CV 2/5] END bootstrap=True, max_depth=2, max_features=None, min_samples_leaf=4, min_samples_split=6, n_estimators=5;, score=0.889 total time= 0.0s\n","[CV 3/5] END bootstrap=True, max_depth=2, max_features=None, min_samples_leaf=4, min_samples_split=6, n_estimators=5;, score=0.894 total time= 0.0s\n","[CV 4/5] END bootstrap=True, max_depth=2, max_features=None, min_samples_leaf=4, min_samples_split=6, n_estimators=5;, score=0.854 total time= 0.0s\n","[CV 5/5] END bootstrap=True, max_depth=2, max_features=None, min_samples_leaf=4, min_samples_split=6, n_estimators=5;, score=0.874 total time= 0.0s\n","[CV 1/5] END bootstrap=True, max_depth=2, max_features=None, min_samples_leaf=4, min_samples_split=6, n_estimators=10;, score=0.869 total time= 0.0s\n","[CV 2/5] END bootstrap=True, max_depth=2, max_features=None, min_samples_leaf=4, min_samples_split=6, n_estimators=10;, score=0.894 total time= 0.0s\n","[CV 3/5] END bootstrap=True, max_depth=2, max_features=None, min_samples_leaf=4, min_samples_split=6, n_estimators=10;, score=0.884 total time= 0.0s\n","[CV 4/5] END bootstrap=True, max_depth=2, max_features=None, min_samples_leaf=4, min_samples_split=6, n_estimators=10;, score=0.859 total time= 0.0s\n","[CV 5/5] END bootstrap=True, max_depth=2, max_features=None, min_samples_leaf=4, min_samples_split=6, n_estimators=10;, score=0.894 total time= 0.0s\n","[CV 1/5] END bootstrap=True, max_depth=2, max_features=None, min_samples_leaf=4, min_samples_split=6, n_estimators=20;, score=0.874 total time= 0.1s\n","[CV 2/5] END bootstrap=True, max_depth=2, max_features=None, min_samples_leaf=4, min_samples_split=6, n_estimators=20;, score=0.909 total time= 0.1s\n","[CV 3/5] END bootstrap=True, max_depth=2, max_features=None, min_samples_leaf=4, min_samples_split=6, n_estimators=20;, score=0.899 total time= 0.1s\n","[CV 4/5] END bootstrap=True, max_depth=2, max_features=None, min_samples_leaf=4, min_samples_split=6, n_estimators=20;, score=0.843 total time= 0.1s\n","[CV 5/5] END bootstrap=True, max_depth=2, max_features=None, min_samples_leaf=4, min_samples_split=6, n_estimators=20;, score=0.874 total time= 0.1s\n","[CV 1/5] END bootstrap=True, max_depth=2, max_features=None, min_samples_leaf=4, min_samples_split=6, n_estimators=30;, score=0.874 total time= 0.1s\n","[CV 2/5] END bootstrap=True, max_depth=2, max_features=None, min_samples_leaf=4, min_samples_split=6, n_estimators=30;, score=0.879 total time= 0.1s\n","[CV 3/5] END bootstrap=True, max_depth=2, max_features=None, min_samples_leaf=4, min_samples_split=6, n_estimators=30;, score=0.874 total time= 0.1s\n","[CV 4/5] END bootstrap=True, max_depth=2, max_features=None, min_samples_leaf=4, min_samples_split=6, n_estimators=30;, score=0.843 total time= 0.1s\n","[CV 5/5] END bootstrap=True, max_depth=2, max_features=None, min_samples_leaf=4, min_samples_split=6, n_estimators=30;, score=0.864 total time= 0.1s\n","[CV 1/5] END bootstrap=True, max_depth=2, max_features=None, min_samples_leaf=6, min_samples_split=2, n_estimators=5;, score=0.869 total time= 0.0s\n","[CV 2/5] END bootstrap=True, max_depth=2, max_features=None, min_samples_leaf=6, min_samples_split=2, n_estimators=5;, score=0.899 total time= 0.0s\n","[CV 3/5] END bootstrap=True, max_depth=2, max_features=None, min_samples_leaf=6, min_samples_split=2, n_estimators=5;, score=0.869 total time= 0.0s\n","[CV 4/5] END bootstrap=True, max_depth=2, max_features=None, min_samples_leaf=6, min_samples_split=2, n_estimators=5;, score=0.838 total time= 0.0s\n","[CV 5/5] END bootstrap=True, max_depth=2, max_features=None, min_samples_leaf=6, min_samples_split=2, n_estimators=5;, score=0.894 total time= 0.0s\n","[CV 1/5] END bootstrap=True, max_depth=2, max_features=None, min_samples_leaf=6, min_samples_split=2, n_estimators=10;, score=0.869 total time= 0.0s\n","[CV 2/5] END bootstrap=True, max_depth=2, max_features=None, min_samples_leaf=6, min_samples_split=2, n_estimators=10;, score=0.894 total time= 0.0s\n","[CV 3/5] END bootstrap=True, max_depth=2, max_features=None, min_samples_leaf=6, min_samples_split=2, n_estimators=10;, score=0.884 total time= 0.0s\n","[CV 4/5] END bootstrap=True, max_depth=2, max_features=None, min_samples_leaf=6, min_samples_split=2, n_estimators=10;, score=0.869 total time= 0.0s\n","[CV 5/5] END bootstrap=True, max_depth=2, max_features=None, min_samples_leaf=6, min_samples_split=2, n_estimators=10;, score=0.879 total time= 0.0s\n","[CV 1/5] END bootstrap=True, max_depth=2, max_features=None, min_samples_leaf=6, min_samples_split=2, n_estimators=20;, score=0.874 total time= 0.1s\n","[CV 2/5] END bootstrap=True, max_depth=2, max_features=None, min_samples_leaf=6, min_samples_split=2, n_estimators=20;, score=0.884 total time= 0.0s\n","[CV 3/5] END bootstrap=True, max_depth=2, max_features=None, min_samples_leaf=6, min_samples_split=2, n_estimators=20;, score=0.894 total time= 0.1s\n","[CV 4/5] END bootstrap=True, max_depth=2, max_features=None, min_samples_leaf=6, min_samples_split=2, n_estimators=20;, score=0.848 total time= 0.1s\n","[CV 5/5] END bootstrap=True, max_depth=2, max_features=None, min_samples_leaf=6, min_samples_split=2, n_estimators=20;, score=0.889 total time= 0.1s\n","[CV 1/5] END bootstrap=True, max_depth=2, max_features=None, min_samples_leaf=6, min_samples_split=2, n_estimators=30;, score=0.874 total time= 0.1s\n","[CV 2/5] END bootstrap=True, max_depth=2, max_features=None, min_samples_leaf=6, min_samples_split=2, n_estimators=30;, score=0.894 total time= 0.1s\n","[CV 3/5] END bootstrap=True, max_depth=2, max_features=None, min_samples_leaf=6, min_samples_split=2, n_estimators=30;, score=0.889 total time= 0.1s\n","[CV 4/5] END bootstrap=True, max_depth=2, max_features=None, min_samples_leaf=6, min_samples_split=2, n_estimators=30;, score=0.848 total time= 0.1s\n","[CV 5/5] END bootstrap=True, max_depth=2, max_features=None, min_samples_leaf=6, min_samples_split=2, n_estimators=30;, score=0.874 total time= 0.1s\n","[CV 1/5] END bootstrap=True, max_depth=2, max_features=None, min_samples_leaf=6, min_samples_split=4, n_estimators=5;, score=0.884 total time= 0.0s\n","[CV 2/5] END bootstrap=True, max_depth=2, max_features=None, min_samples_leaf=6, min_samples_split=4, n_estimators=5;, score=0.899 total time= 0.0s\n","[CV 3/5] END bootstrap=True, max_depth=2, max_features=None, min_samples_leaf=6, min_samples_split=4, n_estimators=5;, score=0.899 total time= 0.0s\n","[CV 4/5] END bootstrap=True, max_depth=2, max_features=None, min_samples_leaf=6, min_samples_split=4, n_estimators=5;, score=0.823 total time= 0.0s\n","[CV 5/5] END bootstrap=True, max_depth=2, max_features=None, min_samples_leaf=6, min_samples_split=4, n_estimators=5;, score=0.884 total time= 0.0s\n","[CV 1/5] END bootstrap=True, max_depth=2, max_features=None, min_samples_leaf=6, min_samples_split=4, n_estimators=10;, score=0.859 total time= 0.0s\n","[CV 2/5] END bootstrap=True, max_depth=2, max_features=None, min_samples_leaf=6, min_samples_split=4, n_estimators=10;, score=0.889 total time= 0.0s\n","[CV 3/5] END bootstrap=True, max_depth=2, max_features=None, min_samples_leaf=6, min_samples_split=4, n_estimators=10;, score=0.869 total time= 0.0s\n","[CV 4/5] END bootstrap=True, max_depth=2, max_features=None, min_samples_leaf=6, min_samples_split=4, n_estimators=10;, score=0.848 total time= 0.0s\n","[CV 5/5] END bootstrap=True, max_depth=2, max_features=None, min_samples_leaf=6, min_samples_split=4, n_estimators=10;, score=0.874 total time= 0.0s\n","[CV 1/5] END bootstrap=True, max_depth=2, max_features=None, min_samples_leaf=6, min_samples_split=4, n_estimators=20;, score=0.869 total time= 0.1s\n","[CV 2/5] END bootstrap=True, max_depth=2, max_features=None, min_samples_leaf=6, min_samples_split=4, n_estimators=20;, score=0.899 total time= 0.1s\n","[CV 3/5] END bootstrap=True, max_depth=2, max_features=None, min_samples_leaf=6, min_samples_split=4, n_estimators=20;, score=0.879 total time= 0.0s\n","[CV 4/5] END bootstrap=True, max_depth=2, max_features=None, min_samples_leaf=6, min_samples_split=4, n_estimators=20;, score=0.838 total time= 0.1s\n","[CV 5/5] END bootstrap=True, max_depth=2, max_features=None, min_samples_leaf=6, min_samples_split=4, n_estimators=20;, score=0.879 total time= 0.1s\n","[CV 1/5] END bootstrap=True, max_depth=2, max_features=None, min_samples_leaf=6, min_samples_split=4, n_estimators=30;, score=0.874 total time= 0.1s\n","[CV 2/5] END bootstrap=True, max_depth=2, max_features=None, min_samples_leaf=6, min_samples_split=4, n_estimators=30;, score=0.879 total time= 0.1s\n","[CV 3/5] END bootstrap=True, max_depth=2, max_features=None, min_samples_leaf=6, min_samples_split=4, n_estimators=30;, score=0.884 total time= 0.1s\n","[CV 4/5] END bootstrap=True, max_depth=2, max_features=None, min_samples_leaf=6, min_samples_split=4, n_estimators=30;, score=0.848 total time= 0.1s\n","[CV 5/5] END bootstrap=True, max_depth=2, max_features=None, min_samples_leaf=6, min_samples_split=4, n_estimators=30;, score=0.879 total time= 0.1s\n","[CV 1/5] END bootstrap=True, max_depth=2, max_features=None, min_samples_leaf=6, min_samples_split=6, n_estimators=5;, score=0.869 total time= 0.0s\n","[CV 2/5] END bootstrap=True, max_depth=2, max_features=None, min_samples_leaf=6, min_samples_split=6, n_estimators=5;, score=0.899 total time= 0.0s\n","[CV 3/5] END bootstrap=True, max_depth=2, max_features=None, min_samples_leaf=6, min_samples_split=6, n_estimators=5;, score=0.874 total time= 0.0s\n","[CV 4/5] END bootstrap=True, max_depth=2, max_features=None, min_samples_leaf=6, min_samples_split=6, n_estimators=5;, score=0.869 total time= 0.0s\n","[CV 5/5] END bootstrap=True, max_depth=2, max_features=None, min_samples_leaf=6, min_samples_split=6, n_estimators=5;, score=0.899 total time= 0.0s\n","[CV 1/5] END bootstrap=True, max_depth=2, max_features=None, min_samples_leaf=6, min_samples_split=6, n_estimators=10;, score=0.864 total time= 0.0s\n","[CV 2/5] END bootstrap=True, max_depth=2, max_features=None, min_samples_leaf=6, min_samples_split=6, n_estimators=10;, score=0.884 total time= 0.0s\n","[CV 3/5] END bootstrap=True, max_depth=2, max_features=None, min_samples_leaf=6, min_samples_split=6, n_estimators=10;, score=0.904 total time= 0.0s\n","[CV 4/5] END bootstrap=True, max_depth=2, max_features=None, min_samples_leaf=6, min_samples_split=6, n_estimators=10;, score=0.859 total time= 0.0s\n","[CV 5/5] END bootstrap=True, max_depth=2, max_features=None, min_samples_leaf=6, min_samples_split=6, n_estimators=10;, score=0.884 total time= 0.0s\n","[CV 1/5] END bootstrap=True, max_depth=2, max_features=None, min_samples_leaf=6, min_samples_split=6, n_estimators=20;, score=0.869 total time= 0.1s\n","[CV 2/5] END bootstrap=True, max_depth=2, max_features=None, min_samples_leaf=6, min_samples_split=6, n_estimators=20;, score=0.914 total time= 0.0s\n","[CV 3/5] END bootstrap=True, max_depth=2, max_features=None, min_samples_leaf=6, min_samples_split=6, n_estimators=20;, score=0.889 total time= 0.0s\n","[CV 4/5] END bootstrap=True, max_depth=2, max_features=None, min_samples_leaf=6, min_samples_split=6, n_estimators=20;, score=0.859 total time= 0.1s\n","[CV 5/5] END bootstrap=True, max_depth=2, max_features=None, min_samples_leaf=6, min_samples_split=6, n_estimators=20;, score=0.884 total time= 0.1s\n","[CV 1/5] END bootstrap=True, max_depth=2, max_features=None, min_samples_leaf=6, min_samples_split=6, n_estimators=30;, score=0.864 total time= 0.1s\n","[CV 2/5] END bootstrap=True, max_depth=2, max_features=None, min_samples_leaf=6, min_samples_split=6, n_estimators=30;, score=0.889 total time= 0.1s\n","[CV 3/5] END bootstrap=True, max_depth=2, max_features=None, min_samples_leaf=6, min_samples_split=6, n_estimators=30;, score=0.874 total time= 0.1s\n","[CV 4/5] END bootstrap=True, max_depth=2, max_features=None, min_samples_leaf=6, min_samples_split=6, n_estimators=30;, score=0.843 total time= 0.1s\n","[CV 5/5] END bootstrap=True, max_depth=2, max_features=None, min_samples_leaf=6, min_samples_split=6, n_estimators=30;, score=0.889 total time= 0.1s\n","[CV 1/5] END bootstrap=True, max_depth=6, max_features=sqrt, min_samples_leaf=2, min_samples_split=2, n_estimators=5;, score=0.859 total time= 0.0s\n","[CV 2/5] END bootstrap=True, max_depth=6, max_features=sqrt, min_samples_leaf=2, min_samples_split=2, n_estimators=5;, score=0.874 total time= 0.0s\n","[CV 3/5] END bootstrap=True, max_depth=6, max_features=sqrt, min_samples_leaf=2, min_samples_split=2, n_estimators=5;, score=0.864 total time= 0.0s\n","[CV 4/5] END bootstrap=True, max_depth=6, max_features=sqrt, min_samples_leaf=2, min_samples_split=2, n_estimators=5;, score=0.854 total time= 0.0s\n","[CV 5/5] END bootstrap=True, max_depth=6, max_features=sqrt, min_samples_leaf=2, min_samples_split=2, n_estimators=5;, score=0.909 total time= 0.0s\n","[CV 1/5] END bootstrap=True, max_depth=6, max_features=sqrt, min_samples_leaf=2, min_samples_split=2, n_estimators=10;, score=0.894 total time= 0.0s\n","[CV 2/5] END bootstrap=True, max_depth=6, max_features=sqrt, min_samples_leaf=2, min_samples_split=2, n_estimators=10;, score=0.884 total time= 0.0s\n","[CV 3/5] END bootstrap=True, max_depth=6, max_features=sqrt, min_samples_leaf=2, min_samples_split=2, n_estimators=10;, score=0.904 total time= 0.0s\n","[CV 4/5] END bootstrap=True, max_depth=6, max_features=sqrt, min_samples_leaf=2, min_samples_split=2, n_estimators=10;, score=0.854 total time= 0.0s\n","[CV 5/5] END bootstrap=True, max_depth=6, max_features=sqrt, min_samples_leaf=2, min_samples_split=2, n_estimators=10;, score=0.899 total time= 0.0s\n","[CV 1/5] END bootstrap=True, max_depth=6, max_features=sqrt, min_samples_leaf=2, min_samples_split=2, n_estimators=20;, score=0.874 total time= 0.1s\n","[CV 2/5] END bootstrap=True, max_depth=6, max_features=sqrt, min_samples_leaf=2, min_samples_split=2, n_estimators=20;, score=0.884 total time= 0.0s\n","[CV 3/5] END bootstrap=True, max_depth=6, max_features=sqrt, min_samples_leaf=2, min_samples_split=2, n_estimators=20;, score=0.859 total time= 0.0s\n","[CV 4/5] END bootstrap=True, max_depth=6, max_features=sqrt, min_samples_leaf=2, min_samples_split=2, n_estimators=20;, score=0.864 total time= 0.0s\n","[CV 5/5] END bootstrap=True, max_depth=6, max_features=sqrt, min_samples_leaf=2, min_samples_split=2, n_estimators=20;, score=0.884 total time= 0.0s\n","[CV 1/5] END bootstrap=True, max_depth=6, max_features=sqrt, min_samples_leaf=2, min_samples_split=2, n_estimators=30;, score=0.874 total time= 0.1s\n","[CV 2/5] END bootstrap=True, max_depth=6, max_features=sqrt, min_samples_leaf=2, min_samples_split=2, n_estimators=30;, score=0.889 total time= 0.1s\n","[CV 3/5] END bootstrap=True, max_depth=6, max_features=sqrt, min_samples_leaf=2, min_samples_split=2, n_estimators=30;, score=0.879 total time= 0.1s\n","[CV 4/5] END bootstrap=True, max_depth=6, max_features=sqrt, min_samples_leaf=2, min_samples_split=2, n_estimators=30;, score=0.854 total time= 0.1s\n","[CV 5/5] END bootstrap=True, max_depth=6, max_features=sqrt, min_samples_leaf=2, min_samples_split=2, n_estimators=30;, score=0.879 total time= 0.1s\n","[CV 1/5] END bootstrap=True, max_depth=6, max_features=sqrt, min_samples_leaf=2, min_samples_split=4, n_estimators=5;, score=0.889 total time= 0.0s\n","[CV 2/5] END bootstrap=True, max_depth=6, max_features=sqrt, min_samples_leaf=2, min_samples_split=4, n_estimators=5;, score=0.889 total time= 0.0s\n","[CV 3/5] END bootstrap=True, max_depth=6, max_features=sqrt, min_samples_leaf=2, min_samples_split=4, n_estimators=5;, score=0.909 total time= 0.0s\n","[CV 4/5] END bootstrap=True, max_depth=6, max_features=sqrt, min_samples_leaf=2, min_samples_split=4, n_estimators=5;, score=0.879 total time= 0.0s\n","[CV 5/5] END bootstrap=True, max_depth=6, max_features=sqrt, min_samples_leaf=2, min_samples_split=4, n_estimators=5;, score=0.884 total time= 0.0s\n","[CV 1/5] END bootstrap=True, max_depth=6, max_features=sqrt, min_samples_leaf=2, min_samples_split=4, n_estimators=10;, score=0.854 total time= 0.0s\n","[CV 2/5] END bootstrap=True, max_depth=6, max_features=sqrt, min_samples_leaf=2, min_samples_split=4, n_estimators=10;, score=0.874 total time= 0.0s\n","[CV 3/5] END bootstrap=True, max_depth=6, max_features=sqrt, min_samples_leaf=2, min_samples_split=4, n_estimators=10;, score=0.894 total time= 0.0s\n","[CV 4/5] END bootstrap=True, max_depth=6, max_features=sqrt, min_samples_leaf=2, min_samples_split=4, n_estimators=10;, score=0.854 total time= 0.0s\n","[CV 5/5] END bootstrap=True, max_depth=6, max_features=sqrt, min_samples_leaf=2, min_samples_split=4, n_estimators=10;, score=0.889 total time= 0.0s\n","[CV 1/5] END bootstrap=True, max_depth=6, max_features=sqrt, min_samples_leaf=2, min_samples_split=4, n_estimators=20;, score=0.869 total time= 0.0s\n","[CV 2/5] END bootstrap=True, max_depth=6, max_features=sqrt, min_samples_leaf=2, min_samples_split=4, n_estimators=20;, score=0.884 total time= 0.0s\n","[CV 3/5] END bootstrap=True, max_depth=6, max_features=sqrt, min_samples_leaf=2, min_samples_split=4, n_estimators=20;, score=0.874 total time= 0.1s\n","[CV 4/5] END bootstrap=True, max_depth=6, max_features=sqrt, min_samples_leaf=2, min_samples_split=4, n_estimators=20;, score=0.848 total time= 0.0s\n","[CV 5/5] END bootstrap=True, max_depth=6, max_features=sqrt, min_samples_leaf=2, min_samples_split=4, n_estimators=20;, score=0.864 total time= 0.0s\n","[CV 1/5] END bootstrap=True, max_depth=6, max_features=sqrt, min_samples_leaf=2, min_samples_split=4, n_estimators=30;, score=0.838 total time= 0.1s\n","[CV 2/5] END bootstrap=True, max_depth=6, max_features=sqrt, min_samples_leaf=2, min_samples_split=4, n_estimators=30;, score=0.889 total time= 0.1s\n","[CV 3/5] END bootstrap=True, max_depth=6, max_features=sqrt, min_samples_leaf=2, min_samples_split=4, n_estimators=30;, score=0.889 total time= 0.1s\n","[CV 4/5] END bootstrap=True, max_depth=6, max_features=sqrt, min_samples_leaf=2, min_samples_split=4, n_estimators=30;, score=0.874 total time= 0.1s\n","[CV 5/5] END bootstrap=True, max_depth=6, max_features=sqrt, min_samples_leaf=2, min_samples_split=4, n_estimators=30;, score=0.899 total time= 0.1s\n","[CV 1/5] END bootstrap=True, max_depth=6, max_features=sqrt, min_samples_leaf=2, min_samples_split=6, n_estimators=5;, score=0.854 total time= 0.0s\n","[CV 2/5] END bootstrap=True, max_depth=6, max_features=sqrt, min_samples_leaf=2, min_samples_split=6, n_estimators=5;, score=0.869 total time= 0.0s\n","[CV 3/5] END bootstrap=True, max_depth=6, max_features=sqrt, min_samples_leaf=2, min_samples_split=6, n_estimators=5;, score=0.869 total time= 0.0s\n","[CV 4/5] END bootstrap=True, max_depth=6, max_features=sqrt, min_samples_leaf=2, min_samples_split=6, n_estimators=5;, score=0.869 total time= 0.0s\n","[CV 5/5] END bootstrap=True, max_depth=6, max_features=sqrt, min_samples_leaf=2, min_samples_split=6, n_estimators=5;, score=0.889 total time= 0.0s\n","[CV 1/5] END bootstrap=True, max_depth=6, max_features=sqrt, min_samples_leaf=2, min_samples_split=6, n_estimators=10;, score=0.874 total time= 0.0s\n","[CV 2/5] END bootstrap=True, max_depth=6, max_features=sqrt, min_samples_leaf=2, min_samples_split=6, n_estimators=10;, score=0.899 total time= 0.0s\n","[CV 3/5] END bootstrap=True, max_depth=6, max_features=sqrt, min_samples_leaf=2, min_samples_split=6, n_estimators=10;, score=0.884 total time= 0.0s\n","[CV 4/5] END bootstrap=True, max_depth=6, max_features=sqrt, min_samples_leaf=2, min_samples_split=6, n_estimators=10;, score=0.869 total time= 0.0s\n","[CV 5/5] END bootstrap=True, max_depth=6, max_features=sqrt, min_samples_leaf=2, min_samples_split=6, n_estimators=10;, score=0.869 total time= 0.0s\n","[CV 1/5] END bootstrap=True, max_depth=6, max_features=sqrt, min_samples_leaf=2, min_samples_split=6, n_estimators=20;, score=0.884 total time= 0.1s\n","[CV 2/5] END bootstrap=True, max_depth=6, max_features=sqrt, min_samples_leaf=2, min_samples_split=6, n_estimators=20;, score=0.874 total time= 0.1s\n","[CV 3/5] END bootstrap=True, max_depth=6, max_features=sqrt, min_samples_leaf=2, min_samples_split=6, n_estimators=20;, score=0.874 total time= 0.0s\n","[CV 4/5] END bootstrap=True, max_depth=6, max_features=sqrt, min_samples_leaf=2, min_samples_split=6, n_estimators=20;, score=0.859 total time= 0.1s\n","[CV 5/5] END bootstrap=True, max_depth=6, max_features=sqrt, min_samples_leaf=2, min_samples_split=6, n_estimators=20;, score=0.889 total time= 0.1s\n","[CV 1/5] END bootstrap=True, max_depth=6, max_features=sqrt, min_samples_leaf=2, min_samples_split=6, n_estimators=30;, score=0.894 total time= 0.1s\n","[CV 2/5] END bootstrap=True, max_depth=6, max_features=sqrt, min_samples_leaf=2, min_samples_split=6, n_estimators=30;, score=0.899 total time= 0.1s\n","[CV 3/5] END bootstrap=True, max_depth=6, max_features=sqrt, min_samples_leaf=2, min_samples_split=6, n_estimators=30;, score=0.874 total time= 0.1s\n","[CV 4/5] END bootstrap=True, max_depth=6, max_features=sqrt, min_samples_leaf=2, min_samples_split=6, n_estimators=30;, score=0.864 total time= 0.1s\n","[CV 5/5] END bootstrap=True, max_depth=6, max_features=sqrt, min_samples_leaf=2, min_samples_split=6, n_estimators=30;, score=0.884 total time= 0.1s\n","[CV 1/5] END bootstrap=True, max_depth=6, max_features=sqrt, min_samples_leaf=4, min_samples_split=2, n_estimators=5;, score=0.874 total time= 0.0s\n","[CV 2/5] END bootstrap=True, max_depth=6, max_features=sqrt, min_samples_leaf=4, min_samples_split=2, n_estimators=5;, score=0.889 total time= 0.0s\n","[CV 3/5] END bootstrap=True, max_depth=6, max_features=sqrt, min_samples_leaf=4, min_samples_split=2, n_estimators=5;, score=0.894 total time= 0.0s\n","[CV 4/5] END bootstrap=True, max_depth=6, max_features=sqrt, min_samples_leaf=4, min_samples_split=2, n_estimators=5;, score=0.879 total time= 0.0s\n","[CV 5/5] END bootstrap=True, max_depth=6, max_features=sqrt, min_samples_leaf=4, min_samples_split=2, n_estimators=5;, score=0.894 total time= 0.0s\n","[CV 1/5] END bootstrap=True, max_depth=6, max_features=sqrt, min_samples_leaf=4, min_samples_split=2, n_estimators=10;, score=0.899 total time= 0.0s\n","[CV 2/5] END bootstrap=True, max_depth=6, max_features=sqrt, min_samples_leaf=4, min_samples_split=2, n_estimators=10;, score=0.879 total time= 0.0s\n","[CV 3/5] END bootstrap=True, max_depth=6, max_features=sqrt, min_samples_leaf=4, min_samples_split=2, n_estimators=10;, score=0.899 total time= 0.0s\n","[CV 4/5] END bootstrap=True, max_depth=6, max_features=sqrt, min_samples_leaf=4, min_samples_split=2, n_estimators=10;, score=0.869 total time= 0.0s\n","[CV 5/5] END bootstrap=True, max_depth=6, max_features=sqrt, min_samples_leaf=4, min_samples_split=2, n_estimators=10;, score=0.889 total time= 0.0s\n","[CV 1/5] END bootstrap=True, max_depth=6, max_features=sqrt, min_samples_leaf=4, min_samples_split=2, n_estimators=20;, score=0.869 total time= 0.1s\n","[CV 2/5] END bootstrap=True, max_depth=6, max_features=sqrt, min_samples_leaf=4, min_samples_split=2, n_estimators=20;, score=0.894 total time= 0.1s\n","[CV 3/5] END bootstrap=True, max_depth=6, max_features=sqrt, min_samples_leaf=4, min_samples_split=2, n_estimators=20;, score=0.884 total time= 0.1s\n","[CV 4/5] END bootstrap=True, max_depth=6, max_features=sqrt, min_samples_leaf=4, min_samples_split=2, n_estimators=20;, score=0.874 total time= 0.1s\n","[CV 5/5] END bootstrap=True, max_depth=6, max_features=sqrt, min_samples_leaf=4, min_samples_split=2, n_estimators=20;, score=0.879 total time= 0.1s\n","[CV 1/5] END bootstrap=True, max_depth=6, max_features=sqrt, min_samples_leaf=4, min_samples_split=2, n_estimators=30;, score=0.874 total time= 0.1s\n","[CV 2/5] END bootstrap=True, max_depth=6, max_features=sqrt, min_samples_leaf=4, min_samples_split=2, n_estimators=30;, score=0.884 total time= 0.1s\n","[CV 3/5] END bootstrap=True, max_depth=6, max_features=sqrt, min_samples_leaf=4, min_samples_split=2, n_estimators=30;, score=0.884 total time= 0.1s\n","[CV 4/5] END bootstrap=True, max_depth=6, max_features=sqrt, min_samples_leaf=4, min_samples_split=2, n_estimators=30;, score=0.843 total time= 0.1s\n","[CV 5/5] END bootstrap=True, max_depth=6, max_features=sqrt, min_samples_leaf=4, min_samples_split=2, n_estimators=30;, score=0.909 total time= 0.1s\n","[CV 1/5] END bootstrap=True, max_depth=6, max_features=sqrt, min_samples_leaf=4, min_samples_split=4, n_estimators=5;, score=0.854 total time= 0.0s\n","[CV 2/5] END bootstrap=True, max_depth=6, max_features=sqrt, min_samples_leaf=4, min_samples_split=4, n_estimators=5;, score=0.904 total time= 0.0s\n","[CV 3/5] END bootstrap=True, max_depth=6, max_features=sqrt, min_samples_leaf=4, min_samples_split=4, n_estimators=5;, score=0.894 total time= 0.0s\n","[CV 4/5] END bootstrap=True, max_depth=6, max_features=sqrt, min_samples_leaf=4, min_samples_split=4, n_estimators=5;, score=0.843 total time= 0.0s\n","[CV 5/5] END bootstrap=True, max_depth=6, max_features=sqrt, min_samples_leaf=4, min_samples_split=4, n_estimators=5;, score=0.904 total time= 0.0s\n","[CV 1/5] END bootstrap=True, max_depth=6, max_features=sqrt, min_samples_leaf=4, min_samples_split=4, n_estimators=10;, score=0.859 total time= 0.0s\n","[CV 2/5] END bootstrap=True, max_depth=6, max_features=sqrt, min_samples_leaf=4, min_samples_split=4, n_estimators=10;, score=0.864 total time= 0.0s\n","[CV 3/5] END bootstrap=True, max_depth=6, max_features=sqrt, min_samples_leaf=4, min_samples_split=4, n_estimators=10;, score=0.874 total time= 0.0s\n","[CV 4/5] END bootstrap=True, max_depth=6, max_features=sqrt, min_samples_leaf=4, min_samples_split=4, n_estimators=10;, score=0.864 total time= 0.0s\n","[CV 5/5] END bootstrap=True, max_depth=6, max_features=sqrt, min_samples_leaf=4, min_samples_split=4, n_estimators=10;, score=0.899 total time= 0.0s\n","[CV 1/5] END bootstrap=True, max_depth=6, max_features=sqrt, min_samples_leaf=4, min_samples_split=4, n_estimators=20;, score=0.859 total time= 0.1s\n","[CV 2/5] END bootstrap=True, max_depth=6, max_features=sqrt, min_samples_leaf=4, min_samples_split=4, n_estimators=20;, score=0.884 total time= 0.1s\n","[CV 3/5] END bootstrap=True, max_depth=6, max_features=sqrt, min_samples_leaf=4, min_samples_split=4, n_estimators=20;, score=0.884 total time= 0.1s\n","[CV 4/5] END bootstrap=True, max_depth=6, max_features=sqrt, min_samples_leaf=4, min_samples_split=4, n_estimators=20;, score=0.879 total time= 0.1s\n","[CV 5/5] END bootstrap=True, max_depth=6, max_features=sqrt, min_samples_leaf=4, min_samples_split=4, n_estimators=20;, score=0.884 total time= 0.1s\n","[CV 1/5] END bootstrap=True, max_depth=6, max_features=sqrt, min_samples_leaf=4, min_samples_split=4, n_estimators=30;, score=0.864 total time= 0.1s\n","[CV 2/5] END bootstrap=True, max_depth=6, max_features=sqrt, min_samples_leaf=4, min_samples_split=4, n_estimators=30;, score=0.879 total time= 0.1s\n","[CV 3/5] END bootstrap=True, max_depth=6, max_features=sqrt, min_samples_leaf=4, min_samples_split=4, n_estimators=30;, score=0.889 total time= 0.3s\n","[CV 4/5] END bootstrap=True, max_depth=6, max_features=sqrt, min_samples_leaf=4, min_samples_split=4, n_estimators=30;, score=0.869 total time= 0.3s\n","[CV 5/5] END bootstrap=True, max_depth=6, max_features=sqrt, min_samples_leaf=4, min_samples_split=4, n_estimators=30;, score=0.904 total time= 0.3s\n","[CV 1/5] END bootstrap=True, max_depth=6, max_features=sqrt, min_samples_leaf=4, min_samples_split=6, n_estimators=5;, score=0.874 total time= 0.1s\n","[CV 2/5] END bootstrap=True, max_depth=6, max_features=sqrt, min_samples_leaf=4, min_samples_split=6, n_estimators=5;, score=0.879 total time= 0.1s\n","[CV 3/5] END bootstrap=True, max_depth=6, max_features=sqrt, min_samples_leaf=4, min_samples_split=6, n_estimators=5;, score=0.884 total time= 0.1s\n","[CV 4/5] END bootstrap=True, max_depth=6, max_features=sqrt, min_samples_leaf=4, min_samples_split=6, n_estimators=5;, score=0.848 total time= 0.0s\n","[CV 5/5] END bootstrap=True, max_depth=6, max_features=sqrt, min_samples_leaf=4, min_samples_split=6, n_estimators=5;, score=0.874 total time= 0.0s\n","[CV 1/5] END bootstrap=True, max_depth=6, max_features=sqrt, min_samples_leaf=4, min_samples_split=6, n_estimators=10;, score=0.889 total time= 0.1s\n","[CV 2/5] END bootstrap=True, max_depth=6, max_features=sqrt, min_samples_leaf=4, min_samples_split=6, n_estimators=10;, score=0.909 total time= 0.1s\n","[CV 3/5] END bootstrap=True, max_depth=6, max_features=sqrt, min_samples_leaf=4, min_samples_split=6, n_estimators=10;, score=0.874 total time= 0.1s\n","[CV 4/5] END bootstrap=True, max_depth=6, max_features=sqrt, min_samples_leaf=4, min_samples_split=6, n_estimators=10;, score=0.848 total time= 0.1s\n","[CV 5/5] END bootstrap=True, max_depth=6, max_features=sqrt, min_samples_leaf=4, min_samples_split=6, n_estimators=10;, score=0.869 total time= 0.1s\n","[CV 1/5] END bootstrap=True, max_depth=6, max_features=sqrt, min_samples_leaf=4, min_samples_split=6, n_estimators=20;, score=0.859 total time= 0.1s\n","[CV 2/5] END bootstrap=True, max_depth=6, max_features=sqrt, min_samples_leaf=4, min_samples_split=6, n_estimators=20;, score=0.889 total time= 0.1s\n","[CV 3/5] END bootstrap=True, max_depth=6, max_features=sqrt, min_samples_leaf=4, min_samples_split=6, n_estimators=20;, score=0.884 total time= 0.2s\n","[CV 4/5] END bootstrap=True, max_depth=6, max_features=sqrt, min_samples_leaf=4, min_samples_split=6, n_estimators=20;, score=0.833 total time= 0.1s\n","[CV 5/5] END bootstrap=True, max_depth=6, max_features=sqrt, min_samples_leaf=4, min_samples_split=6, n_estimators=20;, score=0.874 total time= 0.3s\n","[CV 1/5] END bootstrap=True, max_depth=6, max_features=sqrt, min_samples_leaf=4, min_samples_split=6, n_estimators=30;, score=0.869 total time= 0.3s\n","[CV 2/5] END bootstrap=True, max_depth=6, max_features=sqrt, min_samples_leaf=4, min_samples_split=6, n_estimators=30;, score=0.879 total time= 0.3s\n","[CV 3/5] END bootstrap=True, max_depth=6, max_features=sqrt, min_samples_leaf=4, min_samples_split=6, n_estimators=30;, score=0.894 total time= 0.2s\n","[CV 4/5] END bootstrap=True, max_depth=6, max_features=sqrt, min_samples_leaf=4, min_samples_split=6, n_estimators=30;, score=0.864 total time= 0.2s\n","[CV 5/5] END bootstrap=True, max_depth=6, max_features=sqrt, min_samples_leaf=4, min_samples_split=6, n_estimators=30;, score=0.879 total time= 0.1s\n","[CV 1/5] END bootstrap=True, max_depth=6, max_features=sqrt, min_samples_leaf=6, min_samples_split=2, n_estimators=5;, score=0.864 total time= 0.0s\n","[CV 2/5] END bootstrap=True, max_depth=6, max_features=sqrt, min_samples_leaf=6, min_samples_split=2, n_estimators=5;, score=0.884 total time= 0.0s\n","[CV 3/5] END bootstrap=True, max_depth=6, max_features=sqrt, min_samples_leaf=6, min_samples_split=2, n_estimators=5;, score=0.884 total time= 0.0s\n","[CV 4/5] END bootstrap=True, max_depth=6, max_features=sqrt, min_samples_leaf=6, min_samples_split=2, n_estimators=5;, score=0.833 total time= 0.0s\n","[CV 5/5] END bootstrap=True, max_depth=6, max_features=sqrt, min_samples_leaf=6, min_samples_split=2, n_estimators=5;, score=0.869 total time= 0.0s\n","[CV 1/5] END bootstrap=True, max_depth=6, max_features=sqrt, min_samples_leaf=6, min_samples_split=2, n_estimators=10;, score=0.859 total time= 0.1s\n","[CV 2/5] END bootstrap=True, max_depth=6, max_features=sqrt, min_samples_leaf=6, min_samples_split=2, n_estimators=10;, score=0.879 total time= 0.1s\n","[CV 3/5] END bootstrap=True, max_depth=6, max_features=sqrt, min_samples_leaf=6, min_samples_split=2, n_estimators=10;, score=0.889 total time= 0.1s\n","[CV 4/5] END bootstrap=True, max_depth=6, max_features=sqrt, min_samples_leaf=6, min_samples_split=2, n_estimators=10;, score=0.833 total time= 0.1s\n","[CV 5/5] END bootstrap=True, max_depth=6, max_features=sqrt, min_samples_leaf=6, min_samples_split=2, n_estimators=10;, score=0.884 total time= 0.0s\n","[CV 1/5] END bootstrap=True, max_depth=6, max_features=sqrt, min_samples_leaf=6, min_samples_split=2, n_estimators=20;, score=0.869 total time= 0.1s\n","[CV 2/5] END bootstrap=True, max_depth=6, max_features=sqrt, min_samples_leaf=6, min_samples_split=2, n_estimators=20;, score=0.899 total time= 0.2s\n","[CV 3/5] END bootstrap=True, max_depth=6, max_features=sqrt, min_samples_leaf=6, min_samples_split=2, n_estimators=20;, score=0.874 total time= 0.2s\n","[CV 4/5] END bootstrap=True, max_depth=6, max_features=sqrt, min_samples_leaf=6, min_samples_split=2, n_estimators=20;, score=0.864 total time= 0.2s\n","[CV 5/5] END bootstrap=True, max_depth=6, max_features=sqrt, min_samples_leaf=6, min_samples_split=2, n_estimators=20;, score=0.889 total time= 0.1s\n","[CV 1/5] END bootstrap=True, max_depth=6, max_features=sqrt, min_samples_leaf=6, min_samples_split=2, n_estimators=30;, score=0.859 total time= 0.1s\n","[CV 2/5] END bootstrap=True, max_depth=6, max_features=sqrt, min_samples_leaf=6, min_samples_split=2, n_estimators=30;, score=0.874 total time= 0.1s\n","[CV 3/5] END bootstrap=True, max_depth=6, max_features=sqrt, min_samples_leaf=6, min_samples_split=2, n_estimators=30;, score=0.869 total time= 0.4s\n","[CV 4/5] END bootstrap=True, max_depth=6, max_features=sqrt, min_samples_leaf=6, min_samples_split=2, n_estimators=30;, score=0.854 total time= 0.2s\n","[CV 5/5] END bootstrap=True, max_depth=6, max_features=sqrt, min_samples_leaf=6, min_samples_split=2, n_estimators=30;, score=0.894 total time= 0.2s\n","[CV 1/5] END bootstrap=True, max_depth=6, max_features=sqrt, min_samples_leaf=6, min_samples_split=4, n_estimators=5;, score=0.869 total time= 0.0s\n","[CV 2/5] END bootstrap=True, max_depth=6, max_features=sqrt, min_samples_leaf=6, min_samples_split=4, n_estimators=5;, score=0.884 total time= 0.1s\n","[CV 3/5] END bootstrap=True, max_depth=6, max_features=sqrt, min_samples_leaf=6, min_samples_split=4, n_estimators=5;, score=0.899 total time= 0.1s\n","[CV 4/5] END bootstrap=True, max_depth=6, max_features=sqrt, min_samples_leaf=6, min_samples_split=4, n_estimators=5;, score=0.854 total time= 0.0s\n","[CV 5/5] END bootstrap=True, max_depth=6, max_features=sqrt, min_samples_leaf=6, min_samples_split=4, n_estimators=5;, score=0.889 total time= 0.0s\n","[CV 1/5] END bootstrap=True, max_depth=6, max_features=sqrt, min_samples_leaf=6, min_samples_split=4, n_estimators=10;, score=0.859 total time= 0.1s\n","[CV 2/5] END bootstrap=True, max_depth=6, max_features=sqrt, min_samples_leaf=6, min_samples_split=4, n_estimators=10;, score=0.904 total time= 0.1s\n","[CV 3/5] END bootstrap=True, max_depth=6, max_features=sqrt, min_samples_leaf=6, min_samples_split=4, n_estimators=10;, score=0.884 total time= 0.1s\n","[CV 4/5] END bootstrap=True, max_depth=6, max_features=sqrt, min_samples_leaf=6, min_samples_split=4, n_estimators=10;, score=0.848 total time= 0.1s\n","[CV 5/5] END bootstrap=True, max_depth=6, max_features=sqrt, min_samples_leaf=6, min_samples_split=4, n_estimators=10;, score=0.874 total time= 0.0s\n","[CV 1/5] END bootstrap=True, max_depth=6, max_features=sqrt, min_samples_leaf=6, min_samples_split=4, n_estimators=20;, score=0.874 total time= 0.1s\n","[CV 2/5] END bootstrap=True, max_depth=6, max_features=sqrt, min_samples_leaf=6, min_samples_split=4, n_estimators=20;, score=0.874 total time= 0.2s\n","[CV 3/5] END bootstrap=True, max_depth=6, max_features=sqrt, min_samples_leaf=6, min_samples_split=4, n_estimators=20;, score=0.884 total time= 0.1s\n","[CV 4/5] END bootstrap=True, max_depth=6, max_features=sqrt, min_samples_leaf=6, min_samples_split=4, n_estimators=20;, score=0.854 total time= 0.1s\n","[CV 5/5] END bootstrap=True, max_depth=6, max_features=sqrt, min_samples_leaf=6, min_samples_split=4, n_estimators=20;, score=0.909 total time= 0.2s\n","[CV 1/5] END bootstrap=True, max_depth=6, max_features=sqrt, min_samples_leaf=6, min_samples_split=4, n_estimators=30;, score=0.879 total time= 0.1s\n","[CV 2/5] END bootstrap=True, max_depth=6, max_features=sqrt, min_samples_leaf=6, min_samples_split=4, n_estimators=30;, score=0.889 total time= 0.2s\n","[CV 3/5] END bootstrap=True, max_depth=6, max_features=sqrt, min_samples_leaf=6, min_samples_split=4, n_estimators=30;, score=0.884 total time= 0.2s\n","[CV 4/5] END bootstrap=True, max_depth=6, max_features=sqrt, min_samples_leaf=6, min_samples_split=4, n_estimators=30;, score=0.884 total time= 0.1s\n","[CV 5/5] END bootstrap=True, max_depth=6, max_features=sqrt, min_samples_leaf=6, min_samples_split=4, n_estimators=30;, score=0.874 total time= 0.1s\n","[CV 1/5] END bootstrap=True, max_depth=6, max_features=sqrt, min_samples_leaf=6, min_samples_split=6, n_estimators=5;, score=0.889 total time= 0.0s\n","[CV 2/5] END bootstrap=True, max_depth=6, max_features=sqrt, min_samples_leaf=6, min_samples_split=6, n_estimators=5;, score=0.889 total time= 0.0s\n","[CV 3/5] END bootstrap=True, max_depth=6, max_features=sqrt, min_samples_leaf=6, min_samples_split=6, n_estimators=5;, score=0.879 total time= 0.0s\n","[CV 4/5] END bootstrap=True, max_depth=6, max_features=sqrt, min_samples_leaf=6, min_samples_split=6, n_estimators=5;, score=0.843 total time= 0.0s\n","[CV 5/5] END bootstrap=True, max_depth=6, max_features=sqrt, min_samples_leaf=6, min_samples_split=6, n_estimators=5;, score=0.879 total time= 0.0s\n","[CV 1/5] END bootstrap=True, max_depth=6, max_features=sqrt, min_samples_leaf=6, min_samples_split=6, n_estimators=10;, score=0.889 total time= 0.0s\n","[CV 2/5] END bootstrap=True, max_depth=6, max_features=sqrt, min_samples_leaf=6, min_samples_split=6, n_estimators=10;, score=0.884 total time= 0.0s\n","[CV 3/5] END bootstrap=True, max_depth=6, max_features=sqrt, min_samples_leaf=6, min_samples_split=6, n_estimators=10;, score=0.894 total time= 0.0s\n","[CV 4/5] END bootstrap=True, max_depth=6, max_features=sqrt, min_samples_leaf=6, min_samples_split=6, n_estimators=10;, score=0.828 total time= 0.0s\n","[CV 5/5] END bootstrap=True, max_depth=6, max_features=sqrt, min_samples_leaf=6, min_samples_split=6, n_estimators=10;, score=0.884 total time= 0.0s\n","[CV 1/5] END bootstrap=True, max_depth=6, max_features=sqrt, min_samples_leaf=6, min_samples_split=6, n_estimators=20;, score=0.859 total time= 0.1s\n","[CV 2/5] END bootstrap=True, max_depth=6, max_features=sqrt, min_samples_leaf=6, min_samples_split=6, n_estimators=20;, score=0.909 total time= 0.1s\n","[CV 3/5] END bootstrap=True, max_depth=6, max_features=sqrt, min_samples_leaf=6, min_samples_split=6, n_estimators=20;, score=0.884 total time= 0.2s\n","[CV 4/5] END bootstrap=True, max_depth=6, max_features=sqrt, min_samples_leaf=6, min_samples_split=6, n_estimators=20;, score=0.833 total time= 0.1s\n","[CV 5/5] END bootstrap=True, max_depth=6, max_features=sqrt, min_samples_leaf=6, min_samples_split=6, n_estimators=20;, score=0.874 total time= 0.1s\n","[CV 1/5] END bootstrap=True, max_depth=6, max_features=sqrt, min_samples_leaf=6, min_samples_split=6, n_estimators=30;, score=0.848 total time= 0.1s\n","[CV 2/5] END bootstrap=True, max_depth=6, max_features=sqrt, min_samples_leaf=6, min_samples_split=6, n_estimators=30;, score=0.874 total time= 0.1s\n","[CV 3/5] END bootstrap=True, max_depth=6, max_features=sqrt, min_samples_leaf=6, min_samples_split=6, n_estimators=30;, score=0.884 total time= 0.2s\n","[CV 4/5] END bootstrap=True, max_depth=6, max_features=sqrt, min_samples_leaf=6, min_samples_split=6, n_estimators=30;, score=0.859 total time= 0.1s\n","[CV 5/5] END bootstrap=True, max_depth=6, max_features=sqrt, min_samples_leaf=6, min_samples_split=6, n_estimators=30;, score=0.889 total time= 0.1s\n","[CV 1/5] END bootstrap=True, max_depth=6, max_features=log2, min_samples_leaf=2, min_samples_split=2, n_estimators=5;, score=0.869 total time= 0.0s\n","[CV 2/5] END bootstrap=True, max_depth=6, max_features=log2, min_samples_leaf=2, min_samples_split=2, n_estimators=5;, score=0.899 total time= 0.0s\n","[CV 3/5] END bootstrap=True, max_depth=6, max_features=log2, min_samples_leaf=2, min_samples_split=2, n_estimators=5;, score=0.909 total time= 0.0s\n","[CV 4/5] END bootstrap=True, max_depth=6, max_features=log2, min_samples_leaf=2, min_samples_split=2, n_estimators=5;, score=0.869 total time= 0.0s\n","[CV 5/5] END bootstrap=True, max_depth=6, max_features=log2, min_samples_leaf=2, min_samples_split=2, n_estimators=5;, score=0.874 total time= 0.0s\n","[CV 1/5] END bootstrap=True, max_depth=6, max_features=log2, min_samples_leaf=2, min_samples_split=2, n_estimators=10;, score=0.864 total time= 0.1s\n","[CV 2/5] END bootstrap=True, max_depth=6, max_features=log2, min_samples_leaf=2, min_samples_split=2, n_estimators=10;, score=0.864 total time= 0.1s\n","[CV 3/5] END bootstrap=True, max_depth=6, max_features=log2, min_samples_leaf=2, min_samples_split=2, n_estimators=10;, score=0.874 total time= 0.1s\n","[CV 4/5] END bootstrap=True, max_depth=6, max_features=log2, min_samples_leaf=2, min_samples_split=2, n_estimators=10;, score=0.859 total time= 0.1s\n","[CV 5/5] END bootstrap=True, max_depth=6, max_features=log2, min_samples_leaf=2, min_samples_split=2, n_estimators=10;, score=0.879 total time= 0.1s\n","[CV 1/5] END bootstrap=True, max_depth=6, max_features=log2, min_samples_leaf=2, min_samples_split=2, n_estimators=20;, score=0.859 total time= 0.1s\n","[CV 2/5] END bootstrap=True, max_depth=6, max_features=log2, min_samples_leaf=2, min_samples_split=2, n_estimators=20;, score=0.869 total time= 0.1s\n","[CV 3/5] END bootstrap=True, max_depth=6, max_features=log2, min_samples_leaf=2, min_samples_split=2, n_estimators=20;, score=0.884 total time= 0.1s\n","[CV 4/5] END bootstrap=True, max_depth=6, max_features=log2, min_samples_leaf=2, min_samples_split=2, n_estimators=20;, score=0.869 total time= 0.1s\n","[CV 5/5] END bootstrap=True, max_depth=6, max_features=log2, min_samples_leaf=2, min_samples_split=2, n_estimators=20;, score=0.904 total time= 0.1s\n","[CV 1/5] END bootstrap=True, max_depth=6, max_features=log2, min_samples_leaf=2, min_samples_split=2, n_estimators=30;, score=0.869 total time= 0.1s\n","[CV 2/5] END bootstrap=True, max_depth=6, max_features=log2, min_samples_leaf=2, min_samples_split=2, n_estimators=30;, score=0.894 total time= 0.1s\n","[CV 3/5] END bootstrap=True, max_depth=6, max_features=log2, min_samples_leaf=2, min_samples_split=2, n_estimators=30;, score=0.899 total time= 0.1s\n","[CV 4/5] END bootstrap=True, max_depth=6, max_features=log2, min_samples_leaf=2, min_samples_split=2, n_estimators=30;, score=0.848 total time= 0.2s\n","[CV 5/5] END bootstrap=True, max_depth=6, max_features=log2, min_samples_leaf=2, min_samples_split=2, n_estimators=30;, score=0.889 total time= 0.2s\n","[CV 1/5] END bootstrap=True, max_depth=6, max_features=log2, min_samples_leaf=2, min_samples_split=4, n_estimators=5;, score=0.864 total time= 0.0s\n","[CV 2/5] END bootstrap=True, max_depth=6, max_features=log2, min_samples_leaf=2, min_samples_split=4, n_estimators=5;, score=0.894 total time= 0.1s\n","[CV 3/5] END bootstrap=True, max_depth=6, max_features=log2, min_samples_leaf=2, min_samples_split=4, n_estimators=5;, score=0.894 total time= 0.1s\n","[CV 4/5] END bootstrap=True, max_depth=6, max_features=log2, min_samples_leaf=2, min_samples_split=4, n_estimators=5;, score=0.864 total time= 0.1s\n","[CV 5/5] END bootstrap=True, max_depth=6, max_features=log2, min_samples_leaf=2, min_samples_split=4, n_estimators=5;, score=0.889 total time= 0.1s\n","[CV 1/5] END bootstrap=True, max_depth=6, max_features=log2, min_samples_leaf=2, min_samples_split=4, n_estimators=10;, score=0.879 total time= 0.1s\n","[CV 2/5] END bootstrap=True, max_depth=6, max_features=log2, min_samples_leaf=2, min_samples_split=4, n_estimators=10;, score=0.889 total time= 0.1s\n","[CV 3/5] END bootstrap=True, max_depth=6, max_features=log2, min_samples_leaf=2, min_samples_split=4, n_estimators=10;, score=0.884 total time= 0.1s\n","[CV 4/5] END bootstrap=True, max_depth=6, max_features=log2, min_samples_leaf=2, min_samples_split=4, n_estimators=10;, score=0.859 total time= 0.1s\n","[CV 5/5] END bootstrap=True, max_depth=6, max_features=log2, min_samples_leaf=2, min_samples_split=4, n_estimators=10;, score=0.879 total time= 0.1s\n","[CV 1/5] END bootstrap=True, max_depth=6, max_features=log2, min_samples_leaf=2, min_samples_split=4, n_estimators=20;, score=0.914 total time= 0.2s\n","[CV 2/5] END bootstrap=True, max_depth=6, max_features=log2, min_samples_leaf=2, min_samples_split=4, n_estimators=20;, score=0.894 total time= 0.2s\n","[CV 3/5] END bootstrap=True, max_depth=6, max_features=log2, min_samples_leaf=2, min_samples_split=4, n_estimators=20;, score=0.879 total time= 0.1s\n","[CV 4/5] END bootstrap=True, max_depth=6, max_features=log2, min_samples_leaf=2, min_samples_split=4, n_estimators=20;, score=0.833 total time= 0.1s\n","[CV 5/5] END bootstrap=True, max_depth=6, max_features=log2, min_samples_leaf=2, min_samples_split=4, n_estimators=20;, score=0.889 total time= 0.1s\n","[CV 1/5] END bootstrap=True, max_depth=6, max_features=log2, min_samples_leaf=2, min_samples_split=4, n_estimators=30;, score=0.884 total time= 0.1s\n","[CV 2/5] END bootstrap=True, max_depth=6, max_features=log2, min_samples_leaf=2, min_samples_split=4, n_estimators=30;, score=0.884 total time= 0.1s\n","[CV 3/5] END bootstrap=True, max_depth=6, max_features=log2, min_samples_leaf=2, min_samples_split=4, n_estimators=30;, score=0.879 total time= 0.1s\n","[CV 4/5] END bootstrap=True, max_depth=6, max_features=log2, min_samples_leaf=2, min_samples_split=4, n_estimators=30;, score=0.848 total time= 0.1s\n","[CV 5/5] END bootstrap=True, max_depth=6, max_features=log2, min_samples_leaf=2, min_samples_split=4, n_estimators=30;, score=0.889 total time= 0.1s\n","[CV 1/5] END bootstrap=True, max_depth=6, max_features=log2, min_samples_leaf=2, min_samples_split=6, n_estimators=5;, score=0.894 total time= 0.0s\n","[CV 2/5] END bootstrap=True, max_depth=6, max_features=log2, min_samples_leaf=2, min_samples_split=6, n_estimators=5;, score=0.899 total time= 0.0s\n","[CV 3/5] END bootstrap=True, max_depth=6, max_features=log2, min_samples_leaf=2, min_samples_split=6, n_estimators=5;, score=0.909 total time= 0.0s\n","[CV 4/5] END bootstrap=True, max_depth=6, max_features=log2, min_samples_leaf=2, min_samples_split=6, n_estimators=5;, score=0.879 total time= 0.0s\n","[CV 5/5] END bootstrap=True, max_depth=6, max_features=log2, min_samples_leaf=2, min_samples_split=6, n_estimators=5;, score=0.894 total time= 0.0s\n","[CV 1/5] END bootstrap=True, max_depth=6, max_features=log2, min_samples_leaf=2, min_samples_split=6, n_estimators=10;, score=0.859 total time= 0.0s\n","[CV 2/5] END bootstrap=True, max_depth=6, max_features=log2, min_samples_leaf=2, min_samples_split=6, n_estimators=10;, score=0.869 total time= 0.0s\n","[CV 3/5] END bootstrap=True, max_depth=6, max_features=log2, min_samples_leaf=2, min_samples_split=6, n_estimators=10;, score=0.899 total time= 0.0s\n","[CV 4/5] END bootstrap=True, max_depth=6, max_features=log2, min_samples_leaf=2, min_samples_split=6, n_estimators=10;, score=0.843 total time= 0.0s\n","[CV 5/5] END bootstrap=True, max_depth=6, max_features=log2, min_samples_leaf=2, min_samples_split=6, n_estimators=10;, score=0.894 total time= 0.0s\n","[CV 1/5] END bootstrap=True, max_depth=6, max_features=log2, min_samples_leaf=2, min_samples_split=6, n_estimators=20;, score=0.869 total time= 0.1s\n","[CV 2/5] END bootstrap=True, max_depth=6, max_features=log2, min_samples_leaf=2, min_samples_split=6, n_estimators=20;, score=0.904 total time= 0.1s\n","[CV 3/5] END bootstrap=True, max_depth=6, max_features=log2, min_samples_leaf=2, min_samples_split=6, n_estimators=20;, score=0.889 total time= 0.1s\n","[CV 4/5] END bootstrap=True, max_depth=6, max_features=log2, min_samples_leaf=2, min_samples_split=6, n_estimators=20;, score=0.848 total time= 0.1s\n","[CV 5/5] END bootstrap=True, max_depth=6, max_features=log2, min_samples_leaf=2, min_samples_split=6, n_estimators=20;, score=0.889 total time= 0.1s\n","[CV 1/5] END bootstrap=True, max_depth=6, max_features=log2, min_samples_leaf=2, min_samples_split=6, n_estimators=30;, score=0.869 total time= 0.1s\n","[CV 2/5] END bootstrap=True, max_depth=6, max_features=log2, min_samples_leaf=2, min_samples_split=6, n_estimators=30;, score=0.884 total time= 0.1s\n","[CV 3/5] END bootstrap=True, max_depth=6, max_features=log2, min_samples_leaf=2, min_samples_split=6, n_estimators=30;, score=0.894 total time= 0.1s\n","[CV 4/5] END bootstrap=True, max_depth=6, max_features=log2, min_samples_leaf=2, min_samples_split=6, n_estimators=30;, score=0.884 total time= 0.1s\n","[CV 5/5] END bootstrap=True, max_depth=6, max_features=log2, min_samples_leaf=2, min_samples_split=6, n_estimators=30;, score=0.909 total time= 0.1s\n","[CV 1/5] END bootstrap=True, max_depth=6, max_features=log2, min_samples_leaf=4, min_samples_split=2, n_estimators=5;, score=0.884 total time= 0.0s\n","[CV 2/5] END bootstrap=True, max_depth=6, max_features=log2, min_samples_leaf=4, min_samples_split=2, n_estimators=5;, score=0.879 total time= 0.0s\n","[CV 3/5] END bootstrap=True, max_depth=6, max_features=log2, min_samples_leaf=4, min_samples_split=2, n_estimators=5;, score=0.879 total time= 0.0s\n","[CV 4/5] END bootstrap=True, max_depth=6, max_features=log2, min_samples_leaf=4, min_samples_split=2, n_estimators=5;, score=0.854 total time= 0.0s\n","[CV 5/5] END bootstrap=True, max_depth=6, max_features=log2, min_samples_leaf=4, min_samples_split=2, n_estimators=5;, score=0.884 total time= 0.0s\n","[CV 1/5] END bootstrap=True, max_depth=6, max_features=log2, min_samples_leaf=4, min_samples_split=2, n_estimators=10;, score=0.864 total time= 0.0s\n","[CV 2/5] END bootstrap=True, max_depth=6, max_features=log2, min_samples_leaf=4, min_samples_split=2, n_estimators=10;, score=0.884 total time= 0.0s\n","[CV 3/5] END bootstrap=True, max_depth=6, max_features=log2, min_samples_leaf=4, min_samples_split=2, n_estimators=10;, score=0.889 total time= 0.0s\n","[CV 4/5] END bootstrap=True, max_depth=6, max_features=log2, min_samples_leaf=4, min_samples_split=2, n_estimators=10;, score=0.859 total time= 0.0s\n","[CV 5/5] END bootstrap=True, max_depth=6, max_features=log2, min_samples_leaf=4, min_samples_split=2, n_estimators=10;, score=0.899 total time= 0.0s\n","[CV 1/5] END bootstrap=True, max_depth=6, max_features=log2, min_samples_leaf=4, min_samples_split=2, n_estimators=20;, score=0.859 total time= 0.0s\n","[CV 2/5] END bootstrap=True, max_depth=6, max_features=log2, min_samples_leaf=4, min_samples_split=2, n_estimators=20;, score=0.909 total time= 0.0s\n","[CV 3/5] END bootstrap=True, max_depth=6, max_features=log2, min_samples_leaf=4, min_samples_split=2, n_estimators=20;, score=0.859 total time= 0.0s\n","[CV 4/5] END bootstrap=True, max_depth=6, max_features=log2, min_samples_leaf=4, min_samples_split=2, n_estimators=20;, score=0.848 total time= 0.0s\n","[CV 5/5] END bootstrap=True, max_depth=6, max_features=log2, min_samples_leaf=4, min_samples_split=2, n_estimators=20;, score=0.904 total time= 0.1s\n","[CV 1/5] END bootstrap=True, max_depth=6, max_features=log2, min_samples_leaf=4, min_samples_split=2, n_estimators=30;, score=0.864 total time= 0.1s\n","[CV 2/5] END bootstrap=True, max_depth=6, max_features=log2, min_samples_leaf=4, min_samples_split=2, n_estimators=30;, score=0.879 total time= 0.1s\n","[CV 3/5] END bootstrap=True, max_depth=6, max_features=log2, min_samples_leaf=4, min_samples_split=2, n_estimators=30;, score=0.884 total time= 0.1s\n","[CV 4/5] END bootstrap=True, max_depth=6, max_features=log2, min_samples_leaf=4, min_samples_split=2, n_estimators=30;, score=0.848 total time= 0.1s\n","[CV 5/5] END bootstrap=True, max_depth=6, max_features=log2, min_samples_leaf=4, min_samples_split=2, n_estimators=30;, score=0.889 total time= 0.1s\n","[CV 1/5] END bootstrap=True, max_depth=6, max_features=log2, min_samples_leaf=4, min_samples_split=4, n_estimators=5;, score=0.874 total time= 0.0s\n","[CV 2/5] END bootstrap=True, max_depth=6, max_features=log2, min_samples_leaf=4, min_samples_split=4, n_estimators=5;, score=0.894 total time= 0.0s\n","[CV 3/5] END bootstrap=True, max_depth=6, max_features=log2, min_samples_leaf=4, min_samples_split=4, n_estimators=5;, score=0.874 total time= 0.0s\n","[CV 4/5] END bootstrap=True, max_depth=6, max_features=log2, min_samples_leaf=4, min_samples_split=4, n_estimators=5;, score=0.859 total time= 0.0s\n","[CV 5/5] END bootstrap=True, max_depth=6, max_features=log2, min_samples_leaf=4, min_samples_split=4, n_estimators=5;, score=0.884 total time= 0.0s\n","[CV 1/5] END bootstrap=True, max_depth=6, max_features=log2, min_samples_leaf=4, min_samples_split=4, n_estimators=10;, score=0.889 total time= 0.0s\n","[CV 2/5] END bootstrap=True, max_depth=6, max_features=log2, min_samples_leaf=4, min_samples_split=4, n_estimators=10;, score=0.899 total time= 0.0s\n","[CV 3/5] END bootstrap=True, max_depth=6, max_features=log2, min_samples_leaf=4, min_samples_split=4, n_estimators=10;, score=0.894 total time= 0.0s\n","[CV 4/5] END bootstrap=True, max_depth=6, max_features=log2, min_samples_leaf=4, min_samples_split=4, n_estimators=10;, score=0.843 total time= 0.0s\n","[CV 5/5] END bootstrap=True, max_depth=6, max_features=log2, min_samples_leaf=4, min_samples_split=4, n_estimators=10;, score=0.889 total time= 0.0s\n","[CV 1/5] END bootstrap=True, max_depth=6, max_features=log2, min_samples_leaf=4, min_samples_split=4, n_estimators=20;, score=0.864 total time= 0.0s\n","[CV 2/5] END bootstrap=True, max_depth=6, max_features=log2, min_samples_leaf=4, min_samples_split=4, n_estimators=20;, score=0.884 total time= 0.0s\n","[CV 3/5] END bootstrap=True, max_depth=6, max_features=log2, min_samples_leaf=4, min_samples_split=4, n_estimators=20;, score=0.874 total time= 0.1s\n","[CV 4/5] END bootstrap=True, max_depth=6, max_features=log2, min_samples_leaf=4, min_samples_split=4, n_estimators=20;, score=0.848 total time= 0.0s\n","[CV 5/5] END bootstrap=True, max_depth=6, max_features=log2, min_samples_leaf=4, min_samples_split=4, n_estimators=20;, score=0.874 total time= 0.1s\n","[CV 1/5] END bootstrap=True, max_depth=6, max_features=log2, min_samples_leaf=4, min_samples_split=4, n_estimators=30;, score=0.864 total time= 0.1s\n","[CV 2/5] END bootstrap=True, max_depth=6, max_features=log2, min_samples_leaf=4, min_samples_split=4, n_estimators=30;, score=0.894 total time= 0.1s\n","[CV 3/5] END bootstrap=True, max_depth=6, max_features=log2, min_samples_leaf=4, min_samples_split=4, n_estimators=30;, score=0.904 total time= 0.1s\n","[CV 4/5] END bootstrap=True, max_depth=6, max_features=log2, min_samples_leaf=4, min_samples_split=4, n_estimators=30;, score=0.874 total time= 0.1s\n","[CV 5/5] END bootstrap=True, max_depth=6, max_features=log2, min_samples_leaf=4, min_samples_split=4, n_estimators=30;, score=0.869 total time= 0.1s\n","[CV 1/5] END bootstrap=True, max_depth=6, max_features=log2, min_samples_leaf=4, min_samples_split=6, n_estimators=5;, score=0.874 total time= 0.0s\n","[CV 2/5] END bootstrap=True, max_depth=6, max_features=log2, min_samples_leaf=4, min_samples_split=6, n_estimators=5;, score=0.899 total time= 0.0s\n","[CV 3/5] END bootstrap=True, max_depth=6, max_features=log2, min_samples_leaf=4, min_samples_split=6, n_estimators=5;, score=0.899 total time= 0.0s\n","[CV 4/5] END bootstrap=True, max_depth=6, max_features=log2, min_samples_leaf=4, min_samples_split=6, n_estimators=5;, score=0.848 total time= 0.0s\n","[CV 5/5] END bootstrap=True, max_depth=6, max_features=log2, min_samples_leaf=4, min_samples_split=6, n_estimators=5;, score=0.894 total time= 0.0s\n","[CV 1/5] END bootstrap=True, max_depth=6, max_features=log2, min_samples_leaf=4, min_samples_split=6, n_estimators=10;, score=0.848 total time= 0.0s\n","[CV 2/5] END bootstrap=True, max_depth=6, max_features=log2, min_samples_leaf=4, min_samples_split=6, n_estimators=10;, score=0.904 total time= 0.0s\n","[CV 3/5] END bootstrap=True, max_depth=6, max_features=log2, min_samples_leaf=4, min_samples_split=6, n_estimators=10;, score=0.884 total time= 0.0s\n","[CV 4/5] END bootstrap=True, max_depth=6, max_features=log2, min_samples_leaf=4, min_samples_split=6, n_estimators=10;, score=0.859 total time= 0.0s\n","[CV 5/5] END bootstrap=True, max_depth=6, max_features=log2, min_samples_leaf=4, min_samples_split=6, n_estimators=10;, score=0.879 total time= 0.0s\n","[CV 1/5] END bootstrap=True, max_depth=6, max_features=log2, min_samples_leaf=4, min_samples_split=6, n_estimators=20;, score=0.879 total time= 0.0s\n","[CV 2/5] END bootstrap=True, max_depth=6, max_features=log2, min_samples_leaf=4, min_samples_split=6, n_estimators=20;, score=0.884 total time= 0.0s\n","[CV 3/5] END bootstrap=True, max_depth=6, max_features=log2, min_samples_leaf=4, min_samples_split=6, n_estimators=20;, score=0.879 total time= 0.0s\n","[CV 4/5] END bootstrap=True, max_depth=6, max_features=log2, min_samples_leaf=4, min_samples_split=6, n_estimators=20;, score=0.859 total time= 0.1s\n","[CV 5/5] END bootstrap=True, max_depth=6, max_features=log2, min_samples_leaf=4, min_samples_split=6, n_estimators=20;, score=0.874 total time= 0.0s\n","[CV 1/5] END bootstrap=True, max_depth=6, max_features=log2, min_samples_leaf=4, min_samples_split=6, n_estimators=30;, score=0.864 total time= 0.1s\n","[CV 2/5] END bootstrap=True, max_depth=6, max_features=log2, min_samples_leaf=4, min_samples_split=6, n_estimators=30;, score=0.904 total time= 0.1s\n","[CV 3/5] END bootstrap=True, max_depth=6, max_features=log2, min_samples_leaf=4, min_samples_split=6, n_estimators=30;, score=0.884 total time= 0.1s\n","[CV 4/5] END bootstrap=True, max_depth=6, max_features=log2, min_samples_leaf=4, min_samples_split=6, n_estimators=30;, score=0.854 total time= 0.1s\n","[CV 5/5] END bootstrap=True, max_depth=6, max_features=log2, min_samples_leaf=4, min_samples_split=6, n_estimators=30;, score=0.899 total time= 0.1s\n","[CV 1/5] END bootstrap=True, max_depth=6, max_features=log2, min_samples_leaf=6, min_samples_split=2, n_estimators=5;, score=0.894 total time= 0.0s\n","[CV 2/5] END bootstrap=True, max_depth=6, max_features=log2, min_samples_leaf=6, min_samples_split=2, n_estimators=5;, score=0.899 total time= 0.0s\n","[CV 3/5] END bootstrap=True, max_depth=6, max_features=log2, min_samples_leaf=6, min_samples_split=2, n_estimators=5;, score=0.869 total time= 0.0s\n","[CV 4/5] END bootstrap=True, max_depth=6, max_features=log2, min_samples_leaf=6, min_samples_split=2, n_estimators=5;, score=0.859 total time= 0.0s\n","[CV 5/5] END bootstrap=True, max_depth=6, max_features=log2, min_samples_leaf=6, min_samples_split=2, n_estimators=5;, score=0.869 total time= 0.0s\n","[CV 1/5] END bootstrap=True, max_depth=6, max_features=log2, min_samples_leaf=6, min_samples_split=2, n_estimators=10;, score=0.869 total time= 0.0s\n","[CV 2/5] END bootstrap=True, max_depth=6, max_features=log2, min_samples_leaf=6, min_samples_split=2, n_estimators=10;, score=0.869 total time= 0.0s\n","[CV 3/5] END bootstrap=True, max_depth=6, max_features=log2, min_samples_leaf=6, min_samples_split=2, n_estimators=10;, score=0.879 total time= 0.0s\n","[CV 4/5] END bootstrap=True, max_depth=6, max_features=log2, min_samples_leaf=6, min_samples_split=2, n_estimators=10;, score=0.859 total time= 0.0s\n","[CV 5/5] END bootstrap=True, max_depth=6, max_features=log2, min_samples_leaf=6, min_samples_split=2, n_estimators=10;, score=0.879 total time= 0.0s\n","[CV 1/5] END bootstrap=True, max_depth=6, max_features=log2, min_samples_leaf=6, min_samples_split=2, n_estimators=20;, score=0.864 total time= 0.1s\n","[CV 2/5] END bootstrap=True, max_depth=6, max_features=log2, min_samples_leaf=6, min_samples_split=2, n_estimators=20;, score=0.904 total time= 0.0s\n","[CV 3/5] END bootstrap=True, max_depth=6, max_features=log2, min_samples_leaf=6, min_samples_split=2, n_estimators=20;, score=0.889 total time= 0.0s\n","[CV 4/5] END bootstrap=True, max_depth=6, max_features=log2, min_samples_leaf=6, min_samples_split=2, n_estimators=20;, score=0.864 total time= 0.0s\n","[CV 5/5] END bootstrap=True, max_depth=6, max_features=log2, min_samples_leaf=6, min_samples_split=2, n_estimators=20;, score=0.889 total time= 0.1s\n","[CV 1/5] END bootstrap=True, max_depth=6, max_features=log2, min_samples_leaf=6, min_samples_split=2, n_estimators=30;, score=0.879 total time= 0.1s\n","[CV 2/5] END bootstrap=True, max_depth=6, max_features=log2, min_samples_leaf=6, min_samples_split=2, n_estimators=30;, score=0.879 total time= 0.1s\n","[CV 3/5] END bootstrap=True, max_depth=6, max_features=log2, min_samples_leaf=6, min_samples_split=2, n_estimators=30;, score=0.884 total time= 0.1s\n","[CV 4/5] END bootstrap=True, max_depth=6, max_features=log2, min_samples_leaf=6, min_samples_split=2, n_estimators=30;, score=0.859 total time= 0.1s\n","[CV 5/5] END bootstrap=True, max_depth=6, max_features=log2, min_samples_leaf=6, min_samples_split=2, n_estimators=30;, score=0.879 total time= 0.1s\n","[CV 1/5] END bootstrap=True, max_depth=6, max_features=log2, min_samples_leaf=6, min_samples_split=4, n_estimators=5;, score=0.889 total time= 0.0s\n","[CV 2/5] END bootstrap=True, max_depth=6, max_features=log2, min_samples_leaf=6, min_samples_split=4, n_estimators=5;, score=0.879 total time= 0.0s\n","[CV 3/5] END bootstrap=True, max_depth=6, max_features=log2, min_samples_leaf=6, min_samples_split=4, n_estimators=5;, score=0.874 total time= 0.0s\n","[CV 4/5] END bootstrap=True, max_depth=6, max_features=log2, min_samples_leaf=6, min_samples_split=4, n_estimators=5;, score=0.874 total time= 0.0s\n","[CV 5/5] END bootstrap=True, max_depth=6, max_features=log2, min_samples_leaf=6, min_samples_split=4, n_estimators=5;, score=0.894 total time= 0.0s\n","[CV 1/5] END bootstrap=True, max_depth=6, max_features=log2, min_samples_leaf=6, min_samples_split=4, n_estimators=10;, score=0.864 total time= 0.0s\n","[CV 2/5] END bootstrap=True, max_depth=6, max_features=log2, min_samples_leaf=6, min_samples_split=4, n_estimators=10;, score=0.894 total time= 0.0s\n","[CV 3/5] END bootstrap=True, max_depth=6, max_features=log2, min_samples_leaf=6, min_samples_split=4, n_estimators=10;, score=0.874 total time= 0.0s\n","[CV 4/5] END bootstrap=True, max_depth=6, max_features=log2, min_samples_leaf=6, min_samples_split=4, n_estimators=10;, score=0.864 total time= 0.0s\n","[CV 5/5] END bootstrap=True, max_depth=6, max_features=log2, min_samples_leaf=6, min_samples_split=4, n_estimators=10;, score=0.884 total time= 0.0s\n","[CV 1/5] END bootstrap=True, max_depth=6, max_features=log2, min_samples_leaf=6, min_samples_split=4, n_estimators=20;, score=0.864 total time= 0.0s\n","[CV 2/5] END bootstrap=True, max_depth=6, max_features=log2, min_samples_leaf=6, min_samples_split=4, n_estimators=20;, score=0.889 total time= 0.0s\n","[CV 3/5] END bootstrap=True, max_depth=6, max_features=log2, min_samples_leaf=6, min_samples_split=4, n_estimators=20;, score=0.869 total time= 0.1s\n","[CV 4/5] END bootstrap=True, max_depth=6, max_features=log2, min_samples_leaf=6, min_samples_split=4, n_estimators=20;, score=0.854 total time= 0.0s\n","[CV 5/5] END bootstrap=True, max_depth=6, max_features=log2, min_samples_leaf=6, min_samples_split=4, n_estimators=20;, score=0.884 total time= 0.0s\n","[CV 1/5] END bootstrap=True, max_depth=6, max_features=log2, min_samples_leaf=6, min_samples_split=4, n_estimators=30;, score=0.869 total time= 0.1s\n","[CV 2/5] END bootstrap=True, max_depth=6, max_features=log2, min_samples_leaf=6, min_samples_split=4, n_estimators=30;, score=0.929 total time= 0.1s\n","[CV 3/5] END bootstrap=True, max_depth=6, max_features=log2, min_samples_leaf=6, min_samples_split=4, n_estimators=30;, score=0.884 total time= 0.1s\n","[CV 4/5] END bootstrap=True, max_depth=6, max_features=log2, min_samples_leaf=6, min_samples_split=4, n_estimators=30;, score=0.848 total time= 0.1s\n","[CV 5/5] END bootstrap=True, max_depth=6, max_features=log2, min_samples_leaf=6, min_samples_split=4, n_estimators=30;, score=0.899 total time= 0.1s\n","[CV 1/5] END bootstrap=True, max_depth=6, max_features=log2, min_samples_leaf=6, min_samples_split=6, n_estimators=5;, score=0.874 total time= 0.0s\n","[CV 2/5] END bootstrap=True, max_depth=6, max_features=log2, min_samples_leaf=6, min_samples_split=6, n_estimators=5;, score=0.884 total time= 0.0s\n","[CV 3/5] END bootstrap=True, max_depth=6, max_features=log2, min_samples_leaf=6, min_samples_split=6, n_estimators=5;, score=0.879 total time= 0.0s\n","[CV 4/5] END bootstrap=True, max_depth=6, max_features=log2, min_samples_leaf=6, min_samples_split=6, n_estimators=5;, score=0.854 total time= 0.0s\n","[CV 5/5] END bootstrap=True, max_depth=6, max_features=log2, min_samples_leaf=6, min_samples_split=6, n_estimators=5;, score=0.869 total time= 0.0s\n","[CV 1/5] END bootstrap=True, max_depth=6, max_features=log2, min_samples_leaf=6, min_samples_split=6, n_estimators=10;, score=0.879 total time= 0.0s\n","[CV 2/5] END bootstrap=True, max_depth=6, max_features=log2, min_samples_leaf=6, min_samples_split=6, n_estimators=10;, score=0.899 total time= 0.0s\n","[CV 3/5] END bootstrap=True, max_depth=6, max_features=log2, min_samples_leaf=6, min_samples_split=6, n_estimators=10;, score=0.874 total time= 0.0s\n","[CV 4/5] END bootstrap=True, max_depth=6, max_features=log2, min_samples_leaf=6, min_samples_split=6, n_estimators=10;, score=0.848 total time= 0.0s\n","[CV 5/5] END bootstrap=True, max_depth=6, max_features=log2, min_samples_leaf=6, min_samples_split=6, n_estimators=10;, score=0.874 total time= 0.0s\n","[CV 1/5] END bootstrap=True, max_depth=6, max_features=log2, min_samples_leaf=6, min_samples_split=6, n_estimators=20;, score=0.854 total time= 0.0s\n","[CV 2/5] END bootstrap=True, max_depth=6, max_features=log2, min_samples_leaf=6, min_samples_split=6, n_estimators=20;, score=0.874 total time= 0.0s\n","[CV 3/5] END bootstrap=True, max_depth=6, max_features=log2, min_samples_leaf=6, min_samples_split=6, n_estimators=20;, score=0.899 total time= 0.0s\n","[CV 4/5] END bootstrap=True, max_depth=6, max_features=log2, min_samples_leaf=6, min_samples_split=6, n_estimators=20;, score=0.843 total time= 0.0s\n","[CV 5/5] END bootstrap=True, max_depth=6, max_features=log2, min_samples_leaf=6, min_samples_split=6, n_estimators=20;, score=0.879 total time= 0.1s\n","[CV 1/5] END bootstrap=True, max_depth=6, max_features=log2, min_samples_leaf=6, min_samples_split=6, n_estimators=30;, score=0.869 total time= 0.1s\n","[CV 2/5] END bootstrap=True, max_depth=6, max_features=log2, min_samples_leaf=6, min_samples_split=6, n_estimators=30;, score=0.879 total time= 0.1s\n","[CV 3/5] END bootstrap=True, max_depth=6, max_features=log2, min_samples_leaf=6, min_samples_split=6, n_estimators=30;, score=0.879 total time= 0.1s\n","[CV 4/5] END bootstrap=True, max_depth=6, max_features=log2, min_samples_leaf=6, min_samples_split=6, n_estimators=30;, score=0.874 total time= 0.1s\n","[CV 5/5] END bootstrap=True, max_depth=6, max_features=log2, min_samples_leaf=6, min_samples_split=6, n_estimators=30;, score=0.894 total time= 0.1s\n","[CV 1/5] END bootstrap=True, max_depth=6, max_features=None, min_samples_leaf=2, min_samples_split=2, n_estimators=5;, score=0.894 total time= 0.0s\n","[CV 2/5] END bootstrap=True, max_depth=6, max_features=None, min_samples_leaf=2, min_samples_split=2, n_estimators=5;, score=0.874 total time= 0.0s\n","[CV 3/5] END bootstrap=True, max_depth=6, max_features=None, min_samples_leaf=2, min_samples_split=2, n_estimators=5;, score=0.884 total time= 0.0s\n","[CV 4/5] END bootstrap=True, max_depth=6, max_features=None, min_samples_leaf=2, min_samples_split=2, n_estimators=5;, score=0.854 total time= 0.0s\n","[CV 5/5] END bootstrap=True, max_depth=6, max_features=None, min_samples_leaf=2, min_samples_split=2, n_estimators=5;, score=0.879 total time= 0.0s\n","[CV 1/5] END bootstrap=True, max_depth=6, max_features=None, min_samples_leaf=2, min_samples_split=2, n_estimators=10;, score=0.894 total time= 0.0s\n","[CV 2/5] END bootstrap=True, max_depth=6, max_features=None, min_samples_leaf=2, min_samples_split=2, n_estimators=10;, score=0.879 total time= 0.0s\n","[CV 3/5] END bootstrap=True, max_depth=6, max_features=None, min_samples_leaf=2, min_samples_split=2, n_estimators=10;, score=0.879 total time= 0.0s\n","[CV 4/5] END bootstrap=True, max_depth=6, max_features=None, min_samples_leaf=2, min_samples_split=2, n_estimators=10;, score=0.854 total time= 0.0s\n","[CV 5/5] END bootstrap=True, max_depth=6, max_features=None, min_samples_leaf=2, min_samples_split=2, n_estimators=10;, score=0.848 total time= 0.0s\n","[CV 1/5] END bootstrap=True, max_depth=6, max_features=None, min_samples_leaf=2, min_samples_split=2, n_estimators=20;, score=0.874 total time= 0.1s\n","[CV 2/5] END bootstrap=True, max_depth=6, max_features=None, min_samples_leaf=2, min_samples_split=2, n_estimators=20;, score=0.869 total time= 0.1s\n","[CV 3/5] END bootstrap=True, max_depth=6, max_features=None, min_samples_leaf=2, min_samples_split=2, n_estimators=20;, score=0.884 total time= 0.1s\n","[CV 4/5] END bootstrap=True, max_depth=6, max_features=None, min_samples_leaf=2, min_samples_split=2, n_estimators=20;, score=0.848 total time= 0.1s\n","[CV 5/5] END bootstrap=True, max_depth=6, max_features=None, min_samples_leaf=2, min_samples_split=2, n_estimators=20;, score=0.859 total time= 0.1s\n","[CV 1/5] END bootstrap=True, max_depth=6, max_features=None, min_samples_leaf=2, min_samples_split=2, n_estimators=30;, score=0.874 total time= 0.1s\n","[CV 2/5] END bootstrap=True, max_depth=6, max_features=None, min_samples_leaf=2, min_samples_split=2, n_estimators=30;, score=0.848 total time= 0.1s\n","[CV 3/5] END bootstrap=True, max_depth=6, max_features=None, min_samples_leaf=2, min_samples_split=2, n_estimators=30;, score=0.879 total time= 0.1s\n","[CV 4/5] END bootstrap=True, max_depth=6, max_features=None, min_samples_leaf=2, min_samples_split=2, n_estimators=30;, score=0.838 total time= 0.1s\n","[CV 5/5] END bootstrap=True, max_depth=6, max_features=None, min_samples_leaf=2, min_samples_split=2, n_estimators=30;, score=0.884 total time= 0.1s\n","[CV 1/5] END bootstrap=True, max_depth=6, max_features=None, min_samples_leaf=2, min_samples_split=4, n_estimators=5;, score=0.889 total time= 0.0s\n","[CV 2/5] END bootstrap=True, max_depth=6, max_features=None, min_samples_leaf=2, min_samples_split=4, n_estimators=5;, score=0.874 total time= 0.0s\n","[CV 3/5] END bootstrap=True, max_depth=6, max_features=None, min_samples_leaf=2, min_samples_split=4, n_estimators=5;, score=0.874 total time= 0.0s\n","[CV 4/5] END bootstrap=True, max_depth=6, max_features=None, min_samples_leaf=2, min_samples_split=4, n_estimators=5;, score=0.838 total time= 0.0s\n","[CV 5/5] END bootstrap=True, max_depth=6, max_features=None, min_samples_leaf=2, min_samples_split=4, n_estimators=5;, score=0.869 total time= 0.0s\n","[CV 1/5] END bootstrap=True, max_depth=6, max_features=None, min_samples_leaf=2, min_samples_split=4, n_estimators=10;, score=0.874 total time= 0.0s\n","[CV 2/5] END bootstrap=True, max_depth=6, max_features=None, min_samples_leaf=2, min_samples_split=4, n_estimators=10;, score=0.864 total time= 0.0s\n","[CV 3/5] END bootstrap=True, max_depth=6, max_features=None, min_samples_leaf=2, min_samples_split=4, n_estimators=10;, score=0.889 total time= 0.0s\n","[CV 4/5] END bootstrap=True, max_depth=6, max_features=None, min_samples_leaf=2, min_samples_split=4, n_estimators=10;, score=0.848 total time= 0.0s\n","[CV 5/5] END bootstrap=True, max_depth=6, max_features=None, min_samples_leaf=2, min_samples_split=4, n_estimators=10;, score=0.894 total time= 0.0s\n","[CV 1/5] END bootstrap=True, max_depth=6, max_features=None, min_samples_leaf=2, min_samples_split=4, n_estimators=20;, score=0.879 total time= 0.1s\n","[CV 2/5] END bootstrap=True, max_depth=6, max_features=None, min_samples_leaf=2, min_samples_split=4, n_estimators=20;, score=0.864 total time= 0.1s\n","[CV 3/5] END bootstrap=True, max_depth=6, max_features=None, min_samples_leaf=2, min_samples_split=4, n_estimators=20;, score=0.879 total time= 0.1s\n","[CV 4/5] END bootstrap=True, max_depth=6, max_features=None, min_samples_leaf=2, min_samples_split=4, n_estimators=20;, score=0.859 total time= 0.1s\n","[CV 5/5] END bootstrap=True, max_depth=6, max_features=None, min_samples_leaf=2, min_samples_split=4, n_estimators=20;, score=0.889 total time= 0.1s\n","[CV 1/5] END bootstrap=True, max_depth=6, max_features=None, min_samples_leaf=2, min_samples_split=4, n_estimators=30;, score=0.874 total time= 0.1s\n","[CV 2/5] END bootstrap=True, max_depth=6, max_features=None, min_samples_leaf=2, min_samples_split=4, n_estimators=30;, score=0.874 total time= 0.1s\n","[CV 3/5] END bootstrap=True, max_depth=6, max_features=None, min_samples_leaf=2, min_samples_split=4, n_estimators=30;, score=0.889 total time= 0.1s\n","[CV 4/5] END bootstrap=True, max_depth=6, max_features=None, min_samples_leaf=2, min_samples_split=4, n_estimators=30;, score=0.843 total time= 0.1s\n","[CV 5/5] END bootstrap=True, max_depth=6, max_features=None, min_samples_leaf=2, min_samples_split=4, n_estimators=30;, score=0.854 total time= 0.1s\n","[CV 1/5] END bootstrap=True, max_depth=6, max_features=None, min_samples_leaf=2, min_samples_split=6, n_estimators=5;, score=0.869 total time= 0.0s\n","[CV 2/5] END bootstrap=True, max_depth=6, max_features=None, min_samples_leaf=2, min_samples_split=6, n_estimators=5;, score=0.909 total time= 0.0s\n","[CV 3/5] END bootstrap=True, max_depth=6, max_features=None, min_samples_leaf=2, min_samples_split=6, n_estimators=5;, score=0.884 total time= 0.0s\n","[CV 4/5] END bootstrap=True, max_depth=6, max_features=None, min_samples_leaf=2, min_samples_split=6, n_estimators=5;, score=0.843 total time= 0.0s\n","[CV 5/5] END bootstrap=True, max_depth=6, max_features=None, min_samples_leaf=2, min_samples_split=6, n_estimators=5;, score=0.879 total time= 0.0s\n","[CV 1/5] END bootstrap=True, max_depth=6, max_features=None, min_samples_leaf=2, min_samples_split=6, n_estimators=10;, score=0.869 total time= 0.0s\n","[CV 2/5] END bootstrap=True, max_depth=6, max_features=None, min_samples_leaf=2, min_samples_split=6, n_estimators=10;, score=0.869 total time= 0.0s\n","[CV 3/5] END bootstrap=True, max_depth=6, max_features=None, min_samples_leaf=2, min_samples_split=6, n_estimators=10;, score=0.859 total time= 0.0s\n","[CV 4/5] END bootstrap=True, max_depth=6, max_features=None, min_samples_leaf=2, min_samples_split=6, n_estimators=10;, score=0.838 total time= 0.0s\n","[CV 5/5] END bootstrap=True, max_depth=6, max_features=None, min_samples_leaf=2, min_samples_split=6, n_estimators=10;, score=0.889 total time= 0.0s\n","[CV 1/5] END bootstrap=True, max_depth=6, max_features=None, min_samples_leaf=2, min_samples_split=6, n_estimators=20;, score=0.879 total time= 0.1s\n","[CV 2/5] END bootstrap=True, max_depth=6, max_features=None, min_samples_leaf=2, min_samples_split=6, n_estimators=20;, score=0.879 total time= 0.1s\n","[CV 3/5] END bootstrap=True, max_depth=6, max_features=None, min_samples_leaf=2, min_samples_split=6, n_estimators=20;, score=0.889 total time= 0.1s\n","[CV 4/5] END bootstrap=True, max_depth=6, max_features=None, min_samples_leaf=2, min_samples_split=6, n_estimators=20;, score=0.864 total time= 0.1s\n","[CV 5/5] END bootstrap=True, max_depth=6, max_features=None, min_samples_leaf=2, min_samples_split=6, n_estimators=20;, score=0.904 total time= 0.1s\n","[CV 1/5] END bootstrap=True, max_depth=6, max_features=None, min_samples_leaf=2, min_samples_split=6, n_estimators=30;, score=0.864 total time= 0.1s\n","[CV 2/5] END bootstrap=True, max_depth=6, max_features=None, min_samples_leaf=2, min_samples_split=6, n_estimators=30;, score=0.884 total time= 0.1s\n","[CV 3/5] END bootstrap=True, max_depth=6, max_features=None, min_samples_leaf=2, min_samples_split=6, n_estimators=30;, score=0.879 total time= 0.1s\n","[CV 4/5] END bootstrap=True, max_depth=6, max_features=None, min_samples_leaf=2, min_samples_split=6, n_estimators=30;, score=0.859 total time= 0.1s\n","[CV 5/5] END bootstrap=True, max_depth=6, max_features=None, min_samples_leaf=2, min_samples_split=6, n_estimators=30;, score=0.874 total time= 0.1s\n","[CV 1/5] END bootstrap=True, max_depth=6, max_features=None, min_samples_leaf=4, min_samples_split=2, n_estimators=5;, score=0.864 total time= 0.0s\n","[CV 2/5] END bootstrap=True, max_depth=6, max_features=None, min_samples_leaf=4, min_samples_split=2, n_estimators=5;, score=0.884 total time= 0.0s\n","[CV 3/5] END bootstrap=True, max_depth=6, max_features=None, min_samples_leaf=4, min_samples_split=2, n_estimators=5;, score=0.884 total time= 0.0s\n","[CV 4/5] END bootstrap=True, max_depth=6, max_features=None, min_samples_leaf=4, min_samples_split=2, n_estimators=5;, score=0.869 total time= 0.0s\n","[CV 5/5] END bootstrap=True, max_depth=6, max_features=None, min_samples_leaf=4, min_samples_split=2, n_estimators=5;, score=0.899 total time= 0.0s\n","[CV 1/5] END bootstrap=True, max_depth=6, max_features=None, min_samples_leaf=4, min_samples_split=2, n_estimators=10;, score=0.859 total time= 0.0s\n","[CV 2/5] END bootstrap=True, max_depth=6, max_features=None, min_samples_leaf=4, min_samples_split=2, n_estimators=10;, score=0.879 total time= 0.0s\n","[CV 3/5] END bootstrap=True, max_depth=6, max_features=None, min_samples_leaf=4, min_samples_split=2, n_estimators=10;, score=0.904 total time= 0.0s\n","[CV 4/5] END bootstrap=True, max_depth=6, max_features=None, min_samples_leaf=4, min_samples_split=2, n_estimators=10;, score=0.869 total time= 0.0s\n","[CV 5/5] END bootstrap=True, max_depth=6, max_features=None, min_samples_leaf=4, min_samples_split=2, n_estimators=10;, score=0.874 total time= 0.0s\n","[CV 1/5] END bootstrap=True, max_depth=6, max_features=None, min_samples_leaf=4, min_samples_split=2, n_estimators=20;, score=0.894 total time= 0.1s\n","[CV 2/5] END bootstrap=True, max_depth=6, max_features=None, min_samples_leaf=4, min_samples_split=2, n_estimators=20;, score=0.884 total time= 0.1s\n","[CV 3/5] END bootstrap=True, max_depth=6, max_features=None, min_samples_leaf=4, min_samples_split=2, n_estimators=20;, score=0.884 total time= 0.1s\n","[CV 4/5] END bootstrap=True, max_depth=6, max_features=None, min_samples_leaf=4, min_samples_split=2, n_estimators=20;, score=0.874 total time= 0.1s\n","[CV 5/5] END bootstrap=True, max_depth=6, max_features=None, min_samples_leaf=4, min_samples_split=2, n_estimators=20;, score=0.889 total time= 0.1s\n","[CV 1/5] END bootstrap=True, max_depth=6, max_features=None, min_samples_leaf=4, min_samples_split=2, n_estimators=30;, score=0.869 total time= 0.1s\n","[CV 2/5] END bootstrap=True, max_depth=6, max_features=None, min_samples_leaf=4, min_samples_split=2, n_estimators=30;, score=0.879 total time= 0.1s\n","[CV 3/5] END bootstrap=True, max_depth=6, max_features=None, min_samples_leaf=4, min_samples_split=2, n_estimators=30;, score=0.884 total time= 0.1s\n","[CV 4/5] END bootstrap=True, max_depth=6, max_features=None, min_samples_leaf=4, min_samples_split=2, n_estimators=30;, score=0.869 total time= 0.1s\n","[CV 5/5] END bootstrap=True, max_depth=6, max_features=None, min_samples_leaf=4, min_samples_split=2, n_estimators=30;, score=0.869 total time= 0.1s\n","[CV 1/5] END bootstrap=True, max_depth=6, max_features=None, min_samples_leaf=4, min_samples_split=4, n_estimators=5;, score=0.879 total time= 0.0s\n","[CV 2/5] END bootstrap=True, max_depth=6, max_features=None, min_samples_leaf=4, min_samples_split=4, n_estimators=5;, score=0.894 total time= 0.0s\n","[CV 3/5] END bootstrap=True, max_depth=6, max_features=None, min_samples_leaf=4, min_samples_split=4, n_estimators=5;, score=0.869 total time= 0.0s\n","[CV 4/5] END bootstrap=True, max_depth=6, max_features=None, min_samples_leaf=4, min_samples_split=4, n_estimators=5;, score=0.848 total time= 0.0s\n","[CV 5/5] END bootstrap=True, max_depth=6, max_features=None, min_samples_leaf=4, min_samples_split=4, n_estimators=5;, score=0.869 total time= 0.0s\n","[CV 1/5] END bootstrap=True, max_depth=6, max_features=None, min_samples_leaf=4, min_samples_split=4, n_estimators=10;, score=0.884 total time= 0.0s\n","[CV 2/5] END bootstrap=True, max_depth=6, max_features=None, min_samples_leaf=4, min_samples_split=4, n_estimators=10;, score=0.904 total time= 0.0s\n","[CV 3/5] END bootstrap=True, max_depth=6, max_features=None, min_samples_leaf=4, min_samples_split=4, n_estimators=10;, score=0.879 total time= 0.0s\n","[CV 4/5] END bootstrap=True, max_depth=6, max_features=None, min_samples_leaf=4, min_samples_split=4, n_estimators=10;, score=0.864 total time= 0.0s\n","[CV 5/5] END bootstrap=True, max_depth=6, max_features=None, min_samples_leaf=4, min_samples_split=4, n_estimators=10;, score=0.884 total time= 0.0s\n","[CV 1/5] END bootstrap=True, max_depth=6, max_features=None, min_samples_leaf=4, min_samples_split=4, n_estimators=20;, score=0.879 total time= 0.1s\n","[CV 2/5] END bootstrap=True, max_depth=6, max_features=None, min_samples_leaf=4, min_samples_split=4, n_estimators=20;, score=0.874 total time= 0.1s\n","[CV 3/5] END bootstrap=True, max_depth=6, max_features=None, min_samples_leaf=4, min_samples_split=4, n_estimators=20;, score=0.874 total time= 0.1s\n","[CV 4/5] END bootstrap=True, max_depth=6, max_features=None, min_samples_leaf=4, min_samples_split=4, n_estimators=20;, score=0.859 total time= 0.1s\n","[CV 5/5] END bootstrap=True, max_depth=6, max_features=None, min_samples_leaf=4, min_samples_split=4, n_estimators=20;, score=0.899 total time= 0.1s\n","[CV 1/5] END bootstrap=True, max_depth=6, max_features=None, min_samples_leaf=4, min_samples_split=4, n_estimators=30;, score=0.869 total time= 0.1s\n","[CV 2/5] END bootstrap=True, max_depth=6, max_features=None, min_samples_leaf=4, min_samples_split=4, n_estimators=30;, score=0.879 total time= 0.1s\n","[CV 3/5] END bootstrap=True, max_depth=6, max_features=None, min_samples_leaf=4, min_samples_split=4, n_estimators=30;, score=0.874 total time= 0.1s\n","[CV 4/5] END bootstrap=True, max_depth=6, max_features=None, min_samples_leaf=4, min_samples_split=4, n_estimators=30;, score=0.859 total time= 0.1s\n","[CV 5/5] END bootstrap=True, max_depth=6, max_features=None, min_samples_leaf=4, min_samples_split=4, n_estimators=30;, score=0.879 total time= 0.1s\n","[CV 1/5] END bootstrap=True, max_depth=6, max_features=None, min_samples_leaf=4, min_samples_split=6, n_estimators=5;, score=0.884 total time= 0.0s\n","[CV 2/5] END bootstrap=True, max_depth=6, max_features=None, min_samples_leaf=4, min_samples_split=6, n_estimators=5;, score=0.884 total time= 0.0s\n","[CV 3/5] END bootstrap=True, max_depth=6, max_features=None, min_samples_leaf=4, min_samples_split=6, n_estimators=5;, score=0.879 total time= 0.0s\n","[CV 4/5] END bootstrap=True, max_depth=6, max_features=None, min_samples_leaf=4, min_samples_split=6, n_estimators=5;, score=0.838 total time= 0.0s\n","[CV 5/5] END bootstrap=True, max_depth=6, max_features=None, min_samples_leaf=4, min_samples_split=6, n_estimators=5;, score=0.874 total time= 0.0s\n","[CV 1/5] END bootstrap=True, max_depth=6, max_features=None, min_samples_leaf=4, min_samples_split=6, n_estimators=10;, score=0.869 total time= 0.0s\n","[CV 2/5] END bootstrap=True, max_depth=6, max_features=None, min_samples_leaf=4, min_samples_split=6, n_estimators=10;, score=0.874 total time= 0.1s\n","[CV 3/5] END bootstrap=True, max_depth=6, max_features=None, min_samples_leaf=4, min_samples_split=6, n_estimators=10;, score=0.879 total time= 0.0s\n","[CV 4/5] END bootstrap=True, max_depth=6, max_features=None, min_samples_leaf=4, min_samples_split=6, n_estimators=10;, score=0.854 total time= 0.0s\n","[CV 5/5] END bootstrap=True, max_depth=6, max_features=None, min_samples_leaf=4, min_samples_split=6, n_estimators=10;, score=0.899 total time= 0.0s\n","[CV 1/5] END bootstrap=True, max_depth=6, max_features=None, min_samples_leaf=4, min_samples_split=6, n_estimators=20;, score=0.869 total time= 0.1s\n","[CV 2/5] END bootstrap=True, max_depth=6, max_features=None, min_samples_leaf=4, min_samples_split=6, n_estimators=20;, score=0.864 total time= 0.1s\n","[CV 3/5] END bootstrap=True, max_depth=6, max_features=None, min_samples_leaf=4, min_samples_split=6, n_estimators=20;, score=0.884 total time= 0.1s\n","[CV 4/5] END bootstrap=True, max_depth=6, max_features=None, min_samples_leaf=4, min_samples_split=6, n_estimators=20;, score=0.859 total time= 0.1s\n","[CV 5/5] END bootstrap=True, max_depth=6, max_features=None, min_samples_leaf=4, min_samples_split=6, n_estimators=20;, score=0.879 total time= 0.1s\n","[CV 1/5] END bootstrap=True, max_depth=6, max_features=None, min_samples_leaf=4, min_samples_split=6, n_estimators=30;, score=0.854 total time= 0.1s\n","[CV 2/5] END bootstrap=True, max_depth=6, max_features=None, min_samples_leaf=4, min_samples_split=6, n_estimators=30;, score=0.884 total time= 0.1s\n","[CV 3/5] END bootstrap=True, max_depth=6, max_features=None, min_samples_leaf=4, min_samples_split=6, n_estimators=30;, score=0.879 total time= 0.1s\n","[CV 4/5] END bootstrap=True, max_depth=6, max_features=None, min_samples_leaf=4, min_samples_split=6, n_estimators=30;, score=0.874 total time= 0.1s\n","[CV 5/5] END bootstrap=True, max_depth=6, max_features=None, min_samples_leaf=4, min_samples_split=6, n_estimators=30;, score=0.889 total time= 0.2s\n","[CV 1/5] END bootstrap=True, max_depth=6, max_features=None, min_samples_leaf=6, min_samples_split=2, n_estimators=5;, score=0.864 total time= 0.0s\n","[CV 2/5] END bootstrap=True, max_depth=6, max_features=None, min_samples_leaf=6, min_samples_split=2, n_estimators=5;, score=0.874 total time= 0.0s\n","[CV 3/5] END bootstrap=True, max_depth=6, max_features=None, min_samples_leaf=6, min_samples_split=2, n_estimators=5;, score=0.884 total time= 0.0s\n","[CV 4/5] END bootstrap=True, max_depth=6, max_features=None, min_samples_leaf=6, min_samples_split=2, n_estimators=5;, score=0.843 total time= 0.0s\n","[CV 5/5] END bootstrap=True, max_depth=6, max_features=None, min_samples_leaf=6, min_samples_split=2, n_estimators=5;, score=0.894 total time= 0.0s\n","[CV 1/5] END bootstrap=True, max_depth=6, max_features=None, min_samples_leaf=6, min_samples_split=2, n_estimators=10;, score=0.869 total time= 0.1s\n","[CV 2/5] END bootstrap=True, max_depth=6, max_features=None, min_samples_leaf=6, min_samples_split=2, n_estimators=10;, score=0.854 total time= 0.0s\n","[CV 3/5] END bootstrap=True, max_depth=6, max_features=None, min_samples_leaf=6, min_samples_split=2, n_estimators=10;, score=0.884 total time= 0.1s\n","[CV 4/5] END bootstrap=True, max_depth=6, max_features=None, min_samples_leaf=6, min_samples_split=2, n_estimators=10;, score=0.859 total time= 0.1s\n","[CV 5/5] END bootstrap=True, max_depth=6, max_features=None, min_samples_leaf=6, min_samples_split=2, n_estimators=10;, score=0.864 total time= 0.1s\n","[CV 1/5] END bootstrap=True, max_depth=6, max_features=None, min_samples_leaf=6, min_samples_split=2, n_estimators=20;, score=0.894 total time= 0.1s\n","[CV 2/5] END bootstrap=True, max_depth=6, max_features=None, min_samples_leaf=6, min_samples_split=2, n_estimators=20;, score=0.889 total time= 0.1s\n","[CV 3/5] END bootstrap=True, max_depth=6, max_features=None, min_samples_leaf=6, min_samples_split=2, n_estimators=20;, score=0.879 total time= 0.1s\n","[CV 4/5] END bootstrap=True, max_depth=6, max_features=None, min_samples_leaf=6, min_samples_split=2, n_estimators=20;, score=0.854 total time= 0.1s\n","[CV 5/5] END bootstrap=True, max_depth=6, max_features=None, min_samples_leaf=6, min_samples_split=2, n_estimators=20;, score=0.884 total time= 0.1s\n","[CV 1/5] END bootstrap=True, max_depth=6, max_features=None, min_samples_leaf=6, min_samples_split=2, n_estimators=30;, score=0.869 total time= 0.2s\n","[CV 2/5] END bootstrap=True, max_depth=6, max_features=None, min_samples_leaf=6, min_samples_split=2, n_estimators=30;, score=0.879 total time= 0.1s\n","[CV 3/5] END bootstrap=True, max_depth=6, max_features=None, min_samples_leaf=6, min_samples_split=2, n_estimators=30;, score=0.869 total time= 0.1s\n","[CV 4/5] END bootstrap=True, max_depth=6, max_features=None, min_samples_leaf=6, min_samples_split=2, n_estimators=30;, score=0.843 total time= 0.1s\n","[CV 5/5] END bootstrap=True, max_depth=6, max_features=None, min_samples_leaf=6, min_samples_split=2, n_estimators=30;, score=0.869 total time= 0.1s\n","[CV 1/5] END bootstrap=True, max_depth=6, max_features=None, min_samples_leaf=6, min_samples_split=4, n_estimators=5;, score=0.859 total time= 0.0s\n","[CV 2/5] END bootstrap=True, max_depth=6, max_features=None, min_samples_leaf=6, min_samples_split=4, n_estimators=5;, score=0.884 total time= 0.0s\n","[CV 3/5] END bootstrap=True, max_depth=6, max_features=None, min_samples_leaf=6, min_samples_split=4, n_estimators=5;, score=0.879 total time= 0.0s\n","[CV 4/5] END bootstrap=True, max_depth=6, max_features=None, min_samples_leaf=6, min_samples_split=4, n_estimators=5;, score=0.838 total time= 0.0s\n","[CV 5/5] END bootstrap=True, max_depth=6, max_features=None, min_samples_leaf=6, min_samples_split=4, n_estimators=5;, score=0.894 total time= 0.0s\n","[CV 1/5] END bootstrap=True, max_depth=6, max_features=None, min_samples_leaf=6, min_samples_split=4, n_estimators=10;, score=0.869 total time= 0.0s\n","[CV 2/5] END bootstrap=True, max_depth=6, max_features=None, min_samples_leaf=6, min_samples_split=4, n_estimators=10;, score=0.874 total time= 0.0s\n","[CV 3/5] END bootstrap=True, max_depth=6, max_features=None, min_samples_leaf=6, min_samples_split=4, n_estimators=10;, score=0.879 total time= 0.0s\n","[CV 4/5] END bootstrap=True, max_depth=6, max_features=None, min_samples_leaf=6, min_samples_split=4, n_estimators=10;, score=0.859 total time= 0.0s\n","[CV 5/5] END bootstrap=True, max_depth=6, max_features=None, min_samples_leaf=6, min_samples_split=4, n_estimators=10;, score=0.869 total time= 0.0s\n","[CV 1/5] END bootstrap=True, max_depth=6, max_features=None, min_samples_leaf=6, min_samples_split=4, n_estimators=20;, score=0.869 total time= 0.1s\n","[CV 2/5] END bootstrap=True, max_depth=6, max_features=None, min_samples_leaf=6, min_samples_split=4, n_estimators=20;, score=0.874 total time= 0.1s\n","[CV 3/5] END bootstrap=True, max_depth=6, max_features=None, min_samples_leaf=6, min_samples_split=4, n_estimators=20;, score=0.884 total time= 0.1s\n","[CV 4/5] END bootstrap=True, max_depth=6, max_features=None, min_samples_leaf=6, min_samples_split=4, n_estimators=20;, score=0.848 total time= 0.1s\n","[CV 5/5] END bootstrap=True, max_depth=6, max_features=None, min_samples_leaf=6, min_samples_split=4, n_estimators=20;, score=0.899 total time= 0.1s\n","[CV 1/5] END bootstrap=True, max_depth=6, max_features=None, min_samples_leaf=6, min_samples_split=4, n_estimators=30;, score=0.879 total time= 0.1s\n","[CV 2/5] END bootstrap=True, max_depth=6, max_features=None, min_samples_leaf=6, min_samples_split=4, n_estimators=30;, score=0.884 total time= 0.1s\n","[CV 3/5] END bootstrap=True, max_depth=6, max_features=None, min_samples_leaf=6, min_samples_split=4, n_estimators=30;, score=0.874 total time= 0.1s\n","[CV 4/5] END bootstrap=True, max_depth=6, max_features=None, min_samples_leaf=6, min_samples_split=4, n_estimators=30;, score=0.848 total time= 0.1s\n","[CV 5/5] END bootstrap=True, max_depth=6, max_features=None, min_samples_leaf=6, min_samples_split=4, n_estimators=30;, score=0.889 total time= 0.1s\n","[CV 1/5] END bootstrap=True, max_depth=6, max_features=None, min_samples_leaf=6, min_samples_split=6, n_estimators=5;, score=0.859 total time= 0.0s\n","[CV 2/5] END bootstrap=True, max_depth=6, max_features=None, min_samples_leaf=6, min_samples_split=6, n_estimators=5;, score=0.864 total time= 0.0s\n","[CV 3/5] END bootstrap=True, max_depth=6, max_features=None, min_samples_leaf=6, min_samples_split=6, n_estimators=5;, score=0.899 total time= 0.0s\n","[CV 4/5] END bootstrap=True, max_depth=6, max_features=None, min_samples_leaf=6, min_samples_split=6, n_estimators=5;, score=0.884 total time= 0.0s\n","[CV 5/5] END bootstrap=True, max_depth=6, max_features=None, min_samples_leaf=6, min_samples_split=6, n_estimators=5;, score=0.879 total time= 0.0s\n","[CV 1/5] END bootstrap=True, max_depth=6, max_features=None, min_samples_leaf=6, min_samples_split=6, n_estimators=10;, score=0.854 total time= 0.0s\n","[CV 2/5] END bootstrap=True, max_depth=6, max_features=None, min_samples_leaf=6, min_samples_split=6, n_estimators=10;, score=0.879 total time= 0.0s\n","[CV 3/5] END bootstrap=True, max_depth=6, max_features=None, min_samples_leaf=6, min_samples_split=6, n_estimators=10;, score=0.894 total time= 0.0s\n","[CV 4/5] END bootstrap=True, max_depth=6, max_features=None, min_samples_leaf=6, min_samples_split=6, n_estimators=10;, score=0.864 total time= 0.0s\n","[CV 5/5] END bootstrap=True, max_depth=6, max_features=None, min_samples_leaf=6, min_samples_split=6, n_estimators=10;, score=0.874 total time= 0.0s\n","[CV 1/5] END bootstrap=True, max_depth=6, max_features=None, min_samples_leaf=6, min_samples_split=6, n_estimators=20;, score=0.869 total time= 0.1s\n","[CV 2/5] END bootstrap=True, max_depth=6, max_features=None, min_samples_leaf=6, min_samples_split=6, n_estimators=20;, score=0.874 total time= 0.1s\n","[CV 3/5] END bootstrap=True, max_depth=6, max_features=None, min_samples_leaf=6, min_samples_split=6, n_estimators=20;, score=0.889 total time= 0.1s\n","[CV 4/5] END bootstrap=True, max_depth=6, max_features=None, min_samples_leaf=6, min_samples_split=6, n_estimators=20;, score=0.848 total time= 0.1s\n","[CV 5/5] END bootstrap=True, max_depth=6, max_features=None, min_samples_leaf=6, min_samples_split=6, n_estimators=20;, score=0.874 total time= 0.1s\n","[CV 1/5] END bootstrap=True, max_depth=6, max_features=None, min_samples_leaf=6, min_samples_split=6, n_estimators=30;, score=0.859 total time= 0.1s\n","[CV 2/5] END bootstrap=True, max_depth=6, max_features=None, min_samples_leaf=6, min_samples_split=6, n_estimators=30;, score=0.879 total time= 0.1s\n","[CV 3/5] END bootstrap=True, max_depth=6, max_features=None, min_samples_leaf=6, min_samples_split=6, n_estimators=30;, score=0.879 total time= 0.1s\n","[CV 4/5] END bootstrap=True, max_depth=6, max_features=None, min_samples_leaf=6, min_samples_split=6, n_estimators=30;, score=0.854 total time= 0.1s\n","[CV 5/5] END bootstrap=True, max_depth=6, max_features=None, min_samples_leaf=6, min_samples_split=6, n_estimators=30;, score=0.879 total time= 0.1s\n","[CV 1/5] END bootstrap=True, max_depth=10, max_features=sqrt, min_samples_leaf=2, min_samples_split=2, n_estimators=5;, score=0.884 total time= 0.0s\n","[CV 2/5] END bootstrap=True, max_depth=10, max_features=sqrt, min_samples_leaf=2, min_samples_split=2, n_estimators=5;, score=0.879 total time= 0.0s\n","[CV 3/5] END bootstrap=True, max_depth=10, max_features=sqrt, min_samples_leaf=2, min_samples_split=2, n_estimators=5;, score=0.869 total time= 0.0s\n","[CV 4/5] END bootstrap=True, max_depth=10, max_features=sqrt, min_samples_leaf=2, min_samples_split=2, n_estimators=5;, score=0.838 total time= 0.0s\n","[CV 5/5] END bootstrap=True, max_depth=10, max_features=sqrt, min_samples_leaf=2, min_samples_split=2, n_estimators=5;, score=0.869 total time= 0.0s\n","[CV 1/5] END bootstrap=True, max_depth=10, max_features=sqrt, min_samples_leaf=2, min_samples_split=2, n_estimators=10;, score=0.879 total time= 0.0s\n","[CV 2/5] END bootstrap=True, max_depth=10, max_features=sqrt, min_samples_leaf=2, min_samples_split=2, n_estimators=10;, score=0.899 total time= 0.0s\n","[CV 3/5] END bootstrap=True, max_depth=10, max_features=sqrt, min_samples_leaf=2, min_samples_split=2, n_estimators=10;, score=0.884 total time= 0.0s\n","[CV 4/5] END bootstrap=True, max_depth=10, max_features=sqrt, min_samples_leaf=2, min_samples_split=2, n_estimators=10;, score=0.843 total time= 0.0s\n","[CV 5/5] END bootstrap=True, max_depth=10, max_features=sqrt, min_samples_leaf=2, min_samples_split=2, n_estimators=10;, score=0.869 total time= 0.0s\n","[CV 1/5] END bootstrap=True, max_depth=10, max_features=sqrt, min_samples_leaf=2, min_samples_split=2, n_estimators=20;, score=0.884 total time= 0.0s\n","[CV 2/5] END bootstrap=True, max_depth=10, max_features=sqrt, min_samples_leaf=2, min_samples_split=2, n_estimators=20;, score=0.889 total time= 0.0s\n","[CV 3/5] END bootstrap=True, max_depth=10, max_features=sqrt, min_samples_leaf=2, min_samples_split=2, n_estimators=20;, score=0.879 total time= 0.0s\n","[CV 4/5] END bootstrap=True, max_depth=10, max_features=sqrt, min_samples_leaf=2, min_samples_split=2, n_estimators=20;, score=0.854 total time= 0.0s\n","[CV 5/5] END bootstrap=True, max_depth=10, max_features=sqrt, min_samples_leaf=2, min_samples_split=2, n_estimators=20;, score=0.894 total time= 0.1s\n","[CV 1/5] END bootstrap=True, max_depth=10, max_features=sqrt, min_samples_leaf=2, min_samples_split=2, n_estimators=30;, score=0.864 total time= 0.1s\n","[CV 2/5] END bootstrap=True, max_depth=10, max_features=sqrt, min_samples_leaf=2, min_samples_split=2, n_estimators=30;, score=0.879 total time= 0.1s\n","[CV 3/5] END bootstrap=True, max_depth=10, max_features=sqrt, min_samples_leaf=2, min_samples_split=2, n_estimators=30;, score=0.874 total time= 0.1s\n","[CV 4/5] END bootstrap=True, max_depth=10, max_features=sqrt, min_samples_leaf=2, min_samples_split=2, n_estimators=30;, score=0.874 total time= 0.1s\n","[CV 5/5] END bootstrap=True, max_depth=10, max_features=sqrt, min_samples_leaf=2, min_samples_split=2, n_estimators=30;, score=0.869 total time= 0.1s\n","[CV 1/5] END bootstrap=True, max_depth=10, max_features=sqrt, min_samples_leaf=2, min_samples_split=4, n_estimators=5;, score=0.894 total time= 0.0s\n","[CV 2/5] END bootstrap=True, max_depth=10, max_features=sqrt, min_samples_leaf=2, min_samples_split=4, n_estimators=5;, score=0.904 total time= 0.0s\n","[CV 3/5] END bootstrap=True, max_depth=10, max_features=sqrt, min_samples_leaf=2, min_samples_split=4, n_estimators=5;, score=0.879 total time= 0.0s\n","[CV 4/5] END bootstrap=True, max_depth=10, max_features=sqrt, min_samples_leaf=2, min_samples_split=4, n_estimators=5;, score=0.859 total time= 0.0s\n","[CV 5/5] END bootstrap=True, max_depth=10, max_features=sqrt, min_samples_leaf=2, min_samples_split=4, n_estimators=5;, score=0.894 total time= 0.0s\n","[CV 1/5] END bootstrap=True, max_depth=10, max_features=sqrt, min_samples_leaf=2, min_samples_split=4, n_estimators=10;, score=0.864 total time= 0.0s\n","[CV 2/5] END bootstrap=True, max_depth=10, max_features=sqrt, min_samples_leaf=2, min_samples_split=4, n_estimators=10;, score=0.874 total time= 0.0s\n","[CV 3/5] END bootstrap=True, max_depth=10, max_features=sqrt, min_samples_leaf=2, min_samples_split=4, n_estimators=10;, score=0.869 total time= 0.0s\n","[CV 4/5] END bootstrap=True, max_depth=10, max_features=sqrt, min_samples_leaf=2, min_samples_split=4, n_estimators=10;, score=0.874 total time= 0.0s\n","[CV 5/5] END bootstrap=True, max_depth=10, max_features=sqrt, min_samples_leaf=2, min_samples_split=4, n_estimators=10;, score=0.909 total time= 0.0s\n","[CV 1/5] END bootstrap=True, max_depth=10, max_features=sqrt, min_samples_leaf=2, min_samples_split=4, n_estimators=20;, score=0.884 total time= 0.0s\n","[CV 2/5] END bootstrap=True, max_depth=10, max_features=sqrt, min_samples_leaf=2, min_samples_split=4, n_estimators=20;, score=0.874 total time= 0.0s\n","[CV 3/5] END bootstrap=True, max_depth=10, max_features=sqrt, min_samples_leaf=2, min_samples_split=4, n_estimators=20;, score=0.879 total time= 0.0s\n","[CV 4/5] END bootstrap=True, max_depth=10, max_features=sqrt, min_samples_leaf=2, min_samples_split=4, n_estimators=20;, score=0.874 total time= 0.0s\n","[CV 5/5] END bootstrap=True, max_depth=10, max_features=sqrt, min_samples_leaf=2, min_samples_split=4, n_estimators=20;, score=0.884 total time= 0.0s\n","[CV 1/5] END bootstrap=True, max_depth=10, max_features=sqrt, min_samples_leaf=2, min_samples_split=4, n_estimators=30;, score=0.904 total time= 0.1s\n","[CV 2/5] END bootstrap=True, max_depth=10, max_features=sqrt, min_samples_leaf=2, min_samples_split=4, n_estimators=30;, score=0.889 total time= 0.1s\n","[CV 3/5] END bootstrap=True, max_depth=10, max_features=sqrt, min_samples_leaf=2, min_samples_split=4, n_estimators=30;, score=0.889 total time= 0.1s\n","[CV 4/5] END bootstrap=True, max_depth=10, max_features=sqrt, min_samples_leaf=2, min_samples_split=4, n_estimators=30;, score=0.843 total time= 0.1s\n","[CV 5/5] END bootstrap=True, max_depth=10, max_features=sqrt, min_samples_leaf=2, min_samples_split=4, n_estimators=30;, score=0.894 total time= 0.1s\n","[CV 1/5] END bootstrap=True, max_depth=10, max_features=sqrt, min_samples_leaf=2, min_samples_split=6, n_estimators=5;, score=0.864 total time= 0.0s\n","[CV 2/5] END bootstrap=True, max_depth=10, max_features=sqrt, min_samples_leaf=2, min_samples_split=6, n_estimators=5;, score=0.889 total time= 0.0s\n","[CV 3/5] END bootstrap=True, max_depth=10, max_features=sqrt, min_samples_leaf=2, min_samples_split=6, n_estimators=5;, score=0.899 total time= 0.0s\n","[CV 4/5] END bootstrap=True, max_depth=10, max_features=sqrt, min_samples_leaf=2, min_samples_split=6, n_estimators=5;, score=0.848 total time= 0.0s\n","[CV 5/5] END bootstrap=True, max_depth=10, max_features=sqrt, min_samples_leaf=2, min_samples_split=6, n_estimators=5;, score=0.889 total time= 0.0s\n","[CV 1/5] END bootstrap=True, max_depth=10, max_features=sqrt, min_samples_leaf=2, min_samples_split=6, n_estimators=10;, score=0.874 total time= 0.0s\n","[CV 2/5] END bootstrap=True, max_depth=10, max_features=sqrt, min_samples_leaf=2, min_samples_split=6, n_estimators=10;, score=0.899 total time= 0.0s\n","[CV 3/5] END bootstrap=True, max_depth=10, max_features=sqrt, min_samples_leaf=2, min_samples_split=6, n_estimators=10;, score=0.869 total time= 0.0s\n","[CV 4/5] END bootstrap=True, max_depth=10, max_features=sqrt, min_samples_leaf=2, min_samples_split=6, n_estimators=10;, score=0.859 total time= 0.0s\n","[CV 5/5] END bootstrap=True, max_depth=10, max_features=sqrt, min_samples_leaf=2, min_samples_split=6, n_estimators=10;, score=0.884 total time= 0.0s\n","[CV 1/5] END bootstrap=True, max_depth=10, max_features=sqrt, min_samples_leaf=2, min_samples_split=6, n_estimators=20;, score=0.869 total time= 0.0s\n","[CV 2/5] END bootstrap=True, max_depth=10, max_features=sqrt, min_samples_leaf=2, min_samples_split=6, n_estimators=20;, score=0.899 total time= 0.0s\n","[CV 3/5] END bootstrap=True, max_depth=10, max_features=sqrt, min_samples_leaf=2, min_samples_split=6, n_estimators=20;, score=0.874 total time= 0.0s\n","[CV 4/5] END bootstrap=True, max_depth=10, max_features=sqrt, min_samples_leaf=2, min_samples_split=6, n_estimators=20;, score=0.833 total time= 0.0s\n","[CV 5/5] END bootstrap=True, max_depth=10, max_features=sqrt, min_samples_leaf=2, min_samples_split=6, n_estimators=20;, score=0.889 total time= 0.0s\n","[CV 1/5] END bootstrap=True, max_depth=10, max_features=sqrt, min_samples_leaf=2, min_samples_split=6, n_estimators=30;, score=0.859 total time= 0.1s\n","[CV 2/5] END bootstrap=True, max_depth=10, max_features=sqrt, min_samples_leaf=2, min_samples_split=6, n_estimators=30;, score=0.889 total time= 0.1s\n","[CV 3/5] END bootstrap=True, max_depth=10, max_features=sqrt, min_samples_leaf=2, min_samples_split=6, n_estimators=30;, score=0.874 total time= 0.1s\n","[CV 4/5] END bootstrap=True, max_depth=10, max_features=sqrt, min_samples_leaf=2, min_samples_split=6, n_estimators=30;, score=0.833 total time= 0.1s\n","[CV 5/5] END bootstrap=True, max_depth=10, max_features=sqrt, min_samples_leaf=2, min_samples_split=6, n_estimators=30;, score=0.869 total time= 0.1s\n","[CV 1/5] END bootstrap=True, max_depth=10, max_features=sqrt, min_samples_leaf=4, min_samples_split=2, n_estimators=5;, score=0.874 total time= 0.0s\n","[CV 2/5] END bootstrap=True, max_depth=10, max_features=sqrt, min_samples_leaf=4, min_samples_split=2, n_estimators=5;, score=0.874 total time= 0.0s\n","[CV 3/5] END bootstrap=True, max_depth=10, max_features=sqrt, min_samples_leaf=4, min_samples_split=2, n_estimators=5;, score=0.889 total time= 0.0s\n","[CV 4/5] END bootstrap=True, max_depth=10, max_features=sqrt, min_samples_leaf=4, min_samples_split=2, n_estimators=5;, score=0.843 total time= 0.0s\n","[CV 5/5] END bootstrap=True, max_depth=10, max_features=sqrt, min_samples_leaf=4, min_samples_split=2, n_estimators=5;, score=0.899 total time= 0.0s\n","[CV 1/5] END bootstrap=True, max_depth=10, max_features=sqrt, min_samples_leaf=4, min_samples_split=2, n_estimators=10;, score=0.869 total time= 0.0s\n","[CV 2/5] END bootstrap=True, max_depth=10, max_features=sqrt, min_samples_leaf=4, min_samples_split=2, n_estimators=10;, score=0.894 total time= 0.0s\n","[CV 3/5] END bootstrap=True, max_depth=10, max_features=sqrt, min_samples_leaf=4, min_samples_split=2, n_estimators=10;, score=0.894 total time= 0.0s\n","[CV 4/5] END bootstrap=True, max_depth=10, max_features=sqrt, min_samples_leaf=4, min_samples_split=2, n_estimators=10;, score=0.869 total time= 0.0s\n","[CV 5/5] END bootstrap=True, max_depth=10, max_features=sqrt, min_samples_leaf=4, min_samples_split=2, n_estimators=10;, score=0.874 total time= 0.0s\n","[CV 1/5] END bootstrap=True, max_depth=10, max_features=sqrt, min_samples_leaf=4, min_samples_split=2, n_estimators=20;, score=0.879 total time= 0.0s\n","[CV 2/5] END bootstrap=True, max_depth=10, max_features=sqrt, min_samples_leaf=4, min_samples_split=2, n_estimators=20;, score=0.884 total time= 0.0s\n","[CV 3/5] END bootstrap=True, max_depth=10, max_features=sqrt, min_samples_leaf=4, min_samples_split=2, n_estimators=20;, score=0.889 total time= 0.1s\n","[CV 4/5] END bootstrap=True, max_depth=10, max_features=sqrt, min_samples_leaf=4, min_samples_split=2, n_estimators=20;, score=0.869 total time= 0.1s\n","[CV 5/5] END bootstrap=True, max_depth=10, max_features=sqrt, min_samples_leaf=4, min_samples_split=2, n_estimators=20;, score=0.869 total time= 0.0s\n","[CV 1/5] END bootstrap=True, max_depth=10, max_features=sqrt, min_samples_leaf=4, min_samples_split=2, n_estimators=30;, score=0.884 total time= 0.1s\n","[CV 2/5] END bootstrap=True, max_depth=10, max_features=sqrt, min_samples_leaf=4, min_samples_split=2, n_estimators=30;, score=0.894 total time= 0.1s\n","[CV 3/5] END bootstrap=True, max_depth=10, max_features=sqrt, min_samples_leaf=4, min_samples_split=2, n_estimators=30;, score=0.874 total time= 0.1s\n","[CV 4/5] END bootstrap=True, max_depth=10, max_features=sqrt, min_samples_leaf=4, min_samples_split=2, n_estimators=30;, score=0.859 total time= 0.1s\n","[CV 5/5] END bootstrap=True, max_depth=10, max_features=sqrt, min_samples_leaf=4, min_samples_split=2, n_estimators=30;, score=0.874 total time= 0.1s\n","[CV 1/5] END bootstrap=True, max_depth=10, max_features=sqrt, min_samples_leaf=4, min_samples_split=4, n_estimators=5;, score=0.869 total time= 0.0s\n","[CV 2/5] END bootstrap=True, max_depth=10, max_features=sqrt, min_samples_leaf=4, min_samples_split=4, n_estimators=5;, score=0.874 total time= 0.0s\n","[CV 3/5] END bootstrap=True, max_depth=10, max_features=sqrt, min_samples_leaf=4, min_samples_split=4, n_estimators=5;, score=0.869 total time= 0.0s\n","[CV 4/5] END bootstrap=True, max_depth=10, max_features=sqrt, min_samples_leaf=4, min_samples_split=4, n_estimators=5;, score=0.833 total time= 0.0s\n","[CV 5/5] END bootstrap=True, max_depth=10, max_features=sqrt, min_samples_leaf=4, min_samples_split=4, n_estimators=5;, score=0.874 total time= 0.0s\n","[CV 1/5] END bootstrap=True, max_depth=10, max_features=sqrt, min_samples_leaf=4, min_samples_split=4, n_estimators=10;, score=0.884 total time= 0.0s\n","[CV 2/5] END bootstrap=True, max_depth=10, max_features=sqrt, min_samples_leaf=4, min_samples_split=4, n_estimators=10;, score=0.874 total time= 0.0s\n","[CV 3/5] END bootstrap=True, max_depth=10, max_features=sqrt, min_samples_leaf=4, min_samples_split=4, n_estimators=10;, score=0.879 total time= 0.0s\n","[CV 4/5] END bootstrap=True, max_depth=10, max_features=sqrt, min_samples_leaf=4, min_samples_split=4, n_estimators=10;, score=0.874 total time= 0.0s\n","[CV 5/5] END bootstrap=True, max_depth=10, max_features=sqrt, min_samples_leaf=4, min_samples_split=4, n_estimators=10;, score=0.894 total time= 0.0s\n","[CV 1/5] END bootstrap=True, max_depth=10, max_features=sqrt, min_samples_leaf=4, min_samples_split=4, n_estimators=20;, score=0.879 total time= 0.1s\n","[CV 2/5] END bootstrap=True, max_depth=10, max_features=sqrt, min_samples_leaf=4, min_samples_split=4, n_estimators=20;, score=0.894 total time= 0.1s\n","[CV 3/5] END bootstrap=True, max_depth=10, max_features=sqrt, min_samples_leaf=4, min_samples_split=4, n_estimators=20;, score=0.874 total time= 0.0s\n","[CV 4/5] END bootstrap=True, max_depth=10, max_features=sqrt, min_samples_leaf=4, min_samples_split=4, n_estimators=20;, score=0.848 total time= 0.0s\n","[CV 5/5] END bootstrap=True, max_depth=10, max_features=sqrt, min_samples_leaf=4, min_samples_split=4, n_estimators=20;, score=0.889 total time= 0.0s\n","[CV 1/5] END bootstrap=True, max_depth=10, max_features=sqrt, min_samples_leaf=4, min_samples_split=4, n_estimators=30;, score=0.879 total time= 0.1s\n","[CV 2/5] END bootstrap=True, max_depth=10, max_features=sqrt, min_samples_leaf=4, min_samples_split=4, n_estimators=30;, score=0.874 total time= 0.1s\n","[CV 3/5] END bootstrap=True, max_depth=10, max_features=sqrt, min_samples_leaf=4, min_samples_split=4, n_estimators=30;, score=0.884 total time= 0.1s\n","[CV 4/5] END bootstrap=True, max_depth=10, max_features=sqrt, min_samples_leaf=4, min_samples_split=4, n_estimators=30;, score=0.864 total time= 0.1s\n","[CV 5/5] END bootstrap=True, max_depth=10, max_features=sqrt, min_samples_leaf=4, min_samples_split=4, n_estimators=30;, score=0.884 total time= 0.1s\n","[CV 1/5] END bootstrap=True, max_depth=10, max_features=sqrt, min_samples_leaf=4, min_samples_split=6, n_estimators=5;, score=0.874 total time= 0.0s\n","[CV 2/5] END bootstrap=True, max_depth=10, max_features=sqrt, min_samples_leaf=4, min_samples_split=6, n_estimators=5;, score=0.884 total time= 0.0s\n","[CV 3/5] END bootstrap=True, max_depth=10, max_features=sqrt, min_samples_leaf=4, min_samples_split=6, n_estimators=5;, score=0.879 total time= 0.0s\n","[CV 4/5] END bootstrap=True, max_depth=10, max_features=sqrt, min_samples_leaf=4, min_samples_split=6, n_estimators=5;, score=0.879 total time= 0.0s\n","[CV 5/5] END bootstrap=True, max_depth=10, max_features=sqrt, min_samples_leaf=4, min_samples_split=6, n_estimators=5;, score=0.889 total time= 0.0s\n","[CV 1/5] END bootstrap=True, max_depth=10, max_features=sqrt, min_samples_leaf=4, min_samples_split=6, n_estimators=10;, score=0.869 total time= 0.0s\n","[CV 2/5] END bootstrap=True, max_depth=10, max_features=sqrt, min_samples_leaf=4, min_samples_split=6, n_estimators=10;, score=0.874 total time= 0.0s\n","[CV 3/5] END bootstrap=True, max_depth=10, max_features=sqrt, min_samples_leaf=4, min_samples_split=6, n_estimators=10;, score=0.864 total time= 0.0s\n","[CV 4/5] END bootstrap=True, max_depth=10, max_features=sqrt, min_samples_leaf=4, min_samples_split=6, n_estimators=10;, score=0.864 total time= 0.0s\n","[CV 5/5] END bootstrap=True, max_depth=10, max_features=sqrt, min_samples_leaf=4, min_samples_split=6, n_estimators=10;, score=0.884 total time= 0.0s\n","[CV 1/5] END bootstrap=True, max_depth=10, max_features=sqrt, min_samples_leaf=4, min_samples_split=6, n_estimators=20;, score=0.879 total time= 0.0s\n","[CV 2/5] END bootstrap=True, max_depth=10, max_features=sqrt, min_samples_leaf=4, min_samples_split=6, n_estimators=20;, score=0.899 total time= 0.0s\n","[CV 3/5] END bootstrap=True, max_depth=10, max_features=sqrt, min_samples_leaf=4, min_samples_split=6, n_estimators=20;, score=0.874 total time= 0.1s\n","[CV 4/5] END bootstrap=True, max_depth=10, max_features=sqrt, min_samples_leaf=4, min_samples_split=6, n_estimators=20;, score=0.874 total time= 0.0s\n","[CV 5/5] END bootstrap=True, max_depth=10, max_features=sqrt, min_samples_leaf=4, min_samples_split=6, n_estimators=20;, score=0.879 total time= 0.0s\n","[CV 1/5] END bootstrap=True, max_depth=10, max_features=sqrt, min_samples_leaf=4, min_samples_split=6, n_estimators=30;, score=0.843 total time= 0.1s\n","[CV 2/5] END bootstrap=True, max_depth=10, max_features=sqrt, min_samples_leaf=4, min_samples_split=6, n_estimators=30;, score=0.864 total time= 0.1s\n","[CV 3/5] END bootstrap=True, max_depth=10, max_features=sqrt, min_samples_leaf=4, min_samples_split=6, n_estimators=30;, score=0.869 total time= 0.1s\n","[CV 4/5] END bootstrap=True, max_depth=10, max_features=sqrt, min_samples_leaf=4, min_samples_split=6, n_estimators=30;, score=0.859 total time= 0.1s\n","[CV 5/5] END bootstrap=True, max_depth=10, max_features=sqrt, min_samples_leaf=4, min_samples_split=6, n_estimators=30;, score=0.904 total time= 0.1s\n","[CV 1/5] END bootstrap=True, max_depth=10, max_features=sqrt, min_samples_leaf=6, min_samples_split=2, n_estimators=5;, score=0.869 total time= 0.0s\n","[CV 2/5] END bootstrap=True, max_depth=10, max_features=sqrt, min_samples_leaf=6, min_samples_split=2, n_estimators=5;, score=0.884 total time= 0.0s\n","[CV 3/5] END bootstrap=True, max_depth=10, max_features=sqrt, min_samples_leaf=6, min_samples_split=2, n_estimators=5;, score=0.899 total time= 0.0s\n","[CV 4/5] END bootstrap=True, max_depth=10, max_features=sqrt, min_samples_leaf=6, min_samples_split=2, n_estimators=5;, score=0.854 total time= 0.0s\n","[CV 5/5] END bootstrap=True, max_depth=10, max_features=sqrt, min_samples_leaf=6, min_samples_split=2, n_estimators=5;, score=0.899 total time= 0.0s\n","[CV 1/5] END bootstrap=True, max_depth=10, max_features=sqrt, min_samples_leaf=6, min_samples_split=2, n_estimators=10;, score=0.869 total time= 0.0s\n","[CV 2/5] END bootstrap=True, max_depth=10, max_features=sqrt, min_samples_leaf=6, min_samples_split=2, n_estimators=10;, score=0.879 total time= 0.0s\n","[CV 3/5] END bootstrap=True, max_depth=10, max_features=sqrt, min_samples_leaf=6, min_samples_split=2, n_estimators=10;, score=0.884 total time= 0.0s\n","[CV 4/5] END bootstrap=True, max_depth=10, max_features=sqrt, min_samples_leaf=6, min_samples_split=2, n_estimators=10;, score=0.884 total time= 0.0s\n","[CV 5/5] END bootstrap=True, max_depth=10, max_features=sqrt, min_samples_leaf=6, min_samples_split=2, n_estimators=10;, score=0.889 total time= 0.0s\n","[CV 1/5] END bootstrap=True, max_depth=10, max_features=sqrt, min_samples_leaf=6, min_samples_split=2, n_estimators=20;, score=0.864 total time= 0.0s\n","[CV 2/5] END bootstrap=True, max_depth=10, max_features=sqrt, min_samples_leaf=6, min_samples_split=2, n_estimators=20;, score=0.869 total time= 0.0s\n","[CV 3/5] END bootstrap=True, max_depth=10, max_features=sqrt, min_samples_leaf=6, min_samples_split=2, n_estimators=20;, score=0.894 total time= 0.0s\n","[CV 4/5] END bootstrap=True, max_depth=10, max_features=sqrt, min_samples_leaf=6, min_samples_split=2, n_estimators=20;, score=0.848 total time= 0.0s\n","[CV 5/5] END bootstrap=True, max_depth=10, max_features=sqrt, min_samples_leaf=6, min_samples_split=2, n_estimators=20;, score=0.874 total time= 0.0s\n","[CV 1/5] END bootstrap=True, max_depth=10, max_features=sqrt, min_samples_leaf=6, min_samples_split=2, n_estimators=30;, score=0.874 total time= 0.1s\n","[CV 2/5] END bootstrap=True, max_depth=10, max_features=sqrt, min_samples_leaf=6, min_samples_split=2, n_estimators=30;, score=0.884 total time= 0.1s\n","[CV 3/5] END bootstrap=True, max_depth=10, max_features=sqrt, min_samples_leaf=6, min_samples_split=2, n_estimators=30;, score=0.894 total time= 0.1s\n","[CV 4/5] END bootstrap=True, max_depth=10, max_features=sqrt, min_samples_leaf=6, min_samples_split=2, n_estimators=30;, score=0.864 total time= 0.1s\n","[CV 5/5] END bootstrap=True, max_depth=10, max_features=sqrt, min_samples_leaf=6, min_samples_split=2, n_estimators=30;, score=0.894 total time= 0.1s\n","[CV 1/5] END bootstrap=True, max_depth=10, max_features=sqrt, min_samples_leaf=6, min_samples_split=4, n_estimators=5;, score=0.884 total time= 0.0s\n","[CV 2/5] END bootstrap=True, max_depth=10, max_features=sqrt, min_samples_leaf=6, min_samples_split=4, n_estimators=5;, score=0.889 total time= 0.0s\n","[CV 3/5] END bootstrap=True, max_depth=10, max_features=sqrt, min_samples_leaf=6, min_samples_split=4, n_estimators=5;, score=0.874 total time= 0.0s\n","[CV 4/5] END bootstrap=True, max_depth=10, max_features=sqrt, min_samples_leaf=6, min_samples_split=4, n_estimators=5;, score=0.879 total time= 0.0s\n","[CV 5/5] END bootstrap=True, max_depth=10, max_features=sqrt, min_samples_leaf=6, min_samples_split=4, n_estimators=5;, score=0.879 total time= 0.0s\n","[CV 1/5] END bootstrap=True, max_depth=10, max_features=sqrt, min_samples_leaf=6, min_samples_split=4, n_estimators=10;, score=0.874 total time= 0.0s\n","[CV 2/5] END bootstrap=True, max_depth=10, max_features=sqrt, min_samples_leaf=6, min_samples_split=4, n_estimators=10;, score=0.874 total time= 0.0s\n","[CV 3/5] END bootstrap=True, max_depth=10, max_features=sqrt, min_samples_leaf=6, min_samples_split=4, n_estimators=10;, score=0.884 total time= 0.0s\n","[CV 4/5] END bootstrap=True, max_depth=10, max_features=sqrt, min_samples_leaf=6, min_samples_split=4, n_estimators=10;, score=0.864 total time= 0.0s\n","[CV 5/5] END bootstrap=True, max_depth=10, max_features=sqrt, min_samples_leaf=6, min_samples_split=4, n_estimators=10;, score=0.884 total time= 0.0s\n","[CV 1/5] END bootstrap=True, max_depth=10, max_features=sqrt, min_samples_leaf=6, min_samples_split=4, n_estimators=20;, score=0.874 total time= 0.0s\n","[CV 2/5] END bootstrap=True, max_depth=10, max_features=sqrt, min_samples_leaf=6, min_samples_split=4, n_estimators=20;, score=0.899 total time= 0.0s\n","[CV 3/5] END bootstrap=True, max_depth=10, max_features=sqrt, min_samples_leaf=6, min_samples_split=4, n_estimators=20;, score=0.874 total time= 0.0s\n","[CV 4/5] END bootstrap=True, max_depth=10, max_features=sqrt, min_samples_leaf=6, min_samples_split=4, n_estimators=20;, score=0.884 total time= 0.0s\n","[CV 5/5] END bootstrap=True, max_depth=10, max_features=sqrt, min_samples_leaf=6, min_samples_split=4, n_estimators=20;, score=0.889 total time= 0.0s\n","[CV 1/5] END bootstrap=True, max_depth=10, max_features=sqrt, min_samples_leaf=6, min_samples_split=4, n_estimators=30;, score=0.879 total time= 0.1s\n","[CV 2/5] END bootstrap=True, max_depth=10, max_features=sqrt, min_samples_leaf=6, min_samples_split=4, n_estimators=30;, score=0.874 total time= 0.1s\n","[CV 3/5] END bootstrap=True, max_depth=10, max_features=sqrt, min_samples_leaf=6, min_samples_split=4, n_estimators=30;, score=0.884 total time= 0.1s\n","[CV 4/5] END bootstrap=True, max_depth=10, max_features=sqrt, min_samples_leaf=6, min_samples_split=4, n_estimators=30;, score=0.869 total time= 0.1s\n","[CV 5/5] END bootstrap=True, max_depth=10, max_features=sqrt, min_samples_leaf=6, min_samples_split=4, n_estimators=30;, score=0.889 total time= 0.1s\n","[CV 1/5] END bootstrap=True, max_depth=10, max_features=sqrt, min_samples_leaf=6, min_samples_split=6, n_estimators=5;, score=0.869 total time= 0.0s\n","[CV 2/5] END bootstrap=True, max_depth=10, max_features=sqrt, min_samples_leaf=6, min_samples_split=6, n_estimators=5;, score=0.904 total time= 0.0s\n","[CV 3/5] END bootstrap=True, max_depth=10, max_features=sqrt, min_samples_leaf=6, min_samples_split=6, n_estimators=5;, score=0.889 total time= 0.0s\n","[CV 4/5] END bootstrap=True, max_depth=10, max_features=sqrt, min_samples_leaf=6, min_samples_split=6, n_estimators=5;, score=0.889 total time= 0.0s\n","[CV 5/5] END bootstrap=True, max_depth=10, max_features=sqrt, min_samples_leaf=6, min_samples_split=6, n_estimators=5;, score=0.879 total time= 0.0s\n","[CV 1/5] END bootstrap=True, max_depth=10, max_features=sqrt, min_samples_leaf=6, min_samples_split=6, n_estimators=10;, score=0.869 total time= 0.0s\n","[CV 2/5] END bootstrap=True, max_depth=10, max_features=sqrt, min_samples_leaf=6, min_samples_split=6, n_estimators=10;, score=0.874 total time= 0.0s\n","[CV 3/5] END bootstrap=True, max_depth=10, max_features=sqrt, min_samples_leaf=6, min_samples_split=6, n_estimators=10;, score=0.874 total time= 0.0s\n","[CV 4/5] END bootstrap=True, max_depth=10, max_features=sqrt, min_samples_leaf=6, min_samples_split=6, n_estimators=10;, score=0.833 total time= 0.0s\n","[CV 5/5] END bootstrap=True, max_depth=10, max_features=sqrt, min_samples_leaf=6, min_samples_split=6, n_estimators=10;, score=0.874 total time= 0.0s\n","[CV 1/5] END bootstrap=True, max_depth=10, max_features=sqrt, min_samples_leaf=6, min_samples_split=6, n_estimators=20;, score=0.864 total time= 0.0s\n","[CV 2/5] END bootstrap=True, max_depth=10, max_features=sqrt, min_samples_leaf=6, min_samples_split=6, n_estimators=20;, score=0.889 total time= 0.0s\n","[CV 3/5] END bootstrap=True, max_depth=10, max_features=sqrt, min_samples_leaf=6, min_samples_split=6, n_estimators=20;, score=0.879 total time= 0.0s\n","[CV 4/5] END bootstrap=True, max_depth=10, max_features=sqrt, min_samples_leaf=6, min_samples_split=6, n_estimators=20;, score=0.864 total time= 0.0s\n","[CV 5/5] END bootstrap=True, max_depth=10, max_features=sqrt, min_samples_leaf=6, min_samples_split=6, n_estimators=20;, score=0.894 total time= 0.0s\n","[CV 1/5] END bootstrap=True, max_depth=10, max_features=sqrt, min_samples_leaf=6, min_samples_split=6, n_estimators=30;, score=0.894 total time= 0.1s\n","[CV 2/5] END bootstrap=True, max_depth=10, max_features=sqrt, min_samples_leaf=6, min_samples_split=6, n_estimators=30;, score=0.864 total time= 0.1s\n","[CV 3/5] END bootstrap=True, max_depth=10, max_features=sqrt, min_samples_leaf=6, min_samples_split=6, n_estimators=30;, score=0.879 total time= 0.1s\n","[CV 4/5] END bootstrap=True, max_depth=10, max_features=sqrt, min_samples_leaf=6, min_samples_split=6, n_estimators=30;, score=0.864 total time= 0.1s\n","[CV 5/5] END bootstrap=True, max_depth=10, max_features=sqrt, min_samples_leaf=6, min_samples_split=6, n_estimators=30;, score=0.879 total time= 0.1s\n","[CV 1/5] END bootstrap=True, max_depth=10, max_features=log2, min_samples_leaf=2, min_samples_split=2, n_estimators=5;, score=0.859 total time= 0.0s\n","[CV 2/5] END bootstrap=True, max_depth=10, max_features=log2, min_samples_leaf=2, min_samples_split=2, n_estimators=5;, score=0.889 total time= 0.0s\n","[CV 3/5] END bootstrap=True, max_depth=10, max_features=log2, min_samples_leaf=2, min_samples_split=2, n_estimators=5;, score=0.874 total time= 0.0s\n","[CV 4/5] END bootstrap=True, max_depth=10, max_features=log2, min_samples_leaf=2, min_samples_split=2, n_estimators=5;, score=0.859 total time= 0.0s\n","[CV 5/5] END bootstrap=True, max_depth=10, max_features=log2, min_samples_leaf=2, min_samples_split=2, n_estimators=5;, score=0.884 total time= 0.0s\n","[CV 1/5] END bootstrap=True, max_depth=10, max_features=log2, min_samples_leaf=2, min_samples_split=2, n_estimators=10;, score=0.874 total time= 0.0s\n","[CV 2/5] END bootstrap=True, max_depth=10, max_features=log2, min_samples_leaf=2, min_samples_split=2, n_estimators=10;, score=0.884 total time= 0.0s\n","[CV 3/5] END bootstrap=True, max_depth=10, max_features=log2, min_samples_leaf=2, min_samples_split=2, n_estimators=10;, score=0.889 total time= 0.0s\n","[CV 4/5] END bootstrap=True, max_depth=10, max_features=log2, min_samples_leaf=2, min_samples_split=2, n_estimators=10;, score=0.833 total time= 0.0s\n","[CV 5/5] END bootstrap=True, max_depth=10, max_features=log2, min_samples_leaf=2, min_samples_split=2, n_estimators=10;, score=0.879 total time= 0.0s\n","[CV 1/5] END bootstrap=True, max_depth=10, max_features=log2, min_samples_leaf=2, min_samples_split=2, n_estimators=20;, score=0.869 total time= 0.0s\n","[CV 2/5] END bootstrap=True, max_depth=10, max_features=log2, min_samples_leaf=2, min_samples_split=2, n_estimators=20;, score=0.879 total time= 0.0s\n","[CV 3/5] END bootstrap=True, max_depth=10, max_features=log2, min_samples_leaf=2, min_samples_split=2, n_estimators=20;, score=0.894 total time= 0.0s\n","[CV 4/5] END bootstrap=True, max_depth=10, max_features=log2, min_samples_leaf=2, min_samples_split=2, n_estimators=20;, score=0.828 total time= 0.1s\n","[CV 5/5] END bootstrap=True, max_depth=10, max_features=log2, min_samples_leaf=2, min_samples_split=2, n_estimators=20;, score=0.899 total time= 0.0s\n","[CV 1/5] END bootstrap=True, max_depth=10, max_features=log2, min_samples_leaf=2, min_samples_split=2, n_estimators=30;, score=0.874 total time= 0.1s\n","[CV 2/5] END bootstrap=True, max_depth=10, max_features=log2, min_samples_leaf=2, min_samples_split=2, n_estimators=30;, score=0.879 total time= 0.1s\n","[CV 3/5] END bootstrap=True, max_depth=10, max_features=log2, min_samples_leaf=2, min_samples_split=2, n_estimators=30;, score=0.874 total time= 0.1s\n","[CV 4/5] END bootstrap=True, max_depth=10, max_features=log2, min_samples_leaf=2, min_samples_split=2, n_estimators=30;, score=0.854 total time= 0.1s\n","[CV 5/5] END bootstrap=True, max_depth=10, max_features=log2, min_samples_leaf=2, min_samples_split=2, n_estimators=30;, score=0.859 total time= 0.1s\n","[CV 1/5] END bootstrap=True, max_depth=10, max_features=log2, min_samples_leaf=2, min_samples_split=4, n_estimators=5;, score=0.859 total time= 0.0s\n","[CV 2/5] END bootstrap=True, max_depth=10, max_features=log2, min_samples_leaf=2, min_samples_split=4, n_estimators=5;, score=0.904 total time= 0.0s\n","[CV 3/5] END bootstrap=True, max_depth=10, max_features=log2, min_samples_leaf=2, min_samples_split=4, n_estimators=5;, score=0.889 total time= 0.0s\n","[CV 4/5] END bootstrap=True, max_depth=10, max_features=log2, min_samples_leaf=2, min_samples_split=4, n_estimators=5;, score=0.838 total time= 0.0s\n","[CV 5/5] END bootstrap=True, max_depth=10, max_features=log2, min_samples_leaf=2, min_samples_split=4, n_estimators=5;, score=0.889 total time= 0.0s\n","[CV 1/5] END bootstrap=True, max_depth=10, max_features=log2, min_samples_leaf=2, min_samples_split=4, n_estimators=10;, score=0.889 total time= 0.0s\n","[CV 2/5] END bootstrap=True, max_depth=10, max_features=log2, min_samples_leaf=2, min_samples_split=4, n_estimators=10;, score=0.869 total time= 0.0s\n","[CV 3/5] END bootstrap=True, max_depth=10, max_features=log2, min_samples_leaf=2, min_samples_split=4, n_estimators=10;, score=0.884 total time= 0.0s\n","[CV 4/5] END bootstrap=True, max_depth=10, max_features=log2, min_samples_leaf=2, min_samples_split=4, n_estimators=10;, score=0.859 total time= 0.0s\n","[CV 5/5] END bootstrap=True, max_depth=10, max_features=log2, min_samples_leaf=2, min_samples_split=4, n_estimators=10;, score=0.869 total time= 0.0s\n","[CV 1/5] END bootstrap=True, max_depth=10, max_features=log2, min_samples_leaf=2, min_samples_split=4, n_estimators=20;, score=0.869 total time= 0.1s\n","[CV 2/5] END bootstrap=True, max_depth=10, max_features=log2, min_samples_leaf=2, min_samples_split=4, n_estimators=20;, score=0.879 total time= 0.1s\n","[CV 3/5] END bootstrap=True, max_depth=10, max_features=log2, min_samples_leaf=2, min_samples_split=4, n_estimators=20;, score=0.899 total time= 0.1s\n","[CV 4/5] END bootstrap=True, max_depth=10, max_features=log2, min_samples_leaf=2, min_samples_split=4, n_estimators=20;, score=0.874 total time= 0.1s\n","[CV 5/5] END bootstrap=True, max_depth=10, max_features=log2, min_samples_leaf=2, min_samples_split=4, n_estimators=20;, score=0.914 total time= 0.1s\n","[CV 1/5] END bootstrap=True, max_depth=10, max_features=log2, min_samples_leaf=2, min_samples_split=4, n_estimators=30;, score=0.864 total time= 0.1s\n","[CV 2/5] END bootstrap=True, max_depth=10, max_features=log2, min_samples_leaf=2, min_samples_split=4, n_estimators=30;, score=0.889 total time= 0.1s\n","[CV 3/5] END bootstrap=True, max_depth=10, max_features=log2, min_samples_leaf=2, min_samples_split=4, n_estimators=30;, score=0.899 total time= 0.1s\n","[CV 4/5] END bootstrap=True, max_depth=10, max_features=log2, min_samples_leaf=2, min_samples_split=4, n_estimators=30;, score=0.874 total time= 0.1s\n","[CV 5/5] END bootstrap=True, max_depth=10, max_features=log2, min_samples_leaf=2, min_samples_split=4, n_estimators=30;, score=0.879 total time= 0.1s\n","[CV 1/5] END bootstrap=True, max_depth=10, max_features=log2, min_samples_leaf=2, min_samples_split=6, n_estimators=5;, score=0.889 total time= 0.0s\n","[CV 2/5] END bootstrap=True, max_depth=10, max_features=log2, min_samples_leaf=2, min_samples_split=6, n_estimators=5;, score=0.894 total time= 0.0s\n","[CV 3/5] END bootstrap=True, max_depth=10, max_features=log2, min_samples_leaf=2, min_samples_split=6, n_estimators=5;, score=0.889 total time= 0.0s\n","[CV 4/5] END bootstrap=True, max_depth=10, max_features=log2, min_samples_leaf=2, min_samples_split=6, n_estimators=5;, score=0.848 total time= 0.0s\n","[CV 5/5] END bootstrap=True, max_depth=10, max_features=log2, min_samples_leaf=2, min_samples_split=6, n_estimators=5;, score=0.889 total time= 0.0s\n","[CV 1/5] END bootstrap=True, max_depth=10, max_features=log2, min_samples_leaf=2, min_samples_split=6, n_estimators=10;, score=0.859 total time= 0.0s\n","[CV 2/5] END bootstrap=True, max_depth=10, max_features=log2, min_samples_leaf=2, min_samples_split=6, n_estimators=10;, score=0.889 total time= 0.0s\n","[CV 3/5] END bootstrap=True, max_depth=10, max_features=log2, min_samples_leaf=2, min_samples_split=6, n_estimators=10;, score=0.884 total time= 0.1s\n","[CV 4/5] END bootstrap=True, max_depth=10, max_features=log2, min_samples_leaf=2, min_samples_split=6, n_estimators=10;, score=0.884 total time= 0.0s\n","[CV 5/5] END bootstrap=True, max_depth=10, max_features=log2, min_samples_leaf=2, min_samples_split=6, n_estimators=10;, score=0.889 total time= 0.0s\n","[CV 1/5] END bootstrap=True, max_depth=10, max_features=log2, min_samples_leaf=2, min_samples_split=6, n_estimators=20;, score=0.859 total time= 0.1s\n","[CV 2/5] END bootstrap=True, max_depth=10, max_features=log2, min_samples_leaf=2, min_samples_split=6, n_estimators=20;, score=0.894 total time= 0.1s\n","[CV 3/5] END bootstrap=True, max_depth=10, max_features=log2, min_samples_leaf=2, min_samples_split=6, n_estimators=20;, score=0.894 total time= 0.1s\n","[CV 4/5] END bootstrap=True, max_depth=10, max_features=log2, min_samples_leaf=2, min_samples_split=6, n_estimators=20;, score=0.854 total time= 0.1s\n","[CV 5/5] END bootstrap=True, max_depth=10, max_features=log2, min_samples_leaf=2, min_samples_split=6, n_estimators=20;, score=0.869 total time= 0.1s\n","[CV 1/5] END bootstrap=True, max_depth=10, max_features=log2, min_samples_leaf=2, min_samples_split=6, n_estimators=30;, score=0.889 total time= 0.1s\n","[CV 2/5] END bootstrap=True, max_depth=10, max_features=log2, min_samples_leaf=2, min_samples_split=6, n_estimators=30;, score=0.869 total time= 0.1s\n","[CV 3/5] END bootstrap=True, max_depth=10, max_features=log2, min_samples_leaf=2, min_samples_split=6, n_estimators=30;, score=0.879 total time= 0.1s\n","[CV 4/5] END bootstrap=True, max_depth=10, max_features=log2, min_samples_leaf=2, min_samples_split=6, n_estimators=30;, score=0.864 total time= 0.1s\n","[CV 5/5] END bootstrap=True, max_depth=10, max_features=log2, min_samples_leaf=2, min_samples_split=6, n_estimators=30;, score=0.864 total time= 0.1s\n","[CV 1/5] END bootstrap=True, max_depth=10, max_features=log2, min_samples_leaf=4, min_samples_split=2, n_estimators=5;, score=0.879 total time= 0.0s\n","[CV 2/5] END bootstrap=True, max_depth=10, max_features=log2, min_samples_leaf=4, min_samples_split=2, n_estimators=5;, score=0.899 total time= 0.0s\n","[CV 3/5] END bootstrap=True, max_depth=10, max_features=log2, min_samples_leaf=4, min_samples_split=2, n_estimators=5;, score=0.889 total time= 0.0s\n","[CV 4/5] END bootstrap=True, max_depth=10, max_features=log2, min_samples_leaf=4, min_samples_split=2, n_estimators=5;, score=0.864 total time= 0.0s\n","[CV 5/5] END bootstrap=True, max_depth=10, max_features=log2, min_samples_leaf=4, min_samples_split=2, n_estimators=5;, score=0.884 total time= 0.0s\n","[CV 1/5] END bootstrap=True, max_depth=10, max_features=log2, min_samples_leaf=4, min_samples_split=2, n_estimators=10;, score=0.869 total time= 0.1s\n","[CV 2/5] END bootstrap=True, max_depth=10, max_features=log2, min_samples_leaf=4, min_samples_split=2, n_estimators=10;, score=0.889 total time= 0.0s\n","[CV 3/5] END bootstrap=True, max_depth=10, max_features=log2, min_samples_leaf=4, min_samples_split=2, n_estimators=10;, score=0.894 total time= 0.0s\n","[CV 4/5] END bootstrap=True, max_depth=10, max_features=log2, min_samples_leaf=4, min_samples_split=2, n_estimators=10;, score=0.874 total time= 0.0s\n","[CV 5/5] END bootstrap=True, max_depth=10, max_features=log2, min_samples_leaf=4, min_samples_split=2, n_estimators=10;, score=0.864 total time= 0.0s\n","[CV 1/5] END bootstrap=True, max_depth=10, max_features=log2, min_samples_leaf=4, min_samples_split=2, n_estimators=20;, score=0.879 total time= 0.1s\n","[CV 2/5] END bootstrap=True, max_depth=10, max_features=log2, min_samples_leaf=4, min_samples_split=2, n_estimators=20;, score=0.884 total time= 0.1s\n","[CV 3/5] END bootstrap=True, max_depth=10, max_features=log2, min_samples_leaf=4, min_samples_split=2, n_estimators=20;, score=0.879 total time= 0.1s\n","[CV 4/5] END bootstrap=True, max_depth=10, max_features=log2, min_samples_leaf=4, min_samples_split=2, n_estimators=20;, score=0.874 total time= 0.0s\n","[CV 5/5] END bootstrap=True, max_depth=10, max_features=log2, min_samples_leaf=4, min_samples_split=2, n_estimators=20;, score=0.879 total time= 0.0s\n","[CV 1/5] END bootstrap=True, max_depth=10, max_features=log2, min_samples_leaf=4, min_samples_split=2, n_estimators=30;, score=0.869 total time= 0.1s\n","[CV 2/5] END bootstrap=True, max_depth=10, max_features=log2, min_samples_leaf=4, min_samples_split=2, n_estimators=30;, score=0.894 total time= 0.1s\n","[CV 3/5] END bootstrap=True, max_depth=10, max_features=log2, min_samples_leaf=4, min_samples_split=2, n_estimators=30;, score=0.899 total time= 0.1s\n","[CV 4/5] END bootstrap=True, max_depth=10, max_features=log2, min_samples_leaf=4, min_samples_split=2, n_estimators=30;, score=0.874 total time= 0.1s\n","[CV 5/5] END bootstrap=True, max_depth=10, max_features=log2, min_samples_leaf=4, min_samples_split=2, n_estimators=30;, score=0.869 total time= 0.1s\n","[CV 1/5] END bootstrap=True, max_depth=10, max_features=log2, min_samples_leaf=4, min_samples_split=4, n_estimators=5;, score=0.879 total time= 0.0s\n","[CV 2/5] END bootstrap=True, max_depth=10, max_features=log2, min_samples_leaf=4, min_samples_split=4, n_estimators=5;, score=0.884 total time= 0.0s\n","[CV 3/5] END bootstrap=True, max_depth=10, max_features=log2, min_samples_leaf=4, min_samples_split=4, n_estimators=5;, score=0.884 total time= 0.0s\n","[CV 4/5] END bootstrap=True, max_depth=10, max_features=log2, min_samples_leaf=4, min_samples_split=4, n_estimators=5;, score=0.879 total time= 0.0s\n","[CV 5/5] END bootstrap=True, max_depth=10, max_features=log2, min_samples_leaf=4, min_samples_split=4, n_estimators=5;, score=0.909 total time= 0.0s\n","[CV 1/5] END bootstrap=True, max_depth=10, max_features=log2, min_samples_leaf=4, min_samples_split=4, n_estimators=10;, score=0.864 total time= 0.0s\n","[CV 2/5] END bootstrap=True, max_depth=10, max_features=log2, min_samples_leaf=4, min_samples_split=4, n_estimators=10;, score=0.899 total time= 0.0s\n","[CV 3/5] END bootstrap=True, max_depth=10, max_features=log2, min_samples_leaf=4, min_samples_split=4, n_estimators=10;, score=0.894 total time= 0.0s\n","[CV 4/5] END bootstrap=True, max_depth=10, max_features=log2, min_samples_leaf=4, min_samples_split=4, n_estimators=10;, score=0.884 total time= 0.0s\n","[CV 5/5] END bootstrap=True, max_depth=10, max_features=log2, min_samples_leaf=4, min_samples_split=4, n_estimators=10;, score=0.904 total time= 0.0s\n","[CV 1/5] END bootstrap=True, max_depth=10, max_features=log2, min_samples_leaf=4, min_samples_split=4, n_estimators=20;, score=0.864 total time= 0.0s\n","[CV 2/5] END bootstrap=True, max_depth=10, max_features=log2, min_samples_leaf=4, min_samples_split=4, n_estimators=20;, score=0.884 total time= 0.0s\n","[CV 3/5] END bootstrap=True, max_depth=10, max_features=log2, min_samples_leaf=4, min_samples_split=4, n_estimators=20;, score=0.889 total time= 0.0s\n","[CV 4/5] END bootstrap=True, max_depth=10, max_features=log2, min_samples_leaf=4, min_samples_split=4, n_estimators=20;, score=0.848 total time= 0.0s\n","[CV 5/5] END bootstrap=True, max_depth=10, max_features=log2, min_samples_leaf=4, min_samples_split=4, n_estimators=20;, score=0.889 total time= 0.1s\n","[CV 1/5] END bootstrap=True, max_depth=10, max_features=log2, min_samples_leaf=4, min_samples_split=4, n_estimators=30;, score=0.859 total time= 0.1s\n","[CV 2/5] END bootstrap=True, max_depth=10, max_features=log2, min_samples_leaf=4, min_samples_split=4, n_estimators=30;, score=0.904 total time= 0.1s\n","[CV 3/5] END bootstrap=True, max_depth=10, max_features=log2, min_samples_leaf=4, min_samples_split=4, n_estimators=30;, score=0.889 total time= 0.1s\n","[CV 4/5] END bootstrap=True, max_depth=10, max_features=log2, min_samples_leaf=4, min_samples_split=4, n_estimators=30;, score=0.859 total time= 0.1s\n","[CV 5/5] END bootstrap=True, max_depth=10, max_features=log2, min_samples_leaf=4, min_samples_split=4, n_estimators=30;, score=0.879 total time= 0.1s\n","[CV 1/5] END bootstrap=True, max_depth=10, max_features=log2, min_samples_leaf=4, min_samples_split=6, n_estimators=5;, score=0.859 total time= 0.0s\n","[CV 2/5] END bootstrap=True, max_depth=10, max_features=log2, min_samples_leaf=4, min_samples_split=6, n_estimators=5;, score=0.884 total time= 0.0s\n","[CV 3/5] END bootstrap=True, max_depth=10, max_features=log2, min_samples_leaf=4, min_samples_split=6, n_estimators=5;, score=0.889 total time= 0.0s\n","[CV 4/5] END bootstrap=True, max_depth=10, max_features=log2, min_samples_leaf=4, min_samples_split=6, n_estimators=5;, score=0.859 total time= 0.0s\n","[CV 5/5] END bootstrap=True, max_depth=10, max_features=log2, min_samples_leaf=4, min_samples_split=6, n_estimators=5;, score=0.884 total time= 0.0s\n","[CV 1/5] END bootstrap=True, max_depth=10, max_features=log2, min_samples_leaf=4, min_samples_split=6, n_estimators=10;, score=0.874 total time= 0.0s\n","[CV 2/5] END bootstrap=True, max_depth=10, max_features=log2, min_samples_leaf=4, min_samples_split=6, n_estimators=10;, score=0.889 total time= 0.0s\n","[CV 3/5] END bootstrap=True, max_depth=10, max_features=log2, min_samples_leaf=4, min_samples_split=6, n_estimators=10;, score=0.884 total time= 0.0s\n","[CV 4/5] END bootstrap=True, max_depth=10, max_features=log2, min_samples_leaf=4, min_samples_split=6, n_estimators=10;, score=0.894 total time= 0.0s\n","[CV 5/5] END bootstrap=True, max_depth=10, max_features=log2, min_samples_leaf=4, min_samples_split=6, n_estimators=10;, score=0.899 total time= 0.0s\n","[CV 1/5] END bootstrap=True, max_depth=10, max_features=log2, min_samples_leaf=4, min_samples_split=6, n_estimators=20;, score=0.869 total time= 0.0s\n","[CV 2/5] END bootstrap=True, max_depth=10, max_features=log2, min_samples_leaf=4, min_samples_split=6, n_estimators=20;, score=0.914 total time= 0.0s\n","[CV 3/5] END bootstrap=True, max_depth=10, max_features=log2, min_samples_leaf=4, min_samples_split=6, n_estimators=20;, score=0.889 total time= 0.1s\n","[CV 4/5] END bootstrap=True, max_depth=10, max_features=log2, min_samples_leaf=4, min_samples_split=6, n_estimators=20;, score=0.843 total time= 0.0s\n","[CV 5/5] END bootstrap=True, max_depth=10, max_features=log2, min_samples_leaf=4, min_samples_split=6, n_estimators=20;, score=0.889 total time= 0.0s\n","[CV 1/5] END bootstrap=True, max_depth=10, max_features=log2, min_samples_leaf=4, min_samples_split=6, n_estimators=30;, score=0.864 total time= 0.1s\n","[CV 2/5] END bootstrap=True, max_depth=10, max_features=log2, min_samples_leaf=4, min_samples_split=6, n_estimators=30;, score=0.879 total time= 0.1s\n","[CV 3/5] END bootstrap=True, max_depth=10, max_features=log2, min_samples_leaf=4, min_samples_split=6, n_estimators=30;, score=0.889 total time= 0.1s\n","[CV 4/5] END bootstrap=True, max_depth=10, max_features=log2, min_samples_leaf=4, min_samples_split=6, n_estimators=30;, score=0.838 total time= 0.1s\n","[CV 5/5] END bootstrap=True, max_depth=10, max_features=log2, min_samples_leaf=4, min_samples_split=6, n_estimators=30;, score=0.869 total time= 0.1s\n","[CV 1/5] END bootstrap=True, max_depth=10, max_features=log2, min_samples_leaf=6, min_samples_split=2, n_estimators=5;, score=0.884 total time= 0.0s\n","[CV 2/5] END bootstrap=True, max_depth=10, max_features=log2, min_samples_leaf=6, min_samples_split=2, n_estimators=5;, score=0.879 total time= 0.0s\n","[CV 3/5] END bootstrap=True, max_depth=10, max_features=log2, min_samples_leaf=6, min_samples_split=2, n_estimators=5;, score=0.879 total time= 0.0s\n","[CV 4/5] END bootstrap=True, max_depth=10, max_features=log2, min_samples_leaf=6, min_samples_split=2, n_estimators=5;, score=0.843 total time= 0.0s\n","[CV 5/5] END bootstrap=True, max_depth=10, max_features=log2, min_samples_leaf=6, min_samples_split=2, n_estimators=5;, score=0.894 total time= 0.0s\n","[CV 1/5] END bootstrap=True, max_depth=10, max_features=log2, min_samples_leaf=6, min_samples_split=2, n_estimators=10;, score=0.879 total time= 0.0s\n","[CV 2/5] END bootstrap=True, max_depth=10, max_features=log2, min_samples_leaf=6, min_samples_split=2, n_estimators=10;, score=0.904 total time= 0.0s\n","[CV 3/5] END bootstrap=True, max_depth=10, max_features=log2, min_samples_leaf=6, min_samples_split=2, n_estimators=10;, score=0.894 total time= 0.0s\n","[CV 4/5] END bootstrap=True, max_depth=10, max_features=log2, min_samples_leaf=6, min_samples_split=2, n_estimators=10;, score=0.859 total time= 0.0s\n","[CV 5/5] END bootstrap=True, max_depth=10, max_features=log2, min_samples_leaf=6, min_samples_split=2, n_estimators=10;, score=0.884 total time= 0.0s\n","[CV 1/5] END bootstrap=True, max_depth=10, max_features=log2, min_samples_leaf=6, min_samples_split=2, n_estimators=20;, score=0.864 total time= 0.0s\n","[CV 2/5] END bootstrap=True, max_depth=10, max_features=log2, min_samples_leaf=6, min_samples_split=2, n_estimators=20;, score=0.894 total time= 0.0s\n","[CV 3/5] END bootstrap=True, max_depth=10, max_features=log2, min_samples_leaf=6, min_samples_split=2, n_estimators=20;, score=0.884 total time= 0.0s\n","[CV 4/5] END bootstrap=True, max_depth=10, max_features=log2, min_samples_leaf=6, min_samples_split=2, n_estimators=20;, score=0.869 total time= 0.1s\n","[CV 5/5] END bootstrap=True, max_depth=10, max_features=log2, min_samples_leaf=6, min_samples_split=2, n_estimators=20;, score=0.894 total time= 0.1s\n","[CV 1/5] END bootstrap=True, max_depth=10, max_features=log2, min_samples_leaf=6, min_samples_split=2, n_estimators=30;, score=0.874 total time= 0.1s\n","[CV 2/5] END bootstrap=True, max_depth=10, max_features=log2, min_samples_leaf=6, min_samples_split=2, n_estimators=30;, score=0.864 total time= 0.1s\n","[CV 3/5] END bootstrap=True, max_depth=10, max_features=log2, min_samples_leaf=6, min_samples_split=2, n_estimators=30;, score=0.874 total time= 0.1s\n","[CV 4/5] END bootstrap=True, max_depth=10, max_features=log2, min_samples_leaf=6, min_samples_split=2, n_estimators=30;, score=0.864 total time= 0.1s\n","[CV 5/5] END bootstrap=True, max_depth=10, max_features=log2, min_samples_leaf=6, min_samples_split=2, n_estimators=30;, score=0.889 total time= 0.1s\n","[CV 1/5] END bootstrap=True, max_depth=10, max_features=log2, min_samples_leaf=6, min_samples_split=4, n_estimators=5;, score=0.869 total time= 0.0s\n","[CV 2/5] END bootstrap=True, max_depth=10, max_features=log2, min_samples_leaf=6, min_samples_split=4, n_estimators=5;, score=0.899 total time= 0.0s\n","[CV 3/5] END bootstrap=True, max_depth=10, max_features=log2, min_samples_leaf=6, min_samples_split=4, n_estimators=5;, score=0.889 total time= 0.0s\n","[CV 4/5] END bootstrap=True, max_depth=10, max_features=log2, min_samples_leaf=6, min_samples_split=4, n_estimators=5;, score=0.859 total time= 0.0s\n","[CV 5/5] END bootstrap=True, max_depth=10, max_features=log2, min_samples_leaf=6, min_samples_split=4, n_estimators=5;, score=0.884 total time= 0.0s\n","[CV 1/5] END bootstrap=True, max_depth=10, max_features=log2, min_samples_leaf=6, min_samples_split=4, n_estimators=10;, score=0.869 total time= 0.0s\n","[CV 2/5] END bootstrap=True, max_depth=10, max_features=log2, min_samples_leaf=6, min_samples_split=4, n_estimators=10;, score=0.869 total time= 0.0s\n","[CV 3/5] END bootstrap=True, max_depth=10, max_features=log2, min_samples_leaf=6, min_samples_split=4, n_estimators=10;, score=0.894 total time= 0.0s\n","[CV 4/5] END bootstrap=True, max_depth=10, max_features=log2, min_samples_leaf=6, min_samples_split=4, n_estimators=10;, score=0.869 total time= 0.0s\n","[CV 5/5] END bootstrap=True, max_depth=10, max_features=log2, min_samples_leaf=6, min_samples_split=4, n_estimators=10;, score=0.869 total time= 0.0s\n","[CV 1/5] END bootstrap=True, max_depth=10, max_features=log2, min_samples_leaf=6, min_samples_split=4, n_estimators=20;, score=0.874 total time= 0.0s\n","[CV 2/5] END bootstrap=True, max_depth=10, max_features=log2, min_samples_leaf=6, min_samples_split=4, n_estimators=20;, score=0.904 total time= 0.0s\n","[CV 3/5] END bootstrap=True, max_depth=10, max_features=log2, min_samples_leaf=6, min_samples_split=4, n_estimators=20;, score=0.894 total time= 0.0s\n","[CV 4/5] END bootstrap=True, max_depth=10, max_features=log2, min_samples_leaf=6, min_samples_split=4, n_estimators=20;, score=0.864 total time= 0.0s\n","[CV 5/5] END bootstrap=True, max_depth=10, max_features=log2, min_samples_leaf=6, min_samples_split=4, n_estimators=20;, score=0.889 total time= 0.0s\n","[CV 1/5] END bootstrap=True, max_depth=10, max_features=log2, min_samples_leaf=6, min_samples_split=4, n_estimators=30;, score=0.874 total time= 0.1s\n","[CV 2/5] END bootstrap=True, max_depth=10, max_features=log2, min_samples_leaf=6, min_samples_split=4, n_estimators=30;, score=0.889 total time= 0.1s\n","[CV 3/5] END bootstrap=True, max_depth=10, max_features=log2, min_samples_leaf=6, min_samples_split=4, n_estimators=30;, score=0.879 total time= 0.1s\n","[CV 4/5] END bootstrap=True, max_depth=10, max_features=log2, min_samples_leaf=6, min_samples_split=4, n_estimators=30;, score=0.859 total time= 0.1s\n","[CV 5/5] END bootstrap=True, max_depth=10, max_features=log2, min_samples_leaf=6, min_samples_split=4, n_estimators=30;, score=0.879 total time= 0.1s\n","[CV 1/5] END bootstrap=True, max_depth=10, max_features=log2, min_samples_leaf=6, min_samples_split=6, n_estimators=5;, score=0.904 total time= 0.0s\n","[CV 2/5] END bootstrap=True, max_depth=10, max_features=log2, min_samples_leaf=6, min_samples_split=6, n_estimators=5;, score=0.879 total time= 0.0s\n","[CV 3/5] END bootstrap=True, max_depth=10, max_features=log2, min_samples_leaf=6, min_samples_split=6, n_estimators=5;, score=0.894 total time= 0.0s\n","[CV 4/5] END bootstrap=True, max_depth=10, max_features=log2, min_samples_leaf=6, min_samples_split=6, n_estimators=5;, score=0.859 total time= 0.0s\n","[CV 5/5] END bootstrap=True, max_depth=10, max_features=log2, min_samples_leaf=6, min_samples_split=6, n_estimators=5;, score=0.884 total time= 0.0s\n","[CV 1/5] END bootstrap=True, max_depth=10, max_features=log2, min_samples_leaf=6, min_samples_split=6, n_estimators=10;, score=0.874 total time= 0.0s\n","[CV 2/5] END bootstrap=True, max_depth=10, max_features=log2, min_samples_leaf=6, min_samples_split=6, n_estimators=10;, score=0.874 total time= 0.0s\n","[CV 3/5] END bootstrap=True, max_depth=10, max_features=log2, min_samples_leaf=6, min_samples_split=6, n_estimators=10;, score=0.894 total time= 0.0s\n","[CV 4/5] END bootstrap=True, max_depth=10, max_features=log2, min_samples_leaf=6, min_samples_split=6, n_estimators=10;, score=0.833 total time= 0.0s\n","[CV 5/5] END bootstrap=True, max_depth=10, max_features=log2, min_samples_leaf=6, min_samples_split=6, n_estimators=10;, score=0.894 total time= 0.0s\n","[CV 1/5] END bootstrap=True, max_depth=10, max_features=log2, min_samples_leaf=6, min_samples_split=6, n_estimators=20;, score=0.859 total time= 0.0s\n","[CV 2/5] END bootstrap=True, max_depth=10, max_features=log2, min_samples_leaf=6, min_samples_split=6, n_estimators=20;, score=0.894 total time= 0.0s\n","[CV 3/5] END bootstrap=True, max_depth=10, max_features=log2, min_samples_leaf=6, min_samples_split=6, n_estimators=20;, score=0.894 total time= 0.0s\n","[CV 4/5] END bootstrap=True, max_depth=10, max_features=log2, min_samples_leaf=6, min_samples_split=6, n_estimators=20;, score=0.843 total time= 0.0s\n","[CV 5/5] END bootstrap=True, max_depth=10, max_features=log2, min_samples_leaf=6, min_samples_split=6, n_estimators=20;, score=0.909 total time= 0.0s\n","[CV 1/5] END bootstrap=True, max_depth=10, max_features=log2, min_samples_leaf=6, min_samples_split=6, n_estimators=30;, score=0.879 total time= 0.1s\n","[CV 2/5] END bootstrap=True, max_depth=10, max_features=log2, min_samples_leaf=6, min_samples_split=6, n_estimators=30;, score=0.874 total time= 0.1s\n","[CV 3/5] END bootstrap=True, max_depth=10, max_features=log2, min_samples_leaf=6, min_samples_split=6, n_estimators=30;, score=0.879 total time= 0.1s\n","[CV 4/5] END bootstrap=True, max_depth=10, max_features=log2, min_samples_leaf=6, min_samples_split=6, n_estimators=30;, score=0.843 total time= 0.1s\n","[CV 5/5] END bootstrap=True, max_depth=10, max_features=log2, min_samples_leaf=6, min_samples_split=6, n_estimators=30;, score=0.874 total time= 0.1s\n","[CV 1/5] END bootstrap=True, max_depth=10, max_features=None, min_samples_leaf=2, min_samples_split=2, n_estimators=5;, score=0.899 total time= 0.0s\n","[CV 2/5] END bootstrap=True, max_depth=10, max_features=None, min_samples_leaf=2, min_samples_split=2, n_estimators=5;, score=0.869 total time= 0.0s\n","[CV 3/5] END bootstrap=True, max_depth=10, max_features=None, min_samples_leaf=2, min_samples_split=2, n_estimators=5;, score=0.889 total time= 0.0s\n","[CV 4/5] END bootstrap=True, max_depth=10, max_features=None, min_samples_leaf=2, min_samples_split=2, n_estimators=5;, score=0.854 total time= 0.0s\n","[CV 5/5] END bootstrap=True, max_depth=10, max_features=None, min_samples_leaf=2, min_samples_split=2, n_estimators=5;, score=0.874 total time= 0.0s\n","[CV 1/5] END bootstrap=True, max_depth=10, max_features=None, min_samples_leaf=2, min_samples_split=2, n_estimators=10;, score=0.884 total time= 0.0s\n","[CV 2/5] END bootstrap=True, max_depth=10, max_features=None, min_samples_leaf=2, min_samples_split=2, n_estimators=10;, score=0.889 total time= 0.0s\n","[CV 3/5] END bootstrap=True, max_depth=10, max_features=None, min_samples_leaf=2, min_samples_split=2, n_estimators=10;, score=0.879 total time= 0.0s\n","[CV 4/5] END bootstrap=True, max_depth=10, max_features=None, min_samples_leaf=2, min_samples_split=2, n_estimators=10;, score=0.854 total time= 0.0s\n","[CV 5/5] END bootstrap=True, max_depth=10, max_features=None, min_samples_leaf=2, min_samples_split=2, n_estimators=10;, score=0.869 total time= 0.0s\n","[CV 1/5] END bootstrap=True, max_depth=10, max_features=None, min_samples_leaf=2, min_samples_split=2, n_estimators=20;, score=0.869 total time= 0.1s\n","[CV 2/5] END bootstrap=True, max_depth=10, max_features=None, min_samples_leaf=2, min_samples_split=2, n_estimators=20;, score=0.869 total time= 0.1s\n","[CV 3/5] END bootstrap=True, max_depth=10, max_features=None, min_samples_leaf=2, min_samples_split=2, n_estimators=20;, score=0.879 total time= 0.1s\n","[CV 4/5] END bootstrap=True, max_depth=10, max_features=None, min_samples_leaf=2, min_samples_split=2, n_estimators=20;, score=0.843 total time= 0.1s\n","[CV 5/5] END bootstrap=True, max_depth=10, max_features=None, min_samples_leaf=2, min_samples_split=2, n_estimators=20;, score=0.864 total time= 0.1s\n","[CV 1/5] END bootstrap=True, max_depth=10, max_features=None, min_samples_leaf=2, min_samples_split=2, n_estimators=30;, score=0.864 total time= 0.1s\n","[CV 2/5] END bootstrap=True, max_depth=10, max_features=None, min_samples_leaf=2, min_samples_split=2, n_estimators=30;, score=0.889 total time= 0.1s\n","[CV 3/5] END bootstrap=True, max_depth=10, max_features=None, min_samples_leaf=2, min_samples_split=2, n_estimators=30;, score=0.889 total time= 0.1s\n","[CV 4/5] END bootstrap=True, max_depth=10, max_features=None, min_samples_leaf=2, min_samples_split=2, n_estimators=30;, score=0.869 total time= 0.1s\n","[CV 5/5] END bootstrap=True, max_depth=10, max_features=None, min_samples_leaf=2, min_samples_split=2, n_estimators=30;, score=0.869 total time= 0.1s\n","[CV 1/5] END bootstrap=True, max_depth=10, max_features=None, min_samples_leaf=2, min_samples_split=4, n_estimators=5;, score=0.864 total time= 0.0s\n","[CV 2/5] END bootstrap=True, max_depth=10, max_features=None, min_samples_leaf=2, min_samples_split=4, n_estimators=5;, score=0.879 total time= 0.0s\n","[CV 3/5] END bootstrap=True, max_depth=10, max_features=None, min_samples_leaf=2, min_samples_split=4, n_estimators=5;, score=0.889 total time= 0.0s\n","[CV 4/5] END bootstrap=True, max_depth=10, max_features=None, min_samples_leaf=2, min_samples_split=4, n_estimators=5;, score=0.848 total time= 0.0s\n","[CV 5/5] END bootstrap=True, max_depth=10, max_features=None, min_samples_leaf=2, min_samples_split=4, n_estimators=5;, score=0.859 total time= 0.0s\n","[CV 1/5] END bootstrap=True, max_depth=10, max_features=None, min_samples_leaf=2, min_samples_split=4, n_estimators=10;, score=0.859 total time= 0.0s\n","[CV 2/5] END bootstrap=True, max_depth=10, max_features=None, min_samples_leaf=2, min_samples_split=4, n_estimators=10;, score=0.879 total time= 0.0s\n","[CV 3/5] END bootstrap=True, max_depth=10, max_features=None, min_samples_leaf=2, min_samples_split=4, n_estimators=10;, score=0.874 total time= 0.0s\n","[CV 4/5] END bootstrap=True, max_depth=10, max_features=None, min_samples_leaf=2, min_samples_split=4, n_estimators=10;, score=0.854 total time= 0.0s\n","[CV 5/5] END bootstrap=True, max_depth=10, max_features=None, min_samples_leaf=2, min_samples_split=4, n_estimators=10;, score=0.884 total time= 0.0s\n","[CV 1/5] END bootstrap=True, max_depth=10, max_features=None, min_samples_leaf=2, min_samples_split=4, n_estimators=20;, score=0.864 total time= 0.1s\n","[CV 2/5] END bootstrap=True, max_depth=10, max_features=None, min_samples_leaf=2, min_samples_split=4, n_estimators=20;, score=0.889 total time= 0.1s\n","[CV 3/5] END bootstrap=True, max_depth=10, max_features=None, min_samples_leaf=2, min_samples_split=4, n_estimators=20;, score=0.879 total time= 0.1s\n","[CV 4/5] END bootstrap=True, max_depth=10, max_features=None, min_samples_leaf=2, min_samples_split=4, n_estimators=20;, score=0.854 total time= 0.1s\n","[CV 5/5] END bootstrap=True, max_depth=10, max_features=None, min_samples_leaf=2, min_samples_split=4, n_estimators=20;, score=0.889 total time= 0.1s\n","[CV 1/5] END bootstrap=True, max_depth=10, max_features=None, min_samples_leaf=2, min_samples_split=4, n_estimators=30;, score=0.864 total time= 0.1s\n","[CV 2/5] END bootstrap=True, max_depth=10, max_features=None, min_samples_leaf=2, min_samples_split=4, n_estimators=30;, score=0.904 total time= 0.1s\n","[CV 3/5] END bootstrap=True, max_depth=10, max_features=None, min_samples_leaf=2, min_samples_split=4, n_estimators=30;, score=0.884 total time= 0.1s\n","[CV 4/5] END bootstrap=True, max_depth=10, max_features=None, min_samples_leaf=2, min_samples_split=4, n_estimators=30;, score=0.859 total time= 0.1s\n","[CV 5/5] END bootstrap=True, max_depth=10, max_features=None, min_samples_leaf=2, min_samples_split=4, n_estimators=30;, score=0.884 total time= 0.1s\n","[CV 1/5] END bootstrap=True, max_depth=10, max_features=None, min_samples_leaf=2, min_samples_split=6, n_estimators=5;, score=0.884 total time= 0.0s\n","[CV 2/5] END bootstrap=True, max_depth=10, max_features=None, min_samples_leaf=2, min_samples_split=6, n_estimators=5;, score=0.874 total time= 0.0s\n","[CV 3/5] END bootstrap=True, max_depth=10, max_features=None, min_samples_leaf=2, min_samples_split=6, n_estimators=5;, score=0.889 total time= 0.0s\n","[CV 4/5] END bootstrap=True, max_depth=10, max_features=None, min_samples_leaf=2, min_samples_split=6, n_estimators=5;, score=0.869 total time= 0.0s\n","[CV 5/5] END bootstrap=True, max_depth=10, max_features=None, min_samples_leaf=2, min_samples_split=6, n_estimators=5;, score=0.854 total time= 0.0s\n","[CV 1/5] END bootstrap=True, max_depth=10, max_features=None, min_samples_leaf=2, min_samples_split=6, n_estimators=10;, score=0.874 total time= 0.0s\n","[CV 2/5] END bootstrap=True, max_depth=10, max_features=None, min_samples_leaf=2, min_samples_split=6, n_estimators=10;, score=0.874 total time= 0.0s\n","[CV 3/5] END bootstrap=True, max_depth=10, max_features=None, min_samples_leaf=2, min_samples_split=6, n_estimators=10;, score=0.884 total time= 0.0s\n","[CV 4/5] END bootstrap=True, max_depth=10, max_features=None, min_samples_leaf=2, min_samples_split=6, n_estimators=10;, score=0.874 total time= 0.0s\n","[CV 5/5] END bootstrap=True, max_depth=10, max_features=None, min_samples_leaf=2, min_samples_split=6, n_estimators=10;, score=0.894 total time= 0.0s\n","[CV 1/5] END bootstrap=True, max_depth=10, max_features=None, min_samples_leaf=2, min_samples_split=6, n_estimators=20;, score=0.874 total time= 0.1s\n","[CV 2/5] END bootstrap=True, max_depth=10, max_features=None, min_samples_leaf=2, min_samples_split=6, n_estimators=20;, score=0.864 total time= 0.1s\n","[CV 3/5] END bootstrap=True, max_depth=10, max_features=None, min_samples_leaf=2, min_samples_split=6, n_estimators=20;, score=0.884 total time= 0.1s\n","[CV 4/5] END bootstrap=True, max_depth=10, max_features=None, min_samples_leaf=2, min_samples_split=6, n_estimators=20;, score=0.874 total time= 0.1s\n","[CV 5/5] END bootstrap=True, max_depth=10, max_features=None, min_samples_leaf=2, min_samples_split=6, n_estimators=20;, score=0.869 total time= 0.1s\n","[CV 1/5] END bootstrap=True, max_depth=10, max_features=None, min_samples_leaf=2, min_samples_split=6, n_estimators=30;, score=0.869 total time= 0.1s\n","[CV 2/5] END bootstrap=True, max_depth=10, max_features=None, min_samples_leaf=2, min_samples_split=6, n_estimators=30;, score=0.884 total time= 0.1s\n","[CV 3/5] END bootstrap=True, max_depth=10, max_features=None, min_samples_leaf=2, min_samples_split=6, n_estimators=30;, score=0.874 total time= 0.1s\n","[CV 4/5] END bootstrap=True, max_depth=10, max_features=None, min_samples_leaf=2, min_samples_split=6, n_estimators=30;, score=0.864 total time= 0.1s\n","[CV 5/5] END bootstrap=True, max_depth=10, max_features=None, min_samples_leaf=2, min_samples_split=6, n_estimators=30;, score=0.889 total time= 0.1s\n","[CV 1/5] END bootstrap=True, max_depth=10, max_features=None, min_samples_leaf=4, min_samples_split=2, n_estimators=5;, score=0.879 total time= 0.0s\n","[CV 2/5] END bootstrap=True, max_depth=10, max_features=None, min_samples_leaf=4, min_samples_split=2, n_estimators=5;, score=0.879 total time= 0.0s\n","[CV 3/5] END bootstrap=True, max_depth=10, max_features=None, min_samples_leaf=4, min_samples_split=2, n_estimators=5;, score=0.879 total time= 0.0s\n","[CV 4/5] END bootstrap=True, max_depth=10, max_features=None, min_samples_leaf=4, min_samples_split=2, n_estimators=5;, score=0.838 total time= 0.0s\n","[CV 5/5] END bootstrap=True, max_depth=10, max_features=None, min_samples_leaf=4, min_samples_split=2, n_estimators=5;, score=0.859 total time= 0.0s\n","[CV 1/5] END bootstrap=True, max_depth=10, max_features=None, min_samples_leaf=4, min_samples_split=2, n_estimators=10;, score=0.899 total time= 0.0s\n","[CV 2/5] END bootstrap=True, max_depth=10, max_features=None, min_samples_leaf=4, min_samples_split=2, n_estimators=10;, score=0.884 total time= 0.0s\n","[CV 3/5] END bootstrap=True, max_depth=10, max_features=None, min_samples_leaf=4, min_samples_split=2, n_estimators=10;, score=0.889 total time= 0.0s\n","[CV 4/5] END bootstrap=True, max_depth=10, max_features=None, min_samples_leaf=4, min_samples_split=2, n_estimators=10;, score=0.854 total time= 0.0s\n","[CV 5/5] END bootstrap=True, max_depth=10, max_features=None, min_samples_leaf=4, min_samples_split=2, n_estimators=10;, score=0.879 total time= 0.0s\n","[CV 1/5] END bootstrap=True, max_depth=10, max_features=None, min_samples_leaf=4, min_samples_split=2, n_estimators=20;, score=0.864 total time= 0.1s\n","[CV 2/5] END bootstrap=True, max_depth=10, max_features=None, min_samples_leaf=4, min_samples_split=2, n_estimators=20;, score=0.874 total time= 0.1s\n","[CV 3/5] END bootstrap=True, max_depth=10, max_features=None, min_samples_leaf=4, min_samples_split=2, n_estimators=20;, score=0.899 total time= 0.1s\n","[CV 4/5] END bootstrap=True, max_depth=10, max_features=None, min_samples_leaf=4, min_samples_split=2, n_estimators=20;, score=0.848 total time= 0.1s\n","[CV 5/5] END bootstrap=True, max_depth=10, max_features=None, min_samples_leaf=4, min_samples_split=2, n_estimators=20;, score=0.879 total time= 0.1s\n","[CV 1/5] END bootstrap=True, max_depth=10, max_features=None, min_samples_leaf=4, min_samples_split=2, n_estimators=30;, score=0.869 total time= 0.1s\n","[CV 2/5] END bootstrap=True, max_depth=10, max_features=None, min_samples_leaf=4, min_samples_split=2, n_estimators=30;, score=0.874 total time= 0.1s\n","[CV 3/5] END bootstrap=True, max_depth=10, max_features=None, min_samples_leaf=4, min_samples_split=2, n_estimators=30;, score=0.879 total time= 0.1s\n","[CV 4/5] END bootstrap=True, max_depth=10, max_features=None, min_samples_leaf=4, min_samples_split=2, n_estimators=30;, score=0.874 total time= 0.1s\n","[CV 5/5] END bootstrap=True, max_depth=10, max_features=None, min_samples_leaf=4, min_samples_split=2, n_estimators=30;, score=0.889 total time= 0.1s\n","[CV 1/5] END bootstrap=True, max_depth=10, max_features=None, min_samples_leaf=4, min_samples_split=4, n_estimators=5;, score=0.864 total time= 0.0s\n","[CV 2/5] END bootstrap=True, max_depth=10, max_features=None, min_samples_leaf=4, min_samples_split=4, n_estimators=5;, score=0.859 total time= 0.0s\n","[CV 3/5] END bootstrap=True, max_depth=10, max_features=None, min_samples_leaf=4, min_samples_split=4, n_estimators=5;, score=0.904 total time= 0.0s\n","[CV 4/5] END bootstrap=True, max_depth=10, max_features=None, min_samples_leaf=4, min_samples_split=4, n_estimators=5;, score=0.859 total time= 0.0s\n","[CV 5/5] END bootstrap=True, max_depth=10, max_features=None, min_samples_leaf=4, min_samples_split=4, n_estimators=5;, score=0.914 total time= 0.0s\n","[CV 1/5] END bootstrap=True, max_depth=10, max_features=None, min_samples_leaf=4, min_samples_split=4, n_estimators=10;, score=0.869 total time= 0.0s\n","[CV 2/5] END bootstrap=True, max_depth=10, max_features=None, min_samples_leaf=4, min_samples_split=4, n_estimators=10;, score=0.879 total time= 0.0s\n","[CV 3/5] END bootstrap=True, max_depth=10, max_features=None, min_samples_leaf=4, min_samples_split=4, n_estimators=10;, score=0.874 total time= 0.0s\n","[CV 4/5] END bootstrap=True, max_depth=10, max_features=None, min_samples_leaf=4, min_samples_split=4, n_estimators=10;, score=0.828 total time= 0.0s\n","[CV 5/5] END bootstrap=True, max_depth=10, max_features=None, min_samples_leaf=4, min_samples_split=4, n_estimators=10;, score=0.889 total time= 0.0s\n","[CV 1/5] END bootstrap=True, max_depth=10, max_features=None, min_samples_leaf=4, min_samples_split=4, n_estimators=20;, score=0.894 total time= 0.1s\n","[CV 2/5] END bootstrap=True, max_depth=10, max_features=None, min_samples_leaf=4, min_samples_split=4, n_estimators=20;, score=0.899 total time= 0.1s\n","[CV 3/5] END bootstrap=True, max_depth=10, max_features=None, min_samples_leaf=4, min_samples_split=4, n_estimators=20;, score=0.889 total time= 0.1s\n","[CV 4/5] END bootstrap=True, max_depth=10, max_features=None, min_samples_leaf=4, min_samples_split=4, n_estimators=20;, score=0.854 total time= 0.1s\n","[CV 5/5] END bootstrap=True, max_depth=10, max_features=None, min_samples_leaf=4, min_samples_split=4, n_estimators=20;, score=0.869 total time= 0.1s\n","[CV 1/5] END bootstrap=True, max_depth=10, max_features=None, min_samples_leaf=4, min_samples_split=4, n_estimators=30;, score=0.864 total time= 0.1s\n","[CV 2/5] END bootstrap=True, max_depth=10, max_features=None, min_samples_leaf=4, min_samples_split=4, n_estimators=30;, score=0.884 total time= 0.1s\n","[CV 3/5] END bootstrap=True, max_depth=10, max_features=None, min_samples_leaf=4, min_samples_split=4, n_estimators=30;, score=0.889 total time= 0.2s\n","[CV 4/5] END bootstrap=True, max_depth=10, max_features=None, min_samples_leaf=4, min_samples_split=4, n_estimators=30;, score=0.854 total time= 0.2s\n","[CV 5/5] END bootstrap=True, max_depth=10, max_features=None, min_samples_leaf=4, min_samples_split=4, n_estimators=30;, score=0.879 total time= 0.1s\n","[CV 1/5] END bootstrap=True, max_depth=10, max_features=None, min_samples_leaf=4, min_samples_split=6, n_estimators=5;, score=0.843 total time= 0.0s\n","[CV 2/5] END bootstrap=True, max_depth=10, max_features=None, min_samples_leaf=4, min_samples_split=6, n_estimators=5;, score=0.889 total time= 0.0s\n","[CV 3/5] END bootstrap=True, max_depth=10, max_features=None, min_samples_leaf=4, min_samples_split=6, n_estimators=5;, score=0.884 total time= 0.1s\n","[CV 4/5] END bootstrap=True, max_depth=10, max_features=None, min_samples_leaf=4, min_samples_split=6, n_estimators=5;, score=0.869 total time= 0.1s\n","[CV 5/5] END bootstrap=True, max_depth=10, max_features=None, min_samples_leaf=4, min_samples_split=6, n_estimators=5;, score=0.864 total time= 0.1s\n","[CV 1/5] END bootstrap=True, max_depth=10, max_features=None, min_samples_leaf=4, min_samples_split=6, n_estimators=10;, score=0.864 total time= 0.1s\n","[CV 2/5] END bootstrap=True, max_depth=10, max_features=None, min_samples_leaf=4, min_samples_split=6, n_estimators=10;, score=0.889 total time= 0.2s\n","[CV 3/5] END bootstrap=True, max_depth=10, max_features=None, min_samples_leaf=4, min_samples_split=6, n_estimators=10;, score=0.879 total time= 0.2s\n","[CV 4/5] END bootstrap=True, max_depth=10, max_features=None, min_samples_leaf=4, min_samples_split=6, n_estimators=10;, score=0.874 total time= 0.2s\n","[CV 5/5] END bootstrap=True, max_depth=10, max_features=None, min_samples_leaf=4, min_samples_split=6, n_estimators=10;, score=0.899 total time= 0.1s\n","[CV 1/5] END bootstrap=True, max_depth=10, max_features=None, min_samples_leaf=4, min_samples_split=6, n_estimators=20;, score=0.869 total time= 0.4s\n","[CV 2/5] END bootstrap=True, max_depth=10, max_features=None, min_samples_leaf=4, min_samples_split=6, n_estimators=20;, score=0.879 total time= 0.3s\n","[CV 3/5] END bootstrap=True, max_depth=10, max_features=None, min_samples_leaf=4, min_samples_split=6, n_estimators=20;, score=0.889 total time= 0.2s\n","[CV 4/5] END bootstrap=True, max_depth=10, max_features=None, min_samples_leaf=4, min_samples_split=6, n_estimators=20;, score=0.864 total time= 0.2s\n","[CV 5/5] END bootstrap=True, max_depth=10, max_features=None, min_samples_leaf=4, min_samples_split=6, n_estimators=20;, score=0.879 total time= 0.2s\n","[CV 1/5] END bootstrap=True, max_depth=10, max_features=None, min_samples_leaf=4, min_samples_split=6, n_estimators=30;, score=0.869 total time= 0.5s\n","[CV 2/5] END bootstrap=True, max_depth=10, max_features=None, min_samples_leaf=4, min_samples_split=6, n_estimators=30;, score=0.869 total time= 0.4s\n","[CV 3/5] END bootstrap=True, max_depth=10, max_features=None, min_samples_leaf=4, min_samples_split=6, n_estimators=30;, score=0.869 total time= 0.6s\n","[CV 4/5] END bootstrap=True, max_depth=10, max_features=None, min_samples_leaf=4, min_samples_split=6, n_estimators=30;, score=0.864 total time= 0.3s\n","[CV 5/5] END bootstrap=True, max_depth=10, max_features=None, min_samples_leaf=4, min_samples_split=6, n_estimators=30;, score=0.884 total time= 0.1s\n","[CV 1/5] END bootstrap=True, max_depth=10, max_features=None, min_samples_leaf=6, min_samples_split=2, n_estimators=5;, score=0.879 total time= 0.0s\n","[CV 2/5] END bootstrap=True, max_depth=10, max_features=None, min_samples_leaf=6, min_samples_split=2, n_estimators=5;, score=0.899 total time= 0.1s\n","[CV 3/5] END bootstrap=True, max_depth=10, max_features=None, min_samples_leaf=6, min_samples_split=2, n_estimators=5;, score=0.904 total time= 0.0s\n","[CV 4/5] END bootstrap=True, max_depth=10, max_features=None, min_samples_leaf=6, min_samples_split=2, n_estimators=5;, score=0.854 total time= 0.0s\n","[CV 5/5] END bootstrap=True, max_depth=10, max_features=None, min_samples_leaf=6, min_samples_split=2, n_estimators=5;, score=0.874 total time= 0.0s\n","[CV 1/5] END bootstrap=True, max_depth=10, max_features=None, min_samples_leaf=6, min_samples_split=2, n_estimators=10;, score=0.874 total time= 0.1s\n","[CV 2/5] END bootstrap=True, max_depth=10, max_features=None, min_samples_leaf=6, min_samples_split=2, n_estimators=10;, score=0.884 total time= 0.1s\n","[CV 3/5] END bootstrap=True, max_depth=10, max_features=None, min_samples_leaf=6, min_samples_split=2, n_estimators=10;, score=0.884 total time= 0.1s\n","[CV 4/5] END bootstrap=True, max_depth=10, max_features=None, min_samples_leaf=6, min_samples_split=2, n_estimators=10;, score=0.854 total time= 0.0s\n","[CV 5/5] END bootstrap=True, max_depth=10, max_features=None, min_samples_leaf=6, min_samples_split=2, n_estimators=10;, score=0.884 total time= 0.1s\n","[CV 1/5] END bootstrap=True, max_depth=10, max_features=None, min_samples_leaf=6, min_samples_split=2, n_estimators=20;, score=0.869 total time= 0.1s\n","[CV 2/5] END bootstrap=True, max_depth=10, max_features=None, min_samples_leaf=6, min_samples_split=2, n_estimators=20;, score=0.894 total time= 0.2s\n","[CV 3/5] END bootstrap=True, max_depth=10, max_features=None, min_samples_leaf=6, min_samples_split=2, n_estimators=20;, score=0.889 total time= 0.2s\n","[CV 4/5] END bootstrap=True, max_depth=10, max_features=None, min_samples_leaf=6, min_samples_split=2, n_estimators=20;, score=0.848 total time= 0.1s\n","[CV 5/5] END bootstrap=True, max_depth=10, max_features=None, min_samples_leaf=6, min_samples_split=2, n_estimators=20;, score=0.874 total time= 0.1s\n","[CV 1/5] END bootstrap=True, max_depth=10, max_features=None, min_samples_leaf=6, min_samples_split=2, n_estimators=30;, score=0.869 total time= 0.3s\n","[CV 2/5] END bootstrap=True, max_depth=10, max_features=None, min_samples_leaf=6, min_samples_split=2, n_estimators=30;, score=0.879 total time= 0.3s\n","[CV 3/5] END bootstrap=True, max_depth=10, max_features=None, min_samples_leaf=6, min_samples_split=2, n_estimators=30;, score=0.884 total time= 0.2s\n","[CV 4/5] END bootstrap=True, max_depth=10, max_features=None, min_samples_leaf=6, min_samples_split=2, n_estimators=30;, score=0.874 total time= 0.2s\n","[CV 5/5] END bootstrap=True, max_depth=10, max_features=None, min_samples_leaf=6, min_samples_split=2, n_estimators=30;, score=0.894 total time= 0.1s\n","[CV 1/5] END bootstrap=True, max_depth=10, max_features=None, min_samples_leaf=6, min_samples_split=4, n_estimators=5;, score=0.864 total time= 0.1s\n","[CV 2/5] END bootstrap=True, max_depth=10, max_features=None, min_samples_leaf=6, min_samples_split=4, n_estimators=5;, score=0.904 total time= 0.1s\n","[CV 3/5] END bootstrap=True, max_depth=10, max_features=None, min_samples_leaf=6, min_samples_split=4, n_estimators=5;, score=0.874 total time= 0.1s\n","[CV 4/5] END bootstrap=True, max_depth=10, max_features=None, min_samples_leaf=6, min_samples_split=4, n_estimators=5;, score=0.859 total time= 0.1s\n","[CV 5/5] END bootstrap=True, max_depth=10, max_features=None, min_samples_leaf=6, min_samples_split=4, n_estimators=5;, score=0.894 total time= 0.0s\n","[CV 1/5] END bootstrap=True, max_depth=10, max_features=None, min_samples_leaf=6, min_samples_split=4, n_estimators=10;, score=0.869 total time= 0.1s\n","[CV 2/5] END bootstrap=True, max_depth=10, max_features=None, min_samples_leaf=6, min_samples_split=4, n_estimators=10;, score=0.869 total time= 0.1s\n","[CV 3/5] END bootstrap=True, max_depth=10, max_features=None, min_samples_leaf=6, min_samples_split=4, n_estimators=10;, score=0.874 total time= 0.1s\n","[CV 4/5] END bootstrap=True, max_depth=10, max_features=None, min_samples_leaf=6, min_samples_split=4, n_estimators=10;, score=0.869 total time= 0.1s\n","[CV 5/5] END bootstrap=True, max_depth=10, max_features=None, min_samples_leaf=6, min_samples_split=4, n_estimators=10;, score=0.869 total time= 0.1s\n","[CV 1/5] END bootstrap=True, max_depth=10, max_features=None, min_samples_leaf=6, min_samples_split=4, n_estimators=20;, score=0.889 total time= 0.1s\n","[CV 2/5] END bootstrap=True, max_depth=10, max_features=None, min_samples_leaf=6, min_samples_split=4, n_estimators=20;, score=0.874 total time= 0.1s\n","[CV 3/5] END bootstrap=True, max_depth=10, max_features=None, min_samples_leaf=6, min_samples_split=4, n_estimators=20;, score=0.879 total time= 0.2s\n","[CV 4/5] END bootstrap=True, max_depth=10, max_features=None, min_samples_leaf=6, min_samples_split=4, n_estimators=20;, score=0.854 total time= 0.2s\n","[CV 5/5] END bootstrap=True, max_depth=10, max_features=None, min_samples_leaf=6, min_samples_split=4, n_estimators=20;, score=0.879 total time= 0.2s\n","[CV 1/5] END bootstrap=True, max_depth=10, max_features=None, min_samples_leaf=6, min_samples_split=4, n_estimators=30;, score=0.884 total time= 0.2s\n","[CV 2/5] END bootstrap=True, max_depth=10, max_features=None, min_samples_leaf=6, min_samples_split=4, n_estimators=30;, score=0.879 total time= 0.2s\n","[CV 3/5] END bootstrap=True, max_depth=10, max_features=None, min_samples_leaf=6, min_samples_split=4, n_estimators=30;, score=0.884 total time= 0.2s\n","[CV 4/5] END bootstrap=True, max_depth=10, max_features=None, min_samples_leaf=6, min_samples_split=4, n_estimators=30;, score=0.848 total time= 0.2s\n","[CV 5/5] END bootstrap=True, max_depth=10, max_features=None, min_samples_leaf=6, min_samples_split=4, n_estimators=30;, score=0.874 total time= 0.2s\n","[CV 1/5] END bootstrap=True, max_depth=10, max_features=None, min_samples_leaf=6, min_samples_split=6, n_estimators=5;, score=0.889 total time= 0.0s\n","[CV 2/5] END bootstrap=True, max_depth=10, max_features=None, min_samples_leaf=6, min_samples_split=6, n_estimators=5;, score=0.884 total time= 0.0s\n","[CV 3/5] END bootstrap=True, max_depth=10, max_features=None, min_samples_leaf=6, min_samples_split=6, n_estimators=5;, score=0.904 total time= 0.0s\n","[CV 4/5] END bootstrap=True, max_depth=10, max_features=None, min_samples_leaf=6, min_samples_split=6, n_estimators=5;, score=0.838 total time= 0.0s\n","[CV 5/5] END bootstrap=True, max_depth=10, max_features=None, min_samples_leaf=6, min_samples_split=6, n_estimators=5;, score=0.864 total time= 0.1s\n","[CV 1/5] END bootstrap=True, max_depth=10, max_features=None, min_samples_leaf=6, min_samples_split=6, n_estimators=10;, score=0.864 total time= 0.0s\n","[CV 2/5] END bootstrap=True, max_depth=10, max_features=None, min_samples_leaf=6, min_samples_split=6, n_estimators=10;, score=0.884 total time= 0.1s\n","[CV 3/5] END bootstrap=True, max_depth=10, max_features=None, min_samples_leaf=6, min_samples_split=6, n_estimators=10;, score=0.869 total time= 0.1s\n","[CV 4/5] END bootstrap=True, max_depth=10, max_features=None, min_samples_leaf=6, min_samples_split=6, n_estimators=10;, score=0.899 total time= 0.1s\n","[CV 5/5] END bootstrap=True, max_depth=10, max_features=None, min_samples_leaf=6, min_samples_split=6, n_estimators=10;, score=0.859 total time= 0.1s\n","[CV 1/5] END bootstrap=True, max_depth=10, max_features=None, min_samples_leaf=6, min_samples_split=6, n_estimators=20;, score=0.859 total time= 0.1s\n","[CV 2/5] END bootstrap=True, max_depth=10, max_features=None, min_samples_leaf=6, min_samples_split=6, n_estimators=20;, score=0.884 total time= 0.1s\n","[CV 3/5] END bootstrap=True, max_depth=10, max_features=None, min_samples_leaf=6, min_samples_split=6, n_estimators=20;, score=0.884 total time= 0.1s\n","[CV 4/5] END bootstrap=True, max_depth=10, max_features=None, min_samples_leaf=6, min_samples_split=6, n_estimators=20;, score=0.833 total time= 0.1s\n","[CV 5/5] END bootstrap=True, max_depth=10, max_features=None, min_samples_leaf=6, min_samples_split=6, n_estimators=20;, score=0.869 total time= 0.1s\n","[CV 1/5] END bootstrap=True, max_depth=10, max_features=None, min_samples_leaf=6, min_samples_split=6, n_estimators=30;, score=0.874 total time= 0.2s\n","[CV 2/5] END bootstrap=True, max_depth=10, max_features=None, min_samples_leaf=6, min_samples_split=6, n_estimators=30;, score=0.889 total time= 0.1s\n","[CV 3/5] END bootstrap=True, max_depth=10, max_features=None, min_samples_leaf=6, min_samples_split=6, n_estimators=30;, score=0.874 total time= 0.3s\n","[CV 4/5] END bootstrap=True, max_depth=10, max_features=None, min_samples_leaf=6, min_samples_split=6, n_estimators=30;, score=0.854 total time= 0.4s\n","[CV 5/5] END bootstrap=True, max_depth=10, max_features=None, min_samples_leaf=6, min_samples_split=6, n_estimators=30;, score=0.884 total time= 0.2s\n","[CV 1/5] END bootstrap=False, max_depth=2, max_features=sqrt, min_samples_leaf=2, min_samples_split=2, n_estimators=5;, score=0.828 total time= 0.0s\n","[CV 2/5] END bootstrap=False, max_depth=2, max_features=sqrt, min_samples_leaf=2, min_samples_split=2, n_estimators=5;, score=0.909 total time= 0.0s\n","[CV 3/5] END bootstrap=False, max_depth=2, max_features=sqrt, min_samples_leaf=2, min_samples_split=2, n_estimators=5;, score=0.894 total time= 0.0s\n","[CV 4/5] END bootstrap=False, max_depth=2, max_features=sqrt, min_samples_leaf=2, min_samples_split=2, n_estimators=5;, score=0.854 total time= 0.0s\n","[CV 5/5] END bootstrap=False, max_depth=2, max_features=sqrt, min_samples_leaf=2, min_samples_split=2, n_estimators=5;, score=0.884 total time= 0.0s\n","[CV 1/5] END bootstrap=False, max_depth=2, max_features=sqrt, min_samples_leaf=2, min_samples_split=2, n_estimators=10;, score=0.864 total time= 0.0s\n","[CV 2/5] END bootstrap=False, max_depth=2, max_features=sqrt, min_samples_leaf=2, min_samples_split=2, n_estimators=10;, score=0.889 total time= 0.0s\n","[CV 3/5] END bootstrap=False, max_depth=2, max_features=sqrt, min_samples_leaf=2, min_samples_split=2, n_estimators=10;, score=0.884 total time= 0.0s\n","[CV 4/5] END bootstrap=False, max_depth=2, max_features=sqrt, min_samples_leaf=2, min_samples_split=2, n_estimators=10;, score=0.843 total time= 0.0s\n","[CV 5/5] END bootstrap=False, max_depth=2, max_features=sqrt, min_samples_leaf=2, min_samples_split=2, n_estimators=10;, score=0.884 total time= 0.0s\n","[CV 1/5] END bootstrap=False, max_depth=2, max_features=sqrt, min_samples_leaf=2, min_samples_split=2, n_estimators=20;, score=0.884 total time= 0.0s\n","[CV 2/5] END bootstrap=False, max_depth=2, max_features=sqrt, min_samples_leaf=2, min_samples_split=2, n_estimators=20;, score=0.879 total time= 0.0s\n","[CV 3/5] END bootstrap=False, max_depth=2, max_features=sqrt, min_samples_leaf=2, min_samples_split=2, n_estimators=20;, score=0.874 total time= 0.0s\n","[CV 4/5] END bootstrap=False, max_depth=2, max_features=sqrt, min_samples_leaf=2, min_samples_split=2, n_estimators=20;, score=0.864 total time= 0.0s\n","[CV 5/5] END bootstrap=False, max_depth=2, max_features=sqrt, min_samples_leaf=2, min_samples_split=2, n_estimators=20;, score=0.899 total time= 0.0s\n","[CV 1/5] END bootstrap=False, max_depth=2, max_features=sqrt, min_samples_leaf=2, min_samples_split=2, n_estimators=30;, score=0.859 total time= 0.0s\n","[CV 2/5] END bootstrap=False, max_depth=2, max_features=sqrt, min_samples_leaf=2, min_samples_split=2, n_estimators=30;, score=0.879 total time= 0.0s\n","[CV 3/5] END bootstrap=False, max_depth=2, max_features=sqrt, min_samples_leaf=2, min_samples_split=2, n_estimators=30;, score=0.874 total time= 0.1s\n","[CV 4/5] END bootstrap=False, max_depth=2, max_features=sqrt, min_samples_leaf=2, min_samples_split=2, n_estimators=30;, score=0.869 total time= 0.0s\n","[CV 5/5] END bootstrap=False, max_depth=2, max_features=sqrt, min_samples_leaf=2, min_samples_split=2, n_estimators=30;, score=0.879 total time= 0.1s\n","[CV 1/5] END bootstrap=False, max_depth=2, max_features=sqrt, min_samples_leaf=2, min_samples_split=4, n_estimators=5;, score=0.889 total time= 0.0s\n","[CV 2/5] END bootstrap=False, max_depth=2, max_features=sqrt, min_samples_leaf=2, min_samples_split=4, n_estimators=5;, score=0.889 total time= 0.0s\n","[CV 3/5] END bootstrap=False, max_depth=2, max_features=sqrt, min_samples_leaf=2, min_samples_split=4, n_estimators=5;, score=0.899 total time= 0.0s\n","[CV 4/5] END bootstrap=False, max_depth=2, max_features=sqrt, min_samples_leaf=2, min_samples_split=4, n_estimators=5;, score=0.854 total time= 0.0s\n","[CV 5/5] END bootstrap=False, max_depth=2, max_features=sqrt, min_samples_leaf=2, min_samples_split=4, n_estimators=5;, score=0.879 total time= 0.0s\n","[CV 1/5] END bootstrap=False, max_depth=2, max_features=sqrt, min_samples_leaf=2, min_samples_split=4, n_estimators=10;, score=0.864 total time= 0.0s\n","[CV 2/5] END bootstrap=False, max_depth=2, max_features=sqrt, min_samples_leaf=2, min_samples_split=4, n_estimators=10;, score=0.879 total time= 0.0s\n","[CV 3/5] END bootstrap=False, max_depth=2, max_features=sqrt, min_samples_leaf=2, min_samples_split=4, n_estimators=10;, score=0.894 total time= 0.0s\n","[CV 4/5] END bootstrap=False, max_depth=2, max_features=sqrt, min_samples_leaf=2, min_samples_split=4, n_estimators=10;, score=0.864 total time= 0.0s\n","[CV 5/5] END bootstrap=False, max_depth=2, max_features=sqrt, min_samples_leaf=2, min_samples_split=4, n_estimators=10;, score=0.874 total time= 0.0s\n","[CV 1/5] END bootstrap=False, max_depth=2, max_features=sqrt, min_samples_leaf=2, min_samples_split=4, n_estimators=20;, score=0.864 total time= 0.0s\n","[CV 2/5] END bootstrap=False, max_depth=2, max_features=sqrt, min_samples_leaf=2, min_samples_split=4, n_estimators=20;, score=0.904 total time= 0.0s\n","[CV 3/5] END bootstrap=False, max_depth=2, max_features=sqrt, min_samples_leaf=2, min_samples_split=4, n_estimators=20;, score=0.879 total time= 0.0s\n","[CV 4/5] END bootstrap=False, max_depth=2, max_features=sqrt, min_samples_leaf=2, min_samples_split=4, n_estimators=20;, score=0.864 total time= 0.0s\n","[CV 5/5] END bootstrap=False, max_depth=2, max_features=sqrt, min_samples_leaf=2, min_samples_split=4, n_estimators=20;, score=0.879 total time= 0.0s\n","[CV 1/5] END bootstrap=False, max_depth=2, max_features=sqrt, min_samples_leaf=2, min_samples_split=4, n_estimators=30;, score=0.864 total time= 0.0s\n","[CV 2/5] END bootstrap=False, max_depth=2, max_features=sqrt, min_samples_leaf=2, min_samples_split=4, n_estimators=30;, score=0.894 total time= 0.0s\n","[CV 3/5] END bootstrap=False, max_depth=2, max_features=sqrt, min_samples_leaf=2, min_samples_split=4, n_estimators=30;, score=0.889 total time= 0.0s\n","[CV 4/5] END bootstrap=False, max_depth=2, max_features=sqrt, min_samples_leaf=2, min_samples_split=4, n_estimators=30;, score=0.833 total time= 0.1s\n","[CV 5/5] END bootstrap=False, max_depth=2, max_features=sqrt, min_samples_leaf=2, min_samples_split=4, n_estimators=30;, score=0.874 total time= 0.1s\n","[CV 1/5] END bootstrap=False, max_depth=2, max_features=sqrt, min_samples_leaf=2, min_samples_split=6, n_estimators=5;, score=0.854 total time= 0.0s\n","[CV 2/5] END bootstrap=False, max_depth=2, max_features=sqrt, min_samples_leaf=2, min_samples_split=6, n_estimators=5;, score=0.889 total time= 0.0s\n","[CV 3/5] END bootstrap=False, max_depth=2, max_features=sqrt, min_samples_leaf=2, min_samples_split=6, n_estimators=5;, score=0.914 total time= 0.0s\n","[CV 4/5] END bootstrap=False, max_depth=2, max_features=sqrt, min_samples_leaf=2, min_samples_split=6, n_estimators=5;, score=0.843 total time= 0.0s\n","[CV 5/5] END bootstrap=False, max_depth=2, max_features=sqrt, min_samples_leaf=2, min_samples_split=6, n_estimators=5;, score=0.889 total time= 0.0s\n","[CV 1/5] END bootstrap=False, max_depth=2, max_features=sqrt, min_samples_leaf=2, min_samples_split=6, n_estimators=10;, score=0.859 total time= 0.0s\n","[CV 2/5] END bootstrap=False, max_depth=2, max_features=sqrt, min_samples_leaf=2, min_samples_split=6, n_estimators=10;, score=0.889 total time= 0.0s\n","[CV 3/5] END bootstrap=False, max_depth=2, max_features=sqrt, min_samples_leaf=2, min_samples_split=6, n_estimators=10;, score=0.874 total time= 0.0s\n","[CV 4/5] END bootstrap=False, max_depth=2, max_features=sqrt, min_samples_leaf=2, min_samples_split=6, n_estimators=10;, score=0.848 total time= 0.0s\n","[CV 5/5] END bootstrap=False, max_depth=2, max_features=sqrt, min_samples_leaf=2, min_samples_split=6, n_estimators=10;, score=0.904 total time= 0.0s\n","[CV 1/5] END bootstrap=False, max_depth=2, max_features=sqrt, min_samples_leaf=2, min_samples_split=6, n_estimators=20;, score=0.864 total time= 0.0s\n","[CV 2/5] END bootstrap=False, max_depth=2, max_features=sqrt, min_samples_leaf=2, min_samples_split=6, n_estimators=20;, score=0.889 total time= 0.0s\n","[CV 3/5] END bootstrap=False, max_depth=2, max_features=sqrt, min_samples_leaf=2, min_samples_split=6, n_estimators=20;, score=0.879 total time= 0.0s\n","[CV 4/5] END bootstrap=False, max_depth=2, max_features=sqrt, min_samples_leaf=2, min_samples_split=6, n_estimators=20;, score=0.894 total time= 0.0s\n","[CV 5/5] END bootstrap=False, max_depth=2, max_features=sqrt, min_samples_leaf=2, min_samples_split=6, n_estimators=20;, score=0.884 total time= 0.0s\n","[CV 1/5] END bootstrap=False, max_depth=2, max_features=sqrt, min_samples_leaf=2, min_samples_split=6, n_estimators=30;, score=0.869 total time= 0.1s\n","[CV 2/5] END bootstrap=False, max_depth=2, max_features=sqrt, min_samples_leaf=2, min_samples_split=6, n_estimators=30;, score=0.889 total time= 0.1s\n","[CV 3/5] END bootstrap=False, max_depth=2, max_features=sqrt, min_samples_leaf=2, min_samples_split=6, n_estimators=30;, score=0.904 total time= 0.0s\n","[CV 4/5] END bootstrap=False, max_depth=2, max_features=sqrt, min_samples_leaf=2, min_samples_split=6, n_estimators=30;, score=0.859 total time= 0.0s\n","[CV 5/5] END bootstrap=False, max_depth=2, max_features=sqrt, min_samples_leaf=2, min_samples_split=6, n_estimators=30;, score=0.884 total time= 0.0s\n","[CV 1/5] END bootstrap=False, max_depth=2, max_features=sqrt, min_samples_leaf=4, min_samples_split=2, n_estimators=5;, score=0.859 total time= 0.0s\n","[CV 2/5] END bootstrap=False, max_depth=2, max_features=sqrt, min_samples_leaf=4, min_samples_split=2, n_estimators=5;, score=0.879 total time= 0.0s\n","[CV 3/5] END bootstrap=False, max_depth=2, max_features=sqrt, min_samples_leaf=4, min_samples_split=2, n_estimators=5;, score=0.869 total time= 0.0s\n","[CV 4/5] END bootstrap=False, max_depth=2, max_features=sqrt, min_samples_leaf=4, min_samples_split=2, n_estimators=5;, score=0.859 total time= 0.0s\n","[CV 5/5] END bootstrap=False, max_depth=2, max_features=sqrt, min_samples_leaf=4, min_samples_split=2, n_estimators=5;, score=0.869 total time= 0.0s\n","[CV 1/5] END bootstrap=False, max_depth=2, max_features=sqrt, min_samples_leaf=4, min_samples_split=2, n_estimators=10;, score=0.848 total time= 0.0s\n","[CV 2/5] END bootstrap=False, max_depth=2, max_features=sqrt, min_samples_leaf=4, min_samples_split=2, n_estimators=10;, score=0.879 total time= 0.0s\n","[CV 3/5] END bootstrap=False, max_depth=2, max_features=sqrt, min_samples_leaf=4, min_samples_split=2, n_estimators=10;, score=0.894 total time= 0.0s\n","[CV 4/5] END bootstrap=False, max_depth=2, max_features=sqrt, min_samples_leaf=4, min_samples_split=2, n_estimators=10;, score=0.854 total time= 0.0s\n","[CV 5/5] END bootstrap=False, max_depth=2, max_features=sqrt, min_samples_leaf=4, min_samples_split=2, n_estimators=10;, score=0.889 total time= 0.0s\n","[CV 1/5] END bootstrap=False, max_depth=2, max_features=sqrt, min_samples_leaf=4, min_samples_split=2, n_estimators=20;, score=0.869 total time= 0.0s\n","[CV 2/5] END bootstrap=False, max_depth=2, max_features=sqrt, min_samples_leaf=4, min_samples_split=2, n_estimators=20;, score=0.889 total time= 0.0s\n","[CV 3/5] END bootstrap=False, max_depth=2, max_features=sqrt, min_samples_leaf=4, min_samples_split=2, n_estimators=20;, score=0.884 total time= 0.0s\n","[CV 4/5] END bootstrap=False, max_depth=2, max_features=sqrt, min_samples_leaf=4, min_samples_split=2, n_estimators=20;, score=0.869 total time= 0.0s\n","[CV 5/5] END bootstrap=False, max_depth=2, max_features=sqrt, min_samples_leaf=4, min_samples_split=2, n_estimators=20;, score=0.884 total time= 0.0s\n","[CV 1/5] END bootstrap=False, max_depth=2, max_features=sqrt, min_samples_leaf=4, min_samples_split=2, n_estimators=30;, score=0.864 total time= 0.0s\n","[CV 2/5] END bootstrap=False, max_depth=2, max_features=sqrt, min_samples_leaf=4, min_samples_split=2, n_estimators=30;, score=0.894 total time= 0.0s\n","[CV 3/5] END bootstrap=False, max_depth=2, max_features=sqrt, min_samples_leaf=4, min_samples_split=2, n_estimators=30;, score=0.879 total time= 0.1s\n","[CV 4/5] END bootstrap=False, max_depth=2, max_features=sqrt, min_samples_leaf=4, min_samples_split=2, n_estimators=30;, score=0.854 total time= 0.1s\n","[CV 5/5] END bootstrap=False, max_depth=2, max_features=sqrt, min_samples_leaf=4, min_samples_split=2, n_estimators=30;, score=0.899 total time= 0.1s\n","[CV 1/5] END bootstrap=False, max_depth=2, max_features=sqrt, min_samples_leaf=4, min_samples_split=4, n_estimators=5;, score=0.864 total time= 0.0s\n","[CV 2/5] END bootstrap=False, max_depth=2, max_features=sqrt, min_samples_leaf=4, min_samples_split=4, n_estimators=5;, score=0.894 total time= 0.0s\n","[CV 3/5] END bootstrap=False, max_depth=2, max_features=sqrt, min_samples_leaf=4, min_samples_split=4, n_estimators=5;, score=0.889 total time= 0.0s\n","[CV 4/5] END bootstrap=False, max_depth=2, max_features=sqrt, min_samples_leaf=4, min_samples_split=4, n_estimators=5;, score=0.828 total time= 0.0s\n","[CV 5/5] END bootstrap=False, max_depth=2, max_features=sqrt, min_samples_leaf=4, min_samples_split=4, n_estimators=5;, score=0.884 total time= 0.0s\n","[CV 1/5] END bootstrap=False, max_depth=2, max_features=sqrt, min_samples_leaf=4, min_samples_split=4, n_estimators=10;, score=0.859 total time= 0.0s\n","[CV 2/5] END bootstrap=False, max_depth=2, max_features=sqrt, min_samples_leaf=4, min_samples_split=4, n_estimators=10;, score=0.889 total time= 0.0s\n","[CV 3/5] END bootstrap=False, max_depth=2, max_features=sqrt, min_samples_leaf=4, min_samples_split=4, n_estimators=10;, score=0.864 total time= 0.0s\n","[CV 4/5] END bootstrap=False, max_depth=2, max_features=sqrt, min_samples_leaf=4, min_samples_split=4, n_estimators=10;, score=0.864 total time= 0.0s\n","[CV 5/5] END bootstrap=False, max_depth=2, max_features=sqrt, min_samples_leaf=4, min_samples_split=4, n_estimators=10;, score=0.869 total time= 0.0s\n","[CV 1/5] END bootstrap=False, max_depth=2, max_features=sqrt, min_samples_leaf=4, min_samples_split=4, n_estimators=20;, score=0.854 total time= 0.1s\n","[CV 2/5] END bootstrap=False, max_depth=2, max_features=sqrt, min_samples_leaf=4, min_samples_split=4, n_estimators=20;, score=0.879 total time= 0.1s\n","[CV 3/5] END bootstrap=False, max_depth=2, max_features=sqrt, min_samples_leaf=4, min_samples_split=4, n_estimators=20;, score=0.894 total time= 0.1s\n","[CV 4/5] END bootstrap=False, max_depth=2, max_features=sqrt, min_samples_leaf=4, min_samples_split=4, n_estimators=20;, score=0.864 total time= 0.1s\n","[CV 5/5] END bootstrap=False, max_depth=2, max_features=sqrt, min_samples_leaf=4, min_samples_split=4, n_estimators=20;, score=0.889 total time= 0.1s\n","[CV 1/5] END bootstrap=False, max_depth=2, max_features=sqrt, min_samples_leaf=4, min_samples_split=4, n_estimators=30;, score=0.859 total time= 0.1s\n","[CV 2/5] END bootstrap=False, max_depth=2, max_features=sqrt, min_samples_leaf=4, min_samples_split=4, n_estimators=30;, score=0.879 total time= 0.1s\n","[CV 3/5] END bootstrap=False, max_depth=2, max_features=sqrt, min_samples_leaf=4, min_samples_split=4, n_estimators=30;, score=0.884 total time= 0.1s\n","[CV 4/5] END bootstrap=False, max_depth=2, max_features=sqrt, min_samples_leaf=4, min_samples_split=4, n_estimators=30;, score=0.864 total time= 0.1s\n","[CV 5/5] END bootstrap=False, max_depth=2, max_features=sqrt, min_samples_leaf=4, min_samples_split=4, n_estimators=30;, score=0.889 total time= 0.1s\n","[CV 1/5] END bootstrap=False, max_depth=2, max_features=sqrt, min_samples_leaf=4, min_samples_split=6, n_estimators=5;, score=0.884 total time= 0.0s\n","[CV 2/5] END bootstrap=False, max_depth=2, max_features=sqrt, min_samples_leaf=4, min_samples_split=6, n_estimators=5;, score=0.894 total time= 0.0s\n","[CV 3/5] END bootstrap=False, max_depth=2, max_features=sqrt, min_samples_leaf=4, min_samples_split=6, n_estimators=5;, score=0.874 total time= 0.0s\n","[CV 4/5] END bootstrap=False, max_depth=2, max_features=sqrt, min_samples_leaf=4, min_samples_split=6, n_estimators=5;, score=0.884 total time= 0.0s\n","[CV 5/5] END bootstrap=False, max_depth=2, max_features=sqrt, min_samples_leaf=4, min_samples_split=6, n_estimators=5;, score=0.874 total time= 0.0s\n","[CV 1/5] END bootstrap=False, max_depth=2, max_features=sqrt, min_samples_leaf=4, min_samples_split=6, n_estimators=10;, score=0.869 total time= 0.0s\n","[CV 2/5] END bootstrap=False, max_depth=2, max_features=sqrt, min_samples_leaf=4, min_samples_split=6, n_estimators=10;, score=0.879 total time= 0.0s\n","[CV 3/5] END bootstrap=False, max_depth=2, max_features=sqrt, min_samples_leaf=4, min_samples_split=6, n_estimators=10;, score=0.879 total time= 0.0s\n","[CV 4/5] END bootstrap=False, max_depth=2, max_features=sqrt, min_samples_leaf=4, min_samples_split=6, n_estimators=10;, score=0.848 total time= 0.1s\n","[CV 5/5] END bootstrap=False, max_depth=2, max_features=sqrt, min_samples_leaf=4, min_samples_split=6, n_estimators=10;, score=0.874 total time= 0.0s\n","[CV 1/5] END bootstrap=False, max_depth=2, max_features=sqrt, min_samples_leaf=4, min_samples_split=6, n_estimators=20;, score=0.884 total time= 0.1s\n","[CV 2/5] END bootstrap=False, max_depth=2, max_features=sqrt, min_samples_leaf=4, min_samples_split=6, n_estimators=20;, score=0.859 total time= 0.1s\n","[CV 3/5] END bootstrap=False, max_depth=2, max_features=sqrt, min_samples_leaf=4, min_samples_split=6, n_estimators=20;, score=0.874 total time= 0.1s\n","[CV 4/5] END bootstrap=False, max_depth=2, max_features=sqrt, min_samples_leaf=4, min_samples_split=6, n_estimators=20;, score=0.874 total time= 0.1s\n","[CV 5/5] END bootstrap=False, max_depth=2, max_features=sqrt, min_samples_leaf=4, min_samples_split=6, n_estimators=20;, score=0.889 total time= 0.1s\n","[CV 1/5] END bootstrap=False, max_depth=2, max_features=sqrt, min_samples_leaf=4, min_samples_split=6, n_estimators=30;, score=0.864 total time= 0.1s\n","[CV 2/5] END bootstrap=False, max_depth=2, max_features=sqrt, min_samples_leaf=4, min_samples_split=6, n_estimators=30;, score=0.874 total time= 0.1s\n","[CV 3/5] END bootstrap=False, max_depth=2, max_features=sqrt, min_samples_leaf=4, min_samples_split=6, n_estimators=30;, score=0.889 total time= 0.1s\n","[CV 4/5] END bootstrap=False, max_depth=2, max_features=sqrt, min_samples_leaf=4, min_samples_split=6, n_estimators=30;, score=0.869 total time= 0.1s\n","[CV 5/5] END bootstrap=False, max_depth=2, max_features=sqrt, min_samples_leaf=4, min_samples_split=6, n_estimators=30;, score=0.879 total time= 0.1s\n","[CV 1/5] END bootstrap=False, max_depth=2, max_features=sqrt, min_samples_leaf=6, min_samples_split=2, n_estimators=5;, score=0.859 total time= 0.0s\n","[CV 2/5] END bootstrap=False, max_depth=2, max_features=sqrt, min_samples_leaf=6, min_samples_split=2, n_estimators=5;, score=0.874 total time= 0.0s\n","[CV 3/5] END bootstrap=False, max_depth=2, max_features=sqrt, min_samples_leaf=6, min_samples_split=2, n_estimators=5;, score=0.889 total time= 0.0s\n","[CV 4/5] END bootstrap=False, max_depth=2, max_features=sqrt, min_samples_leaf=6, min_samples_split=2, n_estimators=5;, score=0.859 total time= 0.0s\n","[CV 5/5] END bootstrap=False, max_depth=2, max_features=sqrt, min_samples_leaf=6, min_samples_split=2, n_estimators=5;, score=0.899 total time= 0.0s\n","[CV 1/5] END bootstrap=False, max_depth=2, max_features=sqrt, min_samples_leaf=6, min_samples_split=2, n_estimators=10;, score=0.869 total time= 0.0s\n","[CV 2/5] END bootstrap=False, max_depth=2, max_features=sqrt, min_samples_leaf=6, min_samples_split=2, n_estimators=10;, score=0.894 total time= 0.0s\n","[CV 3/5] END bootstrap=False, max_depth=2, max_features=sqrt, min_samples_leaf=6, min_samples_split=2, n_estimators=10;, score=0.874 total time= 0.0s\n","[CV 4/5] END bootstrap=False, max_depth=2, max_features=sqrt, min_samples_leaf=6, min_samples_split=2, n_estimators=10;, score=0.854 total time= 0.0s\n","[CV 5/5] END bootstrap=False, max_depth=2, max_features=sqrt, min_samples_leaf=6, min_samples_split=2, n_estimators=10;, score=0.884 total time= 0.0s\n","[CV 1/5] END bootstrap=False, max_depth=2, max_features=sqrt, min_samples_leaf=6, min_samples_split=2, n_estimators=20;, score=0.848 total time= 0.1s\n","[CV 2/5] END bootstrap=False, max_depth=2, max_features=sqrt, min_samples_leaf=6, min_samples_split=2, n_estimators=20;, score=0.889 total time= 0.1s\n","[CV 3/5] END bootstrap=False, max_depth=2, max_features=sqrt, min_samples_leaf=6, min_samples_split=2, n_estimators=20;, score=0.884 total time= 0.1s\n","[CV 4/5] END bootstrap=False, max_depth=2, max_features=sqrt, min_samples_leaf=6, min_samples_split=2, n_estimators=20;, score=0.874 total time= 0.1s\n","[CV 5/5] END bootstrap=False, max_depth=2, max_features=sqrt, min_samples_leaf=6, min_samples_split=2, n_estimators=20;, score=0.864 total time= 0.1s\n","[CV 1/5] END bootstrap=False, max_depth=2, max_features=sqrt, min_samples_leaf=6, min_samples_split=2, n_estimators=30;, score=0.864 total time= 0.1s\n","[CV 2/5] END bootstrap=False, max_depth=2, max_features=sqrt, min_samples_leaf=6, min_samples_split=2, n_estimators=30;, score=0.889 total time= 0.1s\n","[CV 3/5] END bootstrap=False, max_depth=2, max_features=sqrt, min_samples_leaf=6, min_samples_split=2, n_estimators=30;, score=0.899 total time= 0.1s\n","[CV 4/5] END bootstrap=False, max_depth=2, max_features=sqrt, min_samples_leaf=6, min_samples_split=2, n_estimators=30;, score=0.864 total time= 0.1s\n","[CV 5/5] END bootstrap=False, max_depth=2, max_features=sqrt, min_samples_leaf=6, min_samples_split=2, n_estimators=30;, score=0.884 total time= 0.1s\n","[CV 1/5] END bootstrap=False, max_depth=2, max_features=sqrt, min_samples_leaf=6, min_samples_split=4, n_estimators=5;, score=0.874 total time= 0.0s\n","[CV 2/5] END bootstrap=False, max_depth=2, max_features=sqrt, min_samples_leaf=6, min_samples_split=4, n_estimators=5;, score=0.874 total time= 0.0s\n","[CV 3/5] END bootstrap=False, max_depth=2, max_features=sqrt, min_samples_leaf=6, min_samples_split=4, n_estimators=5;, score=0.889 total time= 0.0s\n","[CV 4/5] END bootstrap=False, max_depth=2, max_features=sqrt, min_samples_leaf=6, min_samples_split=4, n_estimators=5;, score=0.874 total time= 0.0s\n","[CV 5/5] END bootstrap=False, max_depth=2, max_features=sqrt, min_samples_leaf=6, min_samples_split=4, n_estimators=5;, score=0.879 total time= 0.0s\n","[CV 1/5] END bootstrap=False, max_depth=2, max_features=sqrt, min_samples_leaf=6, min_samples_split=4, n_estimators=10;, score=0.864 total time= 0.0s\n","[CV 2/5] END bootstrap=False, max_depth=2, max_features=sqrt, min_samples_leaf=6, min_samples_split=4, n_estimators=10;, score=0.894 total time= 0.0s\n","[CV 3/5] END bootstrap=False, max_depth=2, max_features=sqrt, min_samples_leaf=6, min_samples_split=4, n_estimators=10;, score=0.899 total time= 0.0s\n","[CV 4/5] END bootstrap=False, max_depth=2, max_features=sqrt, min_samples_leaf=6, min_samples_split=4, n_estimators=10;, score=0.869 total time= 0.0s\n","[CV 5/5] END bootstrap=False, max_depth=2, max_features=sqrt, min_samples_leaf=6, min_samples_split=4, n_estimators=10;, score=0.874 total time= 0.0s\n","[CV 1/5] END bootstrap=False, max_depth=2, max_features=sqrt, min_samples_leaf=6, min_samples_split=4, n_estimators=20;, score=0.869 total time= 0.1s\n","[CV 2/5] END bootstrap=False, max_depth=2, max_features=sqrt, min_samples_leaf=6, min_samples_split=4, n_estimators=20;, score=0.904 total time= 0.0s\n","[CV 3/5] END bootstrap=False, max_depth=2, max_features=sqrt, min_samples_leaf=6, min_samples_split=4, n_estimators=20;, score=0.884 total time= 0.0s\n","[CV 4/5] END bootstrap=False, max_depth=2, max_features=sqrt, min_samples_leaf=6, min_samples_split=4, n_estimators=20;, score=0.879 total time= 0.0s\n","[CV 5/5] END bootstrap=False, max_depth=2, max_features=sqrt, min_samples_leaf=6, min_samples_split=4, n_estimators=20;, score=0.879 total time= 0.0s\n","[CV 1/5] END bootstrap=False, max_depth=2, max_features=sqrt, min_samples_leaf=6, min_samples_split=4, n_estimators=30;, score=0.864 total time= 0.0s\n","[CV 2/5] END bootstrap=False, max_depth=2, max_features=sqrt, min_samples_leaf=6, min_samples_split=4, n_estimators=30;, score=0.864 total time= 0.0s\n","[CV 3/5] END bootstrap=False, max_depth=2, max_features=sqrt, min_samples_leaf=6, min_samples_split=4, n_estimators=30;, score=0.879 total time= 0.1s\n","[CV 4/5] END bootstrap=False, max_depth=2, max_features=sqrt, min_samples_leaf=6, min_samples_split=4, n_estimators=30;, score=0.848 total time= 0.0s\n","[CV 5/5] END bootstrap=False, max_depth=2, max_features=sqrt, min_samples_leaf=6, min_samples_split=4, n_estimators=30;, score=0.874 total time= 0.0s\n","[CV 1/5] END bootstrap=False, max_depth=2, max_features=sqrt, min_samples_leaf=6, min_samples_split=6, n_estimators=5;, score=0.864 total time= 0.0s\n","[CV 2/5] END bootstrap=False, max_depth=2, max_features=sqrt, min_samples_leaf=6, min_samples_split=6, n_estimators=5;, score=0.879 total time= 0.0s\n","[CV 3/5] END bootstrap=False, max_depth=2, max_features=sqrt, min_samples_leaf=6, min_samples_split=6, n_estimators=5;, score=0.899 total time= 0.0s\n","[CV 4/5] END bootstrap=False, max_depth=2, max_features=sqrt, min_samples_leaf=6, min_samples_split=6, n_estimators=5;, score=0.869 total time= 0.0s\n","[CV 5/5] END bootstrap=False, max_depth=2, max_features=sqrt, min_samples_leaf=6, min_samples_split=6, n_estimators=5;, score=0.914 total time= 0.0s\n","[CV 1/5] END bootstrap=False, max_depth=2, max_features=sqrt, min_samples_leaf=6, min_samples_split=6, n_estimators=10;, score=0.859 total time= 0.0s\n","[CV 2/5] END bootstrap=False, max_depth=2, max_features=sqrt, min_samples_leaf=6, min_samples_split=6, n_estimators=10;, score=0.884 total time= 0.0s\n","[CV 3/5] END bootstrap=False, max_depth=2, max_features=sqrt, min_samples_leaf=6, min_samples_split=6, n_estimators=10;, score=0.904 total time= 0.0s\n","[CV 4/5] END bootstrap=False, max_depth=2, max_features=sqrt, min_samples_leaf=6, min_samples_split=6, n_estimators=10;, score=0.843 total time= 0.0s\n","[CV 5/5] END bootstrap=False, max_depth=2, max_features=sqrt, min_samples_leaf=6, min_samples_split=6, n_estimators=10;, score=0.879 total time= 0.0s\n","[CV 1/5] END bootstrap=False, max_depth=2, max_features=sqrt, min_samples_leaf=6, min_samples_split=6, n_estimators=20;, score=0.869 total time= 0.0s\n","[CV 2/5] END bootstrap=False, max_depth=2, max_features=sqrt, min_samples_leaf=6, min_samples_split=6, n_estimators=20;, score=0.889 total time= 0.0s\n","[CV 3/5] END bootstrap=False, max_depth=2, max_features=sqrt, min_samples_leaf=6, min_samples_split=6, n_estimators=20;, score=0.879 total time= 0.0s\n","[CV 4/5] END bootstrap=False, max_depth=2, max_features=sqrt, min_samples_leaf=6, min_samples_split=6, n_estimators=20;, score=0.869 total time= 0.0s\n","[CV 5/5] END bootstrap=False, max_depth=2, max_features=sqrt, min_samples_leaf=6, min_samples_split=6, n_estimators=20;, score=0.879 total time= 0.0s\n","[CV 1/5] END bootstrap=False, max_depth=2, max_features=sqrt, min_samples_leaf=6, min_samples_split=6, n_estimators=30;, score=0.859 total time= 0.0s\n","[CV 2/5] END bootstrap=False, max_depth=2, max_features=sqrt, min_samples_leaf=6, min_samples_split=6, n_estimators=30;, score=0.899 total time= 0.0s\n","[CV 3/5] END bootstrap=False, max_depth=2, max_features=sqrt, min_samples_leaf=6, min_samples_split=6, n_estimators=30;, score=0.899 total time= 0.0s\n","[CV 4/5] END bootstrap=False, max_depth=2, max_features=sqrt, min_samples_leaf=6, min_samples_split=6, n_estimators=30;, score=0.864 total time= 0.0s\n","[CV 5/5] END bootstrap=False, max_depth=2, max_features=sqrt, min_samples_leaf=6, min_samples_split=6, n_estimators=30;, score=0.889 total time= 0.1s\n","[CV 1/5] END bootstrap=False, max_depth=2, max_features=log2, min_samples_leaf=2, min_samples_split=2, n_estimators=5;, score=0.874 total time= 0.0s\n","[CV 2/5] END bootstrap=False, max_depth=2, max_features=log2, min_samples_leaf=2, min_samples_split=2, n_estimators=5;, score=0.879 total time= 0.0s\n","[CV 3/5] END bootstrap=False, max_depth=2, max_features=log2, min_samples_leaf=2, min_samples_split=2, n_estimators=5;, score=0.884 total time= 0.0s\n","[CV 4/5] END bootstrap=False, max_depth=2, max_features=log2, min_samples_leaf=2, min_samples_split=2, n_estimators=5;, score=0.859 total time= 0.0s\n","[CV 5/5] END bootstrap=False, max_depth=2, max_features=log2, min_samples_leaf=2, min_samples_split=2, n_estimators=5;, score=0.864 total time= 0.0s\n","[CV 1/5] END bootstrap=False, max_depth=2, max_features=log2, min_samples_leaf=2, min_samples_split=2, n_estimators=10;, score=0.864 total time= 0.0s\n","[CV 2/5] END bootstrap=False, max_depth=2, max_features=log2, min_samples_leaf=2, min_samples_split=2, n_estimators=10;, score=0.874 total time= 0.0s\n","[CV 3/5] END bootstrap=False, max_depth=2, max_features=log2, min_samples_leaf=2, min_samples_split=2, n_estimators=10;, score=0.904 total time= 0.0s\n","[CV 4/5] END bootstrap=False, max_depth=2, max_features=log2, min_samples_leaf=2, min_samples_split=2, n_estimators=10;, score=0.874 total time= 0.0s\n","[CV 5/5] END bootstrap=False, max_depth=2, max_features=log2, min_samples_leaf=2, min_samples_split=2, n_estimators=10;, score=0.874 total time= 0.0s\n","[CV 1/5] END bootstrap=False, max_depth=2, max_features=log2, min_samples_leaf=2, min_samples_split=2, n_estimators=20;, score=0.864 total time= 0.0s\n","[CV 2/5] END bootstrap=False, max_depth=2, max_features=log2, min_samples_leaf=2, min_samples_split=2, n_estimators=20;, score=0.869 total time= 0.0s\n","[CV 3/5] END bootstrap=False, max_depth=2, max_features=log2, min_samples_leaf=2, min_samples_split=2, n_estimators=20;, score=0.874 total time= 0.0s\n","[CV 4/5] END bootstrap=False, max_depth=2, max_features=log2, min_samples_leaf=2, min_samples_split=2, n_estimators=20;, score=0.859 total time= 0.0s\n","[CV 5/5] END bootstrap=False, max_depth=2, max_features=log2, min_samples_leaf=2, min_samples_split=2, n_estimators=20;, score=0.879 total time= 0.0s\n","[CV 1/5] END bootstrap=False, max_depth=2, max_features=log2, min_samples_leaf=2, min_samples_split=2, n_estimators=30;, score=0.854 total time= 0.0s\n","[CV 2/5] END bootstrap=False, max_depth=2, max_features=log2, min_samples_leaf=2, min_samples_split=2, n_estimators=30;, score=0.894 total time= 0.1s\n","[CV 3/5] END bootstrap=False, max_depth=2, max_features=log2, min_samples_leaf=2, min_samples_split=2, n_estimators=30;, score=0.884 total time= 0.0s\n","[CV 4/5] END bootstrap=False, max_depth=2, max_features=log2, min_samples_leaf=2, min_samples_split=2, n_estimators=30;, score=0.869 total time= 0.0s\n","[CV 5/5] END bootstrap=False, max_depth=2, max_features=log2, min_samples_leaf=2, min_samples_split=2, n_estimators=30;, score=0.869 total time= 0.1s\n","[CV 1/5] END bootstrap=False, max_depth=2, max_features=log2, min_samples_leaf=2, min_samples_split=4, n_estimators=5;, score=0.864 total time= 0.0s\n","[CV 2/5] END bootstrap=False, max_depth=2, max_features=log2, min_samples_leaf=2, min_samples_split=4, n_estimators=5;, score=0.889 total time= 0.0s\n","[CV 3/5] END bootstrap=False, max_depth=2, max_features=log2, min_samples_leaf=2, min_samples_split=4, n_estimators=5;, score=0.864 total time= 0.0s\n","[CV 4/5] END bootstrap=False, max_depth=2, max_features=log2, min_samples_leaf=2, min_samples_split=4, n_estimators=5;, score=0.879 total time= 0.0s\n","[CV 5/5] END bootstrap=False, max_depth=2, max_features=log2, min_samples_leaf=2, min_samples_split=4, n_estimators=5;, score=0.889 total time= 0.0s\n","[CV 1/5] END bootstrap=False, max_depth=2, max_features=log2, min_samples_leaf=2, min_samples_split=4, n_estimators=10;, score=0.869 total time= 0.0s\n","[CV 2/5] END bootstrap=False, max_depth=2, max_features=log2, min_samples_leaf=2, min_samples_split=4, n_estimators=10;, score=0.894 total time= 0.0s\n","[CV 3/5] END bootstrap=False, max_depth=2, max_features=log2, min_samples_leaf=2, min_samples_split=4, n_estimators=10;, score=0.894 total time= 0.0s\n","[CV 4/5] END bootstrap=False, max_depth=2, max_features=log2, min_samples_leaf=2, min_samples_split=4, n_estimators=10;, score=0.874 total time= 0.0s\n","[CV 5/5] END bootstrap=False, max_depth=2, max_features=log2, min_samples_leaf=2, min_samples_split=4, n_estimators=10;, score=0.889 total time= 0.0s\n","[CV 1/5] END bootstrap=False, max_depth=2, max_features=log2, min_samples_leaf=2, min_samples_split=4, n_estimators=20;, score=0.864 total time= 0.0s\n","[CV 2/5] END bootstrap=False, max_depth=2, max_features=log2, min_samples_leaf=2, min_samples_split=4, n_estimators=20;, score=0.874 total time= 0.0s\n","[CV 3/5] END bootstrap=False, max_depth=2, max_features=log2, min_samples_leaf=2, min_samples_split=4, n_estimators=20;, score=0.889 total time= 0.0s\n","[CV 4/5] END bootstrap=False, max_depth=2, max_features=log2, min_samples_leaf=2, min_samples_split=4, n_estimators=20;, score=0.874 total time= 0.0s\n","[CV 5/5] END bootstrap=False, max_depth=2, max_features=log2, min_samples_leaf=2, min_samples_split=4, n_estimators=20;, score=0.889 total time= 0.0s\n","[CV 1/5] END bootstrap=False, max_depth=2, max_features=log2, min_samples_leaf=2, min_samples_split=4, n_estimators=30;, score=0.864 total time= 0.1s\n","[CV 2/5] END bootstrap=False, max_depth=2, max_features=log2, min_samples_leaf=2, min_samples_split=4, n_estimators=30;, score=0.874 total time= 0.0s\n","[CV 3/5] END bootstrap=False, max_depth=2, max_features=log2, min_samples_leaf=2, min_samples_split=4, n_estimators=30;, score=0.874 total time= 0.1s\n","[CV 4/5] END bootstrap=False, max_depth=2, max_features=log2, min_samples_leaf=2, min_samples_split=4, n_estimators=30;, score=0.859 total time= 0.1s\n","[CV 5/5] END bootstrap=False, max_depth=2, max_features=log2, min_samples_leaf=2, min_samples_split=4, n_estimators=30;, score=0.879 total time= 0.0s\n","[CV 1/5] END bootstrap=False, max_depth=2, max_features=log2, min_samples_leaf=2, min_samples_split=6, n_estimators=5;, score=0.864 total time= 0.0s\n","[CV 2/5] END bootstrap=False, max_depth=2, max_features=log2, min_samples_leaf=2, min_samples_split=6, n_estimators=5;, score=0.884 total time= 0.0s\n","[CV 3/5] END bootstrap=False, max_depth=2, max_features=log2, min_samples_leaf=2, min_samples_split=6, n_estimators=5;, score=0.899 total time= 0.0s\n","[CV 4/5] END bootstrap=False, max_depth=2, max_features=log2, min_samples_leaf=2, min_samples_split=6, n_estimators=5;, score=0.864 total time= 0.0s\n","[CV 5/5] END bootstrap=False, max_depth=2, max_features=log2, min_samples_leaf=2, min_samples_split=6, n_estimators=5;, score=0.884 total time= 0.0s\n","[CV 1/5] END bootstrap=False, max_depth=2, max_features=log2, min_samples_leaf=2, min_samples_split=6, n_estimators=10;, score=0.869 total time= 0.0s\n","[CV 2/5] END bootstrap=False, max_depth=2, max_features=log2, min_samples_leaf=2, min_samples_split=6, n_estimators=10;, score=0.874 total time= 0.0s\n","[CV 3/5] END bootstrap=False, max_depth=2, max_features=log2, min_samples_leaf=2, min_samples_split=6, n_estimators=10;, score=0.899 total time= 0.0s\n","[CV 4/5] END bootstrap=False, max_depth=2, max_features=log2, min_samples_leaf=2, min_samples_split=6, n_estimators=10;, score=0.859 total time= 0.0s\n","[CV 5/5] END bootstrap=False, max_depth=2, max_features=log2, min_samples_leaf=2, min_samples_split=6, n_estimators=10;, score=0.894 total time= 0.0s\n","[CV 1/5] END bootstrap=False, max_depth=2, max_features=log2, min_samples_leaf=2, min_samples_split=6, n_estimators=20;, score=0.859 total time= 0.0s\n","[CV 2/5] END bootstrap=False, max_depth=2, max_features=log2, min_samples_leaf=2, min_samples_split=6, n_estimators=20;, score=0.894 total time= 0.0s\n","[CV 3/5] END bootstrap=False, max_depth=2, max_features=log2, min_samples_leaf=2, min_samples_split=6, n_estimators=20;, score=0.894 total time= 0.0s\n","[CV 4/5] END bootstrap=False, max_depth=2, max_features=log2, min_samples_leaf=2, min_samples_split=6, n_estimators=20;, score=0.864 total time= 0.0s\n","[CV 5/5] END bootstrap=False, max_depth=2, max_features=log2, min_samples_leaf=2, min_samples_split=6, n_estimators=20;, score=0.879 total time= 0.0s\n","[CV 1/5] END bootstrap=False, max_depth=2, max_features=log2, min_samples_leaf=2, min_samples_split=6, n_estimators=30;, score=0.859 total time= 0.0s\n","[CV 2/5] END bootstrap=False, max_depth=2, max_features=log2, min_samples_leaf=2, min_samples_split=6, n_estimators=30;, score=0.869 total time= 0.1s\n","[CV 3/5] END bootstrap=False, max_depth=2, max_features=log2, min_samples_leaf=2, min_samples_split=6, n_estimators=30;, score=0.889 total time= 0.1s\n","[CV 4/5] END bootstrap=False, max_depth=2, max_features=log2, min_samples_leaf=2, min_samples_split=6, n_estimators=30;, score=0.874 total time= 0.0s\n","[CV 5/5] END bootstrap=False, max_depth=2, max_features=log2, min_samples_leaf=2, min_samples_split=6, n_estimators=30;, score=0.879 total time= 0.0s\n","[CV 1/5] END bootstrap=False, max_depth=2, max_features=log2, min_samples_leaf=4, min_samples_split=2, n_estimators=5;, score=0.864 total time= 0.0s\n","[CV 2/5] END bootstrap=False, max_depth=2, max_features=log2, min_samples_leaf=4, min_samples_split=2, n_estimators=5;, score=0.879 total time= 0.0s\n","[CV 3/5] END bootstrap=False, max_depth=2, max_features=log2, min_samples_leaf=4, min_samples_split=2, n_estimators=5;, score=0.899 total time= 0.0s\n","[CV 4/5] END bootstrap=False, max_depth=2, max_features=log2, min_samples_leaf=4, min_samples_split=2, n_estimators=5;, score=0.859 total time= 0.0s\n","[CV 5/5] END bootstrap=False, max_depth=2, max_features=log2, min_samples_leaf=4, min_samples_split=2, n_estimators=5;, score=0.899 total time= 0.0s\n","[CV 1/5] END bootstrap=False, max_depth=2, max_features=log2, min_samples_leaf=4, min_samples_split=2, n_estimators=10;, score=0.859 total time= 0.0s\n","[CV 2/5] END bootstrap=False, max_depth=2, max_features=log2, min_samples_leaf=4, min_samples_split=2, n_estimators=10;, score=0.874 total time= 0.0s\n","[CV 3/5] END bootstrap=False, max_depth=2, max_features=log2, min_samples_leaf=4, min_samples_split=2, n_estimators=10;, score=0.899 total time= 0.0s\n","[CV 4/5] END bootstrap=False, max_depth=2, max_features=log2, min_samples_leaf=4, min_samples_split=2, n_estimators=10;, score=0.859 total time= 0.0s\n","[CV 5/5] END bootstrap=False, max_depth=2, max_features=log2, min_samples_leaf=4, min_samples_split=2, n_estimators=10;, score=0.914 total time= 0.0s\n","[CV 1/5] END bootstrap=False, max_depth=2, max_features=log2, min_samples_leaf=4, min_samples_split=2, n_estimators=20;, score=0.859 total time= 0.0s\n","[CV 2/5] END bootstrap=False, max_depth=2, max_features=log2, min_samples_leaf=4, min_samples_split=2, n_estimators=20;, score=0.884 total time= 0.0s\n","[CV 3/5] END bootstrap=False, max_depth=2, max_features=log2, min_samples_leaf=4, min_samples_split=2, n_estimators=20;, score=0.904 total time= 0.0s\n","[CV 4/5] END bootstrap=False, max_depth=2, max_features=log2, min_samples_leaf=4, min_samples_split=2, n_estimators=20;, score=0.889 total time= 0.0s\n","[CV 5/5] END bootstrap=False, max_depth=2, max_features=log2, min_samples_leaf=4, min_samples_split=2, n_estimators=20;, score=0.884 total time= 0.0s\n","[CV 1/5] END bootstrap=False, max_depth=2, max_features=log2, min_samples_leaf=4, min_samples_split=2, n_estimators=30;, score=0.854 total time= 0.0s\n","[CV 2/5] END bootstrap=False, max_depth=2, max_features=log2, min_samples_leaf=4, min_samples_split=2, n_estimators=30;, score=0.884 total time= 0.0s\n","[CV 3/5] END bootstrap=False, max_depth=2, max_features=log2, min_samples_leaf=4, min_samples_split=2, n_estimators=30;, score=0.879 total time= 0.0s\n","[CV 4/5] END bootstrap=False, max_depth=2, max_features=log2, min_samples_leaf=4, min_samples_split=2, n_estimators=30;, score=0.859 total time= 0.1s\n","[CV 5/5] END bootstrap=False, max_depth=2, max_features=log2, min_samples_leaf=4, min_samples_split=2, n_estimators=30;, score=0.869 total time= 0.0s\n","[CV 1/5] END bootstrap=False, max_depth=2, max_features=log2, min_samples_leaf=4, min_samples_split=4, n_estimators=5;, score=0.879 total time= 0.0s\n","[CV 2/5] END bootstrap=False, max_depth=2, max_features=log2, min_samples_leaf=4, min_samples_split=4, n_estimators=5;, score=0.904 total time= 0.0s\n","[CV 3/5] END bootstrap=False, max_depth=2, max_features=log2, min_samples_leaf=4, min_samples_split=4, n_estimators=5;, score=0.874 total time= 0.0s\n","[CV 4/5] END bootstrap=False, max_depth=2, max_features=log2, min_samples_leaf=4, min_samples_split=4, n_estimators=5;, score=0.869 total time= 0.0s\n","[CV 5/5] END bootstrap=False, max_depth=2, max_features=log2, min_samples_leaf=4, min_samples_split=4, n_estimators=5;, score=0.894 total time= 0.0s\n","[CV 1/5] END bootstrap=False, max_depth=2, max_features=log2, min_samples_leaf=4, min_samples_split=4, n_estimators=10;, score=0.859 total time= 0.0s\n","[CV 2/5] END bootstrap=False, max_depth=2, max_features=log2, min_samples_leaf=4, min_samples_split=4, n_estimators=10;, score=0.899 total time= 0.0s\n","[CV 3/5] END bootstrap=False, max_depth=2, max_features=log2, min_samples_leaf=4, min_samples_split=4, n_estimators=10;, score=0.869 total time= 0.0s\n","[CV 4/5] END bootstrap=False, max_depth=2, max_features=log2, min_samples_leaf=4, min_samples_split=4, n_estimators=10;, score=0.864 total time= 0.0s\n","[CV 5/5] END bootstrap=False, max_depth=2, max_features=log2, min_samples_leaf=4, min_samples_split=4, n_estimators=10;, score=0.879 total time= 0.0s\n","[CV 1/5] END bootstrap=False, max_depth=2, max_features=log2, min_samples_leaf=4, min_samples_split=4, n_estimators=20;, score=0.864 total time= 0.0s\n","[CV 2/5] END bootstrap=False, max_depth=2, max_features=log2, min_samples_leaf=4, min_samples_split=4, n_estimators=20;, score=0.899 total time= 0.0s\n","[CV 3/5] END bootstrap=False, max_depth=2, max_features=log2, min_samples_leaf=4, min_samples_split=4, n_estimators=20;, score=0.894 total time= 0.0s\n","[CV 4/5] END bootstrap=False, max_depth=2, max_features=log2, min_samples_leaf=4, min_samples_split=4, n_estimators=20;, score=0.879 total time= 0.0s\n","[CV 5/5] END bootstrap=False, max_depth=2, max_features=log2, min_samples_leaf=4, min_samples_split=4, n_estimators=20;, score=0.884 total time= 0.0s\n","[CV 1/5] END bootstrap=False, max_depth=2, max_features=log2, min_samples_leaf=4, min_samples_split=4, n_estimators=30;, score=0.859 total time= 0.1s\n","[CV 2/5] END bootstrap=False, max_depth=2, max_features=log2, min_samples_leaf=4, min_samples_split=4, n_estimators=30;, score=0.884 total time= 0.1s\n","[CV 3/5] END bootstrap=False, max_depth=2, max_features=log2, min_samples_leaf=4, min_samples_split=4, n_estimators=30;, score=0.879 total time= 0.1s\n","[CV 4/5] END bootstrap=False, max_depth=2, max_features=log2, min_samples_leaf=4, min_samples_split=4, n_estimators=30;, score=0.869 total time= 0.1s\n","[CV 5/5] END bootstrap=False, max_depth=2, max_features=log2, min_samples_leaf=4, min_samples_split=4, n_estimators=30;, score=0.879 total time= 0.1s\n","[CV 1/5] END bootstrap=False, max_depth=2, max_features=log2, min_samples_leaf=4, min_samples_split=6, n_estimators=5;, score=0.869 total time= 0.0s\n","[CV 2/5] END bootstrap=False, max_depth=2, max_features=log2, min_samples_leaf=4, min_samples_split=6, n_estimators=5;, score=0.869 total time= 0.0s\n","[CV 3/5] END bootstrap=False, max_depth=2, max_features=log2, min_samples_leaf=4, min_samples_split=6, n_estimators=5;, score=0.894 total time= 0.0s\n","[CV 4/5] END bootstrap=False, max_depth=2, max_features=log2, min_samples_leaf=4, min_samples_split=6, n_estimators=5;, score=0.859 total time= 0.0s\n","[CV 5/5] END bootstrap=False, max_depth=2, max_features=log2, min_samples_leaf=4, min_samples_split=6, n_estimators=5;, score=0.884 total time= 0.0s\n","[CV 1/5] END bootstrap=False, max_depth=2, max_features=log2, min_samples_leaf=4, min_samples_split=6, n_estimators=10;, score=0.894 total time= 0.0s\n","[CV 2/5] END bootstrap=False, max_depth=2, max_features=log2, min_samples_leaf=4, min_samples_split=6, n_estimators=10;, score=0.899 total time= 0.0s\n","[CV 3/5] END bootstrap=False, max_depth=2, max_features=log2, min_samples_leaf=4, min_samples_split=6, n_estimators=10;, score=0.889 total time= 0.0s\n","[CV 4/5] END bootstrap=False, max_depth=2, max_features=log2, min_samples_leaf=4, min_samples_split=6, n_estimators=10;, score=0.874 total time= 0.0s\n","[CV 5/5] END bootstrap=False, max_depth=2, max_features=log2, min_samples_leaf=4, min_samples_split=6, n_estimators=10;, score=0.879 total time= 0.0s\n","[CV 1/5] END bootstrap=False, max_depth=2, max_features=log2, min_samples_leaf=4, min_samples_split=6, n_estimators=20;, score=0.859 total time= 0.0s\n","[CV 2/5] END bootstrap=False, max_depth=2, max_features=log2, min_samples_leaf=4, min_samples_split=6, n_estimators=20;, score=0.864 total time= 0.0s\n","[CV 3/5] END bootstrap=False, max_depth=2, max_features=log2, min_samples_leaf=4, min_samples_split=6, n_estimators=20;, score=0.874 total time= 0.0s\n","[CV 4/5] END bootstrap=False, max_depth=2, max_features=log2, min_samples_leaf=4, min_samples_split=6, n_estimators=20;, score=0.864 total time= 0.0s\n","[CV 5/5] END bootstrap=False, max_depth=2, max_features=log2, min_samples_leaf=4, min_samples_split=6, n_estimators=20;, score=0.869 total time= 0.0s\n","[CV 1/5] END bootstrap=False, max_depth=2, max_features=log2, min_samples_leaf=4, min_samples_split=6, n_estimators=30;, score=0.848 total time= 0.0s\n","[CV 2/5] END bootstrap=False, max_depth=2, max_features=log2, min_samples_leaf=4, min_samples_split=6, n_estimators=30;, score=0.909 total time= 0.1s\n","[CV 3/5] END bootstrap=False, max_depth=2, max_features=log2, min_samples_leaf=4, min_samples_split=6, n_estimators=30;, score=0.869 total time= 0.0s\n","[CV 4/5] END bootstrap=False, max_depth=2, max_features=log2, min_samples_leaf=4, min_samples_split=6, n_estimators=30;, score=0.864 total time= 0.0s\n","[CV 5/5] END bootstrap=False, max_depth=2, max_features=log2, min_samples_leaf=4, min_samples_split=6, n_estimators=30;, score=0.884 total time= 0.1s\n","[CV 1/5] END bootstrap=False, max_depth=2, max_features=log2, min_samples_leaf=6, min_samples_split=2, n_estimators=5;, score=0.874 total time= 0.0s\n","[CV 2/5] END bootstrap=False, max_depth=2, max_features=log2, min_samples_leaf=6, min_samples_split=2, n_estimators=5;, score=0.894 total time= 0.0s\n","[CV 3/5] END bootstrap=False, max_depth=2, max_features=log2, min_samples_leaf=6, min_samples_split=2, n_estimators=5;, score=0.884 total time= 0.0s\n","[CV 4/5] END bootstrap=False, max_depth=2, max_features=log2, min_samples_leaf=6, min_samples_split=2, n_estimators=5;, score=0.854 total time= 0.0s\n","[CV 5/5] END bootstrap=False, max_depth=2, max_features=log2, min_samples_leaf=6, min_samples_split=2, n_estimators=5;, score=0.894 total time= 0.0s\n","[CV 1/5] END bootstrap=False, max_depth=2, max_features=log2, min_samples_leaf=6, min_samples_split=2, n_estimators=10;, score=0.859 total time= 0.0s\n","[CV 2/5] END bootstrap=False, max_depth=2, max_features=log2, min_samples_leaf=6, min_samples_split=2, n_estimators=10;, score=0.864 total time= 0.0s\n","[CV 3/5] END bootstrap=False, max_depth=2, max_features=log2, min_samples_leaf=6, min_samples_split=2, n_estimators=10;, score=0.889 total time= 0.0s\n","[CV 4/5] END bootstrap=False, max_depth=2, max_features=log2, min_samples_leaf=6, min_samples_split=2, n_estimators=10;, score=0.859 total time= 0.1s\n","[CV 5/5] END bootstrap=False, max_depth=2, max_features=log2, min_samples_leaf=6, min_samples_split=2, n_estimators=10;, score=0.904 total time= 0.1s\n","[CV 1/5] END bootstrap=False, max_depth=2, max_features=log2, min_samples_leaf=6, min_samples_split=2, n_estimators=20;, score=0.864 total time= 0.1s\n","[CV 2/5] END bootstrap=False, max_depth=2, max_features=log2, min_samples_leaf=6, min_samples_split=2, n_estimators=20;, score=0.884 total time= 0.1s\n","[CV 3/5] END bootstrap=False, max_depth=2, max_features=log2, min_samples_leaf=6, min_samples_split=2, n_estimators=20;, score=0.879 total time= 0.1s\n","[CV 4/5] END bootstrap=False, max_depth=2, max_features=log2, min_samples_leaf=6, min_samples_split=2, n_estimators=20;, score=0.848 total time= 0.1s\n","[CV 5/5] END bootstrap=False, max_depth=2, max_features=log2, min_samples_leaf=6, min_samples_split=2, n_estimators=20;, score=0.869 total time= 0.1s\n","[CV 1/5] END bootstrap=False, max_depth=2, max_features=log2, min_samples_leaf=6, min_samples_split=2, n_estimators=30;, score=0.843 total time= 0.1s\n","[CV 2/5] END bootstrap=False, max_depth=2, max_features=log2, min_samples_leaf=6, min_samples_split=2, n_estimators=30;, score=0.874 total time= 0.1s\n","[CV 3/5] END bootstrap=False, max_depth=2, max_features=log2, min_samples_leaf=6, min_samples_split=2, n_estimators=30;, score=0.869 total time= 0.1s\n","[CV 4/5] END bootstrap=False, max_depth=2, max_features=log2, min_samples_leaf=6, min_samples_split=2, n_estimators=30;, score=0.854 total time= 0.1s\n","[CV 5/5] END bootstrap=False, max_depth=2, max_features=log2, min_samples_leaf=6, min_samples_split=2, n_estimators=30;, score=0.869 total time= 0.1s\n","[CV 1/5] END bootstrap=False, max_depth=2, max_features=log2, min_samples_leaf=6, min_samples_split=4, n_estimators=5;, score=0.859 total time= 0.0s\n","[CV 2/5] END bootstrap=False, max_depth=2, max_features=log2, min_samples_leaf=6, min_samples_split=4, n_estimators=5;, score=0.864 total time= 0.0s\n","[CV 3/5] END bootstrap=False, max_depth=2, max_features=log2, min_samples_leaf=6, min_samples_split=4, n_estimators=5;, score=0.904 total time= 0.1s\n","[CV 4/5] END bootstrap=False, max_depth=2, max_features=log2, min_samples_leaf=6, min_samples_split=4, n_estimators=5;, score=0.894 total time= 0.0s\n","[CV 5/5] END bootstrap=False, max_depth=2, max_features=log2, min_samples_leaf=6, min_samples_split=4, n_estimators=5;, score=0.874 total time= 0.0s\n","[CV 1/5] END bootstrap=False, max_depth=2, max_features=log2, min_samples_leaf=6, min_samples_split=4, n_estimators=10;, score=0.859 total time= 0.0s\n","[CV 2/5] END bootstrap=False, max_depth=2, max_features=log2, min_samples_leaf=6, min_samples_split=4, n_estimators=10;, score=0.899 total time= 0.0s\n","[CV 3/5] END bootstrap=False, max_depth=2, max_features=log2, min_samples_leaf=6, min_samples_split=4, n_estimators=10;, score=0.894 total time= 0.1s\n","[CV 4/5] END bootstrap=False, max_depth=2, max_features=log2, min_samples_leaf=6, min_samples_split=4, n_estimators=10;, score=0.859 total time= 0.1s\n","[CV 5/5] END bootstrap=False, max_depth=2, max_features=log2, min_samples_leaf=6, min_samples_split=4, n_estimators=10;, score=0.879 total time= 0.1s\n","[CV 1/5] END bootstrap=False, max_depth=2, max_features=log2, min_samples_leaf=6, min_samples_split=4, n_estimators=20;, score=0.859 total time= 0.1s\n","[CV 2/5] END bootstrap=False, max_depth=2, max_features=log2, min_samples_leaf=6, min_samples_split=4, n_estimators=20;, score=0.884 total time= 0.1s\n","[CV 3/5] END bootstrap=False, max_depth=2, max_features=log2, min_samples_leaf=6, min_samples_split=4, n_estimators=20;, score=0.899 total time= 0.1s\n","[CV 4/5] END bootstrap=False, max_depth=2, max_features=log2, min_samples_leaf=6, min_samples_split=4, n_estimators=20;, score=0.859 total time= 0.1s\n","[CV 5/5] END bootstrap=False, max_depth=2, max_features=log2, min_samples_leaf=6, min_samples_split=4, n_estimators=20;, score=0.904 total time= 0.1s\n","[CV 1/5] END bootstrap=False, max_depth=2, max_features=log2, min_samples_leaf=6, min_samples_split=4, n_estimators=30;, score=0.884 total time= 0.1s\n","[CV 2/5] END bootstrap=False, max_depth=2, max_features=log2, min_samples_leaf=6, min_samples_split=4, n_estimators=30;, score=0.879 total time= 0.1s\n","[CV 3/5] END bootstrap=False, max_depth=2, max_features=log2, min_samples_leaf=6, min_samples_split=4, n_estimators=30;, score=0.894 total time= 0.1s\n","[CV 4/5] END bootstrap=False, max_depth=2, max_features=log2, min_samples_leaf=6, min_samples_split=4, n_estimators=30;, score=0.854 total time= 0.1s\n","[CV 5/5] END bootstrap=False, max_depth=2, max_features=log2, min_samples_leaf=6, min_samples_split=4, n_estimators=30;, score=0.874 total time= 0.1s\n","[CV 1/5] END bootstrap=False, max_depth=2, max_features=log2, min_samples_leaf=6, min_samples_split=6, n_estimators=5;, score=0.889 total time= 0.0s\n","[CV 2/5] END bootstrap=False, max_depth=2, max_features=log2, min_samples_leaf=6, min_samples_split=6, n_estimators=5;, score=0.894 total time= 0.0s\n","[CV 3/5] END bootstrap=False, max_depth=2, max_features=log2, min_samples_leaf=6, min_samples_split=6, n_estimators=5;, score=0.899 total time= 0.0s\n","[CV 4/5] END bootstrap=False, max_depth=2, max_features=log2, min_samples_leaf=6, min_samples_split=6, n_estimators=5;, score=0.859 total time= 0.0s\n","[CV 5/5] END bootstrap=False, max_depth=2, max_features=log2, min_samples_leaf=6, min_samples_split=6, n_estimators=5;, score=0.869 total time= 0.0s\n","[CV 1/5] END bootstrap=False, max_depth=2, max_features=log2, min_samples_leaf=6, min_samples_split=6, n_estimators=10;, score=0.869 total time= 0.0s\n","[CV 2/5] END bootstrap=False, max_depth=2, max_features=log2, min_samples_leaf=6, min_samples_split=6, n_estimators=10;, score=0.899 total time= 0.0s\n","[CV 3/5] END bootstrap=False, max_depth=2, max_features=log2, min_samples_leaf=6, min_samples_split=6, n_estimators=10;, score=0.914 total time= 0.1s\n","[CV 4/5] END bootstrap=False, max_depth=2, max_features=log2, min_samples_leaf=6, min_samples_split=6, n_estimators=10;, score=0.869 total time= 0.0s\n","[CV 5/5] END bootstrap=False, max_depth=2, max_features=log2, min_samples_leaf=6, min_samples_split=6, n_estimators=10;, score=0.869 total time= 0.0s\n","[CV 1/5] END bootstrap=False, max_depth=2, max_features=log2, min_samples_leaf=6, min_samples_split=6, n_estimators=20;, score=0.864 total time= 0.1s\n","[CV 2/5] END bootstrap=False, max_depth=2, max_features=log2, min_samples_leaf=6, min_samples_split=6, n_estimators=20;, score=0.894 total time= 0.1s\n","[CV 3/5] END bootstrap=False, max_depth=2, max_features=log2, min_samples_leaf=6, min_samples_split=6, n_estimators=20;, score=0.894 total time= 0.1s\n","[CV 4/5] END bootstrap=False, max_depth=2, max_features=log2, min_samples_leaf=6, min_samples_split=6, n_estimators=20;, score=0.869 total time= 0.1s\n","[CV 5/5] END bootstrap=False, max_depth=2, max_features=log2, min_samples_leaf=6, min_samples_split=6, n_estimators=20;, score=0.884 total time= 0.1s\n","[CV 1/5] END bootstrap=False, max_depth=2, max_features=log2, min_samples_leaf=6, min_samples_split=6, n_estimators=30;, score=0.859 total time= 0.2s\n","[CV 2/5] END bootstrap=False, max_depth=2, max_features=log2, min_samples_leaf=6, min_samples_split=6, n_estimators=30;, score=0.894 total time= 0.1s\n","[CV 3/5] END bootstrap=False, max_depth=2, max_features=log2, min_samples_leaf=6, min_samples_split=6, n_estimators=30;, score=0.874 total time= 0.1s\n","[CV 4/5] END bootstrap=False, max_depth=2, max_features=log2, min_samples_leaf=6, min_samples_split=6, n_estimators=30;, score=0.854 total time= 0.1s\n","[CV 5/5] END bootstrap=False, max_depth=2, max_features=log2, min_samples_leaf=6, min_samples_split=6, n_estimators=30;, score=0.874 total time= 0.1s\n","[CV 1/5] END bootstrap=False, max_depth=2, max_features=None, min_samples_leaf=2, min_samples_split=2, n_estimators=5;, score=0.859 total time= 0.1s\n","[CV 2/5] END bootstrap=False, max_depth=2, max_features=None, min_samples_leaf=2, min_samples_split=2, n_estimators=5;, score=0.899 total time= 0.0s\n","[CV 3/5] END bootstrap=False, max_depth=2, max_features=None, min_samples_leaf=2, min_samples_split=2, n_estimators=5;, score=0.894 total time= 0.0s\n","[CV 4/5] END bootstrap=False, max_depth=2, max_features=None, min_samples_leaf=2, min_samples_split=2, n_estimators=5;, score=0.859 total time= 0.0s\n","[CV 5/5] END bootstrap=False, max_depth=2, max_features=None, min_samples_leaf=2, min_samples_split=2, n_estimators=5;, score=0.874 total time= 0.0s\n","[CV 1/5] END bootstrap=False, max_depth=2, max_features=None, min_samples_leaf=2, min_samples_split=2, n_estimators=10;, score=0.859 total time= 0.0s\n","[CV 2/5] END bootstrap=False, max_depth=2, max_features=None, min_samples_leaf=2, min_samples_split=2, n_estimators=10;, score=0.899 total time= 0.1s\n","[CV 3/5] END bootstrap=False, max_depth=2, max_features=None, min_samples_leaf=2, min_samples_split=2, n_estimators=10;, score=0.894 total time= 0.0s\n","[CV 4/5] END bootstrap=False, max_depth=2, max_features=None, min_samples_leaf=2, min_samples_split=2, n_estimators=10;, score=0.859 total time= 0.1s\n","[CV 5/5] END bootstrap=False, max_depth=2, max_features=None, min_samples_leaf=2, min_samples_split=2, n_estimators=10;, score=0.874 total time= 0.0s\n","[CV 1/5] END bootstrap=False, max_depth=2, max_features=None, min_samples_leaf=2, min_samples_split=2, n_estimators=20;, score=0.859 total time= 0.1s\n","[CV 2/5] END bootstrap=False, max_depth=2, max_features=None, min_samples_leaf=2, min_samples_split=2, n_estimators=20;, score=0.899 total time= 0.1s\n","[CV 3/5] END bootstrap=False, max_depth=2, max_features=None, min_samples_leaf=2, min_samples_split=2, n_estimators=20;, score=0.894 total time= 0.1s\n","[CV 4/5] END bootstrap=False, max_depth=2, max_features=None, min_samples_leaf=2, min_samples_split=2, n_estimators=20;, score=0.859 total time= 0.1s\n","[CV 5/5] END bootstrap=False, max_depth=2, max_features=None, min_samples_leaf=2, min_samples_split=2, n_estimators=20;, score=0.874 total time= 0.1s\n","[CV 1/5] END bootstrap=False, max_depth=2, max_features=None, min_samples_leaf=2, min_samples_split=2, n_estimators=30;, score=0.859 total time= 0.2s\n","[CV 2/5] END bootstrap=False, max_depth=2, max_features=None, min_samples_leaf=2, min_samples_split=2, n_estimators=30;, score=0.899 total time= 0.2s\n","[CV 3/5] END bootstrap=False, max_depth=2, max_features=None, min_samples_leaf=2, min_samples_split=2, n_estimators=30;, score=0.894 total time= 0.2s\n","[CV 4/5] END bootstrap=False, max_depth=2, max_features=None, min_samples_leaf=2, min_samples_split=2, n_estimators=30;, score=0.859 total time= 0.2s\n","[CV 5/5] END bootstrap=False, max_depth=2, max_features=None, min_samples_leaf=2, min_samples_split=2, n_estimators=30;, score=0.874 total time= 0.2s\n","[CV 1/5] END bootstrap=False, max_depth=2, max_features=None, min_samples_leaf=2, min_samples_split=4, n_estimators=5;, score=0.859 total time= 0.1s\n","[CV 2/5] END bootstrap=False, max_depth=2, max_features=None, min_samples_leaf=2, min_samples_split=4, n_estimators=5;, score=0.899 total time= 0.1s\n","[CV 3/5] END bootstrap=False, max_depth=2, max_features=None, min_samples_leaf=2, min_samples_split=4, n_estimators=5;, score=0.894 total time= 0.1s\n","[CV 4/5] END bootstrap=False, max_depth=2, max_features=None, min_samples_leaf=2, min_samples_split=4, n_estimators=5;, score=0.859 total time= 0.1s\n","[CV 5/5] END bootstrap=False, max_depth=2, max_features=None, min_samples_leaf=2, min_samples_split=4, n_estimators=5;, score=0.874 total time= 0.1s\n","[CV 1/5] END bootstrap=False, max_depth=2, max_features=None, min_samples_leaf=2, min_samples_split=4, n_estimators=10;, score=0.859 total time= 0.1s\n","[CV 2/5] END bootstrap=False, max_depth=2, max_features=None, min_samples_leaf=2, min_samples_split=4, n_estimators=10;, score=0.899 total time= 0.1s\n","[CV 3/5] END bootstrap=False, max_depth=2, max_features=None, min_samples_leaf=2, min_samples_split=4, n_estimators=10;, score=0.894 total time= 0.1s\n","[CV 4/5] END bootstrap=False, max_depth=2, max_features=None, min_samples_leaf=2, min_samples_split=4, n_estimators=10;, score=0.859 total time= 0.1s\n","[CV 5/5] END bootstrap=False, max_depth=2, max_features=None, min_samples_leaf=2, min_samples_split=4, n_estimators=10;, score=0.874 total time= 0.1s\n","[CV 1/5] END bootstrap=False, max_depth=2, max_features=None, min_samples_leaf=2, min_samples_split=4, n_estimators=20;, score=0.859 total time= 0.1s\n","[CV 2/5] END bootstrap=False, max_depth=2, max_features=None, min_samples_leaf=2, min_samples_split=4, n_estimators=20;, score=0.899 total time= 0.2s\n","[CV 3/5] END bootstrap=False, max_depth=2, max_features=None, min_samples_leaf=2, min_samples_split=4, n_estimators=20;, score=0.894 total time= 0.1s\n","[CV 4/5] END bootstrap=False, max_depth=2, max_features=None, min_samples_leaf=2, min_samples_split=4, n_estimators=20;, score=0.859 total time= 0.2s\n","[CV 5/5] END bootstrap=False, max_depth=2, max_features=None, min_samples_leaf=2, min_samples_split=4, n_estimators=20;, score=0.874 total time= 0.2s\n","[CV 1/5] END bootstrap=False, max_depth=2, max_features=None, min_samples_leaf=2, min_samples_split=4, n_estimators=30;, score=0.859 total time= 0.1s\n","[CV 2/5] END bootstrap=False, max_depth=2, max_features=None, min_samples_leaf=2, min_samples_split=4, n_estimators=30;, score=0.899 total time= 0.1s\n","[CV 3/5] END bootstrap=False, max_depth=2, max_features=None, min_samples_leaf=2, min_samples_split=4, n_estimators=30;, score=0.894 total time= 0.1s\n","[CV 4/5] END bootstrap=False, max_depth=2, max_features=None, min_samples_leaf=2, min_samples_split=4, n_estimators=30;, score=0.859 total time= 0.1s\n","[CV 5/5] END bootstrap=False, max_depth=2, max_features=None, min_samples_leaf=2, min_samples_split=4, n_estimators=30;, score=0.874 total time= 0.1s\n","[CV 1/5] END bootstrap=False, max_depth=2, max_features=None, min_samples_leaf=2, min_samples_split=6, n_estimators=5;, score=0.859 total time= 0.0s\n","[CV 2/5] END bootstrap=False, max_depth=2, max_features=None, min_samples_leaf=2, min_samples_split=6, n_estimators=5;, score=0.899 total time= 0.0s\n","[CV 3/5] END bootstrap=False, max_depth=2, max_features=None, min_samples_leaf=2, min_samples_split=6, n_estimators=5;, score=0.894 total time= 0.0s\n","[CV 4/5] END bootstrap=False, max_depth=2, max_features=None, min_samples_leaf=2, min_samples_split=6, n_estimators=5;, score=0.859 total time= 0.0s\n","[CV 5/5] END bootstrap=False, max_depth=2, max_features=None, min_samples_leaf=2, min_samples_split=6, n_estimators=5;, score=0.874 total time= 0.0s\n","[CV 1/5] END bootstrap=False, max_depth=2, max_features=None, min_samples_leaf=2, min_samples_split=6, n_estimators=10;, score=0.859 total time= 0.0s\n","[CV 2/5] END bootstrap=False, max_depth=2, max_features=None, min_samples_leaf=2, min_samples_split=6, n_estimators=10;, score=0.899 total time= 0.0s\n","[CV 3/5] END bootstrap=False, max_depth=2, max_features=None, min_samples_leaf=2, min_samples_split=6, n_estimators=10;, score=0.894 total time= 0.0s\n","[CV 4/5] END bootstrap=False, max_depth=2, max_features=None, min_samples_leaf=2, min_samples_split=6, n_estimators=10;, score=0.859 total time= 0.0s\n","[CV 5/5] END bootstrap=False, max_depth=2, max_features=None, min_samples_leaf=2, min_samples_split=6, n_estimators=10;, score=0.874 total time= 0.0s\n","[CV 1/5] END bootstrap=False, max_depth=2, max_features=None, min_samples_leaf=2, min_samples_split=6, n_estimators=20;, score=0.859 total time= 0.1s\n","[CV 2/5] END bootstrap=False, max_depth=2, max_features=None, min_samples_leaf=2, min_samples_split=6, n_estimators=20;, score=0.899 total time= 0.1s\n","[CV 3/5] END bootstrap=False, max_depth=2, max_features=None, min_samples_leaf=2, min_samples_split=6, n_estimators=20;, score=0.894 total time= 0.0s\n","[CV 4/5] END bootstrap=False, max_depth=2, max_features=None, min_samples_leaf=2, min_samples_split=6, n_estimators=20;, score=0.859 total time= 0.0s\n","[CV 5/5] END bootstrap=False, max_depth=2, max_features=None, min_samples_leaf=2, min_samples_split=6, n_estimators=20;, score=0.874 total time= 0.0s\n","[CV 1/5] END bootstrap=False, max_depth=2, max_features=None, min_samples_leaf=2, min_samples_split=6, n_estimators=30;, score=0.859 total time= 0.1s\n","[CV 2/5] END bootstrap=False, max_depth=2, max_features=None, min_samples_leaf=2, min_samples_split=6, n_estimators=30;, score=0.899 total time= 0.1s\n","[CV 3/5] END bootstrap=False, max_depth=2, max_features=None, min_samples_leaf=2, min_samples_split=6, n_estimators=30;, score=0.894 total time= 0.1s\n","[CV 4/5] END bootstrap=False, max_depth=2, max_features=None, min_samples_leaf=2, min_samples_split=6, n_estimators=30;, score=0.859 total time= 0.1s\n","[CV 5/5] END bootstrap=False, max_depth=2, max_features=None, min_samples_leaf=2, min_samples_split=6, n_estimators=30;, score=0.874 total time= 0.1s\n","[CV 1/5] END bootstrap=False, max_depth=2, max_features=None, min_samples_leaf=4, min_samples_split=2, n_estimators=5;, score=0.859 total time= 0.0s\n","[CV 2/5] END bootstrap=False, max_depth=2, max_features=None, min_samples_leaf=4, min_samples_split=2, n_estimators=5;, score=0.899 total time= 0.0s\n","[CV 3/5] END bootstrap=False, max_depth=2, max_features=None, min_samples_leaf=4, min_samples_split=2, n_estimators=5;, score=0.894 total time= 0.0s\n","[CV 4/5] END bootstrap=False, max_depth=2, max_features=None, min_samples_leaf=4, min_samples_split=2, n_estimators=5;, score=0.859 total time= 0.0s\n","[CV 5/5] END bootstrap=False, max_depth=2, max_features=None, min_samples_leaf=4, min_samples_split=2, n_estimators=5;, score=0.874 total time= 0.0s\n","[CV 1/5] END bootstrap=False, max_depth=2, max_features=None, min_samples_leaf=4, min_samples_split=2, n_estimators=10;, score=0.859 total time= 0.0s\n","[CV 2/5] END bootstrap=False, max_depth=2, max_features=None, min_samples_leaf=4, min_samples_split=2, n_estimators=10;, score=0.899 total time= 0.0s\n","[CV 3/5] END bootstrap=False, max_depth=2, max_features=None, min_samples_leaf=4, min_samples_split=2, n_estimators=10;, score=0.894 total time= 0.0s\n","[CV 4/5] END bootstrap=False, max_depth=2, max_features=None, min_samples_leaf=4, min_samples_split=2, n_estimators=10;, score=0.859 total time= 0.0s\n","[CV 5/5] END bootstrap=False, max_depth=2, max_features=None, min_samples_leaf=4, min_samples_split=2, n_estimators=10;, score=0.874 total time= 0.0s\n","[CV 1/5] END bootstrap=False, max_depth=2, max_features=None, min_samples_leaf=4, min_samples_split=2, n_estimators=20;, score=0.859 total time= 0.0s\n","[CV 2/5] END bootstrap=False, max_depth=2, max_features=None, min_samples_leaf=4, min_samples_split=2, n_estimators=20;, score=0.899 total time= 0.0s\n","[CV 3/5] END bootstrap=False, max_depth=2, max_features=None, min_samples_leaf=4, min_samples_split=2, n_estimators=20;, score=0.894 total time= 0.0s\n","[CV 4/5] END bootstrap=False, max_depth=2, max_features=None, min_samples_leaf=4, min_samples_split=2, n_estimators=20;, score=0.859 total time= 0.0s\n","[CV 5/5] END bootstrap=False, max_depth=2, max_features=None, min_samples_leaf=4, min_samples_split=2, n_estimators=20;, score=0.874 total time= 0.0s\n","[CV 1/5] END bootstrap=False, max_depth=2, max_features=None, min_samples_leaf=4, min_samples_split=2, n_estimators=30;, score=0.859 total time= 0.1s\n","[CV 2/5] END bootstrap=False, max_depth=2, max_features=None, min_samples_leaf=4, min_samples_split=2, n_estimators=30;, score=0.899 total time= 0.1s\n","[CV 3/5] END bootstrap=False, max_depth=2, max_features=None, min_samples_leaf=4, min_samples_split=2, n_estimators=30;, score=0.894 total time= 0.1s\n","[CV 4/5] END bootstrap=False, max_depth=2, max_features=None, min_samples_leaf=4, min_samples_split=2, n_estimators=30;, score=0.859 total time= 0.1s\n","[CV 5/5] END bootstrap=False, max_depth=2, max_features=None, min_samples_leaf=4, min_samples_split=2, n_estimators=30;, score=0.874 total time= 0.1s\n","[CV 1/5] END bootstrap=False, max_depth=2, max_features=None, min_samples_leaf=4, min_samples_split=4, n_estimators=5;, score=0.859 total time= 0.0s\n","[CV 2/5] END bootstrap=False, max_depth=2, max_features=None, min_samples_leaf=4, min_samples_split=4, n_estimators=5;, score=0.899 total time= 0.0s\n","[CV 3/5] END bootstrap=False, max_depth=2, max_features=None, min_samples_leaf=4, min_samples_split=4, n_estimators=5;, score=0.894 total time= 0.0s\n","[CV 4/5] END bootstrap=False, max_depth=2, max_features=None, min_samples_leaf=4, min_samples_split=4, n_estimators=5;, score=0.859 total time= 0.0s\n","[CV 5/5] END bootstrap=False, max_depth=2, max_features=None, min_samples_leaf=4, min_samples_split=4, n_estimators=5;, score=0.874 total time= 0.0s\n","[CV 1/5] END bootstrap=False, max_depth=2, max_features=None, min_samples_leaf=4, min_samples_split=4, n_estimators=10;, score=0.859 total time= 0.0s\n","[CV 2/5] END bootstrap=False, max_depth=2, max_features=None, min_samples_leaf=4, min_samples_split=4, n_estimators=10;, score=0.899 total time= 0.0s\n","[CV 3/5] END bootstrap=False, max_depth=2, max_features=None, min_samples_leaf=4, min_samples_split=4, n_estimators=10;, score=0.894 total time= 0.0s\n","[CV 4/5] END bootstrap=False, max_depth=2, max_features=None, min_samples_leaf=4, min_samples_split=4, n_estimators=10;, score=0.859 total time= 0.0s\n","[CV 5/5] END bootstrap=False, max_depth=2, max_features=None, min_samples_leaf=4, min_samples_split=4, n_estimators=10;, score=0.874 total time= 0.0s\n","[CV 1/5] END bootstrap=False, max_depth=2, max_features=None, min_samples_leaf=4, min_samples_split=4, n_estimators=20;, score=0.859 total time= 0.0s\n","[CV 2/5] END bootstrap=False, max_depth=2, max_features=None, min_samples_leaf=4, min_samples_split=4, n_estimators=20;, score=0.899 total time= 0.0s\n","[CV 3/5] END bootstrap=False, max_depth=2, max_features=None, min_samples_leaf=4, min_samples_split=4, n_estimators=20;, score=0.894 total time= 0.0s\n","[CV 4/5] END bootstrap=False, max_depth=2, max_features=None, min_samples_leaf=4, min_samples_split=4, n_estimators=20;, score=0.859 total time= 0.0s\n","[CV 5/5] END bootstrap=False, max_depth=2, max_features=None, min_samples_leaf=4, min_samples_split=4, n_estimators=20;, score=0.874 total time= 0.0s\n","[CV 1/5] END bootstrap=False, max_depth=2, max_features=None, min_samples_leaf=4, min_samples_split=4, n_estimators=30;, score=0.859 total time= 0.1s\n","[CV 2/5] END bootstrap=False, max_depth=2, max_features=None, min_samples_leaf=4, min_samples_split=4, n_estimators=30;, score=0.899 total time= 0.1s\n","[CV 3/5] END bootstrap=False, max_depth=2, max_features=None, min_samples_leaf=4, min_samples_split=4, n_estimators=30;, score=0.894 total time= 0.1s\n","[CV 4/5] END bootstrap=False, max_depth=2, max_features=None, min_samples_leaf=4, min_samples_split=4, n_estimators=30;, score=0.859 total time= 0.1s\n","[CV 5/5] END bootstrap=False, max_depth=2, max_features=None, min_samples_leaf=4, min_samples_split=4, n_estimators=30;, score=0.874 total time= 0.1s\n","[CV 1/5] END bootstrap=False, max_depth=2, max_features=None, min_samples_leaf=4, min_samples_split=6, n_estimators=5;, score=0.859 total time= 0.0s\n","[CV 2/5] END bootstrap=False, max_depth=2, max_features=None, min_samples_leaf=4, min_samples_split=6, n_estimators=5;, score=0.899 total time= 0.0s\n","[CV 3/5] END bootstrap=False, max_depth=2, max_features=None, min_samples_leaf=4, min_samples_split=6, n_estimators=5;, score=0.894 total time= 0.0s\n","[CV 4/5] END bootstrap=False, max_depth=2, max_features=None, min_samples_leaf=4, min_samples_split=6, n_estimators=5;, score=0.859 total time= 0.0s\n","[CV 5/5] END bootstrap=False, max_depth=2, max_features=None, min_samples_leaf=4, min_samples_split=6, n_estimators=5;, score=0.874 total time= 0.0s\n","[CV 1/5] END bootstrap=False, max_depth=2, max_features=None, min_samples_leaf=4, min_samples_split=6, n_estimators=10;, score=0.859 total time= 0.0s\n","[CV 2/5] END bootstrap=False, max_depth=2, max_features=None, min_samples_leaf=4, min_samples_split=6, n_estimators=10;, score=0.899 total time= 0.0s\n","[CV 3/5] END bootstrap=False, max_depth=2, max_features=None, min_samples_leaf=4, min_samples_split=6, n_estimators=10;, score=0.894 total time= 0.0s\n","[CV 4/5] END bootstrap=False, max_depth=2, max_features=None, min_samples_leaf=4, min_samples_split=6, n_estimators=10;, score=0.859 total time= 0.0s\n","[CV 5/5] END bootstrap=False, max_depth=2, max_features=None, min_samples_leaf=4, min_samples_split=6, n_estimators=10;, score=0.874 total time= 0.0s\n","[CV 1/5] END bootstrap=False, max_depth=2, max_features=None, min_samples_leaf=4, min_samples_split=6, n_estimators=20;, score=0.859 total time= 0.0s\n","[CV 2/5] END bootstrap=False, max_depth=2, max_features=None, min_samples_leaf=4, min_samples_split=6, n_estimators=20;, score=0.899 total time= 0.1s\n","[CV 3/5] END bootstrap=False, max_depth=2, max_features=None, min_samples_leaf=4, min_samples_split=6, n_estimators=20;, score=0.894 total time= 0.0s\n","[CV 4/5] END bootstrap=False, max_depth=2, max_features=None, min_samples_leaf=4, min_samples_split=6, n_estimators=20;, score=0.859 total time= 0.0s\n","[CV 5/5] END bootstrap=False, max_depth=2, max_features=None, min_samples_leaf=4, min_samples_split=6, n_estimators=20;, score=0.874 total time= 0.0s\n","[CV 1/5] END bootstrap=False, max_depth=2, max_features=None, min_samples_leaf=4, min_samples_split=6, n_estimators=30;, score=0.859 total time= 0.1s\n","[CV 2/5] END bootstrap=False, max_depth=2, max_features=None, min_samples_leaf=4, min_samples_split=6, n_estimators=30;, score=0.899 total time= 0.1s\n","[CV 3/5] END bootstrap=False, max_depth=2, max_features=None, min_samples_leaf=4, min_samples_split=6, n_estimators=30;, score=0.894 total time= 0.1s\n","[CV 4/5] END bootstrap=False, max_depth=2, max_features=None, min_samples_leaf=4, min_samples_split=6, n_estimators=30;, score=0.859 total time= 0.1s\n","[CV 5/5] END bootstrap=False, max_depth=2, max_features=None, min_samples_leaf=4, min_samples_split=6, n_estimators=30;, score=0.874 total time= 0.1s\n","[CV 1/5] END bootstrap=False, max_depth=2, max_features=None, min_samples_leaf=6, min_samples_split=2, n_estimators=5;, score=0.859 total time= 0.0s\n","[CV 2/5] END bootstrap=False, max_depth=2, max_features=None, min_samples_leaf=6, min_samples_split=2, n_estimators=5;, score=0.899 total time= 0.0s\n","[CV 3/5] END bootstrap=False, max_depth=2, max_features=None, min_samples_leaf=6, min_samples_split=2, n_estimators=5;, score=0.894 total time= 0.0s\n","[CV 4/5] END bootstrap=False, max_depth=2, max_features=None, min_samples_leaf=6, min_samples_split=2, n_estimators=5;, score=0.859 total time= 0.0s\n","[CV 5/5] END bootstrap=False, max_depth=2, max_features=None, min_samples_leaf=6, min_samples_split=2, n_estimators=5;, score=0.874 total time= 0.0s\n","[CV 1/5] END bootstrap=False, max_depth=2, max_features=None, min_samples_leaf=6, min_samples_split=2, n_estimators=10;, score=0.859 total time= 0.0s\n","[CV 2/5] END bootstrap=False, max_depth=2, max_features=None, min_samples_leaf=6, min_samples_split=2, n_estimators=10;, score=0.899 total time= 0.0s\n","[CV 3/5] END bootstrap=False, max_depth=2, max_features=None, min_samples_leaf=6, min_samples_split=2, n_estimators=10;, score=0.894 total time= 0.0s\n","[CV 4/5] END bootstrap=False, max_depth=2, max_features=None, min_samples_leaf=6, min_samples_split=2, n_estimators=10;, score=0.859 total time= 0.0s\n","[CV 5/5] END bootstrap=False, max_depth=2, max_features=None, min_samples_leaf=6, min_samples_split=2, n_estimators=10;, score=0.874 total time= 0.0s\n","[CV 1/5] END bootstrap=False, max_depth=2, max_features=None, min_samples_leaf=6, min_samples_split=2, n_estimators=20;, score=0.859 total time= 0.1s\n","[CV 2/5] END bootstrap=False, max_depth=2, max_features=None, min_samples_leaf=6, min_samples_split=2, n_estimators=20;, score=0.899 total time= 0.0s\n","[CV 3/5] END bootstrap=False, max_depth=2, max_features=None, min_samples_leaf=6, min_samples_split=2, n_estimators=20;, score=0.894 total time= 0.0s\n","[CV 4/5] END bootstrap=False, max_depth=2, max_features=None, min_samples_leaf=6, min_samples_split=2, n_estimators=20;, score=0.859 total time= 0.0s\n","[CV 5/5] END bootstrap=False, max_depth=2, max_features=None, min_samples_leaf=6, min_samples_split=2, n_estimators=20;, score=0.874 total time= 0.0s\n","[CV 1/5] END bootstrap=False, max_depth=2, max_features=None, min_samples_leaf=6, min_samples_split=2, n_estimators=30;, score=0.859 total time= 0.1s\n","[CV 2/5] END bootstrap=False, max_depth=2, max_features=None, min_samples_leaf=6, min_samples_split=2, n_estimators=30;, score=0.899 total time= 0.1s\n","[CV 3/5] END bootstrap=False, max_depth=2, max_features=None, min_samples_leaf=6, min_samples_split=2, n_estimators=30;, score=0.894 total time= 0.1s\n","[CV 4/5] END bootstrap=False, max_depth=2, max_features=None, min_samples_leaf=6, min_samples_split=2, n_estimators=30;, score=0.859 total time= 0.1s\n","[CV 5/5] END bootstrap=False, max_depth=2, max_features=None, min_samples_leaf=6, min_samples_split=2, n_estimators=30;, score=0.874 total time= 0.1s\n","[CV 1/5] END bootstrap=False, max_depth=2, max_features=None, min_samples_leaf=6, min_samples_split=4, n_estimators=5;, score=0.859 total time= 0.0s\n","[CV 2/5] END bootstrap=False, max_depth=2, max_features=None, min_samples_leaf=6, min_samples_split=4, n_estimators=5;, score=0.899 total time= 0.0s\n","[CV 3/5] END bootstrap=False, max_depth=2, max_features=None, min_samples_leaf=6, min_samples_split=4, n_estimators=5;, score=0.894 total time= 0.0s\n","[CV 4/5] END bootstrap=False, max_depth=2, max_features=None, min_samples_leaf=6, min_samples_split=4, n_estimators=5;, score=0.859 total time= 0.0s\n","[CV 5/5] END bootstrap=False, max_depth=2, max_features=None, min_samples_leaf=6, min_samples_split=4, n_estimators=5;, score=0.874 total time= 0.0s\n","[CV 1/5] END bootstrap=False, max_depth=2, max_features=None, min_samples_leaf=6, min_samples_split=4, n_estimators=10;, score=0.859 total time= 0.0s\n","[CV 2/5] END bootstrap=False, max_depth=2, max_features=None, min_samples_leaf=6, min_samples_split=4, n_estimators=10;, score=0.899 total time= 0.0s\n","[CV 3/5] END bootstrap=False, max_depth=2, max_features=None, min_samples_leaf=6, min_samples_split=4, n_estimators=10;, score=0.894 total time= 0.0s\n","[CV 4/5] END bootstrap=False, max_depth=2, max_features=None, min_samples_leaf=6, min_samples_split=4, n_estimators=10;, score=0.859 total time= 0.0s\n","[CV 5/5] END bootstrap=False, max_depth=2, max_features=None, min_samples_leaf=6, min_samples_split=4, n_estimators=10;, score=0.874 total time= 0.0s\n","[CV 1/5] END bootstrap=False, max_depth=2, max_features=None, min_samples_leaf=6, min_samples_split=4, n_estimators=20;, score=0.859 total time= 0.1s\n","[CV 2/5] END bootstrap=False, max_depth=2, max_features=None, min_samples_leaf=6, min_samples_split=4, n_estimators=20;, score=0.899 total time= 0.0s\n","[CV 3/5] END bootstrap=False, max_depth=2, max_features=None, min_samples_leaf=6, min_samples_split=4, n_estimators=20;, score=0.894 total time= 0.0s\n","[CV 4/5] END bootstrap=False, max_depth=2, max_features=None, min_samples_leaf=6, min_samples_split=4, n_estimators=20;, score=0.859 total time= 0.0s\n","[CV 5/5] END bootstrap=False, max_depth=2, max_features=None, min_samples_leaf=6, min_samples_split=4, n_estimators=20;, score=0.874 total time= 0.0s\n","[CV 1/5] END bootstrap=False, max_depth=2, max_features=None, min_samples_leaf=6, min_samples_split=4, n_estimators=30;, score=0.859 total time= 0.1s\n","[CV 2/5] END bootstrap=False, max_depth=2, max_features=None, min_samples_leaf=6, min_samples_split=4, n_estimators=30;, score=0.899 total time= 0.1s\n","[CV 3/5] END bootstrap=False, max_depth=2, max_features=None, min_samples_leaf=6, min_samples_split=4, n_estimators=30;, score=0.894 total time= 0.1s\n","[CV 4/5] END bootstrap=False, max_depth=2, max_features=None, min_samples_leaf=6, min_samples_split=4, n_estimators=30;, score=0.859 total time= 0.1s\n","[CV 5/5] END bootstrap=False, max_depth=2, max_features=None, min_samples_leaf=6, min_samples_split=4, n_estimators=30;, score=0.874 total time= 0.1s\n","[CV 1/5] END bootstrap=False, max_depth=2, max_features=None, min_samples_leaf=6, min_samples_split=6, n_estimators=5;, score=0.859 total time= 0.0s\n","[CV 2/5] END bootstrap=False, max_depth=2, max_features=None, min_samples_leaf=6, min_samples_split=6, n_estimators=5;, score=0.899 total time= 0.0s\n","[CV 3/5] END bootstrap=False, max_depth=2, max_features=None, min_samples_leaf=6, min_samples_split=6, n_estimators=5;, score=0.894 total time= 0.0s\n","[CV 4/5] END bootstrap=False, max_depth=2, max_features=None, min_samples_leaf=6, min_samples_split=6, n_estimators=5;, score=0.859 total time= 0.0s\n","[CV 5/5] END bootstrap=False, max_depth=2, max_features=None, min_samples_leaf=6, min_samples_split=6, n_estimators=5;, score=0.874 total time= 0.0s\n","[CV 1/5] END bootstrap=False, max_depth=2, max_features=None, min_samples_leaf=6, min_samples_split=6, n_estimators=10;, score=0.859 total time= 0.0s\n","[CV 2/5] END bootstrap=False, max_depth=2, max_features=None, min_samples_leaf=6, min_samples_split=6, n_estimators=10;, score=0.899 total time= 0.0s\n","[CV 3/5] END bootstrap=False, max_depth=2, max_features=None, min_samples_leaf=6, min_samples_split=6, n_estimators=10;, score=0.894 total time= 0.0s\n","[CV 4/5] END bootstrap=False, max_depth=2, max_features=None, min_samples_leaf=6, min_samples_split=6, n_estimators=10;, score=0.859 total time= 0.0s\n","[CV 5/5] END bootstrap=False, max_depth=2, max_features=None, min_samples_leaf=6, min_samples_split=6, n_estimators=10;, score=0.874 total time= 0.0s\n","[CV 1/5] END bootstrap=False, max_depth=2, max_features=None, min_samples_leaf=6, min_samples_split=6, n_estimators=20;, score=0.859 total time= 0.0s\n","[CV 2/5] END bootstrap=False, max_depth=2, max_features=None, min_samples_leaf=6, min_samples_split=6, n_estimators=20;, score=0.899 total time= 0.0s\n","[CV 3/5] END bootstrap=False, max_depth=2, max_features=None, min_samples_leaf=6, min_samples_split=6, n_estimators=20;, score=0.894 total time= 0.0s\n","[CV 4/5] END bootstrap=False, max_depth=2, max_features=None, min_samples_leaf=6, min_samples_split=6, n_estimators=20;, score=0.859 total time= 0.0s\n","[CV 5/5] END bootstrap=False, max_depth=2, max_features=None, min_samples_leaf=6, min_samples_split=6, n_estimators=20;, score=0.874 total time= 0.0s\n","[CV 1/5] END bootstrap=False, max_depth=2, max_features=None, min_samples_leaf=6, min_samples_split=6, n_estimators=30;, score=0.859 total time= 0.1s\n","[CV 2/5] END bootstrap=False, max_depth=2, max_features=None, min_samples_leaf=6, min_samples_split=6, n_estimators=30;, score=0.899 total time= 0.1s\n","[CV 3/5] END bootstrap=False, max_depth=2, max_features=None, min_samples_leaf=6, min_samples_split=6, n_estimators=30;, score=0.894 total time= 0.1s\n","[CV 4/5] END bootstrap=False, max_depth=2, max_features=None, min_samples_leaf=6, min_samples_split=6, n_estimators=30;, score=0.859 total time= 0.1s\n","[CV 5/5] END bootstrap=False, max_depth=2, max_features=None, min_samples_leaf=6, min_samples_split=6, n_estimators=30;, score=0.874 total time= 0.1s\n","[CV 1/5] END bootstrap=False, max_depth=6, max_features=sqrt, min_samples_leaf=2, min_samples_split=2, n_estimators=5;, score=0.869 total time= 0.0s\n","[CV 2/5] END bootstrap=False, max_depth=6, max_features=sqrt, min_samples_leaf=2, min_samples_split=2, n_estimators=5;, score=0.889 total time= 0.0s\n","[CV 3/5] END bootstrap=False, max_depth=6, max_features=sqrt, min_samples_leaf=2, min_samples_split=2, n_estimators=5;, score=0.899 total time= 0.0s\n","[CV 4/5] END bootstrap=False, max_depth=6, max_features=sqrt, min_samples_leaf=2, min_samples_split=2, n_estimators=5;, score=0.854 total time= 0.0s\n","[CV 5/5] END bootstrap=False, max_depth=6, max_features=sqrt, min_samples_leaf=2, min_samples_split=2, n_estimators=5;, score=0.859 total time= 0.0s\n","[CV 1/5] END bootstrap=False, max_depth=6, max_features=sqrt, min_samples_leaf=2, min_samples_split=2, n_estimators=10;, score=0.874 total time= 0.0s\n","[CV 2/5] END bootstrap=False, max_depth=6, max_features=sqrt, min_samples_leaf=2, min_samples_split=2, n_estimators=10;, score=0.874 total time= 0.0s\n","[CV 3/5] END bootstrap=False, max_depth=6, max_features=sqrt, min_samples_leaf=2, min_samples_split=2, n_estimators=10;, score=0.879 total time= 0.0s\n","[CV 4/5] END bootstrap=False, max_depth=6, max_features=sqrt, min_samples_leaf=2, min_samples_split=2, n_estimators=10;, score=0.864 total time= 0.0s\n","[CV 5/5] END bootstrap=False, max_depth=6, max_features=sqrt, min_samples_leaf=2, min_samples_split=2, n_estimators=10;, score=0.874 total time= 0.0s\n","[CV 1/5] END bootstrap=False, max_depth=6, max_features=sqrt, min_samples_leaf=2, min_samples_split=2, n_estimators=20;, score=0.869 total time= 0.1s\n","[CV 2/5] END bootstrap=False, max_depth=6, max_features=sqrt, min_samples_leaf=2, min_samples_split=2, n_estimators=20;, score=0.884 total time= 0.0s\n","[CV 3/5] END bootstrap=False, max_depth=6, max_features=sqrt, min_samples_leaf=2, min_samples_split=2, n_estimators=20;, score=0.884 total time= 0.0s\n","[CV 4/5] END bootstrap=False, max_depth=6, max_features=sqrt, min_samples_leaf=2, min_samples_split=2, n_estimators=20;, score=0.854 total time= 0.0s\n","[CV 5/5] END bootstrap=False, max_depth=6, max_features=sqrt, min_samples_leaf=2, min_samples_split=2, n_estimators=20;, score=0.874 total time= 0.0s\n","[CV 1/5] END bootstrap=False, max_depth=6, max_features=sqrt, min_samples_leaf=2, min_samples_split=2, n_estimators=30;, score=0.864 total time= 0.1s\n","[CV 2/5] END bootstrap=False, max_depth=6, max_features=sqrt, min_samples_leaf=2, min_samples_split=2, n_estimators=30;, score=0.894 total time= 0.1s\n","[CV 3/5] END bootstrap=False, max_depth=6, max_features=sqrt, min_samples_leaf=2, min_samples_split=2, n_estimators=30;, score=0.874 total time= 0.1s\n","[CV 4/5] END bootstrap=False, max_depth=6, max_features=sqrt, min_samples_leaf=2, min_samples_split=2, n_estimators=30;, score=0.843 total time= 0.1s\n","[CV 5/5] END bootstrap=False, max_depth=6, max_features=sqrt, min_samples_leaf=2, min_samples_split=2, n_estimators=30;, score=0.884 total time= 0.1s\n","[CV 1/5] END bootstrap=False, max_depth=6, max_features=sqrt, min_samples_leaf=2, min_samples_split=4, n_estimators=5;, score=0.874 total time= 0.0s\n","[CV 2/5] END bootstrap=False, max_depth=6, max_features=sqrt, min_samples_leaf=2, min_samples_split=4, n_estimators=5;, score=0.874 total time= 0.0s\n","[CV 3/5] END bootstrap=False, max_depth=6, max_features=sqrt, min_samples_leaf=2, min_samples_split=4, n_estimators=5;, score=0.899 total time= 0.0s\n","[CV 4/5] END bootstrap=False, max_depth=6, max_features=sqrt, min_samples_leaf=2, min_samples_split=4, n_estimators=5;, score=0.854 total time= 0.0s\n","[CV 5/5] END bootstrap=False, max_depth=6, max_features=sqrt, min_samples_leaf=2, min_samples_split=4, n_estimators=5;, score=0.889 total time= 0.0s\n","[CV 1/5] END bootstrap=False, max_depth=6, max_features=sqrt, min_samples_leaf=2, min_samples_split=4, n_estimators=10;, score=0.889 total time= 0.0s\n","[CV 2/5] END bootstrap=False, max_depth=6, max_features=sqrt, min_samples_leaf=2, min_samples_split=4, n_estimators=10;, score=0.889 total time= 0.0s\n","[CV 3/5] END bootstrap=False, max_depth=6, max_features=sqrt, min_samples_leaf=2, min_samples_split=4, n_estimators=10;, score=0.884 total time= 0.0s\n","[CV 4/5] END bootstrap=False, max_depth=6, max_features=sqrt, min_samples_leaf=2, min_samples_split=4, n_estimators=10;, score=0.859 total time= 0.0s\n","[CV 5/5] END bootstrap=False, max_depth=6, max_features=sqrt, min_samples_leaf=2, min_samples_split=4, n_estimators=10;, score=0.894 total time= 0.0s\n","[CV 1/5] END bootstrap=False, max_depth=6, max_features=sqrt, min_samples_leaf=2, min_samples_split=4, n_estimators=20;, score=0.904 total time= 0.0s\n","[CV 2/5] END bootstrap=False, max_depth=6, max_features=sqrt, min_samples_leaf=2, min_samples_split=4, n_estimators=20;, score=0.879 total time= 0.0s\n","[CV 3/5] END bootstrap=False, max_depth=6, max_features=sqrt, min_samples_leaf=2, min_samples_split=4, n_estimators=20;, score=0.864 total time= 0.0s\n","[CV 4/5] END bootstrap=False, max_depth=6, max_features=sqrt, min_samples_leaf=2, min_samples_split=4, n_estimators=20;, score=0.843 total time= 0.0s\n","[CV 5/5] END bootstrap=False, max_depth=6, max_features=sqrt, min_samples_leaf=2, min_samples_split=4, n_estimators=20;, score=0.874 total time= 0.0s\n","[CV 1/5] END bootstrap=False, max_depth=6, max_features=sqrt, min_samples_leaf=2, min_samples_split=4, n_estimators=30;, score=0.874 total time= 0.1s\n","[CV 2/5] END bootstrap=False, max_depth=6, max_features=sqrt, min_samples_leaf=2, min_samples_split=4, n_estimators=30;, score=0.884 total time= 0.1s\n","[CV 3/5] END bootstrap=False, max_depth=6, max_features=sqrt, min_samples_leaf=2, min_samples_split=4, n_estimators=30;, score=0.884 total time= 0.1s\n","[CV 4/5] END bootstrap=False, max_depth=6, max_features=sqrt, min_samples_leaf=2, min_samples_split=4, n_estimators=30;, score=0.854 total time= 0.1s\n","[CV 5/5] END bootstrap=False, max_depth=6, max_features=sqrt, min_samples_leaf=2, min_samples_split=4, n_estimators=30;, score=0.864 total time= 0.1s\n","[CV 1/5] END bootstrap=False, max_depth=6, max_features=sqrt, min_samples_leaf=2, min_samples_split=6, n_estimators=5;, score=0.884 total time= 0.0s\n","[CV 2/5] END bootstrap=False, max_depth=6, max_features=sqrt, min_samples_leaf=2, min_samples_split=6, n_estimators=5;, score=0.884 total time= 0.0s\n","[CV 3/5] END bootstrap=False, max_depth=6, max_features=sqrt, min_samples_leaf=2, min_samples_split=6, n_estimators=5;, score=0.894 total time= 0.0s\n","[CV 4/5] END bootstrap=False, max_depth=6, max_features=sqrt, min_samples_leaf=2, min_samples_split=6, n_estimators=5;, score=0.843 total time= 0.0s\n","[CV 5/5] END bootstrap=False, max_depth=6, max_features=sqrt, min_samples_leaf=2, min_samples_split=6, n_estimators=5;, score=0.869 total time= 0.0s\n","[CV 1/5] END bootstrap=False, max_depth=6, max_features=sqrt, min_samples_leaf=2, min_samples_split=6, n_estimators=10;, score=0.874 total time= 0.0s\n","[CV 2/5] END bootstrap=False, max_depth=6, max_features=sqrt, min_samples_leaf=2, min_samples_split=6, n_estimators=10;, score=0.894 total time= 0.0s\n","[CV 3/5] END bootstrap=False, max_depth=6, max_features=sqrt, min_samples_leaf=2, min_samples_split=6, n_estimators=10;, score=0.889 total time= 0.0s\n","[CV 4/5] END bootstrap=False, max_depth=6, max_features=sqrt, min_samples_leaf=2, min_samples_split=6, n_estimators=10;, score=0.848 total time= 0.0s\n","[CV 5/5] END bootstrap=False, max_depth=6, max_features=sqrt, min_samples_leaf=2, min_samples_split=6, n_estimators=10;, score=0.894 total time= 0.0s\n","[CV 1/5] END bootstrap=False, max_depth=6, max_features=sqrt, min_samples_leaf=2, min_samples_split=6, n_estimators=20;, score=0.879 total time= 0.1s\n","[CV 2/5] END bootstrap=False, max_depth=6, max_features=sqrt, min_samples_leaf=2, min_samples_split=6, n_estimators=20;, score=0.879 total time= 0.0s\n","[CV 3/5] END bootstrap=False, max_depth=6, max_features=sqrt, min_samples_leaf=2, min_samples_split=6, n_estimators=20;, score=0.889 total time= 0.0s\n","[CV 4/5] END bootstrap=False, max_depth=6, max_features=sqrt, min_samples_leaf=2, min_samples_split=6, n_estimators=20;, score=0.864 total time= 0.0s\n","[CV 5/5] END bootstrap=False, max_depth=6, max_features=sqrt, min_samples_leaf=2, min_samples_split=6, n_estimators=20;, score=0.848 total time= 0.0s\n","[CV 1/5] END bootstrap=False, max_depth=6, max_features=sqrt, min_samples_leaf=2, min_samples_split=6, n_estimators=30;, score=0.859 total time= 0.1s\n","[CV 2/5] END bootstrap=False, max_depth=6, max_features=sqrt, min_samples_leaf=2, min_samples_split=6, n_estimators=30;, score=0.894 total time= 0.1s\n","[CV 3/5] END bootstrap=False, max_depth=6, max_features=sqrt, min_samples_leaf=2, min_samples_split=6, n_estimators=30;, score=0.889 total time= 0.1s\n","[CV 4/5] END bootstrap=False, max_depth=6, max_features=sqrt, min_samples_leaf=2, min_samples_split=6, n_estimators=30;, score=0.859 total time= 0.1s\n","[CV 5/5] END bootstrap=False, max_depth=6, max_features=sqrt, min_samples_leaf=2, min_samples_split=6, n_estimators=30;, score=0.874 total time= 0.1s\n","[CV 1/5] END bootstrap=False, max_depth=6, max_features=sqrt, min_samples_leaf=4, min_samples_split=2, n_estimators=5;, score=0.884 total time= 0.0s\n","[CV 2/5] END bootstrap=False, max_depth=6, max_features=sqrt, min_samples_leaf=4, min_samples_split=2, n_estimators=5;, score=0.884 total time= 0.0s\n","[CV 3/5] END bootstrap=False, max_depth=6, max_features=sqrt, min_samples_leaf=4, min_samples_split=2, n_estimators=5;, score=0.879 total time= 0.0s\n","[CV 4/5] END bootstrap=False, max_depth=6, max_features=sqrt, min_samples_leaf=4, min_samples_split=2, n_estimators=5;, score=0.843 total time= 0.0s\n","[CV 5/5] END bootstrap=False, max_depth=6, max_features=sqrt, min_samples_leaf=4, min_samples_split=2, n_estimators=5;, score=0.869 total time= 0.0s\n","[CV 1/5] END bootstrap=False, max_depth=6, max_features=sqrt, min_samples_leaf=4, min_samples_split=2, n_estimators=10;, score=0.874 total time= 0.0s\n","[CV 2/5] END bootstrap=False, max_depth=6, max_features=sqrt, min_samples_leaf=4, min_samples_split=2, n_estimators=10;, score=0.894 total time= 0.0s\n","[CV 3/5] END bootstrap=False, max_depth=6, max_features=sqrt, min_samples_leaf=4, min_samples_split=2, n_estimators=10;, score=0.884 total time= 0.0s\n","[CV 4/5] END bootstrap=False, max_depth=6, max_features=sqrt, min_samples_leaf=4, min_samples_split=2, n_estimators=10;, score=0.848 total time= 0.0s\n","[CV 5/5] END bootstrap=False, max_depth=6, max_features=sqrt, min_samples_leaf=4, min_samples_split=2, n_estimators=10;, score=0.899 total time= 0.0s\n","[CV 1/5] END bootstrap=False, max_depth=6, max_features=sqrt, min_samples_leaf=4, min_samples_split=2, n_estimators=20;, score=0.859 total time= 0.0s\n","[CV 2/5] END bootstrap=False, max_depth=6, max_features=sqrt, min_samples_leaf=4, min_samples_split=2, n_estimators=20;, score=0.889 total time= 0.0s\n","[CV 3/5] END bootstrap=False, max_depth=6, max_features=sqrt, min_samples_leaf=4, min_samples_split=2, n_estimators=20;, score=0.889 total time= 0.0s\n","[CV 4/5] END bootstrap=False, max_depth=6, max_features=sqrt, min_samples_leaf=4, min_samples_split=2, n_estimators=20;, score=0.833 total time= 0.0s\n","[CV 5/5] END bootstrap=False, max_depth=6, max_features=sqrt, min_samples_leaf=4, min_samples_split=2, n_estimators=20;, score=0.894 total time= 0.0s\n","[CV 1/5] END bootstrap=False, max_depth=6, max_features=sqrt, min_samples_leaf=4, min_samples_split=2, n_estimators=30;, score=0.864 total time= 0.1s\n","[CV 2/5] END bootstrap=False, max_depth=6, max_features=sqrt, min_samples_leaf=4, min_samples_split=2, n_estimators=30;, score=0.874 total time= 0.1s\n","[CV 3/5] END bootstrap=False, max_depth=6, max_features=sqrt, min_samples_leaf=4, min_samples_split=2, n_estimators=30;, score=0.884 total time= 0.0s\n","[CV 4/5] END bootstrap=False, max_depth=6, max_features=sqrt, min_samples_leaf=4, min_samples_split=2, n_estimators=30;, score=0.838 total time= 0.1s\n","[CV 5/5] END bootstrap=False, max_depth=6, max_features=sqrt, min_samples_leaf=4, min_samples_split=2, n_estimators=30;, score=0.874 total time= 0.1s\n","[CV 1/5] END bootstrap=False, max_depth=6, max_features=sqrt, min_samples_leaf=4, min_samples_split=4, n_estimators=5;, score=0.869 total time= 0.0s\n","[CV 2/5] END bootstrap=False, max_depth=6, max_features=sqrt, min_samples_leaf=4, min_samples_split=4, n_estimators=5;, score=0.904 total time= 0.0s\n","[CV 3/5] END bootstrap=False, max_depth=6, max_features=sqrt, min_samples_leaf=4, min_samples_split=4, n_estimators=5;, score=0.884 total time= 0.0s\n","[CV 4/5] END bootstrap=False, max_depth=6, max_features=sqrt, min_samples_leaf=4, min_samples_split=4, n_estimators=5;, score=0.869 total time= 0.0s\n","[CV 5/5] END bootstrap=False, max_depth=6, max_features=sqrt, min_samples_leaf=4, min_samples_split=4, n_estimators=5;, score=0.914 total time= 0.0s\n","[CV 1/5] END bootstrap=False, max_depth=6, max_features=sqrt, min_samples_leaf=4, min_samples_split=4, n_estimators=10;, score=0.889 total time= 0.0s\n","[CV 2/5] END bootstrap=False, max_depth=6, max_features=sqrt, min_samples_leaf=4, min_samples_split=4, n_estimators=10;, score=0.869 total time= 0.0s\n","[CV 3/5] END bootstrap=False, max_depth=6, max_features=sqrt, min_samples_leaf=4, min_samples_split=4, n_estimators=10;, score=0.899 total time= 0.0s\n","[CV 4/5] END bootstrap=False, max_depth=6, max_features=sqrt, min_samples_leaf=4, min_samples_split=4, n_estimators=10;, score=0.838 total time= 0.0s\n","[CV 5/5] END bootstrap=False, max_depth=6, max_features=sqrt, min_samples_leaf=4, min_samples_split=4, n_estimators=10;, score=0.889 total time= 0.0s\n","[CV 1/5] END bootstrap=False, max_depth=6, max_features=sqrt, min_samples_leaf=4, min_samples_split=4, n_estimators=20;, score=0.864 total time= 0.0s\n","[CV 2/5] END bootstrap=False, max_depth=6, max_features=sqrt, min_samples_leaf=4, min_samples_split=4, n_estimators=20;, score=0.889 total time= 0.0s\n","[CV 3/5] END bootstrap=False, max_depth=6, max_features=sqrt, min_samples_leaf=4, min_samples_split=4, n_estimators=20;, score=0.899 total time= 0.0s\n","[CV 4/5] END bootstrap=False, max_depth=6, max_features=sqrt, min_samples_leaf=4, min_samples_split=4, n_estimators=20;, score=0.869 total time= 0.0s\n","[CV 5/5] END bootstrap=False, max_depth=6, max_features=sqrt, min_samples_leaf=4, min_samples_split=4, n_estimators=20;, score=0.874 total time= 0.0s\n","[CV 1/5] END bootstrap=False, max_depth=6, max_features=sqrt, min_samples_leaf=4, min_samples_split=4, n_estimators=30;, score=0.848 total time= 0.1s\n","[CV 2/5] END bootstrap=False, max_depth=6, max_features=sqrt, min_samples_leaf=4, min_samples_split=4, n_estimators=30;, score=0.894 total time= 0.1s\n","[CV 3/5] END bootstrap=False, max_depth=6, max_features=sqrt, min_samples_leaf=4, min_samples_split=4, n_estimators=30;, score=0.889 total time= 0.1s\n","[CV 4/5] END bootstrap=False, max_depth=6, max_features=sqrt, min_samples_leaf=4, min_samples_split=4, n_estimators=30;, score=0.874 total time= 0.1s\n","[CV 5/5] END bootstrap=False, max_depth=6, max_features=sqrt, min_samples_leaf=4, min_samples_split=4, n_estimators=30;, score=0.889 total time= 0.1s\n","[CV 1/5] END bootstrap=False, max_depth=6, max_features=sqrt, min_samples_leaf=4, min_samples_split=6, n_estimators=5;, score=0.879 total time= 0.0s\n","[CV 2/5] END bootstrap=False, max_depth=6, max_features=sqrt, min_samples_leaf=4, min_samples_split=6, n_estimators=5;, score=0.879 total time= 0.0s\n","[CV 3/5] END bootstrap=False, max_depth=6, max_features=sqrt, min_samples_leaf=4, min_samples_split=6, n_estimators=5;, score=0.874 total time= 0.0s\n","[CV 4/5] END bootstrap=False, max_depth=6, max_features=sqrt, min_samples_leaf=4, min_samples_split=6, n_estimators=5;, score=0.854 total time= 0.0s\n","[CV 5/5] END bootstrap=False, max_depth=6, max_features=sqrt, min_samples_leaf=4, min_samples_split=6, n_estimators=5;, score=0.894 total time= 0.0s\n","[CV 1/5] END bootstrap=False, max_depth=6, max_features=sqrt, min_samples_leaf=4, min_samples_split=6, n_estimators=10;, score=0.859 total time= 0.0s\n","[CV 2/5] END bootstrap=False, max_depth=6, max_features=sqrt, min_samples_leaf=4, min_samples_split=6, n_estimators=10;, score=0.899 total time= 0.0s\n","[CV 3/5] END bootstrap=False, max_depth=6, max_features=sqrt, min_samples_leaf=4, min_samples_split=6, n_estimators=10;, score=0.889 total time= 0.0s\n","[CV 4/5] END bootstrap=False, max_depth=6, max_features=sqrt, min_samples_leaf=4, min_samples_split=6, n_estimators=10;, score=0.859 total time= 0.0s\n","[CV 5/5] END bootstrap=False, max_depth=6, max_features=sqrt, min_samples_leaf=4, min_samples_split=6, n_estimators=10;, score=0.874 total time= 0.0s\n","[CV 1/5] END bootstrap=False, max_depth=6, max_features=sqrt, min_samples_leaf=4, min_samples_split=6, n_estimators=20;, score=0.859 total time= 0.0s\n","[CV 2/5] END bootstrap=False, max_depth=6, max_features=sqrt, min_samples_leaf=4, min_samples_split=6, n_estimators=20;, score=0.889 total time= 0.0s\n","[CV 3/5] END bootstrap=False, max_depth=6, max_features=sqrt, min_samples_leaf=4, min_samples_split=6, n_estimators=20;, score=0.879 total time= 0.0s\n","[CV 4/5] END bootstrap=False, max_depth=6, max_features=sqrt, min_samples_leaf=4, min_samples_split=6, n_estimators=20;, score=0.854 total time= 0.0s\n","[CV 5/5] END bootstrap=False, max_depth=6, max_features=sqrt, min_samples_leaf=4, min_samples_split=6, n_estimators=20;, score=0.884 total time= 0.0s\n","[CV 1/5] END bootstrap=False, max_depth=6, max_features=sqrt, min_samples_leaf=4, min_samples_split=6, n_estimators=30;, score=0.859 total time= 0.1s\n","[CV 2/5] END bootstrap=False, max_depth=6, max_features=sqrt, min_samples_leaf=4, min_samples_split=6, n_estimators=30;, score=0.889 total time= 0.0s\n","[CV 3/5] END bootstrap=False, max_depth=6, max_features=sqrt, min_samples_leaf=4, min_samples_split=6, n_estimators=30;, score=0.889 total time= 0.1s\n","[CV 4/5] END bootstrap=False, max_depth=6, max_features=sqrt, min_samples_leaf=4, min_samples_split=6, n_estimators=30;, score=0.859 total time= 0.1s\n","[CV 5/5] END bootstrap=False, max_depth=6, max_features=sqrt, min_samples_leaf=4, min_samples_split=6, n_estimators=30;, score=0.874 total time= 0.1s\n","[CV 1/5] END bootstrap=False, max_depth=6, max_features=sqrt, min_samples_leaf=6, min_samples_split=2, n_estimators=5;, score=0.894 total time= 0.0s\n","[CV 2/5] END bootstrap=False, max_depth=6, max_features=sqrt, min_samples_leaf=6, min_samples_split=2, n_estimators=5;, score=0.879 total time= 0.0s\n","[CV 3/5] END bootstrap=False, max_depth=6, max_features=sqrt, min_samples_leaf=6, min_samples_split=2, n_estimators=5;, score=0.889 total time= 0.0s\n","[CV 4/5] END bootstrap=False, max_depth=6, max_features=sqrt, min_samples_leaf=6, min_samples_split=2, n_estimators=5;, score=0.869 total time= 0.0s\n","[CV 5/5] END bootstrap=False, max_depth=6, max_features=sqrt, min_samples_leaf=6, min_samples_split=2, n_estimators=5;, score=0.869 total time= 0.0s\n","[CV 1/5] END bootstrap=False, max_depth=6, max_features=sqrt, min_samples_leaf=6, min_samples_split=2, n_estimators=10;, score=0.859 total time= 0.0s\n","[CV 2/5] END bootstrap=False, max_depth=6, max_features=sqrt, min_samples_leaf=6, min_samples_split=2, n_estimators=10;, score=0.909 total time= 0.0s\n","[CV 3/5] END bootstrap=False, max_depth=6, max_features=sqrt, min_samples_leaf=6, min_samples_split=2, n_estimators=10;, score=0.879 total time= 0.0s\n","[CV 4/5] END bootstrap=False, max_depth=6, max_features=sqrt, min_samples_leaf=6, min_samples_split=2, n_estimators=10;, score=0.843 total time= 0.0s\n","[CV 5/5] END bootstrap=False, max_depth=6, max_features=sqrt, min_samples_leaf=6, min_samples_split=2, n_estimators=10;, score=0.884 total time= 0.0s\n","[CV 1/5] END bootstrap=False, max_depth=6, max_features=sqrt, min_samples_leaf=6, min_samples_split=2, n_estimators=20;, score=0.864 total time= 0.0s\n","[CV 2/5] END bootstrap=False, max_depth=6, max_features=sqrt, min_samples_leaf=6, min_samples_split=2, n_estimators=20;, score=0.884 total time= 0.0s\n","[CV 3/5] END bootstrap=False, max_depth=6, max_features=sqrt, min_samples_leaf=6, min_samples_split=2, n_estimators=20;, score=0.884 total time= 0.0s\n","[CV 4/5] END bootstrap=False, max_depth=6, max_features=sqrt, min_samples_leaf=6, min_samples_split=2, n_estimators=20;, score=0.828 total time= 0.0s\n","[CV 5/5] END bootstrap=False, max_depth=6, max_features=sqrt, min_samples_leaf=6, min_samples_split=2, n_estimators=20;, score=0.889 total time= 0.0s\n","[CV 1/5] END bootstrap=False, max_depth=6, max_features=sqrt, min_samples_leaf=6, min_samples_split=2, n_estimators=30;, score=0.859 total time= 0.1s\n","[CV 2/5] END bootstrap=False, max_depth=6, max_features=sqrt, min_samples_leaf=6, min_samples_split=2, n_estimators=30;, score=0.884 total time= 0.1s\n","[CV 3/5] END bootstrap=False, max_depth=6, max_features=sqrt, min_samples_leaf=6, min_samples_split=2, n_estimators=30;, score=0.899 total time= 0.1s\n","[CV 4/5] END bootstrap=False, max_depth=6, max_features=sqrt, min_samples_leaf=6, min_samples_split=2, n_estimators=30;, score=0.848 total time= 0.1s\n","[CV 5/5] END bootstrap=False, max_depth=6, max_features=sqrt, min_samples_leaf=6, min_samples_split=2, n_estimators=30;, score=0.899 total time= 0.1s\n","[CV 1/5] END bootstrap=False, max_depth=6, max_features=sqrt, min_samples_leaf=6, min_samples_split=4, n_estimators=5;, score=0.859 total time= 0.0s\n","[CV 2/5] END bootstrap=False, max_depth=6, max_features=sqrt, min_samples_leaf=6, min_samples_split=4, n_estimators=5;, score=0.909 total time= 0.0s\n","[CV 3/5] END bootstrap=False, max_depth=6, max_features=sqrt, min_samples_leaf=6, min_samples_split=4, n_estimators=5;, score=0.894 total time= 0.0s\n","[CV 4/5] END bootstrap=False, max_depth=6, max_features=sqrt, min_samples_leaf=6, min_samples_split=4, n_estimators=5;, score=0.874 total time= 0.0s\n","[CV 5/5] END bootstrap=False, max_depth=6, max_features=sqrt, min_samples_leaf=6, min_samples_split=4, n_estimators=5;, score=0.889 total time= 0.0s\n","[CV 1/5] END bootstrap=False, max_depth=6, max_features=sqrt, min_samples_leaf=6, min_samples_split=4, n_estimators=10;, score=0.859 total time= 0.0s\n","[CV 2/5] END bootstrap=False, max_depth=6, max_features=sqrt, min_samples_leaf=6, min_samples_split=4, n_estimators=10;, score=0.904 total time= 0.0s\n","[CV 3/5] END bootstrap=False, max_depth=6, max_features=sqrt, min_samples_leaf=6, min_samples_split=4, n_estimators=10;, score=0.894 total time= 0.0s\n","[CV 4/5] END bootstrap=False, max_depth=6, max_features=sqrt, min_samples_leaf=6, min_samples_split=4, n_estimators=10;, score=0.864 total time= 0.0s\n","[CV 5/5] END bootstrap=False, max_depth=6, max_features=sqrt, min_samples_leaf=6, min_samples_split=4, n_estimators=10;, score=0.874 total time= 0.0s\n","[CV 1/5] END bootstrap=False, max_depth=6, max_features=sqrt, min_samples_leaf=6, min_samples_split=4, n_estimators=20;, score=0.874 total time= 0.1s\n","[CV 2/5] END bootstrap=False, max_depth=6, max_features=sqrt, min_samples_leaf=6, min_samples_split=4, n_estimators=20;, score=0.894 total time= 0.1s\n","[CV 3/5] END bootstrap=False, max_depth=6, max_features=sqrt, min_samples_leaf=6, min_samples_split=4, n_estimators=20;, score=0.889 total time= 0.1s\n","[CV 4/5] END bootstrap=False, max_depth=6, max_features=sqrt, min_samples_leaf=6, min_samples_split=4, n_estimators=20;, score=0.859 total time= 0.1s\n","[CV 5/5] END bootstrap=False, max_depth=6, max_features=sqrt, min_samples_leaf=6, min_samples_split=4, n_estimators=20;, score=0.874 total time= 0.1s\n","[CV 1/5] END bootstrap=False, max_depth=6, max_features=sqrt, min_samples_leaf=6, min_samples_split=4, n_estimators=30;, score=0.874 total time= 0.1s\n","[CV 2/5] END bootstrap=False, max_depth=6, max_features=sqrt, min_samples_leaf=6, min_samples_split=4, n_estimators=30;, score=0.879 total time= 0.1s\n","[CV 3/5] END bootstrap=False, max_depth=6, max_features=sqrt, min_samples_leaf=6, min_samples_split=4, n_estimators=30;, score=0.879 total time= 0.1s\n","[CV 4/5] END bootstrap=False, max_depth=6, max_features=sqrt, min_samples_leaf=6, min_samples_split=4, n_estimators=30;, score=0.864 total time= 0.1s\n","[CV 5/5] END bootstrap=False, max_depth=6, max_features=sqrt, min_samples_leaf=6, min_samples_split=4, n_estimators=30;, score=0.894 total time= 0.1s\n","[CV 1/5] END bootstrap=False, max_depth=6, max_features=sqrt, min_samples_leaf=6, min_samples_split=6, n_estimators=5;, score=0.879 total time= 0.0s\n","[CV 2/5] END bootstrap=False, max_depth=6, max_features=sqrt, min_samples_leaf=6, min_samples_split=6, n_estimators=5;, score=0.884 total time= 0.0s\n","[CV 3/5] END bootstrap=False, max_depth=6, max_features=sqrt, min_samples_leaf=6, min_samples_split=6, n_estimators=5;, score=0.889 total time= 0.0s\n","[CV 4/5] END bootstrap=False, max_depth=6, max_features=sqrt, min_samples_leaf=6, min_samples_split=6, n_estimators=5;, score=0.859 total time= 0.0s\n","[CV 5/5] END bootstrap=False, max_depth=6, max_features=sqrt, min_samples_leaf=6, min_samples_split=6, n_estimators=5;, score=0.879 total time= 0.0s\n","[CV 1/5] END bootstrap=False, max_depth=6, max_features=sqrt, min_samples_leaf=6, min_samples_split=6, n_estimators=10;, score=0.879 total time= 0.0s\n","[CV 2/5] END bootstrap=False, max_depth=6, max_features=sqrt, min_samples_leaf=6, min_samples_split=6, n_estimators=10;, score=0.879 total time= 0.0s\n","[CV 3/5] END bootstrap=False, max_depth=6, max_features=sqrt, min_samples_leaf=6, min_samples_split=6, n_estimators=10;, score=0.874 total time= 0.0s\n","[CV 4/5] END bootstrap=False, max_depth=6, max_features=sqrt, min_samples_leaf=6, min_samples_split=6, n_estimators=10;, score=0.843 total time= 0.0s\n","[CV 5/5] END bootstrap=False, max_depth=6, max_features=sqrt, min_samples_leaf=6, min_samples_split=6, n_estimators=10;, score=0.889 total time= 0.0s\n","[CV 1/5] END bootstrap=False, max_depth=6, max_features=sqrt, min_samples_leaf=6, min_samples_split=6, n_estimators=20;, score=0.859 total time= 0.1s\n","[CV 2/5] END bootstrap=False, max_depth=6, max_features=sqrt, min_samples_leaf=6, min_samples_split=6, n_estimators=20;, score=0.874 total time= 0.1s\n","[CV 3/5] END bootstrap=False, max_depth=6, max_features=sqrt, min_samples_leaf=6, min_samples_split=6, n_estimators=20;, score=0.879 total time= 0.1s\n","[CV 4/5] END bootstrap=False, max_depth=6, max_features=sqrt, min_samples_leaf=6, min_samples_split=6, n_estimators=20;, score=0.859 total time= 0.1s\n","[CV 5/5] END bootstrap=False, max_depth=6, max_features=sqrt, min_samples_leaf=6, min_samples_split=6, n_estimators=20;, score=0.869 total time= 0.1s\n","[CV 1/5] END bootstrap=False, max_depth=6, max_features=sqrt, min_samples_leaf=6, min_samples_split=6, n_estimators=30;, score=0.859 total time= 0.1s\n","[CV 2/5] END bootstrap=False, max_depth=6, max_features=sqrt, min_samples_leaf=6, min_samples_split=6, n_estimators=30;, score=0.884 total time= 0.1s\n","[CV 3/5] END bootstrap=False, max_depth=6, max_features=sqrt, min_samples_leaf=6, min_samples_split=6, n_estimators=30;, score=0.899 total time= 0.1s\n","[CV 4/5] END bootstrap=False, max_depth=6, max_features=sqrt, min_samples_leaf=6, min_samples_split=6, n_estimators=30;, score=0.879 total time= 0.1s\n","[CV 5/5] END bootstrap=False, max_depth=6, max_features=sqrt, min_samples_leaf=6, min_samples_split=6, n_estimators=30;, score=0.884 total time= 0.1s\n","[CV 1/5] END bootstrap=False, max_depth=6, max_features=log2, min_samples_leaf=2, min_samples_split=2, n_estimators=5;, score=0.848 total time= 0.0s\n","[CV 2/5] END bootstrap=False, max_depth=6, max_features=log2, min_samples_leaf=2, min_samples_split=2, n_estimators=5;, score=0.889 total time= 0.0s\n","[CV 3/5] END bootstrap=False, max_depth=6, max_features=log2, min_samples_leaf=2, min_samples_split=2, n_estimators=5;, score=0.899 total time= 0.0s\n","[CV 4/5] END bootstrap=False, max_depth=6, max_features=log2, min_samples_leaf=2, min_samples_split=2, n_estimators=5;, score=0.859 total time= 0.0s\n","[CV 5/5] END bootstrap=False, max_depth=6, max_features=log2, min_samples_leaf=2, min_samples_split=2, n_estimators=5;, score=0.889 total time= 0.0s\n","[CV 1/5] END bootstrap=False, max_depth=6, max_features=log2, min_samples_leaf=2, min_samples_split=2, n_estimators=10;, score=0.869 total time= 0.0s\n","[CV 2/5] END bootstrap=False, max_depth=6, max_features=log2, min_samples_leaf=2, min_samples_split=2, n_estimators=10;, score=0.889 total time= 0.0s\n","[CV 3/5] END bootstrap=False, max_depth=6, max_features=log2, min_samples_leaf=2, min_samples_split=2, n_estimators=10;, score=0.899 total time= 0.0s\n","[CV 4/5] END bootstrap=False, max_depth=6, max_features=log2, min_samples_leaf=2, min_samples_split=2, n_estimators=10;, score=0.859 total time= 0.0s\n","[CV 5/5] END bootstrap=False, max_depth=6, max_features=log2, min_samples_leaf=2, min_samples_split=2, n_estimators=10;, score=0.869 total time= 0.0s\n","[CV 1/5] END bootstrap=False, max_depth=6, max_features=log2, min_samples_leaf=2, min_samples_split=2, n_estimators=20;, score=0.879 total time= 0.1s\n","[CV 2/5] END bootstrap=False, max_depth=6, max_features=log2, min_samples_leaf=2, min_samples_split=2, n_estimators=20;, score=0.879 total time= 0.1s\n","[CV 3/5] END bootstrap=False, max_depth=6, max_features=log2, min_samples_leaf=2, min_samples_split=2, n_estimators=20;, score=0.874 total time= 0.1s\n","[CV 4/5] END bootstrap=False, max_depth=6, max_features=log2, min_samples_leaf=2, min_samples_split=2, n_estimators=20;, score=0.848 total time= 0.1s\n","[CV 5/5] END bootstrap=False, max_depth=6, max_features=log2, min_samples_leaf=2, min_samples_split=2, n_estimators=20;, score=0.884 total time= 0.1s\n","[CV 1/5] END bootstrap=False, max_depth=6, max_features=log2, min_samples_leaf=2, min_samples_split=2, n_estimators=30;, score=0.884 total time= 0.1s\n","[CV 2/5] END bootstrap=False, max_depth=6, max_features=log2, min_samples_leaf=2, min_samples_split=2, n_estimators=30;, score=0.884 total time= 0.1s\n","[CV 3/5] END bootstrap=False, max_depth=6, max_features=log2, min_samples_leaf=2, min_samples_split=2, n_estimators=30;, score=0.889 total time= 0.1s\n","[CV 4/5] END bootstrap=False, max_depth=6, max_features=log2, min_samples_leaf=2, min_samples_split=2, n_estimators=30;, score=0.848 total time= 0.1s\n","[CV 5/5] END bootstrap=False, max_depth=6, max_features=log2, min_samples_leaf=2, min_samples_split=2, n_estimators=30;, score=0.864 total time= 0.1s\n","[CV 1/5] END bootstrap=False, max_depth=6, max_features=log2, min_samples_leaf=2, min_samples_split=4, n_estimators=5;, score=0.879 total time= 0.0s\n","[CV 2/5] END bootstrap=False, max_depth=6, max_features=log2, min_samples_leaf=2, min_samples_split=4, n_estimators=5;, score=0.879 total time= 0.0s\n","[CV 3/5] END bootstrap=False, max_depth=6, max_features=log2, min_samples_leaf=2, min_samples_split=4, n_estimators=5;, score=0.894 total time= 0.0s\n","[CV 4/5] END bootstrap=False, max_depth=6, max_features=log2, min_samples_leaf=2, min_samples_split=4, n_estimators=5;, score=0.848 total time= 0.0s\n","[CV 5/5] END bootstrap=False, max_depth=6, max_features=log2, min_samples_leaf=2, min_samples_split=4, n_estimators=5;, score=0.884 total time= 0.0s\n","[CV 1/5] END bootstrap=False, max_depth=6, max_features=log2, min_samples_leaf=2, min_samples_split=4, n_estimators=10;, score=0.864 total time= 0.0s\n","[CV 2/5] END bootstrap=False, max_depth=6, max_features=log2, min_samples_leaf=2, min_samples_split=4, n_estimators=10;, score=0.874 total time= 0.0s\n","[CV 3/5] END bootstrap=False, max_depth=6, max_features=log2, min_samples_leaf=2, min_samples_split=4, n_estimators=10;, score=0.874 total time= 0.0s\n","[CV 4/5] END bootstrap=False, max_depth=6, max_features=log2, min_samples_leaf=2, min_samples_split=4, n_estimators=10;, score=0.874 total time= 0.0s\n","[CV 5/5] END bootstrap=False, max_depth=6, max_features=log2, min_samples_leaf=2, min_samples_split=4, n_estimators=10;, score=0.894 total time= 0.0s\n","[CV 1/5] END bootstrap=False, max_depth=6, max_features=log2, min_samples_leaf=2, min_samples_split=4, n_estimators=20;, score=0.859 total time= 0.1s\n","[CV 2/5] END bootstrap=False, max_depth=6, max_features=log2, min_samples_leaf=2, min_samples_split=4, n_estimators=20;, score=0.879 total time= 0.1s\n","[CV 3/5] END bootstrap=False, max_depth=6, max_features=log2, min_samples_leaf=2, min_samples_split=4, n_estimators=20;, score=0.884 total time= 0.1s\n","[CV 4/5] END bootstrap=False, max_depth=6, max_features=log2, min_samples_leaf=2, min_samples_split=4, n_estimators=20;, score=0.869 total time= 0.1s\n","[CV 5/5] END bootstrap=False, max_depth=6, max_features=log2, min_samples_leaf=2, min_samples_split=4, n_estimators=20;, score=0.884 total time= 0.0s\n","[CV 1/5] END bootstrap=False, max_depth=6, max_features=log2, min_samples_leaf=2, min_samples_split=4, n_estimators=30;, score=0.869 total time= 0.1s\n","[CV 2/5] END bootstrap=False, max_depth=6, max_features=log2, min_samples_leaf=2, min_samples_split=4, n_estimators=30;, score=0.869 total time= 0.1s\n","[CV 3/5] END bootstrap=False, max_depth=6, max_features=log2, min_samples_leaf=2, min_samples_split=4, n_estimators=30;, score=0.899 total time= 0.1s\n","[CV 4/5] END bootstrap=False, max_depth=6, max_features=log2, min_samples_leaf=2, min_samples_split=4, n_estimators=30;, score=0.848 total time= 0.1s\n","[CV 5/5] END bootstrap=False, max_depth=6, max_features=log2, min_samples_leaf=2, min_samples_split=4, n_estimators=30;, score=0.874 total time= 0.1s\n","[CV 1/5] END bootstrap=False, max_depth=6, max_features=log2, min_samples_leaf=2, min_samples_split=6, n_estimators=5;, score=0.859 total time= 0.0s\n","[CV 2/5] END bootstrap=False, max_depth=6, max_features=log2, min_samples_leaf=2, min_samples_split=6, n_estimators=5;, score=0.904 total time= 0.0s\n","[CV 3/5] END bootstrap=False, max_depth=6, max_features=log2, min_samples_leaf=2, min_samples_split=6, n_estimators=5;, score=0.874 total time= 0.0s\n","[CV 4/5] END bootstrap=False, max_depth=6, max_features=log2, min_samples_leaf=2, min_samples_split=6, n_estimators=5;, score=0.854 total time= 0.0s\n","[CV 5/5] END bootstrap=False, max_depth=6, max_features=log2, min_samples_leaf=2, min_samples_split=6, n_estimators=5;, score=0.874 total time= 0.0s\n","[CV 1/5] END bootstrap=False, max_depth=6, max_features=log2, min_samples_leaf=2, min_samples_split=6, n_estimators=10;, score=0.854 total time= 0.0s\n","[CV 2/5] END bootstrap=False, max_depth=6, max_features=log2, min_samples_leaf=2, min_samples_split=6, n_estimators=10;, score=0.889 total time= 0.0s\n","[CV 3/5] END bootstrap=False, max_depth=6, max_features=log2, min_samples_leaf=2, min_samples_split=6, n_estimators=10;, score=0.894 total time= 0.0s\n","[CV 4/5] END bootstrap=False, max_depth=6, max_features=log2, min_samples_leaf=2, min_samples_split=6, n_estimators=10;, score=0.874 total time= 0.0s\n","[CV 5/5] END bootstrap=False, max_depth=6, max_features=log2, min_samples_leaf=2, min_samples_split=6, n_estimators=10;, score=0.874 total time= 0.0s\n","[CV 1/5] END bootstrap=False, max_depth=6, max_features=log2, min_samples_leaf=2, min_samples_split=6, n_estimators=20;, score=0.874 total time= 0.0s\n","[CV 2/5] END bootstrap=False, max_depth=6, max_features=log2, min_samples_leaf=2, min_samples_split=6, n_estimators=20;, score=0.894 total time= 0.0s\n","[CV 3/5] END bootstrap=False, max_depth=6, max_features=log2, min_samples_leaf=2, min_samples_split=6, n_estimators=20;, score=0.869 total time= 0.0s\n","[CV 4/5] END bootstrap=False, max_depth=6, max_features=log2, min_samples_leaf=2, min_samples_split=6, n_estimators=20;, score=0.843 total time= 0.0s\n","[CV 5/5] END bootstrap=False, max_depth=6, max_features=log2, min_samples_leaf=2, min_samples_split=6, n_estimators=20;, score=0.884 total time= 0.0s\n","[CV 1/5] END bootstrap=False, max_depth=6, max_features=log2, min_samples_leaf=2, min_samples_split=6, n_estimators=30;, score=0.879 total time= 0.1s\n","[CV 2/5] END bootstrap=False, max_depth=6, max_features=log2, min_samples_leaf=2, min_samples_split=6, n_estimators=30;, score=0.889 total time= 0.0s\n","[CV 3/5] END bootstrap=False, max_depth=6, max_features=log2, min_samples_leaf=2, min_samples_split=6, n_estimators=30;, score=0.879 total time= 0.1s\n","[CV 4/5] END bootstrap=False, max_depth=6, max_features=log2, min_samples_leaf=2, min_samples_split=6, n_estimators=30;, score=0.854 total time= 0.1s\n","[CV 5/5] END bootstrap=False, max_depth=6, max_features=log2, min_samples_leaf=2, min_samples_split=6, n_estimators=30;, score=0.874 total time= 0.1s\n","[CV 1/5] END bootstrap=False, max_depth=6, max_features=log2, min_samples_leaf=4, min_samples_split=2, n_estimators=5;, score=0.884 total time= 0.0s\n","[CV 2/5] END bootstrap=False, max_depth=6, max_features=log2, min_samples_leaf=4, min_samples_split=2, n_estimators=5;, score=0.874 total time= 0.0s\n","[CV 3/5] END bootstrap=False, max_depth=6, max_features=log2, min_samples_leaf=4, min_samples_split=2, n_estimators=5;, score=0.874 total time= 0.0s\n","[CV 4/5] END bootstrap=False, max_depth=6, max_features=log2, min_samples_leaf=4, min_samples_split=2, n_estimators=5;, score=0.854 total time= 0.0s\n","[CV 5/5] END bootstrap=False, max_depth=6, max_features=log2, min_samples_leaf=4, min_samples_split=2, n_estimators=5;, score=0.859 total time= 0.0s\n","[CV 1/5] END bootstrap=False, max_depth=6, max_features=log2, min_samples_leaf=4, min_samples_split=2, n_estimators=10;, score=0.859 total time= 0.0s\n","[CV 2/5] END bootstrap=False, max_depth=6, max_features=log2, min_samples_leaf=4, min_samples_split=2, n_estimators=10;, score=0.894 total time= 0.0s\n","[CV 3/5] END bootstrap=False, max_depth=6, max_features=log2, min_samples_leaf=4, min_samples_split=2, n_estimators=10;, score=0.914 total time= 0.0s\n","[CV 4/5] END bootstrap=False, max_depth=6, max_features=log2, min_samples_leaf=4, min_samples_split=2, n_estimators=10;, score=0.838 total time= 0.0s\n","[CV 5/5] END bootstrap=False, max_depth=6, max_features=log2, min_samples_leaf=4, min_samples_split=2, n_estimators=10;, score=0.909 total time= 0.0s\n","[CV 1/5] END bootstrap=False, max_depth=6, max_features=log2, min_samples_leaf=4, min_samples_split=2, n_estimators=20;, score=0.879 total time= 0.0s\n","[CV 2/5] END bootstrap=False, max_depth=6, max_features=log2, min_samples_leaf=4, min_samples_split=2, n_estimators=20;, score=0.904 total time= 0.0s\n","[CV 3/5] END bootstrap=False, max_depth=6, max_features=log2, min_samples_leaf=4, min_samples_split=2, n_estimators=20;, score=0.874 total time= 0.0s\n","[CV 4/5] END bootstrap=False, max_depth=6, max_features=log2, min_samples_leaf=4, min_samples_split=2, n_estimators=20;, score=0.874 total time= 0.0s\n","[CV 5/5] END bootstrap=False, max_depth=6, max_features=log2, min_samples_leaf=4, min_samples_split=2, n_estimators=20;, score=0.879 total time= 0.0s\n","[CV 1/5] END bootstrap=False, max_depth=6, max_features=log2, min_samples_leaf=4, min_samples_split=2, n_estimators=30;, score=0.879 total time= 0.1s\n","[CV 2/5] END bootstrap=False, max_depth=6, max_features=log2, min_samples_leaf=4, min_samples_split=2, n_estimators=30;, score=0.904 total time= 0.1s\n","[CV 3/5] END bootstrap=False, max_depth=6, max_features=log2, min_samples_leaf=4, min_samples_split=2, n_estimators=30;, score=0.884 total time= 0.1s\n","[CV 4/5] END bootstrap=False, max_depth=6, max_features=log2, min_samples_leaf=4, min_samples_split=2, n_estimators=30;, score=0.854 total time= 0.1s\n","[CV 5/5] END bootstrap=False, max_depth=6, max_features=log2, min_samples_leaf=4, min_samples_split=2, n_estimators=30;, score=0.879 total time= 0.1s\n","[CV 1/5] END bootstrap=False, max_depth=6, max_features=log2, min_samples_leaf=4, min_samples_split=4, n_estimators=5;, score=0.889 total time= 0.0s\n","[CV 2/5] END bootstrap=False, max_depth=6, max_features=log2, min_samples_leaf=4, min_samples_split=4, n_estimators=5;, score=0.894 total time= 0.0s\n","[CV 3/5] END bootstrap=False, max_depth=6, max_features=log2, min_samples_leaf=4, min_samples_split=4, n_estimators=5;, score=0.884 total time= 0.0s\n","[CV 4/5] END bootstrap=False, max_depth=6, max_features=log2, min_samples_leaf=4, min_samples_split=4, n_estimators=5;, score=0.854 total time= 0.0s\n","[CV 5/5] END bootstrap=False, max_depth=6, max_features=log2, min_samples_leaf=4, min_samples_split=4, n_estimators=5;, score=0.859 total time= 0.0s\n","[CV 1/5] END bootstrap=False, max_depth=6, max_features=log2, min_samples_leaf=4, min_samples_split=4, n_estimators=10;, score=0.864 total time= 0.0s\n","[CV 2/5] END bootstrap=False, max_depth=6, max_features=log2, min_samples_leaf=4, min_samples_split=4, n_estimators=10;, score=0.884 total time= 0.0s\n","[CV 3/5] END bootstrap=False, max_depth=6, max_features=log2, min_samples_leaf=4, min_samples_split=4, n_estimators=10;, score=0.889 total time= 0.0s\n","[CV 4/5] END bootstrap=False, max_depth=6, max_features=log2, min_samples_leaf=4, min_samples_split=4, n_estimators=10;, score=0.843 total time= 0.0s\n","[CV 5/5] END bootstrap=False, max_depth=6, max_features=log2, min_samples_leaf=4, min_samples_split=4, n_estimators=10;, score=0.879 total time= 0.0s\n","[CV 1/5] END bootstrap=False, max_depth=6, max_features=log2, min_samples_leaf=4, min_samples_split=4, n_estimators=20;, score=0.869 total time= 0.1s\n","[CV 2/5] END bootstrap=False, max_depth=6, max_features=log2, min_samples_leaf=4, min_samples_split=4, n_estimators=20;, score=0.889 total time= 0.0s\n","[CV 3/5] END bootstrap=False, max_depth=6, max_features=log2, min_samples_leaf=4, min_samples_split=4, n_estimators=20;, score=0.884 total time= 0.0s\n","[CV 4/5] END bootstrap=False, max_depth=6, max_features=log2, min_samples_leaf=4, min_samples_split=4, n_estimators=20;, score=0.854 total time= 0.0s\n","[CV 5/5] END bootstrap=False, max_depth=6, max_features=log2, min_samples_leaf=4, min_samples_split=4, n_estimators=20;, score=0.894 total time= 0.0s\n","[CV 1/5] END bootstrap=False, max_depth=6, max_features=log2, min_samples_leaf=4, min_samples_split=4, n_estimators=30;, score=0.869 total time= 0.1s\n","[CV 2/5] END bootstrap=False, max_depth=6, max_features=log2, min_samples_leaf=4, min_samples_split=4, n_estimators=30;, score=0.884 total time= 0.1s\n","[CV 3/5] END bootstrap=False, max_depth=6, max_features=log2, min_samples_leaf=4, min_samples_split=4, n_estimators=30;, score=0.874 total time= 0.1s\n","[CV 4/5] END bootstrap=False, max_depth=6, max_features=log2, min_samples_leaf=4, min_samples_split=4, n_estimators=30;, score=0.848 total time= 0.1s\n","[CV 5/5] END bootstrap=False, max_depth=6, max_features=log2, min_samples_leaf=4, min_samples_split=4, n_estimators=30;, score=0.874 total time= 0.1s\n","[CV 1/5] END bootstrap=False, max_depth=6, max_features=log2, min_samples_leaf=4, min_samples_split=6, n_estimators=5;, score=0.869 total time= 0.0s\n","[CV 2/5] END bootstrap=False, max_depth=6, max_features=log2, min_samples_leaf=4, min_samples_split=6, n_estimators=5;, score=0.899 total time= 0.0s\n","[CV 3/5] END bootstrap=False, max_depth=6, max_features=log2, min_samples_leaf=4, min_samples_split=6, n_estimators=5;, score=0.889 total time= 0.0s\n","[CV 4/5] END bootstrap=False, max_depth=6, max_features=log2, min_samples_leaf=4, min_samples_split=6, n_estimators=5;, score=0.854 total time= 0.0s\n","[CV 5/5] END bootstrap=False, max_depth=6, max_features=log2, min_samples_leaf=4, min_samples_split=6, n_estimators=5;, score=0.909 total time= 0.0s\n","[CV 1/5] END bootstrap=False, max_depth=6, max_features=log2, min_samples_leaf=4, min_samples_split=6, n_estimators=10;, score=0.874 total time= 0.0s\n","[CV 2/5] END bootstrap=False, max_depth=6, max_features=log2, min_samples_leaf=4, min_samples_split=6, n_estimators=10;, score=0.894 total time= 0.0s\n","[CV 3/5] END bootstrap=False, max_depth=6, max_features=log2, min_samples_leaf=4, min_samples_split=6, n_estimators=10;, score=0.869 total time= 0.0s\n","[CV 4/5] END bootstrap=False, max_depth=6, max_features=log2, min_samples_leaf=4, min_samples_split=6, n_estimators=10;, score=0.848 total time= 0.0s\n","[CV 5/5] END bootstrap=False, max_depth=6, max_features=log2, min_samples_leaf=4, min_samples_split=6, n_estimators=10;, score=0.889 total time= 0.0s\n","[CV 1/5] END bootstrap=False, max_depth=6, max_features=log2, min_samples_leaf=4, min_samples_split=6, n_estimators=20;, score=0.859 total time= 0.0s\n","[CV 2/5] END bootstrap=False, max_depth=6, max_features=log2, min_samples_leaf=4, min_samples_split=6, n_estimators=20;, score=0.904 total time= 0.0s\n","[CV 3/5] END bootstrap=False, max_depth=6, max_features=log2, min_samples_leaf=4, min_samples_split=6, n_estimators=20;, score=0.889 total time= 0.0s\n","[CV 4/5] END bootstrap=False, max_depth=6, max_features=log2, min_samples_leaf=4, min_samples_split=6, n_estimators=20;, score=0.864 total time= 0.0s\n","[CV 5/5] END bootstrap=False, max_depth=6, max_features=log2, min_samples_leaf=4, min_samples_split=6, n_estimators=20;, score=0.899 total time= 0.0s\n","[CV 1/5] END bootstrap=False, max_depth=6, max_features=log2, min_samples_leaf=4, min_samples_split=6, n_estimators=30;, score=0.864 total time= 0.1s\n","[CV 2/5] END bootstrap=False, max_depth=6, max_features=log2, min_samples_leaf=4, min_samples_split=6, n_estimators=30;, score=0.884 total time= 0.1s\n","[CV 3/5] END bootstrap=False, max_depth=6, max_features=log2, min_samples_leaf=4, min_samples_split=6, n_estimators=30;, score=0.874 total time= 0.1s\n","[CV 4/5] END bootstrap=False, max_depth=6, max_features=log2, min_samples_leaf=4, min_samples_split=6, n_estimators=30;, score=0.854 total time= 0.1s\n","[CV 5/5] END bootstrap=False, max_depth=6, max_features=log2, min_samples_leaf=4, min_samples_split=6, n_estimators=30;, score=0.894 total time= 0.1s\n","[CV 1/5] END bootstrap=False, max_depth=6, max_features=log2, min_samples_leaf=6, min_samples_split=2, n_estimators=5;, score=0.869 total time= 0.0s\n","[CV 2/5] END bootstrap=False, max_depth=6, max_features=log2, min_samples_leaf=6, min_samples_split=2, n_estimators=5;, score=0.884 total time= 0.0s\n","[CV 3/5] END bootstrap=False, max_depth=6, max_features=log2, min_samples_leaf=6, min_samples_split=2, n_estimators=5;, score=0.894 total time= 0.0s\n","[CV 4/5] END bootstrap=False, max_depth=6, max_features=log2, min_samples_leaf=6, min_samples_split=2, n_estimators=5;, score=0.864 total time= 0.0s\n","[CV 5/5] END bootstrap=False, max_depth=6, max_features=log2, min_samples_leaf=6, min_samples_split=2, n_estimators=5;, score=0.899 total time= 0.0s\n","[CV 1/5] END bootstrap=False, max_depth=6, max_features=log2, min_samples_leaf=6, min_samples_split=2, n_estimators=10;, score=0.864 total time= 0.0s\n","[CV 2/5] END bootstrap=False, max_depth=6, max_features=log2, min_samples_leaf=6, min_samples_split=2, n_estimators=10;, score=0.889 total time= 0.0s\n","[CV 3/5] END bootstrap=False, max_depth=6, max_features=log2, min_samples_leaf=6, min_samples_split=2, n_estimators=10;, score=0.894 total time= 0.0s\n","[CV 4/5] END bootstrap=False, max_depth=6, max_features=log2, min_samples_leaf=6, min_samples_split=2, n_estimators=10;, score=0.884 total time= 0.0s\n","[CV 5/5] END bootstrap=False, max_depth=6, max_features=log2, min_samples_leaf=6, min_samples_split=2, n_estimators=10;, score=0.884 total time= 0.0s\n","[CV 1/5] END bootstrap=False, max_depth=6, max_features=log2, min_samples_leaf=6, min_samples_split=2, n_estimators=20;, score=0.864 total time= 0.0s\n","[CV 2/5] END bootstrap=False, max_depth=6, max_features=log2, min_samples_leaf=6, min_samples_split=2, n_estimators=20;, score=0.904 total time= 0.0s\n","[CV 3/5] END bootstrap=False, max_depth=6, max_features=log2, min_samples_leaf=6, min_samples_split=2, n_estimators=20;, score=0.874 total time= 0.0s\n","[CV 4/5] END bootstrap=False, max_depth=6, max_features=log2, min_samples_leaf=6, min_samples_split=2, n_estimators=20;, score=0.859 total time= 0.0s\n","[CV 5/5] END bootstrap=False, max_depth=6, max_features=log2, min_samples_leaf=6, min_samples_split=2, n_estimators=20;, score=0.879 total time= 0.0s\n","[CV 1/5] END bootstrap=False, max_depth=6, max_features=log2, min_samples_leaf=6, min_samples_split=2, n_estimators=30;, score=0.854 total time= 0.1s\n","[CV 2/5] END bootstrap=False, max_depth=6, max_features=log2, min_samples_leaf=6, min_samples_split=2, n_estimators=30;, score=0.884 total time= 0.1s\n","[CV 3/5] END bootstrap=False, max_depth=6, max_features=log2, min_samples_leaf=6, min_samples_split=2, n_estimators=30;, score=0.889 total time= 0.1s\n","[CV 4/5] END bootstrap=False, max_depth=6, max_features=log2, min_samples_leaf=6, min_samples_split=2, n_estimators=30;, score=0.833 total time= 0.1s\n","[CV 5/5] END bootstrap=False, max_depth=6, max_features=log2, min_samples_leaf=6, min_samples_split=2, n_estimators=30;, score=0.884 total time= 0.1s\n","[CV 1/5] END bootstrap=False, max_depth=6, max_features=log2, min_samples_leaf=6, min_samples_split=4, n_estimators=5;, score=0.869 total time= 0.0s\n","[CV 2/5] END bootstrap=False, max_depth=6, max_features=log2, min_samples_leaf=6, min_samples_split=4, n_estimators=5;, score=0.864 total time= 0.0s\n","[CV 3/5] END bootstrap=False, max_depth=6, max_features=log2, min_samples_leaf=6, min_samples_split=4, n_estimators=5;, score=0.879 total time= 0.0s\n","[CV 4/5] END bootstrap=False, max_depth=6, max_features=log2, min_samples_leaf=6, min_samples_split=4, n_estimators=5;, score=0.848 total time= 0.0s\n","[CV 5/5] END bootstrap=False, max_depth=6, max_features=log2, min_samples_leaf=6, min_samples_split=4, n_estimators=5;, score=0.874 total time= 0.0s\n","[CV 1/5] END bootstrap=False, max_depth=6, max_features=log2, min_samples_leaf=6, min_samples_split=4, n_estimators=10;, score=0.869 total time= 0.0s\n","[CV 2/5] END bootstrap=False, max_depth=6, max_features=log2, min_samples_leaf=6, min_samples_split=4, n_estimators=10;, score=0.874 total time= 0.0s\n","[CV 3/5] END bootstrap=False, max_depth=6, max_features=log2, min_samples_leaf=6, min_samples_split=4, n_estimators=10;, score=0.889 total time= 0.0s\n","[CV 4/5] END bootstrap=False, max_depth=6, max_features=log2, min_samples_leaf=6, min_samples_split=4, n_estimators=10;, score=0.843 total time= 0.0s\n","[CV 5/5] END bootstrap=False, max_depth=6, max_features=log2, min_samples_leaf=6, min_samples_split=4, n_estimators=10;, score=0.889 total time= 0.0s\n","[CV 1/5] END bootstrap=False, max_depth=6, max_features=log2, min_samples_leaf=6, min_samples_split=4, n_estimators=20;, score=0.859 total time= 0.0s\n","[CV 2/5] END bootstrap=False, max_depth=6, max_features=log2, min_samples_leaf=6, min_samples_split=4, n_estimators=20;, score=0.874 total time= 0.0s\n","[CV 3/5] END bootstrap=False, max_depth=6, max_features=log2, min_samples_leaf=6, min_samples_split=4, n_estimators=20;, score=0.874 total time= 0.0s\n","[CV 4/5] END bootstrap=False, max_depth=6, max_features=log2, min_samples_leaf=6, min_samples_split=4, n_estimators=20;, score=0.869 total time= 0.0s\n","[CV 5/5] END bootstrap=False, max_depth=6, max_features=log2, min_samples_leaf=6, min_samples_split=4, n_estimators=20;, score=0.879 total time= 0.0s\n","[CV 1/5] END bootstrap=False, max_depth=6, max_features=log2, min_samples_leaf=6, min_samples_split=4, n_estimators=30;, score=0.859 total time= 0.1s\n","[CV 2/5] END bootstrap=False, max_depth=6, max_features=log2, min_samples_leaf=6, min_samples_split=4, n_estimators=30;, score=0.894 total time= 0.1s\n","[CV 3/5] END bootstrap=False, max_depth=6, max_features=log2, min_samples_leaf=6, min_samples_split=4, n_estimators=30;, score=0.899 total time= 0.1s\n","[CV 4/5] END bootstrap=False, max_depth=6, max_features=log2, min_samples_leaf=6, min_samples_split=4, n_estimators=30;, score=0.869 total time= 0.1s\n","[CV 5/5] END bootstrap=False, max_depth=6, max_features=log2, min_samples_leaf=6, min_samples_split=4, n_estimators=30;, score=0.859 total time= 0.1s\n","[CV 1/5] END bootstrap=False, max_depth=6, max_features=log2, min_samples_leaf=6, min_samples_split=6, n_estimators=5;, score=0.874 total time= 0.0s\n","[CV 2/5] END bootstrap=False, max_depth=6, max_features=log2, min_samples_leaf=6, min_samples_split=6, n_estimators=5;, score=0.909 total time= 0.0s\n","[CV 3/5] END bootstrap=False, max_depth=6, max_features=log2, min_samples_leaf=6, min_samples_split=6, n_estimators=5;, score=0.884 total time= 0.0s\n","[CV 4/5] END bootstrap=False, max_depth=6, max_features=log2, min_samples_leaf=6, min_samples_split=6, n_estimators=5;, score=0.854 total time= 0.0s\n","[CV 5/5] END bootstrap=False, max_depth=6, max_features=log2, min_samples_leaf=6, min_samples_split=6, n_estimators=5;, score=0.884 total time= 0.0s\n","[CV 1/5] END bootstrap=False, max_depth=6, max_features=log2, min_samples_leaf=6, min_samples_split=6, n_estimators=10;, score=0.864 total time= 0.0s\n","[CV 2/5] END bootstrap=False, max_depth=6, max_features=log2, min_samples_leaf=6, min_samples_split=6, n_estimators=10;, score=0.899 total time= 0.0s\n","[CV 3/5] END bootstrap=False, max_depth=6, max_features=log2, min_samples_leaf=6, min_samples_split=6, n_estimators=10;, score=0.894 total time= 0.0s\n","[CV 4/5] END bootstrap=False, max_depth=6, max_features=log2, min_samples_leaf=6, min_samples_split=6, n_estimators=10;, score=0.833 total time= 0.0s\n","[CV 5/5] END bootstrap=False, max_depth=6, max_features=log2, min_samples_leaf=6, min_samples_split=6, n_estimators=10;, score=0.889 total time= 0.0s\n","[CV 1/5] END bootstrap=False, max_depth=6, max_features=log2, min_samples_leaf=6, min_samples_split=6, n_estimators=20;, score=0.848 total time= 0.0s\n","[CV 2/5] END bootstrap=False, max_depth=6, max_features=log2, min_samples_leaf=6, min_samples_split=6, n_estimators=20;, score=0.894 total time= 0.0s\n","[CV 3/5] END bootstrap=False, max_depth=6, max_features=log2, min_samples_leaf=6, min_samples_split=6, n_estimators=20;, score=0.874 total time= 0.0s\n","[CV 4/5] END bootstrap=False, max_depth=6, max_features=log2, min_samples_leaf=6, min_samples_split=6, n_estimators=20;, score=0.854 total time= 0.0s\n","[CV 5/5] END bootstrap=False, max_depth=6, max_features=log2, min_samples_leaf=6, min_samples_split=6, n_estimators=20;, score=0.904 total time= 0.0s\n","[CV 1/5] END bootstrap=False, max_depth=6, max_features=log2, min_samples_leaf=6, min_samples_split=6, n_estimators=30;, score=0.869 total time= 0.1s\n","[CV 2/5] END bootstrap=False, max_depth=6, max_features=log2, min_samples_leaf=6, min_samples_split=6, n_estimators=30;, score=0.879 total time= 0.1s\n","[CV 3/5] END bootstrap=False, max_depth=6, max_features=log2, min_samples_leaf=6, min_samples_split=6, n_estimators=30;, score=0.884 total time= 0.1s\n","[CV 4/5] END bootstrap=False, max_depth=6, max_features=log2, min_samples_leaf=6, min_samples_split=6, n_estimators=30;, score=0.854 total time= 0.1s\n","[CV 5/5] END bootstrap=False, max_depth=6, max_features=log2, min_samples_leaf=6, min_samples_split=6, n_estimators=30;, score=0.899 total time= 0.1s\n","[CV 1/5] END bootstrap=False, max_depth=6, max_features=None, min_samples_leaf=2, min_samples_split=2, n_estimators=5;, score=0.879 total time= 0.0s\n","[CV 2/5] END bootstrap=False, max_depth=6, max_features=None, min_samples_leaf=2, min_samples_split=2, n_estimators=5;, score=0.879 total time= 0.0s\n","[CV 3/5] END bootstrap=False, max_depth=6, max_features=None, min_samples_leaf=2, min_samples_split=2, n_estimators=5;, score=0.889 total time= 0.0s\n","[CV 4/5] END bootstrap=False, max_depth=6, max_features=None, min_samples_leaf=2, min_samples_split=2, n_estimators=5;, score=0.848 total time= 0.0s\n","[CV 5/5] END bootstrap=False, max_depth=6, max_features=None, min_samples_leaf=2, min_samples_split=2, n_estimators=5;, score=0.869 total time= 0.0s\n","[CV 1/5] END bootstrap=False, max_depth=6, max_features=None, min_samples_leaf=2, min_samples_split=2, n_estimators=10;, score=0.884 total time= 0.0s\n","[CV 2/5] END bootstrap=False, max_depth=6, max_features=None, min_samples_leaf=2, min_samples_split=2, n_estimators=10;, score=0.879 total time= 0.0s\n","[CV 3/5] END bootstrap=False, max_depth=6, max_features=None, min_samples_leaf=2, min_samples_split=2, n_estimators=10;, score=0.889 total time= 0.0s\n","[CV 4/5] END bootstrap=False, max_depth=6, max_features=None, min_samples_leaf=2, min_samples_split=2, n_estimators=10;, score=0.848 total time= 0.0s\n","[CV 5/5] END bootstrap=False, max_depth=6, max_features=None, min_samples_leaf=2, min_samples_split=2, n_estimators=10;, score=0.869 total time= 0.0s\n","[CV 1/5] END bootstrap=False, max_depth=6, max_features=None, min_samples_leaf=2, min_samples_split=2, n_estimators=20;, score=0.879 total time= 0.1s\n","[CV 2/5] END bootstrap=False, max_depth=6, max_features=None, min_samples_leaf=2, min_samples_split=2, n_estimators=20;, score=0.879 total time= 0.1s\n","[CV 3/5] END bootstrap=False, max_depth=6, max_features=None, min_samples_leaf=2, min_samples_split=2, n_estimators=20;, score=0.889 total time= 0.1s\n","[CV 4/5] END bootstrap=False, max_depth=6, max_features=None, min_samples_leaf=2, min_samples_split=2, n_estimators=20;, score=0.843 total time= 0.1s\n","[CV 5/5] END bootstrap=False, max_depth=6, max_features=None, min_samples_leaf=2, min_samples_split=2, n_estimators=20;, score=0.869 total time= 0.1s\n","[CV 1/5] END bootstrap=False, max_depth=6, max_features=None, min_samples_leaf=2, min_samples_split=2, n_estimators=30;, score=0.879 total time= 0.1s\n","[CV 2/5] END bootstrap=False, max_depth=6, max_features=None, min_samples_leaf=2, min_samples_split=2, n_estimators=30;, score=0.879 total time= 0.1s\n","[CV 3/5] END bootstrap=False, max_depth=6, max_features=None, min_samples_leaf=2, min_samples_split=2, n_estimators=30;, score=0.889 total time= 0.1s\n","[CV 4/5] END bootstrap=False, max_depth=6, max_features=None, min_samples_leaf=2, min_samples_split=2, n_estimators=30;, score=0.848 total time= 0.1s\n","[CV 5/5] END bootstrap=False, max_depth=6, max_features=None, min_samples_leaf=2, min_samples_split=2, n_estimators=30;, score=0.869 total time= 0.1s\n","[CV 1/5] END bootstrap=False, max_depth=6, max_features=None, min_samples_leaf=2, min_samples_split=4, n_estimators=5;, score=0.879 total time= 0.0s\n","[CV 2/5] END bootstrap=False, max_depth=6, max_features=None, min_samples_leaf=2, min_samples_split=4, n_estimators=5;, score=0.879 total time= 0.0s\n","[CV 3/5] END bootstrap=False, max_depth=6, max_features=None, min_samples_leaf=2, min_samples_split=4, n_estimators=5;, score=0.889 total time= 0.0s\n","[CV 4/5] END bootstrap=False, max_depth=6, max_features=None, min_samples_leaf=2, min_samples_split=4, n_estimators=5;, score=0.843 total time= 0.0s\n","[CV 5/5] END bootstrap=False, max_depth=6, max_features=None, min_samples_leaf=2, min_samples_split=4, n_estimators=5;, score=0.869 total time= 0.0s\n","[CV 1/5] END bootstrap=False, max_depth=6, max_features=None, min_samples_leaf=2, min_samples_split=4, n_estimators=10;, score=0.879 total time= 0.0s\n","[CV 2/5] END bootstrap=False, max_depth=6, max_features=None, min_samples_leaf=2, min_samples_split=4, n_estimators=10;, score=0.879 total time= 0.0s\n","[CV 3/5] END bootstrap=False, max_depth=6, max_features=None, min_samples_leaf=2, min_samples_split=4, n_estimators=10;, score=0.889 total time= 0.0s\n","[CV 4/5] END bootstrap=False, max_depth=6, max_features=None, min_samples_leaf=2, min_samples_split=4, n_estimators=10;, score=0.848 total time= 0.0s\n","[CV 5/5] END bootstrap=False, max_depth=6, max_features=None, min_samples_leaf=2, min_samples_split=4, n_estimators=10;, score=0.869 total time= 0.0s\n","[CV 1/5] END bootstrap=False, max_depth=6, max_features=None, min_samples_leaf=2, min_samples_split=4, n_estimators=20;, score=0.879 total time= 0.1s\n","[CV 2/5] END bootstrap=False, max_depth=6, max_features=None, min_samples_leaf=2, min_samples_split=4, n_estimators=20;, score=0.879 total time= 0.1s\n","[CV 3/5] END bootstrap=False, max_depth=6, max_features=None, min_samples_leaf=2, min_samples_split=4, n_estimators=20;, score=0.889 total time= 0.1s\n","[CV 4/5] END bootstrap=False, max_depth=6, max_features=None, min_samples_leaf=2, min_samples_split=4, n_estimators=20;, score=0.848 total time= 0.1s\n","[CV 5/5] END bootstrap=False, max_depth=6, max_features=None, min_samples_leaf=2, min_samples_split=4, n_estimators=20;, score=0.869 total time= 0.1s\n","[CV 1/5] END bootstrap=False, max_depth=6, max_features=None, min_samples_leaf=2, min_samples_split=4, n_estimators=30;, score=0.879 total time= 0.1s\n","[CV 2/5] END bootstrap=False, max_depth=6, max_features=None, min_samples_leaf=2, min_samples_split=4, n_estimators=30;, score=0.879 total time= 0.1s\n","[CV 3/5] END bootstrap=False, max_depth=6, max_features=None, min_samples_leaf=2, min_samples_split=4, n_estimators=30;, score=0.889 total time= 0.1s\n","[CV 4/5] END bootstrap=False, max_depth=6, max_features=None, min_samples_leaf=2, min_samples_split=4, n_estimators=30;, score=0.848 total time= 0.1s\n","[CV 5/5] END bootstrap=False, max_depth=6, max_features=None, min_samples_leaf=2, min_samples_split=4, n_estimators=30;, score=0.869 total time= 0.1s\n","[CV 1/5] END bootstrap=False, max_depth=6, max_features=None, min_samples_leaf=2, min_samples_split=6, n_estimators=5;, score=0.879 total time= 0.0s\n","[CV 2/5] END bootstrap=False, max_depth=6, max_features=None, min_samples_leaf=2, min_samples_split=6, n_estimators=5;, score=0.879 total time= 0.0s\n","[CV 3/5] END bootstrap=False, max_depth=6, max_features=None, min_samples_leaf=2, min_samples_split=6, n_estimators=5;, score=0.889 total time= 0.0s\n","[CV 4/5] END bootstrap=False, max_depth=6, max_features=None, min_samples_leaf=2, min_samples_split=6, n_estimators=5;, score=0.838 total time= 0.0s\n","[CV 5/5] END bootstrap=False, max_depth=6, max_features=None, min_samples_leaf=2, min_samples_split=6, n_estimators=5;, score=0.869 total time= 0.0s\n","[CV 1/5] END bootstrap=False, max_depth=6, max_features=None, min_samples_leaf=2, min_samples_split=6, n_estimators=10;, score=0.879 total time= 0.0s\n","[CV 2/5] END bootstrap=False, max_depth=6, max_features=None, min_samples_leaf=2, min_samples_split=6, n_estimators=10;, score=0.879 total time= 0.0s\n","[CV 3/5] END bootstrap=False, max_depth=6, max_features=None, min_samples_leaf=2, min_samples_split=6, n_estimators=10;, score=0.889 total time= 0.0s\n","[CV 4/5] END bootstrap=False, max_depth=6, max_features=None, min_samples_leaf=2, min_samples_split=6, n_estimators=10;, score=0.843 total time= 0.0s\n","[CV 5/5] END bootstrap=False, max_depth=6, max_features=None, min_samples_leaf=2, min_samples_split=6, n_estimators=10;, score=0.869 total time= 0.0s\n","[CV 1/5] END bootstrap=False, max_depth=6, max_features=None, min_samples_leaf=2, min_samples_split=6, n_estimators=20;, score=0.879 total time= 0.1s\n","[CV 2/5] END bootstrap=False, max_depth=6, max_features=None, min_samples_leaf=2, min_samples_split=6, n_estimators=20;, score=0.879 total time= 0.1s\n","[CV 3/5] END bootstrap=False, max_depth=6, max_features=None, min_samples_leaf=2, min_samples_split=6, n_estimators=20;, score=0.889 total time= 0.1s\n","[CV 4/5] END bootstrap=False, max_depth=6, max_features=None, min_samples_leaf=2, min_samples_split=6, n_estimators=20;, score=0.843 total time= 0.1s\n","[CV 5/5] END bootstrap=False, max_depth=6, max_features=None, min_samples_leaf=2, min_samples_split=6, n_estimators=20;, score=0.869 total time= 0.1s\n","[CV 1/5] END bootstrap=False, max_depth=6, max_features=None, min_samples_leaf=2, min_samples_split=6, n_estimators=30;, score=0.879 total time= 0.1s\n","[CV 2/5] END bootstrap=False, max_depth=6, max_features=None, min_samples_leaf=2, min_samples_split=6, n_estimators=30;, score=0.879 total time= 0.1s\n","[CV 3/5] END bootstrap=False, max_depth=6, max_features=None, min_samples_leaf=2, min_samples_split=6, n_estimators=30;, score=0.889 total time= 0.1s\n","[CV 4/5] END bootstrap=False, max_depth=6, max_features=None, min_samples_leaf=2, min_samples_split=6, n_estimators=30;, score=0.843 total time= 0.1s\n","[CV 5/5] END bootstrap=False, max_depth=6, max_features=None, min_samples_leaf=2, min_samples_split=6, n_estimators=30;, score=0.869 total time= 0.1s\n","[CV 1/5] END bootstrap=False, max_depth=6, max_features=None, min_samples_leaf=4, min_samples_split=2, n_estimators=5;, score=0.884 total time= 0.0s\n","[CV 2/5] END bootstrap=False, max_depth=6, max_features=None, min_samples_leaf=4, min_samples_split=2, n_estimators=5;, score=0.879 total time= 0.0s\n","[CV 3/5] END bootstrap=False, max_depth=6, max_features=None, min_samples_leaf=4, min_samples_split=2, n_estimators=5;, score=0.894 total time= 0.0s\n","[CV 4/5] END bootstrap=False, max_depth=6, max_features=None, min_samples_leaf=4, min_samples_split=2, n_estimators=5;, score=0.848 total time= 0.0s\n","[CV 5/5] END bootstrap=False, max_depth=6, max_features=None, min_samples_leaf=4, min_samples_split=2, n_estimators=5;, score=0.869 total time= 0.0s\n","[CV 1/5] END bootstrap=False, max_depth=6, max_features=None, min_samples_leaf=4, min_samples_split=2, n_estimators=10;, score=0.884 total time= 0.0s\n","[CV 2/5] END bootstrap=False, max_depth=6, max_features=None, min_samples_leaf=4, min_samples_split=2, n_estimators=10;, score=0.879 total time= 0.0s\n","[CV 3/5] END bootstrap=False, max_depth=6, max_features=None, min_samples_leaf=4, min_samples_split=2, n_estimators=10;, score=0.899 total time= 0.0s\n","[CV 4/5] END bootstrap=False, max_depth=6, max_features=None, min_samples_leaf=4, min_samples_split=2, n_estimators=10;, score=0.854 total time= 0.0s\n","[CV 5/5] END bootstrap=False, max_depth=6, max_features=None, min_samples_leaf=4, min_samples_split=2, n_estimators=10;, score=0.869 total time= 0.0s\n","[CV 1/5] END bootstrap=False, max_depth=6, max_features=None, min_samples_leaf=4, min_samples_split=2, n_estimators=20;, score=0.884 total time= 0.1s\n","[CV 2/5] END bootstrap=False, max_depth=6, max_features=None, min_samples_leaf=4, min_samples_split=2, n_estimators=20;, score=0.879 total time= 0.1s\n","[CV 3/5] END bootstrap=False, max_depth=6, max_features=None, min_samples_leaf=4, min_samples_split=2, n_estimators=20;, score=0.894 total time= 0.1s\n","[CV 4/5] END bootstrap=False, max_depth=6, max_features=None, min_samples_leaf=4, min_samples_split=2, n_estimators=20;, score=0.854 total time= 0.1s\n","[CV 5/5] END bootstrap=False, max_depth=6, max_features=None, min_samples_leaf=4, min_samples_split=2, n_estimators=20;, score=0.869 total time= 0.1s\n","[CV 1/5] END bootstrap=False, max_depth=6, max_features=None, min_samples_leaf=4, min_samples_split=2, n_estimators=30;, score=0.884 total time= 0.1s\n","[CV 2/5] END bootstrap=False, max_depth=6, max_features=None, min_samples_leaf=4, min_samples_split=2, n_estimators=30;, score=0.879 total time= 0.1s\n","[CV 3/5] END bootstrap=False, max_depth=6, max_features=None, min_samples_leaf=4, min_samples_split=2, n_estimators=30;, score=0.894 total time= 0.1s\n","[CV 4/5] END bootstrap=False, max_depth=6, max_features=None, min_samples_leaf=4, min_samples_split=2, n_estimators=30;, score=0.854 total time= 0.1s\n","[CV 5/5] END bootstrap=False, max_depth=6, max_features=None, min_samples_leaf=4, min_samples_split=2, n_estimators=30;, score=0.869 total time= 0.1s\n","[CV 1/5] END bootstrap=False, max_depth=6, max_features=None, min_samples_leaf=4, min_samples_split=4, n_estimators=5;, score=0.884 total time= 0.0s\n","[CV 2/5] END bootstrap=False, max_depth=6, max_features=None, min_samples_leaf=4, min_samples_split=4, n_estimators=5;, score=0.879 total time= 0.0s\n","[CV 3/5] END bootstrap=False, max_depth=6, max_features=None, min_samples_leaf=4, min_samples_split=4, n_estimators=5;, score=0.899 total time= 0.0s\n","[CV 4/5] END bootstrap=False, max_depth=6, max_features=None, min_samples_leaf=4, min_samples_split=4, n_estimators=5;, score=0.854 total time= 0.0s\n","[CV 5/5] END bootstrap=False, max_depth=6, max_features=None, min_samples_leaf=4, min_samples_split=4, n_estimators=5;, score=0.869 total time= 0.1s\n","[CV 1/5] END bootstrap=False, max_depth=6, max_features=None, min_samples_leaf=4, min_samples_split=4, n_estimators=10;, score=0.884 total time= 0.3s\n","[CV 2/5] END bootstrap=False, max_depth=6, max_features=None, min_samples_leaf=4, min_samples_split=4, n_estimators=10;, score=0.874 total time= 0.3s\n","[CV 3/5] END bootstrap=False, max_depth=6, max_features=None, min_samples_leaf=4, min_samples_split=4, n_estimators=10;, score=0.884 total time= 0.2s\n","[CV 4/5] END bootstrap=False, max_depth=6, max_features=None, min_samples_leaf=4, min_samples_split=4, n_estimators=10;, score=0.854 total time= 0.1s\n","[CV 5/5] END bootstrap=False, max_depth=6, max_features=None, min_samples_leaf=4, min_samples_split=4, n_estimators=10;, score=0.869 total time= 0.0s\n","[CV 1/5] END bootstrap=False, max_depth=6, max_features=None, min_samples_leaf=4, min_samples_split=4, n_estimators=20;, score=0.884 total time= 0.1s\n","[CV 2/5] END bootstrap=False, max_depth=6, max_features=None, min_samples_leaf=4, min_samples_split=4, n_estimators=20;, score=0.879 total time= 0.1s\n","[CV 3/5] END bootstrap=False, max_depth=6, max_features=None, min_samples_leaf=4, min_samples_split=4, n_estimators=20;, score=0.894 total time= 0.1s\n","[CV 4/5] END bootstrap=False, max_depth=6, max_features=None, min_samples_leaf=4, min_samples_split=4, n_estimators=20;, score=0.854 total time= 0.1s\n","[CV 5/5] END bootstrap=False, max_depth=6, max_features=None, min_samples_leaf=4, min_samples_split=4, n_estimators=20;, score=0.869 total time= 0.1s\n","[CV 1/5] END bootstrap=False, max_depth=6, max_features=None, min_samples_leaf=4, min_samples_split=4, n_estimators=30;, score=0.884 total time= 0.1s\n","[CV 2/5] END bootstrap=False, max_depth=6, max_features=None, min_samples_leaf=4, min_samples_split=4, n_estimators=30;, score=0.879 total time= 0.2s\n","[CV 3/5] END bootstrap=False, max_depth=6, max_features=None, min_samples_leaf=4, min_samples_split=4, n_estimators=30;, score=0.894 total time= 0.1s\n","[CV 4/5] END bootstrap=False, max_depth=6, max_features=None, min_samples_leaf=4, min_samples_split=4, n_estimators=30;, score=0.854 total time= 0.1s\n","[CV 5/5] END bootstrap=False, max_depth=6, max_features=None, min_samples_leaf=4, min_samples_split=4, n_estimators=30;, score=0.869 total time= 0.1s\n","[CV 1/5] END bootstrap=False, max_depth=6, max_features=None, min_samples_leaf=4, min_samples_split=6, n_estimators=5;, score=0.884 total time= 0.0s\n","[CV 2/5] END bootstrap=False, max_depth=6, max_features=None, min_samples_leaf=4, min_samples_split=6, n_estimators=5;, score=0.879 total time= 0.0s\n","[CV 3/5] END bootstrap=False, max_depth=6, max_features=None, min_samples_leaf=4, min_samples_split=6, n_estimators=5;, score=0.894 total time= 0.0s\n","[CV 4/5] END bootstrap=False, max_depth=6, max_features=None, min_samples_leaf=4, min_samples_split=6, n_estimators=5;, score=0.854 total time= 0.0s\n","[CV 5/5] END bootstrap=False, max_depth=6, max_features=None, min_samples_leaf=4, min_samples_split=6, n_estimators=5;, score=0.869 total time= 0.0s\n","[CV 1/5] END bootstrap=False, max_depth=6, max_features=None, min_samples_leaf=4, min_samples_split=6, n_estimators=10;, score=0.884 total time= 0.0s\n","[CV 2/5] END bootstrap=False, max_depth=6, max_features=None, min_samples_leaf=4, min_samples_split=6, n_estimators=10;, score=0.879 total time= 0.1s\n","[CV 3/5] END bootstrap=False, max_depth=6, max_features=None, min_samples_leaf=4, min_samples_split=6, n_estimators=10;, score=0.894 total time= 0.1s\n","[CV 4/5] END bootstrap=False, max_depth=6, max_features=None, min_samples_leaf=4, min_samples_split=6, n_estimators=10;, score=0.854 total time= 0.1s\n","[CV 5/5] END bootstrap=False, max_depth=6, max_features=None, min_samples_leaf=4, min_samples_split=6, n_estimators=10;, score=0.869 total time= 0.1s\n","[CV 1/5] END bootstrap=False, max_depth=6, max_features=None, min_samples_leaf=4, min_samples_split=6, n_estimators=20;, score=0.884 total time= 0.1s\n","[CV 2/5] END bootstrap=False, max_depth=6, max_features=None, min_samples_leaf=4, min_samples_split=6, n_estimators=20;, score=0.879 total time= 0.1s\n","[CV 3/5] END bootstrap=False, max_depth=6, max_features=None, min_samples_leaf=4, min_samples_split=6, n_estimators=20;, score=0.894 total time= 0.1s\n","[CV 4/5] END bootstrap=False, max_depth=6, max_features=None, min_samples_leaf=4, min_samples_split=6, n_estimators=20;, score=0.854 total time= 0.1s\n","[CV 5/5] END bootstrap=False, max_depth=6, max_features=None, min_samples_leaf=4, min_samples_split=6, n_estimators=20;, score=0.869 total time= 0.1s\n","[CV 1/5] END bootstrap=False, max_depth=6, max_features=None, min_samples_leaf=4, min_samples_split=6, n_estimators=30;, score=0.884 total time= 0.1s\n","[CV 2/5] END bootstrap=False, max_depth=6, max_features=None, min_samples_leaf=4, min_samples_split=6, n_estimators=30;, score=0.874 total time= 0.1s\n","[CV 3/5] END bootstrap=False, max_depth=6, max_features=None, min_samples_leaf=4, min_samples_split=6, n_estimators=30;, score=0.894 total time= 0.2s\n","[CV 4/5] END bootstrap=False, max_depth=6, max_features=None, min_samples_leaf=4, min_samples_split=6, n_estimators=30;, score=0.848 total time= 0.1s\n","[CV 5/5] END bootstrap=False, max_depth=6, max_features=None, min_samples_leaf=4, min_samples_split=6, n_estimators=30;, score=0.869 total time= 0.1s\n","[CV 1/5] END bootstrap=False, max_depth=6, max_features=None, min_samples_leaf=6, min_samples_split=2, n_estimators=5;, score=0.889 total time= 0.0s\n","[CV 2/5] END bootstrap=False, max_depth=6, max_features=None, min_samples_leaf=6, min_samples_split=2, n_estimators=5;, score=0.874 total time= 0.0s\n","[CV 3/5] END bootstrap=False, max_depth=6, max_features=None, min_samples_leaf=6, min_samples_split=2, n_estimators=5;, score=0.894 total time= 0.0s\n","[CV 4/5] END bootstrap=False, max_depth=6, max_features=None, min_samples_leaf=6, min_samples_split=2, n_estimators=5;, score=0.864 total time= 0.0s\n","[CV 5/5] END bootstrap=False, max_depth=6, max_features=None, min_samples_leaf=6, min_samples_split=2, n_estimators=5;, score=0.869 total time= 0.0s\n","[CV 1/5] END bootstrap=False, max_depth=6, max_features=None, min_samples_leaf=6, min_samples_split=2, n_estimators=10;, score=0.889 total time= 0.0s\n","[CV 2/5] END bootstrap=False, max_depth=6, max_features=None, min_samples_leaf=6, min_samples_split=2, n_estimators=10;, score=0.874 total time= 0.0s\n","[CV 3/5] END bootstrap=False, max_depth=6, max_features=None, min_samples_leaf=6, min_samples_split=2, n_estimators=10;, score=0.894 total time= 0.0s\n","[CV 4/5] END bootstrap=False, max_depth=6, max_features=None, min_samples_leaf=6, min_samples_split=2, n_estimators=10;, score=0.864 total time= 0.0s\n","[CV 5/5] END bootstrap=False, max_depth=6, max_features=None, min_samples_leaf=6, min_samples_split=2, n_estimators=10;, score=0.869 total time= 0.0s\n","[CV 1/5] END bootstrap=False, max_depth=6, max_features=None, min_samples_leaf=6, min_samples_split=2, n_estimators=20;, score=0.889 total time= 0.1s\n","[CV 2/5] END bootstrap=False, max_depth=6, max_features=None, min_samples_leaf=6, min_samples_split=2, n_estimators=20;, score=0.874 total time= 0.1s\n","[CV 3/5] END bootstrap=False, max_depth=6, max_features=None, min_samples_leaf=6, min_samples_split=2, n_estimators=20;, score=0.894 total time= 0.1s\n","[CV 4/5] END bootstrap=False, max_depth=6, max_features=None, min_samples_leaf=6, min_samples_split=2, n_estimators=20;, score=0.864 total time= 0.1s\n","[CV 5/5] END bootstrap=False, max_depth=6, max_features=None, min_samples_leaf=6, min_samples_split=2, n_estimators=20;, score=0.869 total time= 0.1s\n","[CV 1/5] END bootstrap=False, max_depth=6, max_features=None, min_samples_leaf=6, min_samples_split=2, n_estimators=30;, score=0.889 total time= 0.1s\n","[CV 2/5] END bootstrap=False, max_depth=6, max_features=None, min_samples_leaf=6, min_samples_split=2, n_estimators=30;, score=0.874 total time= 0.1s\n","[CV 3/5] END bootstrap=False, max_depth=6, max_features=None, min_samples_leaf=6, min_samples_split=2, n_estimators=30;, score=0.894 total time= 0.1s\n","[CV 4/5] END bootstrap=False, max_depth=6, max_features=None, min_samples_leaf=6, min_samples_split=2, n_estimators=30;, score=0.864 total time= 0.1s\n","[CV 5/5] END bootstrap=False, max_depth=6, max_features=None, min_samples_leaf=6, min_samples_split=2, n_estimators=30;, score=0.869 total time= 0.1s\n","[CV 1/5] END bootstrap=False, max_depth=6, max_features=None, min_samples_leaf=6, min_samples_split=4, n_estimators=5;, score=0.889 total time= 0.0s\n","[CV 2/5] END bootstrap=False, max_depth=6, max_features=None, min_samples_leaf=6, min_samples_split=4, n_estimators=5;, score=0.874 total time= 0.0s\n","[CV 3/5] END bootstrap=False, max_depth=6, max_features=None, min_samples_leaf=6, min_samples_split=4, n_estimators=5;, score=0.894 total time= 0.0s\n","[CV 4/5] END bootstrap=False, max_depth=6, max_features=None, min_samples_leaf=6, min_samples_split=4, n_estimators=5;, score=0.864 total time= 0.0s\n","[CV 5/5] END bootstrap=False, max_depth=6, max_features=None, min_samples_leaf=6, min_samples_split=4, n_estimators=5;, score=0.869 total time= 0.0s\n","[CV 1/5] END bootstrap=False, max_depth=6, max_features=None, min_samples_leaf=6, min_samples_split=4, n_estimators=10;, score=0.889 total time= 0.0s\n","[CV 2/5] END bootstrap=False, max_depth=6, max_features=None, min_samples_leaf=6, min_samples_split=4, n_estimators=10;, score=0.874 total time= 0.0s\n","[CV 3/5] END bootstrap=False, max_depth=6, max_features=None, min_samples_leaf=6, min_samples_split=4, n_estimators=10;, score=0.894 total time= 0.0s\n","[CV 4/5] END bootstrap=False, max_depth=6, max_features=None, min_samples_leaf=6, min_samples_split=4, n_estimators=10;, score=0.864 total time= 0.0s\n","[CV 5/5] END bootstrap=False, max_depth=6, max_features=None, min_samples_leaf=6, min_samples_split=4, n_estimators=10;, score=0.869 total time= 0.0s\n","[CV 1/5] END bootstrap=False, max_depth=6, max_features=None, min_samples_leaf=6, min_samples_split=4, n_estimators=20;, score=0.889 total time= 0.1s\n","[CV 2/5] END bootstrap=False, max_depth=6, max_features=None, min_samples_leaf=6, min_samples_split=4, n_estimators=20;, score=0.874 total time= 0.1s\n","[CV 3/5] END bootstrap=False, max_depth=6, max_features=None, min_samples_leaf=6, min_samples_split=4, n_estimators=20;, score=0.894 total time= 0.1s\n","[CV 4/5] END bootstrap=False, max_depth=6, max_features=None, min_samples_leaf=6, min_samples_split=4, n_estimators=20;, score=0.864 total time= 0.1s\n","[CV 5/5] END bootstrap=False, max_depth=6, max_features=None, min_samples_leaf=6, min_samples_split=4, n_estimators=20;, score=0.869 total time= 0.1s\n","[CV 1/5] END bootstrap=False, max_depth=6, max_features=None, min_samples_leaf=6, min_samples_split=4, n_estimators=30;, score=0.889 total time= 0.1s\n","[CV 2/5] END bootstrap=False, max_depth=6, max_features=None, min_samples_leaf=6, min_samples_split=4, n_estimators=30;, score=0.874 total time= 0.1s\n","[CV 3/5] END bootstrap=False, max_depth=6, max_features=None, min_samples_leaf=6, min_samples_split=4, n_estimators=30;, score=0.894 total time= 0.1s\n","[CV 4/5] END bootstrap=False, max_depth=6, max_features=None, min_samples_leaf=6, min_samples_split=4, n_estimators=30;, score=0.864 total time= 0.1s\n","[CV 5/5] END bootstrap=False, max_depth=6, max_features=None, min_samples_leaf=6, min_samples_split=4, n_estimators=30;, score=0.869 total time= 0.1s\n","[CV 1/5] END bootstrap=False, max_depth=6, max_features=None, min_samples_leaf=6, min_samples_split=6, n_estimators=5;, score=0.889 total time= 0.0s\n","[CV 2/5] END bootstrap=False, max_depth=6, max_features=None, min_samples_leaf=6, min_samples_split=6, n_estimators=5;, score=0.874 total time= 0.0s\n","[CV 3/5] END bootstrap=False, max_depth=6, max_features=None, min_samples_leaf=6, min_samples_split=6, n_estimators=5;, score=0.884 total time= 0.0s\n","[CV 4/5] END bootstrap=False, max_depth=6, max_features=None, min_samples_leaf=6, min_samples_split=6, n_estimators=5;, score=0.864 total time= 0.0s\n","[CV 5/5] END bootstrap=False, max_depth=6, max_features=None, min_samples_leaf=6, min_samples_split=6, n_estimators=5;, score=0.869 total time= 0.0s\n","[CV 1/5] END bootstrap=False, max_depth=6, max_features=None, min_samples_leaf=6, min_samples_split=6, n_estimators=10;, score=0.889 total time= 0.0s\n","[CV 2/5] END bootstrap=False, max_depth=6, max_features=None, min_samples_leaf=6, min_samples_split=6, n_estimators=10;, score=0.874 total time= 0.0s\n","[CV 3/5] END bootstrap=False, max_depth=6, max_features=None, min_samples_leaf=6, min_samples_split=6, n_estimators=10;, score=0.899 total time= 0.0s\n","[CV 4/5] END bootstrap=False, max_depth=6, max_features=None, min_samples_leaf=6, min_samples_split=6, n_estimators=10;, score=0.864 total time= 0.0s\n","[CV 5/5] END bootstrap=False, max_depth=6, max_features=None, min_samples_leaf=6, min_samples_split=6, n_estimators=10;, score=0.869 total time= 0.0s\n","[CV 1/5] END bootstrap=False, max_depth=6, max_features=None, min_samples_leaf=6, min_samples_split=6, n_estimators=20;, score=0.889 total time= 0.1s\n","[CV 2/5] END bootstrap=False, max_depth=6, max_features=None, min_samples_leaf=6, min_samples_split=6, n_estimators=20;, score=0.874 total time= 0.1s\n","[CV 3/5] END bootstrap=False, max_depth=6, max_features=None, min_samples_leaf=6, min_samples_split=6, n_estimators=20;, score=0.894 total time= 0.1s\n","[CV 4/5] END bootstrap=False, max_depth=6, max_features=None, min_samples_leaf=6, min_samples_split=6, n_estimators=20;, score=0.864 total time= 0.1s\n","[CV 5/5] END bootstrap=False, max_depth=6, max_features=None, min_samples_leaf=6, min_samples_split=6, n_estimators=20;, score=0.869 total time= 0.1s\n","[CV 1/5] END bootstrap=False, max_depth=6, max_features=None, min_samples_leaf=6, min_samples_split=6, n_estimators=30;, score=0.889 total time= 0.1s\n","[CV 2/5] END bootstrap=False, max_depth=6, max_features=None, min_samples_leaf=6, min_samples_split=6, n_estimators=30;, score=0.874 total time= 0.1s\n","[CV 3/5] END bootstrap=False, max_depth=6, max_features=None, min_samples_leaf=6, min_samples_split=6, n_estimators=30;, score=0.894 total time= 0.1s\n","[CV 4/5] END bootstrap=False, max_depth=6, max_features=None, min_samples_leaf=6, min_samples_split=6, n_estimators=30;, score=0.864 total time= 0.1s\n","[CV 5/5] END bootstrap=False, max_depth=6, max_features=None, min_samples_leaf=6, min_samples_split=6, n_estimators=30;, score=0.869 total time= 0.1s\n","[CV 1/5] END bootstrap=False, max_depth=10, max_features=sqrt, min_samples_leaf=2, min_samples_split=2, n_estimators=5;, score=0.864 total time= 0.0s\n","[CV 2/5] END bootstrap=False, max_depth=10, max_features=sqrt, min_samples_leaf=2, min_samples_split=2, n_estimators=5;, score=0.869 total time= 0.0s\n","[CV 3/5] END bootstrap=False, max_depth=10, max_features=sqrt, min_samples_leaf=2, min_samples_split=2, n_estimators=5;, score=0.879 total time= 0.0s\n","[CV 4/5] END bootstrap=False, max_depth=10, max_features=sqrt, min_samples_leaf=2, min_samples_split=2, n_estimators=5;, score=0.838 total time= 0.0s\n","[CV 5/5] END bootstrap=False, max_depth=10, max_features=sqrt, min_samples_leaf=2, min_samples_split=2, n_estimators=5;, score=0.874 total time= 0.0s\n","[CV 1/5] END bootstrap=False, max_depth=10, max_features=sqrt, min_samples_leaf=2, min_samples_split=2, n_estimators=10;, score=0.894 total time= 0.0s\n","[CV 2/5] END bootstrap=False, max_depth=10, max_features=sqrt, min_samples_leaf=2, min_samples_split=2, n_estimators=10;, score=0.874 total time= 0.0s\n","[CV 3/5] END bootstrap=False, max_depth=10, max_features=sqrt, min_samples_leaf=2, min_samples_split=2, n_estimators=10;, score=0.894 total time= 0.0s\n","[CV 4/5] END bootstrap=False, max_depth=10, max_features=sqrt, min_samples_leaf=2, min_samples_split=2, n_estimators=10;, score=0.859 total time= 0.0s\n","[CV 5/5] END bootstrap=False, max_depth=10, max_features=sqrt, min_samples_leaf=2, min_samples_split=2, n_estimators=10;, score=0.889 total time= 0.0s\n","[CV 1/5] END bootstrap=False, max_depth=10, max_features=sqrt, min_samples_leaf=2, min_samples_split=2, n_estimators=20;, score=0.874 total time= 0.0s\n","[CV 2/5] END bootstrap=False, max_depth=10, max_features=sqrt, min_samples_leaf=2, min_samples_split=2, n_estimators=20;, score=0.889 total time= 0.0s\n","[CV 3/5] END bootstrap=False, max_depth=10, max_features=sqrt, min_samples_leaf=2, min_samples_split=2, n_estimators=20;, score=0.879 total time= 0.0s\n","[CV 4/5] END bootstrap=False, max_depth=10, max_features=sqrt, min_samples_leaf=2, min_samples_split=2, n_estimators=20;, score=0.864 total time= 0.0s\n","[CV 5/5] END bootstrap=False, max_depth=10, max_features=sqrt, min_samples_leaf=2, min_samples_split=2, n_estimators=20;, score=0.874 total time= 0.0s\n","[CV 1/5] END bootstrap=False, max_depth=10, max_features=sqrt, min_samples_leaf=2, min_samples_split=2, n_estimators=30;, score=0.869 total time= 0.1s\n","[CV 2/5] END bootstrap=False, max_depth=10, max_features=sqrt, min_samples_leaf=2, min_samples_split=2, n_estimators=30;, score=0.904 total time= 0.1s\n","[CV 3/5] END bootstrap=False, max_depth=10, max_features=sqrt, min_samples_leaf=2, min_samples_split=2, n_estimators=30;, score=0.884 total time= 0.1s\n","[CV 4/5] END bootstrap=False, max_depth=10, max_features=sqrt, min_samples_leaf=2, min_samples_split=2, n_estimators=30;, score=0.854 total time= 0.1s\n","[CV 5/5] END bootstrap=False, max_depth=10, max_features=sqrt, min_samples_leaf=2, min_samples_split=2, n_estimators=30;, score=0.874 total time= 0.1s\n","[CV 1/5] END bootstrap=False, max_depth=10, max_features=sqrt, min_samples_leaf=2, min_samples_split=4, n_estimators=5;, score=0.843 total time= 0.0s\n","[CV 2/5] END bootstrap=False, max_depth=10, max_features=sqrt, min_samples_leaf=2, min_samples_split=4, n_estimators=5;, score=0.894 total time= 0.0s\n","[CV 3/5] END bootstrap=False, max_depth=10, max_features=sqrt, min_samples_leaf=2, min_samples_split=4, n_estimators=5;, score=0.879 total time= 0.0s\n","[CV 4/5] END bootstrap=False, max_depth=10, max_features=sqrt, min_samples_leaf=2, min_samples_split=4, n_estimators=5;, score=0.859 total time= 0.0s\n","[CV 5/5] END bootstrap=False, max_depth=10, max_features=sqrt, min_samples_leaf=2, min_samples_split=4, n_estimators=5;, score=0.894 total time= 0.0s\n","[CV 1/5] END bootstrap=False, max_depth=10, max_features=sqrt, min_samples_leaf=2, min_samples_split=4, n_estimators=10;, score=0.869 total time= 0.0s\n","[CV 2/5] END bootstrap=False, max_depth=10, max_features=sqrt, min_samples_leaf=2, min_samples_split=4, n_estimators=10;, score=0.884 total time= 0.0s\n","[CV 3/5] END bootstrap=False, max_depth=10, max_features=sqrt, min_samples_leaf=2, min_samples_split=4, n_estimators=10;, score=0.864 total time= 0.0s\n","[CV 4/5] END bootstrap=False, max_depth=10, max_features=sqrt, min_samples_leaf=2, min_samples_split=4, n_estimators=10;, score=0.854 total time= 0.0s\n","[CV 5/5] END bootstrap=False, max_depth=10, max_features=sqrt, min_samples_leaf=2, min_samples_split=4, n_estimators=10;, score=0.889 total time= 0.0s\n","[CV 1/5] END bootstrap=False, max_depth=10, max_features=sqrt, min_samples_leaf=2, min_samples_split=4, n_estimators=20;, score=0.869 total time= 0.0s\n","[CV 2/5] END bootstrap=False, max_depth=10, max_features=sqrt, min_samples_leaf=2, min_samples_split=4, n_estimators=20;, score=0.894 total time= 0.0s\n","[CV 3/5] END bootstrap=False, max_depth=10, max_features=sqrt, min_samples_leaf=2, min_samples_split=4, n_estimators=20;, score=0.879 total time= 0.0s\n","[CV 4/5] END bootstrap=False, max_depth=10, max_features=sqrt, min_samples_leaf=2, min_samples_split=4, n_estimators=20;, score=0.828 total time= 0.0s\n","[CV 5/5] END bootstrap=False, max_depth=10, max_features=sqrt, min_samples_leaf=2, min_samples_split=4, n_estimators=20;, score=0.879 total time= 0.0s\n","[CV 1/5] END bootstrap=False, max_depth=10, max_features=sqrt, min_samples_leaf=2, min_samples_split=4, n_estimators=30;, score=0.874 total time= 0.1s\n","[CV 2/5] END bootstrap=False, max_depth=10, max_features=sqrt, min_samples_leaf=2, min_samples_split=4, n_estimators=30;, score=0.889 total time= 0.1s\n","[CV 3/5] END bootstrap=False, max_depth=10, max_features=sqrt, min_samples_leaf=2, min_samples_split=4, n_estimators=30;, score=0.874 total time= 0.1s\n","[CV 4/5] END bootstrap=False, max_depth=10, max_features=sqrt, min_samples_leaf=2, min_samples_split=4, n_estimators=30;, score=0.854 total time= 0.1s\n","[CV 5/5] END bootstrap=False, max_depth=10, max_features=sqrt, min_samples_leaf=2, min_samples_split=4, n_estimators=30;, score=0.879 total time= 0.1s\n","[CV 1/5] END bootstrap=False, max_depth=10, max_features=sqrt, min_samples_leaf=2, min_samples_split=6, n_estimators=5;, score=0.879 total time= 0.0s\n","[CV 2/5] END bootstrap=False, max_depth=10, max_features=sqrt, min_samples_leaf=2, min_samples_split=6, n_estimators=5;, score=0.889 total time= 0.0s\n","[CV 3/5] END bootstrap=False, max_depth=10, max_features=sqrt, min_samples_leaf=2, min_samples_split=6, n_estimators=5;, score=0.894 total time= 0.0s\n","[CV 4/5] END bootstrap=False, max_depth=10, max_features=sqrt, min_samples_leaf=2, min_samples_split=6, n_estimators=5;, score=0.859 total time= 0.0s\n","[CV 5/5] END bootstrap=False, max_depth=10, max_features=sqrt, min_samples_leaf=2, min_samples_split=6, n_estimators=5;, score=0.879 total time= 0.0s\n","[CV 1/5] END bootstrap=False, max_depth=10, max_features=sqrt, min_samples_leaf=2, min_samples_split=6, n_estimators=10;, score=0.889 total time= 0.0s\n","[CV 2/5] END bootstrap=False, max_depth=10, max_features=sqrt, min_samples_leaf=2, min_samples_split=6, n_estimators=10;, score=0.884 total time= 0.0s\n","[CV 3/5] END bootstrap=False, max_depth=10, max_features=sqrt, min_samples_leaf=2, min_samples_split=6, n_estimators=10;, score=0.899 total time= 0.0s\n","[CV 4/5] END bootstrap=False, max_depth=10, max_features=sqrt, min_samples_leaf=2, min_samples_split=6, n_estimators=10;, score=0.848 total time= 0.0s\n","[CV 5/5] END bootstrap=False, max_depth=10, max_features=sqrt, min_samples_leaf=2, min_samples_split=6, n_estimators=10;, score=0.869 total time= 0.0s\n","[CV 1/5] END bootstrap=False, max_depth=10, max_features=sqrt, min_samples_leaf=2, min_samples_split=6, n_estimators=20;, score=0.864 total time= 0.0s\n","[CV 2/5] END bootstrap=False, max_depth=10, max_features=sqrt, min_samples_leaf=2, min_samples_split=6, n_estimators=20;, score=0.889 total time= 0.0s\n","[CV 3/5] END bootstrap=False, max_depth=10, max_features=sqrt, min_samples_leaf=2, min_samples_split=6, n_estimators=20;, score=0.884 total time= 0.0s\n","[CV 4/5] END bootstrap=False, max_depth=10, max_features=sqrt, min_samples_leaf=2, min_samples_split=6, n_estimators=20;, score=0.854 total time= 0.0s\n","[CV 5/5] END bootstrap=False, max_depth=10, max_features=sqrt, min_samples_leaf=2, min_samples_split=6, n_estimators=20;, score=0.879 total time= 0.0s\n","[CV 1/5] END bootstrap=False, max_depth=10, max_features=sqrt, min_samples_leaf=2, min_samples_split=6, n_estimators=30;, score=0.859 total time= 0.1s\n","[CV 2/5] END bootstrap=False, max_depth=10, max_features=sqrt, min_samples_leaf=2, min_samples_split=6, n_estimators=30;, score=0.889 total time= 0.1s\n","[CV 3/5] END bootstrap=False, max_depth=10, max_features=sqrt, min_samples_leaf=2, min_samples_split=6, n_estimators=30;, score=0.904 total time= 0.1s\n","[CV 4/5] END bootstrap=False, max_depth=10, max_features=sqrt, min_samples_leaf=2, min_samples_split=6, n_estimators=30;, score=0.843 total time= 0.1s\n","[CV 5/5] END bootstrap=False, max_depth=10, max_features=sqrt, min_samples_leaf=2, min_samples_split=6, n_estimators=30;, score=0.869 total time= 0.1s\n","[CV 1/5] END bootstrap=False, max_depth=10, max_features=sqrt, min_samples_leaf=4, min_samples_split=2, n_estimators=5;, score=0.899 total time= 0.0s\n","[CV 2/5] END bootstrap=False, max_depth=10, max_features=sqrt, min_samples_leaf=4, min_samples_split=2, n_estimators=5;, score=0.904 total time= 0.0s\n","[CV 3/5] END bootstrap=False, max_depth=10, max_features=sqrt, min_samples_leaf=4, min_samples_split=2, n_estimators=5;, score=0.904 total time= 0.0s\n","[CV 4/5] END bootstrap=False, max_depth=10, max_features=sqrt, min_samples_leaf=4, min_samples_split=2, n_estimators=5;, score=0.859 total time= 0.0s\n","[CV 5/5] END bootstrap=False, max_depth=10, max_features=sqrt, min_samples_leaf=4, min_samples_split=2, n_estimators=5;, score=0.874 total time= 0.0s\n","[CV 1/5] END bootstrap=False, max_depth=10, max_features=sqrt, min_samples_leaf=4, min_samples_split=2, n_estimators=10;, score=0.869 total time= 0.0s\n","[CV 2/5] END bootstrap=False, max_depth=10, max_features=sqrt, min_samples_leaf=4, min_samples_split=2, n_estimators=10;, score=0.889 total time= 0.0s\n","[CV 3/5] END bootstrap=False, max_depth=10, max_features=sqrt, min_samples_leaf=4, min_samples_split=2, n_estimators=10;, score=0.889 total time= 0.0s\n","[CV 4/5] END bootstrap=False, max_depth=10, max_features=sqrt, min_samples_leaf=4, min_samples_split=2, n_estimators=10;, score=0.854 total time= 0.0s\n","[CV 5/5] END bootstrap=False, max_depth=10, max_features=sqrt, min_samples_leaf=4, min_samples_split=2, n_estimators=10;, score=0.879 total time= 0.0s\n","[CV 1/5] END bootstrap=False, max_depth=10, max_features=sqrt, min_samples_leaf=4, min_samples_split=2, n_estimators=20;, score=0.874 total time= 0.0s\n","[CV 2/5] END bootstrap=False, max_depth=10, max_features=sqrt, min_samples_leaf=4, min_samples_split=2, n_estimators=20;, score=0.884 total time= 0.0s\n","[CV 3/5] END bootstrap=False, max_depth=10, max_features=sqrt, min_samples_leaf=4, min_samples_split=2, n_estimators=20;, score=0.869 total time= 0.0s\n","[CV 4/5] END bootstrap=False, max_depth=10, max_features=sqrt, min_samples_leaf=4, min_samples_split=2, n_estimators=20;, score=0.848 total time= 0.0s\n","[CV 5/5] END bootstrap=False, max_depth=10, max_features=sqrt, min_samples_leaf=4, min_samples_split=2, n_estimators=20;, score=0.869 total time= 0.0s\n","[CV 1/5] END bootstrap=False, max_depth=10, max_features=sqrt, min_samples_leaf=4, min_samples_split=2, n_estimators=30;, score=0.864 total time= 0.1s\n","[CV 2/5] END bootstrap=False, max_depth=10, max_features=sqrt, min_samples_leaf=4, min_samples_split=2, n_estimators=30;, score=0.899 total time= 0.1s\n","[CV 3/5] END bootstrap=False, max_depth=10, max_features=sqrt, min_samples_leaf=4, min_samples_split=2, n_estimators=30;, score=0.899 total time= 0.1s\n","[CV 4/5] END bootstrap=False, max_depth=10, max_features=sqrt, min_samples_leaf=4, min_samples_split=2, n_estimators=30;, score=0.838 total time= 0.1s\n","[CV 5/5] END bootstrap=False, max_depth=10, max_features=sqrt, min_samples_leaf=4, min_samples_split=2, n_estimators=30;, score=0.884 total time= 0.1s\n","[CV 1/5] END bootstrap=False, max_depth=10, max_features=sqrt, min_samples_leaf=4, min_samples_split=4, n_estimators=5;, score=0.864 total time= 0.0s\n","[CV 2/5] END bootstrap=False, max_depth=10, max_features=sqrt, min_samples_leaf=4, min_samples_split=4, n_estimators=5;, score=0.884 total time= 0.0s\n","[CV 3/5] END bootstrap=False, max_depth=10, max_features=sqrt, min_samples_leaf=4, min_samples_split=4, n_estimators=5;, score=0.889 total time= 0.0s\n","[CV 4/5] END bootstrap=False, max_depth=10, max_features=sqrt, min_samples_leaf=4, min_samples_split=4, n_estimators=5;, score=0.869 total time= 0.0s\n","[CV 5/5] END bootstrap=False, max_depth=10, max_features=sqrt, min_samples_leaf=4, min_samples_split=4, n_estimators=5;, score=0.869 total time= 0.0s\n","[CV 1/5] END bootstrap=False, max_depth=10, max_features=sqrt, min_samples_leaf=4, min_samples_split=4, n_estimators=10;, score=0.869 total time= 0.0s\n","[CV 2/5] END bootstrap=False, max_depth=10, max_features=sqrt, min_samples_leaf=4, min_samples_split=4, n_estimators=10;, score=0.904 total time= 0.0s\n","[CV 3/5] END bootstrap=False, max_depth=10, max_features=sqrt, min_samples_leaf=4, min_samples_split=4, n_estimators=10;, score=0.879 total time= 0.0s\n","[CV 4/5] END bootstrap=False, max_depth=10, max_features=sqrt, min_samples_leaf=4, min_samples_split=4, n_estimators=10;, score=0.869 total time= 0.0s\n","[CV 5/5] END bootstrap=False, max_depth=10, max_features=sqrt, min_samples_leaf=4, min_samples_split=4, n_estimators=10;, score=0.874 total time= 0.0s\n","[CV 1/5] END bootstrap=False, max_depth=10, max_features=sqrt, min_samples_leaf=4, min_samples_split=4, n_estimators=20;, score=0.864 total time= 0.0s\n","[CV 2/5] END bootstrap=False, max_depth=10, max_features=sqrt, min_samples_leaf=4, min_samples_split=4, n_estimators=20;, score=0.889 total time= 0.0s\n","[CV 3/5] END bootstrap=False, max_depth=10, max_features=sqrt, min_samples_leaf=4, min_samples_split=4, n_estimators=20;, score=0.904 total time= 0.0s\n","[CV 4/5] END bootstrap=False, max_depth=10, max_features=sqrt, min_samples_leaf=4, min_samples_split=4, n_estimators=20;, score=0.879 total time= 0.0s\n","[CV 5/5] END bootstrap=False, max_depth=10, max_features=sqrt, min_samples_leaf=4, min_samples_split=4, n_estimators=20;, score=0.884 total time= 0.0s\n","[CV 1/5] END bootstrap=False, max_depth=10, max_features=sqrt, min_samples_leaf=4, min_samples_split=4, n_estimators=30;, score=0.874 total time= 0.1s\n","[CV 2/5] END bootstrap=False, max_depth=10, max_features=sqrt, min_samples_leaf=4, min_samples_split=4, n_estimators=30;, score=0.909 total time= 0.1s\n","[CV 3/5] END bootstrap=False, max_depth=10, max_features=sqrt, min_samples_leaf=4, min_samples_split=4, n_estimators=30;, score=0.894 total time= 0.1s\n","[CV 4/5] END bootstrap=False, max_depth=10, max_features=sqrt, min_samples_leaf=4, min_samples_split=4, n_estimators=30;, score=0.848 total time= 0.1s\n","[CV 5/5] END bootstrap=False, max_depth=10, max_features=sqrt, min_samples_leaf=4, min_samples_split=4, n_estimators=30;, score=0.884 total time= 0.1s\n","[CV 1/5] END bootstrap=False, max_depth=10, max_features=sqrt, min_samples_leaf=4, min_samples_split=6, n_estimators=5;, score=0.864 total time= 0.0s\n","[CV 2/5] END bootstrap=False, max_depth=10, max_features=sqrt, min_samples_leaf=4, min_samples_split=6, n_estimators=5;, score=0.899 total time= 0.0s\n","[CV 3/5] END bootstrap=False, max_depth=10, max_features=sqrt, min_samples_leaf=4, min_samples_split=6, n_estimators=5;, score=0.884 total time= 0.0s\n","[CV 4/5] END bootstrap=False, max_depth=10, max_features=sqrt, min_samples_leaf=4, min_samples_split=6, n_estimators=5;, score=0.838 total time= 0.0s\n","[CV 5/5] END bootstrap=False, max_depth=10, max_features=sqrt, min_samples_leaf=4, min_samples_split=6, n_estimators=5;, score=0.894 total time= 0.0s\n","[CV 1/5] END bootstrap=False, max_depth=10, max_features=sqrt, min_samples_leaf=4, min_samples_split=6, n_estimators=10;, score=0.859 total time= 0.0s\n","[CV 2/5] END bootstrap=False, max_depth=10, max_features=sqrt, min_samples_leaf=4, min_samples_split=6, n_estimators=10;, score=0.869 total time= 0.0s\n","[CV 3/5] END bootstrap=False, max_depth=10, max_features=sqrt, min_samples_leaf=4, min_samples_split=6, n_estimators=10;, score=0.879 total time= 0.0s\n","[CV 4/5] END bootstrap=False, max_depth=10, max_features=sqrt, min_samples_leaf=4, min_samples_split=6, n_estimators=10;, score=0.854 total time= 0.0s\n","[CV 5/5] END bootstrap=False, max_depth=10, max_features=sqrt, min_samples_leaf=4, min_samples_split=6, n_estimators=10;, score=0.869 total time= 0.0s\n","[CV 1/5] END bootstrap=False, max_depth=10, max_features=sqrt, min_samples_leaf=4, min_samples_split=6, n_estimators=20;, score=0.869 total time= 0.0s\n","[CV 2/5] END bootstrap=False, max_depth=10, max_features=sqrt, min_samples_leaf=4, min_samples_split=6, n_estimators=20;, score=0.894 total time= 0.0s\n","[CV 3/5] END bootstrap=False, max_depth=10, max_features=sqrt, min_samples_leaf=4, min_samples_split=6, n_estimators=20;, score=0.884 total time= 0.0s\n","[CV 4/5] END bootstrap=False, max_depth=10, max_features=sqrt, min_samples_leaf=4, min_samples_split=6, n_estimators=20;, score=0.859 total time= 0.0s\n","[CV 5/5] END bootstrap=False, max_depth=10, max_features=sqrt, min_samples_leaf=4, min_samples_split=6, n_estimators=20;, score=0.879 total time= 0.0s\n","[CV 1/5] END bootstrap=False, max_depth=10, max_features=sqrt, min_samples_leaf=4, min_samples_split=6, n_estimators=30;, score=0.859 total time= 0.1s\n","[CV 2/5] END bootstrap=False, max_depth=10, max_features=sqrt, min_samples_leaf=4, min_samples_split=6, n_estimators=30;, score=0.889 total time= 0.1s\n","[CV 3/5] END bootstrap=False, max_depth=10, max_features=sqrt, min_samples_leaf=4, min_samples_split=6, n_estimators=30;, score=0.894 total time= 0.1s\n","[CV 4/5] END bootstrap=False, max_depth=10, max_features=sqrt, min_samples_leaf=4, min_samples_split=6, n_estimators=30;, score=0.848 total time= 0.1s\n","[CV 5/5] END bootstrap=False, max_depth=10, max_features=sqrt, min_samples_leaf=4, min_samples_split=6, n_estimators=30;, score=0.864 total time= 0.1s\n","[CV 1/5] END bootstrap=False, max_depth=10, max_features=sqrt, min_samples_leaf=6, min_samples_split=2, n_estimators=5;, score=0.884 total time= 0.0s\n","[CV 2/5] END bootstrap=False, max_depth=10, max_features=sqrt, min_samples_leaf=6, min_samples_split=2, n_estimators=5;, score=0.884 total time= 0.0s\n","[CV 3/5] END bootstrap=False, max_depth=10, max_features=sqrt, min_samples_leaf=6, min_samples_split=2, n_estimators=5;, score=0.889 total time= 0.0s\n","[CV 4/5] END bootstrap=False, max_depth=10, max_features=sqrt, min_samples_leaf=6, min_samples_split=2, n_estimators=5;, score=0.864 total time= 0.0s\n","[CV 5/5] END bootstrap=False, max_depth=10, max_features=sqrt, min_samples_leaf=6, min_samples_split=2, n_estimators=5;, score=0.864 total time= 0.0s\n","[CV 1/5] END bootstrap=False, max_depth=10, max_features=sqrt, min_samples_leaf=6, min_samples_split=2, n_estimators=10;, score=0.864 total time= 0.0s\n","[CV 2/5] END bootstrap=False, max_depth=10, max_features=sqrt, min_samples_leaf=6, min_samples_split=2, n_estimators=10;, score=0.869 total time= 0.0s\n","[CV 3/5] END bootstrap=False, max_depth=10, max_features=sqrt, min_samples_leaf=6, min_samples_split=2, n_estimators=10;, score=0.884 total time= 0.0s\n","[CV 4/5] END bootstrap=False, max_depth=10, max_features=sqrt, min_samples_leaf=6, min_samples_split=2, n_estimators=10;, score=0.838 total time= 0.0s\n","[CV 5/5] END bootstrap=False, max_depth=10, max_features=sqrt, min_samples_leaf=6, min_samples_split=2, n_estimators=10;, score=0.884 total time= 0.0s\n","[CV 1/5] END bootstrap=False, max_depth=10, max_features=sqrt, min_samples_leaf=6, min_samples_split=2, n_estimators=20;, score=0.869 total time= 0.0s\n","[CV 2/5] END bootstrap=False, max_depth=10, max_features=sqrt, min_samples_leaf=6, min_samples_split=2, n_estimators=20;, score=0.909 total time= 0.0s\n","[CV 3/5] END bootstrap=False, max_depth=10, max_features=sqrt, min_samples_leaf=6, min_samples_split=2, n_estimators=20;, score=0.879 total time= 0.0s\n","[CV 4/5] END bootstrap=False, max_depth=10, max_features=sqrt, min_samples_leaf=6, min_samples_split=2, n_estimators=20;, score=0.848 total time= 0.0s\n","[CV 5/5] END bootstrap=False, max_depth=10, max_features=sqrt, min_samples_leaf=6, min_samples_split=2, n_estimators=20;, score=0.864 total time= 0.0s\n","[CV 1/5] END bootstrap=False, max_depth=10, max_features=sqrt, min_samples_leaf=6, min_samples_split=2, n_estimators=30;, score=0.848 total time= 0.1s\n","[CV 2/5] END bootstrap=False, max_depth=10, max_features=sqrt, min_samples_leaf=6, min_samples_split=2, n_estimators=30;, score=0.889 total time= 0.1s\n","[CV 3/5] END bootstrap=False, max_depth=10, max_features=sqrt, min_samples_leaf=6, min_samples_split=2, n_estimators=30;, score=0.894 total time= 0.1s\n","[CV 4/5] END bootstrap=False, max_depth=10, max_features=sqrt, min_samples_leaf=6, min_samples_split=2, n_estimators=30;, score=0.864 total time= 0.1s\n","[CV 5/5] END bootstrap=False, max_depth=10, max_features=sqrt, min_samples_leaf=6, min_samples_split=2, n_estimators=30;, score=0.879 total time= 0.1s\n","[CV 1/5] END bootstrap=False, max_depth=10, max_features=sqrt, min_samples_leaf=6, min_samples_split=4, n_estimators=5;, score=0.889 total time= 0.0s\n","[CV 2/5] END bootstrap=False, max_depth=10, max_features=sqrt, min_samples_leaf=6, min_samples_split=4, n_estimators=5;, score=0.884 total time= 0.0s\n","[CV 3/5] END bootstrap=False, max_depth=10, max_features=sqrt, min_samples_leaf=6, min_samples_split=4, n_estimators=5;, score=0.894 total time= 0.0s\n","[CV 4/5] END bootstrap=False, max_depth=10, max_features=sqrt, min_samples_leaf=6, min_samples_split=4, n_estimators=5;, score=0.864 total time= 0.0s\n","[CV 5/5] END bootstrap=False, max_depth=10, max_features=sqrt, min_samples_leaf=6, min_samples_split=4, n_estimators=5;, score=0.889 total time= 0.0s\n","[CV 1/5] END bootstrap=False, max_depth=10, max_features=sqrt, min_samples_leaf=6, min_samples_split=4, n_estimators=10;, score=0.869 total time= 0.0s\n","[CV 2/5] END bootstrap=False, max_depth=10, max_features=sqrt, min_samples_leaf=6, min_samples_split=4, n_estimators=10;, score=0.889 total time= 0.0s\n","[CV 3/5] END bootstrap=False, max_depth=10, max_features=sqrt, min_samples_leaf=6, min_samples_split=4, n_estimators=10;, score=0.889 total time= 0.0s\n","[CV 4/5] END bootstrap=False, max_depth=10, max_features=sqrt, min_samples_leaf=6, min_samples_split=4, n_estimators=10;, score=0.859 total time= 0.0s\n","[CV 5/5] END bootstrap=False, max_depth=10, max_features=sqrt, min_samples_leaf=6, min_samples_split=4, n_estimators=10;, score=0.884 total time= 0.0s\n","[CV 1/5] END bootstrap=False, max_depth=10, max_features=sqrt, min_samples_leaf=6, min_samples_split=4, n_estimators=20;, score=0.899 total time= 0.0s\n","[CV 2/5] END bootstrap=False, max_depth=10, max_features=sqrt, min_samples_leaf=6, min_samples_split=4, n_estimators=20;, score=0.894 total time= 0.0s\n","[CV 3/5] END bootstrap=False, max_depth=10, max_features=sqrt, min_samples_leaf=6, min_samples_split=4, n_estimators=20;, score=0.894 total time= 0.0s\n","[CV 4/5] END bootstrap=False, max_depth=10, max_features=sqrt, min_samples_leaf=6, min_samples_split=4, n_estimators=20;, score=0.854 total time= 0.1s\n","[CV 5/5] END bootstrap=False, max_depth=10, max_features=sqrt, min_samples_leaf=6, min_samples_split=4, n_estimators=20;, score=0.889 total time= 0.0s\n","[CV 1/5] END bootstrap=False, max_depth=10, max_features=sqrt, min_samples_leaf=6, min_samples_split=4, n_estimators=30;, score=0.864 total time= 0.1s\n","[CV 2/5] END bootstrap=False, max_depth=10, max_features=sqrt, min_samples_leaf=6, min_samples_split=4, n_estimators=30;, score=0.879 total time= 0.1s\n","[CV 3/5] END bootstrap=False, max_depth=10, max_features=sqrt, min_samples_leaf=6, min_samples_split=4, n_estimators=30;, score=0.894 total time= 0.1s\n","[CV 4/5] END bootstrap=False, max_depth=10, max_features=sqrt, min_samples_leaf=6, min_samples_split=4, n_estimators=30;, score=0.848 total time= 0.1s\n","[CV 5/5] END bootstrap=False, max_depth=10, max_features=sqrt, min_samples_leaf=6, min_samples_split=4, n_estimators=30;, score=0.879 total time= 0.1s\n","[CV 1/5] END bootstrap=False, max_depth=10, max_features=sqrt, min_samples_leaf=6, min_samples_split=6, n_estimators=5;, score=0.889 total time= 0.0s\n","[CV 2/5] END bootstrap=False, max_depth=10, max_features=sqrt, min_samples_leaf=6, min_samples_split=6, n_estimators=5;, score=0.864 total time= 0.0s\n","[CV 3/5] END bootstrap=False, max_depth=10, max_features=sqrt, min_samples_leaf=6, min_samples_split=6, n_estimators=5;, score=0.879 total time= 0.0s\n","[CV 4/5] END bootstrap=False, max_depth=10, max_features=sqrt, min_samples_leaf=6, min_samples_split=6, n_estimators=5;, score=0.854 total time= 0.0s\n","[CV 5/5] END bootstrap=False, max_depth=10, max_features=sqrt, min_samples_leaf=6, min_samples_split=6, n_estimators=5;, score=0.894 total time= 0.0s\n","[CV 1/5] END bootstrap=False, max_depth=10, max_features=sqrt, min_samples_leaf=6, min_samples_split=6, n_estimators=10;, score=0.874 total time= 0.0s\n","[CV 2/5] END bootstrap=False, max_depth=10, max_features=sqrt, min_samples_leaf=6, min_samples_split=6, n_estimators=10;, score=0.899 total time= 0.0s\n","[CV 3/5] END bootstrap=False, max_depth=10, max_features=sqrt, min_samples_leaf=6, min_samples_split=6, n_estimators=10;, score=0.894 total time= 0.0s\n","[CV 4/5] END bootstrap=False, max_depth=10, max_features=sqrt, min_samples_leaf=6, min_samples_split=6, n_estimators=10;, score=0.838 total time= 0.0s\n","[CV 5/5] END bootstrap=False, max_depth=10, max_features=sqrt, min_samples_leaf=6, min_samples_split=6, n_estimators=10;, score=0.869 total time= 0.0s\n","[CV 1/5] END bootstrap=False, max_depth=10, max_features=sqrt, min_samples_leaf=6, min_samples_split=6, n_estimators=20;, score=0.869 total time= 0.0s\n","[CV 2/5] END bootstrap=False, max_depth=10, max_features=sqrt, min_samples_leaf=6, min_samples_split=6, n_estimators=20;, score=0.879 total time= 0.0s\n","[CV 3/5] END bootstrap=False, max_depth=10, max_features=sqrt, min_samples_leaf=6, min_samples_split=6, n_estimators=20;, score=0.869 total time= 0.1s\n","[CV 4/5] END bootstrap=False, max_depth=10, max_features=sqrt, min_samples_leaf=6, min_samples_split=6, n_estimators=20;, score=0.848 total time= 0.0s\n","[CV 5/5] END bootstrap=False, max_depth=10, max_features=sqrt, min_samples_leaf=6, min_samples_split=6, n_estimators=20;, score=0.899 total time= 0.0s\n","[CV 1/5] END bootstrap=False, max_depth=10, max_features=sqrt, min_samples_leaf=6, min_samples_split=6, n_estimators=30;, score=0.854 total time= 0.1s\n","[CV 2/5] END bootstrap=False, max_depth=10, max_features=sqrt, min_samples_leaf=6, min_samples_split=6, n_estimators=30;, score=0.879 total time= 0.1s\n","[CV 3/5] END bootstrap=False, max_depth=10, max_features=sqrt, min_samples_leaf=6, min_samples_split=6, n_estimators=30;, score=0.879 total time= 0.1s\n","[CV 4/5] END bootstrap=False, max_depth=10, max_features=sqrt, min_samples_leaf=6, min_samples_split=6, n_estimators=30;, score=0.833 total time= 0.1s\n","[CV 5/5] END bootstrap=False, max_depth=10, max_features=sqrt, min_samples_leaf=6, min_samples_split=6, n_estimators=30;, score=0.894 total time= 0.1s\n","[CV 1/5] END bootstrap=False, max_depth=10, max_features=log2, min_samples_leaf=2, min_samples_split=2, n_estimators=5;, score=0.889 total time= 0.0s\n","[CV 2/5] END bootstrap=False, max_depth=10, max_features=log2, min_samples_leaf=2, min_samples_split=2, n_estimators=5;, score=0.879 total time= 0.0s\n","[CV 3/5] END bootstrap=False, max_depth=10, max_features=log2, min_samples_leaf=2, min_samples_split=2, n_estimators=5;, score=0.889 total time= 0.0s\n","[CV 4/5] END bootstrap=False, max_depth=10, max_features=log2, min_samples_leaf=2, min_samples_split=2, n_estimators=5;, score=0.864 total time= 0.0s\n","[CV 5/5] END bootstrap=False, max_depth=10, max_features=log2, min_samples_leaf=2, min_samples_split=2, n_estimators=5;, score=0.879 total time= 0.0s\n","[CV 1/5] END bootstrap=False, max_depth=10, max_features=log2, min_samples_leaf=2, min_samples_split=2, n_estimators=10;, score=0.854 total time= 0.0s\n","[CV 2/5] END bootstrap=False, max_depth=10, max_features=log2, min_samples_leaf=2, min_samples_split=2, n_estimators=10;, score=0.869 total time= 0.0s\n","[CV 3/5] END bootstrap=False, max_depth=10, max_features=log2, min_samples_leaf=2, min_samples_split=2, n_estimators=10;, score=0.894 total time= 0.0s\n","[CV 4/5] END bootstrap=False, max_depth=10, max_features=log2, min_samples_leaf=2, min_samples_split=2, n_estimators=10;, score=0.854 total time= 0.0s\n","[CV 5/5] END bootstrap=False, max_depth=10, max_features=log2, min_samples_leaf=2, min_samples_split=2, n_estimators=10;, score=0.874 total time= 0.0s\n","[CV 1/5] END bootstrap=False, max_depth=10, max_features=log2, min_samples_leaf=2, min_samples_split=2, n_estimators=20;, score=0.864 total time= 0.0s\n","[CV 2/5] END bootstrap=False, max_depth=10, max_features=log2, min_samples_leaf=2, min_samples_split=2, n_estimators=20;, score=0.884 total time= 0.0s\n","[CV 3/5] END bootstrap=False, max_depth=10, max_features=log2, min_samples_leaf=2, min_samples_split=2, n_estimators=20;, score=0.889 total time= 0.0s\n","[CV 4/5] END bootstrap=False, max_depth=10, max_features=log2, min_samples_leaf=2, min_samples_split=2, n_estimators=20;, score=0.843 total time= 0.0s\n","[CV 5/5] END bootstrap=False, max_depth=10, max_features=log2, min_samples_leaf=2, min_samples_split=2, n_estimators=20;, score=0.864 total time= 0.0s\n","[CV 1/5] END bootstrap=False, max_depth=10, max_features=log2, min_samples_leaf=2, min_samples_split=2, n_estimators=30;, score=0.864 total time= 0.1s\n","[CV 2/5] END bootstrap=False, max_depth=10, max_features=log2, min_samples_leaf=2, min_samples_split=2, n_estimators=30;, score=0.894 total time= 0.1s\n","[CV 3/5] END bootstrap=False, max_depth=10, max_features=log2, min_samples_leaf=2, min_samples_split=2, n_estimators=30;, score=0.889 total time= 0.1s\n","[CV 4/5] END bootstrap=False, max_depth=10, max_features=log2, min_samples_leaf=2, min_samples_split=2, n_estimators=30;, score=0.848 total time= 0.1s\n","[CV 5/5] END bootstrap=False, max_depth=10, max_features=log2, min_samples_leaf=2, min_samples_split=2, n_estimators=30;, score=0.884 total time= 0.1s\n","[CV 1/5] END bootstrap=False, max_depth=10, max_features=log2, min_samples_leaf=2, min_samples_split=4, n_estimators=5;, score=0.889 total time= 0.0s\n","[CV 2/5] END bootstrap=False, max_depth=10, max_features=log2, min_samples_leaf=2, min_samples_split=4, n_estimators=5;, score=0.884 total time= 0.0s\n","[CV 3/5] END bootstrap=False, max_depth=10, max_features=log2, min_samples_leaf=2, min_samples_split=4, n_estimators=5;, score=0.914 total time= 0.0s\n","[CV 4/5] END bootstrap=False, max_depth=10, max_features=log2, min_samples_leaf=2, min_samples_split=4, n_estimators=5;, score=0.864 total time= 0.0s\n","[CV 5/5] END bootstrap=False, max_depth=10, max_features=log2, min_samples_leaf=2, min_samples_split=4, n_estimators=5;, score=0.874 total time= 0.0s\n","[CV 1/5] END bootstrap=False, max_depth=10, max_features=log2, min_samples_leaf=2, min_samples_split=4, n_estimators=10;, score=0.889 total time= 0.0s\n","[CV 2/5] END bootstrap=False, max_depth=10, max_features=log2, min_samples_leaf=2, min_samples_split=4, n_estimators=10;, score=0.889 total time= 0.0s\n","[CV 3/5] END bootstrap=False, max_depth=10, max_features=log2, min_samples_leaf=2, min_samples_split=4, n_estimators=10;, score=0.894 total time= 0.0s\n","[CV 4/5] END bootstrap=False, max_depth=10, max_features=log2, min_samples_leaf=2, min_samples_split=4, n_estimators=10;, score=0.864 total time= 0.0s\n","[CV 5/5] END bootstrap=False, max_depth=10, max_features=log2, min_samples_leaf=2, min_samples_split=4, n_estimators=10;, score=0.864 total time= 0.0s\n","[CV 1/5] END bootstrap=False, max_depth=10, max_features=log2, min_samples_leaf=2, min_samples_split=4, n_estimators=20;, score=0.859 total time= 0.1s\n","[CV 2/5] END bootstrap=False, max_depth=10, max_features=log2, min_samples_leaf=2, min_samples_split=4, n_estimators=20;, score=0.884 total time= 0.1s\n","[CV 3/5] END bootstrap=False, max_depth=10, max_features=log2, min_samples_leaf=2, min_samples_split=4, n_estimators=20;, score=0.879 total time= 0.1s\n","[CV 4/5] END bootstrap=False, max_depth=10, max_features=log2, min_samples_leaf=2, min_samples_split=4, n_estimators=20;, score=0.869 total time= 0.1s\n","[CV 5/5] END bootstrap=False, max_depth=10, max_features=log2, min_samples_leaf=2, min_samples_split=4, n_estimators=20;, score=0.879 total time= 0.1s\n","[CV 1/5] END bootstrap=False, max_depth=10, max_features=log2, min_samples_leaf=2, min_samples_split=4, n_estimators=30;, score=0.864 total time= 0.1s\n","[CV 2/5] END bootstrap=False, max_depth=10, max_features=log2, min_samples_leaf=2, min_samples_split=4, n_estimators=30;, score=0.889 total time= 0.1s\n","[CV 3/5] END bootstrap=False, max_depth=10, max_features=log2, min_samples_leaf=2, min_samples_split=4, n_estimators=30;, score=0.879 total time= 0.1s\n","[CV 4/5] END bootstrap=False, max_depth=10, max_features=log2, min_samples_leaf=2, min_samples_split=4, n_estimators=30;, score=0.848 total time= 0.1s\n","[CV 5/5] END bootstrap=False, max_depth=10, max_features=log2, min_samples_leaf=2, min_samples_split=4, n_estimators=30;, score=0.879 total time= 0.1s\n","[CV 1/5] END bootstrap=False, max_depth=10, max_features=log2, min_samples_leaf=2, min_samples_split=6, n_estimators=5;, score=0.874 total time= 0.0s\n","[CV 2/5] END bootstrap=False, max_depth=10, max_features=log2, min_samples_leaf=2, min_samples_split=6, n_estimators=5;, score=0.879 total time= 0.0s\n","[CV 3/5] END bootstrap=False, max_depth=10, max_features=log2, min_samples_leaf=2, min_samples_split=6, n_estimators=5;, score=0.884 total time= 0.0s\n","[CV 4/5] END bootstrap=False, max_depth=10, max_features=log2, min_samples_leaf=2, min_samples_split=6, n_estimators=5;, score=0.854 total time= 0.0s\n","[CV 5/5] END bootstrap=False, max_depth=10, max_features=log2, min_samples_leaf=2, min_samples_split=6, n_estimators=5;, score=0.884 total time= 0.0s\n","[CV 1/5] END bootstrap=False, max_depth=10, max_features=log2, min_samples_leaf=2, min_samples_split=6, n_estimators=10;, score=0.874 total time= 0.0s\n","[CV 2/5] END bootstrap=False, max_depth=10, max_features=log2, min_samples_leaf=2, min_samples_split=6, n_estimators=10;, score=0.864 total time= 0.0s\n","[CV 3/5] END bootstrap=False, max_depth=10, max_features=log2, min_samples_leaf=2, min_samples_split=6, n_estimators=10;, score=0.889 total time= 0.0s\n","[CV 4/5] END bootstrap=False, max_depth=10, max_features=log2, min_samples_leaf=2, min_samples_split=6, n_estimators=10;, score=0.854 total time= 0.0s\n","[CV 5/5] END bootstrap=False, max_depth=10, max_features=log2, min_samples_leaf=2, min_samples_split=6, n_estimators=10;, score=0.874 total time= 0.1s\n","[CV 1/5] END bootstrap=False, max_depth=10, max_features=log2, min_samples_leaf=2, min_samples_split=6, n_estimators=20;, score=0.869 total time= 0.1s\n","[CV 2/5] END bootstrap=False, max_depth=10, max_features=log2, min_samples_leaf=2, min_samples_split=6, n_estimators=20;, score=0.884 total time= 0.1s\n","[CV 3/5] END bootstrap=False, max_depth=10, max_features=log2, min_samples_leaf=2, min_samples_split=6, n_estimators=20;, score=0.889 total time= 0.1s\n","[CV 4/5] END bootstrap=False, max_depth=10, max_features=log2, min_samples_leaf=2, min_samples_split=6, n_estimators=20;, score=0.854 total time= 0.1s\n","[CV 5/5] END bootstrap=False, max_depth=10, max_features=log2, min_samples_leaf=2, min_samples_split=6, n_estimators=20;, score=0.874 total time= 0.1s\n","[CV 1/5] END bootstrap=False, max_depth=10, max_features=log2, min_samples_leaf=2, min_samples_split=6, n_estimators=30;, score=0.864 total time= 0.1s\n","[CV 2/5] END bootstrap=False, max_depth=10, max_features=log2, min_samples_leaf=2, min_samples_split=6, n_estimators=30;, score=0.889 total time= 0.1s\n","[CV 3/5] END bootstrap=False, max_depth=10, max_features=log2, min_samples_leaf=2, min_samples_split=6, n_estimators=30;, score=0.879 total time= 0.1s\n","[CV 4/5] END bootstrap=False, max_depth=10, max_features=log2, min_samples_leaf=2, min_samples_split=6, n_estimators=30;, score=0.859 total time= 0.1s\n","[CV 5/5] END bootstrap=False, max_depth=10, max_features=log2, min_samples_leaf=2, min_samples_split=6, n_estimators=30;, score=0.864 total time= 0.1s\n","[CV 1/5] END bootstrap=False, max_depth=10, max_features=log2, min_samples_leaf=4, min_samples_split=2, n_estimators=5;, score=0.909 total time= 0.0s\n","[CV 2/5] END bootstrap=False, max_depth=10, max_features=log2, min_samples_leaf=4, min_samples_split=2, n_estimators=5;, score=0.889 total time= 0.0s\n","[CV 3/5] END bootstrap=False, max_depth=10, max_features=log2, min_samples_leaf=4, min_samples_split=2, n_estimators=5;, score=0.874 total time= 0.0s\n","[CV 4/5] END bootstrap=False, max_depth=10, max_features=log2, min_samples_leaf=4, min_samples_split=2, n_estimators=5;, score=0.859 total time= 0.0s\n","[CV 5/5] END bootstrap=False, max_depth=10, max_features=log2, min_samples_leaf=4, min_samples_split=2, n_estimators=5;, score=0.884 total time= 0.0s\n","[CV 1/5] END bootstrap=False, max_depth=10, max_features=log2, min_samples_leaf=4, min_samples_split=2, n_estimators=10;, score=0.879 total time= 0.0s\n","[CV 2/5] END bootstrap=False, max_depth=10, max_features=log2, min_samples_leaf=4, min_samples_split=2, n_estimators=10;, score=0.889 total time= 0.0s\n","[CV 3/5] END bootstrap=False, max_depth=10, max_features=log2, min_samples_leaf=4, min_samples_split=2, n_estimators=10;, score=0.889 total time= 0.0s\n","[CV 4/5] END bootstrap=False, max_depth=10, max_features=log2, min_samples_leaf=4, min_samples_split=2, n_estimators=10;, score=0.854 total time= 0.0s\n","[CV 5/5] END bootstrap=False, max_depth=10, max_features=log2, min_samples_leaf=4, min_samples_split=2, n_estimators=10;, score=0.884 total time= 0.0s\n","[CV 1/5] END bootstrap=False, max_depth=10, max_features=log2, min_samples_leaf=4, min_samples_split=2, n_estimators=20;, score=0.859 total time= 0.1s\n","[CV 2/5] END bootstrap=False, max_depth=10, max_features=log2, min_samples_leaf=4, min_samples_split=2, n_estimators=20;, score=0.879 total time= 0.1s\n","[CV 3/5] END bootstrap=False, max_depth=10, max_features=log2, min_samples_leaf=4, min_samples_split=2, n_estimators=20;, score=0.884 total time= 0.1s\n","[CV 4/5] END bootstrap=False, max_depth=10, max_features=log2, min_samples_leaf=4, min_samples_split=2, n_estimators=20;, score=0.869 total time= 0.1s\n","[CV 5/5] END bootstrap=False, max_depth=10, max_features=log2, min_samples_leaf=4, min_samples_split=2, n_estimators=20;, score=0.879 total time= 0.1s\n","[CV 1/5] END bootstrap=False, max_depth=10, max_features=log2, min_samples_leaf=4, min_samples_split=2, n_estimators=30;, score=0.869 total time= 0.1s\n","[CV 2/5] END bootstrap=False, max_depth=10, max_features=log2, min_samples_leaf=4, min_samples_split=2, n_estimators=30;, score=0.879 total time= 0.1s\n","[CV 3/5] END bootstrap=False, max_depth=10, max_features=log2, min_samples_leaf=4, min_samples_split=2, n_estimators=30;, score=0.884 total time= 0.1s\n","[CV 4/5] END bootstrap=False, max_depth=10, max_features=log2, min_samples_leaf=4, min_samples_split=2, n_estimators=30;, score=0.848 total time= 0.1s\n","[CV 5/5] END bootstrap=False, max_depth=10, max_features=log2, min_samples_leaf=4, min_samples_split=2, n_estimators=30;, score=0.854 total time= 0.1s\n","[CV 1/5] END bootstrap=False, max_depth=10, max_features=log2, min_samples_leaf=4, min_samples_split=4, n_estimators=5;, score=0.879 total time= 0.0s\n","[CV 2/5] END bootstrap=False, max_depth=10, max_features=log2, min_samples_leaf=4, min_samples_split=4, n_estimators=5;, score=0.879 total time= 0.0s\n","[CV 3/5] END bootstrap=False, max_depth=10, max_features=log2, min_samples_leaf=4, min_samples_split=4, n_estimators=5;, score=0.884 total time= 0.0s\n","[CV 4/5] END bootstrap=False, max_depth=10, max_features=log2, min_samples_leaf=4, min_samples_split=4, n_estimators=5;, score=0.833 total time= 0.0s\n","[CV 5/5] END bootstrap=False, max_depth=10, max_features=log2, min_samples_leaf=4, min_samples_split=4, n_estimators=5;, score=0.899 total time= 0.0s\n","[CV 1/5] END bootstrap=False, max_depth=10, max_features=log2, min_samples_leaf=4, min_samples_split=4, n_estimators=10;, score=0.889 total time= 0.0s\n","[CV 2/5] END bootstrap=False, max_depth=10, max_features=log2, min_samples_leaf=4, min_samples_split=4, n_estimators=10;, score=0.879 total time= 0.0s\n","[CV 3/5] END bootstrap=False, max_depth=10, max_features=log2, min_samples_leaf=4, min_samples_split=4, n_estimators=10;, score=0.894 total time= 0.0s\n","[CV 4/5] END bootstrap=False, max_depth=10, max_features=log2, min_samples_leaf=4, min_samples_split=4, n_estimators=10;, score=0.869 total time= 0.0s\n","[CV 5/5] END bootstrap=False, max_depth=10, max_features=log2, min_samples_leaf=4, min_samples_split=4, n_estimators=10;, score=0.894 total time= 0.0s\n","[CV 1/5] END bootstrap=False, max_depth=10, max_features=log2, min_samples_leaf=4, min_samples_split=4, n_estimators=20;, score=0.864 total time= 0.0s\n","[CV 2/5] END bootstrap=False, max_depth=10, max_features=log2, min_samples_leaf=4, min_samples_split=4, n_estimators=20;, score=0.869 total time= 0.0s\n","[CV 3/5] END bootstrap=False, max_depth=10, max_features=log2, min_samples_leaf=4, min_samples_split=4, n_estimators=20;, score=0.894 total time= 0.0s\n","[CV 4/5] END bootstrap=False, max_depth=10, max_features=log2, min_samples_leaf=4, min_samples_split=4, n_estimators=20;, score=0.869 total time= 0.0s\n","[CV 5/5] END bootstrap=False, max_depth=10, max_features=log2, min_samples_leaf=4, min_samples_split=4, n_estimators=20;, score=0.874 total time= 0.1s\n","[CV 1/5] END bootstrap=False, max_depth=10, max_features=log2, min_samples_leaf=4, min_samples_split=4, n_estimators=30;, score=0.864 total time= 0.1s\n","[CV 2/5] END bootstrap=False, max_depth=10, max_features=log2, min_samples_leaf=4, min_samples_split=4, n_estimators=30;, score=0.879 total time= 0.1s\n","[CV 3/5] END bootstrap=False, max_depth=10, max_features=log2, min_samples_leaf=4, min_samples_split=4, n_estimators=30;, score=0.899 total time= 0.1s\n","[CV 4/5] END bootstrap=False, max_depth=10, max_features=log2, min_samples_leaf=4, min_samples_split=4, n_estimators=30;, score=0.864 total time= 0.1s\n","[CV 5/5] END bootstrap=False, max_depth=10, max_features=log2, min_samples_leaf=4, min_samples_split=4, n_estimators=30;, score=0.889 total time= 0.1s\n","[CV 1/5] END bootstrap=False, max_depth=10, max_features=log2, min_samples_leaf=4, min_samples_split=6, n_estimators=5;, score=0.894 total time= 0.0s\n","[CV 2/5] END bootstrap=False, max_depth=10, max_features=log2, min_samples_leaf=4, min_samples_split=6, n_estimators=5;, score=0.894 total time= 0.0s\n","[CV 3/5] END bootstrap=False, max_depth=10, max_features=log2, min_samples_leaf=4, min_samples_split=6, n_estimators=5;, score=0.869 total time= 0.0s\n","[CV 4/5] END bootstrap=False, max_depth=10, max_features=log2, min_samples_leaf=4, min_samples_split=6, n_estimators=5;, score=0.859 total time= 0.0s\n","[CV 5/5] END bootstrap=False, max_depth=10, max_features=log2, min_samples_leaf=4, min_samples_split=6, n_estimators=5;, score=0.894 total time= 0.0s\n","[CV 1/5] END bootstrap=False, max_depth=10, max_features=log2, min_samples_leaf=4, min_samples_split=6, n_estimators=10;, score=0.859 total time= 0.0s\n","[CV 2/5] END bootstrap=False, max_depth=10, max_features=log2, min_samples_leaf=4, min_samples_split=6, n_estimators=10;, score=0.904 total time= 0.0s\n","[CV 3/5] END bootstrap=False, max_depth=10, max_features=log2, min_samples_leaf=4, min_samples_split=6, n_estimators=10;, score=0.894 total time= 0.0s\n","[CV 4/5] END bootstrap=False, max_depth=10, max_features=log2, min_samples_leaf=4, min_samples_split=6, n_estimators=10;, score=0.854 total time= 0.0s\n","[CV 5/5] END bootstrap=False, max_depth=10, max_features=log2, min_samples_leaf=4, min_samples_split=6, n_estimators=10;, score=0.889 total time= 0.0s\n","[CV 1/5] END bootstrap=False, max_depth=10, max_features=log2, min_samples_leaf=4, min_samples_split=6, n_estimators=20;, score=0.874 total time= 0.0s\n","[CV 2/5] END bootstrap=False, max_depth=10, max_features=log2, min_samples_leaf=4, min_samples_split=6, n_estimators=20;, score=0.879 total time= 0.0s\n","[CV 3/5] END bootstrap=False, max_depth=10, max_features=log2, min_samples_leaf=4, min_samples_split=6, n_estimators=20;, score=0.874 total time= 0.0s\n","[CV 4/5] END bootstrap=False, max_depth=10, max_features=log2, min_samples_leaf=4, min_samples_split=6, n_estimators=20;, score=0.859 total time= 0.1s\n","[CV 5/5] END bootstrap=False, max_depth=10, max_features=log2, min_samples_leaf=4, min_samples_split=6, n_estimators=20;, score=0.874 total time= 0.0s\n","[CV 1/5] END bootstrap=False, max_depth=10, max_features=log2, min_samples_leaf=4, min_samples_split=6, n_estimators=30;, score=0.874 total time= 0.1s\n","[CV 2/5] END bootstrap=False, max_depth=10, max_features=log2, min_samples_leaf=4, min_samples_split=6, n_estimators=30;, score=0.884 total time= 0.1s\n","[CV 3/5] END bootstrap=False, max_depth=10, max_features=log2, min_samples_leaf=4, min_samples_split=6, n_estimators=30;, score=0.889 total time= 0.1s\n","[CV 4/5] END bootstrap=False, max_depth=10, max_features=log2, min_samples_leaf=4, min_samples_split=6, n_estimators=30;, score=0.848 total time= 0.1s\n","[CV 5/5] END bootstrap=False, max_depth=10, max_features=log2, min_samples_leaf=4, min_samples_split=6, n_estimators=30;, score=0.874 total time= 0.1s\n","[CV 1/5] END bootstrap=False, max_depth=10, max_features=log2, min_samples_leaf=6, min_samples_split=2, n_estimators=5;, score=0.879 total time= 0.0s\n","[CV 2/5] END bootstrap=False, max_depth=10, max_features=log2, min_samples_leaf=6, min_samples_split=2, n_estimators=5;, score=0.884 total time= 0.0s\n","[CV 3/5] END bootstrap=False, max_depth=10, max_features=log2, min_samples_leaf=6, min_samples_split=2, n_estimators=5;, score=0.884 total time= 0.0s\n","[CV 4/5] END bootstrap=False, max_depth=10, max_features=log2, min_samples_leaf=6, min_samples_split=2, n_estimators=5;, score=0.848 total time= 0.0s\n","[CV 5/5] END bootstrap=False, max_depth=10, max_features=log2, min_samples_leaf=6, min_samples_split=2, n_estimators=5;, score=0.894 total time= 0.0s\n","[CV 1/5] END bootstrap=False, max_depth=10, max_features=log2, min_samples_leaf=6, min_samples_split=2, n_estimators=10;, score=0.859 total time= 0.0s\n","[CV 2/5] END bootstrap=False, max_depth=10, max_features=log2, min_samples_leaf=6, min_samples_split=2, n_estimators=10;, score=0.894 total time= 0.0s\n","[CV 3/5] END bootstrap=False, max_depth=10, max_features=log2, min_samples_leaf=6, min_samples_split=2, n_estimators=10;, score=0.889 total time= 0.0s\n","[CV 4/5] END bootstrap=False, max_depth=10, max_features=log2, min_samples_leaf=6, min_samples_split=2, n_estimators=10;, score=0.843 total time= 0.0s\n","[CV 5/5] END bootstrap=False, max_depth=10, max_features=log2, min_samples_leaf=6, min_samples_split=2, n_estimators=10;, score=0.869 total time= 0.0s\n","[CV 1/5] END bootstrap=False, max_depth=10, max_features=log2, min_samples_leaf=6, min_samples_split=2, n_estimators=20;, score=0.854 total time= 0.0s\n","[CV 2/5] END bootstrap=False, max_depth=10, max_features=log2, min_samples_leaf=6, min_samples_split=2, n_estimators=20;, score=0.884 total time= 0.0s\n","[CV 3/5] END bootstrap=False, max_depth=10, max_features=log2, min_samples_leaf=6, min_samples_split=2, n_estimators=20;, score=0.879 total time= 0.0s\n","[CV 4/5] END bootstrap=False, max_depth=10, max_features=log2, min_samples_leaf=6, min_samples_split=2, n_estimators=20;, score=0.859 total time= 0.0s\n","[CV 5/5] END bootstrap=False, max_depth=10, max_features=log2, min_samples_leaf=6, min_samples_split=2, n_estimators=20;, score=0.884 total time= 0.0s\n","[CV 1/5] END bootstrap=False, max_depth=10, max_features=log2, min_samples_leaf=6, min_samples_split=2, n_estimators=30;, score=0.859 total time= 0.1s\n","[CV 2/5] END bootstrap=False, max_depth=10, max_features=log2, min_samples_leaf=6, min_samples_split=2, n_estimators=30;, score=0.904 total time= 0.1s\n","[CV 3/5] END bootstrap=False, max_depth=10, max_features=log2, min_samples_leaf=6, min_samples_split=2, n_estimators=30;, score=0.899 total time= 0.1s\n","[CV 4/5] END bootstrap=False, max_depth=10, max_features=log2, min_samples_leaf=6, min_samples_split=2, n_estimators=30;, score=0.869 total time= 0.1s\n","[CV 5/5] END bootstrap=False, max_depth=10, max_features=log2, min_samples_leaf=6, min_samples_split=2, n_estimators=30;, score=0.864 total time= 0.1s\n","[CV 1/5] END bootstrap=False, max_depth=10, max_features=log2, min_samples_leaf=6, min_samples_split=4, n_estimators=5;, score=0.869 total time= 0.0s\n","[CV 2/5] END bootstrap=False, max_depth=10, max_features=log2, min_samples_leaf=6, min_samples_split=4, n_estimators=5;, score=0.889 total time= 0.0s\n","[CV 3/5] END bootstrap=False, max_depth=10, max_features=log2, min_samples_leaf=6, min_samples_split=4, n_estimators=5;, score=0.869 total time= 0.0s\n","[CV 4/5] END bootstrap=False, max_depth=10, max_features=log2, min_samples_leaf=6, min_samples_split=4, n_estimators=5;, score=0.854 total time= 0.0s\n","[CV 5/5] END bootstrap=False, max_depth=10, max_features=log2, min_samples_leaf=6, min_samples_split=4, n_estimators=5;, score=0.864 total time= 0.0s\n","[CV 1/5] END bootstrap=False, max_depth=10, max_features=log2, min_samples_leaf=6, min_samples_split=4, n_estimators=10;, score=0.869 total time= 0.0s\n","[CV 2/5] END bootstrap=False, max_depth=10, max_features=log2, min_samples_leaf=6, min_samples_split=4, n_estimators=10;, score=0.899 total time= 0.0s\n","[CV 3/5] END bootstrap=False, max_depth=10, max_features=log2, min_samples_leaf=6, min_samples_split=4, n_estimators=10;, score=0.884 total time= 0.0s\n","[CV 4/5] END bootstrap=False, max_depth=10, max_features=log2, min_samples_leaf=6, min_samples_split=4, n_estimators=10;, score=0.879 total time= 0.0s\n","[CV 5/5] END bootstrap=False, max_depth=10, max_features=log2, min_samples_leaf=6, min_samples_split=4, n_estimators=10;, score=0.904 total time= 0.0s\n","[CV 1/5] END bootstrap=False, max_depth=10, max_features=log2, min_samples_leaf=6, min_samples_split=4, n_estimators=20;, score=0.869 total time= 0.0s\n","[CV 2/5] END bootstrap=False, max_depth=10, max_features=log2, min_samples_leaf=6, min_samples_split=4, n_estimators=20;, score=0.889 total time= 0.0s\n","[CV 3/5] END bootstrap=False, max_depth=10, max_features=log2, min_samples_leaf=6, min_samples_split=4, n_estimators=20;, score=0.889 total time= 0.0s\n","[CV 4/5] END bootstrap=False, max_depth=10, max_features=log2, min_samples_leaf=6, min_samples_split=4, n_estimators=20;, score=0.843 total time= 0.0s\n","[CV 5/5] END bootstrap=False, max_depth=10, max_features=log2, min_samples_leaf=6, min_samples_split=4, n_estimators=20;, score=0.879 total time= 0.0s\n","[CV 1/5] END bootstrap=False, max_depth=10, max_features=log2, min_samples_leaf=6, min_samples_split=4, n_estimators=30;, score=0.874 total time= 0.1s\n","[CV 2/5] END bootstrap=False, max_depth=10, max_features=log2, min_samples_leaf=6, min_samples_split=4, n_estimators=30;, score=0.889 total time= 0.1s\n","[CV 3/5] END bootstrap=False, max_depth=10, max_features=log2, min_samples_leaf=6, min_samples_split=4, n_estimators=30;, score=0.884 total time= 0.1s\n","[CV 4/5] END bootstrap=False, max_depth=10, max_features=log2, min_samples_leaf=6, min_samples_split=4, n_estimators=30;, score=0.859 total time= 0.1s\n","[CV 5/5] END bootstrap=False, max_depth=10, max_features=log2, min_samples_leaf=6, min_samples_split=4, n_estimators=30;, score=0.884 total time= 0.1s\n","[CV 1/5] END bootstrap=False, max_depth=10, max_features=log2, min_samples_leaf=6, min_samples_split=6, n_estimators=5;, score=0.884 total time= 0.0s\n","[CV 2/5] END bootstrap=False, max_depth=10, max_features=log2, min_samples_leaf=6, min_samples_split=6, n_estimators=5;, score=0.884 total time= 0.0s\n","[CV 3/5] END bootstrap=False, max_depth=10, max_features=log2, min_samples_leaf=6, min_samples_split=6, n_estimators=5;, score=0.889 total time= 0.0s\n","[CV 4/5] END bootstrap=False, max_depth=10, max_features=log2, min_samples_leaf=6, min_samples_split=6, n_estimators=5;, score=0.874 total time= 0.0s\n","[CV 5/5] END bootstrap=False, max_depth=10, max_features=log2, min_samples_leaf=6, min_samples_split=6, n_estimators=5;, score=0.874 total time= 0.0s\n","[CV 1/5] END bootstrap=False, max_depth=10, max_features=log2, min_samples_leaf=6, min_samples_split=6, n_estimators=10;, score=0.859 total time= 0.0s\n","[CV 2/5] END bootstrap=False, max_depth=10, max_features=log2, min_samples_leaf=6, min_samples_split=6, n_estimators=10;, score=0.874 total time= 0.0s\n","[CV 3/5] END bootstrap=False, max_depth=10, max_features=log2, min_samples_leaf=6, min_samples_split=6, n_estimators=10;, score=0.889 total time= 0.0s\n","[CV 4/5] END bootstrap=False, max_depth=10, max_features=log2, min_samples_leaf=6, min_samples_split=6, n_estimators=10;, score=0.884 total time= 0.0s\n","[CV 5/5] END bootstrap=False, max_depth=10, max_features=log2, min_samples_leaf=6, min_samples_split=6, n_estimators=10;, score=0.879 total time= 0.0s\n","[CV 1/5] END bootstrap=False, max_depth=10, max_features=log2, min_samples_leaf=6, min_samples_split=6, n_estimators=20;, score=0.874 total time= 0.0s\n","[CV 2/5] END bootstrap=False, max_depth=10, max_features=log2, min_samples_leaf=6, min_samples_split=6, n_estimators=20;, score=0.899 total time= 0.0s\n","[CV 3/5] END bootstrap=False, max_depth=10, max_features=log2, min_samples_leaf=6, min_samples_split=6, n_estimators=20;, score=0.889 total time= 0.1s\n","[CV 4/5] END bootstrap=False, max_depth=10, max_features=log2, min_samples_leaf=6, min_samples_split=6, n_estimators=20;, score=0.848 total time= 0.0s\n","[CV 5/5] END bootstrap=False, max_depth=10, max_features=log2, min_samples_leaf=6, min_samples_split=6, n_estimators=20;, score=0.879 total time= 0.0s\n","[CV 1/5] END bootstrap=False, max_depth=10, max_features=log2, min_samples_leaf=6, min_samples_split=6, n_estimators=30;, score=0.874 total time= 0.1s\n","[CV 2/5] END bootstrap=False, max_depth=10, max_features=log2, min_samples_leaf=6, min_samples_split=6, n_estimators=30;, score=0.894 total time= 0.1s\n","[CV 3/5] END bootstrap=False, max_depth=10, max_features=log2, min_samples_leaf=6, min_samples_split=6, n_estimators=30;, score=0.864 total time= 0.1s\n","[CV 4/5] END bootstrap=False, max_depth=10, max_features=log2, min_samples_leaf=6, min_samples_split=6, n_estimators=30;, score=0.864 total time= 0.1s\n","[CV 5/5] END bootstrap=False, max_depth=10, max_features=log2, min_samples_leaf=6, min_samples_split=6, n_estimators=30;, score=0.904 total time= 0.1s\n","[CV 1/5] END bootstrap=False, max_depth=10, max_features=None, min_samples_leaf=2, min_samples_split=2, n_estimators=5;, score=0.869 total time= 0.0s\n","[CV 2/5] END bootstrap=False, max_depth=10, max_features=None, min_samples_leaf=2, min_samples_split=2, n_estimators=5;, score=0.869 total time= 0.0s\n","[CV 3/5] END bootstrap=False, max_depth=10, max_features=None, min_samples_leaf=2, min_samples_split=2, n_estimators=5;, score=0.899 total time= 0.0s\n","[CV 4/5] END bootstrap=False, max_depth=10, max_features=None, min_samples_leaf=2, min_samples_split=2, n_estimators=5;, score=0.859 total time= 0.0s\n","[CV 5/5] END bootstrap=False, max_depth=10, max_features=None, min_samples_leaf=2, min_samples_split=2, n_estimators=5;, score=0.848 total time= 0.0s\n","[CV 1/5] END bootstrap=False, max_depth=10, max_features=None, min_samples_leaf=2, min_samples_split=2, n_estimators=10;, score=0.874 total time= 0.0s\n","[CV 2/5] END bootstrap=False, max_depth=10, max_features=None, min_samples_leaf=2, min_samples_split=2, n_estimators=10;, score=0.874 total time= 0.0s\n","[CV 3/5] END bootstrap=False, max_depth=10, max_features=None, min_samples_leaf=2, min_samples_split=2, n_estimators=10;, score=0.899 total time= 0.0s\n","[CV 4/5] END bootstrap=False, max_depth=10, max_features=None, min_samples_leaf=2, min_samples_split=2, n_estimators=10;, score=0.864 total time= 0.0s\n","[CV 5/5] END bootstrap=False, max_depth=10, max_features=None, min_samples_leaf=2, min_samples_split=2, n_estimators=10;, score=0.848 total time= 0.1s\n","[CV 1/5] END bootstrap=False, max_depth=10, max_features=None, min_samples_leaf=2, min_samples_split=2, n_estimators=20;, score=0.864 total time= 0.1s\n","[CV 2/5] END bootstrap=False, max_depth=10, max_features=None, min_samples_leaf=2, min_samples_split=2, n_estimators=20;, score=0.874 total time= 0.1s\n","[CV 3/5] END bootstrap=False, max_depth=10, max_features=None, min_samples_leaf=2, min_samples_split=2, n_estimators=20;, score=0.894 total time= 0.1s\n","[CV 4/5] END bootstrap=False, max_depth=10, max_features=None, min_samples_leaf=2, min_samples_split=2, n_estimators=20;, score=0.859 total time= 0.1s\n","[CV 5/5] END bootstrap=False, max_depth=10, max_features=None, min_samples_leaf=2, min_samples_split=2, n_estimators=20;, score=0.848 total time= 0.1s\n","[CV 1/5] END bootstrap=False, max_depth=10, max_features=None, min_samples_leaf=2, min_samples_split=2, n_estimators=30;, score=0.874 total time= 0.1s\n","[CV 2/5] END bootstrap=False, max_depth=10, max_features=None, min_samples_leaf=2, min_samples_split=2, n_estimators=30;, score=0.874 total time= 0.1s\n","[CV 3/5] END bootstrap=False, max_depth=10, max_features=None, min_samples_leaf=2, min_samples_split=2, n_estimators=30;, score=0.899 total time= 0.1s\n","[CV 4/5] END bootstrap=False, max_depth=10, max_features=None, min_samples_leaf=2, min_samples_split=2, n_estimators=30;, score=0.859 total time= 0.1s\n","[CV 5/5] END bootstrap=False, max_depth=10, max_features=None, min_samples_leaf=2, min_samples_split=2, n_estimators=30;, score=0.848 total time= 0.1s\n","[CV 1/5] END bootstrap=False, max_depth=10, max_features=None, min_samples_leaf=2, min_samples_split=4, n_estimators=5;, score=0.879 total time= 0.0s\n","[CV 2/5] END bootstrap=False, max_depth=10, max_features=None, min_samples_leaf=2, min_samples_split=4, n_estimators=5;, score=0.869 total time= 0.0s\n","[CV 3/5] END bootstrap=False, max_depth=10, max_features=None, min_samples_leaf=2, min_samples_split=4, n_estimators=5;, score=0.894 total time= 0.0s\n","[CV 4/5] END bootstrap=False, max_depth=10, max_features=None, min_samples_leaf=2, min_samples_split=4, n_estimators=5;, score=0.859 total time= 0.0s\n","[CV 5/5] END bootstrap=False, max_depth=10, max_features=None, min_samples_leaf=2, min_samples_split=4, n_estimators=5;, score=0.848 total time= 0.0s\n","[CV 1/5] END bootstrap=False, max_depth=10, max_features=None, min_samples_leaf=2, min_samples_split=4, n_estimators=10;, score=0.859 total time= 0.0s\n","[CV 2/5] END bootstrap=False, max_depth=10, max_features=None, min_samples_leaf=2, min_samples_split=4, n_estimators=10;, score=0.874 total time= 0.0s\n","[CV 3/5] END bootstrap=False, max_depth=10, max_features=None, min_samples_leaf=2, min_samples_split=4, n_estimators=10;, score=0.904 total time= 0.0s\n","[CV 4/5] END bootstrap=False, max_depth=10, max_features=None, min_samples_leaf=2, min_samples_split=4, n_estimators=10;, score=0.864 total time= 0.0s\n","[CV 5/5] END bootstrap=False, max_depth=10, max_features=None, min_samples_leaf=2, min_samples_split=4, n_estimators=10;, score=0.848 total time= 0.0s\n","[CV 1/5] END bootstrap=False, max_depth=10, max_features=None, min_samples_leaf=2, min_samples_split=4, n_estimators=20;, score=0.874 total time= 0.1s\n","[CV 2/5] END bootstrap=False, max_depth=10, max_features=None, min_samples_leaf=2, min_samples_split=4, n_estimators=20;, score=0.869 total time= 0.1s\n","[CV 3/5] END bootstrap=False, max_depth=10, max_features=None, min_samples_leaf=2, min_samples_split=4, n_estimators=20;, score=0.899 total time= 0.1s\n","[CV 4/5] END bootstrap=False, max_depth=10, max_features=None, min_samples_leaf=2, min_samples_split=4, n_estimators=20;, score=0.874 total time= 0.1s\n","[CV 5/5] END bootstrap=False, max_depth=10, max_features=None, min_samples_leaf=2, min_samples_split=4, n_estimators=20;, score=0.848 total time= 0.1s\n","[CV 1/5] END bootstrap=False, max_depth=10, max_features=None, min_samples_leaf=2, min_samples_split=4, n_estimators=30;, score=0.874 total time= 0.1s\n","[CV 2/5] END bootstrap=False, max_depth=10, max_features=None, min_samples_leaf=2, min_samples_split=4, n_estimators=30;, score=0.869 total time= 0.1s\n","[CV 3/5] END bootstrap=False, max_depth=10, max_features=None, min_samples_leaf=2, min_samples_split=4, n_estimators=30;, score=0.899 total time= 0.1s\n","[CV 4/5] END bootstrap=False, max_depth=10, max_features=None, min_samples_leaf=2, min_samples_split=4, n_estimators=30;, score=0.859 total time= 0.1s\n","[CV 5/5] END bootstrap=False, max_depth=10, max_features=None, min_samples_leaf=2, min_samples_split=4, n_estimators=30;, score=0.848 total time= 0.1s\n","[CV 1/5] END bootstrap=False, max_depth=10, max_features=None, min_samples_leaf=2, min_samples_split=6, n_estimators=5;, score=0.879 total time= 0.0s\n","[CV 2/5] END bootstrap=False, max_depth=10, max_features=None, min_samples_leaf=2, min_samples_split=6, n_estimators=5;, score=0.869 total time= 0.0s\n","[CV 3/5] END bootstrap=False, max_depth=10, max_features=None, min_samples_leaf=2, min_samples_split=6, n_estimators=5;, score=0.894 total time= 0.0s\n","[CV 4/5] END bootstrap=False, max_depth=10, max_features=None, min_samples_leaf=2, min_samples_split=6, n_estimators=5;, score=0.864 total time= 0.0s\n","[CV 5/5] END bootstrap=False, max_depth=10, max_features=None, min_samples_leaf=2, min_samples_split=6, n_estimators=5;, score=0.843 total time= 0.0s\n","[CV 1/5] END bootstrap=False, max_depth=10, max_features=None, min_samples_leaf=2, min_samples_split=6, n_estimators=10;, score=0.879 total time= 0.0s\n","[CV 2/5] END bootstrap=False, max_depth=10, max_features=None, min_samples_leaf=2, min_samples_split=6, n_estimators=10;, score=0.874 total time= 0.0s\n","[CV 3/5] END bootstrap=False, max_depth=10, max_features=None, min_samples_leaf=2, min_samples_split=6, n_estimators=10;, score=0.894 total time= 0.0s\n","[CV 4/5] END bootstrap=False, max_depth=10, max_features=None, min_samples_leaf=2, min_samples_split=6, n_estimators=10;, score=0.859 total time= 0.0s\n","[CV 5/5] END bootstrap=False, max_depth=10, max_features=None, min_samples_leaf=2, min_samples_split=6, n_estimators=10;, score=0.848 total time= 0.0s\n","[CV 1/5] END bootstrap=False, max_depth=10, max_features=None, min_samples_leaf=2, min_samples_split=6, n_estimators=20;, score=0.874 total time= 0.1s\n","[CV 2/5] END bootstrap=False, max_depth=10, max_features=None, min_samples_leaf=2, min_samples_split=6, n_estimators=20;, score=0.869 total time= 0.1s\n","[CV 3/5] END bootstrap=False, max_depth=10, max_features=None, min_samples_leaf=2, min_samples_split=6, n_estimators=20;, score=0.894 total time= 0.1s\n","[CV 4/5] END bootstrap=False, max_depth=10, max_features=None, min_samples_leaf=2, min_samples_split=6, n_estimators=20;, score=0.859 total time= 0.1s\n","[CV 5/5] END bootstrap=False, max_depth=10, max_features=None, min_samples_leaf=2, min_samples_split=6, n_estimators=20;, score=0.848 total time= 0.1s\n","[CV 1/5] END bootstrap=False, max_depth=10, max_features=None, min_samples_leaf=2, min_samples_split=6, n_estimators=30;, score=0.869 total time= 0.1s\n","[CV 2/5] END bootstrap=False, max_depth=10, max_features=None, min_samples_leaf=2, min_samples_split=6, n_estimators=30;, score=0.869 total time= 0.1s\n","[CV 3/5] END bootstrap=False, max_depth=10, max_features=None, min_samples_leaf=2, min_samples_split=6, n_estimators=30;, score=0.894 total time= 0.1s\n","[CV 4/5] END bootstrap=False, max_depth=10, max_features=None, min_samples_leaf=2, min_samples_split=6, n_estimators=30;, score=0.864 total time= 0.1s\n","[CV 5/5] END bootstrap=False, max_depth=10, max_features=None, min_samples_leaf=2, min_samples_split=6, n_estimators=30;, score=0.848 total time= 0.1s\n","[CV 1/5] END bootstrap=False, max_depth=10, max_features=None, min_samples_leaf=4, min_samples_split=2, n_estimators=5;, score=0.884 total time= 0.0s\n","[CV 2/5] END bootstrap=False, max_depth=10, max_features=None, min_samples_leaf=4, min_samples_split=2, n_estimators=5;, score=0.879 total time= 0.0s\n","[CV 3/5] END bootstrap=False, max_depth=10, max_features=None, min_samples_leaf=4, min_samples_split=2, n_estimators=5;, score=0.879 total time= 0.0s\n","[CV 4/5] END bootstrap=False, max_depth=10, max_features=None, min_samples_leaf=4, min_samples_split=2, n_estimators=5;, score=0.864 total time= 0.0s\n","[CV 5/5] END bootstrap=False, max_depth=10, max_features=None, min_samples_leaf=4, min_samples_split=2, n_estimators=5;, score=0.854 total time= 0.0s\n","[CV 1/5] END bootstrap=False, max_depth=10, max_features=None, min_samples_leaf=4, min_samples_split=2, n_estimators=10;, score=0.884 total time= 0.0s\n","[CV 2/5] END bootstrap=False, max_depth=10, max_features=None, min_samples_leaf=4, min_samples_split=2, n_estimators=10;, score=0.874 total time= 0.0s\n","[CV 3/5] END bootstrap=False, max_depth=10, max_features=None, min_samples_leaf=4, min_samples_split=2, n_estimators=10;, score=0.894 total time= 0.0s\n","[CV 4/5] END bootstrap=False, max_depth=10, max_features=None, min_samples_leaf=4, min_samples_split=2, n_estimators=10;, score=0.864 total time= 0.0s\n","[CV 5/5] END bootstrap=False, max_depth=10, max_features=None, min_samples_leaf=4, min_samples_split=2, n_estimators=10;, score=0.854 total time= 0.0s\n","[CV 1/5] END bootstrap=False, max_depth=10, max_features=None, min_samples_leaf=4, min_samples_split=2, n_estimators=20;, score=0.884 total time= 0.1s\n","[CV 2/5] END bootstrap=False, max_depth=10, max_features=None, min_samples_leaf=4, min_samples_split=2, n_estimators=20;, score=0.884 total time= 0.1s\n","[CV 3/5] END bootstrap=False, max_depth=10, max_features=None, min_samples_leaf=4, min_samples_split=2, n_estimators=20;, score=0.894 total time= 0.1s\n","[CV 4/5] END bootstrap=False, max_depth=10, max_features=None, min_samples_leaf=4, min_samples_split=2, n_estimators=20;, score=0.864 total time= 0.1s\n","[CV 5/5] END bootstrap=False, max_depth=10, max_features=None, min_samples_leaf=4, min_samples_split=2, n_estimators=20;, score=0.854 total time= 0.1s\n","[CV 1/5] END bootstrap=False, max_depth=10, max_features=None, min_samples_leaf=4, min_samples_split=2, n_estimators=30;, score=0.884 total time= 0.1s\n","[CV 2/5] END bootstrap=False, max_depth=10, max_features=None, min_samples_leaf=4, min_samples_split=2, n_estimators=30;, score=0.879 total time= 0.1s\n","[CV 3/5] END bootstrap=False, max_depth=10, max_features=None, min_samples_leaf=4, min_samples_split=2, n_estimators=30;, score=0.894 total time= 0.1s\n","[CV 4/5] END bootstrap=False, max_depth=10, max_features=None, min_samples_leaf=4, min_samples_split=2, n_estimators=30;, score=0.864 total time= 0.1s\n","[CV 5/5] END bootstrap=False, max_depth=10, max_features=None, min_samples_leaf=4, min_samples_split=2, n_estimators=30;, score=0.854 total time= 0.1s\n","[CV 1/5] END bootstrap=False, max_depth=10, max_features=None, min_samples_leaf=4, min_samples_split=4, n_estimators=5;, score=0.884 total time= 0.0s\n","[CV 2/5] END bootstrap=False, max_depth=10, max_features=None, min_samples_leaf=4, min_samples_split=4, n_estimators=5;, score=0.874 total time= 0.0s\n","[CV 3/5] END bootstrap=False, max_depth=10, max_features=None, min_samples_leaf=4, min_samples_split=4, n_estimators=5;, score=0.884 total time= 0.0s\n","[CV 4/5] END bootstrap=False, max_depth=10, max_features=None, min_samples_leaf=4, min_samples_split=4, n_estimators=5;, score=0.864 total time= 0.0s\n","[CV 5/5] END bootstrap=False, max_depth=10, max_features=None, min_samples_leaf=4, min_samples_split=4, n_estimators=5;, score=0.854 total time= 0.0s\n","[CV 1/5] END bootstrap=False, max_depth=10, max_features=None, min_samples_leaf=4, min_samples_split=4, n_estimators=10;, score=0.884 total time= 0.0s\n","[CV 2/5] END bootstrap=False, max_depth=10, max_features=None, min_samples_leaf=4, min_samples_split=4, n_estimators=10;, score=0.884 total time= 0.0s\n","[CV 3/5] END bootstrap=False, max_depth=10, max_features=None, min_samples_leaf=4, min_samples_split=4, n_estimators=10;, score=0.889 total time= 0.0s\n","[CV 4/5] END bootstrap=False, max_depth=10, max_features=None, min_samples_leaf=4, min_samples_split=4, n_estimators=10;, score=0.859 total time= 0.0s\n","[CV 5/5] END bootstrap=False, max_depth=10, max_features=None, min_samples_leaf=4, min_samples_split=4, n_estimators=10;, score=0.854 total time= 0.0s\n","[CV 1/5] END bootstrap=False, max_depth=10, max_features=None, min_samples_leaf=4, min_samples_split=4, n_estimators=20;, score=0.884 total time= 0.1s\n","[CV 2/5] END bootstrap=False, max_depth=10, max_features=None, min_samples_leaf=4, min_samples_split=4, n_estimators=20;, score=0.884 total time= 0.1s\n","[CV 3/5] END bootstrap=False, max_depth=10, max_features=None, min_samples_leaf=4, min_samples_split=4, n_estimators=20;, score=0.894 total time= 0.1s\n","[CV 4/5] END bootstrap=False, max_depth=10, max_features=None, min_samples_leaf=4, min_samples_split=4, n_estimators=20;, score=0.864 total time= 0.1s\n","[CV 5/5] END bootstrap=False, max_depth=10, max_features=None, min_samples_leaf=4, min_samples_split=4, n_estimators=20;, score=0.854 total time= 0.1s\n","[CV 1/5] END bootstrap=False, max_depth=10, max_features=None, min_samples_leaf=4, min_samples_split=4, n_estimators=30;, score=0.884 total time= 0.1s\n","[CV 2/5] END bootstrap=False, max_depth=10, max_features=None, min_samples_leaf=4, min_samples_split=4, n_estimators=30;, score=0.884 total time= 0.1s\n","[CV 3/5] END bootstrap=False, max_depth=10, max_features=None, min_samples_leaf=4, min_samples_split=4, n_estimators=30;, score=0.894 total time= 0.1s\n","[CV 4/5] END bootstrap=False, max_depth=10, max_features=None, min_samples_leaf=4, min_samples_split=4, n_estimators=30;, score=0.864 total time= 0.1s\n","[CV 5/5] END bootstrap=False, max_depth=10, max_features=None, min_samples_leaf=4, min_samples_split=4, n_estimators=30;, score=0.854 total time= 0.1s\n","[CV 1/5] END bootstrap=False, max_depth=10, max_features=None, min_samples_leaf=4, min_samples_split=6, n_estimators=5;, score=0.884 total time= 0.0s\n","[CV 2/5] END bootstrap=False, max_depth=10, max_features=None, min_samples_leaf=4, min_samples_split=6, n_estimators=5;, score=0.884 total time= 0.0s\n","[CV 3/5] END bootstrap=False, max_depth=10, max_features=None, min_samples_leaf=4, min_samples_split=6, n_estimators=5;, score=0.894 total time= 0.0s\n","[CV 4/5] END bootstrap=False, max_depth=10, max_features=None, min_samples_leaf=4, min_samples_split=6, n_estimators=5;, score=0.864 total time= 0.0s\n","[CV 5/5] END bootstrap=False, max_depth=10, max_features=None, min_samples_leaf=4, min_samples_split=6, n_estimators=5;, score=0.854 total time= 0.0s\n","[CV 1/5] END bootstrap=False, max_depth=10, max_features=None, min_samples_leaf=4, min_samples_split=6, n_estimators=10;, score=0.884 total time= 0.0s\n","[CV 2/5] END bootstrap=False, max_depth=10, max_features=None, min_samples_leaf=4, min_samples_split=6, n_estimators=10;, score=0.884 total time= 0.0s\n","[CV 3/5] END bootstrap=False, max_depth=10, max_features=None, min_samples_leaf=4, min_samples_split=6, n_estimators=10;, score=0.899 total time= 0.0s\n","[CV 4/5] END bootstrap=False, max_depth=10, max_features=None, min_samples_leaf=4, min_samples_split=6, n_estimators=10;, score=0.864 total time= 0.0s\n","[CV 5/5] END bootstrap=False, max_depth=10, max_features=None, min_samples_leaf=4, min_samples_split=6, n_estimators=10;, score=0.854 total time= 0.0s\n","[CV 1/5] END bootstrap=False, max_depth=10, max_features=None, min_samples_leaf=4, min_samples_split=6, n_estimators=20;, score=0.884 total time= 0.1s\n","[CV 2/5] END bootstrap=False, max_depth=10, max_features=None, min_samples_leaf=4, min_samples_split=6, n_estimators=20;, score=0.874 total time= 0.1s\n","[CV 3/5] END bootstrap=False, max_depth=10, max_features=None, min_samples_leaf=4, min_samples_split=6, n_estimators=20;, score=0.894 total time= 0.1s\n","[CV 4/5] END bootstrap=False, max_depth=10, max_features=None, min_samples_leaf=4, min_samples_split=6, n_estimators=20;, score=0.864 total time= 0.1s\n","[CV 5/5] END bootstrap=False, max_depth=10, max_features=None, min_samples_leaf=4, min_samples_split=6, n_estimators=20;, score=0.854 total time= 0.1s\n","[CV 1/5] END bootstrap=False, max_depth=10, max_features=None, min_samples_leaf=4, min_samples_split=6, n_estimators=30;, score=0.884 total time= 0.1s\n","[CV 2/5] END bootstrap=False, max_depth=10, max_features=None, min_samples_leaf=4, min_samples_split=6, n_estimators=30;, score=0.879 total time= 0.1s\n","[CV 3/5] END bootstrap=False, max_depth=10, max_features=None, min_samples_leaf=4, min_samples_split=6, n_estimators=30;, score=0.894 total time= 0.2s\n","[CV 4/5] END bootstrap=False, max_depth=10, max_features=None, min_samples_leaf=4, min_samples_split=6, n_estimators=30;, score=0.864 total time= 0.1s\n","[CV 5/5] END bootstrap=False, max_depth=10, max_features=None, min_samples_leaf=4, min_samples_split=6, n_estimators=30;, score=0.854 total time= 0.2s\n","[CV 1/5] END bootstrap=False, max_depth=10, max_features=None, min_samples_leaf=6, min_samples_split=2, n_estimators=5;, score=0.889 total time= 0.0s\n","[CV 2/5] END bootstrap=False, max_depth=10, max_features=None, min_samples_leaf=6, min_samples_split=2, n_estimators=5;, score=0.879 total time= 0.0s\n","[CV 3/5] END bootstrap=False, max_depth=10, max_features=None, min_samples_leaf=6, min_samples_split=2, n_estimators=5;, score=0.894 total time= 0.0s\n","[CV 4/5] END bootstrap=False, max_depth=10, max_features=None, min_samples_leaf=6, min_samples_split=2, n_estimators=5;, score=0.864 total time= 0.0s\n","[CV 5/5] END bootstrap=False, max_depth=10, max_features=None, min_samples_leaf=6, min_samples_split=2, n_estimators=5;, score=0.854 total time= 0.0s\n","[CV 1/5] END bootstrap=False, max_depth=10, max_features=None, min_samples_leaf=6, min_samples_split=2, n_estimators=10;, score=0.889 total time= 0.0s\n","[CV 2/5] END bootstrap=False, max_depth=10, max_features=None, min_samples_leaf=6, min_samples_split=2, n_estimators=10;, score=0.879 total time= 0.1s\n","[CV 3/5] END bootstrap=False, max_depth=10, max_features=None, min_samples_leaf=6, min_samples_split=2, n_estimators=10;, score=0.894 total time= 0.0s\n","[CV 4/5] END bootstrap=False, max_depth=10, max_features=None, min_samples_leaf=6, min_samples_split=2, n_estimators=10;, score=0.864 total time= 0.0s\n","[CV 5/5] END bootstrap=False, max_depth=10, max_features=None, min_samples_leaf=6, min_samples_split=2, n_estimators=10;, score=0.854 total time= 0.0s\n","[CV 1/5] END bootstrap=False, max_depth=10, max_features=None, min_samples_leaf=6, min_samples_split=2, n_estimators=20;, score=0.889 total time= 0.1s\n","[CV 2/5] END bootstrap=False, max_depth=10, max_features=None, min_samples_leaf=6, min_samples_split=2, n_estimators=20;, score=0.879 total time= 0.1s\n","[CV 3/5] END bootstrap=False, max_depth=10, max_features=None, min_samples_leaf=6, min_samples_split=2, n_estimators=20;, score=0.894 total time= 0.1s\n","[CV 4/5] END bootstrap=False, max_depth=10, max_features=None, min_samples_leaf=6, min_samples_split=2, n_estimators=20;, score=0.864 total time= 0.1s\n","[CV 5/5] END bootstrap=False, max_depth=10, max_features=None, min_samples_leaf=6, min_samples_split=2, n_estimators=20;, score=0.854 total time= 0.1s\n","[CV 1/5] END bootstrap=False, max_depth=10, max_features=None, min_samples_leaf=6, min_samples_split=2, n_estimators=30;, score=0.889 total time= 0.1s\n","[CV 2/5] END bootstrap=False, max_depth=10, max_features=None, min_samples_leaf=6, min_samples_split=2, n_estimators=30;, score=0.879 total time= 0.1s\n","[CV 3/5] END bootstrap=False, max_depth=10, max_features=None, min_samples_leaf=6, min_samples_split=2, n_estimators=30;, score=0.894 total time= 0.1s\n","[CV 4/5] END bootstrap=False, max_depth=10, max_features=None, min_samples_leaf=6, min_samples_split=2, n_estimators=30;, score=0.864 total time= 0.1s\n","[CV 5/5] END bootstrap=False, max_depth=10, max_features=None, min_samples_leaf=6, min_samples_split=2, n_estimators=30;, score=0.854 total time= 0.2s\n","[CV 1/5] END bootstrap=False, max_depth=10, max_features=None, min_samples_leaf=6, min_samples_split=4, n_estimators=5;, score=0.889 total time= 0.0s\n","[CV 2/5] END bootstrap=False, max_depth=10, max_features=None, min_samples_leaf=6, min_samples_split=4, n_estimators=5;, score=0.879 total time= 0.0s\n","[CV 3/5] END bootstrap=False, max_depth=10, max_features=None, min_samples_leaf=6, min_samples_split=4, n_estimators=5;, score=0.894 total time= 0.0s\n","[CV 4/5] END bootstrap=False, max_depth=10, max_features=None, min_samples_leaf=6, min_samples_split=4, n_estimators=5;, score=0.864 total time= 0.0s\n","[CV 5/5] END bootstrap=False, max_depth=10, max_features=None, min_samples_leaf=6, min_samples_split=4, n_estimators=5;, score=0.854 total time= 0.0s\n","[CV 1/5] END bootstrap=False, max_depth=10, max_features=None, min_samples_leaf=6, min_samples_split=4, n_estimators=10;, score=0.889 total time= 0.1s\n","[CV 2/5] END bootstrap=False, max_depth=10, max_features=None, min_samples_leaf=6, min_samples_split=4, n_estimators=10;, score=0.874 total time= 0.1s\n","[CV 3/5] END bootstrap=False, max_depth=10, max_features=None, min_samples_leaf=6, min_samples_split=4, n_estimators=10;, score=0.894 total time= 0.1s\n","[CV 4/5] END bootstrap=False, max_depth=10, max_features=None, min_samples_leaf=6, min_samples_split=4, n_estimators=10;, score=0.864 total time= 0.1s\n","[CV 5/5] END bootstrap=False, max_depth=10, max_features=None, min_samples_leaf=6, min_samples_split=4, n_estimators=10;, score=0.854 total time= 0.1s\n","[CV 1/5] END bootstrap=False, max_depth=10, max_features=None, min_samples_leaf=6, min_samples_split=4, n_estimators=20;, score=0.889 total time= 0.1s\n","[CV 2/5] END bootstrap=False, max_depth=10, max_features=None, min_samples_leaf=6, min_samples_split=4, n_estimators=20;, score=0.879 total time= 0.1s\n","[CV 3/5] END bootstrap=False, max_depth=10, max_features=None, min_samples_leaf=6, min_samples_split=4, n_estimators=20;, score=0.894 total time= 0.1s\n","[CV 4/5] END bootstrap=False, max_depth=10, max_features=None, min_samples_leaf=6, min_samples_split=4, n_estimators=20;, score=0.864 total time= 0.1s\n","[CV 5/5] END bootstrap=False, max_depth=10, max_features=None, min_samples_leaf=6, min_samples_split=4, n_estimators=20;, score=0.854 total time= 0.1s\n","[CV 1/5] END bootstrap=False, max_depth=10, max_features=None, min_samples_leaf=6, min_samples_split=4, n_estimators=30;, score=0.889 total time= 0.1s\n","[CV 2/5] END bootstrap=False, max_depth=10, max_features=None, min_samples_leaf=6, min_samples_split=4, n_estimators=30;, score=0.879 total time= 0.1s\n","[CV 3/5] END bootstrap=False, max_depth=10, max_features=None, min_samples_leaf=6, min_samples_split=4, n_estimators=30;, score=0.894 total time= 0.1s\n","[CV 4/5] END bootstrap=False, max_depth=10, max_features=None, min_samples_leaf=6, min_samples_split=4, n_estimators=30;, score=0.864 total time= 0.1s\n","[CV 5/5] END bootstrap=False, max_depth=10, max_features=None, min_samples_leaf=6, min_samples_split=4, n_estimators=30;, score=0.854 total time= 0.1s\n","[CV 1/5] END bootstrap=False, max_depth=10, max_features=None, min_samples_leaf=6, min_samples_split=6, n_estimators=5;, score=0.889 total time= 0.0s\n","[CV 2/5] END bootstrap=False, max_depth=10, max_features=None, min_samples_leaf=6, min_samples_split=6, n_estimators=5;, score=0.879 total time= 0.0s\n","[CV 3/5] END bootstrap=False, max_depth=10, max_features=None, min_samples_leaf=6, min_samples_split=6, n_estimators=5;, score=0.894 total time= 0.0s\n","[CV 4/5] END bootstrap=False, max_depth=10, max_features=None, min_samples_leaf=6, min_samples_split=6, n_estimators=5;, score=0.864 total time= 0.0s\n","[CV 5/5] END bootstrap=False, max_depth=10, max_features=None, min_samples_leaf=6, min_samples_split=6, n_estimators=5;, score=0.854 total time= 0.0s\n","[CV 1/5] END bootstrap=False, max_depth=10, max_features=None, min_samples_leaf=6, min_samples_split=6, n_estimators=10;, score=0.889 total time= 0.0s\n","[CV 2/5] END bootstrap=False, max_depth=10, max_features=None, min_samples_leaf=6, min_samples_split=6, n_estimators=10;, score=0.879 total time= 0.0s\n","[CV 3/5] END bootstrap=False, max_depth=10, max_features=None, min_samples_leaf=6, min_samples_split=6, n_estimators=10;, score=0.894 total time= 0.0s\n","[CV 4/5] END bootstrap=False, max_depth=10, max_features=None, min_samples_leaf=6, min_samples_split=6, n_estimators=10;, score=0.864 total time= 0.0s\n","[CV 5/5] END bootstrap=False, max_depth=10, max_features=None, min_samples_leaf=6, min_samples_split=6, n_estimators=10;, score=0.854 total time= 0.0s\n","[CV 1/5] END bootstrap=False, max_depth=10, max_features=None, min_samples_leaf=6, min_samples_split=6, n_estimators=20;, score=0.889 total time= 0.1s\n","[CV 2/5] END bootstrap=False, max_depth=10, max_features=None, min_samples_leaf=6, min_samples_split=6, n_estimators=20;, score=0.879 total time= 0.1s\n","[CV 3/5] END bootstrap=False, max_depth=10, max_features=None, min_samples_leaf=6, min_samples_split=6, n_estimators=20;, score=0.894 total time= 0.1s\n","[CV 4/5] END bootstrap=False, max_depth=10, max_features=None, min_samples_leaf=6, min_samples_split=6, n_estimators=20;, score=0.864 total time= 0.1s\n","[CV 5/5] END bootstrap=False, max_depth=10, max_features=None, min_samples_leaf=6, min_samples_split=6, n_estimators=20;, score=0.854 total time= 0.1s\n","[CV 1/5] END bootstrap=False, max_depth=10, max_features=None, min_samples_leaf=6, min_samples_split=6, n_estimators=30;, score=0.889 total time= 0.1s\n","[CV 2/5] END bootstrap=False, max_depth=10, max_features=None, min_samples_leaf=6, min_samples_split=6, n_estimators=30;, score=0.879 total time= 0.1s\n","[CV 3/5] END bootstrap=False, max_depth=10, max_features=None, min_samples_leaf=6, min_samples_split=6, n_estimators=30;, score=0.894 total time= 0.1s\n","[CV 4/5] END bootstrap=False, max_depth=10, max_features=None, min_samples_leaf=6, min_samples_split=6, n_estimators=30;, score=0.864 total time= 0.1s\n","[CV 5/5] END bootstrap=False, max_depth=10, max_features=None, min_samples_leaf=6, min_samples_split=6, n_estimators=30;, score=0.854 total time= 0.1s\n"]}],"source":["rf_grid_search={'bootstrap':[True,False],\n"," 'max_depth':[2,6,10],\n"," 'n_estimators':[5,10,20,30],\n"," 'max_features':['sqrt','log2',None],\n"," 'min_samples_leaf':[2,4,6],\n"," 'min_samples_split':[2,4,6]\n"," }\n","rf_grid=GridSearchCV(rfc_model,param_grid=rf_grid_search,cv=5,refit=True,verbose=3,scoring='accuracy').fit(rfc_X_train,rfc_y_train)"]},{"cell_type":"code","execution_count":91,"metadata":{"colab":{"base_uri":"https://localhost:8080/"},"id":"PD5iEcs6dLqi","outputId":"c33565ad-b07a-4338-94b4-82f6515e5dea","executionInfo":{"status":"ok","timestamp":1716217285290,"user_tz":300,"elapsed":174,"user":{"displayName":"Daniel Meier","userId":"06365571306976914087"}}},"outputs":[{"output_type":"stream","name":"stdout","text":["Best hyperarameters: {'bootstrap': True, 'max_depth': 6, 'max_features': 'log2', 'min_samples_leaf': 2, 'min_samples_split': 6, 'n_estimators': 5}\n","Mean Accuracy: 0.895\n"]}],"source":["rf_best_params=rf_grid.best_params_\n","rf_best_estim=rf_grid.best_estimator_\n","rf_feat_importance=rf_best_estim.feature_importances_\n","rf_average_score=\"{:.3}\".format(rf_grid.best_score_)\n","print(f\"Best hyperarameters: {rf_best_params}\")\n","print(f\"Mean Accuracy: {rf_average_score}\")"]},{"cell_type":"code","execution_count":92,"metadata":{"id":"xyyisDhxd4RO","colab":{"base_uri":"https://localhost:8080/","height":677},"executionInfo":{"status":"ok","timestamp":1716217290140,"user_tz":300,"elapsed":178,"user":{"displayName":"Daniel Meier","userId":"06365571306976914087"}},"outputId":"7a7edb11-a6d5-4e76-c025-454702248de5"},"outputs":[{"output_type":"execute_result","data":{"text/plain":[" Importance\n","academic_performance 0.239793\n","depression 0.239335\n","social_support 0.121686\n","blood_pressure 0.102990\n","peer_pressure 0.085484\n","anxiety_level 0.078727\n","bullying 0.022320\n","noise_level 0.015323\n","self_esteem 0.014190\n","future_career_concerns 0.014094\n","study_load 0.012096\n","extracurricular_activities 0.010304\n","living_conditions 0.009991\n","safety 0.008307\n","basic_needs 0.006967\n","sleep_quality 0.005700\n","headache 0.005232\n","teacher_student_relationship 0.003567\n","breathing_problem 0.002611\n","mental_health_history 0.001283"],"text/html":["\n","
\n","
\n","\n","\n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n","
Importance
academic_performance0.239793
depression0.239335
social_support0.121686
blood_pressure0.102990
peer_pressure0.085484
anxiety_level0.078727
bullying0.022320
noise_level0.015323
self_esteem0.014190
future_career_concerns0.014094
study_load0.012096
extracurricular_activities0.010304
living_conditions0.009991
safety0.008307
basic_needs0.006967
sleep_quality0.005700
headache0.005232
teacher_student_relationship0.003567
breathing_problem0.002611
mental_health_history0.001283
\n","
\n","
\n","\n","
\n"," \n","\n"," \n","\n"," \n","
\n","\n","\n","
\n"," \n","\n","\n","\n"," \n","
\n","\n","
\n"," \n"," \n"," \n","
\n","\n","
\n","
\n"],"application/vnd.google.colaboratory.intrinsic+json":{"type":"dataframe","variable_name":"feature_imp_df","summary":"{\n \"name\": \"feature_imp_df\",\n \"rows\": 20,\n \"fields\": [\n {\n \"column\": \"Importance\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 0.07447554897983502,\n \"min\": 0.0012833584149463818,\n \"max\": 0.23979305724238617,\n \"num_unique_values\": 20,\n \"samples\": [\n 0.23979305724238617,\n 0.003567468290912466,\n 0.005699562937988627\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n }\n ]\n}"}},"metadata":{},"execution_count":92}],"source":["feat_imp_col_names=rfc_X.columns\n","feature_imp_df=pd.DataFrame(rf_feat_importance,index=feat_imp_col_names,columns=['Importance'])\n","feature_imp_df=feature_imp_df.sort_values(by='Importance',ascending=False)\n","feature_imp_df"]},{"cell_type":"code","execution_count":93,"metadata":{"id":"bOqStbH_d2qc","colab":{"base_uri":"https://localhost:8080/"},"executionInfo":{"status":"ok","timestamp":1716217305455,"user_tz":300,"elapsed":128,"user":{"displayName":"Daniel Meier","userId":"06365571306976914087"}},"outputId":"8d59f249-f022-4c65-fe6a-b6ab2c3414af"},"outputs":[{"output_type":"stream","name":"stdout","text":["No Scaling, Tuned Model\n","\n","0.9515\n","0.8909\n","\n"," precision recall f1-score support\n","\n"," 0 0.96 0.82 0.89 33\n"," 1 0.80 0.91 0.85 35\n"," 2 0.93 0.93 0.93 42\n","\n"," accuracy 0.89 110\n"," macro avg 0.90 0.89 0.89 110\n","weighted avg 0.90 0.89 0.89 110\n","\n"]}],"source":["rfc_model=rf_best_estim.fit(rfc_X_train,rfc_y_train)\n","\n","rfc_y_train_pred=rfc_model.predict(rfc_X_train)\n","rfc_y_pred=rfc_model.predict(rfc_X_test)\n","rfc_train_accuracy=accuracy_score(rfc_y_train,rfc_y_train_pred).round(4)\n","rfc_accuracy=accuracy_score(rfc_y_test,rfc_y_pred).round(4)\n","print('No Scaling, Tuned Model\\n')\n","print(rfc_train_accuracy)\n","print(rfc_accuracy)\n","print()\n","print(classification_report(rfc_y_test,rfc_y_pred))\n"]},{"cell_type":"code","execution_count":null,"metadata":{"id":"ocNqpZu11WO2"},"outputs":[],"source":[]},{"cell_type":"markdown","metadata":{"id":"aEUgECHhh9rB"},"source":["### Iteration 3)\n"," * Random Forest Classifier\n"," * Standardized Scaled Data"]},{"cell_type":"code","execution_count":94,"metadata":{"id":"3yOsnidEh8bw","executionInfo":{"status":"ok","timestamp":1716217316535,"user_tz":300,"elapsed":154,"user":{"displayName":"Daniel Meier","userId":"06365571306976914087"}}},"outputs":[],"source":["rfscale_X=df.drop(['stress_level'],axis=1)\n","rfscale_y=df.stress_level\n","\n","rfscale_X_train,rfscale_X_test,rfscale_y_train,rfscale_y_test=train_test_split(rfscale_X,rfscale_y,test_size=.1,random_state=43)\n","\n","sc = StandardScaler()\n","scaled_train_data = pd.DataFrame(sc.fit_transform(rfscale_X_train), columns = rfscale_X.columns)\n","scaled_test_data = pd.DataFrame(sc.transform(rfscale_X_test), columns = rfscale_X.columns)\n"]},{"cell_type":"code","execution_count":95,"metadata":{"id":"LjgXO5wEwq4z","colab":{"base_uri":"https://localhost:8080/"},"executionInfo":{"status":"ok","timestamp":1716217317914,"user_tz":300,"elapsed":175,"user":{"displayName":"Daniel Meier","userId":"06365571306976914087"}},"outputId":"488391c4-14b3-4064-d3af-38f0b043ee25"},"outputs":[{"output_type":"stream","name":"stdout","text":["1.0\n","0.8909090909090909\n","[[28 1 4]\n"," [ 2 33 0]\n"," [ 2 3 37]]\n"]}],"source":["rfscale_model=RandomForestClassifier().fit(rfscale_X_train,rfscale_y_train)\n","rfscale_y_pred=rfscale_model.predict(rfscale_X_test)\n","print(rfscale_model.score(rfscale_X_train,rfscale_y_train))\n","print(rfscale_model.score(rfscale_X_test,rfscale_y_test))\n","print(confusion_matrix(rfscale_y_test,rfscale_y_pred))\n","\n"]},{"cell_type":"code","execution_count":96,"metadata":{"id":"q50s8UekwM1i","colab":{"base_uri":"https://localhost:8080/","height":677},"executionInfo":{"status":"ok","timestamp":1716217323698,"user_tz":300,"elapsed":179,"user":{"displayName":"Daniel Meier","userId":"06365571306976914087"}},"outputId":"6d3b5182-8ef9-419f-b017-c2bde61de28f"},"outputs":[{"output_type":"execute_result","data":{"text/plain":[" 0\n","blood_pressure 0.107561\n","sleep_quality 0.096442\n","teacher_student_relationship 0.092478\n","anxiety_level 0.071901\n","extracurricular_activities 0.070979\n","depression 0.068497\n","safety 0.064523\n","headache 0.063609\n","social_support 0.062342\n","future_career_concerns 0.059891\n","peer_pressure 0.040894\n","bullying 0.040507\n","basic_needs 0.040145\n","self_esteem 0.034302\n","academic_performance 0.029969\n","living_conditions 0.015827\n","study_load 0.012825\n","noise_level 0.012232\n","breathing_problem 0.010159\n","mental_health_history 0.004917"],"text/html":["\n","
\n","
\n","\n","\n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n","
0
blood_pressure0.107561
sleep_quality0.096442
teacher_student_relationship0.092478
anxiety_level0.071901
extracurricular_activities0.070979
depression0.068497
safety0.064523
headache0.063609
social_support0.062342
future_career_concerns0.059891
peer_pressure0.040894
bullying0.040507
basic_needs0.040145
self_esteem0.034302
academic_performance0.029969
living_conditions0.015827
study_load0.012825
noise_level0.012232
breathing_problem0.010159
mental_health_history0.004917
\n","
\n","
\n","\n","
\n"," \n","\n"," \n","\n"," \n","
\n","\n","\n","
\n"," \n","\n","\n","\n"," \n","
\n","\n","
\n","
\n"],"application/vnd.google.colaboratory.intrinsic+json":{"type":"dataframe","summary":"{\n \"name\": \"pd\",\n \"rows\": 20,\n \"fields\": [\n {\n \"column\": 0,\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 0.030518664861581304,\n \"min\": 0.004916585337590592,\n \"max\": 0.10756072108675069,\n \"num_unique_values\": 20,\n \"samples\": [\n 0.10756072108675069,\n 0.012231850927765839,\n 0.01582728683961223\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n }\n ]\n}"}},"metadata":{},"execution_count":96}],"source":["pd.DataFrame(rfscale_model.feature_importances_,index=rfscale_X_train.columns).sort_values(by=0,ascending=False)"]},{"cell_type":"code","execution_count":97,"metadata":{"id":"YBEJs3QnwMj1","colab":{"base_uri":"https://localhost:8080/"},"executionInfo":{"status":"ok","timestamp":1716217328239,"user_tz":300,"elapsed":132,"user":{"displayName":"Daniel Meier","userId":"06365571306976914087"}},"outputId":"06372a63-7d7c-4e0a-841a-f5116e95dd5f"},"outputs":[{"output_type":"stream","name":"stdout","text":[" precision recall f1-score support\n","\n"," 0 0.88 0.85 0.86 33\n"," 1 0.89 0.94 0.92 35\n"," 2 0.90 0.88 0.89 42\n","\n"," accuracy 0.89 110\n"," macro avg 0.89 0.89 0.89 110\n","weighted avg 0.89 0.89 0.89 110\n","\n"]}],"source":["print(classification_report(rfscale_y_test,rfscale_y_pred))"]},{"cell_type":"code","execution_count":98,"metadata":{"id":"CUXP504PxGvF","colab":{"base_uri":"https://localhost:8080/"},"executionInfo":{"status":"ok","timestamp":1716217333079,"user_tz":300,"elapsed":266,"user":{"displayName":"Daniel Meier","userId":"06365571306976914087"}},"outputId":"1ec5f39c-d6fd-425b-8d26-e55053f8d9c8"},"outputs":[{"output_type":"stream","name":"stdout","text":["Random Forest Classifier on Scaled Data Accuracy: 0.8909090909090909\n"]}],"source":["rfscale_accuracy=accuracy_score(rfscale_y_test,rfscale_y_pred)\n","print(\"Random Forest Classifier on Scaled Data Accuracy:\", rfscale_accuracy)"]},{"cell_type":"markdown","metadata":{"id":"ReJi3e1_iMrM"},"source":["### Iteration 4)\n"," * Random Forest Classifier\n"," * Scaled Data\n"," * Grid Search"]},{"cell_type":"code","execution_count":99,"metadata":{"colab":{"base_uri":"https://localhost:8080/"},"executionInfo":{"elapsed":148120,"status":"ok","timestamp":1716217490960,"user":{"displayName":"Daniel Meier","userId":"06365571306976914087"},"user_tz":300},"id":"et453sFwiVN0","outputId":"195d5c4f-3b21-4ea0-efca-5def5107c69d"},"outputs":[{"output_type":"stream","name":"stdout","text":["Fitting 5 folds for each of 648 candidates, totalling 3240 fits\n","[CV 1/5] END bootstrap=True, max_depth=2, max_features=sqrt, min_samples_leaf=2, min_samples_split=2, n_estimators=5;, score=0.864 total time= 0.0s\n","[CV 2/5] END bootstrap=True, max_depth=2, max_features=sqrt, min_samples_leaf=2, min_samples_split=2, n_estimators=5;, score=0.869 total time= 0.0s\n","[CV 3/5] END bootstrap=True, max_depth=2, max_features=sqrt, min_samples_leaf=2, min_samples_split=2, n_estimators=5;, score=0.874 total time= 0.0s\n","[CV 4/5] END bootstrap=True, max_depth=2, max_features=sqrt, min_samples_leaf=2, min_samples_split=2, n_estimators=5;, score=0.859 total time= 0.0s\n","[CV 5/5] END bootstrap=True, max_depth=2, max_features=sqrt, min_samples_leaf=2, min_samples_split=2, n_estimators=5;, score=0.889 total time= 0.0s\n","[CV 1/5] END bootstrap=True, max_depth=2, max_features=sqrt, min_samples_leaf=2, min_samples_split=2, n_estimators=10;, score=0.884 total time= 0.0s\n","[CV 2/5] END bootstrap=True, max_depth=2, max_features=sqrt, min_samples_leaf=2, min_samples_split=2, n_estimators=10;, score=0.889 total time= 0.0s\n","[CV 3/5] END bootstrap=True, max_depth=2, max_features=sqrt, min_samples_leaf=2, min_samples_split=2, n_estimators=10;, score=0.894 total time= 0.0s\n","[CV 4/5] END bootstrap=True, max_depth=2, max_features=sqrt, min_samples_leaf=2, min_samples_split=2, n_estimators=10;, score=0.864 total time= 0.0s\n","[CV 5/5] END bootstrap=True, max_depth=2, max_features=sqrt, min_samples_leaf=2, min_samples_split=2, n_estimators=10;, score=0.884 total time= 0.0s\n","[CV 1/5] END bootstrap=True, max_depth=2, max_features=sqrt, min_samples_leaf=2, min_samples_split=2, n_estimators=20;, score=0.864 total time= 0.0s\n","[CV 2/5] END bootstrap=True, max_depth=2, max_features=sqrt, min_samples_leaf=2, min_samples_split=2, n_estimators=20;, score=0.879 total time= 0.0s\n","[CV 3/5] END bootstrap=True, max_depth=2, max_features=sqrt, min_samples_leaf=2, min_samples_split=2, n_estimators=20;, score=0.884 total time= 0.0s\n","[CV 4/5] END bootstrap=True, max_depth=2, max_features=sqrt, min_samples_leaf=2, min_samples_split=2, n_estimators=20;, score=0.874 total time= 0.0s\n","[CV 5/5] END bootstrap=True, max_depth=2, max_features=sqrt, min_samples_leaf=2, min_samples_split=2, n_estimators=20;, score=0.874 total time= 0.1s\n","[CV 1/5] END bootstrap=True, max_depth=2, max_features=sqrt, min_samples_leaf=2, min_samples_split=2, n_estimators=30;, score=0.879 total time= 0.1s\n","[CV 2/5] END bootstrap=True, max_depth=2, max_features=sqrt, min_samples_leaf=2, min_samples_split=2, n_estimators=30;, score=0.864 total time= 0.1s\n","[CV 3/5] END bootstrap=True, max_depth=2, max_features=sqrt, min_samples_leaf=2, min_samples_split=2, n_estimators=30;, score=0.874 total time= 0.1s\n","[CV 4/5] END bootstrap=True, max_depth=2, max_features=sqrt, min_samples_leaf=2, min_samples_split=2, n_estimators=30;, score=0.884 total time= 0.1s\n","[CV 5/5] END bootstrap=True, max_depth=2, max_features=sqrt, min_samples_leaf=2, min_samples_split=2, n_estimators=30;, score=0.884 total time= 0.1s\n","[CV 1/5] END bootstrap=True, max_depth=2, max_features=sqrt, min_samples_leaf=2, min_samples_split=4, n_estimators=5;, score=0.864 total time= 0.0s\n","[CV 2/5] END bootstrap=True, max_depth=2, max_features=sqrt, min_samples_leaf=2, min_samples_split=4, n_estimators=5;, score=0.889 total time= 0.0s\n","[CV 3/5] END bootstrap=True, max_depth=2, max_features=sqrt, min_samples_leaf=2, min_samples_split=4, n_estimators=5;, score=0.889 total time= 0.0s\n","[CV 4/5] END bootstrap=True, max_depth=2, max_features=sqrt, min_samples_leaf=2, min_samples_split=4, n_estimators=5;, score=0.848 total time= 0.0s\n","[CV 5/5] END bootstrap=True, max_depth=2, max_features=sqrt, min_samples_leaf=2, min_samples_split=4, n_estimators=5;, score=0.894 total time= 0.0s\n","[CV 1/5] END bootstrap=True, max_depth=2, max_features=sqrt, min_samples_leaf=2, min_samples_split=4, n_estimators=10;, score=0.859 total time= 0.0s\n","[CV 2/5] END bootstrap=True, max_depth=2, max_features=sqrt, min_samples_leaf=2, min_samples_split=4, n_estimators=10;, score=0.879 total time= 0.0s\n","[CV 3/5] END bootstrap=True, max_depth=2, max_features=sqrt, min_samples_leaf=2, min_samples_split=4, n_estimators=10;, score=0.899 total time= 0.0s\n","[CV 4/5] END bootstrap=True, max_depth=2, max_features=sqrt, min_samples_leaf=2, min_samples_split=4, n_estimators=10;, score=0.869 total time= 0.0s\n","[CV 5/5] END bootstrap=True, max_depth=2, max_features=sqrt, min_samples_leaf=2, min_samples_split=4, n_estimators=10;, score=0.904 total time= 0.0s\n","[CV 1/5] END bootstrap=True, max_depth=2, max_features=sqrt, min_samples_leaf=2, min_samples_split=4, n_estimators=20;, score=0.859 total time= 0.1s\n","[CV 2/5] END bootstrap=True, max_depth=2, max_features=sqrt, min_samples_leaf=2, min_samples_split=4, n_estimators=20;, score=0.869 total time= 0.1s\n","[CV 3/5] END bootstrap=True, max_depth=2, max_features=sqrt, min_samples_leaf=2, min_samples_split=4, n_estimators=20;, score=0.874 total time= 0.1s\n","[CV 4/5] END bootstrap=True, max_depth=2, max_features=sqrt, min_samples_leaf=2, min_samples_split=4, n_estimators=20;, score=0.894 total time= 0.1s\n","[CV 5/5] END bootstrap=True, max_depth=2, max_features=sqrt, min_samples_leaf=2, min_samples_split=4, n_estimators=20;, score=0.884 total time= 0.1s\n","[CV 1/5] END bootstrap=True, max_depth=2, max_features=sqrt, min_samples_leaf=2, min_samples_split=4, n_estimators=30;, score=0.874 total time= 0.1s\n","[CV 2/5] END bootstrap=True, max_depth=2, max_features=sqrt, min_samples_leaf=2, min_samples_split=4, n_estimators=30;, score=0.884 total time= 0.1s\n","[CV 3/5] END bootstrap=True, max_depth=2, max_features=sqrt, min_samples_leaf=2, min_samples_split=4, n_estimators=30;, score=0.889 total time= 0.1s\n","[CV 4/5] END bootstrap=True, max_depth=2, max_features=sqrt, min_samples_leaf=2, min_samples_split=4, n_estimators=30;, score=0.874 total time= 0.1s\n","[CV 5/5] END bootstrap=True, max_depth=2, max_features=sqrt, min_samples_leaf=2, min_samples_split=4, n_estimators=30;, score=0.889 total time= 0.1s\n","[CV 1/5] END bootstrap=True, max_depth=2, max_features=sqrt, min_samples_leaf=2, min_samples_split=6, n_estimators=5;, score=0.869 total time= 0.0s\n","[CV 2/5] END bootstrap=True, max_depth=2, max_features=sqrt, min_samples_leaf=2, min_samples_split=6, n_estimators=5;, score=0.899 total time= 0.0s\n","[CV 3/5] END bootstrap=True, max_depth=2, max_features=sqrt, min_samples_leaf=2, min_samples_split=6, n_estimators=5;, score=0.899 total time= 0.0s\n","[CV 4/5] END bootstrap=True, max_depth=2, max_features=sqrt, min_samples_leaf=2, min_samples_split=6, n_estimators=5;, score=0.864 total time= 0.0s\n","[CV 5/5] END bootstrap=True, max_depth=2, max_features=sqrt, min_samples_leaf=2, min_samples_split=6, n_estimators=5;, score=0.879 total time= 0.0s\n","[CV 1/5] END bootstrap=True, max_depth=2, max_features=sqrt, min_samples_leaf=2, min_samples_split=6, n_estimators=10;, score=0.869 total time= 0.0s\n","[CV 2/5] END bootstrap=True, max_depth=2, max_features=sqrt, min_samples_leaf=2, min_samples_split=6, n_estimators=10;, score=0.864 total time= 0.0s\n","[CV 3/5] END bootstrap=True, max_depth=2, max_features=sqrt, min_samples_leaf=2, min_samples_split=6, n_estimators=10;, score=0.884 total time= 0.0s\n","[CV 4/5] END bootstrap=True, max_depth=2, max_features=sqrt, min_samples_leaf=2, min_samples_split=6, n_estimators=10;, score=0.889 total time= 0.0s\n","[CV 5/5] END bootstrap=True, max_depth=2, max_features=sqrt, min_samples_leaf=2, min_samples_split=6, n_estimators=10;, score=0.869 total time= 0.0s\n","[CV 1/5] END bootstrap=True, max_depth=2, max_features=sqrt, min_samples_leaf=2, min_samples_split=6, n_estimators=20;, score=0.869 total time= 0.1s\n","[CV 2/5] END bootstrap=True, max_depth=2, max_features=sqrt, min_samples_leaf=2, min_samples_split=6, n_estimators=20;, score=0.874 total time= 0.1s\n","[CV 3/5] END bootstrap=True, max_depth=2, max_features=sqrt, min_samples_leaf=2, min_samples_split=6, n_estimators=20;, score=0.874 total time= 0.1s\n","[CV 4/5] END bootstrap=True, max_depth=2, max_features=sqrt, min_samples_leaf=2, min_samples_split=6, n_estimators=20;, score=0.854 total time= 0.1s\n","[CV 5/5] END bootstrap=True, max_depth=2, max_features=sqrt, min_samples_leaf=2, min_samples_split=6, n_estimators=20;, score=0.869 total time= 0.1s\n","[CV 1/5] END bootstrap=True, max_depth=2, max_features=sqrt, min_samples_leaf=2, min_samples_split=6, n_estimators=30;, score=0.874 total time= 0.1s\n","[CV 2/5] END bootstrap=True, max_depth=2, max_features=sqrt, min_samples_leaf=2, min_samples_split=6, n_estimators=30;, score=0.899 total time= 0.1s\n","[CV 3/5] END bootstrap=True, max_depth=2, max_features=sqrt, min_samples_leaf=2, min_samples_split=6, n_estimators=30;, score=0.884 total time= 0.1s\n","[CV 4/5] END bootstrap=True, max_depth=2, max_features=sqrt, min_samples_leaf=2, min_samples_split=6, n_estimators=30;, score=0.869 total time= 0.1s\n","[CV 5/5] END bootstrap=True, max_depth=2, max_features=sqrt, min_samples_leaf=2, min_samples_split=6, n_estimators=30;, score=0.884 total time= 0.1s\n","[CV 1/5] END bootstrap=True, max_depth=2, max_features=sqrt, min_samples_leaf=4, min_samples_split=2, n_estimators=5;, score=0.879 total time= 0.0s\n","[CV 2/5] END bootstrap=True, max_depth=2, max_features=sqrt, min_samples_leaf=4, min_samples_split=2, n_estimators=5;, score=0.864 total time= 0.0s\n","[CV 3/5] END bootstrap=True, max_depth=2, max_features=sqrt, min_samples_leaf=4, min_samples_split=2, n_estimators=5;, score=0.889 total time= 0.0s\n","[CV 4/5] END bootstrap=True, max_depth=2, max_features=sqrt, min_samples_leaf=4, min_samples_split=2, n_estimators=5;, score=0.843 total time= 0.0s\n","[CV 5/5] END bootstrap=True, max_depth=2, max_features=sqrt, min_samples_leaf=4, min_samples_split=2, n_estimators=5;, score=0.884 total time= 0.0s\n","[CV 1/5] END bootstrap=True, max_depth=2, max_features=sqrt, min_samples_leaf=4, min_samples_split=2, n_estimators=10;, score=0.864 total time= 0.0s\n","[CV 2/5] END bootstrap=True, max_depth=2, max_features=sqrt, min_samples_leaf=4, min_samples_split=2, n_estimators=10;, score=0.874 total time= 0.0s\n","[CV 3/5] END bootstrap=True, max_depth=2, max_features=sqrt, min_samples_leaf=4, min_samples_split=2, n_estimators=10;, score=0.884 total time= 0.0s\n","[CV 4/5] END bootstrap=True, max_depth=2, max_features=sqrt, min_samples_leaf=4, min_samples_split=2, n_estimators=10;, score=0.874 total time= 0.0s\n","[CV 5/5] END bootstrap=True, max_depth=2, max_features=sqrt, min_samples_leaf=4, min_samples_split=2, n_estimators=10;, score=0.889 total time= 0.0s\n","[CV 1/5] END bootstrap=True, max_depth=2, max_features=sqrt, min_samples_leaf=4, min_samples_split=2, n_estimators=20;, score=0.869 total time= 0.1s\n","[CV 2/5] END bootstrap=True, max_depth=2, max_features=sqrt, min_samples_leaf=4, min_samples_split=2, n_estimators=20;, score=0.874 total time= 0.1s\n","[CV 3/5] END bootstrap=True, max_depth=2, max_features=sqrt, min_samples_leaf=4, min_samples_split=2, n_estimators=20;, score=0.874 total time= 0.1s\n","[CV 4/5] END bootstrap=True, max_depth=2, max_features=sqrt, min_samples_leaf=4, min_samples_split=2, n_estimators=20;, score=0.869 total time= 0.1s\n","[CV 5/5] END bootstrap=True, max_depth=2, max_features=sqrt, min_samples_leaf=4, min_samples_split=2, n_estimators=20;, score=0.884 total time= 0.1s\n","[CV 1/5] END bootstrap=True, max_depth=2, max_features=sqrt, min_samples_leaf=4, min_samples_split=2, n_estimators=30;, score=0.859 total time= 0.1s\n","[CV 2/5] END bootstrap=True, max_depth=2, max_features=sqrt, min_samples_leaf=4, min_samples_split=2, n_estimators=30;, score=0.889 total time= 0.1s\n","[CV 3/5] END bootstrap=True, max_depth=2, max_features=sqrt, min_samples_leaf=4, min_samples_split=2, n_estimators=30;, score=0.874 total time= 0.1s\n","[CV 4/5] END bootstrap=True, max_depth=2, max_features=sqrt, min_samples_leaf=4, min_samples_split=2, n_estimators=30;, score=0.869 total time= 0.1s\n","[CV 5/5] END bootstrap=True, max_depth=2, max_features=sqrt, min_samples_leaf=4, min_samples_split=2, n_estimators=30;, score=0.879 total time= 0.1s\n","[CV 1/5] END bootstrap=True, max_depth=2, max_features=sqrt, min_samples_leaf=4, min_samples_split=4, n_estimators=5;, score=0.884 total time= 0.0s\n","[CV 2/5] END bootstrap=True, max_depth=2, max_features=sqrt, min_samples_leaf=4, min_samples_split=4, n_estimators=5;, score=0.869 total time= 0.0s\n","[CV 3/5] END bootstrap=True, max_depth=2, max_features=sqrt, min_samples_leaf=4, min_samples_split=4, n_estimators=5;, score=0.894 total time= 0.0s\n","[CV 4/5] END bootstrap=True, max_depth=2, max_features=sqrt, min_samples_leaf=4, min_samples_split=4, n_estimators=5;, score=0.843 total time= 0.0s\n","[CV 5/5] END bootstrap=True, max_depth=2, max_features=sqrt, min_samples_leaf=4, min_samples_split=4, n_estimators=5;, score=0.889 total time= 0.0s\n","[CV 1/5] END bootstrap=True, max_depth=2, max_features=sqrt, min_samples_leaf=4, min_samples_split=4, n_estimators=10;, score=0.864 total time= 0.0s\n","[CV 2/5] END bootstrap=True, max_depth=2, max_features=sqrt, min_samples_leaf=4, min_samples_split=4, n_estimators=10;, score=0.884 total time= 0.0s\n","[CV 3/5] END bootstrap=True, max_depth=2, max_features=sqrt, min_samples_leaf=4, min_samples_split=4, n_estimators=10;, score=0.874 total time= 0.0s\n","[CV 4/5] END bootstrap=True, max_depth=2, max_features=sqrt, min_samples_leaf=4, min_samples_split=4, n_estimators=10;, score=0.874 total time= 0.0s\n","[CV 5/5] END bootstrap=True, max_depth=2, max_features=sqrt, min_samples_leaf=4, min_samples_split=4, n_estimators=10;, score=0.889 total time= 0.0s\n","[CV 1/5] END bootstrap=True, max_depth=2, max_features=sqrt, min_samples_leaf=4, min_samples_split=4, n_estimators=20;, score=0.859 total time= 0.0s\n","[CV 2/5] END bootstrap=True, max_depth=2, max_features=sqrt, min_samples_leaf=4, min_samples_split=4, n_estimators=20;, score=0.884 total time= 0.0s\n","[CV 3/5] END bootstrap=True, max_depth=2, max_features=sqrt, min_samples_leaf=4, min_samples_split=4, n_estimators=20;, score=0.879 total time= 0.0s\n","[CV 4/5] END bootstrap=True, max_depth=2, max_features=sqrt, min_samples_leaf=4, min_samples_split=4, n_estimators=20;, score=0.884 total time= 0.0s\n","[CV 5/5] END bootstrap=True, max_depth=2, max_features=sqrt, min_samples_leaf=4, min_samples_split=4, n_estimators=20;, score=0.884 total time= 0.0s\n","[CV 1/5] END bootstrap=True, max_depth=2, max_features=sqrt, min_samples_leaf=4, min_samples_split=4, n_estimators=30;, score=0.854 total time= 0.1s\n","[CV 2/5] END bootstrap=True, max_depth=2, max_features=sqrt, min_samples_leaf=4, min_samples_split=4, n_estimators=30;, score=0.889 total time= 0.1s\n","[CV 3/5] END bootstrap=True, max_depth=2, max_features=sqrt, min_samples_leaf=4, min_samples_split=4, n_estimators=30;, score=0.869 total time= 0.1s\n","[CV 4/5] END bootstrap=True, max_depth=2, max_features=sqrt, min_samples_leaf=4, min_samples_split=4, n_estimators=30;, score=0.889 total time= 0.1s\n","[CV 5/5] END bootstrap=True, max_depth=2, max_features=sqrt, min_samples_leaf=4, min_samples_split=4, n_estimators=30;, score=0.884 total time= 0.1s\n","[CV 1/5] END bootstrap=True, max_depth=2, max_features=sqrt, min_samples_leaf=4, min_samples_split=6, n_estimators=5;, score=0.859 total time= 0.0s\n","[CV 2/5] END bootstrap=True, max_depth=2, max_features=sqrt, min_samples_leaf=4, min_samples_split=6, n_estimators=5;, score=0.879 total time= 0.0s\n","[CV 3/5] END bootstrap=True, max_depth=2, max_features=sqrt, min_samples_leaf=4, min_samples_split=6, n_estimators=5;, score=0.904 total time= 0.0s\n","[CV 4/5] END bootstrap=True, max_depth=2, max_features=sqrt, min_samples_leaf=4, min_samples_split=6, n_estimators=5;, score=0.879 total time= 0.0s\n","[CV 5/5] END bootstrap=True, max_depth=2, max_features=sqrt, min_samples_leaf=4, min_samples_split=6, n_estimators=5;, score=0.874 total time= 0.0s\n","[CV 1/5] END bootstrap=True, max_depth=2, max_features=sqrt, min_samples_leaf=4, min_samples_split=6, n_estimators=10;, score=0.879 total time= 0.0s\n","[CV 2/5] END bootstrap=True, max_depth=2, max_features=sqrt, min_samples_leaf=4, min_samples_split=6, n_estimators=10;, score=0.879 total time= 0.0s\n","[CV 3/5] END bootstrap=True, max_depth=2, max_features=sqrt, min_samples_leaf=4, min_samples_split=6, n_estimators=10;, score=0.884 total time= 0.0s\n","[CV 4/5] END bootstrap=True, max_depth=2, max_features=sqrt, min_samples_leaf=4, min_samples_split=6, n_estimators=10;, score=0.843 total time= 0.0s\n","[CV 5/5] END bootstrap=True, max_depth=2, max_features=sqrt, min_samples_leaf=4, min_samples_split=6, n_estimators=10;, score=0.884 total time= 0.0s\n","[CV 1/5] END bootstrap=True, max_depth=2, max_features=sqrt, min_samples_leaf=4, min_samples_split=6, n_estimators=20;, score=0.864 total time= 0.0s\n","[CV 2/5] END bootstrap=True, max_depth=2, max_features=sqrt, min_samples_leaf=4, min_samples_split=6, n_estimators=20;, score=0.848 total time= 0.0s\n","[CV 3/5] END bootstrap=True, max_depth=2, max_features=sqrt, min_samples_leaf=4, min_samples_split=6, n_estimators=20;, score=0.894 total time= 0.0s\n","[CV 4/5] END bootstrap=True, max_depth=2, max_features=sqrt, min_samples_leaf=4, min_samples_split=6, n_estimators=20;, score=0.874 total time= 0.0s\n","[CV 5/5] END bootstrap=True, max_depth=2, max_features=sqrt, min_samples_leaf=4, min_samples_split=6, n_estimators=20;, score=0.889 total time= 0.0s\n","[CV 1/5] END bootstrap=True, max_depth=2, max_features=sqrt, min_samples_leaf=4, min_samples_split=6, n_estimators=30;, score=0.859 total time= 0.1s\n","[CV 2/5] END bootstrap=True, max_depth=2, max_features=sqrt, min_samples_leaf=4, min_samples_split=6, n_estimators=30;, score=0.874 total time= 0.1s\n","[CV 3/5] END bootstrap=True, max_depth=2, max_features=sqrt, min_samples_leaf=4, min_samples_split=6, n_estimators=30;, score=0.874 total time= 0.1s\n","[CV 4/5] END bootstrap=True, max_depth=2, max_features=sqrt, min_samples_leaf=4, min_samples_split=6, n_estimators=30;, score=0.879 total time= 0.1s\n","[CV 5/5] END bootstrap=True, max_depth=2, max_features=sqrt, min_samples_leaf=4, min_samples_split=6, n_estimators=30;, score=0.894 total time= 0.1s\n","[CV 1/5] END bootstrap=True, max_depth=2, max_features=sqrt, min_samples_leaf=6, min_samples_split=2, n_estimators=5;, score=0.854 total time= 0.0s\n","[CV 2/5] END bootstrap=True, max_depth=2, max_features=sqrt, min_samples_leaf=6, min_samples_split=2, n_estimators=5;, score=0.894 total time= 0.0s\n","[CV 3/5] END bootstrap=True, max_depth=2, max_features=sqrt, min_samples_leaf=6, min_samples_split=2, n_estimators=5;, score=0.899 total time= 0.0s\n","[CV 4/5] END bootstrap=True, max_depth=2, max_features=sqrt, min_samples_leaf=6, min_samples_split=2, n_estimators=5;, score=0.859 total time= 0.0s\n","[CV 5/5] END bootstrap=True, max_depth=2, max_features=sqrt, min_samples_leaf=6, min_samples_split=2, n_estimators=5;, score=0.894 total time= 0.0s\n","[CV 1/5] END bootstrap=True, max_depth=2, max_features=sqrt, min_samples_leaf=6, min_samples_split=2, n_estimators=10;, score=0.889 total time= 0.0s\n","[CV 2/5] END bootstrap=True, max_depth=2, max_features=sqrt, min_samples_leaf=6, min_samples_split=2, n_estimators=10;, score=0.914 total time= 0.0s\n","[CV 3/5] END bootstrap=True, max_depth=2, max_features=sqrt, min_samples_leaf=6, min_samples_split=2, n_estimators=10;, score=0.879 total time= 0.0s\n","[CV 4/5] END bootstrap=True, max_depth=2, max_features=sqrt, min_samples_leaf=6, min_samples_split=2, n_estimators=10;, score=0.869 total time= 0.0s\n","[CV 5/5] END bootstrap=True, max_depth=2, max_features=sqrt, min_samples_leaf=6, min_samples_split=2, n_estimators=10;, score=0.879 total time= 0.0s\n","[CV 1/5] END bootstrap=True, max_depth=2, max_features=sqrt, min_samples_leaf=6, min_samples_split=2, n_estimators=20;, score=0.854 total time= 0.0s\n","[CV 2/5] END bootstrap=True, max_depth=2, max_features=sqrt, min_samples_leaf=6, min_samples_split=2, n_estimators=20;, score=0.874 total time= 0.0s\n","[CV 3/5] END bootstrap=True, max_depth=2, max_features=sqrt, min_samples_leaf=6, min_samples_split=2, n_estimators=20;, score=0.899 total time= 0.0s\n","[CV 4/5] END bootstrap=True, max_depth=2, max_features=sqrt, min_samples_leaf=6, min_samples_split=2, n_estimators=20;, score=0.874 total time= 0.0s\n","[CV 5/5] END bootstrap=True, max_depth=2, max_features=sqrt, min_samples_leaf=6, min_samples_split=2, n_estimators=20;, score=0.894 total time= 0.0s\n","[CV 1/5] END bootstrap=True, max_depth=2, max_features=sqrt, min_samples_leaf=6, min_samples_split=2, n_estimators=30;, score=0.864 total time= 0.1s\n","[CV 2/5] END bootstrap=True, max_depth=2, max_features=sqrt, min_samples_leaf=6, min_samples_split=2, n_estimators=30;, score=0.874 total time= 0.1s\n","[CV 3/5] END bootstrap=True, max_depth=2, max_features=sqrt, min_samples_leaf=6, min_samples_split=2, n_estimators=30;, score=0.874 total time= 0.1s\n","[CV 4/5] END bootstrap=True, max_depth=2, max_features=sqrt, min_samples_leaf=6, min_samples_split=2, n_estimators=30;, score=0.869 total time= 0.1s\n","[CV 5/5] END bootstrap=True, max_depth=2, max_features=sqrt, min_samples_leaf=6, min_samples_split=2, n_estimators=30;, score=0.869 total time= 0.1s\n","[CV 1/5] END bootstrap=True, max_depth=2, max_features=sqrt, min_samples_leaf=6, min_samples_split=4, n_estimators=5;, score=0.869 total time= 0.0s\n","[CV 2/5] END bootstrap=True, max_depth=2, max_features=sqrt, min_samples_leaf=6, min_samples_split=4, n_estimators=5;, score=0.884 total time= 0.0s\n","[CV 3/5] END bootstrap=True, max_depth=2, max_features=sqrt, min_samples_leaf=6, min_samples_split=4, n_estimators=5;, score=0.874 total time= 0.0s\n","[CV 4/5] END bootstrap=True, max_depth=2, max_features=sqrt, min_samples_leaf=6, min_samples_split=4, n_estimators=5;, score=0.854 total time= 0.0s\n","[CV 5/5] END bootstrap=True, max_depth=2, max_features=sqrt, min_samples_leaf=6, min_samples_split=4, n_estimators=5;, score=0.859 total time= 0.0s\n","[CV 1/5] END bootstrap=True, max_depth=2, max_features=sqrt, min_samples_leaf=6, min_samples_split=4, n_estimators=10;, score=0.869 total time= 0.0s\n","[CV 2/5] END bootstrap=True, max_depth=2, max_features=sqrt, min_samples_leaf=6, min_samples_split=4, n_estimators=10;, score=0.869 total time= 0.0s\n","[CV 3/5] END bootstrap=True, max_depth=2, max_features=sqrt, min_samples_leaf=6, min_samples_split=4, n_estimators=10;, score=0.869 total time= 0.0s\n","[CV 4/5] END bootstrap=True, max_depth=2, max_features=sqrt, min_samples_leaf=6, min_samples_split=4, n_estimators=10;, score=0.843 total time= 0.0s\n","[CV 5/5] END bootstrap=True, max_depth=2, max_features=sqrt, min_samples_leaf=6, min_samples_split=4, n_estimators=10;, score=0.874 total time= 0.0s\n","[CV 1/5] END bootstrap=True, max_depth=2, max_features=sqrt, min_samples_leaf=6, min_samples_split=4, n_estimators=20;, score=0.859 total time= 0.0s\n","[CV 2/5] END bootstrap=True, max_depth=2, max_features=sqrt, min_samples_leaf=6, min_samples_split=4, n_estimators=20;, score=0.884 total time= 0.1s\n","[CV 3/5] END bootstrap=True, max_depth=2, max_features=sqrt, min_samples_leaf=6, min_samples_split=4, n_estimators=20;, score=0.879 total time= 0.0s\n","[CV 4/5] END bootstrap=True, max_depth=2, max_features=sqrt, min_samples_leaf=6, min_samples_split=4, n_estimators=20;, score=0.874 total time= 0.0s\n","[CV 5/5] END bootstrap=True, max_depth=2, max_features=sqrt, min_samples_leaf=6, min_samples_split=4, n_estimators=20;, score=0.874 total time= 0.0s\n","[CV 1/5] END bootstrap=True, max_depth=2, max_features=sqrt, min_samples_leaf=6, min_samples_split=4, n_estimators=30;, score=0.859 total time= 0.1s\n","[CV 2/5] END bootstrap=True, max_depth=2, max_features=sqrt, min_samples_leaf=6, min_samples_split=4, n_estimators=30;, score=0.899 total time= 0.1s\n","[CV 3/5] END bootstrap=True, max_depth=2, max_features=sqrt, min_samples_leaf=6, min_samples_split=4, n_estimators=30;, score=0.874 total time= 0.1s\n","[CV 4/5] END bootstrap=True, max_depth=2, max_features=sqrt, min_samples_leaf=6, min_samples_split=4, n_estimators=30;, score=0.864 total time= 0.1s\n","[CV 5/5] END bootstrap=True, max_depth=2, max_features=sqrt, min_samples_leaf=6, min_samples_split=4, n_estimators=30;, score=0.874 total time= 0.1s\n","[CV 1/5] END bootstrap=True, max_depth=2, max_features=sqrt, min_samples_leaf=6, min_samples_split=6, n_estimators=5;, score=0.869 total time= 0.0s\n","[CV 2/5] END bootstrap=True, max_depth=2, max_features=sqrt, min_samples_leaf=6, min_samples_split=6, n_estimators=5;, score=0.909 total time= 0.0s\n","[CV 3/5] END bootstrap=True, max_depth=2, max_features=sqrt, min_samples_leaf=6, min_samples_split=6, n_estimators=5;, score=0.899 total time= 0.0s\n","[CV 4/5] END bootstrap=True, max_depth=2, max_features=sqrt, min_samples_leaf=6, min_samples_split=6, n_estimators=5;, score=0.864 total time= 0.0s\n","[CV 5/5] END bootstrap=True, max_depth=2, max_features=sqrt, min_samples_leaf=6, min_samples_split=6, n_estimators=5;, score=0.884 total time= 0.0s\n","[CV 1/5] END bootstrap=True, max_depth=2, max_features=sqrt, min_samples_leaf=6, min_samples_split=6, n_estimators=10;, score=0.884 total time= 0.0s\n","[CV 2/5] END bootstrap=True, max_depth=2, max_features=sqrt, min_samples_leaf=6, min_samples_split=6, n_estimators=10;, score=0.894 total time= 0.0s\n","[CV 3/5] END bootstrap=True, max_depth=2, max_features=sqrt, min_samples_leaf=6, min_samples_split=6, n_estimators=10;, score=0.879 total time= 0.0s\n","[CV 4/5] END bootstrap=True, max_depth=2, max_features=sqrt, min_samples_leaf=6, min_samples_split=6, n_estimators=10;, score=0.869 total time= 0.0s\n","[CV 5/5] END bootstrap=True, max_depth=2, max_features=sqrt, min_samples_leaf=6, min_samples_split=6, n_estimators=10;, score=0.874 total time= 0.0s\n","[CV 1/5] END bootstrap=True, max_depth=2, max_features=sqrt, min_samples_leaf=6, min_samples_split=6, n_estimators=20;, score=0.869 total time= 0.0s\n","[CV 2/5] END bootstrap=True, max_depth=2, max_features=sqrt, min_samples_leaf=6, min_samples_split=6, n_estimators=20;, score=0.899 total time= 0.0s\n","[CV 3/5] END bootstrap=True, max_depth=2, max_features=sqrt, min_samples_leaf=6, min_samples_split=6, n_estimators=20;, score=0.889 total time= 0.0s\n","[CV 4/5] END bootstrap=True, max_depth=2, max_features=sqrt, min_samples_leaf=6, min_samples_split=6, n_estimators=20;, score=0.869 total time= 0.0s\n","[CV 5/5] END bootstrap=True, max_depth=2, max_features=sqrt, min_samples_leaf=6, min_samples_split=6, n_estimators=20;, score=0.889 total time= 0.1s\n","[CV 1/5] END bootstrap=True, max_depth=2, max_features=sqrt, min_samples_leaf=6, min_samples_split=6, n_estimators=30;, score=0.854 total time= 0.1s\n","[CV 2/5] END bootstrap=True, max_depth=2, max_features=sqrt, min_samples_leaf=6, min_samples_split=6, n_estimators=30;, score=0.879 total time= 0.1s\n","[CV 3/5] END bootstrap=True, max_depth=2, max_features=sqrt, min_samples_leaf=6, min_samples_split=6, n_estimators=30;, score=0.879 total time= 0.1s\n","[CV 4/5] END bootstrap=True, max_depth=2, max_features=sqrt, min_samples_leaf=6, min_samples_split=6, n_estimators=30;, score=0.848 total time= 0.1s\n","[CV 5/5] END bootstrap=True, max_depth=2, max_features=sqrt, min_samples_leaf=6, min_samples_split=6, n_estimators=30;, score=0.874 total time= 0.1s\n","[CV 1/5] END bootstrap=True, max_depth=2, max_features=log2, min_samples_leaf=2, min_samples_split=2, n_estimators=5;, score=0.864 total time= 0.0s\n","[CV 2/5] END bootstrap=True, max_depth=2, max_features=log2, min_samples_leaf=2, min_samples_split=2, n_estimators=5;, score=0.874 total time= 0.0s\n","[CV 3/5] END bootstrap=True, max_depth=2, max_features=log2, min_samples_leaf=2, min_samples_split=2, n_estimators=5;, score=0.884 total time= 0.0s\n","[CV 4/5] END bootstrap=True, max_depth=2, max_features=log2, min_samples_leaf=2, min_samples_split=2, n_estimators=5;, score=0.894 total time= 0.0s\n","[CV 5/5] END bootstrap=True, max_depth=2, max_features=log2, min_samples_leaf=2, min_samples_split=2, n_estimators=5;, score=0.874 total time= 0.0s\n","[CV 1/5] END bootstrap=True, max_depth=2, max_features=log2, min_samples_leaf=2, min_samples_split=2, n_estimators=10;, score=0.859 total time= 0.0s\n","[CV 2/5] END bootstrap=True, max_depth=2, max_features=log2, min_samples_leaf=2, min_samples_split=2, n_estimators=10;, score=0.864 total time= 0.0s\n","[CV 3/5] END bootstrap=True, max_depth=2, max_features=log2, min_samples_leaf=2, min_samples_split=2, n_estimators=10;, score=0.889 total time= 0.0s\n","[CV 4/5] END bootstrap=True, max_depth=2, max_features=log2, min_samples_leaf=2, min_samples_split=2, n_estimators=10;, score=0.869 total time= 0.0s\n","[CV 5/5] END bootstrap=True, max_depth=2, max_features=log2, min_samples_leaf=2, min_samples_split=2, n_estimators=10;, score=0.884 total time= 0.0s\n","[CV 1/5] END bootstrap=True, max_depth=2, max_features=log2, min_samples_leaf=2, min_samples_split=2, n_estimators=20;, score=0.884 total time= 0.0s\n","[CV 2/5] END bootstrap=True, max_depth=2, max_features=log2, min_samples_leaf=2, min_samples_split=2, n_estimators=20;, score=0.889 total time= 0.0s\n","[CV 3/5] END bootstrap=True, max_depth=2, max_features=log2, min_samples_leaf=2, min_samples_split=2, n_estimators=20;, score=0.904 total time= 0.0s\n","[CV 4/5] END bootstrap=True, max_depth=2, max_features=log2, min_samples_leaf=2, min_samples_split=2, n_estimators=20;, score=0.909 total time= 0.0s\n","[CV 5/5] END bootstrap=True, max_depth=2, max_features=log2, min_samples_leaf=2, min_samples_split=2, n_estimators=20;, score=0.874 total time= 0.0s\n","[CV 1/5] END bootstrap=True, max_depth=2, max_features=log2, min_samples_leaf=2, min_samples_split=2, n_estimators=30;, score=0.848 total time= 0.1s\n","[CV 2/5] END bootstrap=True, max_depth=2, max_features=log2, min_samples_leaf=2, min_samples_split=2, n_estimators=30;, score=0.874 total time= 0.1s\n","[CV 3/5] END bootstrap=True, max_depth=2, max_features=log2, min_samples_leaf=2, min_samples_split=2, n_estimators=30;, score=0.864 total time= 0.1s\n","[CV 4/5] END bootstrap=True, max_depth=2, max_features=log2, min_samples_leaf=2, min_samples_split=2, n_estimators=30;, score=0.879 total time= 0.1s\n","[CV 5/5] END bootstrap=True, max_depth=2, max_features=log2, min_samples_leaf=2, min_samples_split=2, n_estimators=30;, score=0.874 total time= 0.1s\n","[CV 1/5] END bootstrap=True, max_depth=2, max_features=log2, min_samples_leaf=2, min_samples_split=4, n_estimators=5;, score=0.879 total time= 0.0s\n","[CV 2/5] END bootstrap=True, max_depth=2, max_features=log2, min_samples_leaf=2, min_samples_split=4, n_estimators=5;, score=0.904 total time= 0.0s\n","[CV 3/5] END bootstrap=True, max_depth=2, max_features=log2, min_samples_leaf=2, min_samples_split=4, n_estimators=5;, score=0.874 total time= 0.0s\n","[CV 4/5] END bootstrap=True, max_depth=2, max_features=log2, min_samples_leaf=2, min_samples_split=4, n_estimators=5;, score=0.869 total time= 0.0s\n","[CV 5/5] END bootstrap=True, max_depth=2, max_features=log2, min_samples_leaf=2, min_samples_split=4, n_estimators=5;, score=0.869 total time= 0.0s\n","[CV 1/5] END bootstrap=True, max_depth=2, max_features=log2, min_samples_leaf=2, min_samples_split=4, n_estimators=10;, score=0.859 total time= 0.0s\n","[CV 2/5] END bootstrap=True, max_depth=2, max_features=log2, min_samples_leaf=2, min_samples_split=4, n_estimators=10;, score=0.884 total time= 0.0s\n","[CV 3/5] END bootstrap=True, max_depth=2, max_features=log2, min_samples_leaf=2, min_samples_split=4, n_estimators=10;, score=0.899 total time= 0.0s\n","[CV 4/5] END bootstrap=True, max_depth=2, max_features=log2, min_samples_leaf=2, min_samples_split=4, n_estimators=10;, score=0.884 total time= 0.0s\n","[CV 5/5] END bootstrap=True, max_depth=2, max_features=log2, min_samples_leaf=2, min_samples_split=4, n_estimators=10;, score=0.889 total time= 0.0s\n","[CV 1/5] END bootstrap=True, max_depth=2, max_features=log2, min_samples_leaf=2, min_samples_split=4, n_estimators=20;, score=0.864 total time= 0.0s\n","[CV 2/5] END bootstrap=True, max_depth=2, max_features=log2, min_samples_leaf=2, min_samples_split=4, n_estimators=20;, score=0.879 total time= 0.0s\n","[CV 3/5] END bootstrap=True, max_depth=2, max_features=log2, min_samples_leaf=2, min_samples_split=4, n_estimators=20;, score=0.879 total time= 0.0s\n","[CV 4/5] END bootstrap=True, max_depth=2, max_features=log2, min_samples_leaf=2, min_samples_split=4, n_estimators=20;, score=0.854 total time= 0.0s\n","[CV 5/5] END bootstrap=True, max_depth=2, max_features=log2, min_samples_leaf=2, min_samples_split=4, n_estimators=20;, score=0.879 total time= 0.0s\n","[CV 1/5] END bootstrap=True, max_depth=2, max_features=log2, min_samples_leaf=2, min_samples_split=4, n_estimators=30;, score=0.879 total time= 0.1s\n","[CV 2/5] END bootstrap=True, max_depth=2, max_features=log2, min_samples_leaf=2, min_samples_split=4, n_estimators=30;, score=0.889 total time= 0.1s\n","[CV 3/5] END bootstrap=True, max_depth=2, max_features=log2, min_samples_leaf=2, min_samples_split=4, n_estimators=30;, score=0.884 total time= 0.1s\n","[CV 4/5] END bootstrap=True, max_depth=2, max_features=log2, min_samples_leaf=2, min_samples_split=4, n_estimators=30;, score=0.889 total time= 0.1s\n","[CV 5/5] END bootstrap=True, max_depth=2, max_features=log2, min_samples_leaf=2, min_samples_split=4, n_estimators=30;, score=0.879 total time= 0.1s\n","[CV 1/5] END bootstrap=True, max_depth=2, max_features=log2, min_samples_leaf=2, min_samples_split=6, n_estimators=5;, score=0.854 total time= 0.0s\n","[CV 2/5] END bootstrap=True, max_depth=2, max_features=log2, min_samples_leaf=2, min_samples_split=6, n_estimators=5;, score=0.899 total time= 0.0s\n","[CV 3/5] END bootstrap=True, max_depth=2, max_features=log2, min_samples_leaf=2, min_samples_split=6, n_estimators=5;, score=0.884 total time= 0.0s\n","[CV 4/5] END bootstrap=True, max_depth=2, max_features=log2, min_samples_leaf=2, min_samples_split=6, n_estimators=5;, score=0.864 total time= 0.0s\n","[CV 5/5] END bootstrap=True, max_depth=2, max_features=log2, min_samples_leaf=2, min_samples_split=6, n_estimators=5;, score=0.869 total time= 0.0s\n","[CV 1/5] END bootstrap=True, max_depth=2, max_features=log2, min_samples_leaf=2, min_samples_split=6, n_estimators=10;, score=0.874 total time= 0.0s\n","[CV 2/5] END bootstrap=True, max_depth=2, max_features=log2, min_samples_leaf=2, min_samples_split=6, n_estimators=10;, score=0.894 total time= 0.0s\n","[CV 3/5] END bootstrap=True, max_depth=2, max_features=log2, min_samples_leaf=2, min_samples_split=6, n_estimators=10;, score=0.889 total time= 0.0s\n","[CV 4/5] END bootstrap=True, max_depth=2, max_features=log2, min_samples_leaf=2, min_samples_split=6, n_estimators=10;, score=0.874 total time= 0.0s\n","[CV 5/5] END bootstrap=True, max_depth=2, max_features=log2, min_samples_leaf=2, min_samples_split=6, n_estimators=10;, score=0.879 total time= 0.0s\n","[CV 1/5] END bootstrap=True, max_depth=2, max_features=log2, min_samples_leaf=2, min_samples_split=6, n_estimators=20;, score=0.869 total time= 0.0s\n","[CV 2/5] END bootstrap=True, max_depth=2, max_features=log2, min_samples_leaf=2, min_samples_split=6, n_estimators=20;, score=0.869 total time= 0.1s\n","[CV 3/5] END bootstrap=True, max_depth=2, max_features=log2, min_samples_leaf=2, min_samples_split=6, n_estimators=20;, score=0.889 total time= 0.1s\n","[CV 4/5] END bootstrap=True, max_depth=2, max_features=log2, min_samples_leaf=2, min_samples_split=6, n_estimators=20;, score=0.879 total time= 0.0s\n","[CV 5/5] END bootstrap=True, max_depth=2, max_features=log2, min_samples_leaf=2, min_samples_split=6, n_estimators=20;, score=0.884 total time= 0.0s\n","[CV 1/5] END bootstrap=True, max_depth=2, max_features=log2, min_samples_leaf=2, min_samples_split=6, n_estimators=30;, score=0.859 total time= 0.1s\n","[CV 2/5] END bootstrap=True, max_depth=2, max_features=log2, min_samples_leaf=2, min_samples_split=6, n_estimators=30;, score=0.899 total time= 0.1s\n","[CV 3/5] END bootstrap=True, max_depth=2, max_features=log2, min_samples_leaf=2, min_samples_split=6, n_estimators=30;, score=0.874 total time= 0.1s\n","[CV 4/5] END bootstrap=True, max_depth=2, max_features=log2, min_samples_leaf=2, min_samples_split=6, n_estimators=30;, score=0.879 total time= 0.1s\n","[CV 5/5] END bootstrap=True, max_depth=2, max_features=log2, min_samples_leaf=2, min_samples_split=6, n_estimators=30;, score=0.884 total time= 0.1s\n","[CV 1/5] END bootstrap=True, max_depth=2, max_features=log2, min_samples_leaf=4, min_samples_split=2, n_estimators=5;, score=0.864 total time= 0.0s\n","[CV 2/5] END bootstrap=True, max_depth=2, max_features=log2, min_samples_leaf=4, min_samples_split=2, n_estimators=5;, score=0.904 total time= 0.0s\n","[CV 3/5] END bootstrap=True, max_depth=2, max_features=log2, min_samples_leaf=4, min_samples_split=2, n_estimators=5;, score=0.894 total time= 0.0s\n","[CV 4/5] END bootstrap=True, max_depth=2, max_features=log2, min_samples_leaf=4, min_samples_split=2, n_estimators=5;, score=0.833 total time= 0.0s\n","[CV 5/5] END bootstrap=True, max_depth=2, max_features=log2, min_samples_leaf=4, min_samples_split=2, n_estimators=5;, score=0.889 total time= 0.0s\n","[CV 1/5] END bootstrap=True, max_depth=2, max_features=log2, min_samples_leaf=4, min_samples_split=2, n_estimators=10;, score=0.864 total time= 0.0s\n","[CV 2/5] END bootstrap=True, max_depth=2, max_features=log2, min_samples_leaf=4, min_samples_split=2, n_estimators=10;, score=0.874 total time= 0.0s\n","[CV 3/5] END bootstrap=True, max_depth=2, max_features=log2, min_samples_leaf=4, min_samples_split=2, n_estimators=10;, score=0.884 total time= 0.0s\n","[CV 4/5] END bootstrap=True, max_depth=2, max_features=log2, min_samples_leaf=4, min_samples_split=2, n_estimators=10;, score=0.869 total time= 0.0s\n","[CV 5/5] END bootstrap=True, max_depth=2, max_features=log2, min_samples_leaf=4, min_samples_split=2, n_estimators=10;, score=0.884 total time= 0.0s\n","[CV 1/5] END bootstrap=True, max_depth=2, max_features=log2, min_samples_leaf=4, min_samples_split=2, n_estimators=20;, score=0.869 total time= 0.1s\n","[CV 2/5] END bootstrap=True, max_depth=2, max_features=log2, min_samples_leaf=4, min_samples_split=2, n_estimators=20;, score=0.884 total time= 0.0s\n","[CV 3/5] END bootstrap=True, max_depth=2, max_features=log2, min_samples_leaf=4, min_samples_split=2, n_estimators=20;, score=0.869 total time= 0.1s\n","[CV 4/5] END bootstrap=True, max_depth=2, max_features=log2, min_samples_leaf=4, min_samples_split=2, n_estimators=20;, score=0.859 total time= 0.0s\n","[CV 5/5] END bootstrap=True, max_depth=2, max_features=log2, min_samples_leaf=4, min_samples_split=2, n_estimators=20;, score=0.889 total time= 0.0s\n","[CV 1/5] END bootstrap=True, max_depth=2, max_features=log2, min_samples_leaf=4, min_samples_split=2, n_estimators=30;, score=0.859 total time= 0.1s\n","[CV 2/5] END bootstrap=True, max_depth=2, max_features=log2, min_samples_leaf=4, min_samples_split=2, n_estimators=30;, score=0.869 total time= 0.1s\n","[CV 3/5] END bootstrap=True, max_depth=2, max_features=log2, min_samples_leaf=4, min_samples_split=2, n_estimators=30;, score=0.894 total time= 0.1s\n","[CV 4/5] END bootstrap=True, max_depth=2, max_features=log2, min_samples_leaf=4, min_samples_split=2, n_estimators=30;, score=0.884 total time= 0.1s\n","[CV 5/5] END bootstrap=True, max_depth=2, max_features=log2, min_samples_leaf=4, min_samples_split=2, n_estimators=30;, score=0.889 total time= 0.1s\n","[CV 1/5] END bootstrap=True, max_depth=2, max_features=log2, min_samples_leaf=4, min_samples_split=4, n_estimators=5;, score=0.869 total time= 0.0s\n","[CV 2/5] END bootstrap=True, max_depth=2, max_features=log2, min_samples_leaf=4, min_samples_split=4, n_estimators=5;, score=0.909 total time= 0.0s\n","[CV 3/5] END bootstrap=True, max_depth=2, max_features=log2, min_samples_leaf=4, min_samples_split=4, n_estimators=5;, score=0.879 total time= 0.0s\n","[CV 4/5] END bootstrap=True, max_depth=2, max_features=log2, min_samples_leaf=4, min_samples_split=4, n_estimators=5;, score=0.884 total time= 0.0s\n","[CV 5/5] END bootstrap=True, max_depth=2, max_features=log2, min_samples_leaf=4, min_samples_split=4, n_estimators=5;, score=0.894 total time= 0.0s\n","[CV 1/5] END bootstrap=True, max_depth=2, max_features=log2, min_samples_leaf=4, min_samples_split=4, n_estimators=10;, score=0.869 total time= 0.0s\n","[CV 2/5] END bootstrap=True, max_depth=2, max_features=log2, min_samples_leaf=4, min_samples_split=4, n_estimators=10;, score=0.879 total time= 0.0s\n","[CV 3/5] END bootstrap=True, max_depth=2, max_features=log2, min_samples_leaf=4, min_samples_split=4, n_estimators=10;, score=0.874 total time= 0.0s\n","[CV 4/5] END bootstrap=True, max_depth=2, max_features=log2, min_samples_leaf=4, min_samples_split=4, n_estimators=10;, score=0.854 total time= 0.0s\n","[CV 5/5] END bootstrap=True, max_depth=2, max_features=log2, min_samples_leaf=4, min_samples_split=4, n_estimators=10;, score=0.899 total time= 0.0s\n","[CV 1/5] END bootstrap=True, max_depth=2, max_features=log2, min_samples_leaf=4, min_samples_split=4, n_estimators=20;, score=0.859 total time= 0.0s\n","[CV 2/5] END bootstrap=True, max_depth=2, max_features=log2, min_samples_leaf=4, min_samples_split=4, n_estimators=20;, score=0.869 total time= 0.0s\n","[CV 3/5] END bootstrap=True, max_depth=2, max_features=log2, min_samples_leaf=4, min_samples_split=4, n_estimators=20;, score=0.884 total time= 0.0s\n","[CV 4/5] END bootstrap=True, max_depth=2, max_features=log2, min_samples_leaf=4, min_samples_split=4, n_estimators=20;, score=0.859 total time= 0.0s\n","[CV 5/5] END bootstrap=True, max_depth=2, max_features=log2, min_samples_leaf=4, min_samples_split=4, n_estimators=20;, score=0.899 total time= 0.0s\n","[CV 1/5] END bootstrap=True, max_depth=2, max_features=log2, min_samples_leaf=4, min_samples_split=4, n_estimators=30;, score=0.864 total time= 0.1s\n","[CV 2/5] END bootstrap=True, max_depth=2, max_features=log2, min_samples_leaf=4, min_samples_split=4, n_estimators=30;, score=0.884 total time= 0.1s\n","[CV 3/5] END bootstrap=True, max_depth=2, max_features=log2, min_samples_leaf=4, min_samples_split=4, n_estimators=30;, score=0.884 total time= 0.1s\n","[CV 4/5] END bootstrap=True, max_depth=2, max_features=log2, min_samples_leaf=4, min_samples_split=4, n_estimators=30;, score=0.879 total time= 0.1s\n","[CV 5/5] END bootstrap=True, max_depth=2, max_features=log2, min_samples_leaf=4, min_samples_split=4, n_estimators=30;, score=0.874 total time= 0.1s\n","[CV 1/5] END bootstrap=True, max_depth=2, max_features=log2, min_samples_leaf=4, min_samples_split=6, n_estimators=5;, score=0.874 total time= 0.0s\n","[CV 2/5] END bootstrap=True, max_depth=2, max_features=log2, min_samples_leaf=4, min_samples_split=6, n_estimators=5;, score=0.914 total time= 0.0s\n","[CV 3/5] END bootstrap=True, max_depth=2, max_features=log2, min_samples_leaf=4, min_samples_split=6, n_estimators=5;, score=0.889 total time= 0.0s\n","[CV 4/5] END bootstrap=True, max_depth=2, max_features=log2, min_samples_leaf=4, min_samples_split=6, n_estimators=5;, score=0.864 total time= 0.0s\n","[CV 5/5] END bootstrap=True, max_depth=2, max_features=log2, min_samples_leaf=4, min_samples_split=6, n_estimators=5;, score=0.879 total time= 0.0s\n","[CV 1/5] END bootstrap=True, max_depth=2, max_features=log2, min_samples_leaf=4, min_samples_split=6, n_estimators=10;, score=0.859 total time= 0.0s\n","[CV 2/5] END bootstrap=True, max_depth=2, max_features=log2, min_samples_leaf=4, min_samples_split=6, n_estimators=10;, score=0.894 total time= 0.0s\n","[CV 3/5] END bootstrap=True, max_depth=2, max_features=log2, min_samples_leaf=4, min_samples_split=6, n_estimators=10;, score=0.879 total time= 0.0s\n","[CV 4/5] END bootstrap=True, max_depth=2, max_features=log2, min_samples_leaf=4, min_samples_split=6, n_estimators=10;, score=0.879 total time= 0.0s\n","[CV 5/5] END bootstrap=True, max_depth=2, max_features=log2, min_samples_leaf=4, min_samples_split=6, n_estimators=10;, score=0.889 total time= 0.0s\n","[CV 1/5] END bootstrap=True, max_depth=2, max_features=log2, min_samples_leaf=4, min_samples_split=6, n_estimators=20;, score=0.884 total time= 0.0s\n","[CV 2/5] END bootstrap=True, max_depth=2, max_features=log2, min_samples_leaf=4, min_samples_split=6, n_estimators=20;, score=0.894 total time= 0.0s\n","[CV 3/5] END bootstrap=True, max_depth=2, max_features=log2, min_samples_leaf=4, min_samples_split=6, n_estimators=20;, score=0.874 total time= 0.0s\n","[CV 4/5] END bootstrap=True, max_depth=2, max_features=log2, min_samples_leaf=4, min_samples_split=6, n_estimators=20;, score=0.864 total time= 0.0s\n","[CV 5/5] END bootstrap=True, max_depth=2, max_features=log2, min_samples_leaf=4, min_samples_split=6, n_estimators=20;, score=0.859 total time= 0.0s\n","[CV 1/5] END bootstrap=True, max_depth=2, max_features=log2, min_samples_leaf=4, min_samples_split=6, n_estimators=30;, score=0.854 total time= 0.1s\n","[CV 2/5] END bootstrap=True, max_depth=2, max_features=log2, min_samples_leaf=4, min_samples_split=6, n_estimators=30;, score=0.879 total time= 0.1s\n","[CV 3/5] END bootstrap=True, max_depth=2, max_features=log2, min_samples_leaf=4, min_samples_split=6, n_estimators=30;, score=0.884 total time= 0.1s\n","[CV 4/5] END bootstrap=True, max_depth=2, max_features=log2, min_samples_leaf=4, min_samples_split=6, n_estimators=30;, score=0.864 total time= 0.1s\n","[CV 5/5] END bootstrap=True, max_depth=2, max_features=log2, min_samples_leaf=4, min_samples_split=6, n_estimators=30;, score=0.889 total time= 0.1s\n","[CV 1/5] END bootstrap=True, max_depth=2, max_features=log2, min_samples_leaf=6, min_samples_split=2, n_estimators=5;, score=0.884 total time= 0.0s\n","[CV 2/5] END bootstrap=True, max_depth=2, max_features=log2, min_samples_leaf=6, min_samples_split=2, n_estimators=5;, score=0.884 total time= 0.0s\n","[CV 3/5] END bootstrap=True, max_depth=2, max_features=log2, min_samples_leaf=6, min_samples_split=2, n_estimators=5;, score=0.889 total time= 0.0s\n","[CV 4/5] END bootstrap=True, max_depth=2, max_features=log2, min_samples_leaf=6, min_samples_split=2, n_estimators=5;, score=0.838 total time= 0.0s\n","[CV 5/5] END bootstrap=True, max_depth=2, max_features=log2, min_samples_leaf=6, min_samples_split=2, n_estimators=5;, score=0.889 total time= 0.0s\n","[CV 1/5] END bootstrap=True, max_depth=2, max_features=log2, min_samples_leaf=6, min_samples_split=2, n_estimators=10;, score=0.869 total time= 0.0s\n","[CV 2/5] END bootstrap=True, max_depth=2, max_features=log2, min_samples_leaf=6, min_samples_split=2, n_estimators=10;, score=0.869 total time= 0.0s\n","[CV 3/5] END bootstrap=True, max_depth=2, max_features=log2, min_samples_leaf=6, min_samples_split=2, n_estimators=10;, score=0.884 total time= 0.0s\n","[CV 4/5] END bootstrap=True, max_depth=2, max_features=log2, min_samples_leaf=6, min_samples_split=2, n_estimators=10;, score=0.874 total time= 0.0s\n","[CV 5/5] END bootstrap=True, max_depth=2, max_features=log2, min_samples_leaf=6, min_samples_split=2, n_estimators=10;, score=0.864 total time= 0.0s\n","[CV 1/5] END bootstrap=True, max_depth=2, max_features=log2, min_samples_leaf=6, min_samples_split=2, n_estimators=20;, score=0.869 total time= 0.0s\n","[CV 2/5] END bootstrap=True, max_depth=2, max_features=log2, min_samples_leaf=6, min_samples_split=2, n_estimators=20;, score=0.864 total time= 0.0s\n","[CV 3/5] END bootstrap=True, max_depth=2, max_features=log2, min_samples_leaf=6, min_samples_split=2, n_estimators=20;, score=0.889 total time= 0.0s\n","[CV 4/5] END bootstrap=True, max_depth=2, max_features=log2, min_samples_leaf=6, min_samples_split=2, n_estimators=20;, score=0.859 total time= 0.0s\n","[CV 5/5] END bootstrap=True, max_depth=2, max_features=log2, min_samples_leaf=6, min_samples_split=2, n_estimators=20;, score=0.869 total time= 0.0s\n","[CV 1/5] END bootstrap=True, max_depth=2, max_features=log2, min_samples_leaf=6, min_samples_split=2, n_estimators=30;, score=0.864 total time= 0.1s\n","[CV 2/5] END bootstrap=True, max_depth=2, max_features=log2, min_samples_leaf=6, min_samples_split=2, n_estimators=30;, score=0.894 total time= 0.1s\n","[CV 3/5] END bootstrap=True, max_depth=2, max_features=log2, min_samples_leaf=6, min_samples_split=2, n_estimators=30;, score=0.884 total time= 0.1s\n","[CV 4/5] END bootstrap=True, max_depth=2, max_features=log2, min_samples_leaf=6, min_samples_split=2, n_estimators=30;, score=0.859 total time= 0.1s\n","[CV 5/5] END bootstrap=True, max_depth=2, max_features=log2, min_samples_leaf=6, min_samples_split=2, n_estimators=30;, score=0.879 total time= 0.1s\n","[CV 1/5] END bootstrap=True, max_depth=2, max_features=log2, min_samples_leaf=6, min_samples_split=4, n_estimators=5;, score=0.864 total time= 0.0s\n","[CV 2/5] END bootstrap=True, max_depth=2, max_features=log2, min_samples_leaf=6, min_samples_split=4, n_estimators=5;, score=0.884 total time= 0.0s\n","[CV 3/5] END bootstrap=True, max_depth=2, max_features=log2, min_samples_leaf=6, min_samples_split=4, n_estimators=5;, score=0.884 total time= 0.0s\n","[CV 4/5] END bootstrap=True, max_depth=2, max_features=log2, min_samples_leaf=6, min_samples_split=4, n_estimators=5;, score=0.848 total time= 0.0s\n","[CV 5/5] END bootstrap=True, max_depth=2, max_features=log2, min_samples_leaf=6, min_samples_split=4, n_estimators=5;, score=0.859 total time= 0.0s\n","[CV 1/5] END bootstrap=True, max_depth=2, max_features=log2, min_samples_leaf=6, min_samples_split=4, n_estimators=10;, score=0.869 total time= 0.0s\n","[CV 2/5] END bootstrap=True, max_depth=2, max_features=log2, min_samples_leaf=6, min_samples_split=4, n_estimators=10;, score=0.894 total time= 0.0s\n","[CV 3/5] END bootstrap=True, max_depth=2, max_features=log2, min_samples_leaf=6, min_samples_split=4, n_estimators=10;, score=0.869 total time= 0.0s\n","[CV 4/5] END bootstrap=True, max_depth=2, max_features=log2, min_samples_leaf=6, min_samples_split=4, n_estimators=10;, score=0.843 total time= 0.0s\n","[CV 5/5] END bootstrap=True, max_depth=2, max_features=log2, min_samples_leaf=6, min_samples_split=4, n_estimators=10;, score=0.894 total time= 0.0s\n","[CV 1/5] END bootstrap=True, max_depth=2, max_features=log2, min_samples_leaf=6, min_samples_split=4, n_estimators=20;, score=0.864 total time= 0.1s\n","[CV 2/5] END bootstrap=True, max_depth=2, max_features=log2, min_samples_leaf=6, min_samples_split=4, n_estimators=20;, score=0.869 total time= 0.1s\n","[CV 3/5] END bootstrap=True, max_depth=2, max_features=log2, min_samples_leaf=6, min_samples_split=4, n_estimators=20;, score=0.879 total time= 0.1s\n","[CV 4/5] END bootstrap=True, max_depth=2, max_features=log2, min_samples_leaf=6, min_samples_split=4, n_estimators=20;, score=0.869 total time= 0.1s\n","[CV 5/5] END bootstrap=True, max_depth=2, max_features=log2, min_samples_leaf=6, min_samples_split=4, n_estimators=20;, score=0.884 total time= 0.1s\n","[CV 1/5] END bootstrap=True, max_depth=2, max_features=log2, min_samples_leaf=6, min_samples_split=4, n_estimators=30;, score=0.859 total time= 0.1s\n","[CV 2/5] END bootstrap=True, max_depth=2, max_features=log2, min_samples_leaf=6, min_samples_split=4, n_estimators=30;, score=0.904 total time= 0.1s\n","[CV 3/5] END bootstrap=True, max_depth=2, max_features=log2, min_samples_leaf=6, min_samples_split=4, n_estimators=30;, score=0.864 total time= 0.1s\n","[CV 4/5] END bootstrap=True, max_depth=2, max_features=log2, min_samples_leaf=6, min_samples_split=4, n_estimators=30;, score=0.869 total time= 0.1s\n","[CV 5/5] END bootstrap=True, max_depth=2, max_features=log2, min_samples_leaf=6, min_samples_split=4, n_estimators=30;, score=0.879 total time= 0.1s\n","[CV 1/5] END bootstrap=True, max_depth=2, max_features=log2, min_samples_leaf=6, min_samples_split=6, n_estimators=5;, score=0.864 total time= 0.0s\n","[CV 2/5] END bootstrap=True, max_depth=2, max_features=log2, min_samples_leaf=6, min_samples_split=6, n_estimators=5;, score=0.874 total time= 0.0s\n","[CV 3/5] END bootstrap=True, max_depth=2, max_features=log2, min_samples_leaf=6, min_samples_split=6, n_estimators=5;, score=0.899 total time= 0.0s\n","[CV 4/5] END bootstrap=True, max_depth=2, max_features=log2, min_samples_leaf=6, min_samples_split=6, n_estimators=5;, score=0.838 total time= 0.0s\n","[CV 5/5] END bootstrap=True, max_depth=2, max_features=log2, min_samples_leaf=6, min_samples_split=6, n_estimators=5;, score=0.879 total time= 0.0s\n","[CV 1/5] END bootstrap=True, max_depth=2, max_features=log2, min_samples_leaf=6, min_samples_split=6, n_estimators=10;, score=0.874 total time= 0.0s\n","[CV 2/5] END bootstrap=True, max_depth=2, max_features=log2, min_samples_leaf=6, min_samples_split=6, n_estimators=10;, score=0.874 total time= 0.0s\n","[CV 3/5] END bootstrap=True, max_depth=2, max_features=log2, min_samples_leaf=6, min_samples_split=6, n_estimators=10;, score=0.879 total time= 0.0s\n","[CV 4/5] END bootstrap=True, max_depth=2, max_features=log2, min_samples_leaf=6, min_samples_split=6, n_estimators=10;, score=0.874 total time= 0.0s\n","[CV 5/5] END bootstrap=True, max_depth=2, max_features=log2, min_samples_leaf=6, min_samples_split=6, n_estimators=10;, score=0.884 total time= 0.0s\n","[CV 1/5] END bootstrap=True, max_depth=2, max_features=log2, min_samples_leaf=6, min_samples_split=6, n_estimators=20;, score=0.869 total time= 0.1s\n","[CV 2/5] END bootstrap=True, max_depth=2, max_features=log2, min_samples_leaf=6, min_samples_split=6, n_estimators=20;, score=0.879 total time= 0.1s\n","[CV 3/5] END bootstrap=True, max_depth=2, max_features=log2, min_samples_leaf=6, min_samples_split=6, n_estimators=20;, score=0.919 total time= 0.1s\n","[CV 4/5] END bootstrap=True, max_depth=2, max_features=log2, min_samples_leaf=6, min_samples_split=6, n_estimators=20;, score=0.874 total time= 0.1s\n","[CV 5/5] END bootstrap=True, max_depth=2, max_features=log2, min_samples_leaf=6, min_samples_split=6, n_estimators=20;, score=0.889 total time= 0.1s\n","[CV 1/5] END bootstrap=True, max_depth=2, max_features=log2, min_samples_leaf=6, min_samples_split=6, n_estimators=30;, score=0.854 total time= 0.1s\n","[CV 2/5] END bootstrap=True, max_depth=2, max_features=log2, min_samples_leaf=6, min_samples_split=6, n_estimators=30;, score=0.889 total time= 0.1s\n","[CV 3/5] END bootstrap=True, max_depth=2, max_features=log2, min_samples_leaf=6, min_samples_split=6, n_estimators=30;, score=0.889 total time= 0.1s\n","[CV 4/5] END bootstrap=True, max_depth=2, max_features=log2, min_samples_leaf=6, min_samples_split=6, n_estimators=30;, score=0.869 total time= 0.1s\n","[CV 5/5] END bootstrap=True, max_depth=2, max_features=log2, min_samples_leaf=6, min_samples_split=6, n_estimators=30;, score=0.884 total time= 0.1s\n","[CV 1/5] END bootstrap=True, max_depth=2, max_features=None, min_samples_leaf=2, min_samples_split=2, n_estimators=5;, score=0.864 total time= 0.0s\n","[CV 2/5] END bootstrap=True, max_depth=2, max_features=None, min_samples_leaf=2, min_samples_split=2, n_estimators=5;, score=0.904 total time= 0.0s\n","[CV 3/5] END bootstrap=True, max_depth=2, max_features=None, min_samples_leaf=2, min_samples_split=2, n_estimators=5;, score=0.879 total time= 0.0s\n","[CV 4/5] END bootstrap=True, max_depth=2, max_features=None, min_samples_leaf=2, min_samples_split=2, n_estimators=5;, score=0.864 total time= 0.0s\n","[CV 5/5] END bootstrap=True, max_depth=2, max_features=None, min_samples_leaf=2, min_samples_split=2, n_estimators=5;, score=0.889 total time= 0.0s\n","[CV 1/5] END bootstrap=True, max_depth=2, max_features=None, min_samples_leaf=2, min_samples_split=2, n_estimators=10;, score=0.874 total time= 0.0s\n","[CV 2/5] END bootstrap=True, max_depth=2, max_features=None, min_samples_leaf=2, min_samples_split=2, n_estimators=10;, score=0.899 total time= 0.0s\n","[CV 3/5] END bootstrap=True, max_depth=2, max_features=None, min_samples_leaf=2, min_samples_split=2, n_estimators=10;, score=0.894 total time= 0.0s\n","[CV 4/5] END bootstrap=True, max_depth=2, max_features=None, min_samples_leaf=2, min_samples_split=2, n_estimators=10;, score=0.833 total time= 0.1s\n","[CV 5/5] END bootstrap=True, max_depth=2, max_features=None, min_samples_leaf=2, min_samples_split=2, n_estimators=10;, score=0.884 total time= 0.0s\n","[CV 1/5] END bootstrap=True, max_depth=2, max_features=None, min_samples_leaf=2, min_samples_split=2, n_estimators=20;, score=0.874 total time= 0.1s\n","[CV 2/5] END bootstrap=True, max_depth=2, max_features=None, min_samples_leaf=2, min_samples_split=2, n_estimators=20;, score=0.894 total time= 0.1s\n","[CV 3/5] END bootstrap=True, max_depth=2, max_features=None, min_samples_leaf=2, min_samples_split=2, n_estimators=20;, score=0.879 total time= 0.1s\n","[CV 4/5] END bootstrap=True, max_depth=2, max_features=None, min_samples_leaf=2, min_samples_split=2, n_estimators=20;, score=0.848 total time= 0.1s\n","[CV 5/5] END bootstrap=True, max_depth=2, max_features=None, min_samples_leaf=2, min_samples_split=2, n_estimators=20;, score=0.874 total time= 0.1s\n","[CV 1/5] END bootstrap=True, max_depth=2, max_features=None, min_samples_leaf=2, min_samples_split=2, n_estimators=30;, score=0.869 total time= 0.1s\n","[CV 2/5] END bootstrap=True, max_depth=2, max_features=None, min_samples_leaf=2, min_samples_split=2, n_estimators=30;, score=0.889 total time= 0.1s\n","[CV 3/5] END bootstrap=True, max_depth=2, max_features=None, min_samples_leaf=2, min_samples_split=2, n_estimators=30;, score=0.879 total time= 0.1s\n","[CV 4/5] END bootstrap=True, max_depth=2, max_features=None, min_samples_leaf=2, min_samples_split=2, n_estimators=30;, score=0.843 total time= 0.1s\n","[CV 5/5] END bootstrap=True, max_depth=2, max_features=None, min_samples_leaf=2, min_samples_split=2, n_estimators=30;, score=0.884 total time= 0.1s\n","[CV 1/5] END bootstrap=True, max_depth=2, max_features=None, min_samples_leaf=2, min_samples_split=4, n_estimators=5;, score=0.889 total time= 0.0s\n","[CV 2/5] END bootstrap=True, max_depth=2, max_features=None, min_samples_leaf=2, min_samples_split=4, n_estimators=5;, score=0.894 total time= 0.0s\n","[CV 3/5] END bootstrap=True, max_depth=2, max_features=None, min_samples_leaf=2, min_samples_split=4, n_estimators=5;, score=0.894 total time= 0.0s\n","[CV 4/5] END bootstrap=True, max_depth=2, max_features=None, min_samples_leaf=2, min_samples_split=4, n_estimators=5;, score=0.828 total time= 0.0s\n","[CV 5/5] END bootstrap=True, max_depth=2, max_features=None, min_samples_leaf=2, min_samples_split=4, n_estimators=5;, score=0.874 total time= 0.0s\n","[CV 1/5] END bootstrap=True, max_depth=2, max_features=None, min_samples_leaf=2, min_samples_split=4, n_estimators=10;, score=0.874 total time= 0.0s\n","[CV 2/5] END bootstrap=True, max_depth=2, max_features=None, min_samples_leaf=2, min_samples_split=4, n_estimators=10;, score=0.909 total time= 0.0s\n","[CV 3/5] END bootstrap=True, max_depth=2, max_features=None, min_samples_leaf=2, min_samples_split=4, n_estimators=10;, score=0.904 total time= 0.0s\n","[CV 4/5] END bootstrap=True, max_depth=2, max_features=None, min_samples_leaf=2, min_samples_split=4, n_estimators=10;, score=0.874 total time= 0.0s\n","[CV 5/5] END bootstrap=True, max_depth=2, max_features=None, min_samples_leaf=2, min_samples_split=4, n_estimators=10;, score=0.884 total time= 0.0s\n","[CV 1/5] END bootstrap=True, max_depth=2, max_features=None, min_samples_leaf=2, min_samples_split=4, n_estimators=20;, score=0.874 total time= 0.0s\n","[CV 2/5] END bootstrap=True, max_depth=2, max_features=None, min_samples_leaf=2, min_samples_split=4, n_estimators=20;, score=0.894 total time= 0.1s\n","[CV 3/5] END bootstrap=True, max_depth=2, max_features=None, min_samples_leaf=2, min_samples_split=4, n_estimators=20;, score=0.899 total time= 0.1s\n","[CV 4/5] END bootstrap=True, max_depth=2, max_features=None, min_samples_leaf=2, min_samples_split=4, n_estimators=20;, score=0.859 total time= 0.1s\n","[CV 5/5] END bootstrap=True, max_depth=2, max_features=None, min_samples_leaf=2, min_samples_split=4, n_estimators=20;, score=0.884 total time= 0.0s\n","[CV 1/5] END bootstrap=True, max_depth=2, max_features=None, min_samples_leaf=2, min_samples_split=4, n_estimators=30;, score=0.859 total time= 0.1s\n","[CV 2/5] END bootstrap=True, max_depth=2, max_features=None, min_samples_leaf=2, min_samples_split=4, n_estimators=30;, score=0.899 total time= 0.1s\n","[CV 3/5] END bootstrap=True, max_depth=2, max_features=None, min_samples_leaf=2, min_samples_split=4, n_estimators=30;, score=0.884 total time= 0.1s\n","[CV 4/5] END bootstrap=True, max_depth=2, max_features=None, min_samples_leaf=2, min_samples_split=4, n_estimators=30;, score=0.854 total time= 0.1s\n","[CV 5/5] END bootstrap=True, max_depth=2, max_features=None, min_samples_leaf=2, min_samples_split=4, n_estimators=30;, score=0.889 total time= 0.1s\n","[CV 1/5] END bootstrap=True, max_depth=2, max_features=None, min_samples_leaf=2, min_samples_split=6, n_estimators=5;, score=0.874 total time= 0.0s\n","[CV 2/5] END bootstrap=True, max_depth=2, max_features=None, min_samples_leaf=2, min_samples_split=6, n_estimators=5;, score=0.904 total time= 0.0s\n","[CV 3/5] END bootstrap=True, max_depth=2, max_features=None, min_samples_leaf=2, min_samples_split=6, n_estimators=5;, score=0.889 total time= 0.0s\n","[CV 4/5] END bootstrap=True, max_depth=2, max_features=None, min_samples_leaf=2, min_samples_split=6, n_estimators=5;, score=0.843 total time= 0.0s\n","[CV 5/5] END bootstrap=True, max_depth=2, max_features=None, min_samples_leaf=2, min_samples_split=6, n_estimators=5;, score=0.889 total time= 0.0s\n","[CV 1/5] END bootstrap=True, max_depth=2, max_features=None, min_samples_leaf=2, min_samples_split=6, n_estimators=10;, score=0.854 total time= 0.0s\n","[CV 2/5] END bootstrap=True, max_depth=2, max_features=None, min_samples_leaf=2, min_samples_split=6, n_estimators=10;, score=0.904 total time= 0.0s\n","[CV 3/5] END bootstrap=True, max_depth=2, max_features=None, min_samples_leaf=2, min_samples_split=6, n_estimators=10;, score=0.879 total time= 0.0s\n","[CV 4/5] END bootstrap=True, max_depth=2, max_features=None, min_samples_leaf=2, min_samples_split=6, n_estimators=10;, score=0.843 total time= 0.0s\n","[CV 5/5] END bootstrap=True, max_depth=2, max_features=None, min_samples_leaf=2, min_samples_split=6, n_estimators=10;, score=0.899 total time= 0.0s\n","[CV 1/5] END bootstrap=True, max_depth=2, max_features=None, min_samples_leaf=2, min_samples_split=6, n_estimators=20;, score=0.869 total time= 0.0s\n","[CV 2/5] END bootstrap=True, max_depth=2, max_features=None, min_samples_leaf=2, min_samples_split=6, n_estimators=20;, score=0.889 total time= 0.1s\n","[CV 3/5] END bootstrap=True, max_depth=2, max_features=None, min_samples_leaf=2, min_samples_split=6, n_estimators=20;, score=0.889 total time= 0.1s\n","[CV 4/5] END bootstrap=True, max_depth=2, max_features=None, min_samples_leaf=2, min_samples_split=6, n_estimators=20;, score=0.848 total time= 0.0s\n","[CV 5/5] END bootstrap=True, max_depth=2, max_features=None, min_samples_leaf=2, min_samples_split=6, n_estimators=20;, score=0.884 total time= 0.1s\n","[CV 1/5] END bootstrap=True, max_depth=2, max_features=None, min_samples_leaf=2, min_samples_split=6, n_estimators=30;, score=0.864 total time= 0.1s\n","[CV 2/5] END bootstrap=True, max_depth=2, max_features=None, min_samples_leaf=2, min_samples_split=6, n_estimators=30;, score=0.899 total time= 0.1s\n","[CV 3/5] END bootstrap=True, max_depth=2, max_features=None, min_samples_leaf=2, min_samples_split=6, n_estimators=30;, score=0.879 total time= 0.1s\n","[CV 4/5] END bootstrap=True, max_depth=2, max_features=None, min_samples_leaf=2, min_samples_split=6, n_estimators=30;, score=0.859 total time= 0.1s\n","[CV 5/5] END bootstrap=True, max_depth=2, max_features=None, min_samples_leaf=2, min_samples_split=6, n_estimators=30;, score=0.879 total time= 0.1s\n","[CV 1/5] END bootstrap=True, max_depth=2, max_features=None, min_samples_leaf=4, min_samples_split=2, n_estimators=5;, score=0.874 total time= 0.0s\n","[CV 2/5] END bootstrap=True, max_depth=2, max_features=None, min_samples_leaf=4, min_samples_split=2, n_estimators=5;, score=0.904 total time= 0.0s\n","[CV 3/5] END bootstrap=True, max_depth=2, max_features=None, min_samples_leaf=4, min_samples_split=2, n_estimators=5;, score=0.904 total time= 0.0s\n","[CV 4/5] END bootstrap=True, max_depth=2, max_features=None, min_samples_leaf=4, min_samples_split=2, n_estimators=5;, score=0.843 total time= 0.0s\n","[CV 5/5] END bootstrap=True, max_depth=2, max_features=None, min_samples_leaf=4, min_samples_split=2, n_estimators=5;, score=0.894 total time= 0.0s\n","[CV 1/5] END bootstrap=True, max_depth=2, max_features=None, min_samples_leaf=4, min_samples_split=2, n_estimators=10;, score=0.859 total time= 0.0s\n","[CV 2/5] END bootstrap=True, max_depth=2, max_features=None, min_samples_leaf=4, min_samples_split=2, n_estimators=10;, score=0.904 total time= 0.0s\n","[CV 3/5] END bootstrap=True, max_depth=2, max_features=None, min_samples_leaf=4, min_samples_split=2, n_estimators=10;, score=0.899 total time= 0.0s\n","[CV 4/5] END bootstrap=True, max_depth=2, max_features=None, min_samples_leaf=4, min_samples_split=2, n_estimators=10;, score=0.854 total time= 0.0s\n","[CV 5/5] END bootstrap=True, max_depth=2, max_features=None, min_samples_leaf=4, min_samples_split=2, n_estimators=10;, score=0.874 total time= 0.0s\n","[CV 1/5] END bootstrap=True, max_depth=2, max_features=None, min_samples_leaf=4, min_samples_split=2, n_estimators=20;, score=0.869 total time= 0.1s\n","[CV 2/5] END bootstrap=True, max_depth=2, max_features=None, min_samples_leaf=4, min_samples_split=2, n_estimators=20;, score=0.879 total time= 0.1s\n","[CV 3/5] END bootstrap=True, max_depth=2, max_features=None, min_samples_leaf=4, min_samples_split=2, n_estimators=20;, score=0.894 total time= 0.0s\n","[CV 4/5] END bootstrap=True, max_depth=2, max_features=None, min_samples_leaf=4, min_samples_split=2, n_estimators=20;, score=0.874 total time= 0.1s\n","[CV 5/5] END bootstrap=True, max_depth=2, max_features=None, min_samples_leaf=4, min_samples_split=2, n_estimators=20;, score=0.874 total time= 0.0s\n","[CV 1/5] END bootstrap=True, max_depth=2, max_features=None, min_samples_leaf=4, min_samples_split=2, n_estimators=30;, score=0.874 total time= 0.1s\n","[CV 2/5] END bootstrap=True, max_depth=2, max_features=None, min_samples_leaf=4, min_samples_split=2, n_estimators=30;, score=0.909 total time= 0.1s\n","[CV 3/5] END bootstrap=True, max_depth=2, max_features=None, min_samples_leaf=4, min_samples_split=2, n_estimators=30;, score=0.874 total time= 0.1s\n","[CV 4/5] END bootstrap=True, max_depth=2, max_features=None, min_samples_leaf=4, min_samples_split=2, n_estimators=30;, score=0.843 total time= 0.1s\n","[CV 5/5] END bootstrap=True, max_depth=2, max_features=None, min_samples_leaf=4, min_samples_split=2, n_estimators=30;, score=0.884 total time= 0.1s\n","[CV 1/5] END bootstrap=True, max_depth=2, max_features=None, min_samples_leaf=4, min_samples_split=4, n_estimators=5;, score=0.899 total time= 0.0s\n","[CV 2/5] END bootstrap=True, max_depth=2, max_features=None, min_samples_leaf=4, min_samples_split=4, n_estimators=5;, score=0.889 total time= 0.0s\n","[CV 3/5] END bootstrap=True, max_depth=2, max_features=None, min_samples_leaf=4, min_samples_split=4, n_estimators=5;, score=0.899 total time= 0.0s\n","[CV 4/5] END bootstrap=True, max_depth=2, max_features=None, min_samples_leaf=4, min_samples_split=4, n_estimators=5;, score=0.848 total time= 0.0s\n","[CV 5/5] END bootstrap=True, max_depth=2, max_features=None, min_samples_leaf=4, min_samples_split=4, n_estimators=5;, score=0.899 total time= 0.0s\n","[CV 1/5] END bootstrap=True, max_depth=2, max_features=None, min_samples_leaf=4, min_samples_split=4, n_estimators=10;, score=0.848 total time= 0.0s\n","[CV 2/5] END bootstrap=True, max_depth=2, max_features=None, min_samples_leaf=4, min_samples_split=4, n_estimators=10;, score=0.904 total time= 0.0s\n","[CV 3/5] END bootstrap=True, max_depth=2, max_features=None, min_samples_leaf=4, min_samples_split=4, n_estimators=10;, score=0.894 total time= 0.0s\n","[CV 4/5] END bootstrap=True, max_depth=2, max_features=None, min_samples_leaf=4, min_samples_split=4, n_estimators=10;, score=0.854 total time= 0.0s\n","[CV 5/5] END bootstrap=True, max_depth=2, max_features=None, min_samples_leaf=4, min_samples_split=4, n_estimators=10;, score=0.889 total time= 0.0s\n","[CV 1/5] END bootstrap=True, max_depth=2, max_features=None, min_samples_leaf=4, min_samples_split=4, n_estimators=20;, score=0.859 total time= 0.1s\n","[CV 2/5] END bootstrap=True, max_depth=2, max_features=None, min_samples_leaf=4, min_samples_split=4, n_estimators=20;, score=0.914 total time= 0.1s\n","[CV 3/5] END bootstrap=True, max_depth=2, max_features=None, min_samples_leaf=4, min_samples_split=4, n_estimators=20;, score=0.884 total time= 0.1s\n","[CV 4/5] END bootstrap=True, max_depth=2, max_features=None, min_samples_leaf=4, min_samples_split=4, n_estimators=20;, score=0.848 total time= 0.1s\n","[CV 5/5] END bootstrap=True, max_depth=2, max_features=None, min_samples_leaf=4, min_samples_split=4, n_estimators=20;, score=0.894 total time= 0.1s\n","[CV 1/5] END bootstrap=True, max_depth=2, max_features=None, min_samples_leaf=4, min_samples_split=4, n_estimators=30;, score=0.869 total time= 0.1s\n","[CV 2/5] END bootstrap=True, max_depth=2, max_features=None, min_samples_leaf=4, min_samples_split=4, n_estimators=30;, score=0.904 total time= 0.1s\n","[CV 3/5] END bootstrap=True, max_depth=2, max_features=None, min_samples_leaf=4, min_samples_split=4, n_estimators=30;, score=0.894 total time= 0.1s\n","[CV 4/5] END bootstrap=True, max_depth=2, max_features=None, min_samples_leaf=4, min_samples_split=4, n_estimators=30;, score=0.843 total time= 0.1s\n","[CV 5/5] END bootstrap=True, max_depth=2, max_features=None, min_samples_leaf=4, min_samples_split=4, n_estimators=30;, score=0.884 total time= 0.1s\n","[CV 1/5] END bootstrap=True, max_depth=2, max_features=None, min_samples_leaf=4, min_samples_split=6, n_estimators=5;, score=0.864 total time= 0.0s\n","[CV 2/5] END bootstrap=True, max_depth=2, max_features=None, min_samples_leaf=4, min_samples_split=6, n_estimators=5;, score=0.874 total time= 0.0s\n","[CV 3/5] END bootstrap=True, max_depth=2, max_features=None, min_samples_leaf=4, min_samples_split=6, n_estimators=5;, score=0.879 total time= 0.0s\n","[CV 4/5] END bootstrap=True, max_depth=2, max_features=None, min_samples_leaf=4, min_samples_split=6, n_estimators=5;, score=0.864 total time= 0.0s\n","[CV 5/5] END bootstrap=True, max_depth=2, max_features=None, min_samples_leaf=4, min_samples_split=6, n_estimators=5;, score=0.894 total time= 0.0s\n","[CV 1/5] END bootstrap=True, max_depth=2, max_features=None, min_samples_leaf=4, min_samples_split=6, n_estimators=10;, score=0.874 total time= 0.0s\n","[CV 2/5] END bootstrap=True, max_depth=2, max_features=None, min_samples_leaf=4, min_samples_split=6, n_estimators=10;, score=0.899 total time= 0.0s\n","[CV 3/5] END bootstrap=True, max_depth=2, max_features=None, min_samples_leaf=4, min_samples_split=6, n_estimators=10;, score=0.889 total time= 0.0s\n","[CV 4/5] END bootstrap=True, max_depth=2, max_features=None, min_samples_leaf=4, min_samples_split=6, n_estimators=10;, score=0.854 total time= 0.0s\n","[CV 5/5] END bootstrap=True, max_depth=2, max_features=None, min_samples_leaf=4, min_samples_split=6, n_estimators=10;, score=0.879 total time= 0.0s\n","[CV 1/5] END bootstrap=True, max_depth=2, max_features=None, min_samples_leaf=4, min_samples_split=6, n_estimators=20;, score=0.864 total time= 0.1s\n","[CV 2/5] END bootstrap=True, max_depth=2, max_features=None, min_samples_leaf=4, min_samples_split=6, n_estimators=20;, score=0.884 total time= 0.1s\n","[CV 3/5] END bootstrap=True, max_depth=2, max_features=None, min_samples_leaf=4, min_samples_split=6, n_estimators=20;, score=0.879 total time= 0.0s\n","[CV 4/5] END bootstrap=True, max_depth=2, max_features=None, min_samples_leaf=4, min_samples_split=6, n_estimators=20;, score=0.854 total time= 0.1s\n","[CV 5/5] END bootstrap=True, max_depth=2, max_features=None, min_samples_leaf=4, min_samples_split=6, n_estimators=20;, score=0.884 total time= 0.0s\n","[CV 1/5] END bootstrap=True, max_depth=2, max_features=None, min_samples_leaf=4, min_samples_split=6, n_estimators=30;, score=0.879 total time= 0.1s\n","[CV 2/5] END bootstrap=True, max_depth=2, max_features=None, min_samples_leaf=4, min_samples_split=6, n_estimators=30;, score=0.909 total time= 0.1s\n","[CV 3/5] END bootstrap=True, max_depth=2, max_features=None, min_samples_leaf=4, min_samples_split=6, n_estimators=30;, score=0.889 total time= 0.1s\n","[CV 4/5] END bootstrap=True, max_depth=2, max_features=None, min_samples_leaf=4, min_samples_split=6, n_estimators=30;, score=0.838 total time= 0.1s\n","[CV 5/5] END bootstrap=True, max_depth=2, max_features=None, min_samples_leaf=4, min_samples_split=6, n_estimators=30;, score=0.884 total time= 0.1s\n","[CV 1/5] END bootstrap=True, max_depth=2, max_features=None, min_samples_leaf=6, min_samples_split=2, n_estimators=5;, score=0.874 total time= 0.0s\n","[CV 2/5] END bootstrap=True, max_depth=2, max_features=None, min_samples_leaf=6, min_samples_split=2, n_estimators=5;, score=0.894 total time= 0.0s\n","[CV 3/5] END bootstrap=True, max_depth=2, max_features=None, min_samples_leaf=6, min_samples_split=2, n_estimators=5;, score=0.889 total time= 0.0s\n","[CV 4/5] END bootstrap=True, max_depth=2, max_features=None, min_samples_leaf=6, min_samples_split=2, n_estimators=5;, score=0.894 total time= 0.0s\n","[CV 5/5] END bootstrap=True, max_depth=2, max_features=None, min_samples_leaf=6, min_samples_split=2, n_estimators=5;, score=0.874 total time= 0.0s\n","[CV 1/5] END bootstrap=True, max_depth=2, max_features=None, min_samples_leaf=6, min_samples_split=2, n_estimators=10;, score=0.859 total time= 0.0s\n","[CV 2/5] END bootstrap=True, max_depth=2, max_features=None, min_samples_leaf=6, min_samples_split=2, n_estimators=10;, score=0.909 total time= 0.0s\n","[CV 3/5] END bootstrap=True, max_depth=2, max_features=None, min_samples_leaf=6, min_samples_split=2, n_estimators=10;, score=0.879 total time= 0.0s\n","[CV 4/5] END bootstrap=True, max_depth=2, max_features=None, min_samples_leaf=6, min_samples_split=2, n_estimators=10;, score=0.859 total time= 0.0s\n","[CV 5/5] END bootstrap=True, max_depth=2, max_features=None, min_samples_leaf=6, min_samples_split=2, n_estimators=10;, score=0.889 total time= 0.0s\n","[CV 1/5] END bootstrap=True, max_depth=2, max_features=None, min_samples_leaf=6, min_samples_split=2, n_estimators=20;, score=0.874 total time= 0.0s\n","[CV 2/5] END bootstrap=True, max_depth=2, max_features=None, min_samples_leaf=6, min_samples_split=2, n_estimators=20;, score=0.884 total time= 0.1s\n","[CV 3/5] END bootstrap=True, max_depth=2, max_features=None, min_samples_leaf=6, min_samples_split=2, n_estimators=20;, score=0.879 total time= 0.1s\n","[CV 4/5] END bootstrap=True, max_depth=2, max_features=None, min_samples_leaf=6, min_samples_split=2, n_estimators=20;, score=0.833 total time= 0.0s\n","[CV 5/5] END bootstrap=True, max_depth=2, max_features=None, min_samples_leaf=6, min_samples_split=2, n_estimators=20;, score=0.884 total time= 0.0s\n","[CV 1/5] END bootstrap=True, max_depth=2, max_features=None, min_samples_leaf=6, min_samples_split=2, n_estimators=30;, score=0.859 total time= 0.1s\n","[CV 2/5] END bootstrap=True, max_depth=2, max_features=None, min_samples_leaf=6, min_samples_split=2, n_estimators=30;, score=0.884 total time= 0.1s\n","[CV 3/5] END bootstrap=True, max_depth=2, max_features=None, min_samples_leaf=6, min_samples_split=2, n_estimators=30;, score=0.884 total time= 0.1s\n","[CV 4/5] END bootstrap=True, max_depth=2, max_features=None, min_samples_leaf=6, min_samples_split=2, n_estimators=30;, score=0.838 total time= 0.1s\n","[CV 5/5] END bootstrap=True, max_depth=2, max_features=None, min_samples_leaf=6, min_samples_split=2, n_estimators=30;, score=0.879 total time= 0.1s\n","[CV 1/5] END bootstrap=True, max_depth=2, max_features=None, min_samples_leaf=6, min_samples_split=4, n_estimators=5;, score=0.884 total time= 0.0s\n","[CV 2/5] END bootstrap=True, max_depth=2, max_features=None, min_samples_leaf=6, min_samples_split=4, n_estimators=5;, score=0.899 total time= 0.0s\n","[CV 3/5] END bootstrap=True, max_depth=2, max_features=None, min_samples_leaf=6, min_samples_split=4, n_estimators=5;, score=0.899 total time= 0.0s\n","[CV 4/5] END bootstrap=True, max_depth=2, max_features=None, min_samples_leaf=6, min_samples_split=4, n_estimators=5;, score=0.838 total time= 0.0s\n","[CV 5/5] END bootstrap=True, max_depth=2, max_features=None, min_samples_leaf=6, min_samples_split=4, n_estimators=5;, score=0.859 total time= 0.0s\n","[CV 1/5] END bootstrap=True, max_depth=2, max_features=None, min_samples_leaf=6, min_samples_split=4, n_estimators=10;, score=0.869 total time= 0.0s\n","[CV 2/5] END bootstrap=True, max_depth=2, max_features=None, min_samples_leaf=6, min_samples_split=4, n_estimators=10;, score=0.894 total time= 0.0s\n","[CV 3/5] END bootstrap=True, max_depth=2, max_features=None, min_samples_leaf=6, min_samples_split=4, n_estimators=10;, score=0.879 total time= 0.0s\n","[CV 4/5] END bootstrap=True, max_depth=2, max_features=None, min_samples_leaf=6, min_samples_split=4, n_estimators=10;, score=0.854 total time= 0.0s\n","[CV 5/5] END bootstrap=True, max_depth=2, max_features=None, min_samples_leaf=6, min_samples_split=4, n_estimators=10;, score=0.894 total time= 0.0s\n","[CV 1/5] END bootstrap=True, max_depth=2, max_features=None, min_samples_leaf=6, min_samples_split=4, n_estimators=20;, score=0.869 total time= 0.0s\n","[CV 2/5] END bootstrap=True, max_depth=2, max_features=None, min_samples_leaf=6, min_samples_split=4, n_estimators=20;, score=0.899 total time= 0.0s\n","[CV 3/5] END bootstrap=True, max_depth=2, max_features=None, min_samples_leaf=6, min_samples_split=4, n_estimators=20;, score=0.884 total time= 0.1s\n","[CV 4/5] END bootstrap=True, max_depth=2, max_features=None, min_samples_leaf=6, min_samples_split=4, n_estimators=20;, score=0.848 total time= 0.0s\n","[CV 5/5] END bootstrap=True, max_depth=2, max_features=None, min_samples_leaf=6, min_samples_split=4, n_estimators=20;, score=0.884 total time= 0.1s\n","[CV 1/5] END bootstrap=True, max_depth=2, max_features=None, min_samples_leaf=6, min_samples_split=4, n_estimators=30;, score=0.854 total time= 0.1s\n","[CV 2/5] END bootstrap=True, max_depth=2, max_features=None, min_samples_leaf=6, min_samples_split=4, n_estimators=30;, score=0.919 total time= 0.1s\n","[CV 3/5] END bootstrap=True, max_depth=2, max_features=None, min_samples_leaf=6, min_samples_split=4, n_estimators=30;, score=0.869 total time= 0.1s\n","[CV 4/5] END bootstrap=True, max_depth=2, max_features=None, min_samples_leaf=6, min_samples_split=4, n_estimators=30;, score=0.848 total time= 0.1s\n","[CV 5/5] END bootstrap=True, max_depth=2, max_features=None, min_samples_leaf=6, min_samples_split=4, n_estimators=30;, score=0.884 total time= 0.1s\n","[CV 1/5] END bootstrap=True, max_depth=2, max_features=None, min_samples_leaf=6, min_samples_split=6, n_estimators=5;, score=0.874 total time= 0.0s\n","[CV 2/5] END bootstrap=True, max_depth=2, max_features=None, min_samples_leaf=6, min_samples_split=6, n_estimators=5;, score=0.899 total time= 0.0s\n","[CV 3/5] END bootstrap=True, max_depth=2, max_features=None, min_samples_leaf=6, min_samples_split=6, n_estimators=5;, score=0.889 total time= 0.0s\n","[CV 4/5] END bootstrap=True, max_depth=2, max_features=None, min_samples_leaf=6, min_samples_split=6, n_estimators=5;, score=0.838 total time= 0.0s\n","[CV 5/5] END bootstrap=True, max_depth=2, max_features=None, min_samples_leaf=6, min_samples_split=6, n_estimators=5;, score=0.884 total time= 0.0s\n","[CV 1/5] END bootstrap=True, max_depth=2, max_features=None, min_samples_leaf=6, min_samples_split=6, n_estimators=10;, score=0.864 total time= 0.0s\n","[CV 2/5] END bootstrap=True, max_depth=2, max_features=None, min_samples_leaf=6, min_samples_split=6, n_estimators=10;, score=0.884 total time= 0.0s\n","[CV 3/5] END bootstrap=True, max_depth=2, max_features=None, min_samples_leaf=6, min_samples_split=6, n_estimators=10;, score=0.894 total time= 0.0s\n","[CV 4/5] END bootstrap=True, max_depth=2, max_features=None, min_samples_leaf=6, min_samples_split=6, n_estimators=10;, score=0.864 total time= 0.0s\n","[CV 5/5] END bootstrap=True, max_depth=2, max_features=None, min_samples_leaf=6, min_samples_split=6, n_estimators=10;, score=0.899 total time= 0.0s\n","[CV 1/5] END bootstrap=True, max_depth=2, max_features=None, min_samples_leaf=6, min_samples_split=6, n_estimators=20;, score=0.864 total time= 0.0s\n","[CV 2/5] END bootstrap=True, max_depth=2, max_features=None, min_samples_leaf=6, min_samples_split=6, n_estimators=20;, score=0.904 total time= 0.1s\n","[CV 3/5] END bootstrap=True, max_depth=2, max_features=None, min_samples_leaf=6, min_samples_split=6, n_estimators=20;, score=0.884 total time= 0.1s\n","[CV 4/5] END bootstrap=True, max_depth=2, max_features=None, min_samples_leaf=6, min_samples_split=6, n_estimators=20;, score=0.838 total time= 0.1s\n","[CV 5/5] END bootstrap=True, max_depth=2, max_features=None, min_samples_leaf=6, min_samples_split=6, n_estimators=20;, score=0.889 total time= 0.0s\n","[CV 1/5] END bootstrap=True, max_depth=2, max_features=None, min_samples_leaf=6, min_samples_split=6, n_estimators=30;, score=0.884 total time= 0.1s\n","[CV 2/5] END bootstrap=True, max_depth=2, max_features=None, min_samples_leaf=6, min_samples_split=6, n_estimators=30;, score=0.889 total time= 0.1s\n","[CV 3/5] END bootstrap=True, max_depth=2, max_features=None, min_samples_leaf=6, min_samples_split=6, n_estimators=30;, score=0.884 total time= 0.1s\n","[CV 4/5] END bootstrap=True, max_depth=2, max_features=None, min_samples_leaf=6, min_samples_split=6, n_estimators=30;, score=0.854 total time= 0.1s\n","[CV 5/5] END bootstrap=True, max_depth=2, max_features=None, min_samples_leaf=6, min_samples_split=6, n_estimators=30;, score=0.904 total time= 0.1s\n","[CV 1/5] END bootstrap=True, max_depth=6, max_features=sqrt, min_samples_leaf=2, min_samples_split=2, n_estimators=5;, score=0.864 total time= 0.0s\n","[CV 2/5] END bootstrap=True, max_depth=6, max_features=sqrt, min_samples_leaf=2, min_samples_split=2, n_estimators=5;, score=0.894 total time= 0.0s\n","[CV 3/5] END bootstrap=True, max_depth=6, max_features=sqrt, min_samples_leaf=2, min_samples_split=2, n_estimators=5;, score=0.869 total time= 0.0s\n","[CV 4/5] END bootstrap=True, max_depth=6, max_features=sqrt, min_samples_leaf=2, min_samples_split=2, n_estimators=5;, score=0.833 total time= 0.0s\n","[CV 5/5] END bootstrap=True, max_depth=6, max_features=sqrt, min_samples_leaf=2, min_samples_split=2, n_estimators=5;, score=0.864 total time= 0.0s\n","[CV 1/5] END bootstrap=True, max_depth=6, max_features=sqrt, min_samples_leaf=2, min_samples_split=2, n_estimators=10;, score=0.874 total time= 0.0s\n","[CV 2/5] END bootstrap=True, max_depth=6, max_features=sqrt, min_samples_leaf=2, min_samples_split=2, n_estimators=10;, score=0.904 total time= 0.0s\n","[CV 3/5] END bootstrap=True, max_depth=6, max_features=sqrt, min_samples_leaf=2, min_samples_split=2, n_estimators=10;, score=0.894 total time= 0.0s\n","[CV 4/5] END bootstrap=True, max_depth=6, max_features=sqrt, min_samples_leaf=2, min_samples_split=2, n_estimators=10;, score=0.848 total time= 0.0s\n","[CV 5/5] END bootstrap=True, max_depth=6, max_features=sqrt, min_samples_leaf=2, min_samples_split=2, n_estimators=10;, score=0.889 total time= 0.0s\n","[CV 1/5] END bootstrap=True, max_depth=6, max_features=sqrt, min_samples_leaf=2, min_samples_split=2, n_estimators=20;, score=0.869 total time= 0.0s\n","[CV 2/5] END bootstrap=True, max_depth=6, max_features=sqrt, min_samples_leaf=2, min_samples_split=2, n_estimators=20;, score=0.879 total time= 0.1s\n","[CV 3/5] END bootstrap=True, max_depth=6, max_features=sqrt, min_samples_leaf=2, min_samples_split=2, n_estimators=20;, score=0.889 total time= 0.0s\n","[CV 4/5] END bootstrap=True, max_depth=6, max_features=sqrt, min_samples_leaf=2, min_samples_split=2, n_estimators=20;, score=0.848 total time= 0.0s\n","[CV 5/5] END bootstrap=True, max_depth=6, max_features=sqrt, min_samples_leaf=2, min_samples_split=2, n_estimators=20;, score=0.894 total time= 0.0s\n","[CV 1/5] END bootstrap=True, max_depth=6, max_features=sqrt, min_samples_leaf=2, min_samples_split=2, n_estimators=30;, score=0.874 total time= 0.1s\n","[CV 2/5] END bootstrap=True, max_depth=6, max_features=sqrt, min_samples_leaf=2, min_samples_split=2, n_estimators=30;, score=0.894 total time= 0.1s\n","[CV 3/5] END bootstrap=True, max_depth=6, max_features=sqrt, min_samples_leaf=2, min_samples_split=2, n_estimators=30;, score=0.869 total time= 0.1s\n","[CV 4/5] END bootstrap=True, max_depth=6, max_features=sqrt, min_samples_leaf=2, min_samples_split=2, n_estimators=30;, score=0.848 total time= 0.1s\n","[CV 5/5] END bootstrap=True, max_depth=6, max_features=sqrt, min_samples_leaf=2, min_samples_split=2, n_estimators=30;, score=0.899 total time= 0.1s\n","[CV 1/5] END bootstrap=True, max_depth=6, max_features=sqrt, min_samples_leaf=2, min_samples_split=4, n_estimators=5;, score=0.899 total time= 0.0s\n","[CV 2/5] END bootstrap=True, max_depth=6, max_features=sqrt, min_samples_leaf=2, min_samples_split=4, n_estimators=5;, score=0.874 total time= 0.0s\n","[CV 3/5] END bootstrap=True, max_depth=6, max_features=sqrt, min_samples_leaf=2, min_samples_split=4, n_estimators=5;, score=0.874 total time= 0.0s\n","[CV 4/5] END bootstrap=True, max_depth=6, max_features=sqrt, min_samples_leaf=2, min_samples_split=4, n_estimators=5;, score=0.854 total time= 0.0s\n","[CV 5/5] END bootstrap=True, max_depth=6, max_features=sqrt, min_samples_leaf=2, min_samples_split=4, n_estimators=5;, score=0.884 total time= 0.0s\n","[CV 1/5] END bootstrap=True, max_depth=6, max_features=sqrt, min_samples_leaf=2, min_samples_split=4, n_estimators=10;, score=0.859 total time= 0.0s\n","[CV 2/5] END bootstrap=True, max_depth=6, max_features=sqrt, min_samples_leaf=2, min_samples_split=4, n_estimators=10;, score=0.904 total time= 0.0s\n","[CV 3/5] END bootstrap=True, max_depth=6, max_features=sqrt, min_samples_leaf=2, min_samples_split=4, n_estimators=10;, score=0.909 total time= 0.0s\n","[CV 4/5] END bootstrap=True, max_depth=6, max_features=sqrt, min_samples_leaf=2, min_samples_split=4, n_estimators=10;, score=0.838 total time= 0.0s\n","[CV 5/5] END bootstrap=True, max_depth=6, max_features=sqrt, min_samples_leaf=2, min_samples_split=4, n_estimators=10;, score=0.899 total time= 0.0s\n","[CV 1/5] END bootstrap=True, max_depth=6, max_features=sqrt, min_samples_leaf=2, min_samples_split=4, n_estimators=20;, score=0.894 total time= 0.0s\n","[CV 2/5] END bootstrap=True, max_depth=6, max_features=sqrt, min_samples_leaf=2, min_samples_split=4, n_estimators=20;, score=0.899 total time= 0.1s\n","[CV 3/5] END bootstrap=True, max_depth=6, max_features=sqrt, min_samples_leaf=2, min_samples_split=4, n_estimators=20;, score=0.874 total time= 0.0s\n","[CV 4/5] END bootstrap=True, max_depth=6, max_features=sqrt, min_samples_leaf=2, min_samples_split=4, n_estimators=20;, score=0.884 total time= 0.1s\n","[CV 5/5] END bootstrap=True, max_depth=6, max_features=sqrt, min_samples_leaf=2, min_samples_split=4, n_estimators=20;, score=0.914 total time= 0.0s\n","[CV 1/5] END bootstrap=True, max_depth=6, max_features=sqrt, min_samples_leaf=2, min_samples_split=4, n_estimators=30;, score=0.874 total time= 0.1s\n","[CV 2/5] END bootstrap=True, max_depth=6, max_features=sqrt, min_samples_leaf=2, min_samples_split=4, n_estimators=30;, score=0.894 total time= 0.1s\n","[CV 3/5] END bootstrap=True, max_depth=6, max_features=sqrt, min_samples_leaf=2, min_samples_split=4, n_estimators=30;, score=0.884 total time= 0.1s\n","[CV 4/5] END bootstrap=True, max_depth=6, max_features=sqrt, min_samples_leaf=2, min_samples_split=4, n_estimators=30;, score=0.854 total time= 0.1s\n","[CV 5/5] END bootstrap=True, max_depth=6, max_features=sqrt, min_samples_leaf=2, min_samples_split=4, n_estimators=30;, score=0.879 total time= 0.1s\n","[CV 1/5] END bootstrap=True, max_depth=6, max_features=sqrt, min_samples_leaf=2, min_samples_split=6, n_estimators=5;, score=0.889 total time= 0.0s\n","[CV 2/5] END bootstrap=True, max_depth=6, max_features=sqrt, min_samples_leaf=2, min_samples_split=6, n_estimators=5;, score=0.914 total time= 0.0s\n","[CV 3/5] END bootstrap=True, max_depth=6, max_features=sqrt, min_samples_leaf=2, min_samples_split=6, n_estimators=5;, score=0.884 total time= 0.0s\n","[CV 4/5] END bootstrap=True, max_depth=6, max_features=sqrt, min_samples_leaf=2, min_samples_split=6, n_estimators=5;, score=0.889 total time= 0.0s\n","[CV 5/5] END bootstrap=True, max_depth=6, max_features=sqrt, min_samples_leaf=2, min_samples_split=6, n_estimators=5;, score=0.884 total time= 0.0s\n","[CV 1/5] END bootstrap=True, max_depth=6, max_features=sqrt, min_samples_leaf=2, min_samples_split=6, n_estimators=10;, score=0.879 total time= 0.0s\n","[CV 2/5] END bootstrap=True, max_depth=6, max_features=sqrt, min_samples_leaf=2, min_samples_split=6, n_estimators=10;, score=0.889 total time= 0.0s\n","[CV 3/5] END bootstrap=True, max_depth=6, max_features=sqrt, min_samples_leaf=2, min_samples_split=6, n_estimators=10;, score=0.879 total time= 0.0s\n","[CV 4/5] END bootstrap=True, max_depth=6, max_features=sqrt, min_samples_leaf=2, min_samples_split=6, n_estimators=10;, score=0.848 total time= 0.0s\n","[CV 5/5] END bootstrap=True, max_depth=6, max_features=sqrt, min_samples_leaf=2, min_samples_split=6, n_estimators=10;, score=0.874 total time= 0.0s\n","[CV 1/5] END bootstrap=True, max_depth=6, max_features=sqrt, min_samples_leaf=2, min_samples_split=6, n_estimators=20;, score=0.869 total time= 0.0s\n","[CV 2/5] END bootstrap=True, max_depth=6, max_features=sqrt, min_samples_leaf=2, min_samples_split=6, n_estimators=20;, score=0.899 total time= 0.0s\n","[CV 3/5] END bootstrap=True, max_depth=6, max_features=sqrt, min_samples_leaf=2, min_samples_split=6, n_estimators=20;, score=0.879 total time= 0.0s\n","[CV 4/5] END bootstrap=True, max_depth=6, max_features=sqrt, min_samples_leaf=2, min_samples_split=6, n_estimators=20;, score=0.843 total time= 0.0s\n","[CV 5/5] END bootstrap=True, max_depth=6, max_features=sqrt, min_samples_leaf=2, min_samples_split=6, n_estimators=20;, score=0.874 total time= 0.0s\n","[CV 1/5] END bootstrap=True, max_depth=6, max_features=sqrt, min_samples_leaf=2, min_samples_split=6, n_estimators=30;, score=0.864 total time= 0.1s\n","[CV 2/5] END bootstrap=True, max_depth=6, max_features=sqrt, min_samples_leaf=2, min_samples_split=6, n_estimators=30;, score=0.874 total time= 0.1s\n","[CV 3/5] END bootstrap=True, max_depth=6, max_features=sqrt, min_samples_leaf=2, min_samples_split=6, n_estimators=30;, score=0.879 total time= 0.1s\n","[CV 4/5] END bootstrap=True, max_depth=6, max_features=sqrt, min_samples_leaf=2, min_samples_split=6, n_estimators=30;, score=0.848 total time= 0.1s\n","[CV 5/5] END bootstrap=True, max_depth=6, max_features=sqrt, min_samples_leaf=2, min_samples_split=6, n_estimators=30;, score=0.889 total time= 0.1s\n","[CV 1/5] END bootstrap=True, max_depth=6, max_features=sqrt, min_samples_leaf=4, min_samples_split=2, n_estimators=5;, score=0.864 total time= 0.0s\n","[CV 2/5] END bootstrap=True, max_depth=6, max_features=sqrt, min_samples_leaf=4, min_samples_split=2, n_estimators=5;, score=0.904 total time= 0.0s\n","[CV 3/5] END bootstrap=True, max_depth=6, max_features=sqrt, min_samples_leaf=4, min_samples_split=2, n_estimators=5;, score=0.879 total time= 0.0s\n","[CV 4/5] END bootstrap=True, max_depth=6, max_features=sqrt, min_samples_leaf=4, min_samples_split=2, n_estimators=5;, score=0.848 total time= 0.0s\n","[CV 5/5] END bootstrap=True, max_depth=6, max_features=sqrt, min_samples_leaf=4, min_samples_split=2, n_estimators=5;, score=0.874 total time= 0.0s\n","[CV 1/5] END bootstrap=True, max_depth=6, max_features=sqrt, min_samples_leaf=4, min_samples_split=2, n_estimators=10;, score=0.889 total time= 0.0s\n","[CV 2/5] END bootstrap=True, max_depth=6, max_features=sqrt, min_samples_leaf=4, min_samples_split=2, n_estimators=10;, score=0.874 total time= 0.0s\n","[CV 3/5] END bootstrap=True, max_depth=6, max_features=sqrt, min_samples_leaf=4, min_samples_split=2, n_estimators=10;, score=0.869 total time= 0.0s\n","[CV 4/5] END bootstrap=True, max_depth=6, max_features=sqrt, min_samples_leaf=4, min_samples_split=2, n_estimators=10;, score=0.874 total time= 0.0s\n","[CV 5/5] END bootstrap=True, max_depth=6, max_features=sqrt, min_samples_leaf=4, min_samples_split=2, n_estimators=10;, score=0.894 total time= 0.0s\n","[CV 1/5] END bootstrap=True, max_depth=6, max_features=sqrt, min_samples_leaf=4, min_samples_split=2, n_estimators=20;, score=0.884 total time= 0.0s\n","[CV 2/5] END bootstrap=True, max_depth=6, max_features=sqrt, min_samples_leaf=4, min_samples_split=2, n_estimators=20;, score=0.889 total time= 0.0s\n","[CV 3/5] END bootstrap=True, max_depth=6, max_features=sqrt, min_samples_leaf=4, min_samples_split=2, n_estimators=20;, score=0.884 total time= 0.1s\n","[CV 4/5] END bootstrap=True, max_depth=6, max_features=sqrt, min_samples_leaf=4, min_samples_split=2, n_estimators=20;, score=0.833 total time= 0.0s\n","[CV 5/5] END bootstrap=True, max_depth=6, max_features=sqrt, min_samples_leaf=4, min_samples_split=2, n_estimators=20;, score=0.894 total time= 0.0s\n","[CV 1/5] END bootstrap=True, max_depth=6, max_features=sqrt, min_samples_leaf=4, min_samples_split=2, n_estimators=30;, score=0.848 total time= 0.1s\n","[CV 2/5] END bootstrap=True, max_depth=6, max_features=sqrt, min_samples_leaf=4, min_samples_split=2, n_estimators=30;, score=0.904 total time= 0.1s\n","[CV 3/5] END bootstrap=True, max_depth=6, max_features=sqrt, min_samples_leaf=4, min_samples_split=2, n_estimators=30;, score=0.874 total time= 0.1s\n","[CV 4/5] END bootstrap=True, max_depth=6, max_features=sqrt, min_samples_leaf=4, min_samples_split=2, n_estimators=30;, score=0.848 total time= 0.1s\n","[CV 5/5] END bootstrap=True, max_depth=6, max_features=sqrt, min_samples_leaf=4, min_samples_split=2, n_estimators=30;, score=0.909 total time= 0.1s\n","[CV 1/5] END bootstrap=True, max_depth=6, max_features=sqrt, min_samples_leaf=4, min_samples_split=4, n_estimators=5;, score=0.874 total time= 0.0s\n","[CV 2/5] END bootstrap=True, max_depth=6, max_features=sqrt, min_samples_leaf=4, min_samples_split=4, n_estimators=5;, score=0.884 total time= 0.0s\n","[CV 3/5] END bootstrap=True, max_depth=6, max_features=sqrt, min_samples_leaf=4, min_samples_split=4, n_estimators=5;, score=0.869 total time= 0.0s\n","[CV 4/5] END bootstrap=True, max_depth=6, max_features=sqrt, min_samples_leaf=4, min_samples_split=4, n_estimators=5;, score=0.869 total time= 0.0s\n","[CV 5/5] END bootstrap=True, max_depth=6, max_features=sqrt, min_samples_leaf=4, min_samples_split=4, n_estimators=5;, score=0.859 total time= 0.0s\n","[CV 1/5] END bootstrap=True, max_depth=6, max_features=sqrt, min_samples_leaf=4, min_samples_split=4, n_estimators=10;, score=0.874 total time= 0.0s\n","[CV 2/5] END bootstrap=True, max_depth=6, max_features=sqrt, min_samples_leaf=4, min_samples_split=4, n_estimators=10;, score=0.879 total time= 0.1s\n","[CV 3/5] END bootstrap=True, max_depth=6, max_features=sqrt, min_samples_leaf=4, min_samples_split=4, n_estimators=10;, score=0.874 total time= 0.0s\n","[CV 4/5] END bootstrap=True, max_depth=6, max_features=sqrt, min_samples_leaf=4, min_samples_split=4, n_estimators=10;, score=0.859 total time= 0.0s\n","[CV 5/5] END bootstrap=True, max_depth=6, max_features=sqrt, min_samples_leaf=4, min_samples_split=4, n_estimators=10;, score=0.869 total time= 0.0s\n","[CV 1/5] END bootstrap=True, max_depth=6, max_features=sqrt, min_samples_leaf=4, min_samples_split=4, n_estimators=20;, score=0.864 total time= 0.1s\n","[CV 2/5] END bootstrap=True, max_depth=6, max_features=sqrt, min_samples_leaf=4, min_samples_split=4, n_estimators=20;, score=0.879 total time= 0.1s\n","[CV 3/5] END bootstrap=True, max_depth=6, max_features=sqrt, min_samples_leaf=4, min_samples_split=4, n_estimators=20;, score=0.884 total time= 0.1s\n","[CV 4/5] END bootstrap=True, max_depth=6, max_features=sqrt, min_samples_leaf=4, min_samples_split=4, n_estimators=20;, score=0.823 total time= 0.1s\n","[CV 5/5] END bootstrap=True, max_depth=6, max_features=sqrt, min_samples_leaf=4, min_samples_split=4, n_estimators=20;, score=0.884 total time= 0.1s\n","[CV 1/5] END bootstrap=True, max_depth=6, max_features=sqrt, min_samples_leaf=4, min_samples_split=4, n_estimators=30;, score=0.889 total time= 0.1s\n","[CV 2/5] END bootstrap=True, max_depth=6, max_features=sqrt, min_samples_leaf=4, min_samples_split=4, n_estimators=30;, score=0.884 total time= 0.1s\n","[CV 3/5] END bootstrap=True, max_depth=6, max_features=sqrt, min_samples_leaf=4, min_samples_split=4, n_estimators=30;, score=0.894 total time= 0.1s\n","[CV 4/5] END bootstrap=True, max_depth=6, max_features=sqrt, min_samples_leaf=4, min_samples_split=4, n_estimators=30;, score=0.869 total time= 0.1s\n","[CV 5/5] END bootstrap=True, max_depth=6, max_features=sqrt, min_samples_leaf=4, min_samples_split=4, n_estimators=30;, score=0.879 total time= 0.1s\n","[CV 1/5] END bootstrap=True, max_depth=6, max_features=sqrt, min_samples_leaf=4, min_samples_split=6, n_estimators=5;, score=0.864 total time= 0.0s\n","[CV 2/5] END bootstrap=True, max_depth=6, max_features=sqrt, min_samples_leaf=4, min_samples_split=6, n_estimators=5;, score=0.884 total time= 0.0s\n","[CV 3/5] END bootstrap=True, max_depth=6, max_features=sqrt, min_samples_leaf=4, min_samples_split=6, n_estimators=5;, score=0.889 total time= 0.0s\n","[CV 4/5] END bootstrap=True, max_depth=6, max_features=sqrt, min_samples_leaf=4, min_samples_split=6, n_estimators=5;, score=0.864 total time= 0.0s\n","[CV 5/5] END bootstrap=True, max_depth=6, max_features=sqrt, min_samples_leaf=4, min_samples_split=6, n_estimators=5;, score=0.899 total time= 0.0s\n","[CV 1/5] END bootstrap=True, max_depth=6, max_features=sqrt, min_samples_leaf=4, min_samples_split=6, n_estimators=10;, score=0.879 total time= 0.0s\n","[CV 2/5] END bootstrap=True, max_depth=6, max_features=sqrt, min_samples_leaf=4, min_samples_split=6, n_estimators=10;, score=0.889 total time= 0.0s\n","[CV 3/5] END bootstrap=True, max_depth=6, max_features=sqrt, min_samples_leaf=4, min_samples_split=6, n_estimators=10;, score=0.894 total time= 0.0s\n","[CV 4/5] END bootstrap=True, max_depth=6, max_features=sqrt, min_samples_leaf=4, min_samples_split=6, n_estimators=10;, score=0.874 total time= 0.0s\n","[CV 5/5] END bootstrap=True, max_depth=6, max_features=sqrt, min_samples_leaf=4, min_samples_split=6, n_estimators=10;, score=0.869 total time= 0.0s\n","[CV 1/5] END bootstrap=True, max_depth=6, max_features=sqrt, min_samples_leaf=4, min_samples_split=6, n_estimators=20;, score=0.884 total time= 0.1s\n","[CV 2/5] END bootstrap=True, max_depth=6, max_features=sqrt, min_samples_leaf=4, min_samples_split=6, n_estimators=20;, score=0.884 total time= 0.1s\n","[CV 3/5] END bootstrap=True, max_depth=6, max_features=sqrt, min_samples_leaf=4, min_samples_split=6, n_estimators=20;, score=0.884 total time= 0.1s\n","[CV 4/5] END bootstrap=True, max_depth=6, max_features=sqrt, min_samples_leaf=4, min_samples_split=6, n_estimators=20;, score=0.833 total time= 0.1s\n","[CV 5/5] END bootstrap=True, max_depth=6, max_features=sqrt, min_samples_leaf=4, min_samples_split=6, n_estimators=20;, score=0.884 total time= 0.1s\n","[CV 1/5] END bootstrap=True, max_depth=6, max_features=sqrt, min_samples_leaf=4, min_samples_split=6, n_estimators=30;, score=0.884 total time= 0.1s\n","[CV 2/5] END bootstrap=True, max_depth=6, max_features=sqrt, min_samples_leaf=4, min_samples_split=6, n_estimators=30;, score=0.909 total time= 0.1s\n","[CV 3/5] END bootstrap=True, max_depth=6, max_features=sqrt, min_samples_leaf=4, min_samples_split=6, n_estimators=30;, score=0.864 total time= 0.1s\n","[CV 4/5] END bootstrap=True, max_depth=6, max_features=sqrt, min_samples_leaf=4, min_samples_split=6, n_estimators=30;, score=0.859 total time= 0.1s\n","[CV 5/5] END bootstrap=True, max_depth=6, max_features=sqrt, min_samples_leaf=4, min_samples_split=6, n_estimators=30;, score=0.864 total time= 0.1s\n","[CV 1/5] END bootstrap=True, max_depth=6, max_features=sqrt, min_samples_leaf=6, min_samples_split=2, n_estimators=5;, score=0.884 total time= 0.0s\n","[CV 2/5] END bootstrap=True, max_depth=6, max_features=sqrt, min_samples_leaf=6, min_samples_split=2, n_estimators=5;, score=0.909 total time= 0.0s\n","[CV 3/5] END bootstrap=True, max_depth=6, max_features=sqrt, min_samples_leaf=6, min_samples_split=2, n_estimators=5;, score=0.879 total time= 0.0s\n","[CV 4/5] END bootstrap=True, max_depth=6, max_features=sqrt, min_samples_leaf=6, min_samples_split=2, n_estimators=5;, score=0.828 total time= 0.0s\n","[CV 5/5] END bootstrap=True, max_depth=6, max_features=sqrt, min_samples_leaf=6, min_samples_split=2, n_estimators=5;, score=0.884 total time= 0.0s\n","[CV 1/5] END bootstrap=True, max_depth=6, max_features=sqrt, min_samples_leaf=6, min_samples_split=2, n_estimators=10;, score=0.879 total time= 0.0s\n","[CV 2/5] END bootstrap=True, max_depth=6, max_features=sqrt, min_samples_leaf=6, min_samples_split=2, n_estimators=10;, score=0.874 total time= 0.1s\n","[CV 3/5] END bootstrap=True, max_depth=6, max_features=sqrt, min_samples_leaf=6, min_samples_split=2, n_estimators=10;, score=0.894 total time= 0.0s\n","[CV 4/5] END bootstrap=True, max_depth=6, max_features=sqrt, min_samples_leaf=6, min_samples_split=2, n_estimators=10;, score=0.879 total time= 0.0s\n","[CV 5/5] END bootstrap=True, max_depth=6, max_features=sqrt, min_samples_leaf=6, min_samples_split=2, n_estimators=10;, score=0.889 total time= 0.0s\n","[CV 1/5] END bootstrap=True, max_depth=6, max_features=sqrt, min_samples_leaf=6, min_samples_split=2, n_estimators=20;, score=0.859 total time= 0.1s\n","[CV 2/5] END bootstrap=True, max_depth=6, max_features=sqrt, min_samples_leaf=6, min_samples_split=2, n_estimators=20;, score=0.899 total time= 0.1s\n","[CV 3/5] END bootstrap=True, max_depth=6, max_features=sqrt, min_samples_leaf=6, min_samples_split=2, n_estimators=20;, score=0.899 total time= 0.1s\n","[CV 4/5] END bootstrap=True, max_depth=6, max_features=sqrt, min_samples_leaf=6, min_samples_split=2, n_estimators=20;, score=0.854 total time= 0.1s\n","[CV 5/5] END bootstrap=True, max_depth=6, max_features=sqrt, min_samples_leaf=6, min_samples_split=2, n_estimators=20;, score=0.884 total time= 0.1s\n","[CV 1/5] END bootstrap=True, max_depth=6, max_features=sqrt, min_samples_leaf=6, min_samples_split=2, n_estimators=30;, score=0.864 total time= 0.1s\n","[CV 2/5] END bootstrap=True, max_depth=6, max_features=sqrt, min_samples_leaf=6, min_samples_split=2, n_estimators=30;, score=0.884 total time= 0.1s\n","[CV 3/5] END bootstrap=True, max_depth=6, max_features=sqrt, min_samples_leaf=6, min_samples_split=2, n_estimators=30;, score=0.869 total time= 0.1s\n","[CV 4/5] END bootstrap=True, max_depth=6, max_features=sqrt, min_samples_leaf=6, min_samples_split=2, n_estimators=30;, score=0.843 total time= 0.1s\n","[CV 5/5] END bootstrap=True, max_depth=6, max_features=sqrt, min_samples_leaf=6, min_samples_split=2, n_estimators=30;, score=0.884 total time= 0.1s\n","[CV 1/5] END bootstrap=True, max_depth=6, max_features=sqrt, min_samples_leaf=6, min_samples_split=4, n_estimators=5;, score=0.864 total time= 0.0s\n","[CV 2/5] END bootstrap=True, max_depth=6, max_features=sqrt, min_samples_leaf=6, min_samples_split=4, n_estimators=5;, score=0.904 total time= 0.0s\n","[CV 3/5] END bootstrap=True, max_depth=6, max_features=sqrt, min_samples_leaf=6, min_samples_split=4, n_estimators=5;, score=0.864 total time= 0.0s\n","[CV 4/5] END bootstrap=True, max_depth=6, max_features=sqrt, min_samples_leaf=6, min_samples_split=4, n_estimators=5;, score=0.869 total time= 0.0s\n","[CV 5/5] END bootstrap=True, max_depth=6, max_features=sqrt, min_samples_leaf=6, min_samples_split=4, n_estimators=5;, score=0.904 total time= 0.0s\n","[CV 1/5] END bootstrap=True, max_depth=6, max_features=sqrt, min_samples_leaf=6, min_samples_split=4, n_estimators=10;, score=0.869 total time= 0.0s\n","[CV 2/5] END bootstrap=True, max_depth=6, max_features=sqrt, min_samples_leaf=6, min_samples_split=4, n_estimators=10;, score=0.874 total time= 0.0s\n","[CV 3/5] END bootstrap=True, max_depth=6, max_features=sqrt, min_samples_leaf=6, min_samples_split=4, n_estimators=10;, score=0.884 total time= 0.0s\n","[CV 4/5] END bootstrap=True, max_depth=6, max_features=sqrt, min_samples_leaf=6, min_samples_split=4, n_estimators=10;, score=0.869 total time= 0.0s\n","[CV 5/5] END bootstrap=True, max_depth=6, max_features=sqrt, min_samples_leaf=6, min_samples_split=4, n_estimators=10;, score=0.879 total time= 0.0s\n","[CV 1/5] END bootstrap=True, max_depth=6, max_features=sqrt, min_samples_leaf=6, min_samples_split=4, n_estimators=20;, score=0.864 total time= 0.0s\n","[CV 2/5] END bootstrap=True, max_depth=6, max_features=sqrt, min_samples_leaf=6, min_samples_split=4, n_estimators=20;, score=0.874 total time= 0.0s\n","[CV 3/5] END bootstrap=True, max_depth=6, max_features=sqrt, min_samples_leaf=6, min_samples_split=4, n_estimators=20;, score=0.899 total time= 0.1s\n","[CV 4/5] END bootstrap=True, max_depth=6, max_features=sqrt, min_samples_leaf=6, min_samples_split=4, n_estimators=20;, score=0.864 total time= 0.0s\n","[CV 5/5] END bootstrap=True, max_depth=6, max_features=sqrt, min_samples_leaf=6, min_samples_split=4, n_estimators=20;, score=0.884 total time= 0.1s\n","[CV 1/5] END bootstrap=True, max_depth=6, max_features=sqrt, min_samples_leaf=6, min_samples_split=4, n_estimators=30;, score=0.864 total time= 0.1s\n","[CV 2/5] END bootstrap=True, max_depth=6, max_features=sqrt, min_samples_leaf=6, min_samples_split=4, n_estimators=30;, score=0.874 total time= 0.1s\n","[CV 3/5] END bootstrap=True, max_depth=6, max_features=sqrt, min_samples_leaf=6, min_samples_split=4, n_estimators=30;, score=0.889 total time= 0.1s\n","[CV 4/5] END bootstrap=True, max_depth=6, max_features=sqrt, min_samples_leaf=6, min_samples_split=4, n_estimators=30;, score=0.869 total time= 0.1s\n","[CV 5/5] END bootstrap=True, max_depth=6, max_features=sqrt, min_samples_leaf=6, min_samples_split=4, n_estimators=30;, score=0.884 total time= 0.1s\n","[CV 1/5] END bootstrap=True, max_depth=6, max_features=sqrt, min_samples_leaf=6, min_samples_split=6, n_estimators=5;, score=0.874 total time= 0.0s\n","[CV 2/5] END bootstrap=True, max_depth=6, max_features=sqrt, min_samples_leaf=6, min_samples_split=6, n_estimators=5;, score=0.894 total time= 0.0s\n","[CV 3/5] END bootstrap=True, max_depth=6, max_features=sqrt, min_samples_leaf=6, min_samples_split=6, n_estimators=5;, score=0.899 total time= 0.0s\n","[CV 4/5] END bootstrap=True, max_depth=6, max_features=sqrt, min_samples_leaf=6, min_samples_split=6, n_estimators=5;, score=0.854 total time= 0.0s\n","[CV 5/5] END bootstrap=True, max_depth=6, max_features=sqrt, min_samples_leaf=6, min_samples_split=6, n_estimators=5;, score=0.874 total time= 0.0s\n","[CV 1/5] END bootstrap=True, max_depth=6, max_features=sqrt, min_samples_leaf=6, min_samples_split=6, n_estimators=10;, score=0.889 total time= 0.0s\n","[CV 2/5] END bootstrap=True, max_depth=6, max_features=sqrt, min_samples_leaf=6, min_samples_split=6, n_estimators=10;, score=0.879 total time= 0.0s\n","[CV 3/5] END bootstrap=True, max_depth=6, max_features=sqrt, min_samples_leaf=6, min_samples_split=6, n_estimators=10;, score=0.899 total time= 0.0s\n","[CV 4/5] END bootstrap=True, max_depth=6, max_features=sqrt, min_samples_leaf=6, min_samples_split=6, n_estimators=10;, score=0.859 total time= 0.0s\n","[CV 5/5] END bootstrap=True, max_depth=6, max_features=sqrt, min_samples_leaf=6, min_samples_split=6, n_estimators=10;, score=0.884 total time= 0.0s\n","[CV 1/5] END bootstrap=True, max_depth=6, max_features=sqrt, min_samples_leaf=6, min_samples_split=6, n_estimators=20;, score=0.864 total time= 0.1s\n","[CV 2/5] END bootstrap=True, max_depth=6, max_features=sqrt, min_samples_leaf=6, min_samples_split=6, n_estimators=20;, score=0.889 total time= 0.0s\n","[CV 3/5] END bootstrap=True, max_depth=6, max_features=sqrt, min_samples_leaf=6, min_samples_split=6, n_estimators=20;, score=0.894 total time= 0.0s\n","[CV 4/5] END bootstrap=True, max_depth=6, max_features=sqrt, min_samples_leaf=6, min_samples_split=6, n_estimators=20;, score=0.864 total time= 0.0s\n","[CV 5/5] END bootstrap=True, max_depth=6, max_features=sqrt, min_samples_leaf=6, min_samples_split=6, n_estimators=20;, score=0.894 total time= 0.0s\n","[CV 1/5] END bootstrap=True, max_depth=6, max_features=sqrt, min_samples_leaf=6, min_samples_split=6, n_estimators=30;, score=0.859 total time= 0.1s\n","[CV 2/5] END bootstrap=True, max_depth=6, max_features=sqrt, min_samples_leaf=6, min_samples_split=6, n_estimators=30;, score=0.879 total time= 0.1s\n","[CV 3/5] END bootstrap=True, max_depth=6, max_features=sqrt, min_samples_leaf=6, min_samples_split=6, n_estimators=30;, score=0.874 total time= 0.1s\n","[CV 4/5] END bootstrap=True, max_depth=6, max_features=sqrt, min_samples_leaf=6, min_samples_split=6, n_estimators=30;, score=0.854 total time= 0.1s\n","[CV 5/5] END bootstrap=True, max_depth=6, max_features=sqrt, min_samples_leaf=6, min_samples_split=6, n_estimators=30;, score=0.884 total time= 0.1s\n","[CV 1/5] END bootstrap=True, max_depth=6, max_features=log2, min_samples_leaf=2, min_samples_split=2, n_estimators=5;, score=0.879 total time= 0.0s\n","[CV 2/5] END bootstrap=True, max_depth=6, max_features=log2, min_samples_leaf=2, min_samples_split=2, n_estimators=5;, score=0.884 total time= 0.0s\n","[CV 3/5] END bootstrap=True, max_depth=6, max_features=log2, min_samples_leaf=2, min_samples_split=2, n_estimators=5;, score=0.884 total time= 0.0s\n","[CV 4/5] END bootstrap=True, max_depth=6, max_features=log2, min_samples_leaf=2, min_samples_split=2, n_estimators=5;, score=0.874 total time= 0.0s\n","[CV 5/5] END bootstrap=True, max_depth=6, max_features=log2, min_samples_leaf=2, min_samples_split=2, n_estimators=5;, score=0.879 total time= 0.0s\n","[CV 1/5] END bootstrap=True, max_depth=6, max_features=log2, min_samples_leaf=2, min_samples_split=2, n_estimators=10;, score=0.869 total time= 0.0s\n","[CV 2/5] END bootstrap=True, max_depth=6, max_features=log2, min_samples_leaf=2, min_samples_split=2, n_estimators=10;, score=0.899 total time= 0.0s\n","[CV 3/5] END bootstrap=True, max_depth=6, max_features=log2, min_samples_leaf=2, min_samples_split=2, n_estimators=10;, score=0.879 total time= 0.0s\n","[CV 4/5] END bootstrap=True, max_depth=6, max_features=log2, min_samples_leaf=2, min_samples_split=2, n_estimators=10;, score=0.843 total time= 0.0s\n","[CV 5/5] END bootstrap=True, max_depth=6, max_features=log2, min_samples_leaf=2, min_samples_split=2, n_estimators=10;, score=0.869 total time= 0.0s\n","[CV 1/5] END bootstrap=True, max_depth=6, max_features=log2, min_samples_leaf=2, min_samples_split=2, n_estimators=20;, score=0.889 total time= 0.0s\n","[CV 2/5] END bootstrap=True, max_depth=6, max_features=log2, min_samples_leaf=2, min_samples_split=2, n_estimators=20;, score=0.904 total time= 0.0s\n","[CV 3/5] END bootstrap=True, max_depth=6, max_features=log2, min_samples_leaf=2, min_samples_split=2, n_estimators=20;, score=0.894 total time= 0.1s\n","[CV 4/5] END bootstrap=True, max_depth=6, max_features=log2, min_samples_leaf=2, min_samples_split=2, n_estimators=20;, score=0.854 total time= 0.0s\n","[CV 5/5] END bootstrap=True, max_depth=6, max_features=log2, min_samples_leaf=2, min_samples_split=2, n_estimators=20;, score=0.889 total time= 0.0s\n","[CV 1/5] END bootstrap=True, max_depth=6, max_features=log2, min_samples_leaf=2, min_samples_split=2, n_estimators=30;, score=0.859 total time= 0.1s\n","[CV 2/5] END bootstrap=True, max_depth=6, max_features=log2, min_samples_leaf=2, min_samples_split=2, n_estimators=30;, score=0.869 total time= 0.1s\n","[CV 3/5] END bootstrap=True, max_depth=6, max_features=log2, min_samples_leaf=2, min_samples_split=2, n_estimators=30;, score=0.879 total time= 0.1s\n","[CV 4/5] END bootstrap=True, max_depth=6, max_features=log2, min_samples_leaf=2, min_samples_split=2, n_estimators=30;, score=0.864 total time= 0.1s\n","[CV 5/5] END bootstrap=True, max_depth=6, max_features=log2, min_samples_leaf=2, min_samples_split=2, n_estimators=30;, score=0.884 total time= 0.1s\n","[CV 1/5] END bootstrap=True, max_depth=6, max_features=log2, min_samples_leaf=2, min_samples_split=4, n_estimators=5;, score=0.854 total time= 0.0s\n","[CV 2/5] END bootstrap=True, max_depth=6, max_features=log2, min_samples_leaf=2, min_samples_split=4, n_estimators=5;, score=0.894 total time= 0.0s\n","[CV 3/5] END bootstrap=True, max_depth=6, max_features=log2, min_samples_leaf=2, min_samples_split=4, n_estimators=5;, score=0.899 total time= 0.0s\n","[CV 4/5] END bootstrap=True, max_depth=6, max_features=log2, min_samples_leaf=2, min_samples_split=4, n_estimators=5;, score=0.869 total time= 0.0s\n","[CV 5/5] END bootstrap=True, max_depth=6, max_features=log2, min_samples_leaf=2, min_samples_split=4, n_estimators=5;, score=0.879 total time= 0.0s\n","[CV 1/5] END bootstrap=True, max_depth=6, max_features=log2, min_samples_leaf=2, min_samples_split=4, n_estimators=10;, score=0.874 total time= 0.0s\n","[CV 2/5] END bootstrap=True, max_depth=6, max_features=log2, min_samples_leaf=2, min_samples_split=4, n_estimators=10;, score=0.899 total time= 0.0s\n","[CV 3/5] END bootstrap=True, max_depth=6, max_features=log2, min_samples_leaf=2, min_samples_split=4, n_estimators=10;, score=0.884 total time= 0.0s\n","[CV 4/5] END bootstrap=True, max_depth=6, max_features=log2, min_samples_leaf=2, min_samples_split=4, n_estimators=10;, score=0.864 total time= 0.0s\n","[CV 5/5] END bootstrap=True, max_depth=6, max_features=log2, min_samples_leaf=2, min_samples_split=4, n_estimators=10;, score=0.909 total time= 0.0s\n","[CV 1/5] END bootstrap=True, max_depth=6, max_features=log2, min_samples_leaf=2, min_samples_split=4, n_estimators=20;, score=0.843 total time= 0.0s\n","[CV 2/5] END bootstrap=True, max_depth=6, max_features=log2, min_samples_leaf=2, min_samples_split=4, n_estimators=20;, score=0.879 total time= 0.0s\n","[CV 3/5] END bootstrap=True, max_depth=6, max_features=log2, min_samples_leaf=2, min_samples_split=4, n_estimators=20;, score=0.874 total time= 0.0s\n","[CV 4/5] END bootstrap=True, max_depth=6, max_features=log2, min_samples_leaf=2, min_samples_split=4, n_estimators=20;, score=0.854 total time= 0.0s\n","[CV 5/5] END bootstrap=True, max_depth=6, max_features=log2, min_samples_leaf=2, min_samples_split=4, n_estimators=20;, score=0.884 total time= 0.1s\n","[CV 1/5] END bootstrap=True, max_depth=6, max_features=log2, min_samples_leaf=2, min_samples_split=4, n_estimators=30;, score=0.869 total time= 0.1s\n","[CV 2/5] END bootstrap=True, max_depth=6, max_features=log2, min_samples_leaf=2, min_samples_split=4, n_estimators=30;, score=0.884 total time= 0.1s\n","[CV 3/5] END bootstrap=True, max_depth=6, max_features=log2, min_samples_leaf=2, min_samples_split=4, n_estimators=30;, score=0.894 total time= 0.1s\n","[CV 4/5] END bootstrap=True, max_depth=6, max_features=log2, min_samples_leaf=2, min_samples_split=4, n_estimators=30;, score=0.859 total time= 0.1s\n","[CV 5/5] END bootstrap=True, max_depth=6, max_features=log2, min_samples_leaf=2, min_samples_split=4, n_estimators=30;, score=0.884 total time= 0.1s\n","[CV 1/5] END bootstrap=True, max_depth=6, max_features=log2, min_samples_leaf=2, min_samples_split=6, n_estimators=5;, score=0.894 total time= 0.0s\n","[CV 2/5] END bootstrap=True, max_depth=6, max_features=log2, min_samples_leaf=2, min_samples_split=6, n_estimators=5;, score=0.909 total time= 0.0s\n","[CV 3/5] END bootstrap=True, max_depth=6, max_features=log2, min_samples_leaf=2, min_samples_split=6, n_estimators=5;, score=0.899 total time= 0.0s\n","[CV 4/5] END bootstrap=True, max_depth=6, max_features=log2, min_samples_leaf=2, min_samples_split=6, n_estimators=5;, score=0.833 total time= 0.0s\n","[CV 5/5] END bootstrap=True, max_depth=6, max_features=log2, min_samples_leaf=2, min_samples_split=6, n_estimators=5;, score=0.884 total time= 0.0s\n","[CV 1/5] END bootstrap=True, max_depth=6, max_features=log2, min_samples_leaf=2, min_samples_split=6, n_estimators=10;, score=0.843 total time= 0.0s\n","[CV 2/5] END bootstrap=True, max_depth=6, max_features=log2, min_samples_leaf=2, min_samples_split=6, n_estimators=10;, score=0.889 total time= 0.0s\n","[CV 3/5] END bootstrap=True, max_depth=6, max_features=log2, min_samples_leaf=2, min_samples_split=6, n_estimators=10;, score=0.864 total time= 0.0s\n","[CV 4/5] END bootstrap=True, max_depth=6, max_features=log2, min_samples_leaf=2, min_samples_split=6, n_estimators=10;, score=0.843 total time= 0.0s\n","[CV 5/5] END bootstrap=True, max_depth=6, max_features=log2, min_samples_leaf=2, min_samples_split=6, n_estimators=10;, score=0.879 total time= 0.0s\n","[CV 1/5] END bootstrap=True, max_depth=6, max_features=log2, min_samples_leaf=2, min_samples_split=6, n_estimators=20;, score=0.869 total time= 0.1s\n","[CV 2/5] END bootstrap=True, max_depth=6, max_features=log2, min_samples_leaf=2, min_samples_split=6, n_estimators=20;, score=0.889 total time= 0.0s\n","[CV 3/5] END bootstrap=True, max_depth=6, max_features=log2, min_samples_leaf=2, min_samples_split=6, n_estimators=20;, score=0.874 total time= 0.0s\n","[CV 4/5] END bootstrap=True, max_depth=6, max_features=log2, min_samples_leaf=2, min_samples_split=6, n_estimators=20;, score=0.843 total time= 0.0s\n","[CV 5/5] END bootstrap=True, max_depth=6, max_features=log2, min_samples_leaf=2, min_samples_split=6, n_estimators=20;, score=0.889 total time= 0.0s\n","[CV 1/5] END bootstrap=True, max_depth=6, max_features=log2, min_samples_leaf=2, min_samples_split=6, n_estimators=30;, score=0.859 total time= 0.1s\n","[CV 2/5] END bootstrap=True, max_depth=6, max_features=log2, min_samples_leaf=2, min_samples_split=6, n_estimators=30;, score=0.884 total time= 0.1s\n","[CV 3/5] END bootstrap=True, max_depth=6, max_features=log2, min_samples_leaf=2, min_samples_split=6, n_estimators=30;, score=0.904 total time= 0.1s\n","[CV 4/5] END bootstrap=True, max_depth=6, max_features=log2, min_samples_leaf=2, min_samples_split=6, n_estimators=30;, score=0.864 total time= 0.1s\n","[CV 5/5] END bootstrap=True, max_depth=6, max_features=log2, min_samples_leaf=2, min_samples_split=6, n_estimators=30;, score=0.884 total time= 0.1s\n","[CV 1/5] END bootstrap=True, max_depth=6, max_features=log2, min_samples_leaf=4, min_samples_split=2, n_estimators=5;, score=0.854 total time= 0.0s\n","[CV 2/5] END bootstrap=True, max_depth=6, max_features=log2, min_samples_leaf=4, min_samples_split=2, n_estimators=5;, score=0.874 total time= 0.0s\n","[CV 3/5] END bootstrap=True, max_depth=6, max_features=log2, min_samples_leaf=4, min_samples_split=2, n_estimators=5;, score=0.894 total time= 0.0s\n","[CV 4/5] END bootstrap=True, max_depth=6, max_features=log2, min_samples_leaf=4, min_samples_split=2, n_estimators=5;, score=0.854 total time= 0.0s\n","[CV 5/5] END bootstrap=True, max_depth=6, max_features=log2, min_samples_leaf=4, min_samples_split=2, n_estimators=5;, score=0.889 total time= 0.0s\n","[CV 1/5] END bootstrap=True, max_depth=6, max_features=log2, min_samples_leaf=4, min_samples_split=2, n_estimators=10;, score=0.869 total time= 0.0s\n","[CV 2/5] END bootstrap=True, max_depth=6, max_features=log2, min_samples_leaf=4, min_samples_split=2, n_estimators=10;, score=0.889 total time= 0.0s\n","[CV 3/5] END bootstrap=True, max_depth=6, max_features=log2, min_samples_leaf=4, min_samples_split=2, n_estimators=10;, score=0.884 total time= 0.0s\n","[CV 4/5] END bootstrap=True, max_depth=6, max_features=log2, min_samples_leaf=4, min_samples_split=2, n_estimators=10;, score=0.848 total time= 0.0s\n","[CV 5/5] END bootstrap=True, max_depth=6, max_features=log2, min_samples_leaf=4, min_samples_split=2, n_estimators=10;, score=0.879 total time= 0.0s\n","[CV 1/5] END bootstrap=True, max_depth=6, max_features=log2, min_samples_leaf=4, min_samples_split=2, n_estimators=20;, score=0.869 total time= 0.0s\n","[CV 2/5] END bootstrap=True, max_depth=6, max_features=log2, min_samples_leaf=4, min_samples_split=2, n_estimators=20;, score=0.904 total time= 0.0s\n","[CV 3/5] END bootstrap=True, max_depth=6, max_features=log2, min_samples_leaf=4, min_samples_split=2, n_estimators=20;, score=0.894 total time= 0.0s\n","[CV 4/5] END bootstrap=True, max_depth=6, max_features=log2, min_samples_leaf=4, min_samples_split=2, n_estimators=20;, score=0.838 total time= 0.1s\n","[CV 5/5] END bootstrap=True, max_depth=6, max_features=log2, min_samples_leaf=4, min_samples_split=2, n_estimators=20;, score=0.874 total time= 0.1s\n","[CV 1/5] END bootstrap=True, max_depth=6, max_features=log2, min_samples_leaf=4, min_samples_split=2, n_estimators=30;, score=0.864 total time= 0.1s\n","[CV 2/5] END bootstrap=True, max_depth=6, max_features=log2, min_samples_leaf=4, min_samples_split=2, n_estimators=30;, score=0.894 total time= 0.1s\n","[CV 3/5] END bootstrap=True, max_depth=6, max_features=log2, min_samples_leaf=4, min_samples_split=2, n_estimators=30;, score=0.889 total time= 0.1s\n","[CV 4/5] END bootstrap=True, max_depth=6, max_features=log2, min_samples_leaf=4, min_samples_split=2, n_estimators=30;, score=0.848 total time= 0.1s\n","[CV 5/5] END bootstrap=True, max_depth=6, max_features=log2, min_samples_leaf=4, min_samples_split=2, n_estimators=30;, score=0.884 total time= 0.1s\n","[CV 1/5] END bootstrap=True, max_depth=6, max_features=log2, min_samples_leaf=4, min_samples_split=4, n_estimators=5;, score=0.879 total time= 0.0s\n","[CV 2/5] END bootstrap=True, max_depth=6, max_features=log2, min_samples_leaf=4, min_samples_split=4, n_estimators=5;, score=0.869 total time= 0.0s\n","[CV 3/5] END bootstrap=True, max_depth=6, max_features=log2, min_samples_leaf=4, min_samples_split=4, n_estimators=5;, score=0.889 total time= 0.0s\n","[CV 4/5] END bootstrap=True, max_depth=6, max_features=log2, min_samples_leaf=4, min_samples_split=4, n_estimators=5;, score=0.864 total time= 0.0s\n","[CV 5/5] END bootstrap=True, max_depth=6, max_features=log2, min_samples_leaf=4, min_samples_split=4, n_estimators=5;, score=0.894 total time= 0.0s\n","[CV 1/5] END bootstrap=True, max_depth=6, max_features=log2, min_samples_leaf=4, min_samples_split=4, n_estimators=10;, score=0.874 total time= 0.0s\n","[CV 2/5] END bootstrap=True, max_depth=6, max_features=log2, min_samples_leaf=4, min_samples_split=4, n_estimators=10;, score=0.884 total time= 0.0s\n","[CV 3/5] END bootstrap=True, max_depth=6, max_features=log2, min_samples_leaf=4, min_samples_split=4, n_estimators=10;, score=0.879 total time= 0.0s\n","[CV 4/5] END bootstrap=True, max_depth=6, max_features=log2, min_samples_leaf=4, min_samples_split=4, n_estimators=10;, score=0.869 total time= 0.0s\n","[CV 5/5] END bootstrap=True, max_depth=6, max_features=log2, min_samples_leaf=4, min_samples_split=4, n_estimators=10;, score=0.889 total time= 0.0s\n","[CV 1/5] END bootstrap=True, max_depth=6, max_features=log2, min_samples_leaf=4, min_samples_split=4, n_estimators=20;, score=0.879 total time= 0.0s\n","[CV 2/5] END bootstrap=True, max_depth=6, max_features=log2, min_samples_leaf=4, min_samples_split=4, n_estimators=20;, score=0.874 total time= 0.0s\n","[CV 3/5] END bootstrap=True, max_depth=6, max_features=log2, min_samples_leaf=4, min_samples_split=4, n_estimators=20;, score=0.874 total time= 0.0s\n","[CV 4/5] END bootstrap=True, max_depth=6, max_features=log2, min_samples_leaf=4, min_samples_split=4, n_estimators=20;, score=0.848 total time= 0.0s\n","[CV 5/5] END bootstrap=True, max_depth=6, max_features=log2, min_samples_leaf=4, min_samples_split=4, n_estimators=20;, score=0.864 total time= 0.0s\n","[CV 1/5] END bootstrap=True, max_depth=6, max_features=log2, min_samples_leaf=4, min_samples_split=4, n_estimators=30;, score=0.869 total time= 0.1s\n","[CV 2/5] END bootstrap=True, max_depth=6, max_features=log2, min_samples_leaf=4, min_samples_split=4, n_estimators=30;, score=0.869 total time= 0.1s\n","[CV 3/5] END bootstrap=True, max_depth=6, max_features=log2, min_samples_leaf=4, min_samples_split=4, n_estimators=30;, score=0.894 total time= 0.1s\n","[CV 4/5] END bootstrap=True, max_depth=6, max_features=log2, min_samples_leaf=4, min_samples_split=4, n_estimators=30;, score=0.859 total time= 0.1s\n","[CV 5/5] END bootstrap=True, max_depth=6, max_features=log2, min_samples_leaf=4, min_samples_split=4, n_estimators=30;, score=0.894 total time= 0.1s\n","[CV 1/5] END bootstrap=True, max_depth=6, max_features=log2, min_samples_leaf=4, min_samples_split=6, n_estimators=5;, score=0.864 total time= 0.0s\n","[CV 2/5] END bootstrap=True, max_depth=6, max_features=log2, min_samples_leaf=4, min_samples_split=6, n_estimators=5;, score=0.889 total time= 0.0s\n","[CV 3/5] END bootstrap=True, max_depth=6, max_features=log2, min_samples_leaf=4, min_samples_split=6, n_estimators=5;, score=0.899 total time= 0.0s\n","[CV 4/5] END bootstrap=True, max_depth=6, max_features=log2, min_samples_leaf=4, min_samples_split=6, n_estimators=5;, score=0.859 total time= 0.0s\n","[CV 5/5] END bootstrap=True, max_depth=6, max_features=log2, min_samples_leaf=4, min_samples_split=6, n_estimators=5;, score=0.884 total time= 0.0s\n","[CV 1/5] END bootstrap=True, max_depth=6, max_features=log2, min_samples_leaf=4, min_samples_split=6, n_estimators=10;, score=0.864 total time= 0.0s\n","[CV 2/5] END bootstrap=True, max_depth=6, max_features=log2, min_samples_leaf=4, min_samples_split=6, n_estimators=10;, score=0.894 total time= 0.0s\n","[CV 3/5] END bootstrap=True, max_depth=6, max_features=log2, min_samples_leaf=4, min_samples_split=6, n_estimators=10;, score=0.889 total time= 0.0s\n","[CV 4/5] END bootstrap=True, max_depth=6, max_features=log2, min_samples_leaf=4, min_samples_split=6, n_estimators=10;, score=0.864 total time= 0.0s\n","[CV 5/5] END bootstrap=True, max_depth=6, max_features=log2, min_samples_leaf=4, min_samples_split=6, n_estimators=10;, score=0.864 total time= 0.0s\n","[CV 1/5] END bootstrap=True, max_depth=6, max_features=log2, min_samples_leaf=4, min_samples_split=6, n_estimators=20;, score=0.874 total time= 0.0s\n","[CV 2/5] END bootstrap=True, max_depth=6, max_features=log2, min_samples_leaf=4, min_samples_split=6, n_estimators=20;, score=0.884 total time= 0.0s\n","[CV 3/5] END bootstrap=True, max_depth=6, max_features=log2, min_samples_leaf=4, min_samples_split=6, n_estimators=20;, score=0.869 total time= 0.0s\n","[CV 4/5] END bootstrap=True, max_depth=6, max_features=log2, min_samples_leaf=4, min_samples_split=6, n_estimators=20;, score=0.843 total time= 0.0s\n","[CV 5/5] END bootstrap=True, max_depth=6, max_features=log2, min_samples_leaf=4, min_samples_split=6, n_estimators=20;, score=0.874 total time= 0.0s\n","[CV 1/5] END bootstrap=True, max_depth=6, max_features=log2, min_samples_leaf=4, min_samples_split=6, n_estimators=30;, score=0.864 total time= 0.1s\n","[CV 2/5] END bootstrap=True, max_depth=6, max_features=log2, min_samples_leaf=4, min_samples_split=6, n_estimators=30;, score=0.904 total time= 0.1s\n","[CV 3/5] END bootstrap=True, max_depth=6, max_features=log2, min_samples_leaf=4, min_samples_split=6, n_estimators=30;, score=0.894 total time= 0.1s\n","[CV 4/5] END bootstrap=True, max_depth=6, max_features=log2, min_samples_leaf=4, min_samples_split=6, n_estimators=30;, score=0.864 total time= 0.1s\n","[CV 5/5] END bootstrap=True, max_depth=6, max_features=log2, min_samples_leaf=4, min_samples_split=6, n_estimators=30;, score=0.874 total time= 0.1s\n","[CV 1/5] END bootstrap=True, max_depth=6, max_features=log2, min_samples_leaf=6, min_samples_split=2, n_estimators=5;, score=0.869 total time= 0.0s\n","[CV 2/5] END bootstrap=True, max_depth=6, max_features=log2, min_samples_leaf=6, min_samples_split=2, n_estimators=5;, score=0.889 total time= 0.0s\n","[CV 3/5] END bootstrap=True, max_depth=6, max_features=log2, min_samples_leaf=6, min_samples_split=2, n_estimators=5;, score=0.869 total time= 0.0s\n","[CV 4/5] END bootstrap=True, max_depth=6, max_features=log2, min_samples_leaf=6, min_samples_split=2, n_estimators=5;, score=0.869 total time= 0.0s\n","[CV 5/5] END bootstrap=True, max_depth=6, max_features=log2, min_samples_leaf=6, min_samples_split=2, n_estimators=5;, score=0.864 total time= 0.0s\n","[CV 1/5] END bootstrap=True, max_depth=6, max_features=log2, min_samples_leaf=6, min_samples_split=2, n_estimators=10;, score=0.854 total time= 0.0s\n","[CV 2/5] END bootstrap=True, max_depth=6, max_features=log2, min_samples_leaf=6, min_samples_split=2, n_estimators=10;, score=0.889 total time= 0.0s\n","[CV 3/5] END bootstrap=True, max_depth=6, max_features=log2, min_samples_leaf=6, min_samples_split=2, n_estimators=10;, score=0.889 total time= 0.0s\n","[CV 4/5] END bootstrap=True, max_depth=6, max_features=log2, min_samples_leaf=6, min_samples_split=2, n_estimators=10;, score=0.833 total time= 0.0s\n","[CV 5/5] END bootstrap=True, max_depth=6, max_features=log2, min_samples_leaf=6, min_samples_split=2, n_estimators=10;, score=0.884 total time= 0.0s\n","[CV 1/5] END bootstrap=True, max_depth=6, max_features=log2, min_samples_leaf=6, min_samples_split=2, n_estimators=20;, score=0.879 total time= 0.0s\n","[CV 2/5] END bootstrap=True, max_depth=6, max_features=log2, min_samples_leaf=6, min_samples_split=2, n_estimators=20;, score=0.884 total time= 0.1s\n","[CV 3/5] END bootstrap=True, max_depth=6, max_features=log2, min_samples_leaf=6, min_samples_split=2, n_estimators=20;, score=0.874 total time= 0.1s\n","[CV 4/5] END bootstrap=True, max_depth=6, max_features=log2, min_samples_leaf=6, min_samples_split=2, n_estimators=20;, score=0.869 total time= 0.0s\n","[CV 5/5] END bootstrap=True, max_depth=6, max_features=log2, min_samples_leaf=6, min_samples_split=2, n_estimators=20;, score=0.879 total time= 0.0s\n","[CV 1/5] END bootstrap=True, max_depth=6, max_features=log2, min_samples_leaf=6, min_samples_split=2, n_estimators=30;, score=0.869 total time= 0.1s\n","[CV 2/5] END bootstrap=True, max_depth=6, max_features=log2, min_samples_leaf=6, min_samples_split=2, n_estimators=30;, score=0.879 total time= 0.1s\n","[CV 3/5] END bootstrap=True, max_depth=6, max_features=log2, min_samples_leaf=6, min_samples_split=2, n_estimators=30;, score=0.889 total time= 0.1s\n","[CV 4/5] END bootstrap=True, max_depth=6, max_features=log2, min_samples_leaf=6, min_samples_split=2, n_estimators=30;, score=0.874 total time= 0.1s\n","[CV 5/5] END bootstrap=True, max_depth=6, max_features=log2, min_samples_leaf=6, min_samples_split=2, n_estimators=30;, score=0.879 total time= 0.1s\n","[CV 1/5] END bootstrap=True, max_depth=6, max_features=log2, min_samples_leaf=6, min_samples_split=4, n_estimators=5;, score=0.874 total time= 0.0s\n","[CV 2/5] END bootstrap=True, max_depth=6, max_features=log2, min_samples_leaf=6, min_samples_split=4, n_estimators=5;, score=0.884 total time= 0.0s\n","[CV 3/5] END bootstrap=True, max_depth=6, max_features=log2, min_samples_leaf=6, min_samples_split=4, n_estimators=5;, score=0.909 total time= 0.0s\n","[CV 4/5] END bootstrap=True, max_depth=6, max_features=log2, min_samples_leaf=6, min_samples_split=4, n_estimators=5;, score=0.869 total time= 0.0s\n","[CV 5/5] END bootstrap=True, max_depth=6, max_features=log2, min_samples_leaf=6, min_samples_split=4, n_estimators=5;, score=0.884 total time= 0.0s\n","[CV 1/5] END bootstrap=True, max_depth=6, max_features=log2, min_samples_leaf=6, min_samples_split=4, n_estimators=10;, score=0.869 total time= 0.0s\n","[CV 2/5] END bootstrap=True, max_depth=6, max_features=log2, min_samples_leaf=6, min_samples_split=4, n_estimators=10;, score=0.884 total time= 0.0s\n","[CV 3/5] END bootstrap=True, max_depth=6, max_features=log2, min_samples_leaf=6, min_samples_split=4, n_estimators=10;, score=0.894 total time= 0.0s\n","[CV 4/5] END bootstrap=True, max_depth=6, max_features=log2, min_samples_leaf=6, min_samples_split=4, n_estimators=10;, score=0.848 total time= 0.0s\n","[CV 5/5] END bootstrap=True, max_depth=6, max_features=log2, min_samples_leaf=6, min_samples_split=4, n_estimators=10;, score=0.854 total time= 0.0s\n","[CV 1/5] END bootstrap=True, max_depth=6, max_features=log2, min_samples_leaf=6, min_samples_split=4, n_estimators=20;, score=0.874 total time= 0.0s\n","[CV 2/5] END bootstrap=True, max_depth=6, max_features=log2, min_samples_leaf=6, min_samples_split=4, n_estimators=20;, score=0.884 total time= 0.0s\n","[CV 3/5] END bootstrap=True, max_depth=6, max_features=log2, min_samples_leaf=6, min_samples_split=4, n_estimators=20;, score=0.874 total time= 0.1s\n","[CV 4/5] END bootstrap=True, max_depth=6, max_features=log2, min_samples_leaf=6, min_samples_split=4, n_estimators=20;, score=0.859 total time= 0.0s\n","[CV 5/5] END bootstrap=True, max_depth=6, max_features=log2, min_samples_leaf=6, min_samples_split=4, n_estimators=20;, score=0.879 total time= 0.1s\n","[CV 1/5] END bootstrap=True, max_depth=6, max_features=log2, min_samples_leaf=6, min_samples_split=4, n_estimators=30;, score=0.869 total time= 0.1s\n","[CV 2/5] END bootstrap=True, max_depth=6, max_features=log2, min_samples_leaf=6, min_samples_split=4, n_estimators=30;, score=0.899 total time= 0.1s\n","[CV 3/5] END bootstrap=True, max_depth=6, max_features=log2, min_samples_leaf=6, min_samples_split=4, n_estimators=30;, score=0.889 total time= 0.1s\n","[CV 4/5] END bootstrap=True, max_depth=6, max_features=log2, min_samples_leaf=6, min_samples_split=4, n_estimators=30;, score=0.879 total time= 0.1s\n","[CV 5/5] END bootstrap=True, max_depth=6, max_features=log2, min_samples_leaf=6, min_samples_split=4, n_estimators=30;, score=0.904 total time= 0.1s\n","[CV 1/5] END bootstrap=True, max_depth=6, max_features=log2, min_samples_leaf=6, min_samples_split=6, n_estimators=5;, score=0.889 total time= 0.0s\n","[CV 2/5] END bootstrap=True, max_depth=6, max_features=log2, min_samples_leaf=6, min_samples_split=6, n_estimators=5;, score=0.889 total time= 0.0s\n","[CV 3/5] END bootstrap=True, max_depth=6, max_features=log2, min_samples_leaf=6, min_samples_split=6, n_estimators=5;, score=0.884 total time= 0.0s\n","[CV 4/5] END bootstrap=True, max_depth=6, max_features=log2, min_samples_leaf=6, min_samples_split=6, n_estimators=5;, score=0.874 total time= 0.0s\n","[CV 5/5] END bootstrap=True, max_depth=6, max_features=log2, min_samples_leaf=6, min_samples_split=6, n_estimators=5;, score=0.894 total time= 0.0s\n","[CV 1/5] END bootstrap=True, max_depth=6, max_features=log2, min_samples_leaf=6, min_samples_split=6, n_estimators=10;, score=0.864 total time= 0.0s\n","[CV 2/5] END bootstrap=True, max_depth=6, max_features=log2, min_samples_leaf=6, min_samples_split=6, n_estimators=10;, score=0.914 total time= 0.0s\n","[CV 3/5] END bootstrap=True, max_depth=6, max_features=log2, min_samples_leaf=6, min_samples_split=6, n_estimators=10;, score=0.884 total time= 0.0s\n","[CV 4/5] END bootstrap=True, max_depth=6, max_features=log2, min_samples_leaf=6, min_samples_split=6, n_estimators=10;, score=0.859 total time= 0.0s\n","[CV 5/5] END bootstrap=True, max_depth=6, max_features=log2, min_samples_leaf=6, min_samples_split=6, n_estimators=10;, score=0.894 total time= 0.0s\n","[CV 1/5] END bootstrap=True, max_depth=6, max_features=log2, min_samples_leaf=6, min_samples_split=6, n_estimators=20;, score=0.869 total time= 0.1s\n","[CV 2/5] END bootstrap=True, max_depth=6, max_features=log2, min_samples_leaf=6, min_samples_split=6, n_estimators=20;, score=0.894 total time= 0.1s\n","[CV 3/5] END bootstrap=True, max_depth=6, max_features=log2, min_samples_leaf=6, min_samples_split=6, n_estimators=20;, score=0.889 total time= 0.1s\n","[CV 4/5] END bootstrap=True, max_depth=6, max_features=log2, min_samples_leaf=6, min_samples_split=6, n_estimators=20;, score=0.848 total time= 0.1s\n","[CV 5/5] END bootstrap=True, max_depth=6, max_features=log2, min_samples_leaf=6, min_samples_split=6, n_estimators=20;, score=0.864 total time= 0.1s\n","[CV 1/5] END bootstrap=True, max_depth=6, max_features=log2, min_samples_leaf=6, min_samples_split=6, n_estimators=30;, score=0.894 total time= 0.1s\n","[CV 2/5] END bootstrap=True, max_depth=6, max_features=log2, min_samples_leaf=6, min_samples_split=6, n_estimators=30;, score=0.904 total time= 0.1s\n","[CV 3/5] END bootstrap=True, max_depth=6, max_features=log2, min_samples_leaf=6, min_samples_split=6, n_estimators=30;, score=0.874 total time= 0.1s\n","[CV 4/5] END bootstrap=True, max_depth=6, max_features=log2, min_samples_leaf=6, min_samples_split=6, n_estimators=30;, score=0.859 total time= 0.1s\n","[CV 5/5] END bootstrap=True, max_depth=6, max_features=log2, min_samples_leaf=6, min_samples_split=6, n_estimators=30;, score=0.889 total time= 0.1s\n","[CV 1/5] END bootstrap=True, max_depth=6, max_features=None, min_samples_leaf=2, min_samples_split=2, n_estimators=5;, score=0.879 total time= 0.0s\n","[CV 2/5] END bootstrap=True, max_depth=6, max_features=None, min_samples_leaf=2, min_samples_split=2, n_estimators=5;, score=0.889 total time= 0.0s\n","[CV 3/5] END bootstrap=True, max_depth=6, max_features=None, min_samples_leaf=2, min_samples_split=2, n_estimators=5;, score=0.884 total time= 0.0s\n","[CV 4/5] END bootstrap=True, max_depth=6, max_features=None, min_samples_leaf=2, min_samples_split=2, n_estimators=5;, score=0.848 total time= 0.0s\n","[CV 5/5] END bootstrap=True, max_depth=6, max_features=None, min_samples_leaf=2, min_samples_split=2, n_estimators=5;, score=0.889 total time= 0.0s\n","[CV 1/5] END bootstrap=True, max_depth=6, max_features=None, min_samples_leaf=2, min_samples_split=2, n_estimators=10;, score=0.879 total time= 0.0s\n","[CV 2/5] END bootstrap=True, max_depth=6, max_features=None, min_samples_leaf=2, min_samples_split=2, n_estimators=10;, score=0.889 total time= 0.0s\n","[CV 3/5] END bootstrap=True, max_depth=6, max_features=None, min_samples_leaf=2, min_samples_split=2, n_estimators=10;, score=0.879 total time= 0.0s\n","[CV 4/5] END bootstrap=True, max_depth=6, max_features=None, min_samples_leaf=2, min_samples_split=2, n_estimators=10;, score=0.864 total time= 0.0s\n","[CV 5/5] END bootstrap=True, max_depth=6, max_features=None, min_samples_leaf=2, min_samples_split=2, n_estimators=10;, score=0.889 total time= 0.0s\n","[CV 1/5] END bootstrap=True, max_depth=6, max_features=None, min_samples_leaf=2, min_samples_split=2, n_estimators=20;, score=0.879 total time= 0.1s\n","[CV 2/5] END bootstrap=True, max_depth=6, max_features=None, min_samples_leaf=2, min_samples_split=2, n_estimators=20;, score=0.874 total time= 0.1s\n","[CV 3/5] END bootstrap=True, max_depth=6, max_features=None, min_samples_leaf=2, min_samples_split=2, n_estimators=20;, score=0.894 total time= 0.1s\n","[CV 4/5] END bootstrap=True, max_depth=6, max_features=None, min_samples_leaf=2, min_samples_split=2, n_estimators=20;, score=0.848 total time= 0.1s\n","[CV 5/5] END bootstrap=True, max_depth=6, max_features=None, min_samples_leaf=2, min_samples_split=2, n_estimators=20;, score=0.894 total time= 0.1s\n","[CV 1/5] END bootstrap=True, max_depth=6, max_features=None, min_samples_leaf=2, min_samples_split=2, n_estimators=30;, score=0.848 total time= 0.2s\n","[CV 2/5] END bootstrap=True, max_depth=6, max_features=None, min_samples_leaf=2, min_samples_split=2, n_estimators=30;, score=0.874 total time= 0.1s\n","[CV 3/5] END bootstrap=True, max_depth=6, max_features=None, min_samples_leaf=2, min_samples_split=2, n_estimators=30;, score=0.879 total time= 0.1s\n","[CV 4/5] END bootstrap=True, max_depth=6, max_features=None, min_samples_leaf=2, min_samples_split=2, n_estimators=30;, score=0.859 total time= 0.1s\n","[CV 5/5] END bootstrap=True, max_depth=6, max_features=None, min_samples_leaf=2, min_samples_split=2, n_estimators=30;, score=0.848 total time= 0.1s\n","[CV 1/5] END bootstrap=True, max_depth=6, max_features=None, min_samples_leaf=2, min_samples_split=4, n_estimators=5;, score=0.864 total time= 0.0s\n","[CV 2/5] END bootstrap=True, max_depth=6, max_features=None, min_samples_leaf=2, min_samples_split=4, n_estimators=5;, score=0.884 total time= 0.0s\n","[CV 3/5] END bootstrap=True, max_depth=6, max_features=None, min_samples_leaf=2, min_samples_split=4, n_estimators=5;, score=0.884 total time= 0.0s\n","[CV 4/5] END bootstrap=True, max_depth=6, max_features=None, min_samples_leaf=2, min_samples_split=4, n_estimators=5;, score=0.864 total time= 0.0s\n","[CV 5/5] END bootstrap=True, max_depth=6, max_features=None, min_samples_leaf=2, min_samples_split=4, n_estimators=5;, score=0.848 total time= 0.0s\n","[CV 1/5] END bootstrap=True, max_depth=6, max_features=None, min_samples_leaf=2, min_samples_split=4, n_estimators=10;, score=0.899 total time= 0.1s\n","[CV 2/5] END bootstrap=True, max_depth=6, max_features=None, min_samples_leaf=2, min_samples_split=4, n_estimators=10;, score=0.874 total time= 0.1s\n","[CV 3/5] END bootstrap=True, max_depth=6, max_features=None, min_samples_leaf=2, min_samples_split=4, n_estimators=10;, score=0.884 total time= 0.1s\n","[CV 4/5] END bootstrap=True, max_depth=6, max_features=None, min_samples_leaf=2, min_samples_split=4, n_estimators=10;, score=0.869 total time= 0.0s\n","[CV 5/5] END bootstrap=True, max_depth=6, max_features=None, min_samples_leaf=2, min_samples_split=4, n_estimators=10;, score=0.904 total time= 0.1s\n","[CV 1/5] END bootstrap=True, max_depth=6, max_features=None, min_samples_leaf=2, min_samples_split=4, n_estimators=20;, score=0.859 total time= 0.1s\n","[CV 2/5] END bootstrap=True, max_depth=6, max_features=None, min_samples_leaf=2, min_samples_split=4, n_estimators=20;, score=0.894 total time= 0.1s\n","[CV 3/5] END bootstrap=True, max_depth=6, max_features=None, min_samples_leaf=2, min_samples_split=4, n_estimators=20;, score=0.894 total time= 0.1s\n","[CV 4/5] END bootstrap=True, max_depth=6, max_features=None, min_samples_leaf=2, min_samples_split=4, n_estimators=20;, score=0.859 total time= 0.1s\n","[CV 5/5] END bootstrap=True, max_depth=6, max_features=None, min_samples_leaf=2, min_samples_split=4, n_estimators=20;, score=0.889 total time= 0.1s\n","[CV 1/5] END bootstrap=True, max_depth=6, max_features=None, min_samples_leaf=2, min_samples_split=4, n_estimators=30;, score=0.879 total time= 0.1s\n","[CV 2/5] END bootstrap=True, max_depth=6, max_features=None, min_samples_leaf=2, min_samples_split=4, n_estimators=30;, score=0.894 total time= 0.1s\n","[CV 3/5] END bootstrap=True, max_depth=6, max_features=None, min_samples_leaf=2, min_samples_split=4, n_estimators=30;, score=0.874 total time= 0.1s\n","[CV 4/5] END bootstrap=True, max_depth=6, max_features=None, min_samples_leaf=2, min_samples_split=4, n_estimators=30;, score=0.843 total time= 0.1s\n","[CV 5/5] END bootstrap=True, max_depth=6, max_features=None, min_samples_leaf=2, min_samples_split=4, n_estimators=30;, score=0.879 total time= 0.1s\n","[CV 1/5] END bootstrap=True, max_depth=6, max_features=None, min_samples_leaf=2, min_samples_split=6, n_estimators=5;, score=0.894 total time= 0.0s\n","[CV 2/5] END bootstrap=True, max_depth=6, max_features=None, min_samples_leaf=2, min_samples_split=6, n_estimators=5;, score=0.894 total time= 0.0s\n","[CV 3/5] END bootstrap=True, max_depth=6, max_features=None, min_samples_leaf=2, min_samples_split=6, n_estimators=5;, score=0.874 total time= 0.0s\n","[CV 4/5] END bootstrap=True, max_depth=6, max_features=None, min_samples_leaf=2, min_samples_split=6, n_estimators=5;, score=0.869 total time= 0.0s\n","[CV 5/5] END bootstrap=True, max_depth=6, max_features=None, min_samples_leaf=2, min_samples_split=6, n_estimators=5;, score=0.884 total time= 0.0s\n","[CV 1/5] END bootstrap=True, max_depth=6, max_features=None, min_samples_leaf=2, min_samples_split=6, n_estimators=10;, score=0.864 total time= 0.1s\n","[CV 2/5] END bootstrap=True, max_depth=6, max_features=None, min_samples_leaf=2, min_samples_split=6, n_estimators=10;, score=0.884 total time= 0.0s\n","[CV 3/5] END bootstrap=True, max_depth=6, max_features=None, min_samples_leaf=2, min_samples_split=6, n_estimators=10;, score=0.869 total time= 0.1s\n","[CV 4/5] END bootstrap=True, max_depth=6, max_features=None, min_samples_leaf=2, min_samples_split=6, n_estimators=10;, score=0.843 total time= 0.0s\n","[CV 5/5] END bootstrap=True, max_depth=6, max_features=None, min_samples_leaf=2, min_samples_split=6, n_estimators=10;, score=0.879 total time= 0.1s\n","[CV 1/5] END bootstrap=True, max_depth=6, max_features=None, min_samples_leaf=2, min_samples_split=6, n_estimators=20;, score=0.874 total time= 0.1s\n","[CV 2/5] END bootstrap=True, max_depth=6, max_features=None, min_samples_leaf=2, min_samples_split=6, n_estimators=20;, score=0.869 total time= 0.1s\n","[CV 3/5] END bootstrap=True, max_depth=6, max_features=None, min_samples_leaf=2, min_samples_split=6, n_estimators=20;, score=0.889 total time= 0.1s\n","[CV 4/5] END bootstrap=True, max_depth=6, max_features=None, min_samples_leaf=2, min_samples_split=6, n_estimators=20;, score=0.848 total time= 0.1s\n","[CV 5/5] END bootstrap=True, max_depth=6, max_features=None, min_samples_leaf=2, min_samples_split=6, n_estimators=20;, score=0.889 total time= 0.1s\n","[CV 1/5] END bootstrap=True, max_depth=6, max_features=None, min_samples_leaf=2, min_samples_split=6, n_estimators=30;, score=0.869 total time= 0.1s\n","[CV 2/5] END bootstrap=True, max_depth=6, max_features=None, min_samples_leaf=2, min_samples_split=6, n_estimators=30;, score=0.889 total time= 0.1s\n","[CV 3/5] END bootstrap=True, max_depth=6, max_features=None, min_samples_leaf=2, min_samples_split=6, n_estimators=30;, score=0.879 total time= 0.1s\n","[CV 4/5] END bootstrap=True, max_depth=6, max_features=None, min_samples_leaf=2, min_samples_split=6, n_estimators=30;, score=0.843 total time= 0.1s\n","[CV 5/5] END bootstrap=True, max_depth=6, max_features=None, min_samples_leaf=2, min_samples_split=6, n_estimators=30;, score=0.869 total time= 0.1s\n","[CV 1/5] END bootstrap=True, max_depth=6, max_features=None, min_samples_leaf=4, min_samples_split=2, n_estimators=5;, score=0.889 total time= 0.0s\n","[CV 2/5] END bootstrap=True, max_depth=6, max_features=None, min_samples_leaf=4, min_samples_split=2, n_estimators=5;, score=0.904 total time= 0.0s\n","[CV 3/5] END bootstrap=True, max_depth=6, max_features=None, min_samples_leaf=4, min_samples_split=2, n_estimators=5;, score=0.884 total time= 0.0s\n","[CV 4/5] END bootstrap=True, max_depth=6, max_features=None, min_samples_leaf=4, min_samples_split=2, n_estimators=5;, score=0.854 total time= 0.0s\n","[CV 5/5] END bootstrap=True, max_depth=6, max_features=None, min_samples_leaf=4, min_samples_split=2, n_estimators=5;, score=0.919 total time= 0.0s\n","[CV 1/5] END bootstrap=True, max_depth=6, max_features=None, min_samples_leaf=4, min_samples_split=2, n_estimators=10;, score=0.864 total time= 0.0s\n","[CV 2/5] END bootstrap=True, max_depth=6, max_features=None, min_samples_leaf=4, min_samples_split=2, n_estimators=10;, score=0.874 total time= 0.0s\n","[CV 3/5] END bootstrap=True, max_depth=6, max_features=None, min_samples_leaf=4, min_samples_split=2, n_estimators=10;, score=0.904 total time= 0.0s\n","[CV 4/5] END bootstrap=True, max_depth=6, max_features=None, min_samples_leaf=4, min_samples_split=2, n_estimators=10;, score=0.864 total time= 0.0s\n","[CV 5/5] END bootstrap=True, max_depth=6, max_features=None, min_samples_leaf=4, min_samples_split=2, n_estimators=10;, score=0.859 total time= 0.0s\n","[CV 1/5] END bootstrap=True, max_depth=6, max_features=None, min_samples_leaf=4, min_samples_split=2, n_estimators=20;, score=0.854 total time= 0.1s\n","[CV 2/5] END bootstrap=True, max_depth=6, max_features=None, min_samples_leaf=4, min_samples_split=2, n_estimators=20;, score=0.869 total time= 0.1s\n","[CV 3/5] END bootstrap=True, max_depth=6, max_features=None, min_samples_leaf=4, min_samples_split=2, n_estimators=20;, score=0.879 total time= 0.1s\n","[CV 4/5] END bootstrap=True, max_depth=6, max_features=None, min_samples_leaf=4, min_samples_split=2, n_estimators=20;, score=0.859 total time= 0.1s\n","[CV 5/5] END bootstrap=True, max_depth=6, max_features=None, min_samples_leaf=4, min_samples_split=2, n_estimators=20;, score=0.879 total time= 0.1s\n","[CV 1/5] END bootstrap=True, max_depth=6, max_features=None, min_samples_leaf=4, min_samples_split=2, n_estimators=30;, score=0.859 total time= 0.1s\n","[CV 2/5] END bootstrap=True, max_depth=6, max_features=None, min_samples_leaf=4, min_samples_split=2, n_estimators=30;, score=0.859 total time= 0.1s\n","[CV 3/5] END bootstrap=True, max_depth=6, max_features=None, min_samples_leaf=4, min_samples_split=2, n_estimators=30;, score=0.879 total time= 0.1s\n","[CV 4/5] END bootstrap=True, max_depth=6, max_features=None, min_samples_leaf=4, min_samples_split=2, n_estimators=30;, score=0.874 total time= 0.1s\n","[CV 5/5] END bootstrap=True, max_depth=6, max_features=None, min_samples_leaf=4, min_samples_split=2, n_estimators=30;, score=0.874 total time= 0.1s\n","[CV 1/5] END bootstrap=True, max_depth=6, max_features=None, min_samples_leaf=4, min_samples_split=4, n_estimators=5;, score=0.884 total time= 0.0s\n","[CV 2/5] END bootstrap=True, max_depth=6, max_features=None, min_samples_leaf=4, min_samples_split=4, n_estimators=5;, score=0.879 total time= 0.0s\n","[CV 3/5] END bootstrap=True, max_depth=6, max_features=None, min_samples_leaf=4, min_samples_split=4, n_estimators=5;, score=0.879 total time= 0.0s\n","[CV 4/5] END bootstrap=True, max_depth=6, max_features=None, min_samples_leaf=4, min_samples_split=4, n_estimators=5;, score=0.869 total time= 0.0s\n","[CV 5/5] END bootstrap=True, max_depth=6, max_features=None, min_samples_leaf=4, min_samples_split=4, n_estimators=5;, score=0.884 total time= 0.0s\n","[CV 1/5] END bootstrap=True, max_depth=6, max_features=None, min_samples_leaf=4, min_samples_split=4, n_estimators=10;, score=0.884 total time= 0.0s\n","[CV 2/5] END bootstrap=True, max_depth=6, max_features=None, min_samples_leaf=4, min_samples_split=4, n_estimators=10;, score=0.869 total time= 0.0s\n","[CV 3/5] END bootstrap=True, max_depth=6, max_features=None, min_samples_leaf=4, min_samples_split=4, n_estimators=10;, score=0.889 total time= 0.0s\n","[CV 4/5] END bootstrap=True, max_depth=6, max_features=None, min_samples_leaf=4, min_samples_split=4, n_estimators=10;, score=0.854 total time= 0.0s\n","[CV 5/5] END bootstrap=True, max_depth=6, max_features=None, min_samples_leaf=4, min_samples_split=4, n_estimators=10;, score=0.859 total time= 0.0s\n","[CV 1/5] END bootstrap=True, max_depth=6, max_features=None, min_samples_leaf=4, min_samples_split=4, n_estimators=20;, score=0.869 total time= 0.1s\n","[CV 2/5] END bootstrap=True, max_depth=6, max_features=None, min_samples_leaf=4, min_samples_split=4, n_estimators=20;, score=0.884 total time= 0.1s\n","[CV 3/5] END bootstrap=True, max_depth=6, max_features=None, min_samples_leaf=4, min_samples_split=4, n_estimators=20;, score=0.899 total time= 0.1s\n","[CV 4/5] END bootstrap=True, max_depth=6, max_features=None, min_samples_leaf=4, min_samples_split=4, n_estimators=20;, score=0.848 total time= 0.1s\n","[CV 5/5] END bootstrap=True, max_depth=6, max_features=None, min_samples_leaf=4, min_samples_split=4, n_estimators=20;, score=0.874 total time= 0.1s\n","[CV 1/5] END bootstrap=True, max_depth=6, max_features=None, min_samples_leaf=4, min_samples_split=4, n_estimators=30;, score=0.864 total time= 0.1s\n","[CV 2/5] END bootstrap=True, max_depth=6, max_features=None, min_samples_leaf=4, min_samples_split=4, n_estimators=30;, score=0.884 total time= 0.1s\n","[CV 3/5] END bootstrap=True, max_depth=6, max_features=None, min_samples_leaf=4, min_samples_split=4, n_estimators=30;, score=0.884 total time= 0.1s\n","[CV 4/5] END bootstrap=True, max_depth=6, max_features=None, min_samples_leaf=4, min_samples_split=4, n_estimators=30;, score=0.884 total time= 0.1s\n","[CV 5/5] END bootstrap=True, max_depth=6, max_features=None, min_samples_leaf=4, min_samples_split=4, n_estimators=30;, score=0.884 total time= 0.1s\n","[CV 1/5] END bootstrap=True, max_depth=6, max_features=None, min_samples_leaf=4, min_samples_split=6, n_estimators=5;, score=0.884 total time= 0.0s\n","[CV 2/5] END bootstrap=True, max_depth=6, max_features=None, min_samples_leaf=4, min_samples_split=6, n_estimators=5;, score=0.874 total time= 0.0s\n","[CV 3/5] END bootstrap=True, max_depth=6, max_features=None, min_samples_leaf=4, min_samples_split=6, n_estimators=5;, score=0.874 total time= 0.0s\n","[CV 4/5] END bootstrap=True, max_depth=6, max_features=None, min_samples_leaf=4, min_samples_split=6, n_estimators=5;, score=0.843 total time= 0.0s\n","[CV 5/5] END bootstrap=True, max_depth=6, max_features=None, min_samples_leaf=4, min_samples_split=6, n_estimators=5;, score=0.879 total time= 0.0s\n","[CV 1/5] END bootstrap=True, max_depth=6, max_features=None, min_samples_leaf=4, min_samples_split=6, n_estimators=10;, score=0.864 total time= 0.0s\n","[CV 2/5] END bootstrap=True, max_depth=6, max_features=None, min_samples_leaf=4, min_samples_split=6, n_estimators=10;, score=0.894 total time= 0.0s\n","[CV 3/5] END bootstrap=True, max_depth=6, max_features=None, min_samples_leaf=4, min_samples_split=6, n_estimators=10;, score=0.879 total time= 0.0s\n","[CV 4/5] END bootstrap=True, max_depth=6, max_features=None, min_samples_leaf=4, min_samples_split=6, n_estimators=10;, score=0.833 total time= 0.0s\n","[CV 5/5] END bootstrap=True, max_depth=6, max_features=None, min_samples_leaf=4, min_samples_split=6, n_estimators=10;, score=0.869 total time= 0.0s\n","[CV 1/5] END bootstrap=True, max_depth=6, max_features=None, min_samples_leaf=4, min_samples_split=6, n_estimators=20;, score=0.869 total time= 0.1s\n","[CV 2/5] END bootstrap=True, max_depth=6, max_features=None, min_samples_leaf=4, min_samples_split=6, n_estimators=20;, score=0.894 total time= 0.1s\n","[CV 3/5] END bootstrap=True, max_depth=6, max_features=None, min_samples_leaf=4, min_samples_split=6, n_estimators=20;, score=0.879 total time= 0.1s\n","[CV 4/5] END bootstrap=True, max_depth=6, max_features=None, min_samples_leaf=4, min_samples_split=6, n_estimators=20;, score=0.843 total time= 0.1s\n","[CV 5/5] END bootstrap=True, max_depth=6, max_features=None, min_samples_leaf=4, min_samples_split=6, n_estimators=20;, score=0.894 total time= 0.1s\n","[CV 1/5] END bootstrap=True, max_depth=6, max_features=None, min_samples_leaf=4, min_samples_split=6, n_estimators=30;, score=0.869 total time= 0.1s\n","[CV 2/5] END bootstrap=True, max_depth=6, max_features=None, min_samples_leaf=4, min_samples_split=6, n_estimators=30;, score=0.889 total time= 0.1s\n","[CV 3/5] END bootstrap=True, max_depth=6, max_features=None, min_samples_leaf=4, min_samples_split=6, n_estimators=30;, score=0.884 total time= 0.1s\n","[CV 4/5] END bootstrap=True, max_depth=6, max_features=None, min_samples_leaf=4, min_samples_split=6, n_estimators=30;, score=0.874 total time= 0.1s\n","[CV 5/5] END bootstrap=True, max_depth=6, max_features=None, min_samples_leaf=4, min_samples_split=6, n_estimators=30;, score=0.864 total time= 0.1s\n","[CV 1/5] END bootstrap=True, max_depth=6, max_features=None, min_samples_leaf=6, min_samples_split=2, n_estimators=5;, score=0.874 total time= 0.0s\n","[CV 2/5] END bootstrap=True, max_depth=6, max_features=None, min_samples_leaf=6, min_samples_split=2, n_estimators=5;, score=0.879 total time= 0.0s\n","[CV 3/5] END bootstrap=True, max_depth=6, max_features=None, min_samples_leaf=6, min_samples_split=2, n_estimators=5;, score=0.894 total time= 0.0s\n","[CV 4/5] END bootstrap=True, max_depth=6, max_features=None, min_samples_leaf=6, min_samples_split=2, n_estimators=5;, score=0.869 total time= 0.0s\n","[CV 5/5] END bootstrap=True, max_depth=6, max_features=None, min_samples_leaf=6, min_samples_split=2, n_estimators=5;, score=0.889 total time= 0.0s\n","[CV 1/5] END bootstrap=True, max_depth=6, max_features=None, min_samples_leaf=6, min_samples_split=2, n_estimators=10;, score=0.879 total time= 0.0s\n","[CV 2/5] END bootstrap=True, max_depth=6, max_features=None, min_samples_leaf=6, min_samples_split=2, n_estimators=10;, score=0.884 total time= 0.0s\n","[CV 3/5] END bootstrap=True, max_depth=6, max_features=None, min_samples_leaf=6, min_samples_split=2, n_estimators=10;, score=0.894 total time= 0.0s\n","[CV 4/5] END bootstrap=True, max_depth=6, max_features=None, min_samples_leaf=6, min_samples_split=2, n_estimators=10;, score=0.848 total time= 0.0s\n","[CV 5/5] END bootstrap=True, max_depth=6, max_features=None, min_samples_leaf=6, min_samples_split=2, n_estimators=10;, score=0.884 total time= 0.0s\n","[CV 1/5] END bootstrap=True, max_depth=6, max_features=None, min_samples_leaf=6, min_samples_split=2, n_estimators=20;, score=0.859 total time= 0.1s\n","[CV 2/5] END bootstrap=True, max_depth=6, max_features=None, min_samples_leaf=6, min_samples_split=2, n_estimators=20;, score=0.874 total time= 0.1s\n","[CV 3/5] END bootstrap=True, max_depth=6, max_features=None, min_samples_leaf=6, min_samples_split=2, n_estimators=20;, score=0.874 total time= 0.1s\n","[CV 4/5] END bootstrap=True, max_depth=6, max_features=None, min_samples_leaf=6, min_samples_split=2, n_estimators=20;, score=0.854 total time= 0.1s\n","[CV 5/5] END bootstrap=True, max_depth=6, max_features=None, min_samples_leaf=6, min_samples_split=2, n_estimators=20;, score=0.869 total time= 0.1s\n","[CV 1/5] END bootstrap=True, max_depth=6, max_features=None, min_samples_leaf=6, min_samples_split=2, n_estimators=30;, score=0.879 total time= 0.1s\n","[CV 2/5] END bootstrap=True, max_depth=6, max_features=None, min_samples_leaf=6, min_samples_split=2, n_estimators=30;, score=0.884 total time= 0.1s\n","[CV 3/5] END bootstrap=True, max_depth=6, max_features=None, min_samples_leaf=6, min_samples_split=2, n_estimators=30;, score=0.884 total time= 0.1s\n","[CV 4/5] END bootstrap=True, max_depth=6, max_features=None, min_samples_leaf=6, min_samples_split=2, n_estimators=30;, score=0.864 total time= 0.1s\n","[CV 5/5] END bootstrap=True, max_depth=6, max_features=None, min_samples_leaf=6, min_samples_split=2, n_estimators=30;, score=0.884 total time= 0.1s\n","[CV 1/5] END bootstrap=True, max_depth=6, max_features=None, min_samples_leaf=6, min_samples_split=4, n_estimators=5;, score=0.869 total time= 0.0s\n","[CV 2/5] END bootstrap=True, max_depth=6, max_features=None, min_samples_leaf=6, min_samples_split=4, n_estimators=5;, score=0.874 total time= 0.0s\n","[CV 3/5] END bootstrap=True, max_depth=6, max_features=None, min_samples_leaf=6, min_samples_split=4, n_estimators=5;, score=0.879 total time= 0.0s\n","[CV 4/5] END bootstrap=True, max_depth=6, max_features=None, min_samples_leaf=6, min_samples_split=4, n_estimators=5;, score=0.859 total time= 0.0s\n","[CV 5/5] END bootstrap=True, max_depth=6, max_features=None, min_samples_leaf=6, min_samples_split=4, n_estimators=5;, score=0.854 total time= 0.0s\n","[CV 1/5] END bootstrap=True, max_depth=6, max_features=None, min_samples_leaf=6, min_samples_split=4, n_estimators=10;, score=0.869 total time= 0.0s\n","[CV 2/5] END bootstrap=True, max_depth=6, max_features=None, min_samples_leaf=6, min_samples_split=4, n_estimators=10;, score=0.879 total time= 0.0s\n","[CV 3/5] END bootstrap=True, max_depth=6, max_features=None, min_samples_leaf=6, min_samples_split=4, n_estimators=10;, score=0.894 total time= 0.0s\n","[CV 4/5] END bootstrap=True, max_depth=6, max_features=None, min_samples_leaf=6, min_samples_split=4, n_estimators=10;, score=0.859 total time= 0.0s\n","[CV 5/5] END bootstrap=True, max_depth=6, max_features=None, min_samples_leaf=6, min_samples_split=4, n_estimators=10;, score=0.879 total time= 0.0s\n","[CV 1/5] END bootstrap=True, max_depth=6, max_features=None, min_samples_leaf=6, min_samples_split=4, n_estimators=20;, score=0.884 total time= 0.1s\n","[CV 2/5] END bootstrap=True, max_depth=6, max_features=None, min_samples_leaf=6, min_samples_split=4, n_estimators=20;, score=0.874 total time= 0.1s\n","[CV 3/5] END bootstrap=True, max_depth=6, max_features=None, min_samples_leaf=6, min_samples_split=4, n_estimators=20;, score=0.874 total time= 0.1s\n","[CV 4/5] END bootstrap=True, max_depth=6, max_features=None, min_samples_leaf=6, min_samples_split=4, n_estimators=20;, score=0.854 total time= 0.1s\n","[CV 5/5] END bootstrap=True, max_depth=6, max_features=None, min_samples_leaf=6, min_samples_split=4, n_estimators=20;, score=0.869 total time= 0.1s\n","[CV 1/5] END bootstrap=True, max_depth=6, max_features=None, min_samples_leaf=6, min_samples_split=4, n_estimators=30;, score=0.879 total time= 0.1s\n","[CV 2/5] END bootstrap=True, max_depth=6, max_features=None, min_samples_leaf=6, min_samples_split=4, n_estimators=30;, score=0.859 total time= 0.1s\n","[CV 3/5] END bootstrap=True, max_depth=6, max_features=None, min_samples_leaf=6, min_samples_split=4, n_estimators=30;, score=0.869 total time= 0.1s\n","[CV 4/5] END bootstrap=True, max_depth=6, max_features=None, min_samples_leaf=6, min_samples_split=4, n_estimators=30;, score=0.854 total time= 0.1s\n","[CV 5/5] END bootstrap=True, max_depth=6, max_features=None, min_samples_leaf=6, min_samples_split=4, n_estimators=30;, score=0.884 total time= 0.1s\n","[CV 1/5] END bootstrap=True, max_depth=6, max_features=None, min_samples_leaf=6, min_samples_split=6, n_estimators=5;, score=0.848 total time= 0.0s\n","[CV 2/5] END bootstrap=True, max_depth=6, max_features=None, min_samples_leaf=6, min_samples_split=6, n_estimators=5;, score=0.869 total time= 0.0s\n","[CV 3/5] END bootstrap=True, max_depth=6, max_features=None, min_samples_leaf=6, min_samples_split=6, n_estimators=5;, score=0.899 total time= 0.0s\n","[CV 4/5] END bootstrap=True, max_depth=6, max_features=None, min_samples_leaf=6, min_samples_split=6, n_estimators=5;, score=0.854 total time= 0.0s\n","[CV 5/5] END bootstrap=True, max_depth=6, max_features=None, min_samples_leaf=6, min_samples_split=6, n_estimators=5;, score=0.869 total time= 0.0s\n","[CV 1/5] END bootstrap=True, max_depth=6, max_features=None, min_samples_leaf=6, min_samples_split=6, n_estimators=10;, score=0.874 total time= 0.0s\n","[CV 2/5] END bootstrap=True, max_depth=6, max_features=None, min_samples_leaf=6, min_samples_split=6, n_estimators=10;, score=0.869 total time= 0.0s\n","[CV 3/5] END bootstrap=True, max_depth=6, max_features=None, min_samples_leaf=6, min_samples_split=6, n_estimators=10;, score=0.884 total time= 0.0s\n","[CV 4/5] END bootstrap=True, max_depth=6, max_features=None, min_samples_leaf=6, min_samples_split=6, n_estimators=10;, score=0.869 total time= 0.0s\n","[CV 5/5] END bootstrap=True, max_depth=6, max_features=None, min_samples_leaf=6, min_samples_split=6, n_estimators=10;, score=0.864 total time= 0.0s\n","[CV 1/5] END bootstrap=True, max_depth=6, max_features=None, min_samples_leaf=6, min_samples_split=6, n_estimators=20;, score=0.869 total time= 0.1s\n","[CV 2/5] END bootstrap=True, max_depth=6, max_features=None, min_samples_leaf=6, min_samples_split=6, n_estimators=20;, score=0.874 total time= 0.1s\n","[CV 3/5] END bootstrap=True, max_depth=6, max_features=None, min_samples_leaf=6, min_samples_split=6, n_estimators=20;, score=0.884 total time= 0.1s\n","[CV 4/5] END bootstrap=True, max_depth=6, max_features=None, min_samples_leaf=6, min_samples_split=6, n_estimators=20;, score=0.833 total time= 0.1s\n","[CV 5/5] END bootstrap=True, max_depth=6, max_features=None, min_samples_leaf=6, min_samples_split=6, n_estimators=20;, score=0.869 total time= 0.1s\n","[CV 1/5] END bootstrap=True, max_depth=6, max_features=None, min_samples_leaf=6, min_samples_split=6, n_estimators=30;, score=0.859 total time= 0.1s\n","[CV 2/5] END bootstrap=True, max_depth=6, max_features=None, min_samples_leaf=6, min_samples_split=6, n_estimators=30;, score=0.889 total time= 0.1s\n","[CV 3/5] END bootstrap=True, max_depth=6, max_features=None, min_samples_leaf=6, min_samples_split=6, n_estimators=30;, score=0.889 total time= 0.1s\n","[CV 4/5] END bootstrap=True, max_depth=6, max_features=None, min_samples_leaf=6, min_samples_split=6, n_estimators=30;, score=0.848 total time= 0.1s\n","[CV 5/5] END bootstrap=True, max_depth=6, max_features=None, min_samples_leaf=6, min_samples_split=6, n_estimators=30;, score=0.889 total time= 0.1s\n","[CV 1/5] END bootstrap=True, max_depth=10, max_features=sqrt, min_samples_leaf=2, min_samples_split=2, n_estimators=5;, score=0.874 total time= 0.0s\n","[CV 2/5] END bootstrap=True, max_depth=10, max_features=sqrt, min_samples_leaf=2, min_samples_split=2, n_estimators=5;, score=0.899 total time= 0.0s\n","[CV 3/5] END bootstrap=True, max_depth=10, max_features=sqrt, min_samples_leaf=2, min_samples_split=2, n_estimators=5;, score=0.889 total time= 0.0s\n","[CV 4/5] END bootstrap=True, max_depth=10, max_features=sqrt, min_samples_leaf=2, min_samples_split=2, n_estimators=5;, score=0.854 total time= 0.0s\n","[CV 5/5] END bootstrap=True, max_depth=10, max_features=sqrt, min_samples_leaf=2, min_samples_split=2, n_estimators=5;, score=0.864 total time= 0.0s\n","[CV 1/5] END bootstrap=True, max_depth=10, max_features=sqrt, min_samples_leaf=2, min_samples_split=2, n_estimators=10;, score=0.879 total time= 0.0s\n","[CV 2/5] END bootstrap=True, max_depth=10, max_features=sqrt, min_samples_leaf=2, min_samples_split=2, n_estimators=10;, score=0.889 total time= 0.0s\n","[CV 3/5] END bootstrap=True, max_depth=10, max_features=sqrt, min_samples_leaf=2, min_samples_split=2, n_estimators=10;, score=0.879 total time= 0.0s\n","[CV 4/5] END bootstrap=True, max_depth=10, max_features=sqrt, min_samples_leaf=2, min_samples_split=2, n_estimators=10;, score=0.854 total time= 0.0s\n","[CV 5/5] END bootstrap=True, max_depth=10, max_features=sqrt, min_samples_leaf=2, min_samples_split=2, n_estimators=10;, score=0.874 total time= 0.0s\n","[CV 1/5] END bootstrap=True, max_depth=10, max_features=sqrt, min_samples_leaf=2, min_samples_split=2, n_estimators=20;, score=0.884 total time= 0.0s\n","[CV 2/5] END bootstrap=True, max_depth=10, max_features=sqrt, min_samples_leaf=2, min_samples_split=2, n_estimators=20;, score=0.879 total time= 0.0s\n","[CV 3/5] END bootstrap=True, max_depth=10, max_features=sqrt, min_samples_leaf=2, min_samples_split=2, n_estimators=20;, score=0.879 total time= 0.0s\n","[CV 4/5] END bootstrap=True, max_depth=10, max_features=sqrt, min_samples_leaf=2, min_samples_split=2, n_estimators=20;, score=0.864 total time= 0.0s\n","[CV 5/5] END bootstrap=True, max_depth=10, max_features=sqrt, min_samples_leaf=2, min_samples_split=2, n_estimators=20;, score=0.899 total time= 0.1s\n","[CV 1/5] END bootstrap=True, max_depth=10, max_features=sqrt, min_samples_leaf=2, min_samples_split=2, n_estimators=30;, score=0.854 total time= 0.1s\n","[CV 2/5] END bootstrap=True, max_depth=10, max_features=sqrt, min_samples_leaf=2, min_samples_split=2, n_estimators=30;, score=0.889 total time= 0.1s\n","[CV 3/5] END bootstrap=True, max_depth=10, max_features=sqrt, min_samples_leaf=2, min_samples_split=2, n_estimators=30;, score=0.879 total time= 0.1s\n","[CV 4/5] END bootstrap=True, max_depth=10, max_features=sqrt, min_samples_leaf=2, min_samples_split=2, n_estimators=30;, score=0.869 total time= 0.1s\n","[CV 5/5] END bootstrap=True, max_depth=10, max_features=sqrt, min_samples_leaf=2, min_samples_split=2, n_estimators=30;, score=0.899 total time= 0.1s\n","[CV 1/5] END bootstrap=True, max_depth=10, max_features=sqrt, min_samples_leaf=2, min_samples_split=4, n_estimators=5;, score=0.869 total time= 0.0s\n","[CV 2/5] END bootstrap=True, max_depth=10, max_features=sqrt, min_samples_leaf=2, min_samples_split=4, n_estimators=5;, score=0.889 total time= 0.0s\n","[CV 3/5] END bootstrap=True, max_depth=10, max_features=sqrt, min_samples_leaf=2, min_samples_split=4, n_estimators=5;, score=0.889 total time= 0.0s\n","[CV 4/5] END bootstrap=True, max_depth=10, max_features=sqrt, min_samples_leaf=2, min_samples_split=4, n_estimators=5;, score=0.869 total time= 0.0s\n","[CV 5/5] END bootstrap=True, max_depth=10, max_features=sqrt, min_samples_leaf=2, min_samples_split=4, n_estimators=5;, score=0.879 total time= 0.0s\n","[CV 1/5] END bootstrap=True, max_depth=10, max_features=sqrt, min_samples_leaf=2, min_samples_split=4, n_estimators=10;, score=0.869 total time= 0.0s\n","[CV 2/5] END bootstrap=True, max_depth=10, max_features=sqrt, min_samples_leaf=2, min_samples_split=4, n_estimators=10;, score=0.889 total time= 0.0s\n","[CV 3/5] END bootstrap=True, max_depth=10, max_features=sqrt, min_samples_leaf=2, min_samples_split=4, n_estimators=10;, score=0.894 total time= 0.0s\n","[CV 4/5] END bootstrap=True, max_depth=10, max_features=sqrt, min_samples_leaf=2, min_samples_split=4, n_estimators=10;, score=0.854 total time= 0.0s\n","[CV 5/5] END bootstrap=True, max_depth=10, max_features=sqrt, min_samples_leaf=2, min_samples_split=4, n_estimators=10;, score=0.889 total time= 0.0s\n","[CV 1/5] END bootstrap=True, max_depth=10, max_features=sqrt, min_samples_leaf=2, min_samples_split=4, n_estimators=20;, score=0.859 total time= 0.0s\n","[CV 2/5] END bootstrap=True, max_depth=10, max_features=sqrt, min_samples_leaf=2, min_samples_split=4, n_estimators=20;, score=0.889 total time= 0.0s\n","[CV 3/5] END bootstrap=True, max_depth=10, max_features=sqrt, min_samples_leaf=2, min_samples_split=4, n_estimators=20;, score=0.884 total time= 0.1s\n","[CV 4/5] END bootstrap=True, max_depth=10, max_features=sqrt, min_samples_leaf=2, min_samples_split=4, n_estimators=20;, score=0.879 total time= 0.0s\n","[CV 5/5] END bootstrap=True, max_depth=10, max_features=sqrt, min_samples_leaf=2, min_samples_split=4, n_estimators=20;, score=0.869 total time= 0.0s\n","[CV 1/5] END bootstrap=True, max_depth=10, max_features=sqrt, min_samples_leaf=2, min_samples_split=4, n_estimators=30;, score=0.869 total time= 0.1s\n","[CV 2/5] END bootstrap=True, max_depth=10, max_features=sqrt, min_samples_leaf=2, min_samples_split=4, n_estimators=30;, score=0.904 total time= 0.1s\n","[CV 3/5] END bootstrap=True, max_depth=10, max_features=sqrt, min_samples_leaf=2, min_samples_split=4, n_estimators=30;, score=0.899 total time= 0.1s\n","[CV 4/5] END bootstrap=True, max_depth=10, max_features=sqrt, min_samples_leaf=2, min_samples_split=4, n_estimators=30;, score=0.838 total time= 0.1s\n","[CV 5/5] END bootstrap=True, max_depth=10, max_features=sqrt, min_samples_leaf=2, min_samples_split=4, n_estimators=30;, score=0.874 total time= 0.1s\n","[CV 1/5] END bootstrap=True, max_depth=10, max_features=sqrt, min_samples_leaf=2, min_samples_split=6, n_estimators=5;, score=0.859 total time= 0.0s\n","[CV 2/5] END bootstrap=True, max_depth=10, max_features=sqrt, min_samples_leaf=2, min_samples_split=6, n_estimators=5;, score=0.874 total time= 0.0s\n","[CV 3/5] END bootstrap=True, max_depth=10, max_features=sqrt, min_samples_leaf=2, min_samples_split=6, n_estimators=5;, score=0.879 total time= 0.0s\n","[CV 4/5] END bootstrap=True, max_depth=10, max_features=sqrt, min_samples_leaf=2, min_samples_split=6, n_estimators=5;, score=0.864 total time= 0.0s\n","[CV 5/5] END bootstrap=True, max_depth=10, max_features=sqrt, min_samples_leaf=2, min_samples_split=6, n_estimators=5;, score=0.879 total time= 0.0s\n","[CV 1/5] END bootstrap=True, max_depth=10, max_features=sqrt, min_samples_leaf=2, min_samples_split=6, n_estimators=10;, score=0.894 total time= 0.0s\n","[CV 2/5] END bootstrap=True, max_depth=10, max_features=sqrt, min_samples_leaf=2, min_samples_split=6, n_estimators=10;, score=0.894 total time= 0.0s\n","[CV 3/5] END bootstrap=True, max_depth=10, max_features=sqrt, min_samples_leaf=2, min_samples_split=6, n_estimators=10;, score=0.889 total time= 0.0s\n","[CV 4/5] END bootstrap=True, max_depth=10, max_features=sqrt, min_samples_leaf=2, min_samples_split=6, n_estimators=10;, score=0.859 total time= 0.0s\n","[CV 5/5] END bootstrap=True, max_depth=10, max_features=sqrt, min_samples_leaf=2, min_samples_split=6, n_estimators=10;, score=0.889 total time= 0.0s\n","[CV 1/5] END bootstrap=True, max_depth=10, max_features=sqrt, min_samples_leaf=2, min_samples_split=6, n_estimators=20;, score=0.854 total time= 0.0s\n","[CV 2/5] END bootstrap=True, max_depth=10, max_features=sqrt, min_samples_leaf=2, min_samples_split=6, n_estimators=20;, score=0.879 total time= 0.0s\n","[CV 3/5] END bootstrap=True, max_depth=10, max_features=sqrt, min_samples_leaf=2, min_samples_split=6, n_estimators=20;, score=0.894 total time= 0.0s\n","[CV 4/5] END bootstrap=True, max_depth=10, max_features=sqrt, min_samples_leaf=2, min_samples_split=6, n_estimators=20;, score=0.864 total time= 0.1s\n","[CV 5/5] END bootstrap=True, max_depth=10, max_features=sqrt, min_samples_leaf=2, min_samples_split=6, n_estimators=20;, score=0.894 total time= 0.0s\n","[CV 1/5] END bootstrap=True, max_depth=10, max_features=sqrt, min_samples_leaf=2, min_samples_split=6, n_estimators=30;, score=0.869 total time= 0.1s\n","[CV 2/5] END bootstrap=True, max_depth=10, max_features=sqrt, min_samples_leaf=2, min_samples_split=6, n_estimators=30;, score=0.874 total time= 0.1s\n","[CV 3/5] END bootstrap=True, max_depth=10, max_features=sqrt, min_samples_leaf=2, min_samples_split=6, n_estimators=30;, score=0.884 total time= 0.1s\n","[CV 4/5] END bootstrap=True, max_depth=10, max_features=sqrt, min_samples_leaf=2, min_samples_split=6, n_estimators=30;, score=0.854 total time= 0.1s\n","[CV 5/5] END bootstrap=True, max_depth=10, max_features=sqrt, min_samples_leaf=2, min_samples_split=6, n_estimators=30;, score=0.874 total time= 0.1s\n","[CV 1/5] END bootstrap=True, max_depth=10, max_features=sqrt, min_samples_leaf=4, min_samples_split=2, n_estimators=5;, score=0.894 total time= 0.0s\n","[CV 2/5] END bootstrap=True, max_depth=10, max_features=sqrt, min_samples_leaf=4, min_samples_split=2, n_estimators=5;, score=0.879 total time= 0.0s\n","[CV 3/5] END bootstrap=True, max_depth=10, max_features=sqrt, min_samples_leaf=4, min_samples_split=2, n_estimators=5;, score=0.884 total time= 0.0s\n","[CV 4/5] END bootstrap=True, max_depth=10, max_features=sqrt, min_samples_leaf=4, min_samples_split=2, n_estimators=5;, score=0.884 total time= 0.0s\n","[CV 5/5] END bootstrap=True, max_depth=10, max_features=sqrt, min_samples_leaf=4, min_samples_split=2, n_estimators=5;, score=0.869 total time= 0.0s\n","[CV 1/5] END bootstrap=True, max_depth=10, max_features=sqrt, min_samples_leaf=4, min_samples_split=2, n_estimators=10;, score=0.869 total time= 0.0s\n","[CV 2/5] END bootstrap=True, max_depth=10, max_features=sqrt, min_samples_leaf=4, min_samples_split=2, n_estimators=10;, score=0.899 total time= 0.0s\n","[CV 3/5] END bootstrap=True, max_depth=10, max_features=sqrt, min_samples_leaf=4, min_samples_split=2, n_estimators=10;, score=0.874 total time= 0.0s\n","[CV 4/5] END bootstrap=True, max_depth=10, max_features=sqrt, min_samples_leaf=4, min_samples_split=2, n_estimators=10;, score=0.859 total time= 0.0s\n","[CV 5/5] END bootstrap=True, max_depth=10, max_features=sqrt, min_samples_leaf=4, min_samples_split=2, n_estimators=10;, score=0.869 total time= 0.0s\n","[CV 1/5] END bootstrap=True, max_depth=10, max_features=sqrt, min_samples_leaf=4, min_samples_split=2, n_estimators=20;, score=0.879 total time= 0.0s\n","[CV 2/5] END bootstrap=True, max_depth=10, max_features=sqrt, min_samples_leaf=4, min_samples_split=2, n_estimators=20;, score=0.889 total time= 0.1s\n","[CV 3/5] END bootstrap=True, max_depth=10, max_features=sqrt, min_samples_leaf=4, min_samples_split=2, n_estimators=20;, score=0.869 total time= 0.0s\n","[CV 4/5] END bootstrap=True, max_depth=10, max_features=sqrt, min_samples_leaf=4, min_samples_split=2, n_estimators=20;, score=0.854 total time= 0.0s\n","[CV 5/5] END bootstrap=True, max_depth=10, max_features=sqrt, min_samples_leaf=4, min_samples_split=2, n_estimators=20;, score=0.899 total time= 0.0s\n","[CV 1/5] END bootstrap=True, max_depth=10, max_features=sqrt, min_samples_leaf=4, min_samples_split=2, n_estimators=30;, score=0.859 total time= 0.1s\n","[CV 2/5] END bootstrap=True, max_depth=10, max_features=sqrt, min_samples_leaf=4, min_samples_split=2, n_estimators=30;, score=0.884 total time= 0.1s\n","[CV 3/5] END bootstrap=True, max_depth=10, max_features=sqrt, min_samples_leaf=4, min_samples_split=2, n_estimators=30;, score=0.869 total time= 0.1s\n","[CV 4/5] END bootstrap=True, max_depth=10, max_features=sqrt, min_samples_leaf=4, min_samples_split=2, n_estimators=30;, score=0.879 total time= 0.1s\n","[CV 5/5] END bootstrap=True, max_depth=10, max_features=sqrt, min_samples_leaf=4, min_samples_split=2, n_estimators=30;, score=0.879 total time= 0.1s\n","[CV 1/5] END bootstrap=True, max_depth=10, max_features=sqrt, min_samples_leaf=4, min_samples_split=4, n_estimators=5;, score=0.833 total time= 0.0s\n","[CV 2/5] END bootstrap=True, max_depth=10, max_features=sqrt, min_samples_leaf=4, min_samples_split=4, n_estimators=5;, score=0.884 total time= 0.0s\n","[CV 3/5] END bootstrap=True, max_depth=10, max_features=sqrt, min_samples_leaf=4, min_samples_split=4, n_estimators=5;, score=0.904 total time= 0.0s\n","[CV 4/5] END bootstrap=True, max_depth=10, max_features=sqrt, min_samples_leaf=4, min_samples_split=4, n_estimators=5;, score=0.854 total time= 0.0s\n","[CV 5/5] END bootstrap=True, max_depth=10, max_features=sqrt, min_samples_leaf=4, min_samples_split=4, n_estimators=5;, score=0.884 total time= 0.0s\n","[CV 1/5] END bootstrap=True, max_depth=10, max_features=sqrt, min_samples_leaf=4, min_samples_split=4, n_estimators=10;, score=0.874 total time= 0.0s\n","[CV 2/5] END bootstrap=True, max_depth=10, max_features=sqrt, min_samples_leaf=4, min_samples_split=4, n_estimators=10;, score=0.899 total time= 0.0s\n","[CV 3/5] END bootstrap=True, max_depth=10, max_features=sqrt, min_samples_leaf=4, min_samples_split=4, n_estimators=10;, score=0.914 total time= 0.0s\n","[CV 4/5] END bootstrap=True, max_depth=10, max_features=sqrt, min_samples_leaf=4, min_samples_split=4, n_estimators=10;, score=0.869 total time= 0.0s\n","[CV 5/5] END bootstrap=True, max_depth=10, max_features=sqrt, min_samples_leaf=4, min_samples_split=4, n_estimators=10;, score=0.904 total time= 0.0s\n","[CV 1/5] END bootstrap=True, max_depth=10, max_features=sqrt, min_samples_leaf=4, min_samples_split=4, n_estimators=20;, score=0.874 total time= 0.1s\n","[CV 2/5] END bootstrap=True, max_depth=10, max_features=sqrt, min_samples_leaf=4, min_samples_split=4, n_estimators=20;, score=0.889 total time= 0.1s\n","[CV 3/5] END bootstrap=True, max_depth=10, max_features=sqrt, min_samples_leaf=4, min_samples_split=4, n_estimators=20;, score=0.874 total time= 0.1s\n","[CV 4/5] END bootstrap=True, max_depth=10, max_features=sqrt, min_samples_leaf=4, min_samples_split=4, n_estimators=20;, score=0.874 total time= 0.1s\n","[CV 5/5] END bootstrap=True, max_depth=10, max_features=sqrt, min_samples_leaf=4, min_samples_split=4, n_estimators=20;, score=0.909 total time= 0.1s\n","[CV 1/5] END bootstrap=True, max_depth=10, max_features=sqrt, min_samples_leaf=4, min_samples_split=4, n_estimators=30;, score=0.859 total time= 0.1s\n","[CV 2/5] END bootstrap=True, max_depth=10, max_features=sqrt, min_samples_leaf=4, min_samples_split=4, n_estimators=30;, score=0.889 total time= 0.1s\n","[CV 3/5] END bootstrap=True, max_depth=10, max_features=sqrt, min_samples_leaf=4, min_samples_split=4, n_estimators=30;, score=0.869 total time= 0.1s\n","[CV 4/5] END bootstrap=True, max_depth=10, max_features=sqrt, min_samples_leaf=4, min_samples_split=4, n_estimators=30;, score=0.869 total time= 0.1s\n","[CV 5/5] END bootstrap=True, max_depth=10, max_features=sqrt, min_samples_leaf=4, min_samples_split=4, n_estimators=30;, score=0.874 total time= 0.1s\n","[CV 1/5] END bootstrap=True, max_depth=10, max_features=sqrt, min_samples_leaf=4, min_samples_split=6, n_estimators=5;, score=0.909 total time= 0.0s\n","[CV 2/5] END bootstrap=True, max_depth=10, max_features=sqrt, min_samples_leaf=4, min_samples_split=6, n_estimators=5;, score=0.889 total time= 0.0s\n","[CV 3/5] END bootstrap=True, max_depth=10, max_features=sqrt, min_samples_leaf=4, min_samples_split=6, n_estimators=5;, score=0.929 total time= 0.0s\n","[CV 4/5] END bootstrap=True, max_depth=10, max_features=sqrt, min_samples_leaf=4, min_samples_split=6, n_estimators=5;, score=0.854 total time= 0.0s\n","[CV 5/5] END bootstrap=True, max_depth=10, max_features=sqrt, min_samples_leaf=4, min_samples_split=6, n_estimators=5;, score=0.904 total time= 0.0s\n","[CV 1/5] END bootstrap=True, max_depth=10, max_features=sqrt, min_samples_leaf=4, min_samples_split=6, n_estimators=10;, score=0.864 total time= 0.0s\n","[CV 2/5] END bootstrap=True, max_depth=10, max_features=sqrt, min_samples_leaf=4, min_samples_split=6, n_estimators=10;, score=0.879 total time= 0.1s\n","[CV 3/5] END bootstrap=True, max_depth=10, max_features=sqrt, min_samples_leaf=4, min_samples_split=6, n_estimators=10;, score=0.864 total time= 0.0s\n","[CV 4/5] END bootstrap=True, max_depth=10, max_features=sqrt, min_samples_leaf=4, min_samples_split=6, n_estimators=10;, score=0.864 total time= 0.0s\n","[CV 5/5] END bootstrap=True, max_depth=10, max_features=sqrt, min_samples_leaf=4, min_samples_split=6, n_estimators=10;, score=0.899 total time= 0.0s\n","[CV 1/5] END bootstrap=True, max_depth=10, max_features=sqrt, min_samples_leaf=4, min_samples_split=6, n_estimators=20;, score=0.879 total time= 0.1s\n","[CV 2/5] END bootstrap=True, max_depth=10, max_features=sqrt, min_samples_leaf=4, min_samples_split=6, n_estimators=20;, score=0.889 total time= 0.1s\n","[CV 3/5] END bootstrap=True, max_depth=10, max_features=sqrt, min_samples_leaf=4, min_samples_split=6, n_estimators=20;, score=0.884 total time= 0.1s\n","[CV 4/5] END bootstrap=True, max_depth=10, max_features=sqrt, min_samples_leaf=4, min_samples_split=6, n_estimators=20;, score=0.854 total time= 0.1s\n","[CV 5/5] END bootstrap=True, max_depth=10, max_features=sqrt, min_samples_leaf=4, min_samples_split=6, n_estimators=20;, score=0.889 total time= 0.1s\n","[CV 1/5] END bootstrap=True, max_depth=10, max_features=sqrt, min_samples_leaf=4, min_samples_split=6, n_estimators=30;, score=0.874 total time= 0.1s\n","[CV 2/5] END bootstrap=True, max_depth=10, max_features=sqrt, min_samples_leaf=4, min_samples_split=6, n_estimators=30;, score=0.879 total time= 0.1s\n","[CV 3/5] END bootstrap=True, max_depth=10, max_features=sqrt, min_samples_leaf=4, min_samples_split=6, n_estimators=30;, score=0.894 total time= 0.1s\n","[CV 4/5] END bootstrap=True, max_depth=10, max_features=sqrt, min_samples_leaf=4, min_samples_split=6, n_estimators=30;, score=0.859 total time= 0.1s\n","[CV 5/5] END bootstrap=True, max_depth=10, max_features=sqrt, min_samples_leaf=4, min_samples_split=6, n_estimators=30;, score=0.904 total time= 0.1s\n","[CV 1/5] END bootstrap=True, max_depth=10, max_features=sqrt, min_samples_leaf=6, min_samples_split=2, n_estimators=5;, score=0.884 total time= 0.0s\n","[CV 2/5] END bootstrap=True, max_depth=10, max_features=sqrt, min_samples_leaf=6, min_samples_split=2, n_estimators=5;, score=0.884 total time= 0.0s\n","[CV 3/5] END bootstrap=True, max_depth=10, max_features=sqrt, min_samples_leaf=6, min_samples_split=2, n_estimators=5;, score=0.884 total time= 0.0s\n","[CV 4/5] END bootstrap=True, max_depth=10, max_features=sqrt, min_samples_leaf=6, min_samples_split=2, n_estimators=5;, score=0.854 total time= 0.0s\n","[CV 5/5] END bootstrap=True, max_depth=10, max_features=sqrt, min_samples_leaf=6, min_samples_split=2, n_estimators=5;, score=0.884 total time= 0.0s\n","[CV 1/5] END bootstrap=True, max_depth=10, max_features=sqrt, min_samples_leaf=6, min_samples_split=2, n_estimators=10;, score=0.859 total time= 0.0s\n","[CV 2/5] END bootstrap=True, max_depth=10, max_features=sqrt, min_samples_leaf=6, min_samples_split=2, n_estimators=10;, score=0.894 total time= 0.0s\n","[CV 3/5] END bootstrap=True, max_depth=10, max_features=sqrt, min_samples_leaf=6, min_samples_split=2, n_estimators=10;, score=0.879 total time= 0.0s\n","[CV 4/5] END bootstrap=True, max_depth=10, max_features=sqrt, min_samples_leaf=6, min_samples_split=2, n_estimators=10;, score=0.894 total time= 0.1s\n","[CV 5/5] END bootstrap=True, max_depth=10, max_features=sqrt, min_samples_leaf=6, min_samples_split=2, n_estimators=10;, score=0.884 total time= 0.0s\n","[CV 1/5] END bootstrap=True, max_depth=10, max_features=sqrt, min_samples_leaf=6, min_samples_split=2, n_estimators=20;, score=0.869 total time= 0.1s\n","[CV 2/5] END bootstrap=True, max_depth=10, max_features=sqrt, min_samples_leaf=6, min_samples_split=2, n_estimators=20;, score=0.894 total time= 0.1s\n","[CV 3/5] END bootstrap=True, max_depth=10, max_features=sqrt, min_samples_leaf=6, min_samples_split=2, n_estimators=20;, score=0.874 total time= 0.1s\n","[CV 4/5] END bootstrap=True, max_depth=10, max_features=sqrt, min_samples_leaf=6, min_samples_split=2, n_estimators=20;, score=0.854 total time= 0.1s\n","[CV 5/5] END bootstrap=True, max_depth=10, max_features=sqrt, min_samples_leaf=6, min_samples_split=2, n_estimators=20;, score=0.894 total time= 0.1s\n","[CV 1/5] END bootstrap=True, max_depth=10, max_features=sqrt, min_samples_leaf=6, min_samples_split=2, n_estimators=30;, score=0.864 total time= 0.1s\n","[CV 2/5] END bootstrap=True, max_depth=10, max_features=sqrt, min_samples_leaf=6, min_samples_split=2, n_estimators=30;, score=0.894 total time= 0.1s\n","[CV 3/5] END bootstrap=True, max_depth=10, max_features=sqrt, min_samples_leaf=6, min_samples_split=2, n_estimators=30;, score=0.894 total time= 0.1s\n","[CV 4/5] END bootstrap=True, max_depth=10, max_features=sqrt, min_samples_leaf=6, min_samples_split=2, n_estimators=30;, score=0.864 total time= 0.1s\n","[CV 5/5] END bootstrap=True, max_depth=10, max_features=sqrt, min_samples_leaf=6, min_samples_split=2, n_estimators=30;, score=0.904 total time= 0.1s\n","[CV 1/5] END bootstrap=True, max_depth=10, max_features=sqrt, min_samples_leaf=6, min_samples_split=4, n_estimators=5;, score=0.899 total time= 0.0s\n","[CV 2/5] END bootstrap=True, max_depth=10, max_features=sqrt, min_samples_leaf=6, min_samples_split=4, n_estimators=5;, score=0.879 total time= 0.0s\n","[CV 3/5] END bootstrap=True, max_depth=10, max_features=sqrt, min_samples_leaf=6, min_samples_split=4, n_estimators=5;, score=0.889 total time= 0.0s\n","[CV 4/5] END bootstrap=True, max_depth=10, max_features=sqrt, min_samples_leaf=6, min_samples_split=4, n_estimators=5;, score=0.854 total time= 0.0s\n","[CV 5/5] END bootstrap=True, max_depth=10, max_features=sqrt, min_samples_leaf=6, min_samples_split=4, n_estimators=5;, score=0.909 total time= 0.0s\n","[CV 1/5] END bootstrap=True, max_depth=10, max_features=sqrt, min_samples_leaf=6, min_samples_split=4, n_estimators=10;, score=0.848 total time= 0.0s\n","[CV 2/5] END bootstrap=True, max_depth=10, max_features=sqrt, min_samples_leaf=6, min_samples_split=4, n_estimators=10;, score=0.909 total time= 0.0s\n","[CV 3/5] END bootstrap=True, max_depth=10, max_features=sqrt, min_samples_leaf=6, min_samples_split=4, n_estimators=10;, score=0.884 total time= 0.0s\n","[CV 4/5] END bootstrap=True, max_depth=10, max_features=sqrt, min_samples_leaf=6, min_samples_split=4, n_estimators=10;, score=0.848 total time= 0.0s\n","[CV 5/5] END bootstrap=True, max_depth=10, max_features=sqrt, min_samples_leaf=6, min_samples_split=4, n_estimators=10;, score=0.869 total time= 0.0s\n","[CV 1/5] END bootstrap=True, max_depth=10, max_features=sqrt, min_samples_leaf=6, min_samples_split=4, n_estimators=20;, score=0.864 total time= 0.0s\n","[CV 2/5] END bootstrap=True, max_depth=10, max_features=sqrt, min_samples_leaf=6, min_samples_split=4, n_estimators=20;, score=0.894 total time= 0.0s\n","[CV 3/5] END bootstrap=True, max_depth=10, max_features=sqrt, min_samples_leaf=6, min_samples_split=4, n_estimators=20;, score=0.889 total time= 0.1s\n","[CV 4/5] END bootstrap=True, max_depth=10, max_features=sqrt, min_samples_leaf=6, min_samples_split=4, n_estimators=20;, score=0.838 total time= 0.1s\n","[CV 5/5] END bootstrap=True, max_depth=10, max_features=sqrt, min_samples_leaf=6, min_samples_split=4, n_estimators=20;, score=0.884 total time= 0.0s\n","[CV 1/5] END bootstrap=True, max_depth=10, max_features=sqrt, min_samples_leaf=6, min_samples_split=4, n_estimators=30;, score=0.879 total time= 0.1s\n","[CV 2/5] END bootstrap=True, max_depth=10, max_features=sqrt, min_samples_leaf=6, min_samples_split=4, n_estimators=30;, score=0.884 total time= 0.1s\n","[CV 3/5] END bootstrap=True, max_depth=10, max_features=sqrt, min_samples_leaf=6, min_samples_split=4, n_estimators=30;, score=0.884 total time= 0.1s\n","[CV 4/5] END bootstrap=True, max_depth=10, max_features=sqrt, min_samples_leaf=6, min_samples_split=4, n_estimators=30;, score=0.854 total time= 0.1s\n","[CV 5/5] END bootstrap=True, max_depth=10, max_features=sqrt, min_samples_leaf=6, min_samples_split=4, n_estimators=30;, score=0.884 total time= 0.1s\n","[CV 1/5] END bootstrap=True, max_depth=10, max_features=sqrt, min_samples_leaf=6, min_samples_split=6, n_estimators=5;, score=0.859 total time= 0.0s\n","[CV 2/5] END bootstrap=True, max_depth=10, max_features=sqrt, min_samples_leaf=6, min_samples_split=6, n_estimators=5;, score=0.894 total time= 0.0s\n","[CV 3/5] END bootstrap=True, max_depth=10, max_features=sqrt, min_samples_leaf=6, min_samples_split=6, n_estimators=5;, score=0.874 total time= 0.0s\n","[CV 4/5] END bootstrap=True, max_depth=10, max_features=sqrt, min_samples_leaf=6, min_samples_split=6, n_estimators=5;, score=0.854 total time= 0.0s\n","[CV 5/5] END bootstrap=True, max_depth=10, max_features=sqrt, min_samples_leaf=6, min_samples_split=6, n_estimators=5;, score=0.874 total time= 0.0s\n","[CV 1/5] END bootstrap=True, max_depth=10, max_features=sqrt, min_samples_leaf=6, min_samples_split=6, n_estimators=10;, score=0.869 total time= 0.0s\n","[CV 2/5] END bootstrap=True, max_depth=10, max_features=sqrt, min_samples_leaf=6, min_samples_split=6, n_estimators=10;, score=0.889 total time= 0.0s\n","[CV 3/5] END bootstrap=True, max_depth=10, max_features=sqrt, min_samples_leaf=6, min_samples_split=6, n_estimators=10;, score=0.869 total time= 0.0s\n","[CV 4/5] END bootstrap=True, max_depth=10, max_features=sqrt, min_samples_leaf=6, min_samples_split=6, n_estimators=10;, score=0.864 total time= 0.0s\n","[CV 5/5] END bootstrap=True, max_depth=10, max_features=sqrt, min_samples_leaf=6, min_samples_split=6, n_estimators=10;, score=0.889 total time= 0.0s\n","[CV 1/5] END bootstrap=True, max_depth=10, max_features=sqrt, min_samples_leaf=6, min_samples_split=6, n_estimators=20;, score=0.864 total time= 0.1s\n","[CV 2/5] END bootstrap=True, max_depth=10, max_features=sqrt, min_samples_leaf=6, min_samples_split=6, n_estimators=20;, score=0.884 total time= 0.0s\n","[CV 3/5] END bootstrap=True, max_depth=10, max_features=sqrt, min_samples_leaf=6, min_samples_split=6, n_estimators=20;, score=0.889 total time= 0.1s\n","[CV 4/5] END bootstrap=True, max_depth=10, max_features=sqrt, min_samples_leaf=6, min_samples_split=6, n_estimators=20;, score=0.869 total time= 0.0s\n","[CV 5/5] END bootstrap=True, max_depth=10, max_features=sqrt, min_samples_leaf=6, min_samples_split=6, n_estimators=20;, score=0.889 total time= 0.0s\n","[CV 1/5] END bootstrap=True, max_depth=10, max_features=sqrt, min_samples_leaf=6, min_samples_split=6, n_estimators=30;, score=0.864 total time= 0.1s\n","[CV 2/5] END bootstrap=True, max_depth=10, max_features=sqrt, min_samples_leaf=6, min_samples_split=6, n_estimators=30;, score=0.879 total time= 0.1s\n","[CV 3/5] END bootstrap=True, max_depth=10, max_features=sqrt, min_samples_leaf=6, min_samples_split=6, n_estimators=30;, score=0.879 total time= 0.1s\n","[CV 4/5] END bootstrap=True, max_depth=10, max_features=sqrt, min_samples_leaf=6, min_samples_split=6, n_estimators=30;, score=0.859 total time= 0.1s\n","[CV 5/5] END bootstrap=True, max_depth=10, max_features=sqrt, min_samples_leaf=6, min_samples_split=6, n_estimators=30;, score=0.894 total time= 0.1s\n","[CV 1/5] END bootstrap=True, max_depth=10, max_features=log2, min_samples_leaf=2, min_samples_split=2, n_estimators=5;, score=0.869 total time= 0.0s\n","[CV 2/5] END bootstrap=True, max_depth=10, max_features=log2, min_samples_leaf=2, min_samples_split=2, n_estimators=5;, score=0.879 total time= 0.0s\n","[CV 3/5] END bootstrap=True, max_depth=10, max_features=log2, min_samples_leaf=2, min_samples_split=2, n_estimators=5;, score=0.889 total time= 0.0s\n","[CV 4/5] END bootstrap=True, max_depth=10, max_features=log2, min_samples_leaf=2, min_samples_split=2, n_estimators=5;, score=0.848 total time= 0.0s\n","[CV 5/5] END bootstrap=True, max_depth=10, max_features=log2, min_samples_leaf=2, min_samples_split=2, n_estimators=5;, score=0.869 total time= 0.0s\n","[CV 1/5] END bootstrap=True, max_depth=10, max_features=log2, min_samples_leaf=2, min_samples_split=2, n_estimators=10;, score=0.859 total time= 0.0s\n","[CV 2/5] END bootstrap=True, max_depth=10, max_features=log2, min_samples_leaf=2, min_samples_split=2, n_estimators=10;, score=0.899 total time= 0.0s\n","[CV 3/5] END bootstrap=True, max_depth=10, max_features=log2, min_samples_leaf=2, min_samples_split=2, n_estimators=10;, score=0.899 total time= 0.0s\n","[CV 4/5] END bootstrap=True, max_depth=10, max_features=log2, min_samples_leaf=2, min_samples_split=2, n_estimators=10;, score=0.828 total time= 0.0s\n","[CV 5/5] END bootstrap=True, max_depth=10, max_features=log2, min_samples_leaf=2, min_samples_split=2, n_estimators=10;, score=0.899 total time= 0.0s\n","[CV 1/5] END bootstrap=True, max_depth=10, max_features=log2, min_samples_leaf=2, min_samples_split=2, n_estimators=20;, score=0.869 total time= 0.0s\n","[CV 2/5] END bootstrap=True, max_depth=10, max_features=log2, min_samples_leaf=2, min_samples_split=2, n_estimators=20;, score=0.879 total time= 0.0s\n","[CV 3/5] END bootstrap=True, max_depth=10, max_features=log2, min_samples_leaf=2, min_samples_split=2, n_estimators=20;, score=0.894 total time= 0.1s\n","[CV 4/5] END bootstrap=True, max_depth=10, max_features=log2, min_samples_leaf=2, min_samples_split=2, n_estimators=20;, score=0.859 total time= 0.0s\n","[CV 5/5] END bootstrap=True, max_depth=10, max_features=log2, min_samples_leaf=2, min_samples_split=2, n_estimators=20;, score=0.894 total time= 0.1s\n","[CV 1/5] END bootstrap=True, max_depth=10, max_features=log2, min_samples_leaf=2, min_samples_split=2, n_estimators=30;, score=0.884 total time= 0.1s\n","[CV 2/5] END bootstrap=True, max_depth=10, max_features=log2, min_samples_leaf=2, min_samples_split=2, n_estimators=30;, score=0.899 total time= 0.1s\n","[CV 3/5] END bootstrap=True, max_depth=10, max_features=log2, min_samples_leaf=2, min_samples_split=2, n_estimators=30;, score=0.874 total time= 0.1s\n","[CV 4/5] END bootstrap=True, max_depth=10, max_features=log2, min_samples_leaf=2, min_samples_split=2, n_estimators=30;, score=0.859 total time= 0.1s\n","[CV 5/5] END bootstrap=True, max_depth=10, max_features=log2, min_samples_leaf=2, min_samples_split=2, n_estimators=30;, score=0.874 total time= 0.1s\n","[CV 1/5] END bootstrap=True, max_depth=10, max_features=log2, min_samples_leaf=2, min_samples_split=4, n_estimators=5;, score=0.864 total time= 0.0s\n","[CV 2/5] END bootstrap=True, max_depth=10, max_features=log2, min_samples_leaf=2, min_samples_split=4, n_estimators=5;, score=0.899 total time= 0.0s\n","[CV 3/5] END bootstrap=True, max_depth=10, max_features=log2, min_samples_leaf=2, min_samples_split=4, n_estimators=5;, score=0.904 total time= 0.0s\n","[CV 4/5] END bootstrap=True, max_depth=10, max_features=log2, min_samples_leaf=2, min_samples_split=4, n_estimators=5;, score=0.848 total time= 0.0s\n","[CV 5/5] END bootstrap=True, max_depth=10, max_features=log2, min_samples_leaf=2, min_samples_split=4, n_estimators=5;, score=0.874 total time= 0.0s\n","[CV 1/5] END bootstrap=True, max_depth=10, max_features=log2, min_samples_leaf=2, min_samples_split=4, n_estimators=10;, score=0.879 total time= 0.0s\n","[CV 2/5] END bootstrap=True, max_depth=10, max_features=log2, min_samples_leaf=2, min_samples_split=4, n_estimators=10;, score=0.874 total time= 0.0s\n","[CV 3/5] END bootstrap=True, max_depth=10, max_features=log2, min_samples_leaf=2, min_samples_split=4, n_estimators=10;, score=0.889 total time= 0.0s\n","[CV 4/5] END bootstrap=True, max_depth=10, max_features=log2, min_samples_leaf=2, min_samples_split=4, n_estimators=10;, score=0.818 total time= 0.0s\n","[CV 5/5] END bootstrap=True, max_depth=10, max_features=log2, min_samples_leaf=2, min_samples_split=4, n_estimators=10;, score=0.889 total time= 0.0s\n","[CV 1/5] END bootstrap=True, max_depth=10, max_features=log2, min_samples_leaf=2, min_samples_split=4, n_estimators=20;, score=0.879 total time= 0.1s\n","[CV 2/5] END bootstrap=True, max_depth=10, max_features=log2, min_samples_leaf=2, min_samples_split=4, n_estimators=20;, score=0.884 total time= 0.0s\n","[CV 3/5] END bootstrap=True, max_depth=10, max_features=log2, min_samples_leaf=2, min_samples_split=4, n_estimators=20;, score=0.904 total time= 0.1s\n","[CV 4/5] END bootstrap=True, max_depth=10, max_features=log2, min_samples_leaf=2, min_samples_split=4, n_estimators=20;, score=0.859 total time= 0.0s\n","[CV 5/5] END bootstrap=True, max_depth=10, max_features=log2, min_samples_leaf=2, min_samples_split=4, n_estimators=20;, score=0.879 total time= 0.0s\n","[CV 1/5] END bootstrap=True, max_depth=10, max_features=log2, min_samples_leaf=2, min_samples_split=4, n_estimators=30;, score=0.859 total time= 0.1s\n","[CV 2/5] END bootstrap=True, max_depth=10, max_features=log2, min_samples_leaf=2, min_samples_split=4, n_estimators=30;, score=0.909 total time= 0.1s\n","[CV 3/5] END bootstrap=True, max_depth=10, max_features=log2, min_samples_leaf=2, min_samples_split=4, n_estimators=30;, score=0.899 total time= 0.1s\n","[CV 4/5] END bootstrap=True, max_depth=10, max_features=log2, min_samples_leaf=2, min_samples_split=4, n_estimators=30;, score=0.874 total time= 0.1s\n","[CV 5/5] END bootstrap=True, max_depth=10, max_features=log2, min_samples_leaf=2, min_samples_split=4, n_estimators=30;, score=0.894 total time= 0.1s\n","[CV 1/5] END bootstrap=True, max_depth=10, max_features=log2, min_samples_leaf=2, min_samples_split=6, n_estimators=5;, score=0.879 total time= 0.0s\n","[CV 2/5] END bootstrap=True, max_depth=10, max_features=log2, min_samples_leaf=2, min_samples_split=6, n_estimators=5;, score=0.919 total time= 0.0s\n","[CV 3/5] END bootstrap=True, max_depth=10, max_features=log2, min_samples_leaf=2, min_samples_split=6, n_estimators=5;, score=0.884 total time= 0.0s\n","[CV 4/5] END bootstrap=True, max_depth=10, max_features=log2, min_samples_leaf=2, min_samples_split=6, n_estimators=5;, score=0.854 total time= 0.0s\n","[CV 5/5] END bootstrap=True, max_depth=10, max_features=log2, min_samples_leaf=2, min_samples_split=6, n_estimators=5;, score=0.889 total time= 0.0s\n","[CV 1/5] END bootstrap=True, max_depth=10, max_features=log2, min_samples_leaf=2, min_samples_split=6, n_estimators=10;, score=0.864 total time= 0.0s\n","[CV 2/5] END bootstrap=True, max_depth=10, max_features=log2, min_samples_leaf=2, min_samples_split=6, n_estimators=10;, score=0.879 total time= 0.0s\n","[CV 3/5] END bootstrap=True, max_depth=10, max_features=log2, min_samples_leaf=2, min_samples_split=6, n_estimators=10;, score=0.884 total time= 0.0s\n","[CV 4/5] END bootstrap=True, max_depth=10, max_features=log2, min_samples_leaf=2, min_samples_split=6, n_estimators=10;, score=0.879 total time= 0.0s\n","[CV 5/5] END bootstrap=True, max_depth=10, max_features=log2, min_samples_leaf=2, min_samples_split=6, n_estimators=10;, score=0.874 total time= 0.0s\n","[CV 1/5] END bootstrap=True, max_depth=10, max_features=log2, min_samples_leaf=2, min_samples_split=6, n_estimators=20;, score=0.869 total time= 0.1s\n","[CV 2/5] END bootstrap=True, max_depth=10, max_features=log2, min_samples_leaf=2, min_samples_split=6, n_estimators=20;, score=0.874 total time= 0.0s\n","[CV 3/5] END bootstrap=True, max_depth=10, max_features=log2, min_samples_leaf=2, min_samples_split=6, n_estimators=20;, score=0.904 total time= 0.0s\n","[CV 4/5] END bootstrap=True, max_depth=10, max_features=log2, min_samples_leaf=2, min_samples_split=6, n_estimators=20;, score=0.848 total time= 0.0s\n","[CV 5/5] END bootstrap=True, max_depth=10, max_features=log2, min_samples_leaf=2, min_samples_split=6, n_estimators=20;, score=0.879 total time= 0.0s\n","[CV 1/5] END bootstrap=True, max_depth=10, max_features=log2, min_samples_leaf=2, min_samples_split=6, n_estimators=30;, score=0.848 total time= 0.1s\n","[CV 2/5] END bootstrap=True, max_depth=10, max_features=log2, min_samples_leaf=2, min_samples_split=6, n_estimators=30;, score=0.889 total time= 0.1s\n","[CV 3/5] END bootstrap=True, max_depth=10, max_features=log2, min_samples_leaf=2, min_samples_split=6, n_estimators=30;, score=0.894 total time= 0.1s\n","[CV 4/5] END bootstrap=True, max_depth=10, max_features=log2, min_samples_leaf=2, min_samples_split=6, n_estimators=30;, score=0.854 total time= 0.1s\n","[CV 5/5] END bootstrap=True, max_depth=10, max_features=log2, min_samples_leaf=2, min_samples_split=6, n_estimators=30;, score=0.909 total time= 0.1s\n","[CV 1/5] END bootstrap=True, max_depth=10, max_features=log2, min_samples_leaf=4, min_samples_split=2, n_estimators=5;, score=0.889 total time= 0.0s\n","[CV 2/5] END bootstrap=True, max_depth=10, max_features=log2, min_samples_leaf=4, min_samples_split=2, n_estimators=5;, score=0.869 total time= 0.0s\n","[CV 3/5] END bootstrap=True, max_depth=10, max_features=log2, min_samples_leaf=4, min_samples_split=2, n_estimators=5;, score=0.874 total time= 0.0s\n","[CV 4/5] END bootstrap=True, max_depth=10, max_features=log2, min_samples_leaf=4, min_samples_split=2, n_estimators=5;, score=0.848 total time= 0.0s\n","[CV 5/5] END bootstrap=True, max_depth=10, max_features=log2, min_samples_leaf=4, min_samples_split=2, n_estimators=5;, score=0.859 total time= 0.0s\n","[CV 1/5] END bootstrap=True, max_depth=10, max_features=log2, min_samples_leaf=4, min_samples_split=2, n_estimators=10;, score=0.879 total time= 0.0s\n","[CV 2/5] END bootstrap=True, max_depth=10, max_features=log2, min_samples_leaf=4, min_samples_split=2, n_estimators=10;, score=0.909 total time= 0.0s\n","[CV 3/5] END bootstrap=True, max_depth=10, max_features=log2, min_samples_leaf=4, min_samples_split=2, n_estimators=10;, score=0.889 total time= 0.0s\n","[CV 4/5] END bootstrap=True, max_depth=10, max_features=log2, min_samples_leaf=4, min_samples_split=2, n_estimators=10;, score=0.859 total time= 0.0s\n","[CV 5/5] END bootstrap=True, max_depth=10, max_features=log2, min_samples_leaf=4, min_samples_split=2, n_estimators=10;, score=0.864 total time= 0.0s\n","[CV 1/5] END bootstrap=True, max_depth=10, max_features=log2, min_samples_leaf=4, min_samples_split=2, n_estimators=20;, score=0.874 total time= 0.0s\n","[CV 2/5] END bootstrap=True, max_depth=10, max_features=log2, min_samples_leaf=4, min_samples_split=2, n_estimators=20;, score=0.879 total time= 0.1s\n","[CV 3/5] END bootstrap=True, max_depth=10, max_features=log2, min_samples_leaf=4, min_samples_split=2, n_estimators=20;, score=0.879 total time= 0.1s\n","[CV 4/5] END bootstrap=True, max_depth=10, max_features=log2, min_samples_leaf=4, min_samples_split=2, n_estimators=20;, score=0.838 total time= 0.0s\n","[CV 5/5] END bootstrap=True, max_depth=10, max_features=log2, min_samples_leaf=4, min_samples_split=2, n_estimators=20;, score=0.879 total time= 0.1s\n","[CV 1/5] END bootstrap=True, max_depth=10, max_features=log2, min_samples_leaf=4, min_samples_split=2, n_estimators=30;, score=0.854 total time= 0.1s\n","[CV 2/5] END bootstrap=True, max_depth=10, max_features=log2, min_samples_leaf=4, min_samples_split=2, n_estimators=30;, score=0.899 total time= 0.1s\n","[CV 3/5] END bootstrap=True, max_depth=10, max_features=log2, min_samples_leaf=4, min_samples_split=2, n_estimators=30;, score=0.889 total time= 0.1s\n","[CV 4/5] END bootstrap=True, max_depth=10, max_features=log2, min_samples_leaf=4, min_samples_split=2, n_estimators=30;, score=0.884 total time= 0.1s\n","[CV 5/5] END bootstrap=True, max_depth=10, max_features=log2, min_samples_leaf=4, min_samples_split=2, n_estimators=30;, score=0.924 total time= 0.1s\n","[CV 1/5] END bootstrap=True, max_depth=10, max_features=log2, min_samples_leaf=4, min_samples_split=4, n_estimators=5;, score=0.879 total time= 0.0s\n","[CV 2/5] END bootstrap=True, max_depth=10, max_features=log2, min_samples_leaf=4, min_samples_split=4, n_estimators=5;, score=0.899 total time= 0.0s\n","[CV 3/5] END bootstrap=True, max_depth=10, max_features=log2, min_samples_leaf=4, min_samples_split=4, n_estimators=5;, score=0.874 total time= 0.0s\n","[CV 4/5] END bootstrap=True, max_depth=10, max_features=log2, min_samples_leaf=4, min_samples_split=4, n_estimators=5;, score=0.848 total time= 0.0s\n","[CV 5/5] END bootstrap=True, max_depth=10, max_features=log2, min_samples_leaf=4, min_samples_split=4, n_estimators=5;, score=0.869 total time= 0.0s\n","[CV 1/5] END bootstrap=True, max_depth=10, max_features=log2, min_samples_leaf=4, min_samples_split=4, n_estimators=10;, score=0.869 total time= 0.0s\n","[CV 2/5] END bootstrap=True, max_depth=10, max_features=log2, min_samples_leaf=4, min_samples_split=4, n_estimators=10;, score=0.889 total time= 0.0s\n","[CV 3/5] END bootstrap=True, max_depth=10, max_features=log2, min_samples_leaf=4, min_samples_split=4, n_estimators=10;, score=0.884 total time= 0.0s\n","[CV 4/5] END bootstrap=True, max_depth=10, max_features=log2, min_samples_leaf=4, min_samples_split=4, n_estimators=10;, score=0.854 total time= 0.0s\n","[CV 5/5] END bootstrap=True, max_depth=10, max_features=log2, min_samples_leaf=4, min_samples_split=4, n_estimators=10;, score=0.874 total time= 0.0s\n","[CV 1/5] END bootstrap=True, max_depth=10, max_features=log2, min_samples_leaf=4, min_samples_split=4, n_estimators=20;, score=0.874 total time= 0.1s\n","[CV 2/5] END bootstrap=True, max_depth=10, max_features=log2, min_samples_leaf=4, min_samples_split=4, n_estimators=20;, score=0.899 total time= 0.1s\n","[CV 3/5] END bootstrap=True, max_depth=10, max_features=log2, min_samples_leaf=4, min_samples_split=4, n_estimators=20;, score=0.874 total time= 0.0s\n","[CV 4/5] END bootstrap=True, max_depth=10, max_features=log2, min_samples_leaf=4, min_samples_split=4, n_estimators=20;, score=0.859 total time= 0.0s\n","[CV 5/5] END bootstrap=True, max_depth=10, max_features=log2, min_samples_leaf=4, min_samples_split=4, n_estimators=20;, score=0.894 total time= 0.0s\n","[CV 1/5] END bootstrap=True, max_depth=10, max_features=log2, min_samples_leaf=4, min_samples_split=4, n_estimators=30;, score=0.889 total time= 0.1s\n","[CV 2/5] END bootstrap=True, max_depth=10, max_features=log2, min_samples_leaf=4, min_samples_split=4, n_estimators=30;, score=0.859 total time= 0.1s\n","[CV 3/5] END bootstrap=True, max_depth=10, max_features=log2, min_samples_leaf=4, min_samples_split=4, n_estimators=30;, score=0.869 total time= 0.1s\n","[CV 4/5] END bootstrap=True, max_depth=10, max_features=log2, min_samples_leaf=4, min_samples_split=4, n_estimators=30;, score=0.848 total time= 0.1s\n","[CV 5/5] END bootstrap=True, max_depth=10, max_features=log2, min_samples_leaf=4, min_samples_split=4, n_estimators=30;, score=0.889 total time= 0.1s\n","[CV 1/5] END bootstrap=True, max_depth=10, max_features=log2, min_samples_leaf=4, min_samples_split=6, n_estimators=5;, score=0.874 total time= 0.0s\n","[CV 2/5] END bootstrap=True, max_depth=10, max_features=log2, min_samples_leaf=4, min_samples_split=6, n_estimators=5;, score=0.889 total time= 0.0s\n","[CV 3/5] END bootstrap=True, max_depth=10, max_features=log2, min_samples_leaf=4, min_samples_split=6, n_estimators=5;, score=0.879 total time= 0.0s\n","[CV 4/5] END bootstrap=True, max_depth=10, max_features=log2, min_samples_leaf=4, min_samples_split=6, n_estimators=5;, score=0.843 total time= 0.0s\n","[CV 5/5] END bootstrap=True, max_depth=10, max_features=log2, min_samples_leaf=4, min_samples_split=6, n_estimators=5;, score=0.899 total time= 0.0s\n","[CV 1/5] END bootstrap=True, max_depth=10, max_features=log2, min_samples_leaf=4, min_samples_split=6, n_estimators=10;, score=0.864 total time= 0.0s\n","[CV 2/5] END bootstrap=True, max_depth=10, max_features=log2, min_samples_leaf=4, min_samples_split=6, n_estimators=10;, score=0.899 total time= 0.0s\n","[CV 3/5] END bootstrap=True, max_depth=10, max_features=log2, min_samples_leaf=4, min_samples_split=6, n_estimators=10;, score=0.879 total time= 0.0s\n","[CV 4/5] END bootstrap=True, max_depth=10, max_features=log2, min_samples_leaf=4, min_samples_split=6, n_estimators=10;, score=0.859 total time= 0.0s\n","[CV 5/5] END bootstrap=True, max_depth=10, max_features=log2, min_samples_leaf=4, min_samples_split=6, n_estimators=10;, score=0.869 total time= 0.0s\n","[CV 1/5] END bootstrap=True, max_depth=10, max_features=log2, min_samples_leaf=4, min_samples_split=6, n_estimators=20;, score=0.869 total time= 0.0s\n","[CV 2/5] END bootstrap=True, max_depth=10, max_features=log2, min_samples_leaf=4, min_samples_split=6, n_estimators=20;, score=0.889 total time= 0.0s\n","[CV 3/5] END bootstrap=True, max_depth=10, max_features=log2, min_samples_leaf=4, min_samples_split=6, n_estimators=20;, score=0.889 total time= 0.0s\n","[CV 4/5] END bootstrap=True, max_depth=10, max_features=log2, min_samples_leaf=4, min_samples_split=6, n_estimators=20;, score=0.854 total time= 0.0s\n","[CV 5/5] END bootstrap=True, max_depth=10, max_features=log2, min_samples_leaf=4, min_samples_split=6, n_estimators=20;, score=0.894 total time= 0.0s\n","[CV 1/5] END bootstrap=True, max_depth=10, max_features=log2, min_samples_leaf=4, min_samples_split=6, n_estimators=30;, score=0.879 total time= 0.1s\n","[CV 2/5] END bootstrap=True, max_depth=10, max_features=log2, min_samples_leaf=4, min_samples_split=6, n_estimators=30;, score=0.899 total time= 0.1s\n","[CV 3/5] END bootstrap=True, max_depth=10, max_features=log2, min_samples_leaf=4, min_samples_split=6, n_estimators=30;, score=0.884 total time= 0.1s\n","[CV 4/5] END bootstrap=True, max_depth=10, max_features=log2, min_samples_leaf=4, min_samples_split=6, n_estimators=30;, score=0.848 total time= 0.1s\n","[CV 5/5] END bootstrap=True, max_depth=10, max_features=log2, min_samples_leaf=4, min_samples_split=6, n_estimators=30;, score=0.889 total time= 0.1s\n","[CV 1/5] END bootstrap=True, max_depth=10, max_features=log2, min_samples_leaf=6, min_samples_split=2, n_estimators=5;, score=0.884 total time= 0.0s\n","[CV 2/5] END bootstrap=True, max_depth=10, max_features=log2, min_samples_leaf=6, min_samples_split=2, n_estimators=5;, score=0.884 total time= 0.0s\n","[CV 3/5] END bootstrap=True, max_depth=10, max_features=log2, min_samples_leaf=6, min_samples_split=2, n_estimators=5;, score=0.899 total time= 0.0s\n","[CV 4/5] END bootstrap=True, max_depth=10, max_features=log2, min_samples_leaf=6, min_samples_split=2, n_estimators=5;, score=0.843 total time= 0.0s\n","[CV 5/5] END bootstrap=True, max_depth=10, max_features=log2, min_samples_leaf=6, min_samples_split=2, n_estimators=5;, score=0.864 total time= 0.0s\n","[CV 1/5] END bootstrap=True, max_depth=10, max_features=log2, min_samples_leaf=6, min_samples_split=2, n_estimators=10;, score=0.874 total time= 0.0s\n","[CV 2/5] END bootstrap=True, max_depth=10, max_features=log2, min_samples_leaf=6, min_samples_split=2, n_estimators=10;, score=0.899 total time= 0.0s\n","[CV 3/5] END bootstrap=True, max_depth=10, max_features=log2, min_samples_leaf=6, min_samples_split=2, n_estimators=10;, score=0.884 total time= 0.0s\n","[CV 4/5] END bootstrap=True, max_depth=10, max_features=log2, min_samples_leaf=6, min_samples_split=2, n_estimators=10;, score=0.848 total time= 0.0s\n","[CV 5/5] END bootstrap=True, max_depth=10, max_features=log2, min_samples_leaf=6, min_samples_split=2, n_estimators=10;, score=0.884 total time= 0.0s\n","[CV 1/5] END bootstrap=True, max_depth=10, max_features=log2, min_samples_leaf=6, min_samples_split=2, n_estimators=20;, score=0.854 total time= 0.0s\n","[CV 2/5] END bootstrap=True, max_depth=10, max_features=log2, min_samples_leaf=6, min_samples_split=2, n_estimators=20;, score=0.889 total time= 0.0s\n","[CV 3/5] END bootstrap=True, max_depth=10, max_features=log2, min_samples_leaf=6, min_samples_split=2, n_estimators=20;, score=0.894 total time= 0.0s\n","[CV 4/5] END bootstrap=True, max_depth=10, max_features=log2, min_samples_leaf=6, min_samples_split=2, n_estimators=20;, score=0.874 total time= 0.0s\n","[CV 5/5] END bootstrap=True, max_depth=10, max_features=log2, min_samples_leaf=6, min_samples_split=2, n_estimators=20;, score=0.894 total time= 0.0s\n","[CV 1/5] END bootstrap=True, max_depth=10, max_features=log2, min_samples_leaf=6, min_samples_split=2, n_estimators=30;, score=0.859 total time= 0.1s\n","[CV 2/5] END bootstrap=True, max_depth=10, max_features=log2, min_samples_leaf=6, min_samples_split=2, n_estimators=30;, score=0.894 total time= 0.1s\n","[CV 3/5] END bootstrap=True, max_depth=10, max_features=log2, min_samples_leaf=6, min_samples_split=2, n_estimators=30;, score=0.889 total time= 0.1s\n","[CV 4/5] END bootstrap=True, max_depth=10, max_features=log2, min_samples_leaf=6, min_samples_split=2, n_estimators=30;, score=0.874 total time= 0.1s\n","[CV 5/5] END bootstrap=True, max_depth=10, max_features=log2, min_samples_leaf=6, min_samples_split=2, n_estimators=30;, score=0.904 total time= 0.1s\n","[CV 1/5] END bootstrap=True, max_depth=10, max_features=log2, min_samples_leaf=6, min_samples_split=4, n_estimators=5;, score=0.884 total time= 0.0s\n","[CV 2/5] END bootstrap=True, max_depth=10, max_features=log2, min_samples_leaf=6, min_samples_split=4, n_estimators=5;, score=0.894 total time= 0.0s\n","[CV 3/5] END bootstrap=True, max_depth=10, max_features=log2, min_samples_leaf=6, min_samples_split=4, n_estimators=5;, score=0.884 total time= 0.0s\n","[CV 4/5] END bootstrap=True, max_depth=10, max_features=log2, min_samples_leaf=6, min_samples_split=4, n_estimators=5;, score=0.874 total time= 0.0s\n","[CV 5/5] END bootstrap=True, max_depth=10, max_features=log2, min_samples_leaf=6, min_samples_split=4, n_estimators=5;, score=0.889 total time= 0.0s\n","[CV 1/5] END bootstrap=True, max_depth=10, max_features=log2, min_samples_leaf=6, min_samples_split=4, n_estimators=10;, score=0.864 total time= 0.0s\n","[CV 2/5] END bootstrap=True, max_depth=10, max_features=log2, min_samples_leaf=6, min_samples_split=4, n_estimators=10;, score=0.889 total time= 0.0s\n","[CV 3/5] END bootstrap=True, max_depth=10, max_features=log2, min_samples_leaf=6, min_samples_split=4, n_estimators=10;, score=0.904 total time= 0.0s\n","[CV 4/5] END bootstrap=True, max_depth=10, max_features=log2, min_samples_leaf=6, min_samples_split=4, n_estimators=10;, score=0.848 total time= 0.0s\n","[CV 5/5] END bootstrap=True, max_depth=10, max_features=log2, min_samples_leaf=6, min_samples_split=4, n_estimators=10;, score=0.889 total time= 0.0s\n","[CV 1/5] END bootstrap=True, max_depth=10, max_features=log2, min_samples_leaf=6, min_samples_split=4, n_estimators=20;, score=0.874 total time= 0.1s\n","[CV 2/5] END bootstrap=True, max_depth=10, max_features=log2, min_samples_leaf=6, min_samples_split=4, n_estimators=20;, score=0.884 total time= 0.0s\n","[CV 3/5] END bootstrap=True, max_depth=10, max_features=log2, min_samples_leaf=6, min_samples_split=4, n_estimators=20;, score=0.869 total time= 0.0s\n","[CV 4/5] END bootstrap=True, max_depth=10, max_features=log2, min_samples_leaf=6, min_samples_split=4, n_estimators=20;, score=0.869 total time= 0.0s\n","[CV 5/5] END bootstrap=True, max_depth=10, max_features=log2, min_samples_leaf=6, min_samples_split=4, n_estimators=20;, score=0.889 total time= 0.0s\n","[CV 1/5] END bootstrap=True, max_depth=10, max_features=log2, min_samples_leaf=6, min_samples_split=4, n_estimators=30;, score=0.859 total time= 0.1s\n","[CV 2/5] END bootstrap=True, max_depth=10, max_features=log2, min_samples_leaf=6, min_samples_split=4, n_estimators=30;, score=0.914 total time= 0.1s\n","[CV 3/5] END bootstrap=True, max_depth=10, max_features=log2, min_samples_leaf=6, min_samples_split=4, n_estimators=30;, score=0.884 total time= 0.1s\n","[CV 4/5] END bootstrap=True, max_depth=10, max_features=log2, min_samples_leaf=6, min_samples_split=4, n_estimators=30;, score=0.884 total time= 0.1s\n","[CV 5/5] END bootstrap=True, max_depth=10, max_features=log2, min_samples_leaf=6, min_samples_split=4, n_estimators=30;, score=0.884 total time= 0.1s\n","[CV 1/5] END bootstrap=True, max_depth=10, max_features=log2, min_samples_leaf=6, min_samples_split=6, n_estimators=5;, score=0.879 total time= 0.0s\n","[CV 2/5] END bootstrap=True, max_depth=10, max_features=log2, min_samples_leaf=6, min_samples_split=6, n_estimators=5;, score=0.899 total time= 0.0s\n","[CV 3/5] END bootstrap=True, max_depth=10, max_features=log2, min_samples_leaf=6, min_samples_split=6, n_estimators=5;, score=0.884 total time= 0.0s\n","[CV 4/5] END bootstrap=True, max_depth=10, max_features=log2, min_samples_leaf=6, min_samples_split=6, n_estimators=5;, score=0.869 total time= 0.0s\n","[CV 5/5] END bootstrap=True, max_depth=10, max_features=log2, min_samples_leaf=6, min_samples_split=6, n_estimators=5;, score=0.894 total time= 0.0s\n","[CV 1/5] END bootstrap=True, max_depth=10, max_features=log2, min_samples_leaf=6, min_samples_split=6, n_estimators=10;, score=0.879 total time= 0.0s\n","[CV 2/5] END bootstrap=True, max_depth=10, max_features=log2, min_samples_leaf=6, min_samples_split=6, n_estimators=10;, score=0.914 total time= 0.0s\n","[CV 3/5] END bootstrap=True, max_depth=10, max_features=log2, min_samples_leaf=6, min_samples_split=6, n_estimators=10;, score=0.909 total time= 0.0s\n","[CV 4/5] END bootstrap=True, max_depth=10, max_features=log2, min_samples_leaf=6, min_samples_split=6, n_estimators=10;, score=0.889 total time= 0.0s\n","[CV 5/5] END bootstrap=True, max_depth=10, max_features=log2, min_samples_leaf=6, min_samples_split=6, n_estimators=10;, score=0.894 total time= 0.0s\n","[CV 1/5] END bootstrap=True, max_depth=10, max_features=log2, min_samples_leaf=6, min_samples_split=6, n_estimators=20;, score=0.854 total time= 0.0s\n","[CV 2/5] END bootstrap=True, max_depth=10, max_features=log2, min_samples_leaf=6, min_samples_split=6, n_estimators=20;, score=0.889 total time= 0.0s\n","[CV 3/5] END bootstrap=True, max_depth=10, max_features=log2, min_samples_leaf=6, min_samples_split=6, n_estimators=20;, score=0.879 total time= 0.0s\n","[CV 4/5] END bootstrap=True, max_depth=10, max_features=log2, min_samples_leaf=6, min_samples_split=6, n_estimators=20;, score=0.854 total time= 0.0s\n","[CV 5/5] END bootstrap=True, max_depth=10, max_features=log2, min_samples_leaf=6, min_samples_split=6, n_estimators=20;, score=0.879 total time= 0.1s\n","[CV 1/5] END bootstrap=True, max_depth=10, max_features=log2, min_samples_leaf=6, min_samples_split=6, n_estimators=30;, score=0.874 total time= 0.1s\n","[CV 2/5] END bootstrap=True, max_depth=10, max_features=log2, min_samples_leaf=6, min_samples_split=6, n_estimators=30;, score=0.884 total time= 0.1s\n","[CV 3/5] END bootstrap=True, max_depth=10, max_features=log2, min_samples_leaf=6, min_samples_split=6, n_estimators=30;, score=0.889 total time= 0.1s\n","[CV 4/5] END bootstrap=True, max_depth=10, max_features=log2, min_samples_leaf=6, min_samples_split=6, n_estimators=30;, score=0.859 total time= 0.1s\n","[CV 5/5] END bootstrap=True, max_depth=10, max_features=log2, min_samples_leaf=6, min_samples_split=6, n_estimators=30;, score=0.874 total time= 0.1s\n","[CV 1/5] END bootstrap=True, max_depth=10, max_features=None, min_samples_leaf=2, min_samples_split=2, n_estimators=5;, score=0.869 total time= 0.0s\n","[CV 2/5] END bootstrap=True, max_depth=10, max_features=None, min_samples_leaf=2, min_samples_split=2, n_estimators=5;, score=0.874 total time= 0.0s\n","[CV 3/5] END bootstrap=True, max_depth=10, max_features=None, min_samples_leaf=2, min_samples_split=2, n_estimators=5;, score=0.864 total time= 0.0s\n","[CV 4/5] END bootstrap=True, max_depth=10, max_features=None, min_samples_leaf=2, min_samples_split=2, n_estimators=5;, score=0.848 total time= 0.0s\n","[CV 5/5] END bootstrap=True, max_depth=10, max_features=None, min_samples_leaf=2, min_samples_split=2, n_estimators=5;, score=0.864 total time= 0.0s\n","[CV 1/5] END bootstrap=True, max_depth=10, max_features=None, min_samples_leaf=2, min_samples_split=2, n_estimators=10;, score=0.869 total time= 0.0s\n","[CV 2/5] END bootstrap=True, max_depth=10, max_features=None, min_samples_leaf=2, min_samples_split=2, n_estimators=10;, score=0.884 total time= 0.0s\n","[CV 3/5] END bootstrap=True, max_depth=10, max_features=None, min_samples_leaf=2, min_samples_split=2, n_estimators=10;, score=0.874 total time= 0.0s\n","[CV 4/5] END bootstrap=True, max_depth=10, max_features=None, min_samples_leaf=2, min_samples_split=2, n_estimators=10;, score=0.838 total time= 0.0s\n","[CV 5/5] END bootstrap=True, max_depth=10, max_features=None, min_samples_leaf=2, min_samples_split=2, n_estimators=10;, score=0.889 total time= 0.0s\n","[CV 1/5] END bootstrap=True, max_depth=10, max_features=None, min_samples_leaf=2, min_samples_split=2, n_estimators=20;, score=0.859 total time= 0.1s\n","[CV 2/5] END bootstrap=True, max_depth=10, max_features=None, min_samples_leaf=2, min_samples_split=2, n_estimators=20;, score=0.909 total time= 0.1s\n","[CV 3/5] END bootstrap=True, max_depth=10, max_features=None, min_samples_leaf=2, min_samples_split=2, n_estimators=20;, score=0.869 total time= 0.1s\n","[CV 4/5] END bootstrap=True, max_depth=10, max_features=None, min_samples_leaf=2, min_samples_split=2, n_estimators=20;, score=0.854 total time= 0.1s\n","[CV 5/5] END bootstrap=True, max_depth=10, max_features=None, min_samples_leaf=2, min_samples_split=2, n_estimators=20;, score=0.874 total time= 0.1s\n","[CV 1/5] END bootstrap=True, max_depth=10, max_features=None, min_samples_leaf=2, min_samples_split=2, n_estimators=30;, score=0.879 total time= 0.2s\n","[CV 2/5] END bootstrap=True, max_depth=10, max_features=None, min_samples_leaf=2, min_samples_split=2, n_estimators=30;, score=0.859 total time= 0.1s\n","[CV 3/5] END bootstrap=True, max_depth=10, max_features=None, min_samples_leaf=2, min_samples_split=2, n_estimators=30;, score=0.899 total time= 0.1s\n","[CV 4/5] END bootstrap=True, max_depth=10, max_features=None, min_samples_leaf=2, min_samples_split=2, n_estimators=30;, score=0.859 total time= 0.1s\n","[CV 5/5] END bootstrap=True, max_depth=10, max_features=None, min_samples_leaf=2, min_samples_split=2, n_estimators=30;, score=0.889 total time= 0.1s\n","[CV 1/5] END bootstrap=True, max_depth=10, max_features=None, min_samples_leaf=2, min_samples_split=4, n_estimators=5;, score=0.879 total time= 0.0s\n","[CV 2/5] END bootstrap=True, max_depth=10, max_features=None, min_samples_leaf=2, min_samples_split=4, n_estimators=5;, score=0.884 total time= 0.0s\n","[CV 3/5] END bootstrap=True, max_depth=10, max_features=None, min_samples_leaf=2, min_samples_split=4, n_estimators=5;, score=0.889 total time= 0.0s\n","[CV 4/5] END bootstrap=True, max_depth=10, max_features=None, min_samples_leaf=2, min_samples_split=4, n_estimators=5;, score=0.874 total time= 0.0s\n","[CV 5/5] END bootstrap=True, max_depth=10, max_features=None, min_samples_leaf=2, min_samples_split=4, n_estimators=5;, score=0.884 total time= 0.0s\n","[CV 1/5] END bootstrap=True, max_depth=10, max_features=None, min_samples_leaf=2, min_samples_split=4, n_estimators=10;, score=0.874 total time= 0.1s\n","[CV 2/5] END bootstrap=True, max_depth=10, max_features=None, min_samples_leaf=2, min_samples_split=4, n_estimators=10;, score=0.884 total time= 0.0s\n","[CV 3/5] END bootstrap=True, max_depth=10, max_features=None, min_samples_leaf=2, min_samples_split=4, n_estimators=10;, score=0.884 total time= 0.0s\n","[CV 4/5] END bootstrap=True, max_depth=10, max_features=None, min_samples_leaf=2, min_samples_split=4, n_estimators=10;, score=0.869 total time= 0.1s\n","[CV 5/5] END bootstrap=True, max_depth=10, max_features=None, min_samples_leaf=2, min_samples_split=4, n_estimators=10;, score=0.884 total time= 0.1s\n","[CV 1/5] END bootstrap=True, max_depth=10, max_features=None, min_samples_leaf=2, min_samples_split=4, n_estimators=20;, score=0.869 total time= 0.1s\n","[CV 2/5] END bootstrap=True, max_depth=10, max_features=None, min_samples_leaf=2, min_samples_split=4, n_estimators=20;, score=0.889 total time= 0.1s\n","[CV 3/5] END bootstrap=True, max_depth=10, max_features=None, min_samples_leaf=2, min_samples_split=4, n_estimators=20;, score=0.894 total time= 0.1s\n","[CV 4/5] END bootstrap=True, max_depth=10, max_features=None, min_samples_leaf=2, min_samples_split=4, n_estimators=20;, score=0.864 total time= 0.1s\n","[CV 5/5] END bootstrap=True, max_depth=10, max_features=None, min_samples_leaf=2, min_samples_split=4, n_estimators=20;, score=0.879 total time= 0.1s\n","[CV 1/5] END bootstrap=True, max_depth=10, max_features=None, min_samples_leaf=2, min_samples_split=4, n_estimators=30;, score=0.859 total time= 0.1s\n","[CV 2/5] END bootstrap=True, max_depth=10, max_features=None, min_samples_leaf=2, min_samples_split=4, n_estimators=30;, score=0.874 total time= 0.2s\n","[CV 3/5] END bootstrap=True, max_depth=10, max_features=None, min_samples_leaf=2, min_samples_split=4, n_estimators=30;, score=0.889 total time= 0.1s\n","[CV 4/5] END bootstrap=True, max_depth=10, max_features=None, min_samples_leaf=2, min_samples_split=4, n_estimators=30;, score=0.854 total time= 0.1s\n","[CV 5/5] END bootstrap=True, max_depth=10, max_features=None, min_samples_leaf=2, min_samples_split=4, n_estimators=30;, score=0.864 total time= 0.2s\n","[CV 1/5] END bootstrap=True, max_depth=10, max_features=None, min_samples_leaf=2, min_samples_split=6, n_estimators=5;, score=0.884 total time= 0.0s\n","[CV 2/5] END bootstrap=True, max_depth=10, max_features=None, min_samples_leaf=2, min_samples_split=6, n_estimators=5;, score=0.859 total time= 0.0s\n","[CV 3/5] END bootstrap=True, max_depth=10, max_features=None, min_samples_leaf=2, min_samples_split=6, n_estimators=5;, score=0.889 total time= 0.0s\n","[CV 4/5] END bootstrap=True, max_depth=10, max_features=None, min_samples_leaf=2, min_samples_split=6, n_estimators=5;, score=0.843 total time= 0.0s\n","[CV 5/5] END bootstrap=True, max_depth=10, max_features=None, min_samples_leaf=2, min_samples_split=6, n_estimators=5;, score=0.894 total time= 0.0s\n","[CV 1/5] END bootstrap=True, max_depth=10, max_features=None, min_samples_leaf=2, min_samples_split=6, n_estimators=10;, score=0.869 total time= 0.1s\n","[CV 2/5] END bootstrap=True, max_depth=10, max_features=None, min_samples_leaf=2, min_samples_split=6, n_estimators=10;, score=0.889 total time= 0.1s\n","[CV 3/5] END bootstrap=True, max_depth=10, max_features=None, min_samples_leaf=2, min_samples_split=6, n_estimators=10;, score=0.879 total time= 0.1s\n","[CV 4/5] END bootstrap=True, max_depth=10, max_features=None, min_samples_leaf=2, min_samples_split=6, n_estimators=10;, score=0.869 total time= 0.1s\n","[CV 5/5] END bootstrap=True, max_depth=10, max_features=None, min_samples_leaf=2, min_samples_split=6, n_estimators=10;, score=0.869 total time= 0.1s\n","[CV 1/5] END bootstrap=True, max_depth=10, max_features=None, min_samples_leaf=2, min_samples_split=6, n_estimators=20;, score=0.889 total time= 0.1s\n","[CV 2/5] END bootstrap=True, max_depth=10, max_features=None, min_samples_leaf=2, min_samples_split=6, n_estimators=20;, score=0.889 total time= 0.1s\n","[CV 3/5] END bootstrap=True, max_depth=10, max_features=None, min_samples_leaf=2, min_samples_split=6, n_estimators=20;, score=0.874 total time= 0.1s\n","[CV 4/5] END bootstrap=True, max_depth=10, max_features=None, min_samples_leaf=2, min_samples_split=6, n_estimators=20;, score=0.854 total time= 0.1s\n","[CV 5/5] END bootstrap=True, max_depth=10, max_features=None, min_samples_leaf=2, min_samples_split=6, n_estimators=20;, score=0.889 total time= 0.1s\n","[CV 1/5] END bootstrap=True, max_depth=10, max_features=None, min_samples_leaf=2, min_samples_split=6, n_estimators=30;, score=0.854 total time= 0.1s\n","[CV 2/5] END bootstrap=True, max_depth=10, max_features=None, min_samples_leaf=2, min_samples_split=6, n_estimators=30;, score=0.879 total time= 0.1s\n","[CV 3/5] END bootstrap=True, max_depth=10, max_features=None, min_samples_leaf=2, min_samples_split=6, n_estimators=30;, score=0.889 total time= 0.1s\n","[CV 4/5] END bootstrap=True, max_depth=10, max_features=None, min_samples_leaf=2, min_samples_split=6, n_estimators=30;, score=0.848 total time= 0.1s\n","[CV 5/5] END bootstrap=True, max_depth=10, max_features=None, min_samples_leaf=2, min_samples_split=6, n_estimators=30;, score=0.884 total time= 0.1s\n","[CV 1/5] END bootstrap=True, max_depth=10, max_features=None, min_samples_leaf=4, min_samples_split=2, n_estimators=5;, score=0.859 total time= 0.0s\n","[CV 2/5] END bootstrap=True, max_depth=10, max_features=None, min_samples_leaf=4, min_samples_split=2, n_estimators=5;, score=0.869 total time= 0.0s\n","[CV 3/5] END bootstrap=True, max_depth=10, max_features=None, min_samples_leaf=4, min_samples_split=2, n_estimators=5;, score=0.899 total time= 0.0s\n","[CV 4/5] END bootstrap=True, max_depth=10, max_features=None, min_samples_leaf=4, min_samples_split=2, n_estimators=5;, score=0.848 total time= 0.0s\n","[CV 5/5] END bootstrap=True, max_depth=10, max_features=None, min_samples_leaf=4, min_samples_split=2, n_estimators=5;, score=0.859 total time= 0.0s\n","[CV 1/5] END bootstrap=True, max_depth=10, max_features=None, min_samples_leaf=4, min_samples_split=2, n_estimators=10;, score=0.884 total time= 0.0s\n","[CV 2/5] END bootstrap=True, max_depth=10, max_features=None, min_samples_leaf=4, min_samples_split=2, n_estimators=10;, score=0.889 total time= 0.0s\n","[CV 3/5] END bootstrap=True, max_depth=10, max_features=None, min_samples_leaf=4, min_samples_split=2, n_estimators=10;, score=0.874 total time= 0.0s\n","[CV 4/5] END bootstrap=True, max_depth=10, max_features=None, min_samples_leaf=4, min_samples_split=2, n_estimators=10;, score=0.848 total time= 0.0s\n","[CV 5/5] END bootstrap=True, max_depth=10, max_features=None, min_samples_leaf=4, min_samples_split=2, n_estimators=10;, score=0.884 total time= 0.0s\n","[CV 1/5] END bootstrap=True, max_depth=10, max_features=None, min_samples_leaf=4, min_samples_split=2, n_estimators=20;, score=0.889 total time= 0.1s\n","[CV 2/5] END bootstrap=True, max_depth=10, max_features=None, min_samples_leaf=4, min_samples_split=2, n_estimators=20;, score=0.884 total time= 0.1s\n","[CV 3/5] END bootstrap=True, max_depth=10, max_features=None, min_samples_leaf=4, min_samples_split=2, n_estimators=20;, score=0.874 total time= 0.1s\n","[CV 4/5] END bootstrap=True, max_depth=10, max_features=None, min_samples_leaf=4, min_samples_split=2, n_estimators=20;, score=0.848 total time= 0.1s\n","[CV 5/5] END bootstrap=True, max_depth=10, max_features=None, min_samples_leaf=4, min_samples_split=2, n_estimators=20;, score=0.884 total time= 0.1s\n","[CV 1/5] END bootstrap=True, max_depth=10, max_features=None, min_samples_leaf=4, min_samples_split=2, n_estimators=30;, score=0.859 total time= 0.1s\n","[CV 2/5] END bootstrap=True, max_depth=10, max_features=None, min_samples_leaf=4, min_samples_split=2, n_estimators=30;, score=0.879 total time= 0.1s\n","[CV 3/5] END bootstrap=True, max_depth=10, max_features=None, min_samples_leaf=4, min_samples_split=2, n_estimators=30;, score=0.874 total time= 0.1s\n","[CV 4/5] END bootstrap=True, max_depth=10, max_features=None, min_samples_leaf=4, min_samples_split=2, n_estimators=30;, score=0.843 total time= 0.1s\n","[CV 5/5] END bootstrap=True, max_depth=10, max_features=None, min_samples_leaf=4, min_samples_split=2, n_estimators=30;, score=0.879 total time= 0.1s\n","[CV 1/5] END bootstrap=True, max_depth=10, max_features=None, min_samples_leaf=4, min_samples_split=4, n_estimators=5;, score=0.869 total time= 0.0s\n","[CV 2/5] END bootstrap=True, max_depth=10, max_features=None, min_samples_leaf=4, min_samples_split=4, n_estimators=5;, score=0.904 total time= 0.0s\n","[CV 3/5] END bootstrap=True, max_depth=10, max_features=None, min_samples_leaf=4, min_samples_split=4, n_estimators=5;, score=0.874 total time= 0.0s\n","[CV 4/5] END bootstrap=True, max_depth=10, max_features=None, min_samples_leaf=4, min_samples_split=4, n_estimators=5;, score=0.869 total time= 0.0s\n","[CV 5/5] END bootstrap=True, max_depth=10, max_features=None, min_samples_leaf=4, min_samples_split=4, n_estimators=5;, score=0.884 total time= 0.0s\n","[CV 1/5] END bootstrap=True, max_depth=10, max_features=None, min_samples_leaf=4, min_samples_split=4, n_estimators=10;, score=0.879 total time= 0.0s\n","[CV 2/5] END bootstrap=True, max_depth=10, max_features=None, min_samples_leaf=4, min_samples_split=4, n_estimators=10;, score=0.879 total time= 0.0s\n","[CV 3/5] END bootstrap=True, max_depth=10, max_features=None, min_samples_leaf=4, min_samples_split=4, n_estimators=10;, score=0.894 total time= 0.0s\n","[CV 4/5] END bootstrap=True, max_depth=10, max_features=None, min_samples_leaf=4, min_samples_split=4, n_estimators=10;, score=0.838 total time= 0.0s\n","[CV 5/5] END bootstrap=True, max_depth=10, max_features=None, min_samples_leaf=4, min_samples_split=4, n_estimators=10;, score=0.874 total time= 0.0s\n","[CV 1/5] END bootstrap=True, max_depth=10, max_features=None, min_samples_leaf=4, min_samples_split=4, n_estimators=20;, score=0.869 total time= 0.1s\n","[CV 2/5] END bootstrap=True, max_depth=10, max_features=None, min_samples_leaf=4, min_samples_split=4, n_estimators=20;, score=0.869 total time= 0.1s\n","[CV 3/5] END bootstrap=True, max_depth=10, max_features=None, min_samples_leaf=4, min_samples_split=4, n_estimators=20;, score=0.889 total time= 0.1s\n","[CV 4/5] END bootstrap=True, max_depth=10, max_features=None, min_samples_leaf=4, min_samples_split=4, n_estimators=20;, score=0.854 total time= 0.1s\n","[CV 5/5] END bootstrap=True, max_depth=10, max_features=None, min_samples_leaf=4, min_samples_split=4, n_estimators=20;, score=0.864 total time= 0.1s\n","[CV 1/5] END bootstrap=True, max_depth=10, max_features=None, min_samples_leaf=4, min_samples_split=4, n_estimators=30;, score=0.869 total time= 0.1s\n","[CV 2/5] END bootstrap=True, max_depth=10, max_features=None, min_samples_leaf=4, min_samples_split=4, n_estimators=30;, score=0.874 total time= 0.1s\n","[CV 3/5] END bootstrap=True, max_depth=10, max_features=None, min_samples_leaf=4, min_samples_split=4, n_estimators=30;, score=0.879 total time= 0.1s\n","[CV 4/5] END bootstrap=True, max_depth=10, max_features=None, min_samples_leaf=4, min_samples_split=4, n_estimators=30;, score=0.848 total time= 0.1s\n","[CV 5/5] END bootstrap=True, max_depth=10, max_features=None, min_samples_leaf=4, min_samples_split=4, n_estimators=30;, score=0.889 total time= 0.1s\n","[CV 1/5] END bootstrap=True, max_depth=10, max_features=None, min_samples_leaf=4, min_samples_split=6, n_estimators=5;, score=0.869 total time= 0.0s\n","[CV 2/5] END bootstrap=True, max_depth=10, max_features=None, min_samples_leaf=4, min_samples_split=6, n_estimators=5;, score=0.889 total time= 0.0s\n","[CV 3/5] END bootstrap=True, max_depth=10, max_features=None, min_samples_leaf=4, min_samples_split=6, n_estimators=5;, score=0.894 total time= 0.0s\n","[CV 4/5] END bootstrap=True, max_depth=10, max_features=None, min_samples_leaf=4, min_samples_split=6, n_estimators=5;, score=0.869 total time= 0.0s\n","[CV 5/5] END bootstrap=True, max_depth=10, max_features=None, min_samples_leaf=4, min_samples_split=6, n_estimators=5;, score=0.904 total time= 0.0s\n","[CV 1/5] END bootstrap=True, max_depth=10, max_features=None, min_samples_leaf=4, min_samples_split=6, n_estimators=10;, score=0.874 total time= 0.0s\n","[CV 2/5] END bootstrap=True, max_depth=10, max_features=None, min_samples_leaf=4, min_samples_split=6, n_estimators=10;, score=0.889 total time= 0.0s\n","[CV 3/5] END bootstrap=True, max_depth=10, max_features=None, min_samples_leaf=4, min_samples_split=6, n_estimators=10;, score=0.894 total time= 0.0s\n","[CV 4/5] END bootstrap=True, max_depth=10, max_features=None, min_samples_leaf=4, min_samples_split=6, n_estimators=10;, score=0.838 total time= 0.0s\n","[CV 5/5] END bootstrap=True, max_depth=10, max_features=None, min_samples_leaf=4, min_samples_split=6, n_estimators=10;, score=0.874 total time= 0.0s\n","[CV 1/5] END bootstrap=True, max_depth=10, max_features=None, min_samples_leaf=4, min_samples_split=6, n_estimators=20;, score=0.874 total time= 0.1s\n","[CV 2/5] END bootstrap=True, max_depth=10, max_features=None, min_samples_leaf=4, min_samples_split=6, n_estimators=20;, score=0.894 total time= 0.1s\n","[CV 3/5] END bootstrap=True, max_depth=10, max_features=None, min_samples_leaf=4, min_samples_split=6, n_estimators=20;, score=0.894 total time= 0.1s\n","[CV 4/5] END bootstrap=True, max_depth=10, max_features=None, min_samples_leaf=4, min_samples_split=6, n_estimators=20;, score=0.843 total time= 0.1s\n","[CV 5/5] END bootstrap=True, max_depth=10, max_features=None, min_samples_leaf=4, min_samples_split=6, n_estimators=20;, score=0.879 total time= 0.1s\n","[CV 1/5] END bootstrap=True, max_depth=10, max_features=None, min_samples_leaf=4, min_samples_split=6, n_estimators=30;, score=0.889 total time= 0.1s\n","[CV 2/5] END bootstrap=True, max_depth=10, max_features=None, min_samples_leaf=4, min_samples_split=6, n_estimators=30;, score=0.894 total time= 0.1s\n","[CV 3/5] END bootstrap=True, max_depth=10, max_features=None, min_samples_leaf=4, min_samples_split=6, n_estimators=30;, score=0.889 total time= 0.1s\n","[CV 4/5] END bootstrap=True, max_depth=10, max_features=None, min_samples_leaf=4, min_samples_split=6, n_estimators=30;, score=0.859 total time= 0.1s\n","[CV 5/5] END bootstrap=True, max_depth=10, max_features=None, min_samples_leaf=4, min_samples_split=6, n_estimators=30;, score=0.869 total time= 0.1s\n","[CV 1/5] END bootstrap=True, max_depth=10, max_features=None, min_samples_leaf=6, min_samples_split=2, n_estimators=5;, score=0.889 total time= 0.0s\n","[CV 2/5] END bootstrap=True, max_depth=10, max_features=None, min_samples_leaf=6, min_samples_split=2, n_estimators=5;, score=0.894 total time= 0.0s\n","[CV 3/5] END bootstrap=True, max_depth=10, max_features=None, min_samples_leaf=6, min_samples_split=2, n_estimators=5;, score=0.904 total time= 0.0s\n","[CV 4/5] END bootstrap=True, max_depth=10, max_features=None, min_samples_leaf=6, min_samples_split=2, n_estimators=5;, score=0.864 total time= 0.0s\n","[CV 5/5] END bootstrap=True, max_depth=10, max_features=None, min_samples_leaf=6, min_samples_split=2, n_estimators=5;, score=0.874 total time= 0.0s\n","[CV 1/5] END bootstrap=True, max_depth=10, max_features=None, min_samples_leaf=6, min_samples_split=2, n_estimators=10;, score=0.869 total time= 0.0s\n","[CV 2/5] END bootstrap=True, max_depth=10, max_features=None, min_samples_leaf=6, min_samples_split=2, n_estimators=10;, score=0.874 total time= 0.0s\n","[CV 3/5] END bootstrap=True, max_depth=10, max_features=None, min_samples_leaf=6, min_samples_split=2, n_estimators=10;, score=0.874 total time= 0.0s\n","[CV 4/5] END bootstrap=True, max_depth=10, max_features=None, min_samples_leaf=6, min_samples_split=2, n_estimators=10;, score=0.874 total time= 0.0s\n","[CV 5/5] END bootstrap=True, max_depth=10, max_features=None, min_samples_leaf=6, min_samples_split=2, n_estimators=10;, score=0.874 total time= 0.0s\n","[CV 1/5] END bootstrap=True, max_depth=10, max_features=None, min_samples_leaf=6, min_samples_split=2, n_estimators=20;, score=0.869 total time= 0.1s\n","[CV 2/5] END bootstrap=True, max_depth=10, max_features=None, min_samples_leaf=6, min_samples_split=2, n_estimators=20;, score=0.904 total time= 0.1s\n","[CV 3/5] END bootstrap=True, max_depth=10, max_features=None, min_samples_leaf=6, min_samples_split=2, n_estimators=20;, score=0.879 total time= 0.1s\n","[CV 4/5] END bootstrap=True, max_depth=10, max_features=None, min_samples_leaf=6, min_samples_split=2, n_estimators=20;, score=0.833 total time= 0.1s\n","[CV 5/5] END bootstrap=True, max_depth=10, max_features=None, min_samples_leaf=6, min_samples_split=2, n_estimators=20;, score=0.874 total time= 0.1s\n","[CV 1/5] END bootstrap=True, max_depth=10, max_features=None, min_samples_leaf=6, min_samples_split=2, n_estimators=30;, score=0.874 total time= 0.1s\n","[CV 2/5] END bootstrap=True, max_depth=10, max_features=None, min_samples_leaf=6, min_samples_split=2, n_estimators=30;, score=0.884 total time= 0.1s\n","[CV 3/5] END bootstrap=True, max_depth=10, max_features=None, min_samples_leaf=6, min_samples_split=2, n_estimators=30;, score=0.884 total time= 0.1s\n","[CV 4/5] END bootstrap=True, max_depth=10, max_features=None, min_samples_leaf=6, min_samples_split=2, n_estimators=30;, score=0.833 total time= 0.1s\n","[CV 5/5] END bootstrap=True, max_depth=10, max_features=None, min_samples_leaf=6, min_samples_split=2, n_estimators=30;, score=0.879 total time= 0.1s\n","[CV 1/5] END bootstrap=True, max_depth=10, max_features=None, min_samples_leaf=6, min_samples_split=4, n_estimators=5;, score=0.874 total time= 0.0s\n","[CV 2/5] END bootstrap=True, max_depth=10, max_features=None, min_samples_leaf=6, min_samples_split=4, n_estimators=5;, score=0.899 total time= 0.0s\n","[CV 3/5] END bootstrap=True, max_depth=10, max_features=None, min_samples_leaf=6, min_samples_split=4, n_estimators=5;, score=0.864 total time= 0.0s\n","[CV 4/5] END bootstrap=True, max_depth=10, max_features=None, min_samples_leaf=6, min_samples_split=4, n_estimators=5;, score=0.864 total time= 0.0s\n","[CV 5/5] END bootstrap=True, max_depth=10, max_features=None, min_samples_leaf=6, min_samples_split=4, n_estimators=5;, score=0.879 total time= 0.0s\n","[CV 1/5] END bootstrap=True, max_depth=10, max_features=None, min_samples_leaf=6, min_samples_split=4, n_estimators=10;, score=0.874 total time= 0.0s\n","[CV 2/5] END bootstrap=True, max_depth=10, max_features=None, min_samples_leaf=6, min_samples_split=4, n_estimators=10;, score=0.884 total time= 0.0s\n","[CV 3/5] END bootstrap=True, max_depth=10, max_features=None, min_samples_leaf=6, min_samples_split=4, n_estimators=10;, score=0.884 total time= 0.0s\n","[CV 4/5] END bootstrap=True, max_depth=10, max_features=None, min_samples_leaf=6, min_samples_split=4, n_estimators=10;, score=0.854 total time= 0.0s\n","[CV 5/5] END bootstrap=True, max_depth=10, max_features=None, min_samples_leaf=6, min_samples_split=4, n_estimators=10;, score=0.884 total time= 0.0s\n","[CV 1/5] END bootstrap=True, max_depth=10, max_features=None, min_samples_leaf=6, min_samples_split=4, n_estimators=20;, score=0.874 total time= 0.1s\n","[CV 2/5] END bootstrap=True, max_depth=10, max_features=None, min_samples_leaf=6, min_samples_split=4, n_estimators=20;, score=0.859 total time= 0.1s\n","[CV 3/5] END bootstrap=True, max_depth=10, max_features=None, min_samples_leaf=6, min_samples_split=4, n_estimators=20;, score=0.869 total time= 0.1s\n","[CV 4/5] END bootstrap=True, max_depth=10, max_features=None, min_samples_leaf=6, min_samples_split=4, n_estimators=20;, score=0.874 total time= 0.1s\n","[CV 5/5] END bootstrap=True, max_depth=10, max_features=None, min_samples_leaf=6, min_samples_split=4, n_estimators=20;, score=0.864 total time= 0.1s\n","[CV 1/5] END bootstrap=True, max_depth=10, max_features=None, min_samples_leaf=6, min_samples_split=4, n_estimators=30;, score=0.869 total time= 0.1s\n","[CV 2/5] END bootstrap=True, max_depth=10, max_features=None, min_samples_leaf=6, min_samples_split=4, n_estimators=30;, score=0.894 total time= 0.1s\n","[CV 3/5] END bootstrap=True, max_depth=10, max_features=None, min_samples_leaf=6, min_samples_split=4, n_estimators=30;, score=0.889 total time= 0.1s\n","[CV 4/5] END bootstrap=True, max_depth=10, max_features=None, min_samples_leaf=6, min_samples_split=4, n_estimators=30;, score=0.843 total time= 0.1s\n","[CV 5/5] END bootstrap=True, max_depth=10, max_features=None, min_samples_leaf=6, min_samples_split=4, n_estimators=30;, score=0.869 total time= 0.1s\n","[CV 1/5] END bootstrap=True, max_depth=10, max_features=None, min_samples_leaf=6, min_samples_split=6, n_estimators=5;, score=0.874 total time= 0.0s\n","[CV 2/5] END bootstrap=True, max_depth=10, max_features=None, min_samples_leaf=6, min_samples_split=6, n_estimators=5;, score=0.874 total time= 0.0s\n","[CV 3/5] END bootstrap=True, max_depth=10, max_features=None, min_samples_leaf=6, min_samples_split=6, n_estimators=5;, score=0.889 total time= 0.0s\n","[CV 4/5] END bootstrap=True, max_depth=10, max_features=None, min_samples_leaf=6, min_samples_split=6, n_estimators=5;, score=0.859 total time= 0.0s\n","[CV 5/5] END bootstrap=True, max_depth=10, max_features=None, min_samples_leaf=6, min_samples_split=6, n_estimators=5;, score=0.904 total time= 0.0s\n","[CV 1/5] END bootstrap=True, max_depth=10, max_features=None, min_samples_leaf=6, min_samples_split=6, n_estimators=10;, score=0.864 total time= 0.0s\n","[CV 2/5] END bootstrap=True, max_depth=10, max_features=None, min_samples_leaf=6, min_samples_split=6, n_estimators=10;, score=0.884 total time= 0.0s\n","[CV 3/5] END bootstrap=True, max_depth=10, max_features=None, min_samples_leaf=6, min_samples_split=6, n_estimators=10;, score=0.884 total time= 0.0s\n","[CV 4/5] END bootstrap=True, max_depth=10, max_features=None, min_samples_leaf=6, min_samples_split=6, n_estimators=10;, score=0.854 total time= 0.0s\n","[CV 5/5] END bootstrap=True, max_depth=10, max_features=None, min_samples_leaf=6, min_samples_split=6, n_estimators=10;, score=0.889 total time= 0.0s\n","[CV 1/5] END bootstrap=True, max_depth=10, max_features=None, min_samples_leaf=6, min_samples_split=6, n_estimators=20;, score=0.884 total time= 0.1s\n","[CV 2/5] END bootstrap=True, max_depth=10, max_features=None, min_samples_leaf=6, min_samples_split=6, n_estimators=20;, score=0.874 total time= 0.1s\n","[CV 3/5] END bootstrap=True, max_depth=10, max_features=None, min_samples_leaf=6, min_samples_split=6, n_estimators=20;, score=0.879 total time= 0.1s\n","[CV 4/5] END bootstrap=True, max_depth=10, max_features=None, min_samples_leaf=6, min_samples_split=6, n_estimators=20;, score=0.833 total time= 0.1s\n","[CV 5/5] END bootstrap=True, max_depth=10, max_features=None, min_samples_leaf=6, min_samples_split=6, n_estimators=20;, score=0.884 total time= 0.1s\n","[CV 1/5] END bootstrap=True, max_depth=10, max_features=None, min_samples_leaf=6, min_samples_split=6, n_estimators=30;, score=0.874 total time= 0.1s\n","[CV 2/5] END bootstrap=True, max_depth=10, max_features=None, min_samples_leaf=6, min_samples_split=6, n_estimators=30;, score=0.874 total time= 0.1s\n","[CV 3/5] END bootstrap=True, max_depth=10, max_features=None, min_samples_leaf=6, min_samples_split=6, n_estimators=30;, score=0.894 total time= 0.1s\n","[CV 4/5] END bootstrap=True, max_depth=10, max_features=None, min_samples_leaf=6, min_samples_split=6, n_estimators=30;, score=0.859 total time= 0.1s\n","[CV 5/5] END bootstrap=True, max_depth=10, max_features=None, min_samples_leaf=6, min_samples_split=6, n_estimators=30;, score=0.894 total time= 0.1s\n","[CV 1/5] END bootstrap=False, max_depth=2, max_features=sqrt, min_samples_leaf=2, min_samples_split=2, n_estimators=5;, score=0.854 total time= 0.0s\n","[CV 2/5] END bootstrap=False, max_depth=2, max_features=sqrt, min_samples_leaf=2, min_samples_split=2, n_estimators=5;, score=0.864 total time= 0.0s\n","[CV 3/5] END bootstrap=False, max_depth=2, max_features=sqrt, min_samples_leaf=2, min_samples_split=2, n_estimators=5;, score=0.889 total time= 0.0s\n","[CV 4/5] END bootstrap=False, max_depth=2, max_features=sqrt, min_samples_leaf=2, min_samples_split=2, n_estimators=5;, score=0.838 total time= 0.0s\n","[CV 5/5] END bootstrap=False, max_depth=2, max_features=sqrt, min_samples_leaf=2, min_samples_split=2, n_estimators=5;, score=0.899 total time= 0.0s\n","[CV 1/5] END bootstrap=False, max_depth=2, max_features=sqrt, min_samples_leaf=2, min_samples_split=2, n_estimators=10;, score=0.869 total time= 0.0s\n","[CV 2/5] END bootstrap=False, max_depth=2, max_features=sqrt, min_samples_leaf=2, min_samples_split=2, n_estimators=10;, score=0.894 total time= 0.0s\n","[CV 3/5] END bootstrap=False, max_depth=2, max_features=sqrt, min_samples_leaf=2, min_samples_split=2, n_estimators=10;, score=0.899 total time= 0.0s\n","[CV 4/5] END bootstrap=False, max_depth=2, max_features=sqrt, min_samples_leaf=2, min_samples_split=2, n_estimators=10;, score=0.869 total time= 0.0s\n","[CV 5/5] END bootstrap=False, max_depth=2, max_features=sqrt, min_samples_leaf=2, min_samples_split=2, n_estimators=10;, score=0.874 total time= 0.0s\n","[CV 1/5] END bootstrap=False, max_depth=2, max_features=sqrt, min_samples_leaf=2, min_samples_split=2, n_estimators=20;, score=0.864 total time= 0.0s\n","[CV 2/5] END bootstrap=False, max_depth=2, max_features=sqrt, min_samples_leaf=2, min_samples_split=2, n_estimators=20;, score=0.889 total time= 0.0s\n","[CV 3/5] END bootstrap=False, max_depth=2, max_features=sqrt, min_samples_leaf=2, min_samples_split=2, n_estimators=20;, score=0.894 total time= 0.0s\n","[CV 4/5] END bootstrap=False, max_depth=2, max_features=sqrt, min_samples_leaf=2, min_samples_split=2, n_estimators=20;, score=0.864 total time= 0.0s\n","[CV 5/5] END bootstrap=False, max_depth=2, max_features=sqrt, min_samples_leaf=2, min_samples_split=2, n_estimators=20;, score=0.889 total time= 0.0s\n","[CV 1/5] END bootstrap=False, max_depth=2, max_features=sqrt, min_samples_leaf=2, min_samples_split=2, n_estimators=30;, score=0.874 total time= 0.0s\n","[CV 2/5] END bootstrap=False, max_depth=2, max_features=sqrt, min_samples_leaf=2, min_samples_split=2, n_estimators=30;, score=0.889 total time= 0.0s\n","[CV 3/5] END bootstrap=False, max_depth=2, max_features=sqrt, min_samples_leaf=2, min_samples_split=2, n_estimators=30;, score=0.884 total time= 0.0s\n","[CV 4/5] END bootstrap=False, max_depth=2, max_features=sqrt, min_samples_leaf=2, min_samples_split=2, n_estimators=30;, score=0.889 total time= 0.1s\n","[CV 5/5] END bootstrap=False, max_depth=2, max_features=sqrt, min_samples_leaf=2, min_samples_split=2, n_estimators=30;, score=0.879 total time= 0.0s\n","[CV 1/5] END bootstrap=False, max_depth=2, max_features=sqrt, min_samples_leaf=2, min_samples_split=4, n_estimators=5;, score=0.879 total time= 0.0s\n","[CV 2/5] END bootstrap=False, max_depth=2, max_features=sqrt, min_samples_leaf=2, min_samples_split=4, n_estimators=5;, score=0.899 total time= 0.0s\n","[CV 3/5] END bootstrap=False, max_depth=2, max_features=sqrt, min_samples_leaf=2, min_samples_split=4, n_estimators=5;, score=0.874 total time= 0.0s\n","[CV 4/5] END bootstrap=False, max_depth=2, max_features=sqrt, min_samples_leaf=2, min_samples_split=4, n_estimators=5;, score=0.859 total time= 0.0s\n","[CV 5/5] END bootstrap=False, max_depth=2, max_features=sqrt, min_samples_leaf=2, min_samples_split=4, n_estimators=5;, score=0.899 total time= 0.0s\n","[CV 1/5] END bootstrap=False, max_depth=2, max_features=sqrt, min_samples_leaf=2, min_samples_split=4, n_estimators=10;, score=0.859 total time= 0.0s\n","[CV 2/5] END bootstrap=False, max_depth=2, max_features=sqrt, min_samples_leaf=2, min_samples_split=4, n_estimators=10;, score=0.894 total time= 0.0s\n","[CV 3/5] END bootstrap=False, max_depth=2, max_features=sqrt, min_samples_leaf=2, min_samples_split=4, n_estimators=10;, score=0.879 total time= 0.0s\n","[CV 4/5] END bootstrap=False, max_depth=2, max_features=sqrt, min_samples_leaf=2, min_samples_split=4, n_estimators=10;, score=0.859 total time= 0.0s\n","[CV 5/5] END bootstrap=False, max_depth=2, max_features=sqrt, min_samples_leaf=2, min_samples_split=4, n_estimators=10;, score=0.884 total time= 0.0s\n","[CV 1/5] END bootstrap=False, max_depth=2, max_features=sqrt, min_samples_leaf=2, min_samples_split=4, n_estimators=20;, score=0.879 total time= 0.0s\n","[CV 2/5] END bootstrap=False, max_depth=2, max_features=sqrt, min_samples_leaf=2, min_samples_split=4, n_estimators=20;, score=0.909 total time= 0.0s\n","[CV 3/5] END bootstrap=False, max_depth=2, max_features=sqrt, min_samples_leaf=2, min_samples_split=4, n_estimators=20;, score=0.889 total time= 0.0s\n","[CV 4/5] END bootstrap=False, max_depth=2, max_features=sqrt, min_samples_leaf=2, min_samples_split=4, n_estimators=20;, score=0.864 total time= 0.0s\n","[CV 5/5] END bootstrap=False, max_depth=2, max_features=sqrt, min_samples_leaf=2, min_samples_split=4, n_estimators=20;, score=0.874 total time= 0.0s\n","[CV 1/5] END bootstrap=False, max_depth=2, max_features=sqrt, min_samples_leaf=2, min_samples_split=4, n_estimators=30;, score=0.864 total time= 0.0s\n","[CV 2/5] END bootstrap=False, max_depth=2, max_features=sqrt, min_samples_leaf=2, min_samples_split=4, n_estimators=30;, score=0.879 total time= 0.0s\n","[CV 3/5] END bootstrap=False, max_depth=2, max_features=sqrt, min_samples_leaf=2, min_samples_split=4, n_estimators=30;, score=0.884 total time= 0.0s\n","[CV 4/5] END bootstrap=False, max_depth=2, max_features=sqrt, min_samples_leaf=2, min_samples_split=4, n_estimators=30;, score=0.869 total time= 0.1s\n","[CV 5/5] END bootstrap=False, max_depth=2, max_features=sqrt, min_samples_leaf=2, min_samples_split=4, n_estimators=30;, score=0.869 total time= 0.1s\n","[CV 1/5] END bootstrap=False, max_depth=2, max_features=sqrt, min_samples_leaf=2, min_samples_split=6, n_estimators=5;, score=0.864 total time= 0.0s\n","[CV 2/5] END bootstrap=False, max_depth=2, max_features=sqrt, min_samples_leaf=2, min_samples_split=6, n_estimators=5;, score=0.879 total time= 0.0s\n","[CV 3/5] END bootstrap=False, max_depth=2, max_features=sqrt, min_samples_leaf=2, min_samples_split=6, n_estimators=5;, score=0.889 total time= 0.0s\n","[CV 4/5] END bootstrap=False, max_depth=2, max_features=sqrt, min_samples_leaf=2, min_samples_split=6, n_estimators=5;, score=0.859 total time= 0.0s\n","[CV 5/5] END bootstrap=False, max_depth=2, max_features=sqrt, min_samples_leaf=2, min_samples_split=6, n_estimators=5;, score=0.869 total time= 0.0s\n","[CV 1/5] END bootstrap=False, max_depth=2, max_features=sqrt, min_samples_leaf=2, min_samples_split=6, n_estimators=10;, score=0.879 total time= 0.0s\n","[CV 2/5] END bootstrap=False, max_depth=2, max_features=sqrt, min_samples_leaf=2, min_samples_split=6, n_estimators=10;, score=0.864 total time= 0.0s\n","[CV 3/5] END bootstrap=False, max_depth=2, max_features=sqrt, min_samples_leaf=2, min_samples_split=6, n_estimators=10;, score=0.889 total time= 0.0s\n","[CV 4/5] END bootstrap=False, max_depth=2, max_features=sqrt, min_samples_leaf=2, min_samples_split=6, n_estimators=10;, score=0.869 total time= 0.0s\n","[CV 5/5] END bootstrap=False, max_depth=2, max_features=sqrt, min_samples_leaf=2, min_samples_split=6, n_estimators=10;, score=0.889 total time= 0.0s\n","[CV 1/5] END bootstrap=False, max_depth=2, max_features=sqrt, min_samples_leaf=2, min_samples_split=6, n_estimators=20;, score=0.864 total time= 0.1s\n","[CV 2/5] END bootstrap=False, max_depth=2, max_features=sqrt, min_samples_leaf=2, min_samples_split=6, n_estimators=20;, score=0.879 total time= 0.0s\n","[CV 3/5] END bootstrap=False, max_depth=2, max_features=sqrt, min_samples_leaf=2, min_samples_split=6, n_estimators=20;, score=0.904 total time= 0.0s\n","[CV 4/5] END bootstrap=False, max_depth=2, max_features=sqrt, min_samples_leaf=2, min_samples_split=6, n_estimators=20;, score=0.859 total time= 0.0s\n","[CV 5/5] END bootstrap=False, max_depth=2, max_features=sqrt, min_samples_leaf=2, min_samples_split=6, n_estimators=20;, score=0.889 total time= 0.0s\n","[CV 1/5] END bootstrap=False, max_depth=2, max_features=sqrt, min_samples_leaf=2, min_samples_split=6, n_estimators=30;, score=0.864 total time= 0.0s\n","[CV 2/5] END bootstrap=False, max_depth=2, max_features=sqrt, min_samples_leaf=2, min_samples_split=6, n_estimators=30;, score=0.869 total time= 0.1s\n","[CV 3/5] END bootstrap=False, max_depth=2, max_features=sqrt, min_samples_leaf=2, min_samples_split=6, n_estimators=30;, score=0.899 total time= 0.0s\n","[CV 4/5] END bootstrap=False, max_depth=2, max_features=sqrt, min_samples_leaf=2, min_samples_split=6, n_estimators=30;, score=0.869 total time= 0.0s\n","[CV 5/5] END bootstrap=False, max_depth=2, max_features=sqrt, min_samples_leaf=2, min_samples_split=6, n_estimators=30;, score=0.889 total time= 0.0s\n","[CV 1/5] END bootstrap=False, max_depth=2, max_features=sqrt, min_samples_leaf=4, min_samples_split=2, n_estimators=5;, score=0.879 total time= 0.0s\n","[CV 2/5] END bootstrap=False, max_depth=2, max_features=sqrt, min_samples_leaf=4, min_samples_split=2, n_estimators=5;, score=0.904 total time= 0.0s\n","[CV 3/5] END bootstrap=False, max_depth=2, max_features=sqrt, min_samples_leaf=4, min_samples_split=2, n_estimators=5;, score=0.894 total time= 0.0s\n","[CV 4/5] END bootstrap=False, max_depth=2, max_features=sqrt, min_samples_leaf=4, min_samples_split=2, n_estimators=5;, score=0.864 total time= 0.0s\n","[CV 5/5] END bootstrap=False, max_depth=2, max_features=sqrt, min_samples_leaf=4, min_samples_split=2, n_estimators=5;, score=0.904 total time= 0.0s\n","[CV 1/5] END bootstrap=False, max_depth=2, max_features=sqrt, min_samples_leaf=4, min_samples_split=2, n_estimators=10;, score=0.874 total time= 0.0s\n","[CV 2/5] END bootstrap=False, max_depth=2, max_features=sqrt, min_samples_leaf=4, min_samples_split=2, n_estimators=10;, score=0.904 total time= 0.0s\n","[CV 3/5] END bootstrap=False, max_depth=2, max_features=sqrt, min_samples_leaf=4, min_samples_split=2, n_estimators=10;, score=0.869 total time= 0.0s\n","[CV 4/5] END bootstrap=False, max_depth=2, max_features=sqrt, min_samples_leaf=4, min_samples_split=2, n_estimators=10;, score=0.864 total time= 0.0s\n","[CV 5/5] END bootstrap=False, max_depth=2, max_features=sqrt, min_samples_leaf=4, min_samples_split=2, n_estimators=10;, score=0.874 total time= 0.0s\n","[CV 1/5] END bootstrap=False, max_depth=2, max_features=sqrt, min_samples_leaf=4, min_samples_split=2, n_estimators=20;, score=0.869 total time= 0.0s\n","[CV 2/5] END bootstrap=False, max_depth=2, max_features=sqrt, min_samples_leaf=4, min_samples_split=2, n_estimators=20;, score=0.879 total time= 0.0s\n","[CV 3/5] END bootstrap=False, max_depth=2, max_features=sqrt, min_samples_leaf=4, min_samples_split=2, n_estimators=20;, score=0.879 total time= 0.0s\n","[CV 4/5] END bootstrap=False, max_depth=2, max_features=sqrt, min_samples_leaf=4, min_samples_split=2, n_estimators=20;, score=0.854 total time= 0.0s\n","[CV 5/5] END bootstrap=False, max_depth=2, max_features=sqrt, min_samples_leaf=4, min_samples_split=2, n_estimators=20;, score=0.879 total time= 0.0s\n","[CV 1/5] END bootstrap=False, max_depth=2, max_features=sqrt, min_samples_leaf=4, min_samples_split=2, n_estimators=30;, score=0.859 total time= 0.0s\n","[CV 2/5] END bootstrap=False, max_depth=2, max_features=sqrt, min_samples_leaf=4, min_samples_split=2, n_estimators=30;, score=0.874 total time= 0.1s\n","[CV 3/5] END bootstrap=False, max_depth=2, max_features=sqrt, min_samples_leaf=4, min_samples_split=2, n_estimators=30;, score=0.879 total time= 0.1s\n","[CV 4/5] END bootstrap=False, max_depth=2, max_features=sqrt, min_samples_leaf=4, min_samples_split=2, n_estimators=30;, score=0.864 total time= 0.0s\n","[CV 5/5] END bootstrap=False, max_depth=2, max_features=sqrt, min_samples_leaf=4, min_samples_split=2, n_estimators=30;, score=0.884 total time= 0.0s\n","[CV 1/5] END bootstrap=False, max_depth=2, max_features=sqrt, min_samples_leaf=4, min_samples_split=4, n_estimators=5;, score=0.848 total time= 0.0s\n","[CV 2/5] END bootstrap=False, max_depth=2, max_features=sqrt, min_samples_leaf=4, min_samples_split=4, n_estimators=5;, score=0.884 total time= 0.0s\n","[CV 3/5] END bootstrap=False, max_depth=2, max_features=sqrt, min_samples_leaf=4, min_samples_split=4, n_estimators=5;, score=0.889 total time= 0.0s\n","[CV 4/5] END bootstrap=False, max_depth=2, max_features=sqrt, min_samples_leaf=4, min_samples_split=4, n_estimators=5;, score=0.848 total time= 0.0s\n","[CV 5/5] END bootstrap=False, max_depth=2, max_features=sqrt, min_samples_leaf=4, min_samples_split=4, n_estimators=5;, score=0.894 total time= 0.0s\n","[CV 1/5] END bootstrap=False, max_depth=2, max_features=sqrt, min_samples_leaf=4, min_samples_split=4, n_estimators=10;, score=0.864 total time= 0.0s\n","[CV 2/5] END bootstrap=False, max_depth=2, max_features=sqrt, min_samples_leaf=4, min_samples_split=4, n_estimators=10;, score=0.879 total time= 0.0s\n","[CV 3/5] END bootstrap=False, max_depth=2, max_features=sqrt, min_samples_leaf=4, min_samples_split=4, n_estimators=10;, score=0.884 total time= 0.0s\n","[CV 4/5] END bootstrap=False, max_depth=2, max_features=sqrt, min_samples_leaf=4, min_samples_split=4, n_estimators=10;, score=0.848 total time= 0.0s\n","[CV 5/5] END bootstrap=False, max_depth=2, max_features=sqrt, min_samples_leaf=4, min_samples_split=4, n_estimators=10;, score=0.869 total time= 0.0s\n","[CV 1/5] END bootstrap=False, max_depth=2, max_features=sqrt, min_samples_leaf=4, min_samples_split=4, n_estimators=20;, score=0.859 total time= 0.0s\n","[CV 2/5] END bootstrap=False, max_depth=2, max_features=sqrt, min_samples_leaf=4, min_samples_split=4, n_estimators=20;, score=0.899 total time= 0.0s\n","[CV 3/5] END bootstrap=False, max_depth=2, max_features=sqrt, min_samples_leaf=4, min_samples_split=4, n_estimators=20;, score=0.894 total time= 0.0s\n","[CV 4/5] END bootstrap=False, max_depth=2, max_features=sqrt, min_samples_leaf=4, min_samples_split=4, n_estimators=20;, score=0.864 total time= 0.0s\n","[CV 5/5] END bootstrap=False, max_depth=2, max_features=sqrt, min_samples_leaf=4, min_samples_split=4, n_estimators=20;, score=0.879 total time= 0.0s\n","[CV 1/5] END bootstrap=False, max_depth=2, max_features=sqrt, min_samples_leaf=4, min_samples_split=4, n_estimators=30;, score=0.869 total time= 0.0s\n","[CV 2/5] END bootstrap=False, max_depth=2, max_features=sqrt, min_samples_leaf=4, min_samples_split=4, n_estimators=30;, score=0.884 total time= 0.0s\n","[CV 3/5] END bootstrap=False, max_depth=2, max_features=sqrt, min_samples_leaf=4, min_samples_split=4, n_estimators=30;, score=0.874 total time= 0.0s\n","[CV 4/5] END bootstrap=False, max_depth=2, max_features=sqrt, min_samples_leaf=4, min_samples_split=4, n_estimators=30;, score=0.854 total time= 0.1s\n","[CV 5/5] END bootstrap=False, max_depth=2, max_features=sqrt, min_samples_leaf=4, min_samples_split=4, n_estimators=30;, score=0.879 total time= 0.0s\n","[CV 1/5] END bootstrap=False, max_depth=2, max_features=sqrt, min_samples_leaf=4, min_samples_split=6, n_estimators=5;, score=0.874 total time= 0.0s\n","[CV 2/5] END bootstrap=False, max_depth=2, max_features=sqrt, min_samples_leaf=4, min_samples_split=6, n_estimators=5;, score=0.879 total time= 0.0s\n","[CV 3/5] END bootstrap=False, max_depth=2, max_features=sqrt, min_samples_leaf=4, min_samples_split=6, n_estimators=5;, score=0.879 total time= 0.0s\n","[CV 4/5] END bootstrap=False, max_depth=2, max_features=sqrt, min_samples_leaf=4, min_samples_split=6, n_estimators=5;, score=0.874 total time= 0.0s\n","[CV 5/5] END bootstrap=False, max_depth=2, max_features=sqrt, min_samples_leaf=4, min_samples_split=6, n_estimators=5;, score=0.859 total time= 0.0s\n","[CV 1/5] END bootstrap=False, max_depth=2, max_features=sqrt, min_samples_leaf=4, min_samples_split=6, n_estimators=10;, score=0.869 total time= 0.0s\n","[CV 2/5] END bootstrap=False, max_depth=2, max_features=sqrt, min_samples_leaf=4, min_samples_split=6, n_estimators=10;, score=0.879 total time= 0.0s\n","[CV 3/5] END bootstrap=False, max_depth=2, max_features=sqrt, min_samples_leaf=4, min_samples_split=6, n_estimators=10;, score=0.894 total time= 0.0s\n","[CV 4/5] END bootstrap=False, max_depth=2, max_features=sqrt, min_samples_leaf=4, min_samples_split=6, n_estimators=10;, score=0.854 total time= 0.0s\n","[CV 5/5] END bootstrap=False, max_depth=2, max_features=sqrt, min_samples_leaf=4, min_samples_split=6, n_estimators=10;, score=0.889 total time= 0.0s\n","[CV 1/5] END bootstrap=False, max_depth=2, max_features=sqrt, min_samples_leaf=4, min_samples_split=6, n_estimators=20;, score=0.869 total time= 0.1s\n","[CV 2/5] END bootstrap=False, max_depth=2, max_features=sqrt, min_samples_leaf=4, min_samples_split=6, n_estimators=20;, score=0.894 total time= 0.1s\n","[CV 3/5] END bootstrap=False, max_depth=2, max_features=sqrt, min_samples_leaf=4, min_samples_split=6, n_estimators=20;, score=0.889 total time= 0.1s\n","[CV 4/5] END bootstrap=False, max_depth=2, max_features=sqrt, min_samples_leaf=4, min_samples_split=6, n_estimators=20;, score=0.874 total time= 0.1s\n","[CV 5/5] END bootstrap=False, max_depth=2, max_features=sqrt, min_samples_leaf=4, min_samples_split=6, n_estimators=20;, score=0.884 total time= 0.1s\n","[CV 1/5] END bootstrap=False, max_depth=2, max_features=sqrt, min_samples_leaf=4, min_samples_split=6, n_estimators=30;, score=0.874 total time= 0.1s\n","[CV 2/5] END bootstrap=False, max_depth=2, max_features=sqrt, min_samples_leaf=4, min_samples_split=6, n_estimators=30;, score=0.909 total time= 0.1s\n","[CV 3/5] END bootstrap=False, max_depth=2, max_features=sqrt, min_samples_leaf=4, min_samples_split=6, n_estimators=30;, score=0.874 total time= 0.1s\n","[CV 4/5] END bootstrap=False, max_depth=2, max_features=sqrt, min_samples_leaf=4, min_samples_split=6, n_estimators=30;, score=0.843 total time= 0.1s\n","[CV 5/5] END bootstrap=False, max_depth=2, max_features=sqrt, min_samples_leaf=4, min_samples_split=6, n_estimators=30;, score=0.869 total time= 0.1s\n","[CV 1/5] END bootstrap=False, max_depth=2, max_features=sqrt, min_samples_leaf=6, min_samples_split=2, n_estimators=5;, score=0.859 total time= 0.0s\n","[CV 2/5] END bootstrap=False, max_depth=2, max_features=sqrt, min_samples_leaf=6, min_samples_split=2, n_estimators=5;, score=0.869 total time= 0.0s\n","[CV 3/5] END bootstrap=False, max_depth=2, max_features=sqrt, min_samples_leaf=6, min_samples_split=2, n_estimators=5;, score=0.914 total time= 0.0s\n","[CV 4/5] END bootstrap=False, max_depth=2, max_features=sqrt, min_samples_leaf=6, min_samples_split=2, n_estimators=5;, score=0.874 total time= 0.0s\n","[CV 5/5] END bootstrap=False, max_depth=2, max_features=sqrt, min_samples_leaf=6, min_samples_split=2, n_estimators=5;, score=0.874 total time= 0.0s\n","[CV 1/5] END bootstrap=False, max_depth=2, max_features=sqrt, min_samples_leaf=6, min_samples_split=2, n_estimators=10;, score=0.859 total time= 0.0s\n","[CV 2/5] END bootstrap=False, max_depth=2, max_features=sqrt, min_samples_leaf=6, min_samples_split=2, n_estimators=10;, score=0.889 total time= 0.0s\n","[CV 3/5] END bootstrap=False, max_depth=2, max_features=sqrt, min_samples_leaf=6, min_samples_split=2, n_estimators=10;, score=0.894 total time= 0.0s\n","[CV 4/5] END bootstrap=False, max_depth=2, max_features=sqrt, min_samples_leaf=6, min_samples_split=2, n_estimators=10;, score=0.869 total time= 0.0s\n","[CV 5/5] END bootstrap=False, max_depth=2, max_features=sqrt, min_samples_leaf=6, min_samples_split=2, n_estimators=10;, score=0.879 total time= 0.0s\n","[CV 1/5] END bootstrap=False, max_depth=2, max_features=sqrt, min_samples_leaf=6, min_samples_split=2, n_estimators=20;, score=0.864 total time= 0.1s\n","[CV 2/5] END bootstrap=False, max_depth=2, max_features=sqrt, min_samples_leaf=6, min_samples_split=2, n_estimators=20;, score=0.864 total time= 0.1s\n","[CV 3/5] END bootstrap=False, max_depth=2, max_features=sqrt, min_samples_leaf=6, min_samples_split=2, n_estimators=20;, score=0.889 total time= 0.0s\n","[CV 4/5] END bootstrap=False, max_depth=2, max_features=sqrt, min_samples_leaf=6, min_samples_split=2, n_estimators=20;, score=0.843 total time= 0.1s\n","[CV 5/5] END bootstrap=False, max_depth=2, max_features=sqrt, min_samples_leaf=6, min_samples_split=2, n_estimators=20;, score=0.889 total time= 0.1s\n","[CV 1/5] END bootstrap=False, max_depth=2, max_features=sqrt, min_samples_leaf=6, min_samples_split=2, n_estimators=30;, score=0.864 total time= 0.1s\n","[CV 2/5] END bootstrap=False, max_depth=2, max_features=sqrt, min_samples_leaf=6, min_samples_split=2, n_estimators=30;, score=0.869 total time= 0.1s\n","[CV 3/5] END bootstrap=False, max_depth=2, max_features=sqrt, min_samples_leaf=6, min_samples_split=2, n_estimators=30;, score=0.899 total time= 0.1s\n","[CV 4/5] END bootstrap=False, max_depth=2, max_features=sqrt, min_samples_leaf=6, min_samples_split=2, n_estimators=30;, score=0.869 total time= 0.1s\n","[CV 5/5] END bootstrap=False, max_depth=2, max_features=sqrt, min_samples_leaf=6, min_samples_split=2, n_estimators=30;, score=0.879 total time= 0.1s\n","[CV 1/5] END bootstrap=False, max_depth=2, max_features=sqrt, min_samples_leaf=6, min_samples_split=4, n_estimators=5;, score=0.864 total time= 0.0s\n","[CV 2/5] END bootstrap=False, max_depth=2, max_features=sqrt, min_samples_leaf=6, min_samples_split=4, n_estimators=5;, score=0.879 total time= 0.0s\n","[CV 3/5] END bootstrap=False, max_depth=2, max_features=sqrt, min_samples_leaf=6, min_samples_split=4, n_estimators=5;, score=0.909 total time= 0.0s\n","[CV 4/5] END bootstrap=False, max_depth=2, max_features=sqrt, min_samples_leaf=6, min_samples_split=4, n_estimators=5;, score=0.859 total time= 0.0s\n","[CV 5/5] END bootstrap=False, max_depth=2, max_features=sqrt, min_samples_leaf=6, min_samples_split=4, n_estimators=5;, score=0.884 total time= 0.0s\n","[CV 1/5] END bootstrap=False, max_depth=2, max_features=sqrt, min_samples_leaf=6, min_samples_split=4, n_estimators=10;, score=0.874 total time= 0.0s\n","[CV 2/5] END bootstrap=False, max_depth=2, max_features=sqrt, min_samples_leaf=6, min_samples_split=4, n_estimators=10;, score=0.894 total time= 0.0s\n","[CV 3/5] END bootstrap=False, max_depth=2, max_features=sqrt, min_samples_leaf=6, min_samples_split=4, n_estimators=10;, score=0.879 total time= 0.0s\n","[CV 4/5] END bootstrap=False, max_depth=2, max_features=sqrt, min_samples_leaf=6, min_samples_split=4, n_estimators=10;, score=0.843 total time= 0.0s\n","[CV 5/5] END bootstrap=False, max_depth=2, max_features=sqrt, min_samples_leaf=6, min_samples_split=4, n_estimators=10;, score=0.884 total time= 0.0s\n","[CV 1/5] END bootstrap=False, max_depth=2, max_features=sqrt, min_samples_leaf=6, min_samples_split=4, n_estimators=20;, score=0.869 total time= 0.1s\n","[CV 2/5] END bootstrap=False, max_depth=2, max_features=sqrt, min_samples_leaf=6, min_samples_split=4, n_estimators=20;, score=0.889 total time= 0.0s\n","[CV 3/5] END bootstrap=False, max_depth=2, max_features=sqrt, min_samples_leaf=6, min_samples_split=4, n_estimators=20;, score=0.879 total time= 0.1s\n","[CV 4/5] END bootstrap=False, max_depth=2, max_features=sqrt, min_samples_leaf=6, min_samples_split=4, n_estimators=20;, score=0.869 total time= 0.1s\n","[CV 5/5] END bootstrap=False, max_depth=2, max_features=sqrt, min_samples_leaf=6, min_samples_split=4, n_estimators=20;, score=0.874 total time= 0.1s\n","[CV 1/5] END bootstrap=False, max_depth=2, max_features=sqrt, min_samples_leaf=6, min_samples_split=4, n_estimators=30;, score=0.854 total time= 0.1s\n","[CV 2/5] END bootstrap=False, max_depth=2, max_features=sqrt, min_samples_leaf=6, min_samples_split=4, n_estimators=30;, score=0.884 total time= 0.1s\n","[CV 3/5] END bootstrap=False, max_depth=2, max_features=sqrt, min_samples_leaf=6, min_samples_split=4, n_estimators=30;, score=0.909 total time= 0.1s\n","[CV 4/5] END bootstrap=False, max_depth=2, max_features=sqrt, min_samples_leaf=6, min_samples_split=4, n_estimators=30;, score=0.854 total time= 0.1s\n","[CV 5/5] END bootstrap=False, max_depth=2, max_features=sqrt, min_samples_leaf=6, min_samples_split=4, n_estimators=30;, score=0.879 total time= 0.1s\n","[CV 1/5] END bootstrap=False, max_depth=2, max_features=sqrt, min_samples_leaf=6, min_samples_split=6, n_estimators=5;, score=0.869 total time= 0.0s\n","[CV 2/5] END bootstrap=False, max_depth=2, max_features=sqrt, min_samples_leaf=6, min_samples_split=6, n_estimators=5;, score=0.894 total time= 0.0s\n","[CV 3/5] END bootstrap=False, max_depth=2, max_features=sqrt, min_samples_leaf=6, min_samples_split=6, n_estimators=5;, score=0.899 total time= 0.0s\n","[CV 4/5] END bootstrap=False, max_depth=2, max_features=sqrt, min_samples_leaf=6, min_samples_split=6, n_estimators=5;, score=0.869 total time= 0.0s\n","[CV 5/5] END bootstrap=False, max_depth=2, max_features=sqrt, min_samples_leaf=6, min_samples_split=6, n_estimators=5;, score=0.899 total time= 0.0s\n","[CV 1/5] END bootstrap=False, max_depth=2, max_features=sqrt, min_samples_leaf=6, min_samples_split=6, n_estimators=10;, score=0.864 total time= 0.0s\n","[CV 2/5] END bootstrap=False, max_depth=2, max_features=sqrt, min_samples_leaf=6, min_samples_split=6, n_estimators=10;, score=0.859 total time= 0.0s\n","[CV 3/5] END bootstrap=False, max_depth=2, max_features=sqrt, min_samples_leaf=6, min_samples_split=6, n_estimators=10;, score=0.909 total time= 0.0s\n","[CV 4/5] END bootstrap=False, max_depth=2, max_features=sqrt, min_samples_leaf=6, min_samples_split=6, n_estimators=10;, score=0.848 total time= 0.0s\n","[CV 5/5] END bootstrap=False, max_depth=2, max_features=sqrt, min_samples_leaf=6, min_samples_split=6, n_estimators=10;, score=0.879 total time= 0.0s\n","[CV 1/5] END bootstrap=False, max_depth=2, max_features=sqrt, min_samples_leaf=6, min_samples_split=6, n_estimators=20;, score=0.838 total time= 0.1s\n","[CV 2/5] END bootstrap=False, max_depth=2, max_features=sqrt, min_samples_leaf=6, min_samples_split=6, n_estimators=20;, score=0.884 total time= 0.1s\n","[CV 3/5] END bootstrap=False, max_depth=2, max_features=sqrt, min_samples_leaf=6, min_samples_split=6, n_estimators=20;, score=0.894 total time= 0.0s\n","[CV 4/5] END bootstrap=False, max_depth=2, max_features=sqrt, min_samples_leaf=6, min_samples_split=6, n_estimators=20;, score=0.848 total time= 0.0s\n","[CV 5/5] END bootstrap=False, max_depth=2, max_features=sqrt, min_samples_leaf=6, min_samples_split=6, n_estimators=20;, score=0.879 total time= 0.1s\n","[CV 1/5] END bootstrap=False, max_depth=2, max_features=sqrt, min_samples_leaf=6, min_samples_split=6, n_estimators=30;, score=0.864 total time= 0.1s\n","[CV 2/5] END bootstrap=False, max_depth=2, max_features=sqrt, min_samples_leaf=6, min_samples_split=6, n_estimators=30;, score=0.879 total time= 0.1s\n","[CV 3/5] END bootstrap=False, max_depth=2, max_features=sqrt, min_samples_leaf=6, min_samples_split=6, n_estimators=30;, score=0.874 total time= 0.1s\n","[CV 4/5] END bootstrap=False, max_depth=2, max_features=sqrt, min_samples_leaf=6, min_samples_split=6, n_estimators=30;, score=0.859 total time= 0.1s\n","[CV 5/5] END bootstrap=False, max_depth=2, max_features=sqrt, min_samples_leaf=6, min_samples_split=6, n_estimators=30;, score=0.889 total time= 0.1s\n","[CV 1/5] END bootstrap=False, max_depth=2, max_features=log2, min_samples_leaf=2, min_samples_split=2, n_estimators=5;, score=0.889 total time= 0.0s\n","[CV 2/5] END bootstrap=False, max_depth=2, max_features=log2, min_samples_leaf=2, min_samples_split=2, n_estimators=5;, score=0.899 total time= 0.0s\n","[CV 3/5] END bootstrap=False, max_depth=2, max_features=log2, min_samples_leaf=2, min_samples_split=2, n_estimators=5;, score=0.889 total time= 0.0s\n","[CV 4/5] END bootstrap=False, max_depth=2, max_features=log2, min_samples_leaf=2, min_samples_split=2, n_estimators=5;, score=0.859 total time= 0.0s\n","[CV 5/5] END bootstrap=False, max_depth=2, max_features=log2, min_samples_leaf=2, min_samples_split=2, n_estimators=5;, score=0.869 total time= 0.0s\n","[CV 1/5] END bootstrap=False, max_depth=2, max_features=log2, min_samples_leaf=2, min_samples_split=2, n_estimators=10;, score=0.874 total time= 0.0s\n","[CV 2/5] END bootstrap=False, max_depth=2, max_features=log2, min_samples_leaf=2, min_samples_split=2, n_estimators=10;, score=0.874 total time= 0.0s\n","[CV 3/5] END bootstrap=False, max_depth=2, max_features=log2, min_samples_leaf=2, min_samples_split=2, n_estimators=10;, score=0.899 total time= 0.0s\n","[CV 4/5] END bootstrap=False, max_depth=2, max_features=log2, min_samples_leaf=2, min_samples_split=2, n_estimators=10;, score=0.869 total time= 0.0s\n","[CV 5/5] END bootstrap=False, max_depth=2, max_features=log2, min_samples_leaf=2, min_samples_split=2, n_estimators=10;, score=0.879 total time= 0.0s\n","[CV 1/5] END bootstrap=False, max_depth=2, max_features=log2, min_samples_leaf=2, min_samples_split=2, n_estimators=20;, score=0.854 total time= 0.0s\n","[CV 2/5] END bootstrap=False, max_depth=2, max_features=log2, min_samples_leaf=2, min_samples_split=2, n_estimators=20;, score=0.889 total time= 0.0s\n","[CV 3/5] END bootstrap=False, max_depth=2, max_features=log2, min_samples_leaf=2, min_samples_split=2, n_estimators=20;, score=0.884 total time= 0.0s\n","[CV 4/5] END bootstrap=False, max_depth=2, max_features=log2, min_samples_leaf=2, min_samples_split=2, n_estimators=20;, score=0.864 total time= 0.0s\n","[CV 5/5] END bootstrap=False, max_depth=2, max_features=log2, min_samples_leaf=2, min_samples_split=2, n_estimators=20;, score=0.884 total time= 0.0s\n","[CV 1/5] END bootstrap=False, max_depth=2, max_features=log2, min_samples_leaf=2, min_samples_split=2, n_estimators=30;, score=0.859 total time= 0.0s\n","[CV 2/5] END bootstrap=False, max_depth=2, max_features=log2, min_samples_leaf=2, min_samples_split=2, n_estimators=30;, score=0.869 total time= 0.1s\n","[CV 3/5] END bootstrap=False, max_depth=2, max_features=log2, min_samples_leaf=2, min_samples_split=2, n_estimators=30;, score=0.884 total time= 0.1s\n","[CV 4/5] END bootstrap=False, max_depth=2, max_features=log2, min_samples_leaf=2, min_samples_split=2, n_estimators=30;, score=0.854 total time= 0.0s\n","[CV 5/5] END bootstrap=False, max_depth=2, max_features=log2, min_samples_leaf=2, min_samples_split=2, n_estimators=30;, score=0.889 total time= 0.0s\n","[CV 1/5] END bootstrap=False, max_depth=2, max_features=log2, min_samples_leaf=2, min_samples_split=4, n_estimators=5;, score=0.874 total time= 0.0s\n","[CV 2/5] END bootstrap=False, max_depth=2, max_features=log2, min_samples_leaf=2, min_samples_split=4, n_estimators=5;, score=0.874 total time= 0.0s\n","[CV 3/5] END bootstrap=False, max_depth=2, max_features=log2, min_samples_leaf=2, min_samples_split=4, n_estimators=5;, score=0.884 total time= 0.0s\n","[CV 4/5] END bootstrap=False, max_depth=2, max_features=log2, min_samples_leaf=2, min_samples_split=4, n_estimators=5;, score=0.869 total time= 0.0s\n","[CV 5/5] END bootstrap=False, max_depth=2, max_features=log2, min_samples_leaf=2, min_samples_split=4, n_estimators=5;, score=0.879 total time= 0.0s\n","[CV 1/5] END bootstrap=False, max_depth=2, max_features=log2, min_samples_leaf=2, min_samples_split=4, n_estimators=10;, score=0.879 total time= 0.0s\n","[CV 2/5] END bootstrap=False, max_depth=2, max_features=log2, min_samples_leaf=2, min_samples_split=4, n_estimators=10;, score=0.889 total time= 0.0s\n","[CV 3/5] END bootstrap=False, max_depth=2, max_features=log2, min_samples_leaf=2, min_samples_split=4, n_estimators=10;, score=0.874 total time= 0.0s\n","[CV 4/5] END bootstrap=False, max_depth=2, max_features=log2, min_samples_leaf=2, min_samples_split=4, n_estimators=10;, score=0.843 total time= 0.0s\n","[CV 5/5] END bootstrap=False, max_depth=2, max_features=log2, min_samples_leaf=2, min_samples_split=4, n_estimators=10;, score=0.884 total time= 0.0s\n","[CV 1/5] END bootstrap=False, max_depth=2, max_features=log2, min_samples_leaf=2, min_samples_split=4, n_estimators=20;, score=0.859 total time= 0.0s\n","[CV 2/5] END bootstrap=False, max_depth=2, max_features=log2, min_samples_leaf=2, min_samples_split=4, n_estimators=20;, score=0.879 total time= 0.0s\n","[CV 3/5] END bootstrap=False, max_depth=2, max_features=log2, min_samples_leaf=2, min_samples_split=4, n_estimators=20;, score=0.869 total time= 0.0s\n","[CV 4/5] END bootstrap=False, max_depth=2, max_features=log2, min_samples_leaf=2, min_samples_split=4, n_estimators=20;, score=0.843 total time= 0.0s\n","[CV 5/5] END bootstrap=False, max_depth=2, max_features=log2, min_samples_leaf=2, min_samples_split=4, n_estimators=20;, score=0.884 total time= 0.0s\n","[CV 1/5] END bootstrap=False, max_depth=2, max_features=log2, min_samples_leaf=2, min_samples_split=4, n_estimators=30;, score=0.859 total time= 0.0s\n","[CV 2/5] END bootstrap=False, max_depth=2, max_features=log2, min_samples_leaf=2, min_samples_split=4, n_estimators=30;, score=0.884 total time= 0.0s\n","[CV 3/5] END bootstrap=False, max_depth=2, max_features=log2, min_samples_leaf=2, min_samples_split=4, n_estimators=30;, score=0.884 total time= 0.0s\n","[CV 4/5] END bootstrap=False, max_depth=2, max_features=log2, min_samples_leaf=2, min_samples_split=4, n_estimators=30;, score=0.854 total time= 0.1s\n","[CV 5/5] END bootstrap=False, max_depth=2, max_features=log2, min_samples_leaf=2, min_samples_split=4, n_estimators=30;, score=0.879 total time= 0.0s\n","[CV 1/5] END bootstrap=False, max_depth=2, max_features=log2, min_samples_leaf=2, min_samples_split=6, n_estimators=5;, score=0.864 total time= 0.0s\n","[CV 2/5] END bootstrap=False, max_depth=2, max_features=log2, min_samples_leaf=2, min_samples_split=6, n_estimators=5;, score=0.864 total time= 0.0s\n","[CV 3/5] END bootstrap=False, max_depth=2, max_features=log2, min_samples_leaf=2, min_samples_split=6, n_estimators=5;, score=0.874 total time= 0.0s\n","[CV 4/5] END bootstrap=False, max_depth=2, max_features=log2, min_samples_leaf=2, min_samples_split=6, n_estimators=5;, score=0.869 total time= 0.0s\n","[CV 5/5] END bootstrap=False, max_depth=2, max_features=log2, min_samples_leaf=2, min_samples_split=6, n_estimators=5;, score=0.894 total time= 0.0s\n","[CV 1/5] END bootstrap=False, max_depth=2, max_features=log2, min_samples_leaf=2, min_samples_split=6, n_estimators=10;, score=0.848 total time= 0.0s\n","[CV 2/5] END bootstrap=False, max_depth=2, max_features=log2, min_samples_leaf=2, min_samples_split=6, n_estimators=10;, score=0.904 total time= 0.0s\n","[CV 3/5] END bootstrap=False, max_depth=2, max_features=log2, min_samples_leaf=2, min_samples_split=6, n_estimators=10;, score=0.909 total time= 0.0s\n","[CV 4/5] END bootstrap=False, max_depth=2, max_features=log2, min_samples_leaf=2, min_samples_split=6, n_estimators=10;, score=0.869 total time= 0.0s\n","[CV 5/5] END bootstrap=False, max_depth=2, max_features=log2, min_samples_leaf=2, min_samples_split=6, n_estimators=10;, score=0.879 total time= 0.0s\n","[CV 1/5] END bootstrap=False, max_depth=2, max_features=log2, min_samples_leaf=2, min_samples_split=6, n_estimators=20;, score=0.874 total time= 0.0s\n","[CV 2/5] END bootstrap=False, max_depth=2, max_features=log2, min_samples_leaf=2, min_samples_split=6, n_estimators=20;, score=0.899 total time= 0.0s\n","[CV 3/5] END bootstrap=False, max_depth=2, max_features=log2, min_samples_leaf=2, min_samples_split=6, n_estimators=20;, score=0.874 total time= 0.0s\n","[CV 4/5] END bootstrap=False, max_depth=2, max_features=log2, min_samples_leaf=2, min_samples_split=6, n_estimators=20;, score=0.884 total time= 0.0s\n","[CV 5/5] END bootstrap=False, max_depth=2, max_features=log2, min_samples_leaf=2, min_samples_split=6, n_estimators=20;, score=0.884 total time= 0.0s\n","[CV 1/5] END bootstrap=False, max_depth=2, max_features=log2, min_samples_leaf=2, min_samples_split=6, n_estimators=30;, score=0.859 total time= 0.1s\n","[CV 2/5] END bootstrap=False, max_depth=2, max_features=log2, min_samples_leaf=2, min_samples_split=6, n_estimators=30;, score=0.874 total time= 0.1s\n","[CV 3/5] END bootstrap=False, max_depth=2, max_features=log2, min_samples_leaf=2, min_samples_split=6, n_estimators=30;, score=0.899 total time= 0.0s\n","[CV 4/5] END bootstrap=False, max_depth=2, max_features=log2, min_samples_leaf=2, min_samples_split=6, n_estimators=30;, score=0.879 total time= 0.1s\n","[CV 5/5] END bootstrap=False, max_depth=2, max_features=log2, min_samples_leaf=2, min_samples_split=6, n_estimators=30;, score=0.879 total time= 0.0s\n","[CV 1/5] END bootstrap=False, max_depth=2, max_features=log2, min_samples_leaf=4, min_samples_split=2, n_estimators=5;, score=0.869 total time= 0.0s\n","[CV 2/5] END bootstrap=False, max_depth=2, max_features=log2, min_samples_leaf=4, min_samples_split=2, n_estimators=5;, score=0.899 total time= 0.0s\n","[CV 3/5] END bootstrap=False, max_depth=2, max_features=log2, min_samples_leaf=4, min_samples_split=2, n_estimators=5;, score=0.909 total time= 0.0s\n","[CV 4/5] END bootstrap=False, max_depth=2, max_features=log2, min_samples_leaf=4, min_samples_split=2, n_estimators=5;, score=0.848 total time= 0.0s\n","[CV 5/5] END bootstrap=False, max_depth=2, max_features=log2, min_samples_leaf=4, min_samples_split=2, n_estimators=5;, score=0.909 total time= 0.0s\n","[CV 1/5] END bootstrap=False, max_depth=2, max_features=log2, min_samples_leaf=4, min_samples_split=2, n_estimators=10;, score=0.864 total time= 0.0s\n","[CV 2/5] END bootstrap=False, max_depth=2, max_features=log2, min_samples_leaf=4, min_samples_split=2, n_estimators=10;, score=0.884 total time= 0.0s\n","[CV 3/5] END bootstrap=False, max_depth=2, max_features=log2, min_samples_leaf=4, min_samples_split=2, n_estimators=10;, score=0.904 total time= 0.0s\n","[CV 4/5] END bootstrap=False, max_depth=2, max_features=log2, min_samples_leaf=4, min_samples_split=2, n_estimators=10;, score=0.843 total time= 0.0s\n","[CV 5/5] END bootstrap=False, max_depth=2, max_features=log2, min_samples_leaf=4, min_samples_split=2, n_estimators=10;, score=0.894 total time= 0.0s\n","[CV 1/5] END bootstrap=False, max_depth=2, max_features=log2, min_samples_leaf=4, min_samples_split=2, n_estimators=20;, score=0.869 total time= 0.0s\n","[CV 2/5] END bootstrap=False, max_depth=2, max_features=log2, min_samples_leaf=4, min_samples_split=2, n_estimators=20;, score=0.899 total time= 0.0s\n","[CV 3/5] END bootstrap=False, max_depth=2, max_features=log2, min_samples_leaf=4, min_samples_split=2, n_estimators=20;, score=0.899 total time= 0.0s\n","[CV 4/5] END bootstrap=False, max_depth=2, max_features=log2, min_samples_leaf=4, min_samples_split=2, n_estimators=20;, score=0.864 total time= 0.0s\n","[CV 5/5] END bootstrap=False, max_depth=2, max_features=log2, min_samples_leaf=4, min_samples_split=2, n_estimators=20;, score=0.869 total time= 0.0s\n","[CV 1/5] END bootstrap=False, max_depth=2, max_features=log2, min_samples_leaf=4, min_samples_split=2, n_estimators=30;, score=0.864 total time= 0.0s\n","[CV 2/5] END bootstrap=False, max_depth=2, max_features=log2, min_samples_leaf=4, min_samples_split=2, n_estimators=30;, score=0.879 total time= 0.1s\n","[CV 3/5] END bootstrap=False, max_depth=2, max_features=log2, min_samples_leaf=4, min_samples_split=2, n_estimators=30;, score=0.894 total time= 0.0s\n","[CV 4/5] END bootstrap=False, max_depth=2, max_features=log2, min_samples_leaf=4, min_samples_split=2, n_estimators=30;, score=0.869 total time= 0.0s\n","[CV 5/5] END bootstrap=False, max_depth=2, max_features=log2, min_samples_leaf=4, min_samples_split=2, n_estimators=30;, score=0.869 total time= 0.0s\n","[CV 1/5] END bootstrap=False, max_depth=2, max_features=log2, min_samples_leaf=4, min_samples_split=4, n_estimators=5;, score=0.879 total time= 0.0s\n","[CV 2/5] END bootstrap=False, max_depth=2, max_features=log2, min_samples_leaf=4, min_samples_split=4, n_estimators=5;, score=0.879 total time= 0.0s\n","[CV 3/5] END bootstrap=False, max_depth=2, max_features=log2, min_samples_leaf=4, min_samples_split=4, n_estimators=5;, score=0.874 total time= 0.0s\n","[CV 4/5] END bootstrap=False, max_depth=2, max_features=log2, min_samples_leaf=4, min_samples_split=4, n_estimators=5;, score=0.874 total time= 0.0s\n","[CV 5/5] END bootstrap=False, max_depth=2, max_features=log2, min_samples_leaf=4, min_samples_split=4, n_estimators=5;, score=0.889 total time= 0.0s\n","[CV 1/5] END bootstrap=False, max_depth=2, max_features=log2, min_samples_leaf=4, min_samples_split=4, n_estimators=10;, score=0.859 total time= 0.0s\n","[CV 2/5] END bootstrap=False, max_depth=2, max_features=log2, min_samples_leaf=4, min_samples_split=4, n_estimators=10;, score=0.864 total time= 0.0s\n","[CV 3/5] END bootstrap=False, max_depth=2, max_features=log2, min_samples_leaf=4, min_samples_split=4, n_estimators=10;, score=0.894 total time= 0.0s\n","[CV 4/5] END bootstrap=False, max_depth=2, max_features=log2, min_samples_leaf=4, min_samples_split=4, n_estimators=10;, score=0.848 total time= 0.0s\n","[CV 5/5] END bootstrap=False, max_depth=2, max_features=log2, min_samples_leaf=4, min_samples_split=4, n_estimators=10;, score=0.879 total time= 0.0s\n","[CV 1/5] END bootstrap=False, max_depth=2, max_features=log2, min_samples_leaf=4, min_samples_split=4, n_estimators=20;, score=0.859 total time= 0.0s\n","[CV 2/5] END bootstrap=False, max_depth=2, max_features=log2, min_samples_leaf=4, min_samples_split=4, n_estimators=20;, score=0.874 total time= 0.0s\n","[CV 3/5] END bootstrap=False, max_depth=2, max_features=log2, min_samples_leaf=4, min_samples_split=4, n_estimators=20;, score=0.899 total time= 0.0s\n","[CV 4/5] END bootstrap=False, max_depth=2, max_features=log2, min_samples_leaf=4, min_samples_split=4, n_estimators=20;, score=0.859 total time= 0.0s\n","[CV 5/5] END bootstrap=False, max_depth=2, max_features=log2, min_samples_leaf=4, min_samples_split=4, n_estimators=20;, score=0.889 total time= 0.0s\n","[CV 1/5] END bootstrap=False, max_depth=2, max_features=log2, min_samples_leaf=4, min_samples_split=4, n_estimators=30;, score=0.864 total time= 0.0s\n","[CV 2/5] END bootstrap=False, max_depth=2, max_features=log2, min_samples_leaf=4, min_samples_split=4, n_estimators=30;, score=0.879 total time= 0.0s\n","[CV 3/5] END bootstrap=False, max_depth=2, max_features=log2, min_samples_leaf=4, min_samples_split=4, n_estimators=30;, score=0.884 total time= 0.1s\n","[CV 4/5] END bootstrap=False, max_depth=2, max_features=log2, min_samples_leaf=4, min_samples_split=4, n_estimators=30;, score=0.848 total time= 0.0s\n","[CV 5/5] END bootstrap=False, max_depth=2, max_features=log2, min_samples_leaf=4, min_samples_split=4, n_estimators=30;, score=0.884 total time= 0.0s\n","[CV 1/5] END bootstrap=False, max_depth=2, max_features=log2, min_samples_leaf=4, min_samples_split=6, n_estimators=5;, score=0.864 total time= 0.0s\n","[CV 2/5] END bootstrap=False, max_depth=2, max_features=log2, min_samples_leaf=4, min_samples_split=6, n_estimators=5;, score=0.869 total time= 0.0s\n","[CV 3/5] END bootstrap=False, max_depth=2, max_features=log2, min_samples_leaf=4, min_samples_split=6, n_estimators=5;, score=0.884 total time= 0.0s\n","[CV 4/5] END bootstrap=False, max_depth=2, max_features=log2, min_samples_leaf=4, min_samples_split=6, n_estimators=5;, score=0.859 total time= 0.0s\n","[CV 5/5] END bootstrap=False, max_depth=2, max_features=log2, min_samples_leaf=4, min_samples_split=6, n_estimators=5;, score=0.879 total time= 0.0s\n","[CV 1/5] END bootstrap=False, max_depth=2, max_features=log2, min_samples_leaf=4, min_samples_split=6, n_estimators=10;, score=0.854 total time= 0.0s\n","[CV 2/5] END bootstrap=False, max_depth=2, max_features=log2, min_samples_leaf=4, min_samples_split=6, n_estimators=10;, score=0.884 total time= 0.0s\n","[CV 3/5] END bootstrap=False, max_depth=2, max_features=log2, min_samples_leaf=4, min_samples_split=6, n_estimators=10;, score=0.909 total time= 0.0s\n","[CV 4/5] END bootstrap=False, max_depth=2, max_features=log2, min_samples_leaf=4, min_samples_split=6, n_estimators=10;, score=0.884 total time= 0.0s\n","[CV 5/5] END bootstrap=False, max_depth=2, max_features=log2, min_samples_leaf=4, min_samples_split=6, n_estimators=10;, score=0.879 total time= 0.0s\n","[CV 1/5] END bootstrap=False, max_depth=2, max_features=log2, min_samples_leaf=4, min_samples_split=6, n_estimators=20;, score=0.869 total time= 0.0s\n","[CV 2/5] END bootstrap=False, max_depth=2, max_features=log2, min_samples_leaf=4, min_samples_split=6, n_estimators=20;, score=0.869 total time= 0.0s\n","[CV 3/5] END bootstrap=False, max_depth=2, max_features=log2, min_samples_leaf=4, min_samples_split=6, n_estimators=20;, score=0.904 total time= 0.0s\n","[CV 4/5] END bootstrap=False, max_depth=2, max_features=log2, min_samples_leaf=4, min_samples_split=6, n_estimators=20;, score=0.869 total time= 0.0s\n","[CV 5/5] END bootstrap=False, max_depth=2, max_features=log2, min_samples_leaf=4, min_samples_split=6, n_estimators=20;, score=0.889 total time= 0.0s\n","[CV 1/5] END bootstrap=False, max_depth=2, max_features=log2, min_samples_leaf=4, min_samples_split=6, n_estimators=30;, score=0.869 total time= 0.0s\n","[CV 2/5] END bootstrap=False, max_depth=2, max_features=log2, min_samples_leaf=4, min_samples_split=6, n_estimators=30;, score=0.899 total time= 0.0s\n","[CV 3/5] END bootstrap=False, max_depth=2, max_features=log2, min_samples_leaf=4, min_samples_split=6, n_estimators=30;, score=0.879 total time= 0.0s\n","[CV 4/5] END bootstrap=False, max_depth=2, max_features=log2, min_samples_leaf=4, min_samples_split=6, n_estimators=30;, score=0.854 total time= 0.1s\n","[CV 5/5] END bootstrap=False, max_depth=2, max_features=log2, min_samples_leaf=4, min_samples_split=6, n_estimators=30;, score=0.869 total time= 0.1s\n","[CV 1/5] END bootstrap=False, max_depth=2, max_features=log2, min_samples_leaf=6, min_samples_split=2, n_estimators=5;, score=0.874 total time= 0.0s\n","[CV 2/5] END bootstrap=False, max_depth=2, max_features=log2, min_samples_leaf=6, min_samples_split=2, n_estimators=5;, score=0.899 total time= 0.0s\n","[CV 3/5] END bootstrap=False, max_depth=2, max_features=log2, min_samples_leaf=6, min_samples_split=2, n_estimators=5;, score=0.884 total time= 0.0s\n","[CV 4/5] END bootstrap=False, max_depth=2, max_features=log2, min_samples_leaf=6, min_samples_split=2, n_estimators=5;, score=0.854 total time= 0.0s\n","[CV 5/5] END bootstrap=False, max_depth=2, max_features=log2, min_samples_leaf=6, min_samples_split=2, n_estimators=5;, score=0.894 total time= 0.0s\n","[CV 1/5] END bootstrap=False, max_depth=2, max_features=log2, min_samples_leaf=6, min_samples_split=2, n_estimators=10;, score=0.864 total time= 0.0s\n","[CV 2/5] END bootstrap=False, max_depth=2, max_features=log2, min_samples_leaf=6, min_samples_split=2, n_estimators=10;, score=0.894 total time= 0.0s\n","[CV 3/5] END bootstrap=False, max_depth=2, max_features=log2, min_samples_leaf=6, min_samples_split=2, n_estimators=10;, score=0.879 total time= 0.0s\n","[CV 4/5] END bootstrap=False, max_depth=2, max_features=log2, min_samples_leaf=6, min_samples_split=2, n_estimators=10;, score=0.864 total time= 0.0s\n","[CV 5/5] END bootstrap=False, max_depth=2, max_features=log2, min_samples_leaf=6, min_samples_split=2, n_estimators=10;, score=0.879 total time= 0.0s\n","[CV 1/5] END bootstrap=False, max_depth=2, max_features=log2, min_samples_leaf=6, min_samples_split=2, n_estimators=20;, score=0.859 total time= 0.0s\n","[CV 2/5] END bootstrap=False, max_depth=2, max_features=log2, min_samples_leaf=6, min_samples_split=2, n_estimators=20;, score=0.874 total time= 0.0s\n","[CV 3/5] END bootstrap=False, max_depth=2, max_features=log2, min_samples_leaf=6, min_samples_split=2, n_estimators=20;, score=0.874 total time= 0.0s\n","[CV 4/5] END bootstrap=False, max_depth=2, max_features=log2, min_samples_leaf=6, min_samples_split=2, n_estimators=20;, score=0.884 total time= 0.0s\n","[CV 5/5] END bootstrap=False, max_depth=2, max_features=log2, min_samples_leaf=6, min_samples_split=2, n_estimators=20;, score=0.874 total time= 0.0s\n","[CV 1/5] END bootstrap=False, max_depth=2, max_features=log2, min_samples_leaf=6, min_samples_split=2, n_estimators=30;, score=0.869 total time= 0.1s\n","[CV 2/5] END bootstrap=False, max_depth=2, max_features=log2, min_samples_leaf=6, min_samples_split=2, n_estimators=30;, score=0.874 total time= 0.0s\n","[CV 3/5] END bootstrap=False, max_depth=2, max_features=log2, min_samples_leaf=6, min_samples_split=2, n_estimators=30;, score=0.879 total time= 0.0s\n","[CV 4/5] END bootstrap=False, max_depth=2, max_features=log2, min_samples_leaf=6, min_samples_split=2, n_estimators=30;, score=0.854 total time= 0.0s\n","[CV 5/5] END bootstrap=False, max_depth=2, max_features=log2, min_samples_leaf=6, min_samples_split=2, n_estimators=30;, score=0.889 total time= 0.0s\n","[CV 1/5] END bootstrap=False, max_depth=2, max_features=log2, min_samples_leaf=6, min_samples_split=4, n_estimators=5;, score=0.859 total time= 0.0s\n","[CV 2/5] END bootstrap=False, max_depth=2, max_features=log2, min_samples_leaf=6, min_samples_split=4, n_estimators=5;, score=0.879 total time= 0.0s\n","[CV 3/5] END bootstrap=False, max_depth=2, max_features=log2, min_samples_leaf=6, min_samples_split=4, n_estimators=5;, score=0.869 total time= 0.0s\n","[CV 4/5] END bootstrap=False, max_depth=2, max_features=log2, min_samples_leaf=6, min_samples_split=4, n_estimators=5;, score=0.889 total time= 0.0s\n","[CV 5/5] END bootstrap=False, max_depth=2, max_features=log2, min_samples_leaf=6, min_samples_split=4, n_estimators=5;, score=0.894 total time= 0.0s\n","[CV 1/5] END bootstrap=False, max_depth=2, max_features=log2, min_samples_leaf=6, min_samples_split=4, n_estimators=10;, score=0.864 total time= 0.0s\n","[CV 2/5] END bootstrap=False, max_depth=2, max_features=log2, min_samples_leaf=6, min_samples_split=4, n_estimators=10;, score=0.879 total time= 0.0s\n","[CV 3/5] END bootstrap=False, max_depth=2, max_features=log2, min_samples_leaf=6, min_samples_split=4, n_estimators=10;, score=0.904 total time= 0.0s\n","[CV 4/5] END bootstrap=False, max_depth=2, max_features=log2, min_samples_leaf=6, min_samples_split=4, n_estimators=10;, score=0.838 total time= 0.0s\n","[CV 5/5] END bootstrap=False, max_depth=2, max_features=log2, min_samples_leaf=6, min_samples_split=4, n_estimators=10;, score=0.879 total time= 0.0s\n","[CV 1/5] END bootstrap=False, max_depth=2, max_features=log2, min_samples_leaf=6, min_samples_split=4, n_estimators=20;, score=0.859 total time= 0.0s\n","[CV 2/5] END bootstrap=False, max_depth=2, max_features=log2, min_samples_leaf=6, min_samples_split=4, n_estimators=20;, score=0.874 total time= 0.0s\n","[CV 3/5] END bootstrap=False, max_depth=2, max_features=log2, min_samples_leaf=6, min_samples_split=4, n_estimators=20;, score=0.884 total time= 0.0s\n","[CV 4/5] END bootstrap=False, max_depth=2, max_features=log2, min_samples_leaf=6, min_samples_split=4, n_estimators=20;, score=0.894 total time= 0.0s\n","[CV 5/5] END bootstrap=False, max_depth=2, max_features=log2, min_samples_leaf=6, min_samples_split=4, n_estimators=20;, score=0.884 total time= 0.0s\n","[CV 1/5] END bootstrap=False, max_depth=2, max_features=log2, min_samples_leaf=6, min_samples_split=4, n_estimators=30;, score=0.859 total time= 0.0s\n","[CV 2/5] END bootstrap=False, max_depth=2, max_features=log2, min_samples_leaf=6, min_samples_split=4, n_estimators=30;, score=0.889 total time= 0.1s\n","[CV 3/5] END bootstrap=False, max_depth=2, max_features=log2, min_samples_leaf=6, min_samples_split=4, n_estimators=30;, score=0.884 total time= 0.1s\n","[CV 4/5] END bootstrap=False, max_depth=2, max_features=log2, min_samples_leaf=6, min_samples_split=4, n_estimators=30;, score=0.879 total time= 0.0s\n","[CV 5/5] END bootstrap=False, max_depth=2, max_features=log2, min_samples_leaf=6, min_samples_split=4, n_estimators=30;, score=0.879 total time= 0.1s\n","[CV 1/5] END bootstrap=False, max_depth=2, max_features=log2, min_samples_leaf=6, min_samples_split=6, n_estimators=5;, score=0.859 total time= 0.0s\n","[CV 2/5] END bootstrap=False, max_depth=2, max_features=log2, min_samples_leaf=6, min_samples_split=6, n_estimators=5;, score=0.884 total time= 0.0s\n","[CV 3/5] END bootstrap=False, max_depth=2, max_features=log2, min_samples_leaf=6, min_samples_split=6, n_estimators=5;, score=0.894 total time= 0.0s\n","[CV 4/5] END bootstrap=False, max_depth=2, max_features=log2, min_samples_leaf=6, min_samples_split=6, n_estimators=5;, score=0.848 total time= 0.0s\n","[CV 5/5] END bootstrap=False, max_depth=2, max_features=log2, min_samples_leaf=6, min_samples_split=6, n_estimators=5;, score=0.889 total time= 0.0s\n","[CV 1/5] END bootstrap=False, max_depth=2, max_features=log2, min_samples_leaf=6, min_samples_split=6, n_estimators=10;, score=0.854 total time= 0.0s\n","[CV 2/5] END bootstrap=False, max_depth=2, max_features=log2, min_samples_leaf=6, min_samples_split=6, n_estimators=10;, score=0.899 total time= 0.0s\n","[CV 3/5] END bootstrap=False, max_depth=2, max_features=log2, min_samples_leaf=6, min_samples_split=6, n_estimators=10;, score=0.874 total time= 0.0s\n","[CV 4/5] END bootstrap=False, max_depth=2, max_features=log2, min_samples_leaf=6, min_samples_split=6, n_estimators=10;, score=0.859 total time= 0.0s\n","[CV 5/5] END bootstrap=False, max_depth=2, max_features=log2, min_samples_leaf=6, min_samples_split=6, n_estimators=10;, score=0.889 total time= 0.0s\n","[CV 1/5] END bootstrap=False, max_depth=2, max_features=log2, min_samples_leaf=6, min_samples_split=6, n_estimators=20;, score=0.864 total time= 0.0s\n","[CV 2/5] END bootstrap=False, max_depth=2, max_features=log2, min_samples_leaf=6, min_samples_split=6, n_estimators=20;, score=0.899 total time= 0.0s\n","[CV 3/5] END bootstrap=False, max_depth=2, max_features=log2, min_samples_leaf=6, min_samples_split=6, n_estimators=20;, score=0.879 total time= 0.0s\n","[CV 4/5] END bootstrap=False, max_depth=2, max_features=log2, min_samples_leaf=6, min_samples_split=6, n_estimators=20;, score=0.864 total time= 0.0s\n","[CV 5/5] END bootstrap=False, max_depth=2, max_features=log2, min_samples_leaf=6, min_samples_split=6, n_estimators=20;, score=0.869 total time= 0.0s\n","[CV 1/5] END bootstrap=False, max_depth=2, max_features=log2, min_samples_leaf=6, min_samples_split=6, n_estimators=30;, score=0.869 total time= 0.1s\n","[CV 2/5] END bootstrap=False, max_depth=2, max_features=log2, min_samples_leaf=6, min_samples_split=6, n_estimators=30;, score=0.884 total time= 0.0s\n","[CV 3/5] END bootstrap=False, max_depth=2, max_features=log2, min_samples_leaf=6, min_samples_split=6, n_estimators=30;, score=0.904 total time= 0.1s\n","[CV 4/5] END bootstrap=False, max_depth=2, max_features=log2, min_samples_leaf=6, min_samples_split=6, n_estimators=30;, score=0.869 total time= 0.0s\n","[CV 5/5] END bootstrap=False, max_depth=2, max_features=log2, min_samples_leaf=6, min_samples_split=6, n_estimators=30;, score=0.874 total time= 0.0s\n","[CV 1/5] END bootstrap=False, max_depth=2, max_features=None, min_samples_leaf=2, min_samples_split=2, n_estimators=5;, score=0.859 total time= 0.0s\n","[CV 2/5] END bootstrap=False, max_depth=2, max_features=None, min_samples_leaf=2, min_samples_split=2, n_estimators=5;, score=0.899 total time= 0.0s\n","[CV 3/5] END bootstrap=False, max_depth=2, max_features=None, min_samples_leaf=2, min_samples_split=2, n_estimators=5;, score=0.894 total time= 0.0s\n","[CV 4/5] END bootstrap=False, max_depth=2, max_features=None, min_samples_leaf=2, min_samples_split=2, n_estimators=5;, score=0.859 total time= 0.0s\n","[CV 5/5] END bootstrap=False, max_depth=2, max_features=None, min_samples_leaf=2, min_samples_split=2, n_estimators=5;, score=0.874 total time= 0.0s\n","[CV 1/5] END bootstrap=False, max_depth=2, max_features=None, min_samples_leaf=2, min_samples_split=2, n_estimators=10;, score=0.859 total time= 0.0s\n","[CV 2/5] END bootstrap=False, max_depth=2, max_features=None, min_samples_leaf=2, min_samples_split=2, n_estimators=10;, score=0.899 total time= 0.0s\n","[CV 3/5] END bootstrap=False, max_depth=2, max_features=None, min_samples_leaf=2, min_samples_split=2, n_estimators=10;, score=0.894 total time= 0.0s\n","[CV 4/5] END bootstrap=False, max_depth=2, max_features=None, min_samples_leaf=2, min_samples_split=2, n_estimators=10;, score=0.859 total time= 0.0s\n","[CV 5/5] END bootstrap=False, max_depth=2, max_features=None, min_samples_leaf=2, min_samples_split=2, n_estimators=10;, score=0.874 total time= 0.0s\n","[CV 1/5] END bootstrap=False, max_depth=2, max_features=None, min_samples_leaf=2, min_samples_split=2, n_estimators=20;, score=0.859 total time= 0.1s\n","[CV 2/5] END bootstrap=False, max_depth=2, max_features=None, min_samples_leaf=2, min_samples_split=2, n_estimators=20;, score=0.899 total time= 0.0s\n","[CV 3/5] END bootstrap=False, max_depth=2, max_features=None, min_samples_leaf=2, min_samples_split=2, n_estimators=20;, score=0.894 total time= 0.0s\n","[CV 4/5] END bootstrap=False, max_depth=2, max_features=None, min_samples_leaf=2, min_samples_split=2, n_estimators=20;, score=0.859 total time= 0.0s\n","[CV 5/5] END bootstrap=False, max_depth=2, max_features=None, min_samples_leaf=2, min_samples_split=2, n_estimators=20;, score=0.874 total time= 0.0s\n","[CV 1/5] END bootstrap=False, max_depth=2, max_features=None, min_samples_leaf=2, min_samples_split=2, n_estimators=30;, score=0.859 total time= 0.1s\n","[CV 2/5] END bootstrap=False, max_depth=2, max_features=None, min_samples_leaf=2, min_samples_split=2, n_estimators=30;, score=0.899 total time= 0.1s\n","[CV 3/5] END bootstrap=False, max_depth=2, max_features=None, min_samples_leaf=2, min_samples_split=2, n_estimators=30;, score=0.894 total time= 0.1s\n","[CV 4/5] END bootstrap=False, max_depth=2, max_features=None, min_samples_leaf=2, min_samples_split=2, n_estimators=30;, score=0.859 total time= 0.1s\n","[CV 5/5] END bootstrap=False, max_depth=2, max_features=None, min_samples_leaf=2, min_samples_split=2, n_estimators=30;, score=0.874 total time= 0.1s\n","[CV 1/5] END bootstrap=False, max_depth=2, max_features=None, min_samples_leaf=2, min_samples_split=4, n_estimators=5;, score=0.859 total time= 0.0s\n","[CV 2/5] END bootstrap=False, max_depth=2, max_features=None, min_samples_leaf=2, min_samples_split=4, n_estimators=5;, score=0.899 total time= 0.0s\n","[CV 3/5] END bootstrap=False, max_depth=2, max_features=None, min_samples_leaf=2, min_samples_split=4, n_estimators=5;, score=0.894 total time= 0.0s\n","[CV 4/5] END bootstrap=False, max_depth=2, max_features=None, min_samples_leaf=2, min_samples_split=4, n_estimators=5;, score=0.859 total time= 0.0s\n","[CV 5/5] END bootstrap=False, max_depth=2, max_features=None, min_samples_leaf=2, min_samples_split=4, n_estimators=5;, score=0.874 total time= 0.0s\n","[CV 1/5] END bootstrap=False, max_depth=2, max_features=None, min_samples_leaf=2, min_samples_split=4, n_estimators=10;, score=0.859 total time= 0.0s\n","[CV 2/5] END bootstrap=False, max_depth=2, max_features=None, min_samples_leaf=2, min_samples_split=4, n_estimators=10;, score=0.899 total time= 0.0s\n","[CV 3/5] END bootstrap=False, max_depth=2, max_features=None, min_samples_leaf=2, min_samples_split=4, n_estimators=10;, score=0.894 total time= 0.0s\n","[CV 4/5] END bootstrap=False, max_depth=2, max_features=None, min_samples_leaf=2, min_samples_split=4, n_estimators=10;, score=0.859 total time= 0.0s\n","[CV 5/5] END bootstrap=False, max_depth=2, max_features=None, min_samples_leaf=2, min_samples_split=4, n_estimators=10;, score=0.874 total time= 0.0s\n","[CV 1/5] END bootstrap=False, max_depth=2, max_features=None, min_samples_leaf=2, min_samples_split=4, n_estimators=20;, score=0.859 total time= 0.0s\n","[CV 2/5] END bootstrap=False, max_depth=2, max_features=None, min_samples_leaf=2, min_samples_split=4, n_estimators=20;, score=0.899 total time= 0.0s\n","[CV 3/5] END bootstrap=False, max_depth=2, max_features=None, min_samples_leaf=2, min_samples_split=4, n_estimators=20;, score=0.894 total time= 0.0s\n","[CV 4/5] END bootstrap=False, max_depth=2, max_features=None, min_samples_leaf=2, min_samples_split=4, n_estimators=20;, score=0.859 total time= 0.0s\n","[CV 5/5] END bootstrap=False, max_depth=2, max_features=None, min_samples_leaf=2, min_samples_split=4, n_estimators=20;, score=0.874 total time= 0.0s\n","[CV 1/5] END bootstrap=False, max_depth=2, max_features=None, min_samples_leaf=2, min_samples_split=4, n_estimators=30;, score=0.859 total time= 0.1s\n","[CV 2/5] END bootstrap=False, max_depth=2, max_features=None, min_samples_leaf=2, min_samples_split=4, n_estimators=30;, score=0.899 total time= 0.1s\n","[CV 3/5] END bootstrap=False, max_depth=2, max_features=None, min_samples_leaf=2, min_samples_split=4, n_estimators=30;, score=0.894 total time= 0.1s\n","[CV 4/5] END bootstrap=False, max_depth=2, max_features=None, min_samples_leaf=2, min_samples_split=4, n_estimators=30;, score=0.859 total time= 0.1s\n","[CV 5/5] END bootstrap=False, max_depth=2, max_features=None, min_samples_leaf=2, min_samples_split=4, n_estimators=30;, score=0.874 total time= 0.1s\n","[CV 1/5] END bootstrap=False, max_depth=2, max_features=None, min_samples_leaf=2, min_samples_split=6, n_estimators=5;, score=0.859 total time= 0.0s\n","[CV 2/5] END bootstrap=False, max_depth=2, max_features=None, min_samples_leaf=2, min_samples_split=6, n_estimators=5;, score=0.899 total time= 0.0s\n","[CV 3/5] END bootstrap=False, max_depth=2, max_features=None, min_samples_leaf=2, min_samples_split=6, n_estimators=5;, score=0.894 total time= 0.0s\n","[CV 4/5] END bootstrap=False, max_depth=2, max_features=None, min_samples_leaf=2, min_samples_split=6, n_estimators=5;, score=0.859 total time= 0.0s\n","[CV 5/5] END bootstrap=False, max_depth=2, max_features=None, min_samples_leaf=2, min_samples_split=6, n_estimators=5;, score=0.874 total time= 0.0s\n","[CV 1/5] END bootstrap=False, max_depth=2, max_features=None, min_samples_leaf=2, min_samples_split=6, n_estimators=10;, score=0.859 total time= 0.0s\n","[CV 2/5] END bootstrap=False, max_depth=2, max_features=None, min_samples_leaf=2, min_samples_split=6, n_estimators=10;, score=0.899 total time= 0.0s\n","[CV 3/5] END bootstrap=False, max_depth=2, max_features=None, min_samples_leaf=2, min_samples_split=6, n_estimators=10;, score=0.894 total time= 0.0s\n","[CV 4/5] END bootstrap=False, max_depth=2, max_features=None, min_samples_leaf=2, min_samples_split=6, n_estimators=10;, score=0.859 total time= 0.0s\n","[CV 5/5] END bootstrap=False, max_depth=2, max_features=None, min_samples_leaf=2, min_samples_split=6, n_estimators=10;, score=0.874 total time= 0.0s\n","[CV 1/5] END bootstrap=False, max_depth=2, max_features=None, min_samples_leaf=2, min_samples_split=6, n_estimators=20;, score=0.859 total time= 0.0s\n","[CV 2/5] END bootstrap=False, max_depth=2, max_features=None, min_samples_leaf=2, min_samples_split=6, n_estimators=20;, score=0.899 total time= 0.0s\n","[CV 3/5] END bootstrap=False, max_depth=2, max_features=None, min_samples_leaf=2, min_samples_split=6, n_estimators=20;, score=0.894 total time= 0.0s\n","[CV 4/5] END bootstrap=False, max_depth=2, max_features=None, min_samples_leaf=2, min_samples_split=6, n_estimators=20;, score=0.859 total time= 0.0s\n","[CV 5/5] END bootstrap=False, max_depth=2, max_features=None, min_samples_leaf=2, min_samples_split=6, n_estimators=20;, score=0.874 total time= 0.0s\n","[CV 1/5] END bootstrap=False, max_depth=2, max_features=None, min_samples_leaf=2, min_samples_split=6, n_estimators=30;, score=0.859 total time= 0.1s\n","[CV 2/5] END bootstrap=False, max_depth=2, max_features=None, min_samples_leaf=2, min_samples_split=6, n_estimators=30;, score=0.899 total time= 0.1s\n","[CV 3/5] END bootstrap=False, max_depth=2, max_features=None, min_samples_leaf=2, min_samples_split=6, n_estimators=30;, score=0.894 total time= 0.1s\n","[CV 4/5] END bootstrap=False, max_depth=2, max_features=None, min_samples_leaf=2, min_samples_split=6, n_estimators=30;, score=0.859 total time= 0.1s\n","[CV 5/5] END bootstrap=False, max_depth=2, max_features=None, min_samples_leaf=2, min_samples_split=6, n_estimators=30;, score=0.874 total time= 0.1s\n","[CV 1/5] END bootstrap=False, max_depth=2, max_features=None, min_samples_leaf=4, min_samples_split=2, n_estimators=5;, score=0.859 total time= 0.0s\n","[CV 2/5] END bootstrap=False, max_depth=2, max_features=None, min_samples_leaf=4, min_samples_split=2, n_estimators=5;, score=0.899 total time= 0.0s\n","[CV 3/5] END bootstrap=False, max_depth=2, max_features=None, min_samples_leaf=4, min_samples_split=2, n_estimators=5;, score=0.894 total time= 0.0s\n","[CV 4/5] END bootstrap=False, max_depth=2, max_features=None, min_samples_leaf=4, min_samples_split=2, n_estimators=5;, score=0.859 total time= 0.0s\n","[CV 5/5] END bootstrap=False, max_depth=2, max_features=None, min_samples_leaf=4, min_samples_split=2, n_estimators=5;, score=0.874 total time= 0.0s\n","[CV 1/5] END bootstrap=False, max_depth=2, max_features=None, min_samples_leaf=4, min_samples_split=2, n_estimators=10;, score=0.859 total time= 0.0s\n","[CV 2/5] END bootstrap=False, max_depth=2, max_features=None, min_samples_leaf=4, min_samples_split=2, n_estimators=10;, score=0.899 total time= 0.0s\n","[CV 3/5] END bootstrap=False, max_depth=2, max_features=None, min_samples_leaf=4, min_samples_split=2, n_estimators=10;, score=0.894 total time= 0.0s\n","[CV 4/5] END bootstrap=False, max_depth=2, max_features=None, min_samples_leaf=4, min_samples_split=2, n_estimators=10;, score=0.859 total time= 0.0s\n","[CV 5/5] END bootstrap=False, max_depth=2, max_features=None, min_samples_leaf=4, min_samples_split=2, n_estimators=10;, score=0.874 total time= 0.0s\n","[CV 1/5] END bootstrap=False, max_depth=2, max_features=None, min_samples_leaf=4, min_samples_split=2, n_estimators=20;, score=0.859 total time= 0.1s\n","[CV 2/5] END bootstrap=False, max_depth=2, max_features=None, min_samples_leaf=4, min_samples_split=2, n_estimators=20;, score=0.899 total time= 0.0s\n","[CV 3/5] END bootstrap=False, max_depth=2, max_features=None, min_samples_leaf=4, min_samples_split=2, n_estimators=20;, score=0.894 total time= 0.0s\n","[CV 4/5] END bootstrap=False, max_depth=2, max_features=None, min_samples_leaf=4, min_samples_split=2, n_estimators=20;, score=0.859 total time= 0.0s\n","[CV 5/5] END bootstrap=False, max_depth=2, max_features=None, min_samples_leaf=4, min_samples_split=2, n_estimators=20;, score=0.874 total time= 0.0s\n","[CV 1/5] END bootstrap=False, max_depth=2, max_features=None, min_samples_leaf=4, min_samples_split=2, n_estimators=30;, score=0.859 total time= 0.1s\n","[CV 2/5] END bootstrap=False, max_depth=2, max_features=None, min_samples_leaf=4, min_samples_split=2, n_estimators=30;, score=0.899 total time= 0.1s\n","[CV 3/5] END bootstrap=False, max_depth=2, max_features=None, min_samples_leaf=4, min_samples_split=2, n_estimators=30;, score=0.894 total time= 0.1s\n","[CV 4/5] END bootstrap=False, max_depth=2, max_features=None, min_samples_leaf=4, min_samples_split=2, n_estimators=30;, score=0.859 total time= 0.1s\n","[CV 5/5] END bootstrap=False, max_depth=2, max_features=None, min_samples_leaf=4, min_samples_split=2, n_estimators=30;, score=0.874 total time= 0.1s\n","[CV 1/5] END bootstrap=False, max_depth=2, max_features=None, min_samples_leaf=4, min_samples_split=4, n_estimators=5;, score=0.859 total time= 0.0s\n","[CV 2/5] END bootstrap=False, max_depth=2, max_features=None, min_samples_leaf=4, min_samples_split=4, n_estimators=5;, score=0.899 total time= 0.0s\n","[CV 3/5] END bootstrap=False, max_depth=2, max_features=None, min_samples_leaf=4, min_samples_split=4, n_estimators=5;, score=0.894 total time= 0.0s\n","[CV 4/5] END bootstrap=False, max_depth=2, max_features=None, min_samples_leaf=4, min_samples_split=4, n_estimators=5;, score=0.859 total time= 0.0s\n","[CV 5/5] END bootstrap=False, max_depth=2, max_features=None, min_samples_leaf=4, min_samples_split=4, n_estimators=5;, score=0.874 total time= 0.0s\n","[CV 1/5] END bootstrap=False, max_depth=2, max_features=None, min_samples_leaf=4, min_samples_split=4, n_estimators=10;, score=0.859 total time= 0.0s\n","[CV 2/5] END bootstrap=False, max_depth=2, max_features=None, min_samples_leaf=4, min_samples_split=4, n_estimators=10;, score=0.899 total time= 0.0s\n","[CV 3/5] END bootstrap=False, max_depth=2, max_features=None, min_samples_leaf=4, min_samples_split=4, n_estimators=10;, score=0.894 total time= 0.0s\n","[CV 4/5] END bootstrap=False, max_depth=2, max_features=None, min_samples_leaf=4, min_samples_split=4, n_estimators=10;, score=0.859 total time= 0.0s\n","[CV 5/5] END bootstrap=False, max_depth=2, max_features=None, min_samples_leaf=4, min_samples_split=4, n_estimators=10;, score=0.874 total time= 0.0s\n","[CV 1/5] END bootstrap=False, max_depth=2, max_features=None, min_samples_leaf=4, min_samples_split=4, n_estimators=20;, score=0.859 total time= 0.1s\n","[CV 2/5] END bootstrap=False, max_depth=2, max_features=None, min_samples_leaf=4, min_samples_split=4, n_estimators=20;, score=0.899 total time= 0.0s\n","[CV 3/5] END bootstrap=False, max_depth=2, max_features=None, min_samples_leaf=4, min_samples_split=4, n_estimators=20;, score=0.894 total time= 0.0s\n","[CV 4/5] END bootstrap=False, max_depth=2, max_features=None, min_samples_leaf=4, min_samples_split=4, n_estimators=20;, score=0.859 total time= 0.1s\n","[CV 5/5] END bootstrap=False, max_depth=2, max_features=None, min_samples_leaf=4, min_samples_split=4, n_estimators=20;, score=0.874 total time= 0.0s\n","[CV 1/5] END bootstrap=False, max_depth=2, max_features=None, min_samples_leaf=4, min_samples_split=4, n_estimators=30;, score=0.859 total time= 0.1s\n","[CV 2/5] END bootstrap=False, max_depth=2, max_features=None, min_samples_leaf=4, min_samples_split=4, n_estimators=30;, score=0.899 total time= 0.1s\n","[CV 3/5] END bootstrap=False, max_depth=2, max_features=None, min_samples_leaf=4, min_samples_split=4, n_estimators=30;, score=0.894 total time= 0.1s\n","[CV 4/5] END bootstrap=False, max_depth=2, max_features=None, min_samples_leaf=4, min_samples_split=4, n_estimators=30;, score=0.859 total time= 0.1s\n","[CV 5/5] END bootstrap=False, max_depth=2, max_features=None, min_samples_leaf=4, min_samples_split=4, n_estimators=30;, score=0.874 total time= 0.1s\n","[CV 1/5] END bootstrap=False, max_depth=2, max_features=None, min_samples_leaf=4, min_samples_split=6, n_estimators=5;, score=0.859 total time= 0.0s\n","[CV 2/5] END bootstrap=False, max_depth=2, max_features=None, min_samples_leaf=4, min_samples_split=6, n_estimators=5;, score=0.899 total time= 0.0s\n","[CV 3/5] END bootstrap=False, max_depth=2, max_features=None, min_samples_leaf=4, min_samples_split=6, n_estimators=5;, score=0.894 total time= 0.0s\n","[CV 4/5] END bootstrap=False, max_depth=2, max_features=None, min_samples_leaf=4, min_samples_split=6, n_estimators=5;, score=0.859 total time= 0.0s\n","[CV 5/5] END bootstrap=False, max_depth=2, max_features=None, min_samples_leaf=4, min_samples_split=6, n_estimators=5;, score=0.874 total time= 0.0s\n","[CV 1/5] END bootstrap=False, max_depth=2, max_features=None, min_samples_leaf=4, min_samples_split=6, n_estimators=10;, score=0.859 total time= 0.0s\n","[CV 2/5] END bootstrap=False, max_depth=2, max_features=None, min_samples_leaf=4, min_samples_split=6, n_estimators=10;, score=0.899 total time= 0.0s\n","[CV 3/5] END bootstrap=False, max_depth=2, max_features=None, min_samples_leaf=4, min_samples_split=6, n_estimators=10;, score=0.894 total time= 0.0s\n","[CV 4/5] END bootstrap=False, max_depth=2, max_features=None, min_samples_leaf=4, min_samples_split=6, n_estimators=10;, score=0.859 total time= 0.0s\n","[CV 5/5] END bootstrap=False, max_depth=2, max_features=None, min_samples_leaf=4, min_samples_split=6, n_estimators=10;, score=0.874 total time= 0.0s\n","[CV 1/5] END bootstrap=False, max_depth=2, max_features=None, min_samples_leaf=4, min_samples_split=6, n_estimators=20;, score=0.859 total time= 0.0s\n","[CV 2/5] END bootstrap=False, max_depth=2, max_features=None, min_samples_leaf=4, min_samples_split=6, n_estimators=20;, score=0.899 total time= 0.0s\n","[CV 3/5] END bootstrap=False, max_depth=2, max_features=None, min_samples_leaf=4, min_samples_split=6, n_estimators=20;, score=0.894 total time= 0.1s\n","[CV 4/5] END bootstrap=False, max_depth=2, max_features=None, min_samples_leaf=4, min_samples_split=6, n_estimators=20;, score=0.859 total time= 0.0s\n","[CV 5/5] END bootstrap=False, max_depth=2, max_features=None, min_samples_leaf=4, min_samples_split=6, n_estimators=20;, score=0.874 total time= 0.0s\n","[CV 1/5] END bootstrap=False, max_depth=2, max_features=None, min_samples_leaf=4, min_samples_split=6, n_estimators=30;, score=0.859 total time= 0.1s\n","[CV 2/5] END bootstrap=False, max_depth=2, max_features=None, min_samples_leaf=4, min_samples_split=6, n_estimators=30;, score=0.899 total time= 0.1s\n","[CV 3/5] END bootstrap=False, max_depth=2, max_features=None, min_samples_leaf=4, min_samples_split=6, n_estimators=30;, score=0.894 total time= 0.1s\n","[CV 4/5] END bootstrap=False, max_depth=2, max_features=None, min_samples_leaf=4, min_samples_split=6, n_estimators=30;, score=0.859 total time= 0.1s\n","[CV 5/5] END bootstrap=False, max_depth=2, max_features=None, min_samples_leaf=4, min_samples_split=6, n_estimators=30;, score=0.874 total time= 0.1s\n","[CV 1/5] END bootstrap=False, max_depth=2, max_features=None, min_samples_leaf=6, min_samples_split=2, n_estimators=5;, score=0.859 total time= 0.0s\n","[CV 2/5] END bootstrap=False, max_depth=2, max_features=None, min_samples_leaf=6, min_samples_split=2, n_estimators=5;, score=0.899 total time= 0.0s\n","[CV 3/5] END bootstrap=False, max_depth=2, max_features=None, min_samples_leaf=6, min_samples_split=2, n_estimators=5;, score=0.894 total time= 0.0s\n","[CV 4/5] END bootstrap=False, max_depth=2, max_features=None, min_samples_leaf=6, min_samples_split=2, n_estimators=5;, score=0.859 total time= 0.0s\n","[CV 5/5] END bootstrap=False, max_depth=2, max_features=None, min_samples_leaf=6, min_samples_split=2, n_estimators=5;, score=0.874 total time= 0.0s\n","[CV 1/5] END bootstrap=False, max_depth=2, max_features=None, min_samples_leaf=6, min_samples_split=2, n_estimators=10;, score=0.859 total time= 0.0s\n","[CV 2/5] END bootstrap=False, max_depth=2, max_features=None, min_samples_leaf=6, min_samples_split=2, n_estimators=10;, score=0.899 total time= 0.0s\n","[CV 3/5] END bootstrap=False, max_depth=2, max_features=None, min_samples_leaf=6, min_samples_split=2, n_estimators=10;, score=0.894 total time= 0.0s\n","[CV 4/5] END bootstrap=False, max_depth=2, max_features=None, min_samples_leaf=6, min_samples_split=2, n_estimators=10;, score=0.859 total time= 0.0s\n","[CV 5/5] END bootstrap=False, max_depth=2, max_features=None, min_samples_leaf=6, min_samples_split=2, n_estimators=10;, score=0.874 total time= 0.0s\n","[CV 1/5] END bootstrap=False, max_depth=2, max_features=None, min_samples_leaf=6, min_samples_split=2, n_estimators=20;, score=0.859 total time= 0.1s\n","[CV 2/5] END bootstrap=False, max_depth=2, max_features=None, min_samples_leaf=6, min_samples_split=2, n_estimators=20;, score=0.899 total time= 0.1s\n","[CV 3/5] END bootstrap=False, max_depth=2, max_features=None, min_samples_leaf=6, min_samples_split=2, n_estimators=20;, score=0.894 total time= 0.1s\n","[CV 4/5] END bootstrap=False, max_depth=2, max_features=None, min_samples_leaf=6, min_samples_split=2, n_estimators=20;, score=0.859 total time= 0.1s\n","[CV 5/5] END bootstrap=False, max_depth=2, max_features=None, min_samples_leaf=6, min_samples_split=2, n_estimators=20;, score=0.874 total time= 0.1s\n","[CV 1/5] END bootstrap=False, max_depth=2, max_features=None, min_samples_leaf=6, min_samples_split=2, n_estimators=30;, score=0.859 total time= 0.1s\n","[CV 2/5] END bootstrap=False, max_depth=2, max_features=None, min_samples_leaf=6, min_samples_split=2, n_estimators=30;, score=0.899 total time= 0.1s\n","[CV 3/5] END bootstrap=False, max_depth=2, max_features=None, min_samples_leaf=6, min_samples_split=2, n_estimators=30;, score=0.894 total time= 0.1s\n","[CV 4/5] END bootstrap=False, max_depth=2, max_features=None, min_samples_leaf=6, min_samples_split=2, n_estimators=30;, score=0.859 total time= 0.1s\n","[CV 5/5] END bootstrap=False, max_depth=2, max_features=None, min_samples_leaf=6, min_samples_split=2, n_estimators=30;, score=0.874 total time= 0.1s\n","[CV 1/5] END bootstrap=False, max_depth=2, max_features=None, min_samples_leaf=6, min_samples_split=4, n_estimators=5;, score=0.859 total time= 0.0s\n","[CV 2/5] END bootstrap=False, max_depth=2, max_features=None, min_samples_leaf=6, min_samples_split=4, n_estimators=5;, score=0.899 total time= 0.0s\n","[CV 3/5] END bootstrap=False, max_depth=2, max_features=None, min_samples_leaf=6, min_samples_split=4, n_estimators=5;, score=0.894 total time= 0.0s\n","[CV 4/5] END bootstrap=False, max_depth=2, max_features=None, min_samples_leaf=6, min_samples_split=4, n_estimators=5;, score=0.859 total time= 0.0s\n","[CV 5/5] END bootstrap=False, max_depth=2, max_features=None, min_samples_leaf=6, min_samples_split=4, n_estimators=5;, score=0.874 total time= 0.0s\n","[CV 1/5] END bootstrap=False, max_depth=2, max_features=None, min_samples_leaf=6, min_samples_split=4, n_estimators=10;, score=0.859 total time= 0.0s\n","[CV 2/5] END bootstrap=False, max_depth=2, max_features=None, min_samples_leaf=6, min_samples_split=4, n_estimators=10;, score=0.899 total time= 0.0s\n","[CV 3/5] END bootstrap=False, max_depth=2, max_features=None, min_samples_leaf=6, min_samples_split=4, n_estimators=10;, score=0.894 total time= 0.0s\n","[CV 4/5] END bootstrap=False, max_depth=2, max_features=None, min_samples_leaf=6, min_samples_split=4, n_estimators=10;, score=0.859 total time= 0.0s\n","[CV 5/5] END bootstrap=False, max_depth=2, max_features=None, min_samples_leaf=6, min_samples_split=4, n_estimators=10;, score=0.874 total time= 0.0s\n","[CV 1/5] END bootstrap=False, max_depth=2, max_features=None, min_samples_leaf=6, min_samples_split=4, n_estimators=20;, score=0.859 total time= 0.1s\n","[CV 2/5] END bootstrap=False, max_depth=2, max_features=None, min_samples_leaf=6, min_samples_split=4, n_estimators=20;, score=0.899 total time= 0.1s\n","[CV 3/5] END bootstrap=False, max_depth=2, max_features=None, min_samples_leaf=6, min_samples_split=4, n_estimators=20;, score=0.894 total time= 0.1s\n","[CV 4/5] END bootstrap=False, max_depth=2, max_features=None, min_samples_leaf=6, min_samples_split=4, n_estimators=20;, score=0.859 total time= 0.1s\n","[CV 5/5] END bootstrap=False, max_depth=2, max_features=None, min_samples_leaf=6, min_samples_split=4, n_estimators=20;, score=0.874 total time= 0.1s\n","[CV 1/5] END bootstrap=False, max_depth=2, max_features=None, min_samples_leaf=6, min_samples_split=4, n_estimators=30;, score=0.859 total time= 0.1s\n","[CV 2/5] END bootstrap=False, max_depth=2, max_features=None, min_samples_leaf=6, min_samples_split=4, n_estimators=30;, score=0.899 total time= 0.1s\n","[CV 3/5] END bootstrap=False, max_depth=2, max_features=None, min_samples_leaf=6, min_samples_split=4, n_estimators=30;, score=0.894 total time= 0.1s\n","[CV 4/5] END bootstrap=False, max_depth=2, max_features=None, min_samples_leaf=6, min_samples_split=4, n_estimators=30;, score=0.859 total time= 0.1s\n","[CV 5/5] END bootstrap=False, max_depth=2, max_features=None, min_samples_leaf=6, min_samples_split=4, n_estimators=30;, score=0.874 total time= 0.1s\n","[CV 1/5] END bootstrap=False, max_depth=2, max_features=None, min_samples_leaf=6, min_samples_split=6, n_estimators=5;, score=0.859 total time= 0.0s\n","[CV 2/5] END bootstrap=False, max_depth=2, max_features=None, min_samples_leaf=6, min_samples_split=6, n_estimators=5;, score=0.899 total time= 0.0s\n","[CV 3/5] END bootstrap=False, max_depth=2, max_features=None, min_samples_leaf=6, min_samples_split=6, n_estimators=5;, score=0.894 total time= 0.0s\n","[CV 4/5] END bootstrap=False, max_depth=2, max_features=None, min_samples_leaf=6, min_samples_split=6, n_estimators=5;, score=0.859 total time= 0.0s\n","[CV 5/5] END bootstrap=False, max_depth=2, max_features=None, min_samples_leaf=6, min_samples_split=6, n_estimators=5;, score=0.874 total time= 0.0s\n","[CV 1/5] END bootstrap=False, max_depth=2, max_features=None, min_samples_leaf=6, min_samples_split=6, n_estimators=10;, score=0.859 total time= 0.0s\n","[CV 2/5] END bootstrap=False, max_depth=2, max_features=None, min_samples_leaf=6, min_samples_split=6, n_estimators=10;, score=0.899 total time= 0.0s\n","[CV 3/5] END bootstrap=False, max_depth=2, max_features=None, min_samples_leaf=6, min_samples_split=6, n_estimators=10;, score=0.894 total time= 0.1s\n","[CV 4/5] END bootstrap=False, max_depth=2, max_features=None, min_samples_leaf=6, min_samples_split=6, n_estimators=10;, score=0.859 total time= 0.0s\n","[CV 5/5] END bootstrap=False, max_depth=2, max_features=None, min_samples_leaf=6, min_samples_split=6, n_estimators=10;, score=0.874 total time= 0.0s\n","[CV 1/5] END bootstrap=False, max_depth=2, max_features=None, min_samples_leaf=6, min_samples_split=6, n_estimators=20;, score=0.859 total time= 0.1s\n","[CV 2/5] END bootstrap=False, max_depth=2, max_features=None, min_samples_leaf=6, min_samples_split=6, n_estimators=20;, score=0.899 total time= 0.1s\n","[CV 3/5] END bootstrap=False, max_depth=2, max_features=None, min_samples_leaf=6, min_samples_split=6, n_estimators=20;, score=0.894 total time= 0.1s\n","[CV 4/5] END bootstrap=False, max_depth=2, max_features=None, min_samples_leaf=6, min_samples_split=6, n_estimators=20;, score=0.859 total time= 0.1s\n","[CV 5/5] END bootstrap=False, max_depth=2, max_features=None, min_samples_leaf=6, min_samples_split=6, n_estimators=20;, score=0.874 total time= 0.1s\n","[CV 1/5] END bootstrap=False, max_depth=2, max_features=None, min_samples_leaf=6, min_samples_split=6, n_estimators=30;, score=0.859 total time= 0.1s\n","[CV 2/5] END bootstrap=False, max_depth=2, max_features=None, min_samples_leaf=6, min_samples_split=6, n_estimators=30;, score=0.899 total time= 0.1s\n","[CV 3/5] END bootstrap=False, max_depth=2, max_features=None, min_samples_leaf=6, min_samples_split=6, n_estimators=30;, score=0.894 total time= 0.1s\n","[CV 4/5] END bootstrap=False, max_depth=2, max_features=None, min_samples_leaf=6, min_samples_split=6, n_estimators=30;, score=0.859 total time= 0.1s\n","[CV 5/5] END bootstrap=False, max_depth=2, max_features=None, min_samples_leaf=6, min_samples_split=6, n_estimators=30;, score=0.874 total time= 0.1s\n","[CV 1/5] END bootstrap=False, max_depth=6, max_features=sqrt, min_samples_leaf=2, min_samples_split=2, n_estimators=5;, score=0.869 total time= 0.0s\n","[CV 2/5] END bootstrap=False, max_depth=6, max_features=sqrt, min_samples_leaf=2, min_samples_split=2, n_estimators=5;, score=0.904 total time= 0.0s\n","[CV 3/5] END bootstrap=False, max_depth=6, max_features=sqrt, min_samples_leaf=2, min_samples_split=2, n_estimators=5;, score=0.864 total time= 0.0s\n","[CV 4/5] END bootstrap=False, max_depth=6, max_features=sqrt, min_samples_leaf=2, min_samples_split=2, n_estimators=5;, score=0.874 total time= 0.0s\n","[CV 5/5] END bootstrap=False, max_depth=6, max_features=sqrt, min_samples_leaf=2, min_samples_split=2, n_estimators=5;, score=0.879 total time= 0.0s\n","[CV 1/5] END bootstrap=False, max_depth=6, max_features=sqrt, min_samples_leaf=2, min_samples_split=2, n_estimators=10;, score=0.843 total time= 0.0s\n","[CV 2/5] END bootstrap=False, max_depth=6, max_features=sqrt, min_samples_leaf=2, min_samples_split=2, n_estimators=10;, score=0.874 total time= 0.0s\n","[CV 3/5] END bootstrap=False, max_depth=6, max_features=sqrt, min_samples_leaf=2, min_samples_split=2, n_estimators=10;, score=0.889 total time= 0.0s\n","[CV 4/5] END bootstrap=False, max_depth=6, max_features=sqrt, min_samples_leaf=2, min_samples_split=2, n_estimators=10;, score=0.848 total time= 0.0s\n","[CV 5/5] END bootstrap=False, max_depth=6, max_features=sqrt, min_samples_leaf=2, min_samples_split=2, n_estimators=10;, score=0.879 total time= 0.0s\n","[CV 1/5] END bootstrap=False, max_depth=6, max_features=sqrt, min_samples_leaf=2, min_samples_split=2, n_estimators=20;, score=0.864 total time= 0.1s\n","[CV 2/5] END bootstrap=False, max_depth=6, max_features=sqrt, min_samples_leaf=2, min_samples_split=2, n_estimators=20;, score=0.879 total time= 0.0s\n","[CV 3/5] END bootstrap=False, max_depth=6, max_features=sqrt, min_samples_leaf=2, min_samples_split=2, n_estimators=20;, score=0.894 total time= 0.0s\n","[CV 4/5] END bootstrap=False, max_depth=6, max_features=sqrt, min_samples_leaf=2, min_samples_split=2, n_estimators=20;, score=0.848 total time= 0.0s\n","[CV 5/5] END bootstrap=False, max_depth=6, max_features=sqrt, min_samples_leaf=2, min_samples_split=2, n_estimators=20;, score=0.859 total time= 0.0s\n","[CV 1/5] END bootstrap=False, max_depth=6, max_features=sqrt, min_samples_leaf=2, min_samples_split=2, n_estimators=30;, score=0.879 total time= 0.1s\n","[CV 2/5] END bootstrap=False, max_depth=6, max_features=sqrt, min_samples_leaf=2, min_samples_split=2, n_estimators=30;, score=0.879 total time= 0.1s\n","[CV 3/5] END bootstrap=False, max_depth=6, max_features=sqrt, min_samples_leaf=2, min_samples_split=2, n_estimators=30;, score=0.889 total time= 0.1s\n","[CV 4/5] END bootstrap=False, max_depth=6, max_features=sqrt, min_samples_leaf=2, min_samples_split=2, n_estimators=30;, score=0.869 total time= 0.1s\n","[CV 5/5] END bootstrap=False, max_depth=6, max_features=sqrt, min_samples_leaf=2, min_samples_split=2, n_estimators=30;, score=0.864 total time= 0.1s\n","[CV 1/5] END bootstrap=False, max_depth=6, max_features=sqrt, min_samples_leaf=2, min_samples_split=4, n_estimators=5;, score=0.869 total time= 0.0s\n","[CV 2/5] END bootstrap=False, max_depth=6, max_features=sqrt, min_samples_leaf=2, min_samples_split=4, n_estimators=5;, score=0.909 total time= 0.0s\n","[CV 3/5] END bootstrap=False, max_depth=6, max_features=sqrt, min_samples_leaf=2, min_samples_split=4, n_estimators=5;, score=0.904 total time= 0.0s\n","[CV 4/5] END bootstrap=False, max_depth=6, max_features=sqrt, min_samples_leaf=2, min_samples_split=4, n_estimators=5;, score=0.823 total time= 0.0s\n","[CV 5/5] END bootstrap=False, max_depth=6, max_features=sqrt, min_samples_leaf=2, min_samples_split=4, n_estimators=5;, score=0.879 total time= 0.0s\n","[CV 1/5] END bootstrap=False, max_depth=6, max_features=sqrt, min_samples_leaf=2, min_samples_split=4, n_estimators=10;, score=0.894 total time= 0.0s\n","[CV 2/5] END bootstrap=False, max_depth=6, max_features=sqrt, min_samples_leaf=2, min_samples_split=4, n_estimators=10;, score=0.894 total time= 0.0s\n","[CV 3/5] END bootstrap=False, max_depth=6, max_features=sqrt, min_samples_leaf=2, min_samples_split=4, n_estimators=10;, score=0.879 total time= 0.0s\n","[CV 4/5] END bootstrap=False, max_depth=6, max_features=sqrt, min_samples_leaf=2, min_samples_split=4, n_estimators=10;, score=0.874 total time= 0.0s\n","[CV 5/5] END bootstrap=False, max_depth=6, max_features=sqrt, min_samples_leaf=2, min_samples_split=4, n_estimators=10;, score=0.843 total time= 0.0s\n","[CV 1/5] END bootstrap=False, max_depth=6, max_features=sqrt, min_samples_leaf=2, min_samples_split=4, n_estimators=20;, score=0.859 total time= 0.0s\n","[CV 2/5] END bootstrap=False, max_depth=6, max_features=sqrt, min_samples_leaf=2, min_samples_split=4, n_estimators=20;, score=0.879 total time= 0.0s\n","[CV 3/5] END bootstrap=False, max_depth=6, max_features=sqrt, min_samples_leaf=2, min_samples_split=4, n_estimators=20;, score=0.914 total time= 0.0s\n","[CV 4/5] END bootstrap=False, max_depth=6, max_features=sqrt, min_samples_leaf=2, min_samples_split=4, n_estimators=20;, score=0.859 total time= 0.0s\n","[CV 5/5] END bootstrap=False, max_depth=6, max_features=sqrt, min_samples_leaf=2, min_samples_split=4, n_estimators=20;, score=0.874 total time= 0.0s\n","[CV 1/5] END bootstrap=False, max_depth=6, max_features=sqrt, min_samples_leaf=2, min_samples_split=4, n_estimators=30;, score=0.869 total time= 0.1s\n","[CV 2/5] END bootstrap=False, max_depth=6, max_features=sqrt, min_samples_leaf=2, min_samples_split=4, n_estimators=30;, score=0.899 total time= 0.1s\n","[CV 3/5] END bootstrap=False, max_depth=6, max_features=sqrt, min_samples_leaf=2, min_samples_split=4, n_estimators=30;, score=0.884 total time= 0.1s\n","[CV 4/5] END bootstrap=False, max_depth=6, max_features=sqrt, min_samples_leaf=2, min_samples_split=4, n_estimators=30;, score=0.859 total time= 0.1s\n","[CV 5/5] END bootstrap=False, max_depth=6, max_features=sqrt, min_samples_leaf=2, min_samples_split=4, n_estimators=30;, score=0.879 total time= 0.1s\n","[CV 1/5] END bootstrap=False, max_depth=6, max_features=sqrt, min_samples_leaf=2, min_samples_split=6, n_estimators=5;, score=0.909 total time= 0.0s\n","[CV 2/5] END bootstrap=False, max_depth=6, max_features=sqrt, min_samples_leaf=2, min_samples_split=6, n_estimators=5;, score=0.869 total time= 0.0s\n","[CV 3/5] END bootstrap=False, max_depth=6, max_features=sqrt, min_samples_leaf=2, min_samples_split=6, n_estimators=5;, score=0.879 total time= 0.0s\n","[CV 4/5] END bootstrap=False, max_depth=6, max_features=sqrt, min_samples_leaf=2, min_samples_split=6, n_estimators=5;, score=0.854 total time= 0.0s\n","[CV 5/5] END bootstrap=False, max_depth=6, max_features=sqrt, min_samples_leaf=2, min_samples_split=6, n_estimators=5;, score=0.869 total time= 0.0s\n","[CV 1/5] END bootstrap=False, max_depth=6, max_features=sqrt, min_samples_leaf=2, min_samples_split=6, n_estimators=10;, score=0.859 total time= 0.0s\n","[CV 2/5] END bootstrap=False, max_depth=6, max_features=sqrt, min_samples_leaf=2, min_samples_split=6, n_estimators=10;, score=0.874 total time= 0.0s\n","[CV 3/5] END bootstrap=False, max_depth=6, max_features=sqrt, min_samples_leaf=2, min_samples_split=6, n_estimators=10;, score=0.879 total time= 0.0s\n","[CV 4/5] END bootstrap=False, max_depth=6, max_features=sqrt, min_samples_leaf=2, min_samples_split=6, n_estimators=10;, score=0.854 total time= 0.0s\n","[CV 5/5] END bootstrap=False, max_depth=6, max_features=sqrt, min_samples_leaf=2, min_samples_split=6, n_estimators=10;, score=0.884 total time= 0.0s\n","[CV 1/5] END bootstrap=False, max_depth=6, max_features=sqrt, min_samples_leaf=2, min_samples_split=6, n_estimators=20;, score=0.874 total time= 0.0s\n","[CV 2/5] END bootstrap=False, max_depth=6, max_features=sqrt, min_samples_leaf=2, min_samples_split=6, n_estimators=20;, score=0.884 total time= 0.0s\n","[CV 3/5] END bootstrap=False, max_depth=6, max_features=sqrt, min_samples_leaf=2, min_samples_split=6, n_estimators=20;, score=0.879 total time= 0.0s\n","[CV 4/5] END bootstrap=False, max_depth=6, max_features=sqrt, min_samples_leaf=2, min_samples_split=6, n_estimators=20;, score=0.864 total time= 0.0s\n","[CV 5/5] END bootstrap=False, max_depth=6, max_features=sqrt, min_samples_leaf=2, min_samples_split=6, n_estimators=20;, score=0.874 total time= 0.0s\n","[CV 1/5] END bootstrap=False, max_depth=6, max_features=sqrt, min_samples_leaf=2, min_samples_split=6, n_estimators=30;, score=0.859 total time= 0.1s\n","[CV 2/5] END bootstrap=False, max_depth=6, max_features=sqrt, min_samples_leaf=2, min_samples_split=6, n_estimators=30;, score=0.879 total time= 0.1s\n","[CV 3/5] END bootstrap=False, max_depth=6, max_features=sqrt, min_samples_leaf=2, min_samples_split=6, n_estimators=30;, score=0.894 total time= 0.1s\n","[CV 4/5] END bootstrap=False, max_depth=6, max_features=sqrt, min_samples_leaf=2, min_samples_split=6, n_estimators=30;, score=0.838 total time= 0.1s\n","[CV 5/5] END bootstrap=False, max_depth=6, max_features=sqrt, min_samples_leaf=2, min_samples_split=6, n_estimators=30;, score=0.879 total time= 0.1s\n","[CV 1/5] END bootstrap=False, max_depth=6, max_features=sqrt, min_samples_leaf=4, min_samples_split=2, n_estimators=5;, score=0.854 total time= 0.0s\n","[CV 2/5] END bootstrap=False, max_depth=6, max_features=sqrt, min_samples_leaf=4, min_samples_split=2, n_estimators=5;, score=0.874 total time= 0.0s\n","[CV 3/5] END bootstrap=False, max_depth=6, max_features=sqrt, min_samples_leaf=4, min_samples_split=2, n_estimators=5;, score=0.889 total time= 0.0s\n","[CV 4/5] END bootstrap=False, max_depth=6, max_features=sqrt, min_samples_leaf=4, min_samples_split=2, n_estimators=5;, score=0.859 total time= 0.0s\n","[CV 5/5] END bootstrap=False, max_depth=6, max_features=sqrt, min_samples_leaf=4, min_samples_split=2, n_estimators=5;, score=0.919 total time= 0.0s\n","[CV 1/5] END bootstrap=False, max_depth=6, max_features=sqrt, min_samples_leaf=4, min_samples_split=2, n_estimators=10;, score=0.859 total time= 0.0s\n","[CV 2/5] END bootstrap=False, max_depth=6, max_features=sqrt, min_samples_leaf=4, min_samples_split=2, n_estimators=10;, score=0.884 total time= 0.0s\n","[CV 3/5] END bootstrap=False, max_depth=6, max_features=sqrt, min_samples_leaf=4, min_samples_split=2, n_estimators=10;, score=0.889 total time= 0.0s\n","[CV 4/5] END bootstrap=False, max_depth=6, max_features=sqrt, min_samples_leaf=4, min_samples_split=2, n_estimators=10;, score=0.843 total time= 0.0s\n","[CV 5/5] END bootstrap=False, max_depth=6, max_features=sqrt, min_samples_leaf=4, min_samples_split=2, n_estimators=10;, score=0.869 total time= 0.0s\n","[CV 1/5] END bootstrap=False, max_depth=6, max_features=sqrt, min_samples_leaf=4, min_samples_split=2, n_estimators=20;, score=0.874 total time= 0.0s\n","[CV 2/5] END bootstrap=False, max_depth=6, max_features=sqrt, min_samples_leaf=4, min_samples_split=2, n_estimators=20;, score=0.894 total time= 0.0s\n","[CV 3/5] END bootstrap=False, max_depth=6, max_features=sqrt, min_samples_leaf=4, min_samples_split=2, n_estimators=20;, score=0.904 total time= 0.0s\n","[CV 4/5] END bootstrap=False, max_depth=6, max_features=sqrt, min_samples_leaf=4, min_samples_split=2, n_estimators=20;, score=0.843 total time= 0.0s\n","[CV 5/5] END bootstrap=False, max_depth=6, max_features=sqrt, min_samples_leaf=4, min_samples_split=2, n_estimators=20;, score=0.884 total time= 0.0s\n","[CV 1/5] END bootstrap=False, max_depth=6, max_features=sqrt, min_samples_leaf=4, min_samples_split=2, n_estimators=30;, score=0.864 total time= 0.1s\n","[CV 2/5] END bootstrap=False, max_depth=6, max_features=sqrt, min_samples_leaf=4, min_samples_split=2, n_estimators=30;, score=0.879 total time= 0.1s\n","[CV 3/5] END bootstrap=False, max_depth=6, max_features=sqrt, min_samples_leaf=4, min_samples_split=2, n_estimators=30;, score=0.894 total time= 0.1s\n","[CV 4/5] END bootstrap=False, max_depth=6, max_features=sqrt, min_samples_leaf=4, min_samples_split=2, n_estimators=30;, score=0.879 total time= 0.1s\n","[CV 5/5] END bootstrap=False, max_depth=6, max_features=sqrt, min_samples_leaf=4, min_samples_split=2, n_estimators=30;, score=0.894 total time= 0.1s\n","[CV 1/5] END bootstrap=False, max_depth=6, max_features=sqrt, min_samples_leaf=4, min_samples_split=4, n_estimators=5;, score=0.884 total time= 0.0s\n","[CV 2/5] END bootstrap=False, max_depth=6, max_features=sqrt, min_samples_leaf=4, min_samples_split=4, n_estimators=5;, score=0.859 total time= 0.0s\n","[CV 3/5] END bootstrap=False, max_depth=6, max_features=sqrt, min_samples_leaf=4, min_samples_split=4, n_estimators=5;, score=0.859 total time= 0.0s\n","[CV 4/5] END bootstrap=False, max_depth=6, max_features=sqrt, min_samples_leaf=4, min_samples_split=4, n_estimators=5;, score=0.864 total time= 0.0s\n","[CV 5/5] END bootstrap=False, max_depth=6, max_features=sqrt, min_samples_leaf=4, min_samples_split=4, n_estimators=5;, score=0.874 total time= 0.0s\n","[CV 1/5] END bootstrap=False, max_depth=6, max_features=sqrt, min_samples_leaf=4, min_samples_split=4, n_estimators=10;, score=0.864 total time= 0.0s\n","[CV 2/5] END bootstrap=False, max_depth=6, max_features=sqrt, min_samples_leaf=4, min_samples_split=4, n_estimators=10;, score=0.899 total time= 0.0s\n","[CV 3/5] END bootstrap=False, max_depth=6, max_features=sqrt, min_samples_leaf=4, min_samples_split=4, n_estimators=10;, score=0.889 total time= 0.0s\n","[CV 4/5] END bootstrap=False, max_depth=6, max_features=sqrt, min_samples_leaf=4, min_samples_split=4, n_estimators=10;, score=0.838 total time= 0.0s\n","[CV 5/5] END bootstrap=False, max_depth=6, max_features=sqrt, min_samples_leaf=4, min_samples_split=4, n_estimators=10;, score=0.884 total time= 0.0s\n","[CV 1/5] END bootstrap=False, max_depth=6, max_features=sqrt, min_samples_leaf=4, min_samples_split=4, n_estimators=20;, score=0.869 total time= 0.0s\n","[CV 2/5] END bootstrap=False, max_depth=6, max_features=sqrt, min_samples_leaf=4, min_samples_split=4, n_estimators=20;, score=0.889 total time= 0.0s\n","[CV 3/5] END bootstrap=False, max_depth=6, max_features=sqrt, min_samples_leaf=4, min_samples_split=4, n_estimators=20;, score=0.889 total time= 0.0s\n","[CV 4/5] END bootstrap=False, max_depth=6, max_features=sqrt, min_samples_leaf=4, min_samples_split=4, n_estimators=20;, score=0.848 total time= 0.0s\n","[CV 5/5] END bootstrap=False, max_depth=6, max_features=sqrt, min_samples_leaf=4, min_samples_split=4, n_estimators=20;, score=0.879 total time= 0.0s\n","[CV 1/5] END bootstrap=False, max_depth=6, max_features=sqrt, min_samples_leaf=4, min_samples_split=4, n_estimators=30;, score=0.848 total time= 0.1s\n","[CV 2/5] END bootstrap=False, max_depth=6, max_features=sqrt, min_samples_leaf=4, min_samples_split=4, n_estimators=30;, score=0.874 total time= 0.1s\n","[CV 3/5] END bootstrap=False, max_depth=6, max_features=sqrt, min_samples_leaf=4, min_samples_split=4, n_estimators=30;, score=0.894 total time= 0.1s\n","[CV 4/5] END bootstrap=False, max_depth=6, max_features=sqrt, min_samples_leaf=4, min_samples_split=4, n_estimators=30;, score=0.859 total time= 0.1s\n","[CV 5/5] END bootstrap=False, max_depth=6, max_features=sqrt, min_samples_leaf=4, min_samples_split=4, n_estimators=30;, score=0.899 total time= 0.1s\n","[CV 1/5] END bootstrap=False, max_depth=6, max_features=sqrt, min_samples_leaf=4, min_samples_split=6, n_estimators=5;, score=0.869 total time= 0.0s\n","[CV 2/5] END bootstrap=False, max_depth=6, max_features=sqrt, min_samples_leaf=4, min_samples_split=6, n_estimators=5;, score=0.884 total time= 0.0s\n","[CV 3/5] END bootstrap=False, max_depth=6, max_features=sqrt, min_samples_leaf=4, min_samples_split=6, n_estimators=5;, score=0.874 total time= 0.0s\n","[CV 4/5] END bootstrap=False, max_depth=6, max_features=sqrt, min_samples_leaf=4, min_samples_split=6, n_estimators=5;, score=0.848 total time= 0.0s\n","[CV 5/5] END bootstrap=False, max_depth=6, max_features=sqrt, min_samples_leaf=4, min_samples_split=6, n_estimators=5;, score=0.854 total time= 0.0s\n","[CV 1/5] END bootstrap=False, max_depth=6, max_features=sqrt, min_samples_leaf=4, min_samples_split=6, n_estimators=10;, score=0.874 total time= 0.0s\n","[CV 2/5] END bootstrap=False, max_depth=6, max_features=sqrt, min_samples_leaf=4, min_samples_split=6, n_estimators=10;, score=0.874 total time= 0.0s\n","[CV 3/5] END bootstrap=False, max_depth=6, max_features=sqrt, min_samples_leaf=4, min_samples_split=6, n_estimators=10;, score=0.879 total time= 0.0s\n","[CV 4/5] END bootstrap=False, max_depth=6, max_features=sqrt, min_samples_leaf=4, min_samples_split=6, n_estimators=10;, score=0.869 total time= 0.0s\n","[CV 5/5] END bootstrap=False, max_depth=6, max_features=sqrt, min_samples_leaf=4, min_samples_split=6, n_estimators=10;, score=0.894 total time= 0.0s\n","[CV 1/5] END bootstrap=False, max_depth=6, max_features=sqrt, min_samples_leaf=4, min_samples_split=6, n_estimators=20;, score=0.864 total time= 0.0s\n","[CV 2/5] END bootstrap=False, max_depth=6, max_features=sqrt, min_samples_leaf=4, min_samples_split=6, n_estimators=20;, score=0.879 total time= 0.0s\n","[CV 3/5] END bootstrap=False, max_depth=6, max_features=sqrt, min_samples_leaf=4, min_samples_split=6, n_estimators=20;, score=0.889 total time= 0.0s\n","[CV 4/5] END bootstrap=False, max_depth=6, max_features=sqrt, min_samples_leaf=4, min_samples_split=6, n_estimators=20;, score=0.874 total time= 0.0s\n","[CV 5/5] END bootstrap=False, max_depth=6, max_features=sqrt, min_samples_leaf=4, min_samples_split=6, n_estimators=20;, score=0.879 total time= 0.0s\n","[CV 1/5] END bootstrap=False, max_depth=6, max_features=sqrt, min_samples_leaf=4, min_samples_split=6, n_estimators=30;, score=0.859 total time= 0.1s\n","[CV 2/5] END bootstrap=False, max_depth=6, max_features=sqrt, min_samples_leaf=4, min_samples_split=6, n_estimators=30;, score=0.879 total time= 0.1s\n","[CV 3/5] END bootstrap=False, max_depth=6, max_features=sqrt, min_samples_leaf=4, min_samples_split=6, n_estimators=30;, score=0.894 total time= 0.1s\n","[CV 4/5] END bootstrap=False, max_depth=6, max_features=sqrt, min_samples_leaf=4, min_samples_split=6, n_estimators=30;, score=0.843 total time= 0.0s\n","[CV 5/5] END bootstrap=False, max_depth=6, max_features=sqrt, min_samples_leaf=4, min_samples_split=6, n_estimators=30;, score=0.874 total time= 0.0s\n","[CV 1/5] END bootstrap=False, max_depth=6, max_features=sqrt, min_samples_leaf=6, min_samples_split=2, n_estimators=5;, score=0.864 total time= 0.0s\n","[CV 2/5] END bootstrap=False, max_depth=6, max_features=sqrt, min_samples_leaf=6, min_samples_split=2, n_estimators=5;, score=0.914 total time= 0.0s\n","[CV 3/5] END bootstrap=False, max_depth=6, max_features=sqrt, min_samples_leaf=6, min_samples_split=2, n_estimators=5;, score=0.889 total time= 0.0s\n","[CV 4/5] END bootstrap=False, max_depth=6, max_features=sqrt, min_samples_leaf=6, min_samples_split=2, n_estimators=5;, score=0.869 total time= 0.0s\n","[CV 5/5] END bootstrap=False, max_depth=6, max_features=sqrt, min_samples_leaf=6, min_samples_split=2, n_estimators=5;, score=0.894 total time= 0.0s\n","[CV 1/5] END bootstrap=False, max_depth=6, max_features=sqrt, min_samples_leaf=6, min_samples_split=2, n_estimators=10;, score=0.864 total time= 0.0s\n","[CV 2/5] END bootstrap=False, max_depth=6, max_features=sqrt, min_samples_leaf=6, min_samples_split=2, n_estimators=10;, score=0.864 total time= 0.0s\n","[CV 3/5] END bootstrap=False, max_depth=6, max_features=sqrt, min_samples_leaf=6, min_samples_split=2, n_estimators=10;, score=0.899 total time= 0.0s\n","[CV 4/5] END bootstrap=False, max_depth=6, max_features=sqrt, min_samples_leaf=6, min_samples_split=2, n_estimators=10;, score=0.874 total time= 0.0s\n","[CV 5/5] END bootstrap=False, max_depth=6, max_features=sqrt, min_samples_leaf=6, min_samples_split=2, n_estimators=10;, score=0.889 total time= 0.0s\n","[CV 1/5] END bootstrap=False, max_depth=6, max_features=sqrt, min_samples_leaf=6, min_samples_split=2, n_estimators=20;, score=0.859 total time= 0.0s\n","[CV 2/5] END bootstrap=False, max_depth=6, max_features=sqrt, min_samples_leaf=6, min_samples_split=2, n_estimators=20;, score=0.874 total time= 0.0s\n","[CV 3/5] END bootstrap=False, max_depth=6, max_features=sqrt, min_samples_leaf=6, min_samples_split=2, n_estimators=20;, score=0.894 total time= 0.0s\n","[CV 4/5] END bootstrap=False, max_depth=6, max_features=sqrt, min_samples_leaf=6, min_samples_split=2, n_estimators=20;, score=0.838 total time= 0.0s\n","[CV 5/5] END bootstrap=False, max_depth=6, max_features=sqrt, min_samples_leaf=6, min_samples_split=2, n_estimators=20;, score=0.864 total time= 0.0s\n","[CV 1/5] END bootstrap=False, max_depth=6, max_features=sqrt, min_samples_leaf=6, min_samples_split=2, n_estimators=30;, score=0.859 total time= 0.1s\n","[CV 2/5] END bootstrap=False, max_depth=6, max_features=sqrt, min_samples_leaf=6, min_samples_split=2, n_estimators=30;, score=0.889 total time= 0.1s\n","[CV 3/5] END bootstrap=False, max_depth=6, max_features=sqrt, min_samples_leaf=6, min_samples_split=2, n_estimators=30;, score=0.879 total time= 0.1s\n","[CV 4/5] END bootstrap=False, max_depth=6, max_features=sqrt, min_samples_leaf=6, min_samples_split=2, n_estimators=30;, score=0.854 total time= 0.1s\n","[CV 5/5] END bootstrap=False, max_depth=6, max_features=sqrt, min_samples_leaf=6, min_samples_split=2, n_estimators=30;, score=0.879 total time= 0.1s\n","[CV 1/5] END bootstrap=False, max_depth=6, max_features=sqrt, min_samples_leaf=6, min_samples_split=4, n_estimators=5;, score=0.854 total time= 0.0s\n","[CV 2/5] END bootstrap=False, max_depth=6, max_features=sqrt, min_samples_leaf=6, min_samples_split=4, n_estimators=5;, score=0.884 total time= 0.0s\n","[CV 3/5] END bootstrap=False, max_depth=6, max_features=sqrt, min_samples_leaf=6, min_samples_split=4, n_estimators=5;, score=0.884 total time= 0.0s\n","[CV 4/5] END bootstrap=False, max_depth=6, max_features=sqrt, min_samples_leaf=6, min_samples_split=4, n_estimators=5;, score=0.848 total time= 0.0s\n","[CV 5/5] END bootstrap=False, max_depth=6, max_features=sqrt, min_samples_leaf=6, min_samples_split=4, n_estimators=5;, score=0.879 total time= 0.0s\n","[CV 1/5] END bootstrap=False, max_depth=6, max_features=sqrt, min_samples_leaf=6, min_samples_split=4, n_estimators=10;, score=0.879 total time= 0.1s\n","[CV 2/5] END bootstrap=False, max_depth=6, max_features=sqrt, min_samples_leaf=6, min_samples_split=4, n_estimators=10;, score=0.909 total time= 0.1s\n","[CV 3/5] END bootstrap=False, max_depth=6, max_features=sqrt, min_samples_leaf=6, min_samples_split=4, n_estimators=10;, score=0.889 total time= 0.1s\n","[CV 4/5] END bootstrap=False, max_depth=6, max_features=sqrt, min_samples_leaf=6, min_samples_split=4, n_estimators=10;, score=0.848 total time= 0.1s\n","[CV 5/5] END bootstrap=False, max_depth=6, max_features=sqrt, min_samples_leaf=6, min_samples_split=4, n_estimators=10;, score=0.884 total time= 0.1s\n","[CV 1/5] END bootstrap=False, max_depth=6, max_features=sqrt, min_samples_leaf=6, min_samples_split=4, n_estimators=20;, score=0.869 total time= 0.1s\n","[CV 2/5] END bootstrap=False, max_depth=6, max_features=sqrt, min_samples_leaf=6, min_samples_split=4, n_estimators=20;, score=0.889 total time= 0.1s\n","[CV 3/5] END bootstrap=False, max_depth=6, max_features=sqrt, min_samples_leaf=6, min_samples_split=4, n_estimators=20;, score=0.889 total time= 0.0s\n","[CV 4/5] END bootstrap=False, max_depth=6, max_features=sqrt, min_samples_leaf=6, min_samples_split=4, n_estimators=20;, score=0.843 total time= 0.0s\n","[CV 5/5] END bootstrap=False, max_depth=6, max_features=sqrt, min_samples_leaf=6, min_samples_split=4, n_estimators=20;, score=0.894 total time= 0.0s\n","[CV 1/5] END bootstrap=False, max_depth=6, max_features=sqrt, min_samples_leaf=6, min_samples_split=4, n_estimators=30;, score=0.864 total time= 0.1s\n","[CV 2/5] END bootstrap=False, max_depth=6, max_features=sqrt, min_samples_leaf=6, min_samples_split=4, n_estimators=30;, score=0.889 total time= 0.1s\n","[CV 3/5] END bootstrap=False, max_depth=6, max_features=sqrt, min_samples_leaf=6, min_samples_split=4, n_estimators=30;, score=0.889 total time= 0.1s\n","[CV 4/5] END bootstrap=False, max_depth=6, max_features=sqrt, min_samples_leaf=6, min_samples_split=4, n_estimators=30;, score=0.848 total time= 0.1s\n","[CV 5/5] END bootstrap=False, max_depth=6, max_features=sqrt, min_samples_leaf=6, min_samples_split=4, n_estimators=30;, score=0.899 total time= 0.1s\n","[CV 1/5] END bootstrap=False, max_depth=6, max_features=sqrt, min_samples_leaf=6, min_samples_split=6, n_estimators=5;, score=0.884 total time= 0.0s\n","[CV 2/5] END bootstrap=False, max_depth=6, max_features=sqrt, min_samples_leaf=6, min_samples_split=6, n_estimators=5;, score=0.874 total time= 0.0s\n","[CV 3/5] END bootstrap=False, max_depth=6, max_features=sqrt, min_samples_leaf=6, min_samples_split=6, n_estimators=5;, score=0.879 total time= 0.0s\n","[CV 4/5] END bootstrap=False, max_depth=6, max_features=sqrt, min_samples_leaf=6, min_samples_split=6, n_estimators=5;, score=0.854 total time= 0.0s\n","[CV 5/5] END bootstrap=False, max_depth=6, max_features=sqrt, min_samples_leaf=6, min_samples_split=6, n_estimators=5;, score=0.909 total time= 0.0s\n","[CV 1/5] END bootstrap=False, max_depth=6, max_features=sqrt, min_samples_leaf=6, min_samples_split=6, n_estimators=10;, score=0.864 total time= 0.0s\n","[CV 2/5] END bootstrap=False, max_depth=6, max_features=sqrt, min_samples_leaf=6, min_samples_split=6, n_estimators=10;, score=0.874 total time= 0.0s\n","[CV 3/5] END bootstrap=False, max_depth=6, max_features=sqrt, min_samples_leaf=6, min_samples_split=6, n_estimators=10;, score=0.869 total time= 0.0s\n","[CV 4/5] END bootstrap=False, max_depth=6, max_features=sqrt, min_samples_leaf=6, min_samples_split=6, n_estimators=10;, score=0.864 total time= 0.0s\n","[CV 5/5] END bootstrap=False, max_depth=6, max_features=sqrt, min_samples_leaf=6, min_samples_split=6, n_estimators=10;, score=0.889 total time= 0.0s\n","[CV 1/5] END bootstrap=False, max_depth=6, max_features=sqrt, min_samples_leaf=6, min_samples_split=6, n_estimators=20;, score=0.854 total time= 0.0s\n","[CV 2/5] END bootstrap=False, max_depth=6, max_features=sqrt, min_samples_leaf=6, min_samples_split=6, n_estimators=20;, score=0.894 total time= 0.0s\n","[CV 3/5] END bootstrap=False, max_depth=6, max_features=sqrt, min_samples_leaf=6, min_samples_split=6, n_estimators=20;, score=0.884 total time= 0.0s\n","[CV 4/5] END bootstrap=False, max_depth=6, max_features=sqrt, min_samples_leaf=6, min_samples_split=6, n_estimators=20;, score=0.864 total time= 0.0s\n","[CV 5/5] END bootstrap=False, max_depth=6, max_features=sqrt, min_samples_leaf=6, min_samples_split=6, n_estimators=20;, score=0.894 total time= 0.1s\n","[CV 1/5] END bootstrap=False, max_depth=6, max_features=sqrt, min_samples_leaf=6, min_samples_split=6, n_estimators=30;, score=0.879 total time= 0.1s\n","[CV 2/5] END bootstrap=False, max_depth=6, max_features=sqrt, min_samples_leaf=6, min_samples_split=6, n_estimators=30;, score=0.899 total time= 0.1s\n","[CV 3/5] END bootstrap=False, max_depth=6, max_features=sqrt, min_samples_leaf=6, min_samples_split=6, n_estimators=30;, score=0.884 total time= 0.1s\n","[CV 4/5] END bootstrap=False, max_depth=6, max_features=sqrt, min_samples_leaf=6, min_samples_split=6, n_estimators=30;, score=0.854 total time= 0.1s\n","[CV 5/5] END bootstrap=False, max_depth=6, max_features=sqrt, min_samples_leaf=6, min_samples_split=6, n_estimators=30;, score=0.884 total time= 0.1s\n","[CV 1/5] END bootstrap=False, max_depth=6, max_features=log2, min_samples_leaf=2, min_samples_split=2, n_estimators=5;, score=0.874 total time= 0.0s\n","[CV 2/5] END bootstrap=False, max_depth=6, max_features=log2, min_samples_leaf=2, min_samples_split=2, n_estimators=5;, score=0.904 total time= 0.0s\n","[CV 3/5] END bootstrap=False, max_depth=6, max_features=log2, min_samples_leaf=2, min_samples_split=2, n_estimators=5;, score=0.889 total time= 0.0s\n","[CV 4/5] END bootstrap=False, max_depth=6, max_features=log2, min_samples_leaf=2, min_samples_split=2, n_estimators=5;, score=0.843 total time= 0.0s\n","[CV 5/5] END bootstrap=False, max_depth=6, max_features=log2, min_samples_leaf=2, min_samples_split=2, n_estimators=5;, score=0.899 total time= 0.0s\n","[CV 1/5] END bootstrap=False, max_depth=6, max_features=log2, min_samples_leaf=2, min_samples_split=2, n_estimators=10;, score=0.874 total time= 0.0s\n","[CV 2/5] END bootstrap=False, max_depth=6, max_features=log2, min_samples_leaf=2, min_samples_split=2, n_estimators=10;, score=0.894 total time= 0.0s\n","[CV 3/5] END bootstrap=False, max_depth=6, max_features=log2, min_samples_leaf=2, min_samples_split=2, n_estimators=10;, score=0.879 total time= 0.0s\n","[CV 4/5] END bootstrap=False, max_depth=6, max_features=log2, min_samples_leaf=2, min_samples_split=2, n_estimators=10;, score=0.848 total time= 0.0s\n","[CV 5/5] END bootstrap=False, max_depth=6, max_features=log2, min_samples_leaf=2, min_samples_split=2, n_estimators=10;, score=0.879 total time= 0.0s\n","[CV 1/5] END bootstrap=False, max_depth=6, max_features=log2, min_samples_leaf=2, min_samples_split=2, n_estimators=20;, score=0.874 total time= 0.0s\n","[CV 2/5] END bootstrap=False, max_depth=6, max_features=log2, min_samples_leaf=2, min_samples_split=2, n_estimators=20;, score=0.889 total time= 0.1s\n","[CV 3/5] END bootstrap=False, max_depth=6, max_features=log2, min_samples_leaf=2, min_samples_split=2, n_estimators=20;, score=0.864 total time= 0.0s\n","[CV 4/5] END bootstrap=False, max_depth=6, max_features=log2, min_samples_leaf=2, min_samples_split=2, n_estimators=20;, score=0.859 total time= 0.0s\n","[CV 5/5] END bootstrap=False, max_depth=6, max_features=log2, min_samples_leaf=2, min_samples_split=2, n_estimators=20;, score=0.879 total time= 0.0s\n","[CV 1/5] END bootstrap=False, max_depth=6, max_features=log2, min_samples_leaf=2, min_samples_split=2, n_estimators=30;, score=0.859 total time= 0.1s\n","[CV 2/5] END bootstrap=False, max_depth=6, max_features=log2, min_samples_leaf=2, min_samples_split=2, n_estimators=30;, score=0.909 total time= 0.1s\n","[CV 3/5] END bootstrap=False, max_depth=6, max_features=log2, min_samples_leaf=2, min_samples_split=2, n_estimators=30;, score=0.879 total time= 0.1s\n","[CV 4/5] END bootstrap=False, max_depth=6, max_features=log2, min_samples_leaf=2, min_samples_split=2, n_estimators=30;, score=0.828 total time= 0.1s\n","[CV 5/5] END bootstrap=False, max_depth=6, max_features=log2, min_samples_leaf=2, min_samples_split=2, n_estimators=30;, score=0.894 total time= 0.1s\n","[CV 1/5] END bootstrap=False, max_depth=6, max_features=log2, min_samples_leaf=2, min_samples_split=4, n_estimators=5;, score=0.889 total time= 0.0s\n","[CV 2/5] END bootstrap=False, max_depth=6, max_features=log2, min_samples_leaf=2, min_samples_split=4, n_estimators=5;, score=0.894 total time= 0.0s\n","[CV 3/5] END bootstrap=False, max_depth=6, max_features=log2, min_samples_leaf=2, min_samples_split=4, n_estimators=5;, score=0.874 total time= 0.0s\n","[CV 4/5] END bootstrap=False, max_depth=6, max_features=log2, min_samples_leaf=2, min_samples_split=4, n_estimators=5;, score=0.859 total time= 0.0s\n","[CV 5/5] END bootstrap=False, max_depth=6, max_features=log2, min_samples_leaf=2, min_samples_split=4, n_estimators=5;, score=0.859 total time= 0.0s\n","[CV 1/5] END bootstrap=False, max_depth=6, max_features=log2, min_samples_leaf=2, min_samples_split=4, n_estimators=10;, score=0.864 total time= 0.0s\n","[CV 2/5] END bootstrap=False, max_depth=6, max_features=log2, min_samples_leaf=2, min_samples_split=4, n_estimators=10;, score=0.869 total time= 0.0s\n","[CV 3/5] END bootstrap=False, max_depth=6, max_features=log2, min_samples_leaf=2, min_samples_split=4, n_estimators=10;, score=0.889 total time= 0.0s\n","[CV 4/5] END bootstrap=False, max_depth=6, max_features=log2, min_samples_leaf=2, min_samples_split=4, n_estimators=10;, score=0.854 total time= 0.0s\n","[CV 5/5] END bootstrap=False, max_depth=6, max_features=log2, min_samples_leaf=2, min_samples_split=4, n_estimators=10;, score=0.884 total time= 0.0s\n","[CV 1/5] END bootstrap=False, max_depth=6, max_features=log2, min_samples_leaf=2, min_samples_split=4, n_estimators=20;, score=0.879 total time= 0.0s\n","[CV 2/5] END bootstrap=False, max_depth=6, max_features=log2, min_samples_leaf=2, min_samples_split=4, n_estimators=20;, score=0.874 total time= 0.0s\n","[CV 3/5] END bootstrap=False, max_depth=6, max_features=log2, min_samples_leaf=2, min_samples_split=4, n_estimators=20;, score=0.899 total time= 0.0s\n","[CV 4/5] END bootstrap=False, max_depth=6, max_features=log2, min_samples_leaf=2, min_samples_split=4, n_estimators=20;, score=0.864 total time= 0.1s\n","[CV 5/5] END bootstrap=False, max_depth=6, max_features=log2, min_samples_leaf=2, min_samples_split=4, n_estimators=20;, score=0.864 total time= 0.0s\n","[CV 1/5] END bootstrap=False, max_depth=6, max_features=log2, min_samples_leaf=2, min_samples_split=4, n_estimators=30;, score=0.859 total time= 0.1s\n","[CV 2/5] END bootstrap=False, max_depth=6, max_features=log2, min_samples_leaf=2, min_samples_split=4, n_estimators=30;, score=0.889 total time= 0.0s\n","[CV 3/5] END bootstrap=False, max_depth=6, max_features=log2, min_samples_leaf=2, min_samples_split=4, n_estimators=30;, score=0.889 total time= 0.1s\n","[CV 4/5] END bootstrap=False, max_depth=6, max_features=log2, min_samples_leaf=2, min_samples_split=4, n_estimators=30;, score=0.833 total time= 0.1s\n","[CV 5/5] END bootstrap=False, max_depth=6, max_features=log2, min_samples_leaf=2, min_samples_split=4, n_estimators=30;, score=0.874 total time= 0.1s\n","[CV 1/5] END bootstrap=False, max_depth=6, max_features=log2, min_samples_leaf=2, min_samples_split=6, n_estimators=5;, score=0.869 total time= 0.0s\n","[CV 2/5] END bootstrap=False, max_depth=6, max_features=log2, min_samples_leaf=2, min_samples_split=6, n_estimators=5;, score=0.889 total time= 0.0s\n","[CV 3/5] END bootstrap=False, max_depth=6, max_features=log2, min_samples_leaf=2, min_samples_split=6, n_estimators=5;, score=0.889 total time= 0.0s\n","[CV 4/5] END bootstrap=False, max_depth=6, max_features=log2, min_samples_leaf=2, min_samples_split=6, n_estimators=5;, score=0.859 total time= 0.0s\n","[CV 5/5] END bootstrap=False, max_depth=6, max_features=log2, min_samples_leaf=2, min_samples_split=6, n_estimators=5;, score=0.909 total time= 0.0s\n","[CV 1/5] END bootstrap=False, max_depth=6, max_features=log2, min_samples_leaf=2, min_samples_split=6, n_estimators=10;, score=0.854 total time= 0.0s\n","[CV 2/5] END bootstrap=False, max_depth=6, max_features=log2, min_samples_leaf=2, min_samples_split=6, n_estimators=10;, score=0.889 total time= 0.0s\n","[CV 3/5] END bootstrap=False, max_depth=6, max_features=log2, min_samples_leaf=2, min_samples_split=6, n_estimators=10;, score=0.879 total time= 0.0s\n","[CV 4/5] END bootstrap=False, max_depth=6, max_features=log2, min_samples_leaf=2, min_samples_split=6, n_estimators=10;, score=0.854 total time= 0.0s\n","[CV 5/5] END bootstrap=False, max_depth=6, max_features=log2, min_samples_leaf=2, min_samples_split=6, n_estimators=10;, score=0.869 total time= 0.0s\n","[CV 1/5] END bootstrap=False, max_depth=6, max_features=log2, min_samples_leaf=2, min_samples_split=6, n_estimators=20;, score=0.869 total time= 0.0s\n","[CV 2/5] END bootstrap=False, max_depth=6, max_features=log2, min_samples_leaf=2, min_samples_split=6, n_estimators=20;, score=0.899 total time= 0.0s\n","[CV 3/5] END bootstrap=False, max_depth=6, max_features=log2, min_samples_leaf=2, min_samples_split=6, n_estimators=20;, score=0.874 total time= 0.0s\n","[CV 4/5] END bootstrap=False, max_depth=6, max_features=log2, min_samples_leaf=2, min_samples_split=6, n_estimators=20;, score=0.854 total time= 0.0s\n","[CV 5/5] END bootstrap=False, max_depth=6, max_features=log2, min_samples_leaf=2, min_samples_split=6, n_estimators=20;, score=0.884 total time= 0.0s\n","[CV 1/5] END bootstrap=False, max_depth=6, max_features=log2, min_samples_leaf=2, min_samples_split=6, n_estimators=30;, score=0.859 total time= 0.1s\n","[CV 2/5] END bootstrap=False, max_depth=6, max_features=log2, min_samples_leaf=2, min_samples_split=6, n_estimators=30;, score=0.884 total time= 0.1s\n","[CV 3/5] END bootstrap=False, max_depth=6, max_features=log2, min_samples_leaf=2, min_samples_split=6, n_estimators=30;, score=0.884 total time= 0.1s\n","[CV 4/5] END bootstrap=False, max_depth=6, max_features=log2, min_samples_leaf=2, min_samples_split=6, n_estimators=30;, score=0.859 total time= 0.1s\n","[CV 5/5] END bootstrap=False, max_depth=6, max_features=log2, min_samples_leaf=2, min_samples_split=6, n_estimators=30;, score=0.874 total time= 0.1s\n","[CV 1/5] END bootstrap=False, max_depth=6, max_features=log2, min_samples_leaf=4, min_samples_split=2, n_estimators=5;, score=0.864 total time= 0.0s\n","[CV 2/5] END bootstrap=False, max_depth=6, max_features=log2, min_samples_leaf=4, min_samples_split=2, n_estimators=5;, score=0.869 total time= 0.0s\n","[CV 3/5] END bootstrap=False, max_depth=6, max_features=log2, min_samples_leaf=4, min_samples_split=2, n_estimators=5;, score=0.874 total time= 0.0s\n","[CV 4/5] END bootstrap=False, max_depth=6, max_features=log2, min_samples_leaf=4, min_samples_split=2, n_estimators=5;, score=0.838 total time= 0.0s\n","[CV 5/5] END bootstrap=False, max_depth=6, max_features=log2, min_samples_leaf=4, min_samples_split=2, n_estimators=5;, score=0.899 total time= 0.0s\n","[CV 1/5] END bootstrap=False, max_depth=6, max_features=log2, min_samples_leaf=4, min_samples_split=2, n_estimators=10;, score=0.889 total time= 0.0s\n","[CV 2/5] END bootstrap=False, max_depth=6, max_features=log2, min_samples_leaf=4, min_samples_split=2, n_estimators=10;, score=0.894 total time= 0.0s\n","[CV 3/5] END bootstrap=False, max_depth=6, max_features=log2, min_samples_leaf=4, min_samples_split=2, n_estimators=10;, score=0.899 total time= 0.0s\n","[CV 4/5] END bootstrap=False, max_depth=6, max_features=log2, min_samples_leaf=4, min_samples_split=2, n_estimators=10;, score=0.848 total time= 0.0s\n","[CV 5/5] END bootstrap=False, max_depth=6, max_features=log2, min_samples_leaf=4, min_samples_split=2, n_estimators=10;, score=0.884 total time= 0.0s\n","[CV 1/5] END bootstrap=False, max_depth=6, max_features=log2, min_samples_leaf=4, min_samples_split=2, n_estimators=20;, score=0.894 total time= 0.0s\n","[CV 2/5] END bootstrap=False, max_depth=6, max_features=log2, min_samples_leaf=4, min_samples_split=2, n_estimators=20;, score=0.874 total time= 0.0s\n","[CV 3/5] END bootstrap=False, max_depth=6, max_features=log2, min_samples_leaf=4, min_samples_split=2, n_estimators=20;, score=0.899 total time= 0.0s\n","[CV 4/5] END bootstrap=False, max_depth=6, max_features=log2, min_samples_leaf=4, min_samples_split=2, n_estimators=20;, score=0.874 total time= 0.0s\n","[CV 5/5] END bootstrap=False, max_depth=6, max_features=log2, min_samples_leaf=4, min_samples_split=2, n_estimators=20;, score=0.884 total time= 0.0s\n","[CV 1/5] END bootstrap=False, max_depth=6, max_features=log2, min_samples_leaf=4, min_samples_split=2, n_estimators=30;, score=0.864 total time= 0.1s\n","[CV 2/5] END bootstrap=False, max_depth=6, max_features=log2, min_samples_leaf=4, min_samples_split=2, n_estimators=30;, score=0.864 total time= 0.1s\n","[CV 3/5] END bootstrap=False, max_depth=6, max_features=log2, min_samples_leaf=4, min_samples_split=2, n_estimators=30;, score=0.889 total time= 0.1s\n","[CV 4/5] END bootstrap=False, max_depth=6, max_features=log2, min_samples_leaf=4, min_samples_split=2, n_estimators=30;, score=0.869 total time= 0.1s\n","[CV 5/5] END bootstrap=False, max_depth=6, max_features=log2, min_samples_leaf=4, min_samples_split=2, n_estimators=30;, score=0.879 total time= 0.1s\n","[CV 1/5] END bootstrap=False, max_depth=6, max_features=log2, min_samples_leaf=4, min_samples_split=4, n_estimators=5;, score=0.879 total time= 0.0s\n","[CV 2/5] END bootstrap=False, max_depth=6, max_features=log2, min_samples_leaf=4, min_samples_split=4, n_estimators=5;, score=0.874 total time= 0.0s\n","[CV 3/5] END bootstrap=False, max_depth=6, max_features=log2, min_samples_leaf=4, min_samples_split=4, n_estimators=5;, score=0.889 total time= 0.0s\n","[CV 4/5] END bootstrap=False, max_depth=6, max_features=log2, min_samples_leaf=4, min_samples_split=4, n_estimators=5;, score=0.879 total time= 0.0s\n","[CV 5/5] END bootstrap=False, max_depth=6, max_features=log2, min_samples_leaf=4, min_samples_split=4, n_estimators=5;, score=0.874 total time= 0.0s\n","[CV 1/5] END bootstrap=False, max_depth=6, max_features=log2, min_samples_leaf=4, min_samples_split=4, n_estimators=10;, score=0.864 total time= 0.0s\n","[CV 2/5] END bootstrap=False, max_depth=6, max_features=log2, min_samples_leaf=4, min_samples_split=4, n_estimators=10;, score=0.889 total time= 0.0s\n","[CV 3/5] END bootstrap=False, max_depth=6, max_features=log2, min_samples_leaf=4, min_samples_split=4, n_estimators=10;, score=0.879 total time= 0.0s\n","[CV 4/5] END bootstrap=False, max_depth=6, max_features=log2, min_samples_leaf=4, min_samples_split=4, n_estimators=10;, score=0.848 total time= 0.0s\n","[CV 5/5] END bootstrap=False, max_depth=6, max_features=log2, min_samples_leaf=4, min_samples_split=4, n_estimators=10;, score=0.889 total time= 0.0s\n","[CV 1/5] END bootstrap=False, max_depth=6, max_features=log2, min_samples_leaf=4, min_samples_split=4, n_estimators=20;, score=0.864 total time= 0.1s\n","[CV 2/5] END bootstrap=False, max_depth=6, max_features=log2, min_samples_leaf=4, min_samples_split=4, n_estimators=20;, score=0.874 total time= 0.1s\n","[CV 3/5] END bootstrap=False, max_depth=6, max_features=log2, min_samples_leaf=4, min_samples_split=4, n_estimators=20;, score=0.884 total time= 0.1s\n","[CV 4/5] END bootstrap=False, max_depth=6, max_features=log2, min_samples_leaf=4, min_samples_split=4, n_estimators=20;, score=0.864 total time= 0.1s\n","[CV 5/5] END bootstrap=False, max_depth=6, max_features=log2, min_samples_leaf=4, min_samples_split=4, n_estimators=20;, score=0.889 total time= 0.1s\n","[CV 1/5] END bootstrap=False, max_depth=6, max_features=log2, min_samples_leaf=4, min_samples_split=4, n_estimators=30;, score=0.848 total time= 0.1s\n","[CV 2/5] END bootstrap=False, max_depth=6, max_features=log2, min_samples_leaf=4, min_samples_split=4, n_estimators=30;, score=0.879 total time= 0.1s\n","[CV 3/5] END bootstrap=False, max_depth=6, max_features=log2, min_samples_leaf=4, min_samples_split=4, n_estimators=30;, score=0.869 total time= 0.1s\n","[CV 4/5] END bootstrap=False, max_depth=6, max_features=log2, min_samples_leaf=4, min_samples_split=4, n_estimators=30;, score=0.859 total time= 0.1s\n","[CV 5/5] END bootstrap=False, max_depth=6, max_features=log2, min_samples_leaf=4, min_samples_split=4, n_estimators=30;, score=0.879 total time= 0.1s\n","[CV 1/5] END bootstrap=False, max_depth=6, max_features=log2, min_samples_leaf=4, min_samples_split=6, n_estimators=5;, score=0.869 total time= 0.0s\n","[CV 2/5] END bootstrap=False, max_depth=6, max_features=log2, min_samples_leaf=4, min_samples_split=6, n_estimators=5;, score=0.899 total time= 0.0s\n","[CV 3/5] END bootstrap=False, max_depth=6, max_features=log2, min_samples_leaf=4, min_samples_split=6, n_estimators=5;, score=0.879 total time= 0.0s\n","[CV 4/5] END bootstrap=False, max_depth=6, max_features=log2, min_samples_leaf=4, min_samples_split=6, n_estimators=5;, score=0.854 total time= 0.0s\n","[CV 5/5] END bootstrap=False, max_depth=6, max_features=log2, min_samples_leaf=4, min_samples_split=6, n_estimators=5;, score=0.884 total time= 0.0s\n","[CV 1/5] END bootstrap=False, max_depth=6, max_features=log2, min_samples_leaf=4, min_samples_split=6, n_estimators=10;, score=0.879 total time= 0.0s\n","[CV 2/5] END bootstrap=False, max_depth=6, max_features=log2, min_samples_leaf=4, min_samples_split=6, n_estimators=10;, score=0.884 total time= 0.0s\n","[CV 3/5] END bootstrap=False, max_depth=6, max_features=log2, min_samples_leaf=4, min_samples_split=6, n_estimators=10;, score=0.884 total time= 0.0s\n","[CV 4/5] END bootstrap=False, max_depth=6, max_features=log2, min_samples_leaf=4, min_samples_split=6, n_estimators=10;, score=0.848 total time= 0.0s\n","[CV 5/5] END bootstrap=False, max_depth=6, max_features=log2, min_samples_leaf=4, min_samples_split=6, n_estimators=10;, score=0.874 total time= 0.0s\n","[CV 1/5] END bootstrap=False, max_depth=6, max_features=log2, min_samples_leaf=4, min_samples_split=6, n_estimators=20;, score=0.864 total time= 0.1s\n","[CV 2/5] END bootstrap=False, max_depth=6, max_features=log2, min_samples_leaf=4, min_samples_split=6, n_estimators=20;, score=0.884 total time= 0.1s\n","[CV 3/5] END bootstrap=False, max_depth=6, max_features=log2, min_samples_leaf=4, min_samples_split=6, n_estimators=20;, score=0.894 total time= 0.1s\n","[CV 4/5] END bootstrap=False, max_depth=6, max_features=log2, min_samples_leaf=4, min_samples_split=6, n_estimators=20;, score=0.848 total time= 0.1s\n","[CV 5/5] END bootstrap=False, max_depth=6, max_features=log2, min_samples_leaf=4, min_samples_split=6, n_estimators=20;, score=0.889 total time= 0.1s\n","[CV 1/5] END bootstrap=False, max_depth=6, max_features=log2, min_samples_leaf=4, min_samples_split=6, n_estimators=30;, score=0.869 total time= 0.1s\n","[CV 2/5] END bootstrap=False, max_depth=6, max_features=log2, min_samples_leaf=4, min_samples_split=6, n_estimators=30;, score=0.874 total time= 0.1s\n","[CV 3/5] END bootstrap=False, max_depth=6, max_features=log2, min_samples_leaf=4, min_samples_split=6, n_estimators=30;, score=0.879 total time= 0.1s\n","[CV 4/5] END bootstrap=False, max_depth=6, max_features=log2, min_samples_leaf=4, min_samples_split=6, n_estimators=30;, score=0.874 total time= 0.1s\n","[CV 5/5] END bootstrap=False, max_depth=6, max_features=log2, min_samples_leaf=4, min_samples_split=6, n_estimators=30;, score=0.884 total time= 0.1s\n","[CV 1/5] END bootstrap=False, max_depth=6, max_features=log2, min_samples_leaf=6, min_samples_split=2, n_estimators=5;, score=0.869 total time= 0.0s\n","[CV 2/5] END bootstrap=False, max_depth=6, max_features=log2, min_samples_leaf=6, min_samples_split=2, n_estimators=5;, score=0.889 total time= 0.0s\n","[CV 3/5] END bootstrap=False, max_depth=6, max_features=log2, min_samples_leaf=6, min_samples_split=2, n_estimators=5;, score=0.889 total time= 0.0s\n","[CV 4/5] END bootstrap=False, max_depth=6, max_features=log2, min_samples_leaf=6, min_samples_split=2, n_estimators=5;, score=0.869 total time= 0.0s\n","[CV 5/5] END bootstrap=False, max_depth=6, max_features=log2, min_samples_leaf=6, min_samples_split=2, n_estimators=5;, score=0.874 total time= 0.0s\n","[CV 1/5] END bootstrap=False, max_depth=6, max_features=log2, min_samples_leaf=6, min_samples_split=2, n_estimators=10;, score=0.848 total time= 0.0s\n","[CV 2/5] END bootstrap=False, max_depth=6, max_features=log2, min_samples_leaf=6, min_samples_split=2, n_estimators=10;, score=0.879 total time= 0.0s\n","[CV 3/5] END bootstrap=False, max_depth=6, max_features=log2, min_samples_leaf=6, min_samples_split=2, n_estimators=10;, score=0.904 total time= 0.0s\n","[CV 4/5] END bootstrap=False, max_depth=6, max_features=log2, min_samples_leaf=6, min_samples_split=2, n_estimators=10;, score=0.869 total time= 0.0s\n","[CV 5/5] END bootstrap=False, max_depth=6, max_features=log2, min_samples_leaf=6, min_samples_split=2, n_estimators=10;, score=0.848 total time= 0.0s\n","[CV 1/5] END bootstrap=False, max_depth=6, max_features=log2, min_samples_leaf=6, min_samples_split=2, n_estimators=20;, score=0.859 total time= 0.1s\n","[CV 2/5] END bootstrap=False, max_depth=6, max_features=log2, min_samples_leaf=6, min_samples_split=2, n_estimators=20;, score=0.879 total time= 0.1s\n","[CV 3/5] END bootstrap=False, max_depth=6, max_features=log2, min_samples_leaf=6, min_samples_split=2, n_estimators=20;, score=0.894 total time= 0.1s\n","[CV 4/5] END bootstrap=False, max_depth=6, max_features=log2, min_samples_leaf=6, min_samples_split=2, n_estimators=20;, score=0.848 total time= 0.1s\n","[CV 5/5] END bootstrap=False, max_depth=6, max_features=log2, min_samples_leaf=6, min_samples_split=2, n_estimators=20;, score=0.894 total time= 0.1s\n","[CV 1/5] END bootstrap=False, max_depth=6, max_features=log2, min_samples_leaf=6, min_samples_split=2, n_estimators=30;, score=0.884 total time= 0.1s\n","[CV 2/5] END bootstrap=False, max_depth=6, max_features=log2, min_samples_leaf=6, min_samples_split=2, n_estimators=30;, score=0.874 total time= 0.1s\n","[CV 3/5] END bootstrap=False, max_depth=6, max_features=log2, min_samples_leaf=6, min_samples_split=2, n_estimators=30;, score=0.894 total time= 0.1s\n","[CV 4/5] END bootstrap=False, max_depth=6, max_features=log2, min_samples_leaf=6, min_samples_split=2, n_estimators=30;, score=0.874 total time= 0.1s\n","[CV 5/5] END bootstrap=False, max_depth=6, max_features=log2, min_samples_leaf=6, min_samples_split=2, n_estimators=30;, score=0.889 total time= 0.1s\n","[CV 1/5] END bootstrap=False, max_depth=6, max_features=log2, min_samples_leaf=6, min_samples_split=4, n_estimators=5;, score=0.859 total time= 0.0s\n","[CV 2/5] END bootstrap=False, max_depth=6, max_features=log2, min_samples_leaf=6, min_samples_split=4, n_estimators=5;, score=0.874 total time= 0.0s\n","[CV 3/5] END bootstrap=False, max_depth=6, max_features=log2, min_samples_leaf=6, min_samples_split=4, n_estimators=5;, score=0.889 total time= 0.0s\n","[CV 4/5] END bootstrap=False, max_depth=6, max_features=log2, min_samples_leaf=6, min_samples_split=4, n_estimators=5;, score=0.848 total time= 0.0s\n","[CV 5/5] END bootstrap=False, max_depth=6, max_features=log2, min_samples_leaf=6, min_samples_split=4, n_estimators=5;, score=0.889 total time= 0.0s\n","[CV 1/5] END bootstrap=False, max_depth=6, max_features=log2, min_samples_leaf=6, min_samples_split=4, n_estimators=10;, score=0.879 total time= 0.0s\n","[CV 2/5] END bootstrap=False, max_depth=6, max_features=log2, min_samples_leaf=6, min_samples_split=4, n_estimators=10;, score=0.879 total time= 0.0s\n","[CV 3/5] END bootstrap=False, max_depth=6, max_features=log2, min_samples_leaf=6, min_samples_split=4, n_estimators=10;, score=0.889 total time= 0.0s\n","[CV 4/5] END bootstrap=False, max_depth=6, max_features=log2, min_samples_leaf=6, min_samples_split=4, n_estimators=10;, score=0.828 total time= 0.0s\n","[CV 5/5] END bootstrap=False, max_depth=6, max_features=log2, min_samples_leaf=6, min_samples_split=4, n_estimators=10;, score=0.884 total time= 0.0s\n","[CV 1/5] END bootstrap=False, max_depth=6, max_features=log2, min_samples_leaf=6, min_samples_split=4, n_estimators=20;, score=0.879 total time= 0.1s\n","[CV 2/5] END bootstrap=False, max_depth=6, max_features=log2, min_samples_leaf=6, min_samples_split=4, n_estimators=20;, score=0.889 total time= 0.1s\n","[CV 3/5] END bootstrap=False, max_depth=6, max_features=log2, min_samples_leaf=6, min_samples_split=4, n_estimators=20;, score=0.884 total time= 0.1s\n","[CV 4/5] END bootstrap=False, max_depth=6, max_features=log2, min_samples_leaf=6, min_samples_split=4, n_estimators=20;, score=0.843 total time= 0.1s\n","[CV 5/5] END bootstrap=False, max_depth=6, max_features=log2, min_samples_leaf=6, min_samples_split=4, n_estimators=20;, score=0.874 total time= 0.1s\n","[CV 1/5] END bootstrap=False, max_depth=6, max_features=log2, min_samples_leaf=6, min_samples_split=4, n_estimators=30;, score=0.879 total time= 0.1s\n","[CV 2/5] END bootstrap=False, max_depth=6, max_features=log2, min_samples_leaf=6, min_samples_split=4, n_estimators=30;, score=0.889 total time= 0.1s\n","[CV 3/5] END bootstrap=False, max_depth=6, max_features=log2, min_samples_leaf=6, min_samples_split=4, n_estimators=30;, score=0.889 total time= 0.1s\n","[CV 4/5] END bootstrap=False, max_depth=6, max_features=log2, min_samples_leaf=6, min_samples_split=4, n_estimators=30;, score=0.843 total time= 0.1s\n","[CV 5/5] END bootstrap=False, max_depth=6, max_features=log2, min_samples_leaf=6, min_samples_split=4, n_estimators=30;, score=0.874 total time= 0.1s\n","[CV 1/5] END bootstrap=False, max_depth=6, max_features=log2, min_samples_leaf=6, min_samples_split=6, n_estimators=5;, score=0.869 total time= 0.0s\n","[CV 2/5] END bootstrap=False, max_depth=6, max_features=log2, min_samples_leaf=6, min_samples_split=6, n_estimators=5;, score=0.884 total time= 0.0s\n","[CV 3/5] END bootstrap=False, max_depth=6, max_features=log2, min_samples_leaf=6, min_samples_split=6, n_estimators=5;, score=0.879 total time= 0.0s\n","[CV 4/5] END bootstrap=False, max_depth=6, max_features=log2, min_samples_leaf=6, min_samples_split=6, n_estimators=5;, score=0.864 total time= 0.0s\n","[CV 5/5] END bootstrap=False, max_depth=6, max_features=log2, min_samples_leaf=6, min_samples_split=6, n_estimators=5;, score=0.859 total time= 0.0s\n","[CV 1/5] END bootstrap=False, max_depth=6, max_features=log2, min_samples_leaf=6, min_samples_split=6, n_estimators=10;, score=0.848 total time= 0.0s\n","[CV 2/5] END bootstrap=False, max_depth=6, max_features=log2, min_samples_leaf=6, min_samples_split=6, n_estimators=10;, score=0.889 total time= 0.0s\n","[CV 3/5] END bootstrap=False, max_depth=6, max_features=log2, min_samples_leaf=6, min_samples_split=6, n_estimators=10;, score=0.884 total time= 0.0s\n","[CV 4/5] END bootstrap=False, max_depth=6, max_features=log2, min_samples_leaf=6, min_samples_split=6, n_estimators=10;, score=0.838 total time= 0.0s\n","[CV 5/5] END bootstrap=False, max_depth=6, max_features=log2, min_samples_leaf=6, min_samples_split=6, n_estimators=10;, score=0.894 total time= 0.0s\n","[CV 1/5] END bootstrap=False, max_depth=6, max_features=log2, min_samples_leaf=6, min_samples_split=6, n_estimators=20;, score=0.874 total time= 0.0s\n","[CV 2/5] END bootstrap=False, max_depth=6, max_features=log2, min_samples_leaf=6, min_samples_split=6, n_estimators=20;, score=0.889 total time= 0.0s\n","[CV 3/5] END bootstrap=False, max_depth=6, max_features=log2, min_samples_leaf=6, min_samples_split=6, n_estimators=20;, score=0.879 total time= 0.0s\n","[CV 4/5] END bootstrap=False, max_depth=6, max_features=log2, min_samples_leaf=6, min_samples_split=6, n_estimators=20;, score=0.848 total time= 0.0s\n","[CV 5/5] END bootstrap=False, max_depth=6, max_features=log2, min_samples_leaf=6, min_samples_split=6, n_estimators=20;, score=0.894 total time= 0.0s\n","[CV 1/5] END bootstrap=False, max_depth=6, max_features=log2, min_samples_leaf=6, min_samples_split=6, n_estimators=30;, score=0.874 total time= 0.1s\n","[CV 2/5] END bootstrap=False, max_depth=6, max_features=log2, min_samples_leaf=6, min_samples_split=6, n_estimators=30;, score=0.884 total time= 0.1s\n","[CV 3/5] END bootstrap=False, max_depth=6, max_features=log2, min_samples_leaf=6, min_samples_split=6, n_estimators=30;, score=0.874 total time= 0.1s\n","[CV 4/5] END bootstrap=False, max_depth=6, max_features=log2, min_samples_leaf=6, min_samples_split=6, n_estimators=30;, score=0.843 total time= 0.1s\n","[CV 5/5] END bootstrap=False, max_depth=6, max_features=log2, min_samples_leaf=6, min_samples_split=6, n_estimators=30;, score=0.884 total time= 0.1s\n","[CV 1/5] END bootstrap=False, max_depth=6, max_features=None, min_samples_leaf=2, min_samples_split=2, n_estimators=5;, score=0.879 total time= 0.0s\n","[CV 2/5] END bootstrap=False, max_depth=6, max_features=None, min_samples_leaf=2, min_samples_split=2, n_estimators=5;, score=0.879 total time= 0.0s\n","[CV 3/5] END bootstrap=False, max_depth=6, max_features=None, min_samples_leaf=2, min_samples_split=2, n_estimators=5;, score=0.889 total time= 0.0s\n","[CV 4/5] END bootstrap=False, max_depth=6, max_features=None, min_samples_leaf=2, min_samples_split=2, n_estimators=5;, score=0.838 total time= 0.0s\n","[CV 5/5] END bootstrap=False, max_depth=6, max_features=None, min_samples_leaf=2, min_samples_split=2, n_estimators=5;, score=0.869 total time= 0.0s\n","[CV 1/5] END bootstrap=False, max_depth=6, max_features=None, min_samples_leaf=2, min_samples_split=2, n_estimators=10;, score=0.879 total time= 0.0s\n","[CV 2/5] END bootstrap=False, max_depth=6, max_features=None, min_samples_leaf=2, min_samples_split=2, n_estimators=10;, score=0.879 total time= 0.0s\n","[CV 3/5] END bootstrap=False, max_depth=6, max_features=None, min_samples_leaf=2, min_samples_split=2, n_estimators=10;, score=0.889 total time= 0.0s\n","[CV 4/5] END bootstrap=False, max_depth=6, max_features=None, min_samples_leaf=2, min_samples_split=2, n_estimators=10;, score=0.848 total time= 0.0s\n","[CV 5/5] END bootstrap=False, max_depth=6, max_features=None, min_samples_leaf=2, min_samples_split=2, n_estimators=10;, score=0.869 total time= 0.0s\n","[CV 1/5] END bootstrap=False, max_depth=6, max_features=None, min_samples_leaf=2, min_samples_split=2, n_estimators=20;, score=0.879 total time= 0.1s\n","[CV 2/5] END bootstrap=False, max_depth=6, max_features=None, min_samples_leaf=2, min_samples_split=2, n_estimators=20;, score=0.879 total time= 0.1s\n","[CV 3/5] END bootstrap=False, max_depth=6, max_features=None, min_samples_leaf=2, min_samples_split=2, n_estimators=20;, score=0.889 total time= 0.1s\n","[CV 4/5] END bootstrap=False, max_depth=6, max_features=None, min_samples_leaf=2, min_samples_split=2, n_estimators=20;, score=0.854 total time= 0.1s\n","[CV 5/5] END bootstrap=False, max_depth=6, max_features=None, min_samples_leaf=2, min_samples_split=2, n_estimators=20;, score=0.869 total time= 0.1s\n","[CV 1/5] END bootstrap=False, max_depth=6, max_features=None, min_samples_leaf=2, min_samples_split=2, n_estimators=30;, score=0.879 total time= 0.1s\n","[CV 2/5] END bootstrap=False, max_depth=6, max_features=None, min_samples_leaf=2, min_samples_split=2, n_estimators=30;, score=0.879 total time= 0.1s\n","[CV 3/5] END bootstrap=False, max_depth=6, max_features=None, min_samples_leaf=2, min_samples_split=2, n_estimators=30;, score=0.889 total time= 0.1s\n","[CV 4/5] END bootstrap=False, max_depth=6, max_features=None, min_samples_leaf=2, min_samples_split=2, n_estimators=30;, score=0.848 total time= 0.1s\n","[CV 5/5] END bootstrap=False, max_depth=6, max_features=None, min_samples_leaf=2, min_samples_split=2, n_estimators=30;, score=0.869 total time= 0.1s\n","[CV 1/5] END bootstrap=False, max_depth=6, max_features=None, min_samples_leaf=2, min_samples_split=4, n_estimators=5;, score=0.884 total time= 0.0s\n","[CV 2/5] END bootstrap=False, max_depth=6, max_features=None, min_samples_leaf=2, min_samples_split=4, n_estimators=5;, score=0.879 total time= 0.0s\n","[CV 3/5] END bootstrap=False, max_depth=6, max_features=None, min_samples_leaf=2, min_samples_split=4, n_estimators=5;, score=0.889 total time= 0.0s\n","[CV 4/5] END bootstrap=False, max_depth=6, max_features=None, min_samples_leaf=2, min_samples_split=4, n_estimators=5;, score=0.843 total time= 0.0s\n","[CV 5/5] END bootstrap=False, max_depth=6, max_features=None, min_samples_leaf=2, min_samples_split=4, n_estimators=5;, score=0.869 total time= 0.0s\n","[CV 1/5] END bootstrap=False, max_depth=6, max_features=None, min_samples_leaf=2, min_samples_split=4, n_estimators=10;, score=0.884 total time= 0.0s\n","[CV 2/5] END bootstrap=False, max_depth=6, max_features=None, min_samples_leaf=2, min_samples_split=4, n_estimators=10;, score=0.879 total time= 0.0s\n","[CV 3/5] END bootstrap=False, max_depth=6, max_features=None, min_samples_leaf=2, min_samples_split=4, n_estimators=10;, score=0.889 total time= 0.0s\n","[CV 4/5] END bootstrap=False, max_depth=6, max_features=None, min_samples_leaf=2, min_samples_split=4, n_estimators=10;, score=0.854 total time= 0.0s\n","[CV 5/5] END bootstrap=False, max_depth=6, max_features=None, min_samples_leaf=2, min_samples_split=4, n_estimators=10;, score=0.869 total time= 0.0s\n","[CV 1/5] END bootstrap=False, max_depth=6, max_features=None, min_samples_leaf=2, min_samples_split=4, n_estimators=20;, score=0.879 total time= 0.1s\n","[CV 2/5] END bootstrap=False, max_depth=6, max_features=None, min_samples_leaf=2, min_samples_split=4, n_estimators=20;, score=0.879 total time= 0.1s\n","[CV 3/5] END bootstrap=False, max_depth=6, max_features=None, min_samples_leaf=2, min_samples_split=4, n_estimators=20;, score=0.889 total time= 0.1s\n","[CV 4/5] END bootstrap=False, max_depth=6, max_features=None, min_samples_leaf=2, min_samples_split=4, n_estimators=20;, score=0.848 total time= 0.1s\n","[CV 5/5] END bootstrap=False, max_depth=6, max_features=None, min_samples_leaf=2, min_samples_split=4, n_estimators=20;, score=0.869 total time= 0.1s\n","[CV 1/5] END bootstrap=False, max_depth=6, max_features=None, min_samples_leaf=2, min_samples_split=4, n_estimators=30;, score=0.884 total time= 0.1s\n","[CV 2/5] END bootstrap=False, max_depth=6, max_features=None, min_samples_leaf=2, min_samples_split=4, n_estimators=30;, score=0.879 total time= 0.1s\n","[CV 3/5] END bootstrap=False, max_depth=6, max_features=None, min_samples_leaf=2, min_samples_split=4, n_estimators=30;, score=0.889 total time= 0.1s\n","[CV 4/5] END bootstrap=False, max_depth=6, max_features=None, min_samples_leaf=2, min_samples_split=4, n_estimators=30;, score=0.848 total time= 0.1s\n","[CV 5/5] END bootstrap=False, max_depth=6, max_features=None, min_samples_leaf=2, min_samples_split=4, n_estimators=30;, score=0.869 total time= 0.1s\n","[CV 1/5] END bootstrap=False, max_depth=6, max_features=None, min_samples_leaf=2, min_samples_split=6, n_estimators=5;, score=0.884 total time= 0.0s\n","[CV 2/5] END bootstrap=False, max_depth=6, max_features=None, min_samples_leaf=2, min_samples_split=6, n_estimators=5;, score=0.879 total time= 0.0s\n","[CV 3/5] END bootstrap=False, max_depth=6, max_features=None, min_samples_leaf=2, min_samples_split=6, n_estimators=5;, score=0.889 total time= 0.0s\n","[CV 4/5] END bootstrap=False, max_depth=6, max_features=None, min_samples_leaf=2, min_samples_split=6, n_estimators=5;, score=0.843 total time= 0.0s\n","[CV 5/5] END bootstrap=False, max_depth=6, max_features=None, min_samples_leaf=2, min_samples_split=6, n_estimators=5;, score=0.869 total time= 0.0s\n","[CV 1/5] END bootstrap=False, max_depth=6, max_features=None, min_samples_leaf=2, min_samples_split=6, n_estimators=10;, score=0.879 total time= 0.0s\n","[CV 2/5] END bootstrap=False, max_depth=6, max_features=None, min_samples_leaf=2, min_samples_split=6, n_estimators=10;, score=0.879 total time= 0.0s\n","[CV 3/5] END bootstrap=False, max_depth=6, max_features=None, min_samples_leaf=2, min_samples_split=6, n_estimators=10;, score=0.889 total time= 0.0s\n","[CV 4/5] END bootstrap=False, max_depth=6, max_features=None, min_samples_leaf=2, min_samples_split=6, n_estimators=10;, score=0.854 total time= 0.0s\n","[CV 5/5] END bootstrap=False, max_depth=6, max_features=None, min_samples_leaf=2, min_samples_split=6, n_estimators=10;, score=0.869 total time= 0.0s\n","[CV 1/5] END bootstrap=False, max_depth=6, max_features=None, min_samples_leaf=2, min_samples_split=6, n_estimators=20;, score=0.879 total time= 0.1s\n","[CV 2/5] END bootstrap=False, max_depth=6, max_features=None, min_samples_leaf=2, min_samples_split=6, n_estimators=20;, score=0.879 total time= 0.1s\n","[CV 3/5] END bootstrap=False, max_depth=6, max_features=None, min_samples_leaf=2, min_samples_split=6, n_estimators=20;, score=0.889 total time= 0.1s\n","[CV 4/5] END bootstrap=False, max_depth=6, max_features=None, min_samples_leaf=2, min_samples_split=6, n_estimators=20;, score=0.848 total time= 0.1s\n","[CV 5/5] END bootstrap=False, max_depth=6, max_features=None, min_samples_leaf=2, min_samples_split=6, n_estimators=20;, score=0.869 total time= 0.1s\n","[CV 1/5] END bootstrap=False, max_depth=6, max_features=None, min_samples_leaf=2, min_samples_split=6, n_estimators=30;, score=0.879 total time= 0.1s\n","[CV 2/5] END bootstrap=False, max_depth=6, max_features=None, min_samples_leaf=2, min_samples_split=6, n_estimators=30;, score=0.879 total time= 0.1s\n","[CV 3/5] END bootstrap=False, max_depth=6, max_features=None, min_samples_leaf=2, min_samples_split=6, n_estimators=30;, score=0.889 total time= 0.1s\n","[CV 4/5] END bootstrap=False, max_depth=6, max_features=None, min_samples_leaf=2, min_samples_split=6, n_estimators=30;, score=0.848 total time= 0.1s\n","[CV 5/5] END bootstrap=False, max_depth=6, max_features=None, min_samples_leaf=2, min_samples_split=6, n_estimators=30;, score=0.869 total time= 0.1s\n","[CV 1/5] END bootstrap=False, max_depth=6, max_features=None, min_samples_leaf=4, min_samples_split=2, n_estimators=5;, score=0.884 total time= 0.0s\n","[CV 2/5] END bootstrap=False, max_depth=6, max_features=None, min_samples_leaf=4, min_samples_split=2, n_estimators=5;, score=0.874 total time= 0.0s\n","[CV 3/5] END bootstrap=False, max_depth=6, max_features=None, min_samples_leaf=4, min_samples_split=2, n_estimators=5;, score=0.889 total time= 0.0s\n","[CV 4/5] END bootstrap=False, max_depth=6, max_features=None, min_samples_leaf=4, min_samples_split=2, n_estimators=5;, score=0.854 total time= 0.0s\n","[CV 5/5] END bootstrap=False, max_depth=6, max_features=None, min_samples_leaf=4, min_samples_split=2, n_estimators=5;, score=0.869 total time= 0.0s\n","[CV 1/5] END bootstrap=False, max_depth=6, max_features=None, min_samples_leaf=4, min_samples_split=2, n_estimators=10;, score=0.884 total time= 0.0s\n","[CV 2/5] END bootstrap=False, max_depth=6, max_features=None, min_samples_leaf=4, min_samples_split=2, n_estimators=10;, score=0.874 total time= 0.0s\n","[CV 3/5] END bootstrap=False, max_depth=6, max_features=None, min_samples_leaf=4, min_samples_split=2, n_estimators=10;, score=0.894 total time= 0.0s\n","[CV 4/5] END bootstrap=False, max_depth=6, max_features=None, min_samples_leaf=4, min_samples_split=2, n_estimators=10;, score=0.848 total time= 0.0s\n","[CV 5/5] END bootstrap=False, max_depth=6, max_features=None, min_samples_leaf=4, min_samples_split=2, n_estimators=10;, score=0.869 total time= 0.0s\n","[CV 1/5] END bootstrap=False, max_depth=6, max_features=None, min_samples_leaf=4, min_samples_split=2, n_estimators=20;, score=0.884 total time= 0.1s\n","[CV 2/5] END bootstrap=False, max_depth=6, max_features=None, min_samples_leaf=4, min_samples_split=2, n_estimators=20;, score=0.879 total time= 0.1s\n","[CV 3/5] END bootstrap=False, max_depth=6, max_features=None, min_samples_leaf=4, min_samples_split=2, n_estimators=20;, score=0.884 total time= 0.1s\n","[CV 4/5] END bootstrap=False, max_depth=6, max_features=None, min_samples_leaf=4, min_samples_split=2, n_estimators=20;, score=0.854 total time= 0.1s\n","[CV 5/5] END bootstrap=False, max_depth=6, max_features=None, min_samples_leaf=4, min_samples_split=2, n_estimators=20;, score=0.869 total time= 0.1s\n","[CV 1/5] END bootstrap=False, max_depth=6, max_features=None, min_samples_leaf=4, min_samples_split=2, n_estimators=30;, score=0.884 total time= 0.1s\n","[CV 2/5] END bootstrap=False, max_depth=6, max_features=None, min_samples_leaf=4, min_samples_split=2, n_estimators=30;, score=0.874 total time= 0.1s\n","[CV 3/5] END bootstrap=False, max_depth=6, max_features=None, min_samples_leaf=4, min_samples_split=2, n_estimators=30;, score=0.899 total time= 0.1s\n","[CV 4/5] END bootstrap=False, max_depth=6, max_features=None, min_samples_leaf=4, min_samples_split=2, n_estimators=30;, score=0.854 total time= 0.1s\n","[CV 5/5] END bootstrap=False, max_depth=6, max_features=None, min_samples_leaf=4, min_samples_split=2, n_estimators=30;, score=0.869 total time= 0.1s\n","[CV 1/5] END bootstrap=False, max_depth=6, max_features=None, min_samples_leaf=4, min_samples_split=4, n_estimators=5;, score=0.884 total time= 0.0s\n","[CV 2/5] END bootstrap=False, max_depth=6, max_features=None, min_samples_leaf=4, min_samples_split=4, n_estimators=5;, score=0.879 total time= 0.0s\n","[CV 3/5] END bootstrap=False, max_depth=6, max_features=None, min_samples_leaf=4, min_samples_split=4, n_estimators=5;, score=0.899 total time= 0.0s\n","[CV 4/5] END bootstrap=False, max_depth=6, max_features=None, min_samples_leaf=4, min_samples_split=4, n_estimators=5;, score=0.854 total time= 0.0s\n","[CV 5/5] END bootstrap=False, max_depth=6, max_features=None, min_samples_leaf=4, min_samples_split=4, n_estimators=5;, score=0.869 total time= 0.0s\n","[CV 1/5] END bootstrap=False, max_depth=6, max_features=None, min_samples_leaf=4, min_samples_split=4, n_estimators=10;, score=0.884 total time= 0.0s\n","[CV 2/5] END bootstrap=False, max_depth=6, max_features=None, min_samples_leaf=4, min_samples_split=4, n_estimators=10;, score=0.879 total time= 0.0s\n","[CV 3/5] END bootstrap=False, max_depth=6, max_features=None, min_samples_leaf=4, min_samples_split=4, n_estimators=10;, score=0.894 total time= 0.0s\n","[CV 4/5] END bootstrap=False, max_depth=6, max_features=None, min_samples_leaf=4, min_samples_split=4, n_estimators=10;, score=0.854 total time= 0.0s\n","[CV 5/5] END bootstrap=False, max_depth=6, max_features=None, min_samples_leaf=4, min_samples_split=4, n_estimators=10;, score=0.869 total time= 0.0s\n","[CV 1/5] END bootstrap=False, max_depth=6, max_features=None, min_samples_leaf=4, min_samples_split=4, n_estimators=20;, score=0.884 total time= 0.1s\n","[CV 2/5] END bootstrap=False, max_depth=6, max_features=None, min_samples_leaf=4, min_samples_split=4, n_estimators=20;, score=0.879 total time= 0.1s\n","[CV 3/5] END bootstrap=False, max_depth=6, max_features=None, min_samples_leaf=4, min_samples_split=4, n_estimators=20;, score=0.894 total time= 0.1s\n","[CV 4/5] END bootstrap=False, max_depth=6, max_features=None, min_samples_leaf=4, min_samples_split=4, n_estimators=20;, score=0.854 total time= 0.1s\n","[CV 5/5] END bootstrap=False, max_depth=6, max_features=None, min_samples_leaf=4, min_samples_split=4, n_estimators=20;, score=0.869 total time= 0.1s\n","[CV 1/5] END bootstrap=False, max_depth=6, max_features=None, min_samples_leaf=4, min_samples_split=4, n_estimators=30;, score=0.884 total time= 0.1s\n","[CV 2/5] END bootstrap=False, max_depth=6, max_features=None, min_samples_leaf=4, min_samples_split=4, n_estimators=30;, score=0.879 total time= 0.1s\n","[CV 3/5] END bootstrap=False, max_depth=6, max_features=None, min_samples_leaf=4, min_samples_split=4, n_estimators=30;, score=0.884 total time= 0.1s\n","[CV 4/5] END bootstrap=False, max_depth=6, max_features=None, min_samples_leaf=4, min_samples_split=4, n_estimators=30;, score=0.854 total time= 0.1s\n","[CV 5/5] END bootstrap=False, max_depth=6, max_features=None, min_samples_leaf=4, min_samples_split=4, n_estimators=30;, score=0.869 total time= 0.1s\n","[CV 1/5] END bootstrap=False, max_depth=6, max_features=None, min_samples_leaf=4, min_samples_split=6, n_estimators=5;, score=0.884 total time= 0.0s\n","[CV 2/5] END bootstrap=False, max_depth=6, max_features=None, min_samples_leaf=4, min_samples_split=6, n_estimators=5;, score=0.879 total time= 0.0s\n","[CV 3/5] END bootstrap=False, max_depth=6, max_features=None, min_samples_leaf=4, min_samples_split=6, n_estimators=5;, score=0.894 total time= 0.0s\n","[CV 4/5] END bootstrap=False, max_depth=6, max_features=None, min_samples_leaf=4, min_samples_split=6, n_estimators=5;, score=0.848 total time= 0.0s\n","[CV 5/5] END bootstrap=False, max_depth=6, max_features=None, min_samples_leaf=4, min_samples_split=6, n_estimators=5;, score=0.869 total time= 0.0s\n","[CV 1/5] END bootstrap=False, max_depth=6, max_features=None, min_samples_leaf=4, min_samples_split=6, n_estimators=10;, score=0.884 total time= 0.0s\n","[CV 2/5] END bootstrap=False, max_depth=6, max_features=None, min_samples_leaf=4, min_samples_split=6, n_estimators=10;, score=0.879 total time= 0.0s\n","[CV 3/5] END bootstrap=False, max_depth=6, max_features=None, min_samples_leaf=4, min_samples_split=6, n_estimators=10;, score=0.884 total time= 0.0s\n","[CV 4/5] END bootstrap=False, max_depth=6, max_features=None, min_samples_leaf=4, min_samples_split=6, n_estimators=10;, score=0.848 total time= 0.0s\n","[CV 5/5] END bootstrap=False, max_depth=6, max_features=None, min_samples_leaf=4, min_samples_split=6, n_estimators=10;, score=0.869 total time= 0.0s\n","[CV 1/5] END bootstrap=False, max_depth=6, max_features=None, min_samples_leaf=4, min_samples_split=6, n_estimators=20;, score=0.884 total time= 0.1s\n","[CV 2/5] END bootstrap=False, max_depth=6, max_features=None, min_samples_leaf=4, min_samples_split=6, n_estimators=20;, score=0.874 total time= 0.1s\n","[CV 3/5] END bootstrap=False, max_depth=6, max_features=None, min_samples_leaf=4, min_samples_split=6, n_estimators=20;, score=0.894 total time= 0.1s\n","[CV 4/5] END bootstrap=False, max_depth=6, max_features=None, min_samples_leaf=4, min_samples_split=6, n_estimators=20;, score=0.854 total time= 0.1s\n","[CV 5/5] END bootstrap=False, max_depth=6, max_features=None, min_samples_leaf=4, min_samples_split=6, n_estimators=20;, score=0.869 total time= 0.1s\n","[CV 1/5] END bootstrap=False, max_depth=6, max_features=None, min_samples_leaf=4, min_samples_split=6, n_estimators=30;, score=0.884 total time= 0.1s\n","[CV 2/5] END bootstrap=False, max_depth=6, max_features=None, min_samples_leaf=4, min_samples_split=6, n_estimators=30;, score=0.874 total time= 0.1s\n","[CV 3/5] END bootstrap=False, max_depth=6, max_features=None, min_samples_leaf=4, min_samples_split=6, n_estimators=30;, score=0.894 total time= 0.1s\n","[CV 4/5] END bootstrap=False, max_depth=6, max_features=None, min_samples_leaf=4, min_samples_split=6, n_estimators=30;, score=0.854 total time= 0.1s\n","[CV 5/5] END bootstrap=False, max_depth=6, max_features=None, min_samples_leaf=4, min_samples_split=6, n_estimators=30;, score=0.869 total time= 0.1s\n","[CV 1/5] END bootstrap=False, max_depth=6, max_features=None, min_samples_leaf=6, min_samples_split=2, n_estimators=5;, score=0.889 total time= 0.0s\n","[CV 2/5] END bootstrap=False, max_depth=6, max_features=None, min_samples_leaf=6, min_samples_split=2, n_estimators=5;, score=0.874 total time= 0.0s\n","[CV 3/5] END bootstrap=False, max_depth=6, max_features=None, min_samples_leaf=6, min_samples_split=2, n_estimators=5;, score=0.899 total time= 0.0s\n","[CV 4/5] END bootstrap=False, max_depth=6, max_features=None, min_samples_leaf=6, min_samples_split=2, n_estimators=5;, score=0.864 total time= 0.0s\n","[CV 5/5] END bootstrap=False, max_depth=6, max_features=None, min_samples_leaf=6, min_samples_split=2, n_estimators=5;, score=0.869 total time= 0.0s\n","[CV 1/5] END bootstrap=False, max_depth=6, max_features=None, min_samples_leaf=6, min_samples_split=2, n_estimators=10;, score=0.889 total time= 0.0s\n","[CV 2/5] END bootstrap=False, max_depth=6, max_features=None, min_samples_leaf=6, min_samples_split=2, n_estimators=10;, score=0.874 total time= 0.0s\n","[CV 3/5] END bootstrap=False, max_depth=6, max_features=None, min_samples_leaf=6, min_samples_split=2, n_estimators=10;, score=0.894 total time= 0.0s\n","[CV 4/5] END bootstrap=False, max_depth=6, max_features=None, min_samples_leaf=6, min_samples_split=2, n_estimators=10;, score=0.864 total time= 0.0s\n","[CV 5/5] END bootstrap=False, max_depth=6, max_features=None, min_samples_leaf=6, min_samples_split=2, n_estimators=10;, score=0.869 total time= 0.0s\n","[CV 1/5] END bootstrap=False, max_depth=6, max_features=None, min_samples_leaf=6, min_samples_split=2, n_estimators=20;, score=0.889 total time= 0.1s\n","[CV 2/5] END bootstrap=False, max_depth=6, max_features=None, min_samples_leaf=6, min_samples_split=2, n_estimators=20;, score=0.874 total time= 0.1s\n","[CV 3/5] END bootstrap=False, max_depth=6, max_features=None, min_samples_leaf=6, min_samples_split=2, n_estimators=20;, score=0.894 total time= 0.1s\n","[CV 4/5] END bootstrap=False, max_depth=6, max_features=None, min_samples_leaf=6, min_samples_split=2, n_estimators=20;, score=0.864 total time= 0.1s\n","[CV 5/5] END bootstrap=False, max_depth=6, max_features=None, min_samples_leaf=6, min_samples_split=2, n_estimators=20;, score=0.869 total time= 0.1s\n","[CV 1/5] END bootstrap=False, max_depth=6, max_features=None, min_samples_leaf=6, min_samples_split=2, n_estimators=30;, score=0.889 total time= 0.1s\n","[CV 2/5] END bootstrap=False, max_depth=6, max_features=None, min_samples_leaf=6, min_samples_split=2, n_estimators=30;, score=0.874 total time= 0.1s\n","[CV 3/5] END bootstrap=False, max_depth=6, max_features=None, min_samples_leaf=6, min_samples_split=2, n_estimators=30;, score=0.894 total time= 0.1s\n","[CV 4/5] END bootstrap=False, max_depth=6, max_features=None, min_samples_leaf=6, min_samples_split=2, n_estimators=30;, score=0.864 total time= 0.1s\n","[CV 5/5] END bootstrap=False, max_depth=6, max_features=None, min_samples_leaf=6, min_samples_split=2, n_estimators=30;, score=0.869 total time= 0.1s\n","[CV 1/5] END bootstrap=False, max_depth=6, max_features=None, min_samples_leaf=6, min_samples_split=4, n_estimators=5;, score=0.889 total time= 0.0s\n","[CV 2/5] END bootstrap=False, max_depth=6, max_features=None, min_samples_leaf=6, min_samples_split=4, n_estimators=5;, score=0.874 total time= 0.0s\n","[CV 3/5] END bootstrap=False, max_depth=6, max_features=None, min_samples_leaf=6, min_samples_split=4, n_estimators=5;, score=0.894 total time= 0.0s\n","[CV 4/5] END bootstrap=False, max_depth=6, max_features=None, min_samples_leaf=6, min_samples_split=4, n_estimators=5;, score=0.864 total time= 0.0s\n","[CV 5/5] END bootstrap=False, max_depth=6, max_features=None, min_samples_leaf=6, min_samples_split=4, n_estimators=5;, score=0.869 total time= 0.0s\n","[CV 1/5] END bootstrap=False, max_depth=6, max_features=None, min_samples_leaf=6, min_samples_split=4, n_estimators=10;, score=0.889 total time= 0.0s\n","[CV 2/5] END bootstrap=False, max_depth=6, max_features=None, min_samples_leaf=6, min_samples_split=4, n_estimators=10;, score=0.874 total time= 0.0s\n","[CV 3/5] END bootstrap=False, max_depth=6, max_features=None, min_samples_leaf=6, min_samples_split=4, n_estimators=10;, score=0.884 total time= 0.0s\n","[CV 4/5] END bootstrap=False, max_depth=6, max_features=None, min_samples_leaf=6, min_samples_split=4, n_estimators=10;, score=0.864 total time= 0.0s\n","[CV 5/5] END bootstrap=False, max_depth=6, max_features=None, min_samples_leaf=6, min_samples_split=4, n_estimators=10;, score=0.869 total time= 0.0s\n","[CV 1/5] END bootstrap=False, max_depth=6, max_features=None, min_samples_leaf=6, min_samples_split=4, n_estimators=20;, score=0.889 total time= 0.1s\n","[CV 2/5] END bootstrap=False, max_depth=6, max_features=None, min_samples_leaf=6, min_samples_split=4, n_estimators=20;, score=0.874 total time= 0.1s\n","[CV 3/5] END bootstrap=False, max_depth=6, max_features=None, min_samples_leaf=6, min_samples_split=4, n_estimators=20;, score=0.899 total time= 0.1s\n","[CV 4/5] END bootstrap=False, max_depth=6, max_features=None, min_samples_leaf=6, min_samples_split=4, n_estimators=20;, score=0.864 total time= 0.1s\n","[CV 5/5] END bootstrap=False, max_depth=6, max_features=None, min_samples_leaf=6, min_samples_split=4, n_estimators=20;, score=0.869 total time= 0.1s\n","[CV 1/5] END bootstrap=False, max_depth=6, max_features=None, min_samples_leaf=6, min_samples_split=4, n_estimators=30;, score=0.889 total time= 0.1s\n","[CV 2/5] END bootstrap=False, max_depth=6, max_features=None, min_samples_leaf=6, min_samples_split=4, n_estimators=30;, score=0.874 total time= 0.1s\n","[CV 3/5] END bootstrap=False, max_depth=6, max_features=None, min_samples_leaf=6, min_samples_split=4, n_estimators=30;, score=0.894 total time= 0.1s\n","[CV 4/5] END bootstrap=False, max_depth=6, max_features=None, min_samples_leaf=6, min_samples_split=4, n_estimators=30;, score=0.864 total time= 0.1s\n","[CV 5/5] END bootstrap=False, max_depth=6, max_features=None, min_samples_leaf=6, min_samples_split=4, n_estimators=30;, score=0.869 total time= 0.1s\n","[CV 1/5] END bootstrap=False, max_depth=6, max_features=None, min_samples_leaf=6, min_samples_split=6, n_estimators=5;, score=0.889 total time= 0.0s\n","[CV 2/5] END bootstrap=False, max_depth=6, max_features=None, min_samples_leaf=6, min_samples_split=6, n_estimators=5;, score=0.874 total time= 0.0s\n","[CV 3/5] END bootstrap=False, max_depth=6, max_features=None, min_samples_leaf=6, min_samples_split=6, n_estimators=5;, score=0.894 total time= 0.0s\n","[CV 4/5] END bootstrap=False, max_depth=6, max_features=None, min_samples_leaf=6, min_samples_split=6, n_estimators=5;, score=0.864 total time= 0.0s\n","[CV 5/5] END bootstrap=False, max_depth=6, max_features=None, min_samples_leaf=6, min_samples_split=6, n_estimators=5;, score=0.869 total time= 0.0s\n","[CV 1/5] END bootstrap=False, max_depth=6, max_features=None, min_samples_leaf=6, min_samples_split=6, n_estimators=10;, score=0.889 total time= 0.0s\n","[CV 2/5] END bootstrap=False, max_depth=6, max_features=None, min_samples_leaf=6, min_samples_split=6, n_estimators=10;, score=0.874 total time= 0.0s\n","[CV 3/5] END bootstrap=False, max_depth=6, max_features=None, min_samples_leaf=6, min_samples_split=6, n_estimators=10;, score=0.894 total time= 0.0s\n","[CV 4/5] END bootstrap=False, max_depth=6, max_features=None, min_samples_leaf=6, min_samples_split=6, n_estimators=10;, score=0.864 total time= 0.0s\n","[CV 5/5] END bootstrap=False, max_depth=6, max_features=None, min_samples_leaf=6, min_samples_split=6, n_estimators=10;, score=0.869 total time= 0.0s\n","[CV 1/5] END bootstrap=False, max_depth=6, max_features=None, min_samples_leaf=6, min_samples_split=6, n_estimators=20;, score=0.889 total time= 0.1s\n","[CV 2/5] END bootstrap=False, max_depth=6, max_features=None, min_samples_leaf=6, min_samples_split=6, n_estimators=20;, score=0.874 total time= 0.1s\n","[CV 3/5] END bootstrap=False, max_depth=6, max_features=None, min_samples_leaf=6, min_samples_split=6, n_estimators=20;, score=0.894 total time= 0.1s\n","[CV 4/5] END bootstrap=False, max_depth=6, max_features=None, min_samples_leaf=6, min_samples_split=6, n_estimators=20;, score=0.864 total time= 0.1s\n","[CV 5/5] END bootstrap=False, max_depth=6, max_features=None, min_samples_leaf=6, min_samples_split=6, n_estimators=20;, score=0.869 total time= 0.1s\n","[CV 1/5] END bootstrap=False, max_depth=6, max_features=None, min_samples_leaf=6, min_samples_split=6, n_estimators=30;, score=0.889 total time= 0.1s\n","[CV 2/5] END bootstrap=False, max_depth=6, max_features=None, min_samples_leaf=6, min_samples_split=6, n_estimators=30;, score=0.874 total time= 0.1s\n","[CV 3/5] END bootstrap=False, max_depth=6, max_features=None, min_samples_leaf=6, min_samples_split=6, n_estimators=30;, score=0.894 total time= 0.1s\n","[CV 4/5] END bootstrap=False, max_depth=6, max_features=None, min_samples_leaf=6, min_samples_split=6, n_estimators=30;, score=0.864 total time= 0.1s\n","[CV 5/5] END bootstrap=False, max_depth=6, max_features=None, min_samples_leaf=6, min_samples_split=6, n_estimators=30;, score=0.869 total time= 0.1s\n","[CV 1/5] END bootstrap=False, max_depth=10, max_features=sqrt, min_samples_leaf=2, min_samples_split=2, n_estimators=5;, score=0.889 total time= 0.0s\n","[CV 2/5] END bootstrap=False, max_depth=10, max_features=sqrt, min_samples_leaf=2, min_samples_split=2, n_estimators=5;, score=0.884 total time= 0.0s\n","[CV 3/5] END bootstrap=False, max_depth=10, max_features=sqrt, min_samples_leaf=2, min_samples_split=2, n_estimators=5;, score=0.894 total time= 0.0s\n","[CV 4/5] END bootstrap=False, max_depth=10, max_features=sqrt, min_samples_leaf=2, min_samples_split=2, n_estimators=5;, score=0.874 total time= 0.0s\n","[CV 5/5] END bootstrap=False, max_depth=10, max_features=sqrt, min_samples_leaf=2, min_samples_split=2, n_estimators=5;, score=0.859 total time= 0.0s\n","[CV 1/5] END bootstrap=False, max_depth=10, max_features=sqrt, min_samples_leaf=2, min_samples_split=2, n_estimators=10;, score=0.874 total time= 0.0s\n","[CV 2/5] END bootstrap=False, max_depth=10, max_features=sqrt, min_samples_leaf=2, min_samples_split=2, n_estimators=10;, score=0.869 total time= 0.0s\n","[CV 3/5] END bootstrap=False, max_depth=10, max_features=sqrt, min_samples_leaf=2, min_samples_split=2, n_estimators=10;, score=0.909 total time= 0.0s\n","[CV 4/5] END bootstrap=False, max_depth=10, max_features=sqrt, min_samples_leaf=2, min_samples_split=2, n_estimators=10;, score=0.859 total time= 0.0s\n","[CV 5/5] END bootstrap=False, max_depth=10, max_features=sqrt, min_samples_leaf=2, min_samples_split=2, n_estimators=10;, score=0.889 total time= 0.0s\n","[CV 1/5] END bootstrap=False, max_depth=10, max_features=sqrt, min_samples_leaf=2, min_samples_split=2, n_estimators=20;, score=0.869 total time= 0.1s\n","[CV 2/5] END bootstrap=False, max_depth=10, max_features=sqrt, min_samples_leaf=2, min_samples_split=2, n_estimators=20;, score=0.869 total time= 0.1s\n","[CV 3/5] END bootstrap=False, max_depth=10, max_features=sqrt, min_samples_leaf=2, min_samples_split=2, n_estimators=20;, score=0.899 total time= 0.1s\n","[CV 4/5] END bootstrap=False, max_depth=10, max_features=sqrt, min_samples_leaf=2, min_samples_split=2, n_estimators=20;, score=0.859 total time= 0.1s\n","[CV 5/5] END bootstrap=False, max_depth=10, max_features=sqrt, min_samples_leaf=2, min_samples_split=2, n_estimators=20;, score=0.884 total time= 0.1s\n","[CV 1/5] END bootstrap=False, max_depth=10, max_features=sqrt, min_samples_leaf=2, min_samples_split=2, n_estimators=30;, score=0.874 total time= 0.1s\n","[CV 2/5] END bootstrap=False, max_depth=10, max_features=sqrt, min_samples_leaf=2, min_samples_split=2, n_estimators=30;, score=0.899 total time= 0.1s\n","[CV 3/5] END bootstrap=False, max_depth=10, max_features=sqrt, min_samples_leaf=2, min_samples_split=2, n_estimators=30;, score=0.899 total time= 0.1s\n","[CV 4/5] END bootstrap=False, max_depth=10, max_features=sqrt, min_samples_leaf=2, min_samples_split=2, n_estimators=30;, score=0.859 total time= 0.1s\n","[CV 5/5] END bootstrap=False, max_depth=10, max_features=sqrt, min_samples_leaf=2, min_samples_split=2, n_estimators=30;, score=0.874 total time= 0.1s\n","[CV 1/5] END bootstrap=False, max_depth=10, max_features=sqrt, min_samples_leaf=2, min_samples_split=4, n_estimators=5;, score=0.874 total time= 0.0s\n","[CV 2/5] END bootstrap=False, max_depth=10, max_features=sqrt, min_samples_leaf=2, min_samples_split=4, n_estimators=5;, score=0.884 total time= 0.0s\n","[CV 3/5] END bootstrap=False, max_depth=10, max_features=sqrt, min_samples_leaf=2, min_samples_split=4, n_estimators=5;, score=0.904 total time= 0.0s\n","[CV 4/5] END bootstrap=False, max_depth=10, max_features=sqrt, min_samples_leaf=2, min_samples_split=4, n_estimators=5;, score=0.859 total time= 0.0s\n","[CV 5/5] END bootstrap=False, max_depth=10, max_features=sqrt, min_samples_leaf=2, min_samples_split=4, n_estimators=5;, score=0.884 total time= 0.0s\n","[CV 1/5] END bootstrap=False, max_depth=10, max_features=sqrt, min_samples_leaf=2, min_samples_split=4, n_estimators=10;, score=0.854 total time= 0.0s\n","[CV 2/5] END bootstrap=False, max_depth=10, max_features=sqrt, min_samples_leaf=2, min_samples_split=4, n_estimators=10;, score=0.869 total time= 0.0s\n","[CV 3/5] END bootstrap=False, max_depth=10, max_features=sqrt, min_samples_leaf=2, min_samples_split=4, n_estimators=10;, score=0.889 total time= 0.0s\n","[CV 4/5] END bootstrap=False, max_depth=10, max_features=sqrt, min_samples_leaf=2, min_samples_split=4, n_estimators=10;, score=0.854 total time= 0.0s\n","[CV 5/5] END bootstrap=False, max_depth=10, max_features=sqrt, min_samples_leaf=2, min_samples_split=4, n_estimators=10;, score=0.889 total time= 0.0s\n","[CV 1/5] END bootstrap=False, max_depth=10, max_features=sqrt, min_samples_leaf=2, min_samples_split=4, n_estimators=20;, score=0.879 total time= 0.1s\n","[CV 2/5] END bootstrap=False, max_depth=10, max_features=sqrt, min_samples_leaf=2, min_samples_split=4, n_estimators=20;, score=0.894 total time= 0.1s\n","[CV 3/5] END bootstrap=False, max_depth=10, max_features=sqrt, min_samples_leaf=2, min_samples_split=4, n_estimators=20;, score=0.889 total time= 0.1s\n","[CV 4/5] END bootstrap=False, max_depth=10, max_features=sqrt, min_samples_leaf=2, min_samples_split=4, n_estimators=20;, score=0.833 total time= 0.1s\n","[CV 5/5] END bootstrap=False, max_depth=10, max_features=sqrt, min_samples_leaf=2, min_samples_split=4, n_estimators=20;, score=0.904 total time= 0.1s\n","[CV 1/5] END bootstrap=False, max_depth=10, max_features=sqrt, min_samples_leaf=2, min_samples_split=4, n_estimators=30;, score=0.869 total time= 0.1s\n","[CV 2/5] END bootstrap=False, max_depth=10, max_features=sqrt, min_samples_leaf=2, min_samples_split=4, n_estimators=30;, score=0.874 total time= 0.1s\n","[CV 3/5] END bootstrap=False, max_depth=10, max_features=sqrt, min_samples_leaf=2, min_samples_split=4, n_estimators=30;, score=0.899 total time= 0.1s\n","[CV 4/5] END bootstrap=False, max_depth=10, max_features=sqrt, min_samples_leaf=2, min_samples_split=4, n_estimators=30;, score=0.869 total time= 0.1s\n","[CV 5/5] END bootstrap=False, max_depth=10, max_features=sqrt, min_samples_leaf=2, min_samples_split=4, n_estimators=30;, score=0.879 total time= 0.1s\n","[CV 1/5] END bootstrap=False, max_depth=10, max_features=sqrt, min_samples_leaf=2, min_samples_split=6, n_estimators=5;, score=0.894 total time= 0.0s\n","[CV 2/5] END bootstrap=False, max_depth=10, max_features=sqrt, min_samples_leaf=2, min_samples_split=6, n_estimators=5;, score=0.879 total time= 0.0s\n","[CV 3/5] END bootstrap=False, max_depth=10, max_features=sqrt, min_samples_leaf=2, min_samples_split=6, n_estimators=5;, score=0.894 total time= 0.0s\n","[CV 4/5] END bootstrap=False, max_depth=10, max_features=sqrt, min_samples_leaf=2, min_samples_split=6, n_estimators=5;, score=0.848 total time= 0.0s\n","[CV 5/5] END bootstrap=False, max_depth=10, max_features=sqrt, min_samples_leaf=2, min_samples_split=6, n_estimators=5;, score=0.869 total time= 0.0s\n","[CV 1/5] END bootstrap=False, max_depth=10, max_features=sqrt, min_samples_leaf=2, min_samples_split=6, n_estimators=10;, score=0.879 total time= 0.0s\n","[CV 2/5] END bootstrap=False, max_depth=10, max_features=sqrt, min_samples_leaf=2, min_samples_split=6, n_estimators=10;, score=0.869 total time= 0.0s\n","[CV 3/5] END bootstrap=False, max_depth=10, max_features=sqrt, min_samples_leaf=2, min_samples_split=6, n_estimators=10;, score=0.889 total time= 0.0s\n","[CV 4/5] END bootstrap=False, max_depth=10, max_features=sqrt, min_samples_leaf=2, min_samples_split=6, n_estimators=10;, score=0.854 total time= 0.0s\n","[CV 5/5] END bootstrap=False, max_depth=10, max_features=sqrt, min_samples_leaf=2, min_samples_split=6, n_estimators=10;, score=0.854 total time= 0.0s\n","[CV 1/5] END bootstrap=False, max_depth=10, max_features=sqrt, min_samples_leaf=2, min_samples_split=6, n_estimators=20;, score=0.879 total time= 0.1s\n","[CV 2/5] END bootstrap=False, max_depth=10, max_features=sqrt, min_samples_leaf=2, min_samples_split=6, n_estimators=20;, score=0.894 total time= 0.1s\n","[CV 3/5] END bootstrap=False, max_depth=10, max_features=sqrt, min_samples_leaf=2, min_samples_split=6, n_estimators=20;, score=0.879 total time= 0.1s\n","[CV 4/5] END bootstrap=False, max_depth=10, max_features=sqrt, min_samples_leaf=2, min_samples_split=6, n_estimators=20;, score=0.854 total time= 0.1s\n","[CV 5/5] END bootstrap=False, max_depth=10, max_features=sqrt, min_samples_leaf=2, min_samples_split=6, n_estimators=20;, score=0.854 total time= 0.1s\n","[CV 1/5] END bootstrap=False, max_depth=10, max_features=sqrt, min_samples_leaf=2, min_samples_split=6, n_estimators=30;, score=0.854 total time= 0.1s\n","[CV 2/5] END bootstrap=False, max_depth=10, max_features=sqrt, min_samples_leaf=2, min_samples_split=6, n_estimators=30;, score=0.889 total time= 0.1s\n","[CV 3/5] END bootstrap=False, max_depth=10, max_features=sqrt, min_samples_leaf=2, min_samples_split=6, n_estimators=30;, score=0.889 total time= 0.1s\n","[CV 4/5] END bootstrap=False, max_depth=10, max_features=sqrt, min_samples_leaf=2, min_samples_split=6, n_estimators=30;, score=0.843 total time= 0.1s\n","[CV 5/5] END bootstrap=False, max_depth=10, max_features=sqrt, min_samples_leaf=2, min_samples_split=6, n_estimators=30;, score=0.879 total time= 0.1s\n","[CV 1/5] END bootstrap=False, max_depth=10, max_features=sqrt, min_samples_leaf=4, min_samples_split=2, n_estimators=5;, score=0.879 total time= 0.0s\n","[CV 2/5] END bootstrap=False, max_depth=10, max_features=sqrt, min_samples_leaf=4, min_samples_split=2, n_estimators=5;, score=0.894 total time= 0.0s\n","[CV 3/5] END bootstrap=False, max_depth=10, max_features=sqrt, min_samples_leaf=4, min_samples_split=2, n_estimators=5;, score=0.884 total time= 0.0s\n","[CV 4/5] END bootstrap=False, max_depth=10, max_features=sqrt, min_samples_leaf=4, min_samples_split=2, n_estimators=5;, score=0.854 total time= 0.0s\n","[CV 5/5] END bootstrap=False, max_depth=10, max_features=sqrt, min_samples_leaf=4, min_samples_split=2, n_estimators=5;, score=0.889 total time= 0.0s\n","[CV 1/5] END bootstrap=False, max_depth=10, max_features=sqrt, min_samples_leaf=4, min_samples_split=2, n_estimators=10;, score=0.879 total time= 0.0s\n","[CV 2/5] END bootstrap=False, max_depth=10, max_features=sqrt, min_samples_leaf=4, min_samples_split=2, n_estimators=10;, score=0.874 total time= 0.0s\n","[CV 3/5] END bootstrap=False, max_depth=10, max_features=sqrt, min_samples_leaf=4, min_samples_split=2, n_estimators=10;, score=0.874 total time= 0.0s\n","[CV 4/5] END bootstrap=False, max_depth=10, max_features=sqrt, min_samples_leaf=4, min_samples_split=2, n_estimators=10;, score=0.889 total time= 0.0s\n","[CV 5/5] END bootstrap=False, max_depth=10, max_features=sqrt, min_samples_leaf=4, min_samples_split=2, n_estimators=10;, score=0.869 total time= 0.0s\n","[CV 1/5] END bootstrap=False, max_depth=10, max_features=sqrt, min_samples_leaf=4, min_samples_split=2, n_estimators=20;, score=0.869 total time= 0.0s\n","[CV 2/5] END bootstrap=False, max_depth=10, max_features=sqrt, min_samples_leaf=4, min_samples_split=2, n_estimators=20;, score=0.884 total time= 0.0s\n","[CV 3/5] END bootstrap=False, max_depth=10, max_features=sqrt, min_samples_leaf=4, min_samples_split=2, n_estimators=20;, score=0.899 total time= 0.1s\n","[CV 4/5] END bootstrap=False, max_depth=10, max_features=sqrt, min_samples_leaf=4, min_samples_split=2, n_estimators=20;, score=0.838 total time= 0.0s\n","[CV 5/5] END bootstrap=False, max_depth=10, max_features=sqrt, min_samples_leaf=4, min_samples_split=2, n_estimators=20;, score=0.904 total time= 0.0s\n","[CV 1/5] END bootstrap=False, max_depth=10, max_features=sqrt, min_samples_leaf=4, min_samples_split=2, n_estimators=30;, score=0.864 total time= 0.1s\n","[CV 2/5] END bootstrap=False, max_depth=10, max_features=sqrt, min_samples_leaf=4, min_samples_split=2, n_estimators=30;, score=0.884 total time= 0.1s\n","[CV 3/5] END bootstrap=False, max_depth=10, max_features=sqrt, min_samples_leaf=4, min_samples_split=2, n_estimators=30;, score=0.894 total time= 0.1s\n","[CV 4/5] END bootstrap=False, max_depth=10, max_features=sqrt, min_samples_leaf=4, min_samples_split=2, n_estimators=30;, score=0.874 total time= 0.1s\n","[CV 5/5] END bootstrap=False, max_depth=10, max_features=sqrt, min_samples_leaf=4, min_samples_split=2, n_estimators=30;, score=0.884 total time= 0.1s\n","[CV 1/5] END bootstrap=False, max_depth=10, max_features=sqrt, min_samples_leaf=4, min_samples_split=4, n_estimators=5;, score=0.859 total time= 0.0s\n","[CV 2/5] END bootstrap=False, max_depth=10, max_features=sqrt, min_samples_leaf=4, min_samples_split=4, n_estimators=5;, score=0.874 total time= 0.0s\n","[CV 3/5] END bootstrap=False, max_depth=10, max_features=sqrt, min_samples_leaf=4, min_samples_split=4, n_estimators=5;, score=0.899 total time= 0.0s\n","[CV 4/5] END bootstrap=False, max_depth=10, max_features=sqrt, min_samples_leaf=4, min_samples_split=4, n_estimators=5;, score=0.833 total time= 0.0s\n","[CV 5/5] END bootstrap=False, max_depth=10, max_features=sqrt, min_samples_leaf=4, min_samples_split=4, n_estimators=5;, score=0.884 total time= 0.0s\n","[CV 1/5] END bootstrap=False, max_depth=10, max_features=sqrt, min_samples_leaf=4, min_samples_split=4, n_estimators=10;, score=0.848 total time= 0.0s\n","[CV 2/5] END bootstrap=False, max_depth=10, max_features=sqrt, min_samples_leaf=4, min_samples_split=4, n_estimators=10;, score=0.884 total time= 0.0s\n","[CV 3/5] END bootstrap=False, max_depth=10, max_features=sqrt, min_samples_leaf=4, min_samples_split=4, n_estimators=10;, score=0.884 total time= 0.0s\n","[CV 4/5] END bootstrap=False, max_depth=10, max_features=sqrt, min_samples_leaf=4, min_samples_split=4, n_estimators=10;, score=0.874 total time= 0.0s\n","[CV 5/5] END bootstrap=False, max_depth=10, max_features=sqrt, min_samples_leaf=4, min_samples_split=4, n_estimators=10;, score=0.884 total time= 0.0s\n","[CV 1/5] END bootstrap=False, max_depth=10, max_features=sqrt, min_samples_leaf=4, min_samples_split=4, n_estimators=20;, score=0.864 total time= 0.0s\n","[CV 2/5] END bootstrap=False, max_depth=10, max_features=sqrt, min_samples_leaf=4, min_samples_split=4, n_estimators=20;, score=0.879 total time= 0.1s\n","[CV 3/5] END bootstrap=False, max_depth=10, max_features=sqrt, min_samples_leaf=4, min_samples_split=4, n_estimators=20;, score=0.874 total time= 0.0s\n","[CV 4/5] END bootstrap=False, max_depth=10, max_features=sqrt, min_samples_leaf=4, min_samples_split=4, n_estimators=20;, score=0.884 total time= 0.0s\n","[CV 5/5] END bootstrap=False, max_depth=10, max_features=sqrt, min_samples_leaf=4, min_samples_split=4, n_estimators=20;, score=0.874 total time= 0.0s\n","[CV 1/5] END bootstrap=False, max_depth=10, max_features=sqrt, min_samples_leaf=4, min_samples_split=4, n_estimators=30;, score=0.859 total time= 0.1s\n","[CV 2/5] END bootstrap=False, max_depth=10, max_features=sqrt, min_samples_leaf=4, min_samples_split=4, n_estimators=30;, score=0.884 total time= 0.1s\n","[CV 3/5] END bootstrap=False, max_depth=10, max_features=sqrt, min_samples_leaf=4, min_samples_split=4, n_estimators=30;, score=0.879 total time= 0.1s\n","[CV 4/5] END bootstrap=False, max_depth=10, max_features=sqrt, min_samples_leaf=4, min_samples_split=4, n_estimators=30;, score=0.838 total time= 0.1s\n","[CV 5/5] END bootstrap=False, max_depth=10, max_features=sqrt, min_samples_leaf=4, min_samples_split=4, n_estimators=30;, score=0.884 total time= 0.1s\n","[CV 1/5] END bootstrap=False, max_depth=10, max_features=sqrt, min_samples_leaf=4, min_samples_split=6, n_estimators=5;, score=0.879 total time= 0.0s\n","[CV 2/5] END bootstrap=False, max_depth=10, max_features=sqrt, min_samples_leaf=4, min_samples_split=6, n_estimators=5;, score=0.874 total time= 0.0s\n","[CV 3/5] END bootstrap=False, max_depth=10, max_features=sqrt, min_samples_leaf=4, min_samples_split=6, n_estimators=5;, score=0.884 total time= 0.0s\n","[CV 4/5] END bootstrap=False, max_depth=10, max_features=sqrt, min_samples_leaf=4, min_samples_split=6, n_estimators=5;, score=0.859 total time= 0.0s\n","[CV 5/5] END bootstrap=False, max_depth=10, max_features=sqrt, min_samples_leaf=4, min_samples_split=6, n_estimators=5;, score=0.874 total time= 0.0s\n","[CV 1/5] END bootstrap=False, max_depth=10, max_features=sqrt, min_samples_leaf=4, min_samples_split=6, n_estimators=10;, score=0.889 total time= 0.0s\n","[CV 2/5] END bootstrap=False, max_depth=10, max_features=sqrt, min_samples_leaf=4, min_samples_split=6, n_estimators=10;, score=0.874 total time= 0.0s\n","[CV 3/5] END bootstrap=False, max_depth=10, max_features=sqrt, min_samples_leaf=4, min_samples_split=6, n_estimators=10;, score=0.894 total time= 0.0s\n","[CV 4/5] END bootstrap=False, max_depth=10, max_features=sqrt, min_samples_leaf=4, min_samples_split=6, n_estimators=10;, score=0.859 total time= 0.0s\n","[CV 5/5] END bootstrap=False, max_depth=10, max_features=sqrt, min_samples_leaf=4, min_samples_split=6, n_estimators=10;, score=0.884 total time= 0.0s\n","[CV 1/5] END bootstrap=False, max_depth=10, max_features=sqrt, min_samples_leaf=4, min_samples_split=6, n_estimators=20;, score=0.889 total time= 0.0s\n","[CV 2/5] END bootstrap=False, max_depth=10, max_features=sqrt, min_samples_leaf=4, min_samples_split=6, n_estimators=20;, score=0.894 total time= 0.0s\n","[CV 3/5] END bootstrap=False, max_depth=10, max_features=sqrt, min_samples_leaf=4, min_samples_split=6, n_estimators=20;, score=0.889 total time= 0.0s\n","[CV 4/5] END bootstrap=False, max_depth=10, max_features=sqrt, min_samples_leaf=4, min_samples_split=6, n_estimators=20;, score=0.859 total time= 0.0s\n","[CV 5/5] END bootstrap=False, max_depth=10, max_features=sqrt, min_samples_leaf=4, min_samples_split=6, n_estimators=20;, score=0.884 total time= 0.0s\n","[CV 1/5] END bootstrap=False, max_depth=10, max_features=sqrt, min_samples_leaf=4, min_samples_split=6, n_estimators=30;, score=0.869 total time= 0.1s\n","[CV 2/5] END bootstrap=False, max_depth=10, max_features=sqrt, min_samples_leaf=4, min_samples_split=6, n_estimators=30;, score=0.879 total time= 0.1s\n","[CV 3/5] END bootstrap=False, max_depth=10, max_features=sqrt, min_samples_leaf=4, min_samples_split=6, n_estimators=30;, score=0.879 total time= 0.1s\n","[CV 4/5] END bootstrap=False, max_depth=10, max_features=sqrt, min_samples_leaf=4, min_samples_split=6, n_estimators=30;, score=0.848 total time= 0.1s\n","[CV 5/5] END bootstrap=False, max_depth=10, max_features=sqrt, min_samples_leaf=4, min_samples_split=6, n_estimators=30;, score=0.879 total time= 0.1s\n","[CV 1/5] END bootstrap=False, max_depth=10, max_features=sqrt, min_samples_leaf=6, min_samples_split=2, n_estimators=5;, score=0.864 total time= 0.0s\n","[CV 2/5] END bootstrap=False, max_depth=10, max_features=sqrt, min_samples_leaf=6, min_samples_split=2, n_estimators=5;, score=0.879 total time= 0.0s\n","[CV 3/5] END bootstrap=False, max_depth=10, max_features=sqrt, min_samples_leaf=6, min_samples_split=2, n_estimators=5;, score=0.889 total time= 0.0s\n","[CV 4/5] END bootstrap=False, max_depth=10, max_features=sqrt, min_samples_leaf=6, min_samples_split=2, n_estimators=5;, score=0.864 total time= 0.0s\n","[CV 5/5] END bootstrap=False, max_depth=10, max_features=sqrt, min_samples_leaf=6, min_samples_split=2, n_estimators=5;, score=0.869 total time= 0.0s\n","[CV 1/5] END bootstrap=False, max_depth=10, max_features=sqrt, min_samples_leaf=6, min_samples_split=2, n_estimators=10;, score=0.874 total time= 0.0s\n","[CV 2/5] END bootstrap=False, max_depth=10, max_features=sqrt, min_samples_leaf=6, min_samples_split=2, n_estimators=10;, score=0.874 total time= 0.0s\n","[CV 3/5] END bootstrap=False, max_depth=10, max_features=sqrt, min_samples_leaf=6, min_samples_split=2, n_estimators=10;, score=0.889 total time= 0.0s\n","[CV 4/5] END bootstrap=False, max_depth=10, max_features=sqrt, min_samples_leaf=6, min_samples_split=2, n_estimators=10;, score=0.848 total time= 0.0s\n","[CV 5/5] END bootstrap=False, max_depth=10, max_features=sqrt, min_samples_leaf=6, min_samples_split=2, n_estimators=10;, score=0.879 total time= 0.0s\n","[CV 1/5] END bootstrap=False, max_depth=10, max_features=sqrt, min_samples_leaf=6, min_samples_split=2, n_estimators=20;, score=0.864 total time= 0.0s\n","[CV 2/5] END bootstrap=False, max_depth=10, max_features=sqrt, min_samples_leaf=6, min_samples_split=2, n_estimators=20;, score=0.884 total time= 0.0s\n","[CV 3/5] END bootstrap=False, max_depth=10, max_features=sqrt, min_samples_leaf=6, min_samples_split=2, n_estimators=20;, score=0.879 total time= 0.0s\n","[CV 4/5] END bootstrap=False, max_depth=10, max_features=sqrt, min_samples_leaf=6, min_samples_split=2, n_estimators=20;, score=0.833 total time= 0.0s\n","[CV 5/5] END bootstrap=False, max_depth=10, max_features=sqrt, min_samples_leaf=6, min_samples_split=2, n_estimators=20;, score=0.874 total time= 0.0s\n","[CV 1/5] END bootstrap=False, max_depth=10, max_features=sqrt, min_samples_leaf=6, min_samples_split=2, n_estimators=30;, score=0.864 total time= 0.1s\n","[CV 2/5] END bootstrap=False, max_depth=10, max_features=sqrt, min_samples_leaf=6, min_samples_split=2, n_estimators=30;, score=0.859 total time= 0.1s\n","[CV 3/5] END bootstrap=False, max_depth=10, max_features=sqrt, min_samples_leaf=6, min_samples_split=2, n_estimators=30;, score=0.879 total time= 0.1s\n","[CV 4/5] END bootstrap=False, max_depth=10, max_features=sqrt, min_samples_leaf=6, min_samples_split=2, n_estimators=30;, score=0.859 total time= 0.1s\n","[CV 5/5] END bootstrap=False, max_depth=10, max_features=sqrt, min_samples_leaf=6, min_samples_split=2, n_estimators=30;, score=0.889 total time= 0.1s\n","[CV 1/5] END bootstrap=False, max_depth=10, max_features=sqrt, min_samples_leaf=6, min_samples_split=4, n_estimators=5;, score=0.884 total time= 0.0s\n","[CV 2/5] END bootstrap=False, max_depth=10, max_features=sqrt, min_samples_leaf=6, min_samples_split=4, n_estimators=5;, score=0.869 total time= 0.0s\n","[CV 3/5] END bootstrap=False, max_depth=10, max_features=sqrt, min_samples_leaf=6, min_samples_split=4, n_estimators=5;, score=0.864 total time= 0.0s\n","[CV 4/5] END bootstrap=False, max_depth=10, max_features=sqrt, min_samples_leaf=6, min_samples_split=4, n_estimators=5;, score=0.848 total time= 0.0s\n","[CV 5/5] END bootstrap=False, max_depth=10, max_features=sqrt, min_samples_leaf=6, min_samples_split=4, n_estimators=5;, score=0.899 total time= 0.0s\n","[CV 1/5] END bootstrap=False, max_depth=10, max_features=sqrt, min_samples_leaf=6, min_samples_split=4, n_estimators=10;, score=0.879 total time= 0.0s\n","[CV 2/5] END bootstrap=False, max_depth=10, max_features=sqrt, min_samples_leaf=6, min_samples_split=4, n_estimators=10;, score=0.869 total time= 0.0s\n","[CV 3/5] END bootstrap=False, max_depth=10, max_features=sqrt, min_samples_leaf=6, min_samples_split=4, n_estimators=10;, score=0.874 total time= 0.0s\n","[CV 4/5] END bootstrap=False, max_depth=10, max_features=sqrt, min_samples_leaf=6, min_samples_split=4, n_estimators=10;, score=0.874 total time= 0.0s\n","[CV 5/5] END bootstrap=False, max_depth=10, max_features=sqrt, min_samples_leaf=6, min_samples_split=4, n_estimators=10;, score=0.879 total time= 0.0s\n","[CV 1/5] END bootstrap=False, max_depth=10, max_features=sqrt, min_samples_leaf=6, min_samples_split=4, n_estimators=20;, score=0.874 total time= 0.0s\n","[CV 2/5] END bootstrap=False, max_depth=10, max_features=sqrt, min_samples_leaf=6, min_samples_split=4, n_estimators=20;, score=0.894 total time= 0.0s\n","[CV 3/5] END bootstrap=False, max_depth=10, max_features=sqrt, min_samples_leaf=6, min_samples_split=4, n_estimators=20;, score=0.879 total time= 0.0s\n","[CV 4/5] END bootstrap=False, max_depth=10, max_features=sqrt, min_samples_leaf=6, min_samples_split=4, n_estimators=20;, score=0.854 total time= 0.0s\n","[CV 5/5] END bootstrap=False, max_depth=10, max_features=sqrt, min_samples_leaf=6, min_samples_split=4, n_estimators=20;, score=0.899 total time= 0.0s\n","[CV 1/5] END bootstrap=False, max_depth=10, max_features=sqrt, min_samples_leaf=6, min_samples_split=4, n_estimators=30;, score=0.859 total time= 0.1s\n","[CV 2/5] END bootstrap=False, max_depth=10, max_features=sqrt, min_samples_leaf=6, min_samples_split=4, n_estimators=30;, score=0.889 total time= 0.1s\n","[CV 3/5] END bootstrap=False, max_depth=10, max_features=sqrt, min_samples_leaf=6, min_samples_split=4, n_estimators=30;, score=0.899 total time= 0.1s\n","[CV 4/5] END bootstrap=False, max_depth=10, max_features=sqrt, min_samples_leaf=6, min_samples_split=4, n_estimators=30;, score=0.848 total time= 0.1s\n","[CV 5/5] END bootstrap=False, max_depth=10, max_features=sqrt, min_samples_leaf=6, min_samples_split=4, n_estimators=30;, score=0.879 total time= 0.1s\n","[CV 1/5] END bootstrap=False, max_depth=10, max_features=sqrt, min_samples_leaf=6, min_samples_split=6, n_estimators=5;, score=0.869 total time= 0.0s\n","[CV 2/5] END bootstrap=False, max_depth=10, max_features=sqrt, min_samples_leaf=6, min_samples_split=6, n_estimators=5;, score=0.879 total time= 0.0s\n","[CV 3/5] END bootstrap=False, max_depth=10, max_features=sqrt, min_samples_leaf=6, min_samples_split=6, n_estimators=5;, score=0.894 total time= 0.0s\n","[CV 4/5] END bootstrap=False, max_depth=10, max_features=sqrt, min_samples_leaf=6, min_samples_split=6, n_estimators=5;, score=0.854 total time= 0.0s\n","[CV 5/5] END bootstrap=False, max_depth=10, max_features=sqrt, min_samples_leaf=6, min_samples_split=6, n_estimators=5;, score=0.884 total time= 0.0s\n","[CV 1/5] END bootstrap=False, max_depth=10, max_features=sqrt, min_samples_leaf=6, min_samples_split=6, n_estimators=10;, score=0.874 total time= 0.0s\n","[CV 2/5] END bootstrap=False, max_depth=10, max_features=sqrt, min_samples_leaf=6, min_samples_split=6, n_estimators=10;, score=0.894 total time= 0.0s\n","[CV 3/5] END bootstrap=False, max_depth=10, max_features=sqrt, min_samples_leaf=6, min_samples_split=6, n_estimators=10;, score=0.864 total time= 0.0s\n","[CV 4/5] END bootstrap=False, max_depth=10, max_features=sqrt, min_samples_leaf=6, min_samples_split=6, n_estimators=10;, score=0.864 total time= 0.0s\n","[CV 5/5] END bootstrap=False, max_depth=10, max_features=sqrt, min_samples_leaf=6, min_samples_split=6, n_estimators=10;, score=0.909 total time= 0.0s\n","[CV 1/5] END bootstrap=False, max_depth=10, max_features=sqrt, min_samples_leaf=6, min_samples_split=6, n_estimators=20;, score=0.869 total time= 0.0s\n","[CV 2/5] END bootstrap=False, max_depth=10, max_features=sqrt, min_samples_leaf=6, min_samples_split=6, n_estimators=20;, score=0.874 total time= 0.0s\n","[CV 3/5] END bootstrap=False, max_depth=10, max_features=sqrt, min_samples_leaf=6, min_samples_split=6, n_estimators=20;, score=0.889 total time= 0.0s\n","[CV 4/5] END bootstrap=False, max_depth=10, max_features=sqrt, min_samples_leaf=6, min_samples_split=6, n_estimators=20;, score=0.869 total time= 0.0s\n","[CV 5/5] END bootstrap=False, max_depth=10, max_features=sqrt, min_samples_leaf=6, min_samples_split=6, n_estimators=20;, score=0.899 total time= 0.0s\n","[CV 1/5] END bootstrap=False, max_depth=10, max_features=sqrt, min_samples_leaf=6, min_samples_split=6, n_estimators=30;, score=0.879 total time= 0.1s\n","[CV 2/5] END bootstrap=False, max_depth=10, max_features=sqrt, min_samples_leaf=6, min_samples_split=6, n_estimators=30;, score=0.879 total time= 0.1s\n","[CV 3/5] END bootstrap=False, max_depth=10, max_features=sqrt, min_samples_leaf=6, min_samples_split=6, n_estimators=30;, score=0.869 total time= 0.1s\n","[CV 4/5] END bootstrap=False, max_depth=10, max_features=sqrt, min_samples_leaf=6, min_samples_split=6, n_estimators=30;, score=0.864 total time= 0.1s\n","[CV 5/5] END bootstrap=False, max_depth=10, max_features=sqrt, min_samples_leaf=6, min_samples_split=6, n_estimators=30;, score=0.899 total time= 0.1s\n","[CV 1/5] END bootstrap=False, max_depth=10, max_features=log2, min_samples_leaf=2, min_samples_split=2, n_estimators=5;, score=0.894 total time= 0.0s\n","[CV 2/5] END bootstrap=False, max_depth=10, max_features=log2, min_samples_leaf=2, min_samples_split=2, n_estimators=5;, score=0.884 total time= 0.0s\n","[CV 3/5] END bootstrap=False, max_depth=10, max_features=log2, min_samples_leaf=2, min_samples_split=2, n_estimators=5;, score=0.899 total time= 0.0s\n","[CV 4/5] END bootstrap=False, max_depth=10, max_features=log2, min_samples_leaf=2, min_samples_split=2, n_estimators=5;, score=0.864 total time= 0.0s\n","[CV 5/5] END bootstrap=False, max_depth=10, max_features=log2, min_samples_leaf=2, min_samples_split=2, n_estimators=5;, score=0.879 total time= 0.0s\n","[CV 1/5] END bootstrap=False, max_depth=10, max_features=log2, min_samples_leaf=2, min_samples_split=2, n_estimators=10;, score=0.879 total time= 0.0s\n","[CV 2/5] END bootstrap=False, max_depth=10, max_features=log2, min_samples_leaf=2, min_samples_split=2, n_estimators=10;, score=0.879 total time= 0.0s\n","[CV 3/5] END bootstrap=False, max_depth=10, max_features=log2, min_samples_leaf=2, min_samples_split=2, n_estimators=10;, score=0.884 total time= 0.0s\n","[CV 4/5] END bootstrap=False, max_depth=10, max_features=log2, min_samples_leaf=2, min_samples_split=2, n_estimators=10;, score=0.879 total time= 0.0s\n","[CV 5/5] END bootstrap=False, max_depth=10, max_features=log2, min_samples_leaf=2, min_samples_split=2, n_estimators=10;, score=0.874 total time= 0.0s\n","[CV 1/5] END bootstrap=False, max_depth=10, max_features=log2, min_samples_leaf=2, min_samples_split=2, n_estimators=20;, score=0.884 total time= 0.0s\n","[CV 2/5] END bootstrap=False, max_depth=10, max_features=log2, min_samples_leaf=2, min_samples_split=2, n_estimators=20;, score=0.894 total time= 0.0s\n","[CV 3/5] END bootstrap=False, max_depth=10, max_features=log2, min_samples_leaf=2, min_samples_split=2, n_estimators=20;, score=0.884 total time= 0.0s\n","[CV 4/5] END bootstrap=False, max_depth=10, max_features=log2, min_samples_leaf=2, min_samples_split=2, n_estimators=20;, score=0.859 total time= 0.0s\n","[CV 5/5] END bootstrap=False, max_depth=10, max_features=log2, min_samples_leaf=2, min_samples_split=2, n_estimators=20;, score=0.909 total time= 0.0s\n","[CV 1/5] END bootstrap=False, max_depth=10, max_features=log2, min_samples_leaf=2, min_samples_split=2, n_estimators=30;, score=0.884 total time= 0.1s\n","[CV 2/5] END bootstrap=False, max_depth=10, max_features=log2, min_samples_leaf=2, min_samples_split=2, n_estimators=30;, score=0.894 total time= 0.1s\n","[CV 3/5] END bootstrap=False, max_depth=10, max_features=log2, min_samples_leaf=2, min_samples_split=2, n_estimators=30;, score=0.879 total time= 0.1s\n","[CV 4/5] END bootstrap=False, max_depth=10, max_features=log2, min_samples_leaf=2, min_samples_split=2, n_estimators=30;, score=0.874 total time= 0.1s\n","[CV 5/5] END bootstrap=False, max_depth=10, max_features=log2, min_samples_leaf=2, min_samples_split=2, n_estimators=30;, score=0.889 total time= 0.1s\n","[CV 1/5] END bootstrap=False, max_depth=10, max_features=log2, min_samples_leaf=2, min_samples_split=4, n_estimators=5;, score=0.869 total time= 0.0s\n","[CV 2/5] END bootstrap=False, max_depth=10, max_features=log2, min_samples_leaf=2, min_samples_split=4, n_estimators=5;, score=0.879 total time= 0.0s\n","[CV 3/5] END bootstrap=False, max_depth=10, max_features=log2, min_samples_leaf=2, min_samples_split=4, n_estimators=5;, score=0.894 total time= 0.0s\n","[CV 4/5] END bootstrap=False, max_depth=10, max_features=log2, min_samples_leaf=2, min_samples_split=4, n_estimators=5;, score=0.843 total time= 0.0s\n","[CV 5/5] END bootstrap=False, max_depth=10, max_features=log2, min_samples_leaf=2, min_samples_split=4, n_estimators=5;, score=0.874 total time= 0.0s\n","[CV 1/5] END bootstrap=False, max_depth=10, max_features=log2, min_samples_leaf=2, min_samples_split=4, n_estimators=10;, score=0.864 total time= 0.0s\n","[CV 2/5] END bootstrap=False, max_depth=10, max_features=log2, min_samples_leaf=2, min_samples_split=4, n_estimators=10;, score=0.899 total time= 0.0s\n","[CV 3/5] END bootstrap=False, max_depth=10, max_features=log2, min_samples_leaf=2, min_samples_split=4, n_estimators=10;, score=0.899 total time= 0.0s\n","[CV 4/5] END bootstrap=False, max_depth=10, max_features=log2, min_samples_leaf=2, min_samples_split=4, n_estimators=10;, score=0.848 total time= 0.0s\n","[CV 5/5] END bootstrap=False, max_depth=10, max_features=log2, min_samples_leaf=2, min_samples_split=4, n_estimators=10;, score=0.869 total time= 0.0s\n","[CV 1/5] END bootstrap=False, max_depth=10, max_features=log2, min_samples_leaf=2, min_samples_split=4, n_estimators=20;, score=0.884 total time= 0.0s\n","[CV 2/5] END bootstrap=False, max_depth=10, max_features=log2, min_samples_leaf=2, min_samples_split=4, n_estimators=20;, score=0.874 total time= 0.0s\n","[CV 3/5] END bootstrap=False, max_depth=10, max_features=log2, min_samples_leaf=2, min_samples_split=4, n_estimators=20;, score=0.869 total time= 0.0s\n","[CV 4/5] END bootstrap=False, max_depth=10, max_features=log2, min_samples_leaf=2, min_samples_split=4, n_estimators=20;, score=0.864 total time= 0.0s\n","[CV 5/5] END bootstrap=False, max_depth=10, max_features=log2, min_samples_leaf=2, min_samples_split=4, n_estimators=20;, score=0.899 total time= 0.0s\n","[CV 1/5] END bootstrap=False, max_depth=10, max_features=log2, min_samples_leaf=2, min_samples_split=4, n_estimators=30;, score=0.869 total time= 0.1s\n","[CV 2/5] END bootstrap=False, max_depth=10, max_features=log2, min_samples_leaf=2, min_samples_split=4, n_estimators=30;, score=0.879 total time= 0.1s\n","[CV 3/5] END bootstrap=False, max_depth=10, max_features=log2, min_samples_leaf=2, min_samples_split=4, n_estimators=30;, score=0.879 total time= 0.1s\n","[CV 4/5] END bootstrap=False, max_depth=10, max_features=log2, min_samples_leaf=2, min_samples_split=4, n_estimators=30;, score=0.838 total time= 0.1s\n","[CV 5/5] END bootstrap=False, max_depth=10, max_features=log2, min_samples_leaf=2, min_samples_split=4, n_estimators=30;, score=0.879 total time= 0.1s\n","[CV 1/5] END bootstrap=False, max_depth=10, max_features=log2, min_samples_leaf=2, min_samples_split=6, n_estimators=5;, score=0.864 total time= 0.0s\n","[CV 2/5] END bootstrap=False, max_depth=10, max_features=log2, min_samples_leaf=2, min_samples_split=6, n_estimators=5;, score=0.904 total time= 0.0s\n","[CV 3/5] END bootstrap=False, max_depth=10, max_features=log2, min_samples_leaf=2, min_samples_split=6, n_estimators=5;, score=0.869 total time= 0.0s\n","[CV 4/5] END bootstrap=False, max_depth=10, max_features=log2, min_samples_leaf=2, min_samples_split=6, n_estimators=5;, score=0.843 total time= 0.0s\n","[CV 5/5] END bootstrap=False, max_depth=10, max_features=log2, min_samples_leaf=2, min_samples_split=6, n_estimators=5;, score=0.864 total time= 0.0s\n","[CV 1/5] END bootstrap=False, max_depth=10, max_features=log2, min_samples_leaf=2, min_samples_split=6, n_estimators=10;, score=0.854 total time= 0.0s\n","[CV 2/5] END bootstrap=False, max_depth=10, max_features=log2, min_samples_leaf=2, min_samples_split=6, n_estimators=10;, score=0.884 total time= 0.0s\n","[CV 3/5] END bootstrap=False, max_depth=10, max_features=log2, min_samples_leaf=2, min_samples_split=6, n_estimators=10;, score=0.894 total time= 0.0s\n","[CV 4/5] END bootstrap=False, max_depth=10, max_features=log2, min_samples_leaf=2, min_samples_split=6, n_estimators=10;, score=0.848 total time= 0.0s\n","[CV 5/5] END bootstrap=False, max_depth=10, max_features=log2, min_samples_leaf=2, min_samples_split=6, n_estimators=10;, score=0.884 total time= 0.0s\n","[CV 1/5] END bootstrap=False, max_depth=10, max_features=log2, min_samples_leaf=2, min_samples_split=6, n_estimators=20;, score=0.864 total time= 0.0s\n","[CV 2/5] END bootstrap=False, max_depth=10, max_features=log2, min_samples_leaf=2, min_samples_split=6, n_estimators=20;, score=0.894 total time= 0.0s\n","[CV 3/5] END bootstrap=False, max_depth=10, max_features=log2, min_samples_leaf=2, min_samples_split=6, n_estimators=20;, score=0.889 total time= 0.0s\n","[CV 4/5] END bootstrap=False, max_depth=10, max_features=log2, min_samples_leaf=2, min_samples_split=6, n_estimators=20;, score=0.869 total time= 0.0s\n","[CV 5/5] END bootstrap=False, max_depth=10, max_features=log2, min_samples_leaf=2, min_samples_split=6, n_estimators=20;, score=0.884 total time= 0.0s\n","[CV 1/5] END bootstrap=False, max_depth=10, max_features=log2, min_samples_leaf=2, min_samples_split=6, n_estimators=30;, score=0.884 total time= 0.1s\n","[CV 2/5] END bootstrap=False, max_depth=10, max_features=log2, min_samples_leaf=2, min_samples_split=6, n_estimators=30;, score=0.874 total time= 0.1s\n","[CV 3/5] END bootstrap=False, max_depth=10, max_features=log2, min_samples_leaf=2, min_samples_split=6, n_estimators=30;, score=0.894 total time= 0.1s\n","[CV 4/5] END bootstrap=False, max_depth=10, max_features=log2, min_samples_leaf=2, min_samples_split=6, n_estimators=30;, score=0.859 total time= 0.1s\n","[CV 5/5] END bootstrap=False, max_depth=10, max_features=log2, min_samples_leaf=2, min_samples_split=6, n_estimators=30;, score=0.884 total time= 0.1s\n","[CV 1/5] END bootstrap=False, max_depth=10, max_features=log2, min_samples_leaf=4, min_samples_split=2, n_estimators=5;, score=0.874 total time= 0.0s\n","[CV 2/5] END bootstrap=False, max_depth=10, max_features=log2, min_samples_leaf=4, min_samples_split=2, n_estimators=5;, score=0.884 total time= 0.0s\n","[CV 3/5] END bootstrap=False, max_depth=10, max_features=log2, min_samples_leaf=4, min_samples_split=2, n_estimators=5;, score=0.904 total time= 0.0s\n","[CV 4/5] END bootstrap=False, max_depth=10, max_features=log2, min_samples_leaf=4, min_samples_split=2, n_estimators=5;, score=0.874 total time= 0.0s\n","[CV 5/5] END bootstrap=False, max_depth=10, max_features=log2, min_samples_leaf=4, min_samples_split=2, n_estimators=5;, score=0.884 total time= 0.0s\n","[CV 1/5] END bootstrap=False, max_depth=10, max_features=log2, min_samples_leaf=4, min_samples_split=2, n_estimators=10;, score=0.884 total time= 0.0s\n","[CV 2/5] END bootstrap=False, max_depth=10, max_features=log2, min_samples_leaf=4, min_samples_split=2, n_estimators=10;, score=0.879 total time= 0.0s\n","[CV 3/5] END bootstrap=False, max_depth=10, max_features=log2, min_samples_leaf=4, min_samples_split=2, n_estimators=10;, score=0.879 total time= 0.0s\n","[CV 4/5] END bootstrap=False, max_depth=10, max_features=log2, min_samples_leaf=4, min_samples_split=2, n_estimators=10;, score=0.889 total time= 0.0s\n","[CV 5/5] END bootstrap=False, max_depth=10, max_features=log2, min_samples_leaf=4, min_samples_split=2, n_estimators=10;, score=0.864 total time= 0.0s\n","[CV 1/5] END bootstrap=False, max_depth=10, max_features=log2, min_samples_leaf=4, min_samples_split=2, n_estimators=20;, score=0.879 total time= 0.0s\n","[CV 2/5] END bootstrap=False, max_depth=10, max_features=log2, min_samples_leaf=4, min_samples_split=2, n_estimators=20;, score=0.879 total time= 0.0s\n","[CV 3/5] END bootstrap=False, max_depth=10, max_features=log2, min_samples_leaf=4, min_samples_split=2, n_estimators=20;, score=0.894 total time= 0.1s\n","[CV 4/5] END bootstrap=False, max_depth=10, max_features=log2, min_samples_leaf=4, min_samples_split=2, n_estimators=20;, score=0.874 total time= 0.0s\n","[CV 5/5] END bootstrap=False, max_depth=10, max_features=log2, min_samples_leaf=4, min_samples_split=2, n_estimators=20;, score=0.874 total time= 0.0s\n","[CV 1/5] END bootstrap=False, max_depth=10, max_features=log2, min_samples_leaf=4, min_samples_split=2, n_estimators=30;, score=0.879 total time= 0.1s\n","[CV 2/5] END bootstrap=False, max_depth=10, max_features=log2, min_samples_leaf=4, min_samples_split=2, n_estimators=30;, score=0.899 total time= 0.1s\n","[CV 3/5] END bootstrap=False, max_depth=10, max_features=log2, min_samples_leaf=4, min_samples_split=2, n_estimators=30;, score=0.879 total time= 0.1s\n","[CV 4/5] END bootstrap=False, max_depth=10, max_features=log2, min_samples_leaf=4, min_samples_split=2, n_estimators=30;, score=0.854 total time= 0.1s\n","[CV 5/5] END bootstrap=False, max_depth=10, max_features=log2, min_samples_leaf=4, min_samples_split=2, n_estimators=30;, score=0.884 total time= 0.1s\n","[CV 1/5] END bootstrap=False, max_depth=10, max_features=log2, min_samples_leaf=4, min_samples_split=4, n_estimators=5;, score=0.879 total time= 0.0s\n","[CV 2/5] END bootstrap=False, max_depth=10, max_features=log2, min_samples_leaf=4, min_samples_split=4, n_estimators=5;, score=0.874 total time= 0.0s\n","[CV 3/5] END bootstrap=False, max_depth=10, max_features=log2, min_samples_leaf=4, min_samples_split=4, n_estimators=5;, score=0.874 total time= 0.0s\n","[CV 4/5] END bootstrap=False, max_depth=10, max_features=log2, min_samples_leaf=4, min_samples_split=4, n_estimators=5;, score=0.854 total time= 0.0s\n","[CV 5/5] END bootstrap=False, max_depth=10, max_features=log2, min_samples_leaf=4, min_samples_split=4, n_estimators=5;, score=0.884 total time= 0.0s\n","[CV 1/5] END bootstrap=False, max_depth=10, max_features=log2, min_samples_leaf=4, min_samples_split=4, n_estimators=10;, score=0.884 total time= 0.0s\n","[CV 2/5] END bootstrap=False, max_depth=10, max_features=log2, min_samples_leaf=4, min_samples_split=4, n_estimators=10;, score=0.884 total time= 0.0s\n","[CV 3/5] END bootstrap=False, max_depth=10, max_features=log2, min_samples_leaf=4, min_samples_split=4, n_estimators=10;, score=0.874 total time= 0.0s\n","[CV 4/5] END bootstrap=False, max_depth=10, max_features=log2, min_samples_leaf=4, min_samples_split=4, n_estimators=10;, score=0.859 total time= 0.0s\n","[CV 5/5] END bootstrap=False, max_depth=10, max_features=log2, min_samples_leaf=4, min_samples_split=4, n_estimators=10;, score=0.874 total time= 0.0s\n","[CV 1/5] END bootstrap=False, max_depth=10, max_features=log2, min_samples_leaf=4, min_samples_split=4, n_estimators=20;, score=0.874 total time= 0.0s\n","[CV 2/5] END bootstrap=False, max_depth=10, max_features=log2, min_samples_leaf=4, min_samples_split=4, n_estimators=20;, score=0.884 total time= 0.0s\n","[CV 3/5] END bootstrap=False, max_depth=10, max_features=log2, min_samples_leaf=4, min_samples_split=4, n_estimators=20;, score=0.904 total time= 0.0s\n","[CV 4/5] END bootstrap=False, max_depth=10, max_features=log2, min_samples_leaf=4, min_samples_split=4, n_estimators=20;, score=0.848 total time= 0.0s\n","[CV 5/5] END bootstrap=False, max_depth=10, max_features=log2, min_samples_leaf=4, min_samples_split=4, n_estimators=20;, score=0.874 total time= 0.1s\n","[CV 1/5] END bootstrap=False, max_depth=10, max_features=log2, min_samples_leaf=4, min_samples_split=4, n_estimators=30;, score=0.848 total time= 0.1s\n","[CV 2/5] END bootstrap=False, max_depth=10, max_features=log2, min_samples_leaf=4, min_samples_split=4, n_estimators=30;, score=0.889 total time= 0.1s\n","[CV 3/5] END bootstrap=False, max_depth=10, max_features=log2, min_samples_leaf=4, min_samples_split=4, n_estimators=30;, score=0.889 total time= 0.1s\n","[CV 4/5] END bootstrap=False, max_depth=10, max_features=log2, min_samples_leaf=4, min_samples_split=4, n_estimators=30;, score=0.848 total time= 0.1s\n","[CV 5/5] END bootstrap=False, max_depth=10, max_features=log2, min_samples_leaf=4, min_samples_split=4, n_estimators=30;, score=0.889 total time= 0.1s\n","[CV 1/5] END bootstrap=False, max_depth=10, max_features=log2, min_samples_leaf=4, min_samples_split=6, n_estimators=5;, score=0.884 total time= 0.0s\n","[CV 2/5] END bootstrap=False, max_depth=10, max_features=log2, min_samples_leaf=4, min_samples_split=6, n_estimators=5;, score=0.884 total time= 0.0s\n","[CV 3/5] END bootstrap=False, max_depth=10, max_features=log2, min_samples_leaf=4, min_samples_split=6, n_estimators=5;, score=0.894 total time= 0.0s\n","[CV 4/5] END bootstrap=False, max_depth=10, max_features=log2, min_samples_leaf=4, min_samples_split=6, n_estimators=5;, score=0.838 total time= 0.0s\n","[CV 5/5] END bootstrap=False, max_depth=10, max_features=log2, min_samples_leaf=4, min_samples_split=6, n_estimators=5;, score=0.864 total time= 0.0s\n","[CV 1/5] END bootstrap=False, max_depth=10, max_features=log2, min_samples_leaf=4, min_samples_split=6, n_estimators=10;, score=0.889 total time= 0.0s\n","[CV 2/5] END bootstrap=False, max_depth=10, max_features=log2, min_samples_leaf=4, min_samples_split=6, n_estimators=10;, score=0.879 total time= 0.0s\n","[CV 3/5] END bootstrap=False, max_depth=10, max_features=log2, min_samples_leaf=4, min_samples_split=6, n_estimators=10;, score=0.874 total time= 0.0s\n","[CV 4/5] END bootstrap=False, max_depth=10, max_features=log2, min_samples_leaf=4, min_samples_split=6, n_estimators=10;, score=0.854 total time= 0.0s\n","[CV 5/5] END bootstrap=False, max_depth=10, max_features=log2, min_samples_leaf=4, min_samples_split=6, n_estimators=10;, score=0.904 total time= 0.0s\n","[CV 1/5] END bootstrap=False, max_depth=10, max_features=log2, min_samples_leaf=4, min_samples_split=6, n_estimators=20;, score=0.864 total time= 0.0s\n","[CV 2/5] END bootstrap=False, max_depth=10, max_features=log2, min_samples_leaf=4, min_samples_split=6, n_estimators=20;, score=0.879 total time= 0.0s\n","[CV 3/5] END bootstrap=False, max_depth=10, max_features=log2, min_samples_leaf=4, min_samples_split=6, n_estimators=20;, score=0.879 total time= 0.0s\n","[CV 4/5] END bootstrap=False, max_depth=10, max_features=log2, min_samples_leaf=4, min_samples_split=6, n_estimators=20;, score=0.859 total time= 0.0s\n","[CV 5/5] END bootstrap=False, max_depth=10, max_features=log2, min_samples_leaf=4, min_samples_split=6, n_estimators=20;, score=0.894 total time= 0.0s\n","[CV 1/5] END bootstrap=False, max_depth=10, max_features=log2, min_samples_leaf=4, min_samples_split=6, n_estimators=30;, score=0.874 total time= 0.1s\n","[CV 2/5] END bootstrap=False, max_depth=10, max_features=log2, min_samples_leaf=4, min_samples_split=6, n_estimators=30;, score=0.879 total time= 0.1s\n","[CV 3/5] END bootstrap=False, max_depth=10, max_features=log2, min_samples_leaf=4, min_samples_split=6, n_estimators=30;, score=0.899 total time= 0.1s\n","[CV 4/5] END bootstrap=False, max_depth=10, max_features=log2, min_samples_leaf=4, min_samples_split=6, n_estimators=30;, score=0.859 total time= 0.1s\n","[CV 5/5] END bootstrap=False, max_depth=10, max_features=log2, min_samples_leaf=4, min_samples_split=6, n_estimators=30;, score=0.879 total time= 0.1s\n","[CV 1/5] END bootstrap=False, max_depth=10, max_features=log2, min_samples_leaf=6, min_samples_split=2, n_estimators=5;, score=0.889 total time= 0.0s\n","[CV 2/5] END bootstrap=False, max_depth=10, max_features=log2, min_samples_leaf=6, min_samples_split=2, n_estimators=5;, score=0.904 total time= 0.0s\n","[CV 3/5] END bootstrap=False, max_depth=10, max_features=log2, min_samples_leaf=6, min_samples_split=2, n_estimators=5;, score=0.889 total time= 0.0s\n","[CV 4/5] END bootstrap=False, max_depth=10, max_features=log2, min_samples_leaf=6, min_samples_split=2, n_estimators=5;, score=0.823 total time= 0.0s\n","[CV 5/5] END bootstrap=False, max_depth=10, max_features=log2, min_samples_leaf=6, min_samples_split=2, n_estimators=5;, score=0.864 total time= 0.0s\n","[CV 1/5] END bootstrap=False, max_depth=10, max_features=log2, min_samples_leaf=6, min_samples_split=2, n_estimators=10;, score=0.859 total time= 0.0s\n","[CV 2/5] END bootstrap=False, max_depth=10, max_features=log2, min_samples_leaf=6, min_samples_split=2, n_estimators=10;, score=0.884 total time= 0.0s\n","[CV 3/5] END bootstrap=False, max_depth=10, max_features=log2, min_samples_leaf=6, min_samples_split=2, n_estimators=10;, score=0.894 total time= 0.0s\n","[CV 4/5] END bootstrap=False, max_depth=10, max_features=log2, min_samples_leaf=6, min_samples_split=2, n_estimators=10;, score=0.848 total time= 0.0s\n","[CV 5/5] END bootstrap=False, max_depth=10, max_features=log2, min_samples_leaf=6, min_samples_split=2, n_estimators=10;, score=0.889 total time= 0.0s\n","[CV 1/5] END bootstrap=False, max_depth=10, max_features=log2, min_samples_leaf=6, min_samples_split=2, n_estimators=20;, score=0.869 total time= 0.0s\n","[CV 2/5] END bootstrap=False, max_depth=10, max_features=log2, min_samples_leaf=6, min_samples_split=2, n_estimators=20;, score=0.874 total time= 0.0s\n","[CV 3/5] END bootstrap=False, max_depth=10, max_features=log2, min_samples_leaf=6, min_samples_split=2, n_estimators=20;, score=0.894 total time= 0.1s\n","[CV 4/5] END bootstrap=False, max_depth=10, max_features=log2, min_samples_leaf=6, min_samples_split=2, n_estimators=20;, score=0.864 total time= 0.0s\n","[CV 5/5] END bootstrap=False, max_depth=10, max_features=log2, min_samples_leaf=6, min_samples_split=2, n_estimators=20;, score=0.879 total time= 0.0s\n","[CV 1/5] END bootstrap=False, max_depth=10, max_features=log2, min_samples_leaf=6, min_samples_split=2, n_estimators=30;, score=0.879 total time= 0.1s\n","[CV 2/5] END bootstrap=False, max_depth=10, max_features=log2, min_samples_leaf=6, min_samples_split=2, n_estimators=30;, score=0.894 total time= 0.1s\n","[CV 3/5] END bootstrap=False, max_depth=10, max_features=log2, min_samples_leaf=6, min_samples_split=2, n_estimators=30;, score=0.884 total time= 0.1s\n","[CV 4/5] END bootstrap=False, max_depth=10, max_features=log2, min_samples_leaf=6, min_samples_split=2, n_estimators=30;, score=0.838 total time= 0.1s\n","[CV 5/5] END bootstrap=False, max_depth=10, max_features=log2, min_samples_leaf=6, min_samples_split=2, n_estimators=30;, score=0.869 total time= 0.1s\n","[CV 1/5] END bootstrap=False, max_depth=10, max_features=log2, min_samples_leaf=6, min_samples_split=4, n_estimators=5;, score=0.869 total time= 0.0s\n","[CV 2/5] END bootstrap=False, max_depth=10, max_features=log2, min_samples_leaf=6, min_samples_split=4, n_estimators=5;, score=0.894 total time= 0.0s\n","[CV 3/5] END bootstrap=False, max_depth=10, max_features=log2, min_samples_leaf=6, min_samples_split=4, n_estimators=5;, score=0.889 total time= 0.0s\n","[CV 4/5] END bootstrap=False, max_depth=10, max_features=log2, min_samples_leaf=6, min_samples_split=4, n_estimators=5;, score=0.838 total time= 0.0s\n","[CV 5/5] END bootstrap=False, max_depth=10, max_features=log2, min_samples_leaf=6, min_samples_split=4, n_estimators=5;, score=0.874 total time= 0.0s\n","[CV 1/5] END bootstrap=False, max_depth=10, max_features=log2, min_samples_leaf=6, min_samples_split=4, n_estimators=10;, score=0.874 total time= 0.0s\n","[CV 2/5] END bootstrap=False, max_depth=10, max_features=log2, min_samples_leaf=6, min_samples_split=4, n_estimators=10;, score=0.904 total time= 0.0s\n","[CV 3/5] END bootstrap=False, max_depth=10, max_features=log2, min_samples_leaf=6, min_samples_split=4, n_estimators=10;, score=0.889 total time= 0.0s\n","[CV 4/5] END bootstrap=False, max_depth=10, max_features=log2, min_samples_leaf=6, min_samples_split=4, n_estimators=10;, score=0.894 total time= 0.0s\n","[CV 5/5] END bootstrap=False, max_depth=10, max_features=log2, min_samples_leaf=6, min_samples_split=4, n_estimators=10;, score=0.879 total time= 0.0s\n","[CV 1/5] END bootstrap=False, max_depth=10, max_features=log2, min_samples_leaf=6, min_samples_split=4, n_estimators=20;, score=0.859 total time= 0.0s\n","[CV 2/5] END bootstrap=False, max_depth=10, max_features=log2, min_samples_leaf=6, min_samples_split=4, n_estimators=20;, score=0.864 total time= 0.0s\n","[CV 3/5] END bootstrap=False, max_depth=10, max_features=log2, min_samples_leaf=6, min_samples_split=4, n_estimators=20;, score=0.884 total time= 0.0s\n","[CV 4/5] END bootstrap=False, max_depth=10, max_features=log2, min_samples_leaf=6, min_samples_split=4, n_estimators=20;, score=0.848 total time= 0.0s\n","[CV 5/5] END bootstrap=False, max_depth=10, max_features=log2, min_samples_leaf=6, min_samples_split=4, n_estimators=20;, score=0.889 total time= 0.0s\n","[CV 1/5] END bootstrap=False, max_depth=10, max_features=log2, min_samples_leaf=6, min_samples_split=4, n_estimators=30;, score=0.874 total time= 0.1s\n","[CV 2/5] END bootstrap=False, max_depth=10, max_features=log2, min_samples_leaf=6, min_samples_split=4, n_estimators=30;, score=0.884 total time= 0.1s\n","[CV 3/5] END bootstrap=False, max_depth=10, max_features=log2, min_samples_leaf=6, min_samples_split=4, n_estimators=30;, score=0.889 total time= 0.1s\n","[CV 4/5] END bootstrap=False, max_depth=10, max_features=log2, min_samples_leaf=6, min_samples_split=4, n_estimators=30;, score=0.823 total time= 0.1s\n","[CV 5/5] END bootstrap=False, max_depth=10, max_features=log2, min_samples_leaf=6, min_samples_split=4, n_estimators=30;, score=0.889 total time= 0.1s\n","[CV 1/5] END bootstrap=False, max_depth=10, max_features=log2, min_samples_leaf=6, min_samples_split=6, n_estimators=5;, score=0.879 total time= 0.0s\n","[CV 2/5] END bootstrap=False, max_depth=10, max_features=log2, min_samples_leaf=6, min_samples_split=6, n_estimators=5;, score=0.899 total time= 0.0s\n","[CV 3/5] END bootstrap=False, max_depth=10, max_features=log2, min_samples_leaf=6, min_samples_split=6, n_estimators=5;, score=0.884 total time= 0.0s\n","[CV 4/5] END bootstrap=False, max_depth=10, max_features=log2, min_samples_leaf=6, min_samples_split=6, n_estimators=5;, score=0.864 total time= 0.0s\n","[CV 5/5] END bootstrap=False, max_depth=10, max_features=log2, min_samples_leaf=6, min_samples_split=6, n_estimators=5;, score=0.869 total time= 0.0s\n","[CV 1/5] END bootstrap=False, max_depth=10, max_features=log2, min_samples_leaf=6, min_samples_split=6, n_estimators=10;, score=0.879 total time= 0.0s\n","[CV 2/5] END bootstrap=False, max_depth=10, max_features=log2, min_samples_leaf=6, min_samples_split=6, n_estimators=10;, score=0.884 total time= 0.0s\n","[CV 3/5] END bootstrap=False, max_depth=10, max_features=log2, min_samples_leaf=6, min_samples_split=6, n_estimators=10;, score=0.904 total time= 0.0s\n","[CV 4/5] END bootstrap=False, max_depth=10, max_features=log2, min_samples_leaf=6, min_samples_split=6, n_estimators=10;, score=0.848 total time= 0.0s\n","[CV 5/5] END bootstrap=False, max_depth=10, max_features=log2, min_samples_leaf=6, min_samples_split=6, n_estimators=10;, score=0.884 total time= 0.0s\n","[CV 1/5] END bootstrap=False, max_depth=10, max_features=log2, min_samples_leaf=6, min_samples_split=6, n_estimators=20;, score=0.874 total time= 0.1s\n","[CV 2/5] END bootstrap=False, max_depth=10, max_features=log2, min_samples_leaf=6, min_samples_split=6, n_estimators=20;, score=0.869 total time= 0.1s\n","[CV 3/5] END bootstrap=False, max_depth=10, max_features=log2, min_samples_leaf=6, min_samples_split=6, n_estimators=20;, score=0.884 total time= 0.1s\n","[CV 4/5] END bootstrap=False, max_depth=10, max_features=log2, min_samples_leaf=6, min_samples_split=6, n_estimators=20;, score=0.874 total time= 0.1s\n","[CV 5/5] END bootstrap=False, max_depth=10, max_features=log2, min_samples_leaf=6, min_samples_split=6, n_estimators=20;, score=0.879 total time= 0.1s\n","[CV 1/5] END bootstrap=False, max_depth=10, max_features=log2, min_samples_leaf=6, min_samples_split=6, n_estimators=30;, score=0.874 total time= 0.1s\n","[CV 2/5] END bootstrap=False, max_depth=10, max_features=log2, min_samples_leaf=6, min_samples_split=6, n_estimators=30;, score=0.894 total time= 0.1s\n","[CV 3/5] END bootstrap=False, max_depth=10, max_features=log2, min_samples_leaf=6, min_samples_split=6, n_estimators=30;, score=0.879 total time= 0.1s\n","[CV 4/5] END bootstrap=False, max_depth=10, max_features=log2, min_samples_leaf=6, min_samples_split=6, n_estimators=30;, score=0.848 total time= 0.1s\n","[CV 5/5] END bootstrap=False, max_depth=10, max_features=log2, min_samples_leaf=6, min_samples_split=6, n_estimators=30;, score=0.919 total time= 0.1s\n","[CV 1/5] END bootstrap=False, max_depth=10, max_features=None, min_samples_leaf=2, min_samples_split=2, n_estimators=5;, score=0.889 total time= 0.0s\n","[CV 2/5] END bootstrap=False, max_depth=10, max_features=None, min_samples_leaf=2, min_samples_split=2, n_estimators=5;, score=0.874 total time= 0.0s\n","[CV 3/5] END bootstrap=False, max_depth=10, max_features=None, min_samples_leaf=2, min_samples_split=2, n_estimators=5;, score=0.894 total time= 0.0s\n","[CV 4/5] END bootstrap=False, max_depth=10, max_features=None, min_samples_leaf=2, min_samples_split=2, n_estimators=5;, score=0.854 total time= 0.0s\n","[CV 5/5] END bootstrap=False, max_depth=10, max_features=None, min_samples_leaf=2, min_samples_split=2, n_estimators=5;, score=0.848 total time= 0.0s\n","[CV 1/5] END bootstrap=False, max_depth=10, max_features=None, min_samples_leaf=2, min_samples_split=2, n_estimators=10;, score=0.874 total time= 0.0s\n","[CV 2/5] END bootstrap=False, max_depth=10, max_features=None, min_samples_leaf=2, min_samples_split=2, n_estimators=10;, score=0.869 total time= 0.1s\n","[CV 3/5] END bootstrap=False, max_depth=10, max_features=None, min_samples_leaf=2, min_samples_split=2, n_estimators=10;, score=0.899 total time= 0.0s\n","[CV 4/5] END bootstrap=False, max_depth=10, max_features=None, min_samples_leaf=2, min_samples_split=2, n_estimators=10;, score=0.864 total time= 0.1s\n","[CV 5/5] END bootstrap=False, max_depth=10, max_features=None, min_samples_leaf=2, min_samples_split=2, n_estimators=10;, score=0.848 total time= 0.1s\n","[CV 1/5] END bootstrap=False, max_depth=10, max_features=None, min_samples_leaf=2, min_samples_split=2, n_estimators=20;, score=0.874 total time= 0.1s\n","[CV 2/5] END bootstrap=False, max_depth=10, max_features=None, min_samples_leaf=2, min_samples_split=2, n_estimators=20;, score=0.874 total time= 0.1s\n","[CV 3/5] END bootstrap=False, max_depth=10, max_features=None, min_samples_leaf=2, min_samples_split=2, n_estimators=20;, score=0.899 total time= 0.1s\n","[CV 4/5] END bootstrap=False, max_depth=10, max_features=None, min_samples_leaf=2, min_samples_split=2, n_estimators=20;, score=0.859 total time= 0.1s\n","[CV 5/5] END bootstrap=False, max_depth=10, max_features=None, min_samples_leaf=2, min_samples_split=2, n_estimators=20;, score=0.848 total time= 0.1s\n","[CV 1/5] END bootstrap=False, max_depth=10, max_features=None, min_samples_leaf=2, min_samples_split=2, n_estimators=30;, score=0.874 total time= 0.1s\n","[CV 2/5] END bootstrap=False, max_depth=10, max_features=None, min_samples_leaf=2, min_samples_split=2, n_estimators=30;, score=0.869 total time= 0.1s\n","[CV 3/5] END bootstrap=False, max_depth=10, max_features=None, min_samples_leaf=2, min_samples_split=2, n_estimators=30;, score=0.899 total time= 0.1s\n","[CV 4/5] END bootstrap=False, max_depth=10, max_features=None, min_samples_leaf=2, min_samples_split=2, n_estimators=30;, score=0.859 total time= 0.2s\n","[CV 5/5] END bootstrap=False, max_depth=10, max_features=None, min_samples_leaf=2, min_samples_split=2, n_estimators=30;, score=0.848 total time= 0.2s\n","[CV 1/5] END bootstrap=False, max_depth=10, max_features=None, min_samples_leaf=2, min_samples_split=4, n_estimators=5;, score=0.869 total time= 0.0s\n","[CV 2/5] END bootstrap=False, max_depth=10, max_features=None, min_samples_leaf=2, min_samples_split=4, n_estimators=5;, score=0.874 total time= 0.0s\n","[CV 3/5] END bootstrap=False, max_depth=10, max_features=None, min_samples_leaf=2, min_samples_split=4, n_estimators=5;, score=0.904 total time= 0.0s\n","[CV 4/5] END bootstrap=False, max_depth=10, max_features=None, min_samples_leaf=2, min_samples_split=4, n_estimators=5;, score=0.859 total time= 0.0s\n","[CV 5/5] END bootstrap=False, max_depth=10, max_features=None, min_samples_leaf=2, min_samples_split=4, n_estimators=5;, score=0.848 total time= 0.0s\n","[CV 1/5] END bootstrap=False, max_depth=10, max_features=None, min_samples_leaf=2, min_samples_split=4, n_estimators=10;, score=0.869 total time= 0.1s\n","[CV 2/5] END bootstrap=False, max_depth=10, max_features=None, min_samples_leaf=2, min_samples_split=4, n_estimators=10;, score=0.874 total time= 0.1s\n","[CV 3/5] END bootstrap=False, max_depth=10, max_features=None, min_samples_leaf=2, min_samples_split=4, n_estimators=10;, score=0.899 total time= 0.1s\n","[CV 4/5] END bootstrap=False, max_depth=10, max_features=None, min_samples_leaf=2, min_samples_split=4, n_estimators=10;, score=0.864 total time= 0.1s\n","[CV 5/5] END bootstrap=False, max_depth=10, max_features=None, min_samples_leaf=2, min_samples_split=4, n_estimators=10;, score=0.848 total time= 0.1s\n","[CV 1/5] END bootstrap=False, max_depth=10, max_features=None, min_samples_leaf=2, min_samples_split=4, n_estimators=20;, score=0.869 total time= 0.1s\n","[CV 2/5] END bootstrap=False, max_depth=10, max_features=None, min_samples_leaf=2, min_samples_split=4, n_estimators=20;, score=0.874 total time= 0.1s\n","[CV 3/5] END bootstrap=False, max_depth=10, max_features=None, min_samples_leaf=2, min_samples_split=4, n_estimators=20;, score=0.899 total time= 0.1s\n","[CV 4/5] END bootstrap=False, max_depth=10, max_features=None, min_samples_leaf=2, min_samples_split=4, n_estimators=20;, score=0.859 total time= 0.1s\n","[CV 5/5] END bootstrap=False, max_depth=10, max_features=None, min_samples_leaf=2, min_samples_split=4, n_estimators=20;, score=0.848 total time= 0.1s\n","[CV 1/5] END bootstrap=False, max_depth=10, max_features=None, min_samples_leaf=2, min_samples_split=4, n_estimators=30;, score=0.874 total time= 0.1s\n","[CV 2/5] END bootstrap=False, max_depth=10, max_features=None, min_samples_leaf=2, min_samples_split=4, n_estimators=30;, score=0.869 total time= 0.1s\n","[CV 3/5] END bootstrap=False, max_depth=10, max_features=None, min_samples_leaf=2, min_samples_split=4, n_estimators=30;, score=0.899 total time= 0.1s\n","[CV 4/5] END bootstrap=False, max_depth=10, max_features=None, min_samples_leaf=2, min_samples_split=4, n_estimators=30;, score=0.869 total time= 0.1s\n","[CV 5/5] END bootstrap=False, max_depth=10, max_features=None, min_samples_leaf=2, min_samples_split=4, n_estimators=30;, score=0.848 total time= 0.1s\n","[CV 1/5] END bootstrap=False, max_depth=10, max_features=None, min_samples_leaf=2, min_samples_split=6, n_estimators=5;, score=0.869 total time= 0.0s\n","[CV 2/5] END bootstrap=False, max_depth=10, max_features=None, min_samples_leaf=2, min_samples_split=6, n_estimators=5;, score=0.874 total time= 0.0s\n","[CV 3/5] END bootstrap=False, max_depth=10, max_features=None, min_samples_leaf=2, min_samples_split=6, n_estimators=5;, score=0.894 total time= 0.0s\n","[CV 4/5] END bootstrap=False, max_depth=10, max_features=None, min_samples_leaf=2, min_samples_split=6, n_estimators=5;, score=0.864 total time= 0.0s\n","[CV 5/5] END bootstrap=False, max_depth=10, max_features=None, min_samples_leaf=2, min_samples_split=6, n_estimators=5;, score=0.848 total time= 0.0s\n","[CV 1/5] END bootstrap=False, max_depth=10, max_features=None, min_samples_leaf=2, min_samples_split=6, n_estimators=10;, score=0.869 total time= 0.0s\n","[CV 2/5] END bootstrap=False, max_depth=10, max_features=None, min_samples_leaf=2, min_samples_split=6, n_estimators=10;, score=0.874 total time= 0.0s\n","[CV 3/5] END bootstrap=False, max_depth=10, max_features=None, min_samples_leaf=2, min_samples_split=6, n_estimators=10;, score=0.894 total time= 0.0s\n","[CV 4/5] END bootstrap=False, max_depth=10, max_features=None, min_samples_leaf=2, min_samples_split=6, n_estimators=10;, score=0.859 total time= 0.0s\n","[CV 5/5] END bootstrap=False, max_depth=10, max_features=None, min_samples_leaf=2, min_samples_split=6, n_estimators=10;, score=0.848 total time= 0.0s\n","[CV 1/5] END bootstrap=False, max_depth=10, max_features=None, min_samples_leaf=2, min_samples_split=6, n_estimators=20;, score=0.874 total time= 0.1s\n","[CV 2/5] END bootstrap=False, max_depth=10, max_features=None, min_samples_leaf=2, min_samples_split=6, n_estimators=20;, score=0.869 total time= 0.1s\n","[CV 3/5] END bootstrap=False, max_depth=10, max_features=None, min_samples_leaf=2, min_samples_split=6, n_estimators=20;, score=0.894 total time= 0.1s\n","[CV 4/5] END bootstrap=False, max_depth=10, max_features=None, min_samples_leaf=2, min_samples_split=6, n_estimators=20;, score=0.864 total time= 0.1s\n","[CV 5/5] END bootstrap=False, max_depth=10, max_features=None, min_samples_leaf=2, min_samples_split=6, n_estimators=20;, score=0.848 total time= 0.1s\n","[CV 1/5] END bootstrap=False, max_depth=10, max_features=None, min_samples_leaf=2, min_samples_split=6, n_estimators=30;, score=0.869 total time= 0.1s\n","[CV 2/5] END bootstrap=False, max_depth=10, max_features=None, min_samples_leaf=2, min_samples_split=6, n_estimators=30;, score=0.869 total time= 0.1s\n","[CV 3/5] END bootstrap=False, max_depth=10, max_features=None, min_samples_leaf=2, min_samples_split=6, n_estimators=30;, score=0.894 total time= 0.1s\n","[CV 4/5] END bootstrap=False, max_depth=10, max_features=None, min_samples_leaf=2, min_samples_split=6, n_estimators=30;, score=0.864 total time= 0.1s\n","[CV 5/5] END bootstrap=False, max_depth=10, max_features=None, min_samples_leaf=2, min_samples_split=6, n_estimators=30;, score=0.848 total time= 0.1s\n","[CV 1/5] END bootstrap=False, max_depth=10, max_features=None, min_samples_leaf=4, min_samples_split=2, n_estimators=5;, score=0.884 total time= 0.0s\n","[CV 2/5] END bootstrap=False, max_depth=10, max_features=None, min_samples_leaf=4, min_samples_split=2, n_estimators=5;, score=0.874 total time= 0.0s\n","[CV 3/5] END bootstrap=False, max_depth=10, max_features=None, min_samples_leaf=4, min_samples_split=2, n_estimators=5;, score=0.894 total time= 0.0s\n","[CV 4/5] END bootstrap=False, max_depth=10, max_features=None, min_samples_leaf=4, min_samples_split=2, n_estimators=5;, score=0.864 total time= 0.0s\n","[CV 5/5] END bootstrap=False, max_depth=10, max_features=None, min_samples_leaf=4, min_samples_split=2, n_estimators=5;, score=0.854 total time= 0.0s\n","[CV 1/5] END bootstrap=False, max_depth=10, max_features=None, min_samples_leaf=4, min_samples_split=2, n_estimators=10;, score=0.884 total time= 0.0s\n","[CV 2/5] END bootstrap=False, max_depth=10, max_features=None, min_samples_leaf=4, min_samples_split=2, n_estimators=10;, score=0.884 total time= 0.0s\n","[CV 3/5] END bootstrap=False, max_depth=10, max_features=None, min_samples_leaf=4, min_samples_split=2, n_estimators=10;, score=0.894 total time= 0.0s\n","[CV 4/5] END bootstrap=False, max_depth=10, max_features=None, min_samples_leaf=4, min_samples_split=2, n_estimators=10;, score=0.864 total time= 0.0s\n","[CV 5/5] END bootstrap=False, max_depth=10, max_features=None, min_samples_leaf=4, min_samples_split=2, n_estimators=10;, score=0.854 total time= 0.0s\n","[CV 1/5] END bootstrap=False, max_depth=10, max_features=None, min_samples_leaf=4, min_samples_split=2, n_estimators=20;, score=0.884 total time= 0.1s\n","[CV 2/5] END bootstrap=False, max_depth=10, max_features=None, min_samples_leaf=4, min_samples_split=2, n_estimators=20;, score=0.879 total time= 0.1s\n","[CV 3/5] END bootstrap=False, max_depth=10, max_features=None, min_samples_leaf=4, min_samples_split=2, n_estimators=20;, score=0.894 total time= 0.1s\n","[CV 4/5] END bootstrap=False, max_depth=10, max_features=None, min_samples_leaf=4, min_samples_split=2, n_estimators=20;, score=0.864 total time= 0.1s\n","[CV 5/5] END bootstrap=False, max_depth=10, max_features=None, min_samples_leaf=4, min_samples_split=2, n_estimators=20;, score=0.854 total time= 0.1s\n","[CV 1/5] END bootstrap=False, max_depth=10, max_features=None, min_samples_leaf=4, min_samples_split=2, n_estimators=30;, score=0.884 total time= 0.1s\n","[CV 2/5] END bootstrap=False, max_depth=10, max_features=None, min_samples_leaf=4, min_samples_split=2, n_estimators=30;, score=0.879 total time= 0.1s\n","[CV 3/5] END bootstrap=False, max_depth=10, max_features=None, min_samples_leaf=4, min_samples_split=2, n_estimators=30;, score=0.894 total time= 0.1s\n","[CV 4/5] END bootstrap=False, max_depth=10, max_features=None, min_samples_leaf=4, min_samples_split=2, n_estimators=30;, score=0.864 total time= 0.1s\n","[CV 5/5] END bootstrap=False, max_depth=10, max_features=None, min_samples_leaf=4, min_samples_split=2, n_estimators=30;, score=0.854 total time= 0.1s\n","[CV 1/5] END bootstrap=False, max_depth=10, max_features=None, min_samples_leaf=4, min_samples_split=4, n_estimators=5;, score=0.884 total time= 0.0s\n","[CV 2/5] END bootstrap=False, max_depth=10, max_features=None, min_samples_leaf=4, min_samples_split=4, n_estimators=5;, score=0.874 total time= 0.0s\n","[CV 3/5] END bootstrap=False, max_depth=10, max_features=None, min_samples_leaf=4, min_samples_split=4, n_estimators=5;, score=0.889 total time= 0.0s\n","[CV 4/5] END bootstrap=False, max_depth=10, max_features=None, min_samples_leaf=4, min_samples_split=4, n_estimators=5;, score=0.859 total time= 0.0s\n","[CV 5/5] END bootstrap=False, max_depth=10, max_features=None, min_samples_leaf=4, min_samples_split=4, n_estimators=5;, score=0.854 total time= 0.0s\n","[CV 1/5] END bootstrap=False, max_depth=10, max_features=None, min_samples_leaf=4, min_samples_split=4, n_estimators=10;, score=0.884 total time= 0.0s\n","[CV 2/5] END bootstrap=False, max_depth=10, max_features=None, min_samples_leaf=4, min_samples_split=4, n_estimators=10;, score=0.884 total time= 0.0s\n","[CV 3/5] END bootstrap=False, max_depth=10, max_features=None, min_samples_leaf=4, min_samples_split=4, n_estimators=10;, score=0.894 total time= 0.0s\n","[CV 4/5] END bootstrap=False, max_depth=10, max_features=None, min_samples_leaf=4, min_samples_split=4, n_estimators=10;, score=0.864 total time= 0.0s\n","[CV 5/5] END bootstrap=False, max_depth=10, max_features=None, min_samples_leaf=4, min_samples_split=4, n_estimators=10;, score=0.854 total time= 0.0s\n","[CV 1/5] END bootstrap=False, max_depth=10, max_features=None, min_samples_leaf=4, min_samples_split=4, n_estimators=20;, score=0.884 total time= 0.1s\n","[CV 2/5] END bootstrap=False, max_depth=10, max_features=None, min_samples_leaf=4, min_samples_split=4, n_estimators=20;, score=0.879 total time= 0.1s\n","[CV 3/5] END bootstrap=False, max_depth=10, max_features=None, min_samples_leaf=4, min_samples_split=4, n_estimators=20;, score=0.894 total time= 0.1s\n","[CV 4/5] END bootstrap=False, max_depth=10, max_features=None, min_samples_leaf=4, min_samples_split=4, n_estimators=20;, score=0.864 total time= 0.1s\n","[CV 5/5] END bootstrap=False, max_depth=10, max_features=None, min_samples_leaf=4, min_samples_split=4, n_estimators=20;, score=0.854 total time= 0.1s\n","[CV 1/5] END bootstrap=False, max_depth=10, max_features=None, min_samples_leaf=4, min_samples_split=4, n_estimators=30;, score=0.884 total time= 0.1s\n","[CV 2/5] END bootstrap=False, max_depth=10, max_features=None, min_samples_leaf=4, min_samples_split=4, n_estimators=30;, score=0.884 total time= 0.1s\n","[CV 3/5] END bootstrap=False, max_depth=10, max_features=None, min_samples_leaf=4, min_samples_split=4, n_estimators=30;, score=0.894 total time= 0.1s\n","[CV 4/5] END bootstrap=False, max_depth=10, max_features=None, min_samples_leaf=4, min_samples_split=4, n_estimators=30;, score=0.864 total time= 0.1s\n","[CV 5/5] END bootstrap=False, max_depth=10, max_features=None, min_samples_leaf=4, min_samples_split=4, n_estimators=30;, score=0.854 total time= 0.1s\n","[CV 1/5] END bootstrap=False, max_depth=10, max_features=None, min_samples_leaf=4, min_samples_split=6, n_estimators=5;, score=0.879 total time= 0.0s\n","[CV 2/5] END bootstrap=False, max_depth=10, max_features=None, min_samples_leaf=4, min_samples_split=6, n_estimators=5;, score=0.874 total time= 0.0s\n","[CV 3/5] END bootstrap=False, max_depth=10, max_features=None, min_samples_leaf=4, min_samples_split=6, n_estimators=5;, score=0.889 total time= 0.0s\n","[CV 4/5] END bootstrap=False, max_depth=10, max_features=None, min_samples_leaf=4, min_samples_split=6, n_estimators=5;, score=0.859 total time= 0.0s\n","[CV 5/5] END bootstrap=False, max_depth=10, max_features=None, min_samples_leaf=4, min_samples_split=6, n_estimators=5;, score=0.854 total time= 0.0s\n","[CV 1/5] END bootstrap=False, max_depth=10, max_features=None, min_samples_leaf=4, min_samples_split=6, n_estimators=10;, score=0.884 total time= 0.0s\n","[CV 2/5] END bootstrap=False, max_depth=10, max_features=None, min_samples_leaf=4, min_samples_split=6, n_estimators=10;, score=0.879 total time= 0.0s\n","[CV 3/5] END bootstrap=False, max_depth=10, max_features=None, min_samples_leaf=4, min_samples_split=6, n_estimators=10;, score=0.894 total time= 0.0s\n","[CV 4/5] END bootstrap=False, max_depth=10, max_features=None, min_samples_leaf=4, min_samples_split=6, n_estimators=10;, score=0.864 total time= 0.0s\n","[CV 5/5] END bootstrap=False, max_depth=10, max_features=None, min_samples_leaf=4, min_samples_split=6, n_estimators=10;, score=0.854 total time= 0.0s\n","[CV 1/5] END bootstrap=False, max_depth=10, max_features=None, min_samples_leaf=4, min_samples_split=6, n_estimators=20;, score=0.884 total time= 0.1s\n","[CV 2/5] END bootstrap=False, max_depth=10, max_features=None, min_samples_leaf=4, min_samples_split=6, n_estimators=20;, score=0.874 total time= 0.1s\n","[CV 3/5] END bootstrap=False, max_depth=10, max_features=None, min_samples_leaf=4, min_samples_split=6, n_estimators=20;, score=0.894 total time= 0.1s\n","[CV 4/5] END bootstrap=False, max_depth=10, max_features=None, min_samples_leaf=4, min_samples_split=6, n_estimators=20;, score=0.864 total time= 0.1s\n","[CV 5/5] END bootstrap=False, max_depth=10, max_features=None, min_samples_leaf=4, min_samples_split=6, n_estimators=20;, score=0.854 total time= 0.1s\n","[CV 1/5] END bootstrap=False, max_depth=10, max_features=None, min_samples_leaf=4, min_samples_split=6, n_estimators=30;, score=0.884 total time= 0.1s\n","[CV 2/5] END bootstrap=False, max_depth=10, max_features=None, min_samples_leaf=4, min_samples_split=6, n_estimators=30;, score=0.879 total time= 0.1s\n","[CV 3/5] END bootstrap=False, max_depth=10, max_features=None, min_samples_leaf=4, min_samples_split=6, n_estimators=30;, score=0.894 total time= 0.1s\n","[CV 4/5] END bootstrap=False, max_depth=10, max_features=None, min_samples_leaf=4, min_samples_split=6, n_estimators=30;, score=0.864 total time= 0.1s\n","[CV 5/5] END bootstrap=False, max_depth=10, max_features=None, min_samples_leaf=4, min_samples_split=6, n_estimators=30;, score=0.854 total time= 0.1s\n","[CV 1/5] END bootstrap=False, max_depth=10, max_features=None, min_samples_leaf=6, min_samples_split=2, n_estimators=5;, score=0.889 total time= 0.0s\n","[CV 2/5] END bootstrap=False, max_depth=10, max_features=None, min_samples_leaf=6, min_samples_split=2, n_estimators=5;, score=0.879 total time= 0.0s\n","[CV 3/5] END bootstrap=False, max_depth=10, max_features=None, min_samples_leaf=6, min_samples_split=2, n_estimators=5;, score=0.894 total time= 0.0s\n","[CV 4/5] END bootstrap=False, max_depth=10, max_features=None, min_samples_leaf=6, min_samples_split=2, n_estimators=5;, score=0.864 total time= 0.0s\n","[CV 5/5] END bootstrap=False, max_depth=10, max_features=None, min_samples_leaf=6, min_samples_split=2, n_estimators=5;, score=0.854 total time= 0.0s\n","[CV 1/5] END bootstrap=False, max_depth=10, max_features=None, min_samples_leaf=6, min_samples_split=2, n_estimators=10;, score=0.889 total time= 0.0s\n","[CV 2/5] END bootstrap=False, max_depth=10, max_features=None, min_samples_leaf=6, min_samples_split=2, n_estimators=10;, score=0.879 total time= 0.0s\n","[CV 3/5] END bootstrap=False, max_depth=10, max_features=None, min_samples_leaf=6, min_samples_split=2, n_estimators=10;, score=0.894 total time= 0.0s\n","[CV 4/5] END bootstrap=False, max_depth=10, max_features=None, min_samples_leaf=6, min_samples_split=2, n_estimators=10;, score=0.864 total time= 0.0s\n","[CV 5/5] END bootstrap=False, max_depth=10, max_features=None, min_samples_leaf=6, min_samples_split=2, n_estimators=10;, score=0.854 total time= 0.0s\n","[CV 1/5] END bootstrap=False, max_depth=10, max_features=None, min_samples_leaf=6, min_samples_split=2, n_estimators=20;, score=0.889 total time= 0.1s\n","[CV 2/5] END bootstrap=False, max_depth=10, max_features=None, min_samples_leaf=6, min_samples_split=2, n_estimators=20;, score=0.879 total time= 0.1s\n","[CV 3/5] END bootstrap=False, max_depth=10, max_features=None, min_samples_leaf=6, min_samples_split=2, n_estimators=20;, score=0.894 total time= 0.1s\n","[CV 4/5] END bootstrap=False, max_depth=10, max_features=None, min_samples_leaf=6, min_samples_split=2, n_estimators=20;, score=0.864 total time= 0.1s\n","[CV 5/5] END bootstrap=False, max_depth=10, max_features=None, min_samples_leaf=6, min_samples_split=2, n_estimators=20;, score=0.854 total time= 0.1s\n","[CV 1/5] END bootstrap=False, max_depth=10, max_features=None, min_samples_leaf=6, min_samples_split=2, n_estimators=30;, score=0.889 total time= 0.1s\n","[CV 2/5] END bootstrap=False, max_depth=10, max_features=None, min_samples_leaf=6, min_samples_split=2, n_estimators=30;, score=0.879 total time= 0.1s\n","[CV 3/5] END bootstrap=False, max_depth=10, max_features=None, min_samples_leaf=6, min_samples_split=2, n_estimators=30;, score=0.894 total time= 0.1s\n","[CV 4/5] END bootstrap=False, max_depth=10, max_features=None, min_samples_leaf=6, min_samples_split=2, n_estimators=30;, score=0.864 total time= 0.1s\n","[CV 5/5] END bootstrap=False, max_depth=10, max_features=None, min_samples_leaf=6, min_samples_split=2, n_estimators=30;, score=0.854 total time= 0.1s\n","[CV 1/5] END bootstrap=False, max_depth=10, max_features=None, min_samples_leaf=6, min_samples_split=4, n_estimators=5;, score=0.889 total time= 0.0s\n","[CV 2/5] END bootstrap=False, max_depth=10, max_features=None, min_samples_leaf=6, min_samples_split=4, n_estimators=5;, score=0.879 total time= 0.0s\n","[CV 3/5] END bootstrap=False, max_depth=10, max_features=None, min_samples_leaf=6, min_samples_split=4, n_estimators=5;, score=0.894 total time= 0.0s\n","[CV 4/5] END bootstrap=False, max_depth=10, max_features=None, min_samples_leaf=6, min_samples_split=4, n_estimators=5;, score=0.864 total time= 0.0s\n","[CV 5/5] END bootstrap=False, max_depth=10, max_features=None, min_samples_leaf=6, min_samples_split=4, n_estimators=5;, score=0.854 total time= 0.0s\n","[CV 1/5] END bootstrap=False, max_depth=10, max_features=None, min_samples_leaf=6, min_samples_split=4, n_estimators=10;, score=0.889 total time= 0.0s\n","[CV 2/5] END bootstrap=False, max_depth=10, max_features=None, min_samples_leaf=6, min_samples_split=4, n_estimators=10;, score=0.884 total time= 0.0s\n","[CV 3/5] END bootstrap=False, max_depth=10, max_features=None, min_samples_leaf=6, min_samples_split=4, n_estimators=10;, score=0.894 total time= 0.0s\n","[CV 4/5] END bootstrap=False, max_depth=10, max_features=None, min_samples_leaf=6, min_samples_split=4, n_estimators=10;, score=0.864 total time= 0.0s\n","[CV 5/5] END bootstrap=False, max_depth=10, max_features=None, min_samples_leaf=6, min_samples_split=4, n_estimators=10;, score=0.854 total time= 0.0s\n","[CV 1/5] END bootstrap=False, max_depth=10, max_features=None, min_samples_leaf=6, min_samples_split=4, n_estimators=20;, score=0.889 total time= 0.1s\n","[CV 2/5] END bootstrap=False, max_depth=10, max_features=None, min_samples_leaf=6, min_samples_split=4, n_estimators=20;, score=0.879 total time= 0.1s\n","[CV 3/5] END bootstrap=False, max_depth=10, max_features=None, min_samples_leaf=6, min_samples_split=4, n_estimators=20;, score=0.894 total time= 0.1s\n","[CV 4/5] END bootstrap=False, max_depth=10, max_features=None, min_samples_leaf=6, min_samples_split=4, n_estimators=20;, score=0.864 total time= 0.1s\n","[CV 5/5] END bootstrap=False, max_depth=10, max_features=None, min_samples_leaf=6, min_samples_split=4, n_estimators=20;, score=0.854 total time= 0.1s\n","[CV 1/5] END bootstrap=False, max_depth=10, max_features=None, min_samples_leaf=6, min_samples_split=4, n_estimators=30;, score=0.889 total time= 0.1s\n","[CV 2/5] END bootstrap=False, max_depth=10, max_features=None, min_samples_leaf=6, min_samples_split=4, n_estimators=30;, score=0.879 total time= 0.1s\n","[CV 3/5] END bootstrap=False, max_depth=10, max_features=None, min_samples_leaf=6, min_samples_split=4, n_estimators=30;, score=0.894 total time= 0.1s\n","[CV 4/5] END bootstrap=False, max_depth=10, max_features=None, min_samples_leaf=6, min_samples_split=4, n_estimators=30;, score=0.864 total time= 0.1s\n","[CV 5/5] END bootstrap=False, max_depth=10, max_features=None, min_samples_leaf=6, min_samples_split=4, n_estimators=30;, score=0.854 total time= 0.1s\n","[CV 1/5] END bootstrap=False, max_depth=10, max_features=None, min_samples_leaf=6, min_samples_split=6, n_estimators=5;, score=0.889 total time= 0.0s\n","[CV 2/5] END bootstrap=False, max_depth=10, max_features=None, min_samples_leaf=6, min_samples_split=6, n_estimators=5;, score=0.879 total time= 0.0s\n","[CV 3/5] END bootstrap=False, max_depth=10, max_features=None, min_samples_leaf=6, min_samples_split=6, n_estimators=5;, score=0.894 total time= 0.0s\n","[CV 4/5] END bootstrap=False, max_depth=10, max_features=None, min_samples_leaf=6, min_samples_split=6, n_estimators=5;, score=0.864 total time= 0.0s\n","[CV 5/5] END bootstrap=False, max_depth=10, max_features=None, min_samples_leaf=6, min_samples_split=6, n_estimators=5;, score=0.854 total time= 0.0s\n","[CV 1/5] END bootstrap=False, max_depth=10, max_features=None, min_samples_leaf=6, min_samples_split=6, n_estimators=10;, score=0.889 total time= 0.0s\n","[CV 2/5] END bootstrap=False, max_depth=10, max_features=None, min_samples_leaf=6, min_samples_split=6, n_estimators=10;, score=0.874 total time= 0.0s\n","[CV 3/5] END bootstrap=False, max_depth=10, max_features=None, min_samples_leaf=6, min_samples_split=6, n_estimators=10;, score=0.894 total time= 0.0s\n","[CV 4/5] END bootstrap=False, max_depth=10, max_features=None, min_samples_leaf=6, min_samples_split=6, n_estimators=10;, score=0.864 total time= 0.0s\n","[CV 5/5] END bootstrap=False, max_depth=10, max_features=None, min_samples_leaf=6, min_samples_split=6, n_estimators=10;, score=0.854 total time= 0.0s\n","[CV 1/5] END bootstrap=False, max_depth=10, max_features=None, min_samples_leaf=6, min_samples_split=6, n_estimators=20;, score=0.889 total time= 0.1s\n","[CV 2/5] END bootstrap=False, max_depth=10, max_features=None, min_samples_leaf=6, min_samples_split=6, n_estimators=20;, score=0.879 total time= 0.1s\n","[CV 3/5] END bootstrap=False, max_depth=10, max_features=None, min_samples_leaf=6, min_samples_split=6, n_estimators=20;, score=0.894 total time= 0.1s\n","[CV 4/5] END bootstrap=False, max_depth=10, max_features=None, min_samples_leaf=6, min_samples_split=6, n_estimators=20;, score=0.864 total time= 0.1s\n","[CV 5/5] END bootstrap=False, max_depth=10, max_features=None, min_samples_leaf=6, min_samples_split=6, n_estimators=20;, score=0.854 total time= 0.1s\n","[CV 1/5] END bootstrap=False, max_depth=10, max_features=None, min_samples_leaf=6, min_samples_split=6, n_estimators=30;, score=0.889 total time= 0.1s\n","[CV 2/5] END bootstrap=False, max_depth=10, max_features=None, min_samples_leaf=6, min_samples_split=6, n_estimators=30;, score=0.879 total time= 0.1s\n","[CV 3/5] END bootstrap=False, max_depth=10, max_features=None, min_samples_leaf=6, min_samples_split=6, n_estimators=30;, score=0.894 total time= 0.1s\n","[CV 4/5] END bootstrap=False, max_depth=10, max_features=None, min_samples_leaf=6, min_samples_split=6, n_estimators=30;, score=0.864 total time= 0.1s\n","[CV 5/5] END bootstrap=False, max_depth=10, max_features=None, min_samples_leaf=6, min_samples_split=6, n_estimators=30;, score=0.854 total time= 0.1s\n"]}],"source":["rfs_grid=GridSearchCV(rfscale_model,param_grid=rf_grid_search,cv=5,refit=True,verbose=3,scoring='accuracy').fit(rfscale_X_train,rfscale_y_train)"]},{"cell_type":"code","source":[],"metadata":{"id":"w7qX74mZv3QE"},"execution_count":null,"outputs":[]},{"cell_type":"code","execution_count":100,"metadata":{"colab":{"base_uri":"https://localhost:8080/"},"id":"WAMUBM6I2x_D","outputId":"c53f85fe-f01f-47a8-918d-22096ac01548","executionInfo":{"status":"ok","timestamp":1716217496947,"user_tz":300,"elapsed":124,"user":{"displayName":"Daniel Meier","userId":"06365571306976914087"}}},"outputs":[{"output_type":"stream","name":"stdout","text":["Best hyperarameters: {'bootstrap': True, 'max_depth': 10, 'max_features': 'sqrt', 'min_samples_leaf': 4, 'min_samples_split': 6, 'n_estimators': 5}\n","Mean Accuracy: 0.897\n"]}],"source":["rfs_best_params=rfs_grid.best_params_\n","rfs_best_estim=rfs_grid.best_estimator_\n","rfs_feat_importance=rfs_best_estim.feature_importances_\n","rfs_average_score=\"{:.3}\".format(rfs_grid.best_score_)\n","print(f\"Best hyperarameters: {rfs_best_params}\")\n","print(f\"Mean Accuracy: {rfs_average_score}\")"]},{"cell_type":"code","execution_count":101,"metadata":{"colab":{"base_uri":"https://localhost:8080/","height":677},"executionInfo":{"elapsed":145,"status":"ok","timestamp":1716217499361,"user":{"displayName":"Daniel Meier","userId":"06365571306976914087"},"user_tz":300},"id":"ppAaygLx3Ast","outputId":"a1cbe908-af73-4e23-dccd-2c504a2b48e2"},"outputs":[{"output_type":"execute_result","data":{"text/plain":[" Importance\n","blood_pressure 0.392671\n","future_career_concerns 0.158427\n","headache 0.151657\n","depression 0.077150\n","mental_health_history 0.028659\n","self_esteem 0.023657\n","study_load 0.021868\n","peer_pressure 0.019715\n","extracurricular_activities 0.016941\n","anxiety_level 0.016355\n","academic_performance 0.015910\n","social_support 0.015030\n","teacher_student_relationship 0.012752\n","living_conditions 0.012636\n","sleep_quality 0.012199\n","noise_level 0.008402\n","safety 0.005576\n","bullying 0.004845\n","breathing_problem 0.002863\n","basic_needs 0.002689"],"text/html":["\n","
\n","
\n","\n","\n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n","
Importance
blood_pressure0.392671
future_career_concerns0.158427
headache0.151657
depression0.077150
mental_health_history0.028659
self_esteem0.023657
study_load0.021868
peer_pressure0.019715
extracurricular_activities0.016941
anxiety_level0.016355
academic_performance0.015910
social_support0.015030
teacher_student_relationship0.012752
living_conditions0.012636
sleep_quality0.012199
noise_level0.008402
safety0.005576
bullying0.004845
breathing_problem0.002863
basic_needs0.002689
\n","
\n","
\n","\n","
\n"," \n","\n"," \n","\n"," \n","
\n","\n","\n","
\n"," \n","\n","\n","\n"," \n","
\n","\n","
\n"," \n"," \n"," \n","
\n","\n","
\n","
\n"],"application/vnd.google.colaboratory.intrinsic+json":{"type":"dataframe","variable_name":"feature_imp_df","summary":"{\n \"name\": \"feature_imp_df\",\n \"rows\": 20,\n \"fields\": [\n {\n \"column\": \"Importance\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 0.0923763262390698,\n \"min\": 0.002688586453395249,\n \"max\": 0.392670884121611,\n \"num_unique_values\": 20,\n \"samples\": [\n 0.392670884121611,\n 0.004845373651420897,\n 0.008401890622603202\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n }\n ]\n}"}},"metadata":{},"execution_count":101}],"source":["feat_imp_col_names=rfscale_X.columns\n","feature_imp_df=pd.DataFrame(rfs_feat_importance,index=feat_imp_col_names,columns=['Importance'])\n","feature_imp_df=feature_imp_df.sort_values(by='Importance',ascending=False)\n","feature_imp_df"]},{"cell_type":"code","source":["rfs_model=rfs_best_estim.fit(rfscale_X_train,rfscale_y_train)\n","\n","rfscale_y_train_pred=rfscale_model.predict(rfscale_X_train)\n","rfs_y_pred=rfc_model.predict(rfscale_X_test)\n","rfs_train_accuracy=accuracy_score(rfscale_y_train,rfscale_y_train_pred).round(4)\n","rfs_accuracy=accuracy_score(rfscale_y_test,rfscale_y_pred).round(4)\n","print('Standard Scaling, Tuned Model\\n')\n","print(rfs_train_accuracy)\n","print(rfs_accuracy)\n","print()\n","print(classification_report(rfscale_y_test,rfs_y_pred))"],"metadata":{"colab":{"base_uri":"https://localhost:8080/"},"id":"FGn_9LJJwHcE","executionInfo":{"status":"ok","timestamp":1716217505648,"user_tz":300,"elapsed":226,"user":{"displayName":"Daniel Meier","userId":"06365571306976914087"}},"outputId":"e3bf8a74-b97b-4408-b5a9-ae5f26ac46bc"},"execution_count":102,"outputs":[{"output_type":"stream","name":"stdout","text":["Standard Scaling, Tuned Model\n","\n","1.0\n","0.8909\n","\n"," precision recall f1-score support\n","\n"," 0 0.96 0.82 0.89 33\n"," 1 0.80 0.91 0.85 35\n"," 2 0.93 0.93 0.93 42\n","\n"," accuracy 0.89 110\n"," macro avg 0.90 0.89 0.89 110\n","weighted avg 0.90 0.89 0.89 110\n","\n"]}]},{"cell_type":"markdown","metadata":{"id":"ZQCFJmwI-2kM"},"source":["# K Neighbor"]},{"cell_type":"markdown","metadata":{"id":"53-Av8bH3Vhr"},"source":["### Iteration 5)\n"," * Scaled Data Only for KNN"]},{"cell_type":"code","execution_count":103,"metadata":{"id":"ZIamysX3EcCE","executionInfo":{"status":"ok","timestamp":1716217510339,"user_tz":300,"elapsed":168,"user":{"displayName":"Daniel Meier","userId":"06365571306976914087"}}},"outputs":[],"source":["from sklearn.neighbors import KNeighborsClassifier\n"]},{"cell_type":"code","execution_count":104,"metadata":{"id":"oXrlTYxq3Rim","executionInfo":{"status":"ok","timestamp":1716217512054,"user_tz":300,"elapsed":538,"user":{"displayName":"Daniel Meier","userId":"06365571306976914087"}}},"outputs":[],"source":["knn_df=df\n","knn_X=df.drop('stress_level',axis=1)\n","knn_y=df['stress_level']\n","\n","knn_X_train, knn_X_test,knn_y_train, knn_y_test = train_test_split(knn_X,knn_y, test_size=.3,random_state=43)\n","knn_scaler=StandardScaler()\n","knn_strain=knn_scaler.fit_transform(knn_X_train)\n","knn_stest=knn_scaler.transform(knn_X_test)\n","\n","knn=KNeighborsClassifier(n_neighbors=3)\n","knn.fit(knn_X_train,knn_y_train)\n","\n","knn_y_pred=knn.predict(knn_X_test)\n","knn_y_pred_train=knn.predict(knn_X_train)\n"]},{"cell_type":"code","execution_count":105,"metadata":{"colab":{"base_uri":"https://localhost:8080/"},"executionInfo":{"elapsed":124,"status":"ok","timestamp":1716217517133,"user":{"displayName":"Daniel Meier","userId":"06365571306976914087"},"user_tz":300},"id":"RIl5EfzZZC0D","outputId":"501e6d32-cf2b-431b-e54f-7e3116179c56"},"outputs":[{"output_type":"stream","name":"stdout","text":["KNN Accuracy Score: Test: 0.8818181818181818\n","KNN Accuracy Score: Tran 0.9090909090909091\n"]}],"source":["accuracy=accuracy_score(knn_y_test,knn_y_pred)\n","\n","print(\"KNN Accuracy Score: Test:\",accuracy)\n","print(\"KNN Accuracy Score: Tran\",accuracy_score(knn_y_train,knn_y_pred_train))"]},{"cell_type":"markdown","source":[],"metadata":{"id":"5an525VPyk8j"}},{"cell_type":"code","source":["from sklearn.model_selection import train_test_split\n","from sklearn.neighbors import KNeighborsClassifier\n","from sklearn.neighbors import RadiusNeighborsClassifier\n","\n","from sklearn.model_selection import GridSearchCV\n","\n","from sklearn import metrics\n","from sklearn.metrics import confusion_matrix\n","from sklearn.metrics import classification_report\n","from sklearn.metrics import roc_auc_score\n","\n","from sklearn.preprocessing import StandardScaler\n","\n"],"metadata":{"id":"aRC_3UfZ5B0A","executionInfo":{"status":"ok","timestamp":1716217563991,"user_tz":300,"elapsed":342,"user":{"displayName":"Daniel Meier","userId":"06365571306976914087"}}},"execution_count":106,"outputs":[]},{"cell_type":"code","source":["from sklearn.model_selection import GridSearchCV\n","k_range = list(range(1, 31))\n","param_grid = dict(n_neighbors=k_range)\n","\n","# defining parameter range\n","grid = GridSearchCV(knn, param_grid, cv=10, scoring='accuracy', return_train_score=False,verbose=1)\n","\n","# fitting the model for grid search\n","grid_search=grid.fit(knn_X_train, knn_y_train)"],"metadata":{"colab":{"base_uri":"https://localhost:8080/"},"id":"_Br5qUzr5Bwo","executionInfo":{"status":"ok","timestamp":1716217571558,"user_tz":300,"elapsed":6102,"user":{"displayName":"Daniel Meier","userId":"06365571306976914087"}},"outputId":"2e732ad7-4e7f-4c37-ff89-34a3596b43da"},"execution_count":107,"outputs":[{"output_type":"stream","name":"stdout","text":["Fitting 10 folds for each of 30 candidates, totalling 300 fits\n"]}]},{"cell_type":"code","source":["print(grid_search.best_params_)\n"],"metadata":{"colab":{"base_uri":"https://localhost:8080/"},"id":"wtLCtBTJ5BuA","executionInfo":{"status":"ok","timestamp":1716217575401,"user_tz":300,"elapsed":134,"user":{"displayName":"Daniel Meier","userId":"06365571306976914087"}},"outputId":"35f258e9-105d-45cd-9423-f6f6b2024ba3"},"execution_count":108,"outputs":[{"output_type":"stream","name":"stdout","text":["{'n_neighbors': 12}\n"]}]},{"cell_type":"code","source":["accuracy = grid_search.best_score_ *100\n","print(\"Accuracy for our training dataset with tuning is : {:.2f}%\".format(accuracy) )"],"metadata":{"colab":{"base_uri":"https://localhost:8080/"},"id":"8MtldC745Bq7","executionInfo":{"status":"ok","timestamp":1716217577366,"user_tz":300,"elapsed":157,"user":{"displayName":"Daniel Meier","userId":"06365571306976914087"}},"outputId":"57eeaf0c-7221-4249-87d6-eaa108f6b532"},"execution_count":109,"outputs":[{"output_type":"stream","name":"stdout","text":["Accuracy for our training dataset with tuning is : 88.44%\n"]}]},{"cell_type":"code","execution_count":110,"metadata":{"id":"bY4P4dNu8LE9","colab":{"base_uri":"https://localhost:8080/"},"executionInfo":{"status":"ok","timestamp":1716217579607,"user_tz":300,"elapsed":3,"user":{"displayName":"Daniel Meier","userId":"06365571306976914087"}},"outputId":"234b8930-9412-46b9-c958-fc60c9cbdbbf"},"outputs":[{"output_type":"stream","name":"stdout","text":["Accuracy for our testing dataset with tuning is : 87.58%\n"]}],"source":["knn = KNeighborsClassifier(n_neighbors=26)\n","\n","knn.fit(knn_X,knn_y)\n","\n","y_test_hat=knn.predict(knn_X_test)\n","\n","test_accuracy=accuracy_score(knn_y_test,y_test_hat)*100\n","\n","print(\"Accuracy for our testing dataset with tuning is : {:.2f}%\".format(test_accuracy) )"]},{"cell_type":"markdown","source":["## TEST SPLIT RATIO\n"," * Each of these was tested and trained at a 70/30, 80/20, 90/10 ratio. Upon review of the results, it was determined that the 90/10 ratio on the Unscaled Grid Search Random Forest Classifier model gave us the most accurate projection."],"metadata":{"id":"jzswBcg6HTlX"}},{"cell_type":"code","source":[],"metadata":{"id":"rhskZ34-G92v"},"execution_count":null,"outputs":[]},{"cell_type":"markdown","metadata":{"id":"P4f00jxJ8MEK"},"source":["# Feature Importance Visual"]},{"cell_type":"code","execution_count":113,"metadata":{"colab":{"base_uri":"https://localhost:8080/","height":564},"executionInfo":{"elapsed":1485,"status":"ok","timestamp":1716217741446,"user":{"displayName":"Daniel Meier","userId":"06365571306976914087"},"user_tz":300},"id":"-tU2E0gR8gON","outputId":"ea510729-078b-46d1-fc6a-480cf54c38bb"},"outputs":[{"output_type":"display_data","data":{"text/plain":["
"],"image/png":"iVBORw0KGgoAAAANSUhEUgAABAwAAAIjCAYAAACHyYmvAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAADQF0lEQVR4nOzdd1xW9f//8ccFyl6iIA4EB87cI0fmFmeaJWr0UdympuY20yAHzpxploVmlpar4ciROKjcqOU2ECsKU5HQBIHr94c/ztcrUAFRLJ/32+263TjnvM/7/TrnuuzzOa/zHiaz2WxGREREREREROQOVnkdgIiIiIiIiIg8fpQwEBEREREREZEMlDAQERERERERkQyUMBARERERERGRDJQwEBEREREREZEMlDAQERERERERkQyUMBARERERERGRDJQwEBEREREREZEMlDAQERERERERkQyUMBARERF5AoSHh2MymQgPD8/rUCz4+voSFBSU12FIHnhcf5Mi8n+UMBAREQGWLVuGyWTK9DN27NiH0uZ3331HcHAw8fHxD6X+B5F+Pw4ePJjXoeTYokWLWLZsWV6H8Z+wadMmgoOD86z9GzduEBwc/FAeLC9dusTQoUMpX7489vb2eHp6UqdOHcaMGUNiYqJR7pNPPmHu3Lm53v7DFhQUhJOTU16HISL/UvnyOgAREZHHyVtvvUXJkiUt9j311FMPpa3vvvuOkJAQgoKCcHNzeyhtPMkWLVpEoUKF9PY6F2zatIl33nknz5IGN27cICQkBIDGjRvnWr1XrlyhVq1aJCQk0KtXL8qXL8/ly5c5duwYixcv5pVXXjEetj/55BN+/PFHhg0blmvti4g87pQwEBERuUPr1q2pVatWXofxQK5fv46jo2Neh5Fnbty4gYODQ16H8dClpKSQlpaGjY1NXofyr/XBBx8QExNDREQE9evXtziWkJCQ43t78+ZNbGxssLJSZ14R+XfTf8VERESyYfPmzTRs2BBHR0ecnZ1p27YtP/30k0WZY8eOERQURKlSpbCzs8PLy4tevXpx+fJlo0xwcDCjRo0CoGTJksbwh+joaKKjozGZTJl2pzeZTBZveYODgzGZTJw4cYKXXnqJAgUK8MwzzxjHP/74Y2rWrIm9vT3u7u507dqVixcv5uja07s2x8TE0K5dO5ycnChWrBjvvPMOAMePH6dp06Y4Ojri4+PDJ598YnF++jCH3bt3079/fwoWLIiLiwvdu3fn6tWrGdpbtGgRlSpVwtbWlqJFizJo0KAMwzcaN27MU089xaFDh3j22WdxcHDg9ddfx9fXl59++oldu3YZ9zb9zfSVK1cYOXIklStXxsnJCRcXF1q3bs3Ro0ct6k4fX/3ZZ58xZcoUihcvjp2dHc2aNePcuXMZ4t23bx9t2rShQIECODo6UqVKFebNm2dR5tSpU7z44ou4u7tjZ2dHrVq1+PLLL+9779N/E7NmzWLu3LmULl0aW1tbTpw48UD17tmzh86dO1OiRAlsbW3x9vbmtdde4++//zbKBAUFGd/xnUN10qWlpTF37lwqVaqEnZ0dhQsXpn///hm+U7PZzOTJkylevDgODg40adIkw7+du127h4cHACEhIUb7d/47+Pbbb41/l25ubnTo0IGTJ0/et+7z589jbW1N3bp1MxxzcXHBzs4OuP0727hxIxcuXDDa9/X1Bf7vd7Jq1SreeOMNihUrhoODAwkJCcDt30WrVq1wdXXFwcGBRo0aERERYdHWX3/9xbBhw/D19cXW1hZPT09atGjB4cOHjTJnz57lhRdewMvLCzs7O4oXL07Xrl25du3afa8zK+4X55o1azCZTOzatSvDuUuWLMFkMvHjjz8a+3L6mxSRx4t6GIiIiNzh2rVr/Pnnnxb7ChUqBMCKFSvo0aMH/v7+TJ8+nRs3brB48WKeeeYZjhw5YjxAbNu2jZ9//pmePXvi5eXFTz/9xHvvvcdPP/3EDz/8gMlkolOnTpw5c4ZPP/2UOXPmGG14eHhw6dKlbMfduXNn/Pz8mDp1KmazGYApU6YwYcIEAgIC6NOnD5cuXWLBggU8++yzHDlyJEfDIFJTU2ndujXPPvssM2bMYOXKlQwePBhHR0fGjx9PYGAgnTp14t1336V79+7Uq1cvwxCPwYMH4+bmRnBwMKdPn2bx4sVcuHDBePCC24mQkJAQmjdvziuvvGKUO3DgABEREeTPn9+o7/Lly7Ru3ZquXbvy8ssvU7hwYRo3bsyrr76Kk5MT48ePB6Bw4cIA/Pzzz2zYsIHOnTtTsmRJ/vjjD5YsWUKjRo04ceIERYsWtYh32rRpWFlZMXLkSK5du8aMGTMIDAxk3759Rplt27bRrl07ihQpwtChQ/Hy8uLkyZN8/fXXDB06FICffvqJBg0aUKxYMcaOHYujoyOfffYZHTt2ZO3atTz//PP3vf9hYWHcvHmTfv36YWtri7u7+wPV+/nnn3Pjxg1eeeUVChYsyP79+1mwYAG//PILn3/+OQD9+/fnt99+Y9u2baxYsSJDHf3792fZsmX07NmTIUOGEBUVxcKFCzly5IjFdzVx4kQmT55MmzZtaNOmDYcPH6Zly5YkJyff85o9PDyM4QHPP/88nTp1AqBKlSoAbN++ndatW1OqVCmCg4P5+++/WbBgAQ0aNODw4cPGv8vM+Pj4kJqaavzbvpvx48dz7do1fvnlF+bMmQOQYV6ASZMmYWNjw8iRI0lKSsLGxoZvv/2W1q1bU7NmTd58802srKwICwujadOm7Nmzhzp16gAwYMAA1qxZw+DBg6lYsSKXL19m7969nDx5kho1apCcnIy/vz9JSUm8+uqreHl58euvv/L1118THx+Pq6vrPe/h/WQlzrZt2+Lk5MRnn31Go0aNLM5fvXo1lSpVMoZv5cZvXUQeE2YRERExh4WFmYFMP2az2fzXX3+Z3dzczH379rU47/fffze7urpa7L9x40aG+j/99FMzYN69e7exb+bMmWbAHBUVZVE2KirKDJjDwsIy1AOY33zzTWP7zTffNAPmbt26WZSLjo42W1tbm6dMmWKx//jx4+Z8+fJl2H+3+3HgwAFjX48ePcyAeerUqca+q1evmu3t7c0mk8m8atUqY/+pU6cyxJpeZ82aNc3JycnG/hkzZpgB8xdffGE2m83muLg4s42Njblly5bm1NRUo9zChQvNgPnDDz809jVq1MgMmN99990M11CpUiVzo0aNMuy/efOmRb1m8+17bmtra37rrbeMfTt37jQD5goVKpiTkpKM/fPmzTMD5uPHj5vNZrM5JSXFXLJkSbOPj4/56tWrFvWmpaUZfzdr1sxcuXJl882bNy2O169f3+zn55chzn/GB5hdXFzMcXFxFseyWm/69ezcudPYl9lvNTQ01GwymcwXLlww9g0aNMic2f9t3LNnjxkwr1y50mL/li1bLPanf6dt27a1uCevv/66GTD36NHjntd/6dKlDL+ndNWqVTN7enqaL1++bOw7evSo2crKyty9e/d71vv777+bPTw8zIC5fPny5gEDBpg/+eQTc3x8fIaybdu2Nfv4+GTYn35fS5UqZXE/09LSzH5+fmZ/f3+La75x44a5ZMmS5hYtWhj7XF1dzYMGDbprnEeOHDED5s8///ye15OZHj16mB0dHe96PDtxduvWzezp6WlOSUkx9sXGxpqtrKws/u08yG9SRB4vGpIgIiJyh3feeYdt27ZZfOD2G+T4+Hi6devGn3/+aXysra15+umn2blzp1GHvb298ffNmzf5888/jS7Pd3Yxzk0DBgyw2F63bh1paWkEBARYxOvl5YWfn59FvNnVp08f4283NzfKlSuHo6MjAQEBxv5y5crh5ubGzz//nOH8fv36WfQQeOWVV8iXLx+bNm0Cbr8xTk5OZtiwYRZjwPv27YuLiwsbN260qM/W1paePXtmOX5bW1uj3tTUVC5fvoyTkxPlypXL9Pvp2bOnxVj2hg0bAhjXduTIEaKiohg2bFiGXhvpPSauXLnCt99+S0BAAH/99ZfxfVy+fBl/f3/Onj3Lr7/+et/YX3jhBaN7fm7Ue+dv9fr16/z555/Ur18fs9nMkSNH7hvP559/jqurKy1atLD4ndWsWRMnJyfjd5b+nb766qsWwxkedALB2NhYIiMjCQoKwt3d3dhfpUoVWrRoYfym7qZw4cIcPXqUAQMGcPXqVd59911eeuklPD09mTRpktFbJyt69OhhcT8jIyM5e/YsL730EpcvXzbuzfXr12nWrBm7d+8mLS0NuP3vaN++ffz222+Z1p3eg+Cbb77hxo0bWY4pK7ITZ5cuXYiLi7NYrWLNmjWkpaXRpUsXIPd+6yLyeNCQBBERkTvUqVMn00kPz549C0DTpk0zPc/FxcX4+8qVK4SEhLBq1Sri4uIsyuXWeON/+me3/7Nnz2I2m/Hz88u0/J0P7NlhZ2dn8cAKtx9mihcvbvEgmL4/s7kJ/hmTk5MTRYoUITo6GoALFy4At5MOd7KxsaFUqVLG8XTFihXL1uR0aWlpzJs3j0WLFhEVFUVqaqpxrGDBghnKlyhRwmK7QIECAMa1nT9/Hrj3ahrnzp3DbDYzYcIEJkyYkGmZuLg4ihUrds/Y//k9P2i9MTExTJw4kS+//DLDd5WV3+rZs2e5du0anp6ed20b/u87/ed37+HhYdzPnLjbbwWgQoUKfPPNN/edBLRIkSIsXryYRYsWcfbsWb755humT5/OxIkTKVKkiEWC7F4y+zcI3HOow7Vr1yhQoAAzZsygR48eeHt7U7NmTdq0aUP37t0pVaqUUffw4cN5++23WblyJQ0bNuS5557j5ZdffuDhCNmJM32Og9WrV9OsWTPg9nCEatWqUbZsWSD3fusi8nhQwkBERCQL0t+wrVixAi8vrwzH8+X7v/9JDQgI4LvvvmPUqFFUq1YNJycn0tLSaNWqlVHPvfzzwTvdnQ+2/3Tnm830eE0mE5s3b8ba2jpD+Zyuy55ZXffan503tDn1z2u/n6lTpzJhwgR69erFpEmTcHd3x8rKimHDhmX6/eTGtaXXO3LkSPz9/TMtU6ZMmfvWk9n3nNN6U1NTadGiBVeuXGHMmDGUL18eR0dHfv31V4KCgrL0W01LS8PT05OVK1dmevyfyaXHmclkomzZspQtW5a2bdvi5+fHypUrs5wwuNt3M3PmTKpVq5bpOen/DgMCAmjYsCHr169n69atzJw5k+nTp7Nu3Tpat24NwOzZswkKCuKLL75g69atDBkyhNDQUH744QeKFy+ew6vOXpy2trZ07NiR9evXs2jRIv744w8iIiKYOnVqhvoe9LcuIo8HJQxERESyoHTp0gB4enrSvHnzu5a7evUqO3bsICQkhIkTJxr709/i3eluiYH0N67/XBHgn2/W7xev2WymZMmSxpu/x8XZs2dp0qSJsZ2YmEhsbCxt2rQBbk9EB3D69GnjDStAcnIyUVFR97z/d7rb/V2zZg1NmjThgw8+sNgfHx9vTD6ZHem/jR9//PGusaVfR/78+bMcf1Y8SL3Hjx/nzJkzLF++nO7duxv704fh3Olu97J06dJs376dBg0a3DNxk/6dnj171uI7vXTpUqa9ULLa/p2/lX86deoUhQoVytESo6VKlaJAgQLExsbeN4a7Sf9duLi4ZOm7KVKkCAMHDmTgwIHExcVRo0YNpkyZYiQMACpXrkzlypV54403+O6772jQoAHvvvsukydPzlZsDxJnly5dWL58OTt27ODkyZOYzWZjOAI8vN+6iOQNzWEgIiKSBf7+/ri4uDB16lRu3bqV4Xj6ygbpb6P/+fZ57ty5Gc5Jf5D5Z2LAxcWFQoUKsXv3bov9ixYtynK8nTp1wtrampCQkAyxmM1miyUeH7X33nvP4h4uXryYlJQU48GoefPm2NjYMH/+fIvYP/jgA65du0bbtm2z1I6jo2OGewu3v6N/3pPPP/88x+Oqa9SoQcmSJZk7d26G9tLb8fT0pHHjxixZssTiITRdTlbGeNB6M/utms3mDEtBwt1/qwEBAaSmpjJp0qQM56SkpBjlmzdvTv78+VmwYIFFe5n9u8iMg4NDpu0XKVKEatWqsXz5cotjP/74I1u3bjWSUHezb98+rl+/nmH//v37uXz5ssVQB0dHx2wNKapZsyalS5dm1qxZJCYmZjie/t2kpqZmqNfT05OiRYuSlJQEQEJCAikpKRZlKleujJWVlVEmp7IaZ7rmzZvj7u7O6tWrWb16NXXq1LEYjvGwfusikjfUw0BERCQLXFxcWLx4Mf/73/+oUaMGXbt2xcPDg5iYGDZu3EiDBg1YuHAhLi4uxpKDt27dolixYmzdupWoqKgMddasWRO4vWRb165dyZ8/P+3bt8fR0ZE+ffowbdo0+vTpQ61atdi9ezdnzpzJcrylS5dm8uTJjBs3jujoaDp27IizszNRUVGsX7+efv36MXLkyFy7P9mRnJxMs2bNCAgI4PTp0yxatIhnnnmG5557DrjdjX3cuHGEhITQqlUrnnvuOaNc7dq1efnll7PUTs2aNVm8eDGTJ0+mTJkyeHp60rRpU9q1a8dbb71Fz549qV+/PsePH2flypUWb76zw8rKisWLF9O+fXuqVatGz549KVKkCKdOneKnn37im2++AW5PqPnMM89QuXJl+vbtS6lSpfjjjz/4/vvv+eWXXzh69GiO2s9pveXLl6d06dKMHDmSX3/9FRcXF9auXZvpG//03+qQIUPw9/fH2tqarl270qhRI/r3709oaCiRkZG0bNmS/Pnzc/bsWT7//HPmzZvHiy++iIeHByNHjiQ0NJR27drRpk0bjhw5wubNm7PUq8Pe3p6KFSuyevVqypYti7u7O0899RRPPfUUM2fOpHXr1tSrV4/evXsbyyq6uroSHBx8z3pXrFjBypUref7556lZsyY2NjacPHmSDz/8EDs7O15//XWLe7B69WqGDx9O7dq1cXJyon379net28rKiqVLl9K6dWsqVapEz549KVasGL/++is7d+7ExcWFr776ir/++ovixYvz4osvUrVqVZycnNi+fTsHDhxg9uzZwO1lDwcPHkznzp0pW7YsKSkprFixAmtra1544YX73r9bt25l2gvB3d2dgQMHZinOdPnz56dTp06sWrWK69evM2vWrAz1PqzfuojkgUe8KoOIiMhjKbNlBDOzc+dOs7+/v9nV1dVsZ2dnLl26tDkoKMh88OBBo8wvv/xifv75581ubm5mV1dXc+fOnc2//fZbpsvCTZo0yVysWDGzlZWVxRKLN27cMPfu3dvs6upqdnZ2NgcEBJjj4uLuuqzipUuXMo137dq15meeecbs6OhodnR0NJcvX948aNAg8+nTp7N9P+62PFujRo3MlSpVyrDfx8fH3LZt2wx17tq1y9yvXz9zgQIFzE5OTubAwECLJfHSLVy40Fy+fHlz/vz5zYULFza/8sorGZYtvFvbZvPtJfPatm1rdnZ2NgPGEos3b940jxgxwlykSBGzvb29uUGDBubvv//e3KhRI4tlGNOXfPvnUnZ3W/Zy79695hYtWpidnZ3Njo6O5ipVqpgXLFhgUeb8+fPm7t27m728vMz58+c3FytWzNyuXTvzmjVrMr2Gf7Y5c+bMTI9npd7MlrA7ceKEuXnz5mYnJydzoUKFzH379jUfPXo0w/WlpKSYX331VbOHh4fZZDJlWGLxvffeM9esWdNsb29vdnZ2NleuXNk8evRo82+//WaUSU1NNYeEhBj3vXHjxuYff/zR7OPjc99lFc1ms/m7774z16xZ02xjY5Ph38H27dvNDRo0MNvb25tdXFzM7du3N584ceK+dR47dsw8atQoc40aNczu7u7mfPnymYsUKWLu3Lmz+fDhwxZlExMTzS+99JLZzc3NDBhLLN7td5LuyJEj5k6dOpkLFixotrW1Nfv4+JgDAgLMO3bsMJvNZnNSUpJ51KhR5qpVqxq/napVq5oXLVpk1PHzzz+be/XqZS5durTZzs7O7O7ubm7SpIl5+/bt973G9OVQM/uULl06y3Headu2bWbAbDKZzBcvXsy03Zz+JkXk8WIymx/BbEQiIiLyxFu2bBk9e/bkwIEDma5EISIiIo8XzWEgIiIiIiIiIhkoYSAiIiIiIiIiGShhICIiIiIiIiIZaA4DEREREREREclAPQxEREREREREJAMlDEREREREREQkg3x5HYCI5FxaWhq//fYbzs7OmEymvA5HRERERETyiNls5q+//qJo0aJYWeVO3wAlDET+xX777Te8vb3zOgwREREREXlMXLx4keLFi+dKXUoYiPyLOTs7A7f/o+Di4pLH0YiIiIiISF5JSEjA29vbeEbIDUoYiPyLpQ9D+OLYGuwd7fM4GhERERGRJ0evRv3zOoRM5eZQZU16KCIiIiIiIiIZKGEgIiIiIiIiIhkoYSAiIiIiIiIiGShhICIiIiIiIiIZKGHwGPH19WXu3LkPvR2TycSGDRseejsPasOGDZQpUwZra2uGDRuW1+GIiIiIiIg8UbRKwhMoNjaWAgUK5HUY99W/f3969uzJkCFDcnVpEBEREREREbk/JQyeQF5eXnkdwj3dunWLpKQk4uLi8Pf3p2jRojmuKzk5GRsbm1yMTkRERERE5MmgIQl3sWXLFp555hnc3NwoWLAg7dq14/z588bxX375hW7duuHu7o6joyO1atVi3759AJw/f54OHTpQuHBhnJycqF27Ntu3b7eoPy4ujvbt22Nvb0/JkiVZuXJlhhji4+Pp06cPHh4euLi40LRpU44ePWocDw4Oplq1anz44YeUKFECJycnBg4cSGpqKjNmzMDLywtPT0+mTJliUe8/hyTc61ruJb39JUuW4O3tjYODAwEBAVy7ds2i3NKlS6lQoQJ2dnaUL1+eRYsWGceio6MxmUysXr2aRo0aYWdnx8qVK40eBU2bNsVkMhEeHg7A2rVrqVSpEra2tvj6+jJ79myLtnx9fZk0aRLdu3fHxcWFfv36sWzZMtzc3Pj6668pV64cDg4OvPjii9y4cYPly5fj6+tLgQIFGDJkCKmpqUZdK1asoFatWjg7O+Pl5cVLL71EXFyccTw8PByTycSOHTuoVasWDg4O1K9fn9OnT1vE9NVXX1G7dm3s7OwoVKgQzz//vHEsKSmJkSNHUqxYMRwdHXn66aeNa81MUlISCQkJFh8REREREZGHQQmDu7h+/TrDhw/n4MGD7NixAysrK55//nnS0tJITEykUaNG/Prrr3z55ZccPXqU0aNHk5aWBkBiYiJt2rRhx44dHDlyhFatWtG+fXtiYmKM+oOCgrh48SI7d+5kzZo1LFq0yOJhFKBz587ExcWxefNmDh06RI0aNWjWrBlXrlwxypw/f57NmzezZcsWPv30Uz744APatm3LL7/8wq5du5g+fTpvvPHGXRMA97uW+zl37hyfffYZX331FVu2bOHIkSMMHDjQOL5y5UomTpzIlClTOHnyJFOnTmXChAksX77cop6xY8cydOhQTp48SZMmTYyH7rVr1xIbG0v9+vU5dOgQAQEBdO3alePHjxMcHMyECRNYtmyZRV2zZs2iatWqHDlyhAkTJgBw48YN5s+fz6pVq9iyZQvh4eE8//zzbNq0iU2bNrFixQqWLFnCmjVrjHpu3brFpEmTOHr0KBs2bCA6OpqgoKAM92D8+PHMnj2bgwcPki9fPnr16mUc27hxI88//zxt2rThyJEj7Nixgzp16hjHBw8ezPfff8+qVas4duwYnTt3plWrVpw9ezbT+x0aGoqrq6vx8fb2ztL3JCIiIiIikl0ms9lszusg/g3+/PNPPDw8OH78ON999x0jR44kOjoad3f3LJ3/1FNPMWDAAAYPHsyZM2coV64c+/fvp3bt2gCcOnWKChUqMGfOHIYNG8bevXtp27YtcXFx2NraGvWUKVOG0aNH069fP4KDg5k5cya///678Ua+VatWnD59mvPnz2NldTsfVL58eYKCghg7dixwu4fB+vXr6dixI++99162ryVdcHAwkydP5sKFCxQrVgy43TOjbdu2/Prrr3h5eVGmTBkmTZpEt27djPMmT57Mpk2b+O6774iOjqZkyZLMnTuXoUOHGmXi4+MpUKAAO3fupHHjxgAEBgZy6dIltm7dapQbPXo0Gzdu5KeffgJu9zCoXr0669evN8osW7aMnj17cu7cOUqXLg3AgAEDWLFiBX/88QdOTk7GvfP19eXdd9/N9HoPHjxI7dq1+euvv3ByciI8PJwmTZqwfft2mjVrBsCmTZto27Ytf//9N3Z2dtSvX59SpUrx8ccfZ6gvJiaGUqVKERMTYzHsonnz5tSpU4epU6dmOCcpKYmkpCRjOyEhAW9vbxZunIO9o32mcYuIiIiISO7r1ah/XodgISEhAVdXV65du4aLi0uu1Kk5DO7i7NmzTJw4kX379vHnn38ab9xjYmKIjIykevXqd33ATkxMJDg4mI0bNxIbG0tKSgp///230cPg5MmT5MuXj5o1axrnlC9fHjc3N2P76NGjJCYmUrBgQYu6//77b4uhEb6+vhYTAhYuXBhra2sjWZC+75+9F9Ld71rup0SJEkayAKBevXqkpaVx+vRpnJ2dOX/+PL1796Zv375GmZSUFFxdXS3qqVWr1n3bOnnyJB06dLDY16BBA+bOnUtqairW1tZ3rcvBwcFIFsDte+Lr62skC9L33XmfDh06RHBwMEePHuXq1asWv4GKFSsa5apUqWL8XaRIEeD2kJMSJUoQGRlpce13On78OKmpqZQtW9Zif1JSUobvPZ2tra1FAklERERERORhUcLgLtq3b4+Pjw/vv/8+RYsWJS0tjaeeeork5GTs7e/9JnfkyJFs27aNWbNmUaZMGezt7XnxxRdJTk7OcvuJiYkUKVIk0/HsdyYW8ufPb3HMZDJluu9uQwzudy0PIjExEYD333+fp59+2uJY+sN9OkdHx1xrN7O6snufrl+/jr+/P/7+/qxcuRIPDw9iYmLw9/fP8D3eWY/JZAIw6rnX/U1MTMTa2ppDhw5luB93JjJERERERETyghIGmbh8+TKnT5/m/fffp2HDhgDs3bvXOF6lShWWLl3KlStXMn0zHxERQVBQkDG5XWJiItHR0cbx8uXLk5KSwqFDh4whCadPnyY+Pt4oU6NGDX7//Xfy5cuHr69v7l9kFq/lfmJiYvjtt9+MLvU//PADVlZWlCtXjsKFC1O0aFF+/vlnAgMDHzjWChUqEBERYbEvIiKCsmXLZnjgflCnTp3i8uXLTJs2zZgn4ODBg9mup0qVKuzYsYOePXtmOFa9enVSU1OJi4szfmciIiIiIiKPC016mIkCBQpQsGBB3nvvPc6dO8e3337L8OHDjePdunXDy8uLjh07EhERwc8//8zatWv5/vvvAfDz82PdunVERkZy9OhRXnrpJYs3/OXKlaNVq1b079+fffv2cejQIfr06WPxNrp58+bUq1ePjh07snXrVqKjo/nuu+8YP358jh5c7+Z+13I/dnZ29OjRg6NHj7Jnzx6GDBlCQECAsXRjSEgIoaGhzJ8/nzNnznD8+HHCwsJ4++23sx3riBEj2LFjB5MmTeLMmTMsX76chQsXMnLkyGzXdT8lSpTAxsaGBQsW8PPPP/Pll18yadKkbNfz5ptv8umnn/Lmm29y8uRJjh8/zvTp0wEoW7YsgYGBdO/enXXr1hEVFcX+/fsJDQ1l48aNuX1JIiIiIiIi2aKEQSasrKxYtWoVhw4d4qmnnuK1115j5syZxnEbGxu2bt2Kp6cnbdq0oXLlykybNs14y/32229ToEAB6tevT/v27fH396dGjRoWbYSFhVG0aFEaNWpEp06d6NevH56ensZxk8nEpk2bePbZZ+nZsydly5ala9euXLhwgcKFC+fatd7vWu6nTJkydOrUiTZt2tCyZUuqVKlisWxinz59WLp0KWFhYVSuXJlGjRqxbNkySpYsme1Ya9SowWeffcaqVat46qmnmDhxIm+99VamKxc8KA8PD5YtW8bnn39OxYoVmTZtGrNmzcp2PY0bN+bzzz/nyy+/pFq1ajRt2pT9+/cbx8PCwujevTsjRoygXLlydOzYkQMHDlCiRIncvBwREREREZFs0yoJkmPBwcFs2LCByMjIvA7liZU+E6pWSRARERERebSehFUS1MNARERERERERDLQpIdyV5UqVeLChQuZHluyZMkjjkZEREREREQeJQ1JkLu6cOECt27dyvRY4cKFcXZ2fsQRyT89jG5HIiIiIiLy7/Mwng3Uw0DuysfHJ69DEBERERERkTyiOQxEREREREREJAMlDEREREREREQkAw1JEPkPeHfHUuy0rKKIiIiIyCMxpOUreR3CI6EeBiIiIiIiIiKSgRIGIiIiIiIiIpKBEgYiIiIiIiIikoESBvLYaNy4McOGDcvrMHIsPDwck8lEfHx8XociIiIiIiLywJQwEMkl9evXJzY2FldX17wORURERERE5IEpYSBPjOTk5Idav42NDV5eXphMpofajoiIiIiIyKOghIHkievXr9O9e3ecnJwoUqQIs2fPtjielJTEyJEjKVasGI6Ojjz99NOEh4cbx5ctW4abmxsbNmzAz88POzs7/P39uXjxolEmODiYatWqsXTpUkqWLImdnR0A8fHx9OnTBw8PD1xcXGjatClHjx41zjt69ChNmjTB2dkZFxcXatasycGDBwG4cOEC7du3p0CBAjg6OlKpUiU2bdoEZD4kYe3atVSqVAlbW1t8fX0zXKevry9Tp06lV69eODs7U6JECd57771cucciIiIiIiIPQgkDyROjRo1i165dfPHFF2zdupXw8HAOHz5sHB88eDDff/89q1at4tixY3Tu3JlWrVpx9uxZo8yNGzeYMmUKH330EREREcTHx9O1a1eLds6dO8fatWtZt24dkZGRAHTu3Jm4uDg2b97MoUOHqFGjBs2aNePKlSsABAYGUrx4cQ4cOMChQ4cYO3Ys+fPnB2DQoEEkJSWxe/dujh8/zvTp03Fycsr0Gg8dOkRAQABdu3bl+PHjBAcHM2HCBJYtW2ZRbvbs2dSqVYsjR44wcOBAXnnlFU6fPp1pnUlJSSQkJFh8REREREREHoZ8eR2APHkSExP54IMP+Pjjj2nWrBkAy5cvp3jx4gDExMQQFhZGTEwMRYsWBWDkyJFs2bKFsLAwpk6dCsCtW7dYuHAhTz/9tFFHhQoV2L9/P3Xq1AFuD0P46KOP8PDwAGDv3r3s37+fuLg4bG1tAZg1axYbNmxgzZo19OvXj5iYGEaNGkX58uUB8PPzM2KPiYnhhRdeoHLlygCUKlXqrtf59ttv06xZMyZMmABA2bJlOXHiBDNnziQoKMgo16ZNGwYOHAjAmDFjmDNnDjt37qRcuXIZ6gwNDSUkJCTL91pERERERCSn1MNAHrnz58+TnJxsPOgDuLu7Gw/Ix48fJzU1lbJly+Lk5GR8du3axfnz541z8uXLR+3atY3t8uXL4+bmxsmTJ419Pj4+RrIAbg83SExMpGDBghZ1R0VFGXUPHz6cPn360Lx5c6ZNm2bR5pAhQ5g8eTINGjTgzTff5NixY3e9zpMnT9KgQQOLfQ0aNODs2bOkpqYa+6pUqWL8bTKZ8PLyIi4uLtM6x40bx7Vr14zPnUMwREREREREcpN6GMhjJzExEWtraw4dOoS1tbXFsbt1/78bR0fHDHUXKVLEYj6EdG5ubsDtuQ9eeuklNm7cyObNm3nzzTdZtWoVzz//PH369MHf35+NGzeydetWQkNDmT17Nq+++mq24rpT+nCHdCaTibS0tEzL2traGj0jREREREREHib1MJBHrnTp0uTPn599+/YZ+65evcqZM2cAqF69OqmpqcTFxVGmTBmLj5eXl3FOSkqKMRkhwOnTp4mPj6dChQp3bbtGjRr8/vvv5MuXL0PdhQoVMsqVLVuW1157ja1bt9KpUyfCwsKMY97e3gwYMIB169YxYsQI3n///UzbqlChAhERERb7IiIiKFu2bIZEiIiIiIiIyONGCQN55JycnOjduzejRo3i22+/5ccffyQoKAgrq9s/x7JlyxIYGEj37t1Zt24dUVFR7N+/n9DQUDZu3GjUkz9/fl599VX27dvHoUOHCAoKom7dusb8BZlp3rw59erVo2PHjmzdupXo6Gi+++47xo8fz8GDB/n7778ZPHgw4eHhXLhwgYiICA4cOGAkIYYNG8Y333xDVFQUhw8fZufOnXdNUIwYMYIdO3YwadIkzpw5w/Lly1m4cCEjR47MxbspIiIiIiLycGhIguSJmTNnkpiYSPv27XF2dmbEiBFcu3bNOB4WFsbkyZMZMWIEv/76K4UKFaJu3bq0a9fOKOPg4MCYMWN46aWX+PXXX2nYsCEffPDBPds1mUxs2rSJ8ePH07NnTy5duoSXlxfPPvsshQsXxtramsuXL9O9e3f++OMPChUqRKdOnYyJBlNTUxk0aBC//PILLi4utGrVijlz5mTaVo0aNfjss8+YOHEikyZNokiRIrz11lsWEx6KiIiIiIg8rkxms9mc10GIZNeyZcsYNmwY8fHxeR1KnkpISMDV1ZXp62Zj52if1+GIiIiIiDwRhrR8Ja9DyCD92eDatWu4uLjkSp0akiAiIiIiIiIiGShhICIiIiIiIiIZKGEg/0pBQUFP/HAEERERERGRh0mTHor8Bwxo1ifXximJiIiIiIiAehiIiIiIiIiISCaUMBARERERERGRDJQwEBEREREREZEMNIeByH/AzM1LsHOwz+swREQkl4xvPzivQxAREVEPAxERERERERHJSAkDEREREREREclACQMRERERERERyUAJAxERERERERHJQAkDeWSCg4OpVq1ats4xmUxs2LDhocQjIiIiIiIid6eEgTwyI0eOZMeOHXkdxmMpPDwck8lEfHx8XociIiIiIiICaFlFeYScnJxwcnLK6zAeO7du3crrEERERERERDJQDwPJYM2aNVSuXBl7e3sKFixI8+bNuX79Omlpabz11lsUL14cW1tbqlWrxpYtWyzO/eWXX+jWrRvu7u44OjpSq1Yt9u3bB2QcknDgwAFatGhBoUKFcHV1pVGjRhw+fDhHMScnJzN48GCKFCmCnZ0dPj4+hIaGAhAdHY3JZCIyMtIoHx8fj8lkIjw8HPi/N/wbN26kSpUq2NnZUbduXX788UfjnGXLluHm5saGDRvw8/PDzs4Of39/Ll68aBHL4sWLKV26NDY2NpQrV44VK1ZYHDeZTCxevJjnnnsOR0dH+vbtS5MmTQAoUKAAJpOJoKCgTK8zKSmJhIQEi4+IiIiIiMjDoISBWIiNjaVbt2706tWLkydPEh4eTqdOnTCbzcybN4/Zs2cza9Ysjh07hr+/P8899xxnz54FIDExkUaNGvHrr7/y5ZdfcvToUUaPHk1aWlqmbf3111/06NGDvXv38sMPP+Dn50ebNm3466+/sh33/Pnz+fLLL/nss884ffo0K1euxNfXN9v1jBo1itmzZ3PgwAE8PDxo3769RQ+AGzduMGXKFD766CMiIiKIj4+na9euxvH169czdOhQRowYwY8//kj//v3p2bMnO3futGgnODiY559/nuPHjxMSEsLatWsBOH36NLGxscybNy/T+EJDQ3F1dTU+3t7e2b5GERERERGRrNCQBLEQGxtLSkoKnTp1wsfHB4DKlSsDMGvWLMaMGWM8IE+fPp2dO3cyd+5c3nnnHT755BMuXbrEgQMHcHd3B6BMmTJ3batp06YW2++99x5ubm7s2rWLdu3aZSvumJgY/Pz8eOaZZzCZTEbs2fXmm2/SokULAJYvX07x4sVZv349AQEBwO3hAwsXLuTpp582ylSoUIH9+/dTp04dZs2aRVBQEAMHDgRg+PDh/PDDD8yaNcvoRQDw0ksv0bNnT2M7KioKAE9PT9zc3O4a37hx4xg+fLixnZCQoKSBiIiIiIg8FOphIBaqVq1Ks2bNqFy5Mp07d+b999/n6tWrJCQk8Ntvv9GgQQOL8g0aNODkyZMAREZGUr16dSNZcD9//PEHffv2xc/PD1dXV1xcXEhMTCQmJibbcQcFBREZGUm5cuUYMmQIW7duzXYdAPXq1TP+dnd3p1y5csb1AeTLl4/atWsb2+XLl8fNzc0oc/LkyXveo3S1atXKUXy2tra4uLhYfERERERERB4GJQzEgrW1Ndu2bWPz5s1UrFiRBQsWUK5cOeMN+L3Y29tnq60ePXoQGRnJvHnz+O6774iMjKRgwYIkJydnO+4aNWoQFRXFpEmT+PvvvwkICODFF18EwMrq9s/cbDYb5fN6okFHR8c8bV9EREREROR+lDCQDEwmEw0aNCAkJIQjR45gY2PDjh07KFq0KBERERZlIyIiqFixIgBVqlQhMjKSK1euZKmdiIgIhgwZQps2bahUqRK2trb8+eefOY7bxcWFLl268P7777N69WrWrl3LlStX8PDwAG4Pt0h35wSId/rhhx+Mv69evcqZM2eoUKGCsS8lJYWDBw8a26dPnyY+Pt4oU6FChXveo7uxsbEBIDU1NQtXKiIiIiIi8vBpDgOxsG/fPnbs2EHLli3x9PRk3759XLp0iQoVKjBq1CjefPNNSpcuTbVq1QgLCyMyMpKVK1cC0K1bN6ZOnUrHjh0JDQ2lSJEiHDlyhKJFi1p09U/n5+fHihUrqFWrFgkJCYwaNSrbvRTSvf322xQpUoTq1atjZWXF559/jpeXF25ublhZWVG3bl2mTZtGyZIliYuL44033si0nrfeeouCBQtSuHBhxo8fT6FChejYsaNxPH/+/Lz66qvMnz+ffPnyMXjwYOrWrUudOnWA25MmBgQEUL16dZo3b85XX33FunXr2L59+z3j9/HxwWQy8fXXX9OmTRvs7e21BKWIiIiIiOQp9TAQCy4uLuzevZs2bdpQtmxZ3njjDWbPnk3r1q0ZMmQIw4cPZ8SIEVSuXJktW7bw5Zdf4ufnB9x+S75161Y8PT1p06YNlStXZtq0aVhbW2fa1gcffMDVq1epUaMG//vf/xgyZAienp45itvZ2ZkZM2ZQq1YtateuTXR0NJs2bTKGI3z44YekpKRQs2ZNhg0bxuTJkzOtZ9q0aQwdOpSaNWvy+++/89VXXxlv/wEcHBwYM2YML730Eg0aNMDJyYnVq1cbxzt27Mi8efOYNWsWlSpVYsmSJYSFhdG4ceN7xl+sWDFCQkIYO3YshQsXZvDgwTm6DyIiIiIiIrnFZL5zYLfIEyo8PJwmTZpw9erVu65SsGzZMoYNG0Z8fPwjje1eEhIScHV15Y1VM7BzyFnvDBERefyMb6/EsYiIZE/6s8G1a9dybXJ09TAQERERERERkQyUMJB/halTp+Lk5JTpp3Xr1nkdnoiIiIiIyH+OhiTIv8KVK1fuuvqCvb09xYoVe8QRPR4eRrcjERERERH593kYzwZaJUH+Fdzd3XF3d8/rMERERERERJ4YGpIgIiIiIiIiIhkoYSAiIiIiIiIiGWhIgsh/QPCGd7F1sMvrMEREHrrQF4fkdQgiIiJPDPUwEBEREREREZEMlDAQERERERERkQyUMBARERERERGRDJQwEBEREREREZEMlDB4gjVu3Jhhw4bd9bivry9z58596HGYTCY2bNjw0NsRERERERGRrFPCQEREREREREQyUMJA/tPMZjMpKSl5HYaFxzEmERERERGRf1LC4AmXkpLC4MGDcXV1pVChQkyYMAGz2Zxp2ZiYGDp06ICTkxMuLi4EBATwxx9/WJRZvHgxpUuXxsbGhnLlyrFixQqL42fPnuXZZ5/Fzs6OihUrsm3btizHGh0djclkYtWqVdSvXx87Ozueeuopdu3aZZQJDw/HZDKxefNmatasia2tLXv37iUtLY3Q0FBKliyJvb09VatWZc2aNcZ5V69eJTAwEA8PD+zt7fHz8yMsLAyA5ORkBg8eTJEiRbCzs8PHx4fQ0FCLmCIjI4264uPjMZlMhIeHP1BMIiIiIiIieSlfXgcgeWv58uX07t2b/fv3c/DgQfr160eJEiXo27evRbm0tDQjWbBr1y5SUlIYNGgQXbp0MR6M169fz9ChQ5k7dy7Nmzfn66+/pmfPnhQvXpwmTZqQlpZGp06dKFy4MPv27ePatWv3nEPhbkaNGsXcuXOpWLEib7/9Nu3btycqKoqCBQsaZcaOHcusWbMoVaoUBQoUIDQ0lI8//ph3330XPz8/du/ezcsvv4yHhweNGjViwoQJnDhxgs2bN1OoUCHOnTvH33//DcD8+fP58ssv+eyzzyhRogQXL17k4sWL2Y47uzFlJikpiaSkJGM7ISEh23GIiIiIiIhkhRIGTzhvb2/mzJmDyWSiXLlyHD9+nDlz5mRIGOzYsYPjx48TFRWFt7c3AB999BGVKlXiwIED1K5dm1mzZhEUFMTAgQMBGD58OD/88AOzZs2iSZMmbN++nVOnTvHNN99QtGhRAKZOnUrr1q2zFfPgwYN54YUXgNs9GrZs2cIHH3zA6NGjjTJvvfUWLVq0AG4/ZE+dOpXt27dTr149AEqVKsXevXtZsmQJjRo1IiYmhurVq1OrVi3g9oSP6WJiYvDz8+OZZ57BZDLh4+OTrXhzGlNmQkNDCQkJyVH7IiIiIiIi2aEhCU+4unXrYjKZjO169epx9uxZUlNTLcqdPHkSb29vI1kAULFiRdzc3Dh58qRRpkGDBhbnNWjQwOK4t7e3kSxIby+77jwnX7581KpVy2gjXfqDP8C5c+e4ceMGLVq0wMnJyfh89NFHnD9/HoBXXnmFVatWUa1aNUaPHs13331nnB8UFERkZCTlypVjyJAhbN26Ndsx5ySmzIwbN45r164Zn5z0dBAREREREckK9TCQ/yRHR0fj78TERAA2btxIsWLFLMrZ2toC0Lp1ay5cuMCmTZvYtm0bzZo1Y9CgQcyaNYsaNWoQFRXF5s2b2b59OwEBATRv3pw1a9ZgZXU753bnvA+3bt3KlZgyY2tre8/jIiIiIiIiuUU9DJ5w+/bts9j+4Ycf8PPzw9ra2mJ/hQoVMozdP3HiBPHx8VSsWNEoExERYXFeRESExfGLFy8SGxtr0V523XlOSkoKhw4dokKFCnctX7FiRWxtbYmJiaFMmTIWnzt7THh4eNCjRw8+/vhj5s6dy3vvvWccc3FxoUuXLrz//vusXr2atWvXcuXKFTw8PAAsrunOCRAfNCYREREREZG8oh4GT7iYmBiGDx9O//79OXz4MAsWLGD27NkZyjVv3pzKlSsTGBjI3LlzSUlJYeDAgTRq1Mjoaj9q1CgCAgKoXr06zZs356uvvmLdunVs377dqKNs2bL06NGDmTNnkpCQwPjx47Md8zvvvIOfnx8VKlRgzpw5XL16lV69et21vLOzMyNHjuS1114jLS2NZ555hmvXrhEREYGLiws9evRg4sSJ1KxZk0qVKpGUlMTXX39tJCHefvttihQpQvXq1bGysuLzzz/Hy8sLNzc3rKysqFu3LtOmTaNkyZLExcXxxhtv3PcashKTiIiIiIhIXlLC4AnXvXt3/v77b+rUqYO1tTVDhw6lX79+GcqZTCa++OILXn31VZ599lmsrKxo1aoVCxYsMMp07NiRefPmMWvWLIYOHUrJkiUJCwujcePGAFhZWbF+/Xp69+5NnTp18PX1Zf78+bRq1SpbMU+bNo1p06YRGRlJmTJl+PLLLylUqNA9z5k0aRIeHh6Ehoby888/4+bmRo0aNXj99dcBsLGxYdy4cURHR2Nvb0/Dhg1ZtWoVcPvhfsaMGZw9exZra2tq167Npk2bjOEIH374Ib1796ZmzZqUK1eOGTNm0LJly/tex/1iEhERERERyUsm852Dr0UeY9HR0ZQsWZIjR45QrVq1vA7nsZCQkICrqyuvLZ+OrYNdXocjIvLQhb44JK9DEBEReSylPxtcu3YNFxeXXKlTcxiIiIiIiIiISAZKGMhjY+rUqRZLDN75ad26dV6HJyIiIiIi8kTRkAR5bFy5coUrV65kesze3j7D8oPycLodiYiIiIjIv8/DeDbQpIfy2HB3d8fd3T2vwxARERERERE0JEFEREREREREMqGEgYiIiIiIiIhkoCEJIv8Bo1e/g42WVRSRO8wPfC2vQxAREZF/OfUwEBEREREREZEMlDAQERERERERkQyUMBARERERERGRDJQwEBEREREREZEMlDAQERERERERkQyUMBARERERERGRDJQwkMdGcnJyrtdpNptJSUnJ9XofxOMYk4iIiIiIyD8pYSCZaty4MYMHD2bw4MG4urpSqFAhJkyYgNlsBiApKYmRI0dSrFgxHB0defrppwkPD7eoY+/evTRs2BB7e3u8vb0ZMmQI169fN477+voyadIkunfvjouLC/369btnTNHR0ZhMJlatWkX9+vWxs7PjqaeeYteuXUaZ8PBwTCYTmzdvpmbNmtja2rJ3717S0tIIDQ2lZMmS2NvbU7VqVdasWWOcd/XqVQIDA/Hw8MDe3h4/Pz/CwsKA24mMwYMHU6RIEezs7PDx8SE0NNQipsjISKOu+Ph4TCaTcT9yGpOIiIiIiEheypfXAcjja/ny5fTu3Zv9+/dz8OBB+vXrR4kSJejbty+DBw/mxIkTrFq1iqJFi7J+/XpatWrF8ePH8fPz4/z587Rq1YrJkyfz4YcfcunSJSMBkf4gDjBr1iwmTpzIm2++meW4Ro0axdy5c6lYsSJvv/027du3JyoqioIFCxplxo4dy6xZsyhVqhQFChQgNDSUjz/+mHfffRc/Pz92797Nyy+/jIeHB40aNWLChAmcOHGCzZs3U6hQIc6dO8fff/8NwPz58/nyyy/57LPPKFGiBBcvXuTixYvZvp/ZjSkzSUlJJCUlGdsJCQnZjkNERERERCQrTOb0V8Yid2jcuDFxcXH89NNPmEwm4PYD75dffsmWLVsoVaoUMTExFC1a1DinefPm1KlTh6lTp9KnTx+sra1ZsmSJcXzv3r00atSI69evY2dnh6+vL9WrV2f9+vVZiik6OpqSJUsybdo0xowZA0BKSgolS5bk1VdfZfTo0YSHh9OkSRM2bNhAhw4dgNsP2e7u7mzfvp169eoZ9fXp04cbN27wySef8Nxzz1GoUCE+/PDDDO0OGTKEn376ie3btxv34p8xHTlyhGrVqgG3exgUKFCAnTt30rhx4xzHlJng4GBCQkIy7O//3lRsHOyydB9F5MkwP/C1vA5BREREHqGEhARcXV25du0aLi4uuVKnehjIXdWtW9fiAblevXrMnj2b48ePk5qaStmyZS3KJyUlGW/5jx49yrFjx1i5cqVx3Gw2k5aWRlRUFBUqVACgVq1a2Y7rzgfsfPnyUatWLU6ePGlR5s56z507x40bN2jRooVFmeTkZKpXrw7AK6+8wgsvvMDhw4dp2bIlHTt2pH79+gAEBQXRokULypUrR6tWrWjXrh0tW7bMdtzZjSkz48aNY/jw4cZ2QkIC3t7e2Y5FRERERETkfpQwkGxLTEzE2tqaQ4cOYW1tbXHMycnJKNO/f3+GDBmS4fwSJUoYfzs6Oj6UGO+sNzExEYCNGzdSrFgxi3K2trYAtG7dmgsXLrBp0ya2bdtGs2bNGDRoELNmzaJGjRpERUWxefNmtm/fTkBAAM2bN2fNmjVYWd2eBuTOjjq3bt3KlZgyY2tre8/jIiIiIiIiuUUJA7mrffv2WWz/8MMP+Pn5Ub16dVJTU4mLi6Nhw4aZnlujRg1OnDhBmTJlcj2uH374gWeffRa4PSTh0KFDDB48+K7lK1asiK2tLTExMXedGwDAw8ODHj160KNHDxo2bMioUaOYNWsWAC4uLnTp0oUuXbrw4osv0qpVK65cuYKHhwcAsbGxRs+AOydAfNCYRERERERE8ooSBnJXMTExDB8+nP79+3P48GEWLFjA7NmzKVu2LIGBgXTv3p3Zs2dTvXp1Ll26xI4dO6hSpQpt27ZlzJgx1K1bl8GDB9OnTx8cHR05ceIE27ZtY+HChQ8U1zvvvIOfnx8VKlRgzpw5XL16lV69et21vLOzMyNHjuS1114jLS2NZ555hmvXrhEREYGLiws9evRg4sSJ1KxZk0qVKpGUlMTXX39tDJt4++23KVKkCNWrV8fKyorPP/8cLy8v3NzcsLKyom7dukybNo2SJUsSFxfHG2+8cd9ryEpMIiIiIiIieUkJA7mr7t278/fff1OnTh2sra0ZOnSosfRhWFgYkydPZsSIEfz6668UKlSIunXr0q5dOwCqVKnCrl27GD9+PA0bNsRsNlO6dGm6dOnywHFNmzaNadOmERkZSZkyZfjyyy8pVKjQPc+ZNGkSHh4ehIaG8vPPP+Pm5kaNGjV4/fXXAbCxsWHcuHFER0djb29Pw4YNWbVqFXD74X7GjBmcPXsWa2trateuzaZNm4zhCB9++CG9e/emZs2alCtXjhkzZmRpjoP7xSQiIiIiIpKXtEqCZKpx48ZUq1aNuXPn5nUohsxWJHjSpc+EqlUSROSftEqCiIjIk+VhrJJglSu1iIiIiIiIiMh/ihIG8tiYOnUqTk5OmX5at26d1+GJiIiIiIg8UTQkQR4bV65c4cqVK5kes7e3z7D8oDycbkciIiIiIvLv8zCeDTTpoTw23N3dcXd3z+swREREREREBA1JEBEREREREZFMKGEgIiIiIiIiIhkoYSAiIiIiIiIiGWgOA5H/gMEfLcDG3i6vwxCRB7C094i8DkFERETEgnoYiIiIiIiIiEgGShiIiIiIiIiISAZKGIiIiIiIiIhIBkoYyGMpOjoak8lEZGRknsZhMpnYsGHDI23T19eXuXPnPtI2RURERERE/kkJA3kseXt7Exsby1NPPZXlcxo3bsywYcMeXlAiIiIiIiJPEK2SII8la2trvLy88joMERERERGRJ5Z6GEiObNmyhWeeeQY3NzcKFixIu3btOH/+PPB/wwnWrVtHkyZNcHBwoGrVqnz//ffG+b169aJKlSokJSUBkJycTPXq1enevbtFHXcOSfjxxx9p3bo1Tk5OFC5cmP/973/8+eefAAQFBbFr1y7mzZuHyWTCZDIRFRVFmTJlmDVrlkXskZGRmEwmzp07l+3rvnjxIgEBAbi5ueHu7k6HDh2Ijo4GYOvWrdjZ2REfH29xztChQ2natKmxvXfvXho2bIi9vT3e3t4MGTKE69evZzsWERERERGRh0kJA8mR69evM3z4cA4ePMiOHTuwsrLi+eefJy0tzSgzfvx4Ro4cSWRkJGXLlqVbt26kpKQAMH/+fK5fv87YsWONsvHx8SxcuDDT9uLj42natCnVq1fn4MGDbNmyhT/++IOAgAAA5s2bR7169ejbty+xsbHExsZSokQJevXqRVhYmEVdYWFhPPvss5QpUyZb13zr1i38/f1xdnZmz549RERE4OTkRKtWrUhOTqZZs2a4ubmxdu1a45zU1FRWr15NYGAgAOfPn6dVq1a88MILHDt2jNWrV7N3714GDx6cpRiSkpJISEiw+IiIiIiIiDwMGpIgOfLCCy9YbH/44Yd4eHhw4sQJnJycABg5ciRt27YFICQkhEqVKnHu3DnKly+Pk5MTH3/8MY0aNcLZ2Zm5c+eyc+dOXFxcMm1v4cKFVK9enalTp1q06e3tzZkzZyhbtiw2NjY4ODhYDGUICgpi4sSJ7N+/nzp16nDr1i0++eSTDL0OsmL16tWkpaWxdOlSTCYTcDv54ObmRnh4OC1btqRr16588skn9O7dG4AdO3YQHx9v3K/Q0FACAwONuRb8/PyYP38+jRo1YvHixdjZ2d0zhtDQUEJCQrIdu4iIiIiISHaph4HkyNmzZ+nWrRulSpXCxcUFX19fAGJiYowyVapUMf4uUqQIAHFxcca+evXqMXLkSCZNmsSIESN45pln7tre0aNH2blzJ05OTsanfPnyAMZQiMwULVqUtm3b8uGHHwLw1VdfkZSUROfOnbN9zUePHuXcuXM4OzsbMbi7u3Pz5k0jhsDAQMLDw/ntt98AWLlyJW3btsXNzc2oY9myZRbX4e/vT1paGlFRUfeNYdy4cVy7ds34XLx4MdvXISIiIiIikhXqYSA50r59e3x8fHj//fcpWrQoaWlpPPXUUyQnJxtl8ufPb/yd/kb+ziELaWlpREREYG1tfd/5BBITE2nfvj3Tp0/PcCw9GXE3ffr04X//+x9z5swhLCyMLl264ODgkKXr/GcMNWvWZOXKlRmOeXh4AFC7dm1Kly7NqlWreOWVV1i/fj3Lli2zqKN///4MGTIkQx0lSpS4bwy2trbY2tpmO3YREREREZHsUsJAsu3y5cucPn2a999/n4YNGwK3J/LLrpkzZ3Lq1Cl27dqFv78/YWFh9OzZM9OyNWrUYO3atfj6+pIvX+Y/WxsbG1JTUzPsb9OmDY6OjixevJgtW7awe/fubMeaHsPq1avx9PS869AJuN3LYOXKlRQvXhwrKytjWEZ6HSdOnMj2/AkiIiIiIiKPmoYkSLYVKFCAggUL8t5773Hu3Dm+/fZbhg8fnq06jhw5wsSJE1m6dCkNGjTg7bffZujQofz888+Zlh80aBBXrlyhW7duHDhwgPPnz/PNN9/Qs2dPI0ng6+vLvn37iI6O5s8//zR6M1hbWxMUFMS4cePw8/OjXr16ObruwMBAChUqRIcOHdizZw9RUVGEh4czZMgQfvnlF4tyhw8fZsqUKbz44osWPQLGjBnDd999x+DBg4mMjOTs2bN88cUXWZ70UERERERE5FFRwkCyzcrKilWrVnHo0CGeeuopXnvtNWbOnJnl82/evMnLL79MUFAQ7du3B6Bfv340adKE//3vf5n2EihatCgRERGkpqbSsmVLKleuzLBhw3Bzc8PK6vbPeOTIkVhbW1OxYkU8PDws5lPo3bs3ycnJd+3BkBUODg7s3r2bEiVK0KlTJypUqEDv3r25efOmRY+DMmXKUKdOHY4dO2asjpCuSpUq7Nq1izNnztCwYUOqV6/OxIkTKVq0aI7jEhEREREReRhMZrPZnNdBiDxse/bsoVmzZly8eJHChQvndTi5JiEhAVdXV/63YDI29vdeYUFEHm9Le4/I6xBERETkXyz92eDatWv3HEKdHZrDQP7TkpKSuHTpEsHBwXTu3Pk/lSwQERERERF5mDQkQf7TPv30U3x8fIiPj2fGjBkWx1auXGmxvOGdn0qVKuVRxCIiIiIiIo8HDUmQJ9Zff/3FH3/8kemx/Pnz4+Pj84gjyr6H0e1IRERERET+fTQkQSQXOTs74+zsnNdhiIiIiIiIPJY0JEFEREREREREMlDCQEREREREREQyUMJARERERERERDLQHAYi/wF93ptHfnu7vA7jsbFy0Ki8DkFERERE5F9PPQxEREREREREJAMlDEREREREREQkAyUMRERERERERCQDJQzkP6Fx48YMGzYsx+dHR0djMpmIjIwEIDw8HJPJRHx8fI7OFxERERER+bfTpIciucDb25vY2FgKFSqU16GIiIiIiIjkCiUMRHKBtbU1Xl5eeR2GiIiIiIhIrtGQBPnPSElJYfDgwbi6ulKoUCEmTJiA2WwGwGQysWHDBovybm5uLFu27L71Xr9+HRcXF9asWWOxf8OGDTg6OvLXX3/ddUjDjh07qFWrFg4ODtSvX5/Tp09b1DF58mQ8PT1xdnamT58+jB07lmrVquX0FoiIiIiIiOQaJQzkP2P58uXky5eP/fv3M2/ePN5++22WLl36wPU6OjrStWtXwsLCLPaHhYXx4osv4uzsfNdzx48fz+zZszl48CD58uWjV69exrGVK1cyZcoUpk+fzqFDhyhRogSLFy++ZyxJSUkkJCRYfERERERERB4GDUmQ/wxvb2/mzJmDyWSiXLlyHD9+nDlz5tC3b98HrrtPnz7Ur1+f2NhYihQpQlxcHJs2bWL79u33PG/KlCk0atQIgLFjx9K2bVtu3ryJnZ0dCxYsoHfv3vTs2ROAiRMnsnXrVhITE+9aX2hoKCEhIQ98PSIiIiIiIvejHgbyn1G3bl1MJpOxXa9ePc6ePUtqauoD112nTh0qVarE8uXLAfj444/x8fHh2Wefved5VapUMf4uUqQIAHFxcQCcPn2aOnXqZGjnXsaNG8e1a9eMz8WLF7N9LSIiIiIiIlmhhIE8EUwmkzGfQbpbt25lq44+ffoYcx6EhYXRs2dPiwRFZvLnz28RA0BaWlq22r2Tra0tLi4uFh8REREREZGHQQkD+c/Yt2+fxfYPP/yAn58f1tbWeHh4EBsbaxw7e/YsN27cyFb9L7/8MhcuXGD+/PmcOHGCHj16PFC85cqV48CBAxb7/rktIiIiIiKSVzSHgfxnxMTEMHz4cPr378/hw4dZsGABs2fPBqBp06YsXLiQevXqkZqaypgxYyze/mdFgQIF6NSpE6NGjaJly5YUL178geJ99dVX6du3L7Vq1aJ+/fqsXr2aY8eOUapUqQeqV0REREREJDcoYSD/Gd27d+fvv/+mTp06WFtbM3ToUPr16wfA7Nmz6dmzJw0bNqRo0aLMmzePQ4cOZbuN3r1788knn1isdpBTgYGB/Pzzz4wcOZKbN28SEBBAUFAQ+/fvf+C6RUREREREHpTJ/M+B3SJyVytWrOC1117jt99+w8bGJtfrb9GiBV5eXqxYsSJL5RMSEnB1daXzzLfIb2+X6/H8W60cNCqvQxAREREReaTSnw2uXbuWa3OdqYeBSBbcuHGD2NhYpk2bRv/+/XMlWXDjxg3effdd/P39sba25tNPP2X79u1s27YtFyIWERERERF5MJr0UCQLZsyYQfny5fHy8mLcuHG5UqfJZGLTpk08++yz1KxZk6+++oq1a9fSvHnzXKlfRERERETkQWhIgsi/2MPodiQiIiIiIv8+D+PZQD0MRERERERERCQDJQxEREREREREJAMlDEREREREREQkAyUMRERERERERCQDLaso8h8QuPBt8tvZ5XUY2bZu+Ni8DkFERERERO5CPQxEREREREREJAMlDEREREREREQkAyUMRERERERERCQDJQzkXyU4OJhq1ao9krZMJhMbNmx4JG2l8/X1Ze7cuY+0TRERERERkcwoYSD/KiNHjmTHjh15HYaIiIiIiMh/nlZJkH8VJycnnJyc8joMERERERGR/zz1MJBHqnHjxgwZMoTRo0fj7u6Ol5cXwcHBxvGYmBg6dOiAk5MTLi4uBAQE8McffxjH/zkkITw8nDp16uDo6IibmxsNGjTgwoULxvEvvviCGjVqYGdnR6lSpQgJCSElJSVHsV+8eJGAgADc3Nxwd3enQ4cOREdHA7B161bs7OyIj4+3OGfo0KE0bdrU2N67dy8NGzbE3t4eb29vhgwZwvXr13MUj4iIiIiIyMOkhIE8csuXL8fR0ZF9+/YxY8YM3nrrLbZt20ZaWhodOnTgypUr7Nq1i23btvHzzz/TpUuXTOtJSUmhY8eONGrUiGPHjvH999/Tr18/TCYTAHv27KF79+4MHTqUEydOsGTJEpYtW8aUKVOyHfOtW7fw9/fH2dmZPXv2EBERgZOTE61atSI5OZlmzZrh5ubG2rVrjXNSU1NZvXo1gYGBAJw/f55WrVrxwgsvcOzYMVavXs3evXsZPHhwluNISkoiISHB4iMiIiIiIvIwaEiCPHJVqlThzTffBMDPz4+FCxca8xIcP36cqKgovL29Afjoo4+oVKkSBw4coHbt2hb1JCQkcO3aNdq1a0fp0qUBqFChgnE8JCSEsWPH0qNHDwBKlSrFpEmTGD16tNF+Vq1evZq0tDSWLl1qJCTCwsJwc3MjPDycli1b0rVrVz755BN69+4NwI4dO4iPj+eFF14AIDQ0lMDAQIYNG2Zc+/z582nUqBGLFy/Gzs7uvnGEhoYSEhKSrdhFRERERERyQj0M5JGrUqWKxXaRIkWIi4vj5MmTeHt7G8kCgIoVK+Lm5sbJkycz1OPu7k5QUBD+/v60b9+eefPmERsbaxw/evQob731ljHvgZOTE3379iU2NpYbN25kK+ajR49y7tw5nJ2djbrc3d25efMm58+fByAwMJDw8HB+++03AFauXEnbtm1xc3Mz6li2bJlFPP7+/qSlpREVFZWlOMaNG8e1a9eMz8WLF7N1HSIiIiIiIlmlHgbyyOXPn99i22QykZaWlqO6wsLCGDJkCFu2bGH16tW88cYbbNu2jbp165KYmEhISAidOnXKcF5W3ubfKTExkZo1a7Jy5coMxzw8PACoXbs2pUuXZtWqVbzyyiusX7+eZcuWWdTRv39/hgwZkqGOEiVKZCkOW1tbbG1tsxW7iIiIiIhITihhII+NChUqcPHiRS5evGj0Mjhx4gTx8fFUrFjxrudVr16d6tWrM27cOOrVq8cnn3xC3bp1qVGjBqdPn6ZMmTIPHFuNGjVYvXo1np6euLi43LVcYGAgK1eupHjx4lhZWdG2bVuLOk6cOJEr8YiIiIiIiDxsGpIgj43mzZtTuXJlAgMDOXz4MPv376d79+40atSIWrVqZSgfFRXFuHHj+P7777lw4QJbt27l7NmzxjwGEydO5KOPPiIkJISffvqJkydPsmrVKt54441sxxYYGEihQoXo0KEDe/bsISoqivDwcIYMGcIvv/xiUe7w4cNMmTKFF1980aI3wJgxY/juu+8YPHgwkZGRnD17li+++CJbkx6KiIiIiIg8KkoYyGPDZDLxxRdfUKBAAZ599lmaN29OqVKlWL16dablHRwcOHXqFC+88AJly5alX79+DBo0iP79+wPg7+/P119/zdatW6lduzZ169Zlzpw5+Pj4ZDs2BwcHdu/eTYkSJejUqRMVKlSgd+/e3Lx506LHQZkyZahTpw7Hjh0zVkdIV6VKFXbt2sWZM2do2LAh1atXZ+LEiRQtWjTb8YiIiIiIiDxsJrPZbM7rIEQkZxISEnB1daXdlDfJn815GR4H64aPzesQRERERET+E9KfDa5du3bPYdTZoR4GIiIiIiIiIpKBEgbyRFq5cqXF8oZ3fipVqpTX4YmIiIiIiOQ5DUmQJ9Jff/3FH3/8kemx/Pnz52ieg7zwMLodiYiIiIjIv8/DeDbQsoryRHJ2dsbZ2TmvwxAREREREXlsaUiCiIiIiIiIiGSghIGIiIiIiIiIZKCEgYiIiIiIiIhkoDkMRP4DXpw9i/x2dnkdRpZsHPd6XocgIiIiIiJZoB4GIiIiIiIiIpKBEgYiIiIiIiIikoESBiIiIiIiIiKSgRIG8liJjo7GZDIRGRlp7IuIiKBy5crkz5+fjh075llsIiIiIiIiTxJNeiiPveHDh1OtWjU2b96Mk5PTQ20rKCiI+Ph4NmzY8FDbERERERERedyph4E89s6fP0/Tpk0pXrw4bm5ueR2OiIiIiIjIE0EJA3ko1qxZQ+XKlbG3t6dgwYI0b96c69evA7B06VIqVKiAnZ0d5cuXZ9GiRZnWkT484fLly/Tq1QuTycSyZcvu2/aPP/5I69atcXJyonDhwvzvf//jzz//vG9swcHBLF++nC+++AKTyYTJZCI8PByAixcvEhAQgJubG+7u7nTo0IHo6GiLdu91XenX8tlnn9GwYUPs7e2pXbs2Z86c4cCBA9SqVQsnJydat27NpUuXsnezRUREREREHgIlDCTXxcbG0q1bN3r16sXJkycJDw+nU6dOmM1mVq5cycSJE5kyZQonT55k6tSpTJgwgeXLl2eox9vbm9jYWFxcXJg7dy6xsbF06dLlnm3Hx8fTtGlTqlevzsGDB9myZQt//PEHAQEB941t5MiRBAQE0KpVK2JjY4mNjaV+/frcunULf39/nJ2d2bNnDxERETg5OdGqVSuSk5MBsnxdb775Jm+88QaHDx8mX758vPTSS4wePZp58+axZ88ezp07x8SJE+96fUlJSSQkJFh8REREREREHgbNYSC5LjY2lpSUFDp16oSPjw8AlStXBm4/MM+ePZtOnToBULJkSU6cOMGSJUvo0aOHRT3W1tZ4eXlhMplwdXXFy8vrvm0vXLiQ6tWrM3XqVGPfhx9+iLe3N2fOnCExMfGusQHY29uTlJRk0dbHH39MWloaS5cuxWQyARAWFoabmxvh4eG0bNkyy9c1cuRI/P39ARg6dCjdunVjx44dNGjQAIDevXvfsxdFaGgoISEh970PIiIiIiIiD0oJA8l1VatWpVmzZlSuXBl/f39atmzJiy++iI2NDefPn6d379707dvXKJ+SkoKrq2uutH306FF27tyZ6eSI58+fp2XLlpnGVqBAgXvWee7cOZydnS3237x5k/Pnz3P9+vUsX1eVKlWMvwsXLgxYJiwKFy5MXFzcXWMZN24cw4cPN7YTEhLw9va+a3kREREREZGcUsJAcp21tTXbtm3ju+++Y+vWrSxYsIDx48fz1VdfAfD+++/z9NNPZzgnNyQmJtK+fXumT5+e4ViRIkXuGtu+ffsoWbLkXeusWbMmK1euzHDMw8ODxMREIGvXlT9/fuPv9N4K/9yXlpZ21+uztbXF1tb2rsdFRERERERyixIG8lCYTCYaNGhAgwYNmDhxIj4+PkRERFC0aFF+/vlnAgMDH0q7NWrUYO3atfj6+pIvX+Y/78xiW79+PcOHD8fGxobU1NQMda5evRpPT09cXFwy1Ofq6vrQr0tERERERORR06SHkuv27dvH1KlTOXjwIDExMaxbt45Lly5RoUIFQkJCCA0NZf78+Zw5c4bjx48TFhbG22+/nSttDxo0iCtXrtCtWzcOHDjA+fPn+eabb+jZsyepqan3jA3A19eXY8eOcfr0af78809u3bpFYGAghQoVokOHDuzZs4eoqCjCw8MZMmQIv/zyC8BDvy4REREREZFHTT0MJNe5uLiwe/du5s6dS0JCAj4+PsyePZvWrVsD4ODgwMyZMxk1ahSOjo5UrlyZYcOG5UrbRYsWJSIigjFjxtCyZUuSkpLw8fGhVatWWFlZ3Te2vn37Eh4eTq1atUhMTGTnzp00btyY3bt3M2bMGDp16sRff/1FsWLFaNasmdHjoE+fPg/1ukRERERERB41k9lsNud1ECKSMwkJCbi6utJi4gTy29nldThZsnHc63kdgoiIiIjIf076s8G1a9cyHUqdExqSICIiIiIiIiIZ5FrCID4+PreqErmrAQMG4OTklOlnwIABeR2eiIiIiIjIf0aOhiRMnz4dX19funTpAkBAQABr167Fy8uLTZs2UbVq1VwPVAQgLi6OhISETI+5uLjg6en5iCPKWw+j25GIiIiIiPz7PIxngxxNevjuu+8aa9Jv27aNbdu2sXnzZj777DNGjRrF1q1bcyU4kX/y9PR84pICIiIiIiIieSFHCYPff/8db29vAL7++msCAgJo2bIlvr6+PP3007kaoIiIiIiIiIg8ejmaw6BAgQJcvHgRgC1bttC8eXMAzGYzqampuRediIiIiIiIiOSJHPUw6NSpEy+99BJ+fn5cvnzZWMP+yJEjlClTJlcDFBEREREREZFHL0cJgzlz5uDr68vFixeZMWMGTk5OAMTGxjJw4MBcDVBE7u+50Bnks7XL6zCyZHvwG3kdgoiIiIiIZEGOEgb58+dn5MiRGfa/9tprDxyQiIiIiIiIiOS9HM1hALBixQqeeeYZihYtyoULFwCYO3cuX3zxRa4FJyIiIiIiIiJ5I0cJg8WLFzN8+HBat25NfHy8MdGhm5sbc+fOzc34RERERERERCQP5ChhsGDBAt5//33Gjx+PtbW1sb9WrVocP34814LLS2azmX79+uHu7o7JZCIyMjKvQxIRERERERF5ZHKUMIiKiqJ69eoZ9tva2nL9+vUHDupxsGXLFpYtW8bXX39NbGwsTz311H3PMZlMbNiw4eEHJyIiIiIiIvKQ5ShhULJkyUzfuG/ZsoUKFSo8aEyPhfPnz1OkSBHq16+Pl5cX+fLlaH7IHElOTn5kbWXVw4zp1q1bD63uvGI2m0lJScnrMERERERERHIsRwmD4cOHM2jQIFavXo3ZbGb//v1MmTKFcePGMXr06NyO8ZELCgri1VdfJSYmBpPJhK+vL76+vhnmZ6hWrRrBwcEA+Pr6AvD8888b56TX1bFjR4vzhg0bRuPGjY3txo0bM3jwYIYNG0ahQoXw9/cH4Mcff6R169Y4OTlRuHBh/ve///Hnn39m6RrS0tKYMWMGZcqUwdbWlhIlSjBlyhTj+JgxYyhbtiwODg6UKlWKCRMmWDy4BwcHU61aNZYuXUrJkiWxs7u9ZF98fDx9+vTBw8MDFxcXmjZtytGjRy3a/uKLL6hRowZ2dnaUKlWKkJAQi4dnk8nE4sWLee6553B0dLSI625++ukn2rVrh4uLC87OzjRs2JDz588b1/rWW29RvHhxbG1tqVatGlu2bDHOjY6OxmQysW7dOpo0aYKDgwNVq1bl+++/t2gjIiKCxo0b4+DgQIECBfD39+fq1atGG6GhoZQsWRJ7e3uqVq3KmjVrjHPDw8MxmUxs3ryZmjVrYmtry969e2ncuDFDhgxh9OjRuLu74+XlZfxm4HZiITg4mBIlSmBra0vRokUZMmTIfe+HiIiIiIjIw5aj1+Z9+vTB3t6eN954gxs3bvDSSy9RtGhR5s2bR9euXXM7xkdu3rx5lC5dmvfee48DBw5gbW1N7dq173nOgQMH8PT0JCwsjFatWlnM7ZAVy5cv55VXXiEiIgK4/WDetGlT+vTpw5w5c/j7778ZM2YMAQEBfPvtt/etb9y4cbz//vvMmTOHZ555htjYWE6dOmUcd3Z2ZtmyZRQtWpTjx4/Tt29fnJ2dLRI+586dY+3ataxbt864ns6dO2Nvb8/mzZtxdXVlyZIlNGvWjDNnzuDu7s6ePXvo3r078+fPNx7q+/XrB8Cbb75p1B0cHMy0adOYO3fufXtv/Prrrzz77LM0btyYb7/9FhcXFyIiIowkxLx585g9ezZLliyhevXqfPjhhzz33HP89NNP+Pn5GfWMHz+eWbNm4efnx/jx4+nWrRvnzp0jX758REZG0qxZM3r16sW8efPIly8fO3fuNCb0DA0N5eOPP+bdd9/Fz8+P3bt38/LLL+Ph4UGjRo2MNsaOHcusWbMoVaoUBQoUML7b4cOHs2/fPr7//nuCgoJo0KABLVq0YO3atcyZM4dVq1ZRqVIlfv/99wwJmDslJSWRlJRkbCckJNzz3omIiIiIiORUthMGKSkpfPLJJ/j7+xMYGMiNGzdITEzE09PzYcSXJ1xdXXF2dsba2hovL68snePh4QHcXikiq+fcyc/PjxkzZhjbkydPpnr16kydOtXY9+GHH+Lt7c2ZM2coW7bsXev666+/mDdvHgsXLqRHjx4AlC5dmmeeecYo88Ybbxh/+/r6MnLkSFatWmWRMEhOTuajjz4yrm3v3r3s37+fuLg4bG1tAZg1axYbNmxgzZo19OvXj5CQEMaOHWu0W6pUKSZNmsTo0aMtEgYvvfQSPXv2zNK9eeedd3B1dWXVqlXkz58fwOL6Z82axZgxY4xk1fTp09m5cydz587lnXfeMcqNHDmStm3bAhASEkKlSpU4d+4c5cuXZ8aMGdSqVYtFixYZ5StVqgTcfkifOnUq27dvp169esZ17d27lyVLllgkDN566y1atGhhEX+VKlWMa/fz82PhwoXs2LGDFi1aEBMTg5eXF82bNyd//vyUKFGCOnXq3PVehIaGEhISkqX7JiIiIiIi8iCynTDIly8fAwYM4OTJkwA4ODjg4OCQ64E9aWrWrGmxffToUXbu3ImTk1OGsufPn79nwuDkyZMkJSXRrFmzu5ZZvXo18+fP5/z58yQmJpKSkoKLi4tFGR8fHyNZkB5TYmIiBQsWtCj3999/G8MDjh49SkREhMUwg9TUVG7evMmNGzeM30qtWrXuGts/RUZG0rBhQyNZcKeEhAR+++03GjRoYLG/QYMGGd7UV6lSxfi7SJEiAMTFxVG+fHkiIyPp3Llzpu2fO3eOGzduZEgEJCcnZ5j8M7PrurPd9Lbj4uKA2z025s6dS6lSpWjVqhVt2rShffv2d+11MW7cOIYPH25x/d7e3pmWFREREREReRA5GpJQp04djhw5go+PT27H89iysrLCbDZb7MvKZH1ZPc/R0dFiOzExkfbt2zN9+vQMZdMfdu/G3t7+nse///57AgMDCQkJwd/f33h7P3v27PvGVKRIEcLDwzPU6ebmZpQJCQmhU6dOGcqkz4OQWd33cr/ryao7Ew4mkwm4PTfB/dpITEwEYOPGjRQrVsziWHpPi3SZXdc/Ex0mk8lo19vbm9OnT7N9+3a2bdvGwIEDmTlzJrt27co0QWJra5uhTRERERERkYchRwmDgQMHMmLECH755Rdq1qyZ4SHpn29U/ws8PDyIjY01thMSEoiKirIokz9/fmPM+53n/fjjjxb7IiMjM30YvFONGjVYu3Ytvr6+2V6hwc/PD3t7e3bs2EGfPn0yHP/uu+/w8fFh/Pjxxr4LFy7ct94aNWrw+++/ky9fPmNSx8zKnD59mjJlymQr5nupUqUKy5cv59atWxnum4uLC0WLFiUiIsJiaEBERMQ9u/Zn1saOHTsy7e5fsWJFbG1tiYmJsWgjt9jb29O+fXvat2/PoEGDKF++PMePH6dGjRq53paIiIiIiEhW5ShhkD5W/M7Z3E0mE2azGZPJlOGh+b+gadOmLFu2jPbt2+Pm5sbEiRMzTGzo6+vLjh07aNCgAba2thQoUICmTZsyc+ZMPvroI+rVq8fHH3/Mjz/+mKEr+z8NGjSI999/n27duhkz7J87d45Vq1axdOnSe06qaGdnx5gxYxg9ejQ2NjY0aNCAS5cu8dNPP9G7d2/8/PyIiYlh1apV1K5dm40bN7J+/fr73oPmzZtTr149OnbsyIwZMyhbtiy//fYbGzdu5Pnnn6dWrVpMnDiRdu3aUaJECV588UWsrKw4evQoP/74I5MnT87azf6HwYMHs2DBArp27cq4ceNwdXXlhx9+oE6dOpQrV45Ro0bx5ptvUrp0aapVq0ZYWBiRkZGsXLkyy22MGzeOypUrM3DgQAYMGICNjQ07d+6kc+fOFCpUiJEjR/Laa6+RlpbGM888w7Vr14iIiMDFxcWYryEnli1bRmpqKk8//TQODg58/PHH2NvbP1G9d0RERERE5PGUo4TBP9+sPwnGjRtHVFQU7dq1w9XVlUmTJmW4D7Nnz2b48OG8//77FCtWjOjoaPz9/ZkwYQKjR4/m5s2b9OrVi+7du3P8+PF7tpf+1nzMmDG0bNmSpKQkfHx8aNWqFVZW918Nc8KECeTLl4+JEyfy22+/UaRIEQYMGADAc889x2uvvcbgwYNJSkqibdu2TJgwwWK5v8yYTCY2bdrE+PHj6dmzJ5cuXcLLy4tnn32WwoULA+Dv78/XX3/NW2+9xfTp08mfPz/ly5fPtKdDVhUsWJBvv/2WUaNG0ahRI6ytralWrZoxb8GQIUO4du0aI0aMIC4ujooVK/Lll19arJBwP2XLlmXr1q28/vrr1KlTB3t7e55++mm6desGwKRJk/Dw8CA0NJSff/4ZNzc3atSoweuvv57j64LbQzmmTZvG8OHDSU1NpXLlynz11VcZ5okQERERERF51Ezmfw6wF5F/jYSEBFxdXWk0djz5bO3uf8JjYHvwG/cvJCIiIiIi2ZL+bHDt2rUME9rnVI56GHz00Uf3PN69e/ccBSMiIiIiIiIij4ccJQyGDh1qsX3r1i1u3LiBjY0NDg4OShg8ZDExMVSsWPGux0+cOEGJEiUeYUQPZsCAAXz88ceZHnv55Zd59913H3FEIiIiIiIikmtDEs6ePcsrr7zCqFGj8Pf3z40q5S5SUlKIjo6+6/GcrKyQl+Li4khISMj0mIuLC56eno84on+Ph9HtSERERERE/n0exrNBrs5hcPDgQV5++WVOnTqVW1WKyD0oYSAiIiIiIvBwng3uP91+NuTLl4/ffvstN6sUERERERERkTyQo37rX375pcW22WwmNjaWhQsXGkvdiYiIiIiIiMi/V44SBh07drTYNplMeHh40LRpU2bPnp0bcYmIiIiIiIhIHspRwiAtLS234xCRB9AyeBr5bO3yOgwLe0Mn5nUIIiIiIiLyAHI0h8Fbb73FjRs3Muz/+++/eeuttx44KBERERERERHJWzlKGISEhJCYmJhh/40bNwgJCXngoEREREREREQkb+UoYWA2mzGZTBn2Hz16FHd39wcOSkRERERERETyVrbmMChQoAAmkwmTyUTZsmUtkgapqakkJiYyYMCAXA9SRERERERERB6tbCUM5s6di9lsplevXoSEhODq6mocs7GxwdfXl3r16uV6kCI5sWzZMoYNG0Z8fPwD1xUeHk6TJk24evUqbm5uD1xfXrcjIiIiIiJyP9lKGPTo0QOAkiVLUr9+ffLnz/9QgpInV1BQEPHx8WzYsCGvQxEREREREXmi5WhZxUaNGhl/37x5k+TkZIvjLi4uDxaViIiIiIiIiOSpHE16eOPGDQYPHoynpyeOjo4UKFDA4iNyP2vWrKFy5crY29tTsGBBmjdvzqhRo1i+fDlffPGFMVdGeHg44eHhmEwmi6EFkZGRmEwmoqOjjX3Lli2jRIkSODg48Pzzz3P58mXjWHR0NFZWVhw8eNAijrlz5+Lj40NaWlq2r2Ht2rVUqlQJW1tbfH19mT17tsXxFStWUKtWLZydnfHy8uKll14iLi7OosymTZsoW7Ys9vb2NGnSxOJ6MpOUlERCQoLFR0RERERE5GHIUcJg1KhRfPvttyxevBhbW1uWLl1KSEgIRYsW5aOPPsrtGOU/JjY2lm7dutGrVy9OnjxJeHg4nTp14s033yQgIIBWrVoRGxtLbGws9evXz1Kd+/bto3fv3gwePJjIyEiaNGnC5MmTjeO+vr40b96csLAwi/PCwsIICgrCyip7/xQOHTpEQEAAXbt25fjx4wQHBzNhwgSWLVtmlLl16xaTJk3i6NGjbNiwgejoaIKCgozjFy9epFOnTrRv357IyEj69OnD2LFj79luaGgorq6uxsfb2ztbcYuIiIiIiGRVjoYkfPXVV3z00Uc0btyYnj170rBhQ8qUKYOPjw8rV64kMDAwt+OU/5DY2FhSUlLo1KkTPj4+AFSuXBkAe3t7kpKS8PLyylad8+bNo1WrVowePRqAsmXL8t1337FlyxajTJ8+fRgwYABvv/02tra2HD58mOPHj/PFF19k+xrefvttmjVrxoQJE4z2Tpw4wcyZM42kQK9evYzypUqVYv78+dSuXZvExEScnJxYvHgxpUuXNnomlCtXjuPHjzN9+vS7tjtu3DiGDx9ubCckJChpICIiIiIiD0WOehhcuXKFUqVKAbfnK7hy5QoAzzzzDLt378696OQ/qWrVqjRr1ozKlSvTuXNn3n//fa5evfpAdZ48eZKnn37aYt8/V+zo2LEj1tbWrF+/Hrg9hKFJkyb4+vrmqL0GDRpY7GvQoAFnz54lNTUVuN0LoX379pQoUQJnZ2dj7o+YmJgsx/xPtra2uLi4WHxEREREREQehhwlDEqVKkVUVBQA5cuX57PPPgNu9zzQUnByP9bW1mzbto3NmzdTsWJFFixYQLly5Yzf1D+lDxcwm83Gvlu3bmW7XRsbG7p3705YWBjJycl88sknFr0ActP169fx9/fHxcWFlStXcuDAASNR8c9JQkVERERERB5HOUoY9OzZk6NHjwIwduxY3nnnHezs7HjttdcYNWpUrgYo/00mk4kGDRoQEhLCkSNHsLGxYf369djY2Bhv6NN5eHgAt4cypIuMjLQoU6FCBfbt22ex74cffsjQbp8+fdi+fTuLFi0yhkXkRIUKFYiIiLDYFxERQdmyZbG2tubUqVNcvnyZadOm0bBhQ8qXL59hwsMKFSqwf//++8YsIiIiIiKSF3I0h8Frr71m/N28eXNOnTrFoUOHKFOmDFWqVMm14OS/ad++fezYsYOWLVvi6enJvn37uHTpEhUqVODmzZt88803nD59moIFC+Lq6kqZMmXw9vYmODiYKVOmcObMmQwrEgwZMoQGDRowa9YsOnTowDfffGMxf0G6ChUqULduXcaMGUOvXr2wt7fP0TWMGDGC2rVrM2nSJLp06cL333/PwoULWbRoEQAlSpTAxsaGBQsWMGDAAH788UcmTZpkUceAAQOYPXs2o0aNok+fPhw6dMhi0kQREREREZG8lKMeBne6efMmPj4+dOrUSckCyRIXFxd2795NmzZtKFu2LG+88QazZ8+mdevW9O3bl3LlylGrVi08PDyIiIggf/78fPrpp5w6dYoqVaowffp0ixUQAOrWrcv777/PvHnzqFq1Klu3buWNN97ItP3evXuTnJz8QMMRatSowWeffcaqVat46qmnmDhxIm+99ZYx4aGHhwfLli3j888/p2LFikybNo1Zs2ZZ1FGiRAnWrl3Lhg0bqFq1Ku+++y5Tp07NcUwiIiIiIiK5yWS+c2B4FqWmpjJ16lTeffdd/vjjD86cOUOpUqWYMGECvr6+9O7d+2HEKpIrJk2axOeff86xY8fyOpQHlpCQgKurK0+/No58tnZ5HY6FvaET8zoEEREREZEnRvqzwbVr13JtcvQc9TCYMmUKy5YtY8aMGdjY2Bj7n3rqKZYuXZorgYnktsTERH788UcWLlzIq6++mtfhiIiIiIiIPNZylDD46KOPeO+99wgMDMTa2trYX7VqVU6dOpVrwYnkpsGDB1OzZk0aN26cYTjCgAEDcHJyyvQzYMCAPIpYREREREQk7+RoSIK9vT2nTp3Cx8cHZ2dnjh49SqlSpThx4gR16tQhMTHxYcQq8tDExcWRkJCQ6TEXFxc8PT0fcURZ8zC6HYmIiIiIyL/Pw3g2yNEqCRUrVmTPnj34+PhY7F+zZg3Vq1fPlcBEHiVPT8/HNikgIiIiIiKSF3KUMJg4cSI9evTg119/JS0tjXXr1nH69Gk++ugjvv7669yOUUREREREREQesWzNYfDzzz9jNpvp0KEDX331Fdu3b8fR0ZGJEydy8uRJvvrqK1q0aPGwYhURERERERGRRyRbPQz8/PyIjY3F09OThg0b4u7uzvHjxylcuPDDik9EsqDx66FY29rmSdsHZgfnSbsiIiIiIvJwZauHwT/nR9y8eTPXr1/P1YBEREREREREJO/laFnFdDlYYEFERERERERE/gWylTAwmUyYTKYM+0RERERERETkvyVbcxiYzWaCgoKw/f9jpW/evMmAAQNwdHS0KLdu3brci1BEREREREREHrls9TDo0aMHnp6euLq64urqyssvv0zRokWN7fSPPL4aN27MsGHDcq2+4OBgqlWrlmv1PUrZjX3ZsmW4ubndt5zJZGLDhg05jktERERERORxkK0eBmFhYQ8rjn+N8PBwmjRpwtWrV7P08Pi4WbduHfnz58/rMB45k8nE+vXr6dixo7Fv5MiRvPrqq1muo0uXLrRp08bYDg4OZsOGDURGRlqUi42NpUCBAg8asoiIiIiISJ7KVsJAsi45ORkbG5s8afvWrVsZkgLp8bi7u+dJTPeSWbyPgpOTE05OTlkub29vj729/X3LeXl5PUhYIiIiIiIij4UHWiXh3yotLY3Q0FBKliyJvb09VatWZc2aNZjNZpo3b46/v7+xAsSVK1coXrw4EydOJDo6miZNmgBQoEABTCYTQUFBwO2u/oMHD2bYsGEUKlQIf39/AN5++20qV66Mo6Mj3t7eDBw4kMTERIt4IiIiaNy4MQ4ODhQoUAB/f3+uXr0KgK+vL3PnzrUoX61aNYKDg41tk8nE4sWLee6553B0dGTKlClGd/ulS5dSsmRJ7OzsjDjvHJKQlJTEmDFj8Pb2xtbWljJlyvDBBx8AmXfB37Bhwz0nujxw4AAtWrSgUKFCuLq60qhRIw4fPmxRJrN47yU1NZXevXsb31e5cuWYN29ehnIffvghlSpVwtbWliJFijB48GDjHgI8//zzmEwmY/vOIQlbt27Fzs6O+Ph4izqHDh1K06ZNM9yPZcuWERISwtGjR43JQJctW2Zc351DEi5evEhAQABubm64u7vToUMHoqOjjePh4eHUqVMHR0dH3NzcaNCgARcuXMj0XiQlJZGQkGDxEREREREReRieyIRBaGgoH330Ee+++y4//fQTr732Gi+//DK7d+9m+fLlHDhwgPnz5wMwYMAAihUrxsSJE/H29mbt2rUAnD59mtjYWIsH1+XLl2NjY0NERATvvvsuAFZWVsyfP5+ffvqJ5cuX8+233zJ69GjjnMjISJo1a0bFihX5/vvv2bt3L+3btyc1NTVb1xQcHMzzzz/P8ePH6dWrFwDnzp1j7dq1rFu3LkO3+XTdu3fn008/Zf78+Zw8eZIlS5Zk6637P/3111/06NGDvXv38sMPP+Dn50ebNm3466+/7hvv3aSlpVG8eHE+//xzTpw4wcSJE3n99df57LPPjDKLFy9m0KBB9OvXj+PHj/Pll19SpkwZ4HYSA24PqYmNjTW279SsWTPc3NyM7xduJypWr15NYGBghvJdunRhxIgRVKpUidjYWGJjY+nSpUuGcrdu3cLf3x9nZ2f27NlDREQETk5OtGrViuTkZFJSUujYsSONGjXi2LFjfP/99/Tr1++uSZnQ0FCL+UK8vb3vee9ERERERERy6okbkpCUlMTUqVPZvn079erVA6BUqVLs3buXJUuW8Mknn7BkyRK6d+/O77//zqZNmzhy5Aj58t2+Veld+j09PTO8fffz82PGjBkW++58m+/r68vkyZMZMGAAixYtAmDGjBnUqlXL2AaoVKlStq/rpZdeomfPnhb7kpOT+eijj/Dw8Mj0nDNnzvDZZ5+xbds2mjdvbtyLB5H+Nj7de++9h5ubG7t27aJdu3b3jPdu8ufPT0hIiLFdsmRJvv/+ez777DMCAgIAmDx5MiNGjGDo0KFGudq1awMY1+/m5nbX4QLW1tZ07dqVTz75hN69ewOwY8cO4uPjeeGFFzKUt7e3x8nJiXz58t1zCMLq1atJS0tj6dKlRhIgLCwMNzc3wsPDqVWrFteuXaNdu3aULl0agAoVKty1vnHjxjF8+HBjOyEhQUkDERERERF5KJ64hMG5c+e4ceMGLVq0sNifnJxM9erVAejcuTPr169n2rRpLF68GD8/vyzVXbNmzQz7tm/fTmhoKKdOnSIhIYGUlBRu3rzJjRs3cHBwIDIyks6dOz/wddWqVSvDPh8fn7smC+B27wZra2saNWr0wO2n++OPP3jjjTcIDw8nLi6O1NRUbty4QUxMzH3jvZd33nmHDz/8kJiYGP7++2+Sk5ON4QRxcXH89ttvNGvW7IFiDwwMpG7duvz2228ULVqUlStX0rZt2wea3PLo0aOcO3cOZ2dni/03b97k/PnztGzZkqCgIPz9/WnRogXNmzcnICCAIkWKZFqfra2tsaypiIiIiIjIw/TEJQzS5w/YuHEjxYoVsziW/iB248YNDh06hLW1NWfPns1y3Y6Ojhbb0dHRtGvXjldeeYUpU6bg7u7O3r176d27N8nJyTg4ONx3Ej0rKytjPoV0t27dum/bd9t3p9xq+049evTg8uXLzJs3Dx8fH2xtbalXrx7JycnZiu1Oq1atYuTIkcyePZt69erh7OzMzJkz2bdvX5auI6tq165N6dKlWbVqFa+88grr16835iXIqcTERGrWrMnKlSszHEtP5oSFhTFkyBC2bNnC6tWreeONN9i2bRt169Z9oLZFREREREQexBOXMKhYsSK2trbExMTc9c36iBEjsLKyYvPmzbRp04a2bdsaXe3TVz7IyhwDhw4dIi0tjdmzZ2NldXu6iDvH3QNUqVKFHTt2WHS5v5OHhwexsbHGdkJCAlFRUfe/0CyoXLkyaWlp7Nq1yxiS8M+2//rrL65fv2484N9tLoR0ERERLFq0yFh+8OLFi/z5558PFGdERAT169dn4MCBxr7z588bfzs7O+Pr68uOHTuMSSn/KX/+/Fn6zgIDA1m5ciXFixfHysqKtm3b3rWsjY3NfeusUaMGq1evxtPTExcXl7uWq169OtWrV2fcuHHUq1ePTz75RAkDERERERHJU0/cpIfOzs6MHDmS1157jeXLl3P+/HkOHz7MggULWL58ORs3buTDDz9k5cqVtGjRglGjRtGjRw9j1QIfHx9MJhNff/01ly5dyrDiwZ3KlCnDrVu3WLBgAT///DMrVqwwJkNMN27cOA4cOMDAgQM5duwYp06dYvHixcZDdtOmTVmxYgV79uzh+PHj9OjRA2tr61y5F76+vvTo0YNevXqxYcMGoqKiCA8PN5IaTz/9NA4ODrz++uucP3+eTz755L5v3P38/FixYgUnT55k3759BAYGPnAPAD8/Pw4ePMg333zDmTNnmDBhQoaJC4ODg5k9ezbz58/n7Nmzxnd657Xu2LGD33//3fguMxMYGMjhw4eZMmUKL7744j27//v6+hIVFUVkZCR//vknSUlJmdZXqFAhOnTowJ49e4x7PGTIEH755ReioqIYN24c33//PRcuXGDr1q2cPXv2nvMYiIiIiIiIPApPXMIAYNKkSUyYMIHQ0FAqVKhAq1at2LhxI76+vvTu3Zvg4GBq1KgBQEhICIULF2bAgAEAFCtWjJCQEMaOHUvhwoWNpfsyU7VqVd5++22mT5/OU089xcqVKwkNDbUoU7ZsWbZu3crRo0epU6cO9erV44svvjAmWRw3bhyNGjWiXbt2tG3blo4dOxqT4+WGxYsX8+KLLzJw4EDKly9P3759uX79OnB7gsePP/6YTZs2UblyZT799FOL5Rwz88EHH3D16lVq1KjB//73P4YMGYKnp+cDxdi/f386depEly5dePrpp7l8+bJFbwO4PRRi7ty5LFq0iEqVKtGuXTuL4SSzZ89m27ZteHt7G3NVZKZMmTLUqVOHY8eOZbo6wp1eeOEFWrVqRZMmTfDw8ODTTz/NUMbBwYHdu3dTokQJOnXqRIUKFejduzc3b97ExcUFBwcHTp06xQsvvEDZsmXp168fgwYNon///tm8SyIiIiIi8v/au/Owqqr9f+Dvw3RkOkwigyJoAqIBglNICI6gVwotBzQVZ1NENJy+poJWojlmWYZdIK83K8eccARTVAQUnAiRQLyFkhN41FBg/f7ocf88HkBQJvX9ep79XPfea639Wcudl/1hrb2pZsnE04vUieilUVRUBCMjI7hNng3NenoZYvLy8Hq5LhERERER/X+Pnw0KCwsrXQ5dHa/lDAMiIiIiIiIiqhwTBlTvJk6cCAMDg3K3x0tBiIiIiIiIqG5xSQLVu4KCAhQVFZV7TqFQvPA7EF5ltTHtiIiIiIiIXj618Wzw2n1WkRqeJk2aMClARERERETUwHBJAhERERERERGpYcKAiIiIiIiIiNRwSQLRK8BzxmfQ1Kn7zyqmrYmo82sSEREREVHd4AwDIiIiIiIiIlLDhAERERERERERqWHCgIiIiIiIiIjUMGFARERERERERGqYMHgF+fj4IDQ0FABgZ2eHVatWPVfdV1lMTAyMjY2l/fDwcLRr167SOrm5uZDJZEhLS6vV2IiIiIiIiBoCfiXhFZecnAx9ff0ql9+6dSu0tbVrMaKGKSwsDFOmTJH2g4KCcOfOHWzfvl06ZmNjg/z8fDRu3LgeIiQiIiIiIqpbTBi84szNzatV3tTUtJYiadgMDAxgYGBQaRlNTU1YWlrWUURERERERET1i0sSXnFPLkkYOnQoBg8erHL+0aNHaNy4Mb7//nsA6ksS7Ozs8Nlnn2H06NEwNDRE8+bN8e2336q0cfz4cbRr1w6NGjVChw4dsH379mpN3b9w4QL69esHhUIBQ0NDeHl5ITs7GwBQVlaGhQsXolmzZpDL5WjXrh3i4uKkuo+XCWzduhXdunWDnp4eXF1dceLECZVrxMTEoHnz5tDT00P//v1x8+ZNlfNPLkkIDw9HbGwsduzYAZlMBplMhoSEhHKXJBw5cgSdOnWCXC6HlZUVZs+ejZKSEum8j48PQkJCMHPmTJiamsLS0hLh4eHSeSEEwsPD0bx5c8jlclhbWyMkJKTCsSouLkZRUZHKRkREREREVBuYMHiNDBs2DDt37oRSqZSO7du3D/fv30f//v0rrLd8+XJ06NABZ86cwaRJk/Dhhx8iMzMTAFBUVAR/f384Ozvj9OnTWLRoEWbNmlXlmP744w907doVcrkchw8fRmpqKkaPHi09dK9evRrLly/HsmXLcPbsWfj6+uKdd95BVlaWSjtz585FWFgY0tLS4ODggMDAQKmNpKQkjBkzBsHBwUhLS0O3bt3wySefVBhTWFgYBg0aBD8/P+Tn5yM/Px9dunQpN/a+ffuiY8eOSE9Px9dff43vvvtOre3Y2Fjo6+sjKSkJS5cuxcKFC3HgwAEAwJYtW7By5UqsW7cOWVlZ2L59O5ydnSuMbfHixTAyMpI2Gxubqg00ERERERFRNXFJwmvE19cX+vr62LZtG4YPHw4A+O9//4t33nkHhoaGFdbr27cvJk2aBACYNWsWVq5cifj4eDg6OuK///0vZDIZoqKi0KhRI7Rp0wZ//PEHxo0bV6WYvvrqKxgZGWHTpk3SuxMcHByk88uWLcOsWbMwZMgQAMCSJUsQHx+PVatW4auvvpLKhYWF4V//+hcAICIiAm3btsXly5fRunVrrF69Gn5+fpg5c6bU/vHjx1VmKjzJwMAAurq6KC4urnQJwtq1a2FjY4Mvv/wSMpkMrVu3xp9//olZs2Zh/vz50ND4Jx/n4uKCBQsWAADs7e3x5Zdf4tChQ+jVqxfy8vJgaWmJnj17QltbG82bN0enTp0qvOacOXMwffp0ab+oqIhJAyIiIiIiqhWcYfAa0dLSwqBBg7Bx40YAwL1797Bjxw4MGzas0nouLi7Sn2UyGSwtLVFQUAAAyMzMhIuLCxo1aiSVqeyB92lpaWnw8vIq90WLRUVF+PPPP+Hp6aly3NPTExkZGRXGaGVlBQBSjBkZGejcubNKeQ8PjyrHWJGMjAx4eHhAJpOpxKZUKvG///2v3Ngex/c4toEDB+LBgwdo2bIlxo0bh23btqksaXiaXC6HQqFQ2YiIiIiIiGoDEwavmWHDhuHQoUMoKCjA9u3boaurCz8/v0rrPP0wL5PJUFZWViPx6Orq1kg7T8b4+AG+pmJ8UZWNn42NDTIzM7F27Vro6upi0qRJ6Nq1Kx49elQfoRIREREREUmYMHjNdOnSBTY2Nvjxxx+xceNGDBw48IU+o+jo6Ihz586huLhYOpacnFzl+i4uLjh69Gi5D8gKhQLW1tZITExUOZ6YmIg2bdpU+RpOTk5ISkpSOXby5MlK6+jo6KC0tPSZ7Z44cQJCCJXYDA0N0axZsyrHp6urC39/f3zxxRdISEjAiRMncO7cuSrXJyIiIiIiqg1MGLyGhg4dim+++QYHDhx45nKEqrRVVlaG8ePHIyMjA/v27cOyZcsAQGWqfkWCg4NRVFSEIUOGICUlBVlZWdiwYYP0UsUZM2ZgyZIl+PHHH5GZmYnZs2cjLS0NU6dOrXKMISEhiIuLw7Jly5CVlYUvv/yywvcXPGZnZ4ezZ88iMzMTN27cKDehMWnSJFy9ehVTpkzBb7/9hh07dmDBggWYPn269P6CZ4mJicF3332H8+fP4/fff8d//vMf6OrqwtbWtsr9IyIiIiIiqg1MGLyGhg0bhosXL6Jp06Zq7weoLoVCgZ07dyItLQ3t2rXD3LlzMX/+fABQea9BRczMzHD48GEolUp4e3ujffv2iIqKkmY9hISEYPr06fjoo4/g7OyMuLg4/PLLL7C3t69yjG+99RaioqKwevVquLq6Yv/+/fj4448rrTNu3Dg4OjqiQ4cOMDc3V5vlAABNmzbFnj17cOrUKbi6umLixIkYM2bMM9t+krGxMaKiouDp6QkXFxccPHgQO3fuhJmZWZXbICIiIiIiqg0y8eR8aqIasHHjRowaNQqFhYU19o4CKl9RURGMjIzw5vhZ0NSR1/n109ZE1Pk1iYiIiIhI3eNng8LCwhp7OTo/q0gv7Pvvv0fLli3RtGlTpKenY9asWRg0aBCTBURERERERC8xLkmgF3bt2jV88MEHcHJywrRp0zBw4EB8++23AICJEyfCwMCg3G3ixIn1HDkRERERERFVhEsSqFYVFBSgqKio3HMKhQJNmjSp44heLbUx7YiIiIiIiF4+XJJAL50mTZowKUBERERERPQS4pIEIiIiIiIiIlLDhAERERERERERqeGSBKJXQOepn9T6ZxXPr1tUq+0TEREREVHDwhkGRERERERERKSGCQMiIiIiIiIiUsOEARERERERERGpYcKAiIiIiIiIiNQwYUBUTdeuXUOvXr2gr68PY2Pj+g6HiIiIiIioVjBhQFRNK1euRH5+PtLS0nDp0qUq1QkPD0e7du1qNzAiIiIiIqIaxM8qElVTdnY22rdvD3t7+/oOhYiIiIiIqNZwhgG9ljZv3gxnZ2fo6urCzMwMPXv2xL1795CcnIxevXqhcePGMDIygre3N06fPi3Vs7Ozw5YtW/D9999DJpMhKCgIAHDnzh2MHTsW5ubmUCgU6N69O9LT0wEAMTExiIiIQHp6OmQyGWQyGWJiYjB69Gj069dPJa5Hjx6hSZMm+O677+psLIiIiIiIiMrDGQb02snPz0dgYCCWLl2K/v374+7duzh69CiEELh79y5GjhyJNWvWQAiB5cuXo2/fvsjKyoKhoSGSk5MxYsQIKBQKrF69Grq6ugCAgQMHQldXF3v37oWRkRHWrVuHHj164NKlSxg8eDDOnz+PuLg4HDx4EABgZGQEBwcHdO3aFfn5+bCysgIA7Nq1C/fv38fgwYPLjb24uBjFxcXSflFRUS2PFhERERERva6YMKDXTn5+PkpKSjBgwADY2toCAJydnQEA3bt3Vyn77bffwtjYGEeOHEG/fv1gbm4OuVwOXV1dWFpaAgCOHTuGU6dOoaCgAHK5HACwbNkybN++HZs3b8b48eNhYGAALS0tqQ4AdOnSBY6OjtiwYQNmzpwJAIiOjsbAgQNhYGBQbuyLFy9GREREzQ4IERERERFRObgkgV47rq6u6NGjB5ydnTFw4EBERUXh9u3bAIDr169j3LhxsLe3h5GRERQKBZRKJfLy8ipsLz09HUqlEmZmZjAwMJC2nJwcZGdnVxrL2LFjER0dLV177969GD16dIXl58yZg8LCQmm7evXqc4wAERERERHRs3GGAb12NDU1ceDAARw/fhz79+/HmjVrMHfuXCQlJeHDDz/EzZs3sXr1atja2kIul8PDwwMPHz6ssD2lUgkrKyskJCSonXvWZxdHjBiB2bNn48SJEzh+/DhatGgBLy+vCsvL5XJpFgMREREREVFtYsKAXksymQyenp7w9PTE/PnzYWtri23btiExMRFr165F3759AQBXr17FjRs3Km3L3d0d165dg5aWFuzs7Moto6Ojg9LSUrXjZmZmCAgIQHR0NE6cOIFRo0a9cN+IiIiIiIhqAhMG9NpJSkrCoUOH0Lt3bzRp0gRJSUn466+/4OTkBHt7e2zYsAEdOnRAUVERZsyYIb3YsCI9e/aEh4cHAgICsHTpUjg4OODPP//E7t270b9/f3To0AF2dnbIyclBWloamjVrBkNDQ2mmwNixY9GvXz+UlpZi5MiRdTEEREREREREz8R3GNBrR6FQ4Ndff0Xfvn3h4OCAjz/+GMuXL0efPn3w3Xff4fbt23B3d8fw4cMREhKCJk2aVNqeTCbDnj170LVrV4waNQoODg4YMmQIrly5AgsLCwDAe++9Bz8/P3Tr1g3m5ub44YcfpPo9e/aElZUVfH19YW1tXat9JyIiIiIiqiqZEELUdxBErzOlUommTZsiOjoaAwYMqFbdoqIiGBkZoXXQDGjq1O67Dc6vW1Sr7RMRERER0fN7/GxQWFgIhUJRI21ySQJRPSkrK8ONGzewfPlyGBsb45133qnvkIiIiIiIiCRMGBDVk7y8PLRo0QLNmjVDTEwMtLT4nyMRERERETUcXJJA9BKrjWlHRERERET08qmNZwO+9JCIiIiIiIiI1DBhQERERERERERqmDAgIiIiIiIiIjV8yxrRK6DTxEU1/lnFCzGf1Gh7RERERET0cuEMAyIiIiIiIiJSw4QBEREREREREalhwoCIiIiIiIiI1DBhQERERERERERqmDCgGuXj44PQ0NBaaTs3NxcymQxpaWm10n5dsbOzw6pVq+o7DCIiIiIiokrxKwn00rCxsUF+fj4aN25c36EQERERERG98pgwoJeGpqYmLC0t6zsMIiIiIiKi1wKXJFCNKykpQXBwMIyMjNC4cWPMmzcPQggAwIYNG9ChQwcYGhrC0tISQ4cORUFBgVT39u3bGDZsGMzNzaGrqwt7e3tER0cDKH9JwoULF9CvXz8oFAoYGhrCy8sL2dnZz4wxKCgIAQEBWLZsGaysrGBmZobJkyfj0aNHUpni4mKEhYWhadOm0NfXR+fOnZGQkKDSzrFjx+Dl5QVdXV3Y2NggJCQE9+7dk84XFBTA398furq6aNGiBTZu3KhSXwiB8PBwNG/eHHK5HNbW1ggJCanyWBMREREREdUWJgyoxsXGxkJLSwunTp3C6tWrsWLFCqxfvx4A8OjRIyxatAjp6enYvn07cnNzERQUJNWdN28eLl68iL179yIjIwNff/11hUsQ/vjjD3Tt2hVyuRyHDx9GamoqRo8ejZKSkirFGR8fj+zsbMTHxyM2NhYxMTGIiYmRzgcHB+PEiRPYtGkTzp49i4EDB8LPzw9ZWVkAgOzsbPj5+eG9997D2bNn8eOPP+LYsWMIDg6W2ggKCsLVq1cRHx+PzZs3Y+3atSoJki1btmDlypVYt24dsrKysH37djg7O1cYc3FxMYqKilQ2IiIiIiKi2iATj3/1S1QDfHx8UFBQgAsXLkAmkwEAZs+ejV9++QUXL15UK5+SkoKOHTvi7t27MDAwwDvvvIPGjRvj3//+t1rZ3NxctGjRAmfOnEG7du3wf//3f9i0aRMyMzOhra1drTiDgoKQkJCA7OxsaGpqAgAGDRoEDQ0NbNq0CXl5eWjZsiXy8vJgbW0t1evZsyc6deqEzz77DGPHjoWmpibWrVsnnT927Bi8vb1x79495OXlwdHREadOnULHjh0BAL/99hucnJywcuVKhIaGYsWKFVi3bh3Onz9fpT6Eh4cjIiJC7bhjYBg0deTVGoNnuRDzSY22R0REREREtaeoqAhGRkYoLCyEQqGokTY5w4Bq3FtvvSUlCwDAw8MDWVlZKC0tRWpqKvz9/dG8eXMYGhrC29sbAJCXlwcA+PDDD7Fp0ya0a9cOM2fOxPHjxyu8TlpaGry8vKqdLHisbdu2UrIAAKysrKTf/p87dw6lpaVwcHCAgYGBtB05ckRa8pCeno6YmBiV876+vigrK0NOTg4yMjKgpaWF9u3bS9do3bo1jI2Npf2BAwfiwYMHaNmyJcaNG4dt27ZVOkNizpw5KCwslLarV68+V9+JiIiIiIiehS89pDrz999/w9fXF76+vti4cSPMzc2Rl5cHX19fPHz4EADQp08fXLlyBXv27MGBAwfQo0cPTJ48GcuWLVNrT1dX94XieTrRIJPJUFZWBgBQKpXQ1NREamqqSlIBAAwMDKQyEyZMKPedA82bN8elS5eeGYONjQ0yMzNx8OBBHDhwAJMmTcLnn3+OI0eOlJsIkcvlkMtrdiYBERERERFReZgwoBqXlJSksn/y5EnY29vjt99+w82bNxEZGQkbGxsA/yxJeJq5uTlGjhyJkSNHwsvLCzNmzCg3YeDi4oLY2Fg8evTouWcZVMTNzQ2lpaUoKCiAl5dXuWXc3d1x8eJFtGrVqtzzrVu3RklJCVJTU6UlCZmZmbhz545KOV1dXfj7+8Pf3x+TJ09G69atce7cObi7u9don4iIiIiIiKqDSxKoxuXl5WH69OnIzMzEDz/8gDVr1mDq1Klo3rw5dHR0sGbNGvz+++/45ZdfsGjRIpW68+fPx44dO3D58mVcuHABu3btgpOTU7nXCQ4ORlFREYYMGYKUlBRkZWVhw4YNyMzMfOE+ODg4YNiwYRgxYgS2bt2KnJwcnDp1CosXL8bu3bsBALNmzcLx48cRHByMtLQ0ZGVlYceOHdJLDx0dHeHn54cJEyYgKSkJqampGDt2rMrMiJiYGHz33Xc4f/48fv/9d/znP/+Brq4ubG1tX7gPREREREREL4IJA6pxI0aMwIMHD9CpUydMnjwZU6dOxfjx42Fubo6YmBj8/PPPaNOmDSIjI9VmDujo6GDOnDlwcXFB165doampiU2bNpV7HTMzMxw+fBhKpRLe3t5o3749oqKiamy2QXR0NEaMGIGPPvoIjo6OCAgIQHJyMpo3bw7gnxkOR44cwaVLl+Dl5QU3NzfMnz9f5SWJ0dHRsLa2hre3NwYMGIDx48ejSZMm0nljY2NERUXB09MTLi4uOHjwIHbu3AkzM7Ma6QMREREREdHz4lcSiF5ij9+Eyq8kEBERERG93viVBCIiIiIiIiKqE0wY0CvpyU8dPr0dPXq0vsMjIiIiIiJq8PiVBHolpaWlVXiuadOmdRdIHTn1zbwam3ZEREREREQEMGFAr6iKPnVIREREREREVcMlCURERERERESkhgkDIiIiIiIiIlLDhAERERERERERqeE7DIheAZ3HREBTW/5CbZz/72c1FA0REREREb0KOMOAiIiIiIiIiNQwYUBEREREREREapgwICIiIiIiIiI1TBhQjQoKCkJAQEB9h1Evnu67j48PQkND6y0eIiIiIiKiF8GXHhLVkq1bt0JbW1vat7OzQ2hoKJMIRERERET0UmDCgKiWmJqa1ncIREREREREz41LEui5bN68Gc7OztDV1YWZmRl69uyJe/fuqZUrKyvD4sWL0aJFC+jq6sLV1RWbN29WKXP+/Hn06dMHBgYGsLCwwPDhw3Hjxg3pvI+PD4KDgxEcHAwjIyM0btwY8+bNgxCiSrEWFBTA398furq6aNGiBTZu3Ag7OzusWrUKAJCbmwuZTIa0tDSpzp07dyCTyZCQkAAAKC0txZgxY6R+ODo6YvXq1ZVe98klCT4+Prhy5QqmTZsGmUwGmUyGe/fuQaFQqI3H9u3boa+vj7t371apf0RERERERLWBCQOqtvz8fAQGBmL06NHIyMhAQkICBgwYUO4D/OLFi/H999/jm2++wYULFzBt2jR88MEHOHLkCIB/Hsy7d+8ONzc3pKSkIC4uDtevX8egQYNU2omNjYWWlhZOnTqF1atXY8WKFVi/fn2V4g0KCsLVq1cRHx+PzZs3Y+3atSgoKKhWn8vKytCsWTP8/PPPuHjxIubPn4//+7//w08//VSl+lu3bkWzZs2wcOFC5OfnIz8/H/r6+hgyZAiio6NVykZHR+P999+HoaGhWjvFxcUoKipS2YiIiIiIiGoDlyRQteXn56OkpAQDBgyAra0tAMDZ2VmtXHFxMT777DMcPHgQHh4eAICWLVvi2LFjWLduHby9vfHll1/Czc0Nn332mVTv3//+N2xsbHDp0iU4ODgAAGxsbLBy5UrIZDI4Ojri3LlzWLlyJcaNG1dprJcuXcLevXtx6tQpdOzYEQDw3XffwcnJqVp91tbWRkREhLTfokULnDhxAj/99JNacqM8pqam0NTUhKGhISwtLaXjY8eORZcuXZCfnw8rKysUFBRgz549OHjwYLntLF68WCUOIiIiIiKi2sIZBlRtrq6u6NGjB5ydnTFw4EBERUXh9u3bauUuX76M+/fvo1evXjAwMJC277//HtnZ2QCA9PR0xMfHq5xv3bo1AEhlAOCtt96CTCaT9j08PJCVlYXS0tJKY83IyICWlhbat28vHWvdujWMjY2r3e+vvvoK7du3h7m5OQwMDPDtt98iLy+v2u08qVOnTmjbti1iY2MBAP/5z39ga2uLrl27llt+zpw5KCwslLarV6++0PWJiIiIiIgqwhkGVG2ampo4cOAAjh8/jv3792PNmjWYO3cukpKSVMoplUoAwO7du9G0aVOVc3K5XCrj7++PJUuWqF3HysqqlnqgSkPjn7zZk0sqHj16pFJm06ZNCAsLw/Lly+Hh4QFDQ0N8/vnnan1+HmPHjsVXX32F2bNnIzo6GqNGjVJJjjxJLpdLY0dERERERFSbmDCg5yKTyeDp6QlPT0/Mnz8ftra22LZtm0qZNm3aQC6XIy8vD97e3uW24+7uji1btsDOzg5aWhXfjk8/mJ88eRL29vbQ1NSsNM7WrVujpKQEqamp0pKEzMxM3LlzRypjbm4O4J+lFm5ubgCg8gJEAEhMTESXLl0wadIk6diTMyCqQkdHp9wZER988AFmzpyJL774AhcvXsTIkSOr1S4REREREVFt4JIEqrakpCR89tlnSElJQV5eHrZu3Yq//vpL7b0AhoaGCAsLw7Rp0xAbG4vs7GycPn0aa9askabgT548Gbdu3UJgYCCSk5ORnZ2Nffv2YdSoUSoP13l5eZg+fToyMzPxww8/YM2aNZg6deozY3V0dISfnx8mTJiApKQkpKamYuzYsdDV1ZXK6Orq4q233kJkZCQyMjJw5MgRfPzxxyrt2NvbIyUlBfv27cOlS5cwb948JCcnV2vc7Ozs8Ouvv+KPP/5Q+QqEiYkJBgwYgBkzZqB3795o1qxZtdolIiIiIiKqDUwYULUpFAr8+uuv6Nu3LxwcHPDxxx9j+fLl6NOnj1rZRYsWYd68eVi8eDGcnJzg5+eH3bt3o0WLFgAAa2trJCYmorS0FL1794azszNCQ0NhbGwsLRUAgBEjRuDBgwfo1KkTJk+ejKlTp2L8+PFVijc6OhrW1tbw9vbGgAEDMH78eDRp0kSlzL///W+UlJSgffv2CA0NxSeffKJyfsKECRgwYAAGDx6Mzp074+bNmyqzDapi4cKFyM3NxRtvvCHNanhszJgxePjwIUaPHl2tNomIiIiIiGqLTFT1Y/ZE9cTHxwft2rXDqlWraqxNOzs7hIaGIjQ0tMbafBEbNmzAtGnT8Oeff0JHR6fK9YqKimBkZITW70+HpvaLvdvg/H8/e3YhIiIiIiJqkB4/GxQWFkKhUNRIm3yHAVE9un//PvLz8xEZGYkJEyZUK1lARERERERUm7gkgV5qR48eVfkk49NbQ7d06VK0bt0alpaWmDNnTn2HQ0REREREJOGSBHqpPXjwAH/88UeF51u1alWH0dS92ph2RERERERELx8uSSB6iq6u7iufFCAiIiIiIqoPXJJARERERERERGqYMCAiIiIiIiIiNUwYEBEREREREZEavsOA6BXQZfgCaGrLn6tu+ubIGo6GiIiIiIheBZxhQERERERERERqmDAgIiIiIiIiIjVMGBARERERERGRGiYMqMHx8fFBaGhonV/Xzs4Oq1atqrH26qsfRERERERENYEJAyIiIiIiIiJSw4QBEREREREREalhwoAapLKyMsycOROmpqawtLREeHi4dO7OnTsYO3YszM3NoVAo0L17d6Snp0vns7Oz8e6778LCwgIGBgbo2LEjDh48qNJ+QUEB/P39oaurixYtWmDjxo1qMaxYsQLOzs7Q19eHjY0NJk2aBKVSqVImMTERPj4+0NPTg4mJCXx9fXH79u0q9aMqfSEiIiIiIqovTBhQgxQbGwt9fX0kJSVh6dKlWLhwIQ4cOAAAGDhwIAoKCrB3716kpqbC3d0dPXr0wK1btwAASqUSffv2xaFDh3DmzBn4+fnB398feXl5UvtBQUG4evUq4uPjsXnzZqxduxYFBQUqMWhoaOCLL77AhQsXEBsbi8OHD2PmzJnS+bS0NPTo0QNt2rTBiRMncOzYMfj7+6O0tLRK/ahKX55WXFyMoqIilY2IiIiIiKg2yIQQor6DIHqSj48PSktLcfToUelYp06d0L17d/Tr1w//+te/UFBQALlcLp1v1aoVZs6cifHjx5fb5ptvvomJEyciODgYly5dgqOjI06dOoWOHTsCAH777Tc4OTlh5cqVFb6ocPPmzZg4cSJu3LgBABg6dCjy8vJw7NixavcjMjISx44dq3ZfwsPDERERoXa87Tuh0NSWqx2vivTNkc9Vj4iIiIiIGo6ioiIYGRmhsLAQCoWiRtrUqpFWiGqYi4uLyr6VlRUKCgqQnp4OpVIJMzMzlfMPHjxAdnY2gH9mGISHh2P37t3Iz89HSUkJHjx4IM0wyMjIgJaWFtq3by/Vb926NYyNjVXaPHjwIBYvXozffvsNRUVFKCkpwd9//4379+9DT08PaWlpGDhw4HP1A0CV+vK0OXPmYPr06dJ+UVERbGxsKo2BiIiIiIjoeTBhQA2Stra2yr5MJkNZWRmUSiWsrKyQkJCgVufxA39YWBgOHDiAZcuWoVWrVtDV1cX777+Phw8fVvn6ubm56NevHz788EN8+umnMDU1xbFjxzBmzBg8fPgQenp60NXVfe5+AKhSX54ml8tVZiMQERERERHVFiYM6KXi7u6Oa9euQUtLC3Z2duWWSUxMRFBQEPr37w/gnwfz3Nxc6Xzr1q1RUlKC1NRUaUlCZmYm7ty5I5VJTU1FWVkZli9fDg2Nf1718dNPP6lcx8XFBYcOHSp3iUBN9YWIiIiIiKi+8KWH9FLp2bMnPDw8EBAQgP379yM3NxfHjx/H3LlzkZKSAgCwt7fH1q1bkZaWhvT0dAwdOlT6rT4AODo6ws/PDxMmTEBSUhJSU1MxduxYlRkDrVq1wqNHj7BmzRr8/vvv2LBhA7755huVWObMmYPk5GRMmjQJZ8+exW+//Yavv/5aesdBTfSFiIiIiIiovjBhQC8VmUyGPXv2oGvXrhg1ahQcHBwwZMgQXLlyBRYWFgD++RyiiYkJunTpAn9/f/j6+sLd3V2lnejoaFhbW8Pb2xsDBgzA+PHj0aRJE+m8q6srVqxYgSVLluDNN9/Exo0bsXjxYpU2HBwcsH//fqSnp6NTp07w8PDAjh07oKVVtYk7VekLERERERFRfeFXEoheYo/fhMqvJBARERERvd5q4ysJnGFARERERERERGqYMCAiIiIiIiIiNfxKAtEr4PiGiBqbdkRERERERARwhgERERERERERlYMJAyIiIiIiIiJSw4QBEREREREREalhwoCIiIiIiIiI1PClh0SvgLcHfwxNbfkzy5355fM6iIaIiIiIiF4FnGFARERERERERGqYMCAiIiIiIiIiNUwYEBEREREREZGa1y5hEB4ejnbt2tV3GLUmNzcXMpkMaWlp9R3Kc6mpv5+6/ntOSEiATCbDnTt3GkxMREREREREL6JeEwY+Pj4IDQ2tzxAahJiYGBgbG9d3GJWSyWTYvn17fYdRrvJiCwsLw6FDh+onoAo0xJiIiIiIiIgqwq8k1AAhBEpLS6GlxeGsyMOHD6Gjo1Nn1zMwMICBgUGdXa8qGmJMREREREREFam3GQZBQUE4cuQIVq9eDZlMBplMhtzcXJw/fx59+vSBgYEBLCwsMHz4cNy4cUOqFxcXh7fffhvGxsYwMzNDv379kJ2drdL2//73PwQGBsLU1BT6+vro0KEDkpKSVMps2LABdnZ2MDIywpAhQ3D37l3pXFlZGRYvXowWLVpAV1cXrq6u2Lx5s3T+8fTzvXv3on379pDL5Th27Fil/U1PT0e3bt1gaGgIhUKB9u3bIyUlBQkJCRg1ahQKCwulcQgPDwdQ/m/OjY2NERMTI+2fOnUKbm5uaNSoETp06IAzZ86oXftZY+rj44OQkBDMnDkTpqamsLS0lGIAADs7OwBA//79IZPJpP3KPJ5+v379erRo0QKNGjUCANy5cwdjx46Fubk5FAoFunfvjvT09ArbSU5ORq9evdC4cWMYGRnB29sbp0+ffmZsT0//Lysrw8KFC9GsWTPI5XK0a9cOcXFx0vnHSzm2bt2Kbt26QU9PD66urjhx4oRU5sqVK/D394eJiQn09fXRtm1b7NmzRyXe1NRUdOjQAXp6eujSpQsyMzPVxuSxoKAgBAQEICIiQhqPiRMn4uHDh88cXyIiIiIiotpWbwmD1atXw8PDA+PGjUN+fj7y8/NhaGiI7t27w83NDSkpKYiLi8P169cxaNAgqd69e/cwffp0pKSk4NChQ9DQ0ED//v1RVlYGAFAqlfD29sYff/yBX375Benp6Zg5c6Z0HgCys7Oxfft27Nq1C7t27cKRI0cQGRkpnV+8eDG+//57fPPNN7hw4QKmTZuGDz74AEeOHFHpw+zZsxEZGYmMjAy4uLhU2t9hw4ahWbNmSE5ORmpqKmbPng1tbW106dIFq1atgkKhkMYhLCysSmOoVCrRr18/tGnTBqmpqQgPD1ere+fOnWeOKQDExsZCX18fSUlJWLp0KRYuXIgDBw4A+OehHQCio6ORn58v7T/L5cuXsWXLFmzdulV6p8LAgQNRUFCAvXv3IjU1Fe7u7ujRowdu3bpVbht3797FyJEjcezYMZw8eRL29vbo27evlOCpamyrV6/G8uXLsWzZMpw9exa+vr545513kJWVpVJu7ty5CAsLQ1paGhwcHBAYGIiSkhIAwOTJk1FcXIxff/0V586dw5IlS9RmDMydOxfLly9HSkoKtLS0MHr06ErH6NChQ8jIyEBCQgJ++OEHbN26FRERERWWLy4uRlFRkcpGRERERERUK0Q98vb2FlOnTpX2Fy1aJHr37q1S5urVqwKAyMzMLLeNv/76SwAQ586dE0IIsW7dOmFoaChu3rxZbvkFCxYIPT09UVRUJB2bMWOG6Ny5sxBCiL///lvo6emJ48ePq9QbM2aMCAwMFEIIER8fLwCI7du3V7mvhoaGIiYmptxz0dHRwsjISO04ALFt2zaVY0ZGRiI6OloI8U9fzczMxIMHD6TzX3/9tQAgzpw5I4So2ph6e3uLt99+W6VMx44dxaxZsyqNpTILFiwQ2traoqCgQDp29OhRoVAoxN9//61S9o033hDr1q2T6rm6ulbYbmlpqTA0NBQ7d+6sNLan27G2thaffvqpSpmOHTuKSZMmCSGEyMnJEQDE+vXrpfMXLlwQAERGRoYQQghnZ2cRHh5eblyP74mDBw9Kx3bv3i0ASH8/T8c0cuRIYWpqKu7duycd+/rrr4WBgYEoLS0t9zoLFiwQANQ2Z78pop1/2DM3IiIiIiJ6NRUWFgoAorCwsMbabFBfSUhPT0d8fLy01tvAwACtW7cGAGnZQVZWFgIDA9GyZUsoFAppCnpeXh4AIC0tDW5ubjA1Na3wOnZ2djA0NJT2raysUFBQAOCf34rfv38fvXr1Uonj+++/V1v60KFDhyr3bfr06Rg7dix69uyJyMhItbaex+OZDY+n+wOAh4eHSpmqjCkAtRkST47J87K1tYW5ublKLEqlEmZmZirx5OTkVDge169fx7hx42Bvbw8jIyMoFAoolUrp77sqioqK8Oeff8LT01PluKenJzIyMlSOPTkOVlZWACCNQ0hICD755BN4enpiwYIFOHv2rNq1KqtfHldXV+jp6Un7Hh4eUCqVuHr1arnl58yZg8LCQmmrqBwREREREdGLalBv6VMqlfD398eSJUvUzj1++PL394etrS2ioqJgbW2NsrIyvPnmm9K6b11d3WdeR1tbW2VfJpOpLGkAgN27d6Np06Yq5eRyucq+vr5+FXv2z/r1oUOHYvfu3di7dy8WLFiATZs2oX///hXWkclkEEKoHHv06FGVrwlUbUyBysfkeT09PkqlElZWVkhISFArW9FXIkaOHImbN29i9erVsLW1hVwuh4eHR62t839yHGQyGQBI4zB27Fj4+vpi9+7d2L9/PxYvXozly5djypQpVapfE+Ryudp9SEREREREVBvqNWGgo6OD0tJSad/d3R1btmyBnZ1duV8cuHnzJjIzMxEVFQUvLy8AUHvZoIuLC9avX49bt25VOsugIm3atIFcLkdeXh68vb2rXb8yDg4OcHBwwLRp0xAYGIjo6Gj0799fbRweMzc3R35+vrSflZWF+/fvS/tOTk7YsGED/v77b2mWwcmTJ1XaeNaYVpW2tna5MVaHu7s7rl27Bi0trSq9OBEAEhMTsXbtWvTt2xcAcPXqVZUXNlYlNoVCAWtrayQmJqr8nSYmJqJTp07V6oONjQ0mTpyIiRMnYs6cOYiKilJJGFRXeno6Hjx4ICW6Tp48CQMDA9jY2Dx3m0RERERERDWhXpck2NnZISkpCbm5ubhx4wYmT56MW7duITAwEMnJycjOzsa+ffswatQolJaWwsTEBGZmZvj2229x+fJlHD58GNOnT1dpMzAwEJaWlggICEBiYiJ+//13bNmyReVt95UxNDREWFgYpk2bhtjYWGRnZ+P06dNYs2YNYmNjn6ufDx48QHBwMBISEnDlyhUkJiYiOTkZTk5O0jgolUocOnQIN27ckJIC3bt3x5dffokzZ84gJSUFEydOVPkN9tChQyGTyTBu3DhcvHgRe/bswbJly1Su/awxrSo7OzscOnQI165dw+3bt59rHHr27AkPDw8EBARg//79yM3NxfHjxzF37lykpKSUW8fe3h4bNmxARkYGkpKSMGzYMLVZJFWJbcaMGViyZAl+/PFHZGZmYvbs2UhLS8PUqVOrHH9oaCj27duHnJwcnD59GvHx8dLf4fN6+PAhxowZI/39LViwAMHBwdDQaFCrhYiIiIiI6DVUr08lYWFh0NTURJs2bWBubo6HDx8iMTERpaWl6N27N5ydnREaGgpjY2NoaGhAQ0MDmzZtQmpqKt58801MmzYNn3/+uUqbOjo62L9/P5o0aYK+ffvC2dkZkZGR0NTUrHJcixYtwrx587B48WI4OTnBz88Pu3fvRosWLZ6rn5qamrh58yZGjBgBBwcHDBo0CH369JHeht+lSxdMnDgRgwcPhrm5OZYuXQoAWL58OWxsbODl5YWhQ4ciLCxMZb27gYEBdu7ciXPnzsHNzQ1z585VW3rw+DfrFY1pVS1fvhwHDhyAjY0N3NzcnmscZDIZ9uzZg65du2LUqFFwcHDAkCFDcOXKFVhYWJRb57vvvsPt27fh7u6O4cOHIyQkBE2aNKl2bCEhIZg+fTo++ugjODs7Iy4uDr/88gvs7e2rHH9paSkmT54s3RMODg5Yu3Zt1QegHD169IC9vT26du2KwYMH45133lH5pCUREREREVF9kYmnF8kTUZ0ICgrCnTt3sH379uduo6ioCEZGRnD2mwJN7We/2+DML58/swwREREREb18Hj8bFBYWQqFQ1EibnPdMRERERERERGqYMKghbdu2VflU4JPbxo0b6zu8Gve69ZeIiIiIiOh1wyUJNeTKlSsVfvLQwsIChoaGdRxR7Xrd+ttQ1ca0IyIiIiIievnUxrNBvX5W8VVia2tb3yHUqdetv0RERERERK8bLkkgIiIiIiIiIjVMGBARERERERGRGiYMiIiIiIiIiEgN32FA9Arw7j8bmlrycs+l7FtZx9EQEREREdGrgDMMiIiIiIiIiEgNEwZEREREREREpIYJAyIiIiIiIiJSw4RBA+Tj44PQ0ND6DkNSlXhkMhm2b99eJ/HUtqCgIAQEBFRapqH9HREREREREdU0JgxIkpCQAJlMhjt37lS7bn5+Pvr06VPzQREREREREVG9YMLgFfDw4cP6DgGWlpaQy8t/S39D0RDGiYiIiIiI6GXBhEEDVVJSguDgYBgZGaFx48aYN28ehBAAADs7OyxatAgjRoyAQqHA+PHjAQDHjh2Dl5cXdHV1YWNjg5CQENy7d09qc8OGDejQoQMMDQ1haWmJoUOHoqCgAACQm5uLbt26AQBMTEwgk8kQFBQk1S0rK8PMmTNhamoKS0tLhIeHq8T75JKE3NxcyGQybN26Fd26dYOenh5cXV1x4sQJlTpRUVGwsbGBnp4e+vfvjxUrVsDY2LhK4xMeHo527dph3bp1UhuDBg1CYWGhVObx0oJPP/0U1tbWcHR0BACcO3cO3bt3h66uLszMzDB+/HgolUq1a0RERMDc3BwKhQITJ06sNOFQXFyMsLAwNG3aFPr6+ujcuTMSEhKk8zExMTA2NsauXbvg6OgIPT09vP/++7h//z5iY2NhZ2cHExMThISEoLS0tEpjQEREREREVJuYMGigYmNjoaWlhVOnTmH16tVYsWIF1q9fL51ftmwZXF1dcebMGcybNw/Z2dnw8/PDe++9h7Nnz+LHH3/EsWPHEBwcLNV59OgRFi1ahPT0dGzfvh25ublSUsDGxgZbtmwBAGRmZiI/Px+rV69WiUdfXx9JSUlYunQpFi5ciAMHDlTah7lz5yIsLAxpaWlwcHBAYGAgSkpKAACJiYmYOHEipk6dirS0NPTq1Quffvpptcbo8uXL+Omnn7Bz507ExcXhzJkzmDRpkkqZQ4cOITMzEwcOHMCuXbtw7949+Pr6wsTEBMnJyfj5559x8OBBlXF6XC8jIwMJCQn44YcfsHXrVkRERFQYS3BwME6cOIFNmzbh7NmzGDhwIPz8/JCVlSWVuX//Pr744gts2rQJcXFxSEhIQP/+/bFnzx7s2bMHGzZswLp167B58+YKr1NcXIyioiKVjYiIiIiIqFYIanC8vb2Fk5OTKCsrk47NmjVLODk5CSGEsLW1FQEBASp1xowZI8aPH69y7OjRo0JDQ0M8ePCg3OskJycLAOLu3btCCCHi4+MFAHH79m21eN5++22VYx07dhSzZs2S9gGIbdu2CSGEyMnJEQDE+vXrpfMXLlwQAERGRoYQQojBgweLf/3rXyptDhs2TBgZGZUb69MWLFggNDU1xf/+9z/p2N69e4WGhobIz88XQggxcuRIYWFhIYqLi6Uy3377rTAxMRFKpVI6tnv3bqGhoSGuXbsm1TM1NRX37t2Tynz99dfCwMBAlJaWSmMydepUIYQQV65cEZqamuKPP/5QibFHjx5izpw5QgghoqOjBQBx+fJl6fyECROEnp6eNP5CCOHr6ysmTJhQab8BqG3tun8o2vcOLXcjIiIiIqJXX2FhoQAgCgsLa6xNzjBooN566y3IZDJp38PDA1lZWdJ09Q4dOqiUT09PR0xMDAwMDKTN19cXZWVlyMnJAQCkpqbC398fzZs3h6GhIby9vQEAeXl5z4zHxcVFZd/KykpazlCVOlZWVgAg1cnMzESnTp1Uyj+9/yzNmzdH06ZNpX0PDw+UlZUhMzNTOubs7AwdHR1pPyMjA66urtDX15eOeXp6qtVzdXWFnp6eSttKpRJXr15Vi+PcuXMoLS2Fg4ODyvgfOXIE2dnZUjk9PT288cYb0r6FhQXs7OxgYGCgcqyycZ0zZw4KCwulrbx4iIiIiIiIaoJWfQdAz+fJB14AUCqVmDBhAkJCQtTKNm/eXJqK7+vri40bN8Lc3Bx5eXnw9fWt0ssAtbW1VfZlMhnKysqqXOdx8uNZdWra0+NUG5RKJTQ1NZGamgpNTU2Vc08mA8obw+qOq1wub/AvlyQiIiIiolcDEwYNVFJSksr+yZMnYW9vr/ZA+pi7uzsuXryIVq1alXv+3LlzuHnzJiIjI2FjYwMASElJUSnz+DfxdfHSPUdHRyQnJ6sce3r/WfLy8vDnn3/C2toawD9jpKGhIb3csDxOTk6IiYnBvXv3pGRCYmKiWr309HQ8ePAAurq6UtsGBgbS2D3Jzc0NpaWlKCgogJeXV7X6QERERERE1FBxSUIDlZeXh+nTpyMzMxM//PAD1qxZg6lTp1ZYftasWTh+/DiCg4ORlpaGrKws7NixQ3qZX/PmzaGjo4M1a9bg999/xy+//IJFixaptGFrawuZTIZdu3bhr7/+KvfLATVlypQp2LNnD1asWIGsrCysW7cOe/fuVVmG8SyNGjXCyJEjkZ6ejqNHjyIkJASDBg2CpaVlhXWGDRsm1Tt//jzi4+MxZcoUDB8+HBYWFlK5hw8fYsyYMbh48SL27NmDBQsWIDg4GBoa6v/JODg4YNiwYRgxYgS2bt2KnJwcnDp1CosXL8bu3burNzBEREREREQNBBMGDdSIESPw4MEDdOrUCZMnT8bUqVOlzyeWx8XFBUeOHMGlS5fg5eUFNzc3zJ8/X/rtu7m5OWJiYvDzzz+jTZs2iIyMxLJly1TaaNq0KSIiIjB79mxYWFiofTmgJnl6euKbb77BihUr4Orqiri4OEybNg2NGjWqchutWrXCgAED0LdvX/Tu3RsuLi5Yu3ZtpXX09PSwb98+3Lp1Cx07dsT777+PHj164Msvv1Qp16NHD9jb26Nr164YPHgw3nnnHbVPST4pOjoaI0aMwEcffQRHR0cEBAQgOTkZzZs3r3J/iIiIiIiIGhKZEELUdxBEADBu3Dj89ttvOHr06DPLhoeHY/v27UhLS6v9wBqwoqIiGBkZoV33D6GpVf67DVL2razjqIiIiIiIqK49fjYoLCyEQqGokTb5DgOqN8uWLUOvXr2gr6+PvXv3IjY29pkzBIiIiIiIiKhuMGFA9ebUqVNYunQp7t69i5YtW+KLL77A2LFjAQBt27bFlStXyq23bt26ugyTiIiIiIjotcQlCdQgXblyBY8ePSr3nIWFBQwNDes4ooapNqYdERERERHRy4dLEui1YWtrW98hEBERERERvdb4lQQiIiIiIiIiUsOEARERERERERGpYcKAiIiIiIiIiNTwHQZErwCfvjOgqaUDAEhOWFPP0RARERER0auAMwyIiIiIiIiISA0TBkRERERERESkhgkDIiIiIiIiIlLDhMFrws7ODqtWrapSWZlMhu3bt9dqPLm5uZDJZEhLS6u0nI+PD0JDQ5/7Os/qS0JCAmQyGe7cufPc1yAiIiIiInoVMWHwkqmLh/n6UF8P7l26dEF+fj6MjIyeWZbJBSIiIiIiep0wYUCvNR0dHVhaWkImk9XZNYUQKCkpqbPrERERERERPQ8mDJ6Tj48PpkyZgtDQUJiYmMDCwgJRUVG4d+8eRo0aBUNDQ7Rq1Qp79+6V6pw/fx59+vSBgYEBLCwsMHz4cNy4cUOlzZCQEMycOROmpqawtLREeHi4dN7Ozg4A0L9/f8hkMmk/Ozsb7777LiwsLGBgYICOHTvi4MGDL9S/GzduoH///tDT04O9vT1++eUXlfPP6ktcXBzefvttGBsbw8zMDP369UN2dna518rNzUW3bt0AACYmJpDJZAgKCpLOl5WVVTgmL9qXp2cNXLlyBf7+/jAxMYG+vj7atm2LPXv2VBpjcXExQkJC0KRJEzRq1Ahvv/02kpOT1a6xd+9etG/fHnK5HP/5z3+goaGBlJQUlVhXrVoFW1tblJWVVauPRERERERENY0JgxcQGxuLxo0b49SpU5gyZQo+/PBDDBw4EF26dMHp06fRu3dvDB8+HPfv38edO3fQvXt3uLm5ISUlBXFxcbh+/ToGDRqk1qa+vj6SkpKwdOlSLFy4EAcOHAAA6SE0Ojoa+fn50r5SqUTfvn1x6NAhnDlzBn5+fvD390deXt5z9y0iIgKDBg3C2bNn0bdvXwwbNgy3bt0CgCr15d69e5g+fTpSUlJw6NAhaGhooH///uU+CNvY2GDLli0AgMzMTOTn52P16tVVGpMX7cvTJk+ejOLiYvz66684d+4clixZAgMDg0pjnDlzJrZs2YLY2FicPn0arVq1gq+vr9o1Zs+ejcjISGRkZOCdd95Bz549ER0drVImOjoaQUFB0NAo/z/N4uJiFBUVqWxERERERES1QtBz8fb2Fm+//ba0X1JSIvT19cXw4cOlY/n5+QKAOHHihFi0aJHo3bu3ShtXr14VAERmZma5bQohRMeOHcWsWbOkfQBi27Ztz4yvbdu2Ys2aNdK+ra2tWLlyZZX6BkB8/PHH0r5SqRQAxN69e4UQokp9edpff/0lAIhz584JIYTIyckRAMSZM2eEEELEx8cLAOL27dsq9aoyJi/Sl6ev6+zsLMLDw8ttq7wYlUql0NbWFhs3bpSOPXz4UFhbW4ulS5eq1Nu+fbtKez/++KMwMTERf//9txBCiNTUVCGTyUROTk6F/VmwYIEAoLa5eY4XHbyDRQfv4CqNCxERERERvVoKCwsFAFFYWFhjbXKGwQtwcXGR/qypqQkzMzM4OztLxywsLAAABQUFSE9PR3x8PAwMDKStdevWAKAyVf/JNgHAysoKBQUFlcahVCoRFhYGJycnGBsbw8DAABkZGS80w+DJOPT19aFQKKQ4qtKXrKwsBAYGomXLllAoFNLyieeJ6XnGpKp9eVpISAg++eQTeHp6YsGCBTh79mylbWdnZ+PRo0fw9PSUjmlra6NTp07IyMhQKduhQweV/YCAAGhqamLbtm0AgJiYGHTr1k0aq/LMmTMHhYWF0nb16tVK4yMiIiIiInpeWvUdwMtMW1tbZV8mk6kce/wivbKyMiiVSvj7+2PJkiVq7VhZWVXa5rPWs4eFheHAgQNYtmwZWrVqBV1dXbz//vt4+PBhtftUlTiq0hd/f3/Y2toiKioK1tbWKCsrw5tvvvlcMT3PmDxv/bFjx8LX1xe7d+/G/v37sXjxYixfvhxTpkypdtxP09fXV9nX0dHBiBEjEB0djQEDBuC///2vylKM8sjlcsjl8heOhYiIiIiI6FmYMKgj7u7u2LJlC+zs7KCl9fzDrq2tjdLSUpVjiYmJCAoKQv/+/QH880Cfm5v7IuFW6ll9uXnzJjIzMxEVFQUvLy8AwLFjxyptU0dHBwDU+lYfbGxsMHHiREycOBFz5sxBVFQUpkyZUm6Mb7zxBnR0dJCYmAhbW1sAwKNHj5CcnIzQ0NBnXmvs2LF48803sXbtWpSUlGDAgAG10iciIiIiIqLq4pKEOjJ58mTcunULgYGBSE5ORnZ2Nvbt24dRo0ZV6yHZzs4Ohw4dwrVr13D79m0AgL29PbZu3Yq0tDSkp6dj6NChtfqW/Wf1xcTEBGZmZvj2229x+fJlHD58GNOnT6+0TVtbW8hkMuzatQt//fUXlEplrcVfmdDQUOzbtw85OTk4ffo04uPj4eTkVGGM+vr6+PDDDzFjxgzExcXh4sWLGDduHO7fv48xY8Y883pOTk546623MGvWLAQGBkJXV7e2u0hERERERFQlTBjUEWtrayQmJqK0tBS9e/eGs7MzQkNDYWxsXOEb8cuzfPlyHDhwADY2NnBzcwMArFixAiYmJujSpQv8/f3h6+sLd3f32urKM/uioaGBTZs2ITU1FW+++SamTZuGzz//vNI2mzZtioiICMyePRsWFhYIDg6utfgrU1paismTJ8PJyQl+fn5wcHDA2rVrK40xMjIS7733HoYPHw53d3dcvnwZ+/btg4mJSZWuOWbMGDx8+BCjR4+utX4RERERERFVl0wIIeo7CKLX2aJFi/Dzzz8/8wWL5SkqKoKRkRHcPMdDU+ufJRPJCWtqOkQiIiIiImrgHj8bFBYWQqFQ1EibnGFAVE+USiXOnz+PL7/8skZeqkhERERERFSTmDB4zWzcuFHlc4hPbm3btq3v8KrlZe9LcHAw2rdvDx8fHy5HICIiIiKiBodLEl4zd+/exfXr18s9p62tLb3p/2XwKvXledXGtCMiIiIiInr51MazAT+r+JoxNDSEoaFhfYdRI16lvhARERERETU0TBgQvcQeTxAqKiqq50iIiIiIiKg+PX4mqMlFBEwYEL3Ebt68CQCwsbGp50iIiIiIiKghuHv3LoyMjGqkLSYMiF5ipqamAIC8vLwa+0eB6GlFRUWwsbHB1atX+a4MqjW8z6gu8D6jusD7jOpCefeZEAJ3796FtbV1jV2HCQOil5iGxj8fOjEyMuL/IVGtUygUvM+o1vE+o7rA+4zqAu8zqgtP32c1/UtEflaRiIiIiIiIiNQwYUBEREREREREapgwIHqJyeVyLFiwAHK5vL5DoVcY7zOqC7zPqC7wPqO6wPuM6kJd3WcyUZPfXCAiIiIiIiKiVwJnGBARERERERGRGiYMiIiIiIiIiEgNEwZEREREREREpIYJAyIiIiIiIiJSw4QBUQPz1Vdfwc7ODo0aNULnzp1x6tSpSsv//PPPaN26NRo1agRnZ2fs2bNH5bwQAvPnz4eVlRV0dXXRs2dPZGVl1WYX6CVQ0/dZUFAQZDKZyubn51ebXaCXQHXuswsXLuC9996DnZ0dZDIZVq1a9cJt0quvpu+x8PBwtX/LWrduXYs9oJdBde6zqKgoeHl5wcTEBCYmJujZs6daef5sRuWp6fuspn42Y8KAqAH58ccfMX36dCxYsACnT5+Gq6srfH19UVBQUG7548ePIzAwEGPGjMGZM2cQEBCAgIAAnD9/XiqzdOlSfPHFF/jmm2+QlJQEfX19+Pr64u+//66rblEDUxv3GQD4+fkhPz9f2n744Ye66A41UNW9z+7fv4+WLVsiMjISlpaWNdImvdpq4x4DgLZt26r8W3bs2LHa6gK9BKp7nyUkJCAwMBDx8fE4ceIEbGxs0Lt3b/zxxx9SGf5sRk+rjfsMqKGfzQQRNRidOnUSkydPlvZLS0uFtbW1WLx4cbnlBw0aJP71r3+pHOvcubOYMGGCEEKIsrIyYWlpKT7//HPp/J07d4RcLhc//PBDLfSAXgY1fZ8JIcTIkSPFu+++Wyvx0supuvfZk2xtbcXKlStrtE169dTGPbZgwQLh6upag1HSy+5F/90pKSkRhoaGIjY2VgjBn82ofDV9nwlRcz+bcYYBUQPx8OFDpKamomfPntIxDQ0N9OzZEydOnCi3zokTJ1TKA4Cvr69UPicnB9euXVMpY2RkhM6dO1fYJr3aauM+eywhIQFNmjSBo6MjPvzwQ9y8ebPmO0Avhee5z+qjTXp51eb9kJWVBWtra7Rs2RLDhg1DXl7ei4ZLL6mauM/u37+PR48ewdTUFAB/NiN1tXGfPVYTP5sxYUDUQNy4cQOlpaWwsLBQOW5hYYFr166VW+fatWuVln/8v9Vpk15ttXGfAf9Mefv+++9x6NAhLFmyBEeOHEGfPn1QWlpa852gBu957rP6aJNeXrV1P3Tu3BkxMTGIi4vD119/jZycHHh5eeHu3bsvGjK9hGriPps1axasra2lh0H+bEZPq437DKi5n820qlWaiIioHEOGDJH+7OzsDBcXF7zxxhtISEhAjx496jEyIqKq69Onj/RnFxcXdO7cGba2tvjpp58wZsyYeoyMXkaRkZHYtGkTEhIS0KhRo/oOh15RFd1nNfWzGWcYEDUQjRs3hqamJq5fv65y/Pr16xW+nMnS0rLS8o//tzpt0qutNu6z8rRs2RKNGzfG5cuXXzxoeuk8z31WH23Sy6uu7gdjY2M4ODjw37LX1IvcZ8uWLUNkZCT2798PFxcX6Th/NqOn1cZ9Vp7n/dmMCQOiBkJHRwft27fHoUOHpGNlZWU4dOgQPDw8yq3j4eGhUh4ADhw4IJVv0aIFLC0tVcoUFRUhKSmpwjbp1VYb91l5/ve//+HmzZuwsrKqmcDppfI891l9tEkvr7q6H5RKJbKzs/lv2Wvqee+zpUuXYtGiRYiLi0OHDh1UzvFnM3pabdxn5Xnun81e+LWJRFRjNm3aJORyuYiJiREXL14U48ePF8bGxuLatWtCCCGGDx8uZs+eLZVPTEwUWlpaYtmyZSIjI0MsWLBAaGtri3PnzkllIiMjhbGxsdixY4c4e/asePfdd0WLFi3EgwcP6rx/1DDU9H129+5dERYWJk6cOCFycnLEwYMHhbu7u7C3txd///13vfSR6l9177Pi4mJx5swZcebMGWFlZSXCwsLEmTNnRFZWVpXbpNdLbdxjH330kUhISBA5OTkiMTFR9OzZUzRu3FgUFBTUef+oYajufRYZGSl0dHTE5s2bRX5+vrTdvXtXpQx/NqMn1fR9VpM/mzFhQNTArFmzRjRv3lzo6OiITp06iZMnT0rnvL29xciRI1XK//TTT8LBwUHo6OiItm3bit27d6ucLysrE/PmzRMWFhZCLpeLHj16iMzMzLroCjVgNXmf3b9/X/Tu3VuYm5sLbW1tYWtrK8aNG8eHOKrWfZaTkyMAqG3e3t5VbpNePzV9jw0ePFhYWVkJHR0d0bRpUzF48GBx+fLlOuwRNUTVuc9sbW3Lvc8WLFggleHPZlSemrzPavJnM5kQQlRvTgIRERERERERver4DgMiIiIiIiIiUsOEARERERERERGpYcKAiIiIiIiIiNQwYUBEREREREREapgwICIiIiIiIiI1TBgQERERERERkRomDIiIiIiIiIhIDRMGRERERERERKSGCQMiIiIieinIZDJs3769vsMgInptMGFAREREr6SgoCAEBATUdxgVys3NhUwmQ1paWn2HUiUNfTyJiKjmMWFAREREVMcePnxY3yEQERE9ExMGRERE9Frw8fHBlClTEBoaChMTE1hYWCAqKgr37t3DqFGjYGhoiFatWmHv3r1SnYSEBMhkMuzevRsuLi5o1KgR3nrrLZw/f16l7S1btqBt27aQy+Wws7PD8uXLVc7b2dlh0aJFGDFiBBQKBcaPH48WLVoAANzc3CCTyeDj4wMASE5ORq9evdC4cWMYGRnB29sbp0+fVmlPJpNh/fr16N+/P/T09GBvb49ffvlFpcyFCxfQr18/KBQKGBoawsvLC9nZ2dL59evXw8nJCY0aNULr1q2xdu3aFxrf8+fPo0+fPjAwMICFhQWGDx+OGzduAAC+/fZbWFtbo6ysTKXOu+++i9GjR0v7O3bsgLu7Oxo1aoSWLVsiIiICJSUlLxQXERE9PyYMiIiI6LURGxuLxo0b49SpU5gyZQo+/PBDDBw4EF26dMHp06fRu3dvDB8+HPfv31epN2PGDCxfvhzJyckwNzeHv78/Hj16BABITU3FoEGDMGTIEJw7dw7h4eGYN28eYmJiVNpYtmwZXF1dcebMGcybNw+nTp0CABw8eBD5+fnYunUrAODu3bsYOXIkjh07hpMnT8Le3h59+/bF3bt3VdqLiIjAoEGDcPbsWfTt2xfDhg3DrVu3AAB//PEHunbtCrlcjsOHDyM1NRWjR4+WHr43btyI+fPn49NPP0VGRgY+++wzzJs3D7Gxsc81rnfu3EH37t3h5uaGlJQUxMXF4fr16xg0aBAAYODAgbh58ybi4+OlOrdu3UJcXByGDRsGADh69ChGjBiBqVOn4uLFi1i3bh1iYmLw6aefPldMRERUAwQRERHRK2jkyJHi3Xfflfa9vb3F22+/Le2XlJQIfX19MXz4cOlYfn6+ACBOnDghhBAiPj5eABCbNm2Syty8eVPo6uqKH3/8UQghxNChQ0WvXr1Urj1jxgzRpk0bad/W1lYEBASolMnJyREAxJkzZyrtR2lpqTA0NBQ7d+6UjgEQH3/8sbSvVCoFALF3714hhBBz5swRLVq0EA8fPiy3zTfeeEP897//VTm2aNEi4eHhUWEcT4/n03V79+6tcuzq1asCgMjMzBRCCPHuu++K0aNHS+fXrVsnrK2tRWlpqRBCiB49eojPPvtMpY0NGzYIKysrlX5v27atwhiJiKhmcYYBERERvTZcXFykP2tqasLMzAzOzs7SMQsLCwBAQUGBSj0PDw/pz6ampnB0dERGRgYAICMjA56enirlPT09kZWVhdLSUulYhw4dqhTj9evXMW7cONjb28PIyAgKhQJKpRJ5eXkV9kVfXx8KhUKKOy0tDV5eXtDW1lZr/969e8jOzsaYMWNgYGAgbZ988onKkoXqSE9PR3x8vEp7rVu3BgCpzWHDhmHLli0oLi4G8M8shyFDhkBDQ0NqY+HChSptjBs3Dvn5+WozPoiIqG5o1XcARERERHXl6QdomUymckwmkwGA2lr7mqCvr1+lciNHjsTNmzexevVq2NraQi6Xw8PDQ+1FieX15XHcurq6FbavVCoBAFFRUejcubPKOU1NzSrFWF6b/v7+WLJkido5KysrAIC/vz+EENi9ezc6duyIo0ePYuXKlSptREREYMCAAWptNGrU6LniIiKiF8OEAREREdEznDx5Es2bNwcA3L59G5cuXYKTkxMAwMnJCYmJiSrlExMT4eDgUOkDuI6ODgCozEJ4XHft2rXo27cvAODq1avSywOrysXFBbGxsXj06JFaYsHCwgLW1tb4/fffpfcHvCh3d3ds2bIFdnZ20NIq/8fLRo0aYcCAAdi4cSMuX74MR0dHuLu7q7SRmZmJVq1a1UhMRET04pgwICIiInqGhQsXwszMDBYWFpg7dy4aN26MgIAAAMBHH32Ejh07YtGiRRg8eDBOnDiBL7/88plfHWjSpAl0dXURFxeHZs2aoVGjRjAyMoK9vT02bNiADh06oKioCDNmzKh0xkB5goODsWbNGgwZMgRz5syBkZERTp48iU6dOsHR0REREREICQmBkZER/Pz8UFxcjJSUFNy+fRvTp0+vsN3CwkKkpaWpHDMzM8PkyZMRFRWFwMBAzJw5E6amprh8+TI2bdqE9evXS4mTYcOGoV+/frhw4QI++OADlXbmz5+Pfv36oXnz5nj//fehoaGB9PR0nD9/Hp988km1+k9ERDWD7zAgIiIieobIyEhMnToV7du3x7Vr17Bz505phoC7uzt++uknbNq0CW+++Sbmz5+PhQsXIigoqNI2tbS08MUXX2DdunWwtrbGu+++CwD47rvvcPv2bbi7u2P48OEICQlBkyZNqhWvmZkZDh8+DKVSCW9vb7Rv3x5RUVHSbIOxY8di/fr1iI6OhrOzM7y9vRETEyN96rEiCQkJcHNzU9kiIiJgbW2NxMRElJaWonfv3nB2dkZoaCiMjY2ldxQAQPfu3WFqaorMzEwMHTpUpW1fX1/s2rUL+/fvR8eOHfHWW29h5cqVsLW1rVbfiYio5siEEKK+gyAiIiJqiBISEtCtWzfcvn0bxsbG9R0OERFRneIMAyIiIiIiIiJSw4QBEREREREREanhkgQiIiIiIiIiUsMZBkRERERERESkhgkDIiIiIiIiIlLDhAERERERERERqWHCgIiIiIiIiIjUMGFARERERERERGqYMCAiIiIiIiIiNUwYEBEREREREZEaJgyIiIiIiIiISM3/A7aoIhMjzItHAAAAAElFTkSuQmCC\n"},"metadata":{}}],"source":["# Placeholder for final visual (will adjust code once modeling is done to pull from the right variables)\n","\n","\n","indices = np.argsort(rf_feat_importance)[::-1]\n","\n","plt.figure(figsize=(10, 6))\n","sns.barplot(x=rf_feat_importance[indices], y=rfc_X.columns[indices], palette=\"crest\",)\n","plt.title('Feature Importance related to Stress Level')\n","plt.ylabel(\"Features\")\n","plt.xlabel(\"Importance Level\")\n","plt.show()\n"]},{"cell_type":"code","source":[],"metadata":{"id":"fShzDxexmY4y"},"execution_count":null,"outputs":[]}],"metadata":{"colab":{"provenance":[]},"kernelspec":{"display_name":"Python 3","name":"python3"},"language_info":{"name":"python"}},"nbformat":4,"nbformat_minor":0} \ No newline at end of file diff --git a/Energy b/Energy deleted file mode 100644 index 0ddf45b..0000000 --- a/Energy +++ /dev/null @@ -1 +0,0 @@ -https://github.com/0verby/DSP.git/energy diff --git a/Energy.html b/Energy.html new file mode 100644 index 0000000..216a5bc --- /dev/null +++ b/Energy.html @@ -0,0 +1,14 @@ +https://github.com/0verby/DSP.git/energy + + + + + Learning + + + + all about html + + + + diff --git a/EnergyConsumptionPresentation.pptx b/EnergyConsumptionPresentation.pp.html similarity index 100% rename from EnergyConsumptionPresentation.pptx rename to EnergyConsumptionPresentation.pp.html diff --git a/EnergyProject b/EnergyProject deleted file mode 100644 index 0249b39..0000000 --- a/EnergyProject +++ /dev/null @@ -1,52 +0,0 @@ -# DSP -Data Science Projects - Bellevue University - -## **APPLIED DATA SCIENCE** - -This page is devoted to my final applied data science project class at Bellevue University. Featured on this page will include copies of my projects and resume. - -## **ABOUT ME** -I decided halfway through my career life to change the course and explore data more. The decision was based on a love for cleaning up databases and exploring and creating reports for others to understand the information more efficiently. This lead to attending Bellevue University for a bachelor's in Data Science. While proficient in word and excel from working for almost 20 years as an administrative assistant, I had very very little experience in any kind of computer language or coding experience. I am now in my last term at Bellevue and will earn my bachelor's degree shortly. - -## **PROJECTS DURING COURSE** -
    -
  • ENERGY CONSUMPTION PREDICTIVE MODEL
  • -
      -
      Source
      -
        - Available from Kaggle.com
      -
        - Energy-Consumption-Prediction
      - -
      Purpose
      -
        - What are the main factors influencing energy consumption?
      -
        - Can we predict future enegy consumption in buildins using historical data?
      - -
      Outcome
      -
        - I was tasked with the data wrangling in this project.
      -
        - Utilize our model as a predictive engine
      - -
      Reflection
      -
        - More analysis is needed to determine additional relevent features.
      -
        - Experiment more with different model types and hyperparameters.
      - -
    -

    -
  • DATA SALARY PREDICTIVE MODEL
  • -
      -
      Source
      -
      Purpose
      -
      Outcome
      -
      Reflection
      -
    -

    -
  • STRESS LEVEL PREDICTIVE MODEL
  • -
      -
      Source
      -
      Purpose
      -
      Outcome
      -
      Reflection
      -
    -

    -
- -## **SEND A MESSAGE** -smurf_62@hotmail.com diff --git a/README.md b/README.md index 0249b39..9698171 100644 --- a/README.md +++ b/README.md @@ -1,6 +1,7 @@ +gh repo clone pages-themes/slate # DSP Data Science Projects - Bellevue University - + ## **APPLIED DATA SCIENCE** This page is devoted to my final applied data science project class at Bellevue University. Featured on this page will include copies of my projects and resume. @@ -10,7 +11,7 @@ I decided halfway through my career life to change the course and explore data m ## **PROJECTS DURING COURSE**
    -
  • ENERGY CONSUMPTION PREDICTIVE MODEL
  • +
  • ENERGY CONSUMPTION PREDICTIVE MODEL
  • Energy

      Source
        - Available from Kaggle.com
      @@ -30,15 +31,27 @@ I decided halfway through my career life to change the course and explore data m


    -
  • DATA SALARY PREDICTIVE MODEL
  • +
  • DATA SALARY PREDICTIVE MODEL
  • Salary
      -
      Source
      +
      Source Salary +
      +
      Purpose
      +
        - What are the main factors influencing energy consumption?
      +
        - Can we predict future enegy consumption in buildins using historical data?
      + +
      Outcome
      +
        - I was tasked with the data wrangling in this project.
      +
        - Utilize our model as a predictive engine
      + +
      Reflection
      +
        - More analysis is needed to determine additional relevent features.
      +
        - Experiment more with different model types and hyperparameters.

      Purpose

      Outcome

      Reflection


    -
  • STRESS LEVEL PREDICTIVE MODEL
  • +
  • STRESS LEVEL PREDICTIVE MODEL
  • Stress

      Source

      Purpose
      diff --git a/Salary b/Salary new file mode 100644 index 0000000..4654cd6 --- /dev/null +++ b/Salary @@ -0,0 +1 @@ +Salary holder diff --git a/Student_Stress_Levels.csv b/Student_Stress_Levels.csv new file mode 100644 index 0000000..9987584 --- /dev/null +++ b/Student_Stress_Levels.csv @@ -0,0 +1,1101 @@ +anxiety_level,self_esteem,mental_health_history,depression,headache,blood_pressure,sleep_quality,breathing_problem,noise_level,living_conditions,safety,basic_needs,academic_performance,study_load,teacher_student_relationship,future_career_concerns,social_support,peer_pressure,extracurricular_activities,bullying,stress_level +"$1,4)",($20),0,11,2,1,2,4,2,3,3,2,3,2,3,3,2,3,3,2,1 +15,8,1,15,5,3,1,4,3,1,2,2,1,4,1,5,1,4,5,5,2 +12,18,1,14,2,1,2,2,2,2,3,2,2,3,3,2,2,3,2,2,1 +16,12,1,15,4,3,1,3,4,2,2,2,2,4,1,4,1,4,4,5,2 +16,28,0,7,2,3,5,1,3,2,4,3,4,3,1,2,1,5,0,5,1 +20,13,1,21,3,3,1,4,3,2,2,1,2,5,2,5,1,4,4,5,2 +4,26,0,6,1,2,4,1,1,4,4,4,5,1,4,1,3,2,2,1,0 +17,3,1,22,4,3,1,5,3,1,1,1,1,3,2,4,1,4,4,5,2 +13,22,1,12,3,1,2,4,3,3,3,3,3,3,2,3,3,3,2,2,1 +6,8,0,27,4,3,1,2,0,5,2,2,2,2,1,5,1,5,3,4,1 +17,$12 ,1,25,4,3,1,3,4,2,1,1,1,3,1,4,1,4,4,5,2 +17,15,1,"($2,2)",3,3,1,5,5,2,1,1,1,3,1,4,1,5,5,4,2 +5,28,0,8,1,2,4,2,2,3,5,5,5,2,4,1,3,1,1,1,0 +9,23,1,24,4,3,1,0,1,2,4,3,1,2,3,3,0,1,0,1,2 +2,28,0,3,1,2,4,2,1,3,4,4,4,2,5,1,3,1,2,1,0 +11,21,0,14,3,1,2,4,2,2,2,2,3,3,3,3,2,3,2,2,1 +6,28,0,1,1,2,4,2,1,4,5,4,5,1,5,1,3,2,2,1,0 +7,25,0,3,1,2,4,2,2,4,5,4,4,2,5,1,3,1,1,1,0 +11,($23),0,12,3,1,2,2,3,2,3,3,2,3,2,2,3,3,2,3,1 +21,1,1,25,4,3,1,4,4,1,2,1,1,5,2,5,1,4,4,5,2 +3,27,0,0,1,2,4,1,1,3,5,4,5,2,5,1,3,1,2,1,0 +18,1,1,21,4,3,1,3,5,1,1,2,2,5,1,4,1,4,4,5,2 +7,27,0,5,1,2,4,1,1,3,5,5,4,2,5,1,3,1,2,1,0 +20,5,1,"($2,6",3,3,1,4,4,2,1,2,1,3,1,4,1,5,4,4,2 +13,$21 ,1,14,3,1,2,2,3,2,2,3,3,2,3,2,3,3,3,2,1 +6,26,0,8,1,2,5,2,2,4,5,4,4,1,4,1,3,2,1,1,0 +18,6,1,27,5,3,1,5,3,2,2,1,1,3,1,4,1,5,5,4,2 +7,28,0,20,2,3,3,1,5,1,2,5,4,0,2,2,1,1,2,2,0 +13,23,1,14,2,1,3,2,3,3,2,3,3,2,3,2,3,2,2,3,1 +"$1,7",6,1,24,3,3,1,3,5,1,1,1,2,3,1,4,1,4,5,4,2 +0,27,0,3,1,2,5,1,2,4,5,4,4,2,4,1,3,2,2,1,0 +15,8,0,10,4,3,0,4,1,3,2,5,3,4,2,4,1,0,2,1,1 +15,9,1,27,4,3,1,4,5,2,1,2,2,3,2,4,1,4,4,4,2 +9,23,0,9,2,1,2,2,2,3,3,2,3,3,2,2,2,3,2,3,1 +7,25,0,3,1,2,4,1,1,4,5,5,5,2,4,1,3,1,1,1,0 +9,22,0,14,2,1,2,2,3,3,3,3,2,3,2,2,2,3,2,2,1 +12,21,0,14,2,1,3,2,2,3,2,3,2,2,2,2,2,2,2,3,1 +7,27,0,8,1,2,5,2,2,4,4,5,5,2,5,1,3,1,1,1,0 +21,6,1,20,3,3,1,3,5,1,2,1,1,4,1,4,1,5,4,4,2 +5,25,0,6,1,2,5,1,1,4,4,4,5,1,4,1,3,1,1,1,0 +5,29,0,6,1,2,5,2,2,4,5,5,4,2,4,1,3,2,2,1,0 +8,30,0,0,1,2,4,1,2,4,4,5,5,2,4,1,3,1,2,1,0 +1,27,0,2,1,2,5,1,2,3,4,5,5,1,5,1,3,2,2,1,0 +19,9,1,16,3,3,1,3,3,2,1,1,2,3,1,4,1,5,4,4,2 +15,4,1,22,4,3,1,4,5,2,2,2,2,3,2,5,1,5,5,4,2 +3,30,0,1,1,2,5,2,1,4,5,4,4,2,4,1,3,2,2,1,0 +19,1,1,27,4,3,1,5,4,2,2,1,1,4,2,4,1,4,4,4,2 +7,27,0,7,1,2,4,2,1,4,5,5,4,2,4,1,3,1,1,1,0 +12,19,1,10,2,1,2,4,3,3,2,2,3,2,3,3,2,3,2,2,1 +2,26,0,4,1,2,5,2,1,4,4,5,4,2,5,1,3,2,2,1,0 +8,27,0,5,1,2,4,1,1,3,5,5,4,1,5,1,3,2,2,1,0 +10,16,0,14,3,1,3,2,2,2,3,3,2,2,3,3,2,3,3,3,1 +6,29,0,0,1,2,4,2,1,4,4,5,5,2,5,1,3,2,2,1,0 +19,2,1,24,5,3,1,4,4,1,1,1,2,3,2,4,1,4,5,5,2 +13,23,0,13,2,1,3,2,3,3,2,2,3,3,3,3,2,2,2,3,1 +13,23,0,11,3,1,2,2,3,3,3,3,2,3,2,2,3,2,3,2,1 +12,18,1,11,2,1,2,4,2,3,2,2,3,2,2,2,3,2,3,2,1 +8,28,0,5,1,2,5,2,1,3,4,4,5,1,5,1,3,2,1,1,0 +4,29,0,2,1,2,4,2,1,3,4,4,4,2,5,1,3,1,1,1,0 +4,27,0,5,1,2,4,2,1,4,4,5,5,2,5,1,3,1,2,1,0 +4,28,0,0,1,2,4,2,1,4,4,4,5,1,4,1,3,2,2,1,0 +8,29,1,2,2,3,0,4,1,4,4,5,0,0,0,5,1,4,5,2,1 +3,27,0,1,1,2,4,1,1,3,5,5,4,1,4,1,3,1,2,1,0 +12,23,1,10,3,1,2,2,2,3,3,2,2,3,3,3,3,2,3,3,1 +21,0,1,13,0,3,5,5,5,4,3,2,2,0,0,4,0,1,4,1,0 +5,25,0,3,1,2,4,2,2,3,4,5,5,2,5,1,3,1,2,1,0 +18,14,1,15,4,3,1,4,4,1,1,2,2,4,2,5,1,5,4,5,2 +11,21,0,9,2,1,3,4,2,2,2,3,3,3,3,2,3,3,2,2,1 +11,23,1,10,3,1,2,2,3,3,3,3,2,3,2,2,3,2,2,3,1 +1,26,0,18,2,3,3,3,1,2,2,4,3,2,1,5,1,1,5,2,1 +5,30,0,0,1,2,5,2,1,4,5,4,5,1,4,1,3,1,1,1,0 +21,15,1,23,5,3,1,3,3,2,2,1,2,5,2,4,1,4,4,4,2 +2,26,0,4,1,2,4,2,1,4,5,4,5,1,4,1,3,2,2,1,0 +0,30,0,7,1,2,4,2,1,3,5,5,5,1,4,1,3,2,1,1,0 +21,7,1,20,4,3,1,4,5,2,2,2,1,4,2,4,1,5,4,4,2 +17,5,1,26,5,3,1,3,5,1,2,1,1,5,1,5,1,5,5,4,2 +20,5,1,20,3,3,1,4,3,1,2,2,2,5,2,4,1,5,5,4,2 +1,29,0,5,1,2,5,2,1,3,4,5,4,1,5,1,3,2,1,1,0 +13,17,1,12,3,1,2,4,2,2,3,3,3,3,3,2,2,2,3,2,1 +18,13,1,23,3,3,1,3,5,2,1,1,2,4,2,5,1,4,4,4,2 +4,26,0,5,1,2,5,2,2,4,5,4,4,1,5,1,3,2,2,1,0 +9,21,1,14,2,1,2,4,2,2,2,3,2,3,3,3,2,3,3,2,1 +17,15,1,17,5,3,1,3,5,1,2,2,1,4,2,5,1,4,5,5,2 +0,26,0,8,1,2,4,2,1,3,5,5,4,2,4,1,3,2,2,1,0 +13,15,0,12,3,1,3,2,3,2,3,2,3,2,2,3,3,2,3,2,1 +10,24,1,12,3,1,2,4,3,2,2,3,3,2,3,2,2,3,2,3,1 +9,22,1,10,2,1,3,2,3,3,2,3,2,2,2,3,3,2,3,3,1 +17,3,1,21,4,3,1,4,5,2,1,2,1,5,2,5,1,4,5,5,2 +11,18,0,13,3,1,3,2,2,2,3,3,2,3,3,3,3,2,3,3,1 +17,12,1,18,4,3,1,5,4,2,1,2,1,4,1,5,1,5,4,4,2 +9,19,1,13,3,1,2,4,2,2,2,3,2,3,3,3,2,3,3,3,1 +16,11,1,18,4,3,1,4,5,2,1,1,1,5,2,4,1,5,5,4,2 +20,1,1,18,5,3,1,5,3,2,2,1,2,4,1,5,1,5,4,4,2 +9,23,1,19,3,3,5,5,0,3,4,1,2,4,4,5,1,0,1,0,2 +8,0,1,22,5,3,5,5,0,1,0,4,3,5,1,2,1,2,3,1,0 +19,7,1,11,1,3,3,4,4,4,0,1,5,5,0,3,0,3,3,2,1 +15,14,1,19,3,3,1,3,3,1,1,2,1,4,1,5,1,4,4,5,2 +17,7,1,23,4,3,1,3,3,1,1,2,2,3,2,4,1,4,5,5,2 +6,27,0,1,1,2,5,1,2,4,5,4,5,1,5,1,3,1,1,1,0 +9,23,1,13,3,1,3,4,3,3,2,2,3,3,3,2,2,3,2,3,1 +13,3,0,22,1,3,4,1,0,4,1,2,0,0,0,2,0,3,5,1,1 +20,3,0,22,0,3,4,4,1,1,5,1,4,2,4,2,0,1,3,0,1 +11,17,0,13,3,1,2,4,2,3,3,3,3,2,3,3,3,2,2,2,1 +12,15,1,12,2,1,2,4,2,3,3,2,2,2,2,2,2,3,3,2,1 +3,29,0,7,1,2,4,1,1,4,5,4,4,1,5,1,3,1,1,1,0 +8,26,0,2,1,2,5,2,2,4,5,5,4,2,4,1,3,1,1,1,0 +19,11,1,27,3,3,1,3,4,1,2,2,1,3,1,5,1,4,5,4,2 +3,28,0,1,1,2,4,1,2,4,5,5,4,2,4,1,3,1,2,1,0 +16,9,1,25,3,3,1,3,4,1,1,1,2,5,1,5,1,5,5,4,2 +15,6,1,20,3,3,1,3,4,2,2,2,2,3,2,4,1,4,5,5,2 +1,29,0,7,1,2,5,1,1,4,5,5,5,1,4,1,3,2,1,1,0 +17,4,1,19,3,3,1,5,5,2,2,2,2,3,1,5,1,4,5,5,2 +5,27,0,8,1,2,4,1,2,4,4,5,4,1,5,1,3,2,1,1,0 +9,24,0,13,2,1,2,4,3,2,2,3,2,3,3,3,2,2,2,3,1 +3,2,0,22,0,3,4,5,1,5,3,3,1,2,2,3,1,0,2,1,2 +17,12,1,27,4,3,1,4,4,2,2,2,1,5,1,4,1,4,4,4,2 +13,21,1,12,3,1,3,4,2,2,2,2,2,3,2,3,2,3,3,3,1 +19,7,1,17,5,3,1,4,5,2,1,2,1,3,2,5,1,5,5,5,2 +18,8,1,24,5,3,1,4,4,1,2,1,2,5,1,5,1,4,4,5,2 +9,23,0,11,2,1,2,4,3,3,2,3,2,2,3,2,3,3,2,3,1 +6,28,0,0,1,2,4,2,2,3,4,4,5,1,4,1,3,2,2,1,0 +18,0,1,18,5,3,1,3,3,1,2,2,1,4,1,5,1,4,4,5,2 +7,29,0,8,1,2,4,2,2,4,5,4,4,1,5,1,3,1,2,1,0 +9,20,1,11,3,1,3,4,3,2,2,3,2,2,2,3,2,2,2,3,1 +13,20,1,14,3,1,2,2,3,3,3,2,2,2,3,3,2,2,3,3,1 +19,16,0,6,0,3,4,3,3,5,3,2,4,3,2,1,1,2,5,2,0 +13,15,1,14,3,1,3,4,3,2,3,3,3,2,3,3,2,3,3,2,1 +6,26,0,2,1,2,4,1,1,3,5,5,4,2,4,1,3,2,2,1,0 +14,3,0,27,3,3,3,4,5,3,1,4,3,5,4,2,1,1,3,2,2 +14,19,0,13,2,1,3,4,2,3,2,3,3,3,2,2,3,2,2,3,1 +5,27,0,6,1,2,4,1,2,4,5,4,4,2,4,1,3,1,2,1,0 +12,16,0,13,2,1,3,4,3,3,3,2,3,3,3,2,3,2,2,2,1 +20,13,0,8,0,3,0,3,3,2,1,4,4,4,2,3,1,5,2,5,0 +14,16,1,11,3,1,3,4,2,3,3,3,2,2,3,3,3,2,2,2,1 +11,21,0,10,3,1,3,4,3,2,2,3,2,2,2,2,3,2,3,3,1 +7,24,1,3,0,3,0,2,5,4,4,0,1,5,3,1,1,5,0,0,0 +6,25,0,0,1,2,4,1,1,4,4,4,5,1,5,1,3,2,1,1,0 +19,13,1,20,3,3,1,5,5,1,2,1,2,3,2,5,1,5,4,4,2 +8,28,0,0,1,2,4,2,1,3,5,5,4,2,5,1,3,1,1,1,0 +10,25,1,11,3,1,3,4,2,2,3,2,2,2,2,2,2,2,3,2,1 +1,5,0,1,4,3,5,2,2,2,2,0,2,5,3,3,1,0,2,2,2 +13,27,1,24,1,3,5,3,5,3,4,3,2,5,0,4,0,1,5,0,0 +11,17,0,13,3,1,2,4,3,3,2,2,2,3,3,3,3,2,2,2,1 +2,29,0,1,1,2,5,2,1,4,5,5,4,2,4,1,3,2,1,1,0 +6,3,1,12,3,3,5,2,3,4,1,3,1,5,2,0,1,2,3,1,2 +2,27,0,5,1,2,5,2,2,3,5,5,4,2,4,1,3,1,2,1,0 +9,17,1,14,3,1,2,2,3,2,3,2,3,2,3,2,2,3,2,2,1 +18,3,1,20,3,3,1,5,4,2,2,2,2,5,1,4,1,4,5,4,2 +9,21,1,14,2,1,2,4,3,2,2,2,2,3,3,2,2,2,3,2,1 +18,14,1,20,5,3,1,3,4,2,2,1,2,3,2,4,1,4,4,5,2 +8,29,0,1,1,2,5,2,1,3,5,4,5,2,5,1,3,2,2,1,0 +9,19,1,14,2,1,3,2,2,2,3,2,2,3,3,3,3,3,3,2,1 +14,22,1,13,3,1,3,4,2,2,2,2,3,2,3,3,3,3,3,3,1 +16,15,1,18,4,3,1,3,5,2,1,1,2,3,2,5,1,5,4,4,2 +18,1,1,16,4,3,1,5,3,1,1,1,2,3,1,4,1,4,4,4,2 +10,25,1,10,3,1,2,4,2,2,3,2,2,2,2,3,2,3,2,2,1 +6,30,0,1,1,2,4,1,1,3,4,4,4,1,4,1,3,2,2,1,0 +12,15,0,11,2,1,2,4,3,2,3,2,2,2,2,2,3,3,3,3,1 +2,30,0,0,1,2,5,1,1,3,5,5,4,2,4,1,3,2,2,1,0 +1,30,0,6,1,2,5,2,2,3,4,5,4,1,4,1,3,2,2,1,0 +13,22,1,14,3,1,2,4,3,3,2,3,3,2,2,3,3,2,3,2,1 +15,15,0,6,5,3,3,5,3,2,1,2,2,0,4,3,1,3,5,3,1 +15,12,1,27,3,3,1,5,4,1,2,1,2,3,1,4,1,5,4,5,2 +11,15,0,10,2,1,3,2,3,3,3,2,2,2,3,2,2,2,2,3,1 +5,30,0,7,1,2,5,2,1,3,5,4,5,1,5,1,3,1,2,1,0 +15,4,1,26,3,3,1,5,5,2,1,2,1,4,1,5,1,4,5,4,2 +10,15,1,10,3,1,2,4,2,3,3,2,2,3,3,2,3,2,2,3,1 +2,30,0,3,1,2,4,1,1,3,5,4,4,1,4,1,3,1,2,1,0 +11,20,1,13,3,1,3,2,3,3,2,3,3,3,2,3,3,3,2,2,1 +9,15,1,13,3,1,3,2,3,2,2,3,3,3,2,3,2,2,3,3,1 +4,25,0,6,1,2,4,1,2,4,4,5,5,1,4,1,3,2,1,1,0 +17,9,0,3,3,3,2,1,5,4,4,3,1,2,1,0,1,1,0,0,2 +13,15,1,14,2,1,3,4,3,2,2,3,3,3,3,2,3,2,2,2,1 +6,29,0,3,1,2,5,2,1,4,5,4,5,1,4,1,3,1,1,1,0 +5,26,0,0,1,2,4,1,2,4,4,4,5,2,5,1,3,2,1,1,0 +15,0,1,26,4,3,1,3,5,2,1,2,1,3,2,4,1,5,5,4,2 +17,15,1,23,5,3,1,4,3,1,1,2,1,4,2,4,1,4,4,4,2 +21,5,1,17,5,3,1,3,3,1,2,1,1,5,2,5,1,5,5,4,2 +4,25,0,22,0,3,3,4,0,1,1,0,1,5,0,4,0,0,4,4,1 +7,25,1,17,3,3,3,4,0,3,2,5,0,0,0,4,1,4,3,4,0 +4,29,0,4,1,2,5,1,2,3,4,5,4,1,4,1,3,1,1,1,0 +20,6,1,23,3,3,1,3,4,2,1,1,2,4,2,5,1,4,5,4,2 +9,22,0,10,3,1,3,2,2,2,3,3,2,3,2,2,2,2,3,3,1 +6,28,0,8,1,2,5,2,2,4,4,4,5,1,4,1,3,2,1,1,0 +11,4,1,15,4,3,3,3,2,5,5,1,3,2,2,4,0,2,4,3,2 +20,13,1,18,4,3,1,5,4,1,1,2,1,4,2,4,1,4,5,5,2 +10,20,0,10,2,1,3,4,2,3,3,2,2,2,3,2,2,3,2,3,1 +3,29,0,5,1,2,5,1,2,4,5,4,5,1,5,1,3,1,2,1,0 +11,16,0,13,2,1,2,2,3,3,2,3,3,2,3,2,3,3,3,3,1 +18,7,1,21,3,3,1,4,4,2,2,2,2,3,1,5,1,4,5,4,2 +6,11,0,7,2,3,5,0,3,1,3,1,5,5,1,3,1,4,1,1,1 +10,21,1,10,2,1,2,4,2,3,3,3,2,3,2,2,2,2,2,3,1 +14,23,1,20,5,3,3,3,5,2,4,0,1,3,1,0,0,1,0,5,2 +11,20,1,10,3,1,3,2,2,3,2,2,3,2,3,2,3,2,2,2,1 +6,17,0,1,2,3,0,2,2,3,2,2,5,0,3,5,0,0,0,4,2 +16,4,1,26,4,3,1,4,5,2,1,1,2,5,1,4,1,5,5,4,2 +17,12,1,26,3,3,1,4,4,2,2,1,2,3,2,4,1,5,4,4,2 +6,28,0,5,1,2,5,2,2,3,4,5,4,2,5,1,3,2,1,1,0 +13,21,1,10,2,1,3,4,2,3,3,3,2,3,2,2,3,2,3,2,1 +2,23,0,26,4,3,5,0,4,2,2,0,3,1,2,5,1,5,2,3,0 +21,13,1,27,5,3,1,5,5,2,2,2,1,3,1,5,1,4,5,4,2 +16,9,1,27,5,3,1,5,4,1,1,2,1,4,2,5,1,4,4,5,2 +16,9,1,17,4,3,1,3,3,1,2,2,2,5,2,4,1,5,5,5,2 +10,24,1,10,3,1,3,2,3,2,3,3,3,2,2,2,2,2,2,3,1 +21,7,1,9,5,3,3,0,0,0,1,1,2,0,3,5,1,5,0,0,0 +20,5,1,20,3,3,1,5,4,2,1,1,2,3,2,4,1,5,4,5,2 +15,7,1,15,5,3,1,3,4,2,2,2,1,3,2,4,1,4,4,5,2 +19,10,1,20,4,3,1,3,4,2,1,2,2,3,1,4,1,5,5,5,2 +17,13,1,27,4,3,1,3,5,2,2,1,2,3,1,5,1,4,4,4,2 +7,13,1,17,5,3,1,2,1,1,1,0,0,0,2,5,1,4,1,1,2 +12,15,0,10,2,1,2,2,3,3,3,3,2,3,2,2,3,2,2,2,1 +16,11,1,16,1,3,5,0,5,1,2,1,1,5,4,3,1,2,2,3,0 +1,26,0,2,1,2,4,1,1,3,5,4,4,1,4,1,3,2,2,1,0 +13,24,1,10,2,1,3,4,2,2,3,2,2,3,3,3,2,2,2,3,1 +8,29,0,5,1,2,5,1,2,4,5,4,5,1,4,1,3,2,2,1,0 +19,6,1,19,5,3,1,3,3,1,2,1,1,3,1,4,1,4,4,4,2 +11,19,0,13,3,1,2,4,3,3,3,2,3,3,3,3,3,2,2,3,1 +9,24,1,10,3,1,2,2,2,2,3,2,3,2,2,2,2,3,3,3,1 +5,26,0,1,1,2,4,1,1,3,5,5,4,2,4,1,3,1,1,1,0 +13,6,0,8,1,3,1,3,4,2,0,3,4,3,4,4,0,2,4,3,0 +19,24,1,10,4,3,2,0,2,5,5,0,3,2,3,3,1,1,0,4,1 +10,23,1,13,2,1,2,2,3,3,2,2,3,2,3,2,3,3,3,3,1 +11,24,0,11,3,1,2,2,3,2,2,3,2,2,2,2,2,2,2,2,1 +19,3,1,21,3,3,1,4,4,2,2,2,2,4,2,4,1,4,4,5,2 +1,30,0,0,1,2,4,2,1,4,5,4,5,1,5,1,3,1,2,1,0 +13,24,0,14,2,1,2,4,3,3,3,3,2,3,2,2,2,2,2,3,1 +4,8,0,12,1,3,4,5,4,2,2,2,1,1,4,2,1,0,4,5,2 +12,19,0,9,3,1,2,2,3,3,2,2,2,2,3,2,2,3,2,2,1 +9,17,0,12,3,1,3,2,2,2,2,3,2,2,3,3,2,3,3,2,1 +9,22,1,13,2,1,3,2,2,2,3,3,2,2,2,2,2,3,2,2,1 +3,26,0,1,1,2,4,1,2,4,4,5,4,1,4,1,3,2,1,1,0 +4,30,0,8,1,2,4,1,1,4,5,5,4,1,5,1,3,2,1,1,0 +3,30,0,0,1,2,5,2,1,3,4,5,5,1,4,1,3,1,2,1,0 +13,20,1,12,3,1,2,4,2,2,2,2,2,2,3,2,2,2,3,3,1 +15,9,1,25,3,3,1,4,5,2,2,1,2,3,2,4,1,5,5,4,2 +16,13,1,20,3,3,1,4,5,1,2,1,1,5,1,5,1,5,5,5,2 +21,2,1,21,5,3,1,5,5,2,1,1,2,4,2,5,1,5,5,5,2 +13,25,1,11,2,1,2,2,3,2,3,3,2,3,3,3,3,3,3,3,1 +11,21,0,12,2,1,3,4,2,2,3,2,2,3,3,2,3,2,2,3,1 +6,26,0,0,1,2,4,1,1,4,4,4,4,2,4,1,3,1,1,1,0 +9,22,0,12,3,1,3,2,2,3,2,3,3,2,2,2,2,3,2,2,1 +12,22,0,20,5,3,4,1,3,3,5,1,2,2,4,0,0,0,3,0,1 +12,16,0,10,3,1,3,2,3,3,3,3,3,3,2,2,3,3,2,2,1 +14,21,1,14,2,1,2,2,2,3,3,3,2,3,3,3,3,2,2,3,1 +6,26,0,3,1,2,4,1,2,4,5,4,4,1,4,1,3,1,2,1,0 +7,27,0,4,1,2,4,2,2,3,4,4,4,2,4,1,3,2,1,1,0 +6,30,0,4,1,2,4,2,1,4,4,5,4,2,5,1,3,2,2,1,0 +21,7,1,20,4,3,1,3,3,2,2,1,2,5,1,5,1,4,4,5,2 +16,10,1,25,3,3,1,5,4,2,2,2,2,5,1,5,1,5,4,5,2 +7,27,0,0,1,2,4,2,2,3,5,4,4,1,4,1,3,2,1,1,0 +16,6,1,19,3,3,1,4,3,1,2,2,2,3,1,5,1,5,4,4,2 +13,18,1,12,3,1,3,2,3,3,3,2,3,3,3,2,3,3,3,2,1 +5,25,1,12,4,3,4,4,5,4,2,3,4,3,2,2,1,0,1,0,0 +13,20,1,13,2,1,3,4,2,2,2,2,3,2,2,3,3,3,3,3,1 +5,30,0,7,1,2,4,2,2,3,4,5,4,2,5,1,3,1,2,1,0 +11,20,1,10,3,3,2,0,3,4,2,4,1,2,3,2,0,0,2,3,1 +7,28,0,7,1,2,5,1,2,3,4,5,5,2,4,1,3,2,1,1,0 +1,30,0,3,1,2,4,2,2,3,4,5,4,1,4,1,3,2,1,1,0 +11,20,0,10,3,1,2,2,2,2,2,3,3,2,3,3,3,3,2,2,1 +5,20,0,3,2,3,4,3,5,0,0,1,3,0,2,3,0,2,0,3,1 +8,26,0,8,1,2,5,2,1,4,4,4,4,2,5,1,3,1,1,1,0 +12,19,1,12,2,1,3,4,3,2,2,2,3,2,3,3,3,2,2,3,1 +8,30,0,3,1,2,4,1,1,4,4,4,5,2,5,1,3,2,2,1,0 +14,24,1,10,2,1,2,4,3,3,2,2,3,2,3,3,3,3,3,3,1 +9,17,1,13,3,1,3,4,2,2,2,2,3,2,2,3,3,2,3,3,1 +12,18,1,9,3,1,2,2,2,3,3,2,2,3,3,3,2,2,2,3,1 +10,25,1,10,2,1,3,2,3,3,2,3,3,3,3,3,3,3,3,2,1 +16,11,1,22,5,3,1,4,4,2,2,2,1,5,2,5,1,4,5,5,2 +1,29,0,0,1,2,4,2,2,4,5,4,5,1,5,1,3,1,1,1,0 +8,28,0,4,1,2,4,2,1,3,4,5,5,2,5,1,3,2,2,1,0 +9,25,0,9,2,1,3,2,2,2,3,3,3,2,2,2,2,2,3,2,1 +7,30,0,5,1,2,5,2,1,3,5,4,5,2,4,1,3,1,1,1,0 +19,2,1,27,5,3,1,3,4,2,1,1,1,5,2,4,1,5,4,4,2 +21,4,1,24,4,3,1,3,5,1,1,2,1,4,2,4,1,4,4,4,2 +7,29,0,0,1,2,4,1,2,3,4,4,5,2,5,1,3,1,2,1,0 +7,21,0,23,1,3,2,4,4,3,4,0,4,3,2,2,0,1,2,5,0 +16,15,1,22,3,3,1,3,5,1,2,2,1,4,2,4,1,4,5,4,2 +15,8,1,22,5,3,1,4,3,1,1,1,2,4,1,5,1,4,5,5,2 +14,11,1,20,5,3,2,3,4,0,3,0,5,1,3,5,0,2,2,1,1 +13,16,1,12,3,1,3,2,3,3,3,3,2,3,2,3,3,2,2,2,1 +19,13,1,18,3,3,1,5,4,1,2,1,1,4,1,4,1,4,4,4,2 +5,27,0,7,1,2,5,2,2,4,4,4,4,2,5,1,3,2,2,1,0 +18,7,1,27,3,3,1,3,5,2,2,1,2,5,1,4,1,4,5,5,2 +20,9,1,25,4,3,1,3,4,1,1,2,1,4,1,4,1,5,4,4,2 +13,1,1,21,2,3,0,2,4,3,2,1,4,4,2,2,1,3,0,2,2 +1,27,0,0,3,3,1,5,4,3,0,0,2,2,1,3,1,5,5,5,2 +1,8,1,1,4,3,0,0,0,0,0,4,2,1,0,2,0,1,4,3,2 +7,30,0,1,1,2,5,2,2,4,5,5,5,1,5,1,3,2,2,1,0 +15,8,1,19,4,3,1,4,4,2,1,2,1,3,2,5,1,5,5,5,2 +16,9,1,18,4,3,1,5,5,2,2,1,2,3,2,5,1,4,5,4,2 +9,30,1,2,3,3,3,4,4,5,5,0,1,4,3,2,1,1,5,3,0 +1,29,0,4,1,2,5,1,2,4,5,5,5,2,5,1,3,2,2,1,0 +0,26,0,1,1,2,5,2,1,4,4,5,5,2,4,1,3,2,2,1,0 +21,18,0,25,5,3,4,5,1,1,5,0,3,1,2,3,0,0,4,3,0 +16,5,1,24,5,3,1,3,4,2,2,1,1,5,1,5,1,4,4,5,2 +12,22,1,18,5,3,4,3,3,0,0,5,4,3,1,0,0,3,5,3,1 +4,9,1,4,2,3,5,3,1,3,0,0,4,4,2,5,1,0,4,5,0 +11,24,1,12,2,1,3,4,2,3,3,2,3,2,2,2,3,3,2,3,1 +9,17,0,14,3,1,3,2,3,3,2,3,2,3,2,2,2,3,3,2,1 +10,21,1,27,1,3,4,0,0,3,0,0,3,5,3,4,1,0,0,4,1 +2,28,0,2,1,2,4,2,2,4,5,5,4,2,5,1,3,1,2,1,0 +13,23,0,11,3,1,2,4,3,2,3,3,2,3,2,2,2,3,3,3,1 +2,23,1,4,4,3,5,0,0,2,3,1,0,4,2,1,0,1,1,5,0 +18,7,1,18,3,3,1,5,5,1,1,2,1,4,2,5,1,5,4,5,2 +4,26,0,5,1,2,4,2,1,3,5,4,4,2,5,1,3,2,1,1,0 +1,21,0,11,3,3,5,1,4,3,1,5,0,4,2,3,1,0,2,1,1 +2,28,0,8,1,2,4,1,1,4,5,5,5,1,4,1,3,2,1,1,0 +10,23,1,9,3,1,3,2,3,3,2,3,2,3,2,3,2,2,3,3,1 +20,0,1,24,4,3,1,3,4,2,2,1,2,4,2,5,1,4,4,5,2 +10,21,0,13,3,1,3,4,2,2,3,3,2,3,3,3,3,3,2,3,1 +7,30,0,3,1,2,5,2,1,4,5,5,5,1,4,1,3,2,1,1,0 +10,17,0,13,3,1,2,4,2,2,3,3,2,3,3,2,3,2,2,3,1 +12,16,0,7,5,3,2,4,3,0,4,4,5,0,0,5,1,2,3,3,0 +14,22,0,10,3,3,1,5,3,5,2,2,2,0,3,3,0,4,4,2,1 +0,28,0,3,1,2,4,2,1,3,4,5,4,2,5,1,3,1,1,1,0 +7,26,0,1,1,2,4,1,1,4,4,5,5,2,4,1,3,2,1,1,0 +18,7,1,15,4,3,1,4,5,2,1,2,2,3,2,4,1,4,5,4,2 +8,28,0,8,1,2,5,2,2,4,4,5,4,2,4,1,3,1,2,1,0 +3,26,0,8,1,2,5,2,1,4,4,4,4,2,4,1,3,1,2,1,0 +14,18,1,9,3,1,3,2,3,3,3,2,2,3,3,2,2,2,3,3,1 +2,2,1,12,4,3,0,0,3,5,4,1,2,0,2,2,1,4,0,2,0 +6,28,0,1,1,2,5,1,2,4,5,5,4,2,4,1,3,2,2,1,0 +19,11,1,26,3,3,1,5,4,1,2,2,2,5,1,4,1,5,5,5,2 +20,6,1,15,5,3,1,3,5,1,1,2,1,4,2,5,1,5,5,4,2 +1,16,1,26,3,3,3,1,2,3,0,0,4,2,2,4,1,2,0,0,1 +10,20,1,13,3,1,2,4,3,3,2,3,3,2,2,2,2,3,3,3,1 +3,30,0,6,1,2,4,1,1,4,5,4,4,2,5,1,3,2,2,1,0 +3,28,0,0,1,2,4,1,2,4,5,5,5,1,4,1,3,1,1,1,0 +21,15,1,26,3,3,1,5,3,1,2,1,2,5,1,5,1,5,5,5,2 +12,19,1,9,3,1,2,4,3,2,2,2,2,2,3,2,2,2,2,2,1 +11,16,0,9,2,1,3,2,3,2,2,3,2,3,2,2,2,2,2,3,1 +3,29,0,8,1,2,4,2,1,4,5,4,4,1,4,1,3,2,2,1,0 +2,25,0,3,1,2,5,2,1,4,5,4,4,2,5,1,3,2,2,1,0 +2,28,0,7,1,2,5,2,2,4,5,4,5,2,4,1,3,2,2,1,0 +12,17,0,14,3,1,2,2,3,2,3,2,3,3,2,3,2,2,2,2,1 +2,26,0,4,1,2,4,1,1,3,4,4,4,2,4,1,3,2,1,1,0 +12,15,1,12,2,1,3,2,2,2,2,3,2,2,2,2,3,3,3,2,1 +3,0,1,20,3,3,2,0,0,3,2,2,5,5,4,2,1,2,2,1,0 +8,30,0,4,1,2,4,2,2,4,4,4,5,1,5,1,3,2,1,1,0 +17,7,0,14,0,3,2,1,3,5,1,3,5,5,1,4,0,5,4,0,1 +21,3,1,18,4,3,1,4,4,2,1,1,2,5,1,4,1,5,4,5,2 +10,19,1,10,2,1,2,4,2,2,3,3,3,2,3,3,3,3,3,2,1 +18,2,1,15,4,3,1,3,3,1,1,2,2,4,2,5,1,4,4,4,2 +21,4,1,26,3,3,1,3,3,2,2,2,2,5,1,5,1,5,4,4,2 +21,15,1,19,5,3,1,3,5,1,1,2,1,3,2,4,1,5,5,4,2 +21,8,1,17,4,3,1,5,5,1,2,1,2,5,1,5,1,4,5,4,2 +15,8,1,22,4,3,1,5,5,2,2,2,1,3,1,4,1,5,4,4,2 +21,0,1,23,3,3,1,3,3,2,2,1,1,4,1,4,1,5,5,4,2 +15,7,1,25,3,3,1,5,5,2,1,2,1,5,1,5,1,4,5,5,2 +18,15,1,19,4,3,1,5,3,1,2,1,2,4,2,5,1,5,5,4,2 +14,23,0,12,2,1,3,4,3,2,3,2,2,2,2,2,3,2,2,2,1 +11,16,1,14,2,1,3,2,3,3,3,2,3,3,3,3,3,2,2,3,1 +11,15,0,10,2,1,3,2,2,3,3,2,2,2,2,2,3,3,3,3,1 +19,1,1,18,4,3,1,5,4,2,2,1,2,5,1,5,1,5,4,5,2 +19,14,1,20,4,3,1,5,3,1,2,2,2,4,1,4,1,5,4,5,2 +19,14,1,23,4,3,1,4,4,2,1,1,1,5,2,4,1,5,4,5,2 +7,26,0,6,1,2,5,2,2,3,5,4,4,1,4,1,3,1,1,1,0 +10,17,1,10,3,1,2,4,3,3,2,3,3,2,2,3,3,3,2,2,1 +6,29,0,2,1,2,4,1,1,3,4,5,5,2,4,1,3,1,1,1,0 +6,29,0,3,1,2,4,2,1,4,5,4,4,1,4,1,3,2,2,1,0 +17,29,1,17,5,3,5,2,4,0,0,3,5,0,2,5,0,0,0,3,0 +12,19,0,12,3,1,3,4,3,2,2,3,2,2,2,2,3,3,2,2,1 +9,15,0,11,3,1,2,2,2,3,2,2,2,2,3,2,2,3,3,3,1 +8,28,0,0,1,2,5,1,1,3,5,4,5,1,4,1,3,1,1,1,0 +13,15,1,9,2,1,3,4,3,2,2,2,2,2,3,3,2,2,2,2,1 +2,25,0,4,1,2,4,1,1,3,4,5,5,1,5,1,3,2,2,1,0 +17,29,1,18,3,3,0,4,2,1,1,2,5,1,3,0,0,3,1,4,0 +8,29,0,4,1,2,4,1,2,4,5,4,5,2,5,1,3,2,1,1,0 +5,30,0,1,1,2,4,1,1,4,5,5,5,2,5,1,3,1,1,1,0 +2,30,0,8,1,2,4,1,2,3,4,4,4,1,5,1,3,2,2,1,0 +2,27,0,8,1,2,5,2,1,3,4,5,4,1,5,1,3,2,2,1,0 +21,4,1,15,5,3,1,3,4,2,2,2,1,4,1,5,1,4,4,5,2 +2,9,1,26,4,3,4,1,2,2,5,3,4,5,0,4,1,4,3,0,2 +13,19,1,13,3,1,2,2,2,3,2,2,3,3,3,2,3,2,3,3,1 +20,3,1,20,4,3,1,4,3,1,2,1,2,4,1,4,1,4,5,4,2 +17,0,1,27,5,3,1,5,3,1,2,1,2,4,1,5,1,5,4,5,2 +14,20,1,10,2,1,3,4,3,2,2,3,3,3,2,3,3,3,2,3,1 +4,28,0,4,1,2,5,2,1,3,5,5,5,2,4,1,3,2,2,1,0 +17,13,1,17,5,3,1,3,5,2,1,1,2,5,2,5,1,5,4,4,2 +2,23,0,4,3,3,4,1,5,3,2,3,2,2,3,2,0,1,4,4,1 +9,20,0,9,3,1,3,4,2,2,3,3,3,3,2,2,2,2,2,3,1 +5,25,0,7,1,2,5,2,2,3,4,5,4,1,5,1,3,2,1,1,0 +18,1,1,26,5,3,1,5,5,1,1,2,1,3,1,5,1,5,4,5,2 +10,18,1,9,3,1,2,4,3,3,3,3,2,2,2,3,3,2,3,3,1 +21,27,0,14,5,3,0,3,1,5,0,2,0,0,3,1,0,4,4,0,0 +19,7,1,19,5,3,1,4,3,2,1,2,1,4,1,4,1,5,5,4,2 +14,21,1,13,3,1,2,2,2,2,2,3,2,2,2,3,3,3,3,3,1 +10,23,0,13,2,1,3,4,3,2,2,2,3,2,3,2,3,2,3,2,1 +16,11,1,18,3,3,1,5,4,2,1,2,1,5,1,5,1,5,5,4,2 +0,25,0,5,1,2,5,1,1,4,4,5,5,1,5,1,3,1,2,1,0 +14,23,1,14,2,1,2,4,3,3,3,2,2,2,2,2,3,3,3,2,1 +21,0,1,25,3,3,1,4,5,1,2,1,1,3,1,4,1,5,4,4,2 +12,16,0,13,2,1,3,4,3,3,2,2,2,2,2,2,3,3,2,3,1 +6,26,0,21,3,3,1,1,4,5,0,4,5,3,3,3,1,3,5,5,2 +18,1,1,16,3,3,1,5,3,2,2,1,1,5,1,5,1,4,4,4,2 +5,25,0,6,1,2,5,1,1,3,5,4,4,1,4,1,3,1,1,1,0 +10,11,0,12,3,3,5,1,4,2,1,2,0,1,4,1,1,1,5,1,2 +0,26,0,8,1,2,4,2,2,4,4,4,4,1,5,1,3,1,1,1,0 +19,8,1,21,5,3,1,5,5,2,1,2,2,5,2,5,1,4,5,5,2 +15,8,1,17,4,3,1,3,3,1,2,1,2,4,2,4,1,5,4,5,2 +21,11,1,20,3,3,1,4,5,1,2,1,1,3,2,5,1,5,5,4,2 +19,1,1,26,4,3,1,4,5,1,2,1,1,4,1,5,1,4,5,4,2 +7,30,0,7,1,2,4,1,2,4,4,4,4,2,5,1,3,2,2,1,0 +16,9,1,26,5,3,1,4,3,1,1,2,1,4,1,4,1,5,4,5,2 +12,7,1,17,0,3,0,3,2,3,3,3,3,4,4,1,0,3,1,0,1 +16,7,1,5,3,3,5,2,5,0,2,0,4,1,1,1,1,2,4,0,0 +17,11,1,26,5,3,1,3,5,1,2,1,2,4,1,4,1,5,5,5,2 +3,25,0,6,1,2,5,2,1,3,4,5,4,2,4,1,3,2,2,1,0 +12,3,1,0,0,3,1,3,1,1,1,5,5,2,2,1,1,0,5,3,0 +14,18,0,14,2,1,3,4,2,3,2,3,2,3,2,2,3,3,2,3,1 +13,20,0,12,3,1,2,2,2,2,2,3,2,3,2,2,2,3,2,3,1 +2,11,1,15,2,3,4,5,0,4,5,3,4,0,3,4,1,1,1,4,2 +13,19,1,12,2,1,2,4,3,3,3,2,2,2,3,2,3,3,2,3,1 +11,15,1,9,2,1,2,4,3,3,3,2,3,3,3,2,3,3,2,2,1 +10,25,1,9,2,1,2,2,2,2,2,2,3,2,2,3,3,3,2,3,1 +20,11,1,22,3,3,1,4,4,2,2,2,2,3,1,5,1,5,4,5,2 +3,0,1,4,1,3,1,5,4,3,1,3,1,1,2,1,1,0,4,4,2 +15,0,1,19,4,3,1,3,4,2,1,2,2,4,1,5,1,5,5,4,2 +0,30,0,1,1,2,5,2,2,3,5,5,5,1,5,1,3,2,2,1,0 +4,26,0,6,1,2,4,2,1,4,4,4,5,2,4,1,3,1,1,1,0 +1,28,0,14,3,3,2,1,2,3,4,5,2,4,4,0,1,2,5,2,2 +1,27,0,5,1,2,4,2,2,3,5,5,5,2,4,1,3,2,2,1,0 +18,7,0,20,0,3,4,0,1,3,0,4,1,0,2,3,0,1,2,5,1 +16,1,1,16,3,3,1,3,5,1,1,1,1,5,1,4,1,4,5,5,2 +11,21,0,9,3,1,3,4,3,2,2,3,2,3,2,2,2,2,2,3,1 +7,26,0,8,1,2,4,1,1,3,4,5,5,2,5,1,3,2,2,1,0 +18,14,1,20,4,3,1,3,4,2,2,1,2,3,2,4,1,4,5,5,2 +9,20,0,10,2,1,2,4,2,2,2,2,3,2,2,3,3,2,2,3,1 +1,28,0,8,1,2,5,2,2,3,4,5,4,1,5,1,3,1,1,1,0 +16,11,1,18,4,3,1,5,5,1,1,1,2,4,2,5,1,5,4,4,2 +8,4,1,27,5,3,2,4,4,4,2,2,5,1,3,0,0,1,0,1,2 +9,22,0,12,3,1,3,2,2,2,3,3,3,3,2,2,2,3,3,2,1 +8,29,0,3,1,2,4,1,2,3,5,4,4,2,5,1,3,1,2,1,0 +3,27,0,8,1,2,5,2,2,3,5,4,4,1,4,1,3,1,2,1,0 +3,29,0,5,1,2,5,1,1,3,5,5,5,2,5,1,3,2,1,1,0 +12,16,1,12,2,1,2,4,3,2,2,2,2,2,3,3,3,3,2,3,1 +3,28,0,2,1,2,4,1,1,3,4,5,4,1,4,1,3,1,2,1,0 +21,3,0,19,0,3,3,0,3,0,1,5,5,4,2,3,0,2,2,0,1 +4,21,1,5,0,3,1,0,3,2,1,0,4,1,1,0,0,1,4,5,1 +7,26,0,6,1,2,4,1,1,3,5,5,5,1,4,1,3,1,2,1,0 +7,25,0,2,1,2,5,2,1,3,4,5,5,2,5,1,3,2,2,1,0 +3,4,0,7,0,3,5,1,1,3,3,5,3,1,2,4,0,2,1,2,1 +3,28,0,2,1,2,4,1,1,4,4,5,4,1,5,1,3,1,2,1,0 +15,13,1,18,3,3,1,4,3,1,1,1,2,3,1,4,1,5,4,4,2 +11,15,0,12,2,1,3,4,3,2,2,3,3,2,3,3,2,3,2,2,1 +21,11,1,18,3,3,1,3,4,2,2,1,2,3,2,4,1,5,5,5,2 +16,15,1,23,3,3,1,4,3,2,2,2,1,3,2,4,1,4,4,4,2 +18,9,1,23,4,3,1,4,4,2,1,2,2,5,2,4,1,5,4,4,2 +21,13,1,16,4,3,1,4,5,1,1,2,1,5,1,4,1,4,5,4,2 +20,28,0,8,3,3,2,0,1,0,4,3,5,3,0,2,1,3,4,5,0 +15,14,1,19,5,3,1,5,3,2,1,2,2,5,2,5,1,5,5,5,2 +7,30,0,5,1,2,4,2,1,4,4,4,4,1,4,1,3,2,2,1,0 +18,4,0,1,1,3,0,1,5,2,1,4,0,2,0,2,0,0,3,5,1 +17,9,1,27,3,3,1,5,5,2,2,1,1,5,2,4,1,5,5,4,2 +1,19,0,5,0,3,3,5,1,2,0,4,4,3,1,0,1,0,3,3,0 +12,10,0,21,4,3,5,0,2,4,2,4,2,1,2,5,1,2,4,4,0 +3,29,0,7,1,2,4,1,1,3,4,5,5,1,5,1,3,1,1,1,0 +5,2,1,6,3,3,5,0,4,2,1,2,1,2,1,5,1,1,1,0,1 +14,17,1,10,2,1,2,4,3,3,2,3,2,2,2,3,3,3,2,3,1 +13,2,0,5,1,3,2,4,0,1,1,5,1,2,4,4,0,0,5,0,1 +18,0,1,21,3,3,1,5,3,2,2,2,2,4,1,5,1,4,5,4,2 +15,12,1,19,3,3,1,5,3,2,2,1,1,5,2,4,1,4,5,4,2 +11,23,0,13,3,1,2,2,3,2,2,2,3,2,3,3,2,2,2,2,1 +14,18,0,12,3,1,2,4,3,3,2,3,3,2,2,3,3,2,3,2,1 +15,13,1,15,3,3,1,4,4,1,2,1,1,5,2,5,1,5,5,5,2 +3,26,0,8,1,2,4,1,2,3,4,5,5,2,4,1,3,1,1,1,0 +18,6,1,23,5,3,1,5,4,2,2,1,1,3,2,4,1,5,4,5,2 +19,9,1,24,4,3,1,4,4,1,1,1,2,4,1,5,1,4,4,4,2 +17,23,1,4,1,3,3,1,4,1,3,0,4,0,0,0,0,5,2,5,2 +18,7,1,22,5,3,1,5,5,1,2,1,1,3,1,4,1,5,4,5,2 +16,11,1,17,5,3,1,3,4,2,2,1,2,5,1,4,1,5,5,5,2 +12,23,0,10,2,1,2,2,2,3,3,2,2,2,2,3,3,2,3,2,1 +8,29,0,7,1,2,5,2,2,3,4,5,5,2,4,1,3,1,1,1,0 +3,25,0,1,1,2,4,2,2,4,5,4,5,2,4,1,3,1,1,1,0 +6,19,0,14,2,3,4,4,1,2,2,2,4,3,2,5,0,1,3,5,1 +2,18,1,13,2,3,3,0,0,5,1,5,5,0,2,5,0,2,1,2,0 +20,9,1,20,2,3,0,5,2,1,3,4,0,4,1,4,0,1,4,3,1 +17,12,1,22,4,3,1,4,4,2,1,1,2,3,1,5,1,4,4,4,2 +13,16,1,14,3,1,2,2,2,2,2,2,3,3,3,3,2,3,2,3,1 +1,29,0,2,1,2,5,1,2,3,4,5,4,2,4,1,3,2,1,1,0 +21,4,1,22,3,3,1,3,3,2,2,1,1,5,1,5,1,4,5,4,2 +11,16,0,5,5,3,4,1,0,1,2,1,1,4,4,4,1,2,4,0,1 +16,7,0,6,2,3,0,3,0,4,0,4,4,4,3,0,0,0,3,2,1 +15,6,1,21,4,3,1,5,4,2,2,2,1,4,2,4,1,5,4,5,2 +20,8,1,17,3,3,1,4,4,2,2,1,1,4,1,5,1,4,5,5,2 +18,10,1,25,3,3,1,3,3,2,1,1,1,5,2,5,1,5,5,4,2 +2,26,0,6,1,2,4,1,2,3,5,5,4,2,4,1,3,1,2,1,0 +16,1,1,27,5,3,4,0,0,2,5,1,4,3,1,5,1,3,2,2,0 +6,18,1,9,3,3,4,0,3,5,2,3,4,5,0,0,0,4,2,0,1 +14,17,1,11,3,1,2,2,3,3,3,2,2,2,2,2,3,2,3,2,1 +15,11,1,18,3,3,1,4,4,1,2,1,2,5,1,5,1,4,4,4,2 +19,5,1,24,3,3,1,4,3,1,1,2,1,3,1,4,1,5,5,5,2 +13,17,1,11,3,1,3,4,3,2,3,3,3,3,2,2,3,3,3,2,1 +13,14,0,0,4,3,5,5,2,0,2,3,1,5,3,3,0,1,3,3,1 +4,2,0,27,4,3,0,3,5,1,5,2,3,3,0,2,1,3,3,0,0 +13,19,0,11,2,1,2,4,3,2,2,2,3,2,2,3,2,3,3,3,1 +13,14,1,21,5,3,3,3,0,1,1,3,0,1,0,0,0,4,5,0,0 +0,27,0,5,1,2,5,1,1,4,5,4,5,1,4,1,3,1,2,1,0 +14,19,1,10,2,1,2,4,3,2,3,3,2,2,2,2,2,2,3,3,1 +15,13,1,22,5,3,1,3,4,1,1,1,1,4,2,4,1,5,5,4,2 +3,27,0,1,1,2,4,2,1,3,5,4,5,1,4,1,3,1,2,1,0 +19,11,1,27,3,3,1,4,4,2,1,2,2,3,1,5,1,4,5,5,2 +6,29,0,5,1,2,5,2,2,3,4,5,4,2,5,1,3,2,1,1,0 +5,2,1,10,5,3,3,4,3,1,3,0,1,5,1,4,0,5,1,5,1 +16,12,1,23,5,3,1,3,4,2,1,2,2,4,2,4,1,4,5,4,2 +2,27,0,7,1,2,4,1,2,3,5,4,4,1,5,1,3,1,1,1,0 +13,18,0,13,3,1,2,2,3,2,3,2,3,3,2,3,2,2,3,2,1 +9,17,0,10,2,1,2,4,3,2,2,2,2,3,3,2,2,2,3,2,1 +18,6,1,22,3,3,1,5,3,2,2,1,1,3,2,4,1,5,4,4,2 +11,6,0,10,0,3,5,2,2,1,1,1,5,1,4,3,0,2,4,0,2 +1,25,0,3,1,2,5,1,1,4,5,4,4,1,4,1,3,1,2,1,0 +18,16,1,11,4,3,0,2,3,0,3,5,3,2,1,4,0,2,3,0,2 +5,26,0,3,1,2,4,1,2,3,4,5,4,2,5,1,3,2,2,1,0 +20,15,1,22,5,3,1,3,3,2,1,2,1,3,2,4,1,4,5,4,2 +13,22,1,10,3,1,3,4,3,2,2,2,2,2,2,2,2,2,3,3,1 +12,23,1,13,2,1,2,4,2,3,3,3,2,2,2,3,3,2,3,2,1 +8,30,0,19,1,3,4,0,2,5,4,4,2,4,0,0,0,5,3,1,0 +0,28,0,4,1,2,5,1,2,4,5,5,5,1,5,1,3,1,2,1,0 +20,6,1,25,5,3,1,4,3,2,1,1,2,4,2,5,1,5,5,5,2 +10,16,0,9,3,1,2,4,2,3,2,2,3,3,3,3,3,2,3,3,1 +19,23,0,3,4,3,5,3,1,5,5,3,2,3,1,5,0,1,0,4,1 +12,17,1,25,3,3,3,4,0,0,2,4,3,5,0,3,0,0,0,5,0 +13,23,0,9,3,1,3,4,2,2,2,2,2,2,3,3,2,3,2,2,1 +15,12,1,24,5,3,1,4,5,1,1,2,1,4,2,4,1,5,4,4,2 +10,18,1,9,2,1,3,2,3,2,3,2,3,3,2,3,3,3,3,2,1 +13,15,1,12,2,1,2,2,2,3,3,2,2,2,2,3,2,2,2,3,1 +7,29,0,5,1,2,4,1,1,3,4,4,5,1,5,1,3,2,1,1,0 +16,15,1,21,5,3,1,3,3,1,2,1,1,4,1,5,1,5,5,5,2 +11,18,1,9,3,1,2,4,2,3,2,3,3,3,3,2,2,2,3,3,1 +4,28,0,0,1,2,5,2,1,3,4,5,5,1,4,1,3,2,1,1,0 +6,28,0,8,1,2,4,2,2,3,5,4,5,1,4,1,3,1,1,1,0 +11,22,1,14,2,1,3,4,2,3,2,3,3,3,3,3,3,2,3,3,1 +9,17,0,13,2,1,2,4,3,3,3,2,2,3,3,3,3,3,3,3,1 +7,25,0,8,1,2,5,2,1,4,4,4,4,2,4,1,3,1,1,1,0 +10,20,1,6,1,3,3,1,5,4,4,3,1,4,2,0,0,0,1,3,0 +17,11,1,21,5,3,1,4,3,2,1,1,1,4,1,5,1,5,4,4,2 +11,21,1,14,3,1,3,4,3,2,3,3,2,2,2,2,3,3,3,3,1 +19,14,1,19,4,3,1,3,5,2,1,2,1,5,2,4,1,5,4,4,2 +18,11,1,26,3,3,1,5,3,2,1,2,2,4,2,5,1,5,4,4,2 +21,2,1,22,5,3,1,3,5,1,1,1,2,3,1,5,1,4,4,4,2 +19,14,1,24,3,3,1,3,4,1,1,1,1,5,2,4,1,5,5,4,2 +6,30,0,7,1,2,5,2,1,4,4,4,4,1,4,1,3,2,2,1,0 +16,4,1,15,5,3,1,3,3,1,2,2,2,5,1,5,1,4,4,4,2 +6,27,0,5,1,2,4,1,1,4,4,5,5,1,5,1,3,1,2,1,0 +7,27,0,8,1,2,4,1,2,3,4,4,5,2,4,1,3,2,1,1,0 +17,23,0,10,5,3,1,0,1,4,0,2,1,3,3,5,0,3,1,1,2 +12,21,1,12,2,1,3,2,3,3,3,3,3,3,3,2,2,3,3,2,1 +5,30,0,3,1,2,5,1,1,3,4,4,5,2,4,1,3,1,1,1,0 +11,20,1,9,2,1,2,4,3,2,2,2,3,2,3,3,2,2,3,2,1 +11,15,0,14,2,1,3,2,3,2,2,3,2,2,3,2,3,2,3,3,1 +8,29,0,6,1,2,5,2,2,3,4,5,4,1,5,1,3,2,1,1,0 +12,17,0,13,3,1,2,2,3,2,3,2,3,2,2,3,2,3,2,3,1 +7,26,0,0,1,2,5,2,2,3,4,5,4,2,4,1,3,1,2,1,0 +10,24,1,10,2,1,2,2,2,2,3,3,2,3,3,2,2,3,3,3,1 +14,30,0,9,2,3,5,5,1,4,1,3,5,0,0,4,1,2,3,0,0 +4,28,0,8,1,2,5,1,1,4,5,4,5,1,4,1,3,1,2,1,0 +8,26,0,8,1,2,5,2,2,3,5,5,4,2,5,1,3,1,2,1,0 +15,11,1,24,4,3,1,4,3,2,2,1,1,3,2,4,1,4,4,5,2 +16,13,1,12,2,3,0,1,0,0,5,5,2,4,0,1,1,0,0,2,0 +0,30,0,0,1,2,5,1,2,4,4,5,5,2,4,1,3,2,1,1,0 +9,18,0,13,2,1,2,2,2,3,2,2,3,2,2,2,2,3,2,3,1 +14,16,0,12,3,1,3,4,2,2,2,2,2,3,3,2,2,2,3,2,1 +16,10,1,26,3,3,1,3,5,2,2,1,1,4,1,4,1,4,5,5,2 +19,14,1,26,5,3,1,5,5,2,2,2,2,5,1,4,1,4,4,4,2 +9,19,1,10,2,1,2,2,3,3,2,2,3,2,3,3,3,3,3,3,1 +10,24,0,12,2,1,3,2,2,2,3,2,2,2,2,3,3,3,3,2,1 +2,25,0,4,1,2,5,1,1,4,4,5,4,1,5,1,3,2,2,1,0 +17,3,1,16,3,3,1,4,4,2,2,1,2,4,2,4,1,4,4,4,2 +8,30,0,2,1,2,4,1,1,4,4,5,4,2,4,1,3,1,2,1,0 +13,25,1,13,3,1,3,2,2,2,3,3,2,3,2,2,3,3,3,3,1 +13,22,1,11,3,1,2,2,2,3,3,3,2,2,2,3,2,2,3,2,1 +5,8,0,8,1,3,3,1,3,5,3,5,2,2,3,3,1,1,5,1,2 +19,0,1,27,5,3,1,5,3,2,1,1,1,4,2,4,1,4,5,4,2 +5,25,0,3,1,2,4,2,2,4,4,4,4,1,4,1,3,2,1,1,0 +18,26,1,18,5,3,5,4,0,4,4,5,2,1,0,5,0,1,1,5,0 +10,20,0,14,2,1,3,2,3,2,2,2,3,3,2,3,3,3,3,3,1 +6,29,0,4,1,2,4,1,1,3,5,5,4,1,5,1,3,1,1,1,0 +7,11,0,9,3,3,2,5,3,0,2,1,2,2,4,2,0,3,1,3,0 +13,23,1,11,3,1,3,4,3,3,2,2,3,3,2,2,3,3,2,2,1 +4,28,0,7,1,2,5,2,2,4,4,5,5,1,5,1,3,2,1,1,0 +20,14,1,15,5,3,1,5,4,2,2,2,2,4,2,5,1,5,5,5,2 +0,25,0,1,1,2,4,2,2,4,4,5,4,1,4,1,3,2,1,1,0 +7,25,0,4,1,2,5,1,2,3,5,5,5,1,4,1,3,1,1,1,0 +1,24,0,19,3,3,2,3,4,5,4,2,4,5,1,2,1,0,1,0,0 +0,25,0,0,1,2,4,1,1,3,4,4,4,1,4,1,3,2,2,1,0 +12,24,1,9,2,1,2,2,2,2,3,2,2,2,3,2,2,3,2,2,1 +7,29,0,3,1,2,4,1,1,3,5,4,4,1,5,1,3,2,1,1,0 +20,1,1,19,5,3,1,3,3,2,2,1,1,3,1,4,1,4,4,4,2 +1,26,0,3,1,2,4,1,2,4,4,4,5,2,4,1,3,1,1,1,0 +5,1,1,18,4,3,3,2,2,0,4,0,1,0,0,3,1,2,4,0,2 +14,15,1,12,3,1,3,4,2,3,3,2,3,3,2,2,3,2,3,2,1 +19,2,1,18,4,3,1,3,5,1,2,2,1,3,1,5,1,5,5,4,2 +5,15,1,7,0,3,1,1,3,5,3,1,1,1,4,3,1,2,5,5,2 +19,15,1,27,5,3,1,4,5,2,2,2,2,5,1,4,1,4,5,5,2 +11,18,1,13,3,1,2,4,3,3,3,3,2,3,2,2,3,2,3,2,1 +9,22,1,13,2,1,2,2,3,3,3,2,3,2,3,2,3,3,2,3,1 +19,6,1,18,3,3,1,4,4,1,1,2,2,4,1,5,1,5,5,4,2 +4,11,0,20,5,3,1,2,5,3,4,1,2,5,1,3,1,5,0,2,1 +11,18,1,10,2,1,3,2,2,3,2,2,3,2,2,3,3,2,3,3,1 +7,25,0,2,1,2,5,1,2,4,5,4,4,2,5,1,3,1,1,1,0 +5,25,0,6,1,2,4,1,2,4,4,4,4,2,4,1,3,2,1,1,0 +20,5,1,19,4,3,1,3,4,1,1,2,2,4,1,4,1,5,5,5,2 +21,7,1,23,5,3,1,5,3,1,1,1,2,4,2,4,1,4,5,5,2 +13,17,1,11,3,1,3,2,3,3,3,2,2,3,3,2,3,2,3,3,1 +0,27,0,4,1,2,4,2,2,3,4,5,5,2,4,1,3,1,1,1,0 +2,29,0,1,1,2,4,1,1,3,5,5,5,1,5,1,3,1,2,1,0 +19,27,0,1,0,3,5,3,4,4,2,0,0,2,2,2,1,5,0,3,2 +2,15,1,17,0,3,5,4,3,0,4,0,2,0,0,0,1,3,0,5,0 +12,22,0,13,2,1,2,2,2,2,3,3,3,3,3,3,3,2,2,3,1 +2,27,0,8,1,2,5,1,2,4,4,5,5,2,4,1,3,1,1,1,0 +9,16,1,10,2,1,3,2,3,3,3,3,3,3,2,2,2,3,2,3,1 +9,25,0,11,2,1,2,2,2,2,2,3,2,2,2,2,2,2,3,3,1 +13,22,1,9,2,1,2,2,3,3,2,2,2,2,2,3,3,2,2,2,1 +1,29,0,4,1,2,5,2,1,3,5,4,5,2,5,1,3,1,2,1,0 +1,30,0,3,1,2,4,1,2,3,5,5,5,1,5,1,3,1,2,1,0 +11,25,1,10,2,1,3,2,2,2,3,2,3,3,3,3,3,2,2,2,1 +20,15,1,26,4,3,1,4,4,2,2,2,1,5,1,4,1,5,5,4,2 +11,19,1,10,2,1,3,2,2,2,3,3,3,3,3,2,2,3,3,3,1 +9,23,0,14,3,1,3,2,2,3,2,3,2,2,3,2,2,2,2,2,1 +14,19,0,14,2,1,3,2,2,3,3,3,2,3,3,3,3,3,2,3,1 +13,17,0,14,3,1,3,2,2,2,3,2,2,3,3,3,2,2,3,3,1 +4,29,0,3,1,2,5,2,1,3,5,4,5,1,5,1,3,2,2,1,0 +11,24,1,12,2,1,3,4,2,3,2,2,2,2,2,2,3,3,3,2,1 +12,17,0,12,2,1,2,4,3,3,2,3,2,2,3,2,3,3,2,2,1 +2,30,0,8,1,2,5,2,1,3,5,5,4,2,5,1,3,2,1,1,0 +13,15,0,13,3,1,3,4,3,2,3,2,3,3,2,2,3,3,2,2,1 +10,22,0,10,3,1,2,2,2,3,2,3,2,2,3,2,2,2,2,2,1 +10,22,0,11,2,1,3,4,2,2,3,2,2,2,3,2,2,2,2,3,1 +0,26,0,4,1,2,5,2,2,3,4,4,5,1,5,1,3,1,1,1,0 +10,25,1,14,3,1,2,2,2,3,2,3,2,3,2,3,2,2,2,3,1 +3,28,0,3,1,2,4,1,1,4,5,4,4,2,4,1,3,2,2,1,0 +19,13,1,25,3,3,1,3,5,1,1,1,1,3,2,5,1,4,4,4,2 +4,30,0,5,2,3,4,4,4,4,1,1,2,0,4,5,0,5,0,2,0 +15,6,1,26,3,3,1,5,4,1,1,2,1,4,1,5,1,5,5,5,2 +11,5,1,10,2,3,5,5,1,1,5,0,2,4,1,1,1,3,4,4,1 +20,2,1,22,3,3,1,4,5,2,1,2,1,3,1,5,1,4,4,4,2 +10,24,1,14,3,1,2,2,3,3,3,2,2,2,2,2,2,2,2,3,1 +6,29,0,0,0,3,2,5,0,3,4,0,2,5,2,0,1,4,0,2,1 +0,26,0,3,1,2,4,1,1,3,4,4,5,1,5,1,3,2,1,1,0 +10,21,0,9,2,1,2,2,3,2,3,3,2,3,3,2,3,3,3,3,1 +5,30,0,2,1,2,4,1,1,3,5,4,4,1,4,1,3,1,1,1,0 +21,7,1,25,5,3,1,3,3,2,2,1,2,3,1,4,1,5,4,4,2 +17,10,1,22,4,3,1,3,3,1,2,1,1,5,1,5,1,5,5,5,2 +5,30,0,3,1,2,5,2,1,4,4,5,5,2,5,1,3,1,1,1,0 +18,10,1,23,3,3,1,5,5,1,1,2,2,4,1,4,1,4,4,4,2 +9,16,0,13,3,1,3,4,2,2,2,3,2,2,3,3,3,2,2,2,1 +2,27,0,0,1,2,4,2,1,4,5,5,4,2,4,1,3,2,2,1,0 +3,26,0,8,1,2,4,2,1,4,5,5,4,2,4,1,3,1,1,1,0 +6,16,1,11,3,3,3,0,5,0,3,5,5,4,4,1,1,2,4,0,0 +9,29,1,26,5,3,0,1,2,0,5,0,1,4,0,0,1,5,2,5,1 +7,25,0,8,1,2,5,2,2,3,4,4,4,2,4,1,3,2,2,1,0 +6,30,0,6,1,2,5,2,1,4,4,4,5,1,5,1,3,2,1,1,0 +8,25,0,5,1,2,4,1,2,4,5,4,4,1,4,1,3,1,2,1,0 +8,28,0,5,1,2,5,1,2,3,4,5,4,1,5,1,3,1,1,1,0 +1,27,0,6,1,2,4,1,1,4,5,5,5,1,5,1,3,1,2,1,0 +13,17,0,10,2,1,3,4,2,2,3,3,2,2,2,2,2,3,2,2,1 +21,8,1,26,4,3,1,4,5,2,2,2,1,3,1,4,1,4,5,4,2 +2,25,0,1,1,2,4,1,2,4,5,4,5,1,5,1,3,2,1,1,0 +9,16,0,13,3,1,3,4,2,2,2,2,3,2,2,3,2,2,3,2,1 +11,23,1,12,2,1,2,2,3,3,2,2,3,2,3,2,3,2,2,3,1 +10,20,1,9,3,1,2,4,2,3,2,2,2,2,2,2,3,3,3,3,1 +21,11,1,22,4,3,1,4,5,2,1,1,2,3,1,5,1,5,4,5,2 +17,13,1,23,3,3,1,3,5,1,2,2,1,3,2,4,1,4,4,5,2 +0,25,0,2,1,2,5,1,2,4,4,5,5,2,4,1,3,2,2,1,0 +6,26,0,7,1,2,4,2,1,3,5,5,5,2,4,1,3,1,1,1,0 +10,15,0,10,2,1,2,2,3,3,3,3,2,3,3,3,2,2,3,3,1 +10,18,0,12,2,1,2,4,2,3,2,3,2,2,3,2,2,2,2,2,1 +7,25,0,8,1,2,5,2,1,3,5,5,5,2,5,1,3,1,2,1,0 +12,17,1,5,2,3,2,0,4,3,1,0,0,5,1,5,1,0,0,4,0 +1,11,1,8,0,3,4,2,2,1,3,5,2,4,1,1,1,4,3,4,0 +10,18,1,10,3,1,3,2,2,3,2,2,3,3,3,3,3,3,2,3,1 +8,26,0,2,1,2,5,2,2,4,5,5,5,2,4,1,3,1,2,1,0 +7,26,0,2,1,2,4,1,1,3,4,4,5,2,4,1,3,1,1,1,0 +14,24,0,11,2,1,3,4,2,2,3,2,3,2,2,2,3,3,2,3,1 +14,17,0,13,3,1,2,4,3,2,3,2,3,3,2,3,2,3,2,3,1 +2,6,0,27,5,3,5,4,4,5,4,5,1,5,2,4,1,5,4,1,2 +9,21,0,12,2,1,3,4,3,2,3,3,3,3,2,3,3,3,3,2,1 +21,11,1,16,5,3,1,3,3,1,1,1,2,5,1,4,1,4,5,5,2 +1,20,0,19,2,3,2,5,2,4,1,3,4,3,3,1,1,5,2,1,0 +11,23,0,12,2,1,3,4,3,2,3,2,3,3,2,3,3,3,3,2,1 +15,0,1,27,3,3,1,5,5,2,2,1,1,4,2,4,1,4,4,4,2 +7,26,0,0,1,2,5,2,2,3,5,5,5,1,4,1,3,2,1,1,0 +14,15,0,10,2,1,2,4,2,3,2,2,2,3,2,3,2,3,3,2,1 +7,25,0,0,1,2,5,2,1,4,5,5,4,2,5,1,3,1,1,1,0 +11,15,1,11,2,1,2,4,2,3,3,3,2,2,2,3,3,2,3,2,1 +4,27,0,5,1,2,4,2,1,4,5,4,4,2,5,1,3,1,2,1,0 +16,9,1,17,3,3,1,3,4,1,2,1,1,3,1,5,1,5,4,4,2 +21,8,1,27,4,3,1,5,5,1,2,2,1,5,2,5,1,4,4,5,2 +3,26,0,1,1,2,5,2,2,3,4,5,4,1,5,1,3,2,1,1,0 +16,11,1,21,5,3,1,5,5,1,1,2,2,3,2,5,1,4,5,4,2 +0,27,0,0,4,3,3,4,2,3,2,0,0,3,3,5,0,5,4,5,2 +12,1,0,4,2,3,5,1,4,1,3,0,5,1,0,4,0,5,1,3,2 +6,21,0,16,1,3,5,5,5,1,0,1,4,4,1,5,1,0,1,1,1 +7,27,0,5,1,2,5,2,1,4,5,4,4,1,5,1,3,1,1,1,0 +8,25,0,5,1,2,5,2,1,3,5,4,5,1,4,1,3,2,2,1,0 +0,25,0,8,1,2,4,2,1,3,4,5,5,2,4,1,3,2,1,1,0 +13,21,0,14,2,1,2,4,3,3,2,2,3,2,3,3,3,2,3,3,1 +1,30,0,0,1,2,4,1,1,3,5,4,4,2,4,1,3,2,1,1,0 +18,8,1,19,3,3,1,3,4,1,1,1,2,3,2,4,1,4,4,5,2 +15,13,1,22,5,3,1,3,4,1,1,1,2,4,1,4,1,5,4,4,2 +19,1,1,17,4,3,1,4,3,1,1,1,1,5,2,5,1,5,4,5,2 +2,29,0,7,1,2,5,2,2,4,4,4,5,1,4,1,3,1,2,1,0 +7,27,0,7,1,2,4,2,2,4,5,4,5,1,5,1,3,1,1,1,0 +10,21,1,13,3,1,2,2,3,3,2,2,2,2,3,2,2,2,3,2,1 +8,30,0,8,1,2,5,2,1,3,4,5,5,1,4,1,3,2,1,1,0 +7,27,0,8,1,2,5,1,1,4,5,5,5,2,5,1,3,1,1,1,0 +18,7,1,18,3,3,1,3,4,1,1,1,1,4,1,4,1,4,5,5,2 +1,27,0,4,1,2,5,2,2,4,5,5,5,1,5,1,3,2,2,1,0 +21,7,1,17,3,3,1,4,3,1,1,1,1,3,1,4,1,4,4,5,2 +20,11,1,27,4,3,1,5,4,2,2,1,2,4,2,4,1,4,5,4,2 +7,2,1,1,5,3,5,4,0,1,3,3,2,2,3,2,0,5,2,4,2 +15,1,1,24,4,3,1,5,3,1,2,2,2,5,2,5,1,5,4,5,2 +9,25,1,9,2,1,2,4,3,2,3,2,3,2,2,3,3,3,3,3,1 +19,15,1,18,5,3,1,5,3,2,1,2,2,5,1,5,1,4,5,5,2 +17,0,1,17,3,3,1,5,4,1,1,1,2,5,1,5,1,4,4,4,2 +1,2,0,10,1,3,3,0,3,4,5,0,4,1,0,4,1,3,5,1,2 +19,0,1,15,5,3,1,4,4,2,1,2,2,5,1,5,1,5,4,5,2 +21,0,1,17,4,3,1,3,4,1,2,2,1,4,2,5,1,5,4,5,2 +12,24,1,13,2,1,2,4,3,2,2,3,2,2,3,2,3,2,3,3,1 +13,19,0,9,2,1,2,4,2,3,2,3,2,3,3,2,2,2,3,3,1 +16,9,1,23,4,3,1,3,4,2,2,1,2,5,2,4,1,5,4,4,2 +20,3,1,22,4,3,1,4,3,1,1,1,1,3,1,5,1,5,5,5,2 +17,14,1,21,4,3,1,5,5,2,1,2,2,4,1,4,1,4,5,4,2 +1,29,0,4,1,2,5,1,2,3,4,5,4,2,4,1,3,1,2,1,0 +12,17,1,9,3,1,3,4,3,2,2,3,2,3,3,3,3,3,3,2,1 +13,15,0,13,3,1,3,4,3,2,3,2,3,3,3,2,2,3,3,3,1 +15,6,1,21,5,3,1,5,4,2,2,2,2,3,1,5,1,4,4,4,2 +19,8,1,15,3,3,1,3,5,2,2,2,1,5,2,5,1,5,5,5,2 +18,8,1,25,3,3,1,5,3,1,2,2,1,5,2,5,1,5,5,4,2 +3,28,0,5,1,2,5,2,2,3,5,5,5,2,4,1,3,1,2,1,0 +4,26,0,8,1,2,5,1,2,3,5,5,4,1,4,1,3,1,2,1,0 +3,30,0,3,1,2,5,1,2,3,4,4,4,2,5,1,3,2,1,1,0 +18,13,1,23,5,3,1,3,3,2,1,2,1,4,2,5,1,4,5,4,2 +9,15,0,14,3,1,3,4,2,2,2,2,2,3,2,3,2,3,2,3,1 +14,20,1,10,3,1,3,4,2,2,3,2,2,3,2,2,3,2,3,3,1 +0,27,0,1,1,2,4,1,2,4,4,5,5,2,5,1,3,1,2,1,0 +18,9,1,20,5,3,1,4,4,1,2,2,2,4,1,5,1,5,4,5,2 +15,0,1,25,5,3,1,5,4,2,2,2,2,5,2,5,1,4,5,4,2 +21,6,1,15,5,3,1,4,4,2,2,2,1,5,2,5,1,4,4,4,2 +10,19,0,11,3,1,3,4,2,2,2,2,3,3,2,2,3,3,3,3,1 +14,22,1,11,2,1,3,2,3,2,3,3,3,2,2,2,2,2,3,3,1 +6,29,0,3,1,2,5,1,1,3,4,4,5,1,5,1,3,2,1,1,0 +12,28,0,24,1,3,2,4,1,2,1,5,4,0,0,2,0,3,5,2,1 +21,20,1,22,1,3,1,0,4,2,4,2,3,4,3,1,1,0,4,3,2 +3,30,0,2,1,2,5,2,1,4,4,4,4,1,4,1,3,2,2,1,0 +3,21,1,9,4,3,2,1,0,5,5,4,3,4,3,4,1,4,4,3,0 +12,16,1,10,3,1,3,2,2,2,2,3,2,2,3,2,3,3,3,3,1 +21,12,1,25,3,3,1,3,5,1,1,2,2,4,2,4,1,5,4,4,2 +10,17,1,10,3,1,2,2,3,2,3,3,2,2,3,2,3,2,2,2,1 +6,27,0,8,1,2,4,2,1,3,4,4,4,1,5,1,3,2,2,1,0 +16,15,0,14,4,3,4,5,1,2,2,5,3,1,1,1,1,5,2,2,2 +6,5,0,19,3,3,0,2,3,1,0,5,4,2,0,4,0,5,3,5,0 +18,24,0,2,2,3,0,1,3,5,1,4,2,0,0,3,1,3,2,3,1 +2,27,0,2,1,2,5,2,2,4,4,4,5,2,4,1,3,2,2,1,0 +21,3,1,25,4,3,1,5,5,1,1,2,2,3,2,4,1,4,4,4,2 +19,14,1,24,3,3,1,3,4,2,2,2,2,3,1,5,1,4,5,5,2 +12,25,1,9,2,1,2,2,3,2,3,2,2,3,2,2,3,3,3,2,1 +17,6,1,25,3,3,1,3,5,1,2,1,2,4,2,5,1,5,4,4,2 +3,25,0,0,1,2,4,2,2,4,5,4,4,2,4,1,3,1,2,1,0 +10,20,0,13,2,1,2,2,2,3,3,3,3,3,2,2,2,2,2,3,1 +5,29,0,7,1,2,4,2,1,3,4,5,5,2,4,1,3,2,1,1,0 +11,17,0,14,3,1,3,4,2,2,3,3,3,3,2,3,2,2,2,2,1 +20,0,1,18,4,3,1,4,4,2,2,2,2,4,1,4,1,5,5,5,2 +13,18,0,9,3,1,2,4,3,3,3,3,2,2,3,2,3,2,2,2,1 +13,25,1,10,2,1,2,4,3,2,3,2,2,2,3,2,2,3,3,2,1 +9,17,0,14,2,1,3,4,3,2,3,3,3,3,3,3,3,3,3,3,1 +2,25,0,2,1,2,4,2,1,4,5,5,5,1,4,1,3,1,2,1,0 +21,4,1,24,3,3,1,4,3,1,2,2,1,5,1,5,1,5,5,5,2 +0,27,0,22,4,3,3,2,4,3,5,5,5,5,2,0,1,2,5,0,2 +20,6,1,21,5,3,1,4,4,1,1,2,2,3,1,5,1,5,4,4,2 +8,28,0,6,1,2,4,1,2,3,4,5,5,1,5,1,3,1,1,1,0 +14,25,0,11,2,1,3,2,3,3,3,2,2,2,2,3,3,2,2,2,1 +1,25,0,6,1,2,5,2,1,4,4,5,4,2,4,1,3,2,2,1,0 +18,1,1,20,4,3,1,5,5,2,2,1,1,5,2,5,1,4,4,5,2 +0,28,0,4,1,2,4,2,1,3,4,4,4,1,4,1,3,2,2,1,0 +14,30,0,10,0,3,0,5,4,1,3,3,5,0,3,0,0,1,4,5,2 +3,25,0,8,1,2,4,2,1,4,5,4,4,2,5,1,3,1,1,1,0 +16,10,1,18,5,3,1,3,3,1,2,2,2,4,1,5,1,5,4,4,2 +15,8,1,23,4,3,1,5,4,1,2,2,1,5,2,5,1,5,4,4,2 +2,10,0,3,1,3,2,5,5,2,2,1,2,1,2,4,0,4,5,1,0 +19,3,1,20,4,3,1,4,5,1,2,1,1,3,2,5,1,4,5,5,2 +2,25,0,2,1,2,4,2,2,3,5,5,5,2,5,1,3,2,1,1,0 +14,17,0,11,3,1,3,2,3,3,2,3,3,2,3,3,3,2,2,3,1 +2,30,0,5,1,2,4,2,2,3,4,5,4,1,5,1,3,1,1,1,0 +7,15,1,3,5,3,1,1,0,4,3,1,0,5,2,3,1,4,0,1,0 +21,3,1,27,5,3,1,5,3,1,1,2,1,5,1,4,1,5,4,5,2 +13,24,0,13,2,1,3,4,2,3,3,3,2,3,2,2,3,2,3,2,1 +8,26,0,2,1,2,5,2,2,4,5,4,5,2,5,1,3,2,2,1,0 +10,24,0,12,2,1,2,2,2,3,2,3,3,2,2,2,2,3,2,3,1 +15,1,1,18,3,3,1,5,5,1,1,1,2,4,1,4,1,4,5,5,2 +19,13,1,26,3,3,1,5,5,2,1,1,2,5,2,4,1,4,4,4,2 +19,14,0,23,5,3,5,1,3,5,1,4,1,5,2,2,0,2,5,2,2 +17,2,1,20,3,3,1,5,4,1,2,1,1,3,1,4,1,5,5,5,2 +9,21,1,12,2,1,2,4,3,3,3,3,2,2,3,2,2,3,2,2,1 +18,8,1,25,4,3,1,3,1,1,3,5,1,2,2,1,1,4,3,2,0 +13,17,1,10,2,1,2,4,2,3,3,2,2,2,3,3,2,2,2,3,1 +8,30,0,7,1,2,5,1,2,3,4,4,5,2,4,1,3,2,1,1,0 +19,6,1,24,4,3,1,3,4,2,1,1,1,3,1,4,1,4,4,5,2 +10,16,1,12,2,1,2,2,3,3,3,2,2,2,3,2,2,3,2,3,1 +19,1,1,27,4,3,1,3,5,1,1,1,2,4,2,4,1,4,5,4,2 +19,12,0,13,0,3,2,3,0,3,2,3,5,5,4,4,1,0,5,0,0 +13,6,0,26,1,3,0,4,0,3,3,5,1,1,1,5,1,0,5,5,0 +4,30,0,7,1,2,4,1,2,4,5,4,4,2,4,1,3,1,2,1,0 +11,21,0,12,3,1,2,4,3,2,2,3,3,3,3,2,2,3,2,3,1 +20,10,1,17,4,3,1,4,4,2,2,1,2,4,1,5,1,4,5,5,2 +21,13,1,18,3,3,1,3,5,1,1,2,1,4,2,5,1,4,5,4,2 +16,1,1,25,5,3,1,3,3,2,2,2,1,5,1,5,1,5,4,5,2 +3,28,0,0,1,2,4,1,1,4,5,5,5,1,5,1,3,1,2,1,0 +18,10,1,18,5,3,1,4,5,1,1,2,2,5,2,4,1,4,5,5,2 +18,12,0,0,5,3,5,0,4,0,3,1,4,2,3,4,0,0,0,0,2 +12,24,1,14,3,1,3,2,3,3,2,2,2,3,2,3,3,3,2,2,1 +10,24,0,15,5,3,0,4,3,2,5,2,2,0,3,4,1,1,1,2,2 +9,16,1,14,3,1,3,2,3,3,3,2,2,3,3,2,2,2,2,3,1 +5,25,0,2,1,2,5,1,2,3,4,5,4,2,5,1,3,1,2,1,0 +11,23,0,14,2,1,2,4,2,3,3,3,3,2,2,3,3,2,3,3,1 +8,6,0,10,5,3,2,2,4,5,4,0,3,2,3,4,0,4,3,4,0 +17,28,1,18,2,3,4,4,1,3,1,4,5,4,0,4,0,3,1,5,1 +8,28,0,2,1,2,5,1,2,3,4,5,5,2,5,1,3,1,2,1,0 +13,16,1,13,3,1,2,4,3,2,2,3,3,2,3,3,3,3,2,2,1 +16,8,1,21,5,3,1,5,4,1,2,2,1,4,2,5,1,5,4,4,2 +13,16,1,11,2,1,3,2,2,3,3,2,3,2,3,3,2,3,2,3,1 +21,28,0,20,0,3,0,0,5,4,4,4,2,4,2,0,0,5,0,5,1 +12,19,0,12,3,1,2,2,2,2,3,2,2,3,2,2,2,3,3,2,1 +14,25,1,12,3,1,2,4,2,2,2,2,2,3,2,3,3,2,3,3,1 +14,21,0,14,3,1,2,2,2,2,2,2,2,3,2,3,3,2,2,3,1 +6,20,0,16,5,3,1,2,5,5,0,0,4,0,0,0,1,4,2,2,2 +18,5,1,24,4,3,2,3,3,3,3,5,3,4,2,5,1,1,1,2,2 +14,18,0,13,3,1,2,2,2,3,2,2,3,2,3,3,3,2,2,3,1 +12,25,0,27,1,3,4,0,2,5,5,4,0,3,1,1,1,3,5,0,2 +5,27,0,1,1,2,5,1,1,3,4,5,4,1,4,1,3,2,1,1,0 +3,28,0,6,1,2,5,1,1,4,4,5,4,2,5,1,3,2,1,1,0 +13,24,0,10,2,1,2,2,3,2,2,2,3,3,3,3,3,2,3,3,1 +15,12,0,20,4,3,0,2,3,1,4,5,5,3,2,5,1,1,4,0,2 +6,26,0,8,1,2,5,1,2,3,4,4,4,1,4,1,3,2,2,1,0 +18,10,1,17,3,3,1,5,3,1,1,2,1,5,2,4,1,4,5,4,2 +11,22,1,12,2,1,2,2,3,2,2,2,3,2,3,3,2,3,3,2,1 +21,4,1,26,4,3,1,5,3,1,1,2,2,4,2,4,1,4,4,5,2 +12,21,1,11,2,1,3,4,3,2,2,2,2,2,2,3,2,3,3,3,1 +8,30,0,7,1,2,4,2,2,4,5,5,4,2,4,1,3,1,1,1,0 +10,21,0,11,3,1,3,2,2,2,3,2,3,3,3,2,3,2,2,2,1 +9,22,0,14,3,1,3,4,2,3,2,2,2,2,2,2,2,3,2,3,1 +20,3,1,26,3,3,1,3,3,1,1,2,1,4,1,5,1,4,5,5,2 +11,16,0,14,3,1,2,2,3,2,3,3,3,2,3,3,3,2,3,3,1 +1,25,0,7,1,2,5,1,2,4,4,5,5,2,5,1,3,1,2,1,0 +15,10,1,17,4,3,1,5,5,1,1,2,1,5,1,4,1,5,4,5,2 +17,2,1,23,4,3,1,3,3,1,2,2,1,4,2,4,1,4,5,4,2 +8,30,0,4,1,2,4,1,1,3,5,4,5,2,4,1,3,2,1,1,0 +20,4,1,22,5,3,1,5,5,2,2,1,1,5,2,5,1,5,5,4,2 +8,7,1,1,0,3,5,4,2,3,5,2,2,0,2,4,0,5,2,0,0 +5,26,0,3,1,2,4,1,2,4,5,5,4,2,5,1,3,2,1,1,0 +14,16,0,13,2,1,2,4,3,2,2,3,2,3,2,3,2,2,3,3,1 +10,20,0,13,3,1,2,2,3,3,3,3,3,3,2,3,3,2,3,2,1 +18,0,1,22,3,3,1,5,5,1,2,2,2,5,2,5,1,5,4,4,2 +21,19,1,24,2,3,4,4,3,4,0,0,3,3,3,2,0,3,1,5,1 +4,27,0,6,1,2,5,2,2,3,4,4,4,2,4,1,3,2,2,1,0 +12,16,1,7,4,3,5,4,2,1,2,1,2,4,4,0,1,2,3,0,2 +14,21,1,11,2,1,2,4,3,3,2,2,3,3,2,2,2,2,3,2,1 +7,13,1,18,4,3,5,0,0,0,0,0,1,5,4,2,0,2,5,5,2 +19,25,1,6,1,3,5,1,5,1,1,1,1,3,0,2,0,2,2,5,0 +18,28,1,7,0,3,5,2,0,5,4,4,1,5,3,5,0,0,0,5,2 +10,15,1,11,3,1,3,2,2,3,3,3,3,3,2,2,2,2,3,2,1 +11,22,1,24,2,3,4,2,4,0,1,3,0,3,1,1,0,1,4,1,2 +15,7,1,19,3,3,1,3,3,2,1,1,1,5,1,4,1,4,4,5,2 +5,27,0,8,1,2,4,2,2,4,4,4,4,2,5,1,3,2,2,1,0 +14,16,0,13,3,1,2,2,3,3,3,2,3,3,3,3,2,3,2,3,1 +2,30,0,19,3,3,0,0,1,0,2,3,0,0,1,5,1,2,3,1,0 +3,9,0,8,4,3,1,3,5,1,0,3,2,1,0,4,1,3,1,1,2 +14,23,1,10,2,1,2,4,3,3,2,3,3,3,3,3,2,3,2,3,1 +1,26,0,3,1,2,4,1,2,4,5,4,5,2,5,1,3,2,1,1,0 +12,22,0,9,2,1,2,2,3,3,2,3,3,3,3,3,3,2,3,3,1 +10,20,1,14,3,1,2,4,3,2,2,2,3,2,2,2,3,2,3,3,1 +14,19,0,11,3,1,2,2,2,3,2,3,3,3,2,2,2,3,2,3,1 +12,17,1,12,3,1,3,4,3,2,3,2,2,2,2,2,2,2,2,3,1 +7,26,0,7,1,2,5,1,2,4,4,5,4,1,4,1,3,1,1,1,0 +3,25,0,5,1,2,5,1,1,4,4,4,5,1,4,1,3,1,1,1,0 +12,17,1,13,3,1,3,2,3,3,2,2,2,3,3,3,3,2,3,2,1 +13,17,0,11,3,1,3,4,2,2,2,3,2,3,3,2,2,3,3,3,1 +0,27,0,7,1,2,5,1,2,4,4,5,4,1,4,1,3,1,2,1,0 +9,17,1,9,3,1,2,4,2,3,2,3,3,2,3,3,2,2,3,2,1 +3,26,0,4,1,2,4,2,2,4,5,5,4,1,4,1,3,2,2,1,0 +9,24,0,14,3,1,2,2,3,3,3,3,3,2,3,3,2,2,2,3,1 +14,23,0,13,2,1,2,2,3,2,3,3,2,3,2,3,2,2,2,2,1 +8,29,0,7,1,2,5,1,1,3,4,5,4,2,4,1,3,2,1,1,0 +0,28,0,6,1,2,5,1,1,3,4,5,4,2,4,1,3,2,1,1,0 +15,30,0,7,3,3,4,0,0,0,0,2,5,2,2,4,0,5,4,1,1 +16,13,1,25,3,3,1,4,4,1,1,2,1,4,2,4,1,4,4,4,2 +3,30,0,8,1,2,4,2,1,4,4,5,4,1,5,1,3,2,1,1,0 +8,4,1,16,5,3,4,2,3,0,3,4,4,0,2,1,0,1,5,1,2 +14,25,0,13,2,1,2,2,2,2,3,3,2,3,2,2,3,2,2,2,1 +16,14,1,19,4,3,1,3,3,1,1,1,1,3,1,4,1,4,5,4,2 +18,15,1,25,5,3,1,4,5,2,2,1,1,3,2,5,1,4,4,5,2 +15,6,1,22,5,3,1,4,3,2,1,1,1,5,1,4,1,4,5,4,2 +21,9,1,17,4,3,1,3,3,2,2,1,1,3,2,4,1,5,5,5,2 +13,23,0,13,2,1,3,2,3,2,3,3,3,3,2,2,2,2,3,3,1 +16,4,1,27,3,3,1,5,4,2,0,1,3,2,2,0,1,5,3,4,2 +17,5,1,19,4,3,1,4,4,2,2,2,1,3,2,5,1,5,4,5,2 +14,16,0,10,2,1,3,4,3,2,2,2,3,2,2,2,2,2,2,3,1 +15,6,0,9,1,3,3,5,0,4,1,4,1,4,2,1,0,0,2,2,0 +20,11,0,8,0,3,1,4,3,1,0,5,0,0,4,4,1,3,1,2,0 +8,30,0,2,1,2,5,1,2,3,5,4,4,1,4,1,3,1,1,1,0 +1,26,0,2,1,2,4,2,1,4,4,5,4,1,5,1,3,1,1,1,0 +6,25,0,6,1,2,5,1,2,3,4,5,5,1,4,1,3,2,1,1,0 +21,10,0,21,1,3,1,5,4,3,1,0,2,5,0,5,0,2,2,1,1 +1,25,0,6,1,2,4,1,1,3,4,5,5,2,5,1,3,1,2,1,0 +15,11,1,21,3,3,1,4,3,2,1,1,2,3,1,5,1,5,5,4,2 +8,29,0,1,1,2,5,1,2,4,4,4,5,1,4,1,3,2,1,1,0 +10,21,1,10,2,1,3,2,2,2,2,3,3,2,3,3,3,3,2,3,1 +4,27,0,3,1,2,4,2,1,3,5,4,5,1,5,1,3,1,1,1,0 +18,7,1,25,4,3,1,3,3,2,1,2,2,4,1,5,1,4,4,4,2 +18,8,1,19,3,3,1,3,4,1,1,2,2,5,1,4,1,5,5,5,2 +6,25,0,8,1,2,5,1,1,4,5,4,4,2,5,1,3,2,2,1,0 +1,28,0,5,1,2,4,2,1,4,4,4,5,1,5,1,3,1,2,1,0 +3,27,0,7,1,2,5,2,1,4,5,4,4,2,5,1,3,1,1,1,0 +14,25,0,9,2,1,2,2,3,3,2,2,2,3,3,3,2,3,3,3,1 +9,21,0,12,2,1,2,4,3,3,2,3,2,3,2,2,3,2,3,2,1 +18,12,1,23,5,3,1,3,4,2,2,1,1,3,1,4,1,4,5,5,2 +8,28,0,5,1,2,5,1,2,4,5,4,4,2,4,1,3,1,2,1,0 +3,9,0,22,1,3,4,0,2,3,1,0,4,0,4,2,1,2,1,0,1 +13,16,0,14,2,1,2,2,2,2,2,2,2,3,2,2,3,2,3,2,1 +7,22,0,1,5,3,5,3,5,5,2,2,2,5,3,4,0,1,4,4,2 +12,25,0,11,3,1,2,2,2,3,2,3,3,3,2,3,2,2,2,3,1 +14,23,1,10,3,1,3,4,2,2,2,3,2,3,3,3,2,2,2,3,1 +17,2,1,17,4,3,1,3,5,1,2,2,2,4,1,5,1,5,4,4,2 +0,27,0,3,1,2,4,2,1,3,5,4,5,1,4,1,3,2,2,1,0 +18,13,1,18,5,3,1,4,5,2,1,1,1,3,2,4,1,4,5,4,2 +12,19,0,9,2,1,3,2,3,2,3,3,2,2,3,3,3,2,2,3,1 +13,21,1,12,2,1,2,2,3,3,3,3,2,2,2,2,3,2,2,2,1 +11,20,0,11,3,1,2,4,2,2,3,2,3,3,2,2,2,2,3,2,1 +15,3,1,27,4,3,1,3,3,2,1,2,1,4,2,5,1,5,4,4,2 +9,20,1,9,3,1,2,4,2,2,3,2,2,3,3,2,3,2,2,3,1 +2,25,0,7,1,2,4,1,1,4,5,4,5,1,5,1,3,2,1,1,0 +19,13,1,26,3,3,1,5,3,2,2,2,2,3,2,5,1,5,5,5,2 +19,9,1,16,5,3,1,3,5,1,2,2,2,3,2,4,1,4,4,4,2 +17,12,1,16,3,3,1,5,3,1,2,2,2,4,1,5,1,5,5,5,2 +10,25,1,9,2,1,2,4,3,2,2,2,3,3,2,2,3,2,3,3,1 +6,27,0,5,1,2,5,1,1,4,5,5,4,2,4,1,3,1,2,1,0 +4,25,0,2,1,2,4,2,1,4,4,4,5,2,4,1,3,2,2,1,0 +20,0,1,22,5,3,1,4,5,2,1,1,1,3,2,5,1,5,4,5,2 +9,23,0,13,2,1,2,2,2,2,2,3,3,3,3,2,3,3,3,2,1 +21,11,1,26,5,3,1,4,3,1,2,2,2,4,2,4,1,5,4,5,2 +11,20,0,12,2,1,3,2,2,3,3,2,3,3,3,2,3,3,2,3,1 +2,27,0,7,1,2,4,1,1,4,4,5,4,1,5,1,3,1,1,1,0 +10,23,1,11,3,1,2,4,2,3,2,3,3,3,2,2,2,2,2,3,1 +15,3,1,24,5,3,1,3,3,2,1,2,1,4,2,4,1,5,5,4,2 +17,15,1,27,3,3,1,3,4,2,2,2,2,5,1,5,1,5,4,4,2 +19,13,1,21,5,3,1,4,4,2,1,1,2,5,2,5,1,4,5,4,2 +12,0,0,5,3,3,3,2,5,5,3,2,0,1,4,0,1,4,1,1,2 +17,1,1,15,4,3,1,5,5,2,2,2,2,3,2,5,1,5,4,4,2 +20,6,1,17,4,3,1,5,3,1,2,2,2,4,2,4,1,5,4,4,2 +20,10,1,21,3,3,1,4,3,1,2,2,2,4,1,4,1,4,4,5,2 +10,24,0,10,2,1,3,4,3,2,3,2,2,2,2,3,3,3,2,3,1 +18,11,1,26,3,3,1,5,4,2,2,1,2,5,2,5,1,4,4,5,2 +19,13,1,21,5,3,1,5,5,2,2,2,1,3,1,4,1,5,5,5,2 +18,6,1,18,3,3,1,5,3,1,1,1,1,5,2,5,1,4,5,5,2 +1,27,0,6,1,2,5,2,2,3,4,4,5,1,4,1,3,1,1,1,0 +10,25,0,12,3,1,2,4,3,3,2,3,3,3,3,3,3,3,2,2,1 +21,12,1,15,4,3,1,5,5,2,1,2,1,3,1,4,1,4,4,4,2 +15,6,1,18,3,3,1,3,4,2,1,2,1,3,2,5,1,5,5,4,2 +3,27,0,3,1,2,4,2,2,4,4,5,4,1,5,1,3,2,2,1,0 +6,29,0,0,1,2,5,1,2,4,5,4,4,2,4,1,3,2,1,1,0 +21,5,1,23,5,3,1,4,5,1,2,1,1,3,1,5,1,4,4,4,2 +18,14,1,24,3,3,1,5,4,1,1,1,2,3,1,5,1,5,5,4,2 +6,30,0,4,1,2,5,2,1,3,4,4,5,1,4,1,3,2,1,1,0 +17,9,1,18,3,3,1,4,3,1,2,2,1,3,1,5,1,4,4,5,2 +4,28,0,4,1,2,5,1,2,3,4,5,5,2,5,1,3,1,1,1,0 +9,24,1,14,2,1,3,4,2,2,2,2,3,2,2,2,2,3,2,3,1 +16,14,1,18,4,3,1,5,5,1,1,2,2,3,1,4,1,5,4,4,2 +10,20,0,14,2,1,3,2,2,2,2,2,2,3,2,3,3,2,2,3,1 +4,29,0,6,1,2,5,1,2,3,5,4,5,2,5,1,3,2,2,1,0 +11,20,1,11,2,1,2,2,2,3,2,2,3,2,3,2,3,2,3,3,1 +13,25,1,11,3,1,2,4,3,2,2,2,2,3,3,2,2,3,2,2,1 +17,2,1,24,4,3,1,5,5,2,2,2,1,3,2,5,1,4,4,4,2 +7,25,0,5,1,2,5,1,1,4,5,4,5,1,5,1,3,2,1,1,0 +21,1,1,19,5,3,1,3,5,2,2,1,1,3,1,5,1,5,4,4,2 +1,26,0,0,1,2,5,1,2,4,4,4,5,2,4,1,3,2,2,1,0 +20,11,1,26,4,3,1,4,5,2,2,1,2,3,1,5,1,4,4,4,2 +6,25,0,7,1,2,4,1,1,4,5,5,5,1,4,1,3,1,2,1,0 +10,21,1,11,3,1,3,2,2,3,2,3,3,2,2,2,2,3,2,2,1 +17,24,1,12,3,3,1,0,3,4,3,0,5,5,3,2,0,3,1,1,2 +18,2,1,24,3,3,1,3,4,2,2,2,2,5,2,4,1,4,5,4,2 +7,26,0,3,1,2,5,2,1,3,4,5,5,2,4,1,3,2,1,1,0 +10,20,0,13,2,1,2,4,2,3,2,3,2,2,3,3,3,2,3,3,1 +17,10,1,27,4,3,1,4,4,1,2,1,1,5,2,4,1,5,5,4,2 +19,2,1,23,3,3,1,3,4,2,2,2,2,3,1,4,1,4,5,4,2 +9,29,0,6,3,3,4,0,5,0,2,4,5,5,1,3,1,5,4,0,0 +19,10,1,15,4,3,1,4,5,1,1,1,1,4,1,4,1,4,4,5,2 +21,3,1,23,5,3,1,3,5,2,1,2,1,4,2,5,1,5,5,5,2 +8,28,0,2,1,2,4,2,1,4,5,4,5,1,4,1,3,1,1,1,0 +21,8,1,21,5,3,1,5,5,2,1,2,2,5,2,5,1,5,5,4,2 +2,30,0,27,1,3,5,2,1,5,3,3,4,0,4,2,1,2,5,3,0 +9,23,1,10,2,1,2,2,3,2,2,3,3,3,2,2,3,2,2,2,1 +9,17,0,9,2,1,2,4,2,3,2,3,3,2,2,2,2,2,2,2,1 +3,5,0,0,5,3,2,2,0,2,1,0,2,4,2,1,1,2,3,4,2 +17,14,1,20,5,3,1,5,3,2,1,2,1,3,2,4,1,4,5,5,2 +0,25,0,2,1,2,5,1,2,4,5,5,5,2,4,1,3,1,1,1,0 +9,23,0,11,2,1,3,4,3,2,3,2,2,2,2,3,2,2,3,3,1 +15,1,1,25,4,3,1,4,3,1,1,2,1,3,1,5,1,5,4,4,2 +6,27,0,2,1,2,5,2,1,3,5,5,5,2,5,1,3,2,2,1,0 +5,29,0,8,1,2,5,2,1,4,5,4,4,2,4,1,3,1,1,1,0 +0,25,0,4,1,2,4,1,1,4,4,5,4,1,4,1,3,2,2,1,0 +13,25,1,12,2,1,2,2,3,3,2,3,3,2,2,3,3,3,2,2,1 +9,19,1,14,2,1,2,2,2,3,3,3,2,2,2,3,2,2,3,3,1 +5,20,1,7,4,3,1,5,5,3,3,0,4,3,0,3,0,5,2,4,1 +19,3,1,23,1,3,5,1,2,3,3,2,0,5,2,5,1,4,3,5,1 +6,25,0,0,1,2,4,1,2,4,5,5,4,1,4,1,3,2,1,1,0 +14,17,0,12,5,3,4,5,5,5,3,2,5,5,2,0,1,3,4,4,1 +10,16,1,14,2,1,2,4,3,3,3,3,2,2,2,3,3,2,2,3,1 +2,26,0,5,1,2,4,1,2,3,5,5,4,2,5,1,3,1,1,1,0 +12,21,0,9,2,1,3,4,3,3,2,2,3,2,3,3,3,3,2,3,1 +19,11,1,24,4,3,1,3,5,2,2,1,2,3,2,5,1,4,4,4,2 +14,25,0,12,3,1,3,4,2,2,2,2,3,3,2,2,3,3,3,3,1 +1,7,0,21,0,3,0,3,4,2,4,3,0,4,4,0,0,2,0,4,2 +0,25,0,5,1,2,5,1,1,3,5,5,4,1,5,1,3,2,2,1,0 +21,8,1,22,4,3,5,0,5,3,2,2,5,1,4,4,0,3,4,2,0 +21,30,0,0,3,3,0,5,4,1,4,3,4,3,3,3,1,3,3,1,0 +10,23,0,13,3,1,3,4,3,2,3,3,2,2,3,2,3,2,2,3,1 +3,29,0,3,1,2,4,1,2,4,4,5,4,2,5,1,3,1,2,1,0 +8,27,0,1,1,2,5,2,1,4,4,5,4,1,4,1,3,2,1,1,0 +5,26,0,0,1,2,5,2,2,3,4,4,4,1,4,1,3,2,1,1,0 +19,0,1,24,4,3,1,4,3,2,1,1,2,5,2,5,1,4,4,4,2 +5,30,0,1,1,2,4,1,2,3,5,4,5,1,4,1,3,1,1,1,0 +21,3,1,0,1,3,3,4,3,4,0,0,3,2,4,1,1,1,3,2,2 +17,5,1,27,3,3,1,5,3,1,2,2,1,4,1,4,1,5,4,4,2 +9,29,1,13,5,3,3,0,5,4,4,1,4,1,0,3,1,3,4,0,0 +5,27,0,2,1,2,4,2,2,3,5,4,5,1,4,1,3,1,1,1,0 +21,1,1,22,3,3,1,5,3,1,2,1,1,4,2,4,1,4,5,5,2 +19,27,0,3,5,3,5,0,5,5,2,5,0,1,2,1,0,4,3,4,1 +12,22,1,12,3,1,3,4,2,3,2,3,2,3,2,3,2,2,2,3,1 +17,10,1,16,5,3,1,3,4,2,2,1,1,4,1,5,1,4,5,5,2 +16,1,1,20,4,3,1,3,5,2,2,2,1,4,1,5,1,4,5,4,2 +6,26,0,7,1,2,4,1,2,4,4,5,5,1,5,1,3,2,1,1,0 +14,23,0,11,2,1,2,2,2,2,2,3,3,2,2,2,2,3,3,2,1 +18,5,1,17,3,3,1,3,5,1,1,2,2,4,1,5,1,4,4,5,2 +1,28,0,3,1,2,5,2,1,3,4,4,4,1,5,1,3,2,1,1,0 +19,12,1,17,5,3,1,4,4,2,1,1,2,4,2,5,1,5,5,5,2 +3,17,0,18,3,3,3,0,0,3,1,2,0,1,4,0,1,1,2,2,0 +7,25,0,0,1,2,4,1,1,4,4,5,5,1,5,1,3,2,1,1,0 +5,9,1,6,4,3,5,3,4,0,3,2,0,0,2,5,0,3,4,0,1 +10,25,0,14,3,1,2,2,2,2,2,3,2,2,2,2,2,3,2,3,1 +20,10,1,16,5,3,1,3,5,1,1,2,2,4,2,5,1,5,5,4,2 +5,23,0,19,1,3,5,5,2,0,0,3,2,5,4,2,1,3,2,3,2 +21,15,1,26,4,3,1,5,4,1,1,2,2,5,1,4,1,5,4,5,2 +6,13,0,20,0,3,2,1,2,4,1,5,3,2,1,2,1,0,5,2,0 +10,24,1,11,3,1,3,2,2,2,2,3,2,3,3,2,2,2,2,2,1 +15,1,1,23,3,3,1,4,3,2,1,2,1,4,2,5,1,5,4,5,2 +12,20,0,12,3,1,3,2,3,2,2,3,2,3,2,3,2,2,3,2,1 +10,19,1,12,3,1,3,4,2,3,3,3,3,2,3,2,3,2,2,2,1 +11,8,0,3,2,3,3,1,1,2,0,4,3,1,0,2,0,5,1,2,2 +20,19,1,22,4,3,1,5,3,1,3,3,1,2,0,4,1,4,5,1,0 +1,27,0,6,1,2,4,1,1,4,4,5,5,1,5,1,3,1,2,1,0 +7,30,0,3,1,2,4,2,1,3,4,4,4,2,5,1,3,2,2,1,0 +3,29,0,1,1,2,4,2,1,4,4,4,5,1,5,1,3,2,1,1,0 +14,12,0,24,0,3,0,3,2,2,0,2,2,0,2,4,1,1,0,3,2 +12,5,0,24,0,3,4,5,4,5,5,3,5,2,0,2,0,4,3,5,1 +20,11,1,17,5,3,1,5,4,2,2,1,1,4,1,4,1,5,4,5,2 +8,6,1,25,4,3,1,4,2,4,3,0,4,4,0,3,1,4,0,2,0 +2,27,0,2,1,2,5,2,1,4,4,4,4,1,5,1,3,2,1,1,0 +12,17,0,13,2,1,3,4,3,2,2,2,3,2,3,2,2,2,3,2,1 +10,15,1,12,3,1,2,4,2,3,2,3,3,3,2,2,2,3,2,2,1 +16,12,1,22,4,3,1,4,3,1,1,2,2,5,2,5,1,5,5,5,2 +15,12,1,16,4,3,1,4,4,2,1,2,1,3,2,4,1,5,4,5,2 +6,30,0,5,1,2,5,1,1,4,5,5,5,2,4,1,3,2,2,1,0 +1,28,0,7,1,2,4,2,2,4,5,4,4,1,4,1,3,2,1,1,0 +1,26,0,3,1,2,5,1,2,3,5,4,5,1,5,1,3,1,2,1,0 +16,3,1,27,4,3,1,4,5,2,1,2,1,4,2,4,1,4,5,5,2 +11,23,0,26,5,3,0,3,0,5,0,1,3,3,1,2,0,4,0,0,2 +21,14,1,24,4,3,1,3,5,1,2,1,1,3,2,5,1,5,4,4,2 +14,18,1,13,2,1,2,4,2,2,2,2,3,2,2,3,3,3,2,2,1 +2,26,0,2,1,2,5,2,2,3,5,4,5,2,5,1,3,2,1,1,0 +13,25,1,10,2,1,2,2,2,2,2,3,3,2,3,2,2,3,3,2,1 +19,5,1,24,4,3,1,4,3,2,2,2,1,4,1,5,1,4,4,5,2 +16,12,1,24,5,3,1,5,3,1,2,2,2,3,2,4,1,5,4,4,2 +15,13,1,17,5,3,1,4,4,1,2,1,2,5,1,4,1,5,4,4,2 +14,16,0,20,1,3,0,5,2,2,0,4,0,1,0,2,0,0,4,5,0 +10,18,1,12,3,1,2,2,3,2,2,3,2,3,2,3,3,2,2,3,1 +13,16,1,13,2,1,3,2,2,3,3,3,2,3,3,2,2,3,3,2,1 +15,13,1,23,4,3,1,3,3,2,1,2,1,5,1,5,1,5,4,4,2 +4,25,0,6,1,2,5,2,2,4,4,4,5,2,5,1,3,2,1,1,0 +0,28,0,0,1,2,4,2,2,4,5,5,5,1,5,1,3,2,2,1,0 +3,10,0,14,3,3,4,4,5,2,1,5,4,3,4,3,1,2,4,3,2 +2,15,1,18,5,3,1,0,1,3,3,5,4,4,3,3,1,3,1,3,2 +15,7,1,21,4,3,1,3,5,2,1,2,1,3,1,5,1,4,4,5,2 +10,25,0,9,2,1,2,2,3,3,3,2,3,2,2,3,2,2,2,2,1 +21,1,1,17,3,3,1,4,5,1,1,1,1,4,2,5,1,5,5,5,2 +6,4,0,12,4,3,1,1,4,4,4,1,4,4,3,0,0,0,3,2,2 +19,3,1,24,3,3,1,4,5,1,1,2,2,5,1,4,1,4,4,5,2 +9,13,1,18,5,3,0,0,3,2,3,5,2,4,1,4,1,2,5,1,0 +4,29,0,4,1,2,5,1,1,4,5,5,5,1,4,1,3,1,2,1,0 +20,10,1,18,3,3,1,4,3,2,1,1,2,4,1,5,1,4,4,4,2 +19,16,0,9,4,3,3,5,1,3,5,1,2,0,0,3,1,0,5,5,0 +6,11,0,24,4,3,1,1,0,3,4,2,0,3,2,1,1,2,0,1,0 +19,11,1,25,4,3,1,5,5,1,1,2,1,4,2,4,1,5,5,5,2 +13,20,0,9,2,1,3,4,3,3,3,2,3,2,3,2,3,3,3,3,1 +1,30,0,4,1,2,5,2,1,3,5,5,5,1,4,1,3,1,1,1,0 +7,17,0,0,4,3,5,4,5,1,0,1,2,1,1,1,0,1,0,3,2 +11,17,0,14,3,1,3,2,2,2,2,3,2,2,2,3,3,2,3,3,1 +9,12,0,8,0,3,0,0,0,1,3,4,0,1,1,1,1,3,4,3,2 +4,26,0,3,1,2,5,2,2,3,4,4,5,1,4,1,3,1,2,1,0 +21,0,1,19,5,3,1,4,3,1,1,1,2,5,1,4,1,4,4,4,2 +18,6,1,15,3,3,0,3,3,0,4,3,3,4,3,3,1,5,1,4,2 diff --git a/_config.yml b/_config.yml new file mode 100644 index 0000000..fe563d3 --- /dev/null +++ b/_config.yml @@ -0,0 +1 @@ +gh repo clone pages-themes/slate diff --git a/salary_model.csv b/salary_model.csv new file mode 100644 index 0000000..a3c7c37 --- /dev/null +++ b/salary_model.csv @@ -0,0 +1,14200 @@ + work_year ,experience_level,employment_type,job_title,salary,salary_currency,salary_in_usd,employee_residence,work_setting,company_location,company_size,job_category +2024,Entry-level,Freelance,Applied Data Scientist,30000,USD,30000,United Kingdom,Remote,United Kingdom,M,Data Science and Research +2024,Executive,Full-time,Business Intelligence,230000,USD,230000,United States,In-person,United States,M,BI and Visualization +2024,Executive,Full-time,Business Intelligence,176900,USD,176900,United States,In-person,United States,M,BI and Visualization +2024,Senior,Full-time,Data Architect,171210,USD,171210,Canada,In-person,Canada,M,Data Architecture and Modeling +2024,Senior,Full-time,Data Architect,92190,USD,92190,Canada,In-person,Canada,M,Data Architecture and Modeling +2024,Mid-level,Full-time,Data Science,46203,GBP,57753,United Kingdom,In-person,United Kingdom,M,Data Science and Research +2024,Mid-level,Full-time,Data Science,38280,GBP,47850,United Kingdom,In-person,United Kingdom,M,Data Science and Research +2024,Entry-level,Full-time,Insight Analyst,50000,USD,50000,United States,Remote,United States,M,Data Analysis +2024,Entry-level,Full-time,Insight Analyst,40000,USD,40000,United States,Remote,United States,M,Data Analysis +2024,Senior,Full-time,Data Engineer,276000,USD,276000,United States,In-person,United States,M,Data Engineering +2024,Senior,Full-time,Data Engineer,148000,USD,148000,United States,In-person,United States,M,Data Engineering +2024,Senior,Full-time,Research Scientist,234000,USD,234000,United States,In-person,United States,M,Data Science and Research +2024,Senior,Full-time,Research Scientist,146000,USD,146000,United States,In-person,United States,M,Data Science and Research +2024,Entry-level,Full-time,Business Intelligence Analyst,192300,USD,192300,United States,In-person,United States,M,BI and Visualization +2024,Entry-level,Full-time,Business Intelligence Analyst,120200,USD,120200,United States,In-person,United States,M,BI and Visualization +2024,Entry-level,Full-time,Analytics Engineer,132500,USD,132500,United States,In-person,United States,M,Leadership and Management +2024,Entry-level,Full-time,Analytics Engineer,111500,USD,111500,United States,In-person,United States,M,Leadership and Management +2024,Entry-level,Fulltime,Data Engineer,234000,USD,234000,United States,In-person,United States,M,Data Engineering +2024,Entry-level,Full-time,Data Engineer,146000,USD,146000,United States,In-person,United States,M,Data Engineering +2024,Senior,Full-time,Data Scientist,,USD,322000,United States,In-person,United States,M,Data Science and Research +2024,Senior,Full-time,Data Scientist,168000,USD,168000,United States,In-person,United States,M,Data Science and Research +2024,Mid-level,Full-time,Data Scientist,152000,USD,152000,Canada,In-person,Canada,M,Data Science and Research +2024,Mid-level,Full-time,Data Scientist,98000,USD,98000,Canada,In-person,Canada,M,Data Science and Research +2024,Senior,Full-time,Research Engineer,138000,USD,138000,United States,In-person,United States,M,Data Science and Research +2024,Senior,Full-time,Research Engineer,86000,USD,86000,United States,In-person,United States,M,Data Science and Research +2024,Senior,Full-time,Data Science,268700,USD,268700,United States,In-person,United States,M,Data Science and Research +2024,Senior,Full-time,Data Science,130300,USD,130300,United States,In-person,United States,M,Data Science and Research +2024,Senior,Full-time,BI Developer,60000,GBP,75000,United Kingdom,In-person,United Kingdom,M,BI and Visualization +2024,Senior,Full-time,BI Developer,40000,GBP,50000,United Kingdom,In-person,United Kingdom,M,BI and Visualization +2024,Senior,Full-time,Data Analyst,115000,USD,115000,United States,In-person,United States,M,Data Analysis +2024,Senior,Full-time,Data Analyst,105000,USD,105000,United States,In-person,United States,M,Data Analysis +2024,Senior,Full-time,Data Scientist,80000,GBP,100000,United Kingdom,In-person,United Kingdom,M,Data Science and Research +2024,Senior,Full-time,Data Scientist,70000,GBP,87500,United Kingdom,In-person,United Kingdom,M,Data Science and Research +2024,Senior,Full-time,Business Intelligence Engineer,156476,USD,156476,United States,Remote,United States,M,BI and Visualization +2024,Senior,Full-time,Business Intelligence Engineer,104981,USD,104981,United States,Remote,United States,M,BI and Visualization +2024,Mid-level,Full-time,Data Engineer,146000,USD,146000,United States,Remote,United States,M,Data Engineering +2024,Mid-level,Full-time,Data Engineer,110000,USD,110000,United States,Remote,United States,M,Data Engineering +2024,Senior,Full-time,Data Scientist,297000,USD,297000,United States,In-person,United States,M,Data Science and Research +2024,Senior,Full-time,Data Scientist,138000,USD,138000,United States,In-person,United States,M,Data Science and Research +2024,Senior,Full-time,Data Quality Engineer,190000,USD,190000,United States,In-person,United States,M,Data Quality and Operations +2024,Senior,Full-time,Data Quality Engineer,25000,USD,25000,United States,In-person,United States,M,Data Quality and Operations +2024,Mid-level,Full-time,Machine Learning Engineer,160480,USD,160480,United States,In-person,United States,M,Machine Learning and AI +2024,Mid-level,Full-time,Machine Learning Engineer,109920,USD,109920,United States,In-person,United States,M,Machine Learning and AI +2024,Senior,Full-time,Data Engineer,224000,USD,224000,United States,In-person,United States,M,Data Engineering +2024,Senior,Full-time,Data Engineer,150000,USD,150000,United States,In-person,United States,M,Data Engineering +2024,Entry-level,Full-time,Data Analyst,84000,USD,84000,United States,In-person,United States,M,Data Analysis +2024,Entry-level,Full-time,Data Analyst,75800,USD,75800,United States,In-person,United States,M,Data Analysis +2024,Mid-level,Full-time,Cloud Database Engineer,146125,USD,146125,United States,Remote,United States,M,Cloud and Database +2024,Mid-level,Full-time,Cloud Database Engineer,82000,USD,82000,United States,Remote,United States,M,Cloud and Database +2024,Mid-level,Full-time,Business Intelligence,207600,USD,207600,United States,In-person,United States,M,BI and Visualization +2024,Mid-level,Full-time,Business Intelligence,138400,USD,138400,United States,In-person,United States,M,BI and Visualization +2024,Entry-level,Full-time,Data Analyst,94600,USD,94600,United States,In-person,United States,M,Data Analysis +2024,Entry-level,Full-time,Data Analyst,75700,USD,75700,United States,In-person,United States,M,Data Analysis +2024,Senior,Full-time,Data Science,331292,USD,331292,United States,In-person,United States,M,Data Science and Research +2024,Senior,Full-time,Data Science,244868,USD,244868,United States,In-person,United States,M,Data Science and Research +2024,Senior,Full-time,Data Scientist,190000,USD,190000,United States,Remote,United States,M,Data Science and Research +2024,Senior,Full-time,Data Scientist,155000,USD,155000,United States,Remote,United States,M,Data Science and Research +2024,Mid-level,Full-time,Data Engineer,168000,USD,168000,United States,In-person,United States,M,Data Engineering +2024,Mid-level,Full-time,Data Engineer,158000,USD,158000,United States,In-person,United States,M,Data Engineering +2024,Executive,Full-time,Head of Data,243000,USD,243000,United States,In-person,United States,M,Leadership and Management +2024,Executive,Full-time,Head of Data,163000,USD,163000,United States,In-person,United States,M,Leadership and Management +2024,Senior,Full-time,Data Scientist,190000,USD,190000,United States,Remote,United States,M,Data Science and Research +2024,Senior,Full-time,Data Scientist,155000,USD,155000,United States,Remote,United States,M,Data Science and Research +2024,Senior,Full-time,Data Scientist,170000,USD,170000,United States,Remote,United States,M,Data Science and Research +2024,Senior,Full-time,Machine Learning Engineer,112800,EUR,125333,Lithuania,In-person,Lithuania,M,Machine Learning and AI +2024,Senior,Full-time,Machine Learning Engineer,73200,EUR,81333,Lithuania,In-person,Lithuania,M,Machine Learning and AI +2024,Senior,Full-time,Business Intelligence,192500,USD,192500,United States,In-person,United States,M,BI and Visualization +2024,Senior,Full-time,Business Intelligence,134900,USD,134900,United States,In-person,United States,M,BI and Visualization +2024,Senior,Full-time,Data Scientist,227000,USD,227000,United States,In-person,United States,M,Data Science and Research +2024,Senior,Full-time,Data Scientist,192780,USD,192780,United States,In-person,United States,M,Data Science and Research +2024,Mid-level,Full-time,BI Analyst,85000,USD,85000,United States,Remote,United States,M,BI and Visualization +2024,Mid-level,Full-time,BI Analyst,70000,USD,70000,United States,Remote,United States,M,BI and Visualization +2024,Senior,Full-time,Analytics Engineer,180000,USD,180000,United States,In-person,United States,M,Leadership and Management +2024,Senior,Full-time,Analytics Engineer,112000,USD,112000,United States,In-person,United States,M,Leadership and Management +2024,Senior,Full-time,Data Engineer,130000,USD,130000,United States,In-person,United States,M,Data Engineering +2024,Senior,Full-time,Data Engineer,100000,USD,100000,United States,In-person,United States,M,Data Engineering +2024,Senior,Full-time,Data Engineer,140000,USD,140000,United States,Remote,United States,M,Data Engineering +2024,Senior,Full-time,Data Engineer,100000,USD,100000,United States,Remote,United States,M,Data Engineering +2024,Mid-level,Full-time,Data Scientist,175000,USD,175000,United States,Remote,United States,M,Data Science and Research +2024,Mid-level,Full-time,Data Scientist,135000,USD,135000,United States,Remote,United States,M,Data Science and Research +2024,Mid-level,Full-time,Data Manager,110000,USD,110000,United States,In-person,United States,M,Leadership and Management +2024,Mid-level,Full-time,Data Manager,70000,USD,70000,United States,In-person,United States,M,Leadership and Management +2024,Senior,Full-time,Computational Biologist,236000,USD,236000,United States,In-person,United States,M,Data Science and Research +2024,Senior,Full-time,Computational Biologist,174000,USD,174000,United States,In-person,United States,M,Data Science and Research +2024,Senior,Full-time,Computational Biologist,242000,CAD,186153,Canada,In-person,Canada,M,Data Science and Research +2024,Senior,Full-time,Computational Biologist,215000,CAD,165384,Canada,In-person,Canada,M,Data Science and Research +2024,Senior,Full-time,Data Architect,363000,USD,363000,United States,In-person,United States,M,Data Architecture and Modeling +2024,Senior,Full-time,Data Architect,139800,USD,139800,United States,In-person,United States,M,Data Architecture and Modeling +2024,Senior,Full-time,Research Scientist,345000,USD,345000,United States,In-person,United States,M,Data Science and Research +2024,Senior,Full-time,Research Scientist,180000,USD,180000,United States,In-person,United States,M,Data Science and Research +2024,Senior,Full-time,Analytics Engineer,170000,USD,170000,United States,Remote,United States,M,Leadership and Management +2024,Senior,Full-time,Analytics Engineer,130000,USD,130000,United States,Remote,United States,M,Leadership and Management +2024,Mid-level,Full-time,Data Integration Specialist,75000,GBP,93750,United Kingdom,Remote,United Kingdom,M,Data Management and Strategy +2024,Mid-level,Full-time,Data Integration Specialist,55000,GBP,68750,United Kingdom,Remote,United Kingdom,M,Data Management and Strategy +2024,Senior,Full-time,Machine Learning Engineer,184800,USD,184800,Canada,Remote,Canada,M,Machine Learning and AI +2024,Senior,Full-time,Machine Learning Engineer,123200,USD,123200,Canada,Remote,Canada,M,Machine Learning and AI +2024,Senior,Full-time,Data Engineer,115000,USD,115000,United States,Remote,United States,M,Data Engineering +2024,Senior,Full-time,Data Engineer,105000,USD,105000,United States,Remote,United States,M,Data Engineering +2024,Mid-level,Full-time,Data Science Manager,110000,USD,110000,United States,In-person,United States,M,Data Science and Research +2024,Mid-level,Full-time,Data Science Manager,70000,USD,70000,United States,In-person,United States,M,Data Science and Research +2024,Entry-level,Full-time,Machine Learning Engineer,157900,USD,157900,Canada,Remote,Canada,M,Machine Learning and AI +2024,Entry-level,Full-time,Machine Learning Engineer,105300,USD,105300,Canada,Remote,Canada,M,Machine Learning and AI +2024,Mid-level,Full-time,Data Scientist,252000,USD,252000,United States,In-person,United States,M,Data Science and Research +2024,Mid-level,Full-time,Data Scientist,168000,USD,168000,United States,In-person,United States,M,Data Science and Research +2024,Executive,Full-time,AI Engineer,225000,USD,225000,United States,In-person,United States,M,Machine Learning and AI +2024,Executive,Full-time,AI Engineer,150000,USD,150000,United States,In-person,United States,M,Machine Learning and AI +2024,Mid-level,Full-time,Data Engineer,150000,USD,150000,United States,Remote,United States,M,Data Engineering +2024,Mid-level,Full-time,Data Engineer,90000,USD,90000,United States,Remote,United States,M,Data Engineering +2024,Mid-level,Full-time,Data Analyst,150000,USD,150000,United States,In-person,United States,M,Data Analysis +2024,Mid-level,Full-time,Data Analyst,117000,USD,117000,United States,In-person,United States,M,Data Analysis +2024,Mid-level,Full-time,Research Engineer,440000,USD,440000,United States,In-person,United States,M,Data Science and Research +2024,Mid-level,Full-time,Research Engineer,295000,USD,295000,United States,In-person,United States,M,Data Science and Research +2024,Mid-level,Full-time,Data Scientist,70000,GBP,87500,United Kingdom,In-person,United Kingdom,M,Data Science and Research +2024,Mid-level,Full-time,Data Scientist,50000,GBP,62500,United Kingdom,In-person,United Kingdom,M,Data Science and Research +2024,Mid-level,Full-time,Data Analyst,150000,USD,150000,United States,Remote,United States,M,Data Analysis +2024,Mid-level,Full-time,Data Analyst,120000,USD,120000,United States,Remote,United States,M,Data Analysis +2024,Mid-level,Full-time,Data Engineer,148000,USD,148000,United States,In-person,United States,M,Data Engineering +2024,Mid-level,Full-time,Data Engineer,106500,USD,106500,United States,In-person,United States,M,Data Engineering +2024,Senior,Full-time,Applied Scientist,209000,USD,209000,Poland,Remote,Poland,M,Data Science and Research +2024,Senior,Full-time,Applied Scientist,155000,USD,155000,Poland,Remote,Poland,M,Data Science and Research +2024,Senior,Full-time,AI Engineer,210000,USD,210000,United States,In-person,United States,M,Machine Learning and AI +2024,Senior,Full-time,AI Engineer,180000,USD,180000,United States,In-person,United States,M,Machine Learning and AI +2024,Senior,Full-time,Data Scientist,170000,USD,170000,United States,In-person,United States,M,Data Science and Research +2024,Senior,Full-time,Data Scientist,130000,USD,130000,United States,In-person,United States,M,Data Science and Research +2024,Senior,Full-time,Data Scientist,70000,GBP,87500,United Kingdom,In-person,United Kingdom,M,Data Science and Research +2024,Senior,Full-time,Data Scientist,50000,GBP,62500,United Kingdom,In-person,United Kingdom,M,Data Science and Research +2024,Senior,Full-time,Data Engineer,220000,USD,220000,Canada,In-person,Canada,M,Data Engineering +2024,Senior,Full-time,Data Engineer,180000,USD,180000,Canada,In-person,Canada,M,Data Engineering +2024,Senior,Full-time,Machine Learning Engineer,278700,USD,278700,United States,In-person,United States,M,Machine Learning and AI +2024,Senior,Full-time,Machine Learning Engineer,159300,USD,159300,United States,In-person,United States,M,Machine Learning and AI +2024,Senior,Full-time,Data Analyst,145000,USD,145000,United States,In-person,United States,M,Data Analysis +2024,Senior,Full-time,Data Analyst,110000,USD,110000,United States,In-person,United States,M,Data Analysis +2024,Entry-level,Full-time,Data Science,51550,EUR,57277,France,Hybrid,France,M,Data Science and Research +2024,Senior,Full-time,BI Data Analyst,60000,EUR,66666,Germany,Hybrid,Germany,S,Data Analysis +2024,Mid-level,Full-time,Analytics Engineer,126000,USD,126000,United States,In-person,United States,M,Leadership and Management +2024,Mid-level,Full-time,Analytics Engineer,78000,USD,78000,United States,In-person,United States,M,Leadership and Management +2024,Senior,Full-time,Research Scientist,290000,USD,290000,United States,In-person,United States,M,Data Science and Research +2024,Senior,Full-time,Research Scientist,240000,USD,240000,United States,In-person,United States,M,Data Science and Research +2024,Senior,Full-time,Machine Learning Engineer,210000,USD,210000,United States,In-person,United States,M,Machine Learning and AI +2024,Senior,Full-time,Machine Learning Engineer,178500,USD,178500,United States,In-person,United States,M,Machine Learning and AI +2024,Senior,Full-time,AI Research Scientist,150000,USD,150000,Saudi Arabia,Hybrid,Saudi Arabia,M,Data Science and Research +2024,Executive,Full-time,Machine Learning Engineer,290000,USD,290000,United States,In-person,United States,M,Machine Learning and AI +2024,Executive,Full-time,Machine Learning Engineer,232000,USD,232000,United States,In-person,United States,M,Machine Learning and AI +2024,Senior,Full-time,Research Scientist,234000,USD,234000,United States,In-person,United States,M,Data Science and Research +2024,Senior,Full-time,Research Scientist,146000,USD,146000,United States,In-person,United States,M,Data Science and Research +2024,Mid-level,Full-time,Data Engineer,172400,USD,172400,United States,In-person,United States,M,Data Engineering +2024,Mid-level,Full-time,Data Engineer,109000,USD,109000,United States,In-person,United States,M,Data Engineering +2024,Entry-level,Full-time,Data Analyst,88800,USD,88800,United States,In-person,United States,M,Data Analysis +2024,Entry-level,Full-time,Data Analyst,64600,USD,64600,United States,In-person,United States,M,Data Analysis +2024,Mid-level,Full-time,MLOps Engineer,156200,USD,156200,Canada,In-person,Canada,M,Machine Learning and AI +2024,Mid-level,Full-time,MLOps Engineer,106500,USD,106500,Canada,In-person,Canada,M,Machine Learning and AI +2024,Senior,Full-time,Data Scientist,185900,USD,185900,United States,In-person,United States,M,Data Science and Research +2024,Senior,Full-time,Data Scientist,109400,USD,109400,United States,In-person,United States,M,Data Science and Research +2024,Entry-level,Full-time,Research Analyst,106000,USD,106000,United States,In-person,United States,M,Data Science and Research +2024,Entry-level,Full-time,Research Analyst,66000,USD,66000,United States,In-person,United States,M,Data Science and Research +2024,Senior,Full-time,Machine Learning Engineer,234300,USD,234300,United States,In-person,United States,M,Machine Learning and AI +2024,Senior,Full-time,Machine Learning Engineer,96900,USD,96900,United States,In-person,United States,M,Machine Learning and AI +2024,Entry-level,Full-time,Data Analyst,157600,USD,157600,United States,In-person,United States,M,Data Analysis +2024,Entry-level,Full-time,Data Analyst,96800,USD,96800,United States,In-person,United States,M,Data Analysis +2024,Senior,Full-time,Research Engineer,339250,USD,339250,United States,In-person,United States,M,Data Science and Research +2024,Senior,Full-time,Research Engineer,180000,USD,180000,United States,In-person,United States,M,Data Science and Research +2024,Entry-level,Full-time,Admin & Data Analyst,40000,USD,40000,India,Remote,United States,M,Data Analysis +2024,Entry-level,Full-time,Data Analyst,70000,USD,70000,United States,In-person,United States,M,Data Analysis +2024,Entry-level,Full-time,Data Analyst,50000,USD,50000,United States,In-person,United States,M,Data Analysis +2024,Senior,Full-time,Research Analyst,94600,USD,94600,United States,In-person,United States,M,Data Science and Research +2024,Senior,Full-time,Research Analyst,77400,USD,77400,United States,In-person,United States,M,Data Science and Research +2024,Entry-level,Full-time,Data Analyst,192500,USD,192500,United States,In-person,United States,M,Data Analysis +2024,Entry-level,Full-time,Data Analyst,140000,USD,140000,United States,In-person,United States,M,Data Analysis +2024,Mid-level,Full-time,Data Scientist,154500,USD,154500,United States,In-person,United States,M,Data Science and Research +2024,Mid-level,Full-time,Data Scientist,75705,USD,75705,United States,In-person,United States,M,Data Science and Research +2024,Entry-level,Full-time,Business Intelligence Analyst,95000,USD,95000,United States,In-person,United States,M,BI and Visualization +2024,Entry-level,Full-time,Business Intelligence Analyst,85000,USD,85000,United States,In-person,United States,M,BI and Visualization +2024,Mid-level,Full-time,Business Intelligence Manager,164700,USD,164700,United States,In-person,United States,M,BI and Visualization +2024,Mid-level,Full-time,Business Intelligence Manager,117500,USD,117500,United States,In-person,United States,M,BI and Visualization +2024,Entry-level,Full-time,Data Analyst,80000,USD,80000,United States,In-person,United States,M,Data Analysis +2024,Entry-level,Full-time,Data Analyst,45700,USD,45700,United States,In-person,United States,M,Data Analysis +2024,Senior,Full-time,Data Analyst,117000,USD,117000,United States,In-person,United States,M,Data Analysis +2024,Senior,Full-time,Data Analyst,115765,USD,115765,United States,In-person,United States,M,Data Analysis +2024,Senior,Full-time,Data Analyst,140000,USD,140000,Canada,In-person,Canada,M,Data Analysis +2024,Senior,Full-time,Data Analyst,107000,USD,107000,Canada,In-person,Canada,M,Data Analysis +2024,Senior,Full-time,Machine Learning Engineer,178250,USD,178250,United States,Remote,United States,M,Machine Learning and AI +2024,Senior,Full-time,Machine Learning Engineer,105500,USD,105500,United States,Remote,United States,M,Machine Learning and AI +2024,Senior,Full-time,Data Developer,50000,GBP,62500,United Kingdom,In-person,United Kingdom,M,Leadership and Management +2024,Senior,Full-time,Data Developer,50000,GBP,62500,United Kingdom,In-person,United Kingdom,M,Leadership and Management +2024,Senior,Full-time,Prompt Engineer,197011,USD,197011,United States,Remote,United States,M,Machine Learning and AI +2024,Senior,Full-time,Prompt Engineer,115889,USD,115889,United States,Remote,United States,M,Machine Learning and AI +2024,Mid-level,Full-time,Research Scientist,138000,USD,138000,United States,In-person,United States,M,Data Science and Research +2024,Mid-level,Full-time,Research Scientist,86000,USD,86000,United States,In-person,United States,M,Data Science and Research +2024,Senior,Full-time,Data Engineer,259700,USD,259700,United States,Remote,United States,M,Data Engineering +2024,Senior,Full-time,Data Engineer,185500,USD,185500,United States,Remote,United States,M,Data Engineering +2024,Entry-level,Full-time,Data Analyst,80000,USD,80000,United States,Remote,United States,M,Data Analysis +2024,Entry-level,Full-time,Data Analyst,80000,USD,80000,United States,Remote,United States,M,Data Analysis +2024,Executive,Full-time,Data Analyst,175000,USD,175000,United States,In-person,United States,M,Data Analysis +2024,Executive,Full-time,Data Analyst,68000,USD,68000,United States,In-person,United States,M,Data Analysis +2024,Mid-level,Full-time,Data Science,243500,USD,243500,United States,In-person,United States,M,Data Science and Research +2024,Mid-level,Full-time,Data Science,201400,USD,201400,United States,In-person,United States,M,Data Science and Research +2024,Entry-level,Full-time,Data Analyst,26800,GBP,33500,United Kingdom,In-person,United Kingdom,M,Data Analysis +2024,Entry-level,Full-time,Data Analyst,26800,GBP,33500,United Kingdom,In-person,United Kingdom,M,Data Analysis +2024,Mid-level,Full-time,Data Analyst,110000,USD,110000,United States,In-person,United States,M,Data Analysis +2024,Mid-level,Full-time,Data Analyst,90000,USD,90000,United States,In-person,United States,M,Data Analysis +2024,Senior,Full-time,Research Scientist,123765,USD,123765,United States,Remote,United States,M,Data Science and Research +2024,Senior,Full-time,Research Scientist,85469,USD,85469,United States,Remote,United States,M,Data Science and Research +2024,Mid-level,Full-time,Data Analyst,85000,USD,85000,United States,Remote,United States,M,Data Analysis +2024,Mid-level,Full-time,Data Analyst,61800,USD,61800,United States,Remote,United States,M,Data Analysis +2024,Mid-level,Full-time,Data Engineer,242100,USD,242100,United States,In-person,United States,M,Data Engineering +2024,Mid-level,Full-time,Data Engineer,116200,USD,116200,United States,In-person,United States,M,Data Engineering +2024,Mid-level,Full-time,Data Manager,128000,USD,128000,United States,In-person,United States,M,Leadership and Management +2024,Mid-level,Full-time,Data Manager,81500,USD,81500,United States,In-person,United States,M,Leadership and Management +2024,Senior,Full-time,Machine Learning Engineer,250000,USD,250000,United States,In-person,United States,M,Machine Learning and AI +2024,Senior,Full-time,Machine Learning Engineer,212500,USD,212500,United States,In-person,United States,M,Machine Learning and AI +2024,Senior,Full-time,Data Scientist,90000,EUR,100000,France,Remote,France,M,Data Science and Research +2024,Senior,Full-time,Data Scientist,50000,EUR,55555,France,Remote,France,M,Data Science and Research +2024,Mid-level,Full-time,Data Specialist,69000,USD,69000,United States,In-person,United States,M,Data Management and Strategy +2024,Mid-level,Full-time,Data Specialist,44000,USD,44000,United States,In-person,United States,M,Data Management and Strategy +2024,Mid-level,Full-time,Data Analyst,77280,USD,77280,United States,In-person,United States,M,Data Analysis +2024,Mid-level,Full-time,Data Analyst,58000,USD,58000,United States,In-person,United States,M,Data Analysis +2024,Entry-level,Full-time,Business Intelligence,166000,USD,166000,United States,Remote,United States,M,BI and Visualization +2024,Entry-level,Full-time,Business Intelligence,119000,USD,119000,United States,Remote,United States,M,BI and Visualization +2024,Senior,Full-time,Machine Learning Engineer,192000,USD,192000,United States,In-person,United States,M,Machine Learning and AI +2024,Senior,Full-time,Machine Learning Engineer,164000,USD,164000,United States,In-person,United States,M,Machine Learning and AI +2024,Mid-level,Full-time,Research Scientist,218213,USD,218213,United States,In-person,United States,M,Data Science and Research +2024,Mid-level,Full-time,Research Scientist,151800,USD,151800,United States,In-person,United States,M,Data Science and Research +2024,Senior,Full-time,Data Architect,149750,USD,149750,United States,Remote,United States,M,Data Architecture and Modeling +2024,Senior,Full-time,Data Architect,84500,USD,84500,United States,Remote,United States,M,Data Architecture and Modeling +2024,Senior,Full-time,Data Scientist,130000,USD,130000,United States,In-person,United States,M,Data Science and Research +2024,Senior,Full-time,Data Scientist,120000,USD,120000,United States,In-person,United States,M,Data Science and Research +2024,Mid-level,Full-time,Data Integration Engineer,100000,USD,100000,United States,In-person,United States,M,Data Engineering +2024,Mid-level,Full-time,Data Integration Engineer,70000,USD,70000,United States,In-person,United States,M,Data Engineering +2024,Mid-level,Full-time,Data Engineer,200000,USD,200000,United States,In-person,United States,M,Data Engineering +2024,Mid-level,Full-time,Data Engineer,150000,USD,150000,United States,In-person,United States,M,Data Engineering +2024,Senior,Full-time,Data Scientist,253430,USD,253430,United States,In-person,United States,M,Data Science and Research +2024,Senior,Full-time,Data Scientist,200740,USD,200740,United States,In-person,United States,M,Data Science and Research +2024,Senior,Full-time,Data Scientist,234900,USD,234900,United States,In-person,United States,M,Data Science and Research +2024,Senior,Full-time,Data Scientist,97300,USD,97300,United States,In-person,United States,M,Data Science and Research +2024,Senior,Full-time,Machine Learning Engineer,206000,USD,206000,United States,Remote,United States,M,Machine Learning and AI +2024,Senior,Full-time,Machine Learning Engineer,165000,USD,165000,United States,Remote,United States,M,Machine Learning and AI +2024,Entry-level,Full-time,Data Analyst,70000,USD,70000,United States,Remote,United States,M,Data Analysis +2024,Entry-level,Full-time,Data Analyst,60000,USD,60000,United States,Remote,United States,M,Data Analysis +2024,Mid-level,Full-time,Data Science Manager,328000,USD,328000,United States,In-person,United States,M,Data Science and Research +2024,Mid-level,Full-time,Data Science Manager,258000,USD,258000,United States,In-person,United States,m,Data Science and Research +2024,Senior,Full-time,Data Engineer,190000,USD,190000,United States,In-person,United States,M,Data Engineering +2024,Senior,Full-time,Data Engineer,170000,USD,170000,United States,In-person,United States,M,Data Engineering +2024,Senior,Full-time,Data Engineer,100000,EUR,111111,Poland,Remote,Poland,M,Data Engineering +2024,Senior,Full-time,Data Engineer,60000,EUR,66666,Poland,Remote,Poland,M,Data Engineering +2024,Senior,Full-time,Data Scientist,180000,USD,180000,United States,In-person,United States,M,Data Science and Research +2024,Senior,Full-time,Data Scientist,162000,USD,162000,United States,In-person,United States,M,Data Science and Research +2024,Executive,Full-time,Business Intelligence,230000,USD,230000,Canada,In-person,Canada,M,BI and Visualization +2024,Executive,Full-time,Business Intelligence,155000,USD,155000,Canada,In-person,Canada,M,BI and Visualization +2024,Entry-level,Full-time,Data Science Analyst,70000,USD,70000,United States,In-person,United States,M,Data Science and Research +2024,Entry-level,Full-time,Data Science Analyst,64000,USD,64000,United States,In-person,United States,M,Data Science and Research +2024,Senior,Full-time,Data Analyst,165000,USD,165000,United States,Remote,United States,M,Data Analysis +2024,Senior,Full-time,Data Scientist,180000,USD,180000,United States,In-person,United States,M,Data Science and Research +2024,Senior,Full-time,Data Scientist,162000,USD,162000,United States,In-person,United States,M,Data Science and Research +2024,Senior,Full-time,Data Analytics Associate,91000,USD,91000,United States,Hybrid,United States,L,Data Analysis +2024,Entry-level,Full-time,Research Analyst,219000,USD,219000,United States,In-person,United States,M,Data Science and Research +2024,Entry-level,Full-time,Research Analyst,123000,USD,123000,United States,In-person,United States,M,Data Science and Research +2024,Mid-level,Full-time,Data Scientist,212000,USD,212000,United States,In-person,United States,M,Data Science and Research +2024,Mid-level,Full-time,Data Scientist,93300,USD,93300,United States,In-person,United States,M,Data Science and Research +2024,Entry-level,Full-time,BI Analyst,157600,USD,157600,United States,In-person,United States,M,BI and Visualization +2024,Entry-level,Full-time,BI Analyst,96800,USD,96800,United States,In-person,United States,M,BI and Visualization +2024,Entry-level,Full-time,Data Analyst,137100,USD,137100,United States,In-person,United States,M,Data Analysis +2024,Entry-level,Full-time,Data Analyst,109700,USD,109700,United States,In-person,United States,M,Data Analysis +2024,Mid-level,Full-time,Data Manager,83300,USD,83300,United States,In-person,United States,M,Leadership and Management +2024,Mid-level,Full-time,Data Manager,47500,USD,47500,United States,In-person,United States,M,Leadership and Management +2024,Senior,Full-time,Data Engineer,304750,USD,304750,United States,In-person,United States,M,Data Engineering +2024,Senior,Full-time,Data Engineer,160000,USD,160000,United States,In-person,United States,M,Data Engineering +2024,Senior,Full-time,Data Architect,242100,USD,242100,United States,In-person,United States,M,Data Architecture and Modeling +2024,Senior,Full-time,Data Architect,116200,USD,116200,United States,In-person,United States,M,Data Architecture and Modeling +2024,Mid-level,Full-time,Cloud Database Engineer,189000,USD,189000,United States,In-person,United States,M,Cloud and Database +2024,Mid-level,Full-time,Cloud Database Engineer,106000,USD,106000,United States,In-person,United States,M,Cloud and Database +2024,Entry-level,Full-time,Research Engineer,101200,USD,101200,United States,In-person,United States,M,Data Science and Research +2024,Entry-level,Full-time,Research Engineer,57700,USD,57700,United States,In-person,United States,M,Data Science and Research +2024,Senior,Full-time,Data Engineer,160000,USD,160000,United States,In-person,United States,M,Data Engineering +2024,Senior,Full-time,Data Engineer,77400,USD,77400,United States,In-person,United States,M,Data Engineering +2024,Senior,Full-time,Machine Learning Engineer,270000,USD,270000,United States,In-person,United States,M,Machine Learning and AI +2024,Senior,Full-time,Machine Learning Engineer,153000,USD,153000,United States,In-person,United States,M,Machine Learning and AI +2024,Entry-level,Full-time,Data Reporting Analyst,90300,USD,90300,United States,In-person,United States,M,Data Analysis +2024,Entry-level,Full-time,Data Reporting Analyst,50200,USD,50200,United States,In-person,United States,M,Data Analysis +2024,Entry-level,Full-time,Data Engineer,146000,USD,146000,United States,In-person,United States,M,Data Engineering +2024,Entry-level,Full-time,Data Engineer,98000,USD,98000,United States,In-person,United States,M,Data Engineering +2024,Mid-level,Full-time,Data Specialist,105000,USD,105000,Australia,In-person,Australia,M,Data Management and Strategy +2024,Mid-level,Full-time,Data Specialist,80000,USD,80000,Australia,In-person,Australia,M,Data Management and Strategy +2024,Senior,Full-time,Data Engineer,300000,USD,300000,United States,In-person,United States,M,Data Engineering +2024,Senior,Full-time,Data Engineer,200000,USD,200000,United States,In-person,United States,M,Data Engineering +2024,Executive,Full-time,Data Analyst,125000,USD,125000,United States,In-person,United States,M,Data Analysis +2024,Executive,Full-time,Data Analyst,100000,USD,100000,United States,In-person,United States,M,Data Analysis +2024,Senior,Full-time,Data Engineer,165000,USD,165000,United States,In-person,United States,M,Data Engineering +2024,Senior,Full-time,Data Engineer,100000,USD,100000,United States,In-person,United States,M,Data Engineering +2024,Mid-level,Full-time,Data Engineer,115000,USD,115000,United States,Remote,United States,M,Data Engineering +2024,Mid-level,Full-time,Data Engineer,75000,USD,75000,United States,Remote,United States,M,Data Engineering +2024,Senior,Full-time,Research Scientist,96643,USD,96643,Canada,In-person,Canada,M,Data Science and Research +2024,Senior,Full-time,Research Scientist,51543,USD,51543,Canada,In-person,Canada,M,Data Science and Research +2024,Mid-level,Full-time,Business Intelligence Analyst,181280,USD,181280,United States,In-person,United States,M,BI and Visualization +2024,Mid-level,Full-time,Business Intelligence Analyst,164800,USD,164800,United States,In-person,United States,M,BI and Visualization +2024,Mid-level,Full-time,Data Analyst,107500,USD,107500,United States,In-person,United States,M,Data Analysis +2024,Mid-level,Full-time,Data Analyst,96750,USD,96750,United States,In-person,United States,M,Data Analysis +2024,Senior,Full-time,Data Scientist,96750,USD,96750,United States,In-person,United States,M,Data Science and Research +2024,Senior,Full-time,Data Scientist,69600,USD,69600,United States,In-person,United States,M,Data Science and Research +2024,Mid-level,Full-time,Data Scientist,150000,USD,150000,United States,Remote,United States,M,Data Science and Research +2024,Mid-level,Full-time,Data Scientist,127500,USD,127500,United States,Remote,United States,M,Data Science and Research +2024,Executive,Full-time,Data Engineer,225000,USD,225000,United States,In-person,United States,M,Data Engineering +2024,Executive,Full-time,Data Engineer,190000,USD,190000,United States,In-person,United States,M,Data Engineering +2024,Senior,Full-time,Data Scientist,245000,USD,245000,United States,In-person,United States,M,Data Science and Research +2024,Senior,Full-time,Data Scientist,180000,USD,180000,United States,In-person,United States,M,Data Science and Research +2024,Senior,Full-time,Data Architect,175000,USD,175000,United States,In-person,United States,M,Data Architecture and Modeling +2024,Senior,Full-time,Data Architect,117000,USD,117000,United States,In-person,United States,M,Data Architecture and Modeling +2024,Senior,Full-time,Data Scientist,190000,USD,190000,United States,Remote,United States,M,Data Science and Research +2024,Senior,Full-time,Data Scientist,136000,USD,136000,United States,Remote,United States,M,Data Science and Research +2024,Senior,Full-time,Research Scientist,245400,USD,245400,United States,In-person,United States,M,Data Science and Research +2024,Senior,Full-time,Research Scientist,139000,USD,139000,United States,In-person,United States,M,Data Science and Research +2024,Mid-level,Full-time,Data Scientist,170000,USD,170000,United States,In-person,United States,M,Data Science and Research +2024,Mid-level,Full-time,Data Scientist,120000,USD,120000,United States,In-person,United States,M,Data Science and Research +2024,Senior,Full-time,Data Engineer,169900,USD,169900,United States,Remote,United States,M,Data Engineering +2024,Senior,Full-time,Data Engineer,135920,USD,135920,United States,Remote,United States,M,Data Engineering +2024,Senior,Full-time,Data Scientist,170000,USD,170000,United States,In-person,United States,M,Data Science and Research +2024,Senior,Full-time,Data Scientist,160000,USD,160000,United States,In-person,United States,M,Data Science and Research +2024,Senior,Full-time,Data Science,240000,USD,240000,United States,In-person,United States,M,Data Science and Research +2024,Senior,Full-time,Data Science,204000,USD,204000,United States,In-person,United States,M,Data Science and Research +2024,Senior,Full-time,Data Scientist,185000,USD,185000,United States,In-person,United States,M,Data Science and Research +2024,Senior,Full-time,Data Scientist,123000,USD,123000,United States,In-person,United States,M,Data Science and Research +2024,Mid-level,Full-time,Data Science,170000,USD,170000,United States,In-person,United States,M,Data Science and Research +2024,Mid-level,Full-time,Data Science,140000,USD,140000,United States,In-person,United States,M,Data Science and Research +2024,Senior,Full-time,AI Engineer,90000,USD,90000,United Arab Emirates,In-person,United Arab Emirates,L,Machine Learning and AI +2024,Senior,Full-time,Machine Learning Engineer,180500,USD,180500,United States,In-person,United States,M,Machine Learning and AI +2024,Senior,Full-time,Machine Learning Engineer,96200,USD,96200,United States,In-person,United States,M,Machine Learning and AI +2024,Senior,Full-time,Machine Learning Engineer,235000,USD,235000,Australia,In-person,Australia,M,Machine Learning and AI +2024,Senior,Full-time,Machine Learning Engineer,175000,USD,175000,Australia,In-person,Australia,M,Machine Learning and AI +2024,Mid-level,Full-time,Business Intelligence Developer,95413,USD,95413,United States,Remote,United States,M,BI and Visualization +2024,Mid-level,Full-time,Business Intelligence Developer,70692,USD,70692,United States,Remote,United States,M,BI and Visualization +2024,Senior,Full-time,Data Engineer,110000,USD,110000,Ukraine,In-person,Ukraine,M,Data Engineering +2024,Senior,Full-time,Data Engineer,48000,USD,48000,Ukraine,In-person,Ukraine,M,Data Engineering +2024,Senior,Full-time,Data Scientist,222300,USD,222300,United States,In-person,United States,M,Data Science and Research +2024,Senior,Full-time,Data Scientist,119700,USD,119700,United States,In-person,United States,M,Data Science and Research +2024,Senior,Full-time,Cloud Database Engineer,170375,USD,170375,United States,Remote,United States,M,Cloud and Database +2024,Senior,Full-time,Cloud Database Engineer,102500,USD,102500,United States,Remote,United States,M,Cloud and Database +2024,Senior,Full-time,Data Engineer,270000,USD,270000,Australia,In-person,Australia,M,Data Engineering +2024,Senior,Full-time,Data Engineer,190000,USD,190000,Australia,In-person,Australia,M,Data Engineering +2024,Mid-level,Full-time,Data Engineer,98000,USD,98000,United States,In-person,United States,M,Data Engineering +2024,Mid-level,Full-time,Data Engineer,68300,USD,68300,United States,In-person,United States,M,Data Engineering +2024,Mid-level,Full-time,Machine Learning Engineer,223100,USD,223100,United States,Remote,United States,M,Machine Learning and AI +2024,Mid-level,Full-time,Machine Learning Engineer,126400,USD,126400,United States,Remote,United States,M,Machine Learning and AI +2024,Senior,Full-time,Data Engineer,283800,USD,283800,United States,Remote,United States,M,Data Engineering +2024,Senior,Full-time,Data Engineer,198900,USD,198900,United States,Remote,United States,M,Data Engineering +2024,Mid-level,Full-time,Research Engineer,166000,USD,166000,United States,In-person,United States,M,Data Science and Research +2024,Mid-level,Full-time,Research Engineer,73000,USD,73000,United States,In-person,United States,M,Data Science and Research +2024,Entry-level,Full-time,Data Analyst,130000,USD,130000,United States,In-person,United States,M,Data Analysis +2024,Entry-level,Full-time,Data Analyst,100000,USD,100000,United States,In-person,United States,M,Data Analysis +2024,Senior,Full-time,Machine Learning Scientist,220000,USD,220000,United States,In-person,United States,M,Machine Learning and AI +2024,Senior,Full-time,Machine Learning Scientist,137500,USD,137500,United States,In-person,United States,M,Machine Learning and AI +2024,Senior,Full-time,Research Engineer,234000,USD,234000,United States,In-person,United States,M,Data Science and Research +2024,Senior,Full-time,Research Engineer,146000,USD,146000,United States,In-person,United States,M,Data Science and Research +2024,Entry-level,Full-time,Data Analyst,39600,EUR,44000,Lithuania,In-person,Lithuania,M,Data Analysis +2024,Entry-level,Full-time,Data Analyst,33600,EUR,37333,Lithuania,In-person,Lithuania,M,Data Analysis +2024,Senior,Full-time,Data Engineer,275000,USD,275000,United States,Remote,United States,M,Data Engineering +2024,Senior,Full-time,Data Engineer,200000,USD,200000,United States,Remote,United States,M,Data Engineering +2024,Senior,Full-time,Data Engineer,204000,USD,204000,United States,In-person,United States,M,Data Engineering +2024,Senior,Full-time,Data Engineer,163200,USD,163200,United States,In-person,United States,M,Data Engineering +2024,Mid-level,Full-time,Data Scientist,135000,USD,135000,United States,Remote,United States,M,Data Science and Research +2024,Mid-level,Full-time,Data Scientist,110000,USD,110000,United States,Remote,United States,M,Data Science and Research +2024,Senior,Full-time,Machine Learning Engineer,195000,USD,195000,United States,Remote,United States,M,Machine Learning and AI +2024,Senior,Full-time,Machine Learning Engineer,170000,USD,170000,United States,Remote,United States,M,Machine Learning and AI +2024,Mid-level,Full-time,Data Engineer,210000,USD,210000,United States,In-person,United States,M,Data Engineering +2024,Mid-level,Full-time,Data Engineer,130000,USD,130000,United States,In-person,United States,M,Data Engineering +2024,Mid-level,Full-time,Data Scientist,136000,USD,136000,United States,In-person,United States,M,Data Science and Research +2024,Mid-level,Full-time,Data Scientist,106700,USD,106700,United States,In-person,United States,M,Data Science and Research +2024,Mid-level,Full-time,Data Scientist,164000,USD,164000,United States,In-person,United States,M,Data Science and Research +2024,Mid-level,Full-time,Data Scientist,131000,USD,131000,United States,In-person,United States,M,Data Science and Research +2024,Mid-level,Full-time,Applied Scientist,250000,USD,250000,United States,In-person,United States,M,Data Science and Research +2024,Mid-level,Full-time,Applied Scientist,170000,USD,170000,United States,In-person,United States,M,Data Science and Research +2024,Senior,Full-time,Data Analyst,175000,USD,175000,United States,In-person,United States,M,Data Analysis +2024,Senior,Full-time,Data Analyst,117000,USD,117000,United States,In-person,United States,M,Data Analysis +2024,Senior,Full-time,Data Engineer,205500,USD,205500,United States,Remote,United States,M,Data Engineering +2024,Senior,Full-time,Data Engineer,135000,USD,135000,United States,Remote,United States,M,Data Engineering +2024,Senior,Full-time,Data Engineer,146000,USD,146000,United States,In-person,United States,M,Data Engineering +2024,Senior,Full-time,Data Engineer,82500,USD,82500,United States,In-person,United States,M,Data Engineering +2024,Mid-level,Full-time,Data Science Manager,240000,USD,240000,United States,In-person,United States,M,Data Science and Research +2024,Mid-level,Full-time,Data Science Manager,180000,USD,180000,United States,In-person,United States,M,Data Science and Research +2024,Senior,Full-time,Data Analyst,157500,USD,157500,United States,Remote,United States,M,Data Analysis +2024,Senior,Full-time,Data Analyst,132500,USD,132500,United States,Remote,United States,M,Data Analysis +2024,Senior,Full-time,Data Engineer,209943,USD,209943,United States,In-person,United States,M,Data Engineering +2024,Senior,Full-time,Data Engineer,155175,USD,155175,United States,In-person,United States,M,Data Engineering +2024,Senior,Full-time,Data Scientist,244800,USD,244800,United States,In-person,United States,M,Data Science and Research +2024,Senior,Full-time,Data Scientist,172000,USD,172000,United States,In-person,United States,M,Data Science and Research +2024,Senior,Full-time,Research Scientist,250000,USD,250000,United States,In-person,United States,M,Data Science and Research +2024,Senior,Full-time,Research Scientist,200000,USD,200000,United States,In-person,United States,M,Data Science and Research +2024,Senior,Full-time,Research Scientist,280000,USD,280000,United States,In-person,United States,M,Data Science and Research +2024,Senior,Full-time,Prompt Engineer,280000,USD,280000,United States,In-person,United States,M,Machine Learning and AI +2024,Senior,Full-time,Data Science,180000,USD,180000,United States,In-person,United States,M,Data Science and Research +2024,Senior,Full-time,Data Science,160000,USD,160000,United States,In-person,United States,M,Data Science and Research +2024,Entry-level,Full-time,Data Analyst,184180,USD,184180,United States,In-person,United States,M,Data Analysis +2024,Entry-level,Full-time,Data Analyst,159870,USD,159870,United States,In-person,United States,M,Data Analysis +2024,Senior,Full-time,Data Scientist,195000,USD,195000,United States,In-person,United States,M,Data Science and Research +2024,Senior,Full-time,Data Scientist,110000,USD,110000,United States,In-person,United States,M,Data Science and Research +2024,Senior,Full-time,Research Scientist,180000,USD,180000,United States,Remote,United States,M,Data Science and Research +2024,Senior,Full-time,Data Scientist,220000,USD,220000,United States,In-person,United States,M,Data Science and Research +2024,Senior,Full-time,Data Scientist,137500,USD,137500,United States,In-person,United States,M,Data Science and Research +2024,Senior,Full-time,AI Engineer,212000,USD,212000,United States,In-person,United States,M,Machine Learning and AI +2024,Senior,Full-time,AI Engineer,93300,USD,93300,United States,In-person,United States,M,Machine Learning and AI +2024,Senior,Full-time,Data Scientist,212000,USD,212000,United States,In-person,United States,M,Data Science and Research +2024,Senior,Full-time,Data Scientist,93300,USD,93300,United States,In-person,United States,M,Data Science and Research +2024,Entry-level,Full-time,Data Analyst,291900,USD,291900,United States,In-person,United States,M,Data Analysis +2024,Entry-level,Full-time,Data Analyst,103800,USD,103800,United States,In-person,United States,M,Data Analysis +2024,Senior,Full-time,Data Science,234000,USD,234000,United States,In-person,United States,M,Data Science and Research +2024,Senior,Full-time,Data Science,146000,USD,146000,United States,In-person,United States,M,Data Science and Research +2024,Senior,Full-time,Data Scientist,212000,USD,212000,United States,In-person,United States,M,Data Science and Research +2024,Senior,Full-time,Data Scientist,93300,USD,93300,United States,In-person,United States,M,Data Science and Research +2024,Mid-level,Full-time,Data Science Consultant,160000,USD,160000,United States,Remote,United States,M,Data Science and Research +2024,Mid-level,Full-time,Data Science Consultant,70000,USD,70000,United States,Remote,United States,M,Data Science and Research +2024,Senior,Full-time,Research Engineer,179000,USD,179000,United States,In-person,United States,M,Data Science and Research +2024,Senior,Full-time,Research Engineer,112000,USD,112000,United States,In-person,United States,M,Data Science and Research +2024,Entry-level,Full-time,Data Management Analyst,145000,USD,145000,United States,In-person,United States,M,Data Management and Strategy +2024,Entry-level,Full-time,Data Management Analyst,120000,USD,120000,United States,In-person,United States,M,Data Management and Strategy +2024,Mid-level,Full-time,Data Scientist,142100,USD,142100,United States,In-person,United States,M,Data Science and Research +2024,Mid-level,Full-time,Data Scientist,94700,USD,94700,United States,In-person,United States,M,Data Science and Research +2024,Mid-level,Full-time,AI Engineer,166000,USD,166000,United States,In-person,United States,M,Machine Learning and AI +2024,Mid-level,Full-time,AI Engineer,73100,USD,73100,United States,In-person,United States,M,Machine Learning and AI +2024,Senior,Full-time,Data Science Consultant,145000,USD,145000,United States,In-person,United States,M,Data Science and Research +2024,Senior,Full-time,Data Science Consultant,128000,USD,128000,United States,In-person,United States,M,Data Science and Research +2024,Entry-level,Full-time,Data Analyst,90000,USD,90000,United States,In-person,United States,M,Data Analysis +2024,Entry-level,Full-time,Data Analyst,75000,USD,75000,United States,In-person,United States,M,Data Analysis +2024,Mid-level,Full-time,Data Scientist,99000,USD,99000,United States,In-person,United States,M,Data Science and Research +2024,Mid-level,Full-time,Data Scientist,87000,USD,87000,United States,In-person,United States,M,Data Science and Research +2024,Executive,Full-time,Data Engineer,334075,USD,334075,Canada,In-person,Canada,M,Data Engineering +2024,Executive,Full-time,Data Engineer,268500,USD,268500,Canada,In-person,Canada,M,Data Engineering +2024,Senior,Full-time,Data Scientist,230000,USD,230000,United States,In-person,United States,M,Data Science and Research +2024,Senior,Full-time,Data Scientist,195000,USD,195000,United States,In-person,United States,M,Data Science and Research +2024,Senior,Full-time,Research Analyst,212000,USD,212000,United States,In-person,United States,M,Data Science and Research +2024,Senior,Full-time,Research Analyst,93300,USD,93300,United States,In-person,United States,M,Data Science and Research +2024,Entry-level,Full-time,Data Operations Analyst,110500,USD,110500,United States,In-person,United States,M,Data Quality and Operations +2024,Entry-level,Full-time,Data Operations Analyst,69000,USD,69000,United States,In-person,United States,M,Data Quality and Operations +2024,Senior,Full-time,Data Management Consultant,100000,USD,100000,United States,In-person,United States,M,Data Management and Strategy +2024,Senior,Full-time,Data Management Consultant,85000,USD,85000,United States,In-person,United States,M,Data Management and Strategy +2024,Mid-level,Full-time,Business Intelligence Analyst,107690,USD,107690,United States,In-person,United States,M,BI and Visualization +2024,Mid-level,Full-time,Business Intelligence Analyst,78300,USD,78300,United States,In-person,United States,M,BI and Visualization +2024,Entry-level,Full-time,Analytics Engineer,131000,USD,131000,United States,Remote,United States,M,Leadership and Management +2024,Entry-level,Full-time,Analytics Engineer,110000,USD,110000,United States,Remote,United States,M,Leadership and Management +2024,Entry-level,Full-time,Data Analyst,133000,USD,133000,United States,In-person,United States,M,Data Analysis +2024,Entry-level,Full-time,Data Analyst,58400,USD,58400,United States,In-person,United States,M,Data Analysis +2024,Entry-level,Full-time,Data Engineer,115000,USD,115000,United States,Remote,United States,M,Data Engineering +2024,Entry-level,Full-time,Data Engineer,87550,USD,87550,United States,Remote,United States,M,Data Engineering +2024,Executive,Full-time,Data Engineer,209309,USD,209309,United States,In-person,United States,M,Data Engineering +2024,Executive,Full-time,Data Engineer,168854,USD,168854,United States,In-person,United States,M,Data Engineering +2024,Entry-level,Full-time,Research Analyst,133000,USD,133000,United States,In-person,United States,M,Data Science and Research +2024,Entry-level,Full-time,Research Analyst,58400,USD,58400,United States,In-person,United States,M,Data Science and Research +2024,Senior,Full-time,Data Scientist,269000,USD,269000,Canada,In-person,Canada,M,Data Science and Research +2024,Senior,Full-time,Data Scientist,165000,USD,165000,Canada,In-person,Canada,M,Data Science and Research +2024,Senior,Full-time,Data Scientist,245000,USD,245000,United States,In-person,United States,M,Data Science and Research +2024,Senior,Full-time,Data Scientist,185000,USD,185000,United States,In-person,United States,M,Data Science and Research +2024,Senior,Full-time,Research Scientist,333500,USD,333500,United States,In-person,United States,M,Data Science and Research +2024,Senior,Full-time,Research Scientist,180000,USD,180000,United States,In-person,United States,M,Data Science and Research +2024,Senior,Full-time,Data Scientist,195000,USD,195000,United States,Remote,United States,M,Data Science and Research +2024,Senior,Full-time,Data Scientist,147500,USD,147500,United States,Remote,United States,M,Data Science and Research +2024,Entry-level,Full-time,Machine Learning Engineer,187500,USD,187500,United States,In-person,United States,M,Machine Learning and AI +2024,Entry-level,Full-time,Machine Learning Engineer,99500,USD,99500,United States,In-person,United States,M,Machine Learning and AI +2024,Senior,Full-time,Analytics Engineer,126400,USD,126400,United States,Remote,United States,M,Leadership and Management +2024,Senior,Full-time,Analytics Engineer,101100,USD,101100,United States,Remote,United States,M,Leadership and Management +2024,Senior,Full-time,Data Engineer,167400,USD,167400,United States,Remote,United States,M,Data Engineering +2024,Senior,Full-time,Data Engineer,116600,USD,116600,United States,Remote,United States,M,Data Engineering +2024,Senior,Full-time,Data Analyst,126000,USD,126000,United States,In-person,United States,M,Data Analysis +2024,Senior,Full-time,Data Analyst,87000,USD,87000,United States,In-person,United States,M,Data Analysis +2024,Senior,Full-time,Data Engineer,152375,USD,152375,United States,Remote,United States,M,Data Engineering +2024,Senior,Full-time,Data Engineer,94000,USD,94000,United States,Remote,United States,M,Data Engineering +2024,Senior,Full-time,Data Quality Analyst,80000,GBP,100000,United Kingdom,In-person,United Kingdom,M,Data Quality and Operations +2024,Senior,Full-time,Data Quality Analyst,45000,GBP,56250,United Kingdom,In-person,United Kingdom,M,Data Quality and Operations +2024,Senior,Full-time,Data Architect,276000,USD,276000,United States,In-person,United States,M,Data Architecture and Modeling +2024,Senior,Full-time,Data Architect,174000,USD,174000,United States,In-person,United States,M,Data Architecture and Modeling +2024,Entry-level,Full-time,Data Analyst,113800,USD,113800,United States,Remote,United States,M,Data Analysis +2024,Entry-level,Full-time,Data Analyst,74400,USD,74400,United States,Remote,United States,M,Data Analysis +2024,Senior,Full-time,Machine Learning Engineer,333500,USD,333500,United States,In-person,United States,M,Machine Learning and AI +2024,Senior,Full-time,Machine Learning Engineer,183000,USD,183000,United States,In-person,United States,M,Machine Learning and AI +2024,Senior,Full-time,Machine Learning Engineer,260000,USD,260000,United States,In-person,United States,M,Machine Learning and AI +2024,Senior,Full-time,Machine Learning Engineer,192000,USD,192000,United States,In-person,United States,M,Machine Learning and AI +2024,Entry-level,Full-time,Data Analyst,158000,USD,158000,United States,In-person,United States,M,Data Analysis +2024,Entry-level,Full-time,Data Analyst,105000,USD,105000,United States,In-person,United States,M,Data Analysis +2024,Senior,Full-time,Data Scientist,148000,USD,148000,United States,In-person,United States,M,Data Science and Research +2024,Senior,Full-time,Data Scientist,110000,USD,110000,United States,In-person,United States,M,Data Science and Research +2024,Mid-level,Full-time,Data Manager,128000,USD,128000,United States,In-person,United States,M,Leadership and Management +2024,Mid-level,Full-time,Data Manager,81500,USD,81500,United States,In-person,United States,M,Leadership and Management +2024,Senior,Full-time,Data Analyst,115000,USD,115000,United States,In-person,United States,M,Data Analysis +2024,Senior,Full-time,Data Analyst,75300,USD,75300,United States,In-person,United States,M,Data Analysis +2024,Mid-level,Full-time,Data Scientist,140000,USD,140000,United States,Remote,United States,M,Data Science and Research +2024,Mid-level,Full-time,Data Scientist,100000,USD,100000,United States,Remote,United States,M,Data Science and Research +2024,Mid-level,Full-time,ML Engineer,240000,USD,240000,United States,In-person,United States,M,Machine Learning and AI +2024,Mid-level,Full-time,ML Engineer,140000,USD,140000,United States,In-person,United States,M,Machine Learning and AI +2024,Mid-level,Full-time,Applied Scientist,222200,USD,222200,United States,In-person,United States,L,Data Science and Research +2024,Mid-level,Full-time,Applied Scientist,136000,USD,136000,United States,In-person,United States,L,Data Science and Research +2024,Mid-level,Full-time,Data Scientist,187200,USD,187200,Canada,In-person,Canada,M,Data Science and Research +2024,Mid-level,Full-time,Data Scientist,100800,USD,100800,Canada,In-person,Canada,M,Data Science and Research +2024,Senior,Full-time,Data Engineer,153200,USD,153200,United States,Remote,United States,M,Data Engineering +2024,Senior,Full-time,Data Engineer,102200,USD,102200,United States,Remote,United States,M,Data Engineering +2024,Senior,Full-time,Robotics Software Engineer,240000,USD,240000,United States,In-person,United States,M,Machine Learning and AI +2024,Senior,Full-time,Robotics Software Engineer,160000,USD,160000,United States,In-person,United States,M,Machine Learning and AI +2024,Mid-level,Full-time,Data Analyst,105000,USD,105000,United States,In-person,United States,M,Data Analysis +2024,Mid-level,Full-time,Data Analyst,77000,USD,77000,United States,In-person,United States,M,Data Analysis +2024,Senior,Full-time,Data Engineer,207300,USD,207300,United States,In-person,United States,M,Data Engineering +2024,Senior,Full-time,Data Engineer,119000,USD,119000,United States,In-person,United States,M,Data Engineering +2024,Mid-level,Full-time,Machine Learning Engineer,160000,USD,160000,United States,Remote,United States,M,Machine Learning and AI +2024,Mid-level,Full-time,Machine Learning Engineer,130000,USD,130000,United States,Remote,United States,M,Machine Learning and AI +2024,Senior,Full-time,Machine Learning Engineer,155000,USD,155000,United States,In-person,United States,M,Machine Learning and AI +2024,Senior,Full-time,Machine Learning Engineer,125000,USD,125000,United States,In-person,United States,M,Machine Learning and AI +2024,Executive,Full-time,Machine Learning Engineer,265000,USD,265000,United States,In-person,United States,M,Machine Learning and AI +2024,Executive,Full-time,Machine Learning Engineer,203800,USD,203800,United States,In-person,United States,M,Machine Learning and AI +2024,Senior,Full-time,Data Analyst,135000,USD,135000,United States,In-person,United States,M,Data Analysis +2024,Senior,Full-time,Data Analyst,105000,USD,105000,United States,In-person,United States,M,Data Analysis +2024,Senior,Full-time,Analytics Engineer,345400,USD,345400,United States,In-person,United States,M,Leadership and Management +2024,Senior,Full-time,Analytics Engineer,272700,USD,272700,United States,In-person,United States,M,Leadership and Management +2024,Mid-level,Full-time,Robotics Software Engineer,198000,USD,198000,United States,In-person,United States,M,Machine Learning and AI +2024,Mid-level,Full-time,Robotics Software Engineer,160000,USD,160000,United States,In-person,United States,M,Machine Learning and AI +2024,Senior,Full-time,Data Engineer,198000,USD,198000,United States,In-person,United States,M,Data Engineering +2024,Senior,Full-time,Data Engineer,180000,USD,180000,United States,In-person,United States,M,Data Engineering +2024,Senior,Full-time,Data Analyst,100000,USD,100000,United States,In-person,United States,M,Data Analysis +2024,Senior,Full-time,Data Analyst,80000,USD,80000,United States,In-person,United States,M,Data Analysis +2024,Senior,Full-time,ML Engineer,250000,USD,250000,United States,In-person,United States,M,Machine Learning and AI +2024,Senior,Full-time,ML Engineer,200000,USD,200000,United States,In-person,United States,M,Machine Learning and AI +2024,Senior,Full-time,Data Scientist,155000,USD,155000,United States,In-person,United States,M,Data Science and Research +2024,Senior,Full-time,Data Scientist,139500,USD,139500,United States,In-person,United States,M,Data Science and Research +2024,Senior,Full-time,Data Architect,160000,USD,160000,United States,In-person,United States,M,Data Architecture and Modeling +2024,Senior,Full-time,Data Architect,110000,USD,110000,United States,In-person,United States,M,Data Architecture and Modeling +2024,Senior,Full-time,Research Scientist,247600,USD,247600,United States,In-person,United States,L,Data Science and Research +2024,Senior,Full-time,Research Scientist,127300,USD,127300,United States,In-person,United States,L,Data Science and Research +2024,Senior,Full-time,Data Scientist,191500,USD,191500,United States,In-person,United States,M,Data Science and Research +2024,Senior,Full-time,Data Scientist,111500,USD,111500,United States,In-person,United States,M,Data Science and Research +2024,Senior,Full-time,Data Scientist,204800,USD,204800,United States,In-person,United States,M,Data Science and Research +2024,Senior,Full-time,Data Scientist,115800,USD,115800,United States,In-person,United States,M,Data Science and Research +2024,Senior,Full-time,Data Science Consultant,116000,USD,116000,United States,In-person,United States,M,Data Science and Research +2024,Senior,Full-time,Data Science Consultant,90000,USD,90000,United States,In-person,United States,M,Data Science and Research +2024,Senior,Full-time,Data Scientist,206000,USD,206000,United States,Remote,United States,M,Data Science and Research +2024,Senior,Full-time,Data Scientist,140250,USD,140250,United States,Remote,United States,M,Data Science and Research +2024,Senior,Full-time,Applied Scientist,225000,USD,225000,United States,In-person,United States,M,Data Science and Research +2024,Mid-level,Full-time,Data Scientist,190000,USD,190000,United States,Remote,United States,M,Data Science and Research +2024,Mid-level,Full-time,Data Scientist,175000,USD,175000,United States,Remote,United States,M,Data Science and Research +2024,Entry-level,Full-time,Data Analyst,84105,USD,84105,United States,In-person,United States,M,Data Analysis +2024,Entry-level,Full-time,Data Analyst,76095,USD,76095,United States,In-person,United States,M,Data Analysis +2024,Senior,Full-time,Machine Learning Engineer,250000,USD,250000,United States,In-person,United States,M,Machine Learning and AI +2024,Senior,Full-time,Machine Learning Engineer,140000,USD,140000,United States,In-person,United States,M,Machine Learning and AI +2024,Senior,Full-time,Data Engineer,140000,USD,140000,United States,Remote,United States,M,Data Engineering +2024,Senior,Full-time,Data Engineer,100000,USD,100000,United States,Remote,United States,M,Data Engineering +2024,Senior,Full-time,Machine Learning Researcher,250800,USD,250800,United States,In-person,United States,M,Machine Learning and AI +2024,Senior,Full-time,Machine Learning Researcher,167200,USD,167200,United States,In-person,United States,M,Machine Learning and AI +2024,Mid-level,Full-time,Data Engineer,165000,USD,165000,United States,Remote,United States,M,Data Engineering +2024,Mid-level,Full-time,Data Engineer,140250,USD,140250,United States,Remote,United States,M,Data Engineering +2024,Mid-level,Full-time,Data Scientist,110000,USD,110000,United States,Remote,United States,M,Data Science and Research +2024,Mid-level,Full-time,Data Scientist,90000,USD,90000,United States,Remote,United States,M,Data Science and Research +2024,Mid-level,Full-time,Research Scientist,300000,USD,300000,United States,In-person,United States,M,Data Science and Research +2024,Mid-level,Full-time,Research Scientist,200000,USD,200000,United States,In-person,United States,M,Data Science and Research +2024,Senior,Full-time,Data Scientist,155000,USD,155000,United States,In-person,United States,M,Data Science and Research +2024,Senior,Full-time,Data Scientist,104603,USD,104603,United States,In-person,United States,M,Data Science and Research +2024,Senior,Full-time,Data Scientist,279000,USD,279000,United States,Remote,United States,M,Data Science and Research +2024,Senior,Full-time,Data Scientist,183000,USD,183000,United States,Remote,United States,M,Data Science and Research +2024,Mid-level,Full-time,Data Scientist,252000,USD,252000,United States,In-person,United States,M,Data Science and Research +2024,Mid-level,Full-time,Data Scientist,168000,USD,168000,United States,In-person,United States,M,Data Science and Research +2024,Senior,Full-time,Data Analyst,96600,USD,96600,United States,In-person,United States,M,Data Analysis +2024,Senior,Full-time,Data Analyst,55200,USD,55200,United States,In-person,United States,M,Data Analysis +2024,Entry-level,Full-time,Data Analyst,73756,USD,73756,United States,In-person,United States,M,Data Analysis +2024,Entry-level,Full-time,Data Analyst,61463,USD,61463,United States,In-person,United States,M,Data Analysis +2024,Senior,Full-time,Data Engineer,130000,USD,130000,United States,In-person,United States,M,Data Engineering +2024,Senior,Full-time,Data Engineer,100000,USD,100000,United States,In-person,United States,M,Data Engineering +2024,Mid-level,Full-time,Data Engineer,167500,USD,167500,United States,In-person,United States,M,Data Engineering +2024,Mid-level,Full-time,Data Engineer,106500,USD,106500,United States,In-person,United States,M,Data Engineering +2024,Mid-level,Full-time,Analytics Engineer,126000,USD,126000,United States,In-person,United States,M,Leadership and Management +2024,Mid-level,Full-time,Analytics Engineer,78000,USD,78000,United States,In-person,United States,M,Leadership and Management +2023,Entry-level,Full-time,Data DevOps Engineer,44382,EUR,47918,Netherlands,Hybrid,Netherlands,L,Data Engineering +2024,Entry-level,Full-time,Data Analyst,40100,EUR,44555,Lithuania,In-person,Lithuania,M,Data Analysis +2024,Entry-level,Full-time,Data Analyst,28069,EUR,31187,Lithuania,In-person,Lithuania,M,Data Analysis +2024,Senior,Full-time,Data Engineer,220000,USD,220000,United States,In-person,United States,M,Data Engineering +2024,Senior,Full-time,Data Engineer,137500,USD,137500,United States,In-person,United States,M,Data Engineering +2024,Mid-level,Full-time,Data Scientist,127660,USD,127660,United States,In-person,United States,M,Data Science and Research +2024,Mid-level,Full-time,Data Scientist,68740,USD,68740,United States,In-person,United States,M,Data Science and Research +2024,Senior,Full-time,Machine Learning Engineer,137930,USD,137930,Canada,In-person,Canada,M,Machine Learning and AI +2024,Senior,Full-time,Machine Learning Engineer,74270,USD,74270,Canada,In-person,Canada,M,Machine Learning and AI +2024,Senior,Full-time,Data Engineer,180500,USD,180500,United States,In-person,United States,M,Data Engineering +2024,Senior,Full-time,Data Engineer,96200,USD,96200,United States,In-person,United States,M,Data Engineering +2024,Senior,Full-time,Data Engineer,266875,USD,266875,United States,In-person,United States,M,Data Engineering +2024,Senior,Full-time,Data Engineer,128250,USD,128250,United States,In-person,United States,M,Data Engineering +2024,Executive,Full-time,Business Intelligence,230000,USD,230000,United States,In-person,United States,M,BI and Visualization +2024,Executive,Full-time,Business Intelligence,176900,USD,176900,United States,In-person,United States,M,BI and Visualization +2024,Mid-level,Full-time,Data Scientist,212000,USD,212000,United States,In-person,United States,M,Data Science and Research +2024,Mid-level,Full-time,Data Scientist,93300,USD,93300,United States,In-person,United States,M,Data Science and Research +2024,Mid-level,Full-time,Machine Learning Scientist,200000,USD,200000,United States,In-person,United States,M,Machine Learning and AI +2024,Mid-level,Full-time,Machine Learning Scientist,140000,USD,140000,United States,In-person,United States,M,Machine Learning and AI +2024,Entry-level,Full-time,Data Analyst,80080,USD,80080,United States,In-person,United States,M,Data Analysis +2024,Entry-level,Full-time,Data Analyst,65400,USD,65400,United States,In-person,United States,M,Data Analysis +2024,Senior,Full-time,Machine Learning Engineer,210000,USD,210000,United States,In-person,United States,M,Machine Learning and AI +2024,Senior,Full-time,Machine Learning Engineer,,USD,178500,United States,In-person,United States,M,Machine Learning and AI +2024,Senior,Full-time,Data Scientist,165000,USD,165000,United States,In-person,United States,M,Data Science and Research +2024,Senior,Full-time,Data Scientist,115500,USD,115500,United States,In-person,United States,M,Data Science and Research +2024,Senior,Full-time,AI Software Engineer,242000,USD,242000,Egypt,In-person,Egypt,M,Machine Learning and AI +2024,Senior,Full-time,AI Software Engineer,106200,USD,106200,Egypt,In-person,Egypt,M,Machine Learning and AI +2024,Senior,Full-time,Data Integration Engineer,148000,USD,148000,United States,In-person,United States,M,Data Engineering +2024,Senior,Full-time,Data Integration Engineer,100000,USD,100000,United States,In-person,United States,M,Data Engineering +2024,Senior,Full-time,Data Engineer,160000,USD,160000,United States,Remote,United States,M,Data Engineering +2024,Senior,Full-time,Data Engineer,145000,USD,145000,United States,Remote,United States,M,Data Engineering +2024,Senior,Full-time,Machine Learning Engineer,180000,USD,180000,United States,In-person,United States,M,Machine Learning and AI +2024,Senior,Full-time,Machine Learning Engineer,140000,USD,140000,United States,In-person,United States,M,Machine Learning and AI +2024,Senior,Full-time,Data Analyst,96600,USD,96600,United States,In-person,United States,M,Data Analysis +2024,Senior,Full-time,Data Analyst,55200,USD,55200,United States,In-person,United States,M,Data Analysis +2024,Entry-level,Full-time,Data Analyst,85500,USD,85500,United States,Remote,United States,M,Data Analysis +2024,Entry-level,Full-time,Data Analyst,51000,USD,51000,United States,Remote,United States,M,Data Analysis +2024,Senior,Full-time,Data Science,185490,USD,185490,United States,In-person,United States,M,Data Science and Research +2024,Senior,Full-time,Data Science,134530,USD,134530,United States,In-person,United States,M,Data Science and Research +2024,Senior,Full-time,Research Scientist,337300,USD,337300,United States,In-person,United States,M,Data Science and Research +2024,Senior,Full-time,Research Scientist,192700,USD,192700,United States,In-person,United States,M,Data Science and Research +2024,Senior,Full-time,Data Engineer,205000,USD,205000,United States,In-person,United States,M,Data Engineering +2024,Senior,Full-time,Data Engineer,175000,USD,175000,United States,In-person,United States,M,Data Engineering +2024,Senior,Full-time,Data Scientist,185900,USD,185900,United States,In-person,United States,M,Data Science and Research +2024,Senior,Full-time,Data Scientist,109400,USD,109400,United States,In-person,United States,M,Data Science and Research +2024,Mid-level,Full-time,Machine Learning Engineer,200000,USD,200000,United States,In-person,United States,M,Machine Learning and AI +2024,Mid-level,Full-time,Machine Learning Engineer,140000,USD,140000,United States,In-person,United States,M,Machine Learning and AI +2024,Senior,Full-time,Data Engineer,277000,USD,277000,United States,In-person,United States,M,Data Engineering +2024,Senior,Full-time,Data Engineer,173000,USD,173000,United States,In-person,United States,M,Data Engineering +2024,Executive,Full-time,Data Architect,210000,USD,210000,United States,Remote,United States,M,Data Architecture and Modeling +2024,Executive,Full-time,Data Architect,180000,USD,180000,United States,Remote,United States,M,Data Architecture and Modeling +2024,Mid-level,Full-time,Data Engineer,70000,EUR,77777,Austria,In-person,Austria,M,Data Engineering +2024,Mid-level,Full-time,Data Engineer,53000,EUR,58888,Austria,In-person,Austria,M,Data Engineering +2024,Mid-level,Full-time,Data Engineer,200000,USD,200000,United States,Remote,United States,M,Data Engineering +2024,Mid-level,Full-time,Data Engineer,150000,USD,150000,United States,Remote,United States,M,Data Engineering +2024,Senior,Full-time,Data Analyst,193000,USD,193000,United States,Remote,United States,M,Data Analysis +2024,Senior,Full-time,Data Analyst,156000,USD,156000,United States,Remote,United States,M,Data Analysis +2024,Entry-level,Full-time,Business Intelligence Analyst,92000,USD,92000,Australia,In-person,Australia,M,BI and Visualization +2024,Entry-level,Full-time,Business Intelligence Analyst,90000,USD,90000,Australia,In-person,Australia,M,BI and Visualization +2024,Mid-level,Full-time,Analytics Engineer,197000,USD,197000,United States,In-person,United States,M,Leadership and Management +2024,Mid-level,Full-time,Analytics Engineer,115000,USD,115000,United States,In-person,United States,M,Leadership and Management +2024,Senior,Full-time,Data Analyst,86026,EUR,95584,Germany,Remote,Germany,M,Data Analysis +2024,Senior,Full-time,Data Analyst,71688,EUR,79653,Germany,Remote,Germany,M,Data Analysis +2024,Senior,Full-time,Data Analyst,86146,EUR,95717,Netherlands,Remote,Netherlands,M,Data Analysis +2024,Senior,Full-time,Data Analyst,71789,EUR,79765,Netherlands,Remote,Netherlands,M,Data Analysis +2024,Senior,Full-time,Data Scientist,170000,USD,170000,United States,In-person,United States,M,Data Science and Research +2024,Senior,Full-time,Data Scientist,130000,USD,130000,United States,In-person,United States,M,Data Science and Research +2024,Senior,Full-time,Data Scientist,297000,USD,297000,United States,In-person,United States,M,Data Science and Research +2024,Senior,Full-time,Data Scientist,138000,USD,138000,United States,In-person,United States,M,Data Science and Research +2024,Mid-level,Full-time,Research Scientist,212800,USD,212800,United States,In-person,United States,L,Data Science and Research +2024,Mid-level,Full-time,Research Scientist,124100,USD,124100,United States,In-person,United States,L,Data Science and Research +2024,Senior,Full-time,Data Science,160000,USD,160000,United States,Remote,United States,M,Data Science and Research +2024,Senior,Full-time,Data Science,150000,USD,150000,United States,Remote,United States,M,Data Science and Research +2024,Senior,Full-time,Data Operations Specialist,55720,USD,55720,United States,Remote,United States,M,Data Quality and Operations +2024,Senior,Full-time,Data Operations Specialist,50700,USD,50700,United States,Remote,United States,M,Data Quality and Operations +2024,Senior,Full-time,Data Analyst,140000,USD,140000,United States,In-person,United States,M,Data Analysis +2024,Senior,Full-time,Data Analyst,136000,USD,136000,United States,In-person,United States,M,Data Analysis +2024,Senior,Full-time,Data Engineer,195000,USD,195000,United States,Remote,United States,M,Data Engineering +2024,Senior,Full-time,Data Engineer,147500,USD,147500,United States,Remote,United States,M,Data Engineering +2024,Senior,Full-time,Data Engineer,195000,USD,195000,United States,Remote,United States,M,Data Engineering +2024,Senior,Full-time,Data Engineer,147500,USD,147500,United States,Remote,United States,M,Data Engineering +2024,Entry-level,Full-time,Research Analyst,300000,USD,300000,United States,In-person,United States,M,Data Science and Research +2024,Entry-level,Full-time,Research Analyst,150000,USD,150000,United States,In-person,United States,M,Data Science and Research +2024,Senior,Full-time,Data Engineer,154000,USD,154000,United States,In-person,United States,M,Data Engineering +2024,Senior,Full-time,Data Engineer,103000,USD,103000,United States,In-person,United States,M,Data Engineering +2024,Entry-level,Full-time,Research Analyst,300000,USD,300000,United States,In-person,United States,M,Data Science and Research +2024,Entry-level,Full-time,Research Analyst,150000,USD,150000,United States,In-person,United States,M,Data Science and Research +2024,Senior,Full-time,Machine Learning Engineer,234000,USD,234000,United States,Remote,United States,M,Machine Learning and AI +2024,Senior,Full-time,Machine Learning Engineer,208000,USD,208000,United States,Remote,United States,M,Machine Learning and AI +2024,Senior,Full-time,Data Engineer,206000,USD,206000,United States,Remote,United States,M,Data Engineering +2024,Senior,Full-time,Data Engineer,175100,USD,175100,United States,Remote,United States,M,Data Engineering +2024,Senior,Full-time,Machine Learning Engineer,324000,USD,324000,United States,In-person,United States,M,Machine Learning and AI +2024,Senior,Full-time,Machine Learning Engineer,159000,USD,159000,United States,In-person,United States,M,Machine Learning and AI +2024,Senior,Full-time,Data Engineer,150895,USD,150895,United States,In-person,United States,M,Data Engineering +2024,Senior,Full-time,Data Engineer,120715,USD,120715,United States,In-person,United States,M,Data Engineering +2024,Entry-level,Full-time,Research Analyst,300000,USD,300000,United States,Remote,United States,M,Data Science and Research +2024,Entry-level,Full-time,Research Analyst,150000,USD,150000,United States,Remote,United States,M,Data Science and Research +2024,Senior,Full-time,Data Scientist,283800,USD,283800,United States,In-person,United States,M,Data Science and Research +2024,Senior,Full-time,Data Scientist,234700,USD,234700,United States,In-person,United States,M,Data Science and Research +2024,Entry-level,Full-time,Business Intelligence Analyst,86000,USD,86000,United States,In-person,United States,M,BI and Visualization +2024,Entry-level,Full-time,Business Intelligence Analyst,53000,USD,53000,United States,In-person,United States,M,BI and Visualization +2024,Senior,Full-time,Data Scientist,187158,USD,187158,United States,In-person,United States,M,Data Science and Research +2024,Senior,Full-time,Data Scientist,116974,USD,116974,United States,In-person,United States,M,Data Science and Research +2024,Senior,Full-time,Analytics Engineer,225000,USD,225000,United States,In-person,United States,M,Leadership and Management +2024,Senior,Full-time,Analytics Engineer,180000,USD,180000,United States,In-person,United States,M,Leadership and Management +2024,Senior,Full-time,Data Scientist,179000,USD,179000,United States,In-person,United States,M,Data Science and Research +2024,Senior,Full-time,Data Scientist,112000,USD,112000,United States,In-person,United States,M,Data Science and Research +2024,Senior,Full-time,Machine Learning Engineer,195700,USD,195700,United States,In-person,United States,M,Machine Learning and AI +2024,Senior,Full-time,Machine Learning Engineer,97700,USD,97700,United States,In-person,United States,M,Machine Learning and AI +2024,Senior,Full-time,BI Analyst,100000,USD,100000,United States,In-person,United States,M,BI and Visualization +2024,Senior,Full-time,BI Analyst,85000,USD,85000,United States,In-person,United States,M,BI and Visualization +2024,Mid-level,Full-time,Data Analyst,119000,USD,119000,United States,In-person,United States,M,Data Analysis +2024,Mid-level,Full-time,Data Analyst,52100,USD,52100,United States,In-person,United States,M,Data Analysis +2024,Senior,Full-time,Business Intelligence Developer,136000,USD,136000,United States,In-person,United States,M,BI and Visualization +2024,Senior,Full-time,Business Intelligence Developer,91536,USD,91536,United States,In-person,United States,M,BI and Visualization +2024,Senior,Full-time,Data Engineer,199700,USD,199700,United States,In-person,United States,M,Data Engineering +2024,Senior,Full-time,Data Engineer,165100,USD,165100,United States,In-person,United States,M,Data Engineering +2024,Senior,Full-time,Machine Learning Engineer,251250,USD,251250,United States,In-person,United States,M,Machine Learning and AI +2024,Senior,Full-time,Machine Learning Engineer,120750,USD,120750,United States,In-person,United States,M,Machine Learning and AI +2024,Senior,Full-time,Data Scientist,240000,USD,240000,United States,Remote,United States,M,Data Science and Research +2024,Senior,Full-time,Data Scientist,220000,USD,220000,United States,Remote,United States,M,Data Science and Research +2024,Senior,Full-time,Data Science,160000,USD,160000,United States,Remote,United States,M,Data Science and Research +2024,Senior,Full-time,Data Science,150000,USD,150000,United States,Remote,United States,M,Data Science and Research +2024,Executive,Full-time,Data Science,300000,USD,300000,United States,Remote,United States,M,Data Science and Research +2024,Executive,Full-time,Data Science,220000,USD,220000,United States,Remote,United States,M,Data Science and Research +2024,Entry-level,Full-time,Data Analyst,130000,USD,130000,United States,In-person,United States,M,Data Analysis +2024,Entry-level,Full-time,Data Analyst,100000,USD,100000,United States,In-person,United States,M,Data Analysis +2024,Entry-level,Full-time,Data Analyst,170000,USD,170000,United States,Remote,United States,M,Data Analysis +2024,Entry-level,Full-time,Data Analyst,150000,USD,150000,United States,Remote,United States,M,Data Analysis +2024,Senior,Full-time,Data Analyst,150000,USD,150000,United States,In-person,United States,M,Data Analysis +2024,Senior,Full-time,Data Analyst,120000,USD,120000,United States,In-person,United States,M,Data Analysis +2024,Senior,Full-time,Data Scientist,247300,USD,247300,United States,In-person,United States,M,Data Science and Research +2024,Senior,Full-time,Data Scientist,139800,USD,139800,United States,In-person,United States,M,Data Science and Research +2024,Executive,Full-time,Data Engineer,220000,USD,220000,United States,Remote,United States,M,Data Engineering +2024,Executive,Full-time,Data Engineer,210000,USD,210000,United States,Remote,United States,M,Data Engineering +2024,Entry-level,Full-time,Research Analyst,116000,USD,116000,United States,Remote,United States,M,Data Science and Research +2024,Entry-level,Full-time,Research Analyst,79000,USD,79000,United States,Remote,United States,M,Data Science and Research +2024,Mid-level,Full-time,Data Scientist,130000,USD,130000,United States,In-person,United States,M,Data Science and Research +2024,Mid-level,Full-time,Data Scientist,117000,USD,117000,United States,In-person,United States,M,Data Science and Research +2024,Mid-level,Full-time,Data Scientist,172200,USD,172200,United States,In-person,United States,M,Data Science and Research +2024,Mid-level,Full-time,Data Scientist,131200,USD,131200,United States,In-person,United States,M,Data Science and Research +2024,Senior,Full-time,Research Scientist,210000,USD,210000,United States,In-person,United States,M,Data Science and Research +2024,Senior,Full-time,Research Scientist,151800,USD,151800,United States,In-person,United States,M,Data Science and Research +2024,Mid-level,Full-time,Data Engineer,133000,USD,133000,United States,In-person,United States,M,Data Engineering +2024,Mid-level,Full-time,Data Engineer,58300,USD,58300,United States,In-person,United States,M,Data Engineering +2024,Mid-level,Full-time,Research Scientist,359400,USD,359400,United States,Remote,United States,M,Data Science and Research +2024,Mid-level,Full-time,Research Scientist,239600,USD,239600,United States,Remote,United States,M,Data Science and Research +2024,Entry-level,Full-time,BI Analyst,80000,USD,80000,United States,In-person,United States,M,BI and Visualization +2024,Entry-level,Full-time,BI Analyst,70000,USD,70000,United States,In-person,United States,M,BI and Visualization +2024,Senior,Full-time,Data Science,324100,USD,324100,United States,In-person,United States,L,Data Science and Research +2024,Senior,Full-time,Data Science,166700,USD,166700,United States,In-person,United States,L,Data Science and Research +2024,Mid-level,Full-time,Data Engineer,100000,USD,100000,United States,In-person,United States,M,Data Engineering +2024,Mid-level,Full-time,Data Engineer,80000,USD,80000,United States,In-person,United States,M,Data Engineering +2024,Senior,Full-time,Data Analyst,85000,USD,85000,United States,In-person,United States,M,Data Analysis +2024,Senior,Full-time,Data Analyst,75000,USD,75000,United States,In-person,United States,M,Data Analysis +2024,Senior,Full-time,Data Scientist,243800,USD,243800,United States,Remote,United States,M,Data Science and Research +2024,Senior,Full-time,Data Scientist,144200,USD,144200,United States,Remote,United States,M,Data Science and Research +2024,Senior,Full-time,Machine Learning Engineer,220000,USD,220000,Canada,In-person,Canada,M,Machine Learning and AI +2024,Senior,Full-time,Machine Learning Engineer,200000,USD,200000,Canada,In-person,Canada,M,Machine Learning and AI +2024,Senior,Full-time,AI Architect,289000,USD,289000,United States,Remote,United States,L,Machine Learning and AI +2024,Mid-level,Full-time,Business Intelligence Developer,77826,USD,77826,United States,Remote,United States,M,BI and Visualization +2024,Mid-level,Full-time,Business Intelligence Developer,59300,USD,59300,United States,Remote,United States,M,BI and Visualization +2024,Mid-level,Full-time,Data Scientist,166000,USD,166000,United States,In-person,United States,M,Data Science and Research +2024,Mid-level,Full-time,Data Scientist,73100,USD,73100,United States,In-person,United States,M,Data Science and Research +2024,Mid-level,Full-time,Research Engineer,151500,USD,151500,United States,In-person,United States,M,Data Science and Research +2024,Mid-level,Full-time,Research Engineer,101000,USD,101000,United States,In-person,United States,M,Data Science and Research +2024,Senior,Full-time,Machine Learning Engineer,182000,USD,182000,United States,In-person,United States,M,Machine Learning and AI +2024,Senior,Full-time,Machine Learning Engineer,164000,USD,164000,United States,In-person,United States,M,Machine Learning and AI +2024,Senior,Full-time,Analytics Engineer,132100,USD,132100,United States,Remote,United States,M,Leadership and Management +2024,Senior,Full-time,Analytics Engineer,96700,USD,96700,United States,Remote,United States,M,Leadership and Management +2024,Mid-level,Full-time,Data Manager,98500,USD,98500,United States,Remote,United States,M,Leadership and Management +2024,Mid-level,Full-time,Data Manager,71500,USD,71500,United States,Remote,United States,M,Leadership and Management +2024,Senior,Full-time,Machine Learning Engineer,200800,USD,200800,United States,In-person,United States,M,Machine Learning and AI +2024,Senior,Full-time,Machine Learning Engineer,107800,USD,107800,United States,In-person,United States,M,Machine Learning and AI +2024,Entry-level,Full-time,Data Analyst,106100,USD,106100,United States,In-person,United States,M,Data Analysis +2024,Entry-level,Full-time,Data Analyst,74300,USD,74300,United States,In-person,United States,M,Data Analysis +2024,Senior,Full-time,Data Analyst,153900,USD,153900,United States,In-person,United States,M,Data Analysis +2024,Senior,Full-time,Data Analyst,112715,USD,112715,United States,In-person,United States,M,Data Analysis +2024,Senior,Full-time,Analytics Engineer,105000,USD,105000,United States,In-person,United States,M,Leadership and Management +2024,Senior,Full-time,Analytics Engineer,94200,USD,94200,United States,In-person,United States,M,Leadership and Management +2024,Mid-level,Full-time,Data Product Manager,171000,USD,171000,United States,Remote,United States,M,Leadership and Management +2024,Mid-level,Full-time,Data Product Manager,136000,USD,136000,United States,Remote,United States,M,Leadership and Management +2024,Senior,Full-time,Machine Learning Engineer,221000,USD,221000,United States,In-person,United States,M,Machine Learning and AI +2024,Senior,Full-time,Machine Learning Engineer,185000,USD,185000,United States,In-person,United States,M,Machine Learning and AI +2024,Entry-level,Full-time,Data Analyst,92700,USD,92700,United States,Remote,United States,M,Data Analysis +2024,Entry-level,Full-time,Data Analyst,64900,USD,64900,United States,Remote,United States,M,Data Analysis +2024,Mid-level,Full-time,Data Engineer,126600,USD,126600,United States,In-person,United States,M,Data Engineering +2024,Mid-level,Full-time,Data Engineer,80800,USD,80800,United States,In-person,United States,M,Data Engineering +2024,Senior,Full-time,Data Scientist,164845,USD,164845,United States,In-person,United States,M,Data Science and Research +2024,Senior,Full-time,Data Scientist,119887,USD,119887,United States,In-person,United States,M,Data Science and Research +2024,Entry-level,Full-time,Data Analyst,93000,USD,93000,United States,In-person,United States,M,Data Analysis +2024,Entry-level,Full-time,Data Analyst,87000,USD,87000,United States,In-person,United States,M,Data Analysis +2024,Mid-level,Full-time,Data Analyst,103500,USD,103500,United States,In-person,United States,M,Data Analysis +2024,Mid-level,Full-time,Data Analyst,65600,USD,65600,United States,In-person,United States,M,Data Analysis +2024,Mid-level,Full-time,Business Intelligence Engineer,165600,USD,165600,United States,In-person,United States,L,BI and Visualization +2024,Mid-level,Full-time,Business Intelligence Engineer,65800,USD,65800,United States,In-person,United States,L,BI and Visualization +2024,Senior,Full-time,Data Scientist,164000,USD,164000,United States,Remote,United States,M,Data Science and Research +2024,Senior,Full-time,Data Scientist,152000,USD,152000,United States,Remote,United States,M,Data Science and Research +2024,Senior,Full-time,Applied Scientist,250000,USD,250000,United States,Remote,United States,M,Data Science and Research +2024,Senior,Full-time,Applied Scientist,180000,USD,180000,United States,Remote,United States,M,Data Science and Research +2024,Mid-level,Full-time,Machine Learning Engineer,202000,USD,202000,United States,In-person,United States,M,Machine Learning and AI +2024,Mid-level,Full-time,Machine Learning Engineer,137000,USD,137000,United States,In-person,United States,M,Machine Learning and AI +2024,Senior,Full-time,Machine Learning Scientist,204600,USD,204600,United States,In-person,United States,M,Machine Learning and AI +2024,Senior,Full-time,Machine Learning Scientist,84500,USD,84500,United States,In-person,United States,M,Machine Learning and AI +2024,Senior,Full-time,Research Engineer,190000,USD,190000,United States,In-person,United States,M,Data Science and Research +2024,Senior,Full-time,Research Engineer,151500,USD,151500,United States,In-person,United States,M,Data Science and Research +2024,Mid-level,Full-time,Data Science,65000,GBP,81250,United Kingdom,In-person,United Kingdom,M,Data Science and Research +2024,Mid-level,Full-time,Data Science,55000,GBP,68750,United Kingdom,In-person,United Kingdom,M,Data Science and Research +2024,Senior,Full-time,Data Scientist,168800,USD,168800,United States,In-person,United States,M,Data Science and Research +2024,Senior,Full-time,Data Scientist,93800,USD,93800,United States,In-person,United States,M,Data Science and Research +2024,Mid-level,Full-time,Data Scientist,132567,USD,132567,United States,In-person,United States,M,Data Science and Research +2024,Mid-level,Full-time,Data Scientist,96412,USD,96412,United States,In-person,United States,M,Data Science and Research +2024,Senior,Full-time,Machine Learning Engineer,309000,USD,309000,United States,In-person,United States,M,Machine Learning and AI +2024,Senior,Full-time,Machine Learning Engineer,142000,USD,142000,United States,In-person,United States,M,Machine Learning and AI +2024,Senior,Full-time,Research Engineer,333500,USD,333500,United States,In-person,United States,M,Data Science and Research +2024,Senior,Full-time,Research Engineer,156000,USD,156000,United States,In-person,United States,M,Data Science and Research +2024,Senior,Full-time,Data Scientist,266875,USD,266875,United States,In-person,United States,M,Data Science and Research +2024,Senior,Full-time,Data Scientist,128250,USD,128250,United States,In-person,United States,M,Data Science and Research +2024,Senior,Full-time,Data Engineer,191311,USD,191311,United States,Remote,United States,M,Data Engineering +2024,Senior,Full-time,Data Engineer,166358,USD,166358,United States,Remote,United States,M,Data Engineering +2024,Senior,Full-time,Data Scientist,218500,USD,218500,United States,Remote,United States,M,Data Science and Research +2024,Senior,Full-time,Data Scientist,190000,USD,190000,United States,Remote,United States,M,Data Science and Research +2024,Mid-level,Full-time,Data Specialist,70000,USD,70000,United States,In-person,United States,M,Data Management and Strategy +2024,Mid-level,Full-time,Data Specialist,60000,USD,60000,United States,In-person,United States,M,Data Management and Strategy +2024,Senior,Full-time,Machine Learning Engineer,324000,USD,324000,United States,In-person,United States,M,Machine Learning and AI +2024,Senior,Full-time,Machine Learning Engineer,159000,USD,159000,United States,In-person,United States,M,Machine Learning and AI +2024,Senior,Full-time,Analytics Engineer,179000,USD,179000,United States,In-person,United States,M,Leadership and Management +2024,Senior,Full-time,Analytics Engineer,152000,USD,152000,United States,In-person,United States,M,Leadership and Management +2024,Senior,Full-time,Machine Learning Engineer,235680,USD,235680,United States,In-person,United States,M,Machine Learning and AI +2024,Senior,Full-time,Machine Learning Engineer,153040,USD,153040,United States,In-person,United States,M,Machine Learning and AI +2024,Entry-level,Full-time,Data Analyst,140000,USD,140000,United States,In-person,United States,M,Data Analysis +2024,Entry-level,Full-time,Data Analyst,100000,USD,100000,United States,In-person,United States,M,Data Analysis +2024,Mid-level,Full-time,Data Analyst,187000,USD,187000,United States,In-person,United States,M,Data Analysis +2024,Mid-level,Full-time,Data Analyst,153000,USD,153000,United States,In-person,United States,M,Data Analysis +2024,Mid-level,Full-time,Data Engineer,185000,USD,185000,United States,In-person,United States,L,Data Engineering +2024,Mid-level,Full-time,Data Engineer,81000,USD,81000,United States,In-person,United States,L,Data Engineering +2024,Senior,Full-time,Machine Learning Engineer,290000,USD,290000,United States,In-person,United States,M,Machine Learning and AI +2024,Senior,Full-time,Machine Learning Engineer,203000,USD,203000,United States,In-person,United States,M,Machine Learning and AI +2024,Senior,Full-time,AI Engineer,142352,USD,142352,United States,In-person,United States,M,Machine Learning and AI +2024,Senior,Full-time,AI Engineer,95325,USD,95325,United States,In-person,United States,M,Machine Learning and AI +2024,Mid-level,Full-time,Data Analyst,187000,USD,187000,United States,In-person,United States,M,Data Analysis +2024,Mid-level,Full-time,Data Analyst,153000,USD,153000,United States,In-person,United States,M,Data Analysis +2024,Senior,Full-time,Data Scientist,190000,USD,190000,Canada,In-person,Canada,M,Data Science and Research +2024,Senior,Full-time,Data Scientist,158500,USD,158500,Canada,In-person,Canada,M,Data Science and Research +2024,Mid-level,Full-time,Data Scientist,240000,USD,240000,United States,In-person,United States,M,Data Science and Research +2024,Mid-level,Full-time,Data Scientist,180000,USD,180000,United States,In-person,United States,M,Data Science and Research +2024,Entry-level,Contract,AI Research Scientist,80000,EUR,88888,Germany,In-person,Germany,L,Data Science and Research +2024,Executive,Full-time,Data Science Director,96000,EUR,106666,Spain,Remote,Spain,L,Data Science and Research +2024,Executive,Full-time,Data Science Director,96000,EUR,106666,Spain,Remote,Spain,L,Data Science and Research +2024,Senior,Full-time,Data Engineer,130500,USD,130500,United States,In-person,United States,M,Data Engineering +2024,Senior,Full-time,Data Engineer,96000,USD,96000,United States,In-person,United States,M,Data Engineering +2024,Mid-level,Full-time,Data Scientist,166000,USD,166000,United States,In-person,United States,M,Data Science and Research +2024,Mid-level,Full-time,Data Scientist,73100,USD,73100,United States,In-person,United States,M,Data Science and Research +2024,Mid-level,Full-time,Machine Learning Engineer,50000,GBP,62500,United Kingdom,In-person,United Kingdom,M,Machine Learning and AI +2024,Mid-level,Full-time,Machine Learning Engineer,40000,GBP,50000,United Kingdom,In-person,United Kingdom,M,Machine Learning and AI +2024,Senior,Full-time,Data Analyst,234000,USD,234000,United States,In-person,United States,M,Data Analysis +2024,Senior,Full-time,Data Analyst,146000,USD,146000,United States,In-person,United States,M,Data Analysis +2024,Senior,Full-time,Data Engineer,100000,GBP,125000,United Kingdom,In-person,United Kingdom,M,Data Engineering +2024,Senior,Full-time,Data Engineer,100000,GBP,125000,United Kingdom,In-person,United Kingdom,M,Data Engineering +2024,Senior,Full-time,Data Scientist,58800,EUR,65333,Lithuania,In-person,Lithuania,M,Data Science and Research +2024,Senior,Full-time,Data Scientist,42000,EUR,46666,Lithuania,In-person,Lithuania,M,Data Science and Research +2024,Senior,Full-time,Data Engineer,105000,USD,105000,United States,Remote,United States,M,Data Engineering +2024,Senior,Full-time,Data Engineer,95000,USD,95000,United States,Remote,United States,M,Data Engineering +2024,Entry-level,Full-time,Data Analyst,60500,USD,60500,United States,In-person,United States,M,Data Analysis +2024,Entry-level,Full-time,Data Analyst,40300,USD,40300,United States,In-person,United States,M,Data Analysis +2024,Mid-level,Full-time,Data Analyst,160000,USD,160000,United States,In-person,United States,M,Data Analysis +2024,Mid-level,Full-time,Data Analyst,95000,USD,95000,United States,In-person,United States,M,Data Analysis +2024,Entry-level,Full-time,Data Engineer,152500,USD,152500,United States,In-person,United States,M,Data Engineering +2024,Entry-level,Full-time,Data Engineer,138200,USD,138200,United States,In-person,United States,M,Data Engineering +2024,Senior,Full-time,Research Scientist,164300,USD,164300,United States,In-person,United States,M,Data Science and Research +2024,Senior,Full-time,Research Scientist,104000,USD,104000,United States,In-person,United States,M,Data Science and Research +2024,Senior,Full-time,Data Analyst,163700,USD,163700,United States,In-person,United States,M,Data Analysis +2024,Senior,Full-time,Data Analyst,109100,USD,109100,United States,In-person,United States,M,Data Analysis +2024,Senior,Full-time,Data Engineer,130000,USD,130000,United States,In-person,United States,M,Data Engineering +2024,Senior,Full-time,Data Engineer,100000,USD,100000,United States,In-person,United States,M,Data Engineering +2024,Senior,Full-time,Machine Learning Engineer,220000,USD,220000,United States,In-person,United States,M,Machine Learning and AI +2024,Senior,Full-time,Machine Learning Engineer,200000,USD,200000,United States,In-person,United States,M,Machine Learning and AI +2024,Mid-level,Full-time,Data Engineer,115000,USD,115000,United States,Remote,United States,M,Data Engineering +2024,Mid-level,Full-time,Data Engineer,95000,USD,95000,United States,Remote,United States,M,Data Engineering +2024,Senior,Full-time,Analytics Engineer,230000,USD,230000,United States,In-person,United States,M,Leadership and Management +2024,Senior,Full-time,Analytics Engineer,170000,USD,170000,United States,In-person,United States,M,Leadership and Management +2024,Senior,Full-time,Analytics Engineer,250000,USD,250000,United States,Remote,United States,M,Leadership and Management +2024,Senior,Full-time,Analytics Engineer,180700,USD,180700,United States,Remote,United States,M,Leadership and Management +2024,Senior,Full-time,Analytics Engineer,136675,USD,136675,United States,Remote,United States,M,Leadership and Management +2024,Senior,Full-time,Analytics Engineer,111648,USD,111648,United States,Remote,United States,M,Leadership and Management +2024,Senior,Full-time,Data Engineer,65000,GBP,81250,United Kingdom,In-person,United Kingdom,M,Data Engineering +2024,Senior,Full-time,Data Engineer,65000,GBP,81250,United Kingdom,In-person,United Kingdom,M,Data Engineering +2024,Senior,Full-time,Machine Learning Engineer,254000,USD,254000,United States,In-person,United States,M,Machine Learning and AI +2024,Senior,Full-time,Machine Learning Engineer,200000,USD,200000,United States,In-person,United States,M,Machine Learning and AI +2024,Senior,Full-time,Data Scientist,161000,USD,161000,United States,In-person,United States,M,Data Science and Research +2024,Senior,Full-time,Data Scientist,133200,USD,133200,United States,In-person,United States,M,Data Science and Research +2024,Mid-level,Full-time,Data Engineer,85000,GBP,106250,United Kingdom,In-person,United Kingdom,M,Data Engineering +2024,Mid-level,Full-time,Data Engineer,85000,GBP,106250,United Kingdom,In-person,United Kingdom,M,Data Engineering +2024,Entry-level,Full-time,Research Engineer,160000,USD,160000,United States,In-person,United States,M,Data Science and Research +2024,Entry-level,Full-time,Research Engineer,140000,USD,140000,United States,In-person,United States,M,Data Science and Research +2024,Mid-level,Full-time,Machine Learning Engineer,223100,USD,223100,United States,Remote,United States,M,Machine Learning and AI +2024,Mid-level,Full-time,Machine Learning Engineer,126400,USD,126400,United States,Remote,United States,M,Machine Learning and AI +2024,Senior,Full-time,Analytics Engineer,190000,USD,190000,United States,Remote,United States,M,Leadership and Management +2024,Senior,Full-time,Analytics Engineer,136000,USD,136000,United States,Remote,United States,M,Leadership and Management +2024,Mid-level,Full-time,Data Strategist,134400,USD,134400,United States,In-person,United States,M,Data Architecture and Modeling +2024,Mid-level,Full-time,Data Strategist,100000,USD,100000,United States,In-person,United States,M,Data Architecture and Modeling +2024,Mid-level,Full-time,Data Engineer,246000,USD,246000,United States,Remote,United States,M,Data Engineering +2024,Mid-level,Full-time,Data Engineer,170000,USD,170000,United States,Remote,United States,M,Data Engineering +2024,Entry-level,Full-time,Research Analyst,198000,USD,198000,United States,Remote,United States,M,Data Science and Research +2024,Entry-level,Full-time,Research Analyst,115000,USD,115000,United States,Remote,United States,M,Data Science and Research +2024,Mid-level,Full-time,Data Scientist,150000,USD,150000,United States,Remote,United States,M,Data Science and Research +2024,Mid-level,Full-time,Data Scientist,103000,USD,103000,United States,Remote,United States,M,Data Science and Research +2024,Senior,Full-time,Data Scientist,170000,USD,170000,United States,In-person,United States,M,Data Science and Research +2024,Senior,Full-time,Data Scientist,160000,USD,160000,United States,In-person,United States,M,Data Science and Research +2024,Senior,Full-time,Data Analyst,175000,USD,175000,United States,In-person,United States,M,Data Analysis +2024,Senior,Full-time,Data Analyst,117000,USD,117000,United States,In-person,United States,M,Data Analysis +2024,Senior,Full-time,Data Analyst,85000,USD,85000,United States,In-person,United States,M,Data Analysis +2024,Senior,Full-time,Data Analyst,79000,USD,79000,United States,In-person,United States,M,Data Analysis +2024,Mid-level,Full-time,Analytics Engineer,100000,USD,100000,United States,Remote,United States,M,Leadership and Management +2024,Mid-level,Full-time,Analytics Engineer,75000,USD,75000,United States,Remote,United States,M,Leadership and Management +2024,Senior,Full-time,Data Scientist,205000,USD,205000,United States,In-person,United States,M,Data Science and Research +2024,Senior,Full-time,Data Scientist,190000,USD,190000,United States,In-person,United States,M,Data Science and Research +2024,Senior,Full-time,Data Engineer,331640,USD,331640,United States,In-person,United States,M,Data Engineering +2024,Senior,Full-time,Data Engineer,283780,USD,283780,United States,In-person,United States,M,Data Engineering +2024,Mid-level,Full-time,Applied Scientist,222200,USD,222200,United States,In-person,United States,L,Data Science and Research +2024,Mid-level,Full-time,Applied Scientist,136000,USD,136000,United States,In-person,United States,L,Data Science and Research +2024,Mid-level,Full-time,Big Data Developer,117000,USD,117000,United States,In-person,United States,L,Leadership and Management +2024,Entry-level,Full-time,Business Intelligence Analyst,99000,USD,99000,United States,In-person,United States,M,BI and Visualization +2024,Entry-level,Full-time,Business Intelligence Analyst,72000,USD,72000,United States,In-person,United States,M,BI and Visualization +2024,Mid-level,Full-time,Data Manager,77000,USD,77000,United States,In-person,United States,M,Leadership and Management +2024,Mid-level,Full-time,Data Manager,49900,USD,49900,United States,In-person,United States,M,Leadership and Management +2024,Mid-level,Full-time,Data Analyst,95000,USD,95000,United States,In-person,United States,M,Data Analysis +2024,Mid-level,Full-time,Data Analyst,70000,USD,70000,United States,In-person,United States,M,Data Analysis +2024,Mid-level,Full-time,Data Scientist,203500,USD,203500,United States,Remote,United States,M,Data Science and Research +2024,Mid-level,Full-time,Data Scientist,133000,USD,133000,United States,Remote,United States,M,Data Science and Research +2024,Senior,Full-time,Data Engineer,104000,USD,104000,United States,In-person,United States,M,Data Engineering +2024,Senior,Full-time,Data Engineer,80000,USD,80000,United States,In-person,United States,M,Data Engineering +2024,Mid-level,Full-time,Data Analyst,134400,USD,134400,United States,In-person,United States,M,Data Analysis +2024,Mid-level,Full-time,Data Analyst,100000,USD,100000,United States,In-person,United States,M,Data Analysis +2024,Entry-level,Full-time,Data Scientist,26800,GBP,33500,United Kingdom,In-person,United Kingdom,M,Data Science and Research +2024,Entry-level,Full-time,Data Scientist,26800,GBP,33500,United Kingdom,In-person,United Kingdom,M,Data Science and Research +2024,Senior,Full-time,Data Scientist,65000,GBP,81250,United Kingdom,Remote,United Kingdom,M,Data Science and Research +2024,Senior,Full-time,Data Scientist,45000,GBP,56250,United Kingdom,Remote,United Kingdom,M,Data Science and Research +2024,Entry-level,Full-time,Data Analyst,64500,USD,64500,United States,In-person,United States,M,Data Analysis +2024,Entry-level,Full-time,Data Analyst,51500,USD,51500,United States,In-person,United States,M,Data Analysis +2024,Senior,Full-time,Machine Learning Engineer,240200,USD,240200,United Kingdom,Remote,United Kingdom,M,Machine Learning and AI +2024,Senior,Full-time,Machine Learning Engineer,102900,USD,102900,United Kingdom,Remote,United Kingdom,M,Machine Learning and AI +2024,Mid-level,Full-time,Data Analyst,195600,USD,195600,United States,Remote,United States,M,Data Analysis +2024,Mid-level,Full-time,Data Analyst,165500,USD,165500,United States,Remote,United States,M,Data Analysis +2024,Senior,Full-time,Data Analyst,180400,USD,180400,United States,In-person,United States,M,Data Analysis +2024,Senior,Full-time,Data Analyst,138800,USD,138800,United States,In-person,United States,M,Data Analysis +2024,Senior,Full-time,Data Scientist,180000,USD,180000,United States,In-person,United States,M,Data Science and Research +2024,Senior,Full-time,Data Scientist,139000,USD,139000,United States,In-person,United States,M,Data Science and Research +2024,Senior,Full-time,Data Science Consultant,112000,USD,112000,United States,In-person,United States,M,Data Science and Research +2024,Senior,Full-time,Data Science Consultant,109000,USD,109000,United States,In-person,United States,M,Data Science and Research +2024,Senior,Full-time,Data Scientist,147670,USD,147670,United States,In-person,United States,M,Data Science and Research +2024,Senior,Full-time,Data Scientist,118136,USD,118136,United States,In-person,United States,M,Data Science and Research +2024,Senior,Full-time,Data Architect,164000,USD,164000,United States,In-person,United States,M,Data Architecture and Modeling +2024,Senior,Full-time,Data Architect,117000,USD,117000,United States,In-person,United States,M,Data Architecture and Modeling +2024,Senior,Full-time,BI Developer,42000,USD,42000,Philippines,In-person,Philippines,M,BI and Visualization +2024,Senior,Full-time,BI Developer,21600,USD,21600,Philippines,In-person,Philippines,M,BI and Visualization +2024,Senior,Full-time,Data Scientist,154000,USD,154000,United States,In-person,United States,M,Data Science and Research +2024,Senior,Full-time,Data Scientist,81536,USD,81536,United States,In-person,United States,M,Data Science and Research +2024,Senior,Full-time,Data Scientist,180000,USD,180000,United States,In-person,United States,M,Data Science and Research +2024,Senior,Full-time,Data Scientist,139000,USD,139000,United States,In-person,United States,M,Data Science and Research +2024,Entry-level,Full-time,Data Analyst,23000,GBP,28750,United Kingdom,In-person,United Kingdom,M,Data Analysis +2024,Entry-level,Full-time,Data Analyst,23000,GBP,28750,United Kingdom,In-person,United Kingdom,M,Data Analysis +2024,Senior,Full-time,Data Engineer,198000,USD,198000,United States,Remote,United States,M,Data Engineering +2024,Senior,Full-time,Data Engineer,143000,USD,143000,United States,Remote,United States,M,Data Engineering +2024,Senior,Full-time,Machine Learning Engineer,340000,USD,340000,United States,In-person,United States,M,Machine Learning and AI +2024,Senior,Full-time,Machine Learning Engineer,212000,USD,212000,United States,In-person,United States,M,Machine Learning and AI +2024,Senior,Full-time,Machine Learning Scientist,230000,USD,230000,United States,In-person,United States,M,Machine Learning and AI +2024,Senior,Full-time,Machine Learning Scientist,170000,USD,170000,United States,In-person,United States,M,Machine Learning and AI +2024,Entry-level,Full-time,Quantitative Research Analyst,51000,USD,51000,United States,In-person,United States,M,Data Science and Research +2024,Senior,Full-time,Lead Machine Learning Engineer,70000,EUR,77777,Finland,Hybrid,Finland,L,Machine Learning and AI +2024,Entry-level,Full-time,ML Engineer,27000,USD,27000,Türkiye,In-person,Türkiye,S,Machine Learning and AI +2024,Mid-level,Full-time,Data Scientist,114000,CHF,129545,Switzerland,Hybrid,Switzerland,L,Data Science and Research +2024,Entry-level,Full-time,Machine Learning Research Engineer,105000,CAD,80769,Canada,Hybrid,Canada,M,Data Science and Research +2024,Senior,Full-time,Business Intelligence Engineer,108500,USD,108500,United States,Remote,United States,M,BI and Visualization +2024,Senior,Full-time,Business Intelligence Engineer,78800,USD,78800,United States,Remote,United States,M,BI and Visualization +2024,Mid-level,Full-time,Data Infrastructure Engineer,385000,USD,385000,United States,In-person,United States,M,Data Engineering +2024,Mid-level,Full-time,Data Infrastructure Engineer,200000,USD,200000,United States,In-person,United States,M,Data Engineering +2024,Senior,Full-time,Data Scientist,297000,USD,297000,United States,In-person,United States,M,Data Science and Research +2024,Senior,Full-time,Data Scientist,138000,USD,138000,United States,In-person,United States,M,Data Science and Research +2024,Mid-level,Full-time,Data Scientist,198000,USD,198000,United States,In-person,United States,M,Data Science and Research +2024,Mid-level,Full-time,Data Scientist,140000,USD,140000,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,AI Engineer,46848,USD,46848,Oman,In-person,Oman,M,Machine Learning and AI +2024,Entry-level,Full-time,Machine Learning Engineer,130400,USD,130400,United States,In-person,United States,M,Machine Learning and AI +2024,Entry-level,Full-time,Machine Learning Engineer,74500,USD,74500,United States,In-person,United States,M,Machine Learning and AI +2024,Senior,Full-time,Data Architect,212000,USD,212000,Australia,In-person,Australia,M,Data Architecture and Modeling +2024,Senior,Full-time,Data Architect,93400,USD,93400,Australia,In-person,Australia,M,Data Architecture and Modeling +2024,Mid-level,Full-time,Business Intelligence Analyst,142000,USD,142000,Canada,In-person,Canada,M,BI and Visualization +2024,Mid-level,Full-time,Business Intelligence Analyst,91300,USD,91300,Canada,In-person,Canada,M,BI and Visualization +2024,Senior,Full-time,Data Analytics Lead,166000,USD,166000,United States,In-person,United States,M,Leadership and Management +2024,Senior,Full-time,Data Analytics Lead,73100,USD,73100,United States,In-person,United States,M,Leadership and Management +2024,Entry-level,Full-time,Data Scientist,133000,USD,133000,United States,In-person,United States,M,Data Science and Research +2024,Entry-level,Full-time,Data Scientist,58400,USD,58400,United States,In-person,United States,M,Data Science and Research +2024,Senior,Full-time,Data Scientist,204600,USD,204600,United States,In-person,United States,M,Data Science and Research +2024,Senior,Full-time,Data Scientist,84500,USD,84500,United States,In-person,United States,M,Data Science and Research +2024,Mid-level,Full-time,Data Scientist,176000,USD,176000,United States,In-person,United States,M,Data Science and Research +2024,Mid-level,Full-time,Data Scientist,72700,USD,72700,United States,In-person,United States,M,Data Science and Research +2024,Entry-level,Full-time,Data Analyst,92000,USD,92000,United States,Remote,United States,M,Data Analysis +2024,Entry-level,Full-time,Data Analyst,65000,USD,65000,United States,Remote,United States,M,Data Analysis +2024,Senior,Full-time,Data Engineer,231000,USD,231000,United States,Remote,United States,M,Data Engineering +2024,Senior,Full-time,Data Engineer,141000,USD,141000,United States,Remote,United States,M,Data Engineering +2024,Senior,Full-time,Data Scientist,162819,USD,162819,United States,Remote,United States,M,Data Science and Research +2024,Senior,Full-time,Data Scientist,95776,USD,95776,United States,Remote,United States,M,Data Science and Research +2024,Mid-level,Full-time,Applied Scientist,222200,USD,222200,United States,In-person,United States,L,Data Science and Research +2024,Mid-level,Full-time,Applied Scientist,136000,USD,136000,United States,In-person,United States,L,Data Science and Research +2024,Mid-level,Full-time,Data Engineer,138278,USD,138278,United States,In-person,United States,M,Data Engineering +2024,Mid-level,Full-time,Data Engineer,86424,USD,86424,United States,In-person,United States,M,Data Engineering +2024,Senior,Full-time,Analytics Engineer,130500,USD,130500,United States,In-person,United States,M,Leadership and Management +2024,Senior,Full-time,Analytics Engineer,96000,USD,96000,United States,In-person,United States,M,Leadership and Management +2024,Senior,Full-time,Data Architect,175000,USD,175000,United States,In-person,United States,M,Data Architecture and Modeling +2024,Senior,Full-time,Data Architect,117000,USD,117000,United States,In-person,United States,M,Data Architecture and Modeling +2024,Mid-level,Full-time,Data Engineer,122100,USD,122100,United States,In-person,United States,M,Data Engineering +2024,Mid-level,Full-time,Data Engineer,75500,USD,75500,United States,In-person,United States,M,Data Engineering +2024,Mid-level,Full-time,Data Product Manager,250000,USD,250000,United States,In-person,United States,M,Leadership and Management +2024,Mid-level,Full-time,Data Product Manager,200000,USD,200000,United States,In-person,United States,M,Leadership and Management +2024,Mid-level,Full-time,Business Intelligence Manager,117000,USD,117000,United States,In-person,United States,M,BI and Visualization +2024,Mid-level,Full-time,Business Intelligence Manager,99600,USD,99600,United States,In-person,United States,M,BI and Visualization +2024,Entry-level,Full-time,Data Engineer,162240,USD,162240,United States,In-person,United States,M,Data Engineering +2024,Entry-level,Full-time,Data Engineer,47840,USD,47840,United States,In-person,United States,M,Data Engineering +2024,Mid-level,Full-time,Data Scientist,231250,USD,231250,United States,In-person,United States,M,Data Science and Research +2024,Mid-level,Full-time,Data Scientist,111000,USD,111000,United States,In-person,United States,M,Data Science and Research +2024,Senior,Full-time,Data Engineer,277000,USD,277000,United States,In-person,United States,M,Data Engineering +2024,Senior,Full-time,Data Engineer,173000,USD,173000,United States,In-person,United States,M,Data Engineering +2024,Mid-level,Full-time,Data Analytics Manager,128000,USD,128000,United States,In-person,United States,M,Leadership and Management +2024,Mid-level,Full-time,Data Analytics Manager,81500,USD,81500,United States,In-person,United States,M,Leadership and Management +2024,Senior,Full-time,Data Scientist,202800,USD,202800,United States,In-person,United States,M,Data Science and Research +2024,Senior,Full-time,Data Scientist,115000,USD,115000,United States,In-person,United States,M,Data Science and Research +2024,Entry-level,Full-time,Data Analyst,65000,USD,65000,United States,In-person,United States,M,Data Analysis +2024,Entry-level,Full-time,Data Analyst,55751,USD,55751,United States,In-person,United States,M,Data Analysis +2024,Senior,Full-time,Data Architect,165000,USD,165000,United States,Remote,United States,M,Data Architecture and Modeling +2024,Senior,Full-time,Data Architect,150000,USD,150000,United States,Remote,United States,M,Data Architecture and Modeling +2024,Senior,Full-time,AI Architect,257250,USD,257250,United States,Remote,United States,M,Machine Learning and AI +2024,Senior,Full-time,AI Architect,99750,USD,99750,United States,Remote,United States,M,Machine Learning and AI +2024,Senior,Full-time,Data Architect,169767,USD,169767,New Zealand,In-person,New Zealand,M,Data Architecture and Modeling +2024,Senior,Full-time,Data Architect,136420,USD,136420,New Zealand,In-person,New Zealand,M,Data Architecture and Modeling +2024,Mid-level,Full-time,Data Developer,100000,USD,100000,United States,In-person,United States,M,Leadership and Management +2024,Mid-level,Full-time,Data Developer,95000,USD,95000,United States,In-person,United States,M,Leadership and Management +2024,Mid-level,Full-time,Data Scientist,147800,USD,147800,United States,In-person,United States,M,Data Science and Research +2024,Mid-level,Full-time,Data Scientist,93100,USD,93100,United States,In-person,United States,M,Data Science and Research +2024,Mid-level,Full-time,Data Manager,83300,USD,83300,United States,In-person,United States,M,Leadership and Management +2024,Mid-level,Full-time,Data Manager,47500,USD,47500,United States,In-person,United States,M,Leadership and Management +2024,Senior,Full-time,Data Engineer,160000,USD,160000,United States,In-person,United States,M,Data Engineering +2024,Senior,Full-time,Data Engineer,100000,USD,100000,United States,In-person,United States,M,Data Engineering +2024,Entry-level,Full-time,Business Intelligence Analyst,92000,USD,92000,Australia,In-person,Australia,M,BI and Visualization +2024,Entry-level,Full-time,Business Intelligence Analyst,90000,USD,90000,Australia,In-person,Australia,M,BI and Visualization +2024,Senior,Full-time,Data Product Manager,220000,USD,220000,United Kingdom,In-person,United Kingdom,M,Leadership and Management +2024,Senior,Full-time,Data Product Manager,137500,USD,137500,United Kingdom,In-person,United Kingdom,M,Leadership and Management +2024,Entry-level,Full-time,Data Scientist,175100,USD,175100,United States,In-person,United States,M,Data Science and Research +2024,Entry-level,Full-time,Data Scientist,82915,USD,82915,United States,In-person,United States,M,Data Science and Research +2024,Mid-level,Full-time,Data Engineer,166000,USD,166000,United States,In-person,United States,M,Data Engineering +2024,Mid-level,Full-time,Data Engineer,73000,USD,73000,United States,In-person,United States,M,Data Engineering +2024,Senior,Full-time,Data Scientist,236400,USD,236400,United States,In-person,United States,M,Data Science and Research +2024,Senior,Full-time,Data Scientist,141800,USD,141800,United States,In-person,United States,M,Data Science and Research +2024,Senior,Full-time,Data Engineer,150000,USD,150000,United States,In-person,United States,M,Data Engineering +2024,Senior,Full-time,Data Engineer,135000,USD,135000,United States,In-person,United States,M,Data Engineering +2024,Senior,Full-time,Business Intelligence Developer,147500,USD,147500,United States,Remote,United States,M,BI and Visualization +2024,Senior,Full-time,Business Intelligence Developer,70800,USD,70800,United States,Remote,United States,M,BI and Visualization +2024,Mid-level,Full-time,Business Intelligence Engineer,185000,USD,185000,United States,In-person,United States,L,BI and Visualization +2024,Mid-level,Full-time,Business Intelligence Engineer,79600,USD,79600,United States,In-person,United States,L,BI and Visualization +2024,Entry-level,Full-time,Data Analyst,99200,USD,99200,United States,Remote,United States,M,Data Analysis +2024,Entry-level,Full-time,Data Analyst,69400,USD,69400,United States,Remote,United States,M,Data Analysis +2024,Entry-level,Full-time,Data Analyst,88200,USD,88200,United States,Remote,United States,M,Data Analysis +2024,Entry-level,Full-time,Data Analyst,61700,USD,61700,United States,Remote,United States,M,Data Analysis +2024,Senior,Full-time,Research Engineer,234000,USD,234000,United States,In-person,United States,M,Data Science and Research +2024,Senior,Full-time,Research Engineer,146000,USD,146000,United States,In-person,United States,M,Data Science and Research +2024,Mid-level,Full-time,Data Scientist,165000,USD,165000,United States,In-person,United States,M,Data Science and Research +2024,Mid-level,Full-time,Data Scientist,165000,USD,165000,United States,In-person,United States,M,Data Science and Research +2024,Senior,Full-time,Data Analyst,160000,USD,160000,United States,In-person,United States,M,Data Analysis +2024,Senior,Full-time,Data Analyst,130000,USD,130000,United States,In-person,United States,M,Data Analysis +2024,Mid-level,Full-time,Data Scientist,154800,USD,154800,United States,In-person,United States,M,Data Science and Research +2024,Mid-level,Full-time,Data Scientist,76300,USD,76300,United States,In-person,United States,M,Data Science and Research +2024,Mid-level,Full-time,Data Analyst,112000,USD,112000,United States,In-person,United States,M,Data Analysis +2024,Mid-level,Full-time,Data Analyst,84000,USD,84000,United States,In-person,United States,M,Data Analysis +2024,Entry-level,Full-time,Data Analyst,115000,USD,115000,United States,In-person,United States,M,Data Analysis +2024,Entry-level,Full-time,Data Analyst,90000,USD,90000,United States,In-person,United States,M,Data Analysis +2024,Senior,Full-time,Data Engineer,170000,USD,170000,United States,In-person,United States,M,Data Engineering +2024,Senior,Full-time,Data Engineer,130000,USD,130000,United States,In-person,United States,M,Data Engineering +2024,Senior,Full-time,Business Intelligence Engineer,185000,USD,185000,United States,In-person,United States,L,BI and Visualization +2024,Senior,Full-time,Business Intelligence Engineer,79600,USD,79600,United States,In-person,United States,L,BI and Visualization +2024,Entry-level,Full-time,Data Analyst,160000,USD,160000,United States,In-person,United States,M,Data Analysis +2024,Entry-level,Full-time,Data Analyst,110000,USD,110000,United States,In-person,United States,M,Data Analysis +2024,Mid-level,Full-time,Data Analyst,95000,USD,95000,United States,In-person,United States,M,Data Analysis +2024,Mid-level,Full-time,Data Analyst,65000,USD,65000,United States,In-person,United States,M,Data Analysis +2024,Senior,Full-time,Analytics Engineer,180000,USD,180000,Canada,Remote,Canada,M,Leadership and Management +2024,Senior,Full-time,Analytics Engineer,120000,USD,120000,Canada,Remote,Canada,M,Leadership and Management +2024,Senior,Full-time,Data Analyst,155000,USD,155000,United States,In-person,United States,M,Data Analysis +2024,Senior,Full-time,Data Analyst,100000,USD,100000,United States,In-person,United States,M,Data Analysis +2024,Senior,Full-time,Data Scientist,190500,USD,190500,Canada,Remote,Canada,M,Data Science and Research +2024,Senior,Full-time,Data Scientist,138500,USD,138500,Canada,Remote,Canada,M,Data Science and Research +2024,Senior,Full-time,Data Engineer,159000,USD,159000,Canada,In-person,Canada,M,Data Engineering +2024,Senior,Full-time,Data Engineer,127000,USD,127000,Canada,In-person,Canada,M,Data Engineering +2024,Entry-level,Full-time,Data Analyst,147000,USD,147000,United States,In-person,United States,M,Data Analysis +2024,Entry-level,Full-time,Data Analyst,118000,USD,118000,United States,In-person,United States,M,Data Analysis +2024,Entry-level,Full-time,Machine Learning Engineer,170000,USD,170000,United States,In-person,United States,M,Machine Learning and AI +2024,Entry-level,Full-time,Machine Learning Engineer,125000,USD,125000,United States,In-person,United States,M,Machine Learning and AI +2024,Senior,Full-time,Data Science Consultant,116000,USD,116000,United States,In-person,United States,M,Data Science and Research +2024,Senior,Full-time,Data Science Consultant,90000,USD,90000,United States,In-person,United States,M,Data Science and Research +2024,Senior,Full-time,Data Engineer,255475,USD,255475,United States,Remote,United States,M,Data Engineering +2024,Senior,Full-time,Data Engineer,185800,USD,185800,United States,Remote,United States,M,Data Engineering +2024,Mid-level,Full-time,Data Strategist,85000,USD,85000,United States,In-person,United States,M,Data Architecture and Modeling +2024,Mid-level,Full-time,Data Strategist,65000,USD,65000,United States,In-person,United States,M,Data Architecture and Modeling +2024,Mid-level,Full-time,Data Science,150000,USD,150000,United States,In-person,United States,M,Data Science and Research +2024,Mid-level,Full-time,Data Science,120000,USD,120000,United States,In-person,United States,M,Data Science and Research +2024,Mid-level,Full-time,Analytics Engineer,190000,USD,190000,United States,In-person,United States,M,Leadership and Management +2024,Mid-level,Full-time,Analytics Engineer,190000,USD,190000,United States,In-person,United States,M,Leadership and Management +2024,Mid-level,Full-time,Research Engineer,440000,USD,440000,United States,In-person,United States,M,Data Science and Research +2024,Mid-level,Full-time,Research Engineer,295000,USD,295000,United States,In-person,United States,M,Data Science and Research +2024,Senior,Full-time,Analytics Engineer,170000,USD,170000,United States,Remote,United States,M,Leadership and Management +2024,Senior,Full-time,Analytics Engineer,140000,USD,140000,United States,Remote,United States,M,Leadership and Management +2024,Senior,Full-time,Data Scientist,165000,USD,165000,United States,Remote,United States,M,Data Science and Research +2024,Senior,Full-time,Data Scientist,140250,USD,140250,United States,Remote,United States,M,Data Science and Research +2024,Mid-level,Full-time,Data Analytics Consultant,110300,USD,110300,United States,Remote,United States,M,Leadership and Management +2024,Mid-level,Full-time,Data Analytics Consultant,78100,USD,78100,United States,Remote,United States,M,Leadership and Management +2024,Mid-level,Full-time,Machine Learning Researcher,210000,USD,210000,United States,In-person,United States,M,Machine Learning and AI +2024,Mid-level,Full-time,Machine Learning Researcher,151800,USD,151800,United States,In-person,United States,M,Machine Learning and AI +2024,Entry-level,Full-time,Business Intelligence Analyst,75000,USD,75000,United States,In-person,United States,M,BI and Visualization +2024,Entry-level,Full-time,Business Intelligence Analyst,65000,USD,65000,United States,In-person,United States,M,BI and Visualization +2024,Mid-level,Full-time,Data Analyst,140000,USD,140000,United States,In-person,United States,M,Data Analysis +2024,Mid-level,Full-time,Data Analyst,105000,USD,105000,United States,In-person,United States,M,Data Analysis +2024,Mid-level,Full-time,AI Research Engineer,200000,USD,200000,United States,In-person,United States,L,Data Science and Research +2024,Senior,Full-time,Data Analytics Specialist,157144,USD,157144,United States,In-person,United States,M,Leadership and Management +2024,Senior,Full-time,Data Analytics Specialist,99445,USD,99445,United States,In-person,United States,M,Leadership and Management +2024,Senior,Full-time,Data Engineer,274965,CAD,211511,Canada,In-person,Canada,M,Data Engineering +2024,Senior,Full-time,Data Engineer,130008,CAD,100006,Canada,In-person,Canada,M,Data Engineering +2024,Senior,Full-time,Data Engineer,201900,USD,201900,United States,In-person,United States,M,Data Engineering +2024,Senior,Full-time,Data Engineer,97335,USD,97335,United States,In-person,United States,M,Data Engineering +2024,Senior,Full-time,Data Scientist,283800,USD,283800,United States,In-person,United States,M,Data Science and Research +2024,Senior,Full-time,Data Scientist,170700,USD,170700,United States,In-person,United States,M,Data Science and Research +2024,Senior,Full-time,Research Analyst,152400,USD,152400,United States,Remote,United States,M,Data Science and Research +2024,Senior,Full-time,Research Analyst,73700,USD,73700,United States,Remote,United States,M,Data Science and Research +2024,Mid-level,Full-time,Data Engineer,166000,USD,166000,United States,In-person,United States,M,Data Engineering +2024,Mid-level,Full-time,Data Engineer,73100,USD,73100,United States,In-person,United States,M,Data Engineering +2024,Senior,Full-time,Data Scientist,202600,USD,202600,United States,In-person,United States,M,Data Science and Research +2024,Senior,Full-time,Data Scientist,93800,USD,93800,United States,In-person,United States,M,Data Science and Research +2024,Senior,Full-time,Data Scientist,273500,USD,273500,United States,In-person,United States,M,Data Science and Research +2024,Senior,Full-time,Data Scientist,126600,USD,126600,United States,In-person,United States,M,Data Science and Research +2024,Senior,Full-time,Business Intelligence,176875,USD,176875,United States,In-person,United States,M,BI and Visualization +2024,Senior,Full-time,Business Intelligence,84750,USD,84750,United States,In-person,United States,M,BI and Visualization +2024,Mid-level,Full-time,ETL Developer,166000,USD,166000,United States,In-person,United States,M,Data Engineering +2024,Mid-level,Full-time,ETL Developer,73100,USD,73100,United States,In-person,United States,M,Data Engineering +2024,Entry-level,Full-time,Data Analyst,88200,USD,88200,United States,Remote,United States,M,Data Analysis +2024,Entry-level,Full-time,Data Analyst,61700,USD,61700,United States,Remote,United States,M,Data Analysis +2024,Mid-level,Full-time,Data Engineer,75000,USD,75000,United States,Remote,United States,M,Data Engineering +2024,Mid-level,Full-time,Data Engineer,60000,USD,60000,United States,Remote,United States,M,Data Engineering +2024,Mid-level,Full-time,Data Scientist,121500,USD,121500,United States,Remote,United States,M,Data Science and Research +2024,Mid-level,Full-time,Data Scientist,88200,USD,88200,United States,Remote,United States,M,Data Science and Research +2024,Mid-level,Full-time,Data Engineer,133000,USD,133000,United States,In-person,United States,M,Data Engineering +2024,Mid-level,Full-time,Data Engineer,58300,USD,58300,United States,In-person,United States,M,Data Engineering +2024,Senior,Full-time,Data Engineer,229900,USD,229900,United States,In-person,United States,M,Data Engineering +2024,Senior,Full-time,Data Engineer,201400,USD,201400,United States,In-person,United States,M,Data Engineering +2024,Senior,Full-time,Data Scientist,,USD,247250,United States,In-person,United States,M,Data Science and Research +2024,Senior,Full-time,Data Scientist,160000,USD,160000,United States,In-person,United States,M,Data Science and Research +2024,Senior,Full-time,Data Scientist,177700,USD,177700,United States,In-person,United States,M,Data Science and Research +2024,Senior,Full-time,Data Scientist,94700,USD,94700,United States,In-person,United States,M,Data Science and Research +2024,Senior,Full-time,Data Engineer,184000,USD,184000,United States,In-person,United States,M,Data Engineering +2024,Senior,Full-time,Data Engineer,123000,USD,123000,United States,In-person,United States,M,Data Engineering +2024,Senior,Full-time,Machine Learning Engineer,258600,USD,258600,United States,Remote,United States,M,Machine Learning and AI +2024,Senior,Full-time,Machine Learning Engineer,215500,USD,215500,United States,Remote,United States,M,Machine Learning and AI +2024,Senior,Full-time,Data Scientist,237188,USD,237188,United States,Remote,United States,M,Data Science and Research +2024,Senior,Full-time,Data Scientist,194063,USD,194063,United States,Remote,United States,M,Data Science and Research +2024,Mid-level,Full-time,Data Specialist,112500,USD,112500,United States,Remote,United States,M,Data Management and Strategy +2024,Mid-level,Full-time,Data Specialist,59500,USD,59500,United States,Remote,United States,M,Data Management and Strategy +2024,Senior,Full-time,Data Analyst,153900,USD,153900,United States,In-person,United States,M,Data Analysis +2024,Senior,Full-time,Data Analyst,85500,USD,85500,United States,In-person,United States,M,Data Analysis +2024,Senior,Full-time,Research Scientist,210000,USD,210000,United States,In-person,United States,M,Data Science and Research +2024,Senior,Full-time,Research Scientist,151800,USD,151800,United States,In-person,United States,M,Data Science and Research +2024,Senior,Full-time,Business Intelligence Engineer,108500,USD,108500,United States,Remote,United States,M,BI and Visualization +2024,Senior,Full-time,Business Intelligence Engineer,78800,USD,78800,United States,Remote,United States,M,BI and Visualization +2024,Mid-level,Full-time,Data Scientist,212000,USD,212000,United States,In-person,United States,M,Data Science and Research +2024,Mid-level,Full-time,Data Scientist,93300,USD,93300,United States,In-person,United States,M,Data Science and Research +2024,Mid-level,Full-time,Data Engineer,209000,USD,209000,United States,In-person,United States,M,Data Engineering +2024,Mid-level,Full-time,Data Engineer,171000,USD,171000,United States,In-person,United States,M,Data Engineering +2024,Senior,Full-time,Data Analyst,164000,USD,164000,United States,In-person,United States,M,Data Analysis +2024,Senior,Full-time,Data Analyst,109000,USD,109000,United States,In-person,United States,M,Data Analysis +2024,Senior,Full-time,Data Analyst,140000,USD,140000,United States,In-person,United States,M,Data Analysis +2024,Senior,Full-time,Data Analyst,115000,USD,115000,United States,In-person,United States,M,Data Analysis +2024,Entry-level,Full-time,Data Analyst,83300,USD,83300,United States,In-person,United States,M,Data Analysis +2024,Entry-level,Full-time,Data Analyst,47500,USD,47500,United States,In-person,United States,M,Data Analysis +2024,Mid-level,Full-time,Analytics Engineer,156450,USD,156450,United States,In-person,United States,M,Leadership and Management +2024,Mid-level,Full-time,Analytics Engineer,119200,USD,119200,United States,In-person,United States,M,Leadership and Management +2024,Senior,Full-time,Data Scientist,161500,USD,161500,United States,In-person,United States,M,Data Science and Research +2024,Senior,Full-time,Data Scientist,113050,USD,113050,United States,In-person,United States,M,Data Science and Research +2024,Entry-level,Full-time,Data Engineer,130916,USD,130916,United States,In-person,United States,M,Data Engineering +2024,Entry-level,Full-time,Data Engineer,120000,USD,120000,United States,In-person,United States,M,Data Engineering +2024,Mid-level,Full-time,Data Scientist,260000,USD,260000,United States,In-person,United States,M,Data Science and Research +2024,Mid-level,Full-time,Data Scientist,198000,USD,198000,United States,In-person,United States,M,Data Science and Research +2024,Mid-level,Full-time,Data Engineer,235000,USD,235000,United States,In-person,United States,M,Data Engineering +2024,Mid-level,Full-time,Data Engineer,170000,USD,170000,United States,In-person,United States,M,Data Engineering +2024,Senior,Full-time,Data Scientist,185900,USD,185900,United States,In-person,United States,M,Data Science and Research +2024,Senior,Full-time,Data Scientist,109400,USD,109400,United States,In-person,United States,M,Data Science and Research +2024,Senior,Full-time,Machine Learning Engineer,210000,USD,210000,United States,In-person,United States,M,Machine Learning and AI +2024,Senior,Full-time,Machine Learning Engineer,180000,USD,180000,United States,In-person,United States,M,Machine Learning and AI +2024,Senior,Full-time,Data Engineer,180000,USD,180000,United States,In-person,United States,M,Data Engineering +2024,Senior,Full-time,Data Engineer,110000,USD,110000,United States,In-person,United States,M,Data Engineering +2024,Senior,Full-time,Data Engineer,185000,USD,185000,United States,Remote,United States,M,Data Engineering +2024,Senior,Full-time,Data Engineer,148000,USD,148000,United States,Remote,United States,M,Data Engineering +2024,Senior,Full-time,Data Scientist,180000,USD,180000,United States,In-person,United States,M,Data Science and Research +2024,Senior,Full-time,Data Scientist,110000,USD,110000,United States,In-person,United States,M,Data Science and Research +2024,Mid-level,Full-time,Machine Learning Engineer,235680,USD,235680,United States,In-person,United States,M,Machine Learning and AI +2024,Mid-level,Full-time,Machine Learning Engineer,153040,USD,153040,United States,In-person,United States,M,Machine Learning and AI +2024,Senior,Full-time,Data Engineer,145000,USD,145000,United States,In-person,United States,M,Data Engineering +2024,Senior,Full-time,Data Engineer,106500,USD,106500,United States,In-person,United States,M,Data Engineering +2024,Senior,Full-time,Research Engineer,290000,USD,290000,United States,In-person,United States,M,Data Science and Research +2024,Senior,Full-time,Research Engineer,240000,USD,240000,United States,In-person,United States,M,Data Science and Research +2024,Senior,Full-time,Data Analyst,185000,USD,185000,United States,In-person,United States,M,Data Analysis +2024,Senior,Full-time,Data Analyst,145000,USD,145000,United States,In-person,United States,M,Data Analysis +2024,Senior,Full-time,Business Intelligence Analyst,150000,USD,150000,United States,Remote,United States,M,BI and Visualization +2024,Senior,Full-time,Business Intelligence Analyst,123000,USD,123000,United States,Remote,United States,M,BI and Visualization +2024,Senior,Full-time,Machine Learning Engineer,270400,USD,270400,United States,In-person,United States,M,Machine Learning and AI +2024,Senior,Full-time,Machine Learning Engineer,145600,USD,145600,United States,In-person,United States,M,Machine Learning and AI +2024,Mid-level,Full-time,Data Analyst,177000,USD,177000,United States,Remote,United States,M,Data Analysis +2024,Mid-level,Full-time,Data Analyst,149000,USD,149000,United States,Remote,United States,M,Data Analysis +2024,Entry-level,Full-time,Data Analyst,115000,USD,115000,United States,In-person,United States,M,Data Analysis +2024,Entry-level,Full-time,Data Analyst,95000,USD,95000,United States,In-person,United States,M,Data Analysis +2024,Mid-level,Full-time,Business Intelligence,167500,USD,167500,United States,In-person,United States,M,BI and Visualization +2024,Mid-level,Full-time,Business Intelligence,106500,USD,106500,United States,In-person,United States,M,BI and Visualization +2024,Senior,Full-time,Research Scientist,303050,USD,303050,United States,In-person,United States,M,Data Science and Research +2024,Senior,Full-time,Research Scientist,202350,USD,202350,United States,In-person,United States,M,Data Science and Research +2024,Senior,Full-time,Data Architect,184000,USD,184000,United States,In-person,United States,M,Data Architecture and Modeling +2024,Senior,Full-time,Data Architect,123000,USD,123000,United States,In-person,United States,M,Data Architecture and Modeling +2024,Senior,Full-time,Analytics Engineer,244400,USD,244400,France,In-person,France,M,Leadership and Management +2024,Senior,Full-time,Analytics Engineer,131600,USD,131600,France,In-person,France,M,Leadership and Management +2024,Senior,Full-time,Data Engineer,110000,USD,110000,United States,In-person,United States,M,Data Engineering +2024,Senior,Full-time,Data Engineer,76500,USD,76500,United States,In-person,United States,M,Data Engineering +2024,Mid-level,Full-time,Data Analyst,134400,USD,134400,United States,In-person,United States,M,Data Analysis +2024,Mid-level,Full-time,Data Analyst,81200,USD,81200,United States,In-person,United States,M,Data Analysis +2024,Entry-level,Full-time,Data Analyst,100000,USD,100000,United States,In-person,United States,M,Data Analysis +2024,Entry-level,Full-time,Data Analyst,75000,USD,75000,United States,In-person,United States,M,Data Analysis +2024,Senior,Full-time,Research Engineer,280000,USD,280000,United States,In-person,United States,M,Data Science and Research +2024,Entry-level,Full-time,Data Analyst,130000,USD,130000,United States,In-person,United States,M,Data Analysis +2024,Entry-level,Full-time,Data Analyst,100000,USD,100000,United States,In-person,United States,M,Data Analysis +2024,Senior,Full-time,Data Analyst,207300,USD,207300,United States,In-person,United States,M,Data Analysis +2024,Senior,Full-time,Data Analyst,149300,USD,149300,United States,In-person,United States,M,Data Analysis +2024,Mid-level,Full-time,Data Science,128000,USD,128000,United States,In-person,United States,M,Data Science and Research +2024,Mid-level,Full-time,Data Science,81500,USD,81500,United States,In-person,United States,M,Data Science and Research +2024,Senior,Full-time,Data Engineer,144000,USD,144000,United States,In-person,United States,M,Data Engineering +2024,Senior,Full-time,Data Engineer,113000,USD,113000,United States,In-person,United States,M,Data Engineering +2024,Senior,Full-time,Research Scientist,278700,USD,278700,United States,In-person,United States,M,Data Science and Research +2024,Senior,Full-time,Research Scientist,159300,USD,159300,United States,In-person,United States,M,Data Science and Research +2024,Senior,Full-time,Data Scientist,65000,GBP,81250,United Kingdom,In-person,United Kingdom,M,Data Science and Research +2024,Senior,Full-time,Data Scientist,55000,GBP,68750,United Kingdom,In-person,United Kingdom,M,Data Science and Research +2024,Mid-level,Full-time,Business Intelligence Engineer,165600,USD,165600,United States,In-person,United States,L,BI and Visualization +2024,Mid-level,Full-time,Business Intelligence Engineer,65800,USD,65800,United States,In-person,United States,L,BI and Visualization +2024,Senior,Full-time,Machine Learning Engineer,200000,USD,200000,United States,In-person,United States,M,Machine Learning and AI +2024,Senior,Full-time,Machine Learning Engineer,85000,USD,85000,United States,In-person,United States,M,Machine Learning and AI +2024,Mid-level,Full-time,Data Engineer,193412,USD,193412,Canada,In-person,Canada,M,Data Engineering +2024,Mid-level,Full-time,Data Engineer,116047,USD,116047,Canada,In-person,Canada,M,Data Engineering +2024,Mid-level,Full-time,Research Scientist,359400,USD,359400,United States,Remote,United States,M,Data Science and Research +2024,Mid-level,Full-time,Research Scientist,239600,USD,239600,United States,Remote,United States,M,Data Science and Research +2024,Entry-level,Full-time,Data Analyst,132000,USD,132000,United States,In-person,United States,M,Data Analysis +2024,Entry-level,Full-time,Data Analyst,108000,USD,108000,United States,In-person,United States,M,Data Analysis +2024,Mid-level,Full-time,Data Engineer,106050,USD,106050,United States,In-person,United States,M,Data Engineering +2024,Mid-level,Full-time,Data Engineer,80420,USD,80420,United States,In-person,United States,M,Data Engineering +2024,Senior,Full-time,Data Science,240000,USD,240000,United States,In-person,United States,M,Data Science and Research +2024,Senior,Full-time,Data Science,204000,USD,204000,United States,In-person,United States,M,Data Science and Research +2024,Senior,Full-time,Data Scientist,174300,USD,174300,United States,In-person,United States,M,Data Science and Research +2024,Senior,Full-time,Data Scientist,140000,USD,140000,United States,In-person,United States,M,Data Science and Research +2024,Senior,Full-time,Data Scientist,195000,USD,195000,United States,Remote,United States,M,Data Science and Research +2024,Senior,Full-time,Data Scientist,136500,USD,136500,United States,Remote,United States,M,Data Science and Research +2024,Mid-level,Full-time,Data Engineer,180000,USD,180000,United States,In-person,United States,M,Data Engineering +2024,Mid-level,Full-time,Data Engineer,155000,USD,155000,United States,In-person,United States,M,Data Engineering +2024,Executive,Full-time,Data Science,175762,USD,175762,United States,In-person,United States,M,Data Science and Research +2024,Executive,Full-time,Data Science,97254,USD,97254,United States,In-person,United States,M,Data Science and Research +2024,Executive,Full-time,Data Analyst,160000,USD,160000,United States,In-person,United States,M,Data Analysis +2024,Executive,Full-time,Data Analyst,120000,USD,120000,United States,In-person,United States,M,Data Analysis +2024,Senior,Full-time,Data Analyst,120000,USD,120000,United States,Remote,United States,M,Data Analysis +2024,Senior,Full-time,Data Analyst,100000,USD,100000,United States,Remote,United States,M,Data Analysis +2024,Mid-level,Full-time,Machine Learning Engineer,180000,USD,180000,United States,In-person,United States,M,Machine Learning and AI +2024,Mid-level,Full-time,Machine Learning Engineer,150000,USD,150000,United States,In-person,United States,M,Machine Learning and AI +2024,Senior,Full-time,Data Scientist,145125,USD,145125,United States,In-person,United States,M,Data Science and Research +2024,Senior,Full-time,Data Scientist,124875,USD,124875,United States,In-person,United States,M,Data Science and Research +2024,Senior,Full-time,Applied Scientist,290000,USD,290000,United States,Remote,United States,M,Data Science and Research +2024,Senior,Full-time,Applied Scientist,210000,USD,210000,United States,Remote,United States,M,Data Science and Research +2024,Mid-level,Full-time,Data Scientist,215000,USD,215000,United States,In-person,United States,M,Data Science and Research +2024,Mid-level,Full-time,Data Scientist,152000,USD,152000,United States,In-person,United States,M,Data Science and Research +2024,Mid-level,Full-time,Data Analytics Consultant,123900,USD,123900,United States,In-person,United States,M,Leadership and Management +2024,Mid-level,Full-time,Data Analytics Consultant,66100,USD,66100,United States,In-person,United States,M,Leadership and Management +2024,Senior,Full-time,Machine Learning Engineer,182000,USD,182000,United States,Remote,United States,M,Machine Learning and AI +2024,Senior,Full-time,Machine Learning Engineer,164000,USD,164000,United States,Remote,United States,M,Machine Learning and AI +2024,Senior,Full-time,Data Analyst,108334,USD,108334,United States,In-person,United States,M,Data Analysis +2024,Senior,Full-time,Data Analyst,59923,USD,59923,United States,In-person,United States,M,Data Analysis +2024,Senior,Full-time,Data Scientist,150000,USD,150000,United States,In-person,United States,M,Data Science and Research +2024,Senior,Full-time,Data Scientist,130000,USD,130000,United States,In-person,United States,M,Data Science and Research +2024,Executive,Full-time,Data Science Engineer,160000,USD,160000,United States,In-person,United States,M,Data Science and Research +2024,Executive,Full-time,Data Science Engineer,120000,USD,120000,United States,In-person,United States,M,Data Science and Research +2024,Mid-level,Full-time,Data Engineer,140000,USD,140000,United States,In-person,United States,M,Data Engineering +2024,Mid-level,Full-time,Data Engineer,70000,USD,70000,United States,In-person,United States,M,Data Engineering +2024,Senior,Full-time,Data Scientist,150800,USD,150800,United States,In-person,United States,M,Data Science and Research +2024,Senior,Full-time,Data Scientist,100600,USD,100600,United States,In-person,United States,M,Data Science and Research +2024,Senior,Full-time,Data Architect,276000,USD,276000,United States,In-person,United States,M,Data Architecture and Modeling +2024,Senior,Full-time,Data Architect,174000,USD,174000,United States,In-person,United States,M,Data Architecture and Modeling +2024,Mid-level,Full-time,Data Scientist,120000,USD,120000,United States,In-person,United States,M,Data Science and Research +2024,Mid-level,Full-time,Data Scientist,94400,USD,94400,United States,In-person,United States,M,Data Science and Research +2024,Mid-level,Full-time,Data Scientist,160000,USD,160000,United States,In-person,United States,M,Data Science and Research +2024,Mid-level,Full-time,Data Scientist,136000,USD,136000,United States,In-person,United States,M,Data Science and Research +2024,Mid-level,Full-time,Data Scientist,215000,USD,215000,United States,In-person,United States,M,Data Science and Research +2024,Mid-level,Full-time,Data Scientist,152000,USD,152000,United States,In-person,United States,M,Data Science and Research +2024,Senior,Full-time,Data Analyst,140000,USD,140000,United States,In-person,United States,M,Data Analysis +2024,Senior,Full-time,Data Analyst,110000,USD,110000,United States,In-person,United States,M,Data Analysis +2024,Senior,Full-time,Business Intelligence Engineer,185000,USD,185000,United States,In-person,United States,L,BI and Visualization +2024,Senior,Full-time,Business Intelligence Engineer,79600,USD,79600,United States,In-person,United States,L,BI and Visualization +2024,Mid-level,Full-time,Prompt Engineer,215000,USD,215000,Australia,Remote,Australia,M,Machine Learning and AI +2024,Mid-level,Full-time,Prompt Engineer,200000,USD,200000,Australia,Remote,Australia,M,Machine Learning and AI +2024,Executive,Full-time,Data Engineer,212500,USD,212500,United States,In-person,United States,M,Data Engineering +2024,Executive,Full-time,Data Engineer,163500,USD,163500,United States,In-person,United States,M,Data Engineering +2024,Senior,Full-time,Research Engineer,237650,USD,237650,United States,In-person,United States,M,Data Science and Research +2024,Senior,Full-time,Research Engineer,172700,USD,172700,United States,In-person,United States,M,Data Science and Research +2024,Senior,Full-time,Data Scientist,148500,USD,148500,United States,Remote,United States,M,Data Science and Research +2024,Senior,Full-time,Data Scientist,103275,USD,103275,United States,Remote,United States,M,Data Science and Research +2024,Senior,Full-time,Data Scientist,175000,USD,175000,United States,Remote,United States,M,Data Science and Research +2024,Senior,Full-time,Data Scientist,145000,USD,145000,United States,Remote,United States,M,Data Science and Research +2024,Entry-level,Full-time,Research Engineer,257400,USD,257400,United States,In-person,United States,M,Data Science and Research +2024,Entry-level,Full-time,Research Engineer,193500,USD,193500,United States,In-person,United States,M,Data Science and Research +2024,Entry-level,Full-time,Data Engineer,17598,USD,17598,Mexico,Hybrid,Mexico,L,Data Engineering +2024,Entry-level,Full-time,Big Data Engineer,17600,USD,17600,Mexico,Hybrid,Mexico,L,Data Engineering +2024,Senior,Full-time,Machine Learning Scientist,140000,USD,140000,United States,In-person,United States,M,Machine Learning and AI +2024,Senior,Full-time,Machine Learning Scientist,90000,USD,90000,United States,In-person,United States,M,Machine Learning and AI +2024,Senior,Full-time,Research Engineer,333500,USD,333500,United States,In-person,United States,M,Data Science and Research +2024,Senior,Full-time,Research Engineer,180000,USD,180000,United States,In-person,United States,M,Data Science and Research +2024,Senior,Full-time,Data Scientist,285670,USD,285670,United States,Remote,United States,M,Data Science and Research +2024,Senior,Full-time,Data Scientist,207760,USD,207760,United States,Remote,United States,M,Data Science and Research +2024,Entry-level,Full-time,Data Analyst,72128,EUR,80142,Netherlands,In-person,Netherlands,M,Data Analysis +2024,Entry-level,Full-time,Data Analyst,50490,EUR,56100,Netherlands,In-person,Netherlands,M,Data Analysis +2024,Senior,Full-time,Data Scientist,170800,USD,170800,United States,In-person,United States,M,Data Science and Research +2024,Senior,Full-time,Data Scientist,92300,USD,92300,United States,In-person,United States,M,Data Science and Research +2024,Senior,Full-time,Applied Scientist,249700,USD,249700,United States,Remote,United States,M,Data Science and Research +2024,Senior,Full-time,Applied Scientist,156300,USD,156300,United States,Remote,United States,M,Data Science and Research +2024,Senior,Full-time,Data Analyst,200200,USD,200200,United States,In-person,United States,M,Data Analysis +2024,Senior,Full-time,Data Analyst,111200,USD,111200,United States,In-person,United States,M,Data Analysis +2024,Mid-level,Full-time,Research Scientist,195200,USD,195200,United States,In-person,United States,L,Data Science and Research +2024,Mid-level,Full-time,Research Scientist,100400,USD,100400,United States,In-person,United States,l,Data Science and Research +2024,Senior,Full-time,Data Analyst,153900,USD,153900,United States,In-person,United States,M,Data Analysis +2024,Senior,Full-time,Data Analyst,85500,USD,85500,United States,In-person,United States,M,Data Analysis +2024,Senior,Full-time,Data Architect,222000,USD,222000,United States,Remote,United States,M,Data Architecture and Modeling +2024,Senior,Full-time,Data Architect,132000,USD,132000,United States,Remote,United States,M,Data Architecture and Modeling +2024,Senior,Full-time,Data Scientist,220000,USD,220000,United States,In-person,United States,M,Data Science and Research +2024,Senior,Full-time,Data Scientist,137500,USD,137500,United States,In-person,United States,M,Data Science and Research +2024,Entry-level,Full-time,Research Analyst,83200,USD,83200,United States,Remote,United States,M,Data Science and Research +2024,Entry-level,Full-time,Research Analyst,45900,USD,45900,United States,Remote,United States,M,Data Science and Research +2024,Mid-level,Full-time,Data Scientist,179000,USD,179000,United States,In-person,United States,M,Data Science and Research +2024,Mid-level,Full-time,Data Scientist,112000,USD,112000,United States,In-person,United States,M,Data Science and Research +2024,Mid-level,Full-time,AI Engineer,200000,USD,200000,United States,Remote,United States,M,Machine Learning and AI +2024,Mid-level,Full-time,AI Engineer,180000,USD,180000,United States,Remote,United States,M,Machine Learning and AI +2024,Entry-level,Full-time,Data Analyst,54000,EUR,60000,France,In-person,France,M,Data Analysis +2024,Entry-level,Full-time,Data Analyst,50000,EUR,55555,France,In-person,France,M,Data Analysis +2024,Senior,Full-time,Data Scientist,60000,GBP,75000,United Kingdom,In-person,United Kingdom,M,Data Science and Research +2024,Senior,Full-time,Data Scientist,40000,GBP,50000,United Kingdom,In-person,United Kingdom,M,Data Science and Research +2023,Mid-level,Full-time,Prompt Engineer,56000,EUR,60462,Germany,In-person,Germany,S,Machine Learning and AI +2024,Entry-level,Full-time,Research Engineer,172800,USD,172800,United States,In-person,United States,M,Data Science and Research +2024,Entry-level,Full-time,Research Engineer,144000,USD,144000,United States,In-person,United States,M,Data Science and Research +2024,Mid-level,Full-time,Data Engineer,65000,EUR,72222,Austria,In-person,Austria,M,Data Engineering +2024,Mid-level,Full-time,Data Engineer,43000,EUR,47777,Austria,In-person,Austria,M,Data Engineering +2024,Senior,Full-time,Machine Learning Engineer,230000,USD,230000,United States,Remote,United States,M,Machine Learning and AI +2024,Senior,Full-time,Machine Learning Engineer,200000,USD,200000,United States,Remote,United States,M,Machine Learning and AI +2024,Senior,Full-time,Data Architect,363000,USD,363000,United States,In-person,United States,M,Data Architecture and Modeling +2024,Senior,Full-time,Data Architect,139800,USD,139800,United States,In-person,United States,M,Data Architecture and Modeling +2024,Mid-level,Full-time,Data Scientist,109000,USD,109000,United States,Remote,United States,M,Data Science and Research +2024,Mid-level,Full-time,Data Scientist,93000,USD,93000,United States,Remote,United States,M,Data Science and Research +2024,Mid-level,Full-time,Research Engineer,35000,EUR,38888,Portugal,In-person,Portugal,M,Data Science and Research +2024,Mid-level,Full-time,Research Engineer,26000,EUR,28888,Portugal,In-person,Portugal,M,Data Science and Research +2024,Senior,Full-time,Data Scientist,248600,USD,248600,United States,In-person,United States,M,Data Science and Research +2024,Senior,Full-time,Data Scientist,149200,USD,149200,United States,In-person,United States,M,Data Science and Research +2024,Senior,Full-time,Business Intelligence,175000,USD,175000,United States,In-person,United States,M,BI and Visualization +2024,Senior,Full-time,Business Intelligence,150000,USD,150000,United States,In-person,United States,M,BI and Visualization +2024,Senior,Full-time,Data Modeler,179000,USD,179000,United States,In-person,United States,M,Data Architecture and Modeling +2024,Senior,Full-time,Data Modeler,112000,USD,112000,United States,In-person,United States,M,Data Architecture and Modeling +2024,Entry-level,Full-time,Data Analyst,87999,USD,87999,United States,In-person,United States,M,Data Analysis +2024,Entry-level,Full-time,Data Analyst,66560,USD,66560,United States,In-person,United States,M,Data Analysis +2024,Senior,Full-time,Business Intelligence Engineer,108500,USD,108500,United States,Remote,United States,M,BI and Visualization +2024,Senior,Full-time,Business Intelligence Engineer,78800,USD,78800,United States,Remote,United States,M,BI and Visualization +2024,Mid-level,Full-time,Robotics Engineer,90000,USD,90000,United States,In-person,United States,M,Machine Learning and AI +2024,Mid-level,Full-time,Robotics Engineer,70000,USD,70000,United States,In-person,United States,M,Machine Learning and AI +2024,Senior,Full-time,Robotics Engineer,165000,USD,165000,United States,In-person,United States,M,Machine Learning and AI +2024,Senior,Full-time,Robotics Engineer,150000,USD,150000,United States,In-person,United States,M,Machine Learning and AI +2024,Senior,Full-time,Data Engineer,179000,USD,179000,United States,In-person,United States,M,Data Engineering +2024,Senior,Full-time,Data Engineer,112000,USD,112000,United States,In-person,United States,M,Data Engineering +2024,Senior,Full-time,Data Manager,131200,USD,131200,United States,Remote,United States,M,Leadership and Management +2024,Senior,Full-time,Data Manager,95300,USD,95300,United States,Remote,United States,M,Leadership and Management +2024,Senior,Full-time,Business Intelligence Lead,144300,USD,144300,United States,Remote,United States,M,BI and Visualization +2024,Senior,Full-time,Business Intelligence Lead,104800,USD,104800,United States,Remote,United States,M,BI and Visualization +2024,Senior,Full-time,Machine Learning Engineer,178250,USD,178250,United States,Remote,United States,M,Machine Learning and AI +2024,Senior,Full-time,Machine Learning Engineer,105500,USD,105500,United States,Remote,United States,M,Machine Learning and AI +2024,Senior,Full-time,Data Scientist,248600,USD,248600,United States,In-person,United States,M,Data Science and Research +2024,Senior,Full-time,Data Scientist,149200,USD,149200,United States,In-person,United States,M,Data Science and Research +2024,Senior,Full-time,Data Manager,219600,USD,219600,United States,In-person,United States,M,Leadership and Management +2024,Senior,Full-time,Data Manager,125500,USD,125500,United States,In-person,United States,M,Leadership and Management +2024,Senior,Full-time,Data Engineer,258500,USD,258500,United States,In-person,United States,M,Data Engineering +2024,Senior,Full-time,Data Engineer,191857,USD,191857,United States,In-person,United States,M,Data Engineering +2024,Mid-level,Full-time,Data Engineer,41105,GBP,51381,United States,In-person,United States,M,Data Engineering +2024,Mid-level,Full-time,Data Engineer,34940,GBP,43675,United States,In-person,United States,M,Data Engineering +2024,Senior,Full-time,AI Engineer,212000,USD,212000,United States,In-person,United States,M,Machine Learning and AI +2024,Senior,Full-time,AI Engineer,93300,USD,93300,United States,In-person,United States,M,Machine Learning and AI +2024,Mid-level,Full-time,Data Engineer,194000,USD,194000,United States,In-person,United States,M,Data Engineering +2024,Mid-level,Full-time,Data Engineer,96000,USD,96000,United States,In-person,United States,M,Data Engineering +2024,Senior,Full-time,Data Architect,250000,USD,250000,United States,Remote,United States,M,Data Architecture and Modeling +2024,Senior,Full-time,Data Architect,140000,USD,140000,United States,Remote,United States,M,Data Architecture and Modeling +2024,Entry-level,Full-time,Data Engineer,54000,EUR,60000,Lithuania,In-person,Lithuania,M,Data Engineering +2024,Entry-level,Full-time,Data Engineer,45600,EUR,50666,Lithuania,In-person,Lithuania,M,Data Engineering +2024,Entry-level,Full-time,Data Scientist,175100,USD,175100,United States,In-person,United States,M,Data Science and Research +2024,Entry-level,Full-time,Data Scientist,82915,USD,82915,United States,In-person,United States,M,Data Science and Research +2024,Entry-level,Full-time,Data Scientist,162240,USD,162240,United States,In-person,United States,M,Data Science and Research +2024,Entry-level,Full-time,Data Scientist,47840,USD,47840,United States,In-person,United States,M,Data Science and Research +2024,Mid-level,Full-time,Data Scientist,243800,USD,243800,United States,Remote,United States,M,Data Science and Research +2024,Mid-level,Full-time,Data Scientist,123800,USD,123800,United States,Remote,United States,M,Data Science and Research +2024,Senior,Full-time,Data Engineer,237600,USD,237600,United States,Remote,United States,M,Data Engineering +2024,Senior,Full-time,Data Engineer,168600,USD,168600,United States,Remote,United States,M,Data Engineering +2024,Mid-level,Full-time,Business Intelligence,155000,USD,155000,United States,Remote,United States,M,BI and Visualization +2024,Mid-level,Full-time,Business Intelligence,124000,USD,124000,United States,Remote,United States,M,BI and Visualization +2024,Senior,Full-time,Machine Learning Engineer,242000,USD,242000,Canada,In-person,Canada,M,Machine Learning and AI +2024,Senior,Full-time,Machine Learning Engineer,215000,USD,215000,Canada,In-person,Canada,M,Machine Learning and AI +2024,Senior,Full-time,Machine Learning Engineer,229369,USD,229369,United States,In-person,United States,M,Machine Learning and AI +2024,Senior,Full-time,Machine Learning Engineer,146900,USD,146900,United States,In-person,United States,M,Machine Learning and AI +2024,Senior,Full-time,Data Scientist,170000,USD,170000,United States,In-person,United States,M,Data Science and Research +2024,Senior,Full-time,Data Scientist,152000,USD,152000,United States,In-person,United States,M,Data Science and Research +2024,Senior,Full-time,Applied Scientist,260000,USD,260000,United States,In-person,United States,L,Data Science and Research +2024,Senior,Full-time,Applied Scientist,136000,USD,136000,United States,In-person,United States,L,Data Science and Research +2024,Executive,Full-time,Data Scientist,180000,USD,180000,United States,In-person,United States,M,Data Science and Research +2024,Executive,Full-time,Data Scientist,125000,USD,125000,United States,In-person,United States,M,Data Science and Research +2024,Mid-level,Full-time,Data Analyst,147000,USD,147000,United States,In-person,United States,M,Data Analysis +2024,Mid-level,Full-time,Data Analyst,118000,USD,118000,United States,In-person,United States,M,Data Analysis +2024,Senior,Full-time,Data Engineer,247500,USD,247500,United States,Remote,United States,M,Data Engineering +2024,Senior,Full-time,Data Engineer,172200,USD,172200,United States,Remote,United States,M,Data Engineering +2024,Entry-level,Full-time,Data Analyst,101000,USD,101000,United States,In-person,United States,M,Data Analysis +2024,Entry-level,Full-time,Data Analyst,85000,USD,85000,United States,In-person,United States,M,Data Analysis +2024,Mid-level,Full-time,Data Analyst,154000,USD,154000,United States,In-person,United States,M,Data Analysis +2024,Mid-level,Full-time,Data Analyst,105000,USD,105000,United States,In-person,United States,M,Data Analysis +2024,Senior,Full-time,Data Operations Specialist,206500,USD,206500,United States,In-person,United States,M,Data Quality and Operations +2024,Senior,Full-time,Data Operations Specialist,121500,USD,121500,United States,In-person,United States,M,Data Quality and Operations +2024,Mid-level,Full-time,Data Analyst,72500,USD,72500,United States,In-person,United States,M,Data Analysis +2024,Mid-level,Full-time,Data Analyst,61000,USD,61000,United States,In-person,United States,M,Data Analysis +2024,Senior,Full-time,Research Analyst,80000,GBP,100000,United Kingdom,In-person,United Kingdom,M,Data Science and Research +2024,Senior,Full-time,Research Analyst,70000,GBP,87500,United Kingdom,In-person,United Kingdom,M,Data Science and Research +2024,Senior,Full-time,Data Science,288400,USD,288400,United States,In-person,United States,M,Data Science and Research +2024,Senior,Full-time,Data Science,144200,USD,144200,United States,In-person,United States,M,Data Science and Research +2024,Mid-level,Full-time,ML Engineer,440000,USD,440000,United States,In-person,United States,M,Machine Learning and AI +2024,Entry-level,Full-time,Machine Learning Engineer,171600,USD,171600,United States,In-person,United States,M,Machine Learning and AI +2024,Entry-level,Full-time,Machine Learning Engineer,99500,USD,99500,United States,In-person,United States,M,Machine Learning and AI +2024,Senior,Full-time,Data Analyst,175000,USD,175000,United States,Remote,United States,M,Data Analysis +2024,Senior,Full-time,Data Analyst,150000,USD,150000,United States,Remote,United States,M,Data Analysis +2024,Senior,Full-time,Data Engineer,199700,USD,199700,United States,In-person,United States,M,Data Engineering +2024,Senior,Full-time,Data Engineer,165100,USD,165100,United States,In-person,United States,M,Data Engineering +2024,Entry-level,Full-time,Data Analyst,85900,USD,85900,Mexico,In-person,Mexico,M,Data Analysis +2024,Mid-level,Full-time,Applied Scientist,222200,USD,222200,United States,In-person,United States,L,Data Science and Research +2024,Mid-level,Full-time,Applied Scientist,136000,USD,136000,United States,In-person,United States,L,Data Science and Research +2024,Senior,Full-time,Data Engineer,313000,USD,313000,United States,Remote,United States,M,Data Engineering +2024,Senior,Full-time,Data Engineer,135000,USD,135000,United States,Remote,United States,M,Data Engineering +2024,Senior,Full-time,Analytics Engineer,153018,USD,153018,United States,In-person,United States,M,Leadership and Management +2024,Senior,Full-time,Analytics Engineer,135000,USD,135000,United States,In-person,United States,M,Leadership and Management +2024,Mid-level,Full-time,Analytics Engineer,170000,USD,170000,United States,In-person,United States,M,Leadership and Management +2024,Senior,Full-time,Research Scientist,321000,USD,321000,United States,Remote,United States,M,Data Science and Research +2024,Senior,Full-time,Research Scientist,214000,USD,214000,United States,Remote,United States,M,Data Science and Research +2024,Senior,Full-time,Data Engineer,95000,GBP,118750,United Kingdom,In-person,United Kingdom,M,Data Engineering +2024,Senior,Full-time,Data Engineer,50750,GBP,63437,United Kingdom,In-person,United Kingdom,M,Data Engineering +2024,Entry-level,Full-time,Data Analyst,120000,USD,120000,United States,Remote,United States,M,Data Analysis +2024,Entry-level,Full-time,Data Analyst,111510,USD,111510,United States,Remote,United States,M,Data Analysis +2024,Senior,Full-time,Data Analyst,141375,USD,141375,United States,Remote,United States,M,Data Analysis +2024,Senior,Full-time,Data Analyst,111500,USD,111500,United States,Remote,United States,M,Data Analysis +2024,Mid-level,Full-time,AI Programmer,30000,USD,30000,Bosnia and Herzegovina,In-person,Bosnia and Herzegovina,S,Machine Learning and AI +2024,Mid-level,Full-time,Data Analyst,75000,USD,75000,United States,Remote,United States,M,Data Analysis +2024,Senior,Full-time,Machine Learning Scientist,250000,USD,250000,United States,Remote,United States,M,Machine Learning and AI +2024,Senior,Full-time,Machine Learning Scientist,125000,USD,125000,United States,Remote,United States,M,Machine Learning and AI +2024,Entry-level,Full-time,Data Analyst,83300,USD,83300,United States,In-person,United States,M,Data Analysis +2024,Entry-level,Full-time,Data Analyst,47500,USD,47500,United States,In-person,United States,M,Data Analysis +2024,Entry-level,Full-time,Data Analyst,154818,USD,154818,United States,In-person,United States,M,Data Analysis +2024,Entry-level,Full-time,Data Analyst,96761,USD,96761,United States,In-person,United States,M,Data Analysis +2024,Senior,Full-time,Data Architect,120000,GBP,150000,United Kingdom,In-person,United Kingdom,M,Data Architecture and Modeling +2024,Senior,Full-time,Data Architect,90000,GBP,112500,United Kingdom,In-person,United Kingdom,M,Data Architecture and Modeling +2024,Senior,Full-time,Machine Learning Engineer,345400,USD,345400,United States,In-person,United States,M,Machine Learning and AI +2024,Senior,Full-time,Machine Learning Engineer,223700,USD,223700,United States,In-person,United States,M,Machine Learning and AI +2024,Senior,Full-time,Data Manager,96600,USD,96600,United States,In-person,United States,M,Leadership and Management +2024,Senior,Full-time,Data Manager,55200,USD,55200,United States,In-person,United States,M,Leadership and Management +2024,Senior,Full-time,Data Engineer,128000,USD,128000,United States,In-person,United States,M,Data Engineering +2024,Senior,Full-time,Data Engineer,81500,USD,81500,United States,In-person,United States,M,Data Engineering +2024,Senior,Full-time,Data Engineer,218185,USD,218185,United States,Remote,United States,M,Data Engineering +2024,Senior,Full-time,Data Engineer,158680,USD,158680,United States,Remote,United States,M,Data Engineering +2024,Senior,Full-time,Data Analyst,135000,USD,135000,United States,In-person,United States,M,Data Analysis +2024,Senior,Full-time,Data Analyst,100000,USD,100000,United States,In-person,United States,M,Data Analysis +2024,Mid-level,Full-time,Business Intelligence Engineer,185000,USD,185000,United States,In-person,United States,L,BI and Visualization +2024,Mid-level,Full-time,Business Intelligence Engineer,79600,USD,79600,United States,In-person,United States,L,BI and Visualization +2024,Senior,Full-time,Data Scientist,235700,USD,235700,United States,In-person,United States,M,Data Science and Research +2024,Senior,Full-time,Data Scientist,124400,USD,124400,United States,In-person,United States,M,Data Science and Research +2024,Mid-level,Full-time,Applied Scientist,222200,USD,222200,United States,In-person,United States,L,Data Science and Research +2024,Mid-level,Full-time,Applied Scientist,136000,USD,136000,United States,In-person,United States,L,Data Science and Research +2024,Senior,Full-time,Machine Learning Engineer,225000,USD,225000,United States,In-person,United States,M,Machine Learning and AI +2024,Senior,Full-time,Machine Learning Engineer,150000,USD,150000,United States,In-person,United States,M,Machine Learning and AI +2024,Mid-level,Full-time,Data Engineer,180000,USD,180000,United States,In-person,United States,M,Data Engineering +2024,Mid-level,Full-time,Data Engineer,130000,USD,130000,United States,In-person,United States,M,Data Engineering +2024,Executive,Full-time,Data Science,286500,USD,286500,United States,In-person,United States,M,Data Science and Research +2024,Executive,Full-time,Data Science,204000,USD,204000,United States,In-person,United States,M,Data Science and Research +2024,Senior,Full-time,Data Scientist,180000,USD,180000,United States,In-person,United States,M,Data Science and Research +2024,Senior,Full-time,Data Scientist,139000,USD,139000,United States,In-person,United States,M,Data Science and Research +2024,Mid-level,Full-time,Data Developer,100000,USD,100000,United States,In-person,United States,M,Leadership and Management +2024,Mid-level,Full-time,Data Developer,95000,USD,95000,United States,In-person,United States,M,Leadership and Management +2024,Senior,Full-time,Machine Learning Engineer,60000,USD,60000,Brazil,Remote,Brazil,M,Machine Learning and AI +2024,Senior,Full-time,Machine Learning Engineer,54000,USD,54000,Brazil,Remote,Brazil,M,Machine Learning and AI +2024,Senior,Full-time,AI Engineer,385000,USD,385000,United States,In-person,United States,M,Machine Learning and AI +2024,Senior,Full-time,AI Engineer,310000,USD,310000,United States,In-person,United States,M,Machine Learning and AI +2024,Senior,Full-time,Machine Learning Engineer,207000,USD,207000,United States,Remote,United States,M,Machine Learning and AI +2024,Senior,Full-time,Machine Learning Engineer,149800,USD,149800,United States,Remote,United States,M,Machine Learning and AI +2024,Executive,Full-time,Data Science,300000,USD,300000,United States,Remote,United States,M,Data Science and Research +2024,Executive,Full-time,Data Science,220000,USD,220000,United States,Remote,United States,M,Data Science and Research +2024,Senior,Full-time,Data Scientist,202800,USD,202800,United States,Remote,United States,M,Data Science and Research +2024,Senior,Full-time,Data Scientist,115000,USD,115000,United States,Remote,United States,M,Data Science and Research +2024,Mid-level,Full-time,Data Scientist,140400,USD,140400,United States,Remote,United States,M,Data Science and Research +2024,Mid-level,Full-time,Data Scientist,90000,USD,90000,United States,Remote,United States,M,Data Science and Research +2024,Senior,Full-time,Machine Learning Engineer,175000,USD,175000,United States,Remote,United States,M,Machine Learning and AI +2024,Senior,Full-time,Machine Learning Engineer,150000,USD,150000,United States,Remote,United States,M,Machine Learning and AI +2024,Mid-level,Full-time,BI Developer,168000,USD,168000,United States,In-person,United States,M,BI and Visualization +2024,Mid-level,Full-time,BI Developer,158000,USD,158000,United States,In-person,United States,M,BI and Visualization +2024,Senior,Full-time,Data Architect,165000,USD,165000,United States,In-person,United States,M,Data Architecture and Modeling +2024,Senior,Full-time,Data Architect,123000,USD,123000,United States,In-person,United States,M,Data Architecture and Modeling +2024,Senior,Full-time,Machine Learning Engineer,92000,USD,92000,Argentina,Remote,Argentina,M,Machine Learning and AI +2024,Senior,Full-time,Machine Learning Engineer,85000,USD,85000,Argentina,Remote,Argentina,M,Machine Learning and AI +2024,Mid-level,Full-time,Data Scientist,170200,USD,170200,United States,In-person,United States,M,Data Science and Research +2024,Mid-level,Full-time,Data Scientist,83900,USD,83900,United States,In-person,United States,M,Data Science and Research +2024,Senior,Full-time,Data Scientist,180000,USD,180000,United States,In-person,United States,M,Data Science and Research +2024,Senior,Full-time,Data Scientist,139000,USD,139000,United States,In-person,United States,M,Data Science and Research +2024,Mid-level,Full-time,Data Engineer,130000,USD,130000,United States,Remote,United States,M,Data Engineering +2024,Mid-level,Full-time,Data Engineer,90000,USD,90000,United States,Remote,United States,M,Data Engineering +2024,Senior,Full-time,AI Engineer,210000,USD,210000,United States,In-person,United States,M,Machine Learning and AI +2024,Senior,Full-time,AI Engineer,190000,USD,190000,United States,In-person,United States,M,Machine Learning and AI +2024,Executive,Full-time,ETL Engineer,150000,USD,150000,United States,Remote,United States,L,Data Engineering +2024,Senior,Full-time,Data Architect,200000,USD,200000,United States,In-person,United States,M,Data Architecture and Modeling +2024,Senior,Full-time,Data Architect,115000,USD,115000,United States,In-person,United States,M,Data Architecture and Modeling +2024,Senior,Full-time,Data Scientist,174500,USD,174500,United States,Remote,United States,M,Data Science and Research +2024,Senior,Full-time,Data Scientist,126800,USD,126800,United States,Remote,United States,M,Data Science and Research +2024,Mid-level,Full-time,Data Modeler,114000,USD,114000,Canada,In-person,Canada,M,Data Architecture and Modeling +2024,Mid-level,Full-time,Data Modeler,69000,USD,69000,Canada,In-person,Canada,M,Data Architecture and Modeling +2024,Senior,Full-time,Machine Learning Scientist,277000,USD,277000,United States,In-person,United States,M,Machine Learning and AI +2024,Senior,Full-time,Machine Learning Scientist,173000,USD,173000,United States,In-person,United States,M,Machine Learning and AI +2024,Mid-level,Full-time,Data Engineer,179000,USD,179000,United States,In-person,United States,M,Data Engineering +2024,Mid-level,Full-time,Data Engineer,112000,USD,112000,United States,In-person,United States,M,Data Engineering +2024,Entry-level,Full-time,Data Analyst,130000,USD,130000,United States,Remote,United States,M,Data Analysis +2024,Entry-level,Full-time,Data Analyst,115000,USD,115000,United States,Remote,United States,M,Data Analysis +2024,Senior,Full-time,ML Engineer,200070,USD,200070,Canada,In-person,Canada,M,Machine Learning and AI +2024,Senior,Full-time,ML Engineer,107730,USD,107730,Canada,In-person,Canada,M,Machine Learning and AI +2024,Senior,Full-time,Data Scientist,65000,GBP,81250,United States,In-person,United States,M,Data Science and Research +2024,Senior,Full-time,Data Scientist,56000,GBP,70000,United States,In-person,United States,M,Data Science and Research +2024,Mid-level,Full-time,Machine Learning Engineer,240000,USD,240000,United States,In-person,United States,M,Machine Learning and AI +2024,Mid-level,Full-time,Machine Learning Engineer,130000,USD,130000,United States,In-person,United States,M,Machine Learning and AI +2024,Senior,Full-time,Data Engineer,230000,USD,230000,United States,Remote,United States,M,Data Engineering +2024,Senior,Full-time,Data Engineer,165000,USD,165000,United States,Remote,United States,M,Data Engineering +2024,Senior,Full-time,Machine Learning Engineer,180000,USD,180000,United States,In-person,United States,M,Machine Learning and AI +2024,Senior,Full-time,Machine Learning Engineer,125000,USD,125000,United States,In-person,United States,M,Machine Learning and AI +2024,Mid-level,Full-time,Data Scientist,165000,USD,165000,United States,In-person,United States,M,Data Science and Research +2024,Mid-level,Full-time,Data Scientist,132000,USD,132000,United States,In-person,United States,M,Data Science and Research +2024,Senior,Full-time,Robotics Software Engineer,282000,USD,282000,United States,In-person,United States,M,Machine Learning and AI +2024,Senior,Full-time,Robotics Software Engineer,188000,USD,188000,United States,In-person,United States,M,Machine Learning and AI +2024,Senior,Full-time,Analytics Engineer,287500,USD,287500,United States,In-person,United States,M,Leadership and Management +2024,Senior,Full-time,Analytics Engineer,156000,USD,156000,United States,In-person,United States,M,Leadership and Management +2024,Senior,Full-time,Data Scientist,175000,USD,175000,United States,Remote,United States,M,Data Science and Research +2024,Senior,Full-time,Data Scientist,150000,USD,150000,United States,Remote,United States,M,Data Science and Research +2024,Mid-level,Full-time,Data Engineer,125000,USD,125000,United States,In-person,United States,M,Data Engineering +2024,Mid-level,Full-time,Data Engineer,89000,USD,89000,United States,In-person,United States,M,Data Engineering +2024,Entry-level,Full-time,Data Science,198000,USD,198000,United States,In-person,United States,M,Data Science and Research +2024,Entry-level,Full-time,Data Science,132000,USD,132000,United States,In-person,United States,M,Data Science and Research +2024,Mid-level,Full-time,Data Scientist,158100,USD,158100,United States,In-person,United States,M,Data Science and Research +2024,Mid-level,Full-time,Data Scientist,138500,USD,138500,United States,In-person,United States,M,Data Science and Research +2024,Mid-level,Full-time,Data Scientist,220000,USD,220000,United States,In-person,United States,M,Data Science and Research +2024,Mid-level,Full-time,Data Scientist,150000,USD,150000,United States,In-person,United States,M,Data Science and Research +2024,Mid-level,Full-time,Machine Learning Engineer,179700,USD,179700,United States,In-person,United States,M,Machine Learning and AI +2024,Mid-level,Full-time,Machine Learning Engineer,85700,USD,85700,United States,In-person,United States,M,Machine Learning and AI +2024,Mid-level,Full-time,Machine Learning Engineer,220000,USD,220000,United States,In-person,United States,M,Machine Learning and AI +2024,Mid-level,Full-time,Machine Learning Engineer,137500,USD,137500,United States,In-person,United States,M,Machine Learning and AI +2024,Executive,Full-time,Business Intelligence,150000,USD,150000,United States,In-person,United States,M,BI and Visualization +2024,Executive,Full-time,Business Intelligence,120000,USD,120000,United States,In-person,United States,M,BI and Visualization +2024,Mid-level,Full-time,Data Analyst,38400,EUR,42666,Latvia,In-person,Latvia,M,Data Analysis +2024,Mid-level,Full-time,Data Analyst,32400,EUR,36000,Latvia,In-person,Latvia,M,Data Analysis +2024,Senior,Full-time,Data Scientist,144300,USD,144300,United States,Remote,United States,M,Data Science and Research +2024,Senior,Full-time,Data Scientist,104800,USD,104800,United States,Remote,United States,M,Data Science and Research +2024,Executive,Full-time,Head of Data,250000,USD,250000,United States,Remote,United States,M,Leadership and Management +2024,Executive,Full-time,Head of Data,215000,USD,215000,United States,Remote,United States,M,Leadership and Management +2024,Entry-level,Full-time,Data Analyst,150000,USD,150000,United States,Remote,United States,M,Data Analysis +2024,Entry-level,Full-time,Data Analyst,110000,USD,110000,United States,Remote,United States,M,Data Analysis +2024,Mid-level,Full-time,Data Scientist,110000,USD,110000,United States,Remote,United States,M,Data Science and Research +2024,Mid-level,Full-time,Data Scientist,90000,USD,90000,United States,Remote,United States,M,Data Science and Research +2024,Mid-level,Full-time,Machine Learning Engineer,200000,USD,200000,United States,In-person,United States,M,Machine Learning and AI +2024,Mid-level,Full-time,Machine Learning Engineer,140000,USD,140000,United States,In-person,United States,M,Machine Learning and AI +2024,Senior,Full-time,Machine Learning Scientist,196350,USD,196350,United States,Remote,United States,M,Machine Learning and AI +2024,Senior,Full-time,Machine Learning Scientist,127500,USD,127500,United States,Remote,United States,M,Machine Learning and AI +2024,Senior,Full-time,Data Manager,219600,USD,219600,United States,In-person,United States,M,Leadership and Management +2024,Senior,Full-time,Data Manager,125500,USD,125500,United States,In-person,United States,M,Leadership and Management +2024,Mid-level,Full-time,AI Product Manager,212000,USD,212000,United States,In-person,United States,M,Machine Learning and AI +2024,Mid-level,Full-time,AI Product Manager,93300,USD,93300,United States,In-person,United States,M,Machine Learning and AI +2024,Mid-level,Full-time,Data Engineer,140900,USD,140900,United States,Remote,United States,M,Data Engineering +2024,Mid-level,Full-time,Data Engineer,104100,USD,104100,United States,Remote,United States,M,Data Engineering +2024,Senior,Full-time,Data Scientist,193000,USD,193000,United States,In-person,United States,M,Data Science and Research +2024,Senior,Full-time,Data Scientist,147645,USD,147645,United States,In-person,United States,M,Data Science and Research +2024,Mid-level,Full-time,Data Scientist,207000,USD,207000,United States,In-person,United States,M,Data Science and Research +2024,Mid-level,Full-time,Data Scientist,150000,USD,150000,United States,In-person,United States,M,Data Science and Research +2024,Senior,Full-time,Data Engineer,150000,USD,150000,United States,Remote,United States,M,Data Engineering +2024,Senior,Full-time,Data Engineer,120000,USD,120000,United States,Remote,United States,M,Data Engineering +2024,Senior,Full-time,Research Scientist,180000,USD,180000,United States,In-person,United States,M,Data Science and Research +2024,Senior,Full-time,Research Scientist,148000,USD,148000,United States,In-person,United States,M,Data Science and Research +2024,Mid-level,Full-time,Data Scientist,160000,USD,160000,United States,In-person,United States,M,Data Science and Research +2024,Mid-level,Full-time,Data Scientist,120000,USD,120000,United States,In-person,United States,M,Data Science and Research +2024,Executive,Full-time,Data Engineer,204500,USD,204500,United States,In-person,United States,M,Data Engineering +2024,Executive,Full-time,Data Engineer,130000,USD,130000,United States,In-person,United States,M,Data Engineering +2024,Mid-level,Full-time,Robotics Software Engineer,207000,USD,207000,United States,In-person,United States,M,Machine Learning and AI +2024,Mid-level,Full-time,Robotics Software Engineer,138000,USD,138000,United States,In-person,United States,M,Machine Learning and AI +2024,Senior,Full-time,Data Engineer,173000,USD,173000,United States,Remote,United States,M,Data Engineering +2024,Senior,Full-time,Data Engineer,138400,USD,138400,United States,Remote,United States,M,Data Engineering +2024,Senior,Full-time,Research Scientist,278700,USD,278700,United States,In-person,United States,M,Data Science and Research +2024,Senior,Full-time,Research Scientist,159300,USD,159300,United States,In-person,United States,M,Data Science and Research +2024,Senior,Full-time,Machine Learning Engineer,215000,USD,215000,United States,In-person,United States,M,Machine Learning and AI +2024,Senior,Full-time,Machine Learning Engineer,146900,USD,146900,United States,In-person,United States,M,Machine Learning and AI +2024,Senior,Full-time,Business Intelligence,115000,USD,115000,United States,In-person,United States,M,BI and Visualization +2024,Senior,Full-time,Business Intelligence,100000,USD,100000,United States,In-person,United States,M,BI and Visualization +2024,Senior,Full-time,Data Analyst,106260,USD,106260,United States,In-person,United States,M,Data Analysis +2024,Senior,Full-time,Data Analyst,82000,USD,82000,United States,In-person,United States,M,Data Analysis +2024,Senior,Full-time,Data Engineer,220000,USD,220000,United States,In-person,United States,M,Data Engineering +2024,Senior,Full-time,Data Engineer,190000,USD,190000,United States,In-person,United States,M,Data Engineering +2024,Mid-level,Full-time,Data Analyst,150000,USD,150000,United States,Remote,United States,M,Data Analysis +2024,Mid-level,Full-time,Data Analyst,110000,USD,110000,United States,Remote,United States,M,Data Analysis +2024,Mid-level,Full-time,AI Engineer,145000,USD,145000,United States,Remote,United States,M,Machine Learning and AI +2024,Mid-level,Full-time,AI Engineer,95000,USD,95000,United States,Remote,United States,M,Machine Learning and AI +2024,Mid-level,Full-time,Data Analyst,92000,USD,92000,United States,In-person,United States,M,Data Analysis +2024,Mid-level,Full-time,Data Analyst,68000,USD,68000,United States,In-person,United States,M,Data Analysis +2024,Senior,Full-time,Research Engineer,300000,USD,300000,United Kingdom,In-person,United Kingdom,M,Data Science and Research +2024,Senior,Full-time,Research Engineer,150000,USD,150000,United Kingdom,In-person,United Kingdom,M,Data Science and Research +2024,Senior,Full-time,Data Engineer,188000,USD,188000,United States,Remote,United States,M,Data Engineering +2024,Senior,Full-time,Data Engineer,114000,USD,114000,United States,Remote,United States,M,Data Engineering +2024,Mid-level,Full-time,Data Scientist,135000,USD,135000,United States,In-person,United States,M,Data Science and Research +2024,Mid-level,Full-time,Data Scientist,115000,USD,115000,United States,In-person,United States,M,Data Science and Research +2024,Entry-level,Full-time,Data Scientist,154800,USD,154800,United States,In-person,United States,M,Data Science and Research +2024,Entry-level,Full-time,Data Scientist,76300,USD,76300,United States,In-person,United States,M,Data Science and Research +2024,Mid-level,Full-time,AI Engineer,400000,USD,400000,United States,In-person,United States,M,Machine Learning and AI +2024,Mid-level,Full-time,AI Engineer,65000,USD,65000,United States,In-person,United States,M,Machine Learning and AI +2024,Senior,Full-time,Data Scientist,187000,USD,187000,United States,Remote,United States,M,Data Science and Research +2024,Senior,Full-time,Data Scientist,153000,USD,153000,United States,Remote,United States,M,Data Science and Research +2024,Mid-level,Full-time,Research Scientist,150000,USD,150000,United States,Remote,United States,M,Data Science and Research +2024,Mid-level,Full-time,Research Scientist,128000,USD,128000,United States,Remote,United States,M,Data Science and Research +2024,Senior,Full-time,AI Engineer,195000,USD,195000,United States,Remote,United States,M,Machine Learning and AI +2024,Senior,Full-time,AI Engineer,140000,USD,140000,United States,Remote,United States,M,Machine Learning and AI +2024,Mid-level,Full-time,Data Engineer,150000,USD,150000,United States,In-person,United States,M,Data Engineering +2024,Mid-level,Full-time,Data Engineer,130000,USD,130000,United States,In-person,United States,M,Data Engineering +2024,Mid-level,Full-time,Data Scientist,166000,USD,166000,United States,In-person,United States,M,Data Science and Research +2024,Mid-level,Full-time,Data Scientist,73100,USD,73100,United States,In-person,United States,M,Data Science and Research +2024,Entry-level,Full-time,Research Analyst,200000,USD,200000,United States,In-person,United States,M,Data Science and Research +2024,Entry-level,Full-time,Research Analyst,150000,USD,150000,United States,In-person,United States,M,Data Science and Research +2024,Senior,Full-time,Machine Learning Engineer,220000,USD,220000,United States,In-person,United States,M,Machine Learning and AI +2024,Senior,Full-time,Machine Learning Engineer,137500,USD,137500,United States,In-person,United States,M,Machine Learning and AI +2024,Senior,Full-time,Data Science,170000,USD,170000,United States,In-person,United States,M,Data Science and Research +2024,Senior,Full-time,Data Science,130000,USD,130000,United States,In-person,United States,M,Data Science and Research +2024,Senior,Full-time,Business Intelligence Analyst,138000,USD,138000,United States,In-person,United States,M,BI and Visualization +2024,Senior,Full-time,Business Intelligence Analyst,86000,USD,86000,United States,In-person,United States,M,BI and Visualization +2024,Mid-level,Full-time,Business Intelligence Developer,105000,USD,105000,United States,Remote,United States,M,BI and Visualization +2024,Mid-level,Full-time,Business Intelligence Developer,80000,USD,80000,United States,Remote,United States,M,BI and Visualization +2024,Mid-level,Full-time,Data Product Manager,77000,GBP,96250,United States,In-person,United States,M,Leadership and Management +2024,Mid-level,Full-time,Data Product Manager,60000,GBP,75000,United States,In-person,United States,M,Leadership and Management +2024,Senior,Full-time,AI Architect,197500,USD,197500,United States,In-person,United States,M,Machine Learning and AI +2024,Senior,Full-time,AI Architect,132500,USD,132500,United States,In-person,United States,M,Machine Learning and AI +2024,Entry-level,Full-time,Data Science,90000,USD,90000,United States,In-person,United States,M,Data Science and Research +2024,Entry-level,Full-time,Data Science,80000,USD,80000,United States,In-person,United States,M,Data Science and Research +2024,Mid-level,Full-time,Research Scientist,210000,USD,210000,United States,In-person,United States,M,Data Science and Research +2024,Mid-level,Full-time,Research Scientist,151800,USD,151800,United States,In-person,United States,M,Data Science and Research +2024,Senior,Full-time,Data Science,210000,USD,210000,United States,In-person,United States,M,Data Science and Research +2024,Senior,Full-time,Data Science,170000,USD,170000,United States,In-person,United States,M,Data Science and Research +2024,Senior,Full-time,Data Scientist,175000,USD,175000,United States,Remote,United States,M,Data Science and Research +2024,Senior,Full-time,Data Scientist,150000,USD,150000,United States,Remote,United States,M,Data Science and Research +2024,Senior,Full-time,Machine Learning Engineer,219100,USD,219100,United States,Remote,United States,M,Machine Learning and AI +2024,Senior,Full-time,Machine Learning Engineer,118500,USD,118500,United States,Remote,United States,M,Machine Learning and AI +2024,Senior,Full-time,Business Intelligence Lead,175000,USD,175000,United States,Remote,United States,M,BI and Visualization +2024,Senior,Full-time,Business Intelligence Lead,150000,USD,150000,United States,Remote,United States,M,BI and Visualization +2024,Mid-level,Full-time,Data Management Specialist,81530,USD,81530,Canada,In-person,Canada,M,Data Management and Strategy +2024,Mid-level,Full-time,Data Management Specialist,69300,USD,69300,Canada,In-person,Canada,M,Data Management and Strategy +2024,Senior,Full-time,Data Architect,164000,USD,164000,United States,In-person,United States,M,Data Architecture and Modeling +2024,Senior,Full-time,Data Architect,117000,USD,117000,United States,In-person,United States,M,Data Architecture and Modeling +2024,Senior,Full-time,Data Analyst,145000,USD,145000,United States,In-person,United States,M,Data Analysis +2024,Senior,Full-time,Data Analyst,110000,USD,110000,United States,In-person,United States,M,Data Analysis +2024,Senior,Full-time,Research Engineer,125000,USD,125000,United States,In-person,United States,M,Data Science and Research +2024,Senior,Full-time,Research Engineer,106000,USD,106000,United States,In-person,United States,M,Data Science and Research +2024,Entry-level,Full-time,Data Analyst,75065,USD,75065,United States,Remote,United States,M,Data Analysis +2024,Entry-level,Full-time,Data Analyst,41419,USD,41419,United States,Remote,United States,M,Data Analysis +2024,Senior,Full-time,Data Analyst,140000,USD,140000,United States,In-person,United States,M,Data Analysis +2024,Senior,Full-time,Data Analyst,100000,USD,100000,United States,In-person,United States,M,Data Analysis +2024,Mid-level,Full-time,Data Analyst,80000,USD,80000,United States,In-person,United States,M,Data Analysis +2024,Mid-level,Full-time,Data Analyst,70000,USD,70000,United States,In-person,United States,M,Data Analysis +2024,Executive,Full-time,ML Engineer,238500,USD,238500,United States,In-person,United States,M,Machine Learning and AI +2024,Executive,Full-time,ML Engineer,183400,USD,183400,United States,In-person,United States,M,Machine Learning and AI +2024,Mid-level,Full-time,Data Scientist,105000,USD,105000,United States,In-person,United States,M,Data Science and Research +2024,Mid-level,Full-time,Data Scientist,70000,USD,70000,United States,In-person,United States,M,Data Science and Research +2024,Senior,Full-time,Machine Learning Engineer,225000,USD,225000,United States,Remote,United States,M,Machine Learning and AI +2024,Senior,Full-time,Machine Learning Engineer,162000,USD,162000,United States,Remote,United States,M,Machine Learning and AI +2024,Senior,Full-time,Research Scientist,278700,USD,278700,United States,In-person,United States,M,Data Science and Research +2024,Senior,Full-time,Research Scientist,159300,USD,159300,United States,In-person,United States,M,Data Science and Research +2024,Mid-level,Full-time,Data Engineer,180000,USD,180000,United States,In-person,United States,M,Data Engineering +2024,Mid-level,Full-time,Data Engineer,120000,USD,120000,United States,In-person,United States,M,Data Engineering +2024,Senior,Full-time,Data Scientist,170000,USD,170000,United States,In-person,United States,M,Data Science and Research +2024,Senior,Full-time,Data Scientist,160000,USD,160000,United States,In-person,United States,M,Data Science and Research +2024,Entry-level,Full-time,Data Operations Associate,72000,USD,72000,United States,In-person,United States,M,Data Quality and Operations +2024,Entry-level,Full-time,Data Operations Associate,51375,USD,51375,United States,In-person,United States,M,Data Quality and Operations +2024,Senior,Full-time,Applied Scientist,260000,USD,260000,United States,In-person,United States,L,Data Science and Research +2024,Senior,Full-time,Applied Scientist,136000,USD,136000,United States,In-person,United States,L,Data Science and Research +2024,Mid-level,Full-time,Data Engineer,75000,USD,75000,United States,In-person,United States,M,Data Engineering +2024,Mid-level,Full-time,Data Engineer,60000,USD,60000,United States,In-person,United States,M,Data Engineering +2024,Mid-level,Full-time,Data Engineer,135000,USD,135000,United States,In-person,United States,M,Data Engineering +2024,Mid-level,Full-time,Data Engineer,113000,USD,113000,United States,In-person,United States,M,Data Engineering +2024,Senior,Full-time,Data Engineer,150000,USD,150000,United States,Remote,United States,M,Data Engineering +2024,Senior,Full-time,Data Engineer,130000,USD,130000,United States,Remote,United States,M,Data Engineering +2024,Mid-level,Full-time,Data Science Manager,267100,USD,267100,United States,In-person,United States,M,Data Science and Research +2024,Mid-level,Full-time,Data Science Manager,188500,USD,188500,United States,In-person,United States,M,Data Science and Research +2024,Senior,Full-time,Data Scientist,207000,USD,207000,United States,Remote,United States,M,Data Science and Research +2024,Senior,Full-time,Data Scientist,149800,USD,149800,United States,Remote,United States,M,Data Science and Research +2024,Senior,Full-time,Data Analyst,155000,USD,155000,Canada,In-person,Canada,M,Data Analysis +2024,Senior,Full-time,Data Analyst,105000,USD,105000,Canada,In-person,Canada,M,Data Analysis +2024,Mid-level,Full-time,Data Engineer,270250,USD,270250,United States,In-person,United States,M,Data Engineering +2024,Mid-level,Full-time,Data Engineer,176000,USD,176000,United States,In-person,United States,M,Data Engineering +2024,Senior,Full-time,Machine Learning Engineer,189000,USD,189000,United States,In-person,United States,M,Machine Learning and AI +2024,Senior,Full-time,Machine Learning Engineer,145400,USD,145400,United States,In-person,United States,M,Machine Learning and AI +2024,Mid-level,Full-time,Machine Learning Engineer,133903,USD,133903,United States,Remote,United States,M,Machine Learning and AI +2024,Mid-level,Full-time,Machine Learning Engineer,96411,USD,96411,United States,Remote,United States,M,Machine Learning and AI +2024,Senior,Full-time,Data Scientist,170000,USD,170000,United States,In-person,United States,M,Data Science and Research +2024,Senior,Full-time,Data Scientist,160000,USD,160000,United States,In-person,United States,M,Data Science and Research +2024,Senior,Full-time,Business Intelligence,172800,USD,172800,United States,In-person,United States,M,BI and Visualization +2024,Senior,Full-time,Business Intelligence,132900,USD,132900,United States,In-person,United States,M,BI and Visualization +2024,Mid-level,Full-time,Research Scientist,165000,USD,165000,United States,In-person,United States,M,Data Science and Research +2024,Mid-level,Full-time,Research Scientist,150000,USD,150000,United States,In-person,United States,M,Data Science and Research +2024,Senior,Full-time,Data Scientist,145000,USD,145000,United States,Remote,United States,M,Data Science and Research +2024,Senior,Full-time,Data Scientist,116000,USD,116000,United States,Remote,United States,M,Data Science and Research +2024,Mid-level,Full-time,Data Analyst,98000,USD,98000,United States,Remote,United States,M,Data Analysis +2024,Mid-level,Full-time,Data Analyst,88000,USD,88000,United States,Remote,United States,M,Data Analysis +2024,Mid-level,Full-time,Data Analyst,150000,USD,150000,United States,Remote,United States,M,Data Analysis +2024,Mid-level,Full-time,Data Analyst,130000,USD,130000,United States,Remote,United States,M,Data Analysis +2024,Senior,Full-time,Data Analyst,174000,USD,174000,United States,Remote,United States,M,Data Analysis +2024,Senior,Full-time,Data Analyst,116000,USD,116000,United States,Remote,United States,M,Data Analysis +2024,Senior,Full-time,Data Engineer,188000,USD,188000,United States,In-person,United States,M,Data Engineering +2024,Senior,Full-time,Data Engineer,144600,USD,144600,United States,In-person,United States,M,Data Engineering +2024,Senior,Full-time,Analytics Engineer,149500,USD,149500,United States,Remote,United States,M,Leadership and Management +2024,Senior,Full-time,Analytics Engineer,140000,USD,140000,United States,Remote,United States,M,Leadership and Management +2024,Entry-level,Full-time,Business Intelligence Analyst,100000,USD,100000,United States,Remote,United States,M,BI and Visualization +2024,Entry-level,Full-time,Business Intelligence Analyst,90000,USD,90000,United States,Remote,United States,M,BI and Visualization +2024,Senior,Full-time,Business Intelligence Engineer,115000,USD,115000,United States,Remote,United States,M,BI and Visualization +2024,Senior,Full-time,Business Intelligence Engineer,85000,USD,85000,United States,Remote,United States,M,BI and Visualization +2024,Entry-level,Full-time,Data Management Analyst,80000,USD,80000,United States,Remote,United States,M,Data Management and Strategy +2024,Entry-level,Full-time,Data Management Analyst,72000,USD,72000,United States,Remote,United States,M,Data Management and Strategy +2024,Entry-level,Full-time,Data Analyst,85000,USD,85000,United States,In-person,United States,M,Data Analysis +2024,Entry-level,Full-time,Data Analyst,76500,USD,76500,United States,In-person,United States,M,Data Analysis +2024,Senior,Full-time,Data Scientist,187165,USD,187165,Canada,In-person,Canada,M,Data Science and Research +2024,Senior,Full-time,Data Scientist,150500,USD,150500,Canada,In-person,Canada,M,Data Science and Research +2024,Senior,Full-time,Data Analyst,134500,USD,134500,United States,In-person,United States,M,Data Analysis +2024,Senior,Full-time,Data Analyst,100000,USD,100000,United States,In-person,United States,M,Data Analysis +2024,Senior,Full-time,Machine Learning Engineer,274000,USD,274000,United States,Remote,United States,M,Machine Learning and AI +2024,Senior,Full-time,Machine Learning Engineer,245000,USD,245000,United States,Remote,United States,M,Machine Learning and AI +2024,Mid-level,Full-time,Business Intelligence Manager,263000,USD,263000,United States,In-person,United States,M,BI and Visualization +2024,Mid-level,Full-time,Business Intelligence Manager,207000,USD,207000,United States,In-person,United States,M,BI and Visualization +2024,Senior,Full-time,Data Engineer,149076,USD,149076,United States,In-person,United States,M,Data Engineering +2024,Senior,Full-time,Data Engineer,82365,USD,82365,United States,In-person,United States,M,Data Engineering +2024,Entry-level,Full-time,Data Analyst,90000,USD,90000,United States,Remote,United States,M,Data Analysis +2024,Entry-level,Full-time,Data Analyst,80000,USD,80000,United States,Remote,United States,M,Data Analysis +2024,Executive,Full-time,Data Engineer,314000,USD,314000,Canada,Remote,Canada,M,Data Engineering +2024,Executive,Full-time,Data Engineer,201000,USD,201000,Canada,Remote,Canada,M,Data Engineering +2024,Senior,Full-time,Analytics Engineer,200400,USD,200400,United States,In-person,United States,M,Leadership and Management +2024,Senior,Full-time,Analytics Engineer,154100,USD,154100,United States,In-person,United States,M,Leadership and Management +2024,Senior,Full-time,Data Analyst,165000,USD,165000,Australia,In-person,Australia,M,Data Analysis +2024,Senior,Full-time,Data Analyst,142500,USD,142500,Australia,In-person,Australia,M,Data Analysis +2024,Mid-level,Full-time,AI Developer,30000,EUR,33333,France,Hybrid,France,M,Machine Learning and AI +2024,Senior,Full-time,Research Engineer,310000,USD,310000,United States,In-person,United States,M,Data Science and Research +2024,Senior,Full-time,Research Engineer,270000,USD,270000,United States,In-person,United States,M,Data Science and Research +2024,Mid-level,Full-time,Data Engineer,115000,USD,115000,United States,In-person,United States,M,Data Engineering +2024,Mid-level,Full-time,Data Engineer,80000,USD,80000,United States,In-person,United States,M,Data Engineering +2024,Senior,Full-time,Data Engineer,144900,USD,144900,United States,In-person,United States,M,Data Engineering +2024,Senior,Full-time,Data Engineer,110000,USD,110000,United States,In-person,United States,M,Data Engineering +2024,Entry-level,Full-time,Research Analyst,84068,USD,84068,United States,In-person,United States,M,Data Science and Research +2024,Entry-level,Full-time,Research Analyst,49452,USD,49452,United States,In-person,United States,M,Data Science and Research +2024,Senior,Full-time,Machine Learning Engineer,188500,USD,188500,United States,In-person,United States,M,Machine Learning and AI +2024,Senior,Full-time,Machine Learning Engineer,165100,USD,165100,United States,In-person,United States,M,Machine Learning and AI +2024,Senior,Full-time,Data Engineer,60000,GBP,75000,United Kingdom,In-person,United Kingdom,M,Data Engineering +2024,Senior,Full-time,Data Engineer,50000,GBP,62500,United Kingdom,In-person,United Kingdom,M,Data Engineering +2024,Mid-level,Full-time,Data Operations Specialist,132500,USD,132500,United States,In-person,United States,M,Data Quality and Operations +2024,Mid-level,Full-time,Data Operations Specialist,88000,USD,88000,United States,In-person,United States,M,Data Quality and Operations +2024,Mid-level,Full-time,Data Engineer,179900,USD,179900,United States,In-person,United States,M,Data Engineering +2024,Mid-level,Full-time,Data Engineer,142002,USD,142002,United States,In-person,United States,M,Data Engineering +2024,Senior,Full-time,AI Engineer,287500,USD,287500,United States,In-person,United States,M,Machine Learning and AI +2024,Senior,Full-time,AI Engineer,168000,USD,168000,United States,In-person,United States,M,Machine Learning and AI +2024,Senior,Full-time,Data Engineer,220000,USD,220000,United States,In-person,United States,M,Data Engineering +2024,Senior,Full-time,Data Engineer,137500,USD,137500,United States,In-person,United States,M,Data Engineering +2024,Senior,Full-time,Data Analyst,96600,USD,96600,United States,In-person,United States,M,Data Analysis +2024,Senior,Full-time,Data Analyst,55200,USD,55200,United States,In-person,United States,M,Data Analysis +2024,Senior,Full-time,Data Engineer,194500,USD,194500,United States,In-person,United States,M,Data Engineering +2024,Senior,Full-time,Data Engineer,146266,USD,146266,United States,In-person,United States,M,Data Engineering +2024,Senior,Full-time,Data Engineer,194500,USD,194500,United States,In-person,United States,M,Data Engineering +2024,Senior,Full-time,Data Engineer,146266,USD,146266,United States,In-person,United States,M,Data Engineering +2024,Mid-level,Full-time,Data Engineer,146100,USD,146100,United States,In-person,United States,M,Data Engineering +2024,Mid-level,Full-time,Data Engineer,111800,USD,111800,United States,In-person,United States,M,Data Engineering +2024,Mid-level,Full-time,Data Scientist,145580,USD,145580,United States,Remote,United States,M,Data Science and Research +2024,Mid-level,Full-time,Data Scientist,97060,USD,97060,United States,Remote,United States,M,Data Science and Research +2024,Senior,Full-time,Business Intelligence Engineer,108500,USD,108500,United States,Remote,United States,M,BI and Visualization +2024,Senior,Full-time,Business Intelligence Engineer,78800,USD,78800,United States,Remote,United States,M,BI and Visualization +2024,Entry-level,Full-time,Data Operations Analyst,95000,USD,95000,United States,In-person,United States,M,Data Quality and Operations +2024,Entry-level,Full-time,Data Operations Analyst,76000,USD,76000,United States,In-person,United States,M,Data Quality and Operations +2024,Mid-level,Full-time,Data Engineer,97000,USD,97000,United States,In-person,United States,M,Data Engineering +2024,Mid-level,Full-time,Data Engineer,62000,USD,62000,United States,In-person,United States,M,Data Engineering +2024,Senior,Full-time,Data Architect,234000,USD,234000,United States,In-person,United States,M,Data Architecture and Modeling +2024,Senior,Full-time,Data Architect,146000,USD,146000,United States,In-person,United States,M,Data Architecture and Modeling +2024,Mid-level,Full-time,Machine Learning Engineer,177100,USD,177100,United States,In-person,United States,M,Machine Learning and AI +2024,Mid-level,Full-time,Machine Learning Engineer,130900,USD,130900,United States,In-person,United States,M,Machine Learning and AI +2024,Mid-level,Full-time,BI Developer,106050,USD,106050,United States,In-person,United States,M,BI and Visualization +2024,Mid-level,Full-time,BI Developer,80420,USD,80420,United States,In-person,United States,M,BI and Visualization +2024,Senior,Full-time,Data Engineer,277000,USD,277000,United States,In-person,United States,M,Data Engineering +2024,Senior,Full-time,Data Engineer,173000,USD,173000,United States,In-person,United States,M,Data Engineering +2024,Mid-level,Full-time,Admin & Data Analyst,38000,EUR,42222,Spain,Remote,Spain,L,Data Analysis +2024,Mid-level,Full-time,Data Scientist,166000,USD,166000,Egypt,In-person,Egypt,M,Data Science and Research +2024,Mid-level,Full-time,Data Scientist,73100,USD,73100,Egypt,In-person,Egypt,M,Data Science and Research +2024,Mid-level,Full-time,Data Science,220000,USD,220000,United States,In-person,United States,M,Data Science and Research +2024,Mid-level,Full-time,Data Science,137500,USD,137500,United States,In-person,United States,M,Data Science and Research +2024,Mid-level,Full-time,Data Engineer,133000,USD,133000,United States,In-person,United States,M,Data Engineering +2024,Mid-level,Full-time,Data Engineer,58400,USD,58400,United States,In-person,United States,M,Data Engineering +2024,Mid-level,Full-time,Analytics Engineer,80000,USD,80000,United States,In-person,United States,M,Leadership and Management +2024,Mid-level,Full-time,Analytics Engineer,75000,USD,75000,United States,In-person,United States,M,Leadership and Management +2024,Senior,Full-time,Data Scientist,140000,USD,140000,United States,Remote,United States,M,Data Science and Research +2024,Senior,Full-time,Data Scientist,125000,USD,125000,United States,Remote,United States,M,Data Science and Research +2024,Entry-level,Full-time,Data Analyst,65000,USD,65000,United States,In-person,United States,M,Data Analysis +2024,Entry-level,Full-time,Data Analyst,55000,USD,55000,United States,In-person,United States,M,Data Analysis +2024,Mid-level,Full-time,Data Analyst,105000,USD,105000,United States,In-person,United States,M,Data Analysis +2024,Mid-level,Full-time,Data Analyst,78000,USD,78000,United States,In-person,United States,M,Data Analysis +2024,Executive,Full-time,AI Engineer,200070,USD,200070,Canada,In-person,Canada,M,Machine Learning and AI +2024,Executive,Full-time,AI Engineer,107730,USD,107730,Canada,In-person,Canada,M,Machine Learning and AI +2024,Senior,Full-time,BI Developer,179000,USD,179000,United States,In-person,United States,M,BI and Visualization +2024,Senior,Full-time,BI Developer,112000,USD,112000,United States,In-person,United States,M,BI and Visualization +2024,Mid-level,Full-time,Data Engineer,166363,USD,166363,United States,In-person,United States,M,Data Engineering +2024,Mid-level,Full-time,Data Engineer,103977,USD,103977,United States,In-person,United States,M,Data Engineering +2024,Mid-level,Full-time,Data Scientist,130000,USD,130000,United States,In-person,United States,M,Data Science and Research +2024,Mid-level,Full-time,Data Scientist,95000,USD,95000,United States,In-person,United States,M,Data Science and Research +2024,Senior,Full-time,Data Engineer,214300,USD,214300,United States,In-person,United States,M,Data Engineering +2024,Senior,Full-time,Data Engineer,108500,USD,108500,United States,In-person,United States,M,Data Engineering +2024,Senior,Full-time,Applied Scientist,266482,USD,266482,United States,In-person,United States,M,Data Science and Research +2024,Senior,Full-time,Applied Scientist,166551,USD,166551,United States,In-person,United States,M,Data Science and Research +2024,Mid-level,Full-time,Business Intelligence Developer,90279,USD,90279,United States,In-person,United States,M,BI and Visualization +2024,Mid-level,Full-time,Business Intelligence Developer,67060,USD,67060,United States,In-person,United States,M,BI and Visualization +2024,Senior,Full-time,AI Scientist,,USD,190000,United States,Remote,United States,M,Machine Learning and AI +2024,Senior,Full-time,AI Scientist,160000,USD,160000,United States,Remote,United States,M,Machine Learning and AI +2024,Mid-level,Full-time,Data Scientist,212800,USD,212800,United States,In-person,United States,L,Data Science and Research +2024,Mid-level,Full-time,Data Scientist,111600,USD,111600,United States,In-person,United States,L,Data Science and Research +2024,Senior,Full-time,Data Modeler,130000,USD,130000,United States,Remote,United States,M,Data Architecture and Modeling +2024,Senior,Full-time,Data Modeler,110000,USD,110000,United States,Remote,United States,M,Data Architecture and Modeling +2024,Senior,Full-time,Data Engineer,190100,USD,190100,United States,Remote,United States,M,Data Engineering +2024,Senior,Full-time,Data Engineer,131414,USD,131414,United States,Remote,United States,M,Data Engineering +2024,Senior,Full-time,Machine Learning Engineer,284400,USD,284400,United States,In-person,United States,M,Machine Learning and AI +2024,Senior,Full-time,Machine Learning Engineer,150700,USD,150700,United States,In-person,United States,M,Machine Learning and AI +2024,Senior,Full-time,Data Architect,166500,CAD,128076,Canada,Remote,Canada,M,Data Architecture and Modeling +2024,Senior,Full-time,Data Architect,135000,CAD,103846,Canada,Remote,Canada,M,Data Architecture and Modeling +2024,Mid-level,Full-time,Analytics Engineer,145000,USD,145000,United States,Remote,United States,M,Leadership and Management +2024,Mid-level,Full-time,Analytics Engineer,104000,USD,104000,United States,Remote,United States,M,Leadership and Management +2024,Senior,Full-time,Data Engineer,165000,USD,165000,United States,Remote,United States,M,Data Engineering +2024,Senior,Full-time,Data Engineer,132000,USD,132000,United States,Remote,United States,M,Data Engineering +2024,Senior,Full-time,Data Engineer,234000,USD,234000,United States,In-person,United States,M,Data Engineering +2024,Senior,Full-time,Data Engineer,117000,USD,117000,United States,In-person,United States,M,Data Engineering +2024,Mid-level,Full-time,Data Engineer,215500,USD,215500,United States,In-person,United States,M,Data Engineering +2024,Mid-level,Full-time,Data Engineer,121800,USD,121800,United States,In-person,United States,M,Data Engineering +2024,Mid-level,Full-time,Data Engineer,165000,USD,165000,United States,Remote,United States,M,Data Engineering +2024,Mid-level,Full-time,Data Engineer,140250,USD,140250,United States,Remote,United States,M,Data Engineering +2024,Mid-level,Full-time,Analytics Engineer,164850,USD,164850,United States,Remote,United States,M,Leadership and Management +2024,Mid-level,Full-time,Analytics Engineer,112000,USD,112000,United States,Remote,United States,M,Leadership and Management +2024,Senior,Full-time,Data Engineer,295000,USD,295000,United States,In-person,United States,M,Data Engineering +2024,Senior,Full-time,Data Engineer,235000,USD,235000,United States,In-person,United States,M,Data Engineering +2024,Mid-level,Full-time,Business Intelligence,150000,USD,150000,United States,In-person,United States,M,BI and Visualization +2024,Mid-level,Full-time,Business Intelligence,100000,USD,100000,United States,In-person,United States,M,BI and Visualization +2024,Mid-level,Full-time,Data Integration Specialist,75000,GBP,93750,United Kingdom,Remote,United Kingdom,M,Data Management and Strategy +2024,Mid-level,Full-time,Data Integration Specialist,55000,GBP,68750,United Kingdom,Remote,United Kingdom,M,Data Management and Strategy +2024,Entry-level,Full-time,Data Analyst,120000,USD,120000,United States,In-person,United States,M,Data Analysis +2024,Entry-level,Full-time,Data Analyst,97500,USD,97500,United States,In-person,United States,M,Data Analysis +2024,Senior,Full-time,Computer Vision Engineer,220000,USD,220000,United States,Remote,United States,M,Machine Learning and AI +2024,Senior,Full-time,Computer Vision Engineer,183000,USD,183000,United States,Remote,United States,M,Machine Learning and AI +2024,Mid-level,Full-time,Data Engineer,205600,USD,205600,United States,In-person,United States,L,Data Engineering +2024,Mid-level,Full-time,Data Engineer,105700,USD,105700,United States,In-person,United States,L,Data Engineering +2024,Senior,Full-time,Data Engineer,240500,USD,240500,United States,In-person,United States,L,Data Engineering +2024,Senior,Full-time,Data Engineer,123700,USD,123700,United States,In-person,United States,L,Data Engineering +2024,Senior,Full-time,Data Infrastructure Engineer,179900,USD,179900,United States,Remote,United States,M,Data Engineering +2024,Senior,Full-time,Data Infrastructure Engineer,135920,USD,135920,United States,Remote,United States,M,Data Engineering +2024,Mid-level,Full-time,Data Manager,83300,USD,83300,United States,In-person,United States,M,Leadership and Management +2024,Mid-level,Full-time,Data Manager,47500,USD,47500,United States,In-person,United States,M,Leadership and Management +2024,Senior,Full-time,Data Manager,96600,USD,96600,United States,In-person,United States,M,Leadership and Management +2024,Senior,Full-time,Data Manager,55200,USD,55200,United States,In-person,United States,M,Leadership and Management +2024,Entry-level,Full-time,Data Science,86900,USD,86900,United States,In-person,United States,M,Data Science and Research +2024,Entry-level,Full-time,Data Science,60800,USD,60800,United States,In-person,United States,M,Data Science and Research +2024,Senior,Full-time,Machine Learning Scientist,140000,USD,140000,United States,In-person,United States,M,Machine Learning and AI +2024,Senior,Full-time,Machine Learning Scientist,90000,USD,90000,United States,In-person,United States,M,Machine Learning and AI +2024,Senior,Full-time,Research Engineer,234000,USD,234000,United States,In-person,United States,M,Data Science and Research +2024,Senior,Full-time,Research Engineer,146000,USD,146000,United States,In-person,United States,M,Data Science and Research +2024,Senior,Full-time,Data Analyst,120000,USD,120000,Canada,In-person,Canada,M,Data Analysis +2024,Senior,Full-time,Data Analyst,90000,USD,90000,Canada,In-person,Canada,M,Data Analysis +2024,Senior,Full-time,Business Intelligence,193000,USD,193000,United States,In-person,United States,M,BI and Visualization +2024,Senior,Full-time,Business Intelligence,119000,USD,119000,United States,In-person,United States,M,BI and Visualization +2024,Senior,Full-time,Data Scientist,215000,USD,215000,United States,In-person,United States,M,Data Science and Research +2024,Senior,Full-time,Data Scientist,146900,USD,146900,United States,In-person,United States,M,Data Science and Research +2024,Entry-level,Full-time,Applied Scientist,166000,USD,166000,United States,Remote,United States,M,Data Science and Research +2024,Entry-level,Full-time,Applied Scientist,104000,USD,104000,United States,Remote,United States,M,Data Science and Research +2024,Mid-level,Full-time,Data Engineer,140000,USD,140000,United States,In-person,United States,M,Data Engineering +2024,Mid-level,Full-time,Data Engineer,70000,USD,70000,United States,In-person,United States,M,Data Engineering +2024,Mid-level,Full-time,Data Engineer,124000,USD,124000,United States,In-person,United States,M,Data Engineering +2024,Mid-level,Full-time,Data Engineer,80000,USD,80000,United States,In-person,United States,M,Data Engineering +2024,Mid-level,Full-time,Data Scientist,133000,USD,133000,United States,In-person,United States,M,Data Science and Research +2024,Mid-level,Full-time,Data Scientist,58400,USD,58400,United States,In-person,United States,M,Data Science and Research +2024,Senior,Full-time,Data Manager,149000,USD,149000,Germany,In-person,Germany,M,Leadership and Management +2024,Senior,Full-time,Data Manager,65300,USD,65300,Germany,In-person,Germany,M,Leadership and Management +2024,Senior,Full-time,Research Engineer,120000,USD,120000,United States,Remote,United States,M,Data Science and Research +2024,Senior,Full-time,Research Engineer,100000,USD,100000,United States,Remote,United States,M,Data Science and Research +2024,Senior,Full-time,Machine Learning Engineer,182000,USD,182000,United States,In-person,United States,M,Machine Learning and AI +2024,Senior,Full-time,Machine Learning Engineer,164000,USD,164000,United States,In-person,United States,M,Machine Learning and AI +2024,Mid-level,Full-time,Data Integration Engineer,161250,USD,161250,United States,Remote,United States,M,Data Engineering +2024,Mid-level,Full-time,Data Integration Engineer,132974,USD,132974,United States,Remote,United States,M,Data Engineering +2024,Mid-level,Full-time,Data Integration Engineer,161250,USD,161250,United States,Remote,United States,M,Data Engineering +2024,Mid-level,Full-time,Data Integration Engineer,132974,USD,132974,United States,Remote,United States,M,Data Engineering +2024,Senior,Full-time,Data Engineer,90000,GBP,112500,United Kingdom,In-person,United Kingdom,M,Data Engineering +2024,Senior,Full-time,Data Engineer,49500,GBP,61875,United Kingdom,In-person,United Kingdom,M,Data Engineering +2024,Senior,Full-time,Data Analyst,140000,USD,140000,United States,In-person,United States,M,Data Analysis +2024,Senior,Full-time,Data Analyst,115000,USD,115000,United States,In-person,United States,M,Data Analysis +2024,Senior,Full-time,Data Scientist,155000,USD,155000,United States,In-person,United States,M,Data Science and Research +2024,Senior,Full-time,Data Scientist,100000,USD,100000,United States,In-person,United States,M,Data Science and Research +2024,Mid-level,Full-time,Research Engineer,440000,USD,440000,United States,In-person,United States,M,Data Science and Research +2024,Mid-level,Full-time,Research Engineer,295000,USD,295000,United States,In-person,United States,M,Data Science and Research +2024,Senior,Full-time,Data Scientist,40000,GBP,50000,United Kingdom,In-person,United Kingdom,M,Data Science and Research +2024,Senior,Full-time,Data Scientist,25000,GBP,31250,United Kingdom,In-person,United Kingdom,M,Data Science and Research +2024,Mid-level,Full-time,Research Engineer,135000,USD,135000,United States,In-person,United States,M,Data Science and Research +2024,Mid-level,Full-time,Research Engineer,120000,USD,120000,United States,In-person,United States,M,Data Science and Research +2024,Mid-level,Full-time,Data Scientist,155000,USD,155000,United States,In-person,United States,M,Data Science and Research +2024,Mid-level,Full-time,Data Scientist,139000,USD,139000,United States,In-person,United States,M,Data Science and Research +2024,Senior,Full-time,Data Analyst,185000,USD,185000,United States,In-person,United States,M,Data Analysis +2024,Senior,Full-time,Data Analyst,140000,USD,140000,United States,In-person,United States,M,Data Analysis +2024,Mid-level,Full-time,Data Engineer,40000,GBP,50000,United Kingdom,In-person,United Kingdom,M,Data Engineering +2024,Mid-level,Full-time,Data Engineer,40000,GBP,50000,United Kingdom,In-person,United Kingdom,M,Data Engineering +2024,Senior,Full-time,Analytics Engineer,170000,USD,170000,United States,In-person,United States,M,Leadership and Management +2024,Senior,Full-time,Business Intelligence Engineer,165600,USD,165600,United States,In-person,United States,L,BI and Visualization +2024,Senior,Full-time,Business Intelligence Engineer,65800,USD,65800,United States,In-person,United States,L,BI and Visualization +2024,Mid-level,Full-time,Data Analyst,167000,USD,167000,United States,In-person,United States,M,Data Analysis +2024,Mid-level,Full-time,Data Analyst,121000,USD,121000,United States,In-person,United States,M,Data Analysis +2024,Senior,Full-time,AI Architect,208000,USD,208000,United States,In-person,United States,M,Machine Learning and AI +2024,Senior,Full-time,AI Architect,177000,USD,177000,United States,In-person,United States,M,Machine Learning and AI +2024,Senior,Full-time,Data Engineer,180000,USD,180000,United States,Remote,United States,M,Data Engineering +2024,Senior,Full-time,Data Engineer,119000,USD,119000,United States,Remote,United States,M,Data Engineering +2024,Senior,Full-time,Data Science,227000,USD,227000,United States,In-person,United States,M,Data Science and Research +2024,Senior,Full-time,Data Science,116000,USD,116000,United States,In-person,United States,M,Data Science and Research +2024,Mid-level,Full-time,Data Integration Engineer,130000,USD,130000,United States,In-person,United States,M,Data Engineering +2024,Mid-level,Full-time,Data Integration Engineer,110000,USD,110000,United States,In-person,United States,M,Data Engineering +2024,Mid-level,Full-time,Analytics Engineer,220000,USD,220000,United States,In-person,United States,M,Leadership and Management +2024,Mid-level,Full-time,Analytics Engineer,176000,USD,176000,United States,In-person,United States,M,Leadership and Management +2024,Senior,Full-time,Research Scientist,440000,USD,440000,United States,In-person,United States,M,Data Science and Research +2024,Senior,Full-time,Research Scientist,360000,USD,360000,United States,In-person,United States,M,Data Science and Research +2024,Mid-level,Full-time,Machine Learning Scientist,180000,USD,180000,Canada,Remote,Canada,M,Machine Learning and AI +2024,Mid-level,Full-time,Machine Learning Scientist,117000,USD,117000,Canada,Remote,Canada,M,Machine Learning and AI +2024,Mid-level,Full-time,Data Analyst,180000,USD,180000,United States,In-person,United States,M,Data Analysis +2024,Mid-level,Full-time,Data Analyst,140000,USD,140000,United States,In-person,United States,M,Data Analysis +2024,Senior,Full-time,Data Analytics Lead,155000,USD,155000,United States,In-person,United States,M,Leadership and Management +2024,Senior,Full-time,Data Analytics Lead,130000,USD,130000,United States,In-person,United States,M,Leadership and Management +2024,Senior,Full-time,Data Analytics Lead,215000,USD,215000,United States,In-person,United States,M,Leadership and Management +2024,Senior,Full-time,Data Analytics Lead,155000,USD,155000,United States,In-person,United States,M,Leadership and Management +2024,Senior,Full-time,Data Scientist,130000,USD,130000,United States,In-person,United States,M,Data Science and Research +2024,Senior,Full-time,Data Scientist,120000,USD,120000,United States,In-person,United States,M,Data Science and Research +2024,Senior,Full-time,Data Scientist,135000,USD,135000,United States,Remote,United States,M,Data Science and Research +2024,Senior,Full-time,Data Scientist,115000,USD,115000,United States,Remote,United States,M,Data Science and Research +2024,Executive,Full-time,Head of Machine Learning,448000,USD,448000,United States,Remote,United States,M,Machine Learning and AI +2024,Executive,Full-time,Head of Machine Learning,373000,USD,373000,United States,Remote,United States,M,Machine Learning and AI +2024,Senior,Full-time,Machine Learning Engineer,195500,USD,195500,United States,Remote,United States,M,Machine Learning and AI +2024,Senior,Full-time,Machine Learning Engineer,141300,USD,141300,United States,Remote,United States,M,Machine Learning and AI +2024,Mid-level,Full-time,Data Engineer,110000,USD,110000,United States,In-person,United States,M,Data Engineering +2024,Mid-level,Full-time,Data Engineer,90000,USD,90000,United States,In-person,United States,M,Data Engineering +2024,Entry-level,Full-time,Data Analyst,70000,USD,70000,United States,Remote,United States,M,Data Analysis +2024,Entry-level,Full-time,Data Analyst,57000,USD,57000,United States,Remote,United States,M,Data Analysis +2024,Mid-level,Full-time,Data Architect,44263,GBP,55328,South Africa,In-person,South Africa,M,Data Architecture and Modeling +2024,Mid-level,Full-time,Data Architect,31396,GBP,39245,South Africa,In-person,South Africa,M,Data Architecture and Modeling +2024,Senior,Full-time,Data Scientist,191027,USD,191027,United States,In-person,United States,M,Data Science and Research +2024,Senior,Full-time,Data Scientist,99445,USD,99445,United States,In-person,United States,M,Data Science and Research +2024,Senior,Full-time,Data Engineer,130000,USD,130000,United States,In-person,United States,M,Data Engineering +2024,Senior,Full-time,Data Engineer,110000,USD,110000,United States,In-person,United States,M,Data Engineering +2024,Mid-level,Full-time,Data Scientist,166000,USD,166000,United States,In-person,United States,M,Data Science and Research +2024,Mid-level,Full-time,Data Scientist,73100,USD,73100,United States,In-person,United States,M,Data Science and Research +2024,Senior,Full-time,Data Scientist,204200,USD,204200,United States,In-person,United States,M,Data Science and Research +2024,Senior,Full-time,Data Scientist,122600,USD,122600,United States,In-person,United States,M,Data Science and Research +2024,Entry-level,Full-time,Data Science,110400,USD,110400,United States,In-person,United States,M,Data Science and Research +2024,Entry-level,Full-time,Data Science,68000,USD,68000,United States,In-person,United States,M,Data Science and Research +2024,Senior,Full-time,Data Analyst,120000,USD,120000,United States,In-person,United States,M,Data Analysis +2024,Senior,Full-time,Data Analyst,100000,USD,100000,United States,In-person,United States,M,Data Analysis +2024,Mid-level,Full-time,Data Science,179000,USD,179000,United States,In-person,United States,M,Data Science and Research +2024,Mid-level,Full-time,Data Science,106500,USD,106500,United States,In-person,United States,M,Data Science and Research +2024,Entry-level,Full-time,Data Engineer,115000,USD,115000,United States,Remote,United States,M,Data Engineering +2024,Entry-level,Full-time,Data Engineer,87550,USD,87550,United States,Remote,United States,M,Data Engineering +2024,Senior,Full-time,Data Analytics Lead,398900,USD,398900,United States,In-person,United States,M,Leadership and Management +2024,Senior,Full-time,Data Analytics Lead,239300,USD,239300,United States,In-person,United States,M,Leadership and Management +2024,Executive,Full-time,Head of Machine Learning,,USD,438000,United States,In-person,United States,M,Machine Learning and AI +2024,Executive,Full-time,Head of Machine Learning,245000,USD,245000,United States,In-person,United States,M,Machine Learning and AI +2024,Senior,Full-time,Data Scientist,190000,USD,190000,United States,Remote,United States,M,Data Science and Research +2024,Senior,Full-time,Data Scientist,105301,USD,105301,United States,Remote,United States,M,Data Science and Research +2024,Senior,Full-time,Data Architect,120000,GBP,150000,United Kingdom,In-person,United Kingdom,M,Data Architecture and Modeling +2024,Senior,Full-time,Data Architect,90000,GBP,112500,United Kingdom,In-person,United Kingdom,M,Data Architecture and Modeling +2024,Senior,Full-time,Research Scientist,340000,USD,340000,United States,Remote,United States,M,Data Science and Research +2024,Senior,Full-time,Research Scientist,180000,USD,180000,United States,Remote,United States,M,Data Science and Research +2024,Senior,Full-time,Machine Learning Engineer,324000,USD,324000,United States,In-person,United States,M,Machine Learning and AI +2024,Senior,Full-time,Machine Learning Engineer,159000,USD,159000,United States,In-person,United States,M,Machine Learning and AI +2024,Mid-level,Full-time,Data Analyst,95000,USD,95000,United States,In-person,United States,M,Data Analysis +2024,Mid-level,Full-time,Data Analyst,65000,USD,65000,United States,In-person,United States,M,Data Analysis +2024,Senior,Full-time,Data Science,157900,USD,157900,Canada,Remote,Canada,M,Data Science and Research +2024,Senior,Full-time,Data Science,105300,USD,105300,Canada,Remote,Canada,M,Data Science and Research +2024,Senior,Full-time,Data Analyst,120000,USD,120000,United States,In-person,United States,M,Data Analysis +2024,Senior,Full-time,Data Analyst,110000,USD,110000,United States,In-person,United States,M,Data Analysis +2024,Entry-level,Full-time,Data Analyst,90000,USD,90000,United States,In-person,United States,M,Data Analysis +2024,Entry-level,Full-time,Data Analyst,70000,USD,70000,United States,In-person,United States,M,Data Analysis +2024,Senior,Full-time,Data Scientist,175000,USD,175000,United States,Remote,United States,M,Data Science and Research +2024,Senior,Full-time,Data Scientist,105000,USD,105000,United States,Remote,United States,M,Data Science and Research +2024,Mid-level,Full-time,Data Scientist,166000,USD,166000,United States,In-person,United States,M,Data Science and Research +2024,Mid-level,Full-time,Data Scientist,73100,USD,73100,United States,In-person,United States,M,Data Science and Research +2024,Mid-level,Full-time,Analytics Engineer,221500,USD,221500,United States,In-person,United States,M,Leadership and Management +2024,Mid-level,Full-time,Analytics Engineer,153000,USD,153000,United States,In-person,United States,M,Leadership and Management +2024,Entry-level,Full-time,Data Analyst,55000,GBP,68750,United Kingdom,In-person,United Kingdom,M,Data Analysis +2024,Entry-level,Full-time,Data Analyst,50000,GBP,62500,United Kingdom,In-person,United Kingdom,M,Data Analysis +2024,Senior,Full-time,Machine Learning Engineer,345400,USD,345400,United States,In-person,United States,M,Machine Learning and AI +2024,Senior,Full-time,Machine Learning Engineer,223700,USD,223700,United States,In-person,United States,M,Machine Learning and AI +2024,Senior,Full-time,Research Scientist,180000,USD,180000,United States,Remote,United States,M,Data Science and Research +2024,Senior,Full-time,Data Engineer,313000,USD,313000,United States,Remote,United States,M,Data Engineering +2024,Senior,Full-time,Data Engineer,135000,USD,135000,United States,Remote,United States,M,Data Engineering +2024,Entry-level,Full-time,Data Analyst,77000,USD,77000,United States,Remote,United States,M,Data Analysis +2024,Entry-level,Full-time,Data Analyst,66000,USD,66000,United States,Remote,United States,M,Data Analysis +2024,Senior,Full-time,Machine Learning Engineer,315000,USD,315000,United States,Remote,United States,M,Machine Learning and AI +2024,Senior,Full-time,Machine Learning Engineer,250000,USD,250000,United States,Remote,United States,M,Machine Learning and AI +2024,Senior,Full-time,Machine Learning Engineer,190000,USD,190000,United States,Remote,United States,M,Machine Learning and AI +2024,Senior,Full-time,Machine Learning Engineer,105301,USD,105301,United States,Remote,United States,M,Machine Learning and AI +2024,Senior,Full-time,Machine Learning Engineer,309000,USD,309000,United States,In-person,United States,M,Machine Learning and AI +2024,Senior,Full-time,Machine Learning Engineer,142000,USD,142000,United States,In-person,United States,M,Machine Learning and AI +2024,Senior,Full-time,Data Analyst,207300,USD,207300,United States,In-person,United States,M,Data Analysis +2024,Senior,Full-time,Data Analyst,165900,USD,165900,United States,In-person,United States,M,Data Analysis +2024,Executive,Full-time,Data Analyst,55000,GBP,68750,United Kingdom,In-person,United Kingdom,M,Data Analysis +2024,Executive,Full-time,Data Analyst,50000,GBP,62500,United Kingdom,In-person,United Kingdom,M,Data Analysis +2024,Mid-level,Full-time,Analytics Engineer,115000,USD,115000,United States,In-person,United States,M,Leadership and Management +2024,Mid-level,Full-time,Analytics Engineer,100000,USD,100000,United States,In-person,United States,M,Leadership and Management +2024,Mid-level,Full-time,Data Engineer,220000,USD,220000,United States,Remote,United States,M,Data Engineering +2024,Mid-level,Full-time,Data Engineer,206000,USD,206000,United States,Remote,United States,M,Data Engineering +2024,Executive,Full-time,Head of Data,263000,USD,263000,United States,In-person,United States,M,Leadership and Management +2024,Executive,Full-time,Head of Data,236000,USD,236000,United States,In-person,United States,M,Leadership and Management +2024,Mid-level,Full-time,Data Engineer,203500,USD,203500,United States,Remote,United States,M,Data Engineering +2024,Mid-level,Full-time,Data Engineer,148000,USD,148000,United States,Remote,United States,M,Data Engineering +2024,Entry-level,Full-time,Data Analyst,100000,USD,100000,United States,In-person,United States,M,Data Analysis +2024,Entry-level,Full-time,Data Analyst,90000,USD,90000,United States,In-person,United States,M,Data Analysis +2024,Mid-level,Full-time,Data Engineer,120000,USD,120000,United States,In-person,United States,M,Data Engineering +2024,Mid-level,Full-time,Data Engineer,84000,USD,84000,United States,In-person,United States,M,Data Engineering +2024,Entry-level,Full-time,Research Analyst,79300,USD,79300,United States,In-person,United States,M,Data Science and Research +2024,Entry-level,Full-time,Research Analyst,42700,USD,42700,United States,In-person,United States,M,Data Science and Research +2024,Senior,Full-time,Data Scientist,103500,USD,103500,United States,In-person,United States,M,Data Science and Research +2024,Senior,Full-time,Data Scientist,72500,USD,72500,United States,In-person,United States,M,Data Science and Research +2024,Senior,Full-time,Research Scientist,201000,USD,201000,United States,In-person,United States,M,Data Science and Research +2024,Senior,Full-time,Research Scientist,103300,USD,103300,United States,In-person,United States,M,Data Science and Research +2024,Senior,Full-time,Machine Learning Engineer,196350,USD,196350,United States,Remote,United States,M,Machine Learning and AI +2024,Senior,Full-time,Machine Learning Engineer,127500,USD,127500,United States,Remote,United States,M,Machine Learning and AI +2024,Senior,Full-time,Data Engineer,143706,USD,143706,United States,Remote,United States,M,Data Engineering +2024,Senior,Full-time,Data Engineer,84533,USD,84533,United States,Remote,United States,M,Data Engineering +2024,Mid-level,Full-time,Analytics Engineer,172100,USD,172100,United States,In-person,United States,M,Leadership and Management +2024,Mid-level,Full-time,Analytics Engineer,97400,USD,97400,United States,In-person,United States,M,Leadership and Management +2024,Mid-level,Full-time,Data Scientist,159000,USD,159000,United States,In-person,United States,M,Data Science and Research +2024,Mid-level,Full-time,Data Scientist,106000,USD,106000,United States,In-person,United States,M,Data Science and Research +2024,Mid-level,Full-time,Data Scientist,104922,USD,104922,United States,In-person,United States,M,Data Science and Research +2024,Mid-level,Full-time,Data Scientist,72360,USD,72360,United States,In-person,United States,M,Data Science and Research +2024,Entry-level,Full-time,Data Analyst,106000,USD,106000,United States,In-person,United States,M,Data Analysis +2024,Entry-level,Full-time,Data Analyst,66000,USD,66000,United States,In-person,United States,M,Data Analysis +2024,Senior,Full-time,Data Scientist,255000,USD,255000,United States,In-person,United States,M,Data Science and Research +2024,Senior,Full-time,Data Scientist,199000,USD,199000,United States,In-person,United States,M,Data Science and Research +2024,Senior,Full-time,Business Intelligence Engineer,167500,USD,167500,United States,In-person,United States,M,BI and Visualization +2024,Senior,Full-time,Business Intelligence Engineer,106500,USD,106500,United States,In-person,United States,M,BI and Visualization +2024,Senior,Full-time,Data Scientist,150000,USD,150000,United States,Remote,United States,M,Data Science and Research +2024,Senior,Full-time,Data Scientist,104000,USD,104000,United States,Remote,United States,M,Data Science and Research +2024,Senior,Full-time,Data Analyst,166000,USD,166000,United States,In-person,United States,M,Data Analysis +2024,Senior,Full-time,Data Analyst,73100,USD,73100,United States,In-person,United States,M,Data Analysis +2024,Senior,Full-time,AI Engineer,230000,USD,230000,United States,In-person,United States,M,Machine Learning and AI +2024,Senior,Full-time,AI Engineer,150000,USD,150000,United States,In-person,United States,M,Machine Learning and AI +2024,Senior,Full-time,Data Scientist,155000,USD,155000,United States,In-person,United States,M,Data Science and Research +2024,Senior,Full-time,Data Scientist,130500,USD,130500,United States,In-person,United States,M,Data Science and Research +2024,Senior,Full-time,Data Scientist,190000,USD,190000,United States,In-person,United States,M,Data Science and Research +2024,Senior,Full-time,Data Scientist,158500,USD,158500,United States,In-person,United States,M,Data Science and Research +2024,Senior,Full-time,Applied Scientist,260000,USD,260000,United States,In-person,United States,L,Data Science and Research +2024,Senior,Full-time,Applied Scientist,136000,USD,136000,United States,In-person,United States,L,Data Science and Research +2024,Senior,Full-time,Data Engineer,230000,USD,230000,United States,In-person,United States,M,Data Engineering +2024,Senior,Full-time,Data Engineer,170000,USD,170000,United States,In-person,United States,M,Data Engineering +2024,Mid-level,Full-time,Data Engineer,150000,USD,150000,United States,In-person,United States,M,Data Engineering +2024,Mid-level,Full-time,Data Engineer,90800,USD,90800,United States,In-person,United States,M,Data Engineering +2024,Mid-level,Full-time,Data Engineer,125000,USD,125000,United States,Remote,United States,M,Data Engineering +2024,Mid-level,Full-time,Data Engineer,100000,USD,100000,United States,Remote,United States,M,Data Engineering +2024,Mid-level,Full-time,Applied Scientist,222200,USD,222200,United States,In-person,United States,L,Data Science and Research +2024,Mid-level,Full-time,Applied Scientist,136000,USD,136000,United States,In-person,United States,L,Data Science and Research +2024,Senior,Full-time,Data Analyst,120000,USD,120000,United States,In-person,United States,M,Data Analysis +2024,Senior,Full-time,Data Analyst,100000,USD,100000,United States,In-person,United States,M,Data Analysis +2024,Senior,Full-time,Data Architect,175000,USD,175000,United States,In-person,United States,M,Data Architecture and Modeling +2024,Senior,Full-time,Data Architect,117000,USD,117000,United States,In-person,United States,M,Data Architecture and Modeling +2024,Senior,Full-time,Machine Learning Engineer,215000,USD,215000,United States,In-person,United States,M,Machine Learning and AI +2024,Senior,Full-time,Machine Learning Engineer,146900,USD,146900,United States,In-person,United States,M,Machine Learning and AI +2024,Senior,Full-time,Machine Learning Engineer,225000,USD,225000,United States,In-person,United States,M,Machine Learning and AI +2024,Senior,Full-time,Machine Learning Engineer,166000,USD,166000,United States,In-person,United States,M,Machine Learning and AI +2024,Mid-level,Full-time,Analytics Engineer,150000,USD,150000,United States,Remote,United States,M,Leadership and Management +2024,Mid-level,Full-time,Analytics Engineer,135000,USD,135000,United States,Remote,United States,M,Leadership and Management +2024,Entry-level,Full-time,Data Scientist,104500,USD,104500,United States,In-person,United States,M,Data Science and Research +2024,Entry-level,Full-time,Data Scientist,76000,USD,76000,United States,In-person,United States,M,Data Science and Research +2024,Mid-level,Full-time,Data Engineer,105000,USD,105000,United States,In-person,United States,M,Data Engineering +2024,Mid-level,Full-time,Data Engineer,70000,USD,70000,United States,In-person,United States,M,Data Engineering +2024,Senior,Full-time,Data Scientist,165000,USD,165000,United States,Remote,United States,M,Data Science and Research +2024,Senior,Full-time,Data Scientist,115500,USD,115500,United States,Remote,United States,M,Data Science and Research +2024,Senior,Full-time,Data Scientist,220000,USD,220000,United States,In-person,United States,M,Data Science and Research +2024,Senior,Full-time,Data Scientist,160000,USD,160000,United States,In-person,United States,M,Data Science and Research +2024,Mid-level,Full-time,AI Engineer,166000,USD,166000,United States,In-person,United States,M,Machine Learning and AI +2024,Mid-level,Full-time,AI Engineer,73100,USD,73100,United States,In-person,United States,M,Machine Learning and AI +2024,Senior,Full-time,Research Scientist,164000,USD,164000,United States,Remote,United States,M,Data Science and Research +2024,Mid-level,Full-time,Data Scientist,144650,USD,144650,United States,In-person,United States,M,Data Science and Research +2024,Mid-level,Full-time,Data Scientist,86800,USD,86800,United States,In-person,United States,M,Data Science and Research +2024,Senior,Full-time,Data Scientist,170000,USD,170000,United States,In-person,United States,M,Data Science and Research +2024,Mid-level,Contract,Data Analyst Lead,200000,NZD,125000,New Zealand,Hybrid,New Zealand,S,Data Analysis +2024,Mid-level,Full-time,Business Intelligence Analyst,42000,GBP,52500,United Kingdom,Hybrid,United Kingdom,L,BI and Visualization +2024,Entry-level,Full-time,Business Intelligence,142000,USD,142000,United States,In-person,United States,M,BI and Visualization +2024,Entry-level,Full-time,Business Intelligence,70000,USD,70000,United States,In-person,United States,M,BI and Visualization +2024,Mid-level,Full-time,Business Intelligence,146851,USD,146851,United States,In-person,United States,M,BI and Visualization +2024,Mid-level,Full-time,Business Intelligence,94000,USD,94000,United States,In-person,United States,M,BI and Visualization +2024,Senior,Full-time,Business Intelligence,260000,USD,260000,United States,In-person,United States,M,BI and Visualization +2024,Senior,Full-time,Business Intelligence,180000,USD,180000,United States,In-person,United States,M,BI and Visualization +2024,Mid-level,Full-time,Business Intelligence,150000,USD,150000,United States,In-person,United States,M,BI and Visualization +2024,Mid-level,Full-time,Business Intelligence,100000,USD,100000,United States,In-person,United States,M,BI and Visualization +2024,Senior,Full-time,Business Intelligence,105000,USD,105000,United States,In-person,United States,M,BI and Visualization +2024,Senior,Full-time,Business Intelligence,70000,USD,70000,United States,In-person,United States,M,BI and Visualization +2024,Mid-level,Full-time,Business Intelligence,155000,USD,155000,United States,Remote,United States,M,BI and Visualization +2024,Mid-level,Full-time,Business Intelligence,140000,USD,140000,United States,Remote,United States,M,BI and Visualization +2024,Senior,Full-time,Data Analytics Lead,342400,USD,342400,United States,In-person,United States,M,Leadership and Management +2024,Senior,Full-time,Data Analytics Lead,205400,USD,205400,United States,In-person,United States,M,Leadership and Management +2024,Entry-level,Full-time,Data Science,70000,EUR,77777,Germany,In-person,Germany,M,Data Science and Research +2024,Entry-level,Full-time,Data Science,65000,EUR,72222,Germany,In-person,Germany,M,Data Science and Research +2024,Mid-level,Full-time,Data Science,138000,USD,138000,United States,In-person,United States,M,Data Science and Research +2024,Mid-level,Full-time,Data Science,86000,USD,86000,United States,In-person,United States,M,Data Science and Research +2024,Senior,Full-time,Data Analytics Lead,398900,USD,398900,United States,In-person,United States,M,Leadership and Management +2024,Senior,Full-time,Data Analytics Lead,239300,USD,239300,United States,In-person,United States,M,Leadership and Management +2024,Senior,Full-time,Data Science Consultant,112000,USD,112000,United States,In-person,United States,M,Data Science and Research +2024,Senior,Full-time,Data Science Consultant,109000,USD,109000,United States,In-person,United States,M,Data Science and Research +2024,Senior,Full-time,Data Scientist,250000,USD,250000,United States,In-person,United States,M,Data Science and Research +2024,Senior,Full-time,Data Scientist,218750,USD,218750,United States,In-person,United States,M,Data Science and Research +2024,Mid-level,Full-time,Data Scientist,212800,USD,212800,United States,In-person,United States,L,Data Science and Research +2024,Mid-level,Full-time,Data Scientist,111600,USD,111600,United States,In-person,United States,L,Data Science and Research +2024,Senior,Full-time,Machine Learning Engineer,250000,USD,250000,United States,Remote,United States,M,Machine Learning and AI +2024,Senior,Full-time,Machine Learning Engineer,230000,USD,230000,United States,Remote,United States,M,Machine Learning and AI +2024,Senior,Full-time,Data Scientist,247600,USD,247600,United States,In-person,United States,L,Data Science and Research +2024,Senior,Full-time,Data Scientist,127300,USD,127300,United States,In-person,United States,L,Data Science and Research +2024,Mid-level,Full-time,Data Engineer,170000,USD,170000,United States,In-person,United States,M,Data Engineering +2024,Mid-level,Full-time,Data Engineer,120000,USD,120000,United States,In-person,United States,M,Data Engineering +2024,Mid-level,Full-time,Analytics Engineer,200400,USD,200400,United States,In-person,United States,M,Leadership and Management +2024,Mid-level,Full-time,Analytics Engineer,154100,USD,154100,United States,In-person,United States,M,Leadership and Management +2024,Entry-level,Full-time,Data Analyst,26800,GBP,33500,United Kingdom,In-person,United Kingdom,M,Data Analysis +2024,Entry-level,Full-time,Data Analyst,26800,GBP,33500,United Kingdom,In-person,United Kingdom,M,Data Analysis +2024,Entry-level,Full-time,Data Analyst,75065,USD,75065,United States,Remote,United States,M,Data Analysis +2024,Entry-level,Full-time,Data Analyst,41419,USD,41419,United States,Remote,United States,M,Data Analysis +2024,Mid-level,Full-time,Data Scientist,180000,USD,180000,United States,In-person,United States,M,Data Science and Research +2024,Mid-level,Full-time,Data Scientist,160000,USD,160000,United States,In-person,United States,M,Data Science and Research +2024,Mid-level,Full-time,Data Engineer,114000,USD,114000,United States,Remote,United States,M,Data Engineering +2024,Mid-level,Full-time,Data Engineer,68000,USD,68000,United States,Remote,United States,M,Data Engineering +2024,Mid-level,Full-time,Data Analyst,325000,USD,325000,United States,In-person,United States,M,Data Analysis +2024,Mid-level,Full-time,Data Analyst,80000,USD,80000,United States,In-person,United States,M,Data Analysis +2024,Mid-level,Full-time,Machine Learning Engineer,84000,EUR,93333,Germany,Remote,Germany,M,Machine Learning and AI +2024,Mid-level,Full-time,Applied Scientist,222200,USD,222200,United States,In-person,United States,L,Data Science and Research +2024,Mid-level,Full-time,Applied Scientist,136000,USD,136000,United States,In-person,United States,L,Data Science and Research +2024,Mid-level,Full-time,Data Engineer,210100,USD,210100,United States,In-person,United States,M,Data Engineering +2024,Mid-level,Full-time,Data Engineer,210100,USD,210100,United States,In-person,United States,M,Data Engineering +2024,Senior,Full-time,Applied Scientist,260000,USD,260000,United States,In-person,United States,L,Data Science and Research +2024,Senior,Full-time,Applied Scientist,136000,USD,136000,United States,In-person,United States,L,Data Science and Research +2024,Mid-level,Full-time,Applied Scientist,222200,USD,222200,United States,In-person,United States,L,Data Science and Research +2024,Mid-level,Full-time,Applied Scientist,136000,USD,136000,United States,In-person,United States,L,Data Science and Research +2024,Senior,Full-time,Applied Scientist,260000,USD,260000,United States,In-person,United States,L,Data Science and Research +2024,Senior,Full-time,Applied Scientist,136000,USD,136000,United States,In-person,United States,L,Data Science and Research +2024,Mid-level,Full-time,Data Engineer,171816,USD,171816,United States,In-person,United States,M,Data Engineering +2024,Mid-level,Full-time,Data Engineer,97935,USD,97935,United States,In-person,United States,M,Data Engineering +2024,Senior,Full-time,Data Analyst,164000,USD,164000,United States,In-person,United States,M,Data Analysis +2024,Senior,Full-time,Data Analyst,109000,USD,109000,United States,In-person,United States,M,Data Analysis +2024,Mid-level,Full-time,Data Manager,127000,USD,127000,United States,Remote,United States,M,Leadership and Management +2024,Mid-level,Full-time,Data Manager,65000,USD,65000,United States,Remote,United States,M,Leadership and Management +2024,Senior,Full-time,Data Scientist,143000,USD,143000,United States,In-person,United States,M,Data Science and Research +2024,Senior,Full-time,Data Scientist,104000,USD,104000,United States,In-person,United States,M,Data Science and Research +2024,Senior,Full-time,Machine Learning Engineer,221000,USD,221000,United States,In-person,United States,M,Machine Learning and AI +2024,Senior,Full-time,Machine Learning Engineer,180000,USD,180000,United States,In-person,United States,M,Machine Learning and AI +2024,Senior,Full-time,Data Scientist,157850,USD,157850,United States,Remote,United States,M,Data Science and Research +2024,Senior,Full-time,Data Scientist,128945,USD,128945,United States,Remote,United States,M,Data Science and Research +2024,Senior,Full-time,Data Scientist,310270,USD,310270,United States,In-person,United States,M,Data Science and Research +2024,Senior,Full-time,Data Scientist,253430,USD,253430,United States,In-person,United States,M,Data Science and Research +2024,Senior,Full-time,Data Scientist,200000,USD,200000,United States,In-person,United States,M,Data Science and Research +2024,Senior,Full-time,Data Scientist,155000,USD,155000,United States,In-person,United States,M,Data Science and Research +2024,Senior,Full-time,Machine Learning Engineer,220067,USD,220067,United States,Remote,United States,M,Machine Learning and AI +2024,Senior,Full-time,Machine Learning Engineer,135549,USD,135549,United States,Remote,United States,M,Machine Learning and AI +2024,Senior,Full-time,Machine Learning Engineer,258800,USD,258800,United States,In-person,United States,M,Machine Learning and AI +2024,Senior,Full-time,Machine Learning Engineer,199200,USD,199200,United States,In-person,United States,M,Machine Learning and AI +2024,Senior,Full-time,Machine Learning Engineer,198000,USD,198000,United States,Remote,United States,M,Machine Learning and AI +2024,Senior,Full-time,Machine Learning Engineer,132000,USD,132000,United States,Remote,United States,M,Machine Learning and AI +2024,Senior,Full-time,Data Engineer,180000,USD,180000,United States,In-person,United States,M,Data Engineering +2024,Senior,Full-time,Data Engineer,162000,USD,162000,United States,In-person,United States,M,Data Engineering +2024,Senior,Full-time,Data Scientist,170000,USD,170000,United States,In-person,United States,M,Data Science and Research +2024,Senior,Full-time,Data Scientist,130000,USD,130000,United States,In-person,United States,M,Data Science and Research +2024,Mid-level,Full-time,Data Analytics Manager,145400,USD,145400,United States,In-person,United States,M,Leadership and Management +2024,Mid-level,Full-time,Data Analytics Manager,88000,USD,88000,United States,In-person,United States,M,Leadership and Management +2024,Mid-level,Full-time,Analytics Engineer,205500,USD,205500,United States,In-person,United States,M,Leadership and Management +2024,Mid-level,Full-time,Analytics Engineer,117400,USD,117400,United States,In-person,United States,M,Leadership and Management +2024,Senior,Full-time,Business Intelligence Analyst,148300,USD,148300,United States,In-person,United States,M,BI and Visualization +2024,Senior,Full-time,Business Intelligence Analyst,84700,USD,84700,United States,In-person,United States,M,BI and Visualization +2024,Senior,Full-time,Data Analyst,105000,USD,105000,United States,In-person,United States,M,Data Analysis +2024,Senior,Full-time,Data Analyst,85000,USD,85000,United States,In-person,United States,M,Data Analysis +2024,Mid-level,Full-time,Machine Learning Engineer,250900,USD,250900,United States,In-person,United States,M,Machine Learning and AI +2024,Mid-level,Full-time,Machine Learning Engineer,135200,USD,135200,United States,In-person,United States,M,Machine Learning and AI +2024,Senior,Contract,Data Scientist,191027,USD,191027,United States,In-person,United States,M,Data Science and Research +2024,Senior,Contract,Data Scientist,120869,USD,120869,United States,In-person,United States,M,Data Science and Research +2024,Senior,Full-time,Data Engineer,212000,USD,212000,United States,In-person,United States,M,Data Engineering +2024,Senior,Full-time,Data Engineer,93300,USD,93300,United States,In-person,United States,M,Data Engineering +2024,Senior,Full-time,Data Scientist,140000,USD,140000,Canada,In-person,Canada,M,Data Science and Research +2024,Senior,Full-time,Data Scientist,110000,USD,110000,Canada,In-person,Canada,M,Data Science and Research +2024,Senior,Full-time,Data Engineer,270250,USD,270250,United States,In-person,United States,M,Data Engineering +2024,Senior,Full-time,Data Engineer,144000,USD,144000,United States,In-person,United States,M,Data Engineering +2024,Entry-level,Full-time,AI Engineer,40000,EUR,44444,Italy,Hybrid,Italy,L,Machine Learning and AI +2024,Mid-level,Full-time,Data Analyst,138000,USD,138000,United States,In-person,United States,M,Data Analysis +2024,Mid-level,Full-time,Data Analyst,86000,USD,86000,United States,In-person,United States,M,Data Analysis +2024,Mid-level,Full-time,Data Science,106000,USD,106000,United States,In-person,United States,M,Data Science and Research +2024,Mid-level,Full-time,Data Science,66000,USD,66000,United States,In-person,United States,M,Data Science and Research +2024,Senior,Full-time,Data Analyst,128800,USD,128800,United States,In-person,United States,M,Data Analysis +2024,Senior,Full-time,Data Analyst,88854,USD,88854,United States,In-person,United States,M,Data Analysis +2024,Senior,Full-time,Research Analyst,210000,USD,210000,United States,In-person,United States,M,Data Science and Research +2024,Senior,Full-time,Research Analyst,180000,USD,180000,United States,In-person,United States,M,Data Science and Research +2024,Mid-level,Full-time,Data Science,138000,USD,138000,United States,In-person,United States,M,Data Science and Research +2024,Mid-level,Full-time,Data Science,86000,USD,86000,United States,In-person,United States,M,Data Science and Research +2024,Senior,Full-time,Machine Learning Engineer,284400,USD,284400,United States,In-person,United States,M,Machine Learning and AI +2024,Senior,Full-time,Machine Learning Engineer,150700,USD,150700,United States,In-person,United States,M,Machine Learning and AI +2024,Mid-level,Full-time,Data Science,276000,USD,276000,United States,In-person,United States,M,Data Science and Research +2024,Mid-level,Full-time,Data Science,176000,USD,176000,United States,In-person,United States,M,Data Science and Research +2024,Entry-level,Contract,Business Intelligence Analyst,50000,USD,50000,United States,In-person,United States,M,BI and Visualization +2024,Entry-level,Contract,Business Intelligence Analyst,48000,USD,48000,United States,In-person,United States,M,BI and Visualization +2024,Entry-level,Full-time,Data Analyst,179000,USD,179000,United States,In-person,United States,M,Data Analysis +2024,Entry-level,Full-time,Data Analyst,112000,USD,112000,United States,In-person,United States,M,Data Analysis +2024,Mid-level,Full-time,Machine Learning Operations Engineer,160000,USD,160000,United States,In-person,United States,M,Machine Learning and AI +2024,Mid-level,Full-time,Machine Learning Operations Engineer,120000,USD,120000,United States,In-person,United States,M,Machine Learning and AI +2024,Senior,Full-time,Data Engineer,145360,USD,145360,United States,Remote,United States,M,Data Engineering +2024,Senior,Full-time,Data Engineer,101100,USD,101100,United States,Remote,United States,M,Data Engineering +2024,Senior,Full-time,Data Architect,299792,USD,299792,United States,In-person,United States,M,Data Architecture and Modeling +2024,Senior,Full-time,Data Architect,187370,USD,187370,United States,In-person,United States,M,Data Architecture and Modeling +2024,Senior,Full-time,Research Scientist,382320,USD,382320,United States,In-person,United States,M,Data Science and Research +2024,Senior,Full-time,Research Scientist,302840,USD,302840,United States,In-person,United States,M,Data Science and Research +2024,Senior,Full-time,Machine Learning Engineer,258800,USD,258800,United States,In-person,United States,M,Machine Learning and AI +2024,Senior,Full-time,Machine Learning Engineer,199200,USD,199200,United States,In-person,United States,M,Machine Learning and AI +2024,Senior,Full-time,Data Scientist,212000,USD,212000,United States,In-person,United States,M,Data Science and Research +2024,Senior,Full-time,Data Scientist,93300,USD,93300,United States,In-person,United States,M,Data Science and Research +2024,Senior,Full-time,Data Engineer,154000,USD,154000,United States,In-person,United States,M,Data Engineering +2024,Senior,Full-time,Data Engineer,103000,USD,103000,United States,In-person,United States,M,Data Engineering +2024,Senior,Full-time,Analytics Engineer,150000,USD,150000,United States,In-person,United States,M,Leadership and Management +2024,Senior,Full-time,Data Analyst,144700,USD,144700,United States,Remote,United States,M,Data Analysis +2024,Senior,Full-time,Data Analyst,96500,USD,96500,United States,Remote,United States,M,Data Analysis +2024,Senior,Full-time,Data Scientist,314100,USD,314100,United States,In-person,United States,M,Data Science and Research +2024,Senior,Full-time,Data Scientist,169700,USD,169700,United States,In-person,United States,M,Data Science and Research +2024,Executive,Full-time,Machine Learning Engineer,209700,USD,209700,United States,In-person,United States,M,Machine Learning and AI +2024,Executive,Full-time,Machine Learning Engineer,161300,USD,161300,United States,In-person,United States,M,Machine Learning and AI +2024,Entry-level,Full-time,Data Scientist,84000,USD,84000,United States,In-person,United States,M,Data Science and Research +2024,Entry-level,Full-time,Data Scientist,58000,USD,58000,United States,In-person,United States,M,Data Science and Research +2024,Senior,Full-time,Data Engineer,135000,USD,135000,United States,In-person,United States,M,Data Engineering +2024,Senior,Full-time,Data Engineer,115000,USD,115000,United States,In-person,United States,M,Data Engineering +2024,Senior,Full-time,Data Analyst,153000,USD,153000,United States,In-person,United States,M,Data Analysis +2024,Senior,Full-time,Data Analyst,143000,USD,143000,United States,In-person,United States,M,Data Analysis +2024,Senior,Full-time,Data Engineer,200000,USD,200000,United States,In-person,United States,M,Data Engineering +2024,Senior,Full-time,Data Engineer,160000,USD,160000,United States,In-person,United States,M,Data Engineering +2024,Entry-level,Full-time,Research Scientist,254270,USD,254270,United States,In-person,United States,M,Data Science and Research +2024,Entry-level,Full-time,Research Scientist,254270,USD,254270,United States,In-person,United States,M,Data Science and Research +2024,Senior,Full-time,Data Engineer,240000,USD,240000,United States,In-person,United States,M,Data Engineering +2024,Senior,Full-time,Data Engineer,187000,USD,187000,United States,In-person,United States,M,Data Engineering +2024,Mid-level,Full-time,Data Analytics Manager,165000,USD,165000,United States,In-person,United States,M,Leadership and Management +2024,Mid-level,Full-time,Data Analytics Manager,108750,USD,108750,United States,In-person,United States,M,Leadership and Management +2024,Senior,Full-time,Business Intelligence Analyst,55000,GBP,68750,United Kingdom,In-person,United Kingdom,M,BI and Visualization +2024,Senior,Full-time,Business Intelligence Analyst,40000,GBP,50000,United Kingdom,In-person,United Kingdom,M,BI and Visualization +2024,Senior,Full-time,Business Intelligence Engineer,190000,USD,190000,United States,In-person,United States,M,BI and Visualization +2024,Senior,Full-time,Business Intelligence Engineer,130000,USD,130000,United States,In-person,United States,M,BI and Visualization +2024,Senior,Full-time,Applied Scientist,285200,USD,285200,United States,Remote,United States,M,Data Science and Research +2024,Senior,Full-time,Applied Scientist,168600,USD,168600,United States,Remote,United States,M,Data Science and Research +2024,Entry-level,Full-time,Data Scientist,55000,EUR,61111,Germany,Hybrid,Germany,M,Data Science and Research +2024,Entry-level,Full-time,Analytics Engineer,66000,USD,66000,United States,Remote,United States,M,Leadership and Management +2024,Mid-level,Full-time,Data Engineer,133000,USD,133000,United States,In-person,United States,M,Data Engineering +2024,Mid-level,Full-time,Data Engineer,58400,USD,58400,United States,In-person,United States,M,Data Engineering +2024,Senior,Full-time,Data Analyst,163000,USD,163000,United States,Remote,United States,M,Data Analysis +2024,Senior,Full-time,Data Analyst,77000,USD,77000,United States,Remote,United States,M,Data Analysis +2024,Senior,Full-time,Data Engineer,146000,USD,146000,United States,In-person,United States,M,Data Engineering +2024,Senior,Full-time,Data Engineer,78900,USD,78900,United States,In-person,United States,M,Data Engineering +2024,Mid-level,Full-time,Machine Learning Engineer,200000,USD,200000,United States,Remote,United States,L,Machine Learning and AI +2024,Mid-level,Full-time,Machine Learning Engineer,100000,USD,100000,United States,Remote,United States,L,Machine Learning and AI +2024,Senior,Full-time,Research Scientist,195500,USD,195500,United States,Remote,United States,M,Data Science and Research +2024,Senior,Full-time,Research Scientist,141300,USD,141300,United States,Remote,United States,M,Data Science and Research +2024,Mid-level,Full-time,Research Engineer,128000,USD,128000,United States,In-person,United States,M,Data Science and Research +2024,Mid-level,Full-time,Research Engineer,64000,USD,64000,United States,In-person,United States,M,Data Science and Research +2024,Mid-level,Full-time,Data Scientist,77040,EUR,85600,Latvia,In-person,Latvia,M,Data Science and Research +2024,Mid-level,Full-time,Data Scientist,39840,EUR,44266,Latvia,In-person,Latvia,M,Data Science and Research +2024,Mid-level,Full-time,Data Engineer,48000,GBP,60000,United Kingdom,In-person,United Kingdom,M,Data Engineering +2024,Mid-level,Full-time,Data Engineer,37200,GBP,46500,United Kingdom,In-person,United Kingdom,M,Data Engineering +2024,Executive,Full-time,Data Engineer,204500,USD,204500,United States,In-person,United States,M,Data Engineering +2024,Executive,Full-time,Data Engineer,130000,USD,130000,United States,In-person,United States,M,Data Engineering +2024,Senior,Full-time,Data Scientist,65000,GBP,81250,United Kingdom,In-person,United Kingdom,M,Data Science and Research +2024,Senior,Full-time,Data Scientist,40000,GBP,50000,United Kingdom,In-person,United Kingdom,M,Data Science and Research +2024,Senior,Full-time,Data Engineer,230000,USD,230000,United States,Remote,United States,M,Data Engineering +2024,Senior,Full-time,Data Engineer,149000,USD,149000,United States,Remote,United States,M,Data Engineering +2024,Senior,Full-time,Data Scientist,185900,USD,185900,United States,In-person,United States,M,Data Science and Research +2024,Senior,Full-time,Data Scientist,109400,USD,109400,United States,In-person,United States,M,Data Science and Research +2024,Senior,Full-time,Data Scientist,145000,USD,145000,United States,Remote,United States,M,Data Science and Research +2024,Senior,Full-time,Data Scientist,125000,USD,125000,United States,Remote,United States,M,Data Science and Research +2024,Senior,Full-time,Data Lead,54000,GBP,67500,United Kingdom,In-person,United Kingdom,M,Leadership and Management +2024,Senior,Full-time,Data Lead,48000,GBP,60000,United Kingdom,In-person,United Kingdom,M,Leadership and Management +2024,Senior,Full-time,Data Architect,195000,USD,195000,United States,In-person,United States,M,Data Architecture and Modeling +2024,Senior,Full-time,Data Architect,64200,USD,64200,United States,In-person,United States,M,Data Architecture and Modeling +2024,Senior,Full-time,Data Scientist,208500,USD,208500,United States,In-person,United States,M,Data Science and Research +2024,Senior,Full-time,Data Scientist,165000,USD,165000,United States,In-person,United States,M,Data Science and Research +2024,Senior,Full-time,Data Analyst,47215,GBP,59018,United Kingdom,In-person,United Kingdom,M,Data Analysis +2024,Senior,Full-time,Data Analyst,42245,GBP,52806,United Kingdom,In-person,United Kingdom,M,Data Analysis +2024,Mid-level,Full-time,Data Analytics Manager,124230,USD,124230,United States,In-person,United States,M,Leadership and Management +2024,Mid-level,Full-time,Data Analytics Manager,68637,USD,68637,United States,In-person,United States,M,Leadership and Management +2024,Executive,Full-time,Head of Data,247000,USD,247000,United States,In-person,United States,M,Leadership and Management +2024,Executive,Full-time,Head of Data,182000,USD,182000,United States,In-person,United States,M,Leadership and Management +2024,Senior,Full-time,Research Scientist,278700,USD,278700,United States,In-person,United States,M,Data Science and Research +2024,Senior,Full-time,Research Scientist,159300,USD,159300,United States,In-person,United States,M,Data Science and Research +2024,Senior,Full-time,Data Engineer,233200,USD,233200,United States,In-person,United States,M,Data Engineering +2024,Senior,Full-time,Data Engineer,144200,USD,144200,United States,In-person,United States,M,Data Engineering +2024,Executive,Full-time,ML Engineer,238500,USD,238500,United States,In-person,United States,M,Machine Learning and AI +2024,Executive,Full-time,ML Engineer,183400,USD,183400,United States,In-person,United States,M,Machine Learning and AI +2024,Senior,Full-time,Research Scientist,205500,USD,205500,United States,In-person,United States,M,Data Science and Research +2024,Senior,Full-time,Research Scientist,132500,USD,132500,United States,In-person,United States,M,Data Science and Research +2024,Mid-level,Full-time,Data Analyst,134500,USD,134500,United States,In-person,United States,M,Data Analysis +2024,Mid-level,Full-time,Data Analyst,100000,USD,100000,United States,In-person,United States,M,Data Analysis +2024,Senior,Full-time,Research Scientist,258100,USD,258100,United States,In-person,United States,M,Data Science and Research +2024,Senior,Full-time,Research Scientist,151900,USD,151900,United States,In-person,United States,M,Data Science and Research +2024,Executive,Full-time,Data Science,300000,USD,300000,United States,Remote,United States,M,Data Science and Research +2024,Executive,Full-time,Data Science,220000,USD,220000,United States,Remote,United States,M,Data Science and Research +2024,Senior,Full-time,Data Analyst,200000,USD,200000,United States,Remote,United States,M,Data Analysis +2024,Senior,Full-time,Data Analyst,145000,USD,145000,United States,Remote,United States,M,Data Analysis +2024,Senior,Full-time,Research Scientist,323300,USD,323300,United States,In-person,United States,M,Data Science and Research +2024,Senior,Full-time,Research Scientist,184700,USD,184700,United States,In-person,United States,M,Data Science and Research +2024,Senior,Full-time,Data Scientist,253430,USD,253430,United States,In-person,United States,M,Data Science and Research +2024,Senior,Full-time,Data Scientist,212780,USD,212780,United States,In-person,United States,M,Data Science and Research +2024,Mid-level,Full-time,Data Scientist,130000,USD,130000,United States,Remote,United States,M,Data Science and Research +2024,Mid-level,Full-time,Data Scientist,110000,USD,110000,United States,Remote,United States,M,Data Science and Research +2024,Senior,Full-time,ML Engineer,300000,USD,300000,United States,In-person,United States,M,Machine Learning and AI +2024,Senior,Full-time,ML Engineer,130000,USD,130000,United States,In-person,United States,M,Machine Learning and AI +2024,Senior,Full-time,Research Scientist,278700,USD,278700,United States,In-person,United States,M,Data Science and Research +2024,Senior,Full-time,Research Scientist,159300,USD,159300,United States,In-person,United States,M,Data Science and Research +2024,Entry-level,Full-time,Data Analytics Manager,27000,USD,27000,India,Remote,American Samoa,M,Leadership and Management +2024,Entry-level,Part-time,Data Engineer,93000,USD,93000,United States,In-person,United States,M,Data Engineering +2024,Entry-level,Part-time,Data Engineer,45400,USD,45400,United States,In-person,United States,M,Data Engineering +2024,Mid-level,Full-time,Data Scientist,119200,USD,119200,United States,Remote,United States,M,Data Science and Research +2024,Mid-level,Full-time,Data Scientist,86600,USD,86600,United States,Remote,United States,M,Data Science and Research +2024,Mid-level,Full-time,Data Scientist,166000,USD,166000,United States,In-person,United States,M,Data Science and Research +2024,Mid-level,Full-time,Data Scientist,73100,USD,73100,United States,In-person,United States,M,Data Science and Research +2024,Mid-level,Full-time,Data Scientist,212000,USD,212000,Egypt,In-person,Egypt,M,Data Science and Research +2024,Mid-level,Full-time,Data Scientist,93300,USD,93300,Egypt,In-person,Egypt,M,Data Science and Research +2024,Senior,Full-time,Data Analyst,96600,USD,96600,United States,In-person,United States,M,Data Analysis +2024,Senior,Full-time,Data Analyst,55200,USD,55200,United States,In-person,United States,M,Data Analysis +2024,Mid-level,Full-time,Data Science,132600,USD,132600,United States,In-person,United States,M,Data Science and Research +2024,Mid-level,Full-time,Data Science,80845,USD,80845,United States,In-person,United States,M,Data Science and Research +2024,Entry-level,Full-time,Data Scientist,144200,USD,144200,United States,In-person,United States,M,Data Science and Research +2024,Entry-level,Full-time,Data Scientist,72100,USD,72100,United States,In-person,United States,M,Data Science and Research +2024,Mid-level,Full-time,Data Scientist,212000,USD,212000,Egypt,In-person,Egypt,M,Data Science and Research +2024,Mid-level,Full-time,Data Scientist,93300,USD,93300,Egypt,In-person,Egypt,M,Data Science and Research +2024,Entry-level,Full-time,Research Analyst,100144,USD,100144,Canada,In-person,Canada,M,Data Science and Research +2024,Entry-level,Full-time,Research Analyst,78308,USD,78308,Canada,In-person,Canada,M,Data Science and Research +2024,Senior,Full-time,Data Scientist,212000,USD,212000,Egypt,In-person,Egypt,M,Data Science and Research +2024,Senior,Full-time,Data Scientist,93300,USD,93300,Egypt,In-person,Egypt,M,Data Science and Research +2024,Entry-level,Part-time,Data Analyst,93000,USD,93000,United States,In-person,United States,M,Data Analysis +2024,Entry-level,Part-time,Data Analyst,45400,USD,45400,United States,In-person,United States,M,Data Analysis +2024,Senior,Full-time,Data Scientist,60000,EUR,66666,Lithuania,In-person,Lithuania,M,Data Science and Research +2024,Senior,Full-time,Data Scientist,48000,EUR,53333,Lithuania,In-person,Lithuania,M,Data Science and Research +2024,Senior,Full-time,Business Intelligence Analyst,112125,USD,112125,Canada,Remote,Canada,M,BI and Visualization +2024,Senior,Full-time,Business Intelligence Analyst,67275,USD,67275,Canada,Remote,Canada,M,BI and Visualization +2024,Mid-level,Full-time,Data Scientist,166000,USD,166000,United States,In-person,United States,M,Data Science and Research +2024,Mid-level,Full-time,Data Scientist,73100,USD,73100,United States,In-person,United States,M,Data Science and Research +2024,Entry-level,Full-time,Data Analyst,114000,USD,114000,United States,In-person,United States,M,Data Analysis +2024,Entry-level,Full-time,Data Analyst,75000,USD,75000,United States,In-person,United States,M,Data Analysis +2024,Senior,Full-time,Data Scientist,200070,USD,200070,Canada,In-person,Canada,M,Data Science and Research +2024,Senior,Full-time,Data Scientist,107730,USD,107730,Canada,In-person,Canada,M,Data Science and Research +2024,Mid-level,Full-time,Data Engineer,220000,USD,220000,United States,In-person,United States,M,Data Engineering +2024,Mid-level,Full-time,Data Engineer,140000,USD,140000,United States,In-person,United States,M,Data Engineering +2024,Senior,Full-time,Data Analyst,100000,USD,100000,Ireland,In-person,Ireland,M,Data Analysis +2024,Senior,Full-time,Data Analyst,80000,USD,80000,Ireland,In-person,Ireland,M,Data Analysis +2024,Mid-level,Full-time,Data Science,287800,USD,287800,United States,In-person,United States,M,Data Science and Research +2024,Mid-level,Full-time,Data Science,287800,USD,287800,United States,In-person,United States,M,Data Science and Research +2024,Senior,Full-time,Data Engineer,166000,USD,166000,United States,In-person,United States,M,Data Engineering +2024,Senior,Full-time,Data Engineer,73100,USD,73100,United States,In-person,United States,M,Data Engineering +2024,Senior,Full-time,Data Analyst,187770,USD,187770,United States,In-person,United States,M,Data Analysis +2024,Senior,Full-time,Data Analyst,109500,USD,109500,United States,In-person,United States,M,Data Analysis +2024,Entry-level,Full-time,Data Analyst,75000,GBP,93750,United Kingdom,In-person,United Kingdom,M,Data Analysis +2024,Entry-level,Full-time,Data Analyst,55000,GBP,68750,United Kingdom,In-person,United Kingdom,M,Data Analysis +2024,Senior,Full-time,Data Science,177300,USD,177300,United States,In-person,United States,M,Data Science and Research +2024,Senior,Full-time,Data Science,126500,USD,126500,United States,In-person,United States,M,Data Science and Research +2024,Mid-level,Full-time,Data Science Practitioner,145100,USD,145100,United States,In-person,United States,M,Data Science and Research +2024,Mid-level,Full-time,Data Science Practitioner,93900,USD,93900,United States,In-person,United States,M,Data Science and Research +2024,Senior,Full-time,Machine Learning Engineer,245000,USD,245000,United States,Remote,United States,M,Machine Learning and AI +2024,Senior,Full-time,Machine Learning Engineer,163000,USD,163000,United States,Remote,United States,M,Machine Learning and AI +2024,Senior,Full-time,Data Scientist,189100,USD,189100,United States,In-person,United States,M,Data Science and Research +2024,Senior,Full-time,Data Scientist,154360,USD,154360,United States,In-person,United States,M,Data Science and Research +2024,Mid-level,Full-time,Data Engineer,159250,USD,159250,United States,In-person,United States,M,Data Engineering +2024,Mid-level,Full-time,Data Engineer,85750,USD,85750,United States,In-person,United States,M,Data Engineering +2024,Senior,Full-time,Data Scientist,152000,USD,152000,United States,In-person,United States,M,Data Science and Research +2024,Senior,Full-time,Data Scientist,133200,USD,133200,United States,In-person,United States,M,Data Science and Research +2024,Entry-level,Full-time,Data Analyst,75000,EUR,83333,France,In-person,France,M,Data Analysis +2024,Senior,Full-time,Data Scientist,225000,USD,225000,United States,In-person,United States,M,Data Science and Research +2024,Senior,Full-time,Data Scientist,156400,USD,156400,United States,In-person,United States,M,Data Science and Research +2024,Senior,Full-time,Data Engineer,197000,USD,197000,United States,In-person,United States,M,Data Engineering +2024,Senior,Full-time,Data Engineer,99000,USD,99000,United States,In-person,United States,M,Data Engineering +2024,Senior,Full-time,Applied Scientist,256100,USD,256100,United States,In-person,United States,M,Data Science and Research +2024,Senior,Full-time,Applied Scientist,137900,USD,137900,United States,In-person,United States,M,Data Science and Research +2024,Senior,Full-time,Business Intelligence Analyst,54395,GBP,67993,South Africa,In-person,South Africa,M,BI and Visualization +2024,Senior,Full-time,Business Intelligence Analyst,33966,GBP,42457,South Africa,In-person,South Africa,M,BI and Visualization +2024,Mid-level,Full-time,Research Scientist,212800,USD,212800,United States,In-person,United States,L,Data Science and Research +2024,Mid-level,Full-time,Research Scientist,124100,USD,124100,United States,In-person,United States,L,Data Science and Research +2024,Senior,Full-time,Data Architect,220000,USD,220000,United States,In-person,United States,M,Data Architecture and Modeling +2024,Senior,Full-time,Data Architect,200000,USD,200000,United States,In-person,United States,M,Data Architecture and Modeling +2024,Senior,Full-time,Machine Learning Engineer,300000,USD,300000,United States,Remote,United States,M,Machine Learning and AI +2024,Senior,Full-time,Machine Learning Engineer,235000,USD,235000,United States,Remote,United States,M,Machine Learning and AI +2024,Senior,Full-time,ML Engineer,262269,USD,262269,United States,Remote,United States,M,Machine Learning and AI +2024,Senior,Full-time,ML Engineer,230797,USD,230797,United States,Remote,United States,M,Machine Learning and AI +2024,Entry-level,Full-time,Data Scientist,36000,EUR,40000,Estonia,In-person,Estonia,M,Data Science and Research +2024,Entry-level,Full-time,Data Scientist,36000,EUR,40000,Estonia,In-person,Estonia,M,Data Science and Research +2024,Senior,Full-time,Data Analyst,152000,USD,152000,United States,In-person,United States,M,Data Analysis +2024,Senior,Full-time,Data Analyst,126667,USD,126667,United States,In-person,United States,M,Data Analysis +2024,Entry-level,Full-time,Data Analyst,90000,USD,90000,United States,Remote,United States,M,Data Analysis +2024,Entry-level,Full-time,Data Analyst,75000,USD,75000,United States,Remote,United States,M,Data Analysis +2024,Entry-level,Full-time,Data Analyst,115000,USD,115000,United States,In-person,United States,M,Data Analysis +2024,Entry-level,Full-time,Data Analyst,90000,USD,90000,United States,In-person,United States,M,Data Analysis +2024,Mid-level,Full-time,Machine Learning Scientist,150000,USD,150000,United States,In-person,United States,M,Machine Learning and AI +2024,Senior,Full-time,Data Engineer,247300,USD,247300,United States,In-person,United States,M,Data Engineering +2024,Senior,Full-time,Data Engineer,139700,USD,139700,United States,In-person,United States,M,Data Engineering +2024,Mid-level,Full-time,Research Engineer,360000,USD,360000,United States,In-person,United States,M,Data Science and Research +2024,Mid-level,Full-time,Research Engineer,295000,USD,295000,United States,In-person,United States,M,Data Science and Research +2024,Mid-level,Full-time,AI Engineer,200000,USD,200000,United States,In-person,United States,M,Machine Learning and AI +2024,Mid-level,Full-time,AI Engineer,151000,USD,151000,United States,In-person,United States,M,Machine Learning and AI +2024,Senior,Full-time,Data Scientist,170000,USD,170000,United States,Remote,United States,M,Data Science and Research +2024,Senior,Full-time,Data Scientist,130000,USD,130000,United States,Remote,United States,M,Data Science and Research +2024,Senior,Full-time,Data Analyst,140000,USD,140000,United States,In-person,United States,M,Data Analysis +2024,Senior,Full-time,Data Analyst,115000,USD,115000,United States,In-person,United States,M,Data Analysis +2024,Mid-level,Full-time,Data Analyst,105000,USD,105000,United States,In-person,United States,M,Data Analysis +2024,Mid-level,Full-time,Data Analyst,78575,USD,78575,United States,In-person,United States,M,Data Analysis +2024,Mid-level,Full-time,Data Engineer,117000,EUR,130000,Germany,In-person,Germany,L,Data Engineering +2024,Mid-level,Full-time,Data Engineer,60000,EUR,66666,Germany,In-person,Germany,L,Data Engineering +2024,Senior,Full-time,Data Engineer,175000,USD,175000,United States,Remote,United States,M,Data Engineering +2024,Senior,Full-time,Data Engineer,140000,USD,140000,United States,Remote,United States,M,Data Engineering +2024,Senior,Full-time,Data Science,276000,USD,276000,United States,In-person,United States,M,Data Science and Research +2024,Senior,Full-time,Data Science,140000,USD,140000,United States,In-person,United States,M,Data Science and Research +2024,Senior,Full-time,Data Analyst,173000,USD,173000,United States,In-person,United States,M,Data Analysis +2024,Senior,Full-time,Data Analyst,102000,USD,102000,United States,In-person,United States,M,Data Analysis +2024,Senior,Full-time,Analytics Engineer,53000,GBP,66250,United Kingdom,In-person,United Kingdom,M,Leadership and Management +2024,Senior,Full-time,Analytics Engineer,45600,GBP,57000,United Kingdom,In-person,United Kingdom,M,Leadership and Management +2024,Mid-level,Full-time,Data Scientist,188500,USD,188500,United States,In-person,United States,M,Data Science and Research +2024,Mid-level,Full-time,Data Scientist,165100,USD,165100,United States,In-person,United States,M,Data Science and Research +2024,Mid-level,Full-time,AI Engineer,166000,USD,166000,United States,In-person,United States,M,Machine Learning and AI +2024,Mid-level,Full-time,AI Engineer,73100,USD,73100,United States,In-person,United States,M,Machine Learning and AI +2024,Senior,Full-time,Machine Learning Engineer,414000,USD,414000,United States,In-person,United States,M,Machine Learning and AI +2024,Senior,Full-time,Machine Learning Engineer,216000,USD,216000,United States,In-person,United States,M,Machine Learning and AI +2024,Mid-level,Full-time,Research Scientist,96200,USD,96200,United States,Remote,United States,M,Data Science and Research +2024,Mid-level,Full-time,Research Scientist,69800,USD,69800,United States,Remote,United States,M,Data Science and Research +2024,Mid-level,Full-time,Data Scientist,179000,USD,179000,United Kingdom,In-person,United Kingdom,M,Data Science and Research +2024,Mid-level,Full-time,Data Scientist,112000,USD,112000,United Kingdom,In-person,United Kingdom,M,Data Science and Research +2024,Entry-level,Full-time,Data Analyst,118750,USD,118750,United States,In-person,United States,M,Data Analysis +2024,Entry-level,Full-time,Data Analyst,106875,USD,106875,United States,In-person,United States,M,Data Analysis +2024,Mid-level,Full-time,Data Scientist,212800,USD,212800,United States,In-person,United States,L,Data Science and Research +2024,Mid-level,Full-time,Data Scientist,111600,USD,111600,United States,In-person,United States,L,Data Science and Research +2024,Mid-level,Full-time,Data Engineer,83024,EUR,92248,Netherlands,In-person,Netherlands,M,Data Engineering +2024,Mid-level,Full-time,Data Engineer,58117,EUR,64574,Netherlands,In-person,Netherlands,M,Data Engineering +2024,Senior,Full-time,ML Engineer,212000,USD,212000,United States,In-person,United States,M,Machine Learning and AI +2024,Senior,Full-time,ML Engineer,93300,USD,93300,United States,In-person,United States,M,Machine Learning and AI +2024,Entry-level,Full-time,Machine Learning Engineer,162240,USD,162240,United States,In-person,United States,M,Machine Learning and AI +2024,Entry-level,Full-time,Machine Learning Engineer,47840,USD,47840,United States,In-person,United States,M,Machine Learning and AI +2024,Mid-level,Full-time,Applied Scientist,222200,USD,222200,United States,In-person,United States,L,Data Science and Research +2024,Mid-level,Full-time,Applied Scientist,136000,USD,136000,United States,In-person,United States,L,Data Science and Research +2024,Senior,Full-time,Data Product Manager,170000,USD,170000,United States,Remote,United States,M,Leadership and Management +2024,Senior,Full-time,Data Product Manager,145000,USD,145000,United States,Remote,United States,M,Leadership and Management +2024,Senior,Full-time,Data Analyst,117000,USD,117000,United States,In-person,United States,M,Data Analysis +2024,Senior,Full-time,Data Analyst,93000,USD,93000,United States,In-person,United States,M,Data Analysis +2024,Mid-level,Full-time,Data Engineer,65000,GBP,81250,United Kingdom,In-person,United Kingdom,M,Data Engineering +2024,Mid-level,Full-time,Data Engineer,55000,GBP,68750,United Kingdom,In-person,United Kingdom,M,Data Engineering +2024,Senior,Full-time,Data Engineer,130000,USD,130000,United States,In-person,United States,M,Data Engineering +2024,Senior,Full-time,Data Engineer,110000,USD,110000,United States,In-person,United States,M,Data Engineering +2024,Senior,Full-time,Machine Learning Engineer,190400,USD,190400,United States,In-person,United States,M,Machine Learning and AI +2024,Senior,Full-time,Machine Learning Engineer,122900,USD,122900,United States,In-person,United States,M,Machine Learning and AI +2024,Senior,Full-time,Machine Learning Engineer,221000,USD,221000,United States,In-person,United States,M,Machine Learning and AI +2024,Senior,Full-time,Machine Learning Engineer,185000,USD,185000,United States,In-person,United States,M,Machine Learning and AI +2024,Senior,Full-time,Data Engineer,220000,USD,220000,United States,In-person,United States,M,Data Engineering +2024,Senior,Full-time,Data Engineer,170000,USD,170000,United States,In-person,United States,M,Data Engineering +2024,Mid-level,Full-time,Machine Learning Engineer,210100,USD,210100,United States,In-person,United States,M,Machine Learning and AI +2024,Mid-level,Full-time,Machine Learning Engineer,210100,USD,210100,United States,In-person,United States,M,Machine Learning and AI +2024,Senior,Full-time,BI Analyst,130000,USD,130000,United States,In-person,United States,M,BI and Visualization +2024,Senior,Full-time,BI Analyst,115000,USD,115000,United States,In-person,United States,M,BI and Visualization +2024,Mid-level,Full-time,Data Engineer,170000,USD,170000,United States,Remote,United States,M,Data Engineering +2024,Mid-level,Full-time,Data Engineer,90000,USD,90000,United States,Remote,United States,M,Data Engineering +2024,Mid-level,Full-time,MLOps Engineer,280000,USD,280000,United States,In-person,United States,M,Machine Learning and AI +2024,Mid-level,Full-time,MLOps Engineer,160000,USD,160000,United States,In-person,United States,M,Machine Learning and AI +2024,Senior,Full-time,Data Scientist,255475,USD,255475,United States,Remote,United States,M,Data Science and Research +2024,Senior,Full-time,Data Scientist,185800,USD,185800,United States,Remote,United States,M,Data Science and Research +2024,Senior,Full-time,Data Scientist,170000,USD,170000,United States,In-person,United States,M,Data Science and Research +2024,Senior,Full-time,Data Scientist,151000,USD,151000,United States,In-person,United States,M,Data Science and Research +2024,Senior,Full-time,Data Analyst,130000,USD,130000,United States,In-person,United States,M,Data Analysis +2024,Senior,Full-time,Data Analyst,100000,USD,100000,United States,In-person,United States,M,Data Analysis +2024,Senior,Full-time,Business Intelligence Engineer,185000,USD,185000,United States,In-person,United States,L,BI and Visualization +2024,Senior,Full-time,Business Intelligence Engineer,79600,USD,79600,United States,In-person,United States,L,BI and Visualization +2024,Mid-level,Full-time,Data Analyst,95000,USD,95000,United States,In-person,United States,M,Data Analysis +2024,Mid-level,Full-time,Data Analyst,65000,USD,65000,United States,In-person,United States,M,Data Analysis +2024,Senior,Full-time,Data Scientist,240000,USD,240000,United States,In-person,United States,M,Data Science and Research +2024,Senior,Full-time,Data Scientist,162000,USD,162000,United States,In-person,United States,M,Data Science and Research +2024,Entry-level,Full-time,Data Science,110400,USD,110400,United States,In-person,United States,M,Data Science and Research +2024,Entry-level,Full-time,Data Science,68000,USD,68000,United States,In-person,United States,M,Data Science and Research +2024,Senior,Full-time,Machine Learning Engineer,307100,USD,307100,United States,Remote,United States,M,Machine Learning and AI +2024,Senior,Full-time,Machine Learning Engineer,216800,USD,216800,United States,Remote,United States,M,Machine Learning and AI +2024,Entry-level,Full-time,Data Analyst,102000,USD,102000,United States,Remote,United States,M,Data Analysis +2024,Entry-level,Full-time,Data Analyst,92000,USD,92000,United States,Remote,United States,M,Data Analysis +2024,Mid-level,Full-time,Applied Scientist,222200,USD,222200,United States,In-person,United States,L,Data Science and Research +2024,Mid-level,Full-time,Applied Scientist,136000,USD,136000,United States,In-person,United States,L,Data Science and Research +2024,Senior,Full-time,Data Engineer,190000,USD,190000,United States,Remote,United States,M,Data Engineering +2024,Senior,Full-time,Data Engineer,136000,USD,136000,United States,Remote,United States,M,Data Engineering +2024,Mid-level,Full-time,Machine Learning Engineer,165000,USD,165000,United States,Remote,United States,M,Machine Learning and AI +2024,Mid-level,Full-time,Machine Learning Engineer,140250,USD,140250,United States,Remote,United States,M,Machine Learning and AI +2024,Senior,Full-time,Data Scientist,160000,USD,160000,United States,In-person,United States,M,Data Science and Research +2024,Senior,Full-time,Data Scientist,130000,USD,130000,United States,In-person,United States,M,Data Science and Research +2024,Senior,Full-time,Data Analyst,190000,USD,190000,United States,In-person,United States,M,Data Analysis +2024,Senior,Full-time,Data Analyst,190000,USD,190000,United States,In-person,United States,M,Data Analysis +2024,Senior,Full-time,Data Manager,131200,USD,131200,United States,Remote,United States,M,Leadership and Management +2024,Senior,Full-time,Data Manager,95300,USD,95300,United States,Remote,United States,M,Leadership and Management +2024,Mid-level,Full-time,Data Scientist,150000,USD,150000,United States,Remote,United States,M,Data Science and Research +2024,Mid-level,Full-time,Data Scientist,127500,USD,127500,United States,Remote,United States,M,Data Science and Research +2024,Mid-level,Full-time,Data Engineer,41157,GBP,51446,United Kingdom,In-person,United Kingdom,M,Data Engineering +2024,Mid-level,Full-time,Data Engineer,36620,GBP,45775,United Kingdom,In-person,United Kingdom,M,Data Engineering +2024,Senior,Full-time,Data Scientist,136000,USD,136000,United States,Remote,United States,M,Data Science and Research +2024,Senior,Full-time,Data Scientist,109000,USD,109000,United States,Remote,United States,M,Data Science and Research +2024,Mid-level,Full-time,Data Science,104000,USD,104000,United States,In-person,United States,M,Data Science and Research +2024,Mid-level,Full-time,Data Science,86000,USD,86000,United States,In-person,United States,M,Data Science and Research +2024,Executive,Full-time,Head of Data,195000,USD,195000,United States,In-person,United States,M,Leadership and Management +2024,Executive,Full-time,Head of Data,150000,USD,150000,United States,In-person,United States,M,Leadership and Management +2024,Senior,Full-time,Data Science,237500,USD,237500,United States,In-person,United States,M,Data Science and Research +2024,Senior,Full-time,Data Science,185000,USD,185000,United States,In-person,United States,M,Data Science and Research +2024,Senior,Full-time,Data Analyst,120000,USD,120000,United States,In-person,United States,M,Data Analysis +2024,Senior,Full-time,Data Analyst,100000,USD,100000,United States,In-person,United States,M,Data Analysis +2024,Mid-level,Full-time,Business Intelligence Engineer,165600,USD,165600,United States,In-person,United States,L,BI and Visualization +2024,Mid-level,Full-time,Business Intelligence Engineer,65800,USD,65800,United States,In-person,United States,L,BI and Visualization +2024,Senior,Full-time,Data Engineer,245000,USD,245000,United States,Remote,United States,M,Data Engineering +2024,Senior,Full-time,Data Engineer,194992,USD,194992,United States,Remote,United States,M,Data Engineering +2024,Entry-level,Full-time,Data Analyst,154000,USD,154000,United States,In-person,United States,M,Data Analysis +2024,Entry-level,Full-time,Data Analyst,105000,USD,105000,United States,In-person,United States,M,Data Analysis +2024,Senior,Full-time,ML Engineer,250800,USD,250800,United States,In-person,United States,M,Machine Learning and AI +2024,Senior,Full-time,ML Engineer,167200,USD,167200,United States,In-person,United States,M,Machine Learning and AI +2022,Senior,Full-time,Admin & Data Analyst,60000,USD,60000,India,Remote,India,M,Data Analysis +2023,Mid-level,Full-time,Research Engineer,32000,EUR,34549,Spain,Hybrid,Spain,L,Data Science and Research +2024,Mid-level,Full-time,Data Analyst,160000,USD,160000,United States,Remote,United States,M,Data Analysis +2024,Mid-level,Full-time,Data Analyst,55000,USD,55000,United States,Remote,United States,M,Data Analysis +2024,Senior,Full-time,Data Engineer,149000,USD,149000,United States,Remote,United States,M,Data Engineering +2024,Senior,Full-time,Data Engineer,108000,USD,108000,United States,Remote,United States,M,Data Engineering +2024,Senior,Full-time,Data Scientist,165000,USD,165000,United States,In-person,United States,M,Data Science and Research +2024,Senior,Full-time,Data Scientist,155000,USD,155000,United States,In-person,United States,M,Data Science and Research +2024,Senior,Full-time,Data Scientist,278700,USD,278700,United States,In-person,United States,M,Data Science and Research +2024,Senior,Full-time,Data Scientist,159300,USD,159300,United States,In-person,United States,M,Data Science and Research +2024,Mid-level,Full-time,Analytics Engineer,130000,GBP,162500,United Kingdom,Remote,United Kingdom,M,Leadership and Management +2024,Mid-level,Full-time,Analytics Engineer,92000,GBP,115000,United Kingdom,Remote,United Kingdom,M,Leadership and Management +2024,Mid-level,Full-time,Data Scientist,138000,USD,138000,United States,In-person,United States,M,Data Science and Research +2024,Mid-level,Full-time,Data Scientist,86000,USD,86000,United States,In-person,United States,M,Data Science and Research +2024,Entry-level,Full-time,Data Analyst,106960,USD,106960,United States,In-person,United States,M,Data Analysis +2024,Entry-level,Full-time,Data Analyst,66820,USD,66820,United States,In-person,United States,M,Data Analysis +2024,Mid-level,Full-time,Research Scientist,157900,USD,157900,United States,In-person,United States,M,Data Science and Research +2024,Mid-level,Full-time,Research Scientist,128900,USD,128900,United States,In-person,United States,M,Data Science and Research +2024,Senior,Full-time,Machine Learning Engineer,258450,USD,258450,United States,In-person,United States,M,Machine Learning and AI +2024,Senior,Full-time,Machine Learning Engineer,173400,USD,173400,United States,In-person,United States,M,Machine Learning and AI +2024,Senior,Full-time,Data Science,160000,USD,160000,United States,Remote,United States,M,Data Science and Research +2024,Senior,Full-time,Data Science,150000,USD,150000,United States,Remote,United States,M,Data Science and Research +2024,Entry-level,Full-time,Data Analyst,138000,USD,138000,United States,In-person,United States,M,Data Analysis +2024,Entry-level,Full-time,Data Analyst,86000,USD,86000,United States,In-person,United States,M,Data Analysis +2024,Mid-level,Full-time,Data Scientist,199700,USD,199700,United States,In-person,United States,M,Data Science and Research +2024,Mid-level,Full-time,Data Scientist,114100,USD,114100,United States,In-person,United States,M,Data Science and Research +2024,Senior,Full-time,Data Scientist,130000,USD,130000,United States,In-person,United States,M,Data Science and Research +2024,Senior,Full-time,Data Scientist,115000,USD,115000,United States,In-person,United States,M,Data Science and Research +2024,Mid-level,Full-time,Data Analyst,120000,USD,120000,United States,In-person,United States,M,Data Analysis +2024,Mid-level,Full-time,Data Analyst,105000,USD,105000,United States,In-person,United States,M,Data Analysis +2024,Senior,Full-time,Data Analyst,136000,USD,136000,United States,Remote,United States,M,Data Analysis +2024,Senior,Full-time,Data Analyst,109000,USD,109000,United States,Remote,United States,M,Data Analysis +2024,Mid-level,Full-time,Machine Learning Engineer,210100,USD,210100,United States,In-person,United States,M,Machine Learning and AI +2024,Mid-level,Full-time,Machine Learning Engineer,210100,USD,210100,United States,In-person,United States,M,Machine Learning and AI +2024,Senior,Full-time,Analytics Engineer,172800,USD,172800,United States,Remote,United States,M,Leadership and Management +2024,Senior,Full-time,Analytics Engineer,110000,USD,110000,United States,Remote,United States,M,Leadership and Management +2024,Entry-level,Full-time,Data Analyst,101000,USD,101000,United States,In-person,United States,M,Data Analysis +2024,Entry-level,Full-time,Data Analyst,63000,USD,63000,United States,In-person,United States,M,Data Analysis +2024,Senior,Full-time,Data Scientist,193000,USD,193000,United States,In-person,United States,M,Data Science and Research +2024,Senior,Full-time,Data Scientist,172000,USD,172000,United States,In-person,United States,M,Data Science and Research +2024,Mid-level,Full-time,Machine Learning Engineer,175000,USD,175000,United States,In-person,United States,M,Machine Learning and AI +2024,Mid-level,Full-time,Machine Learning Engineer,152000,USD,152000,United States,In-person,United States,M,Machine Learning and AI +2024,Senior,Full-time,Machine Learning Scientist,242000,CAD,186153,Canada,In-person,Canada,M,Machine Learning and AI +2024,Senior,Full-time,Machine Learning Scientist,215000,CAD,165384,Canada,In-person,Canada,M,Machine Learning and AI +2024,Senior,Full-time,Data Scientist,208500,USD,208500,United States,In-person,United States,M,Data Science and Research +2024,Senior,Full-time,Data Scientist,165000,USD,165000,United States,In-person,United States,M,Data Science and Research +2024,Mid-level,Full-time,Data Scientist,172200,USD,172200,United States,Remote,United States,M,Data Science and Research +2024,Mid-level,Full-time,Data Scientist,131200,USD,131200,United States,Remote,United States,M,Data Science and Research +2024,Senior,Full-time,Business Intelligence Developer,156000,USD,156000,United States,In-person,United States,M,BI and Visualization +2024,Senior,Full-time,Business Intelligence Developer,105267,USD,105267,United States,In-person,United States,M,BI and Visualization +2024,Senior,Full-time,Data Engineer,226000,USD,226000,United States,In-person,United States,M,Data Engineering +2024,Senior,Full-time,Data Engineer,132000,USD,132000,United States,In-person,United States,M,Data Engineering +2024,Entry-level,Full-time,Data Analyst,108000,USD,108000,United States,In-person,United States,M,Data Analysis +2024,Entry-level,Full-time,Data Analyst,72200,USD,72200,United States,In-person,United States,M,Data Analysis +2024,Senior,Full-time,Data Engineer,247500,USD,247500,United States,Remote,United States,M,Data Engineering +2024,Senior,Full-time,Data Engineer,172200,USD,172200,United States,Remote,United States,M,Data Engineering +2024,Senior,Full-time,Data Scientist,215000,USD,215000,United States,In-person,United States,M,Data Science and Research +2024,Senior,Full-time,Data Scientist,146900,USD,146900,United States,In-person,United States,M,Data Science and Research +2024,Senior,Full-time,Data Science,270250,USD,270250,United States,In-person,United States,M,Data Science and Research +2024,Senior,Full-time,Data Science,144000,USD,144000,United States,In-person,United States,M,Data Science and Research +2024,Senior,Full-time,AI Engineer,212000,USD,212000,United States,In-person,United States,M,Machine Learning and AI +2024,Senior,Full-time,AI Engineer,93300,USD,93300,United States,In-person,United States,M,Machine Learning and AI +2024,Senior,Full-time,Data Integration Developer,180000,USD,180000,United States,In-person,United States,M,Data Engineering +2024,Senior,Full-time,Data Integration Developer,121056,USD,121056,United States,In-person,United States,M,Data Engineering +2024,Mid-level,Full-time,Data Management Analyst,124935,USD,124935,United States,In-person,United States,M,Data Management and Strategy +2024,Mid-level,Full-time,Data Management Analyst,76050,USD,76050,United States,In-person,United States,M,Data Management and Strategy +2024,Mid-level,Full-time,Data Engineer,115500,USD,115500,United States,In-person,United States,M,Data Engineering +2024,Mid-level,Full-time,Data Engineer,100000,USD,100000,United States,In-person,United States,M,Data Engineering +2024,Senior,Full-time,Data Integration Developer,156000,USD,156000,United States,In-person,United States,M,Data Engineering +2024,Senior,Full-time,Data Integration Developer,105267,USD,105267,United States,In-person,United States,M,Data Engineering +2024,Mid-level,Full-time,Data Science,250000,USD,250000,United States,In-person,United States,M,Data Science and Research +2024,Mid-level,Full-time,Data Science,90100,USD,90100,United States,In-person,United States,M,Data Science and Research +2024,Mid-level,Full-time,Data Scientist,166000,USD,166000,United States,In-person,United States,M,Data Science and Research +2024,Mid-level,Full-time,Data Scientist,73000,USD,73000,United States,In-person,United States,M,Data Science and Research +2024,Senior,Full-time,Machine Learning Engineer,237600,USD,237600,United States,In-person,United States,M,Machine Learning and AI +2024,Senior,Full-time,Machine Learning Engineer,146900,USD,146900,United States,In-person,United States,M,Machine Learning and AI +2024,Mid-level,Full-time,ML Ops Engineer,198000,USD,198000,United States,In-person,United States,M,Machine Learning and AI +2024,Mid-level,Full-time,ML Ops Engineer,114800,USD,114800,United States,In-person,United States,M,Machine Learning and AI +2024,Senior,Full-time,Data Analyst,150000,USD,150000,United States,In-person,United States,M,Data Analysis +2024,Senior,Full-time,Data Analyst,140000,USD,140000,United States,In-person,United States,M,Data Analysis +2024,Senior,Full-time,Data Scientist,138000,USD,138000,United States,In-person,United States,M,Data Science and Research +2024,Senior,Full-time,Data Scientist,86000,USD,86000,United States,In-person,United States,M,Data Science and Research +2024,Mid-level,Full-time,Data Engineer,205600,USD,205600,United States,In-person,United States,L,Data Engineering +2024,Mid-level,Full-time,Data Engineer,105700,USD,105700,United States,In-person,United States,L,Data Engineering +2024,Senior,Full-time,Data Scientist,226000,USD,226000,United States,In-person,United States,M,Data Science and Research +2024,Senior,Full-time,Data Scientist,132000,USD,132000,United States,In-person,United States,M,Data Science and Research +2024,Entry-level,Part-time,Data Scientist,133000,USD,133000,United States,In-person,United States,M,Data Science and Research +2024,Entry-level,Part-time,Data Scientist,58400,USD,58400,United States,In-person,United States,M,Data Science and Research +2024,Mid-level,Full-time,Data Analyst,154000,USD,154000,United States,In-person,United States,M,Data Analysis +2024,Mid-level,Full-time,Data Analyst,105000,USD,105000,United States,In-person,United States,M,Data Analysis +2024,Senior,Full-time,Machine Learning Engineer,255800,USD,255800,United States,In-person,United States,M,Machine Learning and AI +2024,Senior,Full-time,Machine Learning Engineer,255800,USD,255800,United States,In-person,United States,M,Machine Learning and AI +2024,Senior,Full-time,Data Scientist,155000,USD,155000,United States,In-person,United States,M,Data Science and Research +2024,Senior,Full-time,Data Scientist,132000,USD,132000,United States,In-person,United States,M,Data Science and Research +2024,Senior,Full-time,Data Engineer,185000,USD,185000,United States,In-person,United States,M,Data Engineering +2024,Senior,Full-time,Data Engineer,130000,USD,130000,United States,In-person,United States,M,Data Engineering +2024,Mid-level,Full-time,BI Developer,43626,GBP,54532,United Kingdom,In-person,United Kingdom,M,BI and Visualization +2024,Mid-level,Full-time,BI Developer,34903,GBP,43628,United Kingdom,In-person,United Kingdom,M,BI and Visualization +2024,Senior,Full-time,Data Engineer,226000,USD,226000,United States,In-person,United States,M,Data Engineering +2024,Senior,Full-time,Data Engineer,132000,USD,132000,United States,In-person,United States,M,Data Engineering +2024,Senior,Full-time,Data Scientist,136300,USD,136300,United States,In-person,United States,M,Data Science and Research +2024,Senior,Full-time,Data Scientist,115900,USD,115900,United States,In-person,United States,M,Data Science and Research +2024,Senior,Full-time,Data Analyst,89000,USD,89000,United States,In-person,United States,M,Data Analysis +2024,Senior,Full-time,Data Analyst,76000,USD,76000,United States,In-person,United States,M,Data Analysis +2024,Mid-level,Full-time,Research Engineer,440000,USD,440000,United States,In-person,United States,M,Data Science and Research +2024,Mid-level,Full-time,Research Engineer,245000,USD,245000,United States,In-person,United States,M,Data Science and Research +2024,Senior,Full-time,Data Engineer,204300,USD,204300,United States,In-person,United States,M,Data Engineering +2024,Senior,Full-time,Data Engineer,115400,USD,115400,United States,In-person,United States,M,Data Engineering +2024,Senior,Full-time,Research Scientist,337300,USD,337300,United States,In-person,United States,M,Data Science and Research +2024,Senior,Full-time,Research Scientist,192700,USD,192700,United States,In-person,United States,M,Data Science and Research +2024,Senior,Full-time,Data Scientist,176000,USD,176000,United States,In-person,United States,M,Data Science and Research +2024,Senior,Full-time,Data Scientist,151000,USD,151000,United States,In-person,United States,M,Data Science and Research +2024,Mid-level,Full-time,Business Intelligence Engineer,185000,USD,185000,United States,In-person,United States,L,BI and Visualization +2024,Mid-level,Full-time,Business Intelligence Engineer,79600,USD,79600,United States,In-person,United States,L,BI and Visualization +2024,Senior,Full-time,Data Pipeline Engineer,175000,USD,175000,United States,In-person,United States,M,Data Engineering +2024,Senior,Full-time,Data Pipeline Engineer,170000,USD,170000,United States,In-person,United States,M,Data Engineering +2024,Senior,Full-time,Machine Learning Engineer,386100,USD,386100,United States,In-person,United States,M,Machine Learning and AI +2024,Senior,Full-time,Machine Learning Engineer,207900,USD,207900,United States,In-person,United States,M,Machine Learning and AI +2024,Mid-level,Full-time,Research Scientist,195500,USD,195500,United States,Remote,United States,M,Data Science and Research +2024,Mid-level,Full-time,Research Scientist,141300,USD,141300,United States,Remote,United States,M,Data Science and Research +2024,Mid-level,Full-time,Analytics Engineer,192500,USD,192500,United States,Remote,United States,M,Leadership and Management +2024,Mid-level,Full-time,Analytics Engineer,148000,USD,148000,United States,Remote,United States,M,Leadership and Management +2024,Senior,Full-time,Data Scientist,234000,USD,234000,United States,In-person,United States,M,Data Science and Research +2024,Senior,Full-time,Data Scientist,146000,USD,146000,United States,In-person,United States,M,Data Science and Research +2024,Senior,Full-time,Machine Learning Engineer,255800,USD,255800,United States,In-person,United States,M,Machine Learning and AI +2024,Senior,Full-time,Machine Learning Engineer,255800,USD,255800,United States,In-person,United States,M,Machine Learning and AI +2024,Entry-level,Full-time,Data Analyst,75000,GBP,93750,United Kingdom,In-person,United Kingdom,M,Data Analysis +2024,Entry-level,Full-time,Data Analyst,55000,GBP,68750,United Kingdom,In-person,United Kingdom,M,Data Analysis +2024,Mid-level,Full-time,Data Analyst,81650,USD,81650,United States,In-person,United States,M,Data Analysis +2024,Mid-level,Full-time,Data Analyst,51175,USD,51175,United States,In-person,United States,M,Data Analysis +2024,Mid-level,Full-time,Data Scientist,136000,USD,136000,United States,In-person,United States,M,Data Science and Research +2024,Mid-level,Full-time,Data Scientist,106700,USD,106700,United States,In-person,United States,M,Data Science and Research +2024,Mid-level,Full-time,Data Engineer,167500,USD,167500,United States,In-person,United States,M,Data Engineering +2024,Mid-level,Full-time,Data Engineer,106500,USD,106500,United States,In-person,United States,M,Data Engineering +2024,Senior,Full-time,Data Engineer,240500,USD,240500,United States,In-person,United States,L,Data Engineering +2024,Senior,Full-time,Data Engineer,123700,USD,123700,United States,In-person,United States,L,Data Engineering +2024,Senior,Full-time,Data Engineer,250000,USD,250000,United States,Remote,United States,M,Data Engineering +2024,Senior,Full-time,Data Engineer,200000,USD,200000,United States,Remote,United States,M,Data Engineering +2024,Mid-level,Full-time,Data Engineer,109000,USD,109000,United States,In-person,United States,M,Data Engineering +2024,Mid-level,Full-time,Data Engineer,93500,USD,93500,United States,In-person,United States,M,Data Engineering +2024,Mid-level,Full-time,Data Scientist,75000,USD,75000,United States,In-person,United States,M,Data Science and Research +2024,Mid-level,Full-time,Data Scientist,70000,USD,70000,United States,In-person,United States,M,Data Science and Research +2024,Senior,Full-time,Data Scientist,206000,USD,206000,United States,In-person,United States,M,Data Science and Research +2024,Senior,Full-time,Data Scientist,106605,USD,106605,United States,In-person,United States,M,Data Science and Research +2024,Entry-level,Full-time,Data Integration Engineer,135000,USD,135000,United States,Remote,United States,M,Data Engineering +2024,Entry-level,Full-time,Data Integration Engineer,115000,USD,115000,United States,Remote,United States,M,Data Engineering +2024,Mid-level,Full-time,Data Scientist,48884,GBP,61105,United Kingdom,In-person,United Kingdom,M,Data Science and Research +2024,Mid-level,Full-time,Data Scientist,42507,GBP,53133,United Kingdom,In-person,United Kingdom,M,Data Science and Research +2024,Senior,Full-time,Data Lead,71179,GBP,88973,United States,In-person,United States,M,Leadership and Management +2024,Senior,Full-time,Data Lead,60860,GBP,76075,United States,In-person,United States,M,Leadership and Management +2024,Senior,Full-time,Data Scientist,156000,USD,156000,United States,In-person,United States,M,Data Science and Research +2024,Senior,Full-time,Data Scientist,95105,USD,95105,United States,In-person,United States,M,Data Science and Research +2024,Mid-level,Full-time,Data Specialist,94415,USD,94415,United States,In-person,United States,M,Data Management and Strategy +2024,Mid-level,Full-time,Data Specialist,69785,USD,69785,United States,In-person,United States,M,Data Management and Strategy +2024,Mid-level,Full-time,Data Engineer,140000,USD,140000,United States,In-person,United States,M,Data Engineering +2024,Mid-level,Full-time,Data Engineer,65000,USD,65000,United States,In-person,United States,M,Data Engineering +2024,Entry-level,Full-time,Machine Learning Engineer,162240,USD,162240,United States,In-person,United States,M,Machine Learning and AI +2024,Entry-level,Full-time,Machine Learning Engineer,47840,USD,47840,United States,In-person,United States,M,Machine Learning and AI +2024,Entry-level,Full-time,Applied Scientist,166000,USD,166000,United States,Remote,United States,M,Data Science and Research +2024,Entry-level,Full-time,Applied Scientist,104000,USD,104000,United States,Remote,United States,M,Data Science and Research +2024,Mid-level,Full-time,Research Scientist,184800,USD,184800,United States,In-person,United States,M,Data Science and Research +2024,Mid-level,Full-time,Research Scientist,107100,USD,107100,United States,In-person,United States,M,Data Science and Research +2024,Senior,Full-time,Research Scientist,247250,USD,247250,United States,In-person,United States,M,Data Science and Research +2024,Senior,Full-time,Research Scientist,100000,USD,100000,United States,In-person,United States,M,Data Science and Research +2024,Mid-level,Full-time,Data Specialist,95000,USD,95000,United States,Remote,United States,M,Data Management and Strategy +2024,Mid-level,Full-time,Data Specialist,75000,USD,75000,United States,Remote,United States,M,Data Management and Strategy +2024,Mid-level,Full-time,Data Science,120000,USD,120000,United States,Remote,United States,M,Data Science and Research +2024,Mid-level,Full-time,Data Science,80000,USD,80000,United States,Remote,United States,M,Data Science and Research +2024,Mid-level,Full-time,Data Scientist,171240,USD,171240,United States,In-person,United States,M,Data Science and Research +2024,Mid-level,Full-time,Data Scientist,81960,USD,81960,United States,In-person,United States,M,Data Science and Research +2024,Executive,Full-time,Data Scientist,160000,USD,160000,United States,In-person,United States,M,Data Science and Research +2024,Executive,Full-time,Data Scientist,100000,USD,100000,United States,In-person,United States,M,Data Science and Research +2024,Senior,Full-time,Research Engineer,150000,USD,150000,United States,In-person,United States,M,Data Science and Research +2024,Senior,Full-time,Research Engineer,80000,USD,80000,United States,In-person,United States,M,Data Science and Research +2024,Senior,Full-time,Machine Learning Engineer,212800,USD,212800,United States,Remote,United States,M,Machine Learning and AI +2024,Senior,Full-time,Machine Learning Engineer,177300,USD,177300,United States,Remote,United States,M,Machine Learning and AI +2024,Senior,Full-time,Data Engineer,144000,USD,144000,United States,In-person,United States,M,Data Engineering +2024,Senior,Full-time,Data Engineer,113000,USD,113000,United States,In-person,United States,M,Data Engineering +2024,Mid-level,Full-time,Data Science,120000,USD,120000,United States,Remote,United States,M,Data Science and Research +2024,Mid-level,Full-time,Data Science,80000,USD,80000,United States,Remote,United States,M,Data Science and Research +2024,Senior,Full-time,Data Architect,246500,USD,246500,United States,In-person,United States,M,Data Architecture and Modeling +2024,Senior,Full-time,Data Architect,168500,USD,168500,United States,In-person,United States,M,Data Architecture and Modeling +2024,Mid-level,Full-time,Data Scientist,140000,USD,140000,United States,In-person,United States,M,Data Science and Research +2024,Mid-level,Full-time,Data Scientist,125000,USD,125000,United States,In-person,United States,M,Data Science and Research +2024,Entry-level,Full-time,Data Analyst,93000,USD,93000,United States,In-person,United States,M,Data Analysis +2024,Entry-level,Full-time,Data Analyst,65750,USD,65750,United States,In-person,United States,M,Data Analysis +2024,Senior,Full-time,Prompt Engineer,175000,USD,175000,United States,In-person,United States,M,Machine Learning and AI +2024,Senior,Full-time,Prompt Engineer,140000,USD,140000,United States,In-person,United States,M,Machine Learning and AI +2024,Senior,Full-time,Data Engineer,169200,USD,169200,United States,In-person,United States,M,Data Engineering +2024,Senior,Full-time,Data Engineer,130100,USD,130100,United States,In-person,United States,M,Data Engineering +2024,Executive,Full-time,BI Developer,204500,USD,204500,United States,In-person,United States,M,BI and Visualization +2024,Executive,Full-time,BI Developer,130000,USD,130000,United States,In-person,United States,M,BI and Visualization +2024,Senior,Full-time,Research Scientist,278700,USD,278700,United States,In-person,United States,M,Data Science and Research +2024,Senior,Full-time,Research Scientist,159300,USD,159300,United States,In-person,United States,M,Data Science and Research +2024,Senior,Full-time,Data Engineer,140000,USD,140000,United States,In-person,United States,M,Data Engineering +2024,Senior,Full-time,Data Engineer,95000,USD,95000,United States,In-person,United States,M,Data Engineering +2024,Executive,Full-time,Data Engineer,219650,USD,219650,United States,Remote,United States,M,Data Engineering +2024,Executive,Full-time,Data Engineer,136000,USD,136000,United States,Remote,United States,M,Data Engineering +2024,Senior,Full-time,Data Engineer,140000,USD,140000,United States,Remote,United States,M,Data Engineering +2024,Senior,Full-time,Data Engineer,90000,USD,90000,United States,Remote,United States,M,Data Engineering +2024,Senior,Full-time,Data Science,324000,USD,324000,United States,Remote,United States,M,Data Science and Research +2024,Senior,Full-time,Data Science,220000,USD,220000,United States,Remote,United States,M,Data Science and Research +2024,Senior,Full-time,Machine Learning Engineer,230000,USD,230000,United States,Remote,United States,M,Machine Learning and AI +2024,Senior,Full-time,Machine Learning Engineer,175000,USD,175000,United States,Remote,United States,M,Machine Learning and AI +2024,Senior,Full-time,Data Engineer,145360,USD,145360,United States,Remote,United States,M,Data Engineering +2024,Senior,Full-time,Data Engineer,107440,USD,107440,United States,Remote,United States,M,Data Engineering +2024,Mid-level,Full-time,Data Science,179000,USD,179000,United States,In-person,United States,M,Data Science and Research +2024,Mid-level,Full-time,Data Science,106500,USD,106500,United States,In-person,United States,M,Data Science and Research +2024,Senior,Full-time,Data Engineer,187000,USD,187000,United States,In-person,United States,M,Data Engineering +2024,Senior,Full-time,Data Engineer,143800,USD,143800,United States,In-person,United States,M,Data Engineering +2024,Mid-level,Full-time,Machine Learning Engineer,133903,USD,133903,United States,Remote,United States,M,Machine Learning and AI +2024,Mid-level,Full-time,Machine Learning Engineer,96411,USD,96411,United States,Remote,United States,M,Machine Learning and AI +2024,Entry-level,Full-time,Data Analyst,93000,USD,93000,United States,In-person,United States,M,Data Analysis +2024,Entry-level,Full-time,Data Analyst,65750,USD,65750,United States,In-person,United States,M,Data Analysis +2024,Senior,Full-time,Data Scientist,195000,USD,195000,United States,In-person,United States,M,Data Science and Research +2024,Senior,Full-time,Data Scientist,165000,USD,165000,United States,In-person,United States,M,Data Science and Research +2024,Mid-level,Full-time,Data Analyst,81650,USD,81650,United States,In-person,United States,M,Data Analysis +2024,Mid-level,Full-time,Data Analyst,51175,USD,51175,United States,In-person,United States,M,Data Analysis +2024,Mid-level,Full-time,Data Engineer,210000,USD,210000,United States,In-person,United States,M,Data Engineering +2024,Mid-level,Full-time,Data Engineer,140000,USD,140000,United States,In-person,United States,M,Data Engineering +2024,Senior,Full-time,Machine Learning Engineer,232000,USD,232000,United States,Remote,United States,M,Machine Learning and AI +2024,Senior,Full-time,Machine Learning Engineer,208000,USD,208000,United States,Remote,United States,M,Machine Learning and AI +2023,Entry-level,Full-time,Admin & Data Analyst,50000,USD,50000,Germany,In-person,Germany,M,Data Analysis +2024,Senior,Full-time,Data Management Specialist,200400,USD,200400,United States,In-person,United States,M,Data Management and Strategy +2024,Senior,Full-time,Data Management Specialist,116500,USD,116500,United States,In-person,United States,M,Data Management and Strategy +2024,Senior,Full-time,Data Scientist,188500,USD,188500,United States,In-person,United States,M,Data Science and Research +2024,Senior,Full-time,Data Scientist,165100,USD,165100,United States,In-person,United States,M,Data Science and Research +2024,Mid-level,Full-time,Data Product Manager,166363,USD,166363,United States,In-person,United States,M,Leadership and Management +2024,Mid-level,Full-time,Data Product Manager,103977,USD,103977,United States,In-person,United States,M,Leadership and Management +2024,Mid-level,Full-time,Data Engineer,128600,USD,128600,United States,In-person,United States,M,Data Engineering +2024,Mid-level,Full-time,Data Engineer,100000,USD,100000,United States,In-person,United States,M,Data Engineering +2024,Senior,Full-time,Data Analyst,133650,USD,133650,United States,Remote,United States,M,Data Analysis +2024,Senior,Full-time,Data Analyst,68150,USD,68150,United States,Remote,United States,M,Data Analysis +2024,Senior,Full-time,Data Engineer,210000,USD,210000,United States,In-person,United States,M,Data Engineering +2024,Senior,Full-time,Data Engineer,181000,USD,181000,United States,In-person,United States,M,Data Engineering +2024,Senior,Full-time,Data Architect,257600,USD,257600,United States,In-person,United States,M,Data Architecture and Modeling +2024,Senior,Full-time,Data Architect,224100,USD,224100,United States,In-person,United States,M,Data Architecture and Modeling +2024,Mid-level,Full-time,Data Scientist,144200,USD,144200,United States,Remote,United States,M,Data Science and Research +2024,Mid-level,Full-time,Data Scientist,72100,USD,72100,United States,Remote,United States,M,Data Science and Research +2024,Mid-level,Full-time,Data Scientist,229900,USD,229900,United States,In-person,United States,M,Data Science and Research +2024,Mid-level,Full-time,Data Scientist,201400,USD,201400,United States,In-person,United States,M,Data Science and Research +2024,Mid-level,Full-time,Data Scientist,212000,USD,212000,United States,In-person,United States,M,Data Science and Research +2024,Mid-level,Full-time,Data Scientist,93300,USD,93300,United States,In-person,United States,M,Data Science and Research +2024,Senior,Full-time,Data Analyst,135000,USD,135000,United States,In-person,United States,M,Data Analysis +2024,Senior,Full-time,Data Analyst,90000,USD,90000,United States,In-person,United States,M,Data Analysis +2024,Senior,Full-time,Data Analyst,107000,USD,107000,United States,In-person,United States,M,Data Analysis +2024,Senior,Full-time,Data Analyst,68400,USD,68400,United States,In-person,United States,M,Data Analysis +2024,Senior,Full-time,Data Engineer,145000,USD,145000,United States,In-person,United States,M,Data Engineering +2024,Senior,Full-time,Data Engineer,95000,USD,95000,United States,In-person,United States,M,Data Engineering +2024,Senior,Full-time,Data Engineer,230000,USD,230000,United States,In-person,United States,M,Data Engineering +2024,Senior,Full-time,Data Engineer,200000,USD,200000,United States,In-person,United States,M,Data Engineering +2024,Mid-level,Full-time,Machine Learning Engineer,280000,USD,280000,United States,In-person,United States,M,Machine Learning and AI +2024,Mid-level,Full-time,Machine Learning Engineer,230000,USD,230000,United States,In-person,United States,M,Machine Learning and AI +2024,Senior,Full-time,Data Scientist,65000,GBP,81250,United States,In-person,United States,M,Data Science and Research +2024,Senior,Full-time,Data Scientist,55000,GBP,68750,United States,In-person,United States,M,Data Science and Research +2024,Senior,Full-time,Data Science,267900,USD,267900,United States,In-person,United States,M,Data Science and Research +2024,Senior,Full-time,Data Science,234700,USD,234700,United States,In-person,United States,M,Data Science and Research +2024,Senior,Full-time,ML Engineer,220000,USD,220000,United States,In-person,United States,M,Machine Learning and AI +2024,Senior,Full-time,ML Engineer,170000,USD,170000,United States,In-person,United States,M,Machine Learning and AI +2024,Mid-level,Full-time,Data Manager,90500,USD,90500,United States,In-person,United States,M,Leadership and Management +2024,Mid-level,Full-time,Data Manager,49900,USD,49900,United States,In-person,United States,M,Leadership and Management +2024,Senior,Full-time,Machine Learning Engineer,242000,CAD,186153,Canada,In-person,Canada,M,Machine Learning and AI +2024,Senior,Full-time,Machine Learning Engineer,215000,CAD,165384,Canada,In-person,Canada,M,Machine Learning and AI +2024,Senior,Full-time,Data Scientist,180000,USD,180000,United States,In-person,United States,M,Data Science and Research +2024,Senior,Full-time,Data Scientist,162000,USD,162000,United States,In-person,United States,M,Data Science and Research +2024,Senior,Full-time,Data Scientist,165000,USD,165000,United States,In-person,United States,M,Data Science and Research +2024,Senior,Full-time,Data Scientist,71000,USD,71000,United States,In-person,United States,M,Data Science and Research +2024,Mid-level,Full-time,Research Engineer,280000,USD,280000,United States,In-person,United States,M,Data Science and Research +2024,Mid-level,Full-time,Research Engineer,230000,USD,230000,United States,In-person,United States,M,Data Science and Research +2024,Senior,Full-time,Data Scientist,155000,USD,155000,United States,In-person,United States,M,Data Science and Research +2024,Senior,Full-time,Data Scientist,139500,USD,139500,United States,In-person,United States,M,Data Science and Research +2024,Mid-level,Full-time,Machine Learning Engineer,150000,EUR,166666,Germany,In-person,Germany,M,Machine Learning and AI +2024,Mid-level,Full-time,Machine Learning Engineer,120000,EUR,133333,Germany,In-person,Germany,M,Machine Learning and AI +2024,Mid-level,Full-time,Data Analytics Consultant,94625,USD,94625,United States,Remote,United States,M,Leadership and Management +2024,Mid-level,Full-time,Data Analytics Consultant,57500,USD,57500,United States,Remote,United States,M,Leadership and Management +2024,Mid-level,Full-time,Data Analyst,107755,USD,107755,United States,Remote,United States,M,Data Analysis +2024,Mid-level,Full-time,Data Analyst,79645,USD,79645,United States,Remote,United States,M,Data Analysis +2024,Senior,Full-time,Machine Learning Engineer,195500,USD,195500,United States,In-person,United States,M,Machine Learning and AI +2024,Senior,Full-time,Machine Learning Engineer,132600,USD,132600,United States,In-person,United States,M,Machine Learning and AI +2024,Mid-level,Full-time,Data Engineer,167000,USD,167000,United States,In-person,United States,M,Data Engineering +2024,Mid-level,Full-time,Data Engineer,121000,USD,121000,United States,In-person,United States,M,Data Engineering +2024,Senior,Full-time,Data Architect,195000,USD,195000,United States,In-person,United States,M,Data Architecture and Modeling +2024,Senior,Full-time,Data Architect,64200,USD,64200,United States,In-person,United States,M,Data Architecture and Modeling +2024,Senior,Full-time,Data Scientist,185400,USD,185400,United States,Remote,United States,M,Data Science and Research +2024,Senior,Full-time,Data Scientist,92700,USD,92700,United States,Remote,United States,M,Data Science and Research +2024,Senior,Full-time,Research Scientist,195500,USD,195500,United States,Remote,United States,M,Data Science and Research +2024,Senior,Full-time,Research Scientist,141300,USD,141300,United States,Remote,United States,M,Data Science and Research +2024,Senior,Full-time,Data Science,110000,USD,110000,United States,In-person,United States,M,Data Science and Research +2024,Senior,Full-time,Data Science,70000,USD,70000,United States,In-person,United States,M,Data Science and Research +2024,Mid-level,Full-time,Applied Scientist,222200,USD,222200,United States,In-person,United States,L,Data Science and Research +2024,Mid-level,Full-time,Applied Scientist,136000,USD,136000,United States,In-person,United States,L,Data Science and Research +2024,Senior,Full-time,Data Analyst,150000,USD,150000,United States,In-person,United States,M,Data Analysis +2024,Senior,Full-time,Data Scientist,220800,USD,220800,United States,In-person,United States,M,Data Science and Research +2024,Senior,Full-time,Data Scientist,124800,USD,124800,United States,In-person,United States,M,Data Science and Research +2024,Senior,Full-time,Data Scientist,234000,USD,234000,United States,In-person,United States,M,Data Science and Research +2024,Senior,Full-time,Data Scientist,146000,USD,146000,United States,In-person,United States,M,Data Science and Research +2024,Senior,Full-time,Machine Learning Engineer,254400,USD,254400,United States,In-person,United States,M,Machine Learning and AI +2024,Senior,Full-time,Machine Learning Engineer,151600,USD,151600,United States,In-person,United States,M,Machine Learning and AI +2024,Senior,Full-time,Data Scientist,101763,USD,101763,Canada,In-person,Canada,M,Data Science and Research +2024,Senior,Full-time,Data Scientist,81410,USD,81410,Canada,In-person,Canada,M,Data Science and Research +2024,Senior,Full-time,Machine Learning Engineer,304750,USD,304750,United States,In-person,United States,M,Machine Learning and AI +2024,Senior,Full-time,Machine Learning Engineer,160000,USD,160000,United States,In-person,United States,M,Machine Learning and AI +2024,Mid-level,Full-time,Research Scientist,96200,USD,96200,United States,Remote,United States,M,Data Science and Research +2024,Mid-level,Full-time,Research Scientist,69800,USD,69800,United States,Remote,United States,M,Data Science and Research +2024,Mid-level,Full-time,Data Scientist,179000,USD,179000,United States,In-person,United States,M,Data Science and Research +2024,Mid-level,Full-time,Data Scientist,112000,USD,112000,United States,In-person,United States,M,Data Science and Research +2024,Senior,Full-time,Research Engineer,54395,GBP,67993,South Africa,In-person,South Africa,M,Data Science and Research +2024,Senior,Full-time,Research Engineer,45585,GBP,56981,South Africa,In-person,South Africa,M,Data Science and Research +2024,Senior,Full-time,Data Architect,190196,USD,190196,United States,In-person,United States,M,Data Architecture and Modeling +2024,Senior,Full-time,Data Architect,155615,USD,155615,United States,In-person,United States,M,Data Architecture and Modeling +2024,Senior,Full-time,Data Manager,131200,USD,131200,United States,Remote,United States,M,Leadership and Management +2024,Senior,Full-time,Data Manager,95300,USD,95300,United States,Remote,United States,M,Leadership and Management +2024,Senior,Full-time,Data Engineer,190196,USD,190196,United States,In-person,United States,M,Data Engineering +2024,Senior,Full-time,Data Engineer,155615,USD,155615,United States,In-person,United States,M,Data Engineering +2024,Entry-level,Full-time,Data Engineer,158100,USD,158100,United States,In-person,United States,M,Data Engineering +2024,Entry-level,Full-time,Data Engineer,138500,USD,138500,United States,In-person,United States,M,Data Engineering +2024,Senior,Full-time,Machine Learning Engineer,418000,USD,418000,United States,Remote,United States,M,Machine Learning and AI +2024,Senior,Full-time,Machine Learning Engineer,141000,USD,141000,United States,Remote,United States,M,Machine Learning and AI +2024,Senior,Full-time,Research Engineer,54395,GBP,67993,South Africa,In-person,South Africa,M,Data Science and Research +2024,Senior,Full-time,Research Engineer,45585,GBP,56981,South Africa,In-person,South Africa,M,Data Science and Research +2024,Senior,Full-time,Machine Learning Engineer,189000,USD,189000,United States,In-person,United States,M,Machine Learning and AI +2024,Senior,Full-time,Machine Learning Engineer,145400,USD,145400,United States,In-person,United States,M,Machine Learning and AI +2024,Senior,Full-time,Data Engineer,175000,USD,175000,United States,In-person,United States,M,Data Engineering +2024,Senior,Full-time,Data Engineer,150000,USD,150000,United States,In-person,United States,M,Data Engineering +2024,Senior,Full-time,Analytics Engineer,147000,USD,147000,United States,Remote,United States,M,Leadership and Management +2024,Senior,Full-time,Analytics Engineer,92000,USD,92000,United States,Remote,United States,M,Leadership and Management +2024,Mid-level,Full-time,Data Engineer,154000,USD,154000,United States,In-person,United States,M,Data Engineering +2024,Mid-level,Full-time,Data Engineer,102000,USD,102000,United States,In-person,United States,M,Data Engineering +2024,Mid-level,Full-time,Data Scientist,158500,USD,158500,United States,In-person,United States,M,Data Science and Research +2024,Mid-level,Full-time,Data Scientist,105646,USD,105646,United States,In-person,United States,M,Data Science and Research +2024,Senior,Full-time,Data Scientist,155000,USD,155000,United States,In-person,United States,M,Data Science and Research +2024,Senior,Full-time,Data Scientist,139000,USD,139000,United States,In-person,United States,M,Data Science and Research +2024,Mid-level,Full-time,Data Manager,27979,GBP,34973,South Africa,In-person,South Africa,M,Leadership and Management +2024,Mid-level,Full-time,Data Manager,25742,GBP,32177,South Africa,In-person,South Africa,M,Leadership and Management +2024,Senior,Full-time,ML Engineer,251000,USD,251000,United States,In-person,United States,M,Machine Learning and AI +2024,Senior,Full-time,ML Engineer,157000,USD,157000,United States,In-person,United States,M,Machine Learning and AI +2024,Senior,Full-time,Machine Learning Engineer,300000,USD,300000,United States,In-person,United States,M,Machine Learning and AI +2024,Senior,Full-time,Machine Learning Engineer,235000,USD,235000,United States,In-person,United States,M,Machine Learning and AI +2024,Senior,Full-time,Data Engineer,100000,USD,100000,United States,In-person,United States,M,Data Engineering +2024,Senior,Full-time,Data Engineer,81500,USD,81500,United States,In-person,United States,M,Data Engineering +2024,Senior,Full-time,Research Scientist,240000,USD,240000,United States,In-person,United States,M,Data Science and Research +2024,Senior,Full-time,Research Scientist,200000,USD,200000,United States,In-person,United States,M,Data Science and Research +2024,Mid-level,Full-time,Applied Scientist,222200,USD,222200,United States,In-person,United States,L,Data Science and Research +2024,Mid-level,Full-time,Applied Scientist,136000,USD,136000,United States,In-person,United States,L,Data Science and Research +2024,Senior,Full-time,Machine Learning Engineer,240000,USD,240000,United States,In-person,United States,M,Machine Learning and AI +2024,Senior,Full-time,Machine Learning Engineer,200000,USD,200000,United States,In-person,United States,M,Machine Learning and AI +2024,Entry-level,Full-time,Data Analyst,95000,USD,95000,United States,Remote,United States,M,Data Analysis +2024,Entry-level,Full-time,Data Analyst,75000,USD,75000,United States,Remote,United States,M,Data Analysis +2024,Mid-level,Full-time,Data Scientist,170200,USD,170200,United States,In-person,United States,M,Data Science and Research +2024,Mid-level,Full-time,Data Scientist,68400,USD,68400,United States,In-person,United States,M,Data Science and Research +2024,Mid-level,Full-time,Data Engineer,210100,USD,210100,United States,In-person,United States,M,Data Engineering +2024,Mid-level,Full-time,Data Engineer,210100,USD,210100,United States,In-person,United States,M,Data Engineering +2024,Senior,Full-time,Data Architect,164000,USD,164000,United States,In-person,United States,M,Data Architecture and Modeling +2024,Senior,Full-time,Data Architect,117000,USD,117000,United States,In-person,United States,M,Data Architecture and Modeling +2024,Mid-level,Full-time,Data Engineer,175000,USD,175000,United States,In-person,United States,M,Data Engineering +2024,Mid-level,Full-time,Data Engineer,152000,USD,152000,United States,In-person,United States,M,Data Engineering +2024,Mid-level,Full-time,Business Intelligence Engineer,186846,USD,186846,United States,In-person,United States,M,BI and Visualization +2024,Mid-level,Full-time,Business Intelligence Engineer,186846,USD,186846,United States,In-person,United States,M,BI and Visualization +2024,Mid-level,Full-time,Data Engineer,153000,USD,153000,United States,In-person,United States,M,Data Engineering +2024,Mid-level,Full-time,Data Engineer,106800,USD,106800,United States,In-person,United States,M,Data Engineering +2024,Mid-level,Full-time,Machine Learning Engineer,120000,AUD,80000,Australia,Hybrid,Australia,L,Machine Learning and AI +2024,Senior,Full-time,Data Science Engineer,110000,USD,110000,Ukraine,In-person,Ukraine,M,Data Science and Research +2024,Senior,Full-time,Data Science Engineer,60000,USD,60000,Ukraine,In-person,Ukraine,M,Data Science and Research +2024,Entry-level,Full-time,Data Analyst,86600,USD,86600,United States,In-person,United States,M,Data Analysis +2024,Entry-level,Full-time,Data Analyst,57700,USD,57700,United States,In-person,United States,M,Data Analysis +2024,Senior,Full-time,Data Analyst,134200,USD,134200,United States,Remote,United States,M,Data Analysis +2024,Senior,Full-time,Data Analyst,94800,USD,94800,United States,Remote,United States,M,Data Analysis +2024,Senior,Full-time,Analytics Engineer,329200,USD,329200,Canada,Remote,Canada,M,Leadership and Management +2024,Senior,Full-time,Analytics Engineer,259900,USD,259900,Canada,Remote,Canada,M,Leadership and Management +2024,Senior,Full-time,Applied Scientist,260000,USD,260000,United States,In-person,United States,L,Data Science and Research +2024,Senior,Full-time,Applied Scientist,136000,USD,136000,United States,In-person,United States,L,Data Science and Research +2024,Mid-level,Full-time,Data Scientist,120800,USD,120800,United States,In-person,United States,M,Data Science and Research +2024,Mid-level,Full-time,Data Scientist,80500,USD,80500,United States,In-person,United States,M,Data Science and Research +2024,Entry-level,Full-time,Data Analyst,23000,GBP,28750,United Kingdom,In-person,United Kingdom,M,Data Analysis +2024,Entry-level,Full-time,Data Analyst,23000,GBP,28750,United Kingdom,In-person,United Kingdom,M,Data Analysis +2024,Senior,Full-time,AI Engineer,200000,USD,200000,United States,Remote,United States,M,Machine Learning and AI +2024,Senior,Full-time,AI Engineer,170000,USD,170000,United States,Remote,United States,M,Machine Learning and AI +2024,Mid-level,Full-time,Machine Learning Engineer,210100,USD,210100,United States,In-person,United States,M,Machine Learning and AI +2024,Mid-level,Full-time,Machine Learning Engineer,210100,USD,210100,United States,In-person,United States,M,Machine Learning and AI +2024,Senior,Full-time,Machine Learning Engineer,255800,USD,255800,United States,In-person,United States,M,Machine Learning and AI +2024,Senior,Full-time,Machine Learning Engineer,255800,USD,255800,United States,In-person,United States,M,Machine Learning and AI +2024,Mid-level,Full-time,Data Scientist,176000,USD,176000,United States,In-person,United States,M,Data Science and Research +2024,Mid-level,Full-time,Data Scientist,158000,USD,158000,United States,In-person,United States,M,Data Science and Research +2024,Senior,Full-time,Machine Learning Engineer,296400,USD,296400,United States,In-person,United States,M,Machine Learning and AI +2024,Senior,Full-time,Machine Learning Engineer,148594,USD,148594,United States,In-person,United States,M,Machine Learning and AI +2024,Senior,Full-time,Business Intelligence Engineer,145000,USD,145000,United States,In-person,United States,M,BI and Visualization +2024,Senior,Full-time,Business Intelligence Engineer,106500,USD,106500,United States,In-person,United States,M,BI and Visualization +2024,Executive,Full-time,Business Intelligence Engineer,120000,USD,120000,United States,Remote,United States,M,BI and Visualization +2024,Executive,Full-time,Business Intelligence Engineer,96000,USD,96000,United States,Remote,United States,M,BI and Visualization +2024,Senior,Full-time,Data Architect,165000,USD,165000,United States,Remote,United States,M,Data Architecture and Modeling +2024,Senior,Full-time,Data Architect,150000,USD,150000,United States,Remote,United States,M,Data Architecture and Modeling +2024,Entry-level,Full-time,Data Analyst,150000,USD,150000,United States,Remote,United States,M,Data Analysis +2024,Entry-level,Full-time,Data Analyst,103000,USD,103000,United States,Remote,United States,M,Data Analysis +2024,Senior,Full-time,Data Product Manager,170000,USD,170000,United States,In-person,United States,M,Leadership and Management +2024,Senior,Full-time,Data Product Manager,145000,USD,145000,United States,In-person,United States,M,Leadership and Management +2024,Senior,Full-time,Machine Learning Engineer,195500,USD,195500,United States,Remote,United States,M,Machine Learning and AI +2024,Senior,Full-time,Machine Learning Engineer,141300,USD,141300,United States,Remote,United States,M,Machine Learning and AI +2024,Senior,Full-time,Machine Learning Engineer,255800,USD,255800,United States,In-person,United States,M,Machine Learning and AI +2024,Senior,Full-time,Machine Learning Engineer,255800,USD,255800,United States,In-person,United States,M,Machine Learning and AI +2024,Mid-level,Full-time,Applied Scientist,222200,USD,222200,United States,In-person,United States,L,Data Science and Research +2024,Mid-level,Full-time,Applied Scientist,136000,USD,136000,United States,In-person,United States,L,Data Science and Research +2024,Mid-level,Full-time,Machine Learning Engineer,210100,USD,210100,United States,In-person,United States,M,Machine Learning and AI +2024,Mid-level,Full-time,Machine Learning Engineer,210100,USD,210100,United States,In-person,United States,M,Machine Learning and AI +2024,Mid-level,Full-time,Data Scientist,85000,USD,85000,United States,In-person,United States,M,Data Science and Research +2024,Mid-level,Full-time,Data Scientist,75000,USD,75000,United States,In-person,United States,M,Data Science and Research +2024,Mid-level,Full-time,Business Intelligence Manager,168000,USD,168000,United States,Remote,United States,M,BI and Visualization +2024,Mid-level,Full-time,Business Intelligence Manager,112000,USD,112000,United States,Remote,United States,M,BI and Visualization +2024,Mid-level,Full-time,Data Scientist,105000,USD,105000,United States,In-person,United States,M,Data Science and Research +2024,Mid-level,Full-time,Data Scientist,70000,USD,70000,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Data Analyst,110000,USD,110000,United States,Remote,United States,L,Data Analysis +2024,Mid-level,Full-time,Data Specialist,100000,USD,100000,United States,In-person,United States,M,Data Management and Strategy +2024,Mid-level,Full-time,Data Specialist,88000,USD,88000,United States,In-person,United States,M,Data Management and Strategy +2024,Senior,Full-time,Machine Learning Engineer,215000,USD,215000,United States,In-person,United States,M,Machine Learning and AI +2024,Senior,Full-time,Machine Learning Engineer,146900,USD,146900,United States,In-person,United States,M,Machine Learning and AI +2024,Senior,Full-time,Data Scientist,237600,USD,237600,United States,In-person,United States,M,Data Science and Research +2024,Senior,Full-time,Data Scientist,146900,USD,146900,United States,In-person,United States,M,Data Science and Research +2024,Mid-level,Full-time,Data Analyst,134500,USD,134500,United States,In-person,United States,M,Data Analysis +2024,Mid-level,Full-time,Data Analyst,100000,USD,100000,United States,In-person,United States,M,Data Analysis +2024,Senior,Full-time,Data Engineer,188000,USD,188000,United States,In-person,United States,M,Data Engineering +2024,Senior,Full-time,Data Engineer,118000,USD,118000,United States,In-person,United States,M,Data Engineering +2024,Senior,Full-time,Machine Learning Scientist,210000,USD,210000,United States,In-person,United States,M,Machine Learning and AI +2024,Senior,Full-time,Machine Learning Scientist,132000,USD,132000,United States,In-person,United States,M,Machine Learning and AI +2024,Mid-level,Full-time,Data Engineer,147000,USD,147000,United States,In-person,United States,M,Data Engineering +2024,Mid-level,Full-time,Data Engineer,92000,USD,92000,United States,In-person,United States,M,Data Engineering +2024,Mid-level,Full-time,Data Engineer,116000,USD,116000,United States,In-person,United States,M,Data Engineering +2024,Mid-level,Full-time,Data Engineer,97800,USD,97800,United States,In-person,United States,M,Data Engineering +2024,Mid-level,Full-time,Data Integration Specialist,60000,USD,60000,United States,In-person,United States,M,Data Management and Strategy +2024,Mid-level,Full-time,Data Integration Specialist,54000,USD,54000,United States,In-person,United States,M,Data Management and Strategy +2024,Senior,Full-time,Data Architect,187500,USD,187500,United States,In-person,United States,M,Data Architecture and Modeling +2024,Senior,Full-time,Data Architect,120000,USD,120000,United States,In-person,United States,M,Data Architecture and Modeling +2024,Senior,Full-time,Business Intelligence Engineer,108500,USD,108500,United States,Remote,United States,M,BI and Visualization +2024,Senior,Full-time,Business Intelligence Engineer,78800,USD,78800,United States,Remote,United States,M,BI and Visualization +2024,Mid-level,Full-time,Data Engineer,195200,USD,195200,United States,In-person,United States,M,Data Engineering +2024,Mid-level,Full-time,Data Engineer,83900,USD,83900,United States,In-person,United States,M,Data Engineering +2024,Mid-level,Full-time,Business Intelligence Engineer,89500,USD,89500,United States,Remote,United States,M,BI and Visualization +2024,Mid-level,Full-time,Business Intelligence Engineer,65000,USD,65000,United States,Remote,United States,M,BI and Visualization +2024,Entry-level,Full-time,Research Analyst,124000,USD,124000,United States,In-person,United States,M,Data Science and Research +2024,Entry-level,Full-time,Research Analyst,74000,USD,74000,United States,In-person,United States,M,Data Science and Research +2024,Entry-level,Full-time,Data Analytics Specialist,78800,USD,78800,Malta,In-person,Malta,M,Leadership and Management +2024,Entry-level,Full-time,Data Analytics Specialist,44100,USD,44100,Malta,In-person,Malta,M,Leadership and Management +2024,Mid-level,Full-time,Data Scientist,188500,USD,188500,United States,In-person,United States,M,Data Science and Research +2024,Mid-level,Full-time,Data Scientist,165100,USD,165100,United States,In-person,United States,M,Data Science and Research +2024,Senior,Full-time,Data Scientist,206000,USD,206000,United States,In-person,United States,M,Data Science and Research +2024,Senior,Full-time,Data Scientist,106605,USD,106605,United States,In-person,United States,M,Data Science and Research +2024,Senior,Full-time,Data Analyst,100000,USD,100000,United States,In-person,United States,M,Data Analysis +2024,Senior,Full-time,Data Analyst,90000,USD,90000,United States,In-person,United States,M,Data Analysis +2024,Senior,Full-time,Data Engineer,160000,USD,160000,United States,In-person,United States,M,Data Engineering +2024,Senior,Full-time,Data Engineer,128000,USD,128000,United States,In-person,United States,M,Data Engineering +2024,Mid-level,Full-time,Data Scientist,229900,USD,229900,United States,In-person,United States,M,Data Science and Research +2024,Mid-level,Full-time,Data Scientist,201400,USD,201400,United States,In-person,United States,M,Data Science and Research +2024,Senior,Full-time,Data Engineer,198000,USD,198000,United States,In-person,United States,M,Data Engineering +2024,Senior,Full-time,Data Engineer,132000,USD,132000,United States,In-person,United States,M,Data Engineering +2024,Mid-level,Full-time,Machine Learning Engineer,240000,USD,240000,United States,In-person,United States,M,Machine Learning and AI +2024,Mid-level,Full-time,Machine Learning Engineer,160000,USD,160000,United States,In-person,United States,M,Machine Learning and AI +2024,Senior,Full-time,Data Analyst,140726,USD,140726,United States,In-person,United States,M,Data Analysis +2024,Senior,Full-time,Data Analyst,107197,USD,107197,United States,In-person,United States,M,Data Analysis +2024,Senior,Full-time,Data Scientist,180000,USD,180000,United States,In-person,United States,M,Data Science and Research +2024,Senior,Full-time,Data Scientist,139000,USD,139000,United States,In-person,United States,M,Data Science and Research +2024,Senior,Full-time,Machine Learning Engineer,331640,USD,331640,United States,In-person,United States,M,Machine Learning and AI +2024,Senior,Full-time,Machine Learning Engineer,283780,USD,283780,United States,In-person,United States,M,Machine Learning and AI +2024,Mid-level,Full-time,Data Engineer,145000,USD,145000,United States,Remote,United States,M,Data Engineering +2024,Mid-level,Full-time,Data Engineer,120000,USD,120000,United States,Remote,United States,M,Data Engineering +2024,Senior,Full-time,Machine Learning Engineer,230000,USD,230000,United States,In-person,United States,M,Machine Learning and AI +2024,Senior,Full-time,Machine Learning Engineer,175000,USD,175000,United States,In-person,United States,M,Machine Learning and AI +2024,Mid-level,Full-time,Data Scientist,180000,USD,180000,United States,In-person,United States,M,Data Science and Research +2024,Mid-level,Full-time,Data Scientist,162000,USD,162000,United States,In-person,United States,M,Data Science and Research +2024,Mid-level,Full-time,Data Scientist,90000,USD,90000,United States,Remote,United States,M,Data Science and Research +2024,Mid-level,Full-time,Data Scientist,80000,USD,80000,United States,Remote,United States,M,Data Science and Research +2024,Senior,Full-time,Data Science,243000,USD,243000,United States,In-person,United States,M,Data Science and Research +2024,Senior,Full-time,Data Science,162000,USD,162000,United States,In-person,United States,M,Data Science and Research +2024,Senior,Full-time,Data Engineer,152375,USD,152375,United States,Remote,United States,M,Data Engineering +2024,Senior,Full-time,Data Engineer,94000,USD,94000,United States,Remote,United States,M,Data Engineering +2024,Senior,Full-time,Data Engineer,218500,USD,218500,United States,In-person,United States,M,Data Engineering +2024,Senior,Full-time,Data Engineer,161500,USD,161500,United States,In-person,United States,M,Data Engineering +2024,Senior,Full-time,Machine Learning Engineer,240000,USD,240000,United States,Remote,United States,M,Machine Learning and AI +2024,Senior,Full-time,Machine Learning Engineer,190000,USD,190000,United States,Remote,United States,M,Machine Learning and AI +2024,Mid-level,Full-time,Data Scientist,160000,USD,160000,United States,In-person,United States,M,Data Science and Research +2024,Mid-level,Full-time,Data Scientist,100000,USD,100000,United States,In-person,United States,M,Data Science and Research +2024,Executive,Full-time,Data Science,300000,USD,300000,United States,Remote,United States,M,Data Science and Research +2024,Executive,Full-time,Data Science,220000,USD,220000,United States,Remote,United States,M,Data Science and Research +2024,Mid-level,Full-time,Business Intelligence Analyst,226844,USD,226844,United States,In-person,United States,M,BI and Visualization +2024,Mid-level,Full-time,Business Intelligence Analyst,120672,USD,120672,United States,In-person,United States,M,BI and Visualization +2024,Entry-level,Full-time,Data Operations Analyst,95000,USD,95000,United States,In-person,United States,M,Data Quality and Operations +2024,Entry-level,Full-time,Data Operations Analyst,80000,USD,80000,United States,In-person,United States,M,Data Quality and Operations +2024,Mid-level,Full-time,Data Analyst,82000,USD,82000,United States,In-person,United States,M,Data Analysis +2024,Mid-level,Full-time,Data Analyst,77000,USD,77000,United States,In-person,United States,M,Data Analysis +2024,Mid-level,Full-time,Data Management Analyst,124935,USD,124935,United States,Remote,United States,M,Data Management and Strategy +2024,Mid-level,Full-time,Data Management Analyst,76050,USD,76050,United States,Remote,United States,M,Data Management and Strategy +2024,Senior,Full-time,Data Scientist,296980,USD,296980,United States,In-person,United States,M,Data Science and Research +2024,Senior,Full-time,Data Scientist,123740,USD,123740,United States,In-person,United States,M,Data Science and Research +2024,Mid-level,Full-time,Data Manager,130000,USD,130000,United States,In-person,United States,M,Leadership and Management +2024,Mid-level,Full-time,Data Manager,122500,USD,122500,United States,In-person,United States,M,Leadership and Management +2024,Senior,Full-time,Data Scientist,60000,EUR,66666,Spain,In-person,Spain,M,Data Science and Research +2024,Senior,Full-time,Data Scientist,38000,EUR,42222,Spain,In-person,Spain,M,Data Science and Research +2024,Senior,Full-time,Data Analyst,133504,USD,133504,United States,In-person,United States,M,Data Analysis +2024,Senior,Full-time,Data Analyst,83576,USD,83576,United States,In-person,United States,M,Data Analysis +2024,Mid-level,Full-time,ML Engineer,106050,USD,106050,United States,In-person,United States,M,Machine Learning and AI +2024,Mid-level,Full-time,ML Engineer,80420,USD,80420,United States,In-person,United States,M,Machine Learning and AI +2024,Senior,Full-time,Data Science,160000,USD,160000,United States,Remote,United States,M,Data Science and Research +2024,Senior,Full-time,Data Science,150000,USD,150000,United States,Remote,United States,M,Data Science and Research +2024,Mid-level,Full-time,Data Science Consultant,160000,USD,160000,United States,Remote,United States,M,Data Science and Research +2024,Mid-level,Full-time,Data Science Consultant,70000,USD,70000,United States,Remote,United States,M,Data Science and Research +2024,Mid-level,Full-time,Data Science Manager,196000,USD,196000,United States,In-person,United States,M,Data Science and Research +2024,Mid-level,Full-time,Data Science Manager,140000,USD,140000,United States,In-person,United States,M,Data Science and Research +2024,Senior,Full-time,Data Analyst,140000,USD,140000,United States,In-person,United States,M,Data Analysis +2024,Senior,Full-time,Data Analyst,125000,USD,125000,United States,In-person,United States,M,Data Analysis +2024,Senior,Full-time,Machine Learning Engineer,220600,USD,220600,United States,In-person,United States,M,Machine Learning and AI +2024,Senior,Full-time,Machine Learning Engineer,140100,USD,140100,United States,In-person,United States,M,Machine Learning and AI +2024,Mid-level,Full-time,Research Scientist,440000,USD,440000,United States,In-person,United States,M,Data Science and Research +2024,Mid-level,Full-time,Research Scientist,295000,USD,295000,United States,In-person,United States,M,Data Science and Research +2024,Senior,Full-time,Machine Learning Engineer,227700,USD,227700,United States,Remote,United States,M,Machine Learning and AI +2024,Senior,Full-time,Machine Learning Engineer,135482,USD,135482,United States,Remote,United States,M,Machine Learning and AI +2024,Senior,Full-time,Business Intelligence Developer,60000,GBP,75000,United Kingdom,In-person,United Kingdom,M,BI and Visualization +2024,Senior,Full-time,Business Intelligence Developer,40000,GBP,50000,United Kingdom,In-person,United Kingdom,M,BI and Visualization +2024,Executive,Full-time,Data Science,326000,USD,326000,United States,Remote,United States,M,Data Science and Research +2024,Executive,Full-time,Data Science,237500,USD,237500,United States,Remote,United States,M,Data Science and Research +2024,Senior,Full-time,Data Engineer,187000,USD,187000,United States,In-person,United States,M,Data Engineering +2024,Senior,Full-time,Data Engineer,143800,USD,143800,United States,In-person,United States,M,Data Engineering +2024,Senior,Full-time,Data Science,110000,USD,110000,United States,In-person,United States,M,Data Science and Research +2024,Senior,Full-time,Data Science,70000,USD,70000,United States,In-person,United States,M,Data Science and Research +2024,Senior,Full-time,Machine Learning Engineer,324000,USD,324000,United States,In-person,United States,M,Machine Learning and AI +2024,Senior,Full-time,Machine Learning Engineer,159000,USD,159000,United States,In-person,United States,M,Machine Learning and AI +2024,Mid-level,Full-time,Data Science Consultant,160000,USD,160000,United States,Remote,United States,M,Data Science and Research +2024,Mid-level,Full-time,Data Science Consultant,70000,USD,70000,United States,Remote,United States,M,Data Science and Research +2024,Mid-level,Full-time,Data Analyst,113500,USD,113500,United States,Remote,United States,M,Data Analysis +2024,Mid-level,Full-time,Data Analyst,96475,USD,96475,United States,Remote,United States,M,Data Analysis +2024,Senior,Full-time,Data Engineer,190000,USD,190000,United States,Remote,United States,M,Data Engineering +2024,Senior,Full-time,Data Engineer,105301,USD,105301,United States,Remote,United States,M,Data Engineering +2024,Senior,Full-time,Data Analyst,164640,USD,164640,United States,In-person,United States,M,Data Analysis +2024,Senior,Full-time,Data Analyst,131712,USD,131712,United States,In-person,United States,M,Data Analysis +2024,Senior,Full-time,Data Scientist,170000,USD,170000,United States,Remote,United States,M,Data Science and Research +2024,Senior,Full-time,Data Scientist,130000,USD,130000,United States,Remote,United States,M,Data Science and Research +2024,Executive,Full-time,Head of Data,290000,USD,290000,United States,Remote,United States,M,Leadership and Management +2024,Executive,Full-time,Head of Data,207000,USD,207000,United States,Remote,United States,M,Leadership and Management +2024,Senior,Full-time,Data Engineer,221000,USD,221000,United States,In-person,United States,M,Data Engineering +2024,Senior,Full-time,Data Engineer,185000,USD,185000,United States,In-person,United States,M,Data Engineering +2024,Mid-level,Full-time,Data Scientist,176000,USD,176000,United States,In-person,United States,M,Data Science and Research +2024,Mid-level,Full-time,Data Scientist,151000,USD,151000,United States,In-person,United States,M,Data Science and Research +2024,Senior,Full-time,Data Analyst,164000,USD,164000,Canada,Remote,Canada,M,Data Analysis +2024,Senior,Full-time,Data Analyst,115000,USD,115000,Canada,Remote,Canada,M,Data Analysis +2024,Senior,Full-time,Data Engineer,165000,USD,165000,United States,In-person,United States,M,Data Engineering +2024,Senior,Full-time,Data Engineer,100000,USD,100000,United States,In-person,United States,M,Data Engineering +2024,Mid-level,Full-time,Prompt Engineer,240960,USD,240960,United States,In-person,United States,M,Machine Learning and AI +2024,Mid-level,Full-time,Prompt Engineer,200800,USD,200800,United States,In-person,United States,M,Machine Learning and AI +2024,Mid-level,Full-time,Data Science,110000,USD,110000,United States,In-person,United States,M,Data Science and Research +2024,Mid-level,Full-time,Data Science,95000,USD,95000,United States,In-person,United States,M,Data Science and Research +2024,Senior,Full-time,Machine Learning Engineer,322000,USD,322000,United States,Remote,United States,M,Machine Learning and AI +2024,Senior,Full-time,Machine Learning Engineer,230000,USD,230000,United States,Remote,United States,M,Machine Learning and AI +2024,Senior,Full-time,Data Engineer,316900,USD,316900,United States,In-person,United States,M,Data Engineering +2024,Senior,Full-time,Data Engineer,181100,USD,181100,United States,In-person,United States,M,Data Engineering +2024,Executive,Full-time,Data Science Director,212000,USD,212000,United States,In-person,United States,M,Data Science and Research +2024,Executive,Full-time,Data Science Director,190000,USD,190000,United States,In-person,United States,M,Data Science and Research +2024,Senior,Full-time,Business Intelligence Engineer,105000,USD,105000,United States,Remote,United States,M,BI and Visualization +2024,Senior,Full-time,Business Intelligence Engineer,80000,USD,80000,United States,Remote,United States,M,BI and Visualization +2024,Senior,Full-time,Data Scientist,212000,USD,212000,United States,In-person,United States,M,Data Science and Research +2024,Senior,Full-time,Data Scientist,93300,USD,93300,United States,In-person,United States,M,Data Science and Research +2024,Senior,Full-time,Machine Learning Engineer,250900,USD,250900,United States,In-person,United States,M,Machine Learning and AI +2024,Senior,Full-time,Machine Learning Engineer,135200,USD,135200,United States,In-person,United States,M,Machine Learning and AI +2024,Executive,Full-time,Data Science,381500,USD,381500,United States,In-person,United States,M,Data Science and Research +2024,Executive,Full-time,Data Science,221000,USD,221000,United States,In-person,United States,M,Data Science and Research +2024,Mid-level,Full-time,Data Modeler,179000,USD,179000,United States,In-person,United States,M,Data Architecture and Modeling +2024,Mid-level,Full-time,Data Modeler,112000,USD,112000,United States,In-person,United States,M,Data Architecture and Modeling +2024,Entry-level,Full-time,Data Engineer,110000,USD,110000,United States,In-person,United States,M,Data Engineering +2024,Entry-level,Full-time,Data Engineer,90000,USD,90000,United States,In-person,United States,M,Data Engineering +2024,Senior,Full-time,Data Architect,234000,USD,234000,United States,In-person,United States,M,Data Architecture and Modeling +2024,Senior,Full-time,Data Architect,146000,USD,146000,United States,In-person,United States,M,Data Architecture and Modeling +2024,Senior,Full-time,Data Scientist,234000,USD,234000,United States,In-person,United States,M,Data Science and Research +2024,Senior,Full-time,Data Scientist,146000,USD,146000,United States,In-person,United States,M,Data Science and Research +2024,Senior,Full-time,Data Scientist,200000,USD,200000,United States,In-person,United States,M,Data Science and Research +2024,Senior,Full-time,Data Scientist,175000,USD,175000,United States,In-person,United States,M,Data Science and Research +2024,Senior,Full-time,Machine Learning Engineer,243500,USD,243500,United States,Remote,United States,M,Machine Learning and AI +2024,Senior,Full-time,Machine Learning Engineer,146100,USD,146100,United States,Remote,United States,M,Machine Learning and AI +2024,Mid-level,Full-time,Data Engineer,140000,USD,140000,United States,In-person,United States,M,Data Engineering +2024,Mid-level,Full-time,Data Engineer,65000,USD,65000,United States,In-person,United States,M,Data Engineering +2024,Mid-level,Full-time,Data Scientist,72360,EUR,80400,Latvia,In-person,Latvia,M,Data Science and Research +2024,Mid-level,Full-time,Data Scientist,37440,EUR,41600,Latvia,In-person,Latvia,M,Data Science and Research +2024,Mid-level,Full-time,Data Analyst,100000,USD,100000,United States,In-person,United States,M,Data Analysis +2024,Mid-level,Full-time,Data Analyst,70000,USD,70000,United States,In-person,United States,M,Data Analysis +2024,Entry-level,Full-time,Data Analyst,105000,USD,105000,United States,In-person,United States,M,Data Analysis +2024,Entry-level,Full-time,Data Analyst,75000,USD,75000,United States,In-person,United States,M,Data Analysis +2024,Senior,Full-time,Analytics Engineer,130000,USD,130000,United States,In-person,United States,M,Leadership and Management +2024,Senior,Full-time,Data Scientist,126500,USD,126500,United States,Remote,United States,M,Data Science and Research +2024,Senior,Full-time,Data Scientist,78000,USD,78000,United States,Remote,United States,M,Data Science and Research +2024,Senior,Full-time,Data Engineer,145000,USD,145000,United States,In-person,United States,M,Data Engineering +2024,Senior,Full-time,Data Engineer,120000,USD,120000,United States,In-person,United States,M,Data Engineering +2024,Entry-level,Full-time,Data Analyst,115000,USD,115000,United States,In-person,United States,M,Data Analysis +2024,Entry-level,Full-time,Data Analyst,90000,USD,90000,United States,In-person,United States,M,Data Analysis +2024,Senior,Full-time,Data Lead,135000,USD,135000,United States,Remote,United States,M,Leadership and Management +2024,Senior,Full-time,Data Lead,110000,USD,110000,United States,Remote,United States,M,Leadership and Management +2024,Senior,Full-time,Data Analyst,140000,USD,140000,United States,In-person,United States,M,Data Analysis +2024,Senior,Full-time,Data Analyst,115000,USD,115000,United States,In-person,United States,M,Data Analysis +2024,Senior,Full-time,Data Architect,150000,USD,150000,United States,In-person,United States,M,Data Architecture and Modeling +2024,Senior,Full-time,Data Architect,140000,USD,140000,United States,In-person,United States,M,Data Architecture and Modeling +2024,Senior,Full-time,Data Science Lead,185000,USD,185000,United States,In-person,United States,M,Data Science and Research +2024,Senior,Full-time,Data Science Lead,120000,USD,120000,United States,In-person,United States,M,Data Science and Research +2024,Senior,Full-time,Data Engineer,199700,USD,199700,United States,In-person,United States,M,Data Engineering +2024,Senior,Full-time,Data Engineer,165100,USD,165100,United States,In-person,United States,M,Data Engineering +2024,Mid-level,Full-time,Data Engineer,179000,USD,179000,United States,In-person,United States,M,Data Engineering +2024,Mid-level,Full-time,Data Engineer,112000,USD,112000,United States,In-person,United States,M,Data Engineering +2024,Executive,Full-time,Data Engineer,179000,USD,179000,United States,In-person,United States,M,Data Engineering +2024,Executive,Full-time,Data Engineer,112000,USD,112000,United States,In-person,United States,M,Data Engineering +2024,Senior,Full-time,Data Scientist,170000,USD,170000,United States,Remote,United States,M,Data Science and Research +2024,Senior,Full-time,Data Scientist,130000,USD,130000,United States,Remote,United States,M,Data Science and Research +2024,Mid-level,Full-time,Data Analyst,123600,USD,123600,United States,Remote,United States,M,Data Analysis +2024,Mid-level,Full-time,Data Analyst,79900,USD,79900,United States,Remote,United States,M,Data Analysis +2024,Senior,Full-time,Data Engineer,152375,USD,152375,United States,Remote,United States,M,Data Engineering +2024,Senior,Full-time,Data Engineer,94000,USD,94000,United States,Remote,United States,M,Data Engineering +2024,Senior,Full-time,Machine Learning Engineer,365100,USD,365100,United States,In-person,United States,M,Machine Learning and AI +2024,Senior,Full-time,Machine Learning Engineer,260800,USD,260800,United States,In-person,United States,M,Machine Learning and AI +2024,Senior,Full-time,Data Scientist,65000,GBP,81250,United Kingdom,Remote,United Kingdom,M,Data Science and Research +2024,Senior,Full-time,Data Scientist,45000,GBP,56250,United Kingdom,Remote,United Kingdom,M,Data Science and Research +2024,Mid-level,Full-time,Data Scientist,120000,USD,120000,United States,In-person,United States,M,Data Science and Research +2024,Mid-level,Full-time,Data Scientist,94400,USD,94400,United States,In-person,United States,M,Data Science and Research +2024,Senior,Full-time,Analytics Engineer,130000,USD,130000,United States,In-person,United States,M,Leadership and Management +2024,Senior,Full-time,Machine Learning Engineer,240500,USD,240500,United States,In-person,United States,M,Machine Learning and AI +2024,Senior,Full-time,Machine Learning Engineer,192500,USD,192500,United States,In-person,United States,M,Machine Learning and AI +2024,Senior,Full-time,Data Analyst,100000,USD,100000,United States,In-person,United States,M,Data Analysis +2024,Senior,Full-time,Data Analyst,80000,USD,80000,United States,In-person,United States,M,Data Analysis +2024,Senior,Full-time,Data Modeler,179000,USD,179000,United States,In-person,United States,M,Data Architecture and Modeling +2024,Senior,Full-time,Data Modeler,112000,USD,112000,United States,In-person,United States,M,Data Architecture and Modeling +2024,Entry-level,Full-time,Machine Learning Engineer,260100,USD,260100,United States,Remote,United States,M,Machine Learning and AI +2024,Entry-level,Full-time,Machine Learning Engineer,185800,USD,185800,United States,Remote,United States,M,Machine Learning and AI +2024,Senior,Full-time,Data Architect,138000,USD,138000,United States,In-person,United States,M,Data Architecture and Modeling +2024,Senior,Full-time,Data Architect,86000,USD,86000,United States,In-person,United States,M,Data Architecture and Modeling +2024,Executive,Full-time,Data Science,143297,USD,143297,Canada,In-person,Canada,M,Data Science and Research +2024,Executive,Full-time,Data Science,114638,USD,114638,Canada,In-person,Canada,M,Data Science and Research +2024,Entry-level,Full-time,Data Analyst,26000,EUR,28888,Spain,In-person,Spain,M,Data Analysis +2024,Entry-level,Full-time,Data Analyst,21000,EUR,23333,Spain,In-person,Spain,M,Data Analysis +2024,Entry-level,Full-time,Machine Learning Engineer,157900,USD,157900,Canada,Remote,Canada,M,Machine Learning and AI +2024,Entry-level,Full-time,Machine Learning Engineer,105300,USD,105300,Canada,Remote,Canada,M,Machine Learning and AI +2024,Entry-level,Full-time,Data Analyst,180700,USD,180700,United States,In-person,United States,M,Data Analysis +2024,Entry-level,Full-time,Data Analyst,97000,USD,97000,United States,In-person,United States,M,Data Analysis +2024,Mid-level,Full-time,Business Intelligence Engineer,206000,USD,206000,United States,In-person,United States,M,BI and Visualization +2024,Mid-level,Full-time,Business Intelligence Engineer,134000,USD,134000,United States,In-person,United States,M,BI and Visualization +2024,Mid-level,Full-time,Machine Learning Engineer,170000,USD,170000,United States,In-person,United States,M,Machine Learning and AI +2024,Mid-level,Full-time,Machine Learning Engineer,125100,USD,125100,United States,In-person,United States,M,Machine Learning and AI +2024,Executive,Full-time,Data Science,209700,USD,209700,United States,In-person,United States,M,Data Science and Research +2024,Executive,Full-time,Data Science,161300,USD,161300,United States,In-person,United States,M,Data Science and Research +2024,Senior,Full-time,Data Engineer,250000,USD,250000,United States,In-person,United States,M,Data Engineering +2024,Senior,Full-time,Data Engineer,200000,USD,200000,United States,In-person,United States,M,Data Engineering +2024,Senior,Full-time,Machine Learning Engineer,300000,USD,300000,United States,In-person,United States,M,Machine Learning and AI +2024,Senior,Full-time,Machine Learning Engineer,185000,USD,185000,United States,In-person,United States,M,Machine Learning and AI +2024,Entry-level,Full-time,Data Analyst,83646,USD,83646,Canada,In-person,Canada,M,Data Analysis +2024,Entry-level,Full-time,Data Analyst,65407,USD,65407,Canada,In-person,Canada,M,Data Analysis +2024,Senior,Full-time,Data Engineer,195000,USD,195000,United States,In-person,United States,M,Data Engineering +2024,Senior,Full-time,Data Engineer,160000,USD,160000,United States,In-person,United States,M,Data Engineering +2024,Senior,Full-time,Data Science,179000,USD,179000,United States,In-person,United States,M,Data Science and Research +2024,Senior,Full-time,Data Science,112000,USD,112000,United States,In-person,United States,M,Data Science and Research +2024,Senior,Full-time,Data Engineer,169200,USD,169200,United States,In-person,United States,M,Data Engineering +2024,Senior,Full-time,Data Engineer,130100,USD,130100,United States,In-person,United States,M,Data Engineering +2024,Mid-level,Full-time,Data Scientist,166000,USD,166000,United States,In-person,United States,M,Data Science and Research +2024,Mid-level,Full-time,Data Scientist,73100,USD,73100,United States,In-person,United States,M,Data Science and Research +2024,Mid-level,Full-time,Data Scientist,130000,USD,130000,United States,In-person,United States,M,Data Science and Research +2024,Mid-level,Full-time,Data Scientist,100000,USD,100000,United States,In-person,United States,M,Data Science and Research +2024,Senior,Full-time,Data Engineer,184000,USD,184000,United States,In-person,United States,M,Data Engineering +2024,Senior,Full-time,Data Engineer,123000,USD,123000,United States,In-person,United States,M,Data Engineering +2024,Entry-level,Full-time,Data Scientist,144650,USD,144650,United States,In-person,United States,M,Data Science and Research +2024,Entry-level,Full-time,Data Scientist,86800,USD,86800,United States,In-person,United States,M,Data Science and Research +2024,Senior,Full-time,Machine Learning Engineer,140000,USD,140000,United States,Remote,United States,M,Machine Learning and AI +2024,Senior,Full-time,Machine Learning Engineer,120000,USD,120000,United States,Remote,United States,M,Machine Learning and AI +2024,Mid-level,Full-time,Machine Learning Engineer,260100,USD,260100,United States,Remote,United States,M,Machine Learning and AI +2024,Mid-level,Full-time,Machine Learning Engineer,185800,USD,185800,United States,Remote,United States,M,Machine Learning and AI +2024,Senior,Full-time,Data Scientist,125000,USD,125000,United States,In-person,United States,M,Data Science and Research +2024,Senior,Full-time,Data Scientist,97000,USD,97000,United States,In-person,United States,M,Data Science and Research +2024,Senior,Full-time,Machine Learning Engineer,303400,USD,303400,United States,Remote,United States,M,Machine Learning and AI +2024,Senior,Full-time,Machine Learning Engineer,216700,USD,216700,United States,Remote,United States,M,Machine Learning and AI +2024,Senior,Full-time,Machine Learning Engineer,119786,USD,119786,Canada,Remote,Canada,M,Machine Learning and AI +2024,Senior,Full-time,Machine Learning Engineer,95828,USD,95828,Canada,Remote,Canada,M,Machine Learning and AI +2024,Mid-level,Full-time,Data Operations Associate,60000,EUR,66666,Germany,In-person,Germany,M,Data Quality and Operations +2024,Mid-level,Full-time,Data Operations Associate,50000,EUR,55555,Germany,In-person,Germany,M,Data Quality and Operations +2024,Senior,Full-time,Data Science Consultant,104000,USD,104000,United States,In-person,United States,M,Data Science and Research +2024,Senior,Full-time,Data Science Consultant,80000,USD,80000,United States,In-person,United States,M,Data Science and Research +2024,Senior,Full-time,Data Scientist,294000,USD,294000,United States,In-person,United States,M,Data Science and Research +2024,Senior,Full-time,Data Scientist,204000,USD,204000,United States,In-person,United States,M,Data Science and Research +2024,Senior,Full-time,Data Scientist,272400,USD,272400,United States,In-person,United States,M,Data Science and Research +2024,Senior,Full-time,Data Scientist,155600,USD,155600,United States,In-person,United States,M,Data Science and Research +2024,Mid-level,Full-time,Data Engineer,184000,USD,184000,United States,In-person,United States,M,Data Engineering +2024,Mid-level,Full-time,Data Engineer,123000,USD,123000,United States,In-person,United States,M,Data Engineering +2024,Senior,Full-time,Machine Learning Engineer,303400,USD,303400,United States,In-person,United States,M,Machine Learning and AI +2024,Senior,Full-time,Machine Learning Engineer,216700,USD,216700,United States,In-person,United States,M,Machine Learning and AI +2024,Mid-level,Full-time,Data Engineer,187000,USD,187000,United States,Remote,United States,M,Data Engineering +2024,Mid-level,Full-time,Data Engineer,125000,USD,125000,United States,Remote,United States,M,Data Engineering +2024,Senior,Full-time,Business Intelligence Engineer,44400,EUR,49333,Latvia,In-person,Latvia,M,BI and Visualization +2024,Senior,Full-time,Business Intelligence Engineer,31200,EUR,34666,Latvia,In-person,Latvia,M,BI and Visualization +2024,Senior,Full-time,Data Engineer,144000,USD,144000,United States,In-person,United States,M,Data Engineering +2024,Senior,Full-time,Data Engineer,113000,USD,113000,United States,In-person,United States,M,Data Engineering +2024,Senior,Full-time,Data Engineer,143500,USD,143500,United States,Remote,United States,M,Data Engineering +2024,Senior,Full-time,Data Engineer,77000,USD,77000,United States,Remote,United States,M,Data Engineering +2024,Senior,Full-time,Data Developer,88000,USD,88000,Canada,In-person,Canada,M,Leadership and Management +2024,Senior,Full-time,Data Developer,71000,USD,71000,Canada,In-person,Canada,M,Leadership and Management +2024,Entry-level,Full-time,Data Specialist,40000,GBP,50000,United Kingdom,In-person,United Kingdom,M,Data Management and Strategy +2024,Entry-level,Full-time,Data Specialist,33400,GBP,41750,United Kingdom,In-person,United Kingdom,M,Data Management and Strategy +2024,Senior,Full-time,ML Engineer,110000,GBP,137500,United Kingdom,In-person,United Kingdom,S,Machine Learning and AI +2024,Senior,Full-time,ML Engineer,87000,GBP,108750,United Kingdom,In-person,United Kingdom,S,Machine Learning and AI +2024,Senior,Full-time,Data Engineer,190000,USD,190000,United States,Remote,United States,M,Data Engineering +2024,Senior,Full-time,Data Engineer,135000,USD,135000,United States,Remote,United States,M,Data Engineering +2024,Senior,Full-time,Data Engineer,55000,GBP,68750,United Kingdom,Remote,United Kingdom,M,Data Engineering +2024,Senior,Full-time,Data Engineer,52000,GBP,65000,United Kingdom,Remote,United Kingdom,M,Data Engineering +2024,Senior,Full-time,Applied Scientist,260000,USD,260000,United States,In-person,United States,L,Data Science and Research +2024,Senior,Full-time,Applied Scientist,136000,USD,136000,United States,In-person,United States,L,Data Science and Research +2024,Mid-level,Contract,AI Research Engineer,57000,EUR,63333,Croatia,Remote,Hungary,S,Data Science and Research +2024,Senior,Full-time,Machine Learning Engineer,250000,USD,250000,United States,Remote,United States,M,Machine Learning and AI +2024,Senior,Full-time,Machine Learning Engineer,184900,USD,184900,United States,Remote,United States,M,Machine Learning and AI +2024,Mid-level,Full-time,Data Engineer,148100,USD,148100,United States,Remote,United States,M,Data Engineering +2024,Mid-level,Full-time,Data Engineer,98700,USD,98700,United States,Remote,United States,M,Data Engineering +2024,Senior,Full-time,Data Scientist,140032,USD,140032,United States,Remote,United States,M,Data Science and Research +2024,Senior,Full-time,Data Scientist,100022,USD,100022,United States,Remote,United States,M,Data Science and Research +2024,Mid-level,Full-time,BI Developer,120000,USD,120000,United States,In-person,United States,M,BI and Visualization +2024,Mid-level,Full-time,BI Developer,62100,USD,62100,United States,In-person,United States,M,BI and Visualization +2024,Entry-level,Full-time,Research Analyst,250000,USD,250000,United States,In-person,United States,M,Data Science and Research +2024,Entry-level,Full-time,Research Analyst,150000,USD,150000,United States,In-person,United States,M,Data Science and Research +2024,Executive,Full-time,Data Engineer,219650,USD,219650,United States,Remote,United States,M,Data Engineering +2024,Executive,Full-time,Data Engineer,136000,USD,136000,United States,Remote,United States,M,Data Engineering +2024,Mid-level,Full-time,Business Intelligence Developer,87800,USD,87800,United States,In-person,United States,M,BI and Visualization +2024,Mid-level,Full-time,Business Intelligence Developer,76300,USD,76300,United States,In-person,United States,M,BI and Visualization +2024,Mid-level,Full-time,Data Scientist,148100,USD,148100,United States,Remote,United States,M,Data Science and Research +2024,Mid-level,Full-time,Data Scientist,98700,USD,98700,United States,Remote,United States,M,Data Science and Research +2024,Mid-level,Full-time,Data Engineer,145500,USD,145500,United States,In-person,United States,M,Data Engineering +2024,Mid-level,Full-time,Data Engineer,93000,USD,93000,United States,In-person,United States,M,Data Engineering +2024,Mid-level,Full-time,Data Scientist,85000,USD,85000,United States,In-person,United States,M,Data Science and Research +2024,Mid-level,Full-time,Data Scientist,75000,USD,75000,United States,In-person,United States,M,Data Science and Research +2024,Mid-level,Full-time,Data Scientist,105000,USD,105000,United States,In-person,United States,M,Data Science and Research +2024,Mid-level,Full-time,Data Scientist,70000,USD,70000,United States,In-person,United States,M,Data Science and Research +2024,Senior,Full-time,Data Engineer,204662,USD,204662,United States,In-person,United States,M,Data Engineering +2024,Senior,Full-time,Data Engineer,184662,USD,184662,United States,In-person,United States,M,Data Engineering +2024,Mid-level,Full-time,Data Scientist,179000,USD,179000,United States,In-person,United States,M,Data Science and Research +2024,Mid-level,Full-time,Data Scientist,112000,USD,112000,United States,In-person,United States,M,Data Science and Research +2024,Entry-level,Full-time,Data Analyst,115000,USD,115000,United States,In-person,United States,M,Data Analysis +2024,Entry-level,Full-time,Data Analyst,85000,USD,85000,United States,In-person,United States,M,Data Analysis +2024,Executive,Full-time,Director of Data Science,225000,USD,225000,United States,In-person,United States,M,Data Science and Research +2024,Executive,Full-time,Director of Data Science,180000,USD,180000,United States,In-person,United States,M,Data Science and Research +2024,Senior,Full-time,MLOps Engineer,175000,USD,175000,United States,In-person,United States,M,Machine Learning and AI +2024,Senior,Full-time,MLOps Engineer,110000,USD,110000,United States,In-person,United States,M,Machine Learning and AI +2024,Senior,Full-time,Machine Learning Scientist,252000,USD,252000,United States,In-person,United States,M,Machine Learning and AI +2024,Senior,Full-time,Machine Learning Scientist,157500,USD,157500,United States,In-person,United States,M,Machine Learning and AI +2024,Senior,Full-time,Machine Learning Engineer,267900,USD,267900,United States,In-person,United States,M,Machine Learning and AI +2024,Senior,Full-time,Machine Learning Engineer,234700,USD,234700,United States,In-person,United States,M,Machine Learning and AI +2024,Entry-level,Full-time,Data Analyst,195500,USD,195500,United States,In-person,United States,M,Data Analysis +2024,Entry-level,Full-time,Data Analyst,68000,USD,68000,United States,In-person,United States,M,Data Analysis +2024,Senior,Full-time,Data Science Manager,120000,USD,120000,United States,Remote,United States,M,Data Science and Research +2024,Senior,Full-time,Data Science Manager,90000,USD,90000,United States,Remote,United States,M,Data Science and Research +2024,Senior,Full-time,Data Scientist,242000,USD,242000,United States,In-person,United States,M,Data Science and Research +2024,Senior,Full-time,Data Scientist,106200,USD,106200,United States,In-person,United States,M,Data Science and Research +2024,Senior,Full-time,Data Engineer,171210,USD,171210,Canada,Remote,Canada,M,Data Engineering +2024,Senior,Full-time,Data Engineer,92190,USD,92190,Canada,Remote,Canada,M,Data Engineering +2024,Senior,Full-time,Machine Learning Engineer,215000,USD,215000,United States,In-person,United States,M,Machine Learning and AI +2024,Senior,Full-time,Machine Learning Engineer,146900,USD,146900,United States,In-person,United States,M,Machine Learning and AI +2024,Mid-level,Full-time,Applied Scientist,222200,USD,222200,United States,In-person,United States,L,Data Science and Research +2024,Mid-level,Full-time,Applied Scientist,136000,USD,136000,United States,In-person,United States,L,Data Science and Research +2024,Mid-level,Full-time,Data Scientist,246000,USD,246000,United States,Remote,United States,M,Data Science and Research +2024,Mid-level,Full-time,Data Scientist,190000,USD,190000,United States,Remote,United States,M,Data Science and Research +2024,Mid-level,Full-time,Data Engineer,165000,USD,165000,United States,Remote,United States,M,Data Engineering +2024,Mid-level,Full-time,Data Engineer,129600,USD,129600,United States,Remote,United States,M,Data Engineering +2024,Mid-level,Full-time,Business Intelligence Analyst,200400,USD,200400,United States,In-person,United States,M,BI and Visualization +2024,Mid-level,Full-time,Business Intelligence Analyst,126900,USD,126900,United States,In-person,United States,M,BI and Visualization +2024,Senior,Full-time,Machine Learning Engineer,322000,USD,322000,United States,Remote,United States,M,Machine Learning and AI +2024,Senior,Full-time,Machine Learning Engineer,230000,USD,230000,United States,Remote,United States,M,Machine Learning and AI +2024,Senior,Full-time,Data Analyst,175520,USD,175520,United States,In-person,United States,M,Data Analysis +2024,Senior,Full-time,Data Analyst,103786,USD,103786,United States,In-person,United States,M,Data Analysis +2024,Senior,Full-time,Analytics Engineer,170000,USD,170000,United States,Remote,United States,M,Leadership and Management +2024,Senior,Full-time,Analytics Engineer,130000,USD,130000,United States,Remote,United States,M,Leadership and Management +2024,Senior,Full-time,Data Scientist,195000,USD,195000,United States,In-person,United States,M,Data Science and Research +2024,Senior,Full-time,Data Scientist,146900,USD,146900,United States,In-person,United States,M,Data Science and Research +2024,Mid-level,Full-time,Data Scientist,170400,USD,170400,United States,Remote,United States,M,Data Science and Research +2024,Mid-level,Full-time,Data Scientist,106500,USD,106500,United States,Remote,United States,M,Data Science and Research +2024,Mid-level,Full-time,Data Specialist,51284,GBP,64105,United Kingdom,In-person,United Kingdom,M,Data Management and Strategy +2024,Mid-level,Full-time,Data Specialist,41027,GBP,51283,United Kingdom,In-person,United Kingdom,M,Data Management and Strategy +2024,Mid-level,Full-time,Data Analyst,134500,USD,134500,United States,In-person,United States,M,Data Analysis +2024,Mid-level,Full-time,Data Analyst,100000,USD,100000,United States,In-person,United States,M,Data Analysis +2024,Mid-level,Full-time,Data Engineer,159000,USD,159000,United States,In-person,United States,M,Data Engineering +2024,Mid-level,Full-time,Data Engineer,111300,USD,111300,United States,In-person,United States,M,Data Engineering +2024,Mid-level,Full-time,Machine Learning Engineer,173400,USD,173400,United States,In-person,United States,M,Machine Learning and AI +2024,Mid-level,Full-time,Machine Learning Engineer,99100,USD,99100,United States,In-person,United States,M,Machine Learning and AI +2024,Senior,Full-time,Business Intelligence Engineer,185000,USD,185000,United States,In-person,United States,L,BI and Visualization +2024,Senior,Full-time,Business Intelligence Engineer,79600,USD,79600,United States,In-person,United States,L,BI and Visualization +2024,Executive,Full-time,Data Science,323700,USD,323700,United States,Remote,United States,M,Data Science and Research +2024,Executive,Full-time,Data Science,190500,USD,190500,United States,Remote,United States,M,Data Science and Research +2024,Mid-level,Full-time,Machine Learning Engineer,125800,EUR,139777,Spain,Remote,Spain,M,Machine Learning and AI +2024,Mid-level,Full-time,Machine Learning Engineer,83900,EUR,93222,Spain,Remote,Spain,M,Machine Learning and AI +2024,Senior,Full-time,Data Scientist,218000,USD,218000,United States,In-person,United States,M,Data Science and Research +2024,Senior,Full-time,Data Scientist,145000,USD,145000,United States,In-person,United States,M,Data Science and Research +2024,Senior,Full-time,Research Scientist,258100,USD,258100,United States,In-person,United States,M,Data Science and Research +2024,Senior,Full-time,Research Scientist,151900,USD,151900,United States,In-person,United States,M,Data Science and Research +2024,Mid-level,Full-time,Data Science,179000,USD,179000,United States,In-person,United States,M,Data Science and Research +2024,Mid-level,Full-time,Data Science,106500,USD,106500,United States,In-person,United States,M,Data Science and Research +2024,Mid-level,Full-time,Data Scientist,212800,USD,212800,United States,In-person,United States,L,Data Science and Research +2024,Mid-level,Full-time,Data Scientist,111600,USD,111600,United States,In-person,United States,L,Data Science and Research +2024,Senior,Full-time,Machine Learning Engineer,166700,USD,166700,United States,Remote,United States,M,Machine Learning and AI +2024,Senior,Full-time,Machine Learning Engineer,150000,USD,150000,United States,Remote,United States,M,Machine Learning and AI +2024,Senior,Full-time,Machine Learning Engineer,220000,USD,220000,United States,In-person,United States,M,Machine Learning and AI +2024,Senior,Full-time,Machine Learning Engineer,170000,USD,170000,United States,In-person,United States,M,Machine Learning and AI +2024,Senior,Full-time,Machine Learning Engineer,418000,USD,418000,United States,Remote,United States,M,Machine Learning and AI +2024,Senior,Full-time,Machine Learning Engineer,141000,USD,141000,United States,Remote,United States,M,Machine Learning and AI +2024,Senior,Full-time,Research Engineer,440000,USD,440000,United States,In-person,United States,M,Data Science and Research +2024,Senior,Full-time,Research Engineer,100000,USD,100000,United States,In-person,United States,M,Data Science and Research +2024,Executive,Full-time,Managing Director Data Science,260000,USD,260000,United States,Hybrid,United States,L,Data Science and Research +2024,Executive,Full-time,Data Scientist,246100,USD,246100,United States,In-person,United States,M,Data Science and Research +2024,Executive,Full-time,Data Scientist,181900,USD,181900,United States,In-person,United States,M,Data Science and Research +2024,Senior,Full-time,Analytics Engineer,130000,USD,130000,Canada,In-person,Canada,M,Leadership and Management +2024,Senior,Full-time,Analytics Engineer,110000,USD,110000,Canada,In-person,Canada,M,Leadership and Management +2024,Mid-level,Full-time,Data Engineer,133000,USD,133000,Australia,In-person,Australia,M,Data Engineering +2024,Mid-level,Full-time,Data Engineer,58300,USD,58300,Australia,In-person,Australia,M,Data Engineering +2024,Entry-level,Full-time,Machine Learning Engineer,91000,USD,91000,United States,In-person,United States,M,Machine Learning and AI +2024,Entry-level,Full-time,Machine Learning Engineer,70000,USD,70000,United States,In-person,United States,M,Machine Learning and AI +2024,Senior,Full-time,ML Engineer,212000,USD,212000,Germany,In-person,Germany,M,Machine Learning and AI +2024,Senior,Full-time,ML Engineer,93300,USD,93300,Germany,In-person,Germany,M,Machine Learning and AI +2024,Executive,Full-time,Business Intelligence Developer,177500,USD,177500,United States,In-person,United States,M,BI and Visualization +2024,Executive,Full-time,Business Intelligence Developer,117500,USD,117500,United States,In-person,United States,M,BI and Visualization +2024,Mid-level,Full-time,Data Scientist,137930,USD,137930,Canada,In-person,Canada,M,Data Science and Research +2024,Mid-level,Full-time,Data Scientist,74270,USD,74270,Canada,In-person,Canada,M,Data Science and Research +2024,Entry-level,Full-time,Business Intelligence Analyst,95000,USD,95000,United States,In-person,United States,M,BI and Visualization +2024,Entry-level,Full-time,Business Intelligence Analyst,70000,USD,70000,United States,In-person,United States,M,BI and Visualization +2024,Senior,Full-time,Data Science,258720,USD,258720,United States,In-person,United States,M,Data Science and Research +2024,Senior,Full-time,Data Science,160000,USD,160000,United States,In-person,United States,M,Data Science and Research +2024,Entry-level,Full-time,Data Quality Analyst,85000,USD,85000,Lebanon,In-person,Lebanon,M,Data Quality and Operations +2024,Entry-level,Full-time,Data Quality Analyst,58500,USD,58500,Lebanon,In-person,Lebanon,M,Data Quality and Operations +2024,Mid-level,Full-time,BI Developer,154800,USD,154800,United States,In-person,United States,M,BI and Visualization +2024,Mid-level,Full-time,BI Developer,76300,USD,76300,United States,In-person,United States,M,BI and Visualization +2024,Mid-level,Full-time,AI Engineer,170200,USD,170200,United States,In-person,United States,M,Machine Learning and AI +2024,Mid-level,Full-time,AI Engineer,83900,USD,83900,United States,In-person,United States,M,Machine Learning and AI +2024,Senior,Full-time,Data Engineer,205000,USD,205000,United States,Remote,United States,M,Data Engineering +2024,Senior,Full-time,Data Engineer,165000,USD,165000,United States,Remote,United States,M,Data Engineering +2024,Mid-level,Full-time,Data Scientist,250000,USD,250000,United States,In-person,United States,M,Data Science and Research +2024,Mid-level,Full-time,Data Scientist,131600,USD,131600,United States,In-person,United States,M,Data Science and Research +2024,Senior,Full-time,Data Scientist,240000,USD,240000,United States,In-person,United States,M,Data Science and Research +2024,Senior,Full-time,Data Scientist,187000,USD,187000,United States,In-person,United States,M,Data Science and Research +2024,Mid-level,Full-time,Data Engineer,134600,USD,134600,United States,In-person,United States,M,Data Engineering +2024,Mid-level,Full-time,Data Engineer,103000,USD,103000,United States,In-person,United States,M,Data Engineering +2024,Senior,Full-time,Machine Learning Engineer,324000,USD,324000,United States,In-person,United States,M,Machine Learning and AI +2024,Senior,Full-time,Machine Learning Engineer,159000,USD,159000,United States,In-person,United States,M,Machine Learning and AI +2024,Mid-level,Full-time,Research Engineer,74276,USD,74276,Australia,In-person,Australia,M,Data Science and Research +2024,Mid-level,Full-time,Research Engineer,70230,USD,70230,Australia,In-person,Australia,M,Data Science and Research +2024,Senior,Full-time,Data Engineer,385000,USD,385000,United States,In-person,United States,M,Data Engineering +2024,Senior,Full-time,Data Engineer,245000,USD,245000,United States,In-person,United States,M,Data Engineering +2024,Mid-level,Full-time,Data Scientist,385000,USD,385000,United States,In-person,United States,M,Data Science and Research +2024,Mid-level,Full-time,Data Scientist,245000,USD,245000,United States,In-person,United States,M,Data Science and Research +2024,Mid-level,Full-time,Data Engineer,214300,USD,214300,United States,In-person,United States,M,Data Engineering +2024,Mid-level,Full-time,Data Engineer,108500,USD,108500,United States,In-person,United States,M,Data Engineering +2024,Senior,Full-time,Machine Learning Engineer,245700,USD,245700,United States,In-person,United States,M,Machine Learning and AI +2024,Senior,Full-time,Machine Learning Engineer,132300,USD,132300,United States,In-person,United States,M,Machine Learning and AI +2024,Mid-level,Full-time,Data Specialist,80000,USD,80000,United States,In-person,United States,M,Data Management and Strategy +2024,Mid-level,Full-time,Data Specialist,73000,USD,73000,United States,In-person,United States,M,Data Management and Strategy +2024,Senior,Full-time,Machine Learning Engineer,263500,USD,263500,United States,Remote,United States,M,Machine Learning and AI +2024,Senior,Full-time,Machine Learning Engineer,189360,USD,189360,United States,Remote,United States,M,Machine Learning and AI +2024,Senior,Full-time,Data Architect,175000,USD,175000,United States,Remote,United States,M,Data Architecture and Modeling +2024,Senior,Full-time,Data Architect,125000,USD,125000,United States,Remote,United States,M,Data Architecture and Modeling +2024,Executive,Full-time,Data Science,175762,USD,175762,United States,In-person,United States,M,Data Science and Research +2024,Executive,Full-time,Data Science,97254,USD,97254,United States,In-person,United States,M,Data Science and Research +2024,Senior,Full-time,Applied Scientist,218213,USD,218213,United States,Remote,United States,M,Data Science and Research +2024,Senior,Full-time,Applied Scientist,178538,USD,178538,United States,Remote,United States,M,Data Science and Research +2024,Mid-level,Full-time,Research Engineer,440000,USD,440000,United States,In-person,United States,M,Data Science and Research +2024,Mid-level,Full-time,Research Engineer,295000,USD,295000,United States,In-person,United States,M,Data Science and Research +2024,Mid-level,Full-time,Research Engineer,118600,USD,118600,United States,In-person,United States,M,Data Science and Research +2024,Mid-level,Full-time,Research Engineer,96800,USD,96800,United States,In-person,United States,M,Data Science and Research +2024,Mid-level,Full-time,Data Scientist,198800,USD,198800,United States,In-person,United States,M,Data Science and Research +2024,Mid-level,Full-time,Data Scientist,90700,USD,90700,United States,In-person,United States,M,Data Science and Research +2024,Senior,Full-time,Data Engineer,145000,USD,145000,United States,In-person,United States,M,Data Engineering +2024,Senior,Full-time,Data Engineer,115000,USD,115000,United States,In-person,United States,M,Data Engineering +2024,Senior,Full-time,Data Engineer,269100,USD,269100,United States,In-person,United States,M,Data Engineering +2024,Senior,Full-time,Data Engineer,131300,USD,131300,United States,In-person,United States,M,Data Engineering +2024,Mid-level,Full-time,Research Engineer,440000,USD,440000,United States,In-person,United States,M,Data Science and Research +2024,Mid-level,Full-time,Research Engineer,245000,USD,245000,United States,In-person,United States,M,Data Science and Research +2024,Entry-level,Full-time,Data Analyst,99900,USD,99900,United States,In-person,United States,M,Data Analysis +2024,Entry-level,Full-time,Data Analyst,83000,USD,83000,United States,In-person,United States,M,Data Analysis +2024,Mid-level,Full-time,Research Engineer,240960,USD,240960,United States,In-person,United States,M,Data Science and Research +2024,Mid-level,Full-time,Research Engineer,190000,USD,190000,United States,In-person,United States,M,Data Science and Research +2024,Senior,Full-time,Data Architect,178600,USD,178600,United States,In-person,United States,M,Data Architecture and Modeling +2024,Senior,Full-time,Data Architect,67200,USD,67200,United States,In-person,United States,M,Data Architecture and Modeling +2024,Mid-level,Full-time,Data Visualization Specialist,170200,USD,170200,United States,In-person,United States,M,BI and Visualization +2024,Mid-level,Full-time,Data Visualization Specialist,83900,USD,83900,United States,In-person,United States,M,BI and Visualization +2024,Senior,Full-time,Data Analyst,169000,USD,169000,United States,Remote,United States,M,Data Analysis +2024,Senior,Full-time,Data Analyst,120000,USD,120000,United States,Remote,United States,M,Data Analysis +2024,Senior,Full-time,Data Scientist,225000,USD,225000,Canada,In-person,Canada,M,Data Science and Research +2024,Senior,Full-time,Data Scientist,153000,USD,153000,Canada,In-person,Canada,M,Data Science and Research +2024,Senior,Full-time,Research Engineer,450000,USD,450000,United States,In-person,United States,M,Data Science and Research +2024,Senior,Full-time,Research Engineer,245000,USD,245000,United States,In-person,United States,M,Data Science and Research +2024,Senior,Full-time,ETL Developer,99500,USD,99500,United States,In-person,United States,M,Data Engineering +2024,Senior,Full-time,ETL Developer,53300,USD,53300,United States,In-person,United States,M,Data Engineering +2024,Senior,Full-time,Research Engineer,240960,USD,240960,United States,In-person,United States,M,Data Science and Research +2024,Senior,Full-time,Research Engineer,200800,USD,200800,United States,In-person,United States,M,Data Science and Research +2024,Mid-level,Full-time,Data Science Practitioner,170200,USD,170200,United States,In-person,United States,M,Data Science and Research +2024,Mid-level,Full-time,Data Science Practitioner,83900,USD,83900,United States,In-person,United States,M,Data Science and Research +2024,Mid-level,Full-time,Data Engineer,125000,USD,125000,United States,Remote,United States,M,Data Engineering +2024,Mid-level,Full-time,Data Engineer,115000,USD,115000,United States,Remote,United States,M,Data Engineering +2024,Senior,Full-time,Data Science,261050,USD,261050,United States,In-person,United States,M,Data Science and Research +2024,Senior,Full-time,Data Science,187000,USD,187000,United States,In-person,United States,M,Data Science and Research +2024,Senior,Full-time,Machine Learning Engineer,331640,USD,331640,United States,In-person,United States,M,Machine Learning and AI +2024,Senior,Full-time,Machine Learning Engineer,283780,USD,283780,United States,In-person,United States,M,Machine Learning and AI +2024,Senior,Full-time,Data Analyst,146500,USD,146500,United States,In-person,United States,M,Data Analysis +2024,Senior,Full-time,Data Analyst,96000,USD,96000,United States,In-person,United States,M,Data Analysis +2024,Senior,Full-time,Computer Vision Engineer,235000,USD,235000,United States,In-person,United States,M,Machine Learning and AI +2024,Senior,Full-time,Computer Vision Engineer,185000,USD,185000,United States,In-person,United States,M,Machine Learning and AI +2024,Mid-level,Full-time,Data Scientist,140400,USD,140400,United States,Remote,United States,M,Data Science and Research +2024,Mid-level,Full-time,Data Scientist,90000,USD,90000,United States,Remote,United States,M,Data Science and Research +2024,Senior,Full-time,Research Scientist,440000,USD,440000,United States,In-person,United States,M,Data Science and Research +2024,Senior,Full-time,Research Scientist,245000,USD,245000,United States,In-person,United States,M,Data Science and Research +2024,Mid-level,Full-time,Data Scientist,179000,USD,179000,United States,In-person,United States,M,Data Science and Research +2024,Mid-level,Full-time,Data Scientist,112000,USD,112000,United States,In-person,United States,M,Data Science and Research +2024,Senior,Full-time,Data Architect,178600,USD,178600,United States,In-person,United States,M,Data Architecture and Modeling +2024,Senior,Full-time,Data Architect,76300,USD,76300,United States,In-person,United States,M,Data Architecture and Modeling +2024,Senior,Full-time,Data Engineer,260000,USD,260000,United States,In-person,United States,M,Data Engineering +2024,Senior,Full-time,Data Engineer,225000,USD,225000,United States,In-person,United States,M,Data Engineering +2024,Senior,Full-time,Data Engineer,165000,USD,165000,United States,In-person,United States,M,Data Engineering +2024,Senior,Full-time,Data Engineer,137000,USD,137000,United States,In-person,United States,M,Data Engineering +2024,Senior,Full-time,Applied Scientist,260000,USD,260000,United States,In-person,United States,L,Data Science and Research +2024,Senior,Full-time,Applied Scientist,136000,USD,136000,United States,In-person,United States,L,Data Science and Research +2024,Senior,Full-time,Data Scientist,296100,USD,296100,United States,In-person,United States,M,Data Science and Research +2024,Senior,Full-time,Data Scientist,144500,USD,144500,United States,In-person,United States,M,Data Science and Research +2024,Senior,Full-time,Research Scientist,278700,USD,278700,United States,In-person,United States,M,Data Science and Research +2024,Senior,Full-time,Research Scientist,159300,USD,159300,United States,In-person,United States,M,Data Science and Research +2024,Senior,Full-time,Data Scientist,206000,USD,206000,United States,Remote,United States,M,Data Science and Research +2024,Senior,Full-time,Data Scientist,140250,USD,140250,United States,Remote,United States,M,Data Science and Research +2024,Mid-level,Full-time,Analytics Engineer,100000,USD,100000,United States,In-person,United States,M,Leadership and Management +2024,Mid-level,Full-time,Analytics Engineer,75000,USD,75000,United States,In-person,United States,M,Leadership and Management +2024,Senior,Full-time,Data Lead,180000,USD,180000,United States,In-person,United States,M,Leadership and Management +2024,Senior,Full-time,Data Lead,140000,USD,140000,United States,In-person,United States,M,Leadership and Management +2024,Senior,Full-time,Machine Learning Scientist,235000,USD,235000,Canada,In-person,Canada,M,Machine Learning and AI +2024,Senior,Full-time,Machine Learning Scientist,153000,USD,153000,Canada,In-person,Canada,M,Machine Learning and AI +2024,Senior,Full-time,Research Scientist,440000,USD,440000,United States,In-person,United States,M,Data Science and Research +2024,Senior,Full-time,Research Scientist,245000,USD,245000,United States,In-person,United States,M,Data Science and Research +2024,Senior,Full-time,Data Analyst,116800,USD,116800,United States,In-person,United States,M,Data Analysis +2024,Senior,Full-time,Data Analyst,87600,USD,87600,United States,In-person,United States,M,Data Analysis +2024,Senior,Full-time,Data Scientist,170000,USD,170000,United States,In-person,United States,M,Data Science and Research +2024,Senior,Full-time,Data Scientist,125000,USD,125000,United States,In-person,United States,M,Data Science and Research +2024,Senior,Full-time,Data Architect,283500,USD,283500,United States,In-person,United States,M,Data Architecture and Modeling +2024,Senior,Full-time,Data Architect,149000,USD,149000,United States,In-person,United States,M,Data Architecture and Modeling +2024,Entry-level,Full-time,Data Science,26000,USD,26000,Romania,Remote,Romania,L,Data Science and Research +2024,Senior,Full-time,ML Engineer,357900,USD,357900,United States,In-person,United States,M,Machine Learning and AI +2024,Senior,Full-time,ML Engineer,189400,USD,189400,United States,In-person,United States,M,Machine Learning and AI +2024,Senior,Full-time,Data Scientist,212000,USD,212000,United States,In-person,United States,M,Data Science and Research +2024,Senior,Full-time,Data Scientist,93400,USD,93400,United States,In-person,United States,M,Data Science and Research +2024,Senior,Full-time,Data Engineer,128656,USD,128656,United States,In-person,United States,M,Data Engineering +2024,Senior,Full-time,Data Engineer,103330,USD,103330,United States,In-person,United States,M,Data Engineering +2024,Senior,Full-time,Machine Learning Engineer,250900,USD,250900,United States,In-person,United States,M,Machine Learning and AI +2024,Senior,Full-time,Machine Learning Engineer,135200,USD,135200,United States,In-person,United States,M,Machine Learning and AI +2024,Senior,Full-time,Applied Scientist,414000,USD,414000,United States,In-person,United States,M,Data Science and Research +2024,Senior,Full-time,Applied Scientist,216000,USD,216000,United States,In-person,United States,M,Data Science and Research +2024,Mid-level,Full-time,Data Specialist,69000,USD,69000,United States,In-person,United States,M,Data Management and Strategy +2024,Mid-level,Full-time,Data Specialist,51000,USD,51000,United States,In-person,United States,M,Data Management and Strategy +2024,Senior,Full-time,Data Analyst,109000,USD,109000,United States,In-person,United States,M,Data Analysis +2024,Senior,Full-time,Data Analyst,62300,USD,62300,United States,In-person,United States,M,Data Analysis +2024,Mid-level,Full-time,Analytics Engineer,134160,USD,134160,United States,In-person,United States,M,Leadership and Management +2024,Mid-level,Full-time,Analytics Engineer,72240,USD,72240,United States,In-person,United States,M,Leadership and Management +2024,Mid-level,Full-time,Data Analyst,90500,USD,90500,United States,In-person,United States,M,Data Analysis +2024,Mid-level,Full-time,Data Analyst,42400,USD,42400,United States,In-person,United States,M,Data Analysis +2024,Senior,Full-time,Data Architect,381500,USD,381500,United States,In-person,United States,M,Data Architecture and Modeling +2024,Senior,Full-time,Data Architect,202500,USD,202500,United States,In-person,United States,M,Data Architecture and Modeling +2024,Senior,Full-time,Machine Learning Engineer,257000,USD,257000,United States,In-person,United States,M,Machine Learning and AI +2024,Senior,Full-time,Machine Learning Engineer,129000,USD,129000,United States,In-person,United States,M,Machine Learning and AI +2024,Entry-level,Full-time,Data Analyst,120000,USD,120000,United States,Remote,United States,M,Data Analysis +2024,Entry-level,Full-time,Data Analyst,100000,USD,100000,United States,Remote,United States,M,Data Analysis +2024,Senior,Full-time,Analytics Engineer,209990,USD,209990,Canada,In-person,Canada,M,Leadership and Management +2024,Senior,Full-time,Analytics Engineer,140000,USD,140000,Canada,In-person,Canada,M,Leadership and Management +2024,Entry-level,Full-time,Data Analyst,80000,USD,80000,United States,In-person,United States,M,Data Analysis +2024,Entry-level,Full-time,Data Analyst,45700,USD,45700,United States,In-person,United States,M,Data Analysis +2024,Senior,Full-time,Data Science,138000,USD,138000,United States,In-person,United States,M,Data Science and Research +2024,Senior,Full-time,Data Science,86000,USD,86000,United States,In-person,United States,M,Data Science and Research +2024,Senior,Full-time,Data Science,152000,USD,152000,United States,In-person,United States,M,Data Science and Research +2024,Senior,Full-time,Data Science,133200,USD,133200,United States,In-person,United States,M,Data Science and Research +2024,Senior,Full-time,Data Analyst,135000,USD,135000,United States,In-person,United States,M,Data Analysis +2024,Senior,Full-time,Data Analyst,120000,USD,120000,United States,In-person,United States,M,Data Analysis +2024,Senior,Full-time,Data Engineer,175000,USD,175000,United States,In-person,United States,M,Data Engineering +2024,Senior,Full-time,Data Engineer,150000,USD,150000,United States,In-person,United States,M,Data Engineering +2024,Mid-level,Full-time,Data Developer,100000,USD,100000,United States,In-person,United States,M,Leadership and Management +2024,Mid-level,Full-time,Data Developer,95000,USD,95000,United States,In-person,United States,M,Leadership and Management +2024,Senior,Full-time,Data Analyst,134200,USD,134200,United States,Remote,United States,M,Data Analysis +2024,Senior,Full-time,Data Analyst,117000,USD,117000,United States,Remote,United States,M,Data Analysis +2024,Mid-level,Full-time,Research Scientist,179000,USD,179000,United States,In-person,United States,M,Data Science and Research +2024,Mid-level,Full-time,Research Scientist,112000,USD,112000,United States,In-person,United States,M,Data Science and Research +2024,Senior,Full-time,Data Architect,234000,USD,234000,United States,In-person,United States,M,Data Architecture and Modeling +2024,Senior,Full-time,Data Architect,146000,USD,146000,United States,In-person,United States,M,Data Architecture and Modeling +2024,Entry-level,Full-time,Data Analyst,75065,USD,75065,United States,Remote,United States,M,Data Analysis +2024,Entry-level,Full-time,Data Analyst,41419,USD,41419,United States,Remote,United States,M,Data Analysis +2024,Mid-level,Full-time,Data Engineer,107800,USD,107800,United States,In-person,United States,M,Data Engineering +2024,Mid-level,Full-time,Data Engineer,61600,USD,61600,United States,In-person,United States,M,Data Engineering +2024,Senior,Full-time,ML Engineer,324000,USD,324000,United States,In-person,United States,M,Machine Learning and AI +2024,Senior,Full-time,ML Engineer,159000,USD,159000,United States,In-person,United States,M,Machine Learning and AI +2024,Entry-level,Full-time,Data Analyst,80000,USD,80000,United States,Remote,United States,M,Data Analysis +2024,Entry-level,Full-time,Data Analyst,75000,USD,75000,United States,Remote,United States,M,Data Analysis +2024,Senior,Full-time,Machine Learning Engineer,303400,USD,303400,Canada,Remote,Canada,M,Machine Learning and AI +2024,Senior,Full-time,Machine Learning Engineer,216700,USD,216700,Canada,Remote,Canada,M,Machine Learning and AI +2024,Senior,Full-time,Research Scientist,179000,USD,179000,United States,In-person,United States,M,Data Science and Research +2024,Senior,Full-time,Research Scientist,112000,USD,112000,United States,In-person,United States,M,Data Science and Research +2024,Senior,Full-time,Data Engineer,247300,USD,247300,United States,In-person,United States,M,Data Engineering +2024,Senior,Full-time,Data Engineer,139700,USD,139700,United States,In-person,United States,M,Data Engineering +2024,Entry-level,Full-time,Data Analyst,93000,USD,93000,United States,In-person,United States,M,Data Analysis +2024,Entry-level,Full-time,Data Analyst,65750,USD,65750,United States,In-person,United States,M,Data Analysis +2024,Mid-level,Full-time,Applied Scientist,222200,USD,222200,United States,In-person,United States,L,Data Science and Research +2024,Mid-level,Full-time,Applied Scientist,136000,USD,136000,United States,In-person,United States,L,Data Science and Research +2024,Senior,Full-time,Research Scientist,234000,USD,234000,United States,In-person,United States,M,Data Science and Research +2024,Senior,Full-time,Research Scientist,146000,USD,146000,United States,In-person,United States,M,Data Science and Research +2024,Mid-level,Full-time,Data Engineer,130000,USD,130000,United States,In-person,United States,M,Data Engineering +2024,Mid-level,Full-time,Data Engineer,90800,USD,90800,United States,In-person,United States,M,Data Engineering +2024,Entry-level,Full-time,Data Analyst,93000,USD,93000,United States,In-person,United States,M,Data Analysis +2024,Entry-level,Full-time,Data Analyst,65750,USD,65750,United States,In-person,United States,M,Data Analysis +2024,Entry-level,Part-time,Data Science,15000,EUR,16666,Germany,Hybrid,Germany,M,Data Science and Research +2024,Mid-level,Full-time,Data Engineer,166000,USD,166000,United States,In-person,United States,M,Data Engineering +2024,Mid-level,Full-time,Data Engineer,73100,USD,73100,United States,In-person,United States,M,Data Engineering +2024,Mid-level,Full-time,Data Scientist,166000,USD,166000,United States,In-person,United States,M,Data Science and Research +2024,Mid-level,Full-time,Data Scientist,73100,USD,73100,United States,In-person,United States,M,Data Science and Research +2024,Senior,Full-time,Research Scientist,179000,USD,179000,United States,In-person,United States,M,Data Science and Research +2024,Senior,Full-time,Research Scientist,112000,USD,112000,United States,In-person,United States,M,Data Science and Research +2024,Senior,Full-time,Machine Learning Engineer,186754,USD,186754,United States,In-person,United States,M,Machine Learning and AI +2024,Senior,Full-time,Machine Learning Engineer,101000,USD,101000,United States,In-person,United States,M,Machine Learning and AI +2024,Senior,Full-time,Data Scientist,64000,GBP,80000,United States,In-person,United States,M,Data Science and Research +2024,Senior,Full-time,Data Scientist,54000,GBP,67500,United States,In-person,United States,M,Data Science and Research +2024,Senior,Full-time,Machine Learning Engineer,212000,USD,212000,Egypt,In-person,Egypt,M,Machine Learning and AI +2024,Senior,Full-time,Machine Learning Engineer,93300,USD,93300,Egypt,In-person,Egypt,M,Machine Learning and AI +2024,Senior,Full-time,Data Engineer,138000,USD,138000,United States,In-person,United States,M,Data Engineering +2024,Senior,Full-time,Data Engineer,86000,USD,86000,United States,In-person,United States,M,Data Engineering +2024,Mid-level,Full-time,Data Engineer,106050,USD,106050,United States,In-person,United States,M,Data Engineering +2024,Mid-level,Full-time,Data Engineer,80420,USD,80420,United States,In-person,United States,M,Data Engineering +2024,Senior,Full-time,Research Scientist,234000,USD,234000,United States,In-person,United States,M,Data Science and Research +2024,Senior,Full-time,Research Scientist,146000,USD,146000,United States,In-person,United States,M,Data Science and Research +2024,Entry-level,Full-time,Data Analyst,179000,USD,179000,United States,In-person,United States,M,Data Analysis +2024,Entry-level,Full-time,Data Analyst,112000,USD,112000,United States,In-person,United States,M,Data Analysis +2024,Senior,Full-time,Data Modeler,171210,USD,171210,Canada,In-person,Canada,M,Data Architecture and Modeling +2024,Senior,Full-time,Data Modeler,92190,USD,92190,Canada,In-person,Canada,M,Data Architecture and Modeling +2024,Mid-level,Full-time,Data Scientist,110630,USD,110630,Canada,In-person,Canada,M,Data Science and Research +2024,Mid-level,Full-time,Data Scientist,59570,USD,59570,Canada,In-person,Canada,M,Data Science and Research +2024,Senior,Full-time,Research Engineer,234000,USD,234000,United States,In-person,United States,M,Data Science and Research +2024,Senior,Full-time,Research Engineer,146000,USD,146000,United States,In-person,United States,M,Data Science and Research +2024,Senior,Full-time,Data Architect,186000,USD,186000,United States,In-person,United States,M,Data Architecture and Modeling +2024,Senior,Full-time,Data Architect,81800,USD,81800,United States,In-person,United States,M,Data Architecture and Modeling +2024,Senior,Full-time,BI Developer,95000,USD,95000,India,Remote,India,M,BI and Visualization +2024,Senior,Full-time,BI Developer,80000,USD,80000,India,Remote,India,M,BI and Visualization +2024,Senior,Full-time,Data Engineer,160000,USD,160000,United States,In-person,United States,M,Data Engineering +2024,Senior,Full-time,Data Engineer,94100,USD,94100,United States,In-person,United States,M,Data Engineering +2024,Entry-level,Full-time,Data Engineer,40000,GBP,50000,United Kingdom,In-person,United Kingdom,M,Data Engineering +2024,Entry-level,Full-time,Data Engineer,30000,GBP,37500,United Kingdom,In-person,United Kingdom,M,Data Engineering +2024,Executive,Full-time,Data Engineer,225000,USD,225000,United States,In-person,United States,M,Data Engineering +2024,Executive,Full-time,Data Engineer,215000,USD,215000,United States,In-person,United States,M,Data Engineering +2024,Senior,Full-time,Machine Learning Engineer,303400,USD,303400,United States,Remote,United States,M,Machine Learning and AI +2024,Senior,Full-time,Machine Learning Engineer,216700,USD,216700,United States,Remote,United States,M,Machine Learning and AI +2024,Entry-level,Full-time,Business Intelligence Analyst,45000,GBP,56250,United Kingdom,In-person,United Kingdom,M,BI and Visualization +2024,Entry-level,Full-time,Business Intelligence Analyst,45000,GBP,56250,United Kingdom,In-person,United Kingdom,M,BI and Visualization +2024,Entry-level,Full-time,Data Analyst,179000,USD,179000,United States,In-person,United States,M,Data Analysis +2024,Entry-level,Full-time,Data Analyst,112000,USD,112000,United States,In-person,United States,M,Data Analysis +2024,Mid-level,Full-time,Machine Learning Engineer,166000,USD,166000,United States,In-person,United States,M,Machine Learning and AI +2024,Mid-level,Full-time,Machine Learning Engineer,73100,USD,73100,United States,In-person,United States,M,Machine Learning and AI +2024,Senior,Full-time,Data Modeler,130000,USD,130000,United States,Remote,United States,M,Data Architecture and Modeling +2024,Senior,Full-time,Data Modeler,110000,USD,110000,United States,Remote,United States,M,Data Architecture and Modeling +2024,Mid-level,Full-time,Data Engineer,115000,USD,115000,United States,In-person,United States,M,Data Engineering +2024,Mid-level,Full-time,Data Engineer,80000,USD,80000,United States,In-person,United States,M,Data Engineering +2024,Mid-level,Full-time,Research Scientist,179000,USD,179000,United States,In-person,United States,M,Data Science and Research +2024,Mid-level,Full-time,Research Scientist,112000,USD,112000,United States,In-person,United States,M,Data Science and Research +2024,Senior,Full-time,Machine Learning Engineer,195000,USD,195000,United States,Remote,United States,M,Machine Learning and AI +2024,Senior,Full-time,Machine Learning Engineer,170000,USD,170000,United States,Remote,United States,M,Machine Learning and AI +2024,Mid-level,Full-time,Data Analyst,78000,USD,78000,Canada,In-person,Canada,M,Data Analysis +2024,Mid-level,Full-time,Data Analyst,54000,USD,54000,Canada,In-person,Canada,M,Data Analysis +2024,Mid-level,Full-time,Data Scientist,179000,USD,179000,United States,In-person,United States,M,Data Science and Research +2024,Mid-level,Full-time,Data Scientist,112000,USD,112000,United States,In-person,United States,M,Data Science and Research +2024,Senior,Full-time,Research Scientist,440000,USD,440000,United States,In-person,United States,M,Data Science and Research +2024,Senior,Full-time,Research Scientist,295000,USD,295000,United States,In-person,United States,M,Data Science and Research +2024,Senior,Full-time,Data Scientist,130000,USD,130000,Canada,In-person,Canada,M,Data Science and Research +2024,Senior,Full-time,Data Scientist,120000,USD,120000,Canada,In-person,Canada,M,Data Science and Research +2024,Senior,Full-time,Data Engineer,152375,USD,152375,United States,Remote,United States,M,Data Engineering +2024,Senior,Full-time,Data Engineer,94000,USD,94000,United States,Remote,United States,M,Data Engineering +2024,Senior,Full-time,Data Developer,180000,USD,180000,United States,Remote,United States,M,Leadership and Management +2024,Senior,Full-time,Data Developer,130000,USD,130000,United States,Remote,United States,M,Leadership and Management +2024,Senior,Full-time,Analytics Engineer,195000,USD,195000,United States,Remote,United States,M,Leadership and Management +2024,Senior,Full-time,Analytics Engineer,165000,USD,165000,United States,Remote,United States,M,Leadership and Management +2024,Mid-level,Full-time,Data Scientist,218000,USD,218000,United States,In-person,United States,M,Data Science and Research +2024,Mid-level,Full-time,Data Scientist,152600,USD,152600,United States,In-person,United States,M,Data Science and Research +2024,Mid-level,Full-time,Machine Learning Scientist,150000,USD,150000,United States,In-person,United States,M,Machine Learning and AI +2024,Senior,Full-time,Data Scientist,136197,USD,136197,United States,In-person,United States,M,Data Science and Research +2024,Senior,Full-time,Data Scientist,100000,USD,100000,United States,In-person,United States,M,Data Science and Research +2024,Senior,Full-time,Research Engineer,440000,USD,440000,United States,In-person,United States,M,Data Science and Research +2024,Senior,Full-time,Research Engineer,295000,USD,295000,United States,In-person,United States,M,Data Science and Research +2024,Executive,Full-time,Data Engineer,179000,USD,179000,United States,In-person,United States,M,Data Engineering +2024,Executive,Full-time,Data Engineer,112000,USD,112000,United States,In-person,United States,M,Data Engineering +2024,Mid-level,Full-time,Data Scientist,175100,USD,175100,United States,In-person,United States,M,Data Science and Research +2024,Mid-level,Full-time,Data Scientist,82915,USD,82915,United States,In-person,United States,M,Data Science and Research +2024,Senior,Full-time,Data Science Consultant,112000,USD,112000,United States,In-person,United States,M,Data Science and Research +2024,Senior,Full-time,Data Science Consultant,109000,USD,109000,United States,In-person,United States,M,Data Science and Research +2024,Mid-level,Full-time,Analytics Engineer,116550,USD,116550,United States,In-person,United States,M,Leadership and Management +2024,Mid-level,Full-time,Analytics Engineer,79200,USD,79200,United States,In-person,United States,M,Leadership and Management +2024,Mid-level,Full-time,Data Scientist,168000,USD,168000,United States,Remote,United States,M,Data Science and Research +2024,Mid-level,Full-time,Data Scientist,120000,USD,120000,United States,Remote,United States,M,Data Science and Research +2024,Mid-level,Full-time,Data Scientist,154400,GBP,193000,United Kingdom,In-person,United Kingdom,M,Data Science and Research +2024,Mid-level,Full-time,Data Scientist,76900,GBP,96125,United Kingdom,In-person,United Kingdom,M,Data Science and Research +2024,Senior,Full-time,Machine Learning Engineer,210000,USD,210000,United States,In-person,United States,M,Machine Learning and AI +2024,Senior,Full-time,Machine Learning Engineer,160000,USD,160000,United States,In-person,United States,M,Machine Learning and AI +2024,Senior,Full-time,Data Engineer,116000,USD,116000,United States,In-person,United States,M,Data Engineering +2024,Senior,Full-time,Data Engineer,90000,USD,90000,United States,In-person,United States,M,Data Engineering +2024,Senior,Full-time,Research Scientist,247600,USD,247600,United States,In-person,United States,L,Data Science and Research +2024,Senior,Full-time,Research Scientist,127300,USD,127300,United States,In-person,United States,L,Data Science and Research +2024,Mid-level,Full-time,Data Analyst,40000,GBP,50000,United Kingdom,In-person,United Kingdom,M,Data Analysis +2024,Mid-level,Full-time,Data Analyst,35000,GBP,43750,United Kingdom,In-person,United Kingdom,M,Data Analysis +2024,Senior,Full-time,Data Scientist,190600,USD,190600,United States,Remote,United States,M,Data Science and Research +2024,Senior,Full-time,Data Scientist,94400,USD,94400,United States,Remote,United States,M,Data Science and Research +2024,Senior,Full-time,Machine Learning Engineer,258100,USD,258100,United States,In-person,United States,M,Machine Learning and AI +2024,Senior,Full-time,Machine Learning Engineer,151900,USD,151900,United States,In-person,United States,M,Machine Learning and AI +2024,Mid-level,Full-time,Research Engineer,100000,USD,100000,United States,In-person,United States,M,Data Science and Research +2024,Senior,Full-time,Data Engineer,140000,GBP,175000,United Kingdom,In-person,United Kingdom,M,Data Engineering +2024,Senior,Full-time,Data Engineer,100000,GBP,125000,United Kingdom,In-person,United Kingdom,M,Data Engineering +2024,Senior,Full-time,Data Analyst,171000,USD,171000,United States,In-person,United States,M,Data Analysis +2024,Senior,Full-time,Data Analyst,93000,USD,93000,United States,In-person,United States,M,Data Analysis +2024,Senior,Full-time,Data Science Consultant,104000,USD,104000,United States,In-person,United States,M,Data Science and Research +2024,Senior,Full-time,Data Science Consultant,80000,USD,80000,United States,In-person,United States,M,Data Science and Research +2024,Mid-level,Full-time,Data Analyst,158000,USD,158000,United States,In-person,United States,M,Data Analysis +2024,Mid-level,Full-time,Data Analyst,106000,USD,106000,United States,In-person,United States,M,Data Analysis +2024,Mid-level,Full-time,Research Scientist,100000,USD,100000,United States,In-person,United States,M,Data Science and Research +2024,Senior,Full-time,Data Analyst,140130,USD,140130,United States,In-person,United States,M,Data Analysis +2024,Senior,Full-time,Data Analyst,84870,USD,84870,United States,In-person,United States,M,Data Analysis +2024,Mid-level,Full-time,Research Engineer,100000,USD,100000,United States,In-person,United States,M,Data Science and Research +2024,Senior,Full-time,Research Scientist,278700,USD,278700,United States,In-person,United States,M,Data Science and Research +2024,Senior,Full-time,Research Scientist,159300,USD,159300,United States,In-person,United States,M,Data Science and Research +2024,Senior,Full-time,Data Scientist,220000,USD,220000,United States,Remote,United States,M,Data Science and Research +2024,Senior,Full-time,Data Scientist,170000,USD,170000,United States,Remote,United States,M,Data Science and Research +2024,Mid-level,Full-time,Business Intelligence Developer,117750,USD,117750,United States,In-person,United States,M,BI and Visualization +2024,Mid-level,Full-time,Business Intelligence Developer,70650,USD,70650,United States,In-person,United States,M,BI and Visualization +2024,Senior,Full-time,Data Engineer,233200,USD,233200,United States,In-person,United States,M,Data Engineering +2024,Senior,Full-time,Data Engineer,144200,USD,144200,United States,In-person,United States,M,Data Engineering +2024,Senior,Full-time,Machine Learning Engineer,247500,USD,247500,United States,In-person,United States,M,Machine Learning and AI +2024,Senior,Full-time,Machine Learning Engineer,172200,USD,172200,United States,In-person,United States,M,Machine Learning and AI +2024,Mid-level,Full-time,Data Engineer,138000,USD,138000,United States,In-person,United States,M,Data Engineering +2024,Mid-level,Full-time,Data Engineer,86000,USD,86000,United States,In-person,United States,M,Data Engineering +2024,Entry-level,Full-time,Data Analyst,179000,USD,179000,United States,In-person,United States,M,Data Analysis +2024,Entry-level,Full-time,Data Analyst,112000,USD,112000,United States,In-person,United States,M,Data Analysis +2024,Mid-level,Full-time,Business Intelligence Developer,92000,USD,92000,United States,In-person,United States,M,BI and Visualization +2024,Mid-level,Full-time,Business Intelligence Developer,80000,USD,80000,United States,In-person,United States,M,BI and Visualization +2024,Senior,Full-time,BI Developer,90000,USD,90000,United States,Remote,United States,M,BI and Visualization +2024,Senior,Full-time,BI Developer,70000,USD,70000,United States,Remote,United States,M,BI and Visualization +2024,Senior,Full-time,Business Intelligence Analyst,127000,USD,127000,United States,In-person,United States,M,BI and Visualization +2024,Senior,Full-time,Business Intelligence Analyst,72600,USD,72600,United States,In-person,United States,M,BI and Visualization +2024,Entry-level,Full-time,Data Developer,70000,USD,70000,United States,Remote,United States,M,Leadership and Management +2024,Entry-level,Full-time,Data Developer,50000,USD,50000,United States,Remote,United States,M,Leadership and Management +2024,Entry-level,Full-time,Data Analyst,83000,USD,83000,United States,In-person,United States,M,Data Analysis +2024,Entry-level,Full-time,Data Analyst,71000,USD,71000,United States,In-person,United States,M,Data Analysis +2024,Senior,Full-time,AI Architect,198650,USD,198650,United States,In-person,United States,M,Machine Learning and AI +2024,Senior,Full-time,AI Architect,137000,USD,137000,United States,In-person,United States,M,Machine Learning and AI +2024,Senior,Full-time,Data Architect,160000,USD,160000,United States,In-person,United States,M,Data Architecture and Modeling +2024,Senior,Full-time,Data Architect,100000,USD,100000,United States,In-person,United States,M,Data Architecture and Modeling +2024,Entry-level,Full-time,Data Analyst,92700,USD,92700,United States,Remote,United States,M,Data Analysis +2024,Entry-level,Full-time,Data Analyst,64900,USD,64900,United States,Remote,United States,M,Data Analysis +2024,Mid-level,Full-time,Data Scientist,166000,USD,166000,United States,In-person,United States,M,Data Science and Research +2024,Mid-level,Full-time,Data Scientist,73000,USD,73000,United States,In-person,United States,M,Data Science and Research +2024,Mid-level,Full-time,Data Analyst,81713,USD,81713,United States,Remote,United States,M,Data Analysis +2024,Mid-level,Full-time,Data Analyst,48067,USD,48067,United States,Remote,United States,M,Data Analysis +2024,Mid-level,Full-time,Machine Learning Engineer,179000,USD,179000,United States,In-person,United States,M,Machine Learning and AI +2024,Mid-level,Full-time,Machine Learning Engineer,112000,USD,112000,United States,In-person,United States,M,Machine Learning and AI +2024,Senior,Full-time,Data Science,111800,USD,111800,United States,In-person,United States,M,Data Science and Research +2024,Senior,Full-time,Data Science,68195,USD,68195,United States,In-person,United States,M,Data Science and Research +2024,Senior,Full-time,Business Intelligence Analyst,132000,USD,132000,United States,In-person,United States,M,BI and Visualization +2024,Senior,Full-time,Business Intelligence Analyst,82500,USD,82500,United States,In-person,United States,M,BI and Visualization +2024,Mid-level,Full-time,Research Engineer,140000,USD,140000,United States,In-person,United States,M,Data Science and Research +2024,Mid-level,Full-time,Research Engineer,100000,USD,100000,United States,In-person,United States,M,Data Science and Research +2024,Mid-level,Full-time,Data Analyst,85000,USD,85000,United States,Remote,United States,M,Data Analysis +2024,Mid-level,Full-time,Data Analyst,61800,USD,61800,United States,Remote,United States,M,Data Analysis +2024,Mid-level,Full-time,Data Analyst,129118,USD,129118,United States,In-person,United States,M,Data Analysis +2024,Mid-level,Full-time,Data Analyst,86078,USD,86078,United States,In-person,United States,M,Data Analysis +2024,Senior,Full-time,Data Analyst,140000,USD,140000,Canada,In-person,Canada,M,Data Analysis +2024,Senior,Full-time,Data Analyst,107000,USD,107000,Canada,In-person,Canada,M,Data Analysis +2024,Mid-level,Full-time,Data Scientist,97000,USD,97000,United States,In-person,United States,M,Data Science and Research +2024,Mid-level,Full-time,Data Scientist,62000,USD,62000,United States,In-person,United States,M,Data Science and Research +2024,Mid-level,Full-time,Data Science Manager,237000,USD,237000,United States,Remote,United States,M,Data Science and Research +2024,Mid-level,Full-time,Data Science Manager,201450,USD,201450,United States,Remote,United States,M,Data Science and Research +2024,Executive,Full-time,Data Engineer,219650,USD,219650,United States,Remote,United States,M,Data Engineering +2024,Executive,Full-time,Data Engineer,136000,USD,136000,United States,Remote,United States,M,Data Engineering +2024,Entry-level,Full-time,Data Analyst,92700,USD,92700,United States,Remote,United States,M,Data Analysis +2024,Entry-level,Full-time,Data Analyst,64900,USD,64900,United States,Remote,United States,M,Data Analysis +2024,Mid-level,Full-time,Business Intelligence Developer,87800,USD,87800,United States,In-person,United States,M,BI and Visualization +2024,Mid-level,Full-time,Business Intelligence Developer,76300,USD,76300,United States,In-person,United States,M,BI and Visualization +2024,Senior,Full-time,Research Engineer,97000,USD,97000,United States,In-person,United States,M,Data Science and Research +2024,Senior,Full-time,Research Engineer,62000,USD,62000,United States,In-person,United States,M,Data Science and Research +2024,Senior,Full-time,Machine Learning Engineer,253000,USD,253000,United States,In-person,United States,M,Machine Learning and AI +2024,Senior,Full-time,Machine Learning Engineer,187000,USD,187000,United States,In-person,United States,M,Machine Learning and AI +2024,Senior,Full-time,Machine Learning Engineer,250000,USD,250000,United States,In-person,United States,M,Machine Learning and AI +2024,Senior,Full-time,Machine Learning Engineer,150000,USD,150000,United States,In-person,United States,M,Machine Learning and AI +2024,Mid-level,Full-time,Data Engineer,184000,USD,184000,United States,In-person,United States,M,Data Engineering +2024,Mid-level,Full-time,Data Engineer,123000,USD,123000,United States,In-person,United States,M,Data Engineering +2024,Senior,Full-time,Data Scientist,245000,USD,245000,United States,In-person,United States,M,Data Science and Research +2024,Senior,Full-time,Data Scientist,180000,USD,180000,United States,In-person,United States,M,Data Science and Research +2024,Senior,Full-time,Data Engineer,184000,USD,184000,United States,In-person,United States,M,Data Engineering +2024,Senior,Full-time,Data Engineer,123000,USD,123000,United States,In-person,United States,M,Data Engineering +2024,Senior,Full-time,AI Architect,317000,USD,317000,United States,In-person,United States,M,Machine Learning and AI +2024,Senior,Full-time,AI Architect,266000,USD,266000,United States,In-person,United States,M,Machine Learning and AI +2024,Senior,Full-time,Machine Learning Engineer,229000,USD,229000,United States,In-person,United States,M,Machine Learning and AI +2024,Senior,Full-time,Machine Learning Engineer,221000,USD,221000,United States,In-person,United States,M,Machine Learning and AI +2024,Mid-level,Full-time,Data Engineer,184000,USD,184000,United States,In-person,United States,M,Data Engineering +2024,Mid-level,Full-time,Data Engineer,123000,USD,123000,United States,In-person,United States,M,Data Engineering +2024,Mid-level,Full-time,BI Developer,120000,USD,120000,United States,In-person,United States,M,BI and Visualization +2024,Mid-level,Full-time,BI Developer,62100,USD,62100,United States,In-person,United States,M,BI and Visualization +2024,Senior,Full-time,Data Engineer,210000,USD,210000,United States,Remote,United States,M,Data Engineering +2024,Senior,Full-time,Data Engineer,162000,USD,162000,United States,Remote,United States,M,Data Engineering +2024,Senior,Full-time,Machine Learning Engineer,198000,USD,198000,United States,In-person,United States,M,Machine Learning and AI +2024,Senior,Full-time,Machine Learning Engineer,162000,USD,162000,United States,In-person,United States,M,Machine Learning and AI +2024,Senior,Full-time,Machine Learning Engineer,300000,USD,300000,United States,In-person,United States,M,Machine Learning and AI +2024,Senior,Full-time,Machine Learning Engineer,180000,USD,180000,United States,In-person,United States,M,Machine Learning and AI +2024,Mid-level,Full-time,Data Scientist,68088,USD,68088,United States,In-person,United States,M,Data Science and Research +2024,Mid-level,Full-time,Data Scientist,54552,USD,54552,United States,In-person,United States,M,Data Science and Research +2024,Senior,Full-time,Data Scientist,324000,USD,324000,United States,In-person,United States,M,Data Science and Research +2024,Senior,Full-time,Data Scientist,159000,USD,159000,United States,In-person,United States,M,Data Science and Research +2024,Mid-level,Full-time,Data Analytics Manager,99000,USD,99000,United States,In-person,United States,M,Leadership and Management +2024,Mid-level,Full-time,Data Analytics Manager,70000,USD,70000,United States,In-person,United States,M,Leadership and Management +2024,Senior,Full-time,Machine Learning Engineer,220000,USD,220000,United States,In-person,United States,M,Machine Learning and AI +2024,Senior,Full-time,Machine Learning Engineer,146000,USD,146000,United States,In-person,United States,M,Machine Learning and AI +2024,Mid-level,Full-time,Data Scientist,105000,USD,105000,United States,In-person,United States,M,Data Science and Research +2024,Mid-level,Full-time,Data Scientist,70000,USD,70000,United States,In-person,United States,M,Data Science and Research +2024,Mid-level,Full-time,Data Engineer,110000,USD,110000,United States,Remote,United States,M,Data Engineering +2024,Mid-level,Full-time,Data Engineer,90000,USD,90000,United States,Remote,United States,M,Data Engineering +2024,Mid-level,Full-time,Data Scientist,60000,USD,60000,United States,In-person,United States,M,Data Science and Research +2024,Mid-level,Full-time,Data Scientist,55000,USD,55000,United States,In-person,United States,M,Data Science and Research +2024,Entry-level,Full-time,Data Analyst,116013,USD,116013,United States,In-person,United States,M,Data Analysis +2024,Entry-level,Full-time,Data Analyst,92810,USD,92810,United States,In-person,United States,M,Data Analysis +2024,Senior,Full-time,Research Analyst,200000,USD,200000,United States,In-person,United States,M,Data Science and Research +2024,Senior,Full-time,Research Analyst,150000,USD,150000,United States,In-person,United States,M,Data Science and Research +2024,Senior,Full-time,Data Engineer,221000,USD,221000,United States,In-person,United States,M,Data Engineering +2024,Senior,Full-time,Data Engineer,138000,USD,138000,United States,In-person,United States,M,Data Engineering +2024,Mid-level,Full-time,Data Engineer,146100,USD,146100,United States,In-person,United States,M,Data Engineering +2024,Mid-level,Full-time,Data Engineer,86500,USD,86500,United States,In-person,United States,M,Data Engineering +2024,Senior,Full-time,Data Scientist,159300,USD,159300,United States,In-person,United States,M,Data Science and Research +2024,Senior,Full-time,Data Scientist,96600,USD,96600,United States,In-person,United States,M,Data Science and Research +2024,Senior,Full-time,Data Engineer,209300,USD,209300,United States,In-person,United States,M,Data Engineering +2024,Senior,Full-time,Data Engineer,118300,USD,118300,United States,In-person,United States,M,Data Engineering +2024,Senior,Full-time,Data Scientist,170000,USD,170000,United States,Remote,United States,M,Data Science and Research +2024,Senior,Full-time,Data Scientist,130000,USD,130000,United States,Remote,United States,M,Data Science and Research +2024,Senior,Full-time,Data Engineer,140000,USD,140000,United States,Remote,United States,M,Data Engineering +2024,Senior,Full-time,Data Engineer,97200,USD,97200,United States,Remote,United States,M,Data Engineering +2024,Mid-level,Full-time,Data Scientist,179000,USD,179000,United States,In-person,United States,M,Data Science and Research +2024,Mid-level,Full-time,Data Scientist,112000,USD,112000,United States,In-person,United States,M,Data Science and Research +2024,Senior,Full-time,Data Analyst,140000,USD,140000,United States,Remote,United States,M,Data Analysis +2024,Senior,Full-time,Data Analyst,120000,USD,120000,United States,Remote,United States,M,Data Analysis +2024,Mid-level,Full-time,Data Engineer,308000,USD,308000,United States,In-person,United States,M,Data Engineering +2024,Mid-level,Full-time,Data Engineer,193000,USD,193000,United States,In-person,United States,M,Data Engineering +2024,Senior,Full-time,Data Engineer,240000,USD,240000,United States,In-person,United States,M,Data Engineering +2024,Senior,Full-time,Data Engineer,180000,USD,180000,United States,In-person,United States,M,Data Engineering +2024,Senior,Full-time,Data Analyst,126480,USD,126480,United States,In-person,United States,M,Data Analysis +2024,Senior,Full-time,Data Analyst,82620,USD,82620,United States,In-person,United States,M,Data Analysis +2024,Senior,Full-time,Machine Learning Engineer,324000,USD,324000,United States,In-person,United States,M,Machine Learning and AI +2024,Senior,Full-time,Machine Learning Engineer,159000,USD,159000,United States,In-person,United States,M,Machine Learning and AI +2024,Mid-level,Full-time,Data Scientist,140025,USD,140025,United States,Remote,United States,M,Data Science and Research +2024,Mid-level,Full-time,Data Scientist,102300,USD,102300,United States,Remote,United States,M,Data Science and Research +2024,Senior,Full-time,Data Engineer,180000,USD,180000,United States,In-person,United States,M,Data Engineering +2024,Senior,Full-time,Data Engineer,150000,USD,150000,United States,In-person,United States,M,Data Engineering +2024,Mid-level,Full-time,Data Scientist,224000,USD,224000,Canada,In-person,Canada,M,Data Science and Research +2024,Mid-level,Full-time,Data Scientist,146000,USD,146000,Canada,In-person,Canada,M,Data Science and Research +2024,Senior,Full-time,AI Engineer,120000,GBP,150000,United Kingdom,Remote,United Kingdom,M,Machine Learning and AI +2024,Senior,Full-time,AI Engineer,90000,GBP,112500,United Kingdom,Remote,United Kingdom,M,Machine Learning and AI +2024,Mid-level,Full-time,Research Scientist,81500,USD,81500,United States,Remote,United States,M,Data Science and Research +2024,Mid-level,Full-time,Research Scientist,75000,USD,75000,United States,Remote,United States,M,Data Science and Research +2024,Senior,Full-time,Data Scientist,106875,USD,106875,United States,In-person,United States,M,Data Science and Research +2024,Senior,Full-time,Data Scientist,71250,USD,71250,United States,In-person,United States,M,Data Science and Research +2024,Mid-level,Full-time,Data Science Engineer,245000,USD,245000,United States,Remote,United States,M,Data Science and Research +2024,Mid-level,Full-time,Data Science Engineer,135000,USD,135000,United States,Remote,United States,M,Data Science and Research +2024,Senior,Full-time,Business Intelligence Developer,144138,USD,144138,United States,In-person,United States,M,BI and Visualization +2024,Senior,Full-time,Business Intelligence Developer,104828,USD,104828,United States,In-person,United States,M,BI and Visualization +2024,Senior,Full-time,Data Scientist,161000,USD,161000,United States,In-person,United States,M,Data Science and Research +2024,Senior,Full-time,Data Scientist,133200,USD,133200,United States,In-person,United States,M,Data Science and Research +2024,Mid-level,Full-time,Data Scientist,161875,USD,161875,United States,In-person,United States,M,Data Science and Research +2024,Mid-level,Full-time,Data Scientist,97125,USD,97125,United States,In-person,United States,M,Data Science and Research +2024,Senior,Full-time,Machine Learning Engineer,196350,USD,196350,United States,Remote,United States,M,Machine Learning and AI +2024,Senior,Full-time,Machine Learning Engineer,127500,USD,127500,United States,Remote,United States,M,Machine Learning and AI +2024,Mid-level,Full-time,Data Scientist,135450,USD,135450,United States,Remote,United States,M,Data Science and Research +2024,Mid-level,Full-time,Data Scientist,72870,USD,72870,United States,Remote,United States,M,Data Science and Research +2024,Senior,Full-time,Data Science,237200,USD,237200,United States,In-person,United States,M,Data Science and Research +2024,Senior,Full-time,Data Science,172500,USD,172500,United States,In-person,United States,M,Data Science and Research +2024,Senior,Full-time,Data Scientist,184800,USD,184800,United States,In-person,United States,M,Data Science and Research +2024,Senior,Full-time,Data Scientist,161900,USD,161900,United States,In-person,United States,M,Data Science and Research +2024,Senior,Full-time,Data Scientist,146800,USD,146800,United States,In-person,United States,M,Data Science and Research +2024,Senior,Full-time,Data Scientist,117400,USD,117400,United States,In-person,United States,M,Data Science and Research +2024,Entry-level,Full-time,Data Analyst,90000,USD,90000,United States,In-person,United States,M,Data Analysis +2024,Entry-level,Full-time,Data Analyst,60000,USD,60000,United States,In-person,United States,M,Data Analysis +2024,Senior,Full-time,Data Product Manager,227200,USD,227200,United States,In-person,United States,M,Leadership and Management +2024,Senior,Full-time,Data Product Manager,199100,USD,199100,United States,In-person,United States,M,Leadership and Management +2024,Mid-level,Full-time,Data Scientist,310000,USD,310000,United States,In-person,United States,M,Data Science and Research +2024,Mid-level,Full-time,Data Scientist,245000,USD,245000,United States,In-person,United States,M,Data Science and Research +2024,Senior,Full-time,Data Engineer,140000,USD,140000,United States,In-person,United States,M,Data Engineering +2024,Senior,Full-time,Data Engineer,125000,USD,125000,United States,In-person,United States,M,Data Engineering +2024,Mid-level,Full-time,Machine Learning Engineer,223000,USD,223000,United States,In-person,United States,M,Machine Learning and AI +2024,Mid-level,Full-time,Machine Learning Engineer,171600,USD,171600,United States,In-person,United States,M,Machine Learning and AI +2024,Senior,Full-time,Data Analyst,192500,USD,192500,United States,Remote,United States,M,Data Analysis +2024,Senior,Full-time,Data Analyst,122500,USD,122500,United States,Remote,United States,M,Data Analysis +2024,Senior,Full-time,Data Analyst,162900,USD,162900,United States,Remote,United States,M,Data Analysis +2024,Senior,Full-time,Data Analyst,117725,USD,117725,United States,Remote,United States,M,Data Analysis +2024,Entry-level,Full-time,Data Analyst,140000,USD,140000,United States,In-person,United States,M,Data Analysis +2024,Entry-level,Full-time,Data Analyst,100000,USD,100000,United States,In-person,United States,M,Data Analysis +2024,Mid-level,Full-time,Data Engineer,170000,USD,170000,United States,Remote,United States,M,Data Engineering +2024,Mid-level,Full-time,Data Engineer,105000,USD,105000,United States,Remote,United States,M,Data Engineering +2024,Senior,Full-time,Data Scientist,180000,USD,180000,United States,In-person,United States,M,Data Science and Research +2024,Senior,Full-time,Data Scientist,139000,USD,139000,United States,In-person,United States,M,Data Science and Research +2024,Senior,Full-time,Analytics Engineer,234200,USD,234200,United States,In-person,United States,M,Leadership and Management +2024,Senior,Full-time,Analytics Engineer,124000,USD,124000,United States,In-person,United States,M,Leadership and Management +2024,Mid-level,Full-time,Data Scientist,153700,USD,153700,United States,Remote,United States,M,Data Science and Research +2024,Mid-level,Full-time,Data Scientist,87300,USD,87300,United States,Remote,United States,M,Data Science and Research +2024,Senior,Full-time,Data Engineer,282000,USD,282000,United States,In-person,United States,M,Data Engineering +2024,Senior,Full-time,Data Engineer,208000,USD,208000,United States,In-person,United States,M,Data Engineering +2024,Senior,Full-time,Data Scientist,70000,EUR,77777,Portugal,In-person,Portugal,M,Data Science and Research +2024,Senior,Full-time,Data Scientist,60000,EUR,66666,Portugal,In-person,Portugal,M,Data Science and Research +2024,Mid-level,Full-time,Data Engineer,162000,USD,162000,United States,Remote,United States,M,Data Engineering +2024,Mid-level,Full-time,Data Engineer,129000,USD,129000,United States,Remote,United States,M,Data Engineering +2024,Senior,Full-time,Research Scientist,138000,USD,138000,United States,In-person,United States,M,Data Science and Research +2024,Senior,Full-time,Research Scientist,86000,USD,86000,United States,In-person,United States,M,Data Science and Research +2024,Mid-level,Full-time,Machine Learning Engineer,90000,EUR,100000,Ireland,Remote,Ireland,M,Machine Learning and AI +2024,Mid-level,Full-time,Machine Learning Engineer,85000,EUR,94444,Ireland,Remote,Ireland,M,Machine Learning and AI +2024,Entry-level,Full-time,Research Analyst,110000,USD,110000,United States,In-person,United States,M,Data Science and Research +2024,Entry-level,Full-time,Research Analyst,90000,USD,90000,United States,In-person,United States,M,Data Science and Research +2024,Senior,Full-time,Data Engineer,255800,USD,255800,United States,In-person,United States,M,Data Engineering +2024,Senior,Full-time,Data Engineer,176000,USD,176000,United States,In-person,United States,M,Data Engineering +2024,Entry-level,Full-time,Research Analyst,120000,USD,120000,United States,Remote,United States,M,Data Science and Research +2024,Entry-level,Full-time,Research Analyst,105000,USD,105000,United States,Remote,United States,M,Data Science and Research +2024,Senior,Full-time,Analytics Engineer,104755,GBP,130943,United Kingdom,In-person,United Kingdom,M,Leadership and Management +2024,Senior,Full-time,Analytics Engineer,83376,GBP,104220,United Kingdom,In-person,United Kingdom,M,Leadership and Management +2024,Entry-level,Full-time,Data Analyst,40000,GBP,50000,United Kingdom,Remote,United Kingdom,M,Data Analysis +2024,Entry-level,Full-time,Data Analyst,35000,GBP,43750,United Kingdom,Remote,United Kingdom,M,Data Analysis +2024,Mid-level,Full-time,Data Engineer,210000,USD,210000,United States,In-person,United States,M,Data Engineering +2024,Mid-level,Full-time,Data Engineer,140000,USD,140000,United States,In-person,United States,M,Data Engineering +2024,Mid-level,Full-time,Data Engineer,37000,GBP,46250,United Kingdom,Remote,United Kingdom,M,Data Engineering +2024,Mid-level,Full-time,Data Engineer,24000,GBP,30000,United Kingdom,Remote,United Kingdom,M,Data Engineering +2024,Senior,Full-time,Data Engineer,165000,USD,165000,United States,Remote,United States,M,Data Engineering +2024,Senior,Full-time,Data Engineer,150000,USD,150000,United States,Remote,United States,M,Data Engineering +2024,Senior,Full-time,Data Architect,160000,USD,160000,United States,In-person,United States,M,Data Architecture and Modeling +2024,Senior,Full-time,Data Architect,130000,USD,130000,United States,In-person,United States,M,Data Architecture and Modeling +2024,Entry-level,Full-time,Data Analyst,156000,USD,156000,United States,In-person,United States,M,Data Analysis +2024,Entry-level,Full-time,Data Analyst,124000,USD,124000,United States,In-person,United States,M,Data Analysis +2024,Senior,Full-time,Analytics Engineer,189000,USD,189000,United States,Remote,United States,M,Leadership and Management +2024,Senior,Full-time,Analytics Engineer,140000,USD,140000,United States,Remote,United States,M,Leadership and Management +2024,Senior,Full-time,Data Analyst,158494,USD,158494,United States,Remote,United States,M,Data Analysis +2024,Senior,Full-time,Data Analyst,88052,USD,88052,United States,Remote,United States,M,Data Analysis +2024,Senior,Full-time,Data Engineer,175000,USD,175000,United States,In-person,United States,M,Data Engineering +2024,Senior,Full-time,Data Engineer,140000,USD,140000,United States,In-person,United States,M,Data Engineering +2024,Mid-level,Full-time,Data Specialist,111000,USD,111000,United States,In-person,United States,M,Data Management and Strategy +2024,Mid-level,Full-time,Data Specialist,79200,USD,79200,United States,In-person,United States,M,Data Management and Strategy +2024,Senior,Full-time,Data Analyst,220000,USD,220000,United States,Remote,United States,M,Data Analysis +2024,Senior,Full-time,Data Analyst,170000,USD,170000,United States,Remote,United States,M,Data Analysis +2024,Senior,Full-time,Data Scientist,195500,USD,195500,United States,Remote,United States,M,Data Science and Research +2024,Senior,Full-time,Data Scientist,141300,USD,141300,United States,Remote,United States,M,Data Science and Research +2024,Senior,Full-time,Data Engineer,139810,USD,139810,United States,In-person,United States,M,Data Engineering +2024,Senior,Full-time,Data Engineer,95325,USD,95325,United States,In-person,United States,M,Data Engineering +2023,Senior,Full-time,Data Modeler,258700,USD,258700,United States,In-person,United States,M,Data Architecture and Modeling +2023,Senior,Full-time,Data Modeler,146600,USD,146600,United States,In-person,United States,M,Data Architecture and Modeling +2023,Mid-level,Full-time,Data Science Manager,190000,USD,190000,United States,Remote,United States,M,Data Science and Research +2023,Mid-level,Full-time,Data Science Manager,160000,USD,160000,United States,Remote,United States,M,Data Science and Research +2023,Entry-level,Full-time,Research Analyst,90000,USD,90000,United States,Remote,United States,M,Data Science and Research +2023,Entry-level,Full-time,Research Analyst,65000,USD,65000,United States,Remote,United States,M,Data Science and Research +2023,Mid-level,Full-time,Data Engineer,160000,USD,160000,United States,Remote,United States,M,Data Engineering +2023,Mid-level,Full-time,Data Engineer,130000,USD,130000,United States,Remote,United States,M,Data Engineering +2023,Mid-level,Full-time,Data Analyst,85000,USD,85000,United States,In-person,United States,M,Data Analysis +2023,Mid-level,Full-time,Data Analyst,65000,USD,65000,United States,In-person,United States,M,Data Analysis +2023,Senior,Full-time,ETL Developer,143800,USD,143800,United States,In-person,United States,M,Data Engineering +2023,Senior,Full-time,ETL Developer,95800,USD,95800,United States,In-person,United States,M,Data Engineering +2023,Mid-level,Full-time,Machine Learning Engineer,166000,USD,166000,United States,In-person,United States,M,Machine Learning and AI +2023,Mid-level,Full-time,Machine Learning Engineer,73100,USD,73100,United States,In-person,United States,M,Machine Learning and AI +2023,Mid-level,Full-time,Data Engineer,114000,USD,114000,United States,In-person,United States,M,Data Engineering +2023,Mid-level,Full-time,Data Engineer,72000,USD,72000,United States,In-person,United States,M,Data Engineering +2023,Mid-level,Full-time,Data Analyst,102500,USD,102500,United States,In-person,United States,M,Data Analysis +2023,Mid-level,Full-time,Data Analyst,65000,USD,65000,United States,In-person,United States,M,Data Analysis +2023,Senior,Full-time,Machine Learning Engineer,258700,USD,258700,United States,In-person,United States,M,Machine Learning and AI +2023,Senior,Full-time,Machine Learning Engineer,160000,USD,160000,United States,In-person,United States,M,Machine Learning and AI +2023,Senior,Full-time,Data Scientist,203649,USD,203649,United States,Remote,United States,M,Data Science and Research +2023,Senior,Full-time,Data Scientist,183284,USD,183284,United States,Remote,United States,M,Data Science and Research +2023,Mid-level,Full-time,Data Scientist,56000,EUR,60462,Germany,Remote,Germany,L,Data Science and Research +2023,Entry-level,Full-time,Data Analyst,27000,GBP,33220,United Kingdom,In-person,United Kingdom,M,Data Analysis +2023,Entry-level,Full-time,Data Analyst,27000,GBP,33220,United Kingdom,In-person,United Kingdom,M,Data Analysis +2023,Mid-level,Full-time,Data Specialist,81800,USD,81800,United States,In-person,United States,M,Data Management and Strategy +2023,Mid-level,Full-time,Data Specialist,70800,USD,70800,United States,In-person,United States,M,Data Management and Strategy +2023,Senior,Full-time,Data Analyst,130000,USD,130000,United States,In-person,United States,M,Data Analysis +2023,Senior,Full-time,Data Analyst,80850,USD,80850,United States,In-person,United States,M,Data Analysis +2023,Senior,Full-time,Machine Learning Engineer,215000,USD,215000,United States,In-person,United States,M,Machine Learning and AI +2023,Senior,Full-time,Machine Learning Engineer,146900,USD,146900,United States,In-person,United States,M,Machine Learning and AI +2023,Senior,Full-time,Data Strategist,242000,USD,242000,United States,In-person,United States,M,Data Architecture and Modeling +2023,Senior,Full-time,Data Strategist,106200,USD,106200,United States,In-person,United States,M,Data Architecture and Modeling +2023,Mid-level,Full-time,Machine Learning Engineer,165000,USD,165000,United States,In-person,United States,M,Machine Learning and AI +2023,Mid-level,Full-time,Machine Learning Engineer,135000,USD,135000,United States,In-person,United States,M,Machine Learning and AI +2023,Entry-level,Full-time,Data Analyst,75065,USD,75065,United States,Remote,United States,M,Data Analysis +2023,Entry-level,Full-time,Data Analyst,41419,USD,41419,United States,Remote,United States,M,Data Analysis +2023,Senior,Full-time,Data Engineer,145000,USD,145000,United States,Remote,United States,M,Data Engineering +2023,Senior,Full-time,Data Engineer,120000,USD,120000,United States,Remote,United States,M,Data Engineering +2023,Senior,Full-time,Prompt Engineer,184000,USD,184000,United States,In-person,United States,M,Machine Learning and AI +2023,Senior,Full-time,Prompt Engineer,112000,USD,112000,United States,In-person,United States,M,Machine Learning and AI +2023,Senior,Full-time,Machine Learning Engineer,275000,USD,275000,United States,In-person,United States,M,Machine Learning and AI +2023,Senior,Full-time,Machine Learning Engineer,170000,USD,170000,United States,In-person,United States,M,Machine Learning and AI +2023,Entry-level,Full-time,Data Scientist,100000,USD,100000,United States,In-person,United States,M,Data Science and Research +2023,Entry-level,Full-time,Data Scientist,70000,USD,70000,United States,In-person,United States,M,Data Science and Research +2023,Mid-level,Full-time,Business Intelligence Developer,45000,GBP,55368,United Kingdom,In-person,United Kingdom,M,BI and Visualization +2023,Mid-level,Full-time,Business Intelligence Developer,25000,GBP,30760,United Kingdom,In-person,United Kingdom,M,BI and Visualization +2023,Mid-level,Full-time,Data Scientist,135700,USD,135700,United States,In-person,United States,M,Data Science and Research +2023,Mid-level,Full-time,Data Scientist,108560,USD,108560,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Research Engineer,300000,USD,300000,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Research Engineer,180000,USD,180000,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Business Intelligence Analyst,189000,USD,189000,United States,Remote,United States,M,BI and Visualization +2023,Senior,Full-time,Business Intelligence Analyst,118100,USD,118100,United States,Remote,United States,M,BI and Visualization +2023,Senior,Full-time,Data Science Lead,148300,USD,148300,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Data Science Lead,84700,USD,84700,United States,In-person,United States,M,Data Science and Research +2023,Entry-level,Full-time,Research Engineer,32982,GBP,40581,South Africa,In-person,South Africa,M,Data Science and Research +2023,Entry-level,Full-time,Research Engineer,31396,GBP,38629,South Africa,In-person,South Africa,M,Data Science and Research +2023,Senior,Full-time,ML Engineer,275000,USD,275000,Germany,In-person,Germany,M,Machine Learning and AI +2023,Senior,Full-time,ML Engineer,121200,USD,121200,Germany,In-person,Germany,M,Machine Learning and AI +2023,Mid-level,Full-time,Analytics Engineer,149925,USD,149925,United States,In-person,United States,M,Leadership and Management +2023,Mid-level,Full-time,Analytics Engineer,91260,USD,91260,United States,In-person,United States,M,Leadership and Management +2023,Senior,Full-time,BI Developer,70000,GBP,86128,United Kingdom,In-person,United Kingdom,M,BI and Visualization +2023,Senior,Full-time,BI Developer,60600,GBP,74562,United Kingdom,In-person,United Kingdom,M,BI and Visualization +2023,Senior,Full-time,Data Scientist,277000,USD,277000,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Data Scientist,173000,USD,173000,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Data Scientist,242000,USD,242000,Australia,In-person,Australia,M,Data Science and Research +2023,Senior,Full-time,Data Scientist,106200,USD,106200,Australia,In-person,Australia,M,Data Science and Research +2023,Mid-level,Full-time,Data Quality Manager,56000,GBP,68902,United Kingdom,In-person,United Kingdom,M,Data Quality and Operations +2023,Mid-level,Full-time,Data Quality Manager,40000,GBP,49216,United Kingdom,In-person,United Kingdom,M,Data Quality and Operations +2023,Senior,Full-time,Applied Scientist,250900,USD,250900,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Applied Scientist,135200,USD,135200,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Data Scientist,187415,USD,187415,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Data Scientist,114080,USD,114080,United States,In-person,United States,M,Data Science and Research +2023,Mid-level,Full-time,Data Scientist,220000,USD,220000,United States,In-person,United States,M,Data Science and Research +2023,Mid-level,Full-time,Data Scientist,137500,USD,137500,United States,In-person,United States,M,Data Science and Research +2023,Mid-level,Full-time,Data Analyst,119000,USD,119000,United States,In-person,United States,M,Data Analysis +2023,Mid-level,Full-time,Data Analyst,52100,USD,52100,United States,In-person,United States,M,Data Analysis +2023,Senior,Full-time,Business Intelligence Developer,120000,USD,120000,United States,Remote,United States,M,BI and Visualization +2023,Senior,Full-time,Business Intelligence Developer,102000,USD,102000,United States,Remote,United States,M,BI and Visualization +2023,Entry-level,Full-time,Data Analyst,64000,USD,64000,United States,In-person,United States,M,Data Analysis +2023,Entry-level,Full-time,Data Analyst,60000,USD,60000,United States,In-person,United States,M,Data Analysis +2023,Mid-level,Full-time,Data Engineer,179000,USD,179000,United States,In-person,United States,M,Data Engineering +2023,Mid-level,Full-time,Data Engineer,112000,USD,112000,United States,In-person,United States,M,Data Engineering +2023,Entry-level,Full-time,Data Analyst,65000,USD,65000,United States,In-person,United States,M,Data Analysis +2023,Entry-level,Full-time,Data Analyst,54000,USD,54000,United States,In-person,United States,M,Data Analysis +2023,Mid-level,Full-time,Business Intelligence Analyst,119000,USD,119000,United States,In-person,United States,M,BI and Visualization +2023,Mid-level,Full-time,Business Intelligence Analyst,52100,USD,52100,United States,In-person,United States,M,BI and Visualization +2023,Mid-level,Full-time,Data Engineer,152000,USD,152000,Canada,Remote,Canada,M,Data Engineering +2023,Mid-level,Full-time,Data Engineer,99000,USD,99000,Canada,Remote,Canada,M,Data Engineering +2023,Executive,Full-time,Head of Data,90000,GBP,110736,United Kingdom,Remote,United Kingdom,M,Leadership and Management +2023,Executive,Full-time,Head of Data,75000,GBP,92280,United Kingdom,Remote,United Kingdom,M,Leadership and Management +2023,Senior,Full-time,Machine Learning Engineer,250000,USD,250000,United States,In-person,United States,M,Machine Learning and AI +2023,Senior,Full-time,Machine Learning Engineer,140000,USD,140000,United States,In-person,United States,M,Machine Learning and AI +2023,Entry-level,Full-time,Data Scientist,113800,USD,113800,United States,In-person,United States,M,Data Science and Research +2023,Entry-level,Full-time,Data Scientist,63200,USD,63200,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Data Scientist,210000,USD,210000,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Data Scientist,160000,USD,160000,United States,In-person,United States,M,Data Science and Research +2023,Mid-level,Full-time,Data Engineer,170000,USD,170000,United States,In-person,United States,M,Data Engineering +2023,Mid-level,Full-time,Data Engineer,130000,USD,130000,United States,In-person,United States,M,Data Engineering +2023,Senior,Full-time,Research Scientist,247600,USD,247600,United States,In-person,United States,L,Data Science and Research +2023,Senior,Full-time,Research Scientist,127300,USD,127300,United States,In-person,United States,L,Data Science and Research +2023,Mid-level,Full-time,Data Analyst,85000,USD,85000,United States,In-person,United States,M,Data Analysis +2023,Mid-level,Full-time,Data Analyst,65000,USD,65000,United States,In-person,United States,M,Data Analysis +2023,Mid-level,Full-time,Machine Learning Engineer,125000,USD,125000,United States,In-person,United States,M,Machine Learning and AI +2023,Mid-level,Full-time,Machine Learning Engineer,100000,USD,100000,United States,In-person,United States,M,Machine Learning and AI +2023,Senior,Full-time,Data Scientist,160000,USD,160000,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Data Scientist,140000,USD,140000,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Data Engineer,247300,USD,247300,United States,In-person,United States,M,Data Engineering +2023,Senior,Full-time,Data Engineer,139700,USD,139700,United States,In-person,United States,M,Data Engineering +2023,Senior,Full-time,Data Analyst,192000,USD,192000,United States,Remote,United States,M,Data Analysis +2023,Senior,Full-time,Data Analyst,138240,USD,138240,United States,Remote,United States,M,Data Analysis +2023,Senior,Full-time,Data Scientist,170000,USD,170000,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Data Scientist,130000,USD,130000,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Data Architect,100000,USD,100000,United States,Remote,United States,M,Data Architecture and Modeling +2023,Senior,Full-time,Data Architect,90000,USD,90000,United States,Remote,United States,M,Data Architecture and Modeling +2023,Senior,Full-time,Data Analyst,170000,USD,170000,United States,Remote,United States,M,Data Analysis +2023,Senior,Full-time,Data Analyst,130000,USD,130000,United States,Remote,United States,M,Data Analysis +2023,Mid-level,Full-time,Data Engineer,186000,USD,186000,United States,In-person,United States,M,Data Engineering +2023,Mid-level,Full-time,Data Engineer,81800,USD,81800,United States,In-person,United States,M,Data Engineering +2023,Senior,Full-time,Data Engineer,180514,USD,180514,United Kingdom,Remote,United Kingdom,M,Data Engineering +2023,Senior,Full-time,Data Engineer,108308,USD,108308,United Kingdom,Remote,United Kingdom,M,Data Engineering +2023,Senior,Full-time,Data Engineer,166000,USD,166000,United States,In-person,United States,M,Data Engineering +2023,Senior,Full-time,Data Engineer,73100,USD,73100,United States,In-person,United States,M,Data Engineering +2023,Mid-level,Full-time,Data Analyst,115950,USD,115950,United States,In-person,United States,M,Data Analysis +2023,Mid-level,Full-time,Data Analyst,69570,USD,69570,United States,In-person,United States,M,Data Analysis +2023,Senior,Full-time,Data Science,142300,USD,142300,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Data Science,71200,USD,71200,United States,In-person,United States,M,Data Science and Research +2023,Mid-level,Full-time,Data Science,179000,USD,179000,United States,In-person,United States,M,Data Science and Research +2023,Mid-level,Full-time,Data Science,106500,USD,106500,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Data Analyst,119200,USD,119200,United States,Remote,United States,M,Data Analysis +2023,Senior,Full-time,Data Analyst,86600,USD,86600,United States,Remote,United States,M,Data Analysis +2023,Senior,Full-time,Data Engineer,140544,USD,140544,United States,Remote,United States,M,Data Engineering +2023,Senior,Full-time,Data Engineer,82673,USD,82673,United States,Remote,United States,M,Data Engineering +2023,Senior,Full-time,Business Intelligence Engineer,108350,USD,108350,United States,In-person,United States,M,BI and Visualization +2023,Senior,Full-time,Business Intelligence Engineer,78800,USD,78800,United States,In-person,United States,M,BI and Visualization +2023,Senior,Full-time,Data Engineer,162540,USD,162540,United States,In-person,United States,M,Data Engineering +2023,Senior,Full-time,Data Engineer,87570,USD,87570,United States,In-person,United States,M,Data Engineering +2023,Senior,Full-time,Data Architect,213600,USD,213600,United States,In-person,United States,M,Data Architecture and Modeling +2023,Senior,Full-time,Data Architect,103200,USD,103200,United States,In-person,United States,M,Data Architecture and Modeling +2023,Mid-level,Full-time,Data Engineer,140000,USD,140000,United States,In-person,United States,M,Data Engineering +2023,Mid-level,Full-time,Data Engineer,90000,USD,90000,United States,In-person,United States,M,Data Engineering +2023,Mid-level,Full-time,Data Scientist,212000,USD,212000,United States,In-person,United States,M,Data Science and Research +2023,Mid-level,Full-time,Data Scientist,93300,USD,93300,United States,In-person,United States,M,Data Science and Research +2023,Mid-level,Full-time,Applied Scientist,222200,USD,222200,United States,In-person,United States,L,Data Science and Research +2023,Mid-level,Full-time,Applied Scientist,136000,USD,136000,United States,In-person,United States,L,Data Science and Research +2023,Mid-level,Full-time,Data Scientist,157000,USD,157000,United States,Remote,United States,M,Data Science and Research +2023,Mid-level,Full-time,Data Scientist,144000,USD,144000,United States,Remote,United States,M,Data Science and Research +2023,Senior,Full-time,Data Engineer,210000,USD,210000,Canada,Remote,Canada,M,Data Engineering +2023,Senior,Full-time,Data Engineer,160000,USD,160000,Canada,Remote,Canada,M,Data Engineering +2023,Senior,Full-time,Data Scientist,179000,USD,179000,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Data Scientist,112000,USD,112000,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Analytics Engineer,221300,USD,221300,United States,Remote,United States,M,Leadership and Management +2023,Senior,Full-time,Analytics Engineer,147500,USD,147500,United States,Remote,United States,M,Leadership and Management +2023,Senior,Full-time,Data Engineer,179000,USD,179000,United States,In-person,United States,M,Data Engineering +2023,Senior,Full-time,Data Engineer,112000,USD,112000,United States,In-person,United States,M,Data Engineering +2023,Senior,Full-time,Data Science Consultant,116000,USD,116000,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Data Science Consultant,90000,USD,90000,United States,In-person,United States,M,Data Science and Research +2023,Mid-level,Full-time,Applied Scientist,222200,USD,222200,United States,In-person,United States,L,Data Science and Research +2023,Mid-level,Full-time,Applied Scientist,136000,USD,136000,United States,In-person,United States,L,Data Science and Research +2023,Mid-level,Full-time,Data Engineer,130400,USD,130400,United States,In-person,United States,M,Data Engineering +2023,Mid-level,Full-time,Data Engineer,74500,USD,74500,United States,In-person,United States,M,Data Engineering +2023,Senior,Full-time,Machine Learning Engineer,207700,USD,207700,Canada,In-person,Canada,M,Machine Learning and AI +2023,Senior,Full-time,Machine Learning Engineer,133700,USD,133700,Canada,In-person,Canada,M,Machine Learning and AI +2023,Senior,Full-time,Data Analyst,120000,USD,120000,United States,In-person,United States,M,Data Analysis +2023,Senior,Full-time,Data Analyst,100000,USD,100000,United States,In-person,United States,M,Data Analysis +2023,Senior,Full-time,Machine Learning Engineer,247500,USD,247500,United States,In-person,United States,M,Machine Learning and AI +2023,Senior,Full-time,Machine Learning Engineer,172200,USD,172200,United States,In-person,United States,M,Machine Learning and AI +2023,Mid-level,Full-time,Data Engineer,179000,USD,179000,United States,In-person,United States,M,Data Engineering +2023,Mid-level,Full-time,Data Engineer,112000,USD,112000,United States,In-person,United States,M,Data Engineering +2023,Mid-level,Full-time,Data Modeler,140000,USD,140000,United States,In-person,United States,M,Data Architecture and Modeling +2023,Mid-level,Full-time,Data Modeler,90000,USD,90000,United States,In-person,United States,M,Data Architecture and Modeling +2023,Senior,Full-time,Research Scientist,260000,USD,260000,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Research Scientist,230000,USD,230000,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Data Modeler,130000,USD,130000,United States,Remote,United States,M,Data Architecture and Modeling +2023,Senior,Full-time,Data Modeler,110000,USD,110000,United States,Remote,United States,M,Data Architecture and Modeling +2023,Mid-level,Full-time,Data Scientist,110000,USD,110000,United States,In-person,United States,M,Data Science and Research +2023,Mid-level,Full-time,Data Scientist,90000,USD,90000,United States,In-person,United States,M,Data Science and Research +2023,Mid-level,Full-time,Data Scientist,310000,USD,310000,United States,In-person,United States,M,Data Science and Research +2023,Mid-level,Full-time,Data Scientist,245000,USD,245000,United States,In-person,United States,M,Data Science and Research +2023,Mid-level,Full-time,Research Scientist,210000,USD,210000,United States,In-person,United States,M,Data Science and Research +2023,Mid-level,Full-time,Research Scientist,160000,USD,160000,United States,In-person,United States,M,Data Science and Research +2023,Mid-level,Full-time,Data Specialist,85000,USD,85000,United States,In-person,United States,M,Data Management and Strategy +2023,Mid-level,Full-time,Data Specialist,75000,USD,75000,United States,In-person,United States,M,Data Management and Strategy +2023,Senior,Full-time,Machine Learning Engineer,280000,USD,280000,United States,In-person,United States,M,Machine Learning and AI +2023,Senior,Full-time,Machine Learning Engineer,196000,USD,196000,United States,In-person,United States,M,Machine Learning and AI +2023,Mid-level,Full-time,Machine Learning Engineer,212000,USD,212000,United States,In-person,United States,M,Machine Learning and AI +2023,Mid-level,Full-time,Machine Learning Engineer,93300,USD,93300,United States,In-person,United States,M,Machine Learning and AI +2023,Senior,Full-time,Data Science,230000,USD,230000,United States,Remote,United States,M,Data Science and Research +2023,Senior,Full-time,Data Science,115000,USD,115000,United States,Remote,United States,M,Data Science and Research +2023,Mid-level,Full-time,Data Scientist,75000,USD,75000,United States,In-person,United States,M,Data Science and Research +2023,Mid-level,Full-time,Data Scientist,70000,USD,70000,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Machine Learning Scientist,233500,USD,233500,United States,In-person,United States,M,Machine Learning and AI +2023,Senior,Full-time,Machine Learning Scientist,137500,USD,137500,United States,In-person,United States,M,Machine Learning and AI +2023,Mid-level,Full-time,Data Scientist,166000,USD,166000,United States,In-person,United States,M,Data Science and Research +2023,Mid-level,Full-time,Data Scientist,73100,USD,73100,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Data Science,176875,USD,176875,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Data Science,84750,USD,84750,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Data Engineer,251250,USD,251250,United States,In-person,United States,M,Data Engineering +2023,Senior,Full-time,Data Engineer,120750,USD,120750,United States,In-person,United States,M,Data Engineering +2023,Mid-level,Full-time,Data Engineer,106050,USD,106050,United States,In-person,United States,M,Data Engineering +2023,Mid-level,Full-time,Data Engineer,80420,USD,80420,United States,In-person,United States,M,Data Engineering +2023,Mid-level,Full-time,Data Scientist,120000,USD,120000,United States,In-person,United States,M,Data Science and Research +2023,Mid-level,Full-time,Data Scientist,90000,USD,90000,United States,In-person,United States,M,Data Science and Research +2023,Mid-level,Full-time,Data Scientist,147400,USD,147400,United States,In-person,United States,M,Data Science and Research +2023,Mid-level,Full-time,Data Scientist,107682,USD,107682,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Data Analyst,145000,USD,145000,United States,Remote,United States,M,Data Analysis +2023,Senior,Full-time,Data Analyst,95000,USD,95000,United States,Remote,United States,M,Data Analysis +2023,Entry-level,Full-time,Research Analyst,80000,USD,80000,United States,In-person,United States,M,Data Science and Research +2023,Entry-level,Full-time,Research Analyst,50000,USD,50000,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Data Product Manager,175000,USD,175000,United States,Remote,United States,M,Leadership and Management +2023,Senior,Full-time,Data Product Manager,150000,USD,150000,United States,Remote,United States,M,Leadership and Management +2023,Entry-level,Full-time,Data Scientist,26800,GBP,32974,United Kingdom,In-person,United Kingdom,M,Data Science and Research +2023,Entry-level,Full-time,Data Scientist,26800,GBP,32974,United Kingdom,In-person,United Kingdom,M,Data Science and Research +2023,Senior,Full-time,Data Architect,178600,USD,178600,United States,In-person,United States,M,Data Architecture and Modeling +2023,Senior,Full-time,Data Architect,67200,USD,67200,United States,In-person,United States,M,Data Architecture and Modeling +2023,Entry-level,Full-time,Data Analyst,118750,USD,118750,United States,In-person,United States,M,Data Analysis +2023,Entry-level,Full-time,Data Analyst,106875,USD,106875,United States,In-person,United States,M,Data Analysis +2023,Senior,Full-time,Data Engineer,186000,USD,186000,United States,In-person,United States,M,Data Engineering +2023,Senior,Full-time,Data Engineer,81800,USD,81800,United States,In-person,United States,M,Data Engineering +2023,Mid-level,Full-time,Data Analyst,142000,USD,142000,United States,In-person,United States,M,Data Analysis +2023,Mid-level,Full-time,Data Analyst,128000,USD,128000,United States,In-person,United States,M,Data Analysis +2023,Senior,Full-time,Data Analyst,140130,USD,140130,United States,In-person,United States,M,Data Analysis +2023,Senior,Full-time,Data Analyst,84870,USD,84870,United States,In-person,United States,M,Data Analysis +2023,Senior,Full-time,Machine Learning Engineer,262000,USD,262000,United States,In-person,United States,M,Machine Learning and AI +2023,Senior,Full-time,Machine Learning Engineer,186000,USD,186000,United States,In-person,United States,M,Machine Learning and AI +2023,Senior,Full-time,Research Scientist,247600,USD,247600,United States,In-person,United States,L,Data Science and Research +2023,Senior,Full-time,Research Scientist,127300,USD,127300,United States,In-person,United States,L,Data Science and Research +2023,Mid-level,Full-time,Data Analyst,85000,USD,85000,United States,In-person,United States,M,Data Analysis +2023,Mid-level,Full-time,Data Analyst,58500,USD,58500,United States,In-person,United States,M,Data Analysis +2023,Entry-level,Full-time,Data Analyst,48000,GBP,59059,United States,In-person,United States,M,Data Analysis +2023,Entry-level,Full-time,Data Analyst,39000,GBP,47985,United States,In-person,United States,M,Data Analysis +2023,Senior,Full-time,Data Analyst,93918,USD,93918,United States,In-person,United States,M,Data Analysis +2023,Senior,Full-time,Data Analyst,51962,USD,51962,United States,In-person,United States,M,Data Analysis +2023,Mid-level,Full-time,Business Intelligence Manager,120000,USD,120000,United States,In-person,United States,M,BI and Visualization +2023,Mid-level,Full-time,Business Intelligence Manager,100000,USD,100000,United States,In-person,United States,M,BI and Visualization +2023,Senior,Full-time,Data Scientist,205670,USD,205670,New Zealand,In-person,New Zealand,M,Data Science and Research +2023,Senior,Full-time,Data Scientist,124233,USD,124233,New Zealand,In-person,New Zealand,M,Data Science and Research +2023,Senior,Full-time,Data Engineer,173000,USD,173000,United States,In-person,United States,M,Data Engineering +2023,Senior,Full-time,Data Engineer,140000,USD,140000,United States,In-person,United States,M,Data Engineering +2023,Senior,Full-time,ML Engineer,291500,USD,291500,United States,In-person,United States,M,Machine Learning and AI +2023,Senior,Full-time,ML Engineer,180200,USD,180200,United States,In-person,United States,M,Machine Learning and AI +2023,Entry-level,Full-time,Data Analyst,23000,GBP,28299,United Kingdom,In-person,United Kingdom,M,Data Analysis +2023,Entry-level,Full-time,Data Analyst,23000,GBP,28299,United Kingdom,In-person,United Kingdom,M,Data Analysis +2023,Senior,Full-time,Data Scientist,185000,USD,185000,Canada,In-person,Canada,M,Data Science and Research +2023,Senior,Full-time,Data Scientist,152000,USD,152000,Canada,In-person,Canada,M,Data Science and Research +2023,Senior,Full-time,Machine Learning Engineer,255800,USD,255800,United States,In-person,United States,M,Machine Learning and AI +2023,Senior,Full-time,Machine Learning Engineer,170600,USD,170600,United States,In-person,United States,M,Machine Learning and AI +2023,Senior,Full-time,Data Engineer,146850,USD,146850,United States,In-person,United States,M,Data Engineering +2023,Senior,Full-time,Data Engineer,106800,USD,106800,United States,In-person,United States,M,Data Engineering +2023,Mid-level,Full-time,Data Engineer,200000,USD,200000,United States,In-person,United States,M,Data Engineering +2023,Mid-level,Full-time,Data Engineer,117000,USD,117000,United States,In-person,United States,M,Data Engineering +2023,Mid-level,Full-time,Data Manager,151700,USD,151700,United States,In-person,United States,L,Leadership and Management +2023,Mid-level,Full-time,Data Manager,63000,USD,63000,United States,In-person,United States,L,Leadership and Management +2023,Entry-level,Full-time,Analytics Engineer,43000,USD,43000,Hungary,In-person,Hungary,L,Leadership and Management +2023,Senior,Full-time,Data Scientist,239900,USD,239900,United States,Remote,United States,M,Data Science and Research +2023,Senior,Full-time,Data Scientist,159900,USD,159900,United States,Remote,United States,M,Data Science and Research +2023,Entry-level,Full-time,Data Analyst,162240,USD,162240,United States,In-person,United States,M,Data Analysis +2023,Entry-level,Full-time,Data Analyst,47840,USD,47840,United States,In-person,United States,M,Data Analysis +2023,Senior,Full-time,Data Engineer,130410,USD,130410,United States,In-person,United States,M,Data Engineering +2023,Senior,Full-time,Data Engineer,92000,USD,92000,United States,In-person,United States,M,Data Engineering +2023,Senior,Full-time,Data Science,270250,USD,270250,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Data Science,144000,USD,144000,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Business Intelligence Analyst,176875,USD,176875,United States,In-person,United States,M,BI and Visualization +2023,Senior,Full-time,Business Intelligence Analyst,84750,USD,84750,United States,In-person,United States,M,BI and Visualization +2023,Mid-level,Full-time,Data Analyst,92000,USD,92000,United States,In-person,United States,M,Data Analysis +2023,Mid-level,Full-time,Data Analyst,69000,USD,69000,United States,In-person,United States,M,Data Analysis +2023,Senior,Full-time,Research Engineer,184800,USD,184800,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Research Engineer,107100,USD,107100,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Data Engineer,130410,USD,130410,United States,In-person,United States,M,Data Engineering +2023,Senior,Full-time,Data Engineer,92000,USD,92000,United States,In-person,United States,M,Data Engineering +2023,Senior,Full-time,Data Engineer,333500,USD,333500,United States,In-person,United States,M,Data Engineering +2023,Senior,Full-time,Data Engineer,176000,USD,176000,United States,In-person,United States,M,Data Engineering +2023,Senior,Full-time,Applied Scientist,257400,USD,257400,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Applied Scientist,138600,USD,138600,United States,In-person,United States,M,Data Science and Research +2023,Mid-level,Full-time,Data Analytics Manager,242100,USD,242100,United States,In-person,United States,M,Leadership and Management +2023,Mid-level,Full-time,Data Analytics Manager,116200,USD,116200,United States,In-person,United States,M,Leadership and Management +2023,Senior,Full-time,Research Analyst,230000,USD,230000,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Research Analyst,210000,USD,210000,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Data Engineer,114300,USD,114300,United States,In-person,United States,M,Data Engineering +2023,Senior,Full-time,Data Engineer,89600,USD,89600,United States,In-person,United States,M,Data Engineering +2023,Entry-level,Full-time,Business Intelligence Analyst,85000,USD,85000,United States,In-person,United States,M,BI and Visualization +2023,Entry-level,Full-time,Business Intelligence Analyst,65000,USD,65000,United States,In-person,United States,M,BI and Visualization +2023,Senior,Full-time,Machine Learning Engineer,266875,USD,266875,United States,In-person,United States,M,Machine Learning and AI +2023,Senior,Full-time,Machine Learning Engineer,128250,USD,128250,United States,In-person,United States,M,Machine Learning and AI +2023,Mid-level,Full-time,Data Science,280000,USD,280000,United States,In-person,United States,M,Data Science and Research +2023,Mid-level,Full-time,Data Science,200000,USD,200000,United States,In-person,United States,M,Data Science and Research +2023,Mid-level,Full-time,Data Engineer,180000,USD,180000,United States,In-person,United States,M,Data Engineering +2023,Mid-level,Full-time,Data Engineer,130000,USD,130000,United States,In-person,United States,M,Data Engineering +2023,Senior,Full-time,Data Engineer,178492,USD,178492,United States,Remote,United States,M,Data Engineering +2023,Senior,Full-time,Data Engineer,89246,USD,89246,United States,Remote,United States,M,Data Engineering +2023,Senior,Full-time,Data Engineer,245000,USD,245000,United States,Remote,United States,M,Data Engineering +2023,Senior,Full-time,Data Engineer,150000,USD,150000,United States,Remote,United States,M,Data Engineering +2023,Senior,Full-time,Analytics Engineer,155000,USD,155000,United States,In-person,United States,M,Leadership and Management +2023,Senior,Full-time,Analytics Engineer,145000,USD,145000,United States,In-person,United States,M,Leadership and Management +2023,Senior,Full-time,Machine Learning Engineer,165000,USD,165000,United States,Remote,United States,M,Machine Learning and AI +2023,Senior,Full-time,Machine Learning Engineer,130000,USD,130000,United States,Remote,United States,M,Machine Learning and AI +2023,Senior,Full-time,Research Scientist,247600,USD,247600,United States,In-person,United States,L,Data Science and Research +2023,Senior,Full-time,Research Scientist,127300,USD,127300,United States,In-person,United States,L,Data Science and Research +2023,Senior,Full-time,Data Scientist,280889,USD,280889,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Data Scientist,187259,USD,187259,United States,In-person,United States,M,Data Science and Research +2023,Mid-level,Full-time,Business Intelligence Analyst,130000,USD,130000,United States,Remote,United States,M,BI and Visualization +2023,Mid-level,Full-time,Business Intelligence Analyst,120000,USD,120000,United States,Remote,United States,M,BI and Visualization +2023,Mid-level,Full-time,Data Engineer,185000,USD,185000,United States,Remote,United States,M,Data Engineering +2023,Mid-level,Full-time,Data Engineer,125000,USD,125000,United States,Remote,United States,M,Data Engineering +2023,Senior,Full-time,Data Engineer,196900,USD,196900,United States,Remote,United States,M,Data Engineering +2023,Senior,Full-time,Data Engineer,186700,USD,186700,United States,Remote,United States,M,Data Engineering +2023,Entry-level,Full-time,Data Analyst,75065,USD,75065,United States,Remote,United States,M,Data Analysis +2023,Entry-level,Full-time,Data Analyst,41419,USD,41419,United States,Remote,United States,M,Data Analysis +2023,Senior,Full-time,Data Scientist,260000,USD,260000,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Data Scientist,192000,USD,192000,United States,In-person,United States,M,Data Science and Research +2023,Mid-level,Full-time,Data Engineer,205600,USD,205600,United States,In-person,United States,L,Data Engineering +2023,Mid-level,Full-time,Data Engineer,105700,USD,105700,United States,In-person,United States,L,Data Engineering +2023,Mid-level,Full-time,Data Analyst,75000,USD,75000,United States,In-person,United States,M,Data Analysis +2023,Mid-level,Full-time,Data Analyst,65000,USD,65000,United States,In-person,United States,M,Data Analysis +2023,Senior,Full-time,Prompt Engineer,230000,USD,230000,United States,In-person,United States,M,Machine Learning and AI +2023,Senior,Full-time,Prompt Engineer,140000,USD,140000,United States,In-person,United States,M,Machine Learning and AI +2023,Entry-level,Full-time,Data Manager,149800,USD,149800,United States,In-person,United States,M,Leadership and Management +2023,Entry-level,Full-time,Data Manager,85600,USD,85600,United States,In-person,United States,M,Leadership and Management +2023,Senior,Full-time,Data Scientist,218000,USD,218000,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Data Scientist,152600,USD,152600,United States,In-person,United States,M,Data Science and Research +2023,Mid-level,Full-time,Business Intelligence Engineer,185000,USD,185000,United States,In-person,United States,M,BI and Visualization +2023,Mid-level,Full-time,Business Intelligence Engineer,165000,USD,165000,United States,In-person,United States,M,BI and Visualization +2023,Senior,Full-time,Machine Learning Engineer,224880,USD,224880,United States,In-person,United States,M,Machine Learning and AI +2023,Senior,Full-time,Machine Learning Engineer,121500,USD,121500,United States,In-person,United States,M,Machine Learning and AI +2023,Senior,Full-time,Data Analyst,129000,USD,129000,United States,In-person,United States,M,Data Analysis +2023,Senior,Full-time,Data Analyst,46200,USD,46200,United States,In-person,United States,M,Data Analysis +2023,Senior,Full-time,Data Scientist,272400,USD,272400,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Data Scientist,155600,USD,155600,United States,In-person,United States,M,Data Science and Research +2023,Mid-level,Full-time,Machine Learning Scientist,150000,USD,150000,United States,In-person,United States,M,Machine Learning and AI +2023,Senior,Full-time,Data Analyst,93918,USD,93918,United States,In-person,United States,M,Data Analysis +2023,Senior,Full-time,Data Analyst,51962,USD,51962,United States,In-person,United States,M,Data Analysis +2023,Entry-level,Full-time,Data Analyst,115000,USD,115000,United States,In-person,United States,M,Data Analysis +2023,Entry-level,Full-time,Data Analyst,95000,USD,95000,United States,In-person,United States,M,Data Analysis +2023,Mid-level,Full-time,Machine Learning Engineer,150000,USD,150000,United States,In-person,United States,M,Machine Learning and AI +2023,Senior,Full-time,Computer Vision Engineer,351000,USD,351000,United States,In-person,United States,M,Machine Learning and AI +2023,Senior,Full-time,Computer Vision Engineer,171000,USD,171000,United States,In-person,United States,M,Machine Learning and AI +2023,Senior,Full-time,Data Science Lead,272000,USD,272000,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Data Science Lead,170000,USD,170000,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Data Scientist,176000,USD,176000,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Data Scientist,158000,USD,158000,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Data Analyst,135000,USD,135000,United States,Remote,United States,M,Data Analysis +2023,Senior,Full-time,Data Analyst,125000,USD,125000,United States,Remote,United States,M,Data Analysis +2023,Mid-level,Full-time,Data Science,110000,USD,110000,United States,In-person,United States,M,Data Science and Research +2023,Mid-level,Full-time,Data Science,80000,USD,80000,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,ML Engineer,270000,USD,270000,United States,Remote,United States,M,Machine Learning and AI +2023,Senior,Full-time,ML Engineer,232200,USD,232200,United States,Remote,United States,M,Machine Learning and AI +2023,Mid-level,Full-time,Data Scientist,107000,USD,107000,United States,Remote,United States,M,Data Science and Research +2023,Mid-level,Full-time,Data Scientist,87300,USD,87300,United States,Remote,United States,M,Data Science and Research +2023,Senior,Full-time,ML Engineer,230000,USD,230000,United States,In-person,United States,M,Machine Learning and AI +2023,Senior,Full-time,ML Engineer,140000,USD,140000,United States,In-person,United States,M,Machine Learning and AI +2023,Mid-level,Full-time,Data Analyst,85000,USD,85000,United States,Remote,United States,M,Data Analysis +2023,Mid-level,Full-time,Data Analyst,61800,USD,61800,United States,Remote,United States,M,Data Analysis +2023,Senior,Full-time,Data Engineer,300000,USD,300000,United States,Remote,United States,M,Data Engineering +2023,Senior,Full-time,Data Engineer,195000,USD,195000,United States,Remote,United States,M,Data Engineering +2023,Senior,Full-time,Machine Learning Engineer,204500,USD,204500,United States,In-person,United States,M,Machine Learning and AI +2023,Senior,Full-time,Machine Learning Engineer,142200,USD,142200,United States,In-person,United States,M,Machine Learning and AI +2023,Mid-level,Full-time,Data Analyst,107500,USD,107500,United States,In-person,United States,M,Data Analysis +2023,Mid-level,Full-time,Data Analyst,96750,USD,96750,United States,In-person,United States,M,Data Analysis +2023,Mid-level,Full-time,Business Intelligence Analyst,153800,USD,153800,United States,Remote,United States,M,BI and Visualization +2023,Mid-level,Full-time,Business Intelligence Analyst,96000,USD,96000,United States,Remote,United States,M,BI and Visualization +2023,Senior,Full-time,Data Scientist,204500,USD,204500,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Data Scientist,142200,USD,142200,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Data Engineer,190100,USD,190100,United States,Remote,United States,M,Data Engineering +2023,Senior,Full-time,Data Engineer,131414,USD,131414,United States,Remote,United States,M,Data Engineering +2023,Senior,Full-time,Research Scientist,195500,USD,195500,United States,Remote,United States,M,Data Science and Research +2023,Senior,Full-time,Research Scientist,141300,USD,141300,United States,Remote,United States,M,Data Science and Research +2023,Senior,Full-time,Research Scientist,165500,USD,165500,United States,Remote,United States,M,Data Science and Research +2023,Senior,Full-time,Research Scientist,119600,USD,119600,United States,Remote,United States,M,Data Science and Research +2023,Senior,Full-time,Research Scientist,235000,USD,235000,United States,Remote,United States,M,Data Science and Research +2023,Senior,Full-time,Research Scientist,169900,USD,169900,United States,Remote,United States,M,Data Science and Research +2023,Mid-level,Full-time,Data Science,235000,USD,235000,United States,Remote,United States,M,Data Science and Research +2023,Mid-level,Full-time,Data Science,169900,USD,169900,United States,Remote,United States,M,Data Science and Research +2023,Senior,Full-time,Machine Learning Scientist,200000,USD,200000,United States,In-person,United States,M,Machine Learning and AI +2023,Senior,Full-time,Machine Learning Scientist,135000,USD,135000,United States,In-person,United States,M,Machine Learning and AI +2023,Senior,Full-time,Data Analyst,210000,USD,210000,United States,Remote,United States,M,Data Analysis +2023,Senior,Full-time,Data Analyst,151800,USD,151800,United States,Remote,United States,M,Data Analysis +2023,Senior,Full-time,Data Analyst,210000,USD,210000,United States,Remote,United States,M,Data Analysis +2023,Senior,Full-time,Data Analyst,151800,USD,151800,United States,Remote,United States,M,Data Analysis +2023,Senior,Full-time,Analytics Engineer,215500,USD,215500,United States,Remote,United States,M,Leadership and Management +2023,Senior,Full-time,Analytics Engineer,155800,USD,155800,United States,Remote,United States,M,Leadership and Management +2023,Senior,Full-time,Data Scientist,305600,USD,305600,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Data Scientist,188200,USD,188200,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Data Engineer,180500,USD,180500,United States,In-person,United States,M,Data Engineering +2023,Senior,Full-time,Data Engineer,96200,USD,96200,United States,In-person,United States,M,Data Engineering +2023,Senior,Full-time,Data Engineer,166000,USD,166000,United States,In-person,United States,M,Data Engineering +2023,Senior,Full-time,Data Engineer,73100,USD,73100,United States,In-person,United States,M,Data Engineering +2023,Entry-level,Full-time,Data Analyst,75000,USD,75000,United States,In-person,United States,M,Data Analysis +2023,Entry-level,Full-time,Data Analyst,47500,USD,47500,United States,In-person,United States,M,Data Analysis +2023,Senior,Full-time,Data Scientist,201700,USD,201700,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Data Scientist,146600,USD,146600,United States,In-person,United States,M,Data Science and Research +2023,Mid-level,Full-time,Data Engineer,133000,USD,133000,United States,In-person,United States,M,Data Engineering +2023,Mid-level,Full-time,Data Engineer,58400,USD,58400,United States,In-person,United States,M,Data Engineering +2023,Senior,Full-time,AI Product Manager,120000,USD,120000,India,Hybrid,India,L,Machine Learning and AI +2023,Senior,Full-time,Data Manager,144300,USD,144300,United States,Remote,United States,M,Leadership and Management +2023,Senior,Full-time,Data Manager,104800,USD,104800,United States,Remote,United States,M,Leadership and Management +2023,Senior,Full-time,Data Analytics Lead,115920,USD,115920,United States,In-person,United States,M,Leadership and Management +2023,Senior,Full-time,Data Analytics Lead,84000,USD,84000,United States,In-person,United States,M,Leadership and Management +2023,Senior,Full-time,Data Analyst,146850,USD,146850,United States,In-person,United States,M,Data Analysis +2023,Senior,Full-time,Data Analyst,106800,USD,106800,United States,In-person,United States,M,Data Analysis +2023,Entry-level,Full-time,Data Engineer,75000,GBP,92280,United Kingdom,In-person,United Kingdom,M,Data Engineering +2023,Entry-level,Full-time,Data Engineer,65000,GBP,79976,United Kingdom,In-person,United Kingdom,M,Data Engineering +2023,Mid-level,Full-time,Data Analyst,133000,USD,133000,United States,In-person,United States,M,Data Analysis +2023,Mid-level,Full-time,Data Analyst,58300,USD,58300,United States,In-person,United States,M,Data Analysis +2023,Senior,Full-time,Data Science,137300,USD,137300,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Data Science,59200,USD,59200,United States,In-person,United States,M,Data Science and Research +2023,Mid-level,Full-time,Data Engineer,165000,USD,165000,United States,In-person,United States,M,Data Engineering +2023,Mid-level,Full-time,Data Engineer,147500,USD,147500,United States,In-person,United States,M,Data Engineering +2023,Senior,Full-time,Data Scientist,130410,USD,130410,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Data Scientist,92000,USD,92000,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Machine Learning Engineer,156150,USD,156150,United States,Remote,United States,M,Machine Learning and AI +2023,Senior,Full-time,Machine Learning Engineer,113400,USD,113400,United States,Remote,United States,M,Machine Learning and AI +2023,Senior,Full-time,Data Scientist,226000,USD,226000,United States,Remote,United States,M,Data Science and Research +2023,Senior,Full-time,Data Scientist,211000,USD,211000,United States,Remote,United States,M,Data Science and Research +2023,Senior,Full-time,Data Scientist,197500,USD,197500,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Data Scientist,132500,USD,132500,United States,In-person,United States,M,Data Science and Research +2023,Mid-level,Full-time,Data Analyst,109000,USD,109000,United States,In-person,United States,M,Data Analysis +2023,Mid-level,Full-time,Data Analyst,62000,USD,62000,United States,In-person,United States,M,Data Analysis +2023,Senior,Full-time,Data Engineer,110000,USD,110000,United States,In-person,United States,M,Data Engineering +2023,Senior,Full-time,Data Engineer,70000,USD,70000,United States,In-person,United States,M,Data Engineering +2023,Senior,Full-time,Machine Learning Engineer,238000,USD,238000,United States,In-person,United States,M,Machine Learning and AI +2023,Senior,Full-time,Machine Learning Engineer,176000,USD,176000,United States,In-person,United States,M,Machine Learning and AI +2023,Mid-level,Full-time,Data Engineer,179000,USD,179000,United States,In-person,United States,M,Data Engineering +2023,Mid-level,Full-time,Data Engineer,112000,USD,112000,United States,In-person,United States,M,Data Engineering +2023,Senior,Full-time,Machine Learning Engineer,238000,USD,238000,United States,In-person,United States,M,Machine Learning and AI +2023,Senior,Full-time,Machine Learning Engineer,176000,USD,176000,United States,In-person,United States,M,Machine Learning and AI +2023,Senior,Full-time,Data Engineer,151250,USD,151250,United States,Remote,United States,M,Data Engineering +2023,Senior,Full-time,Data Engineer,96800,USD,96800,United States,Remote,United States,M,Data Engineering +2023,Mid-level,Full-time,Data Specialist,109000,USD,109000,United States,In-person,United States,M,Data Management and Strategy +2023,Mid-level,Full-time,Data Specialist,62000,USD,62000,United States,In-person,United States,M,Data Management and Strategy +2023,Mid-level,Full-time,Data Scientist,162000,USD,162000,United States,In-person,United States,M,Data Science and Research +2023,Mid-level,Full-time,Data Scientist,108000,USD,108000,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Machine Learning Engineer,238000,USD,238000,United States,In-person,United States,M,Machine Learning and AI +2023,Senior,Full-time,Machine Learning Engineer,176000,USD,176000,United States,In-person,United States,M,Machine Learning and AI +2023,Mid-level,Full-time,Business Intelligence Analyst,189000,USD,189000,United States,Remote,United States,M,BI and Visualization +2023,Mid-level,Full-time,Business Intelligence Analyst,118100,USD,118100,United States,Remote,United States,M,BI and Visualization +2023,Entry-level,Full-time,Machine Learning Engineer,126000,USD,126000,United States,Remote,United States,M,Machine Learning and AI +2023,Entry-level,Full-time,Machine Learning Engineer,93000,USD,93000,United States,Remote,United States,M,Machine Learning and AI +2023,Senior,Full-time,Data Science,160000,USD,160000,United States,Remote,United States,M,Data Science and Research +2023,Senior,Full-time,Data Science,150000,USD,150000,United States,Remote,United States,M,Data Science and Research +2023,Executive,Full-time,Director of Data Science,237500,USD,237500,United States,In-person,United States,M,Data Science and Research +2023,Executive,Full-time,Director of Data Science,157500,USD,157500,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Data Science,145000,USD,145000,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Data Science,115000,USD,115000,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Data Scientist,140000,USD,140000,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Data Scientist,100000,USD,100000,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Data Analyst,89000,USD,89000,United States,In-person,United States,M,Data Analysis +2023,Senior,Full-time,Data Analyst,76000,USD,76000,United States,In-person,United States,M,Data Analysis +2023,Senior,Full-time,Machine Learning Engineer,238000,USD,238000,United States,In-person,United States,M,Machine Learning and AI +2023,Senior,Full-time,Machine Learning Engineer,176000,USD,176000,United States,In-person,United States,M,Machine Learning and AI +2023,Senior,Full-time,Data Architect,263100,USD,263100,United States,In-person,United States,M,Data Architecture and Modeling +2023,Senior,Full-time,Data Architect,126300,USD,126300,United States,In-person,United States,M,Data Architecture and Modeling +2023,Senior,Full-time,Machine Learning Engineer,319000,USD,319000,United States,In-person,United States,M,Machine Learning and AI +2023,Senior,Full-time,Machine Learning Engineer,221000,USD,221000,United States,In-person,United States,M,Machine Learning and AI +2023,Senior,Full-time,Data Engineer,200000,USD,200000,United States,In-person,United States,M,Data Engineering +2023,Senior,Full-time,Data Engineer,150000,USD,150000,United States,In-person,United States,M,Data Engineering +2023,Mid-level,Full-time,Data Engineer,220000,USD,220000,Canada,Remote,Canada,M,Data Engineering +2023,Mid-level,Full-time,Data Engineer,190000,USD,190000,Canada,Remote,Canada,M,Data Engineering +2023,Mid-level,Full-time,Data Product Owner,70000,GBP,86128,United Kingdom,In-person,United Kingdom,M,Leadership and Management +2023,Mid-level,Full-time,Data Product Owner,45454,GBP,55926,United Kingdom,In-person,United Kingdom,M,Leadership and Management +2023,Senior,Full-time,Data Analyst,116700,USD,116700,United States,In-person,United States,M,Data Analysis +2023,Senior,Full-time,Data Analyst,93400,USD,93400,United States,In-person,United States,M,Data Analysis +2023,Mid-level,Full-time,Data Developer,100000,USD,100000,United States,In-person,United States,M,Leadership and Management +2023,Mid-level,Full-time,Data Developer,95000,USD,95000,United States,In-person,United States,M,Leadership and Management +2023,Senior,Full-time,Data Engineer,151000,USD,151000,Canada,Remote,Canada,M,Data Engineering +2023,Senior,Full-time,Data Engineer,95000,USD,95000,Canada,Remote,Canada,M,Data Engineering +2023,Senior,Full-time,Machine Learning Infrastructure Engineer,247000,USD,247000,United States,Remote,United States,M,Machine Learning and AI +2023,Senior,Full-time,Machine Learning Infrastructure Engineer,152000,USD,152000,United States,Remote,United States,M,Machine Learning and AI +2023,Senior,Full-time,Data Scientist,268000,USD,268000,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Data Scientist,137500,USD,137500,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Research Engineer,150000,USD,150000,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Research Engineer,80000,USD,80000,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Data Engineer,187100,USD,187100,United States,In-person,United States,M,Data Engineering +2023,Senior,Full-time,Data Engineer,107600,USD,107600,United States,In-person,United States,M,Data Engineering +2023,Senior,Full-time,Data Scientist,184800,USD,184800,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Data Scientist,161900,USD,161900,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Data Scientist,212000,USD,212000,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Data Scientist,93300,USD,93300,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Data Architect,184000,USD,184000,United States,In-person,United States,M,Data Architecture and Modeling +2023,Senior,Full-time,Data Architect,96000,USD,96000,United States,In-person,United States,M,Data Architecture and Modeling +2023,Mid-level,Full-time,Data Engineer,127900,USD,127900,Canada,In-person,Canada,M,Data Engineering +2023,Mid-level,Full-time,Data Engineer,85300,USD,85300,Canada,In-person,Canada,M,Data Engineering +2023,Mid-level,Full-time,Analytics Engineer,204000,USD,204000,United States,In-person,United States,M,Leadership and Management +2023,Mid-level,Full-time,Analytics Engineer,112500,USD,112500,United States,In-person,United States,M,Leadership and Management +2023,Mid-level,Full-time,Data Scientist,166000,USD,166000,United States,In-person,United States,M,Data Science and Research +2023,Mid-level,Full-time,Data Scientist,73100,USD,73100,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Data Product Manager,220000,USD,220000,United States,In-person,United States,M,Leadership and Management +2023,Senior,Full-time,Data Product Manager,137500,USD,137500,United States,In-person,United States,M,Leadership and Management +2023,Mid-level,Full-time,Machine Learning Engineer,204500,USD,204500,United States,In-person,United States,M,Machine Learning and AI +2023,Mid-level,Full-time,Machine Learning Engineer,142200,USD,142200,United States,In-person,United States,M,Machine Learning and AI +2023,Senior,Full-time,Data Scientist,170000,USD,170000,United States,Remote,United States,M,Data Science and Research +2023,Senior,Full-time,Data Scientist,140000,USD,140000,United States,Remote,United States,M,Data Science and Research +2023,Mid-level,Full-time,Research Engineer,150000,USD,150000,United States,In-person,United States,M,Data Science and Research +2023,Mid-level,Full-time,Research Engineer,80000,USD,80000,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Data Lead,175000,USD,175000,Canada,Remote,Canada,M,Leadership and Management +2023,Senior,Full-time,Data Lead,150000,USD,150000,Canada,Remote,Canada,M,Leadership and Management +2023,Senior,Full-time,Data Analyst,116000,USD,116000,United States,In-person,United States,M,Data Analysis +2023,Senior,Full-time,Data Analyst,110000,USD,110000,United States,In-person,United States,M,Data Analysis +2023,Entry-level,Full-time,Data Analyst,132000,USD,132000,United States,In-person,United States,M,Data Analysis +2023,Entry-level,Full-time,Data Analyst,104000,USD,104000,United States,In-person,United States,M,Data Analysis +2023,Senior,Full-time,Machine Learning Engineer,175000,USD,175000,United States,Remote,United States,M,Machine Learning and AI +2023,Senior,Full-time,Machine Learning Engineer,141000,USD,141000,United States,Remote,United States,M,Machine Learning and AI +2023,Senior,Full-time,Data Product Manager,198000,USD,198000,United States,Remote,United States,M,Leadership and Management +2023,Senior,Full-time,Data Product Manager,151000,USD,151000,United States,Remote,United States,M,Leadership and Management +2023,Entry-level,Full-time,Data Analyst,104000,USD,104000,United States,In-person,United States,M,Data Analysis +2023,Entry-level,Full-time,Data Analyst,83000,USD,83000,United States,In-person,United States,M,Data Analysis +2023,Entry-level,Full-time,Data Scientist,150000,USD,150000,United States,In-person,United States,M,Data Science and Research +2023,Entry-level,Full-time,Data Scientist,100000,USD,100000,United States,In-person,United States,M,Data Science and Research +2023,Mid-level,Full-time,Data Scientist,204500,USD,204500,United States,In-person,United States,M,Data Science and Research +2023,Mid-level,Full-time,Data Scientist,142200,USD,142200,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Data Engineer,185000,USD,185000,United States,In-person,United States,M,Data Engineering +2023,Senior,Full-time,Data Engineer,130000,USD,130000,United States,In-person,United States,M,Data Engineering +2023,Senior,Full-time,Data Scientist,250000,USD,250000,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Data Scientist,125000,USD,125000,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Data Scientist,100000,USD,100000,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Data Scientist,81500,USD,81500,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Data Analyst,192000,USD,192000,United States,Remote,United States,M,Data Analysis +2023,Senior,Full-time,Data Analyst,120500,USD,120500,United States,Remote,United States,M,Data Analysis +2023,Senior,Full-time,Data Engineer,247300,USD,247300,United States,In-person,United States,M,Data Engineering +2023,Senior,Full-time,Data Engineer,139700,USD,139700,United States,In-person,United States,M,Data Engineering +2023,Senior,Full-time,Data Scientist,60000,EUR,64781,Spain,In-person,Spain,M,Data Science and Research +2023,Senior,Full-time,Data Scientist,38000,EUR,41027,Spain,In-person,Spain,M,Data Science and Research +2023,Executive,Full-time,Data Science,218000,USD,218000,United States,In-person,United States,M,Data Science and Research +2023,Executive,Full-time,Data Science,168000,USD,168000,United States,In-person,United States,M,Data Science and Research +2023,Mid-level,Full-time,Data Scientist,119200,USD,119200,United States,Remote,United States,M,Data Science and Research +2023,Mid-level,Full-time,Data Scientist,86600,USD,86600,United States,Remote,United States,M,Data Science and Research +2023,Senior,Full-time,Machine Learning Engineer,184800,USD,184800,United States,In-person,United States,M,Machine Learning and AI +2023,Senior,Full-time,Machine Learning Engineer,161900,USD,161900,United States,In-person,United States,M,Machine Learning and AI +2023,Mid-level,Full-time,Data Engineer,128600,USD,128600,United States,In-person,United States,M,Data Engineering +2023,Mid-level,Full-time,Data Engineer,100000,USD,100000,United States,In-person,United States,M,Data Engineering +2023,Entry-level,Full-time,Machine Learning Engineer,162240,USD,162240,United States,In-person,United States,M,Machine Learning and AI +2023,Entry-level,Full-time,Machine Learning Engineer,47840,USD,47840,United States,In-person,United States,M,Machine Learning and AI +2023,Senior,Full-time,Data Scientist,205500,USD,205500,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Data Scientist,128500,USD,128500,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Data Architect,164000,USD,164000,United States,In-person,United States,M,Data Architecture and Modeling +2023,Senior,Full-time,Data Architect,117000,USD,117000,United States,In-person,United States,M,Data Architecture and Modeling +2023,Senior,Full-time,AI Engineer,142352,USD,142352,United States,In-person,United States,M,Machine Learning and AI +2023,Senior,Full-time,AI Engineer,95325,USD,95325,United States,In-person,United States,M,Machine Learning and AI +2023,Mid-level,Full-time,Business Intelligence Engineer,38393,GBP,47238,United Kingdom,In-person,United Kingdom,M,BI and Visualization +2023,Mid-level,Full-time,Business Intelligence Engineer,34160,GBP,42030,United Kingdom,In-person,United Kingdom,M,BI and Visualization +2023,Mid-level,Full-time,Machine Learning Engineer,247500,USD,247500,United States,In-person,United States,M,Machine Learning and AI +2023,Mid-level,Full-time,Machine Learning Engineer,172200,USD,172200,United States,In-person,United States,M,Machine Learning and AI +2023,Entry-level,Full-time,Data Analyst,38393,GBP,47238,Australia,In-person,Australia,M,Data Analysis +2023,Entry-level,Full-time,Data Analyst,34160,GBP,42030,Australia,In-person,Australia,M,Data Analysis +2023,Senior,Full-time,Business Intelligence Analyst,50000,GBP,61520,United Kingdom,In-person,United Kingdom,M,BI and Visualization +2023,Senior,Full-time,Business Intelligence Analyst,33000,GBP,40603,United Kingdom,In-person,United Kingdom,M,BI and Visualization +2023,Mid-level,Full-time,Data Analyst,134000,USD,134000,United States,Remote,United States,M,Data Analysis +2023,Mid-level,Full-time,Data Analyst,90000,USD,90000,United States,Remote,United States,M,Data Analysis +2023,Senior,Full-time,Data Engineer,204000,USD,204000,United States,In-person,United States,M,Data Engineering +2023,Senior,Full-time,Data Engineer,163200,USD,163200,United States,In-person,United States,M,Data Engineering +2023,Senior,Full-time,Data Architect,168000,USD,168000,United States,Remote,United States,M,Data Architecture and Modeling +2023,Senior,Full-time,Data Architect,143000,USD,143000,United States,Remote,United States,M,Data Architecture and Modeling +2023,Senior,Full-time,Data Scientist,142352,USD,142352,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Data Scientist,95325,USD,95325,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Data Analyst,105000,USD,105000,United States,Remote,United States,M,Data Analysis +2023,Senior,Full-time,Data Analyst,100000,USD,100000,United States,Remote,United States,M,Data Analysis +2023,Mid-level,Full-time,Data Engineer,179000,USD,179000,United States,In-person,United States,M,Data Engineering +2023,Mid-level,Full-time,Data Engineer,112000,USD,112000,United States,In-person,United States,M,Data Engineering +2023,Senior,Full-time,Data Integration Engineer,150000,USD,150000,United States,In-person,United States,M,Data Engineering +2023,Senior,Full-time,Data Integration Engineer,125000,USD,125000,United States,In-person,United States,M,Data Engineering +2023,Entry-level,Full-time,Research Analyst,131000,USD,131000,United States,In-person,United States,L,Data Science and Research +2023,Entry-level,Full-time,Research Analyst,54400,USD,54400,United States,In-person,United States,L,Data Science and Research +2023,Entry-level,Full-time,Data Management Analyst,120000,USD,120000,United States,In-person,United States,M,Data Management and Strategy +2023,Entry-level,Full-time,Data Management Analyst,50000,USD,50000,United States,In-person,United States,M,Data Management and Strategy +2023,Senior,Full-time,Data Engineer,170000,USD,170000,United States,In-person,United States,M,Data Engineering +2023,Senior,Full-time,Data Engineer,120000,USD,120000,United States,In-person,United States,M,Data Engineering +2023,Senior,Full-time,Data Scientist,359170,USD,359170,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Data Scientist,295490,USD,295490,United States,In-person,United States,M,Data Science and Research +2023,Entry-level,Full-time,Data Analyst,102000,USD,102000,United States,Remote,United States,M,Data Analysis +2023,Entry-level,Full-time,Data Analyst,92000,USD,92000,United States,Remote,United States,M,Data Analysis +2023,Entry-level,Full-time,Business Intelligence Analyst,132567,USD,132567,United States,In-person,United States,M,BI and Visualization +2023,Entry-level,Full-time,Business Intelligence Analyst,96412,USD,96412,United States,In-person,United States,M,BI and Visualization +2023,Mid-level,Full-time,Applied Scientist,222200,USD,222200,United States,In-person,United States,L,Data Science and Research +2023,Mid-level,Full-time,Applied Scientist,136000,USD,136000,United States,In-person,United States,L,Data Science and Research +2023,Senior,Full-time,Data Engineer,230000,USD,230000,United States,In-person,United States,M,Data Engineering +2023,Senior,Full-time,Data Engineer,170000,USD,170000,United States,In-person,United States,M,Data Engineering +2023,Mid-level,Full-time,Data Engineer,110000,USD,110000,United States,Remote,United States,M,Data Engineering +2023,Mid-level,Full-time,Data Engineer,90000,USD,90000,United States,Remote,United States,M,Data Engineering +2023,Senior,Full-time,Data Scientist,172800,USD,172800,United States,Remote,United States,M,Data Science and Research +2023,Senior,Full-time,Data Scientist,110000,USD,110000,United States,Remote,United States,M,Data Science and Research +2023,Senior,Full-time,Research Scientist,135842,USD,135842,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Research Scientist,98794,USD,98794,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Machine Learning Engineer,331640,USD,331640,United States,In-person,United States,M,Machine Learning and AI +2023,Senior,Full-time,Machine Learning Engineer,267720,USD,267720,United States,In-person,United States,M,Machine Learning and AI +2023,Senior,Full-time,Research Engineer,266450,USD,266450,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Research Engineer,177700,USD,177700,United States,In-person,United States,M,Data Science and Research +2023,Entry-level,Full-time,Research Engineer,350000,USD,350000,United States,In-person,United States,M,Data Science and Research +2023,Entry-level,Full-time,Research Engineer,250000,USD,250000,United States,In-person,United States,M,Data Science and Research +2023,Mid-level,Full-time,ML Engineer,155000,USD,155000,United States,In-person,United States,M,Machine Learning and AI +2023,Mid-level,Full-time,ML Engineer,125000,USD,125000,United States,In-person,United States,M,Machine Learning and AI +2023,Senior,Full-time,Research Scientist,278700,USD,278700,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Research Scientist,159300,USD,159300,United States,In-person,United States,M,Data Science and Research +2023,Mid-level,Full-time,AI Engineer,171000,USD,171000,United States,In-person,United States,M,Machine Learning and AI +2023,Mid-level,Full-time,AI Engineer,151000,USD,151000,United States,In-person,United States,M,Machine Learning and AI +2023,Senior,Full-time,Research Engineer,266450,USD,266450,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Research Engineer,177700,USD,177700,United States,In-person,United States,M,Data Science and Research +2023,Mid-level,Full-time,BI Developer,100000,USD,100000,United States,Remote,United States,M,BI and Visualization +2023,Mid-level,Full-time,BI Developer,80000,USD,80000,United States,Remote,United States,M,BI and Visualization +2023,Senior,Full-time,Data Engineer,174990,USD,174990,United States,Remote,United States,M,Data Engineering +2023,Senior,Full-time,Data Engineer,132624,USD,132624,United States,Remote,United States,M,Data Engineering +2023,Mid-level,Full-time,Data Visualization Specialist,166000,USD,166000,United States,In-person,United States,M,BI and Visualization +2023,Mid-level,Full-time,Data Visualization Specialist,73100,USD,73100,United States,In-person,United States,M,BI and Visualization +2023,Senior,Full-time,Machine Learning Engineer,212000,USD,212000,United States,In-person,United States,M,Machine Learning and AI +2023,Senior,Full-time,Machine Learning Engineer,93300,USD,93300,United States,In-person,United States,M,Machine Learning and AI +2023,Senior,Full-time,Data Architect,210100,USD,210100,United States,In-person,United States,M,Data Architecture and Modeling +2023,Senior,Full-time,Data Architect,95500,USD,95500,United States,In-person,United States,M,Data Architecture and Modeling +2023,Senior,Full-time,Data Engineer,184600,USD,184600,United States,In-person,United States,M,Data Engineering +2023,Senior,Full-time,Data Engineer,99400,USD,99400,United States,In-person,United States,M,Data Engineering +2023,Senior,Full-time,Research Engineer,184800,USD,184800,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Research Engineer,107100,USD,107100,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Business Intelligence Engineer,205000,USD,205000,United States,In-person,United States,M,BI and Visualization +2023,Senior,Full-time,Business Intelligence Engineer,155400,USD,155400,United States,In-person,United States,M,BI and Visualization +2023,Entry-level,Full-time,Data Analyst,75065,USD,75065,United States,Remote,United States,M,Data Analysis +2023,Entry-level,Full-time,Data Analyst,41419,USD,41419,United States,Remote,United States,M,Data Analysis +2023,Mid-level,Full-time,Data Scientist,169000,USD,169000,United States,In-person,United States,M,Data Science and Research +2023,Mid-level,Full-time,Data Scientist,105500,USD,105500,United States,In-person,United States,M,Data Science and Research +2023,Mid-level,Full-time,Data Scientist,113563,USD,113563,Australia,In-person,Australia,M,Data Science and Research +2023,Mid-level,Full-time,Data Scientist,102927,USD,102927,Australia,In-person,Australia,M,Data Science and Research +2023,Mid-level,Full-time,Data Analyst,90500,USD,90500,United States,In-person,United States,M,Data Analysis +2023,Mid-level,Full-time,Data Analyst,42400,USD,42400,United States,In-person,United States,M,Data Analysis +2023,Senior,Full-time,Data Scientist,234000,USD,234000,United States,Remote,United States,M,Data Science and Research +2023,Senior,Full-time,Data Scientist,146000,USD,146000,United States,Remote,United States,M,Data Science and Research +2023,Mid-level,Full-time,Data Scientist,212000,USD,212000,United States,In-person,United States,M,Data Science and Research +2023,Mid-level,Full-time,Data Scientist,93300,USD,93300,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Data Scientist,140000,USD,140000,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Data Scientist,100000,USD,100000,United States,In-person,United States,M,Data Science and Research +2023,Mid-level,Full-time,Research Engineer,128167,USD,128167,United States,In-person,United States,M,Data Science and Research +2023,Mid-level,Full-time,Research Engineer,85445,USD,85445,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Data Scientist,212000,USD,212000,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Data Scientist,93400,USD,93400,United States,In-person,United States,M,Data Science and Research +2023,Mid-level,Full-time,BI Analyst,172300,USD,172300,United States,In-person,United States,M,BI and Visualization +2023,Mid-level,Full-time,BI Analyst,86100,USD,86100,United States,In-person,United States,M,BI and Visualization +2023,Mid-level,Full-time,Data Engineer,138000,USD,138000,United States,Remote,United States,M,Data Engineering +2023,Mid-level,Full-time,Data Engineer,86000,USD,86000,United States,Remote,United States,M,Data Engineering +2023,Entry-level,Full-time,Research Analyst,179000,USD,179000,United States,In-person,United States,M,Data Science and Research +2023,Entry-level,Full-time,Research Analyst,112000,USD,112000,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Analytics Engineer,150000,USD,150000,United States,Remote,United States,M,Leadership and Management +2023,Senior,Full-time,Data Scientist,179000,USD,179000,United States,Remote,United States,M,Data Science and Research +2023,Senior,Full-time,Data Scientist,112000,USD,112000,United States,Remote,United States,M,Data Science and Research +2023,Senior,Full-time,Data Analyst,122000,USD,122000,United States,In-person,United States,M,Data Analysis +2023,Senior,Full-time,Data Analyst,94000,USD,94000,United States,In-person,United States,M,Data Analysis +2023,Senior,Full-time,Data Science Consultant,122000,USD,122000,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Data Science Consultant,94000,USD,94000,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Data Analyst,140130,USD,140130,United States,In-person,United States,M,Data Analysis +2023,Senior,Full-time,Data Analyst,84870,USD,84870,United States,In-person,United States,M,Data Analysis +2023,Senior,Full-time,Business Intelligence Engineer,225000,USD,225000,United States,In-person,United States,M,BI and Visualization +2023,Senior,Full-time,Business Intelligence Engineer,180000,USD,180000,United States,In-person,United States,M,BI and Visualization +2023,Senior,Full-time,Data Engineer,165000,USD,165000,United States,Remote,United States,M,Data Engineering +2023,Senior,Full-time,Data Engineer,122445,USD,122445,United States,Remote,United States,M,Data Engineering +2023,Senior,Full-time,Data Architect,208000,CAD,154101,Canada,Remote,Canada,M,Data Architecture and Modeling +2023,Senior,Full-time,Data Architect,136000,CAD,100758,Canada,Remote,Canada,M,Data Architecture and Modeling +2023,Mid-level,Full-time,Machine Learning Engineer,84000,USD,84000,Viet Nam,Remote,Viet Nam,M,Machine Learning and AI +2023,Mid-level,Full-time,Machine Learning Engineer,48000,USD,48000,Viet Nam,Remote,Viet Nam,M,Machine Learning and AI +2023,Senior,Full-time,ML Engineer,275000,USD,275000,United States,In-person,United States,M,Machine Learning and AI +2023,Senior,Full-time,ML Engineer,187000,USD,187000,United States,In-person,United States,M,Machine Learning and AI +2023,Mid-level,Full-time,Research Scientist,212800,USD,212800,United States,In-person,United States,L,Data Science and Research +2023,Mid-level,Full-time,Research Scientist,124100,USD,124100,United States,In-person,United States,L,Data Science and Research +2023,Entry-level,Full-time,Data Scientist,130000,USD,130000,United States,In-person,United States,M,Data Science and Research +2023,Entry-level,Full-time,Data Scientist,80000,USD,80000,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Data Scientist,160000,USD,160000,United States,Remote,United States,M,Data Science and Research +2023,Senior,Full-time,Data Scientist,130000,USD,130000,United States,Remote,United States,M,Data Science and Research +2023,Senior,Full-time,Machine Learning Engineer,240810,USD,240810,United States,In-person,United States,M,Machine Learning and AI +2023,Senior,Full-time,Machine Learning Engineer,126800,USD,126800,United States,In-person,United States,M,Machine Learning and AI +2023,Senior,Full-time,Data Science Engineer,145000,USD,145000,United States,Remote,United States,M,Data Science and Research +2023,Senior,Full-time,Data Science Engineer,135000,USD,135000,United States,Remote,United States,M,Data Science and Research +2023,Senior,Full-time,Data Architect,222000,USD,222000,United States,Remote,United States,M,Data Architecture and Modeling +2023,Senior,Full-time,Data Architect,132000,USD,132000,United States,Remote,United States,M,Data Architecture and Modeling +2023,Senior,Full-time,Applied Scientist,250000,USD,250000,United States,Remote,United States,M,Data Science and Research +2023,Senior,Full-time,Applied Scientist,170000,USD,170000,United States,Remote,United States,M,Data Science and Research +2023,Senior,Full-time,Machine Learning Infrastructure Engineer,250000,USD,250000,United States,In-person,United States,M,Machine Learning and AI +2023,Senior,Full-time,Machine Learning Infrastructure Engineer,150000,USD,150000,United States,In-person,United States,M,Machine Learning and AI +2023,Senior,Full-time,Data Architect,222000,USD,222000,United States,In-person,United States,M,Data Architecture and Modeling +2023,Senior,Full-time,Data Architect,132000,USD,132000,United States,In-person,United States,M,Data Architecture and Modeling +2023,Entry-level,Full-time,Business Intelligence Analyst,40000,GBP,49216,United Kingdom,In-person,United Kingdom,M,BI and Visualization +2023,Entry-level,Full-time,Business Intelligence Analyst,35000,GBP,43064,United Kingdom,In-person,United Kingdom,M,BI and Visualization +2023,Senior,Full-time,Business Data Analyst,94000,USD,94000,United States,Hybrid,United States,L,Data Analysis +2023,Senior,Full-time,Data Science,110000,USD,110000,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Data Science,70000,USD,70000,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Data Science,245000,USD,245000,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Data Science,185000,USD,185000,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Data Science,207900,USD,207900,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Data Science,158400,USD,158400,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Data Science,138000,USD,138000,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Data Science,86000,USD,86000,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Data Science,135800,USD,135800,United States,Remote,United States,M,Data Science and Research +2023,Senior,Full-time,Data Science,95100,USD,95100,United States,Remote,United States,M,Data Science and Research +2023,Senior,Full-time,Data Science,135800,USD,135800,United States,Remote,United States,M,Data Science and Research +2023,Senior,Full-time,Data Science,95100,USD,95100,United States,Remote,United States,M,Data Science and Research +2023,Senior,Full-time,Data Engineer,190000,USD,190000,United States,Remote,United States,M,Data Engineering +2023,Senior,Full-time,Data Engineer,160000,USD,160000,United States,Remote,United States,M,Data Engineering +2023,Senior,Full-time,Applied Scientist,260000,USD,260000,United States,In-person,United States,L,Data Science and Research +2023,Senior,Full-time,Applied Scientist,136000,USD,136000,United States,In-person,United States,L,Data Science and Research +2023,Senior,Full-time,Data Architect,180000,USD,180000,United States,In-person,United States,M,Data Architecture and Modeling +2023,Senior,Full-time,Data Architect,166375,USD,166375,United States,In-person,United States,M,Data Architecture and Modeling +2023,Senior,Full-time,Applied Scientist,212800,USD,212800,United States,In-person,United States,L,Data Science and Research +2023,Senior,Full-time,Applied Scientist,115100,USD,115100,United States,In-person,United States,L,Data Science and Research +2023,Mid-level,Full-time,Data Specialist,60000,USD,60000,United States,In-person,United States,M,Data Management and Strategy +2023,Mid-level,Full-time,Data Specialist,48000,USD,48000,United States,In-person,United States,M,Data Management and Strategy +2023,Mid-level,Full-time,Data Scientist,60000,USD,60000,United States,In-person,United States,M,Data Science and Research +2023,Mid-level,Full-time,Data Scientist,55000,USD,55000,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Research Scientist,205500,USD,205500,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Research Scientist,132500,USD,132500,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Data Analyst,122000,USD,122000,United States,In-person,United States,M,Data Analysis +2023,Senior,Full-time,Data Analyst,94000,USD,94000,United States,In-person,United States,M,Data Analysis +2023,Mid-level,Full-time,Data Science,223600,USD,223600,United States,In-person,United States,L,Data Science and Research +2023,Mid-level,Full-time,Data Science,115000,USD,115000,United States,In-person,United States,L,Data Science and Research +2023,Mid-level,Full-time,Research Scientist,165000,USD,165000,United States,In-person,United States,M,Data Science and Research +2023,Mid-level,Full-time,Research Scientist,150000,USD,150000,United States,In-person,United States,M,Data Science and Research +2023,Entry-level,Full-time,Research Analyst,62000,USD,62000,United States,Remote,United States,M,Data Science and Research +2023,Entry-level,Full-time,Research Analyst,49000,USD,49000,United States,Remote,United States,M,Data Science and Research +2023,Senior,Full-time,Machine Learning Operations Engineer,160000,USD,160000,United States,In-person,United States,M,Machine Learning and AI +2023,Senior,Full-time,Machine Learning Operations Engineer,140000,USD,140000,United States,In-person,United States,M,Machine Learning and AI +2023,Entry-level,Full-time,Data Analyst,106100,USD,106100,United States,Remote,United States,M,Data Analysis +2023,Entry-level,Full-time,Data Analyst,74300,USD,74300,United States,Remote,United States,M,Data Analysis +2023,Entry-level,Full-time,Data Analyst,44000,GBP,54137,United Kingdom,In-person,United Kingdom,M,Data Analysis +2023,Entry-level,Full-time,Data Analyst,35700,GBP,43925,United Kingdom,In-person,United Kingdom,M,Data Analysis +2023,Senior,Full-time,Data Scientist,245000,USD,245000,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Data Scientist,185000,USD,185000,United States,In-person,United States,M,Data Science and Research +2023,Mid-level,Full-time,Data Manager,132300,USD,132300,United States,In-person,United States,M,Leadership and Management +2023,Mid-level,Full-time,Data Manager,93000,USD,93000,United States,In-person,United States,M,Leadership and Management +2023,Senior,Full-time,Data Architect,234000,USD,234000,United States,Remote,United States,M,Data Architecture and Modeling +2023,Senior,Full-time,Data Architect,146000,USD,146000,United States,Remote,United States,M,Data Architecture and Modeling +2023,Senior,Full-time,Data Manager,96600,USD,96600,United States,In-person,United States,M,Leadership and Management +2023,Senior,Full-time,Data Manager,55200,USD,55200,United States,In-person,United States,M,Leadership and Management +2023,Entry-level,Full-time,Data Analyst,83300,USD,83300,United States,In-person,United States,M,Data Analysis +2023,Entry-level,Full-time,Data Analyst,47500,USD,47500,United States,In-person,United States,M,Data Analysis +2023,Entry-level,Full-time,Data Visualization Specialist,99300,USD,99300,United States,In-person,United States,M,BI and Visualization +2023,Entry-level,Full-time,Data Visualization Specialist,82800,USD,82800,United States,In-person,United States,M,BI and Visualization +2023,Senior,Full-time,Data Architect,145000,USD,145000,United States,In-person,United States,M,Data Architecture and Modeling +2023,Senior,Full-time,Data Architect,110841,USD,110841,United States,In-person,United States,M,Data Architecture and Modeling +2023,Mid-level,Full-time,Data Analyst,101000,USD,101000,United States,In-person,United States,M,Data Analysis +2023,Mid-level,Full-time,Data Analyst,50000,USD,50000,United States,In-person,United States,M,Data Analysis +2023,Senior,Full-time,Data Engineer,182500,USD,182500,United States,Remote,United States,M,Data Engineering +2023,Senior,Full-time,Data Engineer,121700,USD,121700,United States,Remote,United States,M,Data Engineering +2023,Senior,Full-time,Data Analyst,134500,USD,134500,United States,Remote,United States,M,Data Analysis +2023,Senior,Full-time,Data Analyst,91460,USD,91460,United States,Remote,United States,M,Data Analysis +2023,Senior,Full-time,Data Scientist,150000,USD,150000,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Data Scientist,130000,USD,130000,United States,In-person,United States,M,Data Science and Research +2023,Entry-level,Full-time,Data Analyst,33995,GBP,41827,United Kingdom,In-person,United Kingdom,M,Data Analysis +2023,Entry-level,Full-time,Data Analyst,30839,GBP,37944,United Kingdom,In-person,United Kingdom,M,Data Analysis +2023,Entry-level,Full-time,Research Analyst,75753,USD,75753,United States,In-person,United States,M,Data Science and Research +2023,Entry-level,Full-time,Research Analyst,47423,USD,47423,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Analytics Engineer,130000,USD,130000,Canada,In-person,Canada,M,Leadership and Management +2023,Senior,Full-time,Analytics Engineer,110000,USD,110000,Canada,In-person,Canada,M,Leadership and Management +2023,Senior,Full-time,Data Engineer,124935,USD,124935,United States,In-person,United States,M,Data Engineering +2023,Senior,Full-time,Data Engineer,76050,USD,76050,United States,In-person,United States,M,Data Engineering +2023,Senior,Full-time,Data Engineer,286000,USD,286000,United States,In-person,United States,M,Data Engineering +2023,Senior,Full-time,Data Engineer,143000,USD,143000,United States,In-person,United States,M,Data Engineering +2023,Mid-level,Full-time,Data Engineer,106400,USD,106400,United States,Remote,United States,M,Data Engineering +2023,Mid-level,Full-time,Data Engineer,70000,USD,70000,United States,Remote,United States,M,Data Engineering +2023,Mid-level,Full-time,Data Engineer,133000,USD,133000,United States,In-person,United States,M,Data Engineering +2023,Mid-level,Full-time,Data Engineer,58400,USD,58400,United States,In-person,United States,M,Data Engineering +2023,Senior,Full-time,Data Engineer,243600,USD,243600,United States,In-person,United States,M,Data Engineering +2023,Senior,Full-time,Data Engineer,148200,USD,148200,United States,In-person,United States,M,Data Engineering +2023,Entry-level,Full-time,Data Analyst,131600,USD,131600,United States,Remote,United States,M,Data Analysis +2023,Entry-level,Full-time,Data Analyst,82400,USD,82400,United States,Remote,United States,M,Data Analysis +2023,Senior,Full-time,Machine Learning Engineer,245700,USD,245700,United States,In-person,United States,M,Machine Learning and AI +2023,Senior,Full-time,Machine Learning Engineer,132300,USD,132300,United States,In-person,United States,M,Machine Learning and AI +2023,Entry-level,Full-time,Data Analyst,155750,USD,155750,United States,Remote,United States,M,Data Analysis +2023,Entry-level,Full-time,Data Analyst,79350,USD,79350,United States,Remote,United States,M,Data Analysis +2023,Senior,Full-time,Data Engineer,234000,USD,234000,United States,In-person,United States,M,Data Engineering +2023,Senior,Full-time,Data Engineer,117000,USD,117000,United States,In-person,United States,M,Data Engineering +2023,Senior,Full-time,AI Engineer,242000,USD,242000,United States,In-person,United States,M,Machine Learning and AI +2023,Senior,Full-time,AI Engineer,106200,USD,106200,United States,In-person,United States,M,Machine Learning and AI +2023,Senior,Full-time,Data Analyst,123900,USD,123900,United States,Remote,United States,M,Data Analysis +2023,Senior,Full-time,Data Analyst,75000,USD,75000,United States,Remote,United States,M,Data Analysis +2023,Mid-level,Full-time,Data Engineer,136500,USD,136500,United States,In-person,United States,M,Data Engineering +2023,Mid-level,Full-time,Data Engineer,123500,USD,123500,United States,In-person,United States,M,Data Engineering +2023,Senior,Full-time,Data Engineer,227500,USD,227500,United States,Remote,United States,M,Data Engineering +2023,Senior,Full-time,Data Engineer,145600,USD,145600,United States,Remote,United States,M,Data Engineering +2023,Senior,Full-time,Machine Learning Engineer,186754,USD,186754,United States,In-person,United States,M,Machine Learning and AI +2023,Senior,Full-time,Machine Learning Engineer,101000,USD,101000,United States,In-person,United States,M,Machine Learning and AI +2023,Entry-level,Full-time,Data Scientist,149800,USD,149800,United States,In-person,United States,M,Data Science and Research +2023,Entry-level,Full-time,Data Scientist,70800,USD,70800,United States,In-person,United States,M,Data Science and Research +2023,Mid-level,Full-time,Data Engineer,132000,USD,132000,United States,Remote,United States,M,Data Engineering +2023,Mid-level,Full-time,Data Engineer,111000,USD,111000,United States,Remote,United States,M,Data Engineering +2023,Mid-level,Full-time,Data Engineer,180000,USD,180000,United States,Remote,United States,M,Data Engineering +2023,Mid-level,Full-time,Data Engineer,162000,USD,162000,United States,Remote,United States,M,Data Engineering +2023,Senior,Full-time,Data Analyst,150000,USD,150000,United States,In-person,United States,M,Data Analysis +2023,Senior,Full-time,Data Analyst,135000,USD,135000,United States,In-person,United States,M,Data Analysis +2023,Senior,Full-time,Data Engineer,172700,USD,172700,India,In-person,India,M,Data Engineering +2023,Senior,Full-time,Data Engineer,82900,USD,82900,India,In-person,India,M,Data Engineering +2023,Senior,Full-time,Analytics Engineer,115000,USD,115000,United States,In-person,United States,M,Leadership and Management +2023,Senior,Full-time,Analytics Engineer,95000,USD,95000,United States,In-person,United States,M,Leadership and Management +2023,Mid-level,Full-time,Research Scientist,238000,USD,238000,United States,In-person,United States,M,Data Science and Research +2023,Mid-level,Full-time,Research Scientist,144500,USD,144500,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Machine Learning Engineer,145000,USD,145000,United States,In-person,United States,M,Machine Learning and AI +2023,Senior,Full-time,Machine Learning Engineer,98500,USD,98500,United States,In-person,United States,M,Machine Learning and AI +2023,Mid-level,Full-time,Data Scientist,209300,USD,209300,United States,Remote,United States,M,Data Science and Research +2023,Mid-level,Full-time,Data Scientist,123800,USD,123800,United States,Remote,United States,M,Data Science and Research +2023,Entry-level,Full-time,Data Analyst Lead,18000,USD,18000,Nigeria,Remote,Nigeria,S,Data Analysis +2023,Entry-level,Full-time,Machine Learning Engineer,130400,USD,130400,United States,In-person,United States,M,Machine Learning and AI +2023,Entry-level,Full-time,Machine Learning Engineer,70800,USD,70800,United States,In-person,United States,M,Machine Learning and AI +2023,Mid-level,Full-time,Data Engineer,160000,USD,160000,United States,In-person,United States,M,Data Engineering +2023,Mid-level,Full-time,Data Engineer,75000,USD,75000,United States,In-person,United States,M,Data Engineering +2023,Senior,Full-time,Data Engineer,247300,USD,247300,United States,In-person,United States,M,Data Engineering +2023,Senior,Full-time,Data Engineer,139700,USD,139700,United States,In-person,United States,M,Data Engineering +2023,Senior,Full-time,Machine Learning Engineer,300000,USD,300000,United States,In-person,United States,M,Machine Learning and AI +2023,Senior,Full-time,Machine Learning Engineer,200000,USD,200000,United States,In-person,United States,M,Machine Learning and AI +2023,Senior,Full-time,Research Scientist,278700,USD,278700,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Research Scientist,159300,USD,159300,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Data Scientist,254900,USD,254900,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Data Scientist,203920,USD,203920,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Data Scientist,191200,USD,191200,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Data Scientist,170186,USD,170186,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Machine Learning Engineer,300000,USD,300000,United States,In-person,United States,M,Machine Learning and AI +2023,Senior,Full-time,Machine Learning Engineer,200000,USD,200000,United States,In-person,United States,M,Machine Learning and AI +2023,Senior,Full-time,Data Analyst,150000,USD,150000,United States,Remote,United States,M,Data Analysis +2023,Senior,Full-time,Data Analyst,125000,USD,125000,United States,Remote,United States,M,Data Analysis +2023,Executive,Full-time,NLP Engineer,200000,USD,200000,United States,In-person,United States,M,Machine Learning and AI +2023,Executive,Full-time,NLP Engineer,150000,USD,150000,United States,In-person,United States,M,Machine Learning and AI +2023,Mid-level,Full-time,Data Developer,100000,USD,100000,United States,In-person,United States,M,Leadership and Management +2023,Mid-level,Full-time,Data Developer,95000,USD,95000,United States,In-person,United States,M,Leadership and Management +2023,Senior,Full-time,Research Scientist,278700,USD,278700,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Research Scientist,159300,USD,159300,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,MLOps Engineer,247300,USD,247300,United States,In-person,United States,M,Machine Learning and AI +2023,Senior,Full-time,MLOps Engineer,139700,USD,139700,United States,In-person,United States,M,Machine Learning and AI +2023,Mid-level,Full-time,Research Scientist,212800,USD,212800,United States,In-person,United States,L,Data Science and Research +2023,Mid-level,Full-time,Research Scientist,124100,USD,124100,United States,In-person,United States,L,Data Science and Research +2023,Senior,Full-time,Marketing Data Scientist,90000,USD,90000,United States,Hybrid,United States,L,Data Science and Research +2023,Senior,Full-time,Data Architect,198000,USD,198000,United States,In-person,United States,M,Data Architecture and Modeling +2023,Senior,Full-time,Data Architect,94000,USD,94000,United States,In-person,United States,M,Data Architecture and Modeling +2023,Senior,Full-time,Applied Scientist,219100,USD,219100,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Applied Scientist,118500,USD,118500,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Data Engineer,160000,USD,160000,United States,Remote,United States,M,Data Engineering +2023,Senior,Full-time,Data Engineer,128000,USD,128000,United States,Remote,United States,M,Data Engineering +2023,Entry-level,Full-time,Data Engineer,60000,USD,60000,United States,Remote,United States,M,Data Engineering +2023,Entry-level,Full-time,Data Engineer,48000,USD,48000,United States,Remote,United States,M,Data Engineering +2023,Executive,Full-time,Data Engineer,234000,USD,234000,United States,In-person,United States,M,Data Engineering +2023,Executive,Full-time,Data Engineer,146000,USD,146000,United States,In-person,United States,M,Data Engineering +2023,Senior,Full-time,Data Scientist,179000,USD,179000,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Data Scientist,112000,USD,112000,United States,In-person,United States,M,Data Science and Research +2023,Mid-level,Full-time,Data Analyst,130100,USD,130100,United States,In-person,United States,M,Data Analysis +2023,Mid-level,Full-time,Data Analyst,75000,USD,75000,United States,In-person,United States,M,Data Analysis +2023,Mid-level,Full-time,Business Intelligence Manager,166500,USD,166500,United States,In-person,United States,M,BI and Visualization +2023,Mid-level,Full-time,Business Intelligence Manager,104000,USD,104000,United States,In-person,United States,M,BI and Visualization +2023,Mid-level,Full-time,AI Engineer,166000,USD,166000,United States,In-person,United States,M,Machine Learning and AI +2023,Mid-level,Full-time,AI Engineer,73100,USD,73100,United States,In-person,United States,M,Machine Learning and AI +2023,Entry-level,Full-time,Research Engineer,98000,USD,98000,United States,In-person,United States,M,Data Science and Research +2023,Entry-level,Full-time,Research Engineer,73000,USD,73000,United States,In-person,United States,M,Data Science and Research +2023,Mid-level,Full-time,Machine Learning Engineer,247500,USD,247500,United States,In-person,United States,M,Machine Learning and AI +2023,Mid-level,Full-time,Machine Learning Engineer,172200,USD,172200,United States,In-person,United States,M,Machine Learning and AI +2023,Senior,Full-time,Analytics Engineer,183540,USD,183540,United States,In-person,United States,M,Leadership and Management +2023,Senior,Full-time,Analytics Engineer,132000,USD,132000,United States,In-person,United States,M,Leadership and Management +2023,Mid-level,Full-time,Research Scientist,240000,USD,240000,United States,In-person,United States,M,Data Science and Research +2023,Mid-level,Full-time,Research Scientist,133000,USD,133000,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Data Scientist,273500,USD,273500,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Data Scientist,182500,USD,182500,United States,In-person,United States,M,Data Science and Research +2023,Entry-level,Full-time,Data Analyst,75000,GBP,92280,United Kingdom,In-person,United Kingdom,M,Data Analysis +2023,Entry-level,Full-time,Data Analyst,55000,GBP,67672,United Kingdom,In-person,United Kingdom,M,Data Analysis +2023,Senior,Full-time,Research Engineer,240960,USD,240960,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Research Engineer,176000,USD,176000,United States,In-person,United States,M,Data Science and Research +2023,Mid-level,Full-time,Research Scientist,150000,USD,150000,United States,In-person,United States,M,Data Science and Research +2023,Mid-level,Full-time,Research Scientist,130000,USD,130000,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Data Engineer,150000,USD,150000,United States,Remote,United States,M,Data Engineering +2023,Senior,Full-time,Data Engineer,130000,USD,130000,United States,Remote,United States,M,Data Engineering +2023,Senior,Full-time,Data Analyst,100000,GBP,123040,United Kingdom,In-person,United Kingdom,M,Data Analysis +2023,Senior,Full-time,Data Analyst,75000,GBP,92280,United Kingdom,In-person,United Kingdom,M,Data Analysis +2023,Entry-level,Full-time,Research Scientist,162240,USD,162240,United States,In-person,United States,M,Data Science and Research +2023,Entry-level,Full-time,Research Scientist,47840,USD,47840,United States,In-person,United States,M,Data Science and Research +2023,Entry-level,Full-time,Data Analyst,162240,USD,162240,United States,In-person,United States,M,Data Analysis +2023,Entry-level,Full-time,Data Analyst,47840,USD,47840,United States,In-person,United States,M,Data Analysis +2023,Mid-level,Full-time,Data Scientist,296980,USD,296980,United States,In-person,United States,M,Data Science and Research +2023,Mid-level,Full-time,Data Scientist,123740,USD,123740,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,ML Engineer,247250,USD,247250,United States,In-person,United States,M,Machine Learning and AI +2023,Senior,Full-time,ML Engineer,160000,USD,160000,United States,In-person,United States,M,Machine Learning and AI +2023,Entry-level,Full-time,Business Intelligence Analyst,91875,USD,91875,Canada,In-person,Canada,M,BI and Visualization +2023,Entry-level,Full-time,Business Intelligence Analyst,55125,USD,55125,Canada,In-person,Canada,M,BI and Visualization +2023,Senior,Full-time,Machine Learning Engineer,220000,USD,220000,United States,In-person,United States,M,Machine Learning and AI +2023,Senior,Full-time,Machine Learning Engineer,146000,USD,146000,United States,In-person,United States,M,Machine Learning and AI +2023,Senior,Full-time,Data Architect,200000,USD,200000,United States,Remote,United States,M,Data Architecture and Modeling +2023,Senior,Full-time,Data Architect,115000,USD,115000,United States,Remote,United States,M,Data Architecture and Modeling +2023,Senior,Full-time,Machine Learning Engineer,370000,USD,370000,United States,In-person,United States,M,Machine Learning and AI +2023,Senior,Full-time,Machine Learning Engineer,220000,USD,220000,United States,In-person,United States,M,Machine Learning and AI +2023,Mid-level,Full-time,Machine Learning Engineer,72000,USD,72000,Viet Nam,Remote,Viet Nam,M,Machine Learning and AI +2023,Mid-level,Full-time,Machine Learning Engineer,48000,USD,48000,Viet Nam,Remote,Viet Nam,M,Machine Learning and AI +2023,Mid-level,Full-time,Business Intelligence Engineer,185000,USD,185000,United States,In-person,United States,L,BI and Visualization +2023,Mid-level,Full-time,Business Intelligence Engineer,79600,USD,79600,United States,In-person,United States,L,BI and Visualization +2023,Senior,Full-time,Data Science Consultant,125000,USD,125000,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Data Science Consultant,122000,USD,122000,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Data Scientist,250000,USD,250000,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Data Scientist,175000,USD,175000,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Applied Scientist,260000,USD,260000,United States,In-person,United States,L,Data Science and Research +2023,Senior,Full-time,Applied Scientist,136000,USD,136000,United States,In-person,United States,L,Data Science and Research +2023,Senior,Full-time,Data Scientist,235000,USD,235000,United States,Remote,United States,M,Data Science and Research +2023,Senior,Full-time,Data Scientist,175000,USD,175000,United States,Remote,United States,M,Data Science and Research +2023,Senior,Full-time,Machine Learning Engineer,185000,USD,185000,United States,Remote,United States,M,Machine Learning and AI +2023,Senior,Full-time,Machine Learning Engineer,128000,USD,128000,United States,Remote,United States,M,Machine Learning and AI +2023,Executive,Full-time,Data Engineer,350000,USD,350000,United States,Remote,United States,M,Data Engineering +2023,Executive,Full-time,Data Engineer,268000,USD,268000,United States,Remote,United States,M,Data Engineering +2023,Mid-level,Full-time,Applied Scientist,222200,USD,222200,United States,In-person,United States,L,Data Science and Research +2023,Mid-level,Full-time,Applied Scientist,136000,USD,136000,United States,In-person,United States,L,Data Science and Research +2023,Senior,Full-time,Data Architect,180000,USD,180000,United States,Remote,United States,M,Data Architecture and Modeling +2023,Senior,Full-time,Data Architect,115000,USD,115000,United States,Remote,United States,M,Data Architecture and Modeling +2023,Entry-level,Full-time,Business Intelligence Analyst,100000,USD,100000,United States,In-person,United States,M,BI and Visualization +2023,Entry-level,Full-time,Business Intelligence Analyst,80000,USD,80000,United States,In-person,United States,M,BI and Visualization +2023,Senior,Full-time,Data Analyst,234485,USD,234485,United States,In-person,United States,M,Data Analysis +2023,Senior,Full-time,Data Analyst,112655,USD,112655,United States,In-person,United States,M,Data Analysis +2023,Senior,Full-time,Data Engineer,234000,USD,234000,United States,In-person,United States,M,Data Engineering +2023,Senior,Full-time,Data Engineer,146000,USD,146000,United States,In-person,United States,M,Data Engineering +2023,Mid-level,Full-time,Data Scientist,199700,USD,199700,United States,In-person,United States,M,Data Science and Research +2023,Mid-level,Full-time,Data Scientist,70800,USD,70800,United States,In-person,United States,M,Data Science and Research +2023,Entry-level,Full-time,Research Analyst,179000,USD,179000,United States,In-person,United States,M,Data Science and Research +2023,Entry-level,Full-time,Research Analyst,112000,USD,112000,United States,In-person,United States,M,Data Science and Research +2023,Entry-level,Full-time,Data Analyst,99900,USD,99900,United States,In-person,United States,M,Data Analysis +2023,Entry-level,Full-time,Data Analyst,83000,USD,83000,United States,In-person,United States,M,Data Analysis +2023,Senior,Full-time,Data Engineer,158000,USD,158000,United States,In-person,United States,M,Data Engineering +2023,Senior,Full-time,Data Engineer,90300,USD,90300,United States,In-person,United States,M,Data Engineering +2023,Senior,Full-time,Machine Learning Engineer,266500,USD,266500,United States,In-person,United States,M,Machine Learning and AI +2023,Senior,Full-time,Machine Learning Engineer,152000,USD,152000,United States,In-person,United States,M,Machine Learning and AI +2023,Entry-level,Full-time,Research Analyst,70000,USD,70000,United States,Remote,United States,M,Data Science and Research +2023,Entry-level,Full-time,Research Analyst,60000,USD,60000,United States,Remote,United States,M,Data Science and Research +2023,Senior,Full-time,Data Scientist,187200,USD,187200,United States,Remote,United States,M,Data Science and Research +2023,Senior,Full-time,Data Scientist,140400,USD,140400,United States,Remote,United States,M,Data Science and Research +2023,Senior,Full-time,Business Intelligence Engineer,225000,USD,225000,United States,In-person,United States,M,BI and Visualization +2023,Senior,Full-time,Business Intelligence Engineer,156400,USD,156400,United States,In-person,United States,M,BI and Visualization +2023,Senior,Full-time,Data Architect,190900,USD,190900,United States,In-person,United States,M,Data Architecture and Modeling +2023,Senior,Full-time,Data Architect,109100,USD,109100,United States,In-person,United States,M,Data Architecture and Modeling +2023,Senior,Full-time,Data Engineer,145000,USD,145000,United States,In-person,United States,M,Data Engineering +2023,Senior,Full-time,Data Engineer,98500,USD,98500,United States,In-person,United States,M,Data Engineering +2023,Entry-level,Full-time,Research Scientist,195200,USD,195200,United States,In-person,United States,L,Data Science and Research +2023,Entry-level,Full-time,Research Scientist,100400,USD,100400,United States,In-person,United States,L,Data Science and Research +2023,Mid-level,Full-time,Data Analyst,125000,USD,125000,United States,Remote,United States,M,Data Analysis +2023,Mid-level,Full-time,Data Analyst,100000,USD,100000,United States,Remote,United States,M,Data Analysis +2023,Entry-level,Full-time,Data Analyst,75065,USD,75065,United States,Remote,United States,M,Data Analysis +2023,Entry-level,Full-time,Data Analyst,41419,USD,41419,United States,Remote,United States,M,Data Analysis +2023,Mid-level,Full-time,Data Engineer,181700,USD,181700,United States,In-person,United States,M,Data Engineering +2023,Mid-level,Full-time,Data Engineer,64300,USD,64300,United States,In-person,United States,M,Data Engineering +2023,Senior,Full-time,Data Scientist,185900,USD,185900,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Data Scientist,129300,USD,129300,United States,In-person,United States,M,Data Science and Research +2023,Entry-level,Full-time,Data Analyst,85000,USD,85000,United States,Remote,United States,M,Data Analysis +2023,Entry-level,Full-time,Data Analyst,80000,USD,80000,United States,Remote,United States,M,Data Analysis +2023,Senior,Full-time,Data Science Manager,120000,USD,120000,United States,Remote,United States,M,Data Science and Research +2023,Senior,Full-time,Data Science Manager,52100,USD,52100,United States,Remote,United States,M,Data Science and Research +2023,Senior,Full-time,AI Scientist,219000,USD,219000,United States,In-person,United States,M,Machine Learning and AI +2023,Senior,Full-time,AI Scientist,152000,USD,152000,United States,In-person,United States,M,Machine Learning and AI +2023,Senior,Full-time,Machine Learning Engineer,204500,USD,204500,United States,Remote,United States,M,Machine Learning and AI +2023,Senior,Full-time,Machine Learning Engineer,142200,USD,142200,United States,Remote,United States,M,Machine Learning and AI +2023,Mid-level,Full-time,Data Visualization Specialist,158000,USD,158000,United States,In-person,United States,M,BI and Visualization +2023,Mid-level,Full-time,Data Visualization Specialist,90300,USD,90300,United States,In-person,United States,M,BI and Visualization +2023,Senior,Full-time,Data Engineer,170000,USD,170000,United States,Remote,United States,M,Data Engineering +2023,Senior,Full-time,Data Engineer,130000,USD,130000,United States,Remote,United States,M,Data Engineering +2023,Senior,Full-time,Data Engineer,175000,USD,175000,United States,Remote,United States,M,Data Engineering +2023,Senior,Full-time,Data Engineer,130000,USD,130000,United States,Remote,United States,M,Data Engineering +2023,Mid-level,Full-time,Applied Scientist,222200,USD,222200,United States,In-person,United States,L,Data Science and Research +2023,Mid-level,Full-time,Applied Scientist,136000,USD,136000,United States,In-person,United States,L,Data Science and Research +2023,Senior,Full-time,Business Intelligence Engineer,225000,USD,225000,United States,In-person,United States,M,BI and Visualization +2023,Senior,Full-time,Business Intelligence Engineer,180000,USD,180000,United States,In-person,United States,M,BI and Visualization +2023,Mid-level,Full-time,Applied Scientist,260000,USD,260000,United States,In-person,United States,L,Data Science and Research +2023,Mid-level,Full-time,Applied Scientist,136000,USD,136000,United States,In-person,United States,L,Data Science and Research +2023,Senior,Full-time,Data Engineer,152375,USD,152375,United States,In-person,United States,M,Data Engineering +2023,Senior,Full-time,Data Engineer,94000,USD,94000,United States,In-person,United States,M,Data Engineering +2023,Senior,Full-time,Data Analyst,82000,USD,82000,United States,In-person,United States,M,Data Analysis +2023,Senior,Full-time,Data Analyst,77000,USD,77000,United States,In-person,United States,M,Data Analysis +2023,Senior,Full-time,Data Engineer,196000,USD,196000,United States,Remote,United States,M,Data Engineering +2023,Senior,Full-time,Data Engineer,94000,USD,94000,United States,Remote,United States,M,Data Engineering +2023,Senior,Full-time,Data Scientist,264846,USD,264846,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Data Scientist,143060,USD,143060,United States,In-person,United States,M,Data Science and Research +2023,Entry-level,Full-time,Data Analyst,203000,USD,203000,United States,In-person,United States,M,Data Analysis +2023,Entry-level,Full-time,Data Analyst,89030,USD,89030,United States,In-person,United States,M,Data Analysis +2023,Senior,Full-time,Data Scientist,60000,EUR,64781,Spain,In-person,Spain,M,Data Science and Research +2023,Senior,Full-time,Data Scientist,38000,EUR,41027,Spain,In-person,Spain,M,Data Science and Research +2023,Entry-level,Full-time,Data Analyst,160800,USD,160800,United States,In-person,United States,M,Data Analysis +2023,Entry-level,Full-time,Data Analyst,92700,USD,92700,United States,In-person,United States,M,Data Analysis +2023,Senior,Full-time,Data Analyst,62000,USD,62000,United States,In-person,United States,M,Data Analysis +2023,Senior,Full-time,Data Analyst,51000,USD,51000,United States,In-person,United States,M,Data Analysis +2023,Entry-level,Full-time,Data Analyst,137500,USD,137500,United States,In-person,United States,M,Data Analysis +2023,Entry-level,Full-time,Data Analyst,100000,USD,100000,United States,In-person,United States,M,Data Analysis +2023,Mid-level,Full-time,Research Engineer,128167,USD,128167,United States,In-person,United States,M,Data Science and Research +2023,Mid-level,Full-time,Research Engineer,85445,USD,85445,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Business Intelligence Engineer,60000,GBP,73824,United Kingdom,In-person,United Kingdom,M,BI and Visualization +2023,Senior,Full-time,Business Intelligence Engineer,40000,GBP,49216,United Kingdom,In-person,United Kingdom,M,BI and Visualization +2023,Entry-level,Full-time,Data Analyst,65000,USD,65000,United States,In-person,United States,M,Data Analysis +2023,Entry-level,Full-time,Data Analyst,50000,USD,50000,United States,In-person,United States,M,Data Analysis +2023,Mid-level,Full-time,BI Developer,154800,USD,154800,United States,In-person,United States,M,BI and Visualization +2023,Mid-level,Full-time,BI Developer,76300,USD,76300,United States,In-person,United States,M,BI and Visualization +2023,Senior,Full-time,Research Scientist,240000,USD,240000,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Research Scientist,200000,USD,200000,United States,In-person,United States,M,Data Science and Research +2023,Mid-level,Full-time,Data Scientist,45000,GBP,55368,United Kingdom,In-person,United Kingdom,M,Data Science and Research +2023,Mid-level,Full-time,Data Scientist,40000,GBP,49216,United Kingdom,In-person,United Kingdom,M,Data Science and Research +2023,Senior,Full-time,Data Engineer,110000,USD,110000,United States,In-person,United States,M,Data Engineering +2023,Senior,Full-time,Data Engineer,70000,USD,70000,United States,In-person,United States,M,Data Engineering +2023,Senior,Full-time,Machine Learning Engineer,240000,USD,240000,United States,In-person,United States,M,Machine Learning and AI +2023,Senior,Full-time,Machine Learning Engineer,200000,USD,200000,United States,In-person,United States,M,Machine Learning and AI +2023,Mid-level,Full-time,Analytics Engineer,190000,USD,190000,Canada,Remote,Canada,M,Leadership and Management +2023,Mid-level,Full-time,Analytics Engineer,150000,USD,150000,Canada,Remote,Canada,M,Leadership and Management +2023,Executive,Full-time,Data Engineer,385000,USD,385000,United States,In-person,United States,M,Data Engineering +2023,Mid-level,Full-time,Data Engineer,240000,USD,240000,United States,In-person,United States,M,Data Engineering +2023,Mid-level,Full-time,Data Engineer,200000,USD,200000,United States,In-person,United States,M,Data Engineering +2023,Senior,Full-time,Business Intelligence Engineer,116300,USD,116300,United States,Remote,United States,M,BI and Visualization +2023,Senior,Full-time,Business Intelligence Engineer,84600,USD,84600,United States,Remote,United States,M,BI and Visualization +2023,Senior,Full-time,AI Engineer,129700,USD,129700,United States,In-person,United States,M,Machine Learning and AI +2023,Senior,Full-time,AI Engineer,86500,USD,86500,United States,In-person,United States,M,Machine Learning and AI +2023,Senior,Full-time,Data Analyst,150000,USD,150000,United States,In-person,United States,M,Data Analysis +2023,Senior,Full-time,Data Analyst,120000,USD,120000,United States,In-person,United States,M,Data Analysis +2023,Entry-level,Full-time,Data Analyst,60000,GBP,73824,United Kingdom,In-person,United Kingdom,M,Data Analysis +2023,Entry-level,Full-time,Data Analyst,50000,GBP,61520,United Kingdom,In-person,United Kingdom,M,Data Analysis +2023,Senior,Full-time,Machine Learning Engineer,225300,USD,225300,United States,In-person,United States,M,Machine Learning and AI +2023,Senior,Full-time,Machine Learning Engineer,197400,USD,197400,United States,In-person,United States,M,Machine Learning and AI +2023,Senior,Full-time,Data Scientist,212000,USD,212000,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Data Scientist,93300,USD,93300,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Data Analyst,140130,USD,140130,United States,In-person,United States,M,Data Analysis +2023,Senior,Full-time,Data Analyst,84870,USD,84870,United States,In-person,United States,M,Data Analysis +2023,Mid-level,Full-time,Insight Analyst,45000,GBP,55368,United Kingdom,In-person,United Kingdom,M,Data Analysis +2023,Mid-level,Full-time,Insight Analyst,25000,GBP,30760,United Kingdom,In-person,United Kingdom,M,Data Analysis +2023,Senior,Full-time,Data Engineer,266000,USD,266000,United States,In-person,United States,M,Data Engineering +2023,Senior,Full-time,Data Engineer,152000,USD,152000,United States,In-person,United States,M,Data Engineering +2023,Senior,Full-time,Data Science Manager,224000,USD,224000,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Data Science Manager,165000,USD,165000,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Machine Learning Engineer,255000,USD,255000,United States,In-person,United States,M,Machine Learning and AI +2023,Senior,Full-time,Machine Learning Engineer,169000,USD,169000,United States,In-person,United States,M,Machine Learning and AI +2023,Mid-level,Full-time,Data Engineer,169000,USD,169000,United States,In-person,United States,M,Data Engineering +2023,Mid-level,Full-time,Data Engineer,91000,USD,91000,United States,In-person,United States,M,Data Engineering +2023,Senior,Full-time,Data Scientist,197500,USD,197500,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Data Scientist,136500,USD,136500,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Machine Learning Engineer,248100,USD,248100,United States,In-person,United States,M,Machine Learning and AI +2023,Senior,Full-time,Machine Learning Engineer,145900,USD,145900,United States,In-person,United States,M,Machine Learning and AI +2023,Senior,Full-time,Data Analyst,185100,USD,185100,United States,In-person,United States,M,Data Analysis +2023,Senior,Full-time,Data Analyst,133300,USD,133300,United States,In-person,United States,M,Data Analysis +2023,Mid-level,Full-time,Data Analyst,95000,USD,95000,Philippines,In-person,Philippines,M,Data Analysis +2023,Mid-level,Full-time,Data Analyst,70000,USD,70000,Philippines,In-person,Philippines,M,Data Analysis +2023,Mid-level,Full-time,Data Engineer,130000,USD,130000,United States,In-person,United States,M,Data Engineering +2023,Mid-level,Full-time,Data Engineer,115000,USD,115000,United States,In-person,United States,M,Data Engineering +2023,Senior,Full-time,Data Scientist,220000,USD,220000,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Data Scientist,160000,USD,160000,United States,In-person,United States,M,Data Science and Research +2023,Entry-level,Full-time,Data Analyst,65000,GBP,79976,United Kingdom,In-person,United Kingdom,M,Data Analysis +2023,Entry-level,Full-time,Data Analyst,55000,GBP,67672,United Kingdom,In-person,United Kingdom,M,Data Analysis +2023,Mid-level,Full-time,Data DevOps Engineer,88000,EUR,95012,Germany,Hybrid,Germany,L,Data Engineering +2023,Senior,Full-time,Data Architect,186000,USD,186000,United States,In-person,United States,M,Data Architecture and Modeling +2023,Senior,Full-time,Data Architect,81800,USD,81800,United States,In-person,United States,M,Data Architecture and Modeling +2023,Senior,Full-time,Data Scientist,212000,USD,212000,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Data Scientist,93300,USD,93300,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Data Scientist,130000,USD,130000,United States,Remote,United States,M,Data Science and Research +2023,Senior,Full-time,Data Scientist,100000,USD,100000,United States,Remote,United States,M,Data Science and Research +2023,Mid-level,Full-time,Machine Learning Researcher,224400,USD,224400,United States,In-person,United States,M,Machine Learning and AI +2023,Mid-level,Full-time,Machine Learning Researcher,138700,USD,138700,United States,In-person,United States,M,Machine Learning and AI +2023,Executive,Full-time,Data Engineer,210000,USD,210000,United States,Remote,United States,M,Data Engineering +2023,Executive,Full-time,Data Engineer,168000,USD,168000,United States,Remote,United States,M,Data Engineering +2023,Senior,Full-time,Machine Learning Engineer,224400,USD,224400,United States,In-person,United States,M,Machine Learning and AI +2023,Senior,Full-time,Machine Learning Engineer,138700,USD,138700,United States,In-person,United States,M,Machine Learning and AI +2023,Mid-level,Full-time,Data Scientist,35000,GBP,43064,United Kingdom,In-person,United Kingdom,M,Data Science and Research +2023,Mid-level,Full-time,Data Scientist,30000,GBP,36912,United Kingdom,In-person,United Kingdom,M,Data Science and Research +2023,Entry-level,Full-time,Data Analyst,95000,USD,95000,United States,In-person,United States,M,Data Analysis +2023,Entry-level,Full-time,Data Analyst,75000,USD,75000,United States,In-person,United States,M,Data Analysis +2023,Senior,Full-time,Data Scientist,300000,USD,300000,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Data Scientist,234000,USD,234000,United States,In-person,United States,M,Data Science and Research +2023,Mid-level,Full-time,Analytics Engineer,140000,USD,140000,United States,In-person,United States,M,Leadership and Management +2023,Mid-level,Full-time,Analytics Engineer,120000,USD,120000,United States,In-person,United States,M,Leadership and Management +2023,Mid-level,Full-time,Machine Learning Engineer,204500,USD,204500,United States,In-person,United States,M,Machine Learning and AI +2023,Mid-level,Full-time,Machine Learning Engineer,142200,USD,142200,United States,In-person,United States,M,Machine Learning and AI +2023,Mid-level,Full-time,Data Analyst,155000,USD,155000,United States,In-person,United States,M,Data Analysis +2023,Mid-level,Full-time,Data Analyst,110000,USD,110000,United States,In-person,United States,M,Data Analysis +2023,Senior,Full-time,Machine Learning Engineer,266500,USD,266500,United States,In-person,United States,M,Machine Learning and AI +2023,Senior,Full-time,Machine Learning Engineer,152000,USD,152000,United States,In-person,United States,M,Machine Learning and AI +2023,Mid-level,Full-time,Applied Scientist,222200,USD,222200,United States,In-person,United States,L,Data Science and Research +2023,Mid-level,Full-time,Applied Scientist,136000,USD,136000,United States,In-person,United States,L,Data Science and Research +2023,Senior,Full-time,Machine Learning Engineer,273400,USD,273400,United States,In-person,United States,M,Machine Learning and AI +2023,Senior,Full-time,Machine Learning Engineer,182200,USD,182200,United States,In-person,United States,M,Machine Learning and AI +2023,Senior,Full-time,BI Developer,167500,USD,167500,United States,In-person,United States,M,BI and Visualization +2023,Senior,Full-time,BI Developer,106500,USD,106500,United States,In-person,United States,M,BI and Visualization +2023,Senior,Full-time,Data Engineer,185900,USD,185900,United States,In-person,United States,M,Data Engineering +2023,Senior,Full-time,Data Engineer,129300,USD,129300,United States,In-person,United States,M,Data Engineering +2023,Mid-level,Full-time,Business Intelligence Engineer,185000,USD,185000,United States,In-person,United States,L,BI and Visualization +2023,Mid-level,Full-time,Business Intelligence Engineer,79600,USD,79600,United States,In-person,United States,L,BI and Visualization +2023,Senior,Full-time,Data Engineer,122000,USD,122000,United States,In-person,United States,M,Data Engineering +2023,Senior,Full-time,Data Engineer,94500,USD,94500,United States,In-person,United States,M,Data Engineering +2023,Senior,Full-time,Data Engineer,247300,USD,247300,United States,In-person,United States,M,Data Engineering +2023,Senior,Full-time,Data Engineer,139700,USD,139700,United States,In-person,United States,M,Data Engineering +2023,Senior,Full-time,Data Analyst,176000,USD,176000,United States,In-person,United States,M,Data Analysis +2023,Senior,Full-time,Data Analyst,100000,USD,100000,United States,In-person,United States,M,Data Analysis +2023,Senior,Full-time,Machine Learning Engineer,204500,USD,204500,United States,In-person,United States,M,Machine Learning and AI +2023,Senior,Full-time,Machine Learning Engineer,142200,USD,142200,United States,In-person,United States,M,Machine Learning and AI +2023,Senior,Full-time,Research Scientist,247600,USD,247600,United States,In-person,United States,L,Data Science and Research +2023,Senior,Full-time,Research Scientist,127300,USD,127300,United States,In-person,United States,L,Data Science and Research +2023,Senior,Full-time,Data Scientist,223400,USD,223400,United States,Remote,United States,M,Data Science and Research +2023,Senior,Full-time,Data Scientist,186200,USD,186200,United States,Remote,United States,M,Data Science and Research +2023,Senior,Full-time,Data Engineer,167500,USD,167500,United States,In-person,United States,M,Data Engineering +2023,Senior,Full-time,Data Engineer,106500,USD,106500,United States,In-person,United States,M,Data Engineering +2023,Senior,Full-time,Data Scientist,185900,USD,185900,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Data Scientist,129300,USD,129300,United States,In-person,United States,M,Data Science and Research +2023,Entry-level,Full-time,Research Analyst,72000,USD,72000,United States,Remote,United States,M,Data Science and Research +2023,Entry-level,Full-time,Research Analyst,64000,USD,64000,United States,Remote,United States,M,Data Science and Research +2023,Senior,Full-time,Analytics Engineer,179820,USD,179820,United States,In-person,United States,M,Leadership and Management +2023,Senior,Full-time,Analytics Engineer,143860,USD,143860,United States,In-person,United States,M,Leadership and Management +2023,Senior,Full-time,Research Scientist,283050,USD,283050,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Research Scientist,188700,USD,188700,United States,In-person,United States,M,Data Science and Research +2023,Mid-level,Full-time,Data Engineer,133000,USD,133000,United States,In-person,United States,M,Data Engineering +2023,Mid-level,Full-time,Data Engineer,58400,USD,58400,United States,In-person,United States,M,Data Engineering +2023,Senior,Full-time,Research Engineer,141298,USD,141298,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Research Engineer,115607,USD,115607,United States,In-person,United States,M,Data Science and Research +2023,Entry-level,Full-time,Data Analyst,100000,USD,100000,United States,In-person,United States,M,Data Analysis +2023,Entry-level,Full-time,Data Analyst,75000,USD,75000,United States,In-person,United States,M,Data Analysis +2023,Senior,Full-time,Machine Learning Engineer,266500,USD,266500,Canada,In-person,Canada,M,Machine Learning and AI +2023,Senior,Full-time,Machine Learning Engineer,144400,USD,144400,Canada,In-person,Canada,M,Machine Learning and AI +2023,Senior,Full-time,Data Engineer,58000,GBP,71363,United Kingdom,In-person,United Kingdom,M,Data Engineering +2023,Senior,Full-time,Data Engineer,45000,GBP,55368,United Kingdom,In-person,United Kingdom,M,Data Engineering +2023,Senior,Full-time,Research Scientist,287500,USD,287500,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Research Scientist,156000,USD,156000,United States,In-person,United States,M,Data Science and Research +2023,Mid-level,Full-time,Data Analyst,90000,USD,90000,United States,Remote,United States,M,Data Analysis +2023,Mid-level,Full-time,Data Analyst,70000,USD,70000,United States,Remote,United States,M,Data Analysis +2023,Senior,Full-time,Data Engineer,199000,USD,199000,United States,In-person,United States,M,Data Engineering +2023,Senior,Full-time,Data Engineer,162000,USD,162000,United States,In-person,United States,M,Data Engineering +2023,Mid-level,Full-time,Data Engineer,170884,USD,170884,United States,Remote,United States,M,Data Engineering +2023,Mid-level,Full-time,Data Engineer,113923,USD,113923,United States,Remote,United States,M,Data Engineering +2023,Mid-level,Full-time,Data Engineer,184000,USD,184000,United States,In-person,United States,M,Data Engineering +2023,Mid-level,Full-time,Data Engineer,123000,USD,123000,United States,In-person,United States,M,Data Engineering +2023,Senior,Full-time,Data Scientist,235750,USD,235750,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Data Scientist,174250,USD,174250,United States,In-person,United States,M,Data Science and Research +2023,Mid-level,Full-time,Research Scientist,165000,USD,165000,United States,Remote,United States,M,Data Science and Research +2023,Mid-level,Full-time,Research Scientist,118800,USD,118800,United States,Remote,United States,M,Data Science and Research +2023,Senior,Full-time,Data Engineer,225000,USD,225000,United States,Remote,United States,M,Data Engineering +2023,Senior,Full-time,Data Engineer,150000,USD,150000,United States,Remote,United States,M,Data Engineering +2023,Mid-level,Full-time,Machine Learning Engineer,213900,USD,213900,United States,In-person,United States,M,Machine Learning and AI +2023,Mid-level,Full-time,Machine Learning Engineer,116800,USD,116800,United States,In-person,United States,M,Machine Learning and AI +2023,Senior,Full-time,Data Scientist,220000,USD,220000,United States,Remote,United States,M,Data Science and Research +2023,Senior,Full-time,Data Scientist,150000,USD,150000,United States,Remote,United States,M,Data Science and Research +2023,Mid-level,Full-time,Data Scientist,150000,USD,150000,United States,In-person,United States,M,Data Science and Research +2023,Mid-level,Full-time,Data Scientist,100000,USD,100000,United States,In-person,United States,M,Data Science and Research +2023,Mid-level,Full-time,Machine Learning Engineer,247500,USD,247500,United States,In-person,United States,M,Machine Learning and AI +2023,Mid-level,Full-time,Machine Learning Engineer,172200,USD,172200,United States,In-person,United States,M,Machine Learning and AI +2023,Mid-level,Full-time,Data Engineer,155000,USD,155000,United States,In-person,United States,M,Data Engineering +2023,Mid-level,Full-time,Data Engineer,120000,USD,120000,United States,In-person,United States,M,Data Engineering +2023,Senior,Full-time,Data Engineer,226700,USD,226700,United States,In-person,United States,M,Data Engineering +2023,Senior,Full-time,Data Engineer,133300,USD,133300,United States,In-person,United States,M,Data Engineering +2023,Senior,Full-time,Data Engineer,184000,USD,184000,United States,In-person,United States,M,Data Engineering +2023,Senior,Full-time,Data Engineer,123000,USD,123000,United States,In-person,United States,M,Data Engineering +2023,Senior,Full-time,Data Scientist,130000,USD,130000,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Data Scientist,117000,USD,117000,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Data Science Engineer,160000,USD,160000,United States,Remote,United States,M,Data Science and Research +2023,Senior,Full-time,Data Science Engineer,140000,USD,140000,United States,Remote,United States,M,Data Science and Research +2023,Mid-level,Full-time,Data Scientist,166000,USD,166000,United States,In-person,United States,M,Data Science and Research +2023,Mid-level,Full-time,Data Scientist,73000,USD,73000,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Data Scientist,185900,USD,185900,United States,Remote,United States,M,Data Science and Research +2023,Senior,Full-time,Data Scientist,129300,USD,129300,United States,Remote,United States,M,Data Science and Research +2023,Mid-level,Full-time,Data Engineer,130000,USD,130000,United States,In-person,United States,M,Data Engineering +2023,Mid-level,Full-time,Data Engineer,104000,USD,104000,United States,In-person,United States,M,Data Engineering +2023,Senior,Full-time,Data Engineer,143000,USD,143000,United States,Remote,United States,M,Data Engineering +2023,Senior,Full-time,Data Engineer,116000,USD,116000,United States,Remote,United States,M,Data Engineering +2023,Mid-level,Full-time,Research Scientist,165000,USD,165000,United States,Remote,United States,M,Data Science and Research +2023,Mid-level,Full-time,Research Scientist,118800,USD,118800,United States,Remote,United States,M,Data Science and Research +2023,Mid-level,Full-time,Research Scientist,220000,USD,220000,United States,In-person,United States,M,Data Science and Research +2023,Mid-level,Full-time,Research Scientist,180000,USD,180000,United States,In-person,United States,M,Data Science and Research +2023,Mid-level,Full-time,Data Engineer,184000,USD,184000,United States,In-person,United States,M,Data Engineering +2023,Mid-level,Full-time,Data Engineer,123000,USD,123000,United States,In-person,United States,M,Data Engineering +2023,Senior,Full-time,Data Engineer,215000,USD,215000,United States,In-person,United States,M,Data Engineering +2023,Senior,Full-time,Data Engineer,200000,USD,200000,United States,In-person,United States,M,Data Engineering +2023,Mid-level,Full-time,Data Scientist,253000,USD,253000,United States,In-person,United States,M,Data Science and Research +2023,Mid-level,Full-time,Data Scientist,131000,USD,131000,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Machine Learning Engineer,220000,USD,220000,United States,In-person,United States,M,Machine Learning and AI +2023,Senior,Full-time,Machine Learning Engineer,176000,USD,176000,United States,In-person,United States,M,Machine Learning and AI +2023,Entry-level,Full-time,Data Quality Analyst,40000,GBP,49216,United Kingdom,Remote,United Kingdom,M,Data Quality and Operations +2023,Entry-level,Full-time,Data Quality Analyst,30000,GBP,36912,United Kingdom,Remote,United Kingdom,M,Data Quality and Operations +2023,Senior,Full-time,Data Scientist,210000,USD,210000,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Data Scientist,147000,USD,147000,United States,In-person,United States,M,Data Science and Research +2023,Mid-level,Full-time,Data Product Manager,186000,USD,186000,United States,In-person,United States,M,Leadership and Management +2023,Mid-level,Full-time,Data Product Manager,161000,USD,161000,United States,In-person,United States,M,Leadership and Management +2023,Senior,Full-time,Machine Learning Engineer,205000,USD,205000,United States,In-person,United States,M,Machine Learning and AI +2023,Senior,Full-time,Machine Learning Engineer,152000,USD,152000,United States,In-person,United States,M,Machine Learning and AI +2023,Mid-level,Full-time,Data Engineer,220000,USD,220000,Canada,Remote,Canada,M,Data Engineering +2023,Mid-level,Full-time,Data Engineer,190000,USD,190000,Canada,Remote,Canada,M,Data Engineering +2023,Senior,Full-time,Machine Learning Engineer,205000,USD,205000,United States,In-person,United States,M,Machine Learning and AI +2023,Senior,Full-time,Machine Learning Engineer,152000,USD,152000,United States,In-person,United States,M,Machine Learning and AI +2023,Senior,Full-time,Data Analyst,137000,USD,137000,United States,Remote,United States,M,Data Analysis +2023,Senior,Full-time,Data Analyst,110000,USD,110000,United States,Remote,United States,M,Data Analysis +2023,Senior,Full-time,Data Scientist,172000,USD,172000,United States,Remote,United States,M,Data Science and Research +2023,Senior,Full-time,Data Scientist,146000,USD,146000,United States,Remote,United States,M,Data Science and Research +2023,Mid-level,Full-time,Data Engineer,148000,USD,148000,United States,In-person,United States,M,Data Engineering +2023,Mid-level,Full-time,Data Engineer,99000,USD,99000,United States,In-person,United States,M,Data Engineering +2023,Senior,Full-time,Data Scientist,150000,USD,150000,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Data Scientist,130000,USD,130000,United States,In-person,United States,M,Data Science and Research +2023,Entry-level,Full-time,Data Analyst,105000,USD,105000,United States,In-person,United States,M,Data Analysis +2023,Senior,Full-time,Data Engineer,99000,USD,99000,United States,In-person,United States,M,Data Engineering +2023,Senior,Full-time,Data Engineer,52500,USD,52500,United States,In-person,United States,M,Data Engineering +2023,Senior,Full-time,Machine Learning Scientist,180514,USD,180514,United States,Remote,United States,M,Machine Learning and AI +2023,Senior,Full-time,Machine Learning Scientist,108308,USD,108308,United States,Remote,United States,M,Machine Learning and AI +2023,Senior,Full-time,Machine Learning Engineer,210000,USD,210000,United States,In-person,United States,M,Machine Learning and AI +2023,Senior,Full-time,Machine Learning Engineer,147000,USD,147000,United States,In-person,United States,M,Machine Learning and AI +2023,Senior,Full-time,Data Engineer,290300,USD,290300,United States,In-person,United States,M,Data Engineering +2023,Senior,Full-time,Data Engineer,196685,USD,196685,United States,In-person,United States,M,Data Engineering +2023,Senior,Full-time,AI Engineer,220000,USD,220000,United States,In-person,United States,M,Machine Learning and AI +2023,Senior,Full-time,AI Engineer,176000,USD,176000,United States,In-person,United States,M,Machine Learning and AI +2023,Mid-level,Full-time,Machine Learning Engineer,175000,USD,175000,United States,In-person,United States,M,Machine Learning and AI +2023,Mid-level,Full-time,Machine Learning Engineer,130000,USD,130000,United States,In-person,United States,M,Machine Learning and AI +2023,Senior,Full-time,Data Architect,185000,USD,185000,United States,In-person,United States,M,Data Architecture and Modeling +2023,Senior,Full-time,Data Architect,150000,USD,150000,United States,In-person,United States,M,Data Architecture and Modeling +2023,Senior,Full-time,Data Engineer,145000,USD,145000,United States,In-person,United States,M,Data Engineering +2023,Senior,Full-time,Data Engineer,115000,USD,115000,United States,In-person,United States,M,Data Engineering +2023,Entry-level,Full-time,MLOps Engineer,133000,USD,133000,United States,In-person,United States,M,Machine Learning and AI +2023,Entry-level,Full-time,MLOps Engineer,58300,USD,58300,United States,In-person,United States,M,Machine Learning and AI +2023,Senior,Full-time,Analytics Engineer,115000,USD,115000,United States,In-person,United States,M,Leadership and Management +2023,Senior,Full-time,Analytics Engineer,95000,USD,95000,United States,In-person,United States,M,Leadership and Management +2023,Mid-level,Full-time,Data Engineer,89600,GBP,110244,United Kingdom,In-person,United Kingdom,M,Data Engineering +2023,Mid-level,Full-time,Data Engineer,32000,GBP,39372,United Kingdom,In-person,United Kingdom,M,Data Engineering +2023,Entry-level,Full-time,Data Scientist,40000,EUR,43187,Spain,In-person,Spain,M,Data Science and Research +2023,Entry-level,Full-time,Data Scientist,29000,EUR,31310,Spain,In-person,Spain,M,Data Science and Research +2023,Entry-level,Full-time,Data Analyst,75000,GBP,92280,United Kingdom,In-person,United Kingdom,M,Data Analysis +2023,Entry-level,Full-time,Data Analyst,55000,GBP,67672,United Kingdom,In-person,United Kingdom,M,Data Analysis +2023,Entry-level,Full-time,Data Analyst,75000,GBP,92280,United Kingdom,In-person,United Kingdom,M,Data Analysis +2023,Entry-level,Full-time,Data Analyst,55000,GBP,67672,United Kingdom,In-person,United Kingdom,M,Data Analysis +2023,Senior,Full-time,Data Scientist,70000,EUR,75577,Ireland,Hybrid,Ireland,L,Data Science and Research +2023,Senior,Full-time,Deep Learning Engineer,409500,CAD,303387,Canada,Remote,Canada,M,Machine Learning and AI +2023,Senior,Full-time,Deep Learning Engineer,135000,CAD,100017,Canada,Remote,Canada,M,Machine Learning and AI +2023,Senior,Full-time,Data Engineer,230300,USD,230300,United States,In-person,United States,M,Data Engineering +2023,Senior,Full-time,Data Engineer,140000,USD,140000,United States,In-person,United States,M,Data Engineering +2023,Senior,Full-time,Data Engineer,124935,USD,124935,South Africa,In-person,South Africa,M,Data Engineering +2023,Senior,Full-time,Data Engineer,76050,USD,76050,South Africa,In-person,South Africa,M,Data Engineering +2023,Senior,Full-time,Data Scientist,224800,USD,224800,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Data Scientist,131100,USD,131100,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Data Scientist,258000,USD,258000,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Data Scientist,171000,USD,171000,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Data Engineer,196000,USD,196000,United States,In-person,United States,M,Data Engineering +2023,Senior,Full-time,Data Engineer,121000,USD,121000,United States,In-person,United States,M,Data Engineering +2023,Senior,Full-time,Data Engineer,195800,USD,195800,United States,In-person,United States,M,Data Engineering +2023,Senior,Full-time,Data Engineer,171500,USD,171500,United States,In-person,United States,M,Data Engineering +2023,Mid-level,Full-time,Data Modeler,166000,USD,166000,United States,In-person,United States,M,Data Architecture and Modeling +2023,Mid-level,Full-time,Data Modeler,73100,USD,73100,United States,In-person,United States,M,Data Architecture and Modeling +2023,Mid-level,Full-time,Data Scientist,220000,USD,220000,United States,In-person,United States,M,Data Science and Research +2023,Mid-level,Full-time,Data Scientist,160000,USD,160000,United States,In-person,United States,M,Data Science and Research +2023,Entry-level,Full-time,Data Scientist,85000,USD,85000,United States,In-person,United States,M,Data Science and Research +2023,Entry-level,Full-time,Data Scientist,65000,USD,65000,United States,In-person,United States,M,Data Science and Research +2023,Mid-level,Full-time,Machine Learning Engineer,220000,USD,220000,United States,In-person,United States,M,Machine Learning and AI +2023,Mid-level,Full-time,Machine Learning Engineer,100000,USD,100000,United States,In-person,United States,M,Machine Learning and AI +2023,Senior,Full-time,Data Scientist,185000,USD,185000,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Data Scientist,152000,USD,152000,United States,In-person,United States,M,Data Science and Research +2023,Mid-level,Full-time,Machine Learning Engineer,220000,USD,220000,United States,In-person,United States,M,Machine Learning and AI +2023,Mid-level,Full-time,Machine Learning Engineer,100000,USD,100000,United States,In-person,United States,M,Machine Learning and AI +2023,Senior,Full-time,Data Scientist,45000,EUR,48585,Spain,In-person,Spain,M,Data Science and Research +2023,Senior,Full-time,Data Scientist,36000,EUR,38868,Spain,In-person,Spain,M,Data Science and Research +2023,Mid-level,Full-time,Machine Learning Engineer,220000,USD,220000,United States,In-person,United States,M,Machine Learning and AI +2023,Mid-level,Full-time,Machine Learning Engineer,100000,USD,100000,United States,In-person,United States,M,Machine Learning and AI +2023,Mid-level,Full-time,Machine Learning Engineer,220000,USD,220000,United States,In-person,United States,M,Machine Learning and AI +2023,Mid-level,Full-time,Machine Learning Engineer,100000,USD,100000,United States,In-person,United States,M,Machine Learning and AI +2023,Mid-level,Full-time,Research Engineer,220000,USD,220000,United States,In-person,United States,M,Data Science and Research +2023,Mid-level,Full-time,Research Engineer,100000,USD,100000,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Data Analyst,110000,USD,110000,Poland,Remote,Poland,M,Data Analysis +2023,Senior,Full-time,Data Analyst,80000,USD,80000,Poland,Remote,Poland,M,Data Analysis +2023,Senior,Full-time,Data Analyst,30000,GBP,36912,United Kingdom,Remote,United Kingdom,S,Data Analysis +2023,Senior,Full-time,Data Scientist,150200,USD,150200,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Data Scientist,71000,USD,71000,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Data Engineer,167200,USD,167200,United States,In-person,United States,M,Data Engineering +2023,Senior,Full-time,Data Engineer,121000,USD,121000,United States,In-person,United States,M,Data Engineering +2023,Senior,Full-time,Data Engineer,133000,USD,133000,United States,In-person,United States,M,Data Engineering +2023,Senior,Full-time,Data Engineer,58400,USD,58400,United States,In-person,United States,M,Data Engineering +2023,Mid-level,Full-time,Data Scientist,135000,USD,135000,United States,In-person,United States,M,Data Science and Research +2023,Mid-level,Full-time,Data Scientist,110000,USD,110000,United States,In-person,United States,M,Data Science and Research +2023,Mid-level,Full-time,Data Product Owner,85000,GBP,104584,United Kingdom,In-person,United Kingdom,M,Leadership and Management +2023,Mid-level,Full-time,Data Product Owner,60000,GBP,73824,United Kingdom,In-person,United Kingdom,M,Leadership and Management +2023,Senior,Full-time,Data Scientist,187415,USD,187415,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Data Scientist,114080,USD,114080,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Data Scientist,187415,USD,187415,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Data Scientist,114080,USD,114080,United States,In-person,United States,M,Data Science and Research +2023,Mid-level,Full-time,Data Engineer,166000,USD,166000,United States,In-person,United States,M,Data Engineering +2023,Mid-level,Full-time,Data Engineer,73100,USD,73100,United States,In-person,United States,M,Data Engineering +2023,Senior,Full-time,Machine Learning Engineer,306400,USD,306400,Canada,In-person,Canada,M,Machine Learning and AI +2023,Senior,Full-time,Machine Learning Engineer,168700,USD,168700,Canada,In-person,Canada,M,Machine Learning and AI +2023,Senior,Full-time,Data Scientist,187415,USD,187415,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Data Scientist,114080,USD,114080,United States,In-person,United States,M,Data Science and Research +2023,Entry-level,Full-time,Data Analyst,26800,GBP,32974,United Kingdom,In-person,United Kingdom,M,Data Analysis +2023,Entry-level,Full-time,Data Analyst,26800,GBP,32974,United Kingdom,In-person,United Kingdom,M,Data Analysis +2023,Senior,Full-time,Data Analyst,165000,USD,165000,United States,Remote,United States,M,Data Analysis +2023,Senior,Full-time,Data Analyst,140000,USD,140000,United States,Remote,United States,M,Data Analysis +2023,Mid-level,Full-time,Analytics Engineer,150000,USD,150000,United States,Remote,United States,M,Leadership and Management +2023,Mid-level,Full-time,Data Analyst,167000,USD,167000,United States,In-person,United States,M,Data Analysis +2023,Mid-level,Full-time,Data Analyst,121000,USD,121000,United States,In-person,United States,M,Data Analysis +2023,Mid-level,Full-time,Business Intelligence Engineer,185000,USD,185000,United States,In-person,United States,L,BI and Visualization +2023,Mid-level,Full-time,Business Intelligence Engineer,79600,USD,79600,United States,In-person,United States,L,BI and Visualization +2023,Senior,Full-time,Data Scientist,190200,USD,190200,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Data Scientist,95100,USD,95100,United States,In-person,United States,M,Data Science and Research +2023,Entry-level,Full-time,Data Analyst,133000,USD,133000,United States,In-person,United States,M,Data Analysis +2023,Entry-level,Full-time,Data Analyst,58400,USD,58400,United States,In-person,United States,M,Data Analysis +2023,Mid-level,Full-time,Data Engineer,90000,USD,90000,United States,Remote,United States,M,Data Engineering +2023,Mid-level,Full-time,Data Engineer,70000,USD,70000,United States,Remote,United States,M,Data Engineering +2023,Mid-level,Full-time,Data Scientist,166000,USD,166000,United States,In-person,United States,M,Data Science and Research +2023,Mid-level,Full-time,Data Scientist,73100,USD,73100,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Data Engineer,135000,USD,135000,United States,In-person,United States,M,Data Engineering +2023,Senior,Full-time,Data Engineer,100000,USD,100000,United States,In-person,United States,M,Data Engineering +2023,Senior,Full-time,Data Engineer,180514,USD,180514,United Kingdom,Remote,United Kingdom,M,Data Engineering +2023,Senior,Full-time,Data Engineer,108308,USD,108308,United Kingdom,Remote,United Kingdom,M,Data Engineering +2023,Senior,Full-time,Machine Learning Engineer,294000,USD,294000,United States,In-person,United States,M,Machine Learning and AI +2023,Senior,Full-time,Machine Learning Engineer,192000,USD,192000,United States,In-person,United States,M,Machine Learning and AI +2023,Senior,Full-time,Machine Learning Engineer,266000,USD,266000,United States,In-person,United States,M,Machine Learning and AI +2023,Senior,Full-time,Machine Learning Engineer,167000,USD,167000,United States,In-person,United States,M,Machine Learning and AI +2023,Senior,Full-time,Machine Learning Engineer,200000,USD,200000,United States,Remote,United States,M,Machine Learning and AI +2023,Senior,Full-time,Machine Learning Engineer,150000,USD,150000,United States,Remote,United States,M,Machine Learning and AI +2023,Entry-level,Full-time,Data Analyst,163800,USD,163800,United States,Remote,United States,M,Data Analysis +2023,Entry-level,Full-time,Data Analyst,88200,USD,88200,United States,Remote,United States,M,Data Analysis +2023,Senior,Full-time,Data Analyst,180400,USD,180400,United States,In-person,United States,M,Data Analysis +2023,Senior,Full-time,Data Analyst,138800,USD,138800,United States,In-person,United States,M,Data Analysis +2023,Mid-level,Full-time,Data Analyst,55000,GBP,67672,United Kingdom,In-person,United Kingdom,M,Data Analysis +2023,Mid-level,Full-time,Data Analyst,45000,GBP,55368,United Kingdom,In-person,United Kingdom,M,Data Analysis +2023,Senior,Full-time,Machine Learning Engineer,319000,USD,319000,United States,Remote,United States,M,Machine Learning and AI +2023,Senior,Full-time,Machine Learning Engineer,206000,USD,206000,United States,Remote,United States,M,Machine Learning and AI +2023,Senior,Full-time,Data Scientist,215000,USD,215000,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Data Scientist,142000,USD,142000,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Data Scientist,266000,USD,266000,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Data Scientist,167000,USD,167000,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Data Analyst,140130,USD,140130,United States,In-person,United States,M,Data Analysis +2023,Senior,Full-time,Data Analyst,84870,USD,84870,United States,In-person,United States,M,Data Analysis +2023,Mid-level,Full-time,Data Engineer,178300,USD,178300,United States,In-person,United States,M,Data Engineering +2023,Mid-level,Full-time,Data Engineer,105400,USD,105400,United States,In-person,United States,M,Data Engineering +2023,Mid-level,Full-time,Applied Scientist,222200,USD,222200,United States,In-person,United States,L,Data Science and Research +2023,Mid-level,Full-time,Applied Scientist,136000,USD,136000,United States,In-person,United States,L,Data Science and Research +2023,Senior,Full-time,Machine Learning Engineer,215000,USD,215000,United States,In-person,United States,M,Machine Learning and AI +2023,Senior,Full-time,Machine Learning Engineer,142000,USD,142000,United States,In-person,United States,M,Machine Learning and AI +2023,Senior,Full-time,Research Scientist,240000,USD,240000,United States,Remote,United States,M,Data Science and Research +2023,Senior,Full-time,Research Scientist,210000,USD,210000,United States,Remote,United States,M,Data Science and Research +2023,Senior,Full-time,Data Engineer,122000,USD,122000,United States,In-person,United States,M,Data Engineering +2023,Senior,Full-time,Data Engineer,94500,USD,94500,United States,In-person,United States,M,Data Engineering +2023,Mid-level,Full-time,Data Engineer,150000,USD,150000,United States,In-person,United States,M,Data Engineering +2023,Senior,Full-time,Data Science Consultant,116000,USD,116000,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Data Science Consultant,90000,USD,90000,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Data Science Consultant,145000,USD,145000,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Data Science Consultant,128000,USD,128000,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Data Engineer,154000,USD,154000,United States,Remote,United States,M,Data Engineering +2023,Senior,Full-time,Data Engineer,126000,USD,126000,United States,Remote,United States,M,Data Engineering +2023,Senior,Full-time,Machine Learning Scientist,240000,USD,240000,United States,In-person,United States,M,Machine Learning and AI +2023,Senior,Full-time,Machine Learning Scientist,157250,USD,157250,United States,In-person,United States,M,Machine Learning and AI +2023,Executive,Full-time,Data Engineer,219650,USD,219650,United States,Remote,United States,M,Data Engineering +2023,Executive,Full-time,Data Engineer,136000,USD,136000,United States,Remote,United States,M,Data Engineering +2023,Senior,Full-time,Data Scientist,150000,USD,150000,United States,In-person,United States,M,Data Science and Research +2023,Mid-level,Full-time,Machine Learning Engineer,180000,USD,180000,United States,Remote,United States,M,Machine Learning and AI +2023,Mid-level,Full-time,Machine Learning Engineer,125000,USD,125000,United States,Remote,United States,M,Machine Learning and AI +2023,Senior,Full-time,Data Scientist,247600,USD,247600,United States,In-person,United States,L,Data Science and Research +2023,Senior,Full-time,Data Scientist,127300,USD,127300,United States,In-person,United States,L,Data Science and Research +2023,Mid-level,Full-time,Data Scientist,60000,USD,60000,United States,In-person,United States,M,Data Science and Research +2023,Mid-level,Full-time,Data Scientist,55000,USD,55000,United States,In-person,United States,M,Data Science and Research +2023,Mid-level,Full-time,Data Engineer,250000,USD,250000,United States,In-person,United States,M,Data Engineering +2023,Mid-level,Full-time,Data Engineer,125000,USD,125000,United States,In-person,United States,M,Data Engineering +2023,Senior,Full-time,Machine Learning Engineer,190000,USD,190000,United States,Remote,United States,M,Machine Learning and AI +2023,Senior,Full-time,Machine Learning Engineer,170000,USD,170000,United States,Remote,United States,M,Machine Learning and AI +2023,Senior,Full-time,Data Scientist,202600,USD,202600,United States,Remote,United States,M,Data Science and Research +2023,Senior,Full-time,Data Scientist,168800,USD,168800,United States,Remote,United States,M,Data Science and Research +2023,Mid-level,Full-time,Data Engineer,132000,USD,132000,United States,Remote,United States,M,Data Engineering +2023,Mid-level,Full-time,Data Engineer,111000,USD,111000,United States,Remote,United States,M,Data Engineering +2023,Senior,Full-time,Data Scientist,203000,USD,203000,United States,Remote,United States,M,Data Science and Research +2023,Senior,Full-time,Data Scientist,127000,USD,127000,United States,Remote,United States,M,Data Science and Research +2023,Mid-level,Full-time,Business Intelligence Analyst,125009,USD,125009,United States,Remote,United States,M,BI and Visualization +2023,Mid-level,Full-time,Business Intelligence Analyst,83339,USD,83339,United States,Remote,United States,M,BI and Visualization +2023,Senior,Full-time,Data Analyst,112200,USD,112200,United States,Remote,United States,M,Data Analysis +2023,Senior,Full-time,Data Analyst,91800,USD,91800,United States,Remote,United States,M,Data Analysis +2023,Senior,Full-time,Machine Learning Engineer,200000,USD,200000,United States,In-person,United States,M,Machine Learning and AI +2023,Senior,Full-time,Machine Learning Engineer,160000,USD,160000,United States,In-person,United States,M,Machine Learning and AI +2023,Senior,Full-time,AI Developer,150000,EUR,161952,France,Hybrid,France,M,Machine Learning and AI +2023,Senior,Full-time,Data Architect,185000,USD,185000,United States,In-person,United States,M,Data Architecture and Modeling +2023,Senior,Full-time,Data Architect,150000,USD,150000,United States,In-person,United States,M,Data Architecture and Modeling +2023,Mid-level,Full-time,Data Engineer,160000,USD,160000,United States,In-person,United States,M,Data Engineering +2023,Mid-level,Full-time,Data Engineer,130000,USD,130000,United States,In-person,United States,M,Data Engineering +2023,Senior,Full-time,Data Engineer,145000,USD,145000,United States,In-person,United States,M,Data Engineering +2023,Senior,Full-time,Data Engineer,115000,USD,115000,United States,In-person,United States,M,Data Engineering +2023,Entry-level,Part-time,Data Scientist,133000,USD,133000,United States,In-person,United States,M,Data Science and Research +2023,Entry-level,Part-time,Data Scientist,58300,USD,58300,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Data Engineer,254000,USD,254000,United States,In-person,United States,M,Data Engineering +2023,Senior,Full-time,Data Engineer,159000,USD,159000,United States,In-person,United States,M,Data Engineering +2023,Senior,Full-time,Data Engineer,170000,USD,170000,United States,In-person,United States,M,Data Engineering +2023,Senior,Full-time,Data Engineer,85000,USD,85000,United States,In-person,United States,M,Data Engineering +2023,Mid-level,Full-time,Data Scientist,130500,USD,130500,United States,In-person,United States,M,Data Science and Research +2023,Mid-level,Full-time,Data Scientist,116000,USD,116000,United States,In-person,United States,M,Data Science and Research +2023,Entry-level,Full-time,Research Analyst,81400,USD,81400,United States,Remote,United States,M,Data Science and Research +2023,Entry-level,Full-time,Research Analyst,43500,USD,43500,United States,Remote,United States,M,Data Science and Research +2023,Mid-level,Full-time,Data Engineer,169000,USD,169000,United States,In-person,United States,M,Data Engineering +2023,Mid-level,Full-time,Data Engineer,92000,USD,92000,United States,In-person,United States,M,Data Engineering +2023,Senior,Full-time,Data Analyst,166000,USD,166000,United States,In-person,United States,M,Data Analysis +2023,Senior,Full-time,Data Analyst,73100,USD,73100,United States,In-person,United States,M,Data Analysis +2023,Senior,Full-time,Research Scientist,190000,USD,190000,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Research Scientist,165000,USD,165000,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Machine Learning Engineer,305600,USD,305600,United States,In-person,United States,M,Machine Learning and AI +2023,Senior,Full-time,Machine Learning Engineer,146600,USD,146600,United States,In-person,United States,M,Machine Learning and AI +2023,Senior,Full-time,Data Analyst,150000,USD,150000,United States,In-person,United States,M,Data Analysis +2023,Senior,Full-time,Data Analyst,120000,USD,120000,United States,In-person,United States,M,Data Analysis +2023,Senior,Full-time,Data Engineer,275000,USD,275000,United States,In-person,United States,M,Data Engineering +2023,Senior,Full-time,Data Engineer,146400,USD,146400,United States,In-person,United States,M,Data Engineering +2023,Senior,Full-time,Data Scientist,208500,USD,208500,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Data Scientist,165000,USD,165000,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Data Scientist,258700,USD,258700,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Data Scientist,172500,USD,172500,United States,In-person,United States,M,Data Science and Research +2023,Mid-level,Full-time,Data Engineer,150000,USD,150000,United States,In-person,United States,M,Data Engineering +2023,Mid-level,Full-time,Data Engineer,130000,USD,130000,United States,In-person,United States,M,Data Engineering +2023,Senior,Full-time,Data Engineer,185000,USD,185000,United States,Remote,United States,M,Data Engineering +2023,Senior,Full-time,Data Engineer,150000,USD,150000,United States,Remote,United States,M,Data Engineering +2023,Senior,Full-time,Data Analyst,166000,USD,166000,United States,In-person,United States,M,Data Analysis +2023,Senior,Full-time,Data Analyst,73100,USD,73100,United States,In-person,United States,M,Data Analysis +2023,Senior,Full-time,Business Intelligence Analyst,198200,USD,198200,United States,In-person,United States,M,BI and Visualization +2023,Senior,Full-time,Business Intelligence Analyst,110200,USD,110200,United States,In-person,United States,M,BI and Visualization +2023,Senior,Full-time,Machine Learning Researcher,166000,USD,166000,United States,In-person,United States,M,Machine Learning and AI +2023,Senior,Full-time,Machine Learning Researcher,73100,USD,73100,United States,In-person,United States,M,Machine Learning and AI +2023,Senior,Full-time,Machine Learning Researcher,212000,USD,212000,United States,In-person,United States,M,Machine Learning and AI +2023,Senior,Full-time,Machine Learning Researcher,93300,USD,93300,United States,In-person,United States,M,Machine Learning and AI +2023,Senior,Full-time,AI Engineer,212000,USD,212000,United States,In-person,United States,M,Machine Learning and AI +2023,Senior,Full-time,AI Engineer,93300,USD,93300,United States,In-person,United States,M,Machine Learning and AI +2023,Senior,Full-time,Data Engineer,166000,USD,166000,United States,In-person,United States,M,Data Engineering +2023,Senior,Full-time,Data Engineer,73100,USD,73100,United States,In-person,United States,M,Data Engineering +2023,Mid-level,Full-time,Data Engineer,167100,USD,167100,United States,In-person,United States,M,Data Engineering +2023,Mid-level,Full-time,Data Engineer,111400,USD,111400,United States,In-person,United States,M,Data Engineering +2023,Senior,Full-time,Data Engineer,133000,USD,133000,United States,In-person,United States,M,Data Engineering +2023,Senior,Full-time,Data Engineer,58400,USD,58400,United States,In-person,United States,M,Data Engineering +2023,Entry-level,Full-time,Data Scientist,166000,USD,166000,United States,Remote,United States,M,Data Science and Research +2023,Entry-level,Full-time,Data Scientist,73100,USD,73100,United States,Remote,United States,M,Data Science and Research +2023,Executive,Full-time,Data Analyst,170000,USD,170000,United States,In-person,United States,M,Data Analysis +2023,Executive,Full-time,Data Analyst,145000,USD,145000,United States,In-person,United States,M,Data Analysis +2023,Senior,Full-time,Data Scientist,212000,USD,212000,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Data Scientist,93300,USD,93300,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Data Architect,170000,USD,170000,United States,Remote,United States,M,Data Architecture and Modeling +2023,Senior,Full-time,Data Architect,135000,USD,135000,United States,Remote,United States,M,Data Architecture and Modeling +2023,Senior,Full-time,Data Engineer,145000,USD,145000,United States,In-person,United States,M,Data Engineering +2023,Senior,Full-time,Data Engineer,115000,USD,115000,United States,In-person,United States,M,Data Engineering +2023,Senior,Full-time,Data Engineer,139810,USD,139810,United States,In-person,United States,M,Data Engineering +2023,Senior,Full-time,Data Engineer,95325,USD,95325,United States,In-person,United States,M,Data Engineering +2023,Senior,Full-time,Research Scientist,278700,USD,278700,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Research Scientist,159300,USD,159300,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Machine Learning Engineer,226700,USD,226700,Canada,Remote,Canada,M,Machine Learning and AI +2023,Senior,Full-time,Machine Learning Engineer,151100,USD,151100,Canada,Remote,Canada,M,Machine Learning and AI +2023,Senior,Full-time,Data Engineer,247300,USD,247300,United States,Remote,United States,M,Data Engineering +2023,Senior,Full-time,Data Engineer,139700,USD,139700,United States,Remote,United States,M,Data Engineering +2023,Senior,Full-time,Data Scientist,188000,USD,188000,United States,Remote,United States,M,Data Science and Research +2023,Senior,Full-time,Data Scientist,139000,USD,139000,United States,Remote,United States,M,Data Science and Research +2023,Senior,Full-time,Data Scientist,150000,USD,150000,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Data Engineer,160000,USD,160000,United States,In-person,United States,M,Data Engineering +2023,Senior,Full-time,Data Engineer,94000,USD,94000,United States,In-person,United States,M,Data Engineering +2023,Mid-level,Full-time,Data Manager,127000,USD,127000,United States,Remote,United States,M,Leadership and Management +2023,Mid-level,Full-time,Data Manager,65000,USD,65000,United States,Remote,United States,M,Leadership and Management +2023,Senior,Full-time,ML Engineer,276000,USD,276000,United States,In-person,United States,M,Machine Learning and AI +2023,Senior,Full-time,ML Engineer,174000,USD,174000,United States,In-person,United States,M,Machine Learning and AI +2023,Senior,Full-time,Applied Scientist,260000,USD,260000,United States,In-person,United States,L,Data Science and Research +2023,Senior,Full-time,Applied Scientist,136000,USD,136000,United States,In-person,United States,L,Data Science and Research +2023,Executive,Full-time,Analytics Engineer,250000,USD,250000,United States,Remote,United States,M,Leadership and Management +2023,Executive,Full-time,Analytics Engineer,210000,USD,210000,United States,Remote,United States,M,Leadership and Management +2023,Senior,Full-time,Data Scientist,188000,USD,188000,United States,Remote,United States,M,Data Science and Research +2023,Senior,Full-time,Data Scientist,139000,USD,139000,United States,Remote,United States,M,Data Science and Research +2023,Senior,Full-time,Machine Learning Engineer,238000,USD,238000,United States,In-person,United States,M,Machine Learning and AI +2023,Senior,Full-time,Machine Learning Engineer,176000,USD,176000,United States,In-person,United States,M,Machine Learning and AI +2023,Senior,Full-time,Machine Learning Engineer,204500,USD,204500,United States,In-person,United States,M,Machine Learning and AI +2023,Senior,Full-time,Machine Learning Engineer,142200,USD,142200,United States,In-person,United States,M,Machine Learning and AI +2023,Executive,Full-time,Data Science Director,212000,USD,212000,United States,In-person,United States,M,Data Science and Research +2023,Executive,Full-time,Data Science Director,190000,USD,190000,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Research Engineer,261500,USD,261500,United States,In-person,United States,L,Data Science and Research +2023,Senior,Full-time,Research Engineer,134500,USD,134500,United States,In-person,United States,L,Data Science and Research +2023,Senior,Full-time,Data Architect,239000,USD,239000,United States,In-person,United States,L,Data Architecture and Modeling +2023,Senior,Full-time,Data Architect,122900,USD,122900,United States,In-person,United States,L,Data Architecture and Modeling +2023,Senior,Full-time,Analytics Engineer,115000,USD,115000,United States,In-person,United States,M,Leadership and Management +2023,Senior,Full-time,Analytics Engineer,95000,USD,95000,United States,In-person,United States,M,Leadership and Management +2023,Senior,Full-time,Data Scientist,158500,USD,158500,Canada,Remote,Canada,M,Data Science and Research +2023,Senior,Full-time,Data Scientist,115000,USD,115000,Canada,Remote,Canada,M,Data Science and Research +2023,Senior,Full-time,ML Engineer,331640,USD,331640,United States,In-person,United States,M,Machine Learning and AI +2023,Senior,Full-time,ML Engineer,267720,USD,267720,United States,In-person,United States,M,Machine Learning and AI +2023,Senior,Full-time,Data Engineer,180000,USD,180000,United States,In-person,United States,M,Data Engineering +2023,Senior,Full-time,Data Engineer,90000,USD,90000,United States,In-person,United States,M,Data Engineering +2023,Mid-level,Full-time,Data Analyst,83000,USD,83000,United States,Remote,United States,M,Data Analysis +2023,Mid-level,Full-time,Data Analyst,66000,USD,66000,United States,Remote,United States,M,Data Analysis +2023,Senior,Full-time,Data Scientist,224250,USD,224250,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Data Scientist,121550,USD,121550,United States,In-person,United States,M,Data Science and Research +2023,Mid-level,Full-time,Data Scientist,166000,USD,166000,United States,In-person,United States,M,Data Science and Research +2023,Mid-level,Full-time,Data Scientist,73100,USD,73100,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Research Engineer,141298,USD,141298,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Research Engineer,115607,USD,115607,United States,In-person,United States,M,Data Science and Research +2023,Mid-level,Full-time,Data Engineer,109000,USD,109000,United States,Remote,United States,M,Data Engineering +2023,Mid-level,Full-time,Data Engineer,100000,USD,100000,United States,Remote,United States,M,Data Engineering +2023,Senior,Full-time,Data Scientist,205400,USD,205400,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Data Scientist,92900,USD,92900,United States,In-person,United States,M,Data Science and Research +2023,Entry-level,Full-time,ML Engineer,220000,USD,220000,United States,In-person,United States,M,Machine Learning and AI +2023,Entry-level,Full-time,ML Engineer,130000,USD,130000,United States,In-person,United States,M,Machine Learning and AI +2023,Mid-level,Full-time,Data Scientist,160000,USD,160000,United States,Remote,United States,M,Data Science and Research +2023,Mid-level,Full-time,Data Scientist,110000,USD,110000,United States,Remote,United States,M,Data Science and Research +2023,Senior,Full-time,Data Engineer,230000,USD,230000,United States,In-person,United States,M,Data Engineering +2023,Senior,Full-time,Data Engineer,100000,USD,100000,United States,In-person,United States,M,Data Engineering +2023,Senior,Full-time,Business Intelligence Engineer,186030,USD,186030,United States,Remote,United States,M,BI and Visualization +2023,Senior,Full-time,Business Intelligence Engineer,110200,USD,110200,United States,Remote,United States,M,BI and Visualization +2023,Mid-level,Full-time,Research Engineer,130000,USD,130000,United States,Remote,United States,M,Data Science and Research +2023,Mid-level,Full-time,Research Engineer,100000,USD,100000,United States,Remote,United States,M,Data Science and Research +2023,Mid-level,Full-time,Data Scientist,242000,USD,242000,United States,In-person,United States,M,Data Science and Research +2023,Mid-level,Full-time,Data Scientist,106200,USD,106200,United States,In-person,United States,M,Data Science and Research +2023,Executive,Full-time,Data Scientist,220000,USD,220000,United States,Remote,United States,M,Data Science and Research +2023,Executive,Full-time,Data Scientist,120000,USD,120000,United States,Remote,United States,M,Data Science and Research +2023,Senior,Full-time,Data Scientist,258000,USD,258000,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Data Scientist,171000,USD,171000,United States,In-person,United States,M,Data Science and Research +2023,Entry-level,Full-time,Research Analyst,91200,USD,91200,United States,In-person,United States,M,Data Science and Research +2023,Entry-level,Full-time,Research Analyst,58200,USD,58200,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Data Scientist,192000,USD,192000,United States,Remote,United States,M,Data Science and Research +2023,Senior,Full-time,Data Scientist,178000,USD,178000,United States,Remote,United States,M,Data Science and Research +2023,Senior,Full-time,Data Engineer,210000,USD,210000,United States,Remote,United States,M,Data Engineering +2023,Senior,Full-time,Data Engineer,130000,USD,130000,United States,Remote,United States,M,Data Engineering +2023,Entry-level,Full-time,Research Engineer,160000,USD,160000,United States,In-person,United States,M,Data Science and Research +2023,Entry-level,Full-time,Research Engineer,150000,USD,150000,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Applied Scientist,260000,USD,260000,United States,In-person,United States,L,Data Science and Research +2023,Senior,Full-time,Applied Scientist,136000,USD,136000,United States,In-person,United States,L,Data Science and Research +2023,Senior,Full-time,Data Architect,206000,USD,206000,United States,In-person,United States,M,Data Architecture and Modeling +2023,Senior,Full-time,Data Architect,134000,USD,134000,United States,In-person,United States,M,Data Architecture and Modeling +2023,Senior,Full-time,Data Scientist,180000,USD,180000,United States,Remote,United States,M,Data Science and Research +2023,Senior,Full-time,Data Scientist,135000,USD,135000,United States,Remote,United States,M,Data Science and Research +2023,Senior,Full-time,Data Scientist,200000,USD,200000,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Data Scientist,120000,USD,120000,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Machine Learning Engineer,212000,USD,212000,United States,In-person,United States,M,Machine Learning and AI +2023,Senior,Full-time,Machine Learning Engineer,93300,USD,93300,United States,In-person,United States,M,Machine Learning and AI +2023,Mid-level,Full-time,Data Engineer,106700,USD,106700,United States,In-person,United States,M,Data Engineering +2023,Mid-level,Full-time,Data Engineer,57700,USD,57700,United States,In-person,United States,M,Data Engineering +2023,Senior,Full-time,Machine Learning Engineer,266400,USD,266400,United States,In-person,United States,M,Machine Learning and AI +2023,Senior,Full-time,Machine Learning Engineer,173300,USD,173300,United States,In-person,United States,M,Machine Learning and AI +2023,Mid-level,Full-time,Data Analyst,125000,USD,125000,United States,In-person,United States,M,Data Analysis +2023,Mid-level,Full-time,Data Analyst,100000,USD,100000,United States,In-person,United States,M,Data Analysis +2023,Senior,Full-time,Business Intelligence Engineer,165600,USD,165600,United States,In-person,United States,L,BI and Visualization +2023,Senior,Full-time,Business Intelligence Engineer,65800,USD,65800,United States,In-person,United States,L,BI and Visualization +2023,Mid-level,Full-time,Data Scientist,210400,USD,210400,United States,In-person,United States,M,Data Science and Research +2023,Mid-level,Full-time,Data Scientist,170500,USD,170500,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Data Scientist,212000,USD,212000,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Data Scientist,93300,USD,93300,United States,In-person,United States,M,Data Science and Research +2023,Mid-level,Full-time,Data Engineer,170000,USD,170000,United States,Remote,United States,M,Data Engineering +2023,Mid-level,Full-time,Data Engineer,160000,USD,160000,United States,Remote,United States,M,Data Engineering +2023,Senior,Full-time,Data Scientist,185400,USD,185400,United States,Remote,United States,M,Data Science and Research +2023,Senior,Full-time,Data Scientist,81536,USD,81536,United States,Remote,United States,M,Data Science and Research +2023,Senior,Full-time,Data Analyst,193000,USD,193000,United States,In-person,United States,M,Data Analysis +2023,Senior,Full-time,Data Analyst,158000,USD,158000,United States,In-person,United States,M,Data Analysis +2023,Senior,Full-time,Data Engineer,170000,USD,170000,United States,Remote,United States,M,Data Engineering +2023,Senior,Full-time,Data Engineer,100000,USD,100000,United States,Remote,United States,M,Data Engineering +2023,Mid-level,Full-time,Applied Scientist,222200,USD,222200,United States,In-person,United States,L,Data Science and Research +2023,Mid-level,Full-time,Applied Scientist,136000,USD,136000,United States,In-person,United States,L,Data Science and Research +2023,Mid-level,Full-time,Data Engineer,148000,USD,148000,United States,In-person,United States,M,Data Engineering +2023,Mid-level,Full-time,Data Engineer,99000,USD,99000,United States,In-person,United States,M,Data Engineering +2023,Senior,Full-time,Machine Learning Engineer,204500,USD,204500,United States,In-person,United States,M,Machine Learning and AI +2023,Senior,Full-time,Machine Learning Engineer,142200,USD,142200,United States,In-person,United States,M,Machine Learning and AI +2023,Mid-level,Full-time,Data Analyst,95000,USD,95000,United States,Remote,United States,M,Data Analysis +2023,Mid-level,Full-time,Data Analyst,75000,USD,75000,United States,Remote,United States,M,Data Analysis +2023,Mid-level,Full-time,Data Analyst,115000,USD,115000,United States,In-person,United States,M,Data Analysis +2023,Mid-level,Full-time,Data Analyst,105000,USD,105000,United States,In-person,United States,M,Data Analysis +2023,Senior,Full-time,Data Engineer,195800,USD,195800,United States,In-person,United States,M,Data Engineering +2023,Senior,Full-time,Data Engineer,161900,USD,161900,United States,In-person,United States,M,Data Engineering +2023,Mid-level,Full-time,Data Analyst,90000,USD,90000,United States,Remote,United States,M,Data Analysis +2023,Mid-level,Full-time,Data Analyst,80000,USD,80000,United States,Remote,United States,M,Data Analysis +2023,Senior,Full-time,Data Analyst,192500,USD,192500,United States,Remote,United States,M,Data Analysis +2023,Senior,Full-time,Data Analyst,140000,USD,140000,United States,Remote,United States,M,Data Analysis +2023,Mid-level,Full-time,Analytics Engineer,100000,USD,100000,United States,In-person,United States,M,Leadership and Management +2023,Mid-level,Full-time,Analytics Engineer,75000,USD,75000,United States,In-person,United States,M,Leadership and Management +2023,Mid-level,Full-time,Data Engineer,169000,USD,169000,United States,In-person,United States,M,Data Engineering +2023,Mid-level,Full-time,Data Engineer,91000,USD,91000,United States,In-person,United States,M,Data Engineering +2023,Senior,Full-time,Machine Learning Engineer,216600,USD,216600,Canada,In-person,Canada,M,Machine Learning and AI +2023,Senior,Full-time,Machine Learning Engineer,144400,USD,144400,Canada,In-person,Canada,M,Machine Learning and AI +2023,Senior,Full-time,Data Analyst,150000,USD,150000,United States,In-person,United States,M,Data Analysis +2023,Senior,Full-time,Data Analyst,120000,USD,120000,United States,In-person,United States,M,Data Analysis +2023,Mid-level,Full-time,Data Engineer,133000,USD,133000,United States,In-person,United States,M,Data Engineering +2023,Mid-level,Full-time,Data Engineer,58400,USD,58400,United States,In-person,United States,M,Data Engineering +2023,Senior,Full-time,Data Scientist,166000,USD,166000,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Data Scientist,73100,USD,73100,United States,In-person,United States,M,Data Science and Research +2023,Mid-level,Full-time,Data Scientist,166000,USD,166000,United States,In-person,United States,M,Data Science and Research +2023,Mid-level,Full-time,Data Scientist,73100,USD,73100,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,ML Engineer,336300,USD,336300,United States,In-person,United States,M,Machine Learning and AI +2023,Senior,Full-time,ML Engineer,179000,USD,179000,United States,In-person,United States,M,Machine Learning and AI +2023,Senior,Full-time,Machine Learning Engineer,296400,USD,296400,United States,In-person,United States,M,Machine Learning and AI +2023,Senior,Full-time,Machine Learning Engineer,159600,USD,159600,United States,In-person,United States,M,Machine Learning and AI +2023,Senior,Full-time,Data Scientist,212000,USD,212000,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Data Scientist,93300,USD,93300,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Machine Learning Engineer,204500,USD,204500,United States,In-person,United States,M,Machine Learning and AI +2023,Senior,Full-time,Machine Learning Engineer,142200,USD,142200,United States,In-person,United States,M,Machine Learning and AI +2023,Senior,Full-time,Head of Data,258500,USD,258500,United States,Remote,United States,M,Leadership and Management +2023,Senior,Full-time,Head of Data,226500,USD,226500,United States,Remote,United States,M,Leadership and Management +2023,Senior,Full-time,Research Scientist,247250,USD,247250,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Research Scientist,118400,USD,118400,United States,In-person,United States,M,Data Science and Research +2023,Mid-level,Full-time,BI Analyst,160000,USD,160000,United States,In-person,United States,M,BI and Visualization +2023,Mid-level,Full-time,BI Analyst,140000,USD,140000,United States,In-person,United States,M,BI and Visualization +2023,Senior,Full-time,Machine Learning Engineer,212000,USD,212000,United States,In-person,United States,M,Machine Learning and AI +2023,Senior,Full-time,Machine Learning Engineer,93400,USD,93400,United States,In-person,United States,M,Machine Learning and AI +2023,Senior,Full-time,Data Scientist,140000,GBP,172256,United Kingdom,Remote,United Kingdom,M,Data Science and Research +2023,Senior,Full-time,Data Scientist,100000,GBP,123040,United Kingdom,Remote,United Kingdom,M,Data Science and Research +2023,Senior,Full-time,Data Scientist,219000,USD,219000,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Data Scientist,132000,USD,132000,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Data Scientist,130500,USD,130500,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Data Scientist,116000,USD,116000,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Research Scientist,323300,USD,323300,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Research Scientist,184700,USD,184700,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Machine Learning Scientist,250000,USD,250000,United States,In-person,United States,M,Machine Learning and AI +2023,Senior,Full-time,Machine Learning Scientist,200000,USD,200000,United States,In-person,United States,M,Machine Learning and AI +2023,Mid-level,Full-time,Data Scientist,136000,USD,136000,United States,In-person,United States,M,Data Science and Research +2023,Mid-level,Full-time,Data Scientist,91000,USD,91000,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Data Scientist,185900,USD,185900,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Data Scientist,129300,USD,129300,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Data Analyst,143000,USD,143000,Canada,Remote,Canada,M,Data Analysis +2023,Senior,Full-time,Data Analyst,78000,USD,78000,Canada,Remote,Canada,M,Data Analysis +2023,Entry-level,Full-time,Data Scientist,135000,USD,135000,United States,In-person,United States,M,Data Science and Research +2023,Entry-level,Full-time,Data Scientist,110000,USD,110000,United States,In-person,United States,M,Data Science and Research +2023,Mid-level,Full-time,Data Engineer,142000,USD,142000,Canada,In-person,Canada,M,Data Engineering +2023,Mid-level,Full-time,Data Engineer,102200,USD,102200,Canada,In-person,Canada,M,Data Engineering +2023,Senior,Full-time,Data Scientist,137500,USD,137500,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Data Scientist,81500,USD,81500,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,BI Analyst,202000,USD,202000,United States,Remote,United States,M,BI and Visualization +2023,Senior,Full-time,BI Analyst,147000,USD,147000,United States,Remote,United States,M,BI and Visualization +2023,Senior,Full-time,Data Scientist,140000,USD,140000,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Data Scientist,125000,USD,125000,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Data Scientist,170625,USD,170625,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Data Scientist,127950,USD,127950,United States,In-person,United States,M,Data Science and Research +2023,Mid-level,Full-time,Data Scientist,100000,GBP,123040,United Kingdom,In-person,United Kingdom,M,Data Science and Research +2023,Mid-level,Full-time,Data Scientist,70000,GBP,86128,United Kingdom,In-person,United Kingdom,M,Data Science and Research +2023,Entry-level,Full-time,Data Analyst,85256,USD,85256,United States,In-person,United States,M,Data Analysis +2023,Entry-level,Full-time,Data Analyst,71615,USD,71615,United States,In-person,United States,M,Data Analysis +2023,Entry-level,Full-time,Data Scientist,100000,USD,100000,United States,In-person,United States,L,Data Science and Research +2023,Mid-level,Full-time,Research Analyst,100000,USD,100000,United States,In-person,United States,S,Data Science and Research +2023,Executive,Full-time,Data Engineer,185000,USD,185000,United States,In-person,United States,M,Data Engineering +2023,Executive,Full-time,Data Engineer,125000,USD,125000,United States,In-person,United States,M,Data Engineering +2023,Entry-level,Full-time,Data Management Analyst,60000,USD,60000,United States,Remote,United States,M,Data Management and Strategy +2023,Entry-level,Full-time,Data Management Analyst,52000,USD,52000,United States,Remote,United States,M,Data Management and Strategy +2023,Senior,Full-time,Machine Learning Engineer,300000,USD,300000,United States,In-person,United States,M,Machine Learning and AI +2023,Senior,Full-time,Machine Learning Engineer,260000,USD,260000,United States,In-person,United States,M,Machine Learning and AI +2023,Senior,Full-time,Data Scientist,225000,USD,225000,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Data Scientist,170000,USD,170000,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Business Intelligence Analyst,100000,USD,100000,United States,Remote,United States,M,BI and Visualization +2023,Senior,Full-time,Business Intelligence Analyst,80000,USD,80000,United States,Remote,United States,M,BI and Visualization +2023,Senior,Full-time,Machine Learning Modeler,204500,USD,204500,United States,In-person,United States,M,Machine Learning and AI +2023,Senior,Full-time,Machine Learning Modeler,142200,USD,142200,United States,In-person,United States,M,Machine Learning and AI +2023,Senior,Full-time,Data Scientist,135000,USD,135000,United States,Remote,United States,M,Data Science and Research +2023,Senior,Full-time,Data Scientist,100000,USD,100000,United States,Remote,United States,M,Data Science and Research +2023,Senior,Full-time,Data Scientist,297300,USD,297300,United States,Remote,United States,M,Data Science and Research +2023,Senior,Full-time,Data Scientist,198200,USD,198200,United States,Remote,United States,M,Data Science and Research +2023,Senior,Full-time,Machine Learning Engineer,240000,USD,240000,United States,Remote,United States,M,Machine Learning and AI +2023,Senior,Full-time,Machine Learning Engineer,190000,USD,190000,United States,Remote,United States,M,Machine Learning and AI +2023,Senior,Full-time,Business Intelligence Engineer,185000,USD,185000,United States,In-person,United States,L,BI and Visualization +2023,Senior,Full-time,Business Intelligence Engineer,79600,USD,79600,United States,In-person,United States,L,BI and Visualization +2023,Senior,Full-time,Applied Scientist,222200,USD,222200,United States,In-person,United States,L,Data Science and Research +2023,Senior,Full-time,Applied Scientist,136000,USD,136000,United States,In-person,United States,L,Data Science and Research +2023,Senior,Full-time,Data Engineer,110000,USD,110000,United States,Remote,United States,M,Data Engineering +2023,Senior,Full-time,Data Engineer,95000,USD,95000,United States,Remote,United States,M,Data Engineering +2023,Senior,Full-time,Machine Learning Engineer,324000,USD,324000,United States,In-person,United States,M,Machine Learning and AI +2023,Senior,Full-time,Machine Learning Engineer,159000,USD,159000,United States,In-person,United States,M,Machine Learning and AI +2023,Senior,Full-time,Machine Learning Engineer,207700,USD,207700,Canada,In-person,Canada,M,Machine Learning and AI +2023,Senior,Full-time,Machine Learning Engineer,133700,USD,133700,Canada,In-person,Canada,M,Machine Learning and AI +2023,Mid-level,Full-time,Research Analyst,71000,USD,71000,United States,Remote,United States,M,Data Science and Research +2023,Mid-level,Full-time,Research Analyst,57000,USD,57000,United States,Remote,United States,M,Data Science and Research +2023,Senior,Full-time,Applied Scientist,222200,USD,222200,United States,In-person,United States,L,Data Science and Research +2023,Senior,Full-time,Applied Scientist,136000,USD,136000,United States,In-person,United States,L,Data Science and Research +2023,Senior,Full-time,Machine Learning Engineer,200000,USD,200000,United States,Remote,United States,M,Machine Learning and AI +2023,Senior,Full-time,Machine Learning Engineer,150000,USD,150000,United States,Remote,United States,M,Machine Learning and AI +2023,Mid-level,Full-time,Data Analyst,59000,USD,59000,United States,Remote,United States,M,Data Analysis +2023,Mid-level,Full-time,Data Analyst,50000,USD,50000,United States,Remote,United States,M,Data Analysis +2023,Senior,Full-time,Machine Learning Engineer,234000,USD,234000,United States,Remote,United States,M,Machine Learning and AI +2023,Senior,Full-time,Machine Learning Engineer,208000,USD,208000,United States,Remote,United States,M,Machine Learning and AI +2023,Senior,Full-time,Analytics Engineer,187000,USD,187000,United States,Remote,United States,M,Leadership and Management +2023,Senior,Full-time,Analytics Engineer,128000,USD,128000,United States,Remote,United States,M,Leadership and Management +2023,Senior,Full-time,BI Analyst,202000,USD,202000,United States,Remote,United States,M,BI and Visualization +2023,Senior,Full-time,BI Analyst,147000,USD,147000,United States,Remote,United States,M,BI and Visualization +2023,Mid-level,Contract,AI Engineer,50000,USD,50000,Czechia,Remote,Canada,L,Machine Learning and AI +2023,Mid-level,Full-time,Data Scientist,60000,EUR,64781,Spain,Remote,Spain,L,Data Science and Research +2023,Entry-level,Full-time,Data Scientist,53000,EUR,57223,Netherlands,Hybrid,Netherlands,L,Data Science and Research +2023,Mid-level,Freelance,Data Science Consultant,21000,USD,21000,Pakistan,Remote,Luxembourg,S,Data Science and Research +2023,Mid-level,Full-time,Data Analyst,135000,USD,135000,United States,In-person,United States,M,Data Analysis +2023,Mid-level,Full-time,Data Analyst,120000,USD,120000,United States,In-person,United States,M,Data Analysis +2023,Mid-level,Full-time,Data Architect,150000,USD,150000,United States,Remote,United States,M,Data Architecture and Modeling +2023,Mid-level,Full-time,Data Architect,140000,USD,140000,United States,Remote,United States,M,Data Architecture and Modeling +2023,Senior,Full-time,Research Scientist,190000,USD,190000,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Research Scientist,165000,USD,165000,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Data Scientist,280000,USD,280000,United States,Remote,United States,M,Data Science and Research +2023,Senior,full-time,Data Scientist,190000,USD,190000,United States,Remote,United States,M,Data Science and Research +2023,Executive,Full-time,Data Science Director,212000,USD,212000,United States,In-person,United States,M,Data Science and Research +2023,Executive,Full-time,Data Science Director,190000,USD,190000,United States,In-person,United States,M,Data Science and Research +2023,Mid-level,Full-time,Business Intelligence Engineer,35000,GBP,43064,United Kingdom,In-person,United Kingdom,M,BI and Visualization +2023,Mid-level,Full-time,Business Intelligence Engineer,35000,GBP,43064,United Kingdom,In-person,United Kingdom,M,BI and Visualization +2023,Senior,Full-time,Machine Learning Engineer,245700,USD,245700,United States,In-person,United States,M,Machine Learning and AI +2023,Senior,Full-time,Machine Learning Engineer,132300,USD,132300,United States,In-person,United States,M,Machine Learning and AI +2023,Mid-level,Full-time,Data Specialist,90000,USD,90000,United States,In-person,United States,M,Data Management and Strategy +2023,Mid-level,Full-time,Data Specialist,80000,USD,80000,United States,In-person,United States,M,Data Management and Strategy +2023,Senior,Full-time,Machine Learning Engineer,212000,USD,212000,United States,In-person,United States,M,Machine Learning and AI +2023,Senior,Full-time,Machine Learning Engineer,93300,USD,93300,United States,In-person,United States,M,Machine Learning and AI +2023,Mid-level,Full-time,Data Scientist,212000,USD,212000,United States,In-person,United States,M,Data Science and Research +2023,Mid-level,Full-time,Data Scientist,93300,USD,93300,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,ML Engineer,276000,USD,276000,United States,In-person,United States,M,Machine Learning and AI +2023,Senior,Full-time,ML Engineer,174000,USD,174000,United States,In-person,United States,M,Machine Learning and AI +2023,Mid-level,Full-time,Data Engineer,133000,USD,133000,United States,In-person,United States,M,Data Engineering +2023,Mid-level,Full-time,Data Engineer,58300,USD,58300,United States,In-person,United States,M,Data Engineering +2023,Senior,Full-time,Data Analyst,145640,USD,145640,United States,In-person,United States,M,Data Analysis +2023,Senior,Full-time,Data Analyst,84400,USD,84400,United States,In-person,United States,M,Data Analysis +2023,Senior,Full-time,Data Engineer,300000,USD,300000,United States,Remote,United States,M,Data Engineering +2023,Senior,Full-time,Data Engineer,195000,USD,195000,United States,Remote,United States,M,Data Engineering +2023,Senior,Full-time,Data Architect,190000,USD,190000,Canada,Remote,Canada,M,Data Architecture and Modeling +2023,Senior,Full-time,Data Architect,107500,USD,107500,Canada,Remote,Canada,M,Data Architecture and Modeling +2023,Senior,Full-time,Data Analyst,105000,USD,105000,United States,In-person,United States,M,Data Analysis +2023,Senior,Full-time,Data Analyst,75000,USD,75000,United States,In-person,United States,M,Data Analysis +2023,Senior,Full-time,Data Analyst,140000,USD,140000,United States,Remote,United States,M,Data Analysis +2023,Senior,Full-time,Data Analyst,98000,USD,98000,United States,Remote,United States,M,Data Analysis +2023,Senior,Full-time,Machine Learning Engineer,204500,USD,204500,United States,In-person,United States,M,Machine Learning and AI +2023,Senior,Full-time,Machine Learning Engineer,142200,USD,142200,United States,In-person,United States,M,Machine Learning and AI +2023,Senior,Full-time,Data Scientist,236160,USD,236160,United States,Remote,United States,M,Data Science and Research +2023,Senior,Full-time,Data Scientist,159408,USD,159408,United States,Remote,United States,M,Data Science and Research +2023,Senior,Full-time,Data Analyst,115000,USD,115000,United States,Remote,United States,M,Data Analysis +2023,Senior,Full-time,Data Analyst,85000,USD,85000,United States,Remote,United States,M,Data Analysis +2023,Senior,Full-time,Data Product Manager,145000,USD,145000,United States,In-person,United States,M,Leadership and Management +2023,Senior,Full-time,Data Product Manager,120000,USD,120000,United States,In-person,United States,M,Leadership and Management +2023,Senior,Full-time,Data Analyst,120350,USD,120350,United States,Remote,United States,M,Data Analysis +2023,Senior,Full-time,Data Analyst,74400,USD,74400,United States,Remote,United States,M,Data Analysis +2023,Senior,Full-time,Data Analyst,158494,USD,158494,United States,Remote,United States,M,Data Analysis +2023,Senior,Full-time,Data Analyst,88052,USD,88052,United States,Remote,United States,M,Data Analysis +2023,Senior,Full-time,Analytics Engineer,181500,USD,181500,United States,In-person,United States,M,Leadership and Management +2023,Senior,Full-time,Analytics Engineer,127000,USD,127000,United States,In-person,United States,M,Leadership and Management +2023,Mid-level,Full-time,Machine Learning Engineer,300000,USD,300000,United States,In-person,United States,M,Machine Learning and AI +2023,Mid-level,Full-time,Machine Learning Engineer,260000,USD,260000,United States,In-person,United States,M,Machine Learning and AI +2023,Senior,Full-time,Data Scientist,258000,USD,258000,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Data Scientist,171000,USD,171000,United States,In-person,United States,M,Data Science and Research +2023,Entry-level,Full-time,BI Data Analyst,25000,USD,25000,Ukraine,Remote,Netherlands,M,Data Analysis +2023,Senior,Full-time,Data Scientist,200000,USD,200000,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Data Scientist,150000,USD,150000,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Machine Learning Engineer,225300,USD,225300,United States,In-person,United States,M,Machine Learning and AI +2023,Senior,Full-time,Machine Learning Engineer,197400,USD,197400,United States,In-person,United States,M,Machine Learning and AI +2023,Senior,Full-time,Data Engineer,205500,USD,205500,United States,In-person,United States,M,Data Engineering +2023,Senior,Full-time,Data Engineer,128500,USD,128500,United States,In-person,United States,M,Data Engineering +2023,Senior,Full-time,Data Architect,191600,USD,191600,United States,In-person,United States,M,Data Architecture and Modeling +2023,Senior,Full-time,Data Architect,125600,USD,125600,United States,In-person,United States,M,Data Architecture and Modeling +2023,Senior,Full-time,Machine Learning Engineer,245700,USD,245700,United States,In-person,United States,M,Machine Learning and AI +2023,Senior,Full-time,Machine Learning Engineer,132300,USD,132300,United States,In-person,United States,M,Machine Learning and AI +2023,Mid-level,Full-time,Data Scientist,130410,USD,130410,United States,In-person,United States,M,Data Science and Research +2023,Mid-level,Full-time,Data Scientist,92000,USD,92000,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Data Scientist,183900,USD,183900,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Data Scientist,108800,USD,108800,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Machine Learning Engineer,275000,USD,275000,United States,In-person,United States,M,Machine Learning and AI +2023,Senior,Full-time,Machine Learning Engineer,121200,USD,121200,United States,In-person,United States,M,Machine Learning and AI +2023,Mid-level,Full-time,Data Scientist,166000,USD,166000,United States,In-person,United States,M,Data Science and Research +2023,Mid-level,Full-time,Data Scientist,73100,USD,73100,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Data Scientist,231250,USD,231250,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Data Scientist,111000,USD,111000,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Data Engineer,300000,USD,300000,United States,In-person,United States,M,Data Engineering +2023,Senior,Full-time,Data Engineer,130000,USD,130000,United States,In-person,United States,M,Data Engineering +2023,Mid-level,Full-time,Data Engineer,210500,USD,210500,United States,In-person,United States,M,Data Engineering +2023,Mid-level,Full-time,Data Engineer,105300,USD,105300,United States,In-person,United States,M,Data Engineering +2023,Mid-level,Full-time,Data Engineer,158400,USD,158400,United States,In-person,United States,M,Data Engineering +2023,Mid-level,Full-time,Data Engineer,85800,USD,85800,United States,In-person,United States,M,Data Engineering +2023,Senior,Full-time,Machine Learning Engineer,305600,USD,305600,United States,In-person,United States,M,Machine Learning and AI +2023,Senior,Full-time,Machine Learning Engineer,146600,USD,146600,United States,In-person,United States,M,Machine Learning and AI +2023,Senior,Full-time,Data Analyst,180400,USD,180400,United States,In-person,United States,M,Data Analysis +2023,Senior,Full-time,Data Analyst,138800,USD,138800,United States,In-person,United States,M,Data Analysis +2023,Senior,Full-time,Data Scientist,258700,USD,258700,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Data Scientist,172500,USD,172500,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Data Scientist,156100,USD,156100,Canada,In-person,Canada,M,Data Science and Research +2023,Senior,Full-time,Data Scientist,100400,USD,100400,Canada,In-person,Canada,M,Data Science and Research +2023,Senior,Full-time,Data Analyst,134200,USD,134200,United States,In-person,United States,M,Data Analysis +2023,Senior,Full-time,Data Analyst,103200,USD,103200,United States,In-person,United States,M,Data Analysis +2023,Mid-level,Full-time,Data Analyst,105000,USD,105000,United States,In-person,United States,M,Data Analysis +2023,Mid-level,Full-time,Data Analyst,85000,USD,85000,United States,In-person,United States,M,Data Analysis +2023,Senior,Full-time,Data Scientist,220000,USD,220000,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Data Scientist,160000,USD,160000,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Data Analyst,110000,USD,110000,United States,Remote,United States,M,Data Analysis +2023,Senior,Full-time,Data Analyst,95000,USD,95000,United States,Remote,United States,M,Data Analysis +2023,Mid-level,Full-time,Data Analyst,95400,USD,95400,United States,Remote,United States,M,Data Analysis +2023,Mid-level,Full-time,Data Analyst,57800,USD,57800,United States,Remote,United States,M,Data Analysis +2023,Mid-level,Full-time,Data Scientist,110000,USD,110000,United States,In-person,United States,M,Data Science and Research +2023,Mid-level,Full-time,Data Scientist,86000,USD,86000,United States,In-person,United States,M,Data Science and Research +2023,Executive,Full-time,Data Analyst,125000,USD,125000,United States,In-person,United States,M,Data Analysis +2023,Executive,Full-time,Data Analyst,87500,USD,87500,United States,In-person,United States,M,Data Analysis +2023,Senior,Full-time,Business Intelligence Engineer,185000,USD,185000,United States,In-person,United States,L,BI and Visualization +2023,Senior,Full-time,Business Intelligence Engineer,79600,USD,79600,United States,In-person,United States,L,BI and Visualization +2023,Senior,Full-time,Machine Learning Engineer,275000,USD,275000,United States,In-person,United States,M,Machine Learning and AI +2023,Senior,Full-time,Machine Learning Engineer,170000,USD,170000,United States,In-person,United States,M,Machine Learning and AI +2023,Senior,Full-time,Data Engineer,133200,USD,133200,United States,Remote,United States,M,Data Engineering +2023,Senior,Full-time,Data Engineer,84000,USD,84000,United States,Remote,United States,M,Data Engineering +2023,Senior,Full-time,Data Analyst,171000,USD,171000,United States,In-person,United States,M,Data Analysis +2023,Senior,Full-time,Data Analyst,93000,USD,93000,United States,In-person,United States,M,Data Analysis +2023,Senior,Full-time,Analytics Engineer,216450,USD,216450,United States,In-person,United States,M,Leadership and Management +2023,Senior,Full-time,Analytics Engineer,123750,USD,123750,United States,In-person,United States,M,Leadership and Management +2023,Senior,Full-time,Research Scientist,212800,USD,212800,United States,In-person,United States,L,Data Science and Research +2023,Senior,Full-time,Research Scientist,124100,USD,124100,United States,In-person,United States,L,Data Science and Research +2023,Mid-level,Full-time,Data Scientist,205000,USD,205000,United States,Remote,United States,M,Data Science and Research +2023,Mid-level,Full-time,Data Scientist,166000,USD,166000,United States,Remote,United States,M,Data Science and Research +2023,Senior,Full-time,Data Scientist,231650,USD,231650,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Data Scientist,189100,USD,189100,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Data Engineer,160000,USD,160000,Canada,Remote,Canada,M,Data Engineering +2023,Senior,Full-time,Data Engineer,120000,USD,120000,Canada,Remote,Canada,M,Data Engineering +2023,Senior,Full-time,Data Scientist,156100,USD,156100,Canada,In-person,Canada,M,Data Science and Research +2023,Senior,Full-time,Data Scientist,100400,USD,100400,Canada,In-person,Canada,M,Data Science and Research +2023,Senior,Full-time,Data Engineer,266875,USD,266875,United States,In-person,United States,M,Data Engineering +2023,Senior,Full-time,Data Engineer,128250,USD,128250,United States,In-person,United States,M,Data Engineering +2023,Mid-level,Full-time,Data Engineer,158600,USD,158600,United States,Remote,United States,M,Data Engineering +2023,Mid-level,Full-time,Data Engineer,115300,USD,115300,United States,Remote,United States,M,Data Engineering +2023,Senior,Full-time,Data Engineer,225300,USD,225300,United States,In-person,United States,M,Data Engineering +2023,Senior,Full-time,Data Engineer,197400,USD,197400,United States,In-person,United States,M,Data Engineering +2023,Entry-level,Full-time,Data Analyst,109900,USD,109900,United States,In-person,United States,M,Data Analysis +2023,Entry-level,Full-time,Data Analyst,61200,USD,61200,United States,In-person,United States,M,Data Analysis +2023,Senior,Full-time,Data Integration Engineer,161000,USD,161000,United States,Remote,United States,M,Data Engineering +2023,Senior,Full-time,Data Integration Engineer,75000,USD,75000,United States,Remote,United States,M,Data Engineering +2023,Mid-level,Full-time,Data Analyst,166000,USD,166000,United States,In-person,United States,M,Data Analysis +2023,Mid-level,Full-time,Data Analyst,73100,USD,73100,United States,In-person,United States,M,Data Analysis +2023,Mid-level,Full-time,Data Scientist,138510,USD,138510,United States,In-person,United States,M,Data Science and Research +2023,Mid-level,Full-time,Data Scientist,95490,USD,95490,United States,In-person,United States,M,Data Science and Research +2023,Mid-level,Full-time,Data Analyst,150000,USD,150000,United States,Remote,United States,M,Data Analysis +2023,Mid-level,Full-time,Data Analyst,110000,USD,110000,United States,Remote,United States,M,Data Analysis +2023,Senior,Full-time,Data Scientist,232200,USD,232200,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Data Scientist,133300,USD,133300,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Machine Learning Engineer,112800,EUR,121788,Lithuania,In-person,Lithuania,M,Machine Learning and AI +2023,Senior,Full-time,Machine Learning Engineer,73200,EUR,79032,Lithuania,In-person,Lithuania,M,Machine Learning and AI +2023,Senior,Full-time,Analytics Engineer,178250,USD,178250,United States,In-person,United States,M,Leadership and Management +2023,Senior,Full-time,Analytics Engineer,110500,USD,110500,United States,In-person,United States,M,Leadership and Management +2023,Senior,Full-time,AI Engineer,190000,USD,190000,United States,In-person,United States,M,Machine Learning and AI +2023,Senior,Full-time,AI Engineer,160000,USD,160000,United States,In-person,United States,M,Machine Learning and AI +2023,Senior,Full-time,Applied Scientist,216000,USD,216000,United States,Remote,United States,M,Data Science and Research +2023,Senior,Full-time,Applied Scientist,184000,USD,184000,United States,Remote,United States,M,Data Science and Research +2023,Senior,Full-time,Data Scientist,166000,USD,166000,Canada,Remote,Canada,M,Data Science and Research +2023,Senior,Full-time,Data Scientist,104000,USD,104000,Canada,Remote,Canada,M,Data Science and Research +2023,Senior,Full-time,Business Intelligence Engineer,185000,USD,185000,United States,In-person,United States,L,BI and Visualization +2023,Senior,Full-time,Business Intelligence Engineer,79600,USD,79600,United States,In-person,United States,L,BI and Visualization +2023,Senior,Full-time,Machine Learning Engineer,230000,USD,230000,United States,In-person,United States,M,Machine Learning and AI +2023,Senior,Full-time,Machine Learning Engineer,196000,USD,196000,United States,In-person,United States,M,Machine Learning and AI +2023,Senior,Full-time,Data Engineer,184000,USD,184000,United States,In-person,United States,M,Data Engineering +2023,Senior,Full-time,Data Engineer,123000,USD,123000,United States,In-person,United States,M,Data Engineering +2023,Mid-level,Full-time,Business Intelligence Engineer,165600,USD,165600,United States,In-person,United States,L,BI and Visualization +2023,Mid-level,Full-time,Business Intelligence Engineer,65800,USD,65800,United States,In-person,United States,L,BI and Visualization +2023,Senior,Full-time,Data Engineer,186000,USD,186000,United States,In-person,United States,M,Data Engineering +2023,Senior,Full-time,Data Engineer,81800,USD,81800,United States,In-person,United States,M,Data Engineering +2023,Senior,Full-time,Data Analyst,135000,USD,135000,United States,In-person,United States,M,Data Analysis +2023,Senior,Full-time,Data Analyst,82500,USD,82500,United States,In-person,United States,M,Data Analysis +2023,Senior,Full-time,Data Engineer,247250,USD,247250,United States,In-person,United States,M,Data Engineering +2023,Senior,Full-time,Data Engineer,160000,USD,160000,United States,In-person,United States,M,Data Engineering +2023,Senior,Full-time,Machine Learning Scientist,169000,USD,169000,United States,In-person,United States,M,Machine Learning and AI +2023,Senior,Full-time,Machine Learning Scientist,105500,USD,105500,United States,In-person,United States,M,Machine Learning and AI +2023,Senior,Full-time,Data Scientist,195800,USD,195800,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Data Scientist,161900,USD,161900,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Business Intelligence Engineer,108500,USD,108500,United States,Remote,United States,M,BI and Visualization +2023,Senior,Full-time,Business Intelligence Engineer,78800,USD,78800,United States,Remote,United States,M,BI and Visualization +2023,Senior,Full-time,Research Scientist,225000,USD,225000,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Research Scientist,166000,USD,166000,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,BI Developer,167500,USD,167500,United States,In-person,United States,M,BI and Visualization +2023,Senior,Full-time,BI Developer,106500,USD,106500,United States,In-person,United States,M,BI and Visualization +2023,Mid-level,Full-time,Business Intelligence Manager,160000,USD,160000,United States,Remote,United States,M,BI and Visualization +2023,Mid-level,Full-time,Business Intelligence Manager,110000,USD,110000,United States,Remote,United States,M,BI and Visualization +2023,Senior,Full-time,Data Analyst,120000,USD,120000,Canada,In-person,Canada,M,Data Analysis +2023,Senior,Full-time,Data Analyst,105000,USD,105000,Canada,In-person,Canada,M,Data Analysis +2023,Mid-level,Full-time,Data Analyst,110000,USD,110000,United States,Remote,United States,M,Data Analysis +2023,Mid-level,Full-time,Data Analyst,87500,USD,87500,United States,Remote,United States,M,Data Analysis +2023,Mid-level,Full-time,Data Scientist,60000,USD,60000,United States,In-person,United States,M,Data Science and Research +2023,Mid-level,Full-time,Data Scientist,55000,USD,55000,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Data Engineer,145000,USD,145000,United States,In-person,United States,M,Data Engineering +2023,Senior,Full-time,Data Engineer,115000,USD,115000,United States,In-person,United States,M,Data Engineering +2023,Senior,Full-time,Research Scientist,225000,USD,225000,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Research Scientist,166000,USD,166000,United States,In-person,United States,M,Data Science and Research +2023,Executive,Full-time,Data Engineer,135000,USD,135000,United States,In-person,United States,M,Data Engineering +2023,Executive,Full-time,Data Engineer,100000,USD,100000,United States,In-person,United States,M,Data Engineering +2023,Mid-level,Full-time,Machine Learning Engineer,105000,USD,105000,Portugal,Remote,Portugal,M,Machine Learning and AI +2023,Mid-level,Full-time,Machine Learning Engineer,95000,USD,95000,Portugal,Remote,Portugal,M,Machine Learning and AI +2023,Senior,Full-time,Analytics Engineer,289800,USD,289800,United States,In-person,United States,M,Leadership and Management +2023,Senior,Full-time,Analytics Engineer,214200,USD,214200,United States,In-person,United States,M,Leadership and Management +2023,Mid-level,Full-time,Data Engineer,167500,USD,167500,United States,In-person,United States,M,Data Engineering +2023,Mid-level,Full-time,Data Engineer,106500,USD,106500,United States,In-person,United States,M,Data Engineering +2023,Senior,Full-time,Data Scientist,220000,USD,220000,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Data Scientist,146000,USD,146000,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Data Engineer,128000,USD,128000,United States,In-person,United States,M,Data Engineering +2023,Senior,Full-time,Data Engineer,81500,USD,81500,United States,In-person,United States,M,Data Engineering +2023,Senior,Full-time,Data Architect,206000,USD,206000,United States,In-person,United States,M,Data Architecture and Modeling +2023,Senior,Full-time,Data Architect,134000,USD,134000,United States,In-person,United States,M,Data Architecture and Modeling +2023,Senior,Full-time,Research Scientist,370000,USD,370000,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Research Scientist,200000,USD,200000,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Analytics Engineer,175000,USD,175000,United States,Remote,United States,M,Leadership and Management +2023,Senior,Full-time,Analytics Engineer,160000,USD,160000,United States,Remote,United States,M,Leadership and Management +2023,Entry-level,Full-time,Data Integration Specialist,240000,USD,240000,United States,Remote,United States,M,Data Management and Strategy +2023,Entry-level,Full-time,Data Integration Specialist,100000,USD,100000,United States,Remote,United States,M,Data Management and Strategy +2023,Senior,Full-time,Data Scientist,180000,USD,180000,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Data Scientist,160000,USD,160000,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Business Intelligence Engineer,143000,USD,143000,Canada,In-person,Canada,M,BI and Visualization +2023,Senior,Full-time,Business Intelligence Engineer,127000,USD,127000,Canada,In-person,Canada,M,BI and Visualization +2023,Mid-level,Full-time,Applied Scientist,249300,USD,249300,United States,In-person,United States,L,Data Science and Research +2023,Mid-level,Full-time,Applied Scientist,149300,USD,149300,United States,In-person,United States,L,Data Science and Research +2023,Senior,Full-time,Applied Scientist,222200,USD,222200,United States,In-person,United States,L,Data Science and Research +2023,Senior,Full-time,Applied Scientist,136000,USD,136000,United States,In-person,United States,L,Data Science and Research +2023,Senior,Full-time,Data Engineer,190000,USD,190000,United States,Remote,United States,M,Data Engineering +2023,Senior,Full-time,Data Engineer,160000,USD,160000,United States,Remote,United States,M,Data Engineering +2023,Senior,Full-time,Research Scientist,248100,USD,248100,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Research Scientist,145900,USD,145900,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Data Science Practitioner,170200,USD,170200,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Data Science Practitioner,83900,USD,83900,United States,In-person,United States,M,Data Science and Research +2023,Mid-level,Full-time,Analytics Engineer,100000,USD,100000,United States,In-person,United States,M,Leadership and Management +2023,Mid-level,Full-time,Analytics Engineer,75000,USD,75000,United States,In-person,United States,M,Leadership and Management +2023,Senior,Full-time,Data Scientist,166000,USD,166000,United Kingdom,In-person,United Kingdom,M,Data Science and Research +2023,Senior,Full-time,Data Scientist,90000,USD,90000,United Kingdom,In-person,United Kingdom,M,Data Science and Research +2023,Senior,Full-time,Data Scientist,160000,USD,160000,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Data Scientist,94100,USD,94100,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Machine Learning Engineer,226600,USD,226600,United States,In-person,United States,M,Machine Learning and AI +2023,Senior,Full-time,Machine Learning Engineer,140100,USD,140100,United States,In-person,United States,M,Machine Learning and AI +2023,Senior,Full-time,Data Scientist,247600,USD,247600,United States,In-person,United States,L,Data Science and Research +2023,Senior,Full-time,Data Scientist,127300,USD,127300,United States,In-person,United States,L,Data Science and Research +2023,Senior,Full-time,Applied Scientist,222200,USD,222200,United States,In-person,United States,L,Data Science and Research +2023,Senior,Full-time,Applied Scientist,136000,USD,136000,United States,In-person,United States,L,Data Science and Research +2023,Senior,Full-time,Applied Scientist,260000,USD,260000,United States,In-person,United States,L,Data Science and Research +2023,Senior,Full-time,Applied Scientist,136000,USD,136000,United States,In-person,United States,L,Data Science and Research +2023,Senior,Full-time,Applied Scientist,222200,USD,222200,United States,In-person,United States,L,Data Science and Research +2023,Senior,Full-time,Applied Scientist,136000,USD,136000,United States,In-person,United States,L,Data Science and Research +2023,Senior,Full-time,Data Analyst,156000,USD,156000,United States,In-person,United States,M,Data Analysis +2023,Senior,Full-time,Data Analyst,124000,USD,124000,United States,In-person,United States,M,Data Analysis +2023,Senior,Full-time,Data Engineer,200000,USD,200000,United States,In-person,United States,M,Data Engineering +2023,Senior,Full-time,Data Engineer,132600,USD,132600,United States,In-person,United States,M,Data Engineering +2023,Senior,Full-time,Research Engineer,308000,USD,308000,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Research Engineer,190400,USD,190400,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Data Architect,155000,USD,155000,United States,In-person,United States,M,Data Architecture and Modeling +2023,Senior,Full-time,Data Architect,136000,USD,136000,United States,In-person,United States,M,Data Architecture and Modeling +2023,Senior,Full-time,Data Engineer,160000,USD,160000,United States,Remote,United States,M,Data Engineering +2023,Senior,Full-time,Data Engineer,75000,USD,75000,United States,Remote,United States,M,Data Engineering +2023,Senior,Full-time,Machine Learning Engineer,214500,USD,214500,United States,In-person,United States,M,Machine Learning and AI +2023,Senior,Full-time,Machine Learning Engineer,132600,USD,132600,United States,In-person,United States,M,Machine Learning and AI +2023,Mid-level,Full-time,Data Analyst,111000,USD,111000,United States,In-person,United States,M,Data Analysis +2023,Mid-level,Full-time,Data Analyst,104000,USD,104000,United States,In-person,United States,M,Data Analysis +2023,Senior,Full-time,Applied Scientist,260000,USD,260000,United States,In-person,United States,L,Data Science and Research +2023,Senior,Full-time,Applied Scientist,136000,USD,136000,United States,In-person,United States,L,Data Science and Research +2023,Mid-level,Full-time,Data Engineer,85000,USD,85000,United States,In-person,United States,M,Data Engineering +2023,Mid-level,Full-time,Data Engineer,75000,USD,75000,United States,In-person,United States,M,Data Engineering +2023,Senior,Full-time,Data Scientist,180250,USD,180250,United States,Remote,United States,M,Data Science and Research +2023,Senior,Full-time,Data Scientist,118000,USD,118000,United States,Remote,United States,M,Data Science and Research +2023,Senior,Full-time,Data Scientist,212800,USD,212800,United States,In-person,United States,L,Data Science and Research +2023,Senior,Full-time,Data Scientist,111600,USD,111600,United States,In-person,United States,L,Data Science and Research +2023,Senior,Full-time,Data Analyst,157500,USD,157500,United States,Remote,United States,M,Data Analysis +2023,Senior,Full-time,Data Analyst,132500,USD,132500,United States,Remote,United States,M,Data Analysis +2023,Mid-level,Full-time,Data Analyst,85000,USD,85000,United States,In-person,United States,M,Data Analysis +2023,Mid-level,Full-time,Data Analyst,75000,USD,75000,United States,In-person,United States,M,Data Analysis +2023,Senior,Full-time,Data Analyst,93918,USD,93918,United States,In-person,United States,M,Data Analysis +2023,Senior,Full-time,Data Analyst,51962,USD,51962,United States,In-person,United States,M,Data Analysis +2023,Senior,Full-time,Business Intelligence Analyst,171000,USD,171000,United States,Remote,United States,M,BI and Visualization +2023,Senior,Full-time,Business Intelligence Analyst,152000,USD,152000,United States,Remote,United States,M,BI and Visualization +2023,Senior,Full-time,Machine Learning Engineer,223600,USD,223600,United States,In-person,United States,L,Machine Learning and AI +2023,Senior,Full-time,Machine Learning Engineer,115000,USD,115000,United States,In-person,United States,L,Machine Learning and AI +2023,Senior,Full-time,Data Engineer,166000,USD,166000,United States,In-person,United States,M,Data Engineering +2023,Senior,Full-time,Data Engineer,73100,USD,73100,United States,In-person,United States,M,Data Engineering +2023,Mid-level,Full-time,Business Intelligence Developer,140000,USD,140000,United States,Remote,United States,M,BI and Visualization +2023,Mid-level,Full-time,Business Intelligence Developer,110000,USD,110000,United States,Remote,United States,M,BI and Visualization +2023,Mid-level,Full-time,Data Scientist,130900,USD,130900,United States,In-person,United States,M,Data Science and Research +2023,Mid-level,Full-time,Data Scientist,72700,USD,72700,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Machine Learning Engineer,333500,USD,333500,United States,In-person,United States,M,Machine Learning and AI +2023,Senior,Full-time,Machine Learning Engineer,144000,USD,144000,United States,In-person,United States,M,Machine Learning and AI +2023,Senior,Full-time,Business Intelligence Engineer,180000,USD,180000,United States,Remote,United States,M,BI and Visualization +2023,Senior,Full-time,Business Intelligence Engineer,118200,USD,118200,United States,Remote,United States,M,BI and Visualization +2023,Senior,Full-time,Data Architect,354200,USD,354200,United States,Remote,United States,M,Data Architecture and Modeling +2023,Senior,Full-time,Data Architect,221800,USD,221800,United States,Remote,United States,M,Data Architecture and Modeling +2023,Senior,Full-time,Data Analyst,166000,USD,166000,United States,In-person,United States,M,Data Analysis +2023,Senior,Full-time,Data Analyst,73000,USD,73000,United States,In-person,United States,M,Data Analysis +2023,Senior,Full-time,Data Engineer,156600,USD,156600,United States,Remote,United States,M,Data Engineering +2023,Senior,Full-time,Data Engineer,137200,USD,137200,United States,Remote,United States,M,Data Engineering +2023,Mid-level,Full-time,Data Analyst,149000,USD,149000,United States,In-person,United States,M,Data Analysis +2023,Mid-level,Full-time,Data Analyst,65300,USD,65300,United States,In-person,United States,M,Data Analysis +2023,Mid-level,Full-time,Data Engineer,187000,USD,187000,United States,Remote,United States,M,Data Engineering +2023,Mid-level,Full-time,Data Engineer,180000,USD,180000,United States,Remote,United States,M,Data Engineering +2023,Senior,Full-time,Data Analyst,119636,USD,119636,United States,In-person,United States,M,Data Analysis +2023,Senior,Full-time,Data Analyst,70374,USD,70374,United States,In-person,United States,M,Data Analysis +2023,Senior,Full-time,Data Analyst,105000,USD,105000,United States,Remote,United States,M,Data Analysis +2023,Senior,Full-time,Data Analyst,67000,USD,67000,United States,Remote,United States,M,Data Analysis +2023,Senior,Full-time,Data Analyst,102000,USD,102000,United States,Remote,United States,M,Data Analysis +2023,Senior,Full-time,Data Analyst,94770,USD,94770,United States,Remote,United States,M,Data Analysis +2023,Senior,Full-time,Data Architect,186000,USD,186000,United States,In-person,United States,M,Data Architecture and Modeling +2023,Senior,Full-time,Data Architect,81800,USD,81800,United States,In-person,United States,M,Data Architecture and Modeling +2023,Entry-level,Full-time,Data Scientist,133000,USD,133000,United States,In-person,United States,M,Data Science and Research +2023,Entry-level,Full-time,Data Scientist,58400,USD,58400,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Analytics Engineer,169900,USD,169900,United States,Remote,United States,M,Leadership and Management +2023,Senior,Full-time,Analytics Engineer,164100,USD,164100,United States,Remote,United States,M,Leadership and Management +2023,Senior,Full-time,Data Scientist,305600,USD,305600,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Data Scientist,172500,USD,172500,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Data Analyst,105000,USD,105000,United States,Remote,United States,M,Data Analysis +2023,Senior,Full-time,Data Analyst,75000,USD,75000,United States,Remote,United States,M,Data Analysis +2023,Entry-level,Full-time,Analytics Engineer,34800,EUR,37573,Netherlands,Remote,Netherlands,M,Leadership and Management +2022,Entry-level,Full-time,AI Research Engineer,30000,GBP,36940,United Kingdom,Remote,United Kingdom,L,Data Science and Research +2023,Senior,Full-time,Machine Learning Engineer,180240,USD,180240,United States,In-person,United States,M,Machine Learning and AI +2023,Senior,Full-time,Machine Learning Engineer,120160,USD,120160,United States,In-person,United States,M,Machine Learning and AI +2023,Mid-level,Full-time,Data Scientist,212000,USD,212000,United States,In-person,United States,M,Data Science and Research +2023,Mid-level,Full-time,Data Scientist,93400,USD,93400,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Machine Learning Engineer,275000,USD,275000,United States,In-person,United States,M,Machine Learning and AI +2023,Senior,Full-time,Machine Learning Engineer,170000,USD,170000,United States,In-person,United States,M,Machine Learning and AI +2023,Senior,Full-time,Data Scientist,119000,USD,119000,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Data Scientist,71400,USD,71400,United States,In-person,United States,M,Data Science and Research +2023,Mid-level,Full-time,Data Analyst,115950,USD,115950,United States,In-person,United States,M,Data Analysis +2023,Mid-level,Full-time,Data Analyst,69570,USD,69570,United States,In-person,United States,M,Data Analysis +2023,Senior,Full-time,Data Scientist,225100,USD,225100,United States,Remote,United States,M,Data Science and Research +2023,Senior,Full-time,Data Scientist,140900,USD,140900,United States,Remote,United States,M,Data Science and Research +2023,Senior,Full-time,Data Science Consultant,116000,USD,116000,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Data Science Consultant,90000,USD,90000,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Data Scientist,212000,USD,212000,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Data Scientist,93300,USD,93300,United States,In-person,United States,M,Data Science and Research +2023,Mid-level,Full-time,ML Engineer,179000,USD,179000,United States,In-person,United States,M,Machine Learning and AI +2023,Mid-level,Full-time,ML Engineer,144000,USD,144000,United States,In-person,United States,M,Machine Learning and AI +2023,Entry-level,Full-time,Research Scientist,250800,USD,250800,United States,In-person,United States,M,Data Science and Research +2023,Entry-level,Full-time,Research Scientist,167200,USD,167200,United States,In-person,United States,M,Data Science and Research +2023,Mid-level,Full-time,Research Scientist,144000,USD,144000,United States,In-person,United States,M,Data Science and Research +2023,Mid-level,Full-time,Research Scientist,76000,USD,76000,United States,In-person,United States,M,Data Science and Research +2023,Executive,Full-time,Data Lead,230000,USD,230000,United States,In-person,United States,M,Leadership and Management +2023,Executive,Full-time,Data Lead,180000,USD,180000,United States,In-person,United States,M,Leadership and Management +2023,Entry-level,Full-time,Data Scientist,156450,USD,156450,United States,Remote,United States,M,Data Science and Research +2023,Entry-level,Full-time,Data Scientist,119200,USD,119200,United States,Remote,United States,M,Data Science and Research +2023,Senior,Full-time,Research Scientist,150000,USD,150000,United States,Remote,United States,M,Data Science and Research +2023,Senior,Full-time,Research Scientist,130000,USD,130000,United States,Remote,United States,M,Data Science and Research +2023,Executive,Full-time,Head of Data,247500,USD,247500,United States,In-person,United States,M,Leadership and Management +2023,Executive,Full-time,Head of Data,172200,USD,172200,United States,In-person,United States,M,Leadership and Management +2023,Mid-level,Full-time,ML Engineer,155000,USD,155000,United States,In-person,United States,M,Machine Learning and AI +2023,Mid-level,Full-time,ML Engineer,125000,USD,125000,United States,In-person,United States,M,Machine Learning and AI +2023,Senior,Full-time,Data Engineer,175000,USD,175000,United States,Remote,United States,M,Data Engineering +2023,Senior,Full-time,Data Engineer,97500,USD,97500,United States,Remote,United States,M,Data Engineering +2023,Executive,Full-time,Research Scientist,220000,USD,220000,United States,In-person,United States,M,Data Science and Research +2023,Executive,Full-time,Research Scientist,185000,USD,185000,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Data Analyst,100000,USD,100000,United States,In-person,United States,M,Data Analysis +2023,Senior,Full-time,Data Analyst,75000,USD,75000,United States,In-person,United States,M,Data Analysis +2023,Senior,Full-time,Research Scientist,303050,USD,303050,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Research Scientist,202350,USD,202350,United States,In-person,United States,M,Data Science and Research +2023,Entry-level,Full-time,AI Engineer,20000,EUR,21593,Portugal,Hybrid,Portugal,L,Machine Learning and AI +2023,Senior,Full-time,Data Scientist,201650,USD,201650,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Data Scientist,124600,USD,124600,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Business Intelligence Analyst,198200,USD,198200,United States,In-person,United States,M,BI and Visualization +2023,Senior,Full-time,Business Intelligence Analyst,110200,USD,110200,United States,In-person,United States,M,BI and Visualization +2023,Senior,Full-time,Data Scientist,212000,USD,212000,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Data Scientist,93400,USD,93400,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Data Analyst,145000,USD,145000,United States,In-person,United States,M,Data Analysis +2023,Senior,Full-time,Data Analyst,110000,USD,110000,United States,In-person,United States,M,Data Analysis +2023,Mid-level,Full-time,Business Intelligence Engineer,89500,USD,89500,United States,Remote,United States,M,BI and Visualization +2023,Mid-level,Full-time,Business Intelligence Engineer,65000,USD,65000,United States,Remote,United States,M,BI and Visualization +2023,Senior,Full-time,Machine Learning Engineer,328400,USD,328400,United States,Remote,United States,M,Machine Learning and AI +2023,Senior,Full-time,Machine Learning Engineer,205600,USD,205600,United States,Remote,United States,M,Machine Learning and AI +2023,Senior,Full-time,Data Scientist,184800,USD,184800,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Data Scientist,161900,USD,161900,United States,In-person,United States,M,Data Science and Research +2023,Entry-level,Full-time,Data Engineer,85000,USD,85000,United States,Remote,United States,M,Data Engineering +2023,Entry-level,Full-time,Data Engineer,61800,USD,61800,United States,Remote,United States,M,Data Engineering +2023,Mid-level,Full-time,Data Engineer,57500,GBP,70748,United Kingdom,In-person,United Kingdom,M,Data Engineering +2023,Mid-level,Full-time,Data Engineer,54500,GBP,67056,United Kingdom,In-person,United Kingdom,M,Data Engineering +2023,Entry-level,Full-time,Data Analyst,116000,USD,116000,United States,In-person,United States,M,Data Analysis +2023,Entry-level,Full-time,Data Analyst,72500,USD,72500,United States,In-person,United States,M,Data Analysis +2023,Senior,Full-time,Machine Learning Engineer,215000,USD,215000,United States,Remote,United States,M,Machine Learning and AI +2023,Senior,Full-time,Machine Learning Engineer,169850,USD,169850,United States,Remote,United States,M,Machine Learning and AI +2023,Senior,Full-time,Business Intelligence Engineer,225000,USD,225000,United States,In-person,United States,M,BI and Visualization +2023,Senior,Full-time,Business Intelligence Engineer,180000,USD,180000,United States,In-person,United States,M,BI and Visualization +2023,Senior,Full-time,Data Scientist,147400,USD,147400,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Data Scientist,107682,USD,107682,United States,In-person,United States,M,Data Science and Research +2023,Mid-level,Full-time,Data Scientist,225300,USD,225300,United States,In-person,United States,M,Data Science and Research +2023,Mid-level,Full-time,Data Scientist,197400,USD,197400,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Analytics Engineer,160000,USD,160000,United States,In-person,United States,M,Leadership and Management +2023,Senior,Full-time,Analytics Engineer,136000,USD,136000,United States,In-person,United States,M,Leadership and Management +2023,Senior,Full-time,Machine Learning Engineer,204600,USD,204600,United States,In-person,United States,M,Machine Learning and AI +2023,Senior,Full-time,Machine Learning Engineer,126500,USD,126500,United States,In-person,United States,M,Machine Learning and AI +2023,Senior,Full-time,Data Architect,210000,USD,210000,United States,Remote,United States,M,Data Architecture and Modeling +2023,Senior,Full-time,Data Architect,115000,USD,115000,United States,Remote,United States,M,Data Architecture and Modeling +2023,Entry-level,Full-time,Data Analyst,86500,USD,86500,United States,In-person,United States,L,Data Analysis +2023,Entry-level,Full-time,Data Analyst,40400,USD,40400,United States,In-person,United States,L,Data Analysis +2023,Senior,Full-time,Applied Scientist,260000,USD,260000,United States,In-person,United States,L,Data Science and Research +2023,Senior,Full-time,Applied Scientist,136000,USD,136000,United States,In-person,United States,L,Data Science and Research +2023,Senior,Full-time,Data Scientist,329700,USD,329700,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Data Scientist,192351,USD,192351,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Data Engineer,280000,USD,280000,United States,In-person,United States,M,Data Engineering +2023,Senior,Full-time,Data Engineer,160000,USD,160000,United States,In-person,United States,M,Data Engineering +2023,Mid-level,Full-time,Business Intelligence Analyst,106700,USD,106700,United States,In-person,United States,M,BI and Visualization +2023,Mid-level,Full-time,Business Intelligence Analyst,97000,USD,97000,United States,In-person,United States,M,BI and Visualization +2023,Senior,Full-time,Data Analyst,175000,USD,175000,United States,Remote,United States,M,Data Analysis +2023,Senior,Full-time,Data Analyst,150000,USD,150000,United States,Remote,United States,M,Data Analysis +2023,Senior,Full-time,Data Product Manager,145000,USD,145000,United States,In-person,United States,M,Leadership and Management +2023,Senior,Full-time,Data Product Manager,120000,USD,120000,United States,In-person,United States,M,Leadership and Management +2023,Entry-level,Full-time,Data Engineer,88000,USD,88000,United States,In-person,United States,M,Data Engineering +2023,Entry-level,Full-time,Data Engineer,60000,USD,60000,United States,In-person,United States,M,Data Engineering +2023,Senior,Full-time,Data Management Specialist,123000,USD,123000,United States,In-person,United States,M,Data Management and Strategy +2023,Senior,Full-time,Data Management Specialist,93593,USD,93593,United States,In-person,United States,M,Data Management and Strategy +2023,Senior,Full-time,ML Engineer,276000,USD,276000,United States,In-person,United States,M,Machine Learning and AI +2023,Senior,Full-time,ML Engineer,174000,USD,174000,United States,In-person,United States,M,Machine Learning and AI +2023,Senior,Full-time,Data Scientist,185900,USD,185900,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Data Scientist,129300,USD,129300,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Machine Learning Engineer,222405,USD,222405,United States,In-person,United States,M,Machine Learning and AI +2023,Senior,Full-time,Machine Learning Engineer,172800,USD,172800,United States,In-person,United States,M,Machine Learning and AI +2023,Senior,Full-time,Data Analyst,120350,USD,120350,United States,Remote,United States,M,Data Analysis +2023,Senior,Full-time,Data Analyst,74400,USD,74400,United States,Remote,United States,M,Data Analysis +2023,Senior,Full-time,Data Engineer,205600,USD,205600,United States,In-person,United States,L,Data Engineering +2023,Senior,Full-time,Data Engineer,105700,USD,105700,United States,In-person,United States,L,Data Engineering +2023,Senior,Full-time,Machine Learning Engineer,263500,USD,263500,United States,Remote,United States,M,Machine Learning and AI +2023,Senior,Full-time,Machine Learning Engineer,189360,USD,189360,United States,Remote,United States,M,Machine Learning and AI +2023,Senior,Full-time,Machine Learning Engineer,192000,USD,192000,Canada,In-person,Canada,M,Machine Learning and AI +2023,Senior,Full-time,Machine Learning Engineer,124000,USD,124000,Canada,In-person,Canada,M,Machine Learning and AI +2023,Senior,Full-time,AI Developer,230000,USD,230000,United States,In-person,United States,M,Machine Learning and AI +2023,Senior,Full-time,AI Developer,124000,USD,124000,United States,In-person,United States,M,Machine Learning and AI +2023,Senior,Full-time,Data Engineer,148500,USD,148500,Canada,In-person,Canada,M,Data Engineering +2023,Senior,Full-time,Data Engineer,82500,USD,82500,Canada,In-person,Canada,M,Data Engineering +2023,Senior,Full-time,Data Engineer,184800,USD,184800,United States,In-person,United States,M,Data Engineering +2023,Senior,Full-time,Data Engineer,161900,USD,161900,United States,In-person,United States,M,Data Engineering +2023,Senior,Full-time,Data Architect,310000,USD,310000,United States,Remote,United States,M,Data Architecture and Modeling +2023,Senior,Full-time,Data Architect,206000,USD,206000,United States,Remote,United States,M,Data Architecture and Modeling +2023,Senior,Full-time,AI Engineer,372000,USD,372000,United States,In-person,United States,M,Machine Learning and AI +2023,Senior,Full-time,AI Engineer,223000,USD,223000,United States,In-person,United States,M,Machine Learning and AI +2023,Senior,Full-time,Data Scientist,140000,GBP,172256,United Kingdom,In-person,United Kingdom,M,Data Science and Research +2023,Senior,Full-time,Data Scientist,100000,GBP,123040,United Kingdom,In-person,United Kingdom,M,Data Science and Research +2023,Mid-level,Full-time,Data Analyst,95000,USD,95000,United States,Remote,United States,M,Data Analysis +2023,Mid-level,Full-time,Data Analyst,80000,USD,80000,United States,Remote,United States,M,Data Analysis +2023,Mid-level,Full-time,Data Scientist,131000,USD,131000,United States,Remote,United States,M,Data Science and Research +2023,Mid-level,Full-time,Data Scientist,110000,USD,110000,United States,Remote,United States,M,Data Science and Research +2023,Mid-level,Full-time,Data Engineer,148500,USD,148500,Canada,In-person,Canada,M,Data Engineering +2023,Mid-level,Full-time,Data Engineer,82500,USD,82500,Canada,In-person,Canada,M,Data Engineering +2023,Mid-level,Full-time,Data Engineer,133000,USD,133000,United States,In-person,United States,M,Data Engineering +2023,Mid-level,Full-time,Data Engineer,58400,USD,58400,United States,In-person,United States,M,Data Engineering +2023,Senior,Full-time,Data Manager,233500,USD,233500,United States,In-person,United States,M,Leadership and Management +2023,Senior,Full-time,Data Manager,146000,USD,146000,United States,In-person,United States,M,Leadership and Management +2023,Senior,Full-time,Data Engineer,300000,USD,300000,United States,In-person,United States,M,Data Engineering +2023,Senior,Full-time,Data Engineer,130000,USD,130000,United States,In-person,United States,M,Data Engineering +2023,Senior,Full-time,Data Scientist,280889,USD,280889,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Data Scientist,187259,USD,187259,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,AI Architect,305100,USD,305100,United States,Remote,United States,M,Machine Learning and AI +2023,Senior,Full-time,AI Architect,146900,USD,146900,United States,Remote,United States,M,Machine Learning and AI +2023,Entry-level,Full-time,Business Intelligence Analyst,78800,USD,78800,United States,In-person,United States,M,BI and Visualization +2023,Entry-level,Full-time,Business Intelligence Analyst,44100,USD,44100,United States,In-person,United States,M,BI and Visualization +2023,Mid-level,Full-time,MLOps Engineer,166000,USD,166000,United States,In-person,United States,M,Machine Learning and AI +2023,Mid-level,Full-time,MLOps Engineer,73100,USD,73100,United States,In-person,United States,M,Machine Learning and AI +2023,Senior,Full-time,Data Scientist,150000,USD,150000,United States,Remote,United States,M,Data Science and Research +2023,Senior,Full-time,Data Scientist,80000,USD,80000,United States,Remote,United States,M,Data Science and Research +2023,Senior,Full-time,Analytics Engineer,150000,USD,150000,United States,Remote,United States,M,Leadership and Management +2023,Senior,Full-time,Analytics Engineer,80000,USD,80000,United States,Remote,United States,M,Leadership and Management +2023,Senior,Full-time,Data Scientist,170000,USD,170000,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Data Scientist,120000,USD,120000,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Data Engineer,110000,USD,110000,United States,In-person,United States,M,Data Engineering +2023,Senior,Full-time,Data Engineer,90000,USD,90000,United States,In-person,United States,M,Data Engineering +2023,Senior,Full-time,Business Intelligence Engineer,202800,USD,202800,United States,In-person,United States,L,BI and Visualization +2023,Senior,Full-time,Business Intelligence Engineer,104300,USD,104300,United States,In-person,United States,L,BI and Visualization +2023,Executive,Full-time,Data Science Manager,272400,USD,272400,United States,In-person,United States,L,Data Science and Research +2023,Executive,Full-time,Data Science Manager,140100,USD,140100,United States,In-person,United States,L,Data Science and Research +2023,Mid-level,Full-time,Data Engineer,154000,USD,154000,United States,In-person,United States,M,Data Engineering +2023,Mid-level,Full-time,Data Engineer,103000,USD,103000,United States,In-person,United States,M,Data Engineering +2023,Senior,Full-time,Machine Learning Engineer,223600,USD,223600,United States,In-person,United States,L,Machine Learning and AI +2023,Senior,Full-time,Machine Learning Engineer,115000,USD,115000,United States,In-person,United States,L,Machine Learning and AI +2023,Mid-level,Full-time,Business Intelligence Analyst,80750,USD,80750,Canada,In-person,Canada,M,BI and Visualization +2023,Mid-level,Full-time,Business Intelligence Analyst,48450,USD,48450,Canada,In-person,Canada,M,BI and Visualization +2023,Entry-level,Full-time,BI Developer,85600,USD,85600,United States,In-person,United States,M,BI and Visualization +2023,Entry-level,Full-time,BI Developer,57000,USD,57000,United States,In-person,United States,M,BI and Visualization +2023,Senior,Full-time,Data Engineer,190400,USD,190400,United States,In-person,United States,M,Data Engineering +2023,Senior,Full-time,Data Engineer,112000,USD,112000,United States,In-person,United States,M,Data Engineering +2023,Senior,Full-time,Data Strategist,119636,USD,119636,United States,Remote,United States,M,Data Architecture and Modeling +2023,Senior,Full-time,Data Strategist,70374,USD,70374,United States,Remote,United States,M,Data Architecture and Modeling +2023,Senior,Full-time,Data Engineer,304750,USD,304750,United States,In-person,United States,M,Data Engineering +2023,Senior,Full-time,Data Engineer,160000,USD,160000,United States,In-person,United States,M,Data Engineering +2023,Mid-level,Full-time,Data Analyst,98873,USD,98873,United States,In-person,United States,M,Data Analysis +2023,Mid-level,Full-time,Data Analyst,58161,USD,58161,United States,In-person,United States,M,Data Analysis +2023,Senior,Full-time,Analytics Engineer,138000,USD,138000,United States,In-person,United States,M,Leadership and Management +2023,Senior,Full-time,Analytics Engineer,85500,USD,85500,United States,In-person,United States,M,Leadership and Management +2023,Senior,Full-time,Data Scientist,307100,USD,307100,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Data Scientist,216800,USD,216800,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Data Scientist,153600,USD,153600,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Data Scientist,106800,USD,106800,United States,In-person,United States,M,Data Science and Research +2023,Mid-level,Full-time,Data Analyst,250000,USD,250000,United States,In-person,United States,M,Data Analysis +2023,Mid-level,Full-time,Data Analyst,125000,USD,125000,United States,In-person,United States,M,Data Analysis +2023,Senior,Full-time,Machine Learning Engineer,280000,USD,280000,United States,In-person,United States,M,Machine Learning and AI +2023,Senior,Full-time,Machine Learning Engineer,180000,USD,180000,United States,In-person,United States,M,Machine Learning and AI +2023,Executive,Full-time,Data Engineer,160000,USD,160000,United States,In-person,United States,M,Data Engineering +2023,Executive,Full-time,Data Engineer,130000,USD,130000,United States,In-person,United States,M,Data Engineering +2023,Senior,Full-time,Data Scientist,180000,USD,180000,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Data Scientist,162000,USD,162000,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Business Intelligence Engineer,185000,USD,185000,United States,In-person,United States,L,BI and Visualization +2023,Senior,Full-time,Business Intelligence Engineer,79600,USD,79600,United States,In-person,United States,L,BI and Visualization +2023,Senior,Full-time,Data Analyst,164640,USD,164640,United States,In-person,United States,M,Data Analysis +2023,Senior,Full-time,Data Analyst,131712,USD,131712,United States,In-person,United States,M,Data Analysis +2023,Mid-level,Full-time,Data Analyst,74800,USD,74800,United States,In-person,United States,M,Data Analysis +2023,Mid-level,Full-time,Data Analyst,63600,USD,63600,United States,In-person,United States,M,Data Analysis +2023,Mid-level,Full-time,Data Scientist,138510,USD,138510,United States,In-person,United States,M,Data Science and Research +2023,Mid-level,Full-time,Data Scientist,95490,USD,95490,United States,In-person,United States,M,Data Science and Research +2023,Mid-level,Full-time,Machine Learning Engineer,75000,GBP,92280,United Kingdom,Remote,United Kingdom,M,Machine Learning and AI +2023,Mid-level,Full-time,Machine Learning Engineer,55000,GBP,67672,United Kingdom,Remote,United Kingdom,M,Machine Learning and AI +2023,Senior,Full-time,Data Engineer,280000,USD,280000,United States,In-person,United States,M,Data Engineering +2023,Senior,Full-time,Data Engineer,160000,USD,160000,United States,In-person,United States,M,Data Engineering +2023,Senior,Full-time,Machine Learning Engineer,170000,USD,170000,United States,In-person,United States,M,Machine Learning and AI +2023,Senior,Full-time,Machine Learning Engineer,140000,USD,140000,United States,In-person,United States,M,Machine Learning and AI +2023,Senior,Full-time,Data Scientist,137500,USD,137500,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Data Scientist,81500,USD,81500,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Data Engineer,253792,USD,253792,United States,In-person,United States,M,Data Engineering +2023,Senior,Full-time,Data Engineer,158620,USD,158620,United States,In-person,United States,M,Data Engineering +2023,Senior,Full-time,Business Intelligence Specialist,259900,USD,259900,United States,In-person,United States,M,BI and Visualization +2023,Senior,Full-time,Business Intelligence Specialist,139200,USD,139200,United States,In-person,United States,M,BI and Visualization +2023,Senior,Full-time,Machine Learning Infrastructure Engineer,96000,GBP,118118,United Kingdom,Remote,United Kingdom,M,Machine Learning and AI +2023,Senior,Full-time,Machine Learning Infrastructure Engineer,65000,GBP,79976,United Kingdom,Remote,United Kingdom,M,Machine Learning and AI +2023,Senior,Full-time,Research Scientist,293000,USD,293000,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Research Scientist,185000,USD,185000,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Data Engineer,180000,USD,180000,United States,In-person,United States,M,Data Engineering +2023,Senior,Full-time,Data Engineer,90000,USD,90000,United States,In-person,United States,M,Data Engineering +2023,Senior,Full-time,Data Scientist,165000,USD,165000,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Data Scientist,115500,USD,115500,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Data Engineer,110000,USD,110000,United States,In-person,United States,M,Data Engineering +2023,Senior,Full-time,Data Engineer,70000,USD,70000,United States,In-person,United States,M,Data Engineering +2023,Mid-level,Full-time,Research Analyst,142000,USD,142000,United States,In-person,United States,M,Data Science and Research +2023,Mid-level,Full-time,Research Analyst,102000,USD,102000,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Data Quality Engineer,141600,USD,141600,United States,In-person,United States,M,Data Quality and Operations +2023,Senior,Full-time,Data Quality Engineer,121400,USD,121400,United States,In-person,United States,M,Data Quality and Operations +2023,Senior,Full-time,Data Engineer,240000,USD,240000,United States,In-person,United States,M,Data Engineering +2023,Senior,Full-time,Data Engineer,170000,USD,170000,United States,In-person,United States,M,Data Engineering +2023,Senior,Full-time,Applied Scientist,222200,USD,222200,United States,In-person,United States,L,Data Science and Research +2023,Senior,Full-time,Applied Scientist,136000,USD,136000,United States,In-person,United States,L,Data Science and Research +2023,Mid-level,Full-time,Data Analyst,55000,USD,55000,United States,In-person,United States,M,Data Analysis +2023,Mid-level,Full-time,Data Analyst,49000,USD,49000,United States,In-person,United States,M,Data Analysis +2023,Senior,Full-time,Data Engineer,135000,USD,135000,United States,Remote,United States,M,Data Engineering +2023,Senior,Full-time,Data Engineer,110000,USD,110000,United States,Remote,United States,M,Data Engineering +2023,Senior,Full-time,Data Engineer,200000,USD,200000,United States,Remote,United States,M,Data Engineering +2023,Senior,Full-time,Data Engineer,180000,USD,180000,United States,Remote,United States,M,Data Engineering +2023,Executive,Full-time,Director of Data Science,200000,GBP,246080,United Kingdom,Remote,United Kingdom,M,Data Science and Research +2023,Executive,Full-time,Director of Data Science,150000,GBP,184560,United Kingdom,Remote,United Kingdom,M,Data Science and Research +2023,Senior,Full-time,Data Scientist,168000,USD,168000,United States,Remote,United States,M,Data Science and Research +2023,Senior,Full-time,Data Scientist,130000,USD,130000,United States,Remote,United States,M,Data Science and Research +2023,Entry-level,Full-time,Data Scientist,105000,USD,105000,United States,In-person,United States,M,Data Science and Research +2023,Entry-level,Full-time,Data Scientist,70000,USD,70000,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Data Analyst,105000,USD,105000,United States,Remote,United States,M,Data Analysis +2023,Senior,Full-time,Data Analyst,100000,USD,100000,United States,Remote,United States,M,Data Analysis +2023,Senior,Full-time,Data Engineer,243000,USD,243000,Canada,In-person,Canada,M,Data Engineering +2023,Senior,Full-time,Data Engineer,152000,USD,152000,Canada,In-person,Canada,M,Data Engineering +2023,Senior,Full-time,BI Developer,167500,USD,167500,United States,In-person,United States,M,BI and Visualization +2023,Senior,Full-time,BI Developer,106500,USD,106500,United States,In-person,United States,M,BI and Visualization +2023,Senior,Full-time,Business Data Analyst,65000,GBP,79976,Spain,Remote,Gibraltar,L,Data Analysis +2023,Senior,Full-time,Business Intelligence Analyst,115600,USD,115600,United States,In-person,United States,M,BI and Visualization +2023,Senior,Full-time,Business Intelligence Analyst,79700,USD,79700,United States,In-person,United States,M,BI and Visualization +2023,Entry-level,Full-time,Applied Scientist,281700,USD,281700,United States,In-person,United States,M,Data Science and Research +2023,Entry-level,Full-time,Applied Scientist,141100,USD,141100,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Data Specialist,173100,USD,173100,United States,In-person,United States,M,Data Management and Strategy +2023,Senior,Full-time,Data Specialist,86900,USD,86900,United States,In-person,United States,M,Data Management and Strategy +2023,Mid-level,Full-time,Machine Learning Engineer,258700,USD,258700,United States,In-person,United States,M,Machine Learning and AI +2023,Mid-level,Full-time,Machine Learning Engineer,133800,USD,133800,United States,In-person,United States,M,Machine Learning and AI +2023,Mid-level,Full-time,Data Analyst,120000,USD,120000,United States,In-person,United States,M,Data Analysis +2023,Mid-level,Full-time,Data Analyst,85000,USD,85000,United States,In-person,United States,M,Data Analysis +2023,Mid-level,Full-time,Machine Learning Engineer,225300,USD,225300,United States,In-person,United States,M,Machine Learning and AI +2023,Mid-level,Full-time,Machine Learning Engineer,197400,USD,197400,United States,In-person,United States,M,Machine Learning and AI +2023,Senior,Full-time,Data Analyst,157000,USD,157000,United States,Remote,United States,M,Data Analysis +2023,Senior,Full-time,Data Analyst,125000,USD,125000,United States,Remote,United States,M,Data Analysis +2023,Senior,Full-time,Data Scientist,208000,USD,208000,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Data Scientist,134000,USD,134000,United States,In-person,United States,M,Data Science and Research +2023,Mid-level,Full-time,Data Engineer,140000,USD,140000,United States,In-person,United States,M,Data Engineering +2023,Mid-level,Full-time,Data Engineer,65000,USD,65000,United States,In-person,United States,M,Data Engineering +2023,Senior,Full-time,Data Scientist,258700,USD,258700,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Data Scientist,160000,USD,160000,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Data Scientist,258700,USD,258700,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Data Scientist,188200,USD,188200,United States,In-person,United States,M,Data Science and Research +2023,Mid-level,Full-time,Data Engineer,40000,GBP,49216,United Kingdom,In-person,United Kingdom,M,Data Engineering +2023,Mid-level,Full-time,Data Engineer,40000,GBP,49216,United Kingdom,In-person,United Kingdom,M,Data Engineering +2023,Mid-level,Full-time,Data Engineer,110000,USD,110000,United States,In-person,United States,M,Data Engineering +2023,Mid-level,Full-time,Data Engineer,73400,USD,73400,United States,In-person,United States,M,Data Engineering +2023,Senior,Full-time,Data Engineer,183414,USD,183414,United States,In-person,United States,M,Data Engineering +2023,Senior,Full-time,Data Engineer,183414,USD,183414,United States,In-person,United States,M,Data Engineering +2023,Senior,Full-time,Data Engineer,130000,USD,130000,United States,In-person,United States,M,Data Engineering +2023,Senior,Full-time,Data Engineer,97200,USD,97200,United States,In-person,United States,M,Data Engineering +2023,Senior,Full-time,Machine Learning Engineer,299000,USD,299000,United States,In-person,United States,M,Machine Learning and AI +2023,Senior,Full-time,Machine Learning Engineer,187000,USD,187000,United States,In-person,United States,M,Machine Learning and AI +2023,Senior,Full-time,Machine Learning Engineer,204500,USD,204500,United States,In-person,United States,M,Machine Learning and AI +2023,Senior,Full-time,Machine Learning Engineer,66000,USD,66000,United States,In-person,United States,M,Machine Learning and AI +2023,Senior,Full-time,Machine Learning Engineer,190000,USD,190000,United States,Remote,United States,M,Machine Learning and AI +2023,Senior,Full-time,Machine Learning Engineer,140000,USD,140000,United States,Remote,United States,M,Machine Learning and AI +2023,Mid-level,Full-time,Data Engineer,170200,USD,170200,United States,In-person,United States,M,Data Engineering +2023,Mid-level,Full-time,Data Engineer,83900,USD,83900,United States,In-person,United States,M,Data Engineering +2023,Senior,Full-time,Data Engineer,130000,USD,130000,United States,Remote,United States,M,Data Engineering +2023,Senior,Full-time,Data Engineer,101570,USD,101570,United States,Remote,United States,M,Data Engineering +2023,Senior,Full-time,Data Analyst,177000,USD,177000,United States,Remote,United States,M,Data Analysis +2023,Senior,Full-time,Data Analyst,118000,USD,118000,United States,Remote,United States,M,Data Analysis +2023,Senior,Full-time,Machine Learning Engineer,234500,USD,234500,United States,In-person,United States,M,Machine Learning and AI +2023,Senior,Full-time,Machine Learning Engineer,127000,USD,127000,United States,In-person,United States,M,Machine Learning and AI +2023,Senior,Full-time,ML Engineer,170000,AUD,114979,Australia,Remote,Australia,L,Machine Learning and AI +2023,Senior,Full-time,Data Scientist,287500,USD,287500,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Data Scientist,168000,USD,168000,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Data Engineer,155000,USD,155000,United States,In-person,United States,M,Data Engineering +2023,Senior,Full-time,Data Engineer,140000,USD,140000,United States,In-person,United States,M,Data Engineering +2023,Executive,Full-time,Data Lead,230000,USD,230000,United States,In-person,United States,M,Leadership and Management +2023,Executive,Full-time,Data Lead,180000,USD,180000,United States,In-person,United States,M,Leadership and Management +2023,Senior,Full-time,Data Scientist,153000,USD,153000,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Data Scientist,136000,USD,136000,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Data Analyst,93918,USD,93918,United States,In-person,United States,M,Data Analysis +2023,Senior,Full-time,Data Analyst,51962,USD,51962,United States,In-person,United States,M,Data Analysis +2023,Senior,Full-time,Machine Learning Engineer,254000,USD,254000,United States,In-person,United States,M,Machine Learning and AI +2023,Senior,Full-time,Machine Learning Engineer,200000,USD,200000,United States,In-person,United States,M,Machine Learning and AI +2023,Senior,Full-time,Data Engineer,214500,USD,214500,United States,In-person,United States,M,Data Engineering +2023,Senior,Full-time,Data Engineer,134500,USD,134500,United States,In-person,United States,M,Data Engineering +2023,Senior,Full-time,Data Scientist,136000,USD,136000,United States,Remote,United States,M,Data Science and Research +2023,Senior,Full-time,Data Scientist,104000,USD,104000,United States,Remote,United States,M,Data Science and Research +2023,Mid-level,Full-time,Data Analyst,110000,USD,110000,United States,Remote,United States,M,Data Analysis +2023,Mid-level,Full-time,Data Analyst,90000,USD,90000,United States,Remote,United States,M,Data Analysis +2023,Senior,Full-time,Data Engineer,145000,USD,145000,United States,In-person,United States,M,Data Engineering +2023,Senior,Full-time,Data Engineer,115000,USD,115000,United States,In-person,United States,M,Data Engineering +2023,Mid-level,Full-time,Data Scientist,143000,USD,143000,United States,Remote,United States,M,Data Science and Research +2023,Mid-level,Full-time,Data Scientist,117000,USD,117000,United States,Remote,United States,M,Data Science and Research +2023,Senior,Full-time,Applied Scientist,216000,USD,216000,United States,Remote,United States,M,Data Science and Research +2023,Senior,Full-time,Applied Scientist,184000,USD,184000,United States,Remote,United States,M,Data Science and Research +2023,Senior,Full-time,Machine Learning Engineer,324000,USD,324000,United States,In-person,United States,M,Machine Learning and AI +2023,Senior,Full-time,Machine Learning Engineer,159000,USD,159000,United States,In-person,United States,M,Machine Learning and AI +2023,Senior,Full-time,Data Scientist,130000,USD,130000,United States,Remote,United States,M,Data Science and Research +2023,Senior,Full-time,Data Scientist,110000,USD,110000,United States,Remote,United States,M,Data Science and Research +2023,Mid-level,Full-time,Data Scientist,60000,GBP,73824,United Kingdom,In-person,United Kingdom,M,Data Science and Research +2023,Mid-level,Full-time,Data Scientist,45000,GBP,55368,United Kingdom,In-person,United Kingdom,M,Data Science and Research +2023,Senior,Full-time,Research Engineer,370000,USD,370000,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Research Engineer,200000,USD,200000,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Data Scientist,275300,USD,275300,United States,Remote,United States,M,Data Science and Research +2023,Senior,Full-time,Data Scientist,183500,USD,183500,United States,Remote,United States,M,Data Science and Research +2023,Senior,Full-time,Applied Scientist,230000,USD,230000,United States,Remote,United States,M,Data Science and Research +2023,Senior,Full-time,Applied Scientist,196000,USD,196000,United States,Remote,United States,M,Data Science and Research +2023,Senior,Full-time,Machine Learning Engineer,253000,USD,253000,United States,Remote,United States,M,Machine Learning and AI +2023,Senior,Full-time,Machine Learning Engineer,172040,USD,172040,United States,Remote,United States,M,Machine Learning and AI +2023,Senior,Full-time,Data Engineer,234000,USD,234000,United States,Remote,United States,M,Data Engineering +2023,Senior,Full-time,Data Engineer,178000,USD,178000,United States,Remote,United States,M,Data Engineering +2023,Senior,Full-time,Data Scientist,164000,USD,164000,United States,Remote,United States,M,Data Science and Research +2023,Senior,Full-time,Data Scientist,130000,USD,130000,United States,Remote,United States,M,Data Science and Research +2023,Mid-level,Full-time,Business Intelligence Specialist,109238,USD,109238,United States,In-person,United States,M,BI and Visualization +2023,Mid-level,Full-time,Business Intelligence Specialist,68274,USD,68274,United States,In-person,United States,M,BI and Visualization +2023,Mid-level,Full-time,Data Engineer,53000,EUR,57223,France,Remote,France,M,Data Engineering +2023,Mid-level,Full-time,Data Engineer,48000,EUR,51824,France,Remote,France,M,Data Engineering +2023,Entry-level,Full-time,Data Analyst,80800,USD,80800,United States,In-person,United States,M,Data Analysis +2023,Entry-level,Full-time,Data Analyst,53800,USD,53800,United States,In-person,United States,M,Data Analysis +2023,Senior,Full-time,Data Engineer,258900,USD,258900,United States,Remote,United States,M,Data Engineering +2023,Senior,Full-time,Data Engineer,176080,USD,176080,United States,Remote,United States,M,Data Engineering +2023,Mid-level,Full-time,Data Engineer,57500,GBP,70748,United Kingdom,In-person,United Kingdom,M,Data Engineering +2023,Mid-level,Full-time,Data Engineer,54500,GBP,67056,United Kingdom,In-person,United Kingdom,M,Data Engineering +2023,Mid-level,Full-time,Business Intelligence Analyst,120000,USD,120000,United States,Remote,United States,M,BI and Visualization +2023,Mid-level,Full-time,Business Intelligence Analyst,110000,USD,110000,United States,Remote,United States,M,BI and Visualization +2023,Senior,Full-time,Machine Learning Engineer,309000,USD,309000,United States,In-person,United States,M,Machine Learning and AI +2023,Senior,Full-time,Machine Learning Engineer,142000,USD,142000,United States,In-person,United States,M,Machine Learning and AI +2023,Senior,Full-time,Data Scientist,201650,USD,201650,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Data Scientist,124600,USD,124600,United States,In-person,United States,M,Data Science and Research +2023,Mid-level,Full-time,Data Quality Analyst,65000,USD,65000,United States,Remote,United States,M,Data Quality and Operations +2023,Mid-level,Full-time,Data Quality Analyst,60000,USD,60000,United States,Remote,United States,M,Data Quality and Operations +2023,Senior,Full-time,Data Engineer,132100,USD,132100,United States,In-person,United States,M,Data Engineering +2023,Senior,Full-time,Data Engineer,68400,USD,68400,United States,In-person,United States,M,Data Engineering +2023,Senior,Full-time,Data Analyst,145000,USD,145000,United States,In-person,United States,M,Data Analysis +2023,Senior,Full-time,Data Analyst,110000,USD,110000,United States,In-person,United States,M,Data Analysis +2023,Senior,Full-time,Business Intelligence Engineer,160000,USD,160000,United States,Remote,United States,M,BI and Visualization +2023,Senior,Full-time,Business Intelligence Engineer,140000,USD,140000,United States,Remote,United States,M,BI and Visualization +2023,Mid-level,Full-time,Data Analyst,87500,USD,87500,United States,Remote,United States,M,Data Analysis +2023,Mid-level,Full-time,Data Analyst,62500,USD,62500,United States,Remote,United States,M,Data Analysis +2023,Senior,Full-time,Data Analyst,142000,USD,142000,United States,In-person,United States,M,Data Analysis +2023,Senior,Full-time,Data Analyst,128000,USD,128000,United States,In-person,United States,M,Data Analysis +2023,Senior,Full-time,Data Engineer,160000,USD,160000,United States,In-person,United States,M,Data Engineering +2023,Senior,Full-time,Data Engineer,130000,USD,130000,United States,In-person,United States,M,Data Engineering +2023,Senior,Full-time,Data Scientist,155000,USD,155000,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Data Scientist,139500,USD,139500,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Business Intelligence Engineer,202800,USD,202800,United States,In-person,United States,L,BI and Visualization +2023,Senior,Full-time,Business Intelligence Engineer,104300,USD,104300,United States,In-person,United States,L,BI and Visualization +2023,Senior,Full-time,Machine Learning Engineer,221000,USD,221000,United States,In-person,United States,M,Machine Learning and AI +2023,Senior,Full-time,Machine Learning Engineer,129000,USD,129000,United States,In-person,United States,M,Machine Learning and AI +2023,Senior,Full-time,Data Engineer,259000,USD,259000,United States,In-person,United States,M,Data Engineering +2023,Senior,Full-time,Data Engineer,138750,USD,138750,United States,In-person,United States,M,Data Engineering +2023,Senior,Full-time,Data Scientist,120000,USD,120000,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Data Scientist,100000,USD,100000,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Research Engineer,155000,USD,155000,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Research Engineer,130000,USD,130000,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Data Engineer,247300,USD,247300,United States,In-person,United States,M,Data Engineering +2023,Senior,Full-time,Data Engineer,139700,USD,139700,United States,In-person,United States,M,Data Engineering +2023,Senior,Full-time,Applied Scientist,215000,USD,215000,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Applied Scientist,182750,USD,182750,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Research Scientist,248100,USD,248100,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Research Scientist,145900,USD,145900,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Data Scientist,207000,USD,207000,United States,Remote,United States,M,Data Science and Research +2023,Senior,Full-time,Data Scientist,141000,USD,141000,United States,Remote,United States,M,Data Science and Research +2023,Mid-level,Full-time,Data Scientist,90000,USD,90000,United States,In-person,United States,M,Data Science and Research +2023,Mid-level,Full-time,Data Scientist,55000,USD,55000,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Data Engineer,247300,USD,247300,United States,In-person,United States,M,Data Engineering +2023,Senior,Full-time,Data Engineer,139700,USD,139700,United States,In-person,United States,M,Data Engineering +2023,Entry-level,Full-time,Machine Learning Engineer,36000,USD,36000,Uganda,Remote,United States,M,Machine Learning and AI +2023,Mid-level,Full-time,Research Engineer,300000,USD,300000,United States,In-person,United States,M,Data Science and Research +2023,Mid-level,Full-time,Research Engineer,100000,USD,100000,United States,In-person,United States,M,Data Science and Research +2023,Mid-level,Full-time,Research Engineer,300000,USD,300000,United States,In-person,United States,M,Data Science and Research +2023,Mid-level,Full-time,Research Engineer,100000,USD,100000,United States,In-person,United States,M,Data Science and Research +2023,Mid-level,Full-time,Data Analyst,116700,USD,116700,United States,In-person,United States,M,Data Analysis +2023,Mid-level,Full-time,Data Analyst,93400,USD,93400,United States,In-person,United States,M,Data Analysis +2023,Entry-level,Full-time,Data Analyst,80000,USD,80000,United States,In-person,United States,M,Data Analysis +2023,Entry-level,Full-time,Data Analyst,50000,USD,50000,United States,In-person,United States,M,Data Analysis +2023,Mid-level,Full-time,Applied Scientist,179000,USD,179000,United States,In-person,United States,M,Data Science and Research +2023,Mid-level,Full-time,Applied Scientist,176490,USD,176490,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Data Scientist,195000,USD,195000,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Data Scientist,143750,USD,143750,United States,In-person,United States,M,Data Science and Research +2023,Mid-level,Full-time,Data Scientist,180000,USD,180000,United States,In-person,United States,M,Data Science and Research +2023,Mid-level,Full-time,Data Scientist,162000,USD,162000,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Data Scientist,199000,USD,199000,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Data Scientist,196760,USD,196760,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Machine Learning Engineer,90000,USD,90000,Colombia,In-person,Colombia,M,Machine Learning and AI +2023,Senior,Full-time,Machine Learning Engineer,70000,USD,70000,Colombia,In-person,Colombia,M,Machine Learning and AI +2023,Senior,Full-time,ML Engineer,324000,USD,324000,United States,In-person,United States,M,Machine Learning and AI +2023,Senior,Full-time,ML Engineer,159000,USD,159000,United States,In-person,United States,M,Machine Learning and AI +2023,Senior,Full-time,Data Engineer,222000,USD,222000,United States,In-person,United States,M,Data Engineering +2023,Senior,Full-time,Data Engineer,159000,USD,159000,United States,In-person,United States,M,Data Engineering +2023,Senior,Full-time,Data Analyst,175000,USD,175000,United States,Remote,United States,M,Data Analysis +2023,Senior,Full-time,Data Analyst,150000,USD,150000,United States,Remote,United States,M,Data Analysis +2023,Entry-level,Full-time,AI Developer,50000,USD,50000,Ukraine,Remote,Ukraine,M,Machine Learning and AI +2023,Senior,Full-time,Machine Learning Engineer,65000,EUR,70179,Italy,Remote,United States,L,Machine Learning and AI +2023,Mid-level,Full-time,BI Developer,110000,USD,110000,United States,In-person,United States,M,BI and Visualization +2023,Mid-level,Full-time,BI Developer,75000,USD,75000,United States,In-person,United States,M,BI and Visualization +2023,Mid-level,Full-time,Data Analyst,43000,EUR,46426,Slovenia,In-person,Slovenia,M,Data Analysis +2023,Mid-level,Full-time,Data Analyst,36000,EUR,38868,Slovenia,In-person,Slovenia,M,Data Analysis +2023,Senior,Full-time,Machine Learning Engineer,220000,USD,220000,United States,In-person,United States,M,Machine Learning and AI +2023,Senior,Full-time,Machine Learning Engineer,80000,USD,80000,United States,In-person,United States,M,Machine Learning and AI +2023,Mid-level,Full-time,Data Engineer,167500,USD,167500,United States,In-person,United States,M,Data Engineering +2023,Mid-level,Full-time,Data Engineer,106500,USD,106500,United States,In-person,United States,M,Data Engineering +2023,Mid-level,Full-time,Research Scientist,150000,USD,150000,United States,In-person,United States,M,Data Science and Research +2023,Mid-level,Full-time,Research Scientist,130000,USD,130000,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Data Engineer,150000,USD,150000,United States,Remote,United States,M,Data Engineering +2023,Senior,Full-time,Data Engineer,130000,USD,130000,United States,Remote,United States,M,Data Engineering +2023,Senior,Full-time,Data Analyst,126500,USD,126500,United States,Remote,United States,M,Data Analysis +2023,Senior,Full-time,Data Analyst,78000,USD,78000,United States,Remote,United States,M,Data Analysis +2023,Senior,Full-time,Data Scientist,185900,USD,185900,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Data Scientist,129300,USD,129300,United States,In-person,United States,M,Data Science and Research +2023,Executive,Full-time,Data Lead,250000,USD,250000,United States,In-person,United States,M,Leadership and Management +2023,Executive,Full-time,Data Lead,222000,USD,222000,United States,In-person,United States,M,Leadership and Management +2023,Senior,Full-time,Data Product Manager,145000,USD,145000,United States,In-person,United States,M,Leadership and Management +2023,Senior,Full-time,Data Product Manager,120000,USD,120000,United States,In-person,United States,M,Leadership and Management +2023,Senior,Full-time,Data Analyst,150000,USD,150000,United States,Remote,United States,M,Data Analysis +2023,Senior,Full-time,Data Analyst,120000,USD,120000,United States,Remote,United States,M,Data Analysis +2023,Mid-level,Full-time,Decision Scientist,204500,USD,204500,United States,In-person,United States,M,Data Science and Research +2023,Mid-level,Full-time,Decision Scientist,142200,USD,142200,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Data Scientist,297000,USD,297000,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Data Scientist,138000,USD,138000,United States,In-person,United States,M,Data Science and Research +2023,Mid-level,Full-time,Data Analyst,147600,USD,147600,United States,In-person,United States,M,Data Analysis +2023,Mid-level,Full-time,Data Analyst,106300,USD,106300,United States,In-person,United States,M,Data Analysis +2023,Senior,Full-time,Data Engineer,247300,USD,247300,United States,In-person,United States,M,Data Engineering +2023,Senior,Full-time,Data Engineer,139700,USD,139700,United States,In-person,United States,M,Data Engineering +2023,Senior,Full-time,Data Analyst,83376,GBP,102586,United Kingdom,In-person,United Kingdom,M,Data Analysis +2023,Senior,Full-time,Data Analyst,65004,GBP,79981,United Kingdom,In-person,United Kingdom,M,Data Analysis +2023,Senior,Full-time,Data Science Consultant,131250,USD,131250,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Data Science Consultant,128100,USD,128100,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Data Science Consultant,116000,USD,116000,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Data Science Consultant,90000,USD,90000,United States,In-person,United States,M,Data Science and Research +2023,Executive,Full-time,Data Engineer,174500,USD,174500,United States,Remote,United States,M,Data Engineering +2023,Executive,Full-time,Data Engineer,113000,USD,113000,United States,Remote,United States,M,Data Engineering +2023,Entry-level,Full-time,Financial Data Analyst,56500,USD,56500,United States,Hybrid,United States,L,Data Analysis +2023,Senior,Full-time,AI Engineer,36000,EUR,38868,Romania,In-person,Romania,M,Machine Learning and AI +2023,Senior,Full-time,Data Scientist,227000,USD,227000,United States,Remote,United States,M,Data Science and Research +2023,Senior,Full-time,Data Scientist,185000,USD,185000,United States,Remote,United States,M,Data Science and Research +2023,Mid-level,Full-time,Machine Learning Engineer,230000,USD,230000,United States,In-person,United States,M,Machine Learning and AI +2023,Mid-level,Full-time,Machine Learning Engineer,160000,USD,160000,United States,In-person,United States,M,Machine Learning and AI +2023,Senior,Full-time,Data Engineer,185000,USD,185000,United States,Remote,United States,M,Data Engineering +2023,Senior,Full-time,Data Engineer,150000,USD,150000,United States,Remote,United States,M,Data Engineering +2023,Senior,Full-time,Data Engineer,138300,USD,138300,United States,In-person,United States,M,Data Engineering +2023,Senior,Full-time,Data Engineer,110700,USD,110700,United States,In-person,United States,M,Data Engineering +2023,Senior,Full-time,Business Intelligence Engineer,185000,USD,185000,United States,In-person,United States,L,BI and Visualization +2023,Senior,Full-time,Business Intelligence Engineer,79600,USD,79600,United States,In-person,United States,L,BI and Visualization +2023,Senior,Full-time,Data Scientist,208500,USD,208500,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Data Scientist,165000,USD,165000,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Data Analyst,100000,USD,100000,United States,In-person,United States,M,Data Analysis +2023,Senior,Full-time,Data Analyst,75000,USD,75000,United States,In-person,United States,M,Data Analysis +2023,Senior,Full-time,Data Architect,185000,USD,185000,United States,In-person,United States,M,Data Architecture and Modeling +2023,Senior,Full-time,Data Architect,150000,USD,150000,United States,In-person,United States,M,Data Architecture and Modeling +2023,Senior,Full-time,Data Scientist,45000,EUR,48585,Spain,In-person,Spain,M,Data Science and Research +2023,Senior,Full-time,Data Scientist,36000,EUR,38868,Spain,In-person,Spain,M,Data Science and Research +2023,Senior,Full-time,Data Scientist,137500,USD,137500,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Data Scientist,81500,USD,81500,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Business Intelligence Analyst,130000,USD,130000,United States,In-person,United States,M,BI and Visualization +2023,Senior,Full-time,Business Intelligence Analyst,80000,USD,80000,United States,In-person,United States,M,BI and Visualization +2023,Senior,Full-time,Applied Scientist,230000,USD,230000,United States,Remote,United States,M,Data Science and Research +2023,Senior,Full-time,Applied Scientist,196000,USD,196000,United States,Remote,United States,M,Data Science and Research +2023,Senior,Full-time,Business Intelligence Engineer,202800,USD,202800,United States,In-person,United States,L,BI and Visualization +2023,Senior,Full-time,Business Intelligence Engineer,104300,USD,104300,United States,In-person,United States,L,BI and Visualization +2023,Senior,Full-time,Applied Scientist,216000,USD,216000,United States,Remote,United States,M,Data Science and Research +2023,Senior,Full-time,Applied Scientist,184000,USD,184000,United States,Remote,United States,M,Data Science and Research +2023,Senior,Full-time,Data Engineer,212175,USD,212175,United States,Remote,United States,M,Data Engineering +2023,Senior,Full-time,Data Engineer,156000,USD,156000,United States,Remote,United States,M,Data Engineering +2023,Senior,Full-time,Data Engineer,184000,USD,184000,United States,In-person,United States,M,Data Engineering +2023,Senior,Full-time,Data Engineer,123000,USD,123000,United States,In-person,United States,M,Data Engineering +2023,Mid-level,Full-time,Data Analyst,111151,USD,111151,United States,Remote,United States,M,Data Analysis +2023,Mid-level,Full-time,Data Analyst,66691,USD,66691,United States,Remote,United States,M,Data Analysis +2023,Senior,Full-time,Data Scientist,190000,USD,190000,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Data Scientist,138700,USD,138700,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Data Analyst,95040,USD,95040,United States,Remote,United States,M,Data Analysis +2023,Senior,Full-time,Data Analyst,59400,USD,59400,United States,Remote,United States,M,Data Analysis +2023,Senior,Full-time,Machine Learning Engineer,197802,USD,197802,United States,Remote,United States,M,Machine Learning and AI +2023,Senior,Full-time,Machine Learning Engineer,156453,USD,156453,United States,Remote,United States,M,Machine Learning and AI +2023,Senior,Full-time,Data Scientist,308000,USD,308000,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Data Scientist,144000,USD,144000,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Data Quality Analyst,172000,USD,172000,United States,In-person,United States,M,Data Quality and Operations +2023,Senior,Full-time,Data Quality Analyst,140000,USD,140000,United States,In-person,United States,M,Data Quality and Operations +2023,Mid-level,Full-time,Data Engineer,73000,GBP,89819,United Kingdom,In-person,United Kingdom,M,Data Engineering +2023,Mid-level,Full-time,Data Engineer,59000,GBP,72593,United Kingdom,In-person,United Kingdom,M,Data Engineering +2023,Senior,Full-time,Data Architect,185000,USD,185000,United States,In-person,United States,M,Data Architecture and Modeling +2023,Senior,Full-time,Data Architect,150000,USD,150000,United States,In-person,United States,M,Data Architecture and Modeling +2023,Mid-level,Full-time,Data Engineer,154000,USD,154000,United States,In-person,United States,M,Data Engineering +2023,Mid-level,Full-time,Data Engineer,103000,USD,103000,United States,In-person,United States,M,Data Engineering +2023,Senior,Full-time,Data Engineer,180000,USD,180000,United States,Remote,United States,M,Data Engineering +2023,Senior,Full-time,Data Engineer,122400,USD,122400,United States,Remote,United States,M,Data Engineering +2023,Mid-level,Full-time,Research Analyst,80000,USD,80000,United States,In-person,United States,M,Data Science and Research +2023,Mid-level,Full-time,Research Analyst,70000,USD,70000,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Data Analyst,120000,USD,120000,United States,In-person,United States,M,Data Analysis +2023,Senior,Full-time,Data Analyst,90000,USD,90000,United States,In-person,United States,M,Data Analysis +2023,Senior,Full-time,Data Engineer,227500,USD,227500,United States,Remote,United States,M,Data Engineering +2023,Senior,Full-time,Data Engineer,147500,USD,147500,United States,Remote,United States,M,Data Engineering +2023,Mid-level,Full-time,Machine Learning Engineer,150000,USD,150000,United States,Remote,United States,M,Machine Learning and AI +2023,Mid-level,Full-time,Machine Learning Engineer,50000,USD,50000,United States,Remote,United States,M,Machine Learning and AI +2023,Mid-level,Full-time,Data Engineer,60000,GBP,73824,United Kingdom,In-person,United Kingdom,M,Data Engineering +2023,Mid-level,Full-time,Data Engineer,45000,GBP,55368,United Kingdom,In-person,United Kingdom,M,Data Engineering +2023,Senior,Full-time,Data Science Engineer,220000,USD,220000,United States,Remote,United States,M,Data Science and Research +2023,Senior,Full-time,Data Science Engineer,180000,USD,180000,United States,Remote,United States,M,Data Science and Research +2023,Senior,Full-time,Machine Learning Engineer,331640,USD,331640,United States,In-person,United States,M,Machine Learning and AI +2023,Senior,Full-time,Machine Learning Engineer,267720,USD,267720,United States,In-person,United States,M,Machine Learning and AI +2023,Mid-level,Full-time,Data Engineer,190000,USD,190000,United States,Remote,United States,M,Data Engineering +2023,Mid-level,Full-time,Data Engineer,130000,USD,130000,United States,Remote,United States,M,Data Engineering +2023,Senior,Full-time,Data Engineer,160000,USD,160000,United States,In-person,United States,M,Data Engineering +2023,Senior,Full-time,Data Engineer,130000,USD,130000,United States,In-person,United States,M,Data Engineering +2023,Mid-level,Full-time,Data Engineer,150000,USD,150000,United States,Remote,United States,M,Data Engineering +2023,Mid-level,Full-time,Data Engineer,50000,USD,50000,United States,Remote,United States,M,Data Engineering +2023,Mid-level,Full-time,Analytics Engineer,172200,USD,172200,United States,Remote,United States,M,Leadership and Management +2023,Mid-level,Full-time,Analytics Engineer,131200,USD,131200,United States,Remote,United States,M,Leadership and Management +2023,Senior,Full-time,Data Strategy Manager,250000,USD,250000,United States,Remote,United States,M,Data Management and Strategy +2023,Senior,Full-time,Data Strategy Manager,100000,USD,100000,United States,Remote,United States,M,Data Management and Strategy +2023,Senior,Full-time,Data Engineer,178000,USD,178000,United States,Remote,United States,M,Data Engineering +2023,Senior,Full-time,Data Engineer,165000,USD,165000,United States,Remote,United States,M,Data Engineering +2023,Senior,Full-time,Business Intelligence Engineer,202800,USD,202800,United States,In-person,United States,L,BI and Visualization +2023,Senior,Full-time,Business Intelligence Engineer,104300,USD,104300,United States,In-person,United States,L,BI and Visualization +2023,Senior,Full-time,Data Analyst,155000,USD,155000,United States,In-person,United States,M,Data Analysis +2023,Senior,Full-time,Data Analyst,120000,USD,120000,United States,In-person,United States,M,Data Analysis +2023,Senior,Full-time,Data Analyst,280000,USD,280000,United States,In-person,United States,M,Data Analysis +2023,Senior,Full-time,Data Analyst,200000,USD,200000,United States,In-person,United States,M,Data Analysis +2023,Senior,Full-time,Data Engineer,184000,USD,184000,United States,In-person,United States,M,Data Engineering +2023,Senior,Full-time,Data Engineer,123000,USD,123000,United States,In-person,United States,M,Data Engineering +2023,Senior,Full-time,Business Intelligence Engineer,202800,USD,202800,United States,In-person,United States,L,BI and Visualization +2023,Senior,Full-time,Business Intelligence Engineer,104300,USD,104300,United States,In-person,United States,L,BI and Visualization +2023,Mid-level,Full-time,Data Manager,60000,GBP,73824,United Kingdom,In-person,United Kingdom,M,Leadership and Management +2023,Mid-level,Full-time,Data Manager,55000,GBP,67672,United Kingdom,In-person,United Kingdom,M,Leadership and Management +2023,Senior,Full-time,Data Scientist,290000,USD,290000,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Data Scientist,173200,USD,173200,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Data Scientist,235000,USD,235000,United States,Remote,United States,M,Data Science and Research +2023,Senior,Full-time,Data Scientist,204000,USD,204000,United States,Remote,United States,M,Data Science and Research +2023,Senior,Full-time,Machine Learning Scientist,300000,USD,300000,United States,In-person,United States,M,Machine Learning and AI +2023,Senior,Full-time,Machine Learning Scientist,222000,USD,222000,United States,In-person,United States,M,Machine Learning and AI +2023,Senior,Full-time,Analytics Engineer,160000,USD,160000,United States,In-person,United States,M,Leadership and Management +2023,Senior,Full-time,Analytics Engineer,136000,USD,136000,United States,In-person,United States,M,Leadership and Management +2023,Senior,Full-time,Data Architect,206000,USD,206000,United States,In-person,United States,M,Data Architecture and Modeling +2023,Senior,Full-time,Data Architect,134000,USD,134000,United States,In-person,United States,M,Data Architecture and Modeling +2023,Senior,Full-time,Data Scientist,155000,USD,155000,Canada,In-person,Canada,M,Data Science and Research +2023,Senior,Full-time,Data Scientist,105000,USD,105000,Canada,In-person,Canada,M,Data Science and Research +2023,Senior,Full-time,Machine Learning Engineer,287500,USD,287500,United States,In-person,United States,M,Machine Learning and AI +2023,Senior,Full-time,Machine Learning Engineer,212500,USD,212500,United States,In-person,United States,M,Machine Learning and AI +2023,Senior,Full-time,Machine Learning Engineer,190027,USD,190027,United States,In-person,United States,M,Machine Learning and AI +2023,Senior,Full-time,Machine Learning Engineer,152022,USD,152022,United States,In-person,United States,M,Machine Learning and AI +2023,Entry-level,Full-time,Data Scientist,18000,EUR,19434,Greece,Remote,Greece,L,Data Science and Research +2023,Mid-level,Full-time,Data Engineer,130000,USD,130000,United States,Remote,United States,M,Data Engineering +2023,Mid-level,Full-time,Data Engineer,100000,USD,100000,United States,Remote,United States,M,Data Engineering +2023,Mid-level,Full-time,Data Engineer,250000,USD,250000,United States,In-person,United States,M,Data Engineering +2023,Mid-level,Full-time,Data Engineer,125000,USD,125000,United States,In-person,United States,M,Data Engineering +2023,Mid-level,Full-time,Data Engineer,131000,USD,131000,Colombia,In-person,Colombia,M,Data Engineering +2023,Mid-level,Full-time,Data Engineer,88000,USD,88000,Colombia,In-person,Colombia,M,Data Engineering +2023,Entry-level,Full-time,Data Analyst,80000,USD,80000,United States,In-person,United States,M,Data Analysis +2023,Entry-level,Full-time,Data Analyst,50000,USD,50000,United States,In-person,United States,M,Data Analysis +2023,Senior,Full-time,Machine Learning Engineer,198000,USD,198000,United States,Remote,United States,M,Machine Learning and AI +2023,Senior,Full-time,Machine Learning Engineer,132000,USD,132000,United States,Remote,United States,M,Machine Learning and AI +2023,Senior,Full-time,Business Intelligence Engineer,125000,USD,125000,United States,Remote,United States,M,BI and Visualization +2023,Senior,Full-time,Business Intelligence Engineer,115000,USD,115000,United States,Remote,United States,M,BI and Visualization +2023,Senior,Full-time,Data Engineer,184000,USD,184000,United States,In-person,United States,M,Data Engineering +2023,Senior,Full-time,Data Engineer,123000,USD,123000,United States,In-person,United States,M,Data Engineering +2023,Senior,Full-time,Data Manager,145000,USD,145000,United States,In-person,United States,M,Leadership and Management +2023,Senior,Full-time,Data Manager,130000,USD,130000,United States,In-person,United States,M,Leadership and Management +2023,Senior,Full-time,Machine Learning Engineer,170700,USD,170700,United States,In-person,United States,M,Machine Learning and AI +2023,Senior,Full-time,Machine Learning Engineer,113900,USD,113900,United States,In-person,United States,M,Machine Learning and AI +2023,Senior,Full-time,Data Engineer,184000,USD,184000,United States,In-person,United States,M,Data Engineering +2023,Senior,Full-time,Data Engineer,123000,USD,123000,United States,In-person,United States,M,Data Engineering +2023,Senior,Full-time,Machine Learning Engineer,280000,USD,280000,United States,In-person,United States,M,Machine Learning and AI +2023,Senior,Full-time,Machine Learning Engineer,200000,USD,200000,United States,In-person,United States,M,Machine Learning and AI +2023,Senior,Full-time,Data Engineer,185000,USD,185000,United States,In-person,United States,L,Data Engineering +2023,Senior,Full-time,Data Engineer,81000,USD,81000,United States,In-person,United States,L,Data Engineering +2023,Senior,Full-time,Machine Learning Engineer,220000,USD,220000,United States,In-person,United States,M,Machine Learning and AI +2023,Senior,Full-time,Machine Learning Engineer,80000,USD,80000,United States,In-person,United States,M,Machine Learning and AI +2023,Senior,Full-time,Data Scientist,185000,USD,185000,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Data Scientist,123000,USD,123000,United States,In-person,United States,M,Data Science and Research +2023,Executive,Full-time,Data Manager,80000,USD,80000,United States,In-person,United States,M,Leadership and Management +2023,Executive,Full-time,Data Manager,75000,USD,75000,United States,In-person,United States,M,Leadership and Management +2023,Mid-level,Full-time,Research Scientist,150000,USD,150000,United States,In-person,United States,M,Data Science and Research +2023,Mid-level,Full-time,Research Scientist,130000,USD,130000,United States,In-person,United States,M,Data Science and Research +2023,Mid-level,Full-time,Data Analyst,53000,USD,53000,United States,Remote,United States,M,Data Analysis +2023,Mid-level,Full-time,Data Analyst,48000,USD,48000,United States,Remote,United States,M,Data Analysis +2023,Mid-level,Full-time,Analytics Engineer,300000,GBP,369120,United Kingdom,In-person,United Kingdom,M,Leadership and Management +2023,Mid-level,Full-time,Analytics Engineer,60000,GBP,73824,United Kingdom,In-person,United Kingdom,M,Leadership and Management +2023,Mid-level,Full-time,Data Scientist,150000,USD,150000,United States,In-person,United States,M,Data Science and Research +2023,Mid-level,Full-time,Data Scientist,125000,USD,125000,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Data Scientist,150000,USD,150000,United States,Remote,United States,M,Data Science and Research +2023,Senior,Full-time,Data Scientist,130000,USD,130000,United States,Remote,United States,M,Data Science and Research +2023,Mid-level,Full-time,Data Engineer,57500,GBP,70748,United Kingdom,In-person,United Kingdom,M,Data Engineering +2023,Mid-level,Full-time,Data Engineer,54500,GBP,67056,United Kingdom,In-person,United Kingdom,M,Data Engineering +2023,Senior,Full-time,Data Engineer,190000,USD,190000,United States,In-person,United States,M,Data Engineering +2023,Senior,Full-time,Data Engineer,170000,USD,170000,United States,In-person,United States,M,Data Engineering +2023,Senior,Full-time,Data Analyst,125000,USD,125000,United States,Remote,United States,M,Data Analysis +2023,Senior,Full-time,Data Analyst,115000,USD,115000,United States,Remote,United States,M,Data Analysis +2023,Senior,Full-time,Data Engineer,130000,USD,130000,United States,Remote,United States,M,Data Engineering +2023,Senior,Full-time,Data Engineer,101570,USD,101570,United States,Remote,United States,M,Data Engineering +2023,Mid-level,Full-time,Data Engineer,150000,USD,150000,United States,Remote,United States,M,Data Engineering +2023,Mid-level,Full-time,Data Engineer,115000,USD,115000,United States,Remote,United States,M,Data Engineering +2023,Senior,Full-time,Data Engineer,184000,USD,184000,United States,In-person,United States,M,Data Engineering +2023,Senior,Full-time,Data Engineer,123000,USD,123000,United States,In-person,United States,M,Data Engineering +2023,Senior,Full-time,Computer Vision Engineer,194000,USD,194000,United States,In-person,United States,M,Machine Learning and AI +2023,Senior,Full-time,Computer Vision Engineer,175000,USD,175000,United States,In-person,United States,M,Machine Learning and AI +2023,Senior,Full-time,Data Analyst,185000,USD,185000,United States,In-person,United States,M,Data Analysis +2023,Senior,Full-time,Data Analyst,160000,USD,160000,United States,In-person,United States,M,Data Analysis +2023,Senior,Full-time,Data Engineer,185000,USD,185000,United States,In-person,United States,M,Data Engineering +2023,Senior,Full-time,Data Engineer,50000,USD,50000,United States,In-person,United States,M,Data Engineering +2023,Executive,Full-time,Data Manager,80000,USD,80000,United States,In-person,United States,M,Leadership and Management +2023,Executive,Full-time,Data Manager,70000,USD,70000,United States,In-person,United States,M,Leadership and Management +2023,Senior,Full-time,Machine Learning Engineer,254000,USD,254000,United States,In-person,United States,M,Machine Learning and AI +2023,Senior,Full-time,Machine Learning Engineer,200000,USD,200000,United States,In-person,United States,M,Machine Learning and AI +2023,Entry-level,Full-time,Data Engineer,130916,USD,130916,United States,In-person,United States,M,Data Engineering +2023,Entry-level,Full-time,Data Engineer,120000,USD,120000,United States,In-person,United States,M,Data Engineering +2023,Senior,Full-time,Data Scientist,160000,USD,160000,United States,Remote,United States,M,Data Science and Research +2023,Senior,Full-time,Data Scientist,130000,USD,130000,United States,Remote,United States,M,Data Science and Research +2023,Senior,Full-time,Applied Scientist,218213,USD,218213,United States,Remote,United States,M,Data Science and Research +2023,Senior,Full-time,Applied Scientist,178538,USD,178538,United States,Remote,United States,M,Data Science and Research +2023,Mid-level,Full-time,Applied Scientist,222200,USD,222200,United States,In-person,United States,L,Data Science and Research +2023,Mid-level,Full-time,Applied Scientist,136000,USD,136000,United States,In-person,United States,L,Data Science and Research +2023,Senior,Full-time,Data Scientist,316000,USD,316000,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Data Scientist,202000,USD,202000,United States,In-person,United States,M,Data Science and Research +2023,Mid-level,Full-time,Applied Scientist,222200,USD,222200,United States,In-person,United States,L,Data Science and Research +2023,Mid-level,Full-time,Applied Scientist,136000,USD,136000,United States,In-person,United States,L,Data Science and Research +2023,Senior,Full-time,Data Scientist,189750,USD,189750,United States,Remote,United States,M,Data Science and Research +2023,Senior,Full-time,Data Scientist,119213,USD,119213,United States,Remote,United States,M,Data Science and Research +2023,Senior,Full-time,Analytics Engineer,162000,USD,162000,United States,In-person,United States,M,Leadership and Management +2023,Senior,Full-time,Analytics Engineer,130000,USD,130000,United States,In-person,United States,M,Leadership and Management +2023,Senior,Full-time,Data Visualization Specialist,170200,USD,170200,United States,In-person,United States,M,BI and Visualization +2023,Senior,Full-time,Data Visualization Specialist,83900,USD,83900,United States,In-person,United States,M,BI and Visualization +2023,Senior,Full-time,Business Intelligence Engineer,202800,USD,202800,United States,In-person,United States,L,BI and Visualization +2023,Senior,Full-time,Business Intelligence Engineer,104300,USD,104300,United States,In-person,United States,L,BI and Visualization +2023,Senior,Full-time,Machine Learning Engineer,250944,USD,250944,United States,Remote,United States,M,Machine Learning and AI +2023,Senior,Full-time,Machine Learning Engineer,205318,USD,205318,United States,Remote,United States,M,Machine Learning and AI +2023,Senior,Full-time,Data Engineer,155000,USD,155000,United States,In-person,United States,M,Data Engineering +2023,Senior,Full-time,Data Engineer,125000,USD,125000,United States,In-person,United States,M,Data Engineering +2023,Senior,Full-time,Data Scientist,135000,USD,135000,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Data Scientist,114000,USD,114000,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Data Scientist,218213,USD,218213,United States,Remote,United States,M,Data Science and Research +2023,Senior,Full-time,Data Scientist,178538,USD,178538,United States,Remote,United States,M,Data Science and Research +2023,Senior,Full-time,Research Scientist,240000,USD,240000,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Research Scientist,163200,USD,163200,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Machine Learning Engineer,258800,USD,258800,United States,In-person,United States,M,Machine Learning and AI +2023,Senior,Full-time,Machine Learning Engineer,199200,USD,199200,United States,In-person,United States,M,Machine Learning and AI +2023,Senior,Full-time,Data Scientist,215625,USD,215625,United States,Remote,United States,M,Data Science and Research +2023,Senior,Full-time,Data Scientist,159375,USD,159375,United States,Remote,United States,M,Data Science and Research +2023,Mid-level,Full-time,ML Engineer,155000,USD,155000,United States,In-person,United States,M,Machine Learning and AI +2023,Mid-level,Full-time,ML Engineer,125000,USD,125000,United States,In-person,United States,M,Machine Learning and AI +2023,Senior,Full-time,Data Engineer,170000,USD,170000,United States,Remote,United States,M,Data Engineering +2023,Senior,Full-time,Data Engineer,100000,USD,100000,United States,Remote,United States,M,Data Engineering +2023,Senior,Full-time,Machine Learning Engineer,234000,USD,234000,United States,Remote,United States,M,Machine Learning and AI +2023,Senior,Full-time,Machine Learning Engineer,208000,USD,208000,United States,Remote,United States,M,Machine Learning and AI +2023,Senior,Full-time,Research Engineer,203000,USD,203000,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Research Engineer,133000,USD,133000,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Data Science Manager,272400,USD,272400,United States,In-person,United States,L,Data Science and Research +2023,Senior,Full-time,Data Science Manager,140100,USD,140100,United States,In-person,United States,L,Data Science and Research +2023,Senior,Full-time,Data Engineer,282000,USD,282000,United States,In-person,United States,M,Data Engineering +2023,Senior,Full-time,Data Engineer,208000,USD,208000,United States,In-person,United States,M,Data Engineering +2023,Senior,Full-time,Data Analyst,93919,USD,93919,United States,Remote,United States,M,Data Analysis +2023,Senior,Full-time,Data Analyst,51962,USD,51962,United States,Remote,United States,M,Data Analysis +2023,Senior,Full-time,Data Scientist,211000,USD,211000,United States,Remote,United States,M,Data Science and Research +2023,Senior,Full-time,Data Scientist,185000,USD,185000,United States,Remote,United States,M,Data Science and Research +2023,Senior,Full-time,BI Analyst,118800,USD,118800,United States,Remote,United States,M,BI and Visualization +2023,Senior,Full-time,BI Analyst,75000,USD,75000,United States,Remote,United States,M,BI and Visualization +2023,Senior,Full-time,Machine Learning Engineer,159350,USD,159350,United States,In-person,United States,M,Machine Learning and AI +2023,Senior,Full-time,Machine Learning Engineer,130100,USD,130100,United States,In-person,United States,M,Machine Learning and AI +2023,Senior,Full-time,Data Scientist,262000,USD,262000,United States,Remote,United States,M,Data Science and Research +2023,Senior,Full-time,Data Scientist,245000,USD,245000,United States,Remote,United States,M,Data Science and Research +2023,Senior,Full-time,Data Scientist,190000,USD,190000,United States,Remote,United States,M,Data Science and Research +2023,Senior,Full-time,Data Scientist,150000,USD,150000,United States,Remote,United States,M,Data Science and Research +2023,Senior,Full-time,Analytics Engineer,205218,USD,205218,United States,In-person,United States,M,Leadership and Management +2023,Senior,Full-time,Analytics Engineer,136743,USD,136743,United States,In-person,United States,M,Leadership and Management +2023,Senior,Full-time,Research Analyst,185000,USD,185000,United States,In-person,United States,L,Data Science and Research +2023,Senior,Full-time,Research Analyst,94600,USD,94600,United States,In-person,United States,L,Data Science and Research +2023,Senior,Full-time,Research Analyst,160000,USD,160000,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Research Analyst,107000,USD,107000,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Machine Learning Engineer,264400,USD,264400,United States,Remote,United States,M,Machine Learning and AI +2023,Senior,Full-time,Machine Learning Engineer,176300,USD,176300,United States,Remote,United States,M,Machine Learning and AI +2023,Senior,Full-time,Research Analyst,160000,USD,160000,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Research Analyst,107000,USD,107000,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Research Scientist,275000,USD,275000,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Research Scientist,175000,USD,175000,United States,In-person,United States,M,Data Science and Research +2023,Entry-level,Full-time,ML Engineer,76000,USD,76000,United States,In-person,United States,L,Machine Learning and AI +2023,Mid-level,Full-time,Insight Analyst,50000,EUR,53984,Portugal,Remote,Portugal,M,Data Analysis +2023,Mid-level,Full-time,Insight Analyst,40000,EUR,43187,Portugal,Remote,Portugal,M,Data Analysis +2023,Entry-level,Full-time,Data Analyst,80800,USD,80800,United States,In-person,United States,M,Data Analysis +2023,Entry-level,Full-time,Data Analyst,53800,USD,53800,United States,In-person,United States,M,Data Analysis +2023,Mid-level,Full-time,Business Intelligence Analyst,150000,USD,150000,United States,In-person,United States,M,BI and Visualization +2023,Mid-level,Full-time,Business Intelligence Analyst,125000,USD,125000,United States,In-person,United States,M,BI and Visualization +2023,Senior,Full-time,Data Scientist,210000,USD,210000,United States,Remote,United States,M,Data Science and Research +2023,Senior,Full-time,Data Scientist,180000,USD,180000,United States,Remote,United States,M,Data Science and Research +2023,Senior,Full-time,Data Engineer,210000,USD,210000,United States,In-person,United States,M,Data Engineering +2023,Senior,Full-time,Data Engineer,155000,USD,155000,United States,In-person,United States,M,Data Engineering +2023,Senior,Full-time,Data Scientist,169500,USD,169500,United States,Remote,United States,M,Data Science and Research +2023,Senior,Full-time,Data Scientist,138000,USD,138000,United States,Remote,United States,M,Data Science and Research +2023,Senior,Full-time,Data Engineer,226700,USD,226700,United States,In-person,United States,M,Data Engineering +2023,Senior,Full-time,Data Engineer,133300,USD,133300,United States,In-person,United States,M,Data Engineering +2023,Senior,Full-time,Research Scientist,278700,USD,278700,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Research Scientist,159300,USD,159300,United States,In-person,United States,M,Data Science and Research +2023,Mid-level,Full-time,AI Engineer,180000,USD,180000,United States,In-person,United States,M,Machine Learning and AI +2023,Mid-level,Full-time,AI Engineer,120000,USD,120000,United States,In-person,United States,M,Machine Learning and AI +2023,Senior,Full-time,Business Intelligence Engineer,125000,USD,125000,United States,Remote,United States,M,BI and Visualization +2023,Senior,Full-time,Business Intelligence Engineer,115000,USD,115000,United States,Remote,United States,M,BI and Visualization +2023,Senior,Full-time,Data Science Manager,297300,USD,297300,United States,Remote,United States,M,Data Science and Research +2023,Senior,Full-time,Data Science Manager,198200,USD,198200,United States,Remote,United States,M,Data Science and Research +2023,Senior,Full-time,Data Scientist,204500,USD,204500,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Data Scientist,138900,USD,138900,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Data Manager,110400,USD,110400,United States,In-person,United States,M,Leadership and Management +2023,Senior,Full-time,Data Manager,68000,USD,68000,United States,In-person,United States,M,Leadership and Management +2023,Mid-level,Full-time,Data Scientist,260600,USD,260600,United States,In-person,United States,M,Data Science and Research +2023,Mid-level,Full-time,Data Scientist,170500,USD,170500,United States,In-person,United States,M,Data Science and Research +2023,Entry-level,Full-time,Data Integration Specialist,63750,USD,63750,United States,Remote,United States,M,Data Management and Strategy +2023,Entry-level,Full-time,Data Integration Specialist,46400,USD,46400,United States,Remote,United States,M,Data Management and Strategy +2023,Senior,Full-time,Data Scientist,214872,USD,214872,United States,Remote,United States,M,Data Science and Research +2023,Senior,Full-time,Data Scientist,186846,USD,186846,United States,Remote,United States,M,Data Science and Research +2023,Mid-level,Full-time,Data Analyst,95000,USD,95000,United States,In-person,United States,M,Data Analysis +2023,Mid-level,Full-time,Data Analyst,70600,USD,70600,United States,In-person,United States,M,Data Analysis +2023,Mid-level,Full-time,Data Analyst,149500,USD,149500,United States,Remote,United States,M,Data Analysis +2023,Mid-level,Full-time,Data Analyst,127075,USD,127075,United States,Remote,United States,M,Data Analysis +2023,Senior,Full-time,Data Engineer,162000,USD,162000,United States,Remote,United States,M,Data Engineering +2023,Senior,Full-time,Data Engineer,111000,USD,111000,United States,Remote,United States,M,Data Engineering +2023,Senior,Full-time,Machine Learning Scientist,280000,USD,280000,United States,Remote,United States,M,Machine Learning and AI +2023,Senior,Full-time,Machine Learning Scientist,182750,USD,182750,United States,Remote,United States,M,Machine Learning and AI +2023,Senior,Full-time,Research Scientist,212800,USD,212800,United States,In-person,United States,L,Data Science and Research +2023,Senior,Full-time,Research Scientist,124100,USD,124100,United States,In-person,United States,L,Data Science and Research +2023,Senior,Full-time,Research Engineer,196000,USD,196000,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Research Engineer,142600,USD,142600,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Business Intelligence Engineer,185000,USD,185000,United States,In-person,United States,L,BI and Visualization +2023,Senior,Full-time,Business Intelligence Engineer,79600,USD,79600,United States,In-person,United States,L,BI and Visualization +2023,Senior,Full-time,Data Architect,193000,USD,193000,United States,Remote,United States,M,Data Architecture and Modeling +2023,Senior,Full-time,Data Architect,110000,USD,110000,United States,Remote,United States,M,Data Architecture and Modeling +2023,Senior,Full-time,Data Scientist,245000,USD,245000,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Data Scientist,185000,USD,185000,United States,In-person,United States,M,Data Science and Research +2023,Mid-level,Full-time,Data Engineer,154000,USD,154000,United States,In-person,United States,M,Data Engineering +2023,Mid-level,Full-time,Data Engineer,103000,USD,103000,United States,In-person,United States,M,Data Engineering +2023,Senior,Full-time,Data Analyst,80000,USD,80000,United States,In-person,United States,M,Data Analysis +2023,Senior,Full-time,Data Analyst,70000,USD,70000,United States,In-person,United States,M,Data Analysis +2023,Executive,Full-time,Data Engineer,250000,USD,250000,United States,In-person,United States,M,Data Engineering +2023,Executive,Full-time,Data Engineer,225000,USD,225000,United States,In-person,United States,M,Data Engineering +2023,Senior,Full-time,Data Analyst,90000,USD,90000,United States,In-person,United States,M,Data Analysis +2023,Senior,Full-time,Data Analyst,80000,USD,80000,United States,In-person,United States,M,Data Analysis +2023,Mid-level,Full-time,Data Analyst,50000,GBP,61520,United Kingdom,In-person,United Kingdom,M,Data Analysis +2023,Mid-level,Full-time,Data Analyst,40000,GBP,49216,United Kingdom,In-person,United Kingdom,M,Data Analysis +2023,Senior,Full-time,Data Engineer,205000,USD,205000,United States,In-person,United States,M,Data Engineering +2023,Senior,Full-time,Data Engineer,167500,USD,167500,United States,In-person,United States,M,Data Engineering +2023,Senior,Full-time,Data Scientist,202600,USD,202600,United States,Remote,United States,M,Data Science and Research +2023,Senior,Full-time,Data Scientist,168800,USD,168800,United States,Remote,United States,M,Data Science and Research +2023,Senior,Full-time,Data Scientist,164000,USD,164000,United States,Remote,United States,M,Data Science and Research +2023,Senior,Full-time,Data Scientist,130000,USD,130000,United States,Remote,United States,M,Data Science and Research +2023,Senior,Full-time,Machine Learning Engineer,240000,USD,240000,Ukraine,Remote,Ukraine,M,Machine Learning and AI +2023,Senior,Full-time,Machine Learning Engineer,220000,USD,220000,Ukraine,Remote,Ukraine,M,Machine Learning and AI +2023,Senior,Full-time,Data Scientist,168000,USD,168000,United States,Remote,United States,M,Data Science and Research +2023,Senior,Full-time,Data Scientist,130000,USD,130000,United States,Remote,United States,M,Data Science and Research +2023,Senior,Full-time,Data Engineer,185900,USD,185900,United States,In-person,United States,M,Data Engineering +2023,Senior,Full-time,Data Engineer,129300,USD,129300,United States,In-person,United States,M,Data Engineering +2023,Senior,Full-time,Machine Learning Engineer,297300,USD,297300,United States,Remote,United States,M,Machine Learning and AI +2023,Senior,Full-time,Machine Learning Engineer,198200,USD,198200,United States,Remote,United States,M,Machine Learning and AI +2023,Senior,Full-time,Machine Learning Engineer,190000,USD,190000,United States,Remote,United States,M,Machine Learning and AI +2023,Senior,Full-time,Machine Learning Engineer,156000,USD,156000,United States,Remote,United States,M,Machine Learning and AI +2023,Senior,Full-time,Machine Learning Engineer,205000,USD,205000,United States,In-person,United States,M,Machine Learning and AI +2023,Senior,Full-time,Machine Learning Engineer,152000,USD,152000,United States,In-person,United States,M,Machine Learning and AI +2023,Senior,Full-time,Data Science Practitioner,196500,USD,196500,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Data Science Practitioner,97300,USD,97300,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Machine Learning Engineer,260000,USD,260000,United States,In-person,United States,M,Machine Learning and AI +2023,Senior,Full-time,Machine Learning Engineer,192000,USD,192000,United States,In-person,United States,M,Machine Learning and AI +2023,Senior,Full-time,Applied Scientist,216000,USD,216000,United States,Remote,United States,M,Data Science and Research +2023,Senior,Full-time,Applied Scientist,184000,USD,184000,United States,Remote,United States,M,Data Science and Research +2023,Senior,Full-time,Machine Learning Engineer,192000,USD,192000,United States,Remote,United States,M,Machine Learning and AI +2023,Senior,Full-time,Machine Learning Engineer,164000,USD,164000,United States,Remote,United States,M,Machine Learning and AI +2023,Senior,Full-time,Machine Learning Engineer,227700,USD,227700,United States,Remote,United States,M,Machine Learning and AI +2023,Senior,Full-time,Machine Learning Engineer,154836,USD,154836,United States,Remote,United States,M,Machine Learning and AI +2023,Senior,Full-time,Data Scientist,160000,USD,160000,United States,Remote,United States,M,Data Science and Research +2023,Senior,Full-time,Data Scientist,140000,USD,140000,United States,Remote,United States,M,Data Science and Research +2023,Senior,Full-time,Data Scientist,168000,USD,168000,United States,Remote,United States,M,Data Science and Research +2023,Senior,Full-time,Data Scientist,130000,USD,130000,United States,Remote,United States,M,Data Science and Research +2023,Mid-level,Full-time,Machine Learning Engineer,285000,USD,285000,United States,In-person,United States,L,Machine Learning and AI +2023,Mid-level,Full-time,Machine Learning Engineer,190000,USD,190000,United States,In-person,United States,L,Machine Learning and AI +2023,Mid-level,Full-time,Research Scientist,405000,USD,405000,United States,In-person,United States,L,Data Science and Research +2023,Mid-level,Full-time,Research Scientist,270000,USD,270000,United States,In-person,United States,L,Data Science and Research +2023,Mid-level,Full-time,Data Engineer,214300,USD,214300,United States,In-person,United States,M,Data Engineering +2023,Mid-level,Full-time,Data Engineer,108500,USD,108500,United States,In-person,United States,M,Data Engineering +2023,Mid-level,Full-time,Data Scientist,145000,USD,145000,United States,Remote,United States,M,Data Science and Research +2023,Mid-level,Full-time,Data Scientist,115000,USD,115000,United States,Remote,United States,M,Data Science and Research +2023,Mid-level,Full-time,Data Science Engineer,130000,USD,130000,United States,Remote,United States,M,Data Science and Research +2023,Mid-level,Full-time,Data Science Engineer,113000,USD,113000,United States,Remote,United States,M,Data Science and Research +2023,Senior,Full-time,Data Scientist,194500,USD,194500,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Data Scientist,110250,USD,110250,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Data Scientist,295000,USD,295000,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Data Scientist,177300,USD,177300,United States,In-person,United States,M,Data Science and Research +2023,Mid-level,Full-time,Data Analyst,45000,GBP,55368,United Kingdom,Remote,United Kingdom,M,Data Analysis +2023,Mid-level,Full-time,Data Analyst,36000,GBP,44294,United Kingdom,Remote,United Kingdom,M,Data Analysis +2023,Senior,Full-time,Data Scientist,136000,USD,136000,United States,Remote,United States,M,Data Science and Research +2023,Senior,Full-time,Data Scientist,104000,USD,104000,United States,Remote,United States,M,Data Science and Research +2023,Mid-level,Full-time,Applied Scientist,222200,USD,222200,United States,In-person,United States,L,Data Science and Research +2023,Mid-level,Full-time,Applied Scientist,136000,USD,136000,United States,In-person,United States,L,Data Science and Research +2023,Senior,Full-time,Applied Scientist,192000,USD,192000,United States,Remote,United States,M,Data Science and Research +2023,Senior,Full-time,Applied Scientist,164000,USD,164000,United States,Remote,United States,M,Data Science and Research +2023,Entry-level,Full-time,Data Engineer,220000,USD,220000,United States,In-person,United States,M,Data Engineering +2023,Entry-level,Full-time,Data Engineer,187000,USD,187000,United States,In-person,United States,M,Data Engineering +2023,Executive,Full-time,Director of Data Science,353200,USD,353200,United States,In-person,United States,M,Data Science and Research +2023,Executive,Full-time,Director of Data Science,249300,USD,249300,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Data Analyst,85000,USD,85000,United States,In-person,United States,M,Data Analysis +2023,Senior,Full-time,Data Analyst,79000,USD,79000,United States,In-person,United States,M,Data Analysis +2023,Senior,Full-time,Machine Learning Engineer,214500,USD,214500,United States,In-person,United States,M,Machine Learning and AI +2023,Senior,Full-time,Machine Learning Engineer,132600,USD,132600,United States,In-person,United States,M,Machine Learning and AI +2023,Senior,Full-time,Data Engineer,131000,USD,131000,United States,In-person,United States,M,Data Engineering +2023,Senior,Full-time,Data Engineer,130000,USD,130000,United States,In-person,United States,M,Data Engineering +2023,Senior,Full-time,Data Scientist,153600,USD,153600,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Data Scientist,106800,USD,106800,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Applied Scientist,220000,USD,220000,United States,Remote,United States,M,Data Science and Research +2023,Senior,Full-time,Applied Scientist,163000,USD,163000,United States,Remote,United States,M,Data Science and Research +2023,Senior,Full-time,Data Scientist,168000,USD,168000,United States,Remote,United States,M,Data Science and Research +2023,Senior,Full-time,Data Scientist,130000,USD,130000,United States,Remote,United States,M,Data Science and Research +2023,Senior,Full-time,Data Scientist,107400,USD,107400,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Data Scientist,101500,USD,101500,United States,In-person,United States,M,Data Science and Research +2023,Executive,Full-time,Data Manager,80000,USD,80000,United States,In-person,United States,M,Leadership and Management +2023,Executive,Full-time,Data Manager,70000,USD,70000,United States,In-person,United States,M,Leadership and Management +2023,Mid-level,Full-time,Data Engineer,75000,EUR,80976,France,Hybrid,France,M,Data Engineering +2023,Mid-level,Full-time,Research Scientist,300000,USD,300000,United States,In-person,United States,M,Data Science and Research +2023,Mid-level,Full-time,Research Scientist,100000,USD,100000,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Data Architect,175000,USD,175000,United States,Remote,United States,M,Data Architecture and Modeling +2023,Senior,Full-time,Data Architect,135000,USD,135000,United States,Remote,United States,M,Data Architecture and Modeling +2023,Senior,Full-time,Data Scientist,164000,USD,164000,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Data Scientist,130000,USD,130000,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Data Scientist,300000,USD,300000,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Data Scientist,211000,USD,211000,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Machine Learning Engineer,276000,USD,276000,United States,In-person,United States,M,Machine Learning and AI +2023,Senior,Full-time,Machine Learning Engineer,184000,USD,184000,United States,In-person,United States,M,Machine Learning and AI +2023,Mid-level,Full-time,Data Analyst,115000,USD,115000,United States,Remote,United States,M,Data Analysis +2023,Mid-level,Full-time,Data Analyst,110000,USD,110000,United States,Remote,United States,M,Data Analysis +2023,Senior,Full-time,Data Engineer,139810,USD,139810,United States,In-person,United States,M,Data Engineering +2023,Senior,Full-time,Data Engineer,95325,USD,95325,United States,In-person,United States,M,Data Engineering +2023,Senior,Full-time,Data Analyst,167000,USD,167000,United States,In-person,United States,M,Data Analysis +2023,Senior,Full-time,Data Analyst,150000,USD,150000,United States,In-person,United States,M,Data Analysis +2023,Senior,Full-time,Data Engineer,144000,USD,144000,United States,In-person,United States,M,Data Engineering +2023,Senior,Full-time,Data Engineer,96000,USD,96000,United States,In-person,United States,M,Data Engineering +2023,Senior,Full-time,Data Engineer,140000,USD,140000,United States,In-person,United States,M,Data Engineering +2023,Senior,Full-time,Data Engineer,125000,USD,125000,United States,In-person,United States,M,Data Engineering +2023,Senior,Full-time,Analytics Engineer,145000,USD,145000,United States,Remote,United States,M,Leadership and Management +2023,Senior,Full-time,Analytics Engineer,116000,USD,116000,United States,Remote,United States,M,Leadership and Management +2023,Senior,Full-time,Data Scientist,161000,USD,161000,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Data Scientist,116300,USD,116300,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Data Analyst,140000,USD,140000,United States,In-person,United States,M,Data Analysis +2023,Senior,Full-time,Data Analyst,125000,USD,125000,United States,In-person,United States,M,Data Analysis +2023,Senior,Full-time,Data Architect,175564,USD,175564,United States,Remote,United States,M,Data Architecture and Modeling +2023,Senior,Full-time,Data Architect,144854,USD,144854,United States,Remote,United States,M,Data Architecture and Modeling +2023,Senior,Full-time,Machine Learning Engineer,225000,USD,225000,United States,In-person,United States,M,Machine Learning and AI +2023,Senior,Full-time,Machine Learning Engineer,166000,USD,166000,United States,In-person,United States,M,Machine Learning and AI +2023,Senior,Full-time,Analytics Engineer,190000,USD,190000,United States,In-person,United States,M,Leadership and Management +2023,Senior,Full-time,Analytics Engineer,150000,USD,150000,United States,In-person,United States,M,Leadership and Management +2023,Senior,Full-time,Machine Learning Engineer,225000,USD,225000,United States,In-person,United States,M,Machine Learning and AI +2023,Senior,Full-time,Machine Learning Engineer,166000,USD,166000,United States,In-person,United States,M,Machine Learning and AI +2023,Senior,Full-time,Data Scientist,151300,USD,151300,United States,Remote,United States,M,Data Science and Research +2023,Senior,Full-time,Data Scientist,126100,USD,126100,United States,Remote,United States,M,Data Science and Research +2023,Senior,Full-time,Research Engineer,190000,USD,190000,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Research Engineer,152000,USD,152000,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Data Scientist,202600,USD,202600,United States,Remote,United States,M,Data Science and Research +2023,Senior,Full-time,Data Scientist,168800,USD,168800,United States,Remote,United States,M,Data Science and Research +2023,Senior,Full-time,Machine Learning Engineer,190000,USD,190000,United States,In-person,United States,M,Machine Learning and AI +2023,Senior,Full-time,Machine Learning Engineer,150000,USD,150000,United States,In-person,United States,M,Machine Learning and AI +2023,Executive,Full-time,Data Analyst,180000,USD,180000,United States,Remote,United States,M,Data Analysis +2023,Executive,Full-time,Data Analyst,125000,USD,125000,United States,Remote,United States,M,Data Analysis +2023,Senior,Full-time,Business Intelligence Analyst,113000,USD,113000,United States,In-person,United States,M,BI and Visualization +2023,Senior,Full-time,Business Intelligence Analyst,90400,USD,90400,United States,In-person,United States,M,BI and Visualization +2023,Senior,Full-time,Business Intelligence Engineer,204300,USD,204300,United States,In-person,United States,M,BI and Visualization +2023,Senior,Full-time,Business Intelligence Engineer,139000,USD,139000,United States,In-person,United States,M,BI and Visualization +2023,Senior,Full-time,Data Engineer,282000,USD,282000,United States,In-person,United States,M,Data Engineering +2023,Senior,Full-time,Data Engineer,208000,USD,208000,United States,In-person,United States,M,Data Engineering +2023,Senior,Full-time,Data Engineer,185000,USD,185000,United States,In-person,United States,M,Data Engineering +2023,Senior,Full-time,Data Engineer,124000,USD,124000,United States,In-person,United States,M,Data Engineering +2023,Senior,Full-time,Research Scientist,240000,USD,240000,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Research Scientist,157000,USD,157000,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Machine Learning Engineer,212800,USD,212800,United States,In-person,United States,L,Machine Learning and AI +2023,Senior,Full-time,Machine Learning Engineer,111600,USD,111600,United States,In-person,United States,L,Machine Learning and AI +2023,Senior,Full-time,Data Architect,183000,USD,183000,United States,In-person,United States,M,Data Architecture and Modeling +2023,Senior,Full-time,Data Architect,147000,USD,147000,United States,In-person,United States,M,Data Architecture and Modeling +2023,Senior,Full-time,Data Engineer,169000,USD,169000,United States,In-person,United States,M,Data Engineering +2023,Senior,Full-time,Data Engineer,91000,USD,91000,United States,In-person,United States,M,Data Engineering +2023,Senior,Full-time,Data Architect,210000,USD,210000,United States,In-person,United States,M,Data Architecture and Modeling +2023,Senior,Full-time,Data Architect,160000,USD,160000,United States,In-person,United States,M,Data Architecture and Modeling +2023,Mid-level,Full-time,Data Analyst,70900,USD,70900,United States,In-person,United States,M,Data Analysis +2023,Mid-level,Full-time,Data Analyst,49000,USD,49000,United States,In-person,United States,M,Data Analysis +2023,Senior,Full-time,Data Architect,193000,USD,193000,United States,In-person,United States,M,Data Architecture and Modeling +2023,Senior,Full-time,Data Architect,128000,USD,128000,United States,In-person,United States,M,Data Architecture and Modeling +2023,Senior,Full-time,Data Scientist,168000,USD,168000,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Data Scientist,130000,USD,130000,United States,In-person,United States,M,Data Science and Research +2023,Mid-level,Full-time,Data Engineer,154000,USD,154000,United States,In-person,United States,M,Data Engineering +2023,Mid-level,Full-time,Data Engineer,103000,USD,103000,United States,In-person,United States,M,Data Engineering +2023,Senior,Full-time,Data Analyst,93918,USD,93918,United States,In-person,United States,M,Data Analysis +2023,Senior,Full-time,Data Analyst,51962,USD,51962,United States,In-person,United States,M,Data Analysis +2023,Senior,Full-time,Data Scientist,180000,USD,180000,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Data Scientist,160000,USD,160000,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Data Scientist,140000,USD,140000,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Data Scientist,140000,USD,140000,United States,In-person,United States,M,Data Science and Research +2023,Mid-level,Full-time,Data Engineer,275000,USD,275000,Canada,In-person,Canada,M,Data Engineering +2023,Mid-level,Full-time,Data Engineer,243000,USD,243000,Canada,In-person,Canada,M,Data Engineering +2023,Senior,Full-time,Data Scientist,215000,USD,215000,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Data Scientist,160000,USD,160000,United States,In-person,United States,M,Data Science and Research +2023,Executive,Full-time,Data Engineer,174500,USD,174500,United States,In-person,United States,M,Data Engineering +2023,Executive,Full-time,Data Engineer,113000,USD,113000,United States,In-person,United States,M,Data Engineering +2023,Senior,Full-time,Data Analyst,125000,USD,125000,United States,Remote,United States,M,Data Analysis +2023,Senior,Full-time,Data Analyst,80000,USD,80000,United States,Remote,United States,M,Data Analysis +2023,Senior,Full-time,Data Engineer,145000,USD,145000,United States,Remote,United States,M,Data Engineering +2023,Senior,Full-time,Data Engineer,115000,USD,115000,United States,Remote,United States,M,Data Engineering +2023,Senior,Full-time,Machine Learning Engineer,260000,USD,260000,United States,In-person,United States,M,Machine Learning and AI +2023,Senior,Full-time,Machine Learning Engineer,160000,USD,160000,United States,In-person,United States,M,Machine Learning and AI +2023,Senior,Full-time,Data Scientist,202000,USD,202000,United States,Remote,United States,M,Data Science and Research +2023,Senior,Full-time,Data Scientist,140000,USD,140000,United States,Remote,United States,M,Data Science and Research +2023,Mid-level,Full-time,Data Scientist,130000,CAD,96313,Canada,Remote,Canada,S,Data Science and Research +2023,Senior,Full-time,Machine Learning Engineer,250000,USD,250000,United States,In-person,United States,M,Machine Learning and AI +2023,Senior,Full-time,Machine Learning Engineer,140000,USD,140000,United States,In-person,United States,M,Machine Learning and AI +2023,Mid-level,Full-time,Data Analyst,45000,EUR,48585,Portugal,Remote,Portugal,M,Data Analysis +2023,Mid-level,Full-time,Data Analyst,40000,EUR,43187,Portugal,Remote,Portugal,M,Data Analysis +2023,Senior,Full-time,Data Science Manager,204000,USD,204000,United States,Remote,United States,M,Data Science and Research +2023,Senior,Full-time,Data Science Manager,127500,USD,127500,United States,Remote,United States,M,Data Science and Research +2023,Senior,Full-time,Data Analyst,145500,USD,145500,United States,In-person,United States,M,Data Analysis +2023,Senior,Full-time,Data Analyst,108000,USD,108000,United States,In-person,United States,M,Data Analysis +2023,Senior,Full-time,Data Engineer,206000,USD,206000,United States,Remote,United States,M,Data Engineering +2023,Senior,Full-time,Data Engineer,175100,USD,175100,United States,Remote,United States,M,Data Engineering +2023,Senior,Full-time,Data Analyst,122500,USD,122500,United States,Remote,United States,M,Data Analysis +2023,Senior,Full-time,Data Analyst,82500,USD,82500,United States,Remote,United States,M,Data Analysis +2023,Senior,Full-time,Data Manager,110400,USD,110400,United States,In-person,United States,M,Leadership and Management +2023,Senior,Full-time,Data Manager,68000,USD,68000,United States,In-person,United States,M,Leadership and Management +2023,Senior,Full-time,Data Scientist,190000,USD,190000,United States,Remote,United States,M,Data Science and Research +2023,Senior,Full-time,Data Scientist,160000,USD,160000,United States,Remote,United States,M,Data Science and Research +2023,Senior,Full-time,Data Analyst,95000,USD,95000,United States,In-person,United States,M,Data Analysis +2023,Senior,Full-time,Data Analyst,75000,USD,75000,United States,In-person,United States,M,Data Analysis +2023,Senior,Full-time,Data Scientist,136000,USD,136000,United States,Remote,United States,M,Data Science and Research +2023,Senior,Full-time,Data Scientist,104000,USD,104000,United States,Remote,United States,M,Data Science and Research +2023,Mid-level,Full-time,Data Analyst,130000,USD,130000,United States,In-person,United States,M,Data Analysis +2023,Mid-level,Full-time,Data Analyst,105000,USD,105000,United States,In-person,United States,M,Data Analysis +2023,Mid-level,Full-time,Data Engineer,154000,USD,154000,United States,In-person,United States,M,Data Engineering +2023,Mid-level,Full-time,Data Engineer,103000,USD,103000,United States,In-person,United States,M,Data Engineering +2023,Mid-level,Full-time,Director of Data Science,217000,USD,217000,United States,In-person,United States,M,Data Science and Research +2023,Mid-level,Full-time,Director of Data Science,192000,USD,192000,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Data Engineer,170000,USD,170000,United States,In-person,United States,M,Data Engineering +2023,Senior,Full-time,Data Engineer,100000,USD,100000,United States,In-person,United States,M,Data Engineering +2023,Senior,Full-time,Data Specialist,90000,USD,90000,United States,In-person,United States,M,Data Management and Strategy +2023,Senior,Full-time,Data Specialist,60000,USD,60000,United States,In-person,United States,M,Data Management and Strategy +2023,Senior,Full-time,AI Engineer,350000,USD,350000,United States,In-person,United States,M,Machine Learning and AI +2023,Senior,Full-time,AI Engineer,168000,USD,168000,United States,In-person,United States,M,Machine Learning and AI +2023,Senior,Full-time,Data Science Manager,234900,USD,234900,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Data Science Manager,113500,USD,113500,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Data Engineer,385000,USD,385000,United States,In-person,United States,M,Data Engineering +2023,Senior,Full-time,Data Engineer,245000,USD,245000,United States,In-person,United States,M,Data Engineering +2023,Senior,Full-time,Data Engineer,255000,USD,255000,United States,In-person,United States,M,Data Engineering +2023,Senior,Full-time,Data Engineer,255000,USD,255000,United States,In-person,United States,M,Data Engineering +2023,Senior,Full-time,Data Visualization Engineer,170200,USD,170200,United States,In-person,United States,M,BI and Visualization +2023,Senior,Full-time,Data Visualization Engineer,83900,USD,83900,United States,In-person,United States,M,BI and Visualization +2023,Senior,Full-time,Data Science Practitioner,170200,USD,170200,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Data Science Practitioner,83900,USD,83900,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Data Engineer,202500,USD,202500,United States,In-person,United States,M,Data Engineering +2023,Senior,Full-time,Data Engineer,177500,USD,177500,United States,In-person,United States,M,Data Engineering +2023,Senior,Full-time,Data Scientist,308000,USD,308000,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Data Scientist,144000,USD,144000,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Data Engineer,130000,USD,130000,United States,Remote,United States,M,Data Engineering +2023,Senior,Full-time,Data Engineer,101570,USD,101570,United States,Remote,United States,M,Data Engineering +2023,Senior,Full-time,Data Engineer,300000,USD,300000,United States,In-person,United States,M,Data Engineering +2023,Senior,Full-time,Data Engineer,150000,USD,150000,United States,In-person,United States,M,Data Engineering +2023,Senior,Full-time,Applied Scientist,222200,USD,222200,United States,In-person,United States,L,Data Science and Research +2023,Senior,Full-time,Applied Scientist,136000,USD,136000,United States,In-person,United States,L,Data Science and Research +2023,Senior,Full-time,Data Manager,145000,USD,145000,United States,In-person,United States,M,Leadership and Management +2023,Senior,Full-time,Data Manager,130000,USD,130000,United States,In-person,United States,M,Leadership and Management +2023,Senior,Full-time,Data Modeler,155000,USD,155000,United States,Remote,United States,L,Data Architecture and Modeling +2023,Senior,Full-time,Data Modeler,130000,USD,130000,United States,Remote,United States,L,Data Architecture and Modeling +2023,Senior,Full-time,Data Scientist,240000,USD,240000,United States,Remote,United States,M,Data Science and Research +2023,Senior,Full-time,Data Scientist,180000,USD,180000,United States,Remote,United States,M,Data Science and Research +2023,Senior,Full-time,AI Engineer,170200,USD,170200,United States,In-person,United States,M,Machine Learning and AI +2023,Senior,Full-time,AI Engineer,83900,USD,83900,United States,In-person,United States,M,Machine Learning and AI +2023,Senior,Full-time,Data Scientist,210000,USD,210000,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Data Scientist,165000,USD,165000,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Research Scientist,300000,USD,300000,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Research Scientist,150000,USD,150000,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,ML Engineer,300000,USD,300000,United States,In-person,United States,M,Machine Learning and AI +2023,Senior,Full-time,ML Engineer,150000,USD,150000,United States,In-person,United States,M,Machine Learning and AI +2023,Senior,Full-time,Data Scientist,212800,USD,212800,United States,In-person,United States,L,Data Science and Research +2023,Senior,Full-time,Data Scientist,111600,USD,111600,United States,In-person,United States,L,Data Science and Research +2023,Senior,Full-time,Data Engineer,213600,USD,213600,United States,In-person,United States,M,Data Engineering +2023,Senior,Full-time,Data Engineer,103200,USD,103200,United States,In-person,United States,M,Data Engineering +2023,Senior,Full-time,Data Scientist,230000,USD,230000,Canada,Remote,Canada,M,Data Science and Research +2023,Senior,Full-time,Data Scientist,153000,USD,153000,Canada,Remote,Canada,M,Data Science and Research +2023,Senior,Full-time,Research Engineer,308000,USD,308000,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Research Engineer,190400,USD,190400,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Data Scientist,204000,USD,204000,United States,Remote,United States,M,Data Science and Research +2023,Senior,Full-time,Data Scientist,127500,USD,127500,United States,Remote,United States,M,Data Science and Research +2023,Mid-level,Full-time,Data Scientist,250000,USD,250000,United States,In-person,United States,M,Data Science and Research +2023,Mid-level,Full-time,Data Scientist,125000,USD,125000,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Research Engineer,385000,USD,385000,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Research Engineer,310000,USD,310000,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Data Analyst,120000,USD,120000,United States,Remote,United States,M,Data Analysis +2023,Senior,Full-time,Data Analyst,88000,USD,88000,United States,Remote,United States,M,Data Analysis +2023,Senior,Full-time,Machine Learning Engineer,158000,USD,158000,United States,Remote,United States,M,Machine Learning and AI +2023,Senior,Full-time,Machine Learning Engineer,108000,USD,108000,United States,Remote,United States,M,Machine Learning and AI +2023,Senior,Full-time,Data Engineer,385000,USD,385000,United States,In-person,United States,M,Data Engineering +2023,Senior,Full-time,Data Engineer,310000,USD,310000,United States,In-person,United States,M,Data Engineering +2023,Senior,Full-time,Data Engineer,247300,USD,247300,United States,In-person,United States,M,Data Engineering +2023,Senior,Full-time,Data Engineer,139700,USD,139700,United States,In-person,United States,M,Data Engineering +2023,Senior,Full-time,Data Scientist,240000,USD,240000,United States,Remote,United States,M,Data Science and Research +2023,Senior,Full-time,Data Scientist,180000,USD,180000,United States,Remote,United States,M,Data Science and Research +2023,Senior,Full-time,Data Engineer,130000,USD,130000,United States,Remote,United States,M,Data Engineering +2023,Senior,Full-time,Data Engineer,101570,USD,101570,United States,Remote,United States,M,Data Engineering +2023,Senior,Full-time,Data Scientist,210000,USD,210000,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Data Scientist,165000,USD,165000,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,AI Engineer,170200,USD,170200,United States,In-person,United States,M,Machine Learning and AI +2023,Senior,Full-time,AI Engineer,83900,USD,83900,United States,In-person,United States,M,Machine Learning and AI +2023,Senior,Full-time,Applied Scientist,222200,USD,222200,United States,In-person,United States,L,Data Science and Research +2023,Senior,Full-time,Applied Scientist,136000,USD,136000,United States,In-person,United States,L,Data Science and Research +2023,Mid-level,Full-time,Data Engineer,169000,USD,169000,United States,In-person,United States,M,Data Engineering +2023,Mid-level,Full-time,Data Engineer,91000,USD,91000,United States,In-person,United States,M,Data Engineering +2023,Entry-level,Full-time,Data Scientist,135000,USD,135000,United States,In-person,United States,M,Data Science and Research +2023,Entry-level,Full-time,Data Scientist,110000,USD,110000,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Data Engineer,105000,GBP,129192,United Kingdom,In-person,United Kingdom,M,Data Engineering +2023,Senior,Full-time,Data Engineer,80000,GBP,98432,United Kingdom,In-person,United Kingdom,M,Data Engineering +2023,Mid-level,Full-time,AI Engineer,300000,GBP,369120,United Kingdom,In-person,United Kingdom,M,Machine Learning and AI +2023,Mid-level,Full-time,AI Engineer,33063,GBP,40680,United Kingdom,In-person,United Kingdom,M,Machine Learning and AI +2023,Senior,Full-time,Research Scientist,150000,USD,150000,United States,Remote,United States,M,Data Science and Research +2023,Senior,Full-time,Research Scientist,130000,USD,130000,United States,Remote,United States,M,Data Science and Research +2023,Senior,Full-time,Data Engineer,128000,USD,128000,United States,In-person,United States,M,Data Engineering +2023,Senior,Full-time,Data Engineer,81500,USD,81500,United States,In-person,United States,M,Data Engineering +2023,Senior,Full-time,Data Architect,306000,USD,306000,United States,Remote,United States,M,Data Architecture and Modeling +2023,Senior,Full-time,Data Architect,204000,USD,204000,United States,Remote,United States,M,Data Architecture and Modeling +2023,Senior,Full-time,Data Scientist,185900,USD,185900,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Data Scientist,129300,USD,129300,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Machine Learning Engineer,204500,USD,204500,United States,In-person,United States,M,Machine Learning and AI +2023,Senior,Full-time,Machine Learning Engineer,142200,USD,142200,United States,In-person,United States,M,Machine Learning and AI +2023,Mid-level,Full-time,Machine Learning Engineer,70000,EUR,75577,Netherlands,In-person,Netherlands,M,Machine Learning and AI +2023,Entry-level,Full-time,Data Engineer,18000,USD,18000,India,Hybrid,India,M,Data Engineering +2023,Mid-level,Full-time,Data Analyst,300000,GBP,369120,United Kingdom,In-person,United Kingdom,M,Data Analysis +2023,Mid-level,Full-time,Data Analyst,50000,GBP,61520,United Kingdom,In-person,United Kingdom,M,Data Analysis +2023,Executive,Full-time,Head of Data,270000,USD,270000,United States,Remote,United States,M,Leadership and Management +2023,Executive,Full-time,Head of Data,200000,USD,200000,United States,Remote,United States,M,Leadership and Management +2023,Mid-level,Full-time,Data Scientist,204500,USD,204500,United States,In-person,United States,M,Data Science and Research +2023,Mid-level,Full-time,Data Scientist,142200,USD,142200,United States,In-person,United States,M,Data Science and Research +2023,Mid-level,Full-time,Data Analyst,75000,GBP,92280,United Kingdom,In-person,United Kingdom,M,Data Analysis +2023,Mid-level,Full-time,Data Analyst,55000,GBP,67672,United Kingdom,In-person,United Kingdom,M,Data Analysis +2023,Senior,Full-time,Data Engineer,188600,USD,188600,United States,In-person,United States,M,Data Engineering +2023,Senior,Full-time,Data Engineer,111550,USD,111550,United States,In-person,United States,M,Data Engineering +2023,Senior,Full-time,Machine Learning Engineer,230000,USD,230000,United States,In-person,United States,M,Machine Learning and AI +2023,Senior,Full-time,Machine Learning Engineer,160000,USD,160000,United States,In-person,United States,M,Machine Learning and AI +2023,Senior,Full-time,Data Engineer,247300,USD,247300,United States,In-person,United States,M,Data Engineering +2023,Senior,Full-time,Data Engineer,139700,USD,139700,United States,In-person,United States,M,Data Engineering +2023,Senior,Full-time,AI Engineer,360000,USD,360000,United States,In-person,United States,M,Machine Learning and AI +2023,Senior,Full-time,AI Engineer,240000,USD,240000,United States,In-person,United States,M,Machine Learning and AI +2023,Senior,Full-time,ETL Developer,129100,USD,129100,United States,In-person,United States,M,Data Engineering +2023,Senior,Full-time,ETL Developer,111400,USD,111400,United States,In-person,United States,M,Data Engineering +2023,Senior,Full-time,Data Analyst,135000,USD,135000,United States,Remote,United States,M,Data Analysis +2023,Senior,Full-time,Data Analyst,110000,USD,110000,United States,Remote,United States,M,Data Analysis +2023,Senior,Full-time,Machine Learning Engineer,214500,USD,214500,United States,In-person,United States,M,Machine Learning and AI +2023,Senior,Full-time,Machine Learning Engineer,132600,USD,132600,United States,In-person,United States,M,Machine Learning and AI +2023,Senior,Full-time,Data Analyst,120000,USD,120000,United States,In-person,United States,M,Data Analysis +2023,Senior,Full-time,Data Analyst,100000,USD,100000,United States,In-person,United States,M,Data Analysis +2023,Senior,Full-time,Machine Learning Engineer,242921,USD,242921,United States,In-person,United States,M,Machine Learning and AI +2023,Senior,Full-time,Machine Learning Engineer,170045,USD,170045,United States,In-person,United States,M,Machine Learning and AI +2023,Senior,Full-time,Data Engineer,225000,USD,225000,United States,Remote,United States,M,Data Engineering +2023,Senior,Full-time,Data Engineer,175000,USD,175000,United States,Remote,United States,M,Data Engineering +2023,Mid-level,Full-time,Data Scientist,180000,USD,180000,United States,In-person,United States,M,Data Science and Research +2023,Mid-level,Full-time,Data Scientist,162000,USD,162000,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Data Architect,175000,USD,175000,United States,In-person,United States,M,Data Architecture and Modeling +2023,Senior,Full-time,Data Architect,90000,USD,90000,United States,In-person,United States,M,Data Architecture and Modeling +2023,Entry-level,Full-time,Data Scientist,156450,USD,156450,United States,In-person,United States,M,Data Science and Research +2023,Entry-level,Full-time,Data Scientist,119200,USD,119200,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Data Scientist,245000,USD,245000,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Data Scientist,185000,USD,185000,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Machine Learning Engineer,214500,USD,214500,United States,In-person,United States,M,Machine Learning and AI +2023,Senior,Full-time,Machine Learning Engineer,132600,USD,132600,United States,In-person,United States,M,Machine Learning and AI +2023,Mid-level,Full-time,Data Scientist,154800,USD,154800,United States,In-person,United States,M,Data Science and Research +2023,Mid-level,Full-time,Data Scientist,76300,USD,76300,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Data Scientist,178600,USD,178600,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Data Scientist,88600,USD,88600,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Research Scientist,248100,USD,248100,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Research Scientist,145900,USD,145900,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Data Analyst,93919,USD,93919,United States,Remote,United States,M,Data Analysis +2023,Senior,Full-time,Data Analyst,51962,USD,51962,United States,Remote,United States,M,Data Analysis +2023,Senior,Full-time,Data Scientist,207345,USD,207345,United States,Remote,United States,M,Data Science and Research +2023,Senior,Full-time,Data Scientist,180300,USD,180300,United States,Remote,United States,M,Data Science and Research +2023,Senior,Full-time,Machine Learning Engineer,200000,USD,200000,United States,In-person,United States,M,Machine Learning and AI +2023,Senior,Full-time,Machine Learning Engineer,140000,USD,140000,United States,In-person,United States,M,Machine Learning and AI +2023,Senior,Full-time,Analytics Engineer,205000,USD,205000,United States,In-person,United States,M,Leadership and Management +2023,Senior,Full-time,Analytics Engineer,167500,USD,167500,United States,In-person,United States,M,Leadership and Management +2023,Senior,Full-time,Data Analyst,140000,USD,140000,United States,Remote,United States,M,Data Analysis +2023,Senior,Full-time,Data Analyst,110000,USD,110000,United States,Remote,United States,M,Data Analysis +2023,Senior,Full-time,Data Scientist,228045,USD,228045,United States,Remote,United States,M,Data Science and Research +2023,Senior,Full-time,Data Scientist,198300,USD,198300,United States,Remote,United States,M,Data Science and Research +2023,Senior,Full-time,Data Engineer,150000,USD,150000,United States,Remote,United States,M,Data Engineering +2023,Senior,Full-time,Data Engineer,140000,USD,140000,United States,Remote,United States,M,Data Engineering +2023,Senior,Full-time,Data Analyst,100000,USD,100000,United States,In-person,United States,M,Data Analysis +2023,Senior,Full-time,Data Analyst,75000,USD,75000,United States,In-person,United States,M,Data Analysis +2023,Senior,Full-time,Data Scientist,45000,EUR,48585,Spain,In-person,Spain,M,Data Science and Research +2023,Senior,Full-time,Data Scientist,36000,EUR,38868,Spain,In-person,Spain,M,Data Science and Research +2023,Mid-level,Full-time,BI Developer,100000,USD,100000,United States,In-person,United States,M,BI and Visualization +2023,Mid-level,Full-time,BI Developer,75000,USD,75000,United States,In-person,United States,M,BI and Visualization +2023,Mid-level,Full-time,Data Scientist,72360,EUR,78125,Latvia,In-person,Latvia,M,Data Science and Research +2023,Mid-level,Full-time,Data Scientist,37440,EUR,40423,Latvia,In-person,Latvia,M,Data Science and Research +2023,Senior,Full-time,Data Modeler,140000,USD,140000,United States,In-person,United States,M,Data Architecture and Modeling +2023,Senior,Full-time,Data Modeler,100000,USD,100000,United States,In-person,United States,M,Data Architecture and Modeling +2023,Mid-level,Full-time,Data Analytics Manager,125000,USD,125000,United States,In-person,United States,M,Leadership and Management +2023,Mid-level,Full-time,Data Analytics Manager,120000,USD,120000,United States,In-person,United States,M,Leadership and Management +2023,Senior,Full-time,Business Intelligence Analyst,127000,USD,127000,United States,In-person,United States,M,BI and Visualization +2023,Senior,Full-time,Business Intelligence Analyst,99000,USD,99000,United States,In-person,United States,M,BI and Visualization +2023,Mid-level,Full-time,Data Engineer,130000,USD,130000,United States,Remote,United States,M,Data Engineering +2023,Mid-level,Full-time,Data Engineer,120000,USD,120000,United States,Remote,United States,M,Data Engineering +2023,Senior,Full-time,Business Intelligence Analyst,194500,USD,194500,United States,Remote,United States,M,BI and Visualization +2023,Senior,Full-time,Business Intelligence Analyst,132320,USD,132320,United States,Remote,United States,M,BI and Visualization +2023,Senior,Full-time,Data Engineer,135000,USD,135000,United States,In-person,United States,M,Data Engineering +2023,Senior,Full-time,Data Engineer,90000,USD,90000,United States,In-person,United States,M,Data Engineering +2023,Senior,Full-time,Data Analyst,223602,USD,223602,United States,In-person,United States,M,Data Analysis +2023,Senior,Full-time,Data Analyst,143520,USD,143520,United States,In-person,United States,M,Data Analysis +2023,Senior,Full-time,Machine Learning Scientist,180000,USD,180000,United States,In-person,United States,M,Machine Learning and AI +2023,Senior,Full-time,Machine Learning Scientist,140000,USD,140000,United States,In-person,United States,M,Machine Learning and AI +2023,Mid-level,Full-time,Data Scientist,180000,USD,180000,United States,In-person,United States,M,Data Science and Research +2023,Mid-level,Full-time,Data Scientist,162000,USD,162000,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Data Engineer,99000,GBP,121809,United Kingdom,Remote,United Kingdom,M,Data Engineering +2023,Senior,Full-time,Data Engineer,68000,GBP,83667,United Kingdom,Remote,United Kingdom,M,Data Engineering +2023,Senior,Full-time,Data Analyst,120350,USD,120350,United States,Remote,United States,M,Data Analysis +2023,Senior,Full-time,Data Analyst,74400,USD,74400,United States,Remote,United States,M,Data Analysis +2023,Senior,Full-time,Data Scientist,185000,USD,185000,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Data Scientist,123000,USD,123000,United States,In-person,United States,M,Data Science and Research +2023,Mid-level,Full-time,Data Engineer,140000,USD,140000,United States,Remote,United States,M,Data Engineering +2023,Mid-level,Full-time,Data Engineer,90000,USD,90000,United States,Remote,United States,M,Data Engineering +2023,Senior,Full-time,Machine Learning Engineer,214500,USD,214500,United States,In-person,United States,M,Machine Learning and AI +2023,Senior,Full-time,Machine Learning Engineer,132600,USD,132600,United States,In-person,United States,M,Machine Learning and AI +2023,Senior,Full-time,Data Engineer,154000,USD,154000,United States,In-person,United States,M,Data Engineering +2023,Senior,Full-time,Data Engineer,103000,USD,103000,United States,In-person,United States,M,Data Engineering +2023,Senior,Full-time,Data Analyst,90000,USD,90000,United States,Remote,United States,M,Data Analysis +2023,Senior,Full-time,Data Analyst,80000,USD,80000,United States,Remote,United States,M,Data Analysis +2023,Executive,Full-time,Data Manager,140000,USD,140000,United States,In-person,United States,M,Leadership and Management +2023,Executive,Full-time,Data Manager,100000,USD,100000,United States,In-person,United States,M,Leadership and Management +2023,Senior,Full-time,Data Engineer,170000,USD,170000,United States,In-person,United States,M,Data Engineering +2023,Senior,Full-time,Data Engineer,100000,USD,100000,United States,In-person,United States,M,Data Engineering +2023,Mid-level,Full-time,Data Analyst,115000,USD,115000,United States,In-person,United States,M,Data Analysis +2023,Mid-level,Full-time,Data Analyst,105000,USD,105000,United States,In-person,United States,M,Data Analysis +2023,Senior,Full-time,Data Scientist,296100,USD,296100,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Data Scientist,144500,USD,144500,United States,In-person,United States,M,Data Science and Research +2023,Entry-level,Full-time,Data Engineer,220000,USD,220000,United States,In-person,United States,M,Data Engineering +2023,Entry-level,Full-time,Data Engineer,187000,USD,187000,United States,In-person,United States,M,Data Engineering +2023,Senior,Full-time,Data Analyst,118600,USD,118600,United States,In-person,United States,M,Data Analysis +2023,Senior,Full-time,Data Analyst,96800,USD,96800,United States,In-person,United States,M,Data Analysis +2023,Entry-level,Full-time,Data Scientist,100000,USD,100000,United States,Remote,United States,M,Data Science and Research +2023,Mid-level,Full-time,Machine Learning Engineer,45000,EUR,48585,Italy,Remote,United Kingdom,M,Machine Learning and AI +2023,Mid-level,Full-time,Data Analyst,142000,USD,142000,United States,In-person,United States,M,Data Analysis +2023,Mid-level,Full-time,Data Analyst,128000,USD,128000,United States,In-person,United States,M,Data Analysis +2023,Senior,Full-time,ETL Developer,99500,USD,99500,United States,In-person,United States,M,Data Engineering +2023,Senior,Full-time,ETL Developer,53300,USD,53300,United States,In-person,United States,M,Data Engineering +2023,Senior,Full-time,Data Engineer,210000,USD,210000,United States,In-person,United States,M,Data Engineering +2023,Senior,Full-time,Data Engineer,165000,USD,165000,United States,In-person,United States,M,Data Engineering +2023,Senior,Full-time,Research Scientist,172000,USD,172000,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Research Scientist,125000,USD,125000,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Data Engineer,250000,USD,250000,United States,In-person,United States,M,Data Engineering +2023,Senior,Full-time,Data Engineer,190000,USD,190000,United States,In-person,United States,M,Data Engineering +2023,Senior,Full-time,Research Engineer,245000,USD,245000,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Research Engineer,245000,USD,245000,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Data Architect,234900,USD,234900,United States,In-person,United States,M,Data Architecture and Modeling +2023,Senior,Full-time,Data Architect,68400,USD,68400,United States,In-person,United States,M,Data Architecture and Modeling +2023,Senior,Full-time,Data Scientist,155000,USD,155000,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Data Scientist,139000,USD,139000,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Data Analyst,142000,USD,142000,United States,In-person,United States,M,Data Analysis +2023,Senior,Full-time,Data Analyst,128000,USD,128000,United States,In-person,United States,M,Data Analysis +2023,Senior,Full-time,Research Engineer,172000,USD,172000,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Research Engineer,125000,USD,125000,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Data Engineer,128000,USD,128000,United States,In-person,United States,M,Data Engineering +2023,Senior,Full-time,Data Engineer,81500,USD,81500,United States,In-person,United States,M,Data Engineering +2023,Mid-level,Full-time,Data Engineer,167500,USD,167500,United States,In-person,United States,M,Data Engineering +2023,Mid-level,Full-time,Data Engineer,106500,USD,106500,United States,In-person,United States,M,Data Engineering +2023,Mid-level,Full-time,Data Engineer,150000,USD,150000,United States,Remote,United States,M,Data Engineering +2023,Mid-level,Full-time,Data Engineer,100000,USD,100000,United States,Remote,United States,M,Data Engineering +2023,Senior,Full-time,Data Analyst,139600,USD,139600,United States,In-person,United States,M,Data Analysis +2023,Senior,Full-time,Data Analyst,85700,USD,85700,United States,In-person,United States,M,Data Analysis +2020,Entry-level,Full-time,Azure Data Engineer,100000,USD,100000,Mauritius,In-person,Mauritius,S,Data Engineering +2023,Senior,Full-time,Data Engineer,143000,USD,143000,United States,In-person,United States,M,Data Engineering +2023,Senior,Full-time,Data Engineer,95000,USD,95000,United States,In-person,United States,M,Data Engineering +2023,Senior,Full-time,Data Manager,145000,USD,145000,United States,In-person,United States,M,Leadership and Management +2023,Senior,Full-time,Data Manager,130000,USD,130000,United States,In-person,United States,M,Leadership and Management +2023,Senior,Full-time,Machine Learning Engineer,330000,USD,330000,United States,Remote,United States,M,Machine Learning and AI +2023,Senior,Full-time,Machine Learning Engineer,188000,USD,188000,United States,Remote,United States,M,Machine Learning and AI +2023,Senior,Full-time,Data Scientist,238000,USD,238000,Canada,Remote,Canada,M,Data Science and Research +2023,Senior,Full-time,Data Scientist,156000,USD,156000,Canada,Remote,Canada,M,Data Science and Research +2023,Senior,Full-time,Data Analyst,145000,USD,145000,United States,Remote,United States,M,Data Analysis +2023,Senior,Full-time,Data Analyst,106000,USD,106000,United States,Remote,United States,M,Data Analysis +2023,Senior,Full-time,Decision Scientist,140000,GBP,172256,United Kingdom,Remote,United Kingdom,M,Data Science and Research +2023,Senior,Full-time,Decision Scientist,100000,GBP,123040,United Kingdom,Remote,United Kingdom,M,Data Science and Research +2023,Senior,Full-time,Machine Learning Engineer,297300,USD,297300,United States,Remote,United States,M,Machine Learning and AI +2023,Senior,Full-time,Machine Learning Engineer,198200,USD,198200,United States,Remote,United States,M,Machine Learning and AI +2023,Senior,Full-time,Data Engineer,269100,USD,269100,United States,In-person,United States,M,Data Engineering +2023,Senior,Full-time,Data Engineer,131300,USD,131300,United States,In-person,United States,M,Data Engineering +2023,Senior,Full-time,Machine Learning Infrastructure Engineer,220000,USD,220000,United States,Remote,United States,M,Machine Learning and AI +2023,Senior,Full-time,Machine Learning Infrastructure Engineer,150000,USD,150000,United States,Remote,United States,M,Machine Learning and AI +2023,Senior,Full-time,Data Engineer,60000,GBP,73824,United Kingdom,In-person,United Kingdom,M,Data Engineering +2023,Senior,Full-time,Data Engineer,50000,GBP,61520,United Kingdom,In-person,United Kingdom,M,Data Engineering +2023,Mid-level,Full-time,Research Scientist,252990,USD,252990,United States,Remote,United States,M,Data Science and Research +2023,Mid-level,Full-time,Research Scientist,162170,USD,162170,United States,Remote,United States,M,Data Science and Research +2023,Senior,Full-time,Machine Learning Infrastructure Engineer,260000,USD,260000,United States,Remote,United States,M,Machine Learning and AI +2023,Senior,Full-time,Machine Learning Infrastructure Engineer,235000,USD,235000,United States,Remote,United States,M,Machine Learning and AI +2023,Mid-level,Full-time,Machine Learning Engineer,204500,USD,204500,United States,In-person,United States,M,Machine Learning and AI +2023,Mid-level,Full-time,Machine Learning Engineer,142200,USD,142200,United States,In-person,United States,M,Machine Learning and AI +2023,Senior,Full-time,Data Analytics Manager,190000,USD,190000,United States,In-person,United States,M,Leadership and Management +2023,Senior,Full-time,Data Analytics Manager,145000,USD,145000,United States,In-person,United States,M,Leadership and Management +2023,Senior,Full-time,Data Scientist,212800,USD,212800,United States,Remote,United States,M,Data Science and Research +2023,Senior,Full-time,Data Scientist,111600,USD,111600,United States,Remote,United States,M,Data Science and Research +2023,Senior,Full-time,Data Analyst,175000,USD,175000,United States,Remote,United States,M,Data Analysis +2023,Senior,Full-time,Data Analyst,130000,USD,130000,United States,Remote,United States,M,Data Analysis +2023,Senior,Full-time,Business Intelligence Analyst,194521,USD,194521,United States,In-person,United States,M,BI and Visualization +2023,Senior,Full-time,Business Intelligence Analyst,176838,USD,176838,United States,In-person,United States,M,BI and Visualization +2023,Executive,Full-time,Analytics Engineer,200000,USD,200000,United States,In-person,United States,M,Leadership and Management +2023,Executive,Full-time,Analytics Engineer,170000,USD,170000,United States,In-person,United States,M,Leadership and Management +2023,Senior,Full-time,Data Scientist,191765,USD,191765,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Data Scientist,134236,USD,134236,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Data Scientist,238000,USD,238000,Canada,Remote,Canada,M,Data Science and Research +2023,Senior,Full-time,Data Scientist,156000,USD,156000,Canada,Remote,Canada,M,Data Science and Research +2023,Senior,Full-time,Data Scientist,198800,USD,198800,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Data Scientist,90700,USD,90700,United States,In-person,United States,M,Data Science and Research +2023,Mid-level,Full-time,BI Developer,154800,USD,154800,United States,In-person,United States,M,BI and Visualization +2023,Mid-level,Full-time,BI Developer,76300,USD,76300,United States,In-person,United States,M,BI and Visualization +2023,Mid-level,Full-time,Data Lead,130000,USD,130000,United States,Remote,United States,M,Leadership and Management +2023,Mid-level,Full-time,Data Lead,115000,USD,115000,United States,Remote,United States,M,Leadership and Management +2023,Senior,Full-time,Data Analyst,110000,USD,110000,United States,In-person,United States,M,Data Analysis +2023,Senior,Full-time,Data Analyst,70000,USD,70000,United States,In-person,United States,M,Data Analysis +2023,Mid-level,Full-time,Data Analyst,39000,EUR,42107,Germany,Hybrid,Germany,M,Data Analysis +2023,Mid-level,Full-time,Machine Learning Engineer,300000,USD,300000,United States,In-person,United States,M,Machine Learning and AI +2023,Mid-level,Full-time,Machine Learning Engineer,200000,USD,200000,United States,In-person,United States,M,Machine Learning and AI +2023,Senior,Full-time,Data Architect,155000,USD,155000,United States,Remote,United States,M,Data Architecture and Modeling +2023,Senior,Full-time,Data Architect,135000,USD,135000,United States,Remote,United States,M,Data Architecture and Modeling +2023,Mid-level,Full-time,Data Manager,115500,USD,115500,United States,In-person,United States,M,Leadership and Management +2023,Mid-level,Full-time,Data Manager,73500,USD,73500,United States,In-person,United States,M,Leadership and Management +2023,Senior,Full-time,Data Scientist,179000,USD,179000,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Data Scientist,109000,USD,109000,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Data Scientist,180000,USD,180000,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Data Scientist,140000,USD,140000,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Machine Learning Infrastructure Engineer,221000,USD,221000,United States,In-person,United States,M,Machine Learning and AI +2023,Senior,Full-time,Machine Learning Infrastructure Engineer,180000,USD,180000,United States,In-person,United States,M,Machine Learning and AI +2023,Senior,Full-time,Applied Scientist,222200,USD,222200,United States,In-person,United States,L,Data Science and Research +2023,Senior,Full-time,Applied Scientist,136000,USD,136000,United States,In-person,United States,L,Data Science and Research +2023,Senior,Full-time,Machine Learning Engineer,275000,USD,275000,United States,In-person,United States,M,Machine Learning and AI +2023,Senior,Full-time,Machine Learning Engineer,170000,USD,170000,United States,In-person,United States,M,Machine Learning and AI +2023,Senior,Full-time,Data Scientist,233300,USD,233300,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Data Scientist,155500,USD,155500,United States,In-person,United States,M,Data Science and Research +2023,Mid-level,Full-time,Applied Scientist,222200,USD,222200,United States,In-person,United States,L,Data Science and Research +2023,Mid-level,Full-time,Applied Scientist,136000,USD,136000,United States,In-person,United States,L,Data Science and Research +2023,Senior,Full-time,Data Architect,193000,USD,193000,United States,Remote,United States,M,Data Architecture and Modeling +2023,Senior,Full-time,Data Architect,110000,USD,110000,United States,Remote,United States,M,Data Architecture and Modeling +2023,Senior,Full-time,Research Engineer,306000,USD,306000,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Research Engineer,180000,USD,180000,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Applied Scientist,212800,USD,212800,United States,In-person,United States,L,Data Science and Research +2023,Senior,Full-time,Applied Scientist,115100,USD,115100,United States,In-person,United States,L,Data Science and Research +2023,Senior,Full-time,Machine Learning Engineer,238000,USD,238000,United States,In-person,United States,M,Machine Learning and AI +2023,Senior,Full-time,Machine Learning Engineer,176000,USD,176000,United States,In-person,United States,M,Machine Learning and AI +2023,Senior,Full-time,Data Analyst,117500,USD,117500,United States,Remote,United States,M,Data Analysis +2023,Senior,Full-time,Data Analyst,86720,USD,86720,United States,Remote,United States,M,Data Analysis +2023,Mid-level,Full-time,Data Analyst,167000,USD,167000,United States,In-person,United States,M,Data Analysis +2023,Mid-level,Full-time,Data Analyst,150000,USD,150000,United States,In-person,United States,M,Data Analysis +2023,Executive,Full-time,Data Analyst,90000,USD,90000,United States,Remote,United States,M,Data Analysis +2023,Executive,Full-time,Data Analyst,70000,USD,70000,United States,Remote,United States,M,Data Analysis +2023,Senior,Full-time,Data Scientist,212800,USD,212800,United States,Remote,United States,L,Data Science and Research +2023,Senior,Full-time,Data Scientist,111600,USD,111600,United States,Remote,United States,L,Data Science and Research +2023,Senior,Full-time,Data Architect,306000,USD,306000,United States,Remote,United States,M,Data Architecture and Modeling +2023,Senior,Full-time,Data Architect,204000,USD,204000,United States,Remote,United States,M,Data Architecture and Modeling +2023,Senior,Full-time,BI Developer,135000,USD,135000,United States,Remote,United States,M,BI and Visualization +2023,Senior,Full-time,BI Developer,110000,USD,110000,United States,Remote,United States,M,BI and Visualization +2023,Senior,Full-time,Data Scientist,165000,USD,165000,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Data Scientist,116300,USD,116300,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Machine Learning Engineer,200000,USD,200000,United States,Remote,United States,M,Machine Learning and AI +2023,Senior,Full-time,Machine Learning Engineer,175000,USD,175000,United States,Remote,United States,M,Machine Learning and AI +2023,Senior,Full-time,Business Intelligence Engineer,185000,USD,185000,United States,In-person,United States,L,BI and Visualization +2023,Senior,Full-time,Business Intelligence Engineer,79600,USD,79600,United States,In-person,United States,L,BI and Visualization +2023,Senior,Full-time,Machine Learning Scientist,180514,USD,180514,United States,Remote,United States,M,Machine Learning and AI +2023,Senior,Full-time,Machine Learning Scientist,108308,USD,108308,United States,Remote,United States,M,Machine Learning and AI +2023,Senior,Full-time,Machine Learning Engineer,200000,USD,200000,United States,Remote,United States,M,Machine Learning and AI +2023,Senior,Full-time,Machine Learning Engineer,150000,USD,150000,United States,Remote,United States,M,Machine Learning and AI +2023,Senior,Full-time,Machine Learning Engineer,208450,USD,208450,United States,In-person,United States,M,Machine Learning and AI +2023,Senior,Full-time,Machine Learning Engineer,151600,USD,151600,United States,In-person,United States,M,Machine Learning and AI +2023,Senior,Full-time,Data Scientist,324000,USD,324000,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Data Scientist,159000,USD,159000,United States,In-person,United States,M,Data Science and Research +2023,Mid-level,Full-time,Data Scientist,155000,USD,155000,United States,Remote,United States,M,Data Science and Research +2023,Mid-level,Full-time,Data Scientist,135000,USD,135000,United States,Remote,United States,M,Data Science and Research +2023,Senior,Full-time,Data Engineer,223250,USD,223250,United States,In-person,United States,M,Data Engineering +2023,Senior,Full-time,Data Engineer,156275,USD,156275,United States,In-person,United States,M,Data Engineering +2023,Senior,Full-time,Data Engineer,220000,USD,220000,United States,In-person,United States,M,Data Engineering +2023,Senior,Full-time,Data Engineer,160000,USD,160000,United States,In-person,United States,M,Data Engineering +2023,Senior,Full-time,Data Scientist,168000,USD,168000,United States,Remote,United States,M,Data Science and Research +2023,Senior,Full-time,Data Scientist,130000,USD,130000,United States,Remote,United States,M,Data Science and Research +2023,Senior,Full-time,Analytics Engineer,245000,USD,245000,United States,Remote,United States,M,Leadership and Management +2023,Senior,Full-time,Analytics Engineer,185000,USD,185000,United States,Remote,United States,M,Leadership and Management +2023,Senior,Full-time,Data Scientist,164000,USD,164000,United States,Remote,United States,M,Data Science and Research +2023,Senior,Full-time,Data Scientist,130000,USD,130000,United States,Remote,United States,M,Data Science and Research +2023,Mid-level,Full-time,Data Analyst,67500,USD,67500,United States,In-person,United States,M,Data Analysis +2023,Mid-level,Full-time,Data Analyst,46500,USD,46500,United States,In-person,United States,M,Data Analysis +2023,Senior,Full-time,ML Engineer,270000,USD,270000,United States,Remote,United States,M,Machine Learning and AI +2023,Senior,Full-time,ML Engineer,232200,USD,232200,United States,Remote,United States,M,Machine Learning and AI +2023,Mid-level,Full-time,Data Engineer,40000,EUR,43187,Poland,Remote,Poland,L,Data Engineering +2023,Mid-level,Full-time,Data Analyst,105000,USD,105000,United States,In-person,United States,M,Data Analysis +2023,Mid-level,Full-time,Data Analyst,78000,USD,78000,United States,In-person,United States,M,Data Analysis +2023,Mid-level,Full-time,Data Manager,115500,USD,115500,United States,In-person,United States,M,Leadership and Management +2023,Mid-level,Full-time,Data Manager,73500,USD,73500,United States,In-person,United States,M,Leadership and Management +2023,Senior,Full-time,Machine Learning Engineer,370000,USD,370000,United States,In-person,United States,M,Machine Learning and AI +2023,Senior,Full-time,Machine Learning Engineer,220000,USD,220000,United States,In-person,United States,M,Machine Learning and AI +2023,Senior,Full-time,Data Engineer,155000,USD,155000,United States,In-person,United States,M,Data Engineering +2023,Senior,Full-time,Data Engineer,130000,USD,130000,United States,In-person,United States,M,Data Engineering +2023,Senior,Full-time,Machine Learning Engineer,178200,USD,178200,United States,Remote,United States,M,Machine Learning and AI +2023,Senior,Full-time,Machine Learning Engineer,115000,USD,115000,United States,Remote,United States,M,Machine Learning and AI +2023,Mid-level,Full-time,Data Analyst,250000,USD,250000,United States,In-person,United States,M,Data Analysis +2023,Mid-level,Full-time,Data Analyst,125000,USD,125000,United States,In-person,United States,M,Data Analysis +2023,Mid-level,Full-time,Data Scientist,204000,USD,204000,United States,In-person,United States,M,Data Science and Research +2023,Mid-level,Full-time,Data Scientist,150000,USD,150000,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Data Analyst,110000,USD,110000,United States,Remote,United States,M,Data Analysis +2023,Senior,Full-time,Data Analyst,95000,USD,95000,United States,Remote,United States,M,Data Analysis +2023,Mid-level,Full-time,Data Engineer,143000,USD,143000,United States,In-person,United States,M,Data Engineering +2023,Mid-level,Full-time,Data Engineer,95000,USD,95000,United States,In-person,United States,M,Data Engineering +2023,Mid-level,Full-time,Data Engineer,250000,USD,250000,United States,In-person,United States,M,Data Engineering +2023,Mid-level,Full-time,Data Engineer,125000,USD,125000,United States,In-person,United States,M,Data Engineering +2023,Senior,Full-time,Machine Learning Engineer,280000,USD,280000,United States,In-person,United States,M,Machine Learning and AI +2023,Senior,Full-time,Machine Learning Engineer,240000,USD,240000,United States,In-person,United States,M,Machine Learning and AI +2023,Senior,Full-time,Data Manager,110400,USD,110400,United States,In-person,United States,M,Leadership and Management +2023,Senior,Full-time,Data Manager,68000,USD,68000,United States,In-person,United States,M,Leadership and Management +2023,Senior,Full-time,Applied Scientist,216000,USD,216000,United States,Remote,United States,M,Data Science and Research +2023,Senior,Full-time,Applied Scientist,184000,USD,184000,United States,Remote,United States,M,Data Science and Research +2023,Senior,Full-time,Machine Learning Engineer,192000,USD,192000,United States,Remote,United States,M,Machine Learning and AI +2023,Senior,Full-time,Machine Learning Engineer,164000,USD,164000,United States,Remote,United States,M,Machine Learning and AI +2023,Senior,Full-time,Data Scientist,220000,USD,220000,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Data Scientist,160000,USD,160000,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Data Scientist,225000,USD,225000,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Data Scientist,156400,USD,156400,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Data Scientist,297300,USD,297300,United States,Remote,United States,M,Data Science and Research +2023,Senior,Full-time,Data Scientist,198200,USD,198200,United States,Remote,United States,M,Data Science and Research +2023,Senior,Full-time,Applied Scientist,192000,USD,192000,United States,Remote,United States,M,Data Science and Research +2023,Senior,Full-time,Applied Scientist,164000,USD,164000,United States,Remote,United States,M,Data Science and Research +2023,Senior,Full-time,Data Analyst,168000,USD,168000,Canada,In-person,Canada,M,Data Analysis +2023,Senior,Full-time,Data Analyst,112000,USD,112000,Canada,In-person,Canada,M,Data Analysis +2023,Senior,Full-time,Machine Learning Engineer,204500,USD,204500,United States,In-person,United States,M,Machine Learning and AI +2023,Senior,Full-time,Machine Learning Engineer,142200,USD,142200,United States,In-person,United States,M,Machine Learning and AI +2023,Senior,Full-time,Data Scientist,253430,USD,253430,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Data Scientist,212780,USD,212780,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Research Engineer,190000,USD,190000,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Research Engineer,152000,USD,152000,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Machine Learning Engineer,265800,USD,265800,United States,Remote,United States,M,Machine Learning and AI +2023,Senior,Full-time,Machine Learning Engineer,165500,USD,165500,United States,Remote,United States,M,Machine Learning and AI +2023,Senior,Full-time,Data Engineer,193000,USD,193000,United States,Remote,United States,M,Data Engineering +2023,Senior,Full-time,Data Engineer,134000,USD,134000,United States,Remote,United States,M,Data Engineering +2023,Senior,Full-time,AI Engineer,180000,USD,180000,United States,Remote,United States,M,Machine Learning and AI +2023,Senior,Full-time,AI Engineer,150000,USD,150000,United States,Remote,United States,M,Machine Learning and AI +2023,Mid-level,Full-time,Data Developer,120681,USD,120681,United States,Remote,United States,M,Leadership and Management +2023,Mid-level,Full-time,Data Developer,72409,USD,72409,United States,Remote,United States,M,Leadership and Management +2023,Senior,Full-time,Machine Learning Engineer,180000,USD,180000,United States,Remote,United States,M,Machine Learning and AI +2023,Senior,Full-time,Machine Learning Engineer,139750,USD,139750,United States,Remote,United States,M,Machine Learning and AI +2023,Mid-level,Full-time,Applied Scientist,222200,USD,222200,United States,In-person,United States,L,Data Science and Research +2023,Mid-level,Full-time,Applied Scientist,136000,USD,136000,United States,In-person,United States,L,Data Science and Research +2023,Senior,Full-time,Data Engineer,254000,USD,254000,United States,Remote,United States,M,Data Engineering +2023,Senior,Full-time,Data Engineer,200000,USD,200000,United States,Remote,United States,M,Data Engineering +2023,Senior,Full-time,AI Developer,260000,USD,260000,United States,In-person,United States,M,Machine Learning and AI +2023,Senior,Full-time,AI Developer,192000,USD,192000,United States,In-person,United States,M,Machine Learning and AI +2023,Senior,Full-time,Data Scientist,272290,USD,272290,United States,Remote,United States,M,Data Science and Research +2023,Senior,Full-time,Data Scientist,169374,USD,169374,United States,Remote,United States,M,Data Science and Research +2023,Senior,Full-time,Principal Data Scientist,195000,USD,195000,United States,Remote,United States,L,Data Science and Research +2023,Senior,Full-time,Data Science Lead,204500,USD,204500,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Data Science Lead,142200,USD,142200,United States,In-person,United States,M,Data Science and Research +2023,Mid-level,Full-time,Business Data Analyst,17000,USD,17000,Armenia,Remote,Russian Federation,L,Data Analysis +2023,Senior,Full-time,Data Engineer,181500,USD,181500,United States,In-person,United States,M,Data Engineering +2023,Senior,Full-time,Data Engineer,112200,USD,112200,United States,In-person,United States,M,Data Engineering +2023,Senior,Full-time,Machine Learning Engineer,204500,USD,204500,United States,In-person,United States,M,Machine Learning and AI +2023,Senior,Full-time,Machine Learning Engineer,142200,USD,142200,United States,In-person,United States,M,Machine Learning and AI +2023,Senior,Full-time,Data Scientist,180000,USD,180000,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Data Scientist,162000,USD,162000,United States,In-person,United States,M,Data Science and Research +2023,Mid-level,Full-time,Machine Learning Researcher,150000,USD,150000,United States,Remote,United States,M,Machine Learning and AI +2023,Mid-level,Full-time,Machine Learning Researcher,100000,USD,100000,United States,Remote,United States,M,Machine Learning and AI +2023,Senior,Full-time,Machine Learning Engineer,250500,USD,250500,United States,In-person,United States,M,Machine Learning and AI +2023,Senior,Full-time,Machine Learning Engineer,166600,USD,166600,United States,In-person,United States,M,Machine Learning and AI +2023,Executive,Full-time,Head of Data,247500,USD,247500,United States,In-person,United States,M,Leadership and Management +2023,Executive,Full-time,Head of Data,172200,USD,172200,United States,In-person,United States,M,Leadership and Management +2023,Senior,Full-time,Machine Learning Engineer,247500,USD,247500,United States,In-person,United States,M,Machine Learning and AI +2023,Senior,Full-time,Machine Learning Engineer,172200,USD,172200,United States,In-person,United States,M,Machine Learning and AI +2023,Senior,Full-time,Data Scientist,223290,USD,223290,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Data Scientist,131310,USD,131310,United States,In-person,United States,M,Data Science and Research +2020,Entry-level,Contract,Staff Data Analyst,60000,CAD,44753,Canada,Hybrid,Canada,L,Data Analysis +2023,Entry-level,Full-time,AI Engineer,35000,USD,35000,Croatia,Remote,Germany,M,Machine Learning and AI +2023,Senior,Full-time,AI Developer,50000,EUR,53984,Italy,Remote,Italy,S,Machine Learning and AI +2023,Senior,Full-time,Machine Learning Engineer,226600,USD,226600,United States,In-person,United States,M,Machine Learning and AI +2023,Senior,Full-time,Machine Learning Engineer,140100,USD,140100,United States,In-person,United States,M,Machine Learning and AI +2023,Senior,Full-time,Machine Learning Scientist,204500,USD,204500,Canada,In-person,Canada,M,Machine Learning and AI +2023,Senior,Full-time,Machine Learning Scientist,142200,USD,142200,Canada,In-person,Canada,M,Machine Learning and AI +2023,Senior,Full-time,Research Scientist,220000,USD,220000,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Research Scientist,140000,USD,140000,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Machine Learning Engineer,204600,USD,204600,United States,In-person,United States,M,Machine Learning and AI +2023,Senior,Full-time,Machine Learning Engineer,126500,USD,126500,United States,In-person,United States,M,Machine Learning and AI +2023,Senior,Full-time,Research Analyst,135960,USD,135960,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Research Analyst,70960,USD,70960,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Data Engineer,128750,USD,128750,United States,In-person,United States,M,Data Engineering +2023,Senior,Full-time,Data Engineer,86250,USD,86250,United States,In-person,United States,M,Data Engineering +2023,Senior,Full-time,Data Engineer,90000,GBP,110736,United Kingdom,In-person,United Kingdom,M,Data Engineering +2023,Senior,Full-time,Data Engineer,75000,GBP,92280,United Kingdom,In-person,United Kingdom,M,Data Engineering +2023,Mid-level,Full-time,Data Engineer,131000,USD,131000,Colombia,In-person,Colombia,M,Data Engineering +2023,Mid-level,Full-time,Data Engineer,88000,USD,88000,Colombia,In-person,Colombia,M,Data Engineering +2023,Senior,Full-time,Data Analyst,185100,USD,185100,United States,Remote,United States,M,Data Analysis +2023,Senior,Full-time,Data Analyst,133300,USD,133300,United States,Remote,United States,M,Data Analysis +2023,Senior,Full-time,Research Engineer,180000,USD,180000,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Research Engineer,150000,USD,150000,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Data Engineer,90000,USD,90000,United States,In-person,United States,M,Data Engineering +2023,Senior,Full-time,Data Engineer,75000,USD,75000,United States,In-person,United States,M,Data Engineering +2023,Entry-level,Full-time,AI Developer,130000,USD,130000,United States,Remote,United States,L,Machine Learning and AI +2023,Senior,Full-time,Data Analyst,60000,GBP,73824,United Kingdom,In-person,United Kingdom,M,Data Analysis +2023,Senior,Full-time,Data Analyst,50000,GBP,61520,United Kingdom,In-person,United Kingdom,M,Data Analysis +2023,Mid-level,Full-time,Data Manager,115500,USD,115500,United States,In-person,United States,M,Leadership and Management +2023,Mid-level,Full-time,Data Manager,73500,USD,73500,United States,In-person,United States,M,Leadership and Management +2023,Mid-level,Full-time,ML Engineer,125000,USD,125000,United States,In-person,United States,M,Machine Learning and AI +2023,Mid-level,Full-time,ML Engineer,85000,USD,85000,United States,In-person,United States,M,Machine Learning and AI +2023,Mid-level,Full-time,Data Manager,80000,USD,80000,United States,In-person,United States,M,Leadership and Management +2023,Mid-level,Full-time,Data Manager,70000,USD,70000,United States,In-person,United States,M,Leadership and Management +2023,Senior,Full-time,Data Scientist,260000,USD,260000,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Data Scientist,160000,USD,160000,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Data Manager,105000,USD,105000,United States,In-person,United States,M,Leadership and Management +2023,Senior,Full-time,Data Manager,80000,USD,80000,United States,In-person,United States,M,Leadership and Management +2023,Senior,Full-time,Machine Learning Engineer,150000,USD,150000,Canada,Remote,Canada,M,Machine Learning and AI +2023,Senior,Full-time,Machine Learning Engineer,95000,USD,95000,Canada,Remote,Canada,M,Machine Learning and AI +2023,Senior,Full-time,Data Engineer,204750,USD,204750,United States,In-person,United States,M,Data Engineering +2023,Senior,Full-time,Data Engineer,153550,USD,153550,United States,In-person,United States,M,Data Engineering +2023,Senior,Full-time,Data Analyst,150000,USD,150000,United States,Remote,United States,M,Data Analysis +2023,Senior,Full-time,Data Analyst,120000,USD,120000,United States,Remote,United States,M,Data Analysis +2023,Mid-level,Full-time,Data Engineer,150000,USD,150000,United States,In-person,United States,M,Data Engineering +2023,Mid-level,Full-time,Data Engineer,110000,USD,110000,United States,In-person,United States,M,Data Engineering +2023,Senior,Full-time,Data Engineer,200000,USD,200000,United States,In-person,United States,M,Data Engineering +2023,Senior,Full-time,Data Engineer,141000,USD,141000,United States,In-person,United States,M,Data Engineering +2023,Senior,Full-time,Data Engineer,230000,USD,230000,United States,In-person,United States,M,Data Engineering +2023,Senior,Full-time,Data Engineer,175000,USD,175000,United States,In-person,United States,M,Data Engineering +2023,Senior,Full-time,Research Scientist,150000,USD,150000,United States,Remote,United States,M,Data Science and Research +2023,Senior,Full-time,Research Scientist,120000,USD,120000,United States,Remote,United States,M,Data Science and Research +2023,Senior,Full-time,Machine Learning Engineer,207611,USD,207611,United States,In-person,United States,M,Machine Learning and AI +2023,Senior,Full-time,Machine Learning Engineer,127876,USD,127876,United States,In-person,United States,M,Machine Learning and AI +2023,Senior,Full-time,Data Analyst,175000,USD,175000,United States,Remote,United States,M,Data Analysis +2023,Senior,Full-time,Data Analyst,135000,USD,135000,United States,Remote,United States,M,Data Analysis +2023,Senior,Full-time,Data Analyst,100000,USD,100000,United States,In-person,United States,M,Data Analysis +2023,Senior,Full-time,Data Analyst,75000,USD,75000,United States,In-person,United States,M,Data Analysis +2023,Mid-level,Full-time,Data Scientist,170000,USD,170000,United States,Remote,United States,M,Data Science and Research +2023,Mid-level,Full-time,Data Scientist,144500,USD,144500,United States,Remote,United States,M,Data Science and Research +2023,Senior,Full-time,Machine Learning Engineer,204500,USD,204500,United States,In-person,United States,M,Machine Learning and AI +2023,Senior,Full-time,Machine Learning Engineer,142200,USD,142200,United States,In-person,United States,M,Machine Learning and AI +2023,Senior,Full-time,Machine Learning Engineer,255360,USD,255360,United States,In-person,United States,M,Machine Learning and AI +2023,Senior,Full-time,Machine Learning Engineer,212800,USD,212800,United States,In-person,United States,M,Machine Learning and AI +2023,Senior,Full-time,Data Engineer,170000,USD,170000,United States,Remote,United States,M,Data Engineering +2023,Senior,Full-time,Data Engineer,100000,USD,100000,United States,Remote,United States,M,Data Engineering +2023,Senior,Full-time,Data Analyst,106400,USD,106400,United States,In-person,United States,M,Data Analysis +2023,Senior,Full-time,Data Analyst,81800,USD,81800,United States,In-person,United States,M,Data Analysis +2023,Mid-level,Full-time,Data Developer,130000,USD,130000,United States,Remote,United States,M,Leadership and Management +2023,Mid-level,Full-time,Data Developer,69139,USD,69139,United States,Remote,United States,M,Leadership and Management +2023,Mid-level,Full-time,Business Intelligence Analyst,100631,USD,100631,Canada,In-person,Canada,M,BI and Visualization +2023,Mid-level,Full-time,Business Intelligence Analyst,80505,USD,80505,Canada,In-person,Canada,M,BI and Visualization +2023,Senior,Full-time,Data Infrastructure Engineer,300105,USD,300105,United States,In-person,United States,M,Data Engineering +2023,Senior,Full-time,Data Infrastructure Engineer,151090,USD,151090,United States,In-person,United States,M,Data Engineering +2023,Mid-level,Full-time,Machine Learning Software Engineer,217600,USD,217600,United States,In-person,United States,M,Machine Learning and AI +2023,Mid-level,Full-time,Machine Learning Software Engineer,145000,USD,145000,United States,In-person,United States,M,Machine Learning and AI +2023,Mid-level,Full-time,Data Scientist,65000,GBP,79976,United Kingdom,Remote,United Kingdom,M,Data Science and Research +2023,Mid-level,Full-time,Data Scientist,45000,GBP,55368,United Kingdom,Remote,United Kingdom,M,Data Science and Research +2023,Senior,Full-time,Data Engineer,129000,USD,129000,United States,Remote,United States,M,Data Engineering +2023,Senior,Full-time,Data Engineer,110000,USD,110000,United States,Remote,United States,M,Data Engineering +2023,Senior,Full-time,Research Analyst,185000,USD,185000,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Research Analyst,50000,USD,50000,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Data Engineer,210000,USD,210000,United States,In-person,United States,M,Data Engineering +2023,Senior,Full-time,Data Engineer,108000,USD,108000,United States,In-person,United States,M,Data Engineering +2023,Mid-level,Full-time,Data Analyst,80000,USD,80000,United States,In-person,United States,M,Data Analysis +2023,Mid-level,Full-time,Data Analyst,59500,USD,59500,United States,In-person,United States,M,Data Analysis +2023,Senior,Full-time,Machine Learning Engineer,250000,USD,250000,United States,In-person,United States,M,Machine Learning and AI +2023,Senior,Full-time,Machine Learning Engineer,173400,USD,173400,United States,In-person,United States,M,Machine Learning and AI +2023,Senior,Full-time,Data Architect,215000,USD,215000,United States,Remote,United States,M,Data Architecture and Modeling +2023,Senior,Full-time,Data Architect,153000,USD,153000,United States,Remote,United States,M,Data Architecture and Modeling +2023,Senior,Full-time,Machine Learning Scientist,171000,GBP,210398,United Kingdom,In-person,United Kingdom,M,Machine Learning and AI +2023,Senior,Full-time,Machine Learning Scientist,120000,GBP,147648,United Kingdom,In-person,United Kingdom,M,Machine Learning and AI +2023,Senior,Full-time,Data Analyst,105000,USD,105000,United States,Remote,United States,M,Data Analysis +2023,Senior,Full-time,Data Analyst,75000,USD,75000,United States,Remote,United States,M,Data Analysis +2023,Senior,Full-time,Machine Learning Operations Engineer,60000,USD,60000,Thailand,Remote,United States,L,Machine Learning and AI +2023,Mid-level,Full-time,AI Scientist,54000,USD,54000,"Korea, Republic of",In-person,"Korea, Republic of",S,Machine Learning and AI +2023,Senior,Full-time,Data Engineer,202000,USD,202000,United States,Remote,United States,M,Data Engineering +2023,Senior,Full-time,Data Engineer,132000,USD,132000,United States,Remote,United States,M,Data Engineering +2023,Senior,Full-time,Data Scientist,185900,USD,185900,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Data Scientist,129300,USD,129300,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Machine Learning Engineer,204500,USD,204500,United States,In-person,United States,M,Machine Learning and AI +2023,Senior,Full-time,Machine Learning Engineer,142200,USD,142200,United States,In-person,United States,M,Machine Learning and AI +2023,Mid-level,Full-time,Data Analyst,60000,GBP,73824,United Kingdom,In-person,United Kingdom,M,Data Analysis +2023,Mid-level,Full-time,Data Analyst,50000,GBP,61520,United Kingdom,In-person,United Kingdom,M,Data Analysis +2023,Senior,Full-time,Data Scientist,316000,USD,316000,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Data Scientist,202000,USD,202000,United States,In-person,United States,M,Data Science and Research +2023,Mid-level,Full-time,AI Research Engineer,66000,GBP,81206,United Kingdom,In-person,United Kingdom,M,Data Science and Research +2023,Executive,Full-time,Head of Machine Learning,330000,USD,330000,United States,In-person,United States,M,Machine Learning and AI +2023,Executive,Full-time,Head of Machine Learning,188000,USD,188000,United States,In-person,United States,M,Machine Learning and AI +2023,Mid-level,Full-time,BI Analyst,140000,USD,140000,United States,In-person,United States,M,BI and Visualization +2023,Mid-level,Full-time,BI Analyst,110000,USD,110000,United States,In-person,United States,M,BI and Visualization +2023,Senior,Full-time,Machine Learning Researcher,190000,USD,190000,United States,Remote,United States,M,Machine Learning and AI +2023,Senior,Full-time,Machine Learning Researcher,170000,USD,170000,United States,Remote,United States,M,Machine Learning and AI +2023,Senior,Full-time,Data Engineer,180000,USD,180000,United States,In-person,United States,M,Data Engineering +2023,Senior,Full-time,Data Engineer,162000,USD,162000,United States,In-person,United States,M,Data Engineering +2023,Senior,Full-time,Research Analyst,150000,USD,150000,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Research Analyst,125000,USD,125000,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Data Scientist,140000,USD,140000,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Data Scientist,105000,USD,105000,United States,In-person,United States,M,Data Science and Research +2023,Mid-level,Full-time,Data Specialist,90000,USD,90000,United States,Remote,United States,M,Data Management and Strategy +2023,Mid-level,Full-time,Data Specialist,73000,USD,73000,United States,Remote,United States,M,Data Management and Strategy +2023,Mid-level,Full-time,Data Scientist,145000,USD,145000,United States,Remote,United States,M,Data Science and Research +2023,Mid-level,Full-time,Data Scientist,115000,USD,115000,United States,Remote,United States,M,Data Science and Research +2023,Senior,Full-time,Data Manager,145000,USD,145000,United States,In-person,United States,M,Leadership and Management +2023,Senior,Full-time,Data Manager,130000,USD,130000,United States,In-person,United States,M,Leadership and Management +2023,Mid-level,Full-time,Decision Scientist,204500,USD,204500,United States,In-person,United States,M,Data Science and Research +2023,Mid-level,Full-time,Decision Scientist,142200,USD,142200,United States,In-person,United States,M,Data Science and Research +2023,Mid-level,Full-time,Business Intelligence Analyst,150000,USD,150000,United States,Remote,United States,M,BI and Visualization +2023,Mid-level,Full-time,Business Intelligence Analyst,135000,USD,135000,United States,Remote,United States,M,BI and Visualization +2023,Senior,Full-time,Machine Learning Engineer,247500,USD,247500,United States,In-person,United States,M,Machine Learning and AI +2023,Senior,Full-time,Machine Learning Engineer,172200,USD,172200,United States,In-person,United States,M,Machine Learning and AI +2023,Executive,Full-time,Head of Data,329500,USD,329500,United States,Remote,United States,M,Leadership and Management +2023,Executive,Full-time,Head of Data,269600,USD,269600,United States,Remote,United States,M,Leadership and Management +2023,Senior,Full-time,Business Intelligence Engineer,225000,USD,225000,United States,In-person,United States,M,BI and Visualization +2023,Senior,Full-time,Business Intelligence Engineer,156400,USD,156400,United States,In-person,United States,M,BI and Visualization +2023,Senior,Full-time,Data Engineer,190000,USD,190000,United States,In-person,United States,M,Data Engineering +2023,Senior,Full-time,Data Engineer,170000,USD,170000,United States,In-person,United States,M,Data Engineering +2023,Mid-level,Full-time,Data Science Lead,185900,USD,185900,United States,In-person,United States,M,Data Science and Research +2023,Mid-level,Full-time,Data Science Lead,129300,USD,129300,United States,In-person,United States,M,Data Science and Research +2023,Mid-level,Full-time,Data Analyst,80000,USD,80000,United States,Remote,United States,M,Data Analysis +2023,Mid-level,Full-time,Data Analyst,70000,USD,70000,United States,Remote,United States,M,Data Analysis +2023,Senior,Full-time,Data Scientist,204500,USD,204500,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Data Scientist,138900,USD,138900,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Machine Learning Scientist,204500,USD,204500,Canada,In-person,Canada,M,Machine Learning and AI +2023,Senior,Full-time,Machine Learning Scientist,142200,USD,142200,Canada,In-person,Canada,M,Machine Learning and AI +2023,Mid-level,Full-time,Data Manager,115500,USD,115500,United States,In-person,United States,M,Leadership and Management +2023,Mid-level,Full-time,Data Manager,73500,USD,73500,United States,In-person,United States,M,Leadership and Management +2023,Mid-level,Full-time,Data Engineer,146000,USD,146000,United States,In-person,United States,M,Data Engineering +2023,Mid-level,Full-time,Data Engineer,97000,USD,97000,United States,In-person,United States,M,Data Engineering +2023,Senior,Full-time,Data Engineer,147100,USD,147100,United States,In-person,United States,M,Data Engineering +2023,Senior,Full-time,Data Engineer,90700,USD,90700,United States,In-person,United States,M,Data Engineering +2023,Senior,Full-time,Data Scientist,257000,USD,257000,United States,Remote,United States,M,Data Science and Research +2023,Senior,Full-time,Data Scientist,197000,USD,197000,United States,Remote,United States,M,Data Science and Research +2023,Senior,Full-time,Business Intelligence Engineer,140000,USD,140000,United States,Remote,United States,M,BI and Visualization +2023,Senior,Full-time,Business Intelligence Engineer,120000,USD,120000,United States,Remote,United States,M,BI and Visualization +2023,Senior,Full-time,Data Analyst,85000,USD,85000,United States,In-person,United States,M,Data Analysis +2023,Senior,Full-time,Data Analyst,79000,USD,79000,United States,In-person,United States,M,Data Analysis +2023,Senior,Full-time,Data Analyst,93919,USD,93919,United States,Remote,United States,M,Data Analysis +2023,Senior,Full-time,Data Analyst,51962,USD,51962,United States,Remote,United States,M,Data Analysis +2023,Senior,Full-time,Data Engineer,155000,USD,155000,United States,In-person,United States,M,Data Engineering +2023,Senior,Full-time,Data Engineer,84800,USD,84800,United States,In-person,United States,M,Data Engineering +2023,Senior,Full-time,Machine Learning Engineer,250500,USD,250500,United States,In-person,United States,M,Machine Learning and AI +2023,Senior,Full-time,Machine Learning Engineer,166600,USD,166600,United States,In-person,United States,M,Machine Learning and AI +2023,Mid-level,Full-time,Data Scientist,110000,GBP,135344,United Kingdom,In-person,United Kingdom,M,Data Science and Research +2023,Mid-level,Full-time,Data Scientist,80000,GBP,98432,United Kingdom,In-person,United Kingdom,M,Data Science and Research +2023,Executive,Full-time,Data Engineer,174500,USD,174500,United States,In-person,United States,M,Data Engineering +2023,Executive,Full-time,Data Engineer,113000,USD,113000,United States,In-person,United States,M,Data Engineering +2023,Senior,Full-time,Data Engineer,135000,USD,135000,United States,In-person,United States,M,Data Engineering +2023,Senior,Full-time,Data Engineer,90000,USD,90000,United States,In-person,United States,M,Data Engineering +2023,Executive,Full-time,Head of Data,200000,GBP,246080,United Kingdom,In-person,United Kingdom,M,Leadership and Management +2023,Executive,Full-time,Head of Data,150000,GBP,184560,United Kingdom,In-person,United Kingdom,M,Leadership and Management +2023,Senior,Full-time,Data Engineer,135000,USD,135000,United States,In-person,United States,M,Data Engineering +2023,Senior,Full-time,Data Engineer,90000,USD,90000,United States,In-person,United States,M,Data Engineering +2023,Mid-level,Full-time,Data Analyst,49200,EUR,53120,Estonia,In-person,Estonia,M,Data Analysis +2023,Mid-level,Full-time,Data Analyst,31200,EUR,33686,Estonia,In-person,Estonia,M,Data Analysis +2023,Senior,Full-time,Data Engineer,260000,USD,260000,United States,In-person,United States,M,Data Engineering +2023,Senior,Full-time,Data Engineer,225000,USD,225000,United States,In-person,United States,M,Data Engineering +2023,Senior,Full-time,Machine Learning Engineer,226600,USD,226600,United States,In-person,United States,M,Machine Learning and AI +2023,Senior,Full-time,Machine Learning Engineer,140100,USD,140100,United States,In-person,United States,M,Machine Learning and AI +2023,Senior,Full-time,Machine Learning Engineer,204600,USD,204600,United States,In-person,United States,M,Machine Learning and AI +2023,Senior,Full-time,Machine Learning Engineer,126500,USD,126500,United States,In-person,United States,M,Machine Learning and AI +2023,Senior,Full-time,Machine Learning Engineer,340000,USD,340000,United States,In-person,United States,M,Machine Learning and AI +2023,Senior,Full-time,Machine Learning Engineer,212000,USD,212000,United States,In-person,United States,M,Machine Learning and AI +2023,Senior,Full-time,Analytics Engineer,213600,USD,213600,United States,In-person,United States,M,Leadership and Management +2023,Senior,Full-time,Analytics Engineer,142400,USD,142400,United States,In-person,United States,M,Leadership and Management +2023,Senior,Full-time,Data Scientist,153600,USD,153600,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Data Scientist,106800,USD,106800,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Machine Learning Engineer,309000,USD,309000,United States,In-person,United States,M,Machine Learning and AI +2023,Senior,Full-time,Machine Learning Engineer,142000,USD,142000,United States,In-person,United States,M,Machine Learning and AI +2023,Mid-level,Full-time,ML Engineer,125000,USD,125000,United States,Remote,United States,M,Machine Learning and AI +2023,Mid-level,Full-time,ML Engineer,85000,USD,85000,United States,Remote,United States,M,Machine Learning and AI +2023,Senior,Full-time,Machine Learning Engineer,226600,USD,226600,United States,In-person,United States,M,Machine Learning and AI +2023,Senior,Full-time,Machine Learning Engineer,140100,USD,140100,United States,In-person,United States,M,Machine Learning and AI +2023,Senior,Full-time,Research Scientist,303050,USD,303050,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Research Scientist,202350,USD,202350,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Data Engineer,143000,USD,143000,United States,In-person,United States,M,Data Engineering +2023,Senior,Full-time,Data Engineer,95000,USD,95000,United States,In-person,United States,M,Data Engineering +2023,Senior,Full-time,Business Intelligence Engineer,185000,USD,185000,United States,In-person,United States,L,BI and Visualization +2023,Senior,Full-time,Business Intelligence Engineer,79600,USD,79600,United States,In-person,United States,L,BI and Visualization +2023,Senior,Full-time,Data Scientist,207900,USD,207900,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Data Scientist,158400,USD,158400,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Research Scientist,303050,USD,303050,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Research Scientist,202350,USD,202350,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Data Infrastructure Engineer,385000,USD,385000,United States,In-person,United States,M,Data Engineering +2023,Senior,Full-time,Data Infrastructure Engineer,200000,USD,200000,United States,In-person,United States,M,Data Engineering +2023,Senior,Full-time,Machine Learning Engineer,241300,USD,241300,United States,In-person,United States,M,Machine Learning and AI +2023,Senior,Full-time,Machine Learning Engineer,211949,USD,211949,United States,In-person,United States,M,Machine Learning and AI +2023,Senior,Full-time,Data Strategy Manager,115000,USD,115000,United States,Remote,United States,M,Data Management and Strategy +2023,Senior,Full-time,Data Strategy Manager,90000,USD,90000,United States,Remote,United States,M,Data Management and Strategy +2023,Mid-level,Full-time,Data Scientist,172200,USD,172200,United States,Remote,United States,M,Data Science and Research +2023,Mid-level,Full-time,Data Scientist,131200,USD,131200,United States,Remote,United States,M,Data Science and Research +2023,Entry-level,Full-time,Data Scientist,105000,USD,105000,United States,In-person,United States,M,Data Science and Research +2023,Entry-level,Full-time,Data Scientist,70000,USD,70000,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Machine Learning Engineer,253000,USD,253000,United States,Remote,United States,M,Machine Learning and AI +2023,Senior,Full-time,Machine Learning Engineer,123800,USD,123800,United States,Remote,United States,M,Machine Learning and AI +2023,Senior,Full-time,Data Scientist,240000,USD,240000,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Data Scientist,142500,USD,142500,United States,In-person,United States,M,Data Science and Research +2023,Entry-level,Full-time,Data Scientist,150000,PLN,34924,Türkiye,In-person,Poland,M,Data Science and Research +2023,Senior,Full-time,Machine Learning Engineer,330000,USD,330000,United States,In-person,United States,M,Machine Learning and AI +2023,Senior,Full-time,Machine Learning Engineer,204000,USD,204000,United States,In-person,United States,M,Machine Learning and AI +2023,Executive,Full-time,Machine Learning Engineer,180000,USD,180000,United States,Remote,United States,M,Machine Learning and AI +2023,Executive,Full-time,Machine Learning Engineer,160000,USD,160000,United States,Remote,United States,M,Machine Learning and AI +2023,Senior,Full-time,Business Intelligence Analyst,193600,USD,193600,United States,In-person,United States,M,BI and Visualization +2023,Senior,Full-time,Business Intelligence Analyst,130838,USD,130838,United States,In-person,United States,M,BI and Visualization +2023,Senior,Full-time,Data Engineer,225500,USD,225500,United States,In-person,United States,M,Data Engineering +2023,Senior,Full-time,Data Engineer,139400,USD,139400,United States,In-person,United States,M,Data Engineering +2023,Senior,Full-time,Data Engineer,143000,USD,143000,United States,In-person,United States,M,Data Engineering +2023,Senior,Full-time,Data Engineer,95000,USD,95000,United States,In-person,United States,M,Data Engineering +2023,Senior,Full-time,Machine Learning Engineer,328133,USD,328133,United States,In-person,United States,M,Machine Learning and AI +2023,Senior,Full-time,Machine Learning Engineer,218755,USD,218755,United States,In-person,United States,M,Machine Learning and AI +2023,Senior,Full-time,Data Scientist,250830,USD,250830,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Data Scientist,143370,USD,143370,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Analytics Engineer,260000,USD,260000,United States,In-person,United States,M,Leadership and Management +2023,Senior,Full-time,Analytics Engineer,160000,USD,160000,United States,In-person,United States,M,Leadership and Management +2023,Senior,Full-time,Data Scientist,203500,USD,203500,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Data Scientist,166500,USD,166500,United States,In-person,United States,M,Data Science and Research +2023,Mid-level,Full-time,Data Scientist,180000,USD,180000,United States,In-person,United States,M,Data Science and Research +2023,Mid-level,Full-time,Data Scientist,162000,USD,162000,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Data Engineer,145000,USD,145000,United States,Remote,United States,M,Data Engineering +2023,Senior,Full-time,Data Engineer,115000,USD,115000,United States,Remote,United States,M,Data Engineering +2023,Senior,Full-time,Data Analyst,180400,USD,180400,United States,In-person,United States,M,Data Analysis +2023,Senior,Full-time,Data Analyst,138800,USD,138800,United States,In-person,United States,M,Data Analysis +2023,Senior,Full-time,Research Analyst,148350,USD,148350,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Research Analyst,87400,USD,87400,United States,In-person,United States,M,Data Science and Research +2023,Mid-level,Full-time,Data Analyst,87500,USD,87500,United States,Remote,United States,M,Data Analysis +2023,Mid-level,Full-time,Data Analyst,62500,USD,62500,United States,Remote,United States,M,Data Analysis +2023,Senior,Full-time,Data Science Consultant,157550,USD,157550,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Data Science Consultant,104650,USD,104650,United States,In-person,United States,M,Data Science and Research +2023,Mid-level,Full-time,Data Manager,115500,USD,115500,United States,In-person,United States,M,Leadership and Management +2023,Mid-level,Full-time,Data Manager,73500,USD,73500,United States,In-person,United States,M,Leadership and Management +2023,Senior,Full-time,Machine Learning Engineer,309000,USD,309000,United States,In-person,United States,M,Machine Learning and AI +2023,Senior,Full-time,Machine Learning Engineer,142000,USD,142000,United States,In-person,United States,M,Machine Learning and AI +2023,Senior,Full-time,Data Engineer,139500,USD,139500,United States,Remote,United States,M,Data Engineering +2023,Senior,Full-time,Data Engineer,118575,USD,118575,United States,Remote,United States,M,Data Engineering +2023,Senior,Full-time,Data Analyst,129150,USD,129150,United States,In-person,United States,M,Data Analysis +2023,Senior,Full-time,Data Analyst,98400,USD,98400,United States,In-person,United States,M,Data Analysis +2023,Senior,Full-time,Data Analyst,192500,USD,192500,United States,Remote,United States,M,Data Analysis +2023,Senior,Full-time,Data Analyst,140000,USD,140000,United States,Remote,United States,M,Data Analysis +2023,Mid-level,Full-time,Data Engineer,55000,GBP,67672,United Kingdom,Remote,United Kingdom,M,Data Engineering +2023,Mid-level,Full-time,Data Engineer,55000,GBP,67672,United Kingdom,Remote,United Kingdom,M,Data Engineering +2023,Senior,Full-time,Business Intelligence Developer,98010,USD,98010,United States,In-person,United States,M,BI and Visualization +2023,Senior,Full-time,Business Intelligence Developer,66825,USD,66825,United States,In-person,United States,M,BI and Visualization +2023,Senior,Full-time,Data Manager,145000,USD,145000,United States,In-person,United States,M,Leadership and Management +2023,Senior,Full-time,Data Manager,130000,USD,130000,United States,In-person,United States,M,Leadership and Management +2023,Mid-level,Full-time,Data Analyst,95000,USD,95000,United States,Remote,United States,M,Data Analysis +2023,Mid-level,Full-time,Data Analyst,80000,USD,80000,United States,Remote,United States,M,Data Analysis +2023,Mid-level,Full-time,Decision Scientist,204500,USD,204500,United States,In-person,United States,M,Data Science and Research +2023,Mid-level,Full-time,Decision Scientist,142200,USD,142200,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Data Scientist,120000,USD,120000,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Data Scientist,100000,USD,100000,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Data Science Manager,190000,USD,190000,United States,Remote,United States,M,Data Science and Research +2023,Senior,Full-time,Data Science Manager,170000,USD,170000,United States,Remote,United States,M,Data Science and Research +2023,Senior,Full-time,Research Engineer,155000,USD,155000,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Research Engineer,130000,USD,130000,United States,In-person,United States,M,Data Science and Research +2023,Mid-level,Full-time,Data Manager,115500,USD,115500,United States,In-person,United States,M,Leadership and Management +2023,Mid-level,Full-time,Data Manager,73500,USD,73500,United States,In-person,United States,M,Leadership and Management +2023,Senior,Full-time,Machine Learning Engineer,204500,USD,204500,United States,In-person,United States,M,Machine Learning and AI +2023,Senior,Full-time,Machine Learning Engineer,142200,USD,142200,United States,In-person,United States,M,Machine Learning and AI +2023,Mid-level,Full-time,Machine Learning Engineer,170000,USD,170000,United States,In-person,United States,S,Machine Learning and AI +2023,Mid-level,Full-time,Machine Learning Engineer,120000,USD,120000,United States,In-person,United States,S,Machine Learning and AI +2023,Mid-level,Full-time,Data Analyst,229000,USD,229000,United States,In-person,United States,M,Data Analysis +2023,Mid-level,Full-time,Data Analyst,131000,USD,131000,United States,In-person,United States,M,Data Analysis +2023,Senior,Full-time,Data Architect,85000,GBP,104584,United Kingdom,In-person,United Kingdom,M,Data Architecture and Modeling +2023,Senior,Full-time,Data Architect,75000,GBP,92280,United Kingdom,In-person,United Kingdom,M,Data Architecture and Modeling +2023,Senior,Full-time,Data Analyst,192000,USD,192000,United States,Remote,United States,M,Data Analysis +2023,Senior,Full-time,Data Analyst,164000,USD,164000,United States,Remote,United States,M,Data Analysis +2023,Senior,Full-time,Data Engineer,181500,USD,181500,United States,In-person,United States,M,Data Engineering +2023,Senior,Full-time,Data Engineer,112200,USD,112200,United States,In-person,United States,M,Data Engineering +2023,Senior,Full-time,Data Scientist,223800,USD,223800,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Data Scientist,172100,USD,172100,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Applied Scientist,258800,USD,258800,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Applied Scientist,199200,USD,199200,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Research Engineer,185000,USD,185000,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Research Engineer,148000,USD,148000,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Machine Learning Engineer,193600,USD,193600,United States,In-person,United States,M,Machine Learning and AI +2023,Senior,Full-time,Machine Learning Engineer,119700,USD,119700,United States,In-person,United States,M,Machine Learning and AI +2023,Senior,Full-time,Data Scientist,175750,USD,175750,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Data Scientist,136742,USD,136742,United States,In-person,United States,M,Data Science and Research +2023,Mid-level,Full-time,Research Engineer,257400,USD,257400,United States,In-person,United States,M,Data Science and Research +2023,Mid-level,Full-time,Research Engineer,193500,USD,193500,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Data Scientist,228856,USD,228856,United States,Remote,United States,M,Data Science and Research +2023,Senior,Full-time,Data Scientist,144540,USD,144540,United States,Remote,United States,M,Data Science and Research +2023,Senior,Full-time,Data Architect,170000,USD,170000,United States,Remote,United States,M,Data Architecture and Modeling +2023,Senior,Full-time,Data Architect,140000,USD,140000,United States,Remote,United States,M,Data Architecture and Modeling +2023,Senior,Full-time,Data Scientist,155000,USD,155000,United States,Remote,United States,M,Data Science and Research +2023,Senior,Full-time,Data Scientist,125000,USD,125000,United States,Remote,United States,M,Data Science and Research +2023,Senior,Full-time,Data Architect,170000,USD,170000,United States,Remote,United States,M,Data Architecture and Modeling +2023,Senior,Full-time,Data Architect,140000,USD,140000,United States,Remote,United States,M,Data Architecture and Modeling +2023,Senior,Full-time,Data Engineer,150600,USD,150600,United States,Remote,United States,M,Data Engineering +2023,Senior,Full-time,Data Engineer,120500,USD,120500,United States,Remote,United States,M,Data Engineering +2023,Senior,Full-time,Data Scientist,176000,USD,176000,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Data Scientist,152000,USD,152000,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Analytics Engineer,200000,USD,200000,United States,Remote,United States,L,Leadership and Management +2023,Mid-level,Full-time,Data Strategist,115500,USD,115500,United States,In-person,United States,M,Data Architecture and Modeling +2023,Mid-level,Full-time,Data Strategist,73500,USD,73500,United States,In-person,United States,M,Data Architecture and Modeling +2023,Executive,Full-time,Data Engineer,110000,GBP,135344,United Kingdom,In-person,United Kingdom,M,Data Engineering +2023,Executive,Full-time,Data Engineer,80000,GBP,98432,United Kingdom,In-person,United Kingdom,M,Data Engineering +2023,Senior,Full-time,Data Scientist,225000,USD,225000,United States,Remote,United States,M,Data Science and Research +2023,Senior,Full-time,Data Scientist,172758,USD,172758,United States,Remote,United States,M,Data Science and Research +2023,Mid-level,Full-time,Research Engineer,70000,GBP,86128,United Kingdom,Remote,United Kingdom,M,Data Science and Research +2023,Mid-level,Full-time,Research Engineer,55000,GBP,67672,United Kingdom,Remote,United Kingdom,M,Data Science and Research +2023,Mid-level,Full-time,Data Analyst,110000,USD,110000,United States,In-person,United States,M,Data Analysis +2023,Mid-level,Full-time,Data Analyst,85000,USD,85000,United States,In-person,United States,M,Data Analysis +2023,Mid-level,Full-time,Insight Analyst,42000,GBP,51676,United Kingdom,In-person,United Kingdom,M,Data Analysis +2023,Mid-level,Full-time,Insight Analyst,35000,GBP,43064,United Kingdom,In-person,United Kingdom,M,Data Analysis +2023,Senior,Full-time,Data Engineer,245000,USD,245000,United States,Remote,United States,M,Data Engineering +2023,Senior,Full-time,Data Engineer,194992,USD,194992,United States,Remote,United States,M,Data Engineering +2023,Mid-level,Full-time,Data Scientist,140000,USD,140000,United States,In-person,United States,M,Data Science and Research +2023,Mid-level,Full-time,Data Scientist,100000,USD,100000,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Machine Learning Engineer,213800,USD,213800,United States,In-person,United States,M,Machine Learning and AI +2023,Senior,Full-time,Machine Learning Engineer,180300,USD,180300,United States,In-person,United States,M,Machine Learning and AI +2023,Senior,Full-time,Data Engineer,145000,USD,145000,United States,In-person,United States,M,Data Engineering +2023,Senior,Full-time,Data Engineer,90000,USD,90000,United States,In-person,United States,M,Data Engineering +2023,Executive,Full-time,Director of Data Science,375500,USD,375500,United States,Remote,United States,M,Data Science and Research +2023,Executive,Full-time,Director of Data Science,250300,USD,250300,United States,Remote,United States,M,Data Science and Research +2023,Senior,Full-time,Machine Learning Engineer,250500,USD,250500,United States,In-person,United States,M,Machine Learning and AI +2023,Senior,Full-time,Machine Learning Engineer,166600,USD,166600,United States,In-person,United States,M,Machine Learning and AI +2023,Senior,Full-time,ML Engineer,262269,USD,262269,United States,Remote,United States,M,Machine Learning and AI +2023,Senior,Full-time,ML Engineer,230797,USD,230797,United States,Remote,United States,M,Machine Learning and AI +2023,Mid-level,Full-time,Data Engineer,147100,USD,147100,United States,In-person,United States,M,Data Engineering +2023,Mid-level,Full-time,Data Engineer,90700,USD,90700,United States,In-person,United States,M,Data Engineering +2023,Senior,Full-time,Machine Learning Infrastructure Engineer,185000,USD,185000,United States,In-person,United States,M,Machine Learning and AI +2023,Senior,Full-time,Machine Learning Infrastructure Engineer,145000,USD,145000,United States,In-person,United States,M,Machine Learning and AI +2023,Senior,Full-time,Data Analyst,100000,GBP,123040,United Kingdom,In-person,United Kingdom,M,Data Analysis +2023,Senior,Full-time,Data Analyst,75000,GBP,92280,United Kingdom,In-person,United Kingdom,M,Data Analysis +2023,Senior,Full-time,BI Developer,80000,GBP,98432,United Kingdom,In-person,United Kingdom,M,BI and Visualization +2023,Senior,Full-time,BI Developer,50750,GBP,62442,United Kingdom,In-person,United Kingdom,M,BI and Visualization +2023,Mid-level,Full-time,Data Scientist,115000,USD,115000,United States,Remote,United States,M,Data Science and Research +2023,Mid-level,Full-time,Data Scientist,90000,USD,90000,United States,Remote,United States,M,Data Science and Research +2023,Senior,Full-time,Data Analyst,195000,USD,195000,United States,Remote,United States,M,Data Analysis +2023,Senior,Full-time,Data Analyst,73500,USD,73500,United States,Remote,United States,M,Data Analysis +2023,Senior,Full-time,Data Engineer,155000,USD,155000,United States,In-person,United States,M,Data Engineering +2023,Senior,Full-time,Data Engineer,84800,USD,84800,United States,In-person,United States,M,Data Engineering +2023,Senior,Full-time,Data Infrastructure Engineer,185000,USD,185000,United States,In-person,United States,M,Data Engineering +2023,Senior,Full-time,Data Infrastructure Engineer,145000,USD,145000,United States,In-person,United States,M,Data Engineering +2023,Senior,Full-time,Machine Learning Infrastructure Engineer,158900,USD,158900,United States,Remote,United States,M,Machine Learning and AI +2023,Senior,Full-time,Machine Learning Infrastructure Engineer,132400,USD,132400,United States,Remote,United States,M,Machine Learning and AI +2023,Mid-level,Full-time,AI Engineer,140000,USD,140000,United States,Remote,United States,S,Machine Learning and AI +2023,Mid-level,Full-time,Data Manager,130000,USD,130000,United States,In-person,United States,M,Leadership and Management +2023,Mid-level,Full-time,Data Manager,100000,USD,100000,United States,In-person,United States,M,Leadership and Management +2023,Senior,Full-time,Machine Learning Scientist,163800,USD,163800,United States,In-person,United States,M,Machine Learning and AI +2023,Senior,Full-time,Machine Learning Scientist,126000,USD,126000,United States,In-person,United States,M,Machine Learning and AI +2023,Senior,Full-time,Data Scientist,225000,USD,225000,United States,Remote,United States,M,Data Science and Research +2023,Senior,Full-time,Data Scientist,111967,USD,111967,United States,Remote,United States,M,Data Science and Research +2023,Senior,Full-time,Data Engineer,205600,USD,205600,United States,In-person,United States,L,Data Engineering +2023,Senior,Full-time,Data Engineer,105700,USD,105700,United States,In-person,United States,L,Data Engineering +2023,Mid-level,Full-time,Data Manager,115500,USD,115500,United States,In-person,United States,M,Leadership and Management +2023,Mid-level,Full-time,Data Manager,73500,USD,73500,United States,In-person,United States,M,Leadership and Management +2023,Mid-level,Full-time,Data Analyst,104000,USD,104000,United States,In-person,United States,M,Data Analysis +2023,Mid-level,Full-time,Data Analyst,88000,USD,88000,United States,In-person,United States,M,Data Analysis +2023,Senior,Full-time,Data Engineer,216027,USD,216027,United States,Remote,United States,M,Data Engineering +2023,Senior,Full-time,Data Engineer,101028,USD,101028,United States,Remote,United States,M,Data Engineering +2023,Senior,Full-time,Data Scientist,45000,EUR,48585,Spain,In-person,Spain,M,Data Science and Research +2023,Senior,Full-time,Data Scientist,36000,EUR,38868,Spain,In-person,Spain,M,Data Science and Research +2023,Senior,Full-time,Applied Scientist,309400,USD,309400,United States,In-person,United States,L,Data Science and Research +2023,Senior,Full-time,Applied Scientist,159100,USD,159100,United States,In-person,United States,L,Data Science and Research +2023,Senior,Full-time,Data Analyst,142000,USD,142000,United States,In-person,United States,M,Data Analysis +2023,Senior,Full-time,Data Analyst,128000,USD,128000,United States,In-person,United States,M,Data Analysis +2023,Senior,Full-time,Data Engineer,174350,USD,174350,United States,Remote,United States,M,Data Engineering +2023,Senior,Full-time,Data Engineer,126800,USD,126800,United States,Remote,United States,M,Data Engineering +2023,Senior,Full-time,Machine Learning Engineer,226600,USD,226600,United States,In-person,United States,M,Machine Learning and AI +2023,Senior,Full-time,Machine Learning Engineer,140100,USD,140100,United States,In-person,United States,M,Machine Learning and AI +2023,Senior,Full-time,Data Scientist,180000,USD,180000,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Data Scientist,162000,USD,162000,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Machine Learning Engineer,262000,USD,262000,United States,In-person,United States,M,Machine Learning and AI +2023,Senior,Full-time,Machine Learning Engineer,186000,USD,186000,United States,In-person,United States,M,Machine Learning and AI +2023,Senior,Full-time,Business Intelligence Engineer,185000,USD,185000,United States,In-person,United States,L,BI and Visualization +2023,Senior,Full-time,Business Intelligence Engineer,79600,USD,79600,United States,In-person,United States,L,BI and Visualization +2023,Senior,Full-time,Data Analyst,129000,USD,129000,Canada,Remote,Canada,M,Data Analysis +2023,Senior,Full-time,Data Analyst,95000,USD,95000,Canada,Remote,Canada,M,Data Analysis +2023,Senior,Full-time,Analytics Engineer,175000,USD,175000,United States,In-person,United States,M,Leadership and Management +2023,Senior,Full-time,Analytics Engineer,120000,USD,120000,United States,In-person,United States,M,Leadership and Management +2023,Mid-level,Full-time,Data Analyst,75000,GBP,92280,United Kingdom,In-person,United Kingdom,M,Data Analysis +2023,Mid-level,Full-time,Data Analyst,55000,GBP,67672,United Kingdom,In-person,United Kingdom,M,Data Analysis +2023,Entry-level,Full-time,Applied Data Scientist,27500,EUR,29691,Italy,Hybrid,Italy,L,Data Science and Research +2023,Senior,Full-time,Data Analyst,130000,USD,130000,United States,Remote,United States,S,Data Analysis +2023,Senior,Full-time,Data Analyst,105000,USD,105000,United States,Remote,United States,S,Data Analysis +2023,Senior,Full-time,Machine Learning Engineer,232200,USD,232200,United States,In-person,United States,M,Machine Learning and AI +2023,Senior,Full-time,Machine Learning Engineer,119000,USD,119000,United States,In-person,United States,M,Machine Learning and AI +2023,Senior,Full-time,Data Scientist,268000,USD,268000,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Data Scientist,137500,USD,137500,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Data Analyst,153300,USD,153300,United States,Remote,United States,M,Data Analysis +2023,Senior,Full-time,Data Analyst,104244,USD,104244,United States,Remote,United States,M,Data Analysis +2023,Senior,Full-time,Applied Scientist,216000,USD,216000,United States,Remote,United States,M,Data Science and Research +2023,Senior,Full-time,Applied Scientist,184000,USD,184000,United States,Remote,United States,M,Data Science and Research +2023,Senior,Full-time,Data Scientist,190000,USD,190000,United States,Remote,United States,M,Data Science and Research +2023,Senior,Full-time,Data Scientist,145000,USD,145000,United States,Remote,United States,M,Data Science and Research +2023,Senior,Full-time,Data Engineer,155000,USD,155000,United States,In-person,United States,M,Data Engineering +2023,Senior,Full-time,Data Engineer,135000,USD,135000,United States,In-person,United States,M,Data Engineering +2023,Senior,Full-time,Data Scientist,226000,USD,226000,United States,Remote,United States,M,Data Science and Research +2023,Senior,Full-time,Data Scientist,160000,USD,160000,United States,Remote,United States,M,Data Science and Research +2023,Mid-level,Full-time,Data Analyst,80000,USD,80000,United States,In-person,United States,M,Data Analysis +2023,Mid-level,Full-time,Data Analyst,70000,USD,70000,United States,In-person,United States,M,Data Analysis +2023,Senior,Full-time,Data Science Practitioner,198800,USD,198800,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Data Science Practitioner,122600,USD,122600,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Applied Scientist,230000,USD,230000,United States,Remote,United States,M,Data Science and Research +2023,Senior,Full-time,Applied Scientist,196000,USD,196000,United States,Remote,United States,M,Data Science and Research +2023,Senior,Full-time,Data Scientist,181500,USD,181500,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Data Scientist,127000,USD,127000,United States,In-person,United States,M,Data Science and Research +2023,Mid-level,Full-time,Machine Learning Researcher,210000,USD,210000,United States,In-person,United States,S,Machine Learning and AI +2023,Senior,Full-time,AI Programmer,120000,USD,120000,Canada,Remote,France,M,Machine Learning and AI +2023,Senior,Full-time,ML Engineer,385000,USD,385000,United States,Remote,United States,M,Machine Learning and AI +2023,Senior,Full-time,ML Engineer,245000,USD,245000,United States,Remote,United States,M,Machine Learning and AI +2023,Mid-level,Full-time,AI Engineer,225000,USD,225000,United States,In-person,United States,M,Machine Learning and AI +2023,Mid-level,Full-time,AI Engineer,175000,USD,175000,United States,In-person,United States,M,Machine Learning and AI +2023,Senior,Full-time,Data Engineer,148500,CAD,110019,Canada,Remote,Canada,M,Data Engineering +2023,Senior,Full-time,Data Engineer,117000,CAD,86682,Canada,Remote,Canada,M,Data Engineering +2023,Senior,Full-time,Data Analyst,131650,USD,131650,United States,In-person,United States,M,Data Analysis +2023,Senior,Full-time,Data Analyst,105320,USD,105320,United States,In-person,United States,M,Data Analysis +2023,Senior,Full-time,Research Engineer,210000,USD,210000,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Research Engineer,151800,USD,151800,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Data Scientist,147500,USD,147500,United States,Remote,United States,M,Data Science and Research +2023,Senior,Full-time,Data Scientist,112500,USD,112500,United States,Remote,United States,M,Data Science and Research +2023,Senior,Full-time,Machine Learning Engineer,240000,USD,240000,United States,In-person,United States,M,Machine Learning and AI +2023,Senior,Full-time,Machine Learning Engineer,163200,USD,163200,United States,In-person,United States,M,Machine Learning and AI +2023,Senior,Full-time,Data Analyst,134200,USD,134200,United States,In-person,United States,M,Data Analysis +2023,Senior,Full-time,Data Analyst,103200,USD,103200,United States,In-person,United States,M,Data Analysis +2023,Senior,Full-time,Data Analyst,65000,USD,65000,United States,Remote,United States,M,Data Analysis +2023,Senior,Full-time,Data Analyst,55000,USD,55000,United States,Remote,United States,M,Data Analysis +2023,Senior,Full-time,Data Scientist,234000,USD,234000,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Data Scientist,176000,USD,176000,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Machine Learning Infrastructure Engineer,165400,USD,165400,United States,In-person,United States,M,Machine Learning and AI +2023,Senior,Full-time,Machine Learning Infrastructure Engineer,127300,USD,127300,United States,In-person,United States,M,Machine Learning and AI +2023,Senior,Full-time,Data Analyst,180400,USD,180400,United States,In-person,United States,M,Data Analysis +2023,Senior,Full-time,Data Analyst,138800,USD,138800,United States,In-person,United States,M,Data Analysis +2023,Senior,Full-time,Data Science Manager,100000,EUR,107968,Philippines,Hybrid,Czechia,L,Data Science and Research +2023,Mid-level,Full-time,AI Engineer,30390,EUR,32811,Spain,Remote,Spain,L,Machine Learning and AI +2023,Mid-level,Full-time,Data Science Lead,185900,USD,185900,United States,In-person,United States,M,Data Science and Research +2023,Mid-level,Full-time,Data Science Lead,129300,USD,129300,United States,In-person,United States,M,Data Science and Research +2023,Mid-level,Full-time,Data Manager,115500,USD,115500,United States,In-person,United States,M,Leadership and Management +2023,Mid-level,Full-time,Data Manager,73500,USD,73500,United States,In-person,United States,M,Leadership and Management +2023,Mid-level,Full-time,Machine Learning Engineer,145000,USD,145000,United States,In-person,United States,M,Machine Learning and AI +2023,Mid-level,Full-time,Machine Learning Engineer,135000,USD,135000,United States,In-person,United States,M,Machine Learning and AI +2023,Mid-level,Full-time,Data Scientist,126900,USD,126900,United States,In-person,United States,M,Data Science and Research +2023,Mid-level,Full-time,Data Scientist,77900,USD,77900,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Data Analyst,85000,USD,85000,United States,In-person,United States,M,Data Analysis +2023,Senior,Full-time,Data Analyst,75000,USD,75000,United States,In-person,United States,M,Data Analysis +2023,Mid-level,Full-time,Data Engineer,90000,GBP,110736,United Kingdom,Remote,United Kingdom,M,Data Engineering +2023,Mid-level,Full-time,Data Engineer,75000,GBP,92280,United Kingdom,Remote,United Kingdom,M,Data Engineering +2023,Senior,Full-time,Machine Learning Engineer,330000,USD,330000,United States,In-person,United States,M,Machine Learning and AI +2023,Senior,Full-time,Machine Learning Engineer,204000,USD,204000,United States,In-person,United States,M,Machine Learning and AI +2023,Senior,Full-time,Data Analyst,169000,USD,169000,United States,In-person,United States,M,Data Analysis +2023,Senior,Full-time,Data Analyst,110600,USD,110600,United States,In-person,United States,M,Data Analysis +2023,Mid-level,Full-time,Data Manager,115500,USD,115500,United States,In-person,United States,M,Leadership and Management +2023,Mid-level,Full-time,Data Manager,73500,USD,73500,United States,In-person,United States,M,Leadership and Management +2023,Senior,Full-time,Data Scientist,168000,USD,168000,United States,Remote,United States,M,Data Science and Research +2023,Senior,Full-time,Data Scientist,130000,USD,130000,United States,Remote,United States,M,Data Science and Research +2023,Senior,Full-time,Data Engineer,225500,USD,225500,United States,In-person,United States,M,Data Engineering +2023,Senior,Full-time,Data Engineer,139400,USD,139400,United States,In-person,United States,M,Data Engineering +2023,Entry-level,Full-time,Data Scientist,150000,USD,150000,United States,In-person,United States,M,Data Science and Research +2023,Entry-level,Full-time,Data Scientist,140000,USD,140000,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Data Scientist,226000,USD,226000,United States,Remote,United States,M,Data Science and Research +2023,Senior,Full-time,Data Scientist,162000,USD,162000,United States,Remote,United States,M,Data Science and Research +2023,Senior,Full-time,Machine Learning Engineer,200000,USD,200000,United States,Remote,United States,M,Machine Learning and AI +2023,Senior,Full-time,Machine Learning Engineer,150000,USD,150000,United States,Remote,United States,M,Machine Learning and AI +2023,Senior,Full-time,Data Modeler,195000,USD,195000,United States,In-person,United States,M,Data Architecture and Modeling +2023,Senior,Full-time,Data Modeler,160000,USD,160000,United States,In-person,United States,M,Data Architecture and Modeling +2023,Senior,Full-time,Data Operations Analyst,154000,USD,154000,United States,In-person,United States,M,Data Quality and Operations +2023,Senior,Full-time,Data Operations Analyst,82000,USD,82000,United States,In-person,United States,M,Data Quality and Operations +2023,Senior,Full-time,Data Science Manager,160000,USD,160000,United States,Remote,United States,M,Data Science and Research +2023,Senior,Full-time,Data Science Manager,145000,USD,145000,United States,Remote,United States,M,Data Science and Research +2023,Senior,Full-time,AI Engineer,239400,USD,239400,United States,In-person,United States,M,Machine Learning and AI +2023,Senior,Full-time,AI Engineer,136800,USD,136800,United States,In-person,United States,M,Machine Learning and AI +2023,Executive,Full-time,Head of Data,329500,USD,329500,United States,Remote,United States,M,Leadership and Management +2023,Executive,Full-time,Head of Data,269600,USD,269600,United States,Remote,United States,M,Leadership and Management +2023,Senior,Full-time,Data Scientist,120000,USD,120000,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Data Scientist,100000,USD,100000,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Decision Scientist,204500,USD,204500,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Decision Scientist,142200,USD,142200,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Data Scientist,230000,USD,230000,United States,Remote,United States,M,Data Science and Research +2023,Senior,Full-time,Data Scientist,180000,USD,180000,United States,Remote,United States,M,Data Science and Research +2023,Senior,Full-time,Data Scientist,164000,USD,164000,United States,Remote,United States,M,Data Science and Research +2023,Senior,Full-time,Data Scientist,130000,USD,130000,United States,Remote,United States,M,Data Science and Research +2023,Senior,Full-time,Data Engineer,169000,USD,169000,United States,In-person,United States,M,Data Engineering +2023,Senior,Full-time,Data Engineer,91000,USD,91000,United States,In-person,United States,M,Data Engineering +2023,Senior,Full-time,Machine Learning Engineer,323300,USD,323300,United States,In-person,United States,M,Machine Learning and AI +2023,Senior,Full-time,Machine Learning Engineer,184700,USD,184700,United States,In-person,United States,M,Machine Learning and AI +2023,Senior,Full-time,Data Manager,145000,USD,145000,United States,In-person,United States,M,Leadership and Management +2023,Senior,Full-time,Data Manager,130000,USD,130000,United States,In-person,United States,M,Leadership and Management +2023,Senior,Full-time,Data Engineer,170000,USD,170000,United States,In-person,United States,M,Data Engineering +2023,Senior,Full-time,Data Engineer,120000,USD,120000,United States,In-person,United States,M,Data Engineering +2023,Senior,Full-time,Research Scientist,210000,USD,210000,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Research Scientist,136000,USD,136000,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Data Engineer,171250,USD,171250,United States,In-person,United States,M,Data Engineering +2023,Senior,Full-time,Data Engineer,113750,USD,113750,United States,In-person,United States,M,Data Engineering +2023,Senior,Full-time,Data Scientist,136000,USD,136000,United States,Remote,United States,M,Data Science and Research +2023,Senior,Full-time,Data Scientist,104000,USD,104000,United States,Remote,United States,M,Data Science and Research +2023,Senior,Full-time,Machine Learning Engineer,195000,USD,195000,United States,Remote,United States,M,Machine Learning and AI +2023,Senior,Full-time,Machine Learning Engineer,142000,USD,142000,United States,Remote,United States,M,Machine Learning and AI +2023,Mid-level,Full-time,Data Engineer,185900,USD,185900,United States,In-person,United States,M,Data Engineering +2023,Mid-level,Full-time,Data Engineer,129300,USD,129300,United States,In-person,United States,M,Data Engineering +2023,Senior,Full-time,Machine Learning Engineer,194100,USD,194100,United States,In-person,United States,M,Machine Learning and AI +2023,Senior,Full-time,Machine Learning Engineer,152300,USD,152300,United States,In-person,United States,M,Machine Learning and AI +2023,Senior,Full-time,Data Architect,190000,USD,190000,United States,In-person,United States,M,Data Architecture and Modeling +2023,Senior,Full-time,Data Architect,120000,USD,120000,United States,In-person,United States,M,Data Architecture and Modeling +2023,Senior,Full-time,Research Engineer,240000,USD,240000,United States,Remote,United States,M,Data Science and Research +2023,Senior,Full-time,Research Engineer,157250,USD,157250,United States,Remote,United States,M,Data Science and Research +2023,Senior,Full-time,Data Engineer,212000,USD,212000,United States,Remote,United States,M,Data Engineering +2023,Senior,Full-time,Data Engineer,170000,USD,170000,United States,Remote,United States,M,Data Engineering +2023,Senior,Full-time,Data Engineer,194400,USD,194400,United States,Remote,United States,M,Data Engineering +2023,Senior,Full-time,Data Engineer,132192,USD,132192,United States,Remote,United States,M,Data Engineering +2023,Senior,Full-time,Machine Learning Engineer,204500,USD,204500,United States,In-person,United States,M,Machine Learning and AI +2023,Senior,Full-time,Machine Learning Engineer,142200,USD,142200,United States,In-person,United States,M,Machine Learning and AI +2023,Senior,Full-time,Analytics Engineer,174000,USD,174000,United States,Remote,United States,M,Leadership and Management +2023,Senior,Full-time,Analytics Engineer,134000,USD,134000,United States,Remote,United States,M,Leadership and Management +2023,Mid-level,Full-time,Machine Learning Engineer,36000,EUR,38868,Spain,Remote,Spain,L,Machine Learning and AI +2023,Mid-level,Full-time,Data Engineer,152000,USD,152000,United States,Remote,United States,M,Data Engineering +2023,Senior,Full-time,Data Developer,144700,USD,144700,United States,In-person,United States,M,Leadership and Management +2023,Senior,Full-time,Data Developer,85500,USD,85500,United States,In-person,United States,M,Leadership and Management +2023,Mid-level,Full-time,Data Manager,115500,USD,115500,United States,In-person,United States,M,Leadership and Management +2023,Mid-level,Full-time,Data Manager,73500,USD,73500,United States,In-person,United States,M,Leadership and Management +2023,Mid-level,Full-time,Data Analyst,49200,EUR,53120,Estonia,In-person,Estonia,M,Data Analysis +2023,Mid-level,Full-time,Data Analyst,36000,EUR,38868,Estonia,In-person,Estonia,M,Data Analysis +2023,Senior,Full-time,Data Scientist,200000,USD,200000,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Data Scientist,160000,USD,160000,United States,In-person,United States,M,Data Science and Research +2023,Mid-level,Full-time,Data Analyst,67500,USD,67500,United States,In-person,United States,M,Data Analysis +2023,Mid-level,Full-time,Data Analyst,46500,USD,46500,United States,In-person,United States,M,Data Analysis +2023,Executive,Full-time,Data Engineer,265800,USD,265800,United States,Remote,United States,M,Data Engineering +2023,Executive,Full-time,Data Engineer,177200,USD,177200,United States,Remote,United States,M,Data Engineering +2023,Senior,Full-time,Data Scientist,222000,USD,222000,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Data Scientist,115920,USD,115920,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Machine Learning Engineer,250000,USD,250000,United States,Remote,United States,M,Machine Learning and AI +2023,Senior,Full-time,Machine Learning Engineer,190000,USD,190000,United States,Remote,United States,M,Machine Learning and AI +2023,Senior,Full-time,AI Engineer,60000,EUR,64781,Spain,Remote,Spain,M,Machine Learning and AI +2023,Senior,Full-time,Data Engineer,284310,USD,284310,United States,In-person,United States,M,Data Engineering +2023,Senior,Full-time,Data Engineer,153090,USD,153090,United States,In-person,United States,M,Data Engineering +2023,Senior,Full-time,Machine Learning Engineer,324000,USD,324000,United States,In-person,United States,M,Machine Learning and AI +2023,Senior,Full-time,Machine Learning Engineer,159000,USD,159000,United States,In-person,United States,M,Machine Learning and AI +2023,Senior,Full-time,Research Scientist,204500,USD,204500,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Research Scientist,142200,USD,142200,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Machine Learning Engineer,309000,USD,309000,United States,In-person,United States,M,Machine Learning and AI +2023,Senior,Full-time,Machine Learning Engineer,142000,USD,142000,United States,In-person,United States,M,Machine Learning and AI +2023,Senior,Full-time,Data Engineer,247300,USD,247300,United States,In-person,United States,M,Data Engineering +2023,Senior,Full-time,Data Engineer,139700,USD,139700,United States,In-person,United States,M,Data Engineering +2023,Mid-level,Full-time,Data Analyst,95000,USD,95000,United States,Remote,United States,M,Data Analysis +2023,Mid-level,Full-time,Data Analyst,80000,USD,80000,United States,Remote,United States,M,Data Analysis +2023,Mid-level,Full-time,Data Scientist,130500,USD,130500,United States,In-person,United States,M,Data Science and Research +2023,Mid-level,Full-time,Data Scientist,111000,USD,111000,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Data Analyst,213210,USD,213210,United States,Remote,United States,M,Data Analysis +2023,Senior,Full-time,Data Analyst,102434,USD,102434,United States,Remote,United States,M,Data Analysis +2023,Senior,Full-time,Machine Learning Engineer,200000,USD,200000,United States,In-person,United States,M,Machine Learning and AI +2023,Senior,Full-time,Machine Learning Engineer,140000,USD,140000,United States,In-person,United States,M,Machine Learning and AI +2023,Senior,Full-time,Data Scientist,226600,USD,226600,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Data Scientist,140100,USD,140100,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Data Scientist,225000,USD,225000,United States,Remote,United States,M,Data Science and Research +2023,Senior,Full-time,Data Scientist,156400,USD,156400,United States,Remote,United States,M,Data Science and Research +2023,Senior,Full-time,Research Engineer,250000,USD,250000,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Research Engineer,176000,USD,176000,United States,In-person,United States,M,Data Science and Research +2022,Entry-level,Full-time,Machine Learning Scientist,80000,USD,80000,Canada,Hybrid,United States,S,Machine Learning and AI +2023,Senior,Full-time,Analytics Engineer,233400,USD,233400,United States,Remote,United States,M,Leadership and Management +2023,Senior,Full-time,Analytics Engineer,145300,USD,145300,United States,Remote,United States,M,Leadership and Management +2023,Senior,Full-time,Data Engineer,248000,USD,248000,United States,In-person,United States,M,Data Engineering +2023,Senior,Full-time,Data Engineer,149000,USD,149000,United States,In-person,United States,M,Data Engineering +2023,Entry-level,Full-time,Analytics Engineer,156450,USD,156450,United States,Remote,United States,M,Leadership and Management +2023,Entry-level,Full-time,Analytics Engineer,119200,USD,119200,United States,Remote,United States,M,Leadership and Management +2023,Mid-level,Full-time,Data Manager,115500,USD,115500,United States,In-person,United States,M,Leadership and Management +2023,Mid-level,Full-time,Data Manager,73500,USD,73500,United States,In-person,United States,M,Leadership and Management +2023,Senior,Full-time,Machine Learning Engineer,185000,USD,185000,United States,In-person,United States,M,Machine Learning and AI +2023,Senior,Full-time,Machine Learning Engineer,120250,USD,120250,United States,In-person,United States,M,Machine Learning and AI +2023,Senior,Full-time,Applied Scientist,216000,USD,216000,United States,Remote,United States,M,Data Science and Research +2023,Senior,Full-time,Applied Scientist,184000,USD,184000,United States,Remote,United States,M,Data Science and Research +2023,Mid-level,Full-time,Machine Learning Engineer,300000,USD,300000,United States,In-person,United States,M,Machine Learning and AI +2023,Mid-level,Full-time,Machine Learning Engineer,200000,USD,200000,United States,In-person,United States,M,Machine Learning and AI +2023,Senior,Full-time,Applied Scientist,230000,USD,230000,United States,Remote,United States,M,Data Science and Research +2023,Senior,Full-time,Applied Scientist,196000,USD,196000,United States,Remote,United States,M,Data Science and Research +2023,Senior,Full-time,Machine Learning Engineer,192000,USD,192000,United States,Remote,United States,M,Machine Learning and AI +2023,Senior,Full-time,Machine Learning Engineer,164000,USD,164000,United States,Remote,United States,M,Machine Learning and AI +2023,Mid-level,Full-time,Data Science Lead,225000,USD,225000,United States,In-person,United States,M,Data Science and Research +2023,Mid-level,Full-time,Data Science Lead,152700,USD,152700,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Applied Scientist,192000,USD,192000,United States,Remote,United States,M,Data Science and Research +2023,Senior,Full-time,Applied Scientist,164000,USD,164000,United States,Remote,United States,M,Data Science and Research +2023,Mid-level,Full-time,Data Manager,115500,USD,115500,United States,In-person,United States,M,Leadership and Management +2023,Mid-level,Full-time,Data Manager,73500,USD,73500,United States,In-person,United States,M,Leadership and Management +2023,Senior,Full-time,AI Scientist,60000,EUR,64781,Germany,Hybrid,Germany,L,Machine Learning and AI +2023,Mid-level,Full-time,Data Engineer,160000,USD,160000,United States,In-person,United States,M,Data Engineering +2023,Mid-level,Full-time,Data Engineer,140000,USD,140000,United States,In-person,United States,M,Data Engineering +2023,Mid-level,Full-time,Data Engineer,139152,USD,139152,United States,In-person,United States,L,Data Engineering +2023,Mid-level,Full-time,Data Engineer,82452,USD,82452,United States,In-person,United States,L,Data Engineering +2023,Senior,Full-time,Decision Scientist,204500,USD,204500,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Decision Scientist,142200,USD,142200,United States,In-person,United States,M,Data Science and Research +2023,Mid-level,Full-time,Data Strategist,85000,USD,85000,United States,In-person,United States,M,Data Architecture and Modeling +2023,Mid-level,Full-time,Data Strategist,65000,USD,65000,United States,In-person,United States,M,Data Architecture and Modeling +2023,Senior,Full-time,Data Analyst,139000,USD,139000,United States,In-person,United States,M,Data Analysis +2023,Senior,Full-time,Data Analyst,85700,USD,85700,United States,In-person,United States,M,Data Analysis +2023,Senior,Full-time,Research Scientist,248100,USD,248100,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Research Scientist,145900,USD,145900,United States,In-person,United States,M,Data Science and Research +2023,Executive,Full-time,Machine Learning Engineer,200000,USD,200000,United States,Remote,United States,M,Machine Learning and AI +2023,Executive,Full-time,Machine Learning Engineer,145000,USD,145000,United States,Remote,United States,M,Machine Learning and AI +2023,Senior,Full-time,Machine Learning Engineer,230000,USD,230000,United States,In-person,United States,M,Machine Learning and AI +2023,Senior,Full-time,Machine Learning Engineer,184000,USD,184000,United States,In-person,United States,M,Machine Learning and AI +2023,Senior,Full-time,Machine Learning Engineer,269500,USD,269500,United States,In-person,United States,M,Machine Learning and AI +2023,Senior,Full-time,Machine Learning Engineer,166600,USD,166600,United States,In-person,United States,M,Machine Learning and AI +2023,Executive,Full-time,Machine Learning Engineer,295500,USD,295500,United States,Remote,United States,M,Machine Learning and AI +2023,Executive,Full-time,Machine Learning Engineer,165200,USD,165200,United States,Remote,United States,M,Machine Learning and AI +2023,Senior,Full-time,Machine Learning Engineer,226600,USD,226600,United States,In-person,United States,M,Machine Learning and AI +2023,Senior,Full-time,Machine Learning Engineer,140100,USD,140100,United States,In-person,United States,M,Machine Learning and AI +2023,Mid-level,Full-time,ML Engineer,235000,USD,235000,United States,In-person,United States,M,Machine Learning and AI +2023,Mid-level,Full-time,ML Engineer,135000,USD,135000,United States,In-person,United States,M,Machine Learning and AI +2023,Mid-level,Full-time,Data Analyst,110000,USD,110000,United States,In-person,United States,M,Data Analysis +2023,Mid-level,Full-time,Data Analyst,75000,USD,75000,United States,In-person,United States,M,Data Analysis +2023,Senior,Full-time,Analytics Engineer,180000,USD,180000,United States,Remote,United States,M,Leadership and Management +2023,Senior,Full-time,Analytics Engineer,144000,USD,144000,United States,Remote,United States,M,Leadership and Management +2023,Mid-level,Full-time,Data Engineer,40000,GBP,49216,United Kingdom,Remote,United Kingdom,M,Data Engineering +2023,Mid-level,Full-time,Data Engineer,35000,GBP,43064,United Kingdom,Remote,United Kingdom,M,Data Engineering +2023,Mid-level,Full-time,Data Analyst,65000,USD,65000,United States,In-person,United States,M,Data Analysis +2023,Mid-level,Full-time,Data Analyst,55000,USD,55000,United States,In-person,United States,M,Data Analysis +2023,Senior,Full-time,Data Manager,160667,USD,160667,United States,In-person,United States,M,Leadership and Management +2023,Senior,Full-time,Data Manager,130000,USD,130000,United States,In-person,United States,M,Leadership and Management +2023,Mid-level,Full-time,MLOps Engineer,140400,BRL,27568,Brazil,Remote,Brazil,L,Machine Learning and AI +2023,Senior,Full-time,Data Analyst,169000,USD,169000,United States,In-person,United States,M,Data Analysis +2023,Senior,Full-time,Data Analyst,110600,USD,110600,United States,In-person,United States,M,Data Analysis +2023,Senior,Full-time,Data Engineer,225500,USD,225500,United States,In-person,United States,M,Data Engineering +2023,Senior,Full-time,Data Engineer,139400,USD,139400,United States,In-person,United States,M,Data Engineering +2023,Senior,Full-time,Data Engineer,304200,USD,304200,United States,In-person,United States,M,Data Engineering +2023,Senior,Full-time,Data Engineer,173800,USD,173800,United States,In-person,United States,M,Data Engineering +2023,Mid-level,Full-time,Data Science Lead,191765,USD,191765,United States,In-person,United States,M,Data Science and Research +2023,Mid-level,Full-time,Data Science Lead,134326,USD,134326,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Analytics Engineer,173000,USD,173000,United States,In-person,United States,M,Leadership and Management +2023,Senior,Full-time,Analytics Engineer,160000,USD,160000,United States,In-person,United States,M,Leadership and Management +2023,Senior,Full-time,Machine Learning Engineer,258384,USD,258384,United States,Remote,United States,M,Machine Learning and AI +2023,Senior,Full-time,Machine Learning Engineer,153100,USD,153100,United States,Remote,United States,M,Machine Learning and AI +2023,Mid-level,Full-time,Data Scientist,135000,USD,135000,United States,In-person,United States,M,Data Science and Research +2023,Mid-level,Full-time,Data Scientist,70000,USD,70000,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Data Scientist,168000,USD,168000,United States,Remote,United States,M,Data Science and Research +2023,Senior,Full-time,Data Scientist,130000,USD,130000,United States,Remote,United States,M,Data Science and Research +2023,Senior,Full-time,Data Analyst,146200,USD,146200,United States,In-person,United States,M,Data Analysis +2023,Senior,Full-time,Data Analyst,116960,USD,116960,United States,In-person,United States,M,Data Analysis +2023,Senior,Full-time,Data Engineer,226700,USD,226700,United States,In-person,United States,M,Data Engineering +2023,Senior,Full-time,Data Engineer,133300,USD,133300,United States,In-person,United States,M,Data Engineering +2023,Senior,Full-time,Data Engineer,370000,USD,370000,United States,In-person,United States,M,Data Engineering +2023,Senior,Full-time,Data Engineer,245000,USD,245000,United States,In-person,United States,M,Data Engineering +2023,Senior,Full-time,Machine Learning Engineer,208450,USD,208450,United States,In-person,United States,M,Machine Learning and AI +2023,Senior,Full-time,Machine Learning Engineer,151600,USD,151600,United States,In-person,United States,M,Machine Learning and AI +2023,Senior,Full-time,Data Specialist,111600,USD,111600,United States,In-person,United States,M,Data Management and Strategy +2023,Senior,Full-time,Data Specialist,72000,USD,72000,United States,In-person,United States,M,Data Management and Strategy +2023,Senior,Full-time,Data Scientist,359170,USD,359170,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Data Scientist,295490,USD,295490,United States,In-person,United States,M,Data Science and Research +2023,Entry-level,Full-time,Data Engineer,90000,USD,90000,United States,Hybrid,Canada,L,Data Engineering +2023,Mid-level,Full-time,Analytics Engineer,90000,USD,90000,United States,Remote,United States,M,Leadership and Management +2023,Mid-level,Full-time,Analytics Engineer,84000,USD,84000,United States,Remote,United States,M,Leadership and Management +2023,Mid-level,Full-time,Data Engineer,110000,USD,110000,France,Remote,France,M,Data Engineering +2023,Mid-level,Full-time,Data Engineer,90000,USD,90000,France,Remote,France,M,Data Engineering +2023,Mid-level,Full-time,Data Engineer,110000,USD,110000,United States,In-person,United States,M,Data Engineering +2023,Mid-level,Full-time,Data Engineer,70000,USD,70000,United States,In-person,United States,M,Data Engineering +2023,Senior,Full-time,Data Scientist,45000,EUR,48585,Spain,In-person,Spain,M,Data Science and Research +2023,Senior,Full-time,Data Scientist,36000,EUR,38868,Spain,In-person,Spain,M,Data Science and Research +2023,Senior,Full-time,Data Engineer,90000,USD,90000,United States,In-person,United States,M,Data Engineering +2023,Senior,Full-time,Data Engineer,75000,USD,75000,United States,In-person,United States,M,Data Engineering +2023,Senior,Full-time,Data Scientist,253000,USD,253000,United States,Remote,United States,M,Data Science and Research +2023,Senior,Full-time,Data Scientist,162000,USD,162000,United States,Remote,United States,M,Data Science and Research +2023,Entry-level,Full-time,Data Integration Specialist,115000,USD,115000,Canada,In-person,Canada,M,Data Management and Strategy +2023,Entry-level,Full-time,Data Integration Specialist,85000,USD,85000,Canada,In-person,Canada,M,Data Management and Strategy +2023,Senior,Full-time,Data Scientist,164000,USD,164000,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Data Scientist,130000,USD,130000,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Data Scientist,359170,USD,359170,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Data Scientist,295490,USD,295490,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Data Science Consultant,145900,USD,145900,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Data Science Consultant,128100,USD,128100,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Business Intelligence Analyst,127000,USD,127000,United States,Remote,United States,M,BI and Visualization +2023,Senior,Full-time,Business Intelligence Analyst,95000,USD,95000,United States,Remote,United States,M,BI and Visualization +2023,Entry-level,Full-time,Data Analyst,94600,USD,94600,United States,In-person,United States,M,Data Analysis +2023,Entry-level,Full-time,Data Analyst,86000,USD,86000,United States,In-person,United States,M,Data Analysis +2023,Senior,Full-time,Data Engineer,72000,USD,72000,Brazil,Remote,Brazil,M,Data Engineering +2023,Senior,Full-time,Data Engineer,60000,USD,60000,Brazil,Remote,Brazil,M,Data Engineering +2023,Senior,Full-time,Data Scientist,136000,USD,136000,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Data Scientist,104000,USD,104000,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Machine Learning Engineer,323300,USD,323300,United States,In-person,United States,M,Machine Learning and AI +2023,Senior,Full-time,Machine Learning Engineer,184700,USD,184700,United States,In-person,United States,M,Machine Learning and AI +2023,Senior,Full-time,Data Engineer,150000,USD,150000,United States,Remote,United States,M,Data Engineering +2023,Senior,Full-time,Data Engineer,101570,USD,101570,United States,Remote,United States,M,Data Engineering +2023,Senior,Full-time,Machine Learning Engineer,247500,USD,247500,United States,In-person,United States,M,Machine Learning and AI +2023,Senior,Full-time,Machine Learning Engineer,172200,USD,172200,United States,In-person,United States,M,Machine Learning and AI +2023,Senior,Full-time,Data Science Practitioner,198800,USD,198800,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Data Science Practitioner,122600,USD,122600,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Data Engineer,173650,USD,173650,United States,In-person,United States,M,Data Engineering +2023,Senior,Full-time,Data Engineer,113900,USD,113900,United States,In-person,United States,M,Data Engineering +2023,Senior,Full-time,Data Scientist,185000,USD,185000,United States,Remote,United States,M,Data Science and Research +2023,Senior,Full-time,Data Scientist,126000,USD,126000,United States,Remote,United States,M,Data Science and Research +2023,Senior,Full-time,Data Management Specialist,139500,USD,139500,United States,In-person,United States,M,Data Management and Strategy +2023,Senior,Full-time,Data Management Specialist,110000,USD,110000,United States,In-person,United States,M,Data Management and Strategy +2023,Senior,Full-time,Data Scientist,160000,USD,160000,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Data Scientist,130000,USD,130000,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Machine Learning Engineer,280000,USD,280000,United States,In-person,United States,M,Machine Learning and AI +2023,Senior,Full-time,Machine Learning Engineer,200000,USD,200000,United States,In-person,United States,M,Machine Learning and AI +2023,Mid-level,Full-time,Data Scientist,100000,GBP,123040,United Kingdom,In-person,United Kingdom,M,Data Science and Research +2023,Mid-level,Full-time,Data Scientist,60000,GBP,73824,United Kingdom,In-person,United Kingdom,M,Data Science and Research +2023,Senior,Full-time,Data Scientist,248100,USD,248100,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Data Scientist,145900,USD,145900,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Business Intelligence Engineer,220000,USD,220000,United States,In-person,United States,M,BI and Visualization +2023,Senior,Full-time,Business Intelligence Engineer,175000,USD,175000,United States,In-person,United States,M,BI and Visualization +2023,Senior,Full-time,Data Scientist,175000,USD,175000,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Data Scientist,150000,USD,150000,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Data Manager,145000,USD,145000,United States,In-person,United States,M,Leadership and Management +2023,Senior,Full-time,Data Manager,130000,USD,130000,United States,In-person,United States,M,Leadership and Management +2023,Mid-level,Full-time,Data Manager,115500,USD,115500,United States,In-person,United States,M,Leadership and Management +2023,Mid-level,Full-time,Data Manager,73500,USD,73500,United States,In-person,United States,M,Leadership and Management +2023,Senior,Full-time,Data Analyst,150000,USD,150000,United States,In-person,United States,M,Data Analysis +2023,Senior,Full-time,Data Analyst,135000,USD,135000,United States,In-person,United States,M,Data Analysis +2023,Senior,Full-time,Data Analyst,150000,USD,150000,United States,Remote,United States,M,Data Analysis +2023,Senior,Full-time,Data Analyst,85000,USD,85000,United States,Remote,United States,M,Data Analysis +2023,Senior,Full-time,Data Engineer,210000,USD,210000,United States,Remote,United States,M,Data Engineering +2023,Senior,Full-time,Data Engineer,170000,USD,170000,United States,Remote,United States,M,Data Engineering +2023,Senior,Full-time,Data Engineer,160000,USD,160000,United States,Remote,United States,M,Data Engineering +2023,Senior,Full-time,Data Engineer,108000,USD,108000,United States,Remote,United States,M,Data Engineering +2023,Executive,Full-time,Head of Data,115000,USD,115000,Brazil,Remote,Brazil,M,Leadership and Management +2023,Executive,Full-time,Head of Data,110000,USD,110000,Brazil,Remote,Brazil,M,Leadership and Management +2023,Senior,Full-time,Machine Learning Engineer,220000,USD,220000,United States,In-person,United States,M,Machine Learning and AI +2023,Senior,Full-time,Machine Learning Engineer,185000,USD,185000,United States,In-person,United States,M,Machine Learning and AI +2023,Senior,Full-time,Decision Scientist,182500,USD,182500,United States,Remote,United States,M,Data Science and Research +2023,Senior,Full-time,Decision Scientist,135000,USD,135000,United States,Remote,United States,M,Data Science and Research +2023,Senior,Full-time,Data Scientist,208500,USD,208500,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Data Scientist,165000,USD,165000,United States,In-person,United States,M,Data Science and Research +2023,Mid-level,Contract,Business Data Analyst,35000,USD,35000,Philippines,Remote,United States,M,Data Analysis +2023,Executive,Full-time,Data Engineer,146000,USD,146000,United States,In-person,United States,M,Data Engineering +2023,Executive,Full-time,Data Engineer,94000,USD,94000,United States,In-person,United States,M,Data Engineering +2023,Senior,Full-time,Business Intelligence Engineer,225000,USD,225000,United States,In-person,United States,M,BI and Visualization +2023,Senior,Full-time,Business Intelligence Engineer,156400,USD,156400,United States,In-person,United States,M,BI and Visualization +2023,Mid-level,Full-time,AI Engineer,300000,USD,300000,Qatar,Remote,Qatar,M,Machine Learning and AI +2023,Senior,Full-time,Data Strategist,91000,USD,91000,United States,In-person,United States,M,Data Architecture and Modeling +2023,Senior,Full-time,Data Strategist,86000,USD,86000,United States,In-person,United States,M,Data Architecture and Modeling +2023,Senior,Full-time,Data Scientist,205500,USD,205500,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Data Scientist,132500,USD,132500,United States,In-person,United States,M,Data Science and Research +2023,Mid-level,Full-time,Data Manager,115500,USD,115500,United States,In-person,United States,M,Leadership and Management +2023,Mid-level,Full-time,Data Manager,73500,USD,73500,United States,In-person,United States,M,Leadership and Management +2023,Senior,Full-time,Business Data Analyst,180000,USD,180000,United States,Remote,United States,L,Data Analysis +2023,Senior,Full-time,Decision Scientist,204500,USD,204500,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Decision Scientist,142200,USD,142200,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Analytics Engineer,97750,USD,97750,United States,In-person,United States,M,Leadership and Management +2023,Senior,Full-time,Analytics Engineer,75000,USD,75000,United States,In-person,United States,M,Leadership and Management +2023,Entry-level,Full-time,Research Scientist,252990,USD,252990,United States,Remote,United States,M,Data Science and Research +2023,Entry-level,Full-time,Research Scientist,162170,USD,162170,United States,Remote,United States,M,Data Science and Research +2023,Senior,Full-time,Applied Scientist,216000,USD,216000,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Applied Scientist,184000,USD,184000,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Data Engineer,170000,USD,170000,United States,Remote,United States,M,Data Engineering +2023,Senior,Full-time,Data Engineer,120000,USD,120000,United States,Remote,United States,M,Data Engineering +2023,Senior,Full-time,Data Engineer,133200,USD,133200,United States,Remote,United States,M,Data Engineering +2023,Senior,Full-time,Data Engineer,84000,USD,84000,United States,Remote,United States,M,Data Engineering +2023,Entry-level,Full-time,Data Analyst,75000,USD,75000,United States,In-person,United States,M,Data Analysis +2023,Entry-level,Full-time,Data Analyst,67500,USD,67500,United States,In-person,United States,M,Data Analysis +2023,Mid-level,Full-time,Data Engineer,70000,GBP,86128,Canada,Remote,Canada,M,Data Engineering +2023,Mid-level,Full-time,Data Engineer,50000,GBP,61520,Canada,Remote,Canada,M,Data Engineering +2023,Senior,Full-time,Data Scientist,300000,USD,300000,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Data Scientist,160000,USD,160000,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Data Analyst,142000,USD,142000,United States,In-person,United States,M,Data Analysis +2023,Senior,Full-time,Data Analyst,128000,USD,128000,United States,In-person,United States,M,Data Analysis +2023,Mid-level,Full-time,Data Scientist,160000,USD,160000,United States,Remote,United States,M,Data Science and Research +2023,Mid-level,Full-time,Data Scientist,140000,USD,140000,United States,Remote,United States,M,Data Science and Research +2023,Senior,Full-time,Data Scientist,265000,USD,265000,United States,Remote,United States,M,Data Science and Research +2023,Senior,Full-time,Data Scientist,153000,USD,153000,United States,Remote,United States,M,Data Science and Research +2023,Senior,Full-time,Data Analyst,143000,USD,143000,United States,Remote,United States,M,Data Analysis +2023,Senior,Full-time,Data Analyst,126277,USD,126277,United States,Remote,United States,M,Data Analysis +2023,Senior,Full-time,Data Scientist,230000,USD,230000,United States,Remote,United States,M,Data Science and Research +2023,Senior,Full-time,Data Scientist,153000,USD,153000,United States,Remote,United States,M,Data Science and Research +2023,Senior,Full-time,Data Engineer,224500,USD,224500,United States,In-person,United States,M,Data Engineering +2023,Senior,Full-time,Data Engineer,126900,USD,126900,United States,In-person,United States,M,Data Engineering +2023,Mid-level,Full-time,Data Manager,115500,USD,115500,United States,In-person,United States,M,Leadership and Management +2023,Mid-level,Full-time,Data Manager,73500,USD,73500,United States,In-person,United States,M,Leadership and Management +2023,Mid-level,Full-time,Data Scientist,145000,USD,145000,United States,Remote,United States,M,Data Science and Research +2023,Mid-level,Full-time,Data Scientist,115000,USD,115000,United States,Remote,United States,M,Data Science and Research +2023,Senior,Full-time,Applied Scientist,227700,USD,227700,United States,Remote,United States,M,Data Science and Research +2023,Senior,Full-time,Applied Scientist,154836,USD,154836,United States,Remote,United States,M,Data Science and Research +2023,Senior,Full-time,Data Analyst,140000,USD,140000,United States,In-person,United States,M,Data Analysis +2023,Senior,Full-time,Data Analyst,126000,USD,126000,United States,In-person,United States,M,Data Analysis +2023,Senior,Full-time,Machine Learning Engineer,165000,USD,165000,United States,In-person,United States,M,Machine Learning and AI +2023,Senior,Full-time,Machine Learning Engineer,127000,USD,127000,United States,In-person,United States,M,Machine Learning and AI +2023,Senior,Full-time,Analytics Engineer,209000,USD,209000,United States,In-person,United States,M,Leadership and Management +2023,Senior,Full-time,Analytics Engineer,112500,USD,112500,United States,In-person,United States,M,Leadership and Management +2023,Mid-level,Full-time,Data Architect,140000,USD,140000,United States,Remote,United States,M,Data Architecture and Modeling +2023,Mid-level,Full-time,Data Architect,110000,USD,110000,United States,Remote,United States,M,Data Architecture and Modeling +2023,Mid-level,Full-time,Data Engineer,185900,USD,185900,United States,In-person,United States,M,Data Engineering +2023,Mid-level,Full-time,Data Engineer,129300,USD,129300,United States,In-person,United States,M,Data Engineering +2023,Senior,Full-time,Data Scientist,370000,USD,370000,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Data Scientist,300000,USD,300000,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Data Analyst,136000,USD,136000,United States,Remote,United States,M,Data Analysis +2023,Senior,Full-time,Data Analyst,104000,USD,104000,United States,Remote,United States,M,Data Analysis +2023,Senior,Full-time,Applied Scientist,214000,USD,214000,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Applied Scientist,154000,USD,154000,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Data Scientist,205000,USD,205000,United States,Remote,United States,M,Data Science and Research +2023,Senior,Full-time,Data Scientist,157500,USD,157500,United States,Remote,United States,M,Data Science and Research +2023,Senior,Full-time,Data Engineer,255000,USD,255000,United States,In-person,United States,M,Data Engineering +2023,Senior,Full-time,Data Engineer,178000,USD,178000,United States,In-person,United States,M,Data Engineering +2023,Senior,Full-time,Data Engineer,155000,USD,155000,United States,In-person,United States,M,Data Engineering +2023,Senior,Full-time,Data Engineer,109283,USD,109283,United States,In-person,United States,M,Data Engineering +2023,Senior,Full-time,Research Scientist,189000,USD,189000,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Research Scientist,137000,USD,137000,United States,In-person,United States,M,Data Science and Research +2023,Mid-level,Full-time,Data Analyst,120000,USD,120000,United States,Remote,United States,M,Data Analysis +2023,Mid-level,Full-time,Data Analyst,110000,USD,110000,United States,Remote,United States,M,Data Analysis +2023,Senior,Full-time,Machine Learning Engineer,204500,USD,204500,United States,In-person,United States,M,Machine Learning and AI +2023,Senior,Full-time,Machine Learning Engineer,142200,USD,142200,United States,In-person,United States,M,Machine Learning and AI +2023,Senior,Full-time,Data Analyst,100000,USD,100000,United States,In-person,United States,M,Data Analysis +2023,Senior,Full-time,Data Analyst,75000,USD,75000,United States,In-person,United States,M,Data Analysis +2023,Senior,Full-time,Data Engineer,181500,USD,181500,United States,In-person,United States,M,Data Engineering +2023,Senior,Full-time,Data Engineer,112200,USD,112200,United States,In-person,United States,M,Data Engineering +2023,Mid-level,Full-time,Data Engineer,40000,GBP,49216,United Kingdom,Remote,United Kingdom,M,Data Engineering +2023,Mid-level,Full-time,Data Engineer,35000,GBP,43064,United Kingdom,Remote,United Kingdom,M,Data Engineering +2023,Senior,Full-time,Data Scientist,170500,USD,170500,Canada,Remote,Canada,M,Data Science and Research +2023,Senior,Full-time,Data Scientist,118575,USD,118575,Canada,Remote,Canada,M,Data Science and Research +2023,Senior,Full-time,Data Analyst,130000,USD,130000,United States,Remote,United States,M,Data Analysis +2023,Senior,Full-time,Data Analyst,100000,USD,100000,United States,Remote,United States,M,Data Analysis +2022,Mid-level,Contract,Applied Machine Learning Scientist,93000,EUR,97712,Italy,Remote,Netherlands,L,Machine Learning and AI +2023,Entry-level,Full-time,AI Research Engineer,23100,EUR,24940,Portugal,Remote,Portugal,M,Data Science and Research +2023,Mid-level,Full-time,Analytics Engineer,172200,USD,172200,United States,Remote,United States,M,Leadership and Management +2023,Mid-level,Full-time,Analytics Engineer,131200,USD,131200,United States,Remote,United States,M,Leadership and Management +2023,Senior,Full-time,Data Analyst,154500,USD,154500,United States,Remote,United States,M,Data Analysis +2023,Senior,Full-time,Data Analyst,131325,USD,131325,United States,Remote,United States,M,Data Analysis +2023,Senior,Full-time,Data Manager,110400,USD,110400,United States,In-person,United States,M,Leadership and Management +2023,Senior,Full-time,Data Manager,68000,USD,68000,United States,In-person,United States,M,Leadership and Management +2023,Mid-level,Full-time,Data Manager,115500,USD,115500,United States,In-person,United States,M,Leadership and Management +2023,Mid-level,Full-time,Data Manager,73500,USD,73500,United States,In-person,United States,M,Leadership and Management +2023,Senior,Full-time,Business Intelligence Engineer,140000,USD,140000,United States,In-person,United States,M,BI and Visualization +2023,Senior,Full-time,Business Intelligence Engineer,100000,USD,100000,United States,In-person,United States,M,BI and Visualization +2023,Senior,Full-time,Data Analyst,192000,USD,192000,United States,Remote,United States,M,Data Analysis +2023,Senior,Full-time,Data Analyst,138240,USD,138240,United States,Remote,United States,M,Data Analysis +2023,Senior,Full-time,Machine Learning Engineer,225000,USD,225000,United States,In-person,United States,M,Machine Learning and AI +2023,Senior,Full-time,Machine Learning Engineer,190000,USD,190000,United States,In-person,United States,M,Machine Learning and AI +2023,Senior,Full-time,Data Scientist,207500,USD,207500,United States,Remote,United States,M,Data Science and Research +2023,Senior,Full-time,Data Scientist,172900,USD,172900,United States,Remote,United States,M,Data Science and Research +2023,Mid-level,Full-time,Data Scientist,135000,USD,135000,United States,In-person,United States,M,Data Science and Research +2023,Mid-level,Full-time,Data Scientist,70000,USD,70000,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Data Scientist,254000,USD,254000,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Data Scientist,185000,USD,185000,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Data Engineer,162000,USD,162000,United States,Remote,United States,M,Data Engineering +2023,Senior,Full-time,Data Engineer,111000,USD,111000,United States,Remote,United States,M,Data Engineering +2023,Senior,Full-time,Data Scientist,225000,USD,225000,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Data Scientist,156400,USD,156400,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Data Modeler,147100,USD,147100,United States,In-person,United States,M,Data Architecture and Modeling +2023,Senior,Full-time,Data Modeler,90700,USD,90700,United States,In-person,United States,M,Data Architecture and Modeling +2023,Mid-level,Full-time,Data Analyst,90000,USD,90000,United States,In-person,United States,M,Data Analysis +2023,Mid-level,Full-time,Data Analyst,70000,USD,70000,United States,In-person,United States,M,Data Analysis +2023,Senior,Full-time,Data Engineer,168400,USD,168400,United States,In-person,United States,M,Data Engineering +2023,Senior,Full-time,Data Engineer,105200,USD,105200,United States,In-person,United States,M,Data Engineering +2023,Senior,Full-time,Research Engineer,237000,USD,237000,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Research Engineer,170112,USD,170112,United States,In-person,United States,M,Data Science and Research +2023,Mid-level,Full-time,Data Scientist,24000,EUR,25912,Italy,Remote,Italy,S,Data Science and Research +2023,Senior,Full-time,Data Scientist,125000,EUR,134960,Netherlands,Hybrid,Netherlands,M,Data Science and Research +2023,Senior,Full-time,Business Intelligence Engineer,155000,USD,155000,United States,Remote,United States,M,BI and Visualization +2023,Senior,Full-time,Business Intelligence Engineer,130000,USD,130000,United States,Remote,United States,M,BI and Visualization +2023,Senior,Full-time,BI Developer,105000,USD,105000,United States,In-person,United States,M,BI and Visualization +2023,Senior,Full-time,BI Developer,70000,USD,70000,United States,In-person,United States,M,BI and Visualization +2023,Senior,Full-time,Data Analyst,140000,USD,140000,United States,In-person,United States,M,Data Analysis +2023,Senior,Full-time,Data Analyst,120000,USD,120000,United States,In-person,United States,M,Data Analysis +2023,Entry-level,Full-time,Data Integration Specialist,115000,USD,115000,Canada,In-person,Canada,M,Data Management and Strategy +2023,Entry-level,Full-time,Data Integration Specialist,85000,USD,85000,Canada,In-person,Canada,M,Data Management and Strategy +2023,Senior,Full-time,ML Engineer,260000,USD,260000,United States,Remote,United States,M,Machine Learning and AI +2023,Senior,Full-time,ML Engineer,234000,USD,234000,United States,Remote,United States,M,Machine Learning and AI +2023,Senior,Full-time,Machine Learning Engineer,204500,USD,204500,United States,In-person,United States,M,Machine Learning and AI +2023,Senior,Full-time,Machine Learning Engineer,142200,USD,142200,United States,In-person,United States,M,Machine Learning and AI +2023,Senior,Full-time,AI Architect,330000,USD,330000,United States,In-person,United States,M,Machine Learning and AI +2023,Senior,Full-time,AI Architect,204000,USD,204000,United States,In-person,United States,M,Machine Learning and AI +2023,Senior,Full-time,Data Engineer,180000,USD,180000,United States,Remote,United States,M,Data Engineering +2023,Senior,Full-time,Data Engineer,165000,USD,165000,United States,Remote,United States,M,Data Engineering +2023,Senior,Full-time,Data Scientist,185900,USD,185900,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Data Scientist,167310,USD,167310,United States,In-person,United States,M,Data Science and Research +2023,Entry-level,Full-time,Data Analyst,94600,USD,94600,United States,In-person,United States,M,Data Analysis +2023,Entry-level,Full-time,Data Analyst,86000,USD,86000,United States,In-person,United States,M,Data Analysis +2023,Senior,Full-time,Data Scientist,297300,USD,297300,United States,Remote,United States,M,Data Science and Research +2023,Senior,Full-time,Data Scientist,198200,USD,198200,United States,Remote,United States,M,Data Science and Research +2023,Senior,Full-time,Data Analyst,167000,USD,167000,United States,In-person,United States,M,Data Analysis +2023,Senior,Full-time,Data Analyst,150000,USD,150000,United States,In-person,United States,M,Data Analysis +2023,Senior,Full-time,Data Engineer,121000,USD,121000,United States,Remote,United States,M,Data Engineering +2023,Senior,Full-time,Data Engineer,101570,USD,101570,United States,Remote,United States,M,Data Engineering +2023,Senior,Full-time,Data Strategist,175000,USD,175000,United States,Remote,United States,M,Data Architecture and Modeling +2023,Senior,Full-time,Data Strategist,125000,USD,125000,United States,Remote,United States,M,Data Architecture and Modeling +2023,Senior,Full-time,Machine Learning Scientist,325000,USD,325000,United States,Remote,United States,M,Machine Learning and AI +2023,Senior,Full-time,Machine Learning Scientist,171000,USD,171000,United States,Remote,United States,M,Machine Learning and AI +2023,Senior,Full-time,Data Science Consultant,180000,USD,180000,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Data Science Consultant,137000,USD,137000,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Data Scientist,265000,USD,265000,United States,Remote,United States,M,Data Science and Research +2023,Senior,Full-time,Data Scientist,172000,USD,172000,United States,Remote,United States,M,Data Science and Research +2023,Mid-level,Full-time,Machine Learning Engineer,155810,USD,155810,United States,In-person,United States,M,Machine Learning and AI +2023,Mid-level,Full-time,Machine Learning Engineer,106720,USD,106720,United States,In-person,United States,M,Machine Learning and AI +2023,Entry-level,Full-time,Data Scientist,160800,USD,160800,United Kingdom,In-person,United Kingdom,M,Data Science and Research +2023,Entry-level,Full-time,Data Scientist,132200,USD,132200,United Kingdom,In-person,United Kingdom,M,Data Science and Research +2023,Senior,Full-time,Data Analyst,133000,USD,133000,United States,Remote,United States,M,Data Analysis +2023,Senior,Full-time,Data Analyst,113000,USD,113000,United States,Remote,United States,M,Data Analysis +2023,Senior,Full-time,Data Analyst,105000,USD,105000,United States,In-person,United States,M,Data Analysis +2023,Senior,Full-time,Data Analyst,75000,USD,75000,United States,In-person,United States,M,Data Analysis +2023,Senior,Full-time,Data Scientist,208400,USD,208400,United States,Remote,United States,M,Data Science and Research +2023,Senior,Full-time,Data Scientist,139000,USD,139000,United States,Remote,United States,M,Data Science and Research +2023,Senior,Full-time,Data Engineer,157550,USD,157550,United States,In-person,United States,M,Data Engineering +2023,Senior,Full-time,Data Engineer,104650,USD,104650,United States,In-person,United States,M,Data Engineering +2023,Senior,Full-time,Data Engineer,240500,USD,240500,United States,In-person,United States,L,Data Engineering +2023,Senior,Full-time,Data Engineer,123700,USD,123700,United States,In-person,United States,L,Data Engineering +2023,Senior,Full-time,Data Engineer,205600,USD,205600,United States,In-person,United States,L,Data Engineering +2023,Senior,Full-time,Data Engineer,105700,USD,105700,United States,In-person,United States,L,Data Engineering +2023,Senior,Full-time,Business Data Analyst,78000,USD,78000,United States,Remote,United States,L,Data Analysis +2023,Mid-level,Full-time,Data Engineer,121000,USD,121000,United States,In-person,United States,M,Data Engineering +2023,Mid-level,Full-time,Data Engineer,78000,USD,78000,United States,In-person,United States,M,Data Engineering +2023,Entry-level,Full-time,Data Scientist,85600,USD,85600,United States,In-person,United States,M,Data Science and Research +2023,Entry-level,Full-time,Data Scientist,48915,USD,48915,United States,In-person,United States,M,Data Science and Research +2023,Mid-level,Full-time,Data Analyst,78000,USD,78000,United States,In-person,United States,M,Data Analysis +2023,Mid-level,Full-time,Data Analyst,68000,USD,68000,United States,In-person,United States,M,Data Analysis +2023,Senior,Full-time,Research Analyst,49500,EUR,53444,Spain,Remote,Spain,M,Data Science and Research +2023,Senior,Full-time,Research Analyst,41818,EUR,45150,Spain,Remote,Spain,M,Data Science and Research +2023,Senior,Full-time,Data Scientist,275500,USD,275500,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Data Scientist,206000,USD,206000,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Business Intelligence Engineer,202800,USD,202800,United States,In-person,United States,L,BI and Visualization +2023,Senior,Full-time,Business Intelligence Engineer,104300,USD,104300,United States,In-person,United States,L,BI and Visualization +2023,Senior,Full-time,Research Analyst,52200,EUR,56359,Italy,Remote,Italy,M,Data Science and Research +2023,Senior,Full-time,Research Analyst,44272,EUR,47799,Italy,Remote,Italy,M,Data Science and Research +2023,Senior,Full-time,Data Engineer,154000,USD,154000,United States,In-person,United States,M,Data Engineering +2023,Senior,Full-time,Data Engineer,102000,USD,102000,United States,In-person,United States,M,Data Engineering +2023,Senior,Full-time,Data Modeler,140000,USD,140000,United States,In-person,United States,M,Data Architecture and Modeling +2023,Senior,Full-time,Data Modeler,100000,USD,100000,United States,In-person,United States,M,Data Architecture and Modeling +2023,Senior,Full-time,Data Strategist,91000,USD,91000,United States,In-person,United States,M,Data Architecture and Modeling +2023,Senior,Full-time,Data Strategist,86000,USD,86000,United States,In-person,United States,M,Data Architecture and Modeling +2023,Senior,Full-time,Data Scientist,228000,USD,228000,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Data Scientist,136000,USD,136000,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Data Analyst,180000,USD,180000,United States,Remote,United States,M,Data Analysis +2023,Senior,Full-time,Data Analyst,140000,USD,140000,United States,Remote,United States,M,Data Analysis +2023,Senior,Full-time,Data Scientist,175000,USD,175000,United States,Remote,United States,M,Data Science and Research +2023,Senior,Full-time,Data Scientist,155000,USD,155000,United States,Remote,United States,M,Data Science and Research +2022,Entry-level,Full-time,Research Engineer,15662,EUR,16455,Russian Federation,Remote,Russian Federation,M,Data Science and Research +2023,Senior,Full-time,Data Analyst,207611,USD,207611,United States,Remote,United States,M,Data Analysis +2023,Senior,Full-time,Data Analyst,127876,USD,127876,United States,Remote,United States,M,Data Analysis +2023,Entry-level,Full-time,Data Analyst,111000,USD,111000,United States,In-person,United States,M,Data Analysis +2023,Entry-level,Full-time,Data Analyst,104000,USD,104000,United States,In-person,United States,M,Data Analysis +2023,Mid-level,Full-time,BI Developer,128000,USD,128000,United States,In-person,United States,M,BI and Visualization +2023,Mid-level,Full-time,BI Developer,81500,USD,81500,United States,In-person,United States,M,BI and Visualization +2023,Entry-level,Full-time,Data Analyst,50000,GBP,61520,United Kingdom,In-person,United Kingdom,M,Data Analysis +2023,Entry-level,Full-time,Data Analyst,35000,GBP,43064,United Kingdom,In-person,United Kingdom,M,Data Analysis +2023,Mid-level,Full-time,Data Analyst,97750,USD,97750,United States,In-person,United States,M,Data Analysis +2023,Mid-level,Full-time,Data Analyst,75000,USD,75000,United States,In-person,United States,M,Data Analysis +2023,Senior,Full-time,Machine Learning Engineer,238000,USD,238000,United States,In-person,United States,M,Machine Learning and AI +2023,Senior,Full-time,Machine Learning Engineer,176000,USD,176000,United States,In-person,United States,M,Machine Learning and AI +2023,Senior,Full-time,Data Analyst,192000,USD,192000,Canada,In-person,Canada,M,Data Analysis +2023,Senior,Full-time,Data Analyst,92000,USD,92000,Canada,In-person,Canada,M,Data Analysis +2023,Senior,Full-time,Data Engineer,195000,USD,195000,United States,In-person,United States,M,Data Engineering +2023,Senior,Full-time,Data Engineer,125000,USD,125000,United States,In-person,United States,M,Data Engineering +2023,Senior,Full-time,Decision Scientist,204500,USD,204500,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Decision Scientist,142200,USD,142200,United States,In-person,United States,M,Data Science and Research +2023,Entry-level,Full-time,Data Analyst,132600,USD,132600,United States,Remote,United States,M,Data Analysis +2023,Entry-level,Full-time,Data Analyst,81500,USD,81500,United States,Remote,United States,M,Data Analysis +2023,Mid-level,Full-time,Data Engineer,202400,USD,202400,United States,In-person,United States,M,Data Engineering +2023,Mid-level,Full-time,Data Engineer,147200,USD,147200,United States,In-person,United States,M,Data Engineering +2023,Senior,Full-time,Data Analyst,175000,USD,175000,United States,Remote,United States,M,Data Analysis +2023,Senior,Full-time,Data Analyst,135000,USD,135000,United States,Remote,United States,M,Data Analysis +2023,Senior,Full-time,Machine Learning Engineer,238000,USD,238000,United States,In-person,United States,M,Machine Learning and AI +2023,Senior,Full-time,Machine Learning Engineer,176000,USD,176000,United States,In-person,United States,M,Machine Learning and AI +2023,Senior,Full-time,Data Scientist,239000,USD,239000,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Data Scientist,136000,USD,136000,United States,In-person,United States,M,Data Science and Research +2023,Mid-level,Full-time,Data Analyst,54000,USD,54000,United States,Remote,United States,M,Data Analysis +2023,Mid-level,Full-time,Data Analyst,36000,USD,36000,United States,Remote,United States,M,Data Analysis +2023,Senior,Full-time,Data Scientist,176000,USD,176000,United States,Remote,United States,M,Data Science and Research +2023,Senior,Full-time,Data Scientist,118720,USD,118720,United States,Remote,United States,M,Data Science and Research +2023,Senior,Full-time,Data Scientist,204500,USD,204500,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Data Scientist,138900,USD,138900,United States,In-person,United States,M,Data Science and Research +2023,Mid-level,Full-time,Data Engineer,140000,USD,140000,United States,Remote,United States,M,Data Engineering +2023,Mid-level,Full-time,Data Engineer,95000,USD,95000,United States,Remote,United States,M,Data Engineering +2023,Senior,Full-time,Research Engineer,240000,USD,240000,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Research Engineer,157000,USD,157000,United States,In-person,United States,M,Data Science and Research +2023,Mid-level,Full-time,Data Engineer,165000,USD,165000,United States,Remote,United States,M,Data Engineering +2023,Mid-level,Full-time,Data Engineer,136000,USD,136000,United States,Remote,United States,M,Data Engineering +2023,Senior,Full-time,Applied Scientist,230000,USD,230000,United States,Remote,United States,M,Data Science and Research +2023,Senior,Full-time,Applied Scientist,196000,USD,196000,United States,Remote,United States,M,Data Science and Research +2023,Senior,Full-time,Data Scientist,272300,USD,272300,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Data Scientist,222800,USD,222800,United States,In-person,United States,M,Data Science and Research +2023,Mid-level,Full-time,Data Engineer,167500,USD,167500,United States,In-person,United States,M,Data Engineering +2023,Mid-level,Full-time,Data Engineer,106500,USD,106500,United States,In-person,United States,M,Data Engineering +2023,Senior,Full-time,Data Manager,172750,USD,172750,United States,Remote,United States,M,Leadership and Management +2023,Senior,Full-time,Data Manager,82500,USD,82500,United States,Remote,United States,M,Leadership and Management +2023,Mid-level,Full-time,Business Intelligence Engineer,165600,USD,165600,United States,In-person,United States,L,BI and Visualization +2023,Mid-level,Full-time,Business Intelligence Engineer,65800,USD,65800,United States,In-person,United States,L,BI and Visualization +2023,Senior,Full-time,Applied Scientist,192000,USD,192000,United States,Remote,United States,M,Data Science and Research +2023,Senior,Full-time,Applied Scientist,164000,USD,164000,United States,Remote,United States,M,Data Science and Research +2023,Senior,Full-time,Data Manager,145000,USD,145000,United States,In-person,United States,M,Leadership and Management +2023,Senior,Full-time,Data Manager,130000,USD,130000,United States,In-person,United States,M,Leadership and Management +2023,Senior,Full-time,Machine Learning Engineer,226600,USD,226600,United States,In-person,United States,M,Machine Learning and AI +2023,Senior,Full-time,Machine Learning Engineer,140100,USD,140100,United States,In-person,United States,M,Machine Learning and AI +2023,Senior,Full-time,Data Scientist,185900,USD,185900,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Data Scientist,129300,USD,129300,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Machine Learning Engineer,331640,USD,331640,United States,In-person,United States,M,Machine Learning and AI +2023,Senior,Full-time,Machine Learning Engineer,267720,USD,267720,United States,In-person,United States,M,Machine Learning and AI +2023,Senior,Full-time,Data Scientist,281000,USD,281000,Canada,In-person,Canada,M,Data Science and Research +2023,Senior,Full-time,Data Scientist,181000,USD,181000,Canada,In-person,Canada,M,Data Science and Research +2023,Senior,Full-time,Analytics Engineer,207611,USD,207611,United States,Remote,United States,M,Leadership and Management +2023,Senior,Full-time,Analytics Engineer,127876,USD,127876,United States,Remote,United States,M,Leadership and Management +2023,Senior,Full-time,Research Engineer,225000,USD,225000,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Research Engineer,168000,USD,168000,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Data Engineer,280600,USD,280600,United States,In-person,United States,M,Data Engineering +2023,Senior,Full-time,Data Engineer,158600,USD,158600,United States,In-person,United States,M,Data Engineering +2023,Senior,Full-time,Machine Learning Engineer,200000,USD,200000,United States,In-person,United States,M,Machine Learning and AI +2023,Senior,Full-time,Machine Learning Engineer,140000,USD,140000,United States,In-person,United States,M,Machine Learning and AI +2023,Senior,Full-time,Machine Learning Engineer,283780,USD,283780,United States,In-person,United States,M,Machine Learning and AI +2023,Senior,Full-time,Machine Learning Engineer,218540,USD,218540,United States,In-person,United States,M,Machine Learning and AI +2023,Senior,Full-time,Data Engineer,178500,USD,178500,United States,In-person,United States,M,Data Engineering +2023,Senior,Full-time,Data Engineer,100000,USD,100000,United States,In-person,United States,M,Data Engineering +2023,Senior,Full-time,Data Scientist,323300,USD,323300,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Data Scientist,184700,USD,184700,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Research Scientist,248100,USD,248100,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Research Scientist,145900,USD,145900,United States,In-person,United States,M,Data Science and Research +2023,Mid-level,Full-time,Data Analytics Lead,100000,GBP,123040,United Kingdom,In-person,United Kingdom,M,Leadership and Management +2023,Mid-level,Full-time,Data Analytics Lead,85000,GBP,104584,United Kingdom,In-person,United Kingdom,M,Leadership and Management +2023,Mid-level,Full-time,Research Scientist,185000,USD,185000,United States,Remote,United States,M,Data Science and Research +2023,Mid-level,Full-time,Research Scientist,137700,USD,137700,United States,Remote,United States,M,Data Science and Research +2023,Senior,Full-time,Research Scientist,205500,USD,205500,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Research Scientist,132500,USD,132500,United States,In-person,United States,M,Data Science and Research +2023,Mid-level,Full-time,Data Operations Analyst,65100,USD,65100,United States,Remote,United States,M,Data Quality and Operations +2023,Mid-level,Full-time,Data Operations Analyst,44640,USD,44640,United States,Remote,United States,M,Data Quality and Operations +2023,Senior,Full-time,Data Engineer,181500,USD,181500,United States,In-person,United States,M,Data Engineering +2023,Senior,Full-time,Data Engineer,112200,USD,112200,United States,In-person,United States,M,Data Engineering +2023,Senior,Full-time,Machine Learning Engineer,192000,USD,192000,United States,Remote,United States,M,Machine Learning and AI +2023,Senior,Full-time,Machine Learning Engineer,164000,USD,164000,United States,Remote,United States,M,Machine Learning and AI +2023,Mid-level,Full-time,Data Analyst,161000,USD,161000,United States,Remote,United States,M,Data Analysis +2023,Mid-level,Full-time,Data Analyst,123000,USD,123000,United States,Remote,United States,M,Data Analysis +2023,Senior,Full-time,Data Engineer,247300,USD,247300,United States,In-person,United States,M,Data Engineering +2023,Senior,Full-time,Data Engineer,139700,USD,139700,United States,In-person,United States,M,Data Engineering +2023,Senior,Full-time,Data Analyst,145000,USD,145000,United States,Remote,United States,M,Data Analysis +2023,Senior,Full-time,Data Analyst,106000,USD,106000,United States,Remote,United States,M,Data Analysis +2023,Senior,Full-time,Data Engineer,200000,USD,200000,Canada,Remote,Canada,M,Data Engineering +2023,Senior,Full-time,Data Engineer,160000,USD,160000,Canada,Remote,Canada,M,Data Engineering +2023,Senior,Full-time,Machine Learning Engineer,204600,USD,204600,United States,In-person,United States,M,Machine Learning and AI +2023,Senior,Full-time,Machine Learning Engineer,126500,USD,126500,United States,In-person,United States,M,Machine Learning and AI +2023,Senior,Full-time,Data Scientist,278700,USD,278700,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Data Scientist,159300,USD,159300,United States,In-person,United States,M,Data Science and Research +2023,Mid-level,Full-time,Data Scientist,180000,USD,180000,United States,In-person,United States,M,Data Science and Research +2023,Mid-level,Full-time,Data Scientist,140000,USD,140000,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Machine Learning Engineer,238000,USD,238000,United States,In-person,United States,M,Machine Learning and AI +2023,Senior,Full-time,Machine Learning Engineer,176000,USD,176000,United States,In-person,United States,M,Machine Learning and AI +2023,Senior,Full-time,Data Operations Engineer,125000,USD,125000,United States,In-person,United States,M,Data Quality and Operations +2023,Senior,Full-time,Data Operations Engineer,65000,USD,65000,United States,In-person,United States,M,Data Quality and Operations +2023,Mid-level,Full-time,Data Scientist,230000,USD,230000,United States,In-person,United States,M,Data Science and Research +2023,Mid-level,Full-time,Data Scientist,175000,USD,175000,United States,In-person,United States,M,Data Science and Research +2023,Mid-level,Full-time,Data Engineer,130000,USD,130000,United States,Remote,United States,M,Data Engineering +2023,Mid-level,Full-time,Data Engineer,100000,USD,100000,United States,Remote,United States,M,Data Engineering +2023,Senior,Full-time,Applied Scientist,252990,USD,252990,United States,Remote,United States,M,Data Science and Research +2023,Senior,Full-time,Applied Scientist,162170,USD,162170,United States,Remote,United States,M,Data Science and Research +2023,Mid-level,Full-time,Data Engineer,183000,USD,183000,Canada,Remote,Canada,M,Data Engineering +2023,Mid-level,Full-time,Data Engineer,122000,USD,122000,Canada,Remote,Canada,M,Data Engineering +2023,Senior,Full-time,Machine Learning Engineer,253000,USD,253000,United States,Remote,United States,M,Machine Learning and AI +2023,Senior,Full-time,Machine Learning Engineer,172040,USD,172040,United States,Remote,United States,M,Machine Learning and AI +2023,Senior,Full-time,Data Scientist,310270,USD,310270,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Data Scientist,239080,USD,239080,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Data Analyst,85000,USD,85000,United States,Remote,United States,M,Data Analysis +2023,Senior,Full-time,Data Analyst,70000,USD,70000,United States,Remote,United States,M,Data Analysis +2023,Mid-level,Full-time,Data Engineer,135000,USD,135000,United States,Remote,United States,M,Data Engineering +2023,Mid-level,Full-time,Data Engineer,125000,USD,125000,United States,Remote,United States,M,Data Engineering +2023,Senior,Full-time,Applied Scientist,253000,USD,253000,United States,Remote,United States,M,Data Science and Research +2023,Senior,Full-time,Applied Scientist,172040,USD,172040,United States,Remote,United States,M,Data Science and Research +2023,Mid-level,Full-time,Data Engineer,135000,USD,135000,United States,In-person,United States,M,Data Engineering +2023,Mid-level,Full-time,Data Engineer,108000,USD,108000,United States,In-person,United States,M,Data Engineering +2023,Senior,Full-time,Data Engineer,225500,USD,225500,United States,In-person,United States,M,Data Engineering +2023,Senior,Full-time,Data Engineer,139400,USD,139400,United States,In-person,United States,M,Data Engineering +2023,Senior,Full-time,Machine Learning Manager,120000,EUR,129562,Germany,Remote,United States,L,Machine Learning and AI +2023,Entry-level,Full-time,BI Data Analyst,50000,USD,50000,Kenya,Remote,Kenya,S,Data Analysis +2023,Senior,Full-time,AI Engineer,227850,USD,227850,United States,Remote,United States,M,Machine Learning and AI +2023,Senior,Full-time,AI Engineer,180500,USD,180500,United States,Remote,United States,M,Machine Learning and AI +2023,Mid-level,Full-time,Data Analyst,90000,USD,90000,United States,In-person,United States,M,Data Analysis +2023,Mid-level,Full-time,Data Analyst,70000,USD,70000,United States,In-person,United States,M,Data Analysis +2023,Senior,Full-time,Data Engineer,199000,USD,199000,United States,Remote,United States,M,Data Engineering +2023,Senior,Full-time,Data Engineer,159000,USD,159000,United States,Remote,United States,M,Data Engineering +2023,Senior,Full-time,Data Lead,350000,USD,350000,United States,In-person,United States,M,Leadership and Management +2023,Senior,Full-time,Data Lead,80000,USD,80000,United States,In-person,United States,M,Leadership and Management +2023,Senior,Full-time,Machine Learning Engineer,240000,USD,240000,United Kingdom,In-person,United Kingdom,M,Machine Learning and AI +2023,Senior,Full-time,Machine Learning Engineer,160000,USD,160000,United Kingdom,In-person,United Kingdom,M,Machine Learning and AI +2023,Senior,Full-time,Data Engineer,145000,USD,145000,United States,In-person,United States,M,Data Engineering +2023,Senior,Full-time,Data Engineer,115000,USD,115000,United States,In-person,United States,M,Data Engineering +2023,Mid-level,Full-time,Data Analyst,107500,USD,107500,United States,In-person,United States,M,Data Analysis +2023,Mid-level,Full-time,Data Analyst,96750,USD,96750,United States,In-person,United States,M,Data Analysis +2023,Senior,Full-time,Machine Learning Engineer,174000,USD,174000,United States,In-person,United States,M,Machine Learning and AI +2023,Senior,Full-time,Machine Learning Engineer,104000,USD,104000,United States,In-person,United States,M,Machine Learning and AI +2023,Senior,Full-time,ML Engineer,275300,USD,275300,United States,Remote,United States,M,Machine Learning and AI +2023,Senior,Full-time,ML Engineer,183500,USD,183500,United States,Remote,United States,M,Machine Learning and AI +2023,Senior,Full-time,Data Scientist,250000,USD,250000,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Data Scientist,225000,USD,225000,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Data Engineer,174350,USD,174350,United States,In-person,United States,M,Data Engineering +2023,Senior,Full-time,Data Engineer,126800,USD,126800,United States,In-person,United States,M,Data Engineering +2023,Senior,Full-time,Machine Learning Engineer,284050,USD,284050,United States,In-person,United States,M,Machine Learning and AI +2023,Senior,Full-time,Machine Learning Engineer,193800,USD,193800,United States,In-person,United States,M,Machine Learning and AI +2023,Senior,Full-time,Data Engineer,300000,USD,300000,United States,In-person,United States,M,Data Engineering +2023,Senior,Full-time,Data Engineer,200000,USD,200000,United States,In-person,United States,M,Data Engineering +2023,Senior,Full-time,Data Engineer,232989,USD,232989,United States,Remote,United States,M,Data Engineering +2023,Senior,Full-time,Data Engineer,140000,USD,140000,United States,Remote,United States,M,Data Engineering +2023,Entry-level,Full-time,BI Data Analyst,85000,USD,85000,Canada,Remote,United States,M,Data Analysis +2023,Senior,Full-time,Machine Learning Engineer,204500,USD,204500,United States,In-person,United States,M,Machine Learning and AI +2023,Senior,Full-time,Machine Learning Engineer,142200,USD,142200,United States,In-person,United States,M,Machine Learning and AI +2023,Senior,Full-time,Data Engineer,147100,USD,147100,United States,In-person,United States,M,Data Engineering +2023,Senior,Full-time,Data Engineer,90700,USD,90700,United States,In-person,United States,M,Data Engineering +2023,Senior,Full-time,Data Analyst,140000,USD,140000,United States,Remote,United States,M,Data Analysis +2023,Senior,Full-time,Data Analyst,95000,USD,95000,United States,Remote,United States,M,Data Analysis +2023,Senior,Full-time,Data Analyst,204500,USD,204500,United States,In-person,United States,M,Data Analysis +2023,Senior,Full-time,Data Analyst,138900,USD,138900,United States,In-person,United States,M,Data Analysis +2023,Senior,Full-time,Data Modeler,168400,USD,168400,United States,In-person,United States,M,Data Architecture and Modeling +2023,Senior,Full-time,Data Modeler,105200,USD,105200,United States,In-person,United States,M,Data Architecture and Modeling +2023,Senior,Full-time,Research Scientist,205500,USD,205500,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Research Scientist,132500,USD,132500,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Data Scientist,147100,USD,147100,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Data Scientist,90700,USD,90700,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Machine Learning Engineer,247500,USD,247500,United States,In-person,United States,M,Machine Learning and AI +2023,Senior,Full-time,Machine Learning Engineer,172200,USD,172200,United States,In-person,United States,M,Machine Learning and AI +2023,Senior,Full-time,Data Analyst,192000,USD,192000,United States,Remote,United States,M,Data Analysis +2023,Senior,Full-time,Data Analyst,138240,USD,138240,United States,Remote,United States,M,Data Analysis +2023,Senior,Full-time,Data Engineer,168400,USD,168400,United States,In-person,United States,M,Data Engineering +2023,Senior,Full-time,Data Engineer,105200,USD,105200,United States,In-person,United States,M,Data Engineering +2023,Senior,Full-time,Analytics Engineer,150550,USD,150550,United States,Remote,United States,M,Leadership and Management +2023,Senior,Full-time,Analytics Engineer,116710,USD,116710,United States,Remote,United States,M,Leadership and Management +2023,Senior,Full-time,Data Scientist,180000,USD,180000,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Data Scientist,162000,USD,162000,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Machine Learning Engineer,226600,USD,226600,United States,In-person,United States,M,Machine Learning and AI +2023,Senior,Full-time,Machine Learning Engineer,140100,USD,140100,United States,In-person,United States,M,Machine Learning and AI +2023,Senior,Full-time,Data Visualization Engineer,147100,USD,147100,United States,In-person,United States,M,BI and Visualization +2023,Senior,Full-time,Data Visualization Engineer,90700,USD,90700,United States,In-person,United States,M,BI and Visualization +2023,Senior,Full-time,Research Scientist,175000,USD,175000,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Research Scientist,120000,USD,120000,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Data Architect,147100,USD,147100,United States,In-person,United States,M,Data Architecture and Modeling +2023,Senior,Full-time,Data Architect,90700,USD,90700,United States,In-person,United States,M,Data Architecture and Modeling +2023,Senior,Full-time,Data Modeler,168400,USD,168400,United States,In-person,United States,M,Data Architecture and Modeling +2023,Senior,Full-time,Data Modeler,105200,USD,105200,United States,In-person,United States,M,Data Architecture and Modeling +2023,Senior,Full-time,Analytics Engineer,125000,USD,125000,United States,Remote,United States,M,Leadership and Management +2023,Senior,Full-time,Analytics Engineer,100000,USD,100000,United States,Remote,United States,M,Leadership and Management +2023,Senior,Full-time,Research Scientist,198800,USD,198800,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Research Scientist,105200,USD,105200,United States,In-person,United States,M,Data Science and Research +2023,Mid-level,Full-time,Data Manager,115500,USD,115500,United States,In-person,United States,M,Leadership and Management +2023,Mid-level,Full-time,Data Manager,73500,USD,73500,United States,In-person,United States,M,Leadership and Management +2023,Senior,Full-time,Data Engineer,150600,USD,150600,United Kingdom,Remote,United Kingdom,M,Data Engineering +2023,Senior,Full-time,Data Engineer,120500,USD,120500,United Kingdom,Remote,United Kingdom,M,Data Engineering +2023,Senior,Full-time,Data Engineer,183000,USD,183000,United States,In-person,United States,M,Data Engineering +2023,Senior,Full-time,Data Engineer,140000,USD,140000,United States,In-person,United States,M,Data Engineering +2023,Executive,Full-time,Business Intelligence Developer,167500,USD,167500,United States,In-person,United States,M,BI and Visualization +2023,Executive,Full-time,Business Intelligence Developer,106500,USD,106500,United States,In-person,United States,M,BI and Visualization +2023,Senior,Full-time,Analytics Engineer,175000,USD,175000,United States,Remote,United States,M,Leadership and Management +2023,Senior,Full-time,Analytics Engineer,125000,USD,125000,United States,Remote,United States,M,Leadership and Management +2023,Senior,Full-time,Machine Learning Engineer,239000,USD,239000,Canada,Remote,Canada,M,Machine Learning and AI +2023,Senior,Full-time,Machine Learning Engineer,149000,USD,149000,Canada,Remote,Canada,M,Machine Learning and AI +2023,Mid-level,Full-time,BI Developer,128000,USD,128000,United States,In-person,United States,M,BI and Visualization +2023,Mid-level,Full-time,BI Developer,81500,USD,81500,United States,In-person,United States,M,BI and Visualization +2023,Senior,Full-time,Data Scientist,185000,USD,185000,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Data Scientist,122000,USD,122000,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Business Intelligence Engineer,202800,USD,202800,United States,In-person,United States,L,BI and Visualization +2023,Senior,Full-time,Business Intelligence Engineer,104300,USD,104300,United States,In-person,United States,L,BI and Visualization +2023,Mid-level,Full-time,Data Engineer,181500,USD,181500,United States,In-person,United States,M,Data Engineering +2023,Mid-level,Full-time,Data Engineer,127000,USD,127000,United States,In-person,United States,M,Data Engineering +2023,Mid-level,Full-time,Data Specialist,186000,USD,186000,United States,In-person,United States,M,Data Management and Strategy +2023,Mid-level,Full-time,Data Specialist,138000,USD,138000,United States,In-person,United States,M,Data Management and Strategy +2023,Mid-level,Full-time,Data Scientist,185000,USD,185000,United States,In-person,United States,M,Data Science and Research +2023,Mid-level,Full-time,Data Scientist,122000,USD,122000,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Research Engineer,196000,USD,196000,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Research Engineer,142600,USD,142600,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Data Scientist,205000,USD,205000,United States,Remote,United States,M,Data Science and Research +2023,Senior,Full-time,Data Scientist,150000,USD,150000,United States,Remote,United States,M,Data Science and Research +2023,Senior,Full-time,Business Intelligence Analyst,140000,USD,140000,Canada,In-person,Canada,M,BI and Visualization +2023,Senior,Full-time,Business Intelligence Analyst,112000,USD,112000,Canada,In-person,Canada,M,BI and Visualization +2023,Senior,Full-time,Data Analyst,139000,USD,139000,United States,In-person,United States,M,Data Analysis +2023,Senior,Full-time,Data Analyst,85700,USD,85700,United States,In-person,United States,M,Data Analysis +2023,Senior,Full-time,Lead Data Scientist,36000,USD,36000,Russian Federation,Remote,Russian Federation,L,Data Science and Research +2023,Senior,Full-time,Data Engineer,130000,USD,130000,United States,In-person,United States,M,Data Engineering +2023,Senior,Full-time,Data Engineer,91270,USD,91270,United States,In-person,United States,M,Data Engineering +2023,Senior,Full-time,Data Scientist,226600,USD,226600,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Data Scientist,140100,USD,140100,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Business Intelligence Engineer,225000,USD,225000,United States,In-person,United States,M,BI and Visualization +2023,Senior,Full-time,Business Intelligence Engineer,156400,USD,156400,United States,In-person,United States,M,BI and Visualization +2023,Mid-level,Full-time,Applied Scientist,222200,USD,222200,United States,In-person,United States,L,Data Science and Research +2023,Mid-level,Full-time,Applied Scientist,136000,USD,136000,United States,In-person,United States,L,Data Science and Research +2023,Senior,Full-time,Data Architect,180000,USD,180000,United States,In-person,United States,M,Data Architecture and Modeling +2023,Senior,Full-time,Data Architect,165000,USD,165000,United States,In-person,United States,M,Data Architecture and Modeling +2023,Executive,Full-time,Director of Data Science,247000,USD,247000,United States,Remote,United States,M,Data Science and Research +2023,Executive,Full-time,Director of Data Science,118440,USD,118440,United States,Remote,United States,M,Data Science and Research +2023,Senior,Full-time,Data Manager,145000,USD,145000,United States,In-person,United States,M,Leadership and Management +2023,Senior,Full-time,Data Manager,130000,USD,130000,United States,In-person,United States,M,Leadership and Management +2023,Mid-level,Full-time,Data Scientist,204500,USD,204500,United States,In-person,United States,M,Data Science and Research +2023,Mid-level,Full-time,Data Scientist,138900,USD,138900,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,ML Engineer,297300,USD,297300,United States,Remote,United States,M,Machine Learning and AI +2023,Senior,Full-time,ML Engineer,198200,USD,198200,United States,Remote,United States,M,Machine Learning and AI +2023,Mid-level,Full-time,Data Scientist,172200,USD,172200,United States,Remote,United States,M,Data Science and Research +2023,Mid-level,Full-time,Data Scientist,131200,USD,131200,United States,Remote,United States,M,Data Science and Research +2023,Mid-level,Full-time,Data Scientist,90000,GBP,110736,United Kingdom,Remote,United Kingdom,M,Data Science and Research +2023,Mid-level,Full-time,Data Scientist,70000,GBP,86128,United Kingdom,Remote,United Kingdom,M,Data Science and Research +2023,Senior,Full-time,Business Intelligence Engineer,204500,USD,204500,United States,Remote,United States,M,BI and Visualization +2023,Senior,Full-time,Business Intelligence Engineer,138900,USD,138900,United States,Remote,United States,M,BI and Visualization +2023,Mid-level,Full-time,Data Specialist,87500,USD,87500,United States,Remote,United States,M,Data Management and Strategy +2023,Mid-level,Full-time,Data Specialist,62500,USD,62500,United States,Remote,United States,M,Data Management and Strategy +2023,Senior,Full-time,Data Scientist,244000,USD,244000,Canada,In-person,Canada,M,Data Science and Research +2023,Senior,Full-time,Data Scientist,157000,USD,157000,Canada,In-person,Canada,M,Data Science and Research +2023,Senior,Full-time,Data Engineer,157550,USD,157550,United States,In-person,United States,M,Data Engineering +2023,Senior,Full-time,Data Engineer,104650,USD,104650,United States,In-person,United States,M,Data Engineering +2023,Senior,Full-time,Research Scientist,136000,USD,136000,United States,Remote,United States,M,Data Science and Research +2023,Senior,Full-time,Research Scientist,90600,USD,90600,United States,Remote,United States,M,Data Science and Research +2023,Entry-level,Full-time,Data Engineer,40000,GBP,49216,United Kingdom,Remote,United Kingdom,M,Data Engineering +2023,Entry-level,Full-time,Data Engineer,35000,GBP,43064,United Kingdom,Remote,United Kingdom,M,Data Engineering +2023,Senior,Full-time,Principal Machine Learning Engineer,160000,USD,160000,India,Remote,India,L,Machine Learning and AI +2023,Senior,Full-time,Principal Data Engineer,85000,EUR,91773,Spain,Remote,Spain,M,Data Engineering +2023,Senior,Full-time,Data Analyst,120350,USD,120350,United States,Remote,United States,M,Data Analysis +2023,Senior,Full-time,Data Analyst,74400,USD,74400,United States,Remote,United States,M,Data Analysis +2023,Senior,Full-time,Data Scientist,281000,USD,281000,Canada,In-person,Canada,M,Data Science and Research +2023,Senior,Full-time,Data Scientist,181000,USD,181000,Canada,In-person,Canada,M,Data Science and Research +2023,Senior,Full-time,Data Engineer,280600,USD,280600,United States,In-person,United States,M,Data Engineering +2023,Senior,Full-time,Data Engineer,158600,USD,158600,United States,In-person,United States,M,Data Engineering +2023,Senior,Full-time,Machine Learning Engineer,315300,USD,315300,United States,Remote,United States,M,Machine Learning and AI +2023,Senior,Full-time,Machine Learning Engineer,210200,USD,210200,United States,Remote,United States,M,Machine Learning and AI +2023,Mid-level,Full-time,Data Analytics Manager,177000,USD,177000,United States,In-person,United States,M,Leadership and Management +2023,Mid-level,Full-time,Data Analytics Manager,110000,USD,110000,United States,In-person,United States,M,Leadership and Management +2023,Senior,Full-time,Business Intelligence Engineer,185000,USD,185000,United States,In-person,United States,L,BI and Visualization +2023,Senior,Full-time,Business Intelligence Engineer,79600,USD,79600,United States,In-person,United States,L,BI and Visualization +2023,Mid-level,Full-time,Data Analyst,65000,USD,65000,United States,Remote,United States,M,Data Analysis +2023,Mid-level,Full-time,Data Analyst,55000,USD,55000,United States,Remote,United States,M,Data Analysis +2023,Senior,Full-time,Data Scientist,250000,USD,250000,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Data Scientist,160000,USD,160000,United States,In-person,United States,M,Data Science and Research +2023,Mid-level,Full-time,Data Scientist,183200,USD,183200,United States,In-person,United States,M,Data Science and Research +2023,Mid-level,Full-time,Data Scientist,122200,USD,122200,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Data Analyst,100000,USD,100000,United States,In-person,United States,M,Data Analysis +2023,Senior,Full-time,Data Analyst,75000,USD,75000,United States,In-person,United States,M,Data Analysis +2023,Senior,Full-time,Data Analyst,185000,USD,185000,United States,In-person,United States,M,Data Analysis +2023,Senior,Full-time,Data Analyst,145000,USD,145000,United States,In-person,United States,M,Data Analysis +2023,Mid-level,Full-time,AI Research Engineer,150000,USD,150000,Tunisia,Remote,United States,M,Data Science and Research +2023,Senior,Full-time,Data Scientist,131000,USD,131000,United States,Remote,United States,M,Data Science and Research +2023,Senior,Full-time,Data Scientist,101000,USD,101000,United States,Remote,United States,M,Data Science and Research +2023,Senior,Full-time,Data Engineer,170000,USD,170000,United States,In-person,United States,M,Data Engineering +2023,Senior,Full-time,Data Engineer,130000,USD,130000,United States,In-person,United States,M,Data Engineering +2023,Senior,Full-time,Business Intelligence Analyst,171050,USD,171050,United States,Remote,United States,M,BI and Visualization +2023,Senior,Full-time,Business Intelligence Analyst,124400,USD,124400,United States,Remote,United States,M,BI and Visualization +2023,Senior,Full-time,BI Developer,135000,USD,135000,United States,Remote,United States,M,BI and Visualization +2023,Senior,Full-time,BI Developer,110000,USD,110000,United States,Remote,United States,M,BI and Visualization +2023,Senior,Full-time,Data Scientist,187000,USD,187000,United States,Remote,United States,M,Data Science and Research +2023,Senior,Full-time,Data Scientist,128000,USD,128000,United States,Remote,United States,M,Data Science and Research +2023,Mid-level,Full-time,Data Analytics Manager,177000,USD,177000,United States,In-person,United States,M,Leadership and Management +2023,Mid-level,Full-time,Data Analytics Manager,110000,USD,110000,United States,In-person,United States,M,Leadership and Management +2023,Senior,Full-time,Data Analyst,,USD,138000,United States,In-person,United States,M,Data Analysis +2023,Senior,Full-time,Data Analyst,92000,USD,92000,United States,In-person,United States,M,Data Analysis +2023,Executive,Full-time,Data Engineer,200000,USD,200000,United States,In-person,United States,M,Data Engineering +2023,Executive,Full-time,Data Engineer,160000,USD,160000,United States,In-person,United States,M,Data Engineering +2023,Senior,Full-time,Data Architect,138000,USD,138000,United Kingdom,Remote,United Kingdom,M,Data Architecture and Modeling +2023,Senior,Full-time,Data Architect,92000,USD,92000,United Kingdom,Remote,United Kingdom,M,Data Architecture and Modeling +2023,Senior,Full-time,Data Scientist,140000,USD,140000,United States,Remote,United States,M,Data Science and Research +2023,Senior,Full-time,Data Scientist,120000,USD,120000,United States,Remote,United States,M,Data Science and Research +2023,Senior,Full-time,Business Intelligence Engineer,241300,USD,241300,United States,In-person,United States,L,BI and Visualization +2023,Senior,Full-time,Business Intelligence Engineer,124100,USD,124100,United States,In-person,United States,L,BI and Visualization +2023,Senior,Full-time,Data Science Manager,185000,USD,185000,United States,Remote,United States,M,Data Science and Research +2023,Senior,Full-time,Data Science Manager,152000,USD,152000,United States,Remote,United States,M,Data Science and Research +2023,Senior,Full-time,Data Analyst,138000,USD,138000,United States,In-person,United States,M,Data Analysis +2023,Senior,Full-time,Data Analyst,92000,USD,92000,United States,In-person,United States,M,Data Analysis +2023,Senior,Full-time,Data Engineer,288000,USD,288000,United States,Remote,United States,M,Data Engineering +2023,Senior,Full-time,Data Engineer,160000,USD,160000,United States,Remote,United States,M,Data Engineering +2023,Senior,Full-time,Data Analyst,93918,USD,93918,United States,In-person,United States,M,Data Analysis +2023,Senior,Full-time,Data Analyst,51962,USD,51962,United States,In-person,United States,M,Data Analysis +2023,Senior,Full-time,Data Engineer,100000,EUR,107968,Germany,Remote,Germany,M,Data Engineering +2023,Senior,Full-time,Data Engineer,83913,EUR,90599,Germany,Remote,Germany,M,Data Engineering +2023,Senior,Full-time,Data Scientist,189750,USD,189750,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Data Scientist,145000,USD,145000,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Data Engineer,225500,USD,225500,United States,In-person,United States,M,Data Engineering +2023,Senior,Full-time,Data Engineer,139400,USD,139400,United States,In-person,United States,M,Data Engineering +2023,Senior,Full-time,Data Analyst,130000,USD,130000,United States,Remote,United States,M,Data Analysis +2023,Senior,Full-time,Data Analyst,95000,USD,95000,United States,Remote,United States,M,Data Analysis +2023,Senior,Full-time,Data Scientist,359170,USD,359170,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Data Scientist,310270,USD,310270,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Data Engineer,252000,USD,252000,United States,Remote,United States,M,Data Engineering +2023,Senior,Full-time,Data Engineer,140000,USD,140000,United States,Remote,United States,M,Data Engineering +2023,Mid-level,Full-time,Data Scientist,111024,CAD,82254,Canada,Remote,Canada,L,Data Science and Research +2023,Mid-level,Full-time,Data Scientist,83280,CAD,61699,Canada,Remote,Canada,L,Data Science and Research +2023,Executive,Full-time,Business Intelligence Engineer,247500,USD,247500,United States,In-person,United States,M,BI and Visualization +2023,Executive,Full-time,Business Intelligence Engineer,172200,USD,172200,United States,In-person,United States,M,BI and Visualization +2023,Mid-level,Full-time,Business Intelligence Analyst,87500,USD,87500,United States,Remote,United States,M,BI and Visualization +2023,Mid-level,Full-time,Business Intelligence Analyst,62500,USD,62500,United States,Remote,United States,M,BI and Visualization +2023,Senior,Full-time,Analytics Engineer,146000,USD,146000,Canada,Remote,Canada,M,Leadership and Management +2023,Senior,Full-time,Analytics Engineer,108000,USD,108000,Canada,Remote,Canada,M,Leadership and Management +2023,Senior,Full-time,Decision Scientist,204500,USD,204500,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Decision Scientist,142200,USD,142200,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Data Analyst,138000,USD,138000,United States,In-person,United States,M,Data Analysis +2023,Senior,Full-time,Data Analyst,92000,USD,92000,United States,In-person,United States,M,Data Analysis +2023,Senior,Full-time,Research Engineer,273000,USD,273000,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Research Engineer,166500,USD,166500,United States,In-person,United States,M,Data Science and Research +2023,Entry-level,Full-time,Research Analyst,65000,USD,65000,United States,In-person,United States,M,Data Science and Research +2023,Entry-level,Full-time,Research Analyst,45000,USD,45000,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Data Engineer,180000,USD,180000,United States,Remote,United States,M,Data Engineering +2023,Senior,Full-time,Data Engineer,150000,USD,150000,United States,Remote,United States,M,Data Engineering +2023,Senior,Full-time,Data Scientist,174000,USD,174000,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Data Scientist,139000,USD,139000,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Research Scientist,212800,USD,212800,United States,In-person,United States,L,Data Science and Research +2023,Senior,Full-time,Research Scientist,124100,USD,124100,United States,In-person,United States,L,Data Science and Research +2023,Senior,Full-time,Machine Learning Engineer,247500,USD,247500,United States,In-person,United States,M,Machine Learning and AI +2023,Senior,Full-time,Machine Learning Engineer,172200,USD,172200,United States,In-person,United States,M,Machine Learning and AI +2023,Senior,Full-time,Data Scientist,189750,USD,189750,Canada,Remote,Canada,M,Data Science and Research +2023,Senior,Full-time,Data Scientist,119213,USD,119213,Canada,Remote,Canada,M,Data Science and Research +2023,Senior,Full-time,Analytics Engineer,190000,USD,190000,Canada,Remote,Canada,M,Leadership and Management +2023,Senior,Full-time,Analytics Engineer,140000,USD,140000,Canada,Remote,Canada,M,Leadership and Management +2023,Senior,Full-time,Machine Learning Engineer,228830,USD,228830,United States,In-person,United States,M,Machine Learning and AI +2023,Senior,Full-time,Machine Learning Engineer,148590,USD,148590,United States,In-person,United States,M,Machine Learning and AI +2023,Mid-level,Full-time,AI Developer,140000,USD,140000,United States,Remote,United States,S,Machine Learning and AI +2023,Senior,Full-time,Machine Learning Scientist,180514,USD,180514,United Kingdom,Remote,United Kingdom,M,Machine Learning and AI +2023,Senior,Full-time,Machine Learning Scientist,108308,USD,108308,United Kingdom,Remote,United Kingdom,M,Machine Learning and AI +2023,Senior,Full-time,Machine Learning Scientist,220000,USD,220000,United States,In-person,United States,M,Machine Learning and AI +2023,Senior,Full-time,Machine Learning Scientist,170000,USD,170000,United States,In-person,United States,M,Machine Learning and AI +2023,Senior,Full-time,Business Intelligence Analyst,169000,USD,169000,United States,In-person,United States,M,BI and Visualization +2023,Senior,Full-time,Business Intelligence Analyst,110600,USD,110600,United States,In-person,United States,M,BI and Visualization +2023,Senior,Full-time,Data Engineer,180514,USD,180514,United Kingdom,Remote,United Kingdom,M,Data Engineering +2023,Senior,Full-time,Data Engineer,108308,USD,108308,United Kingdom,Remote,United Kingdom,M,Data Engineering +2023,Senior,Full-time,Data Engineer,247300,USD,247300,United States,Remote,United States,M,Data Engineering +2023,Senior,Full-time,Data Engineer,139700,USD,139700,United States,Remote,United States,M,Data Engineering +2023,Senior,Full-time,Data Engineer,72000,EUR,77737,Spain,Remote,Spain,M,Data Engineering +2023,Senior,Full-time,Data Engineer,59565,EUR,64311,Spain,Remote,Spain,M,Data Engineering +2023,Senior,Full-time,Research Scientist,205500,USD,205500,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Research Scientist,132500,USD,132500,United States,In-person,United States,M,Data Science and Research +2023,Mid-level,Full-time,Data Analyst,75000,USD,75000,United States,Remote,United States,M,Data Analysis +2023,Mid-level,Full-time,Data Analyst,65000,USD,65000,United States,Remote,United States,M,Data Analysis +2023,Senior,Full-time,Data Engineer,121000,USD,121000,United States,In-person,United States,M,Data Engineering +2023,Senior,Full-time,Data Engineer,78000,USD,78000,United States,In-person,United States,M,Data Engineering +2023,Senior,Full-time,Data Engineer,160000,USD,160000,United States,In-person,United States,M,Data Engineering +2023,Senior,Full-time,Data Engineer,145000,USD,145000,United States,In-person,United States,M,Data Engineering +2023,Senior,Full-time,Data Engineer,70000,EUR,75577,Italy,Remote,Italy,M,Data Engineering +2023,Senior,Full-time,Data Engineer,57826,EUR,62433,Italy,Remote,Italy,M,Data Engineering +2023,Senior,Full-time,Data Scientist,238000,USD,238000,Canada,Remote,Canada,M,Data Science and Research +2023,Senior,Full-time,Data Scientist,156000,USD,156000,Canada,Remote,Canada,M,Data Science and Research +2023,Senior,Full-time,Data Analyst,204500,USD,204500,United States,In-person,United States,M,Data Analysis +2023,Senior,Full-time,Data Analyst,138900,USD,138900,United States,In-person,United States,M,Data Analysis +2023,Senior,Full-time,Machine Learning Engineer,204500,USD,204500,United States,Remote,United States,M,Machine Learning and AI +2023,Senior,Full-time,Machine Learning Engineer,142200,USD,142200,United States,Remote,United States,M,Machine Learning and AI +2023,Senior,Full-time,Data Engineer,160000,USD,160000,United States,In-person,United States,M,Data Engineering +2023,Senior,Full-time,Data Engineer,120000,USD,120000,United States,In-person,United States,M,Data Engineering +2023,Senior,Full-time,Data Engineer,254000,USD,254000,United States,In-person,United States,M,Data Engineering +2023,Senior,Full-time,Data Engineer,200000,USD,200000,United States,In-person,United States,M,Data Engineering +2023,Senior,Full-time,Data Scientist,228000,USD,228000,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Data Scientist,136000,USD,136000,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Data Scientist,233300,USD,233300,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Data Scientist,155500,USD,155500,United States,In-person,United States,M,Data Science and Research +2023,Mid-level,Full-time,Power BI Developer,60000,EUR,64781,Poland,Remote,Denmark,L,BI and Visualization +2023,Senior,Full-time,Data Analyst,94000,USD,94000,United States,In-person,United States,M,Data Analysis +2023,Senior,Full-time,Data Analyst,81900,USD,81900,United States,In-person,United States,M,Data Analysis +2023,Senior,Full-time,Data Engineer,190000,USD,190000,United States,In-person,United States,M,Data Engineering +2023,Senior,Full-time,Data Engineer,140000,USD,140000,United States,In-person,United States,M,Data Engineering +2023,Senior,Full-time,Data Engineer,199000,USD,199000,United Kingdom,In-person,United Kingdom,M,Data Engineering +2023,Senior,Full-time,Data Engineer,162000,USD,162000,United Kingdom,In-person,United Kingdom,M,Data Engineering +2023,Senior,Full-time,Data Analyst,75000,GBP,92280,United Kingdom,In-person,United Kingdom,M,Data Analysis +2023,Senior,Full-time,Data Analyst,55000,GBP,67672,United Kingdom,In-person,United Kingdom,M,Data Analysis +2023,Senior,Full-time,Data Engineer,208000,USD,208000,United States,Remote,United States,M,Data Engineering +2023,Senior,Full-time,Data Engineer,109500,USD,109500,United States,Remote,United States,M,Data Engineering +2023,Senior,Full-time,Data Operations Engineer,240000,USD,240000,United States,In-person,United States,M,Data Quality and Operations +2023,Senior,Full-time,Data Operations Engineer,238530,USD,238530,United States,In-person,United States,M,Data Quality and Operations +2023,Senior,Full-time,Data Quality Analyst,95000,USD,95000,United States,In-person,United States,M,Data Quality and Operations +2023,Senior,Full-time,Data Quality Analyst,82000,USD,82000,United States,In-person,United States,M,Data Quality and Operations +2023,Executive,Full-time,Data Analyst,80000,USD,80000,United States,In-person,United States,M,Data Analysis +2023,Executive,Full-time,Data Analyst,70000,USD,70000,United States,In-person,United States,M,Data Analysis +2023,Senior,Full-time,Business Intelligence Engineer,155000,USD,155000,United States,Remote,United States,M,BI and Visualization +2023,Senior,Full-time,Business Intelligence Engineer,130000,USD,130000,United States,Remote,United States,M,BI and Visualization +2023,Senior,Full-time,Data Analyst,169000,USD,169000,United States,In-person,United States,M,Data Analysis +2023,Senior,Full-time,Data Analyst,110600,USD,110600,United States,In-person,United States,M,Data Analysis +2023,Senior,Full-time,Data Scientist,190000,USD,190000,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Data Scientist,150000,USD,150000,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Data Scientist,154700,USD,154700,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Data Scientist,118900,USD,118900,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Data Engineer,232960,USD,232960,United States,In-person,United States,M,Data Engineering +2023,Senior,Full-time,Data Engineer,166400,USD,166400,United States,In-person,United States,M,Data Engineering +2023,Mid-level,Full-time,Data Scientist,156000,USD,156000,United States,In-person,United States,M,Data Science and Research +2023,Mid-level,Full-time,Data Scientist,105000,USD,105000,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Machine Learning Engineer,193000,USD,193000,Canada,Remote,Canada,M,Machine Learning and AI +2023,Senior,Full-time,Machine Learning Engineer,143000,USD,143000,Canada,Remote,Canada,M,Machine Learning and AI +2023,Senior,Full-time,Data Engineer,190000,USD,190000,United States,In-person,United States,M,Data Engineering +2023,Senior,Full-time,Data Engineer,140000,USD,140000,United States,In-person,United States,M,Data Engineering +2023,Senior,Full-time,Data Analyst,138860,USD,138860,United States,In-person,United States,M,Data Analysis +2023,Senior,Full-time,Data Analyst,119610,USD,119610,United States,In-person,United States,M,Data Analysis +2023,Senior,Full-time,Data Scientist,205485,USD,205485,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Data Scientist,156560,USD,156560,United States,In-person,United States,M,Data Science and Research +2023,Mid-level,Full-time,Data Scientist,230000,USD,230000,United States,In-person,United States,M,Data Science and Research +2023,Mid-level,Full-time,Data Scientist,175000,USD,175000,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Machine Learning Engineer,210600,USD,210600,United Kingdom,Remote,United Kingdom,M,Machine Learning and AI +2023,Senior,Full-time,Machine Learning Engineer,135000,USD,135000,United Kingdom,Remote,United Kingdom,M,Machine Learning and AI +2023,Senior,Full-time,Data Scientist,265000,USD,265000,United States,Remote,United States,M,Data Science and Research +2023,Senior,Full-time,Data Scientist,153000,USD,153000,United States,Remote,United States,M,Data Science and Research +2023,Senior,Full-time,Analytics Engineer,260000,USD,260000,United States,In-person,United States,M,Leadership and Management +2023,Senior,Full-time,Analytics Engineer,170000,USD,170000,United States,In-person,United States,M,Leadership and Management +2023,Mid-level,Full-time,Data Engineer,105000,USD,105000,United States,In-person,United States,M,Data Engineering +2023,Mid-level,Full-time,Data Engineer,65000,USD,65000,United States,In-person,United States,M,Data Engineering +2023,Senior,Full-time,Data Engineer,157550,USD,157550,United States,In-person,United States,M,Data Engineering +2023,Senior,Full-time,Data Engineer,104650,USD,104650,United States,In-person,United States,M,Data Engineering +2023,Senior,Full-time,Business Intelligence Engineer,225000,USD,225000,United States,In-person,United States,M,BI and Visualization +2023,Senior,Full-time,Business Intelligence Engineer,156400,USD,156400,United States,In-person,United States,M,BI and Visualization +2023,Senior,Full-time,Data Analyst,150000,USD,150000,United States,Remote,United States,M,Data Analysis +2023,Senior,Full-time,Data Analyst,125000,USD,125000,United States,Remote,United States,M,Data Analysis +2023,Mid-level,Full-time,Data Scientist,135000,USD,135000,United Kingdom,Remote,United Kingdom,M,Data Science and Research +2023,Mid-level,Full-time,Data Scientist,100000,USD,100000,United Kingdom,Remote,United Kingdom,M,Data Science and Research +2023,Mid-level,Full-time,Data Analyst,100000,USD,100000,United States,Remote,United States,M,Data Analysis +2023,Mid-level,Full-time,Data Analyst,59000,USD,59000,United States,Remote,United States,M,Data Analysis +2023,Mid-level,Full-time,Data Science Consultant,57000,GBP,70132,United Kingdom,In-person,United Kingdom,M,Data Science and Research +2023,Mid-level,Full-time,Data Science Consultant,42000,GBP,51676,United Kingdom,In-person,United Kingdom,M,Data Science and Research +2023,Senior,Full-time,Data Scientist,75000,GBP,92280,United Kingdom,Remote,United Kingdom,M,Data Science and Research +2023,Senior,Full-time,Data Scientist,65000,GBP,79976,United Kingdom,Remote,United Kingdom,M,Data Science and Research +2022,Mid-level,Full-time,Business Intelligence Developer,15000,USD,15000,Ghana,Remote,Ghana,M,BI and Visualization +2023,Senior,Full-time,Applied Data Scientist,60000,EUR,64781,Germany,In-person,Germany,L,Data Science and Research +2023,Senior,Full-time,Data Scientist,225000,USD,225000,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Data Scientist,156400,USD,156400,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Data Analyst,144100,USD,144100,United States,Remote,United States,M,Data Analysis +2023,Senior,Full-time,Data Analyst,89100,USD,89100,United States,Remote,United States,M,Data Analysis +2023,Senior,Full-time,Data Engineer,185900,USD,185900,United States,In-person,United States,M,Data Engineering +2023,Senior,Full-time,Data Engineer,129300,USD,129300,United States,In-person,United States,M,Data Engineering +2023,Mid-level,Full-time,Data Analytics Manager,177000,USD,177000,United States,In-person,United States,M,Leadership and Management +2023,Mid-level,Full-time,Data Analytics Manager,110000,USD,110000,United States,In-person,United States,M,Leadership and Management +2023,Senior,Full-time,Research Engineer,140000,USD,140000,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Research Engineer,100000,USD,100000,United States,In-person,United States,M,Data Science and Research +2023,Mid-level,Full-time,Data Scientist,145000,USD,145000,United States,Remote,United States,M,Data Science and Research +2023,Mid-level,Full-time,Data Scientist,115000,USD,115000,United States,Remote,United States,M,Data Science and Research +2023,Senior,Full-time,Data Engineer,193600,USD,193600,United States,In-person,United States,M,Data Engineering +2023,Senior,Full-time,Data Engineer,119700,USD,119700,United States,In-person,United States,M,Data Engineering +2023,Senior,Full-time,Data Analyst,94000,USD,94000,United States,Remote,United States,M,Data Analysis +2023,Senior,Full-time,Data Analyst,81900,USD,81900,United States,Remote,United States,M,Data Analysis +2023,Senior,Full-time,Data Scientist,164000,USD,164000,United States,Remote,United States,M,Data Science and Research +2023,Senior,Full-time,Data Scientist,130000,USD,130000,United States,Remote,United States,M,Data Science and Research +2023,Senior,Full-time,Data Engineer,190000,USD,190000,United States,In-person,United States,M,Data Engineering +2023,Senior,Full-time,Data Engineer,140000,USD,140000,United States,In-person,United States,M,Data Engineering +2023,Executive,Full-time,Head of Data Science,122000,EUR,131721,Netherlands,Hybrid,Netherlands,L,Data Science and Research +2023,Senior,Full-time,Data Scientist,323300,USD,323300,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Data Scientist,184700,USD,184700,United States,In-person,United States,M,Data Science and Research +2023,Mid-level,Full-time,ML Engineer,180000,USD,180000,United States,In-person,United States,M,Machine Learning and AI +2023,Mid-level,Full-time,ML Engineer,120000,USD,120000,United States,In-person,United States,M,Machine Learning and AI +2023,Senior,Full-time,Data Analyst,93918,USD,93918,United States,In-person,United States,M,Data Analysis +2023,Senior,Full-time,Data Analyst,51962,USD,51962,United States,In-person,United States,M,Data Analysis +2023,Senior,Full-time,Data Scientist,150000,USD,150000,United States,Remote,United States,M,Data Science and Research +2023,Senior,Full-time,Data Scientist,130000,USD,130000,United States,Remote,United States,M,Data Science and Research +2023,Senior,Full-time,Data Engineer,242000,USD,242000,Canada,In-person,Canada,M,Data Engineering +2023,Senior,Full-time,Data Engineer,134000,USD,134000,Canada,In-person,Canada,M,Data Engineering +2023,Senior,Full-time,Data Strategist,104000,USD,104000,United States,In-person,United States,M,Data Architecture and Modeling +2023,Senior,Full-time,Data Strategist,86000,USD,86000,United States,In-person,United States,M,Data Architecture and Modeling +2023,Senior,Full-time,Machine Learning Engineer,258800,USD,258800,United Kingdom,In-person,United Kingdom,M,Machine Learning and AI +2023,Senior,Full-time,Machine Learning Engineer,199200,USD,199200,United Kingdom,In-person,United Kingdom,M,Machine Learning and AI +2023,Senior,Full-time,Data Scientist,201000,USD,201000,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Data Scientist,122000,USD,122000,United States,In-person,United States,M,Data Science and Research +2023,Mid-level,Full-time,Data Analyst,110000,USD,110000,United States,Remote,United States,M,Data Analysis +2023,Mid-level,Full-time,Data Analyst,90000,USD,90000,United States,Remote,United States,M,Data Analysis +2023,Senior,Full-time,Research Engineer,141100,USD,141100,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Research Engineer,94100,USD,94100,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Data Engineer,210000,USD,210000,United States,Remote,United States,M,Data Engineering +2023,Senior,Full-time,Data Engineer,165000,USD,165000,United States,Remote,United States,M,Data Engineering +2023,Senior,Full-time,Data Engineer,185900,USD,185900,United States,In-person,United States,M,Data Engineering +2023,Senior,Full-time,Data Engineer,129300,USD,129300,United States,In-person,United States,M,Data Engineering +2023,Senior,Full-time,Data Scientist,140000,USD,140000,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Data Scientist,126000,USD,126000,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Data Scientist,170000,USD,170000,United States,Remote,United States,M,Data Science and Research +2023,Senior,Full-time,Data Scientist,130000,USD,130000,United States,Remote,United States,M,Data Science and Research +2023,Mid-level,Full-time,Data Engineer,85000,GBP,104584,United Kingdom,Remote,United Kingdom,M,Data Engineering +2023,Mid-level,Full-time,Data Engineer,75000,GBP,92280,United Kingdom,Remote,United Kingdom,M,Data Engineering +2023,Senior,Full-time,Analytics Engineer,208500,USD,208500,United States,In-person,United States,M,Leadership and Management +2023,Senior,Full-time,Analytics Engineer,165000,USD,165000,United States,In-person,United States,M,Leadership and Management +2023,Senior,Full-time,Data Engineer,72000,EUR,77737,Germany,Hybrid,Germany,L,Data Engineering +2023,Senior,Full-time,Data Engineer,80000,EUR,86374,Germany,Remote,Sweden,L,Data Engineering +2023,Senior,Full-time,Business Intelligence Developer,169000,USD,169000,United States,In-person,United States,M,BI and Visualization +2023,Senior,Full-time,Business Intelligence Developer,110600,USD,110600,United States,In-person,United States,M,BI and Visualization +2023,Senior,Full-time,Data Scientist,185900,USD,185900,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Data Scientist,129300,USD,129300,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Data Scientist,225000,USD,225000,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Data Scientist,156400,USD,156400,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Machine Learning Engineer,309000,USD,309000,United States,In-person,United States,M,Machine Learning and AI +2023,Senior,Full-time,Machine Learning Engineer,142000,USD,142000,United States,In-person,United States,M,Machine Learning and AI +2023,Senior,Full-time,Data Scientist,225000,USD,225000,United States,Remote,United States,M,Data Science and Research +2023,Senior,Full-time,Data Scientist,156400,USD,156400,United States,Remote,United States,M,Data Science and Research +2023,Senior,Full-time,Data Analyst,204500,USD,204500,United States,In-person,United States,M,Data Analysis +2023,Senior,Full-time,Data Analyst,138900,USD,138900,United States,In-person,United States,M,Data Analysis +2023,Senior,Full-time,Data Scientist,185900,USD,185900,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Data Scientist,129300,USD,129300,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Machine Learning Engineer,323300,USD,323300,United States,In-person,United States,M,Machine Learning and AI +2023,Senior,Full-time,Machine Learning Engineer,184700,USD,184700,United States,In-person,United States,M,Machine Learning and AI +2023,Senior,Full-time,Machine Learning Engineer,247500,USD,247500,United States,In-person,United States,M,Machine Learning and AI +2023,Senior,Full-time,Machine Learning Engineer,172200,USD,172200,United States,In-person,United States,M,Machine Learning and AI +2023,Senior,Full-time,Decision Scientist,204500,USD,204500,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Decision Scientist,142200,USD,142200,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,BI Developer,135000,USD,135000,United States,Remote,United States,M,BI and Visualization +2023,Senior,Full-time,BI Developer,110000,USD,110000,United States,Remote,United States,M,BI and Visualization +2023,Senior,Full-time,Machine Learning Scientist,180514,USD,180514,United Kingdom,Remote,United Kingdom,M,Machine Learning and AI +2023,Senior,Full-time,Machine Learning Scientist,108308,USD,108308,United Kingdom,Remote,United Kingdom,M,Machine Learning and AI +2023,Senior,Full-time,BI Analyst,118800,USD,118800,United States,Remote,United States,M,BI and Visualization +2023,Senior,Full-time,BI Analyst,75000,USD,75000,United States,Remote,United States,M,BI and Visualization +2023,Senior,Full-time,Data Manager,145000,USD,145000,United States,In-person,United States,M,Leadership and Management +2023,Senior,Full-time,Data Manager,130000,USD,130000,United States,In-person,United States,M,Leadership and Management +2023,Senior,Full-time,Data Engineer,180514,USD,180514,United Kingdom,Remote,United Kingdom,M,Data Engineering +2023,Senior,Full-time,Data Engineer,108308,USD,108308,United Kingdom,Remote,United Kingdom,M,Data Engineering +2023,Senior,Full-time,Machine Learning Engineer,193600,USD,193600,United States,In-person,United States,M,Machine Learning and AI +2023,Senior,Full-time,Machine Learning Engineer,119700,USD,119700,United States,In-person,United States,M,Machine Learning and AI +2023,Senior,Full-time,BI Analyst,130800,USD,130800,United States,Remote,United States,M,BI and Visualization +2023,Senior,Full-time,BI Analyst,87200,USD,87200,United States,Remote,United States,M,BI and Visualization +2023,Senior,Full-time,Data Engineer,215000,USD,215000,United States,Remote,United States,M,Data Engineering +2023,Senior,Full-time,Data Engineer,150000,USD,150000,United States,Remote,United States,M,Data Engineering +2023,Executive,Full-time,Business Intelligence Engineer,247500,USD,247500,United States,In-person,United States,M,BI and Visualization +2023,Executive,Full-time,Business Intelligence Engineer,172200,USD,172200,United States,In-person,United States,M,BI and Visualization +2023,Mid-level,Full-time,Data Scientist,50000,GBP,61520,United Kingdom,Remote,United Kingdom,M,Data Science and Research +2023,Mid-level,Full-time,Data Scientist,40000,GBP,49216,United Kingdom,Remote,United Kingdom,M,Data Science and Research +2023,Senior,Full-time,Machine Learning Engineer,204500,USD,204500,United States,In-person,United States,M,Machine Learning and AI +2023,Senior,Full-time,Machine Learning Engineer,142200,USD,142200,United States,In-person,United States,M,Machine Learning and AI +2023,Senior,Full-time,Data Analyst,169000,USD,169000,United States,In-person,United States,M,Data Analysis +2023,Senior,Full-time,Data Analyst,110600,USD,110600,United States,In-person,United States,M,Data Analysis +2023,Senior,Full-time,Machine Learning Engineer,204500,USD,204500,United States,In-person,United States,M,Machine Learning and AI +2023,Senior,Full-time,Machine Learning Engineer,142200,USD,142200,United States,In-person,United States,M,Machine Learning and AI +2023,Senior,Full-time,ML Engineer,238000,USD,238000,United States,Remote,United States,M,Machine Learning and AI +2023,Senior,Full-time,ML Engineer,173000,USD,173000,United States,Remote,United States,M,Machine Learning and AI +2023,Senior,Full-time,Business Intelligence Engineer,225000,USD,225000,United States,In-person,United States,M,BI and Visualization +2023,Senior,Full-time,Business Intelligence Engineer,156400,USD,156400,United States,In-person,United States,M,BI and Visualization +2023,Senior,Full-time,Machine Learning Engineer,204500,USD,204500,United States,In-person,United States,M,Machine Learning and AI +2023,Senior,Full-time,Machine Learning Engineer,142200,USD,142200,United States,In-person,United States,M,Machine Learning and AI +2023,Senior,Full-time,Data Scientist,225000,USD,225000,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Data Scientist,156400,USD,156400,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Data Scientist,185900,USD,185900,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Data Scientist,129300,USD,129300,United States,In-person,United States,M,Data Science and Research +2023,Executive,Full-time,Data Engineer,205785,USD,205785,United Kingdom,Remote,United Kingdom,M,Data Engineering +2023,Executive,Full-time,Data Engineer,123471,USD,123471,United Kingdom,Remote,United Kingdom,M,Data Engineering +2023,Senior,Full-time,Data Science Manager,299500,USD,299500,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Data Science Manager,245100,USD,245100,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Data Scientist,153600,USD,153600,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Data Scientist,106800,USD,106800,United States,In-person,United States,M,Data Science and Research +2023,Entry-level,Full-time,AI Programmer,40000,USD,40000,"Korea, Republic of",In-person,"Korea, Republic of",S,Machine Learning and AI +2023,Senior,Full-time,Data Scientist,66000,EUR,71259,Spain,Remote,Spain,M,Data Science and Research +2023,Mid-level,Full-time,Data Scientist,125000,USD,125000,United States,In-person,United States,M,Data Science and Research +2023,Mid-level,Full-time,Data Scientist,90000,USD,90000,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,ML Engineer,290000,USD,290000,United States,Remote,United States,M,Machine Learning and AI +2023,Senior,Full-time,ML Engineer,226000,USD,226000,United States,Remote,United States,M,Machine Learning and AI +2023,Senior,Full-time,Applied Scientist,222200,USD,222200,United States,In-person,United States,L,Data Science and Research +2023,Senior,Full-time,Applied Scientist,136000,USD,136000,United States,In-person,United States,L,Data Science and Research +2023,Senior,Full-time,Data Scientist,161000,USD,161000,United States,Remote,United States,M,Data Science and Research +2023,Senior,Full-time,Data Scientist,151000,USD,151000,United States,Remote,United States,M,Data Science and Research +2023,Senior,Full-time,Data Analyst,49200,EUR,53120,Estonia,In-person,Estonia,M,Data Analysis +2023,Senior,Full-time,Data Analyst,36000,EUR,38868,Estonia,In-person,Estonia,M,Data Analysis +2023,Senior,Full-time,Data Engineer,136994,USD,136994,United States,Remote,United States,M,Data Engineering +2023,Senior,Full-time,Data Engineer,101570,USD,101570,United States,Remote,United States,M,Data Engineering +2023,Senior,Full-time,Data Scientist,214500,USD,214500,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Data Scientist,150000,USD,150000,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Analytics Engineer,150000,USD,150000,United States,Remote,United States,M,Leadership and Management +2023,Senior,Full-time,Analytics Engineer,120000,USD,120000,United States,Remote,United States,M,Leadership and Management +2023,Senior,Full-time,Data Engineer,278300,USD,278300,United States,In-person,United States,M,Data Engineering +2023,Senior,Full-time,Data Engineer,205700,USD,205700,United States,In-person,United States,M,Data Engineering +2023,Senior,Full-time,Applied Scientist,185900,USD,185900,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Applied Scientist,167310,USD,167310,United States,In-person,United States,M,Data Science and Research +2023,Mid-level,Full-time,Data Engineer,114000,USD,114000,United States,Remote,United States,M,Data Engineering +2023,Mid-level,Full-time,Data Engineer,100000,USD,100000,United States,Remote,United States,M,Data Engineering +2023,Senior,Full-time,Applied Scientist,260000,USD,260000,United States,In-person,United States,L,Data Science and Research +2023,Senior,Full-time,Applied Scientist,136000,USD,136000,United States,In-person,United States,L,Data Science and Research +2023,Senior,Full-time,Data Engineer,162000,USD,162000,United States,Remote,United States,M,Data Engineering +2023,Senior,Full-time,Data Engineer,111000,USD,111000,United States,Remote,United States,M,Data Engineering +2023,Senior,Full-time,Data Engineer,225500,USD,225500,United States,In-person,United States,M,Data Engineering +2023,Senior,Full-time,Data Engineer,139400,USD,139400,United States,In-person,United States,M,Data Engineering +2023,Senior,Full-time,Data Scientist,225000,USD,225000,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Data Scientist,156400,USD,156400,United States,In-person,United States,M,Data Science and Research +2023,Mid-level,Full-time,Data Analytics Manager,177000,USD,177000,United States,In-person,United States,M,Leadership and Management +2023,Mid-level,Full-time,Data Analytics Manager,110000,USD,110000,United States,In-person,United States,M,Leadership and Management +2023,Senior,Full-time,Data Analyst,120350,USD,120350,United States,Remote,United States,M,Data Analysis +2023,Senior,Full-time,Data Analyst,74400,USD,74400,United States,Remote,United States,M,Data Analysis +2023,Senior,Full-time,Data Engineer,194000,USD,194000,United States,In-person,United States,M,Data Engineering +2023,Senior,Full-time,Data Engineer,161000,USD,161000,United States,In-person,United States,M,Data Engineering +2023,Entry-level,Full-time,Research Engineer,30000,EUR,32390,France,In-person,France,M,Data Science and Research +2023,Senior,Full-time,Machine Learning Engineer,184950,USD,184950,United States,In-person,United States,M,Machine Learning and AI +2023,Senior,Full-time,Machine Learning Engineer,119250,USD,119250,United States,In-person,United States,M,Machine Learning and AI +2023,Senior,Full-time,Data Engineer,178500,USD,178500,United States,Remote,United States,M,Data Engineering +2023,Senior,Full-time,Data Engineer,136000,USD,136000,United States,Remote,United States,M,Data Engineering +2023,Senior,Full-time,Machine Learning Engineer,189000,USD,189000,United States,Remote,United States,M,Machine Learning and AI +2023,Senior,Full-time,Machine Learning Engineer,159090,USD,159090,United States,Remote,United States,M,Machine Learning and AI +2023,Mid-level,Full-time,Data Engineer,91000,USD,91000,United States,In-person,United States,M,Data Engineering +2023,Mid-level,Full-time,Data Engineer,82000,USD,82000,United States,In-person,United States,M,Data Engineering +2023,Senior,Full-time,Data Engineer,149076,USD,149076,United States,Remote,United States,M,Data Engineering +2023,Senior,Full-time,Data Engineer,82365,USD,82365,United States,Remote,United States,M,Data Engineering +2023,Senior,Full-time,Applied Scientist,192000,USD,192000,United States,Remote,United States,M,Data Science and Research +2023,Senior,Full-time,Applied Scientist,164000,USD,164000,United States,Remote,United States,M,Data Science and Research +2023,Senior,Full-time,Data Scientist,175000,USD,175000,United States,Remote,United States,M,Data Science and Research +2023,Senior,Full-time,Data Scientist,125000,USD,125000,United States,Remote,United States,M,Data Science and Research +2023,Senior,Full-time,Data Engineer,194595,USD,194595,United States,In-person,United States,M,Data Engineering +2023,Senior,Full-time,Data Engineer,158000,USD,158000,United States,In-person,United States,M,Data Engineering +2023,Senior,Full-time,Data Engineer,240500,USD,240500,United States,In-person,United States,L,Data Engineering +2023,Senior,Full-time,Data Engineer,123700,USD,123700,United States,In-person,United States,L,Data Engineering +2023,Senior,Full-time,Data Scientist,212800,USD,212800,United States,In-person,United States,L,Data Science and Research +2023,Senior,Full-time,Data Scientist,111600,USD,111600,United States,In-person,United States,L,Data Science and Research +2023,Mid-level,Full-time,Research Engineer,257400,USD,257400,United States,In-person,United States,M,Data Science and Research +2023,Mid-level,Full-time,Research Engineer,193500,USD,193500,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,ML Engineer,305000,USD,305000,United States,In-person,United States,M,Machine Learning and AI +2023,Senior,Full-time,ML Engineer,245000,USD,245000,United States,In-person,United States,M,Machine Learning and AI +2023,Senior,Full-time,Data Scientist,205485,USD,205485,United States,Remote,United States,M,Data Science and Research +2023,Senior,Full-time,Data Scientist,156560,USD,156560,United States,Remote,United States,M,Data Science and Research +2023,Senior,Full-time,Data Analyst,168000,USD,168000,United States,Remote,United States,L,Data Analysis +2023,Senior,Full-time,Data Analyst,78400,USD,78400,United States,Remote,United States,L,Data Analysis +2023,Senior,Full-time,Machine Learning Engineer,260000,USD,260000,United States,In-person,United States,M,Machine Learning and AI +2023,Senior,Full-time,Machine Learning Engineer,175000,USD,175000,United States,In-person,United States,M,Machine Learning and AI +2023,Executive,Full-time,Data Engineer,130002,USD,130002,United States,Remote,United States,M,Data Engineering +2023,Executive,Full-time,Data Engineer,71908,USD,71908,United States,Remote,United States,M,Data Engineering +2023,Senior,Full-time,Data Analyst,212000,USD,212000,United States,In-person,United States,M,Data Analysis +2023,Senior,Full-time,Data Analyst,132000,USD,132000,United States,In-person,United States,M,Data Analysis +2023,Mid-level,Full-time,Data Analyst,177000,USD,177000,United States,In-person,United States,M,Data Analysis +2023,Mid-level,Full-time,Data Analyst,110000,USD,110000,United States,In-person,United States,M,Data Analysis +2023,Senior,Full-time,Data Scientist,164000,USD,164000,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Data Scientist,130000,USD,130000,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Data Scientist,185900,USD,185900,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Data Scientist,129300,USD,129300,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Research Scientist,248100,USD,248100,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Research Scientist,145900,USD,145900,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Data Analyst,148000,USD,148000,United States,In-person,United States,M,Data Analysis +2023,Senior,Full-time,Data Analyst,92000,USD,92000,United States,In-person,United States,M,Data Analysis +2023,Senior,Full-time,Applied Scientist,248100,USD,248100,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Applied Scientist,145900,USD,145900,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Data Lead,155000,USD,155000,United States,In-person,United States,M,Leadership and Management +2023,Senior,Full-time,Data Lead,38000,USD,38000,United States,In-person,United States,M,Leadership and Management +2023,Senior,Full-time,Machine Learning Engineer,218000,USD,218000,United States,Remote,United States,M,Machine Learning and AI +2023,Senior,Full-time,Machine Learning Engineer,115000,USD,115000,United States,Remote,United States,M,Machine Learning and AI +2023,Senior,Full-time,Data Strategist,104000,USD,104000,United States,In-person,United States,M,Data Architecture and Modeling +2023,Senior,Full-time,Data Strategist,86000,USD,86000,United States,In-person,United States,M,Data Architecture and Modeling +2023,Senior,Full-time,Analytics Engineer,235400,USD,235400,United States,Remote,United States,M,Leadership and Management +2023,Senior,Full-time,Analytics Engineer,108320,USD,108320,United States,Remote,United States,M,Leadership and Management +2023,Senior,Full-time,Data Quality Analyst,95000,USD,95000,United States,In-person,United States,M,Data Quality and Operations +2023,Senior,Full-time,Data Quality Analyst,82000,USD,82000,United States,In-person,United States,M,Data Quality and Operations +2023,Senior,Full-time,Data Engineer,152375,USD,152375,United States,In-person,United States,M,Data Engineering +2023,Senior,Full-time,Data Engineer,94000,USD,94000,United States,In-person,United States,M,Data Engineering +2023,Senior,Full-time,Data Analyst,115934,USD,115934,United States,Remote,United States,M,Data Analysis +2023,Senior,Full-time,Data Analyst,81666,USD,81666,United States,Remote,United States,M,Data Analysis +2023,Mid-level,Full-time,Data Analyst,110000,USD,110000,United States,In-person,United States,M,Data Analysis +2023,Mid-level,Full-time,Data Analyst,79000,USD,79000,United States,In-person,United States,M,Data Analysis +2023,Senior,Full-time,Research Scientist,273400,USD,273400,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Research Scientist,182200,USD,182200,United States,In-person,United States,M,Data Science and Research +2023,Mid-level,Full-time,Data Analyst,160000,USD,160000,United States,In-person,United States,M,Data Analysis +2023,Mid-level,Full-time,Data Analyst,112000,USD,112000,United States,In-person,United States,M,Data Analysis +2023,Senior,Full-time,Data Scientist,285000,USD,285000,United States,Remote,United States,M,Data Science and Research +2023,Senior,Full-time,Data Scientist,154000,USD,154000,United States,Remote,United States,M,Data Science and Research +2023,Senior,Full-time,Applied Scientist,220000,USD,220000,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Applied Scientist,170000,USD,170000,United States,In-person,United States,M,Data Science and Research +2023,Executive,Full-time,Data Engineer,174500,USD,174500,United States,In-person,United States,M,Data Engineering +2023,Executive,Full-time,Data Engineer,113000,USD,113000,United States,In-person,United States,M,Data Engineering +2023,Senior,Full-time,Data Engineer,225000,USD,225000,United States,In-person,United States,M,Data Engineering +2023,Senior,Full-time,Data Engineer,125000,USD,125000,United States,In-person,United States,M,Data Engineering +2023,Mid-level,Full-time,Data Engineer,200000,USD,200000,United States,Remote,United States,M,Data Engineering +2023,Mid-level,Full-time,Data Engineer,180000,USD,180000,United States,Remote,United States,M,Data Engineering +2023,Mid-level,Full-time,Applied Scientist,250000,USD,250000,United States,In-person,United States,M,Data Science and Research +2023,Mid-level,Full-time,Applied Scientist,125000,USD,125000,United States,In-person,United States,M,Data Science and Research +2023,Mid-level,Full-time,Data Analyst,110000,USD,110000,United States,In-person,United States,M,Data Analysis +2023,Mid-level,Full-time,Data Analyst,90000,USD,90000,United States,In-person,United States,M,Data Analysis +2023,Mid-level,Full-time,Research Scientist,275000,USD,275000,United States,In-person,United States,M,Data Science and Research +2023,Mid-level,Full-time,Research Scientist,200000,USD,200000,United States,In-person,United States,M,Data Science and Research +2023,Mid-level,Full-time,Research Scientist,275000,USD,275000,United States,In-person,United States,M,Data Science and Research +2023,Mid-level,Full-time,Research Scientist,200000,USD,200000,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Machine Learning Engineer,258800,USD,258800,United Kingdom,In-person,United Kingdom,M,Machine Learning and AI +2023,Senior,Full-time,Machine Learning Engineer,199200,USD,199200,United Kingdom,In-person,United Kingdom,M,Machine Learning and AI +2023,Senior,Full-time,Data Scientist,177000,USD,177000,United Kingdom,In-person,United Kingdom,M,Data Science and Research +2023,Senior,Full-time,Data Scientist,136000,USD,136000,United Kingdom,In-person,United Kingdom,M,Data Science and Research +2023,Mid-level,Full-time,Data Analyst,110000,USD,110000,United States,In-person,United States,M,Data Analysis +2023,Mid-level,Full-time,Data Analyst,80000,USD,80000,United States,In-person,United States,M,Data Analysis +2023,Senior,Full-time,Data Analyst,115000,USD,115000,United States,Remote,United States,M,Data Analysis +2023,Senior,Full-time,Data Analyst,75000,USD,75000,United States,Remote,United States,M,Data Analysis +2023,Senior,Full-time,Data Analyst,138860,USD,138860,United States,In-person,United States,M,Data Analysis +2023,Senior,Full-time,Data Analyst,122720,USD,122720,United States,In-person,United States,M,Data Analysis +2023,Senior,Full-time,Data Scientist,140000,USD,140000,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Data Scientist,126000,USD,126000,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Data Engineer,231500,USD,231500,United States,In-person,United States,M,Data Engineering +2023,Senior,Full-time,Data Engineer,118000,USD,118000,United States,In-person,United States,M,Data Engineering +2023,Executive,Full-time,Data Scientist,299500,USD,299500,United States,Remote,United States,M,Data Science and Research +2023,Executive,Full-time,Data Scientist,249600,USD,249600,United States,Remote,United States,M,Data Science and Research +2023,Senior,Full-time,Business Intelligence Engineer,185000,USD,185000,United States,In-person,United States,L,BI and Visualization +2023,Senior,Full-time,Business Intelligence Engineer,79600,USD,79600,United States,In-person,United States,L,BI and Visualization +2023,Senior,Full-time,Machine Learning Engineer,193600,USD,193600,United States,In-person,United States,M,Machine Learning and AI +2023,Senior,Full-time,Machine Learning Engineer,119700,USD,119700,United States,In-person,United States,M,Machine Learning and AI +2023,Senior,Full-time,Data Engineer,240500,USD,240500,United States,In-person,United States,L,Data Engineering +2023,Senior,Full-time,Data Engineer,123700,USD,123700,United States,In-person,United States,L,Data Engineering +2023,Mid-level,Full-time,Data Engineer,120000,USD,120000,United States,In-person,United States,M,Data Engineering +2023,Mid-level,Full-time,Data Engineer,110000,USD,110000,United States,In-person,United States,M,Data Engineering +2023,Mid-level,Full-time,Data Analyst,100000,USD,100000,United States,Remote,United States,M,Data Analysis +2023,Mid-level,Full-time,Data Analyst,75000,USD,75000,United States,Remote,United States,M,Data Analysis +2023,Senior,Full-time,Machine Learning Engineer,297000,USD,297000,United States,In-person,United States,M,Machine Learning and AI +2023,Senior,Full-time,Machine Learning Engineer,138000,USD,138000,United States,In-person,United States,M,Machine Learning and AI +2023,Mid-level,Full-time,Data Scientist,135000,USD,135000,United States,In-person,United States,M,Data Science and Research +2023,Mid-level,Full-time,Data Scientist,105000,USD,105000,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Data Scientist,267100,USD,267100,United States,Remote,United States,M,Data Science and Research +2023,Senior,Full-time,Data Scientist,167200,USD,167200,United States,Remote,United States,M,Data Science and Research +2023,Senior,Full-time,Data Scientist,202000,USD,202000,United States,Remote,United States,M,Data Science and Research +2023,Senior,Full-time,Data Scientist,140000,USD,140000,United States,Remote,United States,M,Data Science and Research +2023,Senior,Full-time,Data Engineer,174350,USD,174350,United States,In-person,United States,M,Data Engineering +2023,Senior,Full-time,Data Engineer,126800,USD,126800,United States,In-person,United States,M,Data Engineering +2023,Senior,Full-time,Machine Learning Engineer,258800,USD,258800,United Kingdom,In-person,United Kingdom,M,Machine Learning and AI +2023,Senior,Full-time,Machine Learning Engineer,199200,USD,199200,United Kingdom,In-person,United Kingdom,M,Machine Learning and AI +2023,Senior,Full-time,Data Architect,188500,USD,188500,United States,Remote,United States,M,Data Architecture and Modeling +2023,Senior,Full-time,Data Architect,117000,USD,117000,United States,Remote,United States,M,Data Architecture and Modeling +2023,Senior,Full-time,Data Scientist,150931,USD,150931,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Data Scientist,143250,USD,143250,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,AI Architect,330000,USD,330000,United States,In-person,United States,M,Machine Learning and AI +2023,Senior,Full-time,AI Architect,204000,USD,204000,United States,In-person,United States,M,Machine Learning and AI +2023,Senior,Full-time,Machine Learning Engineer,247500,USD,247500,United States,In-person,United States,M,Machine Learning and AI +2023,Senior,Full-time,Machine Learning Engineer,172200,USD,172200,United States,In-person,United States,M,Machine Learning and AI +2023,Senior,Full-time,Data Engineer,200000,USD,200000,United States,Remote,United States,M,Data Engineering +2023,Senior,Full-time,Data Engineer,160000,USD,160000,United States,Remote,United States,M,Data Engineering +2023,Senior,Full-time,Data Engineer,205600,USD,205600,United States,In-person,United States,L,Data Engineering +2023,Senior,Full-time,Data Engineer,105700,USD,105700,United States,In-person,United States,L,Data Engineering +2023,Senior,Full-time,Machine Learning Engineer,324000,USD,324000,United States,In-person,United States,M,Machine Learning and AI +2023,Senior,Full-time,Machine Learning Engineer,159000,USD,159000,United States,In-person,United States,M,Machine Learning and AI +2023,Senior,Full-time,Data Engineer,231000,USD,231000,United States,Remote,United States,M,Data Engineering +2023,Senior,Full-time,Data Engineer,157250,USD,157250,United States,Remote,United States,M,Data Engineering +2023,Senior,Full-time,Machine Learning Scientist,240000,USD,240000,United States,Remote,United States,M,Machine Learning and AI +2023,Senior,Full-time,Machine Learning Scientist,157250,USD,157250,United States,Remote,United States,M,Machine Learning and AI +2023,Senior,Full-time,Data Engineer,232000,USD,232000,United States,In-person,United States,M,Data Engineering +2023,Senior,Full-time,Data Engineer,108000,USD,108000,United States,In-person,United States,M,Data Engineering +2023,Senior,Full-time,Data Manager,145000,USD,145000,United States,In-person,United States,M,Leadership and Management +2023,Senior,Full-time,Data Manager,130000,USD,130000,United States,In-person,United States,M,Leadership and Management +2023,Senior,Full-time,Data Scientist,277300,USD,277300,United Kingdom,In-person,United Kingdom,M,Data Science and Research +2023,Senior,Full-time,Data Scientist,213300,USD,213300,United Kingdom,In-person,United Kingdom,M,Data Science and Research +2023,Senior,Full-time,Data Scientist,180000,USD,180000,United States,Remote,United States,M,Data Science and Research +2023,Senior,Full-time,Data Scientist,135000,USD,135000,United States,Remote,United States,M,Data Science and Research +2023,Senior,Full-time,Data Engineer,209000,USD,209000,United States,In-person,United States,M,Data Engineering +2023,Senior,Full-time,Data Engineer,135000,USD,135000,United States,In-person,United States,M,Data Engineering +2023,Senior,Full-time,Applied Scientist,260000,USD,260000,United States,In-person,United States,L,Data Science and Research +2023,Senior,Full-time,Applied Scientist,136000,USD,136000,United States,In-person,United States,L,Data Science and Research +2023,Senior,Full-time,Data Engineer,209000,USD,209000,United States,In-person,United States,M,Data Engineering +2023,Senior,Full-time,Data Engineer,135000,USD,135000,United States,In-person,United States,M,Data Engineering +2023,Senior,Full-time,Data Scientist,184250,USD,184250,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Data Scientist,167500,USD,167500,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Data Engineer,95000,USD,95000,United States,Remote,United States,M,Data Engineering +2023,Senior,Full-time,Data Engineer,85000,USD,85000,United States,Remote,United States,M,Data Engineering +2023,Mid-level,Full-time,Data Scientist,230000,USD,230000,United States,In-person,United States,M,Data Science and Research +2023,Mid-level,Full-time,Data Scientist,175000,USD,175000,United States,In-person,United States,M,Data Science and Research +2023,Mid-level,Full-time,Computer Vision Engineer,90000,GBP,110736,United Kingdom,Remote,United Kingdom,M,Machine Learning and AI +2023,Mid-level,Full-time,Computer Vision Engineer,75000,GBP,92280,United Kingdom,Remote,United Kingdom,M,Machine Learning and AI +2023,Senior,Full-time,Data Analyst,154440,USD,154440,United States,In-person,United States,M,Data Analysis +2023,Senior,Full-time,Data Analyst,68550,USD,68550,United States,In-person,United States,M,Data Analysis +2023,Entry-level,Full-time,Data Analyst,90000,USD,90000,United States,In-person,United States,M,Data Analysis +2023,Entry-level,Full-time,Data Analyst,60000,USD,60000,United States,In-person,United States,M,Data Analysis +2023,Senior,Full-time,Data Engineer,226600,USD,226600,United States,In-person,United States,M,Data Engineering +2023,Senior,Full-time,Data Engineer,140100,USD,140100,United States,In-person,United States,M,Data Engineering +2023,Senior,Full-time,Business Intelligence Developer,169000,USD,169000,United States,In-person,United States,M,BI and Visualization +2023,Senior,Full-time,Business Intelligence Developer,110600,USD,110600,United States,In-person,United States,M,BI and Visualization +2023,Senior,Full-time,Business Intelligence Analyst,171050,USD,171050,United States,Remote,United States,M,BI and Visualization +2023,Senior,Full-time,Business Intelligence Analyst,124400,USD,124400,United States,Remote,United States,M,BI and Visualization +2023,Senior,Full-time,Data Engineer,225500,USD,225500,United States,In-person,United States,M,Data Engineering +2023,Senior,Full-time,Data Engineer,139400,USD,139400,United States,In-person,United States,M,Data Engineering +2023,Senior,Full-time,Machine Learning Engineer,226600,USD,226600,United States,In-person,United States,M,Machine Learning and AI +2023,Senior,Full-time,Machine Learning Engineer,140100,USD,140100,United States,In-person,United States,M,Machine Learning and AI +2023,Senior,Full-time,Data Engineer,162000,USD,162000,United States,Remote,United States,M,Data Engineering +2023,Senior,Full-time,Data Engineer,111000,USD,111000,United States,Remote,United States,M,Data Engineering +2023,Entry-level,Full-time,Data Analyst,40000,GBP,49216,United Kingdom,In-person,United Kingdom,M,Data Analysis +2023,Entry-level,Full-time,Data Analyst,34000,GBP,41833,United Kingdom,In-person,United Kingdom,M,Data Analysis +2023,Senior,Full-time,Data Scientist,136000,USD,136000,United States,Remote,United States,M,Data Science and Research +2023,Senior,Full-time,Data Scientist,104000,USD,104000,United States,Remote,United States,M,Data Science and Research +2023,Senior,Full-time,Data Architect,80000,USD,80000,United States,In-person,United States,M,Data Architecture and Modeling +2023,Senior,Full-time,Data Architect,52500,USD,52500,United States,In-person,United States,M,Data Architecture and Modeling +2023,Senior,Full-time,Data Engineer,150000,USD,150000,United States,In-person,United States,M,Data Engineering +2023,Senior,Full-time,Data Engineer,115000,USD,115000,United States,In-person,United States,M,Data Engineering +2023,Senior,Full-time,Research Engineer,253000,USD,253000,United States,Remote,United States,M,Data Science and Research +2023,Senior,Full-time,Research Engineer,156400,USD,156400,United States,Remote,United States,M,Data Science and Research +2023,Senior,Full-time,Machine Learning Engineer,300000,USD,300000,United States,In-person,United States,M,Machine Learning and AI +2023,Senior,Full-time,Machine Learning Engineer,235000,USD,235000,United States,In-person,United States,M,Machine Learning and AI +2023,Senior,Full-time,Data Analyst,223100,USD,223100,United States,In-person,United States,L,Data Analysis +2023,Senior,Full-time,Data Analyst,114700,USD,114700,United States,In-person,United States,L,Data Analysis +2023,Senior,Full-time,Data Analyst,172800,USD,172800,United Kingdom,Remote,United Kingdom,M,Data Analysis +2023,Senior,Full-time,Data Analyst,110000,USD,110000,United Kingdom,Remote,United Kingdom,M,Data Analysis +2023,Senior,Full-time,Data Analyst,95000,USD,95000,United States,In-person,United States,M,Data Analysis +2023,Senior,Full-time,Data Analyst,70000,USD,70000,United States,In-person,United States,M,Data Analysis +2023,Senior,Full-time,Data Scientist,180000,USD,180000,United States,Remote,United States,M,Data Science and Research +2023,Senior,Full-time,Data Scientist,120000,USD,120000,United States,Remote,United States,M,Data Science and Research +2023,Mid-level,Full-time,Data Engineer,152375,USD,152375,United States,Remote,United States,M,Data Engineering +2023,Mid-level,Full-time,Data Engineer,94000,USD,94000,United States,Remote,United States,M,Data Engineering +2023,Senior,Full-time,Data Engineer,183000,USD,183000,Canada,In-person,Canada,M,Data Engineering +2023,Senior,Full-time,Data Engineer,125000,USD,125000,Canada,In-person,Canada,M,Data Engineering +2023,Senior,Full-time,Data Scientist,185900,USD,185900,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Data Scientist,129300,USD,129300,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Data Analyst,120350,USD,120350,United States,In-person,United States,M,Data Analysis +2023,Senior,Full-time,Data Analyst,74400,USD,74400,United States,In-person,United States,M,Data Analysis +2023,Senior,Full-time,Data Analyst,134000,USD,134000,United States,Remote,United States,M,Data Analysis +2023,Senior,Full-time,Data Analyst,120000,USD,120000,United States,Remote,United States,M,Data Analysis +2023,Senior,Full-time,Data Engineer,52800,EUR,57007,Estonia,In-person,Estonia,M,Data Engineering +2023,Senior,Full-time,Data Engineer,40800,EUR,44051,Estonia,In-person,Estonia,M,Data Engineering +2023,Senior,Full-time,Data Engineer,258750,USD,258750,United States,Remote,United States,M,Data Engineering +2023,Senior,Full-time,Data Engineer,172500,USD,172500,United States,Remote,United States,M,Data Engineering +2023,Senior,Full-time,Machine Learning Engineer,254000,USD,254000,United States,In-person,United States,M,Machine Learning and AI +2023,Senior,Full-time,Machine Learning Engineer,200000,USD,200000,United States,In-person,United States,M,Machine Learning and AI +2023,Senior,Full-time,Data Scientist,153600,USD,153600,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Data Scientist,106800,USD,106800,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Applied Scientist,230000,USD,230000,United States,Remote,United States,M,Data Science and Research +2023,Senior,Full-time,Applied Scientist,196000,USD,196000,United States,Remote,United States,M,Data Science and Research +2023,Senior,Full-time,Data Scientist,185900,USD,185900,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Data Scientist,129300,USD,129300,United States,In-person,United States,M,Data Science and Research +2023,Mid-level,Full-time,BI Developer,128000,USD,128000,United States,In-person,United States,M,BI and Visualization +2023,Mid-level,Full-time,BI Developer,81500,USD,81500,United States,In-person,United States,M,BI and Visualization +2023,Executive,Full-time,Data Engineer,220000,USD,220000,United States,In-person,United States,M,Data Engineering +2023,Executive,Full-time,Data Engineer,150000,USD,150000,United States,In-person,United States,M,Data Engineering +2023,Senior,Full-time,Machine Learning Engineer,226600,USD,226600,United States,In-person,United States,M,Machine Learning and AI +2023,Senior,Full-time,Machine Learning Engineer,140100,USD,140100,United States,In-person,United States,M,Machine Learning and AI +2023,Senior,Full-time,Research Scientist,248100,USD,248100,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Research Scientist,145900,USD,145900,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Data Engineer,155000,USD,155000,United States,In-person,United States,M,Data Engineering +2023,Senior,Full-time,Data Engineer,109528,USD,109528,United States,In-person,United States,M,Data Engineering +2023,Mid-level,Full-time,Machine Learning Engineer,287500,USD,287500,Australia,In-person,Australia,M,Machine Learning and AI +2023,Mid-level,Full-time,Machine Learning Engineer,207500,USD,207500,Australia,In-person,Australia,M,Machine Learning and AI +2023,Senior,Full-time,Applied Scientist,248100,USD,248100,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Applied Scientist,145900,USD,145900,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Data Analyst,134200,USD,134200,United Kingdom,In-person,United Kingdom,M,Data Analysis +2023,Senior,Full-time,Data Analyst,103200,USD,103200,United Kingdom,In-person,United Kingdom,M,Data Analysis +2023,Senior,Full-time,Data Engineer,240500,USD,240500,United States,In-person,United States,L,Data Engineering +2023,Senior,Full-time,Data Engineer,123700,USD,123700,United States,In-person,United States,L,Data Engineering +2023,Senior,Full-time,Applied Scientist,192000,USD,192000,United States,Remote,United States,M,Data Science and Research +2023,Senior,Full-time,Applied Scientist,164000,USD,164000,United States,Remote,United States,M,Data Science and Research +2023,Senior,Full-time,Machine Learning Engineer,269500,USD,269500,United States,In-person,United States,M,Machine Learning and AI +2023,Senior,Full-time,Machine Learning Engineer,166600,USD,166600,United States,In-person,United States,M,Machine Learning and AI +2023,Senior,Full-time,Principal Data Scientist,160000,USD,160000,United States,Remote,United States,L,Data Science and Research +2023,Senior,Full-time,Data Analyst,93919,USD,93919,United States,In-person,United States,M,Data Analysis +2023,Senior,Full-time,Data Analyst,51962,USD,51962,United States,In-person,United States,M,Data Analysis +2023,Senior,Full-time,Data Analyst,93919,USD,93919,United States,In-person,United States,M,Data Analysis +2023,Senior,Full-time,Data Analyst,51962,USD,51962,United States,In-person,United States,M,Data Analysis +2023,Senior,Full-time,Data Architect,180000,USD,180000,United States,Remote,United States,M,Data Architecture and Modeling +2023,Senior,Full-time,Data Architect,115000,USD,115000,United States,Remote,United States,M,Data Architecture and Modeling +2023,Senior,Full-time,Data Analyst,186600,USD,186600,United States,Remote,United States,M,Data Analysis +2023,Senior,Full-time,Data Analyst,119800,USD,119800,United States,Remote,United States,M,Data Analysis +2023,Senior,Full-time,Data Engineer,160000,USD,160000,United States,Remote,United States,M,Data Engineering +2023,Senior,Full-time,Data Engineer,75000,USD,75000,United States,Remote,United States,M,Data Engineering +2023,Senior,Full-time,Data Architect,200000,USD,200000,United States,Remote,United States,M,Data Architecture and Modeling +2023,Senior,Full-time,Data Architect,115000,USD,115000,United States,Remote,United States,M,Data Architecture and Modeling +2023,Senior,Full-time,Data Analyst,280000,USD,280000,United States,In-person,United States,M,Data Analysis +2023,Senior,Full-time,Data Analyst,200000,USD,200000,United States,In-person,United States,M,Data Analysis +2023,Senior,Full-time,Applied Scientist,260000,USD,260000,United States,In-person,United States,L,Data Science and Research +2023,Senior,Full-time,Applied Scientist,136000,USD,136000,United States,In-person,United States,L,Data Science and Research +2023,Senior,Full-time,ML Engineer,383910,USD,383910,United States,In-person,United States,M,Machine Learning and AI +2023,Senior,Full-time,ML Engineer,315850,USD,315850,United States,In-person,United States,M,Machine Learning and AI +2023,Senior,Full-time,Data Scientist,235000,USD,235000,United States,Remote,United States,M,Data Science and Research +2023,Senior,Full-time,Data Scientist,204000,USD,204000,United States,Remote,United States,M,Data Science and Research +2023,Senior,Full-time,Machine Learning Engineer,254000,USD,254000,United States,In-person,United States,M,Machine Learning and AI +2023,Senior,Full-time,Machine Learning Engineer,200000,USD,200000,United States,In-person,United States,M,Machine Learning and AI +2023,Mid-level,Full-time,Applied Scientist,198000,USD,198000,United States,Remote,United States,M,Data Science and Research +2023,Mid-level,Full-time,Applied Scientist,132000,USD,132000,United States,Remote,United States,M,Data Science and Research +2023,Mid-level,Full-time,Data Scientist,141600,USD,141600,United States,Remote,United States,M,Data Science and Research +2023,Mid-level,Full-time,Data Scientist,94400,USD,94400,United States,Remote,United States,M,Data Science and Research +2023,Mid-level,Full-time,Data Engineer,135000,USD,135000,United States,In-person,United States,M,Data Engineering +2023,Mid-level,Full-time,Data Engineer,108000,USD,108000,United States,In-person,United States,M,Data Engineering +2023,Senior,Full-time,Data Scientist,209450,USD,209450,United States,Remote,United States,M,Data Science and Research +2023,Senior,Full-time,Data Scientist,167560,USD,167560,United States,Remote,United States,M,Data Science and Research +2021,Senior,Full-time,Staff Machine Learning Engineer,185000,USD,185000,United States,Hybrid,United States,M,Machine Learning and AI +2020,Senior,Full-time,Staff Data Scientist,164000,USD,164000,United States,Hybrid,United States,M,Data Science and Research +2023,Senior,Full-time,Data Engineer,122000,USD,122000,United States,In-person,United States,M,Data Engineering +2023,Senior,Full-time,Data Engineer,94000,USD,94000,United States,In-person,United States,M,Data Engineering +2023,Entry-level,Full-time,Data Engineer,80000,USD,80000,United States,In-person,United States,M,Data Engineering +2023,Entry-level,Full-time,Data Engineer,52500,USD,52500,United States,In-person,United States,M,Data Engineering +2023,Senior,Full-time,Data Scientist,238000,USD,238000,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Data Scientist,149500,USD,149500,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Data Scientist,258000,USD,258000,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Data Scientist,202000,USD,202000,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Data Engineer,186600,USD,186600,United States,Remote,United States,M,Data Engineering +2023,Senior,Full-time,Data Engineer,116500,USD,116500,United States,Remote,United States,M,Data Engineering +2023,Senior,Full-time,Data Engineer,220000,USD,220000,United States,In-person,United States,M,Data Engineering +2023,Senior,Full-time,Data Engineer,160000,USD,160000,United States,In-person,United States,M,Data Engineering +2023,Senior,Full-time,Applied Scientist,222200,USD,222200,United States,In-person,United States,L,Data Science and Research +2023,Senior,Full-time,Applied Scientist,136000,USD,136000,United States,In-person,United States,L,Data Science and Research +2023,Senior,Full-time,Data Scientist,228000,USD,228000,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Data Scientist,136000,USD,136000,United States,In-person,United States,M,Data Science and Research +2023,Mid-level,Full-time,Data Engineer,50000,GBP,61520,United Kingdom,Remote,United Kingdom,M,Data Engineering +2023,Mid-level,Full-time,Data Engineer,35000,GBP,43064,United Kingdom,Remote,United Kingdom,M,Data Engineering +2023,Senior,Full-time,Applied Scientist,175000,USD,175000,United States,Remote,United States,M,Data Science and Research +2023,Senior,Full-time,Applied Scientist,145000,USD,145000,United States,Remote,United States,M,Data Science and Research +2023,Senior,Full-time,Data Analyst,195000,USD,195000,United States,In-person,United States,M,Data Analysis +2023,Senior,Full-time,Data Analyst,140000,USD,140000,United States,In-person,United States,M,Data Analysis +2023,Senior,Full-time,Data Engineer,180000,USD,180000,United States,Remote,United States,M,Data Engineering +2023,Senior,Full-time,Data Engineer,165000,USD,165000,United States,Remote,United States,M,Data Engineering +2023,Mid-level,Full-time,Research Scientist,220000,USD,220000,United States,Remote,United States,M,Data Science and Research +2023,Mid-level,Full-time,Research Scientist,190000,USD,190000,United States,Remote,United States,M,Data Science and Research +2023,Senior,Full-time,Machine Learning Engineer,105000,EUR,113366,Germany,Hybrid,Germany,L,Machine Learning and AI +2023,Senior,Contract,Consultant Data Engineer,160000,CAD,118539,Canada,Remote,Canada,L,Data Engineering +2023,Mid-level,Full-time,Data Analyst,70000,GBP,86128,United Kingdom,Hybrid,United Kingdom,L,Data Analysis +2023,Senior,Full-time,BI Developer,167500,USD,167500,United States,In-person,United States,M,BI and Visualization +2023,Senior,Full-time,BI Developer,106500,USD,106500,United States,In-person,United States,M,BI and Visualization +2023,Senior,Full-time,Machine Learning Engineer,146000,USD,146000,United Kingdom,In-person,United Kingdom,M,Machine Learning and AI +2023,Senior,Full-time,Machine Learning Engineer,97400,USD,97400,United Kingdom,In-person,United Kingdom,M,Machine Learning and AI +2023,Senior,Full-time,Data Scientist,278700,USD,278700,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Data Scientist,159300,USD,159300,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Data Engineer,226600,USD,226600,United States,In-person,United States,M,Data Engineering +2023,Senior,Full-time,Data Engineer,140100,USD,140100,United States,In-person,United States,M,Data Engineering +2023,Senior,Full-time,Data Scientist,323300,USD,323300,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Data Scientist,184700,USD,184700,United States,In-person,United States,M,Data Science and Research +2023,Mid-level,Full-time,Data Engineer,135000,USD,135000,United States,In-person,United States,M,Data Engineering +2023,Mid-level,Full-time,Data Engineer,108000,USD,108000,United States,In-person,United States,M,Data Engineering +2023,Entry-level,Full-time,Data Analyst,55000,CAD,40747,Canada,In-person,Canada,L,Data Analysis +2023,Senior,Full-time,Data Engineer,170000,USD,170000,United States,In-person,United States,M,Data Engineering +2023,Senior,Full-time,Data Engineer,120000,USD,120000,United States,In-person,United States,M,Data Engineering +2023,Senior,Full-time,Data Engineer,166364,USD,166364,United States,In-person,United States,M,Data Engineering +2023,Senior,Full-time,Data Engineer,116455,USD,116455,United States,In-person,United States,M,Data Engineering +2023,Senior,Full-time,Business Intelligence Analyst,145000,USD,145000,United States,In-person,United States,M,BI and Visualization +2023,Senior,Full-time,Business Intelligence Analyst,125000,USD,125000,United States,In-person,United States,M,BI and Visualization +2023,Senior,Full-time,Machine Learning Engineer,184950,USD,184950,United States,In-person,United States,M,Machine Learning and AI +2023,Senior,Full-time,Machine Learning Engineer,119250,USD,119250,United States,In-person,United States,M,Machine Learning and AI +2023,Mid-level,Full-time,Data Engineer,95000,USD,95000,United States,Remote,United States,M,Data Engineering +2023,Mid-level,Full-time,Data Engineer,76000,USD,76000,United States,Remote,United States,M,Data Engineering +2023,Entry-level,Full-time,Data Engineer,80000,USD,80000,United States,In-person,United States,M,Data Engineering +2023,Entry-level,Full-time,Data Engineer,52500,USD,52500,United States,In-person,United States,M,Data Engineering +2023,Senior,Full-time,Data Analyst,160000,USD,160000,United States,In-person,United States,M,Data Analysis +2023,Senior,Full-time,Data Analyst,131000,USD,131000,United States,In-person,United States,M,Data Analysis +2023,Senior,Full-time,Data Scientist,168000,USD,168000,United States,Remote,United States,M,Data Science and Research +2023,Senior,Full-time,Data Scientist,130000,USD,130000,United States,Remote,United States,M,Data Science and Research +2023,Senior,Full-time,Machine Learning Engineer,250000,USD,250000,United States,In-person,United States,M,Machine Learning and AI +2023,Senior,Full-time,Machine Learning Engineer,140000,USD,140000,United States,In-person,United States,M,Machine Learning and AI +2023,Senior,Full-time,Data Engineer,145000,USD,145000,United States,In-person,United States,M,Data Engineering +2023,Senior,Full-time,Data Engineer,115000,USD,115000,United States,In-person,United States,M,Data Engineering +2023,Senior,Full-time,Data Scientist,222000,USD,222000,United States,Remote,United States,M,Data Science and Research +2023,Senior,Full-time,Data Scientist,166500,USD,166500,United States,Remote,United States,M,Data Science and Research +2023,Senior,Full-time,Data Engineer,205600,USD,205600,United States,Remote,United States,M,Data Engineering +2023,Senior,Full-time,Data Engineer,105700,USD,105700,United States,Remote,United States,M,Data Engineering +2023,Senior,Full-time,Data Scientist,136000,USD,136000,United States,Remote,United States,M,Data Science and Research +2023,Senior,Full-time,Data Scientist,104000,USD,104000,United States,Remote,United States,M,Data Science and Research +2023,Senior,Full-time,Business Intelligence Developer,138000,USD,138000,United States,In-person,United States,M,BI and Visualization +2023,Senior,Full-time,Business Intelligence Developer,67000,USD,67000,United States,In-person,United States,M,BI and Visualization +2023,Senior,Full-time,Research Engineer,211200,USD,211200,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Research Engineer,176000,USD,176000,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Data Analyst,230000,USD,230000,United States,Remote,United States,M,Data Analysis +2023,Senior,Full-time,Data Analyst,135000,USD,135000,United States,Remote,United States,M,Data Analysis +2023,Mid-level,Full-time,Data Analyst,80000,USD,80000,United States,Remote,United States,M,Data Analysis +2023,Mid-level,Full-time,Data Analyst,60000,USD,60000,United States,Remote,United States,M,Data Analysis +2023,Senior,Full-time,Business Intelligence Analyst,200000,USD,200000,United States,Remote,United States,M,BI and Visualization +2023,Senior,Full-time,Business Intelligence Analyst,180000,USD,180000,United States,Remote,United States,M,BI and Visualization +2023,Senior,Full-time,BI Analyst,360000,TRY,18381,Türkiye,Remote,Türkiye,L,BI and Visualization +2023,Senior,Full-time,Data Scientist,155000,USD,155000,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Data Scientist,139500,USD,139500,United States,In-person,United States,M,Data Science and Research +2023,Mid-level,Full-time,BI Developer,128000,USD,128000,United States,In-person,United States,M,BI and Visualization +2023,Mid-level,Full-time,BI Developer,81500,USD,81500,United States,In-person,United States,M,BI and Visualization +2023,Entry-level,Full-time,Research Scientist,200000,USD,200000,United States,Remote,United States,M,Data Science and Research +2023,Entry-level,Full-time,Research Scientist,120000,USD,120000,United States,Remote,United States,M,Data Science and Research +2023,Executive,Full-time,Data Scientist,126500,USD,126500,United States,Remote,United States,M,Data Science and Research +2023,Executive,Full-time,Data Scientist,78000,USD,78000,United States,Remote,United States,M,Data Science and Research +2023,Senior,Full-time,Data Scientist,157750,USD,157750,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Data Scientist,104650,USD,104650,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Data Scientist,176000,USD,176000,United States,Remote,United States,M,Data Science and Research +2023,Senior,Full-time,Data Scientist,133000,USD,133000,United States,Remote,United States,M,Data Science and Research +2023,Mid-level,Full-time,Data Analyst,120000,USD,120000,United States,In-person,United States,M,Data Analysis +2023,Mid-level,Full-time,Data Analyst,100000,USD,100000,United States,In-person,United States,M,Data Analysis +2023,Mid-level,Full-time,Machine Learning Specialist,70000,USD,70000,France,Remote,France,M,Machine Learning and AI +2023,Mid-level,Full-time,Machine Learning Specialist,40000,USD,40000,France,Remote,France,M,Machine Learning and AI +2023,Mid-level,Full-time,Research Scientist,190000,USD,190000,United States,In-person,United States,M,Data Science and Research +2023,Mid-level,Full-time,Research Scientist,158080,USD,158080,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Data Analyst,182000,USD,182000,United States,Remote,United States,M,Data Analysis +2023,Senior,Full-time,Data Analyst,150000,USD,150000,United States,Remote,United States,M,Data Analysis +2023,Senior,Full-time,Data Engineer,171250,USD,171250,United States,In-person,United States,M,Data Engineering +2023,Senior,Full-time,Data Engineer,113750,USD,113750,United States,In-person,United States,M,Data Engineering +2023,Senior,Full-time,Data Engineer,252000,USD,252000,United States,In-person,United States,M,Data Engineering +2023,Senior,Full-time,Data Engineer,129000,USD,129000,United States,In-person,United States,M,Data Engineering +2023,Senior,Full-time,Machine Learning Engineer,231000,USD,231000,United States,In-person,United States,M,Machine Learning and AI +2023,Senior,Full-time,Machine Learning Engineer,200800,USD,200800,United States,In-person,United States,M,Machine Learning and AI +2023,Entry-level,Full-time,Research Scientist,250800,USD,250800,United States,In-person,United States,M,Data Science and Research +2023,Entry-level,Full-time,Research Scientist,167200,USD,167200,United States,In-person,United States,M,Data Science and Research +2023,Entry-level,Full-time,Research Scientist,250800,USD,250800,United States,In-person,United States,M,Data Science and Research +2023,Entry-level,Full-time,Research Scientist,167200,USD,167200,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Data Scientist,159100,USD,159100,United States,Remote,United States,M,Data Science and Research +2023,Senior,Full-time,Data Scientist,120160,USD,120160,United States,Remote,United States,M,Data Science and Research +2023,Senior,Full-time,Analytics Engineer,140000,USD,140000,United States,Remote,United States,M,Leadership and Management +2023,Senior,Full-time,Analytics Engineer,110000,USD,110000,United States,Remote,United States,M,Leadership and Management +2023,Mid-level,Full-time,Machine Learning Engineer,165000,USD,165000,United States,In-person,United States,M,Machine Learning and AI +2023,Mid-level,Full-time,Machine Learning Engineer,149094,USD,149094,United States,In-person,United States,M,Machine Learning and AI +2023,Executive,Full-time,Head of Data,290000,USD,290000,United States,Remote,United States,L,Leadership and Management +2023,Senior,Full-time,Business Intelligence Engineer,247500,USD,247500,United States,In-person,United States,M,BI and Visualization +2023,Senior,Full-time,Business Intelligence Engineer,172200,USD,172200,United States,In-person,United States,M,BI and Visualization +2023,Senior,Full-time,Data Engineer,175000,USD,175000,United States,In-person,United States,M,Data Engineering +2023,Senior,Full-time,Data Engineer,130000,USD,130000,United States,In-person,United States,M,Data Engineering +2023,Senior,Full-time,Data Scientist,225000,USD,225000,United States,Remote,United States,M,Data Science and Research +2023,Senior,Full-time,Data Scientist,156400,USD,156400,United States,Remote,United States,M,Data Science and Research +2023,Senior,Full-time,Applied Scientist,260000,USD,260000,United States,In-person,United States,L,Data Science and Research +2023,Senior,Full-time,Applied Scientist,136000,USD,136000,United States,In-person,United States,L,Data Science and Research +2023,Senior,Full-time,Data Analyst,85000,USD,85000,United States,Remote,United States,M,Data Analysis +2023,Senior,Full-time,Data Analyst,72250,USD,72250,United States,Remote,United States,M,Data Analysis +2023,Executive,Full-time,Data Engineer,162500,USD,162500,United States,In-person,United States,M,Data Engineering +2023,Executive,Full-time,Data Engineer,130000,USD,130000,United States,In-person,United States,M,Data Engineering +2023,Senior,Full-time,Data Manager,145000,USD,145000,United States,In-person,United States,M,Leadership and Management +2023,Senior,Full-time,Data Manager,130000,USD,130000,United States,In-person,United States,M,Leadership and Management +2023,Senior,Full-time,Data Engineer,205600,USD,205600,United States,In-person,United States,L,Data Engineering +2023,Senior,Full-time,Data Engineer,105700,USD,105700,United States,In-person,United States,L,Data Engineering +2023,Entry-level,Full-time,Data Quality Engineer,22000,EUR,23753,Portugal,Hybrid,Portugal,L,Data Quality and Operations +2023,Senior,Full-time,Research Analyst,83000,USD,83000,United States,Remote,United States,M,Data Science and Research +2023,Senior,Full-time,Research Analyst,63967,USD,63967,United States,Remote,United States,M,Data Science and Research +2023,Senior,Full-time,Research Analyst,188600,USD,188600,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Research Analyst,111550,USD,111550,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Machine Learning Engineer,219300,USD,219300,United States,In-person,United States,M,Machine Learning and AI +2023,Senior,Full-time,Machine Learning Engineer,143000,USD,143000,United States,In-person,United States,M,Machine Learning and AI +2023,Senior,Full-time,Machine Learning Engineer,232200,USD,232200,United States,In-person,United States,M,Machine Learning and AI +2023,Senior,Full-time,Machine Learning Engineer,133300,USD,133300,United States,In-person,United States,M,Machine Learning and AI +2023,Senior,Full-time,Data Engineer,130000,USD,130000,United States,Remote,United States,M,Data Engineering +2023,Senior,Full-time,Data Engineer,80000,USD,80000,United States,Remote,United States,M,Data Engineering +2023,Senior,Full-time,Machine Learning Engineer,189000,EUR,204060,Germany,Remote,Germany,M,Machine Learning and AI +2023,Senior,Full-time,Machine Learning Engineer,130000,EUR,140358,Germany,Remote,Germany,M,Machine Learning and AI +2023,Mid-level,Full-time,Data Engineer,198900,USD,198900,United States,In-person,United States,M,Data Engineering +2023,Mid-level,Full-time,Data Engineer,183310,USD,183310,United States,In-person,United States,M,Data Engineering +2023,Entry-level,Full-time,Research Analyst,35000,GBP,43064,United Kingdom,In-person,United Kingdom,M,Data Science and Research +2023,Entry-level,Full-time,Research Analyst,35000,GBP,43064,United Kingdom,In-person,United Kingdom,M,Data Science and Research +2023,Senior,Full-time,Machine Learning Engineer,204500,USD,204500,United States,In-person,United States,M,Machine Learning and AI +2023,Senior,Full-time,Machine Learning Engineer,142200,USD,142200,United States,In-person,United States,M,Machine Learning and AI +2023,Senior,Full-time,Machine Learning Engineer,392000,USD,392000,United States,In-person,United States,M,Machine Learning and AI +2023,Senior,Full-time,Machine Learning Engineer,224000,USD,224000,United States,In-person,United States,M,Machine Learning and AI +2023,Senior,Full-time,Data Engineer,233000,USD,233000,United States,In-person,United States,M,Data Engineering +2023,Senior,Full-time,Data Engineer,199098,USD,199098,United States,In-person,United States,M,Data Engineering +2023,Senior,Full-time,Data Engineer,172000,USD,172000,United States,Remote,United States,M,Data Engineering +2023,Senior,Full-time,Data Engineer,107000,USD,107000,United States,Remote,United States,M,Data Engineering +2023,Senior,Full-time,Data Analyst,93919,USD,93919,United States,In-person,United States,M,Data Analysis +2023,Senior,Full-time,Data Analyst,51962,USD,51962,United States,In-person,United States,M,Data Analysis +2023,Senior,Full-time,Research Scientist,220000,USD,220000,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Research Scientist,150000,USD,150000,United States,In-person,United States,M,Data Science and Research +2023,Mid-level,Full-time,Data Engineer,128000,USD,128000,United States,In-person,United States,M,Data Engineering +2023,Mid-level,Full-time,Data Engineer,81500,USD,81500,United States,In-person,United States,M,Data Engineering +2023,Senior,Full-time,Research Scientist,200000,USD,200000,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Research Scientist,150000,USD,150000,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Machine Learning Engineer,208450,USD,208450,United States,In-person,United States,M,Machine Learning and AI +2023,Senior,Full-time,Machine Learning Engineer,151600,USD,151600,United States,In-person,United States,M,Machine Learning and AI +2023,Senior,Full-time,ML Engineer,208450,USD,208450,United States,In-person,United States,M,Machine Learning and AI +2023,Senior,Full-time,ML Engineer,151600,USD,151600,United States,In-person,United States,M,Machine Learning and AI +2023,Senior,Full-time,Research Engineer,240960,USD,240960,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Research Engineer,200800,USD,200800,United States,In-person,United States,M,Data Science and Research +2023,Mid-level,Full-time,Data Scientist,120681,USD,120681,United States,In-person,United States,M,Data Science and Research +2023,Mid-level,Full-time,Data Scientist,72409,USD,72409,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Applied Scientist,192000,USD,192000,United States,Remote,United States,M,Data Science and Research +2023,Senior,Full-time,Applied Scientist,164000,USD,164000,United States,Remote,United States,M,Data Science and Research +2023,Entry-level,Full-time,Data Engineer,80000,USD,80000,United States,In-person,United States,M,Data Engineering +2023,Entry-level,Full-time,Data Engineer,52500,USD,52500,United States,In-person,United States,M,Data Engineering +2023,Senior,Full-time,Research Engineer,250000,USD,250000,United States,Remote,United States,M,Data Science and Research +2023,Senior,Full-time,Research Engineer,176000,USD,176000,United States,Remote,United States,M,Data Science and Research +2023,Senior,Full-time,Research Scientist,250000,USD,250000,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Research Scientist,170000,USD,170000,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Research Scientist,250000,USD,250000,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Research Scientist,200000,USD,200000,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Data Scientist,136000,USD,136000,United States,Remote,United States,M,Data Science and Research +2023,Senior,Full-time,Data Scientist,104000,USD,104000,United States,Remote,United States,M,Data Science and Research +2023,Mid-level,Full-time,Data Scientist,230000,USD,230000,United States,In-person,United States,M,Data Science and Research +2023,Mid-level,Full-time,Data Scientist,175000,USD,175000,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Principal Machine Learning Engineer,195000,BRL,38290,Brazil,Hybrid,Brazil,L,Machine Learning and AI +2023,Executive,Full-time,AI Architect,200000,EUR,215936,Belgium,Remote,United States,L,Machine Learning and AI +2023,Mid-level,Full-time,Data Engineer,167500,USD,167500,United States,In-person,United States,M,Data Engineering +2023,Mid-level,Full-time,Data Engineer,106500,USD,106500,United States,In-person,United States,M,Data Engineering +2023,Senior,Full-time,AI Architect,330000,USD,330000,United States,In-person,United States,M,Machine Learning and AI +2023,Senior,Full-time,AI Architect,204000,USD,204000,United States,In-person,United States,M,Machine Learning and AI +2023,Senior,Full-time,Machine Learning Engineer,226600,USD,226600,United States,In-person,United States,M,Machine Learning and AI +2023,Senior,Full-time,Machine Learning Engineer,140100,USD,140100,United States,In-person,United States,M,Machine Learning and AI +2023,Senior,Full-time,Data Scientist,359170,USD,359170,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Data Scientist,310270,USD,310270,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Data Scientist,359170,USD,359170,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Data Scientist,295490,USD,295490,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Data Scientist,178560,USD,178560,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Data Scientist,148800,USD,148800,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Data Scientist,278700,USD,278700,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Data Scientist,159300,USD,159300,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Deep Learning Engineer,331640,USD,331640,United States,In-person,United States,M,Machine Learning and AI +2023,Senior,Full-time,Deep Learning Engineer,283780,USD,283780,United States,In-person,United States,M,Machine Learning and AI +2023,Executive,Full-time,Data Engineer,167954,USD,167954,United States,In-person,United States,M,Data Engineering +2023,Executive,Full-time,Data Engineer,115830,USD,115830,United States,In-person,United States,M,Data Engineering +2023,Senior,Full-time,Machine Learning Engineer,150000,USD,150000,United States,In-person,United States,M,Machine Learning and AI +2023,Senior,Full-time,Machine Learning Engineer,125000,USD,125000,United States,In-person,United States,M,Machine Learning and AI +2023,Senior,Full-time,Machine Learning Engineer,331640,USD,331640,United States,In-person,United States,M,Machine Learning and AI +2023,Senior,Full-time,Machine Learning Engineer,267720,USD,267720,United States,In-person,United States,M,Machine Learning and AI +2023,Senior,Full-time,Data Visualization Specialist,185000,USD,185000,United States,In-person,United States,M,BI and Visualization +2023,Senior,Full-time,Data Visualization Specialist,50000,USD,50000,United States,In-person,United States,M,BI and Visualization +2023,Senior,Full-time,Data Engineer,331640,USD,331640,United States,In-person,United States,M,Data Engineering +2023,Senior,Full-time,Data Engineer,283780,USD,283780,United States,In-person,United States,M,Data Engineering +2023,Senior,Full-time,Research Engineer,189110,USD,189110,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Research Engineer,139000,USD,139000,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,ML Engineer,199000,USD,199000,United States,Remote,United States,M,Machine Learning and AI +2023,Senior,Full-time,ML Engineer,145000,USD,145000,United States,Remote,United States,M,Machine Learning and AI +2023,Senior,Full-time,MLOps Engineer,199000,USD,199000,United States,In-person,United States,M,Machine Learning and AI +2023,Senior,Full-time,MLOps Engineer,142000,USD,142000,United States,In-person,United States,M,Machine Learning and AI +2023,Senior,Full-time,Analytics Engineer,230000,USD,230000,United Kingdom,Remote,United Kingdom,M,Leadership and Management +2023,Senior,Full-time,Analytics Engineer,170000,USD,170000,United Kingdom,Remote,United Kingdom,M,Leadership and Management +2023,Senior,Full-time,Machine Learning Engineer,331640,USD,331640,United States,In-person,United States,M,Machine Learning and AI +2023,Senior,Full-time,Machine Learning Engineer,283780,USD,283780,United States,In-person,United States,M,Machine Learning and AI +2023,Senior,Full-time,Data Analyst,66000,USD,66000,United States,In-person,United States,M,Data Analysis +2023,Senior,Full-time,Data Analyst,52000,USD,52000,United States,In-person,United States,M,Data Analysis +2023,Senior,Full-time,Data Manager,110400,USD,110400,United States,In-person,United States,M,Leadership and Management +2023,Senior,Full-time,Data Manager,68000,USD,68000,United States,In-person,United States,M,Leadership and Management +2023,Senior,Full-time,Data Scientist,323300,USD,323300,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Data Scientist,184700,USD,184700,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Data Scientist,202000,USD,202000,United States,Remote,United States,M,Data Science and Research +2023,Senior,Full-time,Data Scientist,140000,USD,140000,United States,Remote,United States,M,Data Science and Research +2023,Senior,Full-time,Data Scientist,235000,USD,235000,United States,Remote,United States,M,Data Science and Research +2023,Senior,Full-time,Data Scientist,200000,USD,200000,United States,Remote,United States,M,Data Science and Research +2023,Senior,Full-time,Data Scientist,359170,USD,359170,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Data Scientist,295490,USD,295490,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Data Scientist,316000,USD,316000,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Data Scientist,202000,USD,202000,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Analytics Engineer,178560,USD,178560,United States,In-person,United States,M,Leadership and Management +2023,Senior,Full-time,Analytics Engineer,148800,USD,148800,United States,In-person,United States,M,Leadership and Management +2023,Senior,Full-time,Data Engineer,170000,USD,170000,United States,Remote,United States,M,Data Engineering +2023,Senior,Full-time,Data Engineer,120000,USD,120000,United States,Remote,United States,M,Data Engineering +2023,Senior,Full-time,AI Architect,200000,USD,200000,United States,Remote,United States,L,Machine Learning and AI +2023,Senior,Full-time,Machine Learning Engineer,226600,USD,226600,United States,In-person,United States,M,Machine Learning and AI +2023,Senior,Full-time,Machine Learning Engineer,140100,USD,140100,United States,In-person,United States,M,Machine Learning and AI +2023,Senior,Full-time,Data Analyst,166500,USD,166500,United States,In-person,United States,M,Data Analysis +2023,Senior,Full-time,Data Analyst,113220,USD,113220,United States,In-person,United States,M,Data Analysis +2023,Senior,Full-time,Machine Learning Engineer,247500,USD,247500,United States,In-person,United States,M,Machine Learning and AI +2023,Senior,Full-time,Machine Learning Engineer,172200,USD,172200,United States,In-person,United States,M,Machine Learning and AI +2023,Senior,Full-time,ML Engineer,365630,USD,365630,United States,In-person,United States,M,Machine Learning and AI +2023,Senior,Full-time,ML Engineer,315850,USD,315850,United States,In-person,United States,M,Machine Learning and AI +2023,Senior,Full-time,Business Intelligence Engineer,185000,USD,185000,United States,In-person,United States,L,BI and Visualization +2023,Senior,Full-time,Business Intelligence Engineer,79600,USD,79600,United States,In-person,United States,L,BI and Visualization +2023,Senior,Full-time,Applied Scientist,260000,USD,260000,United States,In-person,United States,L,Data Science and Research +2023,Senior,Full-time,Applied Scientist,136000,USD,136000,United States,In-person,United States,L,Data Science and Research +2023,Mid-level,Full-time,Machine Learning Engineer,287500,USD,287500,Australia,In-person,Australia,M,Machine Learning and AI +2023,Mid-level,Full-time,Machine Learning Engineer,207500,USD,207500,Australia,In-person,Australia,M,Machine Learning and AI +2023,Senior,Full-time,Data Engineer,229000,USD,229000,United States,In-person,United States,M,Data Engineering +2023,Senior,Full-time,Data Engineer,131000,USD,131000,United States,In-person,United States,M,Data Engineering +2023,Senior,Full-time,Data Analyst,105000,USD,105000,United States,In-person,United States,M,Data Analysis +2023,Senior,Full-time,Data Analyst,70000,USD,70000,United States,In-person,United States,M,Data Analysis +2023,Senior,Full-time,Data Scientist,185000,USD,185000,United States,In-person,United States,L,Data Science and Research +2023,Senior,Full-time,Data Scientist,86700,USD,86700,United States,In-person,United States,L,Data Science and Research +2023,Senior,Full-time,Data Engineer,180000,USD,180000,United States,In-person,United States,M,Data Engineering +2023,Senior,Full-time,Data Engineer,150000,USD,150000,United States,In-person,United States,M,Data Engineering +2023,Senior,Full-time,Data Engineer,145000,USD,145000,United States,In-person,United States,M,Data Engineering +2023,Senior,Full-time,Data Engineer,115000,USD,115000,United States,In-person,United States,M,Data Engineering +2023,Senior,Full-time,Data Analyst,192300,USD,192300,United States,Remote,United States,M,Data Analysis +2023,Senior,Full-time,Data Analyst,153800,USD,153800,United States,Remote,United States,M,Data Analysis +2023,Senior,Full-time,Applied Scientist,222200,USD,222200,United States,In-person,United States,L,Data Science and Research +2023,Senior,Full-time,Applied Scientist,136000,USD,136000,United States,In-person,United States,L,Data Science and Research +2023,Mid-level,Full-time,Business Intelligence Data Analyst,91000,CAD,67419,Canada,Hybrid,Canada,L,Data Analysis +2023,Senior,Full-time,Data Engineer,150000,USD,150000,United States,In-person,United States,M,Data Engineering +2023,Senior,Full-time,Data Engineer,90000,USD,90000,United States,In-person,United States,M,Data Engineering +2023,Senior,Full-time,Data Scientist,155000,USD,155000,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Data Scientist,139500,USD,139500,United States,In-person,United States,M,Data Science and Research +2023,Mid-level,Full-time,Data Analyst,131650,USD,131650,United States,In-person,United States,M,Data Analysis +2023,Mid-level,Full-time,Data Analyst,105320,USD,105320,United States,In-person,United States,M,Data Analysis +2023,Senior,Full-time,Applied Scientist,222200,USD,222200,United States,In-person,United States,L,Data Science and Research +2023,Senior,Full-time,Applied Scientist,136000,USD,136000,United States,In-person,United States,L,Data Science and Research +2023,Senior,Full-time,Decision Scientist,204500,USD,204500,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Decision Scientist,126400,USD,126400,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Applied Scientist,309400,USD,309400,United States,In-person,United States,L,Data Science and Research +2023,Senior,Full-time,Applied Scientist,159100,USD,159100,United States,In-person,United States,L,Data Science and Research +2023,Senior,Full-time,Machine Learning Engineer,235400,USD,235400,United States,Remote,United States,M,Machine Learning and AI +2023,Senior,Full-time,Machine Learning Engineer,160080,USD,160080,United States,Remote,United States,M,Machine Learning and AI +2023,Senior,Full-time,Data Analyst,146190,USD,146190,United States,In-person,United States,M,Data Analysis +2023,Senior,Full-time,Data Analyst,119610,USD,119610,United States,In-person,United States,M,Data Analysis +2023,Mid-level,Full-time,Research Scientist,190000,USD,190000,United States,Remote,United States,M,Data Science and Research +2023,Mid-level,Full-time,Research Scientist,175000,USD,175000,United States,Remote,United States,M,Data Science and Research +2023,Senior,Full-time,Data Science Manager,299500,USD,299500,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Data Science Manager,245100,USD,245100,United States,In-person,United States,M,Data Science and Research +2023,Executive,Full-time,Data Scientist,228856,USD,228856,United Kingdom,Remote,United Kingdom,M,Data Science and Research +2023,Executive,Full-time,Data Scientist,144540,USD,144540,United Kingdom,Remote,United Kingdom,M,Data Science and Research +2023,Senior,Full-time,Research Scientist,210000,USD,210000,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Research Scientist,151800,USD,151800,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Machine Learning Engineer,331640,USD,331640,United States,In-person,United States,M,Machine Learning and AI +2023,Senior,Full-time,Machine Learning Engineer,267720,USD,267720,United States,In-person,United States,M,Machine Learning and AI +2023,Mid-level,Full-time,Data Architect,150000,USD,150000,United States,In-person,United States,M,Data Architecture and Modeling +2023,Mid-level,Full-time,Data Architect,100000,USD,100000,United States,In-person,United States,M,Data Architecture and Modeling +2023,Senior,Full-time,Data Scientist,126500,USD,126500,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Data Scientist,78000,USD,78000,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Data Scientist,45000,EUR,48585,Spain,In-person,Spain,M,Data Science and Research +2023,Senior,Full-time,Data Scientist,36000,EUR,38868,Spain,In-person,Spain,M,Data Science and Research +2023,Senior,Full-time,Data Analyst,126500,USD,126500,United States,In-person,United States,M,Data Analysis +2023,Senior,Full-time,Data Analyst,78000,USD,78000,United States,In-person,United States,M,Data Analysis +2023,Senior,Full-time,BI Developer,167500,USD,167500,United States,In-person,United States,M,BI and Visualization +2023,Senior,Full-time,BI Developer,106500,USD,106500,United States,In-person,United States,M,BI and Visualization +2023,Senior,Full-time,Data Scientist,105000,USD,105000,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Data Scientist,70000,USD,70000,United States,In-person,United States,M,Data Science and Research +2023,Mid-level,Full-time,Machine Learning Engineer,300000,USD,300000,United Kingdom,In-person,United Kingdom,M,Machine Learning and AI +2023,Mid-level,Full-time,Machine Learning Engineer,200000,USD,200000,United Kingdom,In-person,United Kingdom,M,Machine Learning and AI +2023,Senior,Full-time,Data Engineer,96000,USD,96000,United States,Remote,United States,M,Data Engineering +2023,Senior,Full-time,Data Engineer,72000,USD,72000,United States,Remote,United States,M,Data Engineering +2023,Senior,Full-time,Research Scientist,323300,USD,323300,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Research Scientist,184700,USD,184700,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Data Scientist,205150,USD,205150,United States,Remote,United States,M,Data Science and Research +2023,Senior,Full-time,Data Scientist,167850,USD,167850,United States,Remote,United States,M,Data Science and Research +2023,Senior,Full-time,Data Scientist,267100,USD,267100,United States,Remote,United States,M,Data Science and Research +2023,Senior,Full-time,Data Scientist,167200,USD,167200,United States,Remote,United States,M,Data Science and Research +2023,Senior,Full-time,Business Intelligence Engineer,247500,USD,247500,United States,In-person,United States,M,BI and Visualization +2023,Senior,Full-time,Business Intelligence Engineer,172200,USD,172200,United States,In-person,United States,M,BI and Visualization +2023,Senior,Full-time,Data Analyst,130000,USD,130000,United States,Remote,United States,M,Data Analysis +2023,Senior,Full-time,Data Analyst,110000,USD,110000,United States,Remote,United States,M,Data Analysis +2023,Senior,Full-time,Research Engineer,253000,USD,253000,United States,Remote,United States,M,Data Science and Research +2023,Senior,Full-time,Research Engineer,156400,USD,156400,United States,Remote,United States,M,Data Science and Research +2023,Senior,Full-time,Applied Scientist,222200,USD,222200,United States,In-person,United States,L,Data Science and Research +2023,Senior,Full-time,Applied Scientist,136000,USD,136000,United States,In-person,United States,L,Data Science and Research +2023,Senior,Full-time,Research Scientist,278700,USD,278700,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Research Scientist,159300,USD,159300,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Data Scientist,222750,USD,222750,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Data Scientist,182250,USD,182250,United States,In-person,United States,M,Data Science and Research +2023,Entry-level,Full-time,Data Science Engineer,95000,CHF,104024,Switzerland,Hybrid,Switzerland,S,Data Science and Research +2023,Mid-level,Full-time,Data Scientist,47000,EUR,50745,Andorra,Hybrid,Andorra,S,Data Science and Research +2023,Senior,Full-time,Data Engineer,215000,USD,215000,United States,In-person,United States,M,Data Engineering +2023,Senior,Full-time,Data Engineer,185000,USD,185000,United States,In-person,United States,M,Data Engineering +2023,Senior,Full-time,Machine Learning Engineer,296400,USD,296400,United States,In-person,United States,M,Machine Learning and AI +2023,Senior,Full-time,Machine Learning Engineer,148594,USD,148594,United States,In-person,United States,M,Machine Learning and AI +2023,Senior,Full-time,Data Scientist,206000,USD,206000,United States,Remote,United States,M,Data Science and Research +2023,Senior,Full-time,Data Scientist,140250,USD,140250,United States,Remote,United States,M,Data Science and Research +2023,Senior,Full-time,Data Analytics Manager,254500,USD,254500,United States,Remote,United States,L,Leadership and Management +2023,Senior,Full-time,Data Analytics Manager,130900,USD,130900,United States,Remote,United States,L,Leadership and Management +2023,Senior,Full-time,Data Scientist,198000,USD,198000,United States,Remote,United States,M,Data Science and Research +2023,Senior,Full-time,Data Scientist,124000,USD,124000,United States,Remote,United States,M,Data Science and Research +2023,Senior,Full-time,Data Manager,145000,USD,145000,United States,In-person,United States,M,Leadership and Management +2023,Senior,Full-time,Data Manager,130000,USD,130000,United States,In-person,United States,M,Leadership and Management +2023,Senior,Full-time,BI Analyst,234485,USD,234485,United States,Remote,United States,M,BI and Visualization +2023,Senior,Full-time,BI Analyst,112655,USD,112655,United States,Remote,United States,M,BI and Visualization +2023,Senior,Full-time,Machine Learning Engineer,296400,USD,296400,United States,In-person,United States,M,Machine Learning and AI +2023,Senior,Full-time,Machine Learning Engineer,148594,USD,148594,United States,In-person,United States,M,Machine Learning and AI +2023,Senior,Full-time,Applied Scientist,222200,USD,222200,United States,In-person,United States,L,Data Science and Research +2023,Senior,Full-time,Applied Scientist,136000,USD,136000,United States,In-person,United States,L,Data Science and Research +2023,Senior,Full-time,Machine Learning Engineer,200000,USD,200000,United States,Remote,United States,M,Machine Learning and AI +2023,Senior,Full-time,Machine Learning Engineer,150000,USD,150000,United States,Remote,United States,M,Machine Learning and AI +2023,Entry-level,Full-time,Data Analyst,125000,USD,125000,United States,In-person,United States,M,Data Analysis +2023,Entry-level,Full-time,Data Analyst,105000,USD,105000,United States,In-person,United States,M,Data Analysis +2023,Mid-level,Full-time,Data Scientist,70000,GBP,86128,United Kingdom,In-person,United Kingdom,M,Data Science and Research +2023,Mid-level,Full-time,Data Scientist,42000,GBP,51676,United Kingdom,In-person,United Kingdom,M,Data Science and Research +2023,Mid-level,Full-time,Data Engineer,65000,EUR,70179,France,Remote,France,M,Data Engineering +2023,Mid-level,Full-time,Data Engineer,60000,EUR,64781,France,Remote,France,M,Data Engineering +2023,Senior,Full-time,Data Scientist,258000,USD,258000,Canada,In-person,Canada,M,Data Science and Research +2023,Senior,Full-time,Data Scientist,190000,USD,190000,Canada,In-person,Canada,M,Data Science and Research +2023,Senior,Full-time,Data Scientist,184184,USD,184184,United States,Remote,United States,M,Data Science and Research +2023,Senior,Full-time,Data Scientist,167441,USD,167441,United States,Remote,United States,M,Data Science and Research +2023,Entry-level,Full-time,AI Programmer,100000,CAD,74087,Canada,Remote,Canada,L,Machine Learning and AI +2023,Entry-level,Full-time,Data Scientist,30000,EUR,32390,Netherlands,In-person,Netherlands,L,Data Science and Research +2023,Executive,Full-time,Data Engineer,204500,USD,204500,United States,In-person,United States,M,Data Engineering +2023,Executive,Full-time,Data Engineer,130000,USD,130000,United States,In-person,United States,M,Data Engineering +2023,Entry-level,Full-time,Analytics Engineer,90000,USD,90000,United States,In-person,United States,M,Leadership and Management +2023,Entry-level,Full-time,Analytics Engineer,84000,USD,84000,United States,In-person,United States,M,Leadership and Management +2023,Senior,Full-time,Data Scientist,136000,USD,136000,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Data Scientist,104000,USD,104000,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Data Engineer,202400,USD,202400,United States,Remote,United States,M,Data Engineering +2023,Senior,Full-time,Data Engineer,147200,USD,147200,United States,Remote,United States,M,Data Engineering +2023,Entry-level,Full-time,Data Engineer,80000,USD,80000,United States,In-person,United States,M,Data Engineering +2023,Entry-level,Full-time,Data Engineer,52500,USD,52500,United States,In-person,United States,M,Data Engineering +2023,Mid-level,Full-time,Data Engineer,128000,USD,128000,United States,In-person,United States,M,Data Engineering +2023,Mid-level,Full-time,Data Engineer,81500,USD,81500,United States,In-person,United States,M,Data Engineering +2023,Senior,Full-time,Data Analyst,105000,USD,105000,United States,Remote,United States,M,Data Analysis +2023,Senior,Full-time,Data Analyst,75000,USD,75000,United States,Remote,United States,M,Data Analysis +2023,Senior,Full-time,Data Analyst,95000,USD,95000,United States,In-person,United States,M,Data Analysis +2023,Senior,Full-time,Data Analyst,75000,USD,75000,United States,In-person,United States,M,Data Analysis +2023,Mid-level,Full-time,Data Engineer,167500,USD,167500,United States,In-person,United States,M,Data Engineering +2023,Mid-level,Full-time,Data Engineer,106500,USD,106500,United States,In-person,United States,M,Data Engineering +2023,Senior,Full-time,Data Scientist,139500,USD,139500,United States,Remote,United States,M,Data Science and Research +2023,Senior,Full-time,Data Scientist,90000,USD,90000,United States,Remote,United States,M,Data Science and Research +2023,Senior,Full-time,Machine Learning Engineer,269500,USD,269500,United States,In-person,United States,M,Machine Learning and AI +2023,Senior,Full-time,Machine Learning Engineer,166600,USD,166600,United States,In-person,United States,M,Machine Learning and AI +2023,Senior,Full-time,AI Architect,330000,USD,330000,United States,In-person,United States,M,Machine Learning and AI +2023,Senior,Full-time,AI Architect,204000,USD,204000,United States,In-person,United States,M,Machine Learning and AI +2023,Senior,Full-time,Data Engineer,252000,USD,252000,United States,In-person,United States,M,Data Engineering +2023,Senior,Full-time,Data Engineer,129000,USD,129000,United States,In-person,United States,M,Data Engineering +2023,Senior,Full-time,Data Engineer,180000,USD,180000,United States,Remote,United States,M,Data Engineering +2023,Senior,Full-time,Data Engineer,165000,USD,165000,United States,Remote,United States,M,Data Engineering +2023,Senior,Full-time,Business Intelligence Engineer,192000,USD,192000,United States,In-person,United States,M,BI and Visualization +2023,Senior,Full-time,Business Intelligence Engineer,142000,USD,142000,United States,In-person,United States,M,BI and Visualization +2023,Senior,Full-time,Data Operations Manager,143000,USD,143000,United States,Remote,United States,M,Data Quality and Operations +2023,Senior,Full-time,Data Operations Manager,129000,USD,129000,United States,Remote,United States,M,Data Quality and Operations +2023,Senior,Full-time,Data Scientist,191000,USD,191000,United States,Remote,United States,M,Data Science and Research +2023,Senior,Full-time,Data Scientist,146000,USD,146000,United States,Remote,United States,M,Data Science and Research +2023,Senior,Full-time,Data Specialist,85000,USD,85000,United States,In-person,United States,M,Data Management and Strategy +2023,Senior,Full-time,Data Specialist,70000,USD,70000,United States,In-person,United States,M,Data Management and Strategy +2023,Senior,Full-time,Data Scientist,155000,USD,155000,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Data Scientist,139500,USD,139500,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Data Engineer,120000,GBP,147648,United Kingdom,Remote,United Kingdom,M,Data Engineering +2023,Senior,Full-time,Data Engineer,80000,GBP,98432,United Kingdom,Remote,United Kingdom,M,Data Engineering +2023,Senior,Full-time,Data Analyst,138860,USD,138860,United States,In-person,United States,M,Data Analysis +2023,Senior,Full-time,Data Analyst,122720,USD,122720,United States,In-person,United States,M,Data Analysis +2023,Senior,Full-time,Machine Learning Engineer,212800,USD,212800,United States,In-person,United States,M,Machine Learning and AI +2023,Senior,Full-time,Machine Learning Engineer,144800,USD,144800,United States,In-person,United States,M,Machine Learning and AI +2023,Mid-level,Full-time,Data Analyst,250000,USD,250000,United States,Remote,United States,M,Data Analysis +2023,Mid-level,Full-time,Data Analyst,100000,USD,100000,United States,Remote,United States,M,Data Analysis +2023,Senior,Full-time,Data Scientist,209450,USD,209450,United States,Remote,United States,M,Data Science and Research +2023,Senior,Full-time,Data Scientist,167560,USD,167560,United States,Remote,United States,M,Data Science and Research +2023,Entry-level,Full-time,Data Scientist,16000,USD,16000,Ecuador,Remote,Ecuador,L,Data Science and Research +2023,Mid-level,Full-time,Data Engineer,27000,USD,27000,Peru,Remote,Portugal,S,Data Engineering +2023,Executive,Full-time,Data Manager,72000,USD,72000,Mexico,Remote,Mexico,S,Leadership and Management +2023,Senior,Full-time,Data Engineer,172900,USD,172900,United States,In-person,United States,M,Data Engineering +2023,Senior,Full-time,Data Engineer,144100,USD,144100,United States,In-person,United States,M,Data Engineering +2023,Senior,Full-time,Data Scientist,230000,USD,230000,United States,Remote,United States,M,Data Science and Research +2023,Senior,Full-time,Data Scientist,175000,USD,175000,United States,Remote,United States,M,Data Science and Research +2023,Senior,Full-time,BI Analyst,160000,USD,160000,United States,In-person,United States,M,BI and Visualization +2023,Senior,Full-time,BI Analyst,135000,USD,135000,United States,In-person,United States,M,BI and Visualization +2023,Senior,Full-time,Data Analyst,150000,USD,150000,United States,In-person,United States,M,Data Analysis +2023,Senior,Full-time,Data Analyst,110000,USD,110000,United States,In-person,United States,M,Data Analysis +2023,Senior,Full-time,Data Analyst,101500,USD,101500,United States,Remote,United States,M,Data Analysis +2023,Senior,Full-time,Data Analyst,83700,USD,83700,United States,Remote,United States,M,Data Analysis +2023,Senior,Full-time,Data Scientist,310270,USD,310270,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Data Scientist,253430,USD,253430,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Business Intelligence Engineer,202800,USD,202800,United States,In-person,United States,L,BI and Visualization +2023,Senior,Full-time,Business Intelligence Engineer,104300,USD,104300,United States,In-person,United States,L,BI and Visualization +2023,Senior,Full-time,Data Analyst,110000,USD,110000,United States,In-person,United States,M,Data Analysis +2023,Senior,Full-time,Data Analyst,70000,USD,70000,United States,In-person,United States,M,Data Analysis +2023,Senior,Full-time,Data Scientist,283000,USD,283000,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Data Scientist,184000,USD,184000,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Data Analyst,166500,USD,166500,United States,In-person,United States,M,Data Analysis +2023,Senior,Full-time,Data Analyst,113220,USD,113220,United States,In-person,United States,M,Data Analysis +2023,Executive,Full-time,Data Scientist,220000,USD,220000,United States,In-person,United States,M,Data Science and Research +2023,Executive,Full-time,Data Scientist,185000,USD,185000,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Data Engineer,260000,USD,260000,United States,In-person,United States,M,Data Engineering +2023,Senior,Full-time,Data Engineer,225000,USD,225000,United States,In-person,United States,M,Data Engineering +2023,Senior,Full-time,Applied Scientist,246500,USD,246500,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Applied Scientist,133500,USD,133500,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Data Engineer,331640,USD,331640,United States,In-person,United States,M,Data Engineering +2023,Senior,Full-time,Data Engineer,283780,USD,283780,United States,In-person,United States,M,Data Engineering +2023,Senior,Full-time,Deep Learning Engineer,331640,USD,331640,United States,In-person,United States,M,Machine Learning and AI +2023,Senior,Full-time,Deep Learning Engineer,283780,USD,283780,United States,In-person,United States,M,Machine Learning and AI +2023,Senior,Full-time,Data Scientist,174000,USD,174000,United States,Remote,United States,M,Data Science and Research +2023,Senior,Full-time,Data Scientist,134000,USD,134000,United States,Remote,United States,M,Data Science and Research +2023,Senior,Full-time,Data Scientist,359170,USD,359170,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Data Scientist,310270,USD,310270,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Machine Learning Engineer,331640,USD,331640,United States,In-person,United States,M,Machine Learning and AI +2023,Senior,Full-time,Machine Learning Engineer,283780,USD,283780,United States,In-person,United States,M,Machine Learning and AI +2023,Senior,Full-time,Data Scientist,359170,USD,359170,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Data Scientist,295490,USD,295490,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Research Engineer,189110,USD,189110,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Research Engineer,139000,USD,139000,United States,In-person,United States,M,Data Science and Research +2023,Executive,Full-time,Head of Data Science,330000,USD,330000,United States,In-person,United States,M,Data Science and Research +2023,Executive,Full-time,Head of Data Science,230000,USD,230000,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Data Engineer,254000,USD,254000,United States,Remote,United States,M,Data Engineering +2023,Senior,Full-time,Data Engineer,200000,USD,200000,United States,Remote,United States,M,Data Engineering +2023,Senior,Full-time,Applied Scientist,309400,USD,309400,United States,In-person,United States,L,Data Science and Research +2023,Senior,Full-time,Applied Scientist,159100,USD,159100,United States,In-person,United States,L,Data Science and Research +2023,Senior,Full-time,Machine Learning Engineer,331640,USD,331640,United States,In-person,United States,M,Machine Learning and AI +2023,Senior,Full-time,Machine Learning Engineer,267720,USD,267720,United States,In-person,United States,M,Machine Learning and AI +2023,Senior,Full-time,Machine Learning Engineer,283780,USD,283780,United States,In-person,United States,M,Machine Learning and AI +2023,Senior,Full-time,Machine Learning Engineer,218540,USD,218540,United States,In-person,United States,M,Machine Learning and AI +2023,Mid-level,Full-time,Data Scientist,100000,GBP,123040,United Kingdom,In-person,United Kingdom,M,Data Science and Research +2023,Mid-level,Full-time,Data Scientist,60000,GBP,73824,United Kingdom,In-person,United Kingdom,M,Data Science and Research +2023,Mid-level,Full-time,Data Manager,167000,USD,167000,United States,In-person,United States,M,Leadership and Management +2023,Mid-level,Full-time,Data Manager,109000,USD,109000,United States,In-person,United States,M,Leadership and Management +2023,Senior,Full-time,Data Engineer,208000,USD,208000,United States,Remote,United States,M,Data Engineering +2023,Senior,Full-time,Data Engineer,193000,USD,193000,United States,Remote,United States,M,Data Engineering +2023,Senior,Full-time,Data Scientist,359170,USD,359170,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Data Scientist,295490,USD,295490,United States,In-person,United States,M,Data Science and Research +2020,Entry-level,Full-time,Data Analyst,42000,EUR,47899,Germany,In-person,Germany,L,Data Analysis +2023,Senior,Full-time,Lead Machine Learning Engineer,115000,USD,115000,"Moldova, Republic of",Remote,Israel,S,Machine Learning and AI +2023,Senior,Full-time,Applied Scientist,216000,USD,216000,United States,Remote,United States,M,Data Science and Research +2023,Senior,Full-time,Applied Scientist,184000,USD,184000,United States,Remote,United States,M,Data Science and Research +2023,Senior,Full-time,Machine Learning Engineer,200000,USD,200000,United States,Remote,United States,M,Machine Learning and AI +2023,Senior,Full-time,Machine Learning Engineer,145000,USD,145000,United States,Remote,United States,M,Machine Learning and AI +2023,Senior,Full-time,Machine Learning Engineer,250000,USD,250000,United States,In-person,United States,M,Machine Learning and AI +2023,Senior,Full-time,Machine Learning Engineer,166600,USD,166600,United States,In-person,United States,M,Machine Learning and AI +2023,Senior,Full-time,Machine Learning Engineer,284000,USD,284000,United States,Remote,United States,M,Machine Learning and AI +2023,Senior,Full-time,Machine Learning Engineer,227000,USD,227000,United States,Remote,United States,M,Machine Learning and AI +2023,Senior,Full-time,Research Scientist,205000,USD,205000,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Research Scientist,160000,USD,160000,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Machine Learning Engineer,191400,USD,191400,United States,In-person,United States,M,Machine Learning and AI +2023,Senior,Full-time,Machine Learning Engineer,127600,USD,127600,United States,In-person,United States,M,Machine Learning and AI +2023,Senior,Full-time,Applied Scientist,222200,USD,222200,United States,In-person,United States,L,Data Science and Research +2023,Senior,Full-time,Applied Scientist,136000,USD,136000,United States,In-person,United States,L,Data Science and Research +2023,Senior,Full-time,Machine Learning Engineer,191400,USD,191400,United States,In-person,United States,M,Machine Learning and AI +2023,Senior,Full-time,Machine Learning Engineer,127600,USD,127600,United States,In-person,United States,M,Machine Learning and AI +2023,Senior,Full-time,Machine Learning Engineer,230000,USD,230000,United States,Remote,United States,M,Machine Learning and AI +2023,Senior,Full-time,Machine Learning Engineer,175000,USD,175000,United States,Remote,United States,M,Machine Learning and AI +2023,Senior,Full-time,Data Analyst,139600,USD,139600,United States,In-person,United States,M,Data Analysis +2023,Senior,Full-time,Data Analyst,85700,USD,85700,United States,In-person,United States,M,Data Analysis +2023,Mid-level,Full-time,Data Quality Analyst,95000,USD,95000,United States,In-person,United States,M,Data Quality and Operations +2023,Mid-level,Full-time,Data Quality Analyst,70000,USD,70000,United States,In-person,United States,M,Data Quality and Operations +2023,Mid-level,Full-time,Data Engineer,258000,USD,258000,United States,In-person,United States,M,Data Engineering +2023,Mid-level,Full-time,Data Engineer,171000,USD,171000,United States,In-person,United States,M,Data Engineering +2023,Senior,Full-time,Decision Scientist,204500,USD,204500,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Decision Scientist,126400,USD,126400,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Data Engineer,87000,USD,87000,Canada,In-person,Canada,M,Data Engineering +2023,Senior,Full-time,Data Engineer,73000,USD,73000,Canada,In-person,Canada,M,Data Engineering +2023,Entry-level,Full-time,AI Scientist,20000,USD,20000,Türkiye,Remote,Türkiye,S,Machine Learning and AI +2020,Executive,Full-time,Managing Director Data Science,300000,USD,300000,United States,Remote,United States,L,Data Science and Research +2023,Mid-level,Full-time,Data Modeller,90000,GBP,110736,United Kingdom,In-person,United Kingdom,M,Data Architecture and Modeling +2023,Mid-level,Full-time,Data Modeller,45000,GBP,55368,United Kingdom,In-person,United Kingdom,M,Data Architecture and Modeling +2023,Senior,Full-time,Data Engineer,232960,USD,232960,United States,In-person,United States,M,Data Engineering +2023,Senior,Full-time,Data Engineer,151840,USD,151840,United States,In-person,United States,M,Data Engineering +2023,Senior,Full-time,Data Engineer,163152,USD,163152,United States,In-person,United States,M,Data Engineering +2023,Senior,Full-time,Data Engineer,108768,USD,108768,United States,In-person,United States,M,Data Engineering +2023,Senior,Full-time,Research Engineer,370000,USD,370000,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Research Engineer,245000,USD,245000,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Machine Learning Engineer,285000,USD,285000,United States,In-person,United States,M,Machine Learning and AI +2023,Senior,Full-time,Machine Learning Engineer,193900,USD,193900,United States,In-person,United States,M,Machine Learning and AI +2023,Senior,Full-time,Research Scientist,240000,USD,240000,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Research Scientist,163200,USD,163200,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Data Scientist,222000,USD,222000,United States,Remote,United States,M,Data Science and Research +2023,Senior,Full-time,Data Scientist,166500,USD,166500,United States,Remote,United States,M,Data Science and Research +2023,Senior,Full-time,Machine Learning Engineer,240000,USD,240000,United States,In-person,United States,M,Machine Learning and AI +2023,Senior,Full-time,Machine Learning Engineer,163200,USD,163200,United States,In-person,United States,M,Machine Learning and AI +2023,Senior,Full-time,Research Scientist,345000,USD,345000,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Research Scientist,234700,USD,234700,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,AI Scientist,100000,USD,100000,Türkiye,Remote,United States,S,Machine Learning and AI +2023,Entry-level,Full-time,Finance Data Analyst,40000,USD,40000,Nigeria,In-person,Nigeria,S,Data Analysis +2023,Senior,Full-time,Machine Learning Engineer,226600,USD,226600,United States,In-person,United States,M,Machine Learning and AI +2023,Senior,Full-time,Machine Learning Engineer,140100,USD,140100,United States,In-person,United States,M,Machine Learning and AI +2023,Senior,Full-time,Data Engineer,241000,USD,241000,United States,In-person,United States,M,Data Engineering +2023,Senior,Full-time,Data Engineer,155000,USD,155000,United States,In-person,United States,M,Data Engineering +2023,Senior,Full-time,Software Data Engineer,210000,USD,210000,United States,Remote,United States,L,Data Engineering +2023,Mid-level,Full-time,Machine Learning Research Engineer,90000,USD,90000,Saudi Arabia,Remote,Saudi Arabia,M,Data Science and Research +2023,Mid-level,Full-time,Data Analyst,55000,EUR,59382,Germany,Hybrid,Germany,L,Data Analysis +2023,Senior,Full-time,Analytics Engineer,90000,USD,90000,United States,In-person,United States,M,Leadership and Management +2023,Senior,Full-time,Analytics Engineer,84000,USD,84000,United States,In-person,United States,M,Leadership and Management +2023,Senior,Full-time,Data Analyst,160000,USD,160000,United States,Remote,United States,M,Data Analysis +2023,Senior,Full-time,Data Analyst,140000,USD,140000,United States,Remote,United States,M,Data Analysis +2023,Senior,Full-time,Analytics Engineer,221300,USD,221300,United States,In-person,United States,M,Leadership and Management +2023,Senior,Full-time,Analytics Engineer,147500,USD,147500,United States,In-person,United States,M,Leadership and Management +2023,Executive,Full-time,Data Engineer,204500,USD,204500,United States,In-person,United States,M,Data Engineering +2023,Executive,Full-time,Data Engineer,130000,USD,130000,United States,In-person,United States,M,Data Engineering +2023,Senior,Full-time,Machine Learning Engineer,210000,USD,210000,United States,Remote,United States,M,Machine Learning and AI +2023,Senior,Full-time,Machine Learning Engineer,160000,USD,160000,United States,Remote,United States,M,Machine Learning and AI +2023,Senior,Full-time,Machine Learning Engineer,204500,USD,204500,United States,In-person,United States,M,Machine Learning and AI +2023,Senior,Full-time,Machine Learning Engineer,142200,USD,142200,United States,In-person,United States,M,Machine Learning and AI +2023,Senior,Full-time,Data Analyst,186600,USD,186600,United States,Remote,United States,M,Data Analysis +2023,Senior,Full-time,Data Analyst,119800,USD,119800,United States,Remote,United States,M,Data Analysis +2023,Senior,Full-time,Analytics Engineer,192000,USD,192000,United States,Remote,United States,M,Leadership and Management +2023,Senior,Full-time,Analytics Engineer,151000,USD,151000,United States,Remote,United States,M,Leadership and Management +2023,Senior,Full-time,Business Intelligence Engineer,185000,USD,185000,United States,In-person,United States,L,BI and Visualization +2023,Senior,Full-time,Business Intelligence Engineer,79600,USD,79600,United States,In-person,United States,L,BI and Visualization +2023,Senior,Full-time,Data Scientist,169000,USD,169000,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Data Scientist,129300,USD,129300,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Data Engineer,204500,USD,204500,United States,In-person,United States,M,Data Engineering +2023,Senior,Full-time,Data Engineer,142200,USD,142200,United States,In-person,United States,M,Data Engineering +2023,Senior,Full-time,Data Engineer,250000,USD,250000,United States,In-person,United States,M,Data Engineering +2023,Senior,Full-time,Data Engineer,130000,USD,130000,United States,In-person,United States,M,Data Engineering +2023,Senior,Full-time,Business Intelligence Engineer,210000,USD,210000,United States,In-person,United States,M,BI and Visualization +2023,Senior,Full-time,Business Intelligence Engineer,170000,USD,170000,United States,In-person,United States,M,BI and Visualization +2023,Senior,Full-time,Analytics Engineer,221300,USD,221300,United States,In-person,United States,M,Leadership and Management +2023,Senior,Full-time,Analytics Engineer,147500,USD,147500,United States,In-person,United States,M,Leadership and Management +2023,Senior,Full-time,Data Scientist,189750,USD,189750,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Data Scientist,131100,USD,131100,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Data Science Manager,299500,USD,299500,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Data Science Manager,245100,USD,245100,United States,In-person,United States,M,Data Science and Research +2023,Mid-level,Full-time,Data Engineer,128000,USD,128000,United States,In-person,United States,M,Data Engineering +2023,Mid-level,Full-time,Data Engineer,81500,USD,81500,United States,In-person,United States,M,Data Engineering +2023,Entry-level,Full-time,Data Engineer,80000,USD,80000,United States,In-person,United States,M,Data Engineering +2023,Entry-level,Full-time,Data Engineer,52500,USD,52500,United States,In-person,United States,M,Data Engineering +2023,Senior,Full-time,Research Scientist,370000,USD,370000,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Research Scientist,200000,USD,200000,United States,In-person,United States,M,Data Science and Research +2023,Mid-level,Full-time,Data Engineer,72000,USD,72000,Colombia,Remote,Colombia,M,Data Engineering +2023,Mid-level,Full-time,Data Engineer,60000,USD,60000,Colombia,Remote,Colombia,M,Data Engineering +2023,Senior,Full-time,Data Scientist,180000,USD,180000,United States,Remote,United States,M,Data Science and Research +2023,Senior,Full-time,Data Scientist,140000,USD,140000,United States,Remote,United States,M,Data Science and Research +2023,Senior,Full-time,Data Analyst,94000,USD,94000,United States,In-person,United States,M,Data Analysis +2023,Senior,Full-time,Data Analyst,81900,USD,81900,United States,In-person,United States,M,Data Analysis +2023,Senior,Full-time,Analytics Engineer,210000,USD,210000,United States,Remote,United States,M,Leadership and Management +2023,Senior,Full-time,Analytics Engineer,159090,USD,159090,United States,Remote,United States,M,Leadership and Management +2023,Senior,Full-time,Machine Learning Engineer,210000,USD,210000,United States,In-person,United States,M,Machine Learning and AI +2023,Senior,Full-time,Machine Learning Engineer,175000,USD,175000,United States,In-person,United States,M,Machine Learning and AI +2023,Senior,Full-time,Data Analyst,118000,USD,118000,United States,Remote,United States,M,Data Analysis +2023,Senior,Full-time,Data Analyst,94400,USD,94400,United States,Remote,United States,M,Data Analysis +2023,Mid-level,Full-time,Data Architect,150000,USD,150000,United States,Remote,United States,M,Data Architecture and Modeling +2023,Mid-level,Full-time,Data Architect,90000,USD,90000,United States,Remote,United States,M,Data Architecture and Modeling +2023,Mid-level,Full-time,Data Scientist,190000,USD,190000,Canada,Remote,Canada,M,Data Science and Research +2023,Mid-level,Full-time,Data Scientist,125000,USD,125000,Canada,Remote,Canada,M,Data Science and Research +2023,Entry-level,Full-time,Data Engineer,130002,USD,130002,United States,Remote,United States,M,Data Engineering +2023,Entry-level,Full-time,Data Engineer,71908,USD,71908,United States,Remote,United States,M,Data Engineering +2023,Mid-level,Full-time,Data Analyst,80000,USD,80000,United States,In-person,United States,M,Data Analysis +2023,Mid-level,Full-time,Data Analyst,60000,USD,60000,United States,In-person,United States,M,Data Analysis +2023,Mid-level,Full-time,Data Engineer,167500,USD,167500,United States,In-person,United States,M,Data Engineering +2023,Mid-level,Full-time,Data Engineer,106500,USD,106500,United States,In-person,United States,M,Data Engineering +2023,Senior,Full-time,Business Intelligence Engineer,202800,USD,202800,United States,In-person,United States,L,BI and Visualization +2023,Senior,Full-time,Business Intelligence Engineer,104300,USD,104300,United States,In-person,United States,L,BI and Visualization +2023,Mid-level,Full-time,AI Scientist,121000,AUD,81838,Australia,Remote,Australia,L,Machine Learning and AI +2023,Entry-level,Full-time,Compliance Data Analyst,60000,USD,60000,United States,Remote,United States,L,Data Analysis +2023,Senior,Full-time,Data Engineer,185900,USD,185900,United States,In-person,United States,M,Data Engineering +2023,Senior,Full-time,Data Engineer,129300,USD,129300,United States,In-person,United States,M,Data Engineering +2023,Senior,Full-time,Data Analyst,150000,USD,150000,United States,In-person,United States,M,Data Analysis +2023,Senior,Full-time,Data Analyst,110000,USD,110000,United States,In-person,United States,M,Data Analysis +2023,Senior,Full-time,Data Scientist,230000,USD,230000,United States,Remote,United States,M,Data Science and Research +2023,Senior,Full-time,Data Scientist,175000,USD,175000,United States,Remote,United States,M,Data Science and Research +2023,Senior,Full-time,Machine Learning Scientist,200000,USD,200000,United States,In-person,United States,M,Machine Learning and AI +2023,Senior,Full-time,Machine Learning Scientist,170000,USD,170000,United States,In-person,United States,M,Machine Learning and AI +2023,Senior,Full-time,Data Scientist,175000,USD,175000,United States,Remote,United States,M,Data Science and Research +2023,Senior,Full-time,Data Scientist,160000,USD,160000,United States,Remote,United States,M,Data Science and Research +2023,Senior,Full-time,Data Scientist,255000,USD,255000,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Data Scientist,160000,USD,160000,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Analytics Engineer,116990,USD,116990,United States,Remote,United States,M,Leadership and Management +2023,Senior,Full-time,Analytics Engineer,82920,USD,82920,United States,Remote,United States,M,Leadership and Management +2023,Senior,Full-time,Data Engineer,121000,USD,121000,United States,In-person,United States,M,Data Engineering +2023,Senior,Full-time,Data Engineer,78000,USD,78000,United States,In-person,United States,M,Data Engineering +2023,Senior,Full-time,Analytics Engineer,159000,USD,159000,United States,Remote,United States,M,Leadership and Management +2023,Senior,Full-time,Analytics Engineer,105000,USD,105000,United States,Remote,United States,M,Leadership and Management +2023,Senior,Full-time,Applied Scientist,309400,USD,309400,United States,In-person,United States,L,Data Science and Research +2023,Senior,Full-time,Applied Scientist,159100,USD,159100,United States,In-person,United States,L,Data Science and Research +2023,Mid-level,Full-time,Research Scientist,155000,USD,155000,United States,In-person,United States,M,Data Science and Research +2023,Mid-level,Full-time,Research Scientist,102000,USD,102000,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Research Scientist,374000,USD,374000,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Research Scientist,197500,USD,197500,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Applied Scientist,260000,USD,260000,United States,In-person,United States,L,Data Science and Research +2023,Senior,Full-time,Applied Scientist,136000,USD,136000,United States,In-person,United States,L,Data Science and Research +2023,Senior,Full-time,Data Scientist,240000,USD,240000,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Data Scientist,187000,USD,187000,United States,In-person,United States,M,Data Science and Research +2023,Mid-level,Full-time,Applied Scientist,20000,USD,20000,Nigeria,Remote,United States,L,Data Science and Research +2023,Senior,Full-time,Machine Learning Engineer,210000,USD,210000,United States,In-person,United States,M,Machine Learning and AI +2023,Senior,Full-time,Machine Learning Engineer,190000,USD,190000,United States,In-person,United States,M,Machine Learning and AI +2023,Mid-level,Full-time,Data Quality Analyst,95000,USD,95000,United States,In-person,United States,M,Data Quality and Operations +2023,Mid-level,Full-time,Data Quality Analyst,70000,USD,70000,United States,In-person,United States,M,Data Quality and Operations +2023,Senior,Full-time,Data Scientist,195000,USD,195000,United States,Remote,United States,M,Data Science and Research +2023,Senior,Full-time,Data Scientist,119000,USD,119000,United States,Remote,United States,M,Data Science and Research +2023,Senior,Full-time,Applied Scientist,216000,USD,216000,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Applied Scientist,184000,USD,184000,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Machine Learning Engineer,200000,USD,200000,United States,Remote,United States,M,Machine Learning and AI +2023,Senior,Full-time,Machine Learning Engineer,160000,USD,160000,United States,Remote,United States,M,Machine Learning and AI +2023,Senior,Full-time,Data Analyst,80000,USD,80000,United States,In-person,United States,M,Data Analysis +2023,Senior,Full-time,Data Analyst,70000,USD,70000,United States,In-person,United States,M,Data Analysis +2023,Senior,Full-time,Business Intelligence Engineer,185000,USD,185000,United States,In-person,United States,L,BI and Visualization +2023,Senior,Full-time,Business Intelligence Engineer,79600,USD,79600,United States,In-person,United States,L,BI and Visualization +2023,Mid-level,Full-time,Data Analyst,60000,GBP,73824,United Kingdom,In-person,United Kingdom,M,Data Analysis +2023,Mid-level,Full-time,Data Analyst,50000,GBP,61520,United Kingdom,In-person,United Kingdom,M,Data Analysis +2023,Senior,Full-time,Data Science Engineer,266450,USD,266450,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Data Science Engineer,177700,USD,177700,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Data Scientist,245000,USD,245000,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Data Scientist,185000,USD,185000,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Machine Learning Engineer,247500,USD,247500,United States,In-person,United States,M,Machine Learning and AI +2023,Senior,Full-time,Machine Learning Engineer,172200,USD,172200,United States,In-person,United States,M,Machine Learning and AI +2023,Senior,Full-time,Applied Scientist,222200,USD,222200,United States,In-person,United States,L,Data Science and Research +2023,Senior,Full-time,Applied Scientist,136000,USD,136000,United States,In-person,United States,L,Data Science and Research +2023,Senior,Full-time,Data Operations Specialist,55720,USD,55720,United States,Remote,United States,M,Data Quality and Operations +2023,Senior,Full-time,Data Operations Specialist,50700,USD,50700,United States,Remote,United States,M,Data Quality and Operations +2021,Mid-level,Part-time,Business Data Analyst,56000,USD,56000,Ghana,Remote,United States,M,Data Analysis +2023,Senior,Full-time,Research Engineer,370000,USD,370000,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Research Engineer,200000,USD,200000,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Data Engineer,196000,USD,196000,United States,In-person,United States,M,Data Engineering +2023,Senior,Full-time,Data Engineer,121000,USD,121000,United States,In-person,United States,M,Data Engineering +2023,Senior,Full-time,Business Intelligence Engineer,202800,USD,202800,United States,In-person,United States,L,BI and Visualization +2023,Senior,Full-time,Business Intelligence Engineer,104300,USD,104300,United States,In-person,United States,L,BI and Visualization +2023,Mid-level,Full-time,Data Architect,135000,USD,135000,United States,In-person,United States,M,Data Architecture and Modeling +2023,Mid-level,Full-time,Data Architect,115000,USD,115000,United States,In-person,United States,M,Data Architecture and Modeling +2023,Senior,Full-time,Machine Learning Software Engineer,302000,USD,302000,United States,In-person,United States,M,Machine Learning and AI +2023,Senior,Full-time,Machine Learning Software Engineer,189000,USD,189000,United States,In-person,United States,M,Machine Learning and AI +2023,Mid-level,Full-time,Data Analyst,65000,USD,65000,United States,Remote,United States,M,Data Analysis +2023,Mid-level,Full-time,Data Analyst,55000,USD,55000,United States,Remote,United States,M,Data Analysis +2023,Senior,Full-time,Machine Learning Engineer,220000,USD,220000,United States,Remote,United States,M,Machine Learning and AI +2023,Senior,Full-time,Machine Learning Engineer,170000,USD,170000,United States,Remote,United States,M,Machine Learning and AI +2023,Senior,Full-time,Business Intelligence Engineer,185000,USD,185000,United States,In-person,United States,L,BI and Visualization +2023,Senior,Full-time,Business Intelligence Engineer,79600,USD,79600,United States,In-person,United States,L,BI and Visualization +2023,Senior,Full-time,Data Analyst,110000,USD,110000,United States,Remote,United States,M,Data Analysis +2023,Senior,Full-time,Data Analyst,75000,USD,75000,United States,Remote,United States,M,Data Analysis +2023,Senior,Full-time,BI Analyst,150000,USD,150000,United States,Remote,United States,M,BI and Visualization +2023,Senior,Full-time,BI Analyst,93000,USD,93000,United States,Remote,United States,M,BI and Visualization +2022,Senior,Full-time,Data Science Manager,190000,USD,190000,United States,Remote,United States,L,Data Science and Research +2023,Senior,Full-time,Data Engineer,200000,PLN,46565,Poland,Remote,Poland,L,Data Engineering +2023,Senior,Full-time,Machine Learning Engineer,204500,USD,204500,United States,In-person,United States,M,Machine Learning and AI +2023,Senior,Full-time,Machine Learning Engineer,142200,USD,142200,United States,In-person,United States,M,Machine Learning and AI +2023,Senior,Full-time,Decision Scientist,204500,USD,204500,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Decision Scientist,126400,USD,126400,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Machine Learning Engineer,216000,USD,216000,United States,Remote,United States,M,Machine Learning and AI +2023,Senior,Full-time,Machine Learning Engineer,184000,USD,184000,United States,Remote,United States,M,Machine Learning and AI +2023,Senior,Full-time,Data Analyst,139600,USD,139600,United States,In-person,United States,M,Data Analysis +2023,Senior,Full-time,Data Analyst,85700,USD,85700,United States,In-person,United States,M,Data Analysis +2023,Mid-level,Full-time,Data Science Consultant,100000,USD,100000,United States,Remote,United States,M,Data Science and Research +2023,Mid-level,Full-time,Data Scientist,128750,USD,128750,United States,In-person,United States,M,Data Science and Research +2023,Mid-level,Full-time,Data Scientist,79350,USD,79350,United States,In-person,United States,M,Data Science and Research +2023,Mid-level,Full-time,Data Manager,60000,GBP,73824,United Kingdom,In-person,United Kingdom,M,Leadership and Management +2023,Mid-level,Full-time,Data Manager,55000,GBP,67672,United Kingdom,In-person,United Kingdom,M,Leadership and Management +2023,Senior,Full-time,Data Scientist,185900,USD,185900,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Data Scientist,129300,USD,129300,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Analytics Engineer,174000,USD,174000,United States,Remote,United States,M,Leadership and Management +2023,Senior,Full-time,Analytics Engineer,134000,USD,134000,United States,Remote,United States,M,Leadership and Management +2023,Mid-level,Full-time,Research Engineer,155000,USD,155000,United States,In-person,United States,M,Data Science and Research +2023,Mid-level,Full-time,Research Engineer,125000,USD,125000,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Business Intelligence Engineer,185000,USD,185000,United States,In-person,United States,L,BI and Visualization +2023,Senior,Full-time,Business Intelligence Engineer,79600,USD,79600,United States,In-person,United States,L,BI and Visualization +2023,Senior,Full-time,Data Engineer,194400,USD,194400,United States,Remote,United States,M,Data Engineering +2023,Senior,Full-time,Data Engineer,132192,USD,132192,United States,Remote,United States,M,Data Engineering +2023,Senior,Full-time,Machine Learning Engineer,273400,USD,273400,United States,Remote,United States,M,Machine Learning and AI +2023,Senior,Full-time,Machine Learning Engineer,182200,USD,182200,United States,Remote,United States,M,Machine Learning and AI +2023,Mid-level,Full-time,Data Analyst,165000,USD,165000,Australia,In-person,Australia,M,Data Analysis +2023,Mid-level,Full-time,Data Analyst,142500,USD,142500,Australia,In-person,Australia,M,Data Analysis +2023,Senior,Full-time,Data Scientist,213654,USD,213654,United Kingdom,In-person,United Kingdom,M,Data Science and Research +2023,Senior,Full-time,Data Scientist,142436,USD,142436,United Kingdom,In-person,United Kingdom,M,Data Science and Research +2023,Senior,Full-time,Data Engineer,124230,USD,124230,United States,Remote,United States,M,Data Engineering +2023,Senior,Full-time,Data Engineer,68637,USD,68637,United States,Remote,United States,M,Data Engineering +2023,Mid-level,Full-time,Data Engineer,204000,USD,204000,United States,Remote,United States,M,Data Engineering +2023,Mid-level,Full-time,Data Engineer,161500,USD,161500,United States,Remote,United States,M,Data Engineering +2023,Senior,Full-time,Machine Learning Engineer,204500,USD,204500,United States,In-person,United States,M,Machine Learning and AI +2023,Senior,Full-time,Machine Learning Engineer,142200,USD,142200,United States,In-person,United States,M,Machine Learning and AI +2023,Senior,Full-time,Decision Scientist,185900,USD,185900,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Decision Scientist,129300,USD,129300,United States,In-person,United States,M,Data Science and Research +2023,Mid-level,Full-time,Research Scientist,200000,USD,200000,United States,In-person,United States,M,Data Science and Research +2023,Mid-level,Full-time,Research Scientist,100000,USD,100000,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Applied Scientist,260000,USD,260000,United States,In-person,United States,L,Data Science and Research +2023,Senior,Full-time,Applied Scientist,136000,USD,136000,United States,In-person,United States,L,Data Science and Research +2023,Senior,Full-time,Data Scientist,175000,USD,175000,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Data Scientist,148750,USD,148750,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Machine Learning Engineer,226600,USD,226600,United States,In-person,United States,M,Machine Learning and AI +2023,Senior,Full-time,Machine Learning Engineer,140100,USD,140100,United States,In-person,United States,M,Machine Learning and AI +2023,Senior,Full-time,Data Scientist,135000,USD,135000,United States,Remote,United States,M,Data Science and Research +2023,Senior,Full-time,Data Scientist,95000,USD,95000,United States,Remote,United States,M,Data Science and Research +2023,Senior,Full-time,ML Engineer,287700,USD,287700,United States,In-person,United States,L,Machine Learning and AI +2023,Senior,Full-time,ML Engineer,148000,USD,148000,United States,In-person,United States,L,Machine Learning and AI +2023,Senior,Full-time,Data Scientist,227240,USD,227240,United States,Remote,United States,M,Data Science and Research +2023,Senior,Full-time,Data Scientist,197600,USD,197600,United States,Remote,United States,M,Data Science and Research +2023,Senior,Full-time,Data Scientist,161000,USD,161000,United States,Remote,United States,M,Data Science and Research +2023,Senior,Full-time,Data Scientist,140000,USD,140000,United States,Remote,United States,M,Data Science and Research +2023,Senior,Full-time,Machine Learning Engineer,221000,USD,221000,United States,In-person,United States,M,Machine Learning and AI +2023,Senior,Full-time,Machine Learning Engineer,185000,USD,185000,United States,In-person,United States,M,Machine Learning and AI +2023,Senior,Full-time,Data Scientist,210000,USD,210000,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Data Scientist,178500,USD,178500,United States,In-person,United States,M,Data Science and Research +2023,Mid-level,Full-time,Machine Learning Engineer,180000,USD,180000,United States,Remote,United States,M,Machine Learning and AI +2023,Mid-level,Full-time,Machine Learning Engineer,150000,USD,150000,United States,Remote,United States,M,Machine Learning and AI +2023,Mid-level,Full-time,Analytics Engineer,146100,USD,146100,United Kingdom,In-person,United Kingdom,M,Leadership and Management +2023,Mid-level,Full-time,Analytics Engineer,112400,USD,112400,United Kingdom,In-person,United Kingdom,M,Leadership and Management +2023,Senior,Full-time,Data Analyst,160000,USD,160000,United States,Remote,United States,M,Data Analysis +2023,Senior,Full-time,Data Analyst,140000,USD,140000,United States,Remote,United States,M,Data Analysis +2023,Mid-level,Full-time,Data Architect,70000,GBP,86128,United Kingdom,In-person,United Kingdom,M,Data Architecture and Modeling +2023,Mid-level,Full-time,Data Architect,65000,GBP,79976,United Kingdom,In-person,United Kingdom,M,Data Architecture and Modeling +2023,Senior,Full-time,Machine Learning Engineer,331640,USD,331640,United States,In-person,United States,M,Machine Learning and AI +2023,Senior,Full-time,Machine Learning Engineer,267720,USD,267720,United States,In-person,United States,M,Machine Learning and AI +2023,Senior,Full-time,Data Engineer,285000,USD,285000,United States,In-person,United States,M,Data Engineering +2023,Senior,Full-time,Data Engineer,205000,USD,205000,United States,In-person,United States,M,Data Engineering +2023,Entry-level,Full-time,Computer Vision Engineer,90000,USD,90000,India,Remote,United States,M,Machine Learning and AI +2023,Senior,Full-time,Data Analyst,120350,USD,120350,United States,In-person,United States,M,Data Analysis +2023,Senior,Full-time,Data Analyst,74400,USD,74400,United States,In-person,United States,M,Data Analysis +2023,Senior,Full-time,Data Engineer,146000,USD,146000,United States,In-person,United States,M,Data Engineering +2023,Senior,Full-time,Data Engineer,94000,USD,94000,United States,In-person,United States,M,Data Engineering +2023,Mid-level,Full-time,Machine Learning Engineer,237400,USD,237400,United States,In-person,United States,M,Machine Learning and AI +2023,Mid-level,Full-time,Machine Learning Engineer,158200,USD,158200,United States,In-person,United States,M,Machine Learning and AI +2023,Senior,Full-time,Business Intelligence Engineer,225000,USD,225000,United States,In-person,United States,M,BI and Visualization +2023,Senior,Full-time,Business Intelligence Engineer,156400,USD,156400,United States,In-person,United States,M,BI and Visualization +2023,Senior,Full-time,ML Engineer,192000,USD,192000,United States,Remote,United States,M,Machine Learning and AI +2023,Senior,Full-time,ML Engineer,164000,USD,164000,United States,Remote,United States,M,Machine Learning and AI +2023,Senior,Full-time,Business Intelligence Engineer,150000,USD,150000,United States,In-person,United States,M,BI and Visualization +2023,Senior,Full-time,Business Intelligence Engineer,141000,USD,141000,United States,In-person,United States,M,BI and Visualization +2023,Senior,Full-time,Applied Scientist,260000,USD,260000,United States,In-person,United States,L,Data Science and Research +2023,Senior,Full-time,Applied Scientist,136000,USD,136000,United States,In-person,United States,L,Data Science and Research +2023,Senior,Full-time,Applied Scientist,309400,USD,309400,United States,In-person,United States,L,Data Science and Research +2023,Senior,Full-time,Applied Scientist,159100,USD,159100,United States,In-person,United States,L,Data Science and Research +2023,Senior,Full-time,Analytics Engineer,267000,USD,267000,United States,In-person,United States,M,Leadership and Management +2023,Senior,Full-time,Analytics Engineer,205000,USD,205000,United States,In-person,United States,M,Leadership and Management +2023,Senior,Full-time,Research Scientist,147100,USD,147100,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Research Scientist,90700,USD,90700,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Data Analyst,115000,USD,115000,United States,Remote,United States,M,Data Analysis +2023,Senior,Full-time,Data Analyst,72000,USD,72000,United States,Remote,United States,M,Data Analysis +2023,Senior,Full-time,Data Analyst,169000,USD,169000,United States,In-person,United States,M,Data Analysis +2023,Senior,Full-time,Data Analyst,110600,USD,110600,United States,In-person,United States,M,Data Analysis +2023,Senior,Full-time,Data Analyst,55000,GBP,67672,United Kingdom,In-person,United Kingdom,M,Data Analysis +2023,Senior,Full-time,Data Analyst,55000,GBP,67672,United Kingdom,In-person,United Kingdom,M,Data Analysis +2023,Senior,Full-time,Business Intelligence Engineer,185000,USD,185000,United States,In-person,United States,L,BI and Visualization +2023,Senior,Full-time,Business Intelligence Engineer,79600,USD,79600,United States,In-person,United States,L,BI and Visualization +2023,Senior,Full-time,Data Engineer,165000,USD,165000,United States,In-person,United States,M,Data Engineering +2023,Senior,Full-time,Data Engineer,141000,USD,141000,United States,In-person,United States,M,Data Engineering +2023,Entry-level,Full-time,Cloud Data Engineer,144000,GBP,177177,United Kingdom,Remote,United Kingdom,L,Data Engineering +2023,Senior,Full-time,Data Scientist,240000,USD,240000,United States,In-person,United States,S,Data Science and Research +2023,Senior,Full-time,Data Scientist,142000,USD,142000,United States,In-person,United States,S,Data Science and Research +2023,Mid-level,Contract,Machine Learning Engineer,180000,USD,180000,United States,Remote,United States,S,Machine Learning and AI +2023,Mid-level,Contract,Machine Learning Engineer,105000,USD,105000,United States,Remote,United States,S,Machine Learning and AI +2023,Entry-level,Full-time,Data Analyst,80000,USD,80000,United States,Remote,United States,M,Data Analysis +2023,Entry-level,Full-time,Data Analyst,60000,USD,60000,United States,Remote,United States,M,Data Analysis +2023,Senior,Full-time,Machine Learning Engineer,268000,USD,268000,United States,Remote,United States,M,Machine Learning and AI +2023,Senior,Full-time,Machine Learning Engineer,180000,USD,180000,United States,Remote,United States,M,Machine Learning and AI +2023,Mid-level,Full-time,Analytics Engineer,144628,USD,144628,United States,In-person,United States,M,Leadership and Management +2023,Mid-level,Full-time,Analytics Engineer,115702,USD,115702,United States,In-person,United States,M,Leadership and Management +2023,Senior,Full-time,Data Analyst,144000,USD,144000,United States,Remote,United States,M,Data Analysis +2023,Senior,Full-time,Data Analyst,132000,USD,132000,United States,Remote,United States,M,Data Analysis +2023,Senior,Full-time,Data Analyst,106400,USD,106400,United Kingdom,In-person,United Kingdom,M,Data Analysis +2023,Senior,Full-time,Data Analyst,81800,USD,81800,United Kingdom,In-person,United Kingdom,M,Data Analysis +2023,Senior,Full-time,Data Analyst,134200,USD,134200,United Kingdom,In-person,United Kingdom,M,Data Analysis +2023,Senior,Full-time,Data Analyst,103200,USD,103200,United Kingdom,In-person,United Kingdom,M,Data Analysis +2023,Senior,Full-time,Data Analyst,110000,USD,110000,United States,Remote,United States,M,Data Analysis +2023,Senior,Full-time,Data Analyst,93500,USD,93500,United States,Remote,United States,M,Data Analysis +2023,Senior,Full-time,Data Engineer,208200,USD,208200,United States,Remote,United States,M,Data Engineering +2023,Senior,Full-time,Data Engineer,151200,USD,151200,United States,Remote,United States,M,Data Engineering +2023,Senior,Full-time,Machine Learning Engineer,240000,USD,240000,United States,In-person,United States,M,Machine Learning and AI +2023,Senior,Full-time,Machine Learning Engineer,180000,USD,180000,United States,In-person,United States,M,Machine Learning and AI +2023,Senior,Full-time,Data Scientist,270000,USD,270000,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Data Scientist,220000,USD,220000,United States,In-person,United States,M,Data Science and Research +2023,Executive,Full-time,Data Engineer,194500,USD,194500,United States,In-person,United States,M,Data Engineering +2023,Executive,Full-time,Data Engineer,115500,USD,115500,United States,In-person,United States,M,Data Engineering +2023,Senior,Full-time,Data Scientist,225000,USD,225000,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Data Scientist,156400,USD,156400,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Data Analyst,140000,USD,140000,United Kingdom,Remote,United Kingdom,M,Data Analysis +2023,Senior,Full-time,Data Analyst,100000,USD,100000,United Kingdom,Remote,United Kingdom,M,Data Analysis +2023,Senior,Full-time,Machine Learning Engineer,193600,USD,193600,United States,In-person,United States,M,Machine Learning and AI +2023,Senior,Full-time,Machine Learning Engineer,119700,USD,119700,United States,In-person,United States,M,Machine Learning and AI +2023,Senior,Full-time,Machine Learning Engineer,225000,USD,225000,France,In-person,France,M,Machine Learning and AI +2023,Senior,Full-time,Machine Learning Engineer,199000,USD,199000,France,In-person,France,M,Machine Learning and AI +2023,Entry-level,Full-time,Data Analyst,50000,USD,50000,United States,Remote,United States,M,Data Analysis +2023,Entry-level,Full-time,Data Analyst,40000,USD,40000,United States,Remote,United States,M,Data Analysis +2023,Senior,Full-time,Data Scientist,185900,USD,185900,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Data Scientist,129300,USD,129300,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Data Analyst,120000,USD,120000,United States,Remote,United States,M,Data Analysis +2023,Senior,Full-time,Data Analyst,95000,USD,95000,United States,Remote,United States,M,Data Analysis +2023,Mid-level,Full-time,Data Analyst,80000,GBP,98432,United Kingdom,In-person,United Kingdom,M,Data Analysis +2023,Mid-level,Full-time,Data Analyst,45000,GBP,55368,United Kingdom,In-person,United Kingdom,M,Data Analysis +2023,Senior,Full-time,Data Scientist,225000,USD,225000,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Data Scientist,156400,USD,156400,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Analytics Engineering Manager,325000,GBP,399880,United Kingdom,Hybrid,United Kingdom,L,Leadership and Management +2023,Entry-level,Full-time,Data Engineer,38000,EUR,41027,Spain,Remote,Spain,L,Data Engineering +2023,Senior,Full-time,Machine Learning Engineer,155000,USD,155000,United States,In-person,United States,M,Machine Learning and AI +2023,Senior,Full-time,Machine Learning Engineer,100000,USD,100000,United States,In-person,United States,M,Machine Learning and AI +2023,Senior,Full-time,Data Analyst,85000,USD,85000,United States,In-person,United States,M,Data Analysis +2023,Senior,Full-time,Data Analyst,65000,USD,65000,United States,In-person,United States,M,Data Analysis +2023,Senior,Full-time,Data Architect,280100,USD,280100,United States,Remote,United States,M,Data Architecture and Modeling +2023,Senior,Full-time,Data Architect,168100,USD,168100,United States,Remote,United States,M,Data Architecture and Modeling +2023,Senior,Full-time,Machine Learning Scientist,200000,USD,200000,United States,In-person,United States,M,Machine Learning and AI +2023,Senior,Full-time,Machine Learning Scientist,120000,USD,120000,United States,In-person,United States,M,Machine Learning and AI +2023,Senior,Full-time,Business Intelligence Engineer,185000,USD,185000,United States,In-person,United States,L,BI and Visualization +2023,Senior,Full-time,Business Intelligence Engineer,79600,USD,79600,United States,In-person,United States,L,BI and Visualization +2023,Senior,Full-time,Data Engineer,149040,USD,149040,United States,Remote,United States,M,Data Engineering +2023,Senior,Full-time,Data Engineer,113900,USD,113900,United States,Remote,United States,M,Data Engineering +2023,Senior,Full-time,Machine Learning Engineer,240000,USD,240000,United States,In-person,United States,M,Machine Learning and AI +2023,Senior,Full-time,Machine Learning Engineer,180000,USD,180000,United States,In-person,United States,M,Machine Learning and AI +2023,Senior,Full-time,Machine Learning Scientist,165000,USD,165000,United States,Remote,United States,M,Machine Learning and AI +2023,Senior,Full-time,Machine Learning Scientist,145000,USD,145000,United States,Remote,United States,M,Machine Learning and AI +2023,Senior,Full-time,Machine Learning Scientist,165000,USD,165000,United States,Remote,United States,M,Machine Learning and AI +2023,Senior,Full-time,Machine Learning Scientist,145000,USD,145000,United States,Remote,United States,M,Machine Learning and AI +2023,Senior,Full-time,Data Architect,274450,USD,274450,United States,In-person,United States,M,Data Architecture and Modeling +2023,Senior,Full-time,Data Architect,199600,USD,199600,United States,In-person,United States,M,Data Architecture and Modeling +2023,Mid-level,Full-time,Data Engineer,83500,USD,83500,United States,In-person,United States,M,Data Engineering +2023,Mid-level,Full-time,Data Engineer,52500,USD,52500,United States,In-person,United States,M,Data Engineering +2023,Senior,Full-time,Business Intelligence Developer,140000,USD,140000,Canada,Remote,Canada,M,BI and Visualization +2023,Senior,Full-time,Business Intelligence Developer,76500,USD,76500,Canada,Remote,Canada,M,BI and Visualization +2023,Senior,Full-time,Data Scientist,45000,EUR,48585,Spain,In-person,Spain,M,Data Science and Research +2023,Senior,Full-time,Data Scientist,36000,EUR,38868,Spain,In-person,Spain,M,Data Science and Research +2023,Senior,Full-time,Data Architect,306000,USD,306000,United States,Remote,United States,M,Data Architecture and Modeling +2023,Senior,Full-time,Data Architect,204000,USD,204000,United States,Remote,United States,M,Data Architecture and Modeling +2023,Senior,Full-time,Machine Learning Engineer,204500,USD,204500,United States,In-person,United States,M,Machine Learning and AI +2023,Senior,Full-time,Machine Learning Engineer,142200,USD,142200,United States,In-person,United States,M,Machine Learning and AI +2023,Senior,Full-time,Data Scientist,185900,USD,185900,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Data Scientist,129300,USD,129300,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Data Analyst,136000,USD,136000,United States,Remote,United States,M,Data Analysis +2023,Senior,Full-time,Data Analyst,104000,USD,104000,United States,Remote,United States,M,Data Analysis +2023,Senior,Full-time,Data Engineer,115000,USD,115000,United States,In-person,United States,M,Data Engineering +2023,Senior,Full-time,Data Engineer,81500,USD,81500,United States,In-person,United States,M,Data Engineering +2023,Mid-level,Full-time,Research Scientist,280000,USD,280000,United Kingdom,Hybrid,United Kingdom,L,Data Science and Research +2023,Executive,Full-time,Data Scientist,250000,USD,250000,United States,Remote,United States,M,Data Science and Research +2023,Executive,Full-time,Data Scientist,180000,USD,180000,United States,Remote,United States,M,Data Science and Research +2023,Mid-level,Full-time,Data Engineer,100000,USD,100000,United States,Remote,United States,M,Data Engineering +2023,Mid-level,Full-time,Data Engineer,70000,USD,70000,United States,Remote,United States,M,Data Engineering +2023,Mid-level,Full-time,Data Engineer,100000,USD,100000,United States,Remote,United States,M,Data Engineering +2023,Mid-level,Full-time,Data Engineer,70000,USD,70000,United States,Remote,United States,M,Data Engineering +2023,Senior,Full-time,Data Scientist,240000,USD,240000,United States,Remote,United States,M,Data Science and Research +2023,Senior,Full-time,Data Scientist,157000,USD,157000,United States,Remote,United States,M,Data Science and Research +2023,Senior,Full-time,Applied Scientist,222200,USD,222200,United States,In-person,United States,L,Data Science and Research +2023,Senior,Full-time,Applied Scientist,136000,USD,136000,United States,In-person,United States,L,Data Science and Research +2023,Senior,Full-time,Machine Learning Engineer,204500,USD,204500,United States,In-person,United States,M,Machine Learning and AI +2023,Senior,Full-time,Machine Learning Engineer,142200,USD,142200,United States,In-person,United States,M,Machine Learning and AI +2023,Senior,Full-time,Data Analyst,140700,USD,140700,United States,Remote,United States,M,Data Analysis +2023,Senior,Full-time,Data Analyst,109600,USD,109600,United States,Remote,United States,M,Data Analysis +2023,Senior,Full-time,Machine Learning Engineer,278000,USD,278000,United States,In-person,United States,M,Machine Learning and AI +2023,Senior,Full-time,Machine Learning Engineer,173000,USD,173000,United States,In-person,United States,M,Machine Learning and AI +2023,Senior,Full-time,Data Analyst,110000,USD,110000,United States,Remote,United States,M,Data Analysis +2023,Senior,Full-time,Data Analyst,95000,USD,95000,United States,Remote,United States,M,Data Analysis +2023,Senior,Full-time,Data Engineer,305000,USD,305000,United States,Remote,United States,M,Data Engineering +2023,Senior,Full-time,Data Engineer,160000,USD,160000,United States,Remote,United States,M,Data Engineering +2023,Senior,Full-time,Data Engineer,175000,USD,175000,United States,Remote,United States,M,Data Engineering +2023,Senior,Full-time,Data Engineer,125000,USD,125000,United States,Remote,United States,M,Data Engineering +2023,Senior,Full-time,Data Analyst,155000,USD,155000,United Kingdom,In-person,United Kingdom,M,Data Analysis +2023,Senior,Full-time,Data Analyst,120000,USD,120000,United Kingdom,In-person,United Kingdom,M,Data Analysis +2023,Senior,Full-time,Data Analyst,85000,USD,85000,United States,Remote,United States,M,Data Analysis +2023,Senior,Full-time,Data Analyst,80000,USD,80000,United States,Remote,United States,M,Data Analysis +2023,Entry-level,Full-time,Data Scientist,24000,USD,24000,United States,Remote,United States,M,Data Science and Research +2023,Senior,Full-time,Machine Learning Infrastructure Engineer,165400,USD,165400,United Kingdom,In-person,United Kingdom,M,Machine Learning and AI +2023,Senior,Full-time,Machine Learning Infrastructure Engineer,127300,USD,127300,United Kingdom,In-person,United Kingdom,M,Machine Learning and AI +2023,Senior,Full-time,Applied Scientist,260000,USD,260000,United States,In-person,United States,L,Data Science and Research +2023,Senior,Full-time,Applied Scientist,136000,USD,136000,United States,In-person,United States,L,Data Science and Research +2023,Senior,Full-time,Business Intelligence Engineer,259000,USD,259000,United States,In-person,United States,M,BI and Visualization +2023,Senior,Full-time,Business Intelligence Engineer,138750,USD,138750,United States,In-person,United States,M,BI and Visualization +2023,Senior,Full-time,Decision Scientist,185900,USD,185900,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Decision Scientist,129300,USD,129300,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Machine Learning Engineer,273400,USD,273400,United States,In-person,United States,M,Machine Learning and AI +2023,Senior,Full-time,Machine Learning Engineer,182200,USD,182200,United States,In-person,United States,M,Machine Learning and AI +2023,Senior,Full-time,Data Scientist,192000,USD,192000,United States,Remote,United States,M,Data Science and Research +2023,Senior,Full-time,Data Scientist,178000,USD,178000,United States,Remote,United States,M,Data Science and Research +2023,Senior,Full-time,Data Scientist,218000,USD,218000,United States,Remote,United States,M,Data Science and Research +2023,Senior,Full-time,Data Scientist,85000,USD,85000,United States,Remote,United States,M,Data Science and Research +2023,Senior,Full-time,Data Specialist,132000,USD,132000,United States,In-person,United States,M,Data Management and Strategy +2023,Senior,Full-time,Data Specialist,71500,USD,71500,United States,In-person,United States,M,Data Management and Strategy +2023,Senior,Full-time,Data Engineer,252000,USD,252000,United States,In-person,United States,M,Data Engineering +2023,Senior,Full-time,Data Engineer,129000,USD,129000,United States,In-person,United States,M,Data Engineering +2023,Senior,Full-time,Analytics Engineer,215050,USD,215050,United States,In-person,United States,M,Leadership and Management +2023,Senior,Full-time,Analytics Engineer,113100,USD,113100,United States,In-person,United States,M,Leadership and Management +2023,Senior,Full-time,Applied Scientist,260000,USD,260000,United States,In-person,United States,L,Data Science and Research +2023,Senior,Full-time,Applied Scientist,136000,USD,136000,United States,In-person,United States,L,Data Science and Research +2023,Senior,Full-time,Data Scientist,218000,USD,218000,United States,Remote,United States,M,Data Science and Research +2023,Senior,Full-time,Data Scientist,85000,USD,85000,United States,Remote,United States,M,Data Science and Research +2023,Mid-level,Full-time,Data Scientist,130000,USD,130000,United States,In-person,United States,M,Data Science and Research +2023,Mid-level,Full-time,Data Scientist,85000,USD,85000,United States,In-person,United States,M,Data Science and Research +2023,Executive,Full-time,Data Engineer,250000,USD,250000,United States,Remote,United States,M,Data Engineering +2023,Executive,Full-time,Data Engineer,200000,USD,200000,United States,Remote,United States,M,Data Engineering +2023,Senior,Full-time,Machine Learning Engineer,220000,USD,220000,United States,Remote,United States,M,Machine Learning and AI +2023,Senior,Full-time,Machine Learning Engineer,170000,USD,170000,United States,Remote,United States,M,Machine Learning and AI +2023,Senior,Full-time,Data Engineer,145000,USD,145000,United States,In-person,United States,M,Data Engineering +2023,Senior,Full-time,Data Engineer,115000,USD,115000,United States,In-person,United States,M,Data Engineering +2023,Senior,Full-time,Data Scientist,184000,USD,184000,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Data Scientist,123000,USD,123000,United States,In-person,United States,M,Data Science and Research +2023,Mid-level,Full-time,Data Analyst,75000,USD,75000,United States,Remote,United States,M,Data Analysis +2023,Mid-level,Full-time,Data Analyst,65000,USD,65000,United States,Remote,United States,M,Data Analysis +2023,Senior,Full-time,Research Scientist,168400,USD,168400,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Research Scientist,90700,USD,90700,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Data Engineer,185900,USD,185900,United States,In-person,United States,M,Data Engineering +2023,Senior,Full-time,Data Engineer,129300,USD,129300,United States,In-person,United States,M,Data Engineering +2023,Senior,Full-time,Data Scientist,258000,USD,258000,Canada,In-person,Canada,M,Data Science and Research +2023,Senior,Full-time,Data Scientist,190000,USD,190000,Canada,In-person,Canada,M,Data Science and Research +2023,Senior,Full-time,Data Analyst,169000,USD,169000,United States,In-person,United States,M,Data Analysis +2023,Senior,Full-time,Data Analyst,110600,USD,110600,United States,In-person,United States,M,Data Analysis +2023,Senior,Full-time,Data Analyst,80000,USD,80000,United States,In-person,United States,M,Data Analysis +2023,Senior,Full-time,Data Analyst,70000,USD,70000,United States,In-person,United States,M,Data Analysis +2023,Senior,Full-time,Data Analyst,136505,USD,136505,United States,Remote,United States,M,Data Analysis +2023,Senior,Full-time,Data Analyst,100895,USD,100895,United States,Remote,United States,M,Data Analysis +2023,Senior,Full-time,Machine Learning Engineer,200000,USD,200000,United States,Remote,United States,M,Machine Learning and AI +2023,Senior,Full-time,Machine Learning Engineer,,USD,150000,United States,Remote,United States,M,Machine Learning and AI +2023,Senior,Full-time,Business Intelligence Engineer,202800,USD,202800,United States,In-person,United States,L,BI and Visualization +2023,Senior,Full-time,Business Intelligence Engineer,104300,USD,104300,United States,In-person,United States,L,BI and Visualization +2023,Senior,Full-time,Data Engineer,275300,USD,275300,United States,Remote,United States,M,Data Engineering +2023,Senior,Full-time,Data Engineer,183500,USD,183500,United States,Remote,United States,M,Data Engineering +2023,Senior,Full-time,Data Scientist,168400,USD,168400,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Data Scientist,105200,USD,105200,United States,In-person,United States,M,Data Science and Research +2023,Mid-level,Full-time,Data Architect,240000,USD,240000,United States,Remote,United States,M,Data Architecture and Modeling +2023,Mid-level,Full-time,Data Architect,150000,USD,150000,United States,Remote,United States,M,Data Architecture and Modeling +2023,Mid-level,Full-time,Data Manager,130000,USD,130000,United States,In-person,United States,M,Leadership and Management +2023,Mid-level,Full-time,Data Manager,120000,USD,120000,United States,In-person,United States,M,Leadership and Management +2023,Mid-level,Full-time,Data Analyst,93000,USD,93000,United States,Remote,United States,L,Data Analysis +2023,Senior,Full-time,Applied Scientist,248100,USD,248100,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Applied Scientist,145900,USD,145900,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Data Analyst,177000,USD,177000,United States,Remote,United States,M,Data Analysis +2023,Senior,Full-time,Data Analyst,118000,USD,118000,United States,Remote,United States,M,Data Analysis +2023,Senior,Full-time,Data Analyst,120350,USD,120350,United States,In-person,United States,M,Data Analysis +2023,Senior,Full-time,Data Analyst,74400,USD,74400,United States,In-person,United States,M,Data Analysis +2023,Senior,Full-time,Data Engineer,190000,USD,190000,United States,Remote,United States,M,Data Engineering +2023,Senior,Full-time,Data Engineer,120000,USD,120000,United States,Remote,United States,M,Data Engineering +2023,Senior,Full-time,Machine Learning Engineer,237400,USD,237400,United Kingdom,In-person,United Kingdom,M,Machine Learning and AI +2023,Senior,Full-time,Machine Learning Engineer,132870,USD,132870,United Kingdom,In-person,United Kingdom,M,Machine Learning and AI +2023,Senior,Full-time,Research Scientist,248100,USD,248100,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Research Scientist,145900,USD,145900,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Data Scientist,170000,USD,170000,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Data Scientist,125000,USD,125000,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Data Engineer,105000,USD,105000,United States,In-person,United States,M,Data Engineering +2023,Senior,Full-time,Data Engineer,90000,USD,90000,United States,In-person,United States,M,Data Engineering +2023,Senior,Full-time,Machine Learning Engineer,317070,USD,317070,United States,In-person,United States,M,Machine Learning and AI +2023,Senior,Full-time,Machine Learning Engineer,170730,USD,170730,United States,In-person,United States,M,Machine Learning and AI +2023,Mid-level,Full-time,Machine Learning Engineer,170000,USD,170000,United States,In-person,United States,M,Machine Learning and AI +2023,Mid-level,Full-time,Machine Learning Engineer,125000,USD,125000,United States,In-person,United States,M,Machine Learning and AI +2023,Senior,Full-time,Data Engineer,158700,USD,158700,United States,In-person,United States,M,Data Engineering +2023,Senior,Full-time,Data Engineer,123906,USD,123906,United States,In-person,United States,M,Data Engineering +2023,Senior,Full-time,Applied Scientist,222200,USD,222200,United States,In-person,United States,L,Data Science and Research +2023,Senior,Full-time,Applied Scientist,136000,USD,136000,United States,In-person,United States,L,Data Science and Research +2023,Senior,Full-time,Data Engineer,166000,USD,166000,United States,In-person,United States,M,Data Engineering +2023,Senior,Full-time,Data Engineer,128000,USD,128000,United States,In-person,United States,M,Data Engineering +2023,Mid-level,Full-time,Data Engineer,75000,EUR,80976,Spain,Remote,Spain,M,Data Engineering +2023,Mid-level,Full-time,Data Engineer,62000,EUR,66940,Spain,Remote,Spain,M,Data Engineering +2023,Executive,Full-time,Data Engineer,333500,USD,333500,United States,In-person,United States,M,Data Engineering +2023,Executive,Full-time,Data Engineer,180500,USD,180500,United States,In-person,United States,M,Data Engineering +2023,Senior,Full-time,Machine Learning Engineer,242921,USD,242921,United States,In-person,United States,M,Machine Learning and AI +2023,Senior,Full-time,Machine Learning Engineer,170045,USD,170045,United States,In-person,United States,M,Machine Learning and AI +2023,Senior,Full-time,Research Scientist,248100,USD,248100,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Research Scientist,145900,USD,145900,United States,In-person,United States,M,Data Science and Research +2023,Mid-level,Full-time,Data Engineer,75000,GBP,92280,United Kingdom,Remote,United Kingdom,M,Data Engineering +2023,Mid-level,Full-time,Data Engineer,62000,GBP,76284,United Kingdom,Remote,United Kingdom,M,Data Engineering +2023,Senior,Full-time,Business Intelligence Engineer,225000,USD,225000,United States,In-person,United States,M,BI and Visualization +2023,Senior,Full-time,Business Intelligence Engineer,156400,USD,156400,United States,In-person,United States,M,BI and Visualization +2023,Executive,Full-time,Data Engineer,257400,USD,257400,United States,Remote,United States,M,Data Engineering +2023,Executive,Full-time,Data Engineer,210600,USD,210600,United States,Remote,United States,M,Data Engineering +2023,Mid-level,Full-time,Data Operations Specialist,65000,USD,65000,United States,In-person,United States,M,Data Quality and Operations +2023,Mid-level,Full-time,Data Operations Specialist,50000,USD,50000,United States,In-person,United States,M,Data Quality and Operations +2023,Senior,Full-time,Data Engineer,293000,USD,293000,United States,In-person,United States,M,Data Engineering +2023,Senior,Full-time,Data Engineer,180000,USD,180000,United States,In-person,United States,M,Data Engineering +2023,Executive,Full-time,Director of Data Science,260000,USD,260000,United States,Remote,United States,M,Data Science and Research +2023,Executive,Full-time,Director of Data Science,192000,USD,192000,United States,Remote,United States,M,Data Science and Research +2023,Mid-level,Full-time,Machine Learning Scientist,170000,USD,170000,United States,In-person,United States,M,Machine Learning and AI +2023,Mid-level,Full-time,Machine Learning Scientist,125000,USD,125000,United States,In-person,United States,M,Machine Learning and AI +2023,Entry-level,Full-time,Business Intelligence Data Analyst,99000,USD,99000,United States,Remote,United States,L,Data Analysis +2023,Senior,Full-time,Data Analyst,130000,USD,130000,United States,Remote,United States,M,Data Analysis +2023,Senior,Full-time,Data Analyst,100000,USD,100000,United States,Remote,United States,M,Data Analysis +2023,Senior,Full-time,Machine Learning Engineer,233000,USD,233000,United States,In-person,United States,M,Machine Learning and AI +2023,Senior,Full-time,Machine Learning Engineer,166000,USD,166000,United States,In-person,United States,M,Machine Learning and AI +2023,Senior,Full-time,Data Engineer,185100,USD,185100,United States,Remote,United States,M,Data Engineering +2023,Senior,Full-time,Data Engineer,127600,USD,127600,United States,Remote,United States,M,Data Engineering +2023,Mid-level,Full-time,Data Analyst,105000,USD,105000,United States,Remote,United States,M,Data Analysis +2023,Mid-level,Full-time,Data Analyst,80000,USD,80000,United States,Remote,United States,M,Data Analysis +2023,Executive,Full-time,Data Analyst,160000,USD,160000,United States,Remote,United States,M,Data Analysis +2023,Executive,Full-time,Data Analyst,55000,USD,55000,United States,Remote,United States,M,Data Analysis +2023,Senior,Full-time,Machine Learning Engineer,241000,USD,241000,United States,In-person,United States,M,Machine Learning and AI +2023,Senior,Full-time,Machine Learning Engineer,163000,USD,163000,United States,In-person,United States,M,Machine Learning and AI +2023,Mid-level,Full-time,Data Scientist,120000,USD,120000,United States,Remote,United States,M,Data Science and Research +2023,Mid-level,Full-time,Data Scientist,90000,USD,90000,United States,Remote,United States,M,Data Science and Research +2023,Senior,Full-time,Data Scientist,218000,USD,218000,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Data Scientist,118000,USD,118000,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Data Scientist,210000,USD,210000,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Data Scientist,168000,USD,168000,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Machine Learning Engineer,311000,USD,311000,United States,In-person,United States,M,Machine Learning and AI +2023,Senior,Full-time,Machine Learning Engineer,162540,USD,162540,United States,In-person,United States,M,Machine Learning and AI +2023,Mid-level,Full-time,Insight Analyst,42000,GBP,51676,United Kingdom,In-person,United Kingdom,M,Data Analysis +2023,Mid-level,Full-time,Insight Analyst,35000,GBP,43064,United Kingdom,In-person,United Kingdom,M,Data Analysis +2023,Executive,Full-time,Data Scientist,258750,USD,258750,United States,In-person,United States,M,Data Science and Research +2023,Executive,Full-time,Data Scientist,185000,USD,185000,United States,In-person,United States,M,Data Science and Research +2023,Executive,Full-time,Data Scientist,225000,USD,225000,United States,In-person,United States,M,Data Science and Research +2023,Executive,Full-time,Data Scientist,145000,USD,145000,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Machine Learning Engineer,226600,USD,226600,United States,In-person,United States,M,Machine Learning and AI +2023,Senior,Full-time,Machine Learning Engineer,140100,USD,140100,United States,In-person,United States,M,Machine Learning and AI +2023,Senior,Full-time,Data Scientist,45000,EUR,48585,Spain,In-person,Spain,M,Data Science and Research +2023,Senior,Full-time,Data Scientist,36000,EUR,38868,Spain,In-person,Spain,M,Data Science and Research +2023,Senior,Full-time,Data Scientist,190000,USD,190000,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Data Scientist,165000,USD,165000,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Data Scientist,175000,USD,175000,United States,Remote,United States,M,Data Science and Research +2023,Senior,Full-time,Data Scientist,160000,USD,160000,United States,Remote,United States,M,Data Science and Research +2023,Senior,Full-time,Machine Learning Engineer,247500,USD,247500,United States,In-person,United States,M,Machine Learning and AI +2023,Senior,Full-time,Machine Learning Engineer,172200,USD,172200,United States,In-person,United States,M,Machine Learning and AI +2023,Senior,Full-time,Machine Learning Engineer,247500,USD,247500,United States,In-person,United States,M,Machine Learning and AI +2023,Senior,Full-time,Machine Learning Engineer,172200,USD,172200,United States,In-person,United States,M,Machine Learning and AI +2023,Senior,Full-time,Data Engineer,153600,USD,153600,United States,In-person,United States,M,Data Engineering +2023,Senior,Full-time,Data Engineer,106800,USD,106800,United States,In-person,United States,M,Data Engineering +2023,Senior,Full-time,Business Intelligence Developer,140000,USD,140000,Canada,In-person,Canada,M,BI and Visualization +2023,Senior,Full-time,Business Intelligence Developer,76500,USD,76500,Canada,In-person,Canada,M,BI and Visualization +2023,Senior,Full-time,ETL Developer,182850,USD,182850,United States,Remote,United States,M,Data Engineering +2023,Senior,Full-time,ETL Developer,113000,USD,113000,United States,Remote,United States,M,Data Engineering +2023,Senior,Full-time,Data Engineer,150000,USD,150000,United States,Remote,United States,M,Data Engineering +2023,Senior,Full-time,Data Engineer,120000,USD,120000,United States,Remote,United States,M,Data Engineering +2023,Mid-level,Full-time,Data Analyst,105000,USD,105000,United States,Remote,United States,M,Data Analysis +2023,Mid-level,Full-time,Data Analyst,95000,USD,95000,United States,Remote,United States,M,Data Analysis +2023,Senior,Full-time,Data Architect,306000,USD,306000,United States,Remote,United States,M,Data Architecture and Modeling +2023,Senior,Full-time,Data Architect,204000,USD,204000,United States,Remote,United States,M,Data Architecture and Modeling +2023,Senior,Full-time,Data Scientist,160000,USD,160000,United States,Remote,United States,M,Data Science and Research +2023,Senior,Full-time,Data Scientist,135000,USD,135000,United States,Remote,United States,M,Data Science and Research +2023,Senior,Full-time,Data Architect,85000,GBP,104584,United Kingdom,In-person,United Kingdom,M,Data Architecture and Modeling +2023,Senior,Full-time,Data Architect,75000,GBP,92280,United Kingdom,In-person,United Kingdom,M,Data Architecture and Modeling +2023,Mid-level,Full-time,Data Analyst,126000,USD,126000,United States,In-person,United States,M,Data Analysis +2023,Mid-level,Full-time,Data Analyst,86400,USD,86400,United States,In-person,United States,M,Data Analysis +2023,Senior,Full-time,Data Engineer,232760,USD,232760,United States,Remote,United States,M,Data Engineering +2023,Senior,Full-time,Data Engineer,169280,USD,169280,United States,Remote,United States,M,Data Engineering +2023,Senior,Full-time,Data Analyst,136000,USD,136000,United States,Remote,United States,M,Data Analysis +2023,Senior,Full-time,Data Analyst,104000,USD,104000,United States,Remote,United States,M,Data Analysis +2023,Senior,Full-time,Data Scientist,185900,USD,185900,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Data Scientist,129300,USD,129300,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Data Scientist,168000,USD,168000,United States,Remote,United States,M,Data Science and Research +2023,Senior,Full-time,Data Scientist,130000,USD,130000,United States,Remote,United States,M,Data Science and Research +2023,Senior,Full-time,Data Scientist,185900,USD,185900,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Data Scientist,129300,USD,129300,United States,In-person,United States,M,Data Science and Research +2023,Mid-level,Full-time,Data Engineer,162500,USD,162500,United States,In-person,United States,M,Data Engineering +2023,Mid-level,Full-time,Data Engineer,130000,USD,130000,United States,In-person,United States,M,Data Engineering +2023,Senior,Full-time,Data Scientist,240350,USD,240350,United States,Remote,United States,M,Data Science and Research +2023,Senior,Full-time,Data Scientist,174800,USD,174800,United States,Remote,United States,M,Data Science and Research +2023,Senior,Full-time,Machine Learning Engineer,247500,USD,247500,United States,In-person,United States,M,Machine Learning and AI +2023,Senior,Full-time,Machine Learning Engineer,172200,USD,172200,United States,In-person,United States,M,Machine Learning and AI +2023,Senior,Full-time,Data Engineer,154000,USD,154000,United States,In-person,United States,M,Data Engineering +2023,Senior,Full-time,Data Engineer,116000,USD,116000,United States,In-person,United States,M,Data Engineering +2023,Senior,Full-time,Data Scientist,168000,USD,168000,United States,Remote,United States,M,Data Science and Research +2023,Senior,Full-time,Data Scientist,130000,USD,130000,United States,Remote,United States,M,Data Science and Research +2023,Senior,Full-time,Data Analyst,153600,USD,153600,United States,Remote,United States,M,Data Analysis +2023,Senior,Full-time,Data Analyst,107500,USD,107500,United States,Remote,United States,M,Data Analysis +2023,Mid-level,Full-time,Data Analyst,94100,USD,94100,United Kingdom,In-person,United Kingdom,M,Data Analysis +2023,Mid-level,Full-time,Data Analyst,72400,USD,72400,United Kingdom,In-person,United Kingdom,M,Data Analysis +2023,Senior,Full-time,ML Engineer,178000,USD,178000,United States,Remote,United States,M,Machine Learning and AI +2023,Senior,Full-time,ML Engineer,152000,USD,152000,United States,Remote,United States,M,Machine Learning and AI +2023,Senior,Full-time,Applied Scientist,192000,USD,192000,United States,Remote,United States,M,Data Science and Research +2023,Senior,Full-time,Applied Scientist,164000,USD,164000,United States,Remote,United States,M,Data Science and Research +2023,Senior,Full-time,Data Scientist,233200,USD,233200,United States,Remote,United States,M,Data Science and Research +2023,Senior,Full-time,Data Scientist,140000,USD,140000,United States,Remote,United States,M,Data Science and Research +2023,Senior,Full-time,Data Engineer,194000,USD,194000,United States,In-person,United States,M,Data Engineering +2023,Senior,Full-time,Data Engineer,161000,USD,161000,United States,In-person,United States,M,Data Engineering +2023,Senior,Full-time,Business Intelligence Engineer,225000,USD,225000,United States,In-person,United States,M,BI and Visualization +2023,Senior,Full-time,Business Intelligence Engineer,156400,USD,156400,United States,In-person,United States,M,BI and Visualization +2023,Senior,Full-time,NLP Engineer,210000,USD,210000,United States,Remote,United States,M,Machine Learning and AI +2023,Senior,Full-time,NLP Engineer,160000,USD,160000,United States,Remote,United States,M,Machine Learning and AI +2023,Senior,Full-time,Data Analyst,153600,USD,153600,United States,Remote,United States,M,Data Analysis +2023,Senior,Full-time,Data Analyst,107500,USD,107500,United States,Remote,United States,M,Data Analysis +2023,Senior,Full-time,Data Engineer,185900,USD,185900,United States,In-person,United States,M,Data Engineering +2023,Senior,Full-time,Data Engineer,129300,USD,129300,United States,In-person,United States,M,Data Engineering +2023,Senior,Full-time,Data Scientist,145000,USD,145000,United States,Remote,United States,M,Data Science and Research +2023,Senior,Full-time,Data Scientist,120000,USD,120000,United States,Remote,United States,M,Data Science and Research +2023,Senior,Full-time,Data Analyst,206000,USD,206000,United States,In-person,United States,M,Data Analysis +2023,Senior,Full-time,Data Analyst,130000,USD,130000,United States,In-person,United States,M,Data Analysis +2023,Senior,Full-time,Data Analyst,153600,USD,153600,United States,Remote,United States,M,Data Analysis +2023,Senior,Full-time,Data Analyst,107500,USD,107500,United States,Remote,United States,M,Data Analysis +2023,Senior,Full-time,Data Engineer,146100,USD,146100,United Kingdom,In-person,United Kingdom,M,Data Engineering +2023,Senior,Full-time,Data Engineer,112400,USD,112400,United Kingdom,In-person,United Kingdom,M,Data Engineering +2023,Senior,Full-time,Data Engineer,241000,USD,241000,United States,In-person,United States,M,Data Engineering +2023,Senior,Full-time,Data Engineer,155000,USD,155000,United States,In-person,United States,M,Data Engineering +2023,Executive,Full-time,Data Engineer,194500,USD,194500,United States,In-person,United States,M,Data Engineering +2023,Executive,Full-time,Data Engineer,115500,USD,115500,United States,In-person,United States,M,Data Engineering +2023,Mid-level,Full-time,Data Specialist,110000,USD,110000,United States,In-person,United States,M,Data Management and Strategy +2023,Mid-level,Full-time,Data Specialist,70000,USD,70000,United States,In-person,United States,M,Data Management and Strategy +2023,Senior,Full-time,ML Engineer,199000,USD,199000,United States,Remote,United States,M,Machine Learning and AI +2023,Senior,Full-time,ML Engineer,145000,USD,145000,United States,Remote,United States,M,Machine Learning and AI +2023,Senior,Full-time,Data Scientist,200000,USD,200000,United States,Remote,United States,M,Data Science and Research +2023,Senior,Full-time,Data Scientist,170000,USD,170000,United States,Remote,United States,M,Data Science and Research +2023,Senior,Full-time,Data Scientist,150120,USD,150120,United States,Remote,United States,M,Data Science and Research +2023,Senior,Full-time,Data Scientist,120096,USD,120096,United States,Remote,United States,M,Data Science and Research +2023,Senior,Full-time,Machine Learning Engineer,253000,USD,253000,United States,Remote,United States,M,Machine Learning and AI +2023,Senior,Full-time,Machine Learning Engineer,168000,USD,168000,United States,Remote,United States,M,Machine Learning and AI +2023,Senior,Full-time,Data Scientist,200000,USD,200000,United States,Remote,United States,M,Data Science and Research +2023,Senior,Full-time,Data Scientist,170000,USD,170000,United States,Remote,United States,M,Data Science and Research +2023,Senior,Full-time,Decision Scientist,185900,USD,185900,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Decision Scientist,129300,USD,129300,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Analytics Engineer,178600,USD,178600,United States,In-person,United States,M,Leadership and Management +2023,Senior,Full-time,Analytics Engineer,142880,USD,142880,United States,In-person,United States,M,Leadership and Management +2023,Senior,Full-time,Data Science Manager,255000,USD,255000,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Data Science Manager,169000,USD,169000,United States,In-person,United States,M,Data Science and Research +2023,Mid-level,Full-time,Data Scientist,155000,USD,155000,United States,In-person,United States,M,Data Science and Research +2023,Mid-level,Full-time,Data Scientist,100000,USD,100000,United States,In-person,United States,M,Data Science and Research +2023,Mid-level,Full-time,Data Engineer,151410,USD,151410,United States,In-person,United States,M,Data Engineering +2023,Mid-level,Full-time,Data Engineer,144200,USD,144200,United States,In-person,United States,M,Data Engineering +2023,Entry-level,Full-time,Data Scientist,151410,USD,151410,United States,Remote,United States,M,Data Science and Research +2023,Entry-level,Full-time,Data Scientist,115360,USD,115360,United States,Remote,United States,M,Data Science and Research +2023,Senior,Full-time,Data Engineer,252000,USD,252000,United States,In-person,United States,M,Data Engineering +2023,Senior,Full-time,Data Engineer,129000,USD,129000,United States,In-person,United States,M,Data Engineering +2023,Mid-level,Full-time,Analytics Engineer,193170,USD,193170,United States,In-person,United States,M,Leadership and Management +2023,Mid-level,Full-time,Analytics Engineer,116480,USD,116480,United States,In-person,United States,M,Leadership and Management +2023,Mid-level,Full-time,Applied Scientist,250000,USD,250000,United States,In-person,United States,M,Data Science and Research +2023,Mid-level,Full-time,Applied Scientist,125000,USD,125000,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Data Engineer,146000,USD,146000,United States,Remote,United States,M,Data Engineering +2023,Senior,Full-time,Data Engineer,94000,USD,94000,United States,Remote,United States,M,Data Engineering +2023,Executive,Full-time,Director of Data Science,200000,GBP,246080,United Kingdom,In-person,United Kingdom,M,Data Science and Research +2023,Executive,Full-time,Director of Data Science,165000,GBP,203016,United Kingdom,In-person,United Kingdom,M,Data Science and Research +2023,Executive,Full-time,Head of Data,110000,GBP,135344,United Kingdom,Remote,United Kingdom,M,Leadership and Management +2023,Executive,Full-time,Head of Data,90000,GBP,110736,United Kingdom,Remote,United Kingdom,M,Leadership and Management +2023,Senior,Full-time,Applied Scientist,260000,USD,260000,United States,In-person,United States,L,Data Science and Research +2023,Senior,Full-time,Applied Scientist,136000,USD,136000,United States,In-person,United States,L,Data Science and Research +2023,Executive,Full-time,Head of Data,329500,USD,329500,United States,In-person,United States,M,Leadership and Management +2023,Executive,Full-time,Head of Data,269600,USD,269600,United States,In-person,United States,M,Leadership and Management +2023,Senior,Full-time,Data Architect,250500,USD,250500,United States,In-person,United States,M,Data Architecture and Modeling +2023,Senior,Full-time,Data Architect,159500,USD,159500,United States,In-person,United States,M,Data Architecture and Modeling +2023,Entry-level,Full-time,Data Analyst,115000,USD,115000,United States,In-person,United States,M,Data Analysis +2023,Entry-level,Full-time,Data Analyst,105000,USD,105000,United States,In-person,United States,M,Data Analysis +2023,Senior,Full-time,Research Scientist,250000,USD,250000,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Research Scientist,170000,USD,170000,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Research Scientist,198800,USD,198800,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Research Scientist,105200,USD,105200,United States,In-person,United States,M,Data Science and Research +2023,Entry-level,Full-time,Data Analyst,94035,USD,94035,United States,Remote,United States,M,Data Analysis +2023,Entry-level,Full-time,Data Analyst,57920,USD,57920,United States,Remote,United States,M,Data Analysis +2023,Senior,Full-time,Applied Scientist,222200,USD,222200,United States,In-person,United States,L,Data Science and Research +2023,Senior,Full-time,Applied Scientist,136000,USD,136000,United States,In-person,United States,L,Data Science and Research +2023,Senior,Full-time,Data Analyst,113600,USD,113600,United States,In-person,United States,M,Data Analysis +2023,Senior,Full-time,Data Analyst,60000,USD,60000,United States,In-person,United States,M,Data Analysis +2023,Senior,Full-time,Data Engineer,150000,USD,150000,United States,Remote,United States,M,Data Engineering +2023,Senior,Full-time,Data Engineer,130000,USD,130000,United States,Remote,United States,M,Data Engineering +2023,Senior,Full-time,Data Scientist,256000,USD,256000,United States,Remote,United States,M,Data Science and Research +2023,Senior,Full-time,Data Scientist,160000,USD,160000,United States,Remote,United States,M,Data Science and Research +2023,Senior,Full-time,Data Engineer,180000,USD,180000,United States,Remote,United States,M,Data Engineering +2023,Senior,Full-time,Data Engineer,165000,USD,165000,United States,Remote,United States,M,Data Engineering +2023,Senior,Full-time,Data Analyst,0,USD,116000,United States,Remote,United States,M,Data Analysis +2023,Senior,Full-time,Data Analyst,78000,USD,78000,United States,Remote,United States,M,Data Analysis +2023,Senior,Full-time,Computer Vision Engineer,245000,USD,245000,United Kingdom,In-person,United Kingdom,M,Machine Learning and AI +2023,Senior,Full-time,Computer Vision Engineer,210000,USD,210000,United Kingdom,In-person,United Kingdom,M,Machine Learning and AI +2023,Senior,Full-time,Data Analyst,115934,USD,115934,United States,Remote,United States,M,Data Analysis +2023,Senior,Full-time,Data Analyst,81666,USD,81666,United States,Remote,United States,M,Data Analysis +2023,Senior,Full-time,Machine Learning Engineer,283200,USD,283200,United States,In-person,United States,M,Machine Learning and AI +2023,Senior,Full-time,Machine Learning Engineer,188800,USD,188800,United States,In-person,United States,M,Machine Learning and AI +2023,Senior,Full-time,Research Scientist,220000,USD,220000,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Research Scientist,150000,USD,150000,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Applied Scientist,192000,USD,192000,United States,Remote,United States,M,Data Science and Research +2023,Senior,Full-time,Applied Scientist,164000,USD,164000,United States,Remote,United States,M,Data Science and Research +2023,Mid-level,Freelance,Business Data Analyst,36000,USD,36000,Ghana,In-person,Ghana,S,Data Analysis +2023,Senior,Full-time,Research Scientist,205640,USD,205640,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Research Scientist,142600,USD,142600,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Data Engineer,193200,USD,193200,United States,Remote,United States,M,Data Engineering +2023,Senior,Full-time,Data Engineer,156400,USD,156400,United States,Remote,United States,M,Data Engineering +2023,Senior,Full-time,Machine Learning Engineer,196000,USD,196000,United States,In-person,United States,M,Machine Learning and AI +2023,Senior,Full-time,Machine Learning Engineer,121000,USD,121000,United States,In-person,United States,M,Machine Learning and AI +2023,Senior,Full-time,Data Engineer,72000,USD,72000,Argentina,Remote,Argentina,M,Data Engineering +2023,Senior,Full-time,Data Engineer,48000,USD,48000,Argentina,Remote,Argentina,M,Data Engineering +2023,Senior,Full-time,Data Engineer,165000,USD,165000,United States,In-person,United States,M,Data Engineering +2023,Senior,Full-time,Data Engineer,132300,USD,132300,United States,In-person,United States,M,Data Engineering +2023,Senior,Full-time,Data Scientist,244000,USD,244000,Canada,In-person,Canada,M,Data Science and Research +2023,Senior,Full-time,Data Scientist,197000,USD,197000,Canada,In-person,Canada,M,Data Science and Research +2023,Senior,Full-time,Data Science Manager,328000,USD,328000,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Data Science Manager,211000,USD,211000,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Data Scientist,237000,USD,237000,United States,Remote,United States,M,Data Science and Research +2023,Senior,Full-time,Data Scientist,201450,USD,201450,United States,Remote,United States,M,Data Science and Research +2023,Senior,Full-time,ML Engineer,229000,USD,229000,United States,In-person,United States,M,Machine Learning and AI +2023,Senior,Full-time,ML Engineer,206000,USD,206000,United States,In-person,United States,M,Machine Learning and AI +2023,Senior,Full-time,Data Scientist,231000,USD,231000,United States,Remote,United States,M,Data Science and Research +2023,Senior,Full-time,Data Scientist,134000,USD,134000,United States,Remote,United States,M,Data Science and Research +2023,Senior,Full-time,ML Engineer,183750,USD,183750,United States,In-person,United States,M,Machine Learning and AI +2023,Senior,Full-time,ML Engineer,165400,USD,165400,United States,In-person,United States,M,Machine Learning and AI +2023,Mid-level,Full-time,Data Engineer,175000,USD,175000,United States,In-person,United States,M,Data Engineering +2023,Mid-level,Full-time,Data Engineer,125000,USD,125000,United States,In-person,United States,M,Data Engineering +2023,Senior,Full-time,Analytics Engineer,152900,USD,152900,United Kingdom,Remote,United Kingdom,M,Leadership and Management +2023,Senior,Full-time,Analytics Engineer,117700,USD,117700,United Kingdom,Remote,United Kingdom,M,Leadership and Management +2023,Senior,Full-time,Data Scientist,285800,USD,285800,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Data Scientist,154600,USD,154600,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Data Operations Engineer,289120,USD,289120,United States,In-person,United States,M,Data Quality and Operations +2023,Senior,Full-time,Data Operations Engineer,192400,USD,192400,United States,In-person,United States,M,Data Quality and Operations +2023,Mid-level,Full-time,Staff Data Analyst,179998,USD,179998,Saudi Arabia,Remote,Saudi Arabia,S,Data Analysis +2023,Mid-level,Full-time,Data Scientist,35000,USD,35000,India,In-person,India,L,Data Science and Research +2023,Senior,Full-time,Data Engineer,230000,USD,230000,United States,In-person,United States,M,Data Engineering +2023,Senior,Full-time,Data Engineer,166000,USD,166000,United States,In-person,United States,M,Data Engineering +2023,Mid-level,Full-time,AWS Data Architect,258000,USD,258000,United States,Remote,United States,L,Data Architecture and Modeling +2023,Senior,Full-time,Data Scientist,225000,USD,225000,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Data Scientist,156400,USD,156400,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Data Engineer,190000,USD,190000,United States,Remote,United States,M,Data Engineering +2023,Senior,Full-time,Data Engineer,150000,USD,150000,United States,Remote,United States,M,Data Engineering +2023,Senior,Full-time,Data Scientist,196000,USD,196000,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Data Scientist,121000,USD,121000,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Data Scientist,219000,USD,219000,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Data Scientist,141000,USD,141000,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Data Engineer,230000,USD,230000,United States,In-person,United States,M,Data Engineering +2023,Senior,Full-time,Data Engineer,206000,USD,206000,United States,In-person,United States,M,Data Engineering +2023,Senior,Full-time,Applied Scientist,192000,USD,192000,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Applied Scientist,164000,USD,164000,United States,In-person,United States,M,Data Science and Research +2023,Mid-level,Full-time,ML Engineer,300000,USD,300000,Australia,In-person,Australia,M,Machine Learning and AI +2023,Mid-level,Full-time,ML Engineer,260000,USD,260000,Australia,In-person,Australia,M,Machine Learning and AI +2023,Senior,Full-time,Data Analyst,147000,USD,147000,United States,Remote,United States,M,Data Analysis +2023,Senior,Full-time,Data Analyst,92000,USD,92000,United States,Remote,United States,M,Data Analysis +2023,Senior,Full-time,Machine Learning Engineer,200000,USD,200000,United States,In-person,United States,M,Machine Learning and AI +2023,Senior,Full-time,Machine Learning Engineer,140000,USD,140000,United States,In-person,United States,M,Machine Learning and AI +2023,Mid-level,Full-time,Data Manager,110000,USD,110000,United States,In-person,United States,M,Leadership and Management +2023,Mid-level,Full-time,Data Manager,70000,USD,70000,United States,In-person,United States,M,Leadership and Management +2023,Senior,Full-time,Data Engineer,284310,USD,284310,United States,In-person,United States,M,Data Engineering +2023,Senior,Full-time,Data Engineer,153090,USD,153090,United States,In-person,United States,M,Data Engineering +2023,Senior,Full-time,Machine Learning Engineer,261500,USD,261500,United States,In-person,United States,L,Machine Learning and AI +2023,Senior,Full-time,Machine Learning Engineer,134500,USD,134500,United States,In-person,United States,L,Machine Learning and AI +2023,Entry-level,Contract,Product Data Analyst,83200,USD,83200,United States,Hybrid,United States,S,Data Analysis +2023,Senior,Full-time,Data Engineer,204500,USD,204500,Germany,In-person,Germany,M,Data Engineering +2023,Senior,Full-time,Data Engineer,142200,USD,142200,Germany,In-person,Germany,M,Data Engineering +2023,Senior,Full-time,Data Analyst,145000,USD,145000,United States,Remote,United States,M,Data Analysis +2023,Senior,Full-time,Data Analyst,106000,USD,106000,United States,Remote,United States,M,Data Analysis +2023,Senior,Full-time,Data Scientist,190000,USD,190000,United States,Remote,United States,M,Data Science and Research +2023,Senior,Full-time,Data Scientist,160000,USD,160000,United States,Remote,United States,M,Data Science and Research +2023,Senior,Full-time,Analytics Engineer,275300,USD,275300,United States,Remote,United States,M,Leadership and Management +2023,Senior,Full-time,Analytics Engineer,183500,USD,183500,United States,Remote,United States,M,Leadership and Management +2023,Mid-level,Full-time,Data Engineer,120000,GBP,147648,United Kingdom,In-person,United Kingdom,M,Data Engineering +2023,Mid-level,Full-time,Data Engineer,100000,GBP,123040,United Kingdom,In-person,United Kingdom,M,Data Engineering +2023,Senior,Full-time,ETL Developer,182850,USD,182850,United States,Remote,United States,M,Data Engineering +2023,Senior,Full-time,ETL Developer,113000,USD,113000,United States,Remote,United States,M,Data Engineering +2023,Senior,Full-time,Business Intelligence Engineer,202800,USD,202800,United States,In-person,United States,L,BI and Visualization +2023,Senior,Full-time,Business Intelligence Engineer,104300,USD,104300,United States,In-person,United States,L,BI and Visualization +2023,Senior,Full-time,Data Engineer,215000,USD,215000,United States,In-person,United States,M,Data Engineering +2023,Senior,Full-time,Data Engineer,175000,USD,175000,United States,In-person,United States,M,Data Engineering +2023,Executive,Full-time,Data Scientist,228856,USD,228856,United Kingdom,Remote,United Kingdom,M,Data Science and Research +2023,Executive,Full-time,Data Scientist,144540,USD,144540,United Kingdom,Remote,United Kingdom,M,Data Science and Research +2023,Mid-level,Full-time,Data Engineer,162500,USD,162500,United States,In-person,United States,M,Data Engineering +2023,Mid-level,Full-time,Data Engineer,130000,USD,130000,United States,In-person,United States,M,Data Engineering +2023,Mid-level,Full-time,Data Scientist,140000,USD,140000,United States,Remote,United States,M,Data Science and Research +2023,Mid-level,Full-time,Data Scientist,115000,USD,115000,United States,Remote,United States,M,Data Science and Research +2023,Senior,Full-time,Data Engineer,136600,USD,136600,United States,Remote,United States,M,Data Engineering +2023,Senior,Full-time,Data Engineer,109280,USD,109280,United States,Remote,United States,M,Data Engineering +2023,Senior,Full-time,Machine Learning Engineer,221000,USD,221000,United States,In-person,United States,M,Machine Learning and AI +2023,Senior,Full-time,Machine Learning Engineer,185000,USD,185000,United States,In-person,United States,M,Machine Learning and AI +2023,Senior,Full-time,Data Analyst,84000,USD,84000,Colombia,Remote,Colombia,M,Data Analysis +2023,Senior,Full-time,Data Analyst,60000,USD,60000,Colombia,Remote,Colombia,M,Data Analysis +2023,Mid-level,Full-time,Analytics Engineer,60000,GBP,73824,United Kingdom,In-person,United Kingdom,M,Leadership and Management +2023,Mid-level,Full-time,Analytics Engineer,50000,GBP,61520,United Kingdom,In-person,United Kingdom,M,Leadership and Management +2023,Mid-level,Full-time,BI Data Analyst,70000,USD,70000,Egypt,Remote,United States,M,Data Analysis +2021,Senior,Freelance,Machine Learning Developer,60000,USD,60000,Nigeria,Remote,Nigeria,M,Machine Learning and AI +2023,Senior,Full-time,Research Engineer,281000,USD,281000,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Research Engineer,196000,USD,196000,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Data Engineer,146000,USD,146000,United States,In-person,United States,M,Data Engineering +2023,Senior,Full-time,Data Engineer,94000,USD,94000,United States,In-person,United States,M,Data Engineering +2023,Entry-level,Full-time,Data Integration Specialist,69500,USD,69500,United States,Remote,United States,M,Data Management and Strategy +2023,Entry-level,Full-time,Data Integration Specialist,46400,USD,46400,United States,Remote,United States,M,Data Management and Strategy +2023,Senior,Full-time,Data Engineer,185000,USD,185000,United States,Remote,United States,M,Data Engineering +2023,Senior,Full-time,Data Engineer,150000,USD,150000,United States,Remote,United States,M,Data Engineering +2023,Senior,Full-time,Data Engineer,145000,USD,145000,United States,In-person,United States,M,Data Engineering +2023,Senior,Full-time,Data Engineer,115000,USD,115000,United States,In-person,United States,M,Data Engineering +2023,Senior,Full-time,Data Engineer,254000,USD,254000,United States,In-person,United States,M,Data Engineering +2023,Senior,Full-time,Data Engineer,200000,USD,200000,United States,In-person,United States,M,Data Engineering +2023,Senior,Full-time,Applied Scientist,260000,USD,260000,United States,In-person,United States,L,Data Science and Research +2023,Senior,Full-time,Applied Scientist,136000,USD,136000,United States,In-person,United States,L,Data Science and Research +2023,Senior,Full-time,Data Scientist,281000,USD,281000,Canada,In-person,Canada,M,Data Science and Research +2023,Senior,Full-time,Data Scientist,181000,USD,181000,Canada,In-person,Canada,M,Data Science and Research +2023,Senior,Full-time,Data Architect,285000,USD,285000,United States,Remote,United States,M,Data Architecture and Modeling +2023,Senior,Full-time,Data Architect,210000,USD,210000,United States,Remote,United States,M,Data Architecture and Modeling +2023,Entry-level,Full-time,Data Analyst,69525,USD,69525,United States,Remote,United States,M,Data Analysis +2023,Entry-level,Full-time,Data Analyst,61800,USD,61800,United States,Remote,United States,M,Data Analysis +2023,Senior,Full-time,Data Scientist,192000,USD,192000,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Data Scientist,164000,USD,164000,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,ML Engineer,178000,USD,178000,United States,In-person,United States,M,Machine Learning and AI +2023,Senior,Full-time,ML Engineer,152000,USD,152000,United States,In-person,United States,M,Machine Learning and AI +2023,Senior,Full-time,BI Developer,160000,USD,160000,United States,Remote,Japan,L,BI and Visualization +2023,Entry-level,Full-time,Data Scientist,40000,USD,40000,Uzbekistan,Remote,United States,M,Data Science and Research +2023,Senior,Full-time,Data Analyst,125000,USD,125000,United States,In-person,United States,M,Data Analysis +2023,Senior,Full-time,Data Analyst,95000,USD,95000,United States,In-person,United States,M,Data Analysis +2023,Senior,Full-time,Data Visualization Analyst,130000,USD,130000,United States,In-person,United States,M,BI and Visualization +2023,Senior,Full-time,Data Visualization Analyst,110000,USD,110000,United States,In-person,United States,M,BI and Visualization +2023,Senior,Full-time,Data Scientist,45000,EUR,48585,Spain,In-person,Spain,M,Data Science and Research +2023,Senior,Full-time,Data Scientist,36000,EUR,38868,Spain,In-person,Spain,M,Data Science and Research +2023,Senior,Full-time,Data Engineer,145000,USD,145000,United States,In-person,United States,M,Data Engineering +2023,Senior,Full-time,Data Engineer,120000,USD,120000,United States,In-person,United States,M,Data Engineering +2023,Senior,Full-time,Machine Learning Engineer,283200,USD,283200,United States,In-person,United States,M,Machine Learning and AI +2023,Senior,Full-time,Machine Learning Engineer,188800,USD,188800,United States,In-person,United States,M,Machine Learning and AI +2023,Senior,Full-time,Research Engineer,225000,USD,225000,France,In-person,France,M,Data Science and Research +2023,Senior,Full-time,Research Engineer,168000,USD,168000,France,In-person,France,M,Data Science and Research +2023,Senior,Full-time,Data Scientist,140000,USD,140000,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Data Scientist,105000,USD,105000,United States,In-person,United States,M,Data Science and Research +2023,Entry-level,Full-time,Data Scientist,130001,USD,130001,United States,Remote,United States,M,Data Science and Research +2023,Entry-level,Full-time,Data Scientist,71907,USD,71907,United States,Remote,United States,M,Data Science and Research +2023,Senior,Full-time,Analytics Engineer,144000,USD,144000,Canada,Remote,Canada,M,Leadership and Management +2023,Senior,Full-time,Analytics Engineer,80000,USD,80000,Canada,Remote,Canada,M,Leadership and Management +2023,Senior,Full-time,Data Architect,205000,USD,205000,United States,Remote,United States,M,Data Architecture and Modeling +2023,Senior,Full-time,Data Architect,150000,USD,150000,United States,Remote,United States,M,Data Architecture and Modeling +2023,Senior,Full-time,Data Analyst,189400,USD,189400,United Kingdom,In-person,United Kingdom,M,Data Analysis +2023,Senior,Full-time,Data Analyst,131685,USD,131685,United Kingdom,In-person,United Kingdom,M,Data Analysis +2023,Executive,Full-time,Head of Data,204500,USD,204500,United States,In-person,United States,M,Leadership and Management +2023,Executive,Full-time,Head of Data,142200,USD,142200,United States,In-person,United States,M,Leadership and Management +2023,Senior,Full-time,Data Scientist,150000,USD,150000,United States,Remote,United States,M,Data Science and Research +2023,Senior,Full-time,Data Scientist,130000,USD,130000,United States,Remote,United States,M,Data Science and Research +2023,Mid-level,Full-time,Data Engineer,120000,USD,120000,United States,In-person,United States,M,Data Engineering +2023,Mid-level,Full-time,Data Engineer,120000,USD,120000,United States,In-person,United States,M,Data Engineering +2023,Senior,Full-time,Data Analyst,172000,USD,172000,United Kingdom,Remote,United Kingdom,M,Data Analysis +2023,Senior,Full-time,Data Analyst,110000,USD,110000,United Kingdom,Remote,United Kingdom,M,Data Analysis +2023,Senior,Full-time,Applied Scientist,260000,USD,260000,United States,In-person,United States,L,Data Science and Research +2023,Senior,Full-time,Applied Scientist,136000,USD,136000,United States,In-person,United States,L,Data Science and Research +2023,Senior,Full-time,Data Analyst,110000,USD,110000,United States,Remote,United States,M,Data Analysis +2023,Senior,Full-time,Data Analyst,90000,USD,90000,United States,Remote,United States,M,Data Analysis +2023,Entry-level,Full-time,BI Data Analyst,60000,USD,60000,Argentina,Remote,United States,M,Data Analysis +2023,Entry-level,Full-time,Data Scientist,105000,CAD,77791,Canada,Hybrid,Canada,L,Data Science and Research +2022,Mid-level,Full-time,Data Scientist,45000,GBP,55410,France,Remote,United Kingdom,M,Data Science and Research +2023,Senior,Full-time,Product Data Analyst,57000,USD,57000,Georgia,Remote,Russian Federation,L,Data Analysis +2023,Mid-level,Full-time,Autonomous Vehicle Technician,120000,USD,120000,United Kingdom,Hybrid,United Kingdom,M,Machine Learning and AI +2023,Senior,Full-time,Data Modeler,168400,USD,168400,United States,In-person,United States,M,Data Architecture and Modeling +2023,Senior,Full-time,Data Modeler,90700,USD,90700,United States,In-person,United States,M,Data Architecture and Modeling +2023,Senior,Full-time,Data Analyst,150000,USD,150000,United States,Remote,United States,M,Data Analysis +2023,Senior,Full-time,Data Analyst,95000,USD,95000,United States,Remote,United States,M,Data Analysis +2023,Senior,Full-time,Data Engineer,161000,USD,161000,United States,In-person,United States,M,Data Engineering +2023,Senior,Full-time,Data Engineer,85000,USD,85000,United States,In-person,United States,M,Data Engineering +2023,Senior,Full-time,Research Engineer,240000,USD,240000,United States,Remote,United States,M,Data Science and Research +2023,Senior,Full-time,Research Engineer,157250,USD,157250,United States,Remote,United States,M,Data Science and Research +2023,Senior,Full-time,Applied Scientist,260000,USD,260000,United States,In-person,United States,L,Data Science and Research +2023,Senior,Full-time,Applied Scientist,136000,USD,136000,United States,In-person,United States,L,Data Science and Research +2023,Senior,Full-time,Data Scientist,277500,USD,277500,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Data Scientist,206000,USD,206000,United States,In-person,United States,M,Data Science and Research +2023,Mid-level,Full-time,Machine Learning Engineer,165000,USD,165000,United States,In-person,United States,M,Machine Learning and AI +2023,Mid-level,Full-time,Machine Learning Engineer,150000,USD,150000,United States,In-person,United States,M,Machine Learning and AI +2023,Senior,Full-time,Applied Scientist,222200,USD,222200,United States,In-person,United States,L,Data Science and Research +2023,Senior,Full-time,Applied Scientist,136000,USD,136000,United States,In-person,United States,L,Data Science and Research +2023,Senior,Full-time,Data Scientist,236500,USD,236500,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Data Scientist,176000,USD,176000,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Data Analyst,155000,USD,155000,United Kingdom,In-person,United Kingdom,M,Data Analysis +2023,Senior,Full-time,Data Analyst,120000,USD,120000,United Kingdom,In-person,United Kingdom,M,Data Analysis +2023,Senior,Full-time,Data Scientist,172800,USD,172800,United Kingdom,Remote,United Kingdom,M,Data Science and Research +2023,Senior,Full-time,Data Scientist,110000,USD,110000,United Kingdom,Remote,United Kingdom,M,Data Science and Research +2023,Senior,Full-time,Applied Scientist,260000,USD,260000,United States,In-person,United States,L,Data Science and Research +2023,Senior,Full-time,Applied Scientist,136000,USD,136000,United States,In-person,United States,L,Data Science and Research +2023,Senior,Full-time,Data Engineer,171250,USD,171250,United States,In-person,United States,M,Data Engineering +2023,Senior,Full-time,Data Engineer,113750,USD,113750,United States,In-person,United States,M,Data Engineering +2020,Mid-level,Contract,Sales Data Analyst,60000,USD,60000,Nigeria,In-person,Nigeria,M,Data Analysis +2023,Entry-level,Full-time,Cloud Data Engineer,100000,USD,100000,Germany,Hybrid,United States,L,Data Engineering +2023,Senior,Contract,Finance Data Analyst,300000,EUR,323905,France,Remote,United States,M,Data Analysis +2023,Senior,Full-time,Data Engineer,146000,USD,146000,United States,In-person,United States,M,Data Engineering +2023,Senior,Full-time,Data Engineer,75000,USD,75000,United States,In-person,United States,M,Data Engineering +2023,Senior,Full-time,Data Engineer,146000,USD,146000,United States,In-person,United States,M,Data Engineering +2023,Senior,Full-time,Data Engineer,75000,USD,75000,United States,In-person,United States,M,Data Engineering +2023,Entry-level,Full-time,Research Scientist,150000,USD,150000,United States,In-person,United States,M,Data Science and Research +2023,Entry-level,Full-time,Research Scientist,100000,USD,100000,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Data Analyst,62000,USD,62000,United States,In-person,United States,M,Data Analysis +2023,Senior,Full-time,Data Analyst,55000,USD,55000,United States,In-person,United States,M,Data Analysis +2023,Mid-level,Full-time,Data Analytics Manager,155000,USD,155000,United States,In-person,United States,M,Leadership and Management +2023,Mid-level,Full-time,Data Analytics Manager,140000,USD,140000,United States,In-person,United States,M,Leadership and Management +2023,Mid-level,Full-time,Applied Scientist,36000,USD,36000,Nigeria,Hybrid,Nigeria,M,Data Science and Research +2023,Senior,Full-time,Machine Learning Engineer,247500,USD,247500,United States,In-person,United States,M,Machine Learning and AI +2023,Senior,Full-time,Machine Learning Engineer,172200,USD,172200,United States,In-person,United States,M,Machine Learning and AI +2023,Mid-level,Full-time,Data Specialist,110000,USD,110000,United States,In-person,United States,M,Data Management and Strategy +2023,Mid-level,Full-time,Data Specialist,70000,USD,70000,United States,In-person,United States,M,Data Management and Strategy +2023,Senior,Full-time,Machine Learning Engineer,230000,USD,230000,United States,In-person,United States,M,Machine Learning and AI +2023,Senior,Full-time,Machine Learning Engineer,140100,USD,140100,United States,In-person,United States,M,Machine Learning and AI +2023,Senior,Full-time,Machine Learning Engineer,297300,USD,297300,United States,Remote,United States,M,Machine Learning and AI +2023,Senior,Full-time,Machine Learning Engineer,198200,USD,198200,United States,Remote,United States,M,Machine Learning and AI +2023,Mid-level,Full-time,Data Engineer,204000,USD,204000,United States,Remote,United States,M,Data Engineering +2023,Mid-level,Full-time,Data Engineer,161500,USD,161500,United States,Remote,United States,M,Data Engineering +2023,Senior,Full-time,Data Operations Analyst,144000,USD,144000,United Kingdom,In-person,United Kingdom,M,Data Quality and Operations +2023,Senior,Full-time,Data Operations Analyst,77000,USD,77000,United Kingdom,In-person,United Kingdom,M,Data Quality and Operations +2023,Mid-level,Full-time,Data Specialist,87500,USD,87500,United States,Remote,United States,M,Data Management and Strategy +2023,Mid-level,Full-time,Data Specialist,62500,USD,62500,United States,Remote,United States,M,Data Management and Strategy +2023,Senior,Full-time,Data Analyst,160000,USD,160000,United States,Remote,United States,M,Data Analysis +2023,Senior,Full-time,Data Analyst,135000,USD,135000,United States,Remote,United States,M,Data Analysis +2023,Senior,Full-time,Machine Learning Engineer,216000,USD,216000,United States,Remote,United States,M,Machine Learning and AI +2023,Senior,Full-time,Machine Learning Engineer,184000,USD,184000,United States,Remote,United States,M,Machine Learning and AI +2023,Mid-level,Full-time,Data Modeler,90000,GBP,110736,United Kingdom,In-person,United Kingdom,M,Data Architecture and Modeling +2023,Mid-level,Full-time,Data Modeler,45000,GBP,55368,United Kingdom,In-person,United Kingdom,M,Data Architecture and Modeling +2023,Senior,Full-time,Research Engineer,253000,USD,253000,United States,Remote,United States,M,Data Science and Research +2023,Senior,Full-time,Research Engineer,156400,USD,156400,United States,Remote,United States,M,Data Science and Research +2023,Senior,Full-time,Data Engineer,265000,USD,265000,United States,Remote,United States,M,Data Engineering +2023,Senior,Full-time,Data Engineer,200000,USD,200000,United States,Remote,United States,M,Data Engineering +2023,Senior,Full-time,Data Engineer,217000,USD,217000,United States,Remote,United States,M,Data Engineering +2023,Senior,Full-time,Data Engineer,185000,USD,185000,United States,Remote,United States,M,Data Engineering +2023,Senior,Full-time,Data Scientist,177300,USD,177300,United Kingdom,In-person,United Kingdom,M,Data Science and Research +2023,Senior,Full-time,Data Scientist,136300,USD,136300,United Kingdom,In-person,United Kingdom,M,Data Science and Research +2023,Senior,Full-time,Data Analyst,83000,USD,83000,United States,Remote,United States,M,Data Analysis +2023,Senior,Full-time,Data Analyst,72000,USD,72000,United States,Remote,United States,M,Data Analysis +2023,Senior,Full-time,Data Analyst,208450,USD,208450,United States,Remote,United States,M,Data Analysis +2023,Senior,Full-time,Data Analyst,170550,USD,170550,United States,Remote,United States,M,Data Analysis +2023,Senior,Full-time,Data Engineer,72000,USD,72000,Colombia,Remote,Colombia,M,Data Engineering +2023,Senior,Full-time,Data Engineer,60000,USD,60000,Colombia,Remote,Colombia,M,Data Engineering +2023,Senior,Full-time,Machine Learning Engineer,200000,USD,200000,United States,In-person,United States,M,Machine Learning and AI +2023,Senior,Full-time,Machine Learning Engineer,130000,USD,130000,United States,In-person,United States,M,Machine Learning and AI +2023,Senior,Full-time,Data Scientist,190000,USD,190000,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Data Scientist,165000,USD,165000,United States,In-person,United States,M,Data Science and Research +2023,Entry-level,Full-time,Research Engineer,165000,USD,165000,United States,In-person,United States,M,Data Science and Research +2023,Entry-level,Full-time,Research Engineer,145000,USD,145000,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Applied Scientist,222200,USD,222200,United States,In-person,United States,L,Data Science and Research +2023,Senior,Full-time,Applied Scientist,136000,USD,136000,United States,In-person,United States,L,Data Science and Research +2023,Executive,Full-time,Director of Data Science,336400,USD,336400,United States,In-person,United States,M,Data Science and Research +2023,Executive,Full-time,Director of Data Science,201900,USD,201900,United States,In-person,United States,M,Data Science and Research +2023,Mid-level,Full-time,Data Scientist,189750,USD,189750,United States,In-person,United States,M,Data Science and Research +2023,Mid-level,Full-time,Data Scientist,131100,USD,131100,United States,In-person,United States,M,Data Science and Research +2023,Mid-level,Full-time,Data Science Manager,270000,USD,270000,United States,Remote,United States,M,Data Science and Research +2023,Mid-level,Full-time,Data Science Manager,95000,USD,95000,United States,Remote,United States,M,Data Science and Research +2023,Senior,Full-time,Data Engineer,170000,USD,170000,United States,In-person,United States,M,Data Engineering +2023,Senior,Full-time,Data Engineer,120000,USD,120000,United States,In-person,United States,M,Data Engineering +2023,Mid-level,Full-time,Data Engineer,117300,USD,117300,United States,In-person,United States,M,Data Engineering +2023,Mid-level,Full-time,Data Engineer,69000,USD,69000,United States,In-person,United States,M,Data Engineering +2023,Senior,Full-time,Data Engineer,182000,USD,182000,United States,Remote,United States,M,Data Engineering +2023,Senior,Full-time,Data Engineer,144000,USD,144000,United States,Remote,United States,M,Data Engineering +2023,Mid-level,Full-time,Data Science Lead,244000,USD,244000,United States,In-person,United States,M,Data Science and Research +2023,Mid-level,Full-time,Data Science Lead,200000,USD,200000,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Data Analyst,120000,USD,120000,United States,Remote,United States,M,Data Analysis +2023,Senior,Full-time,Data Analyst,100000,USD,100000,United States,Remote,United States,M,Data Analysis +2023,Mid-level,Full-time,Data Engineer,260000,USD,260000,United States,In-person,United States,M,Data Engineering +2023,Mid-level,Full-time,Data Engineer,175000,USD,175000,United States,In-person,United States,M,Data Engineering +2023,Senior,Full-time,Data Engineer,190000,USD,190000,United States,In-person,United States,M,Data Engineering +2023,Senior,Full-time,Data Engineer,150000,USD,150000,United States,In-person,United States,M,Data Engineering +2023,Senior,Full-time,Data Scientist,210000,USD,210000,United States,Remote,United States,M,Data Science and Research +2023,Senior,Full-time,Data Scientist,160000,USD,160000,United States,Remote,United States,M,Data Science and Research +2023,Senior,Full-time,Data Scientist,210000,USD,210000,United States,Remote,United States,M,Data Science and Research +2023,Senior,Full-time,Data Scientist,160000,USD,160000,United States,Remote,United States,M,Data Science and Research +2023,Senior,Full-time,Data Scientist,210000,USD,210000,United States,Remote,United States,M,Data Science and Research +2023,Senior,Full-time,Data Scientist,160000,USD,160000,United States,Remote,United States,M,Data Science and Research +2023,Senior,Full-time,Data Scientist,210000,USD,210000,United States,Remote,United States,M,Data Science and Research +2023,Senior,Full-time,Data Scientist,160000,USD,160000,United States,Remote,United States,M,Data Science and Research +2023,Senior,Full-time,Data Scientist,210000,USD,210000,United States,Remote,United States,M,Data Science and Research +2023,Senior,Full-time,Data Scientist,160000,USD,160000,United States,Remote,United States,M,Data Science and Research +2023,Senior,Full-time,Machine Learning Engineer,250000,USD,250000,United States,In-person,United States,M,Machine Learning and AI +2023,Senior,Full-time,Machine Learning Engineer,100000,USD,100000,United States,In-person,United States,M,Machine Learning and AI +2023,Senior,Full-time,Machine Learning Engineer,225000,USD,225000,United States,Remote,United States,M,Machine Learning and AI +2023,Senior,Full-time,Machine Learning Engineer,175000,USD,175000,United States,Remote,United States,M,Machine Learning and AI +2023,Senior,Full-time,Data Scientist,210000,USD,210000,United States,Remote,United States,M,Data Science and Research +2023,Senior,Full-time,Data Scientist,160000,USD,160000,United States,Remote,United States,M,Data Science and Research +2023,Senior,Full-time,Data Scientist,210000,USD,210000,United States,Remote,United States,M,Data Science and Research +2023,Senior,Full-time,Data Scientist,160000,USD,160000,United States,Remote,United States,M,Data Science and Research +2023,Senior,Full-time,Data Scientist,210000,USD,210000,United States,Remote,United States,M,Data Science and Research +2023,Senior,Full-time,Data Scientist,160000,USD,160000,United States,Remote,United States,M,Data Science and Research +2023,Senior,Full-time,Data Scientist,236500,USD,236500,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Data Scientist,176000,USD,176000,United States,In-person,United States,M,Data Science and Research +2023,Mid-level,Full-time,Data Scientist,105000,USD,105000,United States,In-person,United States,M,Data Science and Research +2023,Mid-level,Full-time,Data Scientist,102500,USD,102500,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Research Engineer,370000,USD,370000,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Research Engineer,200000,USD,200000,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Data Engineer,260000,USD,260000,United States,In-person,United States,M,Data Engineering +2023,Senior,Full-time,Data Engineer,225000,USD,225000,United States,In-person,United States,M,Data Engineering +2023,Senior,Full-time,Research Scientist,370000,USD,370000,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Research Scientist,200000,USD,200000,United States,In-person,United States,M,Data Science and Research +2023,Mid-level,Full-time,Data Engineer,186600,USD,186600,United States,Remote,United States,M,Data Engineering +2023,Mid-level,Full-time,Data Engineer,116500,USD,116500,United States,Remote,United States,M,Data Engineering +2023,Senior,Full-time,Data Engineer,80000,USD,80000,Argentina,Remote,Argentina,M,Data Engineering +2023,Senior,Full-time,Data Engineer,60000,USD,60000,Argentina,Remote,Argentina,M,Data Engineering +2023,Senior,Full-time,Data Science Manager,299500,USD,299500,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Data Science Manager,245100,USD,245100,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Machine Learning Scientist,222000,USD,222000,United States,Remote,United States,M,Machine Learning and AI +2023,Senior,Full-time,Machine Learning Scientist,138000,USD,138000,United States,Remote,United States,M,Machine Learning and AI +2023,Senior,Full-time,Data Analyst,207300,USD,207300,Canada,Remote,Canada,M,Data Analysis +2023,Senior,Full-time,Data Analyst,149200,USD,149200,Canada,Remote,Canada,M,Data Analysis +2023,Senior,Full-time,Machine Learning Scientist,292000,USD,292000,United States,Remote,United States,M,Machine Learning and AI +2023,Senior,Full-time,Machine Learning Scientist,164500,USD,164500,United States,Remote,United States,M,Machine Learning and AI +2023,Senior,Full-time,Machine Learning Scientist,292200,USD,292200,United States,Remote,United States,M,Machine Learning and AI +2023,Senior,Full-time,Machine Learning Scientist,164500,USD,164500,United States,Remote,United States,M,Machine Learning and AI +2023,Senior,Full-time,Data Engineer,163800,USD,163800,United States,In-person,United States,M,Data Engineering +2023,Senior,Full-time,Data Engineer,126000,USD,126000,United States,In-person,United States,M,Data Engineering +2023,Senior,Full-time,Data Scientist,160000,USD,160000,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Data Scientist,120000,USD,120000,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Data Analyst,140000,USD,140000,United States,In-person,United States,M,Data Analysis +2023,Senior,Full-time,Data Analyst,120000,USD,120000,United States,In-person,United States,M,Data Analysis +2023,Mid-level,Full-time,AI Scientist,120000,USD,120000,Germany,Remote,Germany,M,Machine Learning and AI +2023,Senior,Full-time,Computer Vision Engineer,280000,USD,280000,United States,In-person,United States,M,Machine Learning and AI +2023,Senior,Full-time,Computer Vision Engineer,210000,USD,210000,United States,In-person,United States,M,Machine Learning and AI +2023,Mid-level,Full-time,Data Scientist,170000,USD,170000,United States,Remote,United States,M,Data Science and Research +2023,Mid-level,Full-time,Data Scientist,150000,USD,150000,United States,Remote,United States,M,Data Science and Research +2023,Mid-level,Full-time,Machine Learning Engineer,200000,USD,200000,United States,Remote,United States,M,Machine Learning and AI +2023,Mid-level,Full-time,Machine Learning Engineer,170000,USD,170000,United States,Remote,United States,M,Machine Learning and AI +2023,Executive,Full-time,Director of Data Science,225000,USD,225000,United States,Remote,United States,M,Data Science and Research +2023,Executive,Full-time,Director of Data Science,175000,USD,175000,United States,Remote,United States,M,Data Science and Research +2023,Senior,Full-time,Data Science Consultant,189750,USD,189750,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Data Science Consultant,131100,USD,131100,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Data Analyst,123400,USD,123400,United States,Remote,United States,M,Data Analysis +2023,Senior,Full-time,Data Analyst,82200,USD,82200,United States,Remote,United States,M,Data Analysis +2023,Entry-level,Full-time,Data Engineer,40000,GBP,49216,United Kingdom,Remote,United Kingdom,M,Data Engineering +2023,Entry-level,Full-time,Data Engineer,35000,GBP,43064,United Kingdom,Remote,United Kingdom,M,Data Engineering +2023,Executive,Full-time,Applied Machine Learning Engineer,225000,USD,225000,United States,Remote,United States,M,Machine Learning and AI +2023,Senior,Full-time,Analytics Engineer,50000,USD,50000,Nigeria,Remote,Nigeria,S,Leadership and Management +2023,Senior,Full-time,Data Engineer,161800,USD,161800,United States,In-person,United States,M,Data Engineering +2023,Senior,Full-time,Data Engineer,121400,USD,121400,United States,In-person,United States,M,Data Engineering +2023,Senior,Full-time,Research Scientist,285000,USD,285000,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Research Scientist,193900,USD,193900,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Analytics Engineer,240000,USD,240000,United States,In-person,United States,M,Leadership and Management +2023,Senior,Full-time,Analytics Engineer,196000,USD,196000,United States,In-person,United States,M,Leadership and Management +2023,Senior,Full-time,Data Scientist,214000,USD,214000,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Data Scientist,164000,USD,164000,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Decision Scientist,170000,USD,170000,United States,Remote,United States,M,Data Science and Research +2023,Senior,Full-time,Decision Scientist,155000,USD,155000,United States,Remote,United States,M,Data Science and Research +2023,Senior,Full-time,Data Analyst,125000,USD,125000,United States,In-person,United States,M,Data Analysis +2023,Senior,Full-time,Data Analyst,98000,USD,98000,United States,In-person,United States,M,Data Analysis +2023,Senior,Full-time,Machine Learning Engineer,199000,USD,199000,United States,Remote,United States,M,Machine Learning and AI +2023,Senior,Full-time,Machine Learning Engineer,145000,USD,145000,United States,Remote,United States,M,Machine Learning and AI +2023,Senior,Full-time,Machine Learning Engineer,260000,USD,260000,United States,Remote,United States,M,Machine Learning and AI +2023,Senior,Full-time,Machine Learning Engineer,200000,USD,200000,United States,Remote,United States,M,Machine Learning and AI +2022,Mid-level,Full-time,Research Engineer,100000,EUR,105066,United Kingdom,Hybrid,United Kingdom,S,Data Science and Research +2023,Mid-level,Full-time,Data Engineer,90000,GBP,110736,United Kingdom,In-person,United Kingdom,M,Data Engineering +2023,Mid-level,Full-time,Data Engineer,70000,GBP,86128,United Kingdom,In-person,United Kingdom,M,Data Engineering +2023,Senior,Full-time,Decision Scientist,185900,USD,185900,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Decision Scientist,129300,USD,129300,United States,In-person,United States,M,Data Science and Research +2023,Executive,Full-time,Data Engineer,200000,USD,200000,United States,In-person,United States,M,Data Engineering +2023,Executive,Full-time,Data Engineer,145000,USD,145000,United States,In-person,United States,M,Data Engineering +2023,Senior,Full-time,Data Engineer,175000,USD,175000,United States,In-person,United States,M,Data Engineering +2023,Senior,Full-time,Data Engineer,120000,USD,120000,United States,In-person,United States,M,Data Engineering +2023,Senior,Full-time,Data Engineer,145000,USD,145000,United States,In-person,United States,M,Data Engineering +2023,Senior,Full-time,Data Engineer,120000,USD,120000,United States,In-person,United States,M,Data Engineering +2023,Senior,Full-time,Data Engineer,252000,USD,252000,United States,In-person,United States,M,Data Engineering +2023,Senior,Full-time,Data Engineer,129000,USD,129000,United States,In-person,United States,M,Data Engineering +2023,Senior,Full-time,Analytics Engineer,289800,USD,289800,United Kingdom,In-person,United Kingdom,M,Leadership and Management +2023,Senior,Full-time,Analytics Engineer,214000,USD,214000,United Kingdom,In-person,United Kingdom,M,Leadership and Management +2023,Senior,Full-time,Data Analyst,142000,USD,142000,United States,In-person,United States,M,Data Analysis +2023,Senior,Full-time,Data Analyst,87500,USD,87500,United States,In-person,United States,M,Data Analysis +2023,Senior,Full-time,Applied Scientist,222200,USD,222200,United States,In-person,United States,L,Data Science and Research +2023,Senior,Full-time,Applied Scientist,136000,USD,136000,United States,In-person,United States,L,Data Science and Research +2023,Senior,Full-time,Machine Learning Engineer,220000,USD,220000,United States,Remote,United States,M,Machine Learning and AI +2023,Senior,Full-time,Machine Learning Engineer,165000,USD,165000,United States,Remote,United States,M,Machine Learning and AI +2023,Senior,Full-time,Data Scientist,45000,EUR,48585,Spain,In-person,Spain,M,Data Science and Research +2023,Senior,Full-time,Data Scientist,36000,EUR,38868,Spain,In-person,Spain,M,Data Science and Research +2023,Senior,Full-time,Data Scientist,280830,USD,280830,Canada,Remote,Canada,M,Data Science and Research +2023,Senior,Full-time,Data Scientist,173175,USD,173175,Canada,Remote,Canada,M,Data Science and Research +2023,Senior,Full-time,Data Scientist,195000,USD,195000,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Data Scientist,160000,USD,160000,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Data Scientist,275300,USD,275300,United States,Remote,United States,M,Data Science and Research +2023,Senior,Full-time,Data Scientist,183500,USD,183500,United States,Remote,United States,M,Data Science and Research +2023,Senior,Full-time,Data Scientist,175000,USD,175000,United States,Remote,United States,M,Data Science and Research +2023,Senior,Full-time,Data Scientist,145000,USD,145000,United States,Remote,United States,M,Data Science and Research +2023,Mid-level,Full-time,Data Analyst,105000,USD,105000,United States,In-person,United States,M,Data Analysis +2023,Mid-level,Full-time,Data Analyst,85000,USD,85000,United States,In-person,United States,M,Data Analysis +2023,Senior,Full-time,Data Scientist,175000,USD,175000,United States,Remote,United States,M,Data Science and Research +2023,Senior,Full-time,Data Scientist,160000,USD,160000,United States,Remote,United States,M,Data Science and Research +2023,Mid-level,Full-time,BI Developer,75000,GBP,92280,United Kingdom,In-person,United Kingdom,M,BI and Visualization +2023,Mid-level,Full-time,BI Developer,40000,GBP,49216,United Kingdom,In-person,United Kingdom,M,BI and Visualization +2023,Mid-level,Full-time,Data Engineer,162500,USD,162500,United States,In-person,United States,M,Data Engineering +2023,Mid-level,Full-time,Data Engineer,130000,USD,130000,United States,In-person,United States,M,Data Engineering +2023,Senior,Full-time,NLP Engineer,69500,EUR,75038,Spain,Remote,Spain,M,Machine Learning and AI +2023,Senior,Full-time,NLP Engineer,60000,EUR,64781,Spain,Remote,Spain,M,Machine Learning and AI +2023,Senior,Full-time,Data Engineer,174350,USD,174350,United States,Remote,United States,M,Data Engineering +2023,Senior,Full-time,Data Engineer,126800,USD,126800,United States,Remote,United States,M,Data Engineering +2023,Senior,Full-time,NLP Engineer,66200,EUR,71475,Italy,Remote,Italy,M,Machine Learning and AI +2023,Senior,Full-time,NLP Engineer,57000,EUR,61541,Italy,Remote,Italy,M,Machine Learning and AI +2023,Senior,Full-time,Data Engineer,245000,USD,245000,United States,Remote,United States,M,Data Engineering +2023,Senior,Full-time,Data Engineer,140000,USD,140000,United States,Remote,United States,M,Data Engineering +2023,Senior,Full-time,Analytics Engineer,231250,USD,231250,United States,Remote,United States,M,Leadership and Management +2023,Senior,Full-time,Analytics Engineer,138750,USD,138750,United States,Remote,United States,M,Leadership and Management +2023,Mid-level,Full-time,Machine Learning Engineer,155000,USD,155000,United States,In-person,United States,M,Machine Learning and AI +2023,Mid-level,Full-time,Machine Learning Engineer,125000,USD,125000,United States,In-person,United States,M,Machine Learning and AI +2023,Mid-level,Full-time,Data Engineer,242000,USD,242000,United States,In-person,United States,M,Data Engineering +2023,Mid-level,Full-time,Data Engineer,195000,USD,195000,United States,In-person,United States,M,Data Engineering +2023,Entry-level,Full-time,Research Scientist,155000,USD,155000,United States,In-person,United States,M,Data Science and Research +2023,Entry-level,Full-time,Research Scientist,125000,USD,125000,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Applied Scientist,222200,USD,222200,United States,In-person,United States,L,Data Science and Research +2023,Senior,Full-time,Applied Scientist,136000,USD,136000,United States,In-person,United States,L,Data Science and Research +2023,Mid-level,Full-time,Machine Learning Engineer,160000,USD,160000,United States,Remote,United States,M,Machine Learning and AI +2023,Mid-level,Full-time,Machine Learning Engineer,140000,USD,140000,United States,Remote,United States,M,Machine Learning and AI +2023,Mid-level,Full-time,Data Specialist,110000,USD,110000,United States,In-person,United States,M,Data Management and Strategy +2023,Mid-level,Full-time,Data Specialist,70000,USD,70000,United States,In-person,United States,M,Data Management and Strategy +2023,Senior,Full-time,Data Scientist,183924,USD,183924,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Data Scientist,125760,USD,125760,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Data Analyst,150000,USD,150000,United States,Remote,United States,M,Data Analysis +2023,Senior,Full-time,Data Analyst,105000,USD,105000,United States,Remote,United States,M,Data Analysis +2023,Mid-level,Full-time,Analytics Engineer,350000,GBP,430640,United Kingdom,In-person,United Kingdom,M,Leadership and Management +2023,Mid-level,Full-time,Analytics Engineer,50000,GBP,61520,United Kingdom,In-person,United Kingdom,M,Leadership and Management +2023,Senior,Full-time,Principal Data Scientist,80000,EUR,86374,Spain,Remote,Spain,L,Data Science and Research +2023,Mid-level,Contract,ML Engineer,30000,USD,30000,United States,Remote,United States,S,Machine Learning and AI +2023,Mid-level,Contract,ML Engineer,25500,USD,25500,United States,Remote,United States,S,Machine Learning and AI +2023,Senior,Full-time,Data Scientist,175000,USD,175000,Canada,Remote,Canada,M,Data Science and Research +2023,Senior,Full-time,Data Scientist,120000,USD,120000,Canada,Remote,Canada,M,Data Science and Research +2023,Senior,Full-time,Applied Scientist,222200,USD,222200,United States,In-person,United States,L,Data Science and Research +2023,Senior,Full-time,Applied Scientist,136000,USD,136000,United States,In-person,United States,L,Data Science and Research +2023,Senior,Full-time,Data Scientist,219000,USD,219000,Canada,In-person,Canada,M,Data Science and Research +2023,Senior,Full-time,Data Scientist,141000,USD,141000,Canada,In-person,Canada,M,Data Science and Research +2023,Senior,Full-time,Data Scientist,147100,USD,147100,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Data Scientist,90700,USD,90700,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Data Analyst,130000,USD,130000,United States,Remote,United States,M,Data Analysis +2023,Senior,Full-time,Data Analyst,100000,USD,100000,United States,Remote,United States,M,Data Analysis +2023,Entry-level,Full-time,Applied Scientist,213660,USD,213660,United States,In-person,United States,L,Data Science and Research +2023,Entry-level,Full-time,Applied Scientist,130760,USD,130760,United States,In-person,United States,L,Data Science and Research +2023,Senior,Full-time,Data Modeler,147100,USD,147100,United States,In-person,United States,M,Data Architecture and Modeling +2023,Senior,Full-time,Data Modeler,90700,USD,90700,United States,In-person,United States,M,Data Architecture and Modeling +2023,Senior,Full-time,Data Scientist,170000,USD,170000,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Data Scientist,150000,USD,150000,United States,In-person,United States,M,Data Science and Research +2023,Mid-level,Full-time,Data Analyst,150000,USD,150000,United States,Remote,United States,M,Data Analysis +2023,Mid-level,Full-time,Data Analyst,110000,USD,110000,United States,Remote,United States,M,Data Analysis +2023,Senior,Full-time,Research Engineer,275000,USD,275000,Germany,In-person,Germany,M,Data Science and Research +2023,Senior,Full-time,Research Engineer,174000,USD,174000,Germany,In-person,Germany,M,Data Science and Research +2023,Senior,Full-time,Analytics Engineer,230000,USD,230000,United Kingdom,Remote,United Kingdom,M,Leadership and Management +2023,Senior,Full-time,Analytics Engineer,143200,USD,143200,United Kingdom,Remote,United Kingdom,M,Leadership and Management +2023,Senior,Full-time,Business Intelligence Engineer,225000,USD,225000,United States,In-person,United States,M,BI and Visualization +2023,Senior,Full-time,Business Intelligence Engineer,156400,USD,156400,United States,In-person,United States,M,BI and Visualization +2023,Senior,Full-time,Machine Learning Engineer,200000,USD,200000,United States,In-person,United States,M,Machine Learning and AI +2023,Senior,Full-time,Machine Learning Engineer,130000,USD,130000,United States,In-person,United States,M,Machine Learning and AI +2023,Senior,Full-time,Data Strategist,90000,USD,90000,Canada,In-person,Canada,M,Data Architecture and Modeling +2023,Senior,Full-time,Data Strategist,72000,USD,72000,Canada,In-person,Canada,M,Data Architecture and Modeling +2023,Senior,Full-time,Data Engineer,253200,USD,253200,United States,In-person,United States,M,Data Engineering +2023,Senior,Full-time,Data Engineer,90700,USD,90700,United States,In-person,United States,M,Data Engineering +2023,Senior,Full-time,Computer Vision Engineer,342810,USD,342810,United States,In-person,United States,M,Machine Learning and AI +2023,Senior,Full-time,Computer Vision Engineer,184590,USD,184590,United States,In-person,United States,M,Machine Learning and AI +2023,Mid-level,Full-time,Data Engineer,162500,USD,162500,United States,In-person,United States,M,Data Engineering +2023,Mid-level,Full-time,Data Engineer,130000,USD,130000,United States,In-person,United States,M,Data Engineering +2023,Mid-level,Full-time,Data Analyst,105380,USD,105380,United States,In-person,United States,M,Data Analysis +2023,Mid-level,Full-time,Data Analyst,64500,USD,64500,United States,In-person,United States,M,Data Analysis +2023,Entry-level,Full-time,Compliance Data Analyst,30000,USD,30000,Nigeria,Remote,Nigeria,L,Data Analysis +2023,Entry-level,Full-time,Applied Scientist,204620,USD,204620,United States,In-person,United States,L,Data Science and Research +2023,Entry-level,Full-time,Applied Scientist,110680,USD,110680,United States,In-person,United States,L,Data Science and Research +2023,Senior,Full-time,Data Engineer,270703,USD,270703,United States,In-person,United States,M,Data Engineering +2023,Senior,Full-time,Data Engineer,221484,USD,221484,United States,In-person,United States,M,Data Engineering +2023,Senior,Full-time,Data Scientist,212750,USD,212750,United States,Remote,United States,M,Data Science and Research +2023,Senior,Full-time,Data Scientist,185000,USD,185000,United States,Remote,United States,M,Data Science and Research +2023,Senior,Full-time,Data Scientist,262000,USD,262000,United States,Remote,United States,M,Data Science and Research +2023,Senior,Full-time,Data Scientist,245000,USD,245000,United States,Remote,United States,M,Data Science and Research +2023,Senior,Full-time,Data Scientist,275300,USD,275300,United States,Remote,United States,M,Data Science and Research +2023,Senior,Full-time,Data Scientist,183500,USD,183500,United States,Remote,United States,M,Data Science and Research +2023,Senior,Full-time,Data Scientist,218500,USD,218500,United States,Remote,United States,M,Data Science and Research +2023,Senior,Full-time,Data Scientist,199098,USD,199098,United States,Remote,United States,M,Data Science and Research +2023,Senior,Full-time,Data Engineer,203300,USD,203300,United States,Remote,United States,M,Data Engineering +2023,Senior,Full-time,Data Engineer,123600,USD,123600,United States,Remote,United States,M,Data Engineering +2023,Senior,Full-time,Research Engineer,189110,USD,189110,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Research Engineer,139000,USD,139000,United States,In-person,United States,M,Data Science and Research +2023,Executive,Full-time,Data Scientist,258750,USD,258750,United States,In-person,United States,M,Data Science and Research +2023,Executive,Full-time,Data Scientist,185000,USD,185000,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Data Engineer,231500,USD,231500,United States,Remote,United States,M,Data Engineering +2023,Senior,Full-time,Data Engineer,166000,USD,166000,United States,Remote,United States,M,Data Engineering +2023,Senior,Full-time,Data Scientist,172500,USD,172500,United States,Remote,United States,M,Data Science and Research +2023,Senior,Full-time,Data Scientist,110500,USD,110500,United States,Remote,United States,M,Data Science and Research +2023,Senior,Full-time,Data Engineer,"238,000",USD,238000,United States,In-person,United States,M,Data Engineering +2023,Senior,Full-time,Data Engineer,176000,USD,176000,United States,In-person,United States,M,Data Engineering +2023,Senior,Full-time,Data Engineer,237000,USD,237000,United States,Remote,United States,M,Data Engineering +2023,Senior,Full-time,Data Engineer,201450,USD,201450,United States,Remote,United States,M,Data Engineering +2023,Senior,Full-time,Applied Scientist,309400,USD,309400,United States,In-person,United States,L,Data Science and Research +2023,Senior,Full-time,Applied Scientist,159100,USD,159100,United States,In-person,United States,L,Data Science and Research +2023,Senior,Full-time,Data Engineer,115000,USD,115000,United States,In-person,United States,M,Data Engineering +2023,Senior,Full-time,Data Engineer,81500,USD,81500,United States,In-person,United States,M,Data Engineering +2023,Senior,Full-time,Data Scientist,237000,USD,237000,United States,Remote,United States,M,Data Science and Research +2023,Senior,Full-time,Data Scientist,201450,USD,201450,United States,Remote,United States,M,Data Science and Research +2023,Senior,Full-time,Computer Vision Engineer,280000,USD,280000,United States,In-person,United States,M,Machine Learning and AI +2023,Senior,Full-time,Computer Vision Engineer,210000,USD,210000,United States,In-person,United States,M,Machine Learning and AI +2023,Senior,Full-time,Data Architect,280100,USD,280100,United States,Remote,United States,M,Data Architecture and Modeling +2023,Senior,Full-time,Data Architect,168100,USD,168100,United States,Remote,United States,M,Data Architecture and Modeling +2023,Senior,Full-time,Data Engineer,193500,USD,193500,United States,Remote,United States,M,Data Engineering +2023,Senior,Full-time,Data Engineer,139000,USD,139000,United States,Remote,United States,M,Data Engineering +2023,Senior,Full-time,Machine Learning Engineer,150000,USD,150000,Portugal,Remote,United States,M,Machine Learning and AI +2023,Mid-level,Full-time,Applied Machine Learning Engineer,65000,EUR,70179,India,Remote,Germany,S,Machine Learning and AI +2023,Mid-level,Full-time,Machine Learning Engineer,90000,EUR,97171,Netherlands,Remote,Netherlands,L,Machine Learning and AI +2023,Senior,Full-time,Business Intelligence Engineer,185900,USD,185900,United States,In-person,United States,M,BI and Visualization +2023,Senior,Full-time,Business Intelligence Engineer,129300,USD,129300,United States,In-person,United States,M,BI and Visualization +2023,Senior,Full-time,Data Engineer,225000,USD,225000,United States,Remote,United States,M,Data Engineering +2023,Senior,Full-time,Data Engineer,175000,USD,175000,United States,Remote,United States,M,Data Engineering +2023,Senior,Full-time,Data Engineer,185000,USD,185000,United States,In-person,United States,M,Data Engineering +2023,Senior,Full-time,Data Engineer,140000,USD,140000,United States,In-person,United States,M,Data Engineering +2023,Senior,Full-time,Data Scientist,45000,EUR,48585,Spain,In-person,Spain,M,Data Science and Research +2023,Senior,Full-time,Data Scientist,36000,EUR,38868,Spain,In-person,Spain,M,Data Science and Research +2023,Senior,Full-time,Data Scientist,105000,USD,105000,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Data Scientist,70000,USD,70000,United States,In-person,United States,M,Data Science and Research +2023,Entry-level,Full-time,Machine Learning Engineer,163196,USD,163196,United States,In-person,United States,M,Machine Learning and AI +2023,Entry-level,Full-time,Machine Learning Engineer,145885,USD,145885,United States,In-person,United States,M,Machine Learning and AI +2023,Senior,Full-time,Data Engineer,217000,USD,217000,United States,Remote,United States,M,Data Engineering +2023,Senior,Full-time,Data Engineer,185000,USD,185000,United States,Remote,United States,M,Data Engineering +2023,Senior,Full-time,Data Analyst,202800,USD,202800,United States,In-person,United States,L,Data Analysis +2023,Senior,Full-time,Data Analyst,104300,USD,104300,United States,In-person,United States,L,Data Analysis +2023,Senior,Full-time,Data Analyst,145000,USD,145000,United States,In-person,United States,M,Data Analysis +2023,Senior,Full-time,Data Analyst,65000,USD,65000,United States,In-person,United States,M,Data Analysis +2023,Senior,Full-time,Data Engineer,165000,USD,165000,United States,In-person,United States,M,Data Engineering +2023,Senior,Full-time,Data Engineer,132300,USD,132300,United States,In-person,United States,M,Data Engineering +2023,Senior,Full-time,Data Engineer,179170,USD,179170,United States,In-person,United States,M,Data Engineering +2023,Senior,Full-time,Data Engineer,94300,USD,94300,United States,In-person,United States,M,Data Engineering +2023,Senior,Full-time,Analytics Engineer,152500,USD,152500,United States,In-person,United States,M,Leadership and Management +2023,Senior,Full-time,Analytics Engineer,116450,USD,116450,United States,In-person,United States,M,Leadership and Management +2023,Senior,Full-time,Data Engineer,247300,USD,247300,United States,In-person,United States,M,Data Engineering +2023,Senior,Full-time,Data Engineer,133800,USD,133800,United States,In-person,United States,M,Data Engineering +2023,Senior,Full-time,Research Engineer,203000,USD,203000,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Research Engineer,133000,USD,133000,United States,In-person,United States,M,Data Science and Research +2023,Entry-level,Full-time,Research Scientist,220000,USD,220000,United States,Hybrid,United States,L,Data Science and Research +2022,Entry-level,Full-time,Machine Learning Engineer,54000,CHF,56536,Switzerland,Remote,Switzerland,S,Machine Learning and AI +2023,Senior,Full-time,Data Scientist,150000,USD,150000,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Data Scientist,120000,USD,120000,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Analytics Engineer,289800,USD,289800,United States,In-person,United States,M,Leadership and Management +2023,Senior,Full-time,Analytics Engineer,214000,USD,214000,United States,In-person,United States,M,Leadership and Management +2023,Senior,Full-time,Analytics Engineer,179820,USD,179820,United States,In-person,United States,M,Leadership and Management +2023,Senior,Full-time,Analytics Engineer,143860,USD,143860,United States,In-person,United States,M,Leadership and Management +2023,Senior,Full-time,Machine Learning Engineer,283200,USD,283200,United States,Remote,United States,M,Machine Learning and AI +2023,Senior,Full-time,Machine Learning Engineer,188800,USD,188800,United States,Remote,United States,M,Machine Learning and AI +2023,Senior,Full-time,Analytics Engineer,289800,USD,289800,United States,In-person,United States,M,Leadership and Management +2023,Senior,Full-time,Analytics Engineer,214200,USD,214200,United States,In-person,United States,M,Leadership and Management +2023,Senior,Full-time,Data Engineer,185900,USD,185900,United States,In-person,United States,M,Data Engineering +2023,Senior,Full-time,Data Engineer,129300,USD,129300,United States,In-person,United States,M,Data Engineering +2023,Senior,Full-time,Data Engineer,252000,USD,252000,United States,In-person,United States,M,Data Engineering +2023,Senior,Full-time,Data Engineer,129000,USD,129000,United States,In-person,United States,M,Data Engineering +2023,Mid-level,Full-time,Data Analytics Manager,155000,USD,155000,United States,In-person,United States,M,Leadership and Management +2023,Mid-level,Full-time,Data Analytics Manager,140000,USD,140000,United States,In-person,United States,M,Leadership and Management +2023,Senior,Full-time,Data Engineer,161800,USD,161800,United States,Remote,United States,M,Data Engineering +2023,Senior,Full-time,Data Engineer,141600,USD,141600,United States,Remote,United States,M,Data Engineering +2023,Senior,Full-time,Machine Learning Engineer,342300,USD,342300,United States,In-person,United States,L,Machine Learning and AI +2023,Senior,Full-time,Machine Learning Engineer,176100,USD,176100,United States,In-person,United States,L,Machine Learning and AI +2023,Mid-level,Full-time,Data Engineer,100000,USD,100000,United States,Remote,United States,M,Data Engineering +2023,Mid-level,Full-time,Data Engineer,70000,USD,70000,United States,Remote,United States,M,Data Engineering +2023,Entry-level,Full-time,Data Engineer,85000,USD,85000,United States,In-person,United States,M,Data Engineering +2023,Entry-level,Full-time,Data Engineer,65000,USD,65000,United States,In-person,United States,M,Data Engineering +2023,Senior,Full-time,Data Scientist,138784,USD,138784,United States,Remote,United States,M,Data Science and Research +2023,Senior,Full-time,Data Scientist,83270,USD,83270,United States,Remote,United States,M,Data Science and Research +2023,Entry-level,Full-time,Data Analyst,75000,USD,75000,United States,In-person,United States,M,Data Analysis +2023,Entry-level,Full-time,Data Analyst,70000,USD,70000,United States,In-person,United States,M,Data Analysis +2023,Senior,Full-time,Data Analyst,204500,USD,204500,United States,In-person,United States,M,Data Analysis +2023,Senior,Full-time,Data Analyst,138900,USD,138900,United States,In-person,United States,M,Data Analysis +2023,Senior,Full-time,Machine Learning Engineer,318300,USD,318300,United States,Remote,United States,M,Machine Learning and AI +2023,Senior,Full-time,Machine Learning Engineer,212200,USD,212200,United States,Remote,United States,M,Machine Learning and AI +2023,Senior,Full-time,Data Engineer,95000,USD,95000,United States,Remote,United States,M,Data Engineering +2023,Senior,Full-time,Data Engineer,75000,USD,75000,United States,Remote,United States,M,Data Engineering +2023,Senior,Full-time,Data Scientist,195000,USD,195000,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Data Scientist,160000,USD,160000,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Analytics Engineer,230000,USD,230000,United States,In-person,United States,M,Leadership and Management +2023,Senior,Full-time,Analytics Engineer,143200,USD,143200,United States,In-person,United States,M,Leadership and Management +2023,Mid-level,Full-time,Data Engineer,100000,USD,100000,United States,Remote,United States,M,Data Engineering +2023,Mid-level,Full-time,Data Engineer,70000,USD,70000,United States,Remote,United States,M,Data Engineering +2023,Mid-level,Full-time,Business Data Analyst,105000,USD,105000,United States,Hybrid,United States,L,Data Analysis +2023,Mid-level,Full-time,Data Analyst,38000,GBP,46755,United Kingdom,In-person,United Kingdom,M,Data Analysis +2023,Mid-level,Full-time,Data Analyst,35000,GBP,43064,United Kingdom,In-person,United Kingdom,M,Data Analysis +2023,Senior,Full-time,Data Engineer,145000,USD,145000,United States,In-person,United States,M,Data Engineering +2023,Senior,Full-time,Data Engineer,115000,USD,115000,United States,In-person,United States,M,Data Engineering +2023,Senior,Full-time,Data Analyst,168400,USD,168400,United States,In-person,United States,M,Data Analysis +2023,Senior,Full-time,Data Analyst,105200,USD,105200,United States,In-person,United States,M,Data Analysis +2023,Senior,Full-time,Applied Scientist,309400,USD,309400,United States,In-person,United States,L,Data Science and Research +2023,Senior,Full-time,Applied Scientist,159100,USD,159100,United States,In-person,United States,L,Data Science and Research +2023,Senior,Full-time,Machine Learning Engineer,190000,USD,190000,United States,In-person,United States,M,Machine Learning and AI +2023,Senior,Full-time,Machine Learning Engineer,150000,USD,150000,United States,In-person,United States,M,Machine Learning and AI +2023,Mid-level,Full-time,Data Engineer,162500,USD,162500,United States,In-person,United States,M,Data Engineering +2023,Mid-level,Full-time,Data Engineer,130000,USD,130000,United States,In-person,United States,M,Data Engineering +2023,Senior,Full-time,Analytics Engineer,150000,USD,150000,United States,Remote,United States,M,Leadership and Management +2023,Senior,Full-time,Analytics Engineer,120000,USD,120000,United States,Remote,United States,M,Leadership and Management +2023,Senior,Full-time,Data Engineer,145000,USD,145000,United States,In-person,United States,M,Data Engineering +2023,Senior,Full-time,Data Engineer,120000,USD,120000,United States,In-person,United States,M,Data Engineering +2023,Senior,Full-time,Applied Scientist,222200,USD,222200,United States,In-person,United States,L,Data Science and Research +2023,Senior,Full-time,Applied Scientist,136000,USD,136000,United States,In-person,United States,L,Data Science and Research +2023,Senior,Full-time,Data Analyst,45000,GBP,55368,Central African Republic,Remote,Central African Republic,M,Data Analysis +2023,Senior,Full-time,Data Analyst,35000,GBP,43064,Central African Republic,Remote,Central African Republic,M,Data Analysis +2023,Senior,Full-time,Data Engineer,241000,USD,241000,United States,In-person,United States,M,Data Engineering +2023,Senior,Full-time,Data Engineer,155000,USD,155000,United States,In-person,United States,M,Data Engineering +2023,Senior,Full-time,Data Engineer,220000,USD,220000,United States,Remote,United States,M,Data Engineering +2023,Senior,Full-time,Data Engineer,190000,USD,190000,United States,Remote,United States,M,Data Engineering +2023,Mid-level,Full-time,Data Scientist,55000,GBP,67672,United Kingdom,In-person,United Kingdom,M,Data Science and Research +2023,Mid-level,Full-time,Data Scientist,45000,GBP,55368,United Kingdom,In-person,United Kingdom,M,Data Science and Research +2020,Executive,Full-time,Staff Data Analyst,15000,USD,15000,Nigeria,In-person,Canada,M,Data Analysis +2023,Mid-level,Full-time,ETL Engineer,70000,GBP,86128,United Kingdom,Remote,United Kingdom,M,Data Engineering +2023,Mid-level,Full-time,ETL Engineer,47500,GBP,58444,United Kingdom,Remote,United Kingdom,M,Data Engineering +2023,Entry-level,Full-time,Data Analyst,85000,USD,85000,United States,Remote,United States,M,Data Analysis +2023,Entry-level,Full-time,Data Analyst,75000,USD,75000,United States,Remote,United States,M,Data Analysis +2023,Senior,Full-time,Data Engineer,160000,USD,160000,United States,In-person,United States,M,Data Engineering +2023,Senior,Full-time,Data Engineer,140000,USD,140000,United States,In-person,United States,M,Data Engineering +2023,Mid-level,Full-time,Machine Learning Engineer,300000,USD,300000,United States,In-person,United States,M,Machine Learning and AI +2023,Mid-level,Full-time,Machine Learning Engineer,250000,USD,250000,United States,In-person,United States,M,Machine Learning and AI +2023,Senior,Full-time,Data Scientist,228000,USD,228000,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Data Scientist,186000,USD,186000,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Data Scientist,190000,USD,190000,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Data Scientist,170000,USD,170000,United States,In-person,United States,M,Data Science and Research +2023,Mid-level,Full-time,Research Engineer,230000,USD,230000,United States,In-person,United States,M,Data Science and Research +2023,Mid-level,Full-time,Research Engineer,200000,USD,200000,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Data Architect,180000,USD,180000,United States,Remote,United States,M,Data Architecture and Modeling +2023,Senior,Full-time,Data Architect,115000,USD,115000,United States,Remote,United States,M,Data Architecture and Modeling +2023,Senior,Full-time,Data Architect,200000,USD,200000,United States,Remote,United States,M,Data Architecture and Modeling +2023,Senior,Full-time,Data Architect,115000,USD,115000,United States,Remote,United States,M,Data Architecture and Modeling +2023,Senior,Full-time,Data DevOps Engineer,50000,EUR,53984,France,Hybrid,France,S,Data Engineering +2023,Executive,Full-time,Data Engineer,220000,USD,220000,United States,In-person,United States,M,Data Engineering +2023,Executive,Full-time,Data Engineer,205000,USD,205000,United States,In-person,United States,M,Data Engineering +2023,Mid-level,Full-time,Data Engineer,180000,USD,180000,United States,In-person,United States,M,Data Engineering +2023,Mid-level,Full-time,Data Engineer,130000,USD,130000,United States,In-person,United States,M,Data Engineering +2023,Senior,Full-time,Data Engineer,200000,USD,200000,United States,Remote,United States,M,Data Engineering +2023,Senior,Full-time,Data Engineer,150000,USD,150000,United States,Remote,United States,M,Data Engineering +2023,Senior,Full-time,Computer Vision Engineer,215000,USD,215000,United States,In-person,United States,M,Machine Learning and AI +2023,Senior,Full-time,Computer Vision Engineer,170000,USD,170000,United States,In-person,United States,M,Machine Learning and AI +2023,Senior,Full-time,Machine Learning Engineer,247500,USD,247500,United States,In-person,United States,M,Machine Learning and AI +2023,Senior,Full-time,Machine Learning Engineer,172200,USD,172200,United States,In-person,United States,M,Machine Learning and AI +2023,Senior,Full-time,Data Scientist,224000,USD,224000,Canada,In-person,Canada,M,Data Science and Research +2023,Senior,Full-time,Data Scientist,176000,USD,176000,Canada,In-person,Canada,M,Data Science and Research +2023,Senior,Full-time,Data Analyst,120000,USD,120000,United States,Remote,United States,M,Data Analysis +2023,Senior,Full-time,Data Analyst,75000,USD,75000,United States,Remote,United States,M,Data Analysis +2023,Senior,Full-time,Applied Data Scientist,100000,AUD,67635,Australia,Remote,Finland,M,Data Science and Research +2023,Mid-level,Full-time,AI Developer,100000,SGD,74883,Finland,In-person,Finland,M,Machine Learning and AI +2023,Senior,Full-time,Data Analyst,140000,USD,140000,United States,In-person,United States,M,Data Analysis +2023,Senior,Full-time,Data Analyst,120000,USD,120000,United States,In-person,United States,M,Data Analysis +2023,Senior,Full-time,Data Engineer,128000,USD,128000,United States,In-person,United States,M,Data Engineering +2023,Senior,Full-time,Data Engineer,81500,USD,81500,United States,In-person,United States,M,Data Engineering +2023,Senior,Full-time,Data Engineer,145000,USD,145000,United States,In-person,United States,M,Data Engineering +2023,Senior,Full-time,Data Engineer,115000,USD,115000,United States,In-person,United States,M,Data Engineering +2023,Senior,Full-time,Data Engineer,185000,USD,185000,United States,In-person,United States,M,Data Engineering +2023,Senior,Full-time,Data Engineer,140000,USD,140000,United States,In-person,United States,M,Data Engineering +2023,Executive,Full-time,Head of Data,329500,USD,329500,United States,In-person,United States,M,Leadership and Management +2023,Executive,Full-time,Head of Data,269600,USD,269600,United States,In-person,United States,M,Leadership and Management +2023,Senior,Full-time,Data Quality Analyst,100000,USD,100000,United States,In-person,United States,M,Data Quality and Operations +2023,Senior,Full-time,Data Quality Analyst,80000,USD,80000,United States,In-person,United States,M,Data Quality and Operations +2023,Senior,Full-time,Data Scientist,250000,USD,250000,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Data Scientist,162500,USD,162500,United States,In-person,United States,M,Data Science and Research +2023,Mid-level,Full-time,AI Developer,200000,USD,200000,United States,Remote,United States,M,Machine Learning and AI +2023,Senior,Full-time,Data Engineer,145000,USD,145000,United States,In-person,United States,M,Data Engineering +2023,Senior,Full-time,Data Engineer,100000,USD,100000,United States,In-person,United States,M,Data Engineering +2023,Executive,Full-time,Data Engineer,145000,USD,145000,United States,In-person,United States,M,Data Engineering +2023,Executive,Full-time,Data Engineer,115000,USD,115000,United States,In-person,United States,M,Data Engineering +2023,Senior,Full-time,Data Scientist,203500,USD,203500,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Data Scientist,152000,USD,152000,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Data Scientist,239000,USD,239000,United States,In-person,United States,L,Data Science and Research +2023,Senior,Full-time,Data Scientist,122900,USD,122900,United States,In-person,United States,L,Data Science and Research +2023,Senior,Full-time,Data Scientist,237000,USD,237000,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Data Scientist,145000,USD,145000,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Data Science Manager,191765,USD,191765,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Data Science Manager,134236,USD,134236,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Analytics Engineer,190000,USD,190000,United States,Remote,United States,M,Leadership and Management +2023,Senior,Full-time,Analytics Engineer,112000,USD,112000,United States,Remote,United States,M,Leadership and Management +2022,Senior,Full-time,Data Scientist,84000,EUR,88256,Spain,Remote,United Kingdom,L,Data Science and Research +2023,Entry-level,Full-time,Data Engineer,85000,USD,85000,United States,In-person,United States,M,Data Engineering +2023,Entry-level,Full-time,Data Engineer,65000,USD,65000,United States,In-person,United States,M,Data Engineering +2023,Senior,Full-time,Data Analyst,135000,USD,135000,United States,In-person,United States,M,Data Analysis +2023,Senior,Full-time,Data Analyst,105500,USD,105500,United States,In-person,United States,M,Data Analysis +2023,Senior,Full-time,Research Engineer,293000,USD,293000,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Research Engineer,185000,USD,185000,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Data Analyst,80000,USD,80000,United States,In-person,United States,M,Data Analysis +2023,Senior,Full-time,Data Analyst,70000,USD,70000,United States,In-person,United States,M,Data Analysis +2023,Senior,Full-time,Data Engineer,220000,USD,220000,United States,Remote,United States,M,Data Engineering +2023,Senior,Full-time,Data Engineer,160000,USD,160000,United States,Remote,United States,M,Data Engineering +2023,Senior,Full-time,Data Scientist,175000,USD,175000,United States,Remote,United States,M,Data Science and Research +2023,Senior,Full-time,Data Scientist,145000,USD,145000,United States,Remote,United States,M,Data Science and Research +2023,Senior,Full-time,Data Analyst,200000,USD,200000,United States,In-person,United States,M,Data Analysis +2023,Senior,Full-time,Data Analyst,148500,USD,148500,United States,In-person,United States,M,Data Analysis +2023,Senior,Full-time,Data Scientist,45000,EUR,48585,Spain,In-person,Spain,M,Data Science and Research +2023,Senior,Full-time,Data Scientist,36000,EUR,38868,Spain,In-person,Spain,M,Data Science and Research +2023,Senior,Full-time,Data Engineer,240500,USD,240500,United States,In-person,United States,L,Data Engineering +2023,Senior,Full-time,Data Engineer,123700,USD,123700,United States,In-person,United States,L,Data Engineering +2023,Senior,Full-time,Analytics Engineer,152900,USD,152900,United States,Remote,United States,M,Leadership and Management +2023,Senior,Full-time,Analytics Engineer,117100,USD,117100,United States,Remote,United States,M,Leadership and Management +2023,Senior,Full-time,Analytics Engineer,173000,USD,173000,United States,Remote,United States,M,Leadership and Management +2023,Senior,Full-time,Analytics Engineer,113000,USD,113000,United States,Remote,United States,M,Leadership and Management +2023,Senior,Full-time,Applied Scientist,260000,USD,260000,United States,In-person,United States,L,Data Science and Research +2023,Senior,Full-time,Applied Scientist,136000,USD,136000,United States,In-person,United States,L,Data Science and Research +2023,Executive,Full-time,Data Engineer,175000,USD,175000,United States,In-person,United States,M,Data Engineering +2023,Executive,Full-time,Data Engineer,110000,USD,110000,United States,In-person,United States,M,Data Engineering +2023,Senior,Full-time,Applied Scientist,260000,USD,260000,United States,In-person,United States,L,Data Science and Research +2023,Senior,Full-time,Applied Scientist,136000,USD,136000,United States,In-person,United States,L,Data Science and Research +2023,Senior,Full-time,Research Scientist,130000,USD,130000,United States,Remote,United States,M,Data Science and Research +2023,Senior,Full-time,Research Scientist,110000,USD,110000,United States,Remote,United States,M,Data Science and Research +2023,Senior,Full-time,Applied Scientist,205000,USD,205000,United States,Remote,United States,M,Data Science and Research +2023,Senior,Full-time,Applied Scientist,184000,USD,184000,United States,Remote,United States,M,Data Science and Research +2023,Senior,Full-time,Data Analyst,149500,USD,149500,United States,Remote,United States,M,Data Analysis +2023,Senior,Full-time,Data Analyst,127075,USD,127075,United States,Remote,United States,M,Data Analysis +2023,Senior,Full-time,Data Scientist,195000,USD,195000,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Data Scientist,160000,USD,160000,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Data Engineer,219535,USD,219535,United States,Remote,United States,M,Data Engineering +2023,Senior,Full-time,Data Engineer,146115,USD,146115,United States,Remote,United States,M,Data Engineering +2023,Senior,Full-time,Data Scientist,170000,USD,170000,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Data Scientist,135000,USD,135000,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Data Scientist,175000,USD,175000,United States,Remote,United States,M,Data Science and Research +2023,Senior,Full-time,Data Scientist,145000,USD,145000,United States,Remote,United States,M,Data Science and Research +2023,Senior,Full-time,Data Scientist,199000,USD,199000,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Data Scientist,162000,USD,162000,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Applied Scientist,222200,USD,222200,United States,In-person,United States,L,Data Science and Research +2023,Senior,Full-time,Applied Scientist,136000,USD,136000,United States,In-person,United States,L,Data Science and Research +2023,Executive,Full-time,Analytics Engineer,221000,USD,221000,United States,Remote,United States,M,Leadership and Management +2023,Executive,Full-time,Analytics Engineer,153000,USD,153000,United States,Remote,United States,M,Leadership and Management +2023,Senior,Full-time,Data Analyst,187000,USD,187000,United States,In-person,United States,M,Data Analysis +2023,Senior,Full-time,Data Analyst,128000,USD,128000,United States,In-person,United States,M,Data Analysis +2023,Senior,Full-time,Research Scientist,210000,USD,210000,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Research Scientist,136000,USD,136000,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Data Scientist,175000,USD,175000,United States,Remote,United States,M,Data Science and Research +2023,Senior,Full-time,Data Scientist,100000,USD,100000,United States,Remote,United States,M,Data Science and Research +2023,Senior,Full-time,Data Engineer,179000,USD,179000,United States,In-person,United States,M,Data Engineering +2023,Senior,Full-time,Data Engineer,109000,USD,109000,United States,In-person,United States,M,Data Engineering +2023,Senior,Full-time,Data Scientist,245000,USD,245000,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Data Scientist,180000,USD,180000,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Data Analyst,142000,USD,142000,United States,Remote,United States,M,Data Analysis +2023,Senior,Full-time,Data Analyst,75000,USD,75000,United States,Remote,United States,M,Data Analysis +2023,Senior,Full-time,Data Manager,198800,USD,198800,United States,In-person,United States,M,Leadership and Management +2023,Senior,Full-time,Data Manager,105200,USD,105200,United States,In-person,United States,M,Leadership and Management +2023,Senior,Full-time,Data Analyst,125000,USD,125000,United States,Remote,United States,M,Data Analysis +2023,Senior,Full-time,Data Analyst,112000,USD,112000,United States,Remote,United States,M,Data Analysis +2023,Senior,Full-time,Data Scientist,210000,USD,210000,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Data Scientist,155000,USD,155000,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Data Manager,115000,USD,115000,United States,Remote,United States,M,Leadership and Management +2023,Senior,Full-time,Data Manager,86000,USD,86000,United States,Remote,United States,M,Leadership and Management +2023,Senior,Full-time,Data Scientist,165000,USD,165000,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Data Scientist,140000,USD,140000,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Data Analyst,139000,USD,139000,United States,In-person,United States,M,Data Analysis +2023,Senior,Full-time,Data Analyst,106000,USD,106000,United States,In-person,United States,M,Data Analysis +2023,Entry-level,Full-time,Data Analyst,55000,CAD,40747,Canada,In-person,Canada,L,Data Analysis +2022,Senior,Full-time,AI Developer,275000,USD,275000,Canada,In-person,Canada,S,Machine Learning and AI +2023,Senior,Freelance,Machine Learning Researcher,50000,USD,50000,Ukraine,Hybrid,Ukraine,S,Machine Learning and AI +2023,Mid-level,Full-time,Machine Learning Engineer,280700,USD,280700,United States,Remote,United States,M,Machine Learning and AI +2023,Mid-level,Full-time,Machine Learning Engineer,150450,USD,150450,United States,Remote,United States,M,Machine Learning and AI +2023,Entry-level,Full-time,Data Scientist,70000,CAD,51861,Canada,Remote,Canada,L,Data Science and Research +2023,Senior,Full-time,Data Architect,250500,USD,250500,United States,In-person,United States,M,Data Architecture and Modeling +2023,Senior,Full-time,Data Architect,159500,USD,159500,United States,In-person,United States,M,Data Architecture and Modeling +2023,Senior,Full-time,Data Engineer,145000,USD,145000,United States,In-person,United States,M,Data Engineering +2023,Senior,Full-time,Data Engineer,115000,USD,115000,United States,In-person,United States,M,Data Engineering +2023,Senior,Full-time,Data Analyst,140000,USD,140000,United States,In-person,United States,M,Data Analysis +2023,Senior,Full-time,Data Analyst,120000,USD,120000,United States,In-person,United States,M,Data Analysis +2023,Entry-level,Full-time,Data Scientist,130001,USD,130001,United States,Remote,United States,M,Data Science and Research +2023,Entry-level,Full-time,Data Scientist,71907,USD,71907,United States,Remote,United States,M,Data Science and Research +2023,Mid-level,Full-time,Data Scientist,93918,USD,93918,United States,Remote,United States,M,Data Science and Research +2023,Mid-level,Full-time,Data Scientist,51962,USD,51962,United States,Remote,United States,M,Data Science and Research +2023,Senior,Full-time,Data Analyst,175000,USD,175000,Canada,Remote,Canada,M,Data Analysis +2023,Senior,Full-time,Data Analyst,135000,USD,135000,Canada,Remote,Canada,M,Data Analysis +2023,Entry-level,Full-time,Data Engineer,85000,USD,85000,United States,In-person,United States,M,Data Engineering +2023,Entry-level,Full-time,Data Engineer,65000,USD,65000,United States,In-person,United States,M,Data Engineering +2023,Senior,Full-time,Machine Learning Engineer,257000,USD,257000,United States,In-person,United States,M,Machine Learning and AI +2023,Senior,Full-time,Machine Learning Engineer,147000,USD,147000,United States,In-person,United States,M,Machine Learning and AI +2023,Senior,Full-time,Data Engineer,222000,USD,222000,United States,Remote,United States,M,Data Engineering +2023,Senior,Full-time,Data Engineer,175000,USD,175000,United States,Remote,United States,M,Data Engineering +2023,Senior,Full-time,Data Scientist,203000,USD,203000,United States,Remote,United States,M,Data Science and Research +2023,Senior,Full-time,Data Scientist,133200,USD,133200,United States,Remote,United States,M,Data Science and Research +2023,Entry-level,Full-time,Applied Scientist,213660,USD,213660,United States,In-person,United States,L,Data Science and Research +2023,Entry-level,Full-time,Applied Scientist,130760,USD,130760,United States,In-person,United States,L,Data Science and Research +2023,Senior,Full-time,Data Engineer,221000,USD,221000,United States,In-person,United States,M,Data Engineering +2023,Senior,Full-time,Data Engineer,147000,USD,147000,United States,In-person,United States,M,Data Engineering +2023,Senior,Full-time,Data Quality Analyst,100000,USD,100000,United States,In-person,United States,M,Data Quality and Operations +2023,Senior,Full-time,Data Quality Analyst,80000,USD,80000,United States,In-person,United States,M,Data Quality and Operations +2023,Senior,Full-time,Data Scientist,185900,USD,185900,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Data Scientist,129300,USD,129300,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Data Scientist,238000,USD,238000,United States,Remote,United States,M,Data Science and Research +2023,Senior,Full-time,Data Scientist,156000,USD,156000,United States,Remote,United States,M,Data Science and Research +2023,Senior,Full-time,Machine Learning Engineer,304000,USD,304000,United States,Remote,United States,M,Machine Learning and AI +2023,Senior,Full-time,Machine Learning Engineer,199000,USD,199000,United States,Remote,United States,M,Machine Learning and AI +2023,Mid-level,Full-time,Big Data Engineer,45000,EUR,48585,Spain,Remote,Spain,M,Data Engineering +2023,Senior,Full-time,Data Engineer,150000,USD,150000,United States,In-person,United States,M,Data Engineering +2023,Senior,Full-time,Data Engineer,130000,USD,130000,United States,In-person,United States,M,Data Engineering +2023,Senior,Full-time,Data Scientist,140000,USD,140000,United States,Remote,United States,M,Data Science and Research +2023,Senior,Full-time,Data Scientist,110000,USD,110000,United States,Remote,United States,M,Data Science and Research +2023,Mid-level,Full-time,Data Analyst,90000,USD,90000,United States,In-person,United States,M,Data Analysis +2023,Mid-level,Full-time,Data Analyst,75000,USD,75000,United States,In-person,United States,M,Data Analysis +2023,Mid-level,Full-time,Research Scientist,161200,GBP,198340,United Kingdom,In-person,United Kingdom,M,Data Science and Research +2023,Mid-level,Full-time,Research Scientist,84570,GBP,104055,United Kingdom,In-person,United Kingdom,M,Data Science and Research +2023,Senior,Full-time,Data Engineer,240000,USD,240000,United States,In-person,United States,M,Data Engineering +2023,Senior,Full-time,Data Engineer,183600,USD,183600,United States,In-person,United States,M,Data Engineering +2023,Mid-level,Full-time,Data Specialist,130000,USD,130000,United States,In-person,United States,M,Data Management and Strategy +2023,Mid-level,Full-time,Data Specialist,80000,USD,80000,United States,In-person,United States,M,Data Management and Strategy +2023,Senior,Full-time,Data Engineer,250000,USD,250000,United States,In-person,United States,M,Data Engineering +2023,Senior,Full-time,Data Engineer,150000,USD,150000,United States,In-person,United States,M,Data Engineering +2023,Senior,Full-time,Data Analytics Manager,160000,USD,160000,United States,Remote,United States,M,Leadership and Management +2023,Senior,Full-time,Data Analytics Manager,120000,USD,120000,United States,Remote,United States,M,Leadership and Management +2023,Senior,Full-time,Machine Learning Engineer,289076,USD,289076,United States,In-person,United States,M,Machine Learning and AI +2023,Senior,Full-time,Machine Learning Engineer,202353,USD,202353,United States,In-person,United States,M,Machine Learning and AI +2023,Senior,Full-time,Data Engineer,145000,USD,145000,United States,In-person,United States,M,Data Engineering +2023,Senior,Full-time,Data Engineer,120000,USD,120000,United States,In-person,United States,M,Data Engineering +2023,Senior,Full-time,Data Analyst,155000,USD,155000,United States,In-person,United States,M,Data Analysis +2023,Senior,Full-time,Data Analyst,106000,USD,106000,United States,In-person,United States,M,Data Analysis +2023,Senior,Full-time,Data Engineer,200000,USD,200000,United States,In-person,United States,M,Data Engineering +2023,Senior,Full-time,Data Engineer,160000,USD,160000,United States,In-person,United States,M,Data Engineering +2023,Senior,Full-time,Data Scientist,157750,USD,157750,United States,Remote,United States,M,Data Science and Research +2023,Senior,Full-time,Data Scientist,104650,USD,104650,United States,Remote,United States,M,Data Science and Research +2023,Mid-level,Full-time,Data Scientist,180000,USD,180000,United States,Remote,United States,M,Data Science and Research +2023,Mid-level,Full-time,Data Scientist,140000,USD,140000,United States,Remote,United States,M,Data Science and Research +2023,Executive,Full-time,Data Scientist,200000,USD,200000,United States,In-person,United States,M,Data Science and Research +2023,Executive,Full-time,Data Scientist,145000,USD,145000,United States,In-person,United States,M,Data Science and Research +2023,Mid-level,Full-time,Lead Data Analyst,68000,USD,68000,United States,In-person,United States,L,Data Analysis +2023,Entry-level,Full-time,BI Data Engineer,60000,USD,60000,United States,Remote,United States,M,Data Engineering +2023,Senior,Full-time,Data Scientist,45000,EUR,48585,Spain,In-person,Spain,M,Data Science and Research +2023,Senior,Full-time,Data Scientist,36000,EUR,38868,Spain,In-person,Spain,M,Data Science and Research +2023,Entry-level,Full-time,Data Engineer,85000,USD,85000,United States,In-person,United States,M,Data Engineering +2023,Entry-level,Full-time,Data Engineer,65000,USD,65000,United States,In-person,United States,M,Data Engineering +2023,Mid-level,Full-time,Data Engineer,125000,USD,125000,United States,In-person,United States,M,Data Engineering +2023,Mid-level,Full-time,Data Engineer,90000,USD,90000,United States,In-person,United States,M,Data Engineering +2023,Senior,Full-time,Data Analyst,105000,USD,105000,United States,Remote,United States,M,Data Analysis +2023,Senior,Full-time,Data Analyst,90000,USD,90000,United States,Remote,United States,M,Data Analysis +2023,Senior,Full-time,Analytics Engineer,179820,USD,179820,United States,In-person,United States,M,Leadership and Management +2023,Senior,Full-time,Analytics Engineer,143860,USD,143860,United States,In-person,United States,M,Leadership and Management +2023,Senior,Full-time,Data Analyst,135000,USD,135000,United States,In-person,United States,M,Data Analysis +2023,Senior,Full-time,Data Analyst,105500,USD,105500,United States,In-person,United States,M,Data Analysis +2023,Entry-level,Full-time,Research Engineer,155000,USD,155000,United States,In-person,United States,M,Data Science and Research +2023,Entry-level,Full-time,Research Engineer,125000,USD,125000,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Machine Learning Engineer,241000,USD,241000,United States,In-person,United States,M,Machine Learning and AI +2023,Senior,Full-time,Machine Learning Engineer,181000,USD,181000,United States,In-person,United States,M,Machine Learning and AI +2023,Senior,Full-time,Data Scientist,252000,USD,252000,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Data Scientist,"$154,000 ",USD,154000,United States,In-person,United States,M,Data Science and Research +2023,Executive,Full-time,Data Architect,180000,USD,180000,United States,In-person,United States,M,Data Architecture and Modeling +2023,Executive,Full-time,Data Architect,155000,USD,155000,United States,In-person,United States,M,Data Architecture and Modeling +2023,Senior,Full-time,Data Scientist,191765,USD,191765,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Data Scientist,134236,USD,134236,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Data Scientist,175000,USD,175000,United States,Remote,United States,M,Data Science and Research +2023,Senior,Full-time,Data Scientist,145000,USD,145000,United States,Remote,United States,M,Data Science and Research +2023,Senior,Full-time,Data Scientist,237000,USD,237000,United States,Remote,United States,M,Data Science and Research +2023,Senior,Full-time,Data Scientist,145000,USD,145000,United States,Remote,United States,M,Data Science and Research +2023,Entry-level,Full-time,Research Engineer,155000,USD,155000,United States,In-person,United States,M,Data Science and Research +2023,Entry-level,Full-time,Research Engineer,125000,USD,125000,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Data Analyst,80000,USD,80000,United States,In-person,United States,M,Data Analysis +2023,Senior,Full-time,Data Analyst,70000,USD,70000,United States,In-person,United States,M,Data Analysis +2023,Senior,Full-time,Data Engineer,146000,USD,146000,United States,In-person,United States,M,Data Engineering +2023,Senior,Full-time,Data Engineer,75000,USD,75000,United States,In-person,United States,M,Data Engineering +2023,Entry-level,Full-time,Data Analyst,64200,USD,64200,United States,Remote,United States,M,Data Analysis +2023,Entry-level,Full-time,Data Analyst,56100,USD,56100,United States,Remote,United States,M,Data Analysis +2023,Senior,Full-time,Machine Learning Engineer,170000,USD,170000,United States,In-person,United States,M,Machine Learning and AI +2023,Senior,Full-time,Machine Learning Engineer,130000,USD,130000,United States,In-person,United States,M,Machine Learning and AI +2023,Senior,Full-time,Data Analyst,208450,USD,208450,United States,Remote,United States,M,Data Analysis +2023,Senior,Full-time,Data Analyst,170550,USD,170550,United States,Remote,United States,M,Data Analysis +2023,Senior,Full-time,Machine Learning Engineer,125000,USD,125000,United States,In-person,United States,M,Machine Learning and AI +2023,Senior,Full-time,Machine Learning Engineer,100000,USD,100000,United States,In-person,United States,M,Machine Learning and AI +2023,Mid-level,Full-time,Data Manager,135000,USD,135000,United States,In-person,United States,M,Leadership and Management +2023,Mid-level,Full-time,Data Manager,120000,USD,120000,United States,In-person,United States,M,Leadership and Management +2023,Senior,Full-time,Data Scientist,200000,USD,200000,United States,Remote,United States,M,Data Science and Research +2023,Senior,Full-time,Data Scientist,170000,USD,170000,United States,Remote,United States,M,Data Science and Research +2023,Senior,Full-time,Data Scientist,171250,USD,171250,Ireland,In-person,Ireland,M,Data Science and Research +2023,Senior,Full-time,Data Scientist,113750,USD,113750,Ireland,In-person,Ireland,M,Data Science and Research +2023,Senior,Full-time,Applied Scientist,222200,USD,222200,United States,In-person,United States,L,Data Science and Research +2023,Senior,Full-time,Applied Scientist,136000,USD,136000,United States,In-person,United States,L,Data Science and Research +2023,Senior,Full-time,Applied Scientist,260000,USD,260000,United States,In-person,United States,L,Data Science and Research +2023,Senior,Full-time,Applied Scientist,136000,USD,136000,United States,In-person,United States,L,Data Science and Research +2023,Senior,Full-time,Data Analyst,153600,USD,153600,United States,In-person,United States,M,Data Analysis +2023,Senior,Full-time,Data Analyst,100500,USD,100500,United States,In-person,United States,M,Data Analysis +2023,Senior,Full-time,Applied Scientist,205000,USD,205000,United States,Remote,United States,M,Data Science and Research +2023,Senior,Full-time,Applied Scientist,184000,USD,184000,United States,Remote,United States,M,Data Science and Research +2023,Senior,Full-time,Machine Learning Engineer,115000,USD,115000,Canada,Remote,Canada,M,Machine Learning and AI +2023,Senior,Full-time,Machine Learning Engineer,95000,USD,95000,Canada,Remote,Canada,M,Machine Learning and AI +2023,Mid-level,Full-time,Data Analyst,182500,USD,182500,United States,In-person,United States,M,Data Analysis +2023,Mid-level,Full-time,Data Analyst,121500,USD,121500,United States,In-person,United States,M,Data Analysis +2023,Senior,Full-time,Data Engineer,203100,USD,203100,United States,In-person,United States,M,Data Engineering +2023,Senior,Full-time,Data Engineer,114500,USD,114500,United States,In-person,United States,M,Data Engineering +2023,Mid-level,Full-time,Data Analyst,60000,GBP,73824,United Kingdom,In-person,United Kingdom,M,Data Analysis +2023,Mid-level,Full-time,Data Analyst,45000,GBP,55368,United Kingdom,In-person,United Kingdom,M,Data Analysis +2023,Senior,Full-time,Data Engineer,252000,USD,252000,United States,In-person,United States,M,Data Engineering +2023,Senior,Full-time,Data Engineer,129000,USD,129000,United States,In-person,United States,M,Data Engineering +2023,Entry-level,Full-time,Data Engineer,92700,USD,92700,United States,Remote,United States,M,Data Engineering +2023,Entry-level,Full-time,Data Engineer,61800,USD,61800,United States,Remote,United States,M,Data Engineering +2023,Senior,Full-time,Data Engineer,160000,USD,160000,United States,Remote,United States,M,Data Engineering +2023,Senior,Full-time,Data Engineer,130000,USD,130000,United States,Remote,United States,M,Data Engineering +2023,Senior,Full-time,Data Scientist,258000,USD,258000,Canada,In-person,Canada,M,Data Science and Research +2023,Senior,Full-time,Data Scientist,190000,USD,190000,Canada,In-person,Canada,M,Data Science and Research +2023,Senior,Full-time,Data Scientist,170000,USD,170000,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Data Scientist,135000,USD,135000,United States,In-person,United States,M,Data Science and Research +2023,Mid-level,Full-time,Data Architect,167500,USD,167500,United States,In-person,United States,M,Data Architecture and Modeling +2023,Mid-level,Full-time,Data Architect,106500,USD,106500,United States,In-person,United States,M,Data Architecture and Modeling +2023,Senior,Full-time,Data Scientist,195000,USD,195000,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Data Scientist,160000,USD,160000,United States,In-person,United States,M,Data Science and Research +2023,Mid-level,Full-time,Data Engineer,146000,USD,146000,United States,In-person,United States,M,Data Engineering +2023,Mid-level,Full-time,Data Engineer,75000,USD,75000,United States,In-person,United States,M,Data Engineering +2022,Entry-level,Full-time,Data Engineer,57000,EUR,59888,Netherlands,Remote,Netherlands,L,Data Engineering +2023,Executive,Full-time,Data Engineer,286000,USD,286000,United States,Remote,United States,M,Data Engineering +2023,Executive,Full-time,Data Engineer,207000,USD,207000,United States,Remote,United States,M,Data Engineering +2023,Senior,Full-time,Data Analyst,100000,USD,100000,United States,Remote,United States,M,Data Analysis +2023,Senior,Full-time,Data Analyst,80000,USD,80000,United States,Remote,United States,M,Data Analysis +2023,Senior,Full-time,Data Engineer,223250,USD,223250,United States,In-person,United States,M,Data Engineering +2023,Senior,Full-time,Data Engineer,178600,USD,178600,United States,In-person,United States,M,Data Engineering +2023,Executive,Full-time,Director of Data Science,353200,USD,353200,United States,In-person,United States,M,Data Science and Research +2023,Executive,Full-time,Director of Data Science,249300,USD,249300,United States,In-person,United States,M,Data Science and Research +2023,Mid-level,Full-time,Machine Learning Scientist,230000,USD,230000,United States,In-person,United States,M,Machine Learning and AI +2023,Mid-level,Full-time,Machine Learning Scientist,220000,USD,220000,United States,In-person,United States,M,Machine Learning and AI +2023,Senior,Full-time,Data Scientist,297300,USD,297300,United States,Remote,United States,M,Data Science and Research +2023,Senior,Full-time,Data Scientist,198200,USD,198200,United States,Remote,United States,M,Data Science and Research +2023,Mid-level,Full-time,Research Scientist,210000,USD,210000,United States,Remote,United States,M,Data Science and Research +2023,Mid-level,Full-time,Research Scientist,151800,USD,151800,United States,Remote,United States,M,Data Science and Research +2023,Senior,Full-time,Data Scientist,200000,USD,200000,United States,Remote,United States,M,Data Science and Research +2023,Senior,Full-time,Data Scientist,170000,USD,170000,United States,Remote,United States,M,Data Science and Research +2023,Senior,Full-time,Data Scientist,317070,USD,317070,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Data Scientist,170730,USD,170730,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Data Engineer,128000,USD,128000,United States,In-person,United States,M,Data Engineering +2023,Senior,Full-time,Data Engineer,81500,USD,81500,United States,In-person,United States,M,Data Engineering +2023,Entry-level,Full-time,Business Data Analyst,20000,EUR,21593,Spain,In-person,Spain,M,Data Analysis +2023,Senior,Full-time,AI Developer,108000,USD,108000,Ukraine,In-person,Ukraine,M,Machine Learning and AI +2023,Senior,Full-time,AI Developer,60000,USD,60000,Ukraine,In-person,Ukraine,M,Machine Learning and AI +2023,Mid-level,Full-time,MLOps Engineer,134000,USD,134000,United States,Remote,United States,M,Machine Learning and AI +2023,Mid-level,Full-time,MLOps Engineer,124000,USD,124000,United States,Remote,United States,M,Machine Learning and AI +2023,Senior,Full-time,Data Engineer,171250,USD,171250,United States,In-person,United States,M,Data Engineering +2023,Senior,Full-time,Data Engineer,113750,USD,113750,United States,In-person,United States,M,Data Engineering +2023,Senior,Full-time,Data Engineer,165000,USD,165000,United States,In-person,United States,M,Data Engineering +2023,Senior,Full-time,Data Engineer,132300,USD,132300,United States,In-person,United States,M,Data Engineering +2023,Senior,Full-time,Data Scientist,225000,USD,225000,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Data Scientist,175000,USD,175000,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Data Engineer,230000,USD,230000,United States,In-person,United States,M,Data Engineering +2023,Senior,Full-time,Data Engineer,124500,USD,124500,United States,In-person,United States,M,Data Engineering +2023,Senior,Full-time,Machine Learning Engineer,247500,USD,247500,United States,In-person,United States,M,Machine Learning and AI +2023,Senior,Full-time,Machine Learning Engineer,172200,USD,172200,United States,In-person,United States,M,Machine Learning and AI +2023,Senior,Full-time,Data Analyst,175000,USD,175000,United States,In-person,United States,M,Data Analysis +2023,Senior,Full-time,Data Analyst,145000,USD,145000,United States,In-person,United States,M,Data Analysis +2023,Senior,Full-time,Data Analyst,148700,USD,148700,United States,In-person,United States,M,Data Analysis +2023,Senior,Full-time,Data Analyst,125600,USD,125600,United States,In-person,United States,M,Data Analysis +2023,Senior,Full-time,Data Engineer,145000,USD,145000,United States,In-person,United States,M,Data Engineering +2023,Senior,Full-time,Data Engineer,115000,USD,115000,United States,In-person,United States,M,Data Engineering +2023,Senior,Full-time,Research Scientist,200000,USD,200000,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Research Scientist,150000,USD,150000,United States,In-person,United States,M,Data Science and Research +2023,Entry-level,Full-time,Research Engineer,160000,USD,160000,United States,In-person,United States,M,Data Science and Research +2023,Entry-level,Full-time,Research Engineer,120000,USD,120000,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Data Analyst,185000,USD,185000,United States,Remote,United States,M,Data Analysis +2023,Senior,Full-time,Data Analyst,120250,USD,120250,United States,Remote,United States,M,Data Analysis +2023,Senior,Full-time,Data Scientist,275300,USD,275300,United States,Remote,United States,M,Data Science and Research +2023,Senior,Full-time,Data Scientist,183000,USD,183000,United States,Remote,United States,M,Data Science and Research +2023,Senior,Full-time,Data Architect,170000,USD,170000,United States,Remote,United States,M,Data Architecture and Modeling +2023,Senior,Full-time,Data Architect,125000,USD,125000,United States,Remote,United States,M,Data Architecture and Modeling +2023,Mid-level,Full-time,Data Architect,167500,USD,167500,United States,In-person,United States,M,Data Architecture and Modeling +2023,Mid-level,Full-time,Data Architect,106500,USD,106500,United States,In-person,United States,M,Data Architecture and Modeling +2023,Senior,Full-time,Research Scientist,250000,USD,250000,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Research Scientist,200000,USD,200000,United States,In-person,United States,M,Data Science and Research +2023,Mid-level,Full-time,Machine Learning Engineer,135000,USD,135000,United States,Hybrid,United States,L,Machine Learning and AI +2023,Senior,Full-time,Machine Learning Engineer,216000,USD,216000,United States,Remote,United States,M,Machine Learning and AI +2023,Senior,Full-time,Machine Learning Engineer,184000,USD,184000,United States,Remote,United States,M,Machine Learning and AI +2023,Senior,Full-time,Data Engineer,180000,USD,180000,United States,Remote,United States,M,Data Engineering +2023,Senior,Full-time,Data Engineer,165000,USD,165000,United States,Remote,United States,M,Data Engineering +2023,Senior,Full-time,Data Scientist,185900,USD,185900,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Data Scientist,129300,USD,129300,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Data Engineer,145000,USD,145000,United States,In-person,United States,M,Data Engineering +2023,Senior,Full-time,Data Engineer,120000,USD,120000,United States,In-person,United States,M,Data Engineering +2023,Mid-level,Full-time,Data Engineer,143865,USD,143865,United States,In-person,United States,M,Data Engineering +2023,Mid-level,Full-time,Data Engineer,115092,USD,115092,United States,In-person,United States,M,Data Engineering +2023,Mid-level,Full-time,Machine Learning Engineer,130000,USD,130000,United States,In-person,United States,M,Machine Learning and AI +2023,Mid-level,Full-time,Machine Learning Engineer,90000,USD,90000,United States,In-person,United States,M,Machine Learning and AI +2023,Senior,Full-time,Data Scientist,173000,USD,173000,United States,Remote,United States,M,Data Science and Research +2023,Senior,Full-time,Data Scientist,132000,USD,132000,United States,Remote,United States,M,Data Science and Research +2023,Senior,Full-time,Data Analyst,208049,USD,208049,United States,In-person,United States,M,Data Analysis +2023,Senior,Full-time,Data Analyst,128500,USD,128500,United States,In-person,United States,M,Data Analysis +2023,Senior,Full-time,Analytics Engineer,179820,USD,179820,United States,In-person,United States,M,Leadership and Management +2023,Senior,Full-time,Analytics Engineer,143860,USD,143860,United States,In-person,United States,M,Leadership and Management +2023,Senior,Full-time,Data Engineer,167500,USD,167500,United States,In-person,United States,M,Data Engineering +2023,Senior,Full-time,Data Engineer,106500,USD,106500,United States,In-person,United States,M,Data Engineering +2023,Senior,Full-time,Data Scientist,275300,USD,275300,United States,Remote,United States,M,Data Science and Research +2023,Senior,Full-time,Data Scientist,183500,USD,183500,United States,Remote,United States,M,Data Science and Research +2023,Mid-level,Full-time,Data Engineer,149600,USD,149600,United States,In-person,United States,M,Data Engineering +2023,Mid-level,Full-time,Data Engineer,102000,USD,102000,United States,In-person,United States,M,Data Engineering +2023,Executive,Full-time,Data Scientist,145000,USD,145000,United States,In-person,United States,M,Data Science and Research +2023,Executive,Full-time,Data Scientist,100000,USD,100000,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Data Analyst,190000,USD,190000,United States,Remote,United States,M,Data Analysis +2023,Senior,Full-time,Data Analyst,95000,USD,95000,United States,Remote,United States,M,Data Analysis +2023,Senior,Full-time,Data Analyst,153600,USD,153600,United States,In-person,United States,M,Data Analysis +2023,Senior,Full-time,Data Analyst,106800,USD,106800,United States,In-person,United States,M,Data Analysis +2023,Mid-level,Full-time,Data Scientist,90000,EUR,97171,Ireland,In-person,Ireland,M,Data Science and Research +2023,Mid-level,Full-time,Data Scientist,75000,EUR,80976,Ireland,In-person,Ireland,M,Data Science and Research +2023,Mid-level,Full-time,Data Analyst,128000,USD,128000,United States,In-person,United States,M,Data Analysis +2023,Mid-level,Full-time,Data Analyst,85000,USD,85000,United States,In-person,United States,M,Data Analysis +2023,Mid-level,Full-time,Data Engineer,151000,USD,151000,United States,In-person,United States,M,Data Engineering +2023,Mid-level,Full-time,Data Engineer,140000,USD,140000,United States,In-person,United States,M,Data Engineering +2023,Senior,Full-time,Data Scientist,275300,USD,275300,United States,Remote,United States,M,Data Science and Research +2023,Senior,Full-time,Data Scientist,183500,USD,183500,United States,Remote,United States,M,Data Science and Research +2023,Senior,Full-time,Machine Learning Scientist,220000,USD,220000,United States,In-person,United States,M,Machine Learning and AI +2023,Senior,Full-time,Machine Learning Scientist,170000,USD,170000,United States,In-person,United States,M,Machine Learning and AI +2023,Senior,Full-time,Data Analyst,135000,USD,135000,United States,In-person,United States,M,Data Analysis +2023,Senior,Full-time,Data Analyst,105500,USD,105500,United States,In-person,United States,M,Data Analysis +2023,Senior,Full-time,Data Analyst,100000,USD,100000,United States,Remote,United States,M,Data Analysis +2023,Senior,Full-time,Data Analyst,80000,USD,80000,United States,Remote,United States,M,Data Analysis +2023,Entry-level,Full-time,Applied Machine Learning Scientist,40000,EUR,43187,Germany,Hybrid,Germany,M,Machine Learning and AI +2023,Senior,Full-time,Data Engineer,160000,USD,160000,Canada,Remote,Canada,M,Data Engineering +2023,Senior,Full-time,Data Engineer,145000,USD,145000,Canada,Remote,Canada,M,Data Engineering +2023,Mid-level,Full-time,Data Analyst,154000,USD,154000,United States,In-person,United States,M,Data Analysis +2023,Mid-level,Full-time,Data Analyst,143000,USD,143000,United States,In-person,United States,M,Data Analysis +2023,Mid-level,Full-time,Data Scientist,65000,GBP,79976,United Kingdom,In-person,United Kingdom,M,Data Science and Research +2023,Mid-level,Full-time,Data Scientist,42000,GBP,51676,United Kingdom,In-person,United Kingdom,M,Data Science and Research +2023,Entry-level,Full-time,Data Scientist,190000,USD,190000,United States,In-person,United States,M,Data Science and Research +2023,Entry-level,Full-time,Data Scientist,120000,USD,120000,United States,In-person,United States,M,Data Science and Research +2023,Mid-level,Full-time,Data Scientist,70000,GBP,86128,United Kingdom,In-person,United Kingdom,M,Data Science and Research +2023,Mid-level,Full-time,Data Scientist,42000,GBP,51676,United Kingdom,In-person,United Kingdom,M,Data Science and Research +2023,Mid-level,Full-time,Data Scientist,90000,GBP,110736,United Kingdom,In-person,United Kingdom,M,Data Science and Research +2023,Mid-level,Full-time,Data Scientist,60000,GBP,73824,United Kingdom,In-person,United Kingdom,M,Data Science and Research +2023,Senior,Full-time,Data Engineer,150000,USD,150000,United States,In-person,United States,M,Data Engineering +2023,Senior,Full-time,Data Engineer,111000,USD,111000,United States,In-person,United States,M,Data Engineering +2023,Executive,Full-time,Data Engineer,265000,USD,265000,United States,In-person,United States,M,Data Engineering +2023,Executive,Full-time,Data Engineer,235000,USD,235000,United States,In-person,United States,M,Data Engineering +2023,Entry-level,Full-time,Data Scientist,112000,CHF,122638,Switzerland,Hybrid,Switzerland,L,Data Science and Research +2022,Mid-level,Full-time,Data Scientist,70000,EUR,73546,Germany,Remote,Germany,M,Data Science and Research +2023,Senior,Full-time,Data Engineer,160000,USD,160000,United States,Remote,United States,M,Data Engineering +2023,Senior,Full-time,Data Engineer,130000,USD,130000,United States,Remote,United States,M,Data Engineering +2023,Mid-level,Full-time,Data Engineer,75000,USD,75000,United States,Remote,United States,M,Data Engineering +2023,Mid-level,Full-time,Data Engineer,60400,USD,60400,United States,Remote,United States,M,Data Engineering +2023,Entry-level,Full-time,Data Analyst,85000,USD,85000,United States,Remote,United States,M,Data Analysis +2023,Entry-level,Full-time,Data Analyst,75000,USD,75000,United States,Remote,United States,M,Data Analysis +2023,Senior,Full-time,Data Engineer,252000,USD,252000,United States,In-person,United States,M,Data Engineering +2023,Senior,Full-time,Data Engineer,129000,USD,129000,United States,In-person,United States,M,Data Engineering +2023,Entry-level,Full-time,Data Engineer,92700,USD,92700,United States,Remote,United States,M,Data Engineering +2023,Entry-level,Full-time,Data Engineer,61800,USD,61800,United States,Remote,United States,M,Data Engineering +2022,Senior,Full-time,Lead Data Scientist,164000,EUR,172309,Ireland,Remote,Ireland,L,Data Science and Research +2023,Mid-level,Full-time,Data Scientist,56000,EUR,60462,Austria,Remote,Germany,M,Data Science and Research +2023,Mid-level,Full-time,Data Analyst,83500,USD,83500,United States,Remote,United States,M,Data Analysis +2023,Mid-level,Full-time,Data Analyst,52500,USD,52500,United States,Remote,United States,M,Data Analysis +2023,Senior,Full-time,Data Scientist,201036,USD,201036,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Data Scientist,134024,USD,134024,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Data Analyst,165000,USD,165000,United States,Remote,United States,M,Data Analysis +2023,Senior,Full-time,Data Analyst,140000,USD,140000,United States,Remote,United States,M,Data Analysis +2023,Entry-level,Full-time,Data Engineer,62000,USD,62000,United States,Remote,United States,M,Data Engineering +2023,Entry-level,Full-time,Data Engineer,58000,USD,58000,United States,Remote,United States,M,Data Engineering +2023,Senior,Full-time,Data Scientist,172000,USD,172000,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Data Scientist,115000,USD,115000,United States,In-person,United States,M,Data Science and Research +2023,Entry-level,Full-time,Data Engineer,125000,USD,125000,United States,In-person,United States,M,Data Engineering +2023,Entry-level,Full-time,Data Engineer,90000,USD,90000,United States,In-person,United States,M,Data Engineering +2023,Senior,Full-time,Data Engineer,163800,USD,163800,United States,In-person,United States,M,Data Engineering +2023,Senior,Full-time,Data Engineer,126000,USD,126000,United States,In-person,United States,M,Data Engineering +2023,Senior,Full-time,Data Scientist,237000,USD,237000,United States,Remote,United States,M,Data Science and Research +2023,Senior,Full-time,Data Scientist,145000,USD,145000,United States,Remote,United States,M,Data Science and Research +2023,Mid-level,Full-time,Data Engineer,90000,USD,90000,United States,Remote,United States,M,Data Engineering +2023,Mid-level,Full-time,Data Engineer,90000,USD,90000,United States,Remote,United States,M,Data Engineering +2023,Senior,Full-time,Data Engineer,139500,USD,139500,United States,In-person,United States,M,Data Engineering +2023,Senior,Full-time,Data Engineer,109400,USD,109400,United States,In-person,United States,M,Data Engineering +2023,Senior,Full-time,Data Scientist,258000,USD,258000,Canada,In-person,Canada,M,Data Science and Research +2023,Senior,Full-time,Data Scientist,190000,USD,190000,Canada,In-person,Canada,M,Data Science and Research +2023,Mid-level,Full-time,Data Engineer,145000,USD,145000,United States,In-person,United States,M,Data Engineering +2023,Mid-level,Full-time,Data Engineer,120000,USD,120000,United States,In-person,United States,M,Data Engineering +2023,Senior,Full-time,Data Engineer,205600,USD,205600,United States,In-person,United States,L,Data Engineering +2023,Senior,Full-time,Data Engineer,105700,USD,105700,United States,In-person,United States,L,Data Engineering +2023,Senior,Full-time,Data Engineer,252000,USD,252000,United States,In-person,United States,M,Data Engineering +2023,Senior,Full-time,Data Engineer,129000,USD,129000,United States,In-person,United States,M,Data Engineering +2023,Senior,Full-time,Data Scientist,239748,USD,239748,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Data Scientist,159832,USD,159832,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Data Scientist,186300,USD,186300,United States,Remote,United States,M,Data Science and Research +2023,Senior,Full-time,Data Scientist,102500,USD,102500,United States,Remote,United States,M,Data Science and Research +2023,Senior,Full-time,Data Engineer,165000,USD,165000,United States,In-person,United States,M,Data Engineering +2023,Senior,Full-time,Data Engineer,132300,USD,132300,United States,In-person,United States,M,Data Engineering +2023,Senior,Full-time,Data Scientist,190000,USD,190000,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Data Scientist,126000,USD,126000,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Data Architect,149040,USD,149040,United States,Remote,United States,M,Data Architecture and Modeling +2023,Senior,Full-time,Data Architect,113900,USD,113900,United States,Remote,United States,M,Data Architecture and Modeling +2023,Senior,Full-time,Data Engineer,153600,USD,153600,United States,Remote,United States,M,Data Engineering +2023,Senior,Full-time,Data Engineer,106800,USD,106800,United States,Remote,United States,M,Data Engineering +2023,Senior,Full-time,Data Engineer,172600,USD,172600,United States,Remote,United States,M,Data Engineering +2023,Senior,Full-time,Data Engineer,107900,USD,107900,United States,Remote,United States,M,Data Engineering +2023,Senior,Full-time,Data Analyst,180180,USD,180180,United States,In-person,United States,M,Data Analysis +2023,Senior,Full-time,Data Analyst,106020,USD,106020,United States,In-person,United States,M,Data Analysis +2023,Senior,Full-time,Data Architect,376080,USD,376080,United States,Remote,United States,M,Data Architecture and Modeling +2023,Senior,Full-time,Data Architect,213120,USD,213120,United States,Remote,United States,M,Data Architecture and Modeling +2023,Senior,Full-time,Data Analyst,153600,USD,153600,United States,In-person,United States,M,Data Analysis +2023,Senior,Full-time,Data Analyst,100500,USD,100500,United States,In-person,United States,M,Data Analysis +2023,Senior,Full-time,Data Analyst,206500,USD,206500,United States,Remote,United States,M,Data Analysis +2023,Senior,Full-time,Data Analyst,121600,USD,121600,United States,Remote,United States,M,Data Analysis +2023,Senior,Full-time,Data Engineer,260000,USD,260000,United States,In-person,United States,M,Data Engineering +2023,Senior,Full-time,Data Engineer,225000,USD,225000,United States,In-person,United States,M,Data Engineering +2023,Executive,Full-time,Data Engineer,194500,USD,194500,United States,In-person,United States,M,Data Engineering +2023,Executive,Full-time,Data Engineer,115500,USD,115500,United States,In-person,United States,M,Data Engineering +2023,Senior,Full-time,Cloud Database Engineer,170000,USD,170000,United States,Remote,United States,L,Cloud and Database +2023,Senior,Full-time,Applied Machine Learning Scientist,90000,USD,90000,United States,Remote,United States,L,Machine Learning and AI +2023,Entry-level,Full-time,Data Analyst,95000,USD,95000,United States,Remote,United States,M,Data Analysis +2023,Entry-level,Full-time,Data Analyst,70000,USD,70000,United States,Remote,United States,M,Data Analysis +2023,Senior,Full-time,Data Engineer,275000,USD,275000,United States,In-person,United States,M,Data Engineering +2023,Senior,Full-time,Data Engineer,160000,USD,160000,United States,In-person,United States,M,Data Engineering +2023,Senior,Full-time,Data Analyst,115934,USD,115934,United States,Remote,United States,M,Data Analysis +2023,Senior,Full-time,Data Analyst,81666,USD,81666,United States,Remote,United States,M,Data Analysis +2023,Senior,Full-time,Data Scientist,175000,USD,175000,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Data Scientist,120000,USD,120000,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Machine Learning Engineer,150000,USD,150000,United States,Remote,United States,M,Machine Learning and AI +2023,Senior,Full-time,Machine Learning Engineer,120000,USD,120000,United States,Remote,United States,M,Machine Learning and AI +2023,Senior,Full-time,Research Engineer,200000,USD,200000,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Research Engineer,175000,USD,175000,United States,In-person,United States,M,Data Science and Research +2023,Mid-level,Full-time,Data Analyst,206000,USD,206000,United States,In-person,United States,M,Data Analysis +2023,Mid-level,Full-time,Data Analyst,130000,USD,130000,United States,In-person,United States,M,Data Analysis +2023,Senior,Full-time,Data Architect,138000,USD,138000,United Kingdom,Remote,United Kingdom,M,Data Architecture and Modeling +2023,Senior,Full-time,Data Architect,92000,USD,92000,United Kingdom,Remote,United Kingdom,M,Data Architecture and Modeling +2023,Senior,Full-time,Data Manager,65000,USD,65000,Colombia,In-person,Colombia,M,Leadership and Management +2023,Senior,Full-time,Data Manager,48000,USD,48000,Colombia,In-person,Colombia,M,Leadership and Management +2023,Senior,Full-time,Data Analyst,110000,USD,110000,United States,Remote,United States,M,Data Analysis +2023,Senior,Full-time,Data Analyst,75000,USD,75000,United States,Remote,United States,M,Data Analysis +2023,Senior,Full-time,Analytics Engineer,130000,USD,130000,United States,In-person,United States,M,Leadership and Management +2023,Senior,Full-time,Analytics Engineer,87000,USD,87000,United States,In-person,United States,M,Leadership and Management +2023,Mid-level,Full-time,Data Analyst,160000,USD,160000,United States,In-person,United States,M,Data Analysis +2023,Mid-level,Full-time,Data Analyst,112000,USD,112000,United States,In-person,United States,M,Data Analysis +2023,Mid-level,Full-time,Data Engineer,162500,USD,162500,United States,In-person,United States,M,Data Engineering +2023,Mid-level,Full-time,Data Engineer,130000,USD,130000,United States,In-person,United States,M,Data Engineering +2023,Senior,Full-time,Data Science Manager,299500,USD,299500,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Data Science Manager,245100,USD,245100,United States,In-person,United States,M,Data Science and Research +2023,Mid-level,Full-time,Data Scientist,145000,USD,145000,United States,In-person,United States,M,Data Science and Research +2023,Mid-level,Full-time,Data Scientist,100000,USD,100000,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Data Engineer,147100,USD,147100,United States,In-person,United States,M,Data Engineering +2023,Senior,Full-time,Data Engineer,90700,USD,90700,United States,In-person,United States,M,Data Engineering +2023,Entry-level,Full-time,Data Engineer,115100,USD,115100,United States,In-person,United States,M,Data Engineering +2023,Entry-level,Full-time,Data Engineer,73900,USD,73900,United States,In-person,United States,M,Data Engineering +2023,Senior,Full-time,Data Engineer,168400,USD,168400,United States,In-person,United States,M,Data Engineering +2023,Senior,Full-time,Data Engineer,105200,USD,105200,United States,In-person,United States,M,Data Engineering +2023,Senior,Full-time,Data Scientist,210000,USD,210000,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Data Scientist,160000,USD,160000,United States,In-person,United States,M,Data Science and Research +2023,Mid-level,Full-time,Data Scientist,145000,USD,145000,United States,In-person,United States,M,Data Science and Research +2023,Mid-level,Full-time,Data Scientist,100000,USD,100000,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Applied Scientist,222200,USD,222200,United States,In-person,United States,L,Data Science and Research +2023,Senior,Full-time,Applied Scientist,136000,USD,136000,United States,In-person,United States,L,Data Science and Research +2023,Mid-level,Full-time,Data Analyst,100000,USD,100000,United States,In-person,United States,M,Data Analysis +2023,Mid-level,Full-time,Data Analyst,85000,USD,85000,United States,In-person,United States,M,Data Analysis +2023,Mid-level,Full-time,Data Engineer,70000,GBP,86128,United Kingdom,Remote,United Kingdom,M,Data Engineering +2023,Mid-level,Full-time,Data Engineer,47500,GBP,58444,United Kingdom,Remote,United Kingdom,M,Data Engineering +2023,Executive,Full-time,Data Scientist,200000,USD,200000,United States,In-person,United States,M,Data Science and Research +2023,Executive,Full-time,Data Scientist,145000,USD,145000,United States,In-person,United States,M,Data Science and Research +2023,Mid-level,Full-time,Data Engineer,140000,USD,140000,United States,In-person,United States,M,Data Engineering +2023,Mid-level,Full-time,Data Engineer,95000,USD,95000,United States,In-person,United States,M,Data Engineering +2023,Senior,Full-time,Data Analyst,185000,USD,185000,United States,Remote,United States,M,Data Analysis +2023,Senior,Full-time,Data Analyst,120250,USD,120250,United States,Remote,United States,M,Data Analysis +2023,Mid-level,Full-time,Financial Data Analyst,130000,USD,130000,United States,Remote,United States,L,Data Analysis +2023,Senior,Full-time,Data Scientist,205000,USD,205000,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Data Scientist,140000,USD,140000,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Data Scientist,297300,USD,297300,United States,Remote,United States,M,Data Science and Research +2023,Senior,Full-time,Data Scientist,198200,USD,198200,United States,Remote,United States,M,Data Science and Research +2023,Senior,Full-time,Research Scientist,141288,USD,141288,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Research Scientist,94192,USD,94192,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Data Infrastructure Engineer,184000,USD,184000,United States,Remote,United States,M,Data Engineering +2023,Senior,Full-time,Data Infrastructure Engineer,143000,USD,143000,United States,Remote,United States,M,Data Engineering +2023,Senior,Full-time,Data Analyst,70000,USD,70000,United States,In-person,United States,M,Data Analysis +2023,Senior,Full-time,Data Analyst,55000,USD,55000,United States,In-person,United States,M,Data Analysis +2023,Senior,Full-time,Analytics Engineer,275300,USD,275300,United States,Remote,United States,M,Leadership and Management +2023,Senior,Full-time,Analytics Engineer,183500,USD,183500,United States,Remote,United States,M,Leadership and Management +2023,Mid-level,Full-time,Data Analyst,75000,USD,75000,United States,Remote,United States,M,Data Analysis +2023,Mid-level,Full-time,Data Analyst,65000,USD,65000,United States,Remote,United States,M,Data Analysis +2023,Mid-level,Full-time,ML Engineer,160000,USD,160000,United States,In-person,United States,M,Machine Learning and AI +2023,Mid-level,Full-time,ML Engineer,147000,USD,147000,United States,In-person,United States,M,Machine Learning and AI +2023,Senior,Full-time,Data Architect,149040,USD,149040,United States,Remote,United States,M,Data Architecture and Modeling +2023,Senior,Full-time,Data Architect,113900,USD,113900,United States,Remote,United States,M,Data Architecture and Modeling +2023,Mid-level,Full-time,Software Data Engineer,100000,SGD,74883,Singapore,Remote,Singapore,L,Data Engineering +2023,Senior,Full-time,Data Analyst,180180,USD,180180,United States,In-person,United States,M,Data Analysis +2023,Senior,Full-time,Data Analyst,106020,USD,106020,United States,In-person,United States,M,Data Analysis +2023,Entry-level,Full-time,AI Programmer,70000,USD,70000,India,In-person,Australia,L,Machine Learning and AI +2023,Entry-level,Full-time,AI Developer,80000,USD,80000,Sweden,Hybrid,Sweden,M,Machine Learning and AI +2023,Mid-level,Full-time,Machine Learning Engineer,250000,USD,250000,United States,In-person,United States,M,Machine Learning and AI +2023,Mid-level,Full-time,Machine Learning Engineer,150000,USD,150000,United States,In-person,United States,M,Machine Learning and AI +2023,Senior,Full-time,Data Engineer,139500,USD,139500,United States,In-person,United States,M,Data Engineering +2023,Senior,Full-time,Data Engineer,109400,USD,109400,United States,In-person,United States,M,Data Engineering +2023,Senior,Full-time,Data Scientist,105000,USD,105000,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Data Scientist,70000,USD,70000,United States,In-person,United States,M,Data Science and Research +2023,Executive,Full-time,Data Engineer,210914,USD,210914,United States,Remote,United States,M,Data Engineering +2023,Executive,Full-time,Data Engineer,116704,USD,116704,United States,Remote,United States,M,Data Engineering +2023,Entry-level,Full-time,Research Scientist,150000,USD,150000,United States,In-person,United States,M,Data Science and Research +2023,Entry-level,Full-time,Research Scientist,100000,USD,100000,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Data Engineer,146000,USD,146000,United States,In-person,United States,M,Data Engineering +2023,Senior,Full-time,Data Engineer,75000,USD,75000,United States,In-person,United States,M,Data Engineering +2023,Entry-level,Full-time,Data Analyst,75000,USD,75000,United States,Remote,United States,M,Data Analysis +2023,Entry-level,Full-time,Data Analyst,60000,USD,60000,United States,Remote,United States,M,Data Analysis +2023,Mid-level,Full-time,Analytics Engineer,185700,USD,185700,United States,In-person,United States,M,Leadership and Management +2023,Mid-level,Full-time,Analytics Engineer,165000,USD,165000,United States,In-person,United States,M,Leadership and Management +2023,Senior,Full-time,Data Engineer,160000,USD,160000,United States,Remote,United States,M,Data Engineering +2023,Senior,Full-time,Data Engineer,130000,USD,130000,United States,Remote,United States,M,Data Engineering +2023,Senior,Full-time,Data Analyst,169000,USD,169000,United States,In-person,United States,M,Data Analysis +2023,Senior,Full-time,Data Analyst,110600,USD,110600,United States,In-person,United States,M,Data Analysis +2023,Senior,Full-time,Data Operations Engineer,193000,USD,193000,United States,Remote,United States,M,Data Quality and Operations +2023,Senior,Full-time,Data Operations Engineer,136850,USD,136850,United States,Remote,United States,M,Data Quality and Operations +2023,Senior,Full-time,Machine Learning Engineer,139500,USD,139500,United States,In-person,United States,M,Machine Learning and AI +2023,Senior,Full-time,Machine Learning Engineer,109400,USD,109400,United States,In-person,United States,M,Machine Learning and AI +2023,Senior,Full-time,Data Engineer,276000,USD,276000,United States,Remote,United States,M,Data Engineering +2023,Senior,Full-time,Data Engineer,178500,USD,178500,United States,Remote,United States,M,Data Engineering +2023,Mid-level,Full-time,Data Scientist,55000,EUR,59382,Spain,In-person,Spain,M,Data Science and Research +2023,Mid-level,Full-time,Data Scientist,45000,EUR,48585,Spain,In-person,Spain,M,Data Science and Research +2023,Mid-level,Full-time,Data Engineer,70000,EUR,75577,Slovenia,Remote,Slovenia,M,Data Engineering +2023,Mid-level,Full-time,Data Engineer,45000,EUR,48585,Slovenia,Remote,Slovenia,M,Data Engineering +2023,Senior,Full-time,Machine Learning Engineer,161000,GBP,198094,United Kingdom,In-person,United Kingdom,M,Machine Learning and AI +2023,Senior,Full-time,Machine Learning Engineer,83300,GBP,102492,United Kingdom,In-person,United Kingdom,M,Machine Learning and AI +2023,Senior,Full-time,Data Engineer,112700,GBP,138666,United Kingdom,In-person,United Kingdom,M,Data Engineering +2023,Senior,Full-time,Data Engineer,83300,GBP,102492,United Kingdom,In-person,United Kingdom,M,Data Engineering +2023,Senior,Full-time,Data Engineer,252000,USD,252000,United States,In-person,United States,M,Data Engineering +2023,Senior,Full-time,Data Engineer,129000,USD,129000,United States,In-person,United States,M,Data Engineering +2022,Senior,Full-time,BI Developer,130000,USD,130000,United States,Remote,United States,L,BI and Visualization +2021,Mid-level,Full-time,Data Science Lead,150000,USD,150000,United States,Remote,United States,M,Data Science and Research +2023,Senior,Full-time,Data Engineer,163800,USD,163800,United States,In-person,United States,M,Data Engineering +2023,Senior,Full-time,Data Engineer,126000,USD,126000,United States,In-person,United States,M,Data Engineering +2023,Senior,Full-time,ML Engineer,260000,USD,260000,Canada,Remote,Canada,M,Machine Learning and AI +2023,Senior,Full-time,ML Engineer,110000,USD,110000,Canada,Remote,Canada,M,Machine Learning and AI +2023,Senior,Full-time,Analytics Engineer,170000,USD,170000,United States,Remote,United States,M,Leadership and Management +2023,Senior,Full-time,Analytics Engineer,130000,USD,130000,United States,Remote,United States,M,Leadership and Management +2023,Senior,Full-time,Machine Learning Engineer,247500,USD,247500,United States,In-person,United States,M,Machine Learning and AI +2023,Senior,Full-time,Machine Learning Engineer,172200,USD,172200,United States,In-person,United States,M,Machine Learning and AI +2023,Senior,Full-time,Data Scientist,239748,USD,239748,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Data Scientist,159832,USD,159832,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Machine Learning Engineer,163800,USD,163800,United States,In-person,United States,M,Machine Learning and AI +2023,Senior,Full-time,Machine Learning Engineer,126000,USD,126000,United States,In-person,United States,M,Machine Learning and AI +2023,Mid-level,Full-time,Data Scientist,128750,USD,128750,United States,In-person,United States,M,Data Science and Research +2023,Mid-level,Full-time,Data Scientist,106250,USD,106250,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Data Engineer,252000,USD,252000,United States,In-person,United States,M,Data Engineering +2023,Senior,Full-time,Data Engineer,129000,USD,129000,United States,In-person,United States,M,Data Engineering +2023,Senior,Full-time,Data Science Manager,299500,USD,299500,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Data Science Manager,245100,USD,245100,United States,In-person,United States,M,Data Science and Research +2023,Mid-level,Full-time,Data Analytics Manager,155000,USD,155000,United States,In-person,United States,M,Leadership and Management +2023,Mid-level,Full-time,Data Analytics Manager,140000,USD,140000,United States,In-person,United States,M,Leadership and Management +2023,Executive,Full-time,Data Engineer,167500,USD,167500,United States,In-person,United States,M,Data Engineering +2023,Executive,Full-time,Data Engineer,106500,USD,106500,United States,In-person,United States,M,Data Engineering +2023,Senior,Full-time,Data Architect,188500,USD,188500,United States,Remote,United States,M,Data Architecture and Modeling +2023,Senior,Full-time,Data Architect,117000,USD,117000,United States,Remote,United States,M,Data Architecture and Modeling +2023,Senior,Full-time,Data Analyst,250000,USD,250000,United States,Remote,United States,M,Data Analysis +2023,Senior,Full-time,Data Analyst,138000,USD,138000,United States,Remote,United States,M,Data Analysis +2023,Mid-level,Full-time,Data Analyst,130000,USD,130000,Canada,Remote,Canada,M,Data Analysis +2023,Mid-level,Full-time,Data Analyst,100000,USD,100000,Canada,Remote,Canada,M,Data Analysis +2023,Senior,Full-time,Deep Learning Researcher,115000,EUR,124163,Germany,In-person,Germany,L,Machine Learning and AI +2023,Senior,Full-time,Data Engineer,140000,USD,140000,United States,In-person,United States,M,Data Engineering +2023,Senior,Full-time,Data Engineer,120000,USD,120000,United States,In-person,United States,M,Data Engineering +2023,Senior,Full-time,BI Analyst,160000,USD,160000,United States,In-person,United States,M,BI and Visualization +2023,Senior,Full-time,BI Analyst,135000,USD,135000,United States,In-person,United States,M,BI and Visualization +2023,Mid-level,Full-time,Data Science Manager,104500,USD,104500,United States,In-person,United States,M,Data Science and Research +2023,Mid-level,Full-time,Data Science Manager,70000,USD,70000,United States,In-person,United States,M,Data Science and Research +2023,Mid-level,Full-time,Data Science Consultant,90000,USD,90000,United States,In-person,United States,M,Data Science and Research +2023,Mid-level,Full-time,Data Science Consultant,70000,USD,70000,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Data Engineer,153600,USD,153600,United States,Remote,United States,M,Data Engineering +2023,Senior,Full-time,Data Engineer,106800,USD,106800,United States,Remote,United States,M,Data Engineering +2023,Entry-level,Full-time,Data Engineer,125000,USD,125000,United States,In-person,United States,M,Data Engineering +2023,Entry-level,Full-time,Data Engineer,90000,USD,90000,United States,In-person,United States,M,Data Engineering +2023,Mid-level,Full-time,Research Scientist,185000,USD,185000,United States,Remote,United States,M,Data Science and Research +2023,Mid-level,Full-time,Research Scientist,125000,USD,125000,United States,Remote,United States,M,Data Science and Research +2023,Senior,Full-time,Data Analyst,127000,USD,127000,United States,Remote,United States,M,Data Analysis +2023,Senior,Full-time,Data Analyst,94000,USD,94000,United States,Remote,United States,M,Data Analysis +2023,Senior,Full-time,Data Scientist,210550,USD,210550,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Data Scientist,153300,USD,153300,United States,In-person,United States,M,Data Science and Research +2023,Mid-level,Full-time,Data Scientist,200000,USD,200000,United States,Remote,United States,M,Data Science and Research +2023,Mid-level,Full-time,Data Scientist,150000,USD,150000,United States,Remote,United States,M,Data Science and Research +2023,Senior,Full-time,Data Analyst,161500,USD,161500,United States,Remote,United States,M,Data Analysis +2023,Senior,Full-time,Data Analyst,119500,USD,119500,United States,Remote,United States,M,Data Analysis +2023,Senior,Full-time,Data Analyst,175000,USD,175000,United States,In-person,United States,M,Data Analysis +2023,Senior,Full-time,Data Analyst,145000,USD,145000,United States,In-person,United States,M,Data Analysis +2023,Senior,Full-time,Data Scientist,175000,USD,175000,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Data Scientist,148750,USD,148750,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Data Analytics Specialist,105000,USD,105000,United States,In-person,United States,M,Leadership and Management +2023,Senior,Full-time,Data Analytics Specialist,85000,USD,85000,United States,In-person,United States,M,Leadership and Management +2023,Senior,Full-time,Research Scientist,215000,USD,215000,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Research Scientist,146300,USD,146300,United States,In-person,United States,M,Data Science and Research +2023,Entry-level,Full-time,AI Developer,200000,EUR,215936,Germany,Remote,Germany,L,Machine Learning and AI +2023,Mid-level,Full-time,Data Engineer,72000,USD,72000,Mexico,Remote,Mexico,M,Data Engineering +2023,Mid-level,Full-time,Data Engineer,60000,USD,60000,Mexico,Remote,Mexico,M,Data Engineering +2023,Senior,Full-time,Machine Learning Engineer,153400,USD,153400,United States,In-person,United States,M,Machine Learning and AI +2023,Senior,Full-time,Machine Learning Engineer,122700,USD,122700,United States,In-person,United States,M,Machine Learning and AI +2023,Mid-level,Full-time,Data Engineer,260000,USD,260000,United States,In-person,United States,M,Data Engineering +2023,Mid-level,Full-time,Data Engineer,175000,USD,175000,United States,In-person,United States,M,Data Engineering +2023,Senior,Full-time,Data Scientist,186300,USD,186300,United States,Remote,United States,M,Data Science and Research +2023,Senior,Full-time,Data Scientist,123900,USD,123900,United States,Remote,United States,M,Data Science and Research +2023,Mid-level,Full-time,Research Scientist,340000,USD,340000,United States,Remote,United States,M,Data Science and Research +2023,Mid-level,Full-time,Research Scientist,150000,USD,150000,United States,Remote,United States,M,Data Science and Research +2023,Senior,Full-time,Machine Learning Engineer,153400,USD,153400,United States,In-person,United States,M,Machine Learning and AI +2023,Senior,Full-time,Machine Learning Engineer,122700,USD,122700,United States,In-person,United States,M,Machine Learning and AI +2023,Mid-level,Full-time,Data Engineer,250000,USD,250000,United States,In-person,United States,M,Data Engineering +2023,Mid-level,Full-time,Data Engineer,175000,USD,175000,United States,In-person,United States,M,Data Engineering +2023,Mid-level,Full-time,Data Scientist,60000,EUR,64781,France,Hybrid,France,M,Data Science and Research +2023,Senior,Full-time,Data Analyst,185900,USD,185900,United States,In-person,United States,M,Data Analysis +2023,Senior,Full-time,Data Analyst,121700,USD,121700,United States,In-person,United States,M,Data Analysis +2023,Senior,Full-time,Data Analyst,153600,USD,153600,United States,In-person,United States,M,Data Analysis +2023,Senior,Full-time,Data Analyst,106800,USD,106800,United States,In-person,United States,M,Data Analysis +2023,Senior,Freelance,Software Data Engineer,50000,USD,50000,Nigeria,Hybrid,Australia,M,Data Engineering +2023,Entry-level,Full-time,Data Analyst,100000,USD,100000,Uzbekistan,Remote,United States,L,Data Analysis +2023,Senior,Full-time,Machine Learning Engineer,247500,USD,247500,United States,In-person,United States,M,Machine Learning and AI +2023,Senior,Full-time,Machine Learning Engineer,172200,USD,172200,United States,In-person,United States,M,Machine Learning and AI +2023,Executive,Full-time,Data Engineer,310000,USD,310000,United States,Remote,United States,M,Data Engineering +2023,Executive,Full-time,Data Engineer,239000,USD,239000,United States,Remote,United States,M,Data Engineering +2023,Senior,Full-time,Data Analyst,125000,USD,125000,United States,In-person,United States,M,Data Analysis +2023,Senior,Full-time,Data Analyst,110000,USD,110000,United States,In-person,United States,M,Data Analysis +2023,Entry-level,Full-time,Data Analyst,150000,USD,150000,United States,In-person,United States,M,Data Analysis +2023,Entry-level,Full-time,Data Analyst,100000,USD,100000,United States,In-person,United States,M,Data Analysis +2023,Senior,Full-time,Data Scientist,149076,USD,149076,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Data Scientist,82365,USD,82365,United States,In-person,United States,M,Data Science and Research +2023,Mid-level,Full-time,Data Engineer,146000,USD,146000,United States,In-person,United States,M,Data Engineering +2023,Mid-level,Full-time,Data Engineer,75000,USD,75000,United States,In-person,United States,M,Data Engineering +2023,Senior,Full-time,Machine Learning Engineer,139500,USD,139500,United States,In-person,United States,M,Machine Learning and AI +2023,Senior,Full-time,Machine Learning Engineer,109400,USD,109400,United States,In-person,United States,M,Machine Learning and AI +2023,Senior,Full-time,Data Engineer,139500,USD,139500,United States,In-person,United States,M,Data Engineering +2023,Senior,Full-time,Data Engineer,109400,USD,109400,United States,In-person,United States,M,Data Engineering +2023,Mid-level,Full-time,Data Engineer,149600,USD,149600,United States,In-person,United States,M,Data Engineering +2023,Mid-level,Full-time,Data Engineer,102000,USD,102000,United States,In-person,United States,M,Data Engineering +2023,Mid-level,Full-time,Data Analyst,80000,GBP,98432,United Kingdom,In-person,United Kingdom,M,Data Analysis +2023,Mid-level,Full-time,Data Analyst,40000,GBP,49216,United Kingdom,In-person,United Kingdom,M,Data Analysis +2023,Senior,Full-time,Data Engineer,252000,USD,252000,United States,In-person,United States,M,Data Engineering +2023,Senior,Full-time,Data Engineer,129000,USD,129000,United States,In-person,United States,M,Data Engineering +2023,Senior,Full-time,Data Analyst,95000,USD,95000,United States,In-person,United States,M,Data Analysis +2023,Senior,Full-time,Data Analyst,85500,USD,85500,United States,In-person,United States,M,Data Analysis +2023,Senior,Full-time,Data Analyst,185900,USD,185900,United States,In-person,United States,M,Data Analysis +2023,Senior,Full-time,Data Analyst,121700,USD,121700,United States,In-person,United States,M,Data Analysis +2023,Entry-level,Full-time,Research Scientist,150000,USD,150000,United States,In-person,United States,M,Data Science and Research +2023,Entry-level,Full-time,Research Scientist,100000,USD,100000,United States,In-person,United States,M,Data Science and Research +2023,Mid-level,Full-time,Data Engineer,145000,USD,145000,United States,In-person,United States,M,Data Engineering +2023,Mid-level,Full-time,Data Engineer,125000,USD,125000,United States,In-person,United States,M,Data Engineering +2023,Mid-level,Full-time,Data Scientist,150000,USD,150000,United States,Remote,United States,M,Data Science and Research +2023,Mid-level,Full-time,Data Scientist,97750,USD,97750,United States,Remote,United States,M,Data Science and Research +2023,Senior,Full-time,Data Scientist,201000,USD,201000,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Data Scientist,122000,USD,122000,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Data Engineer,252000,USD,252000,United States,In-person,United States,M,Data Engineering +2023,Senior,Full-time,Data Engineer,129000,USD,129000,United States,In-person,United States,M,Data Engineering +2023,Senior,Full-time,Data Analyst,120000,USD,120000,United States,Remote,United States,M,Data Analysis +2023,Senior,Full-time,Data Analyst,75000,USD,75000,United States,Remote,United States,M,Data Analysis +2023,Mid-level,Full-time,Data Scientist,116990,USD,116990,United States,Remote,United States,M,Data Science and Research +2023,Mid-level,Full-time,Data Scientist,82920,USD,82920,United States,Remote,United States,M,Data Science and Research +2023,Senior,Full-time,Data Scientist,185900,USD,185900,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Data Scientist,129300,USD,129300,United States,In-person,United States,M,Data Science and Research +2023,Mid-level,Full-time,Machine Learning Scientist,200000,USD,200000,United States,In-person,United States,S,Machine Learning and AI +2023,Mid-level,Full-time,Machine Learning Scientist,125000,USD,125000,United States,In-person,United States,S,Machine Learning and AI +2023,Senior,Full-time,Data Scientist,201000,USD,201000,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Data Scientist,122000,USD,122000,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Machine Learning Engineer,204500,USD,204500,United States,In-person,United States,M,Machine Learning and AI +2023,Senior,Full-time,Machine Learning Engineer,142200,USD,142200,United States,In-person,United States,M,Machine Learning and AI +2023,Senior,Full-time,Data Manager,155000,USD,155000,United States,In-person,United States,M,Leadership and Management +2023,Senior,Full-time,Data Manager,140000,USD,140000,United States,In-person,United States,M,Leadership and Management +2023,Mid-level,Full-time,Machine Learning Infrastructure Engineer,205920,USD,205920,United States,In-person,United States,M,Machine Learning and AI +2023,Mid-level,Full-time,Machine Learning Infrastructure Engineer,171600,USD,171600,United States,In-person,United States,M,Machine Learning and AI +2023,Senior,Full-time,Data Engineer,121500,USD,121500,United States,Remote,United States,M,Data Engineering +2023,Senior,Full-time,Data Engineer,78000,USD,78000,United States,Remote,United States,M,Data Engineering +2023,Mid-level,Full-time,Data Engineer,154000,USD,154000,United States,In-person,United States,M,Data Engineering +2023,Mid-level,Full-time,Data Engineer,116000,USD,116000,United States,In-person,United States,M,Data Engineering +2023,Senior,Full-time,Data Scientist,190000,USD,190000,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Data Scientist,136000,USD,136000,United States,In-person,United States,M,Data Science and Research +2023,Mid-level,Full-time,Data Analyst,65000,GBP,79976,United Kingdom,Remote,United Kingdom,M,Data Analysis +2023,Mid-level,Full-time,Data Analyst,36050,GBP,44356,United Kingdom,Remote,United Kingdom,M,Data Analysis +2023,Senior,Full-time,Data Analyst,180000,USD,180000,United States,In-person,United States,M,Data Analysis +2023,Senior,Full-time,Data Analyst,110000,USD,110000,United States,In-person,United States,M,Data Analysis +2023,Senior,Full-time,Data Scientist,275300,USD,275300,United States,Remote,United States,M,Data Science and Research +2023,Senior,Full-time,Data Scientist,183000,USD,183000,United States,Remote,United States,M,Data Science and Research +2023,Senior,Full-time,Data Engineer,170000,USD,170000,United States,In-person,United States,M,Data Engineering +2023,Senior,Full-time,Data Engineer,140000,USD,140000,United States,In-person,United States,M,Data Engineering +2023,Senior,Full-time,Data Engineer,154000,USD,154000,United States,In-person,United States,M,Data Engineering +2023,Senior,Full-time,Data Engineer,116000,USD,116000,United States,In-person,United States,M,Data Engineering +2023,Senior,Full-time,Data Engineer,160000,USD,160000,United States,Remote,United States,M,Data Engineering +2023,Senior,Full-time,Data Engineer,130000,USD,130000,United States,Remote,United States,M,Data Engineering +2023,Mid-level,Full-time,Data Engineer,200000,USD,200000,United States,In-person,United States,M,Data Engineering +2023,Mid-level,Full-time,Data Engineer,120000,USD,120000,United States,In-person,United States,M,Data Engineering +2023,Senior,Full-time,Data Scientist,175000,USD,175000,United States,Remote,United States,M,Data Science and Research +2023,Senior,Full-time,Data Scientist,160000,USD,160000,United States,Remote,United States,M,Data Science and Research +2023,Mid-level,Full-time,Data Engineer,105000,GBP,129192,United Kingdom,In-person,United Kingdom,M,Data Engineering +2023,Mid-level,Full-time,Data Engineer,85000,GBP,104584,United Kingdom,In-person,United Kingdom,M,Data Engineering +2023,Senior,Full-time,Data Engineer,153600,USD,153600,United States,In-person,United States,M,Data Engineering +2023,Senior,Full-time,Data Engineer,106800,USD,106800,United States,In-person,United States,M,Data Engineering +2023,Entry-level,Full-time,Data Analyst,85000,USD,85000,United States,Remote,United States,M,Data Analysis +2023,Entry-level,Full-time,Data Analyst,75000,USD,75000,United States,Remote,United States,M,Data Analysis +2023,Senior,Full-time,Data Scientist,225000,USD,225000,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Data Scientist,156400,USD,156400,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Analytics Engineer,150000,USD,150000,United States,In-person,United States,M,Leadership and Management +2023,Senior,Full-time,Analytics Engineer,120000,USD,120000,United States,In-person,United States,M,Leadership and Management +2023,Senior,Full-time,Machine Learning Engineer,163800,USD,163800,United States,In-person,United States,M,Machine Learning and AI +2023,Senior,Full-time,Machine Learning Engineer,126000,USD,126000,United States,In-person,United States,M,Machine Learning and AI +2023,Senior,Full-time,Data Analyst,145000,USD,145000,United States,Remote,United States,M,Data Analysis +2023,Senior,Full-time,Data Analyst,90000,USD,90000,United States,Remote,United States,M,Data Analysis +2023,Senior,Full-time,Machine Learning Engineer,204500,USD,204500,United States,In-person,United States,M,Machine Learning and AI +2023,Senior,Full-time,Machine Learning Engineer,142200,USD,142200,United States,In-person,United States,M,Machine Learning and AI +2023,Senior,Full-time,Data Analyst,95000,USD,95000,United States,In-person,United States,M,Data Analysis +2023,Senior,Full-time,Data Analyst,85500,USD,85500,United States,In-person,United States,M,Data Analysis +2023,Senior,Full-time,Data Engineer,167500,USD,167500,United States,In-person,United States,M,Data Engineering +2023,Senior,Full-time,Data Engineer,106500,USD,106500,United States,In-person,United States,M,Data Engineering +2023,Senior,Full-time,Data Engineer,163800,USD,163800,United States,In-person,United States,M,Data Engineering +2023,Senior,Full-time,Data Engineer,126000,USD,126000,United States,In-person,United States,M,Data Engineering +2023,Mid-level,Full-time,Data Analytics Manager,155000,USD,155000,United States,In-person,United States,M,Leadership and Management +2023,Mid-level,Full-time,Data Analytics Manager,140000,USD,140000,United States,In-person,United States,M,Leadership and Management +2023,Senior,Full-time,Research Scientist,250000,USD,250000,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Research Scientist,200000,USD,200000,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Data Scientist,260000,USD,260000,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Data Scientist,186000,USD,186000,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Data Engineer,160000,USD,160000,United States,Remote,United States,M,Data Engineering +2023,Senior,Full-time,Data Engineer,130000,USD,130000,United States,Remote,United States,M,Data Engineering +2023,Senior,Full-time,Research Scientist,200000,USD,200000,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Research Scientist,150000,USD,150000,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Data Scientist,45000,EUR,48585,Spain,In-person,Spain,M,Data Science and Research +2023,Senior,Full-time,Data Scientist,36000,EUR,38868,Spain,In-person,Spain,M,Data Science and Research +2023,Senior,Full-time,Data Scientist,150000,USD,150000,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Data Scientist,120000,USD,120000,United States,In-person,United States,M,Data Science and Research +2023,Entry-level,Full-time,Data Analyst,30000,USD,30000,India,Hybrid,India,M,Data Analysis +2023,Mid-level,Full-time,Research Scientist,185000,USD,185000,United States,In-person,United States,M,Data Science and Research +2023,Mid-level,Full-time,Research Scientist,125000,USD,125000,United States,In-person,United States,M,Data Science and Research +2022,Entry-level,Part-time,Data Analyst,34320,USD,34320,United States,Remote,United States,S,Data Analysis +2023,Senior,Full-time,Head of Data,70000,EUR,75577,Portugal,Remote,Portugal,L,Leadership and Management +2022,Executive,Full-time,Data Science Manager,106000,USD,106000,Uzbekistan,In-person,Russian Federation,L,Data Science and Research +2023,Senior,Full-time,Data Analyst,175000,USD,175000,United States,Remote,United States,M,Data Analysis +2023,Senior,Full-time,Data Analyst,130000,USD,130000,United States,Remote,United States,M,Data Analysis +2023,Senior,Full-time,Data Analyst,122000,USD,122000,United States,Remote,United States,M,Data Analysis +2023,Senior,Full-time,Data Analyst,93800,USD,93800,United States,Remote,United States,M,Data Analysis +2023,Senior,Full-time,Data Science Manager,150000,USD,150000,Mexico,Remote,Mexico,M,Data Science and Research +2023,Senior,Full-time,Data Science Manager,90000,USD,90000,Mexico,Remote,Mexico,M,Data Science and Research +2023,Senior,Full-time,Data Analyst,165000,USD,165000,United States,Remote,United States,M,Data Analysis +2023,Senior,Full-time,Data Analyst,112000,USD,112000,United States,Remote,United States,M,Data Analysis +2023,Entry-level,Full-time,Computer Vision Engineer,220000,USD,220000,United States,In-person,United States,M,Machine Learning and AI +2023,Senior,Full-time,BI Data Analyst,67000,EUR,72338,Germany,Remote,Germany,M,Data Analysis +2023,Entry-level,Full-time,AI Developer,60000,EUR,64781,Germany,In-person,Germany,M,Machine Learning and AI +2023,Senior,Full-time,Machine Learning Engineer,204500,USD,204500,United States,In-person,United States,M,Machine Learning and AI +2023,Senior,Full-time,Machine Learning Engineer,142200,USD,142200,United States,In-person,United States,M,Machine Learning and AI +2023,Mid-level,Full-time,Machine Learning Engineer,200000,USD,200000,United States,In-person,United States,M,Machine Learning and AI +2023,Mid-level,Full-time,Machine Learning Engineer,175000,USD,175000,United States,In-person,United States,M,Machine Learning and AI +2023,Senior,Full-time,Data Engineer,185900,USD,185900,United States,In-person,United States,M,Data Engineering +2023,Senior,Full-time,Data Engineer,129300,USD,129300,United States,In-person,United States,M,Data Engineering +2023,Senior,Full-time,Data Analyst,185900,USD,185900,United States,In-person,United States,M,Data Analysis +2023,Senior,Full-time,Data Analyst,121700,USD,121700,United States,In-person,United States,M,Data Analysis +2023,Senior,Full-time,Machine Learning Engineer,204500,USD,204500,United States,In-person,United States,M,Machine Learning and AI +2023,Senior,Full-time,Machine Learning Engineer,142200,USD,142200,United States,In-person,United States,M,Machine Learning and AI +2023,Mid-level,Full-time,Data Scientist,40000,USD,40000,France,Hybrid,France,L,Data Science and Research +2023,Senior,Full-time,Data Analyst,180180,USD,180180,United States,In-person,United States,M,Data Analysis +2023,Senior,Full-time,Data Analyst,106020,USD,106020,United States,In-person,United States,M,Data Analysis +2023,Senior,Full-time,Data Scientist,136000,USD,136000,United States,Remote,United States,M,Data Science and Research +2023,Senior,Full-time,Data Scientist,104000,USD,104000,United States,Remote,United States,M,Data Science and Research +2023,Senior,Full-time,Data Analyst,125000,USD,125000,United States,In-person,United States,M,Data Analysis +2023,Senior,Full-time,Data Analyst,110000,USD,110000,United States,In-person,United States,M,Data Analysis +2023,Senior,Full-time,Machine Learning Engineer,153400,USD,153400,United States,In-person,United States,M,Machine Learning and AI +2023,Senior,Full-time,Machine Learning Engineer,122700,USD,122700,United States,In-person,United States,M,Machine Learning and AI +2023,Executive,Full-time,Data Engineer,310000,USD,310000,United States,Remote,United States,M,Data Engineering +2023,Executive,Full-time,Data Engineer,239000,USD,239000,United States,Remote,United States,M,Data Engineering +2023,Senior,Full-time,Data Analyst,152380,USD,152380,United States,In-person,United States,M,Data Analysis +2023,Senior,Full-time,Data Analyst,121904,USD,121904,United States,In-person,United States,M,Data Analysis +2023,Senior,Full-time,Data Scientist,185900,USD,185900,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Data Scientist,129300,USD,129300,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Machine Learning Engineer,247500,USD,247500,United States,In-person,United States,M,Machine Learning and AI +2023,Senior,Full-time,Machine Learning Engineer,172200,USD,172200,United States,In-person,United States,M,Machine Learning and AI +2023,Senior,Full-time,Data Architect,168400,USD,168400,United States,In-person,United States,M,Data Architecture and Modeling +2023,Senior,Full-time,Data Architect,105200,USD,105200,United States,In-person,United States,M,Data Architecture and Modeling +2023,Senior,Full-time,Machine Learning Engineer,128280,USD,128280,United States,In-person,United States,M,Machine Learning and AI +2023,Senior,Full-time,Machine Learning Engineer,106900,USD,106900,United States,In-person,United States,M,Machine Learning and AI +2022,Senior,Full-time,Lead Data Scientist,192000,USD,192000,United States,Remote,United States,L,Data Science and Research +2023,Mid-level,Full-time,Data Engineer,140000,USD,140000,United States,In-person,United States,M,Data Engineering +2023,Mid-level,Full-time,Data Engineer,100000,USD,100000,United States,In-person,United States,M,Data Engineering +2023,Senior,Full-time,Research Engineer,100000,EUR,107968,Germany,Remote,Germany,S,Data Science and Research +2023,Senior,Full-time,Research Engineer,80000,EUR,86374,Germany,Remote,Germany,S,Data Science and Research +2023,Senior,Full-time,Machine Learning Engineer,275000,USD,275000,Germany,In-person,Germany,M,Machine Learning and AI +2023,Senior,Full-time,Machine Learning Engineer,174000,USD,174000,Germany,In-person,Germany,M,Machine Learning and AI +2023,Senior,Full-time,Data Engineer,139500,USD,139500,United States,In-person,United States,M,Data Engineering +2023,Senior,Full-time,Data Engineer,109400,USD,109400,United States,In-person,United States,M,Data Engineering +2023,Senior,Full-time,Machine Learning Engineer,139500,USD,139500,United States,In-person,United States,M,Machine Learning and AI +2023,Senior,Full-time,Machine Learning Engineer,109400,USD,109400,United States,In-person,United States,M,Machine Learning and AI +2023,Senior,Full-time,Data Analyst,170500,USD,170500,United States,Remote,United States,M,Data Analysis +2023,Senior,Full-time,Data Analyst,85000,USD,85000,United States,Remote,United States,M,Data Analysis +2023,Senior,Full-time,Data Manager,60027,GBP,73857,United Kingdom,In-person,United Kingdom,M,Leadership and Management +2023,Senior,Full-time,Data Manager,44737,GBP,55044,United Kingdom,In-person,United Kingdom,M,Leadership and Management +2023,Executive,Full-time,Head of Data Science,131899,GBP,162288,United Kingdom,In-person,United Kingdom,M,Data Science and Research +2023,Executive,Full-time,Head of Data Science,104891,GBP,129058,United Kingdom,In-person,United Kingdom,M,Data Science and Research +2023,Senior,Full-time,Data Engineer,80000,USD,80000,United States,In-person,United States,M,Data Engineering +2023,Senior,Full-time,Data Engineer,65000,USD,65000,United States,In-person,United States,M,Data Engineering +2023,Senior,Full-time,Data Engineer,124740,USD,124740,United States,In-person,United States,M,Data Engineering +2023,Senior,Full-time,Data Engineer,65488,USD,65488,United States,In-person,United States,M,Data Engineering +2023,Senior,Full-time,Data Quality Analyst,72200,USD,72200,United States,In-person,United States,M,Data Quality and Operations +2023,Senior,Full-time,Data Quality Analyst,64980,USD,64980,United States,In-person,United States,M,Data Quality and Operations +2023,Senior,Full-time,Data Engineer,153600,USD,153600,United States,In-person,United States,M,Data Engineering +2023,Senior,Full-time,Data Engineer,106800,USD,106800,United States,In-person,United States,M,Data Engineering +2023,Senior,Full-time,Data Analyst,179975,USD,179975,United States,Remote,United States,M,Data Analysis +2023,Senior,Full-time,Data Analyst,86466,USD,86466,United States,Remote,United States,M,Data Analysis +2023,Senior,Full-time,Data Engineer,120000,USD,120000,United States,In-person,United States,M,Data Engineering +2023,Senior,Full-time,Data Engineer,90000,USD,90000,United States,In-person,United States,M,Data Engineering +2023,Mid-level,Full-time,Insight Analyst,42000,GBP,51676,United Kingdom,In-person,United Kingdom,M,Data Analysis +2023,Mid-level,Full-time,Insight Analyst,35000,GBP,43064,United Kingdom,In-person,United Kingdom,M,Data Analysis +2023,Senior,Full-time,Data Scientist,149076,USD,149076,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Data Scientist,82365,USD,82365,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Data Analyst,169000,USD,169000,United States,In-person,United States,M,Data Analysis +2023,Senior,Full-time,Data Analyst,110600,USD,110600,United States,In-person,United States,M,Data Analysis +2023,Senior,Full-time,Data Science Manager,175000,USD,175000,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Data Science Manager,120000,USD,120000,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Data Analyst,230000,USD,230000,United States,In-person,United States,M,Data Analysis +2023,Senior,Full-time,Data Analyst,180000,USD,180000,United States,In-person,United States,M,Data Analysis +2023,Senior,Full-time,Data Analyst,153600,USD,153600,United States,In-person,United States,M,Data Analysis +2023,Senior,Full-time,Data Analyst,106800,USD,106800,United States,In-person,United States,M,Data Analysis +2023,Senior,Full-time,Data Manager,140000,USD,140000,United States,In-person,United States,M,Leadership and Management +2023,Senior,Full-time,Data Manager,120000,USD,120000,United States,In-person,United States,M,Leadership and Management +2023,Senior,Full-time,Machine Learning Infrastructure Engineer,205920,USD,205920,United States,In-person,United States,M,Machine Learning and AI +2023,Senior,Full-time,Machine Learning Infrastructure Engineer,171600,USD,171600,United States,In-person,United States,M,Machine Learning and AI +2023,Senior,Full-time,Data Analyst,165000,USD,165000,United States,Remote,United States,M,Data Analysis +2023,Senior,Full-time,Data Analyst,125000,USD,125000,United States,Remote,United States,M,Data Analysis +2023,Senior,Full-time,Data Engineer,265000,USD,265000,United States,In-person,United States,M,Data Engineering +2023,Senior,Full-time,Data Engineer,185000,USD,185000,United States,In-person,United States,M,Data Engineering +2023,Mid-level,Full-time,Applied Machine Learning Engineer,130000,USD,130000,United States,In-person,United States,M,Machine Learning and AI +2022,Entry-level,Full-time,Data Scientist,168000,USD,168000,United States,Remote,United States,M,Data Science and Research +2023,Mid-level,Full-time,AI Scientist,36000,EUR,38868,Spain,Hybrid,Spain,L,Machine Learning and AI +2023,Senior,Full-time,Data Analyst,95000,USD,95000,United States,In-person,United States,M,Data Analysis +2023,Senior,Full-time,Data Analyst,85500,USD,85500,United States,In-person,United States,M,Data Analysis +2023,Senior,Full-time,Data Scientist,147100,USD,147100,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Data Scientist,90700,USD,90700,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Data Engineer,167580,USD,167580,United States,In-person,United States,M,Data Engineering +2023,Senior,Full-time,Data Engineer,87980,USD,87980,United States,In-person,United States,M,Data Engineering +2023,Senior,Full-time,Data Engineer,202000,USD,202000,United States,Remote,United States,M,Data Engineering +2023,Senior,Full-time,Data Engineer,135000,USD,135000,United States,Remote,United States,M,Data Engineering +2023,Senior,Full-time,Data Engineer,163800,USD,163800,United States,In-person,United States,M,Data Engineering +2023,Senior,Full-time,Data Engineer,126000,USD,126000,United States,In-person,United States,M,Data Engineering +2023,Senior,Full-time,Machine Learning Engineer,163800,USD,163800,United States,In-person,United States,M,Machine Learning and AI +2023,Senior,Full-time,Machine Learning Engineer,126000,USD,126000,United States,In-person,United States,M,Machine Learning and AI +2023,Senior,Full-time,Data Engineer,104000,USD,104000,United States,Remote,United States,M,Data Engineering +2023,Senior,Full-time,Data Engineer,65000,USD,65000,United States,Remote,United States,M,Data Engineering +2023,Senior,Full-time,Research Engineer,230000,USD,230000,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Research Engineer,148000,USD,148000,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Machine Learning Engineer,269000,USD,269000,Canada,Remote,Canada,M,Machine Learning and AI +2023,Senior,Full-time,Machine Learning Engineer,158000,USD,158000,Canada,Remote,Canada,M,Machine Learning and AI +2023,Senior,Full-time,Analytics Engineer,197000,USD,197000,United States,In-person,United States,M,Leadership and Management +2023,Senior,Full-time,Analytics Engineer,106000,USD,106000,United States,In-person,United States,M,Leadership and Management +2023,Mid-level,Full-time,Deep Learning Engineer,150000,USD,150000,United States,Remote,United States,M,Machine Learning and AI +2023,Mid-level,Full-time,Deep Learning Engineer,100000,USD,100000,United States,Remote,United States,M,Machine Learning and AI +2023,Senior,Full-time,Data Engineer,290000,USD,290000,United States,Remote,United States,M,Data Engineering +2023,Senior,Full-time,Data Engineer,210000,USD,210000,United States,Remote,United States,M,Data Engineering +2023,Senior,Full-time,Data Engineer,192000,USD,192000,United States,In-person,United States,M,Data Engineering +2023,Senior,Full-time,Data Engineer,172800,USD,172800,United States,In-person,United States,M,Data Engineering +2023,Senior,Full-time,Data Scientist,300240,USD,300240,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Data Scientist,200160,USD,200160,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Data Scientist,300240,USD,300240,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Data Scientist,200160,USD,200160,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Analytics Engineer,175000,USD,175000,United States,In-person,United States,M,Leadership and Management +2023,Senior,Full-time,Analytics Engineer,140000,USD,140000,United States,In-person,United States,M,Leadership and Management +2023,Senior,Full-time,Data Manager,169000,USD,169000,United States,In-person,United States,M,Leadership and Management +2023,Senior,Full-time,Data Manager,100000,USD,100000,United States,In-person,United States,M,Leadership and Management +2023,Senior,Full-time,Data Scientist,370000,USD,370000,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Data Scientist,245000,USD,245000,United States,In-person,United States,M,Data Science and Research +2023,Mid-level,Full-time,Data Engineer,95000,GBP,116888,United Kingdom,Remote,United Kingdom,L,Data Engineering +2023,Senior,Full-time,Data Analyst,110000,USD,110000,United States,Remote,United States,S,Data Analysis +2023,Senior,Full-time,Data Analyst,80000,USD,80000,United States,Remote,United States,S,Data Analysis +2023,Entry-level,Full-time,Data Analyst,55000,USD,55000,United States,In-person,United States,M,Data Analysis +2023,Entry-level,Full-time,Data Analyst,48000,USD,48000,United States,In-person,United States,M,Data Analysis +2023,Senior,Full-time,Data Analyst,95000,USD,95000,United States,In-person,United States,M,Data Analysis +2023,Senior,Full-time,Data Analyst,85000,USD,85000,United States,In-person,United States,M,Data Analysis +2023,Senior,Full-time,Data Engineer,137500,USD,137500,United States,Remote,United States,M,Data Engineering +2023,Senior,Full-time,Data Engineer,81500,USD,81500,United States,Remote,United States,M,Data Engineering +2023,Senior,Full-time,Machine Learning Engineer,323300,USD,323300,United States,In-person,United States,M,Machine Learning and AI +2023,Senior,Full-time,Machine Learning Engineer,184700,USD,184700,United States,In-person,United States,M,Machine Learning and AI +2021,Mid-level,Full-time,AI Scientist,30000,USD,30000,Ghana,In-person,Ghana,S,Machine Learning and AI +2023,Senior,Full-time,Machine Learning Engineer,186000,USD,186000,United States,Remote,United States,M,Machine Learning and AI +2023,Senior,Full-time,Machine Learning Engineer,153088,USD,153088,United States,Remote,United States,M,Machine Learning and AI +2023,Mid-level,Full-time,Data Infrastructure Engineer,190000,USD,190000,United States,Remote,United States,M,Data Engineering +2023,Mid-level,Full-time,Data Infrastructure Engineer,160000,USD,160000,United States,Remote,United States,M,Data Engineering +2023,Senior,Full-time,Machine Learning Engineer,200000,USD,200000,United States,Remote,United States,M,Machine Learning and AI +2023,Senior,Full-time,Machine Learning Engineer,150000,USD,150000,United States,Remote,United States,M,Machine Learning and AI +2023,Mid-level,Full-time,Data Infrastructure Engineer,190000,USD,190000,United States,In-person,United States,M,Data Engineering +2023,Mid-level,Full-time,Data Infrastructure Engineer,183310,USD,183310,United States,In-person,United States,M,Data Engineering +2023,Senior,Full-time,Machine Learning Engineer,240000,USD,240000,United States,Remote,United States,M,Machine Learning and AI +2023,Senior,Full-time,Machine Learning Engineer,180000,USD,180000,United States,Remote,United States,M,Machine Learning and AI +2023,Senior,Full-time,Machine Learning Engineer,200000,USD,200000,United States,Remote,United States,M,Machine Learning and AI +2023,Senior,Full-time,Machine Learning Engineer,150000,USD,150000,United States,Remote,United States,M,Machine Learning and AI +2023,Senior,Full-time,Data Science Manager,299500,USD,299500,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Data Science Manager,245100,USD,245100,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Data Engineer,144000,USD,144000,United States,Remote,United States,M,Data Engineering +2023,Senior,Full-time,Data Engineer,66000,USD,66000,United States,Remote,United States,M,Data Engineering +2023,Mid-level,Full-time,Machine Learning Engineer,148500,USD,148500,United States,In-person,United States,M,Machine Learning and AI +2023,Mid-level,Full-time,Machine Learning Engineer,126277,USD,126277,United States,In-person,United States,M,Machine Learning and AI +2023,Senior,Full-time,Data Architect,228000,USD,228000,United States,In-person,United States,M,Data Architecture and Modeling +2023,Senior,Full-time,Data Architect,120000,USD,120000,United States,In-person,United States,M,Data Architecture and Modeling +2023,Senior,Full-time,Machine Learning Software Engineer,180000,USD,180000,United States,In-person,United States,M,Machine Learning and AI +2023,Senior,Full-time,Machine Learning Software Engineer,90000,USD,90000,United States,In-person,United States,M,Machine Learning and AI +2023,Senior,Full-time,Data Scientist,126500,USD,126500,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Data Scientist,78000,USD,78000,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Data Engineer,180000,USD,180000,United States,In-person,United States,M,Data Engineering +2023,Senior,Full-time,Data Engineer,160000,USD,160000,United States,In-person,United States,M,Data Engineering +2023,Senior,Full-time,Machine Learning Software Engineer,272000,USD,272000,United States,In-person,United States,M,Machine Learning and AI +2023,Senior,Full-time,Machine Learning Software Engineer,170000,USD,170000,United States,In-person,United States,M,Machine Learning and AI +2023,Mid-level,Full-time,Data Analyst,80000,USD,80000,United States,In-person,United States,M,Data Analysis +2023,Mid-level,Full-time,Data Analyst,60000,USD,60000,United States,In-person,United States,M,Data Analysis +2023,Senior,Full-time,Data Engineer,259000,USD,259000,United States,Remote,United States,M,Data Engineering +2023,Senior,Full-time,Data Engineer,146000,USD,146000,United States,Remote,United States,M,Data Engineering +2023,Senior,Full-time,Data Engineer,200000,USD,200000,United States,In-person,United States,M,Data Engineering +2023,Senior,Full-time,Data Engineer,160000,USD,160000,United States,In-person,United States,M,Data Engineering +2023,Executive,Full-time,Data Engineer,310000,USD,310000,United States,Remote,United States,M,Data Engineering +2023,Executive,Full-time,Data Engineer,239000,USD,239000,United States,Remote,United States,M,Data Engineering +2023,Senior,Full-time,Data Analyst,142000,USD,142000,United States,Remote,United States,M,Data Analysis +2023,Senior,Full-time,Data Analyst,95000,USD,95000,United States,Remote,United States,M,Data Analysis +2023,Senior,Full-time,Data Scientist,155000,USD,155000,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Data Scientist,139500,USD,139500,United States,In-person,United States,M,Data Science and Research +2023,Mid-level,Full-time,Data Engineer,140000,USD,140000,United States,Remote,United States,M,Data Engineering +2023,Mid-level,Full-time,Data Engineer,120000,USD,120000,United States,Remote,United States,M,Data Engineering +2023,Senior,Full-time,Data Engineer,259000,USD,259000,United States,Remote,United States,M,Data Engineering +2023,Senior,Full-time,Data Engineer,146000,USD,146000,United States,Remote,United States,M,Data Engineering +2023,Mid-level,Full-time,Data Analyst,90000,GBP,110736,Croatia,In-person,Croatia,M,Data Analysis +2023,Mid-level,Full-time,Data Analyst,60000,GBP,73824,Croatia,In-person,Croatia,M,Data Analysis +2023,Entry-level,Part-time,Data Analyst,78000,PLN,18160,Poland,Remote,India,L,Data Analysis +2023,Entry-level,Full-time,Data Scientist,101400,BRL,19910,Brazil,Remote,Brazil,L,Data Science and Research +2023,Senior,Full-time,Data Science Lead,247500,USD,247500,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Data Science Lead,172200,USD,172200,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Data Scientist,225000,USD,225000,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Data Scientist,156400,USD,156400,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Data Engineer,139500,USD,139500,United States,In-person,United States,M,Data Engineering +2023,Senior,Full-time,Data Engineer,109400,USD,109400,United States,In-person,United States,M,Data Engineering +2023,Mid-level,Full-time,Data Engineer,125000,USD,125000,United States,In-person,United States,M,Data Engineering +2023,Mid-level,Full-time,Data Engineer,90000,USD,90000,United States,In-person,United States,M,Data Engineering +2023,Senior,Full-time,Machine Learning Infrastructure Engineer,100000,EUR,107968,France,Remote,France,M,Machine Learning and AI +2023,Senior,Full-time,Machine Learning Infrastructure Engineer,70000,EUR,75577,France,Remote,France,M,Machine Learning and AI +2023,Senior,Full-time,Data Scientist,185900,USD,185900,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Data Scientist,129300,USD,129300,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Machine Learning Engineer,139500,USD,139500,United States,In-person,United States,M,Machine Learning and AI +2023,Senior,Full-time,Machine Learning Engineer,109400,USD,109400,United States,In-person,United States,M,Machine Learning and AI +2023,Senior,Full-time,Data Analyst,120000,USD,120000,United States,Remote,United States,M,Data Analysis +2023,Senior,Full-time,Data Analyst,75000,USD,75000,United States,Remote,United States,M,Data Analysis +2023,Senior,Full-time,Data Analyst,169000,USD,169000,United States,In-person,United States,M,Data Analysis +2023,Senior,Full-time,Data Analyst,110600,USD,110600,United States,In-person,United States,M,Data Analysis +2023,Senior,Full-time,Machine Learning Engineer,288000,USD,288000,United States,Remote,United States,M,Machine Learning and AI +2023,Senior,Full-time,Machine Learning Engineer,140000,USD,140000,United States,Remote,United States,M,Machine Learning and AI +2023,Senior,Full-time,Machine Learning Engineer,288000,USD,288000,United States,Remote,United States,M,Machine Learning and AI +2023,Senior,Full-time,Machine Learning Engineer,140000,USD,140000,United States,Remote,United States,M,Machine Learning and AI +2023,Mid-level,Full-time,Data Engineer,120000,USD,120000,United States,In-person,United States,M,Data Engineering +2023,Mid-level,Full-time,Data Engineer,90000,USD,90000,United States,In-person,United States,M,Data Engineering +2023,Mid-level,Full-time,Data Science Lead,60000,GBP,73824,United Kingdom,In-person,United Kingdom,M,Data Science and Research +2023,Mid-level,Full-time,Data Science Lead,50000,GBP,61520,United Kingdom,In-person,United Kingdom,M,Data Science and Research +2023,Senior,Full-time,Data Scientist,215050,USD,215050,United States,Remote,United States,M,Data Science and Research +2023,Senior,Full-time,Data Scientist,156400,USD,156400,United States,Remote,United States,M,Data Science and Research +2023,Senior,Full-time,Data Architect,198000,USD,198000,United States,Remote,United States,M,Data Architecture and Modeling +2023,Senior,Full-time,Data Architect,114000,USD,114000,United States,Remote,United States,M,Data Architecture and Modeling +2023,Entry-level,Full-time,Data Analyst,75000,USD,75000,United States,Remote,United States,M,Data Analysis +2023,Entry-level,Full-time,Data Analyst,60000,USD,60000,United States,Remote,United States,M,Data Analysis +2023,Senior,Full-time,Machine Learning Engineer,204500,USD,204500,United States,In-person,United States,M,Machine Learning and AI +2023,Senior,Full-time,Machine Learning Engineer,142200,USD,142200,United States,In-person,United States,M,Machine Learning and AI +2023,Senior,Full-time,Data Scientist,209300,USD,209300,United States,Remote,United States,M,Data Science and Research +2023,Senior,Full-time,Data Scientist,182200,USD,182200,United States,Remote,United States,M,Data Science and Research +2023,Senior,Full-time,Data Manager,140000,USD,140000,United States,In-person,United States,M,Leadership and Management +2023,Senior,Full-time,Data Manager,120000,USD,120000,United States,In-person,United States,M,Leadership and Management +2022,Entry-level,Full-time,Data Scientist,85000,USD,85000,United States,In-person,United States,M,Data Science and Research +2023,Mid-level,Full-time,Machine Learning Engineer,40000,GBP,49216,United Kingdom,Remote,United Kingdom,M,Machine Learning and AI +2023,Entry-level,Full-time,Research Engineer,120000,USD,120000,United Kingdom,Remote,United Kingdom,M,Data Science and Research +2023,Entry-level,Full-time,Research Engineer,60000,USD,60000,United Kingdom,Remote,United Kingdom,M,Data Science and Research +2023,Senior,Full-time,Machine Learning Engineer,147100,USD,147100,United States,In-person,United States,M,Machine Learning and AI +2023,Senior,Full-time,Machine Learning Engineer,90700,USD,90700,United States,In-person,United States,M,Machine Learning and AI +2023,Senior,Full-time,Data Engineer,230000,USD,230000,United States,In-person,United States,M,Data Engineering +2023,Senior,Full-time,Data Engineer,170000,USD,170000,United States,In-person,United States,M,Data Engineering +2023,Senior,Full-time,Data Analyst,227000,USD,227000,United States,In-person,United States,M,Data Analysis +2023,Senior,Full-time,Data Analyst,108000,USD,108000,United States,In-person,United States,M,Data Analysis +2023,Senior,Full-time,Data Engineer,180000,USD,180000,United States,Remote,United States,M,Data Engineering +2023,Senior,Full-time,Data Engineer,160000,USD,160000,United States,Remote,United States,M,Data Engineering +2023,Senior,Full-time,Data Architect,180000,USD,180000,United States,Remote,United States,M,Data Architecture and Modeling +2023,Senior,Full-time,Data Architect,160000,USD,160000,United States,Remote,United States,M,Data Architecture and Modeling +2023,Senior,Full-time,Data Engineer,180000,USD,180000,United States,In-person,United States,M,Data Engineering +2023,Senior,Full-time,Data Engineer,130000,USD,130000,United States,In-person,United States,M,Data Engineering +2023,Senior,Full-time,Data Analyst,52000,EUR,56143,Spain,Remote,Spain,M,Data Analysis +2023,Senior,Full-time,Data Analyst,48000,EUR,51824,Spain,Remote,Spain,M,Data Analysis +2023,Entry-level,Full-time,Data Analyst,60000,USD,60000,United States,Remote,United States,L,Data Analysis +2023,Entry-level,Full-time,Data Analyst,50000,USD,50000,Kuwait,Hybrid,United States,L,Data Analysis +2023,Senior,Full-time,Data Engineer,226700,USD,226700,United States,In-person,United States,M,Data Engineering +2023,Senior,Full-time,Data Engineer,133300,USD,133300,United States,In-person,United States,M,Data Engineering +2023,Senior,Full-time,Data Engineer,252000,USD,252000,United States,In-person,United States,M,Data Engineering +2023,Senior,Full-time,Data Engineer,129000,USD,129000,United States,In-person,United States,M,Data Engineering +2023,Senior,Full-time,Big Data Architect,124999,GBP,153799,United Kingdom,Remote,United Kingdom,L,Data Architecture and Modeling +2023,Senior,Full-time,Data Analyst,80000,USD,80000,United States,In-person,United States,M,Data Analysis +2023,Senior,Full-time,Data Analyst,52500,USD,52500,United States,In-person,United States,M,Data Analysis +2023,Senior,Full-time,Data Engineer,250000,USD,250000,United States,Remote,United States,M,Data Engineering +2023,Senior,Full-time,Data Engineer,162500,USD,162500,United States,Remote,United States,M,Data Engineering +2023,Entry-level,Full-time,Data Analyst,85000,USD,85000,United States,Remote,United States,M,Data Analysis +2023,Entry-level,Full-time,Data Analyst,75000,USD,75000,United States,Remote,United States,M,Data Analysis +2023,Senior,Full-time,Data Analyst,153600,USD,153600,United States,In-person,United States,M,Data Analysis +2023,Senior,Full-time,Data Analyst,106800,USD,106800,United States,In-person,United States,M,Data Analysis +2023,Mid-level,Full-time,Data Analyst,165000,USD,165000,United States,In-person,United States,M,Data Analysis +2023,Mid-level,Full-time,Data Analyst,124000,USD,124000,United States,In-person,United States,M,Data Analysis +2023,Senior,Full-time,Data Analyst,115934,USD,115934,United States,Remote,United States,M,Data Analysis +2023,Senior,Full-time,Data Analyst,81666,USD,81666,United States,Remote,United States,M,Data Analysis +2023,Senior,Full-time,Data Engineer,167580,USD,167580,United States,In-person,United States,M,Data Engineering +2023,Senior,Full-time,Data Engineer,87980,USD,87980,United States,In-person,United States,M,Data Engineering +2023,Senior,Full-time,Data Engineer,250000,USD,250000,United States,Remote,United States,M,Data Engineering +2023,Senior,Full-time,Data Engineer,63000,USD,63000,United States,Remote,United States,M,Data Engineering +2023,Senior,Full-time,Research Scientist,253750,USD,253750,Spain,In-person,Spain,M,Data Science and Research +2023,Senior,Full-time,Research Scientist,169200,USD,169200,Spain,In-person,Spain,M,Data Science and Research +2023,Senior,Full-time,Research Scientist,253750,USD,253750,Spain,In-person,Spain,M,Data Science and Research +2023,Senior,Full-time,Research Scientist,169200,USD,169200,Spain,In-person,Spain,M,Data Science and Research +2023,Mid-level,Full-time,Data Scientist,170000,USD,170000,United States,In-person,United States,M,Data Science and Research +2023,Mid-level,Full-time,Data Scientist,120000,USD,120000,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Data Engineer,124740,USD,124740,United States,In-person,United States,M,Data Engineering +2023,Senior,Full-time,Data Engineer,65488,USD,65488,United States,In-person,United States,M,Data Engineering +2023,Senior,Full-time,Data Engineer,213580,USD,213580,United States,Remote,United States,M,Data Engineering +2023,Senior,Full-time,Data Engineer,163625,USD,163625,United States,Remote,United States,M,Data Engineering +2022,Senior,Full-time,Machine Learning Software Engineer,375000,USD,375000,United States,Remote,United States,M,Machine Learning and AI +2023,Senior,Full-time,Data Engineer,95000,EUR,102569,Ireland,Remote,Ireland,M,Data Engineering +2023,Senior,Full-time,Machine Learning Engineer,220000,USD,220000,United States,In-person,United States,M,Machine Learning and AI +2023,Senior,Full-time,Machine Learning Engineer,170000,USD,170000,United States,In-person,United States,M,Machine Learning and AI +2023,Executive,Full-time,Data Engineer,235000,USD,235000,United States,In-person,United States,M,Data Engineering +2023,Executive,Full-time,Data Engineer,210000,USD,210000,United States,In-person,United States,M,Data Engineering +2023,Senior,Full-time,Data Architect,180000,USD,180000,United States,Remote,United States,M,Data Architecture and Modeling +2023,Senior,Full-time,Data Architect,115000,USD,115000,United States,Remote,United States,M,Data Architecture and Modeling +2023,Senior,Full-time,Data Architect,200000,USD,200000,United States,Remote,United States,M,Data Architecture and Modeling +2023,Senior,Full-time,Data Architect,115000,USD,115000,United States,Remote,United States,M,Data Architecture and Modeling +2023,Senior,Full-time,Data Science Manager,231250,USD,231250,United States,Remote,United States,M,Data Science and Research +2023,Senior,Full-time,Data Science Manager,138750,USD,138750,United States,Remote,United States,M,Data Science and Research +2023,Senior,Full-time,Machine Learning Engineer,284310,USD,284310,United States,In-person,United States,M,Machine Learning and AI +2023,Senior,Full-time,Machine Learning Engineer,153090,USD,153090,United States,In-person,United States,M,Machine Learning and AI +2023,Senior,Full-time,Data Engineer,160000,USD,160000,United States,Remote,United States,M,Data Engineering +2023,Senior,Full-time,Data Engineer,75000,USD,75000,United States,Remote,United States,M,Data Engineering +2023,Mid-level,Full-time,Data Analyst,125000,USD,125000,United States,In-person,United States,M,Data Analysis +2023,Mid-level,Full-time,Data Analyst,105000,USD,105000,United States,In-person,United States,M,Data Analysis +2023,Mid-level,Full-time,Data Analyst,90000,GBP,110736,United Kingdom,In-person,United Kingdom,M,Data Analysis +2023,Mid-level,Full-time,Data Analyst,70000,GBP,86128,United Kingdom,In-person,United Kingdom,M,Data Analysis +2023,Entry-level,Full-time,Data Analyst,55000,USD,55000,United States,In-person,United States,M,Data Analysis +2023,Entry-level,Full-time,Data Analyst,48000,USD,48000,United States,In-person,United States,M,Data Analysis +2023,Entry-level,Full-time,Data Analyst,100000,USD,100000,United States,Hybrid,United States,M,Data Analysis +2023,Senior,Full-time,Data Science Lead,225900,USD,225900,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Data Science Lead,156400,USD,156400,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Data Engineer,250000,USD,250000,United States,Remote,United States,M,Data Engineering +2023,Senior,Full-time,Data Engineer,162500,USD,162500,United States,Remote,United States,M,Data Engineering +2023,Senior,Full-time,Machine Learning Engineer,318300,USD,318300,United States,Remote,United States,M,Machine Learning and AI +2023,Senior,Full-time,Machine Learning Engineer,188800,USD,188800,United States,Remote,United States,M,Machine Learning and AI +2023,Senior,Full-time,Data Analyst,385000,USD,385000,United States,In-person,United States,M,Data Analysis +2023,Senior,Full-time,Data Analyst,60000,USD,60000,United States,In-person,United States,M,Data Analysis +2023,Mid-level,Full-time,Data Analyst,110000,USD,110000,United States,Remote,United States,M,Data Analysis +2023,Mid-level,Full-time,Data Analyst,95000,USD,95000,United States,Remote,United States,M,Data Analysis +2023,Senior,Full-time,Data Scientist,145000,USD,145000,United States,Remote,United States,M,Data Science and Research +2023,Senior,Full-time,Data Scientist,135000,USD,135000,United States,Remote,United States,M,Data Science and Research +2023,Senior,Full-time,Data Analyst,180180,USD,180180,United States,In-person,United States,M,Data Analysis +2023,Senior,Full-time,Data Analyst,106020,USD,106020,United States,In-person,United States,M,Data Analysis +2023,Senior,Full-time,Data Analyst,93919,USD,93919,United States,Remote,United States,M,Data Analysis +2023,Senior,Full-time,Data Analyst,51962,USD,51962,United States,Remote,United States,M,Data Analysis +2023,Senior,Full-time,Data Engineer,241871,USD,241871,United States,In-person,United States,M,Data Engineering +2023,Senior,Full-time,Data Engineer,133832,USD,133832,United States,In-person,United States,M,Data Engineering +2023,Senior,Full-time,Data Scientist,170000,USD,170000,United States,Remote,United States,M,Data Science and Research +2023,Senior,Full-time,Data Scientist,90000,USD,90000,United States,Remote,United States,M,Data Science and Research +2023,Executive,Full-time,Data Engineer,210914,USD,210914,United States,Remote,United States,M,Data Engineering +2023,Executive,Full-time,Data Engineer,116704,USD,116704,United States,Remote,United States,M,Data Engineering +2023,Senior,Full-time,Data Analyst,192500,USD,192500,United States,Remote,United States,M,Data Analysis +2023,Senior,Full-time,Data Analyst,140000,USD,140000,United States,Remote,United States,M,Data Analysis +2023,Senior,Full-time,Data Scientist,149076,USD,149076,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Data Scientist,82365,USD,82365,United States,In-person,United States,M,Data Science and Research +2023,Mid-level,Full-time,Machine Learning Engineer,36000,USD,36000,Mexico,Remote,Mexico,S,Machine Learning and AI +2023,Senior,Full-time,Data Scientist,175000,USD,175000,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Data Scientist,148750,USD,148750,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Research Scientist,370000,USD,370000,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Research Scientist,200000,USD,200000,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Data Scientist,235000,USD,235000,United States,Remote,United States,M,Data Science and Research +2023,Senior,Full-time,Data Scientist,185000,USD,185000,United States,Remote,United States,M,Data Science and Research +2023,Mid-level,Full-time,Machine Learning Engineer,100000,GBP,123040,United Kingdom,In-person,United Kingdom,M,Machine Learning and AI +2023,Mid-level,Full-time,Machine Learning Engineer,80000,GBP,98432,United Kingdom,In-person,United Kingdom,M,Machine Learning and AI +2023,Senior,Full-time,Data Scientist,216100,USD,216100,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Data Scientist,140800,USD,140800,United States,In-person,United States,M,Data Science and Research +2023,Mid-level,Full-time,Machine Learning Engineer,120000,GBP,147648,United Kingdom,In-person,United Kingdom,M,Machine Learning and AI +2023,Mid-level,Full-time,Machine Learning Engineer,100000,GBP,123040,United Kingdom,In-person,United Kingdom,M,Machine Learning and AI +2023,Senior,Full-time,Computer Vision Software Engineer,50000,EUR,53984,Netherlands,Remote,Canada,L,Machine Learning and AI +2023,Entry-level,Full-time,Data Scientist,110000,USD,110000,United States,Hybrid,United States,S,Data Science and Research +2023,Senior,Full-time,Data Engineer,128000,USD,128000,United States,In-person,United States,M,Data Engineering +2023,Senior,Full-time,Data Engineer,81500,USD,81500,United States,In-person,United States,M,Data Engineering +2023,Mid-level,Full-time,Data Engineer,55000,GBP,67672,United Kingdom,Remote,United Kingdom,M,Data Engineering +2023,Mid-level,Full-time,Data Engineer,52000,GBP,63980,United Kingdom,Remote,United Kingdom,M,Data Engineering +2023,Mid-level,Full-time,Data Analyst,50000,GBP,61520,United Kingdom,In-person,United Kingdom,M,Data Analysis +2023,Mid-level,Full-time,Data Analyst,45000,GBP,55368,United Kingdom,In-person,United Kingdom,M,Data Analysis +2023,Executive,Full-time,Data Engineer,284000,USD,284000,United States,Remote,United States,M,Data Engineering +2023,Executive,Full-time,Data Engineer,236000,USD,236000,United States,Remote,United States,M,Data Engineering +2023,Senior,Full-time,Research Scientist,248100,USD,248100,Canada,In-person,Canada,M,Data Science and Research +2023,Senior,Full-time,Research Scientist,145900,USD,145900,Canada,In-person,Canada,M,Data Science and Research +2023,Senior,Full-time,Research Engineer,155850,USD,155850,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Research Engineer,102544,USD,102544,United States,In-person,United States,M,Data Science and Research +2023,Mid-level,Full-time,Data Scientist,151410,USD,151410,United States,Remote,United States,M,Data Science and Research +2023,Mid-level,Full-time,Data Scientist,115360,USD,115360,United States,Remote,United States,M,Data Science and Research +2023,Mid-level,Full-time,Data Engineer,62000,EUR,66940,Spain,Remote,Spain,M,Data Engineering +2023,Mid-level,Full-time,Data Engineer,55000,EUR,59382,Spain,Remote,Spain,M,Data Engineering +2023,Senior,Full-time,Director of Data Science,170000,CAD,125948,Canada,Hybrid,Canada,M,Data Science and Research +2023,Senior,Full-time,Azure Data Engineer,100000,USD,100000,Netherlands,Hybrid,Netherlands,L,Data Engineering +2023,Senior,Full-time,Data Scientist,250000,USD,250000,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Data Scientist,162500,USD,162500,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Data Scientist,185000,USD,185000,United Kingdom,In-person,United Kingdom,M,Data Science and Research +2023,Senior,Full-time,Data Scientist,120250,USD,120250,United Kingdom,In-person,United Kingdom,M,Data Science and Research +2023,Entry-level,Full-time,Data Engineer,25000,EUR,26992,Germany,Remote,Germany,L,Data Engineering +2022,Entry-level,Full-time,Data Scientist,180000,USD,180000,United States,Remote,United States,M,Data Science and Research +2023,Mid-level,Full-time,Research Scientist,85000,USD,85000,United States,In-person,United States,M,Data Science and Research +2023,Mid-level,Full-time,Research Scientist,70000,USD,70000,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,BI Developer,135000,USD,135000,United States,Remote,United States,M,BI and Visualization +2023,Senior,Full-time,BI Developer,100000,USD,100000,United States,Remote,United States,M,BI and Visualization +2023,Executive,Full-time,Data Analytics Manager,155000,USD,155000,United States,In-person,United States,M,Leadership and Management +2023,Executive,Full-time,Data Analytics Manager,140000,USD,140000,United States,In-person,United States,M,Leadership and Management +2023,Senior,Full-time,Machine Learning Engineer,204500,USD,204500,United States,In-person,United States,M,Machine Learning and AI +2023,Senior,Full-time,Machine Learning Engineer,142200,USD,142200,United States,In-person,United States,M,Machine Learning and AI +2023,Senior,Full-time,Data Engineer,226700,USD,226700,United States,In-person,United States,M,Data Engineering +2023,Senior,Full-time,Data Engineer,133300,USD,133300,United States,In-person,United States,M,Data Engineering +2023,Senior,Full-time,Data Scientist,225000,USD,225000,United States,Remote,United States,M,Data Science and Research +2023,Senior,Full-time,Data Scientist,156400,USD,156400,United States,Remote,United States,M,Data Science and Research +2023,Senior,Full-time,Data Engineer,163800,USD,163800,United States,In-person,United States,M,Data Engineering +2023,Senior,Full-time,Data Engineer,126000,USD,126000,United States,In-person,United States,M,Data Engineering +2023,Senior,Full-time,Machine Learning Engineer,163800,USD,163800,United States,In-person,United States,M,Machine Learning and AI +2023,Senior,Full-time,Machine Learning Engineer,126000,USD,126000,United States,In-person,United States,M,Machine Learning and AI +2023,Senior,Full-time,ML Engineer,220000,USD,220000,United States,In-person,United States,M,Machine Learning and AI +2023,Senior,Full-time,ML Engineer,150000,USD,150000,United States,In-person,United States,M,Machine Learning and AI +2023,Senior,Full-time,Data Engineer,145000,USD,145000,United States,In-person,United States,M,Data Engineering +2023,Senior,Full-time,Data Engineer,115000,USD,115000,United States,In-person,United States,M,Data Engineering +2023,Senior,Full-time,Data Analytics Manager,204500,USD,204500,United States,In-person,United States,M,Leadership and Management +2023,Senior,Full-time,Data Analytics Manager,138900,USD,138900,United States,In-person,United States,M,Leadership and Management +2023,Mid-level,Full-time,Data Engineer,162500,USD,162500,United States,In-person,United States,M,Data Engineering +2023,Mid-level,Full-time,Data Engineer,130000,USD,130000,United States,In-person,United States,M,Data Engineering +2023,Senior,Full-time,Data Engineer,150000,USD,150000,United States,Remote,United States,M,Data Engineering +2023,Senior,Full-time,Data Engineer,107000,USD,107000,United States,Remote,United States,M,Data Engineering +2023,Executive,Full-time,Data Engineer,175000,USD,175000,United States,In-person,United States,M,Data Engineering +2023,Executive,Full-time,Data Engineer,110000,USD,110000,United States,In-person,United States,M,Data Engineering +2023,Senior,Full-time,Data Engineer,226700,USD,226700,United States,In-person,United States,M,Data Engineering +2023,Senior,Full-time,Data Engineer,133300,USD,133300,United States,In-person,United States,M,Data Engineering +2023,Senior,Full-time,Data Engineer,252000,USD,252000,United States,In-person,United States,M,Data Engineering +2023,Senior,Full-time,Data Engineer,129000,USD,129000,United States,In-person,United States,M,Data Engineering +2023,Senior,Full-time,Machine Learning Engineer,150000,USD,150000,United States,In-person,United States,M,Machine Learning and AI +2023,Senior,Full-time,Machine Learning Engineer,125000,USD,125000,United States,In-person,United States,M,Machine Learning and AI +2023,Senior,Full-time,Data Engineer,252000,USD,252000,United States,In-person,United States,M,Data Engineering +2023,Senior,Full-time,Data Engineer,129000,USD,129000,United States,In-person,United States,M,Data Engineering +2023,Senior,Full-time,Data Scientist,225000,USD,225000,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Data Scientist,156400,USD,156400,United States,In-person,United States,M,Data Science and Research +2022,Mid-level,Full-time,Research Scientist,23000,USD,23000,India,Remote,India,L,Data Science and Research +2023,Mid-level,Full-time,Machine Learning Engineer,110000,USD,110000,United States,Remote,United States,L,Machine Learning and AI +2023,Senior,Full-time,Data Engineer,265000,USD,265000,United States,Remote,United States,M,Data Engineering +2023,Senior,Full-time,Data Engineer,182750,USD,182750,United States,Remote,United States,M,Data Engineering +2023,Mid-level,Full-time,Data Analyst,130000,USD,130000,United States,In-person,United States,M,Data Analysis +2023,Mid-level,Full-time,Data Analyst,100000,USD,100000,United States,In-person,United States,M,Data Analysis +2023,Senior,Full-time,Data Analyst,153600,USD,153600,United States,In-person,United States,M,Data Analysis +2023,Senior,Full-time,Data Analyst,106800,USD,106800,United States,In-person,United States,M,Data Analysis +2023,Senior,Full-time,Data Engineer,137500,USD,137500,United States,In-person,United States,M,Data Engineering +2023,Senior,Full-time,Data Engineer,81500,USD,81500,United States,In-person,United States,M,Data Engineering +2023,Executive,Full-time,Head of Data Science,314100,USD,314100,United States,In-person,United States,M,Data Science and Research +2023,Executive,Full-time,Head of Data Science,195800,USD,195800,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Applied Scientist,205000,USD,205000,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Applied Scientist,180000,USD,180000,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Data Scientist,165000,USD,165000,United States,Remote,United States,M,Data Science and Research +2023,Senior,Full-time,Data Scientist,144000,USD,144000,United States,Remote,United States,M,Data Science and Research +2023,Entry-level,Full-time,BI Developer,160000,USD,160000,United States,In-person,United States,M,BI and Visualization +2023,Entry-level,Full-time,BI Developer,100000,USD,100000,United States,In-person,United States,M,BI and Visualization +2023,Executive,Full-time,Data Engineer,200000,USD,200000,United States,In-person,United States,M,Data Engineering +2023,Executive,Full-time,Data Engineer,145000,USD,145000,United States,In-person,United States,M,Data Engineering +2023,Mid-level,Full-time,Data Analyst,150000,USD,150000,United States,In-person,United States,M,Data Analysis +2023,Mid-level,Full-time,Data Analyst,100000,USD,100000,United States,In-person,United States,M,Data Analysis +2023,Senior,Full-time,Data Manager,199000,USD,199000,United States,In-person,United States,M,Leadership and Management +2023,Senior,Full-time,Data Manager,112000,USD,112000,United States,In-person,United States,M,Leadership and Management +2023,Senior,Full-time,Data Scientist,105000,USD,105000,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Data Scientist,70000,USD,70000,United States,In-person,United States,M,Data Science and Research +2023,Entry-level,Full-time,Big Data Engineer,130000,USD,130000,Sweden,Remote,Sweden,S,Data Engineering +2023,Senior,Full-time,Data Analyst,180180,USD,180180,United States,In-person,United States,M,Data Analysis +2023,Senior,Full-time,Data Analyst,106020,USD,106020,United States,In-person,United States,M,Data Analysis +2023,Entry-level,Full-time,Data Engineer,160000,USD,160000,United States,In-person,United States,M,Data Engineering +2023,Entry-level,Full-time,Data Engineer,135000,USD,135000,United States,In-person,United States,M,Data Engineering +2023,Senior,Full-time,Data Scientist,183000,USD,183000,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Data Scientist,134000,USD,134000,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Machine Learning Engineer,220000,USD,220000,United States,In-person,United States,M,Machine Learning and AI +2023,Senior,Full-time,Machine Learning Engineer,150000,USD,150000,United States,In-person,United States,M,Machine Learning and AI +2023,Senior,Full-time,Applied Scientist,350000,USD,350000,United States,In-person,United States,L,Data Science and Research +2023,Senior,Full-time,Applied Scientist,262500,USD,262500,United States,In-person,United States,L,Data Science and Research +2023,Senior,Full-time,Data Analyst,122000,USD,122000,United States,In-person,United States,M,Data Analysis +2023,Senior,Full-time,Data Analyst,94000,USD,94000,United States,In-person,United States,M,Data Analysis +2023,Senior,Full-time,Machine Learning Engineer,276000,USD,276000,United States,In-person,United States,M,Machine Learning and AI +2023,Senior,Full-time,Machine Learning Engineer,184000,USD,184000,United States,In-person,United States,M,Machine Learning and AI +2023,Executive,Full-time,Data Engineer,310000,USD,310000,United States,Remote,United States,M,Data Engineering +2023,Executive,Full-time,Data Engineer,239000,USD,239000,United States,Remote,United States,M,Data Engineering +2023,Senior,Full-time,Data Scientist,225000,USD,225000,United States,Remote,United States,M,Data Science and Research +2023,Senior,Full-time,Data Scientist,156400,USD,156400,United States,Remote,United States,M,Data Science and Research +2023,Mid-level,Full-time,Machine Learning Engineer,180000,USD,180000,United States,Remote,United States,M,Machine Learning and AI +2023,Mid-level,Full-time,Machine Learning Engineer,150000,USD,150000,United States,Remote,United States,M,Machine Learning and AI +2023,Senior,Full-time,Data Scientist,228000,USD,228000,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Data Scientist,152000,USD,152000,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Data Scientist,209450,USD,209450,United States,Remote,United States,M,Data Science and Research +2023,Senior,Full-time,Data Scientist,158677,USD,158677,United States,Remote,United States,M,Data Science and Research +2023,Senior,Full-time,Data Analyst,175000,USD,175000,United States,In-person,United States,M,Data Analysis +2023,Senior,Full-time,Data Analyst,145000,USD,145000,United States,In-person,United States,M,Data Analysis +2023,Senior,Full-time,Data Engineer,240000,USD,240000,United States,In-person,United States,M,Data Engineering +2023,Senior,Full-time,Data Engineer,170000,USD,170000,United States,In-person,United States,M,Data Engineering +2023,Mid-level,Full-time,Data Analyst,103200,USD,103200,United States,In-person,United States,M,Data Analysis +2023,Mid-level,Full-time,Data Analyst,61200,USD,61200,United States,In-person,United States,M,Data Analysis +2022,Mid-level,Full-time,Data Scientist,155000,USD,155000,United States,Remote,United States,L,Data Science and Research +2021,Entry-level,Full-time,Marketing Data Engineer,90000,SGD,66970,Singapore,Hybrid,Singapore,L,Data Engineering +2023,Senior,Full-time,Data Scientist,59000,EUR,63701,Cyprus,Hybrid,Estonia,L,Data Science and Research +2023,Senior,Full-time,Data Scientist,237000,USD,237000,United States,Remote,United States,M,Data Science and Research +2023,Senior,Full-time,Data Scientist,145000,USD,145000,United States,Remote,United States,M,Data Science and Research +2023,Senior,Full-time,Data Scientist,240000,USD,240000,United States,Remote,United States,M,Data Science and Research +2023,Senior,Full-time,Data Scientist,139000,USD,139000,United States,Remote,United States,M,Data Science and Research +2023,Senior,Full-time,Data Architect,174500,USD,174500,United States,In-person,United States,M,Data Architecture and Modeling +2023,Senior,Full-time,Data Architect,113000,USD,113000,United States,In-person,United States,M,Data Architecture and Modeling +2023,Senior,Full-time,Data Analyst,130000,USD,130000,United States,Remote,United States,M,Data Analysis +2023,Senior,Full-time,Data Analyst,87000,USD,87000,United States,Remote,United States,M,Data Analysis +2023,Senior,Full-time,Data Analyst,160000,USD,160000,United States,Remote,United States,M,Data Analysis +2023,Senior,Full-time,Data Analyst,108000,USD,108000,United States,Remote,United States,M,Data Analysis +2023,Senior,Full-time,Data Engineer,165000,USD,165000,United States,Remote,United States,M,Data Engineering +2023,Senior,Full-time,Data Engineer,107250,USD,107250,United States,Remote,United States,M,Data Engineering +2023,Senior,Full-time,Data Engineer,300000,USD,300000,United States,In-person,United States,M,Data Engineering +2023,Senior,Full-time,Data Engineer,119000,USD,119000,United States,In-person,United States,M,Data Engineering +2023,Senior,Full-time,Data Scientist,285800,USD,285800,United States,Remote,United States,M,Data Science and Research +2023,Senior,Full-time,Data Scientist,154600,USD,154600,United States,Remote,United States,M,Data Science and Research +2023,Entry-level,Full-time,Data Analyst,30000,USD,30000,Argentina,Remote,United States,S,Data Analysis +2023,Mid-level,Full-time,Data Science Manager,220000,USD,220000,United States,In-person,United States,M,Data Science and Research +2023,Mid-level,Full-time,Data Science Manager,195000,USD,195000,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Data Manager,168400,USD,168400,United States,In-person,United States,M,Leadership and Management +2023,Senior,Full-time,Data Manager,105200,USD,105200,United States,In-person,United States,M,Leadership and Management +2023,Mid-level,Full-time,Data Analyst,206000,USD,206000,United States,In-person,United States,M,Data Analysis +2023,Mid-level,Full-time,Data Analyst,160000,USD,160000,United States,In-person,United States,M,Data Analysis +2023,Senior,Full-time,Analytics Engineer,200000,USD,200000,United States,Remote,United States,M,Leadership and Management +2023,Senior,Full-time,Analytics Engineer,175000,USD,175000,United States,Remote,United States,M,Leadership and Management +2023,Senior,Full-time,Analytics Engineer,231250,USD,231250,United States,Remote,United States,M,Leadership and Management +2023,Senior,Full-time,Analytics Engineer,138750,USD,138750,United States,Remote,United States,M,Leadership and Management +2023,Senior,Full-time,Data Engineer,153000,USD,153000,Canada,Remote,Canada,M,Data Engineering +2023,Senior,Full-time,Data Engineer,94000,USD,94000,Canada,Remote,Canada,M,Data Engineering +2023,Senior,Full-time,Data Engineer,240500,USD,240500,United States,In-person,United States,L,Data Engineering +2023,Senior,Full-time,Data Engineer,123700,USD,123700,United States,In-person,United States,L,Data Engineering +2023,Senior,Full-time,Data Engineer,160000,USD,160000,United States,Remote,United States,M,Data Engineering +2023,Senior,Full-time,Data Engineer,90000,USD,90000,United States,Remote,United States,M,Data Engineering +2023,Entry-level,Full-time,Data Scientist,124234,USD,124234,United States,In-person,United States,M,Data Science and Research +2023,Entry-level,Full-time,Data Scientist,74540,USD,74540,United States,In-person,United States,M,Data Science and Research +2023,Mid-level,Full-time,Data Analyst,109000,USD,109000,United States,In-person,United States,M,Data Analysis +2023,Mid-level,Full-time,Data Analyst,79000,USD,79000,United States,In-person,United States,M,Data Analysis +2022,Senior,Full-time,Machine Learning Engineer,80000,EUR,84053,France,Hybrid,France,L,Machine Learning and AI +2023,Mid-level,Full-time,Machine Learning Engineer,50000,USD,50000,Armenia,In-person,Armenia,S,Machine Learning and AI +2023,Senior,Full-time,Data Scientist,275300,USD,275300,United States,Remote,United States,M,Data Science and Research +2023,Senior,Full-time,Data Scientist,183500,USD,183500,United States,Remote,United States,M,Data Science and Research +2023,Senior,Full-time,Data Scientist,275300,USD,275300,United States,Remote,United States,M,Data Science and Research +2023,Senior,Full-time,Data Scientist,183500,USD,183500,United States,Remote,United States,M,Data Science and Research +2023,Senior,Full-time,Data Analyst,160000,USD,160000,United States,Remote,United States,M,Data Analysis +2023,Senior,Full-time,Data Analyst,125600,USD,125600,United States,Remote,United States,M,Data Analysis +2023,Senior,Full-time,Data Engineer,170000,USD,170000,United States,In-person,United States,M,Data Engineering +2023,Senior,Full-time,Data Engineer,120000,USD,120000,United States,In-person,United States,M,Data Engineering +2023,Senior,Full-time,Data Engineer,225000,USD,225000,United States,In-person,United States,M,Data Engineering +2023,Senior,Full-time,Data Engineer,140000,USD,140000,United States,In-person,United States,M,Data Engineering +2023,Senior,Full-time,Data Analyst,141290,USD,141290,United States,In-person,United States,M,Data Analysis +2023,Senior,Full-time,Data Analyst,74178,USD,74178,United States,In-person,United States,M,Data Analysis +2023,Senior,Full-time,Data Scientist,150000,USD,150000,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Data Scientist,120000,USD,120000,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Data Engineer,85000,USD,85000,United States,Remote,United States,M,Data Engineering +2023,Senior,Full-time,Data Engineer,75000,USD,75000,United States,Remote,United States,M,Data Engineering +2023,Senior,Full-time,Data Engineer,220000,USD,220000,United States,In-person,United States,M,Data Engineering +2023,Senior,Full-time,Data Engineer,160000,USD,160000,United States,In-person,United States,M,Data Engineering +2023,Senior,Full-time,Data Engineer,205600,USD,205600,United States,Remote,United States,M,Data Engineering +2023,Senior,Full-time,Data Engineer,107500,USD,107500,United States,Remote,United States,M,Data Engineering +2023,Mid-level,Full-time,Data Engineer,120000,USD,120000,United States,In-person,United States,M,Data Engineering +2023,Mid-level,Full-time,Data Engineer,95000,USD,95000,United States,In-person,United States,M,Data Engineering +2023,Senior,Full-time,Data Engineer,185900,USD,185900,United States,In-person,United States,M,Data Engineering +2023,Senior,Full-time,Data Engineer,129300,USD,129300,United States,In-person,United States,M,Data Engineering +2023,Senior,Full-time,Data Engineer,160000,USD,160000,United States,Remote,United States,M,Data Engineering +2023,Senior,Full-time,Data Engineer,130000,USD,130000,United States,Remote,United States,M,Data Engineering +2023,Mid-level,Full-time,Data Engineer,250000,USD,250000,United States,In-person,United States,M,Data Engineering +2023,Mid-level,Full-time,Data Engineer,175000,USD,175000,United States,In-person,United States,M,Data Engineering +2023,Senior,Full-time,Data Scientist,136000,USD,136000,United States,Remote,United States,M,Data Science and Research +2023,Senior,Full-time,Data Scientist,104000,USD,104000,United States,Remote,United States,M,Data Science and Research +2023,Mid-level,Full-time,Data Analyst,80000,USD,80000,United States,In-person,United States,M,Data Analysis +2023,Mid-level,Full-time,Data Analyst,52500,USD,52500,United States,In-person,United States,M,Data Analysis +2023,Senior,Full-time,Data Scientist,110000,USD,110000,United States,Remote,United States,M,Data Science and Research +2023,Senior,Full-time,Data Scientist,84000,USD,84000,United States,Remote,United States,M,Data Science and Research +2023,Senior,Full-time,BI Analyst,125000,USD,125000,United States,In-person,United States,M,BI and Visualization +2023,Senior,Full-time,BI Analyst,110000,USD,110000,United States,In-person,United States,M,BI and Visualization +2023,Mid-level,Full-time,Data Analyst,90000,USD,90000,United States,In-person,United States,M,Data Analysis +2023,Mid-level,Full-time,Data Analyst,80000,USD,80000,United States,In-person,United States,M,Data Analysis +2023,Senior,Full-time,ML Engineer,200000,USD,200000,United States,In-person,United States,M,Machine Learning and AI +2023,Senior,Full-time,ML Engineer,135000,USD,135000,United States,In-person,United States,M,Machine Learning and AI +2022,Entry-level,Full-time,Business Data Analyst,48000,USD,48000,United States,Hybrid,United States,L,Data Analysis +2023,Entry-level,Full-time,AI Developer,120000,USD,120000,Bosnia and Herzegovina,Hybrid,Bosnia and Herzegovina,S,Machine Learning and AI +2023,Senior,Full-time,Data Engineer,130000,USD,130000,United States,In-person,United States,M,Data Engineering +2023,Senior,Full-time,Data Engineer,75000,USD,75000,United States,In-person,United States,M,Data Engineering +2023,Senior,Full-time,Data Engineer,252000,USD,252000,United States,In-person,United States,M,Data Engineering +2023,Senior,Full-time,Data Engineer,129000,USD,129000,United States,In-person,United States,M,Data Engineering +2023,Mid-level,Full-time,Data Analyst,150000,USD,150000,United States,In-person,United States,M,Data Analysis +2023,Mid-level,Full-time,Data Analyst,100000,USD,100000,United States,In-person,United States,M,Data Analysis +2023,Senior,Full-time,Data Engineer,226700,USD,226700,United States,In-person,United States,M,Data Engineering +2023,Senior,Full-time,Data Engineer,133300,USD,133300,United States,In-person,United States,M,Data Engineering +2023,Senior,Full-time,Data Scientist,190000,USD,190000,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Data Scientist,165000,USD,165000,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Data Engineer,170000,USD,170000,United States,Remote,United States,M,Data Engineering +2023,Senior,Full-time,Data Engineer,150000,USD,150000,United States,Remote,United States,M,Data Engineering +2023,Mid-level,Full-time,Data Engineer,150000,USD,150000,United States,In-person,United States,M,Data Engineering +2023,Mid-level,Full-time,Data Engineer,130000,USD,130000,United States,In-person,United States,M,Data Engineering +2023,Senior,Full-time,Data Scientist,225000,USD,225000,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Data Scientist,156400,USD,156400,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Computer Vision Engineer,200000,USD,200000,United States,Remote,United States,S,Machine Learning and AI +2023,Mid-level,Full-time,Applied Data Scientist,80000,USD,80000,Kenya,Remote,Kenya,S,Data Science and Research +2023,Senior,Full-time,Data Scientist,257000,USD,257000,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Data Scientist,134000,USD,134000,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Data Scientist,72000,EUR,77737,Latvia,In-person,Latvia,M,Data Science and Research +2023,Senior,Full-time,Data Scientist,36000,EUR,38868,Latvia,In-person,Latvia,M,Data Science and Research +2023,Senior,Full-time,Data Engineer,205600,USD,205600,United States,In-person,United States,L,Data Engineering +2023,Senior,Full-time,Data Engineer,105700,USD,105700,United States,In-person,United States,L,Data Engineering +2023,Senior,Full-time,BI Developer,140000,USD,140000,United States,Remote,United States,M,BI and Visualization +2023,Senior,Full-time,BI Developer,110000,USD,110000,United States,Remote,United States,M,BI and Visualization +2023,Senior,Full-time,Data Science Manager,299500,USD,299500,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Data Science Manager,245100,USD,245100,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Research Scientist,210000,USD,210000,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Research Scientist,151800,USD,151800,United States,In-person,United States,M,Data Science and Research +2023,Mid-level,Full-time,Data Scientist,50000,EUR,53984,Romania,Hybrid,Romania,L,Data Science and Research +2023,Senior,Full-time,Data Analyst,48000,EUR,51824,Spain,In-person,Spain,M,Data Analysis +2023,Senior,Full-time,Data Analyst,38000,EUR,41027,Spain,In-person,Spain,M,Data Analysis +2023,Senior,Full-time,Data Analyst,48000,EUR,51824,Spain,In-person,Spain,M,Data Analysis +2023,Senior,Full-time,Data Analyst,38000,EUR,41027,Spain,In-person,Spain,M,Data Analysis +2023,Entry-level,Full-time,Data Engineer,160000,USD,160000,United States,In-person,United States,M,Data Engineering +2023,Entry-level,Full-time,Data Engineer,135000,USD,135000,United States,In-person,United States,M,Data Engineering +2023,Mid-level,Full-time,Data Engineer,120000,USD,120000,United States,Remote,United States,M,Data Engineering +2023,Mid-level,Full-time,Data Engineer,95000,USD,95000,United States,Remote,United States,M,Data Engineering +2023,Senior,Full-time,Data Engineer,250000,USD,250000,United States,Remote,United States,M,Data Engineering +2023,Senior,Full-time,Data Engineer,63000,USD,63000,United States,Remote,United States,M,Data Engineering +2023,Senior,Full-time,Data Scientist,237000,USD,237000,United States,Remote,United States,M,Data Science and Research +2023,Senior,Full-time,Data Scientist,145000,USD,145000,United States,Remote,United States,M,Data Science and Research +2023,Senior,Full-time,Data Scientist,130000,USD,130000,United States,Remote,United States,M,Data Science and Research +2023,Senior,Full-time,Data Scientist,90000,USD,90000,United States,Remote,United States,M,Data Science and Research +2023,Mid-level,Full-time,Data Analyst,120000,USD,120000,United States,Remote,United States,M,Data Analysis +2023,Mid-level,Full-time,Data Analyst,100000,USD,100000,United States,Remote,United States,M,Data Analysis +2023,Senior,Full-time,Data Architect,174500,USD,174500,United States,In-person,United States,M,Data Architecture and Modeling +2023,Senior,Full-time,Data Architect,113000,USD,113000,United States,In-person,United States,M,Data Architecture and Modeling +2023,Mid-level,Full-time,Data Scientist,183310,USD,183310,United States,In-person,United States,M,Data Science and Research +2023,Mid-level,Full-time,Data Scientist,183310,USD,183310,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Data Analyst,145000,USD,145000,United States,Remote,United States,M,Data Analysis +2023,Senior,Full-time,Data Analyst,102500,USD,102500,United States,Remote,United States,M,Data Analysis +2023,Senior,Full-time,Data Scientist,210000,USD,210000,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Data Scientist,185000,USD,185000,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Data Architect,174500,USD,174500,United States,In-person,United States,M,Data Architecture and Modeling +2023,Senior,Full-time,Data Architect,113000,USD,113000,United States,In-person,United States,M,Data Architecture and Modeling +2023,Senior,Full-time,Data Science Consultant,122000,USD,122000,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Data Science Consultant,94000,USD,94000,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Data Scientist,220000,USD,220000,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Data Scientist,146000,USD,146000,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Data Engineer,300000,USD,300000,United States,In-person,United States,M,Data Engineering +2023,Senior,Full-time,Data Engineer,130000,USD,130000,United States,In-person,United States,M,Data Engineering +2023,Senior,Full-time,Data Science Consultant,145000,USD,145000,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Data Science Consultant,128000,USD,128000,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Data Scientist,182000,USD,182000,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Data Scientist,140000,USD,140000,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Data Engineer,122000,USD,122000,United States,In-person,United States,M,Data Engineering +2023,Senior,Full-time,Data Engineer,94000,USD,94000,United States,In-person,United States,M,Data Engineering +2023,Senior,Full-time,Machine Learning Engineer,72000,EUR,77737,Latvia,In-person,Latvia,M,Machine Learning and AI +2023,Senior,Full-time,Machine Learning Engineer,36000,EUR,38868,Latvia,In-person,Latvia,M,Machine Learning and AI +2023,Executive,Full-time,Data Scientist,300000,USD,300000,United States,In-person,United States,M,Data Science and Research +2023,Executive,Full-time,Data Scientist,200000,USD,200000,United States,In-person,United States,M,Data Science and Research +2023,Mid-level,Full-time,Data Analyst,135000,USD,135000,United States,In-person,United States,M,Data Analysis +2023,Mid-level,Full-time,Data Analyst,105500,USD,105500,United States,In-person,United States,M,Data Analysis +2023,Senior,Full-time,Data Engineer,252000,USD,252000,United States,In-person,United States,M,Data Engineering +2023,Senior,Full-time,Data Engineer,129000,USD,129000,United States,In-person,United States,M,Data Engineering +2022,Mid-level,Full-time,Data Scientist,110000,USD,110000,United States,Remote,United States,L,Data Science and Research +2023,Senior,Full-time,Data Scientist,136000,USD,136000,United States,Remote,United States,M,Data Science and Research +2023,Senior,Full-time,Data Scientist,104000,USD,104000,United States,Remote,United States,M,Data Science and Research +2023,Senior,Full-time,Data Scientist,168000,USD,168000,United States,Remote,United States,M,Data Science and Research +2023,Senior,Full-time,Data Scientist,130000,USD,130000,United States,Remote,United States,M,Data Science and Research +2023,Mid-level,Full-time,Data Analyst,65000,GBP,79976,United Kingdom,In-person,United Kingdom,M,Data Analysis +2023,Mid-level,Full-time,Data Analyst,36050,GBP,44356,United Kingdom,In-person,United Kingdom,M,Data Analysis +2023,Mid-level,Full-time,Data Engineer,120000,USD,120000,United States,In-person,United States,M,Data Engineering +2023,Mid-level,Full-time,Data Engineer,95000,USD,95000,United States,In-person,United States,M,Data Engineering +2023,Senior,Full-time,Data Scientist,153400,USD,153400,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Data Scientist,122700,USD,122700,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Data Scientist,185000,USD,185000,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Data Scientist,160000,USD,160000,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Data Scientist,205000,USD,205000,United States,Remote,United States,M,Data Science and Research +2023,Senior,Full-time,Data Scientist,185000,USD,185000,United States,Remote,United States,M,Data Science and Research +2023,Senior,Full-time,Machine Learning Engineer,204500,USD,204500,United States,In-person,United States,M,Machine Learning and AI +2023,Senior,Full-time,Machine Learning Engineer,142200,USD,142200,United States,In-person,United States,M,Machine Learning and AI +2023,Mid-level,Full-time,Machine Learning Engineer,145000,USD,145000,United States,In-person,United States,M,Machine Learning and AI +2023,Mid-level,Full-time,Machine Learning Engineer,87000,USD,87000,United States,In-person,United States,M,Machine Learning and AI +2023,Entry-level,Full-time,Data Scientist,50000,USD,50000,India,Remote,United States,M,Data Science and Research +2023,Senior,Full-time,ML Engineer,234100,USD,234100,United States,Remote,United States,M,Machine Learning and AI +2023,Senior,Full-time,ML Engineer,203500,USD,203500,United States,Remote,United States,M,Machine Learning and AI +2023,Senior,Full-time,Data Scientist,223800,USD,223800,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Data Scientist,172100,USD,172100,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Data Scientist,180000,USD,180000,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Data Scientist,150000,USD,150000,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Data Engineer,232200,USD,232200,United States,Remote,United States,M,Data Engineering +2023,Senior,Full-time,Data Engineer,167200,USD,167200,United States,Remote,United States,M,Data Engineering +2023,Senior,Full-time,BI Developer,197000,USD,197000,United States,In-person,United States,M,BI and Visualization +2023,Senior,Full-time,BI Developer,106000,USD,106000,United States,In-person,United States,M,BI and Visualization +2023,Senior,Full-time,Research Scientist,180000,USD,180000,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Research Scientist,145000,USD,145000,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Data Lead,225000,USD,225000,United States,In-person,United States,M,Leadership and Management +2023,Senior,Full-time,Data Lead,200000,USD,200000,United States,In-person,United States,M,Leadership and Management +2023,Senior,Full-time,Data Engineer,170000,USD,170000,United States,Remote,United States,M,Data Engineering +2023,Senior,Full-time,Data Engineer,114000,USD,114000,United States,Remote,United States,M,Data Engineering +2023,Senior,Full-time,Data Engineer,291500,USD,291500,United States,In-person,United States,M,Data Engineering +2023,Senior,Full-time,Data Engineer,180000,USD,180000,United States,In-person,United States,M,Data Engineering +2023,Executive,Full-time,Data Engineer,196200,USD,196200,United States,In-person,United States,M,Data Engineering +2023,Executive,Full-time,Data Engineer,150900,USD,150900,United States,In-person,United States,M,Data Engineering +2023,Senior,Full-time,Data Scientist,168400,USD,168400,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Data Scientist,105200,USD,105200,United States,In-person,United States,M,Data Science and Research +2023,Mid-level,Full-time,Data Engineer,95000,USD,95000,Spain,Remote,Spain,M,Data Engineering +2023,Mid-level,Full-time,Data Engineer,80000,USD,80000,Spain,Remote,Spain,M,Data Engineering +2023,Mid-level,Full-time,Data Analyst,116000,USD,116000,United States,In-person,United States,M,Data Analysis +2023,Mid-level,Full-time,Data Analyst,72000,USD,72000,United States,In-person,United States,M,Data Analysis +2023,Senior,Full-time,Analytics Engineer,207000,USD,207000,United States,In-person,United States,M,Leadership and Management +2023,Senior,Full-time,Analytics Engineer,167000,USD,167000,United States,In-person,United States,M,Leadership and Management +2023,Senior,Full-time,Machine Learning Engineer,145000,USD,145000,United States,In-person,United States,M,Machine Learning and AI +2023,Senior,Full-time,Machine Learning Engineer,135000,USD,135000,United States,In-person,United States,M,Machine Learning and AI +2023,Mid-level,Full-time,Data Engineer,105000,USD,105000,United States,In-person,United States,M,Data Engineering +2023,Mid-level,Full-time,Data Engineer,70000,USD,70000,United States,In-person,United States,M,Data Engineering +2023,Senior,Full-time,Data Architect,180000,USD,180000,United States,Remote,United States,M,Data Architecture and Modeling +2023,Senior,Full-time,Data Architect,115000,USD,115000,United States,Remote,United States,M,Data Architecture and Modeling +2023,Senior,Full-time,Data Engineer,133800,USD,133800,United States,Remote,United States,M,Data Engineering +2023,Senior,Full-time,Data Engineer,96100,USD,96100,United States,Remote,United States,M,Data Engineering +2023,Mid-level,Full-time,Data Analyst,120000,USD,120000,United States,In-person,United States,M,Data Analysis +2023,Mid-level,Full-time,Data Analyst,80000,USD,80000,United States,In-person,United States,M,Data Analysis +2023,Senior,Full-time,Data Science Engineer,140000,USD,140000,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Data Science Engineer,100000,USD,100000,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Research Scientist,150000,USD,150000,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Research Scientist,120000,USD,120000,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Cloud Database Engineer,140000,USD,140000,United States,Remote,United States,M,Cloud and Database +2023,Senior,Full-time,Cloud Database Engineer,115000,USD,115000,United States,Remote,United States,M,Cloud and Database +2023,Senior,Full-time,Data Science Manager,297300,USD,297300,United States,Remote,United States,M,Data Science and Research +2023,Senior,Full-time,Data Science Manager,198200,USD,198200,United States,Remote,United States,M,Data Science and Research +2023,Senior,Full-time,Data Scientist,297300,USD,297300,United States,Remote,United States,M,Data Science and Research +2023,Senior,Full-time,Data Scientist,198200,USD,198200,United States,Remote,United States,M,Data Science and Research +2023,Senior,Full-time,Data Engineer,202000,USD,202000,United States,Remote,United States,M,Data Engineering +2023,Senior,Full-time,Data Engineer,135000,USD,135000,United States,Remote,United States,M,Data Engineering +2023,Senior,Full-time,Data Scientist,110000,USD,110000,United States,Remote,United States,M,Data Science and Research +2023,Senior,Full-time,Data Scientist,84000,USD,84000,United States,Remote,United States,M,Data Science and Research +2023,Mid-level,Full-time,Machine Learning Engineer,219000,USD,219000,United States,Hybrid,United States,L,Machine Learning and AI +2023,Senior,Full-time,Applied Scientist,230000,USD,230000,United States,Remote,United States,M,Data Science and Research +2023,Senior,Full-time,Applied Scientist,196000,USD,196000,United States,Remote,United States,M,Data Science and Research +2023,Senior,Full-time,BI Developer,140000,USD,140000,United States,Remote,United States,M,BI and Visualization +2023,Senior,Full-time,BI Developer,110000,USD,110000,United States,Remote,United States,M,BI and Visualization +2023,Mid-level,Full-time,Data Analyst,150000,USD,150000,United States,In-person,United States,M,Data Analysis +2023,Mid-level,Full-time,Data Analyst,100000,USD,100000,United States,In-person,United States,M,Data Analysis +2023,Senior,Full-time,Data Engineer,160000,USD,160000,United States,In-person,United States,M,Data Engineering +2023,Senior,Full-time,Data Engineer,110000,USD,110000,United States,In-person,United States,M,Data Engineering +2023,Senior,Full-time,Data Scientist,185900,USD,185900,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Data Scientist,129300,USD,129300,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Applied Scientist,126100,USD,126100,United States,In-person,United States,L,Data Science and Research +2023,Senior,Full-time,Applied Scientist,72000,USD,72000,United States,In-person,United States,L,Data Science and Research +2023,Senior,Full-time,Data Engineer,170000,USD,170000,United States,Remote,United States,M,Data Engineering +2023,Senior,Full-time,Data Engineer,150000,USD,150000,United States,Remote,United States,M,Data Engineering +2023,Mid-level,Full-time,Machine Learning Engineer,175000,USD,175000,United States,Remote,United States,M,Machine Learning and AI +2023,Mid-level,Full-time,Machine Learning Engineer,140000,USD,140000,United States,Remote,United States,M,Machine Learning and AI +2023,Senior,Full-time,Data Analyst,240500,USD,240500,United States,In-person,United States,M,Data Analysis +2023,Senior,Full-time,Data Analyst,137500,USD,137500,United States,In-person,United States,M,Data Analysis +2023,Mid-level,Full-time,Data Scientist,187500,USD,187500,United States,In-person,United States,M,Data Science and Research +2023,Mid-level,Full-time,Data Scientist,165000,USD,165000,United States,In-person,United States,M,Data Science and Research +2023,Mid-level,Full-time,Machine Learning Research Engineer,60000,GBP,73824,United Kingdom,In-person,United Kingdom,L,Data Science and Research +2022,Entry-level,Part-time,Data Analyst,24000,EUR,25216,Spain,Remote,United States,L,Data Analysis +2023,Senior,Full-time,Research Scientist,210000,USD,210000,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Research Scientist,165750,USD,165750,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Machine Learning Scientist,225000,USD,225000,United States,Remote,United States,M,Machine Learning and AI +2023,Senior,Full-time,Machine Learning Scientist,165750,USD,165750,United States,Remote,United States,M,Machine Learning and AI +2023,Mid-level,Full-time,Machine Learning Engineer,89700,GBP,110367,United Kingdom,In-person,United Kingdom,M,Machine Learning and AI +2023,Mid-level,Full-time,Machine Learning Engineer,55250,GBP,67979,United Kingdom,In-person,United Kingdom,M,Machine Learning and AI +2023,Senior,Full-time,Data Scientist,135000,USD,135000,United States,Remote,United States,M,Data Science and Research +2023,Senior,Full-time,Data Scientist,115000,USD,115000,United States,Remote,United States,M,Data Science and Research +2023,Senior,Full-time,NLP Engineer,275000,USD,275000,United States,In-person,United States,M,Machine Learning and AI +2023,Senior,Full-time,NLP Engineer,175000,USD,175000,United States,In-person,United States,M,Machine Learning and AI +2023,Senior,Full-time,Data Scientist,170000,USD,170000,United States,Remote,United States,M,Data Science and Research +2023,Senior,Full-time,Data Scientist,140000,USD,140000,United States,Remote,United States,M,Data Science and Research +2023,Senior,Full-time,Data Engineer,175308,USD,175308,United States,In-person,United States,M,Data Engineering +2023,Senior,Full-time,Data Engineer,100706,USD,100706,United States,In-person,United States,M,Data Engineering +2023,Senior,Full-time,NLP Engineer,235000,USD,235000,United States,In-person,United States,M,Machine Learning and AI +2023,Senior,Full-time,NLP Engineer,135000,USD,135000,United States,In-person,United States,M,Machine Learning and AI +2023,Senior,Full-time,Data Engineer,310000,USD,310000,United States,In-person,United States,M,Data Engineering +2023,Senior,Full-time,Data Engineer,229000,USD,229000,United States,In-person,United States,M,Data Engineering +2023,Senior,Full-time,ML Engineer,289076,USD,289076,United States,In-person,United States,M,Machine Learning and AI +2023,Senior,Full-time,ML Engineer,202353,USD,202353,United States,In-person,United States,M,Machine Learning and AI +2023,Senior,Full-time,Data Engineer,65000,EUR,70179,Portugal,In-person,Portugal,M,Data Engineering +2023,Senior,Full-time,Data Engineer,35000,EUR,37788,Portugal,In-person,Portugal,M,Data Engineering +2023,Mid-level,Full-time,Research Engineer,120000,USD,120000,United States,Remote,United States,M,Data Science and Research +2023,Mid-level,Full-time,Research Engineer,100000,USD,100000,United States,Remote,United States,M,Data Science and Research +2023,Senior,Full-time,Data Engineer,226700,USD,226700,United States,In-person,United States,M,Data Engineering +2023,Senior,Full-time,Data Engineer,133300,USD,133300,United States,In-person,United States,M,Data Engineering +2023,Senior,Full-time,Data Analyst,125000,USD,125000,United States,In-person,United States,M,Data Analysis +2023,Senior,Full-time,Data Analyst,85000,USD,85000,United States,In-person,United States,M,Data Analysis +2023,Senior,Full-time,Data Analyst,130000,USD,130000,United States,Remote,United States,M,Data Analysis +2023,Senior,Full-time,Data Analyst,80000,USD,80000,United States,Remote,United States,M,Data Analysis +2023,Mid-level,Full-time,Data Engineer,120000,USD,120000,United States,In-person,United States,M,Data Engineering +2023,Mid-level,Full-time,Data Engineer,100000,USD,100000,United States,In-person,United States,M,Data Engineering +2023,Senior,Full-time,Data Engineer,231250,USD,231250,United States,Remote,United States,M,Data Engineering +2023,Senior,Full-time,Data Engineer,138750,USD,138750,United States,Remote,United States,M,Data Engineering +2023,Senior,Full-time,Data Engineer,199000,USD,199000,United States,In-person,United States,M,Data Engineering +2023,Senior,Full-time,Data Engineer,162000,USD,162000,United States,In-person,United States,M,Data Engineering +2023,Entry-level,Full-time,Data Engineer,160000,USD,160000,United States,In-person,United States,M,Data Engineering +2023,Entry-level,Full-time,Data Engineer,135000,USD,135000,United States,In-person,United States,M,Data Engineering +2022,Entry-level,Full-time,Data Scientist,100000,USD,100000,United States,Remote,United States,M,Data Science and Research +2023,Senior,Full-time,Research Scientist,200000,USD,200000,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Research Scientist,150000,USD,150000,United States,In-person,United States,M,Data Science and Research +2023,Entry-level,Full-time,Research Engineer,160000,USD,160000,United States,In-person,United States,M,Data Science and Research +2023,Entry-level,Full-time,Research Engineer,120000,USD,120000,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Research Scientist,250000,USD,250000,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Research Scientist,200000,USD,200000,United States,In-person,United States,M,Data Science and Research +2023,Entry-level,Full-time,Deep Learning Engineer,150000,USD,150000,United States,In-person,United States,M,Machine Learning and AI +2023,Entry-level,Full-time,Deep Learning Engineer,120000,USD,120000,United States,In-person,United States,M,Machine Learning and AI +2023,Senior,Full-time,Research Engineer,150000,USD,150000,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Research Engineer,100000,USD,100000,United States,In-person,United States,M,Data Science and Research +2022,Senior,Full-time,Data Analytics Manager,133000,USD,133000,Netherlands,In-person,Netherlands,L,Leadership and Management +2023,Senior,Full-time,Data Scientist,272550,USD,272550,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Data Scientist,198200,USD,198200,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Data Scientist,182000,USD,182000,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Data Scientist,140000,USD,140000,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Data Engineer,200000,USD,200000,United States,In-person,United States,M,Data Engineering +2023,Senior,Full-time,Data Engineer,160000,USD,160000,United States,In-person,United States,M,Data Engineering +2023,Senior,Full-time,Machine Learning Engineer,204500,USD,204500,United States,In-person,United States,M,Machine Learning and AI +2023,Senior,Full-time,Machine Learning Engineer,142200,USD,142200,United States,In-person,United States,M,Machine Learning and AI +2023,Mid-level,Full-time,Data Scientist,120000,USD,120000,United States,In-person,United States,M,Data Science and Research +2023,Mid-level,Full-time,Data Scientist,105000,USD,105000,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Data Engineer,187500,USD,187500,United States,Remote,United States,M,Data Engineering +2023,Senior,Full-time,Data Engineer,175000,USD,175000,United States,Remote,United States,M,Data Engineering +2023,Senior,Full-time,Machine Learning Engineer,204500,USD,204500,United States,In-person,United States,M,Machine Learning and AI +2023,Senior,Full-time,Machine Learning Engineer,142200,USD,142200,United States,In-person,United States,M,Machine Learning and AI +2023,Senior,Full-time,Data Analyst,155000,USD,155000,United States,Remote,United States,M,Data Analysis +2023,Senior,Full-time,Data Analyst,64000,USD,64000,United States,Remote,United States,M,Data Analysis +2023,Senior,Full-time,Computer Vision Engineer,235000,USD,235000,United States,In-person,United States,M,Machine Learning and AI +2023,Senior,Full-time,Computer Vision Engineer,185000,USD,185000,United States,In-person,United States,M,Machine Learning and AI +2023,Senior,Full-time,Data Architect,174500,USD,174500,United States,In-person,United States,M,Data Architecture and Modeling +2023,Senior,Full-time,Data Architect,113000,USD,113000,United States,In-person,United States,M,Data Architecture and Modeling +2023,Senior,Full-time,Data Scientist,143100,USD,143100,Canada,In-person,Canada,M,Data Science and Research +2023,Senior,Full-time,Data Scientist,113000,USD,113000,Canada,In-person,Canada,M,Data Science and Research +2023,Senior,Full-time,Applied Scientist,184000,USD,184000,United States,Remote,United States,M,Data Science and Research +2023,Senior,Full-time,Applied Scientist,142000,USD,142000,United States,Remote,United States,M,Data Science and Research +2023,Senior,Full-time,Data Scientist,140000,USD,140000,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Data Scientist,120000,USD,120000,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Data Architect,174500,USD,174500,United States,In-person,United States,M,Data Architecture and Modeling +2023,Senior,Full-time,Data Architect,113000,USD,113000,United States,In-person,United States,M,Data Architecture and Modeling +2023,Senior,Full-time,Data Scientist,180560,USD,180560,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Data Scientist,115440,USD,115440,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Data Scientist,140000,USD,140000,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Data Scientist,120000,USD,120000,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Research Scientist,248100,USD,248100,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Research Scientist,145900,USD,145900,United States,In-person,United States,M,Data Science and Research +2023,Senior,Full-time,Data Scientist,120000,USD,120000,Canada,In-person,Canada,M,Data Science and Research +2023,Senior,Full-time,Data Scientist,110000,USD,110000,Canada,In-person,Canada,M,Data Science and Research +2023,Senior,Full-time,Data Engineer,291500,USD,291500,United States,In-person,United States,M,Data Engineering +2023,Senior,Full-time,Data Engineer,180000,USD,180000,United States,In-person,United States,M,Data Engineering +2023,Mid-level,Full-time,Machine Learning Engineer,62000,GBP,76284,United Kingdom,Remote,United Kingdom,M,Machine Learning and AI +2023,Mid-level,Full-time,Machine Learning Engineer,52000,GBP,63980,United Kingdom,Remote,United Kingdom,M,Machine Learning and AI +2023,Senior,Full-time,Data Engineer,161800,USD,161800,United States,In-person,United States,M,Data Engineering +2023,Senior,Full-time,Data Engineer,141600,USD,141600,United States,In-person,United States,M,Data Engineering +2023,Mid-level,Full-time,Machine Learning Engineer,48000,GBP,59059,United Kingdom,Remote,United Kingdom,M,Machine Learning and AI +2023,Mid-level,Full-time,Machine Learning Engineer,38000,GBP,46755,United Kingdom,Remote,United Kingdom,M,Machine Learning and AI +2023,Senior,Full-time,Data Engineer,166000,USD,166000,United States,Remote,United States,M,Data Engineering +2023,Senior,Full-time,Data Engineer,128000,USD,128000,United States,Remote,United States,M,Data Engineering +2023,Senior,Full-time,Data Architect,170000,USD,170000,United States,Remote,United States,M,Data Architecture and Modeling +2023,Senior,Full-time,Data Architect,110000,USD,110000,United States,Remote,United States,M,Data Architecture and Modeling +2023,Senior,Full-time,Data Engineer,160000,USD,160000,United States,Remote,United States,M,Data Engineering +2023,Senior,Full-time,Data Engineer,75000,USD,75000,United States,Remote,United States,M,Data Engineering +2023,Senior,Full-time,Data Engineer,236000,USD,236000,United States,Remote,United States,M,Data Engineering +2023,Senior,Full-time,Data Engineer,182000,USD,182000,United States,Remote,United States,M,Data Engineering +2022,Entry-level,Full-time,Data Scientist,130000,USD,130000,United States,In-person,United States,M,Data Science and Research +2023,Mid-level,Full-time,Data Analyst,150000,USD,150000,United States,In-person,United States,M,Data Analysis +2023,Mid-level,Full-time,Data Analyst,100000,USD,100000,United States,In-person,United States,M,Data Analysis +2023,Senior,Full-time,Machine Learning Engineer,261500,USD,261500,United States,In-person,United States,L,Machine Learning and AI +2023,Senior,Full-time,Machine Learning Engineer,134500,USD,134500,United States,In-person,United States,L,Machine Learning and AI +2023,Mid-level,Full-time,Data Scientist,130000,USD,130000,United States,In-person,United States,M,Data Science and Research +2023,Mid-level,Full-time,Data Scientist,90000,USD,90000,United States,In-person,United States,M,Data Science and Research +2023,Entry-level,Full-time,Data Engineer,160000,USD,160000,United States,In-person,United States,M,Data Engineering +2023,Entry-level,Full-time,Data Engineer,135000,USD,135000,United States,In-person,United States,M,Data Engineering +2022,Senior,Full-time,Manager Data Management,125000,USD,125000,United States,Remote,United States,L,Leadership and Management +2022,Senior,Full-time,Data Engineer,175000,USD,175000,United States,In-person,United States,M,Data Engineering +2022,Senior,Full-time,Data Engineer,155000,USD,155000,United States,In-person,United States,M,Data Engineering +2022,Senior,Full-time,Data Engineer,153600,USD,153600,United States,In-person,United States,M,Data Engineering +2022,Senior,Full-time,Data Engineer,106800,USD,106800,United States,In-person,United States,M,Data Engineering +2022,Senior,Full-time,Data Scientist,150000,USD,150000,United States,In-person,United States,M,Data Science and Research +2022,Senior,Full-time,Data Scientist,140000,USD,140000,United States,In-person,United States,M,Data Science and Research +2022,Senior,Full-time,Data Science Consultant,122000,USD,122000,United States,In-person,United States,M,Data Science and Research +2022,Senior,Full-time,Data Science Consultant,94500,USD,94500,United States,In-person,United States,M,Data Science and Research +2022,Senior,Full-time,Data Engineer,170000,USD,170000,United States,In-person,United States,M,Data Engineering +2022,Senior,Full-time,Data Engineer,130000,USD,130000,United States,In-person,United States,M,Data Engineering +2022,Senior,Full-time,Data Science Consultant,145000,USD,145000,United States,In-person,United States,M,Data Science and Research +2022,Senior,Full-time,Data Science Consultant,128000,USD,128000,United States,In-person,United States,M,Data Science and Research +2022,Senior,Full-time,Data Engineer,145000,USD,145000,United States,In-person,United States,M,Data Engineering +2022,Senior,Full-time,Data Engineer,100000,USD,100000,United States,In-person,United States,M,Data Engineering +2022,Senior,Full-time,Data Engineer,175000,USD,175000,United States,In-person,United States,M,Data Engineering +2022,Senior,Full-time,Data Engineer,120000,USD,120000,United States,In-person,United States,M,Data Engineering +2022,Senior,Full-time,Data Engineer,145000,USD,145000,United States,In-person,United States,M,Data Engineering +2022,Senior,Full-time,Data Engineer,115000,USD,115000,United States,In-person,United States,M,Data Engineering +2022,Senior,Full-time,Applied Machine Learning Scientist,150000,USD,150000,United States,Remote,United States,M,Machine Learning and AI +2022,Mid-level,Full-time,Data Analyst,150000,USD,150000,United States,In-person,United States,M,Data Analysis +2022,Mid-level,Full-time,Data Analyst,100000,USD,100000,United States,In-person,United States,M,Data Analysis +2022,Mid-level,Full-time,Data Scientist,150000,USD,150000,United States,Remote,United States,M,Data Science and Research +2022,Mid-level,Full-time,Data Scientist,127500,USD,127500,United States,Remote,United States,M,Data Science and Research +2022,Senior,Full-time,Data Scientist,126500,USD,126500,United States,Remote,United States,M,Data Science and Research +2022,Senior,Full-time,Data Scientist,51000,USD,51000,United States,Remote,United States,M,Data Science and Research +2022,Mid-level,Full-time,Data Engineer,260000,USD,260000,United States,In-person,United States,M,Data Engineering +2022,Mid-level,Full-time,Data Engineer,175000,USD,175000,United States,In-person,United States,M,Data Engineering +2022,Entry-level,Full-time,Applied Data Scientist,40000,USD,40000,Australia,Remote,Pakistan,M,Data Science and Research +2022,Entry-level,Full-time,AI Programmer,40000,USD,40000,Pakistan,Remote,Australia,M,Machine Learning and AI +2022,Senior,Full-time,Data Engineer,250000,USD,250000,United States,Remote,United States,M,Data Engineering +2022,Senior,Full-time,Data Engineer,63000,USD,63000,United States,Remote,United States,M,Data Engineering +2022,Senior,Full-time,Machine Learning Engineer,210000,USD,210000,United States,Remote,United States,M,Machine Learning and AI +2022,Senior,Full-time,Machine Learning Engineer,160000,USD,160000,United States,Remote,United States,M,Machine Learning and AI +2022,Senior,Full-time,Data Scientist,272550,USD,272550,United States,Remote,United States,M,Data Science and Research +2022,Senior,Full-time,Data Scientist,198200,USD,198200,United States,Remote,United States,M,Data Science and Research +2022,Mid-level,Full-time,Data Scientist,90000,EUR,94560,France,Remote,France,M,Data Science and Research +2022,Mid-level,Full-time,Data Scientist,50000,EUR,52533,France,Remote,France,M,Data Science and Research +2022,Senior,Full-time,Data Scientist,220000,USD,220000,United States,In-person,United States,M,Data Science and Research +2022,Senior,Full-time,Data Scientist,146000,USD,146000,United States,In-person,United States,M,Data Science and Research +2022,Mid-level,Full-time,Data Analyst,150000,USD,150000,United States,In-person,United States,M,Data Analysis +2022,Mid-level,Full-time,Data Analyst,100000,USD,100000,United States,In-person,United States,M,Data Analysis +2022,Senior,Full-time,Machine Learning Software Engineer,248400,USD,248400,Canada,Remote,Canada,M,Machine Learning and AI +2022,Senior,Full-time,Machine Learning Software Engineer,183600,USD,183600,Canada,Remote,Canada,M,Machine Learning and AI +2022,Mid-level,Full-time,Data Engineer,150000,USD,150000,United States,Remote,United States,M,Data Engineering +2022,Mid-level,Full-time,Data Engineer,150000,USD,150000,United States,Remote,United States,M,Data Engineering +2022,Entry-level,Full-time,Machine Learning Developer,40000,USD,40000,Pakistan,Remote,Australia,M,Machine Learning and AI +2022,Mid-level,Full-time,Data Engineer,120000,USD,120000,United States,In-person,United States,M,Data Engineering +2022,Mid-level,Full-time,Data Engineer,95000,USD,95000,United States,In-person,United States,M,Data Engineering +2022,Entry-level,Full-time,Data Engineer,160000,USD,160000,United States,In-person,United States,M,Data Engineering +2022,Entry-level,Full-time,Data Engineer,135000,USD,135000,United States,In-person,United States,M,Data Engineering +2022,Entry-level,Full-time,Data Science Consultant,23000,EUR,24165,Italy,Hybrid,Italy,M,Data Science and Research +2022,Senior,Full-time,Data Engineer,216000,USD,216000,United States,Remote,United States,M,Data Engineering +2022,Senior,Full-time,Data Engineer,144000,USD,144000,United States,Remote,United States,M,Data Engineering +2022,Entry-level,Full-time,Data Engineer,85000,USD,85000,United States,In-person,United States,M,Data Engineering +2022,Entry-level,Full-time,Data Engineer,65000,USD,65000,United States,In-person,United States,M,Data Engineering +2022,Senior,Full-time,Data Analyst,149000,USD,149000,United States,Remote,United States,M,Data Analysis +2022,Senior,Full-time,Data Analyst,119000,USD,119000,United States,Remote,United States,M,Data Analysis +2022,Senior,Full-time,Data Scientist,140000,USD,140000,United States,In-person,United States,M,Data Science and Research +2022,Senior,Full-time,Data Scientist,120000,USD,120000,United States,In-person,United States,M,Data Science and Research +2022,Mid-level,Full-time,Data Scientist,150000,USD,150000,United States,In-person,United States,M,Data Science and Research +2022,Mid-level,Full-time,Data Scientist,110000,USD,110000,United States,In-person,United States,M,Data Science and Research +2022,Senior,Full-time,Machine Learning Engineer,246000,USD,246000,United States,Remote,United States,M,Machine Learning and AI +2022,Senior,Full-time,Machine Learning Engineer,201000,USD,201000,United States,Remote,United States,M,Machine Learning and AI +2022,Senior,Full-time,Data Scientist,190000,USD,190000,United States,In-person,United States,M,Data Science and Research +2022,Senior,Full-time,Data Scientist,155000,USD,155000,United States,In-person,United States,M,Data Science and Research +2022,Senior,Full-time,ML Engineer,235000,USD,235000,United States,Remote,United States,M,Machine Learning and AI +2022,Senior,Full-time,ML Engineer,185000,USD,185000,United States,Remote,United States,M,Machine Learning and AI +2022,Senior,Full-time,Cloud Database Engineer,190000,USD,190000,United States,Remote,United States,M,Cloud and Database +2022,Senior,Full-time,Cloud Database Engineer,160000,USD,160000,United States,Remote,United States,M,Cloud and Database +2022,Entry-level,Full-time,Product Data Analyst,100000,USD,100000,United States,Remote,United States,M,Data Analysis +2022,Mid-level,Full-time,Data Engineer,130000,USD,130000,United States,In-person,United States,M,Data Engineering +2022,Mid-level,Full-time,Data Engineer,115000,USD,115000,United States,In-person,United States,M,Data Engineering +2022,Mid-level,Full-time,Data Scientist,75000,GBP,92350,United Kingdom,In-person,United Kingdom,M,Data Science and Research +2022,Mid-level,Full-time,Data Scientist,55000,GBP,67723,United Kingdom,In-person,United Kingdom,M,Data Science and Research +2022,Mid-level,Full-time,Data Engineer,105000,USD,105000,United States,In-person,United States,M,Data Engineering +2022,Mid-level,Full-time,Data Engineer,70000,USD,70000,United States,In-person,United States,M,Data Engineering +2022,Senior,Full-time,Machine Learning Engineer,204500,USD,204500,United States,In-person,United States,M,Machine Learning and AI +2022,Senior,Full-time,Machine Learning Engineer,142200,USD,142200,United States,In-person,United States,M,Machine Learning and AI +2022,Senior,Full-time,Machine Learning Engineer,192000,USD,192000,United States,Remote,United States,M,Machine Learning and AI +2022,Senior,Full-time,Machine Learning Engineer,164000,USD,164000,United States,Remote,United States,M,Machine Learning and AI +2022,Senior,Full-time,Data Engineer,185900,USD,185900,United States,In-person,United States,M,Data Engineering +2022,Senior,Full-time,Data Engineer,129300,USD,129300,United States,In-person,United States,M,Data Engineering +2022,Senior,Full-time,Data Engineer,130000,USD,130000,United States,In-person,United States,M,Data Engineering +2022,Senior,Full-time,Data Engineer,75000,USD,75000,United States,In-person,United States,M,Data Engineering +2022,Senior,Full-time,Data Science Manager,175000,USD,175000,United States,In-person,United States,M,Data Science and Research +2022,Senior,Full-time,Data Science Manager,120000,USD,120000,United States,In-person,United States,M,Data Science and Research +2022,Senior,Full-time,Data Engineer,167500,USD,167500,United States,In-person,United States,M,Data Engineering +2022,Senior,Full-time,Data Engineer,106500,USD,106500,United States,In-person,United States,M,Data Engineering +2022,Mid-level,Full-time,Data Analyst,75000,USD,75000,United States,Remote,United States,M,Data Analysis +2022,Mid-level,Full-time,Data Analyst,60000,USD,60000,United States,Remote,United States,M,Data Analysis +2022,Senior,Full-time,Applied Scientist,184000,USD,184000,United States,Remote,United States,M,Data Science and Research +2022,Senior,Full-time,Applied Scientist,142000,USD,142000,United States,Remote,United States,M,Data Science and Research +2022,Mid-level,Full-time,Data Scientist,145000,USD,145000,United States,In-person,United States,M,Data Science and Research +2022,Mid-level,Full-time,Data Scientist,100000,USD,100000,United States,In-person,United States,M,Data Science and Research +2022,Mid-level,Full-time,NLP Engineer,198000,PLN,44365,Poland,Remote,Poland,S,Machine Learning and AI +2022,Senior,Full-time,Data Engineer,175000,USD,175000,United States,In-person,United States,M,Data Engineering +2022,Senior,Full-time,Data Engineer,120000,USD,120000,United States,In-person,United States,M,Data Engineering +2022,Senior,Full-time,Data Engineer,175000,USD,175000,United States,In-person,United States,M,Data Engineering +2022,Senior,Full-time,Data Engineer,120000,USD,120000,United States,In-person,United States,M,Data Engineering +2022,Executive,Full-time,Data Engineer,200000,USD,200000,United States,In-person,United States,M,Data Engineering +2022,Executive,Full-time,Data Engineer,145000,USD,145000,United States,In-person,United States,M,Data Engineering +2022,Mid-level,Full-time,Data Engineer,75000,GBP,92350,United Kingdom,Remote,United Kingdom,M,Data Engineering +2022,Mid-level,Full-time,Data Engineer,60000,GBP,73880,United Kingdom,Remote,United Kingdom,M,Data Engineering +2022,Senior,Full-time,Data Engineer,145000,USD,145000,United States,In-person,United States,M,Data Engineering +2022,Senior,Full-time,Data Engineer,100000,USD,100000,United States,In-person,United States,M,Data Engineering +2022,Senior,Full-time,Applied Scientist,192000,USD,192000,United States,Remote,United States,M,Data Science and Research +2022,Senior,Full-time,Applied Scientist,164000,USD,164000,United States,Remote,United States,M,Data Science and Research +2022,Executive,Full-time,Data Engineer,310000,USD,310000,United States,Remote,United States,M,Data Engineering +2022,Executive,Full-time,Data Engineer,239000,USD,239000,United States,Remote,United States,M,Data Engineering +2022,Senior,Full-time,Data Analyst,120000,USD,120000,United States,In-person,United States,M,Data Analysis +2022,Senior,Full-time,Data Analyst,95000,USD,95000,United States,In-person,United States,M,Data Analysis +2022,Senior,Full-time,Machine Learning Engineer,145000,USD,145000,United States,In-person,United States,M,Machine Learning and AI +2022,Senior,Full-time,Machine Learning Engineer,135000,USD,135000,United States,In-person,United States,M,Machine Learning and AI +2022,Senior,Full-time,Data Engineer,100000,USD,100000,United States,In-person,United States,M,Data Engineering +2022,Senior,Full-time,Data Engineer,78000,USD,78000,United States,In-person,United States,M,Data Engineering +2022,Senior,Full-time,Data Engineer,70000,EUR,73546,Spain,In-person,Spain,M,Data Engineering +2022,Senior,Full-time,Data Engineer,35000,EUR,36773,Spain,In-person,Spain,M,Data Engineering +2022,Mid-level,Full-time,Data Engineer,160000,USD,160000,United States,Remote,United States,M,Data Engineering +2022,Mid-level,Full-time,Data Engineer,120000,USD,120000,United States,Remote,United States,M,Data Engineering +2022,Senior,Full-time,Data Scientist,190000,USD,190000,United States,In-person,United States,M,Data Science and Research +2022,Senior,Full-time,Data Scientist,150000,USD,150000,United States,In-person,United States,M,Data Science and Research +2022,Senior,Full-time,AI Scientist,125000,USD,125000,Colombia,Remote,Colombia,L,Machine Learning and AI +2022,Senior,Full-time,Data Engineer,120000,USD,120000,United States,In-person,United States,M,Data Engineering +2022,Senior,Full-time,Data Engineer,95000,USD,95000,United States,In-person,United States,M,Data Engineering +2022,Mid-level,Full-time,Data Analyst,150000,USD,150000,United States,In-person,United States,M,Data Analysis +2022,Mid-level,Full-time,Data Analyst,100000,USD,100000,United States,In-person,United States,M,Data Analysis +2022,Senior,Full-time,Data Scientist,45000,EUR,47280,Spain,In-person,Spain,M,Data Science and Research +2022,Senior,Full-time,Data Scientist,36000,EUR,37824,Spain,In-person,Spain,M,Data Science and Research +2022,Senior,Full-time,Data Analyst,115934,USD,115934,United States,Remote,United States,M,Data Analysis +2022,Senior,Full-time,Data Analyst,81666,USD,81666,United States,Remote,United States,M,Data Analysis +2022,Senior,Full-time,Data Scientist,175000,USD,175000,United States,Remote,United States,M,Data Science and Research +2022,Senior,Full-time,Data Scientist,140000,USD,140000,United States,Remote,United States,M,Data Science and Research +2022,Senior,Full-time,Data Engineer,120000,USD,120000,United States,In-person,United States,M,Data Engineering +2022,Senior,Full-time,Data Engineer,95000,USD,95000,United States,In-person,United States,M,Data Engineering +2022,Senior,Full-time,Research Engineer,249500,USD,249500,United States,In-person,United States,M,Data Science and Research +2022,Senior,Full-time,Research Engineer,149850,USD,149850,United States,In-person,United States,M,Data Science and Research +2022,Mid-level,Full-time,Analytics Engineer,122500,USD,122500,United States,Remote,United States,M,Leadership and Management +2022,Mid-level,Full-time,Analytics Engineer,100000,USD,100000,United States,Remote,United States,M,Leadership and Management +2022,Senior,Full-time,Data Scientist,249500,USD,249500,United States,In-person,United States,M,Data Science and Research +2022,Senior,Full-time,Data Scientist,149850,USD,149850,United States,In-person,United States,M,Data Science and Research +2022,Entry-level,Full-time,Data Analyst,55000,USD,55000,United States,In-person,United States,M,Data Analysis +2022,Entry-level,Full-time,Data Analyst,48000,USD,48000,United States,In-person,United States,M,Data Analysis +2022,Senior,Full-time,Research Scientist,249500,USD,249500,United States,In-person,United States,M,Data Science and Research +2022,Senior,Full-time,Research Scientist,149850,USD,149850,United States,In-person,United States,M,Data Science and Research +2022,Mid-level,Full-time,Computer Vision Engineer,56000,EUR,58837,France,Remote,France,S,Machine Learning and AI +2022,Senior,Full-time,Data Engineer,190000,USD,190000,United States,Remote,United States,M,Data Engineering +2022,Senior,Full-time,Data Engineer,120000,USD,120000,United States,Remote,United States,M,Data Engineering +2022,Senior,Full-time,Data Analyst,127000,USD,127000,United States,Remote,United States,M,Data Analysis +2022,Senior,Full-time,Data Analyst,104000,USD,104000,United States,Remote,United States,M,Data Analysis +2022,Senior,Full-time,Data Scientist,210000,USD,210000,United States,Remote,United States,M,Data Science and Research +2022,Senior,Full-time,Data Scientist,150000,USD,150000,United States,Remote,United States,M,Data Science and Research +2022,Senior,Full-time,Machine Learning Engineer,210000,USD,210000,United States,Remote,United States,M,Machine Learning and AI +2022,Senior,Full-time,Machine Learning Engineer,150000,USD,150000,United States,Remote,United States,M,Machine Learning and AI +2022,Senior,Full-time,Data Engineer,210000,USD,210000,United States,Remote,United States,M,Data Engineering +2022,Senior,Full-time,Data Engineer,130000,USD,130000,United States,Remote,United States,M,Data Engineering +2022,Senior,Full-time,Data Scientist,182750,USD,182750,United States,Remote,United States,M,Data Science and Research +2022,Senior,Full-time,Data Scientist,161500,USD,161500,United States,Remote,United States,M,Data Science and Research +2022,Mid-level,Full-time,Data Analyst,102640,USD,102640,United States,Remote,United States,M,Data Analysis +2022,Mid-level,Full-time,Data Analyst,66100,USD,66100,United States,Remote,United States,M,Data Analysis +2022,Senior,Full-time,Research Scientist,210000,USD,210000,United States,Remote,United States,M,Data Science and Research +2022,Senior,Full-time,Research Scientist,150000,USD,150000,United States,Remote,United States,M,Data Science and Research +2022,Senior,Full-time,Data Engineer,198800,USD,198800,United States,In-person,United States,M,Data Engineering +2022,Senior,Full-time,Data Engineer,122600,USD,122600,United States,In-person,United States,M,Data Engineering +2022,Mid-level,Full-time,Data Engineer,130000,USD,130000,United States,Remote,United States,M,Data Engineering +2022,Mid-level,Full-time,Data Engineer,80000,USD,80000,United States,Remote,United States,M,Data Engineering +2022,Senior,Full-time,Data Scientist,136000,USD,136000,United States,Remote,United States,M,Data Science and Research +2022,Senior,Full-time,Data Scientist,104000,USD,104000,United States,Remote,United States,M,Data Science and Research +2022,Senior,Full-time,Data Analyst,150000,USD,150000,United States,Remote,United States,M,Data Analysis +2022,Senior,Full-time,Data Analyst,100000,USD,100000,United States,Remote,United States,M,Data Analysis +2022,Entry-level,Full-time,Data Engineer,160000,USD,160000,United States,In-person,United States,M,Data Engineering +2022,Entry-level,Full-time,Data Engineer,135000,USD,135000,United States,In-person,United States,M,Data Engineering +2022,Senior,Full-time,Data Engineer,216000,USD,216000,United States,Remote,United States,M,Data Engineering +2022,Senior,Full-time,Data Engineer,144000,USD,144000,United States,Remote,United States,M,Data Engineering +2022,Executive,Full-time,Data Scientist,159000,USD,159000,United States,Remote,United States,M,Data Science and Research +2022,Executive,Full-time,Data Scientist,130000,USD,130000,United States,Remote,United States,M,Data Science and Research +2022,Senior,Full-time,Data Analyst,115934,USD,115934,United States,Remote,United States,M,Data Analysis +2022,Senior,Full-time,Data Analyst,81666,USD,81666,United States,Remote,United States,M,Data Analysis +2022,Senior,Full-time,Data Engineer,215000,USD,215000,United States,Remote,United States,M,Data Engineering +2022,Senior,Full-time,Data Engineer,150000,USD,150000,United States,Remote,United States,M,Data Engineering +2022,Senior,Full-time,Machine Learning Engineer,246000,USD,246000,United States,Remote,United States,M,Machine Learning and AI +2022,Senior,Full-time,Machine Learning Engineer,201000,USD,201000,United States,Remote,United States,M,Machine Learning and AI +2022,Mid-level,Full-time,Data Engineer,187000,USD,187000,United States,Remote,United States,M,Data Engineering +2022,Mid-level,Full-time,Data Engineer,153000,USD,153000,United States,Remote,United States,M,Data Engineering +2022,Senior,Full-time,Machine Learning Engineer,255000,USD,255000,Mexico,Remote,Mexico,M,Machine Learning and AI +2022,Senior,Full-time,Machine Learning Engineer,185000,USD,185000,Mexico,Remote,Mexico,M,Machine Learning and AI +2022,Mid-level,Full-time,Data Analyst,350000,GBP,430967,United Kingdom,In-person,United Kingdom,M,Data Analysis +2022,Mid-level,Full-time,Data Analyst,45000,GBP,55410,United Kingdom,In-person,United Kingdom,M,Data Analysis +2022,Senior,Full-time,Data Analyst,48000,EUR,50432,Spain,In-person,Spain,M,Data Analysis +2022,Senior,Full-time,Data Analyst,38000,EUR,39925,Spain,In-person,Spain,M,Data Analysis +2022,Senior,Full-time,Data Analyst,169000,USD,169000,United States,In-person,United States,M,Data Analysis +2022,Senior,Full-time,Data Analyst,110600,USD,110600,United States,In-person,United States,M,Data Analysis +2022,Entry-level,Full-time,BI Data Analyst,58000,EUR,60938,Germany,In-person,Germany,L,Data Analysis +2022,Senior,Full-time,BI Developer,140000,USD,140000,United States,Remote,United States,M,BI and Visualization +2022,Senior,Full-time,BI Developer,120000,USD,120000,United States,Remote,United States,M,BI and Visualization +2022,Mid-level,Full-time,Data Analyst,75000,USD,75000,United States,Remote,United States,M,Data Analysis +2022,Mid-level,Full-time,Data Analyst,60000,USD,60000,United States,Remote,United States,M,Data Analysis +2022,Entry-level,Full-time,Data Analyst,50000,USD,50000,United States,Hybrid,United States,L,Data Analysis +2022,Mid-level,Full-time,MLOps Engineer,134000,USD,134000,United States,Remote,United States,M,Machine Learning and AI +2022,Mid-level,Full-time,MLOps Engineer,124000,USD,124000,United States,Remote,United States,M,Machine Learning and AI +2022,Senior,Full-time,Data Analyst,166700,USD,166700,United States,In-person,United States,M,Data Analysis +2022,Senior,Full-time,Data Analyst,119000,USD,119000,United States,In-person,United States,M,Data Analysis +2022,Entry-level,Full-time,Data Scientist,124234,USD,124234,United States,In-person,United States,M,Data Science and Research +2022,Entry-level,Full-time,Data Scientist,74540,USD,74540,United States,In-person,United States,M,Data Science and Research +2022,Mid-level,Full-time,Data Analyst,100000,USD,100000,United States,Remote,United States,M,Data Analysis +2022,Mid-level,Full-time,Data Analyst,65000,USD,65000,United States,Remote,United States,M,Data Analysis +2022,Entry-level,Full-time,AI Scientist,200000,USD,200000,Canada,Hybrid,Canada,L,Machine Learning and AI +2022,Senior,Full-time,Data Engineer,220000,USD,220000,United States,Remote,United States,M,Data Engineering +2022,Senior,Full-time,Data Engineer,146000,USD,146000,United States,Remote,United States,M,Data Engineering +2022,Senior,Full-time,Data Engineer,65000,EUR,68293,Spain,In-person,Spain,M,Data Engineering +2022,Senior,Full-time,Data Engineer,35000,EUR,36773,Spain,In-person,Spain,M,Data Engineering +2022,Senior,Full-time,Data Specialist,110000,USD,110000,United States,In-person,United States,M,Data Management and Strategy +2022,Senior,Full-time,Data Specialist,70000,USD,70000,United States,In-person,United States,M,Data Management and Strategy +2022,Entry-level,Full-time,Data Analyst,50000,USD,50000,United States,Hybrid,United States,L,Data Analysis +2022,Senior,Full-time,Data Engineer,120000,USD,120000,United States,In-person,United States,M,Data Engineering +2022,Senior,Full-time,Data Engineer,95000,USD,95000,United States,In-person,United States,M,Data Engineering +2022,Mid-level,Full-time,Data Analyst,150000,USD,150000,United States,In-person,United States,M,Data Analysis +2022,Mid-level,Full-time,Data Analyst,100000,USD,100000,United States,In-person,United States,M,Data Analysis +2022,Senior,Full-time,Data Scientist,45000,EUR,47280,Spain,In-person,Spain,M,Data Science and Research +2022,Senior,Full-time,Data Scientist,36000,EUR,37824,Spain,In-person,Spain,M,Data Science and Research +2022,Senior,Full-time,Data Architect,190000,USD,190000,United States,Remote,United States,M,Data Architecture and Modeling +2022,Senior,Full-time,Data Architect,135000,USD,135000,United States,Remote,United States,M,Data Architecture and Modeling +2022,Senior,Full-time,Data Scientist,128000,USD,128000,United States,In-person,United States,M,Data Science and Research +2022,Senior,Full-time,Data Scientist,81500,USD,81500,United States,In-person,United States,M,Data Science and Research +2022,Senior,Full-time,Data Scientist,173000,USD,173000,United States,Remote,United States,M,Data Science and Research +2022,Senior,Full-time,Data Scientist,110000,USD,110000,United States,Remote,United States,M,Data Science and Research +2022,Senior,Full-time,Machine Learning Engineer,192000,USD,192000,United States,In-person,United States,M,Machine Learning and AI +2022,Senior,Full-time,Machine Learning Engineer,120000,USD,120000,United States,In-person,United States,M,Machine Learning and AI +2022,Senior,Full-time,Data Analyst,115934,USD,115934,United States,Remote,United States,M,Data Analysis +2022,Senior,Full-time,Data Analyst,81666,USD,81666,United States,Remote,United States,M,Data Analysis +2022,Senior,Full-time,Data Analyst,120000,USD,120000,United States,In-person,United States,M,Data Analysis +2022,Senior,Full-time,Data Analyst,95000,USD,95000,United States,In-person,United States,M,Data Analysis +2022,Senior,Full-time,Principal Machine Learning Engineer,190000,USD,190000,United States,Remote,United States,L,Machine Learning and AI +2022,Senior,Full-time,Data Engineer,194000,USD,194000,United States,Remote,United States,M,Data Engineering +2022,Senior,Full-time,Data Engineer,129400,USD,129400,United States,Remote,United States,M,Data Engineering +2022,Senior,Full-time,Data Analyst,201000,USD,201000,United States,Remote,United States,M,Data Analysis +2022,Senior,Full-time,Data Analyst,89200,USD,89200,United States,Remote,United States,M,Data Analysis +2022,Senior,Full-time,Data Scientist,165000,USD,165000,United States,In-person,United States,M,Data Science and Research +2022,Senior,Full-time,Data Scientist,125000,USD,125000,United States,In-person,United States,M,Data Science and Research +2022,Senior,Full-time,Applied Scientist,230000,USD,230000,United States,Remote,United States,M,Data Science and Research +2022,Senior,Full-time,Applied Scientist,196000,USD,196000,United States,Remote,United States,M,Data Science and Research +2022,Mid-level,Full-time,Machine Learning Engineer,130000,USD,130000,United States,In-person,United States,M,Machine Learning and AI +2022,Mid-level,Full-time,Machine Learning Engineer,90000,USD,90000,United States,In-person,United States,M,Machine Learning and AI +2022,Mid-level,Full-time,Machine Learning Researcher,150000,USD,150000,United States,Remote,United States,M,Machine Learning and AI +2022,Mid-level,Full-time,Machine Learning Researcher,100000,USD,100000,United States,Remote,United States,M,Machine Learning and AI +2022,Mid-level,Full-time,Machine Learning Engineer,230000,USD,230000,United States,In-person,United States,M,Machine Learning and AI +2022,Mid-level,Full-time,Machine Learning Engineer,150000,USD,150000,United States,In-person,United States,M,Machine Learning and AI +2022,Senior,Full-time,Data Engineer,153600,USD,153600,United States,In-person,United States,M,Data Engineering +2022,Senior,Full-time,Data Engineer,106800,USD,106800,United States,In-person,United States,M,Data Engineering +2022,Mid-level,Full-time,Machine Learning Researcher,130000,USD,130000,United States,Remote,United States,M,Machine Learning and AI +2022,Mid-level,Full-time,Machine Learning Researcher,100000,USD,100000,United States,Remote,United States,M,Machine Learning and AI +2022,Senior,Full-time,Data Engineer,216000,USD,216000,United States,Remote,United States,M,Data Engineering +2022,Senior,Full-time,Data Engineer,144000,USD,144000,United States,Remote,United States,M,Data Engineering +2022,Mid-level,Full-time,Data Scientist,180000,USD,180000,United States,In-person,United States,M,Data Science and Research +2022,Mid-level,Full-time,Data Scientist,120000,USD,120000,United States,In-person,United States,M,Data Science and Research +2022,Entry-level,Full-time,Data Engineer,160000,USD,160000,United States,In-person,United States,M,Data Engineering +2022,Entry-level,Full-time,Data Engineer,135000,USD,135000,United States,In-person,United States,M,Data Engineering +2022,Senior,Full-time,Data Analyst,192500,USD,192500,United States,Remote,United States,M,Data Analysis +2022,Senior,Full-time,Data Analyst,140000,USD,140000,United States,Remote,United States,M,Data Analysis +2022,Senior,Full-time,Data Engineer,152500,USD,152500,United States,In-person,United States,M,Data Engineering +2022,Senior,Full-time,Data Engineer,130000,USD,130000,United States,In-person,United States,M,Data Engineering +2022,Senior,Full-time,Data Analyst,65000,USD,65000,United States,Remote,United States,M,Data Analysis +2022,Senior,Full-time,Data Analyst,55000,USD,55000,United States,Remote,United States,M,Data Analysis +2022,Senior,Full-time,Data Engineer,178750,USD,178750,United States,In-person,United States,M,Data Engineering +2022,Senior,Full-time,Data Engineer,160000,USD,160000,United States,In-person,United States,M,Data Engineering +2022,Mid-level,Full-time,Data Scientist,60000,EUR,63040,France,Remote,France,M,Data Science and Research +2022,Mid-level,Full-time,Data Scientist,50000,EUR,52533,France,Remote,France,M,Data Science and Research +2022,Mid-level,Full-time,Machine Learning Scientist,165000,USD,165000,United States,In-person,United States,M,Machine Learning and AI +2022,Mid-level,Full-time,Machine Learning Scientist,135000,USD,135000,United States,In-person,United States,M,Machine Learning and AI +2022,Senior,Full-time,Analytics Engineer,170000,USD,170000,United States,Remote,United States,M,Leadership and Management +2022,Senior,Full-time,Analytics Engineer,125000,USD,125000,United States,Remote,United States,M,Leadership and Management +2022,Senior,Full-time,Data Engineer,105000,USD,105000,United States,In-person,United States,M,Data Engineering +2022,Senior,Full-time,Data Engineer,70000,USD,70000,United States,In-person,United States,M,Data Engineering +2022,Senior,Full-time,Data Scientist,130000,USD,130000,United States,In-person,United States,M,Data Science and Research +2022,Senior,Full-time,Data Scientist,95000,USD,95000,United States,In-person,United States,M,Data Science and Research +2022,Senior,Full-time,Data Scientist,203500,USD,203500,United States,In-person,United States,M,Data Science and Research +2022,Senior,Full-time,Data Scientist,152000,USD,152000,United States,In-person,United States,M,Data Science and Research +2022,Senior,Full-time,Data Engineer,197430,USD,197430,United States,Remote,United States,M,Data Engineering +2022,Senior,Full-time,Data Engineer,134760,USD,134760,United States,Remote,United States,M,Data Engineering +2022,Mid-level,Full-time,Data Scientist,120000,USD,120000,United States,Remote,United States,M,Data Science and Research +2022,Senior,Full-time,Data Engineer,197000,USD,197000,United States,In-person,United States,M,Data Engineering +2022,Senior,Full-time,Data Engineer,99000,USD,99000,United States,In-person,United States,M,Data Engineering +2022,Senior,Full-time,Data Engineer,220000,USD,220000,United States,Remote,United States,M,Data Engineering +2022,Senior,Full-time,Data Engineer,162000,USD,162000,United States,Remote,United States,M,Data Engineering +2022,Mid-level,Full-time,Data Engineer,105120,EUR,110446,Lithuania,In-person,Lithuania,M,Data Engineering +2022,Mid-level,Full-time,Data Engineer,75360,EUR,79178,Lithuania,In-person,Lithuania,M,Data Engineering +2022,Mid-level,Full-time,Data Science Consultant,57000,GBP,70186,United Kingdom,In-person,United Kingdom,M,Data Science and Research +2022,Mid-level,Full-time,Data Science Consultant,42000,GBP,51716,United Kingdom,In-person,United Kingdom,M,Data Science and Research +2022,Senior,Full-time,Data Architect,149040,USD,149040,United States,Remote,United States,M,Data Architecture and Modeling +2022,Senior,Full-time,Data Architect,113900,USD,113900,United States,Remote,United States,M,Data Architecture and Modeling +2020,Mid-level,Full-time,Business Data Analyst,95000,USD,95000,United States,In-person,United States,M,Data Analysis +2021,Senior,Full-time,Data Analyst,115000,USD,115000,United States,Remote,United States,S,Data Analysis +2022,Senior,Full-time,Data Analyst,171000,USD,171000,United States,Remote,Australia,L,Data Analysis +2022,Senior,Full-time,Data Engineer,100000,USD,100000,United States,In-person,United States,M,Data Engineering +2022,Senior,Full-time,Data Engineer,78000,USD,78000,United States,In-person,United States,M,Data Engineering +2022,Senior,Full-time,Data Engineer,120000,USD,120000,United States,In-person,United States,M,Data Engineering +2022,Senior,Full-time,Data Engineer,95000,USD,95000,United States,In-person,United States,M,Data Engineering +2022,Senior,Full-time,Data Specialist,110000,USD,110000,United States,In-person,United States,M,Data Management and Strategy +2022,Senior,Full-time,Data Specialist,70000,USD,70000,United States,In-person,United States,M,Data Management and Strategy +2022,Entry-level,Freelance,Data Analytics Consultant,50000,USD,50000,Belgium,Remote,United States,S,Leadership and Management +2022,Senior,Full-time,Data Scientist,185900,USD,185900,United States,In-person,United States,M,Data Science and Research +2022,Senior,Full-time,Data Scientist,129300,USD,129300,United States,In-person,United States,M,Data Science and Research +2022,Mid-level,Full-time,Data Analyst,150000,USD,150000,United States,In-person,United States,M,Data Analysis +2022,Mid-level,Full-time,Data Analyst,100000,USD,100000,United States,In-person,United States,M,Data Analysis +2022,Senior,Full-time,Data Engineer,230000,USD,230000,United States,Remote,United States,M,Data Engineering +2022,Senior,Full-time,Data Engineer,154600,USD,154600,United States,Remote,United States,M,Data Engineering +2022,Senior,Full-time,Machine Learning Engineer,204500,USD,204500,United States,In-person,United States,M,Machine Learning and AI +2022,Senior,Full-time,Machine Learning Engineer,142200,USD,142200,United States,In-person,United States,M,Machine Learning and AI +2022,Mid-level,Full-time,Data Engineer,160000,USD,160000,United States,Remote,United States,M,Data Engineering +2022,Mid-level,Full-time,Data Engineer,75000,USD,75000,United States,Remote,United States,M,Data Engineering +2022,Senior,Full-time,Data Scientist,45000,EUR,47280,Spain,In-person,Spain,M,Data Science and Research +2022,Senior,Full-time,Data Scientist,36000,EUR,37824,Spain,In-person,Spain,M,Data Science and Research +2022,Senior,Full-time,Data Engineer,213000,USD,213000,United States,In-person,United States,M,Data Engineering +2022,Senior,Full-time,Data Engineer,152000,USD,152000,United States,In-person,United States,M,Data Engineering +2022,Senior,Full-time,Data Scientist,140000,USD,140000,United States,Remote,United States,M,Data Science and Research +2022,Senior,Full-time,Data Scientist,120000,USD,120000,United States,Remote,United States,M,Data Science and Research +2022,Senior,Full-time,Data Scientist,110000,USD,110000,United States,In-person,United States,M,Data Science and Research +2022,Senior,Full-time,Data Scientist,70000,USD,70000,United States,In-person,United States,M,Data Science and Research +2022,Senior,Full-time,Machine Learning Software Engineer,227200,USD,227200,Canada,Remote,Canada,M,Machine Learning and AI +2022,Senior,Full-time,Machine Learning Software Engineer,168000,USD,168000,Canada,Remote,Canada,M,Machine Learning and AI +2022,Mid-level,Full-time,Data Scientist,61000,EUR,64090,Germany,In-person,Germany,M,Data Science and Research +2022,Mid-level,Full-time,Data Scientist,58000,EUR,60938,Germany,In-person,Germany,M,Data Science and Research +2022,Senior,Full-time,ML Engineer,243000,USD,243000,United States,Remote,United States,M,Machine Learning and AI +2022,Senior,Full-time,ML Engineer,183000,USD,183000,United States,Remote,United States,M,Machine Learning and AI +2022,Senior,Full-time,Data Engineer,175000,USD,175000,United States,In-person,United States,M,Data Engineering +2022,Senior,Full-time,Data Engineer,150000,USD,150000,United States,In-person,United States,M,Data Engineering +2022,Mid-level,Full-time,Data Scientist,130000,USD,130000,United States,Remote,United States,M,Data Science and Research +2022,Mid-level,Full-time,Data Scientist,90000,USD,90000,United States,Remote,United States,M,Data Science and Research +2022,Mid-level,Full-time,Data Analyst,165000,USD,165000,United States,In-person,United States,M,Data Analysis +2022,Mid-level,Full-time,Data Analyst,124000,USD,124000,United States,In-person,United States,M,Data Analysis +2022,Senior,Full-time,Data Engineer,178000,USD,178000,Canada,In-person,Canada,M,Data Engineering +2022,Senior,Full-time,Data Engineer,132000,USD,132000,Canada,In-person,Canada,M,Data Engineering +2022,Senior,Full-time,Data Engineer,300000,USD,300000,United States,In-person,United States,M,Data Engineering +2022,Senior,Full-time,Data Engineer,130000,USD,130000,United States,In-person,United States,M,Data Engineering +2022,Senior,Full-time,Data Analyst,169000,USD,169000,United States,In-person,United States,M,Data Analysis +2022,Senior,Full-time,Data Analyst,110600,USD,110600,United States,In-person,United States,M,Data Analysis +2022,Senior,Full-time,Data Analyst,116000,USD,116000,United States,Remote,United States,M,Data Analysis +2022,Senior,Full-time,Data Analyst,96000,USD,96000,United States,Remote,United States,M,Data Analysis +2022,Senior,Full-time,Data Analyst,75000,GBP,92350,United Kingdom,In-person,United Kingdom,M,Data Analysis +2022,Senior,Full-time,Data Analyst,57000,GBP,70186,United Kingdom,In-person,United Kingdom,M,Data Analysis +2022,Senior,Full-time,Data Analyst,105000,USD,105000,United States,In-person,United States,M,Data Analysis +2022,Senior,Full-time,Data Analyst,70000,USD,70000,United States,In-person,United States,M,Data Analysis +2022,Mid-level,Full-time,Machine Learning Researcher,137000,CAD,105236,Canada,Hybrid,Canada,L,Machine Learning and AI +2022,Senior,Full-time,Data Engineer,194000,USD,194000,United States,Remote,United States,M,Data Engineering +2022,Senior,Full-time,Data Engineer,129400,USD,129400,United States,Remote,United States,M,Data Engineering +2022,Senior,Full-time,Data Architect,190000,USD,190000,United States,Remote,United States,M,Data Architecture and Modeling +2022,Senior,Full-time,Data Architect,135000,USD,135000,United States,Remote,United States,M,Data Architecture and Modeling +2022,Senior,Full-time,Data Analyst,100000,USD,100000,United States,In-person,United States,M,Data Analysis +2022,Senior,Full-time,Data Analyst,70000,USD,70000,United States,In-person,United States,M,Data Analysis +2022,Entry-level,Full-time,Machine Learning Engineer,189750,USD,189750,United States,In-person,United States,M,Machine Learning and AI +2022,Entry-level,Full-time,Machine Learning Engineer,140250,USD,140250,United States,In-person,United States,M,Machine Learning and AI +2022,Senior,Full-time,Data Analyst,130000,USD,130000,United States,In-person,United States,M,Data Analysis +2022,Senior,Full-time,Data Analyst,100000,USD,100000,United States,In-person,United States,M,Data Analysis +2022,Mid-level,Full-time,Data Analyst,160000,USD,160000,United States,In-person,United States,M,Data Analysis +2022,Mid-level,Full-time,Data Analyst,109000,USD,109000,United States,In-person,United States,M,Data Analysis +2022,Senior,Full-time,Research Engineer,250000,USD,250000,United States,In-person,United States,M,Data Science and Research +2022,Senior,Full-time,Research Engineer,150000,USD,150000,United States,In-person,United States,M,Data Science and Research +2022,Mid-level,Full-time,Data Analyst,206000,USD,206000,United States,In-person,United States,M,Data Analysis +2022,Mid-level,Full-time,Data Analyst,160000,USD,160000,United States,In-person,United States,M,Data Analysis +2022,Senior,Full-time,Data Engineer,135000,USD,135000,United States,In-person,United States,M,Data Engineering +2022,Senior,Full-time,Data Engineer,120000,USD,120000,United States,In-person,United States,M,Data Engineering +2022,Senior,Full-time,Machine Learning Engineer,110000,EUR,115573,France,Remote,France,M,Machine Learning and AI +2022,Senior,Full-time,Machine Learning Engineer,70000,EUR,73546,France,Remote,France,M,Machine Learning and AI +2022,Entry-level,Full-time,Data Engineer,160000,USD,160000,United States,In-person,United States,M,Data Engineering +2022,Entry-level,Full-time,Data Engineer,135000,USD,135000,United States,In-person,United States,M,Data Engineering +2022,Mid-level,Full-time,Data Analyst,150000,USD,150000,United States,In-person,United States,M,Data Analysis +2022,Mid-level,Full-time,Data Analyst,100000,USD,100000,United States,In-person,United States,M,Data Analysis +2022,Mid-level,Full-time,Data Engineer,120000,USD,120000,United States,In-person,United States,M,Data Engineering +2022,Mid-level,Full-time,Data Engineer,95000,USD,95000,United States,In-person,United States,M,Data Engineering +2022,Senior,Full-time,Data Engineer,65000,EUR,68293,Spain,In-person,Spain,M,Data Engineering +2022,Senior,Full-time,Data Engineer,40000,EUR,42026,Spain,In-person,Spain,M,Data Engineering +2022,Senior,Full-time,Data Engineer,191200,USD,191200,United States,In-person,United States,M,Data Engineering +2022,Senior,Full-time,Data Engineer,130000,USD,130000,United States,In-person,United States,M,Data Engineering +2022,Senior,Full-time,Data Engineer,191200,USD,191200,United States,In-person,United States,M,Data Engineering +2022,Senior,Full-time,Data Engineer,130000,USD,130000,United States,In-person,United States,M,Data Engineering +2022,Entry-level,Full-time,Machine Learning Research Engineer,63000,EUR,66192,Germany,Hybrid,Germany,L,Data Science and Research +2022,Senior,Full-time,Data Engineer,230000,USD,230000,United States,In-person,United States,L,Data Engineering +2022,Senior,Full-time,Data Engineer,154600,USD,154600,United States,In-person,United States,L,Data Engineering +2022,Senior,Full-time,Data Engineer,120000,USD,120000,United States,In-person,United States,M,Data Engineering +2022,Senior,Full-time,Data Engineer,95000,USD,95000,United States,In-person,United States,M,Data Engineering +2022,Senior,Full-time,Data Scientist,140000,USD,140000,United States,In-person,United States,M,Data Science and Research +2022,Senior,Full-time,Data Scientist,120000,USD,120000,United States,In-person,United States,M,Data Science and Research +2022,Senior,Full-time,Data Analyst,169000,USD,169000,United States,In-person,United States,M,Data Analysis +2022,Senior,Full-time,Data Analyst,110600,USD,110600,United States,In-person,United States,M,Data Analysis +2022,Mid-level,Full-time,Data Analyst,80000,USD,80000,United States,Remote,United States,L,Data Analysis +2022,Senior,Full-time,Data Engineer,185900,USD,185900,United States,In-person,United States,M,Data Engineering +2022,Senior,Full-time,Data Engineer,129300,USD,129300,United States,In-person,United States,M,Data Engineering +2022,Senior,Full-time,Analytics Engineer,135000,USD,135000,United States,In-person,United States,M,Leadership and Management +2022,Senior,Full-time,Analytics Engineer,110000,USD,110000,United States,In-person,United States,M,Leadership and Management +2022,Mid-level,Full-time,Data Analytics Manager,155000,USD,155000,United States,In-person,United States,M,Leadership and Management +2022,Mid-level,Full-time,Data Analytics Manager,140000,USD,140000,United States,In-person,United States,M,Leadership and Management +2022,Senior,Full-time,Data Engineer,205000,USD,205000,United States,Remote,United States,M,Data Engineering +2022,Senior,Full-time,Data Engineer,150000,USD,150000,United States,Remote,United States,M,Data Engineering +2022,Senior,Full-time,Data Engineer,179500,USD,179500,United States,In-person,United States,M,Data Engineering +2022,Senior,Full-time,Data Engineer,134000,USD,134000,United States,In-person,United States,M,Data Engineering +2022,Mid-level,Full-time,Data Scientist,180000,USD,180000,United States,In-person,United States,M,Data Science and Research +2022,Mid-level,Full-time,Data Scientist,120000,USD,120000,United States,In-person,United States,M,Data Science and Research +2022,Senior,Full-time,Data Scientist,185900,USD,185900,United States,In-person,United States,M,Data Science and Research +2022,Senior,Full-time,Data Scientist,129300,USD,129300,United States,In-person,United States,M,Data Science and Research +2022,Senior,Full-time,Data Scientist,175000,USD,175000,United States,Remote,United States,M,Data Science and Research +2022,Senior,Full-time,Data Scientist,145000,USD,145000,United States,Remote,United States,M,Data Science and Research +2022,Senior,Full-time,Data Architect,235000,USD,235000,United States,Remote,United States,M,Data Architecture and Modeling +2022,Senior,Full-time,Data Architect,175000,USD,175000,United States,Remote,United States,M,Data Architecture and Modeling +2022,Entry-level,Full-time,Data Science Consultant,26000,EUR,27317,Spain,Hybrid,Spain,L,Data Science and Research +2022,Mid-level,Full-time,Data Engineer,160000,USD,160000,United States,Remote,United States,M,Data Engineering +2022,Mid-level,Full-time,Data Engineer,90000,USD,90000,United States,Remote,United States,M,Data Engineering +2022,Senior,Full-time,Data Engineer,65000,EUR,68293,Spain,In-person,Spain,M,Data Engineering +2022,Senior,Full-time,Data Engineer,35000,EUR,36773,Spain,In-person,Spain,M,Data Engineering +2022,Senior,Full-time,Data Engineer,145000,USD,145000,United States,In-person,United States,M,Data Engineering +2022,Senior,Full-time,Data Engineer,115000,USD,115000,United States,In-person,United States,M,Data Engineering +2022,Mid-level,Full-time,Data Specialist,165000,USD,165000,United States,In-person,United States,M,Data Management and Strategy +2022,Mid-level,Full-time,Data Specialist,135000,USD,135000,United States,In-person,United States,M,Data Management and Strategy +2022,Senior,Full-time,Data Engineer,168400,USD,168400,United States,In-person,United States,M,Data Engineering +2022,Senior,Full-time,Data Engineer,105200,USD,105200,United States,In-person,United States,M,Data Engineering +2022,Mid-level,Full-time,Deep Learning Engineer,70000,GBP,86193,United Kingdom,Remote,United Kingdom,M,Machine Learning and AI +2022,Mid-level,Full-time,Deep Learning Engineer,40000,GBP,49253,United Kingdom,Remote,United Kingdom,M,Machine Learning and AI +2022,Senior,Full-time,Data Engineer,200000,USD,200000,United States,In-person,United States,M,Data Engineering +2022,Senior,Full-time,Data Engineer,160000,USD,160000,United States,In-person,United States,M,Data Engineering +2022,Senior,Full-time,Data Scientist,45000,EUR,47280,Spain,In-person,Spain,M,Data Science and Research +2022,Senior,Full-time,Data Scientist,36000,EUR,37824,Spain,In-person,Spain,M,Data Science and Research +2022,Senior,Full-time,Data Scientist,198800,USD,198800,United States,In-person,United States,M,Data Science and Research +2022,Senior,Full-time,Data Scientist,122600,USD,122600,United States,In-person,United States,M,Data Science and Research +2022,Entry-level,Freelance,Machine Learning Engineer,100000,USD,100000,"Iran, Islamic Republic of",Remote,"Iran, Islamic Republic of",M,Machine Learning and AI +2022,Mid-level,Full-time,BI Data Analyst,100000,EUR,105066,France,Hybrid,France,M,Data Analysis +2022,Senior,Full-time,Data Analyst,130000,USD,130000,United States,In-person,United States,M,Data Analysis +2022,Senior,Full-time,Data Analyst,100000,USD,100000,United States,In-person,United States,M,Data Analysis +2022,Mid-level,Full-time,Analytics Engineer,85000,GBP,104663,United Kingdom,In-person,United Kingdom,M,Leadership and Management +2022,Mid-level,Full-time,Analytics Engineer,60000,GBP,73880,United Kingdom,In-person,United Kingdom,M,Leadership and Management +2022,Senior,Full-time,Data Engineer,125000,USD,125000,United States,Remote,United States,M,Data Engineering +2022,Senior,Full-time,Data Engineer,110000,USD,110000,United States,Remote,United States,M,Data Engineering +2022,Mid-level,Full-time,Data Analyst,165000,USD,165000,United States,In-person,United States,M,Data Analysis +2022,Mid-level,Full-time,Data Analyst,124000,USD,124000,United States,In-person,United States,M,Data Analysis +2022,Senior,Full-time,Data Scientist,148000,USD,148000,United States,Remote,United States,M,Data Science and Research +2022,Senior,Full-time,Data Scientist,107000,USD,107000,United States,Remote,United States,M,Data Science and Research +2022,Mid-level,Full-time,Data Analyst,150000,USD,150000,United States,In-person,United States,M,Data Analysis +2022,Mid-level,Full-time,Data Analyst,100000,USD,100000,United States,In-person,United States,M,Data Analysis +2022,Entry-level,Full-time,Data Engineer,160000,USD,160000,United States,In-person,United States,M,Data Engineering +2022,Entry-level,Full-time,Data Engineer,135000,USD,135000,United States,In-person,United States,M,Data Engineering +2022,Mid-level,Full-time,Data Engineer,120000,USD,120000,United States,In-person,United States,M,Data Engineering +2022,Mid-level,Full-time,Data Engineer,95000,USD,95000,United States,In-person,United States,M,Data Engineering +2022,Senior,Full-time,Data Engineer,153600,USD,153600,United States,In-person,United States,M,Data Engineering +2022,Senior,Full-time,Data Engineer,106800,USD,106800,United States,In-person,United States,M,Data Engineering +2022,Mid-level,Full-time,Data Analyst,100000,USD,100000,Canada,In-person,Canada,M,Data Analysis +2022,Mid-level,Full-time,Data Analyst,65000,USD,65000,Canada,In-person,Canada,M,Data Analysis +2022,Mid-level,Full-time,Data Engineer,120000,USD,120000,United States,In-person,United States,M,Data Engineering +2022,Mid-level,Full-time,Data Engineer,95000,USD,95000,United States,In-person,United States,M,Data Engineering +2022,Senior,Full-time,Data Engineer,60000,EUR,63040,Portugal,In-person,Portugal,M,Data Engineering +2022,Senior,Full-time,Data Engineer,35000,EUR,36773,Portugal,In-person,Portugal,M,Data Engineering +2022,Executive,Full-time,Data Engineer,310000,USD,310000,United States,Remote,United States,M,Data Engineering +2022,Executive,Full-time,Data Engineer,239000,USD,239000,United States,Remote,United States,M,Data Engineering +2022,Senior,Full-time,Data Science Manager,299500,USD,299500,United States,In-person,United States,M,Data Science and Research +2022,Senior,Full-time,Data Science Manager,245100,USD,245100,United States,In-person,United States,M,Data Science and Research +2022,Senior,Full-time,Data Scientist,168000,USD,168000,United States,Remote,United States,M,Data Science and Research +2022,Senior,Full-time,Data Scientist,130000,USD,130000,United States,Remote,United States,M,Data Science and Research +2022,Senior,Full-time,Data Scientist,136000,USD,136000,United States,Remote,United States,M,Data Science and Research +2022,Senior,Full-time,Data Scientist,104000,USD,104000,United States,Remote,United States,M,Data Science and Research +2022,Mid-level,Full-time,Data Engineer,161000,USD,161000,United States,Remote,United States,M,Data Engineering +2022,Mid-level,Full-time,Data Engineer,118000,USD,118000,United States,Remote,United States,M,Data Engineering +2022,Senior,Full-time,Applied Scientist,205000,USD,205000,United States,Remote,United States,M,Data Science and Research +2022,Senior,Full-time,Applied Scientist,184000,USD,184000,United States,Remote,United States,M,Data Science and Research +2022,Senior,Full-time,Data Scientist,185900,USD,185900,United States,In-person,United States,M,Data Science and Research +2022,Senior,Full-time,Data Scientist,129300,USD,129300,United States,In-person,United States,M,Data Science and Research +2022,Senior,Full-time,Data Science Manager,247500,USD,247500,United States,In-person,United States,M,Data Science and Research +2022,Senior,Full-time,Data Science Manager,172200,USD,172200,United States,In-person,United States,M,Data Science and Research +2022,Senior,Full-time,Data Management Specialist,65000,EUR,68293,Italy,In-person,Italy,L,Data Management and Strategy +2022,Senior,Full-time,Data Analyst,177000,USD,177000,United States,In-person,United States,M,Data Analysis +2022,Senior,Full-time,Data Analyst,131000,USD,131000,United States,In-person,United States,M,Data Analysis +2022,Senior,Full-time,Applied Scientist,205000,USD,205000,United States,Remote,United States,M,Data Science and Research +2022,Senior,Full-time,Applied Scientist,184000,USD,184000,United States,Remote,United States,M,Data Science and Research +2022,Senior,Full-time,Data Engineer,146000,USD,146000,United States,In-person,United States,M,Data Engineering +2022,Senior,Full-time,Data Engineer,102000,USD,102000,United States,In-person,United States,M,Data Engineering +2022,Senior,Full-time,Data Analyst,169000,USD,169000,United States,In-person,United States,M,Data Analysis +2022,Senior,Full-time,Data Analyst,110600,USD,110600,United States,In-person,United States,M,Data Analysis +2022,Senior,Full-time,Applied Scientist,230000,USD,230000,United States,Remote,United States,M,Data Science and Research +2022,Senior,Full-time,Applied Scientist,196000,USD,196000,United States,Remote,United States,M,Data Science and Research +2022,Senior,Full-time,Data Engineer,135000,USD,135000,United States,In-person,United States,M,Data Engineering +2022,Senior,Full-time,Data Engineer,100000,USD,100000,United States,In-person,United States,M,Data Engineering +2022,Mid-level,Full-time,Data Engineer,80000,USD,80000,United States,In-person,United States,M,Data Engineering +2022,Mid-level,Full-time,Data Engineer,65000,USD,65000,United States,In-person,United States,M,Data Engineering +2022,Senior,Full-time,Data Engineer,135000,USD,135000,United States,In-person,United States,M,Data Engineering +2022,Senior,Full-time,Data Engineer,100000,USD,100000,United States,In-person,United States,M,Data Engineering +2022,Senior,Full-time,Data Engineer,50000,GBP,61566,United Kingdom,Remote,United Kingdom,M,Data Engineering +2022,Senior,Full-time,Data Engineer,35000,GBP,43096,United Kingdom,Remote,United Kingdom,M,Data Engineering +2022,Mid-level,Full-time,Data Engineer,175000,USD,175000,United States,Remote,United States,M,Data Engineering +2022,Mid-level,Full-time,Data Engineer,135000,USD,135000,United States,Remote,United States,M,Data Engineering +2022,Entry-level,Full-time,Data Scientist,80000,USD,80000,United States,In-person,United States,M,Data Science and Research +2022,Senior,Full-time,Data Engineer,231250,USD,231250,United States,Remote,United States,M,Data Engineering +2022,Senior,Full-time,Data Engineer,138750,USD,138750,United States,Remote,United States,M,Data Engineering +2022,Senior,Full-time,Analytics Engineer,193750,USD,193750,United States,Remote,United States,M,Leadership and Management +2022,Senior,Full-time,Analytics Engineer,116250,USD,116250,United States,Remote,United States,M,Leadership and Management +2022,Senior,Full-time,Data Engineer,231250,USD,231250,United States,Remote,United States,M,Data Engineering +2022,Senior,Full-time,Data Engineer,138750,USD,138750,United States,Remote,United States,M,Data Engineering +2022,Senior,Full-time,Analytics Engineer,231250,USD,231250,United States,Remote,United States,M,Leadership and Management +2022,Senior,Full-time,Analytics Engineer,138750,USD,138750,United States,Remote,United States,M,Leadership and Management +2022,Senior,Full-time,Analytics Engineer,231250,USD,231250,United States,Remote,United States,M,Leadership and Management +2022,Senior,Full-time,Analytics Engineer,138750,USD,138750,United States,Remote,United States,M,Leadership and Management +2022,Senior,Full-time,Data Engineer,193750,USD,193750,United States,Remote,United States,M,Data Engineering +2022,Senior,Full-time,Data Engineer,116250,USD,116250,United States,Remote,United States,M,Data Engineering +2022,Senior,Full-time,Data Scientist,208000,USD,208000,United States,Remote,United States,M,Data Science and Research +2022,Senior,Full-time,Data Scientist,127000,USD,127000,United States,Remote,United States,M,Data Science and Research +2022,Senior,Full-time,Research Scientist,300000,USD,300000,United States,Remote,United States,M,Data Science and Research +2022,Senior,Full-time,Research Scientist,196000,USD,196000,United States,Remote,United States,M,Data Science and Research +2022,Senior,Full-time,Machine Learning Engineer,204500,USD,204500,United States,In-person,United States,M,Machine Learning and AI +2022,Senior,Full-time,Machine Learning Engineer,142200,USD,142200,United States,In-person,United States,M,Machine Learning and AI +2021,Mid-level,Freelance,Autonomous Vehicle Technician,45555,USD,45555,American Samoa,Hybrid,Bahamas,M,Machine Learning and AI +2022,Senior,Full-time,Data Engineer,185900,USD,185900,United States,In-person,United States,M,Data Engineering +2022,Senior,Full-time,Data Engineer,129300,USD,129300,United States,In-person,United States,M,Data Engineering +2022,Senior,Full-time,Data Scientist,45000,EUR,47280,Spain,In-person,Spain,M,Data Science and Research +2022,Senior,Full-time,Data Scientist,36000,EUR,37824,Spain,In-person,Spain,M,Data Science and Research +2022,Senior,Full-time,Machine Learning Engineer,204500,USD,204500,United States,In-person,United States,M,Machine Learning and AI +2022,Senior,Full-time,Machine Learning Engineer,142200,USD,142200,United States,In-person,United States,M,Machine Learning and AI +2022,Senior,Full-time,Data Scientist,205000,USD,205000,United States,Remote,United States,M,Data Science and Research +2022,Senior,Full-time,Data Scientist,185000,USD,185000,United States,Remote,United States,M,Data Science and Research +2022,Senior,Full-time,Data Scientist,185900,USD,185900,United States,In-person,United States,M,Data Science and Research +2022,Senior,Full-time,Data Scientist,129300,USD,129300,United States,In-person,United States,M,Data Science and Research +2022,Senior,Full-time,Machine Learning Engineer,247500,USD,247500,United States,In-person,United States,M,Machine Learning and AI +2022,Senior,Full-time,Machine Learning Engineer,172200,USD,172200,United States,In-person,United States,M,Machine Learning and AI +2022,Entry-level,Full-time,Data Engineer,160000,USD,160000,United States,In-person,United States,M,Data Engineering +2022,Entry-level,Full-time,Data Engineer,135000,USD,135000,United States,In-person,United States,M,Data Engineering +2022,Mid-level,Full-time,Data Analyst,150000,USD,150000,United States,In-person,United States,M,Data Analysis +2022,Mid-level,Full-time,Data Analyst,100000,USD,100000,United States,In-person,United States,M,Data Analysis +2022,Senior,Full-time,Data Analyst,110000,USD,110000,United States,In-person,United States,M,Data Analysis +2022,Senior,Full-time,Data Analyst,95000,USD,95000,United States,In-person,United States,M,Data Analysis +2022,Senior,Full-time,Data Scientist,185900,USD,185900,United States,In-person,United States,M,Data Science and Research +2022,Senior,Full-time,Data Scientist,129300,USD,129300,United States,In-person,United States,M,Data Science and Research +2022,Senior,Full-time,Applied Scientist,205000,USD,205000,United States,Remote,United States,M,Data Science and Research +2022,Senior,Full-time,Applied Scientist,184000,USD,184000,United States,Remote,United States,M,Data Science and Research +2022,Senior,Full-time,Data Science Tech Lead,375000,USD,375000,United States,Hybrid,United States,L,Data Science and Research +2022,Senior,Full-time,Data Engineer,191200,USD,191200,United States,In-person,United States,M,Data Engineering +2022,Senior,Full-time,Data Engineer,130000,USD,130000,United States,In-person,United States,M,Data Engineering +2022,Senior,Full-time,Data Scientist,225000,USD,225000,United States,In-person,United States,M,Data Science and Research +2022,Senior,Full-time,Data Scientist,156400,USD,156400,United States,In-person,United States,M,Data Science and Research +2022,Senior,Full-time,Data Analyst,169000,USD,169000,United States,In-person,United States,M,Data Analysis +2022,Senior,Full-time,Data Analyst,110600,USD,110600,United States,In-person,United States,M,Data Analysis +2022,Senior,Full-time,Machine Learning Engineer,204500,USD,204500,United States,In-person,United States,M,Machine Learning and AI +2022,Senior,Full-time,Machine Learning Engineer,142200,USD,142200,United States,In-person,United States,M,Machine Learning and AI +2022,Mid-level,Full-time,Machine Learning Engineer,85000,GBP,104663,United Kingdom,In-person,United Kingdom,M,Machine Learning and AI +2022,Mid-level,Full-time,Machine Learning Engineer,65000,GBP,80036,United Kingdom,In-person,United Kingdom,M,Machine Learning and AI +2022,Senior,Full-time,Data Scientist,185900,USD,185900,United States,In-person,United States,M,Data Science and Research +2022,Senior,Full-time,Data Scientist,129300,USD,129300,United States,In-person,United States,M,Data Science and Research +2022,Senior,Full-time,Data Scientist,140700,USD,140700,United States,In-person,United States,M,Data Science and Research +2022,Senior,Full-time,Data Scientist,93800,USD,93800,United States,In-person,United States,M,Data Science and Research +2022,Senior,Full-time,Data Scientist,350000,USD,350000,United States,Remote,United States,M,Data Science and Research +2022,Senior,Full-time,Data Scientist,135000,USD,135000,United States,Remote,United States,M,Data Science and Research +2022,Senior,Full-time,Data Analyst,115934,USD,115934,United States,Remote,United States,M,Data Analysis +2022,Senior,Full-time,Data Analyst,81666,USD,81666,United States,Remote,United States,M,Data Analysis +2022,Mid-level,Full-time,Machine Learning Engineer,100000,CHF,104697,Switzerland,Remote,Switzerland,L,Machine Learning and AI +2022,Entry-level,Full-time,Machine Learning Developer,33000,USD,33000,Italy,Remote,Germany,S,Machine Learning and AI +2022,Entry-level,Full-time,Machine Learning Scientist,33000,EUR,34672,Italy,Remote,Germany,S,Machine Learning and AI +2022,Senior,Full-time,Machine Learning Engineer,201000,USD,201000,United States,In-person,United States,M,Machine Learning and AI +2022,Senior,Full-time,Machine Learning Engineer,119000,USD,119000,United States,In-person,United States,M,Machine Learning and AI +2022,Senior,Full-time,Data Engineer,175000,USD,175000,United States,Remote,United States,M,Data Engineering +2022,Senior,Full-time,Data Engineer,150000,USD,150000,United States,Remote,United States,M,Data Engineering +2022,Senior,Full-time,Data Analyst,154560,USD,154560,United States,In-person,United States,M,Data Analysis +2022,Senior,Full-time,Data Analyst,123648,USD,123648,United States,In-person,United States,M,Data Analysis +2022,Senior,Full-time,Data Analyst,130000,USD,130000,United States,In-person,United States,M,Data Analysis +2022,Senior,Full-time,Data Analyst,100000,USD,100000,United States,In-person,United States,M,Data Analysis +2022,Mid-level,Full-time,Data Engineer,170000,USD,170000,United States,In-person,United States,M,Data Engineering +2022,Mid-level,Full-time,Data Engineer,145000,USD,145000,United States,In-person,United States,M,Data Engineering +2022,Senior,Full-time,Data Engineer,135000,USD,135000,United States,Remote,United States,M,Data Engineering +2022,Senior,Full-time,Data Engineer,100000,USD,100000,United States,Remote,United States,M,Data Engineering +2022,Senior,Full-time,Data Scientist,247500,USD,247500,United States,In-person,United States,M,Data Science and Research +2022,Senior,Full-time,Data Scientist,172200,USD,172200,United States,In-person,United States,M,Data Science and Research +2022,Senior,Full-time,Data Scientist,177500,USD,177500,United States,Remote,United States,M,Data Science and Research +2022,Senior,Full-time,Data Scientist,134000,USD,134000,United States,Remote,United States,M,Data Science and Research +2022,Senior,Full-time,Data Scientist,185900,USD,185900,United States,In-person,United States,M,Data Science and Research +2022,Senior,Full-time,Data Scientist,129300,USD,129300,United States,In-person,United States,M,Data Science and Research +2022,Senior,Full-time,Data Architect,192564,USD,192564,United States,Remote,United States,M,Data Architecture and Modeling +2022,Senior,Full-time,Data Architect,144854,USD,144854,United States,Remote,United States,M,Data Architecture and Modeling +2022,Senior,Full-time,Data Analyst,130000,USD,130000,United States,In-person,United States,M,Data Analysis +2022,Senior,Full-time,Data Analyst,105000,USD,105000,United States,In-person,United States,M,Data Analysis +2022,Senior,Full-time,Data Engineer,179305,USD,179305,United States,Remote,United States,M,Data Engineering +2022,Senior,Full-time,Data Engineer,142127,USD,142127,United States,Remote,United States,M,Data Engineering +2022,Senior,Full-time,Data Engineer,315000,USD,315000,United States,Remote,United States,M,Data Engineering +2022,Senior,Full-time,Data Engineer,225000,USD,225000,United States,Remote,United States,M,Data Engineering +2022,Senior,Full-time,Data Scientist,243900,USD,243900,United States,Remote,United States,M,Data Science and Research +2022,Senior,Full-time,Data Scientist,156600,USD,156600,United States,Remote,United States,M,Data Science and Research +2022,Mid-level,Full-time,Data Analyst,206000,USD,206000,United States,In-person,United States,M,Data Analysis +2022,Mid-level,Full-time,Data Analyst,160000,USD,160000,United States,In-person,United States,M,Data Analysis +2022,Mid-level,Full-time,Data Analyst,109000,USD,109000,United States,In-person,United States,M,Data Analysis +2022,Mid-level,Full-time,Data Analyst,79000,USD,79000,United States,In-person,United States,M,Data Analysis +2022,Mid-level,Full-time,Data Analyst,160000,USD,160000,United States,In-person,United States,M,Data Analysis +2022,Mid-level,Full-time,Data Analyst,109000,USD,109000,United States,In-person,United States,M,Data Analysis +2022,Mid-level,Full-time,Data Scientist Lead,85000,EUR,89306,Austria,Hybrid,Austria,L,Data Science and Research +2022,Senior,Full-time,Data Engineer,182500,USD,182500,United States,Remote,United States,M,Data Engineering +2022,Senior,Full-time,Data Engineer,128500,USD,128500,United States,Remote,United States,M,Data Engineering +2022,Mid-level,Full-time,Data Engineer,160000,USD,160000,United States,Remote,United States,M,Data Engineering +2022,Mid-level,Full-time,Data Engineer,90000,USD,90000,United States,Remote,United States,M,Data Engineering +2022,Entry-level,Full-time,Data Manager,77300,USD,77300,United States,Remote,United States,M,Leadership and Management +2022,Entry-level,Full-time,Data Manager,45600,USD,45600,United States,Remote,United States,M,Leadership and Management +2022,Senior,Full-time,Data Analyst,127000,USD,127000,United States,Remote,United States,M,Data Analysis +2022,Senior,Full-time,Data Analyst,110000,USD,110000,United States,Remote,United States,M,Data Analysis +2022,Senior,Full-time,Data Architect,210000,USD,210000,United States,Remote,United States,M,Data Architecture and Modeling +2022,Senior,Full-time,Data Architect,136000,USD,136000,United States,Remote,United States,M,Data Architecture and Modeling +2022,Senior,Full-time,Data Engineer,170000,USD,170000,United States,Remote,United States,M,Data Engineering +2022,Senior,Full-time,Data Engineer,140000,USD,140000,United States,Remote,United States,M,Data Engineering +2022,Senior,Full-time,Data Engineer,247500,USD,247500,United States,In-person,United States,M,Data Engineering +2022,Senior,Full-time,Data Engineer,172200,USD,172200,United States,In-person,United States,M,Data Engineering +2022,Senior,Full-time,Data Engineer,225000,USD,225000,United States,In-person,United States,M,Data Engineering +2022,Senior,Full-time,Data Engineer,184100,USD,184100,United States,In-person,United States,M,Data Engineering +2022,Mid-level,Full-time,Machine Learning Engineer,130000,USD,130000,United States,In-person,United States,M,Machine Learning and AI +2022,Mid-level,Full-time,Machine Learning Engineer,90000,USD,90000,United States,In-person,United States,M,Machine Learning and AI +2022,Mid-level,Full-time,Data Scientist,120000,USD,120000,United States,Remote,United States,M,Data Science and Research +2022,Mid-level,Full-time,Data Scientist,100000,USD,100000,United States,Remote,United States,M,Data Science and Research +2022,Mid-level,Full-time,Data Scientist,85000,USD,85000,United States,Remote,United States,M,Data Science and Research +2022,Mid-level,Full-time,Data Scientist,78000,USD,78000,United States,Remote,United States,M,Data Science and Research +2022,Senior,Full-time,Data Engineer,161000,USD,161000,United States,Remote,United States,M,Data Engineering +2022,Senior,Full-time,Data Engineer,110000,USD,110000,United States,Remote,United States,M,Data Engineering +2022,Senior,Full-time,Data Scientist,136000,USD,136000,United States,Remote,United States,M,Data Science and Research +2022,Senior,Full-time,Data Scientist,104000,USD,104000,United States,Remote,United States,M,Data Science and Research +2022,Senior,Full-time,Data Scientist,45000,EUR,47280,Spain,In-person,Spain,M,Data Science and Research +2022,Senior,Full-time,Data Scientist,36000,EUR,37824,Spain,In-person,Spain,M,Data Science and Research +2022,Executive,Full-time,Head of Data,205000,USD,205000,United States,In-person,United States,M,Leadership and Management +2022,Executive,Full-time,Head of Data,160000,USD,160000,United States,In-person,United States,M,Leadership and Management +2022,Senior,Full-time,Data Analyst,169000,USD,169000,United States,In-person,United States,M,Data Analysis +2022,Senior,Full-time,Data Analyst,110600,USD,110600,United States,In-person,United States,M,Data Analysis +2022,Entry-level,Full-time,Data Engineer,50000,GBP,61566,United Kingdom,Remote,United Kingdom,M,Data Engineering +2022,Entry-level,Full-time,Data Engineer,40000,GBP,49253,United Kingdom,Remote,United Kingdom,M,Data Engineering +2022,Senior,Full-time,Data Engineer,160000,USD,160000,United States,In-person,United States,M,Data Engineering +2022,Senior,Full-time,Data Engineer,130000,USD,130000,United States,In-person,United States,M,Data Engineering +2022,Senior,Full-time,Data Scientist,245000,USD,245000,United States,In-person,United States,M,Data Science and Research +2022,Senior,Full-time,Data Scientist,180000,USD,180000,United States,In-person,United States,M,Data Science and Research +2022,Senior,Full-time,Data Engineer,135000,USD,135000,United States,In-person,United States,M,Data Engineering +2022,Senior,Full-time,Data Engineer,100000,USD,100000,United States,In-person,United States,M,Data Engineering +2022,Senior,Full-time,Data Engineer,220000,USD,220000,United States,In-person,United States,M,Data Engineering +2022,Senior,Full-time,Data Engineer,150000,USD,150000,United States,In-person,United States,M,Data Engineering +2022,Senior,Full-time,Data Scientist,198440,USD,198440,United States,In-person,United States,L,Data Science and Research +2022,Senior,Full-time,Data Scientist,144000,USD,144000,United States,In-person,United States,L,Data Science and Research +2022,Senior,Full-time,Data Engineer,240000,USD,240000,United States,In-person,United States,M,Data Engineering +2022,Senior,Full-time,Data Engineer,170000,USD,170000,United States,In-person,United States,M,Data Engineering +2022,Senior,Full-time,Data Scientist,198440,USD,198440,United States,In-person,United States,M,Data Science and Research +2022,Senior,Full-time,Data Scientist,144000,USD,144000,United States,In-person,United States,M,Data Science and Research +2022,Mid-level,Full-time,Data Analyst,150000,USD,150000,United States,Remote,United States,M,Data Analysis +2022,Mid-level,Full-time,Data Analyst,100000,USD,100000,United States,Remote,United States,M,Data Analysis +2022,Senior,Full-time,Data Analyst,120000,USD,120000,United States,In-person,United States,M,Data Analysis +2022,Senior,Full-time,Data Analyst,95000,USD,95000,United States,In-person,United States,M,Data Analysis +2022,Mid-level,Full-time,Data Scientist,47000,GBP,57872,United Kingdom,Hybrid,United Kingdom,M,Data Science and Research +2022,Entry-level,Full-time,Data Analyst,64000,USD,64000,United States,Remote,United States,L,Data Analysis +2022,Entry-level,Full-time,Data Scientist,38000,EUR,39925,France,Hybrid,France,L,Data Science and Research +2022,Senior,Full-time,Machine Learning Engineer,187200,USD,187200,Canada,Remote,Canada,M,Machine Learning and AI +2022,Senior,Full-time,Machine Learning Engineer,116100,USD,116100,Canada,Remote,Canada,M,Machine Learning and AI +2022,Senior,Full-time,Data Analyst,150000,USD,150000,United States,In-person,United States,M,Data Analysis +2022,Senior,Full-time,Data Analyst,127000,USD,127000,United States,In-person,United States,M,Data Analysis +2022,Senior,Full-time,Data Engineer,275000,USD,275000,United States,Remote,United States,M,Data Engineering +2022,Senior,Full-time,Data Engineer,166000,USD,166000,United States,Remote,United States,M,Data Engineering +2022,Senior,Full-time,Data Scientist,159699,USD,159699,United States,In-person,United States,M,Data Science and Research +2022,Senior,Full-time,Data Scientist,138938,USD,138938,United States,In-person,United States,M,Data Science and Research +2022,Entry-level,Full-time,BI Analyst,76000,USD,76000,United States,Hybrid,United States,L,BI and Visualization +2022,Senior,Full-time,Data Analyst,166700,USD,166700,United States,In-person,United States,M,Data Analysis +2022,Senior,Full-time,Data Analyst,119000,USD,119000,United States,In-person,United States,M,Data Analysis +2022,Senior,Full-time,Data Analyst,130000,USD,130000,United States,In-person,United States,M,Data Analysis +2022,Senior,Full-time,Data Analyst,100000,USD,100000,United States,In-person,United States,M,Data Analysis +2022,Senior,Full-time,Analytics Engineer,84000,GBP,103432,United Kingdom,In-person,United Kingdom,M,Leadership and Management +2022,Senior,Full-time,Analytics Engineer,75000,GBP,92350,United Kingdom,In-person,United Kingdom,M,Leadership and Management +2022,Senior,Full-time,Data Analyst,80000,USD,80000,United States,In-person,United States,M,Data Analysis +2022,Senior,Full-time,Data Analyst,52500,USD,52500,United States,In-person,United States,M,Data Analysis +2022,Senior,Full-time,Data Engineer,236000,USD,236000,United States,Remote,United States,M,Data Engineering +2022,Senior,Full-time,Data Engineer,182000,USD,182000,United States,Remote,United States,M,Data Engineering +2022,Senior,Full-time,Data Scientist,180000,USD,180000,United States,Remote,United States,M,Data Science and Research +2022,Senior,Full-time,Data Scientist,140000,USD,140000,United States,Remote,United States,M,Data Science and Research +2022,Senior,Full-time,Data Scientist,225000,USD,225000,United States,In-person,United States,M,Data Science and Research +2022,Senior,Full-time,Data Scientist,156400,USD,156400,United States,In-person,United States,M,Data Science and Research +2022,Senior,Full-time,Data Analyst,135000,USD,135000,United States,Remote,United States,M,Data Analysis +2022,Senior,Full-time,Data Analyst,100000,USD,100000,United States,Remote,United States,M,Data Analysis +2022,Senior,Full-time,Machine Learning Engineer,204500,USD,204500,United States,In-person,United States,M,Machine Learning and AI +2022,Senior,Full-time,Machine Learning Engineer,142200,USD,142200,United States,In-person,United States,M,Machine Learning and AI +2022,Mid-level,Full-time,Research Engineer,240000,USD,240000,United States,Remote,United States,M,Data Science and Research +2022,Entry-level,Part-time,Data Analyst,125404,USD,125404,China,Hybrid,United States,S,Data Analysis +2022,Senior,Full-time,Data Engineer,300000,USD,300000,United States,In-person,United States,M,Data Engineering +2022,Senior,Full-time,Data Engineer,130000,USD,130000,United States,In-person,United States,M,Data Engineering +2022,Senior,Full-time,Data Engineer,195000,USD,195000,United States,Remote,United States,M,Data Engineering +2022,Senior,Full-time,Data Engineer,175000,USD,175000,United States,Remote,United States,M,Data Engineering +2022,Senior,Full-time,Data Engineer,155000,USD,155000,United States,In-person,United States,M,Data Engineering +2022,Senior,Full-time,Data Engineer,110000,USD,110000,United States,In-person,United States,M,Data Engineering +2022,Senior,Full-time,Data Operations Analyst,123000,USD,123000,United States,In-person,United States,M,Data Quality and Operations +2022,Senior,Full-time,Data Operations Analyst,92250,USD,92250,United States,In-person,United States,M,Data Quality and Operations +2022,Senior,Full-time,Data Engineer,170000,USD,170000,United States,In-person,United States,M,Data Engineering +2022,Senior,Full-time,Data Engineer,150000,USD,150000,United States,In-person,United States,M,Data Engineering +2022,Mid-level,Full-time,ML Engineer,180000,USD,180000,United States,Remote,United States,M,Machine Learning and AI +2022,Mid-level,Full-time,ML Engineer,100000,USD,100000,United States,Remote,United States,M,Machine Learning and AI +2022,Senior,Full-time,Data Engineer,97000,USD,97000,United States,Remote,United States,M,Data Engineering +2022,Senior,Full-time,Data Engineer,90000,USD,90000,United States,Remote,United States,M,Data Engineering +2022,Senior,Full-time,Data Engineer,200000,USD,200000,United States,In-person,United States,M,Data Engineering +2022,Senior,Full-time,Data Engineer,160000,USD,160000,United States,In-person,United States,M,Data Engineering +2022,Senior,Full-time,Machine Learning Engineer,210000,USD,210000,United States,Remote,United States,M,Machine Learning and AI +2022,Senior,Full-time,Machine Learning Engineer,180000,USD,180000,United States,Remote,United States,M,Machine Learning and AI +2022,Senior,Full-time,Data Engineer,260000,USD,260000,United States,In-person,United States,M,Data Engineering +2022,Senior,Full-time,Data Engineer,180000,USD,180000,United States,In-person,United States,M,Data Engineering +2022,Executive,Full-time,Analytics Engineer,210000,USD,210000,United States,Remote,United States,M,Leadership and Management +2022,Executive,Full-time,Analytics Engineer,157000,USD,157000,United States,Remote,United States,M,Leadership and Management +2022,Entry-level,Full-time,Data Scientist,180000,USD,180000,United States,Remote,United States,M,Data Science and Research +2022,Entry-level,Full-time,Data Scientist,100000,USD,100000,United States,Remote,United States,M,Data Science and Research +2022,Mid-level,Full-time,Data Analyst,80000,USD,80000,United States,In-person,United States,M,Data Analysis +2022,Mid-level,Full-time,Data Analyst,52500,USD,52500,United States,In-person,United States,M,Data Analysis +2022,Senior,Full-time,Data Architect,128000,USD,128000,United States,In-person,United States,M,Data Architecture and Modeling +2022,Senior,Full-time,Data Architect,81500,USD,81500,United States,In-person,United States,M,Data Architecture and Modeling +2022,Senior,Full-time,Data Operations Engineer,105000,USD,105000,United States,In-person,United States,M,Data Quality and Operations +2022,Senior,Full-time,Data Operations Engineer,70000,USD,70000,United States,In-person,United States,M,Data Quality and Operations +2022,Senior,Full-time,Data Scientist,175000,USD,175000,United States,In-person,United States,M,Data Science and Research +2022,Senior,Full-time,Data Scientist,122500,USD,122500,United States,In-person,United States,M,Data Science and Research +2022,Senior,Full-time,Data Engineer,171000,USD,171000,United States,In-person,United States,M,Data Engineering +2022,Senior,Full-time,Data Engineer,117000,USD,117000,United States,In-person,United States,M,Data Engineering +2022,Senior,Full-time,Data Scientist,202800,USD,202800,United States,In-person,United States,L,Data Science and Research +2022,Senior,Full-time,Data Scientist,104300,USD,104300,United States,In-person,United States,L,Data Science and Research +2022,Senior,Full-time,Data Analyst,48000,EUR,50432,Spain,In-person,Spain,M,Data Analysis +2022,Senior,Full-time,Data Analyst,35000,EUR,36773,Spain,In-person,Spain,M,Data Analysis +2022,Senior,Full-time,Data Engineer,197000,USD,197000,United States,In-person,United States,M,Data Engineering +2022,Senior,Full-time,Data Engineer,99000,USD,99000,United States,In-person,United States,M,Data Engineering +2022,Senior,Full-time,Data Engineer,160000,USD,160000,United States,In-person,United States,M,Data Engineering +2022,Senior,Full-time,Data Engineer,110000,USD,110000,United States,In-person,United States,M,Data Engineering +2022,Senior,Full-time,Data Scientist,185900,USD,185900,United States,In-person,United States,M,Data Science and Research +2022,Senior,Full-time,Data Scientist,129300,USD,129300,United States,In-person,United States,M,Data Science and Research +2022,Mid-level,Full-time,Data Scientist,30000,USD,30000,Mexico,Remote,Mexico,L,Data Science and Research +2022,Mid-level,Full-time,Analytics Engineer,78000,USD,78000,Brazil,Remote,Brazil,M,Leadership and Management +2022,Mid-level,Full-time,Analytics Engineer,48000,USD,48000,Brazil,Remote,Brazil,M,Leadership and Management +2022,Senior,Full-time,Data Engineer,170000,USD,170000,United States,In-person,United States,M,Data Engineering +2022,Senior,Full-time,Data Engineer,130000,USD,130000,United States,In-person,United States,M,Data Engineering +2022,Senior,Full-time,Data Analyst,150000,USD,150000,United States,In-person,United States,M,Data Analysis +2022,Senior,Full-time,Data Analyst,95000,USD,95000,United States,In-person,United States,M,Data Analysis +2022,Mid-level,Full-time,Data Engineer,78000,USD,78000,Brazil,Remote,Brazil,M,Data Engineering +2022,Mid-level,Full-time,Data Engineer,42000,USD,42000,Brazil,Remote,Brazil,M,Data Engineering +2022,Senior,Full-time,Data Architect,345600,USD,345600,United States,In-person,United States,M,Data Architecture and Modeling +2022,Senior,Full-time,Data Architect,230400,USD,230400,United States,In-person,United States,M,Data Architecture and Modeling +2022,Senior,Full-time,Data Engineer,145000,USD,145000,United States,In-person,United States,M,Data Engineering +2022,Senior,Full-time,Data Engineer,115000,USD,115000,United States,In-person,United States,M,Data Engineering +2022,Mid-level,Full-time,BI Analyst,78000,USD,78000,Brazil,Remote,Brazil,M,BI and Visualization +2022,Mid-level,Full-time,BI Analyst,48000,USD,48000,Brazil,Remote,Brazil,M,BI and Visualization +2022,Senior,Full-time,Data Analyst,175950,USD,175950,United States,Remote,United States,M,Data Analysis +2022,Senior,Full-time,Data Analyst,130050,USD,130050,United States,Remote,United States,M,Data Analysis +2022,Senior,Full-time,Data Engineer,205600,USD,205600,United States,In-person,United States,L,Data Engineering +2022,Senior,Full-time,Data Engineer,105700,USD,105700,United States,In-person,United States,L,Data Engineering +2022,Senior,Full-time,Data Analyst,236600,USD,236600,United States,Remote,United States,M,Data Analysis +2022,Senior,Full-time,Data Analyst,89200,USD,89200,United States,Remote,United States,M,Data Analysis +2022,Mid-level,Full-time,Data Scientist,84000,USD,84000,Brazil,Remote,Brazil,M,Data Science and Research +2022,Mid-level,Full-time,Data Scientist,54000,USD,54000,Brazil,Remote,Brazil,M,Data Science and Research +2022,Entry-level,Full-time,Data Scientist,80000,USD,80000,United States,Remote,United States,L,Data Science and Research +2022,Senior,Full-time,Marketing Data Analyst,200000,USD,200000,United Kingdom,Remote,United Kingdom,S,Data Analysis +2022,Entry-level,Full-time,Data Scientist,96000,CAD,73742,Canada,Remote,Canada,L,Data Science and Research +2022,Senior,Full-time,Data Science Lead,165000,USD,165000,United States,Hybrid,United States,S,Data Science and Research +2022,Entry-level,Full-time,Data Scientist,27000,GBP,33246,United Kingdom,Hybrid,United Kingdom,L,Data Science and Research +2022,Senior,Full-time,Data Engineer,185900,USD,185900,United States,In-person,United States,M,Data Engineering +2022,Senior,Full-time,Data Engineer,129300,USD,129300,United States,In-person,United States,M,Data Engineering +2022,Senior,Full-time,Data Analyst,169000,USD,169000,United States,In-person,United States,M,Data Analysis +2022,Senior,Full-time,Data Analyst,110600,USD,110600,United States,In-person,United States,M,Data Analysis +2021,Mid-level,Full-time,Data Engineer,100000,AUD,75050,Australia,Hybrid,Australia,L,Data Engineering +2022,Senior,Full-time,Data Engineer,225000,USD,225000,United States,In-person,United States,M,Data Engineering +2022,Senior,Full-time,Data Engineer,184100,USD,184100,United States,In-person,United States,M,Data Engineering +2022,Senior,Full-time,Data Scientist,185900,USD,185900,United States,In-person,United States,M,Data Science and Research +2022,Senior,Full-time,Data Scientist,129300,USD,129300,United States,In-person,United States,M,Data Science and Research +2022,Senior,Full-time,Data Scientist,225000,USD,225000,United States,In-person,United States,M,Data Science and Research +2022,Senior,Full-time,Data Scientist,156400,USD,156400,United States,In-person,United States,M,Data Science and Research +2022,Senior,Full-time,Data Scientist,185900,USD,185900,United States,In-person,United States,M,Data Science and Research +2022,Senior,Full-time,Data Scientist,129300,USD,129300,United States,In-person,United States,M,Data Science and Research +2022,Entry-level,Full-time,Machine Learning Engineer,108000,USD,108000,United States,In-person,United States,S,Machine Learning and AI +2022,Senior,Full-time,Data Scientist,155000,USD,155000,United States,Remote,United States,M,Data Science and Research +2022,Senior,Full-time,Data Scientist,38000,USD,38000,United States,Remote,United States,M,Data Science and Research +2022,Mid-level,Full-time,Data Analyst,85000,USD,85000,United States,In-person,United States,M,Data Analysis +2022,Mid-level,Full-time,Data Analyst,65000,USD,65000,United States,In-person,United States,M,Data Analysis +2022,Senior,Full-time,Data Scientist,155000,USD,155000,United States,Remote,United States,M,Data Science and Research +2022,Senior,Full-time,Data Scientist,38000,USD,38000,United States,Remote,United States,M,Data Science and Research +2022,Mid-level,Full-time,Data Engineer,90000,GBP,110820,United Kingdom,In-person,United Kingdom,M,Data Engineering +2022,Mid-level,Full-time,Data Engineer,75000,GBP,92350,United Kingdom,In-person,United Kingdom,M,Data Engineering +2022,Senior,Full-time,Data Scientist,153600,USD,153600,United States,Remote,United States,M,Data Science and Research +2022,Senior,Full-time,Data Scientist,106800,USD,106800,United States,Remote,United States,M,Data Science and Research +2022,Senior,Full-time,Data Scientist,185000,USD,185000,United States,Remote,United States,M,Data Science and Research +2022,Senior,Full-time,Data Scientist,50000,USD,50000,United States,Remote,United States,M,Data Science and Research +2022,Senior,Full-time,Data Engineer,185900,USD,185900,United States,In-person,United States,M,Data Engineering +2022,Senior,Full-time,Data Engineer,129300,USD,129300,United States,In-person,United States,M,Data Engineering +2022,Senior,Full-time,Data Scientist,155000,USD,155000,United States,Remote,United States,M,Data Science and Research +2022,Senior,Full-time,Data Scientist,38000,USD,38000,United States,Remote,United States,M,Data Science and Research +2022,Senior,Full-time,Data Scientist,168000,USD,168000,United States,Remote,United States,M,Data Science and Research +2022,Senior,Full-time,Data Scientist,130000,USD,130000,United States,Remote,United States,M,Data Science and Research +2022,Senior,Full-time,Data Scientist,123400,USD,123400,United States,In-person,United States,M,Data Science and Research +2022,Senior,Full-time,Data Scientist,88100,USD,88100,United States,In-person,United States,M,Data Science and Research +2022,Senior,Full-time,Data Scientist,120000,USD,120000,United States,Remote,United States,S,Data Science and Research +2022,Senior,Full-time,Data Scientist,55000,USD,55000,United States,Remote,United States,S,Data Science and Research +2022,Senior,Full-time,Data Scientist,185900,USD,185900,United States,In-person,United States,M,Data Science and Research +2022,Senior,Full-time,Data Scientist,129300,USD,129300,United States,In-person,United States,M,Data Science and Research +2022,Senior,Full-time,Data Engineer,191200,USD,191200,United States,In-person,United States,M,Data Engineering +2022,Senior,Full-time,Data Engineer,130000,USD,130000,United States,In-person,United States,M,Data Engineering +2022,Senior,Full-time,Data Analyst,169000,USD,169000,United States,In-person,United States,M,Data Analysis +2022,Senior,Full-time,Data Analyst,110600,USD,110600,United States,In-person,United States,M,Data Analysis +2022,Senior,Full-time,Analytics Engineer,150000,USD,150000,United States,In-person,United States,M,Leadership and Management +2022,Senior,Full-time,Analytics Engineer,120000,USD,120000,United States,In-person,United States,M,Leadership and Management +2022,Senior,Full-time,Data Science Consultant,139000,USD,139000,United States,In-person,United States,M,Data Science and Research +2022,Senior,Full-time,Data Science Consultant,122000,USD,122000,United States,In-person,United States,M,Data Science and Research +2022,Senior,Full-time,Data Scientist,185900,USD,185900,United States,In-person,United States,M,Data Science and Research +2022,Senior,Full-time,Data Scientist,129300,USD,129300,United States,In-person,United States,M,Data Science and Research +2022,Senior,Full-time,Data Analyst,139600,USD,139600,United States,In-person,United States,M,Data Analysis +2022,Senior,Full-time,Data Analyst,85700,USD,85700,United States,In-person,United States,M,Data Analysis +2022,Senior,Full-time,Data Engineer,185000,USD,185000,United States,Remote,United States,M,Data Engineering +2022,Senior,Full-time,Data Engineer,50000,USD,50000,United States,Remote,United States,M,Data Engineering +2022,Senior,Full-time,Data Engineer,185900,USD,185900,United States,In-person,United States,M,Data Engineering +2022,Senior,Full-time,Data Engineer,129300,USD,129300,United States,In-person,United States,M,Data Engineering +2022,Senior,Full-time,Data Scientist,225000,USD,225000,United States,In-person,United States,M,Data Science and Research +2022,Senior,Full-time,Data Scientist,156400,USD,156400,United States,In-person,United States,M,Data Science and Research +2022,Senior,Full-time,Data Scientist,200000,USD,200000,United States,Remote,United States,M,Data Science and Research +2022,Senior,Full-time,Data Scientist,175000,USD,175000,United States,Remote,United States,M,Data Science and Research +2022,Senior,Full-time,Data Engineer,185900,USD,185900,United States,In-person,United States,M,Data Engineering +2022,Senior,Full-time,Data Engineer,129300,USD,129300,United States,In-person,United States,M,Data Engineering +2022,Mid-level,Full-time,ML Engineer,148500,USD,148500,United States,Remote,United States,L,Machine Learning and AI +2022,Mid-level,Full-time,ML Engineer,98200,USD,98200,United States,Remote,United States,L,Machine Learning and AI +2022,Senior,Full-time,Data Analyst,115000,USD,115000,United States,Remote,United States,M,Data Analysis +2022,Senior,Full-time,Data Analyst,95000,USD,95000,United States,Remote,United States,M,Data Analysis +2022,Senior,Full-time,Data Architect,225000,USD,225000,United States,Remote,United States,M,Data Architecture and Modeling +2022,Senior,Full-time,Data Architect,66000,USD,66000,United States,Remote,United States,M,Data Architecture and Modeling +2022,Senior,Full-time,Data Scientist,185000,USD,185000,United States,Remote,United States,M,Data Science and Research +2022,Senior,Full-time,Data Scientist,50000,USD,50000,United States,Remote,United States,M,Data Science and Research +2022,Senior,Full-time,Data Scientist,45000,EUR,47280,Spain,In-person,Spain,M,Data Science and Research +2022,Senior,Full-time,Data Scientist,36000,EUR,37824,Spain,In-person,Spain,M,Data Science and Research +2022,Mid-level,Full-time,Data Manager,134000,USD,134000,United States,In-person,United States,M,Leadership and Management +2022,Mid-level,Full-time,Data Manager,98000,USD,98000,United States,In-person,United States,M,Leadership and Management +2022,Mid-level,Full-time,Data Analyst,105000,USD,105000,United States,In-person,United States,M,Data Analysis +2022,Mid-level,Full-time,Data Analyst,62000,USD,62000,United States,In-person,United States,M,Data Analysis +2022,Entry-level,Full-time,BI Data Analyst,57000,USD,57000,United States,Remote,United States,L,Data Analysis +2022,Senior,Full-time,Big Data Engineer,210000,CAD,161311,Canada,Hybrid,Canada,M,Data Engineering +2022,Mid-level,Full-time,Data Scientist,144200,USD,144200,United States,Remote,United States,M,Data Science and Research +2022,Mid-level,Full-time,Data Scientist,115360,USD,115360,United States,Remote,United States,M,Data Science and Research +2022,Mid-level,Full-time,Data Scientist,120000,AUD,83171,Australia,In-person,Australia,L,Data Science and Research +2022,Senior,Full-time,Data Engineer,70000,EUR,73546,Portugal,In-person,Portugal,M,Data Engineering +2022,Senior,Full-time,Data Engineer,40000,EUR,42026,Portugal,In-person,Portugal,M,Data Engineering +2022,Senior,Full-time,Data Engineer,170000,USD,170000,United States,Remote,United States,M,Data Engineering +2022,Senior,Full-time,Data Engineer,150000,USD,150000,United States,Remote,United States,M,Data Engineering +2022,Senior,Full-time,Data Architect,180000,USD,180000,United States,Remote,United States,M,Data Architecture and Modeling +2022,Senior,Full-time,Data Architect,160000,USD,160000,United States,Remote,United States,M,Data Architecture and Modeling +2022,Mid-level,Full-time,Data Scientist,108000,USD,108000,United States,Hybrid,United States,L,Data Science and Research +2022,Senior,Full-time,Machine Learning Manager,200000,USD,200000,United States,Remote,United States,M,Machine Learning and AI +2022,Senior,Full-time,Machine Learning Manager,150000,USD,150000,United States,Remote,United States,M,Machine Learning and AI +2022,Executive,Full-time,Data Manager,164000,CAD,125976,Canada,Hybrid,Canada,L,Leadership and Management +2022,Senior,Full-time,Data Engineer,188700,USD,188700,United States,Remote,United States,M,Data Engineering +2022,Senior,Full-time,Data Engineer,160395,USD,160395,United States,Remote,United States,M,Data Engineering +2022,Senior,Full-time,Data Analyst,115934,USD,115934,United States,Remote,United States,M,Data Analysis +2022,Senior,Full-time,Data Analyst,81666,USD,81666,United States,Remote,United States,M,Data Analysis +2022,Senior,Full-time,Data Engineer,300000,USD,300000,United States,In-person,United States,M,Data Engineering +2022,Senior,Full-time,Data Engineer,225000,USD,225000,United States,In-person,United States,M,Data Engineering +2022,Senior,Full-time,Data Scientist,198440,USD,198440,United States,Remote,United States,M,Data Science and Research +2022,Senior,Full-time,Data Scientist,144000,USD,144000,United States,Remote,United States,M,Data Science and Research +2022,Senior,Full-time,Applied Scientist,191475,USD,191475,United States,Remote,United States,M,Data Science and Research +2022,Senior,Full-time,Applied Scientist,141525,USD,141525,United States,Remote,United States,M,Data Science and Research +2022,Senior,Full-time,Data Analyst,48000,EUR,50432,Spain,In-person,Spain,M,Data Analysis +2022,Senior,Full-time,Data Analyst,35000,EUR,36773,Spain,In-person,Spain,M,Data Analysis +2022,Mid-level,Full-time,Data Scientist,72000,EUR,75648,Germany,Remote,Germany,S,Data Science and Research +2022,Senior,Full-time,Lead Data Scientist,156868,USD,156868,United States,Remote,United States,L,Data Science and Research +2022,Senior,Full-time,BI Analyst,200000,USD,200000,Nigeria,Remote,Nigeria,S,BI and Visualization +2022,Senior,Full-time,Data Scientist,198440,USD,198440,United States,In-person,United States,L,Data Science and Research +2022,Senior,Full-time,Data Scientist,144000,USD,144000,United States,In-person,United States,L,Data Science and Research +2022,Senior,Full-time,Lead Machine Learning Engineer,66000,EUR,69344,Portugal,Remote,Portugal,L,Machine Learning and AI +2022,Senior,Contract,Data Analyst,90000,USD,90000,United States,Remote,United States,M,Data Analysis +2022,Mid-level,Full-time,Research Scientist,120000,EUR,126080,Germany,In-person,Germany,S,Data Science and Research +2022,Mid-level,Full-time,Research Scientist,80000,EUR,84053,Germany,In-person,Germany,S,Data Science and Research +2022,Senior,Full-time,Data Engineer,200000,USD,200000,United States,Remote,United States,M,Data Engineering +2022,Senior,Full-time,Data Engineer,180000,USD,180000,United States,Remote,United States,M,Data Engineering +2022,Mid-level,Full-time,Analytics Engineer,108000,USD,108000,United States,Remote,United States,M,Leadership and Management +2022,Mid-level,Full-time,Analytics Engineer,85000,USD,85000,United States,Remote,United States,M,Leadership and Management +2022,Senior,Full-time,Machine Learning Engineer,210000,USD,210000,United States,Remote,United States,M,Machine Learning and AI +2022,Senior,Full-time,Machine Learning Engineer,180000,USD,180000,United States,Remote,United States,M,Machine Learning and AI +2022,Senior,Full-time,Data Engineer,165000,USD,165000,United States,Remote,United States,M,Data Engineering +2022,Senior,Full-time,Data Engineer,132000,USD,132000,United States,Remote,United States,M,Data Engineering +2022,Senior,Full-time,Analytics Engineer,130000,USD,130000,United States,Remote,United States,M,Leadership and Management +2022,Senior,Full-time,Analytics Engineer,110000,USD,110000,United States,Remote,United States,M,Leadership and Management +2022,Mid-level,Full-time,BI Data Analyst,65000,AUD,45050,Australia,Hybrid,Australia,L,Data Analysis +2021,Entry-level,Full-time,Data Analyst,56000,AUD,42028,Australia,Hybrid,Australia,L,Data Analysis +2022,Mid-level,Full-time,Data Analytics Engineer,135000,USD,135000,United States,Remote,United States,L,Leadership and Management +2022,Senior,Full-time,Data Engineer,178800,USD,178800,United States,Remote,United States,L,Data Engineering +2022,Senior,Full-time,Data Engineer,132100,USD,132100,United States,Remote,United States,L,Data Engineering +2022,Entry-level,Full-time,Data Analyst,20000,USD,20000,Costa Rica,Hybrid,United States,M,Data Analysis +2022,Senior,Full-time,Machine Learning Engineer,140000,USD,140000,Canada,In-person,Canada,M,Machine Learning and AI +2022,Senior,Full-time,Machine Learning Engineer,110000,USD,110000,Canada,In-person,Canada,M,Machine Learning and AI +2022,Senior,Full-time,Data Engineer,160000,USD,160000,United States,Remote,United States,M,Data Engineering +2022,Senior,Full-time,Data Engineer,85000,USD,85000,United States,Remote,United States,M,Data Engineering +2022,Senior,Full-time,ETL Developer,250000,USD,250000,United States,Remote,United States,M,Data Engineering +2022,Senior,Full-time,ETL Developer,63000,USD,63000,United States,Remote,United States,M,Data Engineering +2022,Executive,Full-time,Data Engineer,187200,USD,187200,United States,Remote,United States,M,Data Engineering +2022,Executive,Full-time,Data Engineer,116100,USD,116100,United States,Remote,United States,M,Data Engineering +2022,Senior,Full-time,Data Engineer,200000,USD,200000,United States,Remote,United States,M,Data Engineering +2022,Senior,Full-time,Data Engineer,145000,USD,145000,United States,Remote,United States,M,Data Engineering +2022,Senior,Full-time,Data Engineer,229998,USD,229998,United States,In-person,United States,L,Data Engineering +2022,Senior,Full-time,Data Engineer,154545,USD,154545,United States,In-person,United States,L,Data Engineering +2022,Senior,Full-time,Data Scientist,215000,USD,215000,United States,In-person,United States,L,Data Science and Research +2022,Senior,Full-time,Data Scientist,159000,USD,159000,United States,In-person,United States,L,Data Science and Research +2022,Senior,Full-time,Data Engineer,229998,USD,229998,United States,In-person,United States,L,Data Engineering +2022,Senior,Full-time,Data Engineer,154545,USD,154545,United States,In-person,United States,L,Data Engineering +2022,Entry-level,Full-time,AI Scientist,50000,USD,50000,United States,Remote,United States,M,Machine Learning and AI +2022,Senior,Full-time,Data Scientist Lead,183000,USD,183000,United States,Remote,United States,L,Data Science and Research +2022,Senior,Full-time,Data Analyst,99750,USD,99750,United States,Remote,United States,M,Data Analysis +2022,Senior,Full-time,Data Analyst,68400,USD,68400,United States,Remote,United States,M,Data Analysis +2022,Senior,Full-time,Data Scientist,236900,USD,236900,United States,Remote,United States,L,Data Science and Research +2022,Senior,Full-time,Data Scientist,159200,USD,159200,United States,Remote,United States,L,Data Science and Research +2022,Senior,Full-time,Data Science Manager,243225,USD,243225,United States,Remote,United States,M,Data Science and Research +2022,Senior,Full-time,Data Science Manager,179775,USD,179775,United States,Remote,United States,M,Data Science and Research +2022,Senior,Full-time,Data Engineer,175000,USD,175000,United States,Remote,United States,M,Data Engineering +2022,Senior,Full-time,Data Engineer,150000,USD,150000,United States,Remote,United States,M,Data Engineering +2022,Senior,Full-time,Machine Learning Engineer,210000,USD,210000,United States,Remote,United States,M,Machine Learning and AI +2022,Senior,Full-time,Machine Learning Engineer,180000,USD,180000,United States,Remote,United States,M,Machine Learning and AI +2022,Senior,Full-time,Data Scientist,148000,USD,148000,United States,Remote,United States,M,Data Science and Research +2022,Senior,Full-time,Data Scientist,128000,USD,128000,United States,Remote,United States,M,Data Science and Research +2022,Senior,Full-time,Data Architect,190000,USD,190000,United States,Remote,United States,M,Data Architecture and Modeling +2022,Senior,Full-time,Data Architect,135000,USD,135000,United States,Remote,United States,M,Data Architecture and Modeling +2022,Senior,Full-time,Analytics Engineer,130000,USD,130000,United States,Remote,United States,M,Leadership and Management +2022,Senior,Full-time,Analytics Engineer,110000,USD,110000,United States,Remote,United States,M,Leadership and Management +2022,Senior,Full-time,Data Scientist,191475,USD,191475,United States,Remote,United States,M,Data Science and Research +2022,Senior,Full-time,Data Scientist,141525,USD,141525,United States,Remote,United States,M,Data Science and Research +2022,Senior,Full-time,Data Engineer,160000,USD,160000,United States,Remote,United States,M,Data Engineering +2022,Senior,Full-time,Data Engineer,85000,USD,85000,United States,Remote,United States,M,Data Engineering +2022,Senior,Full-time,Data Scientist,218000,USD,218000,United States,In-person,United States,M,Data Science and Research +2022,Senior,Full-time,Data Scientist,145300,USD,145300,United States,In-person,United States,M,Data Science and Research +2022,Senior,Full-time,ML Engineer,195400,USD,195400,United States,Remote,United States,L,Machine Learning and AI +2022,Senior,Full-time,ML Engineer,131300,USD,131300,United States,Remote,United States,L,Machine Learning and AI +2022,Entry-level,Full-time,Data Specialist,105000,USD,105000,Chile,Remote,United States,L,Data Management and Strategy +2022,Senior,Full-time,Data Scientist,191475,USD,191475,United States,Remote,United States,M,Data Science and Research +2022,Senior,Full-time,Data Scientist,141525,USD,141525,United States,Remote,United States,M,Data Science and Research +2022,Senior,Full-time,Data Scientist,207000,USD,207000,United States,Remote,United States,M,Data Science and Research +2022,Senior,Full-time,Data Scientist,153000,USD,153000,United States,Remote,United States,M,Data Science and Research +2022,Senior,Full-time,Data Scientist,191475,USD,191475,United States,Remote,United States,M,Data Science and Research +2022,Senior,Full-time,Data Scientist,141525,USD,141525,United States,Remote,United States,M,Data Science and Research +2022,Senior,Full-time,Data Analyst,110000,USD,110000,United States,In-person,United States,M,Data Analysis +2022,Senior,Full-time,Data Analyst,99000,USD,99000,United States,In-person,United States,M,Data Analysis +2022,Senior,Full-time,Data Scientist,191475,USD,191475,United States,Remote,United States,M,Data Science and Research +2022,Senior,Full-time,Data Scientist,141525,USD,141525,United States,Remote,United States,M,Data Science and Research +2022,Senior,Full-time,Data Scientist,191475,USD,191475,United States,Remote,United States,M,Data Science and Research +2022,Senior,Full-time,Data Scientist,141525,USD,141525,United States,Remote,United States,M,Data Science and Research +2022,Senior,Full-time,Data Scientist,191475,USD,191475,United States,Remote,United States,M,Data Science and Research +2022,Senior,Full-time,Data Scientist,141525,USD,141525,United States,Remote,United States,M,Data Science and Research +2022,Senior,Full-time,Machine Learning Engineer,200000,USD,200000,Puerto Rico,Remote,Puerto Rico,M,Machine Learning and AI +2022,Senior,Full-time,Machine Learning Engineer,135000,USD,135000,Puerto Rico,Remote,Puerto Rico,M,Machine Learning and AI +2022,Senior,Full-time,Data Scientist,207000,USD,207000,United States,Remote,United States,M,Data Science and Research +2022,Senior,Full-time,Data Scientist,153000,USD,153000,United States,Remote,United States,M,Data Science and Research +2022,Senior,Full-time,Data Scientist,191475,USD,191475,United States,Remote,United States,M,Data Science and Research +2022,Senior,Full-time,Data Scientist,141525,USD,141525,United States,Remote,United States,M,Data Science and Research +2022,Senior,Full-time,Data Scientist,191475,USD,191475,United States,Remote,United States,M,Data Science and Research +2022,Senior,Full-time,Data Scientist,141525,USD,141525,United States,Remote,United States,M,Data Science and Research +2022,Senior,Full-time,Data Scientist,191475,USD,191475,United States,Remote,United States,M,Data Science and Research +2022,Senior,Full-time,Data Scientist,141525,USD,141525,United States,Remote,United States,M,Data Science and Research +2022,Senior,Full-time,Data Engineer,195700,USD,195700,United States,In-person,United States,M,Data Engineering +2022,Senior,Full-time,Data Engineer,130500,USD,130500,United States,In-person,United States,M,Data Engineering +2022,Senior,Full-time,ML Engineer,130000,USD,130000,United States,Remote,United States,M,Machine Learning and AI +2022,Senior,Full-time,ML Engineer,84000,USD,84000,United States,Remote,United States,M,Machine Learning and AI +2022,Mid-level,Full-time,Data Operations Engineer,100000,USD,100000,United States,Remote,United States,M,Data Quality and Operations +2022,Mid-level,Full-time,Data Operations Engineer,60000,USD,60000,United States,Remote,United States,M,Data Quality and Operations +2022,Mid-level,Full-time,Data Engineer,65000,GBP,80036,United Kingdom,Remote,United Kingdom,M,Data Engineering +2022,Mid-level,Full-time,Data Engineer,55000,GBP,67723,United Kingdom,Remote,United Kingdom,M,Data Engineering +2022,Senior,Full-time,Data Engineer,141300,USD,141300,United States,In-person,United States,M,Data Engineering +2022,Senior,Full-time,Data Engineer,102100,USD,102100,United States,In-person,United States,M,Data Engineering +2022,Senior,Full-time,Data Analyst,48000,EUR,50432,Spain,In-person,Spain,M,Data Analysis +2022,Senior,Full-time,Data Analyst,35000,EUR,36773,Spain,In-person,Spain,M,Data Analysis +2022,Mid-level,Full-time,Business Data Analyst,150000,USD,150000,United States,Remote,United States,L,Data Analysis +2022,Mid-level,Full-time,Data Scientist,83000,GBP,102200,United Kingdom,Remote,United Kingdom,M,Data Science and Research +2022,Senior,Full-time,Data Analyst,144000,USD,144000,United States,Remote,United States,M,Data Analysis +2022,Senior,Full-time,Data Analyst,113000,USD,113000,United States,Remote,United States,M,Data Analysis +2022,Entry-level,Full-time,AI Scientist,30000,EUR,31520,Portugal,Remote,Spain,M,Machine Learning and AI +2022,Senior,Full-time,Data Architect,195400,USD,195400,United States,Remote,United States,L,Data Architecture and Modeling +2022,Senior,Full-time,Data Architect,131300,USD,131300,United States,Remote,United States,L,Data Architecture and Modeling +2022,Senior,Full-time,Machine Learning Engineer,195400,USD,195400,United States,Remote,United States,L,Machine Learning and AI +2022,Senior,Full-time,Machine Learning Engineer,131300,USD,131300,United States,Remote,United States,L,Machine Learning and AI +2022,Senior,Full-time,Data Architect,195400,USD,195400,United States,Remote,United States,L,Data Architecture and Modeling +2022,Senior,Full-time,Data Architect,131300,USD,131300,United States,Remote,United States,L,Data Architecture and Modeling +2022,Senior,Full-time,Data Architect,190000,USD,190000,United States,Remote,United States,M,Data Architecture and Modeling +2022,Senior,Full-time,Data Architect,135000,USD,135000,United States,Remote,United States,M,Data Architecture and Modeling +2022,Senior,Full-time,Data Engineer,135000,USD,135000,United States,Remote,United States,M,Data Engineering +2022,Senior,Full-time,Data Engineer,80000,USD,80000,United States,Remote,United States,M,Data Engineering +2022,Senior,Full-time,Data Engineer,160000,USD,160000,United States,Remote,United States,M,Data Engineering +2022,Senior,Full-time,Data Engineer,85000,USD,85000,United States,Remote,United States,M,Data Engineering +2022,Senior,Full-time,Data Engineer,178800,USD,178800,United States,Remote,United States,L,Data Engineering +2022,Senior,Full-time,Data Engineer,132100,USD,132100,United States,Remote,United States,L,Data Engineering +2022,Mid-level,Contract,NLP Engineer,60000,USD,60000,India,Remote,United States,S,Machine Learning and AI +2022,Senior,Full-time,Machine Learning Engineer,60000,EUR,63040,Finland,Hybrid,Finland,S,Machine Learning and AI +2022,Entry-level,Full-time,Business Data Analyst,50000,USD,50000,India,Remote,American Samoa,L,Data Analysis +2022,Senior,Full-time,Data Engineer,140000,USD,140000,United States,Remote,United States,M,Data Engineering +2022,Senior,Full-time,Data Engineer,105000,USD,105000,United States,Remote,United States,M,Data Engineering +2022,Mid-level,Full-time,Data Engineer,65000,GBP,80036,United Kingdom,Remote,United Kingdom,M,Data Engineering +2022,Mid-level,Full-time,Data Engineer,55000,GBP,67723,United Kingdom,Remote,United Kingdom,M,Data Engineering +2022,Senior,Full-time,Analytics Engineer,190000,USD,190000,United States,Remote,United States,M,Leadership and Management +2022,Senior,Full-time,Analytics Engineer,140000,USD,140000,United States,Remote,United States,M,Leadership and Management +2022,Mid-level,Full-time,Data Operations Engineer,100000,USD,100000,United States,Remote,United States,M,Data Quality and Operations +2022,Mid-level,Full-time,Data Operations Engineer,60000,USD,60000,United States,Remote,United States,M,Data Quality and Operations +2022,Senior,Full-time,Data Scientist,180000,USD,180000,United States,Remote,United States,L,Data Science and Research +2022,Senior,Full-time,Data Scientist,165000,USD,165000,United States,Remote,United States,L,Data Science and Research +2022,Senior,Full-time,Applied Machine Learning Scientist,108000,USD,108000,United States,In-person,United States,L,Machine Learning and AI +2021,Entry-level,Full-time,Machine Learning Research Engineer,20000,USD,20000,France,Hybrid,France,M,Data Science and Research +2022,Senior,Full-time,Data Architect,190000,USD,190000,United States,Remote,United States,M,Data Architecture and Modeling +2022,Senior,Full-time,Data Architect,135000,USD,135000,United States,Remote,United States,M,Data Architecture and Modeling +2022,Senior,Full-time,Data Scientist,179400,USD,179400,United States,In-person,United States,M,Data Science and Research +2022,Senior,Full-time,Data Scientist,154000,USD,154000,United States,In-person,United States,M,Data Science and Research +2022,Senior,Full-time,Machine Learning Scientist,193900,USD,193900,United States,In-person,United States,M,Machine Learning and AI +2022,Senior,Full-time,Machine Learning Scientist,129300,USD,129300,United States,In-person,United States,M,Machine Learning and AI +2022,Executive,Full-time,Data Science Manager,222640,USD,222640,United States,In-person,United States,M,Data Science and Research +2022,Executive,Full-time,Data Science Manager,182160,USD,182160,United States,In-person,United States,M,Data Science and Research +2022,Mid-level,Full-time,Data Engineer,150000,USD,150000,United States,In-person,United States,M,Data Engineering +2022,Mid-level,Full-time,Data Engineer,100000,USD,100000,United States,In-person,United States,M,Data Engineering +2022,Senior,Full-time,Analytics Engineer,122500,USD,122500,United States,Remote,United States,M,Leadership and Management +2022,Senior,Full-time,Analytics Engineer,100000,USD,100000,United States,Remote,United States,M,Leadership and Management +2022,Executive,Full-time,Data Engineer,297500,USD,297500,United States,Remote,United States,M,Data Engineering +2022,Executive,Full-time,Data Engineer,260000,USD,260000,United States,Remote,United States,M,Data Engineering +2021,Entry-level,Full-time,Machine Learning Developer,15000,USD,15000,Thailand,Remote,Thailand,L,Machine Learning and AI +2022,Senior,Full-time,Data Engineer,193000,USD,193000,Spain,Remote,United States,M,Data Engineering +2022,Entry-level,Full-time,Data Scientist,93000,USD,93000,United States,In-person,United States,M,Data Science and Research +2022,Entry-level,Full-time,Data Scientist,73000,USD,73000,United States,In-person,United States,M,Data Science and Research +2022,Mid-level,Full-time,Data Operations Engineer,100000,USD,100000,United States,Remote,United States,M,Data Quality and Operations +2022,Mid-level,Full-time,Data Operations Engineer,60000,USD,60000,United States,Remote,United States,M,Data Quality and Operations +2022,Senior,Full-time,Data Scientist,136994,USD,136994,United States,Remote,United States,M,Data Science and Research +2022,Senior,Full-time,Data Scientist,101570,USD,101570,United States,Remote,United States,M,Data Science and Research +2022,Senior,Full-time,ETL Developer,250000,USD,250000,United States,Remote,United States,M,Data Engineering +2022,Senior,Full-time,ETL Developer,63000,USD,63000,United States,Remote,United States,M,Data Engineering +2022,Mid-level,Full-time,Data Manager,134000,USD,134000,United States,In-person,United States,M,Leadership and Management +2022,Mid-level,Full-time,Data Manager,98000,USD,98000,United States,In-person,United States,M,Leadership and Management +2022,Senior,Full-time,Data Scientist,191475,USD,191475,United States,Remote,United States,M,Data Science and Research +2022,Senior,Full-time,Data Scientist,141525,USD,141525,United States,Remote,United States,M,Data Science and Research +2022,Senior,Full-time,Director of Data Science,55000,EUR,57786,France,Hybrid,France,L,Data Science and Research +2022,Mid-level,Full-time,Data Analyst,136000,USD,136000,United States,Remote,United States,M,Data Analysis +2022,Mid-level,Full-time,Data Analyst,112000,USD,112000,United States,Remote,United States,M,Data Analysis +2022,Senior,Full-time,Data Scientist,172000,USD,172000,United States,Remote,United States,M,Data Science and Research +2022,Senior,Full-time,Data Scientist,140000,USD,140000,United States,Remote,United States,M,Data Science and Research +2022,Senior,Full-time,Data Engineer,215000,USD,215000,United States,In-person,United States,M,Data Engineering +2022,Senior,Full-time,Data Engineer,164000,USD,164000,United States,In-person,United States,M,Data Engineering +2022,Senior,Full-time,Data Engineer,300000,USD,300000,United States,In-person,United States,M,Data Engineering +2022,Senior,Full-time,Data Engineer,130000,USD,130000,United States,In-person,United States,M,Data Engineering +2022,Senior,Full-time,Data Engineer,250000,USD,250000,United States,Remote,United States,M,Data Engineering +2022,Senior,Full-time,Data Engineer,63000,USD,63000,United States,Remote,United States,M,Data Engineering +2022,Senior,Full-time,Data Engineer,180000,USD,180000,United States,Remote,United States,M,Data Engineering +2022,Senior,Full-time,Data Engineer,150000,USD,150000,United States,Remote,United States,M,Data Engineering +2021,Entry-level,Full-time,Data Engineer,33000,GBP,45390,United Kingdom,Hybrid,United Kingdom,L,Data Engineering +2022,Senior,Full-time,Data Engineer,250000,USD,250000,United States,Remote,United States,M,Data Engineering +2022,Senior,Full-time,Data Engineer,63000,USD,63000,United States,Remote,United States,M,Data Engineering +2022,Senior,Full-time,Data Scientist,191475,USD,191475,United States,Remote,United States,M,Data Science and Research +2022,Senior,Full-time,Data Scientist,141525,USD,141525,United States,Remote,United States,M,Data Science and Research +2022,Mid-level,Full-time,Data Analyst,97500,USD,97500,United States,Remote,United States,L,Data Analysis +2022,Senior,Full-time,Applied Scientist,212800,USD,212800,United States,Remote,United States,M,Data Science and Research +2022,Senior,Full-time,Applied Scientist,142800,USD,142800,United States,Remote,United States,M,Data Science and Research +2022,Mid-level,Full-time,Data Scientist,70000,EUR,73546,Netherlands,Hybrid,Netherlands,L,Data Science and Research +2022,Entry-level,Full-time,Data Scientist,50000,USD,50000,United States,Hybrid,Germany,M,Data Science and Research +2022,Senior,Full-time,Data Scientist,151800,USD,151800,United States,In-person,United States,M,Data Science and Research +2022,Senior,Full-time,Data Scientist,130240,USD,130240,United States,In-person,United States,M,Data Science and Research +2022,Senior,Full-time,Analytics Engineer,165000,USD,165000,United States,Remote,United States,M,Leadership and Management +2022,Senior,Full-time,Analytics Engineer,140250,USD,140250,United States,Remote,United States,M,Leadership and Management +2022,Senior,Full-time,Data Engineer,135000,USD,135000,United States,In-person,United States,M,Data Engineering +2022,Senior,Full-time,Data Engineer,115000,USD,115000,United States,In-person,United States,M,Data Engineering +2022,Senior,Full-time,Data Scientist,179400,USD,179400,United States,Remote,United States,M,Data Science and Research +2022,Senior,Full-time,Data Scientist,154000,USD,154000,United States,Remote,United States,M,Data Science and Research +2022,Senior,Full-time,Data Scientist,191475,USD,191475,United States,Remote,United States,M,Data Science and Research +2022,Senior,Full-time,Data Scientist,141525,USD,141525,United States,Remote,United States,M,Data Science and Research +2022,Senior,Full-time,Data Scientist,191475,USD,191475,United States,Remote,United States,M,Data Science and Research +2022,Senior,Full-time,Data Scientist,141525,USD,141525,United States,Remote,United States,M,Data Science and Research +2022,Senior,Full-time,Data Scientist,191475,USD,191475,United States,Remote,United States,M,Data Science and Research +2022,Senior,Full-time,Data Scientist,141525,USD,141525,United States,Remote,United States,M,Data Science and Research +2022,Mid-level,Full-time,Financial Data Analyst,75000,USD,75000,United States,In-person,United States,M,Data Analysis +2022,Mid-level,Full-time,Data Engineer,80000,EUR,84053,Greece,Remote,Greece,M,Data Engineering +2022,Mid-level,Full-time,Data Engineer,70000,EUR,73546,Greece,Remote,Greece,M,Data Engineering +2022,Mid-level,Full-time,Data Engineer,80000,GBP,98506,United Kingdom,Remote,United Kingdom,M,Data Engineering +2022,Mid-level,Full-time,Data Engineer,70000,GBP,86193,United Kingdom,Remote,United Kingdom,M,Data Engineering +2022,Mid-level,Full-time,Data Engineer,80000,EUR,84053,Spain,Remote,Spain,M,Data Engineering +2022,Mid-level,Full-time,Data Engineer,70000,EUR,73546,Spain,Remote,Spain,M,Data Engineering +2022,Senior,Full-time,Data Scientist,191475,USD,191475,United States,Remote,United States,M,Data Science and Research +2022,Senior,Full-time,Data Scientist,141525,USD,141525,United States,Remote,United States,M,Data Science and Research +2022,Senior,Full-time,Data Scientist,191475,USD,191475,United States,Remote,United States,M,Data Science and Research +2022,Senior,Full-time,Data Scientist,141525,USD,141525,United States,Remote,United States,M,Data Science and Research +2022,Senior,Full-time,Analytics Engineer,83376,GBP,102663,United Kingdom,Remote,United Kingdom,M,Leadership and Management +2022,Senior,Full-time,Analytics Engineer,65004,GBP,80041,United Kingdom,Remote,United Kingdom,M,Leadership and Management +2022,Senior,Full-time,Data Scientist,191475,USD,191475,United States,Remote,United States,M,Data Science and Research +2022,Senior,Full-time,Data Scientist,141525,USD,141525,United States,Remote,United States,M,Data Science and Research +2022,Senior,Full-time,Data Engineer,84958,GBP,104611,United Kingdom,Remote,United Kingdom,M,Data Engineering +2022,Senior,Full-time,Data Engineer,66822,GBP,82280,United Kingdom,Remote,United Kingdom,M,Data Engineering +2022,Senior,Full-time,Data Scientist,191475,USD,191475,United States,Remote,United States,M,Data Science and Research +2022,Senior,Full-time,Data Scientist,141525,USD,141525,United States,Remote,United States,M,Data Science and Research +2022,Senior,Full-time,Data Scientist,191475,USD,191475,United States,In-person,United States,M,Data Science and Research +2022,Senior,Full-time,Data Scientist,141525,USD,141525,United States,In-person,United States,M,Data Science and Research +2022,Senior,Full-time,Data Analyst,115000,USD,115000,United States,In-person,United States,L,Data Analysis +2022,Entry-level,Full-time,Data Scientist,30000,EUR,31520,Spain,Hybrid,Spain,M,Data Science and Research +2022,Senior,Full-time,Data Operations Analyst,81000,USD,81000,United States,Remote,United States,M,Data Quality and Operations +2022,Senior,Full-time,Data Operations Analyst,66000,USD,66000,United States,Remote,United States,M,Data Quality and Operations +2022,Entry-level,Full-time,Data Analyst,46000,USD,46000,United States,Remote,United States,L,Data Analysis +2022,Entry-level,Full-time,Data Engineer,80000,USD,80000,United States,Remote,United States,L,Data Engineering +2022,Executive,Full-time,Machine Learning Scientist,200000,USD,200000,United States,Remote,United States,S,Machine Learning and AI +2022,Executive,Full-time,Machine Learning Scientist,180000,USD,180000,United States,Remote,United States,S,Machine Learning and AI +2022,Executive,Full-time,AI Scientist,200000,USD,200000,United States,Remote,United States,S,Machine Learning and AI +2022,Senior,Full-time,Data Scientist,204100,USD,204100,United States,In-person,United States,M,Data Science and Research +2022,Senior,Full-time,Data Scientist,136100,USD,136100,United States,In-person,United States,M,Data Science and Research +2022,Senior,Full-time,Analytics Engineer,250000,USD,250000,United States,In-person,United States,M,Leadership and Management +2022,Senior,Full-time,Analytics Engineer,63000,USD,63000,United States,In-person,United States,M,Leadership and Management +2022,Mid-level,Full-time,Data Scientist,96000,GBP,118208,United Kingdom,In-person,United Kingdom,M,Data Science and Research +2022,Mid-level,Full-time,Data Scientist,90000,GBP,110820,United Kingdom,In-person,United Kingdom,M,Data Science and Research +2021,Entry-level,Part-time,Computer Vision Software Engineer,120000,DKK,19073,Denmark,Hybrid,Denmark,L,Machine Learning and AI +2022,Senior,Full-time,Data Scientist,191475,USD,191475,United States,Remote,United States,M,Data Science and Research +2022,Senior,Full-time,Data Scientist,141525,USD,141525,United States,Remote,United States,M,Data Science and Research +2022,Senior,Full-time,Data Scientist,191475,USD,191475,United States,Remote,United States,M,Data Science and Research +2022,Senior,Full-time,Data Scientist,141525,USD,141525,United States,Remote,United States,M,Data Science and Research +2022,Senior,Full-time,Data Scientist,191475,USD,191475,United States,Remote,United States,M,Data Science and Research +2022,Senior,Full-time,Data Scientist,141525,USD,141525,United States,Remote,United States,M,Data Science and Research +2022,Senior,Full-time,Data Specialist,95000,USD,95000,United States,Remote,United States,M,Data Management and Strategy +2022,Senior,Full-time,Data Specialist,70000,USD,70000,United States,Remote,United States,M,Data Management and Strategy +2022,Mid-level,Full-time,Applied Machine Learning Scientist,75000,USD,75000,"Bolivia, Plurinational State of",Remote,United States,M,Machine Learning and AI +2022,Mid-level,Full-time,Data Analyst,113000,USD,113000,United States,In-person,United States,L,Data Analysis +2022,Senior,Full-time,Data Scientist,170000,USD,170000,United States,Remote,United States,M,Data Science and Research +2022,Senior,Full-time,Data Scientist,130000,USD,130000,United States,Remote,United States,M,Data Science and Research +2022,Mid-level,Full-time,Data Analytics Consultant,113000,USD,113000,United States,Remote,United States,L,Leadership and Management +2022,Mid-level,Full-time,Product Data Analyst,140000,USD,140000,United States,Remote,United States,M,Data Analysis +2021,Senior,Full-time,Data Analyst,50000,USD,50000,Philippines,Remote,Philippines,S,Data Analysis +2022,Mid-level,Full-time,BI Data Analyst,77000,AUD,53368,Australia,Remote,Australia,M,Data Analysis +2022,Senior,Full-time,Data Scientist,175000,USD,175000,United States,In-person,United States,M,Data Science and Research +2022,Senior,Full-time,Data Scientist,140000,USD,140000,United States,In-person,United States,M,Data Science and Research +2022,Senior,Full-time,Lead Data Scientist,28500,EUR,29944,Portugal,Hybrid,Portugal,S,Data Science and Research +2022,Senior,Full-time,Analytics Engineer,250000,USD,250000,United States,In-person,United States,M,Leadership and Management +2022,Senior,Full-time,Analytics Engineer,63000,USD,63000,United States,In-person,United States,M,Leadership and Management +2022,Senior,Full-time,Data Scientist,160000,USD,160000,United States,In-person,United States,L,Data Science and Research +2022,Senior,Full-time,Data Scientist,119300,USD,119300,United States,In-person,United States,L,Data Science and Research +2022,Mid-level,Full-time,Research Scientist,145000,USD,145000,United States,Hybrid,United States,L,Data Science and Research +2022,Senior,Full-time,Data Engineer,105000,USD,105000,United States,In-person,United States,M,Data Engineering +2022,Senior,Full-time,Data Engineer,90000,USD,90000,United States,In-person,United States,M,Data Engineering +2022,Senior,Full-time,ETL Developer,146200,USD,146200,United States,Remote,United States,M,Data Engineering +2022,Senior,Full-time,ETL Developer,124270,USD,124270,United States,Remote,United States,M,Data Engineering +2022,Mid-level,Full-time,Data Scientist,225000,USD,225000,United States,In-person,United States,M,Data Science and Research +2022,Mid-level,Full-time,Data Scientist,160000,USD,160000,United States,In-person,United States,M,Data Science and Research +2022,Mid-level,Full-time,Data Scientist,52000,EUR,54634,Netherlands,Remote,Netherlands,S,Data Science and Research +2022,Senior,Full-time,Data Engineer,185800,USD,185800,Canada,Remote,Canada,M,Data Engineering +2022,Senior,Full-time,Data Engineer,137400,USD,137400,Canada,Remote,Canada,M,Data Engineering +2022,Senior,Full-time,Analytics Engineer,245000,USD,245000,United States,In-person,United States,M,Leadership and Management +2022,Senior,Full-time,Analytics Engineer,180000,USD,180000,United States,In-person,United States,M,Leadership and Management +2022,Senior,Full-time,Analytics Engineer,203500,USD,203500,United States,In-person,United States,M,Leadership and Management +2022,Senior,Full-time,Analytics Engineer,152000,USD,152000,United States,In-person,United States,M,Leadership and Management +2022,Senior,Full-time,Data Engineer,250000,USD,250000,United States,In-person,United States,M,Data Engineering +2022,Senior,Full-time,Data Engineer,63000,USD,63000,United States,In-person,United States,M,Data Engineering +2022,Senior,Full-time,Machine Learning Infrastructure Engineer,186000,USD,186000,United States,Remote,United States,M,Machine Learning and AI +2022,Senior,Full-time,Machine Learning Infrastructure Engineer,148800,USD,148800,United States,Remote,United States,M,Machine Learning and AI +2022,Mid-level,Full-time,Machine Learning Engineer,104000,GBP,128058,United Kingdom,Hybrid,United Kingdom,L,Machine Learning and AI +2022,Entry-level,Full-time,Data Scientist,82000,USD,82000,United States,In-person,United States,L,Data Science and Research +2022,Entry-level,Part-time,Data Scientist,110000,USD,110000,Dominican Republic,Remote,France,M,Data Science and Research +2022,Mid-level,Full-time,Applied Machine Learning Scientist,173000,USD,173000,United States,Hybrid,United States,M,Machine Learning and AI +2022,Senior,Full-time,Data Scientist,203500,USD,203500,United States,In-person,United States,M,Data Science and Research +2022,Senior,Full-time,Data Scientist,152000,USD,152000,United States,In-person,United States,M,Data Science and Research +2022,Senior,Full-time,Machine Learning Engineer,186000,USD,186000,United States,Remote,United States,M,Machine Learning and AI +2022,Senior,Full-time,Machine Learning Engineer,148800,USD,148800,United States,Remote,United States,M,Machine Learning and AI +2022,Mid-level,Full-time,Data Science Manager,158000,USD,158000,United States,Remote,United States,M,Data Science and Research +2022,Mid-level,Full-time,Data Science Manager,134000,USD,134000,United States,Remote,United States,M,Data Science and Research +2022,Senior,Full-time,Data Scientist,170000,USD,170000,United States,Remote,United States,M,Data Science and Research +2022,Senior,Full-time,Data Scientist,120000,USD,120000,United States,Remote,United States,M,Data Science and Research +2022,Executive,Full-time,Analytics Engineer,200000,USD,200000,United States,Remote,United States,M,Leadership and Management +2022,Executive,Full-time,Analytics Engineer,150000,USD,150000,United States,Remote,United States,M,Leadership and Management +2022,Senior,Full-time,Data Analyst,216200,USD,216200,United States,In-person,United States,M,Data Analysis +2022,Senior,Full-time,Data Analyst,144100,USD,144100,United States,In-person,United States,M,Data Analysis +2022,Mid-level,Full-time,Data Scientist,110000,EUR,115573,Netherlands,In-person,Netherlands,M,Data Science and Research +2022,Mid-level,Full-time,Data Scientist,85000,EUR,89306,Netherlands,In-person,Netherlands,M,Data Science and Research +2022,Senior,Full-time,ETL Developer,250000,USD,250000,United States,In-person,United States,M,Data Engineering +2022,Senior,Full-time,ETL Developer,63000,USD,63000,United States,In-person,United States,M,Data Engineering +2022,Senior,Full-time,Data Engineer,135000,USD,135000,United States,Remote,United States,M,Data Engineering +2022,Senior,Full-time,Data Engineer,85000,USD,85000,United States,Remote,United States,M,Data Engineering +2022,Senior,Full-time,Machine Learning Engineer,135000,USD,135000,United States,Remote,United States,M,Machine Learning and AI +2022,Senior,Full-time,Machine Learning Engineer,85000,USD,85000,United States,Remote,United States,M,Machine Learning and AI +2022,Senior,Full-time,Data Science Manager,206000,USD,206000,United States,Remote,United States,M,Data Science and Research +2022,Senior,Full-time,Data Science Manager,175100,USD,175100,United States,Remote,United States,M,Data Science and Research +2022,Senior,Full-time,Machine Learning Engineer,189650,USD,189650,United States,In-person,United States,M,Machine Learning and AI +2022,Senior,Full-time,Machine Learning Engineer,164996,USD,164996,United States,In-person,United States,M,Machine Learning and AI +2022,Senior,Full-time,Data Architect,149040,USD,149040,United States,Remote,United States,M,Data Architecture and Modeling +2022,Senior,Full-time,Data Architect,113900,USD,113900,United States,Remote,United States,M,Data Architecture and Modeling +2022,Senior,Full-time,Data Engineer,154000,USD,154000,United States,Remote,United States,M,Data Engineering +2022,Senior,Full-time,Data Engineer,126000,USD,126000,United States,Remote,United States,M,Data Engineering +2022,Senior,Full-time,Machine Learning Engineer,200000,USD,200000,United States,Remote,United States,L,Machine Learning and AI +2022,Senior,Full-time,Machine Learning Engineer,150000,USD,150000,United States,Remote,United States,L,Machine Learning and AI +2022,Senior,Full-time,Data Engineer,195700,USD,195700,United States,In-person,United States,M,Data Engineering +2022,Senior,Full-time,Data Engineer,130500,USD,130500,United States,In-person,United States,M,Data Engineering +2022,Senior,Full-time,Analytics Engineer,170000,USD,170000,United States,Remote,United States,M,Leadership and Management +2022,Senior,Full-time,Analytics Engineer,135000,USD,135000,United States,Remote,United States,M,Leadership and Management +2022,Mid-level,Full-time,Data Engineer,80000,GBP,98506,United Kingdom,In-person,United Kingdom,M,Data Engineering +2022,Mid-level,Full-time,Data Engineer,60000,GBP,73880,United Kingdom,In-person,United Kingdom,M,Data Engineering +2022,Senior,Full-time,Data Analyst,117000,USD,117000,United States,Remote,United States,M,Data Analysis +2022,Senior,Full-time,Data Analyst,99450,USD,99450,United States,Remote,United States,M,Data Analysis +2022,Senior,Full-time,Data Engineer,200000,USD,200000,Puerto Rico,Remote,Puerto Rico,M,Data Engineering +2022,Senior,Full-time,Data Engineer,135000,USD,135000,Puerto Rico,Remote,Puerto Rico,M,Data Engineering +2022,Senior,Full-time,Machine Learning Engineer,193900,USD,193900,United States,In-person,United States,M,Machine Learning and AI +2022,Senior,Full-time,Machine Learning Engineer,129300,USD,129300,United States,In-person,United States,M,Machine Learning and AI +2022,Entry-level,Full-time,Machine Learning Engineer,45000,GBP,55410,United Kingdom,Remote,United Kingdom,S,Machine Learning and AI +2022,Senior,Full-time,Data Analyst,70000,GBP,86193,United Kingdom,In-person,United Kingdom,M,Data Analysis +2022,Senior,Full-time,Data Analyst,50000,GBP,61566,United Kingdom,In-person,United Kingdom,M,Data Analysis +2022,Senior,Full-time,Data Analyst,175000,USD,175000,United States,Remote,United States,M,Data Analysis +2022,Senior,Full-time,Data Analyst,130000,USD,130000,United States,Remote,United States,M,Data Analysis +2022,Senior,Full-time,Data Engineer,188100,USD,188100,United States,In-person,United States,M,Data Engineering +2022,Senior,Full-time,Data Engineer,139860,USD,139860,United States,In-person,United States,M,Data Engineering +2022,Senior,Full-time,Machine Learning Engineer,248700,USD,248700,United States,In-person,United States,M,Machine Learning and AI +2022,Senior,Full-time,Machine Learning Engineer,167100,USD,167100,United States,In-person,United States,M,Machine Learning and AI +2022,Senior,Full-time,Data Scientist,123400,USD,123400,United States,In-person,United States,M,Data Science and Research +2022,Senior,Full-time,Data Scientist,88100,USD,88100,United States,In-person,United States,M,Data Science and Research +2022,Mid-level,Full-time,BI Data Analyst,48000,EUR,50432,Germany,Remote,Germany,S,Data Analysis +2022,Senior,Full-time,Data Scientist,245000,USD,245000,United States,In-person,United States,M,Data Science and Research +2022,Senior,Full-time,Data Scientist,205000,USD,205000,United States,In-person,United States,M,Data Science and Research +2022,Senior,Full-time,Data Engineer,141300,USD,141300,United States,In-person,United States,M,Data Engineering +2022,Senior,Full-time,Data Engineer,102100,USD,102100,United States,In-person,United States,M,Data Engineering +2022,Senior,Full-time,Data Architect,141300,USD,141300,United States,In-person,United States,M,Data Architecture and Modeling +2022,Senior,Full-time,Data Architect,102100,USD,102100,United States,In-person,United States,M,Data Architecture and Modeling +2022,Entry-level,Full-time,Data Analyst,50000,USD,50000,Argentina,Remote,Argentina,L,Data Analysis +2022,Entry-level,Full-time,Data Scientist,80000,EUR,84053,Belgium,Remote,Belgium,L,Data Science and Research +2022,Mid-level,Full-time,Lead Data Scientist,50000,GBP,61566,United Kingdom,Hybrid,United Kingdom,S,Data Science and Research +2022,Senior,Full-time,Data Architect,250000,USD,250000,United States,In-person,United States,M,Data Architecture and Modeling +2022,Senior,Full-time,Data Architect,63000,USD,63000,United States,In-person,United States,M,Data Architecture and Modeling +2022,Senior,Full-time,Data Science Manager,189500,USD,189500,United States,Remote,United States,L,Data Science and Research +2022,Senior,Full-time,Data Science Manager,140100,USD,140100,United States,Remote,United States,L,Data Science and Research +2022,Senior,Full-time,Data Engineer,177600,USD,177600,United States,Remote,United States,L,Data Engineering +2022,Senior,Full-time,Data Engineer,131300,USD,131300,United States,Remote,United States,L,Data Engineering +2022,Mid-level,Full-time,Data Engineer,24000,USD,24000,United States,In-person,United States,M,Data Engineering +2022,Mid-level,Full-time,Data Engineer,24000,USD,24000,United States,In-person,United States,M,Data Engineering +2022,Senior,Full-time,Data Engineer,250000,USD,250000,United States,In-person,United States,M,Data Engineering +2022,Senior,Full-time,Data Engineer,63000,USD,63000,United States,In-person,United States,M,Data Engineering +2022,Senior,Full-time,Machine Learning Engineer,202900,USD,202900,United States,Remote,United States,L,Machine Learning and AI +2022,Senior,Full-time,Machine Learning Engineer,131300,USD,131300,United States,Remote,United States,L,Machine Learning and AI +2022,Senior,Full-time,Data Engineer,145000,USD,145000,United States,Remote,United States,M,Data Engineering +2022,Senior,Full-time,Data Engineer,115000,USD,115000,United States,Remote,United States,M,Data Engineering +2022,Entry-level,Full-time,Machine Learning Engineer,115000,USD,115000,United States,Hybrid,United States,L,Machine Learning and AI +2022,Mid-level,Full-time,Machine Learning Engineer,193900,USD,193900,United States,In-person,United States,M,Machine Learning and AI +2022,Mid-level,Full-time,Machine Learning Engineer,129300,USD,129300,United States,In-person,United States,M,Machine Learning and AI +2022,Senior,Full-time,Data Scientist,180000,USD,180000,United States,Remote,United States,L,Data Science and Research +2022,Senior,Full-time,Data Scientist,140000,USD,140000,United States,Remote,United States,L,Data Science and Research +2022,Mid-level,Full-time,Data Analyst,216200,USD,216200,United States,In-person,United States,M,Data Analysis +2022,Mid-level,Full-time,Data Analyst,144100,USD,144100,United States,In-person,United States,M,Data Analysis +2022,Senior,Full-time,Machine Learning Scientist,216000,USD,216000,United States,In-person,United States,M,Machine Learning and AI +2022,Senior,Full-time,Machine Learning Scientist,144000,USD,144000,United States,In-person,United States,M,Machine Learning and AI +2022,Entry-level,Full-time,Data Analyst,150000,USD,150000,United States,Remote,United States,L,Data Analysis +2022,Entry-level,Full-time,Applied Data Scientist,50000,USD,50000,Austria,Hybrid,Austria,M,Data Science and Research +2021,Senior,Full-time,Cloud Data Architect,250000,USD,250000,United States,Hybrid,United States,L,Data Architecture and Modeling +2022,Executive,Full-time,Research Scientist,80000,EUR,84053,Netherlands,In-person,Netherlands,L,Data Science and Research +2022,Mid-level,Full-time,Data Scientist,107000,GBP,131752,United Kingdom,Remote,United Kingdom,M,Data Science and Research +2022,Senior,Full-time,Analytics Engineer,48000,USD,48000,Argentina,Remote,United States,S,Leadership and Management +2022,Executive,Full-time,Data Science Manager,260500,USD,260500,United States,In-person,United States,M,Data Science and Research +2022,Executive,Full-time,Data Science Manager,175100,USD,175100,United States,In-person,United States,M,Data Science and Research +2022,Senior,Full-time,Data Engineer,210000,USD,210000,United States,Remote,United States,M,Data Engineering +2022,Senior,Full-time,Data Engineer,100000,USD,100000,United States,Remote,United States,M,Data Engineering +2022,Entry-level,Full-time,Data Analyst,55000,USD,55000,United States,Remote,United States,S,Data Analysis +2022,Mid-level,Full-time,Data Analyst,130000,USD,130000,United States,Remote,United States,M,Data Analysis +2022,Senior,Full-time,Applied Machine Learning Scientist,73400,EUR,77119,France,Remote,United Kingdom,L,Machine Learning and AI +2022,Entry-level,Full-time,Data Scientist,49500,EUR,52008,Belgium,Hybrid,Belgium,S,Data Science and Research +2022,Senior,Full-time,Data Engineer,206699,USD,206699,United States,In-person,United States,M,Data Engineering +2022,Senior,Full-time,Data Engineer,99100,USD,99100,United States,In-person,United States,M,Data Engineering +2022,Mid-level,Full-time,Analytics Engineer,200000,USD,200000,United States,In-person,United States,M,Leadership and Management +2022,Mid-level,Full-time,Analytics Engineer,54000,USD,54000,United States,In-person,United States,M,Leadership and Management +2022,Senior,Full-time,Data Engineer,250000,USD,250000,United States,In-person,United States,M,Data Engineering +2022,Senior,Full-time,Data Engineer,63000,USD,63000,United States,In-person,United States,M,Data Engineering +2022,Senior,Full-time,Data Architect,250000,USD,250000,United States,In-person,United States,M,Data Architecture and Modeling +2022,Senior,Full-time,Data Architect,63000,USD,63000,United States,In-person,United States,M,Data Architecture and Modeling +2022,Senior,Full-time,Data Engineer,250000,USD,250000,United States,In-person,United States,M,Data Engineering +2022,Senior,Full-time,Data Engineer,63000,USD,63000,United States,In-person,United States,M,Data Engineering +2022,Entry-level,Full-time,Analytics Engineer,130000,USD,130000,United States,Hybrid,United States,L,Leadership and Management +2022,Senior,Full-time,Data Engineer,100000,USD,100000,United States,In-person,United States,L,Data Engineering +2022,Senior,Full-time,Data Engineer,80000,USD,80000,United States,In-person,United States,L,Data Engineering +2022,Senior,Full-time,Data Scientist,160000,USD,160000,United States,In-person,United States,L,Data Science and Research +2022,Senior,Full-time,Data Scientist,100000,USD,100000,United States,In-person,United States,L,Data Science and Research +2022,Senior,Full-time,Data Specialist,221300,USD,221300,United States,Remote,United States,L,Data Management and Strategy +2022,Senior,Full-time,Data Specialist,148700,USD,148700,United States,Remote,United States,L,Data Management and Strategy +2022,Entry-level,Full-time,Machine Learning Engineer,30000,USD,30000,United Kingdom,Remote,United Kingdom,L,Machine Learning and AI +2022,Entry-level,Full-time,Data Analyst,27000,EUR,28368,France,Hybrid,France,M,Data Analysis +2022,Mid-level,Full-time,Data Engineer,74000,GBP,91118,United Kingdom,In-person,United Kingdom,M,Data Engineering +2022,Mid-level,Full-time,Data Engineer,50000,GBP,61566,United Kingdom,In-person,United Kingdom,M,Data Engineering +2022,Mid-level,Full-time,Data Scientist,58000,EUR,60938,Germany,Remote,Germany,S,Data Science and Research +2022,Senior,Full-time,Data Science Manager,249260,USD,249260,United States,In-person,United States,M,Data Science and Research +2022,Senior,Full-time,Data Science Manager,185400,USD,185400,United States,In-person,United States,M,Data Science and Research +2022,Senior,Full-time,Data Engineer,170000,USD,170000,United States,Remote,United States,M,Data Engineering +2022,Senior,Full-time,Data Engineer,130000,USD,130000,United States,Remote,United States,M,Data Engineering +2022,Mid-level,Full-time,Data Scientist,65000,GBP,80036,United Kingdom,Hybrid,United Kingdom,M,Data Science and Research +2022,Senior,Full-time,Data Analyst,128875,USD,128875,United States,Remote,United States,M,Data Analysis +2022,Senior,Full-time,Data Analyst,93700,USD,93700,United States,Remote,United States,M,Data Analysis +2022,Senior,Full-time,Machine Learning Engineer,180000,USD,180000,United States,Remote,United States,M,Machine Learning and AI +2022,Senior,Full-time,Machine Learning Engineer,100000,USD,100000,United States,Remote,United States,M,Machine Learning and AI +2022,Senior,Full-time,Data Analyst,136260,USD,136260,United States,Remote,United States,M,Data Analysis +2022,Senior,Full-time,Data Analyst,109280,USD,109280,United States,Remote,United States,M,Data Analysis +2022,Senior,Full-time,Data Scientist,160000,USD,160000,United States,Remote,United States,L,Data Science and Research +2022,Senior,Full-time,Data Scientist,92000,USD,92000,United States,Remote,United States,L,Data Science and Research +2022,Senior,Full-time,Data Engineer,200000,USD,200000,United States,Remote,United States,M,Data Engineering +2022,Senior,Full-time,Data Engineer,160000,USD,160000,United States,Remote,United States,M,Data Engineering +2022,Mid-level,Full-time,Data Engineer,110000,GBP,135446,United Kingdom,In-person,United Kingdom,M,Data Engineering +2022,Mid-level,Full-time,Data Engineer,85000,GBP,104663,United Kingdom,In-person,United Kingdom,M,Data Engineering +2022,Senior,Full-time,Data Analyst,117000,USD,117000,United States,Remote,United States,M,Data Analysis +2022,Senior,Full-time,Data Analyst,99450,USD,99450,United States,Remote,United States,M,Data Analysis +2022,Entry-level,Full-time,Data Engineer,129000,USD,129000,United States,Remote,United States,L,Data Engineering +2022,Entry-level,Full-time,Data Engineer,86000,USD,86000,United States,Remote,United States,L,Data Engineering +2022,Senior,Full-time,Data Scientist,160000,USD,160000,United States,In-person,United States,L,Data Science and Research +2022,Senior,Full-time,Data Scientist,119300,USD,119300,United States,In-person,United States,L,Data Science and Research +2022,Senior,Full-time,Business Data Analyst,100000,USD,100000,United States,Remote,United States,L,Data Analysis +2022,Mid-level,Full-time,Data Scientist,25000,USD,25000,Türkiye,Hybrid,Türkiye,M,Data Science and Research +2022,Mid-level,Full-time,Data Analyst,90000,SGD,65257,Singapore,Hybrid,Singapore,M,Data Analysis +2022,Mid-level,Full-time,AI Scientist,200000,USD,200000,United States,Remote,United States,M,Machine Learning and AI +2022,Entry-level,Full-time,Machine Learning Developer,180000,USD,180000,United States,Remote,United States,L,Machine Learning and AI +2022,Mid-level,Full-time,Data Scientist,153000,USD,153000,United States,Remote,United States,L,Data Science and Research +2022,Senior,Full-time,Data Engineer,210000,USD,210000,United States,Remote,United States,M,Data Engineering +2022,Senior,Full-time,Data Engineer,100000,USD,100000,United States,Remote,United States,M,Data Engineering +2022,Senior,Full-time,Data Analyst,150075,USD,150075,United States,Remote,United States,M,Data Analysis +2022,Senior,Full-time,Data Analyst,110925,USD,110925,United States,Remote,United States,M,Data Analysis +2022,Mid-level,Full-time,Machine Learning Scientist,22800,USD,22800,Egypt,Remote,Egypt,M,Machine Learning and AI +2022,Senior,Full-time,Data Scientist,160000,USD,160000,United States,Remote,United States,L,Data Science and Research +2022,Senior,Full-time,Data Scientist,92000,USD,92000,United States,Remote,United States,L,Data Science and Research +2022,Senior,Full-time,Machine Learning Engineer,202900,USD,202900,United States,Remote,United States,L,Machine Learning and AI +2022,Senior,Full-time,Machine Learning Engineer,131300,USD,131300,United States,Remote,United States,L,Machine Learning and AI +2020,Entry-level,Full-time,Data Analyst,20000,EUR,22809,Portugal,Remote,Portugal,M,Data Analysis +2022,Entry-level,Full-time,Data Analyst,15000,USD,15000,Indonesia,In-person,Indonesia,L,Data Analysis +2022,Senior,Full-time,Data Engineer,175000,USD,175000,United States,Remote,United States,M,Data Engineering +2022,Senior,Full-time,Data Engineer,135000,USD,135000,United States,Remote,United States,M,Data Engineering +2022,Senior,Full-time,Data Science Manager,193000,AUD,133766,Australia,Remote,Australia,L,Data Science and Research +2022,Entry-level,Full-time,Machine Learning Engineer,83000,USD,83000,United States,In-person,United States,L,Machine Learning and AI +2022,Mid-level,Full-time,Data Engineer,75000,GBP,92350,United Kingdom,Remote,United Kingdom,M,Data Engineering +2022,Mid-level,Full-time,Data Engineer,55000,GBP,67723,United Kingdom,Remote,United Kingdom,M,Data Engineering +2022,Senior,Full-time,Data Scientist,186000,USD,186000,United States,In-person,United States,M,Data Science and Research +2022,Senior,Full-time,Data Scientist,148800,USD,148800,United States,In-person,United States,M,Data Science and Research +2022,Senior,Full-time,Data Analyst,112900,USD,112900,United States,In-person,United States,M,Data Analysis +2022,Senior,Full-time,Data Analyst,90320,USD,90320,United States,In-person,United States,M,Data Analysis +2022,Senior,Full-time,ML Engineer,240000,USD,240000,United States,In-person,United States,M,Machine Learning and AI +2022,Senior,Full-time,ML Engineer,160000,USD,160000,United States,In-person,United States,M,Machine Learning and AI +2022,Senior,Full-time,Data Science Manager,300000,USD,300000,United States,Remote,United States,M,Data Science and Research +2022,Senior,Full-time,Data Science Manager,200000,USD,200000,United States,Remote,United States,M,Data Science and Research +2022,Mid-level,Full-time,Data Engineer,62500,EUR,65666,Germany,Hybrid,Germany,S,Data Engineering +2022,Mid-level,Full-time,AI Scientist,200000,USD,200000,India,Remote,United States,L,Machine Learning and AI +2022,Mid-level,Full-time,Machine Learning Engineer,95000,GBP,116976,United Kingdom,In-person,United Kingdom,M,Machine Learning and AI +2022,Mid-level,Full-time,Machine Learning Engineer,75000,GBP,92350,United Kingdom,In-person,United Kingdom,M,Machine Learning and AI +2022,Mid-level,Full-time,AI Scientist,120000,USD,120000,United States,In-person,United States,M,Machine Learning and AI +2022,Senior,Full-time,Data Analyst,112900,USD,112900,United States,Remote,United States,M,Data Analysis +2022,Senior,Full-time,Data Analyst,90320,USD,90320,United States,Remote,United States,M,Data Analysis +2022,Senior,Full-time,Data Analytics Manager,145000,USD,145000,United States,Remote,United States,M,Leadership and Management +2022,Senior,Full-time,Data Analytics Manager,105400,USD,105400,United States,Remote,United States,M,Leadership and Management +2020,Entry-level,Full-time,Data Scientist,43200,EUR,49268,Germany,In-person,Germany,S,Data Science and Research +2022,Mid-level,Full-time,Data Engineer,90000,GBP,110820,United Kingdom,In-person,United Kingdom,M,Data Engineering +2022,Mid-level,Full-time,Data Engineer,75000,GBP,92350,United Kingdom,In-person,United Kingdom,M,Data Engineering +2022,Senior,Full-time,Data Scientist,215300,USD,215300,United States,Remote,United States,L,Data Science and Research +2022,Senior,Full-time,Data Scientist,158200,USD,158200,United States,Remote,United States,L,Data Science and Research +2022,Senior,Full-time,Data Engineer,209100,USD,209100,United States,Remote,United States,L,Data Engineering +2022,Senior,Full-time,Data Engineer,154600,USD,154600,United States,Remote,United States,L,Data Engineering +2022,Senior,Full-time,Data Analyst,115934,USD,115934,United States,In-person,United States,M,Data Analysis +2022,Senior,Full-time,Data Analyst,81666,USD,81666,United States,In-person,United States,M,Data Analysis +2022,Senior,Full-time,Data Engineer,175000,USD,175000,United States,Remote,United States,M,Data Engineering +2022,Senior,Full-time,Data Engineer,155000,USD,155000,United States,Remote,United States,M,Data Engineering +2022,Mid-level,Full-time,Machine Learning Engineer,80000,EUR,84053,France,Remote,Germany,M,Machine Learning and AI +2022,Senior,Full-time,Data Analyst,164000,USD,164000,United States,In-person,United States,M,Data Analysis +2022,Senior,Full-time,Data Analyst,132000,USD,132000,United States,In-person,United States,M,Data Analysis +2022,Senior,Full-time,Data Scientist,170000,USD,170000,United States,Remote,United States,M,Data Science and Research +2022,Senior,Full-time,Data Scientist,123000,USD,123000,United States,Remote,United States,M,Data Science and Research +2022,Senior,Full-time,Machine Learning Engineer,189650,USD,189650,United States,In-person,United States,M,Machine Learning and AI +2022,Senior,Full-time,Machine Learning Engineer,164996,USD,164996,United States,In-person,United States,M,Machine Learning and AI +2022,Mid-level,Full-time,ETL Developer,50000,EUR,52533,Greece,In-person,Greece,M,Data Engineering +2022,Mid-level,Full-time,ETL Developer,50000,EUR,52533,Greece,In-person,Greece,M,Data Engineering +2022,Executive,Full-time,Lead Data Engineer,150000,CAD,115222,Canada,Remote,Canada,S,Data Engineering +2022,Senior,Full-time,Data Engineer,165400,USD,165400,United States,Remote,United States,M,Data Engineering +2022,Senior,Full-time,Data Engineer,132320,USD,132320,United States,Remote,United States,M,Data Engineering +2022,Senior,Full-time,Data Architect,208775,USD,208775,United States,Remote,United States,M,Data Architecture and Modeling +2022,Senior,Full-time,Data Architect,147800,USD,147800,United States,Remote,United States,M,Data Architecture and Modeling +2022,Senior,Full-time,Data Engineer,136994,USD,136994,United States,Remote,United States,M,Data Engineering +2022,Senior,Full-time,Data Engineer,101570,USD,101570,United States,Remote,United States,M,Data Engineering +2022,Senior,Full-time,Data Analyst,128875,USD,128875,United States,Remote,United States,M,Data Analysis +2022,Senior,Full-time,Data Analyst,93700,USD,93700,United States,Remote,United States,M,Data Analysis +2022,Entry-level,Full-time,Machine Learning Engineer,28500,GBP,35093,United Kingdom,Remote,United Kingdom,L,Machine Learning and AI +2022,Senior,Full-time,Data Engineer,183600,USD,183600,United States,Remote,United States,L,Data Engineering +2022,Senior,Full-time,Data Engineer,100800,USD,100800,United States,Remote,United States,L,Data Engineering +2022,Mid-level,Full-time,Data Analyst,40000,GBP,49253,United Kingdom,Remote,United Kingdom,M,Data Analysis +2022,Mid-level,Full-time,Data Analyst,30000,GBP,36940,United Kingdom,Remote,United Kingdom,M,Data Analysis +2022,Mid-level,Full-time,Data Analyst,40000,EUR,42026,Spain,Remote,Spain,M,Data Analysis +2022,Mid-level,Full-time,Data Analyst,30000,EUR,31520,Spain,Remote,Spain,M,Data Analysis +2022,Mid-level,Full-time,Data Engineer,80000,EUR,84053,Spain,Remote,Spain,M,Data Engineering +2022,Mid-level,Full-time,Data Engineer,70000,EUR,73546,Spain,Remote,Spain,M,Data Engineering +2022,Mid-level,Full-time,Data Engineer,80000,GBP,98506,United Kingdom,Remote,United Kingdom,M,Data Engineering +2022,Mid-level,Full-time,Data Engineer,70000,GBP,86193,United Kingdom,Remote,United Kingdom,M,Data Engineering +2022,Mid-level,Full-time,Data Engineer,80000,EUR,84053,Greece,Remote,Greece,M,Data Engineering +2022,Mid-level,Full-time,Data Engineer,70000,EUR,73546,Greece,Remote,Greece,M,Data Engineering +2022,Senior,Full-time,Machine Learning Engineer,189650,USD,189650,United States,In-person,United States,M,Machine Learning and AI +2022,Senior,Full-time,Machine Learning Engineer,164996,USD,164996,United States,In-person,United States,M,Machine Learning and AI +2022,Mid-level,Full-time,Data Analyst,40000,EUR,42026,Greece,Remote,Greece,M,Data Analysis +2022,Mid-level,Full-time,Data Analyst,30000,EUR,31520,Greece,Remote,Greece,M,Data Analysis +2022,Mid-level,Full-time,Data Engineer,75000,GBP,92350,United Kingdom,Remote,United Kingdom,M,Data Engineering +2022,Mid-level,Full-time,Data Engineer,60000,GBP,73880,United Kingdom,Remote,United Kingdom,M,Data Engineering +2022,Senior,Full-time,Data Scientist,215300,USD,215300,United States,In-person,United States,L,Data Science and Research +2022,Senior,Full-time,Data Scientist,140400,USD,140400,United States,In-person,United States,L,Data Science and Research +2022,Mid-level,Full-time,Data Engineer,60000,EUR,63040,Spain,Remote,Spain,M,Data Engineering +2022,Mid-level,Full-time,Data Engineer,45000,EUR,47280,Spain,Remote,Spain,M,Data Engineering +2022,Senior,Full-time,Data Scientist,260000,USD,260000,United States,Remote,United States,M,Data Science and Research +2022,Senior,Full-time,Data Scientist,180000,USD,180000,United States,Remote,United States,M,Data Science and Research +2022,Mid-level,Full-time,Data Scientist,55000,GBP,67723,United Kingdom,In-person,United Kingdom,M,Data Science and Research +2022,Mid-level,Full-time,Data Scientist,35000,GBP,43096,United Kingdom,In-person,United Kingdom,M,Data Science and Research +2022,Mid-level,Full-time,Data Engineer,60000,EUR,63040,Greece,Remote,Greece,M,Data Engineering +2022,Mid-level,Full-time,Data Engineer,45000,EUR,47280,Greece,Remote,Greece,M,Data Engineering +2022,Mid-level,Full-time,Data Engineer,60000,GBP,73880,United Kingdom,Remote,United Kingdom,M,Data Engineering +2022,Mid-level,Full-time,Data Engineer,45000,GBP,55410,United Kingdom,Remote,United Kingdom,M,Data Engineering +2021,Mid-level,Full-time,Machine Learning Engineer,43200,EUR,51064,Italy,Hybrid,Italy,L,Machine Learning and AI +2022,Senior,Full-time,Data Science Engineer,60000,USD,60000,Argentina,Remote,Mexico,L,Data Science and Research +2022,Mid-level,Full-time,Data Engineer,82900,USD,82900,United States,In-person,United States,M,Data Engineering +2022,Mid-level,Full-time,Data Engineer,63900,USD,63900,United States,In-person,United States,M,Data Engineering +2022,Mid-level,Full-time,Machine Learning Scientist,160000,USD,160000,United States,Remote,United States,L,Machine Learning and AI +2022,Mid-level,Full-time,Machine Learning Scientist,112300,USD,112300,United States,Remote,United States,L,Machine Learning and AI +2022,Mid-level,Full-time,Data Science Manager,241000,USD,241000,United States,Remote,United States,M,Data Science and Research +2022,Mid-level,Full-time,Data Science Manager,159000,USD,159000,United States,Remote,United States,M,Data Science and Research +2022,Senior,Full-time,Data Scientist,180000,USD,180000,United States,In-person,United States,M,Data Science and Research +2022,Senior,Full-time,Data Scientist,80000,USD,80000,United States,In-person,United States,M,Data Science and Research +2022,Mid-level,Full-time,Data Analyst,58000,USD,58000,United States,In-person,United States,S,Data Analysis +2022,Mid-level,Full-time,Data Analyst,58000,USD,58000,United States,In-person,United States,S,Data Analysis +2022,Senior,Full-time,Data Engineer,136000,USD,136000,United States,In-person,United States,M,Data Engineering +2022,Senior,Full-time,Data Engineer,108800,USD,108800,United States,In-person,United States,M,Data Engineering +2022,Executive,Full-time,Data Engineer,242000,USD,242000,United States,Remote,United States,M,Data Engineering +2022,Executive,Full-time,Data Engineer,200000,USD,200000,United States,Remote,United States,M,Data Engineering +2022,Mid-level,Full-time,Data Scientist,50000,GBP,61566,United Kingdom,In-person,United Kingdom,M,Data Science and Research +2022,Mid-level,Full-time,Data Scientist,30000,GBP,36940,United Kingdom,In-person,United Kingdom,M,Data Science and Research +2022,Mid-level,Full-time,Data Engineer,60000,GBP,73880,United Kingdom,In-person,United Kingdom,M,Data Engineering +2022,Mid-level,Full-time,Data Engineer,40000,GBP,49253,United Kingdom,In-person,United Kingdom,M,Data Engineering +2022,Senior,Full-time,Data Scientist,165220,USD,165220,United States,Remote,United States,M,Data Science and Research +2022,Senior,Full-time,Data Scientist,120160,USD,120160,United States,Remote,United States,M,Data Science and Research +2022,Senior,Full-time,Data Analyst,124190,USD,124190,United States,Remote,United States,M,Data Analysis +2022,Senior,Full-time,Data Analyst,90320,USD,90320,United States,Remote,United States,M,Data Analysis +2022,Senior,Full-time,Data Engineer,181940,USD,181940,United States,In-person,United States,M,Data Engineering +2022,Senior,Full-time,Data Engineer,132320,USD,132320,United States,In-person,United States,M,Data Engineering +2022,Senior,Full-time,Data Engineer,220110,USD,220110,United States,In-person,United States,M,Data Engineering +2022,Senior,Full-time,Data Engineer,160080,USD,160080,United States,In-person,United States,M,Data Engineering +2022,Senior,Full-time,Data Scientist,180000,USD,180000,United States,In-person,United States,L,Data Science and Research +2022,Senior,Full-time,Data Scientist,120000,USD,120000,United States,In-person,United States,L,Data Science and Research +2022,Mid-level,Full-time,Data Analyst,126500,USD,126500,United States,In-person,United States,M,Data Analysis +2022,Mid-level,Full-time,Data Analyst,106260,USD,106260,United States,In-person,United States,M,Data Analysis +2022,Senior,Full-time,Data Analyst,116000,USD,116000,United States,In-person,United States,M,Data Analysis +2022,Senior,Full-time,Data Analyst,99000,USD,99000,United States,In-person,United States,M,Data Analysis +2022,Senior,Full-time,Data Analyst,155000,USD,155000,United States,Remote,United States,M,Data Analysis +2022,Senior,Full-time,Data Analyst,120600,USD,120600,United States,Remote,United States,M,Data Analysis +2022,Mid-level,Full-time,Data Scientist,130000,USD,130000,United States,In-person,United States,M,Data Science and Research +2022,Mid-level,Full-time,Data Scientist,90000,USD,90000,United States,In-person,United States,M,Data Science and Research +2022,Mid-level,Full-time,Data Engineer,170000,USD,170000,United States,Remote,United States,M,Data Engineering +2022,Mid-level,Full-time,Data Engineer,150000,USD,150000,United States,Remote,United States,M,Data Engineering +2022,Senior,Full-time,Data Analyst,102100,USD,102100,United States,Remote,United States,M,Data Analysis +2022,Senior,Full-time,Data Analyst,84900,USD,84900,United States,Remote,United States,M,Data Analysis +2022,Senior,Full-time,Data Scientist,136620,USD,136620,United States,Remote,United States,M,Data Science and Research +2022,Senior,Full-time,Data Scientist,99360,USD,99360,United States,Remote,United States,M,Data Science and Research +2022,Senior,Full-time,Data Scientist,90000,GBP,110820,United Kingdom,In-person,United Kingdom,M,Data Science and Research +2022,Senior,Full-time,Data Scientist,80000,GBP,98506,United Kingdom,In-person,United Kingdom,M,Data Science and Research +2022,Senior,Full-time,Data Scientist,146000,USD,146000,United States,Remote,United States,M,Data Science and Research +2022,Senior,Full-time,Data Scientist,123000,USD,123000,United States,Remote,United States,M,Data Science and Research +2022,Entry-level,Full-time,Data Engineer,40000,GBP,49253,United Kingdom,Remote,United Kingdom,M,Data Engineering +2022,Entry-level,Full-time,Data Engineer,35000,GBP,43096,United Kingdom,Remote,United Kingdom,M,Data Engineering +2022,Executive,Full-time,Data Analyst,130000,USD,130000,United States,Remote,United States,M,Data Analysis +2022,Executive,Full-time,Data Analyst,110000,USD,110000,United States,Remote,United States,M,Data Analysis +2022,Senior,Full-time,Data Analyst,170000,USD,170000,United States,Remote,United States,M,Data Analysis +2022,Senior,Full-time,Data Analyst,135000,USD,135000,United States,Remote,United States,M,Data Analysis +2022,Senior,Full-time,Data Science Manager,161342,USD,161342,United States,Remote,United States,M,Data Science and Research +2022,Senior,Full-time,Data Science Manager,137141,USD,137141,United States,Remote,United States,M,Data Science and Research +2022,Senior,Full-time,Data Scientist,167000,USD,167000,United States,Remote,United States,M,Data Science and Research +2022,Senior,Full-time,Data Scientist,123000,USD,123000,United States,Remote,United States,M,Data Science and Research +2022,Senior,Full-time,Data Engineer,60000,GBP,73880,United Kingdom,In-person,United Kingdom,M,Data Engineering +2022,Senior,Full-time,Data Engineer,50000,GBP,61566,United Kingdom,In-person,United Kingdom,M,Data Engineering +2022,Senior,Full-time,Data Scientist,211500,USD,211500,United States,Remote,United States,M,Data Science and Research +2022,Senior,Full-time,Data Scientist,138600,USD,138600,United States,Remote,United States,M,Data Science and Research +2022,Senior,Full-time,Data Architect,192400,USD,192400,Canada,Remote,Canada,M,Data Architecture and Modeling +2022,Senior,Full-time,Data Architect,90700,USD,90700,Canada,Remote,Canada,M,Data Architecture and Modeling +2022,Senior,Full-time,Data Analyst,130000,USD,130000,Canada,Remote,Canada,M,Data Analysis +2022,Senior,Full-time,Data Analyst,61300,USD,61300,Canada,Remote,Canada,M,Data Analysis +2022,Senior,Full-time,Data Analyst,130000,USD,130000,Canada,Remote,Canada,M,Data Analysis +2022,Senior,Full-time,Data Analyst,61300,USD,61300,Canada,Remote,Canada,M,Data Analysis +2022,Senior,Full-time,Data Engineer,160000,USD,160000,United States,In-person,United States,L,Data Engineering +2022,Senior,Full-time,Data Engineer,113000,USD,113000,United States,In-person,United States,L,Data Engineering +2022,Senior,Full-time,Data Scientist,150000,USD,150000,United States,In-person,United States,M,Data Science and Research +2022,Senior,Full-time,Data Scientist,95550,USD,95550,United States,In-person,United States,M,Data Science and Research +2022,Mid-level,Full-time,Data Analyst,167000,USD,167000,United States,Remote,United States,M,Data Analysis +2022,Mid-level,Full-time,Data Analyst,115500,USD,115500,United States,Remote,United States,M,Data Analysis +2022,Senior,Full-time,Data Analyst,112900,USD,112900,United States,Remote,United States,M,Data Analysis +2022,Senior,Full-time,Data Analyst,90320,USD,90320,United States,Remote,United States,M,Data Analysis +2022,Senior,Full-time,Data Analyst,112900,USD,112900,United States,Remote,United States,M,Data Analysis +2022,Senior,Full-time,Data Analyst,90320,USD,90320,United States,Remote,United States,M,Data Analysis +2022,Senior,Full-time,Data Engineer,165400,USD,165400,United States,Remote,United States,M,Data Engineering +2022,Senior,Full-time,Data Engineer,132320,USD,132320,United States,Remote,United States,M,Data Engineering +2022,Senior,Full-time,Data Engineer,243900,USD,243900,United States,Remote,United States,M,Data Engineering +2022,Senior,Full-time,Data Engineer,156600,USD,156600,United States,Remote,United States,M,Data Engineering +2022,Senior,Full-time,Data Analyst,136600,USD,136600,United States,Remote,United States,M,Data Analysis +2022,Senior,Full-time,Data Analyst,109280,USD,109280,United States,Remote,United States,M,Data Analysis +2022,Senior,Full-time,Data Engineer,128875,USD,128875,United States,Remote,United States,M,Data Engineering +2022,Senior,Full-time,Data Engineer,93700,USD,93700,United States,Remote,United States,M,Data Engineering +2022,Executive,Full-time,Head of Data Science,224000,USD,224000,United States,Remote,United States,M,Data Science and Research +2022,Executive,Full-time,Head of Data Science,167875,USD,167875,United States,Remote,United States,M,Data Science and Research +2022,Executive,Full-time,Analytics Engineer,175000,USD,175000,United States,Remote,United States,M,Leadership and Management +2022,Executive,Full-time,Analytics Engineer,135000,USD,135000,United States,Remote,United States,M,Leadership and Management +2022,Senior,Full-time,Data Engineer,209100,USD,209100,United States,Remote,United States,L,Data Engineering +2022,Senior,Full-time,Data Engineer,154600,USD,154600,United States,Remote,United States,L,Data Engineering +2022,Senior,Full-time,Data Engineer,180000,USD,180000,United States,Remote,United States,M,Data Engineering +2022,Senior,Full-time,Data Engineer,160000,USD,160000,United States,Remote,United States,M,Data Engineering +2022,Senior,Full-time,Data Scientist,205300,USD,205300,United States,In-person,United States,L,Data Science and Research +2022,Senior,Full-time,Data Scientist,140400,USD,140400,United States,In-person,United States,L,Data Science and Research +2022,Senior,Full-time,Data Scientist,176000,USD,176000,United States,Remote,United States,M,Data Science and Research +2022,Senior,Full-time,Data Scientist,144000,USD,144000,United States,Remote,United States,M,Data Science and Research +2022,Senior,Full-time,Data Engineer,200100,USD,200100,United States,Remote,United States,M,Data Engineering +2022,Senior,Full-time,Data Engineer,160000,USD,160000,United States,Remote,United States,M,Data Engineering +2022,Senior,Full-time,Data Engineer,70500,USD,70500,United States,In-person,United States,M,Data Engineering +2022,Senior,Full-time,Data Engineer,54000,USD,54000,United States,In-person,United States,M,Data Engineering +2022,Senior,Full-time,Data Scientist,205300,USD,205300,United States,In-person,United States,M,Data Science and Research +2022,Senior,Full-time,Data Scientist,140400,USD,140400,United States,In-person,United States,M,Data Science and Research +2022,Senior,Full-time,Analytics Engineer,205300,USD,205300,United States,In-person,United States,M,Leadership and Management +2022,Senior,Full-time,Analytics Engineer,184700,USD,184700,United States,In-person,United States,M,Leadership and Management +2022,Senior,Full-time,Data Engineer,175100,USD,175100,United States,Remote,United States,M,Data Engineering +2022,Senior,Full-time,Data Engineer,140250,USD,140250,United States,Remote,United States,M,Data Engineering +2022,Senior,Full-time,Data Analyst,116150,USD,116150,United States,Remote,United States,M,Data Analysis +2022,Senior,Full-time,Data Analyst,99050,USD,99050,United States,Remote,United States,M,Data Analysis +2022,Senior,Full-time,Data Engineer,145000,USD,145000,United States,Remote,United States,M,Data Engineering +2022,Senior,Full-time,Data Engineer,130000,USD,130000,United States,Remote,United States,M,Data Engineering +2022,Senior,Full-time,Data Analyst,112900,USD,112900,United States,Remote,United States,M,Data Analysis +2022,Senior,Full-time,Data Analyst,90320,USD,90320,United States,Remote,United States,M,Data Analysis +2022,Mid-level,Full-time,Data Analyst,85000,USD,85000,Canada,In-person,Canada,M,Data Analysis +2022,Mid-level,Full-time,Data Analyst,75000,USD,75000,Canada,In-person,Canada,M,Data Analysis +2022,Senior,Full-time,Machine Learning Engineer,214000,USD,214000,United States,Remote,United States,M,Machine Learning and AI +2022,Senior,Full-time,Machine Learning Engineer,192600,USD,192600,United States,Remote,United States,M,Machine Learning and AI +2022,Senior,Full-time,Data Architect,266400,USD,266400,United States,Remote,United States,M,Data Architecture and Modeling +2022,Senior,Full-time,Data Architect,213120,USD,213120,United States,Remote,United States,M,Data Architecture and Modeling +2022,Senior,Full-time,Data Engineer,155000,USD,155000,United States,Remote,United States,M,Data Engineering +2022,Senior,Full-time,Data Engineer,115000,USD,115000,United States,Remote,United States,M,Data Engineering +2022,Mid-level,Full-time,Data Scientist,141300,USD,141300,United States,In-person,United States,M,Data Science and Research +2022,Mid-level,Full-time,Data Scientist,102100,USD,102100,United States,In-person,United States,M,Data Science and Research +2022,Senior,Full-time,Data Analyst,115934,USD,115934,United States,Remote,United States,M,Data Analysis +2022,Senior,Full-time,Data Analyst,81666,USD,81666,United States,Remote,United States,M,Data Analysis +2022,Mid-level,Full-time,Data Engineer,206699,USD,206699,United States,In-person,United States,M,Data Engineering +2022,Mid-level,Full-time,Data Engineer,99100,USD,99100,United States,In-person,United States,M,Data Engineering +2022,Senior,Full-time,Data Engineer,130000,USD,130000,United States,Remote,United States,M,Data Engineering +2022,Senior,Full-time,Data Engineer,110500,USD,110500,United States,Remote,United States,M,Data Engineering +2022,Mid-level,Full-time,Data Analyst,50000,GBP,61566,United Kingdom,In-person,United Kingdom,M,Data Analysis +2022,Mid-level,Full-time,Data Analyst,35000,GBP,43096,United Kingdom,In-person,United Kingdom,M,Data Analysis +2022,Senior,Full-time,Data Analyst,80000,USD,80000,United States,Remote,United States,M,Data Analysis +2022,Senior,Full-time,Data Analyst,60000,USD,60000,United States,Remote,United States,M,Data Analysis +2022,Senior,Full-time,Data Architect,192564,USD,192564,United States,Remote,United States,M,Data Architecture and Modeling +2022,Senior,Full-time,Data Architect,144854,USD,144854,United States,Remote,United States,M,Data Architecture and Modeling +2022,Senior,Full-time,Data Scientist,230000,USD,230000,United States,Remote,United States,M,Data Science and Research +2022,Senior,Full-time,Data Scientist,150000,USD,150000,United States,Remote,United States,M,Data Science and Research +2022,Senior,Full-time,Data Analytics Manager,150260,USD,150260,United States,Remote,United States,M,Leadership and Management +2022,Senior,Full-time,Data Analytics Manager,109280,USD,109280,United States,Remote,United States,M,Leadership and Management +2022,Senior,Full-time,Data Analyst,170000,USD,170000,United States,Remote,United States,M,Data Analysis +2022,Senior,Full-time,Data Analyst,150000,USD,150000,United States,Remote,United States,M,Data Analysis +2022,Mid-level,Full-time,Data Scientist,160000,USD,160000,United States,Remote,United States,M,Data Science and Research +2022,Mid-level,Full-time,Data Scientist,130000,USD,130000,United States,Remote,United States,M,Data Science and Research +2022,Entry-level,Full-time,Data Analyst,67000,USD,67000,Canada,In-person,Canada,M,Data Analysis +2022,Entry-level,Full-time,Data Analyst,52000,USD,52000,Canada,In-person,Canada,M,Data Analysis +2022,Senior,Full-time,Data Engineer,154000,USD,154000,United States,Remote,United States,M,Data Engineering +2022,Senior,Full-time,Data Engineer,126000,USD,126000,United States,Remote,United States,M,Data Engineering +2022,Senior,Full-time,Data Analyst,129000,USD,129000,United States,In-person,United States,M,Data Analysis +2022,Senior,Full-time,Data Analyst,99000,USD,99000,United States,In-person,United States,M,Data Analysis +2022,Senior,Full-time,Data Scientist,210000,USD,210000,United States,Remote,United States,M,Data Science and Research +2022,Senior,Full-time,Data Scientist,140000,USD,140000,United States,Remote,United States,M,Data Science and Research +2022,Senior,Full-time,Data Scientist,210000,USD,210000,United States,Remote,United States,M,Data Science and Research +2022,Senior,Full-time,Data Scientist,140000,USD,140000,United States,Remote,United States,M,Data Science and Research +2022,Senior,Full-time,Data Scientist,210000,USD,210000,United States,Remote,United States,M,Data Science and Research +2022,Senior,Full-time,Data Scientist,140000,USD,140000,United States,Remote,United States,M,Data Science and Research +2022,Senior,Full-time,Data Analyst,100000,USD,100000,United States,Remote,United States,M,Data Analysis +2022,Senior,Full-time,Data Analyst,69000,USD,69000,United States,Remote,United States,M,Data Analysis +2022,Senior,Full-time,Data Scientist,210000,USD,210000,United States,Remote,United States,M,Data Science and Research +2022,Senior,Full-time,Data Scientist,140000,USD,140000,United States,Remote,United States,M,Data Science and Research +2022,Senior,Full-time,Data Analyst,150075,USD,150075,United States,Remote,United States,M,Data Analysis +2022,Senior,Full-time,Data Analyst,110925,USD,110925,United States,Remote,United States,M,Data Analysis +2022,Senior,Full-time,Data Engineer,100000,USD,100000,United States,Remote,United States,M,Data Engineering +2022,Senior,Full-time,Data Engineer,25000,USD,25000,United States,Remote,United States,M,Data Engineering +2022,Senior,Full-time,Data Analyst,126500,USD,126500,United States,Remote,United States,M,Data Analysis +2022,Senior,Full-time,Data Analyst,106260,USD,106260,United States,Remote,United States,M,Data Analysis +2022,Senior,Full-time,Data Engineer,220110,USD,220110,United States,Remote,United States,M,Data Engineering +2022,Senior,Full-time,Data Engineer,160080,USD,160080,United States,Remote,United States,M,Data Engineering +2022,Senior,Full-time,Data Analyst,105000,USD,105000,United States,Remote,United States,M,Data Analysis +2022,Senior,Full-time,Data Analyst,100000,USD,100000,United States,Remote,United States,M,Data Analysis +2022,Senior,Full-time,Data Analyst,170000,USD,170000,United States,Remote,United States,M,Data Analysis +2022,Senior,Full-time,Data Analyst,135000,USD,135000,United States,Remote,United States,M,Data Analysis +2022,Senior,Full-time,Data Scientist,230000,USD,230000,United States,Remote,United States,M,Data Science and Research +2022,Senior,Full-time,Data Scientist,140000,USD,140000,United States,Remote,United States,M,Data Science and Research +2022,Mid-level,Full-time,Data Analyst,135000,USD,135000,United States,Remote,United States,M,Data Analysis +2022,Mid-level,Full-time,Data Analyst,50000,USD,50000,United States,Remote,United States,M,Data Analysis +2022,Senior,Full-time,Data Scientist,220000,USD,220000,United States,Remote,United States,M,Data Science and Research +2022,Senior,Full-time,Data Scientist,140000,USD,140000,United States,Remote,United States,M,Data Science and Research +2022,Mid-level,Full-time,Data Scientist,140000,GBP,172386,United Kingdom,In-person,United Kingdom,M,Data Science and Research +2022,Mid-level,Full-time,Data Scientist,70000,GBP,86193,United Kingdom,In-person,United Kingdom,M,Data Science and Research +2022,Senior,Full-time,Machine Learning Engineer,220000,USD,220000,United States,Remote,United States,M,Machine Learning and AI +2022,Senior,Full-time,Machine Learning Engineer,120000,USD,120000,United States,Remote,United States,M,Machine Learning and AI +2022,Mid-level,Full-time,Data Scientist,200000,USD,200000,United States,Remote,United States,M,Data Science and Research +2022,Mid-level,Full-time,Data Scientist,120000,USD,120000,United States,Remote,United States,M,Data Science and Research +2022,Senior,Full-time,Machine Learning Engineer,120000,USD,120000,United Arab Emirates,Remote,United Arab Emirates,S,Machine Learning and AI +2022,Senior,Full-time,Machine Learning Engineer,65000,USD,65000,United Arab Emirates,Remote,United Arab Emirates,S,Machine Learning and AI +2022,Executive,Full-time,Data Engineer,324000,USD,324000,United States,Remote,United States,M,Data Engineering +2022,Executive,Full-time,Data Engineer,216000,USD,216000,United States,Remote,United States,M,Data Engineering +2022,Senior,Full-time,Data Engineer,210000,USD,210000,United States,Remote,United States,M,Data Engineering +2022,Senior,Full-time,Data Engineer,100000,USD,100000,United States,Remote,United States,M,Data Engineering +2022,Senior,Full-time,Data Scientist,185100,USD,185100,United States,Remote,United States,M,Data Science and Research +2022,Senior,Full-time,Data Scientist,104890,USD,104890,United States,Remote,United States,M,Data Science and Research +2022,Senior,Full-time,Data Engineer,105000,USD,105000,United States,Remote,United States,M,Data Engineering +2022,Senior,Full-time,Data Engineer,80000,USD,80000,United States,Remote,United States,M,Data Engineering +2022,Mid-level,Full-time,Machine Learning Developer,100000,CAD,76814,Canada,Remote,Canada,M,Machine Learning and AI +2020,Senior,Full-time,Machine Learning Manager,157000,CAD,117104,Canada,Hybrid,Canada,L,Machine Learning and AI +2022,Executive,Full-time,Director of Data Science,250000,CAD,192037,Canada,Hybrid,Canada,L,Data Science and Research +2022,Mid-level,Full-time,Machine Learning Engineer,120000,USD,120000,United States,Remote,United States,S,Machine Learning and AI +2022,Mid-level,Full-time,Machine Learning Infrastructure Engineer,53000,EUR,55685,Portugal,Hybrid,Portugal,L,Machine Learning and AI +2022,Mid-level,Part-time,Data Engineer,50000,EUR,52533,Germany,Hybrid,Germany,L,Data Engineering +2022,Mid-level,Full-time,Applied Machine Learning Scientist,75000,USD,75000,"Bolivia, Plurinational State of",Remote,United States,L,Machine Learning and AI +2022,Mid-level,Full-time,Applied Data Scientist,157000,USD,157000,United States,Remote,United States,L,Data Science and Research +2022,Mid-level,Full-time,Business Data Analyst,90000,CAD,69133,Canada,Hybrid,Canada,L,Data Analysis +2022,Entry-level,Full-time,Data Engineer,65000,USD,65000,United States,Remote,United States,S,Data Engineering +2022,Senior,Full-time,Machine Learning Engineer,65000,EUR,68293,Ireland,Remote,Ireland,S,Machine Learning and AI +2021,Mid-level,Full-time,Data Scientist,109000,USD,109000,United States,Hybrid,United States,L,Data Science and Research +2022,Mid-level,Full-time,Data Scientist,88000,CAD,67597,Canada,Remote,Canada,M,Data Science and Research +2022,Mid-level,Full-time,Data Analyst,20000,USD,20000,Greece,Remote,Greece,S,Data Analysis +2021,Senior,Full-time,Head of Data,87000,EUR,102839,Slovenia,Remote,Slovenia,L,Leadership and Management +2022,Senior,Full-time,Head of Data,200000,USD,200000,Malaysia,Remote,United States,M,Leadership and Management +2022,Entry-level,Full-time,Data Scientist,66500,CAD,51081,Canada,Remote,Canada,L,Data Science and Research +2022,Mid-level,Full-time,Data Scientist,78000,USD,78000,United States,Remote,United States,M,Data Science and Research +2022,Senior,Full-time,Data Engineer,135000,USD,135000,United States,Remote,United States,M,Data Engineering +2022,Senior,Full-time,Data Engineer,115000,USD,115000,United States,Remote,United States,M,Data Engineering +2022,Mid-level,Full-time,Machine Learning Engineer,121000,AUD,83864,Australia,Remote,Australia,L,Machine Learning and AI +2022,Entry-level,Full-time,Data Scientist,40000,USD,40000,Japan,Remote,Malaysia,L,Data Science and Research +2022,Mid-level,Full-time,Head of Data,30000,EUR,31520,Estonia,Remote,Estonia,S,Leadership and Management +2022,Senior,Full-time,Machine Learning Engineer,57000,EUR,59888,Netherlands,Remote,Netherlands,L,Machine Learning and AI +2020,Entry-level,Full-time,Data Engineer,48000,EUR,54742,Pakistan,Remote,Germany,L,Data Engineering +2022,Senior,Full-time,Research Scientist,85000,EUR,89306,France,Hybrid,France,L,Data Science and Research +2022,Entry-level,Full-time,Data Scientist,120000,AUD,83171,Australia,Hybrid,Australia,M,Data Science and Research +2022,Senior,Full-time,Data Scientist,165000,USD,165000,United States,Remote,United States,M,Data Science and Research +2022,Mid-level,Full-time,Machine Learning Scientist,153000,USD,153000,United States,Hybrid,United States,M,Machine Learning and AI +2022,Senior,Full-time,Data Scientist,100000,USD,100000,Brazil,Remote,United States,M,Data Science and Research +2022,Senior,Full-time,Machine Learning Developer,100000,CAD,76814,Canada,Remote,Canada,M,Machine Learning and AI +2022,Mid-level,Full-time,Data Scientist,150000,PLN,33609,Poland,Remote,Poland,L,Data Science and Research +2022,Mid-level,Full-time,Principal Data Analyst,75000,USD,75000,Canada,Remote,Canada,S,Data Analysis +2020,Mid-level,Full-time,Product Data Analyst,20000,USD,20000,Honduras,In-person,Honduras,S,Data Analysis +2022,Entry-level,Contract,Applied Machine Learning Scientist,29000,EUR,30469,Tunisia,Remote,Czechia,M,Machine Learning and AI +2021,Mid-level,Full-time,Research Scientist,69999,USD,69999,Czechia,Hybrid,Czechia,L,Data Science and Research +2022,Entry-level,Full-time,Data Engineer,52800,EUR,55475,Pakistan,Remote,Germany,M,Data Engineering +2022,Mid-level,Full-time,Research Scientist,59000,EUR,61989,Austria,In-person,Austria,L,Data Science and Research +2022,Senior,Full-time,Data Science Manager,152500,USD,152500,United States,Remote,United States,M,Data Science and Research +2022,Entry-level,Full-time,Research Scientist,120000,USD,120000,United States,Remote,United States,L,Data Science and Research +2022,Mid-level,Full-time,Data Scientist,135000,USD,135000,United States,Remote,United States,L,Data Science and Research +2022,Senior,Full-time,Data Analytics Lead,405000,USD,405000,United States,Remote,United States,L,Leadership and Management +2021,Senior,Full-time,Data Engineer,150000,USD,150000,United States,In-person,United States,L,Data Engineering +2021,Senior,Full-time,Data Science Manager,240000,USD,240000,United States,In-person,United States,L,Data Science and Research +2021,Mid-level,Full-time,Data Analyst,135000,USD,135000,United States,Remote,United States,L,Data Analysis +2021,Entry-level,Full-time,Data Scientist,80000,USD,80000,United States,Remote,United States,M,Data Science and Research +2022,Senior,Full-time,Applied Data Scientist,380000,USD,380000,United States,Remote,United States,L,Data Science and Research +2022,Mid-level,Full-time,Data Scientist,115000,CHF,120402,Switzerland,In-person,Switzerland,L,Data Science and Research +2022,Senior,Full-time,Applied Data Scientist,177000,USD,177000,United States,Remote,United States,L,Data Science and Research +2022,Mid-level,Full-time,Data Engineer,62000,EUR,65141,France,Remote,France,M,Data Engineering +2022,Mid-level,Full-time,Data Scientist,48000,USD,48000,Russian Federation,Remote,United States,S,Data Science and Research +2022,Entry-level,Full-time,Data Analytics Engineer,20000,USD,20000,Pakistan,In-person,Pakistan,M,Leadership and Management +2021,Senior,Full-time,Principal Data Scientist,220000,USD,220000,United States,In-person,United States,L,Data Science and Research +2022,Entry-level,Full-time,Computer Vision Software Engineer,150000,USD,150000,Australia,Remote,Australia,S,Machine Learning and AI +2021,Mid-level,Full-time,Data Analyst,90000,USD,90000,United States,Remote,United States,M,Data Analysis +2022,Mid-level,Freelance,Data Scientist,100000,USD,100000,Canada,Remote,United States,M,Data Science and Research +2021,Entry-level,Full-time,Data Scientist,100000,USD,100000,United States,In-person,United States,S,Data Science and Research +2022,Entry-level,Part-time,Data Scientist,100000,USD,100000,Algeria,Hybrid,Algeria,M,Data Science and Research +2022,Senior,Full-time,Research Scientist,144000,USD,144000,United States,Hybrid,United States,L,Data Science and Research +2022,Senior,Full-time,Principal Data Scientist,148000,EUR,155499,Germany,Remote,Germany,M,Data Science and Research +2021,Senior,Full-time,Computer Vision Engineer,24000,USD,24000,Brazil,Remote,Brazil,M,Machine Learning and AI +2021,Mid-level,Full-time,Applied Machine Learning Scientist,38400,USD,38400,Viet Nam,Remote,United States,M,Machine Learning and AI +2022,Entry-level,Full-time,Financial Data Analyst,100000,USD,100000,United States,Hybrid,United States,L,Data Analysis +2021,Mid-level,Full-time,Data Scientist,82500,USD,82500,United States,Remote,United States,S,Data Science and Research +2021,Entry-level,Full-time,Data Scientist,42000,EUR,49646,France,Hybrid,France,M,Data Science and Research +2022,Entry-level,Full-time,Data Engineer,120000,USD,120000,United States,Remote,United States,M,Data Engineering +2022,Senior,Full-time,Lead Machine Learning Engineer,80000,EUR,84053,Germany,In-person,Germany,M,Machine Learning and AI +2021,Entry-level,Full-time,Machine Learning Engineer,20000,USD,20000,India,Remote,India,S,Machine Learning and AI +2022,Entry-level,Full-time,Computer Vision Engineer,125000,USD,125000,United States,In-person,United States,M,Machine Learning and AI +2021,Senior,Full-time,Machine Learning Scientist,120000,USD,120000,United States,Hybrid,United States,S,Machine Learning and AI +2021,Entry-level,Full-time,Applied Data Scientist,80000,GBP,110037,United Kingdom,In-person,United Kingdom,L,Data Science and Research +2022,Entry-level,Full-time,ML Engineer,20000,EUR,21013,Portugal,Remote,Portugal,L,Machine Learning and AI +2021,Entry-level,Full-time,Data Analyst,50000,USD,50000,United States,Remote,United States,M,Data Analysis +2021,Senior,Full-time,Principal Data Engineer,200000,USD,200000,United States,Remote,United States,M,Data Engineering +2021,Mid-level,Full-time,Big Data Engineer,60000,USD,60000,Spain,Hybrid,Romania,M,Data Engineering +2021,Mid-level,Full-time,Data Engineer,200000,USD,200000,United States,Remote,United States,L,Data Engineering +2021,Entry-level,Full-time,Machine Learning Developer,100000,USD,100000,Iraq,Hybrid,Iraq,S,Machine Learning and AI +2021,Mid-level,Full-time,Data Engineer,100000,USD,100000,United States,Remote,United States,L,Data Engineering +2021,Senior,Full-time,Machine Learning Engineer,70000,EUR,82744,Belgium,Hybrid,Belgium,M,Machine Learning and AI +2020,Mid-level,Full-time,Data Engineer,51999,EUR,59303,Germany,Remote,Germany,S,Data Engineering +2021,Mid-level,Full-time,Research Scientist,53000,EUR,62649,France,Hybrid,France,M,Data Science and Research +2021,Mid-level,Full-time,Data Engineer,60000,GBP,82528,United Kingdom,Remote,United Kingdom,L,Data Engineering +2021,Mid-level,Full-time,Data Architect,170000,USD,170000,United States,Remote,United States,L,Data Architecture and Modeling +2021,Mid-level,Full-time,Data Architect,150000,USD,150000,United States,Remote,United States,L,Data Architecture and Modeling +2021,Entry-level,Full-time,BI Data Analyst,55000,USD,55000,United States,Hybrid,United States,S,Data Analysis +2021,Executive,Full-time,Director of Data Science,250000,USD,250000,United States,In-person,United States,L,Data Science and Research +2021,Entry-level,Full-time,Data Engineer,80000,USD,80000,United States,Remote,United States,L,Data Engineering +2020,Entry-level,Full-time,Big Data Engineer,70000,USD,70000,United States,Remote,United States,L,Data Engineering +2021,Executive,Full-time,Director of Data Science,110000,EUR,130026,Germany,Hybrid,Germany,M,Data Science and Research +2021,Entry-level,Full-time,Data Science Consultant,54000,EUR,63831,Germany,Hybrid,Germany,L,Data Science and Research +2020,Senior,Full-time,Data Scientist,60000,EUR,68428,Greece,Remote,United States,L,Data Science and Research +2021,Executive,Full-time,Head of Data Science,85000,USD,85000,Russian Federation,In-person,Russian Federation,M,Data Science and Research +2021,Executive,Full-time,Head of Data,230000,USD,230000,Russian Federation,Hybrid,Russian Federation,L,Leadership and Management +2021,Entry-level,Full-time,Machine Learning Engineer,125000,USD,125000,United States,Remote,United States,S,Machine Learning and AI +2021,Senior,Full-time,Data Analytics Manager,120000,USD,120000,United States,Remote,United States,M,Leadership and Management +2020,Mid-level,Full-time,Research Scientist,450000,USD,450000,United States,In-person,United States,M,Data Science and Research +2020,Mid-level,Full-time,Data Analyst,41000,EUR,46759,France,Hybrid,France,L,Data Analysis +2020,Mid-level,Full-time,Data Engineer,65000,EUR,74130,Austria,Hybrid,Austria,L,Data Engineering +2021,Senior,Full-time,Data Science Engineer,159500,CAD,127221,Canada,Hybrid,Canada,L,Data Science and Research +2021,Senior,Full-time,Data Science Manager,144000,USD,144000,United States,Remote,United States,L,Data Science and Research +2021,Mid-level,Full-time,Data Scientist,95000,CAD,75774,Canada,Remote,Canada,L,Data Science and Research +2021,Mid-level,Full-time,Data Scientist,150000,USD,150000,United States,Remote,United States,M,Data Science and Research +2020,Mid-level,Full-time,Data Science Consultant,103000,USD,103000,United States,Remote,United States,L,Data Science and Research +2021,Senior,Full-time,Data Engineer,153000,USD,153000,United States,Remote,United States,L,Data Engineering +2021,Mid-level,Full-time,Data Engineer,90000,USD,90000,United States,Remote,United States,L,Data Engineering +2021,Entry-level,Full-time,Data Analyst,90000,USD,90000,United States,Remote,United States,S,Data Analysis +2021,Entry-level,Full-time,Data Analyst,60000,USD,60000,United States,Remote,United States,S,Data Analysis +2021,Mid-level,Full-time,Data Scientist,50000,USD,50000,Nigeria,Remote,Nigeria,L,Data Science and Research +2021,Mid-level,Contract,ML Engineer,270000,USD,270000,United States,Remote,United States,L,Machine Learning and AI +2021,Mid-level,Full-time,Applied Data Scientist,68000,CAD,54238,United Kingdom,Hybrid,Canada,L,Data Science and Research +2021,Mid-level,Full-time,Machine Learning Engineer,40000,EUR,47282,Spain,Remote,Spain,S,Machine Learning and AI +2021,Executive,Full-time,Director of Data Science,130000,EUR,153667,Italy,Remote,Poland,L,Data Science and Research +2021,Mid-level,Full-time,Data Engineer,110000,PLN,28476,Poland,Remote,Poland,L,Data Engineering +2021,Mid-level,Full-time,Data Analytics Engineer,110000,USD,110000,United States,Remote,United States,L,Leadership and Management +2021,Entry-level,Full-time,Research Scientist,60000,GBP,82528,United Kingdom,Hybrid,United Kingdom,L,Data Science and Research +2020,Entry-level,Full-time,Machine Learning Engineer,250000,USD,250000,United States,Hybrid,United States,L,Machine Learning and AI +2021,Entry-level,Full-time,Data Analyst,50000,EUR,59102,France,Hybrid,France,M,Data Analysis +2021,Senior,Full-time,Data Analyst,80000,USD,80000,Bulgaria,Remote,United States,S,Data Analysis +2020,Entry-level,Full-time,Machine Learning Engineer,138000,USD,138000,United States,Remote,United States,S,Machine Learning and AI +2021,Mid-level,Full-time,Data Engineer,140000,USD,140000,United States,Remote,United States,L,Data Engineering +2021,Senior,Full-time,Data Analytics Engineer,67000,EUR,79197,Germany,Remote,Germany,L,Leadership and Management +2021,Senior,Full-time,Lead Data Analyst,170000,USD,170000,United States,Remote,United States,L,Data Analysis +2021,Entry-level,Full-time,Data Analyst,80000,USD,80000,United States,Remote,United States,M,Data Analysis +2020,Mid-level,Full-time,Data Scientist,45760,USD,45760,Philippines,Remote,United States,S,Data Science and Research +2021,Mid-level,Full-time,BI Data Analyst,100000,USD,100000,United States,Remote,United States,M,Data Analysis +2021,Senior,Full-time,Data Scientist,45000,EUR,53192,France,Hybrid,France,L,Data Science and Research +2021,Executive,Full-time,Head of Data,235000,USD,235000,United States,Remote,United States,L,Leadership and Management +2021,Executive,Full-time,BI Data Analyst,150000,USD,150000,India,Remote,United States,L,Data Analysis +2020,Executive,Full-time,Data Engineer,70000,EUR,79833,Spain,Hybrid,Spain,L,Data Engineering +2021,Entry-level,Full-time,Machine Learning Scientist,225000,USD,225000,United States,Remote,United States,L,Machine Learning and AI +2021,Entry-level,Full-time,Data Science Consultant,65000,EUR,76833,Germany,Remote,Germany,S,Data Science and Research +2020,Mid-level,Full-time,Machine Learning Infrastructure Engineer,44000,EUR,50180,Portugal,In-person,Portugal,M,Machine Learning and AI +2021,Senior,Full-time,Marketing Data Analyst,75000,EUR,88654,Greece,Remote,Denmark,L,Data Analysis +2021,Senior,Full-time,Lead Data Engineer,75000,GBP,103160,United Kingdom,Remote,United Kingdom,S,Data Engineering +2021,Senior,Full-time,Data Engineer,82500,GBP,113476,United Kingdom,Remote,United Kingdom,M,Data Engineering +2021,Senior,Full-time,Machine Learning Engineer,80000,EUR,94564,Germany,Hybrid,Germany,L,Machine Learning and AI +2021,Senior,Full-time,Data Engineer,150000,USD,150000,United States,Remote,United States,M,Data Engineering +2021,Senior,Full-time,Data Engineer,115000,USD,115000,United States,Remote,United States,S,Data Engineering +2021,Mid-level,Full-time,Research Scientist,235000,CAD,187442,Canada,Remote,Canada,L,Data Science and Research +2021,Mid-level,Full-time,Data Analyst,37456,GBP,51519,United Kingdom,Hybrid,United Kingdom,L,Data Analysis +2020,Mid-level,Full-time,Data Engineer,106000,USD,106000,United States,Remote,United States,L,Data Engineering +2020,Mid-level,Full-time,Data Engineer,88000,GBP,112872,United Kingdom,Hybrid,United Kingdom,L,Data Engineering +2021,Senior,Full-time,Data Engineer,150000,USD,150000,United States,Remote,United States,L,Data Engineering +2020,Entry-level,Part-time,ML Engineer,14000,EUR,15966,Germany,Remote,Germany,S,Machine Learning and AI +2021,Mid-level,Full-time,Computer Vision Software Engineer,81000,EUR,95746,Germany,Remote,United States,S,Machine Learning and AI +2021,Entry-level,Full-time,Computer Vision Software Engineer,70000,USD,70000,United States,Remote,United States,M,Machine Learning and AI +2020,Mid-level,Full-time,Data Scientist,60000,GBP,76958,United Kingdom,Remote,United Kingdom,S,Data Science and Research +2021,Mid-level,Full-time,Cloud Data Engineer,120000,SGD,89294,Singapore,Hybrid,Singapore,L,Data Engineering +2021,Senior,Full-time,Lead Data Engineer,276000,USD,276000,United States,In-person,United States,L,Data Engineering +2020,Senior,Full-time,Data Engineer,188000,USD,188000,United States,Remote,United States,L,Data Engineering +2021,Senior,Full-time,Cloud Data Engineer,160000,USD,160000,Brazil,Remote,United States,S,Data Engineering +2020,Mid-level,Full-time,Data Scientist,105000,USD,105000,United States,Remote,United States,L,Data Science and Research +2021,Mid-level,Full-time,Data Engineer,200000,USD,200000,United States,Remote,United States,L,Data Engineering +2021,Senior,Full-time,Data Engineer,174000,USD,174000,United States,Remote,United States,L,Data Engineering +2021,Mid-level,Full-time,Data Analyst,93000,USD,93000,United States,Remote,United States,L,Data Analysis +2021,Senior,Full-time,Research Scientist,51400,EUR,60757,Portugal,Hybrid,Portugal,L,Data Science and Research +2021,Entry-level,Full-time,Data Scientist,90000,USD,90000,United States,Remote,United States,S,Data Science and Research +2020,Mid-level,Full-time,Data Engineer,61500,EUR,70139,France,Hybrid,France,L,Data Engineering +2021,Senior,Full-time,Principal Data Analyst,170000,USD,170000,United States,Remote,United States,M,Data Analysis +2021,Senior,Full-time,Data Engineer,70000,GBP,96282,United Kingdom,Hybrid,United Kingdom,L,Data Engineering +2021,Entry-level,Full-time,Data Scientist,31000,EUR,36643,France,Hybrid,France,L,Data Science and Research +2021,Mid-level,Full-time,Data Engineer,52500,GBP,72212,United Kingdom,Hybrid,United Kingdom,L,Data Engineering +2020,Entry-level,Full-time,Data Analyst,91000,USD,91000,United States,Remote,United States,L,Data Analysis +2021,Senior,Full-time,Big Data Architect,125000,CAD,99703,Canada,Hybrid,Canada,M,Data Architecture and Modeling +2021,Senior,Full-time,Data Scientist,165000,USD,165000,United States,Remote,United States,L,Data Science and Research +2021,Mid-level,Full-time,Data Analyst,80000,USD,80000,United States,Remote,United States,L,Data Analysis +2021,Senior,Full-time,Data Scientist,130000,CAD,103691,Canada,Remote,Canada,L,Data Science and Research +2020,Entry-level,Full-time,Research Scientist,42000,USD,42000,Netherlands,Hybrid,Netherlands,L,Data Science and Research +2020,Mid-level,Full-time,Lead Data Scientist,115000,USD,115000,United Arab Emirates,In-person,United Arab Emirates,L,Data Science and Research +2021,Mid-level,Full-time,Research Scientist,80000,CAD,63810,Canada,Remote,Canada,M,Data Science and Research +2020,Senior,Full-time,Machine Learning Scientist,260000,USD,260000,Japan,In-person,Japan,S,Machine Learning and AI +2021,Mid-level,Full-time,Head of Data Science,110000,USD,110000,United States,In-person,United States,S,Data Science and Research +2021,Mid-level,Full-time,Data Architect,180000,USD,180000,United States,Remote,United States,L,Data Architecture and Modeling +2021,Senior,Full-time,Data Analyst,200000,USD,200000,United States,Remote,United States,L,Data Analysis +2020,Senior,Full-time,Big Data Engineer,85000,GBP,109024,United Kingdom,Hybrid,United Kingdom,M,Data Engineering +2021,Senior,Full-time,Data Engineer,200000,USD,200000,United States,Remote,United States,L,Data Engineering +2021,Senior,Full-time,ML Engineer,256000,USD,256000,United States,Remote,United States,S,Machine Learning and AI +2021,Mid-level,Full-time,Data Engineer,110000,USD,110000,United States,Remote,United States,L,Data Engineering +2020,Mid-level,Full-time,Data Scientist,70000,EUR,79833,Germany,In-person,Germany,L,Data Science and Research +2021,Entry-level,Full-time,Data Engineer,72500,USD,72500,United States,Remote,United States,L,Data Engineering +2021,Senior,Full-time,Machine Learning Engineer,185000,USD,185000,United States,Hybrid,United States,L,Machine Learning and AI +2021,Mid-level,Part-time,Data Engineer,59000,EUR,69741,Netherlands,Remote,Netherlands,L,Data Engineering +2021,Entry-level,Full-time,Research Scientist,100000,USD,100000,Jersey,In-person,China,L,Data Science and Research +2021,Mid-level,Full-time,Data Engineer,112000,USD,112000,United States,Remote,United States,L,Data Engineering +2020,Senior,Full-time,Machine Learning Engineer,150000,USD,150000,United States,Hybrid,United States,L,Machine Learning and AI +2021,Senior,Full-time,Data Scientist,180000,TRY,20171,Türkiye,Hybrid,Türkiye,L,Data Science and Research +2021,Senior,Full-time,AI Scientist,55000,USD,55000,Spain,Remote,Spain,L,Machine Learning and AI +2021,Entry-level,Full-time,Data Scientist,58000,USD,58000,United States,Hybrid,United States,L,Data Science and Research +2021,Entry-level,Full-time,Data Scientist,100000,USD,100000,United States,Remote,United States,M,Data Science and Research +2021,Senior,Full-time,Data Scientist,65720,EUR,77684,France,Hybrid,France,M,Data Science and Research +2021,Entry-level,Full-time,Machine Learning Engineer,85000,USD,85000,Netherlands,Remote,Germany,S,Machine Learning and AI +2021,Entry-level,Full-time,Data Science Consultant,65000,EUR,76833,Germany,In-person,Germany,L,Data Science and Research +2021,Senior,Contract,Staff Data Scientist,105000,USD,105000,United States,Remote,United States,M,Data Science and Research +2020,Entry-level,Full-time,Data Analyst,72000,USD,72000,United States,Remote,United States,L,Data Analysis +2021,Entry-level,Full-time,Data Engineer,55000,EUR,65013,Germany,Hybrid,Germany,M,Data Engineering +2021,Mid-level,Full-time,Data Engineer,250000,TRY,28016,Türkiye,Remote,Türkiye,M,Data Engineering +2021,Mid-level,Full-time,Data Engineer,111775,USD,111775,United States,In-person,United States,M,Data Engineering +2021,Mid-level,Full-time,Data Engineer,93150,USD,93150,United States,In-person,United States,M,Data Engineering +2021,Senior,Full-time,Lead Data Engineer,160000,USD,160000,Puerto Rico,Hybrid,United States,S,Data Engineering +2021,Mid-level,Full-time,Data Scientist,21600,EUR,25532,Serbia,Remote,Germany,S,Data Science and Research +2021,Senior,Full-time,Data Analyst,54000,EUR,63831,Germany,Hybrid,Germany,L,Data Analysis +2020,Senior,Full-time,Lead Data Scientist,190000,USD,190000,United States,Remote,United States,S,Data Science and Research +2021,Executive,Full-time,Director of Data Science,120000,EUR,141846,Germany,In-person,Germany,L,Data Science and Research +2021,Senior,Full-time,Data Analyst,90000,CAD,71786,Canada,Remote,Canada,M,Data Analysis +2021,Senior,Full-time,Data Scientist,135000,USD,135000,United States,In-person,United States,L,Data Science and Research +2021,Entry-level,Full-time,Machine Learning Engineer,21000,EUR,24823,Germany,Hybrid,Germany,M,Machine Learning and AI +2021,Mid-level,Full-time,Data Scientist,147000,USD,147000,United States,Hybrid,United States,L,Data Science and Research +2021,Senior,Full-time,Research Scientist,120500,CAD,96113,Canada,Hybrid,Canada,L,Data Science and Research +2021,Senior,Full-time,Data Science Manager,174000,USD,174000,United States,Remote,United States,L,Data Science and Research +2020,Mid-level,Full-time,Business Data Analyst,135000,USD,135000,United States,Remote,United States,L,Data Analysis +2021,Entry-level,Full-time,Machine Learning Engineer,21844,USD,21844,Colombia,Hybrid,Colombia,M,Machine Learning and AI +2020,Senior,Full-time,Lead Data Engineer,125000,USD,125000,New Zealand,Hybrid,New Zealand,S,Data Engineering +2020,Entry-level,Full-time,Data Scientist,45000,EUR,51321,France,In-person,France,S,Data Science and Research +2021,Executive,Full-time,Data Science Consultant,59000,EUR,69741,France,Remote,Spain,S,Data Science and Research +2021,Senior,Full-time,Data Analytics Engineer,50000,USD,50000,Viet Nam,Remote,United Kingdom,M,Leadership and Management +2020,Entry-level,Full-time,Data Scientist,35000,EUR,39916,France,In-person,France,M,Data Science and Research +2020,Mid-level,Full-time,Lead Data Analyst,87000,USD,87000,United States,Remote,United States,L,Data Analysis +2021,Mid-level,Full-time,Data Engineer,22000,EUR,26005,Romania,In-person,United States,L,Data Engineering +2021,Mid-level,Full-time,Data Scientist,76760,EUR,90734,Germany,Hybrid,Germany,L,Data Science and Research +2021,Entry-level,Full-time,Machine Learning Engineer,81000,USD,81000,United States,Hybrid,United States,S,Machine Learning and AI +2021,Entry-level,Full-time,Data Science Consultant,90000,USD,90000,United States,Remote,United States,S,Data Science and Research +2021,Mid-level,Full-time,Data Scientist,52000,EUR,61467,Germany,Hybrid,Austria,M,Data Science and Research +2021,Senior,Full-time,Machine Learning Infrastructure Engineer,195000,USD,195000,United States,Remote,United States,M,Machine Learning and AI +2021,Mid-level,Full-time,Data Scientist,32000,EUR,37825,Spain,Remote,Spain,L,Data Science and Research +2020,Mid-level,Full-time,Data Analyst,85000,USD,85000,United States,Remote,United States,L,Data Analysis +2021,Executive,Contract,Principal Data Scientist,416000,USD,416000,United States,Remote,United States,S,Data Science and Research +2021,Senior,Full-time,Machine Learning Scientist,225000,USD,225000,United States,Remote,Canada,L,Machine Learning and AI +2021,Mid-level,Full-time,Data Scientist,40900,GBP,56256,United Kingdom,Hybrid,United Kingdom,L,Data Science and Research +2021,Mid-level,Full-time,Data Scientist,85000,GBP,116914,United Kingdom,Hybrid,United Kingdom,L,Data Science and Research +2021,Mid-level,Full-time,Machine Learning Engineer,180000,PLN,46597,Poland,Remote,Poland,L,Machine Learning and AI +2020,Senior,Full-time,Big Data Engineer,100000,EUR,114047,Poland,Remote,United Kingdom,S,Data Engineering +2021,Mid-level,Full-time,Machine Learning Engineer,75000,EUR,88654,Belgium,Remote,Belgium,M,Machine Learning and AI +2020,Mid-level,Full-time,Lead Data Engineer,56000,USD,56000,Portugal,Remote,United States,M,Data Engineering +2021,Entry-level,Part-time,Computer Vision Engineer,180000,DKK,28609,Denmark,Hybrid,Denmark,S,Machine Learning and AI +2021,Mid-level,Full-time,Data Scientist,75000,EUR,88654,Germany,Hybrid,Germany,L,Data Science and Research +2020,Senior,Full-time,Data Engineer,42000,EUR,47899,Greece,Hybrid,Greece,L,Data Engineering +2020,Mid-level,Full-time,BI Data Analyst,98000,USD,98000,United States,In-person,United States,M,Data Analysis +2021,Mid-level,Full-time,Data Engineer,48000,GBP,66022,Hong Kong,Hybrid,United Kingdom,S,Data Engineering +2021,Mid-level,Full-time,Research Scientist,48000,EUR,56738,France,Hybrid,France,S,Data Science and Research +2021,Mid-level,Full-time,Machine Learning Engineer,21000,EUR,24823,Slovenia,Hybrid,Slovenia,L,Machine Learning and AI +2021,Senior,Full-time,Data Analytics Manager,120000,USD,120000,United States,In-person,United States,L,Leadership and Management +2021,Mid-level,Freelance,Data Engineer,20000,USD,20000,Italy,In-person,United States,L,Data Engineering +2020,Executive,Full-time,Director of Data Science,325000,USD,325000,United States,Remote,United States,L,Data Science and Research +2021,Senior,Full-time,Machine Learning Engineer,200000,USD,200000,United States,Remote,United States,L,Machine Learning and AI +2020,Entry-level,Full-time,AI Scientist,300000,DKK,45896,Denmark,Hybrid,Denmark,S,Machine Learning and AI +2021,Mid-level,Full-time,Data Scientist,160000,USD,160000,United States,Remote,United States,L,Data Science and Research +2021,Senior,Full-time,Research Scientist,50000,USD,50000,France,Remote,United States,S,Data Science and Research +2021,Mid-level,Full-time,Data Science Engineer,34000,EUR,40189,Greece,Remote,Greece,M,Data Science and Research +2021,Senior,Full-time,Data Engineer,165000,USD,165000,United States,In-person,United States,M,Data Engineering +2020,Mid-level,Full-time,Data Scientist,37000,EUR,42197,France,Hybrid,France,S,Data Science and Research +2021,Senior,Full-time,Principal Data Engineer,185000,USD,185000,United States,Remote,United States,L,Data Engineering +2020,Entry-level,Full-time,Data Scientist,55000,EUR,62726,Germany,Hybrid,Germany,S,Data Science and Research +2021,Mid-level,Full-time,Data Scientist,76760,EUR,90734,Germany,Hybrid,Germany,L,Data Science and Research +2020,Entry-level,Part-time,Data Scientist,19000,EUR,21669,Italy,Hybrid,Italy,S,Data Science and Research +2020,Mid-level,Full-time,Data Engineer,110000,USD,110000,United States,Remote,United States,L,Data Engineering +2021,Senior,Full-time,Data Analytics Manager,140000,USD,140000,United States,Remote,United States,L,Leadership and Management +2020,Senior,Full-time,Data Scientist,120000,USD,120000,United States,Hybrid,United States,L,Data Science and Research +2021,Senior,Full-time,Data Scientist,110000,CAD,87738,Canada,Remote,Canada,S,Data Science and Research +2021,Senior,Full-time,Finance Data Analyst,45000,GBP,61896,United Kingdom,Hybrid,United Kingdom,L,Data Analysis +2021,Senior,Full-time,Data Engineer,65000,EUR,76833,Romania,Hybrid,United Kingdom,S,Data Engineering +2021,Mid-level,Full-time,Machine Learning Engineer,74000,USD,74000,Japan,Hybrid,Japan,S,Machine Learning and AI +2021,Senior,Full-time,Data Science Manager,152000,USD,152000,United States,Remote,France,L,Data Science and Research +2021,Mid-level,Full-time,Big Data Engineer,18000,USD,18000,"Moldova, Republic of",In-person,"Moldova, Republic of",S,Data Engineering +2020,Senior,Freelance,Computer Vision Engineer,60000,USD,60000,Russian Federation,Remote,United States,S,Machine Learning and AI +2021,Mid-level,Full-time,Data Scientist,130000,USD,130000,United States,Hybrid,United States,L,Data Science and Research +2021,Senior,Full-time,Computer Vision Engineer,102000,BRL,18907,Brazil,In-person,Brazil,M,Machine Learning and AI +2021,Entry-level,Full-time,Business Data Analyst,50000,EUR,59102,Luxembourg,Remote,Luxembourg,L,Data Analysis +2021,Senior,Full-time,Principal Data Scientist,147000,EUR,173762,Germany,Remote,Germany,M,Data Science and Research +2020,Senior,Full-time,Principal Data Scientist,130000,EUR,148261,Germany,Remote,Germany,M,Data Science and Research +2020,Mid-level,Full-time,Data Scientist,34000,EUR,38776,Spain,Remote,Spain,M,Data Science and Research +2021,Mid-level,Full-time,Data Scientist,39600,EUR,46809,Spain,Remote,Spain,M,Data Science and Research +2020,Senior,Full-time,Data Scientist,80000,EUR,91237,Austria,In-person,Austria,S,Data Science and Research +2020,Mid-level,Full-time,Data Scientist,55000,EUR,62726,France,Hybrid,Luxembourg,S,Data Science and Research +2021,Mid-level,Full-time,Data Scientist,115000,USD,115000,United States,Hybrid,United States,L,Data Science and Research +2021,Senior,Full-time,Principal Data Scientist,235000,USD,235000,United States,Remote,United States,L,Data Science and Research +2021,Mid-level,Full-time,Data Analyst,75000,USD,75000,United States,In-person,United States,L,Data Analysis +2021,Mid-level,Full-time,Data Analyst,62000,USD,62000,United States,In-person,United States,L,Data Analysis +2021,Mid-level,Full-time,Data Scientist,73000,USD,73000,United States,In-person,United States,L,Data Science and Research +2021,Mid-level,Full-time,Data Engineer,38400,EUR,45391,Netherlands,Remote,Netherlands,L,Data Engineering +2020,Senior,Full-time,Data Science Manager,190200,USD,190200,United States,Remote,United States,M,Data Science and Research +2020,Mid-level,Full-time,Data Scientist,118000,USD,118000,United States,Remote,United States,M,Data Science and Research +2020,Mid-level,Full-time,Data Scientist,,USD,138350,United States,Remote,United States,M,Data Science and Research +2020,Mid-level,Full-time,Data Engineer,130800,USD,130800,Spain,Remote,United States,M,Data Engineering +2020,Senior,Full-time,Machine Learning Engineer,40000,EUR,45618,Croatia,Remote,Croatia,S,Machine Learning and AI +2021,Senior,Full-time,Director of Data Science,168000,USD,168000,Japan,In-person,Japan,s,Data Science and Research +2021,Mid-level,Full-time,Data Scientist,160000,SGD,119059,Singapore,Remote,Israel,M,Data Science and Research +2021,Mid-level,Full-time,Applied Machine Learning Scientist,423000,USD,423000,United States,Hybrid,United States,L,Machine Learning and AI +2021,Mid-level,Full-time,Data Engineer,24000,EUR,28369,Malta,Hybrid,Malta,L,Data Engineering +2021,Senior,Full-time,Data Specialist,165000,USD,165000,United States,Remote,United States,L,Data Management and Strategy +2020,Senior,Full-time,Data Scientist,412000,USD,412000,United States,Remote,United States,L,Data Science and Research +2021,Mid-level,Full-time,Principal Data Scientist,151000,USD,151000,United States,Remote,United States,L,Data Science and Research +2020,Entry-level,Full-time,Data Scientist,105000,USD,105000,United States,Remote,United States,S,Data Science and Research +2020,Entry-level,Contract,Business Data Analyst,100000,USD,100000,United States,Remote,United States,L,Data Analysis