-
Notifications
You must be signed in to change notification settings - Fork 1
/
optimizer.cpp
193 lines (158 loc) · 5.44 KB
/
optimizer.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
/*
* Copyright (c) 2023 by Hex-Rays, support@hex-rays.com
* ALL RIGHTS RESERVED.
*
* gooMBA plugin for Hex-Rays Decompiler.
*
*/
#include <chrono>
#include <Windows.h>
#include "z3++_no_warn.h"
#include "optimizer.hpp"
//--------------------------------------------------------------------------
// check whether or not we should skip the proving step of optimization
inline bool skip_proofs()
{
return qgetenv("VD_MBA_SKIP_PROOFS");
}
//--------------------------------------------------------------------------
inline void set_cmt(ea_t ea, const char *cmt)
{
func_t *pfn = get_func(ea);
set_func_cmt(pfn, cmt, false);
}
//--------------------------------------------------------------------------
static bool check_and_substitute(
minsn_t *insn,
minsn_t *cand_insn,
uint z3_timeout,
bool z3_assume_timeouts_correct)
{
bool ok = false;
int original_score = score_complexity(*insn);
int candidate_score = score_complexity(*cand_insn);
msg("Testing candidate %s\n", cand_insn->dstr());
if ( candidate_score > original_score )
{
msg("Candidate (%d) is not simpler than original (%d), skipping\n", candidate_score, original_score);
}
else
{
z3_converter_t converter;
if ( probably_equivalent(*insn, *cand_insn) )
{
msg("Instruction is probably equivalent to candidate\n");
if ( skip_proofs() || z3_timeout == 0 )
{
set_cmt(insn->ea, "goomba: z3 proof skipped, simplification assumed correct");
ok = true;
}
else
{
z3::expr lge = converter.minsn_to_expr(*cand_insn);
z3::expr ie = converter.minsn_to_expr(*insn);
z3::solver s(converter.context);
s.set("timeout", z3_timeout);
s.add(lge != ie);
z3::check_result res = s.check();
msg("SMT check result: %d\n", res);
if ( res == z3::check_result::unsat )
{
ok = true;
}
if ( z3_assume_timeouts_correct && res == z3::check_result::unknown )
{
set_cmt(insn->ea, "goomba: z3 proof timed out, simplification assumed correct");
ok = true;
}
}
}
else
{
msg("Candidate not equivalent, skipping\n");
}
}
if ( ok )
substitute(insn, cand_insn);
return ok;
}
//--------------------------------------------------------------------------
bool optimizer_t::optimize_insn_recurse(minsn_t *insn)
{
if ( optimize_insn(insn) )
return true;
bool result = false;
if ( insn->l.is_insn() )
result |= optimize_insn_recurse(insn->l.d);
if ( insn->r.is_insn() )
result |= optimize_insn_recurse(insn->r.d);
return result;
}
//--------------------------------------------------------------------------
bool optimizer_t::optimize_insn(minsn_t *insn)
{
bool success = false;
auto start_time = std::chrono::high_resolution_clock::now();
if ( insn->has_side_effects(true) )
{
msg("Instruction has side effects, skipping\n");
}
else
{
if ( is_mba(*insn) )
{
msg("Found MBA instruction %s\n", insn->dstr());
try
{
minsn_set_t candidate_set; // recall minsn_set_t is automatically sorted by complexity
auto equiv_class_start = std::chrono::high_resolution_clock::now();
if ( equiv_classes != nullptr )
equiv_classes->find_candidates(candidate_set, *insn);
auto equiv_class_end = std::chrono::high_resolution_clock::now();
auto linear_start = equiv_class_end;
linear_expr_t linear_guess(*insn);
// msg("Linear guess %s\n", linear_guess.dstr());
candidate_set.insert(linear_guess.to_minsn(insn->ea));
auto linear_end = std::chrono::high_resolution_clock::now();
auto lin_conj_start = linear_end;
lin_conj_expr_t lin_conj_guess(*insn);
simp_lin_conj_expr_t simp_lin_conj_expr_t(lin_conj_guess);
// msg("Simplified lin conj guess %s\n", simp_lin_conj_expr_t.dstr());
candidate_set.insert(simp_lin_conj_expr_t.to_minsn(insn->ea));
auto lin_conj_end = std::chrono::high_resolution_clock::now();
for ( minsn_t *cand : candidate_set )
{
cand->optimize_solo(); // get rid of useless mov(#0) operands
if ( check_and_substitute(insn, cand, z3_timeout, z3_assume_timeouts_correct) )
{
if ( qgetenv("VD_MBA_LOG_PERF") )
{
int nvars = get_input_mops(*insn).size();
msg("Equiv class time: %d %" FMT_64 "d us\n", nvars,
std::chrono::duration_cast<std::chrono::microseconds>(equiv_class_end - equiv_class_start).count());
msg("Linear time: %d %" FMT_64 "d us\n", nvars,
std::chrono::duration_cast<std::chrono::microseconds>(linear_end - linear_start).count());
msg("Lin conj time: %d %" FMT_64 "d us\n", nvars,
std::chrono::duration_cast<std::chrono::microseconds>(lin_conj_end - lin_conj_start).count());
}
success = true;
goto finish;
}
}
}
catch ( const char *&e )
{
msg("err: %s\n", e);
return false;
}
}
}
finish:
if ( success )
{
auto end_time = std::chrono::high_resolution_clock::now();
msg("Time taken: %" FMT_64 "d us\n",
std::chrono::duration_cast<std::chrono::microseconds>(end_time - start_time).count());
}
return success;
}