-
Notifications
You must be signed in to change notification settings - Fork 5
/
Video Camshift Algorithm.py
53 lines (38 loc) · 1.3 KB
/
Video Camshift Algorithm.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
import numpy as np
import cv2
cap = cv2.VideoCapture('Video.flv')
# Getting the first frame of the video
ret,frame = cap.read()
# Setting location of the window
r,h,c,w = 250,90,400,125
track_window = (c,r,w,h)
# ROI for tracking
roi = frame[r:r+h, c:c+w]
# Converting to HSV format
hsv_roi = cv2.cvtColor(frame, cv2.COLOR_BGR2HSV)
mask = cv2.inRange(hsv_roi, np.array((0., 60.,32.)), np.array((180.,255.,255.)))
# Calculating Histogram of HSV image
roi_hist = cv2.calcHist([hsv_roi],[0],mask,[180],[0,180])
cv2.normalize(roi_hist,roi_hist,0,255,cv2.NORM_MINMAX)
term_crit = ( cv2.TERM_CRITERIA_EPS | cv2.TERM_CRITERIA_COUNT, 10, 1 )
while True:
ret ,frame = cap.read()
if ret == True:
hsv = cv2.cvtColor(frame, cv2.COLOR_BGR2HSV)
dst = cv2.calcBackProject([hsv],[0],roi_hist,[0,180],1)
# applying CamShift to get the new location
ret, track_window = cv2.CamShift(dst, track_window, term_crit)
# Drawing on image
pts = cv2.boxPoints(ret)
pts = np.int0(pts)
img2 = cv2.polylines(frame,[pts],True, 255,2)
# Displaying image
cv2.imshow('img2',img2)
if cv2.waitKey(60) & 0xff == 27:
break
else:
cv2.imwrite(chr(k)+".jpg",img2)
else:
break
cv2.destroyAllWindows()
cap.release()