-
Notifications
You must be signed in to change notification settings - Fork 23
/
fix_extract_dataframe.py
137 lines (95 loc) · 3.98 KB
/
fix_extract_dataframe.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
import json
import pandas as pd
from textblob import TextBlob
def read_json(json_file: str)->list:
"""
json file reader to open and read json files into a list
Args:
-----
json_file: str - path of a json file
Returns
-------
length of the json file and a list of json
"""
tweets_data = []
for tweets in open(json_file,'r'):
tweets_data.append(json.loads(tweets))
return len(tweets_data), tweets_data
class TweetDfExtractor:
"""
this function will parse tweets json into a pandas dataframe
Return
------
dataframe
"""
def __init__(self, tweets_list):
self.tweets_list = tweets_list
# an example function
def find_statuses_count(self)->list:
statuses_count
def find_full_text(self)->list:
text =
def find_sentiments(self, text)->list:
return polarity, self.subjectivity
def find_created_time(self)->list:
return created_at
def find_source(self)->list:
source =
return source
def find_screen_name(self)->list:
screen_name =
def find_followers_count(self)->list:
followers_count =
def find_friends_count(self)->list:
friends_count =
def is_sensitive(self)->list:
try:
is_sensitive = [x['possibly_sensitive'] for x in self.tweets_list]
except KeyError:
is_sensitive = None
return is_sensitive
def find_favourite_count(self)->list:
def find_retweet_count(self)->list:
retweet_count =
def find_hashtags(self)->list:
hashtags =
def find_mentions(self)->list:
mentions =
def find_location(self)->list:
try:
location = self.tweets_list['user']['location']
except TypeError:
location = ''
return location
def get_tweet_df(self, save=False)->pd.DataFrame:
"""required column to be generated you should be creative and add more features"""
columns = ['created_at', 'source', 'original_text','polarity','subjectivity', 'lang', 'favorite_count', 'retweet_count',
'original_author', 'followers_count','friends_count','possibly_sensitive', 'hashtags', 'user_mentions', 'place']
created_at = self.find_created_time()
source = self.find_source()
text = self.find_full_text()
polarity, subjectivity = self.find_sentiments(text)
lang = self.find_lang()
fav_count = self.find_favourite_count()
retweet_count = self.find_retweet_count()
screen_name = self.find_screen_name()
follower_count = self.find_followers_count()
friends_count = self.find_friends_count()
sensitivity = self.is_sensitive()
hashtags = self.find_hashtags()
mentions = self.find_mentions()
location = self.find_location()
data = zip(created_at, source, text, polarity, subjectivity, lang, fav_count, retweet_count, screen_name, follower_count, friends_count, sensitivity, hashtags, mentions, location)
df = pd.DataFrame(data=data, columns=columns)
if save:
df.to_csv('processed_tweet_data.csv', index=False)
print('File Successfully Saved.!!!')
return df
if __name__ == "__main__":
# required column to be generated you should be creative and add more features
columns = ['created_at', 'source', 'original_text','clean_text', 'sentiment','polarity','subjectivity', 'lang', 'favorite_count', 'retweet_count',
'original_author', 'screen_count', 'followers_count','friends_count','possibly_sensitive', 'hashtags', 'user_mentions', 'place', 'place_coord_boundaries']
_, tweet_list = read_json("../covid19.json")
tweet = TweetDfExtractor(tweet_list)
tweet_df = tweet.get_tweet_df()
# use all defined functions to generate a dataframe with the specified columns above