-
Notifications
You must be signed in to change notification settings - Fork 0
/
1584. Min Cost to Connect All Points.java
110 lines (82 loc) · 2.99 KB
/
1584. Min Cost to Connect All Points.java
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
/*
You are given an array points representing integer coordinates of some points on a 2D-plane, where points[i] = [xi, yi].
The cost of connecting two points [xi, yi] and [xj, yj] is the manhattan distance between them: |xi - xj| + |yi - yj|, where |val| denotes the absolute value of val.
Return the minimum cost to make all points connected. All points are connected if there is exactly one simple path between any two points.
Example 1:
Input: points = [[0,0],[2,2],[3,10],[5,2],[7,0]]
Output: 20
Explanation:
We can connect the points as shown above to get the minimum cost of 20.
Notice that there is a unique path between every pair of points.
Example 2:
Input: points = [[3,12],[-2,5],[-4,1]]
Output: 18
Constraints:
1 <= points.length <= 1000
-106 <= xi, yi <= 106
All pairs (xi, yi) are distinct.
*/
class UnionFind {
public int[] group;
public int[] rank;
public UnionFind(int size) {
group = new int[size];
rank = new int[size];
for (int i = 0; i < size; ++i) {
group[i] = i;
}
}
public int find(int node) {
if (group[node] != node) {
group[node] = find(group[node]);
}
return group[node];
}
public boolean union(int node1, int node2) {
int group1 = find(node1);
int group2 = find(node2);
// node1 and node2 already belong to same group.
if (group1 == group2) {
return false;
}
if (rank[group1] > rank[group2]) {
group[group2] = group1;
} else if (rank[group1] < rank[group2]) {
group[group1] = group2;
} else {
group[group1] = group2;
rank[group2] += 1;
}
return true;
}
}
class Solution {
public int minCostConnectPoints(int[][] points) {
int n = points.length;
ArrayList<int[]> allEdges = new ArrayList<>();
// Storing all edges of our complete graph.
for (int currNext = 0; currNext < n; ++currNext) {
for (int nextNext = currNext + 1; nextNext < n; ++nextNext) {
int weight = Math.abs(points[currNext][0] - points[nextNext][0]) +
Math.abs(points[currNext][1] - points[nextNext][1]);
int[] currEdge = {weight, currNext, nextNext};
allEdges.add(currEdge);
}
}
// Sort all edges in increasing order.
Collections.sort(allEdges, (a, b) -> Integer.compare(a[0], b[0]));
UnionFind uf = new UnionFind(n);
int mstCost = 0;
int edgesUsed = 0;
for (int i = 0; i < allEdges.size() && edgesUsed < n - 1; ++i) {
int node1 = allEdges.get(i)[1];
int node2 = allEdges.get(i)[2];
int weight = allEdges.get(i)[0];
if (uf.union(node1, node2)) {
mstCost += weight;
edgesUsed++;
}
}
return mstCost;
}
}