-
Notifications
You must be signed in to change notification settings - Fork 6
/
5_Peer_Graded_Assignment_Questions.py
221 lines (185 loc) · 12.1 KB
/
5_Peer_Graded_Assignment_Questions.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
# Import required libraries
import pandas as pd
import dash
import dash_html_components as html
import dash_core_components as dcc
from dash.dependencies import Input, Output, State
import plotly.graph_objects as go
import plotly.express as px
from dash import no_update
# Create a dash application
app = dash.Dash(__name__)
# REVIEW1: Clear the layout and do not display exception till callback gets executed
app.config.suppress_callback_exceptions = True
# Read the airline data into pandas dataframe
airline_data = pd.read_csv('https://cf-courses-data.s3.us.cloud-object-storage.appdomain.cloud/IBMDeveloperSkillsNetwork-DV0101EN-SkillsNetwork/Data%20Files/airline_data.csv',
encoding = "ISO-8859-1",
dtype={'Div1Airport': str, 'Div1TailNum': str,
'Div2Airport': str, 'Div2TailNum': str})
# List of years
year_list = [i for i in range(2005, 2021, 1)]
"""Compute graph data for creating yearly airline performance report
Function that takes airline data as input and create 5 dataframes based on the grouping condition to be used for plottling charts and grphs.
Argument:
df: Filtered dataframe
Returns:
Dataframes to create graph.
"""
def compute_data_choice_1(df):
# Cancellation Category Count
bar_data = df.groupby(['Month','CancellationCode'])['Flights'].sum().reset_index()
# Average flight time by reporting airline
line_data = df.groupby(['Month','Reporting_Airline'])['AirTime'].mean().reset_index()
# Diverted Airport Landings
div_data = df[df['DivAirportLandings'] != 0.0]
# Source state count
map_data = df.groupby(['OriginState'])['Flights'].sum().reset_index()
# Destination state count
tree_data = df.groupby(['DestState', 'Reporting_Airline'])['Flights'].sum().reset_index()
return bar_data, line_data, div_data, map_data, tree_data
"""Compute graph data for creating yearly airline delay report
This function takes in airline data and selected year as an input and performs computation for creating charts and plots.
Arguments:
df: Input airline data.
Returns:
Computed average dataframes for carrier delay, weather delay, NAS delay, security delay, and late aircraft delay.
"""
def compute_data_choice_2(df):
# Compute delay averages
avg_car = df.groupby(['Month','Reporting_Airline'])['CarrierDelay'].mean().reset_index()
avg_weather = df.groupby(['Month','Reporting_Airline'])['WeatherDelay'].mean().reset_index()
avg_NAS = df.groupby(['Month','Reporting_Airline'])['NASDelay'].mean().reset_index()
avg_sec = df.groupby(['Month','Reporting_Airline'])['SecurityDelay'].mean().reset_index()
avg_late = df.groupby(['Month','Reporting_Airline'])['LateAircraftDelay'].mean().reset_index()
return avg_car, avg_weather, avg_NAS, avg_sec, avg_late
# Application layout
app.layout = html.Div(children=[
# TASK1: Add title to the dashboard
# Enter your code below. Make sure you have correct formatting.
html.H1('US Domestic Airline Flights Performance',
style={'textAlign': 'center', 'color': '#503D36', 'font-size': 24}),
# REVIEW2: Dropdown creation
# Create an outer division
html.Div([
# Add an division
html.Div([
# Create an division for adding dropdown helper text for report type
html.Div(
[
html.H2('Report Type:', style={'margin-right': '2em'}),
]
),
# TASK2: Add a dropdown
# Enter your code below. Make sure you have correct formatting.
dcc.Dropdown(id='input-type',
options=[
{'label': 'Yearly Airline Performance Report', 'value': 'OPT1'},
{'label': 'Yearly Airline Delay Report', 'value': 'OPT2'}
],
placeholder='Select a report type',
style={'width':'80%', 'padding':'3px', 'font-size': '20px', 'text-align-last' : 'center'}),
# Place them next to each other using the division style
], style={'display':'flex'}),
# Add next division
html.Div([
# Create an division for adding dropdown helper text for choosing year
html.Div(
[
html.H2('Choose Year:', style={'margin-right': '2em'})
]
),
dcc.Dropdown(id='input-year',
# Update dropdown values using list comphrehension
options=[{'label': i, 'value': i} for i in year_list],
placeholder="Select a year",
style={'width':'80%', 'padding':'3px', 'font-size': '20px', 'text-align-last' : 'center'}),
# Place them next to each other using the division style
], style={'display': 'flex'}),
]),
# Add Computed graphs
# REVIEW3: Observe how we add an empty division and providing an id that will be updated during callback
html.Div([ ], id='plot1'),
html.Div([
html.Div([ ], id='plot2'),
html.Div([ ], id='plot3')
], style={'display': 'flex'}),
# TASK3: Add a division with two empty divisions inside. See above division for example.
# Enter your code below. Make sure you have correct formatting.
html.Div([
html.Div([ ], id='plot4'),
html.Div([ ], id='plot5')
], style={'display': 'flex'}),
])
# Callback function definition
# TASK4: Add 5 ouput components
# Enter your code below. Make sure you have correct formatting.
@app.callback( [Output(component_id='plot1', component_property='children'),
Output(component_id='plot2', component_property='children'),
Output(component_id='plot3', component_property='children'),
Output(component_id='plot4', component_property='children'),
Output(component_id='plot5', component_property='children')],
[Input(component_id='input-type', component_property='value'),
Input(component_id='input-year', component_property='value')],
# REVIEW4: Holding output state till user enters all the form information. In this case, it will be chart type and year
[State("plot1", 'children'), State("plot2", "children"),
State("plot3", "children"), State("plot4", "children"),
State("plot5", "children")
])
# Add computation to callback function and return graph
def get_graph(chart, year, children1, children2, c3, c4, c5):
# Select data
df = airline_data[airline_data['Year']==int(year)]
if chart == 'OPT1':
# Compute required information for creating graph from the data
bar_data, line_data, div_data, map_data, tree_data = compute_data_choice_1(df)
# Number of flights under different cancellation categories
bar_fig = px.bar(bar_data, x='Month', y='Flights', color='CancellationCode', title='Monthly Flight Cancellation')
# TASK5: Average flight time by reporting airline
# Enter your code below. Make sure you have correct formatting.
line_fig = px.line(line_data, x='Month', y='AirTime', color='Reporting_Airline', title='Average monthly flight time (minutes) by airline')
# Percentage of diverted airport landings per reporting airline
pie_fig = px.pie(div_data, values='Flights', names='Reporting_Airline', title='% of flights by reporting airline')
# REVIEW5: Number of flights flying from each state using choropleth
map_fig = px.choropleth(map_data, # Input data
locations='OriginState',
color='Flights',
hover_data=['OriginState', 'Flights'],
locationmode = 'USA-states', # Set to plot as US States
color_continuous_scale='GnBu',
range_color=[0, map_data['Flights'].max()])
map_fig.update_layout(
title_text = 'Number of flights from origin state',
geo_scope='usa') # Plot only the USA instead of globe
# TASK6: Number of flights flying to each state from each reporting airline
# Enter your code below. Make sure you have correct formatting.
tree_fig = px.treemap(tree_data, path=['DestState', 'Reporting_Airline'],
values='Flights',
color='Flights',
color_continuous_scale='RdBu',
title='Flight count by airline to destination state'
)
# REVIEW6: Return dcc.Graph component to the empty division
return [dcc.Graph(figure=tree_fig),
dcc.Graph(figure=pie_fig),
dcc.Graph(figure=map_fig),
dcc.Graph(figure=bar_fig),
dcc.Graph(figure=line_fig)
]
else:
# REVIEW7: This covers chart type 2 and we have completed this exercise under Flight Delay Time Statistics Dashboard section
# Compute required information for creating graph from the data
avg_car, avg_weather, avg_NAS, avg_sec, avg_late = compute_data_choice_2(df)
# Create graph
carrier_fig = px.line(avg_car, x='Month', y='CarrierDelay', color='Reporting_Airline', title='Average carrrier delay time (minutes) by airline')
weather_fig = px.line(avg_weather, x='Month', y='WeatherDelay', color='Reporting_Airline', title='Average weather delay time (minutes) by airline')
nas_fig = px.line(avg_NAS, x='Month', y='NASDelay', color='Reporting_Airline', title='Average NAS delay time (minutes) by airline')
sec_fig = px.line(avg_sec, x='Month', y='SecurityDelay', color='Reporting_Airline', title='Average security delay time (minutes) by airline')
late_fig = px.line(avg_late, x='Month', y='LateAircraftDelay', color='Reporting_Airline', title='Average late aircraft delay time (minutes) by airline')
return[dcc.Graph(figure=carrier_fig),
dcc.Graph(figure=weather_fig),
dcc.Graph(figure=nas_fig),
dcc.Graph(figure=sec_fig),
dcc.Graph(figure=late_fig)]
# Run the app
if __name__ == '__main__':
app.run_server()