-
Notifications
You must be signed in to change notification settings - Fork 95
/
Copy pathvtuber_link_start.py
122 lines (87 loc) · 3.6 KB
/
vtuber_link_start.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
# coding: utf-8
import numpy as np
import service
import cv2
import sys
import socketio
from threading import Thread
from queue import Queue
cap = cv2.VideoCapture(sys.argv[1])
fd = service.UltraLightFaceDetecion("weights/RFB-320.tflite",
conf_threshold=0.98)
fa = service.CoordinateAlignmentModel("weights/coor_2d106.tflite")
hp = service.HeadPoseEstimator("weights/head_pose_object_points.npy",
cap.get(3), cap.get(4))
gs = service.IrisLocalizationModel("weights/iris_localization.tflite")
QUEUE_BUFFER_SIZE = 18
box_queue = Queue(maxsize=QUEUE_BUFFER_SIZE)
landmark_queue = Queue(maxsize=QUEUE_BUFFER_SIZE)
iris_queue = Queue(maxsize=QUEUE_BUFFER_SIZE)
upstream_queue = Queue(maxsize=QUEUE_BUFFER_SIZE)
# ======================================================
def face_detection():
while True:
ret, frame = cap.read()
if not ret:
break
face_boxes, _ = fd.inference(frame)
box_queue.put((frame, face_boxes))
def face_alignment():
while True:
frame, boxes = box_queue.get()
landmarks = fa.get_landmarks(frame, boxes)
landmark_queue.put((frame, landmarks))
def iris_localization(YAW_THD=45):
sio = socketio.Client()
sio.connect("http://127.0.0.1:6789", namespaces='/kizuna')
while True:
frame, preds = landmark_queue.get()
for landmarks in preds:
# calculate head pose
euler_angle = hp.get_head_pose(landmarks).flatten()
pitch, yaw, roll = euler_angle
eye_starts = landmarks[[35, 89]]
eye_ends = landmarks[[39, 93]]
eye_centers = landmarks[[34, 88]]
eye_lengths = (eye_ends - eye_starts)[:, 0]
pupils = eye_centers.copy()
if yaw > -YAW_THD:
iris_left = gs.get_mesh(frame, eye_lengths[0], eye_centers[0])
pupils[0] = iris_left[0]
if yaw < YAW_THD:
iris_right = gs.get_mesh(frame, eye_lengths[1], eye_centers[1])
pupils[1] = iris_right[0]
poi = eye_starts, eye_ends, pupils, eye_centers
theta, pha, _ = gs.calculate_3d_gaze(poi)
mouth_open_percent = (
landmarks[60, 1] - landmarks[62, 1]) / (landmarks[53, 1] - landmarks[71, 1])
left_eye_status = (
landmarks[33, 1] - landmarks[40, 1]) / eye_lengths[0]
right_eye_status = (
landmarks[87, 1] - landmarks[94, 1]) / eye_lengths[1]
result_string = {'euler': (pitch, -yaw, -roll),
'eye': (theta.mean(), pha.mean()),
'mouth': mouth_open_percent,
'blink': (left_eye_status, right_eye_status)}
sio.emit('result_data', result_string, namespace='/kizuna')
upstream_queue.put((frame, landmarks, euler_angle))
break
def draw(color=(125, 255, 0), thickness=2):
while True:
frame, landmarks, euler_angle = upstream_queue.get()
for p in np.round(landmarks).astype(np.int):
cv2.circle(frame, tuple(p), 1, color, thickness, cv2.LINE_AA)
face_center = np.mean(landmarks, axis=0)
hp.draw_axis(frame, euler_angle, face_center)
frame = cv2.resize(frame, (960, 720))
cv2.imshow('result', frame)
cv2.waitKey(1)
draw_thread = Thread(target=draw)
draw_thread.start()
iris_thread = Thread(target=iris_localization)
iris_thread.start()
alignment_thread = Thread(target=face_alignment)
alignment_thread.start()
face_detection()
cap.release()
cv2.destroyAllWindows()