forked from apxlwl/MobileNet-v2-pruning
-
Notifications
You must be signed in to change notification settings - Fork 0
/
main.py
250 lines (237 loc) · 10.5 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
from __future__ import print_function
import argparse
import numpy as np
import os
import shutil
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
from torchvision import datasets, transforms
from models import *
from tqdm import tqdm
from models.slimmableops import bn_calibration_init
import USconfig as FLAGS
import random
os.environ['CUDA_VISIBLE_DEVICES'] = '0'
# Training settings
parser = argparse.ArgumentParser(description='PyTorch Slimming CIFAR training')
parser.add_argument('--dataset', type=str, default='cifar10',
help='training dataset (default: cifar100)')
parser.add_argument('--batch-size', type=int, default=128, metavar='N',
help='input batch size for training (default: 64)')
parser.add_argument('--test-batch-size', type=int, default=256, metavar='N',
help='input batch size for testing (default: 256)')
parser.add_argument('--epochs', type=int, default=160, metavar='N',
help='number of epochs to train (default: 160)')
parser.add_argument('--start-epoch', default=0, type=int, metavar='N',
help='manual epoch number (useful on restarts)')
parser.add_argument('--lr', type=float, default=0.2, metavar='LR',
help='learning rate (default: 0.1)')
parser.add_argument('--momentum', type=float, default=0.9, metavar='M',
help='SGD momentum (default: 0.9)')
parser.add_argument('--weight-decay', '--wd', default=1e-4, type=float,
metavar='W', help='weight decay (default: 1e-4)')
parser.add_argument('--resume', default='', type=str, metavar='PATH',
help='path to latest checkpoint (default: none)')
parser.add_argument('--no-cuda', action='store_true', default=False,
help='disables CUDA training')
parser.add_argument('--seed', type=int, default=1, metavar='S',
help='random seed (default: 1)')
parser.add_argument('--save', default='checkpoints', type=str, metavar='PATH',
help='path to save prune model (default: current directory)')
parser.add_argument('--arch', default='USMobileNetV2', type=str,choices=['MobileNetV2','USMobileNetV2'],
help='architecture to use')
parser.add_argument('--sr', dest='sr', action='store_true',
help='train with channel sparsity regularization')
parser.add_argument('--s', type=float, default=0.0001,
help='scale sparse rate (default: 0.0001)')
parser.add_argument('--test',action='store_true')
args = parser.parse_args()
args.cuda = not args.no_cuda and torch.cuda.is_available()
torch.manual_seed(args.seed)
if args.cuda:
torch.cuda.manual_seed(args.seed)
if not os.path.exists(args.save):
os.makedirs(args.save)
savepath = os.path.join(args.save, args.arch, 'sr' if args.sr else 'nosr')
kwargs = {'num_workers': 4, 'pin_memory': True} if args.cuda else {}
if args.dataset == 'cifar10':
train_loader = torch.utils.data.DataLoader(
datasets.CIFAR10('data.cifar10', train=True, download=True,
transform=transforms.Compose([
transforms.RandomCrop(32, padding=4),
transforms.RandomHorizontalFlip(),
transforms.ToTensor(),
transforms.Normalize((0.4914, 0.4822, 0.4465), (0.2023, 0.1994, 0.2010))
])),
batch_size=args.batch_size, shuffle=True, **kwargs)
test_loader = torch.utils.data.DataLoader(
datasets.CIFAR10('data.cifar10', train=False, transform=transforms.Compose([
transforms.ToTensor(),
transforms.Normalize((0.4914, 0.4822, 0.4465), (0.2023, 0.1994, 0.2010))
])),
batch_size=args.test_batch_size, shuffle=True, **kwargs)
else:
train_loader = torch.utils.data.DataLoader(
datasets.CIFAR100('./data.cifar100', train=True, download=True,
transform=transforms.Compose([
transforms.Pad(4),
transforms.RandomCrop(32),
transforms.RandomHorizontalFlip(),
transforms.ToTensor(),
transforms.Normalize((0.4914, 0.4822, 0.4465), (0.2023, 0.1994, 0.2010))
])),
batch_size=args.batch_size, shuffle=True, **kwargs)
test_loader = torch.utils.data.DataLoader(
datasets.CIFAR100('./data.cifar100', train=False, transform=transforms.Compose([
transforms.ToTensor(),
transforms.Normalize((0.4914, 0.4822, 0.4465), (0.2023, 0.1994, 0.2010))
])),
batch_size=args.test_batch_size, shuffle=True, **kwargs)
model = eval(args.arch)(input_size=32)
if args.cuda:
model.cuda()
best_prec1 = -1
optimizer = optim.SGD(model.parameters(), lr=args.lr, momentum=args.momentum, weight_decay=args.weight_decay)
if args.resume:
if os.path.isfile(args.resume):
print("=> loading checkpoint '{}'".format(args.resume))
checkpoint = torch.load(args.resume)
args.start_epoch = checkpoint['epoch']
best_prec1 = checkpoint['best_prec1']
model.load_state_dict(checkpoint['state_dict'])
optimizer.load_state_dict(checkpoint['optimizer'])
print("=> loaded checkpoint '{}' (epoch {}) Prec1: {:f}"
.format(args.resume, checkpoint['epoch'], best_prec1))
else:
print("=> no checkpoint found at '{}'".format(args.resume))
def updateBN():
for m in model.modules():
if isinstance(m, nn.BatchNorm2d):
m.weight.grad.data.add_(args.s * torch.sign(m.weight.data)) # L1
def train():
model.train()
avg_loss = 0.
train_acc = 0.
for batch_idx, (data, target) in tqdm(enumerate(train_loader), total=len(train_loader)):
if args.cuda:
data, target = data.cuda(), target.cuda()
optimizer.zero_grad()
output = model(data)
loss = F.cross_entropy(output, target)
avg_loss += loss.item()
pred = output.data.max(1, keepdim=True)[1]
train_acc += pred.eq(target.data.view_as(pred)).cpu().sum()
loss.backward()
if args.sr:
updateBN()
optimizer.step()
def trainUS():
max_width = max(FLAGS.width_mult_list)
min_width = min(FLAGS.width_mult_list)
model.train()
for batch_idx, (data, target) in tqdm(enumerate(train_loader),total=len(train_loader)):
if args.cuda:
data, target = data.cuda(), target.cuda()
optimizer.zero_grad()
###
widths_train = []
for _ in range(getattr(FLAGS, 'num_sample_training', 2) - 2):
widths_train.append(
random.uniform(min_width, max_width))
widths_train = [max_width, min_width] + widths_train
# widths_train = [min_width]
for width_mult in widths_train:
# TODO :add inplace distillation
model.apply(lambda m: setattr(
m, 'width_mult',
width_mult))
# always track largest model and smallest model
output = model(data)
loss = F.cross_entropy(output, target)
loss.backward()
###
optimizer.step()
def test(test_width=1.0,recal=False):
model.eval()
test_loss = 0
correct = 0
model.apply(lambda m: setattr(m, 'width_mult',test_width))
if recal:
model.apply(bn_calibration_init)
model.train()
for idx,(data, target) in enumerate(tqdm(train_loader, total=len(train_loader))):
if idx==FLAGS.recal_batch:
break
if args.cuda:
data, target = data.cuda(), target.cuda()
with torch.no_grad():
output = model(data)
del output
model.eval()
for data, target in tqdm(test_loader, total=len(test_loader)):
if args.cuda:
data, target = data.cuda(), target.cuda()
with torch.no_grad():
output = model(data)
test_loss += F.cross_entropy(output, target, size_average=False).item() # sum up batch loss
pred = output.data.max(1, keepdim=True)[1] # get the index of the max log-probability
correct += pred.eq(target.data.view_as(pred)).cpu().sum()
test_loss /= len(test_loader.dataset)
print('\nTest set: Average loss: {:.4f}, Accuracy: {}/{} ({:.1f}%)\n'.format(
test_loss, correct, len(test_loader.dataset),
100. * correct / len(test_loader.dataset)))
return correct.item() / float(len(test_loader.dataset))
def export2normal():
newmodel=MobileNetV2()
from collections import OrderedDict
statedic=[]
for k2,v in model.state_dict().items():
if 'running' in k2 or 'num_batches_tracked' in k2:
continue
statedic.append(v)
names=[]
for k1,v1 in newmodel.state_dict().items():
if 'running' in k1 or 'num_batches_tracked' in k1:
continue
names.append(k1)
newdic=OrderedDict(zip(names,statedic))
newmodel.load_state_dict(newdic,strict=False)
torch.save(newmodel.state_dict(),os.path.join(savepath,'trans.pth'))
print("save transferred ckpt at {}".format(os.path.join(savepath,'trans.pth')))
best_prec1 = 0. if best_prec1 == -1 else best_prec1
scheduler=optim.lr_scheduler.CosineAnnealingLR(optimizer,T_max=args.epochs,eta_min=0)
if args.test:
if args.arch=='USMobileNetV2':
export2normal()
res_acc=[1.0]*len(FLAGS.width_mult_list)
for idx,width in enumerate(FLAGS.width_mult_list):
acc=test(width,recal=True)
res_acc[idx]=acc
print("Test accuracy for width {} is {}".format(width,acc))
else:
print("Test accuracy {}".format(test()))
else:
for epoch in range(args.start_epoch, args.epochs):
if args.arch=='USMobileNetV2':
trainUS()
prec1=test(test_width=1.0,recal=False)
else:
train()
prec1 = test()
scheduler.step(epoch)
lr_current = optimizer.param_groups[0]['lr']
print("currnt lr:{}".format(lr_current))
is_best = prec1 > best_prec1
best_prec1 = max(prec1, best_prec1)
if is_best:
ckptfile = os.path.join(savepath, 'model_best.pth.tar')
else:
ckptfile = os.path.join(savepath, 'checkpoint.pth.tar')
torch.save({
'epoch': epoch + 1,
'state_dict': model.state_dict(),
'best_prec1': best_prec1,
'optimizer': optimizer.state_dict(),
}, ckptfile)