-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathsteer_gamma_repl.py
44 lines (34 loc) · 1.55 KB
/
steer_gamma_repl.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
import sys
import os
import random
import yaml
import torch
import argparse
from gemma.model_utils import steer_generate
from sae_evolution import load_candidate
def main():
parser = argparse.ArgumentParser(description="Generate prompts using the specified Gemma model and SAE repository.")
parser.add_argument("candidate_yaml", type=str, help="Path to the candidate YAML file")
parser.add_argument("example_yaml", type=str, help="Path to the example YAML file")
parser.add_argument("--gemma-model", type=str, default="google/gemma-2-2b", help="Which Gemma model to use")
parser.add_argument("--sae", type=str, default="google/gemma-scope-2b-pt-res", help="Which Gemmascope SAE repo to use")
args = parser.parse_args()
prompt_format = yaml.safe_load(open(args.example_yaml, "r").read())["prompt_format"]
data = load_candidate(args.candidate_yaml)
while True:
seed = random.randint(0, 10000)
user_input = input("Enter your input: ")
prompt = prompt_format.replace("USER_INPUT", user_input)
torch.cuda.manual_seed_all(seed)
output = steer_generate(prompt, {}, model_name=args.gemma_model, sae_repo_id=args.sae)
print("Generated output without steering:")
print("---")
print(output)
print("---")
torch.cuda.manual_seed_all(seed)
output = steer_generate(prompt, data.layers, model_name=args.gemma_model, sae_repo_id=args.sae)
print("Generated output with steering:")
print("---")
print(output)
if __name__ == "__main__":
main()