-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathAuto-Generative Commands
156 lines (101 loc) · 4.4 KB
/
Auto-Generative Commands
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
Auto-Generative Commands
Purpose: To allow automatic construction of circuits that adapt to runtime conditions.
Syntax:
AUTO_GENERATE [PARAMETERS] AS [TASK];
Examples:
Generate a fully entangled register:
AUTO_GENERATE QUBITS[1 TO 256] AS ENTANGLED;
Automate circuit optimization for a specific algorithm:
AUTO_OPTIMIZE QUBITS[1 TO 128] FOR ALGO[QFT];
Automate gate sequence based on classical input:
AUTO_EXECUTE TASK[OPTIMIZATION] BASED_ON INPUT[CLASSICAL_DATA];
1.2 Real-Time Workflow Adaptation
With QASM256, quantum circuits can adapt dynamically based on measurements or external data streams. This is particularly critical for hybrid systems in AI and IoT.
Syntax:
ADAPT_WORKFLOW [WORKFLOW_NAME] BASED_ON [DATA_STREAM];
Example:
Dynamically switch to a different quantum algorithm based on error thresholds:
ADAPT_WORKFLOW VQE TO QAOA BASED_ON ERROR[ε < 0.01];
2. Hybrid Quantum-Classical Integration
2.1 AI Integration with AI256
QASM256 introduces AI256, a variant focused on quantum-AI hybrid workflows. The integration of quantum computing into AI tasks allows for breakthroughs in:
Quantum-enhanced data encoding.
Quantum neural networks (QNNs).
Variational algorithms optimized for AI tasks.
Key Features:
Training Models: Automate the training of QNNs using quantum subroutines.
Data Transformation: Apply quantum operations to preprocess large datasets for classical AI frameworks.
Examples:
Train a quantum-classical hybrid model:
APPLY TRAIN_MODEL [QUBITS] USING CLASSICAL[AI_FRAMEWORK];
Predict outcomes using a pre-trained quantum model:
APPLY PREDICT ON Q[1 TO 5] USING MODEL[PRETRAINED_AI];
2.2 Classical Feedback
QASM256 enables real-time feedback between quantum circuits and classical systems, a critical feature for hybrid workflows.
Syntax:
USE CLASSICAL[RESOURCE] TO UPDATE CIRCUIT[C];
Example:
Update a quantum circuit dynamically based on classical optimization results:
USE CLASSICAL[OPTIMIZER] TO UPDATE CIRCUIT[VQE];
3. Enhanced Error Correction
Error correction is essential for fault-tolerant quantum computing, and QASM256 incorporates robust error correction protocols to ensure reliable execution.
3.1 Built-In Error Correction Schemes
Supported Protocols:
Shor’s Code: Protects against arbitrary errors by encoding logical qubits into multiple physical qubits.
Surface Code: Utilizes a two-dimensional grid of qubits for high fault tolerance.
Custom Protocols: Allows users to define their own error correction routines.
Syntax:
APPLY [ERROR_CORRECTION_SCHEME] ON [QUBITS];
Examples:
Apply Shor’s Code:
APPLY SHOR_CORRECTION Q[1 TO 9];
Implement a custom error correction routine:
MODULE CustomCorrection {
APPLY ENCODED_GATE ON Q[1 TO 3];
}
APPLY CustomCorrection ON Q[1 TO 3];
3.2 Quantum Error Observability
Feature: Developers can observe error rates in real-time to fine-tune algorithms.
Syntax:
OBSERVE ERROR_RATE ON [QUBITS];
Example:
OBSERVE ERROR_RATE ON Q[1 TO 10];
4. Domain-Specific Variants
QASM256 introduces tailored sublanguages to address specific industries and use cases.
4.1 AI256
Purpose: To streamline quantum-AI workflows, from data encoding to model training.
Features:
Quantum Neural Networks: Design QNNs with fewer resources.
Data Encoding: Optimize datasets for quantum models.
Syntax Extensions:
APPLY QNN [LAYERS] USING Q[1 TO N];
Example:
Train a three-layer QNN:
APPLY QNN [3] USING Q[1 TO 16];
4.2 Data256
Purpose: Optimized for large-scale data processing tasks, such as Grover’s search and quantum Fourier transforms.
Syntax Extensions:
PERFORM [TASK] ON [QUBITS];
Examples:
Perform Grover’s search:
sql
SEARCH DATABASE[Q1 TO Q10] USING GROVER;
Apply Quantum Fourier Transform (QFT):
PERFORM QFT ON Q[1 TO 16];
4.3 Auto256
Purpose: Automation of repetitive quantum programming tasks.
Features:
Auto-Entanglement: Automatically create entangled states for large registers.
Dynamic Circuit Generation: Adjust circuits based on runtime conditions.
Example:
AUTO_GENERATE ENTANGLED_STATE FOR QUBITS[1 TO 100];
4.4 IoT256
Purpose: To enable quantum computing in edge computing and IoT environments.
Features:
Secure Communication: Leverages quantum key distribution (QKD).
Distributed Quantum Sensing: Supports IoT networks with quantum-enhanced sensors.
Example:
Implement QKD for IoT devices:
APPLY QKD_PROTOCOL Q[1 TO 5] TO DEVICE[IoT1];
Enable distributed sensing:
PERFORM QUANTUM_SENSING ON DEVICE[IoT_CLUSTER];