This repository has been archived by the owner on Mar 29, 2022. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 59
/
models.py
257 lines (216 loc) · 9.75 KB
/
models.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
import numpy.random as npr
import numpy as np
from scipy.stats import expon
from scipy.stats._distn_infrastructure import rv_frozen
from covid19.utils import make_lognormal_from_interval, EmpiricalDistribution
class SEIRBayes:
''' Model with Susceptible, Exposed, Infectious and Recovered compartments.
This class implements the SEIR model with stochastic incubation and
infectious periods as well as the basic reproduction number R0.
This model is an implicit density function on 4 time series S(t), E(t),
I(t) and R(t) for t = 0 to t_max-1. Sampling is done via numerical
resolution of a system of stochastic differential equations with 6
degrees of randomness: alpha, gamma, r0 and the number of subjects
transitioning between compartments; S -> E, E -> I, I -> R.
Infectious (1/gamma) and incubation (1/alpha) periods, as well as basic
reproduction number r0, can be specified in 3 ways:
* 4-tuple as (lower bound, upper bound, density value, dist. family);
* SciPy distribution objects, taken from scipy.stats;
* array-like containers such as lists, numpy arrays and pandas Series.
Se the __init__ method for greater detail.
The probability of an individual staying in a compartment up to time t
is proportional to exp(-p*t), therefore the probability of leaving is
1 - exp(-p*t). The rate p is different for each pair of source and
destination compartments. They are as follows
======== ============= ========== ==============
Source Destination Rate Period
======== ============= ========== ==============
S E beta*I/N 1/(beta*I/N)
E I alpha 1/alpha
I R gamma 1/gamma
======== ============= ========== ==============
Since the above discussion is for a single individual, a Binomial
distribution with success rate 1 - exp(-p*t) is used to scale to the
total number of individuals in each compartment.
Attributes:
params (dict): Summary of model parameter values. Is compatible with
the constructor; SEIRBayes(*params).
_params (dict): Similar to params, but with modifications to
facilitate usage internally. Isn't compatible with the constructor.
Examples:
Default init.
>>> np.random.seed(0)
>>> model = SEIRBayes(t_max=5)
>>> S, E, I, R, t_space = model.sample(3)
>>> I
array([[10., 10., 10.],
[15., 10., 9.],
[17., 15., 8.],
[22., 17., 12.],
[24., 18., 15.]])
>>> model.params['r0_dist'].interval(0.95)
(2.5, 6.0)
'''
def __init__(self,
NEIR0=(100, 20, 10, 0),
r0_dist=(2.5, 6.0, 0.95, 'lognorm'),
gamma_inv_dist=(7, 14, 0.95, 'lognorm'),
alpha_inv_dist=(4.1, 7, 0.95, 'lognorm'),
fator_subr=1,
t_max=30):
'''Default constructor method.
Args:
NEIR0 (tuple): Initial conditions in the form of
(population size, exposed, infected, recovered). Notice that
S0, the initial susceptible population, is not needed as it
can be calculated as S0 = N - fator_subr*(E0 + I0 + R0).
fator_subr (float): Multiplicative factor of I0 and E0 to take
into account sub-reporting.
t_max (int): Length of the time-series.
r0_dist, alpha_inv_dist, and gamma_inv_dist can be specified as
a tuple, scipy distribution, or array-like object.
tuple: (lower bound, upper bound, density, dist. family)
scipy dist: object from scipy.stats with rvs method
array-like: the i-th value will be used for the i-th sample
r0_dist (object): basic reproduction number.
alpha_inv_dist (object): incubation period.
gamma_inv_dist (object): infectious period.
Examples:
>>> np.random.seed(0)
>>> model = SEIRBayes(fator_subr=2)
>>> model.params['fator_subr']
2
>>> model.params['r0_dist'].rvs(10)
array([5.74313347, 4.23505111, 4.81923138, 6.3885136 , 5.87744241,
3.11354468, 4.7884938 , 3.74424985, 3.78472191, 4.24493851])
>>> model.params['NEIR0']
(100, 20, 10, 0)
>>> model._params['init_conditions']
(40, 40, 20, 0)
>>> model._params['total_population']
100
>>> np.random.seed(0)
>>> model = SEIRBayes(r0_dist=(1.96, 5.1, 0.99, 'lognorm'),
... alpha_inv_dist=[5.1, 4.9, 6.0])
>>> model.params['r0_dist'].rvs(10)
array([4.38658658, 3.40543675, 3.79154822, 4.79256981, 4.4716837 ,
2.63710471, 3.7714376 , 3.07405105, 3.10164345, 3.41204358])
>>> model.params['alpha_inv_dist'].rvs(3)
array([5.1, 4.9, 6. ])
'''
r0_dist = self.init_param_dist(r0_dist)
alpha_inv_dist = self.init_param_dist(alpha_inv_dist)
gamma_inv_dist = self.init_param_dist(gamma_inv_dist)
self.params = {
'NEIR0': NEIR0,
'r0_dist': r0_dist,
'gamma_inv_dist': gamma_inv_dist,
'alpha_inv_dist': alpha_inv_dist,
'fator_subr': fator_subr,
't_max': t_max
}
N, E0, I0, R0 = NEIR0
S0 = N - fator_subr*(I0 + E0 + R0)
self._params = {
'init_conditions': (S0, fator_subr*E0, fator_subr*I0, fator_subr*R0),
'fator_subr': fator_subr,
'total_population': N,
'alpha_inv_dist': alpha_inv_dist,
'gamma_inv_dist': gamma_inv_dist,
'r0_dist': r0_dist,
't_max': t_max,
'param_samples': {}
}
@classmethod
def init_param_dist(cls, param_init):
'''Initialize distribution from tuple, scipy or array-like object.
Args:
param_init (tuple, scipy.stats dist., or array-like)
Examples:
>>> np.random.seed(0)
>>> dist = SEIRBayes.init_param_dist((1, 2, .9, 'lognorm'))
>>> dist.interval(0.9)
(1.0, 2.0)
>>> dist = SEIRBayes.init_param_dist([0.1, 0.2, 0.3])
>>> dist.rvs(2)
array([0.1, 0.2])
>>> from scipy.stats import lognorm
>>> dist = SEIRBayes.init_param_dist(lognorm(s=.1, scale=1))
>>> dist.mean()
1.005012520859401
'''
if isinstance(param_init, tuple):
lb, ub, density, family = param_init
if family != 'lognorm':
raise NotImplementedError('Only family lognorm '
'is implemented')
dist = make_lognormal_from_interval(lb, ub, density)
elif isinstance(param_init, rv_frozen):
dist = param_init
else:
dist = EmpiricalDistribution(param_init)
return dist
def sample(self, size=1, return_param_samples=False):
'''Sample from model.
Args:
size (int): Number of samples.
return_param_samples (bool): If true, returns the parameter
samples (taken from {r0,gamma,alpha}_dist) used.
Examples:
>>> np.random.seed(0)
>>> model = SEIRBayes(t_max=5)
>>> S, E, I, R, t_space = model.sample(3)
>>> S.shape, E.shape, I.shape, R.shape
((5, 3), (5, 3), (5, 3), (5, 3))
>>> I
array([[10., 10., 10.],
[15., 10., 9.],
[17., 15., 8.],
[22., 17., 12.],
[24., 18., 15.]])
>>> t_space
array([0, 1, 2, 3, 4])
Return parameter samples for analysis.
>>> np.random.seed(0)
>>> model = SEIRBayes(t_max=5)
>>> (S, E, I, R, t_space, r0,
... alpha, gamma, beta) = model.sample(5, True)
>>> r0
array([5.74313347, 4.23505111, 4.81923138, 6.3885136 , 5.87744241])
>>> alpha
array([0.18303002, 0.15306351, 0.16825044, 0.18358956, 0.17569263])
>>> gamma
array([0.12007063, 0.08539356, 0.10375533, 0.1028759 , 0.09394099])
>>> np.isclose(r0, beta/gamma).all()
True
>>> t_space
array([0, 1, 2, 3, 4])
'''
t_space = np.arange(0, self._params['t_max'])
N = self._params['total_population']
S, E, I, R = [np.zeros((self._params['t_max'], size))
for _ in range(4)]
S[0, ], E[0, ], I[0, ], R[0, ] = self._params['init_conditions']
r0 = self._params['r0_dist'].rvs(size)
gamma = 1/self._params['gamma_inv_dist'].rvs(size)
alpha = 1/self._params['alpha_inv_dist'].rvs(size)
beta = r0*gamma
for t in t_space[1:]:
SE = npr.binomial(S[t-1, ].astype(int),
expon(scale=1/(beta*I[t-1, ]/N)).cdf(1))
EI = npr.binomial(E[t-1, ].astype(int),
expon(scale=1/alpha).cdf(1))
IR = npr.binomial(I[t-1, ].astype(int),
expon(scale=1/gamma).cdf(1))
dS = 0 - SE
dE = SE - EI
dI = EI - IR
dR = IR - 0
S[t, ] = S[t-1, ] + dS
E[t, ] = E[t-1, ] + dE
I[t, ] = I[t-1, ] + dI
R[t, ] = R[t-1, ] + dR
if return_param_samples:
return S, E, I, R, t_space, r0, alpha, gamma, beta
else:
return S, E, I, R, t_space