forked from dong03/MVSS-Net
-
Notifications
You must be signed in to change notification settings - Fork 0
/
evaluate.py
80 lines (71 loc) · 3.01 KB
/
evaluate.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
import os
import cv2
import numpy as np
import sys
import argparse
import pdb
from sklearn import metrics
from tqdm import tqdm
from common.utils import read_annotations, calculate_img_score, calculate_pixel_f1
import pickle
def parse_args():
parser = argparse.ArgumentParser(description='Evaluation')
parser.add_argument('--pred_dir', type=str, default='save_out')
parser.add_argument('--gt_file', type=str, default='None')
parser.add_argument('--th', type=float, default=0.5)
parser.add_argument("--model_name", type=str, help="Path to the pretrained model", default="ckpt/mvssnet.pth")
args = parser.parse_args()
return args
if __name__ == '__main__':
opt = parse_args()
annotation_file = opt.gt_file
dataset = os.path.basename(annotation_file).split('.')[0]
model_type = os.path.basename(opt.model_name).split('.')[0]
if not os.path.exists(annotation_file):
print("%s not exists, quit" % annotation_file)
sys.exit()
annotation = read_annotations(annotation_file)
scores, labs = [], []
f1s = [[], [], []]
results = []
for ix, (img, mask, lab) in enumerate(tqdm(annotation)):
pred_path = os.path.join(opt.pred_dir, dataset, model_type, 'pred', os.path.basename(img).split('.')[0] + '.png')
try:
pred = cv2.imread(pred_path, 0) / 255.0
except:
print("%s not exists" % pred_path)
continue
score = np.max(pred)
scores.append(score)
labs.append(lab)
f1 = 0
if lab != 0:
try:
gt = cv2.imread(mask, 0) / 255.0
except:
pdb.set_trace()
if pred.shape != gt.shape:
print("%s size not match" % pred_path)
continue
pred = (pred > opt.th).astype(np.float)
try:
f1, p, r = calculate_pixel_f1(pred.flatten(), gt.flatten())
except:
import pdb
pdb.set_trace()
f1s[lab-1].append(f1)
fpr, tpr, thresholds = metrics.roc_curve((np.array(labs) > 0).astype(np.int), scores, pos_label=1)
try:
img_auc = metrics.roc_auc_score((np.array(labs) > 0).astype(np.int), scores)
except:
print("only one class")
img_auc = 0.0
with open(os.path.join(opt.pred_dir, dataset, model_type, 'roc.pkl'), 'wb') as f:
pickle.dump({'fpr': fpr, 'tpr': tpr, 'th': thresholds, 'auc': img_auc}, f)
print("roc save at %s" % (os.path.join(opt.pred_dir, dataset, model_type, 'roc.pkl')))
meanf1 = np.mean(f1s[0]+f1s[1]+f1s[2])
print("pixel-f1: %.4f" % meanf1)
acc, sen, spe, f1_imglevel, tp, tn, fp, fn = calculate_img_score((np.array(scores) > 0.5), (np.array(labs) > 0).astype(np.int))
print("img level acc: %.4f sen: %.4f spe: %.4f f1: %.4f auc: %.4f"
% (acc, sen, spe, f1_imglevel, img_auc))
print("combine f1: %.4f" % (2*meanf1*f1_imglevel/(f1_imglevel+meanf1+1e-6)))