forked from gregfreeman/wavelab850
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathspectrum.m
executable file
·406 lines (380 loc) · 13.3 KB
/
spectrum.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
function [Spec,f] = spectrum(varargin)
%SPECTRUM Power spectrum estimate of one or two data sequences.
% P=SPECTRUM(X,NFFT,NOVERLAP,WIND) estimates the Power Spectral Density of
% signal vector X using Welch's averaged periodogram method. The signal X
% is divided into overlapping sections, each of which is detrended and
% windowed by the WINDOW parameter, then zero padded to length NFFT. The
% magnitude squared of the length NFFT DFTs of the sections are averaged
% to form Pxx. P is a two column matrix P = [Pxx Pxxc]; the second column
% Pxxc is the 95% confidence interval. The number of rows of P is NFFT/2+1
% for NFFT even, (NFFT+1)/2 for NFFT odd, or NFFT if the signal X is comp-
% lex. If you specify a scalar for WINDOW, a Hanning window of that length
% is used.
%
% [P,F] = SPECTRUM(X,NFFT,NOVERLAP,WINDOW,Fs) given a sampling frequency
% Fs returns a vector of frequencies the same length as Pxx at which the
% PSD is estimated. PLOT(F,P(:,1)) plots the power spectrum estimate
% versus true frequency.
%
% [P, F] = SPECTRUM(X,NFFT,NOVERLAP,WINDOW,Fs,Pr) where Pr is a scalar
% between 0 and 1, overrides the default 95% confidence interval and
% returns the Pr*100% confidence interval for Pxx instead.
%
% SPECTRUM(X) with no output arguments plots the PSD in the current
% figure window, with confidence intervals.
%
% The default values for the parameters are NFFT = 256 (or LENGTH(X),
% whichever is smaller), NOVERLAP = 0, WINDOW = HANNING(NFFT), Fs = 2,
% and Pr = .95. You can obtain a default parameter by leaving it out
% or inserting an empty matrix [], e.g. SPECTRUM(X,[],128).
%
% P = SPECTRUM(X,Y) performs spectral analysis of the two sequences
% X and Y using the Welch method. SPECTRUM returns the 8 column array
% P = [Pxx Pyy Pxy Txy Cxy Pxxc Pyyc Pxyc]
% where
% Pxx = X-vector power spectral density
% Pyy = Y-vector power spectral density
% Pxy = Cross spectral density
% Txy = Complex transfer function from X to Y = Pxy./Pxx
% Cxy = Coherence function between X and Y = (abs(Pxy).^2)./(Pxx.*Pyy)
% Pxxc,Pyyc,Pxyc = Confidence range.
% All input and output options are otherwise exactly the same as for the
% single input case.
%
% SPECTRUM(X,Y) with no output arguments will plot Pxx, Pyy, abs(Txy),
% angle(Txy) and Cxy in sequence, pausing between plots.
%
% SPECTRUM(X,...,DFLAG), where DFLAG can be 'linear', 'mean' or 'none',
% specifies a detrending mode for the prewindowed sections of X (and Y).
% DFLAG can take the place of any parameter in the parameter list
% (besides X) as long as it is last, e.g. SPECTRUM(X,'none');
%
% See also PSD, CSD, TFE, COHERE, SPECGRAM, SPECPLOT, DETREND, PMTM,
% PMUSIC.
% ETFE, SPA, and ARX in the Identification Toolbox.
% Author(s): J.N. Little, 7-9-86
% C. Denham, 4-25-88, revised
% L. Shure, 12-20-88, revised
% J.N. Little, 8-31-89, revised
% L. Shure, 8-11-92, revised
% T. Krauss, 4-15-93, revised
% Copyright 1988-2000 The MathWorks, Inc.
% $Revision: 1.4 $ $Date: 2000/06/09 22:07:37 $
% The units on the power spectra Pxx and Pyy are such that, using
% Parseval's theorem:
%
% SUM(Pxx)/LENGTH(Pxx) = SUM(X.^2)/LENGTH(X) = COV(X)
%
% The RMS value of the signal is the square root of this.
% If the input signal is in Volts as a function of time, then
% the units on Pxx are Volts^2*seconds = Volt^2/Hz.
%
% Here are the covariance, RMS, and spectral amplitude values of
% some common functions:
% Function Cov=SUM(Pxx)/LENGTH(Pxx) RMS Pxx
% a*sin(w*t) a^2/2 a/sqrt(2) a^2*LENGTH(Pxx)/4
%Normal: a*rand(t) a^2 a a^2
%Uniform: a*rand(t) a^2/12 a/sqrt(12) a^2/12
%
% For example, a pure sine wave with amplitude A has an RMS value
% of A/sqrt(2), so A = SQRT(2*SUM(Pxx)/LENGTH(Pxx)).
%
% See Page 556, A.V. Oppenheim and R.W. Schafer, Digital Signal
% Processing, Prentice-Hall, 1975.
error(nargchk(1,8,nargin))
[msg,x,y,nfft,noverlap,window,Fs,p,dflag]=specchk(varargin);
error(msg)
if isempty(p),
p = .95; % default confidence interval even if not asked for
end
n = length(x); % Number of data points
nwind = length(window);
if n < nwind % zero-pad x (and y) if length less than the window length
x(nwind)=0; n=nwind;
if ~isempty(y), y(nwind)=0; end
end
x = x(:); % Make sure x and y are column vectors
y = y(:);
k = fix((n-noverlap)/(nwind-noverlap)); % Number of windows
% (k = fix(n/nwind) for noverlap=0)
index = 1:nwind;
KMU = k*norm(window)^2; % Normalizing scale factor ==> asymptotically unbiased
% KMU = k*sum(window)^2;% alt. Nrmlzng scale factor ==> peaks are about right
if (isempty(y)) % Single sequence case.
Pxx = zeros(nfft,1); Pxx2 = zeros(nfft,1);
for i=1:k
if strcmp(dflag,'linear')
xw = window.*detrend(x(index));
elseif strcmp(dflag,'none')
xw = window.*(x(index));
else
xw = window.*detrend(x(index),0);
end
index = index + (nwind - noverlap);
Xx = abs(fft(xw,nfft)).^2;
Pxx = Pxx + Xx;
Pxx2 = Pxx2 + abs(Xx).^2;
end
% Select first half
if ~any(any(imag(x)~=0)), % if x and y are not complex
if rem(nfft,2), % nfft odd
select = [1:(nfft+1)/2];
else
select = [1:nfft/2+1]; % include DC AND Nyquist
end
else
select = 1:nfft;
end
Pxx = Pxx(select);
Pxx2 = Pxx2(select);
cPxx = zeros(size(Pxx));
if k > 1
c = (k.*Pxx2-abs(Pxx).^2)./(k-1);
c = max(c,zeros(size(Pxx)));
cPxx = sqrt(c);
end
ff = sqrt(2)*erfinv(p); % Equal-tails.
Pxx = Pxx/KMU;
Pxxc = ff.*cPxx/KMU;
P = [Pxx Pxxc];
else
Pxx = zeros(nfft,1); % Dual sequence case.
Pyy = Pxx; Pxy = Pxx; Pxx2 = Pxx; Pyy2 = Pxx; Pxy2 = Pxx;
for i=1:k
if strcmp(dflag,'linear')
xw = window.*detrend(x(index));
yw = window.*detrend(y(index));
elseif strcmp(dflag,'none')
xw = window.*(x(index));
yw = window.*(y(index));
else
xw = window.*detrend(x(index),0);
yw = window.*detrend(y(index),0);
end
index = index + (nwind - noverlap);
Xx = fft(xw,nfft);
Yy = fft(yw,nfft);
Yy2 = abs(Yy).^2;
Xx2 = abs(Xx).^2;
Xy = Yy .* conj(Xx);
Pxx = Pxx + Xx2;
Pyy = Pyy + Yy2;
Pxy = Pxy + Xy;
Pxx2 = Pxx2 + abs(Xx2).^2;
Pyy2 = Pyy2 + abs(Yy2).^2;
Pxy2 = Pxy2 + Xy .* conj(Xy);
end
% Select first half
if ~any(any(imag([x y])~=0)), % if x and y are not complex
if rem(nfft,2), % nfft odd
select = [1:(nfft+1)/2];
else
select = [1:nfft/2+1]; % include DC AND Nyquist
end
else
select = 1:nfft;
end
Pxx = Pxx(select);
Pyy = Pyy(select);
Pxy = Pxy(select);
Pxx2 = Pxx2(select);
Pyy2 = Pyy2(select);
Pxy2 = Pxy2(select);
cPxx = zeros(size(Pxx));
cPyy = cPxx;
cPxy = cPxx;
if k > 1
c = max((k.*Pxx2-abs(Pxx).^2)./(k-1),zeros(size(Pxx)));
cPxx = sqrt(c);
c = max((k.*Pyy2-abs(Pyy).^2)./(k-1),zeros(size(Pxx)));
cPyy = sqrt(c);
c = max((k.*Pxy2-abs(Pxy).^2)./(k-1),zeros(size(Pxx)));
cPxy = sqrt(c);
end
Txy = Pxy./Pxx;
Cxy = (abs(Pxy).^2)./(Pxx.*Pyy);
ff = sqrt(2)*erfinv(p); % Equal-tails.
Pxx = Pxx/KMU;
Pyy = Pyy/KMU;
Pxy = Pxy/KMU;
Pxxc = ff.*cPxx/KMU;
Pxyc = ff.*cPxy/KMU;
Pyyc = ff.*cPyy/KMU;
P = [Pxx Pyy Pxy Txy Cxy Pxxc Pyyc Pxyc];
end
freq_vector = (select - 1)'*Fs/nfft;
if nargout == 0, % do plots
newplot;
c = [max(Pxx-Pxxc,0) Pxx+Pxxc];
c = c.*(c>0);
semilogy(freq_vector,Pxx,freq_vector,c(:,1),'--',...
freq_vector,c(:,2),'--');
title('Pxx - X Power Spectral Density')
xlabel('Frequency')
if (isempty(y)), % single sequence case
return
end
pause
newplot;
c = [max(Pyy-Pyyc,0) Pyy+Pyyc];
c = c.*(c>0);
semilogy(freq_vector,Pyy,freq_vector,c(:,1),'--',...
freq_vector,c(:,2),'--');
title('Pyy - Y Power Spectral Density')
xlabel('Frequency')
pause
newplot;
semilogy(freq_vector,abs(Txy));
title('Txy - Transfer function magnitude')
xlabel('Frequency')
pause
newplot;
plot(freq_vector,180/pi*angle(Txy)), ...
title('Txy - Transfer function phase')
xlabel('Frequency')
pause
newplot;
plot(freq_vector,Cxy);
title('Cxy - Coherence')
xlabel('Frequency')
elseif nargout ==1,
Spec = P;
elseif nargout ==2,
Spec = P;
f = freq_vector;
end
function [msg,x,y,nfft,noverlap,window,Fs,p,dflag] = specchk(P)
%SPECCHK Helper function for SPECTRUM
% SPECCHK(P) takes the cell array P and uses each cell as
% an input argument. Assumes P has between 1 and 7 elements.
% Author(s): T. Krauss, 4-6-93
msg = [];
if length(P{1})<=1
msg = 'Input data must be a vector, not a scalar.';
x = [];
y = [];
elseif (length(P)>1),
if (all(size(P{1})==size(P{2})) & (length(P{1})>1) ) | ...
length(P{2})>1, % 0ne signal or 2 present?
% two signals, x and y, present
x = P{1}; y = P{2};
% shift parameters one left
P(1) = [];
else
% only one signal, x, present
x = P{1}; y = [];
end
else % length(P) == 1
% only one signal, x, present
x = P{1}; y = [];
end
% now x and y are defined; let's get the rest
if length(P) == 1
nfft = min(length(x),256);
window = hanning(nfft);
noverlap = 0;
Fs = 2;
p = [];
dflag = 'linear';
elseif length(P) == 2
if isempty(P{2}), dflag = 'linear'; nfft = min(length(x),256);
elseif isstr(P{2}), dflag = P{2}; nfft = min(length(x),256);
else dflag = 'linear'; nfft = P{2}; end
window = hanning(nfft);
noverlap = 0;
Fs = 2;
p = [];
elseif length(P) == 3
if isempty(P{2}), nfft = min(length(x),256); else nfft=P{2}; end
if isempty(P{3}), dflag = 'linear'; noverlap = 0;
elseif isstr(P{3}), dflag = P{3}; noverlap = 0;
else dflag = 'linear'; noverlap = P{3}; end
window = hanning(nfft);
Fs = 2;
p = [];
elseif length(P) == 4
if isempty(P{2}), nfft = min(length(x),256); else nfft=P{2}; end
if isstr(P{4})
dflag = P{4};
window = hanning(nfft);
else
dflag = 'linear';
window = P{4}; window = window(:); % force window to be a column
if length(window) == 1, window = hanning(window); end
if isempty(window), window = hanning(nfft); end
end
if isempty(P{3}), noverlap = 0; else noverlap=P{3}; end
Fs = 2;
p = [];
elseif length(P) == 5
if isempty(P{2}), nfft = min(length(x),256); else nfft=P{2}; end
window = P{4}; window = window(:); % force window to be a column
if length(window) == 1, window = hanning(window); end
if isempty(window), window = hanning(nfft); end
if isempty(P{3}), noverlap = 0; else noverlap=P{3}; end
if isstr(P{5})
dflag = P{5};
Fs = 2;
else
dflag = 'linear';
if isempty(P{5}), Fs = 2; else Fs = P{5}; end
end
p = [];
elseif length(P) == 6
if isempty(P{2}), nfft = min(length(x),256); else nfft=P{2}; end
window = P{4}; window = window(:); % force window to be a column
if length(window) == 1, window = hanning(window); end
if isempty(window), window = hanning(nfft); end
if isempty(P{3}), noverlap = 0; else noverlap=P{3}; end
if isempty(P{5}), Fs = 2; else Fs = P{5}; end
if isstr(P{6})
dflag = P{6};
p = [];
else
dflag = 'linear';
if isempty(P{6}), p = .95; else p = P{6}; end
end
elseif length(P) == 7
if isempty(P{2}), nfft = min(length(x),256); else nfft=P{2}; end
window = P{4}; window = window(:); % force window to be a column
if length(window) == 1, window = hanning(window); end
if isempty(window), window = hanning(nfft); end
if isempty(P{3}), noverlap = 0; else noverlap=P{3}; end
if isempty(P{5}), Fs = 2; else Fs = P{5}; end
if isempty(P{6}), p = .95; else p = P{6}; end
if isstr(P{7})
dflag = P{7};
else
msg = 'DFLAG parameter must be a string.'; return
end
end
% NOW do error checking
if (nfft<length(window)),
msg = 'Requires window''s length to be no greater than the FFT length.';
end
if (noverlap >= length(window)),
msg = 'Requires NOVERLAP to be strictly less than the window length.';
end
if (nfft ~= abs(round(nfft)))|(noverlap ~= abs(round(noverlap))),
msg = 'Requires positive integer values for NFFT and NOVERLAP.';
end
if ~isempty(p),
if (prod(size(p))>1)|(p(1,1)>1)|(p(1,1)<0),
msg = 'Requires confidence parameter to be a scalar between 0 and 1.';
end
end
if min(size(x))~=1,
msg = 'Requires vector (either row or column) input.';
end
if (min(size(y))~=1)&(~isempty(y)),
msg = 'Requires vector (either row or column) input.';
end
if (length(x)~=length(y))&(~isempty(y)),
msg = 'Requires X and Y be the same length.';
end
%
% Part of Wavelab Version 850
% Built Tue Jan 3 13:20:38 EST 2006
% This is Copyrighted Material
% For Copying permissions see COPYING.m
% Comments? e-mail wavelab@stat.stanford.edu