forked from anmol098/algorithms_and_data_structures
-
Notifications
You must be signed in to change notification settings - Fork 0
/
lowest_common_ancestor.py
63 lines (53 loc) · 1.54 KB
/
lowest_common_ancestor.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
"""
Given a binary search tree, determine the lowest common ancestor of two given nodes with data
key1 and key2. Assumption is key1 and key2 exists in tree
Example
20
/ \
8 22
/ \
4 12
/ \
10 14
In the above tree, LCA of 10 and 14 is 12
similarly 4 and 22 will have LCA 20
"""
class Node:
def __init__(self, data):
"""Binary Search Tree Node representation"""
self.data = data
self.left = None
self.right = None
def LCA(root, key1, key2):
if root is None:
return None
if root.data > key1 and root.data > key2:
return LCA(root.left, key1, key2)
elif root.data < key1 and root.data < key2:
return LCA(root.right, key1, key2)
return root
def inorder(root):
if root is None:
return
inorder(root.left)
print(root.data, end =' ')
inorder(root.right)
if __name__ == "__main__":
root = Node(20)
root.right = Node(22)
root.left = Node(8)
root.left.left = Node(4)
root.left.right= Node(12)
root.left.right.right = Node(14)
root.left.right.left = Node(10)
print("Inorder traversal of the tree:")
inorder(root);
print()
print("LCA of nodes with data 10 and 14 is :")
print(LCA(root, 14, 10).data);
print("LCA of nodes with data 14 and 8 is :")
print(LCA(root, 14, 8).data);
print("LCA of root with data 4 and 22 is :")
print(LCA(root, 4, 22).data);
print("LCA of root with data 14 and 10 is :")
print(LCA(root, 10, 14).data);