-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathact_pylike.py
308 lines (264 loc) · 11.9 KB
/
act_pylike.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
import numpy as np
#from cobaya.conventions import _path_install
from cobaya.log import LoggedError
from cobaya.tools import are_different_params_lists
from cobaya.likelihoods._base_classes import _InstallableLikelihood
import os,sys
import utils
import fg as afg
from soapack import interfaces as sints
sz_temp_file = "data/actpol_2f_full_s1316_2flux_fin/data/Fg/cl_tsz_150_bat.dat"
sz_x_cib_temp_file = "data/actpol_2f_full_s1316_2flux_fin/data/Fg/sz_x_cib_template.dat"
ksz_temp_file = "data/actpol_2f_full_s1316_2flux_fin/data/Fg/cl_ksz_bat.dat"
def get_band(array):
a = array.split("_")[1]
assert a[0]=='f'
if a[1:]=='150':
return '150'
elif a[1:]=='090':
return '95'
else:
raise ValueError
def save_coadd_matrix(spec,band1,band2,flux,path_root):
import pandas as pd
from scipy.linalg import block_diag
if flux=='15mJy':
regions = ['deep56']
elif flux=='100mJy':
regions = ['boss'] + [f'advact_window{x}' for x in range(6)]
else:
raise ValueError
nbin = 59
rbin = 7 # remove first 7 bins
def rmap(r):
if r[:6]=='advact': return 'advact'
else: return r
barrays = []
icovs = []
for region in regions:
order = np.load(f"data/big_coadd_weights/200226/{region}_all_C_ell_data_order_190918.npy")
df = pd.DataFrame(order,columns=['t1','t2','region','s1','s2','a1','a2']).stack().str.decode('utf-8').unstack()
df = df[(df.t1==spec[0]) & (df.t2==spec[1]) & (df.region==rmap(region)+"_")]
arrays = []
for index, row in df.iterrows():
b1 = get_band(row.a1)
b2 = get_band(row.a2)
if (b1==band1 and b2==band2) or (b1==band2 and b2==band1):
arrays.append((index,rmap(region),row.s1,row.s2,row.a1,row.a2))
barrays.append((index,rmap(region),row.s1,row.s2,row.a1,row.a2))
adf = pd.DataFrame(arrays,columns = ['i','r','s1','s2','a1','a2'])
ids = adf.i.to_numpy()
oids = []
for ind in ids:
oids = oids + list(range(ind*nbin+rbin,(ind+1)*nbin))
"""
Covmat selection
"""
cov = np.load(f"data/big_coadd_weights/200226/{region}_all_covmat_190918.npy")
ocov = cov[oids,:][:,oids]
icovs.append(np.linalg.inv(ocov))
icov = block_diag(*icovs)
nspec = 1
nbins = 52
norig = len(barrays)
N_spec = nbins*nspec
# building projection matrix with shape nbins*nspec x nbins*norig
pmat = np.identity(N_spec)
Pmat = np.identity(N_spec)
for i in range(1,norig):
Pmat = np.append(Pmat,pmat,axis=1)
icov_ibin = np.linalg.inv(np.dot(Pmat,np.dot(icov,Pmat.T)))
np.savetxt(f'{path_root}_{spec}_{band1}_{band2}_{flux}_icov.txt',icov)
np.savetxt(f'{path_root}_{spec}_{band1}_{band2}_{flux}_icov_ibin.txt',icov_ibin)
np.savetxt(f'{path_root}_{spec}_{band1}_{band2}_{flux}_pmat.txt',Pmat)
barrays = np.array(barrays,dtype=[('i','i8'),('r','U32'),('s1','U32'),('s2','U32'),('a1','U32'),('a2','U32')])
np.savetxt(f'{path_root}_{spec}_{band1}_{band2}_{flux}_arrays.txt', barrays,fmt=['%d','%s','%s','%s','%s','%s'])
def load_coadd_matrix(spec,band1,band2,flux,path_root):
icov = np.loadtxt(f'{path_root}_{spec}_{band1}_{band2}_{flux}_icov.txt',)
icov_ibin = np.loadtxt(f'{path_root}_{spec}_{band1}_{band2}_{flux}_icov_ibin.txt',)
pmat = np.loadtxt(f'{path_root}_{spec}_{band1}_{band2}_{flux}_pmat.txt',)
arrays = np.loadtxt(f'{path_root}_{spec}_{band1}_{band2}_{flux}_arrays.txt',dtype=[('i','i8'),('r','U32'),('s1','U32'),('s2','U32'),('a1','U32'),('a2','U32')],ndmin=1)
return icov,icov_ibin,pmat,arrays
class StevePower(object):
def __init__(self,froot,flux,infval=1e10,tt_lmin=600,tt_lmax=None):
spec=np.loadtxt(f"{froot}coadd_cl_{flux}_data_200124.txt")
cov =np.loadtxt(f'{froot}coadd_cov_{flux}_200116.txt')
self.bbl =np.loadtxt(f'{froot}coadd_bpwf_{flux}_191127_lmin2.txt').reshape((10,52,7924))
self.spec = spec[:520]
self.cov = cov[:520,:520]
nbin = 52
self.ells = np.arange(2,7924+2)
rells = np.repeat(self.ells[None],10,axis=0)
self.ls = self.bin(rells)
if tt_lmin is not None:
n = 3
ids = []
ids = np.argwhere(self.ls<tt_lmin)[:,0]
ids = ids[ids<nbin*3]
self.cov[:,ids] = 0
self.cov[ids,:] = 0
self.cov[ids,ids] = infval
if tt_lmax is not None:
n = 3
ids = []
ids = np.argwhere(self.ls>tt_lmax)[:,0]
ids = ids[ids<nbin*3]
self.cov[:,ids] = 0
self.cov[ids,:] = 0
self.cov[ids,ids] = infval
self.cinv = np.linalg.inv(self.cov)
def bin(self,dls):
bdl = np.einsum('...k,...k',self.bbl,dls[:,None,:])
return bdl.reshape(-1)
def select(self,bls,spec,band1,band2,shift=52):
I = {'tt':0,'te':3,'ee':7}
i = { 'tt':{('95','95'): 0,('95','150'): 1,('150','95'): 1,('150','150'): 2},
'te':{('95','95'): 0,('95','150'): 1,('150','95'): 2,('150','150'): 3},
'ee':{('95','95'): 0,('95','150'): 1,('150','95'): 1,('150','150'): 2} }
mind = i[spec][(band1,band2)]
sel = np.s_[(I[spec]+mind)*shift:(I[spec]+mind+1)*shift]
if bls.ndim==1: return bls[sel]
elif bls.ndim==2: return bls[sel,sel]
else: raise ValueError
class act_pylike(_InstallableLikelihood):
def initialize(self):
self.l_max = 6000
self.log.info("Initialising.")
# Load path_params from yaml file
self.fparams = utils.config_from_yaml('params.yml')['fixed']
self.aparams = utils.config_from_yaml('params.yml')['act_like']
self.bpmodes = utils.config_from_yaml('params.yml')['bpass_modes']
self.bands = self.aparams['bands']
# Read data
self.prepare_data()
# State requisites to the theory code
self.requested_cls = ["tt", "te", "ee"]
self.expected_params = [
"a_tsz", # tSZ
"xi", # tSZ-CIB cross-correlation coefficient
"a_c", # clustered CIB power
"beta_CIB", # CIB frequency scaling
"a_ksz", # kSZ
"a_d", # dusty/CIB Poisson
"a_p_tt_15", # TT radio Poisson with given flux cut
"a_p_tt_100", # TT radio Poisson with given flux cut
"a_p_te", # TE Poisson sources
"a_p_ee", # EE Poisson sources
"a_g_tt", # TT Galactic dust at ell=500
"a_g_te", # TE Galactic dust at ell=500
"a_g_ee", # EE Galactic dust at ell=500
"a_s_te", # TE Synchrotron at ell=500
"a_s_ee", # EE Synchrotron at ell=500
"cal_95",
"cal_150",
"yp_95",
"yp_150"
]
self.cal_params = []
nbands = len(self.bands)
for i in range(nbands):
self.cal_params.append(f"ct{i}") # Temperature Calibration
self.cal_params.append(f"yp{i}") # Polarization gain
self.log.debug(
f"ACT-like {self.flux} initialized." )
def initialize_with_params(self):
# Check that the parameters are the right ones
differences = are_different_params_lists(
self.input_params, self.expected_params,
name_A="given", name_B="expected")
if differences:
raise LoggedError(
self.log, "Configuration error in parameters: %r.",
differences)
def get_requirements(self):
return {'Cl': {'tt': self.l_max,'te': self.l_max,'ee': self.l_max}}
def logp(self, **params_values):
cl = self.theory.get_Cl(ell_factor=True)
return self.loglike(cl, **params_values)
def loglike(self, cl, **params_values):
ps_vec = self._get_power_spectra(cl, **params_values)
delta = self.sp.spec - ps_vec
logp = -0.5 * np.dot(delta,np.dot(self.sp.cinv,delta))
self.log.debug(
f"ACT-like {self.flux} lnLike value = {logp} (chisquare = {-2 * logp})")
return logp
def prepare_data(self, verbose=False):
flux = self.flux
self.sp = StevePower("data/actpol_2f_full_s1316_2flux_fin/data/data_act/ps_200116/",self.flux)
if self.bandpass:
sbands = { 'TT':[('95','95'),('95','150'),('150','150')],
'TE':[('95','95'),('95','150'),('150','95'),('150','150')],
'EE':[('95','95'),('95','150'),('150','150')] }
self.coadd_data = {}
for spec in ['TT','TE','EE']:
self.coadd_data[spec] = {}
for bands in sbands[spec]:
band1,band2 = bands
self.coadd_data[spec][bands] = load_coadd_matrix(spec,band1,band2,
self.flux,"data/coadd_data/coadds_20200305")
dm = sints.ACTmr3()
beam_dict = {}
bp_dict = {}
cfreq_dict = {}
cfreqs = {'pa1_f150':148.9,'pa2_f150':149.1,'pa3_f150':146.6,'pa3_f090':97.1}
if flux=='15mJy':
anames = [f'd56_0{i}' for i in range(1,7)]
elif flux=='100mJy':
anames = [f'boss_0{i}' for i in range(1,5)] + [f's16_0{i}' for i in range(1,4)]
else:
raise ValueError
pnames = []
for aname in anames:
season,array,freq,patch = sints.arrays(aname,'season'),sints.arrays(aname,'array'),sints.arrays(aname,'freq'),sints.arrays(aname,'region')
pname = '_'.join([season,array,freq])
pnames.append(pname)
beam_dict[pname] = dm.get_beam_fname(season,patch,array+"_"+freq, version=None)
bp_dict[pname] = "data/bpass/"+dm.get_bandpass_file_name(array+"_"+freq)
cfreq_dict[pname] = cfreqs[array + "_" + freq]
else:
pnames = None
bp_dict = None
beam_dict = None
cfreq_dict = None
self.fgpower = afg.ForegroundPowers(self.fparams,self.sp.ells,
sz_temp_file,ksz_temp_file,sz_x_cib_temp_file,flux_cut=self.flux,
arrays=pnames,bp_file_dict=bp_dict,beam_file_dict=beam_dict,cfreq_dict=cfreq_dict)
def _get_power_spectra(self, cl, **params_values):
if self.theory_debug is not None:
ells,cltt,clee,clte = np.loadtxt(self.theory_debug,usecols=[0,1,2,4],unpack=True)
assert ells[0] == 2
assert ells[1] == 3
cl = {}
cl['ell'] = np.zeros(2+self.l_max+50)
cl['tt'] = np.zeros(2+self.l_max+50)
cl['te'] = np.zeros(2+self.l_max+50)
cl['ee'] = np.zeros(2+self.l_max+50)
cl['ell'][1] = 1
cl['ell'][2:] = ells[:self.l_max+50]
cl['tt'][2:] = cltt[:self.l_max+50]
cl['te'][2:] = clte[:self.l_max+50]
cl['ee'][2:] = clee[:self.l_max+50]
fgdict = {k: params_values[k] for k in self.expected_params}
fgdict.update(self.fparams)
nells_camb = cl['ell'].size
nells = self.sp.ells.size
assert cl['ell'][0]==0
assert cl['ell'][1]==1
assert self.sp.ells[0]==2
assert self.sp.ells[1]==3
ptt = np.zeros(nells+2)
pte = np.zeros(nells+2)
pee = np.zeros(nells+2)
ptt[2:nells_camb] = cl['tt'][2:]
pte[2:nells_camb] = cl['te'][2:]
pee[2:nells_camb] = cl['ee'][2:]
if self.bandpass:
fpower = self.fgpower.get_theory_bandpassed(self.coadd_data,self.sp.ells,
self.sp.bbl,ptt[2:],pte[2:],pee[2:],fgdict,lmax=self.l_max)
else:
fpower = self.fgpower.get_theory(self.sp.ells,self.sp.bin,ptt[2:],pte[2:],pee[2:],fgdict,lmax=self.l_max)
return fpower
class act15(act_pylike):
flux = '15mJy'
class act100(act_pylike):
flux = '100mJy'