Skip to content

Latest commit

 

History

History
449 lines (327 loc) · 14.5 KB

README.md

File metadata and controls

449 lines (327 loc) · 14.5 KB

AI FREE 周末讀書會: PyTorch/ Image Classification

A step-by-step workthrough tutorial

Eric

2021/05/29

Specify Env:

  • Python 3.7.10
  • PyTorch 1.7.1 (cpu version) (gpu version works actually well)

Outline:

  • Step 01: Installation
  • Step 02: Get Dataset
  • Step 03: Arrange File Structure
  • Step 04: Have a look of image
  • Step 05: Define Custom Dataset Class
  • Step 06: Define DataLoader w.r.t Dataset Class
  • Step 07: Define LeNet5 - like Structure
  • Step 08: Define Loss Function
  • Step 09: Training Phase
  • Step 10: Plot Accuracy & Loss Curves
  • Step 11: Testing Phase

Start:

  • Step 01: Installation

    • Anaconda

    • Conda Create Env

      # 示範使用 CPU,請使用這個,Python 3.7 和 PyTorch 1.7.X 是好朋友 ^_^
      conda create --name "PT_CPU_1.7.1_DEMO" python=3.7
      
      # 確認新環境建置完成
      conda env list
      
      # 啟動新環境
      conda activate PT_CPU_1.7.1_DEMO
    • PyTorch: 1.7.X, and other useful packages (I spent 10 mins on this)

      # 核心: 安裝 pytorch 1.7.1 CPU Version
      conda install pytorch==1.7.1 torchvision==0.8.2 torchaudio==0.7.2 cpuonly -c pytorch
      
      ### Other Useful Packages
      # 1. GUI 介面,方便寫程式 → jupyter notebook
      conda install jupyter notebook
      
      # 2. 用來讀 Metadata.csv → pandas
      conda install pandas
      
      # 3. 知道 loop 的進度 → tqdm
      conda install tqdm
      
      # 4. 讀影像,其他選擇如 PIL,總之這邊使用 OpenCV → opencv
      conda install -c conda-forge opencv
      
      # 5. 畫圖 → matplotlib
      conda install matplotlib
      
      # 6. 矩陣運算 → numpy
      conda install numpy
    • 示範上考慮到大家不一定都有顯卡,所以使用 CPU,若想要裝 higher version (e.g. 1.8.X) or GPU Version,請參考以下網址。

    • PyTorch Installation Link: https://pytorch.org/get-started/previous-versions/

  • Step 02: Get Dataset

    Temp: Download From Google Cloud

  • Step 03: Arrange File Structure

    • 預期的專案結構如下:

      • . / test_images/
      • . / train_images/
      • . / test.csv
      • . / train.csv
      • . / LeNet5.ipynb ← 這個 Python File 是要自己新建的

    • train_images

    • train.csv


  • 在 PyTorch,Train 的時候提供 Batch 需要使用 DataLoader,而要使用 DataLoader 前,會需要先完成自定義的 Dataset Class。
  • 下方正式進入程式碼,請大家移動 cd 至專案路徑當中,並開啟 jupyter notebook
jupyter notebook

然後點選: LeNet5.ipynb


  • Step 04: Have a look of image

    • import 此步驟需要之套件

      import pandas as pd
      import cv2 as cv
      import matplotlib.pyplot as plt
    • Mapping table: Python Dictionary is our friend!

      label_map_table = {
          0: "normal",
          1: "void",
          2: "Horizontal Defect",
          3: "Vertical Defect",
          4: "Edge Defect",
          5: "Partical"
      }
    • Visualize it!

      root_train = "./train_images/"
      root_test = "./test_images/"
      train_csv = "./train.csv"
      test_csv = "./test.csv"
      df_train = pd.read_csv(train_csv) # df stands for dataframe
      
      id = 137 # change this number to see other outcome
      png_img = cv.imread(root_train + df_train.ID[id])
      label = df_train.Label[id]
      print(f"[Label] => {df_train.Label[id]}; [Label Actually Means] => {label_map_table[label]}")
      plt.imshow(png_img)
      plt.show()
    • Conclusion:

  • Step 05: Define Custom Dataset Class

    • import 此步驟需要的套件

      from torch.utils.data.dataset import Dataset
      from torchvision import transforms
      import numpy as np
      import pandas as pd
      import cv2 as cv
    • 重頭戲: 動手寫 Custom DataLoader

      # [Input Args]
      # 1. target_csv <string>: It's the metadata file describe the name of image and its label.
      # 2. root_path  <string>: It's the path to the image folder. Combination of this and name is the full path to the image.
      # 3. height <int>: Use this for elastically resize image to desired shape.
      # 4. width <int>: Use this for elastically resize image to desired shape.
      class AOI_Dataset(Dataset):
          
          # perform logic operation: think what kind of info I need when loading data
          def __init__(self, target_csv, root_path, height, width, transform = None):
              
              # height, width
              self.height = height
              self.width = width
      
              # register self
              self.target_csv = target_csv
              self.root_path = root_path
      
              # 1. Read CSV file through root_path
              self.df = pd.read_csv(self.target_csv)
      
              # 2. Remember the length
              self.count = len(self.df)
      
              # 3. transform
              self.transforms = transform
          
          # input: index
          # output: pair of (image, lable)
          def __getitem__(self, index):
              # Read images
              img = cv.imread(self.root_path + self.df.ID[index])
              
              # Use resize to a smaller shape when training takes so long.
              img_resize = cv.resize(img, (self.height, self.width))
      
              # To Tensor
              img_tensor = self.transforms(np.uint8(img_resize))
              
              # Get label
              label = self.df.Label[index]
              
              return (img_tensor, label)
          
          def __len__(self):
              return self.count
    • REF: PyTorch 官方 Dataset & DataLoader 教學 [Link]

  • Step 06: Define DataLoader w.r.t Dataset Class

    • import 此步驟需要的套件

      import torch
      from torchvision import transforms
    • DataLoader

      height = 512
      width = 512
      
      transform_train = transforms.Compose([
          transforms.ToTensor(),
          # add mroe in the future
      ])
      
      Train_Dataset = AOI_Dataset(target_csv = train_csv, root_path = root_train, height = height, width = width, transform = transform_train)
      
      batch_size = 8
      
      Train_DataLoader = torch.utils.data.DataLoader(Train_Dataset, batch_size = batch_size)
  • Step 07: Define LeNet5-like Structure

    • Yann Lecun

      • Original Version of LeNet5 in his paper.

    • Structure of Original LeNet5

    import torch
    import torch.nn as nn
    import torch.nn.functional as F
    
    # Use GPU
    device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
    print(device)
    
    class LeNet(nn.Module):
        def __init__(self):
            super().__init__()
            self.conv1 = nn.Conv2d( 3,  6, 3, padding = 1) # 加深 channel
            self.conv2 = nn.Conv2d( 6, 16, 3, padding = 1) # 加深 channel
            self.conv3 = nn.Conv2d(16, 50, 3, padding = 1) # 加深 channel
            self.pool = nn.MaxPool2d(2, 2)
            self.fc1 = nn.Linear(50 * 64 * 64, 120) # Why 64 Why 50
            self.fc2 = nn.Linear(120, 84)
            self.fc3 = nn.Linear(84, 6)
            
        def forward(self, x):
            x = self.pool(F.relu(self.conv1(x))) # 512 x 512 x  3 -> 256 x 256 x  6
            x = self.pool(F.relu(self.conv2(x))) # 256 x 256 x  6 -> 128 x 128 x 16
            x = self.pool(F.relu(self.conv3(x))) # 128 x 128 x 16 ->  64 x  64 x 50
            x = x.view(-1, 50 * 64 * 64)
            x = F.relu(self.fc1(x))
            x = F.relu(self.fc2(x))
            x = self.fc3(x)
            #x = F.softmax(x)
            return x
        
    lenet = LeNet()
    print(lenet.to(device))
  • Step 08: Define Loss Function and setup Hyper Parameters

    import torch.optim as optim
    
    criterion = nn.CrossEntropyLoss()
    optimizer = optim.RMSprop(lenet.parameters(), lr=1e-4) # learning rate is also adjustable
    epoch = 10 # change this to whatever number you'd like
  • Step 09: Training Phase

    from tqdm import tqdm
    import time
    
    tic = time.time()
    train_acc_list = []
    val_acc_list = []
    loss_list = []
    print_probe_num = 10
    
    for epoch in range(epoch):  # loop over the dataset multiple times
    
        running_loss = 0.0
        
        for i, data in enumerate(Train_DataLoader, 0):
            # Select input and output pair
            inputs, labels = data[0].to(device), data[1].to(device)
            
            # Clear gradient
            optimizer.zero_grad()
    
            # Forward Propagation
            outputs = lenet(inputs.float())
            
            # Compute Loss
            loss = criterion(outputs, labels)
            
            # Backward Propagation
            loss.backward()
            
            # Update Weight
            optimizer.step()
    
            # Just want to calculate the running loss 移動平均 loss!!
            running_loss += loss.item()
            if i % print_probe_num == (print_probe_num - 1):
                print('[%d, %5d] loss: %.3f' % (epoch + 1, i + 1, running_loss / print_probe_num))
                loss_list.append(running_loss / print_probe_num)
                running_loss = 0.0
                
        correct = 0
        total = 0
        
        # Train
        with torch.no_grad(): # since we're not training, we don't need to calculate the gradients for our outputs
            for datum in tqdm(Train_DataLoader):
    
                imgs, labs = datum[0].to(device), datum[1].to(device)
                # calculate outputs by running images through the network 
                outputs = lenet(imgs.float())
                # the class with the highest energy is what we choose as prediction
                _, preds = torch.max(outputs.data, 1)
                
                total += labs.size(0)
                correct += (preds == labs).sum().item()
            train_acc_list.append(float(correct)/float(total))
            print('Accuracy of the network on the train images: %d %%' % (100 * correct / total))
    
            
    toc = time.time()
    print(f"Spend {round(toc - tic, 2)} (sec)")
    print('Finished Training')

    • Why zero_grad
      • What step(), backward(), and zero_grad() do [Link]

  • Step 10: Plot Accuracy & Loss Curves

    import matplotlib.pyplot as plt
    
    ## Accuracy
    
    plt.figure(figsize = (20, 10))
    plt.title("LeNet5: Accuracy Curve", fontsize = 24)
    plt.xlabel("Epochs"    , fontsize = 20)
    plt.ylabel("Accuracy %", fontsize = 20)
    plt.plot(train_acc_list, label = "train acc.")
    plt.legend(loc = 2, fontsize = 20)
    plt.show()
    
    ## Loss
    
    plt.figure(figsize=(20, 10))
    plt.title("LeNet5: Loss Curve", fontsize = 24)
    plt.plot(loss_list)
    plt.xlabel("Probes", fontsize = 20)
    plt.ylabel("Loss", fontsize = 20)
    plt.show()

  • Step 11: Testing Phase

    transform_test = transforms.Compose([
        transforms.ToTensor(),
    ])
    
    Test_Dataset = AOI_Dataset(target_csv = test_csv, root_path = root_test, height = height, width = width, transform = transform_test)
    Test_DataLoader = torch.utils.data.DataLoader(dataset = Test_Dataset, batch_size = 1, shuffle = False)
    Name_of_csv_file = "AI.FREE.SUCCESS.csv"
    
    df_test = pd.read_csv(test_csv)
    df_test_np = df_test.to_numpy()
    
    count = -1
    with torch.no_grad(): # since we're not training, we don't need to calculate the gradients for our outputs
        for datum in tqdm(Test_DataLoader):
            count = count + 1
            imgs = datum[0].to(device)
            # calculate outputs by running images through the network 
            outputs = lenet(imgs.float())
            # the class with the highest energy is what we choose as prediction
            _, preds = torch.max(outputs.data, 1)
            df_test_np[count][1] = float(preds)
            
    df = pd.DataFrame(df_test_np, columns = ['ID','Label'])
    df.to_csv(Name_of_csv_file, index=False)

Future Plan

  • Submit the result to AIdea
  • Validation Dataset
  • Data Augmentation
  • Train on GPU
  • Estimate Usage of GPU Memory