-
Notifications
You must be signed in to change notification settings - Fork 16
/
Copy pathsyntheticChrissAlmgren.py
362 lines (278 loc) · 16.6 KB
/
syntheticChrissAlmgren.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
import random
import numpy as np
import collections
# ------------------------------------------------ Financial Parameters --------------------------------------------------- #
ANNUAL_VOLAT = 0.12 # Annual volatility in stock price
BID_ASK_SP = 1 / 8 # Bid-ask spread
DAILY_TRADE_VOL = 5e6 # Average Daily trading volume
TRAD_DAYS = 250 # Number of trading days in a year
DAILY_VOLAT = ANNUAL_VOLAT / np.sqrt(TRAD_DAYS) # Daily volatility in stock price
# ----------------------------- Parameters for the Almgren and Chriss Optimal Execution Model ----------------------------- #
TOTAL_SHARES1 = 500000 # Total number of shares to sell
TOTAL_SHARES2 = 500000 # Total number of shares to sell
STARTING_PRICE = 50 # Starting price per share
LLAMBDA1 = 1e-6 # Trader's risk aversion
LLAMBDA2 = 1e-4
LIQUIDATION_TIME = 60 # How many days to sell all the shares.
NUM_N = 60 # Number of trades
EPSILON = BID_ASK_SP / 2 # Fixed Cost of Selling.
SINGLE_STEP_VARIANCE = (DAILY_VOLAT * STARTING_PRICE) ** 2 # Calculate single step variance
ETA = BID_ASK_SP / (0.01 * DAILY_TRADE_VOL) # Price Impact for Each 1% of Daily Volume Traded
GAMMA = BID_ASK_SP / (0.1 * DAILY_TRADE_VOL) # Permanent Impact Constant
# ----------------------------------------------------------------------------------------------------------------------- #
# Simulation Environment
class MarketEnvironment():
def __init__(self, randomSeed = 0,
lqd_time = LIQUIDATION_TIME,
num_tr = NUM_N,
lambd1 = LLAMBDA1,
lambd2 = LLAMBDA2):
# Set the random seed
random.seed(randomSeed)
# Initialize the financial parameters so we can access them later
self.anv = ANNUAL_VOLAT
self.basp = BID_ASK_SP
self.dtv = DAILY_TRADE_VOL
self.dpv = DAILY_VOLAT
# Initialize the Almgren-Chriss parameters so we can access them later
self.total_shares1 = TOTAL_SHARES1
self.total_shares2 = TOTAL_SHARES2
self.startingPrice = STARTING_PRICE
self.llambda1 = lambd1
self.llambda2 = lambd2
self.liquidation_time = lqd_time
self.num_n = num_tr
self.epsilon = EPSILON
self.singleStepVariance = SINGLE_STEP_VARIANCE
self.eta = ETA
self.gamma = GAMMA
# Calculate some Almgren-Chriss parameters
self.tau = self.liquidation_time / self.num_n
self.eta_hat = self.eta - (0.5 * self.gamma * self.tau)
self.kappa_hat1 = np.sqrt((self.llambda1 * self.singleStepVariance) / self.eta_hat)
self.kappa_hat2 = np.sqrt((self.llambda2 * self.singleStepVariance) / self.eta_hat)
self.kappa1 = np.arccosh((((self.kappa_hat1 ** 2) * (self.tau ** 2)) / 2) + 1) / self.tau
self.kappa2 = np.arccosh((((self.kappa_hat2 ** 2) * (self.tau ** 2)) / 2) + 1) / self.tau
# Set the variables for the initial state
self.shares_remaining1 = self.total_shares1
self.shares_remaining2 = self.total_shares2
self.timeHorizon = self.num_n
self.logReturns = collections.deque(np.zeros(6))
# Set the initial impacted price to the starting price
self.prevImpactedPrice = self.startingPrice
# Set the initial transaction state to False
self.transacting1 = False
self.transacting2 = False
# Set a variable to keep trak of the trade number
self.k = 0
def reset(self, seed = 0, liquid_time = LIQUIDATION_TIME, num_trades = NUM_N, lamb1 = LLAMBDA1,lamb2 = LLAMBDA2):
# Initialize the environment with the given parameters
self.__init__(randomSeed = seed, lqd_time = liquid_time, num_tr = num_trades, lambd1 = lamb1,lambd2 = lamb2)
# Set the initial state to [0,0,0,0,0,0,1,1]
self.initial_state = np.array(list(self.logReturns) + [self.timeHorizon / self.num_n, \
self.shares_remaining1 / self.total_shares1, \
self.shares_remaining2 / self.total_shares2])
return self.initial_state
def start_transactions(self):
# Set transactions on
self.transacting1 = True
self.transacting2 = True
# Set the minimum number of stocks one can sell
self.tolerance = 1
# Set the initial capture to zero
self.totalCapture1 = 0
self.totalCapture2 = 0
# Set the initial previous price to the starting price
self.prevPrice = self.startingPrice
# Set the initial square of the shares to sell to zero
self.totalSSSQ1 = 0
self.totalSSSQ2 = 0
# Set the initial square of the remaing shares to sell to zero
self.totalSRSQ1 = 0
self.totalSRSQ2 = 0
# Set the initial AC utility
self.prevUtility1 = self.compute_AC_utility(self.total_shares1,self.kappa1,self.llambda1)
self.prevUtility2 = self.compute_AC_utility(self.total_shares2,self.kappa2,self.llambda2)
def step(self, action1,action2):
# Create a class that will be used to keep track of information about the transaction
class Info(object):
pass
info = Info()
# Set the done flag to False. This indicates that we haven't sold all the shares yet.
info.done1 = False
info.done2 = False
# During training, if the DDPG fails to sell all the stocks before the given
# number of trades or if the total number shares remaining is less than 1, then stop transacting,
# set the done Flag to True, return the current implementation shortfall, and give a negative reward.
# The negative reward is given in the else statement below.
if self.transacting1 and (self.timeHorizon == 0 or (abs(self.shares_remaining1) < self.tolerance)):
self.transacting1 = False
info.done1 = True
info.implementation_shortfall1 = self.total_shares1 * self.startingPrice - self.totalCapture1
info.expected_shortfall1 = self.get_expected_shortfall(self.total_shares1,self.totalSSSQ1)
info.expected_variance1 = self.singleStepVariance * self.tau * self.totalSRSQ1
info.utility1 = info.expected_shortfall1 + self.llambda1 * info.expected_variance1
if self.transacting2 and (self.timeHorizon == 0 or (abs(self.shares_remaining2) < self.tolerance)):
self.transacting2 = False
info.done2 = True
info.implementation_shortfall2 = self.total_shares2 * self.startingPrice - self.totalCapture2
info.expected_shortfall2 = self.get_expected_shortfall(self.total_shares2,self.totalSSSQ2)
info.expected_variance2 = self.singleStepVariance * self.tau * self.totalSRSQ2
info.utility2 = info.expected_shortfall2 + self.llambda2 * info.expected_variance2
# We don't add noise before the first trade
if self.k == 0:
info.price = self.prevImpactedPrice
else:
# Calculate the current stock price using arithmetic brownian motion
info.price = self.prevImpactedPrice + np.sqrt(self.singleStepVariance * self.tau) * random.normalvariate(0, 1)
# If we are transacting, the stock price is affected by the number of shares we sell. The price evolves
# according to the Almgren and Chriss price dynamics model.
if self.transacting1:
# If action is an ndarray then extract the number from the array
if isinstance(action1, np.ndarray):
action1 = action1.item()
# Convert the action to the number of shares to sell in the current step
sharesToSellNow1 = self.shares_remaining1 * action1
if self.timeHorizon < 2:
sharesToSellNow1 = self.shares_remaining1
else:
sharesToSellNow1 = 0
# sharesToSellNow = min(self.shares_remaining * action, self.shares_remaining)
if self.transacting2:
# If action is an ndarray then extract the number from the array
if isinstance(action2, np.ndarray):
action2 = action2.item()
# Convert the action to the number of shares to sell in the current step
sharesToSellNow2 = self.shares_remaining2 * action2
if self.timeHorizon < 2:
sharesToSellNow2 = self.shares_remaining2
else:
sharesToSellNow2 = 0
if self.transacting1 or self.transacting2:
# Since we are not selling fractions of shares, round up the total number of shares to sell to the nearest integer.
info.share_to_sell_now1 = np.around(sharesToSellNow1)
info.share_to_sell_now2 = np.around(sharesToSellNow2)
# Calculate the permanent and temporary impact on the stock price according the AC price dynamics model
info.currentPermanentImpact = self.permanentImpact(info.share_to_sell_now1+info.share_to_sell_now2)
info.currentTemporaryImpact = self.temporaryImpact(info.share_to_sell_now1+info.share_to_sell_now2)
# Apply the temporary impact on the current stock price
info.exec_price = info.price - info.currentTemporaryImpact
# Calculate the current total capture
self.totalCapture1 += info.share_to_sell_now1 * info.exec_price
self.totalCapture2 += info.share_to_sell_now2 * info.exec_price
# Calculate the log return for the current step and save it in the logReturn deque
self.logReturns.append(np.log(info.price/self.prevPrice))
self.logReturns.popleft()
# Update the number of shares remaining
self.shares_remaining1 -= info.share_to_sell_now1
self.shares_remaining2 -= info.share_to_sell_now2
# Calculate the runnig total of the squares of shares sold and shares remaining
self.totalSSSQ1 += info.share_to_sell_now1 ** 2
self.totalSRSQ1 += self.shares_remaining1 ** 2
self.totalSSSQ2 += info.share_to_sell_now2 ** 2
self.totalSRSQ2 += self.shares_remaining2 ** 2
# Update the variables required for the next step
self.timeHorizon -= 1
self.prevPrice = info.price
self.prevImpactedPrice = info.price - info.currentPermanentImpact
# Calculate the reward
currentUtility1 = self.compute_AC_utility(self.shares_remaining1,self.kappa1,self.llambda1)
currentUtility2 = self.compute_AC_utility(self.shares_remaining2,self.kappa2,self.llambda2)
if self.prevUtility1 == 0:
reward1 = 0
else:
reward1 = (abs(self.prevUtility1) - abs(currentUtility1)) / abs(self.prevUtility1)
if self.prevUtility2 == 0:
reward2 =0
else:
reward2 = (abs(self.prevUtility2) - abs(currentUtility2)) / abs(self.prevUtility2)
if reward1 > reward2:
reward2 -= reward1
#reward2 += reward1
#reward2 *= 0.5
reward2 *= 0.5
else:
#reward1 += reward2
#reward1 *= 0.5
reward1 -= reward2
reward1 *= 0.5
#reward1 = max(reward1 - reward2, 0)
#reward2 = max(reward2 - reward1, 0)
self.prevUtility1 = currentUtility1
self.prevUtility2 = currentUtility2
# If all the shares have been sold calculate E, V, and U, and give a positive reward.
if self.shares_remaining1 <= 0:
# Calculate the implementation shortfall
info.implementation_shortfall1 = self.total_shares1 * self.startingPrice - self.totalCapture1
info.done1 = True
if self.shares_remaining2 <= 0:
# Calculate the implementation shortfall
info.implementation_shortfall2 = self.total_shares2 * self.startingPrice - self.totalCapture2
info.done2 = True
# Set the done flag to True. This indicates that we have sold all the shares
else:
reward1 = 0.0
reward2 = 0.0
self.k += 1
# Set the new state
state = np.array(list(self.logReturns) + [self.timeHorizon / self.num_n, self.shares_remaining1 / self.total_shares1, self.shares_remaining2 / self.total_shares2])
return (state, np.array([reward1]),np.array([reward2]), info.done1,info.done2, info)
def permanentImpact(self, sharesToSell):
# Calculate the permanent impact according to equations (6) and (1) of the AC paper
pi = self.gamma * sharesToSell
return pi
def temporaryImpact(self, sharesToSell):
# Calculate the temporary impact according to equation (7) of the AC paper
ti = (self.epsilon * np.sign(sharesToSell)) + ((self.eta / self.tau) * sharesToSell)
return ti
def get_expected_shortfall(self, sharesToSell,totalSSSQ):
# Calculate the expected shortfall according to equation (8) of the AC paper
ft = 0.5 * self.gamma * (sharesToSell ** 2)
st = self.epsilon * sharesToSell
tt = (self.eta_hat / self.tau) * totalSSSQ
return ft + st + tt
def get_AC_expected_shortfall(self, sharesToSell,kappa):
# Calculate the expected shortfall for the optimal strategy according to equation (20) of the AC paper
ft = 0.5 * self.gamma * (sharesToSell ** 2)
st = self.epsilon * sharesToSell
tt = self.eta_hat * (sharesToSell ** 2)
nft = np.tanh(0.5 * kappa * self.tau) * (self.tau * np.sinh(2 * kappa * self.liquidation_time) \
+ 2 * self.liquidation_time * np.sinh(kappa * self.tau))
dft = 2 * (self.tau ** 2) * (np.sinh(kappa * self.liquidation_time) ** 2)
fot = nft / dft
return ft + st + (tt * fot)
def get_AC_variance(self, sharesToSell,kappa):
# Calculate the variance for the optimal strategy according to equation (20) of the AC paper
ft = 0.5 * (self.singleStepVariance) * (sharesToSell ** 2)
nst = self.tau * np.sinh(kappa * self.liquidation_time) * np.cosh(kappa * (self.liquidation_time - self.tau)) \
- self.liquidation_time * np.sinh(kappa * self.tau)
dst = (np.sinh(kappa * self.liquidation_time) ** 2) * np.sinh(kappa * self.tau)
st = nst / dst
return ft * st
def compute_AC_utility(self, sharesToSell,kappa,llambda):
# Calculate the AC Utility according to pg. 13 of the AC paper
if self.liquidation_time == 0:
return 0
E = self.get_AC_expected_shortfall(sharesToSell,kappa)
V = self.get_AC_variance(sharesToSell,kappa)
return E + llambda * V
def get_trade_list(self,kappa):
# Calculate the trade list for the optimal strategy according to equation (18) of the AC paper
trade_list = np.zeros(self.num_n)
ftn = 2 * np.sinh(0.5 * kappa * self.tau)
ftd = np.sinh(kappa * self.liquidation_time)
ft = (ftn / ftd) * self.total_shares1
for i in range(1, self.num_n + 1):
st = np.cosh(kappa * (self.liquidation_time - (i - 0.5) * self.tau))
trade_list[i - 1] = st
trade_list *= ft
return trade_list
def observation_space_dimension(self):
# Return the dimension of the state
return 8
def action_space_dimension(self):
# Return the dimension of the action
return 1
def stop_transactions(self):
# Stop transacting
self.transacting = False