-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain.py
312 lines (252 loc) · 11.4 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
import os
import time
import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F
from torch import optim
from torch.utils.data import Subset
import torchvision.transforms as transforms
import argparse
from utils import set_random_seed, get_dataset, load_model, progress_bar
parser = argparse.ArgumentParser(description='PyTorch CIFAR10 Training')
parser.add_argument('--lr', default=0.1, type=float, help='learning rate')
parser.add_argument('--weight_decay', default=5e-4, type=float)
parser.add_argument('--opt', default='sgd')
parser.add_argument('--net', default='res18')
parser.add_argument('--target_net', default=None, type=str)
parser.add_argument('--num_shadow', default=128, type=int)
parser.add_argument('--shadow_idx', default=None, type=int)
parser.add_argument('--noamp', action='store_true', help='disable mixed precision training. for older pytorch versions')
parser.add_argument('--dataset', default='cifar10')
parser.add_argument('--per_model_dataset_size', default=20000, type=int)
parser.add_argument('--bs', default=256, type=int)
parser.add_argument('--size', default=32, type=int)
parser.add_argument('--n_epochs', default=100, type=int)
parser.add_argument('--seed', default=0, type=int)
parser.add_argument('--lambd', default=1.0, type=float)
parser.add_argument('--tau', default=1.0, type=float)
parser.add_argument('--mse_distillation', action='store_true')
parser.add_argument('--mse_blackbox', action='store_true')
parser.add_argument('--warmup_epochs', default=0, type=int)
parser.add_argument('--show_samples', action='store_true')
args = parser.parse_args()
bs = int(args.bs)
imsize = int(args.size)
use_amp = not args.noamp
device = 'cuda' if torch.cuda.is_available() else 'cpu'
start_epoch = 0
size = imsize
tv_dataset = get_dataset(args)
print('==> Preparing data..')
if args.dataset == 'mnist':
transform_train = transforms.Compose([
transforms.ToTensor(),
transforms.Normalize(args.data_mean, args.data_std),
])
transform_test = transforms.Compose([
transforms.ToTensor(),
transforms.Normalize(args.data_mean, args.data_std),
])
else:
transform_train = transforms.Compose([
transforms.RandomCrop(32, padding=4),
transforms.Resize(size),
transforms.RandomHorizontalFlip(),
transforms.ToTensor(),
transforms.Normalize(args.data_mean, args.data_std),
])
transform_test = transforms.Compose([
transforms.Resize(size),
transforms.ToTensor(),
transforms.Normalize(args.data_mean, args.data_std),
])
# Prepare dataset
trainset = tv_dataset(root=f'./data', train=True, download=True, transform=transform_train)
dataset_size = len(trainset)
# set random seed
set_random_seed(args.seed)
# get shadow dataset
if not os.path.exists(f'./data_split/{args.dataset}'):
print(f'No shadow/target indices created for {args.dataset} yet, assigning...')
os.makedirs(f'./data_split/{args.dataset}')
indices = list(range(dataset_size))
np.random.shuffle(indices)
target_indices, shadow_indices = indices[:args.per_model_dataset_size], indices[args.per_model_dataset_size:]
target_indices.sort()
list_shadow_indices = []
for _ in range(args.num_shadow):
indices = np.random.choice(shadow_indices, size=args.per_model_dataset_size, replace=False)
indices.sort()
list_shadow_indices.append(indices)
list_shadow_indices = np.stack(list_shadow_indices, axis=0)
np.save(f'./data_split/{args.dataset}/target_indices.npy', target_indices)
np.save(f'./data_split/{args.dataset}/shadow_indices.npy', list_shadow_indices)
if args.shadow_idx is None:
print('Training will be performed for target model.')
indices = np.load(f'./data_split/{args.dataset}/target_indices.npy')
else:
print(f'Training will be performed for shadow model: {args.shadow_idx}.')
indices = np.load(f'./data_split/{args.dataset}/shadow_indices.npy')[args.shadow_idx]
if len(indices) < args.per_model_dataset_size:
target_indices = np.load(f'./data_split/{args.dataset}/target_indices.npy')
all_indices = list(range(dataset_size))
free_indices = list(set(all_indices) - set(list(target_indices)) - set(list(indices)))
np.random.shuffle(free_indices)
add_indices = free_indices[:(args.per_model_dataset_size - len(indices))]
indices = np.concatenate([indices, np.array(add_indices)])
print(f'Extended dataset size to {args.per_model_dataset_size}; added {len(add_indices)}.')
indices = indices[:args.per_model_dataset_size]
trainset = Subset(trainset, indices)
trainloader = torch.utils.data.DataLoader(trainset, batch_size=bs, shuffle=True, num_workers=16)
testset = tv_dataset(root=f'./data', train=False, download=True, transform=transform_test)
testsize = min(10000, len(testset))
test_indices = np.random.choice(len(testset), testsize, replace=False)
testset = Subset(testset, test_indices)
testloader = torch.utils.data.DataLoader(testset, batch_size=128, shuffle=False, num_workers=16)
print(f'Train dataset size = {len(trainset)}; Test dataset size = {len(testset)}')
time.sleep(3)
# Model factory..
print('==> Building model..')
net = load_model(args)
if args.target_net is not None:
if args.lambd == 1.0 and not args.mse_distillation:
raise ValueError('Warning: target network loaded but the kldiv loss coefficient is 0.')
print(f'==> Building target model for distillation: {args.target_net}.')
target_args = argparse.Namespace(net=args.target_net.split('_')[0], num_classes=args.num_classes)
checkpoint = torch.load(os.path.join(f'./checkpoints/{args.dataset}/target/{args.target_net}.pth'))
target_net = load_model(target_args)
target_net.load_state_dict(checkpoint['model'])
target_net.cuda()
target_net.eval()
elif args.lambd != 1:
raise ValueError('Warning: kldiv loss coefficient > 0, but no target model loaded.')
else:
pass
# Losses: CrossEntropy and KLDiv for distillation
ce_criterion = nn.CrossEntropyLoss()
kldiv_criterion = nn.KLDivLoss(reduction='batchmean')
mse_criterion = nn.MSELoss()
if args.opt == "adam":
optimizer = optim.Adam(net.parameters(), lr=args.lr, weight_decay=args.weight_decay)
elif args.opt == "sgd":
optimizer = optim.SGD(net.parameters(), lr=args.lr, momentum=0.9, weight_decay=args.weight_decay)
# use cosine scheduling
scheduler = optim.lr_scheduler.CosineAnnealingLR(optimizer, args.n_epochs)
##### Training
scaler = torch.cuda.amp.GradScaler(enabled=use_amp)
if args.mse_distillation:
print('Using MSE for shadow model training!')
def train(epoch):
if epoch < args.warmup_epochs:
print('\nWarmup Epoch: %d' % epoch)
else:
print('\nEpoch: %d' % epoch)
net.train()
train_loss = 0
correct = 0
total = 0
for batch_idx, (inputs, targets) in enumerate(trainloader):
inputs, targets = inputs.to(device), targets.to(device)
# Train with amp
with torch.cuda.amp.autocast(enabled=use_amp):
outputs = net(inputs)
if epoch < args.warmup_epochs:
loss = ce_criterion(outputs, targets)
else:
if args.mse_distillation:
with torch.no_grad():
teacher_outputs = target_net(inputs)
if args.mse_blackbox:
teacher_probs = F.softmax(teacher_outputs, dim=1)
# obtain teacher logits on the assumption that sum(teacher_outputs) = 0
teacher_probs = torch.clamp(teacher_probs, 1e-32, None)
log_probs = torch.log(teacher_probs)
C = -torch.mean(log_probs, 1).unsqueeze(1)
teacher_logits = log_probs + C
loss = mse_criterion(outputs, teacher_logits)
else:
loss = mse_criterion(outputs, teacher_outputs)
else:
if args.lambd < 1.0:
with torch.no_grad():
teacher_outputs = target_net(inputs)
kldiv_loss = kldiv_criterion(
F.log_softmax(outputs / args.tau, dim=1),
F.softmax(teacher_outputs / args.tau, dim=1)
)
else:
kldiv_loss = 0.
ce_loss = ce_criterion(outputs, targets)
loss = args.lambd * ce_loss + (1. - args.lambd) * kldiv_loss
scaler.scale(loss).backward()
scaler.step(optimizer)
scaler.update()
optimizer.zero_grad()
train_loss += loss.item()
_, predicted = outputs.max(1)
total += targets.size(0)
correct += predicted.eq(targets).sum().item()
progress_bar(batch_idx, len(trainloader), 'Loss: %.3f | Acc: %.3f%% (%d/%d)'
% (train_loss/(batch_idx+1), 100.*correct/total, correct, total))
return train_loss/(batch_idx+1), 100.*correct/total
##### Validation
def test(epoch):
net.eval()
test_loss = 0
correct = 0
total = 0
with torch.no_grad():
for batch_idx, (inputs, targets) in enumerate(testloader):
inputs, targets = inputs.to(device), targets.to(device)
outputs = net(inputs)
loss = ce_criterion(outputs, targets)
test_loss += loss.item()
_, predicted = outputs.max(1)
total += targets.size(0)
correct += predicted.eq(targets).sum().item()
progress_bar(batch_idx, len(testloader), 'Loss: %.3f | Acc: %.3f%% (%d/%d)'
% (test_loss/(batch_idx+1), 100.*correct/total, correct, total))
return test_loss/(batch_idx+1), 100.*correct/total
net.cuda()
list_train_loss, list_train_acc = [], []
list_loss, list_acc = [], []
for epoch in range(start_epoch, args.n_epochs):
start = time.time()
train_loss, train_acc = train(epoch)
val_loss, val_acc = test(epoch)
scheduler.step() # step cosine scheduling
list_train_loss.append(train_loss)
list_train_acc.append(train_acc)
list_loss.append(val_loss)
list_acc.append(val_acc)
list_loss, list_acc = np.array(list_loss), np.array(list_acc)
state = {
"model": net.state_dict(),
"train_loss": list_train_loss,
"train_acc": list_train_acc,
"val_loss": list_loss,
"val_acc": list_acc
}
if args.shadow_idx is None:
os.makedirs(f'./checkpoints/{args.dataset}/target', exist_ok=True)
if args.show_samples:
torch.save(state, f'./checkpoints/{args.dataset}/target/{args.net}_samples{args.per_model_dataset_size}.pth')
else:
torch.save(state, f'./checkpoints/{args.dataset}/target/{args.net}.pth')
else:
d = f'./checkpoints/{args.dataset}/shadow/{args.net}'
if args.target_net is not None:
if args.mse_distillation:
if args.mse_blackbox:
d = d + '_bbMSEdis_' + args.target_net
else:
d = d + f'_MSEdis_' + args.target_net
elif args.tau != 1:
d = d + f'_{(1.0 - args.lambd):.1f}dis_{args.tau:.1f}tau_' + args.target_net
else:
d = d + f'_{(1.0 - args.lambd):.1f}dis_' + args.target_net
if args.show_samples:
d = d + f'_samples{args.per_model_dataset_size}'
os.makedirs(d, exist_ok=True)
torch.save(state, os.path.join(d, args.net + '_' + str(args.shadow_idx) + '.pth'))