参与本项目,贡献其他语言版本的代码,拥抱开源,让更多学习算法的小伙伴们收益!
给定二叉搜索树(BST)的根节点和一个值。 你需要在BST中找到节点值等于给定值的节点。 返回以该节点为根的子树。 如果节点不存在,则返回 NULL。
例如,
在上述示例中,如果要找的值是 5,但因为没有节点值为 5,我们应该返回 NULL。
《代码随想录》算法视频公开课:不愧是搜索树,这次搜索有方向了!| LeetCode:700.二叉搜索树中的搜索,相信结合视频在看本篇题解,更有助于大家对本题的理解。
之前我们讲的都是普通二叉树,那么接下来看看二叉搜索树。
在关于二叉树,你该了解这些!中,我们已经讲过了二叉搜索树。
二叉搜索树是一个有序树:
- 若它的左子树不空,则左子树上所有结点的值均小于它的根结点的值;
- 若它的右子树不空,则右子树上所有结点的值均大于它的根结点的值;
- 它的左、右子树也分别为二叉搜索树
这就决定了,二叉搜索树,递归遍历和迭代遍历和普通二叉树都不一样。
本题,其实就是在二叉搜索树中搜索一个节点。那么我们来看看应该如何遍历。
- 确定递归函数的参数和返回值
递归函数的参数传入的就是根节点和要搜索的数值,返回的就是以这个搜索数值所在的节点。
代码如下:
TreeNode* searchBST(TreeNode* root, int val)
- 确定终止条件
如果root为空,或者找到这个数值了,就返回root节点。
if (root == NULL || root->val == val) return root;
- 确定单层递归的逻辑
看看二叉搜索树的单层递归逻辑有何不同。
因为二叉搜索树的节点是有序的,所以可以有方向的去搜索。
如果root->val > val,搜索左子树,如果root->val < val,就搜索右子树,最后如果都没有搜索到,就返回NULL。
代码如下:
TreeNode* result = NULL;
if (root->val > val) result = searchBST(root->left, val);
if (root->val < val) result = searchBST(root->right, val);
return result;
很多录友写递归函数的时候 习惯直接写 searchBST(root->left, val)
,却忘了 递归函数还有返回值。
递归函数的返回值是什么? 是 左子树如果搜索到了val,要将该节点返回。 如果不用一个变量将其接住,那么返回值不就没了。
所以要 result = searchBST(root->left, val)
。
整体代码如下:
class Solution {
public:
TreeNode* searchBST(TreeNode* root, int val) {
if (root == NULL || root->val == val) return root;
TreeNode* result = NULL;
if (root->val > val) result = searchBST(root->left, val);
if (root->val < val) result = searchBST(root->right, val);
return result;
}
};
或者我们也可以这么写
class Solution {
public:
TreeNode* searchBST(TreeNode* root, int val) {
if (root == NULL || root->val == val) return root;
if (root->val > val) return searchBST(root->left, val);
if (root->val < val) return searchBST(root->right, val);
return NULL;
}
};
一提到二叉树遍历的迭代法,可能立刻想起使用栈来模拟深度遍历,使用队列来模拟广度遍历。
对于二叉搜索树可就不一样了,因为二叉搜索树的特殊性,也就是节点的有序性,可以不使用辅助栈或者队列就可以写出迭代法。
对于一般二叉树,递归过程中还有回溯的过程,例如走一个左方向的分支走到头了,那么要调头,在走右分支。
而对于二叉搜索树,不需要回溯的过程,因为节点的有序性就帮我们确定了搜索的方向。
例如要搜索元素为3的节点,我们不需要搜索其他节点,也不需要做回溯,查找的路径已经规划好了。
中间节点如果大于3就向左走,如果小于3就向右走,如图:
所以迭代法代码如下:
class Solution {
public:
TreeNode* searchBST(TreeNode* root, int val) {
while (root != NULL) {
if (root->val > val) root = root->left;
else if (root->val < val) root = root->right;
else return root;
}
return NULL;
}
};
第一次看到了如此简单的迭代法,是不是感动的痛哭流涕,哭一会~
本篇我们介绍了二叉搜索树的遍历方式,因为二叉搜索树的有序性,遍历的时候要比普通二叉树简单很多。
但是一些同学很容易忽略二叉搜索树的特性,所以写出遍历的代码就未必真的简单了。
所以针对二叉搜索树的题目,一样要利用其特性。
文中我依然给出递归和迭代两种方式,可以看出写法都非常简单,就是利用了二叉搜索树有序的特点。
class Solution {
// 递归,普通二叉树
public TreeNode searchBST(TreeNode root, int val) {
if (root == null || root.val == val) {
return root;
}
TreeNode left = searchBST(root.left, val);
if (left != null) {
return left;
}
return searchBST(root.right, val);
}
}
class Solution {
// 递归,利用二叉搜索树特点,优化
public TreeNode searchBST(TreeNode root, int val) {
if (root == null || root.val == val) {
return root;
}
if (val < root.val) {
return searchBST(root.left, val);
} else {
return searchBST(root.right, val);
}
}
}
class Solution {
// 迭代,普通二叉树
public TreeNode searchBST(TreeNode root, int val) {
if (root == null || root.val == val) {
return root;
}
Stack<TreeNode> stack = new Stack<>();
stack.push(root);
while (!stack.isEmpty()) {
TreeNode pop = stack.pop();
if (pop.val == val) {
return pop;
}
if (pop.right != null) {
stack.push(pop.right);
}
if (pop.left != null) {
stack.push(pop.left);
}
}
return null;
}
}
class Solution {
// 迭代,利用二叉搜索树特点,优化,可以不需要栈
public TreeNode searchBST(TreeNode root, int val) {
while (root != null)
if (val < root.val) root = root.left;
else if (val > root.val) root = root.right;
else return root;
return null;
}
}
(方法一) 递归
class Solution:
def searchBST(self, root: TreeNode, val: int) -> TreeNode:
# 为什么要有返回值:
# 因为搜索到目标节点就要立即return,
# 这样才是找到节点就返回(搜索某一条边),如果不加return,就是遍历整棵树了。
if not root or root.val == val:
return root
if root.val > val:
return self.searchBST(root.left, val)
if root.val < val:
return self.searchBST(root.right, val)
(方法二)迭代
class Solution:
def searchBST(self, root: TreeNode, val: int) -> TreeNode:
while root:
if val < root.val: root = root.left
elif val > root.val: root = root.right
else: return root
return None
递归法:
//递归法
func searchBST(root *TreeNode, val int) *TreeNode {
if root == nil || root.Val == val {
return root
}
if root.Val > val {
return searchBST(root.Left, val)
}
return searchBST(root.Right, val)
}
迭代法:
//迭代法
func searchBST(root *TreeNode, val int) *TreeNode {
for root != nil {
if root.Val > val {
root = root.Left
} else if root.Val < val {
root = root.Right
} else {
return root
}
}
return nil
}
递归:
/**
* Definition for a binary tree node.
* function TreeNode(val, left, right) {
* this.val = (val===undefined ? 0 : val)
* this.left = (left===undefined ? null : left)
* this.right = (right===undefined ? null : right)
* }
*/
/**
* @param {TreeNode} root
* @param {number} val
* @return {TreeNode}
*/
var searchBST = function (root, val) {
if (!root || root.val === val) {
return root;
}
if (root.val > val)
return searchBST(root.left, val);
if (root.val < val)
return searchBST(root.right, val);
};
迭代:
/**
* Definition for a binary tree node.
* function TreeNode(val, left, right) {
* this.val = (val===undefined ? 0 : val)
* this.left = (left===undefined ? null : left)
* this.right = (right===undefined ? null : right)
* }
*/
/**
* @param {TreeNode} root
* @param {number} val
* @return {TreeNode}
*/
var searchBST = function (root, val) {
while (root !== null) {
if (root.val > val)
root = root.left;
else if (root.val < val)
root = root.right;
else
return root;
}
return null;
};
递归法
function searchBST(root: TreeNode | null, val: number): TreeNode | null {
if (root === null || root.val === val) return root;
if (root.val < val) return searchBST(root.right, val);
if (root.val > val) return searchBST(root.left, val);
return null;
};
迭代法
function searchBST(root: TreeNode | null, val: number): TreeNode | null {
let resNode: TreeNode | null = root;
while (resNode !== null) {
if (resNode.val === val) return resNode;
if (resNode.val < val) {
resNode = resNode.right;
} else {
resNode = resNode.left;
}
}
return null;
};
递归:
object Solution {
def searchBST(root: TreeNode, value: Int): TreeNode = {
if (root == null || value == root.value) return root
// 相当于三元表达式,在Scala中if...else有返回值
if (value < root.value) searchBST(root.left, value) else searchBST(root.right, value)
}
}
迭代:
object Solution {
def searchBST(root: TreeNode, value: Int): TreeNode = {
// 因为root是不可变量,所以需要赋值给一个可变量
var node = root
while (node != null) {
if (value < node.value) node = node.left
else if (value > node.value) node = node.right
else return node
}
null // 没有返回就返回空
}
}
递归:
use std::cell::RefCell;
use std::rc::Rc;
impl Solution {
pub fn search_bst(
root: Option<Rc<RefCell<TreeNode>>>,
val: i32,
) -> Option<Rc<RefCell<TreeNode>>> {
if root.is_none() || root.as_ref().unwrap().borrow().val == val {
return root;
}
let node_val = root.as_ref().unwrap().borrow().val;
if node_val > val {
return Self::search_bst(root.as_ref().unwrap().borrow().left.clone(), val);
}
if node_val < val {
return Self::search_bst(root.unwrap().borrow().right.clone(), val);
}
None
}
}
迭代:
use std::cell::RefCell;
use std::rc::Rc;
use std::cmp;
impl Solution {
pub fn search_bst(
mut root: Option<Rc<RefCell<TreeNode>>>,
val: i32,
) -> Option<Rc<RefCell<TreeNode>>> {
while let Some(ref node) = root.clone() {
match val.cmp(&node.borrow().val) {
cmp::Ordering::Less => root = node.borrow().left.clone(),
cmp::Ordering::Equal => return root,
cmp::Ordering::Greater => root = node.borrow().right.clone(),
};
}
None
}
}
// 递归
public TreeNode SearchBST(TreeNode root, int val)
{
if (root == null || root.val == val) return root;
if (root.val > val) return SearchBST(root.left, val);
if (root.val < val) return SearchBST(root.right, val);
return null;
}
// 迭代
public TreeNode SearchBST(TreeNode root, int val)
{
while (root != null)
{
if (root.val > val) root = root.left;
else if (root.val < val) root = root.right;
else return root;
}
return null;
}