-
Notifications
You must be signed in to change notification settings - Fork 1
/
Bike2_ERP_preprocessing_2.m
105 lines (74 loc) · 4.05 KB
/
Bike2_ERP_preprocessing_2.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
%ERP PREPROCESSING AGAIN
ccc
parts = {'100' '101' '102' '103' '104' '106' '107' '108' '110'...
'113' '114' '115' '116' '117' '118' '119' '120' '121'...
'122' '123' '126' '127' '129' '130' '131' '132' '133'...
'134' '135' '136'};
% parts = {'125' '126' '127' '129' '131' '132'};
%parts = {'101' '102'}; %testing from the two trigger types
conditions = {'sask' '110st' '83ave'};
filepath = ['M:\Data\Bike_lanes\'];
exp = 'Bike2';
eeg_thresh_1 = [-1000,1000];
eeg_thresh_2 = [-500,500];
if ~exist([filepath 'segments\']) %when preprocessing files, puts everything ina folder called segments, if not there, makes it
mkdir([filepath 'segments_JK\']);
end
high_pass = 0.1;
low_pass = 30;
epoch_size = [-.2 1];
baseline = [-200 0];
eeg_thresh_1 = [-1000,1000];
eeg_thresh_2 = [-500,500];
[ALLEEG EEG CURRENTSET ALLCOM] = eeglab;
%%
for i_part = 1:length(parts)
for i_cond = 1:length(conditions)
events = {'1' '2'};
selection_cards = {'1' '2'};
%%%load data%%%
disp(['Processing data for participant ' parts{i_part}]);
disp(['Loading file: ' parts{i_part} '_' exp '_' conditions{i_cond} '.vhdr']);
filename = [parts{i_part} '_' exp '_' conditions{i_cond} '.vhdr'];
EEG = pop_loadbv(filepath, filename, [], []); % loading in EEG data
savename = [parts{i_part} '_' exp '_' conditions{i_cond}];
% get electrode locations
EEG=pop_chanedit(EEG, 'load',{'M:\Analysis\Skateboard\Skate_Vamp_Active_16.ced' 'filetype' 'autodetect'});
% arithmetically rereference to linked mastoid
for x=1:EEG.nbchan-2
EEG.data(x,:) = (EEG.data(x,:)-((EEG.data(EEG.nbchan-2,:))*.5));
end
%Filter the data with low pass of 30
EEG = pop_eegfilt( EEG, high_pass, 0, [], 0); %high pass filter
EEG = pop_eegfilt( EEG, 0, low_pass, [], 0); %low pass filter
all_events = length(EEG.event);
for i_event = 2:all_events %%% Why start from 2
if strcmp(EEG.event(i_event).type, 'boundary')
continue
else
EEG.event(i_event).type = num2str(str2num((EEG.event(i_event).type(2:end))));
end
end
%epoch
EEG = pop_epoch( EEG, events, epoch_size, 'newname', sprintf('%s epochs' , exp), 'epochinfo', 'yes');
%S1 is standard, S2 = target....
EEG = pop_rmbase( EEG, baseline);
% Artifact rejection, trials with range >1000 uV
EEG = pop_eegthresh(EEG,1,[1:size(EEG.data,1)],eeg_thresh_1(1),eeg_thresh_1(2),EEG.xmin,EEG.xmax,0,1);
% EMCP occular correction
temp_ocular = EEG.data(end-1:end,:,:); %to save the EYE data for after
EEG = gratton_emcp(EEG,selection_cards,{'VEOG'},{'HEOG'}); %this assumes the eye channels are called this
EEG.emcp.table %this prints out the regression coefficients
EEG.data(end-1:end,:,:) = temp_ocular; %replace the eye data
% Artifact rejection, trials with range >500 uV
EEG = pop_rmbase( EEG, baseline); %baseline again since this changed it
EEG = pop_eegthresh(EEG,1,[1:size(EEG.data,1)-2],eeg_thresh_2(1),eeg_thresh_2(2),EEG.xmin,EEG.xmax,0,1);
EEG_Copy = EEG;
EEG = pop_selectevent(EEG_Copy, 'type',str2num(events{2}),'renametype','Targets','deleteevents','on','deleteepochs','on','invertepochs','off');
EEG = pop_editset(EEG, 'setname',[savename '_Targets']);
EEG = pop_saveset(EEG, 'filename',[savename '_Targets'],'filepath',[filepath 'segments_JK\']);
EEG = pop_selectevent(EEG_Copy, 'type',str2num(events{1}),'renametype','Standards','deleteevents','on','deleteepochs','on','invertepochs','off');
EEG = pop_editset(EEG, 'setname',[savename '_Standards']);
EEG = pop_saveset(EEG, 'filename',[savename '_Standards'],'filepath',[filepath 'segments_JK\']);
end
end