From 3c6ff9ceb84917a63c5046a9a040bfa1387f776c Mon Sep 17 00:00:00 2001 From: Gabor Csapo Date: Thu, 30 Jun 2022 17:43:16 +0800 Subject: [PATCH] Add UDB flavour of the stm32h743xx HIC UDB enriches the DAPLink experience with additional features such as: - A new USB CDC endpoint to flash and get logs from a second target. - Another new USB CDC endpoint to interact with the HIC. Users can send easy shell commands to toggle pins, or to get any info from the HIC. - Additional DAPLink debugging functionality: persistent fault info, breakpoints on asserts when debugger is connected to debug UDB, watchdog, backtraces - Target power measurement For more details see the source/hic_hal/stm32/stm32h743ii/extended_features folder. Co-authored-by: Yangte Chen Co-authored-by: Eric Lee --- docs/hic/stm32h743xx.md | 7 + projects.yaml | 9 + records/board/stm32h743ii_udb_bl.yaml | 10 + records/board/stm32h743ii_udb_if.yaml | 30 + source/board/stm32h743ii.c | 121 + .../Inc/stm32h7xx_hal_adc.h | 1817 +++++ .../Inc/stm32h7xx_hal_adc_ex.h | 1242 +++ .../Inc/stm32h7xx_hal_dma.h | 1290 +++ .../Inc/stm32h7xx_hal_dma_ex.h | 312 + .../Inc/stm32h7xx_hal_eth.h | 1680 ++++ .../Inc/stm32h7xx_hal_eth_ex.h | 357 + .../Inc/stm32h7xx_hal_i2c.h | 782 ++ .../Inc/stm32h7xx_hal_i2c_ex.h | 181 + .../Inc/stm32h7xx_hal_mdma.h | 855 ++ .../Src/stm32h7xx_hal_adc.c | 3713 +++++++++ .../Src/stm32h7xx_hal_adc_ex.c | 2492 ++++++ .../Src/stm32h7xx_hal_dma.c | 2028 +++++ .../Src/stm32h7xx_hal_dma_ex.c | 714 ++ .../Src/stm32h7xx_hal_eth.c | 2998 +++++++ .../Src/stm32h7xx_hal_eth_ex.c | 559 ++ .../Src/stm32h7xx_hal_i2c.c | 6522 +++++++++++++++ .../Src/stm32h7xx_hal_i2c_ex.c | 339 + .../Src/stm32h7xx_hal_pwr.c | 868 ++ .../Src/stm32h7xx_hal_pwr_ex.c | 2100 +++++ .../Src/stm32h7xx_hal_spi.c | 3836 +++++++++ .../Src/stm32h7xx_hal_spi_ex.c | 229 + .../Src/stm32h7xx_hal_tim.c | 7047 +++++++++++++++++ .../Src/stm32h7xx_ll_adc.c | 1080 +++ .../Src/stm32h7xx_ll_pwr.c | 82 + .../Src/stm32h7xx_ll_usb.c | 1992 +++++ .../console/include/shell_cmd_adapter_type.h | 10 + .../console/include/shell_cmd_btn.h | 20 + .../console/include/shell_cmd_dut_reset.h | 11 + .../console/include/shell_cmd_ext_relay.h | 13 + .../console/include/shell_cmd_fault.h | 10 + .../console/include/shell_cmd_fault_info.h | 15 + .../console/include/shell_cmd_gpio.h | 11 + .../console/include/shell_cmd_i2c.h | 17 + .../console/include/shell_cmd_measure_power.h | 11 + .../console/include/shell_cmd_pwm.h | 11 + .../console/include/shell_cmd_reset.h | 10 + .../include/shell_cmd_reset_into_swu_mode.h | 10 + .../console/include/shell_cmd_swd_dut.h | 16 + .../console/include/shell_cmd_uptime.h | 10 + .../console/include/shell_cmd_version.h | 10 + .../console/source/shell_cmd_adapter_type.c | 9 + .../console/source/shell_cmd_btn.c | 88 + .../console/source/shell_cmd_dut_reset.c | 40 + .../console/source/shell_cmd_ext_relay.c | 34 + .../console/source/shell_cmd_fault.c | 20 + .../console/source/shell_cmd_fault_info.c | 28 + .../console/source/shell_cmd_gpio.c | 81 + .../console/source/shell_cmd_i2c.c | 120 + .../console/source/shell_cmd_measure_power.c | 65 + .../console/source/shell_cmd_pwm.c | 186 + .../console/source/shell_cmd_reset.c | 8 + .../source/shell_cmd_reset_into_swu_mode.c | 14 + .../console/source/shell_cmd_swd_dut.c | 25 + .../console/source/shell_cmd_uptime.c | 10 + .../console/source/shell_cmd_version.c | 12 + .../console/source/uif-cmdtab.c | 42 + .../extended_features/include/DAP_vendor_ex.h | 22 + .../extended_features/include/adc.h | 39 + .../extended_features/include/i2c.h | 52 + .../extended_features/include/pac193x.h | 181 + .../extended_features/include/udb.ld | 21 + .../include/udb_adapter_detector.h | 32 + .../extended_features/include/udb_errno.h | 8 + .../include/udb_extended_features_task.h | 11 + .../include/udb_fault_info.h | 15 + .../extended_features/include/udb_log.h | 15 + .../include/udb_power_measurement.h | 47 + .../extended_features/include/udb_reset.h | 14 + .../extended_features/include/udb_uart_b.h | 18 + .../extended_features/include/udb_uptime.h | 11 + .../extended_features/include/udb_util.h | 8 + .../extended_features/include/udb_version.h | 33 + .../extended_features/include/udb_watchdog.h | 10 + .../lib/nlbacktrace/include/nlbacktrace_udb.h | 22 + .../lib/nlbacktrace/source/nlbacktrace_udb.c | 536 ++ .../nlutilities/include/nluif_udb-daplink.h | 331 + .../nlutilities/source/nluif_udb-daplink.c | 781 ++ .../extended_features/source/DAP_vendor_ex.c | 440 + .../extended_features/source/I2C_STM32H7xx.c | 1564 ++++ .../extended_features/source/adc.c | 128 + .../extended_features/source/i2c.c | 350 + .../extended_features/source/pac193x.c | 92 + .../source/udb_adapter_detector.c | 92 + .../extended_features/source/udb_assert.c | 72 + .../extended_features/source/udb_config.c | 41 + .../source/udb_extended_features_task.c | 65 + .../extended_features/source/udb_fault_info.c | 108 + .../extended_features/source/udb_log.c | 85 + .../source/udb_power_measurement.c | 124 + .../extended_features/source/udb_reset.c | 28 + .../extended_features/source/udb_uart_b.c | 315 + .../extended_features/source/udb_uptime.c | 34 + .../extended_features/source/udb_util.c | 39 + .../extended_features/source/udb_version.c | 309 + .../extended_features/source/udb_watchdog.c | 133 + .../extended_features/usb/usbd_user_cdc_acm.c | 299 + 101 files changed, 52784 insertions(+) create mode 100644 records/board/stm32h743ii_udb_bl.yaml create mode 100644 records/board/stm32h743ii_udb_if.yaml create mode 100644 source/hic_hal/stm32/stm32h743ii/STM32H7xx_HAL_Driver/Inc/stm32h7xx_hal_adc.h create mode 100644 source/hic_hal/stm32/stm32h743ii/STM32H7xx_HAL_Driver/Inc/stm32h7xx_hal_adc_ex.h create mode 100644 source/hic_hal/stm32/stm32h743ii/STM32H7xx_HAL_Driver/Inc/stm32h7xx_hal_dma.h create mode 100644 source/hic_hal/stm32/stm32h743ii/STM32H7xx_HAL_Driver/Inc/stm32h7xx_hal_dma_ex.h create mode 100644 source/hic_hal/stm32/stm32h743ii/STM32H7xx_HAL_Driver/Inc/stm32h7xx_hal_eth.h create mode 100644 source/hic_hal/stm32/stm32h743ii/STM32H7xx_HAL_Driver/Inc/stm32h7xx_hal_eth_ex.h create mode 100644 source/hic_hal/stm32/stm32h743ii/STM32H7xx_HAL_Driver/Inc/stm32h7xx_hal_i2c.h create mode 100644 source/hic_hal/stm32/stm32h743ii/STM32H7xx_HAL_Driver/Inc/stm32h7xx_hal_i2c_ex.h create mode 100644 source/hic_hal/stm32/stm32h743ii/STM32H7xx_HAL_Driver/Inc/stm32h7xx_hal_mdma.h create mode 100644 source/hic_hal/stm32/stm32h743ii/STM32H7xx_HAL_Driver/Src/stm32h7xx_hal_adc.c create mode 100644 source/hic_hal/stm32/stm32h743ii/STM32H7xx_HAL_Driver/Src/stm32h7xx_hal_adc_ex.c create mode 100644 source/hic_hal/stm32/stm32h743ii/STM32H7xx_HAL_Driver/Src/stm32h7xx_hal_dma.c create mode 100644 source/hic_hal/stm32/stm32h743ii/STM32H7xx_HAL_Driver/Src/stm32h7xx_hal_dma_ex.c create mode 100644 source/hic_hal/stm32/stm32h743ii/STM32H7xx_HAL_Driver/Src/stm32h7xx_hal_eth.c create mode 100644 source/hic_hal/stm32/stm32h743ii/STM32H7xx_HAL_Driver/Src/stm32h7xx_hal_eth_ex.c create mode 100644 source/hic_hal/stm32/stm32h743ii/STM32H7xx_HAL_Driver/Src/stm32h7xx_hal_i2c.c create mode 100644 source/hic_hal/stm32/stm32h743ii/STM32H7xx_HAL_Driver/Src/stm32h7xx_hal_i2c_ex.c create mode 100644 source/hic_hal/stm32/stm32h743ii/STM32H7xx_HAL_Driver/Src/stm32h7xx_hal_pwr.c create mode 100644 source/hic_hal/stm32/stm32h743ii/STM32H7xx_HAL_Driver/Src/stm32h7xx_hal_pwr_ex.c create mode 100644 source/hic_hal/stm32/stm32h743ii/STM32H7xx_HAL_Driver/Src/stm32h7xx_hal_spi.c create mode 100644 source/hic_hal/stm32/stm32h743ii/STM32H7xx_HAL_Driver/Src/stm32h7xx_hal_spi_ex.c create mode 100644 source/hic_hal/stm32/stm32h743ii/STM32H7xx_HAL_Driver/Src/stm32h7xx_hal_tim.c create mode 100644 source/hic_hal/stm32/stm32h743ii/STM32H7xx_HAL_Driver/Src/stm32h7xx_ll_adc.c create mode 100644 source/hic_hal/stm32/stm32h743ii/STM32H7xx_HAL_Driver/Src/stm32h7xx_ll_pwr.c create mode 100644 source/hic_hal/stm32/stm32h743ii/STM32H7xx_HAL_Driver/Src/stm32h7xx_ll_usb.c create mode 100644 source/hic_hal/stm32/stm32h743ii/extended_features/console/include/shell_cmd_adapter_type.h create mode 100644 source/hic_hal/stm32/stm32h743ii/extended_features/console/include/shell_cmd_btn.h create mode 100644 source/hic_hal/stm32/stm32h743ii/extended_features/console/include/shell_cmd_dut_reset.h create mode 100644 source/hic_hal/stm32/stm32h743ii/extended_features/console/include/shell_cmd_ext_relay.h create mode 100644 source/hic_hal/stm32/stm32h743ii/extended_features/console/include/shell_cmd_fault.h create mode 100644 source/hic_hal/stm32/stm32h743ii/extended_features/console/include/shell_cmd_fault_info.h create mode 100644 source/hic_hal/stm32/stm32h743ii/extended_features/console/include/shell_cmd_gpio.h create mode 100644 source/hic_hal/stm32/stm32h743ii/extended_features/console/include/shell_cmd_i2c.h create mode 100644 source/hic_hal/stm32/stm32h743ii/extended_features/console/include/shell_cmd_measure_power.h create mode 100644 source/hic_hal/stm32/stm32h743ii/extended_features/console/include/shell_cmd_pwm.h create mode 100644 source/hic_hal/stm32/stm32h743ii/extended_features/console/include/shell_cmd_reset.h create mode 100644 source/hic_hal/stm32/stm32h743ii/extended_features/console/include/shell_cmd_reset_into_swu_mode.h create mode 100644 source/hic_hal/stm32/stm32h743ii/extended_features/console/include/shell_cmd_swd_dut.h create mode 100644 source/hic_hal/stm32/stm32h743ii/extended_features/console/include/shell_cmd_uptime.h create mode 100644 source/hic_hal/stm32/stm32h743ii/extended_features/console/include/shell_cmd_version.h create mode 100644 source/hic_hal/stm32/stm32h743ii/extended_features/console/source/shell_cmd_adapter_type.c create mode 100644 source/hic_hal/stm32/stm32h743ii/extended_features/console/source/shell_cmd_btn.c create mode 100644 source/hic_hal/stm32/stm32h743ii/extended_features/console/source/shell_cmd_dut_reset.c create mode 100644 source/hic_hal/stm32/stm32h743ii/extended_features/console/source/shell_cmd_ext_relay.c create mode 100644 source/hic_hal/stm32/stm32h743ii/extended_features/console/source/shell_cmd_fault.c create mode 100644 source/hic_hal/stm32/stm32h743ii/extended_features/console/source/shell_cmd_fault_info.c create mode 100644 source/hic_hal/stm32/stm32h743ii/extended_features/console/source/shell_cmd_gpio.c create mode 100644 source/hic_hal/stm32/stm32h743ii/extended_features/console/source/shell_cmd_i2c.c create mode 100644 source/hic_hal/stm32/stm32h743ii/extended_features/console/source/shell_cmd_measure_power.c create mode 100644 source/hic_hal/stm32/stm32h743ii/extended_features/console/source/shell_cmd_pwm.c create mode 100644 source/hic_hal/stm32/stm32h743ii/extended_features/console/source/shell_cmd_reset.c create mode 100644 source/hic_hal/stm32/stm32h743ii/extended_features/console/source/shell_cmd_reset_into_swu_mode.c create mode 100644 source/hic_hal/stm32/stm32h743ii/extended_features/console/source/shell_cmd_swd_dut.c create mode 100644 source/hic_hal/stm32/stm32h743ii/extended_features/console/source/shell_cmd_uptime.c create mode 100644 source/hic_hal/stm32/stm32h743ii/extended_features/console/source/shell_cmd_version.c create mode 100644 source/hic_hal/stm32/stm32h743ii/extended_features/console/source/uif-cmdtab.c create mode 100644 source/hic_hal/stm32/stm32h743ii/extended_features/include/DAP_vendor_ex.h create mode 100644 source/hic_hal/stm32/stm32h743ii/extended_features/include/adc.h create mode 100644 source/hic_hal/stm32/stm32h743ii/extended_features/include/i2c.h create mode 100644 source/hic_hal/stm32/stm32h743ii/extended_features/include/pac193x.h create mode 100644 source/hic_hal/stm32/stm32h743ii/extended_features/include/udb.ld create mode 100644 source/hic_hal/stm32/stm32h743ii/extended_features/include/udb_adapter_detector.h create mode 100644 source/hic_hal/stm32/stm32h743ii/extended_features/include/udb_errno.h create mode 100644 source/hic_hal/stm32/stm32h743ii/extended_features/include/udb_extended_features_task.h create mode 100644 source/hic_hal/stm32/stm32h743ii/extended_features/include/udb_fault_info.h create mode 100644 source/hic_hal/stm32/stm32h743ii/extended_features/include/udb_log.h create mode 100644 source/hic_hal/stm32/stm32h743ii/extended_features/include/udb_power_measurement.h create mode 100644 source/hic_hal/stm32/stm32h743ii/extended_features/include/udb_reset.h create mode 100644 source/hic_hal/stm32/stm32h743ii/extended_features/include/udb_uart_b.h create mode 100644 source/hic_hal/stm32/stm32h743ii/extended_features/include/udb_uptime.h create mode 100644 source/hic_hal/stm32/stm32h743ii/extended_features/include/udb_util.h create mode 100644 source/hic_hal/stm32/stm32h743ii/extended_features/include/udb_version.h create mode 100644 source/hic_hal/stm32/stm32h743ii/extended_features/include/udb_watchdog.h create mode 100644 source/hic_hal/stm32/stm32h743ii/extended_features/lib/nlbacktrace/include/nlbacktrace_udb.h create mode 100644 source/hic_hal/stm32/stm32h743ii/extended_features/lib/nlbacktrace/source/nlbacktrace_udb.c create mode 100644 source/hic_hal/stm32/stm32h743ii/extended_features/lib/nlutilities/include/nluif_udb-daplink.h create mode 100644 source/hic_hal/stm32/stm32h743ii/extended_features/lib/nlutilities/source/nluif_udb-daplink.c create mode 100644 source/hic_hal/stm32/stm32h743ii/extended_features/source/DAP_vendor_ex.c create mode 100644 source/hic_hal/stm32/stm32h743ii/extended_features/source/I2C_STM32H7xx.c create mode 100644 source/hic_hal/stm32/stm32h743ii/extended_features/source/adc.c create mode 100644 source/hic_hal/stm32/stm32h743ii/extended_features/source/i2c.c create mode 100644 source/hic_hal/stm32/stm32h743ii/extended_features/source/pac193x.c create mode 100644 source/hic_hal/stm32/stm32h743ii/extended_features/source/udb_adapter_detector.c create mode 100644 source/hic_hal/stm32/stm32h743ii/extended_features/source/udb_assert.c create mode 100644 source/hic_hal/stm32/stm32h743ii/extended_features/source/udb_config.c create mode 100644 source/hic_hal/stm32/stm32h743ii/extended_features/source/udb_extended_features_task.c create mode 100644 source/hic_hal/stm32/stm32h743ii/extended_features/source/udb_fault_info.c create mode 100644 source/hic_hal/stm32/stm32h743ii/extended_features/source/udb_log.c create mode 100644 source/hic_hal/stm32/stm32h743ii/extended_features/source/udb_power_measurement.c create mode 100644 source/hic_hal/stm32/stm32h743ii/extended_features/source/udb_reset.c create mode 100644 source/hic_hal/stm32/stm32h743ii/extended_features/source/udb_uart_b.c create mode 100644 source/hic_hal/stm32/stm32h743ii/extended_features/source/udb_uptime.c create mode 100644 source/hic_hal/stm32/stm32h743ii/extended_features/source/udb_util.c create mode 100644 source/hic_hal/stm32/stm32h743ii/extended_features/source/udb_version.c create mode 100644 source/hic_hal/stm32/stm32h743ii/extended_features/source/udb_watchdog.c create mode 100644 source/hic_hal/stm32/stm32h743ii/extended_features/usb/usbd_user_cdc_acm.c diff --git a/docs/hic/stm32h743xx.md b/docs/hic/stm32h743xx.md index e05a5f6d3..b89f627ae 100644 --- a/docs/hic/stm32h743xx.md +++ b/docs/hic/stm32h743xx.md @@ -41,3 +41,10 @@ Bootloader size is 128 KB | HID LED | O | PG2 | 98 | | CDC LED | O | PG3 | 99 | | MSC LED | O | PG4 | 100 | + +## UDB (Universal Debug Board) Additions +UDB is a special flavor of the stm32h743xx HIC, which enriches the DAPLink experience with additional features such as: +- A new USB CDC endpoint to flash and get logs from a second target. +- Another new USB CDC endpoint to interact with the HIC. Users can send easy shell commands to toggle pins, or to get any info from the HIC. +- Additional DAPLink debugging functionality: persistent fault info, breakpoints on asserts when debugger is connected to debug UDB, watchdog, backtraces +- Target power measurement diff --git a/projects.yaml b/projects.yaml index bc295aefa..49244aa4a 100644 --- a/projects.yaml +++ b/projects.yaml @@ -230,6 +230,15 @@ projects: - records/family/all_family.yaml - records/usb/usb-bulk.yaml - records/daplink/usb-cdc-single-uart.yaml + stm32h743ii_udb_bl: + - *stm32h743ii_bl + - records/board/stm32h743ii_udb_bl.yaml + stm32h743ii_udb_if: + - *module_if + - *module_hic_stm32h743ii + - records/family/all_family.yaml + - records/usb/usb-bulk.yaml + - records/board/stm32h743ii_udb_if.yaml #extends DAPLink with additional features for the UDB project # Other projects k20dx_ep_agora_if: diff --git a/records/board/stm32h743ii_udb_bl.yaml b/records/board/stm32h743ii_udb_bl.yaml new file mode 100644 index 000000000..4838016ab --- /dev/null +++ b/records/board/stm32h743ii_udb_bl.yaml @@ -0,0 +1,10 @@ +common: + includes: + - source/hic_hal/stm32/stm32h743ii/extended_features/include/udb_version.h + sources: + hic_hal: + - source/hic_hal/stm32/stm32h743ii/extended_features/source/udb_version.c +tool_specific: + gcc_arm: + linker_file: + - source/hic_hal/stm32/stm32h743ii/extended_features/include/udb.ld diff --git a/records/board/stm32h743ii_udb_if.yaml b/records/board/stm32h743ii_udb_if.yaml new file mode 100644 index 000000000..109dd4552 --- /dev/null +++ b/records/board/stm32h743ii_udb_if.yaml @@ -0,0 +1,30 @@ +common: + macros: + # Add DAPLink macros below + - MAIN_TASK_STACK=2048 + - DAPLINK_BOOTLOADER_UPDATE + - ASSERT_BUF_SIZE=65 + - USB_CDC_ACM_EP_COUNT=3 + # Add UDB config macros below + - UDB + - SUPPORT_CMD_HISTORY + - NLUIF_PRINT_RESULT + # Add build feature macros below + - BUILD_FEATURE_UDB_ASSERT + includes: + - projectfiles/make_gcc_arm/stm32h743ii_udb_bl/build/bootloader_image.c + - source/hic_hal/stm32/stm32h743ii/extended_features/include + - source/hic_hal/stm32/stm32h743ii/extended_features/lib/nlutilities/include + - source/hic_hal/stm32/stm32h743ii/extended_features/console/include + - source/hic_hal/stm32/stm32h743ii/extended_features/lib/nlbacktrace/include + sources: + board: + - source/board/stm32h743ii.c + family: + - source/family/st/stm32h743ii/target.c + hic_hal: + - source/hic_hal/stm32/stm32h743ii/extended_features/source + - source/hic_hal/stm32/stm32h743ii/extended_features/lib/nlutilities/source + - source/hic_hal/stm32/stm32h743ii/extended_features/console/source + - source/hic_hal/stm32/stm32h743ii/extended_features/lib/nlbacktrace/source + - source/hic_hal/stm32/stm32h743ii/extended_features/usb diff --git a/source/board/stm32h743ii.c b/source/board/stm32h743ii.c index 9eab9bd3e..1ef2766fd 100644 --- a/source/board/stm32h743ii.c +++ b/source/board/stm32h743ii.c @@ -23,6 +23,127 @@ #include "target_board.h" #include +#ifdef UDB +#include "i2c.h" +#include "udb_version.h" +#include "udb_extended_features_task.h" +#include "udb_power_measurement.h" +#include "udb_log.h" +#include "udb_version.h" +#include "nluif_udb-daplink.h" +#include "util.h" +#include "udb_fault_info.h" +#include "udb_watchdog.h" +#include "udb_fault_info.h" +#include "udb_uptime.h" + +#define UDB_WATCHDOG_TIMEOUT_S (10U) + +#define UDB_30MS_MULTIPLIER_TO_30SEC (1000) +#define UDB_30MS_MULTIPLIER_TO_10MIN (1000 * 20) + +#define UDB_LED_30MS_MULTIPLER_NORMAL (50ULL) +#define UDB_LED_30MS_MULTIPLER_UNCLEARED_FAULT_INFO (5ULL) + +#ifdef UDB_DEBUG +#define UDB_CHECK_FAULT_INFO_TARGET_COUNT UDB_30MS_MULTIPLIER_TO_30SEC +#else +#define UDB_CHECK_FAULT_INFO_TARGET_COUNT UDB_30MS_MULTIPLIER_TO_10MIN +#endif + +static uint64_t s_30ms_hook_counter = 0; +static uint64_t s_connected_led_blink_period = UDB_LED_30MS_MULTIPLER_NORMAL; + +extern void udb_config_init(void); + +static void udb_welcome_message(void) +{ + char ver_buf[UDB_VERSION_MAX_LENGTH]; + + printf("Welcome to\n"); + printf("\t ______ ______ \n"); + printf("\t|\\ /|( __ \\ ( ___ \\ \n"); + printf("\t| ) ( || ( \\ )| ( ) ) \n"); + printf("\t| | | || | ) || (__/ / \n"); + printf("\t| | | || | | || __ ( \n"); + printf("\t| | | || | ) || ( \\ \\ \n"); + printf("\t| (___) || (__/ )| )___) ) \n"); + printf("\t(_______)(______/ |/ \\___/ \n\n"); + + udb_get_interface_version((uint8_t*)ver_buf, UDB_VERSION_MAX_LENGTH); + printf("Interface version: %s\n", ver_buf); + udb_get_bootloader_version((uint8_t*)ver_buf, UDB_VERSION_MAX_LENGTH); + printf("Bootloader version: %s\n", ver_buf); + + printf("To know more about udb, visit go/udb.\n"); + printf("Please report issues at go/udb-bug.\n"); + printf("You can start typing commands.\n"); + + uif_prompt(); +} + +static void prerun_board_config(void) +{ + int status; + + udb_uptime_init(); + + status = i2c_init(); + util_assert(status == UDB_SUCCESS); + + udb_read_hw_version(); + udb_config_init(); + + udb_extended_features_task_create(); + + status = udb_power_measurement_init(); + util_assert(status == UDB_SUCCESS); + + udb_check_unexpected_watchdog_reset(); +} + +void board_30ms_hook() +{ + udb_uptime_update(); + if (udb_is_fault_info_uncleared()) + { + s_connected_led_blink_period = UDB_LED_30MS_MULTIPLER_UNCLEARED_FAULT_INFO; + } + else + { + s_connected_led_blink_period = UDB_LED_30MS_MULTIPLER_NORMAL; + } + + if (s_30ms_hook_counter == 0) + { + // Code that needs to run once after the bootloader update and all other + // initialization finished + + udb_watchdog_init(UDB_WATCHDOG_TIMEOUT_S); + udb_welcome_message(); + } + + udb_watchdog_refresh(); + + if ((s_30ms_hook_counter % s_connected_led_blink_period) == 0) + { + HAL_GPIO_TogglePin( CONNECTED_LED_PORT, CONNECTED_LED_PIN); + } + + if (((s_30ms_hook_counter % UDB_CHECK_FAULT_INFO_TARGET_COUNT) == 0) && udb_is_fault_info_uncleared()) + { + udb_print_fault_info(); + } + + if (udb_log_cdc_ready()) + { + udb_log_flush(); + } + + s_30ms_hook_counter++; +} +#endif // UDB + // return non-zero value to make all image incompatible uint8_t board_detect_incompatible_image(const uint8_t *data, uint32_t size) { diff --git a/source/hic_hal/stm32/stm32h743ii/STM32H7xx_HAL_Driver/Inc/stm32h7xx_hal_adc.h b/source/hic_hal/stm32/stm32h743ii/STM32H7xx_HAL_Driver/Inc/stm32h7xx_hal_adc.h new file mode 100644 index 000000000..1a1c4f076 --- /dev/null +++ b/source/hic_hal/stm32/stm32h743ii/STM32H7xx_HAL_Driver/Inc/stm32h7xx_hal_adc.h @@ -0,0 +1,1817 @@ +/** + ****************************************************************************** + * @file stm32h7xx_hal_adc.h + * @author MCD Application Team + * @brief Header file of ADC HAL module. + ****************************************************************************** + * @attention + * + *

© Copyright (c) 2017 STMicroelectronics. + * All rights reserved.

+ * + * This software component is licensed by ST under BSD 3-Clause license, + * the "License"; You may not use this file except in compliance with the + * License. You may obtain a copy of the License at: + * opensource.org/licenses/BSD-3-Clause + * + ****************************************************************************** + */ + +/* Define to prevent recursive inclusion -------------------------------------*/ +#ifndef STM32H7xx_HAL_ADC_H +#define STM32H7xx_HAL_ADC_H + +#ifdef __cplusplus +extern "C" { +#endif + +/* Includes ------------------------------------------------------------------*/ +#include "stm32h7xx_hal_def.h" + +/* Include low level driver */ +#include "stm32h7xx_ll_adc.h" + +/** @addtogroup STM32H7xx_HAL_Driver + * @{ + */ + +/** @addtogroup ADC + * @{ + */ + +/* Exported types ------------------------------------------------------------*/ +/** @defgroup ADC_Exported_Types ADC Exported Types + * @{ + */ + +/** + * @brief ADC group regular oversampling structure definition + */ +typedef struct +{ + uint32_t Ratio; /*!< Configures the oversampling ratio. + This parameter can be a value between 1 and 1024 */ + + uint32_t RightBitShift; /*!< Configures the division coefficient for the Oversampler. + This parameter can be a value of @ref ADC_HAL_EC_OVS_SHIFT */ + + uint32_t TriggeredMode; /*!< Selects the regular triggered oversampling mode. + This parameter can be a value of @ref ADC_HAL_EC_OVS_DISCONT_MODE */ + + uint32_t OversamplingStopReset; /*!< Selects the regular oversampling mode. + The oversampling is either temporary stopped or reset upon an injected + sequence interruption. + If oversampling is enabled on both regular and injected groups, this parameter + is discarded and forced to setting "ADC_REGOVERSAMPLING_RESUMED_MODE" + (the oversampling buffer is zeroed during injection sequence). + This parameter can be a value of @ref ADC_HAL_EC_OVS_SCOPE_REG */ + +} ADC_OversamplingTypeDef; + +/** + * @brief Structure definition of ADC instance and ADC group regular. + * @note Parameters of this structure are shared within 2 scopes: + * - Scope entire ADC (affects ADC groups regular and injected): ClockPrescaler, Resolution, DataAlign, + * ScanConvMode, EOCSelection, LowPowerAutoWait. + * - Scope ADC group regular: ContinuousConvMode, NbrOfConversion, DiscontinuousConvMode, NbrOfDiscConversion, + * ExternalTrigConv, ExternalTrigConvEdge, DMAContinuousRequests, Overrun, OversamplingMode, Oversampling. + * @note The setting of these parameters by function HAL_ADC_Init() is conditioned to ADC state. + * ADC state can be either: + * - For all parameters: ADC disabled + * - For all parameters except 'LowPowerAutoWait', 'DMAContinuousRequests' and 'Oversampling': ADC enabled without conversion on going on group regular. + * - For parameters 'LowPowerAutoWait' and 'DMAContinuousRequests': ADC enabled without conversion on going on groups regular and injected. + * If ADC is not in the appropriate state to modify some parameters, these parameters setting is bypassed + * without error reporting (as it can be the expected behavior in case of intended action to update another parameter + * (which fulfills the ADC state condition) on the fly). + */ +typedef struct +{ + uint32_t ClockPrescaler; /*!< Select ADC clock source (synchronous clock derived from APB clock or asynchronous clock derived from system clock or PLL (Refer to reference manual for list of clocks available)) and clock prescaler. + This parameter can be a value of @ref ADC_HAL_EC_COMMON_CLOCK_SOURCE. + Note: The ADC clock configuration is common to all ADC instances. + Note: In case of usage of channels on injected group, ADC frequency should be lower than AHB clock frequency /4 for resolution 12 or 10 bits, + AHB clock frequency /3 for resolution 8 bits, AHB clock frequency /2 for resolution 6 bits. + Note: In case of synchronous clock mode based on HCLK/1, the configuration must be enabled only + if the system clock has a 50% duty clock cycle (APB prescaler configured inside RCC + must be bypassed and PCLK clock must have 50% duty cycle). Refer to reference manual for details. + Note: In case of usage of asynchronous clock, the selected clock must be preliminarily enabled at RCC top level. + Note: This parameter can be modified only if all ADC instances are disabled. */ + + uint32_t Resolution; /*!< Configure the ADC resolution. + This parameter can be a value of @ref ADC_HAL_EC_RESOLUTION */ + + uint32_t ScanConvMode; /*!< Configure the sequencer of ADC groups regular and injected. + This parameter can be associated to parameter 'DiscontinuousConvMode' to have main sequence subdivided in successive parts. + If disabled: Conversion is performed in single mode (one channel converted, the one defined in rank 1). + Parameters 'NbrOfConversion' and 'InjectedNbrOfConversion' are discarded (equivalent to set to 1). + If enabled: Conversions are performed in sequence mode (multiple ranks defined by 'NbrOfConversion' or 'InjectedNbrOfConversion' and rank of each channel in sequencer). + Scan direction is upward: from rank 1 to rank 'n'. + This parameter can be a value of @ref ADC_Scan_mode */ + + uint32_t EOCSelection; /*!< Specify which EOC (End Of Conversion) flag is used for conversion by polling and interruption: end of unitary conversion or end of sequence conversions. + This parameter can be a value of @ref ADC_EOCSelection. */ + + FunctionalState LowPowerAutoWait; /*!< Select the dynamic low power Auto Delay: new conversion start only when the previous + conversion (for ADC group regular) or previous sequence (for ADC group injected) has been retrieved by user software, + using function HAL_ADC_GetValue() or HAL_ADCEx_InjectedGetValue(). + This feature automatically adapts the frequency of ADC conversions triggers to the speed of the system that reads the data. Moreover, this avoids risk of overrun + for low frequency applications. + This parameter can be set to ENABLE or DISABLE. + Note: Do not use with interruption or DMA (HAL_ADC_Start_IT(), HAL_ADC_Start_DMA()) since they clear immediately the EOC flag + to free the IRQ vector sequencer. + Do use with polling: 1. Start conversion with HAL_ADC_Start(), 2. Later on, when ADC conversion data is needed: + use HAL_ADC_PollForConversion() to ensure that conversion is completed and HAL_ADC_GetValue() to retrieve conversion result and trig another conversion start. + (in case of usage of ADC group injected, use the equivalent functions HAL_ADCExInjected_Start(), HAL_ADCEx_InjectedGetValue(), ...). */ + + FunctionalState ContinuousConvMode; /*!< Specify whether the conversion is performed in single mode (one conversion) or continuous mode for ADC group regular, + after the first ADC conversion start trigger occurred (software start or external trigger). + This parameter can be set to ENABLE or DISABLE. */ + + uint32_t NbrOfConversion; /*!< Specify the number of ranks that will be converted within the regular group sequencer. + To use the regular group sequencer and convert several ranks, parameter 'ScanConvMode' must be enabled. + This parameter must be a number between Min_Data = 1 and Max_Data = 16. + Note: This parameter must be modified when no conversion is on going on regular group (ADC disabled, or ADC enabled without + continuous mode or external trigger that could launch a conversion). */ + + FunctionalState DiscontinuousConvMode; /*!< Specify whether the conversions sequence of ADC group regular is performed in Complete-sequence/Discontinuous-sequence + (main sequence subdivided in successive parts). + Discontinuous mode is used only if sequencer is enabled (parameter 'ScanConvMode'). If sequencer is disabled, this parameter is discarded. + Discontinuous mode can be enabled only if continuous mode is disabled. If continuous mode is enabled, this parameter setting is discarded. + This parameter can be set to ENABLE or DISABLE. */ + + uint32_t NbrOfDiscConversion; /*!< Specifies the number of discontinuous conversions in which the main sequence of ADC group regular (parameter NbrOfConversion) will be subdivided. + If parameter 'DiscontinuousConvMode' is disabled, this parameter is discarded. + This parameter must be a number between Min_Data = 1 and Max_Data = 8. */ + + uint32_t ExternalTrigConv; /*!< Select the external event source used to trigger ADC group regular conversion start. + If set to ADC_SOFTWARE_START, external triggers are disabled and software trigger is used instead. + This parameter can be a value of @ref ADC_regular_external_trigger_source. + Caution: external trigger source is common to all ADC instances. */ + + uint32_t ExternalTrigConvEdge; /*!< Select the external event edge used to trigger ADC group regular conversion start. + If trigger source is set to ADC_SOFTWARE_START, this parameter is discarded. + This parameter can be a value of @ref ADC_regular_external_trigger_edge */ + + uint32_t ConversionDataManagement; /*!< Specifies whether the Data conversion data is managed: using the DMA (oneshot or circular), or stored in the DR register or transfered to DFSDM register. + Note: In continuous mode, DMA must be configured in circular mode. Otherwise an overrun will be triggered when DMA buffer maximum pointer is reached. + This parameter can be a value of @ref ADC_ConversionDataManagement. + Note: This parameter must be modified when no conversion is on going on both regular and injected groups + (ADC disabled, or ADC enabled without continuous mode or external trigger that could launch a conversion). */ + + uint32_t Overrun; /*!< Select the behavior in case of overrun: data overwritten or preserved (default). + This parameter applies to ADC group regular only. + This parameter can be a value of @ref ADC_HAL_EC_REG_OVR_DATA_BEHAVIOR. + Note: In case of overrun set to data preserved and usage with programming model with interruption (HAL_Start_IT()): ADC IRQ handler has to clear + end of conversion flags, this induces the release of the preserved data. If needed, this data can be saved in function + HAL_ADC_ConvCpltCallback(), placed in user program code (called before end of conversion flags clear). + Note: Error reporting with respect to the conversion mode: + - Usage with ADC conversion by polling for event or interruption: Error is reported only if overrun is set to data preserved. If overrun is set to data + overwritten, user can willingly not read all the converted data, this is not considered as an erroneous case. + - Usage with ADC conversion by DMA: Error is reported whatever overrun setting (DMA is expected to process all data from data register). */ + + uint32_t LeftBitShift; /*!< Configures the left shifting applied to the final result with or without oversampling. + This parameter can be a value of @ref ADCEx_Left_Bit_Shift */ + FunctionalState OversamplingMode; /*!< Specify whether the oversampling feature is enabled or disabled. + This parameter can be set to ENABLE or DISABLE. + Note: This parameter can be modified only if there is no conversion is ongoing on ADC groups regular and injected */ + + ADC_OversamplingTypeDef Oversampling; /*!< Specify the Oversampling parameters. + Caution: this setting overwrites the previous oversampling configuration if oversampling is already enabled. */ + +} ADC_InitTypeDef; + +/** + * @brief Structure definition of ADC channel for regular group + * @note The setting of these parameters by function HAL_ADC_ConfigChannel() is conditioned to ADC state. + * ADC state can be either: + * - For all parameters: ADC disabled (this is the only possible ADC state to modify parameter 'SingleDiff') + * - For all except parameters 'SamplingTime', 'Offset', 'OffsetNumber': ADC enabled without conversion on going on regular group. + * - For parameters 'SamplingTime', 'Offset', 'OffsetNumber': ADC enabled without conversion on going on regular and injected groups. + * If ADC is not in the appropriate state to modify some parameters, these parameters setting is bypassed + * without error reporting (as it can be the expected behavior in case of intended action to update another parameter (which fulfills the ADC state condition) + * on the fly). + */ +typedef struct +{ + uint32_t Channel; /*!< Specify the channel to configure into ADC regular group. + This parameter can be a value of @ref ADC_HAL_EC_CHANNEL + Note: Depending on devices and ADC instances, some channels may not be available on device package pins. Refer to device datasheet for channels availability. */ + + uint32_t Rank; /*!< Specify the rank in the regular group sequencer. + This parameter can be a value of @ref ADC_HAL_EC_REG_SEQ_RANKS + Note: to disable a channel or change order of conversion sequencer, rank containing a previous channel setting can be overwritten by + the new channel setting (or parameter number of conversions adjusted) */ + + uint32_t SamplingTime; /*!< Sampling time value to be set for the selected channel. + Unit: ADC clock cycles + Conversion time is the addition of sampling time and processing time + (12.5 ADC clock cycles at ADC resolution 12 bits, 10.5 cycles at 10 bits, 8.5 cycles at 8 bits, 6.5 cycles at 6 bits). + This parameter can be a value of @ref ADC_HAL_EC_CHANNEL_SAMPLINGTIME + Caution: This parameter applies to a channel that can be used into regular and/or injected group. + It overwrites the last setting. + Note: In case of usage of internal measurement channels (VrefInt/Vbat/TempSensor), + sampling time constraints must be respected (sampling time can be adjusted in function of ADC clock frequency and sampling time setting) + Refer to device datasheet for timings values. */ + + uint32_t SingleDiff; /*!< Select single-ended or differential input. + In differential mode: Differential measurement is carried out between the selected channel 'i' (positive input) and channel 'i+1' (negative input). + Only channel 'i' has to be configured, channel 'i+1' is configured automatically. + This parameter must be a value of @ref ADC_HAL_EC_CHANNEL_SINGLE_DIFF_ENDING + Caution: This parameter applies to a channel that can be used in a regular and/or injected group. + It overwrites the last setting. + Note: Refer to Reference Manual to ensure the selected channel is available in differential mode. + Note: When configuring a channel 'i' in differential mode, the channel 'i+1' is not usable separately. + Note: This parameter must be modified when ADC is disabled (before ADC start conversion or after ADC stop conversion). + If ADC is enabled, this parameter setting is bypassed without error reporting (as it can be the expected behavior in case + of another parameter update on the fly) */ + + uint32_t OffsetNumber; /*!< Select the offset number + This parameter can be a value of @ref ADC_HAL_EC_OFFSET_NB + Caution: Only one offset is allowed per channel. This parameter overwrites the last setting. */ + + uint32_t Offset; /*!< Define the offset to be subtracted from the raw converted data. + Offset value must be a positive number. + Depending of ADC resolution selected (16, 14, 12, 10, 8 bits), this parameter must be a number between Min_Data = 0x0000 and Max_Data = 0xFFFF, + 0x3FFF, 0xFFF, 0x3FF or 0xFF respectively. + Note: This parameter must be modified when no conversion is on going on both regular and injected groups (ADC disabled, or ADC enabled + without continuous mode or external trigger that could launch a conversion). */ + + FunctionalState OffsetRightShift; /*!< Define the Right-shift data after Offset correction. + This parameter is applied only for 16-bit or 8-bit resolution. + This parameter can be set to ENABLE or DISABLE.*/ + + FunctionalState OffsetSignedSaturation; /*!< Specify whether the Signed saturation feature is used or not. + This parameter is applied only for 16-bit or 8-bit resolution. + This parameter can be set to ENABLE or DISABLE. */ + +} ADC_ChannelConfTypeDef; + +/** + * @brief Structure definition of ADC analog watchdog + * @note The setting of these parameters by function HAL_ADC_AnalogWDGConfig() is conditioned to ADC state. + * ADC state can be either: + * - For all parameters: ADC disabled or ADC enabled without conversion on going on ADC groups regular and injected. + */ +typedef struct +{ + uint32_t WatchdogNumber; /*!< Select which ADC analog watchdog is monitoring the selected channel. + For Analog Watchdog 1: Only 1 channel can be monitored (or overall group of channels by setting parameter 'WatchdogMode') + For Analog Watchdog 2 and 3: Several channels can be monitored (by successive calls of 'HAL_ADC_AnalogWDGConfig()' for each channel) + This parameter can be a value of @ref ADC_HAL_EC_AWD_NUMBER. */ + + uint32_t WatchdogMode; /*!< Configure the ADC analog watchdog mode: single/all/none channels. + For Analog Watchdog 1: Configure the ADC analog watchdog mode: single channel or all channels, ADC groups regular and-or injected. + For Analog Watchdog 2 and 3: Several channels can be monitored by applying successively the AWD init structure. Channels on ADC group regular and injected are not differentiated: Set value 'ADC_ANALOGWATCHDOG_SINGLE_xxx' to monitor 1 channel, value 'ADC_ANALOGWATCHDOG_ALL_xxx' to monitor all channels, 'ADC_ANALOGWATCHDOG_NONE' to monitor no channel. + This parameter can be a value of @ref ADC_analog_watchdog_mode. */ + + uint32_t Channel; /*!< Select which ADC channel to monitor by analog watchdog. + For Analog Watchdog 1: this parameter has an effect only if parameter 'WatchdogMode' is configured on single channel (only 1 channel can be monitored). + For Analog Watchdog 2 and 3: Several channels can be monitored. To use this feature, call successively the function HAL_ADC_AnalogWDGConfig() for each channel to be added (or removed with value 'ADC_ANALOGWATCHDOG_NONE'). + This parameter can be a value of @ref ADC_HAL_EC_CHANNEL. */ + + FunctionalState ITMode; /*!< Specify whether the analog watchdog is configured in interrupt or polling mode. + This parameter can be set to ENABLE or DISABLE */ + + uint32_t HighThreshold; /*!< Configure the ADC analog watchdog High threshold value. + Depending of ADC resolution selected (16, 14, 12, 10, 8 bits), this parameter must be a number + between Min_Data = 0x000 and Max_Data = 0xFFFF, 0x3FFF, 0xFFF, 0x3FF or 0xFF respectively. + Note: Analog watchdog 2 and 3 are limited to a resolution of 8 bits: if ADC resolution is 12 bits + the 4 LSB are ignored, if ADC resolution is 10 bits the 2 LSB are ignored. + Note: If ADC oversampling is enabled, ADC analog watchdog thresholds are + impacted: the comparison of analog watchdog thresholds is done + on oversampling intermediate computation (after ratio, before shift + application): intermediate register bitfield [32:7] (26 most significant bits). */ + + uint32_t LowThreshold; /*!< Configures the ADC analog watchdog Low threshold value. + Depending of ADC resolution selected (16, 14, 12, 10, 8 bits), this parameter must be a number + between Min_Data = 0x000 and Max_Data = 0xFFFF, 0x3FFF, 0xFFF, 0x3FF or 0xFF respectively. + Note: Analog watchdog 2 and 3 are limited to a resolution of 8 bits: if ADC resolution is 12 bits + the 4 LSB are ignored, if ADC resolution is 10 bits the 2 LSB are ignored. + Note: If ADC oversampling is enabled, ADC analog watchdog thresholds are + impacted: the comparison of analog watchdog thresholds is done + on oversampling intermediate computation (after ratio, before shift + application): intermediate register bitfield [32:7] (26 most significant bits). */ +} ADC_AnalogWDGConfTypeDef; + +/** + * @brief ADC group injected contexts queue configuration + * @note Structure intended to be used only through structure "ADC_HandleTypeDef" + */ +typedef struct +{ + uint32_t ContextQueue; /*!< Injected channel configuration context: build-up over each + HAL_ADCEx_InjectedConfigChannel() call to finally initialize + JSQR register at HAL_ADCEx_InjectedConfigChannel() last call */ + + uint32_t ChannelCount; /*!< Number of channels in the injected sequence */ +} ADC_InjectionConfigTypeDef; + +/** @defgroup ADC_States ADC States + * @{ + */ + +/** + * @brief HAL ADC state machine: ADC states definition (bitfields) + * @note ADC state machine is managed by bitfields, state must be compared + * with bit by bit. + * For example: + * " if ((HAL_ADC_GetState(hadc1) & HAL_ADC_STATE_REG_BUSY) != 0UL) " + * " if ((HAL_ADC_GetState(hadc1) & HAL_ADC_STATE_AWD1) != 0UL) " + */ +/* States of ADC global scope */ +#define HAL_ADC_STATE_RESET (0x00000000UL) /*!< ADC not yet initialized or disabled */ +#define HAL_ADC_STATE_READY (0x00000001UL) /*!< ADC peripheral ready for use */ +#define HAL_ADC_STATE_BUSY_INTERNAL (0x00000002UL) /*!< ADC is busy due to an internal process (initialization, calibration) */ +#define HAL_ADC_STATE_TIMEOUT (0x00000004UL) /*!< TimeOut occurrence */ + +/* States of ADC errors */ +#define HAL_ADC_STATE_ERROR_INTERNAL (0x00000010UL) /*!< Internal error occurrence */ +#define HAL_ADC_STATE_ERROR_CONFIG (0x00000020UL) /*!< Configuration error occurrence */ +#define HAL_ADC_STATE_ERROR_DMA (0x00000040UL) /*!< DMA error occurrence */ + +/* States of ADC group regular */ +#define HAL_ADC_STATE_REG_BUSY (0x00000100UL) /*!< A conversion on ADC group regular is ongoing or can occur (either by continuous mode, + external trigger, low power auto power-on (if feature available), multimode ADC master control (if feature available)) */ +#define HAL_ADC_STATE_REG_EOC (0x00000200UL) /*!< Conversion data available on group regular */ +#define HAL_ADC_STATE_REG_OVR (0x00000400UL) /*!< Overrun occurrence */ +#define HAL_ADC_STATE_REG_EOSMP (0x00000800UL) /*!< Not available on this STM32 serie: End Of Sampling flag raised */ + +/* States of ADC group injected */ +#define HAL_ADC_STATE_INJ_BUSY (0x00001000UL) /*!< A conversion on ADC group injected is ongoing or can occur (either by auto-injection mode, + external trigger, low power auto power-on (if feature available), multimode ADC master control (if feature available)) */ +#define HAL_ADC_STATE_INJ_EOC (0x00002000UL) /*!< Conversion data available on group injected */ +#define HAL_ADC_STATE_INJ_JQOVF (0x00004000UL) /*!< Injected queue overflow occurrence */ + +/* States of ADC analog watchdogs */ +#define HAL_ADC_STATE_AWD1 (0x00010000UL) /*!< Out-of-window occurrence of ADC analog watchdog 1 */ +#define HAL_ADC_STATE_AWD2 (0x00020000UL) /*!< Out-of-window occurrence of ADC analog watchdog 2 */ +#define HAL_ADC_STATE_AWD3 (0x00040000UL) /*!< Out-of-window occurrence of ADC analog watchdog 3 */ + +/* States of ADC multi-mode */ +#define HAL_ADC_STATE_MULTIMODE_SLAVE (0x00100000UL) /*!< ADC in multimode slave state, controlled by another ADC master (when feature available) */ + +/** + * @} + */ + +/** + * @brief ADC handle Structure definition + */ +#if (USE_HAL_ADC_REGISTER_CALLBACKS == 1) +typedef struct __ADC_HandleTypeDef +#else +typedef struct +#endif +{ + ADC_TypeDef *Instance; /*!< Register base address */ + ADC_InitTypeDef Init; /*!< ADC initialization parameters and regular conversions setting */ + DMA_HandleTypeDef *DMA_Handle; /*!< Pointer DMA Handler */ + HAL_LockTypeDef Lock; /*!< ADC locking object */ + __IO uint32_t State; /*!< ADC communication state (bitmap of ADC states) */ + __IO uint32_t ErrorCode; /*!< ADC Error code */ + ADC_InjectionConfigTypeDef InjectionConfig ; /*!< ADC injected channel configuration build-up structure */ +#if (USE_HAL_ADC_REGISTER_CALLBACKS == 1) + void (* ConvCpltCallback)(struct __ADC_HandleTypeDef *hadc); /*!< ADC conversion complete callback */ + void (* ConvHalfCpltCallback)(struct __ADC_HandleTypeDef *hadc); /*!< ADC conversion DMA half-transfer callback */ + void (* LevelOutOfWindowCallback)(struct __ADC_HandleTypeDef *hadc); /*!< ADC analog watchdog 1 callback */ + void (* ErrorCallback)(struct __ADC_HandleTypeDef *hadc); /*!< ADC error callback */ + void (* InjectedConvCpltCallback)(struct __ADC_HandleTypeDef *hadc); /*!< ADC group injected conversion complete callback */ + void (* InjectedQueueOverflowCallback)(struct __ADC_HandleTypeDef *hadc); /*!< ADC group injected context queue overflow callback */ + void (* LevelOutOfWindow2Callback)(struct __ADC_HandleTypeDef *hadc); /*!< ADC analog watchdog 2 callback */ + void (* LevelOutOfWindow3Callback)(struct __ADC_HandleTypeDef *hadc); /*!< ADC analog watchdog 3 callback */ + void (* EndOfSamplingCallback)(struct __ADC_HandleTypeDef *hadc); /*!< ADC end of sampling callback */ + void (* MspInitCallback)(struct __ADC_HandleTypeDef *hadc); /*!< ADC Msp Init callback */ + void (* MspDeInitCallback)(struct __ADC_HandleTypeDef *hadc); /*!< ADC Msp DeInit callback */ +#endif /* USE_HAL_ADC_REGISTER_CALLBACKS */ +} ADC_HandleTypeDef; + +#if (USE_HAL_ADC_REGISTER_CALLBACKS == 1) +/** + * @brief HAL ADC Callback ID enumeration definition + */ +typedef enum +{ + HAL_ADC_CONVERSION_COMPLETE_CB_ID = 0x00U, /*!< ADC conversion complete callback ID */ + HAL_ADC_CONVERSION_HALF_CB_ID = 0x01U, /*!< ADC conversion DMA half-transfer callback ID */ + HAL_ADC_LEVEL_OUT_OF_WINDOW_1_CB_ID = 0x02U, /*!< ADC analog watchdog 1 callback ID */ + HAL_ADC_ERROR_CB_ID = 0x03U, /*!< ADC error callback ID */ + HAL_ADC_INJ_CONVERSION_COMPLETE_CB_ID = 0x04U, /*!< ADC group injected conversion complete callback ID */ + HAL_ADC_INJ_QUEUE_OVEFLOW_CB_ID = 0x05U, /*!< ADC group injected context queue overflow callback ID */ + HAL_ADC_LEVEL_OUT_OF_WINDOW_2_CB_ID = 0x06U, /*!< ADC analog watchdog 2 callback ID */ + HAL_ADC_LEVEL_OUT_OF_WINDOW_3_CB_ID = 0x07U, /*!< ADC analog watchdog 3 callback ID */ + HAL_ADC_END_OF_SAMPLING_CB_ID = 0x08U, /*!< ADC end of sampling callback ID */ + HAL_ADC_MSPINIT_CB_ID = 0x09U, /*!< ADC Msp Init callback ID */ + HAL_ADC_MSPDEINIT_CB_ID = 0x0AU /*!< ADC Msp DeInit callback ID */ +} HAL_ADC_CallbackIDTypeDef; + +/** + * @brief HAL ADC Callback pointer definition + */ +typedef void (*pADC_CallbackTypeDef)(ADC_HandleTypeDef *hadc); /*!< pointer to a ADC callback function */ + +#endif /* USE_HAL_ADC_REGISTER_CALLBACKS */ + +/** + * @} + */ + + +/* Exported constants --------------------------------------------------------*/ + +/** @defgroup ADC_Exported_Constants ADC Exported Constants + * @{ + */ + +/** @defgroup ADC_Error_Code ADC Error Code + * @{ + */ +#define HAL_ADC_ERROR_NONE (0x00U) /*!< No error */ +#define HAL_ADC_ERROR_INTERNAL (0x01U) /*!< ADC peripheral internal error (problem of clocking, + enable/disable, erroneous state, ...) */ +#define HAL_ADC_ERROR_OVR (0x02U) /*!< Overrun error */ +#define HAL_ADC_ERROR_DMA (0x04U) /*!< DMA transfer error */ +#define HAL_ADC_ERROR_JQOVF (0x08U) /*!< Injected context queue overflow error */ +#if (USE_HAL_ADC_REGISTER_CALLBACKS == 1) +#define HAL_ADC_ERROR_INVALID_CALLBACK (0x10U) /*!< Invalid Callback error */ +#endif /* USE_HAL_ADC_REGISTER_CALLBACKS */ +/** + * @} + */ + +/** @defgroup ADC_HAL_EC_COMMON_CLOCK_SOURCE ADC common - Clock source + * @{ + */ +#define ADC_CLOCK_SYNC_PCLK_DIV1 (LL_ADC_CLOCK_SYNC_PCLK_DIV1) /*!< ADC synchronous clock derived from AHB clock without prescaler */ +#define ADC_CLOCK_SYNC_PCLK_DIV2 (LL_ADC_CLOCK_SYNC_PCLK_DIV2) /*!< ADC synchronous clock derived from AHB clock with prescaler division by 2 */ +#define ADC_CLOCK_SYNC_PCLK_DIV4 (LL_ADC_CLOCK_SYNC_PCLK_DIV4) /*!< ADC synchronous clock derived from AHB clock with prescaler division by 4 */ + +#define ADC_CLOCK_ASYNC_DIV1 (LL_ADC_CLOCK_ASYNC_DIV1) /*!< ADC asynchronous clock without prescaler */ +#define ADC_CLOCK_ASYNC_DIV2 (LL_ADC_CLOCK_ASYNC_DIV2) /*!< ADC asynchronous clock with prescaler division by 2 */ +#define ADC_CLOCK_ASYNC_DIV4 (LL_ADC_CLOCK_ASYNC_DIV4) /*!< ADC asynchronous clock with prescaler division by 4 */ +#define ADC_CLOCK_ASYNC_DIV6 (LL_ADC_CLOCK_ASYNC_DIV6) /*!< ADC asynchronous clock with prescaler division by 6 */ +#define ADC_CLOCK_ASYNC_DIV8 (LL_ADC_CLOCK_ASYNC_DIV8) /*!< ADC asynchronous clock with prescaler division by 8 */ +#define ADC_CLOCK_ASYNC_DIV10 (LL_ADC_CLOCK_ASYNC_DIV10) /*!< ADC asynchronous clock with prescaler division by 10 */ +#define ADC_CLOCK_ASYNC_DIV12 (LL_ADC_CLOCK_ASYNC_DIV12) /*!< ADC asynchronous clock with prescaler division by 12 */ +#define ADC_CLOCK_ASYNC_DIV16 (LL_ADC_CLOCK_ASYNC_DIV16) /*!< ADC asynchronous clock with prescaler division by 16 */ +#define ADC_CLOCK_ASYNC_DIV32 (LL_ADC_CLOCK_ASYNC_DIV32) /*!< ADC asynchronous clock with prescaler division by 32 */ +#define ADC_CLOCK_ASYNC_DIV64 (LL_ADC_CLOCK_ASYNC_DIV64) /*!< ADC asynchronous clock with prescaler division by 64 */ +#define ADC_CLOCK_ASYNC_DIV128 (LL_ADC_CLOCK_ASYNC_DIV128) /*!< ADC asynchronous clock with prescaler division by 128 */ +#define ADC_CLOCK_ASYNC_DIV256 (LL_ADC_CLOCK_ASYNC_DIV256) /*!< ADC asynchronous clock with prescaler division by 256 */ +/** + * @} + */ + +/** @defgroup ADC_HAL_EC_RESOLUTION ADC instance - Resolution + * @{ + */ +#define ADC_RESOLUTION_16B (LL_ADC_RESOLUTION_16B) /*!< ADC resolution 16 bits */ +#define ADC_RESOLUTION_14B (LL_ADC_RESOLUTION_14B) /*!< ADC resolution 14 bits */ +#define ADC_RESOLUTION_12B (LL_ADC_RESOLUTION_12B) /*!< ADC resolution 12 bits */ +#define ADC_RESOLUTION_10B (LL_ADC_RESOLUTION_10B) /*!< ADC resolution 10 bits */ +#define ADC_RESOLUTION_8B (LL_ADC_RESOLUTION_8B) /*!< ADC resolution 8 bits */ +/** + * @} + */ + +/** @defgroup ADC_Scan_mode ADC sequencer scan mode + * @{ + */ +#define ADC_SCAN_DISABLE (0x00000000UL) /*!< Scan mode disabled */ +#define ADC_SCAN_ENABLE (0x00000001UL) /*!< Scan mode enabled */ +/** + * @} + */ + +/** @defgroup ADC_regular_external_trigger_source ADC group regular trigger source + * @{ + */ +/* ADC group regular trigger sources for all ADC instances */ +#define ADC_SOFTWARE_START (LL_ADC_REG_TRIG_SOFTWARE) /*!< ADC group regular conversion trigger internal: SW start. */ +#define ADC_EXTERNALTRIG_T1_CC1 (LL_ADC_REG_TRIG_EXT_TIM1_CH1) /*!< ADC group regular conversion trigger from external peripheral: TIM1 channel 1 event (capture compare: input capture or output capture). Trigger edge set to rising edge (default setting). */ +#define ADC_EXTERNALTRIG_T1_CC2 (LL_ADC_REG_TRIG_EXT_TIM1_CH2) /*!< ADC group regular conversion trigger from external peripheral: TIM1 channel 2 event (capture compare: input capture or output capture). Trigger edge set to rising edge (default setting). */ +#define ADC_EXTERNALTRIG_T1_CC3 (LL_ADC_REG_TRIG_EXT_TIM1_CH3) /*!< ADC group regular conversion trigger from external peripheral: TIM1 channel 3 event (capture compare: input capture or output capture). Trigger edge set to rising edge (default setting). */ +#define ADC_EXTERNALTRIG_T2_CC2 (LL_ADC_REG_TRIG_EXT_TIM2_CH2) /*!< ADC group regular conversion trigger from external peripheral: TIM2 channel 2 event (capture compare: input capture or output capture). Trigger edge set to rising edge (default setting). */ +#define ADC_EXTERNALTRIG_T3_TRGO (LL_ADC_REG_TRIG_EXT_TIM3_TRGO) /*!< ADC group regular conversion trigger from external peripheral: TIM3 TRGO event. Trigger edge set to rising edge (default setting). */ +#define ADC_EXTERNALTRIG_T4_CC4 (LL_ADC_REG_TRIG_EXT_TIM4_CH4) /*!< ADC group regular conversion trigger from external peripheral: TIM4 channel 4 event (capture compare: input capture or output capture). Trigger edge set to rising edge (default setting). */ +#define ADC_EXTERNALTRIG_EXT_IT11 (LL_ADC_REG_TRIG_EXT_EXTI_LINE11) /*!< ADC group regular conversion trigger from external peripheral: external interrupt line 11 event. Trigger edge set to rising edge (default setting). */ +#define ADC_EXTERNALTRIG_T8_TRGO (LL_ADC_REG_TRIG_EXT_TIM8_TRGO) /*!< ADC group regular conversion trigger from external peripheral: TIM8 TRGO event. Trigger edge set to rising edge (default setting). */ +#define ADC_EXTERNALTRIG_T8_TRGO2 (LL_ADC_REG_TRIG_EXT_TIM8_TRGO2) /*!< ADC group regular conversion trigger from external peripheral: TIM8 TRGO2 event. Trigger edge set to rising edge (default setting). */ +#define ADC_EXTERNALTRIG_T1_TRGO (LL_ADC_REG_TRIG_EXT_TIM1_TRGO) /*!< ADC group regular conversion trigger from external peripheral: TIM1 TRGO event. Trigger edge set to rising edge (default setting). */ +#define ADC_EXTERNALTRIG_T1_TRGO2 (LL_ADC_REG_TRIG_EXT_TIM1_TRGO2) /*!< ADC group regular conversion trigger from external peripheral: TIM1 TRGO2 event. Trigger edge set to rising edge (default setting). */ +#define ADC_EXTERNALTRIG_T2_TRGO (LL_ADC_REG_TRIG_EXT_TIM2_TRGO) /*!< ADC group regular conversion trigger from external peripheral: TIM2 TRGO event. Trigger edge set to rising edge (default setting). */ +#define ADC_EXTERNALTRIG_T4_TRGO (LL_ADC_REG_TRIG_EXT_TIM4_TRGO) /*!< ADC group regular conversion trigger from external peripheral: TIM4 TRGO event. Trigger edge set to rising edge (default setting). */ +#define ADC_EXTERNALTRIG_T6_TRGO (LL_ADC_REG_TRIG_EXT_TIM6_TRGO) /*!< ADC group regular conversion trigger from external peripheral: TIM6 TRGO event. Trigger edge set to rising edge (default setting). */ +#define ADC_EXTERNALTRIG_T15_TRGO (LL_ADC_REG_TRIG_EXT_TIM15_TRGO) /*!< ADC group regular conversion trigger from external peripheral: TIM15 TRGO event. Trigger edge set to rising edge (default setting). */ +#define ADC_EXTERNALTRIG_T3_CC4 (LL_ADC_REG_TRIG_EXT_TIM3_CH4) /*!< ADC group regular conversion trigger from external peripheral: TIM3 channel 4 event (capture compare: input capture or output capture). Trigger edge set to rising edge (default setting). */ +#define ADC_EXTERNALTRIG_HR1_ADCTRG1 (LL_ADC_REG_TRIG_EXT_HRTIM_TRG1) /*!< ADC group regular conversion trigger from external peripheral: HRTIM TRG1 event. Trigger edge set to rising edge (default setting). */ +#define ADC_EXTERNALTRIG_HR1_ADCTRG3 (LL_ADC_REG_TRIG_EXT_HRTIM_TRG3) /*!< ADC group regular conversion trigger from external peripheral: HRTIM TRG3 event. Trigger edge set to rising edge (default setting). */ +#define ADC_EXTERNALTRIG_LPTIM1_OUT (LL_ADC_REG_TRIG_EXT_LPTIM1_OUT) /*!< ADC group regular conversion trigger from external peripheral: LPTIM1 OUT event. Trigger edge set to rising edge (default setting). */ +#define ADC_EXTERNALTRIG_LPTIM2_OUT (LL_ADC_REG_TRIG_EXT_LPTIM2_OUT) /*!< ADC group regular conversion trigger from external peripheral: LPTIM2 OUT event. Trigger edge set to rising edge (default setting). */ +#define ADC_EXTERNALTRIG_LPTIM3_OUT (LL_ADC_REG_TRIG_EXT_LPTIM3_OUT) /*!< ADC group regular conversion trigger from external peripheral: LPTIM3 event OUT. Trigger edge set to rising edge (default setting). */ +/** + * @} + */ + +/** @defgroup ADC_regular_external_trigger_edge ADC group regular trigger edge (when external trigger is selected) + * @{ + */ +#define ADC_EXTERNALTRIGCONVEDGE_NONE (0x00000000UL) /*!< Regular conversions hardware trigger detection disabled */ +#define ADC_EXTERNALTRIGCONVEDGE_RISING (LL_ADC_REG_TRIG_EXT_RISING) /*!< ADC group regular conversion trigger polarity set to rising edge */ +#define ADC_EXTERNALTRIGCONVEDGE_FALLING (LL_ADC_REG_TRIG_EXT_FALLING) /*!< ADC group regular conversion trigger polarity set to falling edge */ +#define ADC_EXTERNALTRIGCONVEDGE_RISINGFALLING (LL_ADC_REG_TRIG_EXT_RISINGFALLING) /*!< ADC group regular conversion trigger polarity set to both rising and falling edges */ +/** + * @} + */ + +/** @defgroup ADC_EOCSelection ADC sequencer end of unitary conversion or sequence conversions + * @{ + */ +#define ADC_EOC_SINGLE_CONV (ADC_ISR_EOC) /*!< End of unitary conversion flag */ +#define ADC_EOC_SEQ_CONV (ADC_ISR_EOS) /*!< End of sequence conversions flag */ +/** + * @} + */ + +/** @defgroup ADC_HAL_EC_REG_OVR_DATA_BEHAVIOR ADC group regular - Overrun behavior on conversion data + * @{ + */ +#define ADC_OVR_DATA_PRESERVED (LL_ADC_REG_OVR_DATA_PRESERVED) /*!< ADC group regular behavior in case of overrun: data preserved */ +#define ADC_OVR_DATA_OVERWRITTEN (LL_ADC_REG_OVR_DATA_OVERWRITTEN) /*!< ADC group regular behavior in case of overrun: data overwritten */ +/** + * @} + */ + +/** @defgroup ADC_HAL_EC_REG_SEQ_RANKS ADC group regular - Sequencer ranks + * @{ + */ +#define ADC_REGULAR_RANK_1 (LL_ADC_REG_RANK_1) /*!< ADC group regular sequencer rank 1 */ +#define ADC_REGULAR_RANK_2 (LL_ADC_REG_RANK_2) /*!< ADC group regular sequencer rank 2 */ +#define ADC_REGULAR_RANK_3 (LL_ADC_REG_RANK_3) /*!< ADC group regular sequencer rank 3 */ +#define ADC_REGULAR_RANK_4 (LL_ADC_REG_RANK_4) /*!< ADC group regular sequencer rank 4 */ +#define ADC_REGULAR_RANK_5 (LL_ADC_REG_RANK_5) /*!< ADC group regular sequencer rank 5 */ +#define ADC_REGULAR_RANK_6 (LL_ADC_REG_RANK_6) /*!< ADC group regular sequencer rank 6 */ +#define ADC_REGULAR_RANK_7 (LL_ADC_REG_RANK_7) /*!< ADC group regular sequencer rank 7 */ +#define ADC_REGULAR_RANK_8 (LL_ADC_REG_RANK_8) /*!< ADC group regular sequencer rank 8 */ +#define ADC_REGULAR_RANK_9 (LL_ADC_REG_RANK_9) /*!< ADC group regular sequencer rank 9 */ +#define ADC_REGULAR_RANK_10 (LL_ADC_REG_RANK_10) /*!< ADC group regular sequencer rank 10 */ +#define ADC_REGULAR_RANK_11 (LL_ADC_REG_RANK_11) /*!< ADC group regular sequencer rank 11 */ +#define ADC_REGULAR_RANK_12 (LL_ADC_REG_RANK_12) /*!< ADC group regular sequencer rank 12 */ +#define ADC_REGULAR_RANK_13 (LL_ADC_REG_RANK_13) /*!< ADC group regular sequencer rank 13 */ +#define ADC_REGULAR_RANK_14 (LL_ADC_REG_RANK_14) /*!< ADC group regular sequencer rank 14 */ +#define ADC_REGULAR_RANK_15 (LL_ADC_REG_RANK_15) /*!< ADC group regular sequencer rank 15 */ +#define ADC_REGULAR_RANK_16 (LL_ADC_REG_RANK_16) /*!< ADC group regular sequencer rank 16 */ +/** + * @} + */ + +/** @defgroup ADC_HAL_EC_CHANNEL_SAMPLINGTIME Channel - Sampling time + * @{ + */ +#define ADC_SAMPLETIME_1CYCLE_5 (LL_ADC_SAMPLINGTIME_1CYCLE_5) /*!< Sampling time 1.5 ADC clock cycles */ +#define ADC_SAMPLETIME_2CYCLES_5 (LL_ADC_SAMPLINGTIME_2CYCLES_5) /*!< Sampling time 2.5 ADC clock cycles */ +#define ADC_SAMPLETIME_8CYCLES_5 (LL_ADC_SAMPLINGTIME_8CYCLES_5) /*!< Sampling time 8.5 ADC clock cycles */ +#define ADC_SAMPLETIME_16CYCLES_5 (LL_ADC_SAMPLINGTIME_16CYCLES_5) /*!< Sampling time 16.5 ADC clock cycles */ +#define ADC_SAMPLETIME_32CYCLES_5 (LL_ADC_SAMPLINGTIME_32CYCLES_5) /*!< Sampling time 32.5 ADC clock cycles */ +#define ADC_SAMPLETIME_64CYCLES_5 (LL_ADC_SAMPLINGTIME_64CYCLES_5) /*!< Sampling time 64.5 ADC clock cycles */ +#define ADC_SAMPLETIME_387CYCLES_5 (LL_ADC_SAMPLINGTIME_387CYCLES_5) /*!< Sampling time 387.5 ADC clock cycles */ +#define ADC_SAMPLETIME_810CYCLES_5 (LL_ADC_SAMPLINGTIME_810CYCLES_5) /*!< Sampling time 810.5 ADC clock cycles */ +/** + * @} + */ + +/** @defgroup ADCEx_Calibration_Mode ADC Extended Calibration mode offset mode or linear mode + * @{ + */ +#define ADC_CALIB_OFFSET (LL_ADC_CALIB_OFFSET) +#define ADC_CALIB_OFFSET_LINEARITY (LL_ADC_CALIB_OFFSET_LINEARITY) +/** + * @} + */ + +/** @defgroup ADC_HAL_EC_CHANNEL ADC instance - Channel number + * @{ + */ +/* Note: VrefInt, TempSensor and Vbat internal channels are not available on */ +/* all ADC instances (refer to Reference Manual). */ +#define ADC_CHANNEL_0 (LL_ADC_CHANNEL_0) /*!< ADC external channel (channel connected to GPIO pin) ADCx_IN0 */ +#define ADC_CHANNEL_1 (LL_ADC_CHANNEL_1) /*!< ADC external channel (channel connected to GPIO pin) ADCx_IN1 */ +#define ADC_CHANNEL_2 (LL_ADC_CHANNEL_2) /*!< ADC external channel (channel connected to GPIO pin) ADCx_IN2 */ +#define ADC_CHANNEL_3 (LL_ADC_CHANNEL_3) /*!< ADC external channel (channel connected to GPIO pin) ADCx_IN3 */ +#define ADC_CHANNEL_4 (LL_ADC_CHANNEL_4) /*!< ADC external channel (channel connected to GPIO pin) ADCx_IN4 */ +#define ADC_CHANNEL_5 (LL_ADC_CHANNEL_5) /*!< ADC external channel (channel connected to GPIO pin) ADCx_IN5 */ +#define ADC_CHANNEL_6 (LL_ADC_CHANNEL_6) /*!< ADC external channel (channel connected to GPIO pin) ADCx_IN6 */ +#define ADC_CHANNEL_7 (LL_ADC_CHANNEL_7) /*!< ADC external channel (channel connected to GPIO pin) ADCx_IN7 */ +#define ADC_CHANNEL_8 (LL_ADC_CHANNEL_8) /*!< ADC external channel (channel connected to GPIO pin) ADCx_IN8 */ +#define ADC_CHANNEL_9 (LL_ADC_CHANNEL_9) /*!< ADC external channel (channel connected to GPIO pin) ADCx_IN9 */ +#define ADC_CHANNEL_10 (LL_ADC_CHANNEL_10) /*!< ADC external channel (channel connected to GPIO pin) ADCx_IN10 */ +#define ADC_CHANNEL_11 (LL_ADC_CHANNEL_11) /*!< ADC external channel (channel connected to GPIO pin) ADCx_IN11 */ +#define ADC_CHANNEL_12 (LL_ADC_CHANNEL_12) /*!< ADC external channel (channel connected to GPIO pin) ADCx_IN12 */ +#define ADC_CHANNEL_13 (LL_ADC_CHANNEL_13) /*!< ADC external channel (channel connected to GPIO pin) ADCx_IN13 */ +#define ADC_CHANNEL_14 (LL_ADC_CHANNEL_14) /*!< ADC external channel (channel connected to GPIO pin) ADCx_IN14 */ +#define ADC_CHANNEL_15 (LL_ADC_CHANNEL_15) /*!< ADC external channel (channel connected to GPIO pin) ADCx_IN15 */ +#define ADC_CHANNEL_16 (LL_ADC_CHANNEL_16) /*!< ADC external channel (channel connected to GPIO pin) ADCx_IN16 */ +#define ADC_CHANNEL_17 (LL_ADC_CHANNEL_17) /*!< ADC external channel (channel connected to GPIO pin) ADCx_IN17 */ +#define ADC_CHANNEL_18 (LL_ADC_CHANNEL_18) /*!< ADC external channel (channel connected to GPIO pin) ADCx_IN18 */ +#define ADC_CHANNEL_19 (LL_ADC_CHANNEL_19) /*!< ADC external channel (channel connected to GPIO pin) ADCx_IN19 */ +#define ADC_CHANNEL_VREFINT (LL_ADC_CHANNEL_VREFINT) /*!< ADC internal channel connected to VrefInt: Internal voltage reference, channel specific to ADC3. */ +#define ADC_CHANNEL_TEMPSENSOR (LL_ADC_CHANNEL_TEMPSENSOR) /*!< ADC internal channel connected to Temperature sensor, channel specific to ADC3. */ +#define ADC_CHANNEL_VBAT (LL_ADC_CHANNEL_VBAT) /*!< ADC internal channel connected to Vbat/4: Vbat voltage through a divider ladder of factor 1/4 to have Vbat always below Vdda, channel specific to ADC3. */ +#define ADC_CHANNEL_DAC1CH1_ADC2 (LL_ADC_CHANNEL_DAC1CH1_ADC2) /*!< ADC internal channel connected to DAC1 channel 1, channel specific to ADC2 */ +#define ADC_CHANNEL_DAC1CH2_ADC2 (LL_ADC_CHANNEL_DAC1CH2_ADC2) /*!< ADC internal channel connected to DAC1 channel 2, channel specific to ADC2 */ +#if defined (LL_ADC_CHANNEL_DAC2CH1_ADC2) +#define ADC_CHANNEL_DAC2CH1_ADC2 (LL_ADC_CHANNEL_DAC2CH1_ADC2) /*!< ADC internal channel connected to DAC2 channel 1, channel specific to ADC2 */ +#endif +/** + * @} + */ + +/** @defgroup ADC_ConversionDataManagement ADC Conversion Data Management + * @{ + */ +#define ADC_CONVERSIONDATA_DR (0x00000000UL) /*!< Regular Conversion data stored in DR register only */ +#define ADC_CONVERSIONDATA_DFSDM (ADC_CFGR_DMNGT_1) /*!< DFSDM mode selected */ +#define ADC_CONVERSIONDATA_DMA_ONESHOT (ADC_CFGR_DMNGT_0) /*!< DMA one shot mode selected */ +#define ADC_CONVERSIONDATA_DMA_CIRCULAR (ADC_CFGR_DMNGT_0 | ADC_CFGR_DMNGT_1) /*!< DMA circular mode selected */ +/** + * @} + */ +/** @defgroup ADC_HAL_EC_AWD_NUMBER Analog watchdog - Analog watchdog number + * @{ + */ +#define ADC_ANALOGWATCHDOG_1 (LL_ADC_AWD1) /*!< ADC analog watchdog number 1 */ +#define ADC_ANALOGWATCHDOG_2 (LL_ADC_AWD2) /*!< ADC analog watchdog number 2 */ +#define ADC_ANALOGWATCHDOG_3 (LL_ADC_AWD3) /*!< ADC analog watchdog number 3 */ +/** + * @} + */ + +/** @defgroup ADC_analog_watchdog_mode ADC Analog Watchdog Mode + * @{ + */ +#define ADC_ANALOGWATCHDOG_NONE (0x00000000UL) /*!< No analog watchdog selected */ +#define ADC_ANALOGWATCHDOG_SINGLE_REG (ADC_CFGR_AWD1SGL | ADC_CFGR_AWD1EN) /*!< Analog watchdog applied to a regular group single channel */ +#define ADC_ANALOGWATCHDOG_SINGLE_INJEC (ADC_CFGR_AWD1SGL | ADC_CFGR_JAWD1EN) /*!< Analog watchdog applied to an injected group single channel */ +#define ADC_ANALOGWATCHDOG_SINGLE_REGINJEC (ADC_CFGR_AWD1SGL | ADC_CFGR_AWD1EN | ADC_CFGR_JAWD1EN) /*!< Analog watchdog applied to a regular and injected groups single channel */ +#define ADC_ANALOGWATCHDOG_ALL_REG (ADC_CFGR_AWD1EN) /*!< Analog watchdog applied to regular group all channels */ +#define ADC_ANALOGWATCHDOG_ALL_INJEC (ADC_CFGR_JAWD1EN) /*!< Analog watchdog applied to injected group all channels */ +#define ADC_ANALOGWATCHDOG_ALL_REGINJEC (ADC_CFGR_AWD1EN | ADC_CFGR_JAWD1EN) /*!< Analog watchdog applied to regular and injected groups all channels */ +/** + * @} + */ + +/** @defgroup ADC_HAL_EC_OVS_SHIFT Oversampling - Data shift + * @{ + */ +#define ADC_RIGHTBITSHIFT_NONE (LL_ADC_OVS_SHIFT_NONE) /*!< ADC oversampling no shift (sum of the ADC conversions data is not divided to result as the ADC oversampling conversion data) */ +#define ADC_RIGHTBITSHIFT_1 (LL_ADC_OVS_SHIFT_RIGHT_1) /*!< ADC oversampling shift of 1 (sum of the ADC conversions data is divided by 2 to result as the ADC oversampling conversion data) */ +#define ADC_RIGHTBITSHIFT_2 (LL_ADC_OVS_SHIFT_RIGHT_2) /*!< ADC oversampling shift of 2 (sum of the ADC conversions data is divided by 4 to result as the ADC oversampling conversion data) */ +#define ADC_RIGHTBITSHIFT_3 (LL_ADC_OVS_SHIFT_RIGHT_3) /*!< ADC oversampling shift of 3 (sum of the ADC conversions data is divided by 8 to result as the ADC oversampling conversion data) */ +#define ADC_RIGHTBITSHIFT_4 (LL_ADC_OVS_SHIFT_RIGHT_4) /*!< ADC oversampling shift of 4 (sum of the ADC conversions data is divided by 16 to result as the ADC oversampling conversion data) */ +#define ADC_RIGHTBITSHIFT_5 (LL_ADC_OVS_SHIFT_RIGHT_5) /*!< ADC oversampling shift of 5 (sum of the ADC conversions data is divided by 32 to result as the ADC oversampling conversion data) */ +#define ADC_RIGHTBITSHIFT_6 (LL_ADC_OVS_SHIFT_RIGHT_6) /*!< ADC oversampling shift of 6 (sum of the ADC conversions data is divided by 64 to result as the ADC oversampling conversion data) */ +#define ADC_RIGHTBITSHIFT_7 (LL_ADC_OVS_SHIFT_RIGHT_7) /*!< ADC oversampling shift of 7 (sum of the ADC conversions data is divided by 128 to result as the ADC oversampling conversion data) */ +#define ADC_RIGHTBITSHIFT_8 (LL_ADC_OVS_SHIFT_RIGHT_8) /*!< ADC oversampling shift of 8 (sum of the ADC conversions data is divided by 256 to result as the ADC oversampling conversion data) */ +#define ADC_RIGHTBITSHIFT_9 (LL_ADC_OVS_SHIFT_RIGHT_9) /*!< ADC oversampling shift of 9 (sum of the ADC conversions data is divided by 512 to result as the ADC oversampling conversion data) */ +#define ADC_RIGHTBITSHIFT_10 (LL_ADC_OVS_SHIFT_RIGHT_10)/*!< ADC oversampling shift of 10 (sum of the ADC conversions data is divided by 1024 to result as the ADC oversampling conversion data) */ +#define ADC_RIGHTBITSHIFT_11 (LL_ADC_OVS_SHIFT_RIGHT_11)/*!< ADC oversampling shift of 11 (sum of the ADC conversions data is divided by 2048 to result as the ADC oversampling conversion data) */ +/** + * @} + */ + +/** @defgroup ADCEx_Left_Bit_Shift ADC Extended Oversampling left Shift + * @{ + */ +#define ADC_LEFTBITSHIFT_NONE (LL_ADC_LEFT_BIT_SHIFT_NONE) /*!< ADC No bit shift */ +#define ADC_LEFTBITSHIFT_1 (LL_ADC_LEFT_BIT_SHIFT_1) /*!< ADC 1 bit shift */ +#define ADC_LEFTBITSHIFT_2 (LL_ADC_LEFT_BIT_SHIFT_2) /*!< ADC 2 bits shift */ +#define ADC_LEFTBITSHIFT_3 (LL_ADC_LEFT_BIT_SHIFT_3) /*!< ADC 3 bits shift */ +#define ADC_LEFTBITSHIFT_4 (LL_ADC_LEFT_BIT_SHIFT_4) /*!< ADC 4 bits shift */ +#define ADC_LEFTBITSHIFT_5 (LL_ADC_LEFT_BIT_SHIFT_5) /*!< ADC 5 bits shift */ +#define ADC_LEFTBITSHIFT_6 (LL_ADC_LEFT_BIT_SHIFT_6) /*!< ADC 6 bits shift */ +#define ADC_LEFTBITSHIFT_7 (LL_ADC_LEFT_BIT_SHIFT_7) /*!< ADC 7 bits shift */ +#define ADC_LEFTBITSHIFT_8 (LL_ADC_LEFT_BIT_SHIFT_8) /*!< ADC 8 bits shift */ +#define ADC_LEFTBITSHIFT_9 (LL_ADC_LEFT_BIT_SHIFT_9) /*!< ADC 9 bits shift */ +#define ADC_LEFTBITSHIFT_10 (LL_ADC_LEFT_BIT_SHIFT_10) /*!< ADC 10 bits shift */ +#define ADC_LEFTBITSHIFT_11 (LL_ADC_LEFT_BIT_SHIFT_11) /*!< ADC 11 bits shift */ +#define ADC_LEFTBITSHIFT_12 (LL_ADC_LEFT_BIT_SHIFT_12) /*!< ADC 12 bits shift */ +#define ADC_LEFTBITSHIFT_13 (LL_ADC_LEFT_BIT_SHIFT_13) /*!< ADC 13 bits shift */ +#define ADC_LEFTBITSHIFT_14 (LL_ADC_LEFT_BIT_SHIFT_14) /*!< ADC 14 bits shift */ +#define ADC_LEFTBITSHIFT_15 (LL_ADC_LEFT_BIT_SHIFT_15) /*!< ADC 15 bits shift */ +/** + * @} + */ + +/** @defgroup ADC_HAL_EC_OVS_DISCONT_MODE Oversampling - Discontinuous mode + * @{ + */ +#define ADC_TRIGGEREDMODE_SINGLE_TRIGGER (LL_ADC_OVS_REG_CONT) /*!< ADC oversampling discontinuous mode: continuous mode (all conversions of oversampling ratio are done from 1 trigger) */ +#define ADC_TRIGGEREDMODE_MULTI_TRIGGER (LL_ADC_OVS_REG_DISCONT) /*!< ADC oversampling discontinuous mode: discontinuous mode (each conversion of oversampling ratio needs a trigger) */ +/** + * @} + */ + +/** @defgroup ADC_HAL_EC_OVS_SCOPE_REG Oversampling - Oversampling scope for ADC group regular + * @{ + */ +#define ADC_REGOVERSAMPLING_CONTINUED_MODE (LL_ADC_OVS_GRP_REGULAR_CONTINUED) /*!< Oversampling buffer maintained during injection sequence */ +#define ADC_REGOVERSAMPLING_RESUMED_MODE (LL_ADC_OVS_GRP_REGULAR_RESUMED) /*!< Oversampling buffer zeroed during injection sequence */ +/** + * @} + */ + + +/** @defgroup ADC_Event_type ADC Event type + * @{ + */ +#define ADC_EOSMP_EVENT (ADC_FLAG_EOSMP) /*!< ADC End of Sampling event */ +#define ADC_AWD1_EVENT (ADC_FLAG_AWD1) /*!< ADC Analog watchdog 1 event (main analog watchdog, present on all STM32 series) */ +#define ADC_AWD2_EVENT (ADC_FLAG_AWD2) /*!< ADC Analog watchdog 2 event (additional analog watchdog, not present on all STM32 series) */ +#define ADC_AWD3_EVENT (ADC_FLAG_AWD3) /*!< ADC Analog watchdog 3 event (additional analog watchdog, not present on all STM32 series) */ +#define ADC_OVR_EVENT (ADC_FLAG_OVR) /*!< ADC overrun event */ +#define ADC_JQOVF_EVENT (ADC_FLAG_JQOVF) /*!< ADC Injected Context Queue Overflow event */ +/** + * @} + */ +#define ADC_AWD_EVENT ADC_AWD1_EVENT /*!< ADC Analog watchdog 1 event: Naming for compatibility with other STM32 devices having only one analog watchdog */ + +/** @defgroup ADC_interrupts_definition ADC interrupts definition + * @{ + */ +#define ADC_IT_RDY ADC_IER_ADRDYIE /*!< ADC Ready interrupt source */ +#define ADC_IT_EOSMP ADC_IER_EOSMPIE /*!< ADC End of sampling interrupt source */ +#define ADC_IT_EOC ADC_IER_EOCIE /*!< ADC End of regular conversion interrupt source */ +#define ADC_IT_EOS ADC_IER_EOSIE /*!< ADC End of regular sequence of conversions interrupt source */ +#define ADC_IT_OVR ADC_IER_OVRIE /*!< ADC overrun interrupt source */ +#define ADC_IT_JEOC ADC_IER_JEOCIE /*!< ADC End of injected conversion interrupt source */ +#define ADC_IT_JEOS ADC_IER_JEOSIE /*!< ADC End of injected sequence of conversions interrupt source */ +#define ADC_IT_AWD1 ADC_IER_AWD1IE /*!< ADC Analog watchdog 1 interrupt source (main analog watchdog) */ +#define ADC_IT_AWD2 ADC_IER_AWD2IE /*!< ADC Analog watchdog 2 interrupt source (additional analog watchdog) */ +#define ADC_IT_AWD3 ADC_IER_AWD3IE /*!< ADC Analog watchdog 3 interrupt source (additional analog watchdog) */ +#define ADC_IT_JQOVF ADC_IER_JQOVFIE /*!< ADC Injected Context Queue Overflow interrupt source */ + +#define ADC_IT_AWD ADC_IT_AWD1 /*!< ADC Analog watchdog 1 interrupt source: naming for compatibility with other STM32 devices having only one analog watchdog */ + +/** + * @} + */ + +/** @defgroup ADC_flags_definition ADC flags definition + * @{ + */ +#define ADC_FLAG_RDY ADC_ISR_ADRDY /*!< ADC Ready flag */ +#define ADC_FLAG_EOSMP ADC_ISR_EOSMP /*!< ADC End of Sampling flag */ +#define ADC_FLAG_EOC ADC_ISR_EOC /*!< ADC End of Regular Conversion flag */ +#define ADC_FLAG_EOS ADC_ISR_EOS /*!< ADC End of Regular sequence of Conversions flag */ +#define ADC_FLAG_OVR ADC_ISR_OVR /*!< ADC overrun flag */ +#define ADC_FLAG_JEOC ADC_ISR_JEOC /*!< ADC End of Injected Conversion flag */ +#define ADC_FLAG_JEOS ADC_ISR_JEOS /*!< ADC End of Injected sequence of Conversions flag */ +#define ADC_FLAG_AWD1 ADC_ISR_AWD1 /*!< ADC Analog watchdog 1 flag (main analog watchdog) */ +#define ADC_FLAG_AWD2 ADC_ISR_AWD2 /*!< ADC Analog watchdog 2 flag (additional analog watchdog) */ +#define ADC_FLAG_AWD3 ADC_ISR_AWD3 /*!< ADC Analog watchdog 3 flag (additional analog watchdog) */ +#define ADC_FLAG_JQOVF ADC_ISR_JQOVF /*!< ADC Injected Context Queue Overflow flag */ + +/** + * @} + */ + +/** + * @} + */ + +/* Private macro -------------------------------------------------------------*/ + +/** @defgroup ADC_Private_Macros ADC Private Macros + * @{ + */ +/* Macro reserved for internal HAL driver usage, not intended to be used in */ +/* code of final user. */ + +/** + * @brief Verify the ADC data conversion setting. + * @param DATA : programmed DATA conversion mode. + * @retval SET (DATA is a valid value) or RESET (DATA is invalid) + */ +#define IS_ADC_CONVERSIONDATAMGT(DATA) \ + ((((DATA) == ADC_CONVERSIONDATA_DR)) || \ + (((DATA) == ADC_CONVERSIONDATA_DFSDM)) || \ + (((DATA) == ADC_CONVERSIONDATA_DMA_ONESHOT)) || \ + (((DATA) == ADC_CONVERSIONDATA_DMA_CIRCULAR))) + +/** + * @brief Return resolution bits in CFGR register RES[1:0] field. + * @param __HANDLE__ ADC handle + * @retval Value of bitfield RES in CFGR register. + */ +#define ADC_GET_RESOLUTION(__HANDLE__) \ + (LL_ADC_GetResolution((__HANDLE__)->Instance)) + +/** + * @brief Clear ADC error code (set it to no error code "HAL_ADC_ERROR_NONE"). + * @param __HANDLE__ ADC handle + * @retval None + */ +#define ADC_CLEAR_ERRORCODE(__HANDLE__) ((__HANDLE__)->ErrorCode = HAL_ADC_ERROR_NONE) + +/** + * @brief Verification of ADC state: enabled or disabled. + * @param __HANDLE__ ADC handle + * @retval SET (ADC enabled) or RESET (ADC disabled) + */ +#define ADC_IS_ENABLE(__HANDLE__) \ + (( ((((__HANDLE__)->Instance->CR) & (ADC_CR_ADEN | ADC_CR_ADDIS)) == ADC_CR_ADEN) && \ + ((((__HANDLE__)->Instance->ISR) & ADC_FLAG_RDY) == ADC_FLAG_RDY) \ + ) ? SET : RESET) + +/** + * @brief Check if conversion is on going on regular group. + * @param __HANDLE__ ADC handle + * @retval Value "0" (no conversion is on going) or value "1" (conversion is on going) + */ +#define ADC_IS_CONVERSION_ONGOING_REGULAR(__HANDLE__) \ + (LL_ADC_REG_IsConversionOngoing((__HANDLE__)->Instance)) + +/** + * @brief Check if ADC clock mode is synchronous + * @param __HANDLE__: ADC handle + * @retval SET (clock mode is synchronous) or RESET (clock mode is asynchronous) + */ +#if defined (ADC3) +#define ADC_IS_SYNCHRONOUS_CLOCK_MODE(__HANDLE__) \ + (((((__HANDLE__)->Instance) == ADC1) || (((__HANDLE__)->Instance) == ADC2))? \ + ((ADC12_COMMON->CCR & ADC_CCR_CKMODE) != 0UL) \ + :((((ADC3_COMMON)->CCR) & ADC_CCR_CKMODE) != 0UL)) +#else +#define ADC_IS_SYNCHRONOUS_CLOCK_MODE(__HANDLE__) ((ADC12_COMMON->CCR & ADC_CCR_CKMODE) != 0UL) + +#endif + +/** + * @brief Simultaneously clear and set specific bits of the handle State. + * @note ADC_STATE_CLR_SET() macro is merely aliased to generic macro MODIFY_REG(), + * the first parameter is the ADC handle State, the second parameter is the + * bit field to clear, the third and last parameter is the bit field to set. + * @retval None + */ +#define ADC_STATE_CLR_SET MODIFY_REG + +/** + * @brief Verify that a given value is aligned with the ADC resolution range. + * @param __RESOLUTION__ ADC resolution (16, 14, 12, 10 or 8 bits). + * @param __ADC_VALUE__ value checked against the resolution. + * @retval SET (__ADC_VALUE__ in line with __RESOLUTION__) or RESET (__ADC_VALUE__ not in line with __RESOLUTION__) + */ +#define IS_ADC_RANGE(__RESOLUTION__, __ADC_VALUE__) \ + ((__ADC_VALUE__) <= __LL_ADC_DIGITAL_SCALE(__RESOLUTION__)) + +/** + * @brief Verify the length of the scheduled regular conversions group. + * @param __LENGTH__ number of programmed conversions. + * @retval SET (__LENGTH__ is within the maximum number of possible programmable regular conversions) or RESET (__LENGTH__ is null or too large) + */ +#define IS_ADC_REGULAR_NB_CONV(__LENGTH__) (((__LENGTH__) >= (1UL)) && ((__LENGTH__) <= (16UL))) + + +/** + * @brief Verify the number of scheduled regular conversions in discontinuous mode. + * @param NUMBER number of scheduled regular conversions in discontinuous mode. + * @retval SET (NUMBER is within the maximum number of regular conversions in discontinuous mode) or RESET (NUMBER is null or too large) + */ +#define IS_ADC_REGULAR_DISCONT_NUMBER(NUMBER) (((NUMBER) >= (1UL)) && ((NUMBER) <= (8UL))) + + +/** + * @brief Verify the ADC clock setting. + * @param __ADC_CLOCK__ programmed ADC clock. + * @retval SET (__ADC_CLOCK__ is a valid value) or RESET (__ADC_CLOCK__ is invalid) + */ +#define IS_ADC_CLOCKPRESCALER(__ADC_CLOCK__) (((__ADC_CLOCK__) == ADC_CLOCK_SYNC_PCLK_DIV1) || \ + ((__ADC_CLOCK__) == ADC_CLOCK_SYNC_PCLK_DIV2) || \ + ((__ADC_CLOCK__) == ADC_CLOCK_SYNC_PCLK_DIV4) || \ + ((__ADC_CLOCK__) == ADC_CLOCK_ASYNC_DIV1) || \ + ((__ADC_CLOCK__) == ADC_CLOCK_ASYNC_DIV2) || \ + ((__ADC_CLOCK__) == ADC_CLOCK_ASYNC_DIV4) || \ + ((__ADC_CLOCK__) == ADC_CLOCK_ASYNC_DIV6) || \ + ((__ADC_CLOCK__) == ADC_CLOCK_ASYNC_DIV8) || \ + ((__ADC_CLOCK__) == ADC_CLOCK_ASYNC_DIV10) || \ + ((__ADC_CLOCK__) == ADC_CLOCK_ASYNC_DIV12) || \ + ((__ADC_CLOCK__) == ADC_CLOCK_ASYNC_DIV16) || \ + ((__ADC_CLOCK__) == ADC_CLOCK_ASYNC_DIV32) || \ + ((__ADC_CLOCK__) == ADC_CLOCK_ASYNC_DIV64) || \ + ((__ADC_CLOCK__) == ADC_CLOCK_ASYNC_DIV128) || \ + ((__ADC_CLOCK__) == ADC_CLOCK_ASYNC_DIV256) ) + +/** + * @brief Verify the ADC resolution setting. + * @param __RESOLUTION__ programmed ADC resolution. + * @retval SET (__RESOLUTION__ is a valid value) or RESET (__RESOLUTION__ is invalid) + */ +#define IS_ADC_RESOLUTION(__RESOLUTION__) (((__RESOLUTION__) == ADC_RESOLUTION_16B) || \ + ((__RESOLUTION__) == ADC_RESOLUTION_14B) || \ + ((__RESOLUTION__) == ADC_RESOLUTION_12B) || \ + ((__RESOLUTION__) == ADC_RESOLUTION_10B) || \ + ((__RESOLUTION__) == ADC_RESOLUTION_8B) ) +/** + * @brief Verify the ADC resolution setting when limited to 8 bits. + * @param __RESOLUTION__ programmed ADC resolution when limited to 8 bits. + * @retval SET (__RESOLUTION__ is a valid value) or RESET (__RESOLUTION__ is invalid) + */ +#define IS_ADC_RESOLUTION_8_BITS(__RESOLUTION__) (((__RESOLUTION__) == ADC_RESOLUTION_8B)) + +/** + * @brief Verify the ADC scan mode. + * @param __SCAN_MODE__ programmed ADC scan mode. + * @retval SET (__SCAN_MODE__ is valid) or RESET (__SCAN_MODE__ is invalid) + */ +#define IS_ADC_SCAN_MODE(__SCAN_MODE__) (((__SCAN_MODE__) == ADC_SCAN_DISABLE) || \ + ((__SCAN_MODE__) == ADC_SCAN_ENABLE) ) + +/** + * @brief Verify the ADC edge trigger setting for regular group. + * @param __EDGE__ programmed ADC edge trigger setting. + * @retval SET (__EDGE__ is a valid value) or RESET (__EDGE__ is invalid) + */ +#define IS_ADC_EXTTRIG_EDGE(__EDGE__) (((__EDGE__) == ADC_EXTERNALTRIGCONVEDGE_NONE) || \ + ((__EDGE__) == ADC_EXTERNALTRIGCONVEDGE_RISING) || \ + ((__EDGE__) == ADC_EXTERNALTRIGCONVEDGE_FALLING) || \ + ((__EDGE__) == ADC_EXTERNALTRIGCONVEDGE_RISINGFALLING) ) + +/** + * @brief Verify the ADC regular conversions external trigger. + * @param __REGTRIG__ programmed ADC regular conversions external trigger. + * @retval SET (__REGTRIG__ is a valid value) or RESET (__REGTRIG__ is invalid) + */ +#define IS_ADC_EXTTRIG(__REGTRIG__) (((__REGTRIG__) == ADC_EXTERNALTRIG_T1_CC1) || \ + ((__REGTRIG__) == ADC_EXTERNALTRIG_T1_CC2) || \ + ((__REGTRIG__) == ADC_EXTERNALTRIG_T1_CC3) || \ + ((__REGTRIG__) == ADC_EXTERNALTRIG_T2_CC2) || \ + ((__REGTRIG__) == ADC_EXTERNALTRIG_T3_TRGO) || \ + ((__REGTRIG__) == ADC_EXTERNALTRIG_T4_CC4) || \ + ((__REGTRIG__) == ADC_EXTERNALTRIG_EXT_IT11) || \ + ((__REGTRIG__) == ADC_EXTERNALTRIG_T8_TRGO) || \ + ((__REGTRIG__) == ADC_EXTERNALTRIG_T8_TRGO2) || \ + ((__REGTRIG__) == ADC_EXTERNALTRIG_T1_TRGO) || \ + ((__REGTRIG__) == ADC_EXTERNALTRIG_T1_TRGO2) || \ + ((__REGTRIG__) == ADC_EXTERNALTRIG_T2_TRGO) || \ + ((__REGTRIG__) == ADC_EXTERNALTRIG_T4_TRGO) || \ + ((__REGTRIG__) == ADC_EXTERNALTRIG_T6_TRGO) || \ + ((__REGTRIG__) == ADC_EXTERNALTRIG_T15_TRGO) || \ + ((__REGTRIG__) == ADC_EXTERNALTRIG_T3_CC4) || \ + ((__REGTRIG__) == ADC_EXTERNALTRIG_HR1_ADCTRG1) || \ + ((__REGTRIG__) == ADC_EXTERNALTRIG_HR1_ADCTRG3) || \ + ((__REGTRIG__) == ADC_EXTERNALTRIG_LPTIM1_OUT) || \ + ((__REGTRIG__) == ADC_EXTERNALTRIG_LPTIM2_OUT) || \ + ((__REGTRIG__) == ADC_EXTERNALTRIG_LPTIM3_OUT) || \ + ((__REGTRIG__) == ADC_SOFTWARE_START) ) + +/** + * @brief Verify the ADC regular conversions check for converted data availability. + * @param __EOC_SELECTION__ converted data availability check. + * @retval SET (__EOC_SELECTION__ is a valid value) or RESET (__EOC_SELECTION__ is invalid) + */ +#define IS_ADC_EOC_SELECTION(__EOC_SELECTION__) (((__EOC_SELECTION__) == ADC_EOC_SINGLE_CONV) || \ + ((__EOC_SELECTION__) == ADC_EOC_SEQ_CONV) ) + +/** + * @brief Verify the ADC regular conversions overrun handling. + * @param __OVR__ ADC regular conversions overrun handling. + * @retval SET (__OVR__ is a valid value) or RESET (__OVR__ is invalid) + */ +#define IS_ADC_OVERRUN(__OVR__) (((__OVR__) == ADC_OVR_DATA_PRESERVED) || \ + ((__OVR__) == ADC_OVR_DATA_OVERWRITTEN) ) + +/** + * @brief Verify the ADC conversions sampling time. + * @param __TIME__ ADC conversions sampling time. + * @retval SET (__TIME__ is a valid value) or RESET (__TIME__ is invalid) + */ +#define IS_ADC_SAMPLE_TIME(__TIME__) (((__TIME__) == ADC_SAMPLETIME_1CYCLE_5) || \ + ((__TIME__) == ADC_SAMPLETIME_2CYCLES_5) || \ + ((__TIME__) == ADC_SAMPLETIME_8CYCLES_5) || \ + ((__TIME__) == ADC_SAMPLETIME_16CYCLES_5) || \ + ((__TIME__) == ADC_SAMPLETIME_32CYCLES_5) || \ + ((__TIME__) == ADC_SAMPLETIME_64CYCLES_5) || \ + ((__TIME__) == ADC_SAMPLETIME_387CYCLES_5) || \ + ((__TIME__) == ADC_SAMPLETIME_810CYCLES_5) ) + +/** + * @brief Verify the ADC regular channel setting. + * @param __CHANNEL__ programmed ADC regular channel. + * @retval SET (__CHANNEL__ is valid) or RESET (__CHANNEL__ is invalid) + */ +#define IS_ADC_REGULAR_RANK(__CHANNEL__) (((__CHANNEL__) == ADC_REGULAR_RANK_1 ) || \ + ((__CHANNEL__) == ADC_REGULAR_RANK_2 ) || \ + ((__CHANNEL__) == ADC_REGULAR_RANK_3 ) || \ + ((__CHANNEL__) == ADC_REGULAR_RANK_4 ) || \ + ((__CHANNEL__) == ADC_REGULAR_RANK_5 ) || \ + ((__CHANNEL__) == ADC_REGULAR_RANK_6 ) || \ + ((__CHANNEL__) == ADC_REGULAR_RANK_7 ) || \ + ((__CHANNEL__) == ADC_REGULAR_RANK_8 ) || \ + ((__CHANNEL__) == ADC_REGULAR_RANK_9 ) || \ + ((__CHANNEL__) == ADC_REGULAR_RANK_10) || \ + ((__CHANNEL__) == ADC_REGULAR_RANK_11) || \ + ((__CHANNEL__) == ADC_REGULAR_RANK_12) || \ + ((__CHANNEL__) == ADC_REGULAR_RANK_13) || \ + ((__CHANNEL__) == ADC_REGULAR_RANK_14) || \ + ((__CHANNEL__) == ADC_REGULAR_RANK_15) || \ + ((__CHANNEL__) == ADC_REGULAR_RANK_16) ) + +/** + * @} + */ + + +/* Private constants ---------------------------------------------------------*/ + +/** @defgroup ADC_Private_Constants ADC Private Constants + * @{ + */ + +/* Fixed timeout values for ADC conversion (including sampling time) */ +/* Maximum sampling time is 810.5 ADC clock cycle */ +/* Maximum conversion time is 16.5 + Maximum sampling time */ +/* or 16.5 + 810.5 = 827 ADC clock cycles */ +/* Minimum ADC Clock frequency is 0.35 MHz */ +/* Maximum conversion time is */ +/* 827 / 0.35 MHz = 2.36 ms */ + +#define ADC_STOP_CONVERSION_TIMEOUT ( 5UL) /*!< ADC stop time-out value */ + +/* Delay for temperature sensor stabilization time. */ +/* Maximum delay is 120us (refer device datasheet, parameter tSTART). */ +/* Unit: us */ +#define ADC_TEMPSENSOR_DELAY_US (LL_ADC_DELAY_TEMPSENSOR_STAB_US) + +/* Delay for ADC voltage regulator startup time */ +/* Maximum delay is 10 microseconds */ +/* (refer device RM, parameter Tadcvreg_stup). */ +#define ADC_STAB_DELAY_US ((uint32_t) 10) /*!< ADC voltage regulator startup time */ + +/** + * @} + */ + +/* Exported macro ------------------------------------------------------------*/ + +/** @defgroup ADC_Exported_Macros ADC Exported Macros + * @{ + */ +/* Macro for internal HAL driver usage, and possibly can be used into code of */ +/* final user. */ + +/** @defgroup ADC_HAL_EM_HANDLE_IT_FLAG HAL ADC macro to manage HAL ADC handle, IT and flags. + * @{ + */ + +/** @brief Reset ADC handle state. + * @param __HANDLE__ ADC handle + * @retval None + */ +#if (USE_HAL_ADC_REGISTER_CALLBACKS == 1) +#define __HAL_ADC_RESET_HANDLE_STATE(__HANDLE__) \ + do{ \ + (__HANDLE__)->State = HAL_ADC_STATE_RESET; \ + (__HANDLE__)->MspInitCallback = NULL; \ + (__HANDLE__)->MspDeInitCallback = NULL; \ + } while(0) +#else +#define __HAL_ADC_RESET_HANDLE_STATE(__HANDLE__) \ + ((__HANDLE__)->State = HAL_ADC_STATE_RESET) +#endif + +/** + * @brief Enable ADC interrupt. + * @param __HANDLE__ ADC handle + * @param __INTERRUPT__ ADC Interrupt + * This parameter can be one of the following values: + * @arg @ref ADC_IT_RDY ADC Ready interrupt source + * @arg @ref ADC_IT_EOSMP ADC End of Sampling interrupt source + * @arg @ref ADC_IT_EOC ADC End of Regular Conversion interrupt source + * @arg @ref ADC_IT_EOS ADC End of Regular sequence of Conversions interrupt source + * @arg @ref ADC_IT_OVR ADC overrun interrupt source + * @arg @ref ADC_IT_JEOC ADC End of Injected Conversion interrupt source + * @arg @ref ADC_IT_JEOS ADC End of Injected sequence of Conversions interrupt source + * @arg @ref ADC_IT_AWD1 ADC Analog watchdog 1 interrupt source (main analog watchdog) + * @arg @ref ADC_IT_AWD2 ADC Analog watchdog 2 interrupt source (additional analog watchdog) + * @arg @ref ADC_IT_AWD3 ADC Analog watchdog 3 interrupt source (additional analog watchdog) + * @arg @ref ADC_IT_JQOVF ADC Injected Context Queue Overflow interrupt source. + * @retval None + */ +#define __HAL_ADC_ENABLE_IT(__HANDLE__, __INTERRUPT__) \ + (((__HANDLE__)->Instance->IER) |= (__INTERRUPT__)) + +/** + * @brief Disable ADC interrupt. + * @param __HANDLE__ ADC handle + * @param __INTERRUPT__ ADC Interrupt + * This parameter can be one of the following values: + * @arg @ref ADC_IT_RDY ADC Ready interrupt source + * @arg @ref ADC_IT_EOSMP ADC End of Sampling interrupt source + * @arg @ref ADC_IT_EOC ADC End of Regular Conversion interrupt source + * @arg @ref ADC_IT_EOS ADC End of Regular sequence of Conversions interrupt source + * @arg @ref ADC_IT_OVR ADC overrun interrupt source + * @arg @ref ADC_IT_JEOC ADC End of Injected Conversion interrupt source + * @arg @ref ADC_IT_JEOS ADC End of Injected sequence of Conversions interrupt source + * @arg @ref ADC_IT_AWD1 ADC Analog watchdog 1 interrupt source (main analog watchdog) + * @arg @ref ADC_IT_AWD2 ADC Analog watchdog 2 interrupt source (additional analog watchdog) + * @arg @ref ADC_IT_AWD3 ADC Analog watchdog 3 interrupt source (additional analog watchdog) + * @arg @ref ADC_IT_JQOVF ADC Injected Context Queue Overflow interrupt source. + * @retval None + */ +#define __HAL_ADC_DISABLE_IT(__HANDLE__, __INTERRUPT__) \ + (((__HANDLE__)->Instance->IER) &= ~(__INTERRUPT__)) + +/** @brief Checks if the specified ADC interrupt source is enabled or disabled. + * @param __HANDLE__ ADC handle + * @param __INTERRUPT__ ADC interrupt source to check + * This parameter can be one of the following values: + * @arg @ref ADC_IT_RDY ADC Ready interrupt source + * @arg @ref ADC_IT_EOSMP ADC End of Sampling interrupt source + * @arg @ref ADC_IT_EOC ADC End of Regular Conversion interrupt source + * @arg @ref ADC_IT_EOS ADC End of Regular sequence of Conversions interrupt source + * @arg @ref ADC_IT_OVR ADC overrun interrupt source + * @arg @ref ADC_IT_JEOC ADC End of Injected Conversion interrupt source + * @arg @ref ADC_IT_JEOS ADC End of Injected sequence of Conversions interrupt source + * @arg @ref ADC_IT_AWD1 ADC Analog watchdog 1 interrupt source (main analog watchdog) + * @arg @ref ADC_IT_AWD2 ADC Analog watchdog 2 interrupt source (additional analog watchdog) + * @arg @ref ADC_IT_AWD3 ADC Analog watchdog 3 interrupt source (additional analog watchdog) + * @arg @ref ADC_IT_JQOVF ADC Injected Context Queue Overflow interrupt source. + * @retval State of interruption (SET or RESET) + */ +#define __HAL_ADC_GET_IT_SOURCE(__HANDLE__, __INTERRUPT__) \ + (((__HANDLE__)->Instance->IER & (__INTERRUPT__)) == (__INTERRUPT__)) + +/** + * @brief Check whether the specified ADC flag is set or not. + * @param __HANDLE__ ADC handle + * @param __FLAG__ ADC flag + * This parameter can be one of the following values: + * @arg @ref ADC_FLAG_RDY ADC Ready flag + * @arg @ref ADC_FLAG_EOSMP ADC End of Sampling flag + * @arg @ref ADC_FLAG_EOC ADC End of Regular Conversion flag + * @arg @ref ADC_FLAG_EOS ADC End of Regular sequence of Conversions flag + * @arg @ref ADC_FLAG_OVR ADC overrun flag + * @arg @ref ADC_FLAG_JEOC ADC End of Injected Conversion flag + * @arg @ref ADC_FLAG_JEOS ADC End of Injected sequence of Conversions flag + * @arg @ref ADC_FLAG_AWD1 ADC Analog watchdog 1 flag (main analog watchdog) + * @arg @ref ADC_FLAG_AWD2 ADC Analog watchdog 2 flag (additional analog watchdog) + * @arg @ref ADC_FLAG_AWD3 ADC Analog watchdog 3 flag (additional analog watchdog) + * @arg @ref ADC_FLAG_JQOVF ADC Injected Context Queue Overflow flag. + * @retval State of flag (TRUE or FALSE). + */ +#define __HAL_ADC_GET_FLAG(__HANDLE__, __FLAG__) \ + ((((__HANDLE__)->Instance->ISR) & (__FLAG__)) == (__FLAG__)) + +/** + * @brief Clear the specified ADC flag. + * @param __HANDLE__ ADC handle + * @param __FLAG__ ADC flag + * This parameter can be one of the following values: + * @arg @ref ADC_FLAG_RDY ADC Ready flag + * @arg @ref ADC_FLAG_EOSMP ADC End of Sampling flag + * @arg @ref ADC_FLAG_EOC ADC End of Regular Conversion flag + * @arg @ref ADC_FLAG_EOS ADC End of Regular sequence of Conversions flag + * @arg @ref ADC_FLAG_OVR ADC overrun flag + * @arg @ref ADC_FLAG_JEOC ADC End of Injected Conversion flag + * @arg @ref ADC_FLAG_JEOS ADC End of Injected sequence of Conversions flag + * @arg @ref ADC_FLAG_AWD1 ADC Analog watchdog 1 flag (main analog watchdog) + * @arg @ref ADC_FLAG_AWD2 ADC Analog watchdog 2 flag (additional analog watchdog) + * @arg @ref ADC_FLAG_AWD3 ADC Analog watchdog 3 flag (additional analog watchdog) + * @arg @ref ADC_FLAG_JQOVF ADC Injected Context Queue Overflow flag. + * @retval None + */ +/* Note: bit cleared bit by writing 1 (writing 0 has no effect on any bit of register ISR) */ +#define __HAL_ADC_CLEAR_FLAG(__HANDLE__, __FLAG__) \ + (((__HANDLE__)->Instance->ISR) = (__FLAG__)) + +/** + * @} + */ + +/** @defgroup ADC_HAL_EM_HELPER_MACRO HAL ADC helper macro + * @{ + */ + +/** + * @brief Helper macro to get ADC channel number in decimal format + * from literals ADC_CHANNEL_x. + * @note Example: + * __HAL_ADC_CHANNEL_TO_DECIMAL_NB(ADC_CHANNEL_4) + * will return decimal number "4". + * @note The input can be a value from functions where a channel + * number is returned, either defined with number + * or with bitfield (only one bit must be set). + * @param __CHANNEL__ This parameter can be one of the following values: + * @arg @ref ADC_CHANNEL_0 (3) + * @arg @ref ADC_CHANNEL_1 (3) + * @arg @ref ADC_CHANNEL_2 (3) + * @arg @ref ADC_CHANNEL_3 (3) + * @arg @ref ADC_CHANNEL_4 (3) + * @arg @ref ADC_CHANNEL_5 (3) + * @arg @ref ADC_CHANNEL_6 + * @arg @ref ADC_CHANNEL_7 + * @arg @ref ADC_CHANNEL_8 + * @arg @ref ADC_CHANNEL_9 + * @arg @ref ADC_CHANNEL_10 + * @arg @ref ADC_CHANNEL_11 + * @arg @ref ADC_CHANNEL_12 + * @arg @ref ADC_CHANNEL_13 + * @arg @ref ADC_CHANNEL_14 + * @arg @ref ADC_CHANNEL_15 + * @arg @ref ADC_CHANNEL_16 + * @arg @ref ADC_CHANNEL_17 + * @arg @ref ADC_CHANNEL_18 + * @arg @ref ADC_CHANNEL_VREFINT (1) + * @arg @ref ADC_CHANNEL_TEMPSENSOR (1) + * @arg @ref ADC_CHANNEL_VBAT (1) + * @arg @ref ADC_CHANNEL_DAC1CH1_ADC2 (2) + * @arg @ref ADC_CHANNEL_DAC1CH2_ADC2 (2) + * + * (1) On STM32H7, parameter available only on ADC instance: ADC3.\n + * (2) On STM32H7, parameter available only on ADC instance: ADC2.\n + * (3) On STM32H7, fast channel (0.125 us for 14-bit resolution (ADC conversion rate up to 8 Ms/s)). + * Other channels are slow channels (conversion rate: refer to reference manual). + * @retval Value between Min_Data=0 and Max_Data=18 + */ +#define __HAL_ADC_CHANNEL_TO_DECIMAL_NB(__CHANNEL__) \ + __LL_ADC_CHANNEL_TO_DECIMAL_NB((__CHANNEL__)) + +/** + * @brief Helper macro to get ADC channel in literal format ADC_CHANNEL_x + * from number in decimal format. + * @note Example: + * __HAL_ADC_DECIMAL_NB_TO_CHANNEL(4) + * will return a data equivalent to "ADC_CHANNEL_4". + * @param __DECIMAL_NB__ Value between Min_Data=0 and Max_Data=18 + * @retval Returned value can be one of the following values: + * @arg @ref ADC_CHANNEL_0 (3) + * @arg @ref ADC_CHANNEL_1 (3) + * @arg @ref ADC_CHANNEL_2 (3) + * @arg @ref ADC_CHANNEL_3 (3) + * @arg @ref ADC_CHANNEL_4 (3) + * @arg @ref ADC_CHANNEL_5 (3) + * @arg @ref ADC_CHANNEL_6 + * @arg @ref ADC_CHANNEL_7 + * @arg @ref ADC_CHANNEL_8 + * @arg @ref ADC_CHANNEL_9 + * @arg @ref ADC_CHANNEL_10 + * @arg @ref ADC_CHANNEL_11 + * @arg @ref ADC_CHANNEL_12 + * @arg @ref ADC_CHANNEL_13 + * @arg @ref ADC_CHANNEL_14 + * @arg @ref ADC_CHANNEL_15 + * @arg @ref ADC_CHANNEL_16 + * @arg @ref ADC_CHANNEL_17 + * @arg @ref ADC_CHANNEL_18 + * @arg @ref ADC_CHANNEL_VREFINT (1) + * @arg @ref ADC_CHANNEL_TEMPSENSOR (1) + * @arg @ref ADC_CHANNEL_VBAT (1) + * @arg @ref ADC_CHANNEL_DAC1CH1_ADC2 (2) + * @arg @ref ADC_CHANNEL_DAC1CH2_ADC2 (2) + * + * (1) On STM32H7, parameter available only on ADC instance: ADC3.\n + * (2) On STM32H7, parameter available only on ADC instance: ADC2.\n + * (3) On STM32H7, fast channel (0.125 us for 14-bit resolution (ADC conversion rate up to 8 Ms/s)). + * Other channels are slow channels (conversion rate: refer to reference manual).\n + * (1, 2) For ADC channel read back from ADC register, + * comparison with internal channel parameter to be done + * using helper macro @ref __LL_ADC_CHANNEL_INTERNAL_TO_EXTERNAL(). + */ +#define __HAL_ADC_DECIMAL_NB_TO_CHANNEL(__DECIMAL_NB__) \ + __LL_ADC_DECIMAL_NB_TO_CHANNEL((__DECIMAL_NB__)) + +/** + * @brief Helper macro to determine whether the selected channel + * corresponds to literal definitions of driver. + * @note The different literal definitions of ADC channels are: + * - ADC internal channel: + * ADC_CHANNEL_VREFINT, ADC_CHANNEL_TEMPSENSOR, ... + * - ADC external channel (channel connected to a GPIO pin): + * ADC_CHANNEL_1, ADC_CHANNEL_2, ... + * @note The channel parameter must be a value defined from literal + * definition of a ADC internal channel (ADC_CHANNEL_VREFINT, + * ADC_CHANNEL_TEMPSENSOR, ...), + * ADC external channel (ADC_CHANNEL_1, ADC_CHANNEL_2, ...), + * must not be a value from functions where a channel number is + * returned from ADC registers, + * because internal and external channels share the same channel + * number in ADC registers. The differentiation is made only with + * parameters definitions of driver. + * @param __CHANNEL__ This parameter can be one of the following values: + * @arg @ref ADC_CHANNEL_0 (3) + * @arg @ref ADC_CHANNEL_1 (3) + * @arg @ref ADC_CHANNEL_2 (3) + * @arg @ref ADC_CHANNEL_3 (3) + * @arg @ref ADC_CHANNEL_4 (3) + * @arg @ref ADC_CHANNEL_5 (3) + * @arg @ref ADC_CHANNEL_6 + * @arg @ref ADC_CHANNEL_7 + * @arg @ref ADC_CHANNEL_8 + * @arg @ref ADC_CHANNEL_9 + * @arg @ref ADC_CHANNEL_10 + * @arg @ref ADC_CHANNEL_11 + * @arg @ref ADC_CHANNEL_12 + * @arg @ref ADC_CHANNEL_13 + * @arg @ref ADC_CHANNEL_14 + * @arg @ref ADC_CHANNEL_15 + * @arg @ref ADC_CHANNEL_16 + * @arg @ref ADC_CHANNEL_17 + * @arg @ref ADC_CHANNEL_18 + * @arg @ref ADC_CHANNEL_VREFINT (1) + * @arg @ref ADC_CHANNEL_TEMPSENSOR (1) + * @arg @ref ADC_CHANNEL_VBAT (1) + * @arg @ref ADC_CHANNEL_DAC1CH1_ADC2 (2) + * @arg @ref ADC_CHANNEL_DAC1CH2_ADC2 (2) + * + * (1) On STM32H7, parameter available only on ADC instance: ADC3.\n + * (2) On STM32H7, parameter available only on ADC instance: ADC2.\n + * (3) On STM32H7, fast channel (0.125 us for 14-bit resolution (ADC conversion rate up to 8 Ms/s)). + * Other channels are slow channels (conversion rate: refer to reference manual). + * @retval Value "0" if the channel corresponds to a parameter definition of a ADC external channel (channel connected to a GPIO pin). + * Value "1" if the channel corresponds to a parameter definition of a ADC internal channel. + */ +#define __HAL_ADC_IS_CHANNEL_INTERNAL(__CHANNEL__) \ + __LL_ADC_IS_CHANNEL_INTERNAL((__CHANNEL__)) + +/** + * @brief Helper macro to convert a channel defined from parameter + * definition of a ADC internal channel (ADC_CHANNEL_VREFINT, + * ADC_CHANNEL_TEMPSENSOR, ...), + * to its equivalent parameter definition of a ADC external channel + * (ADC_CHANNEL_1, ADC_CHANNEL_2, ...). + * @note The channel parameter can be, additionally to a value + * defined from parameter definition of a ADC internal channel + * (ADC_CHANNEL_VREFINT, ADC_CHANNEL_TEMPSENSOR, ...), + * a value defined from parameter definition of + * ADC external channel (ADC_CHANNEL_1, ADC_CHANNEL_2, ...) + * or a value from functions where a channel number is returned + * from ADC registers. + * @param __CHANNEL__ This parameter can be one of the following values: + * @arg @ref ADC_CHANNEL_0 (3) + * @arg @ref ADC_CHANNEL_1 (3) + * @arg @ref ADC_CHANNEL_2 (3) + * @arg @ref ADC_CHANNEL_3 (3) + * @arg @ref ADC_CHANNEL_4 (3) + * @arg @ref ADC_CHANNEL_5 (3) + * @arg @ref ADC_CHANNEL_6 + * @arg @ref ADC_CHANNEL_7 + * @arg @ref ADC_CHANNEL_8 + * @arg @ref ADC_CHANNEL_9 + * @arg @ref ADC_CHANNEL_10 + * @arg @ref ADC_CHANNEL_11 + * @arg @ref ADC_CHANNEL_12 + * @arg @ref ADC_CHANNEL_13 + * @arg @ref ADC_CHANNEL_14 + * @arg @ref ADC_CHANNEL_15 + * @arg @ref ADC_CHANNEL_16 + * @arg @ref ADC_CHANNEL_17 + * @arg @ref ADC_CHANNEL_18 + * @arg @ref ADC_CHANNEL_VREFINT (1) + * @arg @ref ADC_CHANNEL_TEMPSENSOR (1) + * @arg @ref ADC_CHANNEL_VBAT (1) + * @arg @ref ADC_CHANNEL_DAC1CH1_ADC2 (2) + * @arg @ref ADC_CHANNEL_DAC1CH2_ADC2 (2) + * + * (1) On STM32H7, parameter available only on ADC instance: ADC3.\n + * (2) On STM32H7, parameter available only on ADC instance: ADC2.\n + * (3) On STM32H7, fast channel (0.125 us for 14-bit resolution (ADC conversion rate up to 8 Ms/s)). + * Other channels are slow channels (conversion rate: refer to reference manual). + * @retval Returned value can be one of the following values: + * @arg @ref ADC_CHANNEL_0 + * @arg @ref ADC_CHANNEL_1 + * @arg @ref ADC_CHANNEL_2 + * @arg @ref ADC_CHANNEL_3 + * @arg @ref ADC_CHANNEL_4 + * @arg @ref ADC_CHANNEL_5 + * @arg @ref ADC_CHANNEL_6 + * @arg @ref ADC_CHANNEL_7 + * @arg @ref ADC_CHANNEL_8 + * @arg @ref ADC_CHANNEL_9 + * @arg @ref ADC_CHANNEL_10 + * @arg @ref ADC_CHANNEL_11 + * @arg @ref ADC_CHANNEL_12 + * @arg @ref ADC_CHANNEL_13 + * @arg @ref ADC_CHANNEL_14 + * @arg @ref ADC_CHANNEL_15 + * @arg @ref ADC_CHANNEL_16 + * @arg @ref ADC_CHANNEL_17 + * @arg @ref ADC_CHANNEL_18 + */ +#define __HAL_ADC_CHANNEL_INTERNAL_TO_EXTERNAL(__CHANNEL__) \ + __LL_ADC_CHANNEL_INTERNAL_TO_EXTERNAL((__CHANNEL__)) + +/** + * @brief Helper macro to determine whether the internal channel + * selected is available on the ADC instance selected. + * @note The channel parameter must be a value defined from parameter + * definition of a ADC internal channel (ADC_CHANNEL_VREFINT, + * ADC_CHANNEL_TEMPSENSOR, ...), + * must not be a value defined from parameter definition of + * ADC external channel (ADC_CHANNEL_1, ADC_CHANNEL_2, ...) + * or a value from functions where a channel number is + * returned from ADC registers, + * because internal and external channels share the same channel + * number in ADC registers. The differentiation is made only with + * parameters definitions of driver. + * @param __ADC_INSTANCE__ ADC instance + * @param __CHANNEL__ This parameter can be one of the following values: + * @arg @ref ADC_CHANNEL_VREFINT (1) + * @arg @ref ADC_CHANNEL_TEMPSENSOR (1) + * @arg @ref ADC_CHANNEL_VBAT (1) + * @arg @ref ADC_CHANNEL_DAC1CH1_ADC2 (2) + * @arg @ref ADC_CHANNEL_DAC1CH2_ADC2 (2) + * + * (1) On STM32H7, parameter available only on ADC instance: ADC3.\n + * (2) On STM32H7, parameter available only on ADC instance: ADC2. + * @retval Value "0" if the internal channel selected is not available on the ADC instance selected. + * Value "1" if the internal channel selected is available on the ADC instance selected. + */ +#define __HAL_ADC_IS_CHANNEL_INTERNAL_AVAILABLE(__ADC_INSTANCE__, __CHANNEL__) \ + __LL_ADC_IS_CHANNEL_INTERNAL_AVAILABLE((__ADC_INSTANCE__), (__CHANNEL__)) + +/** + * @brief Helper macro to get the ADC multimode conversion data of ADC master + * or ADC slave from raw value with both ADC conversion data concatenated. + * @note This macro is intended to be used when multimode transfer by DMA + * is enabled: refer to function @ref LL_ADC_SetMultiDMATransfer(). + * In this case the transferred data need to processed with this macro + * to separate the conversion data of ADC master and ADC slave. + * @param __ADC_MULTI_MASTER_SLAVE__ This parameter can be one of the following values: + * @arg @ref LL_ADC_MULTI_MASTER + * @arg @ref LL_ADC_MULTI_SLAVE + * @param __ADC_MULTI_CONV_DATA__ Value between Min_Data=0x000 and Max_Data=0xFFF + * @retval Value between Min_Data=0x000 and Max_Data=0xFFF + */ +#define __HAL_ADC_MULTI_CONV_DATA_MASTER_SLAVE(__ADC_MULTI_MASTER_SLAVE__, __ADC_MULTI_CONV_DATA__) \ + __LL_ADC_MULTI_CONV_DATA_MASTER_SLAVE((__ADC_MULTI_MASTER_SLAVE__), (__ADC_MULTI_CONV_DATA__)) + +/** + * @brief Helper macro to select the ADC common instance + * to which is belonging the selected ADC instance. + * @note ADC common register instance can be used for: + * - Set parameters common to several ADC instances + * - Multimode (for devices with several ADC instances) + * Refer to functions having argument "ADCxy_COMMON" as parameter. + * @param __ADCx__ ADC instance + * @retval ADC common register instance + */ +#define __HAL_ADC_COMMON_INSTANCE(__ADCx__) \ + __LL_ADC_COMMON_INSTANCE((__ADCx__)) + +/** + * @brief Helper macro to check if all ADC instances sharing the same + * ADC common instance are disabled. + * @note This check is required by functions with setting conditioned to + * ADC state: + * All ADC instances of the ADC common group must be disabled. + * Refer to functions having argument "ADCxy_COMMON" as parameter. + * @note On devices with only 1 ADC common instance, parameter of this macro + * is useless and can be ignored (parameter kept for compatibility + * with devices featuring several ADC common instances). + * @param __ADCXY_COMMON__ ADC common instance + * (can be set directly from CMSIS definition or by using helper macro @ref __LL_ADC_COMMON_INSTANCE() ) + * @retval Value "0" if all ADC instances sharing the same ADC common instance + * are disabled. + * Value "1" if at least one ADC instance sharing the same ADC common instance + * is enabled. + */ +#define __HAL_ADC_IS_ENABLED_ALL_COMMON_INSTANCE(__ADCXY_COMMON__) \ + __LL_ADC_IS_ENABLED_ALL_COMMON_INSTANCE((__ADCXY_COMMON__)) + +/** + * @brief Helper macro to define the ADC conversion data full-scale digital + * value corresponding to the selected ADC resolution. + * @note ADC conversion data full-scale corresponds to voltage range + * determined by analog voltage references Vref+ and Vref- + * (refer to reference manual). + * @param __ADC_RESOLUTION__ This parameter can be one of the following values: + * @arg @ref ADC_RESOLUTION_16B + * @arg @ref ADC_RESOLUTION_14B + * @arg @ref ADC_RESOLUTION_12B + * @arg @ref ADC_RESOLUTION_10B + * @arg @ref ADC_RESOLUTION_8B + * @retval ADC conversion data full-scale digital value + */ +#define __HAL_ADC_DIGITAL_SCALE(__ADC_RESOLUTION__) \ + __LL_ADC_DIGITAL_SCALE((__ADC_RESOLUTION__)) + +/** + * @brief Helper macro to convert the ADC conversion data from + * a resolution to another resolution. + * @param __DATA__ ADC conversion data to be converted + * @param __ADC_RESOLUTION_CURRENT__ Resolution of to the data to be converted + * This parameter can be one of the following values: + * @arg @ref ADC_RESOLUTION_16B + * @arg @ref ADC_RESOLUTION_14B + * @arg @ref ADC_RESOLUTION_12B + * @arg @ref ADC_RESOLUTION_10B + * @arg @ref ADC_RESOLUTION_8B + * @param __ADC_RESOLUTION_TARGET__ Resolution of the data after conversion + * This parameter can be one of the following values: + * @arg @ref ADC_RESOLUTION_16B + * @arg @ref ADC_RESOLUTION_14B + * @arg @ref ADC_RESOLUTION_12B + * @arg @ref ADC_RESOLUTION_10B + * @arg @ref ADC_RESOLUTION_8B + * @retval ADC conversion data to the requested resolution + */ +#define __HAL_ADC_CONVERT_DATA_RESOLUTION(__DATA__,\ + __ADC_RESOLUTION_CURRENT__,\ + __ADC_RESOLUTION_TARGET__) \ + __LL_ADC_CONVERT_DATA_RESOLUTION((__DATA__), \ + (__ADC_RESOLUTION_CURRENT__), \ + (__ADC_RESOLUTION_TARGET__)) + +/** + * @brief Helper macro to calculate the voltage (unit: mVolt) + * corresponding to a ADC conversion data (unit: digital value). + * @note Analog reference voltage (Vref+) must be either known from + * user board environment or can be calculated using ADC measurement + * and ADC helper macro @ref __LL_ADC_CALC_VREFANALOG_VOLTAGE(). + * @param __VREFANALOG_VOLTAGE__ Analog reference voltage (unit: mV) + * @param __ADC_DATA__ ADC conversion data (resolution 12 bits) + * (unit: digital value). + * @param __ADC_RESOLUTION__ This parameter can be one of the following values: + * @arg @ref ADC_RESOLUTION_16B + * @arg @ref ADC_RESOLUTION_14B + * @arg @ref ADC_RESOLUTION_12B + * @arg @ref ADC_RESOLUTION_10B + * @arg @ref ADC_RESOLUTION_8B + * @retval ADC conversion data equivalent voltage value (unit: mVolt) + */ +#define __HAL_ADC_CALC_DATA_TO_VOLTAGE(__VREFANALOG_VOLTAGE__,\ + __ADC_DATA__,\ + __ADC_RESOLUTION__) \ + __LL_ADC_CALC_DATA_TO_VOLTAGE((__VREFANALOG_VOLTAGE__), \ + (__ADC_DATA__), \ + (__ADC_RESOLUTION__)) + +/** + * @brief Helper macro to calculate analog reference voltage (Vref+) + * (unit: mVolt) from ADC conversion data of internal voltage + * reference VrefInt. + * @note Computation is using VrefInt calibration value + * stored in system memory for each device during production. + * @note This voltage depends on user board environment: voltage level + * connected to pin Vref+. + * On devices with small package, the pin Vref+ is not present + * and internally bonded to pin Vdda. + * @note On this STM32 serie, calibration data of internal voltage reference + * VrefInt corresponds to a resolution of 12 bits, + * this is the recommended ADC resolution to convert voltage of + * internal voltage reference VrefInt. + * Otherwise, this macro performs the processing to scale + * ADC conversion data to 12 bits. + * @param __VREFINT_ADC_DATA__ ADC conversion data (resolution 12 bits) + * of internal voltage reference VrefInt (unit: digital value). + * @param __ADC_RESOLUTION__ This parameter can be one of the following values: + * @arg @ref ADC_RESOLUTION_16B + * @arg @ref ADC_RESOLUTION_14B + * @arg @ref ADC_RESOLUTION_12B + * @arg @ref ADC_RESOLUTION_10B + * @arg @ref ADC_RESOLUTION_8B + * @retval Analog reference voltage (unit: mV) + */ +#define __HAL_ADC_CALC_VREFANALOG_VOLTAGE(__VREFINT_ADC_DATA__,\ + __ADC_RESOLUTION__) \ + __LL_ADC_CALC_VREFANALOG_VOLTAGE((__VREFINT_ADC_DATA__), \ + (__ADC_RESOLUTION__)) + +/** + * @brief Helper macro to calculate the temperature (unit: degree Celsius) + * from ADC conversion data of internal temperature sensor. + * @note Computation is using temperature sensor calibration values + * stored in system memory for each device during production. + * @note Calculation formula: + * Temperature = ((TS_ADC_DATA - TS_CAL1) + * * (TS_CAL2_TEMP - TS_CAL1_TEMP)) + * / (TS_CAL2 - TS_CAL1) + TS_CAL1_TEMP + * with TS_ADC_DATA = temperature sensor raw data measured by ADC + * Avg_Slope = (TS_CAL2 - TS_CAL1) + * / (TS_CAL2_TEMP - TS_CAL1_TEMP) + * TS_CAL1 = equivalent TS_ADC_DATA at temperature + * TEMP_DEGC_CAL1 (calibrated in factory) + * TS_CAL2 = equivalent TS_ADC_DATA at temperature + * TEMP_DEGC_CAL2 (calibrated in factory) + * Caution: Calculation relevancy under reserve that calibration + * parameters are correct (address and data). + * To calculate temperature using temperature sensor + * datasheet typical values (generic values less, therefore + * less accurate than calibrated values), + * use helper macro @ref __LL_ADC_CALC_TEMPERATURE_TYP_PARAMS(). + * @note As calculation input, the analog reference voltage (Vref+) must be + * defined as it impacts the ADC LSB equivalent voltage. + * @note Analog reference voltage (Vref+) must be either known from + * user board environment or can be calculated using ADC measurement + * and ADC helper macro @ref __LL_ADC_CALC_VREFANALOG_VOLTAGE(). + * @note On this STM32 serie, calibration data of temperature sensor + * corresponds to a resolution of 12 bits, + * this is the recommended ADC resolution to convert voltage of + * temperature sensor. + * Otherwise, this macro performs the processing to scale + * ADC conversion data to 12 bits. + * @param __VREFANALOG_VOLTAGE__ Analog reference voltage (unit: mV) + * @param __TEMPSENSOR_ADC_DATA__ ADC conversion data of internal + * temperature sensor (unit: digital value). + * @param __ADC_RESOLUTION__ ADC resolution at which internal temperature + * sensor voltage has been measured. + * This parameter can be one of the following values: + * @arg @ref ADC_RESOLUTION_16B + * @arg @ref ADC_RESOLUTION_14B + * @arg @ref ADC_RESOLUTION_12B + * @arg @ref ADC_RESOLUTION_10B + * @arg @ref ADC_RESOLUTION_8B + * @retval Temperature (unit: degree Celsius) + */ +#define __HAL_ADC_CALC_TEMPERATURE(__VREFANALOG_VOLTAGE__,\ + __TEMPSENSOR_ADC_DATA__,\ + __ADC_RESOLUTION__) \ + __LL_ADC_CALC_TEMPERATURE((__VREFANALOG_VOLTAGE__), \ + (__TEMPSENSOR_ADC_DATA__), \ + (__ADC_RESOLUTION__)) + +/** + * @brief Helper macro to calculate the temperature (unit: degree Celsius) + * from ADC conversion data of internal temperature sensor. + * @note Computation is using temperature sensor typical values + * (refer to device datasheet). + * @note Calculation formula: + * Temperature = (TS_TYP_CALx_VOLT(uV) - TS_ADC_DATA * Conversion_uV) + * / Avg_Slope + CALx_TEMP + * with TS_ADC_DATA = temperature sensor raw data measured by ADC + * (unit: digital value) + * Avg_Slope = temperature sensor slope + * (unit: uV/Degree Celsius) + * TS_TYP_CALx_VOLT = temperature sensor digital value at + * temperature CALx_TEMP (unit: mV) + * Caution: Calculation relevancy under reserve the temperature sensor + * of the current device has characteristics in line with + * datasheet typical values. + * If temperature sensor calibration values are available on + * on this device (presence of macro __LL_ADC_CALC_TEMPERATURE()), + * temperature calculation will be more accurate using + * helper macro @ref __LL_ADC_CALC_TEMPERATURE(). + * @note As calculation input, the analog reference voltage (Vref+) must be + * defined as it impacts the ADC LSB equivalent voltage. + * @note Analog reference voltage (Vref+) must be either known from + * user board environment or can be calculated using ADC measurement + * and ADC helper macro @ref __LL_ADC_CALC_VREFANALOG_VOLTAGE(). + * @note ADC measurement data must correspond to a resolution of 12bits + * (full scale digital value 4095). If not the case, the data must be + * preliminarily rescaled to an equivalent resolution of 12 bits. + * @param __TEMPSENSOR_TYP_AVGSLOPE__ Device datasheet data: Temperature sensor slope typical value (unit: uV/DegCelsius). + * On STM32H7, refer to device datasheet parameter "Avg_Slope". + * @param __TEMPSENSOR_TYP_CALX_V__ Device datasheet data: Temperature sensor voltage typical value (at temperature and Vref+ defined in parameters below) (unit: mV). + * On STM32H7, refer to device datasheet parameter "V30" (corresponding to TS_CAL1). + * @param __TEMPSENSOR_CALX_TEMP__ Device datasheet data: Temperature at which temperature sensor voltage (see parameter above) is corresponding (unit: mV) + * @param __VREFANALOG_VOLTAGE__ Analog voltage reference (Vref+) voltage (unit: mV) + * @param __TEMPSENSOR_ADC_DATA__ ADC conversion data of internal temperature sensor (unit: digital value). + * @param __ADC_RESOLUTION__ ADC resolution at which internal temperature sensor voltage has been measured. + * This parameter can be one of the following values: + * @arg @ref ADC_RESOLUTION_16B + * @arg @ref ADC_RESOLUTION_14B + * @arg @ref ADC_RESOLUTION_12B + * @arg @ref ADC_RESOLUTION_10B + * @arg @ref ADC_RESOLUTION_8B + * @retval Temperature (unit: degree Celsius) + */ +#define __HAL_ADC_CALC_TEMPERATURE_TYP_PARAMS(__TEMPSENSOR_TYP_AVGSLOPE__,\ + __TEMPSENSOR_TYP_CALX_V__,\ + __TEMPSENSOR_CALX_TEMP__,\ + __VREFANALOG_VOLTAGE__,\ + __TEMPSENSOR_ADC_DATA__,\ + __ADC_RESOLUTION__) \ + __LL_ADC_CALC_TEMPERATURE_TYP_PARAMS((__TEMPSENSOR_TYP_AVGSLOPE__), \ + (__TEMPSENSOR_TYP_CALX_V__), \ + (__TEMPSENSOR_CALX_TEMP__), \ + (__VREFANALOG_VOLTAGE__), \ + (__TEMPSENSOR_ADC_DATA__), \ + (__ADC_RESOLUTION__)) + +/** + * @} + */ + +/** + * @} + */ + +/* Include ADC HAL Extended module */ +#include "stm32h7xx_hal_adc_ex.h" + +/* Exported functions --------------------------------------------------------*/ +/** @addtogroup ADC_Exported_Functions + * @{ + */ + +/** @addtogroup ADC_Exported_Functions_Group1 + * @brief Initialization and Configuration functions + * @{ + */ +/* Initialization and de-initialization functions ****************************/ +HAL_StatusTypeDef HAL_ADC_Init(ADC_HandleTypeDef *hadc); +HAL_StatusTypeDef HAL_ADC_DeInit(ADC_HandleTypeDef *hadc); +void HAL_ADC_MspInit(ADC_HandleTypeDef *hadc); +void HAL_ADC_MspDeInit(ADC_HandleTypeDef *hadc); + +#if (USE_HAL_ADC_REGISTER_CALLBACKS == 1) +/* Callbacks Register/UnRegister functions ***********************************/ +HAL_StatusTypeDef HAL_ADC_RegisterCallback(ADC_HandleTypeDef *hadc, HAL_ADC_CallbackIDTypeDef CallbackID, + pADC_CallbackTypeDef pCallback); +HAL_StatusTypeDef HAL_ADC_UnRegisterCallback(ADC_HandleTypeDef *hadc, HAL_ADC_CallbackIDTypeDef CallbackID); +#endif /* USE_HAL_ADC_REGISTER_CALLBACKS */ +/** + * @} + */ + +/** @addtogroup ADC_Exported_Functions_Group2 + * @brief IO operation functions + * @{ + */ +/* IO operation functions *****************************************************/ + +/* Blocking mode: Polling */ +HAL_StatusTypeDef HAL_ADC_Start(ADC_HandleTypeDef *hadc); +HAL_StatusTypeDef HAL_ADC_Stop(ADC_HandleTypeDef *hadc); +HAL_StatusTypeDef HAL_ADC_PollForConversion(ADC_HandleTypeDef *hadc, uint32_t Timeout); +HAL_StatusTypeDef HAL_ADC_PollForEvent(ADC_HandleTypeDef *hadc, uint32_t EventType, uint32_t Timeout); + +/* Non-blocking mode: Interruption */ +HAL_StatusTypeDef HAL_ADC_Start_IT(ADC_HandleTypeDef *hadc); +HAL_StatusTypeDef HAL_ADC_Stop_IT(ADC_HandleTypeDef *hadc); + +/* Non-blocking mode: DMA */ +HAL_StatusTypeDef HAL_ADC_Start_DMA(ADC_HandleTypeDef *hadc, uint32_t *pData, uint32_t Length); +HAL_StatusTypeDef HAL_ADC_Stop_DMA(ADC_HandleTypeDef *hadc); + +/* ADC retrieve conversion value intended to be used with polling or interruption */ +uint32_t HAL_ADC_GetValue(ADC_HandleTypeDef *hadc); + +/* ADC IRQHandler and Callbacks used in non-blocking modes (Interruption and DMA) */ +void HAL_ADC_IRQHandler(ADC_HandleTypeDef *hadc); +void HAL_ADC_ConvCpltCallback(ADC_HandleTypeDef *hadc); +void HAL_ADC_ConvHalfCpltCallback(ADC_HandleTypeDef *hadc); +void HAL_ADC_LevelOutOfWindowCallback(ADC_HandleTypeDef *hadc); +void HAL_ADC_ErrorCallback(ADC_HandleTypeDef *hadc); +/** + * @} + */ + +/** @addtogroup ADC_Exported_Functions_Group3 Peripheral Control functions + * @brief Peripheral Control functions + * @{ + */ +/* Peripheral Control functions ***********************************************/ +HAL_StatusTypeDef HAL_ADC_ConfigChannel(ADC_HandleTypeDef *hadc, ADC_ChannelConfTypeDef *sConfig); +HAL_StatusTypeDef HAL_ADC_AnalogWDGConfig(ADC_HandleTypeDef *hadc, ADC_AnalogWDGConfTypeDef *AnalogWDGConfig); + +/** + * @} + */ + +/* Peripheral State functions *************************************************/ +/** @addtogroup ADC_Exported_Functions_Group4 + * @{ + */ +uint32_t HAL_ADC_GetState(ADC_HandleTypeDef *hadc); +uint32_t HAL_ADC_GetError(ADC_HandleTypeDef *hadc); + +/** + * @} + */ + +/** + * @} + */ + +/* Private functions -----------------------------------------------------------*/ +/** @addtogroup ADC_Private_Functions ADC Private Functions + * @{ + */ +HAL_StatusTypeDef ADC_ConversionStop(ADC_HandleTypeDef *hadc, uint32_t ConversionGroup); +HAL_StatusTypeDef ADC_Enable(ADC_HandleTypeDef *hadc); +HAL_StatusTypeDef ADC_Disable(ADC_HandleTypeDef *hadc); +void ADC_DMAConvCplt(DMA_HandleTypeDef *hdma); +void ADC_DMAHalfConvCplt(DMA_HandleTypeDef *hdma); +void ADC_DMAError(DMA_HandleTypeDef *hdma); +void ADC_ConfigureBoostMode(ADC_HandleTypeDef* hadc); + +/** + * @} + */ + +/** + * @} + */ + +/** + * @} + */ + +#ifdef __cplusplus +} +#endif + + +#endif /* STM32H7xx_HAL_ADC_H */ + +/************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/ diff --git a/source/hic_hal/stm32/stm32h743ii/STM32H7xx_HAL_Driver/Inc/stm32h7xx_hal_adc_ex.h b/source/hic_hal/stm32/stm32h743ii/STM32H7xx_HAL_Driver/Inc/stm32h7xx_hal_adc_ex.h new file mode 100644 index 000000000..3388553a8 --- /dev/null +++ b/source/hic_hal/stm32/stm32h743ii/STM32H7xx_HAL_Driver/Inc/stm32h7xx_hal_adc_ex.h @@ -0,0 +1,1242 @@ +/** + ****************************************************************************** + * @file stm32h7xx_hal_adc_ex.h + * @author MCD Application Team + * @brief Header file of ADC HAL extended module. + ****************************************************************************** + * @attention + * + *

© Copyright (c) 2017 STMicroelectronics. + * All rights reserved.

+ * + * This software component is licensed by ST under BSD 3-Clause license, + * the "License"; You may not use this file except in compliance with the + * License. You may obtain a copy of the License at: + * opensource.org/licenses/BSD-3-Clause + * + ****************************************************************************** + */ + +/* Define to prevent recursive inclusion -------------------------------------*/ +#ifndef STM32H7xx_HAL_ADC_EX_H +#define STM32H7xx_HAL_ADC_EX_H + +#ifdef __cplusplus +extern "C" { +#endif + +/* Includes ------------------------------------------------------------------*/ +#include "stm32h7xx_hal_def.h" + +/** @addtogroup STM32H7xx_HAL_Driver + * @{ + */ + +/** @addtogroup ADCEx + * @{ + */ + +/* Exported types ------------------------------------------------------------*/ +/** @defgroup ADCEx_Exported_Types ADC Extended Exported Types + * @{ + */ + +/** + * @brief ADC Injected Conversion Oversampling structure definition + */ +typedef struct +{ + uint32_t Ratio; /*!< Configures the oversampling ratio. + This parameter can be a value between 1 and 1024 */ + + uint32_t RightBitShift; /*!< Configures the division coefficient for the Oversampler. + This parameter can be a value of @ref ADC_HAL_EC_OVS_SHIFT */ +} ADC_InjOversamplingTypeDef; + +/** + * @brief Structure definition of ADC group injected and ADC channel affected to ADC group injected + * @note Parameters of this structure are shared within 2 scopes: + * - Scope channel: InjectedChannel, InjectedRank, InjectedSamplingTime , InjectedSingleDiff, InjectedOffsetNumber, InjectedOffset + * - Scope ADC group injected (affects all channels of injected group): InjectedNbrOfConversion, InjectedDiscontinuousConvMode, + * AutoInjectedConv, QueueInjectedContext, ExternalTrigInjecConv, ExternalTrigInjecConvEdge, InjecOversamplingMode, InjecOversampling. + * @note The setting of these parameters by function HAL_ADCEx_InjectedConfigChannel() is conditioned to ADC state. + * ADC state can be either: + * - For all parameters: ADC disabled (this is the only possible ADC state to modify parameter 'InjectedSingleDiff') + * - For parameters 'InjectedDiscontinuousConvMode', 'QueueInjectedContext', 'InjecOversampling': ADC enabled without conversion on going on injected group. + * - For parameters 'InjectedSamplingTime', 'InjectedOffset', 'InjectedOffsetNumber', 'AutoInjectedConv': ADC enabled without conversion on going on regular and injected groups. + * - For parameters 'InjectedChannel', 'InjectedRank', 'InjectedNbrOfConversion', 'ExternalTrigInjecConv', 'ExternalTrigInjecConvEdge': ADC enabled and while conversion on going + * on ADC groups regular and injected. + * If ADC is not in the appropriate state to modify some parameters, these parameters setting is bypassed + * without error reporting (as it can be the expected behavior in case of intended action to update another parameter (which fulfills the ADC state condition) on the fly). + */ +typedef struct +{ + uint32_t InjectedChannel; /*!< Specifies the channel to configure into ADC group injected. + This parameter can be a value of @ref ADC_HAL_EC_CHANNEL + Note: Depending on devices and ADC instances, some channels may not be available on device package pins. Refer to device datasheet for channels availability. */ + + uint32_t InjectedRank; /*!< Specifies the rank in the ADC group injected sequencer. + This parameter must be a value of @ref ADC_INJ_SEQ_RANKS. + Note: to disable a channel or change order of conversion sequencer, rank containing a previous channel setting can be overwritten by + the new channel setting (or parameter number of conversions adjusted) */ + + uint32_t InjectedSamplingTime; /*!< Sampling time value to be set for the selected channel. + Unit: ADC clock cycles. + Conversion time is the addition of sampling time and processing time + (12.5 ADC clock cycles at ADC resolution 12 bits, 10.5 cycles at 10 bits, 8.5 cycles at 8 bits, 6.5 cycles at 6 bits). + This parameter can be a value of @ref ADC_HAL_EC_CHANNEL_SAMPLINGTIME. + Caution: This parameter applies to a channel that can be used in a regular and/or injected group. + It overwrites the last setting. + Note: In case of usage of internal measurement channels (VrefInt/Vbat/TempSensor), + sampling time constraints must be respected (sampling time can be adjusted in function of ADC clock frequency and sampling time setting) + Refer to device datasheet for timings values. */ + + uint32_t InjectedSingleDiff; /*!< Selection of single-ended or differential input. + In differential mode: Differential measurement is between the selected channel 'i' (positive input) and channel 'i+1' (negative input). + Only channel 'i' has to be configured, channel 'i+1' is configured automatically. + This parameter must be a value of @ref ADC_HAL_EC_CHANNEL_SINGLE_DIFF_ENDING. + Caution: This parameter applies to a channel that can be used in a regular and/or injected group. + It overwrites the last setting. + Note: Refer to Reference Manual to ensure the selected channel is available in differential mode. + Note: When configuring a channel 'i' in differential mode, the channel 'i+1' is not usable separately. + Note: This parameter must be modified when ADC is disabled (before ADC start conversion or after ADC stop conversion). + If ADC is enabled, this parameter setting is bypassed without error reporting (as it can be the expected behavior in case + of another parameter update on the fly) */ + + uint32_t InjectedOffsetNumber; /*!< Selects the offset number. + This parameter can be a value of @ref ADC_HAL_EC_OFFSET_NB. + Caution: Only one offset is allowed per channel. This parameter overwrites the last setting. */ + + uint32_t InjectedOffset; /*!< Defines the offset to be subtracted from the raw converted data. + Offset value must be a positive number. + Depending of ADC resolution selected (12, 10, 8 or 6 bits), this parameter must be a number + between Min_Data = 0x000 and Max_Data = 0xFFF, 0x3FF, 0xFF or 0x3F respectively. + Note: This parameter must be modified when no conversion is on going on both regular and injected groups (ADC disabled, or ADC enabled + without continuous mode or external trigger that could launch a conversion). */ + + uint32_t InjectedOffsetRightShift; /*!< Specifies whether the 1 bit Right-shift feature is used or not. + This parameter is applied only for 16-bit or 8-bit resolution. + This parameter can be set to ENABLE or DISABLE. */ + + FunctionalState InjectedOffsetSignedSaturation; /*!< Specifies whether the Signed saturation feature is used or not. + This parameter is applied only for 16-bit or 8-bit resolution. + This parameter can be set to ENABLE or DISABLE. */ + uint32_t InjectedLeftBitShift; /*!< Configures the left shifting applied to the final result with or without oversampling. + This parameter can be a value of @ref ADCEx_Left_Bit_Shift */ + + uint32_t InjectedNbrOfConversion; /*!< Specifies the number of ranks that will be converted within the ADC group injected sequencer. + To use the injected group sequencer and convert several ranks, parameter 'ScanConvMode' must be enabled. + This parameter must be a number between Min_Data = 1 and Max_Data = 4. + Caution: this setting impacts the entire injected group. Therefore, call of HAL_ADCEx_InjectedConfigChannel() to + configure a channel on injected group can impact the configuration of other channels previously set. */ + + FunctionalState InjectedDiscontinuousConvMode; /*!< Specifies whether the conversions sequence of ADC group injected is performed in Complete-sequence/Discontinuous-sequence + (main sequence subdivided in successive parts). + Discontinuous mode is used only if sequencer is enabled (parameter 'ScanConvMode'). If sequencer is disabled, this parameter is discarded. + Discontinuous mode can be enabled only if continuous mode is disabled. + This parameter can be set to ENABLE or DISABLE. + Note: This parameter must be modified when ADC is disabled (before ADC start conversion or after ADC stop conversion). + Note: For injected group, discontinuous mode converts the sequence channel by channel (discontinuous length fixed to 1 rank). + Caution: this setting impacts the entire injected group. Therefore, call of HAL_ADCEx_InjectedConfigChannel() to + configure a channel on injected group can impact the configuration of other channels previously set. */ + + FunctionalState AutoInjectedConv; /*!< Enables or disables the selected ADC group injected automatic conversion after regular one + This parameter can be set to ENABLE or DISABLE. + Note: To use Automatic injected conversion, discontinuous mode must be disabled ('DiscontinuousConvMode' and 'InjectedDiscontinuousConvMode' set to DISABLE) + Note: To use Automatic injected conversion, injected group external triggers must be disabled ('ExternalTrigInjecConv' set to ADC_INJECTED_SOFTWARE_START) + Note: In case of DMA used with regular group: if DMA configured in normal mode (single shot) JAUTO will be stopped upon DMA transfer complete. + To maintain JAUTO always enabled, DMA must be configured in circular mode. + Caution: this setting impacts the entire injected group. Therefore, call of HAL_ADCEx_InjectedConfigChannel() to + configure a channel on injected group can impact the configuration of other channels previously set. */ + + FunctionalState QueueInjectedContext; /*!< Specifies whether the context queue feature is enabled. + This parameter can be set to ENABLE or DISABLE. + If context queue is enabled, injected sequencer&channels configurations are queued on up to 2 contexts. If a + new injected context is set when queue is full, error is triggered by interruption and through function + 'HAL_ADCEx_InjectedQueueOverflowCallback'. + Caution: This feature request that the sequence is fully configured before injected conversion start. + Therefore, configure channels with as many calls to HAL_ADCEx_InjectedConfigChannel() as the 'InjectedNbrOfConversion' parameter. + Caution: this setting impacts the entire injected group. Therefore, call of HAL_ADCEx_InjectedConfigChannel() to + configure a channel on injected group can impact the configuration of other channels previously set. + Note: This parameter must be modified when ADC is disabled (before ADC start conversion or after ADC stop conversion). */ + + uint32_t ExternalTrigInjecConv; /*!< Selects the external event used to trigger the conversion start of injected group. + If set to ADC_INJECTED_SOFTWARE_START, external triggers are disabled and software trigger is used instead. + This parameter can be a value of @ref ADC_injected_external_trigger_source. + Caution: this setting impacts the entire injected group. Therefore, call of HAL_ADCEx_InjectedConfigChannel() to + configure a channel on injected group can impact the configuration of other channels previously set. */ + + uint32_t ExternalTrigInjecConvEdge; /*!< Selects the external trigger edge of injected group. + This parameter can be a value of @ref ADC_injected_external_trigger_edge. + If trigger source is set to ADC_INJECTED_SOFTWARE_START, this parameter is discarded. + Caution: this setting impacts the entire injected group. Therefore, call of HAL_ADCEx_InjectedConfigChannel() to + configure a channel on injected group can impact the configuration of other channels previously set. */ + + FunctionalState InjecOversamplingMode; /*!< Specifies whether the oversampling feature is enabled or disabled. + This parameter can be set to ENABLE or DISABLE. + Note: This parameter can be modified only if there is no conversion is ongoing (both ADSTART and JADSTART cleared). */ + + ADC_InjOversamplingTypeDef InjecOversampling; /*!< Specifies the Oversampling parameters. + Caution: this setting overwrites the previous oversampling configuration if oversampling already enabled. + Note: This parameter can be modified only if there is no conversion is ongoing (both ADSTART and JADSTART cleared). */ +} ADC_InjectionConfTypeDef; + +/** + * @brief Structure definition of ADC multimode + * @note The setting of these parameters by function HAL_ADCEx_MultiModeConfigChannel() is conditioned by ADCs state (both Master and Slave ADCs). + * Both Master and Slave ADCs must be disabled. + */ +typedef struct +{ + uint32_t Mode; /*!< Configures the ADC to operate in independent or multimode. + This parameter can be a value of @ref ADC_HAL_EC_MULTI_MODE. */ + + uint32_t DualModeData; /*!< Configures the Dual ADC Mode Data Format: + This parameter can be a value of @ref ADCEx_Dual_Mode_Data_Format */ + + uint32_t TwoSamplingDelay; /*!< Configures the Delay between 2 sampling phases. + This parameter can be a value of @ref ADC_HAL_EC_MULTI_TWOSMP_DELAY. + Delay range depends on selected resolution: + from 1 to 9 clock cycles for 16 bits, + from 1 to 9 clock cycles for 14 bits + from 1 to 8 clock cycles for 12 bits + from 1 to 6 clock cycles for 10 bits + from 1 to 6 clock cycles for 8 bits */ +} ADC_MultiModeTypeDef; + +/** + * @} + */ + +/* Exported constants --------------------------------------------------------*/ + +/** @defgroup ADCEx_Exported_Constants ADC Extended Exported Constants + * @{ + */ + +/** @defgroup ADC_injected_external_trigger_source ADC group injected trigger source + * @{ + */ +/* ADC group regular trigger sources for all ADC instances */ +#define ADC_INJECTED_SOFTWARE_START (LL_ADC_INJ_TRIG_SOFTWARE) /*!< Software triggers injected group conversion start */ +#define ADC_EXTERNALTRIGINJEC_T1_TRGO (LL_ADC_INJ_TRIG_EXT_TIM1_TRGO) /*!< ADC group injected conversion trigger from external peripheral: TIM1 TRGO event. Trigger edge set to rising edge (default setting). */ +#define ADC_EXTERNALTRIGINJEC_T1_CC4 (LL_ADC_INJ_TRIG_EXT_TIM1_CH4) /*!< ADC group injected conversion trigger from external peripheral: TIM1 channel 4 event (capture compare: input capture or output capture). Trigger edge set to rising edge (default setting). */ +#define ADC_EXTERNALTRIGINJEC_T2_TRGO (LL_ADC_INJ_TRIG_EXT_TIM2_TRGO) /*!< ADC group injected conversion trigger from external peripheral: TIM2 TRGO event. Trigger edge set to rising edge (default setting). */ +#define ADC_EXTERNALTRIGINJEC_T2_CC1 (LL_ADC_INJ_TRIG_EXT_TIM2_CH1) /*!< ADC group injected conversion trigger from external peripheral: TIM2 channel 1 event (capture compare: input capture or output capture). Trigger edge set to rising edge (default setting). */ +#define ADC_EXTERNALTRIGINJEC_T3_CC4 (LL_ADC_INJ_TRIG_EXT_TIM3_CH4) /*!< ADC group injected conversion trigger from external peripheral: TIM3 channel 4 event (capture compare: input capture or output capture). Trigger edge set to rising edge (default setting). */ +#define ADC_EXTERNALTRIGINJEC_T4_TRGO (LL_ADC_INJ_TRIG_EXT_TIM4_TRGO) /*!< ADC group injected conversion trigger from external peripheral: TIM4 TRGO event. Trigger edge set to rising edge (default setting). */ +#define ADC_EXTERNALTRIGINJEC_EXT_IT15 (LL_ADC_INJ_TRIG_EXT_EXTI_LINE15) /*!< ADC group injected conversion trigger from external peripheral: external interrupt line 15. Trigger edge set to rising edge (default setting). */ +#define ADC_EXTERNALTRIGINJEC_T8_CC4 (LL_ADC_INJ_TRIG_EXT_TIM8_CH4) /*!< ADC group injected conversion trigger from external peripheral: TIM8 channel 4 event (capture compare: input capture or output capture). Trigger edge set to rising edge (default setting). */ +#define ADC_EXTERNALTRIGINJEC_T1_TRGO2 (LL_ADC_INJ_TRIG_EXT_TIM1_TRGO2) /*!< ADC group injected conversion trigger from external peripheral: TIM1 TRGO2 event. Trigger edge set to rising edge (default setting). */ +#define ADC_EXTERNALTRIGINJEC_T8_TRGO (LL_ADC_INJ_TRIG_EXT_TIM8_TRGO) /*!< ADC group injected conversion trigger from external peripheral: TIM8 TRGO event. Trigger edge set to rising edge (default setting). */ +#define ADC_EXTERNALTRIGINJEC_T8_TRGO2 (LL_ADC_INJ_TRIG_EXT_TIM8_TRGO2) /*!< ADC group injected conversion trigger from external peripheral: TIM8 TRGO2 event. Trigger edge set to rising edge (default setting). */ +#define ADC_EXTERNALTRIGINJEC_T3_CC3 (LL_ADC_INJ_TRIG_EXT_TIM3_CH3) /*!< ADC group injected conversion trigger from external peripheral: TIM3 channel 3 event (capture compare: input capture or output capture). Trigger edge set to rising edge (default setting). */ +#define ADC_EXTERNALTRIGINJEC_T3_TRGO (LL_ADC_INJ_TRIG_EXT_TIM3_TRGO) /*!< ADC group injected conversion trigger from external peripheral: TIM3 TRGO event. Trigger edge set to rising edge (default setting). */ +#define ADC_EXTERNALTRIGINJEC_T3_CC1 (LL_ADC_INJ_TRIG_EXT_TIM3_CH1) /*!< ADC group injected conversion trigger from external peripheral: TIM3 channel 1 event (capture compare: input capture or output capture). Trigger edge set to rising edge (default setting). */ +#define ADC_EXTERNALTRIGINJEC_T6_TRGO (LL_ADC_INJ_TRIG_EXT_TIM6_TRGO) /*!< ADC group injected conversion trigger from external peripheral: TIM6 TRGO event. Trigger edge set to rising edge (default setting). */ +#define ADC_EXTERNALTRIGINJEC_T15_TRGO (LL_ADC_INJ_TRIG_EXT_TIM15_TRGO) /*!< ADC group injected conversion trigger from external peripheral: TIM15 TRGO event. Trigger edge set to rising edge (default setting). */ +#define ADC_EXTERNALTRIGINJEC_HR1_ADCTRG2 (LL_ADC_INJ_TRIG_EXT_HRTIM_TRG2) /*!< ADC group injected conversion trigger from external peripheral: HRTIM1 TRG2 event. Trigger edge set to rising edge (default setting). */ +#define ADC_EXTERNALTRIGINJEC_HR1_ADCTRG4 (LL_ADC_INJ_TRIG_EXT_HRTIM_TRG4) /*!< ADC group injected conversion trigger from external peripheral: HRTIM1 TRG4 event. Trigger edge set to rising edge (default setting). */ +#define ADC_EXTERNALTRIGINJEC_LPTIM1_OUT (LL_ADC_INJ_TRIG_EXT_LPTIM1_OUT) /*!< ADC group injected conversion trigger from external peripheral: LPTIM1 OUT event. Trigger edge set to rising edge (default setting). */ +#define ADC_EXTERNALTRIGINJEC_LPTIM2_OUT (LL_ADC_INJ_TRIG_EXT_LPTIM2_OUT) /*!< ADC group injected conversion trigger from external peripheral: LPTIM2 OUT event. Trigger edge set to rising edge (default setting). */ +#define ADC_EXTERNALTRIGINJEC_LPTIM3_OUT (LL_ADC_INJ_TRIG_EXT_LPTIM3_OUT) /*!< ADC group injected conversion trigger from external peripheral: LPTIM3 OUT event. Trigger edge set to rising edge (default setting). */ +/** + * @} + */ + +/** @defgroup ADC_injected_external_trigger_edge ADC group injected trigger edge (when external trigger is selected) + * @{ + */ +#define ADC_EXTERNALTRIGINJECCONV_EDGE_NONE (0x00000000UL) /*!< Injected conversions hardware trigger detection disabled */ +#define ADC_EXTERNALTRIGINJECCONV_EDGE_RISING (ADC_JSQR_JEXTEN_0) /*!< Injected conversions hardware trigger detection on the rising edge */ +#define ADC_EXTERNALTRIGINJECCONV_EDGE_FALLING (ADC_JSQR_JEXTEN_1) /*!< Injected conversions hardware trigger detection on the falling edge */ +#define ADC_EXTERNALTRIGINJECCONV_EDGE_RISINGFALLING (ADC_JSQR_JEXTEN) /*!< Injected conversions hardware trigger detection on both the rising and falling edges */ +/** + * @} + */ + +/** @defgroup ADC_HAL_EC_CHANNEL_SINGLE_DIFF_ENDING Channel - Single or differential ending + * @{ + */ +#define ADC_SINGLE_ENDED (LL_ADC_SINGLE_ENDED) /*!< ADC channel ending set to single ended (literal also used to set calibration mode) */ +#define ADC_DIFFERENTIAL_ENDED (LL_ADC_DIFFERENTIAL_ENDED) /*!< ADC channel ending set to differential (literal also used to set calibration mode) */ +/** + * @} + */ + +/** @defgroup ADC_HAL_EC_OFFSET_NB ADC instance - Offset number + * @{ + */ +#define ADC_OFFSET_NONE (ADC_OFFSET_4 + 1U) /*!< ADC offset disabled: no offset correction for the selected ADC channel */ +#define ADC_OFFSET_1 (LL_ADC_OFFSET_1) /*!< ADC offset number 1: ADC channel and offset level to which the offset programmed will be applied (independently of channel mapped on ADC group regular or group injected) */ +#define ADC_OFFSET_2 (LL_ADC_OFFSET_2) /*!< ADC offset number 2: ADC channel and offset level to which the offset programmed will be applied (independently of channel mapped on ADC group regular or group injected) */ +#define ADC_OFFSET_3 (LL_ADC_OFFSET_3) /*!< ADC offset number 3: ADC channel and offset level to which the offset programmed will be applied (independently of channel mapped on ADC group regular or group injected) */ +#define ADC_OFFSET_4 (LL_ADC_OFFSET_4) /*!< ADC offset number 4: ADC channel and offset level to which the offset programmed will be applied (independently of channel mapped on ADC group regular or group injected) */ +/** + * @} + */ + +/** @defgroup ADC_INJ_SEQ_RANKS ADC group injected - Sequencer ranks + * @{ + */ +#define ADC_INJECTED_RANK_1 (LL_ADC_INJ_RANK_1) /*!< ADC group injected sequencer rank 1 */ +#define ADC_INJECTED_RANK_2 (LL_ADC_INJ_RANK_2) /*!< ADC group injected sequencer rank 2 */ +#define ADC_INJECTED_RANK_3 (LL_ADC_INJ_RANK_3) /*!< ADC group injected sequencer rank 3 */ +#define ADC_INJECTED_RANK_4 (LL_ADC_INJ_RANK_4) /*!< ADC group injected sequencer rank 4 */ +/** + * @} + */ + +/** @defgroup ADC_HAL_EC_MULTI_MODE Multimode - Mode + * @{ + */ +#define ADC_MODE_INDEPENDENT (LL_ADC_MULTI_INDEPENDENT) /*!< ADC dual mode disabled (ADC independent mode) */ +#define ADC_DUALMODE_REGSIMULT (LL_ADC_MULTI_DUAL_REG_SIMULT) /*!< ADC dual mode enabled: group regular simultaneous */ +#define ADC_DUALMODE_INTERL (LL_ADC_MULTI_DUAL_REG_INTERL) /*!< ADC dual mode enabled: Combined group regular interleaved */ +#define ADC_DUALMODE_INJECSIMULT (LL_ADC_MULTI_DUAL_INJ_SIMULT) /*!< ADC dual mode enabled: group injected simultaneous */ +#define ADC_DUALMODE_ALTERTRIG (LL_ADC_MULTI_DUAL_INJ_ALTERN) /*!< ADC dual mode enabled: group injected alternate trigger. Works only with external triggers (not internal SW start) */ +#define ADC_DUALMODE_REGSIMULT_INJECSIMULT (LL_ADC_MULTI_DUAL_REG_SIM_INJ_SIM) /*!< ADC dual mode enabled: Combined group regular simultaneous + group injected simultaneous */ +#define ADC_DUALMODE_REGSIMULT_ALTERTRIG (LL_ADC_MULTI_DUAL_REG_SIM_INJ_ALT) /*!< ADC dual mode enabled: Combined group regular simultaneous + group injected alternate trigger */ +#define ADC_DUALMODE_REGINTERL_INJECSIMULT (LL_ADC_MULTI_DUAL_REG_INT_INJ_SIM) /*!< ADC dual mode enabled: Combined group regular interleaved + group injected simultaneous */ + +/** @defgroup ADCEx_Dual_Mode_Data_Format ADC Extended Dual Mode Data Formatting + * @{ + */ +#define ADC_DUALMODEDATAFORMAT_DISABLED (0x00000000UL) /*!< Dual ADC mode without data packing: ADCx_CDR and ADCx_CDR2 registers not used */ +#define ADC_DUALMODEDATAFORMAT_32_10_BITS (ADC_CCR_DAMDF_1) /*!< Data formatting mode for 32 down to 10-bit resolution */ +#define ADC_DUALMODEDATAFORMAT_8_BITS ((ADC_CCR_DAMDF_0 |ADC_CCR_DAMDF_1)) /*!< Data formatting mode for 8-bit resolution */ +/** + * @} + */ + +/** @defgroup ADC_HAL_EC_MULTI_TWOSMP_DELAY Multimode - Delay between two sampling phases + * @{ + */ +#define ADC_TWOSAMPLINGDELAY_1CYCLE (LL_ADC_MULTI_TWOSMP_DELAY_1CYCLE_5) /*!< ADC multimode delay between two sampling phases: 1 ADC clock cycle */ +#define ADC_TWOSAMPLINGDELAY_2CYCLES (LL_ADC_MULTI_TWOSMP_DELAY_2CYCLES_5) /*!< ADC multimode delay between two sampling phases: 2 ADC clock cycles */ +#define ADC_TWOSAMPLINGDELAY_3CYCLES (LL_ADC_MULTI_TWOSMP_DELAY_3CYCLES_5) /*!< ADC multimode delay between two sampling phases: 3 ADC clock cycles */ +#define ADC_TWOSAMPLINGDELAY_4CYCLES (LL_ADC_MULTI_TWOSMP_DELAY_4CYCLES_5) /*!< ADC multimode delay between two sampling phases: 4 ADC clock cycles */ +#define ADC_TWOSAMPLINGDELAY_5CYCLES (LL_ADC_MULTI_TWOSMP_DELAY_5CYCLES_5) /*!< ADC multimode delay between two sampling phases: 5 ADC clock cycles */ +#define ADC_TWOSAMPLINGDELAY_6CYCLES (LL_ADC_MULTI_TWOSMP_DELAY_6CYCLES_5) /*!< ADC multimode delay between two sampling phases: 6 ADC clock cycles */ +#define ADC_TWOSAMPLINGDELAY_7CYCLES (LL_ADC_MULTI_TWOSMP_DELAY_7CYCLES_5) /*!< ADC multimode delay between two sampling phases: 7 ADC clock cycles */ +#define ADC_TWOSAMPLINGDELAY_8CYCLES (LL_ADC_MULTI_TWOSMP_DELAY_8CYCLES) /*!< ADC multimode delay between two sampling phases: 8 ADC clock cycles */ +#define ADC_TWOSAMPLINGDELAY_9CYCLES (LL_ADC_MULTI_TWOSMP_DELAY_9CYCLES) /*!< ADC multimode delay between two sampling phases: 9 ADC clock cycles */ +/** + * @} + */ + +/** + * @} + */ + +/** @defgroup ADC_HAL_EC_GROUPS ADC instance - Groups + * @{ + */ +#define ADC_REGULAR_GROUP (LL_ADC_GROUP_REGULAR) /*!< ADC group regular (available on all STM32 devices) */ +#define ADC_INJECTED_GROUP (LL_ADC_GROUP_INJECTED) /*!< ADC group injected (not available on all STM32 devices)*/ +#define ADC_REGULAR_INJECTED_GROUP (LL_ADC_GROUP_REGULAR_INJECTED) /*!< ADC both groups regular and injected */ +/** + * @} + */ + +/** @defgroup ADC_CFGR_fields ADCx CFGR fields + * @{ + */ +#define ADC_CFGR_FIELDS (ADC_CFGR_AWD1CH | ADC_CFGR_JAUTO | ADC_CFGR_JAWD1EN |\ + ADC_CFGR_AWD1EN | ADC_CFGR_AWD1SGL | ADC_CFGR_JQM |\ + ADC_CFGR_JDISCEN | ADC_CFGR_DISCNUM | ADC_CFGR_DISCEN |\ + ADC_CFGR_AUTDLY | ADC_CFGR_CONT | ADC_CFGR_OVRMOD |\ + ADC_CFGR_EXTEN | ADC_CFGR_EXTSEL | ADC_CFGR_ALIGN |\ + ADC_CFGR_RES | ADC_CFGR_DMACFG | ADC_CFGR_DMAEN ) +/** + * @} + */ + +/** @defgroup ADC_SMPR1_fields ADCx SMPR1 fields + * @{ + */ +#define ADC_SMPR1_FIELDS (ADC_SMPR1_SMP9 | ADC_SMPR1_SMP8 | ADC_SMPR1_SMP7 |\ + ADC_SMPR1_SMP6 | ADC_SMPR1_SMP5 | ADC_SMPR1_SMP4 |\ + ADC_SMPR1_SMP3 | ADC_SMPR1_SMP2 | ADC_SMPR1_SMP1 |\ + ADC_SMPR1_SMP0) +/** + * @} + */ + +/** @defgroup ADC_CFGR_fields_2 ADCx CFGR sub fields + * @{ + */ +/* ADC_CFGR fields of parameters that can be updated when no conversion + (neither regular nor injected) is on-going */ +#define ADC_CFGR_FIELDS_2 ((uint32_t)(ADC_CFGR_DMNGT | ADC_CFGR_AUTDLY)) +/** + * @} + */ + +#if defined(DFSDM1_Channel0) +/** @defgroup ADC_HAL_EC_REG_DFSDM_TRANSFER ADC group regular - DFSDM transfer of ADC conversion data + * @{ + */ +#define ADC_DFSDM_MODE_DISABLE (0x00000000UL) /*!< ADC conversions are not transferred by DFSDM. */ +#define ADC_DFSDM_MODE_ENABLE (LL_ADC_REG_DFSDM_TRANSFER_ENABLE) /*!< ADC conversion data are transfered to DFSDM for post processing. The ADC conversion data format must be 16-bit signed and right aligned, refer to reference manual. DFSDM transfer cannot be used if DMA transfer is enabled. */ +/** + * @} + */ +#endif + +/** + * @} + */ + +/* Exported macros -----------------------------------------------------------*/ + +/** @defgroup ADCEx_Exported_Macro ADC Extended Exported Macros + * @{ + */ + +/** @brief Force ADC instance in multimode mode independent (multimode disable). + * @note This macro must be used only in case of transition from multimode + * to mode independent and in case of unknown previous state, + * to ensure ADC configuration is in mode independent. + * @note Standard way of multimode configuration change is done from + * HAL ADC handle of ADC master using function + * "HAL_ADCEx_MultiModeConfigChannel(..., ADC_MODE_INDEPENDENT)" )". + * Usage of this macro is not the Standard way of multimode + * configuration and can lead to have HAL ADC handles status + * misaligned. Usage of this macro must be limited to cases + * mentionned above. + * @param __HANDLE__ ADC handle. + * @retval None + */ +#define ADC_FORCE_MODE_INDEPENDENT(__HANDLE__) \ + LL_ADC_SetMultimode(__LL_ADC_COMMON_INSTANCE((__HANDLE__)->Instance), LL_ADC_MULTI_INDEPENDENT) + +/** + * @} + */ + +/* Private macros ------------------------------------------------------------*/ + +/** @defgroup ADCEx_Private_Macro_internal_HAL_driver ADC Extended Private Macros + * @{ + */ +/* Macro reserved for internal HAL driver usage, not intended to be used in */ +/* code of final user. */ + +/** + * @brief Test if conversion trigger of injected group is software start + * or external trigger. + * @param __HANDLE__ ADC handle. + * @retval SET (software start) or RESET (external trigger). + */ +#define ADC_IS_SOFTWARE_START_INJECTED(__HANDLE__) \ + (((__HANDLE__)->Instance->JSQR & ADC_JSQR_JEXTEN) == 0UL) + +/** + * @brief Check if conversion is on going on regular or injected groups. + * @param __HANDLE__ ADC handle. + * @retval SET (conversion is on going) or RESET (no conversion is on going). + */ +#define ADC_IS_CONVERSION_ONGOING_REGULAR_INJECTED(__HANDLE__) \ + (( (((__HANDLE__)->Instance->CR) & (ADC_CR_ADSTART | ADC_CR_JADSTART)) == 0UL \ + ) ? RESET : SET) + +/** + * @brief Check if conversion is on going on injected group. + * @param __HANDLE__ ADC handle. + * @retval Value "0" (no conversion is on going) or value "1" (conversion is on going) + */ +#define ADC_IS_CONVERSION_ONGOING_INJECTED(__HANDLE__) \ + (LL_ADC_INJ_IsConversionOngoing((__HANDLE__)->Instance)) + +/** + * @brief Check whether or not ADC is independent. + * @param __HANDLE__ ADC handle. + * @note When multimode feature is not available, the macro always returns SET. + * @retval SET (ADC is independent) or RESET (ADC is not). + */ +#if defined (ADC3) +#define ADC_IS_INDEPENDENT(__HANDLE__) \ + ( ( ( ((__HANDLE__)->Instance) == ADC3) \ + )? \ + SET \ + : \ + RESET \ + ) +#endif + +/** + * @brief Set the selected injected Channel rank. + * @param __CHANNELNB__ Channel number. + * @param __RANKNB__ Rank number. + * @retval None + */ +#define ADC_JSQR_RK(__CHANNELNB__, __RANKNB__) ((((__CHANNELNB__) & ADC_CHANNEL_ID_NUMBER_MASK) >> ADC_CHANNEL_ID_NUMBER_BITOFFSET_POS) << ((__RANKNB__) & ADC_INJ_RANK_ID_JSQR_MASK)) + +/** + * @brief Configure ADC injected context queue + * @param __INJECT_CONTEXT_QUEUE_MODE__ Injected context queue mode. + * @retval None + */ +#define ADC_CFGR_INJECT_CONTEXT_QUEUE(__INJECT_CONTEXT_QUEUE_MODE__) ((__INJECT_CONTEXT_QUEUE_MODE__) << ADC_CFGR_JQM_Pos) + +/** + * @brief Configure ADC discontinuous conversion mode for injected group + * @param __INJECT_DISCONTINUOUS_MODE__ Injected discontinuous mode. + * @retval None + */ +#define ADC_CFGR_INJECT_DISCCONTINUOUS(__INJECT_DISCONTINUOUS_MODE__) ((__INJECT_DISCONTINUOUS_MODE__) << ADC_CFGR_JDISCEN_Pos) + +/** + * @brief Configure ADC discontinuous conversion mode for regular group + * @param __REG_DISCONTINUOUS_MODE__ Regular discontinuous mode. + * @retval None + */ +#define ADC_CFGR_REG_DISCONTINUOUS(__REG_DISCONTINUOUS_MODE__) ((__REG_DISCONTINUOUS_MODE__) << ADC_CFGR_DISCEN_Pos) + +/** + * @brief Configure the number of discontinuous conversions for regular group. + * @param __NBR_DISCONTINUOUS_CONV__ Number of discontinuous conversions. + * @retval None + */ +#define ADC_CFGR_DISCONTINUOUS_NUM(__NBR_DISCONTINUOUS_CONV__) (((__NBR_DISCONTINUOUS_CONV__) - 1UL) << ADC_CFGR_DISCNUM_Pos) + +/** + * @brief Configure the ADC auto delay mode. + * @param __AUTOWAIT__ Auto delay bit enable or disable. + * @retval None + */ +#define ADC_CFGR_AUTOWAIT(__AUTOWAIT__) ((__AUTOWAIT__) << ADC_CFGR_AUTDLY_Pos) + +/** + * @brief Configure ADC continuous conversion mode. + * @param __CONTINUOUS_MODE__ Continuous mode. + * @retval None + */ +#define ADC_CFGR_CONTINUOUS(__CONTINUOUS_MODE__) ((__CONTINUOUS_MODE__) << ADC_CFGR_CONT_Pos) + +/** + * @brief Enable the ADC DMA continuous request. + * @param __DMACONTREQ_MODE__: DMA continuous request mode. + * @retval None + */ +#define ADC_CFGR_DMACONTREQ(__DMACONTREQ_MODE__) ((__DMACONTREQ_MODE__)) + +/** + * @brief Configure the channel number into offset OFRx register. + * @param __CHANNEL__ ADC Channel. + * @retval None + */ +#define ADC_OFR_CHANNEL(__CHANNEL__) ((__CHANNEL__) << ADC_OFR1_OFFSET1_CH_Pos) + +/** + * @brief Configure the channel number into differential mode selection register. + * @param __CHANNEL__ ADC Channel. + * @retval None + */ +#define ADC_DIFSEL_CHANNEL(__CHANNEL__) (1UL << (__CHANNEL__)) + +/** + * @brief Configure calibration factor in differential mode to be set into calibration register. + * @param __CALIBRATION_FACTOR__ Calibration factor value. + * @retval None + */ +#define ADC_CALFACT_DIFF_SET(__CALIBRATION_FACTOR__) (((__CALIBRATION_FACTOR__) & (ADC_CALFACT_CALFACT_D_Pos >> ADC_CALFACT_CALFACT_D_Pos) ) << ADC_CALFACT_CALFACT_D_Pos) + +/** + * @brief Calibration factor in differential mode to be retrieved from calibration register. + * @param __CALIBRATION_FACTOR__ Calibration factor value. + * @retval None + */ +#define ADC_CALFACT_DIFF_GET(__CALIBRATION_FACTOR__) ((__CALIBRATION_FACTOR__) >> ADC_CALFACT_CALFACT_D_Pos) + +/** + * @brief Configure the analog watchdog high threshold into registers TR1, TR2 or TR3. + * @param __THRESHOLD__ Threshold value. + * @retval None + */ +#define ADC_TRX_HIGHTHRESHOLD(__THRESHOLD__) ((__THRESHOLD__) << 16UL) + +/** + * @brief Configure the ADC DMA continuous request for ADC multimode. + * @param __DMACONTREQ_MODE__ DMA continuous request mode. + * @retval None + */ +#define ADC_CCR_MULTI_DMACONTREQ(__DMACONTREQ_MODE__) ((__DMACONTREQ_MODE__) << ADC_CCR_DMACFG_Pos) + +/** + * @brief Shift the offset in function of the selected ADC resolution. + * @note Offset has to be left-aligned on bit 15, the LSB (right bits) are set to 0 + * If resolution 16 bits, no shift. + * If resolution 14 bits, shift of 2 ranks on the left. + * If resolution 12 bits, shift of 4 ranks on the left. + * If resolution 10 bits, shift of 6 ranks on the left. + * If resolution 8 bits, shift of 8 ranks on the left. + * therefore, shift = (16 - resolution) = 16 - (16 - (((RES[2:0]) >> 2)*2)) + * @param __HANDLE__: ADC handle + * @param __OFFSET__: Value to be shifted + * @retval None + */ +#if defined(ADC_VER_V5_3) +#define ADC_OFFSET_SHIFT_RESOLUTION(__HANDLE__, __OFFSET__) \ + ( \ + ((((__HANDLE__)->Instance->CFGR) & ADC_CFGR_RES_2) == 0UL) \ + ? ((__OFFSET__)<<(((((__HANDLE__)->Instance->CFGR) & ADC_CFGR_RES)>> 2UL)*2UL)) \ + : \ + ((__OFFSET__)<<(((((__HANDLE__)->Instance->CFGR) & (ADC_CFGR_RES & 0xFFFFFFF3UL))>> 2UL )*2UL)) \ + ) +#else +#define ADC_OFFSET_SHIFT_RESOLUTION(__HANDLE__, __OFFSET__) \ + (((DBGMCU->IDCODE & 0xF0000000UL) == 0x10000000UL) \ + ? ((__OFFSET__)<<(((((__HANDLE__)->Instance->CFGR) & ADC_CFGR_RES)>> 2UL)*2UL)) \ + : \ + ((((__HANDLE__)->Instance->CFGR) & ADC_CFGR_RES_2) == 0UL) \ + ? ((__OFFSET__)<<(((((__HANDLE__)->Instance->CFGR) & ADC_CFGR_RES)>> 2UL)*2UL)) \ + : \ + ((__OFFSET__)<<(((((__HANDLE__)->Instance->CFGR) & (ADC_CFGR_RES & 0xFFFFFFF3UL))>> 2UL )*2UL)) \ + ) +#endif /* ADC_VER_V5_3 */ + +/** + * @brief Shift the AWD1 threshold in function of the selected ADC resolution. + * @note Thresholds have to be left-aligned on bit 15, the LSB (right bits) are set to 0. + * If resolution 16 bits, no shift. + * If resolution 14 bits, shift of 2 ranks on the left. + * If resolution 12 bits, shift of 4 ranks on the left. + * If resolution 10 bits, shift of 6 ranks on the left. + * If resolution 8 bits, shift of 8 ranks on the left. + * therefore, shift = (16 - resolution) = 16 - (16- (((RES[2:0]) >> 2)*2)) + * @param __HANDLE__: ADC handle + * @param __THRESHOLD__: Value to be shifted + * @retval None + */ +#if defined(ADC_VER_V5_3) +#define ADC_AWD1THRESHOLD_SHIFT_RESOLUTION(__HANDLE__, __THRESHOLD__) \ + ( \ + ((((__HANDLE__)->Instance->CFGR) & ADC_CFGR_RES_2) == 0UL) \ + ? ((__THRESHOLD__)<<(((((__HANDLE__)->Instance->CFGR) & ADC_CFGR_RES)>> 2UL)*2UL)) \ + : \ + ((__THRESHOLD__)<<(((((__HANDLE__)->Instance->CFGR) & (ADC_CFGR_RES & 0xFFFFFFF3UL))>> 2UL )*2UL)) \ + ) +#else +#define ADC_AWD1THRESHOLD_SHIFT_RESOLUTION(__HANDLE__, __THRESHOLD__) \ + (((DBGMCU->IDCODE & 0xF0000000UL) == 0x10000000UL) \ + ? ((__THRESHOLD__)<<(((((__HANDLE__)->Instance->CFGR) & ADC_CFGR_RES)>> 2UL)*2UL)) \ + : \ + ((((__HANDLE__)->Instance->CFGR) & ADC_CFGR_RES_2) == 0UL) \ + ? ((__THRESHOLD__)<<(((((__HANDLE__)->Instance->CFGR) & ADC_CFGR_RES)>> 2UL)*2UL)) \ + : \ + ((__THRESHOLD__)<<(((((__HANDLE__)->Instance->CFGR) & (ADC_CFGR_RES & 0xFFFFFFF3UL))>> 2UL )*2UL)) \ + ) +#endif /* ADC_VER_V5_3 */ + +/** + * @brief Shift the AWD2 and AWD3 threshold in function of the selected ADC resolution. + * @note Thresholds have to be left-aligned on bit 15, the LSB (right bits) are set to 0. + * If resolution 16 bits, no shift. + * If resolution 14 bits, shift of 2 ranks on the left. + * If resolution 12 bits, shift of 4 ranks on the left. + * If resolution 10 bits, shift of 6 ranks on the left. + * If resolution 8 bits, shift of 8 ranks on the left. + * therefore, shift = (16 - resolution) = 16 - (16- (((RES[2:0]) >> 2)*2)) + * @param __HANDLE__: ADC handle + * @param __THRESHOLD__: Value to be shifted + * @retval None + */ +#if defined(ADC_VER_V5_3) +#define ADC_AWD23THRESHOLD_SHIFT_RESOLUTION(__HANDLE__, __THRESHOLD__) \ + ( \ + ((((__HANDLE__)->Instance->CFGR) & ADC_CFGR_RES_2) == 0UL) \ + ? ((__THRESHOLD__)<<(((((__HANDLE__)->Instance->CFGR) & ADC_CFGR_RES)>> 2UL)*2UL)) \ + : \ + ((__THRESHOLD__)<<(((((__HANDLE__)->Instance->CFGR) & (ADC_CFGR_RES & 0xFFFFFFF3UL))>> 2UL )*2UL)) \ + ) +#else +#define ADC_AWD23THRESHOLD_SHIFT_RESOLUTION(__HANDLE__, __THRESHOLD__) \ + (((DBGMCU->IDCODE & 0xF0000000UL) == 0x10000000UL) \ + ? ((__THRESHOLD__)<<(((((__HANDLE__)->Instance->CFGR) & ADC_CFGR_RES)>> 2UL)*2UL)) \ + : \ + ((((__HANDLE__)->Instance->CFGR) & ADC_CFGR_RES_2) == 0UL) \ + ? ((__THRESHOLD__)<<(((((__HANDLE__)->Instance->CFGR) & ADC_CFGR_RES)>> 2UL)*2UL)) \ + : \ + ((__THRESHOLD__)<<(((((__HANDLE__)->Instance->CFGR) & (ADC_CFGR_RES & 0xFFFFFFF3UL))>> 2UL )*2UL)) \ + ) +#endif /* ADC_VER_V5_3 */ +/** + * @brief Clear Common Control Register. + * @param __HANDLE__ ADC handle. + * @retval None + */ +/** + * @brief Report common register to ADC1 and ADC2 + * @param __HANDLE__: ADC handle + * @retval Common control register + */ +#define ADC12_COMMON_REGISTER(__HANDLE__) (ADC12_COMMON) +#if defined (ADC3) +/** + * @brief Report common register to ADC3 + * @param __HANDLE__: ADC handle + * @retval Common control register + */ +#define ADC3_COMMON_REGISTER(__HANDLE__) (ADC3_COMMON) +#endif +/** + * @brief Report Master Instance + * @param __HANDLE__: ADC handle + * @note return same instance if ADC of input handle is independent ADC + * @retval Master Instance + */ +#if defined (ADC3) +#define ADC_MASTER_REGISTER(__HANDLE__) \ + ( ( ((((__HANDLE__)->Instance) == ADC1) || (((__HANDLE__)->Instance) == ADC3)) \ + )? \ + ((__HANDLE__)->Instance) \ + : \ + (ADC1) \ + ) +#else +#define ADC_MASTER_REGISTER(__HANDLE__) ( (ADC1)) +#endif + +/** + * @brief Check whether or not dual regular conversions are enabled + * @param __HANDLE__: ADC handle + * @retval SET (dual regular conversions are enabled) or RESET (ADC is independent or no dual regular conversions are enabled) + */ +#define ADC_IS_DUAL_REGULAR_CONVERSION_ENABLE(__HANDLE__) \ + ( ( ((((__HANDLE__)->Instance) == ADC1) || (((__HANDLE__)->Instance) == ADC2)) \ + )? \ + ( ((ADC12_COMMON->CCR & ADC_CCR_DUAL) != ADC_MODE_INDEPENDENT) && \ + ((ADC12_COMMON->CCR & ADC_CCR_DUAL) != ADC_DUALMODE_INJECSIMULT) && \ + ((ADC12_COMMON->CCR & ADC_CCR_DUAL) != ADC_DUALMODE_ALTERTRIG) ) \ + : \ + RESET \ + ) + +/** + * @brief Verification of condition for ADC start conversion: ADC must be in non-MultiMode or MultiMode with handle of ADC master + * @param __HANDLE__: ADC handle + * @retval SET (non-MultiMode or Master handle) or RESET (handle of Slave ADC in MultiMode) + */ +#define ADC12_NONMULTIMODE_OR_MULTIMODEMASTER(__HANDLE__) \ + ( ( ((__HANDLE__)->Instance == ADC1) || ((__HANDLE__)->Instance == ADC2) \ + )? \ + SET \ + : \ + ((ADC12_COMMON->CCR & ADC_CCR_DUAL) == RESET) \ + ) +#if defined (ADC3) +/** + * @brief Verification of condition for ADC start conversion: ADC must be in non-MultiMode or MultiMode with handle of ADC master + * @param __HANDLE__: ADC handle + * @retval SET (non-MultiMode or Master handle) or RESET (handle of Slave ADC in MultiMode) + */ +#define ADC3_NONMULTIMODE_OR_MULTIMODEMASTER(__HANDLE__) \ + ( ( ((__HANDLE__)->Instance == ADC3) \ + )? \ + SET \ + : \ + ((ADC3_COMMON->CCR & ADC_CCR_DUAL) == RESET) \ + ) +#endif +/** + * @brief Ensure ADC Instance is Independent or Master, or is not Slave ADC with dual regular conversions enabled + * @param __HANDLE__: ADC handle + * @retval SET (Independent or Master, or Slave without dual regular conversions enabled) or RESET (Slave ADC with dual regular conversions enabled) + */ +#if defined (ADC3) +#define ADC_INDEPENDENT_OR_NONMULTIMODEREGULAR_SLAVE(__HANDLE__) \ + ( ( ((__HANDLE__)->Instance == ADC1) || ((__HANDLE__)->Instance == ADC3) \ + )? \ + SET \ + : \ + ( ((ADC12_COMMON->CCR & ADC_CCR_DUAL) == ADC_MODE_INDEPENDENT) || \ + ((ADC12_COMMON->CCR & ADC_CCR_DUAL) == ADC_DUALMODE_INJECSIMULT) || \ + ((ADC12_COMMON->CCR & ADC_CCR_DUAL) == ADC_DUALMODE_ALTERTRIG) )) +#else +#define ADC_INDEPENDENT_OR_NONMULTIMODEREGULAR_SLAVE(__HANDLE__) \ + ( ( ((__HANDLE__)->Instance == ADC1) \ + )? \ + SET \ + : \ + ( ((ADC12_COMMON->CCR & ADC_CCR_DUAL) == ADC_MODE_INDEPENDENT) || \ + ((ADC12_COMMON->CCR & ADC_CCR_DUAL) == ADC_DUALMODE_INJECSIMULT) || \ + ((ADC12_COMMON->CCR & ADC_CCR_DUAL) == ADC_DUALMODE_ALTERTRIG) )) +#endif + +/** + * @brief Ensure ADC Instance is Independent or Master, or is not Slave ADC with dual injected conversions enabled + * @param __HANDLE__: ADC handle + * @retval SET (non-MultiMode or Master, or Slave without dual injected conversions enabled) or RESET (Slave ADC with dual injected conversions enabled) + */ +#if defined (ADC3) +#define ADC_INDEPENDENT_OR_NONMULTIMODEINJECTED_SLAVE(__HANDLE__) \ + ( ( ((__HANDLE__)->Instance == ADC1) || ((__HANDLE__)->Instance == ADC3) \ + )? \ + SET \ + : \ + ( ((ADC12_COMMON->CCR & ADC_CCR_DUAL) == ADC_MODE_INDEPENDENT) || \ + ((ADC12_COMMON->CCR & ADC_CCR_DUAL) == ADC_DUALMODE_REGSIMULT) || \ + ((ADC12_COMMON->CCR & ADC_CCR_DUAL) == ADC_DUALMODE_INTERL) )) +#else +#define ADC_INDEPENDENT_OR_NONMULTIMODEINJECTED_SLAVE(__HANDLE__) \ + ( ( ((__HANDLE__)->Instance == ADC1) \ + )? \ + SET \ + : \ + ( ((ADC12_COMMON->CCR & ADC_CCR_DUAL) == ADC_MODE_INDEPENDENT) || \ + ((ADC12_COMMON->CCR & ADC_CCR_DUAL) == ADC_DUALMODE_REGSIMULT) || \ + ((ADC12_COMMON->CCR & ADC_CCR_DUAL) == ADC_DUALMODE_INTERL) )) +#endif + +#define ADC_CLEAR_COMMON_CONTROL_REGISTER(__HANDLE__) CLEAR_BIT(__LL_ADC_COMMON_INSTANCE((__HANDLE__)->Instance)->CCR, ADC_CCR_CKMODE | \ + ADC_CCR_PRESC | \ + ADC_CCR_VBATEN | \ + ADC_CCR_TSEN | \ + ADC_CCR_VREFEN | \ + ADC_CCR_DAMDF | \ + ADC_CCR_DELAY | \ + ADC_CCR_DUAL ) + +/** + * @brief Set handle instance of the ADC slave associated to the ADC master. + * @param __HANDLE_MASTER__ ADC master handle. + * @param __HANDLE_SLAVE__ ADC slave handle. + * @note if __HANDLE_MASTER__ is the handle of a slave ADC (ADC2) or an independent ADC, __HANDLE_SLAVE__ instance is set to NULL. + * @retval None + */ +#define ADC_MULTI_SLAVE(__HANDLE_MASTER__, __HANDLE_SLAVE__) \ + ( (((__HANDLE_MASTER__)->Instance == ADC1)) ? ((__HANDLE_SLAVE__)->Instance = ADC2) : ((__HANDLE_SLAVE__)->Instance = NULL) ) + + +/** + * @brief Verify the ADC instance connected to the temperature sensor. + * @param __HANDLE__ ADC handle. + * @retval SET (ADC instance is valid) or RESET (ADC instance is invalid) + */ +#if defined(ADC3) +#define ADC_TEMPERATURE_SENSOR_INSTANCE(__HANDLE__) (((__HANDLE__)->Instance) == ADC3) +#else +#define ADC_TEMPERATURE_SENSOR_INSTANCE(__HANDLE__) (((__HANDLE__)->Instance) == ADC2) +#endif + +/** + * @brief Verify the ADC instance connected to the battery voltage VBAT. + * @param __HANDLE__ ADC handle. + * @retval SET (ADC instance is valid) or RESET (ADC instance is invalid) + */ +#if defined(ADC3) +#define ADC_BATTERY_VOLTAGE_INSTANCE(__HANDLE__) (((__HANDLE__)->Instance) == ADC3) +#else +#define ADC_BATTERY_VOLTAGE_INSTANCE(__HANDLE__) (((__HANDLE__)->Instance) == ADC2) +#endif + +/** + * @brief Verify the ADC instance connected to the internal voltage reference VREFINT. + * @param __HANDLE__ ADC handle. + * @retval SET (ADC instance is valid) or RESET (ADC instance is invalid) + */ +#if defined(ADC3) +#define ADC_VREFINT_INSTANCE(__HANDLE__) (((__HANDLE__)->Instance) == ADC3) +#else +#define ADC_VREFINT_INSTANCE(__HANDLE__) (((__HANDLE__)->Instance) == ADC2) +#endif + +/** + * @brief Verify the length of scheduled injected conversions group. + * @param __LENGTH__ number of programmed conversions. + * @retval SET (__LENGTH__ is within the maximum number of possible programmable injected conversions) or RESET (__LENGTH__ is null or too large) + */ +#define IS_ADC_INJECTED_NB_CONV(__LENGTH__) (((__LENGTH__) >= (1U)) && ((__LENGTH__) <= (4U))) + +/** + * @brief Calibration factor size verification (7 bits maximum). + * @param __CALIBRATION_FACTOR__ Calibration factor value. + * @retval SET (__CALIBRATION_FACTOR__ is within the authorized size) or RESET (__CALIBRATION_FACTOR__ is too large) + */ +#define IS_ADC_CALFACT(__CALIBRATION_FACTOR__) ((__CALIBRATION_FACTOR__) <= (0x7FU)) + + +/** + * @brief Verify the ADC channel setting. + * @param __CHANNEL__ programmed ADC channel. + * @retval SET (__CHANNEL__ is valid) or RESET (__CHANNEL__ is invalid) + */ +#define IS_ADC_CHANNEL(__CHANNEL__) (((__CHANNEL__) == ADC_CHANNEL_0) || \ + ((__CHANNEL__) == ADC_CHANNEL_1) || \ + ((__CHANNEL__) == ADC_CHANNEL_2) || \ + ((__CHANNEL__) == ADC_CHANNEL_3) || \ + ((__CHANNEL__) == ADC_CHANNEL_4) || \ + ((__CHANNEL__) == ADC_CHANNEL_5) || \ + ((__CHANNEL__) == ADC_CHANNEL_6) || \ + ((__CHANNEL__) == ADC_CHANNEL_7) || \ + ((__CHANNEL__) == ADC_CHANNEL_8) || \ + ((__CHANNEL__) == ADC_CHANNEL_9) || \ + ((__CHANNEL__) == ADC_CHANNEL_10) || \ + ((__CHANNEL__) == ADC_CHANNEL_11) || \ + ((__CHANNEL__) == ADC_CHANNEL_12) || \ + ((__CHANNEL__) == ADC_CHANNEL_13) || \ + ((__CHANNEL__) == ADC_CHANNEL_14) || \ + ((__CHANNEL__) == ADC_CHANNEL_15) || \ + ((__CHANNEL__) == ADC_CHANNEL_16) || \ + ((__CHANNEL__) == ADC_CHANNEL_17) || \ + ((__CHANNEL__) == ADC_CHANNEL_18) || \ + ((__CHANNEL__) == ADC_CHANNEL_19) || \ + ((__CHANNEL__) == ADC_CHANNEL_TEMPSENSOR) || \ + ((__CHANNEL__) == ADC_CHANNEL_VBAT) || \ + ((__CHANNEL__) == ADC_CHANNEL_DAC1CH1_ADC2)|| \ + ((__CHANNEL__) == ADC_CHANNEL_DAC1CH2_ADC2)|| \ + ((__CHANNEL__) == ADC_CHANNEL_VREFINT) ) + +/** + * @brief Verify the ADC channel setting in differential mode for ADC1. + * @param __CHANNEL__: programmed ADC channel. + * @retval SET (__CHANNEL__ is valid) or RESET (__CHANNEL__ is invalid) + */ +#define IS_ADC1_DIFF_CHANNEL(__CHANNEL__) (((__CHANNEL__) == ADC_CHANNEL_1) || \ + ((__CHANNEL__) == ADC_CHANNEL_2) ||\ + ((__CHANNEL__) == ADC_CHANNEL_3) ||\ + ((__CHANNEL__) == ADC_CHANNEL_4) ||\ + ((__CHANNEL__) == ADC_CHANNEL_5) ||\ + ((__CHANNEL__) == ADC_CHANNEL_10) ||\ + ((__CHANNEL__) == ADC_CHANNEL_11) ||\ + ((__CHANNEL__) == ADC_CHANNEL_12) ||\ + ((__CHANNEL__) == ADC_CHANNEL_16) ||\ + ((__CHANNEL__) == ADC_CHANNEL_18) ) + +/** + * @brief Verify the ADC channel setting in differential mode for ADC2. + * @param __CHANNEL__: programmed ADC channel. + * @retval SET (__CHANNEL__ is valid) or RESET (__CHANNEL__ is invalid) + */ +#define IS_ADC2_DIFF_CHANNEL(__CHANNEL__) (((__CHANNEL__) == ADC_CHANNEL_1) || \ + ((__CHANNEL__) == ADC_CHANNEL_2) || \ + ((__CHANNEL__) == ADC_CHANNEL_3) || \ + ((__CHANNEL__) == ADC_CHANNEL_4) || \ + ((__CHANNEL__) == ADC_CHANNEL_5) || \ + ((__CHANNEL__) == ADC_CHANNEL_10) || \ + ((__CHANNEL__) == ADC_CHANNEL_11) || \ + ((__CHANNEL__) == ADC_CHANNEL_12) || \ + ((__CHANNEL__) == ADC_CHANNEL_18) ) + +/** + * @brief Verify the ADC channel setting in differential mode for ADC3. + * @param __CHANNEL__: programmed ADC channel. + * @retval SET (__CHANNEL__ is valid) or RESET (__CHANNEL__ is invalid) + */ +#define IS_ADC3_DIFF_CHANNEL(__CHANNEL__) (((__CHANNEL__) == ADC_CHANNEL_1) || \ + ((__CHANNEL__) == ADC_CHANNEL_2) || \ + ((__CHANNEL__) == ADC_CHANNEL_3) || \ + ((__CHANNEL__) == ADC_CHANNEL_4) || \ + ((__CHANNEL__) == ADC_CHANNEL_5) || \ + ((__CHANNEL__) == ADC_CHANNEL_10) || \ + ((__CHANNEL__) == ADC_CHANNEL_11) || \ + ((__CHANNEL__) == ADC_CHANNEL_13) || \ + ((__CHANNEL__) == ADC_CHANNEL_14) || \ + ((__CHANNEL__) == ADC_CHANNEL_15) ) + +/** + * @brief Verify the ADC single-ended input or differential mode setting. + * @param __SING_DIFF__ programmed channel setting. + * @retval SET (__SING_DIFF__ is valid) or RESET (__SING_DIFF__ is invalid) + */ +#define IS_ADC_SINGLE_DIFFERENTIAL(__SING_DIFF__) (((__SING_DIFF__) == ADC_SINGLE_ENDED) || \ + ((__SING_DIFF__) == ADC_DIFFERENTIAL_ENDED) ) + +/** + * @brief Verify the ADC offset management setting. + * @param __OFFSET_NUMBER__ ADC offset management. + * @retval SET (__OFFSET_NUMBER__ is valid) or RESET (__OFFSET_NUMBER__ is invalid) + */ +#define IS_ADC_OFFSET_NUMBER(__OFFSET_NUMBER__) (((__OFFSET_NUMBER__) == ADC_OFFSET_NONE) || \ + ((__OFFSET_NUMBER__) == ADC_OFFSET_1) || \ + ((__OFFSET_NUMBER__) == ADC_OFFSET_2) || \ + ((__OFFSET_NUMBER__) == ADC_OFFSET_3) || \ + ((__OFFSET_NUMBER__) == ADC_OFFSET_4) ) + +/** + * @brief Verify the ADC injected channel setting. + * @param __CHANNEL__ programmed ADC injected channel. + * @retval SET (__CHANNEL__ is valid) or RESET (__CHANNEL__ is invalid) + */ +#define IS_ADC_INJECTED_RANK(__CHANNEL__) (((__CHANNEL__) == ADC_INJECTED_RANK_1) || \ + ((__CHANNEL__) == ADC_INJECTED_RANK_2) || \ + ((__CHANNEL__) == ADC_INJECTED_RANK_3) || \ + ((__CHANNEL__) == ADC_INJECTED_RANK_4) ) + +/** + * @brief Verify the ADC injected conversions external trigger. + * @param __INJTRIG__ programmed ADC injected conversions external trigger. + * @retval SET (__INJTRIG__ is a valid value) or RESET (__INJTRIG__ is invalid) + */ +#define IS_ADC_EXTTRIGINJEC(__INJTRIG__) (((__INJTRIG__) == ADC_EXTERNALTRIGINJEC_T1_TRGO) || \ + ((__INJTRIG__) == ADC_EXTERNALTRIGINJEC_T1_CC4) || \ + ((__INJTRIG__) == ADC_EXTERNALTRIGINJEC_T2_TRGO) || \ + ((__INJTRIG__) == ADC_EXTERNALTRIGINJEC_T2_CC1) || \ + ((__INJTRIG__) == ADC_EXTERNALTRIGINJEC_T3_CC4) || \ + ((__INJTRIG__) == ADC_EXTERNALTRIGINJEC_T4_TRGO) || \ + ((__INJTRIG__) == ADC_EXTERNALTRIGINJEC_EXT_IT15) || \ + ((__INJTRIG__) == ADC_EXTERNALTRIGINJEC_T8_CC4) || \ + ((__INJTRIG__) == ADC_EXTERNALTRIGINJEC_T1_TRGO2) || \ + ((__INJTRIG__) == ADC_EXTERNALTRIGINJEC_T8_TRGO) || \ + ((__INJTRIG__) == ADC_EXTERNALTRIGINJEC_T8_TRGO2) || \ + ((__INJTRIG__) == ADC_EXTERNALTRIGINJEC_T3_CC3) || \ + ((__INJTRIG__) == ADC_EXTERNALTRIGINJEC_T3_TRGO) || \ + ((__INJTRIG__) == ADC_EXTERNALTRIGINJEC_T3_CC1) || \ + ((__INJTRIG__) == ADC_EXTERNALTRIGINJEC_T6_TRGO) || \ + ((__INJTRIG__) == ADC_EXTERNALTRIGINJEC_T15_TRGO) || \ + \ + ((__INJTRIG__) == ADC_SOFTWARE_START) ) + +/** + * @brief Verify the ADC edge trigger setting for injected group. + * @param __EDGE__ programmed ADC edge trigger setting. + * @retval SET (__EDGE__ is a valid value) or RESET (__EDGE__ is invalid) + */ +#define IS_ADC_EXTTRIGINJEC_EDGE(__EDGE__) (((__EDGE__) == ADC_EXTERNALTRIGINJECCONV_EDGE_NONE) || \ + ((__EDGE__) == ADC_EXTERNALTRIGINJECCONV_EDGE_RISING) || \ + ((__EDGE__) == ADC_EXTERNALTRIGINJECCONV_EDGE_FALLING) || \ + ((__EDGE__) == ADC_EXTERNALTRIGINJECCONV_EDGE_RISINGFALLING) ) + +/** + * @brief Verify the ADC multimode setting. + * @param __MODE__ programmed ADC multimode setting. + * @retval SET (__MODE__ is valid) or RESET (__MODE__ is invalid) + */ +#define IS_ADC_MULTIMODE(__MODE__) (((__MODE__) == ADC_MODE_INDEPENDENT) || \ + ((__MODE__) == ADC_DUALMODE_REGSIMULT_INJECSIMULT) || \ + ((__MODE__) == ADC_DUALMODE_REGSIMULT_ALTERTRIG) || \ + ((__MODE__) == ADC_DUALMODE_REGINTERL_INJECSIMULT) || \ + ((__MODE__) == ADC_DUALMODE_INJECSIMULT) || \ + ((__MODE__) == ADC_DUALMODE_REGSIMULT) || \ + ((__MODE__) == ADC_DUALMODE_INTERL) || \ + ((__MODE__) == ADC_DUALMODE_ALTERTRIG) ) + +/** + * @brief Verify the ADC dual data mode setting. + * @param MODE: programmed ADC dual mode setting. + * @retval SET (MODE is valid) or RESET (MODE is invalid) + */ +#define IS_ADC_DUAL_DATA_MODE(MODE) (((MODE) == ADC_DUALMODEDATAFORMAT_DISABLED) || \ + ((MODE) == ADC_DUALMODEDATAFORMAT_32_10_BITS) || \ + ((MODE) == ADC_DUALMODEDATAFORMAT_8_BITS) ) + +/** + * @brief Verify the ADC multimode delay setting. + * @param __DELAY__ programmed ADC multimode delay setting. + * @retval SET (__DELAY__ is a valid value) or RESET (__DELAY__ is invalid) + */ +#define IS_ADC_SAMPLING_DELAY(__DELAY__) (((__DELAY__) == ADC_TWOSAMPLINGDELAY_1CYCLE) || \ + ((__DELAY__) == ADC_TWOSAMPLINGDELAY_2CYCLES) || \ + ((__DELAY__) == ADC_TWOSAMPLINGDELAY_3CYCLES) || \ + ((__DELAY__) == ADC_TWOSAMPLINGDELAY_4CYCLES) || \ + ((__DELAY__) == ADC_TWOSAMPLINGDELAY_5CYCLES) || \ + ((__DELAY__) == ADC_TWOSAMPLINGDELAY_6CYCLES) || \ + ((__DELAY__) == ADC_TWOSAMPLINGDELAY_7CYCLES) || \ + ((__DELAY__) == ADC_TWOSAMPLINGDELAY_8CYCLES) || \ + ((__DELAY__) == ADC_TWOSAMPLINGDELAY_9CYCLES) ) + +/** + * @brief Verify the ADC analog watchdog setting. + * @param __WATCHDOG__ programmed ADC analog watchdog setting. + * @retval SET (__WATCHDOG__ is valid) or RESET (__WATCHDOG__ is invalid) + */ +#define IS_ADC_ANALOG_WATCHDOG_NUMBER(__WATCHDOG__) (((__WATCHDOG__) == ADC_ANALOGWATCHDOG_1) || \ + ((__WATCHDOG__) == ADC_ANALOGWATCHDOG_2) || \ + ((__WATCHDOG__) == ADC_ANALOGWATCHDOG_3) ) + +/** + * @brief Verify the ADC analog watchdog mode setting. + * @param __WATCHDOG_MODE__ programmed ADC analog watchdog mode setting. + * @retval SET (__WATCHDOG_MODE__ is valid) or RESET (__WATCHDOG_MODE__ is invalid) + */ +#define IS_ADC_ANALOG_WATCHDOG_MODE(__WATCHDOG_MODE__) (((__WATCHDOG_MODE__) == ADC_ANALOGWATCHDOG_NONE) || \ + ((__WATCHDOG_MODE__) == ADC_ANALOGWATCHDOG_SINGLE_REG) || \ + ((__WATCHDOG_MODE__) == ADC_ANALOGWATCHDOG_SINGLE_INJEC) || \ + ((__WATCHDOG_MODE__) == ADC_ANALOGWATCHDOG_SINGLE_REGINJEC) || \ + ((__WATCHDOG_MODE__) == ADC_ANALOGWATCHDOG_ALL_REG) || \ + ((__WATCHDOG_MODE__) == ADC_ANALOGWATCHDOG_ALL_INJEC) || \ + ((__WATCHDOG_MODE__) == ADC_ANALOGWATCHDOG_ALL_REGINJEC) ) + +/** + * @brief Verify the ADC conversion (regular or injected or both). + * @param __CONVERSION__ ADC conversion group. + * @retval SET (__CONVERSION__ is valid) or RESET (__CONVERSION__ is invalid) + */ +#define IS_ADC_CONVERSION_GROUP(__CONVERSION__) (((__CONVERSION__) == ADC_REGULAR_GROUP) || \ + ((__CONVERSION__) == ADC_INJECTED_GROUP) || \ + ((__CONVERSION__) == ADC_REGULAR_INJECTED_GROUP) ) + +/** + * @brief Verify the ADC event type. + * @param __EVENT__ ADC event. + * @retval SET (__EVENT__ is valid) or RESET (__EVENT__ is invalid) + */ +#define IS_ADC_EVENT_TYPE(__EVENT__) (((__EVENT__) == ADC_EOSMP_EVENT) || \ + ((__EVENT__) == ADC_AWD_EVENT) || \ + ((__EVENT__) == ADC_AWD2_EVENT) || \ + ((__EVENT__) == ADC_AWD3_EVENT) || \ + ((__EVENT__) == ADC_OVR_EVENT) || \ + ((__EVENT__) == ADC_JQOVF_EVENT) ) + +/** + * @brief Verify the ADC oversampling ratio. + * @param RATIO: programmed ADC oversampling ratio. + * @retval SET (RATIO is a valid value) or RESET (RATIO is invalid) + */ +#define IS_ADC_OVERSAMPLING_RATIO(RATIO) (((RATIO) >= 1UL) && ((RATIO) <= 1024UL)) + +/** + * @brief Verify the ADC oversampling shift. + * @param __SHIFT__ programmed ADC oversampling shift. + * @retval SET (__SHIFT__ is a valid value) or RESET (__SHIFT__ is invalid) + */ +#define IS_ADC_RIGHT_BIT_SHIFT(__SHIFT__) (((__SHIFT__) == ADC_RIGHTBITSHIFT_NONE) || \ + ((__SHIFT__) == ADC_RIGHTBITSHIFT_1 ) || \ + ((__SHIFT__) == ADC_RIGHTBITSHIFT_2 ) || \ + ((__SHIFT__) == ADC_RIGHTBITSHIFT_3 ) || \ + ((__SHIFT__) == ADC_RIGHTBITSHIFT_4 ) || \ + ((__SHIFT__) == ADC_RIGHTBITSHIFT_5 ) || \ + ((__SHIFT__) == ADC_RIGHTBITSHIFT_6 ) || \ + ((__SHIFT__) == ADC_RIGHTBITSHIFT_7 ) || \ + ((__SHIFT__) == ADC_RIGHTBITSHIFT_8 )) + +/** + * @brief Verify the ADC oversampling triggered mode. + * @param __MODE__ programmed ADC oversampling triggered mode. + * @retval SET (__MODE__ is valid) or RESET (__MODE__ is invalid) + */ +#define IS_ADC_TRIGGERED_OVERSAMPLING_MODE(__MODE__) (((__MODE__) == ADC_TRIGGEREDMODE_SINGLE_TRIGGER) || \ + ((__MODE__) == ADC_TRIGGEREDMODE_MULTI_TRIGGER) ) + +/** + * @brief Verify the ADC oversampling regular conversion resumed or continued mode. + * @param __MODE__ programmed ADC oversampling regular conversion resumed or continued mode. + * @retval SET (__MODE__ is valid) or RESET (__MODE__ is invalid) + */ +#define IS_ADC_REGOVERSAMPLING_MODE(__MODE__) (((__MODE__) == ADC_REGOVERSAMPLING_CONTINUED_MODE) || \ + ((__MODE__) == ADC_REGOVERSAMPLING_RESUMED_MODE) ) + +/** + * @brief Verify the DFSDM mode configuration. + * @param __HANDLE__ ADC handle. + * @note When DMSDFM configuration is not supported, the macro systematically reports SET. For + * this reason, the input parameter is the ADC handle and not the configuration parameter + * directly. + * @retval SET (DFSDM mode configuration is valid) or RESET (DFSDM mode configuration is invalid) + */ +#if defined(DFSDM1_Channel0) +#define IS_ADC_DFSDMCFG_MODE(__HANDLE__) (((__HANDLE__)->Init.DFSDMConfig == ADC_DFSDM_MODE_DISABLE) || \ + ((__HANDLE__)->Init.DFSDMConfig == ADC_DFSDM_MODE_ENABLE) ) +#else +#define IS_ADC_DFSDMCFG_MODE(__HANDLE__) (SET) +#endif + +/** + * @brief Return the DFSDM configuration mode. + * @param __HANDLE__ ADC handle. + * @note When DMSDFM configuration is not supported, the macro systematically reports 0x0 (i.e disabled). + * For this reason, the input parameter is the ADC handle and not the configuration parameter + * directly. + * @retval DFSDM configuration mode + */ +#if defined(DFSDM1_Channel0) +#define ADC_CFGR_DFSDM(__HANDLE__) ((__HANDLE__)->Init.DFSDMConfig) +#else +#define ADC_CFGR_DFSDM(__HANDLE__) (0x0UL) +#endif + +/** + * @} + */ + + +/* Exported functions --------------------------------------------------------*/ +/** @addtogroup ADCEx_Exported_Functions + * @{ + */ + +/** @addtogroup ADCEx_Exported_Functions_Group1 + * @{ + */ +/* IO operation functions *****************************************************/ + +/* ADC calibration */ +HAL_StatusTypeDef HAL_ADCEx_Calibration_Start(ADC_HandleTypeDef *hadc, uint32_t CalibrationMode, uint32_t SingleDiff); +uint32_t HAL_ADCEx_Calibration_GetValue(ADC_HandleTypeDef *hadc, uint32_t SingleDiff); +HAL_StatusTypeDef HAL_ADCEx_LinearCalibration_GetValue(ADC_HandleTypeDef *hadc, uint32_t* LinearCalib_Buffer); +HAL_StatusTypeDef HAL_ADCEx_Calibration_SetValue(ADC_HandleTypeDef *hadc, uint32_t SingleDiff, uint32_t CalibrationFactor); +HAL_StatusTypeDef HAL_ADCEx_LinearCalibration_SetValue(ADC_HandleTypeDef *hadc, uint32_t* LinearCalib_Buffer); +HAL_StatusTypeDef HAL_ADCEx_LinearCalibration_FactorLoad(ADC_HandleTypeDef *hadc); + + +/* Blocking mode: Polling */ +HAL_StatusTypeDef HAL_ADCEx_InjectedStart(ADC_HandleTypeDef *hadc); +HAL_StatusTypeDef HAL_ADCEx_InjectedStop(ADC_HandleTypeDef *hadc); +HAL_StatusTypeDef HAL_ADCEx_InjectedPollForConversion(ADC_HandleTypeDef *hadc, uint32_t Timeout); + +/* Non-blocking mode: Interruption */ +HAL_StatusTypeDef HAL_ADCEx_InjectedStart_IT(ADC_HandleTypeDef *hadc); +HAL_StatusTypeDef HAL_ADCEx_InjectedStop_IT(ADC_HandleTypeDef *hadc); + +/* ADC multimode */ +HAL_StatusTypeDef HAL_ADCEx_MultiModeStart_DMA(ADC_HandleTypeDef *hadc, uint32_t *pData, uint32_t Length); +HAL_StatusTypeDef HAL_ADCEx_MultiModeStop_DMA(ADC_HandleTypeDef *hadc); +uint32_t HAL_ADCEx_MultiModeGetValue(ADC_HandleTypeDef *hadc); + +/* ADC retrieve conversion value intended to be used with polling or interruption */ +uint32_t HAL_ADCEx_InjectedGetValue(ADC_HandleTypeDef *hadc, uint32_t InjectedRank); + +/* ADC IRQHandler and Callbacks used in non-blocking modes (Interruption) */ +void HAL_ADCEx_InjectedConvCpltCallback(ADC_HandleTypeDef *hadc); +void HAL_ADCEx_InjectedQueueOverflowCallback(ADC_HandleTypeDef *hadc); +void HAL_ADCEx_LevelOutOfWindow2Callback(ADC_HandleTypeDef *hadc); +void HAL_ADCEx_LevelOutOfWindow3Callback(ADC_HandleTypeDef *hadc); +void HAL_ADCEx_EndOfSamplingCallback(ADC_HandleTypeDef *hadc); + +/* ADC group regular conversions stop */ +HAL_StatusTypeDef HAL_ADCEx_RegularStop(ADC_HandleTypeDef *hadc); +HAL_StatusTypeDef HAL_ADCEx_RegularStop_IT(ADC_HandleTypeDef *hadc); +HAL_StatusTypeDef HAL_ADCEx_RegularStop_DMA(ADC_HandleTypeDef *hadc); +HAL_StatusTypeDef HAL_ADCEx_RegularMultiModeStop_DMA(ADC_HandleTypeDef *hadc); + +/** + * @} + */ + +/** @addtogroup ADCEx_Exported_Functions_Group2 + * @{ + */ +/* Peripheral Control functions ***********************************************/ +HAL_StatusTypeDef HAL_ADCEx_InjectedConfigChannel(ADC_HandleTypeDef *hadc,ADC_InjectionConfTypeDef* sConfigInjected); +HAL_StatusTypeDef HAL_ADCEx_MultiModeConfigChannel(ADC_HandleTypeDef *hadc, ADC_MultiModeTypeDef *multimode); +HAL_StatusTypeDef HAL_ADCEx_EnableInjectedQueue(ADC_HandleTypeDef *hadc); +HAL_StatusTypeDef HAL_ADCEx_DisableInjectedQueue(ADC_HandleTypeDef *hadc); +HAL_StatusTypeDef HAL_ADCEx_DisableVoltageRegulator(ADC_HandleTypeDef *hadc); +HAL_StatusTypeDef HAL_ADCEx_EnterADCDeepPowerDownMode(ADC_HandleTypeDef *hadc); + +/** + * @} + */ + +/** + * @} + */ + +/** + * @} + */ + +/** + * @} + */ + +#ifdef __cplusplus +} +#endif + +#endif /* STM32H7xx_HAL_ADC_EX_H */ + + +/************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/ diff --git a/source/hic_hal/stm32/stm32h743ii/STM32H7xx_HAL_Driver/Inc/stm32h7xx_hal_dma.h b/source/hic_hal/stm32/stm32h743ii/STM32H7xx_HAL_Driver/Inc/stm32h7xx_hal_dma.h new file mode 100644 index 000000000..61d3a9985 --- /dev/null +++ b/source/hic_hal/stm32/stm32h743ii/STM32H7xx_HAL_Driver/Inc/stm32h7xx_hal_dma.h @@ -0,0 +1,1290 @@ +/** + ****************************************************************************** + * @file stm32h7xx_hal_dma.h + * @author MCD Application Team + * @brief Header file of DMA HAL module. + ****************************************************************************** + * @attention + * + *

© COPYRIGHT(c) 2017 STMicroelectronics. + * All rights reserved.

+ * + * This software component is licensed by ST under BSD 3-Clause license, + * the "License"; You may not use this file except in compliance with the + * License. You may obtain a copy of the License at: + * opensource.org/licenses/BSD-3-Clause + * + ****************************************************************************** + */ + +/* Define to prevent recursive inclusion -------------------------------------*/ +#ifndef STM32H7xx_HAL_DMA_H +#define STM32H7xx_HAL_DMA_H + +#ifdef __cplusplus + extern "C" { +#endif + +/* Includes ------------------------------------------------------------------*/ +#include "stm32h7xx_hal_def.h" + +/** @addtogroup STM32H7xx_HAL_Driver + * @{ + */ + +/** @addtogroup DMA + * @{ + */ + +/* Exported types ------------------------------------------------------------*/ + +/** @defgroup DMA_Exported_Types DMA Exported Types + * @brief DMA Exported Types + * @{ + */ + +/** + * @brief DMA Configuration Structure definition + */ +typedef struct +{ + uint32_t Request; /*!< Specifies the request selected for the specified stream. + This parameter can be a value of @ref DMA_Request_selection */ + + uint32_t Direction; /*!< Specifies if the data will be transferred from memory to peripheral, + from memory to memory or from peripheral to memory. + This parameter can be a value of @ref DMA_Data_transfer_direction */ + + uint32_t PeriphInc; /*!< Specifies whether the Peripheral address register should be incremented or not. + This parameter can be a value of @ref DMA_Peripheral_incremented_mode */ + + uint32_t MemInc; /*!< Specifies whether the memory address register should be incremented or not. + This parameter can be a value of @ref DMA_Memory_incremented_mode */ + + uint32_t PeriphDataAlignment; /*!< Specifies the Peripheral data width. + This parameter can be a value of @ref DMA_Peripheral_data_size */ + + uint32_t MemDataAlignment; /*!< Specifies the Memory data width. + This parameter can be a value of @ref DMA_Memory_data_size */ + + uint32_t Mode; /*!< Specifies the operation mode of the DMAy Streamx. + This parameter can be a value of @ref DMA_mode + @note The circular buffer mode cannot be used if the memory-to-memory + data transfer is configured on the selected Stream */ + + uint32_t Priority; /*!< Specifies the software priority for the DMAy Streamx. + This parameter can be a value of @ref DMA_Priority_level */ + + uint32_t FIFOMode; /*!< Specifies if the FIFO mode or Direct mode will be used for the specified stream. + This parameter can be a value of @ref DMA_FIFO_direct_mode + @note The Direct mode (FIFO mode disabled) cannot be used if the + memory-to-memory data transfer is configured on the selected stream */ + + uint32_t FIFOThreshold; /*!< Specifies the FIFO threshold level. + This parameter can be a value of @ref DMA_FIFO_threshold_level */ + + uint32_t MemBurst; /*!< Specifies the Burst transfer configuration for the memory transfers. + It specifies the amount of data to be transferred in a single non interruptible + transaction. + This parameter can be a value of @ref DMA_Memory_burst + @note The burst mode is possible only if the address Increment mode is enabled. */ + + uint32_t PeriphBurst; /*!< Specifies the Burst transfer configuration for the peripheral transfers. + It specifies the amount of data to be transferred in a single non interruptible + transaction. + This parameter can be a value of @ref DMA_Peripheral_burst + @note The burst mode is possible only if the address Increment mode is enabled. */ +}DMA_InitTypeDef; + +/** + * @brief HAL DMA State structures definition + */ +typedef enum +{ + HAL_DMA_STATE_RESET = 0x00U, /*!< DMA not yet initialized or disabled */ + HAL_DMA_STATE_READY = 0x01U, /*!< DMA initialized and ready for use */ + HAL_DMA_STATE_BUSY = 0x02U, /*!< DMA process is ongoing */ + HAL_DMA_STATE_ERROR = 0x03U, /*!< DMA error state */ + HAL_DMA_STATE_ABORT = 0x04U, /*!< DMA Abort state */ +}HAL_DMA_StateTypeDef; + +/** + * @brief HAL DMA Transfer complete level structure definition + */ +typedef enum +{ + HAL_DMA_FULL_TRANSFER = 0x00U, /*!< Full transfer */ + HAL_DMA_HALF_TRANSFER = 0x01U, /*!< Half Transfer */ +}HAL_DMA_LevelCompleteTypeDef; + +/** + * @brief HAL DMA Callbacks IDs structure definition + */ +typedef enum +{ + HAL_DMA_XFER_CPLT_CB_ID = 0x00U, /*!< Full transfer */ + HAL_DMA_XFER_HALFCPLT_CB_ID = 0x01U, /*!< Half Transfer */ + HAL_DMA_XFER_M1CPLT_CB_ID = 0x02U, /*!< M1 Full Transfer */ + HAL_DMA_XFER_M1HALFCPLT_CB_ID = 0x03U, /*!< M1 Half Transfer */ + HAL_DMA_XFER_ERROR_CB_ID = 0x04U, /*!< Error */ + HAL_DMA_XFER_ABORT_CB_ID = 0x05U, /*!< Abort */ + HAL_DMA_XFER_ALL_CB_ID = 0x06U /*!< All */ +}HAL_DMA_CallbackIDTypeDef; + +/** + * @brief DMA handle Structure definition + */ +typedef struct __DMA_HandleTypeDef +{ + void *Instance; /*!< Register base address */ + + DMA_InitTypeDef Init; /*!< DMA communication parameters */ + + HAL_LockTypeDef Lock; /*!< DMA locking object */ + + __IO HAL_DMA_StateTypeDef State; /*!< DMA transfer state */ + + void *Parent; /*!< Parent object state */ + + void (* XferCpltCallback)( struct __DMA_HandleTypeDef * hdma); /*!< DMA transfer complete callback */ + + void (* XferHalfCpltCallback)( struct __DMA_HandleTypeDef * hdma); /*!< DMA Half transfer complete callback */ + + void (* XferM1CpltCallback)( struct __DMA_HandleTypeDef * hdma); /*!< DMA transfer complete Memory1 callback */ + + void (* XferM1HalfCpltCallback)( struct __DMA_HandleTypeDef * hdma); /*!< DMA transfer Half complete Memory1 callback */ + + void (* XferErrorCallback)( struct __DMA_HandleTypeDef * hdma); /*!< DMA transfer error callback */ + + void (* XferAbortCallback)( struct __DMA_HandleTypeDef * hdma); /*!< DMA transfer Abort callback */ + + __IO uint32_t ErrorCode; /*!< DMA Error code */ + + uint32_t StreamBaseAddress; /*!< DMA Stream Base Address */ + + uint32_t StreamIndex; /*!< DMA Stream Index */ + + DMAMUX_Channel_TypeDef *DMAmuxChannel; /*!< DMAMUX Channel Base Address */ + + DMAMUX_ChannelStatus_TypeDef *DMAmuxChannelStatus; /*!< DMAMUX Channels Status Base Address */ + + uint32_t DMAmuxChannelStatusMask; /*!< DMAMUX Channel Status Mask */ + + + DMAMUX_RequestGen_TypeDef *DMAmuxRequestGen; /*!< DMAMUX request generator Base Address */ + + DMAMUX_RequestGenStatus_TypeDef *DMAmuxRequestGenStatus; /*!< DMAMUX request generator Status Address */ + + uint32_t DMAmuxRequestGenStatusMask; /*!< DMAMUX request generator Status mask */ + +}DMA_HandleTypeDef; + +/** + * @} + */ + + +/* Exported constants --------------------------------------------------------*/ + +/** @defgroup DMA_Exported_Constants DMA Exported Constants + * @brief DMA Exported constants + * @{ + */ + +/** @defgroup DMA_Error_Code DMA Error Code + * @brief DMA Error Code + * @{ + */ +#define HAL_DMA_ERROR_NONE (0x00000000U) /*!< No error */ +#define HAL_DMA_ERROR_TE (0x00000001U) /*!< Transfer error */ +#define HAL_DMA_ERROR_FE (0x00000002U) /*!< FIFO error */ +#define HAL_DMA_ERROR_DME (0x00000004U) /*!< Direct Mode error */ +#define HAL_DMA_ERROR_TIMEOUT (0x00000020U) /*!< Timeout error */ +#define HAL_DMA_ERROR_PARAM (0x00000040U) /*!< Parameter error */ +#define HAL_DMA_ERROR_NO_XFER (0x00000080U) /*!< Abort requested with no Xfer ongoing */ +#define HAL_DMA_ERROR_NOT_SUPPORTED (0x00000100U) /*!< Not supported mode */ +#define HAL_DMA_ERROR_SYNC (0x00000200U) /*!< DMAMUX sync overrun error */ +#define HAL_DMA_ERROR_REQGEN (0x00000400U) /*!< DMAMUX request generator overrun error */ +#define HAL_DMA_ERROR_BUSY (0x00000800U) /*!< DMA Busy error */ + +/** + * @} + */ + +/** @defgroup DMA_Request_selection DMA Request selection + * @brief DMA Request selection + * @{ + */ +/* DMAMUX1 requests */ +#define DMA_REQUEST_MEM2MEM 0U /*!< memory to memory transfer */ + +#define DMA_REQUEST_GENERATOR0 1U /*!< DMAMUX1 request generator 0 */ +#define DMA_REQUEST_GENERATOR1 2U /*!< DMAMUX1 request generator 1 */ +#define DMA_REQUEST_GENERATOR2 3U /*!< DMAMUX1 request generator 2 */ +#define DMA_REQUEST_GENERATOR3 4U /*!< DMAMUX1 request generator 3 */ +#define DMA_REQUEST_GENERATOR4 5U /*!< DMAMUX1 request generator 4 */ +#define DMA_REQUEST_GENERATOR5 6U /*!< DMAMUX1 request generator 5 */ +#define DMA_REQUEST_GENERATOR6 7U /*!< DMAMUX1 request generator 6 */ +#define DMA_REQUEST_GENERATOR7 8U /*!< DMAMUX1 request generator 7 */ + +#define DMA_REQUEST_ADC1 9U /*!< DMAMUX1 ADC1 request */ +#define DMA_REQUEST_ADC2 10U /*!< DMAMUX1 ADC2 request */ + +#define DMA_REQUEST_TIM1_CH1 11U /*!< DMAMUX1 TIM1 CH1 request */ +#define DMA_REQUEST_TIM1_CH2 12U /*!< DMAMUX1 TIM1 CH2 request */ +#define DMA_REQUEST_TIM1_CH3 13U /*!< DMAMUX1 TIM1 CH3 request */ +#define DMA_REQUEST_TIM1_CH4 14U /*!< DMAMUX1 TIM1 CH4 request */ +#define DMA_REQUEST_TIM1_UP 15U /*!< DMAMUX1 TIM1 UP request */ +#define DMA_REQUEST_TIM1_TRIG 16U /*!< DMAMUX1 TIM1 TRIG request */ +#define DMA_REQUEST_TIM1_COM 17U /*!< DMAMUX1 TIM1 COM request */ + +#define DMA_REQUEST_TIM2_CH1 18U /*!< DMAMUX1 TIM2 CH1 request */ +#define DMA_REQUEST_TIM2_CH2 19U /*!< DMAMUX1 TIM2 CH2 request */ +#define DMA_REQUEST_TIM2_CH3 20U /*!< DMAMUX1 TIM2 CH3 request */ +#define DMA_REQUEST_TIM2_CH4 21U /*!< DMAMUX1 TIM2 CH4 request */ +#define DMA_REQUEST_TIM2_UP 22U /*!< DMAMUX1 TIM2 UP request */ + +#define DMA_REQUEST_TIM3_CH1 23U /*!< DMAMUX1 TIM3 CH1 request */ +#define DMA_REQUEST_TIM3_CH2 24U /*!< DMAMUX1 TIM3 CH2 request */ +#define DMA_REQUEST_TIM3_CH3 25U /*!< DMAMUX1 TIM3 CH3 request */ +#define DMA_REQUEST_TIM3_CH4 26U /*!< DMAMUX1 TIM3 CH4 request */ +#define DMA_REQUEST_TIM3_UP 27U /*!< DMAMUX1 TIM3 UP request */ +#define DMA_REQUEST_TIM3_TRIG 28U /*!< DMAMUX1 TIM3 TRIG request */ + +#define DMA_REQUEST_TIM4_CH1 29U /*!< DMAMUX1 TIM4 CH1 request */ +#define DMA_REQUEST_TIM4_CH2 30U /*!< DMAMUX1 TIM4 CH2 request */ +#define DMA_REQUEST_TIM4_CH3 31U /*!< DMAMUX1 TIM4 CH3 request */ +#define DMA_REQUEST_TIM4_UP 32U /*!< DMAMUX1 TIM4 UP request */ + +#define DMA_REQUEST_I2C1_RX 33U /*!< DMAMUX1 I2C1 RX request */ +#define DMA_REQUEST_I2C1_TX 34U /*!< DMAMUX1 I2C1 TX request */ +#define DMA_REQUEST_I2C2_RX 35U /*!< DMAMUX1 I2C2 RX request */ +#define DMA_REQUEST_I2C2_TX 36U /*!< DMAMUX1 I2C2 TX request */ + +#define DMA_REQUEST_SPI1_RX 37U /*!< DMAMUX1 SPI1 RX request */ +#define DMA_REQUEST_SPI1_TX 38U /*!< DMAMUX1 SPI1 TX request */ +#define DMA_REQUEST_SPI2_RX 39U /*!< DMAMUX1 SPI2 RX request */ +#define DMA_REQUEST_SPI2_TX 40U /*!< DMAMUX1 SPI2 TX request */ + +#define DMA_REQUEST_USART1_RX 41U /*!< DMAMUX1 USART1 RX request */ +#define DMA_REQUEST_USART1_TX 42U /*!< DMAMUX1 USART1 TX request */ +#define DMA_REQUEST_USART2_RX 43U /*!< DMAMUX1 USART2 RX request */ +#define DMA_REQUEST_USART2_TX 44U /*!< DMAMUX1 USART2 TX request */ +#define DMA_REQUEST_USART3_RX 45U /*!< DMAMUX1 USART3 RX request */ +#define DMA_REQUEST_USART3_TX 46U /*!< DMAMUX1 USART3 TX request */ + +#define DMA_REQUEST_TIM8_CH1 47U /*!< DMAMUX1 TIM8 CH1 request */ +#define DMA_REQUEST_TIM8_CH2 48U /*!< DMAMUX1 TIM8 CH2 request */ +#define DMA_REQUEST_TIM8_CH3 49U /*!< DMAMUX1 TIM8 CH3 request */ +#define DMA_REQUEST_TIM8_CH4 50U /*!< DMAMUX1 TIM8 CH4 request */ +#define DMA_REQUEST_TIM8_UP 51U /*!< DMAMUX1 TIM8 UP request */ +#define DMA_REQUEST_TIM8_TRIG 52U /*!< DMAMUX1 TIM8 TRIG request */ +#define DMA_REQUEST_TIM8_COM 53U /*!< DMAMUX1 TIM8 COM request */ + +#define DMA_REQUEST_TIM5_CH1 55U /*!< DMAMUX1 TIM5 CH1 request */ +#define DMA_REQUEST_TIM5_CH2 56U /*!< DMAMUX1 TIM5 CH2 request */ +#define DMA_REQUEST_TIM5_CH3 57U /*!< DMAMUX1 TIM5 CH3 request */ +#define DMA_REQUEST_TIM5_CH4 58U /*!< DMAMUX1 TIM5 CH4 request */ +#define DMA_REQUEST_TIM5_UP 59U /*!< DMAMUX1 TIM5 UP request */ +#define DMA_REQUEST_TIM5_TRIG 60U /*!< DMAMUX1 TIM5 TRIG request */ + +#define DMA_REQUEST_SPI3_RX 61U /*!< DMAMUX1 SPI3 RX request */ +#define DMA_REQUEST_SPI3_TX 62U /*!< DMAMUX1 SPI3 TX request */ + +#define DMA_REQUEST_UART4_RX 63U /*!< DMAMUX1 UART4 RX request */ +#define DMA_REQUEST_UART4_TX 64U /*!< DMAMUX1 UART4 TX request */ +#define DMA_REQUEST_UART5_RX 65U /*!< DMAMUX1 UART5 RX request */ +#define DMA_REQUEST_UART5_TX 66U /*!< DMAMUX1 UART5 TX request */ + +#define DMA_REQUEST_DAC1_CH1 67U /*!< DMAMUX1 DAC1 Channel 1 request */ +#define DMA_REQUEST_DAC1_CH2 68U /*!< DMAMUX1 DAC1 Channel 2 request */ + +#define DMA_REQUEST_TIM6_UP 69U /*!< DMAMUX1 TIM6 UP request */ +#define DMA_REQUEST_TIM7_UP 70U /*!< DMAMUX1 TIM7 UP request */ + +#define DMA_REQUEST_USART6_RX 71U /*!< DMAMUX1 USART6 RX request */ +#define DMA_REQUEST_USART6_TX 72U /*!< DMAMUX1 USART6 TX request */ + +#define DMA_REQUEST_I2C3_RX 73U /*!< DMAMUX1 I2C3 RX request */ +#define DMA_REQUEST_I2C3_TX 74U /*!< DMAMUX1 I2C3 TX request */ + +#if defined (PSSI) +#define DMA_REQUEST_DCMI_PSSI 75U /*!< DMAMUX1 DCMI/PSSI request */ +#define DMA_REQUEST_DCMI DMA_REQUEST_DCMI_PSSI /* Legacy define */ +#else +#define DMA_REQUEST_DCMI 75U /*!< DMAMUX1 DCMI request */ +#endif /* PSSI */ + +#define DMA_REQUEST_CRYP_IN 76U /*!< DMAMUX1 CRYP IN request */ +#define DMA_REQUEST_CRYP_OUT 77U /*!< DMAMUX1 CRYP OUT request */ + +#define DMA_REQUEST_HASH_IN 78U /*!< DMAMUX1 HASH IN request */ + +#define DMA_REQUEST_UART7_RX 79U /*!< DMAMUX1 UART7 RX request */ +#define DMA_REQUEST_UART7_TX 80U /*!< DMAMUX1 UART7 TX request */ +#define DMA_REQUEST_UART8_RX 81U /*!< DMAMUX1 UART8 RX request */ +#define DMA_REQUEST_UART8_TX 82U /*!< DMAMUX1 UART8 TX request */ + +#define DMA_REQUEST_SPI4_RX 83U /*!< DMAMUX1 SPI4 RX request */ +#define DMA_REQUEST_SPI4_TX 84U /*!< DMAMUX1 SPI4 TX request */ +#define DMA_REQUEST_SPI5_RX 85U /*!< DMAMUX1 SPI5 RX request */ +#define DMA_REQUEST_SPI5_TX 86U /*!< DMAMUX1 SPI5 TX request */ + +#define DMA_REQUEST_SAI1_A 87U /*!< DMAMUX1 SAI1 A request */ +#define DMA_REQUEST_SAI1_B 88U /*!< DMAMUX1 SAI1 B request */ +#define DMA_REQUEST_SAI2_A 89U /*!< DMAMUX1 SAI2 A request */ +#define DMA_REQUEST_SAI2_B 90U /*!< DMAMUX1 SAI2 B request */ + +#define DMA_REQUEST_SWPMI_RX 91U /*!< DMAMUX1 SWPMI RX request */ +#define DMA_REQUEST_SWPMI_TX 92U /*!< DMAMUX1 SWPMI TX request */ + +#define DMA_REQUEST_SPDIF_RX_DT 93U /*!< DMAMUX1 SPDIF RXDT request*/ +#define DMA_REQUEST_SPDIF_RX_CS 94U /*!< DMAMUX1 SPDIF RXCS request*/ + +#if defined(HRTIM1) +#define DMA_REQUEST_HRTIM_MASTER 95U /*!< DMAMUX1 HRTIM1 Master request 1 */ +#define DMA_REQUEST_HRTIM_TIMER_A 96U /*!< DMAMUX1 HRTIM1 TimerA request 2 */ +#define DMA_REQUEST_HRTIM_TIMER_B 97U /*!< DMAMUX1 HRTIM1 TimerB request 3 */ +#define DMA_REQUEST_HRTIM_TIMER_C 98U /*!< DMAMUX1 HRTIM1 TimerC request 4 */ +#define DMA_REQUEST_HRTIM_TIMER_D 99U /*!< DMAMUX1 HRTIM1 TimerD request 5 */ +#define DMA_REQUEST_HRTIM_TIMER_E 100U /*!< DMAMUX1 HRTIM1 TimerE request 6 */ +#endif /* HRTIM1 */ + +#define DMA_REQUEST_DFSDM1_FLT0 101U /*!< DMAMUX1 DFSDM Filter0 request */ +#define DMA_REQUEST_DFSDM1_FLT1 102U /*!< DMAMUX1 DFSDM Filter1 request */ +#define DMA_REQUEST_DFSDM1_FLT2 103U /*!< DMAMUX1 DFSDM Filter2 request */ +#define DMA_REQUEST_DFSDM1_FLT3 104U /*!< DMAMUX1 DFSDM Filter3 request */ + +#define DMA_REQUEST_TIM15_CH1 105U /*!< DMAMUX1 TIM15 CH1 request */ +#define DMA_REQUEST_TIM15_UP 106U /*!< DMAMUX1 TIM15 UP request */ +#define DMA_REQUEST_TIM15_TRIG 107U /*!< DMAMUX1 TIM15 TRIG request */ +#define DMA_REQUEST_TIM15_COM 108U /*!< DMAMUX1 TIM15 COM request */ + +#define DMA_REQUEST_TIM16_CH1 109U /*!< DMAMUX1 TIM16 CH1 request */ +#define DMA_REQUEST_TIM16_UP 110U /*!< DMAMUX1 TIM16 UP request */ + +#define DMA_REQUEST_TIM17_CH1 111U /*!< DMAMUX1 TIM17 CH1 request */ +#define DMA_REQUEST_TIM17_UP 112U /*!< DMAMUX1 TIM17 UP request */ + +#if defined(SAI3) +#define DMA_REQUEST_SAI3_A 113U /*!< DMAMUX1 SAI3 A request */ +#define DMA_REQUEST_SAI3_B 114U /*!< DMAMUX1 SAI3 B request */ +#endif /* SAI3 */ + +#if defined(ADC3) +#define DMA_REQUEST_ADC3 115U /*!< DMAMUX1 ADC3 request */ +#endif /* ADC3 */ + +#if defined(UART9) +#define DMA_REQUEST_UART9_RX 116U /*!< DMAMUX1 UART9 request */ +#define DMA_REQUEST_UART9_TX 117U /*!< DMAMUX1 UART9 request */ +#endif /* UART9 */ + +#if defined(USART10) +#define DMA_REQUEST_USART10_RX 118U /*!< DMAMUX1 USART10 request */ +#define DMA_REQUEST_USART10_TX 119U /*!< DMAMUX1 USART10 request */ +#endif /* USART10 */ + + +/* DMAMUX2 requests */ +#define BDMA_REQUEST_MEM2MEM 0U /*!< memory to memory transfer */ +#define BDMA_REQUEST_GENERATOR0 1U /*!< DMAMUX2 request generator 0 */ +#define BDMA_REQUEST_GENERATOR1 2U /*!< DMAMUX2 request generator 1 */ +#define BDMA_REQUEST_GENERATOR2 3U /*!< DMAMUX2 request generator 2 */ +#define BDMA_REQUEST_GENERATOR3 4U /*!< DMAMUX2 request generator 3 */ +#define BDMA_REQUEST_GENERATOR4 5U /*!< DMAMUX2 request generator 4 */ +#define BDMA_REQUEST_GENERATOR5 6U /*!< DMAMUX2 request generator 5 */ +#define BDMA_REQUEST_GENERATOR6 7U /*!< DMAMUX2 request generator 6 */ +#define BDMA_REQUEST_GENERATOR7 8U /*!< DMAMUX2 request generator 7 */ +#define BDMA_REQUEST_LPUART1_RX 9U /*!< DMAMUX2 LP_UART1_RX request */ +#define BDMA_REQUEST_LPUART1_TX 10U /*!< DMAMUX2 LP_UART1_TX request */ +#define BDMA_REQUEST_SPI6_RX 11U /*!< DMAMUX2 SPI6 RX request */ +#define BDMA_REQUEST_SPI6_TX 12U /*!< DMAMUX2 SPI6 TX request */ +#define BDMA_REQUEST_I2C4_RX 13U /*!< DMAMUX2 I2C4 RX request */ +#define BDMA_REQUEST_I2C4_TX 14U /*!< DMAMUX2 I2C4 TX request */ +#if defined(SAI4) +#define BDMA_REQUEST_SAI4_A 15U /*!< DMAMUX2 SAI4 A request */ +#define BDMA_REQUEST_SAI4_B 16U /*!< DMAMUX2 SAI4 B request */ +#endif /* SAI4 */ +#if defined(ADC3) +#define BDMA_REQUEST_ADC3 17U /*!< DMAMUX2 ADC3 request */ +#endif /* ADC3 */ +#if defined(DAC2) +#define BDMA_REQUEST_DAC2_CH1 17U /*!< DMAMUX2 DAC2 CH1 request */ +#endif /* DAC2 */ +#if defined(DFSDM2_Channel0) +#define BDMA_REQUEST_DFSDM2_FLT0 18U /*!< DMAMUX2 DFSDM2 request */ +#endif /* DFSDM1_Channel0 */ + +/** + * @} + */ + +/** @defgroup DMA_Data_transfer_direction DMA Data transfer direction + * @brief DMA data transfer direction + * @{ + */ +#define DMA_PERIPH_TO_MEMORY ((uint32_t)0x00000000U) /*!< Peripheral to memory direction */ +#define DMA_MEMORY_TO_PERIPH ((uint32_t)DMA_SxCR_DIR_0) /*!< Memory to peripheral direction */ +#define DMA_MEMORY_TO_MEMORY ((uint32_t)DMA_SxCR_DIR_1) /*!< Memory to memory direction */ +/** + * @} + */ + +/** @defgroup DMA_Peripheral_incremented_mode DMA Peripheral incremented mode + * @brief DMA peripheral incremented mode + * @{ + */ +#define DMA_PINC_ENABLE ((uint32_t)DMA_SxCR_PINC) /*!< Peripheral increment mode enable */ +#define DMA_PINC_DISABLE ((uint32_t)0x00000000U) /*!< Peripheral increment mode disable */ +/** + * @} + */ + +/** @defgroup DMA_Memory_incremented_mode DMA Memory incremented mode + * @brief DMA memory incremented mode + * @{ + */ +#define DMA_MINC_ENABLE ((uint32_t)DMA_SxCR_MINC) /*!< Memory increment mode enable */ +#define DMA_MINC_DISABLE ((uint32_t)0x00000000U) /*!< Memory increment mode disable */ +/** + * @} + */ + +/** @defgroup DMA_Peripheral_data_size DMA Peripheral data size + * @brief DMA peripheral data size + * @{ + */ +#define DMA_PDATAALIGN_BYTE ((uint32_t)0x00000000U) /*!< Peripheral data alignment: Byte */ +#define DMA_PDATAALIGN_HALFWORD ((uint32_t)DMA_SxCR_PSIZE_0) /*!< Peripheral data alignment: HalfWord */ +#define DMA_PDATAALIGN_WORD ((uint32_t)DMA_SxCR_PSIZE_1) /*!< Peripheral data alignment: Word */ +/** + * @} + */ + +/** @defgroup DMA_Memory_data_size DMA Memory data size + * @brief DMA memory data size + * @{ + */ +#define DMA_MDATAALIGN_BYTE ((uint32_t)0x00000000U) /*!< Memory data alignment: Byte */ +#define DMA_MDATAALIGN_HALFWORD ((uint32_t)DMA_SxCR_MSIZE_0) /*!< Memory data alignment: HalfWord */ +#define DMA_MDATAALIGN_WORD ((uint32_t)DMA_SxCR_MSIZE_1) /*!< Memory data alignment: Word */ +/** + * @} + */ + +/** @defgroup DMA_mode DMA mode + * @brief DMA mode + * @{ + */ +#define DMA_NORMAL ((uint32_t)0x00000000U) /*!< Normal mode */ +#define DMA_CIRCULAR ((uint32_t)DMA_SxCR_CIRC) /*!< Circular mode */ +#define DMA_PFCTRL ((uint32_t)DMA_SxCR_PFCTRL) /*!< Peripheral flow control mode */ +#define DMA_DOUBLE_BUFFER_M0 ((uint32_t)DMA_SxCR_DBM) /*!< Double buffer mode with first target memory M0 */ +#define DMA_DOUBLE_BUFFER_M1 ((uint32_t)(DMA_SxCR_DBM | DMA_SxCR_CT)) /*!< Double buffer mode with first target memory M1 */ +/** + * @} + */ + +/** @defgroup DMA_Priority_level DMA Priority level + * @brief DMA priority levels + * @{ + */ +#define DMA_PRIORITY_LOW ((uint32_t)0x00000000U) /*!< Priority level: Low */ +#define DMA_PRIORITY_MEDIUM ((uint32_t)DMA_SxCR_PL_0) /*!< Priority level: Medium */ +#define DMA_PRIORITY_HIGH ((uint32_t)DMA_SxCR_PL_1) /*!< Priority level: High */ +#define DMA_PRIORITY_VERY_HIGH ((uint32_t)DMA_SxCR_PL) /*!< Priority level: Very High */ +/** + * @} + */ + +/** @defgroup DMA_FIFO_direct_mode DMA FIFO direct mode + * @brief DMA FIFO direct mode + * @{ + */ +#define DMA_FIFOMODE_DISABLE ((uint32_t)0x00000000U) /*!< FIFO mode disable */ +#define DMA_FIFOMODE_ENABLE ((uint32_t)DMA_SxFCR_DMDIS) /*!< FIFO mode enable */ +/** + * @} + */ + +/** @defgroup DMA_FIFO_threshold_level DMA FIFO threshold level + * @brief DMA FIFO level + * @{ + */ +#define DMA_FIFO_THRESHOLD_1QUARTERFULL ((uint32_t)0x00000000U) /*!< FIFO threshold 1 quart full configuration */ +#define DMA_FIFO_THRESHOLD_HALFFULL ((uint32_t)DMA_SxFCR_FTH_0) /*!< FIFO threshold half full configuration */ +#define DMA_FIFO_THRESHOLD_3QUARTERSFULL ((uint32_t)DMA_SxFCR_FTH_1) /*!< FIFO threshold 3 quarts full configuration */ +#define DMA_FIFO_THRESHOLD_FULL ((uint32_t)DMA_SxFCR_FTH) /*!< FIFO threshold full configuration */ +/** + * @} + */ + +/** @defgroup DMA_Memory_burst DMA Memory burst + * @brief DMA memory burst + * @{ + */ +#define DMA_MBURST_SINGLE ((uint32_t)0x00000000U) +#define DMA_MBURST_INC4 ((uint32_t)DMA_SxCR_MBURST_0) +#define DMA_MBURST_INC8 ((uint32_t)DMA_SxCR_MBURST_1) +#define DMA_MBURST_INC16 ((uint32_t)DMA_SxCR_MBURST) +/** + * @} + */ + +/** @defgroup DMA_Peripheral_burst DMA Peripheral burst + * @brief DMA peripheral burst + * @{ + */ +#define DMA_PBURST_SINGLE ((uint32_t)0x00000000U) +#define DMA_PBURST_INC4 ((uint32_t)DMA_SxCR_PBURST_0) +#define DMA_PBURST_INC8 ((uint32_t)DMA_SxCR_PBURST_1) +#define DMA_PBURST_INC16 ((uint32_t)DMA_SxCR_PBURST) +/** + * @} + */ + +/** @defgroup DMA_interrupt_enable_definitions DMA interrupt enable definitions + * @brief DMA interrupts definition + * @{ + */ +#define DMA_IT_TC ((uint32_t)DMA_SxCR_TCIE) +#define DMA_IT_HT ((uint32_t)DMA_SxCR_HTIE) +#define DMA_IT_TE ((uint32_t)DMA_SxCR_TEIE) +#define DMA_IT_DME ((uint32_t)DMA_SxCR_DMEIE) +#define DMA_IT_FE ((uint32_t)0x00000080U) +/** + * @} + */ + +/** @defgroup DMA_flag_definitions DMA flag definitions + * @brief DMA flag definitions + * @{ + */ +#define DMA_FLAG_FEIF0_4 ((uint32_t)0x00000001U) +#define DMA_FLAG_DMEIF0_4 ((uint32_t)0x00000004U) +#define DMA_FLAG_TEIF0_4 ((uint32_t)0x00000008U) +#define DMA_FLAG_HTIF0_4 ((uint32_t)0x00000010U) +#define DMA_FLAG_TCIF0_4 ((uint32_t)0x00000020U) +#define DMA_FLAG_FEIF1_5 ((uint32_t)0x00000040U) +#define DMA_FLAG_DMEIF1_5 ((uint32_t)0x00000100U) +#define DMA_FLAG_TEIF1_5 ((uint32_t)0x00000200U) +#define DMA_FLAG_HTIF1_5 ((uint32_t)0x00000400U) +#define DMA_FLAG_TCIF1_5 ((uint32_t)0x00000800U) +#define DMA_FLAG_FEIF2_6 ((uint32_t)0x00010000U) +#define DMA_FLAG_DMEIF2_6 ((uint32_t)0x00040000U) +#define DMA_FLAG_TEIF2_6 ((uint32_t)0x00080000U) +#define DMA_FLAG_HTIF2_6 ((uint32_t)0x00100000U) +#define DMA_FLAG_TCIF2_6 ((uint32_t)0x00200000U) +#define DMA_FLAG_FEIF3_7 ((uint32_t)0x00400000U) +#define DMA_FLAG_DMEIF3_7 ((uint32_t)0x01000000U) +#define DMA_FLAG_TEIF3_7 ((uint32_t)0x02000000U) +#define DMA_FLAG_HTIF3_7 ((uint32_t)0x04000000U) +#define DMA_FLAG_TCIF3_7 ((uint32_t)0x08000000U) +/** + * @} + */ + +/** @defgroup BDMA_flag_definitions BDMA flag definitions + * @brief BDMA flag definitions + * @{ + */ +#define BDMA_FLAG_GL0 ((uint32_t)0x00000001) +#define BDMA_FLAG_TC0 ((uint32_t)0x00000002) +#define BDMA_FLAG_HT0 ((uint32_t)0x00000004) +#define BDMA_FLAG_TE0 ((uint32_t)0x00000008) +#define BDMA_FLAG_GL1 ((uint32_t)0x00000010) +#define BDMA_FLAG_TC1 ((uint32_t)0x00000020) +#define BDMA_FLAG_HT1 ((uint32_t)0x00000040) +#define BDMA_FLAG_TE1 ((uint32_t)0x00000080) +#define BDMA_FLAG_GL2 ((uint32_t)0x00000100) +#define BDMA_FLAG_TC2 ((uint32_t)0x00000200) +#define BDMA_FLAG_HT2 ((uint32_t)0x00000400) +#define BDMA_FLAG_TE2 ((uint32_t)0x00000800) +#define BDMA_FLAG_GL3 ((uint32_t)0x00001000) +#define BDMA_FLAG_TC3 ((uint32_t)0x00002000) +#define BDMA_FLAG_HT3 ((uint32_t)0x00004000) +#define BDMA_FLAG_TE3 ((uint32_t)0x00008000) +#define BDMA_FLAG_GL4 ((uint32_t)0x00010000) +#define BDMA_FLAG_TC4 ((uint32_t)0x00020000) +#define BDMA_FLAG_HT4 ((uint32_t)0x00040000) +#define BDMA_FLAG_TE4 ((uint32_t)0x00080000) +#define BDMA_FLAG_GL5 ((uint32_t)0x00100000) +#define BDMA_FLAG_TC5 ((uint32_t)0x00200000) +#define BDMA_FLAG_HT5 ((uint32_t)0x00400000) +#define BDMA_FLAG_TE5 ((uint32_t)0x00800000) +#define BDMA_FLAG_GL6 ((uint32_t)0x01000000) +#define BDMA_FLAG_TC6 ((uint32_t)0x02000000) +#define BDMA_FLAG_HT6 ((uint32_t)0x04000000) +#define BDMA_FLAG_TE6 ((uint32_t)0x08000000) +#define BDMA_FLAG_GL7 ((uint32_t)0x10000000) +#define BDMA_FLAG_TC7 ((uint32_t)0x20000000) +#define BDMA_FLAG_HT7 ((uint32_t)0x40000000) +#define BDMA_FLAG_TE7 ((uint32_t)0x80000000) + +/** + * @} + */ + +/** + * @} + */ + +/* Exported macro ------------------------------------------------------------*/ +/** @defgroup DMA_Exported_Macros DMA Exported Macros + * @{ + */ + +/** @brief Reset DMA handle state + * @param __HANDLE__: specifies the DMA handle. + * @retval None + */ +#define __HAL_DMA_RESET_HANDLE_STATE(__HANDLE__) ((__HANDLE__)->State = HAL_DMA_STATE_RESET) + +/** + * @brief Return the current DMA Stream FIFO filled level. + * @param __HANDLE__: DMA handle + * @retval The FIFO filling state. + * - DMA_FIFOStatus_Less1QuarterFull: when FIFO is less than 1 quarter-full + * and not empty. + * - DMA_FIFOStatus_1QuarterFull: if more than 1 quarter-full. + * - DMA_FIFOStatus_HalfFull: if more than 1 half-full. + * - DMA_FIFOStatus_3QuartersFull: if more than 3 quarters-full. + * - DMA_FIFOStatus_Empty: when FIFO is empty + * - DMA_FIFOStatus_Full: when FIFO is full + */ +#define __HAL_DMA_GET_FS(__HANDLE__) ((IS_DMA_STREAM_INSTANCE((__HANDLE__)->Instance))? (((DMA_Stream_TypeDef *)(__HANDLE__)->Instance)->FCR & (DMA_SxFCR_FS)) : 0) + +/** + * @brief Enable the specified DMA Stream. + * @param __HANDLE__: DMA handle + * @retval None + */ +#define __HAL_DMA_ENABLE(__HANDLE__) \ +((IS_DMA_STREAM_INSTANCE((__HANDLE__)->Instance))? (((DMA_Stream_TypeDef *)(__HANDLE__)->Instance)->CR |= DMA_SxCR_EN) : \ +(((BDMA_Channel_TypeDef *)(__HANDLE__)->Instance)->CCR |= BDMA_CCR_EN)) + +/** + * @brief Disable the specified DMA Stream. + * @param __HANDLE__: DMA handle + * @retval None + */ +#define __HAL_DMA_DISABLE(__HANDLE__) \ +((IS_DMA_STREAM_INSTANCE((__HANDLE__)->Instance))? (((DMA_Stream_TypeDef *)(__HANDLE__)->Instance)->CR &= ~DMA_SxCR_EN) : \ +(((BDMA_Channel_TypeDef *)(__HANDLE__)->Instance)->CCR &= ~BDMA_CCR_EN)) + +/* Interrupt & Flag management */ + +/** + * @brief Return the current DMA Stream transfer complete flag. + * @param __HANDLE__: DMA handle + * @retval The specified transfer complete flag index. + */ +#if defined(BDMA1) +#define __HAL_DMA_GET_TC_FLAG_INDEX(__HANDLE__) \ +(((uint32_t)((__HANDLE__)->Instance) == ((uint32_t)DMA1_Stream0))? DMA_FLAG_TCIF0_4 :\ + ((uint32_t)((__HANDLE__)->Instance) == ((uint32_t)DMA2_Stream0))? DMA_FLAG_TCIF0_4 :\ + ((uint32_t)((__HANDLE__)->Instance) == ((uint32_t)DMA1_Stream4))? DMA_FLAG_TCIF0_4 :\ + ((uint32_t)((__HANDLE__)->Instance) == ((uint32_t)DMA2_Stream4))? DMA_FLAG_TCIF0_4 :\ + ((uint32_t)((__HANDLE__)->Instance) == ((uint32_t)DMA1_Stream1))? DMA_FLAG_TCIF1_5 :\ + ((uint32_t)((__HANDLE__)->Instance) == ((uint32_t)DMA2_Stream1))? DMA_FLAG_TCIF1_5 :\ + ((uint32_t)((__HANDLE__)->Instance) == ((uint32_t)DMA1_Stream5))? DMA_FLAG_TCIF1_5 :\ + ((uint32_t)((__HANDLE__)->Instance) == ((uint32_t)DMA2_Stream5))? DMA_FLAG_TCIF1_5 :\ + ((uint32_t)((__HANDLE__)->Instance) == ((uint32_t)DMA1_Stream2))? DMA_FLAG_TCIF2_6 :\ + ((uint32_t)((__HANDLE__)->Instance) == ((uint32_t)DMA2_Stream2))? DMA_FLAG_TCIF2_6 :\ + ((uint32_t)((__HANDLE__)->Instance) == ((uint32_t)DMA1_Stream6))? DMA_FLAG_TCIF2_6 :\ + ((uint32_t)((__HANDLE__)->Instance) == ((uint32_t)DMA2_Stream6))? DMA_FLAG_TCIF2_6 :\ + ((uint32_t)((__HANDLE__)->Instance) == ((uint32_t)DMA1_Stream3))? DMA_FLAG_TCIF3_7 :\ + ((uint32_t)((__HANDLE__)->Instance) == ((uint32_t)DMA2_Stream3))? DMA_FLAG_TCIF3_7 :\ + ((uint32_t)((__HANDLE__)->Instance) == ((uint32_t)DMA1_Stream7))? DMA_FLAG_TCIF3_7 :\ + ((uint32_t)((__HANDLE__)->Instance) == ((uint32_t)DMA2_Stream7))? DMA_FLAG_TCIF3_7 :\ + ((uint32_t)((__HANDLE__)->Instance) == ((uint32_t)BDMA1_Channel0))? BDMA_FLAG_TC0 :\ + ((uint32_t)((__HANDLE__)->Instance) == ((uint32_t)BDMA2_Channel0))? BDMA_FLAG_TC0 :\ + ((uint32_t)((__HANDLE__)->Instance) == ((uint32_t)BDMA1_Channel1))? BDMA_FLAG_TC1 :\ + ((uint32_t)((__HANDLE__)->Instance) == ((uint32_t)BDMA2_Channel1))? BDMA_FLAG_TC1 :\ + ((uint32_t)((__HANDLE__)->Instance) == ((uint32_t)BDMA1_Channel2))? BDMA_FLAG_TC2 :\ + ((uint32_t)((__HANDLE__)->Instance) == ((uint32_t)BDMA2_Channel2))? BDMA_FLAG_TC2 :\ + ((uint32_t)((__HANDLE__)->Instance) == ((uint32_t)BDMA1_Channel3))? BDMA_FLAG_TC3 :\ + ((uint32_t)((__HANDLE__)->Instance) == ((uint32_t)BDMA2_Channel3))? BDMA_FLAG_TC3 :\ + ((uint32_t)((__HANDLE__)->Instance) == ((uint32_t)BDMA1_Channel4))? BDMA_FLAG_TC4 :\ + ((uint32_t)((__HANDLE__)->Instance) == ((uint32_t)BDMA2_Channel4))? BDMA_FLAG_TC4 :\ + ((uint32_t)((__HANDLE__)->Instance) == ((uint32_t)BDMA1_Channel5))? BDMA_FLAG_TC5 :\ + ((uint32_t)((__HANDLE__)->Instance) == ((uint32_t)BDMA2_Channel5))? BDMA_FLAG_TC5 :\ + ((uint32_t)((__HANDLE__)->Instance) == ((uint32_t)BDMA1_Channel6))? BDMA_FLAG_TC6 :\ + ((uint32_t)((__HANDLE__)->Instance) == ((uint32_t)BDMA2_Channel6))? BDMA_FLAG_TC6 :\ + ((uint32_t)((__HANDLE__)->Instance) == ((uint32_t)BDMA1_Channel7))? BDMA_FLAG_TC7 :\ + ((uint32_t)((__HANDLE__)->Instance) == ((uint32_t)BDMA2_Channel7))? BDMA_FLAG_TC7 :\ + (uint32_t)0x00000000) +#else +#define __HAL_DMA_GET_TC_FLAG_INDEX(__HANDLE__) \ +(((uint32_t)((__HANDLE__)->Instance) == ((uint32_t)DMA1_Stream0))? DMA_FLAG_TCIF0_4 :\ + ((uint32_t)((__HANDLE__)->Instance) == ((uint32_t)DMA2_Stream0))? DMA_FLAG_TCIF0_4 :\ + ((uint32_t)((__HANDLE__)->Instance) == ((uint32_t)DMA1_Stream4))? DMA_FLAG_TCIF0_4 :\ + ((uint32_t)((__HANDLE__)->Instance) == ((uint32_t)DMA2_Stream4))? DMA_FLAG_TCIF0_4 :\ + ((uint32_t)((__HANDLE__)->Instance) == ((uint32_t)DMA1_Stream1))? DMA_FLAG_TCIF1_5 :\ + ((uint32_t)((__HANDLE__)->Instance) == ((uint32_t)DMA2_Stream1))? DMA_FLAG_TCIF1_5 :\ + ((uint32_t)((__HANDLE__)->Instance) == ((uint32_t)DMA1_Stream5))? DMA_FLAG_TCIF1_5 :\ + ((uint32_t)((__HANDLE__)->Instance) == ((uint32_t)DMA2_Stream5))? DMA_FLAG_TCIF1_5 :\ + ((uint32_t)((__HANDLE__)->Instance) == ((uint32_t)DMA1_Stream2))? DMA_FLAG_TCIF2_6 :\ + ((uint32_t)((__HANDLE__)->Instance) == ((uint32_t)DMA2_Stream2))? DMA_FLAG_TCIF2_6 :\ + ((uint32_t)((__HANDLE__)->Instance) == ((uint32_t)DMA1_Stream6))? DMA_FLAG_TCIF2_6 :\ + ((uint32_t)((__HANDLE__)->Instance) == ((uint32_t)DMA2_Stream6))? DMA_FLAG_TCIF2_6 :\ + ((uint32_t)((__HANDLE__)->Instance) == ((uint32_t)DMA1_Stream3))? DMA_FLAG_TCIF3_7 :\ + ((uint32_t)((__HANDLE__)->Instance) == ((uint32_t)DMA2_Stream3))? DMA_FLAG_TCIF3_7 :\ + ((uint32_t)((__HANDLE__)->Instance) == ((uint32_t)DMA1_Stream7))? DMA_FLAG_TCIF3_7 :\ + ((uint32_t)((__HANDLE__)->Instance) == ((uint32_t)DMA2_Stream7))? DMA_FLAG_TCIF3_7 :\ + ((uint32_t)((__HANDLE__)->Instance) == ((uint32_t)BDMA_Channel0))? BDMA_FLAG_TC0 :\ + ((uint32_t)((__HANDLE__)->Instance) == ((uint32_t)BDMA_Channel1))? BDMA_FLAG_TC1 :\ + ((uint32_t)((__HANDLE__)->Instance) == ((uint32_t)BDMA_Channel2))? BDMA_FLAG_TC2 :\ + ((uint32_t)((__HANDLE__)->Instance) == ((uint32_t)BDMA_Channel3))? BDMA_FLAG_TC3 :\ + ((uint32_t)((__HANDLE__)->Instance) == ((uint32_t)BDMA_Channel4))? BDMA_FLAG_TC4 :\ + ((uint32_t)((__HANDLE__)->Instance) == ((uint32_t)BDMA_Channel5))? BDMA_FLAG_TC5 :\ + ((uint32_t)((__HANDLE__)->Instance) == ((uint32_t)BDMA_Channel6))? BDMA_FLAG_TC6 :\ + ((uint32_t)((__HANDLE__)->Instance) == ((uint32_t)BDMA_Channel7))? BDMA_FLAG_TC7 :\ + (uint32_t)0x00000000) +#endif /* BDMA1 */ + +/** + * @brief Return the current DMA Stream half transfer complete flag. + * @param __HANDLE__: DMA handle + * @retval The specified half transfer complete flag index. + */ +#if defined(BDMA1) +#define __HAL_DMA_GET_HT_FLAG_INDEX(__HANDLE__)\ +(((uint32_t)((__HANDLE__)->Instance) == ((uint32_t)DMA1_Stream0))? DMA_FLAG_HTIF0_4 :\ + ((uint32_t)((__HANDLE__)->Instance) == ((uint32_t)DMA2_Stream0))? DMA_FLAG_HTIF0_4 :\ + ((uint32_t)((__HANDLE__)->Instance) == ((uint32_t)DMA1_Stream4))? DMA_FLAG_HTIF0_4 :\ + ((uint32_t)((__HANDLE__)->Instance) == ((uint32_t)DMA2_Stream4))? DMA_FLAG_HTIF0_4 :\ + ((uint32_t)((__HANDLE__)->Instance) == ((uint32_t)DMA1_Stream1))? DMA_FLAG_HTIF1_5 :\ + ((uint32_t)((__HANDLE__)->Instance) == ((uint32_t)DMA2_Stream1))? DMA_FLAG_HTIF1_5 :\ + ((uint32_t)((__HANDLE__)->Instance) == ((uint32_t)DMA1_Stream5))? DMA_FLAG_HTIF1_5 :\ + ((uint32_t)((__HANDLE__)->Instance) == ((uint32_t)DMA2_Stream5))? DMA_FLAG_HTIF1_5 :\ + ((uint32_t)((__HANDLE__)->Instance) == ((uint32_t)DMA1_Stream2))? DMA_FLAG_HTIF2_6 :\ + ((uint32_t)((__HANDLE__)->Instance) == ((uint32_t)DMA2_Stream2))? DMA_FLAG_HTIF2_6 :\ + ((uint32_t)((__HANDLE__)->Instance) == ((uint32_t)DMA1_Stream6))? DMA_FLAG_HTIF2_6 :\ + ((uint32_t)((__HANDLE__)->Instance) == ((uint32_t)DMA2_Stream6))? DMA_FLAG_HTIF2_6 :\ + ((uint32_t)((__HANDLE__)->Instance) == ((uint32_t)DMA1_Stream3))? DMA_FLAG_HTIF3_7 :\ + ((uint32_t)((__HANDLE__)->Instance) == ((uint32_t)DMA2_Stream3))? DMA_FLAG_HTIF3_7 :\ + ((uint32_t)((__HANDLE__)->Instance) == ((uint32_t)DMA1_Stream7))? DMA_FLAG_HTIF3_7 :\ + ((uint32_t)((__HANDLE__)->Instance) == ((uint32_t)DMA2_Stream7))? DMA_FLAG_HTIF3_7 :\ + ((uint32_t)((__HANDLE__)->Instance) == ((uint32_t)BDMA1_Channel0))? BDMA_FLAG_HT0 :\ + ((uint32_t)((__HANDLE__)->Instance) == ((uint32_t)BDMA2_Channel0))? BDMA_FLAG_HT0 :\ + ((uint32_t)((__HANDLE__)->Instance) == ((uint32_t)BDMA1_Channel1))? BDMA_FLAG_HT1 :\ + ((uint32_t)((__HANDLE__)->Instance) == ((uint32_t)BDMA2_Channel1))? BDMA_FLAG_HT1 :\ + ((uint32_t)((__HANDLE__)->Instance) == ((uint32_t)BDMA1_Channel2))? BDMA_FLAG_HT2 :\ + ((uint32_t)((__HANDLE__)->Instance) == ((uint32_t)BDMA2_Channel2))? BDMA_FLAG_HT2 :\ + ((uint32_t)((__HANDLE__)->Instance) == ((uint32_t)BDMA1_Channel3))? BDMA_FLAG_HT3 :\ + ((uint32_t)((__HANDLE__)->Instance) == ((uint32_t)BDMA2_Channel3))? BDMA_FLAG_HT3 :\ + ((uint32_t)((__HANDLE__)->Instance) == ((uint32_t)BDMA1_Channel4))? BDMA_FLAG_HT4 :\ + ((uint32_t)((__HANDLE__)->Instance) == ((uint32_t)BDMA2_Channel4))? BDMA_FLAG_HT4 :\ + ((uint32_t)((__HANDLE__)->Instance) == ((uint32_t)BDMA1_Channel5))? BDMA_FLAG_HT5 :\ + ((uint32_t)((__HANDLE__)->Instance) == ((uint32_t)BDMA2_Channel5))? BDMA_FLAG_HT5 :\ + ((uint32_t)((__HANDLE__)->Instance) == ((uint32_t)BDMA1_Channel6))? BDMA_FLAG_HT6 :\ + ((uint32_t)((__HANDLE__)->Instance) == ((uint32_t)BDMA2_Channel6))? BDMA_FLAG_HT6 :\ + ((uint32_t)((__HANDLE__)->Instance) == ((uint32_t)BDMA1_Channel7))? BDMA_FLAG_HT7 :\ + ((uint32_t)((__HANDLE__)->Instance) == ((uint32_t)BDMA2_Channel7))? BDMA_FLAG_HT7 :\ + (uint32_t)0x00000000) +#else +#define __HAL_DMA_GET_HT_FLAG_INDEX(__HANDLE__)\ +(((uint32_t)((__HANDLE__)->Instance) == ((uint32_t)DMA1_Stream0))? DMA_FLAG_HTIF0_4 :\ + ((uint32_t)((__HANDLE__)->Instance) == ((uint32_t)DMA2_Stream0))? DMA_FLAG_HTIF0_4 :\ + ((uint32_t)((__HANDLE__)->Instance) == ((uint32_t)DMA1_Stream4))? DMA_FLAG_HTIF0_4 :\ + ((uint32_t)((__HANDLE__)->Instance) == ((uint32_t)DMA2_Stream4))? DMA_FLAG_HTIF0_4 :\ + ((uint32_t)((__HANDLE__)->Instance) == ((uint32_t)DMA1_Stream1))? DMA_FLAG_HTIF1_5 :\ + ((uint32_t)((__HANDLE__)->Instance) == ((uint32_t)DMA2_Stream1))? DMA_FLAG_HTIF1_5 :\ + ((uint32_t)((__HANDLE__)->Instance) == ((uint32_t)DMA1_Stream5))? DMA_FLAG_HTIF1_5 :\ + ((uint32_t)((__HANDLE__)->Instance) == ((uint32_t)DMA2_Stream5))? DMA_FLAG_HTIF1_5 :\ + ((uint32_t)((__HANDLE__)->Instance) == ((uint32_t)DMA1_Stream2))? DMA_FLAG_HTIF2_6 :\ + ((uint32_t)((__HANDLE__)->Instance) == ((uint32_t)DMA2_Stream2))? DMA_FLAG_HTIF2_6 :\ + ((uint32_t)((__HANDLE__)->Instance) == ((uint32_t)DMA1_Stream6))? DMA_FLAG_HTIF2_6 :\ + ((uint32_t)((__HANDLE__)->Instance) == ((uint32_t)DMA2_Stream6))? DMA_FLAG_HTIF2_6 :\ + ((uint32_t)((__HANDLE__)->Instance) == ((uint32_t)DMA1_Stream3))? DMA_FLAG_HTIF3_7 :\ + ((uint32_t)((__HANDLE__)->Instance) == ((uint32_t)DMA2_Stream3))? DMA_FLAG_HTIF3_7 :\ + ((uint32_t)((__HANDLE__)->Instance) == ((uint32_t)DMA1_Stream7))? DMA_FLAG_HTIF3_7 :\ + ((uint32_t)((__HANDLE__)->Instance) == ((uint32_t)DMA2_Stream7))? DMA_FLAG_HTIF3_7 :\ + ((uint32_t)((__HANDLE__)->Instance) == ((uint32_t)BDMA_Channel0))? BDMA_FLAG_HT0 :\ + ((uint32_t)((__HANDLE__)->Instance) == ((uint32_t)BDMA_Channel1))? BDMA_FLAG_HT1 :\ + ((uint32_t)((__HANDLE__)->Instance) == ((uint32_t)BDMA_Channel2))? BDMA_FLAG_HT2 :\ + ((uint32_t)((__HANDLE__)->Instance) == ((uint32_t)BDMA_Channel3))? BDMA_FLAG_HT3 :\ + ((uint32_t)((__HANDLE__)->Instance) == ((uint32_t)BDMA_Channel4))? BDMA_FLAG_HT4 :\ + ((uint32_t)((__HANDLE__)->Instance) == ((uint32_t)BDMA_Channel5))? BDMA_FLAG_HT5 :\ + ((uint32_t)((__HANDLE__)->Instance) == ((uint32_t)BDMA_Channel6))? BDMA_FLAG_HT6 :\ + ((uint32_t)((__HANDLE__)->Instance) == ((uint32_t)BDMA_Channel7))? BDMA_FLAG_HT7 :\ + (uint32_t)0x00000000) +#endif /* BDMA1 */ + +/** + * @brief Return the current DMA Stream transfer error flag. + * @param __HANDLE__: DMA handle + * @retval The specified transfer error flag index. + */ +#if defined(BDMA1) +#define __HAL_DMA_GET_TE_FLAG_INDEX(__HANDLE__)\ +(((uint32_t)((__HANDLE__)->Instance) == ((uint32_t)DMA1_Stream0))? DMA_FLAG_TEIF0_4 :\ + ((uint32_t)((__HANDLE__)->Instance) == ((uint32_t)DMA2_Stream0))? DMA_FLAG_TEIF0_4 :\ + ((uint32_t)((__HANDLE__)->Instance) == ((uint32_t)DMA1_Stream4))? DMA_FLAG_TEIF0_4 :\ + ((uint32_t)((__HANDLE__)->Instance) == ((uint32_t)DMA2_Stream4))? DMA_FLAG_TEIF0_4 :\ + ((uint32_t)((__HANDLE__)->Instance) == ((uint32_t)DMA1_Stream1))? DMA_FLAG_TEIF1_5 :\ + ((uint32_t)((__HANDLE__)->Instance) == ((uint32_t)DMA2_Stream1))? DMA_FLAG_TEIF1_5 :\ + ((uint32_t)((__HANDLE__)->Instance) == ((uint32_t)DMA1_Stream5))? DMA_FLAG_TEIF1_5 :\ + ((uint32_t)((__HANDLE__)->Instance) == ((uint32_t)DMA2_Stream5))? DMA_FLAG_TEIF1_5 :\ + ((uint32_t)((__HANDLE__)->Instance) == ((uint32_t)DMA1_Stream2))? DMA_FLAG_TEIF2_6 :\ + ((uint32_t)((__HANDLE__)->Instance) == ((uint32_t)DMA2_Stream2))? DMA_FLAG_TEIF2_6 :\ + ((uint32_t)((__HANDLE__)->Instance) == ((uint32_t)DMA1_Stream6))? DMA_FLAG_TEIF2_6 :\ + ((uint32_t)((__HANDLE__)->Instance) == ((uint32_t)DMA2_Stream6))? DMA_FLAG_TEIF2_6 :\ + ((uint32_t)((__HANDLE__)->Instance) == ((uint32_t)DMA1_Stream3))? DMA_FLAG_TEIF3_7 :\ + ((uint32_t)((__HANDLE__)->Instance) == ((uint32_t)DMA2_Stream3))? DMA_FLAG_TEIF3_7 :\ + ((uint32_t)((__HANDLE__)->Instance) == ((uint32_t)DMA1_Stream7))? DMA_FLAG_TEIF3_7 :\ + ((uint32_t)((__HANDLE__)->Instance) == ((uint32_t)DMA2_Stream7))? DMA_FLAG_TEIF3_7 :\ + ((uint32_t)((__HANDLE__)->Instance) == ((uint32_t)BDMA1_Channel0))? BDMA_FLAG_TE0 :\ + ((uint32_t)((__HANDLE__)->Instance) == ((uint32_t)BDMA2_Channel0))? BDMA_FLAG_TE0 :\ + ((uint32_t)((__HANDLE__)->Instance) == ((uint32_t)BDMA1_Channel1))? BDMA_FLAG_TE1 :\ + ((uint32_t)((__HANDLE__)->Instance) == ((uint32_t)BDMA2_Channel1))? BDMA_FLAG_TE1 :\ + ((uint32_t)((__HANDLE__)->Instance) == ((uint32_t)BDMA1_Channel2))? BDMA_FLAG_TE2 :\ + ((uint32_t)((__HANDLE__)->Instance) == ((uint32_t)BDMA2_Channel2))? BDMA_FLAG_TE2 :\ + ((uint32_t)((__HANDLE__)->Instance) == ((uint32_t)BDMA1_Channel3))? BDMA_FLAG_TE3 :\ + ((uint32_t)((__HANDLE__)->Instance) == ((uint32_t)BDMA2_Channel3))? BDMA_FLAG_TE3 :\ + ((uint32_t)((__HANDLE__)->Instance) == ((uint32_t)BDMA1_Channel4))? BDMA_FLAG_TE4 :\ + ((uint32_t)((__HANDLE__)->Instance) == ((uint32_t)BDMA2_Channel4))? BDMA_FLAG_TE4 :\ + ((uint32_t)((__HANDLE__)->Instance) == ((uint32_t)BDMA1_Channel5))? BDMA_FLAG_TE5 :\ + ((uint32_t)((__HANDLE__)->Instance) == ((uint32_t)BDMA2_Channel5))? BDMA_FLAG_TE5 :\ + ((uint32_t)((__HANDLE__)->Instance) == ((uint32_t)BDMA1_Channel6))? BDMA_FLAG_TE6 :\ + ((uint32_t)((__HANDLE__)->Instance) == ((uint32_t)BDMA2_Channel6))? BDMA_FLAG_TE6 :\ + ((uint32_t)((__HANDLE__)->Instance) == ((uint32_t)BDMA1_Channel7))? BDMA_FLAG_TE7 :\ + ((uint32_t)((__HANDLE__)->Instance) == ((uint32_t)BDMA2_Channel7))? BDMA_FLAG_TE7 :\ + (uint32_t)0x00000000) +#else +#define __HAL_DMA_GET_TE_FLAG_INDEX(__HANDLE__)\ +(((uint32_t)((__HANDLE__)->Instance) == ((uint32_t)DMA1_Stream0))? DMA_FLAG_TEIF0_4 :\ + ((uint32_t)((__HANDLE__)->Instance) == ((uint32_t)DMA2_Stream0))? DMA_FLAG_TEIF0_4 :\ + ((uint32_t)((__HANDLE__)->Instance) == ((uint32_t)DMA1_Stream4))? DMA_FLAG_TEIF0_4 :\ + ((uint32_t)((__HANDLE__)->Instance) == ((uint32_t)DMA2_Stream4))? DMA_FLAG_TEIF0_4 :\ + ((uint32_t)((__HANDLE__)->Instance) == ((uint32_t)DMA1_Stream1))? DMA_FLAG_TEIF1_5 :\ + ((uint32_t)((__HANDLE__)->Instance) == ((uint32_t)DMA2_Stream1))? DMA_FLAG_TEIF1_5 :\ + ((uint32_t)((__HANDLE__)->Instance) == ((uint32_t)DMA1_Stream5))? DMA_FLAG_TEIF1_5 :\ + ((uint32_t)((__HANDLE__)->Instance) == ((uint32_t)DMA2_Stream5))? DMA_FLAG_TEIF1_5 :\ + ((uint32_t)((__HANDLE__)->Instance) == ((uint32_t)DMA1_Stream2))? DMA_FLAG_TEIF2_6 :\ + ((uint32_t)((__HANDLE__)->Instance) == ((uint32_t)DMA2_Stream2))? DMA_FLAG_TEIF2_6 :\ + ((uint32_t)((__HANDLE__)->Instance) == ((uint32_t)DMA1_Stream6))? DMA_FLAG_TEIF2_6 :\ + ((uint32_t)((__HANDLE__)->Instance) == ((uint32_t)DMA2_Stream6))? DMA_FLAG_TEIF2_6 :\ + ((uint32_t)((__HANDLE__)->Instance) == ((uint32_t)DMA1_Stream3))? DMA_FLAG_TEIF3_7 :\ + ((uint32_t)((__HANDLE__)->Instance) == ((uint32_t)DMA2_Stream3))? DMA_FLAG_TEIF3_7 :\ + ((uint32_t)((__HANDLE__)->Instance) == ((uint32_t)DMA1_Stream7))? DMA_FLAG_TEIF3_7 :\ + ((uint32_t)((__HANDLE__)->Instance) == ((uint32_t)DMA2_Stream7))? DMA_FLAG_TEIF3_7 :\ + ((uint32_t)((__HANDLE__)->Instance) == ((uint32_t)BDMA_Channel0))? BDMA_FLAG_TE0 :\ + ((uint32_t)((__HANDLE__)->Instance) == ((uint32_t)BDMA_Channel1))? BDMA_FLAG_TE1 :\ + ((uint32_t)((__HANDLE__)->Instance) == ((uint32_t)BDMA_Channel2))? BDMA_FLAG_TE2 :\ + ((uint32_t)((__HANDLE__)->Instance) == ((uint32_t)BDMA_Channel3))? BDMA_FLAG_TE3 :\ + ((uint32_t)((__HANDLE__)->Instance) == ((uint32_t)BDMA_Channel4))? BDMA_FLAG_TE4 :\ + ((uint32_t)((__HANDLE__)->Instance) == ((uint32_t)BDMA_Channel5))? BDMA_FLAG_TE5 :\ + ((uint32_t)((__HANDLE__)->Instance) == ((uint32_t)BDMA_Channel6))? BDMA_FLAG_TE6 :\ + ((uint32_t)((__HANDLE__)->Instance) == ((uint32_t)BDMA_Channel7))? BDMA_FLAG_TE7 :\ + (uint32_t)0x00000000) +#endif /* BDMA1 */ + +/** + * @brief Return the current DMA Stream FIFO error flag. + * @param __HANDLE__: DMA handle + * @retval The specified FIFO error flag index. + */ +#define __HAL_DMA_GET_FE_FLAG_INDEX(__HANDLE__)\ +(((uint32_t)((__HANDLE__)->Instance) == ((uint32_t)DMA1_Stream0))? DMA_FLAG_FEIF0_4 :\ + ((uint32_t)((__HANDLE__)->Instance) == ((uint32_t)DMA2_Stream0))? DMA_FLAG_FEIF0_4 :\ + ((uint32_t)((__HANDLE__)->Instance) == ((uint32_t)DMA1_Stream4))? DMA_FLAG_FEIF0_4 :\ + ((uint32_t)((__HANDLE__)->Instance) == ((uint32_t)DMA2_Stream4))? DMA_FLAG_FEIF0_4 :\ + ((uint32_t)((__HANDLE__)->Instance) == ((uint32_t)DMA1_Stream1))? DMA_FLAG_FEIF1_5 :\ + ((uint32_t)((__HANDLE__)->Instance) == ((uint32_t)DMA2_Stream1))? DMA_FLAG_FEIF1_5 :\ + ((uint32_t)((__HANDLE__)->Instance) == ((uint32_t)DMA1_Stream5))? DMA_FLAG_FEIF1_5 :\ + ((uint32_t)((__HANDLE__)->Instance) == ((uint32_t)DMA2_Stream5))? DMA_FLAG_FEIF1_5 :\ + ((uint32_t)((__HANDLE__)->Instance) == ((uint32_t)DMA1_Stream2))? DMA_FLAG_FEIF2_6 :\ + ((uint32_t)((__HANDLE__)->Instance) == ((uint32_t)DMA2_Stream2))? DMA_FLAG_FEIF2_6 :\ + ((uint32_t)((__HANDLE__)->Instance) == ((uint32_t)DMA1_Stream6))? DMA_FLAG_FEIF2_6 :\ + ((uint32_t)((__HANDLE__)->Instance) == ((uint32_t)DMA2_Stream6))? DMA_FLAG_FEIF2_6 :\ + ((uint32_t)((__HANDLE__)->Instance) == ((uint32_t)DMA1_Stream3))? DMA_FLAG_FEIF3_7 :\ + ((uint32_t)((__HANDLE__)->Instance) == ((uint32_t)DMA2_Stream3))? DMA_FLAG_FEIF3_7 :\ + ((uint32_t)((__HANDLE__)->Instance) == ((uint32_t)DMA1_Stream7))? DMA_FLAG_FEIF3_7 :\ + ((uint32_t)((__HANDLE__)->Instance) == ((uint32_t)DMA2_Stream7))? DMA_FLAG_FEIF3_7 :\ + (uint32_t)0x00000000) + +/** + * @brief Return the current DMA Stream direct mode error flag. + * @param __HANDLE__: DMA handle + * @retval The specified direct mode error flag index. + */ +#define __HAL_DMA_GET_DME_FLAG_INDEX(__HANDLE__)\ +(((uint32_t)((__HANDLE__)->Instance) == ((uint32_t)DMA1_Stream0))? DMA_FLAG_DMEIF0_4 :\ + ((uint32_t)((__HANDLE__)->Instance) == ((uint32_t)DMA2_Stream0))? DMA_FLAG_DMEIF0_4 :\ + ((uint32_t)((__HANDLE__)->Instance) == ((uint32_t)DMA1_Stream4))? DMA_FLAG_DMEIF0_4 :\ + ((uint32_t)((__HANDLE__)->Instance) == ((uint32_t)DMA2_Stream4))? DMA_FLAG_DMEIF0_4 :\ + ((uint32_t)((__HANDLE__)->Instance) == ((uint32_t)DMA1_Stream1))? DMA_FLAG_DMEIF1_5 :\ + ((uint32_t)((__HANDLE__)->Instance) == ((uint32_t)DMA2_Stream1))? DMA_FLAG_DMEIF1_5 :\ + ((uint32_t)((__HANDLE__)->Instance) == ((uint32_t)DMA1_Stream5))? DMA_FLAG_DMEIF1_5 :\ + ((uint32_t)((__HANDLE__)->Instance) == ((uint32_t)DMA2_Stream5))? DMA_FLAG_DMEIF1_5 :\ + ((uint32_t)((__HANDLE__)->Instance) == ((uint32_t)DMA1_Stream2))? DMA_FLAG_DMEIF2_6 :\ + ((uint32_t)((__HANDLE__)->Instance) == ((uint32_t)DMA2_Stream2))? DMA_FLAG_DMEIF2_6 :\ + ((uint32_t)((__HANDLE__)->Instance) == ((uint32_t)DMA1_Stream6))? DMA_FLAG_DMEIF2_6 :\ + ((uint32_t)((__HANDLE__)->Instance) == ((uint32_t)DMA2_Stream6))? DMA_FLAG_DMEIF2_6 :\ + ((uint32_t)((__HANDLE__)->Instance) == ((uint32_t)DMA1_Stream3))? DMA_FLAG_DMEIF3_7 :\ + ((uint32_t)((__HANDLE__)->Instance) == ((uint32_t)DMA2_Stream3))? DMA_FLAG_DMEIF3_7 :\ + ((uint32_t)((__HANDLE__)->Instance) == ((uint32_t)DMA1_Stream7))? DMA_FLAG_DMEIF3_7 :\ + ((uint32_t)((__HANDLE__)->Instance) == ((uint32_t)DMA2_Stream7))? DMA_FLAG_DMEIF3_7 :\ + (uint32_t)0x00000000) + +/** + * @brief Returns the current BDMA Channel Global interrupt flag. + * @param __HANDLE__: DMA handle + * @retval The specified transfer error flag index. + */ +#if defined(BDMA1) +#define __HAL_BDMA_GET_GI_FLAG_INDEX(__HANDLE__)\ +(((uint32_t)((__HANDLE__)->Instance) == ((uint32_t)BDMA1_Channel0))? BDMA_ISR_GIF0 :\ + ((uint32_t)((__HANDLE__)->Instance) == ((uint32_t)BDMA2_Channel0))? BDMA_ISR_GIF0 :\ + ((uint32_t)((__HANDLE__)->Instance) == ((uint32_t)BDMA1_Channel1))? BDMA_ISR_GIF1 :\ + ((uint32_t)((__HANDLE__)->Instance) == ((uint32_t)BDMA2_Channel1))? BDMA_ISR_GIF1 :\ + ((uint32_t)((__HANDLE__)->Instance) == ((uint32_t)BDMA1_Channel2))? BDMA_ISR_GIF2 :\ + ((uint32_t)((__HANDLE__)->Instance) == ((uint32_t)BDMA2_Channel2))? BDMA_ISR_GIF2 :\ + ((uint32_t)((__HANDLE__)->Instance) == ((uint32_t)BDMA1_Channel3))? BDMA_ISR_GIF3 :\ + ((uint32_t)((__HANDLE__)->Instance) == ((uint32_t)BDMA2_Channel3))? BDMA_ISR_GIF3 :\ + ((uint32_t)((__HANDLE__)->Instance) == ((uint32_t)BDMA1_Channel4))? BDMA_ISR_GIF4 :\ + ((uint32_t)((__HANDLE__)->Instance) == ((uint32_t)BDMA2_Channel4))? BDMA_ISR_GIF4 :\ + ((uint32_t)((__HANDLE__)->Instance) == ((uint32_t)BDMA1_Channel5))? BDMA_ISR_GIF5 :\ + ((uint32_t)((__HANDLE__)->Instance) == ((uint32_t)BDMA2_Channel5))? BDMA_ISR_GIF5 :\ + ((uint32_t)((__HANDLE__)->Instance) == ((uint32_t)BDMA1_Channel6))? BDMA_ISR_GIF6 :\ + ((uint32_t)((__HANDLE__)->Instance) == ((uint32_t)BDMA2_Channel6))? BDMA_ISR_GIF6 :\ + ((uint32_t)((__HANDLE__)->Instance) == ((uint32_t)BDMA1_Channel7))? BDMA_ISR_GIF7 :\ + ((uint32_t)((__HANDLE__)->Instance) == ((uint32_t)BDMA2_Channel7))? BDMA_ISR_GIF7 :\ + (uint32_t)0x00000000) +#else +#define __HAL_BDMA_GET_GI_FLAG_INDEX(__HANDLE__)\ +(((uint32_t)((__HANDLE__)->Instance) == ((uint32_t)BDMA_Channel0))? BDMA_ISR_GIF0 :\ + ((uint32_t)((__HANDLE__)->Instance) == ((uint32_t)BDMA_Channel1))? BDMA_ISR_GIF1 :\ + ((uint32_t)((__HANDLE__)->Instance) == ((uint32_t)BDMA_Channel2))? BDMA_ISR_GIF2 :\ + ((uint32_t)((__HANDLE__)->Instance) == ((uint32_t)BDMA_Channel3))? BDMA_ISR_GIF3 :\ + ((uint32_t)((__HANDLE__)->Instance) == ((uint32_t)BDMA_Channel4))? BDMA_ISR_GIF4 :\ + ((uint32_t)((__HANDLE__)->Instance) == ((uint32_t)BDMA_Channel5))? BDMA_ISR_GIF5 :\ + ((uint32_t)((__HANDLE__)->Instance) == ((uint32_t)BDMA_Channel6))? BDMA_ISR_GIF6 :\ + ((uint32_t)((__HANDLE__)->Instance) == ((uint32_t)BDMA_Channel7))? BDMA_ISR_GIF7 :\ + (uint32_t)0x00000000) +#endif /* BDMA1 */ + +/** + * @brief Get the DMA Stream pending flags. + * @param __HANDLE__: DMA handle + * @param __FLAG__: Get the specified flag. + * This parameter can be any combination of the following values: + * @arg DMA_FLAG_TCIFx: Transfer complete flag. + * @arg DMA_FLAG_HTIFx: Half transfer complete flag. + * @arg DMA_FLAG_TEIFx: Transfer error flag. + * @arg DMA_FLAG_DMEIFx: Direct mode error flag. + * @arg DMA_FLAG_FEIFx: FIFO error flag. + * Where x can be 0_4, 1_5, 2_6 or 3_7 to select the DMA Stream flag. + * @retval The state of FLAG (SET or RESET). + */ +#if defined(BDMA1) +#define __HAL_DMA_GET_FLAG(__HANDLE__, __FLAG__)\ +(((uint32_t)((__HANDLE__)->Instance) > (uint32_t)BDMA1_Channel7)? (BDMA2->ISR & (__FLAG__)) :\ + ((uint32_t)((__HANDLE__)->Instance) > (uint32_t)DMA2_Stream7 )? (BDMA1->ISR & (__FLAG__)) :\ + ((uint32_t)((__HANDLE__)->Instance) > (uint32_t)DMA2_Stream3 )? (DMA2->HISR & (__FLAG__)) :\ + ((uint32_t)((__HANDLE__)->Instance) > (uint32_t)DMA1_Stream7 )? (DMA2->LISR & (__FLAG__)) :\ + ((uint32_t)((__HANDLE__)->Instance) > (uint32_t)DMA1_Stream3 )? (DMA1->HISR & (__FLAG__)) : (DMA1->LISR & (__FLAG__))) +#else +#define __HAL_DMA_GET_FLAG(__HANDLE__, __FLAG__)\ +(((uint32_t)((__HANDLE__)->Instance) > (uint32_t)DMA2_Stream7)? (BDMA->ISR & (__FLAG__)) :\ + ((uint32_t)((__HANDLE__)->Instance) > (uint32_t)DMA2_Stream3)? (DMA2->HISR & (__FLAG__)) :\ + ((uint32_t)((__HANDLE__)->Instance) > (uint32_t)DMA1_Stream7)? (DMA2->LISR & (__FLAG__)) :\ + ((uint32_t)((__HANDLE__)->Instance) > (uint32_t)DMA1_Stream3)? (DMA1->HISR & (__FLAG__)) : (DMA1->LISR & (__FLAG__))) +#endif /* BDMA1 */ + +/** + * @brief Clear the DMA Stream pending flags. + * @param __HANDLE__: DMA handle + * @param __FLAG__: specifies the flag to clear. + * This parameter can be any combination of the following values: + * @arg DMA_FLAG_TCIFx: Transfer complete flag. + * @arg DMA_FLAG_HTIFx: Half transfer complete flag. + * @arg DMA_FLAG_TEIFx: Transfer error flag. + * @arg DMA_FLAG_DMEIFx: Direct mode error flag. + * @arg DMA_FLAG_FEIFx: FIFO error flag. + * Where x can be 0_4, 1_5, 2_6 or 3_7 to select the DMA Stream flag. + * @retval None + */ +#if defined(BDMA1) +#define __HAL_DMA_CLEAR_FLAG(__HANDLE__, __FLAG__) \ +(((uint32_t)((__HANDLE__)->Instance) > (uint32_t)BDMA1_Channel7)? (BDMA2->IFCR = (__FLAG__)) :\ + ((uint32_t)((__HANDLE__)->Instance) > (uint32_t)DMA2_Stream7)? (BDMA1->IFCR = (__FLAG__)) :\ + ((uint32_t)((__HANDLE__)->Instance) > (uint32_t)DMA2_Stream3)? (DMA2->HIFCR = (__FLAG__)) :\ + ((uint32_t)((__HANDLE__)->Instance) > (uint32_t)DMA1_Stream7)? (DMA2->LIFCR = (__FLAG__)) :\ + ((uint32_t)((__HANDLE__)->Instance) > (uint32_t)DMA1_Stream3)? (DMA1->HIFCR = (__FLAG__)) : (DMA1->LIFCR = (__FLAG__))) +#else +#define __HAL_DMA_CLEAR_FLAG(__HANDLE__, __FLAG__) \ +(((uint32_t)((__HANDLE__)->Instance) > (uint32_t)DMA2_Stream7)? (BDMA->IFCR = (__FLAG__)) :\ + ((uint32_t)((__HANDLE__)->Instance) > (uint32_t)DMA2_Stream3)? (DMA2->HIFCR = (__FLAG__)) :\ + ((uint32_t)((__HANDLE__)->Instance) > (uint32_t)DMA1_Stream7)? (DMA2->LIFCR = (__FLAG__)) :\ + ((uint32_t)((__HANDLE__)->Instance) > (uint32_t)DMA1_Stream3)? (DMA1->HIFCR = (__FLAG__)) : (DMA1->LIFCR = (__FLAG__))) +#endif /* BDMA1 */ + +#define DMA_TO_BDMA_IT(__DMA_IT__) \ +((((__DMA_IT__) & (DMA_IT_TC | DMA_IT_HT | DMA_IT_TE)) == (DMA_IT_TC | DMA_IT_HT | DMA_IT_TE)) ? (BDMA_CCR_TCIE | BDMA_CCR_HTIE |BDMA_CCR_TEIE) :\ + (((__DMA_IT__) & (DMA_IT_TC | DMA_IT_HT)) == (DMA_IT_TC | DMA_IT_HT)) ? (BDMA_CCR_TCIE | BDMA_CCR_HTIE) :\ + (((__DMA_IT__) & (DMA_IT_HT | DMA_IT_TE)) == (DMA_IT_HT | DMA_IT_TE)) ? (BDMA_CCR_HTIE |BDMA_CCR_TEIE) :\ + (((__DMA_IT__) & (DMA_IT_TC | DMA_IT_TE)) == (DMA_IT_TC | DMA_IT_TE)) ? (BDMA_CCR_TCIE |BDMA_CCR_TEIE) :\ + ((__DMA_IT__) == DMA_IT_TC) ? BDMA_CCR_TCIE :\ + ((__DMA_IT__) == DMA_IT_HT) ? BDMA_CCR_HTIE :\ + ((__DMA_IT__) == DMA_IT_TE) ? BDMA_CCR_TEIE :\ + (uint32_t)0x00000000) + + +#define __HAL_BDMA_CHANNEL_ENABLE_IT(__HANDLE__, __INTERRUPT__) \ +(((BDMA_Channel_TypeDef *)(__HANDLE__)->Instance)->CCR |= (DMA_TO_BDMA_IT(__INTERRUPT__))) + +#define __HAL_DMA_STREAM_ENABLE_IT(__HANDLE__, __INTERRUPT__) (((__INTERRUPT__) != DMA_IT_FE)? \ +(((DMA_Stream_TypeDef *)(__HANDLE__)->Instance)->CR |= (__INTERRUPT__)) : (((DMA_Stream_TypeDef *)(__HANDLE__)->Instance)->FCR |= (__INTERRUPT__))) + +/** + * @brief Enable the specified DMA Stream interrupts. + * @param __HANDLE__: DMA handle + * @param __INTERRUPT__: specifies the DMA interrupt sources to be enabled or disabled. + * This parameter can be one of the following values: + * @arg DMA_IT_TC: Transfer complete interrupt mask. + * @arg DMA_IT_HT: Half transfer complete interrupt mask. + * @arg DMA_IT_TE: Transfer error interrupt mask. + * @arg DMA_IT_FE: FIFO error interrupt mask. + * @arg DMA_IT_DME: Direct mode error interrupt. + * @retval None + */ +#define __HAL_DMA_ENABLE_IT(__HANDLE__, __INTERRUPT__) ((IS_DMA_STREAM_INSTANCE((__HANDLE__)->Instance))?\ + (__HAL_DMA_STREAM_ENABLE_IT((__HANDLE__), (__INTERRUPT__))) :\ + (__HAL_BDMA_CHANNEL_ENABLE_IT((__HANDLE__), (__INTERRUPT__)))) + + +#define __HAL_BDMA_CHANNEL_DISABLE_IT(__HANDLE__, __INTERRUPT__) (((BDMA_Channel_TypeDef *)(__HANDLE__)->Instance)->CCR &= ~(DMA_TO_BDMA_IT(__INTERRUPT__))) + +#define __HAL_DMA_STREAM_DISABLE_IT(__HANDLE__, __INTERRUPT__) (((__INTERRUPT__) != DMA_IT_FE)? \ +(((DMA_Stream_TypeDef *)(__HANDLE__)->Instance)->CR &= ~(__INTERRUPT__)) : (((DMA_Stream_TypeDef *)(__HANDLE__)->Instance)->FCR &= ~(__INTERRUPT__))) + +/** + * @brief Disable the specified DMA Stream interrupts. + * @param __HANDLE__: DMA handle + * @param __INTERRUPT__: specifies the DMA interrupt sources to be enabled or disabled. + * This parameter can be one of the following values: + * @arg DMA_IT_TC: Transfer complete interrupt mask. + * @arg DMA_IT_HT: Half transfer complete interrupt mask. + * @arg DMA_IT_TE: Transfer error interrupt mask. + * @arg DMA_IT_FE: FIFO error interrupt mask. + * @arg DMA_IT_DME: Direct mode error interrupt. + * @retval None + */ +#define __HAL_DMA_DISABLE_IT(__HANDLE__, __INTERRUPT__) ((IS_DMA_STREAM_INSTANCE((__HANDLE__)->Instance))?\ + (__HAL_DMA_STREAM_DISABLE_IT((__HANDLE__), (__INTERRUPT__))) :\ + (__HAL_BDMA_CHANNEL_DISABLE_IT((__HANDLE__), (__INTERRUPT__)))) + + +#define __HAL_BDMA_CHANNEL_GET_IT_SOURCE(__HANDLE__, __INTERRUPT__) ((((BDMA_Channel_TypeDef *)(__HANDLE__)->Instance)->CCR & (DMA_TO_BDMA_IT(__INTERRUPT__)))) + +#define __HAL_DMA_STREAM_GET_IT_SOURCE(__HANDLE__, __INTERRUPT__) (((__INTERRUPT__) != DMA_IT_FE)? \ + (((DMA_Stream_TypeDef *)(__HANDLE__)->Instance)->CR & (__INTERRUPT__)) : \ + (((DMA_Stream_TypeDef *)(__HANDLE__)->Instance)->FCR & (__INTERRUPT__))) + +/** + * @brief Check whether the specified DMA Stream interrupt is enabled or not. + * @param __HANDLE__: DMA handle + * @param __INTERRUPT__: specifies the DMA interrupt source to check. + * This parameter can be one of the following values: + * @arg DMA_IT_TC: Transfer complete interrupt mask. + * @arg DMA_IT_HT: Half transfer complete interrupt mask. + * @arg DMA_IT_TE: Transfer error interrupt mask. + * @arg DMA_IT_FE: FIFO error interrupt mask. + * @arg DMA_IT_DME: Direct mode error interrupt. + * @retval The state of DMA_IT. + */ +#define __HAL_DMA_GET_IT_SOURCE(__HANDLE__, __INTERRUPT__) ((IS_DMA_STREAM_INSTANCE((__HANDLE__)->Instance))? \ + (__HAL_DMA_STREAM_GET_IT_SOURCE((__HANDLE__), (__INTERRUPT__))) :\ + (__HAL_BDMA_CHANNEL_GET_IT_SOURCE((__HANDLE__), (__INTERRUPT__)))) + +/** + * @brief Writes the number of data units to be transferred on the DMA Stream. + * @param __HANDLE__: DMA handle + * @param __COUNTER__: Number of data units to be transferred (from 0 to 65535) + * Number of data items depends only on the Peripheral data format. + * + * @note If Peripheral data format is Bytes: number of data units is equal + * to total number of bytes to be transferred. + * + * @note If Peripheral data format is Half-Word: number of data units is + * equal to total number of bytes to be transferred / 2. + * + * @note If Peripheral data format is Word: number of data units is equal + * to total number of bytes to be transferred / 4. + * + * @retval The number of remaining data units in the current DMAy Streamx transfer. + */ +#define __HAL_DMA_SET_COUNTER(__HANDLE__, __COUNTER__) ((IS_DMA_STREAM_INSTANCE((__HANDLE__)->Instance))? \ + (((DMA_Stream_TypeDef *)(__HANDLE__)->Instance)->NDTR = (uint16_t)(__COUNTER__)) :\ + (((BDMA_Channel_TypeDef *)(__HANDLE__)->Instance)->CNDTR = (uint16_t)(__COUNTER__))) + +/** + * @brief Returns the number of remaining data units in the current DMAy Streamx transfer. + * @param __HANDLE__: DMA handle + * + * @retval The number of remaining data units in the current DMA Stream transfer. + */ +#define __HAL_DMA_GET_COUNTER(__HANDLE__) ((IS_DMA_STREAM_INSTANCE((__HANDLE__)->Instance))? \ + (((DMA_Stream_TypeDef *)(__HANDLE__)->Instance)->NDTR) :\ + (((BDMA_Channel_TypeDef *)(__HANDLE__)->Instance)->CNDTR)) + +/** + * @} + */ + +/* Include DMA HAL Extension module */ +#include "stm32h7xx_hal_dma_ex.h" + +/* Exported functions --------------------------------------------------------*/ + +/** @defgroup DMA_Exported_Functions DMA Exported Functions + * @brief DMA Exported functions + * @{ + */ + +/** @defgroup DMA_Exported_Functions_Group1 Initialization and de-initialization functions + * @brief Initialization and de-initialization functions + * @{ + */ +HAL_StatusTypeDef HAL_DMA_Init(DMA_HandleTypeDef *hdma); +HAL_StatusTypeDef HAL_DMA_DeInit(DMA_HandleTypeDef *hdma); +/** + * @} + */ + +/** @defgroup DMA_Exported_Functions_Group2 I/O operation functions + * @brief I/O operation functions + * @{ + */ +HAL_StatusTypeDef HAL_DMA_Start (DMA_HandleTypeDef *hdma, uint32_t SrcAddress, uint32_t DstAddress, uint32_t DataLength); +HAL_StatusTypeDef HAL_DMA_Start_IT(DMA_HandleTypeDef *hdma, uint32_t SrcAddress, uint32_t DstAddress, uint32_t DataLength); +HAL_StatusTypeDef HAL_DMA_Abort(DMA_HandleTypeDef *hdma); +HAL_StatusTypeDef HAL_DMA_Abort_IT(DMA_HandleTypeDef *hdma); +HAL_StatusTypeDef HAL_DMA_PollForTransfer(DMA_HandleTypeDef *hdma, HAL_DMA_LevelCompleteTypeDef CompleteLevel, uint32_t Timeout); +void HAL_DMA_IRQHandler(DMA_HandleTypeDef *hdma); +HAL_StatusTypeDef HAL_DMA_RegisterCallback(DMA_HandleTypeDef *hdma, HAL_DMA_CallbackIDTypeDef CallbackID, void (* pCallback)(DMA_HandleTypeDef *_hdma)); +HAL_StatusTypeDef HAL_DMA_UnRegisterCallback(DMA_HandleTypeDef *hdma, HAL_DMA_CallbackIDTypeDef CallbackID); + +/** + * @} + */ + +/** @defgroup DMA_Exported_Functions_Group3 Peripheral State functions + * @brief Peripheral State functions + * @{ + */ +HAL_DMA_StateTypeDef HAL_DMA_GetState(DMA_HandleTypeDef *hdma); +uint32_t HAL_DMA_GetError(DMA_HandleTypeDef *hdma); +/** + * @} + */ +/** + * @} + */ +/* Private Constants -------------------------------------------------------------*/ +/** @defgroup DMA_Private_Constants DMA Private Constants + * @brief DMA private defines and constants + * @{ + */ +/** + * @} + */ + +/* Private macros ------------------------------------------------------------*/ +/** @defgroup DMA_Private_Macros DMA Private Macros + * @brief DMA private macros + * @{ + */ + +#if defined(ADC3) +#define IS_DMA_REQUEST(REQUEST) (((REQUEST) <= DMA_REQUEST_ADC3)) +#else +#define IS_DMA_REQUEST(REQUEST) (((REQUEST) <= DMA_REQUEST_USART10_TX)) +#endif /* ADC3 */ + +#if defined(ADC3) +#define IS_BDMA_REQUEST(REQUEST) (((REQUEST) <= BDMA_REQUEST_ADC3)) +#else +#define IS_BDMA_REQUEST(REQUEST) (((REQUEST) <= BDMA_REQUEST_DFSDM2_FLT0)) +#endif /* ADC3 */ + +#define IS_DMA_DIRECTION(DIRECTION) (((DIRECTION) == DMA_PERIPH_TO_MEMORY ) || \ + ((DIRECTION) == DMA_MEMORY_TO_PERIPH) || \ + ((DIRECTION) == DMA_MEMORY_TO_MEMORY)) + +#define IS_DMA_BUFFER_SIZE(SIZE) (((SIZE) >= 0x01U) && ((SIZE) < 0x10000U)) + +#define IS_DMA_PERIPHERAL_INC_STATE(STATE) (((STATE) == DMA_PINC_ENABLE) || \ + ((STATE) == DMA_PINC_DISABLE)) + +#define IS_DMA_MEMORY_INC_STATE(STATE) (((STATE) == DMA_MINC_ENABLE) || \ + ((STATE) == DMA_MINC_DISABLE)) + +#define IS_DMA_PERIPHERAL_DATA_SIZE(SIZE) (((SIZE) == DMA_PDATAALIGN_BYTE) || \ + ((SIZE) == DMA_PDATAALIGN_HALFWORD) || \ + ((SIZE) == DMA_PDATAALIGN_WORD)) + +#define IS_DMA_MEMORY_DATA_SIZE(SIZE) (((SIZE) == DMA_MDATAALIGN_BYTE) || \ + ((SIZE) == DMA_MDATAALIGN_HALFWORD) || \ + ((SIZE) == DMA_MDATAALIGN_WORD )) + +#define IS_DMA_MODE(MODE) (((MODE) == DMA_NORMAL ) || \ + ((MODE) == DMA_CIRCULAR) || \ + ((MODE) == DMA_PFCTRL) || \ + ((MODE) == DMA_DOUBLE_BUFFER_M0) || \ + ((MODE) == DMA_DOUBLE_BUFFER_M1)) + +#define IS_DMA_PRIORITY(PRIORITY) (((PRIORITY) == DMA_PRIORITY_LOW ) || \ + ((PRIORITY) == DMA_PRIORITY_MEDIUM) || \ + ((PRIORITY) == DMA_PRIORITY_HIGH) || \ + ((PRIORITY) == DMA_PRIORITY_VERY_HIGH)) + +#define IS_DMA_FIFO_MODE_STATE(STATE) (((STATE) == DMA_FIFOMODE_DISABLE ) || \ + ((STATE) == DMA_FIFOMODE_ENABLE)) + +#define IS_DMA_FIFO_THRESHOLD(THRESHOLD) (((THRESHOLD) == DMA_FIFO_THRESHOLD_1QUARTERFULL ) || \ + ((THRESHOLD) == DMA_FIFO_THRESHOLD_HALFFULL) || \ + ((THRESHOLD) == DMA_FIFO_THRESHOLD_3QUARTERSFULL) || \ + ((THRESHOLD) == DMA_FIFO_THRESHOLD_FULL)) + +#define IS_DMA_MEMORY_BURST(BURST) (((BURST) == DMA_MBURST_SINGLE) || \ + ((BURST) == DMA_MBURST_INC4) || \ + ((BURST) == DMA_MBURST_INC8) || \ + ((BURST) == DMA_MBURST_INC16)) + +#define IS_DMA_PERIPHERAL_BURST(BURST) (((BURST) == DMA_PBURST_SINGLE) || \ + ((BURST) == DMA_PBURST_INC4) || \ + ((BURST) == DMA_PBURST_INC8) || \ + ((BURST) == DMA_PBURST_INC16)) +/** + * @} + */ + +/* Private functions ---------------------------------------------------------*/ +/** @defgroup DMA_Private_Functions DMA Private Functions + * @brief DMA private functions + * @{ + */ +/** + * @} + */ + +/** + * @} + */ + +/** + * @} + */ + +#ifdef __cplusplus +} +#endif + +#endif /* STM32H7xx_HAL_DMA_H */ + +/************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/ diff --git a/source/hic_hal/stm32/stm32h743ii/STM32H7xx_HAL_Driver/Inc/stm32h7xx_hal_dma_ex.h b/source/hic_hal/stm32/stm32h743ii/STM32H7xx_HAL_Driver/Inc/stm32h7xx_hal_dma_ex.h new file mode 100644 index 000000000..481a20442 --- /dev/null +++ b/source/hic_hal/stm32/stm32h743ii/STM32H7xx_HAL_Driver/Inc/stm32h7xx_hal_dma_ex.h @@ -0,0 +1,312 @@ +/** + ****************************************************************************** + * @file stm32h7xx_hal_dma_ex.h + * @author MCD Application Team + * @brief Header file of DMA HAL extension module. + ****************************************************************************** + * @attention + * + *

© COPYRIGHT(c) 2017 STMicroelectronics. + * All rights reserved.

+ * + * This software component is licensed by ST under BSD 3-Clause license, + * the "License"; You may not use this file except in compliance with the + * License. You may obtain a copy of the License at: + * opensource.org/licenses/BSD-3-Clause + * + ****************************************************************************** + */ + +/* Define to prevent recursive inclusion -------------------------------------*/ +#ifndef STM32H7xx_HAL_DMA_EX_H +#define STM32H7xx_HAL_DMA_EX_H + +#ifdef __cplusplus + extern "C" { +#endif + +/* Includes ------------------------------------------------------------------*/ +#include "stm32h7xx_hal_def.h" + +/** @addtogroup STM32H7xx_HAL_Driver + * @{ + */ + +/** @addtogroup DMAEx + * @{ + */ + +/* Exported types ------------------------------------------------------------*/ +/** @defgroup DMAEx_Exported_Types DMAEx Exported Types + * @brief DMAEx Exported types + * @{ + */ + +/** + * @brief HAL DMA Memory definition + */ +typedef enum +{ + MEMORY0 = 0x00U, /*!< Memory 0 */ + MEMORY1 = 0x01U, /*!< Memory 1 */ + +}HAL_DMA_MemoryTypeDef; + +/** + * @brief HAL DMAMUX Synchronization configuration structure definition + */ +typedef struct +{ + uint32_t SyncSignalID; /*!< Specifies the synchronization signal gating the DMA request in periodic mode. + This parameter can be a value of @ref DMAEx_MUX_SyncSignalID_selection */ + + uint32_t SyncPolarity; /*!< Specifies the polarity of the signal on which the DMA request is synchronized. + This parameter can be a value of @ref DMAEx_MUX_SyncPolarity_selection */ + + FunctionalState SyncEnable; /*!< Specifies if the synchronization shall be enabled or disabled + This parameter can take the value ENABLE or DISABLE*/ + + + FunctionalState EventEnable; /*!< Specifies if an event shall be generated once the RequestNumber is reached. + This parameter can take the value ENABLE or DISABLE */ + + uint32_t RequestNumber; /*!< Specifies the number of DMA request that will be authorized after a sync event. + This parameters can be in the range 1 to 32 */ + +}HAL_DMA_MuxSyncConfigTypeDef; + + +/** + * @brief HAL DMAMUX request generator parameters structure definition + */ +typedef struct +{ + uint32_t SignalID; /*!< Specifies the ID of the signal used for DMAMUX request generator + This parameter can be a value of @ref DMAEx_MUX_SignalGeneratorID_selection */ + + uint32_t Polarity; /*!< Specifies the polarity of the signal on which the request is generated. + This parameter can be a value of @ref DMAEx_MUX_RequestGeneneratorPolarity_selection */ + + uint32_t RequestNumber; /*!< Specifies the number of DMA request that will be generated after a signal event. + This parameters can be in the range 1 to 32 */ + +}HAL_DMA_MuxRequestGeneratorConfigTypeDef; + +/** + * @} + */ + +/* Exported constants --------------------------------------------------------*/ + +/** @defgroup DMAEx_Exported_Constants DMA Exported Constants + * @brief DMAEx Exported constants + * @{ + */ + +/** @defgroup DMAEx_MUX_SyncSignalID_selection DMAEx MUX SyncSignalID selection + * @brief DMAEx MUX SyncSignalID selection + * @{ + */ +#define HAL_DMAMUX1_SYNC_DMAMUX1_CH0_EVT 0U /*!< DMAMUX1 synchronization Signal is DMAMUX1 Channel0 Event */ +#define HAL_DMAMUX1_SYNC_DMAMUX1_CH1_EVT 1U /*!< DMAMUX1 synchronization Signal is DMAMUX1 Channel1 Event */ +#define HAL_DMAMUX1_SYNC_DMAMUX1_CH2_EVT 2U /*!< DMAMUX1 synchronization Signal is DMAMUX1 Channel2 Event */ +#define HAL_DMAMUX1_SYNC_LPTIM1_OUT 3U /*!< DMAMUX1 synchronization Signal is LPTIM1 OUT */ +#define HAL_DMAMUX1_SYNC_LPTIM2_OUT 4U /*!< DMAMUX1 synchronization Signal is LPTIM2 OUT */ +#define HAL_DMAMUX1_SYNC_LPTIM3_OUT 5U /*!< DMAMUX1 synchronization Signal is LPTIM3 OUT */ +#define HAL_DMAMUX1_SYNC_EXTI0 6U /*!< DMAMUX1 synchronization Signal is EXTI0 IT */ +#define HAL_DMAMUX1_SYNC_TIM12_TRGO 7U /*!< DMAMUX1 synchronization Signal is TIM12 TRGO */ + +#define HAL_DMAMUX2_SYNC_DMAMUX2_CH0_EVT 0U /*!< DMAMUX2 synchronization Signal is DMAMUX2 Channel0 Event */ +#define HAL_DMAMUX2_SYNC_DMAMUX2_CH1_EVT 1U /*!< DMAMUX2 synchronization Signal is DMAMUX2 Channel1 Event */ +#define HAL_DMAMUX2_SYNC_DMAMUX2_CH2_EVT 2U /*!< DMAMUX2 synchronization Signal is DMAMUX2 Channel2 Event */ +#define HAL_DMAMUX2_SYNC_DMAMUX2_CH3_EVT 3U /*!< DMAMUX2 synchronization Signal is DMAMUX2 Channel3 Event */ +#define HAL_DMAMUX2_SYNC_DMAMUX2_CH4_EVT 4U /*!< DMAMUX2 synchronization Signal is DMAMUX2 Channel4 Event */ +#define HAL_DMAMUX2_SYNC_DMAMUX2_CH5_EVT 5U /*!< DMAMUX2 synchronization Signal is DMAMUX2 Channel5 Event */ +#define HAL_DMAMUX2_SYNC_LPUART1_RX_WKUP 6U /*!< DMAMUX2 synchronization Signal is LPUART1 RX Wakeup */ +#define HAL_DMAMUX2_SYNC_LPUART1_TX_WKUP 7U /*!< DMAMUX2 synchronization Signal is LPUART1 TX Wakeup */ +#define HAL_DMAMUX2_SYNC_LPTIM2_OUT 8U /*!< DMAMUX2 synchronization Signal is LPTIM2 output */ +#define HAL_DMAMUX2_SYNC_LPTIM3_OUT 9U /*!< DMAMUX2 synchronization Signal is LPTIM3 output */ +#define HAL_DMAMUX2_SYNC_I2C4_WKUP 10U /*!< DMAMUX2 synchronization Signal is I2C4 Wakeup */ +#define HAL_DMAMUX2_SYNC_SPI6_WKUP 11U /*!< DMAMUX2 synchronization Signal is SPI6 Wakeup */ +#define HAL_DMAMUX2_SYNC_COMP1_OUT 12U /*!< DMAMUX2 synchronization Signal is Comparator 1 output */ +#define HAL_DMAMUX2_SYNC_RTC_WKUP 13U /*!< DMAMUX2 synchronization Signal is RTC Wakeup */ +#define HAL_DMAMUX2_SYNC_EXTI0 14U /*!< DMAMUX2 synchronization Signal is EXTI0 IT */ +#define HAL_DMAMUX2_SYNC_EXTI2 15U /*!< DMAMUX2 synchronization Signal is EXTI2 IT */ + +/** + * @} + */ + +/** @defgroup DMAEx_MUX_SyncPolarity_selection DMAEx MUX SyncPolarity selection + * @brief DMAEx MUX SyncPolarity selection + * @{ + */ +#define HAL_DMAMUX_SYNC_NO_EVENT 0x00000000U /*!< block synchronization events */ +#define HAL_DMAMUX_SYNC_RISING DMAMUX_CxCR_SPOL_0 /*!< synchronize with rising edge events */ +#define HAL_DMAMUX_SYNC_FALLING DMAMUX_CxCR_SPOL_1 /*!< synchronize with falling edge events */ +#define HAL_DMAMUX_SYNC_RISING_FALLING DMAMUX_CxCR_SPOL /*!< synchronize with rising and falling edge events */ + +/** + * @} + */ + + +/** @defgroup DMAEx_MUX_SignalGeneratorID_selection DMAEx MUX SignalGeneratorID selection + * @brief DMAEx MUX SignalGeneratorID selection + * @{ + */ +#define HAL_DMAMUX1_REQ_GEN_DMAMUX1_CH0_EVT 0U /*!< DMAMUX1 Request generator Signal is DMAMUX1 Channel0 Event */ +#define HAL_DMAMUX1_REQ_GEN_DMAMUX1_CH1_EVT 1U /*!< DMAMUX1 Request generator Signal is DMAMUX1 Channel1 Event */ +#define HAL_DMAMUX1_REQ_GEN_DMAMUX1_CH2_EVT 2U /*!< DMAMUX1 Request generator Signal is DMAMUX1 Channel2 Event */ +#define HAL_DMAMUX1_REQ_GEN_LPTIM1_OUT 3U /*!< DMAMUX1 Request generator Signal is LPTIM1 OUT */ +#define HAL_DMAMUX1_REQ_GEN_LPTIM2_OUT 4U /*!< DMAMUX1 Request generator Signal is LPTIM2 OUT */ +#define HAL_DMAMUX1_REQ_GEN_LPTIM3_OUT 5U /*!< DMAMUX1 Request generator Signal is LPTIM3 OUT */ +#define HAL_DMAMUX1_REQ_GEN_EXTI0 6U /*!< DMAMUX1 Request generator Signal is EXTI0 IT */ +#define HAL_DMAMUX1_REQ_GEN_TIM12_TRGO 7U /*!< DMAMUX1 Request generator Signal is TIM12 TRGO */ + +#define HAL_DMAMUX2_REQ_GEN_DMAMUX2_CH0_EVT 0U /*!< DMAMUX2 Request generator Signal is DMAMUX2 Channel0 Event */ +#define HAL_DMAMUX2_REQ_GEN_DMAMUX2_CH1_EVT 1U /*!< DMAMUX2 Request generator Signal is DMAMUX2 Channel1 Event */ +#define HAL_DMAMUX2_REQ_GEN_DMAMUX2_CH2_EVT 2U /*!< DMAMUX2 Request generator Signal is DMAMUX2 Channel2 Event */ +#define HAL_DMAMUX2_REQ_GEN_DMAMUX2_CH3_EVT 3U /*!< DMAMUX2 Request generator Signal is DMAMUX2 Channel3 Event */ +#define HAL_DMAMUX2_REQ_GEN_DMAMUX2_CH4_EVT 4U /*!< DMAMUX2 Request generator Signal is DMAMUX2 Channel4 Event */ +#define HAL_DMAMUX2_REQ_GEN_DMAMUX2_CH5_EVT 5U /*!< DMAMUX2 Request generator Signal is DMAMUX2 Channel5 Event */ +#define HAL_DMAMUX2_REQ_GEN_DMAMUX2_CH6_EVT 6U /*!< DMAMUX2 Request generator Signal is DMAMUX2 Channel6 Event */ +#define HAL_DMAMUX2_REQ_GEN_LPUART1_RX_WKUP 7U /*!< DMAMUX2 Request generator Signal is LPUART1 RX Wakeup */ +#define HAL_DMAMUX2_REQ_GEN_LPUART1_TX_WKUP 8U /*!< DMAMUX2 Request generator Signal is LPUART1 TX Wakeup */ +#define HAL_DMAMUX2_REQ_GEN_LPTIM2_WKUP 9U /*!< DMAMUX2 Request generator Signal is LPTIM2 Wakeup */ +#define HAL_DMAMUX2_REQ_GEN_LPTIM2_OUT 10U /*!< DMAMUX2 Request generator Signal is LPTIM2 OUT */ +#define HAL_DMAMUX2_REQ_GEN_LPTIM3_WKUP 11U /*!< DMAMUX2 Request generator Signal is LPTIM3 Wakeup */ +#define HAL_DMAMUX2_REQ_GEN_LPTIM3_OUT 12U /*!< DMAMUX2 Request generator Signal is LPTIM3 OUT */ +#if defined(LPTIM4) +#define HAL_DMAMUX2_REQ_GEN_LPTIM4_WKUP 13U /*!< DMAMUX2 Request generator Signal is LPTIM4 Wakeup */ +#endif /* LPTIM4 */ +#if defined(LPTIM5) +#define HAL_DMAMUX2_REQ_GEN_LPTIM5_WKUP 14U /*!< DMAMUX2 Request generator Signal is LPTIM5 Wakeup */ +#endif /* LPTIM5 */ +#define HAL_DMAMUX2_REQ_GEN_I2C4_WKUP 15U /*!< DMAMUX2 Request generator Signal is I2C4 Wakeup */ +#define HAL_DMAMUX2_REQ_GEN_SPI6_WKUP 16U /*!< DMAMUX2 Request generator Signal is SPI6 Wakeup */ +#define HAL_DMAMUX2_REQ_GEN_COMP1_OUT 17U /*!< DMAMUX2 Request generator Signal is Comparator 1 output */ +#define HAL_DMAMUX2_REQ_GEN_COMP2_OUT 18U /*!< DMAMUX2 Request generator Signal is Comparator 2 output */ +#define HAL_DMAMUX2_REQ_GEN_RTC_WKUP 19U /*!< DMAMUX2 Request generator Signal is RTC Wakeup */ +#define HAL_DMAMUX2_REQ_GEN_EXTI0 20U /*!< DMAMUX2 Request generator Signal is EXTI0 */ +#define HAL_DMAMUX2_REQ_GEN_EXTI2 21U /*!< DMAMUX2 Request generator Signal is EXTI2 */ +#define HAL_DMAMUX2_REQ_GEN_I2C4_IT_EVT 22U /*!< DMAMUX2 Request generator Signal is I2C4 IT Event */ +#define HAL_DMAMUX2_REQ_GEN_SPI6_IT 23U /*!< DMAMUX2 Request generator Signal is SPI6 IT */ +#define HAL_DMAMUX2_REQ_GEN_LPUART1_TX_IT 24U /*!< DMAMUX2 Request generator Signal is LPUART1 Tx IT */ +#define HAL_DMAMUX2_REQ_GEN_LPUART1_RX_IT 25U /*!< DMAMUX2 Request generator Signal is LPUART1 Rx IT */ +#if defined(ADC3) +#define HAL_DMAMUX2_REQ_GEN_ADC3_IT 26U /*!< DMAMUX2 Request generator Signal is ADC3 IT */ +#define HAL_DMAMUX2_REQ_GEN_ADC3_AWD1_OUT 27U /*!< DMAMUX2 Request generator Signal is ADC3 Analog Watchdog 1 output */ +#endif /* ADC3 */ +#define HAL_DMAMUX2_REQ_GEN_BDMA_CH0_IT 28U /*!< DMAMUX2 Request generator Signal is BDMA Channel 0 IT */ +#define HAL_DMAMUX2_REQ_GEN_BDMA_CH1_IT 29U /*!< DMAMUX2 Request generator Signal is BDMA Channel 1 IT */ + + +/** + * @} + */ + +/** @defgroup DMAEx_MUX_RequestGeneneratorPolarity_selection DMAEx MUX RequestGeneneratorPolarity selection + * @brief DMAEx MUX RequestGeneneratorPolarity selection + * @{ + */ +#define HAL_DMAMUX_REQ_GEN_NO_EVENT 0x00000000U /*!< block request generator events */ +#define HAL_DMAMUX_REQ_GEN_RISING DMAMUX_RGxCR_GPOL_0 /*!< generate request on rising edge events */ +#define HAL_DMAMUX_REQ_GEN_FALLING DMAMUX_RGxCR_GPOL_1 /*!< generate request on falling edge events */ +#define HAL_DMAMUX_REQ_GEN_RISING_FALLING DMAMUX_RGxCR_GPOL /*!< generate request on rising and falling edge events */ + +/** + * @} + */ + +/** + * @} + */ + +/* Exported functions --------------------------------------------------------*/ +/** @defgroup DMAEx_Exported_Functions DMAEx Exported Functions + * @brief DMAEx Exported functions + * @{ + */ + +/** @defgroup DMAEx_Exported_Functions_Group1 Extended features functions + * @brief Extended features functions + * @{ + */ + +/* IO operation functions *******************************************************/ +HAL_StatusTypeDef HAL_DMAEx_MultiBufferStart(DMA_HandleTypeDef *hdma, uint32_t SrcAddress, uint32_t DstAddress, uint32_t SecondMemAddress, uint32_t DataLength); +HAL_StatusTypeDef HAL_DMAEx_MultiBufferStart_IT(DMA_HandleTypeDef *hdma, uint32_t SrcAddress, uint32_t DstAddress, uint32_t SecondMemAddress, uint32_t DataLength); +HAL_StatusTypeDef HAL_DMAEx_ChangeMemory(DMA_HandleTypeDef *hdma, uint32_t Address, HAL_DMA_MemoryTypeDef memory); +HAL_StatusTypeDef HAL_DMAEx_ConfigMuxSync(DMA_HandleTypeDef *hdma, HAL_DMA_MuxSyncConfigTypeDef *pSyncConfig); +HAL_StatusTypeDef HAL_DMAEx_ConfigMuxRequestGenerator (DMA_HandleTypeDef *hdma, HAL_DMA_MuxRequestGeneratorConfigTypeDef *pRequestGeneratorConfig); +HAL_StatusTypeDef HAL_DMAEx_EnableMuxRequestGenerator (DMA_HandleTypeDef *hdma); +HAL_StatusTypeDef HAL_DMAEx_DisableMuxRequestGenerator (DMA_HandleTypeDef *hdma); + +void HAL_DMAEx_MUX_IRQHandler(DMA_HandleTypeDef *hdma); +/** + * @} + */ +/** + * @} + */ + +/* Private macros ------------------------------------------------------------*/ +/** @defgroup DMAEx_Private_Macros DMA Private Macros + * @brief DMAEx private macros + * @{ + */ + +#define IS_DMA_DMAMUX_SYNC_SIGNAL_ID(SIGNAL_ID) ((SIGNAL_ID) <= HAL_DMAMUX1_SYNC_TIM12_TRGO) +#define IS_BDMA_DMAMUX_SYNC_SIGNAL_ID(SIGNAL_ID) ((SIGNAL_ID) <= HAL_DMAMUX2_SYNC_EXTI2) + +#define IS_DMAMUX_SYNC_REQUEST_NUMBER(REQUEST_NUMBER) (((REQUEST_NUMBER) > 0U) && ((REQUEST_NUMBER) <= 32U)) + +#define IS_DMAMUX_SYNC_POLARITY(POLARITY) (((POLARITY) == HAL_DMAMUX_SYNC_NO_EVENT) || \ + ((POLARITY) == HAL_DMAMUX_SYNC_RISING) || \ + ((POLARITY) == HAL_DMAMUX_SYNC_FALLING) || \ + ((POLARITY) == HAL_DMAMUX_SYNC_RISING_FALLING)) + +#define IS_DMAMUX_SYNC_STATE(SYNC) (((SYNC) == DISABLE) || ((SYNC) == ENABLE)) + +#define IS_DMAMUX_SYNC_EVENT(EVENT) (((EVENT) == DISABLE) || \ + ((EVENT) == ENABLE)) + +#define IS_DMA_DMAMUX_REQUEST_GEN_SIGNAL_ID(SIGNAL_ID) ((SIGNAL_ID) <= HAL_DMAMUX1_REQ_GEN_TIM12_TRGO) +#define IS_BDMA_DMAMUX_REQUEST_GEN_SIGNAL_ID(SIGNAL_ID) ((SIGNAL_ID) <= HAL_DMAMUX2_REQ_GEN_BDMA_CH1_IT) + +#define IS_DMAMUX_REQUEST_GEN_REQUEST_NUMBER(REQUEST_NUMBER) (((REQUEST_NUMBER) > 0U) && ((REQUEST_NUMBER) <= 32U)) + +#define IS_DMAMUX_REQUEST_GEN_POLARITY(POLARITY) (((POLARITY) == HAL_DMAMUX_REQ_GEN_NO_EVENT) || \ + ((POLARITY) == HAL_DMAMUX_REQ_GEN_RISING) || \ + ((POLARITY) == HAL_DMAMUX_REQ_GEN_FALLING) || \ + ((POLARITY) == HAL_DMAMUX_REQ_GEN_RISING_FALLING)) + +/** + * @} + */ + +/* Private functions ---------------------------------------------------------*/ +/** @defgroup DMAEx_Private_Functions DMAEx Private Functions + * @brief DMAEx Private functions + * @{ + */ +/** + * @} + */ + +/** + * @} + */ + +/** + * @} + */ + +#ifdef __cplusplus +} +#endif + +#endif /* STM32H7xx_HAL_DMA_H */ + +/************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/ diff --git a/source/hic_hal/stm32/stm32h743ii/STM32H7xx_HAL_Driver/Inc/stm32h7xx_hal_eth.h b/source/hic_hal/stm32/stm32h743ii/STM32H7xx_HAL_Driver/Inc/stm32h7xx_hal_eth.h new file mode 100644 index 000000000..23068be4d --- /dev/null +++ b/source/hic_hal/stm32/stm32h743ii/STM32H7xx_HAL_Driver/Inc/stm32h7xx_hal_eth.h @@ -0,0 +1,1680 @@ +/** + ****************************************************************************** + * @file stm32h7xx_hal_eth.h + * @author MCD Application Team + * @brief Header file of ETH HAL module. + ****************************************************************************** + * @attention + * + *

© Copyright (c) 2017 STMicroelectronics. + * All rights reserved.

+ * + * This software component is licensed by ST under BSD 3-Clause license, + * the "License"; You may not use this file except in compliance with the + * License. You may obtain a copy of the License at: + * opensource.org/licenses/BSD-3-Clause + * + ****************************************************************************** + */ + +/* Define to prevent recursive inclusion -------------------------------------*/ +#ifndef STM32H7xx_HAL_ETH_H +#define STM32H7xx_HAL_ETH_H + +#ifdef __cplusplus + extern "C" { +#endif + +#if defined(ETH) +/* Includes ------------------------------------------------------------------*/ +#include "stm32h7xx_hal_def.h" + +/** @addtogroup STM32H7xx_HAL_Driver + * @{ + */ + +/** @addtogroup ETH + * @{ + */ + +/* Exported types ------------------------------------------------------------*/ +#ifndef ETH_TX_DESC_CNT + #define ETH_TX_DESC_CNT 4U +#endif + +#ifndef ETH_RX_DESC_CNT + #define ETH_RX_DESC_CNT 4U +#endif + +/*********************** Descriptors struct def section ************************/ +/** @defgroup ETH_Exported_Types ETH Exported Types + * @{ + */ + +/** + * @brief ETH DMA Descriptor structure definition + */ +typedef struct +{ + __IO uint32_t DESC0; + __IO uint32_t DESC1; + __IO uint32_t DESC2; + __IO uint32_t DESC3; + __IO uint32_t BackupAddr0; /* used to store rx buffer 1 address */ + __IO uint32_t BackupAddr1; /* used to store rx buffer 2 address */ +}ETH_DMADescTypeDef; +/** + * + */ + +/** + * @brief ETH Buffers List structure definition + */ +typedef struct __ETH_BufferTypeDef +{ + uint8_t *buffer; /*gState = HAL_ETH_STATE_RESET; \ + (__HANDLE__)->RxState = HAL_ETH_STATE_RESET; \ + (__HANDLE__)->MspInitCallback = NULL; \ + (__HANDLE__)->MspDeInitCallback = NULL; \ + } while(0) +#else +#define __HAL_ETH_RESET_HANDLE_STATE(__HANDLE__) do{ \ + (__HANDLE__)->gState = HAL_ETH_STATE_RESET; \ + (__HANDLE__)->RxState = HAL_ETH_STATE_RESET; \ + } while(0) +#endif /*USE_HAL_ETH_REGISTER_CALLBACKS */ + +/** + * @brief Enables the specified ETHERNET DMA interrupts. + * @param __HANDLE__ : ETH Handle + * @param __INTERRUPT__: specifies the ETHERNET DMA interrupt sources to be + * enabled @ref ETH_DMA_Interrupts + * @retval None + */ +#define __HAL_ETH_DMA_ENABLE_IT(__HANDLE__, __INTERRUPT__) ((__HANDLE__)->Instance->DMACIER |= (__INTERRUPT__)) + +/** + * @brief Disables the specified ETHERNET DMA interrupts. + * @param __HANDLE__ : ETH Handle + * @param __INTERRUPT__: specifies the ETHERNET DMA interrupt sources to be + * disabled. @ref ETH_DMA_Interrupts + * @retval None + */ +#define __HAL_ETH_DMA_DISABLE_IT(__HANDLE__, __INTERRUPT__) ((__HANDLE__)->Instance->DMACIER &= ~(__INTERRUPT__)) + +/** + * @brief Gets the ETHERNET DMA IT source enabled or disabled. + * @param __HANDLE__ : ETH Handle + * @param __INTERRUPT__: specifies the interrupt source to get . @ref ETH_DMA_Interrupts + * @retval The ETH DMA IT Source enabled or disabled + */ +#define __HAL_ETH_DMA_GET_IT_SOURCE(__HANDLE__, __INTERRUPT__) (((__HANDLE__)->Instance->DMACIER & (__INTERRUPT__)) == (__INTERRUPT__)) + +/** + * @brief Gets the ETHERNET DMA IT pending bit. + * @param __HANDLE__ : ETH Handle + * @param __INTERRUPT__: specifies the interrupt source to get . @ref ETH_DMA_Interrupts + * @retval The state of ETH DMA IT (SET or RESET) + */ +#define __HAL_ETH_DMA_GET_IT(__HANDLE__, __INTERRUPT__) (((__HANDLE__)->Instance->DMACSR & (__INTERRUPT__)) == (__INTERRUPT__)) + +/** + * @brief Clears the ETHERNET DMA IT pending bit. + * @param __HANDLE__ : ETH Handle + * @param __INTERRUPT__: specifies the interrupt pending bit to clear. @ref ETH_DMA_Interrupts + * @retval None + */ +#define __HAL_ETH_DMA_CLEAR_IT(__HANDLE__, __INTERRUPT__) ((__HANDLE__)->Instance->DMACSR = (__INTERRUPT__)) + +/** + * @brief Checks whether the specified ETHERNET DMA flag is set or not. +* @param __HANDLE__: ETH Handle + * @param __FLAG__: specifies the flag to check. @ref ETH_DMA_Status_Flags + * @retval The state of ETH DMA FLAG (SET or RESET). + */ +#define __HAL_ETH_DMA_GET_FLAG(__HANDLE__, __FLAG__) (((__HANDLE__)->Instance->DMACSR &( __FLAG__)) == ( __FLAG__)) + +/** + * @brief Clears the specified ETHERNET DMA flag. +* @param __HANDLE__: ETH Handle + * @param __FLAG__: specifies the flag to check. @ref ETH_DMA_Status_Flags + * @retval The state of ETH DMA FLAG (SET or RESET). + */ +#define __HAL_ETH_DMA_CLEAR_FLAG(__HANDLE__, __FLAG__) ((__HANDLE__)->Instance->DMACSR = ( __FLAG__)) + +/** + * @brief Enables the specified ETHERNET MAC interrupts. + * @param __HANDLE__ : ETH Handle + * @param __INTERRUPT__: specifies the ETHERNET MAC interrupt sources to be + * enabled @ref ETH_MAC_Interrupts + * @retval None + */ +#define __HAL_ETH_MAC_ENABLE_IT(__HANDLE__, __INTERRUPT__) ((__HANDLE__)->Instance->MACIER |= (__INTERRUPT__)) + +/** + * @brief Disables the specified ETHERNET MAC interrupts. + * @param __HANDLE__ : ETH Handle + * @param __INTERRUPT__: specifies the ETHERNET MAC interrupt sources to be + * enabled @ref ETH_MAC_Interrupts + * @retval None + */ +#define __HAL_ETH_MAC_DISABLE_IT(__HANDLE__, __INTERRUPT__) ((__HANDLE__)->Instance->MACIER &= ~(__INTERRUPT__)) + +/** + * @brief Checks whether the specified ETHERNET MAC flag is set or not. + * @param __HANDLE__: ETH Handle + * @param __INTERRUPT__: specifies the flag to check. @ref ETH_MAC_Interrupts + * @retval The state of ETH MAC IT (SET or RESET). + */ +#define __HAL_ETH_MAC_GET_IT(__HANDLE__, __INTERRUPT__) (((__HANDLE__)->Instance->MACISR &( __INTERRUPT__)) == ( __INTERRUPT__)) + +/*!< External interrupt line 86 Connected to the ETH wakeup EXTI Line */ +#define ETH_WAKEUP_EXTI_LINE ((uint32_t)0x00400000U) /* !< 86 - 64 = 22 */ + +/** + * @brief Enable the ETH WAKEUP Exti Line. + * @param __EXTI_LINE__: specifies the ETH WAKEUP Exti sources to be enabled. + * @arg ETH_WAKEUP_EXTI_LINE + * @retval None. + */ +#define __HAL_ETH_WAKEUP_EXTI_ENABLE_IT(__EXTI_LINE__) (EXTI_D1->IMR3 |= (__EXTI_LINE__)) + +/** + * @brief checks whether the specified ETH WAKEUP Exti interrupt flag is set or not. + * @param __EXTI_LINE__: specifies the ETH WAKEUP Exti sources to be cleared. + * @arg ETH_WAKEUP_EXTI_LINE + * @retval EXTI ETH WAKEUP Line Status. + */ +#define __HAL_ETH_WAKEUP_EXTI_GET_FLAG(__EXTI_LINE__) (EXTI_D1->PR3 & (__EXTI_LINE__)) + +/** + * @brief Clear the ETH WAKEUP Exti flag. + * @param __EXTI_LINE__: specifies the ETH WAKEUP Exti sources to be cleared. + * @arg ETH_WAKEUP_EXTI_LINE + * @retval None. + */ +#define __HAL_ETH_WAKEUP_EXTI_CLEAR_FLAG(__EXTI_LINE__) (EXTI_D1->PR3 = (__EXTI_LINE__)) + +#if defined(DUAL_CORE) +/** + * @brief Enable the ETH WAKEUP Exti Line by Core2. + * @param __EXTI_LINE__: specifies the ETH WAKEUP Exti sources to be enabled. + * @arg ETH_WAKEUP_EXTI_LINE + * @retval None. + */ +#define __HAL_ETH_WAKEUP_EXTID2_ENABLE_IT(__EXTI_LINE__) (EXTI_D2->IMR3 |= (__EXTI_LINE__)) + +/** + * @brief checks whether the specified ETH WAKEUP Exti interrupt flag is set or not. + * @param __EXTI_LINE__: specifies the ETH WAKEUP Exti sources to be cleared. + * @arg ETH_WAKEUP_EXTI_LINE + * @retval EXTI ETH WAKEUP Line Status. + */ +#define __HAL_ETH_WAKEUP_EXTID2_GET_FLAG(__EXTI_LINE__) (EXTI_D2->PR3 & (__EXTI_LINE__)) + +/** + * @brief Clear the ETH WAKEUP Exti flag. + * @param __EXTI_LINE__: specifies the ETH WAKEUP Exti sources to be cleared. + * @arg ETH_WAKEUP_EXTI_LINE + * @retval None. + */ +#define __HAL_ETH_WAKEUP_EXTID2_CLEAR_FLAG(__EXTI_LINE__) (EXTI_D2->PR3 = (__EXTI_LINE__)) +#endif + +/** + * @brief enable rising edge interrupt on selected EXTI line. + * @param __EXTI_LINE__: specifies the ETH WAKEUP EXTI sources to be disabled. + * @arg ETH_WAKEUP_EXTI_LINE + * @retval None + */ +#define __HAL_ETH_WAKEUP_EXTI_ENABLE_RISING_EDGE(__EXTI_LINE__) (EXTI->FTSR3 &= ~(__EXTI_LINE__)); \ + (EXTI->RTSR3 |= (__EXTI_LINE__)) + +/** + * @brief enable falling edge interrupt on selected EXTI line. + * @param __EXTI_LINE__: specifies the ETH WAKEUP EXTI sources to be disabled. + * @arg ETH_WAKEUP_EXTI_LINE + * @retval None + */ +#define __HAL_ETH_WAKEUP_EXTI_ENABLE_FALLING_EDGE(__EXTI_LINE__) (EXTI->RTSR3 &= ~(__EXTI_LINE__));\ + (EXTI->FTSR3 |= (__EXTI_LINE__)) + +/** + * @brief enable falling edge interrupt on selected EXTI line. + * @param __EXTI_LINE__: specifies the ETH WAKEUP EXTI sources to be disabled. + * @arg ETH_WAKEUP_EXTI_LINE + * @retval None + */ +#define __HAL_ETH_WAKEUP_EXTI_ENABLE_RISING_FALLING_EDGE(__EXTI_LINE__) (EXTI->RTSR3 |= (__EXTI_LINE__));\ + (EXTI->FTSR3 |= (__EXTI_LINE__)) + +/** + * @brief Generates a Software interrupt on selected EXTI line. + * @param __EXTI_LINE__: specifies the ETH WAKEUP EXTI sources to be disabled. + * @arg ETH_WAKEUP_EXTI_LINE + * @retval None + */ +#define __HAL_ETH_WAKEUP_EXTI_GENERATE_SWIT(__EXTI_LINE__) (EXTI->SWIER3 |= (__EXTI_LINE__)) + +/** + * @} + */ + +/* Include ETH HAL Extension module */ +#include "stm32h7xx_hal_eth_ex.h" + +/* Exported functions --------------------------------------------------------*/ + +/** @addtogroup ETH_Exported_Functions + * @{ + */ + +/** @addtogroup ETH_Exported_Functions_Group1 + * @{ + */ +/* Initialization and de initialization functions **********************************/ +HAL_StatusTypeDef HAL_ETH_Init(ETH_HandleTypeDef *heth); +HAL_StatusTypeDef HAL_ETH_DeInit(ETH_HandleTypeDef *heth); +void HAL_ETH_MspInit(ETH_HandleTypeDef *heth); +void HAL_ETH_MspDeInit(ETH_HandleTypeDef *heth); +HAL_StatusTypeDef HAL_ETH_DescAssignMemory(ETH_HandleTypeDef *heth, uint32_t Index, uint8_t *pBuffer1,uint8_t *pBuffer2); + +/* Callbacks Register/UnRegister functions ***********************************/ +#if (USE_HAL_ETH_REGISTER_CALLBACKS == 1) +HAL_StatusTypeDef HAL_ETH_RegisterCallback(ETH_HandleTypeDef *heth, HAL_ETH_CallbackIDTypeDef CallbackID, pETH_CallbackTypeDef pCallback); +HAL_StatusTypeDef HAL_ETH_UnRegisterCallback(ETH_HandleTypeDef *heth, HAL_ETH_CallbackIDTypeDef CallbackID); +#endif /* USE_HAL_ETH_REGISTER_CALLBACKS */ + +/** + * @} + */ + +/** @addtogroup ETH_Exported_Functions_Group2 + * @{ + */ +/* IO operation functions *******************************************************/ +HAL_StatusTypeDef HAL_ETH_Start(ETH_HandleTypeDef *heth); +HAL_StatusTypeDef HAL_ETH_Start_IT(ETH_HandleTypeDef *heth); +HAL_StatusTypeDef HAL_ETH_Stop(ETH_HandleTypeDef *heth); +HAL_StatusTypeDef HAL_ETH_Stop_IT(ETH_HandleTypeDef *heth); + +uint8_t HAL_ETH_IsRxDataAvailable(ETH_HandleTypeDef *heth); +HAL_StatusTypeDef HAL_ETH_GetRxDataBuffer(ETH_HandleTypeDef *heth, ETH_BufferTypeDef *RxBuffer); +HAL_StatusTypeDef HAL_ETH_GetRxDataLength(ETH_HandleTypeDef *heth, uint32_t *Length); +HAL_StatusTypeDef HAL_ETH_GetRxDataInfo(ETH_HandleTypeDef *heth, ETH_RxPacketInfo *RxPacketInfo); +HAL_StatusTypeDef HAL_ETH_BuildRxDescriptors(ETH_HandleTypeDef *heth); + +HAL_StatusTypeDef HAL_ETH_Transmit(ETH_HandleTypeDef *heth, ETH_TxPacketConfig *pTxConfig, uint32_t Timeout); +HAL_StatusTypeDef HAL_ETH_Transmit_IT(ETH_HandleTypeDef *heth, ETH_TxPacketConfig *pTxConfig); + +HAL_StatusTypeDef HAL_ETH_WritePHYRegister(ETH_HandleTypeDef *heth, uint32_t PHYAddr, uint32_t PHYReg, uint32_t RegValue); +HAL_StatusTypeDef HAL_ETH_ReadPHYRegister(ETH_HandleTypeDef *heth, uint32_t PHYAddr, uint32_t PHYReg, uint32_t *pRegValue); + +void HAL_ETH_IRQHandler(ETH_HandleTypeDef *heth); +void HAL_ETH_TxCpltCallback(ETH_HandleTypeDef *heth); +void HAL_ETH_RxCpltCallback(ETH_HandleTypeDef *heth); +void HAL_ETH_DMAErrorCallback(ETH_HandleTypeDef *heth); +void HAL_ETH_MACErrorCallback(ETH_HandleTypeDef *heth); +void HAL_ETH_PMTCallback(ETH_HandleTypeDef *heth); +void HAL_ETH_EEECallback(ETH_HandleTypeDef *heth); +void HAL_ETH_WakeUpCallback(ETH_HandleTypeDef *heth); +/** + * @} + */ + +/** @addtogroup ETH_Exported_Functions_Group3 + * @{ + */ +/* Peripheral Control functions **********************************************/ +/* MAC & DMA Configuration APIs **********************************************/ +HAL_StatusTypeDef HAL_ETH_GetMACConfig(ETH_HandleTypeDef *heth, ETH_MACConfigTypeDef *macconf); +HAL_StatusTypeDef HAL_ETH_GetDMAConfig(ETH_HandleTypeDef *heth, ETH_DMAConfigTypeDef *dmaconf); +HAL_StatusTypeDef HAL_ETH_SetMACConfig(ETH_HandleTypeDef *heth, ETH_MACConfigTypeDef *macconf); +HAL_StatusTypeDef HAL_ETH_SetDMAConfig(ETH_HandleTypeDef *heth, ETH_DMAConfigTypeDef *dmaconf); +void HAL_ETH_SetMDIOClockRange(ETH_HandleTypeDef *heth); + +/* MAC VLAN Processing APIs ************************************************/ +void HAL_ETH_SetRxVLANIdentifier(ETH_HandleTypeDef *heth, uint32_t ComparisonBits, uint32_t VLANIdentifier); + +/* MAC L2 Packet Filtering APIs **********************************************/ +HAL_StatusTypeDef HAL_ETH_GetMACFilterConfig(ETH_HandleTypeDef *heth, ETH_MACFilterConfigTypeDef *pFilterConfig); +HAL_StatusTypeDef HAL_ETH_SetMACFilterConfig(ETH_HandleTypeDef *heth, ETH_MACFilterConfigTypeDef *pFilterConfig); +HAL_StatusTypeDef HAL_ETH_SetHashTable(ETH_HandleTypeDef *heth, uint32_t *pHashTable); +HAL_StatusTypeDef HAL_ETH_SetSourceMACAddrMatch(ETH_HandleTypeDef *heth, uint32_t AddrNbr, uint8_t *pMACAddr); + +/* MAC Power Down APIs *****************************************************/ +void HAL_ETH_EnterPowerDownMode(ETH_HandleTypeDef *heth, ETH_PowerDownConfigTypeDef *pPowerDownConfig); +void HAL_ETH_ExitPowerDownMode(ETH_HandleTypeDef *heth); +HAL_StatusTypeDef HAL_ETH_SetWakeUpFilter(ETH_HandleTypeDef *heth, uint32_t *pFilter, uint32_t Count); + +/** + * @} + */ + +/** @addtogroup ETH_Exported_Functions_Group4 + * @{ + */ +/* Peripheral State functions **************************************************/ +HAL_ETH_StateTypeDef HAL_ETH_GetState(ETH_HandleTypeDef *heth); +uint32_t HAL_ETH_GetError(ETH_HandleTypeDef *heth); +uint32_t HAL_ETH_GetDMAError(ETH_HandleTypeDef *heth); +uint32_t HAL_ETH_GetMACError(ETH_HandleTypeDef *heth); +uint32_t HAL_ETH_GetMACWakeUpSource(ETH_HandleTypeDef *heth); +/** + * @} + */ + +/** + * @} + */ + +/** + * @} + */ + +/** + * @} + */ + +#endif /* ETH */ + +#ifdef __cplusplus +} +#endif + +#endif /* STM32H7xx_HAL_ETH_H */ + + + +/************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/ diff --git a/source/hic_hal/stm32/stm32h743ii/STM32H7xx_HAL_Driver/Inc/stm32h7xx_hal_eth_ex.h b/source/hic_hal/stm32/stm32h743ii/STM32H7xx_HAL_Driver/Inc/stm32h7xx_hal_eth_ex.h new file mode 100644 index 000000000..833c6c33c --- /dev/null +++ b/source/hic_hal/stm32/stm32h743ii/STM32H7xx_HAL_Driver/Inc/stm32h7xx_hal_eth_ex.h @@ -0,0 +1,357 @@ +/** + ****************************************************************************** + * @file stm32h7xx_hal_eth_ex.h + * @author MCD Application Team + * @brief Header file of ETH HAL Extended module. + ****************************************************************************** + * @attention + * + *

© Copyright (c) 2017 STMicroelectronics. + * All rights reserved.

+ * + * This software component is licensed by ST under BSD 3-Clause license, + * the "License"; You may not use this file except in compliance with the + * License. You may obtain a copy of the License at: + * opensource.org/licenses/BSD-3-Clause + * + ****************************************************************************** + */ + +/* Define to prevent recursive inclusion -------------------------------------*/ +#ifndef STM32H7xx_HAL_ETH_EX_H +#define STM32H7xx_HAL_ETH_EX_H + +#ifdef __cplusplus + extern "C" { +#endif + +#if defined(ETH) + +/* Includes ------------------------------------------------------------------*/ +#include "stm32h7xx_hal_def.h" + +/** @addtogroup STM32H7xx_HAL_Driver + * @{ + */ + +/** @addtogroup ETHEx + * @{ + */ + +/* Exported types ------------------------------------------------------------*/ +/** @defgroup ETHEx_Exported_Types ETHEx Exported Types + * @{ + */ + +/** + * @brief ETH RX VLAN structure definition + */ +typedef struct{ + FunctionalState InnerVLANTagInStatus; /*!< Enables or disables Inner VLAN Tag in Rx Status */ + + uint32_t StripInnerVLANTag; /*!< Sets the Inner VLAN Tag Stripping on Receive + This parameter can be a value of @ref ETHEx_Rx_Inner_VLAN_Tag_Stripping */ + + FunctionalState InnerVLANTag; /*!< Enables or disables Inner VLAN Tag */ + + FunctionalState DoubleVLANProcessing; /*!< Enable or Disable double VLAN processing */ + + FunctionalState VLANTagHashTableMatch; /*!< Enable or Disable VLAN Tag Hash Table Match */ + + FunctionalState VLANTagInStatus; /*!< Enable or Disable VLAN Tag in Rx status */ + + uint32_t StripVLANTag; /*!< Set the VLAN Tag Stripping on Receive + This parameter can be a value of @ref ETHEx_Rx_VLAN_Tag_Stripping */ + + uint32_t VLANTypeCheck; /*!< Enable or Disable VLAN Type Check + This parameter can be a value of @ref ETHEx_VLAN_Type_Check */ + + FunctionalState VLANTagInverceMatch; /*!< Enable or disable VLAN Tag Inverse Match */ +}ETH_RxVLANConfigTypeDef; +/** + * + */ + +/** + * @brief ETH TX VLAN structure definition + */ +typedef struct{ + FunctionalState SourceTxDesc; /*!< Enable or Disable VLAN tag source from DMA tx descriptors */ + + FunctionalState SVLANType; /*!< Enable or Disable insertion of SVLAN type */ + + uint32_t VLANTagControl; /*!< Sets the VLAN tag control in tx packets + This parameter can be a value of @ref ETHEx_VLAN_Tag_Control */ +}ETH_TxVLANConfigTypeDef; +/** + * + */ + +/** + * @brief ETH L3 filter structure definition + */ +typedef struct{ + uint32_t Protocol; /*!< Sets the L3 filter protocol to IPv4 or IPv6 + This parameter can be a value of @ref ETHEx_L3_Protocol */ + + uint32_t SrcAddrFilterMatch; /*!< Sets the L3 filter source address match + This parameter can be a value of @ref ETHEx_L3_Source_Match */ + + uint32_t DestAddrFilterMatch; /*!< Sets the L3 filter destination address match + This parameter can be a value of @ref ETHEx_L3_Destination_Match */ + + uint32_t SrcAddrHigherBitsMatch; /*!< Sets the L3 filter source address higher bits match + This parameter can be a value from 0 to 31 */ + + uint32_t DestAddrHigherBitsMatch; /*!< Sets the L3 filter destination address higher bits match + This parameter can be a value from 0 to 31 */ + + uint32_t Ip4SrcAddr; /*!< Sets the L3 filter IPv4 source address if IPv4 protocol is used + This parameter can be a value from 0x0 to 0xFFFFFFFF */ + + uint32_t Ip4DestAddr; /*!< Sets the L3 filter IPv4 destination address if IPv4 protocol is used + This parameter can be a value from 0 to 0xFFFFFFFF */ + + uint32_t Ip6Addr[4]; /*!< Sets the L3 filter IPv6 address if IPv6 protocol is used + This parameter must be a table of 4 words (4* 32 bits) */ +}ETH_L3FilterConfigTypeDef; +/** + * + */ + +/** + * @brief ETH L4 filter structure definition + */ +typedef struct{ + uint32_t Protocol; /*!< Sets the L4 filter protocol to TCP or UDP + This parameter can be a value of @ref ETHEx_L4_Protocol */ + + uint32_t SrcPortFilterMatch; /*!< Sets the L4 filter source port match + This parameter can be a value of @ref ETHEx_L4_Source_Match */ + + uint32_t DestPortFilterMatch; /*!< Sets the L4 filter destination port match + This parameter can be a value of @ref ETHEx_L4_Destination_Match */ + + uint32_t SourcePort; /*!< Sets the L4 filter source port + This parameter must be a value from 0x0 to 0xFFFF */ + + uint32_t DestinationPort; /*!< Sets the L4 filter destination port + This parameter must be a value from 0x0 to 0xFFFF */ +}ETH_L4FilterConfigTypeDef; +/** + * + */ + +/** + * @} + */ + +/* Exported constants --------------------------------------------------------*/ +/** @defgroup ETHEx_Exported_Constants ETHEx Exported Constants + * @{ + */ + +/** @defgroup ETHEx_LPI_Event ETHEx LPI Event + * @{ + */ +#define ETH_TX_LPI_ENTRY ETH_MACLCSR_TLPIEN +#define ETH_TX_LPI_EXIT ETH_MACLCSR_TLPIEX +#define ETH_RX_LPI_ENTRY ETH_MACLCSR_RLPIEN +#define ETH_RX_LPI_EXIT ETH_MACLCSR_RLPIEX +/** + * @} + */ + +/** @defgroup ETHEx_L3_Filter ETHEx L3 Filter + * @{ + */ +#define ETH_L3_FILTER_0 ((uint32_t)0x00000000) +#define ETH_L3_FILTER_1 ((uint32_t)0x0000000C) +/** + * @} + */ + +/** @defgroup ETHEx_L4_Filter ETHEx L4 Filter + * @{ + */ +#define ETH_L4_FILTER_0 ((uint32_t)0x00000000) +#define ETH_L4_FILTER_1 ((uint32_t)0x0000000C) +/** + * @} + */ + +/** @defgroup ETHEx_L3_Protocol ETHEx L3 Protocol + * @{ + */ +#define ETH_L3_IPV6_MATCH ETH_MACL3L4CR_L3PEN +#define ETH_L3_IPV4_MATCH ((uint32_t)0x00000000) +/** + * @} + */ + +/** @defgroup ETHEx_L3_Source_Match ETHEx L3 Source Match + * @{ + */ +#define ETH_L3_SRC_ADDR_PERFECT_MATCH_ENABLE ETH_MACL3L4CR_L3SAM +#define ETH_L3_SRC_ADDR_INVERSE_MATCH_ENABLE (ETH_MACL3L4CR_L3SAM | ETH_MACL3L4CR_L3SAIM) +#define ETH_L3_SRC_ADDR_MATCH_DISABLE ((uint32_t)0x00000000) +/** + * @} + */ + +/** @defgroup ETHEx_L3_Destination_Match ETHEx L3 Destination Match + * @{ + */ +#define ETH_L3_DEST_ADDR_PERFECT_MATCH_ENABLE ETH_MACL3L4CR_L3DAM +#define ETH_L3_DEST_ADDR_INVERSE_MATCH_ENABLE (ETH_MACL3L4CR_L3DAM | ETH_MACL3L4CR_L3DAIM) +#define ETH_L3_DEST_ADDR_MATCH_DISABLE ((uint32_t)0x00000000) +/** + * @} + */ + +/** @defgroup ETHEx_L4_Protocol ETHEx L4 Protocol + * @{ + */ +#define ETH_L4_UDP_MATCH ETH_MACL3L4CR_L4PEN +#define ETH_L4_TCP_MATCH ((uint32_t)0x00000000) +/** + * @} + */ + +/** @defgroup ETHEx_L4_Source_Match ETHEx L4 Source Match + * @{ + */ +#define ETH_L4_SRC_PORT_PERFECT_MATCH_ENABLE ETH_MACL3L4CR_L4SPM +#define ETH_L4_SRC_PORT_INVERSE_MATCH_ENABLE (ETH_MACL3L4CR_L4SPM |ETH_MACL3L4CR_L4SPIM) +#define ETH_L4_SRC_PORT_MATCH_DISABLE ((uint32_t)0x00000000) +/** + * @} + */ + +/** @defgroup ETHEx_L4_Destination_Match ETHEx L4 Destination Match + * @{ + */ +#define ETH_L4_DEST_PORT_PERFECT_MATCH_ENABLE ETH_MACL3L4CR_L4DPM +#define ETH_L4_DEST_PORT_INVERSE_MATCH_ENABLE (ETH_MACL3L4CR_L4DPM | ETH_MACL3L4CR_L4DPIM) +#define ETH_L4_DEST_PORT_MATCH_DISABLE ((uint32_t)0x00000000) +/** + * @} + */ + +/** @defgroup ETHEx_Rx_Inner_VLAN_Tag_Stripping ETHEx Rx Inner VLAN Tag Stripping + * @{ + */ +#define ETH_INNERVLANTAGRXSTRIPPING_NONE ETH_MACVTR_EIVLS_DONOTSTRIP +#define ETH_INNERVLANTAGRXSTRIPPING_IFPASS ETH_MACVTR_EIVLS_STRIPIFPASS +#define ETH_INNERVLANTAGRXSTRIPPING_IFFAILS ETH_MACVTR_EIVLS_STRIPIFFAILS +#define ETH_INNERVLANTAGRXSTRIPPING_ALWAYS ETH_MACVTR_EIVLS_ALWAYSSTRIP +/** + * @} + */ + +/** @defgroup ETHEx_Rx_VLAN_Tag_Stripping ETHEx Rx VLAN Tag Stripping + * @{ + */ +#define ETH_VLANTAGRXSTRIPPING_NONE ETH_MACVTR_EVLS_DONOTSTRIP +#define ETH_VLANTAGRXSTRIPPING_IFPASS ETH_MACVTR_EVLS_STRIPIFPASS +#define ETH_VLANTAGRXSTRIPPING_IFFAILS ETH_MACVTR_EVLS_STRIPIFFAILS +#define ETH_VLANTAGRXSTRIPPING_ALWAYS ETH_MACVTR_EVLS_ALWAYSSTRIP +/** + * @} + */ + +/** @defgroup ETHEx_VLAN_Type_Check ETHEx VLAN Type Check + * @{ + */ +#define ETH_VLANTYPECHECK_DISABLE ETH_MACVTR_DOVLTC +#define ETH_VLANTYPECHECK_SVLAN (ETH_MACVTR_ERSVLM | ETH_MACVTR_ESVL) +#define ETH_VLANTYPECHECK_CVLAN ((uint32_t)0x00000000) +/** + * @} + */ + +/** @defgroup ETHEx_VLAN_Tag_Control ETHEx_VLAN_Tag_Control + * @{ + */ +#define ETH_VLANTAGCONTROL_NONE (ETH_MACVIR_VLP | ETH_MACVIR_VLC_NOVLANTAG) +#define ETH_VLANTAGCONTROL_DELETE (ETH_MACVIR_VLP | ETH_MACVIR_VLC_VLANTAGDELETE) +#define ETH_VLANTAGCONTROL_INSERT (ETH_MACVIR_VLP | ETH_MACVIR_VLC_VLANTAGINSERT) +#define ETH_VLANTAGCONTROL_REPLACE (ETH_MACVIR_VLP | ETH_MACVIR_VLC_VLANTAGREPLACE) +/** + * @} + */ + +/** @defgroup ETHEx_Tx_VLAN_Tag ETHEx Tx VLAN Tag + * @{ + */ +#define ETH_INNER_TX_VLANTAG ((uint32_t)0x00000001U) +#define ETH_OUTER_TX_VLANTAG ((uint32_t)0x00000000U) +/** + * @} + */ + +/** + * @} + */ + +/* Exported functions --------------------------------------------------------*/ +/** @addtogroup ETHEx_Exported_Functions + * @{ + */ + +/** @addtogroup ETHEx_Exported_Functions_Group1 + * @{ + */ +/* MAC ARP Offloading APIs ***************************************************/ +void HAL_ETHEx_EnableARPOffload(ETH_HandleTypeDef *heth); +void HAL_ETHEx_DisableARPOffload(ETH_HandleTypeDef *heth); +void HAL_ETHEx_SetARPAddressMatch(ETH_HandleTypeDef *heth, uint32_t IpAddress); + +/* MAC L3 L4 Filtering APIs ***************************************************/ +void HAL_ETHEx_EnableL3L4Filtering(ETH_HandleTypeDef *heth); +void HAL_ETHEx_DisableL3L4Filtering(ETH_HandleTypeDef *heth); +HAL_StatusTypeDef HAL_ETHEx_GetL3FilterConfig(ETH_HandleTypeDef *heth, uint32_t Filter, ETH_L3FilterConfigTypeDef *pL3FilterConfig); +HAL_StatusTypeDef HAL_ETHEx_GetL4FilterConfig(ETH_HandleTypeDef *heth, uint32_t Filter, ETH_L4FilterConfigTypeDef *pL4FilterConfig); +HAL_StatusTypeDef HAL_ETHEx_SetL3FilterConfig(ETH_HandleTypeDef *heth, uint32_t Filter, ETH_L3FilterConfigTypeDef *pL3FilterConfig); +HAL_StatusTypeDef HAL_ETHEx_SetL4FilterConfig(ETH_HandleTypeDef *heth, uint32_t Filter, ETH_L4FilterConfigTypeDef *pL4FilterConfig); + +/* MAC VLAN Processing APIs ************************************************/ +void HAL_ETHEx_EnableVLANProcessing(ETH_HandleTypeDef *heth); +void HAL_ETHEx_DisableVLANProcessing(ETH_HandleTypeDef *heth); +HAL_StatusTypeDef HAL_ETHEx_GetRxVLANConfig(ETH_HandleTypeDef *heth, ETH_RxVLANConfigTypeDef *pVlanConfig); +HAL_StatusTypeDef HAL_ETHEx_SetRxVLANConfig(ETH_HandleTypeDef *heth, ETH_RxVLANConfigTypeDef *pVlanConfig); +void HAL_ETHEx_SetVLANHashTable(ETH_HandleTypeDef *heth, uint32_t VLANHashTable); +HAL_StatusTypeDef HAL_ETHEx_GetTxVLANConfig(ETH_HandleTypeDef *heth, uint32_t VLANTag ,ETH_TxVLANConfigTypeDef *pVlanConfig); +HAL_StatusTypeDef HAL_ETHEx_SetTxVLANConfig(ETH_HandleTypeDef *heth, uint32_t VLANTag ,ETH_TxVLANConfigTypeDef *pVlanConfig); +void HAL_ETHEx_SetTxVLANIdentifier(ETH_HandleTypeDef *heth, uint32_t VLANTag ,uint32_t VLANIdentifier); + +/* Energy Efficient Ethernet APIs *********************************************/ +void HAL_ETHEx_EnterLPIMode(ETH_HandleTypeDef *heth, FunctionalState TxAutomate, FunctionalState TxClockStop); +void HAL_ETHEx_ExitLPIMode(ETH_HandleTypeDef *heth); +uint32_t HAL_ETHEx_GetMACLPIEvent(ETH_HandleTypeDef *heth); + +/** + * @} + */ + +/** + * @} + */ + +/** + * @} + */ + +/** + * @} + */ + +#endif /* ETH */ + +#ifdef __cplusplus +} +#endif + +#endif /* STM32H7xx_HAL_ETH_EX_H */ + +/************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/ diff --git a/source/hic_hal/stm32/stm32h743ii/STM32H7xx_HAL_Driver/Inc/stm32h7xx_hal_i2c.h b/source/hic_hal/stm32/stm32h743ii/STM32H7xx_HAL_Driver/Inc/stm32h7xx_hal_i2c.h new file mode 100644 index 000000000..d510a6dca --- /dev/null +++ b/source/hic_hal/stm32/stm32h743ii/STM32H7xx_HAL_Driver/Inc/stm32h7xx_hal_i2c.h @@ -0,0 +1,782 @@ +/** + ****************************************************************************** + * @file stm32h7xx_hal_i2c.h + * @author MCD Application Team + * @brief Header file of I2C HAL module. + ****************************************************************************** + * @attention + * + *

© Copyright (c) 2017 STMicroelectronics. + * All rights reserved.

+ * + * This software component is licensed by ST under BSD 3-Clause license, + * the "License"; You may not use this file except in compliance with the + * License. You may obtain a copy of the License at: + * opensource.org/licenses/BSD-3-Clause + * + ****************************************************************************** + */ + +/* Define to prevent recursive inclusion -------------------------------------*/ +#ifndef STM32H7xx_HAL_I2C_H +#define STM32H7xx_HAL_I2C_H + +#ifdef __cplusplus +extern "C" { +#endif + +/* Includes ------------------------------------------------------------------*/ +#include "stm32h7xx_hal_def.h" + +/** @addtogroup STM32H7xx_HAL_Driver + * @{ + */ + +/** @addtogroup I2C + * @{ + */ + +/* Exported types ------------------------------------------------------------*/ +/** @defgroup I2C_Exported_Types I2C Exported Types + * @{ + */ + +/** @defgroup I2C_Configuration_Structure_definition I2C Configuration Structure definition + * @brief I2C Configuration Structure definition + * @{ + */ +typedef struct +{ + uint32_t Timing; /*!< Specifies the I2C_TIMINGR_register value. + This parameter calculated by referring to I2C initialization + section in Reference manual */ + + uint32_t OwnAddress1; /*!< Specifies the first device own address. + This parameter can be a 7-bit or 10-bit address. */ + + uint32_t AddressingMode; /*!< Specifies if 7-bit or 10-bit addressing mode is selected. + This parameter can be a value of @ref I2C_ADDRESSING_MODE */ + + uint32_t DualAddressMode; /*!< Specifies if dual addressing mode is selected. + This parameter can be a value of @ref I2C_DUAL_ADDRESSING_MODE */ + + uint32_t OwnAddress2; /*!< Specifies the second device own address if dual addressing mode is selected + This parameter can be a 7-bit address. */ + + uint32_t OwnAddress2Masks; /*!< Specifies the acknowledge mask address second device own address if dual addressing mode is selected + This parameter can be a value of @ref I2C_OWN_ADDRESS2_MASKS */ + + uint32_t GeneralCallMode; /*!< Specifies if general call mode is selected. + This parameter can be a value of @ref I2C_GENERAL_CALL_ADDRESSING_MODE */ + + uint32_t NoStretchMode; /*!< Specifies if nostretch mode is selected. + This parameter can be a value of @ref I2C_NOSTRETCH_MODE */ + +} I2C_InitTypeDef; + +/** + * @} + */ + +/** @defgroup HAL_state_structure_definition HAL state structure definition + * @brief HAL State structure definition + * @note HAL I2C State value coding follow below described bitmap :\n + * b7-b6 Error information\n + * 00 : No Error\n + * 01 : Abort (Abort user request on going)\n + * 10 : Timeout\n + * 11 : Error\n + * b5 Peripheral initialization status\n + * 0 : Reset (peripheral not initialized)\n + * 1 : Init done (peripheral initialized and ready to use. HAL I2C Init function called)\n + * b4 (not used)\n + * x : Should be set to 0\n + * b3\n + * 0 : Ready or Busy (No Listen mode ongoing)\n + * 1 : Listen (peripheral in Address Listen Mode)\n + * b2 Intrinsic process state\n + * 0 : Ready\n + * 1 : Busy (peripheral busy with some configuration or internal operations)\n + * b1 Rx state\n + * 0 : Ready (no Rx operation ongoing)\n + * 1 : Busy (Rx operation ongoing)\n + * b0 Tx state\n + * 0 : Ready (no Tx operation ongoing)\n + * 1 : Busy (Tx operation ongoing) + * @{ + */ +typedef enum +{ + HAL_I2C_STATE_RESET = 0x00U, /*!< Peripheral is not yet Initialized */ + HAL_I2C_STATE_READY = 0x20U, /*!< Peripheral Initialized and ready for use */ + HAL_I2C_STATE_BUSY = 0x24U, /*!< An internal process is ongoing */ + HAL_I2C_STATE_BUSY_TX = 0x21U, /*!< Data Transmission process is ongoing */ + HAL_I2C_STATE_BUSY_RX = 0x22U, /*!< Data Reception process is ongoing */ + HAL_I2C_STATE_LISTEN = 0x28U, /*!< Address Listen Mode is ongoing */ + HAL_I2C_STATE_BUSY_TX_LISTEN = 0x29U, /*!< Address Listen Mode and Data Transmission + process is ongoing */ + HAL_I2C_STATE_BUSY_RX_LISTEN = 0x2AU, /*!< Address Listen Mode and Data Reception + process is ongoing */ + HAL_I2C_STATE_ABORT = 0x60U, /*!< Abort user request ongoing */ + HAL_I2C_STATE_TIMEOUT = 0xA0U, /*!< Timeout state */ + HAL_I2C_STATE_ERROR = 0xE0U /*!< Error */ + +} HAL_I2C_StateTypeDef; + +/** + * @} + */ + +/** @defgroup HAL_mode_structure_definition HAL mode structure definition + * @brief HAL Mode structure definition + * @note HAL I2C Mode value coding follow below described bitmap :\n + * b7 (not used)\n + * x : Should be set to 0\n + * b6\n + * 0 : None\n + * 1 : Memory (HAL I2C communication is in Memory Mode)\n + * b5\n + * 0 : None\n + * 1 : Slave (HAL I2C communication is in Slave Mode)\n + * b4\n + * 0 : None\n + * 1 : Master (HAL I2C communication is in Master Mode)\n + * b3-b2-b1-b0 (not used)\n + * xxxx : Should be set to 0000 + * @{ + */ +typedef enum +{ + HAL_I2C_MODE_NONE = 0x00U, /*!< No I2C communication on going */ + HAL_I2C_MODE_MASTER = 0x10U, /*!< I2C communication is in Master Mode */ + HAL_I2C_MODE_SLAVE = 0x20U, /*!< I2C communication is in Slave Mode */ + HAL_I2C_MODE_MEM = 0x40U /*!< I2C communication is in Memory Mode */ + +} HAL_I2C_ModeTypeDef; + +/** + * @} + */ + +/** @defgroup I2C_Error_Code_definition I2C Error Code definition + * @brief I2C Error Code definition + * @{ + */ +#define HAL_I2C_ERROR_NONE (0x00000000U) /*!< No error */ +#define HAL_I2C_ERROR_BERR (0x00000001U) /*!< BERR error */ +#define HAL_I2C_ERROR_ARLO (0x00000002U) /*!< ARLO error */ +#define HAL_I2C_ERROR_AF (0x00000004U) /*!< ACKF error */ +#define HAL_I2C_ERROR_OVR (0x00000008U) /*!< OVR error */ +#define HAL_I2C_ERROR_DMA (0x00000010U) /*!< DMA transfer error */ +#define HAL_I2C_ERROR_TIMEOUT (0x00000020U) /*!< Timeout error */ +#define HAL_I2C_ERROR_SIZE (0x00000040U) /*!< Size Management error */ +#define HAL_I2C_ERROR_DMA_PARAM (0x00000080U) /*!< DMA Parameter Error */ +#if (USE_HAL_I2C_REGISTER_CALLBACKS == 1) +#define HAL_I2C_ERROR_INVALID_CALLBACK (0x00000100U) /*!< Invalid Callback error */ +#endif /* USE_HAL_I2C_REGISTER_CALLBACKS */ +#define HAL_I2C_ERROR_INVALID_PARAM (0x00000200U) /*!< Invalid Parameters error */ +/** + * @} + */ + +/** @defgroup I2C_handle_Structure_definition I2C handle Structure definition + * @brief I2C handle Structure definition + * @{ + */ +typedef struct __I2C_HandleTypeDef +{ + I2C_TypeDef *Instance; /*!< I2C registers base address */ + + I2C_InitTypeDef Init; /*!< I2C communication parameters */ + + uint8_t *pBuffPtr; /*!< Pointer to I2C transfer buffer */ + + uint16_t XferSize; /*!< I2C transfer size */ + + __IO uint16_t XferCount; /*!< I2C transfer counter */ + + __IO uint32_t XferOptions; /*!< I2C sequantial transfer options, this parameter can + be a value of @ref I2C_XFEROPTIONS */ + + __IO uint32_t PreviousState; /*!< I2C communication Previous state */ + + HAL_StatusTypeDef(*XferISR)(struct __I2C_HandleTypeDef *hi2c, uint32_t ITFlags, uint32_t ITSources); /*!< I2C transfer IRQ handler function pointer */ + + DMA_HandleTypeDef *hdmatx; /*!< I2C Tx DMA handle parameters */ + + DMA_HandleTypeDef *hdmarx; /*!< I2C Rx DMA handle parameters */ + + HAL_LockTypeDef Lock; /*!< I2C locking object */ + + __IO HAL_I2C_StateTypeDef State; /*!< I2C communication state */ + + __IO HAL_I2C_ModeTypeDef Mode; /*!< I2C communication mode */ + + __IO uint32_t ErrorCode; /*!< I2C Error code */ + + __IO uint32_t AddrEventCount; /*!< I2C Address Event counter */ + +#if (USE_HAL_I2C_REGISTER_CALLBACKS == 1) + void (* MasterTxCpltCallback)(struct __I2C_HandleTypeDef *hi2c); /*!< I2C Master Tx Transfer completed callback */ + void (* MasterRxCpltCallback)(struct __I2C_HandleTypeDef *hi2c); /*!< I2C Master Rx Transfer completed callback */ + void (* SlaveTxCpltCallback)(struct __I2C_HandleTypeDef *hi2c); /*!< I2C Slave Tx Transfer completed callback */ + void (* SlaveRxCpltCallback)(struct __I2C_HandleTypeDef *hi2c); /*!< I2C Slave Rx Transfer completed callback */ + void (* ListenCpltCallback)(struct __I2C_HandleTypeDef *hi2c); /*!< I2C Listen Complete callback */ + void (* MemTxCpltCallback)(struct __I2C_HandleTypeDef *hi2c); /*!< I2C Memory Tx Transfer completed callback */ + void (* MemRxCpltCallback)(struct __I2C_HandleTypeDef *hi2c); /*!< I2C Memory Rx Transfer completed callback */ + void (* ErrorCallback)(struct __I2C_HandleTypeDef *hi2c); /*!< I2C Error callback */ + void (* AbortCpltCallback)(struct __I2C_HandleTypeDef *hi2c); /*!< I2C Abort callback */ + + void (* AddrCallback)(struct __I2C_HandleTypeDef *hi2c, uint8_t TransferDirection, uint16_t AddrMatchCode); /*!< I2C Slave Address Match callback */ + + void (* MspInitCallback)(struct __I2C_HandleTypeDef *hi2c); /*!< I2C Msp Init callback */ + void (* MspDeInitCallback)(struct __I2C_HandleTypeDef *hi2c); /*!< I2C Msp DeInit callback */ + +#endif /* USE_HAL_I2C_REGISTER_CALLBACKS */ +} I2C_HandleTypeDef; + +#if (USE_HAL_I2C_REGISTER_CALLBACKS == 1) +/** + * @brief HAL I2C Callback ID enumeration definition + */ +typedef enum +{ + HAL_I2C_MASTER_TX_COMPLETE_CB_ID = 0x00U, /*!< I2C Master Tx Transfer completed callback ID */ + HAL_I2C_MASTER_RX_COMPLETE_CB_ID = 0x01U, /*!< I2C Master Rx Transfer completed callback ID */ + HAL_I2C_SLAVE_TX_COMPLETE_CB_ID = 0x02U, /*!< I2C Slave Tx Transfer completed callback ID */ + HAL_I2C_SLAVE_RX_COMPLETE_CB_ID = 0x03U, /*!< I2C Slave Rx Transfer completed callback ID */ + HAL_I2C_LISTEN_COMPLETE_CB_ID = 0x04U, /*!< I2C Listen Complete callback ID */ + HAL_I2C_MEM_TX_COMPLETE_CB_ID = 0x05U, /*!< I2C Memory Tx Transfer callback ID */ + HAL_I2C_MEM_RX_COMPLETE_CB_ID = 0x06U, /*!< I2C Memory Rx Transfer completed callback ID */ + HAL_I2C_ERROR_CB_ID = 0x07U, /*!< I2C Error callback ID */ + HAL_I2C_ABORT_CB_ID = 0x08U, /*!< I2C Abort callback ID */ + + HAL_I2C_MSPINIT_CB_ID = 0x09U, /*!< I2C Msp Init callback ID */ + HAL_I2C_MSPDEINIT_CB_ID = 0x0AU /*!< I2C Msp DeInit callback ID */ + +} HAL_I2C_CallbackIDTypeDef; + +/** + * @brief HAL I2C Callback pointer definition + */ +typedef void (*pI2C_CallbackTypeDef)(I2C_HandleTypeDef *hi2c); /*!< pointer to an I2C callback function */ +typedef void (*pI2C_AddrCallbackTypeDef)(I2C_HandleTypeDef *hi2c, uint8_t TransferDirection, uint16_t AddrMatchCode); /*!< pointer to an I2C Address Match callback function */ + +#endif /* USE_HAL_I2C_REGISTER_CALLBACKS */ +/** + * @} + */ + +/** + * @} + */ +/* Exported constants --------------------------------------------------------*/ + +/** @defgroup I2C_Exported_Constants I2C Exported Constants + * @{ + */ + +/** @defgroup I2C_XFEROPTIONS I2C Sequential Transfer Options + * @{ + */ +#define I2C_FIRST_FRAME ((uint32_t)I2C_SOFTEND_MODE) +#define I2C_FIRST_AND_NEXT_FRAME ((uint32_t)(I2C_RELOAD_MODE | I2C_SOFTEND_MODE)) +#define I2C_NEXT_FRAME ((uint32_t)(I2C_RELOAD_MODE | I2C_SOFTEND_MODE)) +#define I2C_FIRST_AND_LAST_FRAME ((uint32_t)I2C_AUTOEND_MODE) +#define I2C_LAST_FRAME ((uint32_t)I2C_AUTOEND_MODE) +#define I2C_LAST_FRAME_NO_STOP ((uint32_t)I2C_SOFTEND_MODE) + +/* List of XferOptions in usage of : + * 1- Restart condition in all use cases (direction change or not) + */ +#define I2C_OTHER_FRAME (0x000000AAU) +#define I2C_OTHER_AND_LAST_FRAME (0x0000AA00U) +/** + * @} + */ + +/** @defgroup I2C_ADDRESSING_MODE I2C Addressing Mode + * @{ + */ +#define I2C_ADDRESSINGMODE_7BIT (0x00000001U) +#define I2C_ADDRESSINGMODE_10BIT (0x00000002U) +/** + * @} + */ + +/** @defgroup I2C_DUAL_ADDRESSING_MODE I2C Dual Addressing Mode + * @{ + */ +#define I2C_DUALADDRESS_DISABLE (0x00000000U) +#define I2C_DUALADDRESS_ENABLE I2C_OAR2_OA2EN +/** + * @} + */ + +/** @defgroup I2C_OWN_ADDRESS2_MASKS I2C Own Address2 Masks + * @{ + */ +#define I2C_OA2_NOMASK ((uint8_t)0x00U) +#define I2C_OA2_MASK01 ((uint8_t)0x01U) +#define I2C_OA2_MASK02 ((uint8_t)0x02U) +#define I2C_OA2_MASK03 ((uint8_t)0x03U) +#define I2C_OA2_MASK04 ((uint8_t)0x04U) +#define I2C_OA2_MASK05 ((uint8_t)0x05U) +#define I2C_OA2_MASK06 ((uint8_t)0x06U) +#define I2C_OA2_MASK07 ((uint8_t)0x07U) +/** + * @} + */ + +/** @defgroup I2C_GENERAL_CALL_ADDRESSING_MODE I2C General Call Addressing Mode + * @{ + */ +#define I2C_GENERALCALL_DISABLE (0x00000000U) +#define I2C_GENERALCALL_ENABLE I2C_CR1_GCEN +/** + * @} + */ + +/** @defgroup I2C_NOSTRETCH_MODE I2C No-Stretch Mode + * @{ + */ +#define I2C_NOSTRETCH_DISABLE (0x00000000U) +#define I2C_NOSTRETCH_ENABLE I2C_CR1_NOSTRETCH +/** + * @} + */ + +/** @defgroup I2C_MEMORY_ADDRESS_SIZE I2C Memory Address Size + * @{ + */ +#define I2C_MEMADD_SIZE_8BIT (0x00000001U) +#define I2C_MEMADD_SIZE_16BIT (0x00000002U) +/** + * @} + */ + +/** @defgroup I2C_XFERDIRECTION I2C Transfer Direction Master Point of View + * @{ + */ +#define I2C_DIRECTION_TRANSMIT (0x00000000U) +#define I2C_DIRECTION_RECEIVE (0x00000001U) +/** + * @} + */ + +/** @defgroup I2C_RELOAD_END_MODE I2C Reload End Mode + * @{ + */ +#define I2C_RELOAD_MODE I2C_CR2_RELOAD +#define I2C_AUTOEND_MODE I2C_CR2_AUTOEND +#define I2C_SOFTEND_MODE (0x00000000U) +/** + * @} + */ + +/** @defgroup I2C_START_STOP_MODE I2C Start or Stop Mode + * @{ + */ +#define I2C_NO_STARTSTOP (0x00000000U) +#define I2C_GENERATE_STOP (uint32_t)(0x80000000U | I2C_CR2_STOP) +#define I2C_GENERATE_START_READ (uint32_t)(0x80000000U | I2C_CR2_START | I2C_CR2_RD_WRN) +#define I2C_GENERATE_START_WRITE (uint32_t)(0x80000000U | I2C_CR2_START) +/** + * @} + */ + +/** @defgroup I2C_Interrupt_configuration_definition I2C Interrupt configuration definition + * @brief I2C Interrupt definition + * Elements values convention: 0xXXXXXXXX + * - XXXXXXXX : Interrupt control mask + * @{ + */ +#define I2C_IT_ERRI I2C_CR1_ERRIE +#define I2C_IT_TCI I2C_CR1_TCIE +#define I2C_IT_STOPI I2C_CR1_STOPIE +#define I2C_IT_NACKI I2C_CR1_NACKIE +#define I2C_IT_ADDRI I2C_CR1_ADDRIE +#define I2C_IT_RXI I2C_CR1_RXIE +#define I2C_IT_TXI I2C_CR1_TXIE +/** + * @} + */ + +/** @defgroup I2C_Flag_definition I2C Flag definition + * @{ + */ +#define I2C_FLAG_TXE I2C_ISR_TXE +#define I2C_FLAG_TXIS I2C_ISR_TXIS +#define I2C_FLAG_RXNE I2C_ISR_RXNE +#define I2C_FLAG_ADDR I2C_ISR_ADDR +#define I2C_FLAG_AF I2C_ISR_NACKF +#define I2C_FLAG_STOPF I2C_ISR_STOPF +#define I2C_FLAG_TC I2C_ISR_TC +#define I2C_FLAG_TCR I2C_ISR_TCR +#define I2C_FLAG_BERR I2C_ISR_BERR +#define I2C_FLAG_ARLO I2C_ISR_ARLO +#define I2C_FLAG_OVR I2C_ISR_OVR +#define I2C_FLAG_PECERR I2C_ISR_PECERR +#define I2C_FLAG_TIMEOUT I2C_ISR_TIMEOUT +#define I2C_FLAG_ALERT I2C_ISR_ALERT +#define I2C_FLAG_BUSY I2C_ISR_BUSY +#define I2C_FLAG_DIR I2C_ISR_DIR +/** + * @} + */ + +/** + * @} + */ + +/* Exported macros -----------------------------------------------------------*/ + +/** @defgroup I2C_Exported_Macros I2C Exported Macros + * @{ + */ + +/** @brief Reset I2C handle state. + * @param __HANDLE__ specifies the I2C Handle. + * @retval None + */ +#if (USE_HAL_I2C_REGISTER_CALLBACKS == 1) +#define __HAL_I2C_RESET_HANDLE_STATE(__HANDLE__) do{ \ + (__HANDLE__)->State = HAL_I2C_STATE_RESET; \ + (__HANDLE__)->MspInitCallback = NULL; \ + (__HANDLE__)->MspDeInitCallback = NULL; \ + } while(0) +#else +#define __HAL_I2C_RESET_HANDLE_STATE(__HANDLE__) ((__HANDLE__)->State = HAL_I2C_STATE_RESET) +#endif + +/** @brief Enable the specified I2C interrupt. + * @param __HANDLE__ specifies the I2C Handle. + * @param __INTERRUPT__ specifies the interrupt source to enable. + * This parameter can be one of the following values: + * @arg @ref I2C_IT_ERRI Errors interrupt enable + * @arg @ref I2C_IT_TCI Transfer complete interrupt enable + * @arg @ref I2C_IT_STOPI STOP detection interrupt enable + * @arg @ref I2C_IT_NACKI NACK received interrupt enable + * @arg @ref I2C_IT_ADDRI Address match interrupt enable + * @arg @ref I2C_IT_RXI RX interrupt enable + * @arg @ref I2C_IT_TXI TX interrupt enable + * + * @retval None + */ +#define __HAL_I2C_ENABLE_IT(__HANDLE__, __INTERRUPT__) ((__HANDLE__)->Instance->CR1 |= (__INTERRUPT__)) + +/** @brief Disable the specified I2C interrupt. + * @param __HANDLE__ specifies the I2C Handle. + * @param __INTERRUPT__ specifies the interrupt source to disable. + * This parameter can be one of the following values: + * @arg @ref I2C_IT_ERRI Errors interrupt enable + * @arg @ref I2C_IT_TCI Transfer complete interrupt enable + * @arg @ref I2C_IT_STOPI STOP detection interrupt enable + * @arg @ref I2C_IT_NACKI NACK received interrupt enable + * @arg @ref I2C_IT_ADDRI Address match interrupt enable + * @arg @ref I2C_IT_RXI RX interrupt enable + * @arg @ref I2C_IT_TXI TX interrupt enable + * + * @retval None + */ +#define __HAL_I2C_DISABLE_IT(__HANDLE__, __INTERRUPT__) ((__HANDLE__)->Instance->CR1 &= (~(__INTERRUPT__))) + +/** @brief Check whether the specified I2C interrupt source is enabled or not. + * @param __HANDLE__ specifies the I2C Handle. + * @param __INTERRUPT__ specifies the I2C interrupt source to check. + * This parameter can be one of the following values: + * @arg @ref I2C_IT_ERRI Errors interrupt enable + * @arg @ref I2C_IT_TCI Transfer complete interrupt enable + * @arg @ref I2C_IT_STOPI STOP detection interrupt enable + * @arg @ref I2C_IT_NACKI NACK received interrupt enable + * @arg @ref I2C_IT_ADDRI Address match interrupt enable + * @arg @ref I2C_IT_RXI RX interrupt enable + * @arg @ref I2C_IT_TXI TX interrupt enable + * + * @retval The new state of __INTERRUPT__ (SET or RESET). + */ +#define __HAL_I2C_GET_IT_SOURCE(__HANDLE__, __INTERRUPT__) ((((__HANDLE__)->Instance->CR1 & (__INTERRUPT__)) == (__INTERRUPT__)) ? SET : RESET) + +/** @brief Check whether the specified I2C flag is set or not. + * @param __HANDLE__ specifies the I2C Handle. + * @param __FLAG__ specifies the flag to check. + * This parameter can be one of the following values: + * @arg @ref I2C_FLAG_TXE Transmit data register empty + * @arg @ref I2C_FLAG_TXIS Transmit interrupt status + * @arg @ref I2C_FLAG_RXNE Receive data register not empty + * @arg @ref I2C_FLAG_ADDR Address matched (slave mode) + * @arg @ref I2C_FLAG_AF Acknowledge failure received flag + * @arg @ref I2C_FLAG_STOPF STOP detection flag + * @arg @ref I2C_FLAG_TC Transfer complete (master mode) + * @arg @ref I2C_FLAG_TCR Transfer complete reload + * @arg @ref I2C_FLAG_BERR Bus error + * @arg @ref I2C_FLAG_ARLO Arbitration lost + * @arg @ref I2C_FLAG_OVR Overrun/Underrun + * @arg @ref I2C_FLAG_PECERR PEC error in reception + * @arg @ref I2C_FLAG_TIMEOUT Timeout or Tlow detection flag + * @arg @ref I2C_FLAG_ALERT SMBus alert + * @arg @ref I2C_FLAG_BUSY Bus busy + * @arg @ref I2C_FLAG_DIR Transfer direction (slave mode) + * + * @retval The new state of __FLAG__ (SET or RESET). + */ +#define I2C_FLAG_MASK (0x0001FFFFU) +#define __HAL_I2C_GET_FLAG(__HANDLE__, __FLAG__) (((((__HANDLE__)->Instance->ISR) & (__FLAG__)) == (__FLAG__)) ? SET : RESET) + +/** @brief Clear the I2C pending flags which are cleared by writing 1 in a specific bit. + * @param __HANDLE__ specifies the I2C Handle. + * @param __FLAG__ specifies the flag to clear. + * This parameter can be any combination of the following values: + * @arg @ref I2C_FLAG_TXE Transmit data register empty + * @arg @ref I2C_FLAG_ADDR Address matched (slave mode) + * @arg @ref I2C_FLAG_AF Acknowledge failure received flag + * @arg @ref I2C_FLAG_STOPF STOP detection flag + * @arg @ref I2C_FLAG_BERR Bus error + * @arg @ref I2C_FLAG_ARLO Arbitration lost + * @arg @ref I2C_FLAG_OVR Overrun/Underrun + * @arg @ref I2C_FLAG_PECERR PEC error in reception + * @arg @ref I2C_FLAG_TIMEOUT Timeout or Tlow detection flag + * @arg @ref I2C_FLAG_ALERT SMBus alert + * + * @retval None + */ +#define __HAL_I2C_CLEAR_FLAG(__HANDLE__, __FLAG__) (((__FLAG__) == I2C_FLAG_TXE) ? ((__HANDLE__)->Instance->ISR |= (__FLAG__)) \ + : ((__HANDLE__)->Instance->ICR = (__FLAG__))) + +/** @brief Enable the specified I2C peripheral. + * @param __HANDLE__ specifies the I2C Handle. + * @retval None + */ +#define __HAL_I2C_ENABLE(__HANDLE__) (SET_BIT((__HANDLE__)->Instance->CR1, I2C_CR1_PE)) + +/** @brief Disable the specified I2C peripheral. + * @param __HANDLE__ specifies the I2C Handle. + * @retval None + */ +#define __HAL_I2C_DISABLE(__HANDLE__) (CLEAR_BIT((__HANDLE__)->Instance->CR1, I2C_CR1_PE)) + +/** @brief Generate a Non-Acknowledge I2C peripheral in Slave mode. + * @param __HANDLE__ specifies the I2C Handle. + * @retval None + */ +#define __HAL_I2C_GENERATE_NACK(__HANDLE__) (SET_BIT((__HANDLE__)->Instance->CR2, I2C_CR2_NACK)) +/** + * @} + */ + +/* Include I2C HAL Extended module */ +#include "stm32h7xx_hal_i2c_ex.h" + +/* Exported functions --------------------------------------------------------*/ +/** @addtogroup I2C_Exported_Functions + * @{ + */ + +/** @addtogroup I2C_Exported_Functions_Group1 Initialization and de-initialization functions + * @{ + */ +/* Initialization and de-initialization functions******************************/ +HAL_StatusTypeDef HAL_I2C_Init(I2C_HandleTypeDef *hi2c); +HAL_StatusTypeDef HAL_I2C_DeInit(I2C_HandleTypeDef *hi2c); +void HAL_I2C_MspInit(I2C_HandleTypeDef *hi2c); +void HAL_I2C_MspDeInit(I2C_HandleTypeDef *hi2c); + +/* Callbacks Register/UnRegister functions ***********************************/ +#if (USE_HAL_I2C_REGISTER_CALLBACKS == 1) +HAL_StatusTypeDef HAL_I2C_RegisterCallback(I2C_HandleTypeDef *hi2c, HAL_I2C_CallbackIDTypeDef CallbackID, pI2C_CallbackTypeDef pCallback); +HAL_StatusTypeDef HAL_I2C_UnRegisterCallback(I2C_HandleTypeDef *hi2c, HAL_I2C_CallbackIDTypeDef CallbackID); + +HAL_StatusTypeDef HAL_I2C_RegisterAddrCallback(I2C_HandleTypeDef *hi2c, pI2C_AddrCallbackTypeDef pCallback); +HAL_StatusTypeDef HAL_I2C_UnRegisterAddrCallback(I2C_HandleTypeDef *hi2c); +#endif /* USE_HAL_I2C_REGISTER_CALLBACKS */ +/** + * @} + */ + +/** @addtogroup I2C_Exported_Functions_Group2 Input and Output operation functions + * @{ + */ +/* IO operation functions ****************************************************/ +/******* Blocking mode: Polling */ +HAL_StatusTypeDef HAL_I2C_Master_Transmit(I2C_HandleTypeDef *hi2c, uint16_t DevAddress, uint8_t *pData, uint16_t Size, uint32_t Timeout); +HAL_StatusTypeDef HAL_I2C_Master_Receive(I2C_HandleTypeDef *hi2c, uint16_t DevAddress, uint8_t *pData, uint16_t Size, uint32_t Timeout); +HAL_StatusTypeDef HAL_I2C_Slave_Transmit(I2C_HandleTypeDef *hi2c, uint8_t *pData, uint16_t Size, uint32_t Timeout); +HAL_StatusTypeDef HAL_I2C_Slave_Receive(I2C_HandleTypeDef *hi2c, uint8_t *pData, uint16_t Size, uint32_t Timeout); +HAL_StatusTypeDef HAL_I2C_Mem_Write(I2C_HandleTypeDef *hi2c, uint16_t DevAddress, uint16_t MemAddress, uint16_t MemAddSize, uint8_t *pData, uint16_t Size, uint32_t Timeout); +HAL_StatusTypeDef HAL_I2C_Mem_Read(I2C_HandleTypeDef *hi2c, uint16_t DevAddress, uint16_t MemAddress, uint16_t MemAddSize, uint8_t *pData, uint16_t Size, uint32_t Timeout); +HAL_StatusTypeDef HAL_I2C_IsDeviceReady(I2C_HandleTypeDef *hi2c, uint16_t DevAddress, uint32_t Trials, uint32_t Timeout); + +/******* Non-Blocking mode: Interrupt */ +HAL_StatusTypeDef HAL_I2C_Master_Transmit_IT(I2C_HandleTypeDef *hi2c, uint16_t DevAddress, uint8_t *pData, uint16_t Size); +HAL_StatusTypeDef HAL_I2C_Master_Receive_IT(I2C_HandleTypeDef *hi2c, uint16_t DevAddress, uint8_t *pData, uint16_t Size); +HAL_StatusTypeDef HAL_I2C_Slave_Transmit_IT(I2C_HandleTypeDef *hi2c, uint8_t *pData, uint16_t Size); +HAL_StatusTypeDef HAL_I2C_Slave_Receive_IT(I2C_HandleTypeDef *hi2c, uint8_t *pData, uint16_t Size); +HAL_StatusTypeDef HAL_I2C_Mem_Write_IT(I2C_HandleTypeDef *hi2c, uint16_t DevAddress, uint16_t MemAddress, uint16_t MemAddSize, uint8_t *pData, uint16_t Size); +HAL_StatusTypeDef HAL_I2C_Mem_Read_IT(I2C_HandleTypeDef *hi2c, uint16_t DevAddress, uint16_t MemAddress, uint16_t MemAddSize, uint8_t *pData, uint16_t Size); + +HAL_StatusTypeDef HAL_I2C_Master_Seq_Transmit_IT(I2C_HandleTypeDef *hi2c, uint16_t DevAddress, uint8_t *pData, uint16_t Size, uint32_t XferOptions); +HAL_StatusTypeDef HAL_I2C_Master_Seq_Receive_IT(I2C_HandleTypeDef *hi2c, uint16_t DevAddress, uint8_t *pData, uint16_t Size, uint32_t XferOptions); +HAL_StatusTypeDef HAL_I2C_Slave_Seq_Transmit_IT(I2C_HandleTypeDef *hi2c, uint8_t *pData, uint16_t Size, uint32_t XferOptions); +HAL_StatusTypeDef HAL_I2C_Slave_Seq_Receive_IT(I2C_HandleTypeDef *hi2c, uint8_t *pData, uint16_t Size, uint32_t XferOptions); +HAL_StatusTypeDef HAL_I2C_EnableListen_IT(I2C_HandleTypeDef *hi2c); +HAL_StatusTypeDef HAL_I2C_DisableListen_IT(I2C_HandleTypeDef *hi2c); +HAL_StatusTypeDef HAL_I2C_Master_Abort_IT(I2C_HandleTypeDef *hi2c, uint16_t DevAddress); + +/******* Non-Blocking mode: DMA */ +HAL_StatusTypeDef HAL_I2C_Master_Transmit_DMA(I2C_HandleTypeDef *hi2c, uint16_t DevAddress, uint8_t *pData, uint16_t Size); +HAL_StatusTypeDef HAL_I2C_Master_Receive_DMA(I2C_HandleTypeDef *hi2c, uint16_t DevAddress, uint8_t *pData, uint16_t Size); +HAL_StatusTypeDef HAL_I2C_Slave_Transmit_DMA(I2C_HandleTypeDef *hi2c, uint8_t *pData, uint16_t Size); +HAL_StatusTypeDef HAL_I2C_Slave_Receive_DMA(I2C_HandleTypeDef *hi2c, uint8_t *pData, uint16_t Size); +HAL_StatusTypeDef HAL_I2C_Mem_Write_DMA(I2C_HandleTypeDef *hi2c, uint16_t DevAddress, uint16_t MemAddress, uint16_t MemAddSize, uint8_t *pData, uint16_t Size); +HAL_StatusTypeDef HAL_I2C_Mem_Read_DMA(I2C_HandleTypeDef *hi2c, uint16_t DevAddress, uint16_t MemAddress, uint16_t MemAddSize, uint8_t *pData, uint16_t Size); + +HAL_StatusTypeDef HAL_I2C_Master_Seq_Transmit_DMA(I2C_HandleTypeDef *hi2c, uint16_t DevAddress, uint8_t *pData, uint16_t Size, uint32_t XferOptions); +HAL_StatusTypeDef HAL_I2C_Master_Seq_Receive_DMA(I2C_HandleTypeDef *hi2c, uint16_t DevAddress, uint8_t *pData, uint16_t Size, uint32_t XferOptions); +HAL_StatusTypeDef HAL_I2C_Slave_Seq_Transmit_DMA(I2C_HandleTypeDef *hi2c, uint8_t *pData, uint16_t Size, uint32_t XferOptions); +HAL_StatusTypeDef HAL_I2C_Slave_Seq_Receive_DMA(I2C_HandleTypeDef *hi2c, uint8_t *pData, uint16_t Size, uint32_t XferOptions); +/** + * @} + */ + +/** @addtogroup I2C_IRQ_Handler_and_Callbacks IRQ Handler and Callbacks + * @{ + */ +/******* I2C IRQHandler and Callbacks used in non blocking modes (Interrupt and DMA) */ +void HAL_I2C_EV_IRQHandler(I2C_HandleTypeDef *hi2c); +void HAL_I2C_ER_IRQHandler(I2C_HandleTypeDef *hi2c); +void HAL_I2C_MasterTxCpltCallback(I2C_HandleTypeDef *hi2c); +void HAL_I2C_MasterRxCpltCallback(I2C_HandleTypeDef *hi2c); +void HAL_I2C_SlaveTxCpltCallback(I2C_HandleTypeDef *hi2c); +void HAL_I2C_SlaveRxCpltCallback(I2C_HandleTypeDef *hi2c); +void HAL_I2C_AddrCallback(I2C_HandleTypeDef *hi2c, uint8_t TransferDirection, uint16_t AddrMatchCode); +void HAL_I2C_ListenCpltCallback(I2C_HandleTypeDef *hi2c); +void HAL_I2C_MemTxCpltCallback(I2C_HandleTypeDef *hi2c); +void HAL_I2C_MemRxCpltCallback(I2C_HandleTypeDef *hi2c); +void HAL_I2C_ErrorCallback(I2C_HandleTypeDef *hi2c); +void HAL_I2C_AbortCpltCallback(I2C_HandleTypeDef *hi2c); +/** + * @} + */ + +/** @addtogroup I2C_Exported_Functions_Group3 Peripheral State, Mode and Error functions + * @{ + */ +/* Peripheral State, Mode and Error functions *********************************/ +HAL_I2C_StateTypeDef HAL_I2C_GetState(I2C_HandleTypeDef *hi2c); +HAL_I2C_ModeTypeDef HAL_I2C_GetMode(I2C_HandleTypeDef *hi2c); +uint32_t HAL_I2C_GetError(I2C_HandleTypeDef *hi2c); + +/** + * @} + */ + +/** + * @} + */ + +/* Private constants ---------------------------------------------------------*/ +/** @defgroup I2C_Private_Constants I2C Private Constants + * @{ + */ + +/** + * @} + */ + +/* Private macros ------------------------------------------------------------*/ +/** @defgroup I2C_Private_Macro I2C Private Macros + * @{ + */ + +#define IS_I2C_ADDRESSING_MODE(MODE) (((MODE) == I2C_ADDRESSINGMODE_7BIT) || \ + ((MODE) == I2C_ADDRESSINGMODE_10BIT)) + +#define IS_I2C_DUAL_ADDRESS(ADDRESS) (((ADDRESS) == I2C_DUALADDRESS_DISABLE) || \ + ((ADDRESS) == I2C_DUALADDRESS_ENABLE)) + +#define IS_I2C_OWN_ADDRESS2_MASK(MASK) (((MASK) == I2C_OA2_NOMASK) || \ + ((MASK) == I2C_OA2_MASK01) || \ + ((MASK) == I2C_OA2_MASK02) || \ + ((MASK) == I2C_OA2_MASK03) || \ + ((MASK) == I2C_OA2_MASK04) || \ + ((MASK) == I2C_OA2_MASK05) || \ + ((MASK) == I2C_OA2_MASK06) || \ + ((MASK) == I2C_OA2_MASK07)) + +#define IS_I2C_GENERAL_CALL(CALL) (((CALL) == I2C_GENERALCALL_DISABLE) || \ + ((CALL) == I2C_GENERALCALL_ENABLE)) + +#define IS_I2C_NO_STRETCH(STRETCH) (((STRETCH) == I2C_NOSTRETCH_DISABLE) || \ + ((STRETCH) == I2C_NOSTRETCH_ENABLE)) + +#define IS_I2C_MEMADD_SIZE(SIZE) (((SIZE) == I2C_MEMADD_SIZE_8BIT) || \ + ((SIZE) == I2C_MEMADD_SIZE_16BIT)) + +#define IS_TRANSFER_MODE(MODE) (((MODE) == I2C_RELOAD_MODE) || \ + ((MODE) == I2C_AUTOEND_MODE) || \ + ((MODE) == I2C_SOFTEND_MODE)) + +#define IS_TRANSFER_REQUEST(REQUEST) (((REQUEST) == I2C_GENERATE_STOP) || \ + ((REQUEST) == I2C_GENERATE_START_READ) || \ + ((REQUEST) == I2C_GENERATE_START_WRITE) || \ + ((REQUEST) == I2C_NO_STARTSTOP)) + +#define IS_I2C_TRANSFER_OPTIONS_REQUEST(REQUEST) (((REQUEST) == I2C_FIRST_FRAME) || \ + ((REQUEST) == I2C_FIRST_AND_NEXT_FRAME) || \ + ((REQUEST) == I2C_NEXT_FRAME) || \ + ((REQUEST) == I2C_FIRST_AND_LAST_FRAME) || \ + ((REQUEST) == I2C_LAST_FRAME) || \ + ((REQUEST) == I2C_LAST_FRAME_NO_STOP) || \ + IS_I2C_TRANSFER_OTHER_OPTIONS_REQUEST(REQUEST)) + +#define IS_I2C_TRANSFER_OTHER_OPTIONS_REQUEST(REQUEST) (((REQUEST) == I2C_OTHER_FRAME) || \ + ((REQUEST) == I2C_OTHER_AND_LAST_FRAME)) + +#define I2C_RESET_CR2(__HANDLE__) ((__HANDLE__)->Instance->CR2 &= (uint32_t)~((uint32_t)(I2C_CR2_SADD | I2C_CR2_HEAD10R | I2C_CR2_NBYTES | I2C_CR2_RELOAD | I2C_CR2_RD_WRN))) + +#define I2C_GET_ADDR_MATCH(__HANDLE__) ((uint16_t)(((__HANDLE__)->Instance->ISR & I2C_ISR_ADDCODE) >> 16U)) +#define I2C_GET_DIR(__HANDLE__) ((uint8_t)(((__HANDLE__)->Instance->ISR & I2C_ISR_DIR) >> 16U)) +#define I2C_GET_STOP_MODE(__HANDLE__) ((__HANDLE__)->Instance->CR2 & I2C_CR2_AUTOEND) +#define I2C_GET_OWN_ADDRESS1(__HANDLE__) ((uint16_t)((__HANDLE__)->Instance->OAR1 & I2C_OAR1_OA1)) +#define I2C_GET_OWN_ADDRESS2(__HANDLE__) ((uint16_t)((__HANDLE__)->Instance->OAR2 & I2C_OAR2_OA2)) + +#define IS_I2C_OWN_ADDRESS1(ADDRESS1) ((ADDRESS1) <= 0x000003FFU) +#define IS_I2C_OWN_ADDRESS2(ADDRESS2) ((ADDRESS2) <= (uint16_t)0x00FFU) + +#define I2C_MEM_ADD_MSB(__ADDRESS__) ((uint8_t)((uint16_t)(((uint16_t)((__ADDRESS__) & (uint16_t)(0xFF00U))) >> 8U))) +#define I2C_MEM_ADD_LSB(__ADDRESS__) ((uint8_t)((uint16_t)((__ADDRESS__) & (uint16_t)(0x00FFU)))) + +#define I2C_GENERATE_START(__ADDMODE__,__ADDRESS__) (((__ADDMODE__) == I2C_ADDRESSINGMODE_7BIT) ? (uint32_t)((((uint32_t)(__ADDRESS__) & (I2C_CR2_SADD)) | (I2C_CR2_START) | (I2C_CR2_AUTOEND)) & (~I2C_CR2_RD_WRN)) : \ + (uint32_t)((((uint32_t)(__ADDRESS__) & (I2C_CR2_SADD)) | (I2C_CR2_ADD10) | (I2C_CR2_START)) & (~I2C_CR2_RD_WRN))) + +#define I2C_CHECK_FLAG(__ISR__, __FLAG__) ((((__ISR__) & ((__FLAG__) & I2C_FLAG_MASK)) == ((__FLAG__) & I2C_FLAG_MASK)) ? SET : RESET) +#define I2C_CHECK_IT_SOURCE(__CR1__, __IT__) ((((__CR1__) & (__IT__)) == (__IT__)) ? SET : RESET) +/** + * @} + */ + +/* Private Functions ---------------------------------------------------------*/ +/** @defgroup I2C_Private_Functions I2C Private Functions + * @{ + */ +/* Private functions are defined in stm32h7xx_hal_i2c.c file */ +/** + * @} + */ + +/** + * @} + */ + +/** + * @} + */ + +#ifdef __cplusplus +} +#endif + + +#endif /* STM32H7xx_HAL_I2C_H */ + +/************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/ diff --git a/source/hic_hal/stm32/stm32h743ii/STM32H7xx_HAL_Driver/Inc/stm32h7xx_hal_i2c_ex.h b/source/hic_hal/stm32/stm32h743ii/STM32H7xx_HAL_Driver/Inc/stm32h7xx_hal_i2c_ex.h new file mode 100644 index 000000000..1fbd4e5c3 --- /dev/null +++ b/source/hic_hal/stm32/stm32h743ii/STM32H7xx_HAL_Driver/Inc/stm32h7xx_hal_i2c_ex.h @@ -0,0 +1,181 @@ +/** + ****************************************************************************** + * @file stm32h7xx_hal_i2c_ex.h + * @author MCD Application Team + * @brief Header file of I2C HAL Extended module. + ****************************************************************************** + * @attention + * + *

© Copyright (c) 2017 STMicroelectronics. + * All rights reserved.

+ * + * This software component is licensed by ST under BSD 3-Clause license, + * the "License"; You may not use this file except in compliance with the + * License. You may obtain a copy of the License at: + * opensource.org/licenses/BSD-3-Clause + * + ****************************************************************************** + */ + +/* Define to prevent recursive inclusion -------------------------------------*/ +#ifndef STM32H7xx_HAL_I2C_EX_H +#define STM32H7xx_HAL_I2C_EX_H + +#ifdef __cplusplus +extern "C" { +#endif + +/* Includes ------------------------------------------------------------------*/ +#include "stm32h7xx_hal_def.h" + +/** @addtogroup STM32H7xx_HAL_Driver + * @{ + */ + +/** @addtogroup I2CEx + * @{ + */ + +/* Exported types ------------------------------------------------------------*/ +/* Exported constants --------------------------------------------------------*/ + +/** @defgroup I2CEx_Exported_Constants I2C Extended Exported Constants + * @{ + */ + +/** @defgroup I2CEx_Analog_Filter I2C Extended Analog Filter + * @{ + */ +#define I2C_ANALOGFILTER_ENABLE 0x00000000U +#define I2C_ANALOGFILTER_DISABLE I2C_CR1_ANFOFF +/** + * @} + */ + +/** @defgroup I2CEx_FastModePlus I2C Extended Fast Mode Plus + * @{ + */ +#define I2C_FASTMODEPLUS_PB6 SYSCFG_PMCR_I2C_PB6_FMP /*!< Enable Fast Mode Plus on PB6 */ +#define I2C_FASTMODEPLUS_PB7 SYSCFG_PMCR_I2C_PB7_FMP /*!< Enable Fast Mode Plus on PB7 */ +#define I2C_FASTMODEPLUS_PB8 SYSCFG_PMCR_I2C_PB8_FMP /*!< Enable Fast Mode Plus on PB8 */ +#define I2C_FASTMODEPLUS_PB9 SYSCFG_PMCR_I2C_PB9_FMP /*!< Enable Fast Mode Plus on PB9 */ +#define I2C_FASTMODEPLUS_I2C1 SYSCFG_PMCR_I2C1_FMP /*!< Enable Fast Mode Plus on I2C1 pins */ +#define I2C_FASTMODEPLUS_I2C2 SYSCFG_PMCR_I2C2_FMP /*!< Enable Fast Mode Plus on I2C2 pins */ +#define I2C_FASTMODEPLUS_I2C3 SYSCFG_PMCR_I2C3_FMP /*!< Enable Fast Mode Plus on I2C3 pins */ +#define I2C_FASTMODEPLUS_I2C4 SYSCFG_PMCR_I2C4_FMP /*!< Enable Fast Mode Plus on I2C4 pins */ +/** + * @} + */ + +/** + * @} + */ + +/* Exported macro ------------------------------------------------------------*/ +/* Exported functions --------------------------------------------------------*/ + +/** @addtogroup I2CEx_Exported_Functions I2C Extended Exported Functions + * @{ + */ + +/** @addtogroup I2CEx_Exported_Functions_Group1 Extended features functions + * @brief Extended features functions + * @{ + */ + +/* Peripheral Control functions ************************************************/ +HAL_StatusTypeDef HAL_I2CEx_ConfigAnalogFilter(I2C_HandleTypeDef *hi2c, uint32_t AnalogFilter); +HAL_StatusTypeDef HAL_I2CEx_ConfigDigitalFilter(I2C_HandleTypeDef *hi2c, uint32_t DigitalFilter); +HAL_StatusTypeDef HAL_I2CEx_EnableWakeUp(I2C_HandleTypeDef *hi2c); +HAL_StatusTypeDef HAL_I2CEx_DisableWakeUp(I2C_HandleTypeDef *hi2c); +void HAL_I2CEx_EnableFastModePlus(uint32_t ConfigFastModePlus); +void HAL_I2CEx_DisableFastModePlus(uint32_t ConfigFastModePlus); + +/* Private constants ---------------------------------------------------------*/ +/** @defgroup I2CEx_Private_Constants I2C Extended Private Constants + * @{ + */ + +/** + * @} + */ + +/* Private macros ------------------------------------------------------------*/ +/** @defgroup I2CEx_Private_Macro I2C Extended Private Macros + * @{ + */ +#define IS_I2C_ANALOG_FILTER(FILTER) (((FILTER) == I2C_ANALOGFILTER_ENABLE) || \ + ((FILTER) == I2C_ANALOGFILTER_DISABLE)) + +#define IS_I2C_DIGITAL_FILTER(FILTER) ((FILTER) <= 0x0000000FU) + +#if (defined(SYSCFG_PMCR_I2C1_FMP) && defined(SYSCFG_PMCR_I2C2_FMP) && defined(SYSCFG_PMCR_I2C3_FMP) && defined(SYSCFG_PMCR_I2C4_FMP)) +#define IS_I2C_FASTMODEPLUS(__CONFIG__) ((((__CONFIG__) & I2C_FASTMODEPLUS_PB6) == I2C_FASTMODEPLUS_PB6) || \ + (((__CONFIG__) & I2C_FASTMODEPLUS_PB7) == I2C_FASTMODEPLUS_PB7) || \ + (((__CONFIG__) & I2C_FASTMODEPLUS_PB8) == I2C_FASTMODEPLUS_PB8) || \ + (((__CONFIG__) & I2C_FASTMODEPLUS_PB9) == I2C_FASTMODEPLUS_PB9) || \ + (((__CONFIG__) & I2C_FASTMODEPLUS_I2C1) == I2C_FASTMODEPLUS_I2C1) || \ + (((__CONFIG__) & I2C_FASTMODEPLUS_I2C2) == I2C_FASTMODEPLUS_I2C2) || \ + (((__CONFIG__) & I2C_FASTMODEPLUS_I2C3) == I2C_FASTMODEPLUS_I2C3) || \ + (((__CONFIG__) & I2C_FASTMODEPLUS_I2C4) == I2C_FASTMODEPLUS_I2C4)) +#elif defined(SYSCFG_PMCR_I2C1_FMP) && defined(SYSCFG_PMCR_I2C2_FMP) && defined(SYSCFG_PMCR_I2C3_FMP) +#define IS_I2C_FASTMODEPLUS(__CONFIG__) ((((__CONFIG__) & I2C_FASTMODEPLUS_PB6) == I2C_FASTMODEPLUS_PB6) || \ + (((__CONFIG__) & I2C_FASTMODEPLUS_PB7) == I2C_FASTMODEPLUS_PB7) || \ + (((__CONFIG__) & I2C_FASTMODEPLUS_PB8) == I2C_FASTMODEPLUS_PB8) || \ + (((__CONFIG__) & I2C_FASTMODEPLUS_PB9) == I2C_FASTMODEPLUS_PB9) || \ + (((__CONFIG__) & I2C_FASTMODEPLUS_I2C1) == I2C_FASTMODEPLUS_I2C1) || \ + (((__CONFIG__) & I2C_FASTMODEPLUS_I2C2) == I2C_FASTMODEPLUS_I2C2) || \ + (((__CONFIG__) & I2C_FASTMODEPLUS_I2C3) == I2C_FASTMODEPLUS_I2C3)) +#elif defined(SYSCFG_PMCR_I2C1_FMP) && defined(SYSCFG_PMCR_I2C2_FMP) +#define IS_I2C_FASTMODEPLUS(__CONFIG__) ((((__CONFIG__) & I2C_FASTMODEPLUS_PB6) == I2C_FASTMODEPLUS_PB6) || \ + (((__CONFIG__) & I2C_FASTMODEPLUS_PB7) == I2C_FASTMODEPLUS_PB7) || \ + (((__CONFIG__) & I2C_FASTMODEPLUS_PB8) == I2C_FASTMODEPLUS_PB8) || \ + (((__CONFIG__) & I2C_FASTMODEPLUS_PB9) == I2C_FASTMODEPLUS_PB9) || \ + (((__CONFIG__) & I2C_FASTMODEPLUS_I2C1) == I2C_FASTMODEPLUS_I2C1) || \ + (((__CONFIG__) & I2C_FASTMODEPLUS_I2C2) == I2C_FASTMODEPLUS_I2C2)) +#elif defined(SYSCFG_PMCR_I2C1_FMP) +#define IS_I2C_FASTMODEPLUS(__CONFIG__) ((((__CONFIG__) & I2C_FASTMODEPLUS_PB6) == I2C_FASTMODEPLUS_PB6) || \ + (((__CONFIG__) & I2C_FASTMODEPLUS_PB7) == I2C_FASTMODEPLUS_PB7) || \ + (((__CONFIG__) & I2C_FASTMODEPLUS_PB8) == I2C_FASTMODEPLUS_PB8) || \ + (((__CONFIG__) & I2C_FASTMODEPLUS_PB9) == I2C_FASTMODEPLUS_PB9) || \ + (((__CONFIG__) & I2C_FASTMODEPLUS_I2C1) == I2C_FASTMODEPLUS_I2C1)) +#endif /* SYSCFG_PMCR_I2C1_FMP && SYSCFG_PMCR_I2C2_FMP && SYSCFG_PMCR_I2C3_FMP && SYSCFG_PMCR_I2C4_FMP */ + + + +/** + * @} + */ + +/* Private Functions ---------------------------------------------------------*/ +/** @defgroup I2CEx_Private_Functions I2C Extended Private Functions + * @{ + */ +/* Private functions are defined in stm32h7xx_hal_i2c_ex.c file */ +/** + * @} + */ + +/** + * @} + */ + +/** + * @} + */ + +/** + * @} + */ + +/** + * @} + */ + +#ifdef __cplusplus +} +#endif + +#endif /* STM32H7xx_HAL_I2C_EX_H */ + +/************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/ diff --git a/source/hic_hal/stm32/stm32h743ii/STM32H7xx_HAL_Driver/Inc/stm32h7xx_hal_mdma.h b/source/hic_hal/stm32/stm32h743ii/STM32H7xx_HAL_Driver/Inc/stm32h7xx_hal_mdma.h new file mode 100644 index 000000000..354dfac4d --- /dev/null +++ b/source/hic_hal/stm32/stm32h743ii/STM32H7xx_HAL_Driver/Inc/stm32h7xx_hal_mdma.h @@ -0,0 +1,855 @@ +/** + ****************************************************************************** + * @file stm32h7xx_hal_mdma.h + * @author MCD Application Team + * @brief Header file of DMA HAL module. + ****************************************************************************** + * @attention + * + *

© COPYRIGHT(c) 2017 STMicroelectronics. + * All rights reserved.

+ * + * This software component is licensed by ST under BSD 3-Clause license, + * the "License"; You may not use this file except in compliance with the + * License. You may obtain a copy of the License at: + * opensource.org/licenses/BSD-3-Clause + * + ****************************************************************************** + */ + +/* Define to prevent recursive inclusion -------------------------------------*/ +#ifndef STM32H7xx_HAL_MDMA_H +#define STM32H7xx_HAL_MDMA_H + +#ifdef __cplusplus + extern "C" { +#endif + +/* Includes ------------------------------------------------------------------*/ +#include "stm32h7xx_hal_def.h" + +/** @addtogroup STM32H7xx_HAL_Driver + * @{ + */ + +/** @addtogroup MDMA + * @{ + */ + +/* Exported types ------------------------------------------------------------*/ + +/** @defgroup MDMA_Exported_Types MDMA Exported Types + * @brief MDMA Exported Types + * @{ + */ + +/** + * @brief MDMA Configuration Structure definition + */ +typedef struct +{ + + uint32_t Request; /*!< Specifies the MDMA request. + This parameter can be a value of @ref MDMA_Request_selection*/ + + uint32_t TransferTriggerMode; /*!< Specifies the Trigger Transfer mode : each request triggers a : + a buffer transfer, a block transfer, a repeated block transfer or a linked list transfer + This parameter can be a value of @ref MDMA_Transfer_TriggerMode */ + + uint32_t Priority; /*!< Specifies the software priority for the MDMAy channelx. + This parameter can be a value of @ref MDMA_Priority_level */ + + uint32_t Endianness; /*!< Specifies if the MDMA transactions preserve the Little endianness. + This parameter can be a value of @ref MDMA_Endianness */ + + uint32_t SourceInc; /*!< Specifies if the Source increment mode . + This parameter can be a value of @ref MDMA_Source_increment_mode */ + + uint32_t DestinationInc; /*!< Specifies if the Destination increment mode . + This parameter can be a value of @ref MDMA_Destination_increment_mode */ + + uint32_t SourceDataSize; /*!< Specifies the source data size. + This parameter can be a value of @ref MDMA_Source_data_size */ + + uint32_t DestDataSize; /*!< Specifies the destination data size. + This parameter can be a value of @ref MDMA_Destination_data_size */ + + + uint32_t DataAlignment; /*!< Specifies the source to destination Memory data packing/padding mode. + This parameter can be a value of @ref MDMA_data_Alignment */ + + uint32_t BufferTransferLength; /*!< Specifies the buffer Transfer Length (number of bytes), + this is the number of bytes to be transferred in a single transfer (1 byte to 128 bytes)*/ + + uint32_t SourceBurst; /*!< Specifies the Burst transfer configuration for the source memory transfers. + It specifies the amount of data to be transferred in a single non interruptable + transaction. + This parameter can be a value of @ref MDMA_Source_burst + @note : the burst may be FIXED/INCR based on SourceInc value , + the BURST must be programmed as to ensure that the burst size will be lower than than + BufferTransferLength */ + + uint32_t DestBurst; /*!< Specifies the Burst transfer configuration for the destination memory transfers. + It specifies the amount of data to be transferred in a single non interruptable + transaction. + This parameter can be a value of @ref MDMA_Destination_burst + @note : the burst may be FIXED/INCR based on DestinationInc value , + the BURST must be programmed as to ensure that the burst size will be lower than than + BufferTransferLength */ + + int32_t SourceBlockAddressOffset; /*!< this field specifies the Next block source address offset + signed value : if > 0 then increment the next block source Address by offset from where the last block ends + if < 0 then decrement the next block source Address by offset from where the last block ends + if == 0, the next block source address starts from where the last block ends + */ + + + int32_t DestBlockAddressOffset; /*!< this field specifies the Next block destination address offset + signed value : if > 0 then increment the next block destination Address by offset from where the last block ends + if < 0 then decrement the next block destination Address by offset from where the last block ends + if == 0, the next block destination address starts from where the last block ends + */ + +}MDMA_InitTypeDef; + +/** + * @brief HAL MDMA linked list node structure definition + * @note The Linked list node allows to define a new MDMA configuration + * (CTCR ,CBNDTR ,CSAR ,CDAR ,CBRUR, CLAR, CTBR, CMAR and CMDR registers). + * When CLAR register is configured to a non NULL value , each time a transfer ends, + * a new configuration (linked list node) is automatically loaded from the address given in CLAR register. + */ +typedef struct +{ + __IO uint32_t CTCR; /*!< New CTCR register configuration for the given MDMA linked list node */ + __IO uint32_t CBNDTR; /*!< New CBNDTR register configuration for the given MDMA linked list node */ + __IO uint32_t CSAR; /*!< New CSAR register configuration for the given MDMA linked list node */ + __IO uint32_t CDAR; /*!< New CDAR register configuration for the given MDMA linked list node */ + __IO uint32_t CBRUR; /*!< New CBRUR register configuration for the given MDMA linked list node */ + __IO uint32_t CLAR; /*!< New CLAR register configuration for the given MDMA linked list node */ + __IO uint32_t CTBR; /*!< New CTBR register configuration for the given MDMA linked list node */ + __IO uint32_t Reserved; /*!< Reserved register */ + __IO uint32_t CMAR; /*!< New CMAR register configuration for the given MDMA linked list node */ + __IO uint32_t CMDR; /*!< New CMDR register configuration for the given MDMA linked list node */ + +}MDMA_LinkNodeTypeDef; + +/** + * @brief HAL MDMA linked list node configuration structure definition + * @note used with HAL_MDMA_LinkedList_CreateNode function + */ +typedef struct +{ + MDMA_InitTypeDef Init; /*!< configuration of the specified MDMA Linked List Node */ + uint32_t SrcAddress; /*!< The source memory address for the Linked list Node */ + uint32_t DstAddress; /*!< The destination memory address for the Linked list Node */ + uint32_t BlockDataLength; /*!< The data length of a block in bytes */ + uint32_t BlockCount; /*!< The number of blocks to be transferred */ + + uint32_t PostRequestMaskAddress; /*!< specifies the address to be updated (written) with PostRequestMaskData after a request is served. + PostRequestMaskAddress and PostRequestMaskData could be used to automatically clear a peripheral flag when the request is served */ + + uint32_t PostRequestMaskData; /*!< specifies the value to be written to PostRequestMaskAddress after a request is served. + PostRequestMaskAddress and PostRequestMaskData could be used to automatically clear a peripheral flag when the request is served */ + + +}MDMA_LinkNodeConfTypeDef; + + +/** + * @brief HAL MDMA State structure definition + */ +typedef enum +{ + HAL_MDMA_STATE_RESET = 0x00U, /*!< MDMA not yet initialized or disabled */ + HAL_MDMA_STATE_READY = 0x01U, /*!< MDMA initialized and ready for use */ + HAL_MDMA_STATE_BUSY = 0x02U, /*!< MDMA process is ongoing */ + HAL_MDMA_STATE_ERROR = 0x03U, /*!< MDMA error state */ + HAL_MDMA_STATE_ABORT = 0x04U, /*!< MDMA Abort state */ + +}HAL_MDMA_StateTypeDef; + +/** + * @brief HAL MDMA Level Complete structure definition + */ +typedef enum +{ + HAL_MDMA_FULL_TRANSFER = 0x00U, /*!< Full transfer */ + HAL_MDMA_BUFFER_TRANSFER = 0x01U, /*!< Buffer Transfer */ + HAL_MDMA_BLOCK_TRANSFER = 0x02U, /*!< Block Transfer */ + HAL_MDMA_REPEAT_BLOCK_TRANSFER = 0x03U /*!< repeat block Transfer */ + +}HAL_MDMA_LevelCompleteTypeDef; + +/** + * @brief HAL MDMA Callbacks IDs structure definition + */ +typedef enum +{ + HAL_MDMA_XFER_CPLT_CB_ID = 0x00U, /*!< Full transfer */ + HAL_MDMA_XFER_BUFFERCPLT_CB_ID = 0x01U, /*!< Buffer Transfer */ + HAL_MDMA_XFER_BLOCKCPLT_CB_ID = 0x02U, /*!< Block Transfer */ + HAL_MDMA_XFER_REPBLOCKCPLT_CB_ID = 0x03U, /*!< Repeated Block Transfer */ + HAL_MDMA_XFER_ERROR_CB_ID = 0x04U, /*!< Error */ + HAL_MDMA_XFER_ABORT_CB_ID = 0x05U, /*!< Abort */ + HAL_MDMA_XFER_ALL_CB_ID = 0x06U /*!< All */ + +}HAL_MDMA_CallbackIDTypeDef; + + +/** + * @brief MDMA handle Structure definition + */ +typedef struct __MDMA_HandleTypeDef +{ + MDMA_Channel_TypeDef *Instance; /*!< Register base address */ + + MDMA_InitTypeDef Init; /*!< MDMA communication parameters */ + + HAL_LockTypeDef Lock; /*!< MDMA locking object */ + + __IO HAL_MDMA_StateTypeDef State; /*!< MDMA transfer state */ + + void *Parent; /*!< Parent object state */ + + void (* XferCpltCallback)( struct __MDMA_HandleTypeDef * hmdma); /*!< MDMA transfer complete callback */ + + void (* XferBufferCpltCallback)( struct __MDMA_HandleTypeDef * hmdma); /*!< MDMA buffer transfer complete callback */ + + void (* XferBlockCpltCallback)( struct __MDMA_HandleTypeDef * hmdma); /*!< MDMA block transfer complete callback */ + + void (* XferRepeatBlockCpltCallback)( struct __MDMA_HandleTypeDef * hmdma); /*!< MDMA block transfer repeat callback */ + + void (* XferErrorCallback)( struct __MDMA_HandleTypeDef * hmdma); /*!< MDMA transfer error callback */ + + void (* XferAbortCallback)( struct __MDMA_HandleTypeDef * hmdma); /*!< MDMA transfer Abort callback */ + + + MDMA_LinkNodeTypeDef *FirstLinkedListNodeAddress; /*!< specifies the first node address of the transfer list + (after the initial node defined by the Init struct) + this parameter is used internally by the MDMA driver + to construct the linked list node + */ + + MDMA_LinkNodeTypeDef *LastLinkedListNodeAddress; /*!< specifies the last node address of the transfer list + this parameter is used internally by the MDMA driver + to construct the linked list node + */ + uint32_t LinkedListNodeCounter; /*!< Number of nodes in the MDMA linked list */ + + __IO uint32_t ErrorCode; /*!< MDMA Error code */ + +} MDMA_HandleTypeDef; + +/** + * @} + */ + +/* Exported constants --------------------------------------------------------*/ + +/** @defgroup MDMA_Exported_Constants MDMA Exported Constants + * @brief MDMA Exported constants + * @{ + */ + +/** @defgroup MDMA_Error_Codes MDMA Error Codes + * @brief MDMA Error Codes + * @{ + */ +#define HAL_MDMA_ERROR_NONE ((uint32_t)0x00000000U) /*!< No error */ +#define HAL_MDMA_ERROR_READ_XFER ((uint32_t)0x00000001U) /*!< Read Transfer error */ +#define HAL_MDMA_ERROR_WRITE_XFER ((uint32_t)0x00000002U) /*!< Write Transfer error */ +#define HAL_MDMA_ERROR_MASK_DATA ((uint32_t)0x00000004U) /*!< Error Mask Data error */ +#define HAL_MDMA_ERROR_LINKED_LIST ((uint32_t)0x00000008U) /*!< Linked list Data error */ +#define HAL_MDMA_ERROR_ALIGNMENT ((uint32_t)0x00000010U) /*!< Address/Size alignment error */ +#define HAL_MDMA_ERROR_BLOCK_SIZE ((uint32_t)0x00000020U) /*!< Block Size error */ +#define HAL_MDMA_ERROR_TIMEOUT ((uint32_t)0x00000040U) /*!< Timeout error */ +#define HAL_MDMA_ERROR_NO_XFER ((uint32_t)0x00000080U) /*!< Abort or SW trigger requested with no Xfer ongoing */ +#define HAL_MDMA_ERROR_BUSY ((uint32_t)0x00000100U) /*!< DeInit or SW trigger requested with Xfer ongoing */ + +/** + * @} + */ + +/** @defgroup MDMA_Request_selection MDMA Request selection + * @brief MDMA_Request_selection + * @{ + */ + +#define MDMA_REQUEST_DMA1_Stream0_TC ((uint32_t)0x00000000U) /*!< MDMA HW request is DMA1 Stream 0 Transfer Complete Flag */ +#define MDMA_REQUEST_DMA1_Stream1_TC ((uint32_t)0x00000001U) /*!< MDMA HW request is DMA1 Stream 1 Transfer Complete Flag */ +#define MDMA_REQUEST_DMA1_Stream2_TC ((uint32_t)0x00000002U) /*!< MDMA HW request is DMA1 Stream 2 Transfer Complete Flag */ +#define MDMA_REQUEST_DMA1_Stream3_TC ((uint32_t)0x00000003U) /*!< MDMA HW request is DMA1 Stream 3 Transfer Complete Flag */ +#define MDMA_REQUEST_DMA1_Stream4_TC ((uint32_t)0x00000004U) /*!< MDMA HW request is DMA1 Stream 4 Transfer Complete Flag */ +#define MDMA_REQUEST_DMA1_Stream5_TC ((uint32_t)0x00000005U) /*!< MDMA HW request is DMA1 Stream 5 Transfer Complete Flag */ +#define MDMA_REQUEST_DMA1_Stream6_TC ((uint32_t)0x00000006U) /*!< MDMA HW request is DMA1 Stream 6 Transfer Complete Flag */ +#define MDMA_REQUEST_DMA1_Stream7_TC ((uint32_t)0x00000007U) /*!< MDMA HW request is DMA1 Stream 7 Transfer Complete Flag */ +#define MDMA_REQUEST_DMA2_Stream0_TC ((uint32_t)0x00000008U) /*!< MDMA HW request is DMA2 Stream 0 Transfer Complete Flag */ +#define MDMA_REQUEST_DMA2_Stream1_TC ((uint32_t)0x00000009U) /*!< MDMA HW request is DMA2 Stream 1 Transfer Complete Flag */ +#define MDMA_REQUEST_DMA2_Stream2_TC ((uint32_t)0x0000000AU) /*!< MDMA HW request is DMA2 Stream 2 Transfer Complete Flag */ +#define MDMA_REQUEST_DMA2_Stream3_TC ((uint32_t)0x0000000BU) /*!< MDMA HW request is DMA2 Stream 3 Transfer Complete Flag */ +#define MDMA_REQUEST_DMA2_Stream4_TC ((uint32_t)0x0000000CU) /*!< MDMA HW request is DMA2 Stream 4 Transfer Complete Flag */ +#define MDMA_REQUEST_DMA2_Stream5_TC ((uint32_t)0x0000000DU) /*!< MDMA HW request is DMA2 Stream 5 Transfer Complete Flag */ +#define MDMA_REQUEST_DMA2_Stream6_TC ((uint32_t)0x0000000EU) /*!< MDMA HW request is DMA2 Stream 6 Transfer Complete Flag */ +#define MDMA_REQUEST_DMA2_Stream7_TC ((uint32_t)0x0000000FU) /*!< MDMA HW request is DMA2 Stream 7 Transfer Complete Flag */ +#if defined (LTDC) +#define MDMA_REQUEST_LTDC_LINE_IT ((uint32_t)0x00000010U) /*!< MDMA HW request is LTDC Line interrupt Flag */ +#endif /* LTDC */ +#if defined (JPEG) +#define MDMA_REQUEST_JPEG_INFIFO_TH ((uint32_t)0x00000011U) /*!< MDMA HW request is JPEG Input FIFO threshold Flag */ +#define MDMA_REQUEST_JPEG_INFIFO_NF ((uint32_t)0x00000012U) /*!< MDMA HW request is JPEG Input FIFO not full Flag */ +#define MDMA_REQUEST_JPEG_OUTFIFO_TH ((uint32_t)0x00000013U) /*!< MDMA HW request is JPEG Output FIFO threshold Flag */ +#define MDMA_REQUEST_JPEG_OUTFIFO_NE ((uint32_t)0x00000014U) /*!< MDMA HW request is JPEG Output FIFO not empty Flag */ +#define MDMA_REQUEST_JPEG_END_CONVERSION ((uint32_t)0x00000015U) /*!< MDMA HW request is JPEG End of conversion Flag */ +#endif /* JPEG */ +#if defined (OCTOSPI1) +#define MDMA_REQUEST_OCTOSPI1_FIFO_TH ((uint32_t)0x00000016U) /*!< MDMA HW request is OCTOSPI1 FIFO threshold Flag */ +#define MDMA_REQUEST_OCTOSPI1_TC ((uint32_t)0x00000017U) /*!< MDMA HW request is OCTOSPI1 Transfer complete Flag */ +#endif /* OCTOSPI1 */ +#if defined (QUADSPI) +#define MDMA_REQUEST_QUADSPI_FIFO_TH ((uint32_t)0x00000016U) /*!< MDMA HW request is QSPI FIFO threshold Flag */ +#define MDMA_REQUEST_QUADSPI_TC ((uint32_t)0x00000017U) /*!< MDMA HW request is QSPI Transfer complete Flag */ +#endif /* QUADSPI */ +#define MDMA_REQUEST_DMA2D_CLUT_TC ((uint32_t)0x00000018U) /*!< MDMA HW request is DMA2D CLUT Transfer Complete Flag */ +#define MDMA_REQUEST_DMA2D_TC ((uint32_t)0x00000019U) /*!< MDMA HW request is DMA2D Transfer Complete Flag */ +#define MDMA_REQUEST_DMA2D_TW ((uint32_t)0x0000001AU) /*!< MDMA HW request is DMA2D Transfer Watermark Flag */ + +#if defined (DSI) +#define MDMA_REQUEST_DSI_TEARING_EFFECT ((uint32_t)0x0000001BU) /*!< MDMA HW request is DSI Tearing Effect Flag */ +#define MDMA_REQUEST_DSI_END_REFRESH ((uint32_t)0x0000001CU) /*!< MDMA HW request is DSI End of refresh Flag */ +#endif /* DSI */ + +#define MDMA_REQUEST_SDMMC1_END_DATA ((uint32_t)0x0000001DU) /*!< MDMA HW request is SDMMC1 End of Data Flag */ + +#define MDMA_REQUEST_SDMMC1_DMA_ENDBUFFER ((uint32_t)0x0000001EU) /*!< MDMA HW request is SDMMC1 Internal DMA buffer End Flag */ +#define MDMA_REQUEST_SDMMC1_COMMAND_END ((uint32_t)0x0000001FU) /*!< MDMA HW request is SDMMC1 Command End Flag */ + +#if defined (OCTOSPI2) +#define MDMA_REQUEST_OCTOSPI2_FIFO_TH ((uint32_t)0x00000020U) /*!< MDMA HW request is OCTOSPI2 FIFO threshold Flag */ +#define MDMA_REQUEST_OCTOSPI2_TC ((uint32_t)0x00000021U) /*!< MDMA HW request is OCTOSPI2 Transfer complete Flag */ +#endif /* OCTOSPI2 */ + +#define MDMA_REQUEST_SW ((uint32_t)0x40000000U) /*!< MDMA SW request */ + +/** + * @} + */ + +/** @defgroup MDMA_Transfer_TriggerMode MDMA Transfer Trigger Mode + * @brief MDMA Transfer Trigger Mode + * @{ + */ +#define MDMA_BUFFER_TRANSFER ((uint32_t)0x00000000U) /*!< Each MDMA request (SW or HW) triggers a buffer transfer */ +#define MDMA_BLOCK_TRANSFER ((uint32_t)MDMA_CTCR_TRGM_0) /*!< Each MDMA request (SW or HW) triggers a block transfer */ +#define MDMA_REPEAT_BLOCK_TRANSFER ((uint32_t)MDMA_CTCR_TRGM_1) /*!< Each MDMA request (SW or HW) triggers a repeated block transfer */ +#define MDMA_FULL_TRANSFER ((uint32_t)MDMA_CTCR_TRGM) /*!< Each MDMA request (SW or HW) triggers a Full transfer or a linked list transfer if any */ + +/** + * @} + */ + +/** @defgroup MDMA_Priority_level MDMA Priority level + * @brief MDMA Priority level + * @{ + */ +#define MDMA_PRIORITY_LOW ((uint32_t)0x00000000U) /*!< Priority level: Low */ +#define MDMA_PRIORITY_MEDIUM ((uint32_t)MDMA_CCR_PL_0) /*!< Priority level: Medium */ +#define MDMA_PRIORITY_HIGH ((uint32_t)MDMA_CCR_PL_1) /*!< Priority level: High */ +#define MDMA_PRIORITY_VERY_HIGH ((uint32_t)MDMA_CCR_PL) /*!< Priority level: Very High */ + +/** + * @} + */ + + +/** @defgroup MDMA_Endianness MDMA Endianness + * @brief MDMA Endianness + * @{ + */ +#define MDMA_LITTLE_ENDIANNESS_PRESERVE ((uint32_t)0x00000000U) /*!< little endianness preserve */ +#define MDMA_LITTLE_BYTE_ENDIANNESS_EXCHANGE ((uint32_t)MDMA_CCR_BEX) /*!< BYTEs endianness exchange when destination data size is > Byte */ +#define MDMA_LITTLE_HALFWORD_ENDIANNESS_EXCHANGE ((uint32_t)MDMA_CCR_HEX) /*!< HALF WORDs endianness exchange when destination data size is > HALF WORD */ +#define MDMA_LITTLE_WORD_ENDIANNESS_EXCHANGE ((uint32_t)MDMA_CCR_WEX) /*!< WORDs endianness exchange when destination data size is > DOUBLE WORD */ + +/** + * @} + */ + +/** @defgroup MDMA_Source_increment_mode MDMA Source increment mode + * @brief MDMA Source increment mode + * @{ + */ +#define MDMA_SRC_INC_DISABLE ((uint32_t)0x00000000U) /*!< Source address pointer is fixed */ +#define MDMA_SRC_INC_BYTE ((uint32_t)MDMA_CTCR_SINC_1) /*!< Source address pointer is incremented by a BYTE (8 bits) */ +#define MDMA_SRC_INC_HALFWORD ((uint32_t)MDMA_CTCR_SINC_1 | (uint32_t)MDMA_CTCR_SINCOS_0) /*!< Source address pointer is incremented by a half Word (16 bits) */ +#define MDMA_SRC_INC_WORD ((uint32_t)MDMA_CTCR_SINC_1 | (uint32_t)MDMA_CTCR_SINCOS_1) /*!< Source address pointer is incremented by a Word (32 bits) */ +#define MDMA_SRC_INC_DOUBLEWORD ((uint32_t)MDMA_CTCR_SINC_1 | (uint32_t)MDMA_CTCR_SINCOS) /*!< Source address pointer is incremented by a double Word (64 bits)) */ +#define MDMA_SRC_DEC_BYTE ((uint32_t)MDMA_CTCR_SINC) /*!< Source address pointer is decremented by a BYTE (8 bits) */ +#define MDMA_SRC_DEC_HALFWORD ((uint32_t)MDMA_CTCR_SINC | (uint32_t)MDMA_CTCR_SINCOS_0) /*!< Source address pointer is decremented by a half Word (16 bits) */ +#define MDMA_SRC_DEC_WORD ((uint32_t)MDMA_CTCR_SINC | (uint32_t)MDMA_CTCR_SINCOS_1) /*!< Source address pointer is decremented by a Word (32 bits) */ +#define MDMA_SRC_DEC_DOUBLEWORD ((uint32_t)MDMA_CTCR_SINC | (uint32_t)MDMA_CTCR_SINCOS) /*!< Source address pointer is decremented by a double Word (64 bits)) */ + +/** + * @} + */ + +/** @defgroup MDMA_Destination_increment_mode MDMA Destination increment mode + * @brief MDMA Destination increment mode + * @{ + */ +#define MDMA_DEST_INC_DISABLE ((uint32_t)0x00000000U) /*!< Source address pointer is fixed */ +#define MDMA_DEST_INC_BYTE ((uint32_t)MDMA_CTCR_DINC_1) /*!< Source address pointer is incremented by a BYTE (8 bits) */ +#define MDMA_DEST_INC_HALFWORD ((uint32_t)MDMA_CTCR_DINC_1 | (uint32_t)MDMA_CTCR_DINCOS_0) /*!< Source address pointer is incremented by a half Word (16 bits) */ +#define MDMA_DEST_INC_WORD ((uint32_t)MDMA_CTCR_DINC_1 | (uint32_t)MDMA_CTCR_DINCOS_1) /*!< Source address pointer is incremented by a Word (32 bits) */ +#define MDMA_DEST_INC_DOUBLEWORD ((uint32_t)MDMA_CTCR_DINC_1 | (uint32_t)MDMA_CTCR_DINCOS) /*!< Source address pointer is incremented by a double Word (64 bits)) */ +#define MDMA_DEST_DEC_BYTE ((uint32_t)MDMA_CTCR_DINC) /*!< Source address pointer is decremented by a BYTE (8 bits) */ +#define MDMA_DEST_DEC_HALFWORD ((uint32_t)MDMA_CTCR_DINC | (uint32_t)MDMA_CTCR_DINCOS_0) /*!< Source address pointer is decremented by a half Word (16 bits) */ +#define MDMA_DEST_DEC_WORD ((uint32_t)MDMA_CTCR_DINC | (uint32_t)MDMA_CTCR_DINCOS_1) /*!< Source address pointer is decremented by a Word (32 bits) */ +#define MDMA_DEST_DEC_DOUBLEWORD ((uint32_t)MDMA_CTCR_DINC | (uint32_t)MDMA_CTCR_DINCOS) /*!< Source address pointer is decremented by a double Word (64 bits)) */ + +/** + * @} + */ + +/** @defgroup MDMA_Source_data_size MDMA Source data size + * @brief MDMA Source data size + * @{ + */ +#define MDMA_SRC_DATASIZE_BYTE ((uint32_t)0x00000000U) /*!< Source data size is Byte */ +#define MDMA_SRC_DATASIZE_HALFWORD ((uint32_t)MDMA_CTCR_SSIZE_0) /*!< Source data size is half word */ +#define MDMA_SRC_DATASIZE_WORD ((uint32_t)MDMA_CTCR_SSIZE_1) /*!< Source data size is word */ +#define MDMA_SRC_DATASIZE_DOUBLEWORD ((uint32_t)MDMA_CTCR_SSIZE) /*!< Source data size is double word */ + +/** + * @} + */ + +/** @defgroup MDMA_Destination_data_size MDMA Destination data size + * @brief MDMA Destination data size + * @{ + */ +#define MDMA_DEST_DATASIZE_BYTE ((uint32_t)0x00000000U) /*!< Destination data size is Byte */ +#define MDMA_DEST_DATASIZE_HALFWORD ((uint32_t)MDMA_CTCR_DSIZE_0) /*!< Destination data size is half word */ +#define MDMA_DEST_DATASIZE_WORD ((uint32_t)MDMA_CTCR_DSIZE_1) /*!< Destination data size is word */ +#define MDMA_DEST_DATASIZE_DOUBLEWORD ((uint32_t)MDMA_CTCR_DSIZE) /*!< Destination data size is double word */ + +/** + * @} + */ + +/** @defgroup MDMA_data_Alignment MDMA data alignment + * @brief MDMA data alignment + * @{ + */ +#define MDMA_DATAALIGN_PACKENABLE ((uint32_t)MDMA_CTCR_PKE) /*!< The source data is packed/un-packed into the destination data size + All data are right aligned, in Little Endien mode. */ +#define MDMA_DATAALIGN_RIGHT ((uint32_t)0x00000000U) /*!< Right Aligned, padded w/ 0s (default) */ +#define MDMA_DATAALIGN_RIGHT_SIGNED ((uint32_t)MDMA_CTCR_PAM_0) /*!< Right Aligned, Sign extended , + Note : this mode is allowed only if the Source data size is smaller than Destination data size */ +#define MDMA_DATAALIGN_LEFT ((uint32_t)MDMA_CTCR_PAM_1) /*!< Left Aligned (padded with 0s) */ + +/** + * @} + */ + +/** @defgroup MDMA_Source_burst MDMA Source burst + * @brief MDMA Source burst + * @{ + */ +#define MDMA_SOURCE_BURST_SINGLE ((uint32_t)0x00000000U) /*!< single transfer */ +#define MDMA_SOURCE_BURST_2BEATS ((uint32_t)MDMA_CTCR_SBURST_0) /*!< Burst 2 beats */ +#define MDMA_SOURCE_BURST_4BEATS ((uint32_t)MDMA_CTCR_SBURST_1) /*!< Burst 4 beats */ +#define MDMA_SOURCE_BURST_8BEATS ((uint32_t)MDMA_CTCR_SBURST_0 | (uint32_t)MDMA_CTCR_SBURST_1) /*!< Burst 8 beats */ +#define MDMA_SOURCE_BURST_16BEATS ((uint32_t)MDMA_CTCR_SBURST_2) /*!< Burst 16 beats */ +#define MDMA_SOURCE_BURST_32BEATS ((uint32_t)MDMA_CTCR_SBURST_0 | (uint32_t)MDMA_CTCR_SBURST_2) /*!< Burst 32 beats */ +#define MDMA_SOURCE_BURST_64BEATS ((uint32_t)MDMA_CTCR_SBURST_1 | (uint32_t)MDMA_CTCR_SBURST_2) /*!< Burst 64 beats */ +#define MDMA_SOURCE_BURST_128BEATS ((uint32_t)MDMA_CTCR_SBURST) /*!< Burst 128 beats */ + +/** + * @} + */ + +/** @defgroup MDMA_Destination_burst MDMA Destination burst + * @brief MDMA Destination burst + * @{ + */ +#define MDMA_DEST_BURST_SINGLE ((uint32_t)0x00000000U) /*!< single transfer */ +#define MDMA_DEST_BURST_2BEATS ((uint32_t)MDMA_CTCR_DBURST_0) /*!< Burst 2 beats */ +#define MDMA_DEST_BURST_4BEATS ((uint32_t)MDMA_CTCR_DBURST_1) /*!< Burst 4 beats */ +#define MDMA_DEST_BURST_8BEATS ((uint32_t)MDMA_CTCR_DBURST_0 | (uint32_t)MDMA_CTCR_DBURST_1) /*!< Burst 8 beats */ +#define MDMA_DEST_BURST_16BEATS ((uint32_t)MDMA_CTCR_DBURST_2) /*!< Burst 16 beats */ +#define MDMA_DEST_BURST_32BEATS ((uint32_t)MDMA_CTCR_DBURST_0 | (uint32_t)MDMA_CTCR_DBURST_2) /*!< Burst 32 beats */ +#define MDMA_DEST_BURST_64BEATS ((uint32_t)MDMA_CTCR_DBURST_1 | (uint32_t)MDMA_CTCR_DBURST_2) /*!< Burst 64 beats */ +#define MDMA_DEST_BURST_128BEATS ((uint32_t)MDMA_CTCR_DBURST) /*!< Burst 128 beats */ + +/** + * @} + */ + +/** @defgroup MDMA_interrupt_enable_definitions MDMA interrupt enable definitions + * @brief MDMA interrupt enable definitions + * @{ + */ +#define MDMA_IT_TE ((uint32_t)MDMA_CCR_TEIE) /*!< Transfer Error interrupt */ +#define MDMA_IT_CTC ((uint32_t)MDMA_CCR_CTCIE) /*!< Channel Transfer Complete interrupt */ +#define MDMA_IT_BRT ((uint32_t)MDMA_CCR_BRTIE) /*!< Block Repeat Transfer interrupt */ +#define MDMA_IT_BT ((uint32_t)MDMA_CCR_BTIE) /*!< Block Transfer interrupt */ +#define MDMA_IT_BFTC ((uint32_t)MDMA_CCR_TCIE) /*!< Buffer Transfer Complete interrupt */ + +/** + * @} + */ + +/** @defgroup MDMA_flag_definitions MDMA flag definitions + * @brief MDMA flag definitions + * @{ + */ +#define MDMA_FLAG_TE ((uint32_t)MDMA_CISR_TEIF) /*!< Transfer Error flag */ +#define MDMA_FLAG_CTC ((uint32_t)MDMA_CISR_CTCIF) /*!< Channel Transfer Complete flag */ +#define MDMA_FLAG_BRT ((uint32_t)MDMA_CISR_BRTIF) /*!< Block Repeat Transfer complete flag */ +#define MDMA_FLAG_BT ((uint32_t)MDMA_CISR_BTIF) /*!< Block Transfer complete flag */ +#define MDMA_FLAG_BFTC ((uint32_t)MDMA_CISR_TCIF) /*!< BuFfer Transfer complete flag */ +#define MDMA_FLAG_CRQA ((uint32_t)MDMA_CISR_CRQA) /*!< Channel ReQest Active flag */ + +/** + * @} + */ + +/** + * @} + */ + +/* Exported macro ------------------------------------------------------------*/ + +/** @defgroup MDMA_Exported_Macros MDMA Exported Macros + * @{ + */ + +/** + * @brief Enable the specified MDMA Channel. + * @param __HANDLE__: MDMA handle + * @retval None + */ +#define __HAL_MDMA_ENABLE(__HANDLE__) ((__HANDLE__)->Instance->CCR |= MDMA_CCR_EN) + +/** + * @brief Disable the specified MDMA Channel. + * @param __HANDLE__: MDMA handle + * @retval None + */ +#define __HAL_MDMA_DISABLE(__HANDLE__) ((__HANDLE__)->Instance->CCR &= ~MDMA_CCR_EN) + +/** + * @brief Get the MDMA Channel pending flags. + * @param __HANDLE__: MDMA handle + * @param __FLAG__: Get the specified flag. + * This parameter can be any combination of the following values: + * @arg MDMA_FLAG_TE : Transfer Error flag. + * @arg MDMA_FLAG_CTC : Channel Transfer Complete flag. + * @arg MDMA_FLAG_BRT : Block Repeat Transfer flag. + * @arg MDMA_FLAG_BT : Block Transfer complete flag. + * @arg MDMA_FLAG_BFTC : BuFfer Transfer Complete flag. + * @arg MDMA_FLAG_CRQA : Channel ReQest Active flag. + * @retval The state of FLAG (SET or RESET). + */ +#define __HAL_MDMA_GET_FLAG(__HANDLE__, __FLAG__) ((__HANDLE__)->Instance->CISR & (__FLAG__)) + +/** + * @brief Clear the MDMA Stream pending flags. + * @param __HANDLE__: MDMA handle + * @param __FLAG__: specifies the flag to clear. + * This parameter can be any combination of the following values: + * @arg MDMA_FLAG_TE : Transfer Error flag. + * @arg MDMA_FLAG_CTC : Channel Transfer Complete flag. + * @arg MDMA_FLAG_BRT : Block Repeat Transfer flag. + * @arg MDMA_FLAG_BT : Block Transfer complete flag. + * @arg MDMA_FLAG_BFTC : BuFfer Transfer Complete flag. + * @retval None + */ +#define __HAL_MDMA_CLEAR_FLAG(__HANDLE__, __FLAG__) ((__HANDLE__)->Instance->CIFCR = (__FLAG__)) + +/** + * @brief Enables the specified MDMA Channel interrupts. + * @param __HANDLE__: MDMA handle + * @param __INTERRUPT__: specifies the DMA interrupt sources to be enabled or disabled. + * This parameter can be any combination of the following values: + * @arg MDMA_IT_TE : Transfer Error interrupt mask + * @arg MDMA_IT_CTC : Channel Transfer Complete interrupt mask + * @arg MDMA_IT_BRT : Block Repeat Transfer interrupt mask + * @arg MDMA_IT_BT : Block Transfer interrupt mask + * @arg MDMA_IT_BFTC : BuFfer Transfer Complete interrupt mask + * @retval None + */ +#define __HAL_MDMA_ENABLE_IT(__HANDLE__, __INTERRUPT__) ((__HANDLE__)->Instance->CCR |= (__INTERRUPT__)) + +/** + * @brief Disables the specified MDMA Channel interrupts. + * @param __HANDLE__: MDMA handle + * @param __INTERRUPT__: specifies the MDMA interrupt sources to be enabled or disabled. + * This parameter can be any combination of the following values: + * @arg MDMA_IT_TE : Transfer Error interrupt mask + * @arg MDMA_IT_CTC : Channel Transfer Complete interrupt mask + * @arg MDMA_IT_BRT : Block Repeat Transfer interrupt mask + * @arg MDMA_IT_BT : Block Transfer interrupt mask + * @arg MDMA_IT_BFTC : BuFfer Transfer Complete interrupt mask + * @retval None + */ +#define __HAL_MDMA_DISABLE_IT(__HANDLE__, __INTERRUPT__) ((__HANDLE__)->Instance->CCR &= ~(__INTERRUPT__)) + +/** + * @brief Checks whether the specified MDMA Channel interrupt is enabled or not. + * @param __HANDLE__: DMA handle + * @param __INTERRUPT__: specifies the DMA interrupt source to check. + * @arg MDMA_IT_TE : Transfer Error interrupt mask + * @arg MDMA_IT_CTC : Channel Transfer Complete interrupt mask + * @arg MDMA_IT_BRT : Block Repeat Transfer interrupt mask + * @arg MDMA_IT_BT : Block Transfer interrupt mask + * @arg MDMA_IT_BFTC : BuFfer Transfer Complete interrupt mask + * @retval The state of MDMA_IT (SET or RESET). + */ +#define __HAL_MDMA_GET_IT_SOURCE(__HANDLE__, __INTERRUPT__) (((__HANDLE__)->Instance->CCR & (__INTERRUPT__))) + +/** + * @} + */ + +/* Exported functions --------------------------------------------------------*/ +/** @defgroup MDMA_Exported_Functions MDMA Exported Functions + * @{ + */ + +/* Initialization and de-initialization functions *****************************/ +/** @defgroup MDMA_Exported_Functions_Group1 Initialization and de-initialization functions + * @brief Initialization and de-initialization functions + * @{ + */ +HAL_StatusTypeDef HAL_MDMA_Init(MDMA_HandleTypeDef *hmdma); +HAL_StatusTypeDef HAL_MDMA_DeInit (MDMA_HandleTypeDef *hmdma); +HAL_StatusTypeDef HAL_MDMA_ConfigPostRequestMask(MDMA_HandleTypeDef *hmdma, uint32_t MaskAddress, uint32_t MaskData); + +HAL_StatusTypeDef HAL_MDMA_RegisterCallback(MDMA_HandleTypeDef *hmdma, HAL_MDMA_CallbackIDTypeDef CallbackID, void (* pCallback)(MDMA_HandleTypeDef *_hmdma)); +HAL_StatusTypeDef HAL_MDMA_UnRegisterCallback(MDMA_HandleTypeDef *hmdma, HAL_MDMA_CallbackIDTypeDef CallbackID); + +/** + * @} + */ + +/* Linked list operation functions ********************************************/ +/** @defgroup MDMA_Exported_Functions_Group2 Linked List operation functions + * @brief Linked list operation functions + * @{ + */ + +HAL_StatusTypeDef HAL_MDMA_LinkedList_CreateNode(MDMA_LinkNodeTypeDef *pNode, MDMA_LinkNodeConfTypeDef *pNodeConfig); +HAL_StatusTypeDef HAL_MDMA_LinkedList_AddNode(MDMA_HandleTypeDef *hmdma, MDMA_LinkNodeTypeDef *pNewNode, MDMA_LinkNodeTypeDef *pPrevNode); +HAL_StatusTypeDef HAL_MDMA_LinkedList_RemoveNode(MDMA_HandleTypeDef *hmdma, MDMA_LinkNodeTypeDef *pNode); +HAL_StatusTypeDef HAL_MDMA_LinkedList_EnableCircularMode(MDMA_HandleTypeDef *hmdma); +HAL_StatusTypeDef HAL_MDMA_LinkedList_DisableCircularMode(MDMA_HandleTypeDef *hmdma); + + +/** + * @} + */ + +/* IO operation functions *****************************************************/ +/** @defgroup MDMA_Exported_Functions_Group3 I/O operation functions + * @brief I/O operation functions + * @{ + */ +HAL_StatusTypeDef HAL_MDMA_Start (MDMA_HandleTypeDef *hmdma, uint32_t SrcAddress, uint32_t DstAddress, uint32_t BlockDataLength, uint32_t BlockCount); +HAL_StatusTypeDef HAL_MDMA_Start_IT(MDMA_HandleTypeDef *hmdma, uint32_t SrcAddress, uint32_t DstAddress, uint32_t BlockDataLength, uint32_t BlockCount); +HAL_StatusTypeDef HAL_MDMA_Abort(MDMA_HandleTypeDef *hmdma); +HAL_StatusTypeDef HAL_MDMA_Abort_IT(MDMA_HandleTypeDef *hmdma); +HAL_StatusTypeDef HAL_MDMA_PollForTransfer(MDMA_HandleTypeDef *hmdma, HAL_MDMA_LevelCompleteTypeDef CompleteLevel, uint32_t Timeout); +HAL_StatusTypeDef HAL_MDMA_GenerateSWRequest(MDMA_HandleTypeDef *hmdma); +void HAL_MDMA_IRQHandler(MDMA_HandleTypeDef *hmdma); + +/** + * @} + */ + +/* Peripheral State and Error functions ***************************************/ +/** @defgroup MDMA_Exported_Functions_Group4 Peripheral State functions + * @brief Peripheral State functions + * @{ + */ +HAL_MDMA_StateTypeDef HAL_MDMA_GetState(MDMA_HandleTypeDef *hmdma); +uint32_t HAL_MDMA_GetError(MDMA_HandleTypeDef *hmdma); + +/** + * @} + */ + +/** + * @} + */ + +/* Private types -------------------------------------------------------------*/ +/** @defgroup MDMA_Private_Types MDMA Private Types + * @{ + */ + +/** + * @} + */ + +/* Private defines -----------------------------------------------------------*/ +/** @defgroup MDMA_Private_Defines MDMA Private Defines + * @{ + */ + +/** + * @} + */ + +/* Private variables ---------------------------------------------------------*/ +/** @defgroup MDMA_Private_Variables MDMA Private Variables + * @{ + */ + +/** + * @} + */ + +/* Private constants ---------------------------------------------------------*/ +/** @defgroup MDMA_Private_Constants MDMA Private Constants + * @{ + */ + +/** + * @} + */ + +/* Private macros ------------------------------------------------------------*/ +/** @defgroup MDMA_Private_Macros MDMA Private Macros + * @{ + */ + +#define IS_MDMA_LEVEL_COMPLETE(__LEVEL__) (((__LEVEL__) == HAL_MDMA_FULL_TRANSFER ) || \ + ((__LEVEL__) == HAL_MDMA_BUFFER_TRANSFER )|| \ + ((__LEVEL__) == HAL_MDMA_BLOCK_TRANSFER ) || \ + ((__LEVEL__) == HAL_MDMA_REPEAT_BLOCK_TRANSFER )) + + +#define IS_MDMA_PRIORITY(__PRIORITY__) (((__PRIORITY__) == MDMA_PRIORITY_LOW ) || \ + ((__PRIORITY__) == MDMA_PRIORITY_MEDIUM) || \ + ((__PRIORITY__) == MDMA_PRIORITY_HIGH) || \ + ((__PRIORITY__) == MDMA_PRIORITY_VERY_HIGH)) + +#define IS_MDMA_ENDIANNESS_MODE(__ENDIANNESS__) (((__ENDIANNESS__) == MDMA_LITTLE_ENDIANNESS_PRESERVE ) || \ + ((__ENDIANNESS__) == MDMA_LITTLE_BYTE_ENDIANNESS_EXCHANGE) || \ + ((__ENDIANNESS__) == MDMA_LITTLE_HALFWORD_ENDIANNESS_EXCHANGE) || \ + ((__ENDIANNESS__) == MDMA_LITTLE_WORD_ENDIANNESS_EXCHANGE)) + + +#if defined (OCTOSPI2) +#define IS_MDMA_REQUEST(__REQUEST__) (((__REQUEST__) == MDMA_REQUEST_SW ) || ((__REQUEST__) <= MDMA_REQUEST_OCTOSPI2_TC)) +#else +#define IS_MDMA_REQUEST(__REQUEST__) (((__REQUEST__) == MDMA_REQUEST_SW ) || ((__REQUEST__) <= MDMA_REQUEST_SDMMC1_COMMAND_END)) +#endif /* OCTOSPI2 */ + +#define IS_MDMA_SOURCE_INC(__INC__) (((__INC__) == MDMA_SRC_INC_DISABLE ) || \ + ((__INC__) == MDMA_SRC_INC_BYTE ) || \ + ((__INC__) == MDMA_SRC_INC_HALFWORD ) || \ + ((__INC__) == MDMA_SRC_INC_WORD ) || \ + ((__INC__) == MDMA_SRC_INC_DOUBLEWORD) || \ + ((__INC__) == MDMA_SRC_DEC_BYTE) || \ + ((__INC__) == MDMA_SRC_DEC_HALFWORD) || \ + ((__INC__) == MDMA_SRC_DEC_WORD) || \ + ((__INC__) == MDMA_SRC_DEC_DOUBLEWORD)) + +#define IS_MDMA_DESTINATION_INC(__INC__) (((__INC__) == MDMA_DEST_INC_DISABLE ) || \ + ((__INC__) == MDMA_DEST_INC_BYTE ) || \ + ((__INC__) == MDMA_DEST_INC_HALFWORD ) || \ + ((__INC__) == MDMA_DEST_INC_WORD ) || \ + ((__INC__) == MDMA_DEST_INC_DOUBLEWORD) || \ + ((__INC__) == MDMA_DEST_DEC_BYTE) || \ + ((__INC__) == MDMA_DEST_DEC_HALFWORD) || \ + ((__INC__) == MDMA_DEST_DEC_WORD) || \ + ((__INC__) == MDMA_DEST_DEC_DOUBLEWORD)) + +#define IS_MDMA_SOURCE_DATASIZE(__SIZE__) (((__SIZE__) == MDMA_SRC_DATASIZE_BYTE ) || \ + ((__SIZE__) == MDMA_SRC_DATASIZE_HALFWORD ) || \ + ((__SIZE__) == MDMA_SRC_DATASIZE_WORD ) || \ + ((__SIZE__) == MDMA_SRC_DATASIZE_DOUBLEWORD)) + +#define IS_MDMA_DESTINATION_DATASIZE(__SIZE__) (((__SIZE__) == MDMA_DEST_DATASIZE_BYTE ) || \ + ((__SIZE__) == MDMA_DEST_DATASIZE_HALFWORD ) || \ + ((__SIZE__) == MDMA_DEST_DATASIZE_WORD ) || \ + ((__SIZE__) == MDMA_DEST_DATASIZE_DOUBLEWORD)) + +#define IS_MDMA_DATA_ALIGNMENT(__ALIGNMENT__) (((__ALIGNMENT__) == MDMA_DATAALIGN_PACKENABLE ) || \ + ((__ALIGNMENT__) == MDMA_DATAALIGN_RIGHT ) || \ + ((__ALIGNMENT__) == MDMA_DATAALIGN_RIGHT_SIGNED ) || \ + ((__ALIGNMENT__) == MDMA_DATAALIGN_LEFT)) + + +#define IS_MDMA_SOURCE_BURST(__BURST__) (((__BURST__) == MDMA_SOURCE_BURST_SINGLE ) || \ + ((__BURST__) == MDMA_SOURCE_BURST_2BEATS ) || \ + ((__BURST__) == MDMA_SOURCE_BURST_4BEATS ) || \ + ((__BURST__) == MDMA_SOURCE_BURST_8BEATS) || \ + ((__BURST__) == MDMA_SOURCE_BURST_16BEATS) || \ + ((__BURST__) == MDMA_SOURCE_BURST_32BEATS) || \ + ((__BURST__) == MDMA_SOURCE_BURST_64BEATS) || \ + ((__BURST__) == MDMA_SOURCE_BURST_128BEATS)) + + +#define IS_MDMA_DESTINATION_BURST(__BURST__) (((__BURST__) == MDMA_DEST_BURST_SINGLE ) || \ + ((__BURST__) == MDMA_DEST_BURST_2BEATS ) || \ + ((__BURST__) == MDMA_DEST_BURST_4BEATS ) || \ + ((__BURST__) == MDMA_DEST_BURST_8BEATS) || \ + ((__BURST__) == MDMA_DEST_BURST_16BEATS) || \ + ((__BURST__) == MDMA_DEST_BURST_32BEATS) || \ + ((__BURST__) == MDMA_DEST_BURST_64BEATS) || \ + ((__BURST__) == MDMA_DEST_BURST_128BEATS)) + + #define IS_MDMA_TRANSFER_TRIGGER_MODE(__MODE__) (((__MODE__) == MDMA_BUFFER_TRANSFER ) || \ + ((__MODE__) == MDMA_BLOCK_TRANSFER ) || \ + ((__MODE__) == MDMA_REPEAT_BLOCK_TRANSFER ) || \ + ((__MODE__) == MDMA_FULL_TRANSFER)) + +#define IS_MDMA_BUFFER_TRANSFER_LENGTH(__LENGTH__) (((__LENGTH__) >= 0x00000001U) && ((__LENGTH__) < 0x000000FFU)) + +#define IS_MDMA_BLOCK_COUNT(__COUNT__) (((__COUNT__) > 0U ) && ((__COUNT__) <= 4096U)) + +#define IS_MDMA_TRANSFER_LENGTH(SIZE) (((SIZE) > 0U) && ((SIZE) <= 65536U)) + +#define IS_MDMA_BLOCK_ADDR_OFFSET(__BLOCK_ADD_OFFSET__) (((__BLOCK_ADD_OFFSET__) > (-65536)) && ((__BLOCK_ADD_OFFSET__) < 65536)) + +/** + * @} + */ + +/* Private functions prototypes ----------------------------------------------*/ +/** @defgroup MDMA_Private_Functions_Prototypes MDMA Private Functions Prototypes + * @{ + */ + +/** + * @} + */ + +/* Private functions ---------------------------------------------------------*/ +/** @defgroup MDMA_Private_Functions MDMA Private Functions + * @{ + */ + +/** + * @} + */ + +/** + * @} + */ + +/** + * @} + */ + +#ifdef __cplusplus +} +#endif + +#endif /* STM32H7xx_HAL_MDMA_H */ + +/************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/ diff --git a/source/hic_hal/stm32/stm32h743ii/STM32H7xx_HAL_Driver/Src/stm32h7xx_hal_adc.c b/source/hic_hal/stm32/stm32h743ii/STM32H7xx_HAL_Driver/Src/stm32h7xx_hal_adc.c new file mode 100644 index 000000000..38183e0a6 --- /dev/null +++ b/source/hic_hal/stm32/stm32h743ii/STM32H7xx_HAL_Driver/Src/stm32h7xx_hal_adc.c @@ -0,0 +1,3713 @@ +/** + ****************************************************************************** + * @file stm32h7xx_hal_adc.c + * @author MCD Application Team + * @brief This file provides firmware functions to manage the following + * functionalities of the Analog to Digital Convertor (ADC) + * peripheral: + * + Initialization and de-initialization functions + * ++ Initialization and Configuration of ADC + * + Operation functions + * ++ Start, stop, get result of conversions of regular + * group, using 3 possible modes: polling, interruption or DMA. + * + Control functions + * ++ Channels configuration on regular group + * ++ Analog Watchdog configuration + * + State functions + * ++ ADC state machine management + * ++ Interrupts and flags management + * Other functions (extended functions) are available in file + * "stm32h7xx_hal_adc_ex.c". + * + @verbatim + ============================================================================== + ##### ADC peripheral features ##### + ============================================================================== + [..] + (+) 16-bit, 14-bit, 12-bit, 10-bit or 8-bit configurable resolution. + + (+) Interrupt generation at the end of regular conversion and in case of + analog watchdog or overrun events. + + (+) Single and continuous conversion modes. + + (+) Scan mode for conversion of several channels sequentially. + + (+) Data alignment with in-built data coherency. + + (+) Programmable sampling time (channel wise) + + (+) External trigger (timer or EXTI) with configurable polarity + + (+) DMA request generation for transfer of conversions data of regular group. + + (+) Configurable delay between conversions in Dual interleaved mode. + + (+) ADC channels selectable single/differential input. + + (+) ADC offset shared on 4 offset instances. + (+) ADC calibration + + (+) ADC conversion of regular group. + + (+) ADC supply requirements: 1.62 V to 3.6 V. + + (+) ADC input range: from Vref- (connected to Vssa) to Vref+ (connected to + Vdda or to an external voltage reference). + + + ##### How to use this driver ##### + ============================================================================== + [..] + + *** Configuration of top level parameters related to ADC *** + ============================================================ + [..] + + (#) Enable the ADC interface + (++) As prerequisite, ADC clock must be configured at RCC top level. + + (++) Two clock settings are mandatory: + (+++) ADC clock (core clock, also possibly conversion clock). + + (+++) ADC clock (conversions clock). + Two possible clock sources: synchronous clock derived from AHB clock + or asynchronous clock derived from system clock, the PLL2 or the PLL3 running up to 400MHz. + + (+++) Example: + Into HAL_ADC_MspInit() (recommended code location) or with + other device clock parameters configuration: + (+++) __HAL_RCC_ADC_CLK_ENABLE(); (mandatory) + + RCC_ADCCLKSOURCE_PLL2 enable: (optional: if asynchronous clock selected) + (+++) RCC_PeriphClkInitTypeDef RCC_PeriphClkInit; + (+++) PeriphClkInit.PeriphClockSelection = RCC_PERIPHCLK_ADC; + (+++) PeriphClkInit.AdcClockSelection = RCC_ADCCLKSOURCE_PLL2; + (+++) HAL_RCCEx_PeriphCLKConfig(&PeriphClkInit); + + (++) ADC clock source and clock prescaler are configured at ADC level with + parameter "ClockPrescaler" using function HAL_ADC_Init(). + + (#) ADC pins configuration + (++) Enable the clock for the ADC GPIOs + using macro __HAL_RCC_GPIOx_CLK_ENABLE() + (++) Configure these ADC pins in analog mode + using function HAL_GPIO_Init() + + (#) Optionally, in case of usage of ADC with interruptions: + (++) Configure the NVIC for ADC + using function HAL_NVIC_EnableIRQ(ADCx_IRQn) + (++) Insert the ADC interruption handler function HAL_ADC_IRQHandler() + into the function of corresponding ADC interruption vector + ADCx_IRQHandler(). + + (#) Optionally, in case of usage of DMA: + (++) Configure the DMA (DMA channel, mode normal or circular, ...) + using function HAL_DMA_Init(). + (++) Configure the NVIC for DMA + using function HAL_NVIC_EnableIRQ(DMAx_Channelx_IRQn) + (++) Insert the ADC interruption handler function HAL_ADC_IRQHandler() + into the function of corresponding DMA interruption vector + DMAx_Channelx_IRQHandler(). + + *** Configuration of ADC, group regular, channels parameters *** + ================================================================ + [..] + + (#) Configure the ADC parameters (resolution, data alignment, ...) + and regular group parameters (conversion trigger, sequencer, ...) + using function HAL_ADC_Init(). + + (#) Configure the channels for regular group parameters (channel number, + channel rank into sequencer, ..., into regular group) + using function HAL_ADC_ConfigChannel(). + + (#) Optionally, configure the analog watchdog parameters (channels + monitored, thresholds, ...) + using function HAL_ADC_AnalogWDGConfig(). + + *** Execution of ADC conversions *** + ==================================== + [..] + + (#) Optionally, perform an automatic ADC calibration to improve the + conversion accuracy + using function HAL_ADCEx_Calibration_Start(). + + (#) ADC driver can be used among three modes: polling, interruption, + transfer by DMA. + + (++) ADC conversion by polling: + (+++) Activate the ADC peripheral and start conversions + using function HAL_ADC_Start() + (+++) Wait for ADC conversion completion + using function HAL_ADC_PollForConversion() + (+++) Retrieve conversion results + using function HAL_ADC_GetValue() + (+++) Stop conversion and disable the ADC peripheral + using function HAL_ADC_Stop() + + (++) ADC conversion by interruption: + (+++) Activate the ADC peripheral and start conversions + using function HAL_ADC_Start_IT() + (+++) Wait for ADC conversion completion by call of function + HAL_ADC_ConvCpltCallback() + (this function must be implemented in user program) + (+++) Retrieve conversion results + using function HAL_ADC_GetValue() + (+++) Stop conversion and disable the ADC peripheral + using function HAL_ADC_Stop_IT() + + (++) ADC conversion with transfer by DMA: + (+++) Activate the ADC peripheral and start conversions + using function HAL_ADC_Start_DMA() + (+++) Wait for ADC conversion completion by call of function + HAL_ADC_ConvCpltCallback() or HAL_ADC_ConvHalfCpltCallback() + (these functions must be implemented in user program) + (+++) Conversion results are automatically transferred by DMA into + destination variable address. + (+++) Stop conversion and disable the ADC peripheral + using function HAL_ADC_Stop_DMA() + + [..] + + (@) Callback functions must be implemented in user program: + (+@) HAL_ADC_ErrorCallback() + (+@) HAL_ADC_LevelOutOfWindowCallback() (callback of analog watchdog) + (+@) HAL_ADC_ConvCpltCallback() + (+@) HAL_ADC_ConvHalfCpltCallback + + *** Deinitialization of ADC *** + ============================================================ + [..] + + (#) Disable the ADC interface + (++) ADC clock can be hard reset and disabled at RCC top level. + (++) Hard reset of ADC peripherals + using macro __HAL_RCC_ADCx_FORCE_RESET(), __HAL_RCC_ADCx_RELEASE_RESET(). + (++) ADC clock disable + using the equivalent macro/functions as configuration step. + (+++) Example: + Into HAL_ADC_MspDeInit() (recommended code location) or with + other device clock parameters configuration: + (+++) __HAL_RCC_ADC_CLK_DISABLE(); (if not used anymore) + RCC_ADCCLKSOURCE_CLKP restore: (optional) + (+++) RCC_PeriphClkInitTypeDef RCC_PeriphClkInit; + (+++) PeriphClkInit.PeriphClockSelection = RCC_PERIPHCLK_ADC; + (+++) PeriphClkInit.AdcClockSelection = RCC_ADCCLKSOURCE_CLKP; + (+++) HAL_RCCEx_PeriphCLKConfig(&PeriphClkInit); + + (#) ADC pins configuration + (++) Disable the clock for the ADC GPIOs + using macro __HAL_RCC_GPIOx_CLK_DISABLE() + + (#) Optionally, in case of usage of ADC with interruptions: + (++) Disable the NVIC for ADC + using function HAL_NVIC_EnableIRQ(ADCx_IRQn) + + (#) Optionally, in case of usage of DMA: + (++) Deinitialize the DMA + using function HAL_DMA_Init(). + (++) Disable the NVIC for DMA + using function HAL_NVIC_EnableIRQ(DMAx_Channelx_IRQn) + + [..] + + *** Callback registration *** + ============================================= + [..] + + The compilation flag USE_HAL_ADC_REGISTER_CALLBACKS, when set to 1, + allows the user to configure dynamically the driver callbacks. + Use Functions @ref HAL_ADC_RegisterCallback() + to register an interrupt callback. + [..] + + Function @ref HAL_ADC_RegisterCallback() allows to register following callbacks: + (+) ConvCpltCallback : ADC conversion complete callback + (+) ConvHalfCpltCallback : ADC conversion DMA half-transfer callback + (+) LevelOutOfWindowCallback : ADC analog watchdog 1 callback + (+) ErrorCallback : ADC error callback + (+) InjectedConvCpltCallback : ADC group injected conversion complete callback + (+) InjectedQueueOverflowCallback : ADC group injected context queue overflow callback + (+) LevelOutOfWindow2Callback : ADC analog watchdog 2 callback + (+) LevelOutOfWindow3Callback : ADC analog watchdog 3 callback + (+) EndOfSamplingCallback : ADC end of sampling callback + (+) MspInitCallback : ADC Msp Init callback + (+) MspDeInitCallback : ADC Msp DeInit callback + This function takes as parameters the HAL peripheral handle, the Callback ID + and a pointer to the user callback function. + [..] + + Use function @ref HAL_ADC_UnRegisterCallback to reset a callback to the default + weak function. + [..] + + @ref HAL_ADC_UnRegisterCallback takes as parameters the HAL peripheral handle, + and the Callback ID. + This function allows to reset following callbacks: + (+) ConvCpltCallback : ADC conversion complete callback + (+) ConvHalfCpltCallback : ADC conversion DMA half-transfer callback + (+) LevelOutOfWindowCallback : ADC analog watchdog 1 callback + (+) ErrorCallback : ADC error callback + (+) InjectedConvCpltCallback : ADC group injected conversion complete callback + (+) InjectedQueueOverflowCallback : ADC group injected context queue overflow callback + (+) LevelOutOfWindow2Callback : ADC analog watchdog 2 callback + (+) LevelOutOfWindow3Callback : ADC analog watchdog 3 callback + (+) EndOfSamplingCallback : ADC end of sampling callback + (+) MspInitCallback : ADC Msp Init callback + (+) MspDeInitCallback : ADC Msp DeInit callback + [..] + + By default, after the @ref HAL_ADC_Init() and when the state is @ref HAL_ADC_STATE_RESET + all callbacks are set to the corresponding weak functions: + examples @ref HAL_ADC_ConvCpltCallback(), @ref HAL_ADC_ErrorCallback(). + Exception done for MspInit and MspDeInit functions that are + reset to the legacy weak functions in the @ref HAL_ADC_Init()/ @ref HAL_ADC_DeInit() only when + these callbacks are null (not registered beforehand). + [..] + + If MspInit or MspDeInit are not null, the @ref HAL_ADC_Init()/ @ref HAL_ADC_DeInit() + keep and use the user MspInit/MspDeInit callbacks (registered beforehand) whatever the state. + [..] + + Callbacks can be registered/unregistered in @ref HAL_ADC_STATE_READY state only. + Exception done MspInit/MspDeInit functions that can be registered/unregistered + in @ref HAL_ADC_STATE_READY or @ref HAL_ADC_STATE_RESET state, + thus registered (user) MspInit/DeInit callbacks can be used during the Init/DeInit. + [..] + + Then, the user first registers the MspInit/MspDeInit user callbacks + using @ref HAL_ADC_RegisterCallback() before calling @ref HAL_ADC_DeInit() + or @ref HAL_ADC_Init() function. + [..] + + When the compilation flag USE_HAL_ADC_REGISTER_CALLBACKS is set to 0 or + not defined, the callback registration feature is not available and all callbacks + are set to the corresponding weak functions. + + @endverbatim + ****************************************************************************** + * @attention + * + *

© Copyright (c) 2017 STMicroelectronics. + * All rights reserved.

+ * + * This software component is licensed by ST under BSD 3-Clause license, + * the "License"; You may not use this file except in compliance with the + * License. You may obtain a copy of the License at: + * opensource.org/licenses/BSD-3-Clause + * + ****************************************************************************** + */ + +/* Includes ------------------------------------------------------------------*/ +#include "stm32h7xx_hal.h" + +/** @addtogroup STM32H7xx_HAL_Driver + * @{ + */ + +/** @defgroup ADC ADC + * @brief ADC HAL module driver + * @{ + */ + +#ifdef HAL_ADC_MODULE_ENABLED + +/* Private typedef -----------------------------------------------------------*/ +/* Private define ------------------------------------------------------------*/ + +/** @defgroup ADC_Private_Constants ADC Private Constants + * @{ + */ +#define ADC_CFGR_FIELDS_1 ((uint32_t)(ADC_CFGR_RES |\ + ADC_CFGR_CONT | ADC_CFGR_OVRMOD |\ + ADC_CFGR_DISCEN | ADC_CFGR_DISCNUM |\ + ADC_CFGR_EXTEN | ADC_CFGR_EXTSEL)) /*!< ADC_CFGR fields of parameters that can be updated + when no regular conversion is on-going */ + +#define ADC_CFGR2_FIELDS ((uint32_t)(ADC_CFGR2_ROVSE | ADC_CFGR2_OVSR |\ + ADC_CFGR2_OVSS | ADC_CFGR2_TROVS |\ + ADC_CFGR2_ROVSM)) /*!< ADC_CFGR2 fields of parameters that can be updated when no conversion + (neither regular nor injected) is on-going */ + +/* Timeout values for ADC operations (enable settling time, */ +/* disable settling time, ...). */ +/* Values defined to be higher than worst cases: low clock frequency, */ +/* maximum prescalers. */ +#define ADC_ENABLE_TIMEOUT (2UL) /*!< ADC enable time-out value */ +#define ADC_DISABLE_TIMEOUT (2UL) /*!< ADC disable time-out value */ + +/* Timeout to wait for current conversion on going to be completed. */ +/* Timeout fixed to worst case, for 1 channel. */ +/* - maximum sampling time (830.5 adc_clk) */ +/* - ADC resolution (Tsar 16 bits= 16.5 adc_clk) */ +/* - ADC clock with prescaler 256 */ +/* 823 * 256 = 210688 clock cycles max */ +/* Unit: cycles of CPU clock. */ +#define ADC_CONVERSION_TIME_MAX_CPU_CYCLES ((uint32_t) 210688) /*!< ADC conversion completion time-out value */ + +/** + * @} + */ + +/* Private macro -------------------------------------------------------------*/ +/* Private variables ---------------------------------------------------------*/ +/* Private function prototypes -----------------------------------------------*/ +/* Exported functions --------------------------------------------------------*/ + +/** @defgroup ADC_Exported_Functions ADC Exported Functions + * @{ + */ + +/** @defgroup ADC_Exported_Functions_Group1 Initialization and de-initialization functions + * @brief ADC Initialization and Configuration functions + * +@verbatim + =============================================================================== + ##### Initialization and de-initialization functions ##### + =============================================================================== + [..] This section provides functions allowing to: + (+) Initialize and configure the ADC. + (+) De-initialize the ADC. +@endverbatim + * @{ + */ + +/** + * @brief Initialize the ADC peripheral and regular group according to + * parameters specified in structure "ADC_InitTypeDef". + * @note As prerequisite, ADC clock must be configured at RCC top level + * (refer to description of RCC configuration for ADC + * in header of this file). + * @note Possibility to update parameters on the fly: + * This function initializes the ADC MSP (HAL_ADC_MspInit()) only when + * coming from ADC state reset. Following calls to this function can + * be used to reconfigure some parameters of ADC_InitTypeDef + * structure on the fly, without modifying MSP configuration. If ADC + * MSP has to be modified again, HAL_ADC_DeInit() must be called + * before HAL_ADC_Init(). + * The setting of these parameters is conditioned to ADC state. + * For parameters constraints, see comments of structure + * "ADC_InitTypeDef". + * @note This function configures the ADC within 2 scopes: scope of entire + * ADC and scope of regular group. For parameters details, see comments + * of structure "ADC_InitTypeDef". + * @note Parameters related to common ADC registers (ADC clock mode) are set + * only if all ADCs are disabled. + * If this is not the case, these common parameters setting are + * bypassed without error reporting: it can be the intended behaviour in + * case of update of a parameter of ADC_InitTypeDef on the fly, + * without disabling the other ADCs. + * @param hadc ADC handle + * @retval HAL status + */ +HAL_StatusTypeDef HAL_ADC_Init(ADC_HandleTypeDef *hadc) +{ + HAL_StatusTypeDef tmp_hal_status = HAL_OK; + uint32_t tmpCFGR; + uint32_t tmp_adc_reg_is_conversion_on_going; + __IO uint32_t wait_loop_index = 0UL; + uint32_t tmp_adc_is_conversion_on_going_regular; + uint32_t tmp_adc_is_conversion_on_going_injected; + + /* Check ADC handle */ + if (hadc == NULL) + { + return HAL_ERROR; + } + + /* Check the parameters */ + assert_param(IS_ADC_ALL_INSTANCE(hadc->Instance)); + assert_param(IS_ADC_CLOCKPRESCALER(hadc->Init.ClockPrescaler)); + assert_param(IS_ADC_RESOLUTION(hadc->Init.Resolution)); + assert_param(IS_ADC_SCAN_MODE(hadc->Init.ScanConvMode)); + assert_param(IS_FUNCTIONAL_STATE(hadc->Init.ContinuousConvMode)); + assert_param(IS_ADC_EXTTRIG_EDGE(hadc->Init.ExternalTrigConvEdge)); + assert_param(IS_ADC_EXTTRIG(hadc->Init.ExternalTrigConv)); + assert_param(IS_ADC_CONVERSIONDATAMGT(hadc->Init.ConversionDataManagement)); + assert_param(IS_ADC_EOC_SELECTION(hadc->Init.EOCSelection)); + assert_param(IS_ADC_OVERRUN(hadc->Init.Overrun)); + assert_param(IS_FUNCTIONAL_STATE(hadc->Init.LowPowerAutoWait)); + assert_param(IS_FUNCTIONAL_STATE(hadc->Init.OversamplingMode)); + + if (hadc->Init.ScanConvMode != ADC_SCAN_DISABLE) + { + assert_param(IS_ADC_REGULAR_NB_CONV(hadc->Init.NbrOfConversion)); + assert_param(IS_FUNCTIONAL_STATE(hadc->Init.DiscontinuousConvMode)); + + if (hadc->Init.DiscontinuousConvMode == ENABLE) + { + assert_param(IS_ADC_REGULAR_DISCONT_NUMBER(hadc->Init.NbrOfDiscConversion)); + } + } + + /* DISCEN and CONT bits cannot be set at the same time */ + assert_param(!((hadc->Init.DiscontinuousConvMode == ENABLE) && (hadc->Init.ContinuousConvMode == ENABLE))); + + /* Actions performed only if ADC is coming from state reset: */ + /* - Initialization of ADC MSP */ + if (hadc->State == HAL_ADC_STATE_RESET) + { +#if (USE_HAL_ADC_REGISTER_CALLBACKS == 1) + /* Init the ADC Callback settings */ + hadc->ConvCpltCallback = HAL_ADC_ConvCpltCallback; /* Legacy weak callback */ + hadc->ConvHalfCpltCallback = HAL_ADC_ConvHalfCpltCallback; /* Legacy weak callback */ + hadc->LevelOutOfWindowCallback = HAL_ADC_LevelOutOfWindowCallback; /* Legacy weak callback */ + hadc->ErrorCallback = HAL_ADC_ErrorCallback; /* Legacy weak callback */ + hadc->InjectedConvCpltCallback = HAL_ADCEx_InjectedConvCpltCallback; /* Legacy weak callback */ + hadc->InjectedQueueOverflowCallback = HAL_ADCEx_InjectedQueueOverflowCallback; /* Legacy weak callback */ + hadc->LevelOutOfWindow2Callback = HAL_ADCEx_LevelOutOfWindow2Callback; /* Legacy weak callback */ + hadc->LevelOutOfWindow3Callback = HAL_ADCEx_LevelOutOfWindow3Callback; /* Legacy weak callback */ + hadc->EndOfSamplingCallback = HAL_ADCEx_EndOfSamplingCallback; /* Legacy weak callback */ + + if (hadc->MspInitCallback == NULL) + { + hadc->MspInitCallback = HAL_ADC_MspInit; /* Legacy weak MspInit */ + } + + /* Init the low level hardware */ + hadc->MspInitCallback(hadc); +#else + /* Init the low level hardware */ + HAL_ADC_MspInit(hadc); +#endif /* USE_HAL_ADC_REGISTER_CALLBACKS */ + + /* Set ADC error code to none */ + ADC_CLEAR_ERRORCODE(hadc); + + /* Initialize Lock */ + hadc->Lock = HAL_UNLOCKED; + } + + /* - Exit from deep-power-down mode and ADC voltage regulator enable */ + if (LL_ADC_IsDeepPowerDownEnabled(hadc->Instance) != 0UL) + { + /* Disable ADC deep power down mode */ + LL_ADC_DisableDeepPowerDown(hadc->Instance); + + /* System was in deep power down mode, calibration must + be relaunched or a previously saved calibration factor + re-applied once the ADC voltage regulator is enabled */ + } + + if (LL_ADC_IsInternalRegulatorEnabled(hadc->Instance) == 0UL) + { + /* Enable ADC internal voltage regulator */ + LL_ADC_EnableInternalRegulator(hadc->Instance); + + /* Note: Variable divided by 2 to compensate partially */ + /* CPU processing cycles, scaling in us split to not */ + /* exceed 32 bits register capacity and handle low frequency. */ + wait_loop_index = ((LL_ADC_DELAY_INTERNAL_REGUL_STAB_US / 10UL) * (SystemCoreClock / (100000UL * 2UL))); + while (wait_loop_index != 0UL) + { + wait_loop_index--; + } + } + + /* Verification that ADC voltage regulator is correctly enabled, whether */ + /* or not ADC is coming from state reset (if any potential problem of */ + /* clocking, voltage regulator would not be enabled). */ + if (LL_ADC_IsInternalRegulatorEnabled(hadc->Instance) == 0UL) + { + /* Update ADC state machine to error */ + SET_BIT(hadc->State, HAL_ADC_STATE_ERROR_INTERNAL); + + /* Set ADC error code to ADC peripheral internal error */ + SET_BIT(hadc->ErrorCode, HAL_ADC_ERROR_INTERNAL); + + tmp_hal_status = HAL_ERROR; + } + + /* Configuration of ADC parameters if previous preliminary actions are */ + /* correctly completed and if there is no conversion on going on regular */ + /* group (ADC may already be enabled at this point if HAL_ADC_Init() is */ + /* called to update a parameter on the fly). */ + tmp_adc_reg_is_conversion_on_going = LL_ADC_REG_IsConversionOngoing(hadc->Instance); + + if (((hadc->State & HAL_ADC_STATE_ERROR_INTERNAL) == 0UL) + && (tmp_adc_reg_is_conversion_on_going == 0UL) + ) + { + /* Set ADC state */ + ADC_STATE_CLR_SET(hadc->State, + HAL_ADC_STATE_REG_BUSY, + HAL_ADC_STATE_BUSY_INTERNAL); + + /* Configuration of common ADC parameters */ + + /* Parameters update conditioned to ADC state: */ + /* Parameters that can be updated only when ADC is disabled: */ + /* - clock configuration */ + if (LL_ADC_IsEnabled(hadc->Instance) == 0UL) + { + if (__LL_ADC_IS_ENABLED_ALL_COMMON_INSTANCE(__LL_ADC_COMMON_INSTANCE(hadc->Instance)) == 0UL) + { + /* Reset configuration of ADC common register CCR: */ + /* */ + /* - ADC clock mode and ACC prescaler (CKMODE and PRESC bits)are set */ + /* according to adc->Init.ClockPrescaler. It selects the clock */ + /* source and sets the clock division factor. */ + /* */ + /* Some parameters of this register are not reset, since they are set */ + /* by other functions and must be kept in case of usage of this */ + /* function on the fly (update of a parameter of ADC_InitTypeDef */ + /* without needing to reconfigure all other ADC groups/channels */ + /* parameters): */ + /* - when multimode feature is available, multimode-related */ + /* parameters: MDMA, DMACFG, DELAY, DUAL (set by API */ + /* HAL_ADCEx_MultiModeConfigChannel() ) */ + /* - internal measurement paths: Vbat, temperature sensor, Vref */ + /* (set into HAL_ADC_ConfigChannel() or */ + /* HAL_ADCEx_InjectedConfigChannel() ) */ + LL_ADC_SetCommonClock(__LL_ADC_COMMON_INSTANCE(hadc->Instance), hadc->Init.ClockPrescaler); + } + } + + /* Configuration of ADC: */ + /* - resolution Init.Resolution */ + /* - external trigger to start conversion Init.ExternalTrigConv */ + /* - external trigger polarity Init.ExternalTrigConvEdge */ + /* - continuous conversion mode Init.ContinuousConvMode */ + /* - overrun Init.Overrun */ + /* - discontinuous mode Init.DiscontinuousConvMode */ + /* - discontinuous mode channel count Init.NbrOfDiscConversion */ +#if defined(ADC_VER_V5_3) + tmpCFGR = (ADC_CFGR_CONTINUOUS((uint32_t)hadc->Init.ContinuousConvMode) | + hadc->Init.Overrun | + hadc->Init.Resolution | + ADC_CFGR_REG_DISCONTINUOUS((uint32_t)hadc->Init.DiscontinuousConvMode) ); + +#else + if((HAL_GetREVID() > REV_ID_Y) && (ADC_RESOLUTION_8B == hadc->Init.Resolution)) + { + /* for STM32H7 silicon rev.B and above , ADC_CFGR_RES value for 8bits resolution is : b111 */ + tmpCFGR = (ADC_CFGR_CONTINUOUS((uint32_t)hadc->Init.ContinuousConvMode) | + hadc->Init.Overrun | + hadc->Init.Resolution |(ADC_CFGR_RES_1|ADC_CFGR_RES_0) | + ADC_CFGR_REG_DISCONTINUOUS((uint32_t)hadc->Init.DiscontinuousConvMode) ); + } + else + { + tmpCFGR = (ADC_CFGR_CONTINUOUS((uint32_t)hadc->Init.ContinuousConvMode) | + hadc->Init.Overrun | + hadc->Init.Resolution | + ADC_CFGR_REG_DISCONTINUOUS((uint32_t)hadc->Init.DiscontinuousConvMode) ); + } + +#endif /* ADC_VER_V5_3 */ + + if (hadc->Init.DiscontinuousConvMode == ENABLE) + { + tmpCFGR |= ADC_CFGR_DISCONTINUOUS_NUM(hadc->Init.NbrOfDiscConversion); + } + + /* Enable external trigger if trigger selection is different of software */ + /* start. */ + /* Note: This configuration keeps the hardware feature of parameter */ + /* ExternalTrigConvEdge "trigger edge none" equivalent to */ + /* software start. */ + if (hadc->Init.ExternalTrigConv != ADC_SOFTWARE_START) + { + tmpCFGR |= ((hadc->Init.ExternalTrigConv & ADC_CFGR_EXTSEL) + | hadc->Init.ExternalTrigConvEdge + ); + } + + /* Update Configuration Register CFGR */ + MODIFY_REG(hadc->Instance->CFGR, ADC_CFGR_FIELDS_1, tmpCFGR); + + /* Parameters update conditioned to ADC state: */ + /* Parameters that can be updated when ADC is disabled or enabled without */ + /* conversion on going on regular and injected groups: */ + /* - Conversion data management Init.ConversionDataManagement */ + /* - LowPowerAutoWait feature Init.LowPowerAutoWait */ + /* - Oversampling parameters Init.Oversampling */ + tmp_adc_is_conversion_on_going_regular = LL_ADC_REG_IsConversionOngoing(hadc->Instance); + tmp_adc_is_conversion_on_going_injected = LL_ADC_INJ_IsConversionOngoing(hadc->Instance); + if ((tmp_adc_is_conversion_on_going_regular == 0UL) + && (tmp_adc_is_conversion_on_going_injected == 0UL) + ) + { + tmpCFGR = ( + ADC_CFGR_AUTOWAIT((uint32_t)hadc->Init.LowPowerAutoWait) | + ADC_CFGR_DMACONTREQ((uint32_t)hadc->Init.ConversionDataManagement)); + + MODIFY_REG(hadc->Instance->CFGR, ADC_CFGR_FIELDS_2, tmpCFGR); + + if (hadc->Init.OversamplingMode == ENABLE) + { + assert_param(IS_ADC_OVERSAMPLING_RATIO(hadc->Init.Oversampling.Ratio)); + assert_param(IS_ADC_RIGHT_BIT_SHIFT(hadc->Init.Oversampling.RightBitShift)); + assert_param(IS_ADC_TRIGGERED_OVERSAMPLING_MODE(hadc->Init.Oversampling.TriggeredMode)); + assert_param(IS_ADC_REGOVERSAMPLING_MODE(hadc->Init.Oversampling.OversamplingStopReset)); + + if ((hadc->Init.ExternalTrigConv == ADC_SOFTWARE_START) + || (hadc->Init.ExternalTrigConvEdge == ADC_EXTERNALTRIGCONVEDGE_NONE)) + { + /* Multi trigger is not applicable to software-triggered conversions */ + assert_param((hadc->Init.Oversampling.TriggeredMode == ADC_TRIGGEREDMODE_SINGLE_TRIGGER)); + } + + /* Configuration of Oversampler: */ + /* - Oversampling Ratio */ + /* - Right bit shift */ + /* - Left bit shift */ + /* - Triggered mode */ + /* - Oversampling mode (continued/resumed) */ + MODIFY_REG(hadc->Instance->CFGR2, ADC_CFGR2_FIELDS, + ADC_CFGR2_ROVSE | + ((hadc->Init.Oversampling.Ratio - 1UL) << ADC_CFGR2_OVSR_Pos) | + hadc->Init.Oversampling.RightBitShift | + hadc->Init.Oversampling.TriggeredMode | + hadc->Init.Oversampling.OversamplingStopReset); + + } + else + { + /* Disable ADC oversampling scope on ADC group regular */ + CLEAR_BIT(hadc->Instance->CFGR2, ADC_CFGR2_ROVSE); + } + + /* Set the LeftShift parameter: it is applied to the final result with or without oversampling */ + MODIFY_REG(hadc->Instance->CFGR2, ADC_CFGR2_LSHIFT, hadc->Init.LeftBitShift); + + /* Configure the BOOST Mode */ + ADC_ConfigureBoostMode(hadc); + } + + /* Configuration of regular group sequencer: */ + /* - if scan mode is disabled, regular channels sequence length is set to */ + /* 0x00: 1 channel converted (channel on regular rank 1) */ + /* Parameter "NbrOfConversion" is discarded. */ + /* Note: Scan mode is not present by hardware on this device, but */ + /* emulated by software for alignment over all STM32 devices. */ + /* - if scan mode is enabled, regular channels sequence length is set to */ + /* parameter "NbrOfConversion". */ + + if (hadc->Init.ScanConvMode == ADC_SCAN_ENABLE) + { + /* Set number of ranks in regular group sequencer */ + MODIFY_REG(hadc->Instance->SQR1, ADC_SQR1_L, (hadc->Init.NbrOfConversion - (uint8_t)1)); + } + else + { + CLEAR_BIT(hadc->Instance->SQR1, ADC_SQR1_L); + } + + /* Initialize the ADC state */ + /* Clear HAL_ADC_STATE_BUSY_INTERNAL bit, set HAL_ADC_STATE_READY bit */ + ADC_STATE_CLR_SET(hadc->State, HAL_ADC_STATE_BUSY_INTERNAL, HAL_ADC_STATE_READY); + } + else + { + /* Update ADC state machine to error */ + SET_BIT(hadc->State, HAL_ADC_STATE_ERROR_INTERNAL); + + tmp_hal_status = HAL_ERROR; + } + + /* Return function status */ + return tmp_hal_status; +} + +/** + * @brief Deinitialize the ADC peripheral registers to their default reset + * values, with deinitialization of the ADC MSP. + * @note For devices with several ADCs: reset of ADC common registers is done + * only if all ADCs sharing the same common group are disabled. + * (function "HAL_ADC_MspDeInit()" is also called under the same conditions: + * all ADC instances use the same core clock at RCC level, disabling + * the core clock reset all ADC instances). + * If this is not the case, reset of these common parameters reset is + * bypassed without error reporting: it can be the intended behavior in + * case of reset of a single ADC while the other ADCs sharing the same + * common group is still running. + * @note By default, HAL_ADC_DeInit() set ADC in mode deep power-down: + * this saves more power by reducing leakage currents + * and is particularly interesting before entering MCU low-power modes. + * @param hadc ADC handle + * @retval HAL status + */ +HAL_StatusTypeDef HAL_ADC_DeInit(ADC_HandleTypeDef *hadc) +{ + HAL_StatusTypeDef tmp_hal_status; + + /* Check ADC handle */ + if (hadc == NULL) + { + return HAL_ERROR; + } + + /* Check the parameters */ + assert_param(IS_ADC_ALL_INSTANCE(hadc->Instance)); + + /* Set ADC state */ + SET_BIT(hadc->State, HAL_ADC_STATE_BUSY_INTERNAL); + + /* Stop potential conversion on going */ + tmp_hal_status = ADC_ConversionStop(hadc, ADC_REGULAR_INJECTED_GROUP); + + /* Disable ADC peripheral if conversions are effectively stopped */ + /* Flush register JSQR: reset the queue sequencer when injected */ + /* queue sequencer is enabled and ADC disabled. */ + /* The software and hardware triggers of the injected sequence are both */ + /* internally disabled just after the completion of the last valid */ + /* injected sequence. */ + SET_BIT(hadc->Instance->CFGR, ADC_CFGR_JQM); + + /* Disable ADC peripheral if conversions are effectively stopped */ + if (tmp_hal_status == HAL_OK) + { + /* Disable the ADC peripheral */ + tmp_hal_status = ADC_Disable(hadc); + + /* Check if ADC is effectively disabled */ + if (tmp_hal_status == HAL_OK) + { + /* Change ADC state */ + hadc->State = HAL_ADC_STATE_READY; + } + } + + /* Note: HAL ADC deInit is done independently of ADC conversion stop */ + /* and disable return status. In case of status fail, attempt to */ + /* perform deinitialization anyway and it is up user code in */ + /* in HAL_ADC_MspDeInit() to reset the ADC peripheral using */ + /* system RCC hard reset. */ + + /* ========== Reset ADC registers ========== */ + /* Reset register IER */ + __HAL_ADC_DISABLE_IT(hadc, (ADC_IT_AWD3 | ADC_IT_AWD2 | ADC_IT_AWD1 | + ADC_IT_JQOVF | ADC_IT_OVR | + ADC_IT_JEOS | ADC_IT_JEOC | + ADC_IT_EOS | ADC_IT_EOC | + ADC_IT_EOSMP | ADC_IT_RDY)); + + /* Reset register ISR */ + __HAL_ADC_CLEAR_FLAG(hadc, (ADC_FLAG_AWD3 | ADC_FLAG_AWD2 | ADC_FLAG_AWD1 | + ADC_FLAG_JQOVF | ADC_FLAG_OVR | + ADC_FLAG_JEOS | ADC_FLAG_JEOC | + ADC_FLAG_EOS | ADC_FLAG_EOC | + ADC_FLAG_EOSMP | ADC_FLAG_RDY)); + + /* Reset register CR */ + /* Bits ADC_CR_JADSTP, ADC_CR_ADSTP, ADC_CR_JADSTART, ADC_CR_ADSTART, + ADC_CR_ADCAL, ADC_CR_ADDIS and ADC_CR_ADEN are in access mode "read-set": + no direct reset applicable. + Update CR register to reset value where doable by software */ + CLEAR_BIT(hadc->Instance->CR, ADC_CR_ADVREGEN | ADC_CR_ADCALDIF); + SET_BIT(hadc->Instance->CR, ADC_CR_DEEPPWD); + + /* Reset register CFGR */ + CLEAR_BIT(hadc->Instance->CFGR, ADC_CFGR_AWD1CH | ADC_CFGR_JAUTO | ADC_CFGR_JAWD1EN | + ADC_CFGR_AWD1EN | ADC_CFGR_AWD1SGL | ADC_CFGR_JQM | + ADC_CFGR_JDISCEN | ADC_CFGR_DISCNUM | ADC_CFGR_DISCEN | + ADC_CFGR_AUTDLY | ADC_CFGR_CONT | ADC_CFGR_OVRMOD | + ADC_CFGR_EXTEN | ADC_CFGR_EXTSEL | + ADC_CFGR_RES | ADC_CFGR_DMNGT); + SET_BIT(hadc->Instance->CFGR, ADC_CFGR_JQDIS); + + /* Reset register CFGR2 */ + CLEAR_BIT(hadc->Instance->CFGR2, ADC_CFGR2_ROVSM | ADC_CFGR2_TROVS | ADC_CFGR2_OVSS | + ADC_CFGR2_OVSR | ADC_CFGR2_JOVSE | ADC_CFGR2_ROVSE); + + /* Reset register SMPR1 */ + CLEAR_BIT(hadc->Instance->SMPR1, ADC_SMPR1_FIELDS); + + /* Reset register SMPR2 */ + CLEAR_BIT(hadc->Instance->SMPR2, ADC_SMPR2_SMP18 | ADC_SMPR2_SMP17 | ADC_SMPR2_SMP16 | + ADC_SMPR2_SMP15 | ADC_SMPR2_SMP14 | ADC_SMPR2_SMP13 | + ADC_SMPR2_SMP12 | ADC_SMPR2_SMP11 | ADC_SMPR2_SMP10); + + /* Reset register LTR1 and HTR1 */ + CLEAR_BIT(hadc->Instance->LTR1, ADC_LTR_LT); + CLEAR_BIT(hadc->Instance->HTR1, ADC_HTR_HT); + + /* Reset register LTR2 and HTR2*/ + CLEAR_BIT(hadc->Instance->LTR2, ADC_LTR_LT); + CLEAR_BIT(hadc->Instance->HTR2, ADC_HTR_HT); + + /* Reset register LTR3 and HTR3 */ + CLEAR_BIT(hadc->Instance->LTR3, ADC_LTR_LT); + CLEAR_BIT(hadc->Instance->HTR3, ADC_HTR_HT); + + /* Reset register SQR1 */ + CLEAR_BIT(hadc->Instance->SQR1, ADC_SQR1_SQ4 | ADC_SQR1_SQ3 | ADC_SQR1_SQ2 | + ADC_SQR1_SQ1 | ADC_SQR1_L); + + /* Reset register SQR2 */ + CLEAR_BIT(hadc->Instance->SQR2, ADC_SQR2_SQ9 | ADC_SQR2_SQ8 | ADC_SQR2_SQ7 | + ADC_SQR2_SQ6 | ADC_SQR2_SQ5); + + /* Reset register SQR3 */ + CLEAR_BIT(hadc->Instance->SQR3, ADC_SQR3_SQ14 | ADC_SQR3_SQ13 | ADC_SQR3_SQ12 | + ADC_SQR3_SQ11 | ADC_SQR3_SQ10); + + /* Reset register SQR4 */ + CLEAR_BIT(hadc->Instance->SQR4, ADC_SQR4_SQ16 | ADC_SQR4_SQ15); + + /* Register JSQR was reset when the ADC was disabled */ + + /* Reset register DR */ + /* bits in access mode read only, no direct reset applicable*/ + + /* Reset register OFR1 */ + CLEAR_BIT(hadc->Instance->OFR1, ADC_OFR1_SSATE | ADC_OFR1_OFFSET1_CH | ADC_OFR1_OFFSET1); + /* Reset register OFR2 */ + CLEAR_BIT(hadc->Instance->OFR2, ADC_OFR2_SSATE | ADC_OFR2_OFFSET2_CH | ADC_OFR2_OFFSET2); + /* Reset register OFR3 */ + CLEAR_BIT(hadc->Instance->OFR3, ADC_OFR3_SSATE | ADC_OFR3_OFFSET3_CH | ADC_OFR3_OFFSET3); + /* Reset register OFR4 */ + CLEAR_BIT(hadc->Instance->OFR4, ADC_OFR4_SSATE | ADC_OFR4_OFFSET4_CH | ADC_OFR4_OFFSET4); + + /* Reset registers JDR1, JDR2, JDR3, JDR4 */ + /* bits in access mode read only, no direct reset applicable*/ + + /* Reset register AWD2CR */ + CLEAR_BIT(hadc->Instance->AWD2CR, ADC_AWD2CR_AWD2CH); + + /* Reset register AWD3CR */ + CLEAR_BIT(hadc->Instance->AWD3CR, ADC_AWD3CR_AWD3CH); + + /* Reset register DIFSEL */ + CLEAR_BIT(hadc->Instance->DIFSEL, ADC_DIFSEL_DIFSEL); + + /* Reset register CALFACT */ + CLEAR_BIT(hadc->Instance->CALFACT, ADC_CALFACT_CALFACT_D | ADC_CALFACT_CALFACT_S); + + + /* ========== Reset common ADC registers ========== */ + + /* Software is allowed to change common parameters only when all the other + ADCs are disabled. */ + if (__LL_ADC_IS_ENABLED_ALL_COMMON_INSTANCE(__LL_ADC_COMMON_INSTANCE(hadc->Instance)) == 0UL) + { + /* Reset configuration of ADC common register CCR: + - clock mode: CKMODE, PRESCEN + - multimode related parameters(when this feature is available): DELAY, DUAL + (set into HAL_ADCEx_MultiModeConfigChannel() API) + - internal measurement paths: Vbat, temperature sensor, Vref (set into + HAL_ADC_ConfigChannel() or HAL_ADCEx_InjectedConfigChannel() ) + */ + ADC_CLEAR_COMMON_CONTROL_REGISTER(hadc); + } + + /* DeInit the low level hardware. + + For example: + __HAL_RCC_ADC_FORCE_RESET(); + __HAL_RCC_ADC_RELEASE_RESET(); + __HAL_RCC_ADC_CLK_DISABLE(); + + Keep in mind that all ADCs use the same clock: disabling + the clock will reset all ADCs. + + */ +#if (USE_HAL_ADC_REGISTER_CALLBACKS == 1) + if (hadc->MspDeInitCallback == NULL) + { + hadc->MspDeInitCallback = HAL_ADC_MspDeInit; /* Legacy weak MspDeInit */ + } + + /* DeInit the low level hardware: RCC clock, NVIC */ + hadc->MspDeInitCallback(hadc); +#else + /* DeInit the low level hardware: RCC clock, NVIC */ + HAL_ADC_MspDeInit(hadc); +#endif /* USE_HAL_ADC_REGISTER_CALLBACKS */ + + /* Set ADC error code to none */ + ADC_CLEAR_ERRORCODE(hadc); + + /* Reset injected channel configuration parameters */ + hadc->InjectionConfig.ContextQueue = 0; + hadc->InjectionConfig.ChannelCount = 0; + + /* Set ADC state */ + hadc->State = HAL_ADC_STATE_RESET; + + /* Process unlocked */ + __HAL_UNLOCK(hadc); + + /* Return function status */ + return tmp_hal_status; +} + +/** + * @brief Initialize the ADC MSP. + * @param hadc ADC handle + * @retval None + */ +__weak void HAL_ADC_MspInit(ADC_HandleTypeDef *hadc) +{ + /* Prevent unused argument(s) compilation warning */ + UNUSED(hadc); + + /* NOTE : This function should not be modified. When the callback is needed, + function HAL_ADC_MspInit must be implemented in the user file. + */ +} + +/** + * @brief DeInitialize the ADC MSP. + * @param hadc ADC handle + * @note All ADC instances use the same core clock at RCC level, disabling + * the core clock reset all ADC instances). + * @retval None + */ +__weak void HAL_ADC_MspDeInit(ADC_HandleTypeDef *hadc) +{ + /* Prevent unused argument(s) compilation warning */ + UNUSED(hadc); + + /* NOTE : This function should not be modified. When the callback is needed, + function HAL_ADC_MspDeInit must be implemented in the user file. + */ +} + +#if (USE_HAL_ADC_REGISTER_CALLBACKS == 1) +/** + * @brief Register a User ADC Callback + * To be used instead of the weak predefined callback + * @param hadc Pointer to a ADC_HandleTypeDef structure that contains + * the configuration information for the specified ADC. + * @param CallbackID ID of the callback to be registered + * This parameter can be one of the following values: + * @arg @ref HAL_ADC_CONVERSION_COMPLETE_CB_ID ADC conversion complete callback ID + * @arg @ref HAL_ADC_CONVERSION_HALF_CB_ID ADC conversion DMA half-transfer callback ID + * @arg @ref HAL_ADC_LEVEL_OUT_OF_WINDOW_1_CB_ID ADC analog watchdog 1 callback ID + * @arg @ref HAL_ADC_ERROR_CB_ID ADC error callback ID + * @arg @ref HAL_ADC_INJ_CONVERSION_COMPLETE_CB_ID ADC group injected conversion complete callback ID + * @arg @ref HAL_ADC_INJ_QUEUE_OVEFLOW_CB_ID ADC group injected context queue overflow callback ID + * @arg @ref HAL_ADC_LEVEL_OUT_OF_WINDOW_2_CB_ID ADC analog watchdog 2 callback ID + * @arg @ref HAL_ADC_LEVEL_OUT_OF_WINDOW_3_CB_ID ADC analog watchdog 3 callback ID + * @arg @ref HAL_ADC_END_OF_SAMPLING_CB_ID ADC end of sampling callback ID + * @arg @ref HAL_ADC_MSPINIT_CB_ID ADC Msp Init callback ID + * @arg @ref HAL_ADC_MSPDEINIT_CB_ID ADC Msp DeInit callback ID + * @param pCallback pointer to the Callback function + * @retval HAL status + */ +HAL_StatusTypeDef HAL_ADC_RegisterCallback(ADC_HandleTypeDef *hadc, HAL_ADC_CallbackIDTypeDef CallbackID, pADC_CallbackTypeDef pCallback) +{ + HAL_StatusTypeDef status = HAL_OK; + + if (pCallback == NULL) + { + /* Update the error code */ + hadc->ErrorCode |= HAL_ADC_ERROR_INVALID_CALLBACK; + + return HAL_ERROR; + } + + if ((hadc->State & HAL_ADC_STATE_READY) != 0UL) + { + switch (CallbackID) + { + case HAL_ADC_CONVERSION_COMPLETE_CB_ID : + hadc->ConvCpltCallback = pCallback; + break; + + case HAL_ADC_CONVERSION_HALF_CB_ID : + hadc->ConvHalfCpltCallback = pCallback; + break; + + case HAL_ADC_LEVEL_OUT_OF_WINDOW_1_CB_ID : + hadc->LevelOutOfWindowCallback = pCallback; + break; + + case HAL_ADC_ERROR_CB_ID : + hadc->ErrorCallback = pCallback; + break; + + case HAL_ADC_INJ_CONVERSION_COMPLETE_CB_ID : + hadc->InjectedConvCpltCallback = pCallback; + break; + + case HAL_ADC_INJ_QUEUE_OVEFLOW_CB_ID : + hadc->InjectedQueueOverflowCallback = pCallback; + break; + + case HAL_ADC_LEVEL_OUT_OF_WINDOW_2_CB_ID : + hadc->LevelOutOfWindow2Callback = pCallback; + break; + + case HAL_ADC_LEVEL_OUT_OF_WINDOW_3_CB_ID : + hadc->LevelOutOfWindow3Callback = pCallback; + break; + + case HAL_ADC_END_OF_SAMPLING_CB_ID : + hadc->EndOfSamplingCallback = pCallback; + break; + + case HAL_ADC_MSPINIT_CB_ID : + hadc->MspInitCallback = pCallback; + break; + + case HAL_ADC_MSPDEINIT_CB_ID : + hadc->MspDeInitCallback = pCallback; + break; + + default : + /* Update the error code */ + hadc->ErrorCode |= HAL_ADC_ERROR_INVALID_CALLBACK; + + /* Return error status */ + status = HAL_ERROR; + break; + } + } + else if (HAL_ADC_STATE_RESET == hadc->State) + { + switch (CallbackID) + { + case HAL_ADC_MSPINIT_CB_ID : + hadc->MspInitCallback = pCallback; + break; + + case HAL_ADC_MSPDEINIT_CB_ID : + hadc->MspDeInitCallback = pCallback; + break; + + default : + /* Update the error code */ + hadc->ErrorCode |= HAL_ADC_ERROR_INVALID_CALLBACK; + + /* Return error status */ + status = HAL_ERROR; + break; + } + } + else + { + /* Update the error code */ + hadc->ErrorCode |= HAL_ADC_ERROR_INVALID_CALLBACK; + + /* Return error status */ + status = HAL_ERROR; + } + + return status; +} + +/** + * @brief Unregister a ADC Callback + * ADC callback is redirected to the weak predefined callback + * @param hadc Pointer to a ADC_HandleTypeDef structure that contains + * the configuration information for the specified ADC. + * @param CallbackID ID of the callback to be unregistered + * This parameter can be one of the following values: + * @arg @ref HAL_ADC_CONVERSION_COMPLETE_CB_ID ADC conversion complete callback ID + * @arg @ref HAL_ADC_CONVERSION_HALF_CB_ID ADC conversion DMA half-transfer callback ID + * @arg @ref HAL_ADC_LEVEL_OUT_OF_WINDOW_1_CB_ID ADC analog watchdog 1 callback ID + * @arg @ref HAL_ADC_ERROR_CB_ID ADC error callback ID + * @arg @ref HAL_ADC_INJ_CONVERSION_COMPLETE_CB_ID ADC group injected conversion complete callback ID + * @arg @ref HAL_ADC_INJ_QUEUE_OVEFLOW_CB_ID ADC group injected context queue overflow callback ID + * @arg @ref HAL_ADC_LEVEL_OUT_OF_WINDOW_2_CB_ID ADC analog watchdog 2 callback ID + * @arg @ref HAL_ADC_LEVEL_OUT_OF_WINDOW_3_CB_ID ADC analog watchdog 3 callback ID + * @arg @ref HAL_ADC_END_OF_SAMPLING_CB_ID ADC end of sampling callback ID + * @arg @ref HAL_ADC_MSPINIT_CB_ID ADC Msp Init callback ID + * @arg @ref HAL_ADC_MSPDEINIT_CB_ID ADC Msp DeInit callback ID + * @retval HAL status + */ +HAL_StatusTypeDef HAL_ADC_UnRegisterCallback(ADC_HandleTypeDef *hadc, HAL_ADC_CallbackIDTypeDef CallbackID) +{ + HAL_StatusTypeDef status = HAL_OK; + + if ((hadc->State & HAL_ADC_STATE_READY) != 0UL) + { + switch (CallbackID) + { + case HAL_ADC_CONVERSION_COMPLETE_CB_ID : + hadc->ConvCpltCallback = HAL_ADC_ConvCpltCallback; + break; + + case HAL_ADC_CONVERSION_HALF_CB_ID : + hadc->ConvHalfCpltCallback = HAL_ADC_ConvHalfCpltCallback; + break; + + case HAL_ADC_LEVEL_OUT_OF_WINDOW_1_CB_ID : + hadc->LevelOutOfWindowCallback = HAL_ADC_LevelOutOfWindowCallback; + break; + + case HAL_ADC_ERROR_CB_ID : + hadc->ErrorCallback = HAL_ADC_ErrorCallback; + break; + + case HAL_ADC_INJ_CONVERSION_COMPLETE_CB_ID : + hadc->InjectedConvCpltCallback = HAL_ADCEx_InjectedConvCpltCallback; + break; + + case HAL_ADC_INJ_QUEUE_OVEFLOW_CB_ID : + hadc->InjectedQueueOverflowCallback = HAL_ADCEx_InjectedQueueOverflowCallback; + break; + + case HAL_ADC_LEVEL_OUT_OF_WINDOW_2_CB_ID : + hadc->LevelOutOfWindow2Callback = HAL_ADCEx_LevelOutOfWindow2Callback; + break; + + case HAL_ADC_LEVEL_OUT_OF_WINDOW_3_CB_ID : + hadc->LevelOutOfWindow3Callback = HAL_ADCEx_LevelOutOfWindow3Callback; + break; + + case HAL_ADC_END_OF_SAMPLING_CB_ID : + hadc->EndOfSamplingCallback = HAL_ADCEx_EndOfSamplingCallback; + break; + + case HAL_ADC_MSPINIT_CB_ID : + hadc->MspInitCallback = HAL_ADC_MspInit; /* Legacy weak MspInit */ + break; + + case HAL_ADC_MSPDEINIT_CB_ID : + hadc->MspDeInitCallback = HAL_ADC_MspDeInit; /* Legacy weak MspDeInit */ + break; + + default : + /* Update the error code */ + hadc->ErrorCode |= HAL_ADC_ERROR_INVALID_CALLBACK; + + /* Return error status */ + status = HAL_ERROR; + break; + } + } + else if (HAL_ADC_STATE_RESET == hadc->State) + { + switch (CallbackID) + { + case HAL_ADC_MSPINIT_CB_ID : + hadc->MspInitCallback = HAL_ADC_MspInit; /* Legacy weak MspInit */ + break; + + case HAL_ADC_MSPDEINIT_CB_ID : + hadc->MspDeInitCallback = HAL_ADC_MspDeInit; /* Legacy weak MspDeInit */ + break; + + default : + /* Update the error code */ + hadc->ErrorCode |= HAL_ADC_ERROR_INVALID_CALLBACK; + + /* Return error status */ + status = HAL_ERROR; + break; + } + } + else + { + /* Update the error code */ + hadc->ErrorCode |= HAL_ADC_ERROR_INVALID_CALLBACK; + + /* Return error status */ + status = HAL_ERROR; + } + + return status; +} + +#endif /* USE_HAL_ADC_REGISTER_CALLBACKS */ + +/** + * @} + */ + +/** @defgroup ADC_Exported_Functions_Group2 ADC Input and Output operation functions + * @brief ADC IO operation functions + * +@verbatim + =============================================================================== + ##### IO operation functions ##### + =============================================================================== + [..] This section provides functions allowing to: + (+) Start conversion of regular group. + (+) Stop conversion of regular group. + (+) Poll for conversion complete on regular group. + (+) Poll for conversion event. + (+) Get result of regular channel conversion. + (+) Start conversion of regular group and enable interruptions. + (+) Stop conversion of regular group and disable interruptions. + (+) Handle ADC interrupt request + (+) Start conversion of regular group and enable DMA transfer. + (+) Stop conversion of regular group and disable ADC DMA transfer. +@endverbatim + * @{ + */ + +/** + * @brief Enable ADC, start conversion of regular group. + * @note Interruptions enabled in this function: None. + * @note Case of multimode enabled (when multimode feature is available): + * if ADC is Slave, ADC is enabled but conversion is not started, + * if ADC is master, ADC is enabled and multimode conversion is started. + * @param hadc ADC handle + * @retval HAL status + */ +HAL_StatusTypeDef HAL_ADC_Start(ADC_HandleTypeDef *hadc) +{ + HAL_StatusTypeDef tmp_hal_status; + const ADC_TypeDef *tmpADC_Master; + uint32_t tmp_multimode_config = LL_ADC_GetMultimode(__LL_ADC_COMMON_INSTANCE(hadc->Instance)); + + /* Check the parameters */ + assert_param(IS_ADC_ALL_INSTANCE(hadc->Instance)); + + /* Perform ADC enable and conversion start if no conversion is on going */ + if (LL_ADC_REG_IsConversionOngoing(hadc->Instance) == 0UL) + { + /* Process locked */ + __HAL_LOCK(hadc); + + /* Enable the ADC peripheral */ + tmp_hal_status = ADC_Enable(hadc); + + /* Start conversion if ADC is effectively enabled */ + if (tmp_hal_status == HAL_OK) + { + /* Set ADC state */ + /* - Clear state bitfield related to regular group conversion results */ + /* - Set state bitfield related to regular operation */ + ADC_STATE_CLR_SET(hadc->State, + HAL_ADC_STATE_READY | HAL_ADC_STATE_REG_EOC | HAL_ADC_STATE_REG_OVR | HAL_ADC_STATE_REG_EOSMP, + HAL_ADC_STATE_REG_BUSY); + + /* Reset HAL_ADC_STATE_MULTIMODE_SLAVE bit + - if ADC instance is master or if multimode feature is not available + - if multimode setting is disabled (ADC instance slave in independent mode) */ + if ((__LL_ADC_MULTI_INSTANCE_MASTER(hadc->Instance) == hadc->Instance) + || (tmp_multimode_config == LL_ADC_MULTI_INDEPENDENT) + ) + { + CLEAR_BIT(hadc->State, HAL_ADC_STATE_MULTIMODE_SLAVE); + } + + /* Set ADC error code */ + /* Check if a conversion is on going on ADC group injected */ + if (HAL_IS_BIT_SET(hadc->State, HAL_ADC_STATE_INJ_BUSY)) + { + /* Reset ADC error code fields related to regular conversions only */ + CLEAR_BIT(hadc->ErrorCode, (HAL_ADC_ERROR_OVR | HAL_ADC_ERROR_DMA)); + } + else + { + /* Reset all ADC error code fields */ + ADC_CLEAR_ERRORCODE(hadc); + } + + /* Clear ADC group regular conversion flag and overrun flag */ + /* (To ensure of no unknown state from potential previous ADC operations) */ + __HAL_ADC_CLEAR_FLAG(hadc, (ADC_FLAG_EOC | ADC_FLAG_EOS | ADC_FLAG_OVR)); + + /* Process unlocked */ + /* Unlock before starting ADC conversions: in case of potential */ + /* interruption, to let the process to ADC IRQ Handler. */ + __HAL_UNLOCK(hadc); + + /* Enable conversion of regular group. */ + /* If software start has been selected, conversion starts immediately. */ + /* If external trigger has been selected, conversion will start at next */ + /* trigger event. */ + /* Case of multimode enabled (when multimode feature is available): */ + /* - if ADC is slave and dual regular conversions are enabled, ADC is */ + /* enabled only (conversion is not started), */ + /* - if ADC is master, ADC is enabled and conversion is started. */ + if ((__LL_ADC_MULTI_INSTANCE_MASTER(hadc->Instance) == hadc->Instance) + || (tmp_multimode_config == LL_ADC_MULTI_INDEPENDENT) + || (tmp_multimode_config == LL_ADC_MULTI_DUAL_INJ_SIMULT) + || (tmp_multimode_config == LL_ADC_MULTI_DUAL_INJ_ALTERN) + ) + { + /* ADC instance is not a multimode slave instance with multimode regular conversions enabled */ + if (READ_BIT(hadc->Instance->CFGR, ADC_CFGR_JAUTO) != 0UL) + { + ADC_STATE_CLR_SET(hadc->State, HAL_ADC_STATE_INJ_EOC, HAL_ADC_STATE_INJ_BUSY); + } + + /* Start ADC group regular conversion */ + LL_ADC_REG_StartConversion(hadc->Instance); + } + else + { + /* ADC instance is a multimode slave instance with multimode regular conversions enabled */ + SET_BIT(hadc->State, HAL_ADC_STATE_MULTIMODE_SLAVE); + /* if Master ADC JAUTO bit is set, update Slave State in setting + HAL_ADC_STATE_INJ_BUSY bit and in resetting HAL_ADC_STATE_INJ_EOC bit */ + tmpADC_Master = __LL_ADC_MULTI_INSTANCE_MASTER(hadc->Instance); + if (READ_BIT(tmpADC_Master->CFGR, ADC_CFGR_JAUTO) != 0UL) + { + ADC_STATE_CLR_SET(hadc->State, HAL_ADC_STATE_INJ_EOC, HAL_ADC_STATE_INJ_BUSY); + } + + } + } + else + { + /* Process unlocked */ + __HAL_UNLOCK(hadc); + } + } + else + { + tmp_hal_status = HAL_BUSY; + } + + /* Return function status */ + return tmp_hal_status; +} + +/** + * @brief Stop ADC conversion of regular group (and injected channels in + * case of auto_injection mode), disable ADC peripheral. + * @note: ADC peripheral disable is forcing stop of potential + * conversion on injected group. If injected group is under use, it + * should be preliminarily stopped using HAL_ADCEx_InjectedStop function. + * @param hadc ADC handle + * @retval HAL status. + */ +HAL_StatusTypeDef HAL_ADC_Stop(ADC_HandleTypeDef *hadc) +{ + HAL_StatusTypeDef tmp_hal_status; + + /* Check the parameters */ + assert_param(IS_ADC_ALL_INSTANCE(hadc->Instance)); + + /* Process locked */ + __HAL_LOCK(hadc); + + /* 1. Stop potential conversion on going, on ADC groups regular and injected */ + tmp_hal_status = ADC_ConversionStop(hadc, ADC_REGULAR_INJECTED_GROUP); + + /* Disable ADC peripheral if conversions are effectively stopped */ + if (tmp_hal_status == HAL_OK) + { + /* 2. Disable the ADC peripheral */ + tmp_hal_status = ADC_Disable(hadc); + + /* Check if ADC is effectively disabled */ + if (tmp_hal_status == HAL_OK) + { + /* Set ADC state */ + ADC_STATE_CLR_SET(hadc->State, + HAL_ADC_STATE_REG_BUSY | HAL_ADC_STATE_INJ_BUSY, + HAL_ADC_STATE_READY); + } + } + + /* Process unlocked */ + __HAL_UNLOCK(hadc); + + /* Return function status */ + return tmp_hal_status; +} + +/** + * @brief Wait for regular group conversion to be completed. + * @note ADC conversion flags EOS (end of sequence) and EOC (end of + * conversion) are cleared by this function, with an exception: + * if low power feature "LowPowerAutoWait" is enabled, flags are + * not cleared to not interfere with this feature until data register + * is read using function HAL_ADC_GetValue(). + * @note This function cannot be used in a particular setup: ADC configured + * in DMA mode and polling for end of each conversion (ADC init + * parameter "EOCSelection" set to ADC_EOC_SINGLE_CONV). + * In this case, DMA resets the flag EOC and polling cannot be + * performed on each conversion. Nevertheless, polling can still + * be performed on the complete sequence (ADC init + * parameter "EOCSelection" set to ADC_EOC_SEQ_CONV). + * @param hadc ADC handle + * @param Timeout Timeout value in millisecond. + * @retval HAL status + */ +HAL_StatusTypeDef HAL_ADC_PollForConversion(ADC_HandleTypeDef *hadc, uint32_t Timeout) +{ + uint32_t tickstart; + uint32_t tmp_Flag_End; + uint32_t tmp_cfgr; + const ADC_TypeDef *tmpADC_Master; + uint32_t tmp_multimode_config = LL_ADC_GetMultimode(__LL_ADC_COMMON_INSTANCE(hadc->Instance)); + + /* Check the parameters */ + assert_param(IS_ADC_ALL_INSTANCE(hadc->Instance)); + + /* If end of conversion selected to end of sequence conversions */ + if (hadc->Init.EOCSelection == ADC_EOC_SEQ_CONV) + { + tmp_Flag_End = ADC_FLAG_EOS; + } + /* If end of conversion selected to end of unitary conversion */ + else /* ADC_EOC_SINGLE_CONV */ + { + /* Verification that ADC configuration is compliant with polling for */ + /* each conversion: */ + /* Particular case is ADC configured in DMA mode and ADC sequencer with */ + /* several ranks and polling for end of each conversion. */ + /* For code simplicity sake, this particular case is generalized to */ + /* ADC configured in DMA mode and and polling for end of each conversion. */ + if ((tmp_multimode_config == LL_ADC_MULTI_INDEPENDENT) + || (tmp_multimode_config == LL_ADC_MULTI_DUAL_INJ_SIMULT) + || (tmp_multimode_config == LL_ADC_MULTI_DUAL_INJ_ALTERN) + ) + { + /* Check DMNGT bit in handle ADC CFGR register */ + if (READ_BIT(hadc->Instance->CFGR, ADC_CFGR_DMNGT_0) != 0UL) + { + SET_BIT(hadc->State, HAL_ADC_STATE_ERROR_CONFIG); + return HAL_ERROR; + } + else + { + tmp_Flag_End = (ADC_FLAG_EOC); + } + } + else + { + /* Check ADC DMA mode in multimode on ADC group regular */ + if (LL_ADC_GetMultiDMATransfer(__LL_ADC_COMMON_INSTANCE(hadc->Instance)) != LL_ADC_MULTI_REG_DMA_EACH_ADC) + { + SET_BIT(hadc->State, HAL_ADC_STATE_ERROR_CONFIG); + return HAL_ERROR; + } + else + { + tmp_Flag_End = (ADC_FLAG_EOC); + } + } + } + + /* Get tick count */ + tickstart = HAL_GetTick(); + + /* Wait until End of unitary conversion or sequence conversions flag is raised */ + while ((hadc->Instance->ISR & tmp_Flag_End) == 0UL) + { + /* Check if timeout is disabled (set to infinite wait) */ + if (Timeout != HAL_MAX_DELAY) + { + if (((HAL_GetTick() - tickstart) > Timeout) || (Timeout == 0UL)) + { + /* Update ADC state machine to timeout */ + SET_BIT(hadc->State, HAL_ADC_STATE_TIMEOUT); + + /* Process unlocked */ + __HAL_UNLOCK(hadc); + + return HAL_TIMEOUT; + } + } + } + + /* Update ADC state machine */ + SET_BIT(hadc->State, HAL_ADC_STATE_REG_EOC); + + /* Determine whether any further conversion upcoming on group regular */ + /* by external trigger, continuous mode or scan sequence on going. */ + if ((LL_ADC_REG_IsTriggerSourceSWStart(hadc->Instance) != 0UL) + && (hadc->Init.ContinuousConvMode == DISABLE) + ) + { + /* Check whether end of sequence is reached */ + if (__HAL_ADC_GET_FLAG(hadc, ADC_FLAG_EOS)) + { + /* Set ADC state */ + CLEAR_BIT(hadc->State, HAL_ADC_STATE_REG_BUSY); + + if ((hadc->State & HAL_ADC_STATE_INJ_BUSY) == 0UL) + { + SET_BIT(hadc->State, HAL_ADC_STATE_READY); + } + } + } + + /* Get relevant register CFGR in ADC instance of ADC master or slave */ + /* in function of multimode state (for devices with multimode */ + /* available). */ + if ((__LL_ADC_MULTI_INSTANCE_MASTER(hadc->Instance) == hadc->Instance) + || (tmp_multimode_config == LL_ADC_MULTI_INDEPENDENT) + || (tmp_multimode_config == LL_ADC_MULTI_DUAL_INJ_SIMULT) + || (tmp_multimode_config == LL_ADC_MULTI_DUAL_INJ_ALTERN) + ) + { + /* Retrieve handle ADC CFGR register */ + tmp_cfgr = READ_REG(hadc->Instance->CFGR); + } + else + { + /* Retrieve Master ADC CFGR register */ + tmpADC_Master = __LL_ADC_MULTI_INSTANCE_MASTER(hadc->Instance); + tmp_cfgr = READ_REG(tmpADC_Master->CFGR); + } + + /* Clear polled flag */ + if (tmp_Flag_End == ADC_FLAG_EOS) + { + __HAL_ADC_CLEAR_FLAG(hadc, ADC_FLAG_EOS); + } + else + { + /* Clear end of conversion EOC flag of regular group if low power feature */ + /* "LowPowerAutoWait " is disabled, to not interfere with this feature */ + /* until data register is read using function HAL_ADC_GetValue(). */ + if (READ_BIT(tmp_cfgr, ADC_CFGR_AUTDLY) == 0UL) + { + __HAL_ADC_CLEAR_FLAG(hadc, (ADC_FLAG_EOC | ADC_FLAG_EOS)); + } + } + + /* Return function status */ + return HAL_OK; +} + +/** + * @brief Poll for ADC event. + * @param hadc ADC handle + * @param EventType the ADC event type. + * This parameter can be one of the following values: + * @arg @ref ADC_EOSMP_EVENT ADC End of Sampling event + * @arg @ref ADC_AWD1_EVENT ADC Analog watchdog 1 event (main analog watchdog, present on all STM32 devices) + * @arg @ref ADC_AWD2_EVENT ADC Analog watchdog 2 event (additional analog watchdog, not present on all STM32 families) + * @arg @ref ADC_AWD3_EVENT ADC Analog watchdog 3 event (additional analog watchdog, not present on all STM32 families) + * @arg @ref ADC_OVR_EVENT ADC Overrun event + * @arg @ref ADC_JQOVF_EVENT ADC Injected context queue overflow event + * @param Timeout Timeout value in millisecond. + * @note The relevant flag is cleared if found to be set, except for ADC_FLAG_OVR. + * Indeed, the latter is reset only if hadc->Init.Overrun field is set + * to ADC_OVR_DATA_OVERWRITTEN. Otherwise, data register may be potentially overwritten + * by a new converted data as soon as OVR is cleared. + * To reset OVR flag once the preserved data is retrieved, the user can resort + * to macro __HAL_ADC_CLEAR_FLAG(hadc, ADC_FLAG_OVR); + * @retval HAL status + */ +HAL_StatusTypeDef HAL_ADC_PollForEvent(ADC_HandleTypeDef *hadc, uint32_t EventType, uint32_t Timeout) +{ + uint32_t tickstart; + + /* Check the parameters */ + assert_param(IS_ADC_ALL_INSTANCE(hadc->Instance)); + assert_param(IS_ADC_EVENT_TYPE(EventType)); + + /* Get tick count */ + tickstart = HAL_GetTick(); + + /* Check selected event flag */ + while (__HAL_ADC_GET_FLAG(hadc, EventType) == 0UL) + { + /* Check if timeout is disabled (set to infinite wait) */ + if (Timeout != HAL_MAX_DELAY) + { + if (((HAL_GetTick() - tickstart) > Timeout) || (Timeout == 0UL)) + { + /* Update ADC state machine to timeout */ + SET_BIT(hadc->State, HAL_ADC_STATE_TIMEOUT); + + /* Process unlocked */ + __HAL_UNLOCK(hadc); + + return HAL_TIMEOUT; + } + } + } + + switch (EventType) + { + /* End Of Sampling event */ + case ADC_EOSMP_EVENT: + /* Set ADC state */ + SET_BIT(hadc->State, HAL_ADC_STATE_REG_EOSMP); + + /* Clear the End Of Sampling flag */ + __HAL_ADC_CLEAR_FLAG(hadc, ADC_FLAG_EOSMP); + + break; + + /* Analog watchdog (level out of window) event */ + /* Note: In case of several analog watchdog enabled, if needed to know */ + /* which one triggered and on which ADCx, test ADC state of analog watchdog */ + /* flags HAL_ADC_STATE_AWD1/2/3 using function "HAL_ADC_GetState()". */ + /* For example: */ + /* " if ((HAL_ADC_GetState(hadc1) & HAL_ADC_STATE_AWD1) != 0UL) " */ + /* " if ((HAL_ADC_GetState(hadc1) & HAL_ADC_STATE_AWD2) != 0UL) " */ + /* " if ((HAL_ADC_GetState(hadc1) & HAL_ADC_STATE_AWD3) != 0UL) " */ + + /* Check analog watchdog 1 flag */ + case ADC_AWD_EVENT: + /* Set ADC state */ + SET_BIT(hadc->State, HAL_ADC_STATE_AWD1); + + /* Clear ADC analog watchdog flag */ + __HAL_ADC_CLEAR_FLAG(hadc, ADC_FLAG_AWD1); + + break; + + /* Check analog watchdog 2 flag */ + case ADC_AWD2_EVENT: + /* Set ADC state */ + SET_BIT(hadc->State, HAL_ADC_STATE_AWD2); + + /* Clear ADC analog watchdog flag */ + __HAL_ADC_CLEAR_FLAG(hadc, ADC_FLAG_AWD2); + + break; + + /* Check analog watchdog 3 flag */ + case ADC_AWD3_EVENT: + /* Set ADC state */ + SET_BIT(hadc->State, HAL_ADC_STATE_AWD3); + + /* Clear ADC analog watchdog flag */ + __HAL_ADC_CLEAR_FLAG(hadc, ADC_FLAG_AWD3); + + break; + + /* Injected context queue overflow event */ + case ADC_JQOVF_EVENT: + /* Set ADC state */ + SET_BIT(hadc->State, HAL_ADC_STATE_INJ_JQOVF); + + /* Set ADC error code to Injected context queue overflow */ + SET_BIT(hadc->ErrorCode, HAL_ADC_ERROR_JQOVF); + + /* Clear ADC Injected context queue overflow flag */ + __HAL_ADC_CLEAR_FLAG(hadc, ADC_FLAG_JQOVF); + + break; + + /* Overrun event */ + default: /* Case ADC_OVR_EVENT */ + /* If overrun is set to overwrite previous data, overrun event is not */ + /* considered as an error. */ + /* (cf ref manual "Managing conversions without using the DMA and without */ + /* overrun ") */ + if (hadc->Init.Overrun == ADC_OVR_DATA_PRESERVED) + { + /* Set ADC state */ + SET_BIT(hadc->State, HAL_ADC_STATE_REG_OVR); + + /* Set ADC error code to overrun */ + SET_BIT(hadc->ErrorCode, HAL_ADC_ERROR_OVR); + } + else + { + /* Clear ADC Overrun flag only if Overrun is set to ADC_OVR_DATA_OVERWRITTEN + otherwise, data register is potentially overwritten by new converted data as soon + as OVR is cleared. */ + __HAL_ADC_CLEAR_FLAG(hadc, ADC_FLAG_OVR); + } + break; + } + + /* Return function status */ + return HAL_OK; +} + +/** + * @brief Enable ADC, start conversion of regular group with interruption. + * @note Interruptions enabled in this function according to initialization + * setting : EOC (end of conversion), EOS (end of sequence), + * OVR overrun. + * Each of these interruptions has its dedicated callback function. + * @note Case of multimode enabled (when multimode feature is available): + * HAL_ADC_Start_IT() must be called for ADC Slave first, then for + * ADC Master. + * For ADC Slave, ADC is enabled only (conversion is not started). + * For ADC Master, ADC is enabled and multimode conversion is started. + * @note To guarantee a proper reset of all interruptions once all the needed + * conversions are obtained, HAL_ADC_Stop_IT() must be called to ensure + * a correct stop of the IT-based conversions. + * @note By default, HAL_ADC_Start_IT() does not enable the End Of Sampling + * interruption. If required (e.g. in case of oversampling with trigger + * mode), the user must: + * 1. first clear the EOSMP flag if set with macro __HAL_ADC_CLEAR_FLAG(hadc, ADC_FLAG_EOSMP) + * 2. then enable the EOSMP interrupt with macro __HAL_ADC_ENABLE_IT(hadc, ADC_IT_EOSMP) + * before calling HAL_ADC_Start_IT(). + * @param hadc ADC handle + * @retval HAL status + */ +HAL_StatusTypeDef HAL_ADC_Start_IT(ADC_HandleTypeDef *hadc) +{ + HAL_StatusTypeDef tmp_hal_status; + const ADC_TypeDef *tmpADC_Master; + uint32_t tmp_multimode_config = LL_ADC_GetMultimode(__LL_ADC_COMMON_INSTANCE(hadc->Instance)); + + /* Check the parameters */ + assert_param(IS_ADC_ALL_INSTANCE(hadc->Instance)); + + /* Perform ADC enable and conversion start if no conversion is on going */ + if (LL_ADC_REG_IsConversionOngoing(hadc->Instance) == 0UL) + { + /* Process locked */ + __HAL_LOCK(hadc); + + /* Enable the ADC peripheral */ + tmp_hal_status = ADC_Enable(hadc); + + /* Start conversion if ADC is effectively enabled */ + if (tmp_hal_status == HAL_OK) + { + /* Set ADC state */ + /* - Clear state bitfield related to regular group conversion results */ + /* - Set state bitfield related to regular operation */ + ADC_STATE_CLR_SET(hadc->State, + HAL_ADC_STATE_READY | HAL_ADC_STATE_REG_EOC | HAL_ADC_STATE_REG_OVR | HAL_ADC_STATE_REG_EOSMP, + HAL_ADC_STATE_REG_BUSY); + + /* Reset HAL_ADC_STATE_MULTIMODE_SLAVE bit + - if ADC instance is master or if multimode feature is not available + - if multimode setting is disabled (ADC instance slave in independent mode) */ + if ((__LL_ADC_MULTI_INSTANCE_MASTER(hadc->Instance) == hadc->Instance) + || (tmp_multimode_config == LL_ADC_MULTI_INDEPENDENT) + ) + { + CLEAR_BIT(hadc->State, HAL_ADC_STATE_MULTIMODE_SLAVE); + } + + /* Set ADC error code */ + /* Check if a conversion is on going on ADC group injected */ + if ((hadc->State & HAL_ADC_STATE_INJ_BUSY) != 0UL) + { + /* Reset ADC error code fields related to regular conversions only */ + CLEAR_BIT(hadc->ErrorCode, (HAL_ADC_ERROR_OVR | HAL_ADC_ERROR_DMA)); + } + else + { + /* Reset all ADC error code fields */ + ADC_CLEAR_ERRORCODE(hadc); + } + + /* Clear ADC group regular conversion flag and overrun flag */ + /* (To ensure of no unknown state from potential previous ADC operations) */ + __HAL_ADC_CLEAR_FLAG(hadc, (ADC_FLAG_EOC | ADC_FLAG_EOS | ADC_FLAG_OVR)); + + /* Process unlocked */ + /* Unlock before starting ADC conversions: in case of potential */ + /* interruption, to let the process to ADC IRQ Handler. */ + __HAL_UNLOCK(hadc); + + /* Disable all interruptions before enabling the desired ones */ + __HAL_ADC_DISABLE_IT(hadc, (ADC_IT_EOC | ADC_IT_EOS | ADC_IT_OVR)); + + /* Enable ADC end of conversion interrupt */ + switch (hadc->Init.EOCSelection) + { + case ADC_EOC_SEQ_CONV: + __HAL_ADC_ENABLE_IT(hadc, ADC_IT_EOS); + break; + /* case ADC_EOC_SINGLE_CONV */ + default: + __HAL_ADC_ENABLE_IT(hadc, ADC_IT_EOC); + break; + } + + /* Enable ADC overrun interrupt */ + /* If hadc->Init.Overrun is set to ADC_OVR_DATA_PRESERVED, only then is + ADC_IT_OVR enabled; otherwise data overwrite is considered as normal + behavior and no CPU time is lost for a non-processed interruption */ + if (hadc->Init.Overrun == ADC_OVR_DATA_PRESERVED) + { + __HAL_ADC_ENABLE_IT(hadc, ADC_IT_OVR); + } + + /* Enable conversion of regular group. */ + /* If software start has been selected, conversion starts immediately. */ + /* If external trigger has been selected, conversion will start at next */ + /* trigger event. */ + /* Case of multimode enabled (when multimode feature is available): */ + /* - if ADC is slave and dual regular conversions are enabled, ADC is */ + /* enabled only (conversion is not started), */ + /* - if ADC is master, ADC is enabled and conversion is started. */ + if ((__LL_ADC_MULTI_INSTANCE_MASTER(hadc->Instance) == hadc->Instance) + || (tmp_multimode_config == LL_ADC_MULTI_INDEPENDENT) + || (tmp_multimode_config == LL_ADC_MULTI_DUAL_INJ_SIMULT) + || (tmp_multimode_config == LL_ADC_MULTI_DUAL_INJ_ALTERN) + ) + { + /* ADC instance is not a multimode slave instance with multimode regular conversions enabled */ + if (READ_BIT(hadc->Instance->CFGR, ADC_CFGR_JAUTO) != 0UL) + { + ADC_STATE_CLR_SET(hadc->State, HAL_ADC_STATE_INJ_EOC, HAL_ADC_STATE_INJ_BUSY); + + /* Enable as well injected interruptions in case + HAL_ADCEx_InjectedStart_IT() has not been called beforehand. This + allows to start regular and injected conversions when JAUTO is + set with a single call to HAL_ADC_Start_IT() */ + switch (hadc->Init.EOCSelection) + { + case ADC_EOC_SEQ_CONV: + __HAL_ADC_DISABLE_IT(hadc, ADC_IT_JEOC); + __HAL_ADC_ENABLE_IT(hadc, ADC_IT_JEOS); + break; + /* case ADC_EOC_SINGLE_CONV */ + default: + __HAL_ADC_DISABLE_IT(hadc, ADC_IT_JEOS); + __HAL_ADC_ENABLE_IT(hadc, ADC_IT_JEOC); + break; + } + } + + /* Start ADC group regular conversion */ + LL_ADC_REG_StartConversion(hadc->Instance); + } + else + { + /* ADC instance is a multimode slave instance with multimode regular conversions enabled */ + SET_BIT(hadc->State, HAL_ADC_STATE_MULTIMODE_SLAVE); + /* if Master ADC JAUTO bit is set, Slave injected interruptions + are enabled nevertheless (for same reason as above) */ + tmpADC_Master = __LL_ADC_MULTI_INSTANCE_MASTER(hadc->Instance); + if (READ_BIT(tmpADC_Master->CFGR, ADC_CFGR_JAUTO) != 0UL) + { + /* First, update Slave State in setting HAL_ADC_STATE_INJ_BUSY bit + and in resetting HAL_ADC_STATE_INJ_EOC bit */ + ADC_STATE_CLR_SET(hadc->State, HAL_ADC_STATE_INJ_EOC, HAL_ADC_STATE_INJ_BUSY); + /* Next, set Slave injected interruptions */ + switch (hadc->Init.EOCSelection) + { + case ADC_EOC_SEQ_CONV: + __HAL_ADC_DISABLE_IT(hadc, ADC_IT_JEOC); + __HAL_ADC_ENABLE_IT(hadc, ADC_IT_JEOS); + break; + /* case ADC_EOC_SINGLE_CONV */ + default: + __HAL_ADC_DISABLE_IT(hadc, ADC_IT_JEOS); + __HAL_ADC_ENABLE_IT(hadc, ADC_IT_JEOC); + break; + } + } + } + } + else + { + /* Process unlocked */ + __HAL_UNLOCK(hadc); + } + + } + else + { + tmp_hal_status = HAL_BUSY; + } + + /* Return function status */ + return tmp_hal_status; +} + +/** + * @brief Stop ADC conversion of regular group (and injected group in + * case of auto_injection mode), disable interrution of + * end-of-conversion, disable ADC peripheral. + * @param hadc ADC handle + * @retval HAL status. + */ +HAL_StatusTypeDef HAL_ADC_Stop_IT(ADC_HandleTypeDef *hadc) +{ + HAL_StatusTypeDef tmp_hal_status; + + /* Check the parameters */ + assert_param(IS_ADC_ALL_INSTANCE(hadc->Instance)); + + /* Process locked */ + __HAL_LOCK(hadc); + + /* 1. Stop potential conversion on going, on ADC groups regular and injected */ + tmp_hal_status = ADC_ConversionStop(hadc, ADC_REGULAR_INJECTED_GROUP); + + /* Disable ADC peripheral if conversions are effectively stopped */ + if (tmp_hal_status == HAL_OK) + { + /* Disable ADC end of conversion interrupt for regular group */ + /* Disable ADC overrun interrupt */ + __HAL_ADC_DISABLE_IT(hadc, (ADC_IT_EOC | ADC_IT_EOS | ADC_IT_OVR)); + + /* 2. Disable the ADC peripheral */ + tmp_hal_status = ADC_Disable(hadc); + + /* Check if ADC is effectively disabled */ + if (tmp_hal_status == HAL_OK) + { + /* Set ADC state */ + ADC_STATE_CLR_SET(hadc->State, + HAL_ADC_STATE_REG_BUSY | HAL_ADC_STATE_INJ_BUSY, + HAL_ADC_STATE_READY); + } + } + + /* Process unlocked */ + __HAL_UNLOCK(hadc); + + /* Return function status */ + return tmp_hal_status; +} + +/** + * @brief Enable ADC, start conversion of regular group and transfer result through DMA. + * @note Interruptions enabled in this function: + * overrun (if applicable), DMA half transfer, DMA transfer complete. + * Each of these interruptions has its dedicated callback function. + * @note Case of multimode enabled (when multimode feature is available): HAL_ADC_Start_DMA() + * is designed for single-ADC mode only. For multimode, the dedicated + * HAL_ADCEx_MultiModeStart_DMA() function must be used. + * @param hadc ADC handle + * @param pData Destination Buffer address. + * @param Length Number of data to be transferred from ADC peripheral to memory + * @retval HAL status. + */ +HAL_StatusTypeDef HAL_ADC_Start_DMA(ADC_HandleTypeDef *hadc, uint32_t *pData, uint32_t Length) +{ + HAL_StatusTypeDef tmp_hal_status; + uint32_t tmp_multimode_config = LL_ADC_GetMultimode(__LL_ADC_COMMON_INSTANCE(hadc->Instance)); + + /* Check the parameters */ + assert_param(IS_ADC_ALL_INSTANCE(hadc->Instance)); + + /* Perform ADC enable and conversion start if no conversion is on going */ + if (LL_ADC_REG_IsConversionOngoing(hadc->Instance) == 0UL) + { + /* Process locked */ + __HAL_LOCK(hadc); + + /* Ensure that multimode regular conversions are not enabled. */ + /* Otherwise, dedicated API HAL_ADCEx_MultiModeStart_DMA() must be used. */ + if ((tmp_multimode_config == LL_ADC_MULTI_INDEPENDENT) + || (tmp_multimode_config == LL_ADC_MULTI_DUAL_INJ_SIMULT) + || (tmp_multimode_config == LL_ADC_MULTI_DUAL_INJ_ALTERN) + ) + { + /* Enable the ADC peripheral */ + tmp_hal_status = ADC_Enable(hadc); + + /* Start conversion if ADC is effectively enabled */ + if (tmp_hal_status == HAL_OK) + { + /* Set ADC state */ + /* - Clear state bitfield related to regular group conversion results */ + /* - Set state bitfield related to regular operation */ + ADC_STATE_CLR_SET(hadc->State, + HAL_ADC_STATE_READY | HAL_ADC_STATE_REG_EOC | HAL_ADC_STATE_REG_OVR | HAL_ADC_STATE_REG_EOSMP, + HAL_ADC_STATE_REG_BUSY); + + /* Reset HAL_ADC_STATE_MULTIMODE_SLAVE bit + - if ADC instance is master or if multimode feature is not available + - if multimode setting is disabled (ADC instance slave in independent mode) */ + if ((__LL_ADC_MULTI_INSTANCE_MASTER(hadc->Instance) == hadc->Instance) + || (tmp_multimode_config == LL_ADC_MULTI_INDEPENDENT) + ) + { + CLEAR_BIT(hadc->State, HAL_ADC_STATE_MULTIMODE_SLAVE); + } + + /* Check if a conversion is on going on ADC group injected */ + if ((hadc->State & HAL_ADC_STATE_INJ_BUSY) != 0UL) + { + /* Reset ADC error code fields related to regular conversions only */ + CLEAR_BIT(hadc->ErrorCode, (HAL_ADC_ERROR_OVR | HAL_ADC_ERROR_DMA)); + } + else + { + /* Reset all ADC error code fields */ + ADC_CLEAR_ERRORCODE(hadc); + } + + /* Set the DMA transfer complete callback */ + hadc->DMA_Handle->XferCpltCallback = ADC_DMAConvCplt; + + /* Set the DMA half transfer complete callback */ + hadc->DMA_Handle->XferHalfCpltCallback = ADC_DMAHalfConvCplt; + + /* Set the DMA error callback */ + hadc->DMA_Handle->XferErrorCallback = ADC_DMAError; + + + /* Manage ADC and DMA start: ADC overrun interruption, DMA start, */ + /* ADC start (in case of SW start): */ + + /* Clear regular group conversion flag and overrun flag */ + /* (To ensure of no unknown state from potential previous ADC */ + /* operations) */ + __HAL_ADC_CLEAR_FLAG(hadc, (ADC_FLAG_EOC | ADC_FLAG_EOS | ADC_FLAG_OVR)); + + /* Process unlocked */ + /* Unlock before starting ADC conversions: in case of potential */ + /* interruption, to let the process to ADC IRQ Handler. */ + __HAL_UNLOCK(hadc); + + /* With DMA, overrun event is always considered as an error even if + hadc->Init.Overrun is set to ADC_OVR_DATA_OVERWRITTEN. Therefore, + ADC_IT_OVR is enabled. */ + __HAL_ADC_ENABLE_IT(hadc, ADC_IT_OVR); + + /* Enable ADC DMA mode*/ + LL_ADC_REG_SetDataTransferMode(hadc->Instance, (uint32_t)hadc->Init.ConversionDataManagement); + + /* Start the DMA channel */ + tmp_hal_status = HAL_DMA_Start_IT(hadc->DMA_Handle, (uint32_t)&hadc->Instance->DR, (uint32_t)pData, Length); + + /* Enable conversion of regular group. */ + /* If software start has been selected, conversion starts immediately. */ + /* If external trigger has been selected, conversion will start at next */ + /* trigger event. */ + /* Start ADC group regular conversion */ + LL_ADC_REG_StartConversion(hadc->Instance); + } + else + { + /* Process unlocked */ + __HAL_UNLOCK(hadc); + } + + } + else + { + tmp_hal_status = HAL_ERROR; + /* Process unlocked */ + __HAL_UNLOCK(hadc); + } + } + else + { + tmp_hal_status = HAL_BUSY; + } + + /* Return function status */ + return tmp_hal_status; +} + +/** + * @brief Stop ADC conversion of regular group (and injected group in + * case of auto_injection mode), disable ADC DMA transfer, disable + * ADC peripheral. + * @note: ADC peripheral disable is forcing stop of potential + * conversion on ADC group injected. If ADC group injected is under use, it + * should be preliminarily stopped using HAL_ADCEx_InjectedStop function. + * @note Case of multimode enabled (when multimode feature is available): + * HAL_ADC_Stop_DMA() function is dedicated to single-ADC mode only. + * For multimode, the dedicated HAL_ADCEx_MultiModeStop_DMA() API must be used. + * @param hadc ADC handle + * @retval HAL status. + */ +HAL_StatusTypeDef HAL_ADC_Stop_DMA(ADC_HandleTypeDef *hadc) +{ + HAL_StatusTypeDef tmp_hal_status; + + /* Check the parameters */ + assert_param(IS_ADC_ALL_INSTANCE(hadc->Instance)); + + /* Process locked */ + __HAL_LOCK(hadc); + + /* 1. Stop potential ADC group regular conversion on going */ + tmp_hal_status = ADC_ConversionStop(hadc, ADC_REGULAR_INJECTED_GROUP); + + /* Disable ADC peripheral if conversions are effectively stopped */ + if (tmp_hal_status == HAL_OK) + { + /* Disable ADC DMA (ADC DMA configuration of continous requests is kept) */ + MODIFY_REG(hadc->Instance->CFGR, ADC_CFGR_DMNGT_0 |ADC_CFGR_DMNGT_1, 0UL); + + /* Disable the DMA channel (in case of DMA in circular mode or stop */ + /* while DMA transfer is on going) */ + if (hadc->DMA_Handle->State == HAL_DMA_STATE_BUSY) + { + tmp_hal_status = HAL_DMA_Abort(hadc->DMA_Handle); + + /* Check if DMA channel effectively disabled */ + if (tmp_hal_status != HAL_OK) + { + /* Update ADC state machine to error */ + SET_BIT(hadc->State, HAL_ADC_STATE_ERROR_DMA); + } + } + + /* Disable ADC overrun interrupt */ + __HAL_ADC_DISABLE_IT(hadc, ADC_IT_OVR); + + /* 2. Disable the ADC peripheral */ + /* Update "tmp_hal_status" only if DMA channel disabling passed, */ + /* to keep in memory a potential failing status. */ + if (tmp_hal_status == HAL_OK) + { + tmp_hal_status = ADC_Disable(hadc); + } + else + { + (void)ADC_Disable(hadc); + } + + /* Check if ADC is effectively disabled */ + if (tmp_hal_status == HAL_OK) + { + /* Set ADC state */ + ADC_STATE_CLR_SET(hadc->State, + HAL_ADC_STATE_REG_BUSY | HAL_ADC_STATE_INJ_BUSY, + HAL_ADC_STATE_READY); + } + + } + + /* Process unlocked */ + __HAL_UNLOCK(hadc); + + /* Return function status */ + return tmp_hal_status; +} + +/** + * @brief Get ADC regular group conversion result. + * @note Reading register DR automatically clears ADC flag EOC + * (ADC group regular end of unitary conversion). + * @note This function does not clear ADC flag EOS + * (ADC group regular end of sequence conversion). + * Occurrence of flag EOS rising: + * - If sequencer is composed of 1 rank, flag EOS is equivalent + * to flag EOC. + * - If sequencer is composed of several ranks, during the scan + * sequence flag EOC only is raised, at the end of the scan sequence + * both flags EOC and EOS are raised. + * To clear this flag, either use function: + * in programming model IT: @ref HAL_ADC_IRQHandler(), in programming + * model polling: @ref HAL_ADC_PollForConversion() + * or @ref __HAL_ADC_CLEAR_FLAG(&hadc, ADC_FLAG_EOS). + * @param hadc ADC handle + * @retval ADC group regular conversion data + */ +uint32_t HAL_ADC_GetValue(ADC_HandleTypeDef *hadc) +{ + /* Check the parameters */ + assert_param(IS_ADC_ALL_INSTANCE(hadc->Instance)); + + /* Note: EOC flag is not cleared here by software because automatically */ + /* cleared by hardware when reading register DR. */ + + /* Return ADC converted value */ + return hadc->Instance->DR; +} + +/** + * @brief Handle ADC interrupt request. + * @param hadc ADC handle + * @retval None + */ +void HAL_ADC_IRQHandler(ADC_HandleTypeDef *hadc) +{ + uint32_t overrun_error = 0UL; /* flag set if overrun occurrence has to be considered as an error */ + uint32_t tmp_isr = hadc->Instance->ISR; + uint32_t tmp_ier = hadc->Instance->IER; + uint32_t tmp_adc_inj_is_trigger_source_sw_start; + uint32_t tmp_adc_reg_is_trigger_source_sw_start; + uint32_t tmp_cfgr; + const ADC_TypeDef *tmpADC_Master; + uint32_t tmp_multimode_config = LL_ADC_GetMultimode(__LL_ADC_COMMON_INSTANCE(hadc->Instance)); + + /* Check the parameters */ + assert_param(IS_ADC_ALL_INSTANCE(hadc->Instance)); + assert_param(IS_ADC_EOC_SELECTION(hadc->Init.EOCSelection)); + + /* ========== Check End of Sampling flag for ADC group regular ========== */ + if (((tmp_isr & ADC_FLAG_EOSMP) == ADC_FLAG_EOSMP) && ((tmp_ier & ADC_IT_EOSMP) == ADC_IT_EOSMP)) + { + /* Update state machine on end of sampling status if not in error state */ + if ((hadc->State & HAL_ADC_STATE_ERROR_INTERNAL) == 0UL) + { + /* Set ADC state */ + SET_BIT(hadc->State, HAL_ADC_STATE_REG_EOSMP); + } + + /* End Of Sampling callback */ +#if (USE_HAL_ADC_REGISTER_CALLBACKS == 1) + hadc->EndOfSamplingCallback(hadc); +#else + HAL_ADCEx_EndOfSamplingCallback(hadc); +#endif /* USE_HAL_ADC_REGISTER_CALLBACKS */ + + /* Clear regular group conversion flag */ + __HAL_ADC_CLEAR_FLAG(hadc, ADC_FLAG_EOSMP); + } + + /* ====== Check ADC group regular end of unitary conversion sequence conversions ===== */ + if ((((tmp_isr & ADC_FLAG_EOC) == ADC_FLAG_EOC) && ((tmp_ier & ADC_IT_EOC) == ADC_IT_EOC)) || + (((tmp_isr & ADC_FLAG_EOS) == ADC_FLAG_EOS) && ((tmp_ier & ADC_IT_EOS) == ADC_IT_EOS))) + { + /* Update state machine on conversion status if not in error state */ + if ((hadc->State & HAL_ADC_STATE_ERROR_INTERNAL) == 0UL) + { + /* Set ADC state */ + SET_BIT(hadc->State, HAL_ADC_STATE_REG_EOC); + } + + /* Determine whether any further conversion upcoming on group regular */ + /* by external trigger, continuous mode or scan sequence on going */ + /* to disable interruption. */ + if (LL_ADC_REG_IsTriggerSourceSWStart(hadc->Instance) != 0UL) + { + /* Get relevant register CFGR in ADC instance of ADC master or slave */ + /* in function of multimode state (for devices with multimode */ + /* available). */ + if ((__LL_ADC_MULTI_INSTANCE_MASTER(hadc->Instance) == hadc->Instance) + || (tmp_multimode_config == LL_ADC_MULTI_INDEPENDENT) + || (tmp_multimode_config == LL_ADC_MULTI_DUAL_INJ_SIMULT) + || (tmp_multimode_config == LL_ADC_MULTI_DUAL_INJ_ALTERN) + ) + { + /* check CONT bit directly in handle ADC CFGR register */ + tmp_cfgr = READ_REG(hadc->Instance->CFGR); + } + else + { + /* else need to check Master ADC CONT bit */ + tmpADC_Master = __LL_ADC_MULTI_INSTANCE_MASTER(hadc->Instance); + tmp_cfgr = READ_REG(tmpADC_Master->CFGR); + } + + /* Carry on if continuous mode is disabled */ + if (READ_BIT(tmp_cfgr, ADC_CFGR_CONT) != ADC_CFGR_CONT) + { + /* If End of Sequence is reached, disable interrupts */ + if (__HAL_ADC_GET_FLAG(hadc, ADC_FLAG_EOS)) + { + /* Allowed to modify bits ADC_IT_EOC/ADC_IT_EOS only if bit */ + /* ADSTART==0 (no conversion on going) */ + if (LL_ADC_REG_IsConversionOngoing(hadc->Instance) == 0UL) + { + /* Disable ADC end of sequence conversion interrupt */ + /* Note: Overrun interrupt was enabled with EOC interrupt in */ + /* HAL_Start_IT(), but is not disabled here because can be used */ + /* by overrun IRQ process below. */ + __HAL_ADC_DISABLE_IT(hadc, ADC_IT_EOC | ADC_IT_EOS); + + /* Set ADC state */ + CLEAR_BIT(hadc->State, HAL_ADC_STATE_REG_BUSY); + + if ((hadc->State & HAL_ADC_STATE_INJ_BUSY) == 0UL) + { + SET_BIT(hadc->State, HAL_ADC_STATE_READY); + } + } + else + { + /* Change ADC state to error state */ + SET_BIT(hadc->State, HAL_ADC_STATE_ERROR_INTERNAL); + + /* Set ADC error code to ADC peripheral internal error */ + SET_BIT(hadc->ErrorCode, HAL_ADC_ERROR_INTERNAL); + } + } + } + } + + /* Conversion complete callback */ + /* Note: Into callback function "HAL_ADC_ConvCpltCallback()", */ + /* to determine if conversion has been triggered from EOC or EOS, */ + /* possibility to use: */ + /* " if( __HAL_ADC_GET_FLAG(&hadc, ADC_FLAG_EOS)) " */ +#if (USE_HAL_ADC_REGISTER_CALLBACKS == 1) + hadc->ConvCpltCallback(hadc); +#else + HAL_ADC_ConvCpltCallback(hadc); +#endif /* USE_HAL_ADC_REGISTER_CALLBACKS */ + + /* Clear regular group conversion flag */ + /* Note: in case of overrun set to ADC_OVR_DATA_PRESERVED, end of */ + /* conversion flags clear induces the release of the preserved data.*/ + /* Therefore, if the preserved data value is needed, it must be */ + /* read preliminarily into HAL_ADC_ConvCpltCallback(). */ + __HAL_ADC_CLEAR_FLAG(hadc, (ADC_FLAG_EOC | ADC_FLAG_EOS)); + } + + /* ====== Check ADC group injected end of unitary conversion sequence conversions ===== */ + if ((((tmp_isr & ADC_FLAG_JEOC) == ADC_FLAG_JEOC) && ((tmp_ier & ADC_IT_JEOC) == ADC_IT_JEOC)) || + (((tmp_isr & ADC_FLAG_JEOS) == ADC_FLAG_JEOS) && ((tmp_ier & ADC_IT_JEOS) == ADC_IT_JEOS))) + { + /* Update state machine on conversion status if not in error state */ + if ((hadc->State & HAL_ADC_STATE_ERROR_INTERNAL) == 0UL) + { + /* Set ADC state */ + SET_BIT(hadc->State, HAL_ADC_STATE_INJ_EOC); + } + + /* Retrieve ADC configuration */ + tmp_adc_inj_is_trigger_source_sw_start = LL_ADC_INJ_IsTriggerSourceSWStart(hadc->Instance); + tmp_adc_reg_is_trigger_source_sw_start = LL_ADC_REG_IsTriggerSourceSWStart(hadc->Instance); + /* Get relevant register CFGR in ADC instance of ADC master or slave */ + /* in function of multimode state (for devices with multimode */ + /* available). */ + if ((__LL_ADC_MULTI_INSTANCE_MASTER(hadc->Instance) == hadc->Instance) + || (tmp_multimode_config == LL_ADC_MULTI_INDEPENDENT) + || (tmp_multimode_config == LL_ADC_MULTI_DUAL_REG_SIMULT) + || (tmp_multimode_config == LL_ADC_MULTI_DUAL_REG_INTERL) + ) + { + tmp_cfgr = READ_REG(hadc->Instance->CFGR); + } + else + { + tmpADC_Master = __LL_ADC_MULTI_INSTANCE_MASTER(hadc->Instance); + tmp_cfgr = READ_REG(tmpADC_Master->CFGR); + } + + /* Disable interruption if no further conversion upcoming by injected */ + /* external trigger or by automatic injected conversion with regular */ + /* group having no further conversion upcoming (same conditions as */ + /* regular group interruption disabling above), */ + /* and if injected scan sequence is completed. */ + if ((tmp_adc_inj_is_trigger_source_sw_start != 0UL) || + ((READ_BIT(tmp_cfgr, ADC_CFGR_JAUTO) == 0UL) && + ((tmp_adc_reg_is_trigger_source_sw_start != 0UL) && + (READ_BIT(tmp_cfgr, ADC_CFGR_CONT) == 0UL)))) + { + /* If End of Sequence is reached, disable interrupts */ + if (__HAL_ADC_GET_FLAG(hadc, ADC_FLAG_JEOS)) + { + /* Particular case if injected contexts queue is enabled: */ + /* when the last context has been fully processed, JSQR is reset */ + /* by the hardware. Even if no injected conversion is planned to come */ + /* (queue empty, triggers are ignored), it can start again */ + /* immediately after setting a new context (JADSTART is still set). */ + /* Therefore, state of HAL ADC injected group is kept to busy. */ + if (READ_BIT(tmp_cfgr, ADC_CFGR_JQM) == 0UL) + { + /* Allowed to modify bits ADC_IT_JEOC/ADC_IT_JEOS only if bit */ + /* JADSTART==0 (no conversion on going) */ + if (LL_ADC_INJ_IsConversionOngoing(hadc->Instance) == 0UL) + { + /* Disable ADC end of sequence conversion interrupt */ + __HAL_ADC_DISABLE_IT(hadc, ADC_IT_JEOC | ADC_IT_JEOS); + + /* Set ADC state */ + CLEAR_BIT(hadc->State, HAL_ADC_STATE_INJ_BUSY); + + if ((hadc->State & HAL_ADC_STATE_REG_BUSY) == 0UL) + { + SET_BIT(hadc->State, HAL_ADC_STATE_READY); + } + } + else + { + /* Update ADC state machine to error */ + SET_BIT(hadc->State, HAL_ADC_STATE_ERROR_INTERNAL); + + /* Set ADC error code to ADC peripheral internal error */ + SET_BIT(hadc->ErrorCode, HAL_ADC_ERROR_INTERNAL); + } + } + } + } + + /* Injected Conversion complete callback */ + /* Note: HAL_ADCEx_InjectedConvCpltCallback can resort to + if( __HAL_ADC_GET_FLAG(&hadc, ADC_FLAG_JEOS)) or + if( __HAL_ADC_GET_FLAG(&hadc, ADC_FLAG_JEOC)) to determine whether + interruption has been triggered by end of conversion or end of + sequence. */ +#if (USE_HAL_ADC_REGISTER_CALLBACKS == 1) + hadc->InjectedConvCpltCallback(hadc); +#else + HAL_ADCEx_InjectedConvCpltCallback(hadc); +#endif /* USE_HAL_ADC_REGISTER_CALLBACKS */ + + /* Clear injected group conversion flag */ + __HAL_ADC_CLEAR_FLAG(hadc, ADC_FLAG_JEOC | ADC_FLAG_JEOS); + } + + /* ========== Check Analog watchdog 1 flag ========== */ + if (((tmp_isr & ADC_FLAG_AWD1) == ADC_FLAG_AWD1) && ((tmp_ier & ADC_IT_AWD1) == ADC_IT_AWD1)) + { + /* Set ADC state */ + SET_BIT(hadc->State, HAL_ADC_STATE_AWD1); + + /* Level out of window 1 callback */ +#if (USE_HAL_ADC_REGISTER_CALLBACKS == 1) + hadc->LevelOutOfWindowCallback(hadc); +#else + HAL_ADC_LevelOutOfWindowCallback(hadc); +#endif /* USE_HAL_ADC_REGISTER_CALLBACKS */ + + /* Clear ADC analog watchdog flag */ + __HAL_ADC_CLEAR_FLAG(hadc, ADC_FLAG_AWD1); + } + + /* ========== Check analog watchdog 2 flag ========== */ + if (((tmp_isr & ADC_FLAG_AWD2) == ADC_FLAG_AWD2) && ((tmp_ier & ADC_IT_AWD2) == ADC_IT_AWD2)) + { + /* Set ADC state */ + SET_BIT(hadc->State, HAL_ADC_STATE_AWD2); + + /* Level out of window 2 callback */ +#if (USE_HAL_ADC_REGISTER_CALLBACKS == 1) + hadc->LevelOutOfWindow2Callback(hadc); +#else + HAL_ADCEx_LevelOutOfWindow2Callback(hadc); +#endif /* USE_HAL_ADC_REGISTER_CALLBACKS */ + + /* Clear ADC analog watchdog flag */ + __HAL_ADC_CLEAR_FLAG(hadc, ADC_FLAG_AWD2); + } + + /* ========== Check analog watchdog 3 flag ========== */ + if (((tmp_isr & ADC_FLAG_AWD3) == ADC_FLAG_AWD3) && ((tmp_ier & ADC_IT_AWD3) == ADC_IT_AWD3)) + { + /* Set ADC state */ + SET_BIT(hadc->State, HAL_ADC_STATE_AWD3); + + /* Level out of window 3 callback */ +#if (USE_HAL_ADC_REGISTER_CALLBACKS == 1) + hadc->LevelOutOfWindow3Callback(hadc); +#else + HAL_ADCEx_LevelOutOfWindow3Callback(hadc); +#endif /* USE_HAL_ADC_REGISTER_CALLBACKS */ + + /* Clear ADC analog watchdog flag */ + __HAL_ADC_CLEAR_FLAG(hadc, ADC_FLAG_AWD3); + } + + /* ========== Check Overrun flag ========== */ + if (((tmp_isr & ADC_FLAG_OVR) == ADC_FLAG_OVR) && ((tmp_ier & ADC_IT_OVR) == ADC_IT_OVR)) + { + /* If overrun is set to overwrite previous data (default setting), */ + /* overrun event is not considered as an error. */ + /* (cf ref manual "Managing conversions without using the DMA and without */ + /* overrun ") */ + /* Exception for usage with DMA overrun event always considered as an */ + /* error. */ + if (hadc->Init.Overrun == ADC_OVR_DATA_PRESERVED) + { + overrun_error = 1UL; + } + else + { + /* Check DMA configuration */ + if (tmp_multimode_config != LL_ADC_MULTI_INDEPENDENT) + { + /* Multimode (when feature is available) is enabled, + Common Control Register MDMA bits must be checked. */ + if (LL_ADC_GetMultiDMATransfer(__LL_ADC_COMMON_INSTANCE(hadc->Instance)) != LL_ADC_MULTI_REG_DMA_EACH_ADC) + { + overrun_error = 1UL; + } + } + else + { + /* Multimode not set or feature not available or ADC independent */ + if ((hadc->Instance->CFGR & ADC_CFGR_DMNGT) != 0UL) + { + overrun_error = 1UL; + } + } + } + + if (overrun_error == 1UL) + { + /* Change ADC state to error state */ + SET_BIT(hadc->State, HAL_ADC_STATE_REG_OVR); + + /* Set ADC error code to overrun */ + SET_BIT(hadc->ErrorCode, HAL_ADC_ERROR_OVR); + + /* Error callback */ + /* Note: In case of overrun, ADC conversion data is preserved until */ + /* flag OVR is reset. */ + /* Therefore, old ADC conversion data can be retrieved in */ + /* function "HAL_ADC_ErrorCallback()". */ +#if (USE_HAL_ADC_REGISTER_CALLBACKS == 1) + hadc->ErrorCallback(hadc); +#else + HAL_ADC_ErrorCallback(hadc); +#endif /* USE_HAL_ADC_REGISTER_CALLBACKS */ + } + + /* Clear ADC overrun flag */ + __HAL_ADC_CLEAR_FLAG(hadc, ADC_FLAG_OVR); + } + + /* ========== Check Injected context queue overflow flag ========== */ + if (((tmp_isr & ADC_FLAG_JQOVF) == ADC_FLAG_JQOVF) && ((tmp_ier & ADC_IT_JQOVF) == ADC_IT_JQOVF)) + { + /* Change ADC state to overrun state */ + SET_BIT(hadc->State, HAL_ADC_STATE_INJ_JQOVF); + + /* Set ADC error code to Injected context queue overflow */ + SET_BIT(hadc->ErrorCode, HAL_ADC_ERROR_JQOVF); + + /* Clear the Injected context queue overflow flag */ + __HAL_ADC_CLEAR_FLAG(hadc, ADC_FLAG_JQOVF); + + /* Injected context queue overflow callback */ +#if (USE_HAL_ADC_REGISTER_CALLBACKS == 1) + hadc->InjectedQueueOverflowCallback(hadc); +#else + HAL_ADCEx_InjectedQueueOverflowCallback(hadc); +#endif /* USE_HAL_ADC_REGISTER_CALLBACKS */ + } + +} + +/** + * @brief Conversion complete callback in non-blocking mode. + * @param hadc ADC handle + * @retval None + */ +__weak void HAL_ADC_ConvCpltCallback(ADC_HandleTypeDef *hadc) +{ + /* Prevent unused argument(s) compilation warning */ + UNUSED(hadc); + + /* NOTE : This function should not be modified. When the callback is needed, + function HAL_ADC_ConvCpltCallback must be implemented in the user file. + */ +} + +/** + * @brief Conversion DMA half-transfer callback in non-blocking mode. + * @param hadc ADC handle + * @retval None + */ +__weak void HAL_ADC_ConvHalfCpltCallback(ADC_HandleTypeDef *hadc) +{ + /* Prevent unused argument(s) compilation warning */ + UNUSED(hadc); + + /* NOTE : This function should not be modified. When the callback is needed, + function HAL_ADC_ConvHalfCpltCallback must be implemented in the user file. + */ +} + +/** + * @brief Analog watchdog 1 callback in non-blocking mode. + * @param hadc ADC handle + * @retval None + */ +__weak void HAL_ADC_LevelOutOfWindowCallback(ADC_HandleTypeDef *hadc) +{ + /* Prevent unused argument(s) compilation warning */ + UNUSED(hadc); + + /* NOTE : This function should not be modified. When the callback is needed, + function HAL_ADC_LevelOutOfWindowCallback must be implemented in the user file. + */ +} + +/** + * @brief ADC error callback in non-blocking mode + * (ADC conversion with interruption or transfer by DMA). + * @note In case of error due to overrun when using ADC with DMA transfer + * (HAL ADC handle parameter "ErrorCode" to state "HAL_ADC_ERROR_OVR"): + * - Reinitialize the DMA using function "HAL_ADC_Stop_DMA()". + * - If needed, restart a new ADC conversion using function + * "HAL_ADC_Start_DMA()" + * (this function is also clearing overrun flag) + * @param hadc ADC handle + * @retval None + */ +__weak void HAL_ADC_ErrorCallback(ADC_HandleTypeDef *hadc) +{ + /* Prevent unused argument(s) compilation warning */ + UNUSED(hadc); + + /* NOTE : This function should not be modified. When the callback is needed, + function HAL_ADC_ErrorCallback must be implemented in the user file. + */ +} + +/** + * @} + */ + +/** @defgroup ADC_Exported_Functions_Group3 Peripheral Control functions + * @brief Peripheral Control functions + * +@verbatim + =============================================================================== + ##### Peripheral Control functions ##### + =============================================================================== + [..] This section provides functions allowing to: + (+) Configure channels on regular group + (+) Configure the analog watchdog + +@endverbatim + * @{ + */ + +/** + * @brief Configure a channel to be assigned to ADC group regular. + * @note In case of usage of internal measurement channels: + * Vbat/VrefInt/TempSensor. + * These internal paths can be disabled using function + * HAL_ADC_DeInit(). + * @note Possibility to update parameters on the fly: + * This function initializes channel into ADC group regular, + * following calls to this function can be used to reconfigure + * some parameters of structure "ADC_ChannelConfTypeDef" on the fly, + * without resetting the ADC. + * The setting of these parameters is conditioned to ADC state: + * Refer to comments of structure "ADC_ChannelConfTypeDef". + * @param hadc ADC handle + * @param sConfig Structure of ADC channel assigned to ADC group regular. + * @retval HAL status + */ +HAL_StatusTypeDef HAL_ADC_ConfigChannel(ADC_HandleTypeDef *hadc, ADC_ChannelConfTypeDef *sConfig) +{ + HAL_StatusTypeDef tmp_hal_status = HAL_OK; + uint32_t tmpOffsetShifted; + uint32_t tmp_config_internal_channel; + __IO uint32_t wait_loop_index = 0; + uint32_t tmp_adc_is_conversion_on_going_regular; + uint32_t tmp_adc_is_conversion_on_going_injected; + + /* Check the parameters */ + assert_param(IS_ADC_ALL_INSTANCE(hadc->Instance)); + assert_param(IS_ADC_REGULAR_RANK(sConfig->Rank)); + assert_param(IS_ADC_SAMPLE_TIME(sConfig->SamplingTime)); + assert_param(IS_ADC_SINGLE_DIFFERENTIAL(sConfig->SingleDiff)); + assert_param(IS_ADC_OFFSET_NUMBER(sConfig->OffsetNumber)); + /* Check offset range according to oversampling setting */ + if (hadc->Init.OversamplingMode == ENABLE) + { + assert_param(IS_ADC_RANGE(ADC_GET_RESOLUTION(hadc), sConfig->Offset/(hadc->Init.Oversampling.Ratio+1U))); + } + else + { + assert_param(IS_ADC_RANGE(ADC_GET_RESOLUTION(hadc), sConfig->Offset)); + } + + /* if ROVSE is set, the value of the OFFSETy_EN bit in ADCx_OFRy register is + ignored (considered as reset) */ + assert_param(!((sConfig->OffsetNumber != ADC_OFFSET_NONE) && (hadc->Init.OversamplingMode == ENABLE))); + + /* Verification of channel number */ + if (sConfig->SingleDiff != ADC_DIFFERENTIAL_ENDED) + { + assert_param(IS_ADC_CHANNEL(sConfig->Channel)); + } + else + { + if (hadc->Instance == ADC1) + { + assert_param(IS_ADC1_DIFF_CHANNEL(sConfig->Channel)); + } + if (hadc->Instance == ADC2) + { + assert_param(IS_ADC2_DIFF_CHANNEL(sConfig->Channel)); + } +#if defined(ADC3) + /* ADC3 is not available on some STM32H7 products */ + if (hadc->Instance == ADC3) + { + assert_param(IS_ADC3_DIFF_CHANNEL(sConfig->Channel)); + } +#endif + } + + /* Process locked */ + __HAL_LOCK(hadc); + + /* Parameters update conditioned to ADC state: */ + /* Parameters that can be updated when ADC is disabled or enabled without */ + /* conversion on going on regular group: */ + /* - Channel number */ + /* - Channel rank */ + if (LL_ADC_REG_IsConversionOngoing(hadc->Instance) == 0UL) + { + /* ADC channels preselection */ + hadc->Instance->PCSEL |= (1UL << (__LL_ADC_CHANNEL_TO_DECIMAL_NB((uint32_t)sConfig->Channel) & 0x1FUL)); + + /* Set ADC group regular sequence: channel on the selected scan sequence rank */ + LL_ADC_REG_SetSequencerRanks(hadc->Instance, sConfig->Rank, sConfig->Channel); + + /* Parameters update conditioned to ADC state: */ + /* Parameters that can be updated when ADC is disabled or enabled without */ + /* conversion on going on regular group: */ + /* - Channel sampling time */ + /* - Channel offset */ + tmp_adc_is_conversion_on_going_regular = LL_ADC_REG_IsConversionOngoing(hadc->Instance); + tmp_adc_is_conversion_on_going_injected = LL_ADC_INJ_IsConversionOngoing(hadc->Instance); + if ((tmp_adc_is_conversion_on_going_regular == 0UL) + && (tmp_adc_is_conversion_on_going_injected == 0UL) + ) + { + /* Set sampling time of the selected ADC channel */ + LL_ADC_SetChannelSamplingTime(hadc->Instance, sConfig->Channel, sConfig->SamplingTime); + + /* Configure the offset: offset enable/disable, channel, offset value */ + + /* Shift the offset with respect to the selected ADC resolution. */ + /* Offset has to be left-aligned on bit 11, the LSB (right bits) are set to 0 */ + tmpOffsetShifted = ADC_OFFSET_SHIFT_RESOLUTION(hadc, (uint32_t)sConfig->Offset); + + if (sConfig->OffsetNumber != ADC_OFFSET_NONE) + { + /* Set ADC selected offset number */ + LL_ADC_SetOffset(hadc->Instance, sConfig->OffsetNumber, sConfig->Channel, tmpOffsetShifted); + + assert_param(IS_FUNCTIONAL_STATE(sConfig->OffsetSignedSaturation)); + /* Set ADC selected offset signed saturation */ + LL_ADC_SetOffsetSignedSaturation(hadc->Instance, sConfig->OffsetNumber, (sConfig->OffsetSignedSaturation == ENABLE) ? LL_ADC_OFFSET_SIGNED_SATURATION_ENABLE : LL_ADC_OFFSET_SIGNED_SATURATION_DISABLE); + + assert_param(IS_FUNCTIONAL_STATE(sConfig->OffsetRightShift)); + /* Set ADC selected offset right shift */ + LL_ADC_SetDataRightShift(hadc->Instance, sConfig->OffsetNumber, (sConfig->OffsetRightShift == ENABLE) ? LL_ADC_OFFSET_RSHIFT_ENABLE : LL_ADC_OFFSET_RSHIFT_DISABLE); + + } + else + { + /* Scan OFR1, OFR2, OFR3, OFR4 to check if the selected channel is enabled. + If this is the case, offset OFRx is disabled since + sConfig->OffsetNumber = ADC_OFFSET_NONE. */ + if (((hadc->Instance->OFR1) & ADC_OFR1_OFFSET1_CH) == ADC_OFR_CHANNEL(sConfig->Channel)) + { + CLEAR_BIT(hadc->Instance->OFR1, ADC_OFR1_SSATE); + } + if (((hadc->Instance->OFR2) & ADC_OFR2_OFFSET2_CH) == ADC_OFR_CHANNEL(sConfig->Channel)) + { + CLEAR_BIT(hadc->Instance->OFR2, ADC_OFR2_SSATE); + } + if (((hadc->Instance->OFR3) & ADC_OFR3_OFFSET3_CH) == ADC_OFR_CHANNEL(sConfig->Channel)) + { + CLEAR_BIT(hadc->Instance->OFR3, ADC_OFR3_SSATE); + } + if (((hadc->Instance->OFR4) & ADC_OFR4_OFFSET4_CH) == ADC_OFR_CHANNEL(sConfig->Channel)) + { + CLEAR_BIT(hadc->Instance->OFR4, ADC_OFR4_SSATE); + } + } + } + + /* Parameters update conditioned to ADC state: */ + /* Parameters that can be updated only when ADC is disabled: */ + /* - Single or differential mode */ + /* - Internal measurement channels: Vbat/VrefInt/TempSensor */ + if (LL_ADC_IsEnabled(hadc->Instance) == 0UL) + { + /* Set mode single-ended or differential input of the selected ADC channel */ + LL_ADC_SetChannelSingleDiff(hadc->Instance, sConfig->Channel, sConfig->SingleDiff); + + /* Configuration of differential mode */ + if (sConfig->SingleDiff == ADC_DIFFERENTIAL_ENDED) + { + /* Set sampling time of the selected ADC channel */ + /* Note: ADC channel number masked with value "0x1F" to ensure shift value within 32 bits range */ + LL_ADC_SetChannelSamplingTime(hadc->Instance, + (uint32_t)(__LL_ADC_DECIMAL_NB_TO_CHANNEL((__LL_ADC_CHANNEL_TO_DECIMAL_NB((uint32_t)sConfig->Channel) + 1UL) & 0x1FUL)), + sConfig->SamplingTime); + } + + /* Management of internal measurement channels: Vbat/VrefInt/TempSensor. */ + /* If internal channel selected, enable dedicated internal buffers and */ + /* paths. */ + /* Note: these internal measurement paths can be disabled using */ + /* HAL_ADC_DeInit(). */ + + if(__LL_ADC_IS_CHANNEL_INTERNAL(sConfig->Channel)) + { + /* Configuration of common ADC parameters */ + + tmp_config_internal_channel = LL_ADC_GetCommonPathInternalCh(__LL_ADC_COMMON_INSTANCE(hadc->Instance)); + + /* Software is allowed to change common parameters only when all ADCs */ + /* of the common group are disabled. */ + if (__LL_ADC_IS_ENABLED_ALL_COMMON_INSTANCE(__LL_ADC_COMMON_INSTANCE(hadc->Instance)) == 0UL) + { + /* If the requested internal measurement path has already been enabled, */ + /* bypass the configuration processing. */ + if ((sConfig->Channel == ADC_CHANNEL_TEMPSENSOR) && ((tmp_config_internal_channel & LL_ADC_PATH_INTERNAL_TEMPSENSOR) == 0UL)) + { + if (ADC_TEMPERATURE_SENSOR_INSTANCE(hadc)) + { + LL_ADC_SetCommonPathInternalCh(__LL_ADC_COMMON_INSTANCE(hadc->Instance), LL_ADC_PATH_INTERNAL_TEMPSENSOR | tmp_config_internal_channel); + + /* Delay for temperature sensor stabilization time */ + /* Wait loop initialization and execution */ + /* Note: Variable divided by 2 to compensate partially */ + /* CPU processing cycles, scaling in us split to not */ + /* exceed 32 bits register capacity and handle low frequency. */ + wait_loop_index = ((LL_ADC_DELAY_TEMPSENSOR_STAB_US / 10UL) * (SystemCoreClock / (100000UL * 2UL))); + while(wait_loop_index != 0UL) + { + wait_loop_index--; + } + } + } + else if ((sConfig->Channel == ADC_CHANNEL_VBAT) && ((tmp_config_internal_channel & LL_ADC_PATH_INTERNAL_VBAT) == 0UL)) + { + if (ADC_BATTERY_VOLTAGE_INSTANCE(hadc)) + { + LL_ADC_SetCommonPathInternalCh(__LL_ADC_COMMON_INSTANCE(hadc->Instance), LL_ADC_PATH_INTERNAL_VBAT | tmp_config_internal_channel); + } + } + else if ((sConfig->Channel == ADC_CHANNEL_VREFINT) && ((tmp_config_internal_channel & LL_ADC_PATH_INTERNAL_VREFINT) == 0UL)) + { + if (ADC_VREFINT_INSTANCE(hadc)) + { + LL_ADC_SetCommonPathInternalCh(__LL_ADC_COMMON_INSTANCE(hadc->Instance), LL_ADC_PATH_INTERNAL_VREFINT | tmp_config_internal_channel); + } + } + else + { + /* nothing to do */ + } + } + /* If the requested internal measurement path has already been */ + /* enabled and other ADC of the common group are enabled, internal */ + /* measurement paths cannot be enabled. */ + else + { + /* Update ADC state machine to error */ + SET_BIT(hadc->State, HAL_ADC_STATE_ERROR_CONFIG); + + tmp_hal_status = HAL_ERROR; + } + } + } + } + + /* If a conversion is on going on regular group, no update on regular */ + /* channel could be done on neither of the channel configuration structure */ + /* parameters. */ + else + { + /* Update ADC state machine to error */ + SET_BIT(hadc->State, HAL_ADC_STATE_ERROR_CONFIG); + + tmp_hal_status = HAL_ERROR; + } + + /* Process unlocked */ + __HAL_UNLOCK(hadc); + + /* Return function status */ + return tmp_hal_status; +} + +/** + * @brief Configure the analog watchdog. + * @note Possibility to update parameters on the fly: + * This function initializes the selected analog watchdog, successive + * calls to this function can be used to reconfigure some parameters + * of structure "ADC_AnalogWDGConfTypeDef" on the fly, without resetting + * the ADC. + * The setting of these parameters is conditioned to ADC state. + * For parameters constraints, see comments of structure + * "ADC_AnalogWDGConfTypeDef". + * @note On this STM32 serie, analog watchdog thresholds cannot be modified + * while ADC conversion is on going. + * @param hadc ADC handle + * @param AnalogWDGConfig Structure of ADC analog watchdog configuration + * @retval HAL status + */ +HAL_StatusTypeDef HAL_ADC_AnalogWDGConfig(ADC_HandleTypeDef *hadc, ADC_AnalogWDGConfTypeDef *AnalogWDGConfig) +{ + HAL_StatusTypeDef tmp_hal_status = HAL_OK; + uint32_t tmpAWDHighThresholdShifted; + uint32_t tmpAWDLowThresholdShifted; + uint32_t tmp_adc_is_conversion_on_going_regular; + uint32_t tmp_adc_is_conversion_on_going_injected; + + /* Check the parameters */ + assert_param(IS_ADC_ALL_INSTANCE(hadc->Instance)); + assert_param(IS_ADC_ANALOG_WATCHDOG_NUMBER(AnalogWDGConfig->WatchdogNumber)); + assert_param(IS_ADC_ANALOG_WATCHDOG_MODE(AnalogWDGConfig->WatchdogMode)); + assert_param(IS_FUNCTIONAL_STATE(AnalogWDGConfig->ITMode)); + + if ((AnalogWDGConfig->WatchdogMode == ADC_ANALOGWATCHDOG_SINGLE_REG) || + (AnalogWDGConfig->WatchdogMode == ADC_ANALOGWATCHDOG_SINGLE_INJEC) || + (AnalogWDGConfig->WatchdogMode == ADC_ANALOGWATCHDOG_SINGLE_REGINJEC)) + { + assert_param(IS_ADC_CHANNEL(AnalogWDGConfig->Channel)); + } + + /* Verify thresholds range */ + if (hadc->Init.OversamplingMode == ENABLE) + { + /* Case of oversampling enabled: thresholds are compared to oversampling + intermediate computation (after ratio, before shift application) */ + assert_param(IS_ADC_RANGE(ADC_GET_RESOLUTION(hadc), AnalogWDGConfig->HighThreshold / (hadc->Init.Oversampling.Ratio + 1UL))); + assert_param(IS_ADC_RANGE(ADC_GET_RESOLUTION(hadc), AnalogWDGConfig->LowThreshold / (hadc->Init.Oversampling.Ratio + 1UL))); + } + else + { + /* Verify if thresholds are within the selected ADC resolution */ + assert_param(IS_ADC_RANGE(ADC_GET_RESOLUTION(hadc), AnalogWDGConfig->HighThreshold)); + assert_param(IS_ADC_RANGE(ADC_GET_RESOLUTION(hadc), AnalogWDGConfig->LowThreshold)); + } + + /* Process locked */ + __HAL_LOCK(hadc); + + /* Parameters update conditioned to ADC state: */ + /* Parameters that can be updated when ADC is disabled or enabled without */ + /* conversion on going on ADC groups regular and injected: */ + /* - Analog watchdog channels */ + /* - Analog watchdog thresholds */ + tmp_adc_is_conversion_on_going_regular = LL_ADC_REG_IsConversionOngoing(hadc->Instance); + tmp_adc_is_conversion_on_going_injected = LL_ADC_INJ_IsConversionOngoing(hadc->Instance); + if ((tmp_adc_is_conversion_on_going_regular == 0UL) + && (tmp_adc_is_conversion_on_going_injected == 0UL) + ) + { + /* Analog watchdog configuration */ + if (AnalogWDGConfig->WatchdogNumber == ADC_ANALOGWATCHDOG_1) + { + /* Configuration of analog watchdog: */ + /* - Set the analog watchdog enable mode: one or overall group of */ + /* channels, on groups regular and-or injected. */ + switch (AnalogWDGConfig->WatchdogMode) + { + case ADC_ANALOGWATCHDOG_SINGLE_REG: + LL_ADC_SetAnalogWDMonitChannels(hadc->Instance, LL_ADC_AWD1, __LL_ADC_ANALOGWD_CHANNEL_GROUP(AnalogWDGConfig->Channel, + LL_ADC_GROUP_REGULAR)); + break; + + case ADC_ANALOGWATCHDOG_SINGLE_INJEC: + LL_ADC_SetAnalogWDMonitChannels(hadc->Instance, LL_ADC_AWD1, __LL_ADC_ANALOGWD_CHANNEL_GROUP(AnalogWDGConfig->Channel, + LL_ADC_GROUP_INJECTED)); + break; + + case ADC_ANALOGWATCHDOG_SINGLE_REGINJEC: + LL_ADC_SetAnalogWDMonitChannels(hadc->Instance, LL_ADC_AWD1, __LL_ADC_ANALOGWD_CHANNEL_GROUP(AnalogWDGConfig->Channel, + LL_ADC_GROUP_REGULAR_INJECTED)); + break; + + case ADC_ANALOGWATCHDOG_ALL_REG: + LL_ADC_SetAnalogWDMonitChannels(hadc->Instance, LL_ADC_AWD1, LL_ADC_AWD_ALL_CHANNELS_REG); + break; + + case ADC_ANALOGWATCHDOG_ALL_INJEC: + LL_ADC_SetAnalogWDMonitChannels(hadc->Instance, LL_ADC_AWD1, LL_ADC_AWD_ALL_CHANNELS_INJ); + break; + + case ADC_ANALOGWATCHDOG_ALL_REGINJEC: + LL_ADC_SetAnalogWDMonitChannels(hadc->Instance, LL_ADC_AWD1, LL_ADC_AWD_ALL_CHANNELS_REG_INJ); + break; + + default: /* ADC_ANALOGWATCHDOG_NONE */ + LL_ADC_SetAnalogWDMonitChannels(hadc->Instance, LL_ADC_AWD1, LL_ADC_AWD_DISABLE); + break; + } + + /* Shift the offset in function of the selected ADC resolution: */ + /* Thresholds have to be left-aligned on bit 11, the LSB (right bits) */ + /* are set to 0 */ + tmpAWDHighThresholdShifted = ADC_AWD1THRESHOLD_SHIFT_RESOLUTION(hadc, AnalogWDGConfig->HighThreshold); + tmpAWDLowThresholdShifted = ADC_AWD1THRESHOLD_SHIFT_RESOLUTION(hadc, AnalogWDGConfig->LowThreshold); + + /* Set the high and low thresholds */ + MODIFY_REG(hadc->Instance->LTR1, ADC_LTR_LT , tmpAWDLowThresholdShifted); + MODIFY_REG(hadc->Instance->HTR1, ADC_HTR_HT , tmpAWDHighThresholdShifted); + + /* Update state, clear previous result related to AWD1 */ + CLEAR_BIT(hadc->State, HAL_ADC_STATE_AWD1); + + /* Clear flag ADC analog watchdog */ + /* Note: Flag cleared Clear the ADC Analog watchdog flag to be ready */ + /* to use for HAL_ADC_IRQHandler() or HAL_ADC_PollForEvent() */ + /* (in case left enabled by previous ADC operations). */ + LL_ADC_ClearFlag_AWD1(hadc->Instance); + + /* Configure ADC analog watchdog interrupt */ + if (AnalogWDGConfig->ITMode == ENABLE) + { + LL_ADC_EnableIT_AWD1(hadc->Instance); + } + else + { + LL_ADC_DisableIT_AWD1(hadc->Instance); + } + } + /* Case of ADC_ANALOGWATCHDOG_2 or ADC_ANALOGWATCHDOG_3 */ + else + { + switch (AnalogWDGConfig->WatchdogMode) + { + case ADC_ANALOGWATCHDOG_SINGLE_REG: + case ADC_ANALOGWATCHDOG_SINGLE_INJEC: + case ADC_ANALOGWATCHDOG_SINGLE_REGINJEC: + /* Update AWD by bitfield to keep the possibility to monitor */ + /* several channels by successive calls of this function. */ + if (AnalogWDGConfig->WatchdogNumber == ADC_ANALOGWATCHDOG_2) + { + SET_BIT(hadc->Instance->AWD2CR, (1UL << (__LL_ADC_CHANNEL_TO_DECIMAL_NB(AnalogWDGConfig->Channel) & 0x1FUL))); + } + else + { + SET_BIT(hadc->Instance->AWD3CR, (1UL << (__LL_ADC_CHANNEL_TO_DECIMAL_NB(AnalogWDGConfig->Channel) & 0x1FUL))); + } + break; + + case ADC_ANALOGWATCHDOG_ALL_REG: + case ADC_ANALOGWATCHDOG_ALL_INJEC: + case ADC_ANALOGWATCHDOG_ALL_REGINJEC: + /* Update AWD by bitfield to keep the possibility to monitor */ + /* several channels by successive calls of this function. */ + if (AnalogWDGConfig->WatchdogNumber == ADC_ANALOGWATCHDOG_2) + { + SET_BIT(hadc->Instance->AWD2CR, (1UL << (__LL_ADC_CHANNEL_TO_DECIMAL_NB(AnalogWDGConfig->Channel) & 0x1FUL))); + } + else + { + SET_BIT(hadc->Instance->AWD3CR, (1UL << (__LL_ADC_CHANNEL_TO_DECIMAL_NB(AnalogWDGConfig->Channel) & 0x1FUL))); + } + break; + + default: /* ADC_ANALOGWATCHDOG_NONE */ + LL_ADC_SetAnalogWDMonitChannels(hadc->Instance, AnalogWDGConfig->WatchdogNumber, LL_ADC_AWD_DISABLE); + break; + } + + /* Shift the thresholds in function of the selected ADC resolution */ + /* have to be left-aligned on bit 15, the LSB (right bits) are set to 0 */ + tmpAWDHighThresholdShifted = ADC_AWD23THRESHOLD_SHIFT_RESOLUTION(hadc, AnalogWDGConfig->HighThreshold); + tmpAWDLowThresholdShifted = ADC_AWD23THRESHOLD_SHIFT_RESOLUTION(hadc, AnalogWDGConfig->LowThreshold); + + if (AnalogWDGConfig->WatchdogNumber == ADC_ANALOGWATCHDOG_2) + { + /* Set ADC analog watchdog thresholds value of both thresholds high and low */ + MODIFY_REG(hadc->Instance->LTR2, ADC_LTR_LT , tmpAWDLowThresholdShifted); + MODIFY_REG(hadc->Instance->HTR2, ADC_HTR_HT , tmpAWDHighThresholdShifted); + } + else + { + /* Set ADC analog watchdog thresholds value of both thresholds high and low */ + MODIFY_REG(hadc->Instance->LTR3, ADC_LTR_LT , tmpAWDLowThresholdShifted); + MODIFY_REG(hadc->Instance->HTR3, ADC_HTR_HT , tmpAWDHighThresholdShifted); + } + + if (AnalogWDGConfig->WatchdogNumber == ADC_ANALOGWATCHDOG_2) + { + /* Update state, clear previous result related to AWD2 */ + CLEAR_BIT(hadc->State, HAL_ADC_STATE_AWD2); + + /* Clear flag ADC analog watchdog */ + /* Note: Flag cleared Clear the ADC Analog watchdog flag to be ready */ + /* to use for HAL_ADC_IRQHandler() or HAL_ADC_PollForEvent() */ + /* (in case left enabled by previous ADC operations). */ + LL_ADC_ClearFlag_AWD2(hadc->Instance); + + /* Configure ADC analog watchdog interrupt */ + if (AnalogWDGConfig->ITMode == ENABLE) + { + LL_ADC_EnableIT_AWD2(hadc->Instance); + } + else + { + LL_ADC_DisableIT_AWD2(hadc->Instance); + } + } + /* (AnalogWDGConfig->WatchdogNumber == ADC_ANALOGWATCHDOG_3) */ + else + { + /* Update state, clear previous result related to AWD3 */ + CLEAR_BIT(hadc->State, HAL_ADC_STATE_AWD3); + + /* Clear flag ADC analog watchdog */ + /* Note: Flag cleared Clear the ADC Analog watchdog flag to be ready */ + /* to use for HAL_ADC_IRQHandler() or HAL_ADC_PollForEvent() */ + /* (in case left enabled by previous ADC operations). */ + LL_ADC_ClearFlag_AWD3(hadc->Instance); + + /* Configure ADC analog watchdog interrupt */ + if (AnalogWDGConfig->ITMode == ENABLE) + { + LL_ADC_EnableIT_AWD3(hadc->Instance); + } + else + { + LL_ADC_DisableIT_AWD3(hadc->Instance); + } + } + } + + } + /* If a conversion is on going on ADC group regular or injected, no update */ + /* could be done on neither of the AWD configuration structure parameters. */ + else + { + /* Update ADC state machine to error */ + SET_BIT(hadc->State, HAL_ADC_STATE_ERROR_CONFIG); + + tmp_hal_status = HAL_ERROR; + } + /* Process unlocked */ + __HAL_UNLOCK(hadc); + + /* Return function status */ + return tmp_hal_status; +} + + +/** + * @} + */ + +/** @defgroup ADC_Exported_Functions_Group4 Peripheral State functions + * @brief ADC Peripheral State functions + * +@verbatim + =============================================================================== + ##### Peripheral state and errors functions ##### + =============================================================================== + [..] + This subsection provides functions to get in run-time the status of the + peripheral. + (+) Check the ADC state + (+) Check the ADC error code + +@endverbatim + * @{ + */ + +/** + * @brief Return the ADC handle state. + * @note ADC state machine is managed by bitfields, ADC status must be + * compared with states bits. + * For example: + * " if ((HAL_ADC_GetState(hadc1) & HAL_ADC_STATE_REG_BUSY) != 0UL) " + * " if ((HAL_ADC_GetState(hadc1) & HAL_ADC_STATE_AWD1) != 0UL) " + * @param hadc ADC handle + * @retval ADC handle state (bitfield on 32 bits) + */ +uint32_t HAL_ADC_GetState(ADC_HandleTypeDef *hadc) +{ + /* Check the parameters */ + assert_param(IS_ADC_ALL_INSTANCE(hadc->Instance)); + + /* Return ADC handle state */ + return hadc->State; +} + +/** + * @brief Return the ADC error code. + * @param hadc ADC handle + * @retval ADC error code (bitfield on 32 bits) + */ +uint32_t HAL_ADC_GetError(ADC_HandleTypeDef *hadc) +{ + /* Check the parameters */ + assert_param(IS_ADC_ALL_INSTANCE(hadc->Instance)); + + return hadc->ErrorCode; +} + +/** + * @} + */ + +/** + * @} + */ + +/** @defgroup ADC_Private_Functions ADC Private Functions + * @{ + */ + +/** + * @brief Stop ADC conversion. + * @param hadc ADC handle + * @param ConversionGroup ADC group regular and/or injected. + * This parameter can be one of the following values: + * @arg @ref ADC_REGULAR_GROUP ADC regular conversion type. + * @arg @ref ADC_INJECTED_GROUP ADC injected conversion type. + * @arg @ref ADC_REGULAR_INJECTED_GROUP ADC regular and injected conversion type. + * @retval HAL status. + */ +HAL_StatusTypeDef ADC_ConversionStop(ADC_HandleTypeDef *hadc, uint32_t ConversionGroup) +{ + uint32_t tickstart; + uint32_t Conversion_Timeout_CPU_cycles = 0UL; + uint32_t conversion_group_reassigned = ConversionGroup; + uint32_t tmp_ADC_CR_ADSTART_JADSTART; + uint32_t tmp_adc_is_conversion_on_going_regular; + uint32_t tmp_adc_is_conversion_on_going_injected; + + /* Check the parameters */ + assert_param(IS_ADC_ALL_INSTANCE(hadc->Instance)); + assert_param(IS_ADC_CONVERSION_GROUP(ConversionGroup)); + + /* Verification if ADC is not already stopped (on regular and injected */ + /* groups) to bypass this function if not needed. */ + tmp_adc_is_conversion_on_going_regular = LL_ADC_REG_IsConversionOngoing(hadc->Instance); + tmp_adc_is_conversion_on_going_injected = LL_ADC_INJ_IsConversionOngoing(hadc->Instance); + if ((tmp_adc_is_conversion_on_going_regular != 0UL) + || (tmp_adc_is_conversion_on_going_injected != 0UL) + ) + { + /* Particular case of continuous auto-injection mode combined with */ + /* auto-delay mode. */ + /* In auto-injection mode, regular group stop ADC_CR_ADSTP is used (not */ + /* injected group stop ADC_CR_JADSTP). */ + /* Procedure to be followed: Wait until JEOS=1, clear JEOS, set ADSTP=1 */ + /* (see reference manual). */ + if (((hadc->Instance->CFGR & ADC_CFGR_JAUTO) != 0UL) + && (hadc->Init.ContinuousConvMode == ENABLE) + && (hadc->Init.LowPowerAutoWait == ENABLE) + ) + { + /* Use stop of regular group */ + conversion_group_reassigned = ADC_REGULAR_GROUP; + + /* Wait until JEOS=1 (maximum Timeout: 4 injected conversions) */ + while (__HAL_ADC_GET_FLAG(hadc, ADC_FLAG_JEOS) == 0UL) + { + if (Conversion_Timeout_CPU_cycles >= (ADC_CONVERSION_TIME_MAX_CPU_CYCLES * 4UL)) + { + /* Update ADC state machine to error */ + SET_BIT(hadc->State, HAL_ADC_STATE_ERROR_INTERNAL); + + /* Set ADC error code to ADC peripheral internal error */ + SET_BIT(hadc->ErrorCode, HAL_ADC_ERROR_INTERNAL); + + return HAL_ERROR; + } + Conversion_Timeout_CPU_cycles ++; + } + + /* Clear JEOS */ + __HAL_ADC_CLEAR_FLAG(hadc, ADC_FLAG_JEOS); + } + + /* Stop potential conversion on going on ADC group regular */ + if (conversion_group_reassigned != ADC_INJECTED_GROUP) + { + /* Software is allowed to set ADSTP only when ADSTART=1 and ADDIS=0 */ + if (LL_ADC_REG_IsConversionOngoing(hadc->Instance) != 0UL) + { + if (LL_ADC_IsDisableOngoing(hadc->Instance) == 0UL) + { + /* Stop ADC group regular conversion */ + LL_ADC_REG_StopConversion(hadc->Instance); + } + } + } + + /* Stop potential conversion on going on ADC group injected */ + if (conversion_group_reassigned != ADC_REGULAR_GROUP) + { + /* Software is allowed to set JADSTP only when JADSTART=1 and ADDIS=0 */ + if (LL_ADC_INJ_IsConversionOngoing(hadc->Instance) != 0UL) + { + if (LL_ADC_IsDisableOngoing(hadc->Instance) == 0UL) + { + /* Stop ADC group injected conversion */ + LL_ADC_INJ_StopConversion(hadc->Instance); + } + } + } + + /* Selection of start and stop bits with respect to the regular or injected group */ + switch (conversion_group_reassigned) + { + case ADC_REGULAR_INJECTED_GROUP: + tmp_ADC_CR_ADSTART_JADSTART = (ADC_CR_ADSTART | ADC_CR_JADSTART); + break; + case ADC_INJECTED_GROUP: + tmp_ADC_CR_ADSTART_JADSTART = ADC_CR_JADSTART; + break; + /* Case ADC_REGULAR_GROUP only*/ + default: + tmp_ADC_CR_ADSTART_JADSTART = ADC_CR_ADSTART; + break; + } + + /* Wait for conversion effectively stopped */ + tickstart = HAL_GetTick(); + + while ((hadc->Instance->CR & tmp_ADC_CR_ADSTART_JADSTART) != 0UL) + { + if ((HAL_GetTick() - tickstart) > ADC_STOP_CONVERSION_TIMEOUT) + { + /* Update ADC state machine to error */ + SET_BIT(hadc->State, HAL_ADC_STATE_ERROR_INTERNAL); + + /* Set ADC error code to ADC peripheral internal error */ + SET_BIT(hadc->ErrorCode, HAL_ADC_ERROR_INTERNAL); + + return HAL_ERROR; + } + } + + } + + /* Return HAL status */ + return HAL_OK; +} + + + +/** + * @brief Enable the selected ADC. + * @note Prerequisite condition to use this function: ADC must be disabled + * and voltage regulator must be enabled (done into HAL_ADC_Init()). + * @param hadc ADC handle + * @retval HAL status. + */ +HAL_StatusTypeDef ADC_Enable(ADC_HandleTypeDef *hadc) +{ + uint32_t tickstart; + + /* ADC enable and wait for ADC ready (in case of ADC is disabled or */ + /* enabling phase not yet completed: flag ADC ready not yet set). */ + /* Timeout implemented to not be stuck if ADC cannot be enabled (possible */ + /* causes: ADC clock not running, ...). */ + if (LL_ADC_IsEnabled(hadc->Instance) == 0UL) + { + /* Check if conditions to enable the ADC are fulfilled */ + if ((hadc->Instance->CR & (ADC_CR_ADCAL | ADC_CR_JADSTP | ADC_CR_ADSTP | ADC_CR_JADSTART | ADC_CR_ADSTART | ADC_CR_ADDIS | ADC_CR_ADEN)) != 0UL) + { + /* Update ADC state machine to error */ + SET_BIT(hadc->State, HAL_ADC_STATE_ERROR_INTERNAL); + + /* Set ADC error code to ADC peripheral internal error */ + SET_BIT(hadc->ErrorCode, HAL_ADC_ERROR_INTERNAL); + + return HAL_ERROR; + } + + /* Enable the ADC peripheral */ + LL_ADC_Enable(hadc->Instance); + + /* Wait for ADC effectively enabled */ + tickstart = HAL_GetTick(); + + /* Poll for ADC ready flag raised except case of multimode enabled + and ADC slave selected. */ + uint32_t tmp_multimode_config = LL_ADC_GetMultimode(__LL_ADC_COMMON_INSTANCE(hadc->Instance)); + if ( (__LL_ADC_MULTI_INSTANCE_MASTER(hadc->Instance) == hadc->Instance) + || (tmp_multimode_config == LL_ADC_MULTI_INDEPENDENT) + ) + { + while(__HAL_ADC_GET_FLAG(hadc, ADC_FLAG_RDY) == 0UL) + { + /* If ADEN bit is set less than 4 ADC clock cycles after the ADCAL bit + has been cleared (after a calibration), ADEN bit is reset by the + calibration logic. + The workaround is to continue setting ADEN until ADRDY is becomes 1. + Additionally, ADC_ENABLE_TIMEOUT is defined to encompass this + 4 ADC clock cycle duration */ + /* Note: Test of ADC enabled required due to hardware constraint to */ + /* not enable ADC if already enabled. */ + if(LL_ADC_IsEnabled(hadc->Instance) == 0UL) + { + LL_ADC_Enable(hadc->Instance); + } + + if((HAL_GetTick() - tickstart) > ADC_ENABLE_TIMEOUT) + { + /* Update ADC state machine to error */ + SET_BIT(hadc->State, HAL_ADC_STATE_ERROR_INTERNAL); + + /* Set ADC error code to ADC peripheral internal error */ + SET_BIT(hadc->ErrorCode, HAL_ADC_ERROR_INTERNAL); + + return HAL_ERROR; + } + } + } + } + + /* Return HAL status */ + return HAL_OK; +} + +/** + * @brief Disable the selected ADC. + * @note Prerequisite condition to use this function: ADC conversions must be + * stopped. + * @param hadc ADC handle + * @retval HAL status. + */ +HAL_StatusTypeDef ADC_Disable(ADC_HandleTypeDef *hadc) +{ + uint32_t tickstart; + const uint32_t tmp_adc_is_disable_on_going = LL_ADC_IsDisableOngoing(hadc->Instance); + + /* Verification if ADC is not already disabled: */ + /* Note: forbidden to disable ADC (set bit ADC_CR_ADDIS) if ADC is already */ + /* disabled. */ + if ((LL_ADC_IsEnabled(hadc->Instance) != 0UL) + && (tmp_adc_is_disable_on_going == 0UL) + ) + { + /* Check if conditions to disable the ADC are fulfilled */ + if ((hadc->Instance->CR & (ADC_CR_JADSTART | ADC_CR_ADSTART | ADC_CR_ADEN)) == ADC_CR_ADEN) + { + /* Disable the ADC peripheral */ + LL_ADC_Disable(hadc->Instance); + __HAL_ADC_CLEAR_FLAG(hadc, (ADC_FLAG_EOSMP | ADC_FLAG_RDY)); + } + else + { + /* Update ADC state machine to error */ + SET_BIT(hadc->State, HAL_ADC_STATE_ERROR_INTERNAL); + + /* Set ADC error code to ADC peripheral internal error */ + SET_BIT(hadc->ErrorCode, HAL_ADC_ERROR_INTERNAL); + + return HAL_ERROR; + } + + /* Wait for ADC effectively disabled */ + /* Get tick count */ + tickstart = HAL_GetTick(); + + while ((hadc->Instance->CR & ADC_CR_ADEN) != 0UL) + { + if ((HAL_GetTick() - tickstart) > ADC_DISABLE_TIMEOUT) + { + /* Update ADC state machine to error */ + SET_BIT(hadc->State, HAL_ADC_STATE_ERROR_INTERNAL); + + /* Set ADC error code to ADC peripheral internal error */ + SET_BIT(hadc->ErrorCode, HAL_ADC_ERROR_INTERNAL); + + return HAL_ERROR; + } + } + } + + /* Return HAL status */ + return HAL_OK; +} + +/** + * @brief DMA transfer complete callback. + * @param hdma pointer to DMA handle. + * @retval None + */ +void ADC_DMAConvCplt(DMA_HandleTypeDef *hdma) +{ + /* Retrieve ADC handle corresponding to current DMA handle */ + ADC_HandleTypeDef *hadc = (ADC_HandleTypeDef *)((DMA_HandleTypeDef *)hdma)->Parent; + + /* Update state machine on conversion status if not in error state */ + if ((hadc->State & (HAL_ADC_STATE_ERROR_INTERNAL | HAL_ADC_STATE_ERROR_DMA)) == 0UL) + { + /* Set ADC state */ + SET_BIT(hadc->State, HAL_ADC_STATE_REG_EOC); + + /* Determine whether any further conversion upcoming on group regular */ + /* by external trigger, continuous mode or scan sequence on going */ + /* to disable interruption. */ + /* Is it the end of the regular sequence ? */ + if ((hadc->Instance->ISR & ADC_FLAG_EOS) != 0UL) + { + /* Are conversions software-triggered ? */ + if (LL_ADC_REG_IsTriggerSourceSWStart(hadc->Instance) != 0UL) + { + /* Is CONT bit set ? */ + if (READ_BIT(hadc->Instance->CFGR, ADC_CFGR_CONT) == 0UL) + { + /* CONT bit is not set, no more conversions expected */ + CLEAR_BIT(hadc->State, HAL_ADC_STATE_REG_BUSY); + if ((hadc->State & HAL_ADC_STATE_INJ_BUSY) == 0UL) + { + SET_BIT(hadc->State, HAL_ADC_STATE_READY); + } + } + } + } + else + { + /* DMA End of Transfer interrupt was triggered but conversions sequence + is not over. If DMACFG is set to 0, conversions are stopped. */ + if (READ_BIT(hadc->Instance->CFGR, ADC_CFGR_DMNGT) == 0UL) + { + /* DMACFG bit is not set, conversions are stopped. */ + CLEAR_BIT(hadc->State, HAL_ADC_STATE_REG_BUSY); + if ((hadc->State & HAL_ADC_STATE_INJ_BUSY) == 0UL) + { + SET_BIT(hadc->State, HAL_ADC_STATE_READY); + } + } + } + + /* Conversion complete callback */ +#if (USE_HAL_ADC_REGISTER_CALLBACKS == 1) + hadc->ConvCpltCallback(hadc); +#else + HAL_ADC_ConvCpltCallback(hadc); +#endif /* USE_HAL_ADC_REGISTER_CALLBACKS */ + } + else /* DMA and-or internal error occurred */ + { + if ((hadc->State & HAL_ADC_STATE_ERROR_INTERNAL) != 0UL) + { + /* Call HAL ADC Error Callback function */ +#if (USE_HAL_ADC_REGISTER_CALLBACKS == 1) + hadc->ErrorCallback(hadc); +#else + HAL_ADC_ErrorCallback(hadc); +#endif /* USE_HAL_ADC_REGISTER_CALLBACKS */ + } + else + { + /* Call ADC DMA error callback */ + hadc->DMA_Handle->XferErrorCallback(hdma); + } + } +} + +/** + * @brief DMA half transfer complete callback. + * @param hdma pointer to DMA handle. + * @retval None + */ +void ADC_DMAHalfConvCplt(DMA_HandleTypeDef *hdma) +{ + /* Retrieve ADC handle corresponding to current DMA handle */ + ADC_HandleTypeDef *hadc = (ADC_HandleTypeDef *)((DMA_HandleTypeDef *)hdma)->Parent; + + /* Half conversion callback */ +#if (USE_HAL_ADC_REGISTER_CALLBACKS == 1) + hadc->ConvHalfCpltCallback(hadc); +#else + HAL_ADC_ConvHalfCpltCallback(hadc); +#endif /* USE_HAL_ADC_REGISTER_CALLBACKS */ +} + +/** + * @brief DMA error callback. + * @param hdma pointer to DMA handle. + * @retval None + */ +void ADC_DMAError(DMA_HandleTypeDef *hdma) +{ + /* Retrieve ADC handle corresponding to current DMA handle */ + ADC_HandleTypeDef *hadc = (ADC_HandleTypeDef *)((DMA_HandleTypeDef *)hdma)->Parent; + + /* Set ADC state */ + SET_BIT(hadc->State, HAL_ADC_STATE_ERROR_DMA); + + /* Set ADC error code to DMA error */ + SET_BIT(hadc->ErrorCode, HAL_ADC_ERROR_DMA); + + /* Error callback */ +#if (USE_HAL_ADC_REGISTER_CALLBACKS == 1) + hadc->ErrorCallback(hadc); +#else + HAL_ADC_ErrorCallback(hadc); +#endif /* USE_HAL_ADC_REGISTER_CALLBACKS */ +} + +/** + * @brief Configure boost mode of selected ADC. + * @note Prerequisite condition to use this function: ADC conversions must be + * stopped. + * @param hadc ADC handle + * @retval None. + */ +void ADC_ConfigureBoostMode(ADC_HandleTypeDef* hadc) +{ + uint32_t freq; + if(ADC_IS_SYNCHRONOUS_CLOCK_MODE(hadc)) + { + freq = HAL_RCC_GetHCLKFreq(); + switch(hadc->Init.ClockPrescaler) + { + case ADC_CLOCK_SYNC_PCLK_DIV1: + case ADC_CLOCK_SYNC_PCLK_DIV2: + freq /= (hadc->Init.ClockPrescaler >> ADC_CCR_CKMODE_Pos); + break; + case ADC_CLOCK_SYNC_PCLK_DIV4: + freq /= 4UL; + break; + default: + break; + } + } + else + { + freq = HAL_RCCEx_GetPeriphCLKFreq(RCC_PERIPHCLK_ADC); + switch(hadc->Init.ClockPrescaler) + { + case ADC_CLOCK_ASYNC_DIV2: + case ADC_CLOCK_ASYNC_DIV4: + case ADC_CLOCK_ASYNC_DIV6: + case ADC_CLOCK_ASYNC_DIV8: + case ADC_CLOCK_ASYNC_DIV10: + case ADC_CLOCK_ASYNC_DIV12: + freq /= ((hadc->Init.ClockPrescaler >> ADC_CCR_PRESC_Pos) << 1UL); + break; + case ADC_CLOCK_ASYNC_DIV16: + freq /= 16UL; + break; + case ADC_CLOCK_ASYNC_DIV32: + freq /= 32UL; + break; + case ADC_CLOCK_ASYNC_DIV64: + freq /= 64UL; + break; + case ADC_CLOCK_ASYNC_DIV128: + freq /= 128UL; + break; + case ADC_CLOCK_ASYNC_DIV256: + freq /= 256UL; + break; + default: + break; + } + } + +#if defined(ADC_VER_V5_3) + freq /= 2U; + + if (freq <= 6250000UL) + { + MODIFY_REG(hadc->Instance->CR, ADC_CR_BOOST, 0UL); + } + else if(freq <= 12500000UL) + { + MODIFY_REG(hadc->Instance->CR, ADC_CR_BOOST, ADC_CR_BOOST_0); + } + else if(freq <= 25000000UL) + { + MODIFY_REG(hadc->Instance->CR, ADC_CR_BOOST, ADC_CR_BOOST_1); + } + else /* if(freq > 25000000UL) */ + { + MODIFY_REG(hadc->Instance->CR, ADC_CR_BOOST, ADC_CR_BOOST_1 | ADC_CR_BOOST_0); + } +#else + if(HAL_GetREVID() <= REV_ID_Y) /* STM32H7 silicon Rev.Y */ + { + if(freq > 20000000UL) + { + SET_BIT(hadc->Instance->CR, ADC_CR_BOOST_0); + } + else + { + CLEAR_BIT(hadc->Instance->CR, ADC_CR_BOOST_0); + } + } + else /* STM32H7 silicon Rev.V */ + { + freq /= 2U; /* divider by 2 for Rev.V */ + + if (freq <= 6250000UL) + { + MODIFY_REG(hadc->Instance->CR, ADC_CR_BOOST, 0UL); + } + else if(freq <= 12500000UL) + { + MODIFY_REG(hadc->Instance->CR, ADC_CR_BOOST, ADC_CR_BOOST_0); + } + else if(freq <= 25000000UL) + { + MODIFY_REG(hadc->Instance->CR, ADC_CR_BOOST, ADC_CR_BOOST_1); + } + else /* if(freq > 25000000UL) */ + { + MODIFY_REG(hadc->Instance->CR, ADC_CR_BOOST, ADC_CR_BOOST_1 | ADC_CR_BOOST_0); + } + } +#endif /* ADC_VER_V5_3 */ +} + +/** + * @} + */ + +#endif /* HAL_ADC_MODULE_ENABLED */ +/** + * @} + */ + +/** + * @} + */ + +/************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/ diff --git a/source/hic_hal/stm32/stm32h743ii/STM32H7xx_HAL_Driver/Src/stm32h7xx_hal_adc_ex.c b/source/hic_hal/stm32/stm32h743ii/STM32H7xx_HAL_Driver/Src/stm32h7xx_hal_adc_ex.c new file mode 100644 index 000000000..495b92a40 --- /dev/null +++ b/source/hic_hal/stm32/stm32h743ii/STM32H7xx_HAL_Driver/Src/stm32h7xx_hal_adc_ex.c @@ -0,0 +1,2492 @@ +/** + ****************************************************************************** + * @file stm32h7xx_hal_adc_ex.c + * @author MCD Application Team + * @brief This file provides firmware functions to manage the following + * functionalities of the Analog to Digital Convertor (ADC) + * peripheral: + * + Operation functions + * ++ Start, stop, get result of conversions of ADC group injected, + * using 2 possible modes: polling, interruption. + * ++ Calibration + * +++ ADC automatic self-calibration + * +++ Calibration factors get or set + * ++ Multimode feature when available + * + Control functions + * ++ Channels configuration on ADC group injected + * + State functions + * ++ ADC group injected contexts queue management + * Other functions (generic functions) are available in file + * "stm32h7xx_hal_adc.c". + * + @verbatim + [..] + (@) Sections "ADC peripheral features" and "How to use this driver" are + available in file of generic functions "stm32h7xx_hal_adc.c". + [..] + @endverbatim + ****************************************************************************** + * @attention + * + *

© Copyright (c) 2017 STMicroelectronics. + * All rights reserved.

+ * + * This software component is licensed by ST under BSD 3-Clause license, + * the "License"; You may not use this file except in compliance with the + * License. You may obtain a copy of the License at: + * opensource.org/licenses/BSD-3-Clause + * + ****************************************************************************** + */ + +/* Includes ------------------------------------------------------------------*/ +#include "stm32h7xx_hal.h" + +/** @addtogroup STM32H7xx_HAL_Driver + * @{ + */ + +/** @defgroup ADCEx ADCEx + * @brief ADC Extended HAL module driver + * @{ + */ + +#ifdef HAL_ADC_MODULE_ENABLED + +/* Private typedef -----------------------------------------------------------*/ +/* Private define ------------------------------------------------------------*/ + +/** @defgroup ADCEx_Private_Constants ADC Extended Private Constants + * @{ + */ + +#define ADC_JSQR_FIELDS ((ADC_JSQR_JL | ADC_JSQR_JEXTSEL | ADC_JSQR_JEXTEN |\ + ADC_JSQR_JSQ1 | ADC_JSQR_JSQ2 |\ + ADC_JSQR_JSQ3 | ADC_JSQR_JSQ4 )) /*!< ADC_JSQR fields of parameters that can be updated anytime + once the ADC is enabled */ + +/* Fixed timeout value for ADC calibration. */ +/* Fixed timeout value for ADC calibration. */ +/* Values defined to be higher than worst cases: low clock frequency, */ +/* maximum prescalers. */ +/* Ex of profile low frequency : f_ADC at 0.125 Mhz (minimum value */ +/* according to Data sheet), calibration_time MAX = 165010 / f_ADC */ +/* 165010 / 125000 = 1.32s */ +/* At maximum CPU speed (480 MHz), this means */ +/* 1.32 * 480 MHz = 633600000 CPU cycles */ +#define ADC_CALIBRATION_TIMEOUT (633600000U) /*!< ADC calibration time-out value */ + + +/** + * @} + */ + +/* Private macro -------------------------------------------------------------*/ +/* Private variables ---------------------------------------------------------*/ +/* Private function prototypes -----------------------------------------------*/ +/* Exported functions --------------------------------------------------------*/ + +/** @defgroup ADCEx_Exported_Functions ADC Extended Exported Functions + * @{ + */ + +/** @defgroup ADCEx_Exported_Functions_Group1 Extended Input and Output operation functions + * @brief Extended IO operation functions + * +@verbatim + =============================================================================== + ##### IO operation functions ##### + =============================================================================== + [..] This section provides functions allowing to: + + (+) Perform the ADC self-calibration for single or differential ending. + (+) Get calibration factors for single or differential ending. + (+) Set calibration factors for single or differential ending. + + (+) Start conversion of ADC group injected. + (+) Stop conversion of ADC group injected. + (+) Poll for conversion complete on ADC group injected. + (+) Get result of ADC group injected channel conversion. + (+) Start conversion of ADC group injected and enable interruptions. + (+) Stop conversion of ADC group injected and disable interruptions. + + (+) When multimode feature is available, start multimode and enable DMA transfer. + (+) Stop multimode and disable ADC DMA transfer. + (+) Get result of multimode conversion. + +@endverbatim + * @{ + */ + +/** + * @brief Perform an ADC automatic self-calibration + * Calibration prerequisite: ADC must be disabled (execute this + * function before HAL_ADC_Start() or after HAL_ADC_Stop() ). + * @param hadc ADC handle +* @param CalibrationMode Selection of calibration offset or + * linear calibration offset. + * @arg ADC_CALIB_OFFSET Channel in mode calibration offset + * @arg ADC_CALIB_OFFSET_LINEARITY Channel in mode linear calibration offset + * @param SingleDiff Selection of single-ended or differential input + * This parameter can be one of the following values: + * @arg @ref ADC_SINGLE_ENDED Channel in mode input single ended + * @arg @ref ADC_DIFFERENTIAL_ENDED Channel in mode input differential ended + * @retval HAL status + */ +HAL_StatusTypeDef HAL_ADCEx_Calibration_Start(ADC_HandleTypeDef *hadc, uint32_t CalibrationMode, uint32_t SingleDiff) +{ + HAL_StatusTypeDef tmp_hal_status; + __IO uint32_t wait_loop_index = 0UL; + + /* Check the parameters */ + assert_param(IS_ADC_ALL_INSTANCE(hadc->Instance)); + assert_param(IS_ADC_SINGLE_DIFFERENTIAL(SingleDiff)); + + /* Process locked */ + __HAL_LOCK(hadc); + + /* Calibration prerequisite: ADC must be disabled. */ + + /* Disable the ADC (if not already disabled) */ + tmp_hal_status = ADC_Disable(hadc); + + /* Check if ADC is effectively disabled */ + if (tmp_hal_status == HAL_OK) + { + /* Set ADC state */ + ADC_STATE_CLR_SET(hadc->State, + HAL_ADC_STATE_REG_BUSY | HAL_ADC_STATE_INJ_BUSY, + HAL_ADC_STATE_BUSY_INTERNAL); + + /* Start ADC calibration in mode single-ended or differential */ + LL_ADC_StartCalibration(hadc->Instance , CalibrationMode, SingleDiff ); + + /* Wait for calibration completion */ + while (LL_ADC_IsCalibrationOnGoing(hadc->Instance) != 0UL) + { + wait_loop_index++; + if (wait_loop_index >= ADC_CALIBRATION_TIMEOUT) + { + /* Update ADC state machine to error */ + ADC_STATE_CLR_SET(hadc->State, + HAL_ADC_STATE_BUSY_INTERNAL, + HAL_ADC_STATE_ERROR_INTERNAL); + + /* Process unlocked */ + __HAL_UNLOCK(hadc); + + return HAL_ERROR; + } + } + + /* Set ADC state */ + ADC_STATE_CLR_SET(hadc->State, + HAL_ADC_STATE_BUSY_INTERNAL, + HAL_ADC_STATE_READY); + } + else + { + SET_BIT(hadc->State, HAL_ADC_STATE_ERROR_INTERNAL); + + /* Note: No need to update variable "tmp_hal_status" here: already set */ + /* to state "HAL_ERROR" by function disabling the ADC. */ + } + + /* Process unlocked */ + __HAL_UNLOCK(hadc); + + /* Return function status */ + return tmp_hal_status; +} + +/** + * @brief Get the calibration factor. + * @param hadc ADC handle. + * @param SingleDiff This parameter can be only: + * @arg @ref ADC_SINGLE_ENDED Channel in mode input single ended + * @arg @ref ADC_DIFFERENTIAL_ENDED Channel in mode input differential ended + * @retval Calibration value. + */ +uint32_t HAL_ADCEx_Calibration_GetValue(ADC_HandleTypeDef *hadc, uint32_t SingleDiff) +{ + /* Check the parameters */ + assert_param(IS_ADC_ALL_INSTANCE(hadc->Instance)); + assert_param(IS_ADC_SINGLE_DIFFERENTIAL(SingleDiff)); + + /* Return the selected ADC calibration value */ + return LL_ADC_GetCalibrationOffsetFactor(hadc->Instance, SingleDiff); +} + +/** + * @brief Get the calibration factor from automatic conversion result + * @param hadc ADC handle + * @param LinearCalib_Buffer: Linear calibration factor + * @retval HAL state + */ +HAL_StatusTypeDef HAL_ADCEx_LinearCalibration_GetValue(ADC_HandleTypeDef* hadc, uint32_t* LinearCalib_Buffer) +{ + uint32_t cnt; + HAL_StatusTypeDef tmp_hal_status = HAL_OK; + uint32_t temp_REG_IsConversionOngoing = 0UL; + + /* Check the parameters */ + assert_param(IS_ADC_ALL_INSTANCE(hadc->Instance)); + + /* Enable the ADC ADEN = 1 to be able to read the linear calibration factor */ + if(LL_ADC_IsEnabled(hadc->Instance) == 0UL) + { + tmp_hal_status = ADC_Enable(hadc); + } + + if (tmp_hal_status == HAL_OK) + { + if(LL_ADC_REG_IsConversionOngoing(hadc->Instance) != 0UL) + { + LL_ADC_REG_StopConversion(hadc->Instance); + temp_REG_IsConversionOngoing = 1UL; + } + for(cnt = ADC_LINEAR_CALIB_REG_COUNT; cnt > 0UL; cnt--) + { + LinearCalib_Buffer[cnt-1U]=LL_ADC_GetCalibrationLinearFactor(hadc->Instance, ADC_CR_LINCALRDYW6 >> (ADC_LINEAR_CALIB_REG_COUNT-cnt)); + } + if(temp_REG_IsConversionOngoing != 0UL) + { + LL_ADC_REG_StartConversion(hadc->Instance); + } + } + + return tmp_hal_status; +} + +/** + * @brief Set the calibration factor to overwrite automatic conversion result. + * ADC must be enabled and no conversion is ongoing. + * @param hadc ADC handle + * @param SingleDiff This parameter can be only: + * @arg @ref ADC_SINGLE_ENDED Channel in mode input single ended + * @arg @ref ADC_DIFFERENTIAL_ENDED Channel in mode input differential ended + * @param CalibrationFactor Calibration factor (coded on 7 bits maximum) + * @retval HAL state + */ +HAL_StatusTypeDef HAL_ADCEx_Calibration_SetValue(ADC_HandleTypeDef *hadc, uint32_t SingleDiff, uint32_t CalibrationFactor) +{ + HAL_StatusTypeDef tmp_hal_status = HAL_OK; + uint32_t tmp_adc_is_conversion_on_going_regular; + uint32_t tmp_adc_is_conversion_on_going_injected; + + /* Check the parameters */ + assert_param(IS_ADC_ALL_INSTANCE(hadc->Instance)); + assert_param(IS_ADC_SINGLE_DIFFERENTIAL(SingleDiff)); + assert_param(IS_ADC_CALFACT(CalibrationFactor)); + + /* Process locked */ + __HAL_LOCK(hadc); + + /* Verification of hardware constraints before modifying the calibration */ + /* factors register: ADC must be enabled, no conversion on going. */ + tmp_adc_is_conversion_on_going_regular = LL_ADC_REG_IsConversionOngoing(hadc->Instance); + tmp_adc_is_conversion_on_going_injected = LL_ADC_INJ_IsConversionOngoing(hadc->Instance); + + if ((LL_ADC_IsEnabled(hadc->Instance) != 0UL) + && (tmp_adc_is_conversion_on_going_regular == 0UL) + && (tmp_adc_is_conversion_on_going_injected == 0UL) + ) + { + /* Set the selected ADC calibration value */ + LL_ADC_SetCalibrationOffsetFactor(hadc->Instance, SingleDiff, CalibrationFactor); + } + else + { + /* Update ADC state machine */ + SET_BIT(hadc->State, HAL_ADC_STATE_ERROR_CONFIG); + /* Update ADC error code */ + SET_BIT(hadc->ErrorCode, HAL_ADC_ERROR_INTERNAL); + + /* Update ADC state machine to error */ + tmp_hal_status = HAL_ERROR; + } + + /* Process unlocked */ + __HAL_UNLOCK(hadc); + + /* Return function status */ + return tmp_hal_status; +} + +/** + * @brief Set the linear calibration factor + * @param hadc ADC handle + * @param LinearCalib_Buffer: Linear calibration factor + * @retval HAL state + */ +HAL_StatusTypeDef HAL_ADCEx_LinearCalibration_SetValue(ADC_HandleTypeDef *hadc, uint32_t* LinearCalib_Buffer) +{ + uint32_t cnt; + __IO uint32_t wait_loop_index = 0; + uint32_t temp_REG_IsConversionOngoing = 0UL; + + /* Check the parameters */ + assert_param(IS_ADC_ALL_INSTANCE(hadc->Instance)); + + /* - Exit from deep-power-down mode and ADC voltage regulator enable */ + /* Exit deep power down mode if still in that state */ + if (HAL_IS_BIT_SET(hadc->Instance->CR, ADC_CR_DEEPPWD)) + { + /* Exit deep power down mode */ + CLEAR_BIT(hadc->Instance->CR, ADC_CR_DEEPPWD); + + /* System was in deep power down mode, calibration must + be relaunched or a previously saved calibration factor + re-applied once the ADC voltage regulator is enabled */ + } + + + if (HAL_IS_BIT_CLR(hadc->Instance->CR, ADC_CR_ADVREGEN)) + { + /* Enable ADC internal voltage regulator */ + SET_BIT(hadc->Instance->CR, ADC_CR_ADVREGEN); + /* Delay for ADC stabilization time */ + /* Wait loop initialization and execution */ + /* Note: Variable divided by 2 to compensate partially */ + /* CPU processing cycles. */ + wait_loop_index = (ADC_STAB_DELAY_US * (SystemCoreClock / (1000000UL * 2UL))); + while(wait_loop_index != 0UL) + { + wait_loop_index--; + } + } + + + /* Verification that ADC voltage regulator is correctly enabled, whether */ + /* or not ADC is coming from state reset (if any potential problem of */ + /* clocking, voltage regulator would not be enabled). */ + if (HAL_IS_BIT_CLR(hadc->Instance->CR, ADC_CR_ADVREGEN)) + { + /* Update ADC state machine to error */ + SET_BIT(hadc->State, HAL_ADC_STATE_ERROR_INTERNAL); + + /* Set ADC error code to ADC peripheral internal error */ + SET_BIT(hadc->ErrorCode, HAL_ADC_ERROR_INTERNAL); + + return HAL_ERROR; + } +/* Enable the ADC peripheral */ + if(LL_ADC_IsEnabled(hadc->Instance) == 0UL) /* Enable the ADC if it is disabled */ + { + if (ADC_Enable(hadc) != HAL_OK) + { + return HAL_ERROR; + } + else + { + for(cnt = ADC_LINEAR_CALIB_REG_COUNT; cnt > 0UL ; cnt--) + { + LL_ADC_SetCalibrationLinearFactor(hadc->Instance, ADC_CR_LINCALRDYW6 >> (ADC_LINEAR_CALIB_REG_COUNT-cnt), LinearCalib_Buffer[cnt-1U]); + } + (void)ADC_Disable(hadc); + } + }else /* ADC is already enabled, so no need to enable it but need to stop conversion */ + { + if(LL_ADC_REG_IsConversionOngoing(hadc->Instance) != 0UL) + { + LL_ADC_REG_StopConversion(hadc->Instance); + temp_REG_IsConversionOngoing = 1UL; + } + for(cnt = ADC_LINEAR_CALIB_REG_COUNT; cnt > 0UL ; cnt--) + { + LL_ADC_SetCalibrationLinearFactor(hadc->Instance, ADC_CR_LINCALRDYW6 >> (ADC_LINEAR_CALIB_REG_COUNT-cnt), LinearCalib_Buffer[cnt-1U]); + } + if(temp_REG_IsConversionOngoing != 0UL) + { + LL_ADC_REG_StartConversion(hadc->Instance); + } + } + return HAL_OK; +} + +/** + * @brief Load the calibration factor from engi bytes + * @param hadc ADC handle + * @retval HAL state + */ +HAL_StatusTypeDef HAL_ADCEx_LinearCalibration_FactorLoad(ADC_HandleTypeDef *hadc) +{ + HAL_StatusTypeDef tmp_hal_status = HAL_OK; + uint32_t cnt, FactorOffset; + uint32_t LinearCalib_Buffer[ADC_LINEAR_CALIB_REG_COUNT]; + + /* Linearity calibration is retrieved from engi bytes + read values from registers and put them to the CALFACT2 register */ + /* If needed linearity calibration can be done in runtime using + LL_ADC_GetCalibrationLinearFactor() */ + if(hadc->Instance == ADC1) + { + FactorOffset = 0UL; + }else if(hadc->Instance == ADC2) + { + FactorOffset = 8UL; + }else /*Case ADC3*/ + { + FactorOffset = 16UL; + } + + for (cnt = 0UL; cnt < ADC_LINEAR_CALIB_REG_COUNT; cnt++) + { + LinearCalib_Buffer[cnt] = *(uint32_t*)(ADC_LINEAR_CALIB_REG_1_ADDR + FactorOffset + cnt); + } + if (HAL_ADCEx_LinearCalibration_SetValue(hadc,(uint32_t*)LinearCalib_Buffer) != HAL_OK) + { + tmp_hal_status = HAL_ERROR; + } + + return tmp_hal_status; +} + +/** + * @brief Enable ADC, start conversion of injected group. + * @note Interruptions enabled in this function: None. + * @note Case of multimode enabled when multimode feature is available: + * HAL_ADCEx_InjectedStart() API must be called for ADC slave first, + * then for ADC master. + * For ADC slave, ADC is enabled only (conversion is not started). + * For ADC master, ADC is enabled and multimode conversion is started. + * @param hadc ADC handle. + * @retval HAL status + */ +HAL_StatusTypeDef HAL_ADCEx_InjectedStart(ADC_HandleTypeDef *hadc) +{ + HAL_StatusTypeDef tmp_hal_status; + uint32_t tmp_config_injected_queue; + uint32_t tmp_multimode_config = LL_ADC_GetMultimode(__LL_ADC_COMMON_INSTANCE(hadc->Instance)); + + /* Check the parameters */ + assert_param(IS_ADC_ALL_INSTANCE(hadc->Instance)); + + if (LL_ADC_INJ_IsConversionOngoing(hadc->Instance) != 0UL) + { + return HAL_BUSY; + } + else + { + /* In case of software trigger detection enabled, JQDIS must be set + (which can be done only if ADSTART and JADSTART are both cleared). + If JQDIS is not set at that point, returns an error + - since software trigger detection is disabled. User needs to + resort to HAL_ADCEx_DisableInjectedQueue() API to set JQDIS. + - or (if JQDIS is intentionally reset) since JEXTEN = 0 which means + the queue is empty */ + tmp_config_injected_queue = READ_BIT(hadc->Instance->CFGR, ADC_CFGR_JQDIS); + + if ((READ_BIT(hadc->Instance->JSQR, ADC_JSQR_JEXTEN) == 0UL) + && (tmp_config_injected_queue == 0UL) + ) + { + SET_BIT(hadc->State, HAL_ADC_STATE_ERROR_CONFIG); + return HAL_ERROR; + } + + /* Process locked */ + __HAL_LOCK(hadc); + + /* Enable the ADC peripheral */ + tmp_hal_status = ADC_Enable(hadc); + + /* Start conversion if ADC is effectively enabled */ + if (tmp_hal_status == HAL_OK) + { + /* Check if a regular conversion is ongoing */ + if ((hadc->State & HAL_ADC_STATE_REG_BUSY) != 0UL) + { + /* Reset ADC error code field related to injected conversions only */ + CLEAR_BIT(hadc->ErrorCode, HAL_ADC_ERROR_JQOVF); + } + else + { + /* Set ADC error code to none */ + ADC_CLEAR_ERRORCODE(hadc); + } + + /* Set ADC state */ + /* - Clear state bitfield related to injected group conversion results */ + /* - Set state bitfield related to injected operation */ + ADC_STATE_CLR_SET(hadc->State, + HAL_ADC_STATE_READY | HAL_ADC_STATE_INJ_EOC, + HAL_ADC_STATE_INJ_BUSY); + + /* Reset HAL_ADC_STATE_MULTIMODE_SLAVE bit + - if ADC instance is master or if multimode feature is not available + - if multimode setting is disabled (ADC instance slave in independent mode) */ + if ((__LL_ADC_MULTI_INSTANCE_MASTER(hadc->Instance) == hadc->Instance) + || (tmp_multimode_config == LL_ADC_MULTI_INDEPENDENT) + ) + { + CLEAR_BIT(hadc->State, HAL_ADC_STATE_MULTIMODE_SLAVE); + } + + /* Clear ADC group injected group conversion flag */ + /* (To ensure of no unknown state from potential previous ADC operations) */ + __HAL_ADC_CLEAR_FLAG(hadc, (ADC_FLAG_JEOC | ADC_FLAG_JEOS)); + + /* Process unlocked */ + /* Unlock before starting ADC conversions: in case of potential */ + /* interruption, to let the process to ADC IRQ Handler. */ + __HAL_UNLOCK(hadc); + + /* Enable conversion of injected group, if automatic injected conversion */ + /* is disabled. */ + /* If software start has been selected, conversion starts immediately. */ + /* If external trigger has been selected, conversion will start at next */ + /* trigger event. */ + /* Case of multimode enabled (when multimode feature is available): */ + /* if ADC is slave, */ + /* - ADC is enabled only (conversion is not started), */ + /* - if multimode only concerns regular conversion, ADC is enabled */ + /* and conversion is started. */ + /* If ADC is master or independent, */ + /* - ADC is enabled and conversion is started. */ + if ((__LL_ADC_MULTI_INSTANCE_MASTER(hadc->Instance) == hadc->Instance) + || (tmp_multimode_config == LL_ADC_MULTI_INDEPENDENT) + || (tmp_multimode_config == LL_ADC_MULTI_DUAL_REG_SIMULT) + || (tmp_multimode_config == LL_ADC_MULTI_DUAL_REG_INTERL) + ) + { + /* ADC instance is not a multimode slave instance with multimode injected conversions enabled */ + if (LL_ADC_INJ_GetTrigAuto(hadc->Instance) == LL_ADC_INJ_TRIG_INDEPENDENT) + { + LL_ADC_INJ_StartConversion(hadc->Instance); + } + } + else + { + /* ADC instance is not a multimode slave instance with multimode injected conversions enabled */ + SET_BIT(hadc->State, HAL_ADC_STATE_MULTIMODE_SLAVE); + } + + } + else + { + /* Process unlocked */ + __HAL_UNLOCK(hadc); + } + + /* Return function status */ + return tmp_hal_status; + } +} + +/** + * @brief Stop conversion of injected channels. Disable ADC peripheral if + * no regular conversion is on going. + * @note If ADC must be disabled and if conversion is on going on + * regular group, function HAL_ADC_Stop must be used to stop both + * injected and regular groups, and disable the ADC. + * @note If injected group mode auto-injection is enabled, + * function HAL_ADC_Stop must be used. + * @note In case of multimode enabled (when multimode feature is available), + * HAL_ADCEx_InjectedStop() must be called for ADC master first, then for ADC slave. + * For ADC master, conversion is stopped and ADC is disabled. + * For ADC slave, ADC is disabled only (conversion stop of ADC master + * has already stopped conversion of ADC slave). + * @param hadc ADC handle. + * @retval HAL status + */ +HAL_StatusTypeDef HAL_ADCEx_InjectedStop(ADC_HandleTypeDef *hadc) +{ + HAL_StatusTypeDef tmp_hal_status; + + /* Check the parameters */ + assert_param(IS_ADC_ALL_INSTANCE(hadc->Instance)); + + /* Process locked */ + __HAL_LOCK(hadc); + + /* 1. Stop potential conversion on going on injected group only. */ + tmp_hal_status = ADC_ConversionStop(hadc, ADC_INJECTED_GROUP); + + /* Disable ADC peripheral if injected conversions are effectively stopped */ + /* and if no conversion on regular group is on-going */ + if (tmp_hal_status == HAL_OK) + { + if (LL_ADC_REG_IsConversionOngoing(hadc->Instance) == 0UL) + { + /* 2. Disable the ADC peripheral */ + tmp_hal_status = ADC_Disable(hadc); + + /* Check if ADC is effectively disabled */ + if (tmp_hal_status == HAL_OK) + { + /* Set ADC state */ + ADC_STATE_CLR_SET(hadc->State, + HAL_ADC_STATE_REG_BUSY | HAL_ADC_STATE_INJ_BUSY, + HAL_ADC_STATE_READY); + } + } + /* Conversion on injected group is stopped, but ADC not disabled since */ + /* conversion on regular group is still running. */ + else + { + /* Set ADC state */ + CLEAR_BIT(hadc->State, HAL_ADC_STATE_INJ_BUSY); + } + } + + /* Process unlocked */ + __HAL_UNLOCK(hadc); + + /* Return function status */ + return tmp_hal_status; +} + +/** + * @brief Wait for injected group conversion to be completed. + * @param hadc ADC handle + * @param Timeout Timeout value in millisecond. + * @note Depending on hadc->Init.EOCSelection, JEOS or JEOC is + * checked and cleared depending on AUTDLY bit status. + * @retval HAL status + */ +HAL_StatusTypeDef HAL_ADCEx_InjectedPollForConversion(ADC_HandleTypeDef *hadc, uint32_t Timeout) +{ + uint32_t tickstart; + uint32_t tmp_Flag_End; + uint32_t tmp_adc_inj_is_trigger_source_sw_start; + uint32_t tmp_adc_reg_is_trigger_source_sw_start; + uint32_t tmp_cfgr; + const ADC_TypeDef *tmpADC_Master; + uint32_t tmp_multimode_config = LL_ADC_GetMultimode(__LL_ADC_COMMON_INSTANCE(hadc->Instance)); + + /* Check the parameters */ + assert_param(IS_ADC_ALL_INSTANCE(hadc->Instance)); + + /* If end of sequence selected */ + if (hadc->Init.EOCSelection == ADC_EOC_SEQ_CONV) + { + tmp_Flag_End = ADC_FLAG_JEOS; + } + else /* end of conversion selected */ + { + tmp_Flag_End = ADC_FLAG_JEOC; + } + + /* Get timeout */ + tickstart = HAL_GetTick(); + + /* Wait until End of Conversion or Sequence flag is raised */ + while ((hadc->Instance->ISR & tmp_Flag_End) == 0UL) + { + /* Check if timeout is disabled (set to infinite wait) */ + if (Timeout != HAL_MAX_DELAY) + { + if (((HAL_GetTick() - tickstart) > Timeout) || (Timeout == 0UL)) + { + /* Update ADC state machine to timeout */ + SET_BIT(hadc->State, HAL_ADC_STATE_TIMEOUT); + + /* Process unlocked */ + __HAL_UNLOCK(hadc); + + return HAL_TIMEOUT; + } + } + } + + /* Retrieve ADC configuration */ + tmp_adc_inj_is_trigger_source_sw_start = LL_ADC_INJ_IsTriggerSourceSWStart(hadc->Instance); + tmp_adc_reg_is_trigger_source_sw_start = LL_ADC_REG_IsTriggerSourceSWStart(hadc->Instance); + /* Get relevant register CFGR in ADC instance of ADC master or slave */ + /* in function of multimode state (for devices with multimode */ + /* available). */ + if ((__LL_ADC_MULTI_INSTANCE_MASTER(hadc->Instance) == hadc->Instance) + || (tmp_multimode_config == LL_ADC_MULTI_INDEPENDENT) + || (tmp_multimode_config == LL_ADC_MULTI_DUAL_REG_SIMULT) + || (tmp_multimode_config == LL_ADC_MULTI_DUAL_REG_INTERL) + ) + { + tmp_cfgr = READ_REG(hadc->Instance->CFGR); + } + else + { + tmpADC_Master = __LL_ADC_MULTI_INSTANCE_MASTER(hadc->Instance); + tmp_cfgr = READ_REG(tmpADC_Master->CFGR); + } + + /* Update ADC state machine */ + SET_BIT(hadc->State, HAL_ADC_STATE_INJ_EOC); + + /* Determine whether any further conversion upcoming on group injected */ + /* by external trigger or by automatic injected conversion */ + /* from group regular. */ + if ((tmp_adc_inj_is_trigger_source_sw_start != 0UL) || + ((READ_BIT(tmp_cfgr, ADC_CFGR_JAUTO) == 0UL) && + ((tmp_adc_reg_is_trigger_source_sw_start != 0UL) && + (READ_BIT(tmp_cfgr, ADC_CFGR_CONT) == 0UL)))) + { + /* Check whether end of sequence is reached */ + if (__HAL_ADC_GET_FLAG(hadc, ADC_FLAG_JEOS)) + { + /* Particular case if injected contexts queue is enabled: */ + /* when the last context has been fully processed, JSQR is reset */ + /* by the hardware. Even if no injected conversion is planned to come */ + /* (queue empty, triggers are ignored), it can start again */ + /* immediately after setting a new context (JADSTART is still set). */ + /* Therefore, state of HAL ADC injected group is kept to busy. */ + if (READ_BIT(tmp_cfgr, ADC_CFGR_JQM) == 0UL) + { + /* Set ADC state */ + CLEAR_BIT(hadc->State, HAL_ADC_STATE_INJ_BUSY); + + if ((hadc->State & HAL_ADC_STATE_REG_BUSY) == 0UL) + { + SET_BIT(hadc->State, HAL_ADC_STATE_READY); + } + } + } + } + + /* Clear polled flag */ + if (tmp_Flag_End == ADC_FLAG_JEOS) + { + /* Clear end of sequence JEOS flag of injected group if low power feature */ + /* "LowPowerAutoWait " is disabled, to not interfere with this feature. */ + /* For injected groups, no new conversion will start before JEOS is */ + /* cleared. */ + if (READ_BIT(tmp_cfgr, ADC_CFGR_AUTDLY) == 0UL) + { + __HAL_ADC_CLEAR_FLAG(hadc, (ADC_FLAG_JEOC | ADC_FLAG_JEOS)); + } + } + else + { + __HAL_ADC_CLEAR_FLAG(hadc, ADC_FLAG_JEOC); + } + + /* Return API HAL status */ + return HAL_OK; +} + +/** + * @brief Enable ADC, start conversion of injected group with interruption. + * @note Interruptions enabled in this function according to initialization + * setting : JEOC (end of conversion) or JEOS (end of sequence) + * @note Case of multimode enabled (when multimode feature is enabled): + * HAL_ADCEx_InjectedStart_IT() API must be called for ADC slave first, + * then for ADC master. + * For ADC slave, ADC is enabled only (conversion is not started). + * For ADC master, ADC is enabled and multimode conversion is started. + * @param hadc ADC handle. + * @retval HAL status. + */ +HAL_StatusTypeDef HAL_ADCEx_InjectedStart_IT(ADC_HandleTypeDef *hadc) +{ + HAL_StatusTypeDef tmp_hal_status; + uint32_t tmp_config_injected_queue; + uint32_t tmp_multimode_config = LL_ADC_GetMultimode(__LL_ADC_COMMON_INSTANCE(hadc->Instance)); + + /* Check the parameters */ + assert_param(IS_ADC_ALL_INSTANCE(hadc->Instance)); + + if (LL_ADC_INJ_IsConversionOngoing(hadc->Instance) != 0UL) + { + return HAL_BUSY; + } + else + { + /* In case of software trigger detection enabled, JQDIS must be set + (which can be done only if ADSTART and JADSTART are both cleared). + If JQDIS is not set at that point, returns an error + - since software trigger detection is disabled. User needs to + resort to HAL_ADCEx_DisableInjectedQueue() API to set JQDIS. + - or (if JQDIS is intentionally reset) since JEXTEN = 0 which means + the queue is empty */ + tmp_config_injected_queue = READ_BIT(hadc->Instance->CFGR, ADC_CFGR_JQDIS); + + if ((READ_BIT(hadc->Instance->JSQR, ADC_JSQR_JEXTEN) == 0UL) + && (tmp_config_injected_queue == 0UL) + ) + { + SET_BIT(hadc->State, HAL_ADC_STATE_ERROR_CONFIG); + return HAL_ERROR; + } + + /* Process locked */ + __HAL_LOCK(hadc); + + /* Enable the ADC peripheral */ + tmp_hal_status = ADC_Enable(hadc); + + /* Start conversion if ADC is effectively enabled */ + if (tmp_hal_status == HAL_OK) + { + /* Check if a regular conversion is ongoing */ + if ((hadc->State & HAL_ADC_STATE_REG_BUSY) != 0UL) + { + /* Reset ADC error code field related to injected conversions only */ + CLEAR_BIT(hadc->ErrorCode, HAL_ADC_ERROR_JQOVF); + } + else + { + /* Set ADC error code to none */ + ADC_CLEAR_ERRORCODE(hadc); + } + + /* Set ADC state */ + /* - Clear state bitfield related to injected group conversion results */ + /* - Set state bitfield related to injected operation */ + ADC_STATE_CLR_SET(hadc->State, + HAL_ADC_STATE_READY | HAL_ADC_STATE_INJ_EOC, + HAL_ADC_STATE_INJ_BUSY); + + /* Reset HAL_ADC_STATE_MULTIMODE_SLAVE bit + - if ADC instance is master or if multimode feature is not available + - if multimode setting is disabled (ADC instance slave in independent mode) */ + if ((__LL_ADC_MULTI_INSTANCE_MASTER(hadc->Instance) == hadc->Instance) + || (tmp_multimode_config == LL_ADC_MULTI_INDEPENDENT) + ) + { + CLEAR_BIT(hadc->State, HAL_ADC_STATE_MULTIMODE_SLAVE); + } + + /* Clear ADC group injected group conversion flag */ + /* (To ensure of no unknown state from potential previous ADC operations) */ + __HAL_ADC_CLEAR_FLAG(hadc, (ADC_FLAG_JEOC | ADC_FLAG_JEOS)); + + /* Process unlocked */ + /* Unlock before starting ADC conversions: in case of potential */ + /* interruption, to let the process to ADC IRQ Handler. */ + __HAL_UNLOCK(hadc); + + /* Enable ADC Injected context queue overflow interrupt if this feature */ + /* is enabled. */ + if ((hadc->Instance->CFGR & ADC_CFGR_JQM) != 0UL) + { + __HAL_ADC_ENABLE_IT(hadc, ADC_FLAG_JQOVF); + } + + /* Enable ADC end of conversion interrupt */ + switch (hadc->Init.EOCSelection) + { + case ADC_EOC_SEQ_CONV: + __HAL_ADC_DISABLE_IT(hadc, ADC_IT_JEOC); + __HAL_ADC_ENABLE_IT(hadc, ADC_IT_JEOS); + break; + /* case ADC_EOC_SINGLE_CONV */ + default: + __HAL_ADC_DISABLE_IT(hadc, ADC_IT_JEOS); + __HAL_ADC_ENABLE_IT(hadc, ADC_IT_JEOC); + break; + } + + /* Enable conversion of injected group, if automatic injected conversion */ + /* is disabled. */ + /* If software start has been selected, conversion starts immediately. */ + /* If external trigger has been selected, conversion will start at next */ + /* trigger event. */ + /* Case of multimode enabled (when multimode feature is available): */ + /* if ADC is slave, */ + /* - ADC is enabled only (conversion is not started), */ + /* - if multimode only concerns regular conversion, ADC is enabled */ + /* and conversion is started. */ + /* If ADC is master or independent, */ + /* - ADC is enabled and conversion is started. */ + if ((__LL_ADC_MULTI_INSTANCE_MASTER(hadc->Instance) == hadc->Instance) + || (tmp_multimode_config == LL_ADC_MULTI_INDEPENDENT) + || (tmp_multimode_config == LL_ADC_MULTI_DUAL_REG_SIMULT) + || (tmp_multimode_config == LL_ADC_MULTI_DUAL_REG_INTERL) + ) + { + /* ADC instance is not a multimode slave instance with multimode injected conversions enabled */ + if (LL_ADC_INJ_GetTrigAuto(hadc->Instance) == LL_ADC_INJ_TRIG_INDEPENDENT) + { + LL_ADC_INJ_StartConversion(hadc->Instance); + } + } + else + { + /* ADC instance is not a multimode slave instance with multimode injected conversions enabled */ + SET_BIT(hadc->State, HAL_ADC_STATE_MULTIMODE_SLAVE); + } + + } + else + { + /* Process unlocked */ + __HAL_UNLOCK(hadc); + } + + /* Return function status */ + return tmp_hal_status; + } +} + +/** + * @brief Stop conversion of injected channels, disable interruption of + * end-of-conversion. Disable ADC peripheral if no regular conversion + * is on going. + * @note If ADC must be disabled and if conversion is on going on + * regular group, function HAL_ADC_Stop must be used to stop both + * injected and regular groups, and disable the ADC. + * @note If injected group mode auto-injection is enabled, + * function HAL_ADC_Stop must be used. + * @note Case of multimode enabled (when multimode feature is available): + * HAL_ADCEx_InjectedStop_IT() API must be called for ADC master first, + * then for ADC slave. + * For ADC master, conversion is stopped and ADC is disabled. + * For ADC slave, ADC is disabled only (conversion stop of ADC master + * has already stopped conversion of ADC slave). + * @note In case of auto-injection mode, HAL_ADC_Stop() must be used. + * @param hadc ADC handle + * @retval HAL status + */ +HAL_StatusTypeDef HAL_ADCEx_InjectedStop_IT(ADC_HandleTypeDef *hadc) +{ + HAL_StatusTypeDef tmp_hal_status; + + /* Check the parameters */ + assert_param(IS_ADC_ALL_INSTANCE(hadc->Instance)); + + /* Process locked */ + __HAL_LOCK(hadc); + + /* 1. Stop potential conversion on going on injected group only. */ + tmp_hal_status = ADC_ConversionStop(hadc, ADC_INJECTED_GROUP); + + /* Disable ADC peripheral if injected conversions are effectively stopped */ + /* and if no conversion on the other group (regular group) is intended to */ + /* continue. */ + if (tmp_hal_status == HAL_OK) + { + /* Disable ADC end of conversion interrupt for injected channels */ + __HAL_ADC_DISABLE_IT(hadc, (ADC_IT_JEOC | ADC_IT_JEOS | ADC_FLAG_JQOVF)); + + if (LL_ADC_REG_IsConversionOngoing(hadc->Instance) == 0UL) + { + /* 2. Disable the ADC peripheral */ + tmp_hal_status = ADC_Disable(hadc); + + /* Check if ADC is effectively disabled */ + if (tmp_hal_status == HAL_OK) + { + /* Set ADC state */ + ADC_STATE_CLR_SET(hadc->State, + HAL_ADC_STATE_REG_BUSY | HAL_ADC_STATE_INJ_BUSY, + HAL_ADC_STATE_READY); + } + } + /* Conversion on injected group is stopped, but ADC not disabled since */ + /* conversion on regular group is still running. */ + else + { + /* Set ADC state */ + CLEAR_BIT(hadc->State, HAL_ADC_STATE_INJ_BUSY); + } + } + + /* Process unlocked */ + __HAL_UNLOCK(hadc); + + /* Return function status */ + return tmp_hal_status; +} + +/** + * @brief Enable ADC, start MultiMode conversion and transfer regular results through DMA. + * @note Multimode must have been previously configured using + * HAL_ADCEx_MultiModeConfigChannel() function. + * Interruptions enabled in this function: + * overrun, DMA half transfer, DMA transfer complete. + * Each of these interruptions has its dedicated callback function. + * @note State field of Slave ADC handle is not updated in this configuration: + * user should not rely on it for information related to Slave regular + * conversions. + * @param hadc ADC handle of ADC master (handle of ADC slave must not be used) + * @param pData Destination Buffer address. + * @param Length Length of data to be transferred from ADC peripheral to memory (in bytes). + * @retval HAL status + */ +HAL_StatusTypeDef HAL_ADCEx_MultiModeStart_DMA(ADC_HandleTypeDef *hadc, uint32_t *pData, uint32_t Length) +{ + HAL_StatusTypeDef tmp_hal_status; + ADC_HandleTypeDef tmphadcSlave; + ADC_Common_TypeDef *tmpADC_Common; + + /* Check the parameters */ + assert_param(IS_ADC_MULTIMODE_MASTER_INSTANCE(hadc->Instance)); + assert_param(IS_FUNCTIONAL_STATE(hadc->Init.ContinuousConvMode)); + assert_param(IS_ADC_EXTTRIG_EDGE(hadc->Init.ExternalTrigConvEdge)); + + if (LL_ADC_REG_IsConversionOngoing(hadc->Instance) != 0UL) + { + return HAL_BUSY; + } + else + { + /* Process locked */ + __HAL_LOCK(hadc); + + /* Set a temporary handle of the ADC slave associated to the ADC master */ + ADC_MULTI_SLAVE(hadc, &tmphadcSlave); + + if (tmphadcSlave.Instance == NULL) + { + /* Set ADC state */ + SET_BIT(hadc->State, HAL_ADC_STATE_ERROR_CONFIG); + + /* Process unlocked */ + __HAL_UNLOCK(hadc); + + return HAL_ERROR; + } + + /* Enable the ADC peripherals: master and slave (in case if not already */ + /* enabled previously) */ + tmp_hal_status = ADC_Enable(hadc); + if (tmp_hal_status == HAL_OK) + { + tmp_hal_status = ADC_Enable(&tmphadcSlave); + } + + /* Start multimode conversion of ADCs pair */ + if (tmp_hal_status == HAL_OK) + { + /* Set ADC state */ + ADC_STATE_CLR_SET(hadc->State, + (HAL_ADC_STATE_READY | HAL_ADC_STATE_REG_EOC | HAL_ADC_STATE_REG_OVR | HAL_ADC_STATE_REG_EOSMP), + HAL_ADC_STATE_REG_BUSY); + + /* Set ADC error code to none */ + ADC_CLEAR_ERRORCODE(hadc); + + /* Set the DMA transfer complete callback */ + hadc->DMA_Handle->XferCpltCallback = ADC_DMAConvCplt; + + /* Set the DMA half transfer complete callback */ + hadc->DMA_Handle->XferHalfCpltCallback = ADC_DMAHalfConvCplt; + + /* Set the DMA error callback */ + hadc->DMA_Handle->XferErrorCallback = ADC_DMAError ; + + /* Pointer to the common control register */ + tmpADC_Common = __LL_ADC_COMMON_INSTANCE(hadc->Instance); + + /* Manage ADC and DMA start: ADC overrun interruption, DMA start, ADC */ + /* start (in case of SW start): */ + + /* Clear regular group conversion flag and overrun flag */ + /* (To ensure of no unknown state from potential previous ADC operations) */ + __HAL_ADC_CLEAR_FLAG(hadc, (ADC_FLAG_EOC | ADC_FLAG_EOS | ADC_FLAG_OVR)); + + /* Process unlocked */ + /* Unlock before starting ADC conversions: in case of potential */ + /* interruption, to let the process to ADC IRQ Handler. */ + __HAL_UNLOCK(hadc); + + /* Enable ADC overrun interrupt */ + __HAL_ADC_ENABLE_IT(hadc, ADC_IT_OVR); + + /* Start the DMA channel */ + tmp_hal_status = HAL_DMA_Start_IT(hadc->DMA_Handle, (uint32_t)&tmpADC_Common->CDR, (uint32_t)pData, Length); + + /* Enable conversion of regular group. */ + /* If software start has been selected, conversion starts immediately. */ + /* If external trigger has been selected, conversion will start at next */ + /* trigger event. */ + /* Start ADC group regular conversion */ + LL_ADC_REG_StartConversion(hadc->Instance); + } + else + { + /* Process unlocked */ + __HAL_UNLOCK(hadc); + } + + /* Return function status */ + return tmp_hal_status; + } +} + +/** + * @brief Stop multimode ADC conversion, disable ADC DMA transfer, disable ADC peripheral. + * @note Multimode is kept enabled after this function. MultiMode DMA bits + * (MDMA and DMACFG bits of common CCR register) are maintained. To disable + * Multimode (set with HAL_ADCEx_MultiModeConfigChannel()), ADC must be + * reinitialized using HAL_ADC_Init() or HAL_ADC_DeInit(), or the user can + * resort to HAL_ADCEx_DisableMultiMode() API. + * @note In case of DMA configured in circular mode, function + * HAL_ADC_Stop_DMA() must be called after this function with handle of + * ADC slave, to properly disable the DMA channel. + * @param hadc ADC handle of ADC master (handle of ADC slave must not be used) + * @retval HAL status + */ +HAL_StatusTypeDef HAL_ADCEx_MultiModeStop_DMA(ADC_HandleTypeDef *hadc) +{ + HAL_StatusTypeDef tmp_hal_status; + uint32_t tickstart; + ADC_HandleTypeDef tmphadcSlave; + uint32_t tmphadcSlave_conversion_on_going; + HAL_StatusTypeDef tmphadcSlave_disable_status; + + /* Check the parameters */ + assert_param(IS_ADC_MULTIMODE_MASTER_INSTANCE(hadc->Instance)); + + /* Process locked */ + __HAL_LOCK(hadc); + + + /* 1. Stop potential multimode conversion on going, on regular and injected groups */ + tmp_hal_status = ADC_ConversionStop(hadc, ADC_REGULAR_INJECTED_GROUP); + + /* Disable ADC peripheral if conversions are effectively stopped */ + if (tmp_hal_status == HAL_OK) + { + /* Set a temporary handle of the ADC slave associated to the ADC master */ + ADC_MULTI_SLAVE(hadc, &tmphadcSlave); + + if (tmphadcSlave.Instance == NULL) + { + /* Update ADC state machine to error */ + SET_BIT(hadc->State, HAL_ADC_STATE_ERROR_CONFIG); + + /* Process unlocked */ + __HAL_UNLOCK(hadc); + + return HAL_ERROR; + } + + /* Procedure to disable the ADC peripheral: wait for conversions */ + /* effectively stopped (ADC master and ADC slave), then disable ADC */ + + /* 1. Wait for ADC conversion completion for ADC master and ADC slave */ + tickstart = HAL_GetTick(); + + tmphadcSlave_conversion_on_going = LL_ADC_REG_IsConversionOngoing((&tmphadcSlave)->Instance); + while ((LL_ADC_REG_IsConversionOngoing(hadc->Instance) == 1UL) + || (tmphadcSlave_conversion_on_going == 1UL) + ) + { + if ((HAL_GetTick() - tickstart) > ADC_STOP_CONVERSION_TIMEOUT) + { + /* Update ADC state machine to error */ + SET_BIT(hadc->State, HAL_ADC_STATE_ERROR_INTERNAL); + + /* Process unlocked */ + __HAL_UNLOCK(hadc); + + return HAL_ERROR; + } + + tmphadcSlave_conversion_on_going = LL_ADC_REG_IsConversionOngoing((&tmphadcSlave)->Instance); + } + + /* Disable the DMA channel (in case of DMA in circular mode or stop */ + /* while DMA transfer is on going) */ + /* Note: DMA channel of ADC slave should be stopped after this function */ + /* with HAL_ADC_Stop_DMA() API. */ + tmp_hal_status = HAL_DMA_Abort(hadc->DMA_Handle); + + /* Check if DMA channel effectively disabled */ + if (tmp_hal_status == HAL_ERROR) + { + /* Update ADC state machine to error */ + SET_BIT(hadc->State, HAL_ADC_STATE_ERROR_DMA); + } + + /* Disable ADC overrun interrupt */ + __HAL_ADC_DISABLE_IT(hadc, ADC_IT_OVR); + + /* 2. Disable the ADC peripherals: master and slave */ + /* Update "tmp_hal_status" only if DMA channel disabling passed, to keep in */ + /* memory a potential failing status. */ + if (tmp_hal_status == HAL_OK) + { + tmphadcSlave_disable_status = ADC_Disable(&tmphadcSlave); + if ((ADC_Disable(hadc) == HAL_OK) && + (tmphadcSlave_disable_status == HAL_OK)) + { + tmp_hal_status = HAL_OK; + } + } + else + { + /* In case of error, attempt to disable ADC master and slave without status assert */ + (void) ADC_Disable(hadc); + (void) ADC_Disable(&tmphadcSlave); + } + + /* Set ADC state (ADC master) */ + ADC_STATE_CLR_SET(hadc->State, + HAL_ADC_STATE_REG_BUSY | HAL_ADC_STATE_INJ_BUSY, + HAL_ADC_STATE_READY); + } + + /* Process unlocked */ + __HAL_UNLOCK(hadc); + + /* Return function status */ + return tmp_hal_status; +} + +/** + * @brief Return the last ADC Master and Slave regular conversions results when in multimode configuration. + * @param hadc ADC handle of ADC Master (handle of ADC Slave must not be used) + * @retval The converted data values. + */ +uint32_t HAL_ADCEx_MultiModeGetValue(ADC_HandleTypeDef *hadc) +{ + const ADC_Common_TypeDef *tmpADC_Common; + + /* Check the parameters */ + assert_param(IS_ADC_MULTIMODE_MASTER_INSTANCE(hadc->Instance)); + + /* Prevent unused argument(s) compilation warning if no assert_param check */ + /* and possible no usage in __LL_ADC_COMMON_INSTANCE() below */ + UNUSED(hadc); + + /* Pointer to the common control register */ + tmpADC_Common = __LL_ADC_COMMON_INSTANCE(hadc->Instance); + + /* Return the multi mode conversion value */ + return tmpADC_Common->CDR; +} + +/** + * @brief Get ADC injected group conversion result. + * @note Reading register JDRx automatically clears ADC flag JEOC + * (ADC group injected end of unitary conversion). + * @note This function does not clear ADC flag JEOS + * (ADC group injected end of sequence conversion) + * Occurrence of flag JEOS rising: + * - If sequencer is composed of 1 rank, flag JEOS is equivalent + * to flag JEOC. + * - If sequencer is composed of several ranks, during the scan + * sequence flag JEOC only is raised, at the end of the scan sequence + * both flags JEOC and EOS are raised. + * Flag JEOS must not be cleared by this function because + * it would not be compliant with low power features + * (feature low power auto-wait, not available on all STM32 families). + * To clear this flag, either use function: + * in programming model IT: @ref HAL_ADC_IRQHandler(), in programming + * model polling: @ref HAL_ADCEx_InjectedPollForConversion() + * or @ref __HAL_ADC_CLEAR_FLAG(&hadc, ADC_FLAG_JEOS). + * @param hadc ADC handle + * @param InjectedRank the converted ADC injected rank. + * This parameter can be one of the following values: + * @arg @ref ADC_INJECTED_RANK_1 ADC group injected rank 1 + * @arg @ref ADC_INJECTED_RANK_2 ADC group injected rank 2 + * @arg @ref ADC_INJECTED_RANK_3 ADC group injected rank 3 + * @arg @ref ADC_INJECTED_RANK_4 ADC group injected rank 4 + * @retval ADC group injected conversion data + */ +uint32_t HAL_ADCEx_InjectedGetValue(ADC_HandleTypeDef *hadc, uint32_t InjectedRank) +{ + uint32_t tmp_jdr; + + /* Check the parameters */ + assert_param(IS_ADC_ALL_INSTANCE(hadc->Instance)); + assert_param(IS_ADC_INJECTED_RANK(InjectedRank)); + + /* Get ADC converted value */ + switch (InjectedRank) + { + case ADC_INJECTED_RANK_4: + tmp_jdr = hadc->Instance->JDR4; + break; + case ADC_INJECTED_RANK_3: + tmp_jdr = hadc->Instance->JDR3; + break; + case ADC_INJECTED_RANK_2: + tmp_jdr = hadc->Instance->JDR2; + break; + case ADC_INJECTED_RANK_1: + default: + tmp_jdr = hadc->Instance->JDR1; + break; + } + + /* Return ADC converted value */ + return tmp_jdr; +} + +/** + * @brief Injected conversion complete callback in non-blocking mode. + * @param hadc ADC handle + * @retval None + */ +__weak void HAL_ADCEx_InjectedConvCpltCallback(ADC_HandleTypeDef *hadc) +{ + /* Prevent unused argument(s) compilation warning */ + UNUSED(hadc); + + /* NOTE : This function should not be modified. When the callback is needed, + function HAL_ADCEx_InjectedConvCpltCallback must be implemented in the user file. + */ +} + +/** + * @brief Injected context queue overflow callback. + * @note This callback is called if injected context queue is enabled + (parameter "QueueInjectedContext" in injected channel configuration) + and if a new injected context is set when queue is full (maximum 2 + contexts). + * @param hadc ADC handle + * @retval None + */ +__weak void HAL_ADCEx_InjectedQueueOverflowCallback(ADC_HandleTypeDef *hadc) +{ + /* Prevent unused argument(s) compilation warning */ + UNUSED(hadc); + + /* NOTE : This function should not be modified. When the callback is needed, + function HAL_ADCEx_InjectedQueueOverflowCallback must be implemented in the user file. + */ +} + +/** + * @brief Analog watchdog 2 callback in non-blocking mode. + * @param hadc ADC handle + * @retval None + */ +__weak void HAL_ADCEx_LevelOutOfWindow2Callback(ADC_HandleTypeDef *hadc) +{ + /* Prevent unused argument(s) compilation warning */ + UNUSED(hadc); + + /* NOTE : This function should not be modified. When the callback is needed, + function HAL_ADCEx_LevelOutOfWindow2Callback must be implemented in the user file. + */ +} + +/** + * @brief Analog watchdog 3 callback in non-blocking mode. + * @param hadc ADC handle + * @retval None + */ +__weak void HAL_ADCEx_LevelOutOfWindow3Callback(ADC_HandleTypeDef *hadc) +{ + /* Prevent unused argument(s) compilation warning */ + UNUSED(hadc); + + /* NOTE : This function should not be modified. When the callback is needed, + function HAL_ADCEx_LevelOutOfWindow3Callback must be implemented in the user file. + */ +} + + +/** + * @brief End Of Sampling callback in non-blocking mode. + * @param hadc ADC handle + * @retval None + */ +__weak void HAL_ADCEx_EndOfSamplingCallback(ADC_HandleTypeDef *hadc) +{ + /* Prevent unused argument(s) compilation warning */ + UNUSED(hadc); + + /* NOTE : This function should not be modified. When the callback is needed, + function HAL_ADCEx_EndOfSamplingCallback must be implemented in the user file. + */ +} + +/** + * @brief Stop ADC conversion of regular group (and injected channels in + * case of auto_injection mode), disable ADC peripheral if no + * conversion is on going on injected group. + * @param hadc ADC handle + * @retval HAL status. + */ +HAL_StatusTypeDef HAL_ADCEx_RegularStop(ADC_HandleTypeDef *hadc) +{ + HAL_StatusTypeDef tmp_hal_status; + + /* Check the parameters */ + assert_param(IS_ADC_ALL_INSTANCE(hadc->Instance)); + + /* Process locked */ + __HAL_LOCK(hadc); + + /* 1. Stop potential regular conversion on going */ + tmp_hal_status = ADC_ConversionStop(hadc, ADC_REGULAR_GROUP); + + /* Disable ADC peripheral if regular conversions are effectively stopped + and if no injected conversions are on-going */ + if (tmp_hal_status == HAL_OK) + { + /* Clear HAL_ADC_STATE_REG_BUSY bit */ + CLEAR_BIT(hadc->State, HAL_ADC_STATE_REG_BUSY); + + if (LL_ADC_INJ_IsConversionOngoing(hadc->Instance) == 0UL) + { + /* 2. Disable the ADC peripheral */ + tmp_hal_status = ADC_Disable(hadc); + + /* Check if ADC is effectively disabled */ + if (tmp_hal_status == HAL_OK) + { + /* Set ADC state */ + ADC_STATE_CLR_SET(hadc->State, + HAL_ADC_STATE_INJ_BUSY, + HAL_ADC_STATE_READY); + } + } + /* Conversion on injected group is stopped, but ADC not disabled since */ + /* conversion on regular group is still running. */ + else + { + SET_BIT(hadc->State, HAL_ADC_STATE_INJ_BUSY); + } + } + + /* Process unlocked */ + __HAL_UNLOCK(hadc); + + /* Return function status */ + return tmp_hal_status; +} + + +/** + * @brief Stop ADC conversion of ADC groups regular and injected, + * disable interrution of end-of-conversion, + * disable ADC peripheral if no conversion is on going + * on injected group. + * @param hadc ADC handle + * @retval HAL status. + */ +HAL_StatusTypeDef HAL_ADCEx_RegularStop_IT(ADC_HandleTypeDef *hadc) +{ + HAL_StatusTypeDef tmp_hal_status; + + /* Check the parameters */ + assert_param(IS_ADC_ALL_INSTANCE(hadc->Instance)); + + /* Process locked */ + __HAL_LOCK(hadc); + + /* 1. Stop potential regular conversion on going */ + tmp_hal_status = ADC_ConversionStop(hadc, ADC_REGULAR_GROUP); + + /* Disable ADC peripheral if conversions are effectively stopped + and if no injected conversion is on-going */ + if (tmp_hal_status == HAL_OK) + { + /* Clear HAL_ADC_STATE_REG_BUSY bit */ + CLEAR_BIT(hadc->State, HAL_ADC_STATE_REG_BUSY); + + /* Disable all regular-related interrupts */ + __HAL_ADC_DISABLE_IT(hadc, (ADC_IT_EOC | ADC_IT_EOS | ADC_IT_OVR)); + + /* 2. Disable ADC peripheral if no injected conversions are on-going */ + if (LL_ADC_INJ_IsConversionOngoing(hadc->Instance) == 0UL) + { + tmp_hal_status = ADC_Disable(hadc); + /* if no issue reported */ + if (tmp_hal_status == HAL_OK) + { + /* Set ADC state */ + ADC_STATE_CLR_SET(hadc->State, + HAL_ADC_STATE_INJ_BUSY, + HAL_ADC_STATE_READY); + } + } + else + { + SET_BIT(hadc->State, HAL_ADC_STATE_INJ_BUSY); + } + } + + /* Process unlocked */ + __HAL_UNLOCK(hadc); + + /* Return function status */ + return tmp_hal_status; +} + +/** + * @brief Stop ADC conversion of regular group (and injected group in + * case of auto_injection mode), disable ADC DMA transfer, disable + * ADC peripheral if no conversion is on going + * on injected group. + * @note HAL_ADCEx_RegularStop_DMA() function is dedicated to single-ADC mode only. + * For multimode (when multimode feature is available), + * HAL_ADCEx_RegularMultiModeStop_DMA() API must be used. + * @param hadc ADC handle + * @retval HAL status. + */ +HAL_StatusTypeDef HAL_ADCEx_RegularStop_DMA(ADC_HandleTypeDef *hadc) +{ + HAL_StatusTypeDef tmp_hal_status; + + /* Check the parameters */ + assert_param(IS_ADC_ALL_INSTANCE(hadc->Instance)); + + /* Process locked */ + __HAL_LOCK(hadc); + + /* 1. Stop potential regular conversion on going */ + tmp_hal_status = ADC_ConversionStop(hadc, ADC_REGULAR_GROUP); + + /* Disable ADC peripheral if conversions are effectively stopped + and if no injected conversion is on-going */ + if (tmp_hal_status == HAL_OK) + { + /* Clear HAL_ADC_STATE_REG_BUSY bit */ + CLEAR_BIT(hadc->State, HAL_ADC_STATE_REG_BUSY); + + /* Disable ADC DMA (ADC DMA configuration ADC_CFGR_DMACFG is kept) */ + MODIFY_REG(hadc->Instance->CFGR, ADC_CFGR_DMNGT_0 |ADC_CFGR_DMNGT_1, 0UL); + + /* Disable the DMA channel (in case of DMA in circular mode or stop while */ + /* while DMA transfer is on going) */ + tmp_hal_status = HAL_DMA_Abort(hadc->DMA_Handle); + + /* Check if DMA channel effectively disabled */ + if (tmp_hal_status != HAL_OK) + { + /* Update ADC state machine to error */ + SET_BIT(hadc->State, HAL_ADC_STATE_ERROR_DMA); + } + + /* Disable ADC overrun interrupt */ + __HAL_ADC_DISABLE_IT(hadc, ADC_IT_OVR); + + /* 2. Disable the ADC peripheral */ + /* Update "tmp_hal_status" only if DMA channel disabling passed, */ + /* to keep in memory a potential failing status. */ + if (LL_ADC_INJ_IsConversionOngoing(hadc->Instance) == 0UL) + { + if (tmp_hal_status == HAL_OK) + { + tmp_hal_status = ADC_Disable(hadc); + } + else + { + (void)ADC_Disable(hadc); + } + + /* Check if ADC is effectively disabled */ + if (tmp_hal_status == HAL_OK) + { + /* Set ADC state */ + ADC_STATE_CLR_SET(hadc->State, + HAL_ADC_STATE_INJ_BUSY, + HAL_ADC_STATE_READY); + } + } + else + { + SET_BIT(hadc->State, HAL_ADC_STATE_INJ_BUSY); + } + } + + /* Process unlocked */ + __HAL_UNLOCK(hadc); + + /* Return function status */ + return tmp_hal_status; +} + +/** + * @brief Stop DMA-based multimode ADC conversion, disable ADC DMA transfer, disable ADC peripheral if no injected conversion is on-going. + * @note Multimode is kept enabled after this function. Multimode DMA bits + * (MDMA and DMACFG bits of common CCR register) are maintained. To disable + * multimode (set with HAL_ADCEx_MultiModeConfigChannel()), ADC must be + * reinitialized using HAL_ADC_Init() or HAL_ADC_DeInit(), or the user can + * resort to HAL_ADCEx_DisableMultiMode() API. + * @note In case of DMA configured in circular mode, function + * HAL_ADCEx_RegularStop_DMA() must be called after this function with handle of + * ADC slave, to properly disable the DMA channel. + * @param hadc ADC handle of ADC master (handle of ADC slave must not be used) + * @retval HAL status + */ +HAL_StatusTypeDef HAL_ADCEx_RegularMultiModeStop_DMA(ADC_HandleTypeDef *hadc) +{ + HAL_StatusTypeDef tmp_hal_status; + uint32_t tickstart; + ADC_HandleTypeDef tmphadcSlave; + uint32_t tmphadcSlave_conversion_on_going; + + /* Check the parameters */ + assert_param(IS_ADC_MULTIMODE_MASTER_INSTANCE(hadc->Instance)); + + /* Process locked */ + __HAL_LOCK(hadc); + + + /* 1. Stop potential multimode conversion on going, on regular groups */ + tmp_hal_status = ADC_ConversionStop(hadc, ADC_REGULAR_GROUP); + + /* Disable ADC peripheral if conversions are effectively stopped */ + if (tmp_hal_status == HAL_OK) + { + /* Clear HAL_ADC_STATE_REG_BUSY bit */ + CLEAR_BIT(hadc->State, HAL_ADC_STATE_REG_BUSY); + + /* Set a temporary handle of the ADC slave associated to the ADC master */ + ADC_MULTI_SLAVE(hadc, &tmphadcSlave); + + if (tmphadcSlave.Instance == NULL) + { + /* Update ADC state machine to error */ + SET_BIT(hadc->State, HAL_ADC_STATE_ERROR_CONFIG); + + /* Process unlocked */ + __HAL_UNLOCK(hadc); + + return HAL_ERROR; + } + + /* Procedure to disable the ADC peripheral: wait for conversions */ + /* effectively stopped (ADC master and ADC slave), then disable ADC */ + + /* 1. Wait for ADC conversion completion for ADC master and ADC slave */ + tickstart = HAL_GetTick(); + + tmphadcSlave_conversion_on_going = LL_ADC_REG_IsConversionOngoing((&tmphadcSlave)->Instance); + while ((LL_ADC_REG_IsConversionOngoing(hadc->Instance) == 1UL) + || (tmphadcSlave_conversion_on_going == 1UL) + ) + { + if ((HAL_GetTick() - tickstart) > ADC_STOP_CONVERSION_TIMEOUT) + { + /* Update ADC state machine to error */ + SET_BIT(hadc->State, HAL_ADC_STATE_ERROR_INTERNAL); + + /* Process unlocked */ + __HAL_UNLOCK(hadc); + + return HAL_ERROR; + } + + tmphadcSlave_conversion_on_going = LL_ADC_REG_IsConversionOngoing((&tmphadcSlave)->Instance); + } + + /* Disable the DMA channel (in case of DMA in circular mode or stop */ + /* while DMA transfer is on going) */ + /* Note: DMA channel of ADC slave should be stopped after this function */ + /* with HAL_ADCEx_RegularStop_DMA() API. */ + tmp_hal_status = HAL_DMA_Abort(hadc->DMA_Handle); + + /* Check if DMA channel effectively disabled */ + if (tmp_hal_status != HAL_OK) + { + /* Update ADC state machine to error */ + SET_BIT(hadc->State, HAL_ADC_STATE_ERROR_DMA); + } + + /* Disable ADC overrun interrupt */ + __HAL_ADC_DISABLE_IT(hadc, ADC_IT_OVR); + + /* 2. Disable the ADC peripherals: master and slave if no injected */ + /* conversion is on-going. */ + /* Update "tmp_hal_status" only if DMA channel disabling passed, to keep in */ + /* memory a potential failing status. */ + if (tmp_hal_status == HAL_OK) + { + if (LL_ADC_INJ_IsConversionOngoing(hadc->Instance) == 0UL) + { + tmp_hal_status = ADC_Disable(hadc); + if (tmp_hal_status == HAL_OK) + { + if (LL_ADC_INJ_IsConversionOngoing((&tmphadcSlave)->Instance) == 0UL) + { + tmp_hal_status = ADC_Disable(&tmphadcSlave); + } + } + } + + if (tmp_hal_status == HAL_OK) + { + /* Both Master and Slave ADC's could be disabled. Update Master State */ + /* Clear HAL_ADC_STATE_INJ_BUSY bit, set HAL_ADC_STATE_READY bit */ + ADC_STATE_CLR_SET(hadc->State, HAL_ADC_STATE_INJ_BUSY, HAL_ADC_STATE_READY); + } + else + { + /* injected (Master or Slave) conversions are still on-going, + no Master State change */ + } + } + } + + /* Process unlocked */ + __HAL_UNLOCK(hadc); + + /* Return function status */ + return tmp_hal_status; +} + +/** + * @} + */ + +/** @defgroup ADCEx_Exported_Functions_Group2 ADC Extended Peripheral Control functions + * @brief ADC Extended Peripheral Control functions + * +@verbatim + =============================================================================== + ##### Peripheral Control functions ##### + =============================================================================== + [..] This section provides functions allowing to: + (+) Configure channels on injected group + (+) Configure multimode when multimode feature is available + (+) Enable or Disable Injected Queue + (+) Disable ADC voltage regulator + (+) Enter ADC deep-power-down mode + +@endverbatim + * @{ + */ + +/** + * @brief Configure a channel to be assigned to ADC group injected. + * @note Possibility to update parameters on the fly: + * This function initializes injected group, following calls to this + * function can be used to reconfigure some parameters of structure + * "ADC_InjectionConfTypeDef" on the fly, without resetting the ADC. + * The setting of these parameters is conditioned to ADC state: + * Refer to comments of structure "ADC_InjectionConfTypeDef". + * @note In case of usage of internal measurement channels: + * Vbat/VrefInt/TempSensor. + * These internal paths can be disabled using function + * HAL_ADC_DeInit(). + * @note Caution: For Injected Context Queue use, a context must be fully + * defined before start of injected conversion. All channels are configured + * consecutively for the same ADC instance. Therefore, the number of calls to + * HAL_ADCEx_InjectedConfigChannel() must be equal to the value of parameter + * InjectedNbrOfConversion for each context. + * - Example 1: If 1 context is intended to be used (or if there is no use of the + * Injected Queue Context feature) and if the context contains 3 injected ranks + * (InjectedNbrOfConversion = 3), HAL_ADCEx_InjectedConfigChannel() must be + * called once for each channel (i.e. 3 times) before starting a conversion. + * This function must not be called to configure a 4th injected channel: + * it would start a new context into context queue. + * - Example 2: If 2 contexts are intended to be used and each of them contains + * 3 injected ranks (InjectedNbrOfConversion = 3), + * HAL_ADCEx_InjectedConfigChannel() must be called once for each channel and + * for each context (3 channels x 2 contexts = 6 calls). Conversion can + * start once the 1st context is set, that is after the first three + * HAL_ADCEx_InjectedConfigChannel() calls. The 2nd context can be set on the fly. + * @param hadc ADC handle + * @param sConfigInjected Structure of ADC injected group and ADC channel for + * injected group. + * @retval HAL status + */ +HAL_StatusTypeDef HAL_ADCEx_InjectedConfigChannel(ADC_HandleTypeDef *hadc, ADC_InjectionConfTypeDef *sConfigInjected) +{ + HAL_StatusTypeDef tmp_hal_status = HAL_OK; + uint32_t tmpOffsetShifted; + uint32_t tmp_config_internal_channel; + uint32_t tmp_adc_is_conversion_on_going_regular; + uint32_t tmp_adc_is_conversion_on_going_injected; + __IO uint32_t wait_loop_index = 0; + + uint32_t tmp_JSQR_ContextQueueBeingBuilt = 0U; + + /* Check the parameters */ + assert_param(IS_ADC_ALL_INSTANCE(hadc->Instance)); + assert_param(IS_ADC_SAMPLE_TIME(sConfigInjected->InjectedSamplingTime)); + assert_param(IS_ADC_SINGLE_DIFFERENTIAL(sConfigInjected->InjectedSingleDiff)); + assert_param(IS_FUNCTIONAL_STATE(sConfigInjected->AutoInjectedConv)); + assert_param(IS_FUNCTIONAL_STATE(sConfigInjected->QueueInjectedContext)); + assert_param(IS_ADC_EXTTRIGINJEC_EDGE(sConfigInjected->ExternalTrigInjecConvEdge)); + assert_param(IS_ADC_EXTTRIGINJEC(sConfigInjected->ExternalTrigInjecConv)); + assert_param(IS_ADC_OFFSET_NUMBER(sConfigInjected->InjectedOffsetNumber)); + assert_param(IS_ADC_RANGE(ADC_GET_RESOLUTION(hadc), sConfigInjected->InjectedOffset)); + assert_param(IS_FUNCTIONAL_STATE(sConfigInjected->InjecOversamplingMode)); + + if (hadc->Init.ScanConvMode != ADC_SCAN_DISABLE) + { + assert_param(IS_ADC_INJECTED_RANK(sConfigInjected->InjectedRank)); + assert_param(IS_ADC_INJECTED_NB_CONV(sConfigInjected->InjectedNbrOfConversion)); + assert_param(IS_FUNCTIONAL_STATE(sConfigInjected->InjectedDiscontinuousConvMode)); + } + + /* Check offset range according to oversampling setting */ + if (hadc->Init.OversamplingMode == ENABLE) + { + assert_param(IS_ADC_RANGE(ADC_GET_RESOLUTION(hadc), sConfigInjected->InjectedOffset/(hadc->Init.Oversampling.Ratio+1U))); + } + else + { + assert_param(IS_ADC_RANGE(ADC_GET_RESOLUTION(hadc), sConfigInjected->InjectedOffset)); + } + + /* JDISCEN and JAUTO bits can't be set at the same time */ + assert_param(!((sConfigInjected->InjectedDiscontinuousConvMode == ENABLE) && (sConfigInjected->AutoInjectedConv == ENABLE))); + + /* DISCEN and JAUTO bits can't be set at the same time */ + assert_param(!((hadc->Init.DiscontinuousConvMode == ENABLE) && (sConfigInjected->AutoInjectedConv == ENABLE))); + + /* Verification of channel number */ + if (sConfigInjected->InjectedSingleDiff != ADC_DIFFERENTIAL_ENDED) + { + assert_param(IS_ADC_CHANNEL(sConfigInjected->InjectedChannel)); + } + else + { + if (hadc->Instance == ADC1) + { + assert_param(IS_ADC1_DIFF_CHANNEL(sConfigInjected->InjectedChannel)); + } + if (hadc->Instance == ADC2) + { + assert_param(IS_ADC2_DIFF_CHANNEL(sConfigInjected->InjectedChannel)); + } +#if defined (ADC3) + if (hadc->Instance == ADC3) + { + assert_param(IS_ADC3_DIFF_CHANNEL(sConfigInjected->InjectedChannel)); + } +#endif + } + + /* Process locked */ + __HAL_LOCK(hadc); + + /* Configuration of injected group sequencer: */ + /* Hardware constraint: Must fully define injected context register JSQR */ + /* before make it entering into injected sequencer queue. */ + /* */ + /* - if scan mode is disabled: */ + /* * Injected channels sequence length is set to 0x00: 1 channel */ + /* converted (channel on injected rank 1) */ + /* Parameter "InjectedNbrOfConversion" is discarded. */ + /* * Injected context register JSQR setting is simple: register is fully */ + /* defined on one call of this function (for injected rank 1) and can */ + /* be entered into queue directly. */ + /* - if scan mode is enabled: */ + /* * Injected channels sequence length is set to parameter */ + /* "InjectedNbrOfConversion". */ + /* * Injected context register JSQR setting more complex: register is */ + /* fully defined over successive calls of this function, for each */ + /* injected channel rank. It is entered into queue only when all */ + /* injected ranks have been set. */ + /* Note: Scan mode is not present by hardware on this device, but used */ + /* by software for alignment over all STM32 devices. */ + + if ((hadc->Init.ScanConvMode == ADC_SCAN_DISABLE) || + (sConfigInjected->InjectedNbrOfConversion == 1U)) + { + /* Configuration of context register JSQR: */ + /* - number of ranks in injected group sequencer: fixed to 1st rank */ + /* (scan mode disabled, only rank 1 used) */ + /* - external trigger to start conversion */ + /* - external trigger polarity */ + /* - channel set to rank 1 (scan mode disabled, only rank 1 can be used) */ + + if (sConfigInjected->InjectedRank == ADC_INJECTED_RANK_1) + { + /* Enable external trigger if trigger selection is different of */ + /* software start. */ + /* Note: This configuration keeps the hardware feature of parameter */ + /* ExternalTrigInjecConvEdge "trigger edge none" equivalent to */ + /* software start. */ + if (sConfigInjected->ExternalTrigInjecConv != ADC_INJECTED_SOFTWARE_START) + { + tmp_JSQR_ContextQueueBeingBuilt = (ADC_JSQR_RK(sConfigInjected->InjectedChannel, ADC_INJECTED_RANK_1) + | (sConfigInjected->ExternalTrigInjecConv & ADC_JSQR_JEXTSEL) + | sConfigInjected->ExternalTrigInjecConvEdge + ); + } + else + { + tmp_JSQR_ContextQueueBeingBuilt = (ADC_JSQR_RK(sConfigInjected->InjectedChannel, ADC_INJECTED_RANK_1)); + } + + MODIFY_REG(hadc->Instance->JSQR, ADC_JSQR_FIELDS, tmp_JSQR_ContextQueueBeingBuilt); + /* For debug and informative reasons, hadc handle saves JSQR setting */ + hadc->InjectionConfig.ContextQueue = tmp_JSQR_ContextQueueBeingBuilt; + + } + } + else + { + /* Case of scan mode enabled, several channels to set into injected group */ + /* sequencer. */ + /* */ + /* Procedure to define injected context register JSQR over successive */ + /* calls of this function, for each injected channel rank: */ + /* 1. Start new context and set parameters related to all injected */ + /* channels: injected sequence length and trigger. */ + + /* if hadc->InjectionConfig.ChannelCount is equal to 0, this is the first */ + /* call of the context under setting */ + if (hadc->InjectionConfig.ChannelCount == 0U) + { + /* Initialize number of channels that will be configured on the context */ + /* being built */ + hadc->InjectionConfig.ChannelCount = sConfigInjected->InjectedNbrOfConversion; + /* Handle hadc saves the context under build up over each HAL_ADCEx_InjectedConfigChannel() + call, this context will be written in JSQR register at the last call. + At this point, the context is merely reset */ + hadc->InjectionConfig.ContextQueue = 0x00000000U; + + /* Configuration of context register JSQR: */ + /* - number of ranks in injected group sequencer */ + /* - external trigger to start conversion */ + /* - external trigger polarity */ + + /* Enable external trigger if trigger selection is different of */ + /* software start. */ + /* Note: This configuration keeps the hardware feature of parameter */ + /* ExternalTrigInjecConvEdge "trigger edge none" equivalent to */ + /* software start. */ + if (sConfigInjected->ExternalTrigInjecConv != ADC_INJECTED_SOFTWARE_START) + { + tmp_JSQR_ContextQueueBeingBuilt = ((sConfigInjected->InjectedNbrOfConversion - 1U) + | (sConfigInjected->ExternalTrigInjecConv & ADC_JSQR_JEXTSEL) + | sConfigInjected->ExternalTrigInjecConvEdge + ); + } + else + { + tmp_JSQR_ContextQueueBeingBuilt = ((sConfigInjected->InjectedNbrOfConversion - 1U)); + } + + } + + /* 2. Continue setting of context under definition with parameter */ + /* related to each channel: channel rank sequence */ + /* Clear the old JSQx bits for the selected rank */ + tmp_JSQR_ContextQueueBeingBuilt &= ~ADC_JSQR_RK(ADC_SQR3_SQ10, sConfigInjected->InjectedRank); + + /* Set the JSQx bits for the selected rank */ + tmp_JSQR_ContextQueueBeingBuilt |= ADC_JSQR_RK(sConfigInjected->InjectedChannel, sConfigInjected->InjectedRank); + + /* Decrease channel count */ + hadc->InjectionConfig.ChannelCount--; + + /* 3. tmp_JSQR_ContextQueueBeingBuilt is fully built for this HAL_ADCEx_InjectedConfigChannel() + call, aggregate the setting to those already built during the previous + HAL_ADCEx_InjectedConfigChannel() calls (for the same context of course) */ + hadc->InjectionConfig.ContextQueue |= tmp_JSQR_ContextQueueBeingBuilt; + + /* 4. End of context setting: if this is the last channel set, then write context + into register JSQR and make it enter into queue */ + if (hadc->InjectionConfig.ChannelCount == 0U) + { + MODIFY_REG(hadc->Instance->JSQR, ADC_JSQR_FIELDS, hadc->InjectionConfig.ContextQueue); + } + } + + /* Parameters update conditioned to ADC state: */ + /* Parameters that can be updated when ADC is disabled or enabled without */ + /* conversion on going on injected group: */ + /* - Injected context queue: Queue disable (active context is kept) or */ + /* enable (context decremented, up to 2 contexts queued) */ + /* - Injected discontinuous mode: can be enabled only if auto-injected */ + /* mode is disabled. */ + if (LL_ADC_INJ_IsConversionOngoing(hadc->Instance) == 0UL) + { + /* ADC channels preselection */ + hadc->Instance->PCSEL |= (1UL << (__LL_ADC_CHANNEL_TO_DECIMAL_NB(sConfigInjected->InjectedChannel) & 0x1FUL)); + + /* If auto-injected mode is disabled: no constraint */ + if (sConfigInjected->AutoInjectedConv == DISABLE) + { + MODIFY_REG(hadc->Instance->CFGR, + ADC_CFGR_JQM | ADC_CFGR_JDISCEN, + ADC_CFGR_INJECT_CONTEXT_QUEUE((uint32_t)sConfigInjected->QueueInjectedContext) | + ADC_CFGR_INJECT_DISCCONTINUOUS((uint32_t)sConfigInjected->InjectedDiscontinuousConvMode)); + } + /* If auto-injected mode is enabled: Injected discontinuous setting is */ + /* discarded. */ + else + { + MODIFY_REG(hadc->Instance->CFGR, + ADC_CFGR_JQM | ADC_CFGR_JDISCEN, + ADC_CFGR_INJECT_CONTEXT_QUEUE((uint32_t)sConfigInjected->QueueInjectedContext)); + } + + } + + /* Parameters update conditioned to ADC state: */ + /* Parameters that can be updated when ADC is disabled or enabled without */ + /* conversion on going on regular and injected groups: */ + /* - Automatic injected conversion: can be enabled if injected group */ + /* external triggers are disabled. */ + /* - Channel sampling time */ + /* - Channel offset */ + tmp_adc_is_conversion_on_going_regular = LL_ADC_REG_IsConversionOngoing(hadc->Instance); + tmp_adc_is_conversion_on_going_injected = LL_ADC_INJ_IsConversionOngoing(hadc->Instance); + + if ((tmp_adc_is_conversion_on_going_regular == 0UL) + && (tmp_adc_is_conversion_on_going_injected == 0UL) + ) + { + /* If injected group external triggers are disabled (set to injected */ + /* software start): no constraint */ + if ((sConfigInjected->ExternalTrigInjecConv == ADC_INJECTED_SOFTWARE_START) + || (sConfigInjected->ExternalTrigInjecConvEdge == ADC_EXTERNALTRIGINJECCONV_EDGE_NONE)) + { + if (sConfigInjected->AutoInjectedConv == ENABLE) + { + SET_BIT(hadc->Instance->CFGR, ADC_CFGR_JAUTO); + } + else + { + CLEAR_BIT(hadc->Instance->CFGR, ADC_CFGR_JAUTO); + } + } + /* If Automatic injected conversion was intended to be set and could not */ + /* due to injected group external triggers enabled, error is reported. */ + else + { + if (sConfigInjected->AutoInjectedConv == ENABLE) + { + /* Update ADC state machine to error */ + SET_BIT(hadc->State, HAL_ADC_STATE_ERROR_CONFIG); + + tmp_hal_status = HAL_ERROR; + } + else + { + CLEAR_BIT(hadc->Instance->CFGR, ADC_CFGR_JAUTO); + } + } + + if (sConfigInjected->InjecOversamplingMode == ENABLE) + { + assert_param(IS_ADC_OVERSAMPLING_RATIO(sConfigInjected->InjecOversampling.Ratio)); + assert_param(IS_ADC_RIGHT_BIT_SHIFT(sConfigInjected->InjecOversampling.RightBitShift)); + + /* JOVSE must be reset in case of triggered regular mode */ + assert_param(!(READ_BIT(hadc->Instance->CFGR2, ADC_CFGR2_ROVSE | ADC_CFGR2_TROVS) == (ADC_CFGR2_ROVSE | ADC_CFGR2_TROVS))); + + /* Configuration of Injected Oversampler: */ + /* - Oversampling Ratio */ + /* - Right bit shift */ + + /* Enable OverSampling mode */ + MODIFY_REG(hadc->Instance->CFGR2, + ADC_CFGR2_JOVSE | + ADC_CFGR2_OVSR | + ADC_CFGR2_OVSS, + ADC_CFGR2_JOVSE | + ((sConfigInjected->InjecOversampling.Ratio - 1UL) << ADC_CFGR2_OVSR_Pos) | + sConfigInjected->InjecOversampling.RightBitShift + ); + } + else + { + /* Disable Regular OverSampling */ + CLEAR_BIT(hadc->Instance->CFGR2, ADC_CFGR2_JOVSE); + } + + /* Set sampling time of the selected ADC channel */ + LL_ADC_SetChannelSamplingTime(hadc->Instance, sConfigInjected->InjectedChannel, sConfigInjected->InjectedSamplingTime); + + /* Configure the offset: offset enable/disable, channel, offset value */ + + /* Shift the offset with respect to the selected ADC resolution. */ + /* Offset has to be left-aligned on bit 11, the LSB (right bits) are set to 0 */ + tmpOffsetShifted = ADC_OFFSET_SHIFT_RESOLUTION(hadc, sConfigInjected->InjectedOffset); + + if (sConfigInjected->InjectedOffsetNumber != ADC_OFFSET_NONE) + { + /* Set ADC selected offset number */ + LL_ADC_SetOffset(hadc->Instance, sConfigInjected->InjectedOffsetNumber, sConfigInjected->InjectedChannel, + tmpOffsetShifted); + + /* Set ADC selected offset signed saturation */ + LL_ADC_SetOffsetSignedSaturation(hadc->Instance, sConfigInjected->InjectedOffsetNumber, (sConfigInjected->InjectedOffsetSignedSaturation == ENABLE) ? LL_ADC_OFFSET_SIGNED_SATURATION_ENABLE : LL_ADC_OFFSET_SIGNED_SATURATION_DISABLE); + + /* Set ADC selected offset right shift */ + LL_ADC_SetDataRightShift(hadc->Instance, sConfigInjected->InjectedOffsetNumber, (sConfigInjected->InjectedOffsetRightShift == (uint32_t)ENABLE) ? LL_ADC_OFFSET_RSHIFT_ENABLE : LL_ADC_OFFSET_RSHIFT_DISABLE); + + } + else + { + /* Scan each offset register to check if the selected channel is targeted. */ + /* If this is the case, the corresponding offset number is disabled. */ + if(__LL_ADC_CHANNEL_TO_DECIMAL_NB(LL_ADC_GetOffsetChannel(hadc->Instance, LL_ADC_OFFSET_1)) == __LL_ADC_CHANNEL_TO_DECIMAL_NB(sConfigInjected->InjectedChannel)) + { + LL_ADC_SetOffset(hadc->Instance, LL_ADC_OFFSET_1, sConfigInjected->InjectedChannel, LL_ADC_OFFSET_SIGNED_SATURATION_DISABLE); + } + if(__LL_ADC_CHANNEL_TO_DECIMAL_NB(LL_ADC_GetOffsetChannel(hadc->Instance, LL_ADC_OFFSET_2)) == __LL_ADC_CHANNEL_TO_DECIMAL_NB(sConfigInjected->InjectedChannel)) + { + LL_ADC_SetOffset(hadc->Instance, LL_ADC_OFFSET_2, sConfigInjected->InjectedChannel, LL_ADC_OFFSET_SIGNED_SATURATION_DISABLE); + } + if(__LL_ADC_CHANNEL_TO_DECIMAL_NB(LL_ADC_GetOffsetChannel(hadc->Instance, LL_ADC_OFFSET_3)) == __LL_ADC_CHANNEL_TO_DECIMAL_NB(sConfigInjected->InjectedChannel)) + { + LL_ADC_SetOffset(hadc->Instance, LL_ADC_OFFSET_4, sConfigInjected->InjectedChannel, LL_ADC_OFFSET_SIGNED_SATURATION_DISABLE); + } + if(__LL_ADC_CHANNEL_TO_DECIMAL_NB(LL_ADC_GetOffsetChannel(hadc->Instance, LL_ADC_OFFSET_4)) == __LL_ADC_CHANNEL_TO_DECIMAL_NB(sConfigInjected->InjectedChannel)) + { + LL_ADC_SetOffset(hadc->Instance, LL_ADC_OFFSET_4, sConfigInjected->InjectedChannel, LL_ADC_OFFSET_SIGNED_SATURATION_DISABLE); + } + } + + } + + /* Parameters update conditioned to ADC state: */ + /* Parameters that can be updated only when ADC is disabled: */ + /* - Single or differential mode */ + /* - Internal measurement channels: Vbat/VrefInt/TempSensor */ + if (LL_ADC_IsEnabled(hadc->Instance) == 0UL) + { + /* Set mode single-ended or differential input of the selected ADC channel */ + LL_ADC_SetChannelSingleDiff(hadc->Instance, sConfigInjected->InjectedChannel, sConfigInjected->InjectedSingleDiff); + + /* Configuration of differential mode */ + /* Note: ADC channel number masked with value "0x1F" to ensure shift value within 32 bits range */ + if (sConfigInjected->InjectedSingleDiff == ADC_DIFFERENTIAL_ENDED) + { + /* Set sampling time of the selected ADC channel */ + LL_ADC_SetChannelSamplingTime(hadc->Instance, (uint32_t)(__LL_ADC_DECIMAL_NB_TO_CHANNEL((__LL_ADC_CHANNEL_TO_DECIMAL_NB((uint32_t)sConfigInjected->InjectedChannel) + 1UL) & 0x1FUL)), sConfigInjected->InjectedSamplingTime); + } + + /* Management of internal measurement channels: Vbat/VrefInt/TempSensor */ + /* internal measurement paths enable: If internal channel selected, */ + /* enable dedicated internal buffers and path. */ + /* Note: these internal measurement paths can be disabled using */ + /* HAL_ADC_DeInit(). */ + + if(__LL_ADC_IS_CHANNEL_INTERNAL(sConfigInjected->InjectedChannel)) + { + /* Configuration of common ADC parameters (continuation) */ + /* Software is allowed to change common parameters only when all ADCs */ + /* of the common group are disabled. */ + if (__LL_ADC_IS_ENABLED_ALL_COMMON_INSTANCE(__LL_ADC_COMMON_INSTANCE(hadc->Instance)) == 0UL) + { + tmp_config_internal_channel = LL_ADC_GetCommonPathInternalCh(__LL_ADC_COMMON_INSTANCE(hadc->Instance)); + + /* If the requested internal measurement path has already been enabled, */ + /* bypass the configuration processing. */ + if ((sConfigInjected->InjectedChannel == ADC_CHANNEL_TEMPSENSOR) && ((tmp_config_internal_channel & LL_ADC_PATH_INTERNAL_TEMPSENSOR) == 0UL)) + { + if (ADC_TEMPERATURE_SENSOR_INSTANCE(hadc)) + { + LL_ADC_SetCommonPathInternalCh(__LL_ADC_COMMON_INSTANCE(hadc->Instance), LL_ADC_PATH_INTERNAL_TEMPSENSOR | tmp_config_internal_channel); + + /* Delay for temperature sensor stabilization time */ + /* Wait loop initialization and execution */ + /* Note: Variable divided by 2 to compensate partially */ + /* CPU processing cycles, scaling in us split to not */ + /* exceed 32 bits register capacity and handle low frequency. */ + wait_loop_index = ((LL_ADC_DELAY_TEMPSENSOR_STAB_US / 10UL) * (SystemCoreClock / (100000UL * 2UL))); + while(wait_loop_index != 0UL) + { + wait_loop_index--; + } + } + } + else if ((sConfigInjected->InjectedChannel == ADC_CHANNEL_VBAT) && ((tmp_config_internal_channel & LL_ADC_PATH_INTERNAL_VBAT) == 0UL)) + { + if (ADC_BATTERY_VOLTAGE_INSTANCE(hadc)) + { + LL_ADC_SetCommonPathInternalCh(__LL_ADC_COMMON_INSTANCE(hadc->Instance), LL_ADC_PATH_INTERNAL_VBAT | tmp_config_internal_channel); + } + } + else if ((sConfigInjected->InjectedChannel == ADC_CHANNEL_VREFINT) && ((tmp_config_internal_channel & LL_ADC_PATH_INTERNAL_VREFINT) == 0UL)) + { + if (ADC_VREFINT_INSTANCE(hadc)) + { + LL_ADC_SetCommonPathInternalCh(__LL_ADC_COMMON_INSTANCE(hadc->Instance), LL_ADC_PATH_INTERNAL_VREFINT | tmp_config_internal_channel); + } + } + else + { + /* nothing to do */ + } + } + /* If the requested internal measurement path has already been enabled */ + /* and other ADC of the common group are enabled, internal */ + /* measurement paths cannot be enabled. */ + else + { + /* Update ADC state machine to error */ + SET_BIT(hadc->State, HAL_ADC_STATE_ERROR_CONFIG); + + tmp_hal_status = HAL_ERROR; + } + } + + } + + /* Process unlocked */ + __HAL_UNLOCK(hadc); + + /* Return function status */ + return tmp_hal_status; +} + +/** + * @brief Enable ADC multimode and configure multimode parameters + * @note Possibility to update parameters on the fly: + * This function initializes multimode parameters, following + * calls to this function can be used to reconfigure some parameters + * of structure "ADC_MultiModeTypeDef" on the fly, without resetting + * the ADCs. + * The setting of these parameters is conditioned to ADC state. + * For parameters constraints, see comments of structure + * "ADC_MultiModeTypeDef". + * @note To move back configuration from multimode to single mode, ADC must + * be reset (using function HAL_ADC_Init() ). + * @param hadc Master ADC handle + * @param multimode Structure of ADC multimode configuration + * @retval HAL status + */ +HAL_StatusTypeDef HAL_ADCEx_MultiModeConfigChannel(ADC_HandleTypeDef *hadc, ADC_MultiModeTypeDef *multimode) +{ + HAL_StatusTypeDef tmp_hal_status = HAL_OK; + ADC_Common_TypeDef *tmpADC_Common; + ADC_HandleTypeDef tmphadcSlave; + uint32_t tmphadcSlave_conversion_on_going; + + /* Check the parameters */ + assert_param(IS_ADC_MULTIMODE_MASTER_INSTANCE(hadc->Instance)); + assert_param(IS_ADC_MULTIMODE(multimode->Mode)); + if (multimode->Mode != ADC_MODE_INDEPENDENT) + { + assert_param(IS_ADC_DUAL_DATA_MODE(multimode->DualModeData)); + assert_param(IS_ADC_SAMPLING_DELAY(multimode->TwoSamplingDelay)); + } + + /* Process locked */ + __HAL_LOCK(hadc); + + ADC_MULTI_SLAVE(hadc, &tmphadcSlave); + + if (tmphadcSlave.Instance == NULL) + { + /* Update ADC state machine to error */ + SET_BIT(hadc->State, HAL_ADC_STATE_ERROR_CONFIG); + + /* Process unlocked */ + __HAL_UNLOCK(hadc); + + return HAL_ERROR; + } + + /* Parameters update conditioned to ADC state: */ + /* Parameters that can be updated when ADC is disabled or enabled without */ + /* conversion on going on regular group: */ + /* - Multimode DATA Format configuration */ + tmphadcSlave_conversion_on_going = LL_ADC_REG_IsConversionOngoing((&tmphadcSlave)->Instance); + if ((LL_ADC_REG_IsConversionOngoing(hadc->Instance) == 0UL) + && (tmphadcSlave_conversion_on_going == 0UL)) + { + /* Pointer to the common control register */ + tmpADC_Common = __LL_ADC_COMMON_INSTANCE(hadc->Instance); + + /* If multimode is selected, configure all multimode parameters. */ + /* Otherwise, reset multimode parameters (can be used in case of */ + /* transition from multimode to independent mode). */ + if (multimode->Mode != ADC_MODE_INDEPENDENT) + { + MODIFY_REG(tmpADC_Common->CCR, ADC_CCR_DAMDF, multimode->DualModeData); + + /* Parameters that can be updated only when ADC is disabled: */ + /* - Multimode mode selection */ + /* - Multimode delay */ + /* Note: Delay range depends on selected resolution: */ + /* from 1 to 9 clock cycles for 16 bits */ + /* from 1 to 9 clock cycles for 14 bits, */ + /* from 1 to 8 clock cycles for 12 bits */ + /* from 1 to 6 clock cycles for 10 and 8 bits */ + /* If a higher delay is selected, it will be clipped to maximum delay */ + /* range */ + + if (__LL_ADC_IS_ENABLED_ALL_COMMON_INSTANCE(__LL_ADC_COMMON_INSTANCE(hadc->Instance)) == 0UL) + { + MODIFY_REG(tmpADC_Common->CCR, + ADC_CCR_DUAL | + ADC_CCR_DELAY, + multimode->Mode | + multimode->TwoSamplingDelay + ); + } + } + else /* ADC_MODE_INDEPENDENT */ + { + CLEAR_BIT(tmpADC_Common->CCR, ADC_CCR_DAMDF); + + /* Parameters that can be updated only when ADC is disabled: */ + /* - Multimode mode selection */ + /* - Multimode delay */ + if (__LL_ADC_IS_ENABLED_ALL_COMMON_INSTANCE(__LL_ADC_COMMON_INSTANCE(hadc->Instance)) == 0UL) + { + CLEAR_BIT(tmpADC_Common->CCR, ADC_CCR_DUAL | ADC_CCR_DELAY); + } + } + } + /* If one of the ADC sharing the same common group is enabled, no update */ + /* could be done on neither of the multimode structure parameters. */ + else + { + /* Update ADC state machine to error */ + SET_BIT(hadc->State, HAL_ADC_STATE_ERROR_CONFIG); + + tmp_hal_status = HAL_ERROR; + } + + /* Process unlocked */ + __HAL_UNLOCK(hadc); + + /* Return function status */ + return tmp_hal_status; +} + +/** + * @brief Enable Injected Queue + * @note This function resets CFGR register JQDIS bit in order to enable the + * Injected Queue. JQDIS can be written only when ADSTART and JDSTART + * are both equal to 0 to ensure that no regular nor injected + * conversion is ongoing. + * @param hadc ADC handle + * @retval HAL status + */ +HAL_StatusTypeDef HAL_ADCEx_EnableInjectedQueue(ADC_HandleTypeDef *hadc) +{ + HAL_StatusTypeDef tmp_hal_status; + uint32_t tmp_adc_is_conversion_on_going_regular; + uint32_t tmp_adc_is_conversion_on_going_injected; + + /* Check the parameters */ + assert_param(IS_ADC_ALL_INSTANCE(hadc->Instance)); + + tmp_adc_is_conversion_on_going_regular = LL_ADC_REG_IsConversionOngoing(hadc->Instance); + tmp_adc_is_conversion_on_going_injected = LL_ADC_INJ_IsConversionOngoing(hadc->Instance); + + /* Parameter can be set only if no conversion is on-going */ + if ((tmp_adc_is_conversion_on_going_regular == 0UL) + && (tmp_adc_is_conversion_on_going_injected == 0UL) + ) + { + CLEAR_BIT(hadc->Instance->CFGR, ADC_CFGR_JQDIS); + + /* Update state, clear previous result related to injected queue overflow */ + CLEAR_BIT(hadc->State, HAL_ADC_STATE_INJ_JQOVF); + + tmp_hal_status = HAL_OK; + } + else + { + tmp_hal_status = HAL_ERROR; + } + + return tmp_hal_status; +} + +/** + * @brief Disable Injected Queue + * @note This function sets CFGR register JQDIS bit in order to disable the + * Injected Queue. JQDIS can be written only when ADSTART and JDSTART + * are both equal to 0 to ensure that no regular nor injected + * conversion is ongoing. + * @param hadc ADC handle + * @retval HAL status + */ +HAL_StatusTypeDef HAL_ADCEx_DisableInjectedQueue(ADC_HandleTypeDef *hadc) +{ + HAL_StatusTypeDef tmp_hal_status; + uint32_t tmp_adc_is_conversion_on_going_regular; + uint32_t tmp_adc_is_conversion_on_going_injected; + + /* Check the parameters */ + assert_param(IS_ADC_ALL_INSTANCE(hadc->Instance)); + + tmp_adc_is_conversion_on_going_regular = LL_ADC_REG_IsConversionOngoing(hadc->Instance); + tmp_adc_is_conversion_on_going_injected = LL_ADC_INJ_IsConversionOngoing(hadc->Instance); + + /* Parameter can be set only if no conversion is on-going */ + if ((tmp_adc_is_conversion_on_going_regular == 0UL) + && (tmp_adc_is_conversion_on_going_injected == 0UL) + ) + { + LL_ADC_INJ_SetQueueMode(hadc->Instance, LL_ADC_INJ_QUEUE_DISABLE); + tmp_hal_status = HAL_OK; + } + else + { + tmp_hal_status = HAL_ERROR; + } + + return tmp_hal_status; +} + +/** + * @brief Disable ADC voltage regulator. + * @note Disabling voltage regulator allows to save power. This operation can + * be carried out only when ADC is disabled. + * @note To enable again the voltage regulator, the user is expected to + * resort to HAL_ADC_Init() API. + * @param hadc ADC handle + * @retval HAL status + */ +HAL_StatusTypeDef HAL_ADCEx_DisableVoltageRegulator(ADC_HandleTypeDef *hadc) +{ + HAL_StatusTypeDef tmp_hal_status; + + /* Check the parameters */ + assert_param(IS_ADC_ALL_INSTANCE(hadc->Instance)); + + /* Setting of this feature is conditioned to ADC state: ADC must be ADC disabled */ + if (LL_ADC_IsEnabled(hadc->Instance) == 0UL) + { + LL_ADC_DisableInternalRegulator(hadc->Instance); + tmp_hal_status = HAL_OK; + } + else + { + tmp_hal_status = HAL_ERROR; + } + + return tmp_hal_status; +} + +/** + * @brief Enter ADC deep-power-down mode + * @note This mode is achieved in setting DEEPPWD bit and allows to save power + * in reducing leakage currents. It is particularly interesting before + * entering stop modes. + * @note Setting DEEPPWD automatically clears ADVREGEN bit and disables the + * ADC voltage regulator. This means that this API encompasses + * HAL_ADCEx_DisableVoltageRegulator(). Additionally, the internal + * calibration is lost. + * @note To exit the ADC deep-power-down mode, the user is expected to + * resort to HAL_ADC_Init() API as well as to relaunch a calibration + * with HAL_ADCEx_Calibration_Start() API or to re-apply a previously + * saved calibration factor. + * @param hadc ADC handle + * @retval HAL status + */ +HAL_StatusTypeDef HAL_ADCEx_EnterADCDeepPowerDownMode(ADC_HandleTypeDef *hadc) +{ + HAL_StatusTypeDef tmp_hal_status; + + /* Check the parameters */ + assert_param(IS_ADC_ALL_INSTANCE(hadc->Instance)); + + /* Setting of this feature is conditioned to ADC state: ADC must be ADC disabled */ + if (LL_ADC_IsEnabled(hadc->Instance) == 0UL) + { + LL_ADC_EnableDeepPowerDown(hadc->Instance); + tmp_hal_status = HAL_OK; + } + else + { + tmp_hal_status = HAL_ERROR; + } + + return tmp_hal_status; +} + +/** + * @} + */ + +/** + * @} + */ + +#endif /* HAL_ADC_MODULE_ENABLED */ +/** + * @} + */ + +/** + * @} + */ + +/************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/ diff --git a/source/hic_hal/stm32/stm32h743ii/STM32H7xx_HAL_Driver/Src/stm32h7xx_hal_dma.c b/source/hic_hal/stm32/stm32h743ii/STM32H7xx_HAL_Driver/Src/stm32h7xx_hal_dma.c new file mode 100644 index 000000000..399ae0e0b --- /dev/null +++ b/source/hic_hal/stm32/stm32h743ii/STM32H7xx_HAL_Driver/Src/stm32h7xx_hal_dma.c @@ -0,0 +1,2028 @@ +/** + ****************************************************************************** + * @file stm32h7xx_hal_dma.c + * @author MCD Application Team + * @brief DMA HAL module driver. + * This file provides firmware functions to manage the following + * functionalities of the Direct Memory Access (DMA) peripheral: + * + Initialization and de-initialization functions + * + IO operation functions + * + Peripheral State and errors functions + @verbatim + ============================================================================== + ##### How to use this driver ##### + ============================================================================== + [..] + (#) Enable and configure the peripheral to be connected to the DMA Stream + (except for internal SRAM/FLASH memories: no initialization is + necessary) please refer to Reference manual for connection between peripherals + and DMA requests . + + (#) For a given Stream, program the required configuration through the following parameters: + Transfer Direction, Source and Destination data formats, + Circular, Normal or peripheral flow control mode, Stream Priority level, + Source and Destination Increment mode, FIFO mode and its Threshold (if needed), + Burst mode for Source and/or Destination (if needed) using HAL_DMA_Init() function. + + *** Polling mode IO operation *** + ================================= + [..] + (+) Use HAL_DMA_Start() to start DMA transfer after the configuration of Source + address and destination address and the Length of data to be transferred + (+) Use HAL_DMA_PollForTransfer() to poll for the end of current transfer, in this + case a fixed Timeout can be configured by User depending from his application. + + *** Interrupt mode IO operation *** + =================================== + [..] + (+) Configure the DMA interrupt priority using HAL_NVIC_SetPriority() + (+) Enable the DMA IRQ handler using HAL_NVIC_EnableIRQ() + (+) Use HAL_DMA_Start_IT() to start DMA transfer after the configuration of + Source address and destination address and the Length of data to be transferred. In this + case the DMA interrupt is configured + (+) Use HAL_DMA_IRQHandler() called under DMA_IRQHandler() Interrupt subroutine + (+) At the end of data transfer HAL_DMA_IRQHandler() function is executed and user can + add his own function by customization of function pointer XferCpltCallback and + XferErrorCallback (i.e a member of DMA handle structure). + [..] + (#) Use HAL_DMA_GetState() function to return the DMA state and HAL_DMA_GetError() in case of error + detection. + + (#) Use HAL_DMA_Abort() function to abort the current transfer + + -@- In Memory-to-Memory transfer mode, Circular mode is not allowed. + + -@- The FIFO is used mainly to reduce bus usage and to allow data packing/unpacking: it is + possible to set different Data Sizes for the Peripheral and the Memory (ie. you can set + Half-Word data size for the peripheral to access its data register and set Word data size + for the Memory to gain in access time. Each two half words will be packed and written in + a single access to a Word in the Memory). + + -@- When FIFO is disabled, it is not allowed to configure different Data Sizes for Source + and Destination. In this case the Peripheral Data Size will be applied to both Source + and Destination. + + *** DMA HAL driver macros list *** + ============================================= + [..] + Below the list of most used macros in DMA HAL driver. + + (+) __HAL_DMA_ENABLE: Enable the specified DMA Stream. + (+) __HAL_DMA_DISABLE: Disable the specified DMA Stream. + (+) __HAL_DMA_GET_FS: Return the current DMA Stream FIFO filled level. + (+) __HAL_DMA_ENABLE_IT: Enable the specified DMA Stream interrupts. + (+) __HAL_DMA_DISABLE_IT: Disable the specified DMA Stream interrupts. + (+) __HAL_DMA_GET_IT_SOURCE: Check whether the specified DMA Stream interrupt has occurred or not. + + [..] + (@) You can refer to the DMA HAL driver header file for more useful macros. + + @endverbatim + ****************************************************************************** + * @attention + * + *

© COPYRIGHT(c) 2017 STMicroelectronics. + * All rights reserved.

+ * + * This software component is licensed by ST under BSD 3-Clause license, + * the "License"; You may not use this file except in compliance with the + * License. You may obtain a copy of the License at: + * opensource.org/licenses/BSD-3-Clause + * + ****************************************************************************** + */ + +/* Includes ------------------------------------------------------------------*/ +#include "stm32h7xx_hal.h" + +/** @addtogroup STM32H7xx_HAL_Driver + * @{ + */ + +/** @defgroup DMA DMA + * @brief DMA HAL module driver + * @{ + */ + +#ifdef HAL_DMA_MODULE_ENABLED + +/* Private types -------------------------------------------------------------*/ +typedef struct +{ + __IO uint32_t ISR; /*!< DMA interrupt status register */ + __IO uint32_t Reserved0; + __IO uint32_t IFCR; /*!< DMA interrupt flag clear register */ +} DMA_Base_Registers; + +typedef struct +{ + __IO uint32_t ISR; /*!< BDMA interrupt status register */ + __IO uint32_t IFCR; /*!< BDMA interrupt flag clear register */ +} BDMA_Base_Registers; + +/* Private variables ---------------------------------------------------------*/ +/* Private constants ---------------------------------------------------------*/ +/** @addtogroup DMA_Private_Constants + * @{ + */ +#define HAL_TIMEOUT_DMA_ABORT (5U) /* 5 ms */ + +#define BDMA_PERIPH_TO_MEMORY (0x00000000U) /*!< Peripheral to memory direction */ +#define BDMA_MEMORY_TO_PERIPH ((uint32_t)BDMA_CCR_DIR) /*!< Memory to peripheral direction */ +#define BDMA_MEMORY_TO_MEMORY ((uint32_t)BDMA_CCR_MEM2MEM) /*!< Memory to memory direction */ + +/* DMA to BDMA conversion */ +#define DMA_TO_BDMA_DIRECTION(__DMA_DIRECTION__) (((__DMA_DIRECTION__) == DMA_MEMORY_TO_PERIPH)? BDMA_MEMORY_TO_PERIPH: \ + ((__DMA_DIRECTION__) == DMA_MEMORY_TO_MEMORY)? BDMA_MEMORY_TO_MEMORY: \ + BDMA_PERIPH_TO_MEMORY) + +#define DMA_TO_BDMA_PERIPHERAL_INC(__DMA_PERIPHERAL_INC__) ((__DMA_PERIPHERAL_INC__) >> 3U) +#define DMA_TO_BDMA_MEMORY_INC(__DMA_MEMORY_INC__) ((__DMA_MEMORY_INC__) >> 3U) + +#define DMA_TO_BDMA_PDATA_SIZE(__DMA_PDATA_SIZE__) ((__DMA_PDATA_SIZE__) >> 3U) +#define DMA_TO_BDMA_MDATA_SIZE(__DMA_MDATA_SIZE__) ((__DMA_MDATA_SIZE__) >> 3U) + +#define DMA_TO_BDMA_MODE(__DMA_MODE__) ((__DMA_MODE__) >> 3U) + +#define DMA_TO_BDMA_PRIORITY(__DMA_PRIORITY__) ((__DMA_PRIORITY__) >> 4U) + +/** + * @} + */ +/* Private macros ------------------------------------------------------------*/ +/* Private functions ---------------------------------------------------------*/ +/** @addtogroup DMA_Private_Functions + * @{ + */ +static void DMA_SetConfig(DMA_HandleTypeDef *hdma, uint32_t SrcAddress, uint32_t DstAddress, uint32_t DataLength); +static uint32_t DMA_CalcBaseAndBitshift(DMA_HandleTypeDef *hdma); +static HAL_StatusTypeDef DMA_CheckFifoParam(DMA_HandleTypeDef *hdma); +static void DMA_CalcDMAMUXChannelBaseAndMask(DMA_HandleTypeDef *hdma); +static void DMA_CalcDMAMUXRequestGenBaseAndMask(DMA_HandleTypeDef *hdma); + +/** + * @} + */ + +/* Exported functions ---------------------------------------------------------*/ +/** @addtogroup DMA_Exported_Functions + * @{ + */ + +/** @addtogroup DMA_Exported_Functions_Group1 + * +@verbatim + =============================================================================== + ##### Initialization and de-initialization functions ##### + =============================================================================== + [..] + This section provides functions allowing to initialize the DMA Stream source + and destination incrementation and data sizes, transfer direction, + circular/normal mode selection, memory-to-memory mode selection and Stream priority value. + [..] + The HAL_DMA_Init() function follows the DMA configuration procedures as described in + reference manual. + The HAL_DMA_DeInit function allows to deinitialize the DMA stream. + +@endverbatim + * @{ + */ + +/** + * @brief Initialize the DMA according to the specified + * parameters in the DMA_InitTypeDef and create the associated handle. + * @param hdma: Pointer to a DMA_HandleTypeDef structure that contains + * the configuration information for the specified DMA Stream. + * @retval HAL status + */ +HAL_StatusTypeDef HAL_DMA_Init(DMA_HandleTypeDef *hdma) +{ + uint32_t registerValue; + uint32_t tickstart = HAL_GetTick(); + DMA_Base_Registers *regs_dma; + BDMA_Base_Registers *regs_bdma; + + /* Check the DMA peripheral handle */ + if(hdma == NULL) + { + return HAL_ERROR; + } + + /* Check the parameters */ + assert_param(IS_DMA_ALL_INSTANCE(hdma->Instance)); + assert_param(IS_DMA_DIRECTION(hdma->Init.Direction)); + assert_param(IS_DMA_PERIPHERAL_INC_STATE(hdma->Init.PeriphInc)); + assert_param(IS_DMA_MEMORY_INC_STATE(hdma->Init.MemInc)); + assert_param(IS_DMA_PERIPHERAL_DATA_SIZE(hdma->Init.PeriphDataAlignment)); + assert_param(IS_DMA_MEMORY_DATA_SIZE(hdma->Init.MemDataAlignment)); + assert_param(IS_DMA_MODE(hdma->Init.Mode)); + assert_param(IS_DMA_PRIORITY(hdma->Init.Priority)); + + if(IS_DMA_STREAM_INSTANCE(hdma->Instance) != 0U) /* DMA1 or DMA2 instance */ + { + assert_param(IS_DMA_REQUEST(hdma->Init.Request)); + assert_param(IS_DMA_FIFO_MODE_STATE(hdma->Init.FIFOMode)); + /* Check the memory burst, peripheral burst and FIFO threshold parameters only + when FIFO mode is enabled */ + if(hdma->Init.FIFOMode != DMA_FIFOMODE_DISABLE) + { + assert_param(IS_DMA_FIFO_THRESHOLD(hdma->Init.FIFOThreshold)); + assert_param(IS_DMA_MEMORY_BURST(hdma->Init.MemBurst)); + assert_param(IS_DMA_PERIPHERAL_BURST(hdma->Init.PeriphBurst)); + } + + /* Allocate lock resource */ + __HAL_UNLOCK(hdma); + + /* Change DMA peripheral state */ + hdma->State = HAL_DMA_STATE_BUSY; + + /* Disable the peripheral */ + __HAL_DMA_DISABLE(hdma); + + /* Check if the DMA Stream is effectively disabled */ + while((((DMA_Stream_TypeDef *)hdma->Instance)->CR & DMA_SxCR_EN) != 0U) + { + /* Check for the Timeout */ + if((HAL_GetTick() - tickstart ) > HAL_TIMEOUT_DMA_ABORT) + { + /* Update error code */ + hdma->ErrorCode = HAL_DMA_ERROR_TIMEOUT; + + /* Change the DMA state */ + hdma->State = HAL_DMA_STATE_ERROR; + + return HAL_ERROR; + } + } + + /* Get the CR register value */ + registerValue = ((DMA_Stream_TypeDef *)hdma->Instance)->CR; + + /* Clear CHSEL, MBURST, PBURST, PL, MSIZE, PSIZE, MINC, PINC, CIRC, DIR, CT and DBM bits */ + registerValue &= ((uint32_t)~(DMA_SxCR_MBURST | DMA_SxCR_PBURST | \ + DMA_SxCR_PL | DMA_SxCR_MSIZE | DMA_SxCR_PSIZE | \ + DMA_SxCR_MINC | DMA_SxCR_PINC | DMA_SxCR_CIRC | \ + DMA_SxCR_DIR | DMA_SxCR_CT | DMA_SxCR_DBM)); + + /* Prepare the DMA Stream configuration */ + registerValue |= hdma->Init.Direction | + hdma->Init.PeriphInc | hdma->Init.MemInc | + hdma->Init.PeriphDataAlignment | hdma->Init.MemDataAlignment | + hdma->Init.Mode | hdma->Init.Priority; + + /* the Memory burst and peripheral burst are not used when the FIFO is disabled */ + if(hdma->Init.FIFOMode == DMA_FIFOMODE_ENABLE) + { + /* Get memory burst and peripheral burst */ + registerValue |= hdma->Init.MemBurst | hdma->Init.PeriphBurst; + } + + /* Write to DMA Stream CR register */ + ((DMA_Stream_TypeDef *)hdma->Instance)->CR = registerValue; + + /* Get the FCR register value */ + registerValue = ((DMA_Stream_TypeDef *)hdma->Instance)->FCR; + + /* Clear Direct mode and FIFO threshold bits */ + registerValue &= (uint32_t)~(DMA_SxFCR_DMDIS | DMA_SxFCR_FTH); + + /* Prepare the DMA Stream FIFO configuration */ + registerValue |= hdma->Init.FIFOMode; + + /* the FIFO threshold is not used when the FIFO mode is disabled */ + if(hdma->Init.FIFOMode == DMA_FIFOMODE_ENABLE) + { + /* Get the FIFO threshold */ + registerValue |= hdma->Init.FIFOThreshold; + + /* Check compatibility between FIFO threshold level and size of the memory burst */ + /* for INCR4, INCR8, INCR16 */ + if(hdma->Init.MemBurst != DMA_MBURST_SINGLE) + { + if (DMA_CheckFifoParam(hdma) != HAL_OK) + { + /* Update error code */ + hdma->ErrorCode = HAL_DMA_ERROR_PARAM; + + /* Change the DMA state */ + hdma->State = HAL_DMA_STATE_READY; + + return HAL_ERROR; + } + } + } + + /* Write to DMA Stream FCR */ + ((DMA_Stream_TypeDef *)hdma->Instance)->FCR = registerValue; + + /* Initialize StreamBaseAddress and StreamIndex parameters to be used to calculate + DMA steam Base Address needed by HAL_DMA_IRQHandler() and HAL_DMA_PollForTransfer() */ + regs_dma = (DMA_Base_Registers *)DMA_CalcBaseAndBitshift(hdma); + + /* Clear all interrupt flags */ + regs_dma->IFCR = 0x3FUL << (hdma->StreamIndex & 0x1FU); + } + else if(IS_BDMA_CHANNEL_INSTANCE(hdma->Instance) != 0U) /* BDMA instance(s) */ + { + if(IS_BDMA_CHANNEL_DMAMUX_INSTANCE(hdma->Instance) != 0U) + { + /* Check the request parameter */ + assert_param(IS_BDMA_REQUEST(hdma->Init.Request)); + } + + /* Allocate lock resource */ + __HAL_UNLOCK(hdma); + + /* Change DMA peripheral state */ + hdma->State = HAL_DMA_STATE_BUSY; + + /* Get the CR register value */ + registerValue = ((BDMA_Channel_TypeDef *)hdma->Instance)->CCR; + + /* Clear PL, MSIZE, PSIZE, MINC, PINC, CIRC, DIR, MEM2MEM, DBM and CT bits */ + registerValue &= ((uint32_t)~(BDMA_CCR_PL | BDMA_CCR_MSIZE | BDMA_CCR_PSIZE | \ + BDMA_CCR_MINC | BDMA_CCR_PINC | BDMA_CCR_CIRC | \ + BDMA_CCR_DIR | BDMA_CCR_MEM2MEM | BDMA_CCR_DBM | \ + BDMA_CCR_CT)); + + /* Prepare the DMA Channel configuration */ + registerValue |= DMA_TO_BDMA_DIRECTION(hdma->Init.Direction) | + DMA_TO_BDMA_PERIPHERAL_INC(hdma->Init.PeriphInc) | + DMA_TO_BDMA_MEMORY_INC(hdma->Init.MemInc) | + DMA_TO_BDMA_PDATA_SIZE(hdma->Init.PeriphDataAlignment) | + DMA_TO_BDMA_MDATA_SIZE(hdma->Init.MemDataAlignment) | + DMA_TO_BDMA_MODE(hdma->Init.Mode) | + DMA_TO_BDMA_PRIORITY(hdma->Init.Priority); + + /* Write to DMA Channel CR register */ + ((BDMA_Channel_TypeDef *)hdma->Instance)->CCR = registerValue; + + /* calculation of the channel index */ + hdma->StreamIndex = (((uint32_t)((uint32_t*)hdma->Instance) - (uint32_t)BDMA_Channel0) / ((uint32_t)BDMA_Channel1 - (uint32_t)BDMA_Channel0)) << 2U; + + /* Initialize StreamBaseAddress and StreamIndex parameters to be used to calculate + DMA steam Base Address needed by HAL_DMA_IRQHandler() and HAL_DMA_PollForTransfer() */ + regs_bdma = (BDMA_Base_Registers *)DMA_CalcBaseAndBitshift(hdma); + + /* Clear all interrupt flags */ + regs_bdma->IFCR = ((BDMA_IFCR_CGIF0) << (hdma->StreamIndex & 0x1FU)); + } + else + { + hdma->ErrorCode = HAL_DMA_ERROR_PARAM; + hdma->State = HAL_DMA_STATE_ERROR; + + return HAL_ERROR; + } + + if(IS_DMA_DMAMUX_ALL_INSTANCE(hdma->Instance) != 0U) /* No DMAMUX available for BDMA1 */ + { + /* Initialize parameters for DMAMUX channel : + DMAmuxChannel, DMAmuxChannelStatus and DMAmuxChannelStatusMask + */ + DMA_CalcDMAMUXChannelBaseAndMask(hdma); + + if(hdma->Init.Direction == DMA_MEMORY_TO_MEMORY) + { + /* if memory to memory force the request to 0*/ + hdma->Init.Request = DMA_REQUEST_MEM2MEM; + } + + /* Set peripheral request to DMAMUX channel */ + hdma->DMAmuxChannel->CCR = (hdma->Init.Request & DMAMUX_CxCR_DMAREQ_ID); + + /* Clear the DMAMUX synchro overrun flag */ + hdma->DMAmuxChannelStatus->CFR = hdma->DMAmuxChannelStatusMask; + + /* Initialize parameters for DMAMUX request generator : + if the DMA request is DMA_REQUEST_GENERATOR0 to DMA_REQUEST_GENERATOR7 + */ + if((hdma->Init.Request >= DMA_REQUEST_GENERATOR0) && (hdma->Init.Request <= DMA_REQUEST_GENERATOR7)) + { + /* Initialize parameters for DMAMUX request generator : + DMAmuxRequestGen, DMAmuxRequestGenStatus and DMAmuxRequestGenStatusMask */ + DMA_CalcDMAMUXRequestGenBaseAndMask(hdma); + + /* Reset the DMAMUX request generator register */ + hdma->DMAmuxRequestGen->RGCR = 0U; + + /* Clear the DMAMUX request generator overrun flag */ + hdma->DMAmuxRequestGenStatus->RGCFR = hdma->DMAmuxRequestGenStatusMask; + } + else + { + hdma->DMAmuxRequestGen = 0U; + hdma->DMAmuxRequestGenStatus = 0U; + hdma->DMAmuxRequestGenStatusMask = 0U; + } + } + + /* Initialize the error code */ + hdma->ErrorCode = HAL_DMA_ERROR_NONE; + + /* Initialize the DMA state */ + hdma->State = HAL_DMA_STATE_READY; + + return HAL_OK; +} + +/** + * @brief DeInitializes the DMA peripheral + * @param hdma: pointer to a DMA_HandleTypeDef structure that contains + * the configuration information for the specified DMA Stream. + * @retval HAL status + */ +HAL_StatusTypeDef HAL_DMA_DeInit(DMA_HandleTypeDef *hdma) +{ + DMA_Base_Registers *regs_dma; + BDMA_Base_Registers *regs_bdma; + + /* Check the DMA peripheral handle */ + if(hdma == NULL) + { + return HAL_ERROR; + } + + /* Disable the selected DMA Streamx */ + __HAL_DMA_DISABLE(hdma); + + if(IS_DMA_STREAM_INSTANCE(hdma->Instance) != 0U) /* DMA1 or DMA2 instance */ + { + /* Reset DMA Streamx control register */ + ((DMA_Stream_TypeDef *)hdma->Instance)->CR = 0U; + + /* Reset DMA Streamx number of data to transfer register */ + ((DMA_Stream_TypeDef *)hdma->Instance)->NDTR = 0U; + + /* Reset DMA Streamx peripheral address register */ + ((DMA_Stream_TypeDef *)hdma->Instance)->PAR = 0U; + + /* Reset DMA Streamx memory 0 address register */ + ((DMA_Stream_TypeDef *)hdma->Instance)->M0AR = 0U; + + /* Reset DMA Streamx memory 1 address register */ + ((DMA_Stream_TypeDef *)hdma->Instance)->M1AR = 0U; + + /* Reset DMA Streamx FIFO control register */ + ((DMA_Stream_TypeDef *)hdma->Instance)->FCR = (uint32_t)0x00000021U; + + /* Get DMA steam Base Address */ + regs_dma = (DMA_Base_Registers *)DMA_CalcBaseAndBitshift(hdma); + + /* Clear all interrupt flags at correct offset within the register */ + regs_dma->IFCR = 0x3FUL << (hdma->StreamIndex & 0x1FU); + } + else if(IS_BDMA_CHANNEL_INSTANCE(hdma->Instance) != 0U) /* BDMA instance(s) */ + { + /* Reset DMA Channel control register */ + ((BDMA_Channel_TypeDef *)hdma->Instance)->CCR = 0U; + + /* Reset DMA Channel Number of Data to Transfer register */ + ((BDMA_Channel_TypeDef *)hdma->Instance)->CNDTR = 0U; + + /* Reset DMA Channel peripheral address register */ + ((BDMA_Channel_TypeDef *)hdma->Instance)->CPAR = 0U; + + /* Reset DMA Channel memory 0 address register */ + ((BDMA_Channel_TypeDef *)hdma->Instance)->CM0AR = 0U; + + /* Reset DMA Channel memory 1 address register */ + ((BDMA_Channel_TypeDef *)hdma->Instance)->CM1AR = 0U; + + /* Get DMA steam Base Address */ + regs_bdma = (BDMA_Base_Registers *)DMA_CalcBaseAndBitshift(hdma); + + /* Clear all interrupt flags at correct offset within the register */ + regs_bdma->IFCR = ((BDMA_IFCR_CGIF0) << (hdma->StreamIndex & 0x1FU)); + } + else + { + /* Return error status */ + return HAL_ERROR; + } + + if(IS_DMA_DMAMUX_ALL_INSTANCE(hdma->Instance) != 0U) /* No DMAMUX available for BDMA1 */ + { + /* Initialize parameters for DMAMUX channel : + DMAmuxChannel, DMAmuxChannelStatus and DMAmuxChannelStatusMask */ + DMA_CalcDMAMUXChannelBaseAndMask(hdma); + + if(hdma->DMAmuxChannel != 0U) + { + /* Resett he DMAMUX channel that corresponds to the DMA stream */ + hdma->DMAmuxChannel->CCR = 0U; + + /* Clear the DMAMUX synchro overrun flag */ + hdma->DMAmuxChannelStatus->CFR = hdma->DMAmuxChannelStatusMask; + } + + if((hdma->Init.Request >= DMA_REQUEST_GENERATOR0) && (hdma->Init.Request <= DMA_REQUEST_GENERATOR7)) + { + /* Initialize parameters for DMAMUX request generator : + DMAmuxRequestGen, DMAmuxRequestGenStatus and DMAmuxRequestGenStatusMask */ + DMA_CalcDMAMUXRequestGenBaseAndMask(hdma); + + /* Reset the DMAMUX request generator register */ + hdma->DMAmuxRequestGen->RGCR = 0U; + + /* Clear the DMAMUX request generator overrun flag */ + hdma->DMAmuxRequestGenStatus->RGCFR = hdma->DMAmuxRequestGenStatusMask; + } + + hdma->DMAmuxRequestGen = 0U; + hdma->DMAmuxRequestGenStatus = 0U; + hdma->DMAmuxRequestGenStatusMask = 0U; + } + + + /* Clean callbacks */ + hdma->XferCpltCallback = NULL; + hdma->XferHalfCpltCallback = NULL; + hdma->XferM1CpltCallback = NULL; + hdma->XferM1HalfCpltCallback = NULL; + hdma->XferErrorCallback = NULL; + hdma->XferAbortCallback = NULL; + + /* Initialize the error code */ + hdma->ErrorCode = HAL_DMA_ERROR_NONE; + + /* Initialize the DMA state */ + hdma->State = HAL_DMA_STATE_RESET; + + /* Release Lock */ + __HAL_UNLOCK(hdma); + + return HAL_OK; +} + +/** + * @} + */ + +/** @addtogroup DMA_Exported_Functions_Group2 + * +@verbatim + =============================================================================== + ##### IO operation functions ##### + =============================================================================== + [..] This section provides functions allowing to: + (+) Configure the source, destination address and data length and Start DMA transfer + (+) Configure the source, destination address and data length and + Start DMA transfer with interrupt + (+) Register and Unregister DMA callbacks + (+) Abort DMA transfer + (+) Poll for transfer complete + (+) Handle DMA interrupt request + +@endverbatim + * @{ + */ + +/** + * @brief Starts the DMA Transfer. + * @param hdma : pointer to a DMA_HandleTypeDef structure that contains + * the configuration information for the specified DMA Stream. + * @param SrcAddress: The source memory Buffer address + * @param DstAddress: The destination memory Buffer address + * @param DataLength: The length of data to be transferred from source to destination + * @retval HAL status + */ +HAL_StatusTypeDef HAL_DMA_Start(DMA_HandleTypeDef *hdma, uint32_t SrcAddress, uint32_t DstAddress, uint32_t DataLength) +{ + HAL_StatusTypeDef status = HAL_OK; + + /* Check the parameters */ + assert_param(IS_DMA_BUFFER_SIZE(DataLength)); + + /* Check the DMA peripheral handle */ + if(hdma == NULL) + { + return HAL_ERROR; + } + + /* Process locked */ + __HAL_LOCK(hdma); + + if(HAL_DMA_STATE_READY == hdma->State) + { + /* Change DMA peripheral state */ + hdma->State = HAL_DMA_STATE_BUSY; + + /* Initialize the error code */ + hdma->ErrorCode = HAL_DMA_ERROR_NONE; + + /* Disable the peripheral */ + __HAL_DMA_DISABLE(hdma); + + /* Configure the source, destination address and the data length */ + DMA_SetConfig(hdma, SrcAddress, DstAddress, DataLength); + + /* Enable the Peripheral */ + __HAL_DMA_ENABLE(hdma); + } + else + { + /* Process unlocked */ + __HAL_UNLOCK(hdma); + + /* Set the error code to busy */ + hdma->ErrorCode = HAL_DMA_ERROR_BUSY; + + /* Return error status */ + status = HAL_ERROR; + } + return status; +} + +/** + * @brief Start the DMA Transfer with interrupt enabled. + * @param hdma: pointer to a DMA_HandleTypeDef structure that contains + * the configuration information for the specified DMA Stream. + * @param SrcAddress: The source memory Buffer address + * @param DstAddress: The destination memory Buffer address + * @param DataLength: The length of data to be transferred from source to destination + * @retval HAL status + */ +HAL_StatusTypeDef HAL_DMA_Start_IT(DMA_HandleTypeDef *hdma, uint32_t SrcAddress, uint32_t DstAddress, uint32_t DataLength) +{ + HAL_StatusTypeDef status = HAL_OK; + + /* Check the parameters */ + assert_param(IS_DMA_BUFFER_SIZE(DataLength)); + + /* Check the DMA peripheral handle */ + if(hdma == NULL) + { + return HAL_ERROR; + } + + /* Process locked */ + __HAL_LOCK(hdma); + + if(HAL_DMA_STATE_READY == hdma->State) + { + /* Change DMA peripheral state */ + hdma->State = HAL_DMA_STATE_BUSY; + + /* Initialize the error code */ + hdma->ErrorCode = HAL_DMA_ERROR_NONE; + + /* Disable the peripheral */ + __HAL_DMA_DISABLE(hdma); + + /* Configure the source, destination address and the data length */ + DMA_SetConfig(hdma, SrcAddress, DstAddress, DataLength); + + if(IS_DMA_STREAM_INSTANCE(hdma->Instance) != 0U) /* DMA1 or DMA2 instance */ + { + /* Enable Common interrupts*/ + MODIFY_REG(((DMA_Stream_TypeDef *)hdma->Instance)->CR, (DMA_IT_TC | DMA_IT_TE | DMA_IT_DME | DMA_IT_HT), (DMA_IT_TC | DMA_IT_TE | DMA_IT_DME)); + + if(hdma->XferHalfCpltCallback != NULL) + { + /* Enable Half Transfer IT if corresponding Callback is set */ + ((DMA_Stream_TypeDef *)hdma->Instance)->CR |= DMA_IT_HT; + } + } + else /* BDMA channel */ + { + /* Enable Common interrupts */ + MODIFY_REG(((BDMA_Channel_TypeDef *)hdma->Instance)->CCR, (BDMA_CCR_TCIE | BDMA_CCR_HTIE | BDMA_CCR_TEIE), (BDMA_CCR_TCIE | BDMA_CCR_TEIE)); + + if(hdma->XferHalfCpltCallback != NULL) + { + /*Enable Half Transfer IT if corresponding Callback is set */ + ((BDMA_Channel_TypeDef *)hdma->Instance)->CCR |= BDMA_CCR_HTIE; + } + } + + if(IS_DMA_DMAMUX_ALL_INSTANCE(hdma->Instance) != 0U) /* No DMAMUX available for BDMA1 */ + { + /* Check if DMAMUX Synchronization is enabled */ + if((hdma->DMAmuxChannel->CCR & DMAMUX_CxCR_SE) != 0U) + { + /* Enable DMAMUX sync overrun IT*/ + hdma->DMAmuxChannel->CCR |= DMAMUX_CxCR_SOIE; + } + + if(hdma->DMAmuxRequestGen != 0U) + { + /* if using DMAMUX request generator, enable the DMAMUX request generator overrun IT*/ + /* enable the request gen overrun IT */ + hdma->DMAmuxRequestGen->RGCR |= DMAMUX_RGxCR_OIE; + } + } + + /* Enable the Peripheral */ + __HAL_DMA_ENABLE(hdma); + } + else + { + /* Process unlocked */ + __HAL_UNLOCK(hdma); + + /* Set the error code to busy */ + hdma->ErrorCode = HAL_DMA_ERROR_BUSY; + + /* Return error status */ + status = HAL_ERROR; + } + + return status; +} + +/** + * @brief Aborts the DMA Transfer. + * @param hdma : pointer to a DMA_HandleTypeDef structure that contains + * the configuration information for the specified DMA Stream. + * + * @note After disabling a DMA Stream, a check for wait until the DMA Stream is + * effectively disabled is added. If a Stream is disabled + * while a data transfer is ongoing, the current data will be transferred + * and the Stream will be effectively disabled only after the transfer of + * this single data is finished. + * @retval HAL status + */ +HAL_StatusTypeDef HAL_DMA_Abort(DMA_HandleTypeDef *hdma) +{ + /* calculate DMA base and stream number */ + DMA_Base_Registers *regs_dma; + BDMA_Base_Registers *regs_bdma; + const __IO uint32_t *enableRegister; + + uint32_t tickstart = HAL_GetTick(); + + /* Check the DMA peripheral handle */ + if(hdma == NULL) + { + return HAL_ERROR; + } + + /* Check the DMA peripheral state */ + if(hdma->State != HAL_DMA_STATE_BUSY) + { + hdma->ErrorCode = HAL_DMA_ERROR_NO_XFER; + + /* Process Unlocked */ + __HAL_UNLOCK(hdma); + + return HAL_ERROR; + } + else + { + /* Disable all the transfer interrupts */ + if(IS_DMA_STREAM_INSTANCE(hdma->Instance) != 0U) /* DMA1 or DMA2 instance */ + { + /* Disable DMA All Interrupts */ + ((DMA_Stream_TypeDef *)hdma->Instance)->CR &= ~(DMA_IT_TC | DMA_IT_TE | DMA_IT_DME | DMA_IT_HT); + ((DMA_Stream_TypeDef *)hdma->Instance)->FCR &= ~(DMA_IT_FE); + + enableRegister = (__IO uint32_t *)(&(((DMA_Stream_TypeDef *)hdma->Instance)->CR)); + } + else /* BDMA channel */ + { + /* Disable DMA All Interrupts */ + ((BDMA_Channel_TypeDef *)hdma->Instance)->CCR &= ~(BDMA_CCR_TCIE | BDMA_CCR_HTIE | BDMA_CCR_TEIE); + + enableRegister = (__IO uint32_t *)(&(((BDMA_Channel_TypeDef *)hdma->Instance)->CCR)); + } + + if(IS_DMA_DMAMUX_ALL_INSTANCE(hdma->Instance) != 0U) /* No DMAMUX available for BDMA1 */ + { + /* disable the DMAMUX sync overrun IT */ + hdma->DMAmuxChannel->CCR &= ~DMAMUX_CxCR_SOIE; + } + + /* Disable the stream */ + __HAL_DMA_DISABLE(hdma); + + /* Check if the DMA Stream is effectively disabled */ + while(((*enableRegister) & DMA_SxCR_EN) != 0U) + { + /* Check for the Timeout */ + if((HAL_GetTick() - tickstart ) > HAL_TIMEOUT_DMA_ABORT) + { + /* Update error code */ + hdma->ErrorCode = HAL_DMA_ERROR_TIMEOUT; + + /* Process Unlocked */ + __HAL_UNLOCK(hdma); + + /* Change the DMA state */ + hdma->State = HAL_DMA_STATE_ERROR; + + return HAL_ERROR; + } + } + + /* Clear all interrupt flags at correct offset within the register */ + if(IS_DMA_STREAM_INSTANCE(hdma->Instance) != 0U) /* DMA1 or DMA2 instance */ + { + regs_dma = (DMA_Base_Registers *)hdma->StreamBaseAddress; + regs_dma->IFCR = 0x3FUL << (hdma->StreamIndex & 0x1FU); + } + else /* BDMA channel */ + { + regs_bdma = (BDMA_Base_Registers *)hdma->StreamBaseAddress; + regs_bdma->IFCR = ((BDMA_IFCR_CGIF0) << (hdma->StreamIndex & 0x1FU)); + } + + if(IS_DMA_DMAMUX_ALL_INSTANCE(hdma->Instance) != 0U) /* No DMAMUX available for BDMA1 */ + { + /* Clear the DMAMUX synchro overrun flag */ + hdma->DMAmuxChannelStatus->CFR = hdma->DMAmuxChannelStatusMask; + + if(hdma->DMAmuxRequestGen != 0U) + { + /* if using DMAMUX request generator, disable the DMAMUX request generator overrun IT */ + /* disable the request gen overrun IT */ + hdma->DMAmuxRequestGen->RGCR &= ~DMAMUX_RGxCR_OIE; + + /* Clear the DMAMUX request generator overrun flag */ + hdma->DMAmuxRequestGenStatus->RGCFR = hdma->DMAmuxRequestGenStatusMask; + } + } + + /* Process Unlocked */ + __HAL_UNLOCK(hdma); + + /* Change the DMA state */ + hdma->State = HAL_DMA_STATE_READY; + } + + return HAL_OK; +} + +/** + * @brief Aborts the DMA Transfer in Interrupt mode. + * @param hdma : pointer to a DMA_HandleTypeDef structure that contains + * the configuration information for the specified DMA Stream. + * @retval HAL status + */ +HAL_StatusTypeDef HAL_DMA_Abort_IT(DMA_HandleTypeDef *hdma) +{ + BDMA_Base_Registers *regs_bdma; + + /* Check the DMA peripheral handle */ + if(hdma == NULL) + { + return HAL_ERROR; + } + + if(hdma->State != HAL_DMA_STATE_BUSY) + { + hdma->ErrorCode = HAL_DMA_ERROR_NO_XFER; + return HAL_ERROR; + } + else + { + if(IS_DMA_STREAM_INSTANCE(hdma->Instance) != 0U) /* DMA1 or DMA2 instance */ + { + /* Set Abort State */ + hdma->State = HAL_DMA_STATE_ABORT; + + /* Disable the stream */ + __HAL_DMA_DISABLE(hdma); + } + else /* BDMA channel */ + { + /* Disable DMA All Interrupts */ + ((BDMA_Channel_TypeDef *)hdma->Instance)->CCR &= ~(BDMA_CCR_TCIE | BDMA_CCR_HTIE | BDMA_CCR_TEIE); + + /* Disable the channel */ + __HAL_DMA_DISABLE(hdma); + + if(IS_DMA_DMAMUX_ALL_INSTANCE(hdma->Instance) != 0U) /* No DMAMUX available for BDMA1 */ + { + /* disable the DMAMUX sync overrun IT */ + hdma->DMAmuxChannel->CCR &= ~DMAMUX_CxCR_SOIE; + + /* Clear all flags */ + regs_bdma = (BDMA_Base_Registers *)hdma->StreamBaseAddress; + regs_bdma->IFCR = ((BDMA_IFCR_CGIF0) << (hdma->StreamIndex & 0x1FU)); + + /* Clear the DMAMUX synchro overrun flag */ + hdma->DMAmuxChannelStatus->CFR = hdma->DMAmuxChannelStatusMask; + + if(hdma->DMAmuxRequestGen != 0U) + { + /* if using DMAMUX request generator, disable the DMAMUX request generator overrun IT*/ + /* disable the request gen overrun IT */ + hdma->DMAmuxRequestGen->RGCR &= ~DMAMUX_RGxCR_OIE; + + /* Clear the DMAMUX request generator overrun flag */ + hdma->DMAmuxRequestGenStatus->RGCFR = hdma->DMAmuxRequestGenStatusMask; + } + } + + /* Process Unlocked */ + __HAL_UNLOCK(hdma); + + /* Change the DMA state */ + hdma->State = HAL_DMA_STATE_READY; + + /* Call User Abort callback */ + if(hdma->XferAbortCallback != NULL) + { + hdma->XferAbortCallback(hdma); + } + } + } + + return HAL_OK; +} + +/** + * @brief Polling for transfer complete. + * @param hdma: pointer to a DMA_HandleTypeDef structure that contains + * the configuration information for the specified DMA Stream. + * @param CompleteLevel: Specifies the DMA level complete. + * @note The polling mode is kept in this version for legacy. it is recommanded to use the IT model instead. + * This model could be used for debug purpose. + * @note The HAL_DMA_PollForTransfer API cannot be used in circular and double buffering mode (automatic circular mode). + * @param Timeout: Timeout duration. + * @retval HAL status + */ +HAL_StatusTypeDef HAL_DMA_PollForTransfer(DMA_HandleTypeDef *hdma, HAL_DMA_LevelCompleteTypeDef CompleteLevel, uint32_t Timeout) +{ + HAL_StatusTypeDef status = HAL_OK; + uint32_t cpltlevel_mask; + uint32_t tickstart = HAL_GetTick(); + + /* IT status register */ + __IO uint32_t *isr_reg; + /* IT clear flag register */ + __IO uint32_t *ifcr_reg; + + /* Check the DMA peripheral handle */ + if(hdma == NULL) + { + return HAL_ERROR; + } + + if(HAL_DMA_STATE_BUSY != hdma->State) + { + /* No transfer ongoing */ + hdma->ErrorCode = HAL_DMA_ERROR_NO_XFER; + __HAL_UNLOCK(hdma); + + return HAL_ERROR; + } + + if(IS_DMA_STREAM_INSTANCE(hdma->Instance) != 0U) /* DMA1 or DMA2 instance */ + { + /* Polling mode not supported in circular mode and double buffering mode */ + if ((((DMA_Stream_TypeDef *)hdma->Instance)->CR & DMA_SxCR_CIRC) != 0U) + { + hdma->ErrorCode = HAL_DMA_ERROR_NOT_SUPPORTED; + return HAL_ERROR; + } + + /* Get the level transfer complete flag */ + if(CompleteLevel == HAL_DMA_FULL_TRANSFER) + { + /* Transfer Complete flag */ + cpltlevel_mask = DMA_FLAG_TCIF0_4 << (hdma->StreamIndex & 0x1FU); + } + else + { + /* Half Transfer Complete flag */ + cpltlevel_mask = DMA_FLAG_HTIF0_4 << (hdma->StreamIndex & 0x1FU); + } + + isr_reg = &(((DMA_Base_Registers *)hdma->StreamBaseAddress)->ISR); + ifcr_reg = &(((DMA_Base_Registers *)hdma->StreamBaseAddress)->IFCR); + } + else /* BDMA channel */ + { + /* Polling mode not supported in circular mode */ + if ((((BDMA_Channel_TypeDef *)hdma->Instance)->CCR & BDMA_CCR_CIRC) != 0U) + { + hdma->ErrorCode = HAL_DMA_ERROR_NOT_SUPPORTED; + return HAL_ERROR; + } + + /* Get the level transfer complete flag */ + if(CompleteLevel == HAL_DMA_FULL_TRANSFER) + { + /* Transfer Complete flag */ + cpltlevel_mask = BDMA_FLAG_TC0 << (hdma->StreamIndex & 0x1FU); + } + else + { + /* Half Transfer Complete flag */ + cpltlevel_mask = BDMA_FLAG_HT0 << (hdma->StreamIndex & 0x1FU); + } + + isr_reg = &(((BDMA_Base_Registers *)hdma->StreamBaseAddress)->ISR); + ifcr_reg = &(((BDMA_Base_Registers *)hdma->StreamBaseAddress)->IFCR); + } + + while(((*isr_reg) & cpltlevel_mask) == 0U) + { + if(IS_DMA_STREAM_INSTANCE(hdma->Instance) != 0U) /* DMA1 or DMA2 instance */ + { + if(((*isr_reg) & (DMA_FLAG_FEIF0_4 << (hdma->StreamIndex & 0x1FU))) != 0U) + { + /* Update error code */ + hdma->ErrorCode |= HAL_DMA_ERROR_FE; + + /* Clear the FIFO error flag */ + (*ifcr_reg) = DMA_FLAG_FEIF0_4 << (hdma->StreamIndex & 0x1FU); + } + + if(((*isr_reg) & (DMA_FLAG_DMEIF0_4 << (hdma->StreamIndex & 0x1FU))) != 0U) + { + /* Update error code */ + hdma->ErrorCode |= HAL_DMA_ERROR_DME; + + /* Clear the Direct Mode error flag */ + (*ifcr_reg) = DMA_FLAG_DMEIF0_4 << (hdma->StreamIndex & 0x1FU); + } + + if(((*isr_reg) & (DMA_FLAG_TEIF0_4 << (hdma->StreamIndex & 0x1FU))) != 0U) + { + /* Update error code */ + hdma->ErrorCode |= HAL_DMA_ERROR_TE; + + /* Clear the transfer error flag */ + (*ifcr_reg) = DMA_FLAG_TEIF0_4 << (hdma->StreamIndex & 0x1FU); + + /* Change the DMA state */ + hdma->State = HAL_DMA_STATE_READY; + + /* Process Unlocked */ + __HAL_UNLOCK(hdma); + + return HAL_ERROR; + } + } + else /* BDMA channel */ + { + if(((*isr_reg) & (BDMA_FLAG_TE0 << (hdma->StreamIndex & 0x1FU))) != 0U) + { + /* When a DMA transfer error occurs */ + /* A hardware clear of its EN bits is performed */ + /* Clear all flags */ + (*isr_reg) = ((BDMA_ISR_GIF0) << (hdma->StreamIndex & 0x1FU)); + + /* Update error code */ + hdma->ErrorCode = HAL_DMA_ERROR_TE; + + /* Change the DMA state */ + hdma->State = HAL_DMA_STATE_READY; + + /* Process Unlocked */ + __HAL_UNLOCK(hdma); + + return HAL_ERROR; + } + } + + /* Check for the Timeout (Not applicable in circular mode)*/ + if(Timeout != HAL_MAX_DELAY) + { + if(((HAL_GetTick() - tickstart ) > Timeout)||(Timeout == 0U)) + { + /* Update error code */ + hdma->ErrorCode = HAL_DMA_ERROR_TIMEOUT; + + /* if timeout then abort the current transfer */ + /* No need to check return value: as in this case we will return HAL_ERROR with HAL_DMA_ERROR_TIMEOUT error code */ + (void) HAL_DMA_Abort(hdma); + /* + Note that the Abort function will + - Clear the transfer error flags + - Unlock + - Set the State + */ + + return HAL_ERROR; + } + } + + if(IS_DMA_DMAMUX_ALL_INSTANCE(hdma->Instance) != 0U) /* No DMAMUX available for BDMA1 */ + { + /* Check for DMAMUX Request generator (if used) overrun status */ + if(hdma->DMAmuxRequestGen != 0U) + { + /* if using DMAMUX request generator Check for DMAMUX request generator overrun */ + if((hdma->DMAmuxRequestGenStatus->RGSR & hdma->DMAmuxRequestGenStatusMask) != 0U) + { + /* Clear the DMAMUX request generator overrun flag */ + hdma->DMAmuxRequestGenStatus->RGCFR = hdma->DMAmuxRequestGenStatusMask; + + /* Update error code */ + hdma->ErrorCode |= HAL_DMA_ERROR_REQGEN; + } + } + + /* Check for DMAMUX Synchronization overrun */ + if((hdma->DMAmuxChannelStatus->CSR & hdma->DMAmuxChannelStatusMask) != 0U) + { + /* Clear the DMAMUX synchro overrun flag */ + hdma->DMAmuxChannelStatus->CFR = hdma->DMAmuxChannelStatusMask; + + /* Update error code */ + hdma->ErrorCode |= HAL_DMA_ERROR_SYNC; + } + } + } + + + /* Get the level transfer complete flag */ + if(CompleteLevel == HAL_DMA_FULL_TRANSFER) + { + /* Clear the half transfer and transfer complete flags */ + if(IS_DMA_STREAM_INSTANCE(hdma->Instance) != 0U) /* DMA1 or DMA2 instance */ + { + (*ifcr_reg) = (DMA_FLAG_HTIF0_4 | DMA_FLAG_TCIF0_4) << (hdma->StreamIndex & 0x1FU); + } + else /* BDMA channel */ + { + (*ifcr_reg) = (BDMA_FLAG_TC0 << (hdma->StreamIndex & 0x1FU)); + } + + /* Process Unlocked */ + __HAL_UNLOCK(hdma); + + hdma->State = HAL_DMA_STATE_READY; + } + else /*CompleteLevel = HAL_DMA_HALF_TRANSFER*/ + { + /* Clear the half transfer and transfer complete flags */ + if(IS_DMA_STREAM_INSTANCE(hdma->Instance) != 0U) /* DMA1 or DMA2 instance */ + { + (*ifcr_reg) = (DMA_FLAG_HTIF0_4) << (hdma->StreamIndex & 0x1FU); + } + else /* BDMA channel */ + { + (*ifcr_reg) = (BDMA_FLAG_HT0 << (hdma->StreamIndex & 0x1FU)); + } + } + + return status; +} + +/** + * @brief Handles DMA interrupt request. + * @param hdma: pointer to a DMA_HandleTypeDef structure that contains + * the configuration information for the specified DMA Stream. + * @retval None + */ +void HAL_DMA_IRQHandler(DMA_HandleTypeDef *hdma) +{ + uint32_t tmpisr_dma, tmpisr_bdma; + uint32_t ccr_reg; + __IO uint32_t count = 0U; + uint32_t timeout = SystemCoreClock / 9600U; + + /* calculate DMA base and stream number */ + DMA_Base_Registers *regs_dma = (DMA_Base_Registers *)hdma->StreamBaseAddress; + BDMA_Base_Registers *regs_bdma = (BDMA_Base_Registers *)hdma->StreamBaseAddress; + + tmpisr_dma = regs_dma->ISR; + tmpisr_bdma = regs_bdma->ISR; + + if(IS_DMA_STREAM_INSTANCE(hdma->Instance) != 0U) /* DMA1 or DMA2 instance */ + { + /* Transfer Error Interrupt management ***************************************/ + if ((tmpisr_dma & (DMA_FLAG_TEIF0_4 << (hdma->StreamIndex & 0x1FU))) != 0U) + { + if(__HAL_DMA_GET_IT_SOURCE(hdma, DMA_IT_TE) != 0U) + { + /* Disable the transfer error interrupt */ + ((DMA_Stream_TypeDef *)hdma->Instance)->CR &= ~(DMA_IT_TE); + + /* Clear the transfer error flag */ + regs_dma->IFCR = DMA_FLAG_TEIF0_4 << (hdma->StreamIndex & 0x1FU); + + /* Update error code */ + hdma->ErrorCode |= HAL_DMA_ERROR_TE; + } + } + /* FIFO Error Interrupt management ******************************************/ + if ((tmpisr_dma & (DMA_FLAG_FEIF0_4 << (hdma->StreamIndex & 0x1FU))) != 0U) + { + if(__HAL_DMA_GET_IT_SOURCE(hdma, DMA_IT_FE) != 0U) + { + /* Clear the FIFO error flag */ + regs_dma->IFCR = DMA_FLAG_FEIF0_4 << (hdma->StreamIndex & 0x1FU); + + /* Update error code */ + hdma->ErrorCode |= HAL_DMA_ERROR_FE; + } + } + /* Direct Mode Error Interrupt management ***********************************/ + if ((tmpisr_dma & (DMA_FLAG_DMEIF0_4 << (hdma->StreamIndex & 0x1FU))) != 0U) + { + if(__HAL_DMA_GET_IT_SOURCE(hdma, DMA_IT_DME) != 0U) + { + /* Clear the direct mode error flag */ + regs_dma->IFCR = DMA_FLAG_DMEIF0_4 << (hdma->StreamIndex & 0x1FU); + + /* Update error code */ + hdma->ErrorCode |= HAL_DMA_ERROR_DME; + } + } + /* Half Transfer Complete Interrupt management ******************************/ + if ((tmpisr_dma & (DMA_FLAG_HTIF0_4 << (hdma->StreamIndex & 0x1FU))) != 0U) + { + if(__HAL_DMA_GET_IT_SOURCE(hdma, DMA_IT_HT) != 0U) + { + /* Clear the half transfer complete flag */ + regs_dma->IFCR = DMA_FLAG_HTIF0_4 << (hdma->StreamIndex & 0x1FU); + + /* Multi_Buffering mode enabled */ + if(((((DMA_Stream_TypeDef *)hdma->Instance)->CR) & (uint32_t)(DMA_SxCR_DBM)) != 0U) + { + /* Current memory buffer used is Memory 0 */ + if((((DMA_Stream_TypeDef *)hdma->Instance)->CR & DMA_SxCR_CT) == 0U) + { + if(hdma->XferHalfCpltCallback != NULL) + { + /* Half transfer callback */ + hdma->XferHalfCpltCallback(hdma); + } + } + /* Current memory buffer used is Memory 1 */ + else + { + if(hdma->XferM1HalfCpltCallback != NULL) + { + /* Half transfer callback */ + hdma->XferM1HalfCpltCallback(hdma); + } + } + } + else + { + /* Disable the half transfer interrupt if the DMA mode is not CIRCULAR */ + if((((DMA_Stream_TypeDef *)hdma->Instance)->CR & DMA_SxCR_CIRC) == 0U) + { + /* Disable the half transfer interrupt */ + ((DMA_Stream_TypeDef *)hdma->Instance)->CR &= ~(DMA_IT_HT); + } + + if(hdma->XferHalfCpltCallback != NULL) + { + /* Half transfer callback */ + hdma->XferHalfCpltCallback(hdma); + } + } + } + } + /* Transfer Complete Interrupt management ***********************************/ + if ((tmpisr_dma & (DMA_FLAG_TCIF0_4 << (hdma->StreamIndex & 0x1FU))) != 0U) + { + if(__HAL_DMA_GET_IT_SOURCE(hdma, DMA_IT_TC) != 0U) + { + /* Clear the transfer complete flag */ + regs_dma->IFCR = DMA_FLAG_TCIF0_4 << (hdma->StreamIndex & 0x1FU); + + if(HAL_DMA_STATE_ABORT == hdma->State) + { + /* Disable all the transfer interrupts */ + ((DMA_Stream_TypeDef *)hdma->Instance)->CR &= ~(DMA_IT_TC | DMA_IT_TE | DMA_IT_DME); + ((DMA_Stream_TypeDef *)hdma->Instance)->FCR &= ~(DMA_IT_FE); + + if((hdma->XferHalfCpltCallback != NULL) || (hdma->XferM1HalfCpltCallback != NULL)) + { + ((DMA_Stream_TypeDef *)hdma->Instance)->CR &= ~(DMA_IT_HT); + } + + /* Clear all interrupt flags at correct offset within the register */ + regs_dma->IFCR = 0x3FUL << (hdma->StreamIndex & 0x1FU); + + /* Process Unlocked */ + __HAL_UNLOCK(hdma); + + /* Change the DMA state */ + hdma->State = HAL_DMA_STATE_READY; + + if(hdma->XferAbortCallback != NULL) + { + hdma->XferAbortCallback(hdma); + } + return; + } + + if(((((DMA_Stream_TypeDef *)hdma->Instance)->CR) & (uint32_t)(DMA_SxCR_DBM)) != 0U) + { + /* Current memory buffer used is Memory 0 */ + if((((DMA_Stream_TypeDef *)hdma->Instance)->CR & DMA_SxCR_CT) == 0U) + { + if(hdma->XferM1CpltCallback != NULL) + { + /* Transfer complete Callback for memory1 */ + hdma->XferM1CpltCallback(hdma); + } + } + /* Current memory buffer used is Memory 1 */ + else + { + if(hdma->XferCpltCallback != NULL) + { + /* Transfer complete Callback for memory0 */ + hdma->XferCpltCallback(hdma); + } + } + } + /* Disable the transfer complete interrupt if the DMA mode is not CIRCULAR */ + else + { + if((((DMA_Stream_TypeDef *)hdma->Instance)->CR & DMA_SxCR_CIRC) == 0U) + { + /* Disable the transfer complete interrupt */ + ((DMA_Stream_TypeDef *)hdma->Instance)->CR &= ~(DMA_IT_TC); + + /* Process Unlocked */ + __HAL_UNLOCK(hdma); + + /* Change the DMA state */ + hdma->State = HAL_DMA_STATE_READY; + } + + if(hdma->XferCpltCallback != NULL) + { + /* Transfer complete callback */ + hdma->XferCpltCallback(hdma); + } + } + } + } + + /* manage error case */ + if(hdma->ErrorCode != HAL_DMA_ERROR_NONE) + { + if((hdma->ErrorCode & HAL_DMA_ERROR_TE) != 0U) + { + hdma->State = HAL_DMA_STATE_ABORT; + + /* Disable the stream */ + __HAL_DMA_DISABLE(hdma); + + do + { + if (++count > timeout) + { + break; + } + } + while((((DMA_Stream_TypeDef *)hdma->Instance)->CR & DMA_SxCR_EN) != 0U); + + /* Process Unlocked */ + __HAL_UNLOCK(hdma); + + if((((DMA_Stream_TypeDef *)hdma->Instance)->CR & DMA_SxCR_EN) != 0U) + { + /* Change the DMA state to error if DMA disable fails */ + hdma->State = HAL_DMA_STATE_ERROR; + } + else + { + /* Change the DMA state to Ready if DMA disable success */ + hdma->State = HAL_DMA_STATE_READY; + } + } + + if(hdma->XferErrorCallback != NULL) + { + /* Transfer error callback */ + hdma->XferErrorCallback(hdma); + } + } + } + else if(IS_BDMA_CHANNEL_INSTANCE(hdma->Instance) != 0U) /* BDMA instance(s) */ + { + ccr_reg = (((BDMA_Channel_TypeDef *)hdma->Instance)->CCR); + + /* Half Transfer Complete Interrupt management ******************************/ + if (((tmpisr_bdma & (BDMA_FLAG_HT0 << (hdma->StreamIndex & 0x1FU))) != 0U) && ((ccr_reg & BDMA_CCR_HTIE) != 0U)) + { + /* Clear the half transfer complete flag */ + regs_bdma->IFCR = (BDMA_ISR_HTIF0 << (hdma->StreamIndex & 0x1FU)); + + /* Disable the transfer complete interrupt if the DMA mode is Double Buffering */ + if((ccr_reg & BDMA_CCR_DBM) != 0U) + { + /* Current memory buffer used is Memory 0 */ + if((ccr_reg & BDMA_CCR_CT) == 0U) + { + if(hdma->XferM1HalfCpltCallback != NULL) + { + /* Half transfer Callback for Memory 1 */ + hdma->XferM1HalfCpltCallback(hdma); + } + } + /* Current memory buffer used is Memory 1 */ + else + { + if(hdma->XferHalfCpltCallback != NULL) + { + /* Half transfer Callback for Memory 0 */ + hdma->XferHalfCpltCallback(hdma); + } + } + } + else + { + if((ccr_reg & BDMA_CCR_CIRC) == 0U) + { + /* Disable the half transfer interrupt */ + __HAL_DMA_DISABLE_IT(hdma, DMA_IT_HT); + } + + /* DMA peripheral state is not updated in Half Transfer */ + /* but in Transfer Complete case */ + + if(hdma->XferHalfCpltCallback != NULL) + { + /* Half transfer callback */ + hdma->XferHalfCpltCallback(hdma); + } + } + } + + /* Transfer Complete Interrupt management ***********************************/ + else if (((tmpisr_bdma & (BDMA_FLAG_TC0 << (hdma->StreamIndex & 0x1FU))) != 0U) && ((ccr_reg & BDMA_CCR_TCIE) != 0U)) + { + /* Clear the transfer complete flag */ + regs_bdma->IFCR = (BDMA_ISR_TCIF0) << (hdma->StreamIndex & 0x1FU); + + /* Disable the transfer complete interrupt if the DMA mode is Double Buffering */ + if((ccr_reg & BDMA_CCR_DBM) != 0U) + { + /* Current memory buffer used is Memory 0 */ + if((ccr_reg & BDMA_CCR_CT) == 0U) + { + if(hdma->XferM1CpltCallback != NULL) + { + /* Transfer complete Callback for Memory 1 */ + hdma->XferM1CpltCallback(hdma); + } + } + /* Current memory buffer used is Memory 1 */ + else + { + if(hdma->XferCpltCallback != NULL) + { + /* Transfer complete Callback for Memory 0 */ + hdma->XferCpltCallback(hdma); + } + } + } + else + { + if((ccr_reg & BDMA_CCR_CIRC) == 0U) + { + /* Disable the transfer complete and error interrupt, if the DMA mode is not CIRCULAR */ + __HAL_DMA_DISABLE_IT(hdma, DMA_IT_TE | DMA_IT_TC); + + /* Process Unlocked */ + __HAL_UNLOCK(hdma); + + /* Change the DMA state */ + hdma->State = HAL_DMA_STATE_READY; + } + + if(hdma->XferCpltCallback != NULL) + { + /* Transfer complete callback */ + hdma->XferCpltCallback(hdma); + } + } + } + /* Transfer Error Interrupt management **************************************/ + else if (((tmpisr_bdma & (BDMA_FLAG_TE0 << (hdma->StreamIndex & 0x1FU))) != 0U) && ((ccr_reg & BDMA_CCR_TEIE) != 0U)) + { + /* When a DMA transfer error occurs */ + /* A hardware clear of its EN bits is performed */ + /* Disable ALL DMA IT */ + __HAL_DMA_DISABLE_IT(hdma, (DMA_IT_TC | DMA_IT_HT | DMA_IT_TE)); + + /* Clear all flags */ + regs_bdma->IFCR = (BDMA_ISR_GIF0) << (hdma->StreamIndex & 0x1FU); + + /* Update error code */ + hdma->ErrorCode = HAL_DMA_ERROR_TE; + + /* Process Unlocked */ + __HAL_UNLOCK(hdma); + + /* Change the DMA state */ + hdma->State = HAL_DMA_STATE_READY; + + if (hdma->XferErrorCallback != NULL) + { + /* Transfer error callback */ + hdma->XferErrorCallback(hdma); + } + } + else + { + /* Nothing To Do */ + } + } + else + { + /* Nothing To Do */ + } +} + +/** + * @brief Register callbacks + * @param hdma: pointer to a DMA_HandleTypeDef structure that contains + * the configuration information for the specified DMA Stream. + * @param CallbackID: User Callback identifier + * a DMA_HandleTypeDef structure as parameter. + * @param pCallback: pointer to private callback function which has pointer to + * a DMA_HandleTypeDef structure as parameter. + * @retval HAL status + */ +HAL_StatusTypeDef HAL_DMA_RegisterCallback(DMA_HandleTypeDef *hdma, HAL_DMA_CallbackIDTypeDef CallbackID, void (* pCallback)(DMA_HandleTypeDef *_hdma)) +{ + + HAL_StatusTypeDef status = HAL_OK; + + /* Check the DMA peripheral handle */ + if(hdma == NULL) + { + return HAL_ERROR; + } + + /* Process locked */ + __HAL_LOCK(hdma); + + if(HAL_DMA_STATE_READY == hdma->State) + { + switch (CallbackID) + { + case HAL_DMA_XFER_CPLT_CB_ID: + hdma->XferCpltCallback = pCallback; + break; + + case HAL_DMA_XFER_HALFCPLT_CB_ID: + hdma->XferHalfCpltCallback = pCallback; + break; + + case HAL_DMA_XFER_M1CPLT_CB_ID: + hdma->XferM1CpltCallback = pCallback; + break; + + case HAL_DMA_XFER_M1HALFCPLT_CB_ID: + hdma->XferM1HalfCpltCallback = pCallback; + break; + + case HAL_DMA_XFER_ERROR_CB_ID: + hdma->XferErrorCallback = pCallback; + break; + + case HAL_DMA_XFER_ABORT_CB_ID: + hdma->XferAbortCallback = pCallback; + break; + + default: + break; + } + } + else + { + /* Return error status */ + status = HAL_ERROR; + } + + /* Release Lock */ + __HAL_UNLOCK(hdma); + + return status; +} + +/** + * @brief UnRegister callbacks + * @param hdma: pointer to a DMA_HandleTypeDef structure that contains + * the configuration information for the specified DMA Stream. + * @param CallbackID: User Callback identifier + * a HAL_DMA_CallbackIDTypeDef ENUM as parameter. + * @retval HAL status + */ +HAL_StatusTypeDef HAL_DMA_UnRegisterCallback(DMA_HandleTypeDef *hdma, HAL_DMA_CallbackIDTypeDef CallbackID) +{ + HAL_StatusTypeDef status = HAL_OK; + + /* Check the DMA peripheral handle */ + if(hdma == NULL) + { + return HAL_ERROR; + } + + /* Process locked */ + __HAL_LOCK(hdma); + + if(HAL_DMA_STATE_READY == hdma->State) + { + switch (CallbackID) + { + case HAL_DMA_XFER_CPLT_CB_ID: + hdma->XferCpltCallback = NULL; + break; + + case HAL_DMA_XFER_HALFCPLT_CB_ID: + hdma->XferHalfCpltCallback = NULL; + break; + + case HAL_DMA_XFER_M1CPLT_CB_ID: + hdma->XferM1CpltCallback = NULL; + break; + + case HAL_DMA_XFER_M1HALFCPLT_CB_ID: + hdma->XferM1HalfCpltCallback = NULL; + break; + + case HAL_DMA_XFER_ERROR_CB_ID: + hdma->XferErrorCallback = NULL; + break; + + case HAL_DMA_XFER_ABORT_CB_ID: + hdma->XferAbortCallback = NULL; + break; + + case HAL_DMA_XFER_ALL_CB_ID: + hdma->XferCpltCallback = NULL; + hdma->XferHalfCpltCallback = NULL; + hdma->XferM1CpltCallback = NULL; + hdma->XferM1HalfCpltCallback = NULL; + hdma->XferErrorCallback = NULL; + hdma->XferAbortCallback = NULL; + break; + + default: + status = HAL_ERROR; + break; + } + } + else + { + status = HAL_ERROR; + } + + /* Release Lock */ + __HAL_UNLOCK(hdma); + + return status; +} + +/** + * @} + */ + +/** @addtogroup DMA_Exported_Functions_Group3 + * +@verbatim + =============================================================================== + ##### State and Errors functions ##### + =============================================================================== + [..] + This subsection provides functions allowing to + (+) Check the DMA state + (+) Get error code + +@endverbatim + * @{ + */ + +/** + * @brief Returns the DMA state. + * @param hdma: pointer to a DMA_HandleTypeDef structure that contains + * the configuration information for the specified DMA Stream. + * @retval HAL state + */ +HAL_DMA_StateTypeDef HAL_DMA_GetState(DMA_HandleTypeDef *hdma) +{ + return hdma->State; +} + +/** + * @brief Return the DMA error code + * @param hdma : pointer to a DMA_HandleTypeDef structure that contains + * the configuration information for the specified DMA Stream. + * @retval DMA Error Code + */ +uint32_t HAL_DMA_GetError(DMA_HandleTypeDef *hdma) +{ + return hdma->ErrorCode; +} + +/** + * @} + */ + +/** + * @} + */ + +/** @addtogroup DMA_Private_Functions + * @{ + */ + +/** + * @brief Sets the DMA Transfer parameter. + * @param hdma: pointer to a DMA_HandleTypeDef structure that contains + * the configuration information for the specified DMA Stream. + * @param SrcAddress: The source memory Buffer address + * @param DstAddress: The destination memory Buffer address + * @param DataLength: The length of data to be transferred from source to destination + * @retval None + */ +static void DMA_SetConfig(DMA_HandleTypeDef *hdma, uint32_t SrcAddress, uint32_t DstAddress, uint32_t DataLength) +{ + /* calculate DMA base and stream number */ + DMA_Base_Registers *regs_dma = (DMA_Base_Registers *)hdma->StreamBaseAddress; + BDMA_Base_Registers *regs_bdma = (BDMA_Base_Registers *)hdma->StreamBaseAddress; + + if(IS_DMA_DMAMUX_ALL_INSTANCE(hdma->Instance) != 0U) /* No DMAMUX available for BDMA1 */ + { + /* Clear the DMAMUX synchro overrun flag */ + hdma->DMAmuxChannelStatus->CFR = hdma->DMAmuxChannelStatusMask; + + if(hdma->DMAmuxRequestGen != 0U) + { + /* Clear the DMAMUX request generator overrun flag */ + hdma->DMAmuxRequestGenStatus->RGCFR = hdma->DMAmuxRequestGenStatusMask; + } + } + + if(IS_DMA_STREAM_INSTANCE(hdma->Instance) != 0U) /* DMA1 or DMA2 instance */ + { + /* Clear all interrupt flags at correct offset within the register */ + regs_dma->IFCR = 0x3FUL << (hdma->StreamIndex & 0x1FU); + + /* Clear DBM bit */ + ((DMA_Stream_TypeDef *)hdma->Instance)->CR &= (uint32_t)(~DMA_SxCR_DBM); + + /* Configure DMA Stream data length */ + ((DMA_Stream_TypeDef *)hdma->Instance)->NDTR = DataLength; + + /* Peripheral to Memory */ + if((hdma->Init.Direction) == DMA_MEMORY_TO_PERIPH) + { + /* Configure DMA Stream destination address */ + ((DMA_Stream_TypeDef *)hdma->Instance)->PAR = DstAddress; + + /* Configure DMA Stream source address */ + ((DMA_Stream_TypeDef *)hdma->Instance)->M0AR = SrcAddress; + } + /* Memory to Peripheral */ + else + { + /* Configure DMA Stream source address */ + ((DMA_Stream_TypeDef *)hdma->Instance)->PAR = SrcAddress; + + /* Configure DMA Stream destination address */ + ((DMA_Stream_TypeDef *)hdma->Instance)->M0AR = DstAddress; + } + } + else if(IS_BDMA_CHANNEL_INSTANCE(hdma->Instance) != 0U) /* BDMA instance(s) */ + { + /* Clear all flags */ + regs_bdma->IFCR = (BDMA_ISR_GIF0) << (hdma->StreamIndex & 0x1FU); + + /* Configure DMA Channel data length */ + ((BDMA_Channel_TypeDef *)hdma->Instance)->CNDTR = DataLength; + + /* Peripheral to Memory */ + if((hdma->Init.Direction) == DMA_MEMORY_TO_PERIPH) + { + /* Configure DMA Channel destination address */ + ((BDMA_Channel_TypeDef *)hdma->Instance)->CPAR = DstAddress; + + /* Configure DMA Channel source address */ + ((BDMA_Channel_TypeDef *)hdma->Instance)->CM0AR = SrcAddress; + } + /* Memory to Peripheral */ + else + { + /* Configure DMA Channel source address */ + ((BDMA_Channel_TypeDef *)hdma->Instance)->CPAR = SrcAddress; + + /* Configure DMA Channel destination address */ + ((BDMA_Channel_TypeDef *)hdma->Instance)->CM0AR = DstAddress; + } + } + else + { + /* Nothing To Do */ + } +} + +/** + * @brief Returns the DMA Stream base address depending on stream number + * @param hdma: pointer to a DMA_HandleTypeDef structure that contains + * the configuration information for the specified DMA Stream. + * @retval Stream base address + */ +static uint32_t DMA_CalcBaseAndBitshift(DMA_HandleTypeDef *hdma) +{ + if(IS_DMA_STREAM_INSTANCE(hdma->Instance) != 0U) /* DMA1 or DMA2 instance */ + { + uint32_t stream_number = (((uint32_t)((uint32_t*)hdma->Instance) & 0xFFU) - 16U) / 24U; + + /* lookup table for necessary bitshift of flags within status registers */ + static const uint8_t flagBitshiftOffset[8U] = {0U, 6U, 16U, 22U, 0U, 6U, 16U, 22U}; + hdma->StreamIndex = flagBitshiftOffset[stream_number & 0x7U]; + + if (stream_number > 3U) + { + /* return pointer to HISR and HIFCR */ + hdma->StreamBaseAddress = (((uint32_t)((uint32_t*)hdma->Instance) & (uint32_t)(~0x3FFU)) + 4U); + } + else + { + /* return pointer to LISR and LIFCR */ + hdma->StreamBaseAddress = ((uint32_t)((uint32_t*)hdma->Instance) & (uint32_t)(~0x3FFU)); + } + } + else /* BDMA instance(s) */ + { + /* return pointer to ISR and IFCR */ + hdma->StreamBaseAddress = ((uint32_t)((uint32_t*)hdma->Instance) & (uint32_t)(~0xFFU)); + } + + return hdma->StreamBaseAddress; +} + +/** + * @brief Check compatibility between FIFO threshold level and size of the memory burst + * @param hdma: pointer to a DMA_HandleTypeDef structure that contains + * the configuration information for the specified DMA Stream. + * @retval HAL status + */ +static HAL_StatusTypeDef DMA_CheckFifoParam(DMA_HandleTypeDef *hdma) +{ + HAL_StatusTypeDef status = HAL_OK; + + /* Memory Data size equal to Byte */ + if (hdma->Init.MemDataAlignment == DMA_MDATAALIGN_BYTE) + { + switch (hdma->Init.FIFOThreshold) + { + case DMA_FIFO_THRESHOLD_1QUARTERFULL: + case DMA_FIFO_THRESHOLD_3QUARTERSFULL: + + if ((hdma->Init.MemBurst & DMA_SxCR_MBURST_1) == DMA_SxCR_MBURST_1) + { + status = HAL_ERROR; + } + break; + + case DMA_FIFO_THRESHOLD_HALFFULL: + if (hdma->Init.MemBurst == DMA_MBURST_INC16) + { + status = HAL_ERROR; + } + break; + + case DMA_FIFO_THRESHOLD_FULL: + break; + + default: + break; + } + } + + /* Memory Data size equal to Half-Word */ + else if (hdma->Init.MemDataAlignment == DMA_MDATAALIGN_HALFWORD) + { + switch (hdma->Init.FIFOThreshold) + { + case DMA_FIFO_THRESHOLD_1QUARTERFULL: + case DMA_FIFO_THRESHOLD_3QUARTERSFULL: + status = HAL_ERROR; + break; + + case DMA_FIFO_THRESHOLD_HALFFULL: + if ((hdma->Init.MemBurst & DMA_SxCR_MBURST_1) == DMA_SxCR_MBURST_1) + { + status = HAL_ERROR; + } + break; + + case DMA_FIFO_THRESHOLD_FULL: + if (hdma->Init.MemBurst == DMA_MBURST_INC16) + { + status = HAL_ERROR; + } + break; + + default: + break; + } + } + + /* Memory Data size equal to Word */ + else + { + switch (hdma->Init.FIFOThreshold) + { + case DMA_FIFO_THRESHOLD_1QUARTERFULL: + case DMA_FIFO_THRESHOLD_HALFFULL: + case DMA_FIFO_THRESHOLD_3QUARTERSFULL: + status = HAL_ERROR; + break; + + case DMA_FIFO_THRESHOLD_FULL: + if ((hdma->Init.MemBurst & DMA_SxCR_MBURST_1) == DMA_SxCR_MBURST_1) + { + status = HAL_ERROR; + } + break; + + default: + break; + } + } + + return status; +} + +/** + * @brief Updates the DMA handle with the DMAMUX channel and status mask depending on stream number + * @param hdma: pointer to a DMA_HandleTypeDef structure that contains + * the configuration information for the specified DMA Stream. + * @retval HAL status + */ +static void DMA_CalcDMAMUXChannelBaseAndMask(DMA_HandleTypeDef *hdma) +{ + uint32_t stream_number; + uint32_t stream_baseaddress = (uint32_t)((uint32_t*)hdma->Instance); + + if(IS_BDMA_CHANNEL_DMAMUX_INSTANCE(hdma->Instance) != 0U) + { + /* BDMA Channels are connected to DMAMUX2 channels */ + stream_number = (((uint32_t)((uint32_t*)hdma->Instance) & 0xFFU) - 8U) / 20U; + hdma->DMAmuxChannel = (DMAMUX_Channel_TypeDef *)((uint32_t)(((uint32_t)DMAMUX2_Channel0) + (stream_number * 4U))); + hdma->DMAmuxChannelStatus = DMAMUX2_ChannelStatus; + hdma->DMAmuxChannelStatusMask = 1UL << (stream_number & 0x1FU); + } + else + { + /* DMA1/DMA2 Streams are connected to DMAMUX1 channels */ + stream_number = (((uint32_t)((uint32_t*)hdma->Instance) & 0xFFU) - 16U) / 24U; + + if((stream_baseaddress <= ((uint32_t)DMA2_Stream7) ) && \ + (stream_baseaddress >= ((uint32_t)DMA2_Stream0))) + { + stream_number += 8U; + } + hdma->DMAmuxChannel = (DMAMUX_Channel_TypeDef *)((uint32_t)(((uint32_t)DMAMUX1_Channel0) + (stream_number * 4U))); + hdma->DMAmuxChannelStatus = DMAMUX1_ChannelStatus; + hdma->DMAmuxChannelStatusMask = 1UL << (stream_number & 0x1FU); + } +} + +/** + * @brief Updates the DMA handle with the DMAMUX request generator params + * @param hdma: pointer to a DMA_HandleTypeDef structure that contains + * the configuration information for the specified DMA Stream. + * @retval HAL status + */ +static void DMA_CalcDMAMUXRequestGenBaseAndMask(DMA_HandleTypeDef *hdma) +{ + uint32_t request = hdma->Init.Request & DMAMUX_CxCR_DMAREQ_ID; + + if((request >= DMA_REQUEST_GENERATOR0) && (request <= DMA_REQUEST_GENERATOR7)) + { + if(IS_BDMA_CHANNEL_DMAMUX_INSTANCE(hdma->Instance) != 0U) + { + /* BDMA Channels are connected to DMAMUX2 request generator blocks */ + hdma->DMAmuxRequestGen = (DMAMUX_RequestGen_TypeDef *)((uint32_t)(((uint32_t)DMAMUX2_RequestGenerator0) + ((request - 1U) * 4U))); + + hdma->DMAmuxRequestGenStatus = DMAMUX2_RequestGenStatus; + } + else + { + /* DMA1 and DMA2 Streams use DMAMUX1 request generator blocks */ + hdma->DMAmuxRequestGen = (DMAMUX_RequestGen_TypeDef *)((uint32_t)(((uint32_t)DMAMUX1_RequestGenerator0) + ((request - 1U) * 4U))); + + hdma->DMAmuxRequestGenStatus = DMAMUX1_RequestGenStatus; + } + + hdma->DMAmuxRequestGenStatusMask = 1UL << (request - 1U); + } +} + +/** + * @} + */ + +#endif /* HAL_DMA_MODULE_ENABLED */ +/** + * @} + */ + +/** + * @} + */ + +/************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/ diff --git a/source/hic_hal/stm32/stm32h743ii/STM32H7xx_HAL_Driver/Src/stm32h7xx_hal_dma_ex.c b/source/hic_hal/stm32/stm32h743ii/STM32H7xx_HAL_Driver/Src/stm32h7xx_hal_dma_ex.c new file mode 100644 index 000000000..e55c3d54c --- /dev/null +++ b/source/hic_hal/stm32/stm32h743ii/STM32H7xx_HAL_Driver/Src/stm32h7xx_hal_dma_ex.c @@ -0,0 +1,714 @@ +/** + ****************************************************************************** + * @file stm32h7xx_hal_dma_ex.c + * @author MCD Application Team + * @brief DMA Extension HAL module driver + * This file provides firmware functions to manage the following + * functionalities of the DMA Extension peripheral: + * + Extended features functions + * + @verbatim + ============================================================================== + ##### How to use this driver ##### + ============================================================================== + [..] + The DMA Extension HAL driver can be used as follows: + (+) Start a multi buffer transfer using the HAL_DMA_MultiBufferStart() function + for polling mode or HAL_DMA_MultiBufferStart_IT() for interrupt mode. + + (+) Configure the DMA_MUX Synchronization Block using HAL_DMAEx_ConfigMuxSync function. + (+) Configure the DMA_MUX Request Generator Block using HAL_DMAEx_ConfigMuxRequestGenerator function. + Functions HAL_DMAEx_EnableMuxRequestGenerator and HAL_DMAEx_DisableMuxRequestGenerator can then be used + to respectively enable/disable the request generator. + + (+) To handle the DMAMUX Interrupts, the function HAL_DMAEx_MUX_IRQHandler should be called from + the DMAMUX IRQ handler i.e DMAMUX1_OVR_IRQHandler or DMAMUX2_OVR_IRQHandler . + As only one interrupt line is available for all DMAMUX channels and request generators , HAL_DMA_MUX_IRQHandler should be + called with, as parameter, the appropriate DMA handle as many as used DMAs in the user project + (exception done if a given DMA is not using the DMAMUX SYNC block neither a request generator) + + -@- In Memory-to-Memory transfer mode, Multi (Double) Buffer mode is not allowed. + -@- When Multi (Double) Buffer mode is enabled, the transfer is circular by default. + -@- In Multi (Double) buffer mode, it is possible to update the base address for + the AHB memory port on the fly (DMA_SxM0AR or DMA_SxM1AR) when the stream is enabled. + -@- Multi (Double) buffer mode is possible with DMA and BDMA instances. + + @endverbatim + ****************************************************************************** + * @attention + * + *

© COPYRIGHT(c) 2017 STMicroelectronics. + * All rights reserved.

+ * + * This software component is licensed by ST under BSD 3-Clause license, + * the "License"; You may not use this file except in compliance with the + * License. You may obtain a copy of the License at: + * opensource.org/licenses/BSD-3-Clause + * + ****************************************************************************** + */ + +/* Includes ------------------------------------------------------------------*/ +#include "stm32h7xx_hal.h" + +/** @addtogroup STM32H7xx_HAL_Driver + * @{ + */ + +/** @defgroup DMAEx DMAEx + * @brief DMA Extended HAL module driver + * @{ + */ + +#ifdef HAL_DMA_MODULE_ENABLED + +/* Private types -------------------------------------------------------------*/ +/* Private variables ---------------------------------------------------------*/ +/* Private Constants ---------------------------------------------------------*/ +/* Private macros ------------------------------------------------------------*/ +/* Private functions ---------------------------------------------------------*/ +/** @addtogroup DMAEx_Private_Functions + * @{ + */ + +static void DMA_MultiBufferSetConfig(DMA_HandleTypeDef *hdma, uint32_t SrcAddress, uint32_t DstAddress, uint32_t DataLength); + +/** + * @} + */ + +/* Exported functions ---------------------------------------------------------*/ + +/** @addtogroup DMAEx_Exported_Functions + * @{ + */ + + +/** @addtogroup DMAEx_Exported_Functions_Group1 + * +@verbatim + =============================================================================== + ##### Extended features functions ##### + =============================================================================== + [..] This section provides functions allowing to: + (+) Configure the source, destination address and data length and + Start MultiBuffer DMA transfer + (+) Configure the source, destination address and data length and + Start MultiBuffer DMA transfer with interrupt + (+) Change on the fly the memory0 or memory1 address. + (+) Configure the DMA_MUX Synchronization Block using HAL_DMAEx_ConfigMuxSync function. + (+) Configure the DMA_MUX Request Generator Block using HAL_DMAEx_ConfigMuxRequestGenerator function. + (+) Functions HAL_DMAEx_EnableMuxRequestGenerator and HAL_DMAEx_DisableMuxRequestGenerator can then be used + to respectively enable/disable the request generator. + (+) Handle DMAMUX interrupts using HAL_DMAEx_MUX_IRQHandler : should be called from + the DMAMUX IRQ handler i.e DMAMUX1_OVR_IRQHandler or DMAMUX2_OVR_IRQHandler + +@endverbatim + * @{ + */ + + +/** + * @brief Starts the multi_buffer DMA Transfer. + * @param hdma : pointer to a DMA_HandleTypeDef structure that contains + * the configuration information for the specified DMA Stream. + * @param SrcAddress: The source memory Buffer address + * @param DstAddress: The destination memory Buffer address + * @param SecondMemAddress: The second memory Buffer address in case of multi buffer Transfer + * @param DataLength: The length of data to be transferred from source to destination + * @retval HAL status + */ +HAL_StatusTypeDef HAL_DMAEx_MultiBufferStart(DMA_HandleTypeDef *hdma, uint32_t SrcAddress, uint32_t DstAddress, uint32_t SecondMemAddress, uint32_t DataLength) +{ + HAL_StatusTypeDef status = HAL_OK; + __IO uint32_t *ifcRegister_Base; /* DMA Stream Interrupt Clear register */ + + /* Check the parameters */ + assert_param(IS_DMA_BUFFER_SIZE(DataLength)); + assert_param(IS_DMA_ALL_INSTANCE(hdma->Instance)); + + /* Memory-to-memory transfer not supported in double buffering mode */ + if (hdma->Init.Direction == DMA_MEMORY_TO_MEMORY) + { + hdma->ErrorCode = HAL_DMA_ERROR_NOT_SUPPORTED; + status = HAL_ERROR; + } + else + { + /* Process Locked */ + __HAL_LOCK(hdma); + + if(HAL_DMA_STATE_READY == hdma->State) + { + /* Change DMA peripheral state */ + hdma->State = HAL_DMA_STATE_BUSY; + + /* Initialize the error code */ + hdma->ErrorCode = HAL_DMA_ERROR_NONE; + + if(IS_DMA_STREAM_INSTANCE(hdma->Instance) != 0U) /* DMA1 or DMA2 instance */ + { + /* Enable the Double buffer mode */ + ((DMA_Stream_TypeDef *)hdma->Instance)->CR |= DMA_SxCR_DBM; + + /* Configure DMA Stream destination address */ + ((DMA_Stream_TypeDef *)hdma->Instance)->M1AR = SecondMemAddress; + + /* Calculate the interrupt clear flag register (IFCR) base address */ + ifcRegister_Base = (uint32_t *)((uint32_t)(hdma->StreamBaseAddress + 8U)); + + /* Clear all flags */ + *ifcRegister_Base = 0x3FUL << (hdma->StreamIndex & 0x1FU); + } + else /* BDMA instance(s) */ + { + /* Enable the Double buffer mode */ + ((BDMA_Channel_TypeDef *)hdma->Instance)->CCR |= (BDMA_CCR_DBM | BDMA_CCR_CIRC); + + /* Configure DMA Stream destination address */ + ((BDMA_Channel_TypeDef *)hdma->Instance)->CM1AR = SecondMemAddress; + + /* Calculate the interrupt clear flag register (IFCR) base address */ + ifcRegister_Base = (uint32_t *)((uint32_t)(hdma->StreamBaseAddress + 4U)); + + /* Clear all flags */ + *ifcRegister_Base = (BDMA_ISR_GIF0) << (hdma->StreamIndex & 0x1FU); + } + + if(IS_DMA_DMAMUX_ALL_INSTANCE(hdma->Instance) != 0U) /* No DMAMUX available for BDMA1 */ + { + /* Configure the source, destination address and the data length */ + DMA_MultiBufferSetConfig(hdma, SrcAddress, DstAddress, DataLength); + + /* Clear the DMAMUX synchro overrun flag */ + hdma->DMAmuxChannelStatus->CFR = hdma->DMAmuxChannelStatusMask; + + if(hdma->DMAmuxRequestGen != 0U) + { + /* Clear the DMAMUX request generator overrun flag */ + hdma->DMAmuxRequestGenStatus->RGCFR = hdma->DMAmuxRequestGenStatusMask; + } + } + + /* Enable the peripheral */ + __HAL_DMA_ENABLE(hdma); + } + else + { + /* Set the error code to busy */ + hdma->ErrorCode = HAL_DMA_ERROR_BUSY; + + /* Return error status */ + status = HAL_ERROR; + } + } + return status; +} + +/** + * @brief Starts the multi_buffer DMA Transfer with interrupt enabled. + * @param hdma: pointer to a DMA_HandleTypeDef structure that contains + * the configuration information for the specified DMA Stream. + * @param SrcAddress: The source memory Buffer address + * @param DstAddress: The destination memory Buffer address + * @param SecondMemAddress: The second memory Buffer address in case of multi buffer Transfer + * @param DataLength: The length of data to be transferred from source to destination + * @retval HAL status + */ +HAL_StatusTypeDef HAL_DMAEx_MultiBufferStart_IT(DMA_HandleTypeDef *hdma, uint32_t SrcAddress, uint32_t DstAddress, uint32_t SecondMemAddress, uint32_t DataLength) +{ + HAL_StatusTypeDef status = HAL_OK; + __IO uint32_t *ifcRegister_Base; /* DMA Stream Interrupt Clear register */ + + /* Check the parameters */ + assert_param(IS_DMA_BUFFER_SIZE(DataLength)); + assert_param(IS_DMA_ALL_INSTANCE(hdma->Instance)); + + /* Memory-to-memory transfer not supported in double buffering mode */ + if(hdma->Init.Direction == DMA_MEMORY_TO_MEMORY) + { + hdma->ErrorCode = HAL_DMA_ERROR_NOT_SUPPORTED; + return HAL_ERROR; + } + + /* Process locked */ + __HAL_LOCK(hdma); + + if(HAL_DMA_STATE_READY == hdma->State) + { + /* Change DMA peripheral state */ + hdma->State = HAL_DMA_STATE_BUSY; + + /* Initialize the error code */ + hdma->ErrorCode = HAL_DMA_ERROR_NONE; + + if(IS_DMA_STREAM_INSTANCE(hdma->Instance) != 0U) /* DMA1 or DMA2 instance */ + { + /* Enable the Double buffer mode */ + ((DMA_Stream_TypeDef *)hdma->Instance)->CR |= DMA_SxCR_DBM; + + /* Configure DMA Stream destination address */ + ((DMA_Stream_TypeDef *)hdma->Instance)->M1AR = SecondMemAddress; + + /* Calculate the interrupt clear flag register (IFCR) base address */ + ifcRegister_Base = (uint32_t *)((uint32_t)(hdma->StreamBaseAddress + 8U)); + + /* Clear all flags */ + *ifcRegister_Base = 0x3FUL << (hdma->StreamIndex & 0x1FU); + } + else /* BDMA instance(s) */ + { + /* Enable the Double buffer mode */ + ((BDMA_Channel_TypeDef *)hdma->Instance)->CCR |= (BDMA_CCR_DBM | BDMA_CCR_CIRC); + + /* Configure DMA Stream destination address */ + ((BDMA_Channel_TypeDef *)hdma->Instance)->CM1AR = SecondMemAddress; + + /* Calculate the interrupt clear flag register (IFCR) base address */ + ifcRegister_Base = (uint32_t *)((uint32_t)(hdma->StreamBaseAddress + 4U)); + + /* Clear all flags */ + *ifcRegister_Base = (BDMA_ISR_GIF0) << (hdma->StreamIndex & 0x1FU); + } + + /* Configure the source, destination address and the data length */ + DMA_MultiBufferSetConfig(hdma, SrcAddress, DstAddress, DataLength); + + if(IS_DMA_DMAMUX_ALL_INSTANCE(hdma->Instance) != 0U) /* No DMAMUX available for BDMA1 */ + { + /* Clear the DMAMUX synchro overrun flag */ + hdma->DMAmuxChannelStatus->CFR = hdma->DMAmuxChannelStatusMask; + + if(hdma->DMAmuxRequestGen != 0U) + { + /* Clear the DMAMUX request generator overrun flag */ + hdma->DMAmuxRequestGenStatus->RGCFR = hdma->DMAmuxRequestGenStatusMask; + } + } + + if(IS_DMA_STREAM_INSTANCE(hdma->Instance) != 0U) /* DMA1 or DMA2 instance */ + { + /* Enable Common interrupts*/ + MODIFY_REG(((DMA_Stream_TypeDef *)hdma->Instance)->CR, (DMA_IT_TC | DMA_IT_TE | DMA_IT_DME | DMA_IT_HT), (DMA_IT_TC | DMA_IT_TE | DMA_IT_DME)); + ((DMA_Stream_TypeDef *)hdma->Instance)->FCR |= DMA_IT_FE; + + if((hdma->XferHalfCpltCallback != NULL) || (hdma->XferM1HalfCpltCallback != NULL)) + { + /*Enable Half Transfer IT if corresponding Callback is set*/ + ((DMA_Stream_TypeDef *)hdma->Instance)->CR |= DMA_IT_HT; + } + } + else /* BDMA instance(s) */ + { + /* Enable Common interrupts*/ + MODIFY_REG(((BDMA_Channel_TypeDef *)hdma->Instance)->CCR, (BDMA_CCR_TCIE | BDMA_CCR_HTIE | BDMA_CCR_TEIE), (BDMA_CCR_TCIE | BDMA_CCR_TEIE)); + + if((hdma->XferHalfCpltCallback != NULL) || (hdma->XferM1HalfCpltCallback != NULL)) + { + /*Enable Half Transfer IT if corresponding Callback is set*/ + ((BDMA_Channel_TypeDef *)hdma->Instance)->CCR |= BDMA_CCR_HTIE; + } + } + + if(IS_DMA_DMAMUX_ALL_INSTANCE(hdma->Instance) != 0U) /* No DMAMUX available for BDMA1 */ + { + /* Check if DMAMUX Synchronization is enabled*/ + if((hdma->DMAmuxChannel->CCR & DMAMUX_CxCR_SE) != 0U) + { + /* Enable DMAMUX sync overrun IT*/ + hdma->DMAmuxChannel->CCR |= DMAMUX_CxCR_SOIE; + } + + if(hdma->DMAmuxRequestGen != 0U) + { + /* if using DMAMUX request generator, enable the DMAMUX request generator overrun IT*/ + /* enable the request gen overrun IT*/ + hdma->DMAmuxRequestGen->RGCR |= DMAMUX_RGxCR_OIE; + } + } + + /* Enable the peripheral */ + __HAL_DMA_ENABLE(hdma); + } + else + { + /* Set the error code to busy */ + hdma->ErrorCode = HAL_DMA_ERROR_BUSY; + + /* Return error status */ + status = HAL_ERROR; + } + return status; +} + +/** + * @brief Change the memory0 or memory1 address on the fly. + * @param hdma: pointer to a DMA_HandleTypeDef structure that contains + * the configuration information for the specified DMA Stream. + * @param Address: The new address + * @param memory: the memory to be changed, This parameter can be one of + * the following values: + * MEMORY0 / + * MEMORY1 + * @note The MEMORY0 address can be changed only when the current transfer use + * MEMORY1 and the MEMORY1 address can be changed only when the current + * transfer use MEMORY0. + * @retval HAL status + */ +HAL_StatusTypeDef HAL_DMAEx_ChangeMemory(DMA_HandleTypeDef *hdma, uint32_t Address, HAL_DMA_MemoryTypeDef memory) +{ + if(IS_DMA_STREAM_INSTANCE(hdma->Instance) != 0U) /* DMA1 or DMA2 instance */ + { + if(memory == MEMORY0) + { + /* change the memory0 address */ + ((DMA_Stream_TypeDef *)hdma->Instance)->M0AR = Address; + } + else + { + /* change the memory1 address */ + ((DMA_Stream_TypeDef *)hdma->Instance)->M1AR = Address; + } + } + else /* BDMA instance(s) */ + { + if(memory == MEMORY0) + { + /* change the memory0 address */ + ((BDMA_Channel_TypeDef *)hdma->Instance)->CM0AR = Address; + } + else + { + /* change the memory1 address */ + ((BDMA_Channel_TypeDef *)hdma->Instance)->CM1AR = Address; + } + } + + return HAL_OK; +} + +/** + * @brief Configure the DMAMUX synchronization parameters for a given DMA stream (instance). + * @param hdma: pointer to a DMA_HandleTypeDef structure that contains + * the configuration information for the specified DMA Stream. + * @param pSyncConfig : pointer to HAL_DMA_MuxSyncConfigTypeDef : contains the DMAMUX synchronization parameters + * @retval HAL status + */ +HAL_StatusTypeDef HAL_DMAEx_ConfigMuxSync(DMA_HandleTypeDef *hdma, HAL_DMA_MuxSyncConfigTypeDef *pSyncConfig) +{ + uint32_t syncSignalID = 0; + uint32_t syncPolarity = 0; + + /* Check the parameters */ + assert_param(IS_DMA_DMAMUX_ALL_INSTANCE(hdma->Instance)); + assert_param(IS_DMAMUX_SYNC_STATE(pSyncConfig->SyncEnable)); + assert_param(IS_DMAMUX_SYNC_EVENT(pSyncConfig->EventEnable)); + assert_param(IS_DMAMUX_SYNC_REQUEST_NUMBER(pSyncConfig->RequestNumber)); + + if(pSyncConfig->SyncEnable == ENABLE) + { + assert_param(IS_DMAMUX_SYNC_POLARITY(pSyncConfig->SyncPolarity)); + + if(IS_DMA_STREAM_INSTANCE(hdma->Instance) != 0U) /* DMA1 or DMA2 instance */ + { + assert_param(IS_DMA_DMAMUX_SYNC_SIGNAL_ID(pSyncConfig->SyncSignalID)); + } + else + { + assert_param(IS_BDMA_DMAMUX_SYNC_SIGNAL_ID(pSyncConfig->SyncSignalID)); + } + syncSignalID = pSyncConfig->SyncSignalID; + syncPolarity = pSyncConfig->SyncPolarity; + } + + /*Check if the DMA state is ready */ + if(hdma->State == HAL_DMA_STATE_READY) + { + /* Process Locked */ + __HAL_LOCK(hdma); + + /* Disable the synchronization and event generation before applying a new config */ + CLEAR_BIT(hdma->DMAmuxChannel->CCR,(DMAMUX_CxCR_SE | DMAMUX_CxCR_EGE)); + + /* Set the new synchronization parameters (and keep the request ID filled during the Init)*/ + MODIFY_REG( hdma->DMAmuxChannel->CCR, \ + (~DMAMUX_CxCR_DMAREQ_ID) , \ + (syncSignalID << DMAMUX_CxCR_SYNC_ID_Pos) | \ + ((pSyncConfig->RequestNumber - 1U) << DMAMUX_CxCR_NBREQ_Pos) | \ + syncPolarity | ((uint32_t)pSyncConfig->SyncEnable << DMAMUX_CxCR_SE_Pos) | \ + ((uint32_t)pSyncConfig->EventEnable << DMAMUX_CxCR_EGE_Pos)); + + /* Process Locked */ + __HAL_UNLOCK(hdma); + + return HAL_OK; + } + else + { + /* Set the error code to busy */ + hdma->ErrorCode = HAL_DMA_ERROR_BUSY; + + /* Return error status */ + return HAL_ERROR; + } +} + +/** + * @brief Configure the DMAMUX request generator block used by the given DMA stream (instance). + * @param hdma: pointer to a DMA_HandleTypeDef structure that contains + * the configuration information for the specified DMA Stream. + * @param pRequestGeneratorConfig : pointer to HAL_DMA_MuxRequestGeneratorConfigTypeDef : + * contains the request generator parameters. + * + * @retval HAL status + */ +HAL_StatusTypeDef HAL_DMAEx_ConfigMuxRequestGenerator (DMA_HandleTypeDef *hdma, HAL_DMA_MuxRequestGeneratorConfigTypeDef *pRequestGeneratorConfig) +{ + HAL_StatusTypeDef status; + HAL_DMA_StateTypeDef temp_state = hdma->State; + + /* Check the parameters */ + assert_param(IS_DMA_DMAMUX_ALL_INSTANCE(hdma->Instance)); + + if(IS_DMA_STREAM_INSTANCE(hdma->Instance) != 0U) /* DMA1 or DMA2 instance */ + { + assert_param(IS_DMA_DMAMUX_REQUEST_GEN_SIGNAL_ID(pRequestGeneratorConfig->SignalID)); + } + else + { + assert_param(IS_BDMA_DMAMUX_REQUEST_GEN_SIGNAL_ID(pRequestGeneratorConfig->SignalID)); + } + + + assert_param(IS_DMAMUX_REQUEST_GEN_POLARITY(pRequestGeneratorConfig->Polarity)); + assert_param(IS_DMAMUX_REQUEST_GEN_REQUEST_NUMBER(pRequestGeneratorConfig->RequestNumber)); + + /* check if the DMA state is ready + and DMA is using a DMAMUX request generator block + */ + if(hdma->DMAmuxRequestGen == 0U) + { + /* Set the error code to busy */ + hdma->ErrorCode = HAL_DMA_ERROR_PARAM; + + /* error status */ + status = HAL_ERROR; + } + else if(((hdma->DMAmuxRequestGen->RGCR & DMAMUX_RGxCR_GE) == 0U) && (temp_state == HAL_DMA_STATE_READY)) + { + /* RequestGenerator must be disable prior to the configuration i.e GE bit is 0 */ + + /* Process Locked */ + __HAL_LOCK(hdma); + + /* Set the request generator new parameters */ + hdma->DMAmuxRequestGen->RGCR = pRequestGeneratorConfig->SignalID | \ + ((pRequestGeneratorConfig->RequestNumber - 1U) << DMAMUX_RGxCR_GNBREQ_Pos)| \ + pRequestGeneratorConfig->Polarity; + /* Process Locked */ + __HAL_UNLOCK(hdma); + + return HAL_OK; + } + else + { + /* Set the error code to busy */ + hdma->ErrorCode = HAL_DMA_ERROR_BUSY; + + /* error status */ + status = HAL_ERROR; + } + + return status; +} + +/** + * @brief Enable the DMAMUX request generator block used by the given DMA stream (instance). + * @param hdma: pointer to a DMA_HandleTypeDef structure that contains + * the configuration information for the specified DMA Stream. + * @retval HAL status + */ +HAL_StatusTypeDef HAL_DMAEx_EnableMuxRequestGenerator (DMA_HandleTypeDef *hdma) +{ + /* Check the parameters */ + assert_param(IS_DMA_DMAMUX_ALL_INSTANCE(hdma->Instance)); + + /* check if the DMA state is ready + and DMA is using a DMAMUX request generator block */ + if((hdma->State != HAL_DMA_STATE_RESET) && (hdma->DMAmuxRequestGen != 0U)) + { + /* Enable the request generator*/ + hdma->DMAmuxRequestGen->RGCR |= DMAMUX_RGxCR_GE; + + return HAL_OK; + } + else + { + return HAL_ERROR; + } +} + +/** + * @brief Disable the DMAMUX request generator block used by the given DMA stream (instance). + * @param hdma: pointer to a DMA_HandleTypeDef structure that contains + * the configuration information for the specified DMA Stream. + * @retval HAL status + */ +HAL_StatusTypeDef HAL_DMAEx_DisableMuxRequestGenerator (DMA_HandleTypeDef *hdma) +{ + /* Check the parameters */ + assert_param(IS_DMA_DMAMUX_ALL_INSTANCE(hdma->Instance)); + + /* check if the DMA state is ready + and DMA is using a DMAMUX request generator block */ + if((hdma->State != HAL_DMA_STATE_RESET) && (hdma->DMAmuxRequestGen != 0U)) + { + /* Disable the request generator*/ + hdma->DMAmuxRequestGen->RGCR &= ~DMAMUX_RGxCR_GE; + + return HAL_OK; + } + else + { + return HAL_ERROR; + } +} + +/** + * @brief Handles DMAMUX interrupt request. + * @param hdma: pointer to a DMA_HandleTypeDef structure that contains + * the configuration information for the specified DMA Stream. + * @retval None + */ +void HAL_DMAEx_MUX_IRQHandler(DMA_HandleTypeDef *hdma) +{ + /* Check for DMAMUX Synchronization overrun */ + if((hdma->DMAmuxChannelStatus->CSR & hdma->DMAmuxChannelStatusMask) != 0U) + { + /* Disable the synchro overrun interrupt */ + hdma->DMAmuxChannel->CCR &= ~DMAMUX_CxCR_SOIE; + + /* Clear the DMAMUX synchro overrun flag */ + hdma->DMAmuxChannelStatus->CFR = hdma->DMAmuxChannelStatusMask; + + /* Update error code */ + hdma->ErrorCode |= HAL_DMA_ERROR_SYNC; + + if(hdma->XferErrorCallback != NULL) + { + /* Transfer error callback */ + hdma->XferErrorCallback(hdma); + } + } + + if(hdma->DMAmuxRequestGen != 0) + { + /* if using a DMAMUX request generator block Check for DMAMUX request generator overrun */ + if((hdma->DMAmuxRequestGenStatus->RGSR & hdma->DMAmuxRequestGenStatusMask) != 0U) + { + /* Disable the request gen overrun interrupt */ + hdma->DMAmuxRequestGen->RGCR &= ~DMAMUX_RGxCR_OIE; + + /* Clear the DMAMUX request generator overrun flag */ + hdma->DMAmuxRequestGenStatus->RGCFR = hdma->DMAmuxRequestGenStatusMask; + + /* Update error code */ + hdma->ErrorCode |= HAL_DMA_ERROR_REQGEN; + + if(hdma->XferErrorCallback != NULL) + { + /* Transfer error callback */ + hdma->XferErrorCallback(hdma); + } + } + } +} + + +/** + * @} + */ + +/** + * @} + */ + +/** @addtogroup DMAEx_Private_Functions + * @{ + */ + +/** + * @brief Set the DMA Transfer parameter. + * @param hdma: pointer to a DMA_HandleTypeDef structure that contains + * the configuration information for the specified DMA Stream. + * @param SrcAddress: The source memory Buffer address + * @param DstAddress: The destination memory Buffer address + * @param DataLength: The length of data to be transferred from source to destination + * @retval HAL status + */ +static void DMA_MultiBufferSetConfig(DMA_HandleTypeDef *hdma, uint32_t SrcAddress, uint32_t DstAddress, uint32_t DataLength) +{ + if(IS_DMA_STREAM_INSTANCE(hdma->Instance) != 0U) /* DMA1 or DMA2 instance */ + { + /* Configure DMA Stream data length */ + ((DMA_Stream_TypeDef *)hdma->Instance)->NDTR = DataLength; + + /* Peripheral to Memory */ + if((hdma->Init.Direction) == DMA_MEMORY_TO_PERIPH) + { + /* Configure DMA Stream destination address */ + ((DMA_Stream_TypeDef *)hdma->Instance)->PAR = DstAddress; + + /* Configure DMA Stream source address */ + ((DMA_Stream_TypeDef *)hdma->Instance)->M0AR = SrcAddress; + } + /* Memory to Peripheral */ + else + { + /* Configure DMA Stream source address */ + ((DMA_Stream_TypeDef *)hdma->Instance)->PAR = SrcAddress; + + /* Configure DMA Stream destination address */ + ((DMA_Stream_TypeDef *)hdma->Instance)->M0AR = DstAddress; + } + } + else /* BDMA instance(s) */ + { + /* Configure DMA Stream data length */ + ((BDMA_Channel_TypeDef *)hdma->Instance)->CNDTR = DataLength; + + /* Peripheral to Memory */ + if((hdma->Init.Direction) == DMA_MEMORY_TO_PERIPH) + { + /* Configure DMA Stream destination address */ + ((BDMA_Channel_TypeDef *)hdma->Instance)->CPAR = DstAddress; + + /* Configure DMA Stream source address */ + ((BDMA_Channel_TypeDef *)hdma->Instance)->CM0AR = SrcAddress; + } + /* Memory to Peripheral */ + else + { + /* Configure DMA Stream source address */ + ((BDMA_Channel_TypeDef *)hdma->Instance)->CPAR = SrcAddress; + + /* Configure DMA Stream destination address */ + ((BDMA_Channel_TypeDef *)hdma->Instance)->CM0AR = DstAddress; + } + } +} + +/** + * @} + */ + +#endif /* HAL_DMA_MODULE_ENABLED */ +/** + * @} + */ + +/** + * @} + */ + +/************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/ diff --git a/source/hic_hal/stm32/stm32h743ii/STM32H7xx_HAL_Driver/Src/stm32h7xx_hal_eth.c b/source/hic_hal/stm32/stm32h743ii/STM32H7xx_HAL_Driver/Src/stm32h7xx_hal_eth.c new file mode 100644 index 000000000..a34d44e1c --- /dev/null +++ b/source/hic_hal/stm32/stm32h743ii/STM32H7xx_HAL_Driver/Src/stm32h7xx_hal_eth.c @@ -0,0 +1,2998 @@ +/** + ****************************************************************************** + * @file stm32h7xx_hal_eth.c + * @author MCD Application Team + * @brief ETH HAL module driver. + * This file provides firmware functions to manage the following + * functionalities of the Ethernet (ETH) peripheral: + * + Initialization and deinitialization functions + * + IO operation functions + * + Peripheral Control functions + * + Peripheral State and Errors functions + * + @verbatim + ============================================================================== + ##### How to use this driver ##### + ============================================================================== + [..] + The ETH HAL driver can be used as follows: + + (#)Declare a ETH_HandleTypeDef handle structure, for example: + ETH_HandleTypeDef heth; + + (#)Fill parameters of Init structure in heth handle + + (#)Call HAL_ETH_Init() API to initialize the Ethernet peripheral (MAC, DMA, ...) + + (#)Initialize the ETH low level resources through the HAL_ETH_MspInit() API: + (##) Enable the Ethernet interface clock using + (+++) __HAL_RCC_ETH1MAC_CLK_ENABLE() + (+++) __HAL_RCC_ETH1TX_CLK_ENABLE() + (+++) __HAL_RCC_ETH1RX_CLK_ENABLE() + + (##) Initialize the related GPIO clocks + (##) Configure Ethernet pinout + (##) Configure Ethernet NVIC interrupt (in Interrupt mode) + + (#) Ethernet data reception is asynchronous, so call the following API + to start the listening mode: + (##) HAL_ETH_Start(): + This API starts the MAC and DMA transmission and reception process, + without enabling end of transfer interrupts, in this mode user + has to poll for data availability by calling HAL_ETH_IsRxDataAvailable() + (##) HAL_ETH_Start_IT(): + This API starts the MAC and DMA transmission and reception process, + end of transfer interrupts are enabled in this mode, + HAL_ETH_RxCpltCallback() will be executed when an Ethernet packet is received + + (#) When data is received (HAL_ETH_IsRxDataAvailable() returns 1 or Rx interrupt + occurred), user can call the following APIs to get received data: + (##) HAL_ETH_GetRxDataBuffer(): Get buffer address of received frame + (##) HAL_ETH_GetRxDataLength(): Get received frame length + (##) HAL_ETH_GetRxDataInfo(): Get received frame additional info, + please refer to ETH_RxPacketInfo typedef structure + + (#) For transmission path, two APIs are available: + (##) HAL_ETH_Transmit(): Transmit an ETH frame in blocking mode + (##) HAL_ETH_Transmit_IT(): Transmit an ETH frame in interrupt mode, + HAL_ETH_TxCpltCallback() will be executed when end of transfer occur + + (#) Communication with an external PHY device: + (##) HAL_ETH_ReadPHYRegister(): Read a register from an external PHY + (##) HAL_ETH_WritePHYRegister(): Write data to an external RHY register + + (#) Configure the Ethernet MAC after ETH peripheral initialization + (##) HAL_ETH_GetMACConfig(): Get MAC actual configuration into ETH_MACConfigTypeDef + (##) HAL_ETH_SetMACConfig(): Set MAC configuration based on ETH_MACConfigTypeDef + + (#) Configure the Ethernet DMA after ETH peripheral initialization + (##) HAL_ETH_GetDMAConfig(): Get DMA actual configuration into ETH_DMAConfigTypeDef + (##) HAL_ETH_SetDMAConfig(): Set DMA configuration based on ETH_DMAConfigTypeDef + + -@- The PTP protocol offload APIs are not supported in this driver. + + *** Callback registration *** + ============================================= + + The compilation define USE_HAL_ETH_REGISTER_CALLBACKS when set to 1 + allows the user to configure dynamically the driver callbacks. + Use Function @ref HAL_ETH_RegisterCallback() to register an interrupt callback. + + Function @ref HAL_ETH_RegisterCallback() allows to register following callbacks: + (+) TxCpltCallback : Tx Complete Callback. + (+) RxCpltCallback : Rx Complete Callback. + (+) DMAErrorCallback : DMA Error Callback. + (+) MACErrorCallback : MAC Error Callback. + (+) PMTCallback : Power Management Callback + (+) EEECallback : EEE Callback. + (+) WakeUpCallback : Wake UP Callback + (+) MspInitCallback : MspInit Callback. + (+) MspDeInitCallback: MspDeInit Callback. + + This function takes as parameters the HAL peripheral handle, the Callback ID + and a pointer to the user callback function. + + Use function @ref HAL_ETH_UnRegisterCallback() to reset a callback to the default + weak function. + @ref HAL_ETH_UnRegisterCallback takes as parameters the HAL peripheral handle, + and the Callback ID. + This function allows to reset following callbacks: + (+) TxCpltCallback : Tx Complete Callback. + (+) RxCpltCallback : Rx Complete Callback. + (+) DMAErrorCallback : DMA Error Callback. + (+) MACErrorCallback : MAC Error Callback. + (+) PMTCallback : Power Management Callback + (+) EEECallback : EEE Callback. + (+) WakeUpCallback : Wake UP Callback + (+) MspInitCallback : MspInit Callback. + (+) MspDeInitCallback: MspDeInit Callback. + + By default, after the HAL_ETH_Init and when the state is HAL_ETH_STATE_RESET + all callbacks are set to the corresponding weak functions: + examples @ref HAL_ETH_TxCpltCallback(), @ref HAL_ETH_RxCpltCallback(). + Exception done for MspInit and MspDeInit functions that are + reset to the legacy weak function in the HAL_ETH_Init/ @ref HAL_ETH_DeInit only when + these callbacks are null (not registered beforehand). + if not, MspInit or MspDeInit are not null, the HAL_ETH_Init/ @ref HAL_ETH_DeInit + keep and use the user MspInit/MspDeInit callbacks (registered beforehand) + + Callbacks can be registered/unregistered in HAL_ETH_STATE_READY state only. + Exception done MspInit/MspDeInit that can be registered/unregistered + in HAL_ETH_STATE_READY or HAL_ETH_STATE_RESET state, + thus registered (user) MspInit/DeInit callbacks can be used during the Init/DeInit. + In that case first register the MspInit/MspDeInit user callbacks + using @ref HAL_ETH_RegisterCallback() before calling @ref HAL_ETH_DeInit + or HAL_ETH_Init function. + + When The compilation define USE_HAL_ETH_REGISTER_CALLBACKS is set to 0 or + not defined, the callback registration feature is not available and all callbacks + are set to the corresponding weak functions. + + @endverbatim + ****************************************************************************** + * @attention + * + *

© Copyright (c) 2017 STMicroelectronics. + * All rights reserved.

+ * + * This software component is licensed by ST under BSD 3-Clause license, + * the "License"; You may not use this file except in compliance with the + * License. You may obtain a copy of the License at: + * opensource.org/licenses/BSD-3-Clause + * + ****************************************************************************** + */ + +/* Includes ------------------------------------------------------------------*/ +#include "stm32h7xx_hal.h" + +/** @addtogroup STM32H7xx_HAL_Driver + * @{ + */ +#ifdef HAL_ETH_MODULE_ENABLED + +#if defined(ETH) + +/** @defgroup ETH ETH + * @brief ETH HAL module driver + * @{ + */ + +/* Private typedef -----------------------------------------------------------*/ +/* Private define ------------------------------------------------------------*/ +/** @addtogroup ETH_Private_Constants ETH Private Constants + * @{ + */ +#define ETH_MACCR_MASK ((uint32_t)0xFFFB7F7CU) +#define ETH_MACECR_MASK ((uint32_t)0x3F077FFFU) +#define ETH_MACPFR_MASK ((uint32_t)0x800007FFU) +#define ETH_MACWTR_MASK ((uint32_t)0x0000010FU) +#define ETH_MACTFCR_MASK ((uint32_t)0xFFFF00F2U) +#define ETH_MACRFCR_MASK ((uint32_t)0x00000003U) +#define ETH_MTLTQOMR_MASK ((uint32_t)0x00000072U) +#define ETH_MTLRQOMR_MASK ((uint32_t)0x0000007BU) + +#define ETH_DMAMR_MASK ((uint32_t)0x00007802U) +#define ETH_DMASBMR_MASK ((uint32_t)0x0000D001U) +#define ETH_DMACCR_MASK ((uint32_t)0x00013FFFU) +#define ETH_DMACTCR_MASK ((uint32_t)0x003F1010U) +#define ETH_DMACRCR_MASK ((uint32_t)0x803F0000U) +#define ETH_MACPCSR_MASK (ETH_MACPCSR_PWRDWN | ETH_MACPCSR_RWKPKTEN | \ + ETH_MACPCSR_MGKPKTEN | ETH_MACPCSR_GLBLUCAST | \ + ETH_MACPCSR_RWKPFE) + +/* Timeout values */ +#define ETH_SWRESET_TIMEOUT ((uint32_t)500U) +#define ETH_MDIO_BUS_TIMEOUT ((uint32_t)1000U) + +#define ETH_DMARXNDESCWBF_ERRORS_MASK ((uint32_t)(ETH_DMARXNDESCWBF_DE | ETH_DMARXNDESCWBF_RE | \ + ETH_DMARXNDESCWBF_OE | ETH_DMARXNDESCWBF_RWT |\ + ETH_DMARXNDESCWBF_GP | ETH_DMARXNDESCWBF_CE)) + +#define ETH_MAC_US_TICK ((uint32_t)1000000U) +/** + * @} + */ + +/* Private macros ------------------------------------------------------------*/ +/** @defgroup ETH_Private_Macros ETH Private Macros + * @{ + */ +/* Helper macros for TX descriptor handling */ +#define INCR_TX_DESC_INDEX(inx, offset) do {\ + (inx) += (offset);\ + if ((inx) >= (uint32_t)ETH_TX_DESC_CNT){\ + (inx) = ((inx) - (uint32_t)ETH_TX_DESC_CNT);}\ +} while (0) + +/* Helper macros for RX descriptor handling */ +#define INCR_RX_DESC_INDEX(inx, offset) do {\ + (inx) += (offset);\ + if ((inx) >= (uint32_t)ETH_RX_DESC_CNT){\ + (inx) = ((inx) - (uint32_t)ETH_RX_DESC_CNT);}\ +} while (0) +/** + * @} + */ +/* Private function prototypes -----------------------------------------------*/ +/** @defgroup ETH_Private_Functions ETH Private Functions + * @{ + */ +static void ETH_MAC_MDIO_ClkConfig(ETH_HandleTypeDef *heth); +static void ETH_SetMACConfig(ETH_HandleTypeDef *heth, ETH_MACConfigTypeDef *macconf); +static void ETH_SetDMAConfig(ETH_HandleTypeDef *heth, ETH_DMAConfigTypeDef *dmaconf); +static void ETH_MACDMAConfig(ETH_HandleTypeDef *heth); +static void ETH_DMATxDescListInit(ETH_HandleTypeDef *heth); +static void ETH_DMARxDescListInit(ETH_HandleTypeDef *heth); +static uint32_t ETH_Prepare_Tx_Descriptors(ETH_HandleTypeDef *heth, ETH_TxPacketConfig *pTxConfig, uint32_t ItMode); + +#if (USE_HAL_ETH_REGISTER_CALLBACKS == 1) +static void ETH_InitCallbacksToDefault(ETH_HandleTypeDef *heth); +#endif /* USE_HAL_ETH_REGISTER_CALLBACKS */ +/** + * @} + */ + +/* Exported functions ---------------------------------------------------------*/ +/** @defgroup ETH_Exported_Functions ETH Exported Functions + * @{ + */ + +/** @defgroup ETH_Exported_Functions_Group1 Initialization and deinitialization functions + * @brief Initialization and Configuration functions + * +@verbatim +=============================================================================== + ##### Initialization and Configuration functions ##### + =============================================================================== + [..] This subsection provides a set of functions allowing to initialize and + deinitialize the ETH peripheral: + + (+) User must Implement HAL_ETH_MspInit() function in which he configures + all related peripherals resources (CLOCK, GPIO and NVIC ). + + (+) Call the function HAL_ETH_Init() to configure the selected device with + the selected configuration: + (++) MAC address + (++) Media interface (MII or RMII) + (++) Rx DMA Descriptors Tab + (++) Tx DMA Descriptors Tab + (++) Length of Rx Buffers + + (+) Call the function HAL_ETH_DescAssignMemory() to assign data buffers + for each Rx DMA Descriptor + + (+) Call the function HAL_ETH_DeInit() to restore the default configuration + of the selected ETH peripheral. + +@endverbatim + * @{ + */ + +/** + * @brief Initialize the Ethernet peripheral registers. + * @param heth: pointer to a ETH_HandleTypeDef structure that contains + * the configuration information for ETHERNET module + * @retval HAL status + */ +HAL_StatusTypeDef HAL_ETH_Init(ETH_HandleTypeDef *heth) +{ + uint32_t tickstart; + + if(heth == NULL) + { + return HAL_ERROR; + } + +#if (USE_HAL_ETH_REGISTER_CALLBACKS == 1) + + if(heth->gState == HAL_ETH_STATE_RESET) + { + /* Allocate lock resource and initialize it */ + heth->Lock = HAL_UNLOCKED; + + ETH_InitCallbacksToDefault(heth); + + if(heth->MspInitCallback == NULL) + { + heth->MspInitCallback = HAL_ETH_MspInit; + } + + /* Init the low level hardware */ + heth->MspInitCallback(heth); + } + +#else + + /* Check the ETH peripheral state */ + if(heth->gState == HAL_ETH_STATE_RESET) + { + /* Init the low level hardware : GPIO, CLOCK, NVIC. */ + HAL_ETH_MspInit(heth); + } +#endif /* (USE_HAL_ETH_REGISTER_CALLBACKS) */ + + heth->gState = HAL_ETH_STATE_BUSY; + + __HAL_RCC_SYSCFG_CLK_ENABLE(); + + if(heth->Init.MediaInterface == HAL_ETH_MII_MODE) + { + HAL_SYSCFG_ETHInterfaceSelect(SYSCFG_ETH_MII); + } + else + { + HAL_SYSCFG_ETHInterfaceSelect(SYSCFG_ETH_RMII); + } + + /* Ethernet Software reset */ + /* Set the SWR bit: resets all MAC subsystem internal registers and logic */ + /* After reset all the registers holds their respective reset values */ + SET_BIT(heth->Instance->DMAMR, ETH_DMAMR_SWR); + + /* Get tick */ + tickstart = HAL_GetTick(); + + /* Wait for software reset */ + while (READ_BIT(heth->Instance->DMAMR, ETH_DMAMR_SWR) > 0U) + { + if(((HAL_GetTick() - tickstart ) > ETH_SWRESET_TIMEOUT)) + { + /* Set Error Code */ + heth->ErrorCode = HAL_ETH_ERROR_TIMEOUT; + /* Set State as Error */ + heth->gState = HAL_ETH_STATE_ERROR; + /* Return Error */ + return HAL_ERROR; + } + } + + /*------------------ MDIO CSR Clock Range Configuration --------------------*/ + ETH_MAC_MDIO_ClkConfig(heth); + + /*------------------ MAC LPI 1US Tic Counter Configuration --------------------*/ + WRITE_REG(heth->Instance->MAC1USTCR, (((uint32_t)HAL_RCC_GetHCLKFreq() / ETH_MAC_US_TICK) - 1U)); + + /*------------------ MAC, MTL and DMA default Configuration ----------------*/ + ETH_MACDMAConfig(heth); + + /* SET DSL to 64 bit */ + MODIFY_REG(heth->Instance->DMACCR, ETH_DMACCR_DSL, ETH_DMACCR_DSL_64BIT); + + /* Set Receive Buffers Length (must be a multiple of 4) */ + if ((heth->Init.RxBuffLen % 0x4U) != 0x0U) + { + /* Set Error Code */ + heth->ErrorCode = HAL_ETH_ERROR_PARAM; + /* Set State as Error */ + heth->gState = HAL_ETH_STATE_ERROR; + /* Return Error */ + return HAL_ERROR; + } + else + { + MODIFY_REG(heth->Instance->DMACRCR, ETH_DMACRCR_RBSZ, ((heth->Init.RxBuffLen) << 1)); + } + + /*------------------ DMA Tx Descriptors Configuration ----------------------*/ + ETH_DMATxDescListInit(heth); + + /*------------------ DMA Rx Descriptors Configuration ----------------------*/ + ETH_DMARxDescListInit(heth); + + /*--------------------- ETHERNET MAC Address Configuration ------------------*/ + /* Set MAC addr bits 32 to 47 */ + heth->Instance->MACA0HR = (((uint32_t)(heth->Init.MACAddr[5]) << 8) | (uint32_t)heth->Init.MACAddr[4]); + /* Set MAC addr bits 0 to 31 */ + heth->Instance->MACA0LR = (((uint32_t)(heth->Init.MACAddr[3]) << 24) | ((uint32_t)(heth->Init.MACAddr[2]) << 16) | + ((uint32_t)(heth->Init.MACAddr[1]) << 8) | (uint32_t)heth->Init.MACAddr[0]); + + heth->ErrorCode = HAL_ETH_ERROR_NONE; + heth->gState = HAL_ETH_STATE_READY; + heth->RxState = HAL_ETH_STATE_READY; + + return HAL_OK; +} + +/** + * @brief DeInitializes the ETH peripheral. + * @param heth: pointer to a ETH_HandleTypeDef structure that contains + * the configuration information for ETHERNET module + * @retval HAL status + */ +HAL_StatusTypeDef HAL_ETH_DeInit(ETH_HandleTypeDef *heth) +{ + /* Set the ETH peripheral state to BUSY */ + heth->gState = HAL_ETH_STATE_BUSY; + +#if (USE_HAL_ETH_REGISTER_CALLBACKS == 1) + + if(heth->MspDeInitCallback == NULL) + { + heth->MspDeInitCallback = HAL_ETH_MspDeInit; + } + /* DeInit the low level hardware */ + heth->MspDeInitCallback(heth); +#else + + /* De-Init the low level hardware : GPIO, CLOCK, NVIC. */ + HAL_ETH_MspDeInit(heth); + +#endif /* (USE_HAL_ETH_REGISTER_CALLBACKS) */ + + /* Set ETH HAL state to Disabled */ + heth->gState= HAL_ETH_STATE_RESET; + + /* Return function status */ + return HAL_OK; +} + +/** + * @brief Initializes the ETH MSP. + * @param heth: pointer to a ETH_HandleTypeDef structure that contains + * the configuration information for ETHERNET module + * @retval None + */ +__weak void HAL_ETH_MspInit(ETH_HandleTypeDef *heth) +{ + /* Prevent unused argument(s) compilation warning */ + UNUSED(heth); + /* NOTE : This function Should not be modified, when the callback is needed, + the HAL_ETH_MspInit could be implemented in the user file + */ +} + +/** + * @brief DeInitializes ETH MSP. + * @param heth: pointer to a ETH_HandleTypeDef structure that contains + * the configuration information for ETHERNET module + * @retval None + */ +__weak void HAL_ETH_MspDeInit(ETH_HandleTypeDef *heth) +{ + /* Prevent unused argument(s) compilation warning */ + UNUSED(heth); + /* NOTE : This function Should not be modified, when the callback is needed, + the HAL_ETH_MspDeInit could be implemented in the user file + */ +} + +#if (USE_HAL_ETH_REGISTER_CALLBACKS == 1) +/** + * @brief Register a User ETH Callback + * To be used instead of the weak predefined callback + * @param heth eth handle + * @param CallbackID ID of the callback to be registered + * This parameter can be one of the following values: + * @arg @ref HAL_ETH_TX_COMPLETE_CB_ID Tx Complete Callback ID + * @arg @ref HAL_ETH_RX_COMPLETE_CB_ID Rx Complete Callback ID + * @arg @ref HAL_ETH_DMA_ERROR_CB_ID DMA Error Callback ID + * @arg @ref HAL_ETH_MAC_ERROR_CB_ID MAC Error Callback ID + * @arg @ref HAL_ETH_PMT_CB_ID Power Management Callback ID + * @arg @ref HAL_ETH_EEE_CB_ID EEE Callback ID + * @arg @ref HAL_ETH_WAKEUP_CB_ID Wake UP Callback ID + * @arg @ref HAL_ETH_MSPINIT_CB_ID MspInit callback ID + * @arg @ref HAL_ETH_MSPDEINIT_CB_ID MspDeInit callback ID + * @param pCallback pointer to the Callback function + * @retval status + */ +HAL_StatusTypeDef HAL_ETH_RegisterCallback(ETH_HandleTypeDef *heth, HAL_ETH_CallbackIDTypeDef CallbackID, pETH_CallbackTypeDef pCallback) +{ + HAL_StatusTypeDef status = HAL_OK; + + if(pCallback == NULL) + { + /* Update the error code */ + heth->ErrorCode |= HAL_ETH_ERROR_INVALID_CALLBACK; + + return HAL_ERROR; + } + /* Process locked */ + __HAL_LOCK(heth); + + if(heth->gState == HAL_ETH_STATE_READY) + { + switch (CallbackID) + { + case HAL_ETH_TX_COMPLETE_CB_ID : + heth->TxCpltCallback = pCallback; + break; + + case HAL_ETH_RX_COMPLETE_CB_ID : + heth->RxCpltCallback = pCallback; + break; + + case HAL_ETH_DMA_ERROR_CB_ID : + heth->DMAErrorCallback = pCallback; + break; + + case HAL_ETH_MAC_ERROR_CB_ID : + heth->MACErrorCallback = pCallback; + break; + + case HAL_ETH_PMT_CB_ID : + heth->PMTCallback = pCallback; + break; + + case HAL_ETH_EEE_CB_ID : + heth->EEECallback = pCallback; + break; + + case HAL_ETH_WAKEUP_CB_ID : + heth->WakeUpCallback = pCallback; + break; + + case HAL_ETH_MSPINIT_CB_ID : + heth->MspInitCallback = pCallback; + break; + + case HAL_ETH_MSPDEINIT_CB_ID : + heth->MspDeInitCallback = pCallback; + break; + + default : + /* Update the error code */ + heth->ErrorCode |= HAL_ETH_ERROR_INVALID_CALLBACK; + /* Return error status */ + status = HAL_ERROR; + break; + } + } + else if(heth->gState == HAL_ETH_STATE_RESET) + { + switch (CallbackID) + { + case HAL_ETH_MSPINIT_CB_ID : + heth->MspInitCallback = pCallback; + break; + + case HAL_ETH_MSPDEINIT_CB_ID : + heth->MspDeInitCallback = pCallback; + break; + + default : + /* Update the error code */ + heth->ErrorCode |= HAL_ETH_ERROR_INVALID_CALLBACK; + /* Return error status */ + status = HAL_ERROR; + break; + } + } + else + { + /* Update the error code */ + heth->ErrorCode |= HAL_ETH_ERROR_INVALID_CALLBACK; + /* Return error status */ + status = HAL_ERROR; + } + + /* Release Lock */ + __HAL_UNLOCK(heth); + + return status; +} + +/** + * @brief Unregister an ETH Callback + * ETH callabck is redirected to the weak predefined callback + * @param heth eth handle + * @param CallbackID ID of the callback to be unregistered + * This parameter can be one of the following values: + * @arg @ref HAL_ETH_TX_COMPLETE_CB_ID Tx Complete Callback ID + * @arg @ref HAL_ETH_RX_COMPLETE_CB_ID Rx Complete Callback ID + * @arg @ref HAL_ETH_DMA_ERROR_CB_ID DMA Error Callback ID + * @arg @ref HAL_ETH_MAC_ERROR_CB_ID MAC Error Callback ID + * @arg @ref HAL_ETH_PMT_CB_ID Power Management Callback ID + * @arg @ref HAL_ETH_EEE_CB_ID EEE Callback ID + * @arg @ref HAL_ETH_WAKEUP_CB_ID Wake UP Callback ID + * @arg @ref HAL_ETH_MSPINIT_CB_ID MspInit callback ID + * @arg @ref HAL_ETH_MSPDEINIT_CB_ID MspDeInit callback ID + * @retval status + */ +HAL_StatusTypeDef HAL_ETH_UnRegisterCallback(ETH_HandleTypeDef *heth, HAL_ETH_CallbackIDTypeDef CallbackID) +{ + HAL_StatusTypeDef status = HAL_OK; + + /* Process locked */ + __HAL_LOCK(heth); + + if(heth->gState == HAL_ETH_STATE_READY) + { + switch (CallbackID) + { + case HAL_ETH_TX_COMPLETE_CB_ID : + heth->TxCpltCallback = HAL_ETH_TxCpltCallback; + break; + + case HAL_ETH_RX_COMPLETE_CB_ID : + heth->RxCpltCallback = HAL_ETH_RxCpltCallback; + break; + + case HAL_ETH_DMA_ERROR_CB_ID : + heth->DMAErrorCallback = HAL_ETH_DMAErrorCallback; + break; + + case HAL_ETH_MAC_ERROR_CB_ID : + heth->MACErrorCallback = HAL_ETH_MACErrorCallback; + break; + + case HAL_ETH_PMT_CB_ID : + heth->PMTCallback = HAL_ETH_PMTCallback; + break; + + case HAL_ETH_EEE_CB_ID : + heth->EEECallback = HAL_ETH_EEECallback; + break; + + case HAL_ETH_WAKEUP_CB_ID : + heth->WakeUpCallback = HAL_ETH_WakeUpCallback; + break; + + case HAL_ETH_MSPINIT_CB_ID : + heth->MspInitCallback = HAL_ETH_MspInit; + break; + + case HAL_ETH_MSPDEINIT_CB_ID : + heth->MspDeInitCallback = HAL_ETH_MspDeInit; + break; + + default : + /* Update the error code */ + heth->ErrorCode |= HAL_ETH_ERROR_INVALID_CALLBACK; + /* Return error status */ + status = HAL_ERROR; + break; + } + } + else if(heth->gState == HAL_ETH_STATE_RESET) + { + switch (CallbackID) + { + case HAL_ETH_MSPINIT_CB_ID : + heth->MspInitCallback = HAL_ETH_MspInit; + break; + + case HAL_ETH_MSPDEINIT_CB_ID : + heth->MspDeInitCallback = HAL_ETH_MspDeInit; + break; + + default : + /* Update the error code */ + heth->ErrorCode |= HAL_ETH_ERROR_INVALID_CALLBACK; + /* Return error status */ + status = HAL_ERROR; + break; + } + } + else + { + /* Update the error code */ + heth->ErrorCode |= HAL_ETH_ERROR_INVALID_CALLBACK; + /* Return error status */ + status = HAL_ERROR; + } + + /* Release Lock */ + __HAL_UNLOCK(heth); + + return status; +} +#endif /* USE_HAL_ETH_REGISTER_CALLBACKS */ + +/** + * @brief Assign memory buffers to a DMA Rx descriptor + * @param heth: pointer to a ETH_HandleTypeDef structure that contains + * the configuration information for ETHERNET module + * @param Index : index of the DMA Rx descriptor + * this parameter can be a value from 0x0 to (ETH_RX_DESC_CNT -1) + * @param pBuffer1: address of buffer 1 + * @param pBuffer2: address of buffer 2 if available + * @retval HAL status + */ +HAL_StatusTypeDef HAL_ETH_DescAssignMemory(ETH_HandleTypeDef *heth, uint32_t Index, uint8_t *pBuffer1, uint8_t *pBuffer2) +{ + ETH_DMADescTypeDef *dmarxdesc = (ETH_DMADescTypeDef *)heth->RxDescList.RxDesc[Index]; + + if((pBuffer1 == NULL) || (Index >= (uint32_t)ETH_RX_DESC_CNT)) + { + /* Set Error Code */ + heth->ErrorCode = HAL_ETH_ERROR_PARAM; + /* Return Error */ + return HAL_ERROR; + } + + /* write buffer address to RDES0 */ + WRITE_REG(dmarxdesc->DESC0, (uint32_t)pBuffer1); + /* store buffer address */ + WRITE_REG(dmarxdesc->BackupAddr0, (uint32_t)pBuffer1); + /* set buffer address valid bit to RDES3 */ + SET_BIT(dmarxdesc->DESC3, ETH_DMARXNDESCRF_BUF1V); + + if(pBuffer2 != NULL) + { + /* write buffer 2 address to RDES1 */ + WRITE_REG(dmarxdesc->DESC2, (uint32_t)pBuffer2); + /* store buffer 2 address */ + WRITE_REG(dmarxdesc->BackupAddr1, (uint32_t)pBuffer2); + /* set buffer 2 address valid bit to RDES3 */ + SET_BIT(dmarxdesc->DESC3, ETH_DMARXNDESCRF_BUF2V); + } + /* set OWN bit to RDES3 */ + SET_BIT(dmarxdesc->DESC3, ETH_DMARXNDESCRF_OWN); + + return HAL_OK; +} + +/** + * @} + */ + +/** @defgroup ETH_Exported_Functions_Group2 IO operation functions + * @brief ETH Transmit and Receive functions + * +@verbatim + ============================================================================== + ##### IO operation functions ##### + ============================================================================== + [..] + This subsection provides a set of functions allowing to manage the ETH + data transfer. + +@endverbatim + * @{ + */ + +/** + * @brief Enables Ethernet MAC and DMA reception and transmission + * @param heth: pointer to a ETH_HandleTypeDef structure that contains + * the configuration information for ETHERNET module + * @retval HAL status + */ +HAL_StatusTypeDef HAL_ETH_Start(ETH_HandleTypeDef *heth) +{ + if(heth->gState == HAL_ETH_STATE_READY) + { + heth->gState = HAL_ETH_STATE_BUSY; + + /* Enable the MAC transmission */ + SET_BIT(heth->Instance->MACCR, ETH_MACCR_TE); + + /* Enable the MAC reception */ + SET_BIT(heth->Instance->MACCR, ETH_MACCR_RE); + + /* Set the Flush Transmit FIFO bit */ + SET_BIT(heth->Instance->MTLTQOMR, ETH_MTLTQOMR_FTQ); + + /* Enable the DMA transmission */ + SET_BIT(heth->Instance->DMACTCR, ETH_DMACTCR_ST); + + /* Enable the DMA reception */ + SET_BIT(heth->Instance->DMACRCR, ETH_DMACRCR_SR); + + /* Clear Tx and Rx process stopped flags */ + heth->Instance->DMACSR |= (ETH_DMACSR_TPS | ETH_DMACSR_RPS); + + heth->gState = HAL_ETH_STATE_READY; + heth->RxState = HAL_ETH_STATE_BUSY_RX; + + return HAL_OK; + } + else + { + return HAL_ERROR; + } +} + +/** + * @brief Enables Ethernet MAC and DMA reception/transmission in Interrupt mode + * @param heth: pointer to a ETH_HandleTypeDef structure that contains + * the configuration information for ETHERNET module + * @retval HAL status + */ +HAL_StatusTypeDef HAL_ETH_Start_IT(ETH_HandleTypeDef *heth) +{ + uint32_t descindex = 0, counter; + ETH_DMADescTypeDef *dmarxdesc = (ETH_DMADescTypeDef *)heth->RxDescList.RxDesc[descindex]; + + if(heth->gState == HAL_ETH_STATE_READY) + { + heth->gState = HAL_ETH_STATE_BUSY; + + /* Set IOC bit to all Rx descriptors */ + for(counter= 0; counter < (uint32_t)ETH_RX_DESC_CNT; counter++) + { + SET_BIT(dmarxdesc->DESC3, ETH_DMARXNDESCRF_IOC); + INCR_RX_DESC_INDEX(descindex, 1U); + dmarxdesc = (ETH_DMADescTypeDef *)heth->RxDescList.RxDesc[descindex]; + } + + /* save IT mode to ETH Handle */ + heth->RxDescList.ItMode = 1U; + + /* Enable the MAC transmission */ + SET_BIT(heth->Instance->MACCR, ETH_MACCR_TE); + + /* Enable the MAC reception */ + SET_BIT(heth->Instance->MACCR, ETH_MACCR_RE); + + /* Set the Flush Transmit FIFO bit */ + SET_BIT(heth->Instance->MTLTQOMR, ETH_MTLTQOMR_FTQ); + + /* Enable the DMA transmission */ + SET_BIT(heth->Instance->DMACTCR, ETH_DMACTCR_ST); + + /* Enable the DMA reception */ + SET_BIT(heth->Instance->DMACRCR, ETH_DMACRCR_SR); + + /* Clear Tx and Rx process stopped flags */ + heth->Instance->DMACSR |= (ETH_DMACSR_TPS | ETH_DMACSR_RPS); + + heth->gState = HAL_ETH_STATE_READY; + heth->RxState = HAL_ETH_STATE_BUSY_RX; + + /* Enable ETH DMA interrupts: + - Tx complete interrupt + - Rx complete interrupt + - Fatal bus interrupt + */ + __HAL_ETH_DMA_ENABLE_IT(heth, (ETH_DMACIER_NIE | ETH_DMACIER_RIE | ETH_DMACIER_TIE | + ETH_DMACIER_FBEE | ETH_DMACIER_AIE)); + + return HAL_OK; + } + else + { + return HAL_ERROR; + } +} + +/** + * @brief Stop Ethernet MAC and DMA reception/transmission + * @param heth: pointer to a ETH_HandleTypeDef structure that contains + * the configuration information for ETHERNET module + * @retval HAL status + */ +HAL_StatusTypeDef HAL_ETH_Stop(ETH_HandleTypeDef *heth) +{ + if(heth->gState != HAL_ETH_STATE_RESET) + { + /* Set the ETH peripheral state to BUSY */ + heth->gState = HAL_ETH_STATE_BUSY; + + /* Disable the DMA transmission */ + CLEAR_BIT(heth->Instance->DMACTCR, ETH_DMACTCR_ST); + + /* Disable the DMA reception */ + CLEAR_BIT(heth->Instance->DMACRCR, ETH_DMACRCR_SR); + + /* Disable the MAC reception */ + CLEAR_BIT( heth->Instance->MACCR, ETH_MACCR_RE); + + /* Set the Flush Transmit FIFO bit */ + SET_BIT(heth->Instance->MTLTQOMR, ETH_MTLTQOMR_FTQ); + + /* Disable the MAC transmission */ + CLEAR_BIT(heth->Instance->MACCR, ETH_MACCR_TE); + + heth->gState = HAL_ETH_STATE_READY; + heth->RxState = HAL_ETH_STATE_READY; + + /* Return function status */ + return HAL_OK; + } + else + { + return HAL_ERROR; + } +} + +/** + * @brief Stop Ethernet MAC and DMA reception/transmission in Interrupt mode + * @param heth: pointer to a ETH_HandleTypeDef structure that contains + * the configuration information for ETHERNET module + * @retval HAL status + */ +HAL_StatusTypeDef HAL_ETH_Stop_IT(ETH_HandleTypeDef *heth) +{ + ETH_DMADescTypeDef *dmarxdesc = (ETH_DMADescTypeDef *)heth->RxDescList.RxDesc[0]; + uint32_t index; + + if(heth->gState != HAL_ETH_STATE_RESET) + { + /* Set the ETH peripheral state to BUSY */ + heth->gState = HAL_ETH_STATE_BUSY; + + /* Disable intrrupts: + - Tx complete interrupt + - Rx complete interrupt */ + __HAL_ETH_DMA_DISABLE_IT(heth, (ETH_DMA_NORMAL_IT | ETH_DMA_RX_IT | ETH_DMA_TX_IT)); + + /* Disable the DMA transmission */ + CLEAR_BIT(heth->Instance->DMACTCR, ETH_DMACTCR_ST); + + /* Disable the DMA reception */ + CLEAR_BIT(heth->Instance->DMACRCR, ETH_DMACRCR_SR); + + /* Disable the MAC reception */ + CLEAR_BIT( heth->Instance->MACCR, ETH_MACCR_RE); + + /* Set the Flush Transmit FIFO bit */ + SET_BIT(heth->Instance->MTLTQOMR, ETH_MTLTQOMR_FTQ); + + /* Disable the MAC transmission */ + CLEAR_BIT(heth->Instance->MACCR, ETH_MACCR_TE); + + /* Clear IOC bit to all Rx descriptors */ + for(index = 0; index < (uint32_t)ETH_RX_DESC_CNT; index++) + { + CLEAR_BIT(dmarxdesc->DESC3, ETH_DMARXNDESCRF_IOC); + } + + heth->RxDescList.ItMode = 0U; + + heth->gState = HAL_ETH_STATE_READY; + heth->RxState = HAL_ETH_STATE_READY; + + /* Return function status */ + return HAL_OK; + } + else + { + return HAL_ERROR; + } +} + +/** + * @brief Sends an Ethernet Packet in polling mode. + * @param heth: pointer to a ETH_HandleTypeDef structure that contains + * the configuration information for ETHERNET module + * @param pTxConfig: Hold the configuration of packet to be transmitted + * @param Timeout: timeout value + * @retval HAL status + */ +HAL_StatusTypeDef HAL_ETH_Transmit(ETH_HandleTypeDef *heth, ETH_TxPacketConfig *pTxConfig, uint32_t Timeout) +{ + uint32_t tickstart; + const ETH_DMADescTypeDef *dmatxdesc; + + if(pTxConfig == NULL) + { + heth->ErrorCode |= HAL_ETH_ERROR_PARAM; + return HAL_ERROR; + } + + if(heth->gState == HAL_ETH_STATE_READY) + { + /* Config DMA Tx descriptor by Tx Packet info */ + if (ETH_Prepare_Tx_Descriptors(heth, pTxConfig, 0) != HAL_ETH_ERROR_NONE) + { + /* Set the ETH error code */ + heth->ErrorCode |= HAL_ETH_ERROR_BUSY; + return HAL_ERROR; + } + + dmatxdesc = (ETH_DMADescTypeDef *)(&heth->TxDescList)->TxDesc[heth->TxDescList.CurTxDesc]; + + /* Incr current tx desc index */ + INCR_TX_DESC_INDEX(heth->TxDescList.CurTxDesc, 1U); + + /* Start transmission */ + /* issue a poll command to Tx DMA by writing address of next immediate free descriptor */ + WRITE_REG(heth->Instance->DMACTDTPR, (uint32_t)(heth->TxDescList.TxDesc[heth->TxDescList.CurTxDesc])); + + tickstart = HAL_GetTick(); + + /* Wait for data to be transmitted or timeout occured */ + while((dmatxdesc->DESC3 & ETH_DMATXNDESCWBF_OWN) != (uint32_t)RESET) + { + if((heth->Instance->DMACSR & ETH_DMACSR_FBE) != (uint32_t)RESET) + { + heth->ErrorCode |= HAL_ETH_ERROR_DMA; + heth->DMAErrorCode = heth->Instance->DMACSR; + /* Set ETH HAL State to Ready */ + heth->gState = HAL_ETH_STATE_ERROR; + /* Return function status */ + return HAL_ERROR; + } + + /* Check for the Timeout */ + if(Timeout != HAL_MAX_DELAY) + { + if(((HAL_GetTick() - tickstart ) > Timeout) || (Timeout == 0U)) + { + heth->ErrorCode |= HAL_ETH_ERROR_TIMEOUT; + heth->gState = HAL_ETH_STATE_READY; + return HAL_ERROR; + } + } + } + + /* Set ETH HAL State to Ready */ + heth->gState = HAL_ETH_STATE_READY; + + /* Return function status */ + return HAL_OK; + } + else + { + return HAL_ERROR; + } +} + +/** + * @brief Sends an Ethernet Packet in interrupt mode. + * @param heth: pointer to a ETH_HandleTypeDef structure that contains + * the configuration information for ETHERNET module + * @param pTxConfig: Hold the configuration of packet to be transmitted + * @retval HAL status + */ +HAL_StatusTypeDef HAL_ETH_Transmit_IT(ETH_HandleTypeDef *heth, ETH_TxPacketConfig *pTxConfig) +{ + if(pTxConfig == NULL) + { + return HAL_ERROR; + } + + if(heth->gState == HAL_ETH_STATE_READY) + { + /* Config DMA Tx descriptor by Tx Packet info */ + if (ETH_Prepare_Tx_Descriptors(heth, pTxConfig, 1) != HAL_ETH_ERROR_NONE) + { + heth->ErrorCode = HAL_ETH_ERROR_BUSY; + return HAL_ERROR; + } + + /* Incr current tx desc index */ + INCR_TX_DESC_INDEX(heth->TxDescList.CurTxDesc, 1U); + + /* Start transmission */ + /* issue a poll command to Tx DMA by writing address of next immediate free descriptor */ + WRITE_REG(heth->Instance->DMACTDTPR, (uint32_t)(heth->TxDescList.TxDesc[heth->TxDescList.CurTxDesc])); + + return HAL_OK; + + } + else + { + return HAL_ERROR; + } +} + +/** + * @brief Checks for received Packets. + * @param heth: pointer to a ETH_HandleTypeDef structure that contains + * the configuration information for ETHERNET module + * @retval 1: A Packet is received + * 0: no Packet received + */ +uint8_t HAL_ETH_IsRxDataAvailable(ETH_HandleTypeDef *heth) +{ + ETH_RxDescListTypeDef *dmarxdesclist = &heth->RxDescList; + uint32_t descidx = dmarxdesclist->CurRxDesc; + ETH_DMADescTypeDef *dmarxdesc = (ETH_DMADescTypeDef *)dmarxdesclist->RxDesc[descidx]; + uint32_t descscancnt = 0; + uint32_t appdesccnt = 0, firstappdescidx = 0; + + if(dmarxdesclist->AppDescNbr != 0U) + { + /* data already received by not yet processed*/ + return 0; + } + + /* Check if descriptor is not owned by DMA */ + while((READ_BIT(dmarxdesc->DESC3, ETH_DMARXNDESCWBF_OWN) == (uint32_t)RESET) && (descscancnt < (uint32_t)ETH_RX_DESC_CNT)) + { + descscancnt++; + + /* Check if last descriptor */ + if(READ_BIT(dmarxdesc->DESC3, ETH_DMARXNDESCWBF_LD) != (uint32_t)RESET) + { + /* Increment the number of descriptors to be passed to the application */ + appdesccnt += 1U; + + if(appdesccnt == 1U) + { + WRITE_REG(firstappdescidx, descidx); + } + + /* Increment current rx descriptor index */ + INCR_RX_DESC_INDEX(descidx, 1U); + + /* Check for Context descriptor */ + /* Get current descriptor address */ + dmarxdesc = (ETH_DMADescTypeDef *)dmarxdesclist->RxDesc[descidx]; + + if(READ_BIT(dmarxdesc->DESC3, ETH_DMARXNDESCWBF_OWN) == (uint32_t)RESET) + { + if(READ_BIT(dmarxdesc->DESC3, ETH_DMARXNDESCWBF_CTXT) != (uint32_t)RESET) + { + /* Increment the number of descriptors to be passed to the application */ + dmarxdesclist->AppContextDesc = 1; + /* Increment current rx descriptor index */ + INCR_RX_DESC_INDEX(descidx, 1U); + } + } + /* Fill information to Rx descriptors list */ + dmarxdesclist->CurRxDesc = descidx; + dmarxdesclist->FirstAppDesc = firstappdescidx; + dmarxdesclist->AppDescNbr = appdesccnt; + + /* Return function status */ + return 1; + } + /* Check if first descriptor */ + else if(READ_BIT(dmarxdesc->DESC3, ETH_DMARXNDESCWBF_FD) != (uint32_t)RESET) + { + WRITE_REG(firstappdescidx, descidx); + /* Increment the number of descriptors to be passed to the application */ + appdesccnt = 1U; + + /* Increment current rx descriptor index */ + INCR_RX_DESC_INDEX(descidx, 1U); + /* Get current descriptor address */ + dmarxdesc = (ETH_DMADescTypeDef *)dmarxdesclist->RxDesc[descidx]; + } + /* It should be an intermediate descriptor */ + else + { + /* Increment the number of descriptors to be passed to the application */ + appdesccnt += 1U; + + /* Increment current rx descriptor index */ + INCR_RX_DESC_INDEX(descidx, 1U); + /* Get current descriptor address */ + dmarxdesc = (ETH_DMADescTypeDef *)dmarxdesclist->RxDesc[descidx]; + } + } + + /* Build Descriptors if an incomplete Packet is received */ + if(appdesccnt > 0U) + { + descidx = firstappdescidx; + dmarxdesc = (ETH_DMADescTypeDef *)dmarxdesclist->RxDesc[descidx]; + + for(descscancnt = 0; descscancnt < appdesccnt; descscancnt++) + { + WRITE_REG(dmarxdesc->DESC0, dmarxdesc->BackupAddr0); + WRITE_REG(dmarxdesc->DESC3, ETH_DMARXNDESCRF_BUF1V); + + if (READ_REG(dmarxdesc->BackupAddr1) != ((uint32_t)RESET)) + { + WRITE_REG(dmarxdesc->DESC2, dmarxdesc->BackupAddr1); + SET_BIT(dmarxdesc->DESC3, ETH_DMARXNDESCRF_BUF2V); + } + + SET_BIT(dmarxdesc->DESC3, ETH_DMARXNDESCRF_OWN); + + if(dmarxdesclist->ItMode != ((uint32_t)RESET)) + { + SET_BIT(dmarxdesc->DESC3, ETH_DMARXNDESCRF_IOC); + } + + /* Increment rx descriptor index */ + INCR_RX_DESC_INDEX(descidx, 1U); + /* Get descriptor address */ + dmarxdesc = (ETH_DMADescTypeDef *)dmarxdesclist->RxDesc[descidx]; + } + } + + /* Fill information to Rx descriptors list: No received Packet */ + dmarxdesclist->AppDescNbr = 0U; + + return 0; +} + +/** + * @brief This function gets the buffer address of last received Packet. + * @note Please insure to allocate the RxBuffer structure before calling this function + * how to use example: + * HAL_ETH_GetRxDataLength(heth, &Length); + * BuffersNbr = (Length / heth->Init.RxBuffLen) + 1; + * RxBuffer = (ETH_BufferTypeDef *)malloc(BuffersNbr * sizeof(ETH_BufferTypeDef)); + * HAL_ETH_GetRxDataBuffer(heth, RxBuffer); + * @param heth: pointer to a ETH_HandleTypeDef structure that contains + * the configuration information for ETHERNET module + * @param RxBuffer: Pointer to a ETH_BufferTypeDef structure + * @retval HAL status + */ +HAL_StatusTypeDef HAL_ETH_GetRxDataBuffer(ETH_HandleTypeDef *heth, ETH_BufferTypeDef *RxBuffer) +{ + ETH_RxDescListTypeDef *dmarxdesclist = &heth->RxDescList; + uint32_t descidx = dmarxdesclist->FirstAppDesc; + uint32_t index, accumulatedlen = 0, lastdesclen; + __IO const ETH_DMADescTypeDef *dmarxdesc = (ETH_DMADescTypeDef *)dmarxdesclist->RxDesc[descidx]; + ETH_BufferTypeDef *rxbuff = RxBuffer; + + if(rxbuff == NULL) + { + heth->ErrorCode = HAL_ETH_ERROR_PARAM; + return HAL_ERROR; + } + + if(dmarxdesclist->AppDescNbr == 0U) + { + if(HAL_ETH_IsRxDataAvailable(heth) == 0U) + { + /* No data to be transferred to the application */ + return HAL_ERROR; + } + else + { + descidx = dmarxdesclist->FirstAppDesc; + dmarxdesc = (ETH_DMADescTypeDef *)dmarxdesclist->RxDesc[descidx]; + } + } + + /* Get intermediate descriptors buffers: in case of the Packet is splitted into multi descriptors */ + for(index = 0; index < (dmarxdesclist->AppDescNbr - 1U); index++) + { + /* Get Address and length of the first buffer address */ + rxbuff->buffer = (uint8_t *) dmarxdesc->BackupAddr0; + rxbuff->len = heth->Init.RxBuffLen; + + /* Check if the second buffer address of this descriptor is valid */ + if(dmarxdesc->BackupAddr1 != 0U) + { + /* Point to next buffer */ + rxbuff = (struct __ETH_BufferTypeDef *)rxbuff->next; + /* Get Address and length of the second buffer address */ + rxbuff->buffer = (uint8_t *) dmarxdesc->BackupAddr1; + rxbuff->len = heth->Init.RxBuffLen; + } + else + { + /* Nothing to do here */ + } + + /* get total length until this descriptor */ + accumulatedlen = READ_BIT(dmarxdesc->DESC3, ETH_DMARXNDESCWBF_PL); + + /* Increment to next descriptor */ + INCR_RX_DESC_INDEX(descidx, 1U); + dmarxdesc = (ETH_DMADescTypeDef *)dmarxdesclist->RxDesc[descidx]; + + /* Point to next buffer */ + rxbuff = (struct __ETH_BufferTypeDef *)rxbuff->next; + } + + /* last descriptor data length */ + lastdesclen = READ_BIT(dmarxdesc->DESC3, ETH_DMARXNDESCWBF_PL) - accumulatedlen; + + /* Get Address of the first buffer address */ + rxbuff->buffer = (uint8_t *) dmarxdesc->BackupAddr0; + + /* data is in only one buffer */ + if(lastdesclen <= heth->Init.RxBuffLen) + { + rxbuff->len = lastdesclen; + } + /* data is in two buffers */ + else if(dmarxdesc->BackupAddr1 != 0U) + { + /* Get the Length of the first buffer address */ + rxbuff->len = heth->Init.RxBuffLen; + /* Point to next buffer */ + rxbuff = (struct __ETH_BufferTypeDef *)rxbuff->next; + /* Get the Address the Length of the second buffer address */ + rxbuff->buffer = (uint8_t *) dmarxdesc->BackupAddr1; + rxbuff->len = lastdesclen - (heth->Init.RxBuffLen); + } + else /* Buffer 2 not valid*/ + { + return HAL_ERROR; + } + + return HAL_OK; +} + +/** + * @brief This function gets the length of last received Packet. + * @param heth: pointer to a ETH_HandleTypeDef structure that contains + * the configuration information for ETHERNET module + * @param Length: parameter to hold Rx packet length + * @retval HAL Status + */ +HAL_StatusTypeDef HAL_ETH_GetRxDataLength(ETH_HandleTypeDef *heth, uint32_t *Length) +{ + ETH_RxDescListTypeDef *dmarxdesclist = &heth->RxDescList; + uint32_t descidx = dmarxdesclist->FirstAppDesc; + __IO const ETH_DMADescTypeDef *dmarxdesc; + + if(dmarxdesclist->AppDescNbr == 0U) + { + if(HAL_ETH_IsRxDataAvailable(heth) == 0U) + { + /* No data to be transferred to the application */ + return HAL_ERROR; + } + } + + /* Get index of last descriptor */ + INCR_RX_DESC_INDEX(descidx, (dmarxdesclist->AppDescNbr - 1U)); + /* Point to last descriptor */ + dmarxdesc = (ETH_DMADescTypeDef *)dmarxdesclist->RxDesc[descidx]; + + *Length = READ_BIT(dmarxdesc->DESC3, ETH_DMARXNDESCWBF_PL); + + return HAL_OK; +} + +/** + * @brief Get the Rx data info (Packet type, VLAN tag, Filters status, ...) + * @param heth: pointer to a ETH_HandleTypeDef structure that contains + * the configuration information for ETHERNET module + * @param RxPacketInfo: parameter to hold info of received buffer + * @retval HAL status + */ +HAL_StatusTypeDef HAL_ETH_GetRxDataInfo(ETH_HandleTypeDef *heth, ETH_RxPacketInfo *RxPacketInfo) +{ + ETH_RxDescListTypeDef *dmarxdesclist = &heth->RxDescList; + uint32_t descidx = dmarxdesclist->FirstAppDesc; + __IO const ETH_DMADescTypeDef *dmarxdesc; + + if(dmarxdesclist->AppDescNbr == 0U) + { + if(HAL_ETH_IsRxDataAvailable(heth) == 0U) + { + /* No data to be transferred to the application */ + return HAL_ERROR; + } + } + + /* Get index of last descriptor */ + INCR_RX_DESC_INDEX(descidx, ((dmarxdesclist->AppDescNbr) - 1U)); + /* Point to last descriptor */ + dmarxdesc = (ETH_DMADescTypeDef *)dmarxdesclist->RxDesc[descidx]; + + if((dmarxdesc->DESC3 & ETH_DMARXNDESCWBF_ES) != (uint32_t)RESET) + { + RxPacketInfo->ErrorCode = READ_BIT(dmarxdesc->DESC3, ETH_DMARXNDESCWBF_ERRORS_MASK); + } + else + { + if(READ_BIT(dmarxdesc->DESC3, ETH_DMARXNDESCWBF_RS0V) != 0U) + { + + if(READ_BIT(dmarxdesc->DESC3, ETH_DMARXNDESCWBF_LT) == ETH_DMARXNDESCWBF_LT_DVLAN) + { + RxPacketInfo->VlanTag = READ_BIT(dmarxdesc->DESC0, ETH_DMARXNDESCWBF_OVT); + RxPacketInfo->InnerVlanTag = READ_BIT(dmarxdesc->DESC0, ETH_DMARXNDESCWBF_IVT) >> 16; + } + else + { + RxPacketInfo->VlanTag = READ_BIT(dmarxdesc->DESC0, ETH_DMARXNDESCWBF_OVT); + } + } + + if(READ_BIT(dmarxdesc->DESC3, ETH_DMARXNDESCWBF_RS1V) != 0U) + { + /* Get Payload type */ + RxPacketInfo->PayloadType =READ_BIT( dmarxdesc->DESC1, ETH_DMARXNDESCWBF_PT); + /* Get Header type */ + RxPacketInfo->HeaderType = READ_BIT(dmarxdesc->DESC1, (ETH_DMARXNDESCWBF_IPV4 | ETH_DMARXNDESCWBF_IPV6)); + /* Get Checksum status */ + RxPacketInfo->Checksum = READ_BIT(dmarxdesc->DESC1, (ETH_DMARXNDESCWBF_IPCE | ETH_DMARXNDESCWBF_IPCB | ETH_DMARXNDESCWBF_IPHE)); + } + + if(READ_BIT(dmarxdesc->DESC3, ETH_DMARXNDESCWBF_RS2V) != 0U) + { + RxPacketInfo->MacFilterStatus = READ_BIT(dmarxdesc->DESC2, (ETH_DMARXNDESCWBF_HF | ETH_DMARXNDESCWBF_DAF | ETH_DMARXNDESCWBF_SAF | ETH_DMARXNDESCWBF_VF)); + RxPacketInfo->L3FilterStatus = READ_BIT(dmarxdesc->DESC2, (ETH_DMARXNDESCWBF_L3FM | ETH_DMARXNDESCWBF_L3L4FM)); + RxPacketInfo->L4FilterStatus = READ_BIT(dmarxdesc->DESC2, (ETH_DMARXNDESCWBF_L4FM | ETH_DMARXNDESCWBF_L3L4FM)); + } + } + + /* Get the segment count */ + WRITE_REG(RxPacketInfo->SegmentCnt, dmarxdesclist->AppDescNbr); + + return HAL_OK; +} + +/** +* @brief This function gives back Rx Desc of the last received Packet +* to the DMA, so ETH DMA will be able to use these descriptors +* to receive next Packets. +* It should be called after processing the received Packet. +* @param heth: pointer to a ETH_HandleTypeDef structure that contains +* the configuration information for ETHERNET module +* @retval HAL status. +*/ +HAL_StatusTypeDef HAL_ETH_BuildRxDescriptors(ETH_HandleTypeDef *heth) +{ + ETH_RxDescListTypeDef *dmarxdesclist = &heth->RxDescList; + uint32_t descindex = dmarxdesclist->FirstAppDesc; + __IO ETH_DMADescTypeDef *dmarxdesc = (ETH_DMADescTypeDef *)dmarxdesclist->RxDesc[descindex]; + uint32_t totalappdescnbr = dmarxdesclist->AppDescNbr; + uint32_t descscan; + + if(dmarxdesclist->AppDescNbr == 0U) + { + /* No Rx descriptors to build */ + return HAL_ERROR; + } + + if(dmarxdesclist->AppContextDesc != 0U) + { + /* A context descriptor is available */ + totalappdescnbr += 1U; + } + + for(descscan =0; descscan < totalappdescnbr; descscan++) + { + WRITE_REG(dmarxdesc->DESC0, dmarxdesc->BackupAddr0); + WRITE_REG(dmarxdesc->DESC3, ETH_DMARXNDESCRF_BUF1V); + + if (READ_REG(dmarxdesc->BackupAddr1) != 0U) + { + WRITE_REG(dmarxdesc->DESC2, dmarxdesc->BackupAddr1); + SET_BIT(dmarxdesc->DESC3, ETH_DMARXNDESCRF_BUF2V); + } + + SET_BIT(dmarxdesc->DESC3, ETH_DMARXNDESCRF_OWN); + + if(dmarxdesclist->ItMode != 0U) + { + SET_BIT(dmarxdesc->DESC3, ETH_DMARXNDESCRF_IOC); + } + + if(descscan < (dmarxdesclist->AppDescNbr - 1U)) + { + /* Increment rx descriptor index */ + INCR_RX_DESC_INDEX(descindex, 1U); + /* Get descriptor address */ + dmarxdesc = (ETH_DMADescTypeDef *)dmarxdesclist->RxDesc[descindex]; + } + } + + /* Set the Tail pointer address to the last rx descriptor hold by the app */ + WRITE_REG(heth->Instance->DMACRDTPR, (uint32_t)dmarxdesc); + + /* reset the Application desc number */ + WRITE_REG(dmarxdesclist->AppDescNbr, 0); + + return HAL_OK; +} + + +/** + * @brief This function handles ETH interrupt request. + * @param heth: pointer to a ETH_HandleTypeDef structure that contains + * the configuration information for ETHERNET module + * @retval HAL status + */ +void HAL_ETH_IRQHandler(ETH_HandleTypeDef *heth) +{ + /* Packet received */ + if (__HAL_ETH_DMA_GET_IT(heth, ETH_DMACSR_RI)) + { + if(__HAL_ETH_DMA_GET_IT_SOURCE(heth, ETH_DMACIER_RIE)) + { + +#if (USE_HAL_ETH_REGISTER_CALLBACKS == 1) + /*Call registered Receive complete callback*/ + heth->RxCpltCallback(heth); +#else + /* Receive complete callback */ + HAL_ETH_RxCpltCallback(heth); +#endif /* USE_HAL_ETH_REGISTER_CALLBACKS */ + + /* Clear the Eth DMA Rx IT pending bits */ + __HAL_ETH_DMA_CLEAR_IT(heth, ETH_DMACSR_RI | ETH_DMACSR_NIS); + } + } + + /* Packet transmitted */ + if (__HAL_ETH_DMA_GET_IT(heth, ETH_DMACSR_TI)) + { + if(__HAL_ETH_DMA_GET_IT_SOURCE(heth, ETH_DMACIER_TIE)) + { +#if (USE_HAL_ETH_REGISTER_CALLBACKS == 1) + /*Call registered Transmit complete callback*/ + heth->TxCpltCallback(heth); +#else + /* Transfer complete callback */ + HAL_ETH_TxCpltCallback(heth); +#endif /* USE_HAL_ETH_REGISTER_CALLBACKS */ + + /* Clear the Eth DMA Tx IT pending bits */ + __HAL_ETH_DMA_CLEAR_IT(heth, ETH_DMACSR_TI | ETH_DMACSR_NIS); + } + } + + + /* ETH DMA Error */ + if(__HAL_ETH_DMA_GET_IT(heth, ETH_DMACSR_AIS)) + { + if(__HAL_ETH_DMA_GET_IT_SOURCE(heth, ETH_DMACIER_AIE)) + { + heth->ErrorCode |= HAL_ETH_ERROR_DMA; + + /* if fatal bus error occured */ + if (__HAL_ETH_DMA_GET_IT(heth, ETH_DMACSR_FBE)) + { + /* Get DMA error code */ + heth->DMAErrorCode = READ_BIT(heth->Instance->DMACSR, (ETH_DMACSR_FBE | ETH_DMACSR_TPS | ETH_DMACSR_RPS)); + + /* Disable all interrupts */ + __HAL_ETH_DMA_DISABLE_IT(heth, ETH_DMACIER_NIE | ETH_DMACIER_AIE); + + /* Set HAL state to ERROR */ + heth->gState = HAL_ETH_STATE_ERROR; + } + else + { + /* Get DMA error status */ + heth->DMAErrorCode = READ_BIT(heth->Instance->DMACSR, (ETH_DMACSR_CDE | ETH_DMACSR_ETI | ETH_DMACSR_RWT | + ETH_DMACSR_RBU | ETH_DMACSR_AIS)); + + /* Clear the interrupt summary flag */ + __HAL_ETH_DMA_CLEAR_IT(heth, (ETH_DMACSR_CDE | ETH_DMACSR_ETI | ETH_DMACSR_RWT | + ETH_DMACSR_RBU | ETH_DMACSR_AIS)); + } +#if (USE_HAL_ETH_REGISTER_CALLBACKS == 1) + /* Call registered DMA Error callback*/ + heth->DMAErrorCallback(heth); +#else + /* Ethernet DMA Error callback */ + HAL_ETH_DMAErrorCallback(heth); +#endif /* USE_HAL_ETH_REGISTER_CALLBACKS */ + + } + } + + /* ETH MAC Error IT */ + if(__HAL_ETH_MAC_GET_IT(heth, (ETH_MACIER_RXSTSIE | ETH_MACIER_TXSTSIE))) + { + /* Get MAC Rx Tx status and clear Status register pending bit */ + heth->MACErrorCode = READ_REG(heth->Instance->MACRXTXSR); + + heth->gState = HAL_ETH_STATE_ERROR; + +#if (USE_HAL_ETH_REGISTER_CALLBACKS == 1) + /* Call registered MAC Error callback*/ + heth->DMAErrorCallback(heth); +#else + /* Ethernet MAC Error callback */ + HAL_ETH_MACErrorCallback(heth); +#endif /* USE_HAL_ETH_REGISTER_CALLBACKS */ + + heth->MACErrorCode = (uint32_t)(0x0U); + } + + /* ETH PMT IT */ + if(__HAL_ETH_MAC_GET_IT(heth, ETH_MAC_PMT_IT)) + { + /* Get MAC Wake-up source and clear the status register pending bit */ + heth->MACWakeUpEvent = READ_BIT(heth->Instance->MACPCSR, (ETH_MACPCSR_RWKPRCVD | ETH_MACPCSR_MGKPRCVD)); + +#if (USE_HAL_ETH_REGISTER_CALLBACKS == 1) + /* Call registered PMT callback*/ + heth->PMTCallback(heth); +#else + /* Ethernet PMT callback */ + HAL_ETH_PMTCallback(heth); +#endif /* USE_HAL_ETH_REGISTER_CALLBACKS */ + + heth->MACWakeUpEvent = (uint32_t)(0x0U); + } + + /* ETH EEE IT */ + if(__HAL_ETH_MAC_GET_IT(heth, ETH_MAC_LPI_IT)) + { + /* Get MAC LPI interrupt source and clear the status register pending bit */ + heth->MACLPIEvent = READ_BIT(heth->Instance->MACPCSR, 0x0000000FU); + +#if (USE_HAL_ETH_REGISTER_CALLBACKS == 1) + /* Call registered EEE callback*/ + heth->EEECallback(heth); +#else + /* Ethernet EEE callback */ + HAL_ETH_EEECallback(heth); +#endif /* USE_HAL_ETH_REGISTER_CALLBACKS */ + + heth->MACLPIEvent = (uint32_t)(0x0U); + } + +#if defined(DUAL_CORE) + if (HAL_GetCurrentCPUID() == CM7_CPUID) + { + /* check ETH WAKEUP exti flag */ + if(__HAL_ETH_WAKEUP_EXTI_GET_FLAG(ETH_WAKEUP_EXTI_LINE) != (uint32_t)RESET) + { + /* Clear ETH WAKEUP Exti pending bit */ + __HAL_ETH_WAKEUP_EXTI_CLEAR_FLAG(ETH_WAKEUP_EXTI_LINE); +#if (USE_HAL_ETH_REGISTER_CALLBACKS == 1) + /* Call registered WakeUp callback*/ + heth->WakeUpCallback(heth); +#else + /* ETH WAKEUP callback */ + HAL_ETH_WakeUpCallback(heth); +#endif + } + } + else + { + /* check ETH WAKEUP exti flag */ + if(__HAL_ETH_WAKEUP_EXTID2_GET_FLAG(ETH_WAKEUP_EXTI_LINE) != (uint32_t)RESET) + { + /* Clear ETH WAKEUP Exti pending bit */ + __HAL_ETH_WAKEUP_EXTID2_CLEAR_FLAG(ETH_WAKEUP_EXTI_LINE); +#if (USE_HAL_ETH_REGISTER_CALLBACKS == 1) + /* Call registered WakeUp callback*/ + heth->WakeUpCallback(heth); +#else + /* ETH WAKEUP callback */ + HAL_ETH_WakeUpCallback(heth); +#endif + } + } +#else + /* check ETH WAKEUP exti flag */ + if(__HAL_ETH_WAKEUP_EXTI_GET_FLAG(ETH_WAKEUP_EXTI_LINE) != (uint32_t)RESET) + { + /* Clear ETH WAKEUP Exti pending bit */ + __HAL_ETH_WAKEUP_EXTI_CLEAR_FLAG(ETH_WAKEUP_EXTI_LINE); +#if (USE_HAL_ETH_REGISTER_CALLBACKS == 1) + /* Call registered WakeUp callback*/ + heth->WakeUpCallback(heth); +#else + /* ETH WAKEUP callback */ + HAL_ETH_WakeUpCallback(heth); +#endif + } +#endif +} + +/** + * @brief Tx Transfer completed callbacks. + * @param heth: pointer to a ETH_HandleTypeDef structure that contains + * the configuration information for ETHERNET module + * @retval None + */ +__weak void HAL_ETH_TxCpltCallback(ETH_HandleTypeDef *heth) +{ + /* Prevent unused argument(s) compilation warning */ + UNUSED(heth); + /* NOTE : This function Should not be modified, when the callback is needed, + the HAL_ETH_TxCpltCallback could be implemented in the user file + */ +} + +/** + * @brief Rx Transfer completed callbacks. + * @param heth: pointer to a ETH_HandleTypeDef structure that contains + * the configuration information for ETHERNET module + * @retval None + */ +__weak void HAL_ETH_RxCpltCallback(ETH_HandleTypeDef *heth) +{ + /* Prevent unused argument(s) compilation warning */ + UNUSED(heth); + /* NOTE : This function Should not be modified, when the callback is needed, + the HAL_ETH_RxCpltCallback could be implemented in the user file + */ +} + +/** + * @brief Ethernet DMA transfer error callbacks + * @param heth: pointer to a ETH_HandleTypeDef structure that contains + * the configuration information for ETHERNET module + * @retval None + */ +__weak void HAL_ETH_DMAErrorCallback(ETH_HandleTypeDef *heth) +{ + /* Prevent unused argument(s) compilation warning */ + UNUSED(heth); + /* NOTE : This function Should not be modified, when the callback is needed, + the HAL_ETH_DMAErrorCallback could be implemented in the user file + */ +} + +/** +* @brief Ethernet MAC transfer error callbacks + * @param heth: pointer to a ETH_HandleTypeDef structure that contains + * the configuration information for ETHERNET module + * @retval None + */ +__weak void HAL_ETH_MACErrorCallback(ETH_HandleTypeDef *heth) +{ + /* Prevent unused argument(s) compilation warning */ + UNUSED(heth); + /* NOTE : This function Should not be modified, when the callback is needed, + the HAL_ETH_MACErrorCallback could be implemented in the user file + */ +} + +/** + * @brief Ethernet Power Management module IT callback + * @param heth: pointer to a ETH_HandleTypeDef structure that contains + * the configuration information for ETHERNET module + * @retval None + */ +__weak void HAL_ETH_PMTCallback(ETH_HandleTypeDef *heth) +{ + /* Prevent unused argument(s) compilation warning */ + UNUSED(heth); + /* NOTE : This function Should not be modified, when the callback is needed, + the HAL_ETH_PMTCallback could be implemented in the user file + */ +} + +/** + * @brief Energy Efficient Etherent IT callback + * @param heth: pointer to a ETH_HandleTypeDef structure that contains + * the configuration information for ETHERNET module + * @retval None + */ +__weak void HAL_ETH_EEECallback(ETH_HandleTypeDef *heth) +{ + /* Prevent unused argument(s) compilation warning */ + UNUSED(heth); + /* NOTE : This function Should not be modified, when the callback is needed, + the HAL_ETH_EEECallback could be implemented in the user file + */ +} + +/** + * @brief ETH WAKEUP interrupt callback + * @param heth: pointer to a ETH_HandleTypeDef structure that contains + * the configuration information for ETHERNET module + * @retval None + */ +__weak void HAL_ETH_WakeUpCallback(ETH_HandleTypeDef *heth) +{ + /* Prevent unused argument(s) compilation warning */ + UNUSED(heth); + /* NOTE : This function Should not be modified, when the callback is needed, + the HAL_ETH_WakeUpCallback could be implemented in the user file + */ +} + +/** + * @brief Read a PHY register + * @param heth: pointer to a ETH_HandleTypeDef structure that contains + * the configuration information for ETHERNET module + * @param PHYAddr: PHY port address, must be a value from 0 to 31 + * @param PHYReg: PHY register address, must be a value from 0 to 31 + * @param pRegValue: parameter to hold read value + * @retval HAL status + */ +HAL_StatusTypeDef HAL_ETH_ReadPHYRegister(ETH_HandleTypeDef *heth, uint32_t PHYAddr, uint32_t PHYReg, uint32_t *pRegValue) +{ + uint32_t tmpreg, tickstart; + + /* Check for the Busy flag */ + if(READ_BIT(heth->Instance->MACMDIOAR, ETH_MACMDIOAR_MB) != 0U) + { + return HAL_ERROR; + } + + /* Get the MACMDIOAR value */ + WRITE_REG(tmpreg, heth->Instance->MACMDIOAR); + + /* Prepare the MDIO Address Register value + - Set the PHY device address + - Set the PHY register address + - Set the read mode + - Set the MII Busy bit */ + + MODIFY_REG(tmpreg, ETH_MACMDIOAR_PA, (PHYAddr <<21)); + MODIFY_REG(tmpreg, ETH_MACMDIOAR_RDA, (PHYReg << 16)); + MODIFY_REG(tmpreg, ETH_MACMDIOAR_MOC, ETH_MACMDIOAR_MOC_RD); + SET_BIT(tmpreg, ETH_MACMDIOAR_MB); + + /* Write the result value into the MDII Address register */ + WRITE_REG(heth->Instance->MACMDIOAR, tmpreg); + + tickstart = HAL_GetTick(); + + /* Wait for the Busy flag */ + while(READ_BIT(heth->Instance->MACMDIOAR, ETH_MACMDIOAR_MB) > 0U) + { + if(((HAL_GetTick() - tickstart ) > ETH_MDIO_BUS_TIMEOUT)) + { + return HAL_ERROR; + } + } + + /* Get MACMIIDR value */ + WRITE_REG(*pRegValue, (uint16_t)heth->Instance->MACMDIODR); + + return HAL_OK; +} + + +/** + * @brief Writes to a PHY register. + * @param heth: pointer to a ETH_HandleTypeDef structure that contains + * the configuration information for ETHERNET module + * @param PHYAddr: PHY port address, must be a value from 0 to 31 + * @param PHYReg: PHY register address, must be a value from 0 to 31 + * @param RegValue: the value to write + * @retval HAL status + */ +HAL_StatusTypeDef HAL_ETH_WritePHYRegister(ETH_HandleTypeDef *heth, uint32_t PHYAddr, uint32_t PHYReg, uint32_t RegValue) +{ + uint32_t tmpreg, tickstart; + + /* Check for the Busy flag */ + if(READ_BIT(heth->Instance->MACMDIOAR, ETH_MACMDIOAR_MB) != 0U) + { + return HAL_ERROR; + } + + /* Get the MACMDIOAR value */ + WRITE_REG(tmpreg, heth->Instance->MACMDIOAR); + + /* Prepare the MDIO Address Register value + - Set the PHY device address + - Set the PHY register address + - Set the write mode + - Set the MII Busy bit */ + + MODIFY_REG(tmpreg, ETH_MACMDIOAR_PA, (PHYAddr <<21)); + MODIFY_REG(tmpreg, ETH_MACMDIOAR_RDA, (PHYReg << 16)); + MODIFY_REG(tmpreg, ETH_MACMDIOAR_MOC, ETH_MACMDIOAR_MOC_WR); + SET_BIT(tmpreg, ETH_MACMDIOAR_MB); + + + /* Give the value to the MII data register */ + WRITE_REG(ETH->MACMDIODR, (uint16_t)RegValue); + + /* Write the result value into the MII Address register */ + WRITE_REG(ETH->MACMDIOAR, tmpreg); + + tickstart = HAL_GetTick(); + + /* Wait for the Busy flag */ + while(READ_BIT(heth->Instance->MACMDIOAR, ETH_MACMDIOAR_MB) > 0U) + { + if(((HAL_GetTick() - tickstart ) > ETH_MDIO_BUS_TIMEOUT)) + { + return HAL_ERROR; + } + } + + return HAL_OK; +} + +/** + * @} + */ + +/** @defgroup ETH_Exported_Functions_Group3 Peripheral Control functions + * @brief ETH control functions + * +@verbatim + ============================================================================== + ##### Peripheral Control functions ##### + ============================================================================== + [..] + This subsection provides a set of functions allowing to control the ETH + peripheral. + +@endverbatim + * @{ + */ +/** + * @brief Get the configuration of the MAC and MTL subsystems. + * @param heth: pointer to a ETH_HandleTypeDef structure that contains + * the configuration information for ETHERNET module + * @param macconf: pointer to a ETH_MACConfigTypeDef structure that will hold + * the configuration of the MAC. + * @retval HAL Status + */ +HAL_StatusTypeDef HAL_ETH_GetMACConfig(ETH_HandleTypeDef *heth, ETH_MACConfigTypeDef *macconf) +{ + if (macconf == NULL) + { + return HAL_ERROR; + } + + /* Get MAC parameters */ + macconf->PreambleLength = READ_BIT(heth->Instance->MACCR, ETH_MACCR_PRELEN); + macconf->DeferralCheck = ((READ_BIT(heth->Instance->MACCR, ETH_MACCR_DC)>> 4) > 0U) ? ENABLE : DISABLE; + macconf->BackOffLimit = READ_BIT(heth->Instance->MACCR, ETH_MACCR_BL); + macconf->RetryTransmission = ((READ_BIT(heth->Instance->MACCR, ETH_MACCR_DR) >> 8) == 0U) ? ENABLE : DISABLE; + macconf->CarrierSenseDuringTransmit = ((READ_BIT(heth->Instance->MACCR, ETH_MACCR_DCRS) >> 9) > 0U) ? ENABLE : DISABLE; + macconf->ReceiveOwn = ((READ_BIT(heth->Instance->MACCR, ETH_MACCR_DO) >> 10) == 0U) ? ENABLE : DISABLE; + macconf->CarrierSenseBeforeTransmit = ((READ_BIT(heth->Instance->MACCR, ETH_MACCR_ECRSFD) >> 11) > 0U) ? ENABLE : DISABLE; + macconf->LoopbackMode = ((READ_BIT(heth->Instance->MACCR, ETH_MACCR_LM) >> 12) > 0U) ? ENABLE : DISABLE; + macconf->DuplexMode = READ_BIT(heth->Instance->MACCR, ETH_MACCR_DM); + macconf->Speed = READ_BIT(heth->Instance->MACCR, ETH_MACCR_FES); + macconf->JumboPacket = ((READ_BIT(heth->Instance->MACCR, ETH_MACCR_JE) >> 16) > 0U) ? ENABLE : DISABLE; + macconf->Jabber = ((READ_BIT(heth->Instance->MACCR, ETH_MACCR_JD) >>17) == 0U) ? ENABLE : DISABLE; + macconf->Watchdog = ((READ_BIT(heth->Instance->MACCR, ETH_MACCR_WD) >>19) == 0U) ? ENABLE : DISABLE; + macconf->AutomaticPadCRCStrip = ((READ_BIT(heth->Instance->MACCR, ETH_MACCR_ACS) >> 20) > 0U) ? ENABLE : DISABLE; + macconf->CRCStripTypePacket = ((READ_BIT(heth->Instance->MACCR, ETH_MACCR_CST) >> 21) > 0U) ? ENABLE : DISABLE; + macconf->Support2KPacket = ((READ_BIT(heth->Instance->MACCR, ETH_MACCR_S2KP) >> 22) > 0U) ? ENABLE : DISABLE; + macconf->GiantPacketSizeLimitControl = ((READ_BIT(heth->Instance->MACCR, ETH_MACCR_GPSLCE) >> 23) > 0U) ? ENABLE : DISABLE; + macconf->InterPacketGapVal = READ_BIT(heth->Instance->MACCR, ETH_MACCR_IPG); + macconf->ChecksumOffload = ((READ_BIT(heth->Instance->MACCR, ETH_MACCR_IPC) >> 27) > 0U) ? ENABLE : DISABLE; + macconf->SourceAddrControl = READ_BIT(heth->Instance->MACCR, ETH_MACCR_SARC); + + macconf->GiantPacketSizeLimit = READ_BIT(heth->Instance->MACECR, ETH_MACECR_GPSL); + macconf->CRCCheckingRxPackets = ((READ_BIT(heth->Instance->MACECR, ETH_MACECR_DCRCC) >> 16) == 0U) ? ENABLE : DISABLE; + macconf->SlowProtocolDetect = ((READ_BIT(heth->Instance->MACECR, ETH_MACECR_SPEN) >> 17) > 0U) ? ENABLE : DISABLE; + macconf->UnicastSlowProtocolPacketDetect = ((READ_BIT(heth->Instance->MACECR, ETH_MACECR_USP) >> 18) > 0U) ? ENABLE : DISABLE; + macconf->ExtendedInterPacketGap = ((READ_BIT(heth->Instance->MACECR, ETH_MACECR_EIPGEN) >> 24) > 0U) ? ENABLE : DISABLE; + macconf->ExtendedInterPacketGapVal = READ_BIT(heth->Instance->MACECR, ETH_MACECR_EIPG) >> 25; + + + macconf->ProgrammableWatchdog = ((READ_BIT(heth->Instance->MACWTR, ETH_MACWTR_PWE) >> 8) > 0U) ? ENABLE : DISABLE; + macconf->WatchdogTimeout = READ_BIT(heth->Instance->MACWTR, ETH_MACWTR_WTO); + + macconf->TransmitFlowControl = ((READ_BIT(heth->Instance->MACTFCR, ETH_MACTFCR_TFE) >> 1) > 0U) ? ENABLE : DISABLE; + macconf->ZeroQuantaPause = ((READ_BIT(heth->Instance->MACTFCR, ETH_MACTFCR_DZPQ) >> 7) == 0U) ? ENABLE : DISABLE; + macconf->PauseLowThreshold = READ_BIT(heth->Instance->MACTFCR, ETH_MACTFCR_PLT); + macconf->PauseTime = (READ_BIT(heth->Instance->MACTFCR, ETH_MACTFCR_PT) >> 16); + + + macconf->ReceiveFlowControl = (READ_BIT(heth->Instance->MACRFCR, ETH_MACRFCR_RFE) > 0U) ? ENABLE : DISABLE; + macconf->UnicastPausePacketDetect = ((READ_BIT(heth->Instance->MACRFCR, ETH_MACRFCR_UP) >> 1) > 0U) ? ENABLE : DISABLE; + + macconf->TransmitQueueMode = READ_BIT(heth->Instance->MTLTQOMR, (ETH_MTLTQOMR_TTC | ETH_MTLTQOMR_TSF)); + + macconf->ReceiveQueueMode = READ_BIT(heth->Instance->MTLRQOMR, (ETH_MTLRQOMR_RTC | ETH_MTLRQOMR_RSF)); + macconf->ForwardRxUndersizedGoodPacket = ((READ_BIT(heth->Instance->MTLRQOMR, ETH_MTLRQOMR_FUP) >> 3) > 0U) ? ENABLE : DISABLE; + macconf->ForwardRxErrorPacket = ((READ_BIT(heth->Instance->MTLRQOMR, ETH_MTLRQOMR_FEP) >> 4) > 0U) ? ENABLE : DISABLE; + macconf->DropTCPIPChecksumErrorPacket = ((READ_BIT(heth->Instance->MTLRQOMR, ETH_MTLRQOMR_DISTCPEF) >> 6) == 0U) ? ENABLE : DISABLE; + + return HAL_OK; +} + +/** + * @brief Get the configuration of the DMA. + * @param heth: pointer to a ETH_HandleTypeDef structure that contains + * the configuration information for ETHERNET module + * @param dmaconf: pointer to a ETH_DMAConfigTypeDef structure that will hold + * the configuration of the ETH DMA. + * @retval HAL Status + */ +HAL_StatusTypeDef HAL_ETH_GetDMAConfig(ETH_HandleTypeDef *heth, ETH_DMAConfigTypeDef *dmaconf) +{ + if (dmaconf == NULL) + { + return HAL_ERROR; + } + + dmaconf->AddressAlignedBeats = ((READ_BIT(heth->Instance->DMASBMR, ETH_DMASBMR_AAL) >> 12) > 0U) ? ENABLE : DISABLE; + dmaconf->BurstMode = READ_BIT(heth->Instance->DMASBMR, ETH_DMASBMR_FB | ETH_DMASBMR_MB); + dmaconf->RebuildINCRxBurst = ((READ_BIT(heth->Instance->DMASBMR, ETH_DMASBMR_RB)>> 15) > 0U) ? ENABLE : DISABLE; + + dmaconf->DMAArbitration = READ_BIT(heth->Instance->DMAMR, (ETH_DMAMR_TXPR |ETH_DMAMR_PR | ETH_DMAMR_DA)); + + dmaconf->PBLx8Mode = ((READ_BIT(heth->Instance->DMACCR, ETH_DMACCR_8PBL)>> 16) > 0U) ? ENABLE : DISABLE; + dmaconf->MaximumSegmentSize = READ_BIT(heth->Instance->DMACCR, ETH_DMACCR_MSS); + + dmaconf->FlushRxPacket = ((READ_BIT(heth->Instance->DMACRCR, ETH_DMACRCR_RPF) >> 31) > 0U) ? ENABLE : DISABLE; + dmaconf->RxDMABurstLength = READ_BIT(heth->Instance->DMACRCR, ETH_DMACRCR_RPBL); + + dmaconf->SecondPacketOperate = ((READ_BIT(heth->Instance->DMACTCR, ETH_DMACTCR_OSP) >> 4) > 0U) ? ENABLE : DISABLE; + dmaconf->TCPSegmentation = ((READ_BIT(heth->Instance->DMACTCR, ETH_DMACTCR_TSE) >> 12) > 0U) ? ENABLE : DISABLE; + dmaconf->TxDMABurstLength = READ_BIT(heth->Instance->DMACTCR, ETH_DMACTCR_TPBL); + + return HAL_OK; +} + +/** + * @brief Set the MAC configuration. + * @param heth: pointer to a ETH_HandleTypeDef structure that contains + * the configuration information for ETHERNET module + * @param macconf: pointer to a ETH_MACConfigTypeDef structure that contains + * the configuration of the MAC. + * @retval HAL status + */ +HAL_StatusTypeDef HAL_ETH_SetMACConfig(ETH_HandleTypeDef *heth, ETH_MACConfigTypeDef *macconf) +{ + if(macconf == NULL) + { + return HAL_ERROR; + } + + if(heth->RxState == HAL_ETH_STATE_READY) + { + ETH_SetMACConfig(heth, macconf); + + return HAL_OK; + } + else + { + return HAL_ERROR; + } +} + +/** + * @brief Set the ETH DMA configuration. + * @param heth: pointer to a ETH_HandleTypeDef structure that contains + * the configuration information for ETHERNET module + * @param dmaconf: pointer to a ETH_DMAConfigTypeDef structure that will hold + * the configuration of the ETH DMA. + * @retval HAL status + */ +HAL_StatusTypeDef HAL_ETH_SetDMAConfig(ETH_HandleTypeDef *heth, ETH_DMAConfigTypeDef *dmaconf) +{ + if(dmaconf == NULL) + { + return HAL_ERROR; + } + + if(heth->RxState == HAL_ETH_STATE_READY) + { + ETH_SetDMAConfig(heth, dmaconf); + + return HAL_OK; + } + else + { + return HAL_ERROR; + } +} + +/** + * @brief Configures the Clock range of ETH MDIO interface. + * @param heth: pointer to a ETH_HandleTypeDef structure that contains + * the configuration information for ETHERNET module + * @retval None + */ +void HAL_ETH_SetMDIOClockRange(ETH_HandleTypeDef *heth) +{ + uint32_t tmpreg, hclk; + + /* Get the ETHERNET MACMDIOAR value */ + tmpreg = (heth->Instance)->MACMDIOAR; + + /* Clear CSR Clock Range bits */ + tmpreg &= ~ETH_MACMDIOAR_CR; + + /* Get hclk frequency value */ + hclk = HAL_RCC_GetHCLKFreq(); + + /* Set CR bits depending on hclk value */ + if((hclk >= 20000000U)&&(hclk < 35000000U)) + { + /* CSR Clock Range between 20-35 MHz */ + tmpreg |= (uint32_t)ETH_MACMDIOAR_CR_DIV16; + } + else if((hclk >= 35000000U)&&(hclk < 60000000U)) + { + /* CSR Clock Range between 35-60 MHz */ + tmpreg |= (uint32_t)ETH_MACMDIOAR_CR_DIV26; + } + else if((hclk >= 60000000U)&&(hclk < 100000000U)) + { + /* CSR Clock Range between 60-100 MHz */ + tmpreg |= (uint32_t)ETH_MACMDIOAR_CR_DIV42; + } + else if((hclk >= 100000000U)&&(hclk < 150000000U)) + { + /* CSR Clock Range between 100-150 MHz */ + tmpreg |= (uint32_t)ETH_MACMDIOAR_CR_DIV62; + } + else /* (hclk >= 150000000)&&(hclk <= 200000000) */ + { + /* CSR Clock Range between 150-200 MHz */ + tmpreg |= (uint32_t)ETH_MACMDIOAR_CR_DIV102; + } + + /* Configure the CSR Clock Range */ + (heth->Instance)->MACMDIOAR = (uint32_t)tmpreg; +} + +/** + * @brief Set the ETH MAC (L2) Filters configuration. + * @param heth: pointer to a ETH_HandleTypeDef structure that contains + * the configuration information for ETHERNET module + * @param pFilterConfig: pointer to a ETH_MACFilterConfigTypeDef structure that contains + * the configuration of the ETH MAC filters. + * @retval HAL status + */ +HAL_StatusTypeDef HAL_ETH_SetMACFilterConfig(ETH_HandleTypeDef *heth, ETH_MACFilterConfigTypeDef *pFilterConfig) +{ + uint32_t filterconfig; + + if(pFilterConfig == NULL) + { + return HAL_ERROR; + } + + filterconfig = ((uint32_t)pFilterConfig->PromiscuousMode | + ((uint32_t)pFilterConfig->HashUnicast << 1) | + ((uint32_t)pFilterConfig->HashMulticast << 2) | + ((uint32_t)pFilterConfig->DestAddrInverseFiltering << 3) | + ((uint32_t)pFilterConfig->PassAllMulticast << 4) | + ((uint32_t)((pFilterConfig->BroadcastFilter == DISABLE) ? 1U : 0U) << 5) | + ((uint32_t)pFilterConfig->SrcAddrInverseFiltering << 8) | + ((uint32_t)pFilterConfig->SrcAddrFiltering << 9) | + ((uint32_t)pFilterConfig->HachOrPerfectFilter << 10) | + ((uint32_t)pFilterConfig->ReceiveAllMode << 31) | + pFilterConfig->ControlPacketsFilter); + + MODIFY_REG(heth->Instance->MACPFR, ETH_MACPFR_MASK, filterconfig); + + return HAL_OK; +} + +/** + * @brief Get the ETH MAC (L2) Filters configuration. + * @param heth: pointer to a ETH_HandleTypeDef structure that contains + * the configuration information for ETHERNET module + * @param pFilterConfig: pointer to a ETH_MACFilterConfigTypeDef structure that will hold + * the configuration of the ETH MAC filters. + * @retval HAL status + */ +HAL_StatusTypeDef HAL_ETH_GetMACFilterConfig(ETH_HandleTypeDef *heth, ETH_MACFilterConfigTypeDef *pFilterConfig) +{ + if(pFilterConfig == NULL) + { + return HAL_ERROR; + } + + pFilterConfig->PromiscuousMode = ((READ_BIT(heth->Instance->MACPFR, ETH_MACPFR_PR)) > 0U) ? ENABLE : DISABLE; + pFilterConfig->HashUnicast = ((READ_BIT(heth->Instance->MACPFR, ETH_MACPFR_HUC) >> 1) > 0U) ? ENABLE : DISABLE; + pFilterConfig->HashMulticast = ((READ_BIT(heth->Instance->MACPFR, ETH_MACPFR_HMC) >> 2) > 0U) ? ENABLE : DISABLE; + pFilterConfig->DestAddrInverseFiltering = ((READ_BIT(heth->Instance->MACPFR, ETH_MACPFR_DAIF) >> 3) > 0U) ? ENABLE : DISABLE; + pFilterConfig->PassAllMulticast = ((READ_BIT(heth->Instance->MACPFR, ETH_MACPFR_PM) >> 4) > 0U) ? ENABLE : DISABLE; + pFilterConfig->BroadcastFilter = ((READ_BIT(heth->Instance->MACPFR, ETH_MACPFR_DBF) >> 5) == 0U) ? ENABLE : DISABLE; + pFilterConfig->ControlPacketsFilter = READ_BIT(heth->Instance->MACPFR, ETH_MACPFR_PCF); + pFilterConfig->SrcAddrInverseFiltering = ((READ_BIT(heth->Instance->MACPFR, ETH_MACPFR_SAIF) >> 8) > 0U) ? ENABLE : DISABLE; + pFilterConfig->SrcAddrFiltering = ((READ_BIT(heth->Instance->MACPFR, ETH_MACPFR_SAF) >> 9) > 0U) ? ENABLE : DISABLE; + pFilterConfig->HachOrPerfectFilter = ((READ_BIT(heth->Instance->MACPFR, ETH_MACPFR_HPF) >> 10) > 0U) ? ENABLE : DISABLE; + pFilterConfig->ReceiveAllMode = ((READ_BIT(heth->Instance->MACPFR, ETH_MACPFR_RA) >> 31) > 0U) ? ENABLE : DISABLE; + + return HAL_OK; +} + +/** + * @brief Set the source MAC Address to be matched. + * @param heth: pointer to a ETH_HandleTypeDef structure that contains + * the configuration information for ETHERNET module + * @param AddrNbr: The MAC address to configure + * This parameter must be a value of the following: + * ETH_MAC_ADDRESS1 + * ETH_MAC_ADDRESS2 + * ETH_MAC_ADDRESS3 + * @param pMACAddr: Pointer to MAC address buffer data (6 bytes) + * @retval HAL status + */ +HAL_StatusTypeDef HAL_ETH_SetSourceMACAddrMatch(ETH_HandleTypeDef *heth, uint32_t AddrNbr, uint8_t *pMACAddr) +{ + uint32_t macaddrhr, macaddrlr; + + if(pMACAddr == NULL) + { + return HAL_ERROR; + } + + /* Get mac addr high reg offset */ + macaddrhr = ((uint32_t)&(heth->Instance->MACA0HR) + AddrNbr); + /* Get mac addr low reg offset */ + macaddrlr = ((uint32_t)&(heth->Instance->MACA0LR) + AddrNbr); + + /* Set MAC addr bits 32 to 47 */ + (*(__IO uint32_t *)macaddrhr) = (((uint32_t)(pMACAddr[5]) << 8) | (uint32_t)pMACAddr[4]); + /* Set MAC addr bits 0 to 31 */ + (*(__IO uint32_t *)macaddrlr) = (((uint32_t)(pMACAddr[3]) << 24) | ((uint32_t)(pMACAddr[2]) << 16) | + ((uint32_t)(pMACAddr[1]) << 8) | (uint32_t)pMACAddr[0]); + + /* Enable address and set source address bit */ + (*(__IO uint32_t *)macaddrhr) |= (ETH_MACAHR_SA | ETH_MACAHR_AE); + + return HAL_OK; +} + +/** + * @brief Set the ETH Hash Table Value. + * @param heth: pointer to a ETH_HandleTypeDef structure that contains + * the configuration information for ETHERNET module + * @param pHashTable: pointer to a table of two 32 bit values, that contains + * the 64 bits of the hash table. + * @retval HAL status + */ +HAL_StatusTypeDef HAL_ETH_SetHashTable(ETH_HandleTypeDef *heth, uint32_t *pHashTable) +{ + if(pHashTable == NULL) + { + return HAL_ERROR; + } + + heth->Instance->MACHT0R = pHashTable[0]; + heth->Instance->MACHT1R = pHashTable[1]; + + return HAL_OK; +} + +/** + * @brief Set the VLAN Identifier for Rx packets + * @param heth: pointer to a ETH_HandleTypeDef structure that contains + * the configuration information for ETHERNET module + * @param ComparisonBits: 12 or 16 bit comparison mode + must be a value of @ref ETH_VLAN_Tag_Comparison + * @param VLANIdentifier: VLAN Identifier value + * @retval None + */ +void HAL_ETH_SetRxVLANIdentifier(ETH_HandleTypeDef *heth, uint32_t ComparisonBits, uint32_t VLANIdentifier) +{ + if(ComparisonBits == ETH_VLANTAGCOMPARISON_16BIT) + { + MODIFY_REG(heth->Instance->MACVTR, ETH_MACVTR_VL , VLANIdentifier); + CLEAR_BIT(heth->Instance->MACVTR, ETH_MACVTR_ETV); + } + else + { + MODIFY_REG(heth->Instance->MACVTR, ETH_MACVTR_VL_VID , VLANIdentifier); + SET_BIT(heth->Instance->MACVTR, ETH_MACVTR_ETV); + } +} + +/** + * @brief Enters the Power down mode. + * @param heth: pointer to a ETH_HandleTypeDef structure that contains + * the configuration information for ETHERNET module + * @param pPowerDownConfig: a pointer to ETH_PowerDownConfigTypeDef structure + * that contains the Power Down configration + * @retval None. + */ +void HAL_ETH_EnterPowerDownMode(ETH_HandleTypeDef *heth, ETH_PowerDownConfigTypeDef *pPowerDownConfig) +{ + uint32_t powerdownconfig; + + powerdownconfig = (((uint32_t)pPowerDownConfig->MagicPacket << 1) | + ((uint32_t)pPowerDownConfig->WakeUpPacket << 2) | + ((uint32_t)pPowerDownConfig->GlobalUnicast << 9) | + ((uint32_t)pPowerDownConfig->WakeUpForward << 10) | + ETH_MACPCSR_PWRDWN); + + /* Enable PMT interrupt */ + __HAL_ETH_MAC_ENABLE_IT(heth, ETH_MACIER_PMTIE); + + MODIFY_REG(heth->Instance->MACPCSR, ETH_MACPCSR_MASK, powerdownconfig); +} + +/** + * @brief Exits from the Power down mode. + * @param heth: pointer to a ETH_HandleTypeDef structure that contains + * the configuration information for ETHERNET module + * @retval None. + */ +void HAL_ETH_ExitPowerDownMode(ETH_HandleTypeDef *heth) +{ + /* clear wake up sources */ + CLEAR_BIT(heth->Instance->MACPCSR, ETH_MACPCSR_RWKPKTEN | ETH_MACPCSR_MGKPKTEN | ETH_MACPCSR_GLBLUCAST | ETH_MACPCSR_RWKPFE); + + if(READ_BIT(heth->Instance->MACPCSR, ETH_MACPCSR_PWRDWN) != 0U) + { + /* Exit power down mode */ + CLEAR_BIT(heth->Instance->MACPCSR, ETH_MACPCSR_PWRDWN); + } + + /* Disable PMT interrupt */ + __HAL_ETH_MAC_DISABLE_IT(heth, ETH_MACIER_PMTIE); +} + +/** + * @brief Set the WakeUp filter. + * @param heth: pointer to a ETH_HandleTypeDef structure that contains + * the configuration information for ETHERNET module + * @param pFilter: pointer to filter registers values + * @param Count: number of filter registers, must be from 1 to 8. + * @retval None. + */ +HAL_StatusTypeDef HAL_ETH_SetWakeUpFilter(ETH_HandleTypeDef *heth, uint32_t *pFilter, uint32_t Count) +{ + uint32_t regindex; + + if(pFilter == NULL) + { + return HAL_ERROR; + } + + /* Reset Filter Pointer */ + SET_BIT(heth->Instance->MACPCSR, ETH_MACPCSR_RWKFILTRST); + + /* Wake up packet filter config */ + for(regindex = 0; regindex < Count; regindex++) + { + /* Write filter regs */ + WRITE_REG(heth->Instance->MACRWKPFR, pFilter[regindex]); + } + + return HAL_OK; +} + +/** + * @} + */ + +/** @defgroup ETH_Exported_Functions_Group4 Peripheral State and Errors functions + * @brief ETH State and Errors functions + * +@verbatim + ============================================================================== + ##### Peripheral State and Errors functions ##### + ============================================================================== + [..] + This subsection provides a set of functions allowing to return the State of + ETH communication process, return Peripheral Errors occurred during communication + process + + +@endverbatim + * @{ + */ + +/** + * @brief Returns the ETH state. + * @param heth: pointer to a ETH_HandleTypeDef structure that contains + * the configuration information for ETHERNET module + * @retval HAL state + */ +HAL_ETH_StateTypeDef HAL_ETH_GetState(ETH_HandleTypeDef *heth) +{ + HAL_ETH_StateTypeDef ret; + HAL_ETH_StateTypeDef gstate = heth->gState; + HAL_ETH_StateTypeDef rxstate =heth->RxState; + + ret = gstate; + ret |= rxstate; + return ret; +} + +/** + * @brief Returns the ETH error code + * @param heth: pointer to a ETH_HandleTypeDef structure that contains + * the configuration information for ETHERNET module + * @retval ETH Error Code + */ +uint32_t HAL_ETH_GetError(ETH_HandleTypeDef *heth) +{ + return heth->ErrorCode; +} + +/** + * @brief Returns the ETH DMA error code + * @param heth: pointer to a ETH_HandleTypeDef structure that contains + * the configuration information for ETHERNET module + * @retval ETH DMA Error Code + */ +uint32_t HAL_ETH_GetDMAError(ETH_HandleTypeDef *heth) +{ + return heth->DMAErrorCode; +} + +/** + * @brief Returns the ETH MAC error code + * @param heth: pointer to a ETH_HandleTypeDef structure that contains + * the configuration information for ETHERNET module + * @retval ETH MAC Error Code + */ +uint32_t HAL_ETH_GetMACError(ETH_HandleTypeDef *heth) +{ + return heth->MACErrorCode; +} + +/** + * @brief Returns the ETH MAC WakeUp event source + * @param heth: pointer to a ETH_HandleTypeDef structure that contains + * the configuration information for ETHERNET module + * @retval ETH MAC WakeUp event source + */ +uint32_t HAL_ETH_GetMACWakeUpSource(ETH_HandleTypeDef *heth) +{ + return heth->MACWakeUpEvent; +} + +/** + * @} + */ + +/** + * @} + */ + +static void ETH_SetMACConfig(ETH_HandleTypeDef *heth, ETH_MACConfigTypeDef *macconf) +{ + uint32_t macregval; + + /*------------------------ MACCR Configuration --------------------*/ + macregval =(macconf->InterPacketGapVal | + macconf->SourceAddrControl | + ((uint32_t)macconf->ChecksumOffload<< 27) | + ((uint32_t)macconf->GiantPacketSizeLimitControl << 23) | + ((uint32_t)macconf->Support2KPacket << 22) | + ((uint32_t)macconf->CRCStripTypePacket << 21) | + ((uint32_t)macconf->AutomaticPadCRCStrip << 20) | + ((uint32_t)((macconf->Watchdog == DISABLE) ? 1U : 0U) << 19) | + ((uint32_t)((macconf->Jabber == DISABLE) ? 1U : 0U) << 17) | + ((uint32_t)macconf->JumboPacket << 16) | + macconf->Speed | + macconf->DuplexMode | + ((uint32_t)macconf->LoopbackMode << 12) | + ((uint32_t)macconf->CarrierSenseBeforeTransmit << 11)| + ((uint32_t)((macconf->ReceiveOwn == DISABLE) ? 1U : 0U) << 10)| + ((uint32_t)macconf->CarrierSenseDuringTransmit << 9)| + ((uint32_t)((macconf->RetryTransmission == DISABLE) ? 1U : 0U) << 8)| + macconf->BackOffLimit | + ((uint32_t)macconf->DeferralCheck << 4)| + macconf->PreambleLength); + + /* Write to MACCR */ + MODIFY_REG(heth->Instance->MACCR, ETH_MACCR_MASK, macregval); + + /*------------------------ MACECR Configuration --------------------*/ + macregval = ((macconf->ExtendedInterPacketGapVal << 25)| + ((uint32_t)macconf->ExtendedInterPacketGap << 24)| + ((uint32_t)macconf->UnicastSlowProtocolPacketDetect << 18)| + ((uint32_t)macconf->SlowProtocolDetect << 17)| + ((uint32_t)((macconf->CRCCheckingRxPackets == DISABLE) ? 1U : 0U)<< 16) | + macconf->GiantPacketSizeLimit); + + /* Write to MACECR */ + MODIFY_REG(heth->Instance->MACECR, ETH_MACECR_MASK, macregval); + + /*------------------------ MACWTR Configuration --------------------*/ + macregval = (((uint32_t)macconf->ProgrammableWatchdog << 8) | + macconf->WatchdogTimeout); + + /* Write to MACWTR */ + MODIFY_REG(heth->Instance->MACWTR, ETH_MACWTR_MASK, macregval); + + /*------------------------ MACTFCR Configuration --------------------*/ + macregval = (((uint32_t)macconf->TransmitFlowControl << 1) | + macconf->PauseLowThreshold | + ((uint32_t)((macconf->ZeroQuantaPause == DISABLE) ? 1U : 0U)<< 7) | + (macconf->PauseTime << 16)); + + /* Write to MACTFCR */ + MODIFY_REG(heth->Instance->MACTFCR, ETH_MACTFCR_MASK, macregval); + + /*------------------------ MACRFCR Configuration --------------------*/ + macregval = ((uint32_t)macconf->ReceiveFlowControl | + ((uint32_t)macconf->UnicastPausePacketDetect << 1)); + + /* Write to MACRFCR */ + MODIFY_REG(heth->Instance->MACRFCR, ETH_MACRFCR_MASK, macregval); + + /*------------------------ MTLTQOMR Configuration --------------------*/ + /* Write to MTLTQOMR */ + MODIFY_REG(heth->Instance->MTLTQOMR, ETH_MTLTQOMR_MASK, macconf->TransmitQueueMode); + + /*------------------------ MTLRQOMR Configuration --------------------*/ + macregval = (macconf->ReceiveQueueMode | + ((uint32_t)((macconf->DropTCPIPChecksumErrorPacket == DISABLE) ? 1U : 0U) << 6) | + ((uint32_t)macconf->ForwardRxErrorPacket << 4) | + ((uint32_t)macconf->ForwardRxUndersizedGoodPacket << 3)); + + /* Write to MTLRQOMR */ + MODIFY_REG(heth->Instance->MTLRQOMR, ETH_MTLRQOMR_MASK, macregval); +} + +static void ETH_SetDMAConfig(ETH_HandleTypeDef *heth, ETH_DMAConfigTypeDef *dmaconf) +{ + uint32_t dmaregval; + + /*------------------------ DMAMR Configuration --------------------*/ + MODIFY_REG(heth->Instance->DMAMR, ETH_DMAMR_MASK, dmaconf->DMAArbitration); + + /*------------------------ DMASBMR Configuration --------------------*/ + dmaregval = (((uint32_t)dmaconf->AddressAlignedBeats << 12) | + dmaconf->BurstMode | + ((uint32_t)dmaconf->RebuildINCRxBurst << 15)); + + MODIFY_REG(heth->Instance->DMASBMR, ETH_DMASBMR_MASK, dmaregval); + + /*------------------------ DMACCR Configuration --------------------*/ + dmaregval = (((uint32_t)dmaconf->PBLx8Mode << 16) | + dmaconf->MaximumSegmentSize); + + MODIFY_REG(heth->Instance->DMACCR, ETH_DMACCR_MASK, dmaregval); + + /*------------------------ DMACTCR Configuration --------------------*/ + dmaregval = (dmaconf->TxDMABurstLength | + ((uint32_t)dmaconf->SecondPacketOperate << 4)| + ((uint32_t)dmaconf->TCPSegmentation << 12)); + + MODIFY_REG(heth->Instance->DMACTCR, ETH_DMACTCR_MASK, dmaregval); + + /*------------------------ DMACRCR Configuration --------------------*/ + dmaregval = (((uint32_t)dmaconf->FlushRxPacket << 31) | + dmaconf->RxDMABurstLength); + + /* Write to DMACRCR */ + MODIFY_REG(heth->Instance->DMACRCR, ETH_DMACRCR_MASK, dmaregval); +} + +/** + * @brief Configures Ethernet MAC and DMA with default parameters. + * called by HAL_ETH_Init() API. + * @param heth: pointer to a ETH_HandleTypeDef structure that contains + * the configuration information for ETHERNET module + * @retval HAL status + */ +static void ETH_MACDMAConfig(ETH_HandleTypeDef *heth) +{ + ETH_MACConfigTypeDef macDefaultConf; + ETH_DMAConfigTypeDef dmaDefaultConf; + + /*--------------- ETHERNET MAC registers default Configuration --------------*/ + macDefaultConf.AutomaticPadCRCStrip = ENABLE; + macDefaultConf.BackOffLimit = ETH_BACKOFFLIMIT_10; + macDefaultConf.CarrierSenseBeforeTransmit = DISABLE; + macDefaultConf.CarrierSenseDuringTransmit = DISABLE; + macDefaultConf.ChecksumOffload = ENABLE; + macDefaultConf.CRCCheckingRxPackets = ENABLE; + macDefaultConf.CRCStripTypePacket = ENABLE; + macDefaultConf.DeferralCheck = DISABLE; + macDefaultConf.DropTCPIPChecksumErrorPacket = ENABLE; + macDefaultConf.DuplexMode = ETH_FULLDUPLEX_MODE; + macDefaultConf.ExtendedInterPacketGap = DISABLE; + macDefaultConf.ExtendedInterPacketGapVal = 0x0; + macDefaultConf.ForwardRxErrorPacket = DISABLE; + macDefaultConf.ForwardRxUndersizedGoodPacket = DISABLE; + macDefaultConf.GiantPacketSizeLimit = 0x618; + macDefaultConf.GiantPacketSizeLimitControl = DISABLE; + macDefaultConf.InterPacketGapVal = ETH_INTERPACKETGAP_96BIT; + macDefaultConf.Jabber = ENABLE; + macDefaultConf.JumboPacket = DISABLE; + macDefaultConf.LoopbackMode = DISABLE; + macDefaultConf.PauseLowThreshold = ETH_PAUSELOWTHRESHOLD_MINUS_4; + macDefaultConf.PauseTime = 0x0; + macDefaultConf.PreambleLength = ETH_PREAMBLELENGTH_7; + macDefaultConf.ProgrammableWatchdog = DISABLE; + macDefaultConf.ReceiveFlowControl = DISABLE; + macDefaultConf.ReceiveOwn = ENABLE; + macDefaultConf.ReceiveQueueMode = ETH_RECEIVESTOREFORWARD; + macDefaultConf.RetryTransmission = ENABLE; + macDefaultConf.SlowProtocolDetect = DISABLE; + macDefaultConf.SourceAddrControl = ETH_SOURCEADDRESS_REPLACE_ADDR0; + macDefaultConf.Speed = ETH_SPEED_100M; + macDefaultConf.Support2KPacket = DISABLE; + macDefaultConf.TransmitQueueMode = ETH_TRANSMITSTOREFORWARD; + macDefaultConf.TransmitFlowControl = DISABLE; + macDefaultConf.UnicastPausePacketDetect = DISABLE; + macDefaultConf.UnicastSlowProtocolPacketDetect = DISABLE; + macDefaultConf.Watchdog = ENABLE; + macDefaultConf.WatchdogTimeout = ETH_MACWTR_WTO_2KB; + macDefaultConf.ZeroQuantaPause = ENABLE; + + /* MAC default configuration */ + ETH_SetMACConfig(heth, &macDefaultConf); + + /*--------------- ETHERNET DMA registers default Configuration --------------*/ + dmaDefaultConf.AddressAlignedBeats = ENABLE; + dmaDefaultConf.BurstMode = ETH_BURSTLENGTH_FIXED; + dmaDefaultConf.DMAArbitration = ETH_DMAARBITRATION_RX1_TX1; + dmaDefaultConf.FlushRxPacket = DISABLE; + dmaDefaultConf.PBLx8Mode = DISABLE; + dmaDefaultConf.RebuildINCRxBurst = DISABLE; + dmaDefaultConf.RxDMABurstLength = ETH_RXDMABURSTLENGTH_32BEAT; + dmaDefaultConf.SecondPacketOperate = DISABLE; + dmaDefaultConf.TxDMABurstLength = ETH_TXDMABURSTLENGTH_32BEAT; + dmaDefaultConf.TCPSegmentation = DISABLE; + dmaDefaultConf.MaximumSegmentSize = 536; + + /* DMA default configuration */ + ETH_SetDMAConfig(heth, &dmaDefaultConf); +} + +/** + * @brief Configures the Clock range of SMI interface. + * called by HAL_ETH_Init() API. + * @param heth: pointer to a ETH_HandleTypeDef structure that contains + * the configuration information for ETHERNET module + * @retval None + */ +static void ETH_MAC_MDIO_ClkConfig(ETH_HandleTypeDef *heth) +{ + uint32_t tmpreg, hclk; + + /* Get the ETHERNET MACMDIOAR value */ + tmpreg = (heth->Instance)->MACMDIOAR; + + /* Clear CSR Clock Range bits */ + tmpreg &= ~ETH_MACMDIOAR_CR; + + /* Get hclk frequency value */ + hclk = HAL_RCC_GetHCLKFreq(); + + /* Set CR bits depending on hclk value */ + if((hclk >= 20000000U)&&(hclk < 35000000U)) + { + /* CSR Clock Range between 20-35 MHz */ + tmpreg |= (uint32_t)ETH_MACMDIOAR_CR_DIV16; + } + else if((hclk >= 35000000U)&&(hclk < 60000000U)) + { + /* CSR Clock Range between 35-60 MHz */ + tmpreg |= (uint32_t)ETH_MACMDIOAR_CR_DIV26; + } + else if((hclk >= 60000000U)&&(hclk < 100000000U)) + { + /* CSR Clock Range between 60-100 MHz */ + tmpreg |= (uint32_t)ETH_MACMDIOAR_CR_DIV42; + } + else if((hclk >= 100000000U)&&(hclk < 150000000U)) + { + /* CSR Clock Range between 100-150 MHz */ + tmpreg |= (uint32_t)ETH_MACMDIOAR_CR_DIV62; + } + else /* (hclk >= 150000000)&&(hclk <= 200000000) */ + { + /* CSR Clock Range between 150-200 MHz */ + tmpreg |= (uint32_t)ETH_MACMDIOAR_CR_DIV102; + } + + /* Configure the CSR Clock Range */ + (heth->Instance)->MACMDIOAR = (uint32_t)tmpreg; +} + +/** + * @brief Initializes the DMA Tx descriptors. + * called by HAL_ETH_Init() API. + * @param heth: pointer to a ETH_HandleTypeDef structure that contains + * the configuration information for ETHERNET module + * @retval None + */ +static void ETH_DMATxDescListInit(ETH_HandleTypeDef *heth) +{ + ETH_DMADescTypeDef *dmatxdesc; + uint32_t i; + + /* Fill each DMATxDesc descriptor with the right values */ + for(i=0; i < (uint32_t)ETH_TX_DESC_CNT; i++) + { + dmatxdesc = heth->Init.TxDesc + i; + + WRITE_REG(dmatxdesc->DESC0, 0x0); + WRITE_REG(dmatxdesc->DESC1, 0x0); + WRITE_REG(dmatxdesc->DESC2, 0x0); + WRITE_REG(dmatxdesc->DESC3, 0x0); + + WRITE_REG(heth->TxDescList.TxDesc[i], (uint32_t)dmatxdesc); + } + + heth->TxDescList.CurTxDesc = 0; + + /* Set Transmit Descriptor Ring Length */ + WRITE_REG(heth->Instance->DMACTDRLR, (ETH_TX_DESC_CNT -1)); + + /* Set Transmit Descriptor List Address */ + WRITE_REG(heth->Instance->DMACTDLAR, (uint32_t) heth->Init.TxDesc); + + /* Set Transmit Descriptor Tail pointer */ + WRITE_REG(heth->Instance->DMACTDTPR, (uint32_t) heth->Init.TxDesc); +} + +/** + * @brief Initializes the DMA Rx descriptors in chain mode. + * called by HAL_ETH_Init() API. + * @param heth: pointer to a ETH_HandleTypeDef structure that contains + * the configuration information for ETHERNET module + * @retval None + */ +static void ETH_DMARxDescListInit(ETH_HandleTypeDef *heth) +{ + ETH_DMADescTypeDef *dmarxdesc; + uint32_t i; + + for(i = 0; i < (uint32_t)ETH_RX_DESC_CNT; i++) + { + dmarxdesc = heth->Init.RxDesc + i; + + WRITE_REG(dmarxdesc->DESC0, 0x0); + WRITE_REG(dmarxdesc->DESC1, 0x0); + WRITE_REG(dmarxdesc->DESC2, 0x0); + WRITE_REG(dmarxdesc->DESC3, 0x0); + WRITE_REG(dmarxdesc->BackupAddr0, 0x0); + WRITE_REG(dmarxdesc->BackupAddr1, 0x0); + + /* Set Rx descritors adresses */ + WRITE_REG(heth->RxDescList.RxDesc[i], (uint32_t)dmarxdesc); + } + + WRITE_REG(heth->RxDescList.CurRxDesc, 0); + WRITE_REG(heth->RxDescList.FirstAppDesc, 0); + WRITE_REG(heth->RxDescList.AppDescNbr, 0); + WRITE_REG(heth->RxDescList.ItMode, 0); + WRITE_REG(heth->RxDescList.AppContextDesc, 0); + + /* Set Receive Descriptor Ring Length */ + WRITE_REG(heth->Instance->DMACRDRLR, ((uint32_t)(ETH_RX_DESC_CNT - 1))); + + /* Set Receive Descriptor List Address */ + WRITE_REG(heth->Instance->DMACRDLAR, (uint32_t) heth->Init.RxDesc); + + /* Set Receive Descriptor Tail pointer Address */ + WRITE_REG(heth->Instance->DMACRDTPR, ((uint32_t)(heth->Init.RxDesc + (((uint32_t)(ETH_RX_DESC_CNT - 1))*sizeof(ETH_DMADescTypeDef))))); +} + +/** + * @brief Prepare Tx DMA descriptor before transmission. + * called by HAL_ETH_Transmit_IT and HAL_ETH_Transmit_IT() API. + * @param heth: pointer to a ETH_HandleTypeDef structure that contains + * the configuration information for ETHERNET module + * @param pTxConfig: Tx packet configuration + * @param ItMode: Enable or disable Tx EOT interrept + * @retval Status + */ +static uint32_t ETH_Prepare_Tx_Descriptors(ETH_HandleTypeDef *heth, ETH_TxPacketConfig *pTxConfig, uint32_t ItMode) +{ + ETH_TxDescListTypeDef *dmatxdesclist = &heth->TxDescList; + uint32_t descidx = dmatxdesclist->CurTxDesc; + uint32_t firstdescidx = dmatxdesclist->CurTxDesc; + uint32_t descnbr = 0, idx; + ETH_DMADescTypeDef *dmatxdesc = (ETH_DMADescTypeDef *)dmatxdesclist->TxDesc[descidx]; + + ETH_BufferTypeDef *txbuffer = pTxConfig->TxBuffer; + + /* Current Tx Descriptor Owned by DMA: cannot be used by the application */ + if(READ_BIT(dmatxdesc->DESC3, ETH_DMATXNDESCWBF_OWN) == ETH_DMATXNDESCWBF_OWN) + { + return HAL_ETH_ERROR_BUSY; + } + + /***************************************************************************/ + /***************** Context descriptor configuration (Optional) **********/ + /***************************************************************************/ + /* If VLAN tag is enabled for this packet */ + if(READ_BIT(pTxConfig->Attributes, ETH_TX_PACKETS_FEATURES_VLANTAG) != 0U) + { + /* Set vlan tag value */ + MODIFY_REG(dmatxdesc->DESC3, ETH_DMATXCDESC_VT, pTxConfig->VlanTag); + /* Set vlan tag valid bit */ + SET_BIT(dmatxdesc->DESC3, ETH_DMATXCDESC_VLTV); + /* Set the descriptor as the vlan input source */ + SET_BIT(heth->Instance->MACVIR, ETH_MACVIR_VLTI); + + /* if inner VLAN is enabled */ + if(READ_BIT(pTxConfig->Attributes, ETH_TX_PACKETS_FEATURES_INNERVLANTAG) != 0U) + { + /* Set inner vlan tag value */ + MODIFY_REG(dmatxdesc->DESC2, ETH_DMATXCDESC_IVT, (pTxConfig->InnerVlanTag << 16)); + /* Set inner vlan tag valid bit */ + SET_BIT(dmatxdesc->DESC3, ETH_DMATXCDESC_IVLTV); + + /* Set Vlan Tag control */ + MODIFY_REG(dmatxdesc->DESC3, ETH_DMATXCDESC_IVTIR, pTxConfig->InnerVlanCtrl); + + /* Set the descriptor as the inner vlan input source */ + SET_BIT(heth->Instance->MACIVIR, ETH_MACIVIR_VLTI); + /* Enable double VLAN processing */ + SET_BIT(heth->Instance->MACVTR, ETH_MACVTR_EDVLP); + } + } + + /* if tcp segementation is enabled for this packet */ + if(READ_BIT(pTxConfig->Attributes, ETH_TX_PACKETS_FEATURES_TSO) != 0U) + { + /* Set MSS value */ + MODIFY_REG(dmatxdesc->DESC2, ETH_DMATXCDESC_MSS, pTxConfig->MaxSegmentSize); + /* Set MSS valid bit */ + SET_BIT(dmatxdesc->DESC3, ETH_DMATXCDESC_TCMSSV); + } + + if((READ_BIT(pTxConfig->Attributes, ETH_TX_PACKETS_FEATURES_VLANTAG) != 0U)|| (READ_BIT(pTxConfig->Attributes, ETH_TX_PACKETS_FEATURES_TSO) != 0U)) + { + /* Set as context descriptor */ + SET_BIT(dmatxdesc->DESC3, ETH_DMATXCDESC_CTXT); + /* Set own bit */ + SET_BIT(dmatxdesc->DESC3, ETH_DMATXCDESC_OWN); + /* Increment current tx descriptor index */ + INCR_TX_DESC_INDEX(descidx, 1U); + /* Get current descriptor address */ + dmatxdesc = (ETH_DMADescTypeDef *)dmatxdesclist->TxDesc[descidx]; + + descnbr += 1U; + + /* Current Tx Descriptor Owned by DMA: cannot be used by the application */ + if(READ_BIT(dmatxdesc->DESC3, ETH_DMATXNDESCWBF_OWN) == ETH_DMATXNDESCWBF_OWN) + { + dmatxdesc = (ETH_DMADescTypeDef *)dmatxdesclist->TxDesc[firstdescidx]; + /* Clear own bit */ + CLEAR_BIT(dmatxdesc->DESC3, ETH_DMATXCDESC_OWN); + + return HAL_ETH_ERROR_BUSY; + } + } + + /***************************************************************************/ + /***************** Normal descriptors configuration *****************/ + /***************************************************************************/ + + descnbr += 1U; + + /* Set header or buffer 1 address */ + WRITE_REG(dmatxdesc->DESC0, (uint32_t)txbuffer->buffer); + /* Set header or buffer 1 Length */ + MODIFY_REG(dmatxdesc->DESC2, ETH_DMATXNDESCRF_B1L, txbuffer->len); + + if(txbuffer->next != NULL) + { + txbuffer = txbuffer->next; + /* Set buffer 2 address */ + WRITE_REG(dmatxdesc->DESC1, (uint32_t)txbuffer->buffer); + /* Set buffer 2 Length */ + MODIFY_REG(dmatxdesc->DESC2, ETH_DMATXNDESCRF_B2L, (txbuffer->len << 16)); + } + else + { + WRITE_REG(dmatxdesc->DESC1, 0x0); + /* Set buffer 2 Length */ + MODIFY_REG(dmatxdesc->DESC2, ETH_DMATXNDESCRF_B2L, 0x0U); + } + + if(READ_BIT(pTxConfig->Attributes, ETH_TX_PACKETS_FEATURES_TSO) != 0U) + { + /* Set TCP Header length */ + MODIFY_REG(dmatxdesc->DESC3, ETH_DMATXNDESCRF_THL, (pTxConfig->TCPHeaderLen << 19)); + /* Set TCP payload length */ + MODIFY_REG(dmatxdesc->DESC3, ETH_DMATXNDESCRF_TPL, pTxConfig->PayloadLen); + /* Set TCP Segmentation Enabled bit */ + SET_BIT(dmatxdesc->DESC3, ETH_DMATXNDESCRF_TSE); + } + else + { + MODIFY_REG(dmatxdesc->DESC3, ETH_DMATXNDESCRF_FL, pTxConfig->Length); + + if(READ_BIT(pTxConfig->Attributes, ETH_TX_PACKETS_FEATURES_CSUM) != 0U) + { + MODIFY_REG(dmatxdesc->DESC3, ETH_DMATXNDESCRF_CIC, pTxConfig->ChecksumCtrl); + } + + if(READ_BIT(pTxConfig->Attributes, ETH_TX_PACKETS_FEATURES_CRCPAD) != 0U) + { + MODIFY_REG(dmatxdesc->DESC3, ETH_DMATXNDESCRF_CPC, pTxConfig->CRCPadCtrl); + } + } + + if(READ_BIT(pTxConfig->Attributes, ETH_TX_PACKETS_FEATURES_VLANTAG) != 0U) + { + /* Set Vlan Tag control */ + MODIFY_REG(dmatxdesc->DESC2, ETH_DMATXNDESCRF_VTIR, pTxConfig->VlanCtrl); + } + + /* Mark it as First Descriptor */ + SET_BIT(dmatxdesc->DESC3, ETH_DMATXNDESCRF_FD); + /* Mark it as NORMAL descriptor */ + CLEAR_BIT(dmatxdesc->DESC3, ETH_DMATXNDESCRF_CTXT); + /* set OWN bit of FIRST descriptor */ + SET_BIT(dmatxdesc->DESC3, ETH_DMATXNDESCRF_OWN); + + /* If source address insertion/replacement is enabled for this packet */ + if(READ_BIT(pTxConfig->Attributes, ETH_TX_PACKETS_FEATURES_SAIC) != 0U) + { + MODIFY_REG(dmatxdesc->DESC3, ETH_DMATXNDESCRF_SAIC, pTxConfig->SrcAddrCtrl); + } + + /* only if the packet is splitted into more than one descriptors > 1 */ + while (txbuffer->next != NULL) + { + /* Clear the LD bit of previous descriptor */ + CLEAR_BIT(dmatxdesc->DESC3, ETH_DMATXNDESCRF_LD); + /* Increment current tx descriptor index */ + INCR_TX_DESC_INDEX(descidx, 1U); + /* Get current descriptor address */ + dmatxdesc = (ETH_DMADescTypeDef *)dmatxdesclist->TxDesc[descidx]; + + /* Clear the FD bit of new Descriptor */ + CLEAR_BIT(dmatxdesc->DESC3, ETH_DMATXNDESCRF_FD); + + /* Current Tx Descriptor Owned by DMA: cannot be used by the application */ + if(READ_BIT(dmatxdesc->DESC3, ETH_DMATXNDESCRF_OWN) == ETH_DMATXNDESCRF_OWN) + { + descidx = firstdescidx; + dmatxdesc = (ETH_DMADescTypeDef *)dmatxdesclist->TxDesc[descidx]; + + /* clear previous desc own bit */ + for(idx = 0; idx < descnbr; idx ++) + { + CLEAR_BIT(dmatxdesc->DESC3, ETH_DMATXNDESCRF_OWN); + + /* Increment current tx descriptor index */ + INCR_TX_DESC_INDEX(descidx, 1U); + /* Get current descriptor address */ + dmatxdesc = (ETH_DMADescTypeDef *)dmatxdesclist->TxDesc[descidx]; + } + + return HAL_ETH_ERROR_BUSY; + } + + descnbr += 1U; + + /* Get the next Tx buffer in the list */ + txbuffer = (struct __ETH_BufferTypeDef *)txbuffer->next; + + /* Set header or buffer 1 address */ + WRITE_REG(dmatxdesc->DESC0, (uint32_t)txbuffer->buffer); + /* Set header or buffer 1 Length */ + MODIFY_REG(dmatxdesc->DESC2, ETH_DMATXNDESCRF_B1L, txbuffer->len); + + if (txbuffer->next != NULL) + { + /* Get the next Tx buffer in the list */ + txbuffer = (struct __ETH_BufferTypeDef *)txbuffer->next; + /* Set buffer 2 address */ + WRITE_REG(dmatxdesc->DESC1, (uint32_t)txbuffer->buffer); + /* Set buffer 2 Length */ + MODIFY_REG(dmatxdesc->DESC2, ETH_DMATXNDESCRF_B2L, (txbuffer->len << 16)); + } + else + { + WRITE_REG(dmatxdesc->DESC1, 0x0); + /* Set buffer 2 Length */ + MODIFY_REG(dmatxdesc->DESC2, ETH_DMATXNDESCRF_B2L, 0x0U); + } + + if(READ_BIT(pTxConfig->Attributes, ETH_TX_PACKETS_FEATURES_TSO) != 0U) + { + /* Set TCP payload length */ + MODIFY_REG(dmatxdesc->DESC3, ETH_DMATXNDESCRF_TPL, pTxConfig->PayloadLen); + /* Set TCP Segmentation Enabled bit */ + SET_BIT(dmatxdesc->DESC3, ETH_DMATXNDESCRF_TSE); + } + else + { + /* Set the packet length */ + MODIFY_REG(dmatxdesc->DESC3, ETH_DMATXNDESCRF_FL, pTxConfig->Length); + + if(READ_BIT(pTxConfig->Attributes, ETH_TX_PACKETS_FEATURES_CSUM) != 0U) + { + /* Checksum Insertion Control */ + MODIFY_REG(dmatxdesc->DESC3, ETH_DMATXNDESCRF_CIC, pTxConfig->ChecksumCtrl); + } + } + + /* Set Own bit */ + SET_BIT(dmatxdesc->DESC3, ETH_DMATXNDESCRF_OWN); + /* Mark it as NORMAL descriptor */ + CLEAR_BIT(dmatxdesc->DESC3, ETH_DMATXNDESCRF_CTXT); + } + + if(ItMode != ((uint32_t)RESET)) + { + /* Set Interrupt on completition bit */ + SET_BIT(dmatxdesc->DESC2, ETH_DMATXNDESCRF_IOC); + } + else + { + /* Clear Interrupt on completition bit */ + CLEAR_BIT(dmatxdesc->DESC2, ETH_DMATXNDESCRF_IOC); + } + + /* Mark it as LAST descriptor */ + SET_BIT(dmatxdesc->DESC3, ETH_DMATXNDESCRF_LD); + + dmatxdesclist->CurTxDesc = descidx; + + /* Return function status */ + return HAL_ETH_ERROR_NONE; +} + +#if (USE_HAL_ETH_REGISTER_CALLBACKS == 1) +static void ETH_InitCallbacksToDefault(ETH_HandleTypeDef *heth) +{ + /* Init the ETH Callback settings */ + heth->TxCpltCallback = HAL_ETH_TxCpltCallback; /* Legacy weak TxCpltCallback */ + heth->RxCpltCallback = HAL_ETH_RxCpltCallback; /* Legacy weak RxCpltCallback */ + heth->DMAErrorCallback = HAL_ETH_DMAErrorCallback; /* Legacy weak DMAErrorCallback */ + heth->MACErrorCallback = HAL_ETH_MACErrorCallback; /* Legacy weak MACErrorCallback */ + heth->PMTCallback = HAL_ETH_PMTCallback; /* Legacy weak PMTCallback */ + heth->EEECallback = HAL_ETH_EEECallback; /* Legacy weak EEECallback */ + heth->WakeUpCallback = HAL_ETH_WakeUpCallback; /* Legacy weak WakeUpCallback */ +} +#endif /* USE_HAL_ETH_REGISTER_CALLBACKS */ + + +/** + * @} + */ + +#endif /* ETH */ + +#endif /* HAL_ETH_MODULE_ENABLED */ + +/** + * @} + */ + +/************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/ diff --git a/source/hic_hal/stm32/stm32h743ii/STM32H7xx_HAL_Driver/Src/stm32h7xx_hal_eth_ex.c b/source/hic_hal/stm32/stm32h743ii/STM32H7xx_HAL_Driver/Src/stm32h7xx_hal_eth_ex.c new file mode 100644 index 000000000..8504f75b1 --- /dev/null +++ b/source/hic_hal/stm32/stm32h743ii/STM32H7xx_HAL_Driver/Src/stm32h7xx_hal_eth_ex.c @@ -0,0 +1,559 @@ +/** + ****************************************************************************** + * @file stm32h7xx_hal_eth_ex.c + * @author MCD Application Team + * @brief ETH HAL Extended module driver. + * + ****************************************************************************** + * @attention + * + *

© Copyright (c) 2017 STMicroelectronics. + * All rights reserved.

+ * + * This software component is licensed by ST under BSD 3-Clause license, + * the "License"; You may not use this file except in compliance with the + * License. You may obtain a copy of the License at: + * opensource.org/licenses/BSD-3-Clause + * + ****************************************************************************** + */ + +/* Includes ------------------------------------------------------------------*/ +#include "stm32h7xx_hal.h" + +/** @addtogroup STM32H7xx_HAL_Driver + * @{ + */ + +#ifdef HAL_ETH_MODULE_ENABLED + +#if defined(ETH) + +/** @defgroup ETHEx ETHEx + * @brief ETH HAL Extended module driver + * @{ + */ + + +/* Private typedef -----------------------------------------------------------*/ +/* Private define ------------------------------------------------------------*/ +/** @defgroup ETHEx_Private_Constants ETHEx Private Constants + * @{ + */ +#define ETH_MACL4CR_MASK (ETH_MACL3L4CR_L4PEN | ETH_MACL3L4CR_L4SPM | \ + ETH_MACL3L4CR_L4SPIM | ETH_MACL3L4CR_L4DPM | \ + ETH_MACL3L4CR_L4DPIM) + +#define ETH_MACL3CR_MASK (ETH_MACL3L4CR_L3PEN | ETH_MACL3L4CR_L3SAM | \ + ETH_MACL3L4CR_L3SAIM | ETH_MACL3L4CR_L3DAM | \ + ETH_MACL3L4CR_L3DAIM | ETH_MACL3L4CR_L3HSBM | \ + ETH_MACL3L4CR_L3HDBM) + +#define ETH_MACRXVLAN_MASK (ETH_MACVTR_EIVLRXS | ETH_MACVTR_EIVLS | \ + ETH_MACVTR_ERIVLT | ETH_MACVTR_EDVLP | \ + ETH_MACVTR_VTHM | ETH_MACVTR_EVLRXS | \ + ETH_MACVTR_EVLS | ETH_MACVTR_DOVLTC | \ + ETH_MACVTR_ERSVLM | ETH_MACVTR_ESVL | \ + ETH_MACVTR_VTIM | ETH_MACVTR_ETV) + +#define ETH_MACTXVLAN_MASK (ETH_MACVIR_VLTI | ETH_MACVIR_CSVL | \ + ETH_MACVIR_VLP | ETH_MACVIR_VLC) +/** + * @} + */ + +/* Private macros ------------------------------------------------------------*/ +/* Private function prototypes -----------------------------------------------*/ +/* Exported functions ---------------------------------------------------------*/ +/** @defgroup ETHEx_Exported_Functions ETH Extended Exported Functions + * @{ + */ + +/** @defgroup ETHEx_Exported_Functions_Group1 Extended features functions + * @brief Extended features functions + * +@verbatim + =============================================================================== + ##### Extended features functions ##### + =============================================================================== + [..] This section provides functions allowing to: + (+) Configure ARP offload module + (+) Configure L3 and L4 filters + (+) Configure Extended VLAN features + (+) Configure Energy Efficient Ethernet module + +@endverbatim + * @{ + */ + +/** + * @brief Enables ARP Offload. + * @param heth: pointer to a ETH_HandleTypeDef structure that contains + * the configuration information for ETHERNET module + * @retval None + */ +void HAL_ETHEx_EnableARPOffload(ETH_HandleTypeDef *heth) +{ + SET_BIT(heth->Instance->MACCR, ETH_MACCR_ARP); +} + +/** + * @brief Disables ARP Offload. + * @param heth: pointer to a ETH_HandleTypeDef structure that contains + * the configuration information for ETHERNET module + * @retval None + */ +void HAL_ETHEx_DisableARPOffload(ETH_HandleTypeDef *heth) +{ + CLEAR_BIT(heth->Instance->MACCR, ETH_MACCR_ARP); +} + +/** + * @brief Set the ARP Match IP address + * @param heth: pointer to a ETH_HandleTypeDef structure that contains + * the configuration information for ETHERNET module + * @param IpAddress: IP Address to be matched for incoming ARP requests + * @retval None + */ +void HAL_ETHEx_SetARPAddressMatch(ETH_HandleTypeDef *heth, uint32_t IpAddress) +{ + WRITE_REG(heth->Instance->MACARPAR, IpAddress); +} + +/** + * @brief Configures the L4 Filter, this function allow to: + * set the layer 4 protocol to be matched (TCP or UDP) + * enable/disable L4 source/destination port perfect/inverse match. + * @param heth: pointer to a ETH_HandleTypeDef structure that contains + * the configuration information for ETHERNET module + * @param Filter: L4 filter to configured, this parameter must be one of the following + * ETH_L4_FILTER_0 + * ETH_L4_FILTER_1 + * @param pL4FilterConfig: pointer to a ETH_L4FilterConfigTypeDef structure + * that contains L4 filter configuration. + * @retval HAL status + */ +HAL_StatusTypeDef HAL_ETHEx_SetL4FilterConfig(ETH_HandleTypeDef *heth, uint32_t Filter , ETH_L4FilterConfigTypeDef *pL4FilterConfig) +{ + __IO uint32_t *configreg = ((__IO uint32_t *)(&(heth->Instance->MACL3L4C0R) + Filter)); + + if(pL4FilterConfig == NULL) + { + return HAL_ERROR; + } + + /* Write configuration to (MACL3L4C0R + filter )register */ + MODIFY_REG(*configreg, ETH_MACL4CR_MASK ,(pL4FilterConfig->Protocol | + pL4FilterConfig->SrcPortFilterMatch | + pL4FilterConfig->DestPortFilterMatch)); + + configreg = ((__IO uint32_t *)(&(heth->Instance->MACL4A0R) + Filter)); + + /* Write configuration to (MACL4A0R + filter )register */ + MODIFY_REG(*configreg, (ETH_MACL4AR_L4DP | ETH_MACL4AR_L4SP) , (pL4FilterConfig->SourcePort | + (pL4FilterConfig->DestinationPort << 16))); + + /* Enable L4 filter */ + SET_BIT(heth->Instance->MACPFR, ETH_MACPFR_IPFE); + + return HAL_OK; +} + +/** + * @brief Configures the L4 Filter, this function allow to: + * set the layer 4 protocol to be matched (TCP or UDP) + * enable/disable L4 source/destination port perfect/inverse match. + * @param heth: pointer to a ETH_HandleTypeDef structure that contains + * the configuration information for ETHERNET module + * @param Filter: L4 filter to configured, this parameter must be one of the following + * ETH_L4_FILTER_0 + * ETH_L4_FILTER_1 + * @param pL4FilterConfig: pointer to a ETH_L4FilterConfigTypeDef structure + * that contains L4 filter configuration. + * @retval HAL status + */ +HAL_StatusTypeDef HAL_ETHEx_GetL4FilterConfig(ETH_HandleTypeDef *heth, uint32_t Filter, ETH_L4FilterConfigTypeDef *pL4FilterConfig) +{ + if(pL4FilterConfig == NULL) + { + return HAL_ERROR; + } + + /* Get configuration to (MACL3L4C0R + filter )register */ + pL4FilterConfig->Protocol = READ_BIT(*((__IO uint32_t *)(&(heth->Instance->MACL3L4C0R) + Filter)), ETH_MACL3L4CR_L4PEN); + pL4FilterConfig->DestPortFilterMatch = READ_BIT(*((__IO uint32_t *)(&(heth->Instance->MACL3L4C0R) + Filter)), (ETH_MACL3L4CR_L4DPM | ETH_MACL3L4CR_L4DPIM)); + pL4FilterConfig->SrcPortFilterMatch = READ_BIT(*((__IO uint32_t *)(&(heth->Instance->MACL3L4C0R) + Filter)), (ETH_MACL3L4CR_L4SPM | ETH_MACL3L4CR_L4SPIM)); + + /* Get configuration to (MACL3L4C0R + filter )register */ + pL4FilterConfig->DestinationPort = (READ_BIT(*((__IO uint32_t *)(&(heth->Instance->MACL4A0R) + Filter)), ETH_MACL4AR_L4DP) >> 16); + pL4FilterConfig->SourcePort = READ_BIT(*((__IO uint32_t *)(&(heth->Instance->MACL4A0R) + Filter)), ETH_MACL4AR_L4SP); + + return HAL_OK; +} + +/** + * @brief Configures the L3 Filter, this function allow to: + * set the layer 3 protocol to be matched (IPv4 or IPv6) + * enable/disable L3 source/destination port perfect/inverse match. + * @param heth: pointer to a ETH_HandleTypeDef structure that contains + * the configuration information for ETHERNET module + * @param Filter: L3 filter to configured, this parameter must be one of the following + * ETH_L3_FILTER_0 + * ETH_L3_FILTER_1 + * @param pL3FilterConfig: pointer to a ETH_L3FilterConfigTypeDef structure + * that contains L3 filter configuration. + * @retval HAL status + */ +HAL_StatusTypeDef HAL_ETHEx_SetL3FilterConfig(ETH_HandleTypeDef *heth, uint32_t Filter, ETH_L3FilterConfigTypeDef *pL3FilterConfig) +{ + __IO uint32_t *configreg = ((__IO uint32_t *)(&(heth->Instance->MACL3L4C0R) + Filter)); + + if(pL3FilterConfig == NULL) + { + return HAL_ERROR; + } + + /* Write configuration to (MACL3L4C0R + filter )register */ + MODIFY_REG(*configreg, ETH_MACL3CR_MASK, (pL3FilterConfig->Protocol | + pL3FilterConfig->SrcAddrFilterMatch | + pL3FilterConfig->DestAddrFilterMatch | + (pL3FilterConfig->SrcAddrHigherBitsMatch << 6) | + (pL3FilterConfig->DestAddrHigherBitsMatch << 11))); + + /* Check if IPv6 protocol is selected */ + if(pL3FilterConfig->Protocol != ETH_L3_IPV4_MATCH) + { + /* Set the IPv6 address match */ + /* Set Bits[31:0] of 128-bit IP addr */ + *((__IO uint32_t *)(&(heth->Instance->MACL3A0R0R) + Filter)) = pL3FilterConfig->Ip6Addr[0]; + /* Set Bits[63:32] of 128-bit IP addr */ + *((__IO uint32_t *)(&(heth->Instance->MACL3A1R0R) + Filter)) = pL3FilterConfig->Ip6Addr[1]; + /* update Bits[95:64] of 128-bit IP addr */ + *((__IO uint32_t *)(&(heth->Instance->MACL3A2R0R) + Filter)) = pL3FilterConfig->Ip6Addr[2]; + /* update Bits[127:96] of 128-bit IP addr */ + *((__IO uint32_t *)(&(heth->Instance->MACL3A3R0R) + Filter)) = pL3FilterConfig->Ip6Addr[3]; + } + else /* IPv4 protocol is selected */ + { + /* Set the IPv4 source address match */ + *((__IO uint32_t *)(&(heth->Instance->MACL3A0R0R) + Filter)) = pL3FilterConfig->Ip4SrcAddr; + /* Set the IPv4 destination address match */ + *((__IO uint32_t *)(&(heth->Instance->MACL3A1R0R) + Filter)) = pL3FilterConfig->Ip4DestAddr; + } + + return HAL_OK; +} + +/** + * @brief Configures the L3 Filter, this function allow to: + * set the layer 3 protocol to be matched (IPv4 or IPv6) + * enable/disable L3 source/destination port perfect/inverse match. + * @param heth: pointer to a ETH_HandleTypeDef structure that contains + * the configuration information for ETHERNET module + * @param Filter: L3 filter to configured, this parameter must be one of the following + * ETH_L3_FILTER_0 + * ETH_L3_FILTER_1 + * @param pL3FilterConfig: pointer to a ETH_L3FilterConfigTypeDef structure + * that will contain the L3 filter configuration. + * @retval HAL status + */ +HAL_StatusTypeDef HAL_ETHEx_GetL3FilterConfig(ETH_HandleTypeDef *heth, uint32_t Filter, ETH_L3FilterConfigTypeDef *pL3FilterConfig) +{ + if(pL3FilterConfig == NULL) + { + return HAL_ERROR; + } + + pL3FilterConfig->Protocol = READ_BIT(*((__IO uint32_t *)(&(heth->Instance->MACL3L4C0R) + Filter)), ETH_MACL3L4CR_L3PEN); + pL3FilterConfig->SrcAddrFilterMatch = READ_BIT(*((__IO uint32_t *)(&(heth->Instance->MACL3L4C0R) + Filter)), (ETH_MACL3L4CR_L3SAM | ETH_MACL3L4CR_L3SAIM)); + pL3FilterConfig->DestAddrFilterMatch = READ_BIT(*((__IO uint32_t *)(&(heth->Instance->MACL3L4C0R) + Filter)), (ETH_MACL3L4CR_L3DAM | ETH_MACL3L4CR_L3DAIM)); + pL3FilterConfig->SrcAddrHigherBitsMatch = (READ_BIT(*((__IO uint32_t *)(&(heth->Instance->MACL3L4C0R) + Filter)), ETH_MACL3L4CR_L3HSBM) >> 6); + pL3FilterConfig->DestAddrHigherBitsMatch = (READ_BIT(*((__IO uint32_t *)(&(heth->Instance->MACL3L4C0R) + Filter)), ETH_MACL3L4CR_L3HDBM) >> 11); + + if(pL3FilterConfig->Protocol != ETH_L3_IPV4_MATCH) + { + pL3FilterConfig->Ip6Addr[0] = *((__IO uint32_t *)(&(heth->Instance->MACL3A0R0R) + Filter)); + pL3FilterConfig->Ip6Addr[1] = *((__IO uint32_t *)(&(heth->Instance->MACL3A1R0R) + Filter)); + pL3FilterConfig->Ip6Addr[2] = *((__IO uint32_t *)(&(heth->Instance->MACL3A2R0R) + Filter)); + pL3FilterConfig->Ip6Addr[3] = *((__IO uint32_t *)(&(heth->Instance->MACL3A3R0R) + Filter)); + } + else + { + pL3FilterConfig->Ip4SrcAddr = *((__IO uint32_t *)(&(heth->Instance->MACL3A0R0R) + Filter)); + pL3FilterConfig->Ip4DestAddr = *((__IO uint32_t *)(&(heth->Instance->MACL3A1R0R) + Filter)); + } + + return HAL_OK; +} + +/** + * @brief Enables L3 and L4 filtering process. + * @param heth: pointer to a ETH_HandleTypeDef structure that contains + * the configuration information for ETHERNET module + * @retval None. + */ +void HAL_ETHEx_EnableL3L4Filtering(ETH_HandleTypeDef *heth) +{ + /* Enable L3/L4 filter */ + SET_BIT(heth->Instance->MACPFR, ETH_MACPFR_IPFE); +} + +/** + * @brief Disables L3 and L4 filtering process. + * @param heth: pointer to a ETH_HandleTypeDef structure that contains + * the configuration information for ETHERNET module + * @retval None. + */ +void HAL_ETHEx_DisableL3L4Filtering(ETH_HandleTypeDef *heth) +{ + /* Disable L3/L4 filter */ + CLEAR_BIT(heth->Instance->MACPFR, ETH_MACPFR_IPFE); +} + +/** + * @brief Get the VLAN Configuration for Receive Packets. + * @param heth: pointer to a ETH_HandleTypeDef structure that contains + * the configuration information for ETHERNET module + * @param pVlanConfig: pointer to a ETH_RxVLANConfigTypeDef structure + * that will contain the VLAN filter configuration. + * @retval HAL status + */ +HAL_StatusTypeDef HAL_ETHEx_GetRxVLANConfig(ETH_HandleTypeDef *heth, ETH_RxVLANConfigTypeDef *pVlanConfig) +{ + if(pVlanConfig == NULL) + { + return HAL_ERROR; + } + + pVlanConfig->InnerVLANTagInStatus = ((READ_BIT(heth->Instance->MACVTR, ETH_MACVTR_EIVLRXS) >> 31) == 0U) ? DISABLE : ENABLE; + pVlanConfig->StripInnerVLANTag = READ_BIT(heth->Instance->MACVTR, ETH_MACVTR_EIVLS); + pVlanConfig->InnerVLANTag = ((READ_BIT(heth->Instance->MACVTR, ETH_MACVTR_ERIVLT) >> 27) == 0U) ? DISABLE : ENABLE; + pVlanConfig->DoubleVLANProcessing = ((READ_BIT(heth->Instance->MACVTR, ETH_MACVTR_EDVLP) >> 26) == 0U) ? DISABLE : ENABLE; + pVlanConfig->VLANTagHashTableMatch = ((READ_BIT(heth->Instance->MACVTR, ETH_MACVTR_VTHM) >> 25) == 0U) ? DISABLE : ENABLE; + pVlanConfig->VLANTagInStatus = ((READ_BIT(heth->Instance->MACVTR, ETH_MACVTR_EVLRXS) >> 24) == 0U) ? DISABLE : ENABLE; + pVlanConfig->StripVLANTag = READ_BIT(heth->Instance->MACVTR, ETH_MACVTR_EVLS); + pVlanConfig->VLANTypeCheck = READ_BIT(heth->Instance->MACVTR, (ETH_MACVTR_DOVLTC | ETH_MACVTR_ERSVLM | ETH_MACVTR_ESVL)); + pVlanConfig->VLANTagInverceMatch = ((READ_BIT(heth->Instance->MACVTR, ETH_MACVTR_VTIM) >> 17) == 0U) ? DISABLE : ENABLE; + + return HAL_OK; +} + +/** + * @brief Set the VLAN Configuration for Receive Packets. + * @param heth: pointer to a ETH_HandleTypeDef structure that contains + * the configuration information for ETHERNET module + * @param pVlanConfig: pointer to a ETH_RxVLANConfigTypeDef structure + * that contains VLAN filter configuration. + * @retval HAL status + */ +HAL_StatusTypeDef HAL_ETHEx_SetRxVLANConfig(ETH_HandleTypeDef *heth, ETH_RxVLANConfigTypeDef *pVlanConfig) +{ + if(pVlanConfig == NULL) + { + return HAL_ERROR; + } + + /* Write config to MACVTR */ + MODIFY_REG(heth->Instance->MACVTR, ETH_MACRXVLAN_MASK, (((uint32_t)pVlanConfig->InnerVLANTagInStatus << 31) | + pVlanConfig->StripInnerVLANTag | + ((uint32_t)pVlanConfig->InnerVLANTag << 27) | + ((uint32_t)pVlanConfig->DoubleVLANProcessing << 26) | + ((uint32_t)pVlanConfig->VLANTagHashTableMatch << 25) | + ((uint32_t)pVlanConfig->VLANTagInStatus << 24) | + pVlanConfig->StripVLANTag | + pVlanConfig->VLANTypeCheck | + ((uint32_t)pVlanConfig->VLANTagInverceMatch << 17))); + + return HAL_OK; +} + +/** + * @brief Set the VLAN Hash Table + * @param heth: pointer to a ETH_HandleTypeDef structure that contains + * the configuration information for ETHERNET module + * @param VLANHashTable: VLAN hash table 16 bit value + * @retval None + */ +void HAL_ETHEx_SetVLANHashTable(ETH_HandleTypeDef *heth, uint32_t VLANHashTable) +{ + MODIFY_REG(heth->Instance->MACVHTR, ETH_MACVHTR_VLHT, VLANHashTable); +} + +/** + * @brief Get the VLAN Configuration for Transmit Packets. + * @param heth: pointer to a ETH_HandleTypeDef structure that contains + * the configuration information for ETHERNET module + * @param VLANTag: Selects the vlan tag, this parameter must be one of the following + * ETH_OUTER_TX_VLANTAG + * ETH_INNER_TX_VLANTAG + * @param pVlanConfig: pointer to a ETH_TxVLANConfigTypeDef structure + * that will contain the Tx VLAN filter configuration. + * @retval HAL Status. + */ +HAL_StatusTypeDef HAL_ETHEx_GetTxVLANConfig(ETH_HandleTypeDef *heth, uint32_t VLANTag ,ETH_TxVLANConfigTypeDef *pVlanConfig) +{ + if (pVlanConfig == NULL) + { + return HAL_ERROR; + } + + if(VLANTag == ETH_INNER_TX_VLANTAG) + { + pVlanConfig->SourceTxDesc = ((READ_BIT(heth->Instance->MACIVIR, ETH_MACVIR_VLTI) >> 20) == 0U) ? DISABLE : ENABLE; + pVlanConfig->SVLANType = ((READ_BIT(heth->Instance->MACIVIR, ETH_MACVIR_CSVL) >> 19) == 0U) ? DISABLE : ENABLE; + pVlanConfig->VLANTagControl = READ_BIT(heth->Instance->MACIVIR, (ETH_MACVIR_VLP | ETH_MACVIR_VLC)); + } + else + { + pVlanConfig->SourceTxDesc = ((READ_BIT(heth->Instance->MACVIR, ETH_MACVIR_VLTI) >> 20) == 0U) ? DISABLE : ENABLE; + pVlanConfig->SVLANType = ((READ_BIT(heth->Instance->MACVIR, ETH_MACVIR_CSVL) >> 19) == 0U) ? DISABLE : ENABLE; + pVlanConfig->VLANTagControl = READ_BIT(heth->Instance->MACVIR, (ETH_MACVIR_VLP | ETH_MACVIR_VLC)); + } + + return HAL_OK;; +} + +/** + * @brief Set the VLAN Configuration for Transmit Packets. + * @param heth: pointer to a ETH_HandleTypeDef structure that contains + * the configuration information for ETHERNET module + * @param VLANTag: Selects the vlan tag, this parameter must be one of the following + * ETH_OUTER_TX_VLANTAG + * ETH_INNER_TX_VLANTAG + * @param pVlanConfig: pointer to a ETH_TxVLANConfigTypeDef structure + * that contains Tx VLAN filter configuration. + * @retval HAL Status + */ +HAL_StatusTypeDef HAL_ETHEx_SetTxVLANConfig(ETH_HandleTypeDef *heth, uint32_t VLANTag ,ETH_TxVLANConfigTypeDef *pVlanConfig) +{ + if(VLANTag == ETH_INNER_TX_VLANTAG) + { + MODIFY_REG(heth->Instance->MACIVIR, ETH_MACTXVLAN_MASK, (((uint32_t)pVlanConfig->SourceTxDesc << 20) | + ((uint32_t)pVlanConfig->SVLANType << 19) | + pVlanConfig->VLANTagControl)); + /* Enable Double VLAN processing */ + SET_BIT(heth->Instance->MACVTR, ETH_MACVTR_EDVLP); + } + else + { + MODIFY_REG(heth->Instance->MACVIR, ETH_MACTXVLAN_MASK, (((uint32_t)pVlanConfig->SourceTxDesc << 20) | + ((uint32_t)pVlanConfig->SVLANType << 19) | + pVlanConfig->VLANTagControl)); + } + + return HAL_OK; +} + +/** + * @brief Set the VLAN Tag Identifier for Transmit Packets. + * @param heth: pointer to a ETH_HandleTypeDef structure that contains + * the configuration information for ETHERNET module + * @param VLANTag: Selects the vlan tag, this parameter must be one of the following + * ETH_OUTER_TX_VLANTAG + * ETH_INNER_TX_VLANTAG + * @param VLANIdentifier: VLAN Identifier 16 bit value + * @retval None + */ +void HAL_ETHEx_SetTxVLANIdentifier(ETH_HandleTypeDef *heth, uint32_t VLANTag ,uint32_t VLANIdentifier) +{ + if(VLANTag == ETH_INNER_TX_VLANTAG) + { + MODIFY_REG(heth->Instance->MACIVIR, ETH_MACVIR_VLT, VLANIdentifier); + } + else + { + MODIFY_REG(heth->Instance->MACVIR, ETH_MACVIR_VLT, VLANIdentifier); + } +} + +/** + * @brief Enables the VLAN Tag Filtering process. + * @param heth: pointer to a ETH_HandleTypeDef structure that contains + * the configuration information for ETHERNET module + * @retval None. + */ +void HAL_ETHEx_EnableVLANProcessing(ETH_HandleTypeDef *heth) +{ + /* Enable VLAN processing */ + SET_BIT(heth->Instance->MACPFR, ETH_MACPFR_VTFE); +} + +/** + * @brief Disables the VLAN Tag Filtering process. + * @param heth: pointer to a ETH_HandleTypeDef structure that contains + * the configuration information for ETHERNET module + * @retval None. + */ +void HAL_ETHEx_DisableVLANProcessing(ETH_HandleTypeDef *heth) +{ + /* Disable VLAN processing */ + CLEAR_BIT(heth->Instance->MACPFR, ETH_MACPFR_VTFE); +} + +/** + * @brief Enters the Low Power Idle (LPI) mode + * @param heth: pointer to a ETH_HandleTypeDef structure that contains + * the configuration information for ETHERNET module + * @param TxAutomate: Enable/Disbale automate enter/exit LPI mode. + * @param TxClockStop: Enable/Disbale Tx clock stop in LPI mode. + * @retval None + */ +void HAL_ETHEx_EnterLPIMode(ETH_HandleTypeDef *heth, FunctionalState TxAutomate, FunctionalState TxClockStop) +{ + /* Enable LPI Interrupts */ + __HAL_ETH_MAC_ENABLE_IT(heth, ETH_MACIER_LPIIE); + + /* Write to LPI Control register: Enter low power mode */ + MODIFY_REG(heth->Instance->MACLCSR, (ETH_MACLCSR_LPIEN | ETH_MACLCSR_LPITXA | ETH_MACLCSR_LPITCSE), (((uint32_t)TxAutomate << 19) | + ((uint32_t)TxClockStop << 21) | + ETH_MACLCSR_LPIEN)); +} + +/** + * @brief Exits the Low Power Idle (LPI) mode. + * @param heth: pointer to a ETH_HandleTypeDef structure that contains + * the configuration information for ETHERNET module + * @retval None + */ +void HAL_ETHEx_ExitLPIMode(ETH_HandleTypeDef *heth) +{ + /* Clear the LPI Config and exit low power mode */ + CLEAR_BIT(heth->Instance->MACLCSR, (ETH_MACLCSR_LPIEN | ETH_MACLCSR_LPITXA | ETH_MACLCSR_LPITCSE)); + + /* Enable LPI Interrupts */ + __HAL_ETH_MAC_DISABLE_IT(heth, ETH_MACIER_LPIIE); +} + + +/** + * @brief Returns the ETH MAC LPI event + * @param heth: pointer to a ETH_HandleTypeDef structure that contains + * the configuration information for ETHERNET module + * @retval ETH MAC WakeUp event + */ +uint32_t HAL_ETHEx_GetMACLPIEvent(ETH_HandleTypeDef *heth) +{ + return heth->MACLPIEvent; +} + +/** + * @} + */ + +/** + * @} + */ + +/** + * @} + */ + +#endif /* ETH */ + +#endif /* HAL_ETH_MODULE_ENABLED */ + +/** + * @} + */ + +/************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/ diff --git a/source/hic_hal/stm32/stm32h743ii/STM32H7xx_HAL_Driver/Src/stm32h7xx_hal_i2c.c b/source/hic_hal/stm32/stm32h743ii/STM32H7xx_HAL_Driver/Src/stm32h7xx_hal_i2c.c new file mode 100644 index 000000000..1b8c17920 --- /dev/null +++ b/source/hic_hal/stm32/stm32h743ii/STM32H7xx_HAL_Driver/Src/stm32h7xx_hal_i2c.c @@ -0,0 +1,6522 @@ +/** + ****************************************************************************** + * @file stm32h7xx_hal_i2c.c + * @author MCD Application Team + * @brief I2C HAL module driver. + * This file provides firmware functions to manage the following + * functionalities of the Inter Integrated Circuit (I2C) peripheral: + * + Initialization and de-initialization functions + * + IO operation functions + * + Peripheral State and Errors functions + * + @verbatim + ============================================================================== + ##### How to use this driver ##### + ============================================================================== + [..] + The I2C HAL driver can be used as follows: + + (#) Declare a I2C_HandleTypeDef handle structure, for example: + I2C_HandleTypeDef hi2c; + + (#)Initialize the I2C low level resources by implementing the @ref HAL_I2C_MspInit() API: + (##) Enable the I2Cx interface clock + (##) I2C pins configuration + (+++) Enable the clock for the I2C GPIOs + (+++) Configure I2C pins as alternate function open-drain + (##) NVIC configuration if you need to use interrupt process + (+++) Configure the I2Cx interrupt priority + (+++) Enable the NVIC I2C IRQ Channel + (##) DMA Configuration if you need to use DMA process + (+++) Declare a DMA_HandleTypeDef handle structure for the transmit or receive stream or channel depends on Instance + (+++) Enable the DMAx interface clock using + (+++) Configure the DMA handle parameters + (+++) Configure the DMA Tx or Rx stream or channel depends on Instance + (+++) Associate the initialized DMA handle to the hi2c DMA Tx or Rx handle + (+++) Configure the priority and enable the NVIC for the transfer complete interrupt on + the DMA Tx or Rx stream or channel depends on Instance + + (#) Configure the Communication Clock Timing, Own Address1, Master Addressing mode, Dual Addressing mode, + Own Address2, Own Address2 Mask, General call and Nostretch mode in the hi2c Init structure. + + (#) Initialize the I2C registers by calling the @ref HAL_I2C_Init(), configures also the low level Hardware + (GPIO, CLOCK, NVIC...etc) by calling the customized @ref HAL_I2C_MspInit(&hi2c) API. + + (#) To check if target device is ready for communication, use the function @ref HAL_I2C_IsDeviceReady() + + (#) For I2C IO and IO MEM operations, three operation modes are available within this driver : + + *** Polling mode IO operation *** + ================================= + [..] + (+) Transmit in master mode an amount of data in blocking mode using @ref HAL_I2C_Master_Transmit() + (+) Receive in master mode an amount of data in blocking mode using @ref HAL_I2C_Master_Receive() + (+) Transmit in slave mode an amount of data in blocking mode using @ref HAL_I2C_Slave_Transmit() + (+) Receive in slave mode an amount of data in blocking mode using @ref HAL_I2C_Slave_Receive() + + *** Polling mode IO MEM operation *** + ===================================== + [..] + (+) Write an amount of data in blocking mode to a specific memory address using @ref HAL_I2C_Mem_Write() + (+) Read an amount of data in blocking mode from a specific memory address using @ref HAL_I2C_Mem_Read() + + + *** Interrupt mode IO operation *** + =================================== + [..] + (+) Transmit in master mode an amount of data in non-blocking mode using @ref HAL_I2C_Master_Transmit_IT() + (+) At transmission end of transfer, @ref HAL_I2C_MasterTxCpltCallback() is executed and user can + add his own code by customization of function pointer @ref HAL_I2C_MasterTxCpltCallback() + (+) Receive in master mode an amount of data in non-blocking mode using @ref HAL_I2C_Master_Receive_IT() + (+) At reception end of transfer, @ref HAL_I2C_MasterRxCpltCallback() is executed and user can + add his own code by customization of function pointer @ref HAL_I2C_MasterRxCpltCallback() + (+) Transmit in slave mode an amount of data in non-blocking mode using @ref HAL_I2C_Slave_Transmit_IT() + (+) At transmission end of transfer, @ref HAL_I2C_SlaveTxCpltCallback() is executed and user can + add his own code by customization of function pointer @ref HAL_I2C_SlaveTxCpltCallback() + (+) Receive in slave mode an amount of data in non-blocking mode using @ref HAL_I2C_Slave_Receive_IT() + (+) At reception end of transfer, @ref HAL_I2C_SlaveRxCpltCallback() is executed and user can + add his own code by customization of function pointer @ref HAL_I2C_SlaveRxCpltCallback() + (+) In case of transfer Error, @ref HAL_I2C_ErrorCallback() function is executed and user can + add his own code by customization of function pointer @ref HAL_I2C_ErrorCallback() + (+) Abort a master I2C process communication with Interrupt using @ref HAL_I2C_Master_Abort_IT() + (+) End of abort process, @ref HAL_I2C_AbortCpltCallback() is executed and user can + add his own code by customization of function pointer @ref HAL_I2C_AbortCpltCallback() + (+) Discard a slave I2C process communication using @ref __HAL_I2C_GENERATE_NACK() macro. + This action will inform Master to generate a Stop condition to discard the communication. + + + *** Interrupt mode or DMA mode IO sequential operation *** + ========================================================== + [..] + (@) These interfaces allow to manage a sequential transfer with a repeated start condition + when a direction change during transfer + [..] + (+) A specific option field manage the different steps of a sequential transfer + (+) Option field values are defined through @ref I2C_XFEROPTIONS and are listed below: + (++) I2C_FIRST_AND_LAST_FRAME: No sequential usage, functionnal is same as associated interfaces in no sequential mode + (++) I2C_FIRST_FRAME: Sequential usage, this option allow to manage a sequence with start condition, address + and data to transfer without a final stop condition + (++) I2C_FIRST_AND_NEXT_FRAME: Sequential usage (Master only), this option allow to manage a sequence with start condition, address + and data to transfer without a final stop condition, an then permit a call the same master sequential interface + several times (like @ref HAL_I2C_Master_Seq_Transmit_IT() then @ref HAL_I2C_Master_Seq_Transmit_IT() + or @ref HAL_I2C_Master_Seq_Transmit_DMA() then @ref HAL_I2C_Master_Seq_Transmit_DMA()) + (++) I2C_NEXT_FRAME: Sequential usage, this option allow to manage a sequence with a restart condition, address + and with new data to transfer if the direction change or manage only the new data to transfer + if no direction change and without a final stop condition in both cases + (++) I2C_LAST_FRAME: Sequential usage, this option allow to manage a sequance with a restart condition, address + and with new data to transfer if the direction change or manage only the new data to transfer + if no direction change and with a final stop condition in both cases + (++) I2C_LAST_FRAME_NO_STOP: Sequential usage (Master only), this option allow to manage a restart condition after several call of the same master sequential + interface several times (link with option I2C_FIRST_AND_NEXT_FRAME). + Usage can, transfer several bytes one by one using HAL_I2C_Master_Seq_Transmit_IT(option I2C_FIRST_AND_NEXT_FRAME then I2C_NEXT_FRAME) + or HAL_I2C_Master_Seq_Receive_IT(option I2C_FIRST_AND_NEXT_FRAME then I2C_NEXT_FRAME) + or HAL_I2C_Master_Seq_Transmit_DMA(option I2C_FIRST_AND_NEXT_FRAME then I2C_NEXT_FRAME) + or HAL_I2C_Master_Seq_Receive_DMA(option I2C_FIRST_AND_NEXT_FRAME then I2C_NEXT_FRAME). + Then usage of this option I2C_LAST_FRAME_NO_STOP at the last Transmit or Receive sequence permit to call the oposite interface Receive or Transmit + without stopping the communication and so generate a restart condition. + (++) I2C_OTHER_FRAME: Sequential usage (Master only), this option allow to manage a restart condition after each call of the same master sequential + interface. + Usage can, transfer several bytes one by one with a restart with slave address between each bytes using HAL_I2C_Master_Seq_Transmit_IT(option I2C_FIRST_FRAME then I2C_OTHER_FRAME) + or HAL_I2C_Master_Seq_Receive_IT(option I2C_FIRST_FRAME then I2C_OTHER_FRAME) + or HAL_I2C_Master_Seq_Transmit_DMA(option I2C_FIRST_FRAME then I2C_OTHER_FRAME) + or HAL_I2C_Master_Seq_Receive_DMA(option I2C_FIRST_FRAME then I2C_OTHER_FRAME). + Then usage of this option I2C_OTHER_AND_LAST_FRAME at the last frame to help automatic generation of STOP condition. + + (+) Differents sequential I2C interfaces are listed below: + (++) Sequential transmit in master I2C mode an amount of data in non-blocking mode using @ref HAL_I2C_Master_Seq_Transmit_IT() + or using @ref HAL_I2C_Master_Seq_Transmit_DMA() + (+++) At transmission end of current frame transfer, @ref HAL_I2C_MasterTxCpltCallback() is executed and user can + add his own code by customization of function pointer @ref HAL_I2C_MasterTxCpltCallback() + (++) Sequential receive in master I2C mode an amount of data in non-blocking mode using @ref HAL_I2C_Master_Seq_Receive_IT() + or using @ref HAL_I2C_Master_Seq_Receive_DMA() + (+++) At reception end of current frame transfer, @ref HAL_I2C_MasterRxCpltCallback() is executed and user can + add his own code by customization of function pointer @ref HAL_I2C_MasterRxCpltCallback() + (++) Abort a master IT or DMA I2C process communication with Interrupt using @ref HAL_I2C_Master_Abort_IT() + (+++) End of abort process, @ref HAL_I2C_AbortCpltCallback() is executed and user can + add his own code by customization of function pointer @ref HAL_I2C_AbortCpltCallback() + (++) Enable/disable the Address listen mode in slave I2C mode using @ref HAL_I2C_EnableListen_IT() @ref HAL_I2C_DisableListen_IT() + (+++) When address slave I2C match, @ref HAL_I2C_AddrCallback() is executed and user can + add his own code to check the Address Match Code and the transmission direction request by master (Write/Read). + (+++) At Listen mode end @ref HAL_I2C_ListenCpltCallback() is executed and user can + add his own code by customization of function pointer @ref HAL_I2C_ListenCpltCallback() + (++) Sequential transmit in slave I2C mode an amount of data in non-blocking mode using @ref HAL_I2C_Slave_Seq_Transmit_IT() + or using @ref HAL_I2C_Slave_Seq_Transmit_DMA() + (+++) At transmission end of current frame transfer, @ref HAL_I2C_SlaveTxCpltCallback() is executed and user can + add his own code by customization of function pointer @ref HAL_I2C_SlaveTxCpltCallback() + (++) Sequential receive in slave I2C mode an amount of data in non-blocking mode using @ref HAL_I2C_Slave_Seq_Receive_IT() + or using @ref HAL_I2C_Slave_Seq_Receive_DMA() + (+++) At reception end of current frame transfer, @ref HAL_I2C_SlaveRxCpltCallback() is executed and user can + add his own code by customization of function pointer @ref HAL_I2C_SlaveRxCpltCallback() + (++) In case of transfer Error, @ref HAL_I2C_ErrorCallback() function is executed and user can + add his own code by customization of function pointer @ref HAL_I2C_ErrorCallback() + (++) Discard a slave I2C process communication using @ref __HAL_I2C_GENERATE_NACK() macro. + This action will inform Master to generate a Stop condition to discard the communication. + + *** Interrupt mode IO MEM operation *** + ======================================= + [..] + (+) Write an amount of data in non-blocking mode with Interrupt to a specific memory address using + @ref HAL_I2C_Mem_Write_IT() + (+) At Memory end of write transfer, @ref HAL_I2C_MemTxCpltCallback() is executed and user can + add his own code by customization of function pointer @ref HAL_I2C_MemTxCpltCallback() + (+) Read an amount of data in non-blocking mode with Interrupt from a specific memory address using + @ref HAL_I2C_Mem_Read_IT() + (+) At Memory end of read transfer, @ref HAL_I2C_MemRxCpltCallback() is executed and user can + add his own code by customization of function pointer @ref HAL_I2C_MemRxCpltCallback() + (+) In case of transfer Error, @ref HAL_I2C_ErrorCallback() function is executed and user can + add his own code by customization of function pointer @ref HAL_I2C_ErrorCallback() + + *** DMA mode IO operation *** + ============================== + [..] + (+) Transmit in master mode an amount of data in non-blocking mode (DMA) using + @ref HAL_I2C_Master_Transmit_DMA() + (+) At transmission end of transfer, @ref HAL_I2C_MasterTxCpltCallback() is executed and user can + add his own code by customization of function pointer @ref HAL_I2C_MasterTxCpltCallback() + (+) Receive in master mode an amount of data in non-blocking mode (DMA) using + @ref HAL_I2C_Master_Receive_DMA() + (+) At reception end of transfer, @ref HAL_I2C_MasterRxCpltCallback() is executed and user can + add his own code by customization of function pointer @ref HAL_I2C_MasterRxCpltCallback() + (+) Transmit in slave mode an amount of data in non-blocking mode (DMA) using + @ref HAL_I2C_Slave_Transmit_DMA() + (+) At transmission end of transfer, @ref HAL_I2C_SlaveTxCpltCallback() is executed and user can + add his own code by customization of function pointer @ref HAL_I2C_SlaveTxCpltCallback() + (+) Receive in slave mode an amount of data in non-blocking mode (DMA) using + @ref HAL_I2C_Slave_Receive_DMA() + (+) At reception end of transfer, @ref HAL_I2C_SlaveRxCpltCallback() is executed and user can + add his own code by customization of function pointer @ref HAL_I2C_SlaveRxCpltCallback() + (+) In case of transfer Error, @ref HAL_I2C_ErrorCallback() function is executed and user can + add his own code by customization of function pointer @ref HAL_I2C_ErrorCallback() + (+) Abort a master I2C process communication with Interrupt using @ref HAL_I2C_Master_Abort_IT() + (+) End of abort process, @ref HAL_I2C_AbortCpltCallback() is executed and user can + add his own code by customization of function pointer @ref HAL_I2C_AbortCpltCallback() + (+) Discard a slave I2C process communication using @ref __HAL_I2C_GENERATE_NACK() macro. + This action will inform Master to generate a Stop condition to discard the communication. + + *** DMA mode IO MEM operation *** + ================================= + [..] + (+) Write an amount of data in non-blocking mode with DMA to a specific memory address using + @ref HAL_I2C_Mem_Write_DMA() + (+) At Memory end of write transfer, @ref HAL_I2C_MemTxCpltCallback() is executed and user can + add his own code by customization of function pointer @ref HAL_I2C_MemTxCpltCallback() + (+) Read an amount of data in non-blocking mode with DMA from a specific memory address using + @ref HAL_I2C_Mem_Read_DMA() + (+) At Memory end of read transfer, @ref HAL_I2C_MemRxCpltCallback() is executed and user can + add his own code by customization of function pointer @ref HAL_I2C_MemRxCpltCallback() + (+) In case of transfer Error, @ref HAL_I2C_ErrorCallback() function is executed and user can + add his own code by customization of function pointer @ref HAL_I2C_ErrorCallback() + + + *** I2C HAL driver macros list *** + ================================== + [..] + Below the list of most used macros in I2C HAL driver. + + (+) @ref __HAL_I2C_ENABLE: Enable the I2C peripheral + (+) @ref __HAL_I2C_DISABLE: Disable the I2C peripheral + (+) @ref __HAL_I2C_GENERATE_NACK: Generate a Non-Acknowledge I2C peripheral in Slave mode + (+) @ref __HAL_I2C_GET_FLAG: Check whether the specified I2C flag is set or not + (+) @ref __HAL_I2C_CLEAR_FLAG: Clear the specified I2C pending flag + (+) @ref __HAL_I2C_ENABLE_IT: Enable the specified I2C interrupt + (+) @ref __HAL_I2C_DISABLE_IT: Disable the specified I2C interrupt + + *** Callback registration *** + ============================================= + [..] + The compilation flag USE_HAL_I2C_REGISTER_CALLBACKS when set to 1 + allows the user to configure dynamically the driver callbacks. + Use Functions @ref HAL_I2C_RegisterCallback() or @ref HAL_I2C_RegisterAddrCallback() + to register an interrupt callback. + [..] + Function @ref HAL_I2C_RegisterCallback() allows to register following callbacks: + (+) MasterTxCpltCallback : callback for Master transmission end of transfer. + (+) MasterRxCpltCallback : callback for Master reception end of transfer. + (+) SlaveTxCpltCallback : callback for Slave transmission end of transfer. + (+) SlaveRxCpltCallback : callback for Slave reception end of transfer. + (+) ListenCpltCallback : callback for end of listen mode. + (+) MemTxCpltCallback : callback for Memory transmission end of transfer. + (+) MemRxCpltCallback : callback for Memory reception end of transfer. + (+) ErrorCallback : callback for error detection. + (+) AbortCpltCallback : callback for abort completion process. + (+) MspInitCallback : callback for Msp Init. + (+) MspDeInitCallback : callback for Msp DeInit. + This function takes as parameters the HAL peripheral handle, the Callback ID + and a pointer to the user callback function. + [..] + For specific callback AddrCallback use dedicated register callbacks : @ref HAL_I2C_RegisterAddrCallback(). + [..] + Use function @ref HAL_I2C_UnRegisterCallback to reset a callback to the default + weak function. + @ref HAL_I2C_UnRegisterCallback takes as parameters the HAL peripheral handle, + and the Callback ID. + This function allows to reset following callbacks: + (+) MasterTxCpltCallback : callback for Master transmission end of transfer. + (+) MasterRxCpltCallback : callback for Master reception end of transfer. + (+) SlaveTxCpltCallback : callback for Slave transmission end of transfer. + (+) SlaveRxCpltCallback : callback for Slave reception end of transfer. + (+) ListenCpltCallback : callback for end of listen mode. + (+) MemTxCpltCallback : callback for Memory transmission end of transfer. + (+) MemRxCpltCallback : callback for Memory reception end of transfer. + (+) ErrorCallback : callback for error detection. + (+) AbortCpltCallback : callback for abort completion process. + (+) MspInitCallback : callback for Msp Init. + (+) MspDeInitCallback : callback for Msp DeInit. + [..] + For callback AddrCallback use dedicated register callbacks : @ref HAL_I2C_UnRegisterAddrCallback(). + [..] + By default, after the @ref HAL_I2C_Init() and when the state is @ref HAL_I2C_STATE_RESET + all callbacks are set to the corresponding weak functions: + examples @ref HAL_I2C_MasterTxCpltCallback(), @ref HAL_I2C_MasterRxCpltCallback(). + Exception done for MspInit and MspDeInit functions that are + reset to the legacy weak functions in the @ref HAL_I2C_Init()/ @ref HAL_I2C_DeInit() only when + these callbacks are null (not registered beforehand). + If MspInit or MspDeInit are not null, the @ref HAL_I2C_Init()/ @ref HAL_I2C_DeInit() + keep and use the user MspInit/MspDeInit callbacks (registered beforehand) whatever the state. + [..] + Callbacks can be registered/unregistered in @ref HAL_I2C_STATE_READY state only. + Exception done MspInit/MspDeInit functions that can be registered/unregistered + in @ref HAL_I2C_STATE_READY or @ref HAL_I2C_STATE_RESET state, + thus registered (user) MspInit/DeInit callbacks can be used during the Init/DeInit. + Then, the user first registers the MspInit/MspDeInit user callbacks + using @ref HAL_I2C_RegisterCallback() before calling @ref HAL_I2C_DeInit() + or @ref HAL_I2C_Init() function. + [..] + When the compilation flag USE_HAL_I2C_REGISTER_CALLBACKS is set to 0 or + not defined, the callback registration feature is not available and all callbacks + are set to the corresponding weak functions. + + [..] + (@) You can refer to the I2C HAL driver header file for more useful macros + + @endverbatim + ****************************************************************************** + * @attention + * + *

© Copyright (c) 2017 STMicroelectronics. + * All rights reserved.

+ * + * This software component is licensed by ST under BSD 3-Clause license, + * the "License"; You may not use this file except in compliance with the + * License. You may obtain a copy of the License at: + * opensource.org/licenses/BSD-3-Clause + * + ****************************************************************************** + */ + +/* Includes ------------------------------------------------------------------*/ +#include "stm32h7xx_hal.h" + +/** @addtogroup STM32H7xx_HAL_Driver + * @{ + */ + +/** @defgroup I2C I2C + * @brief I2C HAL module driver + * @{ + */ + +#ifdef HAL_I2C_MODULE_ENABLED + +/* Private typedef -----------------------------------------------------------*/ +/* Private define ------------------------------------------------------------*/ + +/** @defgroup I2C_Private_Define I2C Private Define + * @{ + */ +#define TIMING_CLEAR_MASK (0xF0FFFFFFU) /*!< I2C TIMING clear register Mask */ +#define I2C_TIMEOUT_ADDR (10000U) /*!< 10 s */ +#define I2C_TIMEOUT_BUSY (25U) /*!< 25 ms */ +#define I2C_TIMEOUT_DIR (25U) /*!< 25 ms */ +#define I2C_TIMEOUT_RXNE (25U) /*!< 25 ms */ +#define I2C_TIMEOUT_STOPF (25U) /*!< 25 ms */ +#define I2C_TIMEOUT_TC (25U) /*!< 25 ms */ +#define I2C_TIMEOUT_TCR (25U) /*!< 25 ms */ +#define I2C_TIMEOUT_TXIS (25U) /*!< 25 ms */ +#define I2C_TIMEOUT_FLAG (25U) /*!< 25 ms */ + +#define MAX_NBYTE_SIZE 255U +#define SlaveAddr_SHIFT 7U +#define SlaveAddr_MSK 0x06U + +/* Private define for @ref PreviousState usage */ +#define I2C_STATE_MSK ((uint32_t)((uint32_t)((uint32_t)HAL_I2C_STATE_BUSY_TX | (uint32_t)HAL_I2C_STATE_BUSY_RX) & (uint32_t)(~((uint32_t)HAL_I2C_STATE_READY)))) /*!< Mask State define, keep only RX and TX bits */ +#define I2C_STATE_NONE ((uint32_t)(HAL_I2C_MODE_NONE)) /*!< Default Value */ +#define I2C_STATE_MASTER_BUSY_TX ((uint32_t)(((uint32_t)HAL_I2C_STATE_BUSY_TX & I2C_STATE_MSK) | (uint32_t)HAL_I2C_MODE_MASTER)) /*!< Master Busy TX, combinaison of State LSB and Mode enum */ +#define I2C_STATE_MASTER_BUSY_RX ((uint32_t)(((uint32_t)HAL_I2C_STATE_BUSY_RX & I2C_STATE_MSK) | (uint32_t)HAL_I2C_MODE_MASTER)) /*!< Master Busy RX, combinaison of State LSB and Mode enum */ +#define I2C_STATE_SLAVE_BUSY_TX ((uint32_t)(((uint32_t)HAL_I2C_STATE_BUSY_TX & I2C_STATE_MSK) | (uint32_t)HAL_I2C_MODE_SLAVE)) /*!< Slave Busy TX, combinaison of State LSB and Mode enum */ +#define I2C_STATE_SLAVE_BUSY_RX ((uint32_t)(((uint32_t)HAL_I2C_STATE_BUSY_RX & I2C_STATE_MSK) | (uint32_t)HAL_I2C_MODE_SLAVE)) /*!< Slave Busy RX, combinaison of State LSB and Mode enum */ +#define I2C_STATE_MEM_BUSY_TX ((uint32_t)(((uint32_t)HAL_I2C_STATE_BUSY_TX & I2C_STATE_MSK) | (uint32_t)HAL_I2C_MODE_MEM)) /*!< Memory Busy TX, combinaison of State LSB and Mode enum */ +#define I2C_STATE_MEM_BUSY_RX ((uint32_t)(((uint32_t)HAL_I2C_STATE_BUSY_RX & I2C_STATE_MSK) | (uint32_t)HAL_I2C_MODE_MEM)) /*!< Memory Busy RX, combinaison of State LSB and Mode enum */ + + +/* Private define to centralize the enable/disable of Interrupts */ +#define I2C_XFER_TX_IT (0x00000001U) +#define I2C_XFER_RX_IT (0x00000002U) +#define I2C_XFER_LISTEN_IT (0x00000004U) + +#define I2C_XFER_ERROR_IT (0x00000011U) +#define I2C_XFER_CPLT_IT (0x00000012U) +#define I2C_XFER_RELOAD_IT (0x00000012U) + +/* Private define Sequential Transfer Options default/reset value */ +#define I2C_NO_OPTION_FRAME (0xFFFF0000U) +/** + * @} + */ + +/* Private macro -------------------------------------------------------------*/ +/* Private variables ---------------------------------------------------------*/ +/* Private function prototypes -----------------------------------------------*/ + +/** @defgroup I2C_Private_Functions I2C Private Functions + * @{ + */ +/* Private functions to handle DMA transfer */ +static void I2C_DMAMasterTransmitCplt(DMA_HandleTypeDef *hdma); +static void I2C_DMAMasterReceiveCplt(DMA_HandleTypeDef *hdma); +static void I2C_DMASlaveTransmitCplt(DMA_HandleTypeDef *hdma); +static void I2C_DMASlaveReceiveCplt(DMA_HandleTypeDef *hdma); +static void I2C_DMAError(DMA_HandleTypeDef *hdma); +static void I2C_DMAAbort(DMA_HandleTypeDef *hdma); + +/* Private functions to handle IT transfer */ +static void I2C_ITAddrCplt(I2C_HandleTypeDef *hi2c, uint32_t ITFlags); +static void I2C_ITMasterSeqCplt(I2C_HandleTypeDef *hi2c); +static void I2C_ITSlaveSeqCplt(I2C_HandleTypeDef *hi2c); +static void I2C_ITMasterCplt(I2C_HandleTypeDef *hi2c, uint32_t ITFlags); +static void I2C_ITSlaveCplt(I2C_HandleTypeDef *hi2c, uint32_t ITFlags); +static void I2C_ITListenCplt(I2C_HandleTypeDef *hi2c, uint32_t ITFlags); +static void I2C_ITError(I2C_HandleTypeDef *hi2c, uint32_t ErrorCode); + +/* Private functions to handle IT transfer */ +static HAL_StatusTypeDef I2C_RequestMemoryWrite(I2C_HandleTypeDef *hi2c, uint16_t DevAddress, uint16_t MemAddress, uint16_t MemAddSize, uint32_t Timeout, uint32_t Tickstart); +static HAL_StatusTypeDef I2C_RequestMemoryRead(I2C_HandleTypeDef *hi2c, uint16_t DevAddress, uint16_t MemAddress, uint16_t MemAddSize, uint32_t Timeout, uint32_t Tickstart); + +/* Private functions for I2C transfer IRQ handler */ +static HAL_StatusTypeDef I2C_Master_ISR_IT(struct __I2C_HandleTypeDef *hi2c, uint32_t ITFlags, uint32_t ITSources); +static HAL_StatusTypeDef I2C_Slave_ISR_IT(struct __I2C_HandleTypeDef *hi2c, uint32_t ITFlags, uint32_t ITSources); +static HAL_StatusTypeDef I2C_Master_ISR_DMA(struct __I2C_HandleTypeDef *hi2c, uint32_t ITFlags, uint32_t ITSources); +static HAL_StatusTypeDef I2C_Slave_ISR_DMA(struct __I2C_HandleTypeDef *hi2c, uint32_t ITFlags, uint32_t ITSources); + +/* Private functions to handle flags during polling transfer */ +static HAL_StatusTypeDef I2C_WaitOnFlagUntilTimeout(I2C_HandleTypeDef *hi2c, uint32_t Flag, FlagStatus Status, uint32_t Timeout, uint32_t Tickstart); +static HAL_StatusTypeDef I2C_WaitOnTXISFlagUntilTimeout(I2C_HandleTypeDef *hi2c, uint32_t Timeout, uint32_t Tickstart); +static HAL_StatusTypeDef I2C_WaitOnRXNEFlagUntilTimeout(I2C_HandleTypeDef *hi2c, uint32_t Timeout, uint32_t Tickstart); +static HAL_StatusTypeDef I2C_WaitOnSTOPFlagUntilTimeout(I2C_HandleTypeDef *hi2c, uint32_t Timeout, uint32_t Tickstart); +static HAL_StatusTypeDef I2C_IsAcknowledgeFailed(I2C_HandleTypeDef *hi2c, uint32_t Timeout, uint32_t Tickstart); + +/* Private functions to centralize the enable/disable of Interrupts */ +static void I2C_Enable_IRQ(I2C_HandleTypeDef *hi2c, uint16_t InterruptRequest); +static void I2C_Disable_IRQ(I2C_HandleTypeDef *hi2c, uint16_t InterruptRequest); + +/* Private function to flush TXDR register */ +static void I2C_Flush_TXDR(I2C_HandleTypeDef *hi2c); + +/* Private function to handle start, restart or stop a transfer */ +static void I2C_TransferConfig(I2C_HandleTypeDef *hi2c, uint16_t DevAddress, uint8_t Size, uint32_t Mode, uint32_t Request); + +/* Private function to Convert Specific options */ +static void I2C_ConvertOtherXferOptions(I2C_HandleTypeDef *hi2c); +/** + * @} + */ + +/* Exported functions --------------------------------------------------------*/ + +/** @defgroup I2C_Exported_Functions I2C Exported Functions + * @{ + */ + +/** @defgroup I2C_Exported_Functions_Group1 Initialization and de-initialization functions + * @brief Initialization and Configuration functions + * +@verbatim + =============================================================================== + ##### Initialization and de-initialization functions ##### + =============================================================================== + [..] This subsection provides a set of functions allowing to initialize and + deinitialize the I2Cx peripheral: + + (+) User must Implement HAL_I2C_MspInit() function in which he configures + all related peripherals resources (CLOCK, GPIO, DMA, IT and NVIC ). + + (+) Call the function HAL_I2C_Init() to configure the selected device with + the selected configuration: + (++) Clock Timing + (++) Own Address 1 + (++) Addressing mode (Master, Slave) + (++) Dual Addressing mode + (++) Own Address 2 + (++) Own Address 2 Mask + (++) General call mode + (++) Nostretch mode + + (+) Call the function HAL_I2C_DeInit() to restore the default configuration + of the selected I2Cx peripheral. + +@endverbatim + * @{ + */ + +/** + * @brief Initializes the I2C according to the specified parameters + * in the I2C_InitTypeDef and initialize the associated handle. + * @param hi2c Pointer to a I2C_HandleTypeDef structure that contains + * the configuration information for the specified I2C. + * @retval HAL status + */ +HAL_StatusTypeDef HAL_I2C_Init(I2C_HandleTypeDef *hi2c) +{ + /* Check the I2C handle allocation */ + if (hi2c == NULL) + { + return HAL_ERROR; + } + + /* Check the parameters */ + assert_param(IS_I2C_ALL_INSTANCE(hi2c->Instance)); + assert_param(IS_I2C_OWN_ADDRESS1(hi2c->Init.OwnAddress1)); + assert_param(IS_I2C_ADDRESSING_MODE(hi2c->Init.AddressingMode)); + assert_param(IS_I2C_DUAL_ADDRESS(hi2c->Init.DualAddressMode)); + assert_param(IS_I2C_OWN_ADDRESS2(hi2c->Init.OwnAddress2)); + assert_param(IS_I2C_OWN_ADDRESS2_MASK(hi2c->Init.OwnAddress2Masks)); + assert_param(IS_I2C_GENERAL_CALL(hi2c->Init.GeneralCallMode)); + assert_param(IS_I2C_NO_STRETCH(hi2c->Init.NoStretchMode)); + + if (hi2c->State == HAL_I2C_STATE_RESET) + { + /* Allocate lock resource and initialize it */ + hi2c->Lock = HAL_UNLOCKED; + +#if (USE_HAL_I2C_REGISTER_CALLBACKS == 1) + /* Init the I2C Callback settings */ + hi2c->MasterTxCpltCallback = HAL_I2C_MasterTxCpltCallback; /* Legacy weak MasterTxCpltCallback */ + hi2c->MasterRxCpltCallback = HAL_I2C_MasterRxCpltCallback; /* Legacy weak MasterRxCpltCallback */ + hi2c->SlaveTxCpltCallback = HAL_I2C_SlaveTxCpltCallback; /* Legacy weak SlaveTxCpltCallback */ + hi2c->SlaveRxCpltCallback = HAL_I2C_SlaveRxCpltCallback; /* Legacy weak SlaveRxCpltCallback */ + hi2c->ListenCpltCallback = HAL_I2C_ListenCpltCallback; /* Legacy weak ListenCpltCallback */ + hi2c->MemTxCpltCallback = HAL_I2C_MemTxCpltCallback; /* Legacy weak MemTxCpltCallback */ + hi2c->MemRxCpltCallback = HAL_I2C_MemRxCpltCallback; /* Legacy weak MemRxCpltCallback */ + hi2c->ErrorCallback = HAL_I2C_ErrorCallback; /* Legacy weak ErrorCallback */ + hi2c->AbortCpltCallback = HAL_I2C_AbortCpltCallback; /* Legacy weak AbortCpltCallback */ + hi2c->AddrCallback = HAL_I2C_AddrCallback; /* Legacy weak AddrCallback */ + + if (hi2c->MspInitCallback == NULL) + { + hi2c->MspInitCallback = HAL_I2C_MspInit; /* Legacy weak MspInit */ + } + + /* Init the low level hardware : GPIO, CLOCK, CORTEX...etc */ + hi2c->MspInitCallback(hi2c); +#else + /* Init the low level hardware : GPIO, CLOCK, CORTEX...etc */ + HAL_I2C_MspInit(hi2c); +#endif /* USE_HAL_I2C_REGISTER_CALLBACKS */ + } + + hi2c->State = HAL_I2C_STATE_BUSY; + + /* Disable the selected I2C peripheral */ + __HAL_I2C_DISABLE(hi2c); + + /*---------------------------- I2Cx TIMINGR Configuration ------------------*/ + /* Configure I2Cx: Frequency range */ + hi2c->Instance->TIMINGR = hi2c->Init.Timing & TIMING_CLEAR_MASK; + + /*---------------------------- I2Cx OAR1 Configuration ---------------------*/ + /* Disable Own Address1 before set the Own Address1 configuration */ + hi2c->Instance->OAR1 &= ~I2C_OAR1_OA1EN; + + /* Configure I2Cx: Own Address1 and ack own address1 mode */ + if (hi2c->Init.AddressingMode == I2C_ADDRESSINGMODE_7BIT) + { + hi2c->Instance->OAR1 = (I2C_OAR1_OA1EN | hi2c->Init.OwnAddress1); + } + else /* I2C_ADDRESSINGMODE_10BIT */ + { + hi2c->Instance->OAR1 = (I2C_OAR1_OA1EN | I2C_OAR1_OA1MODE | hi2c->Init.OwnAddress1); + } + + /*---------------------------- I2Cx CR2 Configuration ----------------------*/ + /* Configure I2Cx: Addressing Master mode */ + if (hi2c->Init.AddressingMode == I2C_ADDRESSINGMODE_10BIT) + { + hi2c->Instance->CR2 = (I2C_CR2_ADD10); + } + /* Enable the AUTOEND by default, and enable NACK (should be disable only during Slave process */ + hi2c->Instance->CR2 |= (I2C_CR2_AUTOEND | I2C_CR2_NACK); + + /*---------------------------- I2Cx OAR2 Configuration ---------------------*/ + /* Disable Own Address2 before set the Own Address2 configuration */ + hi2c->Instance->OAR2 &= ~I2C_DUALADDRESS_ENABLE; + + /* Configure I2Cx: Dual mode and Own Address2 */ + hi2c->Instance->OAR2 = (hi2c->Init.DualAddressMode | hi2c->Init.OwnAddress2 | (hi2c->Init.OwnAddress2Masks << 8)); + + /*---------------------------- I2Cx CR1 Configuration ----------------------*/ + /* Configure I2Cx: Generalcall and NoStretch mode */ + hi2c->Instance->CR1 = (hi2c->Init.GeneralCallMode | hi2c->Init.NoStretchMode); + + /* Enable the selected I2C peripheral */ + __HAL_I2C_ENABLE(hi2c); + + hi2c->ErrorCode = HAL_I2C_ERROR_NONE; + hi2c->State = HAL_I2C_STATE_READY; + hi2c->PreviousState = I2C_STATE_NONE; + hi2c->Mode = HAL_I2C_MODE_NONE; + + return HAL_OK; +} + +/** + * @brief DeInitialize the I2C peripheral. + * @param hi2c Pointer to a I2C_HandleTypeDef structure that contains + * the configuration information for the specified I2C. + * @retval HAL status + */ +HAL_StatusTypeDef HAL_I2C_DeInit(I2C_HandleTypeDef *hi2c) +{ + /* Check the I2C handle allocation */ + if (hi2c == NULL) + { + return HAL_ERROR; + } + + /* Check the parameters */ + assert_param(IS_I2C_ALL_INSTANCE(hi2c->Instance)); + + hi2c->State = HAL_I2C_STATE_BUSY; + + /* Disable the I2C Peripheral Clock */ + __HAL_I2C_DISABLE(hi2c); + +#if (USE_HAL_I2C_REGISTER_CALLBACKS == 1) + if (hi2c->MspDeInitCallback == NULL) + { + hi2c->MspDeInitCallback = HAL_I2C_MspDeInit; /* Legacy weak MspDeInit */ + } + + /* DeInit the low level hardware: GPIO, CLOCK, NVIC */ + hi2c->MspDeInitCallback(hi2c); +#else + /* DeInit the low level hardware: GPIO, CLOCK, NVIC */ + HAL_I2C_MspDeInit(hi2c); +#endif /* USE_HAL_I2C_REGISTER_CALLBACKS */ + + hi2c->ErrorCode = HAL_I2C_ERROR_NONE; + hi2c->State = HAL_I2C_STATE_RESET; + hi2c->PreviousState = I2C_STATE_NONE; + hi2c->Mode = HAL_I2C_MODE_NONE; + + /* Release Lock */ + __HAL_UNLOCK(hi2c); + + return HAL_OK; +} + +/** + * @brief Initialize the I2C MSP. + * @param hi2c Pointer to a I2C_HandleTypeDef structure that contains + * the configuration information for the specified I2C. + * @retval None + */ +__weak void HAL_I2C_MspInit(I2C_HandleTypeDef *hi2c) +{ + /* Prevent unused argument(s) compilation warning */ + UNUSED(hi2c); + + /* NOTE : This function should not be modified, when the callback is needed, + the HAL_I2C_MspInit could be implemented in the user file + */ +} + +/** + * @brief DeInitialize the I2C MSP. + * @param hi2c Pointer to a I2C_HandleTypeDef structure that contains + * the configuration information for the specified I2C. + * @retval None + */ +__weak void HAL_I2C_MspDeInit(I2C_HandleTypeDef *hi2c) +{ + /* Prevent unused argument(s) compilation warning */ + UNUSED(hi2c); + + /* NOTE : This function should not be modified, when the callback is needed, + the HAL_I2C_MspDeInit could be implemented in the user file + */ +} + +#if (USE_HAL_I2C_REGISTER_CALLBACKS == 1) +/** + * @brief Register a User I2C Callback + * To be used instead of the weak predefined callback + * @param hi2c Pointer to a I2C_HandleTypeDef structure that contains + * the configuration information for the specified I2C. + * @param CallbackID ID of the callback to be registered + * This parameter can be one of the following values: + * @arg @ref HAL_I2C_MASTER_TX_COMPLETE_CB_ID Master Tx Transfer completed callback ID + * @arg @ref HAL_I2C_MASTER_RX_COMPLETE_CB_ID Master Rx Transfer completed callback ID + * @arg @ref HAL_I2C_SLAVE_TX_COMPLETE_CB_ID Slave Tx Transfer completed callback ID + * @arg @ref HAL_I2C_SLAVE_RX_COMPLETE_CB_ID Slave Rx Transfer completed callback ID + * @arg @ref HAL_I2C_LISTEN_COMPLETE_CB_ID Listen Complete callback ID + * @arg @ref HAL_I2C_MEM_TX_COMPLETE_CB_ID Memory Tx Transfer callback ID + * @arg @ref HAL_I2C_MEM_RX_COMPLETE_CB_ID Memory Rx Transfer completed callback ID + * @arg @ref HAL_I2C_ERROR_CB_ID Error callback ID + * @arg @ref HAL_I2C_ABORT_CB_ID Abort callback ID + * @arg @ref HAL_I2C_MSPINIT_CB_ID MspInit callback ID + * @arg @ref HAL_I2C_MSPDEINIT_CB_ID MspDeInit callback ID + * @param pCallback pointer to the Callback function + * @retval HAL status + */ +HAL_StatusTypeDef HAL_I2C_RegisterCallback(I2C_HandleTypeDef *hi2c, HAL_I2C_CallbackIDTypeDef CallbackID, pI2C_CallbackTypeDef pCallback) +{ + HAL_StatusTypeDef status = HAL_OK; + + if (pCallback == NULL) + { + /* Update the error code */ + hi2c->ErrorCode |= HAL_I2C_ERROR_INVALID_CALLBACK; + + return HAL_ERROR; + } + /* Process locked */ + __HAL_LOCK(hi2c); + + if (HAL_I2C_STATE_READY == hi2c->State) + { + switch (CallbackID) + { + case HAL_I2C_MASTER_TX_COMPLETE_CB_ID : + hi2c->MasterTxCpltCallback = pCallback; + break; + + case HAL_I2C_MASTER_RX_COMPLETE_CB_ID : + hi2c->MasterRxCpltCallback = pCallback; + break; + + case HAL_I2C_SLAVE_TX_COMPLETE_CB_ID : + hi2c->SlaveTxCpltCallback = pCallback; + break; + + case HAL_I2C_SLAVE_RX_COMPLETE_CB_ID : + hi2c->SlaveRxCpltCallback = pCallback; + break; + + case HAL_I2C_LISTEN_COMPLETE_CB_ID : + hi2c->ListenCpltCallback = pCallback; + break; + + case HAL_I2C_MEM_TX_COMPLETE_CB_ID : + hi2c->MemTxCpltCallback = pCallback; + break; + + case HAL_I2C_MEM_RX_COMPLETE_CB_ID : + hi2c->MemRxCpltCallback = pCallback; + break; + + case HAL_I2C_ERROR_CB_ID : + hi2c->ErrorCallback = pCallback; + break; + + case HAL_I2C_ABORT_CB_ID : + hi2c->AbortCpltCallback = pCallback; + break; + + case HAL_I2C_MSPINIT_CB_ID : + hi2c->MspInitCallback = pCallback; + break; + + case HAL_I2C_MSPDEINIT_CB_ID : + hi2c->MspDeInitCallback = pCallback; + break; + + default : + /* Update the error code */ + hi2c->ErrorCode |= HAL_I2C_ERROR_INVALID_CALLBACK; + + /* Return error status */ + status = HAL_ERROR; + break; + } + } + else if (HAL_I2C_STATE_RESET == hi2c->State) + { + switch (CallbackID) + { + case HAL_I2C_MSPINIT_CB_ID : + hi2c->MspInitCallback = pCallback; + break; + + case HAL_I2C_MSPDEINIT_CB_ID : + hi2c->MspDeInitCallback = pCallback; + break; + + default : + /* Update the error code */ + hi2c->ErrorCode |= HAL_I2C_ERROR_INVALID_CALLBACK; + + /* Return error status */ + status = HAL_ERROR; + break; + } + } + else + { + /* Update the error code */ + hi2c->ErrorCode |= HAL_I2C_ERROR_INVALID_CALLBACK; + + /* Return error status */ + status = HAL_ERROR; + } + + /* Release Lock */ + __HAL_UNLOCK(hi2c); + return status; +} + +/** + * @brief Unregister an I2C Callback + * I2C callback is redirected to the weak predefined callback + * @param hi2c Pointer to a I2C_HandleTypeDef structure that contains + * the configuration information for the specified I2C. + * @param CallbackID ID of the callback to be unregistered + * This parameter can be one of the following values: + * This parameter can be one of the following values: + * @arg @ref HAL_I2C_MASTER_TX_COMPLETE_CB_ID Master Tx Transfer completed callback ID + * @arg @ref HAL_I2C_MASTER_RX_COMPLETE_CB_ID Master Rx Transfer completed callback ID + * @arg @ref HAL_I2C_SLAVE_TX_COMPLETE_CB_ID Slave Tx Transfer completed callback ID + * @arg @ref HAL_I2C_SLAVE_RX_COMPLETE_CB_ID Slave Rx Transfer completed callback ID + * @arg @ref HAL_I2C_LISTEN_COMPLETE_CB_ID Listen Complete callback ID + * @arg @ref HAL_I2C_MEM_TX_COMPLETE_CB_ID Memory Tx Transfer callback ID + * @arg @ref HAL_I2C_MEM_RX_COMPLETE_CB_ID Memory Rx Transfer completed callback ID + * @arg @ref HAL_I2C_ERROR_CB_ID Error callback ID + * @arg @ref HAL_I2C_ABORT_CB_ID Abort callback ID + * @arg @ref HAL_I2C_MSPINIT_CB_ID MspInit callback ID + * @arg @ref HAL_I2C_MSPDEINIT_CB_ID MspDeInit callback ID + * @retval HAL status + */ +HAL_StatusTypeDef HAL_I2C_UnRegisterCallback(I2C_HandleTypeDef *hi2c, HAL_I2C_CallbackIDTypeDef CallbackID) +{ + HAL_StatusTypeDef status = HAL_OK; + + /* Process locked */ + __HAL_LOCK(hi2c); + + if (HAL_I2C_STATE_READY == hi2c->State) + { + switch (CallbackID) + { + case HAL_I2C_MASTER_TX_COMPLETE_CB_ID : + hi2c->MasterTxCpltCallback = HAL_I2C_MasterTxCpltCallback; /* Legacy weak MasterTxCpltCallback */ + break; + + case HAL_I2C_MASTER_RX_COMPLETE_CB_ID : + hi2c->MasterRxCpltCallback = HAL_I2C_MasterRxCpltCallback; /* Legacy weak MasterRxCpltCallback */ + break; + + case HAL_I2C_SLAVE_TX_COMPLETE_CB_ID : + hi2c->SlaveTxCpltCallback = HAL_I2C_SlaveTxCpltCallback; /* Legacy weak SlaveTxCpltCallback */ + break; + + case HAL_I2C_SLAVE_RX_COMPLETE_CB_ID : + hi2c->SlaveRxCpltCallback = HAL_I2C_SlaveRxCpltCallback; /* Legacy weak SlaveRxCpltCallback */ + break; + + case HAL_I2C_LISTEN_COMPLETE_CB_ID : + hi2c->ListenCpltCallback = HAL_I2C_ListenCpltCallback; /* Legacy weak ListenCpltCallback */ + break; + + case HAL_I2C_MEM_TX_COMPLETE_CB_ID : + hi2c->MemTxCpltCallback = HAL_I2C_MemTxCpltCallback; /* Legacy weak MemTxCpltCallback */ + break; + + case HAL_I2C_MEM_RX_COMPLETE_CB_ID : + hi2c->MemRxCpltCallback = HAL_I2C_MemRxCpltCallback; /* Legacy weak MemRxCpltCallback */ + break; + + case HAL_I2C_ERROR_CB_ID : + hi2c->ErrorCallback = HAL_I2C_ErrorCallback; /* Legacy weak ErrorCallback */ + break; + + case HAL_I2C_ABORT_CB_ID : + hi2c->AbortCpltCallback = HAL_I2C_AbortCpltCallback; /* Legacy weak AbortCpltCallback */ + break; + + case HAL_I2C_MSPINIT_CB_ID : + hi2c->MspInitCallback = HAL_I2C_MspInit; /* Legacy weak MspInit */ + break; + + case HAL_I2C_MSPDEINIT_CB_ID : + hi2c->MspDeInitCallback = HAL_I2C_MspDeInit; /* Legacy weak MspDeInit */ + break; + + default : + /* Update the error code */ + hi2c->ErrorCode |= HAL_I2C_ERROR_INVALID_CALLBACK; + + /* Return error status */ + status = HAL_ERROR; + break; + } + } + else if (HAL_I2C_STATE_RESET == hi2c->State) + { + switch (CallbackID) + { + case HAL_I2C_MSPINIT_CB_ID : + hi2c->MspInitCallback = HAL_I2C_MspInit; /* Legacy weak MspInit */ + break; + + case HAL_I2C_MSPDEINIT_CB_ID : + hi2c->MspDeInitCallback = HAL_I2C_MspDeInit; /* Legacy weak MspDeInit */ + break; + + default : + /* Update the error code */ + hi2c->ErrorCode |= HAL_I2C_ERROR_INVALID_CALLBACK; + + /* Return error status */ + status = HAL_ERROR; + break; + } + } + else + { + /* Update the error code */ + hi2c->ErrorCode |= HAL_I2C_ERROR_INVALID_CALLBACK; + + /* Return error status */ + status = HAL_ERROR; + } + + /* Release Lock */ + __HAL_UNLOCK(hi2c); + return status; +} + +/** + * @brief Register the Slave Address Match I2C Callback + * To be used instead of the weak HAL_I2C_AddrCallback() predefined callback + * @param hi2c Pointer to a I2C_HandleTypeDef structure that contains + * the configuration information for the specified I2C. + * @param pCallback pointer to the Address Match Callback function + * @retval HAL status + */ +HAL_StatusTypeDef HAL_I2C_RegisterAddrCallback(I2C_HandleTypeDef *hi2c, pI2C_AddrCallbackTypeDef pCallback) +{ + HAL_StatusTypeDef status = HAL_OK; + + if (pCallback == NULL) + { + /* Update the error code */ + hi2c->ErrorCode |= HAL_I2C_ERROR_INVALID_CALLBACK; + + return HAL_ERROR; + } + /* Process locked */ + __HAL_LOCK(hi2c); + + if (HAL_I2C_STATE_READY == hi2c->State) + { + hi2c->AddrCallback = pCallback; + } + else + { + /* Update the error code */ + hi2c->ErrorCode |= HAL_I2C_ERROR_INVALID_CALLBACK; + + /* Return error status */ + status = HAL_ERROR; + } + + /* Release Lock */ + __HAL_UNLOCK(hi2c); + return status; +} + +/** + * @brief UnRegister the Slave Address Match I2C Callback + * Info Ready I2C Callback is redirected to the weak HAL_I2C_AddrCallback() predefined callback + * @param hi2c Pointer to a I2C_HandleTypeDef structure that contains + * the configuration information for the specified I2C. + * @retval HAL status + */ +HAL_StatusTypeDef HAL_I2C_UnRegisterAddrCallback(I2C_HandleTypeDef *hi2c) +{ + HAL_StatusTypeDef status = HAL_OK; + + /* Process locked */ + __HAL_LOCK(hi2c); + + if (HAL_I2C_STATE_READY == hi2c->State) + { + hi2c->AddrCallback = HAL_I2C_AddrCallback; /* Legacy weak AddrCallback */ + } + else + { + /* Update the error code */ + hi2c->ErrorCode |= HAL_I2C_ERROR_INVALID_CALLBACK; + + /* Return error status */ + status = HAL_ERROR; + } + + /* Release Lock */ + __HAL_UNLOCK(hi2c); + return status; +} + +#endif /* USE_HAL_I2C_REGISTER_CALLBACKS */ + +/** + * @} + */ + +/** @defgroup I2C_Exported_Functions_Group2 Input and Output operation functions + * @brief Data transfers functions + * +@verbatim + =============================================================================== + ##### IO operation functions ##### + =============================================================================== + [..] + This subsection provides a set of functions allowing to manage the I2C data + transfers. + + (#) There are two modes of transfer: + (++) Blocking mode : The communication is performed in the polling mode. + The status of all data processing is returned by the same function + after finishing transfer. + (++) No-Blocking mode : The communication is performed using Interrupts + or DMA. These functions return the status of the transfer startup. + The end of the data processing will be indicated through the + dedicated I2C IRQ when using Interrupt mode or the DMA IRQ when + using DMA mode. + + (#) Blocking mode functions are : + (++) HAL_I2C_Master_Transmit() + (++) HAL_I2C_Master_Receive() + (++) HAL_I2C_Slave_Transmit() + (++) HAL_I2C_Slave_Receive() + (++) HAL_I2C_Mem_Write() + (++) HAL_I2C_Mem_Read() + (++) HAL_I2C_IsDeviceReady() + + (#) No-Blocking mode functions with Interrupt are : + (++) HAL_I2C_Master_Transmit_IT() + (++) HAL_I2C_Master_Receive_IT() + (++) HAL_I2C_Slave_Transmit_IT() + (++) HAL_I2C_Slave_Receive_IT() + (++) HAL_I2C_Mem_Write_IT() + (++) HAL_I2C_Mem_Read_IT() + (++) HAL_I2C_Master_Seq_Transmit_IT() + (++) HAL_I2C_Master_Seq_Receive_IT() + (++) HAL_I2C_Slave_Seq_Transmit_IT() + (++) HAL_I2C_Slave_Seq_Receive_IT() + (++) HAL_I2C_EnableListen_IT() + (++) HAL_I2C_DisableListen_IT() + (++) HAL_I2C_Master_Abort_IT() + + (#) No-Blocking mode functions with DMA are : + (++) HAL_I2C_Master_Transmit_DMA() + (++) HAL_I2C_Master_Receive_DMA() + (++) HAL_I2C_Slave_Transmit_DMA() + (++) HAL_I2C_Slave_Receive_DMA() + (++) HAL_I2C_Mem_Write_DMA() + (++) HAL_I2C_Mem_Read_DMA() + (++) HAL_I2C_Master_Seq_Transmit_DMA() + (++) HAL_I2C_Master_Seq_Receive_DMA() + (++) HAL_I2C_Slave_Seq_Transmit_DMA() + (++) HAL_I2C_Slave_Seq_Receive_DMA() + + (#) A set of Transfer Complete Callbacks are provided in non Blocking mode: + (++) HAL_I2C_MasterTxCpltCallback() + (++) HAL_I2C_MasterRxCpltCallback() + (++) HAL_I2C_SlaveTxCpltCallback() + (++) HAL_I2C_SlaveRxCpltCallback() + (++) HAL_I2C_MemTxCpltCallback() + (++) HAL_I2C_MemRxCpltCallback() + (++) HAL_I2C_AddrCallback() + (++) HAL_I2C_ListenCpltCallback() + (++) HAL_I2C_ErrorCallback() + (++) HAL_I2C_AbortCpltCallback() + +@endverbatim + * @{ + */ + +/** + * @brief Transmits in master mode an amount of data in blocking mode. + * @param hi2c Pointer to a I2C_HandleTypeDef structure that contains + * the configuration information for the specified I2C. + * @param DevAddress Target device address: The device 7 bits address value + * in datasheet must be shifted to the left before calling the interface + * @param pData Pointer to data buffer + * @param Size Amount of data to be sent + * @param Timeout Timeout duration + * @retval HAL status + */ +HAL_StatusTypeDef HAL_I2C_Master_Transmit(I2C_HandleTypeDef *hi2c, uint16_t DevAddress, uint8_t *pData, uint16_t Size, uint32_t Timeout) +{ + uint32_t tickstart; + + if (hi2c->State == HAL_I2C_STATE_READY) + { + /* Process Locked */ + __HAL_LOCK(hi2c); + + /* Init tickstart for timeout management*/ + tickstart = HAL_GetTick(); + + if (I2C_WaitOnFlagUntilTimeout(hi2c, I2C_FLAG_BUSY, SET, I2C_TIMEOUT_BUSY, tickstart) != HAL_OK) + { + return HAL_ERROR; + } + + hi2c->State = HAL_I2C_STATE_BUSY_TX; + hi2c->Mode = HAL_I2C_MODE_MASTER; + hi2c->ErrorCode = HAL_I2C_ERROR_NONE; + + /* Prepare transfer parameters */ + hi2c->pBuffPtr = pData; + hi2c->XferCount = Size; + hi2c->XferISR = NULL; + + /* Send Slave Address */ + /* Set NBYTES to write and reload if hi2c->XferCount > MAX_NBYTE_SIZE and generate RESTART */ + if (hi2c->XferCount > MAX_NBYTE_SIZE) + { + hi2c->XferSize = MAX_NBYTE_SIZE; + I2C_TransferConfig(hi2c, DevAddress, (uint8_t)hi2c->XferSize, I2C_RELOAD_MODE, I2C_GENERATE_START_WRITE); + } + else + { + hi2c->XferSize = hi2c->XferCount; + I2C_TransferConfig(hi2c, DevAddress, (uint8_t)hi2c->XferSize, I2C_AUTOEND_MODE, I2C_GENERATE_START_WRITE); + } + + while (hi2c->XferCount > 0U) + { + /* Wait until TXIS flag is set */ + if (I2C_WaitOnTXISFlagUntilTimeout(hi2c, Timeout, tickstart) != HAL_OK) + { + return HAL_ERROR; + } + /* Write data to TXDR */ + hi2c->Instance->TXDR = *hi2c->pBuffPtr; + + /* Increment Buffer pointer */ + hi2c->pBuffPtr++; + + hi2c->XferCount--; + hi2c->XferSize--; + + if ((hi2c->XferCount != 0U) && (hi2c->XferSize == 0U)) + { + /* Wait until TCR flag is set */ + if (I2C_WaitOnFlagUntilTimeout(hi2c, I2C_FLAG_TCR, RESET, Timeout, tickstart) != HAL_OK) + { + return HAL_ERROR; + } + + if (hi2c->XferCount > MAX_NBYTE_SIZE) + { + hi2c->XferSize = MAX_NBYTE_SIZE; + I2C_TransferConfig(hi2c, DevAddress, (uint8_t)hi2c->XferSize, I2C_RELOAD_MODE, I2C_NO_STARTSTOP); + } + else + { + hi2c->XferSize = hi2c->XferCount; + I2C_TransferConfig(hi2c, DevAddress, (uint8_t)hi2c->XferSize, I2C_AUTOEND_MODE, I2C_NO_STARTSTOP); + } + } + } + + /* No need to Check TC flag, with AUTOEND mode the stop is automatically generated */ + /* Wait until STOPF flag is set */ + if (I2C_WaitOnSTOPFlagUntilTimeout(hi2c, Timeout, tickstart) != HAL_OK) + { + return HAL_ERROR; + } + + /* Clear STOP Flag */ + __HAL_I2C_CLEAR_FLAG(hi2c, I2C_FLAG_STOPF); + + /* Clear Configuration Register 2 */ + I2C_RESET_CR2(hi2c); + + hi2c->State = HAL_I2C_STATE_READY; + hi2c->Mode = HAL_I2C_MODE_NONE; + + /* Process Unlocked */ + __HAL_UNLOCK(hi2c); + + return HAL_OK; + } + else + { + return HAL_BUSY; + } +} + +/** + * @brief Receives in master mode an amount of data in blocking mode. + * @param hi2c Pointer to a I2C_HandleTypeDef structure that contains + * the configuration information for the specified I2C. + * @param DevAddress Target device address: The device 7 bits address value + * in datasheet must be shifted to the left before calling the interface + * @param pData Pointer to data buffer + * @param Size Amount of data to be sent + * @param Timeout Timeout duration + * @retval HAL status + */ +HAL_StatusTypeDef HAL_I2C_Master_Receive(I2C_HandleTypeDef *hi2c, uint16_t DevAddress, uint8_t *pData, uint16_t Size, uint32_t Timeout) +{ + uint32_t tickstart; + + if (hi2c->State == HAL_I2C_STATE_READY) + { + /* Process Locked */ + __HAL_LOCK(hi2c); + + /* Init tickstart for timeout management*/ + tickstart = HAL_GetTick(); + + if (I2C_WaitOnFlagUntilTimeout(hi2c, I2C_FLAG_BUSY, SET, I2C_TIMEOUT_BUSY, tickstart) != HAL_OK) + { + return HAL_ERROR; + } + + hi2c->State = HAL_I2C_STATE_BUSY_RX; + hi2c->Mode = HAL_I2C_MODE_MASTER; + hi2c->ErrorCode = HAL_I2C_ERROR_NONE; + + /* Prepare transfer parameters */ + hi2c->pBuffPtr = pData; + hi2c->XferCount = Size; + hi2c->XferISR = NULL; + + /* Send Slave Address */ + /* Set NBYTES to write and reload if hi2c->XferCount > MAX_NBYTE_SIZE and generate RESTART */ + if (hi2c->XferCount > MAX_NBYTE_SIZE) + { + hi2c->XferSize = MAX_NBYTE_SIZE; + I2C_TransferConfig(hi2c, DevAddress, (uint8_t)hi2c->XferSize, I2C_RELOAD_MODE, I2C_GENERATE_START_READ); + } + else + { + hi2c->XferSize = hi2c->XferCount; + I2C_TransferConfig(hi2c, DevAddress, (uint8_t)hi2c->XferSize, I2C_AUTOEND_MODE, I2C_GENERATE_START_READ); + } + + while (hi2c->XferCount > 0U) + { + /* Wait until RXNE flag is set */ + if (I2C_WaitOnRXNEFlagUntilTimeout(hi2c, Timeout, tickstart) != HAL_OK) + { + return HAL_ERROR; + } + + /* Read data from RXDR */ + *hi2c->pBuffPtr = (uint8_t)hi2c->Instance->RXDR; + + /* Increment Buffer pointer */ + hi2c->pBuffPtr++; + + hi2c->XferSize--; + hi2c->XferCount--; + + if ((hi2c->XferCount != 0U) && (hi2c->XferSize == 0U)) + { + /* Wait until TCR flag is set */ + if (I2C_WaitOnFlagUntilTimeout(hi2c, I2C_FLAG_TCR, RESET, Timeout, tickstart) != HAL_OK) + { + return HAL_ERROR; + } + + if (hi2c->XferCount > MAX_NBYTE_SIZE) + { + hi2c->XferSize = MAX_NBYTE_SIZE; + I2C_TransferConfig(hi2c, DevAddress, (uint8_t)hi2c->XferSize, I2C_RELOAD_MODE, I2C_NO_STARTSTOP); + } + else + { + hi2c->XferSize = hi2c->XferCount; + I2C_TransferConfig(hi2c, DevAddress, (uint8_t)hi2c->XferSize, I2C_AUTOEND_MODE, I2C_NO_STARTSTOP); + } + } + } + + /* No need to Check TC flag, with AUTOEND mode the stop is automatically generated */ + /* Wait until STOPF flag is set */ + if (I2C_WaitOnSTOPFlagUntilTimeout(hi2c, Timeout, tickstart) != HAL_OK) + { + return HAL_ERROR; + } + + /* Clear STOP Flag */ + __HAL_I2C_CLEAR_FLAG(hi2c, I2C_FLAG_STOPF); + + /* Clear Configuration Register 2 */ + I2C_RESET_CR2(hi2c); + + hi2c->State = HAL_I2C_STATE_READY; + hi2c->Mode = HAL_I2C_MODE_NONE; + + /* Process Unlocked */ + __HAL_UNLOCK(hi2c); + + return HAL_OK; + } + else + { + return HAL_BUSY; + } +} + +/** + * @brief Transmits in slave mode an amount of data in blocking mode. + * @param hi2c Pointer to a I2C_HandleTypeDef structure that contains + * the configuration information for the specified I2C. + * @param pData Pointer to data buffer + * @param Size Amount of data to be sent + * @param Timeout Timeout duration + * @retval HAL status + */ +HAL_StatusTypeDef HAL_I2C_Slave_Transmit(I2C_HandleTypeDef *hi2c, uint8_t *pData, uint16_t Size, uint32_t Timeout) +{ + uint32_t tickstart; + + if (hi2c->State == HAL_I2C_STATE_READY) + { + if ((pData == NULL) || (Size == 0U)) + { + hi2c->ErrorCode = HAL_I2C_ERROR_INVALID_PARAM; + return HAL_ERROR; + } + /* Process Locked */ + __HAL_LOCK(hi2c); + + /* Init tickstart for timeout management*/ + tickstart = HAL_GetTick(); + + hi2c->State = HAL_I2C_STATE_BUSY_TX; + hi2c->Mode = HAL_I2C_MODE_SLAVE; + hi2c->ErrorCode = HAL_I2C_ERROR_NONE; + + /* Prepare transfer parameters */ + hi2c->pBuffPtr = pData; + hi2c->XferCount = Size; + hi2c->XferISR = NULL; + + /* Enable Address Acknowledge */ + hi2c->Instance->CR2 &= ~I2C_CR2_NACK; + + /* Wait until ADDR flag is set */ + if (I2C_WaitOnFlagUntilTimeout(hi2c, I2C_FLAG_ADDR, RESET, Timeout, tickstart) != HAL_OK) + { + /* Disable Address Acknowledge */ + hi2c->Instance->CR2 |= I2C_CR2_NACK; + return HAL_ERROR; + } + + /* Clear ADDR flag */ + __HAL_I2C_CLEAR_FLAG(hi2c, I2C_FLAG_ADDR); + + /* If 10bit addressing mode is selected */ + if (hi2c->Init.AddressingMode == I2C_ADDRESSINGMODE_10BIT) + { + /* Wait until ADDR flag is set */ + if (I2C_WaitOnFlagUntilTimeout(hi2c, I2C_FLAG_ADDR, RESET, Timeout, tickstart) != HAL_OK) + { + /* Disable Address Acknowledge */ + hi2c->Instance->CR2 |= I2C_CR2_NACK; + return HAL_ERROR; + } + + /* Clear ADDR flag */ + __HAL_I2C_CLEAR_FLAG(hi2c, I2C_FLAG_ADDR); + } + + /* Wait until DIR flag is set Transmitter mode */ + if (I2C_WaitOnFlagUntilTimeout(hi2c, I2C_FLAG_DIR, RESET, Timeout, tickstart) != HAL_OK) + { + /* Disable Address Acknowledge */ + hi2c->Instance->CR2 |= I2C_CR2_NACK; + return HAL_ERROR; + } + + while (hi2c->XferCount > 0U) + { + /* Wait until TXIS flag is set */ + if (I2C_WaitOnTXISFlagUntilTimeout(hi2c, Timeout, tickstart) != HAL_OK) + { + /* Disable Address Acknowledge */ + hi2c->Instance->CR2 |= I2C_CR2_NACK; + return HAL_ERROR; + } + + /* Write data to TXDR */ + hi2c->Instance->TXDR = *hi2c->pBuffPtr; + + /* Increment Buffer pointer */ + hi2c->pBuffPtr++; + + hi2c->XferCount--; + } + + /* Wait until STOP flag is set */ + if (I2C_WaitOnSTOPFlagUntilTimeout(hi2c, Timeout, tickstart) != HAL_OK) + { + /* Disable Address Acknowledge */ + hi2c->Instance->CR2 |= I2C_CR2_NACK; + + if (hi2c->ErrorCode == HAL_I2C_ERROR_AF) + { + /* Normal use case for Transmitter mode */ + /* A NACK is generated to confirm the end of transfer */ + hi2c->ErrorCode = HAL_I2C_ERROR_NONE; + } + else + { + return HAL_ERROR; + } + } + + /* Clear STOP flag */ + __HAL_I2C_CLEAR_FLAG(hi2c, I2C_FLAG_STOPF); + + /* Wait until BUSY flag is reset */ + if (I2C_WaitOnFlagUntilTimeout(hi2c, I2C_FLAG_BUSY, SET, Timeout, tickstart) != HAL_OK) + { + /* Disable Address Acknowledge */ + hi2c->Instance->CR2 |= I2C_CR2_NACK; + return HAL_ERROR; + } + + /* Disable Address Acknowledge */ + hi2c->Instance->CR2 |= I2C_CR2_NACK; + + hi2c->State = HAL_I2C_STATE_READY; + hi2c->Mode = HAL_I2C_MODE_NONE; + + /* Process Unlocked */ + __HAL_UNLOCK(hi2c); + + return HAL_OK; + } + else + { + return HAL_BUSY; + } +} + +/** + * @brief Receive in slave mode an amount of data in blocking mode + * @param hi2c Pointer to a I2C_HandleTypeDef structure that contains + * the configuration information for the specified I2C. + * @param pData Pointer to data buffer + * @param Size Amount of data to be sent + * @param Timeout Timeout duration + * @retval HAL status + */ +HAL_StatusTypeDef HAL_I2C_Slave_Receive(I2C_HandleTypeDef *hi2c, uint8_t *pData, uint16_t Size, uint32_t Timeout) +{ + uint32_t tickstart; + + if (hi2c->State == HAL_I2C_STATE_READY) + { + if ((pData == NULL) || (Size == 0U)) + { + hi2c->ErrorCode = HAL_I2C_ERROR_INVALID_PARAM; + return HAL_ERROR; + } + /* Process Locked */ + __HAL_LOCK(hi2c); + + /* Init tickstart for timeout management*/ + tickstart = HAL_GetTick(); + + hi2c->State = HAL_I2C_STATE_BUSY_RX; + hi2c->Mode = HAL_I2C_MODE_SLAVE; + hi2c->ErrorCode = HAL_I2C_ERROR_NONE; + + /* Prepare transfer parameters */ + hi2c->pBuffPtr = pData; + hi2c->XferCount = Size; + hi2c->XferISR = NULL; + + /* Enable Address Acknowledge */ + hi2c->Instance->CR2 &= ~I2C_CR2_NACK; + + /* Wait until ADDR flag is set */ + if (I2C_WaitOnFlagUntilTimeout(hi2c, I2C_FLAG_ADDR, RESET, Timeout, tickstart) != HAL_OK) + { + /* Disable Address Acknowledge */ + hi2c->Instance->CR2 |= I2C_CR2_NACK; + return HAL_ERROR; + } + + /* Clear ADDR flag */ + __HAL_I2C_CLEAR_FLAG(hi2c, I2C_FLAG_ADDR); + + /* Wait until DIR flag is reset Receiver mode */ + if (I2C_WaitOnFlagUntilTimeout(hi2c, I2C_FLAG_DIR, SET, Timeout, tickstart) != HAL_OK) + { + /* Disable Address Acknowledge */ + hi2c->Instance->CR2 |= I2C_CR2_NACK; + return HAL_ERROR; + } + + while (hi2c->XferCount > 0U) + { + /* Wait until RXNE flag is set */ + if (I2C_WaitOnRXNEFlagUntilTimeout(hi2c, Timeout, tickstart) != HAL_OK) + { + /* Disable Address Acknowledge */ + hi2c->Instance->CR2 |= I2C_CR2_NACK; + + /* Store Last receive data if any */ + if (__HAL_I2C_GET_FLAG(hi2c, I2C_FLAG_RXNE) == SET) + { + /* Read data from RXDR */ + *hi2c->pBuffPtr = (uint8_t)hi2c->Instance->RXDR; + + /* Increment Buffer pointer */ + hi2c->pBuffPtr++; + + hi2c->XferCount--; + } + + return HAL_ERROR; + } + + /* Read data from RXDR */ + *hi2c->pBuffPtr = (uint8_t)hi2c->Instance->RXDR; + + /* Increment Buffer pointer */ + hi2c->pBuffPtr++; + + hi2c->XferCount--; + } + + /* Wait until STOP flag is set */ + if (I2C_WaitOnSTOPFlagUntilTimeout(hi2c, Timeout, tickstart) != HAL_OK) + { + /* Disable Address Acknowledge */ + hi2c->Instance->CR2 |= I2C_CR2_NACK; + return HAL_ERROR; + } + + /* Clear STOP flag */ + __HAL_I2C_CLEAR_FLAG(hi2c, I2C_FLAG_STOPF); + + /* Wait until BUSY flag is reset */ + if (I2C_WaitOnFlagUntilTimeout(hi2c, I2C_FLAG_BUSY, SET, Timeout, tickstart) != HAL_OK) + { + /* Disable Address Acknowledge */ + hi2c->Instance->CR2 |= I2C_CR2_NACK; + return HAL_ERROR; + } + + /* Disable Address Acknowledge */ + hi2c->Instance->CR2 |= I2C_CR2_NACK; + + hi2c->State = HAL_I2C_STATE_READY; + hi2c->Mode = HAL_I2C_MODE_NONE; + + /* Process Unlocked */ + __HAL_UNLOCK(hi2c); + + return HAL_OK; + } + else + { + return HAL_BUSY; + } +} + +/** + * @brief Transmit in master mode an amount of data in non-blocking mode with Interrupt + * @param hi2c Pointer to a I2C_HandleTypeDef structure that contains + * the configuration information for the specified I2C. + * @param DevAddress Target device address: The device 7 bits address value + * in datasheet must be shifted to the left before calling the interface + * @param pData Pointer to data buffer + * @param Size Amount of data to be sent + * @retval HAL status + */ +HAL_StatusTypeDef HAL_I2C_Master_Transmit_IT(I2C_HandleTypeDef *hi2c, uint16_t DevAddress, uint8_t *pData, uint16_t Size) +{ + uint32_t xfermode; + + if (hi2c->State == HAL_I2C_STATE_READY) + { + if (__HAL_I2C_GET_FLAG(hi2c, I2C_FLAG_BUSY) == SET) + { + return HAL_BUSY; + } + + /* Process Locked */ + __HAL_LOCK(hi2c); + + hi2c->State = HAL_I2C_STATE_BUSY_TX; + hi2c->Mode = HAL_I2C_MODE_MASTER; + hi2c->ErrorCode = HAL_I2C_ERROR_NONE; + + /* Prepare transfer parameters */ + hi2c->pBuffPtr = pData; + hi2c->XferCount = Size; + hi2c->XferOptions = I2C_NO_OPTION_FRAME; + hi2c->XferISR = I2C_Master_ISR_IT; + + if (hi2c->XferCount > MAX_NBYTE_SIZE) + { + hi2c->XferSize = MAX_NBYTE_SIZE; + xfermode = I2C_RELOAD_MODE; + } + else + { + hi2c->XferSize = hi2c->XferCount; + xfermode = I2C_AUTOEND_MODE; + } + + /* Send Slave Address */ + /* Set NBYTES to write and reload if hi2c->XferCount > MAX_NBYTE_SIZE */ + I2C_TransferConfig(hi2c, DevAddress, (uint8_t)hi2c->XferSize, xfermode, I2C_GENERATE_START_WRITE); + + /* Process Unlocked */ + __HAL_UNLOCK(hi2c); + + /* Note : The I2C interrupts must be enabled after unlocking current process + to avoid the risk of I2C interrupt handle execution before current + process unlock */ + + /* Enable ERR, TC, STOP, NACK, TXI interrupt */ + /* possible to enable all of these */ + /* I2C_IT_ERRI | I2C_IT_TCI| I2C_IT_STOPI| I2C_IT_NACKI | I2C_IT_ADDRI | I2C_IT_RXI | I2C_IT_TXI */ + I2C_Enable_IRQ(hi2c, I2C_XFER_TX_IT); + + return HAL_OK; + } + else + { + return HAL_BUSY; + } +} + +/** + * @brief Receive in master mode an amount of data in non-blocking mode with Interrupt + * @param hi2c Pointer to a I2C_HandleTypeDef structure that contains + * the configuration information for the specified I2C. + * @param DevAddress Target device address: The device 7 bits address value + * in datasheet must be shifted to the left before calling the interface + * @param pData Pointer to data buffer + * @param Size Amount of data to be sent + * @retval HAL status + */ +HAL_StatusTypeDef HAL_I2C_Master_Receive_IT(I2C_HandleTypeDef *hi2c, uint16_t DevAddress, uint8_t *pData, uint16_t Size) +{ + uint32_t xfermode; + + if (hi2c->State == HAL_I2C_STATE_READY) + { + if (__HAL_I2C_GET_FLAG(hi2c, I2C_FLAG_BUSY) == SET) + { + return HAL_BUSY; + } + + /* Process Locked */ + __HAL_LOCK(hi2c); + + hi2c->State = HAL_I2C_STATE_BUSY_RX; + hi2c->Mode = HAL_I2C_MODE_MASTER; + hi2c->ErrorCode = HAL_I2C_ERROR_NONE; + + /* Prepare transfer parameters */ + hi2c->pBuffPtr = pData; + hi2c->XferCount = Size; + hi2c->XferOptions = I2C_NO_OPTION_FRAME; + hi2c->XferISR = I2C_Master_ISR_IT; + + if (hi2c->XferCount > MAX_NBYTE_SIZE) + { + hi2c->XferSize = MAX_NBYTE_SIZE; + xfermode = I2C_RELOAD_MODE; + } + else + { + hi2c->XferSize = hi2c->XferCount; + xfermode = I2C_AUTOEND_MODE; + } + + /* Send Slave Address */ + /* Set NBYTES to write and reload if hi2c->XferCount > MAX_NBYTE_SIZE */ + I2C_TransferConfig(hi2c, DevAddress, (uint8_t)hi2c->XferSize, xfermode, I2C_GENERATE_START_READ); + + /* Process Unlocked */ + __HAL_UNLOCK(hi2c); + + /* Note : The I2C interrupts must be enabled after unlocking current process + to avoid the risk of I2C interrupt handle execution before current + process unlock */ + + /* Enable ERR, TC, STOP, NACK, RXI interrupt */ + /* possible to enable all of these */ + /* I2C_IT_ERRI | I2C_IT_TCI| I2C_IT_STOPI| I2C_IT_NACKI | I2C_IT_ADDRI | I2C_IT_RXI | I2C_IT_TXI */ + I2C_Enable_IRQ(hi2c, I2C_XFER_RX_IT); + + return HAL_OK; + } + else + { + return HAL_BUSY; + } +} + +/** + * @brief Transmit in slave mode an amount of data in non-blocking mode with Interrupt + * @param hi2c Pointer to a I2C_HandleTypeDef structure that contains + * the configuration information for the specified I2C. + * @param pData Pointer to data buffer + * @param Size Amount of data to be sent + * @retval HAL status + */ +HAL_StatusTypeDef HAL_I2C_Slave_Transmit_IT(I2C_HandleTypeDef *hi2c, uint8_t *pData, uint16_t Size) +{ + if (hi2c->State == HAL_I2C_STATE_READY) + { + /* Process Locked */ + __HAL_LOCK(hi2c); + + hi2c->State = HAL_I2C_STATE_BUSY_TX; + hi2c->Mode = HAL_I2C_MODE_SLAVE; + hi2c->ErrorCode = HAL_I2C_ERROR_NONE; + + /* Enable Address Acknowledge */ + hi2c->Instance->CR2 &= ~I2C_CR2_NACK; + + /* Prepare transfer parameters */ + hi2c->pBuffPtr = pData; + hi2c->XferCount = Size; + hi2c->XferSize = hi2c->XferCount; + hi2c->XferOptions = I2C_NO_OPTION_FRAME; + hi2c->XferISR = I2C_Slave_ISR_IT; + + /* Process Unlocked */ + __HAL_UNLOCK(hi2c); + + /* Note : The I2C interrupts must be enabled after unlocking current process + to avoid the risk of I2C interrupt handle execution before current + process unlock */ + + /* Enable ERR, TC, STOP, NACK, TXI interrupt */ + /* possible to enable all of these */ + /* I2C_IT_ERRI | I2C_IT_TCI| I2C_IT_STOPI| I2C_IT_NACKI | I2C_IT_ADDRI | I2C_IT_RXI | I2C_IT_TXI */ + I2C_Enable_IRQ(hi2c, I2C_XFER_TX_IT | I2C_XFER_LISTEN_IT); + + return HAL_OK; + } + else + { + return HAL_BUSY; + } +} + +/** + * @brief Receive in slave mode an amount of data in non-blocking mode with Interrupt + * @param hi2c Pointer to a I2C_HandleTypeDef structure that contains + * the configuration information for the specified I2C. + * @param pData Pointer to data buffer + * @param Size Amount of data to be sent + * @retval HAL status + */ +HAL_StatusTypeDef HAL_I2C_Slave_Receive_IT(I2C_HandleTypeDef *hi2c, uint8_t *pData, uint16_t Size) +{ + if (hi2c->State == HAL_I2C_STATE_READY) + { + /* Process Locked */ + __HAL_LOCK(hi2c); + + hi2c->State = HAL_I2C_STATE_BUSY_RX; + hi2c->Mode = HAL_I2C_MODE_SLAVE; + hi2c->ErrorCode = HAL_I2C_ERROR_NONE; + + /* Enable Address Acknowledge */ + hi2c->Instance->CR2 &= ~I2C_CR2_NACK; + + /* Prepare transfer parameters */ + hi2c->pBuffPtr = pData; + hi2c->XferCount = Size; + hi2c->XferSize = hi2c->XferCount; + hi2c->XferOptions = I2C_NO_OPTION_FRAME; + hi2c->XferISR = I2C_Slave_ISR_IT; + + /* Process Unlocked */ + __HAL_UNLOCK(hi2c); + + /* Note : The I2C interrupts must be enabled after unlocking current process + to avoid the risk of I2C interrupt handle execution before current + process unlock */ + + /* Enable ERR, TC, STOP, NACK, RXI interrupt */ + /* possible to enable all of these */ + /* I2C_IT_ERRI | I2C_IT_TCI| I2C_IT_STOPI| I2C_IT_NACKI | I2C_IT_ADDRI | I2C_IT_RXI | I2C_IT_TXI */ + I2C_Enable_IRQ(hi2c, I2C_XFER_RX_IT | I2C_XFER_LISTEN_IT); + + return HAL_OK; + } + else + { + return HAL_BUSY; + } +} + +/** + * @brief Transmit in master mode an amount of data in non-blocking mode with DMA + * @param hi2c Pointer to a I2C_HandleTypeDef structure that contains + * the configuration information for the specified I2C. + * @param DevAddress Target device address: The device 7 bits address value + * in datasheet must be shifted to the left before calling the interface + * @param pData Pointer to data buffer + * @param Size Amount of data to be sent + * @retval HAL status + */ +HAL_StatusTypeDef HAL_I2C_Master_Transmit_DMA(I2C_HandleTypeDef *hi2c, uint16_t DevAddress, uint8_t *pData, uint16_t Size) +{ + uint32_t xfermode; + HAL_StatusTypeDef dmaxferstatus; + + if (hi2c->State == HAL_I2C_STATE_READY) + { + if (__HAL_I2C_GET_FLAG(hi2c, I2C_FLAG_BUSY) == SET) + { + return HAL_BUSY; + } + + /* Process Locked */ + __HAL_LOCK(hi2c); + + hi2c->State = HAL_I2C_STATE_BUSY_TX; + hi2c->Mode = HAL_I2C_MODE_MASTER; + hi2c->ErrorCode = HAL_I2C_ERROR_NONE; + + /* Prepare transfer parameters */ + hi2c->pBuffPtr = pData; + hi2c->XferCount = Size; + hi2c->XferOptions = I2C_NO_OPTION_FRAME; + hi2c->XferISR = I2C_Master_ISR_DMA; + + if (hi2c->XferCount > MAX_NBYTE_SIZE) + { + hi2c->XferSize = MAX_NBYTE_SIZE; + xfermode = I2C_RELOAD_MODE; + } + else + { + hi2c->XferSize = hi2c->XferCount; + xfermode = I2C_AUTOEND_MODE; + } + + if (hi2c->XferSize > 0U) + { + if (hi2c->hdmatx != NULL) + { + /* Set the I2C DMA transfer complete callback */ + hi2c->hdmatx->XferCpltCallback = I2C_DMAMasterTransmitCplt; + + /* Set the DMA error callback */ + hi2c->hdmatx->XferErrorCallback = I2C_DMAError; + + /* Set the unused DMA callbacks to NULL */ + hi2c->hdmatx->XferHalfCpltCallback = NULL; + hi2c->hdmatx->XferAbortCallback = NULL; + + /* Enable the DMA stream or channel depends on Instance */ + dmaxferstatus = HAL_DMA_Start_IT(hi2c->hdmatx, (uint32_t)pData, (uint32_t)&hi2c->Instance->TXDR, hi2c->XferSize); + } + else + { + /* Update I2C state */ + hi2c->State = HAL_I2C_STATE_READY; + hi2c->Mode = HAL_I2C_MODE_NONE; + + /* Update I2C error code */ + hi2c->ErrorCode |= HAL_I2C_ERROR_DMA_PARAM; + + /* Process Unlocked */ + __HAL_UNLOCK(hi2c); + + return HAL_ERROR; + } + + if (dmaxferstatus == HAL_OK) + { + /* Send Slave Address */ + /* Set NBYTES to write and reload if hi2c->XferCount > MAX_NBYTE_SIZE and generate RESTART */ + I2C_TransferConfig(hi2c, DevAddress, (uint8_t)hi2c->XferSize, xfermode, I2C_GENERATE_START_WRITE); + + /* Update XferCount value */ + hi2c->XferCount -= hi2c->XferSize; + + /* Process Unlocked */ + __HAL_UNLOCK(hi2c); + + /* Note : The I2C interrupts must be enabled after unlocking current process + to avoid the risk of I2C interrupt handle execution before current + process unlock */ + /* Enable ERR and NACK interrupts */ + I2C_Enable_IRQ(hi2c, I2C_XFER_ERROR_IT); + + /* Enable DMA Request */ + hi2c->Instance->CR1 |= I2C_CR1_TXDMAEN; + } + else + { + /* Update I2C state */ + hi2c->State = HAL_I2C_STATE_READY; + hi2c->Mode = HAL_I2C_MODE_NONE; + + /* Update I2C error code */ + hi2c->ErrorCode |= HAL_I2C_ERROR_DMA; + + /* Process Unlocked */ + __HAL_UNLOCK(hi2c); + + return HAL_ERROR; + } + } + else + { + /* Update Transfer ISR function pointer */ + hi2c->XferISR = I2C_Master_ISR_IT; + + /* Send Slave Address */ + /* Set NBYTES to write and generate START condition */ + I2C_TransferConfig(hi2c, DevAddress, (uint8_t)hi2c->XferSize, I2C_AUTOEND_MODE, I2C_GENERATE_START_WRITE); + + /* Process Unlocked */ + __HAL_UNLOCK(hi2c); + + /* Note : The I2C interrupts must be enabled after unlocking current process + to avoid the risk of I2C interrupt handle execution before current + process unlock */ + /* Enable ERR, TC, STOP, NACK, TXI interrupt */ + /* possible to enable all of these */ + /* I2C_IT_ERRI | I2C_IT_TCI| I2C_IT_STOPI| I2C_IT_NACKI | I2C_IT_ADDRI | I2C_IT_RXI | I2C_IT_TXI */ + I2C_Enable_IRQ(hi2c, I2C_XFER_TX_IT); + } + + return HAL_OK; + } + else + { + return HAL_BUSY; + } +} + +/** + * @brief Receive in master mode an amount of data in non-blocking mode with DMA + * @param hi2c Pointer to a I2C_HandleTypeDef structure that contains + * the configuration information for the specified I2C. + * @param DevAddress Target device address: The device 7 bits address value + * in datasheet must be shifted to the left before calling the interface + * @param pData Pointer to data buffer + * @param Size Amount of data to be sent + * @retval HAL status + */ +HAL_StatusTypeDef HAL_I2C_Master_Receive_DMA(I2C_HandleTypeDef *hi2c, uint16_t DevAddress, uint8_t *pData, uint16_t Size) +{ + uint32_t xfermode; + HAL_StatusTypeDef dmaxferstatus; + + if (hi2c->State == HAL_I2C_STATE_READY) + { + if (__HAL_I2C_GET_FLAG(hi2c, I2C_FLAG_BUSY) == SET) + { + return HAL_BUSY; + } + + /* Process Locked */ + __HAL_LOCK(hi2c); + + hi2c->State = HAL_I2C_STATE_BUSY_RX; + hi2c->Mode = HAL_I2C_MODE_MASTER; + hi2c->ErrorCode = HAL_I2C_ERROR_NONE; + + /* Prepare transfer parameters */ + hi2c->pBuffPtr = pData; + hi2c->XferCount = Size; + hi2c->XferOptions = I2C_NO_OPTION_FRAME; + hi2c->XferISR = I2C_Master_ISR_DMA; + + if (hi2c->XferCount > MAX_NBYTE_SIZE) + { + hi2c->XferSize = MAX_NBYTE_SIZE; + xfermode = I2C_RELOAD_MODE; + } + else + { + hi2c->XferSize = hi2c->XferCount; + xfermode = I2C_AUTOEND_MODE; + } + + if (hi2c->XferSize > 0U) + { + if (hi2c->hdmarx != NULL) + { + /* Set the I2C DMA transfer complete callback */ + hi2c->hdmarx->XferCpltCallback = I2C_DMAMasterReceiveCplt; + + /* Set the DMA error callback */ + hi2c->hdmarx->XferErrorCallback = I2C_DMAError; + + /* Set the unused DMA callbacks to NULL */ + hi2c->hdmarx->XferHalfCpltCallback = NULL; + hi2c->hdmarx->XferAbortCallback = NULL; + + /* Enable the DMA stream or channel depends on Instance */ + dmaxferstatus = HAL_DMA_Start_IT(hi2c->hdmarx, (uint32_t)&hi2c->Instance->RXDR, (uint32_t)pData, hi2c->XferSize); + } + else + { + /* Update I2C state */ + hi2c->State = HAL_I2C_STATE_READY; + hi2c->Mode = HAL_I2C_MODE_NONE; + + /* Update I2C error code */ + hi2c->ErrorCode |= HAL_I2C_ERROR_DMA_PARAM; + + /* Process Unlocked */ + __HAL_UNLOCK(hi2c); + + return HAL_ERROR; + } + + if (dmaxferstatus == HAL_OK) + { + /* Send Slave Address */ + /* Set NBYTES to read and reload if hi2c->XferCount > MAX_NBYTE_SIZE and generate RESTART */ + I2C_TransferConfig(hi2c, DevAddress, (uint8_t)hi2c->XferSize, xfermode, I2C_GENERATE_START_READ); + + /* Update XferCount value */ + hi2c->XferCount -= hi2c->XferSize; + + /* Process Unlocked */ + __HAL_UNLOCK(hi2c); + + /* Note : The I2C interrupts must be enabled after unlocking current process + to avoid the risk of I2C interrupt handle execution before current + process unlock */ + /* Enable ERR and NACK interrupts */ + I2C_Enable_IRQ(hi2c, I2C_XFER_ERROR_IT); + + /* Enable DMA Request */ + hi2c->Instance->CR1 |= I2C_CR1_RXDMAEN; + } + else + { + /* Update I2C state */ + hi2c->State = HAL_I2C_STATE_READY; + hi2c->Mode = HAL_I2C_MODE_NONE; + + /* Update I2C error code */ + hi2c->ErrorCode |= HAL_I2C_ERROR_DMA; + + /* Process Unlocked */ + __HAL_UNLOCK(hi2c); + + return HAL_ERROR; + } + } + else + { + /* Update Transfer ISR function pointer */ + hi2c->XferISR = I2C_Master_ISR_IT; + + /* Send Slave Address */ + /* Set NBYTES to read and generate START condition */ + I2C_TransferConfig(hi2c, DevAddress, (uint8_t)hi2c->XferSize, I2C_AUTOEND_MODE, I2C_GENERATE_START_READ); + + /* Process Unlocked */ + __HAL_UNLOCK(hi2c); + + /* Note : The I2C interrupts must be enabled after unlocking current process + to avoid the risk of I2C interrupt handle execution before current + process unlock */ + /* Enable ERR, TC, STOP, NACK, TXI interrupt */ + /* possible to enable all of these */ + /* I2C_IT_ERRI | I2C_IT_TCI| I2C_IT_STOPI| I2C_IT_NACKI | I2C_IT_ADDRI | I2C_IT_RXI | I2C_IT_TXI */ + I2C_Enable_IRQ(hi2c, I2C_XFER_TX_IT); + } + + return HAL_OK; + } + else + { + return HAL_BUSY; + } +} + +/** + * @brief Transmit in slave mode an amount of data in non-blocking mode with DMA + * @param hi2c Pointer to a I2C_HandleTypeDef structure that contains + * the configuration information for the specified I2C. + * @param pData Pointer to data buffer + * @param Size Amount of data to be sent + * @retval HAL status + */ +HAL_StatusTypeDef HAL_I2C_Slave_Transmit_DMA(I2C_HandleTypeDef *hi2c, uint8_t *pData, uint16_t Size) +{ + HAL_StatusTypeDef dmaxferstatus; + + if (hi2c->State == HAL_I2C_STATE_READY) + { + if ((pData == NULL) || (Size == 0U)) + { + hi2c->ErrorCode = HAL_I2C_ERROR_INVALID_PARAM; + return HAL_ERROR; + } + /* Process Locked */ + __HAL_LOCK(hi2c); + + hi2c->State = HAL_I2C_STATE_BUSY_TX; + hi2c->Mode = HAL_I2C_MODE_SLAVE; + hi2c->ErrorCode = HAL_I2C_ERROR_NONE; + + /* Prepare transfer parameters */ + hi2c->pBuffPtr = pData; + hi2c->XferCount = Size; + hi2c->XferSize = hi2c->XferCount; + hi2c->XferOptions = I2C_NO_OPTION_FRAME; + hi2c->XferISR = I2C_Slave_ISR_DMA; + + if (hi2c->hdmatx != NULL) + { + /* Set the I2C DMA transfer complete callback */ + hi2c->hdmatx->XferCpltCallback = I2C_DMASlaveTransmitCplt; + + /* Set the DMA error callback */ + hi2c->hdmatx->XferErrorCallback = I2C_DMAError; + + /* Set the unused DMA callbacks to NULL */ + hi2c->hdmatx->XferHalfCpltCallback = NULL; + hi2c->hdmatx->XferAbortCallback = NULL; + + /* Enable the DMA stream or channel depends on Instance */ + dmaxferstatus = HAL_DMA_Start_IT(hi2c->hdmatx, (uint32_t)pData, (uint32_t)&hi2c->Instance->TXDR, hi2c->XferSize); + } + else + { + /* Update I2C state */ + hi2c->State = HAL_I2C_STATE_LISTEN; + hi2c->Mode = HAL_I2C_MODE_NONE; + + /* Update I2C error code */ + hi2c->ErrorCode |= HAL_I2C_ERROR_DMA_PARAM; + + /* Process Unlocked */ + __HAL_UNLOCK(hi2c); + + return HAL_ERROR; + } + + if (dmaxferstatus == HAL_OK) + { + /* Enable Address Acknowledge */ + hi2c->Instance->CR2 &= ~I2C_CR2_NACK; + + /* Process Unlocked */ + __HAL_UNLOCK(hi2c); + + /* Note : The I2C interrupts must be enabled after unlocking current process + to avoid the risk of I2C interrupt handle execution before current + process unlock */ + /* Enable ERR, STOP, NACK, ADDR interrupts */ + I2C_Enable_IRQ(hi2c, I2C_XFER_LISTEN_IT); + + /* Enable DMA Request */ + hi2c->Instance->CR1 |= I2C_CR1_TXDMAEN; + } + else + { + /* Update I2C state */ + hi2c->State = HAL_I2C_STATE_LISTEN; + hi2c->Mode = HAL_I2C_MODE_NONE; + + /* Update I2C error code */ + hi2c->ErrorCode |= HAL_I2C_ERROR_DMA; + + /* Process Unlocked */ + __HAL_UNLOCK(hi2c); + + return HAL_ERROR; + } + + return HAL_OK; + } + else + { + return HAL_BUSY; + } +} + +/** + * @brief Receive in slave mode an amount of data in non-blocking mode with DMA + * @param hi2c Pointer to a I2C_HandleTypeDef structure that contains + * the configuration information for the specified I2C. + * @param pData Pointer to data buffer + * @param Size Amount of data to be sent + * @retval HAL status + */ +HAL_StatusTypeDef HAL_I2C_Slave_Receive_DMA(I2C_HandleTypeDef *hi2c, uint8_t *pData, uint16_t Size) +{ + HAL_StatusTypeDef dmaxferstatus; + + if (hi2c->State == HAL_I2C_STATE_READY) + { + if ((pData == NULL) || (Size == 0U)) + { + hi2c->ErrorCode = HAL_I2C_ERROR_INVALID_PARAM; + return HAL_ERROR; + } + /* Process Locked */ + __HAL_LOCK(hi2c); + + hi2c->State = HAL_I2C_STATE_BUSY_RX; + hi2c->Mode = HAL_I2C_MODE_SLAVE; + hi2c->ErrorCode = HAL_I2C_ERROR_NONE; + + /* Prepare transfer parameters */ + hi2c->pBuffPtr = pData; + hi2c->XferCount = Size; + hi2c->XferSize = hi2c->XferCount; + hi2c->XferOptions = I2C_NO_OPTION_FRAME; + hi2c->XferISR = I2C_Slave_ISR_DMA; + + if (hi2c->hdmarx != NULL) + { + /* Set the I2C DMA transfer complete callback */ + hi2c->hdmarx->XferCpltCallback = I2C_DMASlaveReceiveCplt; + + /* Set the DMA error callback */ + hi2c->hdmarx->XferErrorCallback = I2C_DMAError; + + /* Set the unused DMA callbacks to NULL */ + hi2c->hdmarx->XferHalfCpltCallback = NULL; + hi2c->hdmarx->XferAbortCallback = NULL; + + /* Enable the DMA stream or channel depends on Instance */ + dmaxferstatus = HAL_DMA_Start_IT(hi2c->hdmarx, (uint32_t)&hi2c->Instance->RXDR, (uint32_t)pData, hi2c->XferSize); + } + else + { + /* Update I2C state */ + hi2c->State = HAL_I2C_STATE_LISTEN; + hi2c->Mode = HAL_I2C_MODE_NONE; + + /* Update I2C error code */ + hi2c->ErrorCode |= HAL_I2C_ERROR_DMA_PARAM; + + /* Process Unlocked */ + __HAL_UNLOCK(hi2c); + + return HAL_ERROR; + } + + if (dmaxferstatus == HAL_OK) + { + /* Enable Address Acknowledge */ + hi2c->Instance->CR2 &= ~I2C_CR2_NACK; + + /* Process Unlocked */ + __HAL_UNLOCK(hi2c); + + /* Note : The I2C interrupts must be enabled after unlocking current process + to avoid the risk of I2C interrupt handle execution before current + process unlock */ + /* Enable ERR, STOP, NACK, ADDR interrupts */ + I2C_Enable_IRQ(hi2c, I2C_XFER_LISTEN_IT); + + /* Enable DMA Request */ + hi2c->Instance->CR1 |= I2C_CR1_RXDMAEN; + } + else + { + /* Update I2C state */ + hi2c->State = HAL_I2C_STATE_LISTEN; + hi2c->Mode = HAL_I2C_MODE_NONE; + + /* Update I2C error code */ + hi2c->ErrorCode |= HAL_I2C_ERROR_DMA; + + /* Process Unlocked */ + __HAL_UNLOCK(hi2c); + + return HAL_ERROR; + } + + return HAL_OK; + } + else + { + return HAL_BUSY; + } +} +/** + * @brief Write an amount of data in blocking mode to a specific memory address + * @param hi2c Pointer to a I2C_HandleTypeDef structure that contains + * the configuration information for the specified I2C. + * @param DevAddress Target device address: The device 7 bits address value + * in datasheet must be shifted to the left before calling the interface + * @param MemAddress Internal memory address + * @param MemAddSize Size of internal memory address + * @param pData Pointer to data buffer + * @param Size Amount of data to be sent + * @param Timeout Timeout duration + * @retval HAL status + */ +HAL_StatusTypeDef HAL_I2C_Mem_Write(I2C_HandleTypeDef *hi2c, uint16_t DevAddress, uint16_t MemAddress, uint16_t MemAddSize, uint8_t *pData, uint16_t Size, uint32_t Timeout) +{ + uint32_t tickstart; + + /* Check the parameters */ + assert_param(IS_I2C_MEMADD_SIZE(MemAddSize)); + + if (hi2c->State == HAL_I2C_STATE_READY) + { + if ((pData == NULL) || (Size == 0U)) + { + hi2c->ErrorCode = HAL_I2C_ERROR_INVALID_PARAM; + return HAL_ERROR; + } + + /* Process Locked */ + __HAL_LOCK(hi2c); + + /* Init tickstart for timeout management*/ + tickstart = HAL_GetTick(); + + if (I2C_WaitOnFlagUntilTimeout(hi2c, I2C_FLAG_BUSY, SET, I2C_TIMEOUT_BUSY, tickstart) != HAL_OK) + { + return HAL_ERROR; + } + + hi2c->State = HAL_I2C_STATE_BUSY_TX; + hi2c->Mode = HAL_I2C_MODE_MEM; + hi2c->ErrorCode = HAL_I2C_ERROR_NONE; + + /* Prepare transfer parameters */ + hi2c->pBuffPtr = pData; + hi2c->XferCount = Size; + hi2c->XferISR = NULL; + + /* Send Slave Address and Memory Address */ + if (I2C_RequestMemoryWrite(hi2c, DevAddress, MemAddress, MemAddSize, Timeout, tickstart) != HAL_OK) + { + /* Process Unlocked */ + __HAL_UNLOCK(hi2c); + return HAL_ERROR; + } + + /* Set NBYTES to write and reload if hi2c->XferCount > MAX_NBYTE_SIZE */ + if (hi2c->XferCount > MAX_NBYTE_SIZE) + { + hi2c->XferSize = MAX_NBYTE_SIZE; + I2C_TransferConfig(hi2c, DevAddress, (uint8_t)hi2c->XferSize, I2C_RELOAD_MODE, I2C_NO_STARTSTOP); + } + else + { + hi2c->XferSize = hi2c->XferCount; + I2C_TransferConfig(hi2c, DevAddress, (uint8_t)hi2c->XferSize, I2C_AUTOEND_MODE, I2C_NO_STARTSTOP); + } + + do + { + /* Wait until TXIS flag is set */ + if (I2C_WaitOnTXISFlagUntilTimeout(hi2c, Timeout, tickstart) != HAL_OK) + { + return HAL_ERROR; + } + + /* Write data to TXDR */ + hi2c->Instance->TXDR = *hi2c->pBuffPtr; + + /* Increment Buffer pointer */ + hi2c->pBuffPtr++; + + hi2c->XferCount--; + hi2c->XferSize--; + + if ((hi2c->XferCount != 0U) && (hi2c->XferSize == 0U)) + { + /* Wait until TCR flag is set */ + if (I2C_WaitOnFlagUntilTimeout(hi2c, I2C_FLAG_TCR, RESET, Timeout, tickstart) != HAL_OK) + { + return HAL_ERROR; + } + + if (hi2c->XferCount > MAX_NBYTE_SIZE) + { + hi2c->XferSize = MAX_NBYTE_SIZE; + I2C_TransferConfig(hi2c, DevAddress, (uint8_t)hi2c->XferSize, I2C_RELOAD_MODE, I2C_NO_STARTSTOP); + } + else + { + hi2c->XferSize = hi2c->XferCount; + I2C_TransferConfig(hi2c, DevAddress, (uint8_t)hi2c->XferSize, I2C_AUTOEND_MODE, I2C_NO_STARTSTOP); + } + } + + } + while (hi2c->XferCount > 0U); + + /* No need to Check TC flag, with AUTOEND mode the stop is automatically generated */ + /* Wait until STOPF flag is reset */ + if (I2C_WaitOnSTOPFlagUntilTimeout(hi2c, Timeout, tickstart) != HAL_OK) + { + return HAL_ERROR; + } + + /* Clear STOP Flag */ + __HAL_I2C_CLEAR_FLAG(hi2c, I2C_FLAG_STOPF); + + /* Clear Configuration Register 2 */ + I2C_RESET_CR2(hi2c); + + hi2c->State = HAL_I2C_STATE_READY; + hi2c->Mode = HAL_I2C_MODE_NONE; + + /* Process Unlocked */ + __HAL_UNLOCK(hi2c); + + return HAL_OK; + } + else + { + return HAL_BUSY; + } +} + +/** + * @brief Read an amount of data in blocking mode from a specific memory address + * @param hi2c Pointer to a I2C_HandleTypeDef structure that contains + * the configuration information for the specified I2C. + * @param DevAddress Target device address: The device 7 bits address value + * in datasheet must be shifted to the left before calling the interface + * @param MemAddress Internal memory address + * @param MemAddSize Size of internal memory address + * @param pData Pointer to data buffer + * @param Size Amount of data to be sent + * @param Timeout Timeout duration + * @retval HAL status + */ +HAL_StatusTypeDef HAL_I2C_Mem_Read(I2C_HandleTypeDef *hi2c, uint16_t DevAddress, uint16_t MemAddress, uint16_t MemAddSize, uint8_t *pData, uint16_t Size, uint32_t Timeout) +{ + uint32_t tickstart; + + /* Check the parameters */ + assert_param(IS_I2C_MEMADD_SIZE(MemAddSize)); + + if (hi2c->State == HAL_I2C_STATE_READY) + { + if ((pData == NULL) || (Size == 0U)) + { + hi2c->ErrorCode = HAL_I2C_ERROR_INVALID_PARAM; + return HAL_ERROR; + } + + /* Process Locked */ + __HAL_LOCK(hi2c); + + /* Init tickstart for timeout management*/ + tickstart = HAL_GetTick(); + + if (I2C_WaitOnFlagUntilTimeout(hi2c, I2C_FLAG_BUSY, SET, I2C_TIMEOUT_BUSY, tickstart) != HAL_OK) + { + return HAL_ERROR; + } + + hi2c->State = HAL_I2C_STATE_BUSY_RX; + hi2c->Mode = HAL_I2C_MODE_MEM; + hi2c->ErrorCode = HAL_I2C_ERROR_NONE; + + /* Prepare transfer parameters */ + hi2c->pBuffPtr = pData; + hi2c->XferCount = Size; + hi2c->XferISR = NULL; + + /* Send Slave Address and Memory Address */ + if (I2C_RequestMemoryRead(hi2c, DevAddress, MemAddress, MemAddSize, Timeout, tickstart) != HAL_OK) + { + /* Process Unlocked */ + __HAL_UNLOCK(hi2c); + return HAL_ERROR; + } + + /* Send Slave Address */ + /* Set NBYTES to write and reload if hi2c->XferCount > MAX_NBYTE_SIZE and generate RESTART */ + if (hi2c->XferCount > MAX_NBYTE_SIZE) + { + hi2c->XferSize = MAX_NBYTE_SIZE; + I2C_TransferConfig(hi2c, DevAddress, (uint8_t)hi2c->XferSize, I2C_RELOAD_MODE, I2C_GENERATE_START_READ); + } + else + { + hi2c->XferSize = hi2c->XferCount; + I2C_TransferConfig(hi2c, DevAddress, (uint8_t)hi2c->XferSize, I2C_AUTOEND_MODE, I2C_GENERATE_START_READ); + } + + do + { + /* Wait until RXNE flag is set */ + if (I2C_WaitOnFlagUntilTimeout(hi2c, I2C_FLAG_RXNE, RESET, Timeout, tickstart) != HAL_OK) + { + return HAL_ERROR; + } + + /* Read data from RXDR */ + *hi2c->pBuffPtr = (uint8_t)hi2c->Instance->RXDR; + + /* Increment Buffer pointer */ + hi2c->pBuffPtr++; + + hi2c->XferSize--; + hi2c->XferCount--; + + if ((hi2c->XferCount != 0U) && (hi2c->XferSize == 0U)) + { + /* Wait until TCR flag is set */ + if (I2C_WaitOnFlagUntilTimeout(hi2c, I2C_FLAG_TCR, RESET, Timeout, tickstart) != HAL_OK) + { + return HAL_ERROR; + } + + if (hi2c->XferCount > MAX_NBYTE_SIZE) + { + hi2c->XferSize = MAX_NBYTE_SIZE; + I2C_TransferConfig(hi2c, DevAddress, (uint8_t) hi2c->XferSize, I2C_RELOAD_MODE, I2C_NO_STARTSTOP); + } + else + { + hi2c->XferSize = hi2c->XferCount; + I2C_TransferConfig(hi2c, DevAddress, (uint8_t)hi2c->XferSize, I2C_AUTOEND_MODE, I2C_NO_STARTSTOP); + } + } + } + while (hi2c->XferCount > 0U); + + /* No need to Check TC flag, with AUTOEND mode the stop is automatically generated */ + /* Wait until STOPF flag is reset */ + if (I2C_WaitOnSTOPFlagUntilTimeout(hi2c, Timeout, tickstart) != HAL_OK) + { + return HAL_ERROR; + } + + /* Clear STOP Flag */ + __HAL_I2C_CLEAR_FLAG(hi2c, I2C_FLAG_STOPF); + + /* Clear Configuration Register 2 */ + I2C_RESET_CR2(hi2c); + + hi2c->State = HAL_I2C_STATE_READY; + hi2c->Mode = HAL_I2C_MODE_NONE; + + /* Process Unlocked */ + __HAL_UNLOCK(hi2c); + + return HAL_OK; + } + else + { + return HAL_BUSY; + } +} +/** + * @brief Write an amount of data in non-blocking mode with Interrupt to a specific memory address + * @param hi2c Pointer to a I2C_HandleTypeDef structure that contains + * the configuration information for the specified I2C. + * @param DevAddress Target device address: The device 7 bits address value + * in datasheet must be shifted to the left before calling the interface + * @param MemAddress Internal memory address + * @param MemAddSize Size of internal memory address + * @param pData Pointer to data buffer + * @param Size Amount of data to be sent + * @retval HAL status + */ +HAL_StatusTypeDef HAL_I2C_Mem_Write_IT(I2C_HandleTypeDef *hi2c, uint16_t DevAddress, uint16_t MemAddress, uint16_t MemAddSize, uint8_t *pData, uint16_t Size) +{ + uint32_t tickstart; + uint32_t xfermode; + + /* Check the parameters */ + assert_param(IS_I2C_MEMADD_SIZE(MemAddSize)); + + if (hi2c->State == HAL_I2C_STATE_READY) + { + if ((pData == NULL) || (Size == 0U)) + { + hi2c->ErrorCode = HAL_I2C_ERROR_INVALID_PARAM; + return HAL_ERROR; + } + + if (__HAL_I2C_GET_FLAG(hi2c, I2C_FLAG_BUSY) == SET) + { + return HAL_BUSY; + } + + /* Process Locked */ + __HAL_LOCK(hi2c); + + /* Init tickstart for timeout management*/ + tickstart = HAL_GetTick(); + + hi2c->State = HAL_I2C_STATE_BUSY_TX; + hi2c->Mode = HAL_I2C_MODE_MEM; + hi2c->ErrorCode = HAL_I2C_ERROR_NONE; + + /* Prepare transfer parameters */ + hi2c->pBuffPtr = pData; + hi2c->XferCount = Size; + hi2c->XferOptions = I2C_NO_OPTION_FRAME; + hi2c->XferISR = I2C_Master_ISR_IT; + + if (hi2c->XferCount > MAX_NBYTE_SIZE) + { + hi2c->XferSize = MAX_NBYTE_SIZE; + xfermode = I2C_RELOAD_MODE; + } + else + { + hi2c->XferSize = hi2c->XferCount; + xfermode = I2C_AUTOEND_MODE; + } + + /* Send Slave Address and Memory Address */ + if (I2C_RequestMemoryWrite(hi2c, DevAddress, MemAddress, MemAddSize, I2C_TIMEOUT_FLAG, tickstart) != HAL_OK) + { + /* Process Unlocked */ + __HAL_UNLOCK(hi2c); + return HAL_ERROR; + } + + /* Set NBYTES to write and reload if hi2c->XferCount > MAX_NBYTE_SIZE and generate RESTART */ + I2C_TransferConfig(hi2c, DevAddress, (uint8_t)hi2c->XferSize, xfermode, I2C_NO_STARTSTOP); + + /* Process Unlocked */ + __HAL_UNLOCK(hi2c); + + /* Note : The I2C interrupts must be enabled after unlocking current process + to avoid the risk of I2C interrupt handle execution before current + process unlock */ + + /* Enable ERR, TC, STOP, NACK, TXI interrupt */ + /* possible to enable all of these */ + /* I2C_IT_ERRI | I2C_IT_TCI| I2C_IT_STOPI| I2C_IT_NACKI | I2C_IT_ADDRI | I2C_IT_RXI | I2C_IT_TXI */ + I2C_Enable_IRQ(hi2c, I2C_XFER_TX_IT); + + return HAL_OK; + } + else + { + return HAL_BUSY; + } +} + +/** + * @brief Read an amount of data in non-blocking mode with Interrupt from a specific memory address + * @param hi2c Pointer to a I2C_HandleTypeDef structure that contains + * the configuration information for the specified I2C. + * @param DevAddress Target device address: The device 7 bits address value + * in datasheet must be shifted to the left before calling the interface + * @param MemAddress Internal memory address + * @param MemAddSize Size of internal memory address + * @param pData Pointer to data buffer + * @param Size Amount of data to be sent + * @retval HAL status + */ +HAL_StatusTypeDef HAL_I2C_Mem_Read_IT(I2C_HandleTypeDef *hi2c, uint16_t DevAddress, uint16_t MemAddress, uint16_t MemAddSize, uint8_t *pData, uint16_t Size) +{ + uint32_t tickstart; + uint32_t xfermode; + + /* Check the parameters */ + assert_param(IS_I2C_MEMADD_SIZE(MemAddSize)); + + if (hi2c->State == HAL_I2C_STATE_READY) + { + if ((pData == NULL) || (Size == 0U)) + { + hi2c->ErrorCode = HAL_I2C_ERROR_INVALID_PARAM; + return HAL_ERROR; + } + + if (__HAL_I2C_GET_FLAG(hi2c, I2C_FLAG_BUSY) == SET) + { + return HAL_BUSY; + } + + /* Process Locked */ + __HAL_LOCK(hi2c); + + /* Init tickstart for timeout management*/ + tickstart = HAL_GetTick(); + + hi2c->State = HAL_I2C_STATE_BUSY_RX; + hi2c->Mode = HAL_I2C_MODE_MEM; + hi2c->ErrorCode = HAL_I2C_ERROR_NONE; + + /* Prepare transfer parameters */ + hi2c->pBuffPtr = pData; + hi2c->XferCount = Size; + hi2c->XferOptions = I2C_NO_OPTION_FRAME; + hi2c->XferISR = I2C_Master_ISR_IT; + + if (hi2c->XferCount > MAX_NBYTE_SIZE) + { + hi2c->XferSize = MAX_NBYTE_SIZE; + xfermode = I2C_RELOAD_MODE; + } + else + { + hi2c->XferSize = hi2c->XferCount; + xfermode = I2C_AUTOEND_MODE; + } + + /* Send Slave Address and Memory Address */ + if (I2C_RequestMemoryRead(hi2c, DevAddress, MemAddress, MemAddSize, I2C_TIMEOUT_FLAG, tickstart) != HAL_OK) + { + /* Process Unlocked */ + __HAL_UNLOCK(hi2c); + return HAL_ERROR; + } + + /* Set NBYTES to write and reload if hi2c->XferCount > MAX_NBYTE_SIZE and generate RESTART */ + I2C_TransferConfig(hi2c, DevAddress, (uint8_t)hi2c->XferSize, xfermode, I2C_GENERATE_START_READ); + + /* Process Unlocked */ + __HAL_UNLOCK(hi2c); + + /* Note : The I2C interrupts must be enabled after unlocking current process + to avoid the risk of I2C interrupt handle execution before current + process unlock */ + + /* Enable ERR, TC, STOP, NACK, RXI interrupt */ + /* possible to enable all of these */ + /* I2C_IT_ERRI | I2C_IT_TCI| I2C_IT_STOPI| I2C_IT_NACKI | I2C_IT_ADDRI | I2C_IT_RXI | I2C_IT_TXI */ + I2C_Enable_IRQ(hi2c, I2C_XFER_RX_IT); + + return HAL_OK; + } + else + { + return HAL_BUSY; + } +} +/** + * @brief Write an amount of data in non-blocking mode with DMA to a specific memory address + * @param hi2c Pointer to a I2C_HandleTypeDef structure that contains + * the configuration information for the specified I2C. + * @param DevAddress Target device address: The device 7 bits address value + * in datasheet must be shifted to the left before calling the interface + * @param MemAddress Internal memory address + * @param MemAddSize Size of internal memory address + * @param pData Pointer to data buffer + * @param Size Amount of data to be sent + * @retval HAL status + */ +HAL_StatusTypeDef HAL_I2C_Mem_Write_DMA(I2C_HandleTypeDef *hi2c, uint16_t DevAddress, uint16_t MemAddress, uint16_t MemAddSize, uint8_t *pData, uint16_t Size) +{ + uint32_t tickstart; + uint32_t xfermode; + HAL_StatusTypeDef dmaxferstatus; + + /* Check the parameters */ + assert_param(IS_I2C_MEMADD_SIZE(MemAddSize)); + + if (hi2c->State == HAL_I2C_STATE_READY) + { + if ((pData == NULL) || (Size == 0U)) + { + hi2c->ErrorCode = HAL_I2C_ERROR_INVALID_PARAM; + return HAL_ERROR; + } + + if (__HAL_I2C_GET_FLAG(hi2c, I2C_FLAG_BUSY) == SET) + { + return HAL_BUSY; + } + + /* Process Locked */ + __HAL_LOCK(hi2c); + + /* Init tickstart for timeout management*/ + tickstart = HAL_GetTick(); + + hi2c->State = HAL_I2C_STATE_BUSY_TX; + hi2c->Mode = HAL_I2C_MODE_MEM; + hi2c->ErrorCode = HAL_I2C_ERROR_NONE; + + /* Prepare transfer parameters */ + hi2c->pBuffPtr = pData; + hi2c->XferCount = Size; + hi2c->XferOptions = I2C_NO_OPTION_FRAME; + hi2c->XferISR = I2C_Master_ISR_DMA; + + if (hi2c->XferCount > MAX_NBYTE_SIZE) + { + hi2c->XferSize = MAX_NBYTE_SIZE; + xfermode = I2C_RELOAD_MODE; + } + else + { + hi2c->XferSize = hi2c->XferCount; + xfermode = I2C_AUTOEND_MODE; + } + + /* Send Slave Address and Memory Address */ + if (I2C_RequestMemoryWrite(hi2c, DevAddress, MemAddress, MemAddSize, I2C_TIMEOUT_FLAG, tickstart) != HAL_OK) + { + /* Process Unlocked */ + __HAL_UNLOCK(hi2c); + return HAL_ERROR; + } + + + if (hi2c->hdmatx != NULL) + { + /* Set the I2C DMA transfer complete callback */ + hi2c->hdmatx->XferCpltCallback = I2C_DMAMasterTransmitCplt; + + /* Set the DMA error callback */ + hi2c->hdmatx->XferErrorCallback = I2C_DMAError; + + /* Set the unused DMA callbacks to NULL */ + hi2c->hdmatx->XferHalfCpltCallback = NULL; + hi2c->hdmatx->XferAbortCallback = NULL; + + /* Enable the DMA stream or channel depends on Instance */ + dmaxferstatus = HAL_DMA_Start_IT(hi2c->hdmatx, (uint32_t)pData, (uint32_t)&hi2c->Instance->TXDR, hi2c->XferSize); + } + else + { + /* Update I2C state */ + hi2c->State = HAL_I2C_STATE_READY; + hi2c->Mode = HAL_I2C_MODE_NONE; + + /* Update I2C error code */ + hi2c->ErrorCode |= HAL_I2C_ERROR_DMA_PARAM; + + /* Process Unlocked */ + __HAL_UNLOCK(hi2c); + + return HAL_ERROR; + } + + if (dmaxferstatus == HAL_OK) + { + /* Send Slave Address */ + /* Set NBYTES to write and reload if hi2c->XferCount > MAX_NBYTE_SIZE and generate RESTART */ + I2C_TransferConfig(hi2c, DevAddress, (uint8_t)hi2c->XferSize, xfermode, I2C_NO_STARTSTOP); + + /* Update XferCount value */ + hi2c->XferCount -= hi2c->XferSize; + + /* Process Unlocked */ + __HAL_UNLOCK(hi2c); + + /* Note : The I2C interrupts must be enabled after unlocking current process + to avoid the risk of I2C interrupt handle execution before current + process unlock */ + /* Enable ERR and NACK interrupts */ + I2C_Enable_IRQ(hi2c, I2C_XFER_ERROR_IT); + + /* Enable DMA Request */ + hi2c->Instance->CR1 |= I2C_CR1_TXDMAEN; + } + else + { + /* Update I2C state */ + hi2c->State = HAL_I2C_STATE_READY; + hi2c->Mode = HAL_I2C_MODE_NONE; + + /* Update I2C error code */ + hi2c->ErrorCode |= HAL_I2C_ERROR_DMA; + + /* Process Unlocked */ + __HAL_UNLOCK(hi2c); + + return HAL_ERROR; + } + + return HAL_OK; + } + else + { + return HAL_BUSY; + } +} + +/** + * @brief Reads an amount of data in non-blocking mode with DMA from a specific memory address. + * @param hi2c Pointer to a I2C_HandleTypeDef structure that contains + * the configuration information for the specified I2C. + * @param DevAddress Target device address: The device 7 bits address value + * in datasheet must be shifted to the left before calling the interface + * @param MemAddress Internal memory address + * @param MemAddSize Size of internal memory address + * @param pData Pointer to data buffer + * @param Size Amount of data to be read + * @retval HAL status + */ +HAL_StatusTypeDef HAL_I2C_Mem_Read_DMA(I2C_HandleTypeDef *hi2c, uint16_t DevAddress, uint16_t MemAddress, uint16_t MemAddSize, uint8_t *pData, uint16_t Size) +{ + uint32_t tickstart; + uint32_t xfermode; + HAL_StatusTypeDef dmaxferstatus; + + /* Check the parameters */ + assert_param(IS_I2C_MEMADD_SIZE(MemAddSize)); + + if (hi2c->State == HAL_I2C_STATE_READY) + { + if ((pData == NULL) || (Size == 0U)) + { + hi2c->ErrorCode = HAL_I2C_ERROR_INVALID_PARAM; + return HAL_ERROR; + } + + if (__HAL_I2C_GET_FLAG(hi2c, I2C_FLAG_BUSY) == SET) + { + return HAL_BUSY; + } + + /* Process Locked */ + __HAL_LOCK(hi2c); + + /* Init tickstart for timeout management*/ + tickstart = HAL_GetTick(); + + hi2c->State = HAL_I2C_STATE_BUSY_RX; + hi2c->Mode = HAL_I2C_MODE_MEM; + hi2c->ErrorCode = HAL_I2C_ERROR_NONE; + + /* Prepare transfer parameters */ + hi2c->pBuffPtr = pData; + hi2c->XferCount = Size; + hi2c->XferOptions = I2C_NO_OPTION_FRAME; + hi2c->XferISR = I2C_Master_ISR_DMA; + + if (hi2c->XferCount > MAX_NBYTE_SIZE) + { + hi2c->XferSize = MAX_NBYTE_SIZE; + xfermode = I2C_RELOAD_MODE; + } + else + { + hi2c->XferSize = hi2c->XferCount; + xfermode = I2C_AUTOEND_MODE; + } + + /* Send Slave Address and Memory Address */ + if (I2C_RequestMemoryRead(hi2c, DevAddress, MemAddress, MemAddSize, I2C_TIMEOUT_FLAG, tickstart) != HAL_OK) + { + /* Process Unlocked */ + __HAL_UNLOCK(hi2c); + return HAL_ERROR; + } + + if (hi2c->hdmarx != NULL) + { + /* Set the I2C DMA transfer complete callback */ + hi2c->hdmarx->XferCpltCallback = I2C_DMAMasterReceiveCplt; + + /* Set the DMA error callback */ + hi2c->hdmarx->XferErrorCallback = I2C_DMAError; + + /* Set the unused DMA callbacks to NULL */ + hi2c->hdmarx->XferHalfCpltCallback = NULL; + hi2c->hdmarx->XferAbortCallback = NULL; + + /* Enable the DMA stream or channel depends on Instance */ + dmaxferstatus = HAL_DMA_Start_IT(hi2c->hdmarx, (uint32_t)&hi2c->Instance->RXDR, (uint32_t)pData, hi2c->XferSize); + } + else + { + /* Update I2C state */ + hi2c->State = HAL_I2C_STATE_READY; + hi2c->Mode = HAL_I2C_MODE_NONE; + + /* Update I2C error code */ + hi2c->ErrorCode |= HAL_I2C_ERROR_DMA_PARAM; + + /* Process Unlocked */ + __HAL_UNLOCK(hi2c); + + return HAL_ERROR; + } + + if (dmaxferstatus == HAL_OK) + { + /* Set NBYTES to write and reload if hi2c->XferCount > MAX_NBYTE_SIZE and generate RESTART */ + I2C_TransferConfig(hi2c, DevAddress, (uint8_t)hi2c->XferSize, xfermode, I2C_GENERATE_START_READ); + + /* Update XferCount value */ + hi2c->XferCount -= hi2c->XferSize; + + /* Process Unlocked */ + __HAL_UNLOCK(hi2c); + + /* Note : The I2C interrupts must be enabled after unlocking current process + to avoid the risk of I2C interrupt handle execution before current + process unlock */ + /* Enable ERR and NACK interrupts */ + I2C_Enable_IRQ(hi2c, I2C_XFER_ERROR_IT); + + /* Enable DMA Request */ + hi2c->Instance->CR1 |= I2C_CR1_RXDMAEN; + } + else + { + /* Update I2C state */ + hi2c->State = HAL_I2C_STATE_READY; + hi2c->Mode = HAL_I2C_MODE_NONE; + + /* Update I2C error code */ + hi2c->ErrorCode |= HAL_I2C_ERROR_DMA; + + /* Process Unlocked */ + __HAL_UNLOCK(hi2c); + + return HAL_ERROR; + } + + return HAL_OK; + } + else + { + return HAL_BUSY; + } +} + +/** + * @brief Checks if target device is ready for communication. + * @note This function is used with Memory devices + * @param hi2c Pointer to a I2C_HandleTypeDef structure that contains + * the configuration information for the specified I2C. + * @param DevAddress Target device address: The device 7 bits address value + * in datasheet must be shifted to the left before calling the interface + * @param Trials Number of trials + * @param Timeout Timeout duration + * @retval HAL status + */ +HAL_StatusTypeDef HAL_I2C_IsDeviceReady(I2C_HandleTypeDef *hi2c, uint16_t DevAddress, uint32_t Trials, uint32_t Timeout) +{ + uint32_t tickstart; + + __IO uint32_t I2C_Trials = 0UL; + + FlagStatus tmp1; + FlagStatus tmp2; + + if (hi2c->State == HAL_I2C_STATE_READY) + { + if (__HAL_I2C_GET_FLAG(hi2c, I2C_FLAG_BUSY) == SET) + { + return HAL_BUSY; + } + + /* Process Locked */ + __HAL_LOCK(hi2c); + + hi2c->State = HAL_I2C_STATE_BUSY; + hi2c->ErrorCode = HAL_I2C_ERROR_NONE; + + do + { + /* Generate Start */ + hi2c->Instance->CR2 = I2C_GENERATE_START(hi2c->Init.AddressingMode, DevAddress); + + /* No need to Check TC flag, with AUTOEND mode the stop is automatically generated */ + /* Wait until STOPF flag is set or a NACK flag is set*/ + tickstart = HAL_GetTick(); + + tmp1 = __HAL_I2C_GET_FLAG(hi2c, I2C_FLAG_STOPF); + tmp2 = __HAL_I2C_GET_FLAG(hi2c, I2C_FLAG_AF); + + while ((tmp1 == RESET) && (tmp2 == RESET)) + { + if (Timeout != HAL_MAX_DELAY) + { + if (((HAL_GetTick() - tickstart) > Timeout) || (Timeout == 0U)) + { + /* Update I2C state */ + hi2c->State = HAL_I2C_STATE_READY; + + /* Update I2C error code */ + hi2c->ErrorCode |= HAL_I2C_ERROR_TIMEOUT; + + /* Process Unlocked */ + __HAL_UNLOCK(hi2c); + + return HAL_ERROR; + } + } + + tmp1 = __HAL_I2C_GET_FLAG(hi2c, I2C_FLAG_STOPF); + tmp2 = __HAL_I2C_GET_FLAG(hi2c, I2C_FLAG_AF); + } + + /* Check if the NACKF flag has not been set */ + if (__HAL_I2C_GET_FLAG(hi2c, I2C_FLAG_AF) == RESET) + { + /* Wait until STOPF flag is reset */ + if (I2C_WaitOnFlagUntilTimeout(hi2c, I2C_FLAG_STOPF, RESET, Timeout, tickstart) != HAL_OK) + { + return HAL_ERROR; + } + + /* Clear STOP Flag */ + __HAL_I2C_CLEAR_FLAG(hi2c, I2C_FLAG_STOPF); + + /* Device is ready */ + hi2c->State = HAL_I2C_STATE_READY; + + /* Process Unlocked */ + __HAL_UNLOCK(hi2c); + + return HAL_OK; + } + else + { + /* Wait until STOPF flag is reset */ + if (I2C_WaitOnFlagUntilTimeout(hi2c, I2C_FLAG_STOPF, RESET, Timeout, tickstart) != HAL_OK) + { + return HAL_ERROR; + } + + /* Clear NACK Flag */ + __HAL_I2C_CLEAR_FLAG(hi2c, I2C_FLAG_AF); + + /* Clear STOP Flag, auto generated with autoend*/ + __HAL_I2C_CLEAR_FLAG(hi2c, I2C_FLAG_STOPF); + } + + /* Check if the maximum allowed number of trials has been reached */ + if (I2C_Trials == Trials) + { + /* Generate Stop */ + hi2c->Instance->CR2 |= I2C_CR2_STOP; + + /* Wait until STOPF flag is reset */ + if (I2C_WaitOnFlagUntilTimeout(hi2c, I2C_FLAG_STOPF, RESET, Timeout, tickstart) != HAL_OK) + { + return HAL_ERROR; + } + + /* Clear STOP Flag */ + __HAL_I2C_CLEAR_FLAG(hi2c, I2C_FLAG_STOPF); + } + + /* Increment Trials */ + I2C_Trials++; + } + while (I2C_Trials < Trials); + + /* Update I2C state */ + hi2c->State = HAL_I2C_STATE_READY; + + /* Update I2C error code */ + hi2c->ErrorCode |= HAL_I2C_ERROR_TIMEOUT; + + /* Process Unlocked */ + __HAL_UNLOCK(hi2c); + + return HAL_ERROR; + } + else + { + return HAL_BUSY; + } +} + +/** + * @brief Sequential transmit in master I2C mode an amount of data in non-blocking mode with Interrupt. + * @note This interface allow to manage repeated start condition when a direction change during transfer + * @param hi2c Pointer to a I2C_HandleTypeDef structure that contains + * the configuration information for the specified I2C. + * @param DevAddress Target device address: The device 7 bits address value + * in datasheet must be shifted to the left before calling the interface + * @param pData Pointer to data buffer + * @param Size Amount of data to be sent + * @param XferOptions Options of Transfer, value of @ref I2C_XFEROPTIONS + * @retval HAL status + */ +HAL_StatusTypeDef HAL_I2C_Master_Seq_Transmit_IT(I2C_HandleTypeDef *hi2c, uint16_t DevAddress, uint8_t *pData, uint16_t Size, uint32_t XferOptions) +{ + uint32_t xfermode; + uint32_t xferrequest = I2C_GENERATE_START_WRITE; + + /* Check the parameters */ + assert_param(IS_I2C_TRANSFER_OPTIONS_REQUEST(XferOptions)); + + if (hi2c->State == HAL_I2C_STATE_READY) + { + /* Process Locked */ + __HAL_LOCK(hi2c); + + hi2c->State = HAL_I2C_STATE_BUSY_TX; + hi2c->Mode = HAL_I2C_MODE_MASTER; + hi2c->ErrorCode = HAL_I2C_ERROR_NONE; + + /* Prepare transfer parameters */ + hi2c->pBuffPtr = pData; + hi2c->XferCount = Size; + hi2c->XferOptions = XferOptions; + hi2c->XferISR = I2C_Master_ISR_IT; + + /* If hi2c->XferCount > MAX_NBYTE_SIZE, use reload mode */ + if (hi2c->XferCount > MAX_NBYTE_SIZE) + { + hi2c->XferSize = MAX_NBYTE_SIZE; + xfermode = I2C_RELOAD_MODE; + } + else + { + hi2c->XferSize = hi2c->XferCount; + xfermode = hi2c->XferOptions; + } + + /* If transfer direction not change and there is no request to start another frame, do not generate Restart Condition */ + /* Mean Previous state is same as current state */ + if ((hi2c->PreviousState == I2C_STATE_MASTER_BUSY_TX) && (IS_I2C_TRANSFER_OTHER_OPTIONS_REQUEST(XferOptions) == 0)) + { + xferrequest = I2C_NO_STARTSTOP; + } + else + { + /* Convert OTHER_xxx XferOptions if any */ + I2C_ConvertOtherXferOptions(hi2c); + + /* Update xfermode accordingly if no reload is necessary */ + if (hi2c->XferCount < MAX_NBYTE_SIZE) + { + xfermode = hi2c->XferOptions; + } + } + + /* Send Slave Address and set NBYTES to write */ + I2C_TransferConfig(hi2c, DevAddress, (uint8_t)hi2c->XferSize, xfermode, xferrequest); + + /* Process Unlocked */ + __HAL_UNLOCK(hi2c); + + /* Note : The I2C interrupts must be enabled after unlocking current process + to avoid the risk of I2C interrupt handle execution before current + process unlock */ + I2C_Enable_IRQ(hi2c, I2C_XFER_TX_IT); + + return HAL_OK; + } + else + { + return HAL_BUSY; + } +} + +/** + * @brief Sequential transmit in master I2C mode an amount of data in non-blocking mode with DMA. + * @note This interface allow to manage repeated start condition when a direction change during transfer + * @param hi2c Pointer to a I2C_HandleTypeDef structure that contains + * the configuration information for the specified I2C. + * @param DevAddress Target device address: The device 7 bits address value + * in datasheet must be shifted to the left before calling the interface + * @param pData Pointer to data buffer + * @param Size Amount of data to be sent + * @param XferOptions Options of Transfer, value of @ref I2C_XFEROPTIONS + * @retval HAL status + */ +HAL_StatusTypeDef HAL_I2C_Master_Seq_Transmit_DMA(I2C_HandleTypeDef *hi2c, uint16_t DevAddress, uint8_t *pData, uint16_t Size, uint32_t XferOptions) +{ + uint32_t xfermode; + uint32_t xferrequest = I2C_GENERATE_START_WRITE; + HAL_StatusTypeDef dmaxferstatus; + + /* Check the parameters */ + assert_param(IS_I2C_TRANSFER_OPTIONS_REQUEST(XferOptions)); + + if (hi2c->State == HAL_I2C_STATE_READY) + { + /* Process Locked */ + __HAL_LOCK(hi2c); + + hi2c->State = HAL_I2C_STATE_BUSY_TX; + hi2c->Mode = HAL_I2C_MODE_MASTER; + hi2c->ErrorCode = HAL_I2C_ERROR_NONE; + + /* Prepare transfer parameters */ + hi2c->pBuffPtr = pData; + hi2c->XferCount = Size; + hi2c->XferOptions = XferOptions; + hi2c->XferISR = I2C_Master_ISR_DMA; + + /* If hi2c->XferCount > MAX_NBYTE_SIZE, use reload mode */ + if (hi2c->XferCount > MAX_NBYTE_SIZE) + { + hi2c->XferSize = MAX_NBYTE_SIZE; + xfermode = I2C_RELOAD_MODE; + } + else + { + hi2c->XferSize = hi2c->XferCount; + xfermode = hi2c->XferOptions; + } + + /* If transfer direction not change and there is no request to start another frame, do not generate Restart Condition */ + /* Mean Previous state is same as current state */ + if ((hi2c->PreviousState == I2C_STATE_MASTER_BUSY_TX) && (IS_I2C_TRANSFER_OTHER_OPTIONS_REQUEST(XferOptions) == 0)) + { + xferrequest = I2C_NO_STARTSTOP; + } + else + { + /* Convert OTHER_xxx XferOptions if any */ + I2C_ConvertOtherXferOptions(hi2c); + + /* Update xfermode accordingly if no reload is necessary */ + if (hi2c->XferCount < MAX_NBYTE_SIZE) + { + xfermode = hi2c->XferOptions; + } + } + + if (hi2c->XferSize > 0U) + { + if (hi2c->hdmatx != NULL) + { + /* Set the I2C DMA transfer complete callback */ + hi2c->hdmatx->XferCpltCallback = I2C_DMAMasterTransmitCplt; + + /* Set the DMA error callback */ + hi2c->hdmatx->XferErrorCallback = I2C_DMAError; + + /* Set the unused DMA callbacks to NULL */ + hi2c->hdmatx->XferHalfCpltCallback = NULL; + hi2c->hdmatx->XferAbortCallback = NULL; + + /* Enable the DMA stream or channel depends on Instance */ + dmaxferstatus = HAL_DMA_Start_IT(hi2c->hdmatx, (uint32_t)pData, (uint32_t)&hi2c->Instance->TXDR, hi2c->XferSize); + } + else + { + /* Update I2C state */ + hi2c->State = HAL_I2C_STATE_READY; + hi2c->Mode = HAL_I2C_MODE_NONE; + + /* Update I2C error code */ + hi2c->ErrorCode |= HAL_I2C_ERROR_DMA_PARAM; + + /* Process Unlocked */ + __HAL_UNLOCK(hi2c); + + return HAL_ERROR; + } + + if (dmaxferstatus == HAL_OK) + { + /* Send Slave Address and set NBYTES to write */ + I2C_TransferConfig(hi2c, DevAddress, (uint8_t)hi2c->XferSize, xfermode, xferrequest); + + /* Update XferCount value */ + hi2c->XferCount -= hi2c->XferSize; + + /* Process Unlocked */ + __HAL_UNLOCK(hi2c); + + /* Note : The I2C interrupts must be enabled after unlocking current process + to avoid the risk of I2C interrupt handle execution before current + process unlock */ + /* Enable ERR and NACK interrupts */ + I2C_Enable_IRQ(hi2c, I2C_XFER_ERROR_IT); + + /* Enable DMA Request */ + hi2c->Instance->CR1 |= I2C_CR1_TXDMAEN; + } + else + { + /* Update I2C state */ + hi2c->State = HAL_I2C_STATE_READY; + hi2c->Mode = HAL_I2C_MODE_NONE; + + /* Update I2C error code */ + hi2c->ErrorCode |= HAL_I2C_ERROR_DMA; + + /* Process Unlocked */ + __HAL_UNLOCK(hi2c); + + return HAL_ERROR; + } + } + else + { + /* Update Transfer ISR function pointer */ + hi2c->XferISR = I2C_Master_ISR_IT; + + /* Send Slave Address */ + /* Set NBYTES to write and generate START condition */ + I2C_TransferConfig(hi2c, DevAddress, (uint8_t)hi2c->XferSize, I2C_AUTOEND_MODE, I2C_GENERATE_START_WRITE); + + /* Process Unlocked */ + __HAL_UNLOCK(hi2c); + + /* Note : The I2C interrupts must be enabled after unlocking current process + to avoid the risk of I2C interrupt handle execution before current + process unlock */ + /* Enable ERR, TC, STOP, NACK, TXI interrupt */ + /* possible to enable all of these */ + /* I2C_IT_ERRI | I2C_IT_TCI| I2C_IT_STOPI| I2C_IT_NACKI | I2C_IT_ADDRI | I2C_IT_RXI | I2C_IT_TXI */ + I2C_Enable_IRQ(hi2c, I2C_XFER_TX_IT); + } + + return HAL_OK; + } + else + { + return HAL_BUSY; + } +} + +/** + * @brief Sequential receive in master I2C mode an amount of data in non-blocking mode with Interrupt + * @note This interface allow to manage repeated start condition when a direction change during transfer + * @param hi2c Pointer to a I2C_HandleTypeDef structure that contains + * the configuration information for the specified I2C. + * @param DevAddress Target device address: The device 7 bits address value + * in datasheet must be shifted to the left before calling the interface + * @param pData Pointer to data buffer + * @param Size Amount of data to be sent + * @param XferOptions Options of Transfer, value of @ref I2C_XFEROPTIONS + * @retval HAL status + */ +HAL_StatusTypeDef HAL_I2C_Master_Seq_Receive_IT(I2C_HandleTypeDef *hi2c, uint16_t DevAddress, uint8_t *pData, uint16_t Size, uint32_t XferOptions) +{ + uint32_t xfermode; + uint32_t xferrequest = I2C_GENERATE_START_READ; + + /* Check the parameters */ + assert_param(IS_I2C_TRANSFER_OPTIONS_REQUEST(XferOptions)); + + if (hi2c->State == HAL_I2C_STATE_READY) + { + /* Process Locked */ + __HAL_LOCK(hi2c); + + hi2c->State = HAL_I2C_STATE_BUSY_RX; + hi2c->Mode = HAL_I2C_MODE_MASTER; + hi2c->ErrorCode = HAL_I2C_ERROR_NONE; + + /* Prepare transfer parameters */ + hi2c->pBuffPtr = pData; + hi2c->XferCount = Size; + hi2c->XferOptions = XferOptions; + hi2c->XferISR = I2C_Master_ISR_IT; + + /* If hi2c->XferCount > MAX_NBYTE_SIZE, use reload mode */ + if (hi2c->XferCount > MAX_NBYTE_SIZE) + { + hi2c->XferSize = MAX_NBYTE_SIZE; + xfermode = I2C_RELOAD_MODE; + } + else + { + hi2c->XferSize = hi2c->XferCount; + xfermode = hi2c->XferOptions; + } + + /* If transfer direction not change and there is no request to start another frame, do not generate Restart Condition */ + /* Mean Previous state is same as current state */ + if ((hi2c->PreviousState == I2C_STATE_MASTER_BUSY_RX) && (IS_I2C_TRANSFER_OTHER_OPTIONS_REQUEST(XferOptions) == 0)) + { + xferrequest = I2C_NO_STARTSTOP; + } + else + { + /* Convert OTHER_xxx XferOptions if any */ + I2C_ConvertOtherXferOptions(hi2c); + + /* Update xfermode accordingly if no reload is necessary */ + if (hi2c->XferCount < MAX_NBYTE_SIZE) + { + xfermode = hi2c->XferOptions; + } + } + + /* Send Slave Address and set NBYTES to read */ + I2C_TransferConfig(hi2c, DevAddress, (uint8_t)hi2c->XferSize, xfermode, xferrequest); + + /* Process Unlocked */ + __HAL_UNLOCK(hi2c); + + /* Note : The I2C interrupts must be enabled after unlocking current process + to avoid the risk of I2C interrupt handle execution before current + process unlock */ + I2C_Enable_IRQ(hi2c, I2C_XFER_RX_IT); + + return HAL_OK; + } + else + { + return HAL_BUSY; + } +} + +/** + * @brief Sequential receive in master I2C mode an amount of data in non-blocking mode with DMA + * @note This interface allow to manage repeated start condition when a direction change during transfer + * @param hi2c Pointer to a I2C_HandleTypeDef structure that contains + * the configuration information for the specified I2C. + * @param DevAddress Target device address: The device 7 bits address value + * in datasheet must be shifted to the left before calling the interface + * @param pData Pointer to data buffer + * @param Size Amount of data to be sent + * @param XferOptions Options of Transfer, value of @ref I2C_XFEROPTIONS + * @retval HAL status + */ +HAL_StatusTypeDef HAL_I2C_Master_Seq_Receive_DMA(I2C_HandleTypeDef *hi2c, uint16_t DevAddress, uint8_t *pData, uint16_t Size, uint32_t XferOptions) +{ + uint32_t xfermode; + uint32_t xferrequest = I2C_GENERATE_START_READ; + HAL_StatusTypeDef dmaxferstatus; + + /* Check the parameters */ + assert_param(IS_I2C_TRANSFER_OPTIONS_REQUEST(XferOptions)); + + if (hi2c->State == HAL_I2C_STATE_READY) + { + /* Process Locked */ + __HAL_LOCK(hi2c); + + hi2c->State = HAL_I2C_STATE_BUSY_RX; + hi2c->Mode = HAL_I2C_MODE_MASTER; + hi2c->ErrorCode = HAL_I2C_ERROR_NONE; + + /* Prepare transfer parameters */ + hi2c->pBuffPtr = pData; + hi2c->XferCount = Size; + hi2c->XferOptions = XferOptions; + hi2c->XferISR = I2C_Master_ISR_DMA; + + /* If hi2c->XferCount > MAX_NBYTE_SIZE, use reload mode */ + if (hi2c->XferCount > MAX_NBYTE_SIZE) + { + hi2c->XferSize = MAX_NBYTE_SIZE; + xfermode = I2C_RELOAD_MODE; + } + else + { + hi2c->XferSize = hi2c->XferCount; + xfermode = hi2c->XferOptions; + } + + /* If transfer direction not change and there is no request to start another frame, do not generate Restart Condition */ + /* Mean Previous state is same as current state */ + if ((hi2c->PreviousState == I2C_STATE_MASTER_BUSY_RX) && (IS_I2C_TRANSFER_OTHER_OPTIONS_REQUEST(XferOptions) == 0)) + { + xferrequest = I2C_NO_STARTSTOP; + } + else + { + /* Convert OTHER_xxx XferOptions if any */ + I2C_ConvertOtherXferOptions(hi2c); + + /* Update xfermode accordingly if no reload is necessary */ + if (hi2c->XferCount < MAX_NBYTE_SIZE) + { + xfermode = hi2c->XferOptions; + } + } + + if (hi2c->XferSize > 0U) + { + if (hi2c->hdmarx != NULL) + { + /* Set the I2C DMA transfer complete callback */ + hi2c->hdmarx->XferCpltCallback = I2C_DMAMasterReceiveCplt; + + /* Set the DMA error callback */ + hi2c->hdmarx->XferErrorCallback = I2C_DMAError; + + /* Set the unused DMA callbacks to NULL */ + hi2c->hdmarx->XferHalfCpltCallback = NULL; + hi2c->hdmarx->XferAbortCallback = NULL; + + /* Enable the DMA stream or channel depends on Instance */ + dmaxferstatus = HAL_DMA_Start_IT(hi2c->hdmarx, (uint32_t)&hi2c->Instance->RXDR, (uint32_t)pData, hi2c->XferSize); + } + else + { + /* Update I2C state */ + hi2c->State = HAL_I2C_STATE_READY; + hi2c->Mode = HAL_I2C_MODE_NONE; + + /* Update I2C error code */ + hi2c->ErrorCode |= HAL_I2C_ERROR_DMA_PARAM; + + /* Process Unlocked */ + __HAL_UNLOCK(hi2c); + + return HAL_ERROR; + } + + if (dmaxferstatus == HAL_OK) + { + /* Send Slave Address and set NBYTES to read */ + I2C_TransferConfig(hi2c, DevAddress, (uint8_t)hi2c->XferSize, xfermode, xferrequest); + + /* Update XferCount value */ + hi2c->XferCount -= hi2c->XferSize; + + /* Process Unlocked */ + __HAL_UNLOCK(hi2c); + + /* Note : The I2C interrupts must be enabled after unlocking current process + to avoid the risk of I2C interrupt handle execution before current + process unlock */ + /* Enable ERR and NACK interrupts */ + I2C_Enable_IRQ(hi2c, I2C_XFER_ERROR_IT); + + /* Enable DMA Request */ + hi2c->Instance->CR1 |= I2C_CR1_RXDMAEN; + } + else + { + /* Update I2C state */ + hi2c->State = HAL_I2C_STATE_READY; + hi2c->Mode = HAL_I2C_MODE_NONE; + + /* Update I2C error code */ + hi2c->ErrorCode |= HAL_I2C_ERROR_DMA; + + /* Process Unlocked */ + __HAL_UNLOCK(hi2c); + + return HAL_ERROR; + } + } + else + { + /* Update Transfer ISR function pointer */ + hi2c->XferISR = I2C_Master_ISR_IT; + + /* Send Slave Address */ + /* Set NBYTES to read and generate START condition */ + I2C_TransferConfig(hi2c, DevAddress, (uint8_t)hi2c->XferSize, I2C_AUTOEND_MODE, I2C_GENERATE_START_READ); + + /* Process Unlocked */ + __HAL_UNLOCK(hi2c); + + /* Note : The I2C interrupts must be enabled after unlocking current process + to avoid the risk of I2C interrupt handle execution before current + process unlock */ + /* Enable ERR, TC, STOP, NACK, TXI interrupt */ + /* possible to enable all of these */ + /* I2C_IT_ERRI | I2C_IT_TCI| I2C_IT_STOPI| I2C_IT_NACKI | I2C_IT_ADDRI | I2C_IT_RXI | I2C_IT_TXI */ + I2C_Enable_IRQ(hi2c, I2C_XFER_TX_IT); + } + + return HAL_OK; + } + else + { + return HAL_BUSY; + } +} + +/** + * @brief Sequential transmit in slave/device I2C mode an amount of data in non-blocking mode with Interrupt + * @note This interface allow to manage repeated start condition when a direction change during transfer + * @param hi2c Pointer to a I2C_HandleTypeDef structure that contains + * the configuration information for the specified I2C. + * @param pData Pointer to data buffer + * @param Size Amount of data to be sent + * @param XferOptions Options of Transfer, value of @ref I2C_XFEROPTIONS + * @retval HAL status + */ +HAL_StatusTypeDef HAL_I2C_Slave_Seq_Transmit_IT(I2C_HandleTypeDef *hi2c, uint8_t *pData, uint16_t Size, uint32_t XferOptions) +{ + /* Check the parameters */ + assert_param(IS_I2C_TRANSFER_OPTIONS_REQUEST(XferOptions)); + + if (((uint32_t)hi2c->State & (uint32_t)HAL_I2C_STATE_LISTEN) == (uint32_t)HAL_I2C_STATE_LISTEN) + { + if ((pData == NULL) || (Size == 0U)) + { + hi2c->ErrorCode = HAL_I2C_ERROR_INVALID_PARAM; + return HAL_ERROR; + } + + /* Disable Interrupts, to prevent preemption during treatment in case of multicall */ + I2C_Disable_IRQ(hi2c, I2C_XFER_LISTEN_IT | I2C_XFER_TX_IT); + + /* Process Locked */ + __HAL_LOCK(hi2c); + + /* I2C cannot manage full duplex exchange so disable previous IT enabled if any */ + /* and then toggle the HAL slave RX state to TX state */ + if (hi2c->State == HAL_I2C_STATE_BUSY_RX_LISTEN) + { + /* Disable associated Interrupts */ + I2C_Disable_IRQ(hi2c, I2C_XFER_RX_IT); + + /* Abort DMA Xfer if any */ + if ((hi2c->Instance->CR1 & I2C_CR1_RXDMAEN) == I2C_CR1_RXDMAEN) + { + hi2c->Instance->CR1 &= ~I2C_CR1_RXDMAEN; + + if (hi2c->hdmarx != NULL) + { + /* Set the I2C DMA Abort callback : + will lead to call HAL_I2C_ErrorCallback() at end of DMA abort procedure */ + hi2c->hdmarx->XferAbortCallback = I2C_DMAAbort; + + /* Abort DMA RX */ + if (HAL_DMA_Abort_IT(hi2c->hdmarx) != HAL_OK) + { + /* Call Directly XferAbortCallback function in case of error */ + hi2c->hdmarx->XferAbortCallback(hi2c->hdmarx); + } + } + } + } + + hi2c->State = HAL_I2C_STATE_BUSY_TX_LISTEN; + hi2c->Mode = HAL_I2C_MODE_SLAVE; + hi2c->ErrorCode = HAL_I2C_ERROR_NONE; + + /* Enable Address Acknowledge */ + hi2c->Instance->CR2 &= ~I2C_CR2_NACK; + + /* Prepare transfer parameters */ + hi2c->pBuffPtr = pData; + hi2c->XferCount = Size; + hi2c->XferSize = hi2c->XferCount; + hi2c->XferOptions = XferOptions; + hi2c->XferISR = I2C_Slave_ISR_IT; + + if (I2C_GET_DIR(hi2c) == I2C_DIRECTION_RECEIVE) + { + /* Clear ADDR flag after prepare the transfer parameters */ + /* This action will generate an acknowledge to the Master */ + __HAL_I2C_CLEAR_FLAG(hi2c, I2C_FLAG_ADDR); + } + + /* Process Unlocked */ + __HAL_UNLOCK(hi2c); + + /* Note : The I2C interrupts must be enabled after unlocking current process + to avoid the risk of I2C interrupt handle execution before current + process unlock */ + /* REnable ADDR interrupt */ + I2C_Enable_IRQ(hi2c, I2C_XFER_TX_IT | I2C_XFER_LISTEN_IT); + + return HAL_OK; + } + else + { + return HAL_ERROR; + } +} + +/** + * @brief Sequential transmit in slave/device I2C mode an amount of data in non-blocking mode with DMA + * @note This interface allow to manage repeated start condition when a direction change during transfer + * @param hi2c Pointer to a I2C_HandleTypeDef structure that contains + * the configuration information for the specified I2C. + * @param pData Pointer to data buffer + * @param Size Amount of data to be sent + * @param XferOptions Options of Transfer, value of @ref I2C_XFEROPTIONS + * @retval HAL status + */ +HAL_StatusTypeDef HAL_I2C_Slave_Seq_Transmit_DMA(I2C_HandleTypeDef *hi2c, uint8_t *pData, uint16_t Size, uint32_t XferOptions) +{ + HAL_StatusTypeDef dmaxferstatus; + + /* Check the parameters */ + assert_param(IS_I2C_TRANSFER_OPTIONS_REQUEST(XferOptions)); + + if (((uint32_t)hi2c->State & (uint32_t)HAL_I2C_STATE_LISTEN) == (uint32_t)HAL_I2C_STATE_LISTEN) + { + if ((pData == NULL) || (Size == 0U)) + { + hi2c->ErrorCode = HAL_I2C_ERROR_INVALID_PARAM; + return HAL_ERROR; + } + + /* Process Locked */ + __HAL_LOCK(hi2c); + + /* Disable Interrupts, to prevent preemption during treatment in case of multicall */ + I2C_Disable_IRQ(hi2c, I2C_XFER_LISTEN_IT | I2C_XFER_TX_IT); + + /* I2C cannot manage full duplex exchange so disable previous IT enabled if any */ + /* and then toggle the HAL slave RX state to TX state */ + if (hi2c->State == HAL_I2C_STATE_BUSY_RX_LISTEN) + { + /* Disable associated Interrupts */ + I2C_Disable_IRQ(hi2c, I2C_XFER_RX_IT); + + if ((hi2c->Instance->CR1 & I2C_CR1_RXDMAEN) == I2C_CR1_RXDMAEN) + { + /* Abort DMA Xfer if any */ + if (hi2c->hdmarx != NULL) + { + hi2c->Instance->CR1 &= ~I2C_CR1_RXDMAEN; + + /* Set the I2C DMA Abort callback : + will lead to call HAL_I2C_ErrorCallback() at end of DMA abort procedure */ + hi2c->hdmarx->XferAbortCallback = I2C_DMAAbort; + + /* Abort DMA RX */ + if (HAL_DMA_Abort_IT(hi2c->hdmarx) != HAL_OK) + { + /* Call Directly XferAbortCallback function in case of error */ + hi2c->hdmarx->XferAbortCallback(hi2c->hdmarx); + } + } + } + } + else if (hi2c->State == HAL_I2C_STATE_BUSY_TX_LISTEN) + { + if ((hi2c->Instance->CR1 & I2C_CR1_TXDMAEN) == I2C_CR1_TXDMAEN) + { + hi2c->Instance->CR1 &= ~I2C_CR1_TXDMAEN; + + /* Abort DMA Xfer if any */ + if (hi2c->hdmatx != NULL) + { + /* Set the I2C DMA Abort callback : + will lead to call HAL_I2C_ErrorCallback() at end of DMA abort procedure */ + hi2c->hdmatx->XferAbortCallback = I2C_DMAAbort; + + /* Abort DMA TX */ + if (HAL_DMA_Abort_IT(hi2c->hdmatx) != HAL_OK) + { + /* Call Directly XferAbortCallback function in case of error */ + hi2c->hdmatx->XferAbortCallback(hi2c->hdmatx); + } + } + } + } + else + { + /* Nothing to do */ + } + + hi2c->State = HAL_I2C_STATE_BUSY_TX_LISTEN; + hi2c->Mode = HAL_I2C_MODE_SLAVE; + hi2c->ErrorCode = HAL_I2C_ERROR_NONE; + + /* Enable Address Acknowledge */ + hi2c->Instance->CR2 &= ~I2C_CR2_NACK; + + /* Prepare transfer parameters */ + hi2c->pBuffPtr = pData; + hi2c->XferCount = Size; + hi2c->XferSize = hi2c->XferCount; + hi2c->XferOptions = XferOptions; + hi2c->XferISR = I2C_Slave_ISR_DMA; + + if (hi2c->hdmatx != NULL) + { + /* Set the I2C DMA transfer complete callback */ + hi2c->hdmatx->XferCpltCallback = I2C_DMASlaveTransmitCplt; + + /* Set the DMA error callback */ + hi2c->hdmatx->XferErrorCallback = I2C_DMAError; + + /* Set the unused DMA callbacks to NULL */ + hi2c->hdmatx->XferHalfCpltCallback = NULL; + hi2c->hdmatx->XferAbortCallback = NULL; + + /* Enable the DMA stream or channel depends on Instance */ + dmaxferstatus = HAL_DMA_Start_IT(hi2c->hdmatx, (uint32_t)pData, (uint32_t)&hi2c->Instance->TXDR, hi2c->XferSize); + } + else + { + /* Update I2C state */ + hi2c->State = HAL_I2C_STATE_LISTEN; + hi2c->Mode = HAL_I2C_MODE_NONE; + + /* Update I2C error code */ + hi2c->ErrorCode |= HAL_I2C_ERROR_DMA_PARAM; + + /* Process Unlocked */ + __HAL_UNLOCK(hi2c); + + return HAL_ERROR; + } + + if (dmaxferstatus == HAL_OK) + { + /* Update XferCount value */ + hi2c->XferCount -= hi2c->XferSize; + + /* Reset XferSize */ + hi2c->XferSize = 0; + } + else + { + /* Update I2C state */ + hi2c->State = HAL_I2C_STATE_LISTEN; + hi2c->Mode = HAL_I2C_MODE_NONE; + + /* Update I2C error code */ + hi2c->ErrorCode |= HAL_I2C_ERROR_DMA; + + /* Process Unlocked */ + __HAL_UNLOCK(hi2c); + + return HAL_ERROR; + } + + if (I2C_GET_DIR(hi2c) == I2C_DIRECTION_RECEIVE) + { + /* Clear ADDR flag after prepare the transfer parameters */ + /* This action will generate an acknowledge to the Master */ + __HAL_I2C_CLEAR_FLAG(hi2c, I2C_FLAG_ADDR); + } + + /* Process Unlocked */ + __HAL_UNLOCK(hi2c); + + /* Note : The I2C interrupts must be enabled after unlocking current process + to avoid the risk of I2C interrupt handle execution before current + process unlock */ + /* Enable ERR, STOP, NACK, ADDR interrupts */ + I2C_Enable_IRQ(hi2c, I2C_XFER_LISTEN_IT); + + /* Enable DMA Request */ + hi2c->Instance->CR1 |= I2C_CR1_TXDMAEN; + + return HAL_OK; + } + else + { + return HAL_ERROR; + } +} + +/** + * @brief Sequential receive in slave/device I2C mode an amount of data in non-blocking mode with Interrupt + * @note This interface allow to manage repeated start condition when a direction change during transfer + * @param hi2c Pointer to a I2C_HandleTypeDef structure that contains + * the configuration information for the specified I2C. + * @param pData Pointer to data buffer + * @param Size Amount of data to be sent + * @param XferOptions Options of Transfer, value of @ref I2C_XFEROPTIONS + * @retval HAL status + */ +HAL_StatusTypeDef HAL_I2C_Slave_Seq_Receive_IT(I2C_HandleTypeDef *hi2c, uint8_t *pData, uint16_t Size, uint32_t XferOptions) +{ + /* Check the parameters */ + assert_param(IS_I2C_TRANSFER_OPTIONS_REQUEST(XferOptions)); + + if (((uint32_t)hi2c->State & (uint32_t)HAL_I2C_STATE_LISTEN) == (uint32_t)HAL_I2C_STATE_LISTEN) + { + if ((pData == NULL) || (Size == 0U)) + { + hi2c->ErrorCode = HAL_I2C_ERROR_INVALID_PARAM; + return HAL_ERROR; + } + + /* Disable Interrupts, to prevent preemption during treatment in case of multicall */ + I2C_Disable_IRQ(hi2c, I2C_XFER_LISTEN_IT | I2C_XFER_RX_IT); + + /* Process Locked */ + __HAL_LOCK(hi2c); + + /* I2C cannot manage full duplex exchange so disable previous IT enabled if any */ + /* and then toggle the HAL slave TX state to RX state */ + if (hi2c->State == HAL_I2C_STATE_BUSY_TX_LISTEN) + { + /* Disable associated Interrupts */ + I2C_Disable_IRQ(hi2c, I2C_XFER_TX_IT); + + if ((hi2c->Instance->CR1 & I2C_CR1_TXDMAEN) == I2C_CR1_TXDMAEN) + { + hi2c->Instance->CR1 &= ~I2C_CR1_TXDMAEN; + + /* Abort DMA Xfer if any */ + if (hi2c->hdmatx != NULL) + { + /* Set the I2C DMA Abort callback : + will lead to call HAL_I2C_ErrorCallback() at end of DMA abort procedure */ + hi2c->hdmatx->XferAbortCallback = I2C_DMAAbort; + + /* Abort DMA TX */ + if (HAL_DMA_Abort_IT(hi2c->hdmatx) != HAL_OK) + { + /* Call Directly XferAbortCallback function in case of error */ + hi2c->hdmatx->XferAbortCallback(hi2c->hdmatx); + } + } + } + } + + hi2c->State = HAL_I2C_STATE_BUSY_RX_LISTEN; + hi2c->Mode = HAL_I2C_MODE_SLAVE; + hi2c->ErrorCode = HAL_I2C_ERROR_NONE; + + /* Enable Address Acknowledge */ + hi2c->Instance->CR2 &= ~I2C_CR2_NACK; + + /* Prepare transfer parameters */ + hi2c->pBuffPtr = pData; + hi2c->XferCount = Size; + hi2c->XferSize = hi2c->XferCount; + hi2c->XferOptions = XferOptions; + hi2c->XferISR = I2C_Slave_ISR_IT; + + if (I2C_GET_DIR(hi2c) == I2C_DIRECTION_TRANSMIT) + { + /* Clear ADDR flag after prepare the transfer parameters */ + /* This action will generate an acknowledge to the Master */ + __HAL_I2C_CLEAR_FLAG(hi2c, I2C_FLAG_ADDR); + } + + /* Process Unlocked */ + __HAL_UNLOCK(hi2c); + + /* Note : The I2C interrupts must be enabled after unlocking current process + to avoid the risk of I2C interrupt handle execution before current + process unlock */ + /* REnable ADDR interrupt */ + I2C_Enable_IRQ(hi2c, I2C_XFER_RX_IT | I2C_XFER_LISTEN_IT); + + return HAL_OK; + } + else + { + return HAL_ERROR; + } +} + +/** + * @brief Sequential receive in slave/device I2C mode an amount of data in non-blocking mode with DMA + * @note This interface allow to manage repeated start condition when a direction change during transfer + * @param hi2c Pointer to a I2C_HandleTypeDef structure that contains + * the configuration information for the specified I2C. + * @param pData Pointer to data buffer + * @param Size Amount of data to be sent + * @param XferOptions Options of Transfer, value of @ref I2C_XFEROPTIONS + * @retval HAL status + */ +HAL_StatusTypeDef HAL_I2C_Slave_Seq_Receive_DMA(I2C_HandleTypeDef *hi2c, uint8_t *pData, uint16_t Size, uint32_t XferOptions) +{ + HAL_StatusTypeDef dmaxferstatus; + + /* Check the parameters */ + assert_param(IS_I2C_TRANSFER_OPTIONS_REQUEST(XferOptions)); + + if (((uint32_t)hi2c->State & (uint32_t)HAL_I2C_STATE_LISTEN) == (uint32_t)HAL_I2C_STATE_LISTEN) + { + if ((pData == NULL) || (Size == 0U)) + { + hi2c->ErrorCode = HAL_I2C_ERROR_INVALID_PARAM; + return HAL_ERROR; + } + + /* Disable Interrupts, to prevent preemption during treatment in case of multicall */ + I2C_Disable_IRQ(hi2c, I2C_XFER_LISTEN_IT | I2C_XFER_RX_IT); + + /* Process Locked */ + __HAL_LOCK(hi2c); + + /* I2C cannot manage full duplex exchange so disable previous IT enabled if any */ + /* and then toggle the HAL slave TX state to RX state */ + if (hi2c->State == HAL_I2C_STATE_BUSY_TX_LISTEN) + { + /* Disable associated Interrupts */ + I2C_Disable_IRQ(hi2c, I2C_XFER_TX_IT); + + if ((hi2c->Instance->CR1 & I2C_CR1_TXDMAEN) == I2C_CR1_TXDMAEN) + { + /* Abort DMA Xfer if any */ + if (hi2c->hdmatx != NULL) + { + hi2c->Instance->CR1 &= ~I2C_CR1_TXDMAEN; + + /* Set the I2C DMA Abort callback : + will lead to call HAL_I2C_ErrorCallback() at end of DMA abort procedure */ + hi2c->hdmatx->XferAbortCallback = I2C_DMAAbort; + + /* Abort DMA TX */ + if (HAL_DMA_Abort_IT(hi2c->hdmatx) != HAL_OK) + { + /* Call Directly XferAbortCallback function in case of error */ + hi2c->hdmatx->XferAbortCallback(hi2c->hdmatx); + } + } + } + } + else if (hi2c->State == HAL_I2C_STATE_BUSY_RX_LISTEN) + { + if ((hi2c->Instance->CR1 & I2C_CR1_RXDMAEN) == I2C_CR1_RXDMAEN) + { + hi2c->Instance->CR1 &= ~I2C_CR1_RXDMAEN; + + /* Abort DMA Xfer if any */ + if (hi2c->hdmarx != NULL) + { + /* Set the I2C DMA Abort callback : + will lead to call HAL_I2C_ErrorCallback() at end of DMA abort procedure */ + hi2c->hdmarx->XferAbortCallback = I2C_DMAAbort; + + /* Abort DMA RX */ + if (HAL_DMA_Abort_IT(hi2c->hdmarx) != HAL_OK) + { + /* Call Directly XferAbortCallback function in case of error */ + hi2c->hdmarx->XferAbortCallback(hi2c->hdmarx); + } + } + } + } + else + { + /* Nothing to do */ + } + + hi2c->State = HAL_I2C_STATE_BUSY_RX_LISTEN; + hi2c->Mode = HAL_I2C_MODE_SLAVE; + hi2c->ErrorCode = HAL_I2C_ERROR_NONE; + + /* Enable Address Acknowledge */ + hi2c->Instance->CR2 &= ~I2C_CR2_NACK; + + /* Prepare transfer parameters */ + hi2c->pBuffPtr = pData; + hi2c->XferCount = Size; + hi2c->XferSize = hi2c->XferCount; + hi2c->XferOptions = XferOptions; + hi2c->XferISR = I2C_Slave_ISR_DMA; + + if (hi2c->hdmarx != NULL) + { + /* Set the I2C DMA transfer complete callback */ + hi2c->hdmarx->XferCpltCallback = I2C_DMASlaveReceiveCplt; + + /* Set the DMA error callback */ + hi2c->hdmarx->XferErrorCallback = I2C_DMAError; + + /* Set the unused DMA callbacks to NULL */ + hi2c->hdmarx->XferHalfCpltCallback = NULL; + hi2c->hdmarx->XferAbortCallback = NULL; + + /* Enable the DMA stream or channel depends on Instance */ + dmaxferstatus = HAL_DMA_Start_IT(hi2c->hdmarx, (uint32_t)&hi2c->Instance->RXDR, (uint32_t)pData, hi2c->XferSize); + } + else + { + /* Update I2C state */ + hi2c->State = HAL_I2C_STATE_LISTEN; + hi2c->Mode = HAL_I2C_MODE_NONE; + + /* Update I2C error code */ + hi2c->ErrorCode |= HAL_I2C_ERROR_DMA_PARAM; + + /* Process Unlocked */ + __HAL_UNLOCK(hi2c); + + return HAL_ERROR; + } + + if (dmaxferstatus == HAL_OK) + { + /* Update XferCount value */ + hi2c->XferCount -= hi2c->XferSize; + + /* Reset XferSize */ + hi2c->XferSize = 0; + } + else + { + /* Update I2C state */ + hi2c->State = HAL_I2C_STATE_LISTEN; + hi2c->Mode = HAL_I2C_MODE_NONE; + + /* Update I2C error code */ + hi2c->ErrorCode |= HAL_I2C_ERROR_DMA; + + /* Process Unlocked */ + __HAL_UNLOCK(hi2c); + + return HAL_ERROR; + } + + if (I2C_GET_DIR(hi2c) == I2C_DIRECTION_TRANSMIT) + { + /* Clear ADDR flag after prepare the transfer parameters */ + /* This action will generate an acknowledge to the Master */ + __HAL_I2C_CLEAR_FLAG(hi2c, I2C_FLAG_ADDR); + } + + /* Process Unlocked */ + __HAL_UNLOCK(hi2c); + + /* Note : The I2C interrupts must be enabled after unlocking current process + to avoid the risk of I2C interrupt handle execution before current + process unlock */ + /* REnable ADDR interrupt */ + I2C_Enable_IRQ(hi2c, I2C_XFER_RX_IT | I2C_XFER_LISTEN_IT); + + /* Enable DMA Request */ + hi2c->Instance->CR1 |= I2C_CR1_RXDMAEN; + + return HAL_OK; + } + else + { + return HAL_ERROR; + } +} + +/** + * @brief Enable the Address listen mode with Interrupt. + * @param hi2c Pointer to a I2C_HandleTypeDef structure that contains + * the configuration information for the specified I2C. + * @retval HAL status + */ +HAL_StatusTypeDef HAL_I2C_EnableListen_IT(I2C_HandleTypeDef *hi2c) +{ + if (hi2c->State == HAL_I2C_STATE_READY) + { + hi2c->State = HAL_I2C_STATE_LISTEN; + hi2c->XferISR = I2C_Slave_ISR_IT; + + /* Enable the Address Match interrupt */ + I2C_Enable_IRQ(hi2c, I2C_XFER_LISTEN_IT); + + return HAL_OK; + } + else + { + return HAL_BUSY; + } +} + +/** + * @brief Disable the Address listen mode with Interrupt. + * @param hi2c Pointer to a I2C_HandleTypeDef structure that contains + * the configuration information for the specified I2C + * @retval HAL status + */ +HAL_StatusTypeDef HAL_I2C_DisableListen_IT(I2C_HandleTypeDef *hi2c) +{ + /* Declaration of tmp to prevent undefined behavior of volatile usage */ + uint32_t tmp; + + /* Disable Address listen mode only if a transfer is not ongoing */ + if (hi2c->State == HAL_I2C_STATE_LISTEN) + { + tmp = (uint32_t)(hi2c->State) & I2C_STATE_MSK; + hi2c->PreviousState = tmp | (uint32_t)(hi2c->Mode); + hi2c->State = HAL_I2C_STATE_READY; + hi2c->Mode = HAL_I2C_MODE_NONE; + hi2c->XferISR = NULL; + + /* Disable the Address Match interrupt */ + I2C_Disable_IRQ(hi2c, I2C_XFER_LISTEN_IT); + + return HAL_OK; + } + else + { + return HAL_BUSY; + } +} + +/** + * @brief Abort a master I2C IT or DMA process communication with Interrupt. + * @param hi2c Pointer to a I2C_HandleTypeDef structure that contains + * the configuration information for the specified I2C. + * @param DevAddress Target device address: The device 7 bits address value + * in datasheet must be shifted to the left before calling the interface + * @retval HAL status + */ +HAL_StatusTypeDef HAL_I2C_Master_Abort_IT(I2C_HandleTypeDef *hi2c, uint16_t DevAddress) +{ + if (hi2c->Mode == HAL_I2C_MODE_MASTER) + { + /* Process Locked */ + __HAL_LOCK(hi2c); + + /* Disable Interrupts */ + I2C_Disable_IRQ(hi2c, I2C_XFER_RX_IT); + I2C_Disable_IRQ(hi2c, I2C_XFER_TX_IT); + + /* Set State at HAL_I2C_STATE_ABORT */ + hi2c->State = HAL_I2C_STATE_ABORT; + + /* Set NBYTES to 1 to generate a dummy read on I2C peripheral */ + /* Set AUTOEND mode, this will generate a NACK then STOP condition to abort the current transfer */ + I2C_TransferConfig(hi2c, DevAddress, 1, I2C_AUTOEND_MODE, I2C_GENERATE_STOP); + + /* Process Unlocked */ + __HAL_UNLOCK(hi2c); + + /* Note : The I2C interrupts must be enabled after unlocking current process + to avoid the risk of I2C interrupt handle execution before current + process unlock */ + I2C_Enable_IRQ(hi2c, I2C_XFER_CPLT_IT); + + return HAL_OK; + } + else + { + /* Wrong usage of abort function */ + /* This function should be used only in case of abort monitored by master device */ + return HAL_ERROR; + } +} + +/** + * @} + */ + +/** @defgroup I2C_IRQ_Handler_and_Callbacks IRQ Handler and Callbacks + * @{ + */ + +/** + * @brief This function handles I2C event interrupt request. + * @param hi2c Pointer to a I2C_HandleTypeDef structure that contains + * the configuration information for the specified I2C. + * @retval None + */ +void HAL_I2C_EV_IRQHandler(I2C_HandleTypeDef *hi2c) +{ + /* Get current IT Flags and IT sources value */ + uint32_t itflags = READ_REG(hi2c->Instance->ISR); + uint32_t itsources = READ_REG(hi2c->Instance->CR1); + + /* I2C events treatment -------------------------------------*/ + if (hi2c->XferISR != NULL) + { + hi2c->XferISR(hi2c, itflags, itsources); + } +} + +/** + * @brief This function handles I2C error interrupt request. + * @param hi2c Pointer to a I2C_HandleTypeDef structure that contains + * the configuration information for the specified I2C. + * @retval None + */ +void HAL_I2C_ER_IRQHandler(I2C_HandleTypeDef *hi2c) +{ + uint32_t itflags = READ_REG(hi2c->Instance->ISR); + uint32_t itsources = READ_REG(hi2c->Instance->CR1); + uint32_t tmperror; + + /* I2C Bus error interrupt occurred ------------------------------------*/ + if ((I2C_CHECK_FLAG(itflags, I2C_FLAG_BERR) != RESET) && (I2C_CHECK_IT_SOURCE(itsources, I2C_IT_ERRI) != RESET)) + { + hi2c->ErrorCode |= HAL_I2C_ERROR_BERR; + + /* Clear BERR flag */ + __HAL_I2C_CLEAR_FLAG(hi2c, I2C_FLAG_BERR); + } + + /* I2C Over-Run/Under-Run interrupt occurred ----------------------------------------*/ + if ((I2C_CHECK_FLAG(itflags, I2C_FLAG_OVR) != RESET) && (I2C_CHECK_IT_SOURCE(itsources, I2C_IT_ERRI) != RESET)) + { + hi2c->ErrorCode |= HAL_I2C_ERROR_OVR; + + /* Clear OVR flag */ + __HAL_I2C_CLEAR_FLAG(hi2c, I2C_FLAG_OVR); + } + + /* I2C Arbitration Loss error interrupt occurred -------------------------------------*/ + if ((I2C_CHECK_FLAG(itflags, I2C_FLAG_ARLO) != RESET) && (I2C_CHECK_IT_SOURCE(itsources, I2C_IT_ERRI) != RESET)) + { + hi2c->ErrorCode |= HAL_I2C_ERROR_ARLO; + + /* Clear ARLO flag */ + __HAL_I2C_CLEAR_FLAG(hi2c, I2C_FLAG_ARLO); + } + + /* Store current volatile hi2c->ErrorCode, misra rule */ + tmperror = hi2c->ErrorCode; + + /* Call the Error Callback in case of Error detected */ + if ((tmperror & (HAL_I2C_ERROR_BERR | HAL_I2C_ERROR_OVR | HAL_I2C_ERROR_ARLO)) != HAL_I2C_ERROR_NONE) + { + I2C_ITError(hi2c, tmperror); + } +} + +/** + * @brief Master Tx Transfer completed callback. + * @param hi2c Pointer to a I2C_HandleTypeDef structure that contains + * the configuration information for the specified I2C. + * @retval None + */ +__weak void HAL_I2C_MasterTxCpltCallback(I2C_HandleTypeDef *hi2c) +{ + /* Prevent unused argument(s) compilation warning */ + UNUSED(hi2c); + + /* NOTE : This function should not be modified, when the callback is needed, + the HAL_I2C_MasterTxCpltCallback could be implemented in the user file + */ +} + +/** + * @brief Master Rx Transfer completed callback. + * @param hi2c Pointer to a I2C_HandleTypeDef structure that contains + * the configuration information for the specified I2C. + * @retval None + */ +__weak void HAL_I2C_MasterRxCpltCallback(I2C_HandleTypeDef *hi2c) +{ + /* Prevent unused argument(s) compilation warning */ + UNUSED(hi2c); + + /* NOTE : This function should not be modified, when the callback is needed, + the HAL_I2C_MasterRxCpltCallback could be implemented in the user file + */ +} + +/** @brief Slave Tx Transfer completed callback. + * @param hi2c Pointer to a I2C_HandleTypeDef structure that contains + * the configuration information for the specified I2C. + * @retval None + */ +__weak void HAL_I2C_SlaveTxCpltCallback(I2C_HandleTypeDef *hi2c) +{ + /* Prevent unused argument(s) compilation warning */ + UNUSED(hi2c); + + /* NOTE : This function should not be modified, when the callback is needed, + the HAL_I2C_SlaveTxCpltCallback could be implemented in the user file + */ +} + +/** + * @brief Slave Rx Transfer completed callback. + * @param hi2c Pointer to a I2C_HandleTypeDef structure that contains + * the configuration information for the specified I2C. + * @retval None + */ +__weak void HAL_I2C_SlaveRxCpltCallback(I2C_HandleTypeDef *hi2c) +{ + /* Prevent unused argument(s) compilation warning */ + UNUSED(hi2c); + + /* NOTE : This function should not be modified, when the callback is needed, + the HAL_I2C_SlaveRxCpltCallback could be implemented in the user file + */ +} + +/** + * @brief Slave Address Match callback. + * @param hi2c Pointer to a I2C_HandleTypeDef structure that contains + * the configuration information for the specified I2C. + * @param TransferDirection Master request Transfer Direction (Write/Read), value of @ref I2C_XFERDIRECTION + * @param AddrMatchCode Address Match Code + * @retval None + */ +__weak void HAL_I2C_AddrCallback(I2C_HandleTypeDef *hi2c, uint8_t TransferDirection, uint16_t AddrMatchCode) +{ + /* Prevent unused argument(s) compilation warning */ + UNUSED(hi2c); + UNUSED(TransferDirection); + UNUSED(AddrMatchCode); + + /* NOTE : This function should not be modified, when the callback is needed, + the HAL_I2C_AddrCallback() could be implemented in the user file + */ +} + +/** + * @brief Listen Complete callback. + * @param hi2c Pointer to a I2C_HandleTypeDef structure that contains + * the configuration information for the specified I2C. + * @retval None + */ +__weak void HAL_I2C_ListenCpltCallback(I2C_HandleTypeDef *hi2c) +{ + /* Prevent unused argument(s) compilation warning */ + UNUSED(hi2c); + + /* NOTE : This function should not be modified, when the callback is needed, + the HAL_I2C_ListenCpltCallback() could be implemented in the user file + */ +} + +/** + * @brief Memory Tx Transfer completed callback. + * @param hi2c Pointer to a I2C_HandleTypeDef structure that contains + * the configuration information for the specified I2C. + * @retval None + */ +__weak void HAL_I2C_MemTxCpltCallback(I2C_HandleTypeDef *hi2c) +{ + /* Prevent unused argument(s) compilation warning */ + UNUSED(hi2c); + + /* NOTE : This function should not be modified, when the callback is needed, + the HAL_I2C_MemTxCpltCallback could be implemented in the user file + */ +} + +/** + * @brief Memory Rx Transfer completed callback. + * @param hi2c Pointer to a I2C_HandleTypeDef structure that contains + * the configuration information for the specified I2C. + * @retval None + */ +__weak void HAL_I2C_MemRxCpltCallback(I2C_HandleTypeDef *hi2c) +{ + /* Prevent unused argument(s) compilation warning */ + UNUSED(hi2c); + + /* NOTE : This function should not be modified, when the callback is needed, + the HAL_I2C_MemRxCpltCallback could be implemented in the user file + */ +} + +/** + * @brief I2C error callback. + * @param hi2c Pointer to a I2C_HandleTypeDef structure that contains + * the configuration information for the specified I2C. + * @retval None + */ +__weak void HAL_I2C_ErrorCallback(I2C_HandleTypeDef *hi2c) +{ + /* Prevent unused argument(s) compilation warning */ + UNUSED(hi2c); + + /* NOTE : This function should not be modified, when the callback is needed, + the HAL_I2C_ErrorCallback could be implemented in the user file + */ +} + +/** + * @brief I2C abort callback. + * @param hi2c Pointer to a I2C_HandleTypeDef structure that contains + * the configuration information for the specified I2C. + * @retval None + */ +__weak void HAL_I2C_AbortCpltCallback(I2C_HandleTypeDef *hi2c) +{ + /* Prevent unused argument(s) compilation warning */ + UNUSED(hi2c); + + /* NOTE : This function should not be modified, when the callback is needed, + the HAL_I2C_AbortCpltCallback could be implemented in the user file + */ +} + +/** + * @} + */ + +/** @defgroup I2C_Exported_Functions_Group3 Peripheral State, Mode and Error functions + * @brief Peripheral State, Mode and Error functions + * +@verbatim + =============================================================================== + ##### Peripheral State, Mode and Error functions ##### + =============================================================================== + [..] + This subsection permit to get in run-time the status of the peripheral + and the data flow. + +@endverbatim + * @{ + */ + +/** + * @brief Return the I2C handle state. + * @param hi2c Pointer to a I2C_HandleTypeDef structure that contains + * the configuration information for the specified I2C. + * @retval HAL state + */ +HAL_I2C_StateTypeDef HAL_I2C_GetState(I2C_HandleTypeDef *hi2c) +{ + /* Return I2C handle state */ + return hi2c->State; +} + +/** + * @brief Returns the I2C Master, Slave, Memory or no mode. + * @param hi2c Pointer to a I2C_HandleTypeDef structure that contains + * the configuration information for I2C module + * @retval HAL mode + */ +HAL_I2C_ModeTypeDef HAL_I2C_GetMode(I2C_HandleTypeDef *hi2c) +{ + return hi2c->Mode; +} + +/** +* @brief Return the I2C error code. + * @param hi2c Pointer to a I2C_HandleTypeDef structure that contains + * the configuration information for the specified I2C. +* @retval I2C Error Code +*/ +uint32_t HAL_I2C_GetError(I2C_HandleTypeDef *hi2c) +{ + return hi2c->ErrorCode; +} + +/** + * @} + */ + +/** + * @} + */ + +/** @addtogroup I2C_Private_Functions + * @{ + */ + +/** + * @brief Interrupt Sub-Routine which handle the Interrupt Flags Master Mode with Interrupt. + * @param hi2c Pointer to a I2C_HandleTypeDef structure that contains + * the configuration information for the specified I2C. + * @param ITFlags Interrupt flags to handle. + * @param ITSources Interrupt sources enabled. + * @retval HAL status + */ +static HAL_StatusTypeDef I2C_Master_ISR_IT(struct __I2C_HandleTypeDef *hi2c, uint32_t ITFlags, uint32_t ITSources) +{ + uint16_t devaddress; + uint32_t tmpITFlags = ITFlags; + + /* Process Locked */ + __HAL_LOCK(hi2c); + + if ((I2C_CHECK_FLAG(tmpITFlags, I2C_FLAG_AF) != RESET) && (I2C_CHECK_IT_SOURCE(ITSources, I2C_IT_NACKI) != RESET)) + { + /* Clear NACK Flag */ + __HAL_I2C_CLEAR_FLAG(hi2c, I2C_FLAG_AF); + + /* Set corresponding Error Code */ + /* No need to generate STOP, it is automatically done */ + /* Error callback will be send during stop flag treatment */ + hi2c->ErrorCode |= HAL_I2C_ERROR_AF; + + /* Flush TX register */ + I2C_Flush_TXDR(hi2c); + } + else if ((I2C_CHECK_FLAG(tmpITFlags, I2C_FLAG_RXNE) != RESET) && (I2C_CHECK_IT_SOURCE(ITSources, I2C_IT_RXI) != RESET)) + { + /* Remove RXNE flag on temporary variable as read done */ + tmpITFlags &= ~I2C_FLAG_RXNE; + + /* Read data from RXDR */ + *hi2c->pBuffPtr = (uint8_t)hi2c->Instance->RXDR; + + /* Increment Buffer pointer */ + hi2c->pBuffPtr++; + + hi2c->XferSize--; + hi2c->XferCount--; + } + else if ((I2C_CHECK_FLAG(tmpITFlags, I2C_FLAG_TXIS) != RESET) && (I2C_CHECK_IT_SOURCE(ITSources, I2C_IT_TXI) != RESET)) + { + /* Write data to TXDR */ + hi2c->Instance->TXDR = *hi2c->pBuffPtr; + + /* Increment Buffer pointer */ + hi2c->pBuffPtr++; + + hi2c->XferSize--; + hi2c->XferCount--; + } + else if ((I2C_CHECK_FLAG(tmpITFlags, I2C_FLAG_TCR) != RESET) && (I2C_CHECK_IT_SOURCE(ITSources, I2C_IT_TCI) != RESET)) + { + if ((hi2c->XferCount != 0U) && (hi2c->XferSize == 0U)) + { + devaddress = (uint16_t)(hi2c->Instance->CR2 & I2C_CR2_SADD); + + if (hi2c->XferCount > MAX_NBYTE_SIZE) + { + hi2c->XferSize = MAX_NBYTE_SIZE; + I2C_TransferConfig(hi2c, devaddress, (uint8_t)hi2c->XferSize, I2C_RELOAD_MODE, I2C_NO_STARTSTOP); + } + else + { + hi2c->XferSize = hi2c->XferCount; + if (hi2c->XferOptions != I2C_NO_OPTION_FRAME) + { + I2C_TransferConfig(hi2c, devaddress, (uint8_t)hi2c->XferSize, hi2c->XferOptions, I2C_NO_STARTSTOP); + } + else + { + I2C_TransferConfig(hi2c, devaddress, (uint8_t)hi2c->XferSize, I2C_AUTOEND_MODE, I2C_NO_STARTSTOP); + } + } + } + else + { + /* Call TxCpltCallback() if no stop mode is set */ + if (I2C_GET_STOP_MODE(hi2c) != I2C_AUTOEND_MODE) + { + /* Call I2C Master Sequential complete process */ + I2C_ITMasterSeqCplt(hi2c); + } + else + { + /* Wrong size Status regarding TCR flag event */ + /* Call the corresponding callback to inform upper layer of End of Transfer */ + I2C_ITError(hi2c, HAL_I2C_ERROR_SIZE); + } + } + } + else if ((I2C_CHECK_FLAG(tmpITFlags, I2C_FLAG_TC) != RESET) && (I2C_CHECK_IT_SOURCE(ITSources, I2C_IT_TCI) != RESET)) + { + if (hi2c->XferCount == 0U) + { + if (I2C_GET_STOP_MODE(hi2c) != I2C_AUTOEND_MODE) + { + /* Generate a stop condition in case of no transfer option */ + if (hi2c->XferOptions == I2C_NO_OPTION_FRAME) + { + /* Generate Stop */ + hi2c->Instance->CR2 |= I2C_CR2_STOP; + } + else + { + /* Call I2C Master Sequential complete process */ + I2C_ITMasterSeqCplt(hi2c); + } + } + } + else + { + /* Wrong size Status regarding TC flag event */ + /* Call the corresponding callback to inform upper layer of End of Transfer */ + I2C_ITError(hi2c, HAL_I2C_ERROR_SIZE); + } + } + else + { + /* Nothing to do */ + } + + if ((I2C_CHECK_FLAG(tmpITFlags, I2C_FLAG_STOPF) != RESET) && (I2C_CHECK_IT_SOURCE(ITSources, I2C_IT_STOPI) != RESET)) + { + /* Call I2C Master complete process */ + I2C_ITMasterCplt(hi2c, tmpITFlags); + } + + /* Process Unlocked */ + __HAL_UNLOCK(hi2c); + + return HAL_OK; +} + +/** + * @brief Interrupt Sub-Routine which handle the Interrupt Flags Slave Mode with Interrupt. + * @param hi2c Pointer to a I2C_HandleTypeDef structure that contains + * the configuration information for the specified I2C. + * @param ITFlags Interrupt flags to handle. + * @param ITSources Interrupt sources enabled. + * @retval HAL status + */ +static HAL_StatusTypeDef I2C_Slave_ISR_IT(struct __I2C_HandleTypeDef *hi2c, uint32_t ITFlags, uint32_t ITSources) +{ + uint32_t tmpoptions = hi2c->XferOptions; + uint32_t tmpITFlags = ITFlags; + + /* Process locked */ + __HAL_LOCK(hi2c); + + /* Check if STOPF is set */ + if ((I2C_CHECK_FLAG(tmpITFlags, I2C_FLAG_STOPF) != RESET) && (I2C_CHECK_IT_SOURCE(ITSources, I2C_IT_STOPI) != RESET)) + { + /* Call I2C Slave complete process */ + I2C_ITSlaveCplt(hi2c, tmpITFlags); + } + + if ((I2C_CHECK_FLAG(tmpITFlags, I2C_FLAG_AF) != RESET) && (I2C_CHECK_IT_SOURCE(ITSources, I2C_IT_NACKI) != RESET)) + { + /* Check that I2C transfer finished */ + /* if yes, normal use case, a NACK is sent by the MASTER when Transfer is finished */ + /* Mean XferCount == 0*/ + /* So clear Flag NACKF only */ + if (hi2c->XferCount == 0U) + { + if ((hi2c->State == HAL_I2C_STATE_LISTEN) && (tmpoptions == I2C_FIRST_AND_LAST_FRAME)) /* Same action must be done for (tmpoptions == I2C_LAST_FRAME) which removed for Warning[Pa134]: left and right operands are identical */ + { + /* Call I2C Listen complete process */ + I2C_ITListenCplt(hi2c, tmpITFlags); + } + else if ((hi2c->State == HAL_I2C_STATE_BUSY_TX_LISTEN) && (tmpoptions != I2C_NO_OPTION_FRAME)) + { + /* Clear NACK Flag */ + __HAL_I2C_CLEAR_FLAG(hi2c, I2C_FLAG_AF); + + /* Flush TX register */ + I2C_Flush_TXDR(hi2c); + + /* Last Byte is Transmitted */ + /* Call I2C Slave Sequential complete process */ + I2C_ITSlaveSeqCplt(hi2c); + } + else + { + /* Clear NACK Flag */ + __HAL_I2C_CLEAR_FLAG(hi2c, I2C_FLAG_AF); + } + } + else + { + /* if no, error use case, a Non-Acknowledge of last Data is generated by the MASTER*/ + /* Clear NACK Flag */ + __HAL_I2C_CLEAR_FLAG(hi2c, I2C_FLAG_AF); + + /* Set ErrorCode corresponding to a Non-Acknowledge */ + hi2c->ErrorCode |= HAL_I2C_ERROR_AF; + + if ((tmpoptions == I2C_FIRST_FRAME) || (tmpoptions == I2C_NEXT_FRAME)) + { + /* Call the corresponding callback to inform upper layer of End of Transfer */ + I2C_ITError(hi2c, hi2c->ErrorCode); + } + } + } + else if ((I2C_CHECK_FLAG(tmpITFlags, I2C_FLAG_RXNE) != RESET) && (I2C_CHECK_IT_SOURCE(ITSources, I2C_IT_RXI) != RESET)) + { + if (hi2c->XferCount > 0U) + { + /* Read data from RXDR */ + *hi2c->pBuffPtr = (uint8_t)hi2c->Instance->RXDR; + + /* Increment Buffer pointer */ + hi2c->pBuffPtr++; + + hi2c->XferSize--; + hi2c->XferCount--; + } + + if ((hi2c->XferCount == 0U) && \ + (tmpoptions != I2C_NO_OPTION_FRAME)) + { + /* Call I2C Slave Sequential complete process */ + I2C_ITSlaveSeqCplt(hi2c); + } + } + else if ((I2C_CHECK_FLAG(tmpITFlags, I2C_FLAG_ADDR) != RESET) && (I2C_CHECK_IT_SOURCE(ITSources, I2C_IT_ADDRI) != RESET)) + { + I2C_ITAddrCplt(hi2c, tmpITFlags); + } + else if ((I2C_CHECK_FLAG(tmpITFlags, I2C_FLAG_TXIS) != RESET) && (I2C_CHECK_IT_SOURCE(ITSources, I2C_IT_TXI) != RESET)) + { + /* Write data to TXDR only if XferCount not reach "0" */ + /* A TXIS flag can be set, during STOP treatment */ + /* Check if all Datas have already been sent */ + /* If it is the case, this last write in TXDR is not sent, correspond to a dummy TXIS event */ + if (hi2c->XferCount > 0U) + { + /* Write data to TXDR */ + hi2c->Instance->TXDR = *hi2c->pBuffPtr; + + /* Increment Buffer pointer */ + hi2c->pBuffPtr++; + + hi2c->XferCount--; + hi2c->XferSize--; + } + else + { + if ((tmpoptions == I2C_NEXT_FRAME) || (tmpoptions == I2C_FIRST_FRAME)) + { + /* Last Byte is Transmitted */ + /* Call I2C Slave Sequential complete process */ + I2C_ITSlaveSeqCplt(hi2c); + } + } + } + else + { + /* Nothing to do */ + } + + /* Process Unlocked */ + __HAL_UNLOCK(hi2c); + + return HAL_OK; +} + +/** + * @brief Interrupt Sub-Routine which handle the Interrupt Flags Master Mode with DMA. + * @param hi2c Pointer to a I2C_HandleTypeDef structure that contains + * the configuration information for the specified I2C. + * @param ITFlags Interrupt flags to handle. + * @param ITSources Interrupt sources enabled. + * @retval HAL status + */ +static HAL_StatusTypeDef I2C_Master_ISR_DMA(struct __I2C_HandleTypeDef *hi2c, uint32_t ITFlags, uint32_t ITSources) +{ + uint16_t devaddress; + uint32_t xfermode; + + /* Process Locked */ + __HAL_LOCK(hi2c); + + if ((I2C_CHECK_FLAG(ITFlags, I2C_FLAG_AF) != RESET) && (I2C_CHECK_IT_SOURCE(ITSources, I2C_IT_NACKI) != RESET)) + { + /* Clear NACK Flag */ + __HAL_I2C_CLEAR_FLAG(hi2c, I2C_FLAG_AF); + + /* Set corresponding Error Code */ + hi2c->ErrorCode |= HAL_I2C_ERROR_AF; + + /* No need to generate STOP, it is automatically done */ + /* But enable STOP interrupt, to treat it */ + /* Error callback will be send during stop flag treatment */ + I2C_Enable_IRQ(hi2c, I2C_XFER_CPLT_IT); + + /* Flush TX register */ + I2C_Flush_TXDR(hi2c); + } + else if ((I2C_CHECK_FLAG(ITFlags, I2C_FLAG_TCR) != RESET) && (I2C_CHECK_IT_SOURCE(ITSources, I2C_IT_TCI) != RESET)) + { + /* Disable TC interrupt */ + __HAL_I2C_DISABLE_IT(hi2c, I2C_IT_TCI); + + if (hi2c->XferCount != 0U) + { + /* Recover Slave address */ + devaddress = (uint16_t)(hi2c->Instance->CR2 & I2C_CR2_SADD); + + /* Prepare the new XferSize to transfer */ + if (hi2c->XferCount > MAX_NBYTE_SIZE) + { + hi2c->XferSize = MAX_NBYTE_SIZE; + xfermode = I2C_RELOAD_MODE; + } + else + { + hi2c->XferSize = hi2c->XferCount; + if (hi2c->XferOptions != I2C_NO_OPTION_FRAME) + { + xfermode = hi2c->XferOptions; + } + else + { + xfermode = I2C_AUTOEND_MODE; + } + } + + /* Set the new XferSize in Nbytes register */ + I2C_TransferConfig(hi2c, devaddress, (uint8_t)hi2c->XferSize, xfermode, I2C_NO_STARTSTOP); + + /* Update XferCount value */ + hi2c->XferCount -= hi2c->XferSize; + + /* Enable DMA Request */ + if (hi2c->State == HAL_I2C_STATE_BUSY_RX) + { + hi2c->Instance->CR1 |= I2C_CR1_RXDMAEN; + } + else + { + hi2c->Instance->CR1 |= I2C_CR1_TXDMAEN; + } + } + else + { + /* Call TxCpltCallback() if no stop mode is set */ + if (I2C_GET_STOP_MODE(hi2c) != I2C_AUTOEND_MODE) + { + /* Call I2C Master Sequential complete process */ + I2C_ITMasterSeqCplt(hi2c); + } + else + { + /* Wrong size Status regarding TCR flag event */ + /* Call the corresponding callback to inform upper layer of End of Transfer */ + I2C_ITError(hi2c, HAL_I2C_ERROR_SIZE); + } + } + } + else if ((I2C_CHECK_FLAG(ITFlags, I2C_FLAG_TC) != RESET) && (I2C_CHECK_IT_SOURCE(ITSources, I2C_IT_TCI) != RESET)) + { + if (hi2c->XferCount == 0U) + { + if (I2C_GET_STOP_MODE(hi2c) != I2C_AUTOEND_MODE) + { + /* Generate a stop condition in case of no transfer option */ + if (hi2c->XferOptions == I2C_NO_OPTION_FRAME) + { + /* Generate Stop */ + hi2c->Instance->CR2 |= I2C_CR2_STOP; + } + else + { + /* Call I2C Master Sequential complete process */ + I2C_ITMasterSeqCplt(hi2c); + } + } + } + else + { + /* Wrong size Status regarding TC flag event */ + /* Call the corresponding callback to inform upper layer of End of Transfer */ + I2C_ITError(hi2c, HAL_I2C_ERROR_SIZE); + } + } + else if ((I2C_CHECK_FLAG(ITFlags, I2C_FLAG_STOPF) != RESET) && (I2C_CHECK_IT_SOURCE(ITSources, I2C_IT_STOPI) != RESET)) + { + /* Call I2C Master complete process */ + I2C_ITMasterCplt(hi2c, ITFlags); + } + else + { + /* Nothing to do */ + } + + /* Process Unlocked */ + __HAL_UNLOCK(hi2c); + + return HAL_OK; +} + +/** + * @brief Interrupt Sub-Routine which handle the Interrupt Flags Slave Mode with DMA. + * @param hi2c Pointer to a I2C_HandleTypeDef structure that contains + * the configuration information for the specified I2C. + * @param ITFlags Interrupt flags to handle. + * @param ITSources Interrupt sources enabled. + * @retval HAL status + */ +static HAL_StatusTypeDef I2C_Slave_ISR_DMA(struct __I2C_HandleTypeDef *hi2c, uint32_t ITFlags, uint32_t ITSources) +{ + uint32_t tmpoptions = hi2c->XferOptions; + uint32_t treatdmanack = 0U; + + /* Process locked */ + __HAL_LOCK(hi2c); + + /* Check if STOPF is set */ + if ((I2C_CHECK_FLAG(ITFlags, I2C_FLAG_STOPF) != RESET) && (I2C_CHECK_IT_SOURCE(ITSources, I2C_IT_STOPI) != RESET)) + { + /* Call I2C Slave complete process */ + I2C_ITSlaveCplt(hi2c, ITFlags); + } + + if ((I2C_CHECK_FLAG(ITFlags, I2C_FLAG_AF) != RESET) && (I2C_CHECK_IT_SOURCE(ITSources, I2C_IT_NACKI) != RESET)) + { + /* Check that I2C transfer finished */ + /* if yes, normal use case, a NACK is sent by the MASTER when Transfer is finished */ + /* Mean XferCount == 0 */ + /* So clear Flag NACKF only */ + if ((I2C_CHECK_IT_SOURCE(ITSources, I2C_CR1_TXDMAEN) != RESET) || + (I2C_CHECK_IT_SOURCE(ITSources, I2C_CR1_RXDMAEN) != RESET)) + { + /* Split check of hdmarx, for MISRA compliance */ + if (hi2c->hdmarx != NULL) + { + if (I2C_CHECK_IT_SOURCE(ITSources, I2C_CR1_RXDMAEN) != RESET) + { + if (__HAL_DMA_GET_COUNTER(hi2c->hdmarx) == 0U) + { + treatdmanack = 1U; + } + } + } + + /* Split check of hdmatx, for MISRA compliance */ + if (hi2c->hdmatx != NULL) + { + if (I2C_CHECK_IT_SOURCE(ITSources, I2C_CR1_TXDMAEN) != RESET) + { + if (__HAL_DMA_GET_COUNTER(hi2c->hdmatx) == 0U) + { + treatdmanack = 1U; + } + } + } + + if (treatdmanack == 1U) + { + if ((hi2c->State == HAL_I2C_STATE_LISTEN) && (tmpoptions == I2C_FIRST_AND_LAST_FRAME)) /* Same action must be done for (tmpoptions == I2C_LAST_FRAME) which removed for Warning[Pa134]: left and right operands are identical */ + { + /* Call I2C Listen complete process */ + I2C_ITListenCplt(hi2c, ITFlags); + } + else if ((hi2c->State == HAL_I2C_STATE_BUSY_TX_LISTEN) && (tmpoptions != I2C_NO_OPTION_FRAME)) + { + /* Clear NACK Flag */ + __HAL_I2C_CLEAR_FLAG(hi2c, I2C_FLAG_AF); + + /* Flush TX register */ + I2C_Flush_TXDR(hi2c); + + /* Last Byte is Transmitted */ + /* Call I2C Slave Sequential complete process */ + I2C_ITSlaveSeqCplt(hi2c); + } + else + { + /* Clear NACK Flag */ + __HAL_I2C_CLEAR_FLAG(hi2c, I2C_FLAG_AF); + } + } + else + { + /* if no, error use case, a Non-Acknowledge of last Data is generated by the MASTER*/ + /* Clear NACK Flag */ + __HAL_I2C_CLEAR_FLAG(hi2c, I2C_FLAG_AF); + + /* Set ErrorCode corresponding to a Non-Acknowledge */ + hi2c->ErrorCode |= HAL_I2C_ERROR_AF; + + if ((tmpoptions == I2C_FIRST_FRAME) || (tmpoptions == I2C_NEXT_FRAME)) + { + /* Call the corresponding callback to inform upper layer of End of Transfer */ + I2C_ITError(hi2c, hi2c->ErrorCode); + } + } + } + else + { + /* Only Clear NACK Flag, no DMA treatment is pending */ + __HAL_I2C_CLEAR_FLAG(hi2c, I2C_FLAG_AF); + } + } + else if ((I2C_CHECK_FLAG(ITFlags, I2C_FLAG_ADDR) != RESET) && (I2C_CHECK_IT_SOURCE(ITSources, I2C_IT_ADDRI) != RESET)) + { + I2C_ITAddrCplt(hi2c, ITFlags); + } + else + { + /* Nothing to do */ + } + + /* Process Unlocked */ + __HAL_UNLOCK(hi2c); + + return HAL_OK; +} + +/** + * @brief Master sends target device address followed by internal memory address for write request. + * @param hi2c Pointer to a I2C_HandleTypeDef structure that contains + * the configuration information for the specified I2C. + * @param DevAddress Target device address: The device 7 bits address value + * in datasheet must be shifted to the left before calling the interface + * @param MemAddress Internal memory address + * @param MemAddSize Size of internal memory address + * @param Timeout Timeout duration + * @param Tickstart Tick start value + * @retval HAL status + */ +static HAL_StatusTypeDef I2C_RequestMemoryWrite(I2C_HandleTypeDef *hi2c, uint16_t DevAddress, uint16_t MemAddress, uint16_t MemAddSize, uint32_t Timeout, uint32_t Tickstart) +{ + I2C_TransferConfig(hi2c, DevAddress, (uint8_t)MemAddSize, I2C_RELOAD_MODE, I2C_GENERATE_START_WRITE); + + /* Wait until TXIS flag is set */ + if (I2C_WaitOnTXISFlagUntilTimeout(hi2c, Timeout, Tickstart) != HAL_OK) + { + return HAL_ERROR; + } + + /* If Memory address size is 8Bit */ + if (MemAddSize == I2C_MEMADD_SIZE_8BIT) + { + /* Send Memory Address */ + hi2c->Instance->TXDR = I2C_MEM_ADD_LSB(MemAddress); + } + /* If Memory address size is 16Bit */ + else + { + /* Send MSB of Memory Address */ + hi2c->Instance->TXDR = I2C_MEM_ADD_MSB(MemAddress); + + /* Wait until TXIS flag is set */ + if (I2C_WaitOnTXISFlagUntilTimeout(hi2c, Timeout, Tickstart) != HAL_OK) + { + return HAL_ERROR; + } + + /* Send LSB of Memory Address */ + hi2c->Instance->TXDR = I2C_MEM_ADD_LSB(MemAddress); + } + + /* Wait until TCR flag is set */ + if (I2C_WaitOnFlagUntilTimeout(hi2c, I2C_FLAG_TCR, RESET, Timeout, Tickstart) != HAL_OK) + { + return HAL_ERROR; + } + + return HAL_OK; +} + +/** + * @brief Master sends target device address followed by internal memory address for read request. + * @param hi2c Pointer to a I2C_HandleTypeDef structure that contains + * the configuration information for the specified I2C. + * @param DevAddress Target device address: The device 7 bits address value + * in datasheet must be shifted to the left before calling the interface + * @param MemAddress Internal memory address + * @param MemAddSize Size of internal memory address + * @param Timeout Timeout duration + * @param Tickstart Tick start value + * @retval HAL status + */ +static HAL_StatusTypeDef I2C_RequestMemoryRead(I2C_HandleTypeDef *hi2c, uint16_t DevAddress, uint16_t MemAddress, uint16_t MemAddSize, uint32_t Timeout, uint32_t Tickstart) +{ + I2C_TransferConfig(hi2c, DevAddress, (uint8_t)MemAddSize, I2C_SOFTEND_MODE, I2C_GENERATE_START_WRITE); + + /* Wait until TXIS flag is set */ + if (I2C_WaitOnTXISFlagUntilTimeout(hi2c, Timeout, Tickstart) != HAL_OK) + { + return HAL_ERROR; + } + + /* If Memory address size is 8Bit */ + if (MemAddSize == I2C_MEMADD_SIZE_8BIT) + { + /* Send Memory Address */ + hi2c->Instance->TXDR = I2C_MEM_ADD_LSB(MemAddress); + } + /* If Memory address size is 16Bit */ + else + { + /* Send MSB of Memory Address */ + hi2c->Instance->TXDR = I2C_MEM_ADD_MSB(MemAddress); + + /* Wait until TXIS flag is set */ + if (I2C_WaitOnTXISFlagUntilTimeout(hi2c, Timeout, Tickstart) != HAL_OK) + { + return HAL_ERROR; + } + + /* Send LSB of Memory Address */ + hi2c->Instance->TXDR = I2C_MEM_ADD_LSB(MemAddress); + } + + /* Wait until TC flag is set */ + if (I2C_WaitOnFlagUntilTimeout(hi2c, I2C_FLAG_TC, RESET, Timeout, Tickstart) != HAL_OK) + { + return HAL_ERROR; + } + + return HAL_OK; +} + +/** + * @brief I2C Address complete process callback. + * @param hi2c I2C handle. + * @param ITFlags Interrupt flags to handle. + * @retval None + */ +static void I2C_ITAddrCplt(I2C_HandleTypeDef *hi2c, uint32_t ITFlags) +{ + uint8_t transferdirection; + uint16_t slaveaddrcode; + uint16_t ownadd1code; + uint16_t ownadd2code; + + /* Prevent unused argument(s) compilation warning */ + UNUSED(ITFlags); + + /* In case of Listen state, need to inform upper layer of address match code event */ + if (((uint32_t)hi2c->State & (uint32_t)HAL_I2C_STATE_LISTEN) == (uint32_t)HAL_I2C_STATE_LISTEN) + { + transferdirection = I2C_GET_DIR(hi2c); + slaveaddrcode = I2C_GET_ADDR_MATCH(hi2c); + ownadd1code = I2C_GET_OWN_ADDRESS1(hi2c); + ownadd2code = I2C_GET_OWN_ADDRESS2(hi2c); + + /* If 10bits addressing mode is selected */ + if (hi2c->Init.AddressingMode == I2C_ADDRESSINGMODE_10BIT) + { + if ((slaveaddrcode & SlaveAddr_MSK) == ((ownadd1code >> SlaveAddr_SHIFT) & SlaveAddr_MSK)) + { + slaveaddrcode = ownadd1code; + hi2c->AddrEventCount++; + if (hi2c->AddrEventCount == 2U) + { + /* Reset Address Event counter */ + hi2c->AddrEventCount = 0U; + + /* Clear ADDR flag */ + __HAL_I2C_CLEAR_FLAG(hi2c, I2C_FLAG_ADDR); + + /* Process Unlocked */ + __HAL_UNLOCK(hi2c); + + /* Call Slave Addr callback */ +#if (USE_HAL_I2C_REGISTER_CALLBACKS == 1) + hi2c->AddrCallback(hi2c, transferdirection, slaveaddrcode); +#else + HAL_I2C_AddrCallback(hi2c, transferdirection, slaveaddrcode); +#endif /* USE_HAL_I2C_REGISTER_CALLBACKS */ + } + } + else + { + slaveaddrcode = ownadd2code; + + /* Disable ADDR Interrupts */ + I2C_Disable_IRQ(hi2c, I2C_XFER_LISTEN_IT); + + /* Process Unlocked */ + __HAL_UNLOCK(hi2c); + + /* Call Slave Addr callback */ +#if (USE_HAL_I2C_REGISTER_CALLBACKS == 1) + hi2c->AddrCallback(hi2c, transferdirection, slaveaddrcode); +#else + HAL_I2C_AddrCallback(hi2c, transferdirection, slaveaddrcode); +#endif /* USE_HAL_I2C_REGISTER_CALLBACKS */ + } + } + /* else 7 bits addressing mode is selected */ + else + { + /* Disable ADDR Interrupts */ + I2C_Disable_IRQ(hi2c, I2C_XFER_LISTEN_IT); + + /* Process Unlocked */ + __HAL_UNLOCK(hi2c); + + /* Call Slave Addr callback */ +#if (USE_HAL_I2C_REGISTER_CALLBACKS == 1) + hi2c->AddrCallback(hi2c, transferdirection, slaveaddrcode); +#else + HAL_I2C_AddrCallback(hi2c, transferdirection, slaveaddrcode); +#endif /* USE_HAL_I2C_REGISTER_CALLBACKS */ + } + } + /* Else clear address flag only */ + else + { + /* Clear ADDR flag */ + __HAL_I2C_CLEAR_FLAG(hi2c, I2C_FLAG_ADDR); + + /* Process Unlocked */ + __HAL_UNLOCK(hi2c); + } +} + +/** + * @brief I2C Master sequential complete process. + * @param hi2c I2C handle. + * @retval None + */ +static void I2C_ITMasterSeqCplt(I2C_HandleTypeDef *hi2c) +{ + /* Reset I2C handle mode */ + hi2c->Mode = HAL_I2C_MODE_NONE; + + /* No Generate Stop, to permit restart mode */ + /* The stop will be done at the end of transfer, when I2C_AUTOEND_MODE enable */ + if (hi2c->State == HAL_I2C_STATE_BUSY_TX) + { + hi2c->State = HAL_I2C_STATE_READY; + hi2c->PreviousState = I2C_STATE_MASTER_BUSY_TX; + hi2c->XferISR = NULL; + + /* Disable Interrupts */ + I2C_Disable_IRQ(hi2c, I2C_XFER_TX_IT); + + /* Process Unlocked */ + __HAL_UNLOCK(hi2c); + + /* Call the corresponding callback to inform upper layer of End of Transfer */ +#if (USE_HAL_I2C_REGISTER_CALLBACKS == 1) + hi2c->MasterTxCpltCallback(hi2c); +#else + HAL_I2C_MasterTxCpltCallback(hi2c); +#endif /* USE_HAL_I2C_REGISTER_CALLBACKS */ + } + /* hi2c->State == HAL_I2C_STATE_BUSY_RX */ + else + { + hi2c->State = HAL_I2C_STATE_READY; + hi2c->PreviousState = I2C_STATE_MASTER_BUSY_RX; + hi2c->XferISR = NULL; + + /* Disable Interrupts */ + I2C_Disable_IRQ(hi2c, I2C_XFER_RX_IT); + + /* Process Unlocked */ + __HAL_UNLOCK(hi2c); + + /* Call the corresponding callback to inform upper layer of End of Transfer */ +#if (USE_HAL_I2C_REGISTER_CALLBACKS == 1) + hi2c->MasterRxCpltCallback(hi2c); +#else + HAL_I2C_MasterRxCpltCallback(hi2c); +#endif /* USE_HAL_I2C_REGISTER_CALLBACKS */ + } +} + +/** + * @brief I2C Slave sequential complete process. + * @param hi2c I2C handle. + * @retval None + */ +static void I2C_ITSlaveSeqCplt(I2C_HandleTypeDef *hi2c) +{ + /* Reset I2C handle mode */ + hi2c->Mode = HAL_I2C_MODE_NONE; + + if (hi2c->State == HAL_I2C_STATE_BUSY_TX_LISTEN) + { + /* Remove HAL_I2C_STATE_SLAVE_BUSY_TX, keep only HAL_I2C_STATE_LISTEN */ + hi2c->State = HAL_I2C_STATE_LISTEN; + hi2c->PreviousState = I2C_STATE_SLAVE_BUSY_TX; + + /* Disable Interrupts */ + I2C_Disable_IRQ(hi2c, I2C_XFER_TX_IT); + + /* Process Unlocked */ + __HAL_UNLOCK(hi2c); + + /* Call the corresponding callback to inform upper layer of End of Transfer */ +#if (USE_HAL_I2C_REGISTER_CALLBACKS == 1) + hi2c->SlaveTxCpltCallback(hi2c); +#else + HAL_I2C_SlaveTxCpltCallback(hi2c); +#endif /* USE_HAL_I2C_REGISTER_CALLBACKS */ + } + + else if (hi2c->State == HAL_I2C_STATE_BUSY_RX_LISTEN) + { + /* Remove HAL_I2C_STATE_SLAVE_BUSY_RX, keep only HAL_I2C_STATE_LISTEN */ + hi2c->State = HAL_I2C_STATE_LISTEN; + hi2c->PreviousState = I2C_STATE_SLAVE_BUSY_RX; + + /* Disable Interrupts */ + I2C_Disable_IRQ(hi2c, I2C_XFER_RX_IT); + + /* Process Unlocked */ + __HAL_UNLOCK(hi2c); + + /* Call the corresponding callback to inform upper layer of End of Transfer */ +#if (USE_HAL_I2C_REGISTER_CALLBACKS == 1) + hi2c->SlaveRxCpltCallback(hi2c); +#else + HAL_I2C_SlaveRxCpltCallback(hi2c); +#endif /* USE_HAL_I2C_REGISTER_CALLBACKS */ + } + else + { + /* Nothing to do */ + } +} + +/** + * @brief I2C Master complete process. + * @param hi2c I2C handle. + * @param ITFlags Interrupt flags to handle. + * @retval None + */ +static void I2C_ITMasterCplt(I2C_HandleTypeDef *hi2c, uint32_t ITFlags) +{ + uint32_t tmperror; + + /* Clear STOP Flag */ + __HAL_I2C_CLEAR_FLAG(hi2c, I2C_FLAG_STOPF); + + /* Clear Configuration Register 2 */ + I2C_RESET_CR2(hi2c); + + /* Reset handle parameters */ + hi2c->PreviousState = I2C_STATE_NONE; + hi2c->XferISR = NULL; + hi2c->XferOptions = I2C_NO_OPTION_FRAME; + + if (I2C_CHECK_FLAG(ITFlags, I2C_FLAG_AF) != RESET) + { + /* Clear NACK Flag */ + __HAL_I2C_CLEAR_FLAG(hi2c, I2C_FLAG_AF); + + /* Set acknowledge error code */ + hi2c->ErrorCode |= HAL_I2C_ERROR_AF; + } + + /* Flush TX register */ + I2C_Flush_TXDR(hi2c); + + /* Disable Interrupts */ + I2C_Disable_IRQ(hi2c, I2C_XFER_TX_IT | I2C_XFER_RX_IT); + + /* Store current volatile hi2c->ErrorCode, misra rule */ + tmperror = hi2c->ErrorCode; + + /* Call the corresponding callback to inform upper layer of End of Transfer */ + if ((hi2c->State == HAL_I2C_STATE_ABORT) || (tmperror != HAL_I2C_ERROR_NONE)) + { + /* Call the corresponding callback to inform upper layer of End of Transfer */ + I2C_ITError(hi2c, hi2c->ErrorCode); + } + /* hi2c->State == HAL_I2C_STATE_BUSY_TX */ + else if (hi2c->State == HAL_I2C_STATE_BUSY_TX) + { + hi2c->State = HAL_I2C_STATE_READY; + + if (hi2c->Mode == HAL_I2C_MODE_MEM) + { + hi2c->Mode = HAL_I2C_MODE_NONE; + + /* Process Unlocked */ + __HAL_UNLOCK(hi2c); + + /* Call the corresponding callback to inform upper layer of End of Transfer */ +#if (USE_HAL_I2C_REGISTER_CALLBACKS == 1) + hi2c->MemTxCpltCallback(hi2c); +#else + HAL_I2C_MemTxCpltCallback(hi2c); +#endif /* USE_HAL_I2C_REGISTER_CALLBACKS */ + } + else + { + hi2c->Mode = HAL_I2C_MODE_NONE; + + /* Process Unlocked */ + __HAL_UNLOCK(hi2c); + + /* Call the corresponding callback to inform upper layer of End of Transfer */ +#if (USE_HAL_I2C_REGISTER_CALLBACKS == 1) + hi2c->MasterTxCpltCallback(hi2c); +#else + HAL_I2C_MasterTxCpltCallback(hi2c); +#endif /* USE_HAL_I2C_REGISTER_CALLBACKS */ + } + } + /* hi2c->State == HAL_I2C_STATE_BUSY_RX */ + else if (hi2c->State == HAL_I2C_STATE_BUSY_RX) + { + hi2c->State = HAL_I2C_STATE_READY; + + if (hi2c->Mode == HAL_I2C_MODE_MEM) + { + hi2c->Mode = HAL_I2C_MODE_NONE; + + /* Process Unlocked */ + __HAL_UNLOCK(hi2c); + + /* Call the corresponding callback to inform upper layer of End of Transfer */ +#if (USE_HAL_I2C_REGISTER_CALLBACKS == 1) + hi2c->MemRxCpltCallback(hi2c); +#else + HAL_I2C_MemRxCpltCallback(hi2c); +#endif /* USE_HAL_I2C_REGISTER_CALLBACKS */ + } + else + { + hi2c->Mode = HAL_I2C_MODE_NONE; + + /* Process Unlocked */ + __HAL_UNLOCK(hi2c); + + /* Call the corresponding callback to inform upper layer of End of Transfer */ +#if (USE_HAL_I2C_REGISTER_CALLBACKS == 1) + hi2c->MasterRxCpltCallback(hi2c); +#else + HAL_I2C_MasterRxCpltCallback(hi2c); +#endif /* USE_HAL_I2C_REGISTER_CALLBACKS */ + } + } + else + { + /* Nothing to do */ + } +} + +/** + * @brief I2C Slave complete process. + * @param hi2c I2C handle. + * @param ITFlags Interrupt flags to handle. + * @retval None + */ +static void I2C_ITSlaveCplt(I2C_HandleTypeDef *hi2c, uint32_t ITFlags) +{ + uint32_t tmpcr1value = READ_REG(hi2c->Instance->CR1); + uint32_t tmpITFlags = ITFlags; + + /* Clear STOP Flag */ + __HAL_I2C_CLEAR_FLAG(hi2c, I2C_FLAG_STOPF); + + /* Disable all interrupts */ + I2C_Disable_IRQ(hi2c, I2C_XFER_LISTEN_IT | I2C_XFER_TX_IT | I2C_XFER_RX_IT); + + /* Disable Address Acknowledge */ + hi2c->Instance->CR2 |= I2C_CR2_NACK; + + /* Clear Configuration Register 2 */ + I2C_RESET_CR2(hi2c); + + /* Flush TX register */ + I2C_Flush_TXDR(hi2c); + + /* If a DMA is ongoing, Update handle size context */ + if (I2C_CHECK_IT_SOURCE(tmpcr1value, I2C_CR1_TXDMAEN) != RESET) + { + if (hi2c->hdmatx != NULL) + { + hi2c->XferCount = (uint16_t)__HAL_DMA_GET_COUNTER(hi2c->hdmatx); + } + } + else if (I2C_CHECK_IT_SOURCE(tmpcr1value, I2C_CR1_RXDMAEN) != RESET) + { + if (hi2c->hdmarx != NULL) + { + hi2c->XferCount = (uint16_t)__HAL_DMA_GET_COUNTER(hi2c->hdmarx); + } + } + else + { + /* Do nothing */ + } + + /* Store Last receive data if any */ + if (I2C_CHECK_FLAG(tmpITFlags, I2C_FLAG_RXNE) != RESET) + { + /* Remove RXNE flag on temporary variable as read done */ + tmpITFlags &= ~I2C_FLAG_RXNE; + + /* Read data from RXDR */ + *hi2c->pBuffPtr = (uint8_t)hi2c->Instance->RXDR; + + /* Increment Buffer pointer */ + hi2c->pBuffPtr++; + + if ((hi2c->XferSize > 0U)) + { + hi2c->XferSize--; + hi2c->XferCount--; + } + } + + /* All data are not transferred, so set error code accordingly */ + if (hi2c->XferCount != 0U) + { + /* Set ErrorCode corresponding to a Non-Acknowledge */ + hi2c->ErrorCode |= HAL_I2C_ERROR_AF; + } + + hi2c->PreviousState = I2C_STATE_NONE; + hi2c->Mode = HAL_I2C_MODE_NONE; + hi2c->XferISR = NULL; + + if (hi2c->ErrorCode != HAL_I2C_ERROR_NONE) + { + /* Call the corresponding callback to inform upper layer of End of Transfer */ + I2C_ITError(hi2c, hi2c->ErrorCode); + + /* Call the Listen Complete callback, to inform upper layer of the end of Listen usecase */ + if (hi2c->State == HAL_I2C_STATE_LISTEN) + { + /* Call I2C Listen complete process */ + I2C_ITListenCplt(hi2c, tmpITFlags); + } + } + else if (hi2c->XferOptions != I2C_NO_OPTION_FRAME) + { + /* Call the Sequential Complete callback, to inform upper layer of the end of Tranfer */ + I2C_ITSlaveSeqCplt(hi2c); + + hi2c->XferOptions = I2C_NO_OPTION_FRAME; + hi2c->State = HAL_I2C_STATE_READY; + + /* Process Unlocked */ + __HAL_UNLOCK(hi2c); + + /* Call the Listen Complete callback, to inform upper layer of the end of Listen usecase */ +#if (USE_HAL_I2C_REGISTER_CALLBACKS == 1) + hi2c->ListenCpltCallback(hi2c); +#else + HAL_I2C_ListenCpltCallback(hi2c); +#endif /* USE_HAL_I2C_REGISTER_CALLBACKS */ + } + /* Call the corresponding callback to inform upper layer of End of Transfer */ + else if (hi2c->State == HAL_I2C_STATE_BUSY_RX) + { + hi2c->State = HAL_I2C_STATE_READY; + + /* Process Unlocked */ + __HAL_UNLOCK(hi2c); + + /* Call the corresponding callback to inform upper layer of End of Transfer */ +#if (USE_HAL_I2C_REGISTER_CALLBACKS == 1) + hi2c->SlaveRxCpltCallback(hi2c); +#else + HAL_I2C_SlaveRxCpltCallback(hi2c); +#endif /* USE_HAL_I2C_REGISTER_CALLBACKS */ + } + else + { + hi2c->State = HAL_I2C_STATE_READY; + + /* Process Unlocked */ + __HAL_UNLOCK(hi2c); + + /* Call the corresponding callback to inform upper layer of End of Transfer */ +#if (USE_HAL_I2C_REGISTER_CALLBACKS == 1) + hi2c->SlaveTxCpltCallback(hi2c); +#else + HAL_I2C_SlaveTxCpltCallback(hi2c); +#endif /* USE_HAL_I2C_REGISTER_CALLBACKS */ + } +} + +/** + * @brief I2C Listen complete process. + * @param hi2c I2C handle. + * @param ITFlags Interrupt flags to handle. + * @retval None + */ +static void I2C_ITListenCplt(I2C_HandleTypeDef *hi2c, uint32_t ITFlags) +{ + /* Reset handle parameters */ + hi2c->XferOptions = I2C_NO_OPTION_FRAME; + hi2c->PreviousState = I2C_STATE_NONE; + hi2c->State = HAL_I2C_STATE_READY; + hi2c->Mode = HAL_I2C_MODE_NONE; + hi2c->XferISR = NULL; + + /* Store Last receive data if any */ + if (I2C_CHECK_FLAG(ITFlags, I2C_FLAG_RXNE) != RESET) + { + /* Read data from RXDR */ + *hi2c->pBuffPtr = (uint8_t)hi2c->Instance->RXDR; + + /* Increment Buffer pointer */ + hi2c->pBuffPtr++; + + if ((hi2c->XferSize > 0U)) + { + hi2c->XferSize--; + hi2c->XferCount--; + + /* Set ErrorCode corresponding to a Non-Acknowledge */ + hi2c->ErrorCode |= HAL_I2C_ERROR_AF; + } + } + + /* Disable all Interrupts*/ + I2C_Disable_IRQ(hi2c, I2C_XFER_LISTEN_IT | I2C_XFER_RX_IT | I2C_XFER_TX_IT); + + /* Clear NACK Flag */ + __HAL_I2C_CLEAR_FLAG(hi2c, I2C_FLAG_AF); + + /* Process Unlocked */ + __HAL_UNLOCK(hi2c); + + /* Call the Listen Complete callback, to inform upper layer of the end of Listen usecase */ +#if (USE_HAL_I2C_REGISTER_CALLBACKS == 1) + hi2c->ListenCpltCallback(hi2c); +#else + HAL_I2C_ListenCpltCallback(hi2c); +#endif /* USE_HAL_I2C_REGISTER_CALLBACKS */ +} + +/** + * @brief I2C interrupts error process. + * @param hi2c I2C handle. + * @param ErrorCode Error code to handle. + * @retval None + */ +static void I2C_ITError(I2C_HandleTypeDef *hi2c, uint32_t ErrorCode) +{ + HAL_I2C_StateTypeDef tmpstate = hi2c->State; + + /* Reset handle parameters */ + hi2c->Mode = HAL_I2C_MODE_NONE; + hi2c->XferOptions = I2C_NO_OPTION_FRAME; + hi2c->XferCount = 0U; + + /* Set new error code */ + hi2c->ErrorCode |= ErrorCode; + + /* Disable Interrupts */ + if ((tmpstate == HAL_I2C_STATE_LISTEN) || + (tmpstate == HAL_I2C_STATE_BUSY_TX_LISTEN) || + (tmpstate == HAL_I2C_STATE_BUSY_RX_LISTEN)) + { + /* Disable all interrupts, except interrupts related to LISTEN state */ + I2C_Disable_IRQ(hi2c, I2C_XFER_RX_IT | I2C_XFER_TX_IT); + + /* keep HAL_I2C_STATE_LISTEN if set */ + hi2c->State = HAL_I2C_STATE_LISTEN; + hi2c->PreviousState = I2C_STATE_NONE; + hi2c->XferISR = I2C_Slave_ISR_IT; + } + else + { + /* Disable all interrupts */ + I2C_Disable_IRQ(hi2c, I2C_XFER_LISTEN_IT | I2C_XFER_RX_IT | I2C_XFER_TX_IT); + + /* If state is an abort treatment on goind, don't change state */ + /* This change will be do later */ + if (hi2c->State != HAL_I2C_STATE_ABORT) + { + /* Set HAL_I2C_STATE_READY */ + hi2c->State = HAL_I2C_STATE_READY; + } + hi2c->PreviousState = I2C_STATE_NONE; + hi2c->XferISR = NULL; + } + + /* Abort DMA TX transfer if any */ + if ((hi2c->Instance->CR1 & I2C_CR1_TXDMAEN) == I2C_CR1_TXDMAEN) + { + hi2c->Instance->CR1 &= ~I2C_CR1_TXDMAEN; + + if (hi2c->hdmatx != NULL) + { + /* Set the I2C DMA Abort callback : + will lead to call HAL_I2C_ErrorCallback() at end of DMA abort procedure */ + hi2c->hdmatx->XferAbortCallback = I2C_DMAAbort; + + /* Process Unlocked */ + __HAL_UNLOCK(hi2c); + + /* Abort DMA TX */ + if (HAL_DMA_Abort_IT(hi2c->hdmatx) != HAL_OK) + { + /* Call Directly XferAbortCallback function in case of error */ + hi2c->hdmatx->XferAbortCallback(hi2c->hdmatx); + } + } + } + /* Abort DMA RX transfer if any */ + else if ((hi2c->Instance->CR1 & I2C_CR1_RXDMAEN) == I2C_CR1_RXDMAEN) + { + hi2c->Instance->CR1 &= ~I2C_CR1_RXDMAEN; + + if (hi2c->hdmarx != NULL) + { + /* Set the I2C DMA Abort callback : + will lead to call HAL_I2C_ErrorCallback() at end of DMA abort procedure */ + hi2c->hdmarx->XferAbortCallback = I2C_DMAAbort; + + /* Process Unlocked */ + __HAL_UNLOCK(hi2c); + + /* Abort DMA RX */ + if (HAL_DMA_Abort_IT(hi2c->hdmarx) != HAL_OK) + { + /* Call Directly hi2c->hdmarx->XferAbortCallback function in case of error */ + hi2c->hdmarx->XferAbortCallback(hi2c->hdmarx); + } + } + } + else if (hi2c->State == HAL_I2C_STATE_ABORT) + { + hi2c->State = HAL_I2C_STATE_READY; + + /* Process Unlocked */ + __HAL_UNLOCK(hi2c); + + /* Call the corresponding callback to inform upper layer of End of Transfer */ +#if (USE_HAL_I2C_REGISTER_CALLBACKS == 1) + hi2c->AbortCpltCallback(hi2c); +#else + HAL_I2C_AbortCpltCallback(hi2c); +#endif /* USE_HAL_I2C_REGISTER_CALLBACKS */ + } + else + { + /* Process Unlocked */ + __HAL_UNLOCK(hi2c); + + /* Call the corresponding callback to inform upper layer of End of Transfer */ +#if (USE_HAL_I2C_REGISTER_CALLBACKS == 1) + hi2c->ErrorCallback(hi2c); +#else + HAL_I2C_ErrorCallback(hi2c); +#endif /* USE_HAL_I2C_REGISTER_CALLBACKS */ + } +} + +/** + * @brief I2C Tx data register flush process. + * @param hi2c I2C handle. + * @retval None + */ +static void I2C_Flush_TXDR(I2C_HandleTypeDef *hi2c) +{ + /* If a pending TXIS flag is set */ + /* Write a dummy data in TXDR to clear it */ + if (__HAL_I2C_GET_FLAG(hi2c, I2C_FLAG_TXIS) != RESET) + { + hi2c->Instance->TXDR = 0x00U; + } + + /* Flush TX register if not empty */ + if (__HAL_I2C_GET_FLAG(hi2c, I2C_FLAG_TXE) == RESET) + { + __HAL_I2C_CLEAR_FLAG(hi2c, I2C_FLAG_TXE); + } +} + +/** + * @brief DMA I2C master transmit process complete callback. + * @param hdma DMA handle + * @retval None + */ +static void I2C_DMAMasterTransmitCplt(DMA_HandleTypeDef *hdma) +{ + I2C_HandleTypeDef *hi2c = (I2C_HandleTypeDef *)(((DMA_HandleTypeDef *)hdma)->Parent); /* Derogation MISRAC2012-Rule-11.5 */ + + /* Disable DMA Request */ + hi2c->Instance->CR1 &= ~I2C_CR1_TXDMAEN; + + /* If last transfer, enable STOP interrupt */ + if (hi2c->XferCount == 0U) + { + /* Enable STOP interrupt */ + I2C_Enable_IRQ(hi2c, I2C_XFER_CPLT_IT); + } + /* else prepare a new DMA transfer and enable TCReload interrupt */ + else + { + /* Update Buffer pointer */ + hi2c->pBuffPtr += hi2c->XferSize; + + /* Set the XferSize to transfer */ + if (hi2c->XferCount > MAX_NBYTE_SIZE) + { + hi2c->XferSize = MAX_NBYTE_SIZE; + } + else + { + hi2c->XferSize = hi2c->XferCount; + } + + /* Enable the DMA stream or channel depends on Instance */ + if (HAL_DMA_Start_IT(hi2c->hdmatx, (uint32_t)hi2c->pBuffPtr, (uint32_t)&hi2c->Instance->TXDR, hi2c->XferSize) != HAL_OK) + { + /* Call the corresponding callback to inform upper layer of End of Transfer */ + I2C_ITError(hi2c, HAL_I2C_ERROR_DMA); + } + else + { + /* Enable TC interrupts */ + I2C_Enable_IRQ(hi2c, I2C_XFER_RELOAD_IT); + } + } +} + +/** + * @brief DMA I2C slave transmit process complete callback. + * @param hdma DMA handle + * @retval None + */ +static void I2C_DMASlaveTransmitCplt(DMA_HandleTypeDef *hdma) +{ + I2C_HandleTypeDef *hi2c = (I2C_HandleTypeDef *)(((DMA_HandleTypeDef *)hdma)->Parent); /* Derogation MISRAC2012-Rule-11.5 */ + uint32_t tmpoptions = hi2c->XferOptions; + + if ((tmpoptions == I2C_NEXT_FRAME) || (tmpoptions == I2C_FIRST_FRAME)) + { + /* Disable DMA Request */ + hi2c->Instance->CR1 &= ~I2C_CR1_TXDMAEN; + + /* Last Byte is Transmitted */ + /* Call I2C Slave Sequential complete process */ + I2C_ITSlaveSeqCplt(hi2c); + } + else + { + /* No specific action, Master fully manage the generation of STOP condition */ + /* Mean that this generation can arrive at any time, at the end or during DMA process */ + /* So STOP condition should be manage through Interrupt treatment */ + } +} + +/** + * @brief DMA I2C master receive process complete callback. + * @param hdma DMA handle + * @retval None + */ +static void I2C_DMAMasterReceiveCplt(DMA_HandleTypeDef *hdma) +{ + I2C_HandleTypeDef *hi2c = (I2C_HandleTypeDef *)(((DMA_HandleTypeDef *)hdma)->Parent); /* Derogation MISRAC2012-Rule-11.5 */ + + /* Disable DMA Request */ + hi2c->Instance->CR1 &= ~I2C_CR1_RXDMAEN; + + /* If last transfer, enable STOP interrupt */ + if (hi2c->XferCount == 0U) + { + /* Enable STOP interrupt */ + I2C_Enable_IRQ(hi2c, I2C_XFER_CPLT_IT); + } + /* else prepare a new DMA transfer and enable TCReload interrupt */ + else + { + /* Update Buffer pointer */ + hi2c->pBuffPtr += hi2c->XferSize; + + /* Set the XferSize to transfer */ + if (hi2c->XferCount > MAX_NBYTE_SIZE) + { + hi2c->XferSize = MAX_NBYTE_SIZE; + } + else + { + hi2c->XferSize = hi2c->XferCount; + } + + /* Enable the DMA stream or channel depends on Instance */ + if (HAL_DMA_Start_IT(hi2c->hdmarx, (uint32_t)&hi2c->Instance->RXDR, (uint32_t)hi2c->pBuffPtr, hi2c->XferSize) != HAL_OK) + { + /* Call the corresponding callback to inform upper layer of End of Transfer */ + I2C_ITError(hi2c, HAL_I2C_ERROR_DMA); + } + else + { + /* Enable TC interrupts */ + I2C_Enable_IRQ(hi2c, I2C_XFER_RELOAD_IT); + } + } +} + +/** + * @brief DMA I2C slave receive process complete callback. + * @param hdma DMA handle + * @retval None + */ +static void I2C_DMASlaveReceiveCplt(DMA_HandleTypeDef *hdma) +{ + I2C_HandleTypeDef *hi2c = (I2C_HandleTypeDef *)(((DMA_HandleTypeDef *)hdma)->Parent); /* Derogation MISRAC2012-Rule-11.5 */ + uint32_t tmpoptions = hi2c->XferOptions; + + if ((__HAL_DMA_GET_COUNTER(hi2c->hdmarx) == 0U) && \ + (tmpoptions != I2C_NO_OPTION_FRAME)) + { + /* Disable DMA Request */ + hi2c->Instance->CR1 &= ~I2C_CR1_RXDMAEN; + + /* Call I2C Slave Sequential complete process */ + I2C_ITSlaveSeqCplt(hi2c); + } + else + { + /* No specific action, Master fully manage the generation of STOP condition */ + /* Mean that this generation can arrive at any time, at the end or during DMA process */ + /* So STOP condition should be manage through Interrupt treatment */ + } +} + +/** + * @brief DMA I2C communication error callback. + * @param hdma DMA handle + * @retval None + */ +static void I2C_DMAError(DMA_HandleTypeDef *hdma) +{ + uint32_t treatdmaerror = 0U; + I2C_HandleTypeDef *hi2c = (I2C_HandleTypeDef *)(((DMA_HandleTypeDef *)hdma)->Parent); /* Derogation MISRAC2012-Rule-11.5 */ + + if (hi2c->hdmatx != NULL) + { + if (__HAL_DMA_GET_COUNTER(hi2c->hdmatx) == 0U) + { + treatdmaerror = 1U; + } + } + + if (hi2c->hdmarx != NULL) + { + if (__HAL_DMA_GET_COUNTER(hi2c->hdmarx) == 0U) + { + treatdmaerror = 1U; + } + } + + /* Check if a FIFO error is detected, if true normal use case, so no specific action to perform */ + if (!((HAL_DMA_GetError(hdma) == HAL_DMA_ERROR_FE)) && (treatdmaerror != 0U)) + { + /* Disable Acknowledge */ + hi2c->Instance->CR2 |= I2C_CR2_NACK; + + /* Call the corresponding callback to inform upper layer of End of Transfer */ + I2C_ITError(hi2c, HAL_I2C_ERROR_DMA); + } +} + +/** + * @brief DMA I2C communication abort callback + * (To be called at end of DMA Abort procedure). + * @param hdma DMA handle. + * @retval None + */ +static void I2C_DMAAbort(DMA_HandleTypeDef *hdma) +{ + I2C_HandleTypeDef *hi2c = (I2C_HandleTypeDef *)(((DMA_HandleTypeDef *)hdma)->Parent); /* Derogation MISRAC2012-Rule-11.5 */ + + /* Reset AbortCpltCallback */ + hi2c->hdmatx->XferAbortCallback = NULL; + hi2c->hdmarx->XferAbortCallback = NULL; + + /* Check if come from abort from user */ + if (hi2c->State == HAL_I2C_STATE_ABORT) + { + hi2c->State = HAL_I2C_STATE_READY; + + /* Call the corresponding callback to inform upper layer of End of Transfer */ +#if (USE_HAL_I2C_REGISTER_CALLBACKS == 1) + hi2c->AbortCpltCallback(hi2c); +#else + HAL_I2C_AbortCpltCallback(hi2c); +#endif /* USE_HAL_I2C_REGISTER_CALLBACKS */ + } + else + { + /* Call the corresponding callback to inform upper layer of End of Transfer */ +#if (USE_HAL_I2C_REGISTER_CALLBACKS == 1) + hi2c->ErrorCallback(hi2c); +#else + HAL_I2C_ErrorCallback(hi2c); +#endif /* USE_HAL_I2C_REGISTER_CALLBACKS */ + } +} + +/** + * @brief This function handles I2C Communication Timeout. + * @param hi2c Pointer to a I2C_HandleTypeDef structure that contains + * the configuration information for the specified I2C. + * @param Flag Specifies the I2C flag to check. + * @param Status The new Flag status (SET or RESET). + * @param Timeout Timeout duration + * @param Tickstart Tick start value + * @retval HAL status + */ +static HAL_StatusTypeDef I2C_WaitOnFlagUntilTimeout(I2C_HandleTypeDef *hi2c, uint32_t Flag, FlagStatus Status, uint32_t Timeout, uint32_t Tickstart) +{ + while (__HAL_I2C_GET_FLAG(hi2c, Flag) == Status) + { + /* Check for the Timeout */ + if (Timeout != HAL_MAX_DELAY) + { + if (((HAL_GetTick() - Tickstart) > Timeout) || (Timeout == 0U)) + { + hi2c->ErrorCode |= HAL_I2C_ERROR_TIMEOUT; + hi2c->State = HAL_I2C_STATE_READY; + hi2c->Mode = HAL_I2C_MODE_NONE; + + /* Process Unlocked */ + __HAL_UNLOCK(hi2c); + return HAL_ERROR; + } + } + } + return HAL_OK; +} + +/** + * @brief This function handles I2C Communication Timeout for specific usage of TXIS flag. + * @param hi2c Pointer to a I2C_HandleTypeDef structure that contains + * the configuration information for the specified I2C. + * @param Timeout Timeout duration + * @param Tickstart Tick start value + * @retval HAL status + */ +static HAL_StatusTypeDef I2C_WaitOnTXISFlagUntilTimeout(I2C_HandleTypeDef *hi2c, uint32_t Timeout, uint32_t Tickstart) +{ + while (__HAL_I2C_GET_FLAG(hi2c, I2C_FLAG_TXIS) == RESET) + { + /* Check if a NACK is detected */ + if (I2C_IsAcknowledgeFailed(hi2c, Timeout, Tickstart) != HAL_OK) + { + return HAL_ERROR; + } + + /* Check for the Timeout */ + if (Timeout != HAL_MAX_DELAY) + { + if (((HAL_GetTick() - Tickstart) > Timeout) || (Timeout == 0U)) + { + hi2c->ErrorCode |= HAL_I2C_ERROR_TIMEOUT; + hi2c->State = HAL_I2C_STATE_READY; + hi2c->Mode = HAL_I2C_MODE_NONE; + + /* Process Unlocked */ + __HAL_UNLOCK(hi2c); + + return HAL_ERROR; + } + } + } + return HAL_OK; +} + +/** + * @brief This function handles I2C Communication Timeout for specific usage of STOP flag. + * @param hi2c Pointer to a I2C_HandleTypeDef structure that contains + * the configuration information for the specified I2C. + * @param Timeout Timeout duration + * @param Tickstart Tick start value + * @retval HAL status + */ +static HAL_StatusTypeDef I2C_WaitOnSTOPFlagUntilTimeout(I2C_HandleTypeDef *hi2c, uint32_t Timeout, uint32_t Tickstart) +{ + while (__HAL_I2C_GET_FLAG(hi2c, I2C_FLAG_STOPF) == RESET) + { + /* Check if a NACK is detected */ + if (I2C_IsAcknowledgeFailed(hi2c, Timeout, Tickstart) != HAL_OK) + { + return HAL_ERROR; + } + + /* Check for the Timeout */ + if (((HAL_GetTick() - Tickstart) > Timeout) || (Timeout == 0U)) + { + hi2c->ErrorCode |= HAL_I2C_ERROR_TIMEOUT; + hi2c->State = HAL_I2C_STATE_READY; + hi2c->Mode = HAL_I2C_MODE_NONE; + + /* Process Unlocked */ + __HAL_UNLOCK(hi2c); + + return HAL_ERROR; + } + } + return HAL_OK; +} + +/** + * @brief This function handles I2C Communication Timeout for specific usage of RXNE flag. + * @param hi2c Pointer to a I2C_HandleTypeDef structure that contains + * the configuration information for the specified I2C. + * @param Timeout Timeout duration + * @param Tickstart Tick start value + * @retval HAL status + */ +static HAL_StatusTypeDef I2C_WaitOnRXNEFlagUntilTimeout(I2C_HandleTypeDef *hi2c, uint32_t Timeout, uint32_t Tickstart) +{ + while (__HAL_I2C_GET_FLAG(hi2c, I2C_FLAG_RXNE) == RESET) + { + /* Check if a NACK is detected */ + if (I2C_IsAcknowledgeFailed(hi2c, Timeout, Tickstart) != HAL_OK) + { + return HAL_ERROR; + } + + /* Check if a STOPF is detected */ + if (__HAL_I2C_GET_FLAG(hi2c, I2C_FLAG_STOPF) == SET) + { + /* Check if an RXNE is pending */ + /* Store Last receive data if any */ + if ((__HAL_I2C_GET_FLAG(hi2c, I2C_FLAG_RXNE) == SET) && (hi2c->XferSize > 0U)) + { + /* Return HAL_OK */ + /* The Reading of data from RXDR will be done in caller function */ + return HAL_OK; + } + else + { + /* Clear STOP Flag */ + __HAL_I2C_CLEAR_FLAG(hi2c, I2C_FLAG_STOPF); + + /* Clear Configuration Register 2 */ + I2C_RESET_CR2(hi2c); + + hi2c->ErrorCode = HAL_I2C_ERROR_NONE; + hi2c->State = HAL_I2C_STATE_READY; + hi2c->Mode = HAL_I2C_MODE_NONE; + + /* Process Unlocked */ + __HAL_UNLOCK(hi2c); + + return HAL_ERROR; + } + } + + /* Check for the Timeout */ + if (((HAL_GetTick() - Tickstart) > Timeout) || (Timeout == 0U)) + { + hi2c->ErrorCode |= HAL_I2C_ERROR_TIMEOUT; + hi2c->State = HAL_I2C_STATE_READY; + + /* Process Unlocked */ + __HAL_UNLOCK(hi2c); + + return HAL_ERROR; + } + } + return HAL_OK; +} + +/** + * @brief This function handles Acknowledge failed detection during an I2C Communication. + * @param hi2c Pointer to a I2C_HandleTypeDef structure that contains + * the configuration information for the specified I2C. + * @param Timeout Timeout duration + * @param Tickstart Tick start value + * @retval HAL status + */ +static HAL_StatusTypeDef I2C_IsAcknowledgeFailed(I2C_HandleTypeDef *hi2c, uint32_t Timeout, uint32_t Tickstart) +{ + if (__HAL_I2C_GET_FLAG(hi2c, I2C_FLAG_AF) == SET) + { + /* Wait until STOP Flag is reset */ + /* AutoEnd should be initiate after AF */ + while (__HAL_I2C_GET_FLAG(hi2c, I2C_FLAG_STOPF) == RESET) + { + /* Check for the Timeout */ + if (Timeout != HAL_MAX_DELAY) + { + if (((HAL_GetTick() - Tickstart) > Timeout) || (Timeout == 0U)) + { + hi2c->ErrorCode |= HAL_I2C_ERROR_TIMEOUT; + hi2c->State = HAL_I2C_STATE_READY; + hi2c->Mode = HAL_I2C_MODE_NONE; + + /* Process Unlocked */ + __HAL_UNLOCK(hi2c); + + return HAL_ERROR; + } + } + } + + /* Clear NACKF Flag */ + __HAL_I2C_CLEAR_FLAG(hi2c, I2C_FLAG_AF); + + /* Clear STOP Flag */ + __HAL_I2C_CLEAR_FLAG(hi2c, I2C_FLAG_STOPF); + + /* Flush TX register */ + I2C_Flush_TXDR(hi2c); + + /* Clear Configuration Register 2 */ + I2C_RESET_CR2(hi2c); + + hi2c->ErrorCode |= HAL_I2C_ERROR_AF; + hi2c->State = HAL_I2C_STATE_READY; + hi2c->Mode = HAL_I2C_MODE_NONE; + + /* Process Unlocked */ + __HAL_UNLOCK(hi2c); + + return HAL_ERROR; + } + return HAL_OK; +} + +/** + * @brief Handles I2Cx communication when starting transfer or during transfer (TC or TCR flag are set). + * @param hi2c I2C handle. + * @param DevAddress Specifies the slave address to be programmed. + * @param Size Specifies the number of bytes to be programmed. + * This parameter must be a value between 0 and 255. + * @param Mode New state of the I2C START condition generation. + * This parameter can be one of the following values: + * @arg @ref I2C_RELOAD_MODE Enable Reload mode . + * @arg @ref I2C_AUTOEND_MODE Enable Automatic end mode. + * @arg @ref I2C_SOFTEND_MODE Enable Software end mode. + * @param Request New state of the I2C START condition generation. + * This parameter can be one of the following values: + * @arg @ref I2C_NO_STARTSTOP Don't Generate stop and start condition. + * @arg @ref I2C_GENERATE_STOP Generate stop condition (Size should be set to 0). + * @arg @ref I2C_GENERATE_START_READ Generate Restart for read request. + * @arg @ref I2C_GENERATE_START_WRITE Generate Restart for write request. + * @retval None + */ +static void I2C_TransferConfig(I2C_HandleTypeDef *hi2c, uint16_t DevAddress, uint8_t Size, uint32_t Mode, uint32_t Request) +{ + /* Check the parameters */ + assert_param(IS_I2C_ALL_INSTANCE(hi2c->Instance)); + assert_param(IS_TRANSFER_MODE(Mode)); + assert_param(IS_TRANSFER_REQUEST(Request)); + + /* update CR2 register */ + MODIFY_REG(hi2c->Instance->CR2, ((I2C_CR2_SADD | I2C_CR2_NBYTES | I2C_CR2_RELOAD | I2C_CR2_AUTOEND | (I2C_CR2_RD_WRN & (uint32_t)(Request >> (31U - I2C_CR2_RD_WRN_Pos))) | I2C_CR2_START | I2C_CR2_STOP)), \ + (uint32_t)(((uint32_t)DevAddress & I2C_CR2_SADD) | (((uint32_t)Size << I2C_CR2_NBYTES_Pos) & I2C_CR2_NBYTES) | (uint32_t)Mode | (uint32_t)Request)); +} + +/** + * @brief Manage the enabling of Interrupts. + * @param hi2c Pointer to a I2C_HandleTypeDef structure that contains + * the configuration information for the specified I2C. + * @param InterruptRequest Value of @ref I2C_Interrupt_configuration_definition. + * @retval None + */ +static void I2C_Enable_IRQ(I2C_HandleTypeDef *hi2c, uint16_t InterruptRequest) +{ + uint32_t tmpisr = 0U; + + if ((hi2c->XferISR == I2C_Master_ISR_DMA) || \ + (hi2c->XferISR == I2C_Slave_ISR_DMA)) + { + if ((InterruptRequest & I2C_XFER_LISTEN_IT) == I2C_XFER_LISTEN_IT) + { + /* Enable ERR, STOP, NACK and ADDR interrupts */ + tmpisr |= I2C_IT_ADDRI | I2C_IT_STOPI | I2C_IT_NACKI | I2C_IT_ERRI; + } + + if ((InterruptRequest & I2C_XFER_ERROR_IT) == I2C_XFER_ERROR_IT) + { + /* Enable ERR and NACK interrupts */ + tmpisr |= I2C_IT_ERRI | I2C_IT_NACKI; + } + + if ((InterruptRequest & I2C_XFER_CPLT_IT) == I2C_XFER_CPLT_IT) + { + /* Enable STOP interrupts */ + tmpisr |= I2C_IT_STOPI; + } + + if ((InterruptRequest & I2C_XFER_RELOAD_IT) == I2C_XFER_RELOAD_IT) + { + /* Enable TC interrupts */ + tmpisr |= I2C_IT_TCI; + } + } + else + { + if ((InterruptRequest & I2C_XFER_LISTEN_IT) == I2C_XFER_LISTEN_IT) + { + /* Enable ERR, STOP, NACK, and ADDR interrupts */ + tmpisr |= I2C_IT_ADDRI | I2C_IT_STOPI | I2C_IT_NACKI | I2C_IT_ERRI; + } + + if ((InterruptRequest & I2C_XFER_TX_IT) == I2C_XFER_TX_IT) + { + /* Enable ERR, TC, STOP, NACK and RXI interrupts */ + tmpisr |= I2C_IT_ERRI | I2C_IT_TCI | I2C_IT_STOPI | I2C_IT_NACKI | I2C_IT_TXI; + } + + if ((InterruptRequest & I2C_XFER_RX_IT) == I2C_XFER_RX_IT) + { + /* Enable ERR, TC, STOP, NACK and TXI interrupts */ + tmpisr |= I2C_IT_ERRI | I2C_IT_TCI | I2C_IT_STOPI | I2C_IT_NACKI | I2C_IT_RXI; + } + + if ((InterruptRequest & I2C_XFER_CPLT_IT) == I2C_XFER_CPLT_IT) + { + /* Enable STOP interrupts */ + tmpisr |= I2C_IT_STOPI; + } + } + + /* Enable interrupts only at the end */ + /* to avoid the risk of I2C interrupt handle execution before */ + /* all interrupts requested done */ + __HAL_I2C_ENABLE_IT(hi2c, tmpisr); +} + +/** + * @brief Manage the disabling of Interrupts. + * @param hi2c Pointer to a I2C_HandleTypeDef structure that contains + * the configuration information for the specified I2C. + * @param InterruptRequest Value of @ref I2C_Interrupt_configuration_definition. + * @retval None + */ +static void I2C_Disable_IRQ(I2C_HandleTypeDef *hi2c, uint16_t InterruptRequest) +{ + uint32_t tmpisr = 0U; + + if ((InterruptRequest & I2C_XFER_TX_IT) == I2C_XFER_TX_IT) + { + /* Disable TC and TXI interrupts */ + tmpisr |= I2C_IT_TCI | I2C_IT_TXI; + + if (((uint32_t)hi2c->State & (uint32_t)HAL_I2C_STATE_LISTEN) != (uint32_t)HAL_I2C_STATE_LISTEN) + { + /* Disable NACK and STOP interrupts */ + tmpisr |= I2C_IT_STOPI | I2C_IT_NACKI | I2C_IT_ERRI; + } + } + + if ((InterruptRequest & I2C_XFER_RX_IT) == I2C_XFER_RX_IT) + { + /* Disable TC and RXI interrupts */ + tmpisr |= I2C_IT_TCI | I2C_IT_RXI; + + if (((uint32_t)hi2c->State & (uint32_t)HAL_I2C_STATE_LISTEN) != (uint32_t)HAL_I2C_STATE_LISTEN) + { + /* Disable NACK and STOP interrupts */ + tmpisr |= I2C_IT_STOPI | I2C_IT_NACKI | I2C_IT_ERRI; + } + } + + if ((InterruptRequest & I2C_XFER_LISTEN_IT) == I2C_XFER_LISTEN_IT) + { + /* Disable ADDR, NACK and STOP interrupts */ + tmpisr |= I2C_IT_ADDRI | I2C_IT_STOPI | I2C_IT_NACKI | I2C_IT_ERRI; + } + + if ((InterruptRequest & I2C_XFER_ERROR_IT) == I2C_XFER_ERROR_IT) + { + /* Enable ERR and NACK interrupts */ + tmpisr |= I2C_IT_ERRI | I2C_IT_NACKI; + } + + if ((InterruptRequest & I2C_XFER_CPLT_IT) == I2C_XFER_CPLT_IT) + { + /* Enable STOP interrupts */ + tmpisr |= I2C_IT_STOPI; + } + + if ((InterruptRequest & I2C_XFER_RELOAD_IT) == I2C_XFER_RELOAD_IT) + { + /* Enable TC interrupts */ + tmpisr |= I2C_IT_TCI; + } + + /* Disable interrupts only at the end */ + /* to avoid a breaking situation like at "t" time */ + /* all disable interrupts request are not done */ + __HAL_I2C_DISABLE_IT(hi2c, tmpisr); +} + +/** + * @brief Convert I2Cx OTHER_xxx XferOptions to functionnal XferOptions. + * @param hi2c I2C handle. + * @retval None + */ +static void I2C_ConvertOtherXferOptions(I2C_HandleTypeDef *hi2c) +{ + /* if user set XferOptions to I2C_OTHER_FRAME */ + /* it request implicitly to generate a restart condition */ + /* set XferOptions to I2C_FIRST_FRAME */ + if (hi2c->XferOptions == I2C_OTHER_FRAME) + { + hi2c->XferOptions = I2C_FIRST_FRAME; + } + /* else if user set XferOptions to I2C_OTHER_AND_LAST_FRAME */ + /* it request implicitly to generate a restart condition */ + /* then generate a stop condition at the end of transfer */ + /* set XferOptions to I2C_FIRST_AND_LAST_FRAME */ + else if (hi2c->XferOptions == I2C_OTHER_AND_LAST_FRAME) + { + hi2c->XferOptions = I2C_FIRST_AND_LAST_FRAME; + } + else + { + /* Nothing to do */ + } +} + +/** + * @} + */ + +#endif /* HAL_I2C_MODULE_ENABLED */ +/** + * @} + */ + +/** + * @} + */ + +/************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/ diff --git a/source/hic_hal/stm32/stm32h743ii/STM32H7xx_HAL_Driver/Src/stm32h7xx_hal_i2c_ex.c b/source/hic_hal/stm32/stm32h743ii/STM32H7xx_HAL_Driver/Src/stm32h7xx_hal_i2c_ex.c new file mode 100644 index 000000000..6d8b28ae2 --- /dev/null +++ b/source/hic_hal/stm32/stm32h743ii/STM32H7xx_HAL_Driver/Src/stm32h7xx_hal_i2c_ex.c @@ -0,0 +1,339 @@ +/** + ****************************************************************************** + * @file stm32h7xx_hal_i2c_ex.c + * @author MCD Application Team + * @brief I2C Extended HAL module driver. + * This file provides firmware functions to manage the following + * functionalities of I2C Extended peripheral: + * + Extended features functions + * + @verbatim + ============================================================================== + ##### I2C peripheral Extended features ##### + ============================================================================== + + [..] Comparing to other previous devices, the I2C interface for STM32H7xx + devices contains the following additional features + + (+) Possibility to disable or enable Analog Noise Filter + (+) Use of a configured Digital Noise Filter + (+) Disable or enable wakeup from Stop mode(s) + (+) Disable or enable Fast Mode Plus + + ##### How to use this driver ##### + ============================================================================== + [..] This driver provides functions to configure Noise Filter and Wake Up Feature + (#) Configure I2C Analog noise filter using the function HAL_I2CEx_ConfigAnalogFilter() + (#) Configure I2C Digital noise filter using the function HAL_I2CEx_ConfigDigitalFilter() + (#) Configure the enable or disable of I2C Wake Up Mode using the functions : + (++) HAL_I2CEx_EnableWakeUp() + (++) HAL_I2CEx_DisableWakeUp() + (#) Configure the enable or disable of fast mode plus driving capability using the functions : + (++) HAL_I2CEx_EnableFastModePlus() + (++) HAL_I2CEx_DisableFastModePlus() + @endverbatim + ****************************************************************************** + * @attention + * + *

© Copyright (c) 2017 STMicroelectronics. + * All rights reserved.

+ * + * This software component is licensed by ST under BSD 3-Clause license, + * the "License"; You may not use this file except in compliance with the + * License. You may obtain a copy of the License at: + * opensource.org/licenses/BSD-3-Clause + * + ****************************************************************************** + */ + +/* Includes ------------------------------------------------------------------*/ +#include "stm32h7xx_hal.h" + +/** @addtogroup STM32H7xx_HAL_Driver + * @{ + */ + +/** @defgroup I2CEx I2CEx + * @brief I2C Extended HAL module driver + * @{ + */ + +#ifdef HAL_I2C_MODULE_ENABLED + +/* Private typedef -----------------------------------------------------------*/ +/* Private define ------------------------------------------------------------*/ +/* Private macro -------------------------------------------------------------*/ +/* Private variables ---------------------------------------------------------*/ +/* Private function prototypes -----------------------------------------------*/ +/* Private functions ---------------------------------------------------------*/ + +/** @defgroup I2CEx_Exported_Functions I2C Extended Exported Functions + * @{ + */ + +/** @defgroup I2CEx_Exported_Functions_Group1 Extended features functions + * @brief Extended features functions + * +@verbatim + =============================================================================== + ##### Extended features functions ##### + =============================================================================== + [..] This section provides functions allowing to: + (+) Configure Noise Filters + (+) Configure Wake Up Feature + (+) Configure Fast Mode Plus + +@endverbatim + * @{ + */ + +/** + * @brief Configure I2C Analog noise filter. + * @param hi2c Pointer to a I2C_HandleTypeDef structure that contains + * the configuration information for the specified I2Cx peripheral. + * @param AnalogFilter New state of the Analog filter. + * @retval HAL status + */ +HAL_StatusTypeDef HAL_I2CEx_ConfigAnalogFilter(I2C_HandleTypeDef *hi2c, uint32_t AnalogFilter) +{ + /* Check the parameters */ + assert_param(IS_I2C_ALL_INSTANCE(hi2c->Instance)); + assert_param(IS_I2C_ANALOG_FILTER(AnalogFilter)); + + if (hi2c->State == HAL_I2C_STATE_READY) + { + /* Process Locked */ + __HAL_LOCK(hi2c); + + hi2c->State = HAL_I2C_STATE_BUSY; + + /* Disable the selected I2C peripheral */ + __HAL_I2C_DISABLE(hi2c); + + /* Reset I2Cx ANOFF bit */ + hi2c->Instance->CR1 &= ~(I2C_CR1_ANFOFF); + + /* Set analog filter bit*/ + hi2c->Instance->CR1 |= AnalogFilter; + + __HAL_I2C_ENABLE(hi2c); + + hi2c->State = HAL_I2C_STATE_READY; + + /* Process Unlocked */ + __HAL_UNLOCK(hi2c); + + return HAL_OK; + } + else + { + return HAL_BUSY; + } +} + +/** + * @brief Configure I2C Digital noise filter. + * @param hi2c Pointer to a I2C_HandleTypeDef structure that contains + * the configuration information for the specified I2Cx peripheral. + * @param DigitalFilter Coefficient of digital noise filter between Min_Data=0x00 and Max_Data=0x0F. + * @retval HAL status + */ +HAL_StatusTypeDef HAL_I2CEx_ConfigDigitalFilter(I2C_HandleTypeDef *hi2c, uint32_t DigitalFilter) +{ + uint32_t tmpreg; + + /* Check the parameters */ + assert_param(IS_I2C_ALL_INSTANCE(hi2c->Instance)); + assert_param(IS_I2C_DIGITAL_FILTER(DigitalFilter)); + + if (hi2c->State == HAL_I2C_STATE_READY) + { + /* Process Locked */ + __HAL_LOCK(hi2c); + + hi2c->State = HAL_I2C_STATE_BUSY; + + /* Disable the selected I2C peripheral */ + __HAL_I2C_DISABLE(hi2c); + + /* Get the old register value */ + tmpreg = hi2c->Instance->CR1; + + /* Reset I2Cx DNF bits [11:8] */ + tmpreg &= ~(I2C_CR1_DNF); + + /* Set I2Cx DNF coefficient */ + tmpreg |= DigitalFilter << 8U; + + /* Store the new register value */ + hi2c->Instance->CR1 = tmpreg; + + __HAL_I2C_ENABLE(hi2c); + + hi2c->State = HAL_I2C_STATE_READY; + + /* Process Unlocked */ + __HAL_UNLOCK(hi2c); + + return HAL_OK; + } + else + { + return HAL_BUSY; + } +} + +/** + * @brief Enable I2C wakeup from Stop mode(s). + * @param hi2c Pointer to a I2C_HandleTypeDef structure that contains + * the configuration information for the specified I2Cx peripheral. + * @retval HAL status + */ +HAL_StatusTypeDef HAL_I2CEx_EnableWakeUp(I2C_HandleTypeDef *hi2c) +{ + /* Check the parameters */ + assert_param(IS_I2C_WAKEUP_FROMSTOP_INSTANCE(hi2c->Instance)); + + if (hi2c->State == HAL_I2C_STATE_READY) + { + /* Process Locked */ + __HAL_LOCK(hi2c); + + hi2c->State = HAL_I2C_STATE_BUSY; + + /* Disable the selected I2C peripheral */ + __HAL_I2C_DISABLE(hi2c); + + /* Enable wakeup from stop mode */ + hi2c->Instance->CR1 |= I2C_CR1_WUPEN; + + __HAL_I2C_ENABLE(hi2c); + + hi2c->State = HAL_I2C_STATE_READY; + + /* Process Unlocked */ + __HAL_UNLOCK(hi2c); + + return HAL_OK; + } + else + { + return HAL_BUSY; + } +} + +/** + * @brief Disable I2C wakeup from Stop mode(s). + * @param hi2c Pointer to a I2C_HandleTypeDef structure that contains + * the configuration information for the specified I2Cx peripheral. + * @retval HAL status + */ +HAL_StatusTypeDef HAL_I2CEx_DisableWakeUp(I2C_HandleTypeDef *hi2c) +{ + /* Check the parameters */ + assert_param(IS_I2C_WAKEUP_FROMSTOP_INSTANCE(hi2c->Instance)); + + if (hi2c->State == HAL_I2C_STATE_READY) + { + /* Process Locked */ + __HAL_LOCK(hi2c); + + hi2c->State = HAL_I2C_STATE_BUSY; + + /* Disable the selected I2C peripheral */ + __HAL_I2C_DISABLE(hi2c); + + /* Enable wakeup from stop mode */ + hi2c->Instance->CR1 &= ~(I2C_CR1_WUPEN); + + __HAL_I2C_ENABLE(hi2c); + + hi2c->State = HAL_I2C_STATE_READY; + + /* Process Unlocked */ + __HAL_UNLOCK(hi2c); + + return HAL_OK; + } + else + { + return HAL_BUSY; + } +} + +/** + * @brief Enable the I2C fast mode plus driving capability. + * @param ConfigFastModePlus Selects the pin. + * This parameter can be one of the @ref I2CEx_FastModePlus values + * @note For I2C1, fast mode plus driving capability can be enabled on all selected + * I2C1 pins using I2C_FASTMODEPLUS_I2C1 parameter or independently + * on each one of the following pins PB6, PB7, PB8 and PB9. + * @note For remaining I2C1 pins (PA14, PA15...) fast mode plus driving capability + * can be enabled only by using I2C_FASTMODEPLUS_I2C1 parameter. + * @note For all I2C2 pins fast mode plus driving capability can be enabled + * only by using I2C_FASTMODEPLUS_I2C2 parameter. + * @note For all I2C3 pins fast mode plus driving capability can be enabled + * only by using I2C_FASTMODEPLUS_I2C3 parameter. + * @note For all I2C4 pins fast mode plus driving capability can be enabled + * only by using I2C_FASTMODEPLUS_I2C4 parameter. + * @retval None + */ +void HAL_I2CEx_EnableFastModePlus(uint32_t ConfigFastModePlus) +{ + /* Check the parameter */ + assert_param(IS_I2C_FASTMODEPLUS(ConfigFastModePlus)); + + /* Enable SYSCFG clock */ + __HAL_RCC_SYSCFG_CLK_ENABLE(); + + /* Enable fast mode plus driving capability for selected pin */ + SET_BIT(SYSCFG->PMCR, (uint32_t)ConfigFastModePlus); +} + +/** + * @brief Disable the I2C fast mode plus driving capability. + * @param ConfigFastModePlus Selects the pin. + * This parameter can be one of the @ref I2CEx_FastModePlus values + * @note For I2C1, fast mode plus driving capability can be disabled on all selected + * I2C1 pins using I2C_FASTMODEPLUS_I2C1 parameter or independently + * on each one of the following pins PB6, PB7, PB8 and PB9. + * @note For remaining I2C1 pins (PA14, PA15...) fast mode plus driving capability + * can be disabled only by using I2C_FASTMODEPLUS_I2C1 parameter. + * @note For all I2C2 pins fast mode plus driving capability can be disabled + * only by using I2C_FASTMODEPLUS_I2C2 parameter. + * @note For all I2C3 pins fast mode plus driving capability can be disabled + * only by using I2C_FASTMODEPLUS_I2C3 parameter. + * @note For all I2C4 pins fast mode plus driving capability can be disabled + * only by using I2C_FASTMODEPLUS_I2C4 parameter. + * @retval None + */ +void HAL_I2CEx_DisableFastModePlus(uint32_t ConfigFastModePlus) +{ + /* Check the parameter */ + assert_param(IS_I2C_FASTMODEPLUS(ConfigFastModePlus)); + + /* Enable SYSCFG clock */ + __HAL_RCC_SYSCFG_CLK_ENABLE(); + + /* Disable fast mode plus driving capability for selected pin */ + CLEAR_BIT(SYSCFG->PMCR, (uint32_t)ConfigFastModePlus); +} + +/** + * @} + */ + +/** + * @} + */ + +#endif /* HAL_I2C_MODULE_ENABLED */ +/** + * @} + */ + +/** + * @} + */ + +/************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/ diff --git a/source/hic_hal/stm32/stm32h743ii/STM32H7xx_HAL_Driver/Src/stm32h7xx_hal_pwr.c b/source/hic_hal/stm32/stm32h743ii/STM32H7xx_HAL_Driver/Src/stm32h7xx_hal_pwr.c new file mode 100644 index 000000000..a3d2a1ab9 --- /dev/null +++ b/source/hic_hal/stm32/stm32h743ii/STM32H7xx_HAL_Driver/Src/stm32h7xx_hal_pwr.c @@ -0,0 +1,868 @@ +/** + ****************************************************************************** + * @file stm32h7xx_hal_pwr.c + * @author MCD Application Team + * @brief PWR HAL module driver. + * This file provides firmware functions to manage the following + * functionalities of the Power Controller (PWR) peripheral: + * + Initialization and de-initialization functions. + * + Peripheral Control functions. + * + Interrupt Handling functions. + @verbatim + ============================================================================== + ##### PWR peripheral overview ##### + ============================================================================== + [..] + (#) The Power control (PWR) provides an overview of the supply architecture + for the different power domains and of the supply configuration + controller. + In the H7 family, the number of power domains is different between + device lines. This difference is due to characteristics of each device. + + (#) Domain architecture overview for the different H7 lines: + (+) Dual core lines are STM32H745, STM32H747, STM32H755 and STM32H757. + These devices have 3 power domains (D1, D2 and D3). + The domain D1 contains a CPU (Cortex-M7), a Flash memory and some + peripherals. The D2 domain contains peripherals and a CPU + (Cortex-M4). The D3 domain contains the system control, I/O logic + and low-power peripherals. + (+) STM32H743, STM32H753, STM32H742 and STM32H750 devices have 3 power + domains (D1, D2 and D3). + The domain D1 contains a CPU (Cortex-M7), a Flash memory and some + peripherals. The D2 domain contains peripherals. The D3 domains + contains the system control, I/O logic and low-power peripherals. + (+) STM32H7AxxQ, STM32H7BxxQ, STM32H7Axxx and STM32H7Bxxx devices have 2 + power domains (CD and SRD). + The core domain (CD) contains a CPU (Cortex-M7), a Flash + memory and peripherals. The SmartRun domain contains the system + control, I/O logic and low-power peripherals. + + (#) Every entity have low power mode as decribed below : + (#) The CPU low power modes are : + (+) CPU CRUN. + (+) CPU CSLEEP. + (+) CPU CSTOP. + (#) The domain low power modes are : + (+) DRUN. + (+) DSTOP. + (+) DSTANDBY. + (#) The SYSTEM low power modes are : + (+) RUN* : The Run* mode is entered after a POR reset and a wakeup from + Standby. In Run* mode, the performance is limited and the + system supply configuration shall be programmed. The system + enters Run mode only when the ACTVOSRDY bit in PWR control + status register 1 (PWR_CSR1) is set to 1. + (+) RUN. + (+) STOP. + (+) STANDBY. + + ============================================================================== + ##### How to use this driver ##### + ============================================================================== + [..] + (#) Power management peripheral is active by default at startup level in + STM32h7xx lines. + + (#) Call HAL_PWR_EnableBkUpAccess() and HAL_PWR_DisableBkUpAccess() functions + to enable/disable access to the backup domain (RTC registers, RTC backup + data registers and backup SRAM). + + (#) Call HAL_PWR_ConfigPVD() after setting parameters to be configured (event + mode and voltage threshold) in order to set up the Power Voltage Detector, + then use HAL_PWR_EnablePVD() and HAL_PWR_DisablePVD() functions to start + and stop the PVD detection. + (+) PVD level could be one of the following values : + (++) 1V95 + (++) 2V1 + (++) 2V25 + (++) 2V4 + (++) 2V55 + (++) 2V7 + (++) 2V85 + (++) External voltage level + + (#) Call HAL_PWR_EnableWakeUpPin() and HAL_PWR_DisableWakeUpPin() functions + with the right parameter to configure the wake up pin polarity (Low or + High) and to enable and disable it. + + (#) Call HAL_PWR_EnterSLEEPMode() function to enter the current Core in SLEEP + mode. Wake-up from SLEEP mode could be following to an event or an + interrupt according to low power mode intrinsic request called (__WFI() + or __WFE()). + Please ensure to clear all CPU pending events by calling + HAL_PWREx_ClearPendingEvent() function when trying to enter the Cortex-Mx + in SLEEP mode with __WFE() entry. + + (#) Call HAL_PWR_EnterSTOPMode() function to enter the whole system to Stop 0 + mode for single core devices. For dual core devices, this API will enter + the domain (containing Cortex-Mx that executing this function) in DSTOP + mode. According to the used parameter, user could select the regulator to + be kept actif in low power mode and wake-up event type. + Please ensure to clear all CPU pending events by calling + HAL_PWREx_ClearPendingEvent() function when trying to enter the Cortex-Mx + in CSTOP mode with __WFE() entry. + + (#) Call HAL_PWR_EnterSTANDBYMode() function to enter the whole system in + STANDBY mode for single core devices. For dual core devices, this API + will enter the domain (containing Cortex-Mx that executing this function) + in DSTANDBY mode. + + (#) Call HAL_PWR_EnableSleepOnExit() and HAL_PWR_DisableSleepOnExit() APIs to + enable and disable the Cortex-Mx re-entring in SLEEP mode after an + interruption handling is over. + + (#) Call HAL_PWR_EnableSEVOnPend() and HAL_PWR_DisableSEVOnPend() functions + to configure the Cortex-Mx to wake-up after any pending event / interrupt + even if it's disabled or has insufficient priority to cause exception + entry. + + (#) Call HAL_PWR_PVD_IRQHandler() function to handle the PWR PVD interrupt + request. + + *** PWR HAL driver macros list *** + ============================================= + [..] + Below the list of most used macros in PWR HAL driver. + + (+) __HAL_PWR_VOLTAGESCALING_CONFIG() : Configure the main internal + regulator output voltage. + (+) __HAL_PWR_GET_FLAG() : Get the PWR pending flags. + (+) __HAL_PWR_CLEAR_FLAG() : Clear the PWR pending flags. + + @endverbatim + ****************************************************************************** + * @attention + * + *

© COPYRIGHT(c) 2017 STMicroelectronics. + * All rights reserved.

+ * + * This software component is licensed by ST under BSD 3-Clause license, + * the "License"; You may not use this file except in compliance with the + * License. You may obtain a copy of the License at: + * opensource.org/licenses/BSD-3-Clause + * + ****************************************************************************** + */ + +/* Includes ------------------------------------------------------------------*/ +#include "stm32h7xx_hal.h" + +/** @addtogroup STM32H7xx_HAL_Driver + * @{ + */ + +/** @defgroup PWR PWR + * @brief PWR HAL module driver + * @{ + */ + +#ifdef HAL_PWR_MODULE_ENABLED + +/* Private typedef -----------------------------------------------------------*/ +/* Private define ------------------------------------------------------------*/ + +/** @addtogroup PWR_Private_Constants PWR Private Constants + * @{ + */ + +/** @defgroup PWR_PVD_Mode_Mask PWR PVD Mode Mask + * @{ + */ +#if !defined (DUAL_CORE) +#define PVD_MODE_IT (0x00010000U) +#define PVD_MODE_EVT (0x00020000U) +#endif /* !defined (DUAL_CORE) */ + +#define PVD_RISING_EDGE (0x00000001U) +#define PVD_FALLING_EDGE (0x00000002U) +#define PVD_RISING_FALLING_EDGE (0x00000003U) +/** + * @} + */ + +/** + * @} + */ + +/* Private macro -------------------------------------------------------------*/ +/* Private variables ---------------------------------------------------------*/ +/* Private function prototypes -----------------------------------------------*/ +/* Private functions ---------------------------------------------------------*/ + +/** @defgroup PWR_Exported_Functions PWR Exported Functions + * @{ + */ + +/** @defgroup PWR_Exported_Functions_Group1 Initialization and De-Initialization Functions + * @brief Initialization and De-Initialization functions + * +@verbatim + =============================================================================== + ##### Initialization and De-Initialization Functions ##### + =============================================================================== + [..] + This section provides functions allowing to deinitialize power peripheral. + + [..] + After system reset, the backup domain (RTC registers, RTC backup data + registers and backup SRAM) is protected against possible unwanted write + accesses. + The HAL_PWR_EnableBkUpAccess() function enables the access to the backup + domain. + The HAL_PWR_DisableBkUpAccess() function disables the access to the backup + domain. + +@endverbatim + * @{ + */ + +/** + * @brief Deinitialize the HAL PWR peripheral registers to their default reset + * values. + * @note This functionality is not available in this product. + * The prototype is kept just to maintain compatibility with other + * products. + * @retval None. + */ +void HAL_PWR_DeInit (void) +{ +} + +/** + * @brief Enable access to the backup domain (RTC registers, RTC backup data + * registers and backup SRAM). + * @note If the HSE divided by 2, 3, ..31 is used as the RTC clock, the + * Backup Domain Access should be kept enabled. + * @retval None. + */ +void HAL_PWR_EnableBkUpAccess (void) +{ + /* Enable access to RTC and backup registers */ + SET_BIT (PWR->CR1, PWR_CR1_DBP); +} + +/** + * @brief Disable access to the backup domain (RTC registers, RTC backup data + * registers and backup SRAM). + * @note If the HSE divided by 2, 3, ..31 is used as the RTC clock, the + * Backup Domain Access should be kept enabled. + * @retval None. + */ +void HAL_PWR_DisableBkUpAccess (void) +{ + /* Disable access to RTC and backup registers */ + CLEAR_BIT (PWR->CR1, PWR_CR1_DBP); +} +/** + * @} + */ + +/** @defgroup PWR_Exported_Functions_Group2 Peripheral Control Functions + * @brief Power Control functions + * +@verbatim + =============================================================================== + ##### Peripheral Control Functions ##### + =============================================================================== + [..] + This section provides functions allowing to control power peripheral. + + *** PVD configuration *** + ========================= + [..] + (+) The PVD is used to monitor the VDD power supply by comparing it to a + threshold selected by the PVD Level (PLS[7:0] bits in the PWR_CR1 + register). + + (+) A PVDO flag is available to indicate if VDD is higher or lower + than the PVD threshold. This event is internally connected to the EXTI + line 16 to generate an interrupt if enabled. + It is configurable through __HAL_PWR_PVD_EXTI_ENABLE_IT() macro. + + (+) The PVD is stopped in STANDBY mode. + + *** Wake-up pin configuration *** + ================================= + [..] + (+) Wake-up pin is used to wake up the system from STANDBY mode. + The pin pull is configurable through the WKUPEPR register to be in + No-pull, Pull-up and Pull-down. + The pin polarity is configurable through the WKUPEPR register to be + active on rising or falling edges. + + (+) There are up to six Wake-up pin in the STM32H7 devices family. + + *** Low Power modes configuration *** + ===================================== + [..] + The device present 3 principles low-power modes features: + (+) SLEEP mode : Cortex-Mx is stopped and all PWR domains are remaining + active (Powered and Clocked). + + (+) STOP mode : Cortex-Mx is stopped, clocks are stopped and the + regulator is running. The Main regulator or the LP + regulator could be selected. + + (+) STANDBY mode : All PWR domains enter DSTANDBY mode and the VCORE + supply regulator is powered off. + + *** SLEEP mode *** + ================== + [..] + (+) Entry: + The SLEEP mode is entered by using the HAL_PWR_EnterSLEEPMode(Regulator, + SLEEPEntry) function. + + (++) PWR_SLEEPENTRY_WFI: enter SLEEP mode with WFI instruction. + (++) PWR_SLEEPENTRY_WFE: enter SLEEP mode with WFE instruction. + + -@@- The Regulator parameter is not used for the STM32H7 family + and is kept as parameter just to maintain compatibility with the + lower power families (STM32L). + + (+) Exit: + Any peripheral interrupt acknowledged by the nested vectored interrupt + controller (NVIC) can wake up the device from SLEEP mode. + + *** STOP mode *** + ================= + [..] + In system STOP mode, all clocks in the 1.2V domain are stopped, the PLL, + the HSI, and the HSE RC oscillators are disabled. Internal SRAM and + register contents are preserved. + The voltage regulator can be configured either in normal or low-power mode. + To minimize the consumption in STOP mode, FLASH can be powered off before + entering the STOP mode using the HAL_PWREx_EnableFlashPowerDown() function. + It can be switched on again by software after exiting the STOP mode using + the HAL_PWREx_DisableFlashPowerDown() function. + + (+) Entry: + The STOP mode is entered using the HAL_PWR_EnterSTOPMode(Regulator, + STOPEntry) function with: + + (++) Regulator: + (+++) PWR_MAINREGULATOR_ON: Main regulator ON. + (+++) PWR_LOWPOWERREGULATOR_ON: Low Power regulator ON. + + (++) STOPEntry: + (+++) PWR_STOPENTRY_WFI: enter STOP mode with WFI instruction. + (+++) PWR_STOPENTRY_WFE: enter STOP mode with WFE instruction. + + (+) Exit: + Any EXTI Line (Internal or External) configured in Interrupt/Event mode. + + *** STANDBY mode *** + ==================== + [..] + (+) + The system STANDBY mode allows to achieve the lowest power consumption. + It is based on the Cortex-Mx deep SLEEP mode, with the voltage regulator + disabled. The system is consequently powered off. The PLL, the HSI + oscillator and the HSE oscillator are also switched off. SRAM and register + contents are lost except for the RTC registers, RTC backup registers, + backup SRAM and standby circuitry. + + [..] + The voltage regulator is OFF. + + (++) Entry: + (+++) The STANDBY mode is entered using the HAL_PWR_EnterSTANDBYMode() + function. + + (++) Exit: + (+++) WKUP pin rising or falling edge, RTC alarm (Alarm A and Alarm B), + RTC wakeup, tamper event, time stamp event, external reset in NRST + pin, IWDG reset. + + *** Auto-wakeup (AWU) from low-power mode *** + ============================================= + [..] + (+) The MCU can be woken up from low-power mode by an RTC Alarm event, an + RTC Wakeup event, a tamper event or a time-stamp event, without + depending on an external interrupt (Auto-wakeup mode). + + (+) RTC auto-wakeup (AWU) from the STOP and STANDBY modes + + (++) To wake up from the STOP mode with an RTC alarm event, it is + necessary to configure the RTC to generate the RTC alarm using the + HAL_RTC_SetAlarm_IT() function. + + (++) To wake up from the STOP mode with an RTC Tamper or time stamp event, + it is necessary to configure the RTC to detect the tamper or time + stamp event using the HAL_RTCEx_SetTimeStamp_IT() or + HAL_RTCEx_SetTamper_IT() functions. + + (++) To wake up from the STOP mode with an RTC WakeUp event, it is + necessary to configure the RTC to generate the RTC WakeUp event + using the HAL_RTCEx_SetWakeUpTimer_IT() function. + +@endverbatim + * @{ + */ + +/** + * @brief Configure the event mode and the voltage threshold detected by the + * Programmable Voltage Detector(PVD). + * @param sConfigPVD : Pointer to an PWR_PVDTypeDef structure that contains + * the configuration information for the PVD. + * @note Refer to the electrical characteristics of your device datasheet for + * more details about the voltage threshold corresponding to each + * detection level. + * @note For dual core devices, please ensure to configure the EXTI lines for + * the different Cortex-Mx through PWR_Exported_Macro provided by this + * driver. All combination are allowed: wake up only Cortex-M7, wake up + * only Cortex-M4 or wake up Cortex-M7 and Cortex-M4. + * @retval None. + */ +void HAL_PWR_ConfigPVD (PWR_PVDTypeDef *sConfigPVD) +{ + /* Check the PVD configuration parameter */ + if (sConfigPVD == NULL) + { + return; + } + + /* Check the parameters */ + assert_param (IS_PWR_PVD_LEVEL (sConfigPVD->PVDLevel)); + assert_param (IS_PWR_PVD_MODE (sConfigPVD->Mode)); + + /* Set PLS[7:5] bits according to PVDLevel value */ + MODIFY_REG (PWR->CR1, PWR_CR1_PLS, sConfigPVD->PVDLevel); + + /* Clear previous config */ +#if !defined (DUAL_CORE) + __HAL_PWR_PVD_EXTI_DISABLE_EVENT (); + __HAL_PWR_PVD_EXTI_DISABLE_IT (); +#endif /* !defined (DUAL_CORE) */ + + __HAL_PWR_PVD_EXTI_DISABLE_RISING_EDGE (); + __HAL_PWR_PVD_EXTI_DISABLE_FALLING_EDGE (); + +#if !defined (DUAL_CORE) + /* Interrupt mode configuration */ + if ((sConfigPVD->Mode & PVD_MODE_IT) == PVD_MODE_IT) + { + __HAL_PWR_PVD_EXTI_ENABLE_IT (); + } + + /* Event mode configuration */ + if ((sConfigPVD->Mode & PVD_MODE_EVT) == PVD_MODE_EVT) + { + __HAL_PWR_PVD_EXTI_ENABLE_EVENT (); + } +#endif /* !defined (DUAL_CORE) */ + + /* Rising edge configuration */ + if ((sConfigPVD->Mode & PVD_RISING_EDGE) == PVD_RISING_EDGE) + { + __HAL_PWR_PVD_EXTI_ENABLE_RISING_EDGE (); + } + + /* Falling edge configuration */ + if ((sConfigPVD->Mode & PVD_FALLING_EDGE) == PVD_FALLING_EDGE) + { + __HAL_PWR_PVD_EXTI_ENABLE_FALLING_EDGE (); + } +} + +/** + * @brief Enable the Programmable Voltage Detector (PVD). + * @retval None. + */ +void HAL_PWR_EnablePVD (void) +{ + /* Enable the power voltage detector */ + SET_BIT (PWR->CR1, PWR_CR1_PVDEN); +} + +/** + * @brief Disable the Programmable Voltage Detector (PVD). + * @retval None. + */ +void HAL_PWR_DisablePVD (void) +{ + /* Disable the power voltage detector */ + CLEAR_BIT (PWR->CR1, PWR_CR1_PVDEN); +} + +/** + * @brief Enable the WakeUp PINx functionality. + * @param WakeUpPinPolarity : Specifies which Wake-Up pin to enable. + * This parameter can be one of the following legacy values, which + * sets the default (rising edge): + * @arg PWR_WAKEUP_PIN1, PWR_WAKEUP_PIN2, PWR_WAKEUP_PIN3, + * PWR_WAKEUP_PIN4, PWR_WAKEUP_PIN5, PWR_WAKEUP_PIN6. + * or one of the following values where the user can explicitly states + * the enabled pin and the chosen polarity: + * @arg PWR_WAKEUP_PIN1_HIGH, PWR_WAKEUP_PIN1_LOW, + * PWR_WAKEUP_PIN2_HIGH, PWR_WAKEUP_PIN2_LOW, + * PWR_WAKEUP_PIN3_HIGH, PWR_WAKEUP_PIN3_LOW, + * PWR_WAKEUP_PIN4_HIGH, PWR_WAKEUP_PIN4_LOW, + * PWR_WAKEUP_PIN5_HIGH, PWR_WAKEUP_PIN5_LOW, + * PWR_WAKEUP_PIN6_HIGH, PWR_WAKEUP_PIN6_LOW. + * @note PWR_WAKEUP_PINx and PWR_WAKEUP_PINx_HIGH are equivalent. + * @retval None. + */ +void HAL_PWR_EnableWakeUpPin (uint32_t WakeUpPinPolarity) +{ + /* Check the parameters */ + assert_param (IS_PWR_WAKEUP_PIN (WakeUpPinPolarity)); + + /* + Enable and Specify the Wake-Up pin polarity and the pull configuration + for the event detection (rising or falling edge). + */ + MODIFY_REG (PWR->WKUPEPR, PWR_EWUP_MASK, WakeUpPinPolarity); +} + +/** + * @brief Disable the WakeUp PINx functionality. + * @param WakeUpPinx : Specifies the Power Wake-Up pin to disable. + * This parameter can be one of the following values: + * @arg PWR_WAKEUP_PIN1, PWR_WAKEUP_PIN2, PWR_WAKEUP_PIN3, + * PWR_WAKEUP_PIN4, PWR_WAKEUP_PIN5, PWR_WAKEUP_PIN6, + * PWR_WAKEUP_PIN1_HIGH, PWR_WAKEUP_PIN1_LOW, + * PWR_WAKEUP_PIN2_HIGH, PWR_WAKEUP_PIN2_LOW, + * PWR_WAKEUP_PIN3_HIGH, PWR_WAKEUP_PIN3_LOW, + * PWR_WAKEUP_PIN4_HIGH, PWR_WAKEUP_PIN4_LOW, + * PWR_WAKEUP_PIN5_HIGH, PWR_WAKEUP_PIN5_LOW, + * PWR_WAKEUP_PIN6_HIGH, PWR_WAKEUP_PIN6_LOW. + * @retval None. + */ +void HAL_PWR_DisableWakeUpPin (uint32_t WakeUpPinx) +{ + /* Check the parameters */ + assert_param (IS_PWR_WAKEUP_PIN (WakeUpPinx)); + + /* Disable the wake up pin selected */ + CLEAR_BIT (PWR->WKUPEPR, (PWR_WKUPEPR_WKUPEN & WakeUpPinx)); +} + +/** + * @brief Enter the current core in SLEEP mode (CSLEEP). + * @param Regulator : Specifies the regulator state in SLEEP mode. + * This parameter can be one of the following values: + * @arg PWR_MAINREGULATOR_ON : SLEEP mode with regulator ON. + * @arg PWR_LOWPOWERREGULATOR_ON : SLEEP mode with low power + * regulator ON. + * @note This parameter is not used for the STM32H7 family and is kept as + * parameter just to maintain compatibility with the lower power + * families. + * @param SLEEPEntry : Specifies if SLEEP mode is entered with WFI or WFE + * intrinsic instruction. + * This parameter can be one of the following values: + * @arg PWR_SLEEPENTRY_WFI : enter SLEEP mode with WFI instruction. + * @arg PWR_SLEEPENTRY_WFE : enter SLEEP mode with WFE instruction. + * @note Ensure to clear pending events before calling this API through + * HAL_PWREx_ClearPendingEvent() when the SLEEP entry is WFE. + * @retval None. + */ +void HAL_PWR_EnterSLEEPMode (uint32_t Regulator, uint8_t SLEEPEntry) +{ + /* Check the parameters */ + assert_param (IS_PWR_REGULATOR (Regulator)); + assert_param (IS_PWR_SLEEP_ENTRY (SLEEPEntry)); + + /* Clear SLEEPDEEP bit of Cortex System Control Register */ + CLEAR_BIT (SCB->SCR, SCB_SCR_SLEEPDEEP_Msk); + + /* Select SLEEP mode entry */ + if (SLEEPEntry == PWR_SLEEPENTRY_WFI) + { + /* Request Wait For Interrupt */ + __WFI (); + } + else + { + /* Request Wait For Event */ + __WFE (); + } +} + +/** + * @brief Enter STOP mode. + * @note For single core devices, this API will enter the system in STOP mode + * with all domains in DSTOP, if RUN_D3/RUN_SRD bit in CPUCR regiter is + * cleared. + * For dual core devices, this API will enter the domain (containing + * Cortex-Mx that executing this function) in DSTOP mode. If all + * Cortex-Mx domains are in DSTOP and RUN_D3 bit in CPUCR register is + * cleared, all the system will enter in STOP mode. + * @param Regulator : Specifies the regulator state in STOP mode. + * This parameter can be one of the following values: + * @arg PWR_MAINREGULATOR_ON : STOP mode with regulator ON. + * @arg PWR_LOWPOWERREGULATOR_ON : STOP mode with low power + * regulator ON. + * @param STOPEntry : Specifies if STOP mode in entered with WFI or WFE + * intrinsic instruction. + * This parameter can be one of the following values: + * @arg PWR_STOPENTRY_WFI : Enter STOP mode with WFI instruction. + * @arg PWR_STOPENTRY_WFE : Enter STOP mode with WFE instruction. + * @note In System STOP mode, all I/O pins keep the same state as in Run mode. + * @note When exiting System STOP mode by issuing an interrupt or a wakeup + * event, the HSI RC oscillator is selected as default system wakeup + * clock. + * @note In System STOP mode, when the voltage regulator operates in low + * power mode, an additional startup delay is incurred when the system + * is waking up. By keeping the internal regulator ON during STOP mode, + * the consumption is higher although the startup time is reduced. + * @retval None. + */ +void HAL_PWR_EnterSTOPMode (uint32_t Regulator, uint8_t STOPEntry) +{ + /* Check the parameters */ + assert_param (IS_PWR_REGULATOR (Regulator)); + assert_param (IS_PWR_STOP_ENTRY (STOPEntry)); + + /* Select the regulator state in STOP mode */ + MODIFY_REG (PWR->CR1, PWR_CR1_LPDS, Regulator); + + /* Configure the PWR mode for the different Domains */ +#if defined (DUAL_CORE) + /* Check CPU ID */ + if (HAL_GetCurrentCPUID () == CM7_CPUID) + { + /* Keep DSTOP mode when Cortex-M7 enters DEEP-SLEEP */ + CLEAR_BIT (PWR->CPUCR, (PWR_CPUCR_PDDS_D1 | PWR_CPUCR_PDDS_D3)); + } + else + { + /* Keep DSTOP mode when Cortex-M4 enters DEEP-SLEEP */ + CLEAR_BIT (PWR->CPUCR, (PWR_CPUCR_PDDS_D2 | PWR_CPUCR_PDDS_D3)); + } +#else /* Single core devices */ + /* Keep DSTOP mode when Cortex-M7 enter in DEEP-SLEEP */ + CLEAR_BIT (PWR->CPUCR, (PWR_CPUCR_PDDS_D1 | PWR_CPUCR_PDDS_D3)); + +#if defined (PWR_CPUCR_PDDS_D2) + /* Keep DSTOP mode when Cortex-M7 enter in DEEP-SLEEP */ + CLEAR_BIT (PWR->CPUCR, PWR_CPUCR_PDDS_D2); +#endif /* PWR_CPUCR_PDDS_D2 */ +#endif /* defined (DUAL_CORE) */ + + /* Set SLEEPDEEP bit of Cortex System Control Register */ + SET_BIT (SCB->SCR, SCB_SCR_SLEEPDEEP_Msk); + + /* Ensure that all instructions are done before entering STOP mode */ + __DSB (); + __ISB (); + + /* Select STOP mode entry */ + if (STOPEntry == PWR_STOPENTRY_WFI) + { + /* Request Wait For Interrupt */ + __WFI (); + } + else + { + /* Request Wait For Event */ + __WFE (); + } + + /* Clear SLEEPDEEP bit of Cortex-Mx in the System Control Register */ + CLEAR_BIT (SCB->SCR, SCB_SCR_SLEEPDEEP_Msk); +} + +/** + * @brief Enter STANDBY mode. + * @note For single core devices, this API will enter the system in STANDBY + * mode with all domains in DSTANDBY, if RUN_D3/RUN_SRD bit in CPUCR + * regiter is cleared. + * For dual core devices, this API will enter the domain (containing + * Cortex-Mx that executing this function) in DSTANDBY mode. If all + * Cortex-Mx domains are in DSTANDBY and RUN_D3 bit in CPUCR register + * is cleared, all the system will enter in STANDBY mode. + * @note The system enters Standby mode only when all domains are in DSTANDBY. + * @note When the System exit STANDBY mode by issuing an interrupt or a + * wakeup event, the HSI RC oscillator is selected as system clock. + * @retval None. + */ +void HAL_PWR_EnterSTANDBYMode (void) +{ + /* Configure the PWR mode for the different Domains */ +#if defined (DUAL_CORE) + /* Check CPU ID */ + if (HAL_GetCurrentCPUID () == CM7_CPUID) + { + /* Enter DSTANDBY mode when Cortex-M7 enters DEEP-SLEEP */ + SET_BIT (PWR->CPUCR, (PWR_CPUCR_PDDS_D1 | PWR_CPUCR_PDDS_D3)); + SET_BIT (PWR->CPU2CR, (PWR_CPU2CR_PDDS_D1 | PWR_CPU2CR_PDDS_D3)); + } + else + { + /* Enter DSTANDBY mode when Cortex-M4 enters DEEP-SLEEP */ + SET_BIT (PWR->CPUCR, (PWR_CPUCR_PDDS_D2 | PWR_CPUCR_PDDS_D3)); + SET_BIT (PWR->CPU2CR, (PWR_CPU2CR_PDDS_D2 | PWR_CPU2CR_PDDS_D3)); + } +#else /* Single core devices */ + /* Enter DSTANDBY mode when Cortex-M7 enters DEEP-SLEEP */ + SET_BIT (PWR->CPUCR, (PWR_CPUCR_PDDS_D1 | PWR_CPUCR_PDDS_D3)); + +#if defined (PWR_CPUCR_PDDS_D2) + /* Enter DSTANDBY mode when Cortex-M7 enters DEEP-SLEEP */ + SET_BIT (PWR->CPUCR, PWR_CPUCR_PDDS_D2); +#endif /* PWR_CPUCR_PDDS_D2 */ +#endif /* defined (DUAL_CORE) */ + + /* Set SLEEPDEEP bit of Cortex System Control Register */ + SET_BIT (SCB->SCR, SCB_SCR_SLEEPDEEP_Msk); + + /* Ensure that all instructions are done before entering STOP mode */ + __DSB (); + __ISB (); + + /* This option is used to ensure that store operations are completed */ +#if defined (__CC_ARM) + __force_stores(); +#endif /* defined (__CC_ARM) */ + + /* Request Wait For Interrupt */ + __WFI (); +} + +/** + * @brief Indicate Sleep-On-Exit feature when returning from Handler mode to + * Thread mode. + * @note Set SLEEPONEXIT bit of SCR register. When this bit is set, the + * processor re-enters SLEEP mode when an interruption handling is over. + * Setting this bit is useful when the processor is expected to run + * only on interruptions handling. + * @retval None. + */ +void HAL_PWR_EnableSleepOnExit (void) +{ + /* Set SLEEPONEXIT bit of Cortex-Mx System Control Register */ + SET_BIT (SCB->SCR, SCB_SCR_SLEEPONEXIT_Msk); +} + +/** + * @brief Disable Sleep-On-Exit feature when returning from Handler mode to + * Thread mode. + * @note Clears SLEEPONEXIT bit of SCR register. When this bit is set, the + * processor re-enters SLEEP mode when an interruption handling is over. + * @retval None + */ +void HAL_PWR_DisableSleepOnExit (void) +{ + /* Clear SLEEPONEXIT bit of Cortex-Mx System Control Register */ + CLEAR_BIT (SCB->SCR, SCB_SCR_SLEEPONEXIT_Msk); +} + +/** + * @brief Enable CORTEX SEVONPEND feature. + * @note Sets SEVONPEND bit of SCR register. When this bit is set, any + * pending event / interrupt even if it's disabled or has insufficient + * priority to cause exception entry wakes up the Cortex-Mx. + * @retval None. + */ +void HAL_PWR_EnableSEVOnPend (void) +{ + /* Set SEVONPEND bit of Cortex-Mx System Control Register */ + SET_BIT (SCB->SCR, SCB_SCR_SEVONPEND_Msk); +} + +/** + * @brief Disable CORTEX SEVONPEND feature. + * @note Resets SEVONPEND bit of SCR register. When this bit is reset, only + * enabled pending causes exception entry wakes up the Cortex-Mx. + * @retval None. + */ +void HAL_PWR_DisableSEVOnPend (void) +{ + /* Clear SEVONPEND bit of Cortex System Control Register */ + CLEAR_BIT (SCB->SCR, SCB_SCR_SEVONPEND_Msk); +} +/** + * @} + */ + +/** @defgroup PWR_Exported_Functions_Group3 Interrupt Handling Functions + * @brief Interrupt Handling functions + * +@verbatim + =============================================================================== + ##### Interrupt Handling Functions ##### + =============================================================================== + [..] + This section provides functions allowing to handle the PVD pending + interrupts. + +@endverbatim + * @{ + */ + +/** + * @brief This function handles the PWR PVD interrupt request. + * @note This API should be called under the PVD_AVD_IRQHandler(). + * @retval None. + */ +void HAL_PWR_PVD_IRQHandler (void) +{ +#if defined (DUAL_CORE) + /* Check Cortex-Mx ID */ + if (HAL_GetCurrentCPUID () == CM7_CPUID) + { + /* Check PWR EXTI D1 flag */ + if(__HAL_PWR_PVD_EXTI_GET_FLAG () != 0U) + { + /* Clear PWR EXTI D1 pending bit */ + __HAL_PWR_PVD_EXTI_CLEAR_FLAG (); + + /* PWR PVD interrupt user callback */ + HAL_PWR_PVDCallback (); + } + } + else + { + /* Check PWR EXTI D2 flag */ + if (__HAL_PWR_PVD_EXTID2_GET_FLAG () != 0U) + { + /* Clear PWR EXTI D2 pending bit */ + __HAL_PWR_PVD_EXTID2_CLEAR_FLAG (); + + /* PWR PVD interrupt user callback */ + HAL_PWR_PVDCallback (); + } + } +#else /* Single core devices */ + /* PVD EXTI line interrupt detected */ + if (__HAL_PWR_PVD_EXTI_GET_FLAG () != 0U) + { + /* Clear PWR EXTI pending bit */ + __HAL_PWR_PVD_EXTI_CLEAR_FLAG (); + + /* PWR PVD interrupt user callback */ + HAL_PWR_PVDCallback (); + } +#endif /* defined (DUAL_CORE) */ +} + +/** + * @brief PWR PVD interrupt callback. + * @retval None. + */ +__weak void HAL_PWR_PVDCallback (void) +{ + /* NOTE : This function should not be modified, when the callback is needed, + the HAL_PWR_PVDCallback can be implemented in the user file + */ +} + +/** + * @} + */ + +/** + * @} + */ + +#endif /* HAL_PWR_MODULE_ENABLED */ +/** + * @} + */ + +/** + * @} + */ + +/************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/ diff --git a/source/hic_hal/stm32/stm32h743ii/STM32H7xx_HAL_Driver/Src/stm32h7xx_hal_pwr_ex.c b/source/hic_hal/stm32/stm32h743ii/STM32H7xx_HAL_Driver/Src/stm32h7xx_hal_pwr_ex.c new file mode 100644 index 000000000..7370c22ab --- /dev/null +++ b/source/hic_hal/stm32/stm32h743ii/STM32H7xx_HAL_Driver/Src/stm32h7xx_hal_pwr_ex.c @@ -0,0 +1,2100 @@ +/** + ****************************************************************************** + * @file stm32h7xx_hal_pwr_ex.c + * @author MCD Application Team + * @brief Extended PWR HAL module driver. + * This file provides firmware functions to manage the following + * functionalities of PWR extension peripheral: + * + Peripheral Extended features functions + @verbatim + ============================================================================== + ##### How to use this driver ##### + ============================================================================== + [..] + (#) Call HAL_PWREx_ConfigSupply() function to configure the regulator supply + with the following different setups according to hardware (support SMPS): + (+) PWR_DIRECT_SMPS_SUPPLY + (+) PWR_SMPS_1V8_SUPPLIES_LDO + (+) PWR_SMPS_2V5_SUPPLIES_LDO + (+) PWR_SMPS_1V8_SUPPLIES_EXT_AND_LDO + (+) PWR_SMPS_2V5_SUPPLIES_EXT_AND_LDO + (+) PWR_SMPS_1V8_SUPPLIES_EXT + (+) PWR_SMPS_2V5_SUPPLIES_EXT + (+) PWR_LDO_SUPPLY + (+) PWR_EXTERNAL_SOURCE_SUPPLY + + (#) Call HAL_PWREx_GetSupplyConfig() function to get the current supply setup. + + (#) Call HAL_PWREx_ControlVoltageScaling() function to configure the main + internal regulator output voltage. The voltage scaling could be one of + the following scales : + (+) PWR_REGULATOR_VOLTAGE_SCALE0 + (+) PWR_REGULATOR_VOLTAGE_SCALE1 + (+) PWR_REGULATOR_VOLTAGE_SCALE2 + (+) PWR_REGULATOR_VOLTAGE_SCALE3 + + (#) Call HAL_PWREx_GetVoltageRange() function to get the current output + voltage applied to the main regulator. + + (#) Call HAL_PWREx_ControlStopModeVoltageScaling() function to configure the + main internal regulator output voltage in STOP mode. The voltage scaling + in STOP mode could be one of the following scales : + (+) PWR_REGULATOR_SVOS_SCALE3 + (+) PWR_REGULATOR_SVOS_SCALE4 + (+) PWR_REGULATOR_SVOS_SCALE5 + + (#) Call HAL_PWREx_GetStopModeVoltageRange() function to get the current + output voltage applied to the main regulator in STOP mode. + + (#) Call HAL_PWREx_EnterSTOP2Mode() function to enter the system in STOP mode + with core domain in D2STOP mode. This API is used only for STM32H7Axxx + and STM32H7Bxxx devices. + Please ensure to clear all CPU pending events by calling + HAL_PWREx_ClearPendingEvent() function when trying to enter the Cortex-Mx + in DEEP-SLEEP mode with __WFE() entry. + + (#) Call HAL_PWREx_EnterSTOPMode() function to enter the selected domain in + DSTOP mode. Call this API with all available power domains to enter the + system in STOP mode. + Please ensure to clear all CPU pending events by calling + HAL_PWREx_ClearPendingEvent() function when trying to enter the Cortex-Mx + in DEEP-SLEEP mode with __WFE() entry. + + (#) Call HAL_PWREx_ClearPendingEvent() function always before entring the + Cortex-Mx in any low power mode (SLEEP/DEEP-SLEEP) using WFE entry. + + (#) Call HAL_PWREx_EnterSTANDBYMode() function to enter the selected domain + in DSTANDBY mode. Call this API with all available power domains to enter + the system in STANDBY mode. + + (#) Call HAL_PWREx_ConfigD3Domain() function to setup the D3/SRD domain state + (RUN/STOP) when the system enter to low power mode. + + (#) Call HAL_PWREx_ClearDomainFlags() function to clear the CPU flags for the + selected power domain. This API is used only for dual core devices. + + (#) Call HAL_PWREx_HoldCore() and HAL_PWREx_ReleaseCore() functions to hold + and release the selected CPU and and their domain peripherals when + exiting STOP mode. These APIs are used only for dual core devices. + + (#) Call HAL_PWREx_EnableFlashPowerDown() and + HAL_PWREx_DisableFlashPowerDown() functions to enable and disable the + Flash Power Down in STOP mode. + + (#) Call HAL_PWREx_EnableMemoryShutOff() and + HAL_PWREx_DisableMemoryShutOff() functions to enable and disable the + memory block shut-off in DStop or DStop2. These APIs are used only for + STM32H7Axxx and STM32H7Bxxx lines. + + (#) Call HAL_PWREx_EnableWakeUpPin() and HAL_PWREx_DisableWakeUpPin() + functions to enable and disable the Wake-up pin functionality for + the selected pin. + + (#) Call HAL_PWREx_GetWakeupFlag() and HAL_PWREx_ClearWakeupFlag() + functions to manage wake-up flag for the selected pin. + + (#) Call HAL_PWREx_WAKEUP_PIN_IRQHandler() function to handle all wake-up + pins interrupts. + + (#) Call HAL_PWREx_EnableBkUpReg() and HAL_PWREx_DisableBkUpReg() functions + to enable and disable the backup domain regulator. + + (#) Call HAL_PWREx_EnableUSBReg(), HAL_PWREx_DisableUSBReg(), + HAL_PWREx_EnableUSBVoltageDetector() and + HAL_PWREx_DisableUSBVoltageDetector() functions to manage USB power + regulation functionnalities. + + (#) Call HAL_PWREx_EnableBatteryCharging() and + HAL_PWREx_DisableBatteryCharging() functions to enable and disable the + battery charging feature with the selected resistor. + + (#) Call HAL_PWREx_EnableAnalogBooster() and + HAL_PWREx_DisableAnalogBooster() functions to enable and disable the + AVD boost feature when the VDD supply voltage is below 2V7. + + (#) Call HAL_PWREx_EnableMonitoring() and HAL_PWREx_DisableMonitoring() + functions to enable and disable the VBAT and Temperature monitoring. + When VBAT and Temperature monitoring feature is enables, use + HAL_PWREx_GetTemperatureLevel() and HAL_PWREx_GetVBATLevel() to get + respectively the Temperature level and VBAT level. + + (#) Call HAL_PWREx_GetMMCVoltage() and HAL_PWREx_DisableMonitoring() + function to get VDDMMC voltage level. This API is used only for + STM32H7AxxQ, STM32H7BxxQ, STM32H7Axxx and STM32H7Bxxx lines + + (#) Call HAL_PWREx_ConfigAVD() after setting parameter to be configured + (event mode and voltage threshold) in order to set up the Analog Voltage + Detector then use HAL_PWREx_EnableAVD() and HAL_PWREx_DisableAVD() + functions to start and stop the AVD detection. + (+) AVD level could be one of the following values : + (++) 1V7 + (++) 2V1 + (++) 2V5 + (++) 2V8 + + (#) Call HAL_PWREx_PVD_AVD_IRQHandler() function to handle the PWR PVD and + AVD interrupt request. + + @endverbatim + ****************************************************************************** + * @attention + * + *

© COPYRIGHT(c) 2017 STMicroelectronics. + * All rights reserved.

+ * + * This software component is licensed by ST under BSD 3-Clause license, + * the "License"; You may not use this file except in compliance with the + * License. You may obtain a copy of the License at: + * opensource.org/licenses/BSD-3-Clause + * + ****************************************************************************** + */ + +/* Includes ------------------------------------------------------------------*/ +#include "stm32h7xx_hal.h" + +/** @addtogroup STM32H7xx_HAL_Driver + * @{ + */ + +/** @defgroup PWREx PWREx + * @brief PWR Extended HAL module driver + * @{ + */ + +#ifdef HAL_PWR_MODULE_ENABLED + +/* Private typedef -----------------------------------------------------------*/ +/* Private define ------------------------------------------------------------*/ + +/** @addtogroup PWREx_Private_Constants + * @{ + */ + +/** @defgroup PWREx_AVD_Mode_Mask PWR Extended AVD Mode Mask + * @{ + */ +#define AVD_MODE_IT (0x00010000U) +#define AVD_MODE_EVT (0x00020000U) +#define AVD_RISING_EDGE (0x00000001U) +#define AVD_FALLING_EDGE (0x00000002U) +#define AVD_RISING_FALLING_EDGE (0x00000003U) +/** + * @} + */ + +/** @defgroup PWREx_REG_SET_TIMEOUT PWR Extended Flag Setting Time Out Value + * @{ + */ +#define PWR_FLAG_SETTING_DELAY (1000U) +/** + * @} + */ + +/** @defgroup PWREx_WakeUp_Pins_Offsets PWREx Wake-Up Pins masks and offsets + * @{ + */ +/* Wake-Up Pins EXTI register mask */ +#define PWR_EXTI_WAKEUP_PINS_MASK (EXTI_IMR2_IM55 | EXTI_IMR2_IM56 |\ + EXTI_IMR2_IM57 | EXTI_IMR2_IM58 |\ + EXTI_IMR2_IM59 | EXTI_IMR2_IM60) + +/* Wake-Up Pins PWR Pin Pull shift offsets */ +#define PWR_WAKEUP_PINS_PULL_SHIFT_OFFSET (2U) +/** + * @} + */ + +/** + * @} + */ + +/* Private macro -------------------------------------------------------------*/ +/* Private variables ---------------------------------------------------------*/ +/* Private function prototypes -----------------------------------------------*/ +/* Private functions ---------------------------------------------------------*/ +/* Exported types ------------------------------------------------------------*/ +/* Exported functions --------------------------------------------------------*/ + +/** @defgroup PWREx_Exported_Functions PWREx Exported Functions + * @{ + */ + +/** @defgroup PWREx_Exported_Functions_Group1 Power Supply Control Functions + * @brief Power supply control functions + * +@verbatim + =============================================================================== + ##### Power supply control functions ##### + =============================================================================== + [..] + (#) When the system is powered on, the POR monitors VDD supply. Once VDD is + above the POR threshold level, the voltage regulator is enabled in the + default supply configuration: + (+) The Voltage converter output level is set at 1V0 in accordance with + the VOS3 level configured in PWR (D3/SRD) domain control register + (PWR_D3CR/PWR_SRDCR). + (+) The system is kept in reset mode as long as VCORE is not ok. + (+) Once VCORE is ok, the system is taken out of reset and the HSI + oscillator is enabled. + (+) Once the oscillator is stable, the system is initialized: Flash memory + and option bytes are loaded and the CPU starts in Run* mode. + (+) The software shall then initialize the system including supply + configuration programming using the HAL_PWREx_ConfigSupply(). + (+) Once the supply configuration has been configured, the + HAL_PWREx_ConfigSupply() function checks the ACTVOSRDY bit in PWR + control status register 1 (PWR_CSR1) to guarantee a valid voltage + levels: + (++) As long as ACTVOSRDY indicates that voltage levels are invalid, the + system is in limited Run* mode, write accesses to the RAMs are not + permitted and VOS shall not be changed. + (++) Once ACTVOSRDY indicates that voltage levels are valid, the system + is in normal Run mode, write accesses to RAMs are allowed and VOS + can be changed. + +@endverbatim + * @{ + */ + +/** + * @brief Configure the system Power Supply. + * @param SupplySource : Specifies the Power Supply source to set after a + * system startup. + * This parameter can be one of the following values : + * @arg PWR_DIRECT_SMPS_SUPPLY : The SMPS supplies the Vcore Power + * Domains. The LDO is Bypassed. + * @arg PWR_SMPS_1V8_SUPPLIES_LDO : The SMPS 1.8V output supplies + * the LDO. The Vcore Power Domains + * are supplied from the LDO. + * @arg PWR_SMPS_2V5_SUPPLIES_LDO : The SMPS 2.5V output supplies + * the LDO. The Vcore Power Domains + * are supplied from the LDO. + * @arg PWR_SMPS_1V8_SUPPLIES_EXT_AND_LDO : The SMPS 1.8V output + * supplies external + * circuits and the LDO. + * The Vcore Power Domains + * are supplied from the + * LDO. + * @arg PWR_SMPS_2V5_SUPPLIES_EXT_AND_LDO : The SMPS 2.5V output + * supplies external + * circuits and the LDO. + * The Vcore Power Domains + * are supplied from the + * LDO. + * @arg PWR_SMPS_1V8_SUPPLIES_EXT : The SMPS 1.8V output supplies + * external circuits. The LDO is + * Bypassed. The Vcore Power + * Domains are supplied from + * external source. + * @arg PWR_SMPS_2V5_SUPPLIES_EXT : The SMPS 2.5V output supplies + * external circuits. The LDO is + * Bypassed. The Vcore Power + * Domains are supplied from + * external source. + * @arg PWR_LDO_SUPPLY : The LDO regulator supplies the Vcore Power + * Domains. The SMPS regulator is Bypassed. + * @arg PWR_EXTERNAL_SOURCE_SUPPLY : The SMPS and the LDO are + * Bypassed. The Vcore Power + * Domains are supplied from + * external source. + * @note The PWR_LDO_SUPPLY and PWR_EXTERNAL_SOURCE_SUPPLY are used by all + * H7 lines. + * The PWR_DIRECT_SMPS_SUPPLY, PWR_SMPS_1V8_SUPPLIES_LDO, + * PWR_SMPS_2V5_SUPPLIES_LDO, PWR_SMPS_1V8_SUPPLIES_EXT_AND_LDO, + * PWR_SMPS_2V5_SUPPLIES_EXT_AND_LDO, PWR_SMPS_1V8_SUPPLIES_EXT and + * PWR_SMPS_2V5_SUPPLIES_EXT are used only for lines that supports SMPS + * regulator. + * @retval HAL status. + */ +HAL_StatusTypeDef HAL_PWREx_ConfigSupply (uint32_t SupplySource) +{ + uint32_t tickstart; + + /* Check the parameters */ + assert_param (IS_PWR_SUPPLY (SupplySource)); + + /* Check if supply source was configured */ +#if defined (PWR_FLAG_SCUEN) + if (__HAL_PWR_GET_FLAG (PWR_FLAG_SCUEN) == 0U) +#else + if ((PWR->CR3 & (PWR_CR3_SMPSEN | PWR_CR3_LDOEN | PWR_CR3_BYPASS)) != (PWR_CR3_SMPSEN | PWR_CR3_LDOEN)) +#endif /* defined (PWR_FLAG_SCUEN) */ + { + /* Check supply configuration */ + if ((PWR->CR3 & PWR_SUPPLY_CONFIG_MASK) != SupplySource) + { + /* Supply configuration update locked, can't apply a new supply config */ + return HAL_ERROR; + } + else + { + /* Supply configuration update locked, but new supply configuration + matches with old supply configuration : nothing to do + */ + return HAL_OK; + } + } + + /* Set the power supply configuration */ + MODIFY_REG (PWR->CR3, PWR_SUPPLY_CONFIG_MASK, SupplySource); + + /* Get tick */ + tickstart = HAL_GetTick (); + + /* Wait till voltage level flag is set */ + while (__HAL_PWR_GET_FLAG (PWR_FLAG_ACTVOSRDY) == 0U) + { + if ((HAL_GetTick () - tickstart) > PWR_FLAG_SETTING_DELAY) + { + return HAL_ERROR; + } + } + +#if defined (SMPS) + /* When the SMPS supplies external circuits verify that SDEXTRDY flag is set */ + if ((SupplySource == PWR_SMPS_1V8_SUPPLIES_EXT_AND_LDO) || + (SupplySource == PWR_SMPS_2V5_SUPPLIES_EXT_AND_LDO) || + (SupplySource == PWR_SMPS_1V8_SUPPLIES_EXT) || + (SupplySource == PWR_SMPS_2V5_SUPPLIES_EXT)) + { + /* Get the current tick number */ + tickstart = HAL_GetTick (); + + /* Wait till SMPS external supply ready flag is set */ + while (__HAL_PWR_GET_FLAG (PWR_FLAG_SMPSEXTRDY) == 0U) + { + if ((HAL_GetTick () - tickstart) > PWR_FLAG_SETTING_DELAY) + { + return HAL_ERROR; + } + } + } +#endif /* defined (SMPS) */ + + return HAL_OK; +} + +/** + * @brief Get the power supply configuration. + * @retval The supply configuration. + */ +uint32_t HAL_PWREx_GetSupplyConfig (void) +{ + return (PWR->CR3 & PWR_SUPPLY_CONFIG_MASK); +} + +/** + * @brief Configure the main internal regulator output voltage. + * @note For STM32H7x3, STM32H7x5, STM32H7x7, STM32H742 and STM32H750 lines, + * configuring Voltage Scale 0 is only possible when Vcore is supplied + * from LDO (Low DropOut). The SYSCFG Clock must be enabled through + * __HAL_RCC_SYSCFG_CLK_ENABLE() macro before configuring Voltage + * Scale 0. + * @param VoltageScaling : Specifies the regulator output voltage to achieve + * a tradeoff between performance and power + * consumption. + * This parameter can be one of the following values : + * @arg PWR_REGULATOR_VOLTAGE_SCALE0 : Regulator voltage output + * Scale 0 mode. + * @arg PWR_REGULATOR_VOLTAGE_SCALE1 : Regulator voltage output + * range 1 mode. + * @arg PWR_REGULATOR_VOLTAGE_SCALE2 : Regulator voltage output + * range 2 mode. + * @arg PWR_REGULATOR_VOLTAGE_SCALE3 : Regulator voltage output + * range 3 mode. + * @retval HAL Status + */ +HAL_StatusTypeDef HAL_PWREx_ControlVoltageScaling (uint32_t VoltageScaling) +{ + uint32_t tickstart; + + /* Check the parameters */ + assert_param (IS_PWR_REGULATOR_VOLTAGE (VoltageScaling)); + + /* Get the voltage scaling */ + if ((PWR->CSR1 & PWR_CSR1_ACTVOS) == VoltageScaling) + { + /* Old and new voltage scaling configuration match : nothing to do */ + return HAL_OK; + } + +#if defined (PWR_SRDCR_VOS) + /* Set the voltage range */ + MODIFY_REG (PWR->SRDCR, PWR_SRDCR_VOS, VoltageScaling); +#else + if (VoltageScaling == PWR_REGULATOR_VOLTAGE_SCALE0) + { + if ((PWR->CR3 & PWR_CR3_LDOEN) == PWR_CR3_LDOEN) + { + /* Set the voltage range */ + MODIFY_REG (PWR->D3CR, PWR_D3CR_VOS, PWR_REGULATOR_VOLTAGE_SCALE1); + + /* Get tick */ + tickstart = HAL_GetTick (); + + /* Wait till voltage level flag is set */ + while (__HAL_PWR_GET_FLAG (PWR_FLAG_ACTVOSRDY) == 0U) + { + if ((HAL_GetTick () - tickstart) > PWR_FLAG_SETTING_DELAY) + { + return HAL_ERROR; + } + } + + /* Enable the PWR overdrive */ + SET_BIT (SYSCFG->PWRCR, SYSCFG_PWRCR_ODEN); + } + else + { + /* The voltage scale 0 is only possible when LDO regulator is enabled */ + return HAL_ERROR; + } + } + else + { + if ((PWR->CSR1 & PWR_CSR1_ACTVOS) == PWR_REGULATOR_VOLTAGE_SCALE1) + { + if ((SYSCFG->PWRCR & SYSCFG_PWRCR_ODEN) != 0U) + { + /* Disable the PWR overdrive */ + CLEAR_BIT(SYSCFG->PWRCR, SYSCFG_PWRCR_ODEN); + + /* Get tick */ + tickstart = HAL_GetTick (); + + /* Wait till voltage level flag is set */ + while (__HAL_PWR_GET_FLAG (PWR_FLAG_ACTVOSRDY) == 0U) + { + if ((HAL_GetTick () - tickstart) > PWR_FLAG_SETTING_DELAY) + { + return HAL_ERROR; + } + } + } + } + + /* Set the voltage range */ + MODIFY_REG (PWR->D3CR, PWR_D3CR_VOS, VoltageScaling); + } +#endif /* defined (PWR_SRDCR_VOS) */ + + /* Get tick */ + tickstart = HAL_GetTick (); + + /* Wait till voltage level flag is set */ + while (__HAL_PWR_GET_FLAG (PWR_FLAG_ACTVOSRDY) == 0U) + { + if ((HAL_GetTick() - tickstart) > PWR_FLAG_SETTING_DELAY) + { + return HAL_ERROR; + } + } + + return HAL_OK; +} + +/** + * @brief Get the main internal regulator output voltage. Reflecting the last + * VOS value applied to the PMU. + * @retval The current applied VOS selection. + */ +uint32_t HAL_PWREx_GetVoltageRange (void) +{ + /* Get the active voltage scaling */ + return (PWR->CSR1 & PWR_CSR1_ACTVOS); +} + +/** + * @brief Configure the main internal regulator output voltage in STOP mode. + * @param VoltageScaling : Specifies the regulator output voltage when the + * system enters Stop mode to achieve a tradeoff between performance + * and power consumption. + * This parameter can be one of the following values: + * @arg PWR_REGULATOR_SVOS_SCALE3 : Regulator voltage output range + * 3 mode. + * @arg PWR_REGULATOR_SVOS_SCALE4 : Regulator voltage output range + * 4 mode. + * @arg PWR_REGULATOR_SVOS_SCALE5 : Regulator voltage output range + * 5 mode. + * @note The Stop mode voltage scaling for SVOS4 and SVOS5 sets the voltage + * regulator in Low-power (LP) mode to further reduce power consumption. + * When preselecting SVOS3, the use of the voltage regulator low-power + * mode (LP) can be selected by LPDS register bit. + * @note The selected SVOS4 and SVOS5 levels add an additional startup delay + * when exiting from system Stop mode. + * @retval HAL Status. + */ +HAL_StatusTypeDef HAL_PWREx_ControlStopModeVoltageScaling (uint32_t VoltageScaling) +{ + /* Check the parameters */ + assert_param (IS_PWR_STOP_MODE_REGULATOR_VOLTAGE (VoltageScaling)); + + /* Return the stop mode voltage range */ + MODIFY_REG (PWR->CR1, PWR_CR1_SVOS, VoltageScaling); + + return HAL_OK; +} + +/** + * @brief Get the main internal regulator output voltage in STOP mode. + * @retval The actual applied VOS selection. + */ +uint32_t HAL_PWREx_GetStopModeVoltageRange (void) +{ + /* Return the stop voltage scaling */ + return (PWR->CR1 & PWR_CR1_SVOS); +} +/** + * @} + */ + +/** @defgroup PWREx_Exported_Functions_Group2 Low Power Control Functions + * @brief Low power control functions + * +@verbatim + =============================================================================== + ##### Low power control functions ##### + =============================================================================== + + *** Domains Low Power modes configuration *** + ============================================= + [..] + This section provides the extended low power mode control APIs. + The system presents 3 principles domains (D1, D2 and D3) that can be + operated in low-power modes (DSTOP or DSTANDBY mode): + + (+) DSTOP mode to enters a domain to STOP mode: + (++) D1 domain and/or D2 domain enters DSTOP mode only when the CPU + subsystem is in CSTOP mode and has allocated peripheral in the + domain. + In DSTOP mode the domain bus matrix clock is stopped. + (++) The system enters STOP mode using one of the following scenarios: + (+++) D1 domain enters DSTANDBY mode (powered off) and D2, D3 domains + enter DSTOP mode. + (+++) D2 domain enters DSTANDBY mode (powered off) and D1, D3 domains + enter DSTOP mode. + (+++) D3 domain enters DSTANDBY mode (powered off) and D1, D2 domains + enter DSTOP mode. + (+++) D1 and D2 domains enter DSTANDBY mode (powered off) and D3 domain + enters DSTOP mode. + (+++) D1 and D3 domains enter DSTANDBY mode (powered off) and D2 domain + enters DSTOP mode. + (+++) D2 and D3 domains enter DSTANDBY mode (powered off) and D1 domain + enters DSTOP mode. + (+++) D1, D2 and D3 domains enter DSTOP mode. + (++) When the system enters STOP mode, the clocks are stopped and the + regulator is running in main or low power mode. + (++) D3 domain can be kept in Run mode regardless of the CPU status when + enter STOP mode by using HAL_PWREx_ConfigD3Domain(D3State) function. + + (+) DSTANDBY mode to enters a domain to STANDBY mode: + (++) The DSTANDBY mode is entered when the PDDS_Dn bit in PWR CPU control + register (PWR_CPUCR) for the Dn domain selects Standby mode. + (++) The system enters STANDBY mode only when D1, D2 and D3 domains enter + DSTANDBY mode. Consequently the VCORE supply regulator is powered + off. + + *** DSTOP mode *** + ================== + [..] + In DStop mode the domain bus matrix clock is stopped. + The Flash memory can enter low-power Stop mode when it is enabled through + FLPS in PWR_CR1 register. This allows a trade-off between domain DStop + restart time and low power consumption. + [..] + In DStop mode domain peripherals using the LSI or LSE clock and + peripherals having a kernel clock request are still able to operate. + [..] + Before entering DSTOP mode it is recommended to call SCB_CleanDCache + function in order to clean the D-Cache and guarantee the data integrity + for the SRAM memories. + + (+) Entry: + The DSTOP mode is entered using the HAL_PWREx_EnterSTOPMode(Regulator, + STOPEntry, Domain) function with: + (++) Regulator: + (+++) PWR_MAINREGULATOR_ON : Main regulator ON. + (+++) PWR_LOWPOWERREGULATOR_ON : Low Power regulator ON. + (++) STOPEntry: + (+++) PWR_STOPENTRY_WFI : enter STOP mode with WFI instruction + (+++) PWR_STOPENTRY_WFE : enter STOP mode with WFE instruction + (++) Domain: + (+++) PWR_D1_DOMAIN : Enters D1 domain to DSTOP mode. + (+++) PWR_D2_DOMAIN : Enters D2 domain to DSTOP mode. + (+++) PWR_D3_DOMAIN : Enters D3 domain to DSTOP mode. + + (+) Exit: + Any EXTI Line (Internal or External) configured in Interrupt/Event mode. + + *** DSTANDBY mode *** + ===================== + [..] + In DStandby mode: + (+) The domain bus matrix clock is stopped. + (+) The domain is powered down and the domain RAM and register contents + are lost. + [..] + Before entering DSTANDBY mode it is recommended to call SCB_CleanDCache + function in order to clean the D-Cache and guarantee the data integrity + for the SRAM memories. + + (+) Entry: + The DSTANDBY mode is entered using the HAL_PWREx_EnterSTANDBYMode + (Domain) function with: + (++) Domain: + (+++) PWR_D1_DOMAIN : Enters D1 domain to DSTANDBY mode. + (+++) PWR_D2_DOMAIN : Enters D2 domain to DSTANDBY mode. + (+++) PWR_D3_DOMAIN : Enters D3 domain to DSTANDBY mode. + + (+) Exit: + WKUP pin rising or falling edge, RTC alarm (Alarm A and Alarm B), RTC + wakeup, tamper event, time stamp event, external reset in NRST pin, + IWDG reset. + + *** Keep D3/SRD in RUN mode *** + =============================== + [..] + D3/SRD domain can be kept in Run mode regardless of the CPU status when + entering STOP mode by using HAL_PWREx_ConfigD3Domain(D3State) function + with : + (+) D3State: + (++) PWR_D3_DOMAIN_STOP : D3/SDR domain follows the CPU sub-system + mode. + (++) PWR_D3_DOMAIN_RUN : D3/SRD domain remains in Run mode regardless + of CPU subsystem mode. + + *** FLASH Power Down configuration **** + ======================================= + [..] + By setting the FLPS bit in the PWR_CR1 register using the + HAL_PWREx_EnableFlashPowerDown() function, the Flash memory also enters + power down mode when the device enters STOP mode. When the Flash memory is + in power down mode, an additional startup delay is incurred when waking up + from STOP mode. + + *** Wakeup Pins configuration **** + =================================== + [..] + Wakeup pins allow the system to exit from Standby mode. The configuration + of wakeup pins is done with the HAL_PWREx_EnableWakeUpPin(sPinParams) + function with: + (+) sPinParams: structure to enable and configure a wakeup pin: + (++) WakeUpPin: Wakeup pin to be enabled. + (++) PinPolarity: Wakeup pin polarity (rising or falling edge). + (++) PinPull: Wakeup pin pull (no pull, pull-up or pull-down). + [..] + The wakeup pins are internally connected to the EXTI lines [55-60] to + generate an interrupt if enabled. The EXTI lines configuration is done by + the HAL_EXTI_Dx_EventInputConfig() functions defined in the stm32h7xxhal.c + file. + [..] + When a wakeup pin event is received the HAL_PWREx_WAKEUP_PIN_IRQHandler is + called and the appropriate flag is set in the PWR_WKUPFR register. Then in + the HAL_PWREx_WAKEUP_PIN_IRQHandler function the wakeup pin flag will be + cleared and the appropriate user callback will be called. The user can add + his own code by customization of function pointer HAL_PWREx_WKUPx_Callback. + +@endverbatim + * @{ + */ + +#if defined (PWR_CPUCR_RETDS_CD) +/** + * @brief Enter the system to STOP mode with main domain in DSTOP2. + * @note In STOP mode, the domain bus matrix clock is stalled. + * @note In STOP mode, memories and registers are maintained and peripherals + * in CPU domain are no longer operational. + * @note All clocks in the VCORE domain are stopped, the PLL, the HSI and the + * HSE oscillators are disabled. Only Peripherals that have wakeup + * capability can switch on the HSI to receive a frame, and switch off + * the HSI after receiving the frame if it is not a wakeup frame. In + * this case the HSI clock is propagated only to the peripheral + * requesting it. + * @note When exiting STOP mode by issuing an interrupt or a wakeup event, + * the HSI RC oscillator is selected as system clock if STOPWUCK bit in + * RCC_CFGR register is set. + * @param Regulator : Specifies the regulator state in STOP mode. + * This parameter can be one of the following values: + * @arg PWR_MAINREGULATOR_ON : STOP mode with regulator ON. + * @arg PWR_LOWPOWERREGULATOR_ON : STOP mode with low power + * regulator ON. + * @param STOPEntry : Specifies if STOP mode in entered with WFI or WFE + * intrinsic instruction. + * This parameter can be one of the following values: + * @arg PWR_STOPENTRY_WFI : Enter STOP mode with WFI instruction. + * @arg PWR_STOPENTRY_WFE : Enter STOP mode with WFE instruction. + * @retval None. + */ +void HAL_PWREx_EnterSTOP2Mode (uint32_t Regulator, uint8_t STOPEntry) +{ + /* Check the parameters */ + assert_param (IS_PWR_REGULATOR (Regulator)); + assert_param (IS_PWR_STOP_ENTRY (STOPEntry)); + + /* Select the regulator state in Stop mode */ + MODIFY_REG (PWR->CR1, PWR_CR1_LPDS, Regulator); + + /* Go to DStop2 mode (deep retention) when CPU domain enters Deepsleep */ + SET_BIT (PWR->CPUCR, PWR_CPUCR_RETDS_CD); + + /* Keep DSTOP mode when SmartRun domain enters Deepsleep */ + CLEAR_BIT (PWR->CPUCR, PWR_CPUCR_PDDS_SRD); + + /* Set SLEEPDEEP bit of Cortex System Control Register */ + SET_BIT (SCB->SCR, SCB_SCR_SLEEPDEEP_Msk); + + /* Ensure that all instructions are done before entering STOP mode */ + __ISB (); + __DSB (); + + /* Select Stop mode entry */ + if (STOPEntry == PWR_STOPENTRY_WFI) + { + /* Request Wait For Interrupt */ + __WFI (); + } + else + { + /* Request Wait For Event */ + __WFE (); + } + + /* Clear SLEEPDEEP bit of Cortex-Mx in the System Control Register */ + CLEAR_BIT (SCB->SCR, SCB_SCR_SLEEPDEEP_Msk); +} +#endif /* defined (PWR_CPUCR_RETDS_CD) */ + +/** + * @brief Enter a Domain to DSTOP mode. + * @note This API gives flexibility to manage independently each domain STOP + * mode. For dual core lines, this API should be executed with the + * corresponding Cortex-Mx to enter domain to DSTOP mode. When it is + * executed by all available Cortex-Mx, the system enter to STOP mode. + * For single core lines, calling this API with domain parameter set to + * PWR_D1_DOMAIN (D1/CD), the whole system will enter in STOP mode + * independently of PWR_CPUCR_PDDS_Dx bits values if RUN_D3 bit in the + * CPUCR_RUN_D3 is cleared. + * @note In DStop mode the domain bus matrix clock is stopped. + * @note The system D3/SRD domain enter Stop mode only when the CPU subsystem + * is in CStop mode, the EXTI wakeup sources are inactive and at least + * one PDDS_Dn bit in PWR CPU control register (PWR_CPUCR) for + * any domain request Stop. + * @note Before entering DSTOP mode it is recommended to call SCB_CleanDCache + * function in order to clean the D-Cache and guarantee the data + * integrity for the SRAM memories. + * @note In System Stop mode, the domain peripherals that use the LSI or LSE + * clock, and the peripherals that have a kernel clock request to + * select HSI or CSI as source, are still able to operate. + * @param Regulator : Specifies the regulator state in STOP mode. + * This parameter can be one of the following values: + * @arg PWR_MAINREGULATOR_ON : STOP mode with regulator ON. + * @arg PWR_LOWPOWERREGULATOR_ON : STOP mode with low power + * regulator ON. + * @param STOPEntry : Specifies if STOP mode in entered with WFI or WFE + * intrinsic instruction. + * This parameter can be one of the following values: + * @arg PWR_STOPENTRY_WFI : Enter STOP mode with WFI instruction. + * @arg PWR_STOPENTRY_WFE : Enter STOP mode with WFE instruction. + * @param Domain : Specifies the Domain to enter in DSTOP mode. + * This parameter can be one of the following values: + * @arg PWR_D1_DOMAIN : Enter D1/CD Domain to DSTOP mode. + * @arg PWR_D2_DOMAIN : Enter D2 Domain to DSTOP mode. + * @arg PWR_D3_DOMAIN : Enter D3/SRD Domain to DSTOP mode. + * @retval None. + */ +void HAL_PWREx_EnterSTOPMode (uint32_t Regulator, uint8_t STOPEntry, uint32_t Domain) +{ + /* Check the parameters */ + assert_param (IS_PWR_REGULATOR (Regulator)); + assert_param (IS_PWR_STOP_ENTRY (STOPEntry)); + assert_param (IS_PWR_DOMAIN (Domain)); + + /* Select the regulator state in Stop mode */ + MODIFY_REG (PWR->CR1, PWR_CR1_LPDS, Regulator); + + /* Select the domain Power Down DeepSleep */ + if (Domain == PWR_D1_DOMAIN) + { +#if defined (DUAL_CORE) + /* Check current core */ + if (HAL_GetCurrentCPUID () != CM7_CPUID) + { + /* + When the domain selected and the cortex-mx don't match, entering stop + mode will not be performed + */ + return; + } +#endif /* defined (DUAL_CORE) */ + + /* Keep DSTOP mode when D1/CD domain enters Deepsleep */ + CLEAR_BIT (PWR->CPUCR, PWR_CPUCR_PDDS_D1); + + /* Set SLEEPDEEP bit of Cortex System Control Register */ + SET_BIT (SCB->SCR, SCB_SCR_SLEEPDEEP_Msk); + + /* Ensure that all instructions are done before entering STOP mode */ + __DSB (); + __ISB (); + + /* Select Stop mode entry */ + if (STOPEntry == PWR_STOPENTRY_WFI) + { + /* Request Wait For Interrupt */ + __WFI (); + } + else + { + /* Request Wait For Event */ + __WFE (); + } + + /* Clear SLEEPDEEP bit of Cortex-Mx in the System Control Register */ + CLEAR_BIT (SCB->SCR, SCB_SCR_SLEEPDEEP_Msk); + } +#if defined (PWR_CPUCR_PDDS_D2) + else if (Domain == PWR_D2_DOMAIN) + { + /* Keep DSTOP mode when D2 domain enters Deepsleep */ + CLEAR_BIT (PWR->CPUCR, PWR_CPUCR_PDDS_D2); + +#if defined (DUAL_CORE) + /* Check current core */ + if (HAL_GetCurrentCPUID () != CM4_CPUID) + { + /* + When the domain selected and the cortex-mx don't match, entering stop + mode will not be performed + */ + return; + } + + /* Set SLEEPDEEP bit of Cortex System Control Register */ + SET_BIT (SCB->SCR, SCB_SCR_SLEEPDEEP_Msk); + + /* Ensure that all instructions are done before entering STOP mode */ + __DSB (); + __ISB (); + + /* Select Stop mode entry */ + if (STOPEntry == PWR_STOPENTRY_WFI) + { + /* Request Wait For Interrupt */ + __WFI (); + } + else + { + /* Request Wait For Event */ + __WFE (); + } + + /* Clear SLEEPDEEP bit of Cortex-Mx in the System Control Register */ + CLEAR_BIT (SCB->SCR, SCB_SCR_SLEEPDEEP_Msk); +#endif /* defined (DUAL_CORE) */ + } +#endif /* defined (PWR_CPUCR_PDDS_D2) */ + else + { + /* Keep DSTOP mode when D3/SRD domain enters Deepsleep */ + CLEAR_BIT (PWR->CPUCR, PWR_CPUCR_PDDS_D3); + } +} + +/** + * @brief Clear pending event. + * @note This API clears the pending event in order to enter a given CPU + * to CSLEEP or CSTOP. It should be called just before APIs performing + * enter low power mode using Wait For Event request. + * @retval None. + */ +void HAL_PWREx_ClearPendingEvent (void) +{ +#if defined (DUAL_CORE) + /* Check the current Core */ + if (HAL_GetCurrentCPUID () == CM7_CPUID) + { + __WFE (); + } + else + { + __SEV (); + __WFE (); + } +#else + __WFE (); +#endif /* defined (DUAL_CORE) */ +} + +/** + * @brief Enter a Domain to DSTANDBY mode. + * @note This API gives flexibility to manage independently each domain + * STANDBY mode. For dual core lines, this API should be executed with + * the corresponding Cortex-Mx to enter domain to DSTANDBY mode. When + * it is executed by all available Cortex-Mx, the system enter STANDBY + * mode. + * For single core lines, calling this API with D1/SRD the selected + * domain will enter the whole system in STOP if PWR_CPUCR_PDDS_D3 = 0 + * and enter the whole system in STANDBY if PWR_CPUCR_PDDS_D3 = 1. + * @note The DStandby mode is entered when all PDDS_Dn bits in PWR_CPUCR for + * the Dn domain select Standby mode. When the system enters Standby + * mode, the voltage regulator is disabled. + * @note When D2 or D3 domain is in DStandby mode and the CPU sets the + * domain PDDS_Dn bit to select Stop mode, the domain remains in + * DStandby mode. The domain will only exit DStandby when the CPU + * allocates a peripheral in the domain. + * @note The system D3/SRD domain enters Standby mode only when the D1 and D2 + * domain are in DStandby. + * @note Before entering DSTANDBY mode it is recommended to call + * SCB_CleanDCache function in order to clean the D-Cache and guarantee + * the data integrity for the SRAM memories. + * @param Domain : Specifies the Domain to enter to STANDBY mode. + * This parameter can be one of the following values: + * @arg PWR_D1_DOMAIN: Enter D1/CD Domain to DSTANDBY mode. + * @arg PWR_D2_DOMAIN: Enter D2 Domain to DSTANDBY mode. + * @arg PWR_D3_DOMAIN: Enter D3/SRD Domain to DSTANDBY mode. + * @retval None + */ +void HAL_PWREx_EnterSTANDBYMode (uint32_t Domain) +{ + /* Check the parameters */ + assert_param (IS_PWR_DOMAIN (Domain)); + + /* Select the domain Power Down DeepSleep */ + if (Domain == PWR_D1_DOMAIN) + { +#if defined (DUAL_CORE) + /* Check current core */ + if (HAL_GetCurrentCPUID () != CM7_CPUID) + { + /* + When the domain selected and the cortex-mx don't match, entering + standby mode will not be performed + */ + return; + } +#endif /* defined (DUAL_CORE) */ + + /* Allow DSTANDBY mode when D1/CD domain enters Deepsleep */ + SET_BIT (PWR-> CPUCR, PWR_CPUCR_PDDS_D1); + +#if defined (DUAL_CORE) + /* Allow DSTANDBY mode when D1/CD domain enters Deepsleep */ + SET_BIT (PWR-> CPU2CR, PWR_CPU2CR_PDDS_D1); +#endif /*DUAL_CORE*/ + + /* Set SLEEPDEEP bit of Cortex System Control Register */ + SET_BIT (SCB->SCR, SCB_SCR_SLEEPDEEP_Msk); + + /* This option is used to ensure that store operations are completed */ +#if defined (__CC_ARM) + __force_stores (); +#endif /* defined (__CC_ARM) */ + + /* Request Wait For Interrupt */ + __WFI (); + } +#if defined (PWR_CPUCR_PDDS_D2) + else if (Domain == PWR_D2_DOMAIN) + { + /* Allow DSTANDBY mode when D2 domain enters Deepsleep */ + SET_BIT (PWR-> CPUCR, PWR_CPUCR_PDDS_D2); + +#if defined (DUAL_CORE) + /* Check current core */ + if (HAL_GetCurrentCPUID () != CM4_CPUID) + { + /* + When the domain selected and the cortex-mx don't match, entering + standby mode will not be performed + */ + return; + } + + /* Allow DSTANDBY mode when D2 domain enters Deepsleep */ + SET_BIT (PWR-> CPU2CR, PWR_CPU2CR_PDDS_D2); + + /* Set SLEEPDEEP bit of Cortex System Control Register */ + SET_BIT (SCB->SCR, SCB_SCR_SLEEPDEEP_Msk); + + /* This option is used to ensure that store operations are completed */ +#if defined (__CC_ARM) + __force_stores (); +#endif /* defined (__CC_ARM) */ + + /* Request Wait For Interrupt */ + __WFI (); +#endif /* defined (DUAL_CORE) */ + } +#endif /* defined (PWR_CPUCR_PDDS_D2) */ + else + { + /* Allow DSTANDBY mode when D3/SRD domain enters Deepsleep */ + SET_BIT (PWR-> CPUCR, PWR_CPUCR_PDDS_D3); + +#if defined (DUAL_CORE) + /* Allow DSTANDBY mode when D3/SRD domain enters Deepsleep */ + SET_BIT (PWR-> CPU2CR, PWR_CPU2CR_PDDS_D3); +#endif /* defined (DUAL_CORE) */ + } +} + +/** + * @brief Configure the D3/SRD Domain state when the System in low power mode. + * @param D3State : Specifies the D3/SRD state. + * This parameter can be one of the following values : + * @arg PWR_D3_DOMAIN_STOP : D3/SRD domain will follow the most deep + * CPU sub-system low power mode. + * @arg PWR_D3_DOMAIN_RUN : D3/SRD domain will stay in RUN mode + * regardless of the CPU sub-system low + * power mode. + * @retval None + */ +void HAL_PWREx_ConfigD3Domain (uint32_t D3State) +{ + /* Check the parameter */ + assert_param (IS_D3_STATE (D3State)); + + /* Keep D3/SRD in run mode */ + MODIFY_REG (PWR->CPUCR, PWR_CPUCR_RUN_D3, D3State); +} + +#if defined (DUAL_CORE) +/** + * @brief Clear HOLD2F, HOLD1F, STOPF, SBF, SBF_D1, and SBF_D2 flags for a + * given domain. + * @param DomainFlags : Specifies the Domain flags to be cleared. + * This parameter can be one of the following values: + * @arg PWR_D1_DOMAIN_FLAGS : Clear D1 Domain flags. + * @arg PWR_D2_DOMAIN_FLAGS : Clear D2 Domain flags. + * @arg PWR_ALL_DOMAIN_FLAGS : Clear D1 and D2 Domain flags. + * @retval None. + */ +void HAL_PWREx_ClearDomainFlags (uint32_t DomainFlags) +{ + /* Check the parameter */ + assert_param (IS_PWR_DOMAIN_FLAG (DomainFlags)); + + /* D1 CPU flags */ + if (DomainFlags == PWR_D1_DOMAIN_FLAGS) + { + /* Clear D1 domain flags (HOLD2F, STOPF, SBF, SBF_D1, and SBF_D2) */ + SET_BIT (PWR->CPUCR, PWR_CPUCR_CSSF); + } + /* D2 CPU flags */ + else if (DomainFlags == PWR_D2_DOMAIN_FLAGS) + { + /* Clear D2 domain flags (HOLD1F, STOPF, SBF, SBF_D1, and SBF_D2) */ + SET_BIT (PWR->CPU2CR, PWR_CPU2CR_CSSF); + } + else + { + /* Clear D1 domain flags (HOLD2F, STOPF, SBF, SBF_D1, and SBF_D2) */ + SET_BIT (PWR->CPUCR, PWR_CPUCR_CSSF); + /* Clear D2 domain flags (HOLD1F, STOPF, SBF, SBF_D1, and SBF_D2) */ + SET_BIT (PWR->CPU2CR, PWR_CPU2CR_CSSF); + } +} + +/** + * @brief Hold the CPU and their domain peripherals when exiting STOP mode. + * @param CPU : Specifies the core to be held. + * This parameter can be one of the following values: + * @arg PWR_CORE_CPU1: Hold CPU1 and set CPU2 as master. + * @arg PWR_CORE_CPU2: Hold CPU2 and set CPU1 as master. + * @retval HAL status + */ +HAL_StatusTypeDef HAL_PWREx_HoldCore (uint32_t CPU) +{ + HAL_StatusTypeDef status = HAL_OK; + + /* Check the parameters */ + assert_param (IS_PWR_CORE (CPU)); + + /* Check CPU index */ + if (CPU == PWR_CORE_CPU2) + { + /* If CPU1 is not held */ + if ((PWR->CPU2CR & PWR_CPU2CR_HOLD1) != PWR_CPU2CR_HOLD1) + { + /* Set HOLD2 bit */ + SET_BIT (PWR->CPUCR, PWR_CPUCR_HOLD2); + } + else + { + status = HAL_ERROR; + } + } + else + { + /* If CPU2 is not held */ + if ((PWR->CPUCR & PWR_CPUCR_HOLD2) != PWR_CPUCR_HOLD2) + { + /* Set HOLD1 bit */ + SET_BIT (PWR->CPU2CR, PWR_CPU2CR_HOLD1); + } + else + { + status = HAL_ERROR; + } + } + + return status; +} + +/** + * @brief Release the CPU and their domain peripherals after a wake-up from + * STOP mode. + * @param CPU: Specifies the core to be released. + * This parameter can be one of the following values: + * @arg PWR_CORE_CPU1: Release the CPU1 and their domain + * peripherals from holding. + * @arg PWR_CORE_CPU2: Release the CPU2 and their domain + * peripherals from holding. + * @retval None + */ +void HAL_PWREx_ReleaseCore (uint32_t CPU) +{ + /* Check the parameters */ + assert_param (IS_PWR_CORE (CPU)); + + /* Check CPU index */ + if (CPU == PWR_CORE_CPU2) + { + /* Reset HOLD2 bit */ + CLEAR_BIT (PWR->CPUCR, PWR_CPUCR_HOLD2); + } + else + { + /* Reset HOLD1 bit */ + CLEAR_BIT (PWR->CPU2CR, PWR_CPU2CR_HOLD1); + } +} +#endif /* defined (DUAL_CORE) */ + + +/** + * @brief Enable the Flash Power Down in Stop mode. + * @note When Flash Power Down is enabled the Flash memory enters low-power + * mode when D1/SRD domain is in DStop mode. This feature allows to + * obtain the best trade-off between low-power consumption and restart + * time when exiting from DStop mode. + * @retval None. + */ +void HAL_PWREx_EnableFlashPowerDown (void) +{ + /* Enable the Flash Power Down */ + SET_BIT (PWR->CR1, PWR_CR1_FLPS); +} + +/** + * @brief Disable the Flash Power Down in Stop mode. + * @note When Flash Power Down is disabled the Flash memory is kept on + * normal mode when D1/SRD domain is in DStop mode. This feature allows + * to obtain the best trade-off between low-power consumption and + * restart time when exiting from DStop mode. + * @retval None. + */ +void HAL_PWREx_DisableFlashPowerDown (void) +{ + /* Disable the Flash Power Down */ + CLEAR_BIT (PWR->CR1, PWR_CR1_FLPS); +} + +#if defined (PWR_CR1_SRDRAMSO) +/** + * @brief Enable memory block shut-off in DStop or DStop2 modes + * @note In DStop or DStop2 mode, the content of the memory blocks is + * maintained. Further power optimization can be obtained by switching + * off some memory blocks. This optimization implies loss of the memory + * content. The user can select which memory is discarded during STOP + * mode by means of xxSO bits. + * @param MemoryBlock : Specifies the memory block to shut-off during DStop or + * DStop2 mode. + * This parameter can be one of the following values: + * @arg PWR_SRD_AHB_MEMORY_BLOCK : SmartRun domain AHB memory. + * @arg PWR_USB_FDCAN_MEMORY_BLOCK : High-speed interfaces USB and + * FDCAN memories. + * @arg PWR_GFXMMU_JPEG_MEMORY_BLOCK : GFXMMU and JPEG memories. + * @arg PWR_TCM_ECM_MEMORY_BLOCK : Instruction TCM and ETM memories. + * @arg PWR_RAM1_AHB_MEMORY_BLOCK : AHB RAM1 memory. + * @arg PWR_RAM2_AHB_MEMORY_BLOCK : AHB RAM2 memory. + * @arg PWR_RAM1_AXI_MEMORY_BLOCK : AXI RAM1 memory. + * @arg PWR_RAM2_AXI_MEMORY_BLOCK : AXI RAM2 memory. + * @arg PWR_RAM3_AXI_MEMORY_BLOCK : AXI RAM3 memory. + * @retval None. + */ +void HAL_PWREx_EnableMemoryShutOff (uint32_t MemoryBlock) +{ + /* Check the parameter */ + assert_param (IS_PWR_MEMORY_BLOCK (MemoryBlock)); + + /* Enable memory block shut-off */ + SET_BIT (PWR->CR1, MemoryBlock); +} + +/** + * @brief Disable memory block shut-off in DStop or DStop2 modes + * @param MemoryBlock : Specifies the memory block to keep content during + * DStop or DStop2 mode. + * This parameter can be one of the following values: + * @arg PWR_SRD_AHB_MEMORY_BLOCK : SmartRun domain AHB memory. + * @arg PWR_USB_FDCAN_MEMORY_BLOCK : High-speed interfaces USB and + * FDCAN memories. + * @arg PWR_GFXMMU_JPEG_MEMORY_BLOCK : GFXMMU and JPEG memories. + * @arg PWR_TCM_ECM_MEMORY_BLOCK : Instruction TCM and ETM memories. + * @arg PWR_RAM1_AHB_MEMORY_BLOCK : AHB RAM1 memory. + * @arg PWR_RAM2_AHB_MEMORY_BLOCK : AHB RAM2 memory. + * @arg PWR_RAM1_AXI_MEMORY_BLOCK : AXI RAM1 memory. + * @arg PWR_RAM2_AXI_MEMORY_BLOCK : AXI RAM2 memory. + * @arg PWR_RAM3_AXI_MEMORY_BLOCK : AXI RAM3 memory. + * @retval None. + */ +void HAL_PWREx_DisableMemoryShutOff (uint32_t MemoryBlock) +{ + /* Check the parameter */ + assert_param (IS_PWR_MEMORY_BLOCK (MemoryBlock)); + + /* Disable memory block shut-off */ + CLEAR_BIT (PWR->CR1, MemoryBlock); +} +#endif /* defined (PWR_CR1_SRDRAMSO) */ + +/** + * @brief Enable the Wake-up PINx functionality. + * @param sPinParams : Pointer to a PWREx_WakeupPinTypeDef structure that + * contains the configuration information for the wake-up + * Pin. + * @note For dual core devices, please ensure to configure the EXTI lines for + * the different Cortex-Mx. All combination are allowed: wake up only + * Cortex-M7, wake up only Cortex-M4 and wake up Cortex-M7 and + * Cortex-M4. + * @retval None. + */ +void HAL_PWREx_EnableWakeUpPin (PWREx_WakeupPinTypeDef *sPinParams) +{ + uint32_t pinConfig; + uint32_t regMask; + const uint32_t pullMask = PWR_WKUPEPR_WKUPPUPD1; + + /* Check the parameters */ + assert_param (IS_PWR_WAKEUP_PIN (sPinParams->WakeUpPin)); + assert_param (IS_PWR_WAKEUP_PIN_POLARITY (sPinParams->PinPolarity)); + assert_param (IS_PWR_WAKEUP_PIN_PULL (sPinParams->PinPull)); + + pinConfig = sPinParams->WakeUpPin | \ + (sPinParams->PinPolarity << ((POSITION_VAL(sPinParams->WakeUpPin) + PWR_WKUPEPR_WKUPP1_Pos) & 0x1FU)) | \ + (sPinParams->PinPull << (((POSITION_VAL(sPinParams->WakeUpPin) * PWR_WAKEUP_PINS_PULL_SHIFT_OFFSET) + PWR_WKUPEPR_WKUPPUPD1_Pos) & 0x1FU)); + + regMask = sPinParams->WakeUpPin | \ + (PWR_WKUPEPR_WKUPP1 << (POSITION_VAL(sPinParams->WakeUpPin) & 0x1FU)) | \ + (pullMask << ((POSITION_VAL(sPinParams->WakeUpPin) * PWR_WAKEUP_PINS_PULL_SHIFT_OFFSET) & 0x1FU)); + + /* Enable and Specify the Wake-Up pin polarity and the pull configuration + for the event detection (rising or falling edge) */ + MODIFY_REG (PWR->WKUPEPR, regMask, pinConfig); +#ifndef DUAL_CORE + /* Configure the Wakeup Pin EXTI Line */ + MODIFY_REG (EXTI->IMR2, PWR_EXTI_WAKEUP_PINS_MASK, (sPinParams->WakeUpPin << EXTI_IMR2_IM55_Pos)); +#endif /* !DUAL_CORE */ +} + +/** + * @brief Disable the Wake-up PINx functionality. + * @param WakeUpPin : Specifies the Wake-Up pin to be disabled. + * This parameter can be one of the following values: + * @arg PWR_WAKEUP_PIN1 : Disable PA0 wake-up PIN. + * @arg PWR_WAKEUP_PIN2 : Disable PA2 wake-up PIN. + * @arg PWR_WAKEUP_PIN3 : Disable PI8 wake-up PIN. + * @arg PWR_WAKEUP_PIN4 : Disable PC13 wake-up PIN. + * @arg PWR_WAKEUP_PIN5 : Disable PI11 wake-up PIN. + * @arg PWR_WAKEUP_PIN6 : Disable PC1 wake-up PIN. + * @retval None + */ +void HAL_PWREx_DisableWakeUpPin (uint32_t WakeUpPin) +{ + /* Check the parameter */ + assert_param (IS_PWR_WAKEUP_PIN (WakeUpPin)); + + /* Disable the WakeUpPin */ + CLEAR_BIT (PWR->WKUPEPR, WakeUpPin); +} + +/** + * @brief Get the Wake-Up Pin pending flags. + * @param WakeUpFlag : Specifies the Wake-Up PIN flag to be checked. + * This parameter can be one of the following values: + * @arg PWR_WAKEUP_FLAG1 : Get wakeup event received from PA0. + * @arg PWR_WAKEUP_FLAG2 : Get wakeup event received from PA2. + * @arg PWR_WAKEUP_FLAG3 : Get wakeup event received from PI8. + * @arg PWR_WAKEUP_FLAG4 : Get wakeup event received from PC13. + * @arg PWR_WAKEUP_FLAG5 : Get wakeup event received from PI11. + * @arg PWR_WAKEUP_FLAG6 : Get wakeup event received from PC1. + * @arg PWR_WAKEUP_FLAG_ALL : Get Wakeup event received from all + * wake up pins. + * @retval The Wake-Up pin flag. + */ +uint32_t HAL_PWREx_GetWakeupFlag (uint32_t WakeUpFlag) +{ + /* Check the parameters */ + assert_param (IS_PWR_WAKEUP_FLAG (WakeUpFlag)); + + /* Return the wake up pin flag */ + return (PWR->WKUPFR & WakeUpFlag); +} + +/** + * @brief Clear the Wake-Up pin pending flag. + * @param WakeUpFlag: Specifies the Wake-Up PIN flag to clear. + * This parameter can be one of the following values: + * @arg PWR_WAKEUP_FLAG1 : Clear the wakeup event received from PA0. + * @arg PWR_WAKEUP_FLAG2 : Clear the wakeup event received from PA2. + * @arg PWR_WAKEUP_FLAG3 : Clear the wakeup event received from PI8. + * @arg PWR_WAKEUP_FLAG4 : Clear the wakeup event received from PC13. + * @arg PWR_WAKEUP_FLAG5 : Clear the wakeup event received from PI11. + * @arg PWR_WAKEUP_FLAG6 : Clear the wakeup event received from PC1. + * @arg PWR_WAKEUP_FLAG_ALL : Clear the wakeup events received from + * all wake up pins. + * @retval HAL status. + */ +HAL_StatusTypeDef HAL_PWREx_ClearWakeupFlag (uint32_t WakeUpFlag) +{ + /* Check the parameter */ + assert_param (IS_PWR_WAKEUP_FLAG (WakeUpFlag)); + + /* Clear the wake up event received from wake up pin x */ + SET_BIT (PWR->WKUPCR, WakeUpFlag); + + /* Check if the wake up event is well cleared */ + if ((PWR->WKUPFR & WakeUpFlag) != 0U) + { + return HAL_ERROR; + } + + return HAL_OK; +} + +/** + * @brief This function handles the PWR WAKEUP PIN interrupt request. + * @note This API should be called under the WAKEUP_PIN_IRQHandler(). + * @retval None. + */ +void HAL_PWREx_WAKEUP_PIN_IRQHandler (void) +{ + /* Wakeup pin EXTI line interrupt detected */ + if (READ_BIT(PWR->WKUPFR, PWR_WKUPFR_WKUPF1) != 0U) + { + /* Clear PWR WKUPF1 flag */ + __HAL_PWR_CLEAR_WAKEUPFLAG (PWR_FLAG_WKUP1); + + /* PWR WKUP1 interrupt user callback */ + HAL_PWREx_WKUP1_Callback (); + } + else if (READ_BIT (PWR->WKUPFR, PWR_WKUPFR_WKUPF2) != 0U) + { + /* Clear PWR WKUPF2 flag */ + __HAL_PWR_CLEAR_WAKEUPFLAG (PWR_FLAG_WKUP2); + + /* PWR WKUP2 interrupt user callback */ + HAL_PWREx_WKUP2_Callback (); + } + else if (READ_BIT (PWR->WKUPFR, PWR_WKUPFR_WKUPF3) != 0U) + { + /* Clear PWR WKUPF3 flag */ + __HAL_PWR_CLEAR_WAKEUPFLAG (PWR_FLAG_WKUP3); + + /* PWR WKUP3 interrupt user callback */ + HAL_PWREx_WKUP3_Callback (); + } + else if (READ_BIT (PWR->WKUPFR, PWR_WKUPFR_WKUPF4) != 0U) + { + /* Clear PWR WKUPF4 flag */ + __HAL_PWR_CLEAR_WAKEUPFLAG (PWR_FLAG_WKUP4); + + /* PWR WKUP4 interrupt user callback */ + HAL_PWREx_WKUP4_Callback (); + } + else if (READ_BIT (PWR->WKUPFR, PWR_WKUPFR_WKUPF5) != 0U) + { + /* Clear PWR WKUPF5 flag */ + __HAL_PWR_CLEAR_WAKEUPFLAG (PWR_FLAG_WKUP5); + + /* PWR WKUP5 interrupt user callback */ + HAL_PWREx_WKUP5_Callback (); + } + else + { + /* Clear PWR WKUPF6 flag */ + __HAL_PWR_CLEAR_WAKEUPFLAG (PWR_FLAG_WKUP6); + + /* PWR WKUP6 interrupt user callback */ + HAL_PWREx_WKUP6_Callback (); + } +} + +/** + * @brief PWR WKUP1 interrupt callback. + * @retval None. + */ +__weak void HAL_PWREx_WKUP1_Callback (void) +{ + /* NOTE : This function should not be modified, when the callback is needed, + the HAL_PWREx_WKUP1Callback can be implemented in the user file + */ +} + +/** + * @brief PWR WKUP2 interrupt callback. + * @retval None. + */ +__weak void HAL_PWREx_WKUP2_Callback (void) +{ + /* NOTE : This function should not be modified, when the callback is needed, + the HAL_PWREx_WKUP2Callback can be implemented in the user file + */ +} + +/** + * @brief PWR WKUP3 interrupt callback. + * @retval None. + */ +__weak void HAL_PWREx_WKUP3_Callback (void) +{ + /* NOTE : This function should not be modified, when the callback is needed, + the HAL_PWREx_WKUP3Callback can be implemented in the user file + */ +} + +/** + * @brief PWR WKUP4 interrupt callback. + * @retval None. + */ +__weak void HAL_PWREx_WKUP4_Callback (void) +{ + /* NOTE : This function should not be modified, when the callback is needed, + the HAL_PWREx_WKUP4Callback can be implemented in the user file + */ +} + +/** + * @brief PWR WKUP5 interrupt callback. + * @retval None. + */ +__weak void HAL_PWREx_WKUP5_Callback (void) +{ + /* NOTE : This function should not be modified, when the callback is needed, + the HAL_PWREx_WKUP5Callback can be implemented in the user file + */ +} + +/** + * @brief PWR WKUP6 interrupt callback. + * @retval None. + */ +__weak void HAL_PWREx_WKUP6_Callback (void) +{ + /* NOTE : This function should not be modified, when the callback is needed, + the HAL_PWREx_WKUP6Callback can be implemented in the user file + */ +} +/** + * @} + */ + +/** @defgroup PWREx_Exported_Functions_Group3 Peripherals control functions + * @brief Peripherals control functions + * +@verbatim + =============================================================================== + ##### Peripherals control functions ##### + =============================================================================== + + *** Main and Backup Regulators configuration *** + ================================================ + [..] + (+) The backup domain includes 4 Kbytes of backup SRAM accessible only + from the CPU, and addressed in 32-bit, 16-bit or 8-bit mode. Its + content is retained even in Standby or VBAT mode when the low power + backup regulator is enabled. It can be considered as an internal + EEPROM when VBAT is always present. You can use the + HAL_PWREx_EnableBkUpReg() function to enable the low power backup + regulator. + (+) When the backup domain is supplied by VDD (analog switch connected to + VDD) the backup SRAM is powered from VDD which replaces the VBAT power + supply to save battery life. + (+) The backup SRAM is not mass erased by a tamper event. It is read + protected to prevent confidential data, such as cryptographic private + key, from being accessed. The backup SRAM can be erased only through + the Flash interface when a protection level change from level 1 to + level 0 is requested. + -@- Refer to the description of Read protection (RDP) in the Flash + programming manual. + (+) The main internal regulator can be configured to have a tradeoff + between performance and power consumption when the device does not + operate at the maximum frequency. This is done through + HAL_PWREx_ControlVoltageScaling(VOS) function which configure the VOS + bit in PWR_D3CR register. + (+) The main internal regulator can be configured to operate in Low Power + mode when the system enters STOP mode to further reduce power + consumption. + This is done through HAL_PWREx_ControlStopModeVoltageScaling(SVOS) + function which configure the SVOS bit in PWR_CR1 register. + The selected SVOS4 and SVOS5 levels add an additional startup delay + when exiting from system Stop mode. + -@- Refer to the product datasheets for more details. + + *** USB Regulator configuration *** + =================================== + [..] + (+) The USB transceivers are supplied from a dedicated VDD33USB supply + that can be provided either by the integrated USB regulator, or by an + external USB supply. + (+) The USB regulator is enabled by HAL_PWREx_EnableUSBReg() function, the + VDD33USB is then provided from the USB regulator. + (+) When the USB regulator is enabled, the VDD33USB supply level detector + shall be enabled through HAL_PWREx_EnableUSBVoltageDetector() + function. + (+) The USB regulator is disabled through HAL_PWREx_DisableUSBReg() + function and VDD33USB can be provided from an external supply. In this + case VDD33USB and VDD50USB shall be connected together. + + *** VBAT battery charging *** + ============================= + [..] + (+) When VDD is present, the external battery connected to VBAT can be + charged through an internal resistance. VBAT charging can be performed + either through a 5 KOhm resistor or through a 1.5 KOhm resistor. + (+) VBAT charging is enabled by HAL_PWREx_EnableBatteryCharging + (ResistorValue) function with: + (++) ResistorValue: + (+++) PWR_BATTERY_CHARGING_RESISTOR_5: 5 KOhm resistor. + (+++) PWR_BATTERY_CHARGING_RESISTOR_1_5: 1.5 KOhm resistor. + (+) VBAT charging is disabled by HAL_PWREx_DisableBatteryCharging() + function. + +@endverbatim + * @{ + */ + +/** + * @brief Enable the Backup Regulator. + * @retval HAL status. + */ +HAL_StatusTypeDef HAL_PWREx_EnableBkUpReg (void) +{ + uint32_t tickstart; + + /* Enable the Backup regulator */ + SET_BIT (PWR->CR2, PWR_CR2_BREN); + + /* Get tick */ + tickstart = HAL_GetTick (); + + /* Wait till Backup regulator ready flag is set */ + while (__HAL_PWR_GET_FLAG (PWR_FLAG_BRR) == 0U) + { + if ((HAL_GetTick() - tickstart ) > PWR_FLAG_SETTING_DELAY) + { + return HAL_ERROR; + } + } + + return HAL_OK; +} + +/** + * @brief Disable the Backup Regulator. + * @retval HAL status. + */ +HAL_StatusTypeDef HAL_PWREx_DisableBkUpReg (void) +{ + uint32_t tickstart; + + /* Disable the Backup regulator */ + CLEAR_BIT (PWR->CR2, PWR_CR2_BREN); + + /* Get tick */ + tickstart = HAL_GetTick (); + + /* Wait till Backup regulator ready flag is reset */ + while (__HAL_PWR_GET_FLAG (PWR_FLAG_BRR) != 0U) + { + if ((HAL_GetTick() - tickstart ) > PWR_FLAG_SETTING_DELAY) + { + return HAL_ERROR; + } + } + + return HAL_OK; +} + +/** + * @brief Enable the USB Regulator. + * @retval HAL status. + */ +HAL_StatusTypeDef HAL_PWREx_EnableUSBReg (void) +{ + uint32_t tickstart; + + /* Enable the USB regulator */ + SET_BIT (PWR->CR3, PWR_CR3_USBREGEN); + + /* Get tick */ + tickstart = HAL_GetTick (); + + /* Wait till the USB regulator ready flag is set */ + while (__HAL_PWR_GET_FLAG (PWR_FLAG_USB33RDY) == 0U) + { + if ((HAL_GetTick() - tickstart ) > PWR_FLAG_SETTING_DELAY) + { + return HAL_ERROR; + } + } + + return HAL_OK; +} + +/** + * @brief Disable the USB Regulator. + * @retval HAL status. + */ +HAL_StatusTypeDef HAL_PWREx_DisableUSBReg (void) +{ + uint32_t tickstart; + + /* Disable the USB regulator */ + CLEAR_BIT (PWR->CR3, PWR_CR3_USBREGEN); + + /* Get tick */ + tickstart = HAL_GetTick (); + + /* Wait till the USB regulator ready flag is reset */ + while(__HAL_PWR_GET_FLAG (PWR_FLAG_USB33RDY) != 0U) + { + if ((HAL_GetTick() - tickstart ) > PWR_FLAG_SETTING_DELAY) + { + return HAL_ERROR; + } + } + + return HAL_OK; +} + +/** + * @brief Enable the USB voltage level detector. + * @retval None. + */ +void HAL_PWREx_EnableUSBVoltageDetector (void) +{ + /* Enable the USB voltage detector */ + SET_BIT (PWR->CR3, PWR_CR3_USB33DEN); +} + +/** + * @brief Disable the USB voltage level detector. + * @retval None. + */ +void HAL_PWREx_DisableUSBVoltageDetector (void) +{ + /* Disable the USB voltage detector */ + CLEAR_BIT (PWR->CR3, PWR_CR3_USB33DEN); +} + +/** + * @brief Enable the Battery charging. + * @note When VDD is present, charge the external battery through an internal + * resistor. + * @param ResistorValue : Specifies the charging resistor. + * This parameter can be one of the following values : + * @arg PWR_BATTERY_CHARGING_RESISTOR_5 : 5 KOhm resistor. + * @arg PWR_BATTERY_CHARGING_RESISTOR_1_5 : 1.5 KOhm resistor. + * @retval None. + */ +void HAL_PWREx_EnableBatteryCharging (uint32_t ResistorValue) +{ + /* Check the parameter */ + assert_param (IS_PWR_BATTERY_RESISTOR_SELECT (ResistorValue)); + + /* Specify the charging resistor */ + MODIFY_REG (PWR->CR3, PWR_CR3_VBRS, ResistorValue); + + /* Enable the Battery charging */ + SET_BIT (PWR->CR3, PWR_CR3_VBE); +} + +/** + * @brief Disable the Battery charging. + * @retval None. + */ +void HAL_PWREx_DisableBatteryCharging (void) +{ + /* Disable the Battery charging */ + CLEAR_BIT (PWR->CR3, PWR_CR3_VBE); +} + +#if defined (PWR_CR1_BOOSTE) +/** + * @brief Enable the booster to guarantee the analog switch AC performance when + * the VDD supply voltage is below 2V7. + * @note The VDD supply voltage can be monitored through the PVD and the PLS + * field bits. + * @retval None. + */ +void HAL_PWREx_EnableAnalogBooster (void) +{ + /* Enable the Analog voltage */ + SET_BIT (PWR->CR1, PWR_CR1_AVD_READY); + + /* Enable VDDA booster */ + SET_BIT (PWR->CR1, PWR_CR1_BOOSTE); +} + +/** + * @brief Disable the analog booster. + * @retval None. + */ +void HAL_PWREx_DisableAnalogBooster (void) +{ + /* Disable VDDA booster */ + CLEAR_BIT (PWR->CR1, PWR_CR1_BOOSTE); + + /* Disable the Analog voltage */ + CLEAR_BIT (PWR->CR1, PWR_CR1_AVD_READY); +} +#endif /* defined (PWR_CR1_BOOSTE) */ +/** + * @} + */ + +/** @defgroup PWREx_Exported_Functions_Group4 Power Monitoring functions + * @brief Power Monitoring functions + * +@verbatim + =============================================================================== + ##### Power Monitoring functions ##### + =============================================================================== + + *** VBAT and Temperature supervision *** + ======================================== + [..] + (+) The VBAT battery voltage supply can be monitored by comparing it with + two threshold levels: VBAThigh and VBATlow. VBATH flag and VBATL flags + in the PWR control register 2 (PWR_CR2), indicate if VBAT is higher or + lower than the threshold. + (+) The temperature can be monitored by comparing it with two threshold + levels, TEMPhigh and TEMPlow. TEMPH and TEMPL flags, in the PWR + control register 2 (PWR_CR2), indicate whether the device temperature + is higher or lower than the threshold. + (+) The VBAT and the temperature monitoring is enabled by + HAL_PWREx_EnableMonitoring() function and disabled by + HAL_PWREx_DisableMonitoring() function. + (+) The HAL_PWREx_GetVBATLevel() function returns the VBAT level which can + be : PWR_VBAT_BELOW_LOW_THRESHOLD or PWR_VBAT_ABOVE_HIGH_THRESHOLD or + PWR_VBAT_BETWEEN_HIGH_LOW_THRESHOLD. + (+) The HAL_PWREx_GetTemperatureLevel() function returns the Temperature + level which can be : + PWR_TEMP_BELOW_LOW_THRESHOLD or PWR_TEMP_ABOVE_HIGH_THRESHOLD or + PWR_TEMP_BETWEEN_HIGH_LOW_THRESHOLD. + + *** AVD configuration *** + ========================= + [..] + (+) The AVD is used to monitor the VDDA power supply by comparing it to a + threshold selected by the AVD Level (ALS[3:0] bits in the PWR_CR1 + register). + (+) A AVDO flag is available to indicate if VDDA is higher or lower + than the AVD threshold. This event is internally connected to the EXTI + line 16 to generate an interrupt if enabled. + It is configurable through __HAL_PWR_AVD_EXTI_ENABLE_IT() macro. + (+) The AVD is stopped in System Standby mode. + +@endverbatim + * @{ + */ + +/** + * @brief Enable the VBAT and temperature monitoring. + * @retval HAL status. + */ +void HAL_PWREx_EnableMonitoring (void) +{ + /* Enable the VBAT and Temperature monitoring */ + SET_BIT (PWR->CR2, PWR_CR2_MONEN); +} + +/** + * @brief Disable the VBAT and temperature monitoring. + * @retval HAL status. + */ +void HAL_PWREx_DisableMonitoring (void) +{ + /* Disable the VBAT and Temperature monitoring */ + CLEAR_BIT (PWR->CR2, PWR_CR2_MONEN); +} + +/** + * @brief Indicate whether the junction temperature is between, above or below + * the thresholds. + * @retval Temperature level. + */ +uint32_t HAL_PWREx_GetTemperatureLevel (void) +{ + uint32_t tempLevel, regValue; + + /* Read the temperature flags */ + regValue = READ_BIT (PWR->CR2, (PWR_CR2_TEMPH | PWR_CR2_TEMPL)); + + /* Check if the temperature is below the threshold */ + if (regValue == PWR_CR2_TEMPL) + { + tempLevel = PWR_TEMP_BELOW_LOW_THRESHOLD; + } + /* Check if the temperature is above the threshold */ + else if (regValue == PWR_CR2_TEMPH) + { + tempLevel = PWR_TEMP_ABOVE_HIGH_THRESHOLD; + } + /* The temperature is between the thresholds */ + else + { + tempLevel = PWR_TEMP_BETWEEN_HIGH_LOW_THRESHOLD; + } + + return tempLevel; +} + +/** + * @brief Indicate whether the Battery voltage level is between, above or below + * the thresholds. + * @retval VBAT level. + */ +uint32_t HAL_PWREx_GetVBATLevel (void) +{ + uint32_t VBATLevel, regValue; + + /* Read the VBAT flags */ + regValue = READ_BIT (PWR->CR2, (PWR_CR2_VBATH | PWR_CR2_VBATL)); + + /* Check if the VBAT is below the threshold */ + if (regValue == PWR_CR2_VBATL) + { + VBATLevel = PWR_VBAT_BELOW_LOW_THRESHOLD; + } + /* Check if the VBAT is above the threshold */ + else if (regValue == PWR_CR2_VBATH) + { + VBATLevel = PWR_VBAT_ABOVE_HIGH_THRESHOLD; + } + /* The VBAT is between the thresholds */ + else + { + VBATLevel = PWR_VBAT_BETWEEN_HIGH_LOW_THRESHOLD; + } + + return VBATLevel; +} + +#if defined (PWR_CSR1_MMCVDO) +/** + * @brief Get the VDDMMC voltage level. + * @retval The VDDMMC voltage level. + */ +PWREx_MMC_VoltageLevel HAL_PWREx_GetMMCVoltage (void) +{ + PWREx_MMC_VoltageLevel mmc_voltage; + + /* Check voltage detector output on VDDMMC value */ + if ((PWR->CSR1 & PWR_CSR1_MMCVDO_Msk) == 0U) + { + mmc_voltage = PWR_MMC_VOLTAGE_BELOW_1V2; + } + else + { + mmc_voltage = PWR_MMC_VOLTAGE_EQUAL_ABOVE_1V2; + } + + return mmc_voltage; +} +#endif /* defined (PWR_CSR1_MMCVDO) */ + +/** + * @brief Configure the event mode and the voltage threshold detected by the + * Analog Voltage Detector (AVD). + * @param sConfigAVD : Pointer to an PWREx_AVDTypeDef structure that contains + * the configuration information for the AVD. + * @note Refer to the electrical characteristics of your device datasheet for + * more details about the voltage threshold corresponding to each + * detection level. + * @note For dual core devices, please ensure to configure the EXTI lines for + * the different Cortex-Mx through PWR_Exported_Macro provided by this + * driver. All combination are allowed: wake up only Cortex-M7, wake up + * only Cortex-M4 and wake up Cortex-M7 and Cortex-M4. + * @retval None. + */ +void HAL_PWREx_ConfigAVD (PWREx_AVDTypeDef *sConfigAVD) +{ + /* Check the parameters */ + assert_param (IS_PWR_AVD_LEVEL (sConfigAVD->AVDLevel)); + assert_param (IS_PWR_AVD_MODE (sConfigAVD->Mode)); + + /* Set the ALS[18:17] bits according to AVDLevel value */ + MODIFY_REG (PWR->CR1, PWR_CR1_ALS, sConfigAVD->AVDLevel); + + /* Clear any previous config */ +#if !defined (DUAL_CORE) + __HAL_PWR_AVD_EXTI_DISABLE_EVENT (); + __HAL_PWR_AVD_EXTI_DISABLE_IT (); +#endif /* !defined (DUAL_CORE) */ + + __HAL_PWR_AVD_EXTI_DISABLE_RISING_EDGE (); + __HAL_PWR_AVD_EXTI_DISABLE_FALLING_EDGE (); + +#if !defined (DUAL_CORE) + /* Configure the interrupt mode */ + if ((sConfigAVD->Mode & AVD_MODE_IT) == AVD_MODE_IT) + { + __HAL_PWR_AVD_EXTI_ENABLE_IT (); + } + + /* Configure the event mode */ + if ((sConfigAVD->Mode & AVD_MODE_EVT) == AVD_MODE_EVT) + { + __HAL_PWR_AVD_EXTI_ENABLE_EVENT (); + } +#endif /* !defined (DUAL_CORE) */ + + /* Rising edge configuration */ + if ((sConfigAVD->Mode & AVD_RISING_EDGE) == AVD_RISING_EDGE) + { + __HAL_PWR_AVD_EXTI_ENABLE_RISING_EDGE (); + } + + /* Falling edge configuration */ + if ((sConfigAVD->Mode & AVD_FALLING_EDGE) == AVD_FALLING_EDGE) + { + __HAL_PWR_AVD_EXTI_ENABLE_FALLING_EDGE (); + } +} + +/** + * @brief Enable the Analog Voltage Detector (AVD). + * @retval None. + */ +void HAL_PWREx_EnableAVD (void) +{ + /* Enable the Analog Voltage Detector */ + SET_BIT (PWR->CR1, PWR_CR1_AVDEN); +} + +/** + * @brief Disable the Analog Voltage Detector(AVD). + * @retval None. + */ +void HAL_PWREx_DisableAVD (void) +{ + /* Disable the Analog Voltage Detector */ + CLEAR_BIT (PWR->CR1, PWR_CR1_AVDEN); +} + +/** + * @brief This function handles the PWR PVD/AVD interrupt request. + * @note This API should be called under the PVD_AVD_IRQHandler(). + * @retval None + */ +void HAL_PWREx_PVD_AVD_IRQHandler (void) +{ + /* Check if the Programmable Voltage Detector is enabled (PVD) */ + if(READ_BIT (PWR->CR1, PWR_CR1_PVDEN) != 0U) + { +#if defined (DUAL_CORE) + if (HAL_GetCurrentCPUID () == CM7_CPUID) +#endif /* defined (DUAL_CORE) */ + { + /* Check PWR D1/CD EXTI flag */ + if(__HAL_PWR_PVD_EXTI_GET_FLAG () != 0U) + { + /* PWR PVD interrupt user callback */ + HAL_PWR_PVDCallback (); + + /* Clear PWR EXTI D1/CD pending bit */ + __HAL_PWR_PVD_EXTI_CLEAR_FLAG (); + } + } +#if defined (DUAL_CORE) + else + { + /* Check PWR EXTI D2 flag */ + if (__HAL_PWR_PVD_EXTID2_GET_FLAG () != 0U) + { + /* PWR PVD interrupt user callback */ + HAL_PWR_PVDCallback (); + + /* Clear PWR EXTI D2 pending bit */ + __HAL_PWR_PVD_EXTID2_CLEAR_FLAG(); + } + } +#endif /* defined (DUAL_CORE) */ + } + + /* Check if the Analog Voltage Detector is enabled (AVD) */ + if (READ_BIT (PWR->CR1, PWR_CR1_AVDEN) != 0U) + { +#if defined (DUAL_CORE) + if (HAL_GetCurrentCPUID () == CM7_CPUID) +#endif /* defined (DUAL_CORE) */ + { + /* Check PWR EXTI D1/CD flag */ + if (__HAL_PWR_AVD_EXTI_GET_FLAG () != 0U) + { + /* PWR AVD interrupt user callback */ + HAL_PWREx_AVDCallback (); + + /* Clear PWR EXTI D1/CD pending bit */ + __HAL_PWR_AVD_EXTI_CLEAR_FLAG (); + } + } +#if defined (DUAL_CORE) + else + { + /* Check PWR EXTI D2 flag */ + if (__HAL_PWR_AVD_EXTID2_GET_FLAG () != 0U) + { + /* PWR AVD interrupt user callback */ + HAL_PWREx_AVDCallback (); + + /* Clear PWR EXTI D2 pending bit */ + __HAL_PWR_AVD_EXTID2_CLEAR_FLAG (); + } + } +#endif /* defined (DUAL_CORE) */ + } +} + +/** + * @brief PWR AVD interrupt callback. + * @retval None. + */ +__weak void HAL_PWREx_AVDCallback (void) +{ + /* NOTE : This function should not be modified, when the callback is needed, + the HAL_PWR_AVDCallback can be implemented in the user file + */ +} +/** + * @} + */ + +/** + * @} + */ + +#endif /* HAL_PWR_MODULE_ENABLED */ + +/** + * @} + */ + +/** + * @} + */ + +/************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/ diff --git a/source/hic_hal/stm32/stm32h743ii/STM32H7xx_HAL_Driver/Src/stm32h7xx_hal_spi.c b/source/hic_hal/stm32/stm32h743ii/STM32H7xx_HAL_Driver/Src/stm32h7xx_hal_spi.c new file mode 100644 index 000000000..2b26d10c3 --- /dev/null +++ b/source/hic_hal/stm32/stm32h743ii/STM32H7xx_HAL_Driver/Src/stm32h7xx_hal_spi.c @@ -0,0 +1,3836 @@ +/** + ****************************************************************************** + * @file stm32h7xx_hal_spi.c + * @author MCD Application Team + * @brief SPI HAL module driver. + * This file provides firmware functions to manage the following + * functionalities of the Serial Peripheral Interface (SPI) peripheral: + * + Initialization and de-initialization functions + * + IO operation functions + * + Peripheral Control functions + * + Peripheral State functions + * + @verbatim + ============================================================================== + ##### How to use this driver ##### + ============================================================================== + [..] + The SPI HAL driver can be used as follows: + + (#) Declare a SPI_HandleTypeDef handle structure, for example: + SPI_HandleTypeDef hspi; + + (#)Initialize the SPI low level resources by implementing the HAL_SPI_MspInit() API: + (##) Enable the SPIx interface clock + (##) SPI pins configuration + (+++) Enable the clock for the SPI GPIOs + (+++) Configure these SPI pins as alternate function push-pull + (##) NVIC configuration if you need to use interrupt process or DMA process + (+++) Configure the SPIx interrupt priority + (+++) Enable the NVIC SPI IRQ handle + (##) DMA Configuration if you need to use DMA process + (+++) Declare a DMA_HandleTypeDef handle structure for the transmit or receive Stream/Channel + (+++) Enable the DMAx clock + (+++) Configure the DMA handle parameters + (+++) Configure the DMA Tx or Rx Stream/Channel + (+++) Associate the initialized hdma_tx handle to the hspi DMA Tx or Rx handle + (+++) Configure the priority and enable the NVIC for the transfer complete interrupt on the DMA Tx or Rx Stream/Channel + + (#) Program the Mode, BidirectionalMode , Data size, Baudrate Prescaler, NSS + management, Clock polarity and phase, FirstBit and CRC configuration in the hspi Init structure. + + (#) Initialize the SPI registers by calling the HAL_SPI_Init() API: + (++) This API configures also the low level Hardware GPIO, CLOCK, CORTEX...etc) + by calling the customized HAL_SPI_MspInit() API. + [..] + Callback registration: + + (#) The compilation flag USE_HAL_SPI_REGISTER_CALLBACKS when set to 1UL + allows the user to configure dynamically the driver callbacks. + Use Functions HAL_SPI_RegisterCallback() to register an interrupt callback. + + Function HAL_SPI_RegisterCallback() allows to register following callbacks: + (+) TxCpltCallback : SPI Tx Completed callback + (+) RxCpltCallback : SPI Rx Completed callback + (+) TxRxCpltCallback : SPI TxRx Completed callback + (+) TxHalfCpltCallback : SPI Tx Half Completed callback + (+) RxHalfCpltCallback : SPI Rx Half Completed callback + (+) TxRxHalfCpltCallback : SPI TxRx Half Completed callback + (+) ErrorCallback : SPI Error callback + (+) AbortCpltCallback : SPI Abort callback + (+) MspInitCallback : SPI Msp Init callback + (+) MspDeInitCallback : SPI Msp DeInit callback + This function takes as parameters the HAL peripheral handle, the Callback ID + and a pointer to the user callback function. + + + (#) Use function HAL_SPI_UnRegisterCallback to reset a callback to the default + weak function. + HAL_SPI_UnRegisterCallback takes as parameters the HAL peripheral handle, + and the Callback ID. + This function allows to reset following callbacks: + (+) TxCpltCallback : SPI Tx Completed callback + (+) RxCpltCallback : SPI Rx Completed callback + (+) TxRxCpltCallback : SPI TxRx Completed callback + (+) TxHalfCpltCallback : SPI Tx Half Completed callback + (+) RxHalfCpltCallback : SPI Rx Half Completed callback + (+) TxRxHalfCpltCallback : SPI TxRx Half Completed callback + (+) ErrorCallback : SPI Error callback + (+) AbortCpltCallback : SPI Abort callback + (+) MspInitCallback : SPI Msp Init callback + (+) MspDeInitCallback : SPI Msp DeInit callback + + By default, after the HAL_SPI_Init() and when the state is HAL_SPI_STATE_RESET + all callbacks are set to the corresponding weak functions: + examples HAL_SPI_MasterTxCpltCallback(), HAL_SPI_MasterRxCpltCallback(). + Exception done for MspInit and MspDeInit functions that are + reset to the legacy weak functions in the HAL_SPI_Init()/ HAL_SPI_DeInit() only when + these callbacks are null (not registered beforehand). + If MspInit or MspDeInit are not null, the HAL_SPI_Init()/ HAL_SPI_DeInit() + keep and use the user MspInit/MspDeInit callbacks (registered beforehand) whatever the state. + + Callbacks can be registered/unregistered in HAL_SPI_STATE_READY state only. + Exception done MspInit/MspDeInit functions that can be registered/unregistered + in HAL_SPI_STATE_READY or HAL_SPI_STATE_RESET state, + thus registered (user) MspInit/DeInit callbacks can be used during the Init/DeInit. + Then, the user first registers the MspInit/MspDeInit user callbacks + using HAL_SPI_RegisterCallback() before calling HAL_SPI_DeInit() + or HAL_SPI_Init() function. + + When The compilation define USE_HAL_PPP_REGISTER_CALLBACKS is set to 0 or + not defined, the callback registering feature is not available + and weak (surcharged) callbacks are used. + + + [..] + Circular mode restriction: + (+) The DMA circular mode cannot be used when the SPI is configured in these modes: + (++) Master 2Lines RxOnly + (++) Master 1Line Rx + (+) The CRC feature is not managed when the DMA circular mode is enabled + (+) The functions HAL_SPI_DMAPause()/ HAL_SPI_DMAResume() are not supported. Return always + HAL_ERROR with ErrorCode set to HAL_SPI_ERROR_NOT_SUPPORTED. + Those functions are maintained for backward compatibility reasons. + + @endverbatim + ****************************************************************************** + * @attention + * + *

© Copyright (c) 2017 STMicroelectronics. + * All rights reserved.

+ * + * This software component is licensed by ST under BSD 3-Clause license, + * the "License"; You may not use this file except in compliance with the + * License. You may obtain a copy of the License at: + * opensource.org/licenses/BSD-3-Clause + * + ****************************************************************************** + */ + +/* Includes ------------------------------------------------------------------*/ +#include "stm32h7xx_hal.h" + +/** @addtogroup STM32H7xx_HAL_Driver + * @{ + */ + +/** @defgroup SPI SPI + * @brief SPI HAL module driver + * @{ + */ +#ifdef HAL_SPI_MODULE_ENABLED + +/* Private typedef -----------------------------------------------------------*/ +/* Private defines -----------------------------------------------------------*/ +/** @defgroup SPI_Private_Constants SPI Private Constants + * @{ + */ +#define SPI_DEFAULT_TIMEOUT 100UL +/** + * @} + */ + +/* Private macros ------------------------------------------------------------*/ +/* Private variables ---------------------------------------------------------*/ +/* Private function prototypes -----------------------------------------------*/ +/** @defgroup SPI_Private_Functions SPI Private Functions + * @{ + */ +static void SPI_DMATransmitCplt(DMA_HandleTypeDef *hdma); +static void SPI_DMAReceiveCplt(DMA_HandleTypeDef *hdma); +static void SPI_DMATransmitReceiveCplt(DMA_HandleTypeDef *hdma); +static void SPI_DMAHalfTransmitCplt(DMA_HandleTypeDef *hdma); +static void SPI_DMAHalfReceiveCplt(DMA_HandleTypeDef *hdma); +static void SPI_DMAHalfTransmitReceiveCplt(DMA_HandleTypeDef *hdma); +static void SPI_DMAError(DMA_HandleTypeDef *hdma); +static void SPI_DMAAbortOnError(DMA_HandleTypeDef *hdma); +static void SPI_DMATxAbortCallback(DMA_HandleTypeDef *hdma); +static void SPI_DMARxAbortCallback(DMA_HandleTypeDef *hdma); +static HAL_StatusTypeDef SPI_WaitOnFlagUntilTimeout(SPI_HandleTypeDef *hspi, uint32_t Flag, FlagStatus FlagStatus, + uint32_t Timeout, uint32_t Tickstart); +static void SPI_TxISR_8BIT(SPI_HandleTypeDef *hspi); +static void SPI_TxISR_16BIT(SPI_HandleTypeDef *hspi); +static void SPI_TxISR_32BIT(SPI_HandleTypeDef *hspi); +static void SPI_RxISR_8BIT(SPI_HandleTypeDef *hspi); +static void SPI_RxISR_16BIT(SPI_HandleTypeDef *hspi); +static void SPI_RxISR_32BIT(SPI_HandleTypeDef *hspi); +static void SPI_AbortTransfer(SPI_HandleTypeDef *hspi); +static void SPI_CloseTransfer(SPI_HandleTypeDef *hspi); +static uint32_t SPI_GetPacketSize(SPI_HandleTypeDef *hspi); + + +/** + * @} + */ + +/* Exported functions --------------------------------------------------------*/ +/** @defgroup SPI_Exported_Functions SPI Exported Functions + * @{ + */ + +/** @defgroup SPI_Exported_Functions_Group1 Initialization and de-initialization functions + * @brief Initialization and Configuration functions + * +@verbatim + =============================================================================== + ##### Initialization and de-initialization functions ##### + =============================================================================== + [..] This subsection provides a set of functions allowing to initialize and + de-initialize the SPIx peripheral: + + (+) User must implement HAL_SPI_MspInit() function in which he configures + all related peripherals resources (CLOCK, GPIO, DMA, IT and NVIC ). + + (+) Call the function HAL_SPI_Init() to configure the selected device with + the selected configuration: + (++) Mode + (++) Direction + (++) Data Size + (++) Clock Polarity and Phase + (++) NSS Management + (++) BaudRate Prescaler + (++) FirstBit + (++) TIMode + (++) CRC Calculation + (++) CRC Polynomial if CRC enabled + (++) CRC Length, used only with Data8 and Data16 + (++) FIFO reception threshold + (++) FIFO transmission threshold + + (+) Call the function HAL_SPI_DeInit() to restore the default configuration + of the selected SPIx peripheral. + +@endverbatim + * @{ + */ + +/** + * @brief Initialize the SPI according to the specified parameters + * in the SPI_InitTypeDef and initialize the associated handle. + * @param hspi: pointer to a SPI_HandleTypeDef structure that contains + * the configuration information for SPI module. + * @retval HAL status + */ +HAL_StatusTypeDef HAL_SPI_Init(SPI_HandleTypeDef *hspi) +{ + uint32_t crc_length = 0UL; + uint32_t packet_length; + + /* Check the SPI handle allocation */ + if (hspi == NULL) + { + return HAL_ERROR; + } + + /* Check the parameters */ + assert_param(IS_SPI_ALL_INSTANCE(hspi->Instance)); + assert_param(IS_SPI_MODE(hspi->Init.Mode)); + assert_param(IS_SPI_DIRECTION(hspi->Init.Direction)); + assert_param(IS_SPI_DATASIZE(hspi->Init.DataSize)); + assert_param(IS_SPI_FIFOTHRESHOLD(hspi->Init.FifoThreshold)); + assert_param(IS_SPI_NSS(hspi->Init.NSS)); + assert_param(IS_SPI_NSSP(hspi->Init.NSSPMode)); + assert_param(IS_SPI_BAUDRATE_PRESCALER(hspi->Init.BaudRatePrescaler)); + assert_param(IS_SPI_FIRST_BIT(hspi->Init.FirstBit)); + assert_param(IS_SPI_TIMODE(hspi->Init.TIMode)); + if (hspi->Init.TIMode == SPI_TIMODE_DISABLE) + { + assert_param(IS_SPI_CPOL(hspi->Init.CLKPolarity)); + assert_param(IS_SPI_CPHA(hspi->Init.CLKPhase)); + } +#if (USE_SPI_CRC != 0UL) + assert_param(IS_SPI_CRC_CALCULATION(hspi->Init.CRCCalculation)); + if (hspi->Init.CRCCalculation == SPI_CRCCALCULATION_ENABLE) + { + assert_param(IS_SPI_CRC_POLYNOMIAL(hspi->Init.CRCPolynomial)); + assert_param(IS_SPI_CRC_LENGTH(hspi->Init.CRCLength)); + assert_param(IS_SPI_CRC_INITIALIZATION_PATTERN(hspi->Init.TxCRCInitializationPattern)); + assert_param(IS_SPI_CRC_INITIALIZATION_PATTERN(hspi->Init.RxCRCInitializationPattern)); + } +#else + hspi->Init.CRCCalculation = SPI_CRCCALCULATION_DISABLE; +#endif /* USE_SPI_CRC */ + + /* Verify that the SPI instance supports Data Size higher than 16bits */ + if ((!IS_SPI_HIGHEND_INSTANCE(hspi->Instance)) && (hspi->Init.DataSize > SPI_DATASIZE_16BIT)) + { + return HAL_ERROR; + } + + /* Verify that the SPI instance supports requested data packing */ + packet_length = SPI_GetPacketSize(hspi); + if (((!IS_SPI_HIGHEND_INSTANCE(hspi->Instance)) && (packet_length > SPI_LOWEND_FIFO_SIZE)) || + ((IS_SPI_HIGHEND_INSTANCE(hspi->Instance)) && (packet_length > SPI_HIGHEND_FIFO_SIZE))) + { + return HAL_ERROR; + } + +#if (USE_SPI_CRC != 0UL) + if (hspi->Init.CRCCalculation == SPI_CRCCALCULATION_ENABLE) + { + /* Verify that the SPI instance supports CRC Length higher than 16bits */ + if ((!IS_SPI_HIGHEND_INSTANCE(hspi->Instance)) && (hspi->Init.CRCLength > SPI_CRC_LENGTH_16BIT)) + { + return HAL_ERROR; + } + + /* Align the CRC Length on the data size */ + if (hspi->Init.CRCLength == SPI_CRC_LENGTH_DATASIZE) + { + crc_length = (hspi->Init.DataSize >> SPI_CFG1_DSIZE_Pos) << SPI_CFG1_CRCSIZE_Pos; + } + else + { + crc_length = hspi->Init.CRCLength; + } + + /* Verify that the CRC Length is higher than DataSize */ + if ((hspi->Init.DataSize >> SPI_CFG1_DSIZE_Pos) > (crc_length >> SPI_CFG1_CRCSIZE_Pos)) + { + return HAL_ERROR; + } + } +#endif /* USE_SPI_CRC */ + + if (hspi->State == HAL_SPI_STATE_RESET) + { + /* Allocate lock resource and initialize it */ + hspi->Lock = HAL_UNLOCKED; + +#if (USE_HAL_SPI_REGISTER_CALLBACKS == 1UL) + /* Init the SPI Callback settings */ + hspi->TxCpltCallback = HAL_SPI_TxCpltCallback; /* Legacy weak TxCpltCallback */ + hspi->RxCpltCallback = HAL_SPI_RxCpltCallback; /* Legacy weak RxCpltCallback */ + hspi->TxRxCpltCallback = HAL_SPI_TxRxCpltCallback; /* Legacy weak TxRxCpltCallback */ + hspi->TxHalfCpltCallback = HAL_SPI_TxHalfCpltCallback; /* Legacy weak TxHalfCpltCallback */ + hspi->RxHalfCpltCallback = HAL_SPI_RxHalfCpltCallback; /* Legacy weak RxHalfCpltCallback */ + hspi->TxRxHalfCpltCallback = HAL_SPI_TxRxHalfCpltCallback; /* Legacy weak TxRxHalfCpltCallback */ + hspi->ErrorCallback = HAL_SPI_ErrorCallback; /* Legacy weak ErrorCallback */ + hspi->AbortCpltCallback = HAL_SPI_AbortCpltCallback; /* Legacy weak AbortCpltCallback */ + + if (hspi->MspInitCallback == NULL) + { + hspi->MspInitCallback = HAL_SPI_MspInit; /* Legacy weak MspInit */ + } + + /* Init the low level hardware : GPIO, CLOCK, NVIC... */ + hspi->MspInitCallback(hspi); +#else + /* Init the low level hardware : GPIO, CLOCK, NVIC... */ + HAL_SPI_MspInit(hspi); +#endif /* USE_HAL_SPI_REGISTER_CALLBACKS */ + } + + hspi->State = HAL_SPI_STATE_BUSY; + + /* Disable the selected SPI peripheral */ + __HAL_SPI_DISABLE(hspi); + + /*----------------------- SPIx CR1 & CR2 Configuration ---------------------*/ + /* Configure : SPI Mode, Communication Mode, Clock polarity and phase, NSS management, + Communication speed, First bit, CRC calculation state, CRC Length */ + + if ((hspi->Init.NSS == SPI_NSS_SOFT) && (hspi->Init.Mode == SPI_MODE_MASTER) && (hspi->Init.NSSPolarity == SPI_NSS_POLARITY_LOW)) + { + SET_BIT(hspi->Instance->CR1, SPI_CR1_SSI); + } + + /* SPIx CFG1 Configuration */ + WRITE_REG(hspi->Instance->CFG1, (hspi->Init.BaudRatePrescaler | hspi->Init.CRCCalculation | crc_length | + hspi->Init.FifoThreshold | hspi->Init.DataSize)); + + /* SPIx CFG2 Configuration */ + WRITE_REG(hspi->Instance->CFG2, (hspi->Init.NSSPMode | hspi->Init.TIMode | hspi->Init.NSSPolarity | + hspi->Init.NSS | hspi->Init.CLKPolarity | hspi->Init.CLKPhase | + hspi->Init.FirstBit | hspi->Init.Mode | hspi->Init.MasterInterDataIdleness | + hspi->Init.Direction | hspi->Init.MasterSSIdleness | hspi->Init.IOSwap)); + +#if (USE_SPI_CRC != 0UL) + /*---------------------------- SPIx CRCPOLY Configuration ------------------*/ + /* Configure : CRC Polynomial */ + if (hspi->Init.CRCCalculation == SPI_CRCCALCULATION_ENABLE) + { + /* Initialize TXCRC Pattern Initial Value */ + if (hspi->Init.TxCRCInitializationPattern == SPI_CRC_INITIALIZATION_ALL_ONE_PATTERN) + { + SET_BIT(hspi->Instance->CR1, SPI_CR1_TCRCINI); + } + else + { + CLEAR_BIT(hspi->Instance->CR1, SPI_CR1_TCRCINI); + } + + /* Initialize RXCRC Pattern Initial Value */ + if (hspi->Init.RxCRCInitializationPattern == SPI_CRC_INITIALIZATION_ALL_ONE_PATTERN) + { + SET_BIT(hspi->Instance->CR1, SPI_CR1_RCRCINI); + } + else + { + CLEAR_BIT(hspi->Instance->CR1, SPI_CR1_RCRCINI); + } + + /* Enable 33/17 bits CRC computation */ + if (((!IS_SPI_HIGHEND_INSTANCE(hspi->Instance)) && (crc_length == SPI_CRC_LENGTH_16BIT)) || + ((IS_SPI_HIGHEND_INSTANCE(hspi->Instance)) && (crc_length == SPI_CRC_LENGTH_32BIT))) + { + SET_BIT(hspi->Instance->CR1, SPI_CR1_CRC33_17); + } + else + { + CLEAR_BIT(hspi->Instance->CR1, SPI_CR1_CRC33_17); + } + + /* Write CRC polynomial in SPI Register */ + WRITE_REG(hspi->Instance->CRCPOLY, hspi->Init.CRCPolynomial); + } +#endif /* USE_SPI_CRC */ + + /* Insure that Underrun configuration is managed only by Salve */ + if (hspi->Init.Mode == SPI_MODE_SLAVE) + { + /* Set Default Underrun configuration */ +#if (USE_SPI_CRC != 0UL) + if (hspi->Init.CRCCalculation == SPI_CRCCALCULATION_DISABLE) +#endif + { + MODIFY_REG(hspi->Instance->CFG1, SPI_CFG1_UDRDET, SPI_CFG1_UDRDET_0); + } + MODIFY_REG(hspi->Instance->CFG1, SPI_CFG1_UDRCFG, SPI_CFG1_UDRCFG_1); + } + +#if defined(SPI_I2SCFGR_I2SMOD) + /* Activate the SPI mode (Make sure that I2SMOD bit in I2SCFGR register is reset) */ + CLEAR_BIT(hspi->Instance->I2SCFGR, SPI_I2SCFGR_I2SMOD); +#endif /* SPI_I2SCFGR_I2SMOD */ + + /* Insure that AFCNTR is managed only by Master */ + if ((hspi->Init.Mode & SPI_MODE_MASTER) == SPI_MODE_MASTER) + { + /* Alternate function GPIOs control */ + MODIFY_REG(hspi->Instance->CFG2, SPI_CFG2_AFCNTR, (hspi->Init.MasterKeepIOState)); + } + + hspi->ErrorCode = HAL_SPI_ERROR_NONE; + hspi->State = HAL_SPI_STATE_READY; + + return HAL_OK; +} + +/** + * @brief De-Initialize the SPI peripheral. + * @param hspi: pointer to a SPI_HandleTypeDef structure that contains + * the configuration information for SPI module. + * @retval HAL status + */ +HAL_StatusTypeDef HAL_SPI_DeInit(SPI_HandleTypeDef *hspi) +{ + /* Check the SPI handle allocation */ + if (hspi == NULL) + { + return HAL_ERROR; + } + + /* Check SPI Instance parameter */ + assert_param(IS_SPI_ALL_INSTANCE(hspi->Instance)); + + hspi->State = HAL_SPI_STATE_BUSY; + + /* Disable the SPI Peripheral Clock */ + __HAL_SPI_DISABLE(hspi); + +#if (USE_HAL_SPI_REGISTER_CALLBACKS == 1UL) + if (hspi->MspDeInitCallback == NULL) + { + hspi->MspDeInitCallback = HAL_SPI_MspDeInit; /* Legacy weak MspDeInit */ + } + + /* DeInit the low level hardware: GPIO, CLOCK, NVIC... */ + hspi->MspDeInitCallback(hspi); +#else + /* DeInit the low level hardware: GPIO, CLOCK, NVIC... */ + HAL_SPI_MspDeInit(hspi); +#endif /* USE_HAL_SPI_REGISTER_CALLBACKS */ + + hspi->ErrorCode = HAL_SPI_ERROR_NONE; + hspi->State = HAL_SPI_STATE_RESET; + + /* Release Lock */ + __HAL_UNLOCK(hspi); + + return HAL_OK; +} + +/** + * @brief Initialize the SPI MSP. + * @param hspi: pointer to a SPI_HandleTypeDef structure that contains + * the configuration information for SPI module. + * @retval None + */ +__weak void HAL_SPI_MspInit(SPI_HandleTypeDef *hspi) +{ + /* Prevent unused argument(s) compilation warning */ + UNUSED(hspi); + + /* NOTE : This function should not be modified, when the callback is needed, + the HAL_SPI_MspInit should be implemented in the user file + */ +} + +/** + * @brief De-Initialize the SPI MSP. + * @param hspi: pointer to a SPI_HandleTypeDef structure that contains + * the configuration information for SPI module. + * @retval None + */ +__weak void HAL_SPI_MspDeInit(SPI_HandleTypeDef *hspi) +{ + /* Prevent unused argument(s) compilation warning */ + UNUSED(hspi); + + /* NOTE : This function should not be modified, when the callback is needed, + the HAL_SPI_MspDeInit should be implemented in the user file + */ +} + +#if (USE_HAL_SPI_REGISTER_CALLBACKS == 1UL) +/** + * @brief Register a User SPI Callback + * To be used instead of the weak predefined callback + * @param hspi Pointer to a SPI_HandleTypeDef structure that contains + * the configuration information for the specified SPI. + * @param CallbackID ID of the callback to be registered + * @param pCallback pointer to the Callback function + * @retval HAL status + */ +HAL_StatusTypeDef HAL_SPI_RegisterCallback(SPI_HandleTypeDef *hspi, HAL_SPI_CallbackIDTypeDef CallbackID, pSPI_CallbackTypeDef pCallback) +{ + HAL_StatusTypeDef status = HAL_OK; + + if (pCallback == NULL) + { + /* Update the error code */ + hspi->ErrorCode |= HAL_SPI_ERROR_INVALID_CALLBACK; + + return HAL_ERROR; + } + /* Process locked */ + __HAL_LOCK(hspi); + + if (HAL_SPI_STATE_READY == hspi->State) + { + switch (CallbackID) + { + case HAL_SPI_TX_COMPLETE_CB_ID : + hspi->TxCpltCallback = pCallback; + break; + + case HAL_SPI_RX_COMPLETE_CB_ID : + hspi->RxCpltCallback = pCallback; + break; + + case HAL_SPI_TX_RX_COMPLETE_CB_ID : + hspi->TxRxCpltCallback = pCallback; + break; + + case HAL_SPI_TX_HALF_COMPLETE_CB_ID : + hspi->TxHalfCpltCallback = pCallback; + break; + + case HAL_SPI_RX_HALF_COMPLETE_CB_ID : + hspi->RxHalfCpltCallback = pCallback; + break; + + case HAL_SPI_TX_RX_HALF_COMPLETE_CB_ID : + hspi->TxRxHalfCpltCallback = pCallback; + break; + + case HAL_SPI_ERROR_CB_ID : + hspi->ErrorCallback = pCallback; + break; + + case HAL_SPI_ABORT_CB_ID : + hspi->AbortCpltCallback = pCallback; + break; + + case HAL_SPI_MSPINIT_CB_ID : + hspi->MspInitCallback = pCallback; + break; + + case HAL_SPI_MSPDEINIT_CB_ID : + hspi->MspDeInitCallback = pCallback; + break; + + default : + /* Update the error code */ + SET_BIT(hspi->ErrorCode, HAL_SPI_ERROR_INVALID_CALLBACK); + + /* Return error status */ + status = HAL_ERROR; + break; + } + } + else if (HAL_SPI_STATE_RESET == hspi->State) + { + switch (CallbackID) + { + case HAL_SPI_MSPINIT_CB_ID : + hspi->MspInitCallback = pCallback; + break; + + case HAL_SPI_MSPDEINIT_CB_ID : + hspi->MspDeInitCallback = pCallback; + break; + + default : + /* Update the error code */ + SET_BIT(hspi->ErrorCode, HAL_SPI_ERROR_INVALID_CALLBACK); + + /* Return error status */ + status = HAL_ERROR; + break; + } + } + else + { + /* Update the error code */ + SET_BIT(hspi->ErrorCode, HAL_SPI_ERROR_INVALID_CALLBACK); + + /* Return error status */ + status = HAL_ERROR; + } + + /* Release Lock */ + __HAL_UNLOCK(hspi); + return status; +} + +/** + * @brief Unregister an SPI Callback + * SPI callback is redirected to the weak predefined callback + * @param hspi Pointer to a SPI_HandleTypeDef structure that contains + * the configuration information for the specified SPI. + * @param CallbackID ID of the callback to be unregistered + * @retval HAL status + */ +HAL_StatusTypeDef HAL_SPI_UnRegisterCallback(SPI_HandleTypeDef *hspi, HAL_SPI_CallbackIDTypeDef CallbackID) +{ + HAL_StatusTypeDef status = HAL_OK; + + /* Process locked */ + __HAL_LOCK(hspi); + + if (HAL_SPI_STATE_READY == hspi->State) + { + switch (CallbackID) + { + case HAL_SPI_TX_COMPLETE_CB_ID : + hspi->TxCpltCallback = HAL_SPI_TxCpltCallback; /* Legacy weak TxCpltCallback */ + break; + + case HAL_SPI_RX_COMPLETE_CB_ID : + hspi->RxCpltCallback = HAL_SPI_RxCpltCallback; /* Legacy weak RxCpltCallback */ + break; + + case HAL_SPI_TX_RX_COMPLETE_CB_ID : + hspi->TxRxCpltCallback = HAL_SPI_TxRxCpltCallback; /* Legacy weak TxRxCpltCallback */ + break; + + case HAL_SPI_TX_HALF_COMPLETE_CB_ID : + hspi->TxHalfCpltCallback = HAL_SPI_TxHalfCpltCallback; /* Legacy weak TxHalfCpltCallback */ + break; + + case HAL_SPI_RX_HALF_COMPLETE_CB_ID : + hspi->RxHalfCpltCallback = HAL_SPI_RxHalfCpltCallback; /* Legacy weak RxHalfCpltCallback */ + break; + + case HAL_SPI_TX_RX_HALF_COMPLETE_CB_ID : + hspi->TxRxHalfCpltCallback = HAL_SPI_TxRxHalfCpltCallback; /* Legacy weak TxRxHalfCpltCallback */ + break; + + case HAL_SPI_ERROR_CB_ID : + hspi->ErrorCallback = HAL_SPI_ErrorCallback; /* Legacy weak ErrorCallback */ + break; + + case HAL_SPI_ABORT_CB_ID : + hspi->AbortCpltCallback = HAL_SPI_AbortCpltCallback; /* Legacy weak AbortCpltCallback */ + break; + + case HAL_SPI_MSPINIT_CB_ID : + hspi->MspInitCallback = HAL_SPI_MspInit; /* Legacy weak MspInit */ + break; + + case HAL_SPI_MSPDEINIT_CB_ID : + hspi->MspDeInitCallback = HAL_SPI_MspDeInit; /* Legacy weak MspDeInit */ + break; + + default : + /* Update the error code */ + SET_BIT(hspi->ErrorCode, HAL_SPI_ERROR_INVALID_CALLBACK); + + /* Return error status */ + status = HAL_ERROR; + break; + } + } + else if (HAL_SPI_STATE_RESET == hspi->State) + { + switch (CallbackID) + { + case HAL_SPI_MSPINIT_CB_ID : + hspi->MspInitCallback = HAL_SPI_MspInit; /* Legacy weak MspInit */ + break; + + case HAL_SPI_MSPDEINIT_CB_ID : + hspi->MspDeInitCallback = HAL_SPI_MspDeInit; /* Legacy weak MspDeInit */ + break; + + default : + /* Update the error code */ + SET_BIT(hspi->ErrorCode, HAL_SPI_ERROR_INVALID_CALLBACK); + + /* Return error status */ + status = HAL_ERROR; + break; + } + } + else + { + /* Update the error code */ + SET_BIT(hspi->ErrorCode, HAL_SPI_ERROR_INVALID_CALLBACK); + + /* Return error status */ + status = HAL_ERROR; + } + + /* Release Lock */ + __HAL_UNLOCK(hspi); + return status; +} +#endif /* USE_HAL_SPI_REGISTER_CALLBACKS */ +/** + * @} + */ + +/** @defgroup SPI_Exported_Functions_Group2 IO operation functions + * @brief Data transfers functions + * +@verbatim + ============================================================================== + ##### IO operation functions ##### + =============================================================================== + [..] + This subsection provides a set of functions allowing to manage the SPI + data transfers. + + [..] The SPI supports master and slave mode : + + (#) There are two modes of transfer: + (##) Blocking mode: The communication is performed in polling mode. + The HAL status of all data processing is returned by the same function + after finishing transfer. + (##) No-Blocking mode: The communication is performed using Interrupts + or DMA, These APIs return the HAL status. + The end of the data processing will be indicated through the + dedicated SPI IRQ when using Interrupt mode or the DMA IRQ when + using DMA mode. + The HAL_SPI_TxCpltCallback(), HAL_SPI_RxCpltCallback() and HAL_SPI_TxRxCpltCallback() user callbacks + will be executed respectively at the end of the transmit or Receive process + The HAL_SPI_ErrorCallback()user callback will be executed when a communication error is detected + + (#) APIs provided for these 2 transfer modes (Blocking mode or Non blocking mode using either Interrupt or DMA) + exist for 1Line (simplex) and 2Lines (full duplex) modes. + +@endverbatim + * @{ + */ + +/** + * @brief Transmit an amount of data in blocking mode. + * @param hspi : pointer to a SPI_HandleTypeDef structure that contains + * the configuration information for SPI module. + * @param pData : pointer to data buffer + * @param Size : amount of data to be sent + * @param Timeout: Timeout duration + * @retval HAL status + */ +HAL_StatusTypeDef HAL_SPI_Transmit(SPI_HandleTypeDef *hspi, uint8_t *pData, uint16_t Size, uint32_t Timeout) +{ +#if defined (__GNUC__) + __IO uint16_t *ptxdr_16bits = (__IO uint16_t *)(&(hspi->Instance->TXDR)); +#endif /* __GNUC__ */ + + uint32_t tickstart; + HAL_StatusTypeDef errorcode = HAL_OK; + + /* Check Direction parameter */ + assert_param(IS_SPI_DIRECTION_2LINES_OR_1LINE_2LINES_TXONLY(hspi->Init.Direction)); + + /* Process Locked */ + __HAL_LOCK(hspi); + + /* Init tickstart for timeout management*/ + tickstart = HAL_GetTick(); + + if (hspi->State != HAL_SPI_STATE_READY) + { + errorcode = HAL_BUSY; + __HAL_UNLOCK(hspi); + return errorcode; + } + + if ((pData == NULL) || (Size == 0UL)) + { + errorcode = HAL_ERROR; + __HAL_UNLOCK(hspi); + return errorcode; + } + + /* Set the transaction information */ + hspi->State = HAL_SPI_STATE_BUSY_TX; + hspi->ErrorCode = HAL_SPI_ERROR_NONE; + hspi->pTxBuffPtr = (uint8_t *)pData; + hspi->TxXferSize = Size; + hspi->TxXferCount = Size; + + /*Init field not used in handle to zero */ + hspi->pRxBuffPtr = NULL; + hspi->RxXferSize = (uint16_t) 0UL; + hspi->RxXferCount = (uint16_t) 0UL; + hspi->TxISR = NULL; + hspi->RxISR = NULL; + + /* Configure communication direction : 1Line */ + if (hspi->Init.Direction == SPI_DIRECTION_1LINE) + { + SPI_1LINE_TX(hspi); + } + + /* Set the number of data at current transfer */ + MODIFY_REG(hspi->Instance->CR2, SPI_CR2_TSIZE, Size); + + /* Enable SPI peripheral */ + __HAL_SPI_ENABLE(hspi); + + if (hspi->Init.Mode == SPI_MODE_MASTER) + { + /* Master transfer start */ + SET_BIT(hspi->Instance->CR1, SPI_CR1_CSTART); + } + + /* Transmit data in 32 Bit mode */ + if (hspi->Init.DataSize > SPI_DATASIZE_16BIT) + { + /* Transmit data in 32 Bit mode */ + while (hspi->TxXferCount > 0UL) + { + /* Wait until TXP flag is set to send data */ + if (__HAL_SPI_GET_FLAG(hspi, SPI_FLAG_TXP)) + { + *((__IO uint32_t *)&hspi->Instance->TXDR) = *((uint32_t *)hspi->pTxBuffPtr); + hspi->pTxBuffPtr += sizeof(uint32_t); + hspi->TxXferCount--; + } + else + { + /* Timeout management */ + if ((((HAL_GetTick() - tickstart) >= Timeout) && (Timeout != HAL_MAX_DELAY)) || (Timeout == 0U)) + { + /* Call standard close procedure with error check */ + SPI_CloseTransfer(hspi); + + /* Process Unlocked */ + __HAL_UNLOCK(hspi); + + SET_BIT(hspi->ErrorCode, HAL_SPI_ERROR_TIMEOUT); + hspi->State = HAL_SPI_STATE_READY; + return HAL_ERROR; + } + } + } + } + /* Transmit data in 16 Bit mode */ + else if (hspi->Init.DataSize > SPI_DATASIZE_8BIT) + { + /* Transmit data in 16 Bit mode */ + while (hspi->TxXferCount > 0UL) + { + /* Wait until TXP flag is set to send data */ + if (__HAL_SPI_GET_FLAG(hspi, SPI_FLAG_TXP)) + { + if ((hspi->TxXferCount > 1UL) && (hspi->Init.FifoThreshold > SPI_FIFO_THRESHOLD_01DATA)) + { + *((__IO uint32_t *)&hspi->Instance->TXDR) = *((uint32_t *)hspi->pTxBuffPtr); + hspi->pTxBuffPtr += sizeof(uint32_t); + hspi->TxXferCount -= (uint16_t)2UL; + } + else + { +#if defined (__GNUC__) + *ptxdr_16bits = *((uint16_t *)hspi->pTxBuffPtr); +#else + *((__IO uint16_t *)&hspi->Instance->TXDR) = *((uint16_t *)hspi->pTxBuffPtr); +#endif /* __GNUC__ */ + hspi->pTxBuffPtr += sizeof(uint16_t); + hspi->TxXferCount--; + } + } + else + { + /* Timeout management */ + if ((((HAL_GetTick() - tickstart) >= Timeout) && (Timeout != HAL_MAX_DELAY)) || (Timeout == 0U)) + { + /* Call standard close procedure with error check */ + SPI_CloseTransfer(hspi); + + /* Process Unlocked */ + __HAL_UNLOCK(hspi); + + SET_BIT(hspi->ErrorCode, HAL_SPI_ERROR_TIMEOUT); + hspi->State = HAL_SPI_STATE_READY; + return HAL_ERROR; + } + } + } + } + /* Transmit data in 8 Bit mode */ + else + { + while (hspi->TxXferCount > 0UL) + { + /* Wait until TXP flag is set to send data */ + if (__HAL_SPI_GET_FLAG(hspi, SPI_FLAG_TXP)) + { + if ((hspi->TxXferCount > 3UL) && (hspi->Init.FifoThreshold > SPI_FIFO_THRESHOLD_03DATA)) + { + *((__IO uint32_t *)&hspi->Instance->TXDR) = *((uint32_t *)hspi->pTxBuffPtr); + hspi->pTxBuffPtr += sizeof(uint32_t); + hspi->TxXferCount -= (uint16_t)4UL; + } + else if ((hspi->TxXferCount > 1UL) && (hspi->Init.FifoThreshold > SPI_FIFO_THRESHOLD_01DATA)) + { +#if defined (__GNUC__) + *ptxdr_16bits = *((uint16_t *)hspi->pTxBuffPtr); +#else + *((__IO uint16_t *)&hspi->Instance->TXDR) = *((uint16_t *)hspi->pTxBuffPtr); +#endif /* __GNUC__ */ + hspi->pTxBuffPtr += sizeof(uint16_t); + hspi->TxXferCount -= (uint16_t)2UL; + } + else + { + *((__IO uint8_t *)&hspi->Instance->TXDR) = *((uint8_t *)hspi->pTxBuffPtr); + hspi->pTxBuffPtr += sizeof(uint8_t); + hspi->TxXferCount--; + } + } + else + { + /* Timeout management */ + if ((((HAL_GetTick() - tickstart) >= Timeout) && (Timeout != HAL_MAX_DELAY)) || (Timeout == 0U)) + { + /* Call standard close procedure with error check */ + SPI_CloseTransfer(hspi); + + /* Process Unlocked */ + __HAL_UNLOCK(hspi); + + SET_BIT(hspi->ErrorCode, HAL_SPI_ERROR_TIMEOUT); + hspi->State = HAL_SPI_STATE_READY; + return HAL_ERROR; + } + } + } + } + + /* Wait for Tx (and CRC) data to be sent */ + if (SPI_WaitOnFlagUntilTimeout(hspi, SPI_FLAG_EOT, RESET, tickstart, Timeout) != HAL_OK) + { + SET_BIT(hspi->ErrorCode, HAL_SPI_ERROR_FLAG); + } + + /* Call standard close procedure with error check */ + SPI_CloseTransfer(hspi); + + /* Process Unlocked */ + __HAL_UNLOCK(hspi); + + hspi->State = HAL_SPI_STATE_READY; + + if (hspi->ErrorCode != HAL_SPI_ERROR_NONE) + { + return HAL_ERROR; + } + return errorcode; +} + +/** + * @brief Receive an amount of data in blocking mode. + * @param hspi : pointer to a SPI_HandleTypeDef structure that contains + * the configuration information for SPI module. + * @param pData : pointer to data buffer + * @param Size : amount of data to be received + * @param Timeout: Timeout duration + * @retval HAL status + */ +HAL_StatusTypeDef HAL_SPI_Receive(SPI_HandleTypeDef *hspi, uint8_t *pData, uint16_t Size, uint32_t Timeout) +{ + uint32_t tickstart; + HAL_StatusTypeDef errorcode = HAL_OK; +#if defined (__GNUC__) + __IO uint16_t *prxdr_16bits = (__IO uint16_t *)(&(hspi->Instance->RXDR)); +#endif /* __GNUC__ */ + + /* Check Direction parameter */ + assert_param(IS_SPI_DIRECTION_2LINES_OR_1LINE_2LINES_RXONLY(hspi->Init.Direction)); + + if ((hspi->Init.Mode == SPI_MODE_MASTER) && (hspi->Init.Direction == SPI_DIRECTION_2LINES)) + { + hspi->State = HAL_SPI_STATE_BUSY_RX; + /* Call transmit-receive function to send Dummy data on Tx line and generate clock on CLK line */ + return HAL_SPI_TransmitReceive(hspi, pData, pData, Size, Timeout); + } + + /* Process Locked */ + __HAL_LOCK(hspi); + + /* Init tickstart for timeout management*/ + tickstart = HAL_GetTick(); + + if (hspi->State != HAL_SPI_STATE_READY) + { + errorcode = HAL_BUSY; + __HAL_UNLOCK(hspi); + return errorcode; + } + + if ((pData == NULL) || (Size == 0UL)) + { + errorcode = HAL_ERROR; + __HAL_UNLOCK(hspi); + return errorcode; + } + + /* Set the transaction information */ + hspi->State = HAL_SPI_STATE_BUSY_RX; + hspi->ErrorCode = HAL_SPI_ERROR_NONE; + hspi->pRxBuffPtr = (uint8_t *)pData; + hspi->RxXferSize = Size; + hspi->RxXferCount = Size; + + /*Init field not used in handle to zero */ + hspi->pTxBuffPtr = NULL; + hspi->TxXferSize = (uint16_t) 0UL; + hspi->TxXferCount = (uint16_t) 0UL; + hspi->RxISR = NULL; + hspi->TxISR = NULL; + + /* Configure communication direction: 1Line */ + if (hspi->Init.Direction == SPI_DIRECTION_1LINE) + { + SPI_1LINE_RX(hspi); + } + + /* Set the number of data at current transfer */ + MODIFY_REG(hspi->Instance->CR2, SPI_CR2_TSIZE, Size); + + /* Enable SPI peripheral */ + __HAL_SPI_ENABLE(hspi); + + if (hspi->Init.Mode == SPI_MODE_MASTER) + { + /* Master transfer start */ + SET_BIT(hspi->Instance->CR1, SPI_CR1_CSTART); + } + + /* Receive data in 32 Bit mode */ + if (hspi->Init.DataSize > SPI_DATASIZE_16BIT) + { + /* Transfer loop */ + while (hspi->RxXferCount > 0UL) + { + /* Check the RXWNE/EOT flag */ + if ((hspi->Instance->SR & (SPI_FLAG_RXWNE | SPI_FLAG_EOT)) != 0UL) + { + *((uint32_t *)hspi->pRxBuffPtr) = *((__IO uint32_t *)&hspi->Instance->RXDR); + hspi->pRxBuffPtr += sizeof(uint32_t); + hspi->RxXferCount--; + } + else + { + /* Timeout management */ + if ((((HAL_GetTick() - tickstart) >= Timeout) && (Timeout != HAL_MAX_DELAY)) || (Timeout == 0U)) + { + /* Call standard close procedure with error check */ + SPI_CloseTransfer(hspi); + + /* Process Unlocked */ + __HAL_UNLOCK(hspi); + + SET_BIT(hspi->ErrorCode, HAL_SPI_ERROR_TIMEOUT); + hspi->State = HAL_SPI_STATE_READY; + return HAL_ERROR; + } + } + } + } + /* Receive data in 16 Bit mode */ + else if (hspi->Init.DataSize > SPI_DATASIZE_8BIT) + { + /* Transfer loop */ + while (hspi->RxXferCount > 0UL) + { + /* Check the RXWNE/FRLVL flag */ + if ((hspi->Instance->SR & (SPI_FLAG_RXWNE | SPI_FLAG_FRLVL)) != 0UL) + { + if ((hspi->Instance->SR & SPI_FLAG_RXWNE) != 0UL) + { + *((uint32_t *)hspi->pRxBuffPtr) = *((__IO uint32_t *)&hspi->Instance->RXDR); + hspi->pRxBuffPtr += sizeof(uint32_t); + hspi->RxXferCount -= (uint16_t)2UL; + } + else + { +#if defined (__GNUC__) + *((uint16_t *)hspi->pRxBuffPtr) = *prxdr_16bits; +#else + *((uint16_t *)hspi->pRxBuffPtr) = *((__IO uint16_t *)&hspi->Instance->RXDR); +#endif /* __GNUC__ */ + hspi->pRxBuffPtr += sizeof(uint16_t); + hspi->RxXferCount--; + } + } + else + { + /* Timeout management */ + if ((((HAL_GetTick() - tickstart) >= Timeout) && (Timeout != HAL_MAX_DELAY)) || (Timeout == 0U)) + { + /* Call standard close procedure with error check */ + SPI_CloseTransfer(hspi); + + /* Process Unlocked */ + __HAL_UNLOCK(hspi); + + SET_BIT(hspi->ErrorCode, HAL_SPI_ERROR_TIMEOUT); + hspi->State = HAL_SPI_STATE_READY; + return HAL_ERROR; + } + } + } + } + /* Receive data in 8 Bit mode */ + else + { + /* Transfer loop */ + while (hspi->RxXferCount > 0UL) + { + /* Check the RXWNE/FRLVL flag */ + if ((hspi->Instance->SR & (SPI_FLAG_RXWNE | SPI_FLAG_FRLVL)) != 0UL) + { + if ((hspi->Instance->SR & SPI_FLAG_RXWNE) != 0UL) + { + *((uint32_t *)hspi->pRxBuffPtr) = *((__IO uint32_t *)&hspi->Instance->RXDR); + hspi->pRxBuffPtr += sizeof(uint32_t); + hspi->RxXferCount -= (uint16_t)4UL; + } + else if ((hspi->Instance->SR & SPI_FLAG_FRLVL) > SPI_RX_FIFO_1PACKET) + { +#if defined (__GNUC__) + *((uint16_t *)hspi->pRxBuffPtr) = *prxdr_16bits; +#else + *((uint16_t *)hspi->pRxBuffPtr) = *((__IO uint16_t *)&hspi->Instance->RXDR); +#endif /* __GNUC__ */ + hspi->pRxBuffPtr += sizeof(uint16_t); + hspi->RxXferCount -= (uint16_t)2UL; + } + else + { + *((uint8_t *)hspi->pRxBuffPtr) = *((__IO uint8_t *)&hspi->Instance->RXDR); + hspi->pRxBuffPtr += sizeof(uint8_t); + hspi->RxXferCount--; + } + } + else + { + /* Timeout management */ + if ((((HAL_GetTick() - tickstart) >= Timeout) && (Timeout != HAL_MAX_DELAY)) || (Timeout == 0U)) + { + /* Call standard close procedure with error check */ + SPI_CloseTransfer(hspi); + + /* Process Unlocked */ + __HAL_UNLOCK(hspi); + + SET_BIT(hspi->ErrorCode, HAL_SPI_ERROR_TIMEOUT); + hspi->State = HAL_SPI_STATE_READY; + return HAL_ERROR; + } + } + } + } + +#if (USE_SPI_CRC != 0UL) + if (hspi->Init.CRCCalculation == SPI_CRCCALCULATION_ENABLE) + { + /* Wait for crc data to be received */ + if (SPI_WaitOnFlagUntilTimeout(hspi, SPI_FLAG_EOT, RESET, tickstart, Timeout) != HAL_OK) + { + SET_BIT(hspi->ErrorCode, HAL_SPI_ERROR_FLAG); + } + } +#endif /* USE_SPI_CRC */ + + /* Call standard close procedure with error check */ + SPI_CloseTransfer(hspi); + + /* Process Unlocked */ + __HAL_UNLOCK(hspi); + + hspi->State = HAL_SPI_STATE_READY; + + if (hspi->ErrorCode != HAL_SPI_ERROR_NONE) + { + return HAL_ERROR; + } + return errorcode; +} + +/** + * @brief Transmit and Receive an amount of data in blocking mode. + * @param hspi : pointer to a SPI_HandleTypeDef structure that contains + * the configuration information for SPI module. + * @param pTxData: pointer to transmission data buffer + * @param pRxData: pointer to reception data buffer + * @param Size : amount of data to be sent and received + * @param Timeout: Timeout duration + * @retval HAL status + */ +HAL_StatusTypeDef HAL_SPI_TransmitReceive(SPI_HandleTypeDef *hspi, uint8_t *pTxData, uint8_t *pRxData, uint16_t Size, + uint32_t Timeout) +{ + HAL_SPI_StateTypeDef tmp_state; + HAL_StatusTypeDef errorcode = HAL_OK; +#if defined (__GNUC__) + __IO uint16_t *ptxdr_16bits = (__IO uint16_t *)(&(hspi->Instance->TXDR)); + __IO uint16_t *prxdr_16bits = (__IO uint16_t *)(&(hspi->Instance->RXDR)); +#endif /* __GNUC__ */ + + uint32_t tickstart; + uint32_t tmp_mode; + uint16_t initial_TxXferCount; + uint16_t initial_RxXferCount; + + /* Check Direction parameter */ + assert_param(IS_SPI_DIRECTION_2LINES(hspi->Init.Direction)); + + /* Process Locked */ + __HAL_LOCK(hspi); + + /* Init tickstart for timeout management*/ + tickstart = HAL_GetTick(); + + initial_TxXferCount = Size; + initial_RxXferCount = Size; + tmp_state = hspi->State; + tmp_mode = hspi->Init.Mode; + + if (!((tmp_state == HAL_SPI_STATE_READY) || \ + ((tmp_mode == SPI_MODE_MASTER) && (hspi->Init.Direction == SPI_DIRECTION_2LINES) && (tmp_state == HAL_SPI_STATE_BUSY_RX)))) + { + errorcode = HAL_BUSY; + __HAL_UNLOCK(hspi); + return errorcode; + } + + if ((pTxData == NULL) || (pRxData == NULL) || (Size == 0UL)) + { + errorcode = HAL_ERROR; + __HAL_UNLOCK(hspi); + return errorcode; + } + + /* Don't overwrite in case of HAL_SPI_STATE_BUSY_RX */ + if (hspi->State != HAL_SPI_STATE_BUSY_RX) + { + hspi->State = HAL_SPI_STATE_BUSY_TX_RX; + } + + /* Set the transaction information */ + hspi->ErrorCode = HAL_SPI_ERROR_NONE; + hspi->pRxBuffPtr = (uint8_t *)pRxData; + hspi->RxXferCount = Size; + hspi->RxXferSize = Size; + hspi->pTxBuffPtr = (uint8_t *)pTxData; + hspi->TxXferCount = Size; + hspi->TxXferSize = Size; + + /*Init field not used in handle to zero */ + hspi->RxISR = NULL; + hspi->TxISR = NULL; + + /* Set the number of data at current transfer */ + MODIFY_REG(hspi->Instance->CR2, SPI_CR2_TSIZE, Size); + + __HAL_SPI_ENABLE(hspi); + + if (hspi->Init.Mode == SPI_MODE_MASTER) + { + /* Master transfer start */ + SET_BIT(hspi->Instance->CR1, SPI_CR1_CSTART); + } + + /* Transmit and Receive data in 32 Bit mode */ + if (hspi->Init.DataSize > SPI_DATASIZE_16BIT) + { + while ((initial_TxXferCount > 0UL) || (initial_RxXferCount > 0UL)) + { + /* Check TXP flag */ + if ((__HAL_SPI_GET_FLAG(hspi, SPI_FLAG_TXP)) && (initial_TxXferCount > 0UL)) + { + *((__IO uint32_t *)&hspi->Instance->TXDR) = *((uint32_t *)hspi->pTxBuffPtr); + hspi->pTxBuffPtr += sizeof(uint32_t); + hspi->TxXferCount --; + initial_TxXferCount = hspi->TxXferCount; + } + + /* Check RXWNE/EOT flag */ + if (((hspi->Instance->SR & (SPI_FLAG_RXWNE | SPI_FLAG_EOT)) != 0UL) && (initial_RxXferCount > 0UL)) + { + *((uint32_t *)hspi->pRxBuffPtr) = *((__IO uint32_t *)&hspi->Instance->RXDR); + hspi->pRxBuffPtr += sizeof(uint32_t); + hspi->RxXferCount --; + initial_RxXferCount = hspi->RxXferCount; + } + } + + /* Timeout management */ + if ((((HAL_GetTick() - tickstart) >= Timeout) && (Timeout != HAL_MAX_DELAY)) || (Timeout == 0U)) + { + /* Call standard close procedure with error check */ + SPI_CloseTransfer(hspi); + + /* Process Unlocked */ + __HAL_UNLOCK(hspi); + + SET_BIT(hspi->ErrorCode, HAL_SPI_ERROR_TIMEOUT); + hspi->State = HAL_SPI_STATE_READY; + return HAL_ERROR; + } + } + /* Transmit and Receive data in 16 Bit mode */ + else if (hspi->Init.DataSize > SPI_DATASIZE_8BIT) + { + while ((initial_TxXferCount > 0UL) || (initial_RxXferCount > 0UL)) + { + /* Check TXP flag */ + if (__HAL_SPI_GET_FLAG(hspi, SPI_FLAG_TXP) && (initial_TxXferCount > 0UL)) + { + if ((initial_TxXferCount > 1UL) && (hspi->Init.FifoThreshold > SPI_FIFO_THRESHOLD_01DATA)) + { + *((__IO uint32_t *)&hspi->Instance->TXDR) = *((uint32_t *)hspi->pTxBuffPtr); + hspi->pTxBuffPtr += sizeof(uint32_t); + hspi->TxXferCount -= (uint16_t)2UL; + initial_TxXferCount = hspi->TxXferCount; + } + else + { +#if defined (__GNUC__) + *ptxdr_16bits = *((uint16_t *)hspi->pTxBuffPtr); +#else + *((__IO uint16_t *)&hspi->Instance->TXDR) = *((uint16_t *)hspi->pTxBuffPtr); +#endif /* __GNUC__ */ + hspi->pTxBuffPtr += sizeof(uint16_t); + hspi->TxXferCount--; + initial_TxXferCount = hspi->TxXferCount; + } + } + + /* Check RXWNE/FRLVL flag */ + if (((hspi->Instance->SR & (SPI_FLAG_RXWNE | SPI_FLAG_FRLVL)) != 0UL) && (initial_RxXferCount > 0UL)) + { + if ((hspi->Instance->SR & SPI_FLAG_RXWNE) != 0UL) + { + *((uint32_t *)hspi->pRxBuffPtr) = *((__IO uint32_t *)&hspi->Instance->RXDR); + hspi->pRxBuffPtr += sizeof(uint32_t); + hspi->RxXferCount -= (uint16_t)2UL; + initial_RxXferCount = hspi->RxXferCount; + } + else + { +#if defined (__GNUC__) + *((uint16_t *)hspi->pRxBuffPtr) = *prxdr_16bits; +#else + *((uint16_t *)hspi->pRxBuffPtr) = *((__IO uint16_t *)&hspi->Instance->RXDR); +#endif /* __GNUC__ */ + hspi->pRxBuffPtr += sizeof(uint16_t); + hspi->RxXferCount--; + initial_RxXferCount = hspi->RxXferCount; + } + } + + /* Timeout management */ + if ((((HAL_GetTick() - tickstart) >= Timeout) && (Timeout != HAL_MAX_DELAY)) || (Timeout == 0U)) + { + /* Call standard close procedure with error check */ + SPI_CloseTransfer(hspi); + + /* Process Unlocked */ + __HAL_UNLOCK(hspi); + + SET_BIT(hspi->ErrorCode, HAL_SPI_ERROR_TIMEOUT); + hspi->State = HAL_SPI_STATE_READY; + return HAL_ERROR; + } + } + } + /* Transmit and Receive data in 8 Bit mode */ + else + { + while ((initial_TxXferCount > 0UL) || (initial_RxXferCount > 0UL)) + { + /* check TXP flag */ + if ((__HAL_SPI_GET_FLAG(hspi, SPI_FLAG_TXP)) && (initial_TxXferCount > 0UL)) + { + if ((initial_TxXferCount > 3UL) && (hspi->Init.FifoThreshold > SPI_FIFO_THRESHOLD_03DATA)) + { + *((__IO uint32_t *)&hspi->Instance->TXDR) = *((uint32_t *)hspi->pTxBuffPtr); + hspi->pTxBuffPtr += sizeof(uint32_t); + hspi->TxXferCount -= (uint16_t)4UL; + initial_TxXferCount = hspi->TxXferCount; + } + else if ((initial_TxXferCount > 1UL) && (hspi->Init.FifoThreshold > SPI_FIFO_THRESHOLD_01DATA)) + { +#if defined (__GNUC__) + *ptxdr_16bits = *((uint16_t *)hspi->pTxBuffPtr); +#else + *((__IO uint16_t *)&hspi->Instance->TXDR) = *((uint16_t *)hspi->pTxBuffPtr); +#endif /* __GNUC__ */ + hspi->pTxBuffPtr += sizeof(uint16_t); + hspi->TxXferCount -= (uint16_t)2UL; + initial_TxXferCount = hspi->TxXferCount; + } + else + { + *((__IO uint8_t *)&hspi->Instance->TXDR) = *((uint8_t *)hspi->pTxBuffPtr); + hspi->pTxBuffPtr += sizeof(uint8_t); + hspi->TxXferCount--; + initial_TxXferCount = hspi->TxXferCount; + } + } + + /* Wait until RXWNE/FRLVL flag is reset */ + if (((hspi->Instance->SR & (SPI_FLAG_RXWNE | SPI_FLAG_FRLVL)) != 0UL) && (initial_RxXferCount > 0UL)) + { + if ((hspi->Instance->SR & SPI_FLAG_RXWNE) != 0UL) + { + *((uint32_t *)hspi->pRxBuffPtr) = *((__IO uint32_t *)&hspi->Instance->RXDR); + hspi->pRxBuffPtr += sizeof(uint32_t); + hspi->RxXferCount -= (uint16_t)4UL; + initial_RxXferCount = hspi->RxXferCount; + } + else if ((hspi->Instance->SR & SPI_FLAG_FRLVL) > SPI_RX_FIFO_1PACKET) + { +#if defined (__GNUC__) + *((uint16_t *)hspi->pRxBuffPtr) = *prxdr_16bits; +#else + *((uint16_t *)hspi->pRxBuffPtr) = *((__IO uint16_t *)&hspi->Instance->RXDR); +#endif /* __GNUC__ */ + hspi->pRxBuffPtr += sizeof(uint16_t); + hspi->RxXferCount -= (uint16_t)2UL; + initial_RxXferCount = hspi->RxXferCount; + } + else + { + *((uint8_t *)hspi->pRxBuffPtr) = *((__IO uint8_t *)&hspi->Instance->RXDR); + hspi->pRxBuffPtr += sizeof(uint8_t); + hspi->RxXferCount--; + initial_RxXferCount = hspi->RxXferCount; + } + } + + /* Timeout management */ + if ((((HAL_GetTick() - tickstart) >= Timeout) && (Timeout != HAL_MAX_DELAY)) || (Timeout == 0U)) + { + /* Call standard close procedure with error check */ + SPI_CloseTransfer(hspi); + + /* Process Unlocked */ + __HAL_UNLOCK(hspi); + + SET_BIT(hspi->ErrorCode, HAL_SPI_ERROR_TIMEOUT); + hspi->State = HAL_SPI_STATE_READY; + return HAL_ERROR; + } + } + } + + /* Wait for Tx/Rx (and CRC) data to be sent/received */ + if (SPI_WaitOnFlagUntilTimeout(hspi, SPI_FLAG_EOT, RESET, tickstart, Timeout) != HAL_OK) + { + SET_BIT(hspi->ErrorCode, HAL_SPI_ERROR_FLAG); + } + + /* Call standard close procedure with error check */ + SPI_CloseTransfer(hspi); + + /* Process Unlocked */ + __HAL_UNLOCK(hspi); + + hspi->State = HAL_SPI_STATE_READY; + + if (hspi->ErrorCode != HAL_SPI_ERROR_NONE) + { + return HAL_ERROR; + } + return errorcode; +} + +/** + * @brief Transmit an amount of data in non-blocking mode with Interrupt. + * @param hspi : pointer to a SPI_HandleTypeDef structure that contains + * the configuration information for SPI module. + * @param pData: pointer to data buffer + * @param Size : amount of data to be sent + * @retval HAL status + */ +HAL_StatusTypeDef HAL_SPI_Transmit_IT(SPI_HandleTypeDef *hspi, uint8_t *pData, uint16_t Size) +{ + HAL_StatusTypeDef errorcode = HAL_OK; + + /* Check Direction parameter */ + assert_param(IS_SPI_DIRECTION_2LINES_OR_1LINE_2LINES_TXONLY(hspi->Init.Direction)); + + /* Process Locked */ + __HAL_LOCK(hspi); + + if ((pData == NULL) || (Size == 0UL)) + { + errorcode = HAL_ERROR; + __HAL_UNLOCK(hspi); + return errorcode; + } + + if (hspi->State != HAL_SPI_STATE_READY) + { + errorcode = HAL_BUSY; + __HAL_UNLOCK(hspi); + return errorcode; + } + + /* Set the transaction information */ + hspi->State = HAL_SPI_STATE_BUSY_TX; + hspi->ErrorCode = HAL_SPI_ERROR_NONE; + hspi->pTxBuffPtr = (uint8_t *)pData; + hspi->TxXferSize = Size; + hspi->TxXferCount = Size; + + /* Init field not used in handle to zero */ + hspi->pRxBuffPtr = NULL; + hspi->RxXferSize = (uint16_t) 0UL; + hspi->RxXferCount = (uint16_t) 0UL; + hspi->RxISR = NULL; + + /* Set the function for IT treatment */ + if (hspi->Init.DataSize > SPI_DATASIZE_16BIT) + { + hspi->TxISR = SPI_TxISR_32BIT; + } + else if (hspi->Init.DataSize > SPI_DATASIZE_8BIT) + { + hspi->TxISR = SPI_TxISR_16BIT; + } + else + { + hspi->TxISR = SPI_TxISR_8BIT; + } + + /* Configure communication direction : 1Line */ + if (hspi->Init.Direction == SPI_DIRECTION_1LINE) + { + SPI_1LINE_TX(hspi); + } + + /* Set the number of data at current transfer */ + MODIFY_REG(hspi->Instance->CR2, SPI_CR2_TSIZE, Size); + + /* Enable SPI peripheral */ + __HAL_SPI_ENABLE(hspi); + + /* Enable EOT, TXP, FRE, MODF, UDR and TSERF interrupts */ + __HAL_SPI_ENABLE_IT(hspi, (SPI_IT_EOT | SPI_IT_TXP | SPI_IT_UDR | SPI_IT_FRE | SPI_IT_MODF | SPI_IT_TSERF)); + + if (hspi->Init.Mode == SPI_MODE_MASTER) + { + /* Master transfer start */ + SET_BIT(hspi->Instance->CR1, SPI_CR1_CSTART); + } + + __HAL_UNLOCK(hspi); + return errorcode; +} + +/** + * @brief Receive an amount of data in non-blocking mode with Interrupt. + * @param hspi : pointer to a SPI_HandleTypeDef structure that contains + * the configuration information for SPI module. + * @param pData: pointer to data buffer + * @param Size : amount of data to be sent + * @retval HAL status + */ +HAL_StatusTypeDef HAL_SPI_Receive_IT(SPI_HandleTypeDef *hspi, uint8_t *pData, uint16_t Size) +{ + HAL_StatusTypeDef errorcode = HAL_OK; + + /* Check Direction parameter */ + assert_param(IS_SPI_DIRECTION_2LINES_OR_1LINE_2LINES_RXONLY(hspi->Init.Direction)); + + if ((hspi->Init.Direction == SPI_DIRECTION_2LINES) && (hspi->Init.Mode == SPI_MODE_MASTER)) + { + hspi->State = HAL_SPI_STATE_BUSY_RX; + /* Call transmit-receive function to send Dummy data on Tx line and generate clock on CLK line */ + return HAL_SPI_TransmitReceive_IT(hspi, pData, pData, Size); + } + + /* Process Locked */ + __HAL_LOCK(hspi); + + if (hspi->State != HAL_SPI_STATE_READY) + { + errorcode = HAL_BUSY; + __HAL_UNLOCK(hspi); + return errorcode; + } + + if ((pData == NULL) || (Size == 0UL)) + { + errorcode = HAL_ERROR; + __HAL_UNLOCK(hspi); + return errorcode; + } + + /* Set the transaction information */ + hspi->State = HAL_SPI_STATE_BUSY_RX; + hspi->ErrorCode = HAL_SPI_ERROR_NONE; + hspi->pRxBuffPtr = (uint8_t *)pData; + hspi->RxXferSize = Size; + hspi->RxXferCount = Size; + + /* Init field not used in handle to zero */ + hspi->pTxBuffPtr = NULL; + hspi->TxXferSize = (uint16_t) 0UL; + hspi->TxXferCount = (uint16_t) 0UL; + hspi->TxISR = NULL; + + /* Set the function for IT treatment */ + if (hspi->Init.DataSize > SPI_DATASIZE_16BIT) + { + hspi->RxISR = SPI_RxISR_32BIT; + } + else if (hspi->Init.DataSize > SPI_DATASIZE_8BIT) + { + hspi->RxISR = SPI_RxISR_16BIT; + } + else + { + hspi->RxISR = SPI_RxISR_8BIT; + } + + /* Configure communication direction : 1Line */ + if (hspi->Init.Direction == SPI_DIRECTION_1LINE) + { + SPI_1LINE_RX(hspi); + } + + /* Note : The SPI must be enabled after unlocking current process + to avoid the risk of SPI interrupt handle execution before current + process unlock */ + + /* Set the number of data at current transfer */ + MODIFY_REG(hspi->Instance->CR2, SPI_CR2_TSIZE, Size); + + /* Enable SPI peripheral */ + __HAL_SPI_ENABLE(hspi); + + /* Enable EOT, RXP, OVR, FRE, MODF and TSERF interrupts */ + __HAL_SPI_ENABLE_IT(hspi, (SPI_IT_EOT | SPI_IT_RXP | SPI_IT_OVR | SPI_IT_FRE | SPI_IT_MODF | SPI_IT_TSERF)); + + if (hspi->Init.Mode == SPI_MODE_MASTER) + { + /* Master transfer start */ + SET_BIT(hspi->Instance->CR1, SPI_CR1_CSTART); + } + + /* Process Unlocked */ + __HAL_UNLOCK(hspi); + return errorcode; +} + +/** + * @brief Transmit and Receive an amount of data in non-blocking mode with Interrupt. + * @param hspi : pointer to a SPI_HandleTypeDef structure that contains + * the configuration information for SPI module. + * @param pTxData: pointer to transmission data buffer + * @param pRxData: pointer to reception data buffer + * @param Size : amount of data to be sent and received + * @retval HAL status + */ +HAL_StatusTypeDef HAL_SPI_TransmitReceive_IT(SPI_HandleTypeDef *hspi, uint8_t *pTxData, uint8_t *pRxData, uint16_t Size) +{ + HAL_SPI_StateTypeDef tmp_state; + HAL_StatusTypeDef errorcode = HAL_OK; + + uint32_t tmp_mode; + + /* Check Direction parameter */ + assert_param(IS_SPI_DIRECTION_2LINES(hspi->Init.Direction)); + + /* Process locked */ + __HAL_LOCK(hspi); + + /* Init temporary variables */ + tmp_state = hspi->State; + tmp_mode = hspi->Init.Mode; + + if (!((tmp_state == HAL_SPI_STATE_READY) || \ + ((tmp_mode == SPI_MODE_MASTER) && (hspi->Init.Direction == SPI_DIRECTION_2LINES) && (tmp_state == HAL_SPI_STATE_BUSY_RX)))) + { + errorcode = HAL_BUSY; + __HAL_UNLOCK(hspi); + return errorcode; + } + + if ((pTxData == NULL) || (pRxData == NULL) || (Size == 0UL)) + { + errorcode = HAL_ERROR; + __HAL_UNLOCK(hspi); + return errorcode; + } + + /* Don't overwrite in case of HAL_SPI_STATE_BUSY_RX */ + if (hspi->State != HAL_SPI_STATE_BUSY_RX) + { + hspi->State = HAL_SPI_STATE_BUSY_TX_RX; + } + + /* Set the transaction information */ + hspi->ErrorCode = HAL_SPI_ERROR_NONE; + hspi->pTxBuffPtr = (uint8_t *)pTxData; + hspi->TxXferSize = Size; + hspi->TxXferCount = Size; + hspi->pRxBuffPtr = (uint8_t *)pRxData; + hspi->RxXferSize = Size; + hspi->RxXferCount = Size; + + /* Set the function for IT treatment */ + if (hspi->Init.DataSize > SPI_DATASIZE_16BIT) + { + hspi->TxISR = SPI_TxISR_32BIT; + hspi->RxISR = SPI_RxISR_32BIT; + } + else if (hspi->Init.DataSize > SPI_DATASIZE_8BIT) + { + hspi->RxISR = SPI_RxISR_16BIT; + hspi->TxISR = SPI_TxISR_16BIT; + } + else + { + hspi->RxISR = SPI_RxISR_8BIT; + hspi->TxISR = SPI_TxISR_8BIT; + } + + /* Set the number of data at current transfer */ + MODIFY_REG(hspi->Instance->CR2, SPI_CR2_TSIZE, Size); + + /* Enable SPI peripheral */ + __HAL_SPI_ENABLE(hspi); + + /* Enable EOT, RXP, TXP, DXP, UDR, OVR, FRE, MODF and TSERF interrupts */ + __HAL_SPI_ENABLE_IT(hspi, (SPI_IT_EOT | SPI_IT_RXP | SPI_IT_TXP | SPI_IT_DXP | SPI_IT_UDR | SPI_IT_OVR | SPI_IT_FRE | SPI_IT_MODF | SPI_IT_TSERF)); + + if (hspi->Init.Mode == SPI_MODE_MASTER) + { + /* Master transfer start */ + SET_BIT(hspi->Instance->CR1, SPI_CR1_CSTART); + } + + /* Process Unlocked */ + __HAL_UNLOCK(hspi); + return errorcode; +} + +#if defined(USE_SPI_RELOAD_TRANSFER) +/** + * @brief Transmit an additional amount of data in blocking mode. + * @param hspi : pointer to a SPI_HandleTypeDef structure that contains + * the configuration information for SPI module. + * @param pData: pointer to data buffer + * @param Size : amount of data to be sent + * @retval HAL status + */ +HAL_StatusTypeDef HAL_SPI_Reload_Transmit_IT(SPI_HandleTypeDef *hspi, uint8_t *pData, uint16_t Size) +{ + HAL_StatusTypeDef errorcode = HAL_OK; + HAL_SPI_StateTypeDef tmp_state; + + /* Lock the process */ + __HAL_LOCK(hspi); + + if ((pData == NULL) || (Size == 0UL)) + { + errorcode = HAL_ERROR; + __HAL_UNLOCK(hspi); + return errorcode; + } + + if (hspi->State == HAL_SPI_STATE_BUSY_TX) + { + /* check if there is already a request to reload */ + if (hspi->Reload.Requested == 1UL) + { + errorcode = HAL_ERROR; + __HAL_UNLOCK(hspi); + return errorcode; + } + + /* Insert the new number of data to be sent just after the current one */ + MODIFY_REG(hspi->Instance->CR2, SPI_CR2_TSER, (Size & 0xFFFFFFFFUL) << 16UL); + + /* Set the transaction information */ + hspi->Reload.Requested = 1UL; + hspi->Reload.pTxBuffPtr = (uint8_t *)pData; + hspi->Reload.TxXferSize = Size; + + tmp_state = hspi->State; + + /* Check if the current transmit is already completed */ + if (((hspi->Instance->CR2 & SPI_CR2_TSER) != 0UL) && (tmp_state == HAL_SPI_STATE_READY)) + { + __HAL_SPI_DISABLE_IT(hspi, SPI_IT_TSERF); + MODIFY_REG(hspi->Instance->CR2, SPI_CR2_TSER, 0UL); + hspi->Reload.Requested = 0UL; + errorcode = HAL_ERROR; + __HAL_UNLOCK(hspi); + return errorcode; + } + } + else + { + errorcode = HAL_ERROR; + return errorcode; + } + + __HAL_UNLOCK(hspi); + return errorcode; +} +#endif /* USE_HSPI_RELOAD_TRANSFER */ + +#if defined(USE_SPI_RELOAD_TRANSFER) +/** + * @brief Receive an additional amount of data in blocking mode. + * @param hspi : pointer to a SPI_HandleTypeDef structure that contains + * the configuration information for SPI module. + * @param pData: pointer to data buffer + * @param Size : amount of data to be sent + * @retval HAL status + */ +HAL_StatusTypeDef HAL_SPI_Reload_Receive_IT(SPI_HandleTypeDef *hspi, uint8_t *pData, uint16_t Size) +{ + HAL_StatusTypeDef errorcode = HAL_OK; + HAL_SPI_StateTypeDef tmp_state; + + /* Lock the process */ + __HAL_LOCK(hspi); + + if ((pData == NULL) || (Size == 0UL)) + { + errorcode = HAL_ERROR; + __HAL_UNLOCK(hspi); + return errorcode; + } + + if (hspi->State == HAL_SPI_STATE_BUSY_RX) + { + /* check if there is already a request to reload */ + if (hspi->Reload.Requested == 1UL) + { + errorcode = HAL_ERROR; + __HAL_UNLOCK(hspi); + return errorcode; + } + + /* Insert the new number of data that will be received just after the current one */ + MODIFY_REG(hspi->Instance->CR2, SPI_CR2_TSER, (Size & 0xFFFFFFFFUL) << 16UL); + + /* Set the transaction information */ + hspi->Reload.Requested = 1UL; + hspi->Reload.pRxBuffPtr = (uint8_t *)pData; + hspi->Reload.RxXferSize = Size; + + tmp_state = hspi->State; + + /* Check if the current reception is already completed */ + if (((hspi->Instance->CR2 & SPI_CR2_TSER) != 0UL) && (tmp_state == HAL_SPI_STATE_READY)) + { + __HAL_SPI_DISABLE_IT(hspi, SPI_IT_TSERF); + MODIFY_REG(hspi->Instance->CR2, SPI_CR2_TSER, 0UL); + hspi->Reload.Requested = 0UL; + errorcode = HAL_ERROR; + __HAL_UNLOCK(hspi); + return errorcode; + } + } + else + { + errorcode = HAL_ERROR; + return errorcode; + } + + __HAL_UNLOCK(hspi); + return errorcode; +} +#endif /* USE_HSPI_RELOAD_TRANSFER */ + +#if defined(USE_SPI_RELOAD_TRANSFER) +/** + * @brief Transmit and receive an additional amount of data in blocking mode. + * @param hspi : pointer to a SPI_HandleTypeDef structure that contains + * the configuration information for SPI module. + * @param pTxData: pointer to transmission data buffer + * @param pRxData: pointer to reception data buffer + * @param Size : amount of data to be sent and received + * @retval HAL status + */ +HAL_StatusTypeDef HAL_SPI_Reload_TransmitReceive_IT(SPI_HandleTypeDef *hspi, uint8_t *pTxData, uint8_t *pRxData, uint16_t Size) +{ + HAL_StatusTypeDef errorcode = HAL_OK; + HAL_SPI_StateTypeDef tmp_state; + + /* Lock the process */ + __HAL_LOCK(hspi); + + if ((pTxData == NULL) || (pRxData == NULL) || (Size == 0UL)) + { + errorcode = HAL_ERROR; + __HAL_UNLOCK(hspi); + return errorcode; + } + + if (hspi->State == HAL_SPI_STATE_BUSY_TX_RX) + { + /* check if there is already a request to reload */ + if (hspi->Reload.Requested == 1UL) + { + errorcode = HAL_ERROR; + __HAL_UNLOCK(hspi); + return errorcode; + } + + /* Insert the new number of data that will be sent and received just after the current one */ + MODIFY_REG(hspi->Instance->CR2, SPI_CR2_TSER, (Size & 0xFFFFFFFFUL) << 16UL); + + /* Set the transaction information */ + hspi->Reload.Requested = 1UL; + hspi->Reload.pTxBuffPtr = (uint8_t *)pTxData; + hspi->Reload.TxXferSize = Size; + hspi->Reload.pRxBuffPtr = (uint8_t *)pRxData; + hspi->Reload.RxXferSize = Size; + + tmp_state = hspi->State; + + /* Check if the current transmit is already completed */ + if (((hspi->Instance->CR2 & SPI_CR2_TSER) != 0UL) && (tmp_state == HAL_SPI_STATE_READY)) + { + __HAL_SPI_DISABLE_IT(hspi, SPI_IT_TSERF); + MODIFY_REG(hspi->Instance->CR2, SPI_CR2_TSER, 0UL); + hspi->Reload.Requested = 0UL; + errorcode = HAL_ERROR; + __HAL_UNLOCK(hspi); + return errorcode; + } + } + else + { + errorcode = HAL_ERROR; + return errorcode; + } + + __HAL_UNLOCK(hspi); + return errorcode; +} +#endif /* USE_HSPI_RELOAD_TRANSFER */ + +/** + * @brief Transmit an amount of data in non-blocking mode with DMA. + * @param hspi : pointer to a SPI_HandleTypeDef structure that contains + * the configuration information for SPI module. + * @param pData: pointer to data buffer + * @param Size : amount of data to be sent + * @retval HAL status + */ +HAL_StatusTypeDef HAL_SPI_Transmit_DMA(SPI_HandleTypeDef *hspi, uint8_t *pData, uint16_t Size) +{ + HAL_StatusTypeDef errorcode = HAL_OK; + + /* Check Direction parameter */ + assert_param(IS_SPI_DIRECTION_2LINES_OR_1LINE_2LINES_TXONLY(hspi->Init.Direction)); + + /* Process Locked */ + __HAL_LOCK(hspi); + + if (hspi->State != HAL_SPI_STATE_READY) + { + errorcode = HAL_BUSY; + __HAL_UNLOCK(hspi); + return errorcode; + } + + if ((pData == NULL) || (Size == 0UL)) + { + errorcode = HAL_ERROR; + __HAL_UNLOCK(hspi); + return errorcode; + } + + /* Set the transaction information */ + hspi->State = HAL_SPI_STATE_BUSY_TX; + hspi->ErrorCode = HAL_SPI_ERROR_NONE; + hspi->pTxBuffPtr = (uint8_t *)pData; + hspi->TxXferSize = Size; + hspi->TxXferCount = Size; + + /* Init field not used in handle to zero */ + hspi->pRxBuffPtr = NULL; + hspi->TxISR = NULL; + hspi->RxISR = NULL; + hspi->RxXferSize = (uint16_t)0UL; + hspi->RxXferCount = (uint16_t)0UL; + + /* Configure communication direction : 1Line */ + if (hspi->Init.Direction == SPI_DIRECTION_1LINE) + { + SPI_1LINE_TX(hspi); + } + + /* Packing mode management is enabled by the DMA settings */ + if (((hspi->Init.DataSize > SPI_DATASIZE_16BIT) && (hspi->hdmatx->Init.MemDataAlignment != DMA_MDATAALIGN_WORD)) || \ + ((hspi->Init.DataSize > SPI_DATASIZE_8BIT) && ((hspi->hdmatx->Init.MemDataAlignment != DMA_MDATAALIGN_HALFWORD) && \ + (hspi->hdmatx->Init.MemDataAlignment != DMA_MDATAALIGN_WORD)))) + { + /* Restriction the DMA data received is not allowed in this mode */ + errorcode = HAL_ERROR; + __HAL_UNLOCK(hspi); + return errorcode; + } + + /* Adjust XferCount according to DMA alignment / Data size */ + if (hspi->Init.DataSize <= SPI_DATASIZE_8BIT) + { + if (hspi->hdmatx->Init.MemDataAlignment == DMA_MDATAALIGN_HALFWORD) + { + hspi->TxXferCount = (hspi->TxXferCount + (uint16_t) 1UL) >> 1UL; + } + if (hspi->hdmatx->Init.MemDataAlignment == DMA_MDATAALIGN_WORD) + { + hspi->TxXferCount = (hspi->TxXferCount + (uint16_t) 3UL) >> 2UL; + } + } + else if (hspi->Init.DataSize <= SPI_DATASIZE_16BIT) + { + if (hspi->hdmatx->Init.MemDataAlignment == DMA_MDATAALIGN_WORD) + { + hspi->TxXferCount = (hspi->TxXferCount + (uint16_t) 1UL) >> 1UL; + } + } + else + { + /* Adjustment done */ + } + + /* Set the SPI TxDMA Half transfer complete callback */ + hspi->hdmatx->XferHalfCpltCallback = SPI_DMAHalfTransmitCplt; + + /* Set the SPI TxDMA transfer complete callback */ + hspi->hdmatx->XferCpltCallback = SPI_DMATransmitCplt; + + /* Set the DMA error callback */ + hspi->hdmatx->XferErrorCallback = SPI_DMAError; + + /* Set the DMA AbortCpltCallback */ + hspi->hdmatx->XferAbortCallback = NULL; + + /* Clear TXDMAEN bit*/ + CLEAR_BIT(hspi->Instance->CFG1, SPI_CFG1_TXDMAEN); + + /* Enable the Tx DMA Stream/Channel */ + if (HAL_OK != HAL_DMA_Start_IT(hspi->hdmatx, (uint32_t)hspi->pTxBuffPtr, (uint32_t)&hspi->Instance->TXDR, hspi->TxXferCount)) + { + /* Update SPI error code */ + SET_BIT(hspi->ErrorCode, HAL_SPI_ERROR_DMA); + errorcode = HAL_ERROR; + hspi->State = HAL_SPI_STATE_READY; + return errorcode; + } + + /* Set the number of data at current transfer */ + if (hspi->hdmatx->Init.Mode == DMA_CIRCULAR) + { + MODIFY_REG(hspi->Instance->CR2, SPI_CR2_TSIZE, 0UL); + } + else + { + MODIFY_REG(hspi->Instance->CR2, SPI_CR2_TSIZE, Size); + } + + /* Enable Tx DMA Request */ + SET_BIT(hspi->Instance->CFG1, SPI_CFG1_TXDMAEN); + + /* Enable the SPI Error Interrupt Bit */ + __HAL_SPI_ENABLE_IT(hspi, (SPI_IT_UDR | SPI_IT_FRE | SPI_IT_MODF)); + + /* Enable SPI peripheral */ + __HAL_SPI_ENABLE(hspi); + + if (hspi->Init.Mode == SPI_MODE_MASTER) + { + /* Master transfer start */ + SET_BIT(hspi->Instance->CR1, SPI_CR1_CSTART); + } + + /* Process Unlocked */ + __HAL_UNLOCK(hspi); + return errorcode; +} + +/** + * @brief Receive an amount of data in non-blocking mode with DMA. + * @param hspi : pointer to a SPI_HandleTypeDef structure that contains + * the configuration information for SPI module. + * @param pData: pointer to data buffer + * @param Size : amount of data to be sent + * @note When the CRC feature is enabled the pData Length must be Size + 1. + * @retval HAL status + */ +HAL_StatusTypeDef HAL_SPI_Receive_DMA(SPI_HandleTypeDef *hspi, uint8_t *pData, uint16_t Size) +{ + HAL_StatusTypeDef errorcode = HAL_OK; + + /* Check Direction parameter */ + assert_param(IS_SPI_DIRECTION_2LINES_OR_1LINE_2LINES_RXONLY(hspi->Init.Direction)); + + if ((hspi->Init.Direction == SPI_DIRECTION_2LINES) && (hspi->Init.Mode == SPI_MODE_MASTER)) + { + hspi->State = HAL_SPI_STATE_BUSY_RX; + /* Call transmit-receive function to send Dummy data on Tx line and generate clock on CLK line */ + return HAL_SPI_TransmitReceive_DMA(hspi, pData, pData, Size); + } + + /* Process Locked */ + __HAL_LOCK(hspi); + + if (hspi->State != HAL_SPI_STATE_READY) + { + errorcode = HAL_BUSY; + __HAL_UNLOCK(hspi); + return errorcode; + } + + if ((pData == NULL) || (Size == 0UL)) + { + errorcode = HAL_ERROR; + __HAL_UNLOCK(hspi); + return errorcode; + } + + /* Set the transaction information */ + hspi->State = HAL_SPI_STATE_BUSY_RX; + hspi->ErrorCode = HAL_SPI_ERROR_NONE; + hspi->pRxBuffPtr = (uint8_t *)pData; + hspi->RxXferSize = Size; + hspi->RxXferCount = Size; + + /*Init field not used in handle to zero */ + hspi->RxISR = NULL; + hspi->TxISR = NULL; + hspi->TxXferSize = (uint16_t) 0UL; + hspi->TxXferCount = (uint16_t) 0UL; + + /* Configure communication direction : 1Line */ + if (hspi->Init.Direction == SPI_DIRECTION_1LINE) + { + SPI_1LINE_RX(hspi); + } + + /* Packing mode management is enabled by the DMA settings */ + if (((hspi->Init.DataSize > SPI_DATASIZE_16BIT) && (hspi->hdmarx->Init.MemDataAlignment != DMA_MDATAALIGN_WORD)) || \ + ((hspi->Init.DataSize > SPI_DATASIZE_8BIT) && ((hspi->hdmarx->Init.MemDataAlignment != DMA_MDATAALIGN_HALFWORD) && \ + (hspi->hdmarx->Init.MemDataAlignment != DMA_MDATAALIGN_WORD)))) + { + /* Restriction the DMA data received is not allowed in this mode */ + errorcode = HAL_ERROR; + __HAL_UNLOCK(hspi); + return errorcode; + } + + /* Clear RXDMAEN bit */ + CLEAR_BIT(hspi->Instance->CFG1, SPI_CFG1_RXDMAEN); + + /* Adjust XferCount according to DMA alignment / Data size */ + if (hspi->Init.DataSize <= SPI_DATASIZE_8BIT) + { + if (hspi->hdmarx->Init.MemDataAlignment == DMA_MDATAALIGN_HALFWORD) + { + hspi->RxXferCount = (hspi->RxXferCount + (uint16_t) 1UL) >> 1UL; + } + if (hspi->hdmarx->Init.MemDataAlignment == DMA_MDATAALIGN_WORD) + { + hspi->RxXferCount = (hspi->RxXferCount + (uint16_t) 3UL) >> 2UL; + } + } + else if (hspi->Init.DataSize <= SPI_DATASIZE_16BIT) + { + if (hspi->hdmarx->Init.MemDataAlignment == DMA_MDATAALIGN_WORD) + { + hspi->RxXferCount = (hspi->RxXferCount + (uint16_t) 1UL) >> 1UL; + } + } + else + { + /* Adjustment done */ + } + + /* Set the SPI RxDMA Half transfer complete callback */ + hspi->hdmarx->XferHalfCpltCallback = SPI_DMAHalfReceiveCplt; + + /* Set the SPI Rx DMA transfer complete callback */ + hspi->hdmarx->XferCpltCallback = SPI_DMAReceiveCplt; + + /* Set the DMA error callback */ + hspi->hdmarx->XferErrorCallback = SPI_DMAError; + + /* Set the DMA AbortCpltCallback */ + hspi->hdmarx->XferAbortCallback = NULL; + + /* Enable the Rx DMA Stream/Channel */ + if (HAL_OK != HAL_DMA_Start_IT(hspi->hdmarx, (uint32_t)&hspi->Instance->RXDR, (uint32_t)hspi->pRxBuffPtr, hspi->RxXferCount)) + { + /* Update SPI error code */ + SET_BIT(hspi->ErrorCode, HAL_SPI_ERROR_DMA); + errorcode = HAL_ERROR; + hspi->State = HAL_SPI_STATE_READY; + return errorcode; + } + + /* Set the number of data at current transfer */ + if (hspi->hdmarx->Init.Mode == DMA_CIRCULAR) + { + MODIFY_REG(hspi->Instance->CR2, SPI_CR2_TSIZE, 0UL); + } + else + { + MODIFY_REG(hspi->Instance->CR2, SPI_CR2_TSIZE, Size); + } + + /* Enable Rx DMA Request */ + SET_BIT(hspi->Instance->CFG1, SPI_CFG1_RXDMAEN); + + /* Enable the SPI Error Interrupt Bit */ + __HAL_SPI_ENABLE_IT(hspi, (SPI_IT_OVR | SPI_IT_FRE | SPI_IT_MODF)); + + /* Enable SPI peripheral */ + __HAL_SPI_ENABLE(hspi); + + if (hspi->Init.Mode == SPI_MODE_MASTER) + { + /* Master transfer start */ + SET_BIT(hspi->Instance->CR1, SPI_CR1_CSTART); + } + + /* Process Unlocked */ + __HAL_UNLOCK(hspi); + return errorcode; +} + +/** + * @brief Transmit and Receive an amount of data in non-blocking mode with DMA. + * @param hspi : pointer to a SPI_HandleTypeDef structure that contains + * the configuration information for SPI module. + * @param pTxData: pointer to transmission data buffer + * @param pRxData: pointer to reception data buffer + * @param Size : amount of data to be sent + * @note When the CRC feature is enabled the pRxData Length must be Size + 1 + * @retval HAL status + */ +HAL_StatusTypeDef HAL_SPI_TransmitReceive_DMA(SPI_HandleTypeDef *hspi, uint8_t *pTxData, uint8_t *pRxData, + uint16_t Size) +{ + HAL_SPI_StateTypeDef tmp_state; + HAL_StatusTypeDef errorcode = HAL_OK; + + uint32_t tmp_mode; + + /* Check Direction parameter */ + assert_param(IS_SPI_DIRECTION_2LINES(hspi->Init.Direction)); + + /* Process locked */ + __HAL_LOCK(hspi); + + /* Init temporary variables */ + tmp_state = hspi->State; + tmp_mode = hspi->Init.Mode; + + if (!(((tmp_mode == SPI_MODE_MASTER) && (hspi->Init.Direction == SPI_DIRECTION_2LINES) && (tmp_state == HAL_SPI_STATE_BUSY_RX)) || (tmp_state == HAL_SPI_STATE_READY))) + { + errorcode = HAL_BUSY; + __HAL_UNLOCK(hspi); + return errorcode; + } + + if ((pTxData == NULL) || (pRxData == NULL) || (Size == 0UL)) + { + errorcode = HAL_ERROR; + __HAL_UNLOCK(hspi); + return errorcode; + } + + /* Don't overwrite in case of HAL_SPI_STATE_BUSY_RX */ + if (hspi->State != HAL_SPI_STATE_BUSY_RX) + { + hspi->State = HAL_SPI_STATE_BUSY_TX_RX; + } + + /* Set the transaction information */ + hspi->ErrorCode = HAL_SPI_ERROR_NONE; + hspi->pTxBuffPtr = (uint8_t *)pTxData; + hspi->TxXferSize = Size; + hspi->TxXferCount = Size; + hspi->pRxBuffPtr = (uint8_t *)pRxData; + hspi->RxXferSize = Size; + hspi->RxXferCount = Size; + + /* Init field not used in handle to zero */ + hspi->RxISR = NULL; + hspi->TxISR = NULL; + + /* Reset the Tx/Rx DMA bits */ + CLEAR_BIT(hspi->Instance->CFG1, SPI_CFG1_TXDMAEN | SPI_CFG1_RXDMAEN); + + /* Packing mode management is enabled by the DMA settings */ + if (((hspi->Init.DataSize > SPI_DATASIZE_16BIT) && (hspi->hdmarx->Init.MemDataAlignment != DMA_MDATAALIGN_WORD)) || \ + ((hspi->Init.DataSize > SPI_DATASIZE_8BIT) && ((hspi->hdmarx->Init.MemDataAlignment != DMA_MDATAALIGN_HALFWORD) && \ + (hspi->hdmarx->Init.MemDataAlignment != DMA_MDATAALIGN_WORD)))) + { + /* Restriction the DMA data received is not allowed in this mode */ + errorcode = HAL_ERROR; + /* Process Unlocked */ + __HAL_UNLOCK(hspi); + return errorcode; + } + + /* Adjust XferCount according to DMA alignment / Data size */ + if (hspi->Init.DataSize <= SPI_DATASIZE_8BIT) + { + if (hspi->hdmatx->Init.MemDataAlignment == DMA_MDATAALIGN_HALFWORD) + { + hspi->TxXferCount = (hspi->TxXferCount + (uint16_t) 1UL) >> 1UL; + } + if (hspi->hdmatx->Init.MemDataAlignment == DMA_MDATAALIGN_WORD) + { + hspi->TxXferCount = (hspi->TxXferCount + (uint16_t) 3UL) >> 2UL; + } + if (hspi->hdmarx->Init.MemDataAlignment == DMA_MDATAALIGN_HALFWORD) + { + hspi->RxXferCount = (hspi->RxXferCount + (uint16_t) 1UL) >> 1UL; + } + if (hspi->hdmarx->Init.MemDataAlignment == DMA_MDATAALIGN_WORD) + { + hspi->RxXferCount = (hspi->RxXferCount + (uint16_t) 3UL) >> 2UL; + } + } + else if (hspi->Init.DataSize <= SPI_DATASIZE_16BIT) + { + if (hspi->hdmatx->Init.MemDataAlignment == DMA_MDATAALIGN_WORD) + { + hspi->TxXferCount = (hspi->TxXferCount + (uint16_t) 1UL) >> 1UL; + } + if (hspi->hdmarx->Init.MemDataAlignment == DMA_MDATAALIGN_WORD) + { + hspi->RxXferCount = (hspi->RxXferCount + (uint16_t) 1UL) >> 1UL; + } + } + else + { + /* Adjustment done */ + } + + /* Check if we are in Rx only or in Rx/Tx Mode and configure the DMA transfer complete callback */ + if (hspi->State == HAL_SPI_STATE_BUSY_RX) + { + /* Set the SPI Rx DMA Half transfer complete callback */ + hspi->hdmarx->XferHalfCpltCallback = SPI_DMAHalfReceiveCplt; + hspi->hdmarx->XferCpltCallback = SPI_DMAReceiveCplt; + } + else + { + /* Set the SPI Tx/Rx DMA Half transfer complete callback */ + hspi->hdmarx->XferHalfCpltCallback = SPI_DMAHalfTransmitReceiveCplt; + hspi->hdmarx->XferCpltCallback = SPI_DMATransmitReceiveCplt; + } + + /* Set the DMA error callback */ + hspi->hdmarx->XferErrorCallback = SPI_DMAError; + + /* Set the DMA AbortCallback */ + hspi->hdmarx->XferAbortCallback = NULL; + + /* Enable the Rx DMA Stream/Channel */ + if (HAL_OK != HAL_DMA_Start_IT(hspi->hdmarx, (uint32_t)&hspi->Instance->RXDR, (uint32_t)hspi->pRxBuffPtr, hspi->RxXferCount)) + { + /* Update SPI error code */ + SET_BIT(hspi->ErrorCode, HAL_SPI_ERROR_DMA); + errorcode = HAL_ERROR; + hspi->State = HAL_SPI_STATE_READY; + return errorcode; + } + + /* Enable Rx DMA Request */ + SET_BIT(hspi->Instance->CFG1, SPI_CFG1_RXDMAEN); + + /* Set the SPI Tx DMA transfer complete callback as NULL because the communication closing + is performed in DMA reception complete callback */ + hspi->hdmatx->XferHalfCpltCallback = NULL; + hspi->hdmatx->XferCpltCallback = NULL; + hspi->hdmatx->XferErrorCallback = NULL; + hspi->hdmatx->XferAbortCallback = NULL; + + /* Enable the Tx DMA Stream/Channel */ + if (HAL_OK != HAL_DMA_Start_IT(hspi->hdmatx, (uint32_t)hspi->pTxBuffPtr, (uint32_t)&hspi->Instance->TXDR, hspi->TxXferCount)) + { + /* Update SPI error code */ + SET_BIT(hspi->ErrorCode, HAL_SPI_ERROR_DMA); + errorcode = HAL_ERROR; + hspi->State = HAL_SPI_STATE_READY; + return errorcode; + } + + if (hspi->hdmatx->Init.Mode == DMA_CIRCULAR) + { + MODIFY_REG(hspi->Instance->CR2, SPI_CR2_TSIZE, 0UL); + } + else + { + MODIFY_REG(hspi->Instance->CR2, SPI_CR2_TSIZE, Size); + } + + /* Enable Tx DMA Request */ + SET_BIT(hspi->Instance->CFG1, SPI_CFG1_TXDMAEN); + + /* Enable the SPI Error Interrupt Bit */ + __HAL_SPI_ENABLE_IT(hspi, (SPI_IT_OVR | SPI_IT_UDR | SPI_IT_FRE | SPI_IT_MODF)); + + /* Enable SPI peripheral */ + __HAL_SPI_ENABLE(hspi); + + if (hspi->Init.Mode == SPI_MODE_MASTER) + { + /* Master transfer start */ + SET_BIT(hspi->Instance->CR1, SPI_CR1_CSTART); + } + + /* Process Unlocked */ + __HAL_UNLOCK(hspi); + return errorcode; +} + +/** + * @brief Abort ongoing transfer (blocking mode). + * @param hspi SPI handle. + * @note This procedure could be used for aborting any ongoing transfer (Tx and Rx), + * started in Interrupt or DMA mode. + * @note This procedure performs following operations : + * + Disable SPI Interrupts (depending of transfer direction) + * + Disable the DMA transfer in the peripheral register (if enabled) + * + Abort DMA transfer by calling HAL_DMA_Abort (in case of transfer in DMA mode) + * + Set handle State to READY. + * @note This procedure is executed in blocking mode : when exiting function, Abort is considered as completed. + * @retval HAL status +*/ +HAL_StatusTypeDef HAL_SPI_Abort(SPI_HandleTypeDef *hspi) +{ + HAL_StatusTypeDef errorcode; + + __IO uint32_t count; + + /* Process locked */ + __HAL_LOCK(hspi); + + /* Set hspi->state to aborting to avoid any interaction */ + hspi->State = HAL_SPI_STATE_ABORT; + + /* Initialized local variable */ + errorcode = HAL_OK; + count = SPI_DEFAULT_TIMEOUT * (SystemCoreClock / 24UL / 1000UL); + + /* If master communication on going, make sure current frame is done before closing the connection */ + if (HAL_IS_BIT_SET(hspi->Instance->CR1, SPI_CR1_CSTART)) + { + SET_BIT(hspi->Instance->CR1, SPI_CR1_CSUSP); + do + { + count--; + if (count == 0UL) + { + SET_BIT(hspi->ErrorCode, HAL_SPI_ERROR_ABORT); + break; + } + } + while (HAL_IS_BIT_SET(hspi->Instance->CR1, SPI_CR1_CSTART)); + } + + /* Disable the SPI DMA Tx request if enabled */ + if (HAL_IS_BIT_SET(hspi->Instance->CFG1, SPI_CFG1_TXDMAEN)) + { + if (hspi->hdmatx != NULL) + { + /* Abort the SPI DMA Tx Stream/Channel : use blocking DMA Abort API (no callback) */ + hspi->hdmatx->XferAbortCallback = NULL; + + /* Abort DMA Tx Handle linked to SPI Peripheral */ + if (HAL_DMA_Abort(hspi->hdmatx) != HAL_OK) + { + if (HAL_DMA_GetError(hspi->hdmatx) == HAL_DMA_ERROR_TIMEOUT) + { + hspi->ErrorCode = HAL_SPI_ERROR_ABORT; + } + } + } + } + + /* Disable the SPI DMA Rx request if enabled */ + if (HAL_IS_BIT_SET(hspi->Instance->CFG1, SPI_CFG1_RXDMAEN)) + { + if (hspi->hdmarx != NULL) + { + /* Abort the SPI DMA Rx Stream/Channel : use blocking DMA Abort API (no callback) */ + hspi->hdmarx->XferAbortCallback = NULL; + + /* Abort DMA Rx Handle linked to SPI Peripheral */ + if (HAL_DMA_Abort(hspi->hdmarx) != HAL_OK) + { + if (HAL_DMA_GetError(hspi->hdmarx) == HAL_DMA_ERROR_TIMEOUT) + { + hspi->ErrorCode = HAL_SPI_ERROR_ABORT; + } + } + } + } + + /* Proceed with abort procedure */ + SPI_AbortTransfer(hspi); + + /* Check error during Abort procedure */ + if (hspi->ErrorCode == HAL_SPI_ERROR_ABORT) + { + /* return HAL_Error in case of error during Abort procedure */ + errorcode = HAL_ERROR; + } + else + { + /* Reset errorCode */ + hspi->ErrorCode = HAL_SPI_ERROR_NONE; + } + + /* Process Unlocked */ + __HAL_UNLOCK(hspi); + + /* Restore hspi->state to ready */ + hspi->State = HAL_SPI_STATE_READY; + + return errorcode; +} + +/** + * @brief Abort ongoing transfer (Interrupt mode). + * @param hspi SPI handle. + * @note This procedure could be used for aborting any ongoing transfer (Tx and Rx), + * started in Interrupt or DMA mode. + * @note This procedure performs following operations : + * + Disable SPI Interrupts (depending of transfer direction) + * + Disable the DMA transfer in the peripheral register (if enabled) + * + Abort DMA transfer by calling HAL_DMA_Abort_IT (in case of transfer in DMA mode) + * + Set handle State to READY + * + At abort completion, call user abort complete callback. + * @note This procedure is executed in Interrupt mode, meaning that abort procedure could be + * considered as completed only when user abort complete callback is executed (not when exiting function). + * @retval HAL status +*/ +HAL_StatusTypeDef HAL_SPI_Abort_IT(SPI_HandleTypeDef *hspi) +{ + HAL_StatusTypeDef errorcode; + __IO uint32_t count; + uint32_t dma_tx_abort_done = 1UL, dma_rx_abort_done = 1UL; + + /* Set hspi->state to aborting to avoid any interaction */ + hspi->State = HAL_SPI_STATE_ABORT; + + /* Initialized local variable */ + errorcode = HAL_OK; + count = SPI_DEFAULT_TIMEOUT * (SystemCoreClock / 24UL / 1000UL); + + /* If master communication on going, make sure current frame is done before closing the connection */ + if (HAL_IS_BIT_SET(hspi->Instance->CR1, SPI_CR1_CSTART)) + { + SET_BIT(hspi->Instance->CR1, SPI_CR1_CSUSP); + do + { + count--; + if (count == 0UL) + { + SET_BIT(hspi->ErrorCode, HAL_SPI_ERROR_ABORT); + break; + } + } + while (HAL_IS_BIT_SET(hspi->Instance->CR1, SPI_CR1_CSTART)); + } + + /* If DMA Tx and/or DMA Rx Handles are associated to SPI Handle, DMA Abort complete callbacks should be initialized + before any call to DMA Abort functions */ + + if(hspi->hdmatx != NULL) + { + if (HAL_IS_BIT_SET(hspi->Instance->CFG1, SPI_CFG1_TXDMAEN)) + { + /* Set DMA Abort Complete callback if SPI DMA Tx request if enabled */ + hspi->hdmatx->XferAbortCallback = SPI_DMATxAbortCallback; + + dma_tx_abort_done = 0UL; + + /* Abort DMA Tx Handle linked to SPI Peripheral */ + if (HAL_DMA_Abort_IT(hspi->hdmatx) != HAL_OK) + { + if (HAL_DMA_GetError(hspi->hdmatx) == HAL_DMA_ERROR_NO_XFER) + { + dma_tx_abort_done = 1UL; + hspi->hdmatx->XferAbortCallback = NULL; + } + } + } + else + { + hspi->hdmatx->XferAbortCallback = NULL; + } + } + + if(hspi->hdmarx != NULL) + { + if (HAL_IS_BIT_SET(hspi->Instance->CFG1, SPI_CFG1_RXDMAEN)) + { + /* Set DMA Abort Complete callback if SPI DMA Rx request if enabled */ + hspi->hdmarx->XferAbortCallback = SPI_DMARxAbortCallback; + + dma_rx_abort_done = 0UL; + + /* Abort DMA Rx Handle linked to SPI Peripheral */ + if (HAL_DMA_Abort_IT(hspi->hdmarx) != HAL_OK) + { + if (HAL_DMA_GetError(hspi->hdmarx) == HAL_DMA_ERROR_NO_XFER) + { + dma_rx_abort_done = 1UL; + hspi->hdmarx->XferAbortCallback = NULL; + } + } + } + else + { + hspi->hdmarx->XferAbortCallback = NULL; + } + } + + /* If no running DMA transfer, finish cleanup and call callbacks */ + if ((dma_tx_abort_done == 1UL) && (dma_rx_abort_done == 1UL)) + { + /* Proceed with abort procedure */ + SPI_AbortTransfer(hspi); + + /* Check error during Abort procedure */ + if (hspi->ErrorCode == HAL_SPI_ERROR_ABORT) + { + /* return HAL_Error in case of error during Abort procedure */ + errorcode = HAL_ERROR; + } + else + { + /* Reset errorCode */ + hspi->ErrorCode = HAL_SPI_ERROR_NONE; + } + + /* Restore hspi->state to ready */ + hspi->State = HAL_SPI_STATE_READY; + + /* Call user Abort complete callback */ +#if (USE_HAL_SPI_REGISTER_CALLBACKS == 1UL) + hspi->AbortCpltCallback(hspi); +#else + HAL_SPI_AbortCpltCallback(hspi); +#endif /* USE_HAL_SPI_REGISTER_CALLBACKS */ + } + + return errorcode; +} + +/** + * @brief Pause the DMA Transfer. + * This API is not supported, it is maintained for backward compatibility. + * @param hspi: pointer to a SPI_HandleTypeDef structure that contains + * the configuration information for the specified SPI module. + * @retval HAL_ERROR + */ +HAL_StatusTypeDef HAL_SPI_DMAPause(SPI_HandleTypeDef *hspi) +{ + /* Set error code to not supported */ + SET_BIT(hspi->ErrorCode, HAL_SPI_ERROR_NOT_SUPPORTED); + + return HAL_ERROR; +} + +/** + * @brief Resume the DMA Transfer. + * This API is not supported, it is maintained for backward compatibility. + * @param hspi: pointer to a SPI_HandleTypeDef structure that contains + * the configuration information for the specified SPI module. + * @retval HAL_ERROR + */ +HAL_StatusTypeDef HAL_SPI_DMAResume(SPI_HandleTypeDef *hspi) +{ + /* Set error code to not supported */ + SET_BIT(hspi->ErrorCode, HAL_SPI_ERROR_NOT_SUPPORTED); + + return HAL_ERROR; +} + +/** + * @brief Stop the DMA Transfer. + * This API is not supported, it is maintained for backward compatibility. + * @param hspi: pointer to a SPI_HandleTypeDef structure that contains + * the configuration information for the specified SPI module. + * @retval HAL_ERROR + */ +HAL_StatusTypeDef HAL_SPI_DMAStop(SPI_HandleTypeDef *hspi) +{ + /* Set error code to not supported */ + SET_BIT(hspi->ErrorCode, HAL_SPI_ERROR_NOT_SUPPORTED); + + return HAL_ERROR; +} + +/** + * @brief Handle SPI interrupt request. + * @param hspi: pointer to a SPI_HandleTypeDef structure that contains + * the configuration information for the specified SPI module. + * @retval None + */ +void HAL_SPI_IRQHandler(SPI_HandleTypeDef *hspi) +{ + uint32_t itsource = hspi->Instance->IER; + uint32_t itflag = hspi->Instance->SR; + uint32_t trigger = itsource & itflag; + uint32_t cfg1 = hspi->Instance->CFG1; + uint32_t handled = 0UL; + + HAL_SPI_StateTypeDef State = hspi->State; +#if defined (__GNUC__) + __IO uint16_t *prxdr_16bits = (__IO uint16_t *)(&(hspi->Instance->RXDR)); +#endif /* __GNUC__ */ + + + /* SPI in mode Transmitter and Receiver ------------------------------------*/ + if (HAL_IS_BIT_CLR(trigger, SPI_FLAG_OVR) && HAL_IS_BIT_CLR(trigger, SPI_FLAG_UDR) && HAL_IS_BIT_SET(trigger, SPI_FLAG_DXP)) + { + hspi->TxISR(hspi); + hspi->RxISR(hspi); + handled = 1UL; + } + + /* SPI in mode Receiver ----------------------------------------------------*/ + if (HAL_IS_BIT_CLR(trigger, SPI_FLAG_OVR) && HAL_IS_BIT_SET(trigger, SPI_FLAG_RXP) && HAL_IS_BIT_CLR(trigger, SPI_FLAG_DXP)) + { + hspi->RxISR(hspi); + handled = 1UL; + } + + /* SPI in mode Transmitter -------------------------------------------------*/ + if (HAL_IS_BIT_CLR(trigger, SPI_FLAG_UDR) && HAL_IS_BIT_SET(trigger, SPI_FLAG_TXP) && HAL_IS_BIT_CLR(trigger, SPI_FLAG_DXP)) + { + hspi->TxISR(hspi); + handled = 1UL; + } + +#if defined(USE_SPI_RELOAD_TRANSFER) + /* SPI Reload -------------------------------------------------*/ + if (HAL_IS_BIT_SET(trigger, SPI_FLAG_TSERF)) + { + hspi->Reload.Requested = 0UL; + __HAL_SPI_CLEAR_TSERFFLAG(hspi); + } +#endif /* USE_HSPI_RELOAD_TRANSFER */ + + if (handled != 0UL) + { + return; + } + + /* SPI End Of Transfer: DMA or IT based transfer */ + if (HAL_IS_BIT_SET(trigger, SPI_FLAG_EOT)) + { + /* Clear EOT/TXTF/SUSP flag */ + __HAL_SPI_CLEAR_EOTFLAG(hspi); + __HAL_SPI_CLEAR_TXTFFLAG(hspi); + __HAL_SPI_CLEAR_SUSPFLAG(hspi); + + /* Disable EOT interrupt */ + __HAL_SPI_DISABLE_IT(hspi, SPI_IT_EOT); + + /* DMA Normal Mode */ + if (HAL_IS_BIT_CLR(cfg1, SPI_CFG1_TXDMAEN | SPI_CFG1_RXDMAEN) || // IT based transfer is done + ((State != HAL_SPI_STATE_BUSY_RX) && (hspi->hdmatx->Init.Mode == DMA_NORMAL)) || // DMA is used in normal mode + ((State != HAL_SPI_STATE_BUSY_TX) && (hspi->hdmarx->Init.Mode == DMA_NORMAL))) // DMA is used in normal mode + { + /* For the IT based receive extra polling maybe required for last packet */ + if (HAL_IS_BIT_CLR(hspi->Instance->CFG1, SPI_CFG1_TXDMAEN | SPI_CFG1_RXDMAEN)) + { + /* Pooling remaining data */ + while (hspi->RxXferCount != 0UL) + { + /* Receive data in 32 Bit mode */ + if (hspi->Init.DataSize > SPI_DATASIZE_16BIT) + { + *((uint32_t *)hspi->pRxBuffPtr) = *((__IO uint32_t *)&hspi->Instance->RXDR); + hspi->pRxBuffPtr += sizeof(uint32_t); + } + /* Receive data in 16 Bit mode */ + else if (hspi->Init.DataSize > SPI_DATASIZE_8BIT) + { +#if defined (__GNUC__) + *((uint16_t *)hspi->pRxBuffPtr) = *prxdr_16bits; +#else + *((uint16_t *)hspi->pRxBuffPtr) = *((__IO uint16_t *)&hspi->Instance->RXDR); +#endif /* __GNUC__ */ + hspi->pRxBuffPtr += sizeof(uint16_t); + } + /* Receive data in 8 Bit mode */ + else + { + *((uint8_t *)hspi->pRxBuffPtr) = *((__IO uint8_t *)&hspi->Instance->RXDR); + hspi->pRxBuffPtr += sizeof(uint8_t); + } + + hspi->RxXferCount--; + } + } + + /* Call SPI Standard close procedure */ + SPI_CloseTransfer(hspi); + + hspi->State = HAL_SPI_STATE_READY; + if (hspi->ErrorCode != HAL_SPI_ERROR_NONE) + { +#if (USE_HAL_SPI_REGISTER_CALLBACKS == 1UL) + hspi->ErrorCallback(hspi); +#else + HAL_SPI_ErrorCallback(hspi); +#endif /* USE_HAL_SPI_REGISTER_CALLBACKS */ + return; + } + } + +#if (USE_HAL_SPI_REGISTER_CALLBACKS == 1UL) + /* Call appropriate user callback */ + if (State == HAL_SPI_STATE_BUSY_TX_RX) + { + hspi->TxRxCpltCallback(hspi); + } + else if (State == HAL_SPI_STATE_BUSY_RX) + { + hspi->RxCpltCallback(hspi); + } + else if (State == HAL_SPI_STATE_BUSY_TX) + { + hspi->TxCpltCallback(hspi); + } +#else + /* Call appropriate user callback */ + if (State == HAL_SPI_STATE_BUSY_TX_RX) + { + HAL_SPI_TxRxCpltCallback(hspi); + } + else if (State == HAL_SPI_STATE_BUSY_RX) + { + HAL_SPI_RxCpltCallback(hspi); + } + else if (State == HAL_SPI_STATE_BUSY_TX) + { + HAL_SPI_TxCpltCallback(hspi); + } + else + { + /* end of the appropriate call */ + } +#endif /* USE_HAL_SPI_REGISTER_CALLBACKS */ + + return; + } + + if (HAL_IS_BIT_SET(itflag, SPI_FLAG_SUSP) && HAL_IS_BIT_SET(itsource, SPI_FLAG_EOT)) + { + /* Abort on going, clear SUSP flag to avoid infinite looping */ + __HAL_SPI_CLEAR_SUSPFLAG(hspi); + + return; + } + + /* SPI in Error Treatment --------------------------------------------------*/ + if ((trigger & (SPI_FLAG_MODF | SPI_FLAG_OVR | SPI_FLAG_FRE | SPI_FLAG_UDR)) != 0UL) + { + /* SPI Overrun error interrupt occurred ----------------------------------*/ + if ((trigger & SPI_FLAG_OVR) != 0UL) + { + SET_BIT(hspi->ErrorCode, HAL_SPI_ERROR_OVR); + __HAL_SPI_CLEAR_OVRFLAG(hspi); + } + + /* SPI Mode Fault error interrupt occurred -------------------------------*/ + if ((trigger & SPI_FLAG_MODF) != 0UL) + { + SET_BIT(hspi->ErrorCode, HAL_SPI_ERROR_MODF); + __HAL_SPI_CLEAR_MODFFLAG(hspi); + } + + /* SPI Frame error interrupt occurred ------------------------------------*/ + if ((trigger & SPI_FLAG_FRE) != 0UL) + { + SET_BIT(hspi->ErrorCode, HAL_SPI_ERROR_FRE); + __HAL_SPI_CLEAR_FREFLAG(hspi); + } + + /* SPI Underrun error interrupt occurred ------------------------------------*/ + if ((trigger & SPI_FLAG_UDR) != 0UL) + { + SET_BIT(hspi->ErrorCode, HAL_SPI_ERROR_UDR); + __HAL_SPI_CLEAR_UDRFLAG(hspi); + } + + if (hspi->ErrorCode != HAL_SPI_ERROR_NONE) + { + /* Disable SPI peripheral */ + __HAL_SPI_DISABLE(hspi); + + /* Disable all interrupts */ + __HAL_SPI_DISABLE_IT(hspi, SPI_IT_EOT | SPI_IT_RXP | SPI_IT_TXP | SPI_IT_MODF | SPI_IT_OVR | SPI_IT_FRE | SPI_IT_UDR); + + /* Disable the SPI DMA requests if enabled */ + if (HAL_IS_BIT_SET(cfg1, SPI_CFG1_TXDMAEN | SPI_CFG1_RXDMAEN)) + { + /* Disable the SPI DMA requests */ + CLEAR_BIT(hspi->Instance->CFG1, SPI_CFG1_TXDMAEN | SPI_CFG1_RXDMAEN); + + /* Abort the SPI DMA Rx channel */ + if (hspi->hdmarx != NULL) + { + /* Set the SPI DMA Abort callback : + will lead to call HAL_SPI_ErrorCallback() at end of DMA abort procedure */ + hspi->hdmarx->XferAbortCallback = SPI_DMAAbortOnError; + if (HAL_OK != HAL_DMA_Abort_IT(hspi->hdmarx)) + { + SET_BIT(hspi->ErrorCode, HAL_SPI_ERROR_ABORT); + } + } + /* Abort the SPI DMA Tx channel */ + if (hspi->hdmatx != NULL) + { + /* Set the SPI DMA Abort callback : + will lead to call HAL_SPI_ErrorCallback() at end of DMA abort procedure */ + hspi->hdmatx->XferAbortCallback = SPI_DMAAbortOnError; + if (HAL_OK != HAL_DMA_Abort_IT(hspi->hdmatx)) + { + SET_BIT(hspi->ErrorCode, HAL_SPI_ERROR_ABORT); + } + } + } + else + { + /* Restore hspi->State to Ready */ + hspi->State = HAL_SPI_STATE_READY; + + /* Call user error callback */ +#if (USE_HAL_SPI_REGISTER_CALLBACKS == 1UL) + hspi->ErrorCallback(hspi); +#else + HAL_SPI_ErrorCallback(hspi); +#endif /* USE_HAL_SPI_REGISTER_CALLBACKS */ + } + } + return; + } +} + +/** + * @brief Tx Transfer completed callback. + * @param hspi: pointer to a SPI_HandleTypeDef structure that contains + * the configuration information for SPI module. + * @retval None + */ +__weak void HAL_SPI_TxCpltCallback(SPI_HandleTypeDef *hspi) +{ + /* Prevent unused argument(s) compilation warning */ + UNUSED(hspi); + + /* NOTE : This function should not be modified, when the callback is needed, + the HAL_SPI_TxCpltCallback should be implemented in the user file + */ +} + +/** + * @brief Rx Transfer completed callback. + * @param hspi: pointer to a SPI_HandleTypeDef structure that contains + * the configuration information for SPI module. + * @retval None + */ +__weak void HAL_SPI_RxCpltCallback(SPI_HandleTypeDef *hspi) +{ + /* Prevent unused argument(s) compilation warning */ + UNUSED(hspi); + + /* NOTE : This function should not be modified, when the callback is needed, + the HAL_SPI_RxCpltCallback should be implemented in the user file + */ +} + +/** + * @brief Tx and Rx Transfer completed callback. + * @param hspi: pointer to a SPI_HandleTypeDef structure that contains + * the configuration information for SPI module. + * @retval None + */ +__weak void HAL_SPI_TxRxCpltCallback(SPI_HandleTypeDef *hspi) +{ + /* Prevent unused argument(s) compilation warning */ + UNUSED(hspi); + + /* NOTE : This function should not be modified, when the callback is needed, + the HAL_SPI_TxRxCpltCallback should be implemented in the user file + */ +} + +/** + * @brief Tx Half Transfer completed callback. + * @param hspi: pointer to a SPI_HandleTypeDef structure that contains + * the configuration information for SPI module. + * @retval None + */ +__weak void HAL_SPI_TxHalfCpltCallback(SPI_HandleTypeDef *hspi) +{ + /* Prevent unused argument(s) compilation warning */ + UNUSED(hspi); + + /* NOTE : This function should not be modified, when the callback is needed, + the HAL_SPI_TxHalfCpltCallback should be implemented in the user file + */ +} + +/** + * @brief Rx Half Transfer completed callback. + * @param hspi: pointer to a SPI_HandleTypeDef structure that contains + * the configuration information for SPI module. + * @retval None + */ +__weak void HAL_SPI_RxHalfCpltCallback(SPI_HandleTypeDef *hspi) +{ + /* Prevent unused argument(s) compilation warning */ + UNUSED(hspi); + + /* NOTE : This function should not be modified, when the callback is needed, + the HAL_SPI_RxHalfCpltCallback() should be implemented in the user file + */ +} + +/** + * @brief Tx and Rx Half Transfer callback. + * @param hspi: pointer to a SPI_HandleTypeDef structure that contains + * the configuration information for SPI module. + * @retval None + */ +__weak void HAL_SPI_TxRxHalfCpltCallback(SPI_HandleTypeDef *hspi) +{ + /* Prevent unused argument(s) compilation warning */ + UNUSED(hspi); + + /* NOTE : This function should not be modified, when the callback is needed, + the HAL_SPI_TxRxHalfCpltCallback() should be implemented in the user file + */ +} + +/** + * @brief SPI error callback. + * @param hspi: pointer to a SPI_HandleTypeDef structure that contains + * the configuration information for SPI module. + * @retval None + */ +__weak void HAL_SPI_ErrorCallback(SPI_HandleTypeDef *hspi) +{ + /* Prevent unused argument(s) compilation warning */ + UNUSED(hspi); + + /* NOTE : This function should not be modified, when the callback is needed, + the HAL_SPI_ErrorCallback should be implemented in the user file + */ + /* NOTE : The ErrorCode parameter in the hspi handle is updated by the SPI processes + and user can use HAL_SPI_GetError() API to check the latest error occurred + */ +} + +/** + * @brief SPI Abort Complete callback. + * @param hspi SPI handle. + * @retval None + */ +__weak void HAL_SPI_AbortCpltCallback(SPI_HandleTypeDef *hspi) +{ + /* Prevent unused argument(s) compilation warning */ + UNUSED(hspi); + + /* NOTE : This function should not be modified, when the callback is needed, + the HAL_SPI_AbortCpltCallback can be implemented in the user file. + */ +} + +/** + * @} + */ + +/** @defgroup SPI_Exported_Functions_Group3 Peripheral State and Errors functions + * @brief SPI control functions + * +@verbatim + =============================================================================== + ##### Peripheral State and Errors functions ##### + =============================================================================== + [..] + This subsection provides a set of functions allowing to control the SPI. + (+) HAL_SPI_GetState() API can be helpful to check in run-time the state of the SPI peripheral + (+) HAL_SPI_GetError() check in run-time Errors occurring during communication +@endverbatim + * @{ + */ + +/** + * @brief Return the SPI handle state. + * @param hspi: pointer to a SPI_HandleTypeDef structure that contains + * the configuration information for SPI module. + * @retval SPI state + */ +HAL_SPI_StateTypeDef HAL_SPI_GetState(SPI_HandleTypeDef *hspi) +{ + /* Return SPI handle state */ + return hspi->State; +} + +/** + * @brief Return the SPI error code. + * @param hspi: pointer to a SPI_HandleTypeDef structure that contains + * the configuration information for SPI module. + * @retval SPI error code in bitmap format + */ +uint32_t HAL_SPI_GetError(SPI_HandleTypeDef *hspi) +{ + /* Return SPI ErrorCode */ + return hspi->ErrorCode; +} + +/** + * @} + */ + +/** + * @} + */ + +/** @addtogroup SPI_Private_Functions + * @brief Private functions + * @{ + */ + +/** + * @brief DMA SPI transmit process complete callback. + * @param hdma: pointer to a DMA_HandleTypeDef structure that contains + * the configuration information for the specified DMA module. + * @retval None + */ +static void SPI_DMATransmitCplt(DMA_HandleTypeDef *hdma) +{ + SPI_HandleTypeDef *hspi = (SPI_HandleTypeDef *)((DMA_HandleTypeDef *)hdma)->Parent; + + if (hspi->State != HAL_SPI_STATE_ABORT) + { + if (hspi->hdmatx->Init.Mode == DMA_CIRCULAR) + { +#if (USE_HAL_SPI_REGISTER_CALLBACKS == 1UL) + hspi->TxCpltCallback(hspi); +#else + HAL_SPI_TxCpltCallback(hspi); +#endif /* USE_HAL_SPI_REGISTER_CALLBACKS */ + } + else + { + /* Enable EOT interrupt */ + __HAL_SPI_ENABLE_IT(hspi, SPI_IT_EOT); + } + } +} + +/** + * @brief DMA SPI receive process complete callback. + * @param hdma: pointer to a DMA_HandleTypeDef structure that contains + * the configuration information for the specified DMA module. + * @retval None + */ +static void SPI_DMAReceiveCplt(DMA_HandleTypeDef *hdma) +{ + SPI_HandleTypeDef *hspi = (SPI_HandleTypeDef *)((DMA_HandleTypeDef *)hdma)->Parent; + + if (hspi->State != HAL_SPI_STATE_ABORT) + { + if (hspi->hdmarx->Init.Mode == DMA_CIRCULAR) + { +#if (USE_HAL_SPI_REGISTER_CALLBACKS == 1UL) + hspi->RxCpltCallback(hspi); +#else + HAL_SPI_RxCpltCallback(hspi); +#endif /* USE_HAL_SPI_REGISTER_CALLBACKS */ + } + else + { + /* Enable EOT interrupt */ + __HAL_SPI_ENABLE_IT(hspi, SPI_IT_EOT); + } + } +} + +/** + * @brief DMA SPI transmit receive process complete callback. + * @param hdma: pointer to a DMA_HandleTypeDef structure that contains + * the configuration information for the specified DMA module. + * @retval None + */ +static void SPI_DMATransmitReceiveCplt(DMA_HandleTypeDef *hdma) +{ + SPI_HandleTypeDef *hspi = (SPI_HandleTypeDef *)((DMA_HandleTypeDef *)hdma)->Parent; + + if (hspi->State != HAL_SPI_STATE_ABORT) + { + if (hspi->hdmatx->Init.Mode == DMA_CIRCULAR) + { +#if (USE_HAL_SPI_REGISTER_CALLBACKS == 1UL) + hspi->TxRxCpltCallback(hspi); +#else + HAL_SPI_TxRxCpltCallback(hspi); +#endif /* USE_HAL_SPI_REGISTER_CALLBACKS */ + } + else + { + /* Enable EOT interrupt */ + __HAL_SPI_ENABLE_IT(hspi, SPI_IT_EOT); + } + } +} + +/** + * @brief DMA SPI half transmit process complete callback. + * @param hdma: pointer to a DMA_HandleTypeDef structure that contains + * the configuration information for the specified DMA module. + * @retval None + */ +static void SPI_DMAHalfTransmitCplt(DMA_HandleTypeDef *hdma) +{ + SPI_HandleTypeDef *hspi = (SPI_HandleTypeDef *)((DMA_HandleTypeDef *)hdma)->Parent; + +#if (USE_HAL_SPI_REGISTER_CALLBACKS == 1UL) + hspi->TxHalfCpltCallback(hspi); +#else + HAL_SPI_TxHalfCpltCallback(hspi); +#endif /* USE_HAL_SPI_REGISTER_CALLBACKS */ +} + +/** + * @brief DMA SPI half receive process complete callback + * @param hdma: pointer to a DMA_HandleTypeDef structure that contains + * the configuration information for the specified DMA module. + * @retval None + */ +static void SPI_DMAHalfReceiveCplt(DMA_HandleTypeDef *hdma) +{ + SPI_HandleTypeDef *hspi = (SPI_HandleTypeDef *)((DMA_HandleTypeDef *)hdma)->Parent; + +#if (USE_HAL_SPI_REGISTER_CALLBACKS == 1UL) + hspi->RxHalfCpltCallback(hspi); +#else + HAL_SPI_RxHalfCpltCallback(hspi); +#endif /* USE_HAL_SPI_REGISTER_CALLBACKS */ +} + +/** + * @brief DMA SPI half transmit receive process complete callback. + * @param hdma: pointer to a DMA_HandleTypeDef structure that contains + * the configuration information for the specified DMA module. + * @retval None + */ +static void SPI_DMAHalfTransmitReceiveCplt(DMA_HandleTypeDef *hdma) +{ + SPI_HandleTypeDef *hspi = (SPI_HandleTypeDef *)((DMA_HandleTypeDef *)hdma)->Parent; + +#if (USE_HAL_SPI_REGISTER_CALLBACKS == 1UL) + hspi->TxRxHalfCpltCallback(hspi); +#else + HAL_SPI_TxRxHalfCpltCallback(hspi); +#endif /* USE_HAL_SPI_REGISTER_CALLBACKS */ +} + +/** + * @brief DMA SPI communication error callback. + * @param hdma: pointer to a DMA_HandleTypeDef structure that contains + * the configuration information for the specified DMA module. + * @retval None + */ +static void SPI_DMAError(DMA_HandleTypeDef *hdma) +{ + SPI_HandleTypeDef *hspi = (SPI_HandleTypeDef *)((DMA_HandleTypeDef *)hdma)->Parent; + + /* if DMA error is FIFO error ignore it */ + if (HAL_DMA_GetError(hdma) != HAL_DMA_ERROR_FE) + { + /* Call SPI standard close procedure */ + SPI_CloseTransfer(hspi); + + SET_BIT(hspi->ErrorCode, HAL_SPI_ERROR_DMA); + hspi->State = HAL_SPI_STATE_READY; +#if (USE_HAL_SPI_REGISTER_CALLBACKS == 1UL) + hspi->ErrorCallback(hspi); +#else + HAL_SPI_ErrorCallback(hspi); +#endif /* USE_HAL_SPI_REGISTER_CALLBACKS */ + } +} + +/** + * @brief DMA SPI communication abort callback, when initiated by HAL services on Error + * (To be called at end of DMA Abort procedure following error occurrence). + * @param hdma DMA handle. + * @retval None + */ +static void SPI_DMAAbortOnError(DMA_HandleTypeDef *hdma) +{ + SPI_HandleTypeDef *hspi = (SPI_HandleTypeDef *)((DMA_HandleTypeDef *)hdma)->Parent; + hspi->RxXferCount = (uint16_t) 0UL; + hspi->TxXferCount = (uint16_t) 0UL; + + /* Restore hspi->State to Ready */ + hspi->State = HAL_SPI_STATE_READY; + +#if (USE_HAL_SPI_REGISTER_CALLBACKS == 1UL) + hspi->ErrorCallback(hspi); +#else + HAL_SPI_ErrorCallback(hspi); +#endif /* USE_HAL_SPI_REGISTER_CALLBACKS */ +} + +/** + * @brief DMA SPI Tx communication abort callback, when initiated by user + * (To be called at end of DMA Tx Abort procedure following user abort request). + * @note When this callback is executed, User Abort complete call back is called only if no + * Abort still ongoing for Rx DMA Handle. + * @param hdma DMA handle. + * @retval None + */ +static void SPI_DMATxAbortCallback(DMA_HandleTypeDef *hdma) +{ + SPI_HandleTypeDef *hspi = (SPI_HandleTypeDef *)((DMA_HandleTypeDef *)hdma)->Parent; + + hspi->hdmatx->XferAbortCallback = NULL; + + /* Check if an Abort process is still ongoing */ + if (hspi->hdmarx != NULL) + { + if (hspi->hdmarx->XferAbortCallback != NULL) + { + return; + } + } + + /* Call the Abort procedure */ + SPI_AbortTransfer(hspi); + + /* Restore hspi->State to Ready */ + hspi->State = HAL_SPI_STATE_READY; + + /* Call user Abort complete callback */ +#if (USE_HAL_SPI_REGISTER_CALLBACKS == 1UL) + hspi->AbortCpltCallback(hspi); +#else + HAL_SPI_AbortCpltCallback(hspi); +#endif /* USE_HAL_SPI_REGISTER_CALLBACKS */ +} + +/** + * @brief DMA SPI Rx communication abort callback, when initiated by user + * (To be called at end of DMA Rx Abort procedure following user abort request). + * @note When this callback is executed, User Abort complete call back is called only if no + * Abort still ongoing for Tx DMA Handle. + * @param hdma DMA handle. + * @retval None + */ +static void SPI_DMARxAbortCallback(DMA_HandleTypeDef *hdma) +{ + SPI_HandleTypeDef *hspi = (SPI_HandleTypeDef *)((DMA_HandleTypeDef *)hdma)->Parent; + + hspi->hdmarx->XferAbortCallback = NULL; + + /* Check if an Abort process is still ongoing */ + if (hspi->hdmatx != NULL) + { + if (hspi->hdmatx->XferAbortCallback != NULL) + { + return; + } + } + + /* Call the Abort procedure */ + SPI_AbortTransfer(hspi); + + /* Restore hspi->State to Ready */ + hspi->State = HAL_SPI_STATE_READY; + + /* Call user Abort complete callback */ +#if (USE_HAL_SPI_REGISTER_CALLBACKS == 1UL) + hspi->AbortCpltCallback(hspi); +#else + HAL_SPI_AbortCpltCallback(hspi); +#endif /* USE_HAL_SPI_REGISTER_CALLBACKS */ +} + +/** + * @brief Manage the receive 8-bit in Interrupt context. + * @param hspi: pointer to a SPI_HandleTypeDef structure that contains + * the configuration information for SPI module. + * @retval None + */ +static void SPI_RxISR_8BIT(SPI_HandleTypeDef *hspi) +{ + /* Receive data in 8 Bit mode */ + *((uint8_t *)hspi->pRxBuffPtr) = (*(__IO uint8_t *)&hspi->Instance->RXDR); + hspi->pRxBuffPtr += sizeof(uint8_t); + hspi->RxXferCount--; + + /* Disable IT if no more data excepted */ + if (hspi->RxXferCount == 0UL) + { +#if defined(USE_SPI_RELOAD_TRANSFER) + /* Check if there is any request to reload */ + if (hspi->Reload.Requested == 1UL) + { + hspi->RxXferSize = hspi->Reload.RxXferSize; + hspi->RxXferCount = hspi->Reload.RxXferSize; + hspi->pRxBuffPtr = hspi->Reload.pRxBuffPtr; + } + else + { + /* Disable RXP interrupts */ + __HAL_SPI_DISABLE_IT(hspi, SPI_IT_RXP); + } +#else + /* Disable RXP interrupts */ + __HAL_SPI_DISABLE_IT(hspi, SPI_IT_RXP); +#endif /* USE_HSPI_RELOAD_TRANSFER */ + } +} + + +/** + * @brief Manage the 16-bit receive in Interrupt context. + * @param hspi: pointer to a SPI_HandleTypeDef structure that contains + * the configuration information for SPI module. + * @retval None + */ +static void SPI_RxISR_16BIT(SPI_HandleTypeDef *hspi) +{ + /* Receive data in 16 Bit mode */ +#if defined (__GNUC__) + __IO uint16_t *prxdr_16bits = (__IO uint16_t *)(&(hspi->Instance->RXDR)); + + *((uint16_t *)hspi->pRxBuffPtr) = *prxdr_16bits; +#else + *((uint16_t *)hspi->pRxBuffPtr) = (*(__IO uint16_t *)&hspi->Instance->RXDR); +#endif /* __GNUC__ */ + hspi->pRxBuffPtr += sizeof(uint16_t); + hspi->RxXferCount--; + + /* Disable IT if no more data excepted */ + if (hspi->RxXferCount == 0UL) + { +#if defined(USE_SPI_RELOAD_TRANSFER) + /* Check if there is any request to reload */ + if (hspi->Reload.Requested == 1UL) + { + hspi->RxXferSize = hspi->Reload.RxXferSize; + hspi->RxXferCount = hspi->Reload.RxXferSize; + hspi->pRxBuffPtr = hspi->Reload.pRxBuffPtr; + } + else + { + /* Disable RXP interrupts */ + __HAL_SPI_DISABLE_IT(hspi, SPI_IT_RXP); + } +#else + /* Disable RXP interrupts */ + __HAL_SPI_DISABLE_IT(hspi, SPI_IT_RXP); +#endif /* USE_HSPI_RELOAD_TRANSFER */ + } +} + + +/** + * @brief Manage the 32-bit receive in Interrupt context. + * @param hspi: pointer to a SPI_HandleTypeDef structure that contains + * the configuration information for SPI module. + * @retval None + */ +static void SPI_RxISR_32BIT(SPI_HandleTypeDef *hspi) +{ + /* Receive data in 32 Bit mode */ + *((uint32_t *)hspi->pRxBuffPtr) = (*(__IO uint32_t *)&hspi->Instance->RXDR); + hspi->pRxBuffPtr += sizeof(uint32_t); + hspi->RxXferCount--; + + /* Disable IT if no more data excepted */ + if (hspi->RxXferCount == 0UL) + { +#if defined(USE_SPI_RELOAD_TRANSFER) + /* Check if there is any request to reload */ + if (hspi->Reload.Requested == 1UL) + { + hspi->RxXferSize = hspi->Reload.RxXferSize; + hspi->RxXferCount = hspi->Reload.RxXferSize; + hspi->pRxBuffPtr = hspi->Reload.pRxBuffPtr; + } + else + { + /* Disable RXP interrupts */ + __HAL_SPI_DISABLE_IT(hspi, SPI_IT_RXP); + } +#else + /* Disable RXP interrupts */ + __HAL_SPI_DISABLE_IT(hspi, SPI_IT_RXP); +#endif /* USE_HSPI_RELOAD_TRANSFER */ + } +} + + +/** + * @brief Handle the data 8-bit transmit in Interrupt mode. + * @param hspi: pointer to a SPI_HandleTypeDef structure that contains + * the configuration information for SPI module. + * @retval None + */ +static void SPI_TxISR_8BIT(SPI_HandleTypeDef *hspi) +{ + /* Transmit data in 8 Bit mode */ + *(__IO uint8_t *)&hspi->Instance->TXDR = *((uint8_t *)hspi->pTxBuffPtr); + hspi->pTxBuffPtr += sizeof(uint8_t); + hspi->TxXferCount--; + + /* Disable IT if no more data excepted */ + if (hspi->TxXferCount == 0UL) + { +#if defined(USE_SPI_RELOAD_TRANSFER) + /* Check if there is any request to reload */ + if (hspi->Reload.Requested == 1UL) + { + hspi->TxXferSize = hspi->Reload.TxXferSize; + hspi->TxXferCount = hspi->Reload.TxXferSize; + hspi->pTxBuffPtr = hspi->Reload.pTxBuffPtr; + } + else + { + /* Disable TXP interrupts */ + __HAL_SPI_DISABLE_IT(hspi, SPI_IT_TXP); + } +#else + /* Disable TXP interrupts */ + __HAL_SPI_DISABLE_IT(hspi, SPI_IT_TXP); +#endif /* USE_HSPI_RELOAD_TRANSFER */ + } +} + +/** + * @brief Handle the data 16-bit transmit in Interrupt mode. + * @param hspi: pointer to a SPI_HandleTypeDef structure that contains + * the configuration information for SPI module. + * @retval None + */ +static void SPI_TxISR_16BIT(SPI_HandleTypeDef *hspi) +{ + /* Transmit data in 16 Bit mode */ +#if defined (__GNUC__) + __IO uint16_t *ptxdr_16bits = (__IO uint16_t *)(&(hspi->Instance->TXDR)); + + *ptxdr_16bits = *((uint16_t *)hspi->pTxBuffPtr); +#else + *((__IO uint16_t *)&hspi->Instance->TXDR) = *((uint16_t *)hspi->pTxBuffPtr); +#endif /* __GNUC__ */ + hspi->pTxBuffPtr += sizeof(uint16_t); + hspi->TxXferCount--; + + /* Disable IT if no more data excepted */ + if (hspi->TxXferCount == 0UL) + { +#if defined(USE_SPI_RELOAD_TRANSFER) + /* Check if there is any request to reload */ + if (hspi->Reload.Requested == 1UL) + { + hspi->TxXferSize = hspi->Reload.TxXferSize; + hspi->TxXferCount = hspi->Reload.TxXferSize; + hspi->pTxBuffPtr = hspi->Reload.pTxBuffPtr; + } + else + { + /* Disable TXP interrupts */ + __HAL_SPI_DISABLE_IT(hspi, SPI_IT_TXP); + } +#else + /* Disable TXP interrupts */ + __HAL_SPI_DISABLE_IT(hspi, SPI_IT_TXP); +#endif /* USE_HSPI_RELOAD_TRANSFER */ + } +} + +/** + * @brief Handle the data 32-bit transmit in Interrupt mode. + * @param hspi: pointer to a SPI_HandleTypeDef structure that contains + * the configuration information for SPI module. + * @retval None + */ +static void SPI_TxISR_32BIT(SPI_HandleTypeDef *hspi) +{ + /* Transmit data in 32 Bit mode */ + *((__IO uint32_t *)&hspi->Instance->TXDR) = *((uint32_t *)hspi->pTxBuffPtr); + hspi->pTxBuffPtr += sizeof(uint32_t); + hspi->TxXferCount--; + + /* Disable IT if no more data excepted */ + if (hspi->TxXferCount == 0UL) + { +#if defined(USE_SPI_RELOAD_TRANSFER) + /* Check if there is any request to reload */ + if (hspi->Reload.Requested == 1UL) + { + hspi->TxXferSize = hspi->Reload.TxXferSize; + hspi->TxXferCount = hspi->Reload.TxXferSize; + hspi->pTxBuffPtr = hspi->Reload.pTxBuffPtr; + } + else + { + /* Disable TXP interrupts */ + __HAL_SPI_DISABLE_IT(hspi, SPI_IT_TXP); + } +#else + /* Disable TXP interrupts */ + __HAL_SPI_DISABLE_IT(hspi, SPI_IT_TXP); +#endif /* USE_HSPI_RELOAD_TRANSFER */ + } +} + +/** + * @brief Abort Transfer and clear flags. + * @param hspi: pointer to a SPI_HandleTypeDef structure that contains + * the configuration information for SPI module. + * @retval None + */ +static void SPI_AbortTransfer(SPI_HandleTypeDef *hspi) +{ + /* Disable SPI peripheral */ + __HAL_SPI_DISABLE(hspi); + + /* Disable ITs */ + __HAL_SPI_DISABLE_IT(hspi, (SPI_IT_EOT | SPI_IT_TXP | SPI_IT_RXP | SPI_IT_DXP | SPI_IT_UDR | SPI_IT_OVR | SPI_IT_FRE | SPI_IT_MODF)); + + /* Clear the Status flags in the SR register */ + __HAL_SPI_CLEAR_EOTFLAG(hspi); + __HAL_SPI_CLEAR_TXTFFLAG(hspi); + + /* Disable Tx DMA Request */ + CLEAR_BIT(hspi->Instance->CFG1, SPI_CFG1_TXDMAEN | SPI_CFG1_RXDMAEN); + + /* Clear the Error flags in the SR register */ + __HAL_SPI_CLEAR_OVRFLAG(hspi); + __HAL_SPI_CLEAR_UDRFLAG(hspi); + __HAL_SPI_CLEAR_FREFLAG(hspi); + __HAL_SPI_CLEAR_MODFFLAG(hspi); + __HAL_SPI_CLEAR_SUSPFLAG(hspi); + +#if (USE_SPI_CRC != 0U) + __HAL_SPI_CLEAR_CRCERRFLAG(hspi); +#endif /* USE_SPI_CRC */ + + hspi->TxXferCount = (uint16_t)0UL; + hspi->RxXferCount = (uint16_t)0UL; +} + + +/** + * @brief Close Transfer and clear flags. + * @param hspi: pointer to a SPI_HandleTypeDef structure that contains + * the configuration information for SPI module. + * @retval HAL_ERROR: if any error detected +* HAL_OK: if nothing detected + */ +static void SPI_CloseTransfer(SPI_HandleTypeDef *hspi) +{ + uint32_t itflag = hspi->Instance->SR; + + __HAL_SPI_CLEAR_EOTFLAG(hspi); + __HAL_SPI_CLEAR_TXTFFLAG(hspi); + + /* Disable SPI peripheral */ + __HAL_SPI_DISABLE(hspi); + + /* Disable ITs */ + __HAL_SPI_DISABLE_IT(hspi, (SPI_IT_EOT | SPI_IT_TXP | SPI_IT_RXP | SPI_IT_DXP | SPI_IT_UDR | SPI_IT_OVR | SPI_IT_FRE | SPI_IT_MODF)); + + /* Disable Tx DMA Request */ + CLEAR_BIT(hspi->Instance->CFG1, SPI_CFG1_TXDMAEN | SPI_CFG1_RXDMAEN); + + /* Report UnderRun error for non RX Only communication */ + if (hspi->State != HAL_SPI_STATE_BUSY_RX) + { + if ((itflag & SPI_FLAG_UDR) != 0UL) + { + SET_BIT(hspi->ErrorCode, HAL_SPI_ERROR_UDR); + __HAL_SPI_CLEAR_UDRFLAG(hspi); + } + } + + /* Report OverRun error for non TX Only communication */ + if (hspi->State != HAL_SPI_STATE_BUSY_TX) + { + if ((itflag & SPI_FLAG_OVR) != 0UL) + { + SET_BIT(hspi->ErrorCode, HAL_SPI_ERROR_OVR); + __HAL_SPI_CLEAR_OVRFLAG(hspi); + } + +#if (USE_SPI_CRC != 0UL) + /* Check if CRC error occurred */ + if (hspi->Init.CRCCalculation == SPI_CRCCALCULATION_ENABLE) + { + if ((itflag & SPI_FLAG_CRCERR) != 0UL) + { + SET_BIT(hspi->ErrorCode, HAL_SPI_ERROR_CRC); + __HAL_SPI_CLEAR_CRCERRFLAG(hspi); + } + } +#endif /* USE_SPI_CRC */ + } + + /* SPI Mode Fault error interrupt occurred -------------------------------*/ + if ((itflag & SPI_FLAG_MODF) != 0UL) + { + SET_BIT(hspi->ErrorCode, HAL_SPI_ERROR_MODF); + __HAL_SPI_CLEAR_MODFFLAG(hspi); + } + + /* SPI Frame error interrupt occurred ------------------------------------*/ + if ((itflag & SPI_FLAG_FRE) != 0UL) + { + SET_BIT(hspi->ErrorCode, HAL_SPI_ERROR_FRE); + __HAL_SPI_CLEAR_FREFLAG(hspi); + } + + hspi->TxXferCount = (uint16_t)0UL; + hspi->RxXferCount = (uint16_t)0UL; +} + +/** + * @brief Handle SPI Communication Timeout. + * @param hspi: pointer to a SPI_HandleTypeDef structure that contains + * the configuration information for SPI module. + * @param Flag: SPI flag to check + * @param Status: flag state to check + * @param Timeout: Timeout duration + * @param Tickstart: Tick start value + * @retval HAL status + */ +static HAL_StatusTypeDef SPI_WaitOnFlagUntilTimeout(SPI_HandleTypeDef *hspi, uint32_t Flag, FlagStatus Status, + uint32_t Tickstart, uint32_t Timeout) +{ + /* Wait until flag is set */ + while ((__HAL_SPI_GET_FLAG(hspi, Flag) ? SET : RESET) == Status) + { + /* Check for the Timeout */ + if ((((HAL_GetTick() - Tickstart) >= Timeout) && (Timeout != HAL_MAX_DELAY)) || (Timeout == 0U)) + { + return HAL_TIMEOUT; + } + } + return HAL_OK; +} + +/** + * @brief Compute configured packet size from fifo perspective. + * @param hspi: pointer to a SPI_HandleTypeDef structure that contains + * the configuration information for SPI module. + * @retval Packet size occupied in the fifo + */ +static uint32_t SPI_GetPacketSize(SPI_HandleTypeDef *hspi) +{ + uint32_t fifo_threashold = (hspi->Init.FifoThreshold >> SPI_CFG1_FTHLV_Pos) + 1UL; + uint32_t data_size = (hspi->Init.DataSize >> SPI_CFG1_DSIZE_Pos) + 1UL; + + /* Convert data size to Byte */ + data_size = (data_size + 7UL) / 8UL; + + return data_size * fifo_threashold; +} + + +/** + * @} + */ + +#endif /* HAL_SPI_MODULE_ENABLED */ + +/** + * @} + */ + +/** + * @} + */ + +/************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/ diff --git a/source/hic_hal/stm32/stm32h743ii/STM32H7xx_HAL_Driver/Src/stm32h7xx_hal_spi_ex.c b/source/hic_hal/stm32/stm32h743ii/STM32H7xx_HAL_Driver/Src/stm32h7xx_hal_spi_ex.c new file mode 100644 index 000000000..ade9c6473 --- /dev/null +++ b/source/hic_hal/stm32/stm32h743ii/STM32H7xx_HAL_Driver/Src/stm32h7xx_hal_spi_ex.c @@ -0,0 +1,229 @@ +/** + ****************************************************************************** + * @file stm32h7xx_hal_spi_ex.c + * @author MCD Application Team + * @brief Extended SPI HAL module driver. + * This file provides firmware functions to manage the following + * SPI peripheral extended functionalities : + * + IO operation functions + * + Peripheral Control functions + * + ****************************************************************************** + * @attention + * + *

© Copyright (c) 2017 STMicroelectronics. + * All rights reserved.

+ * + * This software component is licensed by ST under BSD 3-Clause license, + * the "License"; You may not use this file except in compliance with the + * License. You may obtain a copy of the License at: + * opensource.org/licenses/BSD-3-Clause + * + ****************************************************************************** + */ + +/* Includes ------------------------------------------------------------------*/ +#include "stm32h7xx_hal.h" + +/** @addtogroup STM32H7xx_HAL_Driver + * @{ + */ + +/** @defgroup SPIEx SPIEx + * @brief SPI Extended HAL module driver + * @{ + */ +#ifdef HAL_SPI_MODULE_ENABLED + +/* Private typedef -----------------------------------------------------------*/ +/* Private defines -----------------------------------------------------------*/ +/* Private macros ------------------------------------------------------------*/ +/* Private variables ---------------------------------------------------------*/ +/* Private function prototypes -----------------------------------------------*/ +/* Exported functions --------------------------------------------------------*/ + +/** @defgroup SPIEx_Exported_Functions SPIEx Exported Functions + * @{ + */ + +/** @defgroup SPIEx_Exported_Functions_Group1 IO operation functions + * @brief Data transfers functions + * +@verbatim + ============================================================================== + ##### IO operation functions ##### + =============================================================================== + [..] + This subsection provides a set of extended functions to manage the SPI + data transfers. + + (#) SPIEx function: + (++) HAL_SPIEx_FlushRxFifo() + (++) HAL_SPIEx_FlushRxFifo() + (++) HAL_SPIEx_EnableLockConfiguration() + (++) HAL_SPIEx_ConfigureUnderrun() + +@endverbatim + * @{ + */ + +/** + * @brief Flush the RX fifo. + * @param hspi: pointer to a SPI_HandleTypeDef structure that contains + * the configuration information for the specified SPI module. + * @retval HAL status + */ +HAL_StatusTypeDef HAL_SPIEx_FlushRxFifo(SPI_HandleTypeDef *hspi) +{ + uint8_t count = 0; + uint32_t itflag = hspi->Instance->SR; + __IO uint32_t tmpreg; + + while (((hspi->Instance->SR & SPI_FLAG_FRLVL) != SPI_RX_FIFO_0PACKET) || ((itflag & SPI_FLAG_RXWNE) != 0UL)) + { + count += (uint8_t)4UL; + tmpreg = hspi->Instance->RXDR; + UNUSED(tmpreg); /* To avoid GCC warning */ + + if (IS_SPI_HIGHEND_INSTANCE(hspi->Instance)) + { + if (count > SPI_HIGHEND_FIFO_SIZE) + { + return HAL_TIMEOUT; + } + } + else + { + if (count > SPI_LOWEND_FIFO_SIZE) + { + return HAL_TIMEOUT; + } + } + } + return HAL_OK; +} + + +/** + * @brief Enable the Lock for the AF configuration of associated IOs + * and write protect the Content of Configuration register 2 + * when SPI is enabled + * @param hspi: pointer to a SPI_HandleTypeDef structure that contains + * the configuration information for SPI module. + * @retval None + */ +HAL_StatusTypeDef HAL_SPIEx_EnableLockConfiguration(SPI_HandleTypeDef *hspi) +{ + HAL_StatusTypeDef errorcode = HAL_OK; + + /* Process Locked */ + __HAL_LOCK(hspi); + + if (hspi->State != HAL_SPI_STATE_READY) + { + errorcode = HAL_BUSY; + hspi->State = HAL_SPI_STATE_READY; + /* Process Unlocked */ + __HAL_UNLOCK(hspi); + return errorcode; + } + + /* Check if the SPI is disabled to edit IOLOCK bit */ + if ((hspi->Instance->CR1 & SPI_CR1_SPE) != SPI_CR1_SPE) + { + SET_BIT(hspi->Instance->CR1, SPI_CR1_IOLOCK); + } + else + { + /* Disable SPI peripheral */ + __HAL_SPI_DISABLE(hspi); + + SET_BIT(hspi->Instance->CR1, SPI_CR1_IOLOCK); + + /* Enable SPI peripheral */ + __HAL_SPI_ENABLE(hspi); + } + + hspi->State = HAL_SPI_STATE_READY; + /* Process Unlocked */ + __HAL_UNLOCK(hspi); + return errorcode; +} + +/** + * @brief Configure the UNDERRUN condition and behavior of slave transmitter. + * @param hspi: pointer to a SPI_HandleTypeDef structure that contains + * the configuration information for SPI module. + * @param UnderrunDetection : Detection of underrun condition at slave transmitter + * This parameter can be a value of @ref SPI_Underrun_Detection. + * @param UnderrunBehaviour : Behavior of slave transmitter at underrun condition + * This parameter can be a value of @ref SPI_Underrun_Behaviour. + * @retval None + */ +HAL_StatusTypeDef HAL_SPIEx_ConfigureUnderrun(SPI_HandleTypeDef *hspi, uint32_t UnderrunDetection, uint32_t UnderrunBehaviour) +{ + HAL_StatusTypeDef errorcode = HAL_OK; + + /* Process Locked */ + __HAL_LOCK(hspi); + + /* Check State and Insure that Underrun configuration is managed only by Salve */ + if ((hspi->State != HAL_SPI_STATE_READY) || (hspi->Init.Mode != SPI_MODE_SLAVE)) + { + errorcode = HAL_BUSY; + hspi->State = HAL_SPI_STATE_READY; + /* Process Unlocked */ + __HAL_UNLOCK(hspi); + return errorcode; + } + + /* Check the parameters */ + assert_param(IS_SPI_UNDERRUN_DETECTION(UnderrunDetection)); + assert_param(IS_SPI_UNDERRUN_BEHAVIOUR(UnderrunBehaviour)); + + /* Check if the SPI is disabled to edit CFG1 register */ + if ((hspi->Instance->CR1 & SPI_CR1_SPE) != SPI_CR1_SPE) + { + /* Configure Underrun fields */ + MODIFY_REG(hspi->Instance->CFG1, SPI_CFG1_UDRDET, UnderrunDetection); + MODIFY_REG(hspi->Instance->CFG1, SPI_CFG1_UDRCFG, UnderrunBehaviour); + } + else + { + /* Disable SPI peripheral */ + __HAL_SPI_DISABLE(hspi); + + /* Configure Underrun fields */ + MODIFY_REG(hspi->Instance->CFG1, SPI_CFG1_UDRDET, UnderrunDetection); + MODIFY_REG(hspi->Instance->CFG1, SPI_CFG1_UDRCFG, UnderrunBehaviour); + + /* Enable SPI peripheral */ + __HAL_SPI_ENABLE(hspi); + } + + + hspi->State = HAL_SPI_STATE_READY; + /* Process Unlocked */ + __HAL_UNLOCK(hspi); + return errorcode; +} + +/** + * @} + */ + +/** + * @} + */ + +#endif /* HAL_SPI_MODULE_ENABLED */ + +/** + * @} + */ + +/** + * @} + */ + +/************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/ diff --git a/source/hic_hal/stm32/stm32h743ii/STM32H7xx_HAL_Driver/Src/stm32h7xx_hal_tim.c b/source/hic_hal/stm32/stm32h743ii/STM32H7xx_HAL_Driver/Src/stm32h7xx_hal_tim.c new file mode 100644 index 000000000..0b2bcb493 --- /dev/null +++ b/source/hic_hal/stm32/stm32h743ii/STM32H7xx_HAL_Driver/Src/stm32h7xx_hal_tim.c @@ -0,0 +1,7047 @@ +/** + ****************************************************************************** + * @file stm32h7xx_hal_tim.c + * @author MCD Application Team + * @brief TIM HAL module driver. + * This file provides firmware functions to manage the following + * functionalities of the Timer (TIM) peripheral: + * + TIM Time Base Initialization + * + TIM Time Base Start + * + TIM Time Base Start Interruption + * + TIM Time Base Start DMA + * + TIM Output Compare/PWM Initialization + * + TIM Output Compare/PWM Channel Configuration + * + TIM Output Compare/PWM Start + * + TIM Output Compare/PWM Start Interruption + * + TIM Output Compare/PWM Start DMA + * + TIM Input Capture Initialization + * + TIM Input Capture Channel Configuration + * + TIM Input Capture Start + * + TIM Input Capture Start Interruption + * + TIM Input Capture Start DMA + * + TIM One Pulse Initialization + * + TIM One Pulse Channel Configuration + * + TIM One Pulse Start + * + TIM Encoder Interface Initialization + * + TIM Encoder Interface Start + * + TIM Encoder Interface Start Interruption + * + TIM Encoder Interface Start DMA + * + Commutation Event configuration with Interruption and DMA + * + TIM OCRef clear configuration + * + TIM External Clock configuration + @verbatim + ============================================================================== + ##### TIMER Generic features ##### + ============================================================================== + [..] The Timer features include: + (#) 16-bit up, down, up/down auto-reload counter. + (#) 16-bit programmable prescaler allowing dividing (also on the fly) the + counter clock frequency either by any factor between 1 and 65536. + (#) Up to 4 independent channels for: + (++) Input Capture + (++) Output Compare + (++) PWM generation (Edge and Center-aligned Mode) + (++) One-pulse mode output + (#) Synchronization circuit to control the timer with external signals and to interconnect + several timers together. + (#) Supports incremental encoder for positioning purposes + + ##### How to use this driver ##### + ============================================================================== + [..] + (#) Initialize the TIM low level resources by implementing the following functions + depending on the selected feature: + (++) Time Base : HAL_TIM_Base_MspInit() + (++) Input Capture : HAL_TIM_IC_MspInit() + (++) Output Compare : HAL_TIM_OC_MspInit() + (++) PWM generation : HAL_TIM_PWM_MspInit() + (++) One-pulse mode output : HAL_TIM_OnePulse_MspInit() + (++) Encoder mode output : HAL_TIM_Encoder_MspInit() + + (#) Initialize the TIM low level resources : + (##) Enable the TIM interface clock using __HAL_RCC_TIMx_CLK_ENABLE(); + (##) TIM pins configuration + (+++) Enable the clock for the TIM GPIOs using the following function: + __HAL_RCC_GPIOx_CLK_ENABLE(); + (+++) Configure these TIM pins in Alternate function mode using HAL_GPIO_Init(); + + (#) The external Clock can be configured, if needed (the default clock is the + internal clock from the APBx), using the following function: + HAL_TIM_ConfigClockSource, the clock configuration should be done before + any start function. + + (#) Configure the TIM in the desired functioning mode using one of the + Initialization function of this driver: + (++) HAL_TIM_Base_Init: to use the Timer to generate a simple time base + (++) HAL_TIM_OC_Init and HAL_TIM_OC_ConfigChannel: to use the Timer to generate an + Output Compare signal. + (++) HAL_TIM_PWM_Init and HAL_TIM_PWM_ConfigChannel: to use the Timer to generate a + PWM signal. + (++) HAL_TIM_IC_Init and HAL_TIM_IC_ConfigChannel: to use the Timer to measure an + external signal. + (++) HAL_TIM_OnePulse_Init and HAL_TIM_OnePulse_ConfigChannel: to use the Timer + in One Pulse Mode. + (++) HAL_TIM_Encoder_Init: to use the Timer Encoder Interface. + + (#) Activate the TIM peripheral using one of the start functions depending from the feature used: + (++) Time Base : HAL_TIM_Base_Start(), HAL_TIM_Base_Start_DMA(), HAL_TIM_Base_Start_IT() + (++) Input Capture : HAL_TIM_IC_Start(), HAL_TIM_IC_Start_DMA(), HAL_TIM_IC_Start_IT() + (++) Output Compare : HAL_TIM_OC_Start(), HAL_TIM_OC_Start_DMA(), HAL_TIM_OC_Start_IT() + (++) PWM generation : HAL_TIM_PWM_Start(), HAL_TIM_PWM_Start_DMA(), HAL_TIM_PWM_Start_IT() + (++) One-pulse mode output : HAL_TIM_OnePulse_Start(), HAL_TIM_OnePulse_Start_IT() + (++) Encoder mode output : HAL_TIM_Encoder_Start(), HAL_TIM_Encoder_Start_DMA(), HAL_TIM_Encoder_Start_IT(). + + (#) The DMA Burst is managed with the two following functions: + HAL_TIM_DMABurst_WriteStart() + HAL_TIM_DMABurst_ReadStart() + + *** Callback registration *** + ============================================= + + [..] + The compilation define USE_HAL_TIM_REGISTER_CALLBACKS when set to 1 + allows the user to configure dynamically the driver callbacks. + + [..] + Use Function @ref HAL_TIM_RegisterCallback() to register a callback. + @ref HAL_TIM_RegisterCallback() takes as parameters the HAL peripheral handle, + the Callback ID and a pointer to the user callback function. + + [..] + Use function @ref HAL_TIM_UnRegisterCallback() to reset a callback to the default + weak function. + @ref HAL_TIM_UnRegisterCallback takes as parameters the HAL peripheral handle, + and the Callback ID. + + [..] + These functions allow to register/unregister following callbacks: + (+) Base_MspInitCallback : TIM Base Msp Init Callback. + (+) Base_MspDeInitCallback : TIM Base Msp DeInit Callback. + (+) IC_MspInitCallback : TIM IC Msp Init Callback. + (+) IC_MspDeInitCallback : TIM IC Msp DeInit Callback. + (+) OC_MspInitCallback : TIM OC Msp Init Callback. + (+) OC_MspDeInitCallback : TIM OC Msp DeInit Callback. + (+) PWM_MspInitCallback : TIM PWM Msp Init Callback. + (+) PWM_MspDeInitCallback : TIM PWM Msp DeInit Callback. + (+) OnePulse_MspInitCallback : TIM One Pulse Msp Init Callback. + (+) OnePulse_MspDeInitCallback : TIM One Pulse Msp DeInit Callback. + (+) Encoder_MspInitCallback : TIM Encoder Msp Init Callback. + (+) Encoder_MspDeInitCallback : TIM Encoder Msp DeInit Callback. + (+) HallSensor_MspInitCallback : TIM Hall Sensor Msp Init Callback. + (+) HallSensor_MspDeInitCallback : TIM Hall Sensor Msp DeInit Callback. + (+) PeriodElapsedCallback : TIM Period Elapsed Callback. + (+) PeriodElapsedHalfCpltCallback : TIM Period Elapsed half complete Callback. + (+) TriggerCallback : TIM Trigger Callback. + (+) TriggerHalfCpltCallback : TIM Trigger half complete Callback. + (+) IC_CaptureCallback : TIM Input Capture Callback. + (+) IC_CaptureHalfCpltCallback : TIM Input Capture half complete Callback. + (+) OC_DelayElapsedCallback : TIM Output Compare Delay Elapsed Callback. + (+) PWM_PulseFinishedCallback : TIM PWM Pulse Finished Callback. + (+) PWM_PulseFinishedHalfCpltCallback : TIM PWM Pulse Finished half complete Callback. + (+) ErrorCallback : TIM Error Callback. + (+) CommutationCallback : TIM Commutation Callback. + (+) CommutationHalfCpltCallback : TIM Commutation half complete Callback. + (+) BreakCallback : TIM Break Callback. + (+) Break2Callback : TIM Break2 Callback. + + [..] +By default, after the Init and when the state is HAL_TIM_STATE_RESET +all interrupt callbacks are set to the corresponding weak functions: + examples @ref HAL_TIM_TriggerCallback(), @ref HAL_TIM_ErrorCallback(). + + [..] + Exception done for MspInit and MspDeInit functions that are reset to the legacy weak + functionalities in the Init / DeInit only when these callbacks are null + (not registered beforehand). If not, MspInit or MspDeInit are not null, the Init / DeInit + keep and use the user MspInit / MspDeInit callbacks(registered beforehand) + + [..] + Callbacks can be registered / unregistered in HAL_TIM_STATE_READY state only. + Exception done MspInit / MspDeInit that can be registered / unregistered + in HAL_TIM_STATE_READY or HAL_TIM_STATE_RESET state, + thus registered(user) MspInit / DeInit callbacks can be used during the Init / DeInit. + In that case first register the MspInit/MspDeInit user callbacks + using @ref HAL_TIM_RegisterCallback() before calling DeInit or Init function. + + [..] + When The compilation define USE_HAL_TIM_REGISTER_CALLBACKS is set to 0 or + not defined, the callback registration feature is not available and all callbacks + are set to the corresponding weak functions. + + @endverbatim + ****************************************************************************** + * @attention + * + *

© Copyright (c) 2017 STMicroelectronics. + * All rights reserved.

+ * + * This software component is licensed by ST under BSD 3-Clause license, + * the "License"; You may not use this file except in compliance with the + * License. You may obtain a copy of the License at: + * opensource.org/licenses/BSD-3-Clause + * + ****************************************************************************** + */ + +/* Includes ------------------------------------------------------------------*/ +#include "stm32h7xx_hal.h" + +/** @addtogroup STM32H7xx_HAL_Driver + * @{ + */ + +/** @defgroup TIM TIM + * @brief TIM HAL module driver + * @{ + */ + +#ifdef HAL_TIM_MODULE_ENABLED + +/* Private typedef -----------------------------------------------------------*/ +/* Private define ------------------------------------------------------------*/ +/* Private macro -------------------------------------------------------------*/ +/* Private variables ---------------------------------------------------------*/ +/* Private function prototypes -----------------------------------------------*/ +/** @addtogroup TIM_Private_Functions + * @{ + */ +static void TIM_OC1_SetConfig(TIM_TypeDef *TIMx, TIM_OC_InitTypeDef *OC_Config); +static void TIM_OC3_SetConfig(TIM_TypeDef *TIMx, TIM_OC_InitTypeDef *OC_Config); +static void TIM_OC4_SetConfig(TIM_TypeDef *TIMx, TIM_OC_InitTypeDef *OC_Config); +static void TIM_OC5_SetConfig(TIM_TypeDef *TIMx, TIM_OC_InitTypeDef *OC_Config); +static void TIM_OC6_SetConfig(TIM_TypeDef *TIMx, TIM_OC_InitTypeDef *OC_Config); +static void TIM_TI1_ConfigInputStage(TIM_TypeDef *TIMx, uint32_t TIM_ICPolarity, uint32_t TIM_ICFilter); +static void TIM_TI2_SetConfig(TIM_TypeDef *TIMx, uint32_t TIM_ICPolarity, uint32_t TIM_ICSelection, + uint32_t TIM_ICFilter); +static void TIM_TI2_ConfigInputStage(TIM_TypeDef *TIMx, uint32_t TIM_ICPolarity, uint32_t TIM_ICFilter); +static void TIM_TI3_SetConfig(TIM_TypeDef *TIMx, uint32_t TIM_ICPolarity, uint32_t TIM_ICSelection, + uint32_t TIM_ICFilter); +static void TIM_TI4_SetConfig(TIM_TypeDef *TIMx, uint32_t TIM_ICPolarity, uint32_t TIM_ICSelection, + uint32_t TIM_ICFilter); +static void TIM_ITRx_SetConfig(TIM_TypeDef *TIMx, uint32_t InputTriggerSource); +static void TIM_DMAPeriodElapsedCplt(DMA_HandleTypeDef *hdma); +static void TIM_DMAPeriodElapsedHalfCplt(DMA_HandleTypeDef *hdma); +static void TIM_DMATriggerCplt(DMA_HandleTypeDef *hdma); +static void TIM_DMATriggerHalfCplt(DMA_HandleTypeDef *hdma); +static HAL_StatusTypeDef TIM_SlaveTimer_SetConfig(TIM_HandleTypeDef *htim, + TIM_SlaveConfigTypeDef *sSlaveConfig); +/** + * @} + */ +/* Exported functions --------------------------------------------------------*/ + +/** @defgroup TIM_Exported_Functions TIM Exported Functions + * @{ + */ + +/** @defgroup TIM_Exported_Functions_Group1 TIM Time Base functions + * @brief Time Base functions + * +@verbatim + ============================================================================== + ##### Time Base functions ##### + ============================================================================== + [..] + This section provides functions allowing to: + (+) Initialize and configure the TIM base. + (+) De-initialize the TIM base. + (+) Start the Time Base. + (+) Stop the Time Base. + (+) Start the Time Base and enable interrupt. + (+) Stop the Time Base and disable interrupt. + (+) Start the Time Base and enable DMA transfer. + (+) Stop the Time Base and disable DMA transfer. + +@endverbatim + * @{ + */ +/** + * @brief Initializes the TIM Time base Unit according to the specified + * parameters in the TIM_HandleTypeDef and initialize the associated handle. + * @note Switching from Center Aligned counter mode to Edge counter mode (or reverse) + * requires a timer reset to avoid unexpected direction + * due to DIR bit readonly in center aligned mode. + * Ex: call @ref HAL_TIM_Base_DeInit() before HAL_TIM_Base_Init() + * @param htim TIM Base handle + * @retval HAL status + */ +HAL_StatusTypeDef HAL_TIM_Base_Init(TIM_HandleTypeDef *htim) +{ + /* Check the TIM handle allocation */ + if (htim == NULL) + { + return HAL_ERROR; + } + + /* Check the parameters */ + assert_param(IS_TIM_INSTANCE(htim->Instance)); + assert_param(IS_TIM_COUNTER_MODE(htim->Init.CounterMode)); + assert_param(IS_TIM_CLOCKDIVISION_DIV(htim->Init.ClockDivision)); + assert_param(IS_TIM_AUTORELOAD_PRELOAD(htim->Init.AutoReloadPreload)); + + if (htim->State == HAL_TIM_STATE_RESET) + { + /* Allocate lock resource and initialize it */ + htim->Lock = HAL_UNLOCKED; + +#if (USE_HAL_TIM_REGISTER_CALLBACKS == 1) + /* Reset interrupt callbacks to legacy weak callbacks */ + TIM_ResetCallback(htim); + + if (htim->Base_MspInitCallback == NULL) + { + htim->Base_MspInitCallback = HAL_TIM_Base_MspInit; + } + /* Init the low level hardware : GPIO, CLOCK, NVIC */ + htim->Base_MspInitCallback(htim); +#else + /* Init the low level hardware : GPIO, CLOCK, NVIC */ + HAL_TIM_Base_MspInit(htim); +#endif /* USE_HAL_TIM_REGISTER_CALLBACKS */ + } + + /* Set the TIM state */ + htim->State = HAL_TIM_STATE_BUSY; + + /* Set the Time Base configuration */ + TIM_Base_SetConfig(htim->Instance, &htim->Init); + + /* Initialize the TIM state*/ + htim->State = HAL_TIM_STATE_READY; + + return HAL_OK; +} + +/** + * @brief DeInitializes the TIM Base peripheral + * @param htim TIM Base handle + * @retval HAL status + */ +HAL_StatusTypeDef HAL_TIM_Base_DeInit(TIM_HandleTypeDef *htim) +{ + /* Check the parameters */ + assert_param(IS_TIM_INSTANCE(htim->Instance)); + + htim->State = HAL_TIM_STATE_BUSY; + + /* Disable the TIM Peripheral Clock */ + __HAL_TIM_DISABLE(htim); + +#if (USE_HAL_TIM_REGISTER_CALLBACKS == 1) + if (htim->Base_MspDeInitCallback == NULL) + { + htim->Base_MspDeInitCallback = HAL_TIM_Base_MspDeInit; + } + /* DeInit the low level hardware */ + htim->Base_MspDeInitCallback(htim); +#else + /* DeInit the low level hardware: GPIO, CLOCK, NVIC */ + HAL_TIM_Base_MspDeInit(htim); +#endif /* USE_HAL_TIM_REGISTER_CALLBACKS */ + + /* Change TIM state */ + htim->State = HAL_TIM_STATE_RESET; + + /* Release Lock */ + __HAL_UNLOCK(htim); + + return HAL_OK; +} + +/** + * @brief Initializes the TIM Base MSP. + * @param htim TIM Base handle + * @retval None + */ +__weak void HAL_TIM_Base_MspInit(TIM_HandleTypeDef *htim) +{ + /* Prevent unused argument(s) compilation warning */ + UNUSED(htim); + + /* NOTE : This function should not be modified, when the callback is needed, + the HAL_TIM_Base_MspInit could be implemented in the user file + */ +} + +/** + * @brief DeInitializes TIM Base MSP. + * @param htim TIM Base handle + * @retval None + */ +__weak void HAL_TIM_Base_MspDeInit(TIM_HandleTypeDef *htim) +{ + /* Prevent unused argument(s) compilation warning */ + UNUSED(htim); + + /* NOTE : This function should not be modified, when the callback is needed, + the HAL_TIM_Base_MspDeInit could be implemented in the user file + */ +} + + +/** + * @brief Starts the TIM Base generation. + * @param htim TIM Base handle + * @retval HAL status + */ +HAL_StatusTypeDef HAL_TIM_Base_Start(TIM_HandleTypeDef *htim) +{ + uint32_t tmpsmcr; + + /* Check the parameters */ + assert_param(IS_TIM_INSTANCE(htim->Instance)); + + /* Set the TIM state */ + htim->State = HAL_TIM_STATE_BUSY; + + /* Enable the Peripheral, except in trigger mode where enable is automatically done with trigger */ + tmpsmcr = htim->Instance->SMCR & TIM_SMCR_SMS; + if (!IS_TIM_SLAVEMODE_TRIGGER_ENABLED(tmpsmcr)) + { + __HAL_TIM_ENABLE(htim); + } + + /* Change the TIM state*/ + htim->State = HAL_TIM_STATE_READY; + + /* Return function status */ + return HAL_OK; +} + +/** + * @brief Stops the TIM Base generation. + * @param htim TIM Base handle + * @retval HAL status + */ +HAL_StatusTypeDef HAL_TIM_Base_Stop(TIM_HandleTypeDef *htim) +{ + /* Check the parameters */ + assert_param(IS_TIM_INSTANCE(htim->Instance)); + + /* Set the TIM state */ + htim->State = HAL_TIM_STATE_BUSY; + + /* Disable the Peripheral */ + __HAL_TIM_DISABLE(htim); + + /* Change the TIM state*/ + htim->State = HAL_TIM_STATE_READY; + + /* Return function status */ + return HAL_OK; +} + +/** + * @brief Starts the TIM Base generation in interrupt mode. + * @param htim TIM Base handle + * @retval HAL status + */ +HAL_StatusTypeDef HAL_TIM_Base_Start_IT(TIM_HandleTypeDef *htim) +{ + uint32_t tmpsmcr; + + /* Check the parameters */ + assert_param(IS_TIM_INSTANCE(htim->Instance)); + + /* Enable the TIM Update interrupt */ + __HAL_TIM_ENABLE_IT(htim, TIM_IT_UPDATE); + + /* Enable the Peripheral, except in trigger mode where enable is automatically done with trigger */ + tmpsmcr = htim->Instance->SMCR & TIM_SMCR_SMS; + if (!IS_TIM_SLAVEMODE_TRIGGER_ENABLED(tmpsmcr)) + { + __HAL_TIM_ENABLE(htim); + } + + /* Return function status */ + return HAL_OK; +} + +/** + * @brief Stops the TIM Base generation in interrupt mode. + * @param htim TIM Base handle + * @retval HAL status + */ +HAL_StatusTypeDef HAL_TIM_Base_Stop_IT(TIM_HandleTypeDef *htim) +{ + /* Check the parameters */ + assert_param(IS_TIM_INSTANCE(htim->Instance)); + /* Disable the TIM Update interrupt */ + __HAL_TIM_DISABLE_IT(htim, TIM_IT_UPDATE); + + /* Disable the Peripheral */ + __HAL_TIM_DISABLE(htim); + + /* Return function status */ + return HAL_OK; +} + +/** + * @brief Starts the TIM Base generation in DMA mode. + * @param htim TIM Base handle + * @param pData The source Buffer address. + * @param Length The length of data to be transferred from memory to peripheral. + * @retval HAL status + */ +HAL_StatusTypeDef HAL_TIM_Base_Start_DMA(TIM_HandleTypeDef *htim, uint32_t *pData, uint16_t Length) +{ + uint32_t tmpsmcr; + + /* Check the parameters */ + assert_param(IS_TIM_DMA_INSTANCE(htim->Instance)); + + if (htim->State == HAL_TIM_STATE_BUSY) + { + return HAL_BUSY; + } + else if (htim->State == HAL_TIM_STATE_READY) + { + if ((pData == NULL) && (Length > 0U)) + { + return HAL_ERROR; + } + else + { + htim->State = HAL_TIM_STATE_BUSY; + } + } + else + { + /* nothing to do */ + } + + /* Set the DMA Period elapsed callbacks */ + htim->hdma[TIM_DMA_ID_UPDATE]->XferCpltCallback = TIM_DMAPeriodElapsedCplt; + htim->hdma[TIM_DMA_ID_UPDATE]->XferHalfCpltCallback = TIM_DMAPeriodElapsedHalfCplt; + + /* Set the DMA error callback */ + htim->hdma[TIM_DMA_ID_UPDATE]->XferErrorCallback = TIM_DMAError ; + + /* Enable the DMA stream */ + if (HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_UPDATE], (uint32_t)pData, (uint32_t)&htim->Instance->ARR, Length) != HAL_OK) + { + return HAL_ERROR; + } + + /* Enable the TIM Update DMA request */ + __HAL_TIM_ENABLE_DMA(htim, TIM_DMA_UPDATE); + + /* Enable the Peripheral, except in trigger mode where enable is automatically done with trigger */ + tmpsmcr = htim->Instance->SMCR & TIM_SMCR_SMS; + if (!IS_TIM_SLAVEMODE_TRIGGER_ENABLED(tmpsmcr)) + { + __HAL_TIM_ENABLE(htim); + } + + /* Return function status */ + return HAL_OK; +} + +/** + * @brief Stops the TIM Base generation in DMA mode. + * @param htim TIM Base handle + * @retval HAL status + */ +HAL_StatusTypeDef HAL_TIM_Base_Stop_DMA(TIM_HandleTypeDef *htim) +{ + /* Check the parameters */ + assert_param(IS_TIM_DMA_INSTANCE(htim->Instance)); + + /* Disable the TIM Update DMA request */ + __HAL_TIM_DISABLE_DMA(htim, TIM_DMA_UPDATE); + + (void)HAL_DMA_Abort_IT(htim->hdma[TIM_DMA_ID_UPDATE]); + + /* Disable the Peripheral */ + __HAL_TIM_DISABLE(htim); + + /* Change the htim state */ + htim->State = HAL_TIM_STATE_READY; + + /* Return function status */ + return HAL_OK; +} + +/** + * @} + */ + +/** @defgroup TIM_Exported_Functions_Group2 TIM Output Compare functions + * @brief TIM Output Compare functions + * +@verbatim + ============================================================================== + ##### TIM Output Compare functions ##### + ============================================================================== + [..] + This section provides functions allowing to: + (+) Initialize and configure the TIM Output Compare. + (+) De-initialize the TIM Output Compare. + (+) Start the TIM Output Compare. + (+) Stop the TIM Output Compare. + (+) Start the TIM Output Compare and enable interrupt. + (+) Stop the TIM Output Compare and disable interrupt. + (+) Start the TIM Output Compare and enable DMA transfer. + (+) Stop the TIM Output Compare and disable DMA transfer. + +@endverbatim + * @{ + */ +/** + * @brief Initializes the TIM Output Compare according to the specified + * parameters in the TIM_HandleTypeDef and initializes the associated handle. + * @note Switching from Center Aligned counter mode to Edge counter mode (or reverse) + * requires a timer reset to avoid unexpected direction + * due to DIR bit readonly in center aligned mode. + * Ex: call @ref HAL_TIM_OC_DeInit() before HAL_TIM_OC_Init() + * @param htim TIM Output Compare handle + * @retval HAL status + */ +HAL_StatusTypeDef HAL_TIM_OC_Init(TIM_HandleTypeDef *htim) +{ + /* Check the TIM handle allocation */ + if (htim == NULL) + { + return HAL_ERROR; + } + + /* Check the parameters */ + assert_param(IS_TIM_INSTANCE(htim->Instance)); + assert_param(IS_TIM_COUNTER_MODE(htim->Init.CounterMode)); + assert_param(IS_TIM_CLOCKDIVISION_DIV(htim->Init.ClockDivision)); + assert_param(IS_TIM_AUTORELOAD_PRELOAD(htim->Init.AutoReloadPreload)); + + if (htim->State == HAL_TIM_STATE_RESET) + { + /* Allocate lock resource and initialize it */ + htim->Lock = HAL_UNLOCKED; + +#if (USE_HAL_TIM_REGISTER_CALLBACKS == 1) + /* Reset interrupt callbacks to legacy weak callbacks */ + TIM_ResetCallback(htim); + + if (htim->OC_MspInitCallback == NULL) + { + htim->OC_MspInitCallback = HAL_TIM_OC_MspInit; + } + /* Init the low level hardware : GPIO, CLOCK, NVIC */ + htim->OC_MspInitCallback(htim); +#else + /* Init the low level hardware : GPIO, CLOCK, NVIC and DMA */ + HAL_TIM_OC_MspInit(htim); +#endif /* USE_HAL_TIM_REGISTER_CALLBACKS */ + } + + /* Set the TIM state */ + htim->State = HAL_TIM_STATE_BUSY; + + /* Init the base time for the Output Compare */ + TIM_Base_SetConfig(htim->Instance, &htim->Init); + + /* Initialize the TIM state*/ + htim->State = HAL_TIM_STATE_READY; + + return HAL_OK; +} + +/** + * @brief DeInitializes the TIM peripheral + * @param htim TIM Output Compare handle + * @retval HAL status + */ +HAL_StatusTypeDef HAL_TIM_OC_DeInit(TIM_HandleTypeDef *htim) +{ + /* Check the parameters */ + assert_param(IS_TIM_INSTANCE(htim->Instance)); + + htim->State = HAL_TIM_STATE_BUSY; + + /* Disable the TIM Peripheral Clock */ + __HAL_TIM_DISABLE(htim); + +#if (USE_HAL_TIM_REGISTER_CALLBACKS == 1) + if (htim->OC_MspDeInitCallback == NULL) + { + htim->OC_MspDeInitCallback = HAL_TIM_OC_MspDeInit; + } + /* DeInit the low level hardware */ + htim->OC_MspDeInitCallback(htim); +#else + /* DeInit the low level hardware: GPIO, CLOCK, NVIC and DMA */ + HAL_TIM_OC_MspDeInit(htim); +#endif /* USE_HAL_TIM_REGISTER_CALLBACKS */ + + /* Change TIM state */ + htim->State = HAL_TIM_STATE_RESET; + + /* Release Lock */ + __HAL_UNLOCK(htim); + + return HAL_OK; +} + +/** + * @brief Initializes the TIM Output Compare MSP. + * @param htim TIM Output Compare handle + * @retval None + */ +__weak void HAL_TIM_OC_MspInit(TIM_HandleTypeDef *htim) +{ + /* Prevent unused argument(s) compilation warning */ + UNUSED(htim); + + /* NOTE : This function should not be modified, when the callback is needed, + the HAL_TIM_OC_MspInit could be implemented in the user file + */ +} + +/** + * @brief DeInitializes TIM Output Compare MSP. + * @param htim TIM Output Compare handle + * @retval None + */ +__weak void HAL_TIM_OC_MspDeInit(TIM_HandleTypeDef *htim) +{ + /* Prevent unused argument(s) compilation warning */ + UNUSED(htim); + + /* NOTE : This function should not be modified, when the callback is needed, + the HAL_TIM_OC_MspDeInit could be implemented in the user file + */ +} + +/** + * @brief Starts the TIM Output Compare signal generation. + * @param htim TIM Output Compare handle + * @param Channel TIM Channel to be enabled + * This parameter can be one of the following values: + * @arg TIM_CHANNEL_1: TIM Channel 1 selected + * @arg TIM_CHANNEL_2: TIM Channel 2 selected + * @arg TIM_CHANNEL_3: TIM Channel 3 selected + * @arg TIM_CHANNEL_4: TIM Channel 4 selected + * @arg TIM_CHANNEL_5: TIM Channel 5 selected + * @arg TIM_CHANNEL_6: TIM Channel 6 selected + * @retval HAL status + */ +HAL_StatusTypeDef HAL_TIM_OC_Start(TIM_HandleTypeDef *htim, uint32_t Channel) +{ + uint32_t tmpsmcr; + + /* Check the parameters */ + assert_param(IS_TIM_CCX_INSTANCE(htim->Instance, Channel)); + + /* Enable the Output compare channel */ + TIM_CCxChannelCmd(htim->Instance, Channel, TIM_CCx_ENABLE); + + if (IS_TIM_BREAK_INSTANCE(htim->Instance) != RESET) + { + /* Enable the main output */ + __HAL_TIM_MOE_ENABLE(htim); + } + + /* Enable the Peripheral, except in trigger mode where enable is automatically done with trigger */ + tmpsmcr = htim->Instance->SMCR & TIM_SMCR_SMS; + if (!IS_TIM_SLAVEMODE_TRIGGER_ENABLED(tmpsmcr)) + { + __HAL_TIM_ENABLE(htim); + } + + /* Return function status */ + return HAL_OK; +} + +/** + * @brief Stops the TIM Output Compare signal generation. + * @param htim TIM Output Compare handle + * @param Channel TIM Channel to be disabled + * This parameter can be one of the following values: + * @arg TIM_CHANNEL_1: TIM Channel 1 selected + * @arg TIM_CHANNEL_2: TIM Channel 2 selected + * @arg TIM_CHANNEL_3: TIM Channel 3 selected + * @arg TIM_CHANNEL_4: TIM Channel 4 selected + * @arg TIM_CHANNEL_5: TIM Channel 5 selected + * @arg TIM_CHANNEL_6: TIM Channel 6 selected + * @retval HAL status + */ +HAL_StatusTypeDef HAL_TIM_OC_Stop(TIM_HandleTypeDef *htim, uint32_t Channel) +{ + /* Check the parameters */ + assert_param(IS_TIM_CCX_INSTANCE(htim->Instance, Channel)); + + /* Disable the Output compare channel */ + TIM_CCxChannelCmd(htim->Instance, Channel, TIM_CCx_DISABLE); + + if (IS_TIM_BREAK_INSTANCE(htim->Instance) != RESET) + { + /* Disable the Main Output */ + __HAL_TIM_MOE_DISABLE(htim); + } + + /* Disable the Peripheral */ + __HAL_TIM_DISABLE(htim); + + /* Return function status */ + return HAL_OK; +} + +/** + * @brief Starts the TIM Output Compare signal generation in interrupt mode. + * @param htim TIM Output Compare handle + * @param Channel TIM Channel to be enabled + * This parameter can be one of the following values: + * @arg TIM_CHANNEL_1: TIM Channel 1 selected + * @arg TIM_CHANNEL_2: TIM Channel 2 selected + * @arg TIM_CHANNEL_3: TIM Channel 3 selected + * @arg TIM_CHANNEL_4: TIM Channel 4 selected + * @retval HAL status + */ +HAL_StatusTypeDef HAL_TIM_OC_Start_IT(TIM_HandleTypeDef *htim, uint32_t Channel) +{ + uint32_t tmpsmcr; + + /* Check the parameters */ + assert_param(IS_TIM_CCX_INSTANCE(htim->Instance, Channel)); + + switch (Channel) + { + case TIM_CHANNEL_1: + { + /* Enable the TIM Capture/Compare 1 interrupt */ + __HAL_TIM_ENABLE_IT(htim, TIM_IT_CC1); + break; + } + + case TIM_CHANNEL_2: + { + /* Enable the TIM Capture/Compare 2 interrupt */ + __HAL_TIM_ENABLE_IT(htim, TIM_IT_CC2); + break; + } + + case TIM_CHANNEL_3: + { + /* Enable the TIM Capture/Compare 3 interrupt */ + __HAL_TIM_ENABLE_IT(htim, TIM_IT_CC3); + break; + } + + case TIM_CHANNEL_4: + { + /* Enable the TIM Capture/Compare 4 interrupt */ + __HAL_TIM_ENABLE_IT(htim, TIM_IT_CC4); + break; + } + + default: + break; + } + + /* Enable the Output compare channel */ + TIM_CCxChannelCmd(htim->Instance, Channel, TIM_CCx_ENABLE); + + if (IS_TIM_BREAK_INSTANCE(htim->Instance) != RESET) + { + /* Enable the main output */ + __HAL_TIM_MOE_ENABLE(htim); + } + + /* Enable the Peripheral, except in trigger mode where enable is automatically done with trigger */ + tmpsmcr = htim->Instance->SMCR & TIM_SMCR_SMS; + if (!IS_TIM_SLAVEMODE_TRIGGER_ENABLED(tmpsmcr)) + { + __HAL_TIM_ENABLE(htim); + } + + /* Return function status */ + return HAL_OK; +} + +/** + * @brief Stops the TIM Output Compare signal generation in interrupt mode. + * @param htim TIM Output Compare handle + * @param Channel TIM Channel to be disabled + * This parameter can be one of the following values: + * @arg TIM_CHANNEL_1: TIM Channel 1 selected + * @arg TIM_CHANNEL_2: TIM Channel 2 selected + * @arg TIM_CHANNEL_3: TIM Channel 3 selected + * @arg TIM_CHANNEL_4: TIM Channel 4 selected + * @retval HAL status + */ +HAL_StatusTypeDef HAL_TIM_OC_Stop_IT(TIM_HandleTypeDef *htim, uint32_t Channel) +{ + /* Check the parameters */ + assert_param(IS_TIM_CCX_INSTANCE(htim->Instance, Channel)); + + switch (Channel) + { + case TIM_CHANNEL_1: + { + /* Disable the TIM Capture/Compare 1 interrupt */ + __HAL_TIM_DISABLE_IT(htim, TIM_IT_CC1); + break; + } + + case TIM_CHANNEL_2: + { + /* Disable the TIM Capture/Compare 2 interrupt */ + __HAL_TIM_DISABLE_IT(htim, TIM_IT_CC2); + break; + } + + case TIM_CHANNEL_3: + { + /* Disable the TIM Capture/Compare 3 interrupt */ + __HAL_TIM_DISABLE_IT(htim, TIM_IT_CC3); + break; + } + + case TIM_CHANNEL_4: + { + /* Disable the TIM Capture/Compare 4 interrupt */ + __HAL_TIM_DISABLE_IT(htim, TIM_IT_CC4); + break; + } + + default: + break; + } + + /* Disable the Output compare channel */ + TIM_CCxChannelCmd(htim->Instance, Channel, TIM_CCx_DISABLE); + + if (IS_TIM_BREAK_INSTANCE(htim->Instance) != RESET) + { + /* Disable the Main Output */ + __HAL_TIM_MOE_DISABLE(htim); + } + + /* Disable the Peripheral */ + __HAL_TIM_DISABLE(htim); + + /* Return function status */ + return HAL_OK; +} + +/** + * @brief Starts the TIM Output Compare signal generation in DMA mode. + * @param htim TIM Output Compare handle + * @param Channel TIM Channel to be enabled + * This parameter can be one of the following values: + * @arg TIM_CHANNEL_1: TIM Channel 1 selected + * @arg TIM_CHANNEL_2: TIM Channel 2 selected + * @arg TIM_CHANNEL_3: TIM Channel 3 selected + * @arg TIM_CHANNEL_4: TIM Channel 4 selected + * @param pData The source Buffer address. + * @param Length The length of data to be transferred from memory to TIM peripheral + * @retval HAL status + */ +HAL_StatusTypeDef HAL_TIM_OC_Start_DMA(TIM_HandleTypeDef *htim, uint32_t Channel, uint32_t *pData, uint16_t Length) +{ + uint32_t tmpsmcr; + + /* Check the parameters */ + assert_param(IS_TIM_CCX_INSTANCE(htim->Instance, Channel)); + + if (htim->State == HAL_TIM_STATE_BUSY) + { + return HAL_BUSY; + } + else if (htim->State == HAL_TIM_STATE_READY) + { + if ((pData == NULL) && (Length > 0U)) + { + return HAL_ERROR; + } + else + { + htim->State = HAL_TIM_STATE_BUSY; + } + } + else + { + /* nothing to do */ + } + + switch (Channel) + { + case TIM_CHANNEL_1: + { + /* Set the DMA compare callbacks */ + htim->hdma[TIM_DMA_ID_CC1]->XferCpltCallback = TIM_DMADelayPulseCplt; + htim->hdma[TIM_DMA_ID_CC1]->XferHalfCpltCallback = TIM_DMADelayPulseHalfCplt; + + /* Set the DMA error callback */ + htim->hdma[TIM_DMA_ID_CC1]->XferErrorCallback = TIM_DMAError ; + + /* Enable the DMA stream */ + if (HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_CC1], (uint32_t)pData, (uint32_t)&htim->Instance->CCR1, Length) != HAL_OK) + { + return HAL_ERROR; + } + + /* Enable the TIM Capture/Compare 1 DMA request */ + __HAL_TIM_ENABLE_DMA(htim, TIM_DMA_CC1); + break; + } + + case TIM_CHANNEL_2: + { + /* Set the DMA compare callbacks */ + htim->hdma[TIM_DMA_ID_CC2]->XferCpltCallback = TIM_DMADelayPulseCplt; + htim->hdma[TIM_DMA_ID_CC2]->XferHalfCpltCallback = TIM_DMADelayPulseHalfCplt; + + /* Set the DMA error callback */ + htim->hdma[TIM_DMA_ID_CC2]->XferErrorCallback = TIM_DMAError ; + + /* Enable the DMA stream */ + if (HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_CC2], (uint32_t)pData, (uint32_t)&htim->Instance->CCR2, Length) != HAL_OK) + { + return HAL_ERROR; + } + + /* Enable the TIM Capture/Compare 2 DMA request */ + __HAL_TIM_ENABLE_DMA(htim, TIM_DMA_CC2); + break; + } + + case TIM_CHANNEL_3: + { + /* Set the DMA compare callbacks */ + htim->hdma[TIM_DMA_ID_CC3]->XferCpltCallback = TIM_DMADelayPulseCplt; + htim->hdma[TIM_DMA_ID_CC3]->XferHalfCpltCallback = TIM_DMADelayPulseHalfCplt; + + /* Set the DMA error callback */ + htim->hdma[TIM_DMA_ID_CC3]->XferErrorCallback = TIM_DMAError ; + + /* Enable the DMA stream */ + if (HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_CC3], (uint32_t)pData, (uint32_t)&htim->Instance->CCR3, Length) != HAL_OK) + { + return HAL_ERROR; + } + /* Enable the TIM Capture/Compare 3 DMA request */ + __HAL_TIM_ENABLE_DMA(htim, TIM_DMA_CC3); + break; + } + + case TIM_CHANNEL_4: + { + /* Set the DMA compare callbacks */ + htim->hdma[TIM_DMA_ID_CC4]->XferCpltCallback = TIM_DMADelayPulseCplt; + htim->hdma[TIM_DMA_ID_CC4]->XferHalfCpltCallback = TIM_DMADelayPulseHalfCplt; + + /* Set the DMA error callback */ + htim->hdma[TIM_DMA_ID_CC4]->XferErrorCallback = TIM_DMAError ; + + /* Enable the DMA stream */ + if (HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_CC4], (uint32_t)pData, (uint32_t)&htim->Instance->CCR4, Length) != HAL_OK) + { + return HAL_ERROR; + } + /* Enable the TIM Capture/Compare 4 DMA request */ + __HAL_TIM_ENABLE_DMA(htim, TIM_DMA_CC4); + break; + } + + default: + break; + } + + /* Enable the Output compare channel */ + TIM_CCxChannelCmd(htim->Instance, Channel, TIM_CCx_ENABLE); + + if (IS_TIM_BREAK_INSTANCE(htim->Instance) != RESET) + { + /* Enable the main output */ + __HAL_TIM_MOE_ENABLE(htim); + } + + /* Enable the Peripheral, except in trigger mode where enable is automatically done with trigger */ + tmpsmcr = htim->Instance->SMCR & TIM_SMCR_SMS; + if (!IS_TIM_SLAVEMODE_TRIGGER_ENABLED(tmpsmcr)) + { + __HAL_TIM_ENABLE(htim); + } + + /* Return function status */ + return HAL_OK; +} + +/** + * @brief Stops the TIM Output Compare signal generation in DMA mode. + * @param htim TIM Output Compare handle + * @param Channel TIM Channel to be disabled + * This parameter can be one of the following values: + * @arg TIM_CHANNEL_1: TIM Channel 1 selected + * @arg TIM_CHANNEL_2: TIM Channel 2 selected + * @arg TIM_CHANNEL_3: TIM Channel 3 selected + * @arg TIM_CHANNEL_4: TIM Channel 4 selected + * @retval HAL status + */ +HAL_StatusTypeDef HAL_TIM_OC_Stop_DMA(TIM_HandleTypeDef *htim, uint32_t Channel) +{ + /* Check the parameters */ + assert_param(IS_TIM_CCX_INSTANCE(htim->Instance, Channel)); + + switch (Channel) + { + case TIM_CHANNEL_1: + { + /* Disable the TIM Capture/Compare 1 DMA request */ + __HAL_TIM_DISABLE_DMA(htim, TIM_DMA_CC1); + (void)HAL_DMA_Abort_IT(htim->hdma[TIM_DMA_ID_CC1]); + break; + } + + case TIM_CHANNEL_2: + { + /* Disable the TIM Capture/Compare 2 DMA request */ + __HAL_TIM_DISABLE_DMA(htim, TIM_DMA_CC2); + (void)HAL_DMA_Abort_IT(htim->hdma[TIM_DMA_ID_CC2]); + break; + } + + case TIM_CHANNEL_3: + { + /* Disable the TIM Capture/Compare 3 DMA request */ + __HAL_TIM_DISABLE_DMA(htim, TIM_DMA_CC3); + (void)HAL_DMA_Abort_IT(htim->hdma[TIM_DMA_ID_CC3]); + break; + } + + case TIM_CHANNEL_4: + { + /* Disable the TIM Capture/Compare 4 interrupt */ + __HAL_TIM_DISABLE_DMA(htim, TIM_DMA_CC4); + (void)HAL_DMA_Abort_IT(htim->hdma[TIM_DMA_ID_CC4]); + break; + } + + default: + break; + } + + /* Disable the Output compare channel */ + TIM_CCxChannelCmd(htim->Instance, Channel, TIM_CCx_DISABLE); + + if (IS_TIM_BREAK_INSTANCE(htim->Instance) != RESET) + { + /* Disable the Main Output */ + __HAL_TIM_MOE_DISABLE(htim); + } + + /* Disable the Peripheral */ + __HAL_TIM_DISABLE(htim); + + /* Change the htim state */ + htim->State = HAL_TIM_STATE_READY; + + /* Return function status */ + return HAL_OK; +} + +/** + * @} + */ + +/** @defgroup TIM_Exported_Functions_Group3 TIM PWM functions + * @brief TIM PWM functions + * +@verbatim + ============================================================================== + ##### TIM PWM functions ##### + ============================================================================== + [..] + This section provides functions allowing to: + (+) Initialize and configure the TIM PWM. + (+) De-initialize the TIM PWM. + (+) Start the TIM PWM. + (+) Stop the TIM PWM. + (+) Start the TIM PWM and enable interrupt. + (+) Stop the TIM PWM and disable interrupt. + (+) Start the TIM PWM and enable DMA transfer. + (+) Stop the TIM PWM and disable DMA transfer. + +@endverbatim + * @{ + */ +/** + * @brief Initializes the TIM PWM Time Base according to the specified + * parameters in the TIM_HandleTypeDef and initializes the associated handle. + * @note Switching from Center Aligned counter mode to Edge counter mode (or reverse) + * requires a timer reset to avoid unexpected direction + * due to DIR bit readonly in center aligned mode. + * Ex: call @ref HAL_TIM_PWM_DeInit() before HAL_TIM_PWM_Init() + * @param htim TIM PWM handle + * @retval HAL status + */ +HAL_StatusTypeDef HAL_TIM_PWM_Init(TIM_HandleTypeDef *htim) +{ + /* Check the TIM handle allocation */ + if (htim == NULL) + { + return HAL_ERROR; + } + + /* Check the parameters */ + assert_param(IS_TIM_INSTANCE(htim->Instance)); + assert_param(IS_TIM_COUNTER_MODE(htim->Init.CounterMode)); + assert_param(IS_TIM_CLOCKDIVISION_DIV(htim->Init.ClockDivision)); + assert_param(IS_TIM_AUTORELOAD_PRELOAD(htim->Init.AutoReloadPreload)); + + if (htim->State == HAL_TIM_STATE_RESET) + { + /* Allocate lock resource and initialize it */ + htim->Lock = HAL_UNLOCKED; + +#if (USE_HAL_TIM_REGISTER_CALLBACKS == 1) + /* Reset interrupt callbacks to legacy weak callbacks */ + TIM_ResetCallback(htim); + + if (htim->PWM_MspInitCallback == NULL) + { + htim->PWM_MspInitCallback = HAL_TIM_PWM_MspInit; + } + /* Init the low level hardware : GPIO, CLOCK, NVIC */ + htim->PWM_MspInitCallback(htim); +#else + /* Init the low level hardware : GPIO, CLOCK, NVIC and DMA */ + HAL_TIM_PWM_MspInit(htim); +#endif /* USE_HAL_TIM_REGISTER_CALLBACKS */ + } + + /* Set the TIM state */ + htim->State = HAL_TIM_STATE_BUSY; + + /* Init the base time for the PWM */ + TIM_Base_SetConfig(htim->Instance, &htim->Init); + + /* Initialize the TIM state*/ + htim->State = HAL_TIM_STATE_READY; + + return HAL_OK; +} + +/** + * @brief DeInitializes the TIM peripheral + * @param htim TIM PWM handle + * @retval HAL status + */ +HAL_StatusTypeDef HAL_TIM_PWM_DeInit(TIM_HandleTypeDef *htim) +{ + /* Check the parameters */ + assert_param(IS_TIM_INSTANCE(htim->Instance)); + + htim->State = HAL_TIM_STATE_BUSY; + + /* Disable the TIM Peripheral Clock */ + __HAL_TIM_DISABLE(htim); + +#if (USE_HAL_TIM_REGISTER_CALLBACKS == 1) + if (htim->PWM_MspDeInitCallback == NULL) + { + htim->PWM_MspDeInitCallback = HAL_TIM_PWM_MspDeInit; + } + /* DeInit the low level hardware */ + htim->PWM_MspDeInitCallback(htim); +#else + /* DeInit the low level hardware: GPIO, CLOCK, NVIC and DMA */ + HAL_TIM_PWM_MspDeInit(htim); +#endif /* USE_HAL_TIM_REGISTER_CALLBACKS */ + + /* Change TIM state */ + htim->State = HAL_TIM_STATE_RESET; + + /* Release Lock */ + __HAL_UNLOCK(htim); + + return HAL_OK; +} + +/** + * @brief Initializes the TIM PWM MSP. + * @param htim TIM PWM handle + * @retval None + */ +__weak void HAL_TIM_PWM_MspInit(TIM_HandleTypeDef *htim) +{ + /* Prevent unused argument(s) compilation warning */ + UNUSED(htim); + + /* NOTE : This function should not be modified, when the callback is needed, + the HAL_TIM_PWM_MspInit could be implemented in the user file + */ +} + +/** + * @brief DeInitializes TIM PWM MSP. + * @param htim TIM PWM handle + * @retval None + */ +__weak void HAL_TIM_PWM_MspDeInit(TIM_HandleTypeDef *htim) +{ + /* Prevent unused argument(s) compilation warning */ + UNUSED(htim); + + /* NOTE : This function should not be modified, when the callback is needed, + the HAL_TIM_PWM_MspDeInit could be implemented in the user file + */ +} + +/** + * @brief Starts the PWM signal generation. + * @param htim TIM handle + * @param Channel TIM Channels to be enabled + * This parameter can be one of the following values: + * @arg TIM_CHANNEL_1: TIM Channel 1 selected + * @arg TIM_CHANNEL_2: TIM Channel 2 selected + * @arg TIM_CHANNEL_3: TIM Channel 3 selected + * @arg TIM_CHANNEL_4: TIM Channel 4 selected + * @arg TIM_CHANNEL_5: TIM Channel 5 selected + * @arg TIM_CHANNEL_6: TIM Channel 6 selected + * @retval HAL status + */ +HAL_StatusTypeDef HAL_TIM_PWM_Start(TIM_HandleTypeDef *htim, uint32_t Channel) +{ + uint32_t tmpsmcr; + + /* Check the parameters */ + assert_param(IS_TIM_CCX_INSTANCE(htim->Instance, Channel)); + + /* Enable the Capture compare channel */ + TIM_CCxChannelCmd(htim->Instance, Channel, TIM_CCx_ENABLE); + + if (IS_TIM_BREAK_INSTANCE(htim->Instance) != RESET) + { + /* Enable the main output */ + __HAL_TIM_MOE_ENABLE(htim); + } + + /* Enable the Peripheral, except in trigger mode where enable is automatically done with trigger */ + tmpsmcr = htim->Instance->SMCR & TIM_SMCR_SMS; + if (!IS_TIM_SLAVEMODE_TRIGGER_ENABLED(tmpsmcr)) + { + __HAL_TIM_ENABLE(htim); + } + + /* Return function status */ + return HAL_OK; +} + +/** + * @brief Stops the PWM signal generation. + * @param htim TIM PWM handle + * @param Channel TIM Channels to be disabled + * This parameter can be one of the following values: + * @arg TIM_CHANNEL_1: TIM Channel 1 selected + * @arg TIM_CHANNEL_2: TIM Channel 2 selected + * @arg TIM_CHANNEL_3: TIM Channel 3 selected + * @arg TIM_CHANNEL_4: TIM Channel 4 selected + * @arg TIM_CHANNEL_5: TIM Channel 5 selected + * @arg TIM_CHANNEL_6: TIM Channel 6 selected + * @retval HAL status + */ +HAL_StatusTypeDef HAL_TIM_PWM_Stop(TIM_HandleTypeDef *htim, uint32_t Channel) +{ + /* Check the parameters */ + assert_param(IS_TIM_CCX_INSTANCE(htim->Instance, Channel)); + + /* Disable the Capture compare channel */ + TIM_CCxChannelCmd(htim->Instance, Channel, TIM_CCx_DISABLE); + + if (IS_TIM_BREAK_INSTANCE(htim->Instance) != RESET) + { + /* Disable the Main Output */ + __HAL_TIM_MOE_DISABLE(htim); + } + + /* Disable the Peripheral */ + __HAL_TIM_DISABLE(htim); + + /* Change the htim state */ + htim->State = HAL_TIM_STATE_READY; + + /* Return function status */ + return HAL_OK; +} + +/** + * @brief Starts the PWM signal generation in interrupt mode. + * @param htim TIM PWM handle + * @param Channel TIM Channel to be enabled + * This parameter can be one of the following values: + * @arg TIM_CHANNEL_1: TIM Channel 1 selected + * @arg TIM_CHANNEL_2: TIM Channel 2 selected + * @arg TIM_CHANNEL_3: TIM Channel 3 selected + * @arg TIM_CHANNEL_4: TIM Channel 4 selected + * @retval HAL status + */ +HAL_StatusTypeDef HAL_TIM_PWM_Start_IT(TIM_HandleTypeDef *htim, uint32_t Channel) +{ + uint32_t tmpsmcr; + /* Check the parameters */ + assert_param(IS_TIM_CCX_INSTANCE(htim->Instance, Channel)); + + switch (Channel) + { + case TIM_CHANNEL_1: + { + /* Enable the TIM Capture/Compare 1 interrupt */ + __HAL_TIM_ENABLE_IT(htim, TIM_IT_CC1); + break; + } + + case TIM_CHANNEL_2: + { + /* Enable the TIM Capture/Compare 2 interrupt */ + __HAL_TIM_ENABLE_IT(htim, TIM_IT_CC2); + break; + } + + case TIM_CHANNEL_3: + { + /* Enable the TIM Capture/Compare 3 interrupt */ + __HAL_TIM_ENABLE_IT(htim, TIM_IT_CC3); + break; + } + + case TIM_CHANNEL_4: + { + /* Enable the TIM Capture/Compare 4 interrupt */ + __HAL_TIM_ENABLE_IT(htim, TIM_IT_CC4); + break; + } + + default: + break; + } + + /* Enable the Capture compare channel */ + TIM_CCxChannelCmd(htim->Instance, Channel, TIM_CCx_ENABLE); + + if (IS_TIM_BREAK_INSTANCE(htim->Instance) != RESET) + { + /* Enable the main output */ + __HAL_TIM_MOE_ENABLE(htim); + } + + /* Enable the Peripheral, except in trigger mode where enable is automatically done with trigger */ + tmpsmcr = htim->Instance->SMCR & TIM_SMCR_SMS; + if (!IS_TIM_SLAVEMODE_TRIGGER_ENABLED(tmpsmcr)) + { + __HAL_TIM_ENABLE(htim); + } + + /* Return function status */ + return HAL_OK; +} + +/** + * @brief Stops the PWM signal generation in interrupt mode. + * @param htim TIM PWM handle + * @param Channel TIM Channels to be disabled + * This parameter can be one of the following values: + * @arg TIM_CHANNEL_1: TIM Channel 1 selected + * @arg TIM_CHANNEL_2: TIM Channel 2 selected + * @arg TIM_CHANNEL_3: TIM Channel 3 selected + * @arg TIM_CHANNEL_4: TIM Channel 4 selected + * @retval HAL status + */ +HAL_StatusTypeDef HAL_TIM_PWM_Stop_IT(TIM_HandleTypeDef *htim, uint32_t Channel) +{ + /* Check the parameters */ + assert_param(IS_TIM_CCX_INSTANCE(htim->Instance, Channel)); + + switch (Channel) + { + case TIM_CHANNEL_1: + { + /* Disable the TIM Capture/Compare 1 interrupt */ + __HAL_TIM_DISABLE_IT(htim, TIM_IT_CC1); + break; + } + + case TIM_CHANNEL_2: + { + /* Disable the TIM Capture/Compare 2 interrupt */ + __HAL_TIM_DISABLE_IT(htim, TIM_IT_CC2); + break; + } + + case TIM_CHANNEL_3: + { + /* Disable the TIM Capture/Compare 3 interrupt */ + __HAL_TIM_DISABLE_IT(htim, TIM_IT_CC3); + break; + } + + case TIM_CHANNEL_4: + { + /* Disable the TIM Capture/Compare 4 interrupt */ + __HAL_TIM_DISABLE_IT(htim, TIM_IT_CC4); + break; + } + + default: + break; + } + + /* Disable the Capture compare channel */ + TIM_CCxChannelCmd(htim->Instance, Channel, TIM_CCx_DISABLE); + + if (IS_TIM_BREAK_INSTANCE(htim->Instance) != RESET) + { + /* Disable the Main Output */ + __HAL_TIM_MOE_DISABLE(htim); + } + + /* Disable the Peripheral */ + __HAL_TIM_DISABLE(htim); + + /* Return function status */ + return HAL_OK; +} + +/** + * @brief Starts the TIM PWM signal generation in DMA mode. + * @param htim TIM PWM handle + * @param Channel TIM Channels to be enabled + * This parameter can be one of the following values: + * @arg TIM_CHANNEL_1: TIM Channel 1 selected + * @arg TIM_CHANNEL_2: TIM Channel 2 selected + * @arg TIM_CHANNEL_3: TIM Channel 3 selected + * @arg TIM_CHANNEL_4: TIM Channel 4 selected + * @param pData The source Buffer address. + * @param Length The length of data to be transferred from memory to TIM peripheral + * @retval HAL status + */ +HAL_StatusTypeDef HAL_TIM_PWM_Start_DMA(TIM_HandleTypeDef *htim, uint32_t Channel, uint32_t *pData, uint16_t Length) +{ + uint32_t tmpsmcr; + + /* Check the parameters */ + assert_param(IS_TIM_CCX_INSTANCE(htim->Instance, Channel)); + + if (htim->State == HAL_TIM_STATE_BUSY) + { + return HAL_BUSY; + } + else if (htim->State == HAL_TIM_STATE_READY) + { + if ((pData == NULL) && (Length > 0U)) + { + return HAL_ERROR; + } + else + { + htim->State = HAL_TIM_STATE_BUSY; + } + } + else + { + /* nothing to do */ + } + + switch (Channel) + { + case TIM_CHANNEL_1: + { + /* Set the DMA compare callbacks */ + htim->hdma[TIM_DMA_ID_CC1]->XferCpltCallback = TIM_DMADelayPulseCplt; + htim->hdma[TIM_DMA_ID_CC1]->XferHalfCpltCallback = TIM_DMADelayPulseHalfCplt; + + /* Set the DMA error callback */ + htim->hdma[TIM_DMA_ID_CC1]->XferErrorCallback = TIM_DMAError ; + + /* Enable the DMA stream */ + if (HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_CC1], (uint32_t)pData, (uint32_t)&htim->Instance->CCR1, Length) != HAL_OK) + { + return HAL_ERROR; + } + + /* Enable the TIM Capture/Compare 1 DMA request */ + __HAL_TIM_ENABLE_DMA(htim, TIM_DMA_CC1); + break; + } + + case TIM_CHANNEL_2: + { + /* Set the DMA compare callbacks */ + htim->hdma[TIM_DMA_ID_CC2]->XferCpltCallback = TIM_DMADelayPulseCplt; + htim->hdma[TIM_DMA_ID_CC2]->XferHalfCpltCallback = TIM_DMADelayPulseHalfCplt; + + /* Set the DMA error callback */ + htim->hdma[TIM_DMA_ID_CC2]->XferErrorCallback = TIM_DMAError ; + + /* Enable the DMA stream */ + if (HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_CC2], (uint32_t)pData, (uint32_t)&htim->Instance->CCR2, Length) != HAL_OK) + { + return HAL_ERROR; + } + /* Enable the TIM Capture/Compare 2 DMA request */ + __HAL_TIM_ENABLE_DMA(htim, TIM_DMA_CC2); + break; + } + + case TIM_CHANNEL_3: + { + /* Set the DMA compare callbacks */ + htim->hdma[TIM_DMA_ID_CC3]->XferCpltCallback = TIM_DMADelayPulseCplt; + htim->hdma[TIM_DMA_ID_CC3]->XferHalfCpltCallback = TIM_DMADelayPulseHalfCplt; + + /* Set the DMA error callback */ + htim->hdma[TIM_DMA_ID_CC3]->XferErrorCallback = TIM_DMAError ; + + /* Enable the DMA stream */ + if (HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_CC3], (uint32_t)pData, (uint32_t)&htim->Instance->CCR3, Length) != HAL_OK) + { + return HAL_ERROR; + } + /* Enable the TIM Output Capture/Compare 3 request */ + __HAL_TIM_ENABLE_DMA(htim, TIM_DMA_CC3); + break; + } + + case TIM_CHANNEL_4: + { + /* Set the DMA compare callbacks */ + htim->hdma[TIM_DMA_ID_CC4]->XferCpltCallback = TIM_DMADelayPulseCplt; + htim->hdma[TIM_DMA_ID_CC4]->XferHalfCpltCallback = TIM_DMADelayPulseHalfCplt; + + /* Set the DMA error callback */ + htim->hdma[TIM_DMA_ID_CC4]->XferErrorCallback = TIM_DMAError ; + + /* Enable the DMA stream */ + if (HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_CC4], (uint32_t)pData, (uint32_t)&htim->Instance->CCR4, Length) != HAL_OK) + { + return HAL_ERROR; + } + /* Enable the TIM Capture/Compare 4 DMA request */ + __HAL_TIM_ENABLE_DMA(htim, TIM_DMA_CC4); + break; + } + + default: + break; + } + + /* Enable the Capture compare channel */ + TIM_CCxChannelCmd(htim->Instance, Channel, TIM_CCx_ENABLE); + + if (IS_TIM_BREAK_INSTANCE(htim->Instance) != RESET) + { + /* Enable the main output */ + __HAL_TIM_MOE_ENABLE(htim); + } + + /* Enable the Peripheral, except in trigger mode where enable is automatically done with trigger */ + tmpsmcr = htim->Instance->SMCR & TIM_SMCR_SMS; + if (!IS_TIM_SLAVEMODE_TRIGGER_ENABLED(tmpsmcr)) + { + __HAL_TIM_ENABLE(htim); + } + + /* Return function status */ + return HAL_OK; +} + +/** + * @brief Stops the TIM PWM signal generation in DMA mode. + * @param htim TIM PWM handle + * @param Channel TIM Channels to be disabled + * This parameter can be one of the following values: + * @arg TIM_CHANNEL_1: TIM Channel 1 selected + * @arg TIM_CHANNEL_2: TIM Channel 2 selected + * @arg TIM_CHANNEL_3: TIM Channel 3 selected + * @arg TIM_CHANNEL_4: TIM Channel 4 selected + * @retval HAL status + */ +HAL_StatusTypeDef HAL_TIM_PWM_Stop_DMA(TIM_HandleTypeDef *htim, uint32_t Channel) +{ + /* Check the parameters */ + assert_param(IS_TIM_CCX_INSTANCE(htim->Instance, Channel)); + + switch (Channel) + { + case TIM_CHANNEL_1: + { + /* Disable the TIM Capture/Compare 1 DMA request */ + __HAL_TIM_DISABLE_DMA(htim, TIM_DMA_CC1); + (void)HAL_DMA_Abort_IT(htim->hdma[TIM_DMA_ID_CC1]); + break; + } + + case TIM_CHANNEL_2: + { + /* Disable the TIM Capture/Compare 2 DMA request */ + __HAL_TIM_DISABLE_DMA(htim, TIM_DMA_CC2); + (void)HAL_DMA_Abort_IT(htim->hdma[TIM_DMA_ID_CC2]); + break; + } + + case TIM_CHANNEL_3: + { + /* Disable the TIM Capture/Compare 3 DMA request */ + __HAL_TIM_DISABLE_DMA(htim, TIM_DMA_CC3); + (void)HAL_DMA_Abort_IT(htim->hdma[TIM_DMA_ID_CC3]); + break; + } + + case TIM_CHANNEL_4: + { + /* Disable the TIM Capture/Compare 4 interrupt */ + __HAL_TIM_DISABLE_DMA(htim, TIM_DMA_CC4); + (void)HAL_DMA_Abort_IT(htim->hdma[TIM_DMA_ID_CC4]); + break; + } + + default: + break; + } + + /* Disable the Capture compare channel */ + TIM_CCxChannelCmd(htim->Instance, Channel, TIM_CCx_DISABLE); + + if (IS_TIM_BREAK_INSTANCE(htim->Instance) != RESET) + { + /* Disable the Main Output */ + __HAL_TIM_MOE_DISABLE(htim); + } + + /* Disable the Peripheral */ + __HAL_TIM_DISABLE(htim); + + /* Change the htim state */ + htim->State = HAL_TIM_STATE_READY; + + /* Return function status */ + return HAL_OK; +} + +/** + * @} + */ + +/** @defgroup TIM_Exported_Functions_Group4 TIM Input Capture functions + * @brief TIM Input Capture functions + * +@verbatim + ============================================================================== + ##### TIM Input Capture functions ##### + ============================================================================== + [..] + This section provides functions allowing to: + (+) Initialize and configure the TIM Input Capture. + (+) De-initialize the TIM Input Capture. + (+) Start the TIM Input Capture. + (+) Stop the TIM Input Capture. + (+) Start the TIM Input Capture and enable interrupt. + (+) Stop the TIM Input Capture and disable interrupt. + (+) Start the TIM Input Capture and enable DMA transfer. + (+) Stop the TIM Input Capture and disable DMA transfer. + +@endverbatim + * @{ + */ +/** + * @brief Initializes the TIM Input Capture Time base according to the specified + * parameters in the TIM_HandleTypeDef and initializes the associated handle. + * @note Switching from Center Aligned counter mode to Edge counter mode (or reverse) + * requires a timer reset to avoid unexpected direction + * due to DIR bit readonly in center aligned mode. + * Ex: call @ref HAL_TIM_IC_DeInit() before HAL_TIM_IC_Init() + * @param htim TIM Input Capture handle + * @retval HAL status + */ +HAL_StatusTypeDef HAL_TIM_IC_Init(TIM_HandleTypeDef *htim) +{ + /* Check the TIM handle allocation */ + if (htim == NULL) + { + return HAL_ERROR; + } + + /* Check the parameters */ + assert_param(IS_TIM_INSTANCE(htim->Instance)); + assert_param(IS_TIM_COUNTER_MODE(htim->Init.CounterMode)); + assert_param(IS_TIM_CLOCKDIVISION_DIV(htim->Init.ClockDivision)); + assert_param(IS_TIM_AUTORELOAD_PRELOAD(htim->Init.AutoReloadPreload)); + + if (htim->State == HAL_TIM_STATE_RESET) + { + /* Allocate lock resource and initialize it */ + htim->Lock = HAL_UNLOCKED; + +#if (USE_HAL_TIM_REGISTER_CALLBACKS == 1) + /* Reset interrupt callbacks to legacy weak callbacks */ + TIM_ResetCallback(htim); + + if (htim->IC_MspInitCallback == NULL) + { + htim->IC_MspInitCallback = HAL_TIM_IC_MspInit; + } + /* Init the low level hardware : GPIO, CLOCK, NVIC */ + htim->IC_MspInitCallback(htim); +#else + /* Init the low level hardware : GPIO, CLOCK, NVIC and DMA */ + HAL_TIM_IC_MspInit(htim); +#endif /* USE_HAL_TIM_REGISTER_CALLBACKS */ + } + + /* Set the TIM state */ + htim->State = HAL_TIM_STATE_BUSY; + + /* Init the base time for the input capture */ + TIM_Base_SetConfig(htim->Instance, &htim->Init); + + /* Initialize the TIM state*/ + htim->State = HAL_TIM_STATE_READY; + + return HAL_OK; +} + +/** + * @brief DeInitializes the TIM peripheral + * @param htim TIM Input Capture handle + * @retval HAL status + */ +HAL_StatusTypeDef HAL_TIM_IC_DeInit(TIM_HandleTypeDef *htim) +{ + /* Check the parameters */ + assert_param(IS_TIM_INSTANCE(htim->Instance)); + + htim->State = HAL_TIM_STATE_BUSY; + + /* Disable the TIM Peripheral Clock */ + __HAL_TIM_DISABLE(htim); + +#if (USE_HAL_TIM_REGISTER_CALLBACKS == 1) + if (htim->IC_MspDeInitCallback == NULL) + { + htim->IC_MspDeInitCallback = HAL_TIM_IC_MspDeInit; + } + /* DeInit the low level hardware */ + htim->IC_MspDeInitCallback(htim); +#else + /* DeInit the low level hardware: GPIO, CLOCK, NVIC and DMA */ + HAL_TIM_IC_MspDeInit(htim); +#endif /* USE_HAL_TIM_REGISTER_CALLBACKS */ + + /* Change TIM state */ + htim->State = HAL_TIM_STATE_RESET; + + /* Release Lock */ + __HAL_UNLOCK(htim); + + return HAL_OK; +} + +/** + * @brief Initializes the TIM Input Capture MSP. + * @param htim TIM Input Capture handle + * @retval None + */ +__weak void HAL_TIM_IC_MspInit(TIM_HandleTypeDef *htim) +{ + /* Prevent unused argument(s) compilation warning */ + UNUSED(htim); + + /* NOTE : This function should not be modified, when the callback is needed, + the HAL_TIM_IC_MspInit could be implemented in the user file + */ +} + +/** + * @brief DeInitializes TIM Input Capture MSP. + * @param htim TIM handle + * @retval None + */ +__weak void HAL_TIM_IC_MspDeInit(TIM_HandleTypeDef *htim) +{ + /* Prevent unused argument(s) compilation warning */ + UNUSED(htim); + + /* NOTE : This function should not be modified, when the callback is needed, + the HAL_TIM_IC_MspDeInit could be implemented in the user file + */ +} + +/** + * @brief Starts the TIM Input Capture measurement. + * @param htim TIM Input Capture handle + * @param Channel TIM Channels to be enabled + * This parameter can be one of the following values: + * @arg TIM_CHANNEL_1: TIM Channel 1 selected + * @arg TIM_CHANNEL_2: TIM Channel 2 selected + * @arg TIM_CHANNEL_3: TIM Channel 3 selected + * @arg TIM_CHANNEL_4: TIM Channel 4 selected + * @retval HAL status + */ +HAL_StatusTypeDef HAL_TIM_IC_Start(TIM_HandleTypeDef *htim, uint32_t Channel) +{ + uint32_t tmpsmcr; + + /* Check the parameters */ + assert_param(IS_TIM_CCX_INSTANCE(htim->Instance, Channel)); + + /* Enable the Input Capture channel */ + TIM_CCxChannelCmd(htim->Instance, Channel, TIM_CCx_ENABLE); + + /* Enable the Peripheral, except in trigger mode where enable is automatically done with trigger */ + tmpsmcr = htim->Instance->SMCR & TIM_SMCR_SMS; + if (!IS_TIM_SLAVEMODE_TRIGGER_ENABLED(tmpsmcr)) + { + __HAL_TIM_ENABLE(htim); + } + + /* Return function status */ + return HAL_OK; +} + +/** + * @brief Stops the TIM Input Capture measurement. + * @param htim TIM Input Capture handle + * @param Channel TIM Channels to be disabled + * This parameter can be one of the following values: + * @arg TIM_CHANNEL_1: TIM Channel 1 selected + * @arg TIM_CHANNEL_2: TIM Channel 2 selected + * @arg TIM_CHANNEL_3: TIM Channel 3 selected + * @arg TIM_CHANNEL_4: TIM Channel 4 selected + * @retval HAL status + */ +HAL_StatusTypeDef HAL_TIM_IC_Stop(TIM_HandleTypeDef *htim, uint32_t Channel) +{ + /* Check the parameters */ + assert_param(IS_TIM_CCX_INSTANCE(htim->Instance, Channel)); + + /* Disable the Input Capture channel */ + TIM_CCxChannelCmd(htim->Instance, Channel, TIM_CCx_DISABLE); + + /* Disable the Peripheral */ + __HAL_TIM_DISABLE(htim); + + /* Return function status */ + return HAL_OK; +} + +/** + * @brief Starts the TIM Input Capture measurement in interrupt mode. + * @param htim TIM Input Capture handle + * @param Channel TIM Channels to be enabled + * This parameter can be one of the following values: + * @arg TIM_CHANNEL_1: TIM Channel 1 selected + * @arg TIM_CHANNEL_2: TIM Channel 2 selected + * @arg TIM_CHANNEL_3: TIM Channel 3 selected + * @arg TIM_CHANNEL_4: TIM Channel 4 selected + * @retval HAL status + */ +HAL_StatusTypeDef HAL_TIM_IC_Start_IT(TIM_HandleTypeDef *htim, uint32_t Channel) +{ + uint32_t tmpsmcr; + + /* Check the parameters */ + assert_param(IS_TIM_CCX_INSTANCE(htim->Instance, Channel)); + + switch (Channel) + { + case TIM_CHANNEL_1: + { + /* Enable the TIM Capture/Compare 1 interrupt */ + __HAL_TIM_ENABLE_IT(htim, TIM_IT_CC1); + break; + } + + case TIM_CHANNEL_2: + { + /* Enable the TIM Capture/Compare 2 interrupt */ + __HAL_TIM_ENABLE_IT(htim, TIM_IT_CC2); + break; + } + + case TIM_CHANNEL_3: + { + /* Enable the TIM Capture/Compare 3 interrupt */ + __HAL_TIM_ENABLE_IT(htim, TIM_IT_CC3); + break; + } + + case TIM_CHANNEL_4: + { + /* Enable the TIM Capture/Compare 4 interrupt */ + __HAL_TIM_ENABLE_IT(htim, TIM_IT_CC4); + break; + } + + default: + break; + } + /* Enable the Input Capture channel */ + TIM_CCxChannelCmd(htim->Instance, Channel, TIM_CCx_ENABLE); + + /* Enable the Peripheral, except in trigger mode where enable is automatically done with trigger */ + tmpsmcr = htim->Instance->SMCR & TIM_SMCR_SMS; + if (!IS_TIM_SLAVEMODE_TRIGGER_ENABLED(tmpsmcr)) + { + __HAL_TIM_ENABLE(htim); + } + + /* Return function status */ + return HAL_OK; +} + +/** + * @brief Stops the TIM Input Capture measurement in interrupt mode. + * @param htim TIM Input Capture handle + * @param Channel TIM Channels to be disabled + * This parameter can be one of the following values: + * @arg TIM_CHANNEL_1: TIM Channel 1 selected + * @arg TIM_CHANNEL_2: TIM Channel 2 selected + * @arg TIM_CHANNEL_3: TIM Channel 3 selected + * @arg TIM_CHANNEL_4: TIM Channel 4 selected + * @retval HAL status + */ +HAL_StatusTypeDef HAL_TIM_IC_Stop_IT(TIM_HandleTypeDef *htim, uint32_t Channel) +{ + /* Check the parameters */ + assert_param(IS_TIM_CCX_INSTANCE(htim->Instance, Channel)); + + switch (Channel) + { + case TIM_CHANNEL_1: + { + /* Disable the TIM Capture/Compare 1 interrupt */ + __HAL_TIM_DISABLE_IT(htim, TIM_IT_CC1); + break; + } + + case TIM_CHANNEL_2: + { + /* Disable the TIM Capture/Compare 2 interrupt */ + __HAL_TIM_DISABLE_IT(htim, TIM_IT_CC2); + break; + } + + case TIM_CHANNEL_3: + { + /* Disable the TIM Capture/Compare 3 interrupt */ + __HAL_TIM_DISABLE_IT(htim, TIM_IT_CC3); + break; + } + + case TIM_CHANNEL_4: + { + /* Disable the TIM Capture/Compare 4 interrupt */ + __HAL_TIM_DISABLE_IT(htim, TIM_IT_CC4); + break; + } + + default: + break; + } + + /* Disable the Input Capture channel */ + TIM_CCxChannelCmd(htim->Instance, Channel, TIM_CCx_DISABLE); + + /* Disable the Peripheral */ + __HAL_TIM_DISABLE(htim); + + /* Return function status */ + return HAL_OK; +} + +/** + * @brief Starts the TIM Input Capture measurement in DMA mode. + * @param htim TIM Input Capture handle + * @param Channel TIM Channels to be enabled + * This parameter can be one of the following values: + * @arg TIM_CHANNEL_1: TIM Channel 1 selected + * @arg TIM_CHANNEL_2: TIM Channel 2 selected + * @arg TIM_CHANNEL_3: TIM Channel 3 selected + * @arg TIM_CHANNEL_4: TIM Channel 4 selected + * @param pData The destination Buffer address. + * @param Length The length of data to be transferred from TIM peripheral to memory. + * @retval HAL status + */ +HAL_StatusTypeDef HAL_TIM_IC_Start_DMA(TIM_HandleTypeDef *htim, uint32_t Channel, uint32_t *pData, uint16_t Length) +{ + uint32_t tmpsmcr; + + /* Check the parameters */ + assert_param(IS_TIM_CCX_INSTANCE(htim->Instance, Channel)); + assert_param(IS_TIM_DMA_CC_INSTANCE(htim->Instance)); + + if (htim->State == HAL_TIM_STATE_BUSY) + { + return HAL_BUSY; + } + else if (htim->State == HAL_TIM_STATE_READY) + { + if ((pData == NULL) && (Length > 0U)) + { + return HAL_ERROR; + } + else + { + htim->State = HAL_TIM_STATE_BUSY; + } + } + else + { + /* nothing to do */ + } + + switch (Channel) + { + case TIM_CHANNEL_1: + { + /* Set the DMA capture callbacks */ + htim->hdma[TIM_DMA_ID_CC1]->XferCpltCallback = TIM_DMACaptureCplt; + htim->hdma[TIM_DMA_ID_CC1]->XferHalfCpltCallback = TIM_DMACaptureHalfCplt; + + /* Set the DMA error callback */ + htim->hdma[TIM_DMA_ID_CC1]->XferErrorCallback = TIM_DMAError ; + + /* Enable the DMA stream */ + if (HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_CC1], (uint32_t)&htim->Instance->CCR1, (uint32_t)pData, Length) != HAL_OK) + { + return HAL_ERROR; + } + /* Enable the TIM Capture/Compare 1 DMA request */ + __HAL_TIM_ENABLE_DMA(htim, TIM_DMA_CC1); + break; + } + + case TIM_CHANNEL_2: + { + /* Set the DMA capture callbacks */ + htim->hdma[TIM_DMA_ID_CC2]->XferCpltCallback = TIM_DMACaptureCplt; + htim->hdma[TIM_DMA_ID_CC2]->XferHalfCpltCallback = TIM_DMACaptureHalfCplt; + + /* Set the DMA error callback */ + htim->hdma[TIM_DMA_ID_CC2]->XferErrorCallback = TIM_DMAError ; + + /* Enable the DMA stream */ + if (HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_CC2], (uint32_t)&htim->Instance->CCR2, (uint32_t)pData, Length) != HAL_OK) + { + return HAL_ERROR; + } + /* Enable the TIM Capture/Compare 2 DMA request */ + __HAL_TIM_ENABLE_DMA(htim, TIM_DMA_CC2); + break; + } + + case TIM_CHANNEL_3: + { + /* Set the DMA capture callbacks */ + htim->hdma[TIM_DMA_ID_CC3]->XferCpltCallback = TIM_DMACaptureCplt; + htim->hdma[TIM_DMA_ID_CC3]->XferHalfCpltCallback = TIM_DMACaptureHalfCplt; + + /* Set the DMA error callback */ + htim->hdma[TIM_DMA_ID_CC3]->XferErrorCallback = TIM_DMAError ; + + /* Enable the DMA stream */ + if (HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_CC3], (uint32_t)&htim->Instance->CCR3, (uint32_t)pData, Length) != HAL_OK) + { + return HAL_ERROR; + } + /* Enable the TIM Capture/Compare 3 DMA request */ + __HAL_TIM_ENABLE_DMA(htim, TIM_DMA_CC3); + break; + } + + case TIM_CHANNEL_4: + { + /* Set the DMA capture callbacks */ + htim->hdma[TIM_DMA_ID_CC4]->XferCpltCallback = TIM_DMACaptureCplt; + htim->hdma[TIM_DMA_ID_CC4]->XferHalfCpltCallback = TIM_DMACaptureHalfCplt; + + /* Set the DMA error callback */ + htim->hdma[TIM_DMA_ID_CC4]->XferErrorCallback = TIM_DMAError ; + + /* Enable the DMA stream */ + if (HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_CC4], (uint32_t)&htim->Instance->CCR4, (uint32_t)pData, Length) != HAL_OK) + { + return HAL_ERROR; + } + /* Enable the TIM Capture/Compare 4 DMA request */ + __HAL_TIM_ENABLE_DMA(htim, TIM_DMA_CC4); + break; + } + + default: + break; + } + + /* Enable the Input Capture channel */ + TIM_CCxChannelCmd(htim->Instance, Channel, TIM_CCx_ENABLE); + + /* Enable the Peripheral, except in trigger mode where enable is automatically done with trigger */ + tmpsmcr = htim->Instance->SMCR & TIM_SMCR_SMS; + if (!IS_TIM_SLAVEMODE_TRIGGER_ENABLED(tmpsmcr)) + { + __HAL_TIM_ENABLE(htim); + } + + /* Return function status */ + return HAL_OK; +} + +/** + * @brief Stops the TIM Input Capture measurement in DMA mode. + * @param htim TIM Input Capture handle + * @param Channel TIM Channels to be disabled + * This parameter can be one of the following values: + * @arg TIM_CHANNEL_1: TIM Channel 1 selected + * @arg TIM_CHANNEL_2: TIM Channel 2 selected + * @arg TIM_CHANNEL_3: TIM Channel 3 selected + * @arg TIM_CHANNEL_4: TIM Channel 4 selected + * @retval HAL status + */ +HAL_StatusTypeDef HAL_TIM_IC_Stop_DMA(TIM_HandleTypeDef *htim, uint32_t Channel) +{ + /* Check the parameters */ + assert_param(IS_TIM_CCX_INSTANCE(htim->Instance, Channel)); + assert_param(IS_TIM_DMA_CC_INSTANCE(htim->Instance)); + + switch (Channel) + { + case TIM_CHANNEL_1: + { + /* Disable the TIM Capture/Compare 1 DMA request */ + __HAL_TIM_DISABLE_DMA(htim, TIM_DMA_CC1); + (void)HAL_DMA_Abort_IT(htim->hdma[TIM_DMA_ID_CC1]); + break; + } + + case TIM_CHANNEL_2: + { + /* Disable the TIM Capture/Compare 2 DMA request */ + __HAL_TIM_DISABLE_DMA(htim, TIM_DMA_CC2); + (void)HAL_DMA_Abort_IT(htim->hdma[TIM_DMA_ID_CC2]); + break; + } + + case TIM_CHANNEL_3: + { + /* Disable the TIM Capture/Compare 3 DMA request */ + __HAL_TIM_DISABLE_DMA(htim, TIM_DMA_CC3); + (void)HAL_DMA_Abort_IT(htim->hdma[TIM_DMA_ID_CC3]); + break; + } + + case TIM_CHANNEL_4: + { + /* Disable the TIM Capture/Compare 4 DMA request */ + __HAL_TIM_DISABLE_DMA(htim, TIM_DMA_CC4); + (void)HAL_DMA_Abort_IT(htim->hdma[TIM_DMA_ID_CC4]); + break; + } + + default: + break; + } + + /* Disable the Input Capture channel */ + TIM_CCxChannelCmd(htim->Instance, Channel, TIM_CCx_DISABLE); + + /* Disable the Peripheral */ + __HAL_TIM_DISABLE(htim); + + /* Change the htim state */ + htim->State = HAL_TIM_STATE_READY; + + /* Return function status */ + return HAL_OK; +} +/** + * @} + */ + +/** @defgroup TIM_Exported_Functions_Group5 TIM One Pulse functions + * @brief TIM One Pulse functions + * +@verbatim + ============================================================================== + ##### TIM One Pulse functions ##### + ============================================================================== + [..] + This section provides functions allowing to: + (+) Initialize and configure the TIM One Pulse. + (+) De-initialize the TIM One Pulse. + (+) Start the TIM One Pulse. + (+) Stop the TIM One Pulse. + (+) Start the TIM One Pulse and enable interrupt. + (+) Stop the TIM One Pulse and disable interrupt. + (+) Start the TIM One Pulse and enable DMA transfer. + (+) Stop the TIM One Pulse and disable DMA transfer. + +@endverbatim + * @{ + */ +/** + * @brief Initializes the TIM One Pulse Time Base according to the specified + * parameters in the TIM_HandleTypeDef and initializes the associated handle. + * @note Switching from Center Aligned counter mode to Edge counter mode (or reverse) + * requires a timer reset to avoid unexpected direction + * due to DIR bit readonly in center aligned mode. + * Ex: call @ref HAL_TIM_OnePulse_DeInit() before HAL_TIM_OnePulse_Init() + * @param htim TIM One Pulse handle + * @param OnePulseMode Select the One pulse mode. + * This parameter can be one of the following values: + * @arg TIM_OPMODE_SINGLE: Only one pulse will be generated. + * @arg TIM_OPMODE_REPETITIVE: Repetitive pulses will be generated. + * @retval HAL status + */ +HAL_StatusTypeDef HAL_TIM_OnePulse_Init(TIM_HandleTypeDef *htim, uint32_t OnePulseMode) +{ + /* Check the TIM handle allocation */ + if (htim == NULL) + { + return HAL_ERROR; + } + + /* Check the parameters */ + assert_param(IS_TIM_INSTANCE(htim->Instance)); + assert_param(IS_TIM_COUNTER_MODE(htim->Init.CounterMode)); + assert_param(IS_TIM_CLOCKDIVISION_DIV(htim->Init.ClockDivision)); + assert_param(IS_TIM_OPM_MODE(OnePulseMode)); + assert_param(IS_TIM_AUTORELOAD_PRELOAD(htim->Init.AutoReloadPreload)); + + if (htim->State == HAL_TIM_STATE_RESET) + { + /* Allocate lock resource and initialize it */ + htim->Lock = HAL_UNLOCKED; + +#if (USE_HAL_TIM_REGISTER_CALLBACKS == 1) + /* Reset interrupt callbacks to legacy weak callbacks */ + TIM_ResetCallback(htim); + + if (htim->OnePulse_MspInitCallback == NULL) + { + htim->OnePulse_MspInitCallback = HAL_TIM_OnePulse_MspInit; + } + /* Init the low level hardware : GPIO, CLOCK, NVIC */ + htim->OnePulse_MspInitCallback(htim); +#else + /* Init the low level hardware : GPIO, CLOCK, NVIC and DMA */ + HAL_TIM_OnePulse_MspInit(htim); +#endif /* USE_HAL_TIM_REGISTER_CALLBACKS */ + } + + /* Set the TIM state */ + htim->State = HAL_TIM_STATE_BUSY; + + /* Configure the Time base in the One Pulse Mode */ + TIM_Base_SetConfig(htim->Instance, &htim->Init); + + /* Reset the OPM Bit */ + htim->Instance->CR1 &= ~TIM_CR1_OPM; + + /* Configure the OPM Mode */ + htim->Instance->CR1 |= OnePulseMode; + + /* Initialize the TIM state*/ + htim->State = HAL_TIM_STATE_READY; + + return HAL_OK; +} + +/** + * @brief DeInitializes the TIM One Pulse + * @param htim TIM One Pulse handle + * @retval HAL status + */ +HAL_StatusTypeDef HAL_TIM_OnePulse_DeInit(TIM_HandleTypeDef *htim) +{ + /* Check the parameters */ + assert_param(IS_TIM_INSTANCE(htim->Instance)); + + htim->State = HAL_TIM_STATE_BUSY; + + /* Disable the TIM Peripheral Clock */ + __HAL_TIM_DISABLE(htim); + +#if (USE_HAL_TIM_REGISTER_CALLBACKS == 1) + if (htim->OnePulse_MspDeInitCallback == NULL) + { + htim->OnePulse_MspDeInitCallback = HAL_TIM_OnePulse_MspDeInit; + } + /* DeInit the low level hardware */ + htim->OnePulse_MspDeInitCallback(htim); +#else + /* DeInit the low level hardware: GPIO, CLOCK, NVIC */ + HAL_TIM_OnePulse_MspDeInit(htim); +#endif /* USE_HAL_TIM_REGISTER_CALLBACKS */ + + /* Change TIM state */ + htim->State = HAL_TIM_STATE_RESET; + + /* Release Lock */ + __HAL_UNLOCK(htim); + + return HAL_OK; +} + +/** + * @brief Initializes the TIM One Pulse MSP. + * @param htim TIM One Pulse handle + * @retval None + */ +__weak void HAL_TIM_OnePulse_MspInit(TIM_HandleTypeDef *htim) +{ + /* Prevent unused argument(s) compilation warning */ + UNUSED(htim); + + /* NOTE : This function should not be modified, when the callback is needed, + the HAL_TIM_OnePulse_MspInit could be implemented in the user file + */ +} + +/** + * @brief DeInitializes TIM One Pulse MSP. + * @param htim TIM One Pulse handle + * @retval None + */ +__weak void HAL_TIM_OnePulse_MspDeInit(TIM_HandleTypeDef *htim) +{ + /* Prevent unused argument(s) compilation warning */ + UNUSED(htim); + + /* NOTE : This function should not be modified, when the callback is needed, + the HAL_TIM_OnePulse_MspDeInit could be implemented in the user file + */ +} + +/** + * @brief Starts the TIM One Pulse signal generation. + * @param htim TIM One Pulse handle + * @param OutputChannel TIM Channels to be enabled + * This parameter can be one of the following values: + * @arg TIM_CHANNEL_1: TIM Channel 1 selected + * @arg TIM_CHANNEL_2: TIM Channel 2 selected + * @retval HAL status + */ +HAL_StatusTypeDef HAL_TIM_OnePulse_Start(TIM_HandleTypeDef *htim, uint32_t OutputChannel) +{ + /* Prevent unused argument(s) compilation warning */ + UNUSED(OutputChannel); + + /* Enable the Capture compare and the Input Capture channels + (in the OPM Mode the two possible channels that can be used are TIM_CHANNEL_1 and TIM_CHANNEL_2) + if TIM_CHANNEL_1 is used as output, the TIM_CHANNEL_2 will be used as input and + if TIM_CHANNEL_1 is used as input, the TIM_CHANNEL_2 will be used as output + in all combinations, the TIM_CHANNEL_1 and TIM_CHANNEL_2 should be enabled together + + No need to enable the counter, it's enabled automatically by hardware + (the counter starts in response to a stimulus and generate a pulse */ + + TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_1, TIM_CCx_ENABLE); + TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_2, TIM_CCx_ENABLE); + + if (IS_TIM_BREAK_INSTANCE(htim->Instance) != RESET) + { + /* Enable the main output */ + __HAL_TIM_MOE_ENABLE(htim); + } + + /* Return function status */ + return HAL_OK; +} + +/** + * @brief Stops the TIM One Pulse signal generation. + * @param htim TIM One Pulse handle + * @param OutputChannel TIM Channels to be disable + * This parameter can be one of the following values: + * @arg TIM_CHANNEL_1: TIM Channel 1 selected + * @arg TIM_CHANNEL_2: TIM Channel 2 selected + * @retval HAL status + */ +HAL_StatusTypeDef HAL_TIM_OnePulse_Stop(TIM_HandleTypeDef *htim, uint32_t OutputChannel) +{ + /* Prevent unused argument(s) compilation warning */ + UNUSED(OutputChannel); + + /* Disable the Capture compare and the Input Capture channels + (in the OPM Mode the two possible channels that can be used are TIM_CHANNEL_1 and TIM_CHANNEL_2) + if TIM_CHANNEL_1 is used as output, the TIM_CHANNEL_2 will be used as input and + if TIM_CHANNEL_1 is used as input, the TIM_CHANNEL_2 will be used as output + in all combinations, the TIM_CHANNEL_1 and TIM_CHANNEL_2 should be disabled together */ + + TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_1, TIM_CCx_DISABLE); + TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_2, TIM_CCx_DISABLE); + + if (IS_TIM_BREAK_INSTANCE(htim->Instance) != RESET) + { + /* Disable the Main Output */ + __HAL_TIM_MOE_DISABLE(htim); + } + + /* Disable the Peripheral */ + __HAL_TIM_DISABLE(htim); + + /* Return function status */ + return HAL_OK; +} + +/** + * @brief Starts the TIM One Pulse signal generation in interrupt mode. + * @param htim TIM One Pulse handle + * @param OutputChannel TIM Channels to be enabled + * This parameter can be one of the following values: + * @arg TIM_CHANNEL_1: TIM Channel 1 selected + * @arg TIM_CHANNEL_2: TIM Channel 2 selected + * @retval HAL status + */ +HAL_StatusTypeDef HAL_TIM_OnePulse_Start_IT(TIM_HandleTypeDef *htim, uint32_t OutputChannel) +{ + /* Prevent unused argument(s) compilation warning */ + UNUSED(OutputChannel); + + /* Enable the Capture compare and the Input Capture channels + (in the OPM Mode the two possible channels that can be used are TIM_CHANNEL_1 and TIM_CHANNEL_2) + if TIM_CHANNEL_1 is used as output, the TIM_CHANNEL_2 will be used as input and + if TIM_CHANNEL_1 is used as input, the TIM_CHANNEL_2 will be used as output + in all combinations, the TIM_CHANNEL_1 and TIM_CHANNEL_2 should be enabled together + + No need to enable the counter, it's enabled automatically by hardware + (the counter starts in response to a stimulus and generate a pulse */ + + /* Enable the TIM Capture/Compare 1 interrupt */ + __HAL_TIM_ENABLE_IT(htim, TIM_IT_CC1); + + /* Enable the TIM Capture/Compare 2 interrupt */ + __HAL_TIM_ENABLE_IT(htim, TIM_IT_CC2); + + TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_1, TIM_CCx_ENABLE); + TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_2, TIM_CCx_ENABLE); + + if (IS_TIM_BREAK_INSTANCE(htim->Instance) != RESET) + { + /* Enable the main output */ + __HAL_TIM_MOE_ENABLE(htim); + } + + /* Return function status */ + return HAL_OK; +} + +/** + * @brief Stops the TIM One Pulse signal generation in interrupt mode. + * @param htim TIM One Pulse handle + * @param OutputChannel TIM Channels to be enabled + * This parameter can be one of the following values: + * @arg TIM_CHANNEL_1: TIM Channel 1 selected + * @arg TIM_CHANNEL_2: TIM Channel 2 selected + * @retval HAL status + */ +HAL_StatusTypeDef HAL_TIM_OnePulse_Stop_IT(TIM_HandleTypeDef *htim, uint32_t OutputChannel) +{ + /* Prevent unused argument(s) compilation warning */ + UNUSED(OutputChannel); + + /* Disable the TIM Capture/Compare 1 interrupt */ + __HAL_TIM_DISABLE_IT(htim, TIM_IT_CC1); + + /* Disable the TIM Capture/Compare 2 interrupt */ + __HAL_TIM_DISABLE_IT(htim, TIM_IT_CC2); + + /* Disable the Capture compare and the Input Capture channels + (in the OPM Mode the two possible channels that can be used are TIM_CHANNEL_1 and TIM_CHANNEL_2) + if TIM_CHANNEL_1 is used as output, the TIM_CHANNEL_2 will be used as input and + if TIM_CHANNEL_1 is used as input, the TIM_CHANNEL_2 will be used as output + in all combinations, the TIM_CHANNEL_1 and TIM_CHANNEL_2 should be disabled together */ + TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_1, TIM_CCx_DISABLE); + TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_2, TIM_CCx_DISABLE); + + if (IS_TIM_BREAK_INSTANCE(htim->Instance) != RESET) + { + /* Disable the Main Output */ + __HAL_TIM_MOE_DISABLE(htim); + } + + /* Disable the Peripheral */ + __HAL_TIM_DISABLE(htim); + + /* Return function status */ + return HAL_OK; +} + +/** + * @} + */ + +/** @defgroup TIM_Exported_Functions_Group6 TIM Encoder functions + * @brief TIM Encoder functions + * +@verbatim + ============================================================================== + ##### TIM Encoder functions ##### + ============================================================================== + [..] + This section provides functions allowing to: + (+) Initialize and configure the TIM Encoder. + (+) De-initialize the TIM Encoder. + (+) Start the TIM Encoder. + (+) Stop the TIM Encoder. + (+) Start the TIM Encoder and enable interrupt. + (+) Stop the TIM Encoder and disable interrupt. + (+) Start the TIM Encoder and enable DMA transfer. + (+) Stop the TIM Encoder and disable DMA transfer. + +@endverbatim + * @{ + */ +/** + * @brief Initializes the TIM Encoder Interface and initialize the associated handle. + * @note Switching from Center Aligned counter mode to Edge counter mode (or reverse) + * requires a timer reset to avoid unexpected direction + * due to DIR bit readonly in center aligned mode. + * Ex: call @ref HAL_TIM_Encoder_DeInit() before HAL_TIM_Encoder_Init() + * @note Encoder mode and External clock mode 2 are not compatible and must not be selected together + * Ex: A call for @ref HAL_TIM_Encoder_Init will erase the settings of @ref HAL_TIM_ConfigClockSource + * using TIM_CLOCKSOURCE_ETRMODE2 and vice versa + * @param htim TIM Encoder Interface handle + * @param sConfig TIM Encoder Interface configuration structure + * @retval HAL status + */ +HAL_StatusTypeDef HAL_TIM_Encoder_Init(TIM_HandleTypeDef *htim, TIM_Encoder_InitTypeDef *sConfig) +{ + uint32_t tmpsmcr; + uint32_t tmpccmr1; + uint32_t tmpccer; + + /* Check the TIM handle allocation */ + if (htim == NULL) + { + return HAL_ERROR; + } + + /* Check the parameters */ + assert_param(IS_TIM_COUNTER_MODE(htim->Init.CounterMode)); + assert_param(IS_TIM_CLOCKDIVISION_DIV(htim->Init.ClockDivision)); + assert_param(IS_TIM_AUTORELOAD_PRELOAD(htim->Init.AutoReloadPreload)); + assert_param(IS_TIM_CC2_INSTANCE(htim->Instance)); + assert_param(IS_TIM_ENCODER_MODE(sConfig->EncoderMode)); + assert_param(IS_TIM_IC_SELECTION(sConfig->IC1Selection)); + assert_param(IS_TIM_IC_SELECTION(sConfig->IC2Selection)); + assert_param(IS_TIM_ENCODERINPUT_POLARITY(sConfig->IC1Polarity)); + assert_param(IS_TIM_ENCODERINPUT_POLARITY(sConfig->IC2Polarity)); + assert_param(IS_TIM_IC_PRESCALER(sConfig->IC1Prescaler)); + assert_param(IS_TIM_IC_PRESCALER(sConfig->IC2Prescaler)); + assert_param(IS_TIM_IC_FILTER(sConfig->IC1Filter)); + assert_param(IS_TIM_IC_FILTER(sConfig->IC2Filter)); + + if (htim->State == HAL_TIM_STATE_RESET) + { + /* Allocate lock resource and initialize it */ + htim->Lock = HAL_UNLOCKED; + +#if (USE_HAL_TIM_REGISTER_CALLBACKS == 1) + /* Reset interrupt callbacks to legacy weak callbacks */ + TIM_ResetCallback(htim); + + if (htim->Encoder_MspInitCallback == NULL) + { + htim->Encoder_MspInitCallback = HAL_TIM_Encoder_MspInit; + } + /* Init the low level hardware : GPIO, CLOCK, NVIC */ + htim->Encoder_MspInitCallback(htim); +#else + /* Init the low level hardware : GPIO, CLOCK, NVIC and DMA */ + HAL_TIM_Encoder_MspInit(htim); +#endif /* USE_HAL_TIM_REGISTER_CALLBACKS */ + } + + /* Set the TIM state */ + htim->State = HAL_TIM_STATE_BUSY; + + /* Reset the SMS and ECE bits */ + htim->Instance->SMCR &= ~(TIM_SMCR_SMS | TIM_SMCR_ECE); + + /* Configure the Time base in the Encoder Mode */ + TIM_Base_SetConfig(htim->Instance, &htim->Init); + + /* Get the TIMx SMCR register value */ + tmpsmcr = htim->Instance->SMCR; + + /* Get the TIMx CCMR1 register value */ + tmpccmr1 = htim->Instance->CCMR1; + + /* Get the TIMx CCER register value */ + tmpccer = htim->Instance->CCER; + + /* Set the encoder Mode */ + tmpsmcr |= sConfig->EncoderMode; + + /* Select the Capture Compare 1 and the Capture Compare 2 as input */ + tmpccmr1 &= ~(TIM_CCMR1_CC1S | TIM_CCMR1_CC2S); + tmpccmr1 |= (sConfig->IC1Selection | (sConfig->IC2Selection << 8U)); + + /* Set the Capture Compare 1 and the Capture Compare 2 prescalers and filters */ + tmpccmr1 &= ~(TIM_CCMR1_IC1PSC | TIM_CCMR1_IC2PSC); + tmpccmr1 &= ~(TIM_CCMR1_IC1F | TIM_CCMR1_IC2F); + tmpccmr1 |= sConfig->IC1Prescaler | (sConfig->IC2Prescaler << 8U); + tmpccmr1 |= (sConfig->IC1Filter << 4U) | (sConfig->IC2Filter << 12U); + + /* Set the TI1 and the TI2 Polarities */ + tmpccer &= ~(TIM_CCER_CC1P | TIM_CCER_CC2P); + tmpccer &= ~(TIM_CCER_CC1NP | TIM_CCER_CC2NP); + tmpccer |= sConfig->IC1Polarity | (sConfig->IC2Polarity << 4U); + + /* Write to TIMx SMCR */ + htim->Instance->SMCR = tmpsmcr; + + /* Write to TIMx CCMR1 */ + htim->Instance->CCMR1 = tmpccmr1; + + /* Write to TIMx CCER */ + htim->Instance->CCER = tmpccer; + + /* Initialize the TIM state*/ + htim->State = HAL_TIM_STATE_READY; + + return HAL_OK; +} + + +/** + * @brief DeInitializes the TIM Encoder interface + * @param htim TIM Encoder Interface handle + * @retval HAL status + */ +HAL_StatusTypeDef HAL_TIM_Encoder_DeInit(TIM_HandleTypeDef *htim) +{ + /* Check the parameters */ + assert_param(IS_TIM_INSTANCE(htim->Instance)); + + htim->State = HAL_TIM_STATE_BUSY; + + /* Disable the TIM Peripheral Clock */ + __HAL_TIM_DISABLE(htim); + +#if (USE_HAL_TIM_REGISTER_CALLBACKS == 1) + if (htim->Encoder_MspDeInitCallback == NULL) + { + htim->Encoder_MspDeInitCallback = HAL_TIM_Encoder_MspDeInit; + } + /* DeInit the low level hardware */ + htim->Encoder_MspDeInitCallback(htim); +#else + /* DeInit the low level hardware: GPIO, CLOCK, NVIC */ + HAL_TIM_Encoder_MspDeInit(htim); +#endif /* USE_HAL_TIM_REGISTER_CALLBACKS */ + + /* Change TIM state */ + htim->State = HAL_TIM_STATE_RESET; + + /* Release Lock */ + __HAL_UNLOCK(htim); + + return HAL_OK; +} + +/** + * @brief Initializes the TIM Encoder Interface MSP. + * @param htim TIM Encoder Interface handle + * @retval None + */ +__weak void HAL_TIM_Encoder_MspInit(TIM_HandleTypeDef *htim) +{ + /* Prevent unused argument(s) compilation warning */ + UNUSED(htim); + + /* NOTE : This function should not be modified, when the callback is needed, + the HAL_TIM_Encoder_MspInit could be implemented in the user file + */ +} + +/** + * @brief DeInitializes TIM Encoder Interface MSP. + * @param htim TIM Encoder Interface handle + * @retval None + */ +__weak void HAL_TIM_Encoder_MspDeInit(TIM_HandleTypeDef *htim) +{ + /* Prevent unused argument(s) compilation warning */ + UNUSED(htim); + + /* NOTE : This function should not be modified, when the callback is needed, + the HAL_TIM_Encoder_MspDeInit could be implemented in the user file + */ +} + +/** + * @brief Starts the TIM Encoder Interface. + * @param htim TIM Encoder Interface handle + * @param Channel TIM Channels to be enabled + * This parameter can be one of the following values: + * @arg TIM_CHANNEL_1: TIM Channel 1 selected + * @arg TIM_CHANNEL_2: TIM Channel 2 selected + * @arg TIM_CHANNEL_ALL: TIM Channel 1 and TIM Channel 2 are selected + * @retval HAL status + */ +HAL_StatusTypeDef HAL_TIM_Encoder_Start(TIM_HandleTypeDef *htim, uint32_t Channel) +{ + /* Check the parameters */ + assert_param(IS_TIM_CC2_INSTANCE(htim->Instance)); + + /* Enable the encoder interface channels */ + switch (Channel) + { + case TIM_CHANNEL_1: + { + TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_1, TIM_CCx_ENABLE); + break; + } + + case TIM_CHANNEL_2: + { + TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_2, TIM_CCx_ENABLE); + break; + } + + default : + { + TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_1, TIM_CCx_ENABLE); + TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_2, TIM_CCx_ENABLE); + break; + } + } + /* Enable the Peripheral */ + __HAL_TIM_ENABLE(htim); + + /* Return function status */ + return HAL_OK; +} + +/** + * @brief Stops the TIM Encoder Interface. + * @param htim TIM Encoder Interface handle + * @param Channel TIM Channels to be disabled + * This parameter can be one of the following values: + * @arg TIM_CHANNEL_1: TIM Channel 1 selected + * @arg TIM_CHANNEL_2: TIM Channel 2 selected + * @arg TIM_CHANNEL_ALL: TIM Channel 1 and TIM Channel 2 are selected + * @retval HAL status + */ +HAL_StatusTypeDef HAL_TIM_Encoder_Stop(TIM_HandleTypeDef *htim, uint32_t Channel) +{ + /* Check the parameters */ + assert_param(IS_TIM_CC2_INSTANCE(htim->Instance)); + + /* Disable the Input Capture channels 1 and 2 + (in the EncoderInterface the two possible channels that can be used are TIM_CHANNEL_1 and TIM_CHANNEL_2) */ + switch (Channel) + { + case TIM_CHANNEL_1: + { + TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_1, TIM_CCx_DISABLE); + break; + } + + case TIM_CHANNEL_2: + { + TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_2, TIM_CCx_DISABLE); + break; + } + + default : + { + TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_1, TIM_CCx_DISABLE); + TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_2, TIM_CCx_DISABLE); + break; + } + } + + /* Disable the Peripheral */ + __HAL_TIM_DISABLE(htim); + + /* Return function status */ + return HAL_OK; +} + +/** + * @brief Starts the TIM Encoder Interface in interrupt mode. + * @param htim TIM Encoder Interface handle + * @param Channel TIM Channels to be enabled + * This parameter can be one of the following values: + * @arg TIM_CHANNEL_1: TIM Channel 1 selected + * @arg TIM_CHANNEL_2: TIM Channel 2 selected + * @arg TIM_CHANNEL_ALL: TIM Channel 1 and TIM Channel 2 are selected + * @retval HAL status + */ +HAL_StatusTypeDef HAL_TIM_Encoder_Start_IT(TIM_HandleTypeDef *htim, uint32_t Channel) +{ + /* Check the parameters */ + assert_param(IS_TIM_CC2_INSTANCE(htim->Instance)); + + /* Enable the encoder interface channels */ + /* Enable the capture compare Interrupts 1 and/or 2 */ + switch (Channel) + { + case TIM_CHANNEL_1: + { + TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_1, TIM_CCx_ENABLE); + __HAL_TIM_ENABLE_IT(htim, TIM_IT_CC1); + break; + } + + case TIM_CHANNEL_2: + { + TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_2, TIM_CCx_ENABLE); + __HAL_TIM_ENABLE_IT(htim, TIM_IT_CC2); + break; + } + + default : + { + TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_1, TIM_CCx_ENABLE); + TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_2, TIM_CCx_ENABLE); + __HAL_TIM_ENABLE_IT(htim, TIM_IT_CC1); + __HAL_TIM_ENABLE_IT(htim, TIM_IT_CC2); + break; + } + } + + /* Enable the Peripheral */ + __HAL_TIM_ENABLE(htim); + + /* Return function status */ + return HAL_OK; +} + +/** + * @brief Stops the TIM Encoder Interface in interrupt mode. + * @param htim TIM Encoder Interface handle + * @param Channel TIM Channels to be disabled + * This parameter can be one of the following values: + * @arg TIM_CHANNEL_1: TIM Channel 1 selected + * @arg TIM_CHANNEL_2: TIM Channel 2 selected + * @arg TIM_CHANNEL_ALL: TIM Channel 1 and TIM Channel 2 are selected + * @retval HAL status + */ +HAL_StatusTypeDef HAL_TIM_Encoder_Stop_IT(TIM_HandleTypeDef *htim, uint32_t Channel) +{ + /* Check the parameters */ + assert_param(IS_TIM_CC2_INSTANCE(htim->Instance)); + + /* Disable the Input Capture channels 1 and 2 + (in the EncoderInterface the two possible channels that can be used are TIM_CHANNEL_1 and TIM_CHANNEL_2) */ + if (Channel == TIM_CHANNEL_1) + { + TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_1, TIM_CCx_DISABLE); + + /* Disable the capture compare Interrupts 1 */ + __HAL_TIM_DISABLE_IT(htim, TIM_IT_CC1); + } + else if (Channel == TIM_CHANNEL_2) + { + TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_2, TIM_CCx_DISABLE); + + /* Disable the capture compare Interrupts 2 */ + __HAL_TIM_DISABLE_IT(htim, TIM_IT_CC2); + } + else + { + TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_1, TIM_CCx_DISABLE); + TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_2, TIM_CCx_DISABLE); + + /* Disable the capture compare Interrupts 1 and 2 */ + __HAL_TIM_DISABLE_IT(htim, TIM_IT_CC1); + __HAL_TIM_DISABLE_IT(htim, TIM_IT_CC2); + } + + /* Disable the Peripheral */ + __HAL_TIM_DISABLE(htim); + + /* Change the htim state */ + htim->State = HAL_TIM_STATE_READY; + + /* Return function status */ + return HAL_OK; +} + +/** + * @brief Starts the TIM Encoder Interface in DMA mode. + * @param htim TIM Encoder Interface handle + * @param Channel TIM Channels to be enabled + * This parameter can be one of the following values: + * @arg TIM_CHANNEL_1: TIM Channel 1 selected + * @arg TIM_CHANNEL_2: TIM Channel 2 selected + * @arg TIM_CHANNEL_ALL: TIM Channel 1 and TIM Channel 2 are selected + * @param pData1 The destination Buffer address for IC1. + * @param pData2 The destination Buffer address for IC2. + * @param Length The length of data to be transferred from TIM peripheral to memory. + * @retval HAL status + */ +HAL_StatusTypeDef HAL_TIM_Encoder_Start_DMA(TIM_HandleTypeDef *htim, uint32_t Channel, uint32_t *pData1, + uint32_t *pData2, uint16_t Length) +{ + /* Check the parameters */ + assert_param(IS_TIM_DMA_CC_INSTANCE(htim->Instance)); + + if (htim->State == HAL_TIM_STATE_BUSY) + { + return HAL_BUSY; + } + else if (htim->State == HAL_TIM_STATE_READY) + { + if ((((pData1 == NULL) || (pData2 == NULL))) && (Length > 0U)) + { + return HAL_ERROR; + } + else + { + htim->State = HAL_TIM_STATE_BUSY; + } + } + else + { + /* nothing to do */ + } + + switch (Channel) + { + case TIM_CHANNEL_1: + { + /* Set the DMA capture callbacks */ + htim->hdma[TIM_DMA_ID_CC1]->XferCpltCallback = TIM_DMACaptureCplt; + htim->hdma[TIM_DMA_ID_CC1]->XferHalfCpltCallback = TIM_DMACaptureHalfCplt; + + /* Set the DMA error callback */ + htim->hdma[TIM_DMA_ID_CC1]->XferErrorCallback = TIM_DMAError ; + + /* Enable the DMA stream */ + if (HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_CC1], (uint32_t)&htim->Instance->CCR1, (uint32_t)pData1, Length) != HAL_OK) + { + return HAL_ERROR; + } + /* Enable the TIM Input Capture DMA request */ + __HAL_TIM_ENABLE_DMA(htim, TIM_DMA_CC1); + + /* Enable the Peripheral */ + __HAL_TIM_ENABLE(htim); + + /* Enable the Capture compare channel */ + TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_1, TIM_CCx_ENABLE); + break; + } + + case TIM_CHANNEL_2: + { + /* Set the DMA capture callbacks */ + htim->hdma[TIM_DMA_ID_CC2]->XferCpltCallback = TIM_DMACaptureCplt; + htim->hdma[TIM_DMA_ID_CC2]->XferHalfCpltCallback = TIM_DMACaptureHalfCplt; + + /* Set the DMA error callback */ + htim->hdma[TIM_DMA_ID_CC2]->XferErrorCallback = TIM_DMAError; + /* Enable the DMA stream */ + if (HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_CC2], (uint32_t)&htim->Instance->CCR2, (uint32_t)pData2, Length) != HAL_OK) + { + return HAL_ERROR; + } + /* Enable the TIM Input Capture DMA request */ + __HAL_TIM_ENABLE_DMA(htim, TIM_DMA_CC2); + + /* Enable the Peripheral */ + __HAL_TIM_ENABLE(htim); + + /* Enable the Capture compare channel */ + TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_2, TIM_CCx_ENABLE); + break; + } + + case TIM_CHANNEL_ALL: + { + /* Set the DMA capture callbacks */ + htim->hdma[TIM_DMA_ID_CC1]->XferCpltCallback = TIM_DMACaptureCplt; + htim->hdma[TIM_DMA_ID_CC1]->XferHalfCpltCallback = TIM_DMACaptureHalfCplt; + + /* Set the DMA error callback */ + htim->hdma[TIM_DMA_ID_CC1]->XferErrorCallback = TIM_DMAError ; + + /* Enable the DMA stream */ + if (HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_CC1], (uint32_t)&htim->Instance->CCR1, (uint32_t)pData1, Length) != HAL_OK) + { + return HAL_ERROR; + } + + /* Set the DMA capture callbacks */ + htim->hdma[TIM_DMA_ID_CC2]->XferCpltCallback = TIM_DMACaptureCplt; + htim->hdma[TIM_DMA_ID_CC2]->XferHalfCpltCallback = TIM_DMACaptureHalfCplt; + + /* Set the DMA error callback */ + htim->hdma[TIM_DMA_ID_CC2]->XferErrorCallback = TIM_DMAError ; + + /* Enable the DMA stream */ + if (HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_CC2], (uint32_t)&htim->Instance->CCR2, (uint32_t)pData2, Length) != HAL_OK) + { + return HAL_ERROR; + } + /* Enable the Peripheral */ + __HAL_TIM_ENABLE(htim); + + /* Enable the Capture compare channel */ + TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_1, TIM_CCx_ENABLE); + TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_2, TIM_CCx_ENABLE); + + /* Enable the TIM Input Capture DMA request */ + __HAL_TIM_ENABLE_DMA(htim, TIM_DMA_CC1); + /* Enable the TIM Input Capture DMA request */ + __HAL_TIM_ENABLE_DMA(htim, TIM_DMA_CC2); + break; + } + + default: + break; + } + /* Return function status */ + return HAL_OK; +} + +/** + * @brief Stops the TIM Encoder Interface in DMA mode. + * @param htim TIM Encoder Interface handle + * @param Channel TIM Channels to be enabled + * This parameter can be one of the following values: + * @arg TIM_CHANNEL_1: TIM Channel 1 selected + * @arg TIM_CHANNEL_2: TIM Channel 2 selected + * @arg TIM_CHANNEL_ALL: TIM Channel 1 and TIM Channel 2 are selected + * @retval HAL status + */ +HAL_StatusTypeDef HAL_TIM_Encoder_Stop_DMA(TIM_HandleTypeDef *htim, uint32_t Channel) +{ + /* Check the parameters */ + assert_param(IS_TIM_DMA_CC_INSTANCE(htim->Instance)); + + /* Disable the Input Capture channels 1 and 2 + (in the EncoderInterface the two possible channels that can be used are TIM_CHANNEL_1 and TIM_CHANNEL_2) */ + if (Channel == TIM_CHANNEL_1) + { + TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_1, TIM_CCx_DISABLE); + + /* Disable the capture compare DMA Request 1 */ + __HAL_TIM_DISABLE_DMA(htim, TIM_DMA_CC1); + (void)HAL_DMA_Abort_IT(htim->hdma[TIM_DMA_ID_CC1]); + } + else if (Channel == TIM_CHANNEL_2) + { + TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_2, TIM_CCx_DISABLE); + + /* Disable the capture compare DMA Request 2 */ + __HAL_TIM_DISABLE_DMA(htim, TIM_DMA_CC2); + (void)HAL_DMA_Abort_IT(htim->hdma[TIM_DMA_ID_CC2]); + } + else + { + TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_1, TIM_CCx_DISABLE); + TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_2, TIM_CCx_DISABLE); + + /* Disable the capture compare DMA Request 1 and 2 */ + __HAL_TIM_DISABLE_DMA(htim, TIM_DMA_CC1); + __HAL_TIM_DISABLE_DMA(htim, TIM_DMA_CC2); + (void)HAL_DMA_Abort_IT(htim->hdma[TIM_DMA_ID_CC1]); + (void)HAL_DMA_Abort_IT(htim->hdma[TIM_DMA_ID_CC2]); + } + + /* Disable the Peripheral */ + __HAL_TIM_DISABLE(htim); + + /* Change the htim state */ + htim->State = HAL_TIM_STATE_READY; + + /* Return function status */ + return HAL_OK; +} + +/** + * @} + */ +/** @defgroup TIM_Exported_Functions_Group7 TIM IRQ handler management + * @brief TIM IRQ handler management + * +@verbatim + ============================================================================== + ##### IRQ handler management ##### + ============================================================================== + [..] + This section provides Timer IRQ handler function. + +@endverbatim + * @{ + */ +/** + * @brief This function handles TIM interrupts requests. + * @param htim TIM handle + * @retval None + */ +void HAL_TIM_IRQHandler(TIM_HandleTypeDef *htim) +{ + /* Capture compare 1 event */ + if (__HAL_TIM_GET_FLAG(htim, TIM_FLAG_CC1) != RESET) + { + if (__HAL_TIM_GET_IT_SOURCE(htim, TIM_IT_CC1) != RESET) + { + { + __HAL_TIM_CLEAR_IT(htim, TIM_IT_CC1); + htim->Channel = HAL_TIM_ACTIVE_CHANNEL_1; + + /* Input capture event */ + if ((htim->Instance->CCMR1 & TIM_CCMR1_CC1S) != 0x00U) + { +#if (USE_HAL_TIM_REGISTER_CALLBACKS == 1) + htim->IC_CaptureCallback(htim); +#else + HAL_TIM_IC_CaptureCallback(htim); +#endif /* USE_HAL_TIM_REGISTER_CALLBACKS */ + } + /* Output compare event */ + else + { +#if (USE_HAL_TIM_REGISTER_CALLBACKS == 1) + htim->OC_DelayElapsedCallback(htim); + htim->PWM_PulseFinishedCallback(htim); +#else + HAL_TIM_OC_DelayElapsedCallback(htim); + HAL_TIM_PWM_PulseFinishedCallback(htim); +#endif /* USE_HAL_TIM_REGISTER_CALLBACKS */ + } + htim->Channel = HAL_TIM_ACTIVE_CHANNEL_CLEARED; + } + } + } + /* Capture compare 2 event */ + if (__HAL_TIM_GET_FLAG(htim, TIM_FLAG_CC2) != RESET) + { + if (__HAL_TIM_GET_IT_SOURCE(htim, TIM_IT_CC2) != RESET) + { + __HAL_TIM_CLEAR_IT(htim, TIM_IT_CC2); + htim->Channel = HAL_TIM_ACTIVE_CHANNEL_2; + /* Input capture event */ + if ((htim->Instance->CCMR1 & TIM_CCMR1_CC2S) != 0x00U) + { +#if (USE_HAL_TIM_REGISTER_CALLBACKS == 1) + htim->IC_CaptureCallback(htim); +#else + HAL_TIM_IC_CaptureCallback(htim); +#endif /* USE_HAL_TIM_REGISTER_CALLBACKS */ + } + /* Output compare event */ + else + { +#if (USE_HAL_TIM_REGISTER_CALLBACKS == 1) + htim->OC_DelayElapsedCallback(htim); + htim->PWM_PulseFinishedCallback(htim); +#else + HAL_TIM_OC_DelayElapsedCallback(htim); + HAL_TIM_PWM_PulseFinishedCallback(htim); +#endif /* USE_HAL_TIM_REGISTER_CALLBACKS */ + } + htim->Channel = HAL_TIM_ACTIVE_CHANNEL_CLEARED; + } + } + /* Capture compare 3 event */ + if (__HAL_TIM_GET_FLAG(htim, TIM_FLAG_CC3) != RESET) + { + if (__HAL_TIM_GET_IT_SOURCE(htim, TIM_IT_CC3) != RESET) + { + __HAL_TIM_CLEAR_IT(htim, TIM_IT_CC3); + htim->Channel = HAL_TIM_ACTIVE_CHANNEL_3; + /* Input capture event */ + if ((htim->Instance->CCMR2 & TIM_CCMR2_CC3S) != 0x00U) + { +#if (USE_HAL_TIM_REGISTER_CALLBACKS == 1) + htim->IC_CaptureCallback(htim); +#else + HAL_TIM_IC_CaptureCallback(htim); +#endif /* USE_HAL_TIM_REGISTER_CALLBACKS */ + } + /* Output compare event */ + else + { +#if (USE_HAL_TIM_REGISTER_CALLBACKS == 1) + htim->OC_DelayElapsedCallback(htim); + htim->PWM_PulseFinishedCallback(htim); +#else + HAL_TIM_OC_DelayElapsedCallback(htim); + HAL_TIM_PWM_PulseFinishedCallback(htim); +#endif /* USE_HAL_TIM_REGISTER_CALLBACKS */ + } + htim->Channel = HAL_TIM_ACTIVE_CHANNEL_CLEARED; + } + } + /* Capture compare 4 event */ + if (__HAL_TIM_GET_FLAG(htim, TIM_FLAG_CC4) != RESET) + { + if (__HAL_TIM_GET_IT_SOURCE(htim, TIM_IT_CC4) != RESET) + { + __HAL_TIM_CLEAR_IT(htim, TIM_IT_CC4); + htim->Channel = HAL_TIM_ACTIVE_CHANNEL_4; + /* Input capture event */ + if ((htim->Instance->CCMR2 & TIM_CCMR2_CC4S) != 0x00U) + { +#if (USE_HAL_TIM_REGISTER_CALLBACKS == 1) + htim->IC_CaptureCallback(htim); +#else + HAL_TIM_IC_CaptureCallback(htim); +#endif /* USE_HAL_TIM_REGISTER_CALLBACKS */ + } + /* Output compare event */ + else + { +#if (USE_HAL_TIM_REGISTER_CALLBACKS == 1) + htim->OC_DelayElapsedCallback(htim); + htim->PWM_PulseFinishedCallback(htim); +#else + HAL_TIM_OC_DelayElapsedCallback(htim); + HAL_TIM_PWM_PulseFinishedCallback(htim); +#endif /* USE_HAL_TIM_REGISTER_CALLBACKS */ + } + htim->Channel = HAL_TIM_ACTIVE_CHANNEL_CLEARED; + } + } + /* TIM Update event */ + if (__HAL_TIM_GET_FLAG(htim, TIM_FLAG_UPDATE) != RESET) + { + if (__HAL_TIM_GET_IT_SOURCE(htim, TIM_IT_UPDATE) != RESET) + { + __HAL_TIM_CLEAR_IT(htim, TIM_IT_UPDATE); +#if (USE_HAL_TIM_REGISTER_CALLBACKS == 1) + htim->PeriodElapsedCallback(htim); +#else + HAL_TIM_PeriodElapsedCallback(htim); +#endif /* USE_HAL_TIM_REGISTER_CALLBACKS */ + } + } + /* TIM Break input event */ + if (__HAL_TIM_GET_FLAG(htim, TIM_FLAG_BREAK) != RESET) + { + if (__HAL_TIM_GET_IT_SOURCE(htim, TIM_IT_BREAK) != RESET) + { + __HAL_TIM_CLEAR_IT(htim, TIM_IT_BREAK); +#if (USE_HAL_TIM_REGISTER_CALLBACKS == 1) + htim->BreakCallback(htim); +#else + HAL_TIMEx_BreakCallback(htim); +#endif /* USE_HAL_TIM_REGISTER_CALLBACKS */ + } + } + /* TIM Break2 input event */ + if (__HAL_TIM_GET_FLAG(htim, TIM_FLAG_BREAK2) != RESET) + { + if (__HAL_TIM_GET_IT_SOURCE(htim, TIM_IT_BREAK) != RESET) + { + __HAL_TIM_CLEAR_FLAG(htim, TIM_FLAG_BREAK2); +#if (USE_HAL_TIM_REGISTER_CALLBACKS == 1) + htim->Break2Callback(htim); +#else + HAL_TIMEx_Break2Callback(htim); +#endif /* USE_HAL_TIM_REGISTER_CALLBACKS */ + } + } + /* TIM Trigger detection event */ + if (__HAL_TIM_GET_FLAG(htim, TIM_FLAG_TRIGGER) != RESET) + { + if (__HAL_TIM_GET_IT_SOURCE(htim, TIM_IT_TRIGGER) != RESET) + { + __HAL_TIM_CLEAR_IT(htim, TIM_IT_TRIGGER); +#if (USE_HAL_TIM_REGISTER_CALLBACKS == 1) + htim->TriggerCallback(htim); +#else + HAL_TIM_TriggerCallback(htim); +#endif /* USE_HAL_TIM_REGISTER_CALLBACKS */ + } + } + /* TIM commutation event */ + if (__HAL_TIM_GET_FLAG(htim, TIM_FLAG_COM) != RESET) + { + if (__HAL_TIM_GET_IT_SOURCE(htim, TIM_IT_COM) != RESET) + { + __HAL_TIM_CLEAR_IT(htim, TIM_FLAG_COM); +#if (USE_HAL_TIM_REGISTER_CALLBACKS == 1) + htim->CommutationCallback(htim); +#else + HAL_TIMEx_CommutCallback(htim); +#endif /* USE_HAL_TIM_REGISTER_CALLBACKS */ + } + } +} + +/** + * @} + */ + +/** @defgroup TIM_Exported_Functions_Group8 TIM Peripheral Control functions + * @brief TIM Peripheral Control functions + * +@verbatim + ============================================================================== + ##### Peripheral Control functions ##### + ============================================================================== + [..] + This section provides functions allowing to: + (+) Configure The Input Output channels for OC, PWM, IC or One Pulse mode. + (+) Configure External Clock source. + (+) Configure Complementary channels, break features and dead time. + (+) Configure Master and the Slave synchronization. + (+) Configure the DMA Burst Mode. + +@endverbatim + * @{ + */ + +/** + * @brief Initializes the TIM Output Compare Channels according to the specified + * parameters in the TIM_OC_InitTypeDef. + * @param htim TIM Output Compare handle + * @param sConfig TIM Output Compare configuration structure + * @param Channel TIM Channels to configure + * This parameter can be one of the following values: + * @arg TIM_CHANNEL_1: TIM Channel 1 selected + * @arg TIM_CHANNEL_2: TIM Channel 2 selected + * @arg TIM_CHANNEL_3: TIM Channel 3 selected + * @arg TIM_CHANNEL_4: TIM Channel 4 selected + * @arg TIM_CHANNEL_5: TIM Channel 5 selected + * @arg TIM_CHANNEL_6: TIM Channel 6 selected + * @retval HAL status + */ +HAL_StatusTypeDef HAL_TIM_OC_ConfigChannel(TIM_HandleTypeDef *htim, + TIM_OC_InitTypeDef *sConfig, + uint32_t Channel) +{ + /* Check the parameters */ + assert_param(IS_TIM_CHANNELS(Channel)); + assert_param(IS_TIM_OC_MODE(sConfig->OCMode)); + assert_param(IS_TIM_OC_POLARITY(sConfig->OCPolarity)); + + /* Process Locked */ + __HAL_LOCK(htim); + + htim->State = HAL_TIM_STATE_BUSY; + + switch (Channel) + { + case TIM_CHANNEL_1: + { + /* Check the parameters */ + assert_param(IS_TIM_CC1_INSTANCE(htim->Instance)); + + /* Configure the TIM Channel 1 in Output Compare */ + TIM_OC1_SetConfig(htim->Instance, sConfig); + break; + } + + case TIM_CHANNEL_2: + { + /* Check the parameters */ + assert_param(IS_TIM_CC2_INSTANCE(htim->Instance)); + + /* Configure the TIM Channel 2 in Output Compare */ + TIM_OC2_SetConfig(htim->Instance, sConfig); + break; + } + + case TIM_CHANNEL_3: + { + /* Check the parameters */ + assert_param(IS_TIM_CC3_INSTANCE(htim->Instance)); + + /* Configure the TIM Channel 3 in Output Compare */ + TIM_OC3_SetConfig(htim->Instance, sConfig); + break; + } + + case TIM_CHANNEL_4: + { + /* Check the parameters */ + assert_param(IS_TIM_CC4_INSTANCE(htim->Instance)); + + /* Configure the TIM Channel 4 in Output Compare */ + TIM_OC4_SetConfig(htim->Instance, sConfig); + break; + } + + case TIM_CHANNEL_5: + { + /* Check the parameters */ + assert_param(IS_TIM_CC5_INSTANCE(htim->Instance)); + + /* Configure the TIM Channel 5 in Output Compare */ + TIM_OC5_SetConfig(htim->Instance, sConfig); + break; + } + + case TIM_CHANNEL_6: + { + /* Check the parameters */ + assert_param(IS_TIM_CC6_INSTANCE(htim->Instance)); + + /* Configure the TIM Channel 6 in Output Compare */ + TIM_OC6_SetConfig(htim->Instance, sConfig); + break; + } + + default: + break; + } + + htim->State = HAL_TIM_STATE_READY; + + __HAL_UNLOCK(htim); + + return HAL_OK; +} + +/** + * @brief Initializes the TIM Input Capture Channels according to the specified + * parameters in the TIM_IC_InitTypeDef. + * @param htim TIM IC handle + * @param sConfig TIM Input Capture configuration structure + * @param Channel TIM Channel to configure + * This parameter can be one of the following values: + * @arg TIM_CHANNEL_1: TIM Channel 1 selected + * @arg TIM_CHANNEL_2: TIM Channel 2 selected + * @arg TIM_CHANNEL_3: TIM Channel 3 selected + * @arg TIM_CHANNEL_4: TIM Channel 4 selected + * @retval HAL status + */ +HAL_StatusTypeDef HAL_TIM_IC_ConfigChannel(TIM_HandleTypeDef *htim, TIM_IC_InitTypeDef *sConfig, uint32_t Channel) +{ + /* Check the parameters */ + assert_param(IS_TIM_CC1_INSTANCE(htim->Instance)); + assert_param(IS_TIM_IC_POLARITY(sConfig->ICPolarity)); + assert_param(IS_TIM_IC_SELECTION(sConfig->ICSelection)); + assert_param(IS_TIM_IC_PRESCALER(sConfig->ICPrescaler)); + assert_param(IS_TIM_IC_FILTER(sConfig->ICFilter)); + + /* Process Locked */ + __HAL_LOCK(htim); + + htim->State = HAL_TIM_STATE_BUSY; + + if (Channel == TIM_CHANNEL_1) + { + /* TI1 Configuration */ + TIM_TI1_SetConfig(htim->Instance, + sConfig->ICPolarity, + sConfig->ICSelection, + sConfig->ICFilter); + + /* Reset the IC1PSC Bits */ + htim->Instance->CCMR1 &= ~TIM_CCMR1_IC1PSC; + + /* Set the IC1PSC value */ + htim->Instance->CCMR1 |= sConfig->ICPrescaler; + } + else if (Channel == TIM_CHANNEL_2) + { + /* TI2 Configuration */ + assert_param(IS_TIM_CC2_INSTANCE(htim->Instance)); + + TIM_TI2_SetConfig(htim->Instance, + sConfig->ICPolarity, + sConfig->ICSelection, + sConfig->ICFilter); + + /* Reset the IC2PSC Bits */ + htim->Instance->CCMR1 &= ~TIM_CCMR1_IC2PSC; + + /* Set the IC2PSC value */ + htim->Instance->CCMR1 |= (sConfig->ICPrescaler << 8U); + } + else if (Channel == TIM_CHANNEL_3) + { + /* TI3 Configuration */ + assert_param(IS_TIM_CC3_INSTANCE(htim->Instance)); + + TIM_TI3_SetConfig(htim->Instance, + sConfig->ICPolarity, + sConfig->ICSelection, + sConfig->ICFilter); + + /* Reset the IC3PSC Bits */ + htim->Instance->CCMR2 &= ~TIM_CCMR2_IC3PSC; + + /* Set the IC3PSC value */ + htim->Instance->CCMR2 |= sConfig->ICPrescaler; + } + else + { + /* TI4 Configuration */ + assert_param(IS_TIM_CC4_INSTANCE(htim->Instance)); + + TIM_TI4_SetConfig(htim->Instance, + sConfig->ICPolarity, + sConfig->ICSelection, + sConfig->ICFilter); + + /* Reset the IC4PSC Bits */ + htim->Instance->CCMR2 &= ~TIM_CCMR2_IC4PSC; + + /* Set the IC4PSC value */ + htim->Instance->CCMR2 |= (sConfig->ICPrescaler << 8U); + } + + htim->State = HAL_TIM_STATE_READY; + + __HAL_UNLOCK(htim); + + return HAL_OK; +} + +/** + * @brief Initializes the TIM PWM channels according to the specified + * parameters in the TIM_OC_InitTypeDef. + * @param htim TIM PWM handle + * @param sConfig TIM PWM configuration structure + * @param Channel TIM Channels to be configured + * This parameter can be one of the following values: + * @arg TIM_CHANNEL_1: TIM Channel 1 selected + * @arg TIM_CHANNEL_2: TIM Channel 2 selected + * @arg TIM_CHANNEL_3: TIM Channel 3 selected + * @arg TIM_CHANNEL_4: TIM Channel 4 selected + * @arg TIM_CHANNEL_5: TIM Channel 5 selected + * @arg TIM_CHANNEL_6: TIM Channel 6 selected + * @retval HAL status + */ +HAL_StatusTypeDef HAL_TIM_PWM_ConfigChannel(TIM_HandleTypeDef *htim, + TIM_OC_InitTypeDef *sConfig, + uint32_t Channel) +{ + /* Check the parameters */ + assert_param(IS_TIM_CHANNELS(Channel)); + assert_param(IS_TIM_PWM_MODE(sConfig->OCMode)); + assert_param(IS_TIM_OC_POLARITY(sConfig->OCPolarity)); + assert_param(IS_TIM_FAST_STATE(sConfig->OCFastMode)); + + /* Process Locked */ + __HAL_LOCK(htim); + + htim->State = HAL_TIM_STATE_BUSY; + + switch (Channel) + { + case TIM_CHANNEL_1: + { + /* Check the parameters */ + assert_param(IS_TIM_CC1_INSTANCE(htim->Instance)); + + /* Configure the Channel 1 in PWM mode */ + TIM_OC1_SetConfig(htim->Instance, sConfig); + + /* Set the Preload enable bit for channel1 */ + htim->Instance->CCMR1 |= TIM_CCMR1_OC1PE; + + /* Configure the Output Fast mode */ + htim->Instance->CCMR1 &= ~TIM_CCMR1_OC1FE; + htim->Instance->CCMR1 |= sConfig->OCFastMode; + break; + } + + case TIM_CHANNEL_2: + { + /* Check the parameters */ + assert_param(IS_TIM_CC2_INSTANCE(htim->Instance)); + + /* Configure the Channel 2 in PWM mode */ + TIM_OC2_SetConfig(htim->Instance, sConfig); + + /* Set the Preload enable bit for channel2 */ + htim->Instance->CCMR1 |= TIM_CCMR1_OC2PE; + + /* Configure the Output Fast mode */ + htim->Instance->CCMR1 &= ~TIM_CCMR1_OC2FE; + htim->Instance->CCMR1 |= sConfig->OCFastMode << 8U; + break; + } + + case TIM_CHANNEL_3: + { + /* Check the parameters */ + assert_param(IS_TIM_CC3_INSTANCE(htim->Instance)); + + /* Configure the Channel 3 in PWM mode */ + TIM_OC3_SetConfig(htim->Instance, sConfig); + + /* Set the Preload enable bit for channel3 */ + htim->Instance->CCMR2 |= TIM_CCMR2_OC3PE; + + /* Configure the Output Fast mode */ + htim->Instance->CCMR2 &= ~TIM_CCMR2_OC3FE; + htim->Instance->CCMR2 |= sConfig->OCFastMode; + break; + } + + case TIM_CHANNEL_4: + { + /* Check the parameters */ + assert_param(IS_TIM_CC4_INSTANCE(htim->Instance)); + + /* Configure the Channel 4 in PWM mode */ + TIM_OC4_SetConfig(htim->Instance, sConfig); + + /* Set the Preload enable bit for channel4 */ + htim->Instance->CCMR2 |= TIM_CCMR2_OC4PE; + + /* Configure the Output Fast mode */ + htim->Instance->CCMR2 &= ~TIM_CCMR2_OC4FE; + htim->Instance->CCMR2 |= sConfig->OCFastMode << 8U; + break; + } + + case TIM_CHANNEL_5: + { + /* Check the parameters */ + assert_param(IS_TIM_CC5_INSTANCE(htim->Instance)); + + /* Configure the Channel 5 in PWM mode */ + TIM_OC5_SetConfig(htim->Instance, sConfig); + + /* Set the Preload enable bit for channel5*/ + htim->Instance->CCMR3 |= TIM_CCMR3_OC5PE; + + /* Configure the Output Fast mode */ + htim->Instance->CCMR3 &= ~TIM_CCMR3_OC5FE; + htim->Instance->CCMR3 |= sConfig->OCFastMode; + break; + } + + case TIM_CHANNEL_6: + { + /* Check the parameters */ + assert_param(IS_TIM_CC6_INSTANCE(htim->Instance)); + + /* Configure the Channel 6 in PWM mode */ + TIM_OC6_SetConfig(htim->Instance, sConfig); + + /* Set the Preload enable bit for channel6 */ + htim->Instance->CCMR3 |= TIM_CCMR3_OC6PE; + + /* Configure the Output Fast mode */ + htim->Instance->CCMR3 &= ~TIM_CCMR3_OC6FE; + htim->Instance->CCMR3 |= sConfig->OCFastMode << 8U; + break; + } + + default: + break; + } + + htim->State = HAL_TIM_STATE_READY; + + __HAL_UNLOCK(htim); + + return HAL_OK; +} + +/** + * @brief Initializes the TIM One Pulse Channels according to the specified + * parameters in the TIM_OnePulse_InitTypeDef. + * @param htim TIM One Pulse handle + * @param sConfig TIM One Pulse configuration structure + * @param OutputChannel TIM output channel to configure + * This parameter can be one of the following values: + * @arg TIM_CHANNEL_1: TIM Channel 1 selected + * @arg TIM_CHANNEL_2: TIM Channel 2 selected + * @param InputChannel TIM input Channel to configure + * This parameter can be one of the following values: + * @arg TIM_CHANNEL_1: TIM Channel 1 selected + * @arg TIM_CHANNEL_2: TIM Channel 2 selected + * @note To output a waveform with a minimum delay user can enable the fast + * mode by calling the @ref __HAL_TIM_ENABLE_OCxFAST macro. Then CCx + * output is forced in response to the edge detection on TIx input, + * without taking in account the comparison. + * @retval HAL status + */ +HAL_StatusTypeDef HAL_TIM_OnePulse_ConfigChannel(TIM_HandleTypeDef *htim, TIM_OnePulse_InitTypeDef *sConfig, + uint32_t OutputChannel, uint32_t InputChannel) +{ + TIM_OC_InitTypeDef temp1; + + /* Check the parameters */ + assert_param(IS_TIM_OPM_CHANNELS(OutputChannel)); + assert_param(IS_TIM_OPM_CHANNELS(InputChannel)); + + if (OutputChannel != InputChannel) + { + /* Process Locked */ + __HAL_LOCK(htim); + + htim->State = HAL_TIM_STATE_BUSY; + + /* Extract the Output compare configuration from sConfig structure */ + temp1.OCMode = sConfig->OCMode; + temp1.Pulse = sConfig->Pulse; + temp1.OCPolarity = sConfig->OCPolarity; + temp1.OCNPolarity = sConfig->OCNPolarity; + temp1.OCIdleState = sConfig->OCIdleState; + temp1.OCNIdleState = sConfig->OCNIdleState; + + switch (OutputChannel) + { + case TIM_CHANNEL_1: + { + assert_param(IS_TIM_CC1_INSTANCE(htim->Instance)); + + TIM_OC1_SetConfig(htim->Instance, &temp1); + break; + } + case TIM_CHANNEL_2: + { + assert_param(IS_TIM_CC2_INSTANCE(htim->Instance)); + + TIM_OC2_SetConfig(htim->Instance, &temp1); + break; + } + default: + break; + } + + switch (InputChannel) + { + case TIM_CHANNEL_1: + { + assert_param(IS_TIM_CC1_INSTANCE(htim->Instance)); + + TIM_TI1_SetConfig(htim->Instance, sConfig->ICPolarity, + sConfig->ICSelection, sConfig->ICFilter); + + /* Reset the IC1PSC Bits */ + htim->Instance->CCMR1 &= ~TIM_CCMR1_IC1PSC; + + /* Select the Trigger source */ + htim->Instance->SMCR &= ~TIM_SMCR_TS; + htim->Instance->SMCR |= TIM_TS_TI1FP1; + + /* Select the Slave Mode */ + htim->Instance->SMCR &= ~TIM_SMCR_SMS; + htim->Instance->SMCR |= TIM_SLAVEMODE_TRIGGER; + break; + } + case TIM_CHANNEL_2: + { + assert_param(IS_TIM_CC2_INSTANCE(htim->Instance)); + + TIM_TI2_SetConfig(htim->Instance, sConfig->ICPolarity, + sConfig->ICSelection, sConfig->ICFilter); + + /* Reset the IC2PSC Bits */ + htim->Instance->CCMR1 &= ~TIM_CCMR1_IC2PSC; + + /* Select the Trigger source */ + htim->Instance->SMCR &= ~TIM_SMCR_TS; + htim->Instance->SMCR |= TIM_TS_TI2FP2; + + /* Select the Slave Mode */ + htim->Instance->SMCR &= ~TIM_SMCR_SMS; + htim->Instance->SMCR |= TIM_SLAVEMODE_TRIGGER; + break; + } + + default: + break; + } + + htim->State = HAL_TIM_STATE_READY; + + __HAL_UNLOCK(htim); + + return HAL_OK; + } + else + { + return HAL_ERROR; + } +} + +/** + * @brief Configure the DMA Burst to transfer Data from the memory to the TIM peripheral + * @param htim TIM handle + * @param BurstBaseAddress TIM Base address from where the DMA will start the Data write + * This parameter can be one of the following values: + * @arg TIM_DMABASE_CR1 + * @arg TIM_DMABASE_CR2 + * @arg TIM_DMABASE_SMCR + * @arg TIM_DMABASE_DIER + * @arg TIM_DMABASE_SR + * @arg TIM_DMABASE_EGR + * @arg TIM_DMABASE_CCMR1 + * @arg TIM_DMABASE_CCMR2 + * @arg TIM_DMABASE_CCER + * @arg TIM_DMABASE_CNT + * @arg TIM_DMABASE_PSC + * @arg TIM_DMABASE_ARR + * @arg TIM_DMABASE_RCR + * @arg TIM_DMABASE_CCR1 + * @arg TIM_DMABASE_CCR2 + * @arg TIM_DMABASE_CCR3 + * @arg TIM_DMABASE_CCR4 + * @arg TIM_DMABASE_BDTR + * @arg TIM_DMABASE_CCMR3 + * @arg TIM_DMABASE_CCR5 + * @arg TIM_DMABASE_CCR6 + * @arg TIM_DMABASE_AF1 + * @arg TIM_DMABASE_AF2 + * @arg TIM_DMABASE_TISEL + * + * @param BurstRequestSrc TIM DMA Request sources + * This parameter can be one of the following values: + * @arg TIM_DMA_UPDATE: TIM update Interrupt source + * @arg TIM_DMA_CC1: TIM Capture Compare 1 DMA source + * @arg TIM_DMA_CC2: TIM Capture Compare 2 DMA source + * @arg TIM_DMA_CC3: TIM Capture Compare 3 DMA source + * @arg TIM_DMA_CC4: TIM Capture Compare 4 DMA source + * @arg TIM_DMA_COM: TIM Commutation DMA source + * @arg TIM_DMA_TRIGGER: TIM Trigger DMA source + * @param BurstBuffer The Buffer address. + * @param BurstLength DMA Burst length. This parameter can be one value + * between: TIM_DMABURSTLENGTH_1TRANSFER and TIM_DMABURSTLENGTH_18TRANSFERS. + * @note This function should be used only when BurstLength is equal to DMA data transfer length. + * @retval HAL status + */ +HAL_StatusTypeDef HAL_TIM_DMABurst_WriteStart(TIM_HandleTypeDef *htim, uint32_t BurstBaseAddress, + uint32_t BurstRequestSrc, uint32_t *BurstBuffer, uint32_t BurstLength) +{ + return HAL_TIM_DMABurst_MultiWriteStart(htim, BurstBaseAddress, BurstRequestSrc, BurstBuffer, BurstLength, + ((BurstLength) >> 8U) + 1U); +} + +/** + * @brief Configure the DMA Burst to transfer multiple Data from the memory to the TIM peripheral + * @param htim TIM handle + * @param BurstBaseAddress TIM Base address from where the DMA will start the Data write + * This parameter can be one of the following values: + * @arg TIM_DMABASE_CR1 + * @arg TIM_DMABASE_CR2 + * @arg TIM_DMABASE_SMCR + * @arg TIM_DMABASE_DIER + * @arg TIM_DMABASE_SR + * @arg TIM_DMABASE_EGR + * @arg TIM_DMABASE_CCMR1 + * @arg TIM_DMABASE_CCMR2 + * @arg TIM_DMABASE_CCER + * @arg TIM_DMABASE_CNT + * @arg TIM_DMABASE_PSC + * @arg TIM_DMABASE_ARR + * @arg TIM_DMABASE_RCR + * @arg TIM_DMABASE_CCR1 + * @arg TIM_DMABASE_CCR2 + * @arg TIM_DMABASE_CCR3 + * @arg TIM_DMABASE_CCR4 + * @arg TIM_DMABASE_BDTR + * @arg TIM_DMABASE_CCMR3 + * @arg TIM_DMABASE_CCR5 + * @arg TIM_DMABASE_CCR6 + * @arg TIM_DMABASE_AF1 + * @arg TIM_DMABASE_AF2 + * @arg TIM_DMABASE_TISEL + * + * @param BurstRequestSrc TIM DMA Request sources + * This parameter can be one of the following values: + * @arg TIM_DMA_UPDATE: TIM update Interrupt source + * @arg TIM_DMA_CC1: TIM Capture Compare 1 DMA source + * @arg TIM_DMA_CC2: TIM Capture Compare 2 DMA source + * @arg TIM_DMA_CC3: TIM Capture Compare 3 DMA source + * @arg TIM_DMA_CC4: TIM Capture Compare 4 DMA source + * @arg TIM_DMA_COM: TIM Commutation DMA source + * @arg TIM_DMA_TRIGGER: TIM Trigger DMA source + * @param BurstBuffer The Buffer address. + * @param BurstLength DMA Burst length. This parameter can be one value + * between: TIM_DMABURSTLENGTH_1TRANSFER and TIM_DMABURSTLENGTH_18TRANSFERS. + * @param DataLength Data length. This parameter can be one value + * between 1 and 0xFFFF. + * @retval HAL status + */ +HAL_StatusTypeDef HAL_TIM_DMABurst_MultiWriteStart(TIM_HandleTypeDef *htim, uint32_t BurstBaseAddress, + uint32_t BurstRequestSrc, uint32_t *BurstBuffer, + uint32_t BurstLength, uint32_t DataLength) +{ + /* Check the parameters */ + assert_param(IS_TIM_DMABURST_INSTANCE(htim->Instance)); + assert_param(IS_TIM_DMA_BASE(BurstBaseAddress)); + assert_param(IS_TIM_DMA_SOURCE(BurstRequestSrc)); + assert_param(IS_TIM_DMA_LENGTH(BurstLength)); + assert_param(IS_TIM_DMA_DATA_LENGTH(DataLength)); + + if (htim->State == HAL_TIM_STATE_BUSY) + { + return HAL_BUSY; + } + else if (htim->State == HAL_TIM_STATE_READY) + { + if ((BurstBuffer == NULL) && (BurstLength > 0U)) + { + return HAL_ERROR; + } + else + { + htim->State = HAL_TIM_STATE_BUSY; + } + } + else + { + /* nothing to do */ + } + switch (BurstRequestSrc) + { + case TIM_DMA_UPDATE: + { + /* Set the DMA Period elapsed callbacks */ + htim->hdma[TIM_DMA_ID_UPDATE]->XferCpltCallback = TIM_DMAPeriodElapsedCplt; + htim->hdma[TIM_DMA_ID_UPDATE]->XferHalfCpltCallback = TIM_DMAPeriodElapsedHalfCplt; + + /* Set the DMA error callback */ + htim->hdma[TIM_DMA_ID_UPDATE]->XferErrorCallback = TIM_DMAError ; + + /* Enable the DMA stream */ + if (HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_UPDATE], (uint32_t)BurstBuffer, + (uint32_t)&htim->Instance->DMAR, DataLength) != HAL_OK) + { + return HAL_ERROR; + } + break; + } + case TIM_DMA_CC1: + { + /* Set the DMA compare callbacks */ + htim->hdma[TIM_DMA_ID_CC1]->XferCpltCallback = TIM_DMADelayPulseCplt; + htim->hdma[TIM_DMA_ID_CC1]->XferHalfCpltCallback = TIM_DMADelayPulseHalfCplt; + + /* Set the DMA error callback */ + htim->hdma[TIM_DMA_ID_CC1]->XferErrorCallback = TIM_DMAError ; + + /* Enable the DMA stream */ + if (HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_CC1], (uint32_t)BurstBuffer, + (uint32_t)&htim->Instance->DMAR, DataLength) != HAL_OK) + { + return HAL_ERROR; + } + break; + } + case TIM_DMA_CC2: + { + /* Set the DMA compare callbacks */ + htim->hdma[TIM_DMA_ID_CC2]->XferCpltCallback = TIM_DMADelayPulseCplt; + htim->hdma[TIM_DMA_ID_CC2]->XferHalfCpltCallback = TIM_DMADelayPulseHalfCplt; + + /* Set the DMA error callback */ + htim->hdma[TIM_DMA_ID_CC2]->XferErrorCallback = TIM_DMAError ; + + /* Enable the DMA stream */ + if (HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_CC2], (uint32_t)BurstBuffer, + (uint32_t)&htim->Instance->DMAR, DataLength) != HAL_OK) + { + return HAL_ERROR; + } + break; + } + case TIM_DMA_CC3: + { + /* Set the DMA compare callbacks */ + htim->hdma[TIM_DMA_ID_CC3]->XferCpltCallback = TIM_DMADelayPulseCplt; + htim->hdma[TIM_DMA_ID_CC3]->XferHalfCpltCallback = TIM_DMADelayPulseHalfCplt; + + /* Set the DMA error callback */ + htim->hdma[TIM_DMA_ID_CC3]->XferErrorCallback = TIM_DMAError ; + + /* Enable the DMA stream */ + if (HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_CC3], (uint32_t)BurstBuffer, + (uint32_t)&htim->Instance->DMAR, DataLength) != HAL_OK) + { + return HAL_ERROR; + } + break; + } + case TIM_DMA_CC4: + { + /* Set the DMA compare callbacks */ + htim->hdma[TIM_DMA_ID_CC4]->XferCpltCallback = TIM_DMADelayPulseCplt; + htim->hdma[TIM_DMA_ID_CC4]->XferHalfCpltCallback = TIM_DMADelayPulseHalfCplt; + + /* Set the DMA error callback */ + htim->hdma[TIM_DMA_ID_CC4]->XferErrorCallback = TIM_DMAError ; + + /* Enable the DMA stream */ + if (HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_CC4], (uint32_t)BurstBuffer, + (uint32_t)&htim->Instance->DMAR, DataLength) != HAL_OK) + { + return HAL_ERROR; + } + break; + } + case TIM_DMA_COM: + { + /* Set the DMA commutation callbacks */ + htim->hdma[TIM_DMA_ID_COMMUTATION]->XferCpltCallback = TIMEx_DMACommutationCplt; + htim->hdma[TIM_DMA_ID_COMMUTATION]->XferHalfCpltCallback = TIMEx_DMACommutationHalfCplt; + + /* Set the DMA error callback */ + htim->hdma[TIM_DMA_ID_COMMUTATION]->XferErrorCallback = TIM_DMAError ; + + /* Enable the DMA stream */ + if (HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_COMMUTATION], (uint32_t)BurstBuffer, + (uint32_t)&htim->Instance->DMAR, DataLength) != HAL_OK) + { + return HAL_ERROR; + } + break; + } + case TIM_DMA_TRIGGER: + { + /* Set the DMA trigger callbacks */ + htim->hdma[TIM_DMA_ID_TRIGGER]->XferCpltCallback = TIM_DMATriggerCplt; + htim->hdma[TIM_DMA_ID_TRIGGER]->XferHalfCpltCallback = TIM_DMATriggerHalfCplt; + + /* Set the DMA error callback */ + htim->hdma[TIM_DMA_ID_TRIGGER]->XferErrorCallback = TIM_DMAError ; + + /* Enable the DMA stream */ + if (HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_TRIGGER], (uint32_t)BurstBuffer, + (uint32_t)&htim->Instance->DMAR, DataLength) != HAL_OK) + { + return HAL_ERROR; + } + break; + } + default: + break; + } + + /* Configure the DMA Burst Mode */ + htim->Instance->DCR = (BurstBaseAddress | BurstLength); + /* Enable the TIM DMA Request */ + __HAL_TIM_ENABLE_DMA(htim, BurstRequestSrc); + + htim->State = HAL_TIM_STATE_READY; + + /* Return function status */ + return HAL_OK; +} + +/** + * @brief Stops the TIM DMA Burst mode + * @param htim TIM handle + * @param BurstRequestSrc TIM DMA Request sources to disable + * @retval HAL status + */ +HAL_StatusTypeDef HAL_TIM_DMABurst_WriteStop(TIM_HandleTypeDef *htim, uint32_t BurstRequestSrc) +{ + HAL_StatusTypeDef status = HAL_OK; + /* Check the parameters */ + assert_param(IS_TIM_DMA_SOURCE(BurstRequestSrc)); + + /* Abort the DMA transfer (at least disable the DMA stream) */ + switch (BurstRequestSrc) + { + case TIM_DMA_UPDATE: + { + status = HAL_DMA_Abort_IT(htim->hdma[TIM_DMA_ID_UPDATE]); + break; + } + case TIM_DMA_CC1: + { + status = HAL_DMA_Abort_IT(htim->hdma[TIM_DMA_ID_CC1]); + break; + } + case TIM_DMA_CC2: + { + status = HAL_DMA_Abort_IT(htim->hdma[TIM_DMA_ID_CC2]); + break; + } + case TIM_DMA_CC3: + { + status = HAL_DMA_Abort_IT(htim->hdma[TIM_DMA_ID_CC3]); + break; + } + case TIM_DMA_CC4: + { + status = HAL_DMA_Abort_IT(htim->hdma[TIM_DMA_ID_CC4]); + break; + } + case TIM_DMA_COM: + { + status = HAL_DMA_Abort_IT(htim->hdma[TIM_DMA_ID_COMMUTATION]); + break; + } + case TIM_DMA_TRIGGER: + { + status = HAL_DMA_Abort_IT(htim->hdma[TIM_DMA_ID_TRIGGER]); + break; + } + default: + break; + } + + if (HAL_OK == status) + { + /* Disable the TIM Update DMA request */ + __HAL_TIM_DISABLE_DMA(htim, BurstRequestSrc); + } + + /* Return function status */ + return status; +} + +/** + * @brief Configure the DMA Burst to transfer Data from the TIM peripheral to the memory + * @param htim TIM handle + * @param BurstBaseAddress TIM Base address from where the DMA will start the Data read + * This parameter can be one of the following values: + * @arg TIM_DMABASE_CR1 + * @arg TIM_DMABASE_CR2 + * @arg TIM_DMABASE_SMCR + * @arg TIM_DMABASE_DIER + * @arg TIM_DMABASE_SR + * @arg TIM_DMABASE_EGR + * @arg TIM_DMABASE_CCMR1 + * @arg TIM_DMABASE_CCMR2 + * @arg TIM_DMABASE_CCER + * @arg TIM_DMABASE_CNT + * @arg TIM_DMABASE_PSC + * @arg TIM_DMABASE_ARR + * @arg TIM_DMABASE_RCR + * @arg TIM_DMABASE_CCR1 + * @arg TIM_DMABASE_CCR2 + * @arg TIM_DMABASE_CCR3 + * @arg TIM_DMABASE_CCR4 + * @arg TIM_DMABASE_BDTR + * @arg TIM_DMABASE_CCMR3 + * @arg TIM_DMABASE_CCR5 + * @arg TIM_DMABASE_CCR6 + * @arg TIM_DMABASE_AF1 + * @arg TIM_DMABASE_AF2 + * @arg TIM_DMABASE_TISEL + * + * @param BurstRequestSrc TIM DMA Request sources + * This parameter can be one of the following values: + * @arg TIM_DMA_UPDATE: TIM update Interrupt source + * @arg TIM_DMA_CC1: TIM Capture Compare 1 DMA source + * @arg TIM_DMA_CC2: TIM Capture Compare 2 DMA source + * @arg TIM_DMA_CC3: TIM Capture Compare 3 DMA source + * @arg TIM_DMA_CC4: TIM Capture Compare 4 DMA source + * @arg TIM_DMA_COM: TIM Commutation DMA source + * @arg TIM_DMA_TRIGGER: TIM Trigger DMA source + * @param BurstBuffer The Buffer address. + * @param BurstLength DMA Burst length. This parameter can be one value + * between: TIM_DMABURSTLENGTH_1TRANSFER and TIM_DMABURSTLENGTH_18TRANSFERS. + * @note This function should be used only when BurstLength is equal to DMA data transfer length. + * @retval HAL status + */ +HAL_StatusTypeDef HAL_TIM_DMABurst_ReadStart(TIM_HandleTypeDef *htim, uint32_t BurstBaseAddress, + uint32_t BurstRequestSrc, uint32_t *BurstBuffer, uint32_t BurstLength) +{ + return HAL_TIM_DMABurst_MultiReadStart(htim, BurstBaseAddress, BurstRequestSrc, BurstBuffer, BurstLength, + ((BurstLength) >> 8U) + 1U); +} + +/** + * @brief Configure the DMA Burst to transfer Data from the TIM peripheral to the memory + * @param htim TIM handle + * @param BurstBaseAddress TIM Base address from where the DMA will start the Data read + * This parameter can be one of the following values: + * @arg TIM_DMABASE_CR1 + * @arg TIM_DMABASE_CR2 + * @arg TIM_DMABASE_SMCR + * @arg TIM_DMABASE_DIER + * @arg TIM_DMABASE_SR + * @arg TIM_DMABASE_EGR + * @arg TIM_DMABASE_CCMR1 + * @arg TIM_DMABASE_CCMR2 + * @arg TIM_DMABASE_CCER + * @arg TIM_DMABASE_CNT + * @arg TIM_DMABASE_PSC + * @arg TIM_DMABASE_ARR + * @arg TIM_DMABASE_RCR + * @arg TIM_DMABASE_CCR1 + * @arg TIM_DMABASE_CCR2 + * @arg TIM_DMABASE_CCR3 + * @arg TIM_DMABASE_CCR4 + * @arg TIM_DMABASE_BDTR + * @arg TIM_DMABASE_CCMR3 + * @arg TIM_DMABASE_CCR5 + * @arg TIM_DMABASE_CCR6 + * @arg TIM_DMABASE_AF1 + * @arg TIM_DMABASE_AF2 + * @arg TIM_DMABASE_TISEL + * + * @param BurstRequestSrc TIM DMA Request sources + * This parameter can be one of the following values: + * @arg TIM_DMA_UPDATE: TIM update Interrupt source + * @arg TIM_DMA_CC1: TIM Capture Compare 1 DMA source + * @arg TIM_DMA_CC2: TIM Capture Compare 2 DMA source + * @arg TIM_DMA_CC3: TIM Capture Compare 3 DMA source + * @arg TIM_DMA_CC4: TIM Capture Compare 4 DMA source + * @arg TIM_DMA_COM: TIM Commutation DMA source + * @arg TIM_DMA_TRIGGER: TIM Trigger DMA source + * @param BurstBuffer The Buffer address. + * @param BurstLength DMA Burst length. This parameter can be one value + * between: TIM_DMABURSTLENGTH_1TRANSFER and TIM_DMABURSTLENGTH_18TRANSFERS. + * @param DataLength Data length. This parameter can be one value + * between 1 and 0xFFFF. + * @retval HAL status + */ +HAL_StatusTypeDef HAL_TIM_DMABurst_MultiReadStart(TIM_HandleTypeDef *htim, uint32_t BurstBaseAddress, + uint32_t BurstRequestSrc, uint32_t *BurstBuffer, + uint32_t BurstLength, uint32_t DataLength) +{ + /* Check the parameters */ + assert_param(IS_TIM_DMABURST_INSTANCE(htim->Instance)); + assert_param(IS_TIM_DMA_BASE(BurstBaseAddress)); + assert_param(IS_TIM_DMA_SOURCE(BurstRequestSrc)); + assert_param(IS_TIM_DMA_LENGTH(BurstLength)); + assert_param(IS_TIM_DMA_DATA_LENGTH(DataLength)); + + if (htim->State == HAL_TIM_STATE_BUSY) + { + return HAL_BUSY; + } + else if (htim->State == HAL_TIM_STATE_READY) + { + if ((BurstBuffer == NULL) && (BurstLength > 0U)) + { + return HAL_ERROR; + } + else + { + htim->State = HAL_TIM_STATE_BUSY; + } + } + else + { + /* nothing to do */ + } + switch (BurstRequestSrc) + { + case TIM_DMA_UPDATE: + { + /* Set the DMA Period elapsed callbacks */ + htim->hdma[TIM_DMA_ID_UPDATE]->XferCpltCallback = TIM_DMAPeriodElapsedCplt; + htim->hdma[TIM_DMA_ID_UPDATE]->XferHalfCpltCallback = TIM_DMAPeriodElapsedHalfCplt; + + /* Set the DMA error callback */ + htim->hdma[TIM_DMA_ID_UPDATE]->XferErrorCallback = TIM_DMAError ; + + /* Enable the DMA stream */ + if (HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_UPDATE], (uint32_t)&htim->Instance->DMAR, (uint32_t)BurstBuffer, + DataLength) != HAL_OK) + { + return HAL_ERROR; + } + break; + } + case TIM_DMA_CC1: + { + /* Set the DMA capture callbacks */ + htim->hdma[TIM_DMA_ID_CC1]->XferCpltCallback = TIM_DMACaptureCplt; + htim->hdma[TIM_DMA_ID_CC1]->XferHalfCpltCallback = TIM_DMACaptureHalfCplt; + + /* Set the DMA error callback */ + htim->hdma[TIM_DMA_ID_CC1]->XferErrorCallback = TIM_DMAError ; + + /* Enable the DMA stream */ + if (HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_CC1], (uint32_t)&htim->Instance->DMAR, (uint32_t)BurstBuffer, + DataLength) != HAL_OK) + { + return HAL_ERROR; + } + break; + } + case TIM_DMA_CC2: + { + /* Set the DMA capture callbacks */ + htim->hdma[TIM_DMA_ID_CC2]->XferCpltCallback = TIM_DMACaptureCplt; + htim->hdma[TIM_DMA_ID_CC2]->XferHalfCpltCallback = TIM_DMACaptureHalfCplt; + + /* Set the DMA error callback */ + htim->hdma[TIM_DMA_ID_CC2]->XferErrorCallback = TIM_DMAError ; + + /* Enable the DMA stream */ + if (HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_CC2], (uint32_t)&htim->Instance->DMAR, (uint32_t)BurstBuffer, + DataLength) != HAL_OK) + { + return HAL_ERROR; + } + break; + } + case TIM_DMA_CC3: + { + /* Set the DMA capture callbacks */ + htim->hdma[TIM_DMA_ID_CC3]->XferCpltCallback = TIM_DMACaptureCplt; + htim->hdma[TIM_DMA_ID_CC3]->XferHalfCpltCallback = TIM_DMACaptureHalfCplt; + + /* Set the DMA error callback */ + htim->hdma[TIM_DMA_ID_CC3]->XferErrorCallback = TIM_DMAError ; + + /* Enable the DMA stream */ + if (HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_CC3], (uint32_t)&htim->Instance->DMAR, (uint32_t)BurstBuffer, + DataLength) != HAL_OK) + { + return HAL_ERROR; + } + break; + } + case TIM_DMA_CC4: + { + /* Set the DMA capture callbacks */ + htim->hdma[TIM_DMA_ID_CC4]->XferCpltCallback = TIM_DMACaptureCplt; + htim->hdma[TIM_DMA_ID_CC4]->XferHalfCpltCallback = TIM_DMACaptureHalfCplt; + + /* Set the DMA error callback */ + htim->hdma[TIM_DMA_ID_CC4]->XferErrorCallback = TIM_DMAError ; + + /* Enable the DMA stream */ + if (HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_CC4], (uint32_t)&htim->Instance->DMAR, (uint32_t)BurstBuffer, + DataLength) != HAL_OK) + { + return HAL_ERROR; + } + break; + } + case TIM_DMA_COM: + { + /* Set the DMA commutation callbacks */ + htim->hdma[TIM_DMA_ID_COMMUTATION]->XferCpltCallback = TIMEx_DMACommutationCplt; + htim->hdma[TIM_DMA_ID_COMMUTATION]->XferHalfCpltCallback = TIMEx_DMACommutationHalfCplt; + + /* Set the DMA error callback */ + htim->hdma[TIM_DMA_ID_COMMUTATION]->XferErrorCallback = TIM_DMAError ; + + /* Enable the DMA stream */ + if (HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_COMMUTATION], (uint32_t)&htim->Instance->DMAR, (uint32_t)BurstBuffer, + DataLength) != HAL_OK) + { + return HAL_ERROR; + } + break; + } + case TIM_DMA_TRIGGER: + { + /* Set the DMA trigger callbacks */ + htim->hdma[TIM_DMA_ID_TRIGGER]->XferCpltCallback = TIM_DMATriggerCplt; + htim->hdma[TIM_DMA_ID_TRIGGER]->XferHalfCpltCallback = TIM_DMATriggerHalfCplt; + + /* Set the DMA error callback */ + htim->hdma[TIM_DMA_ID_TRIGGER]->XferErrorCallback = TIM_DMAError ; + + /* Enable the DMA stream */ + if (HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_TRIGGER], (uint32_t)&htim->Instance->DMAR, (uint32_t)BurstBuffer, + DataLength) != HAL_OK) + { + return HAL_ERROR; + } + break; + } + default: + break; + } + + /* Configure the DMA Burst Mode */ + htim->Instance->DCR = (BurstBaseAddress | BurstLength); + + /* Enable the TIM DMA Request */ + __HAL_TIM_ENABLE_DMA(htim, BurstRequestSrc); + + htim->State = HAL_TIM_STATE_READY; + + /* Return function status */ + return HAL_OK; +} + +/** + * @brief Stop the DMA burst reading + * @param htim TIM handle + * @param BurstRequestSrc TIM DMA Request sources to disable. + * @retval HAL status + */ +HAL_StatusTypeDef HAL_TIM_DMABurst_ReadStop(TIM_HandleTypeDef *htim, uint32_t BurstRequestSrc) +{ + HAL_StatusTypeDef status = HAL_OK; + /* Check the parameters */ + assert_param(IS_TIM_DMA_SOURCE(BurstRequestSrc)); + + /* Abort the DMA transfer (at least disable the DMA stream) */ + switch (BurstRequestSrc) + { + case TIM_DMA_UPDATE: + { + status = HAL_DMA_Abort_IT(htim->hdma[TIM_DMA_ID_UPDATE]); + break; + } + case TIM_DMA_CC1: + { + status = HAL_DMA_Abort_IT(htim->hdma[TIM_DMA_ID_CC1]); + break; + } + case TIM_DMA_CC2: + { + status = HAL_DMA_Abort_IT(htim->hdma[TIM_DMA_ID_CC2]); + break; + } + case TIM_DMA_CC3: + { + status = HAL_DMA_Abort_IT(htim->hdma[TIM_DMA_ID_CC3]); + break; + } + case TIM_DMA_CC4: + { + status = HAL_DMA_Abort_IT(htim->hdma[TIM_DMA_ID_CC4]); + break; + } + case TIM_DMA_COM: + { + status = HAL_DMA_Abort_IT(htim->hdma[TIM_DMA_ID_COMMUTATION]); + break; + } + case TIM_DMA_TRIGGER: + { + status = HAL_DMA_Abort_IT(htim->hdma[TIM_DMA_ID_TRIGGER]); + break; + } + default: + break; + } + + if (HAL_OK == status) + { + /* Disable the TIM Update DMA request */ + __HAL_TIM_DISABLE_DMA(htim, BurstRequestSrc); + } + + /* Return function status */ + return status; +} + +/** + * @brief Generate a software event + * @param htim TIM handle + * @param EventSource specifies the event source. + * This parameter can be one of the following values: + * @arg TIM_EVENTSOURCE_UPDATE: Timer update Event source + * @arg TIM_EVENTSOURCE_CC1: Timer Capture Compare 1 Event source + * @arg TIM_EVENTSOURCE_CC2: Timer Capture Compare 2 Event source + * @arg TIM_EVENTSOURCE_CC3: Timer Capture Compare 3 Event source + * @arg TIM_EVENTSOURCE_CC4: Timer Capture Compare 4 Event source + * @arg TIM_EVENTSOURCE_COM: Timer COM event source + * @arg TIM_EVENTSOURCE_TRIGGER: Timer Trigger Event source + * @arg TIM_EVENTSOURCE_BREAK: Timer Break event source + * @arg TIM_EVENTSOURCE_BREAK2: Timer Break2 event source + * @note Basic timers can only generate an update event. + * @note TIM_EVENTSOURCE_COM is relevant only with advanced timer instances. + * @note TIM_EVENTSOURCE_BREAK and TIM_EVENTSOURCE_BREAK2 are relevant + * only for timer instances supporting break input(s). + * @retval HAL status + */ + +HAL_StatusTypeDef HAL_TIM_GenerateEvent(TIM_HandleTypeDef *htim, uint32_t EventSource) +{ + /* Check the parameters */ + assert_param(IS_TIM_INSTANCE(htim->Instance)); + assert_param(IS_TIM_EVENT_SOURCE(EventSource)); + + /* Process Locked */ + __HAL_LOCK(htim); + + /* Change the TIM state */ + htim->State = HAL_TIM_STATE_BUSY; + + /* Set the event sources */ + htim->Instance->EGR = EventSource; + + /* Change the TIM state */ + htim->State = HAL_TIM_STATE_READY; + + __HAL_UNLOCK(htim); + + /* Return function status */ + return HAL_OK; +} + +/** + * @brief Configures the OCRef clear feature + * @param htim TIM handle + * @param sClearInputConfig pointer to a TIM_ClearInputConfigTypeDef structure that + * contains the OCREF clear feature and parameters for the TIM peripheral. + * @param Channel specifies the TIM Channel + * This parameter can be one of the following values: + * @arg TIM_CHANNEL_1: TIM Channel 1 + * @arg TIM_CHANNEL_2: TIM Channel 2 + * @arg TIM_CHANNEL_3: TIM Channel 3 + * @arg TIM_CHANNEL_4: TIM Channel 4 + * @arg TIM_CHANNEL_5: TIM Channel 5 + * @arg TIM_CHANNEL_6: TIM Channel 6 + * @retval HAL status + */ +HAL_StatusTypeDef HAL_TIM_ConfigOCrefClear(TIM_HandleTypeDef *htim, + TIM_ClearInputConfigTypeDef *sClearInputConfig, + uint32_t Channel) +{ + /* Check the parameters */ + assert_param(IS_TIM_OCXREF_CLEAR_INSTANCE(htim->Instance)); + assert_param(IS_TIM_CLEARINPUT_SOURCE(sClearInputConfig->ClearInputSource)); + + /* Process Locked */ + __HAL_LOCK(htim); + + htim->State = HAL_TIM_STATE_BUSY; + + switch (sClearInputConfig->ClearInputSource) + { + case TIM_CLEARINPUTSOURCE_NONE: + { + /* Clear the OCREF clear selection bit and the the ETR Bits */ + CLEAR_BIT(htim->Instance->SMCR, (TIM_SMCR_ETF | TIM_SMCR_ETPS | TIM_SMCR_ECE | TIM_SMCR_ETP)); + break; + } + + case TIM_CLEARINPUTSOURCE_ETR: + { + /* Check the parameters */ + assert_param(IS_TIM_CLEARINPUT_POLARITY(sClearInputConfig->ClearInputPolarity)); + assert_param(IS_TIM_CLEARINPUT_PRESCALER(sClearInputConfig->ClearInputPrescaler)); + assert_param(IS_TIM_CLEARINPUT_FILTER(sClearInputConfig->ClearInputFilter)); + + /* When OCRef clear feature is used with ETR source, ETR prescaler must be off */ + if (sClearInputConfig->ClearInputPrescaler != TIM_CLEARINPUTPRESCALER_DIV1) + { + htim->State = HAL_TIM_STATE_READY; + __HAL_UNLOCK(htim); + return HAL_ERROR; + } + + TIM_ETR_SetConfig(htim->Instance, + sClearInputConfig->ClearInputPrescaler, + sClearInputConfig->ClearInputPolarity, + sClearInputConfig->ClearInputFilter); + break; + } + + default: + break; + } + + switch (Channel) + { + case TIM_CHANNEL_1: + { + if (sClearInputConfig->ClearInputState != (uint32_t)DISABLE) + { + /* Enable the OCREF clear feature for Channel 1 */ + SET_BIT(htim->Instance->CCMR1, TIM_CCMR1_OC1CE); + } + else + { + /* Disable the OCREF clear feature for Channel 1 */ + CLEAR_BIT(htim->Instance->CCMR1, TIM_CCMR1_OC1CE); + } + break; + } + case TIM_CHANNEL_2: + { + if (sClearInputConfig->ClearInputState != (uint32_t)DISABLE) + { + /* Enable the OCREF clear feature for Channel 2 */ + SET_BIT(htim->Instance->CCMR1, TIM_CCMR1_OC2CE); + } + else + { + /* Disable the OCREF clear feature for Channel 2 */ + CLEAR_BIT(htim->Instance->CCMR1, TIM_CCMR1_OC2CE); + } + break; + } + case TIM_CHANNEL_3: + { + if (sClearInputConfig->ClearInputState != (uint32_t)DISABLE) + { + /* Enable the OCREF clear feature for Channel 3 */ + SET_BIT(htim->Instance->CCMR2, TIM_CCMR2_OC3CE); + } + else + { + /* Disable the OCREF clear feature for Channel 3 */ + CLEAR_BIT(htim->Instance->CCMR2, TIM_CCMR2_OC3CE); + } + break; + } + case TIM_CHANNEL_4: + { + if (sClearInputConfig->ClearInputState != (uint32_t)DISABLE) + { + /* Enable the OCREF clear feature for Channel 4 */ + SET_BIT(htim->Instance->CCMR2, TIM_CCMR2_OC4CE); + } + else + { + /* Disable the OCREF clear feature for Channel 4 */ + CLEAR_BIT(htim->Instance->CCMR2, TIM_CCMR2_OC4CE); + } + break; + } + case TIM_CHANNEL_5: + { + if (sClearInputConfig->ClearInputState != (uint32_t)DISABLE) + { + /* Enable the OCREF clear feature for Channel 5 */ + SET_BIT(htim->Instance->CCMR3, TIM_CCMR3_OC5CE); + } + else + { + /* Disable the OCREF clear feature for Channel 5 */ + CLEAR_BIT(htim->Instance->CCMR3, TIM_CCMR3_OC5CE); + } + break; + } + case TIM_CHANNEL_6: + { + if (sClearInputConfig->ClearInputState != (uint32_t)DISABLE) + { + /* Enable the OCREF clear feature for Channel 6 */ + SET_BIT(htim->Instance->CCMR3, TIM_CCMR3_OC6CE); + } + else + { + /* Disable the OCREF clear feature for Channel 6 */ + CLEAR_BIT(htim->Instance->CCMR3, TIM_CCMR3_OC6CE); + } + break; + } + default: + break; + } + + htim->State = HAL_TIM_STATE_READY; + + __HAL_UNLOCK(htim); + + return HAL_OK; +} + +/** + * @brief Configures the clock source to be used + * @param htim TIM handle + * @param sClockSourceConfig pointer to a TIM_ClockConfigTypeDef structure that + * contains the clock source information for the TIM peripheral. + * @retval HAL status + */ +HAL_StatusTypeDef HAL_TIM_ConfigClockSource(TIM_HandleTypeDef *htim, TIM_ClockConfigTypeDef *sClockSourceConfig) +{ + uint32_t tmpsmcr; + + /* Process Locked */ + __HAL_LOCK(htim); + + htim->State = HAL_TIM_STATE_BUSY; + + /* Check the parameters */ + assert_param(IS_TIM_CLOCKSOURCE(sClockSourceConfig->ClockSource)); + + /* Reset the SMS, TS, ECE, ETPS and ETRF bits */ + tmpsmcr = htim->Instance->SMCR; + tmpsmcr &= ~(TIM_SMCR_SMS | TIM_SMCR_TS); + tmpsmcr &= ~(TIM_SMCR_ETF | TIM_SMCR_ETPS | TIM_SMCR_ECE | TIM_SMCR_ETP); + htim->Instance->SMCR = tmpsmcr; + + switch (sClockSourceConfig->ClockSource) + { + case TIM_CLOCKSOURCE_INTERNAL: + { + assert_param(IS_TIM_INSTANCE(htim->Instance)); + break; + } + + case TIM_CLOCKSOURCE_ETRMODE1: + { + /* Check whether or not the timer instance supports external trigger input mode 1 (ETRF)*/ + assert_param(IS_TIM_CLOCKSOURCE_ETRMODE1_INSTANCE(htim->Instance)); + + /* Check ETR input conditioning related parameters */ + assert_param(IS_TIM_CLOCKPRESCALER(sClockSourceConfig->ClockPrescaler)); + assert_param(IS_TIM_CLOCKPOLARITY(sClockSourceConfig->ClockPolarity)); + assert_param(IS_TIM_CLOCKFILTER(sClockSourceConfig->ClockFilter)); + + /* Configure the ETR Clock source */ + TIM_ETR_SetConfig(htim->Instance, + sClockSourceConfig->ClockPrescaler, + sClockSourceConfig->ClockPolarity, + sClockSourceConfig->ClockFilter); + + /* Select the External clock mode1 and the ETRF trigger */ + tmpsmcr = htim->Instance->SMCR; + tmpsmcr |= (TIM_SLAVEMODE_EXTERNAL1 | TIM_CLOCKSOURCE_ETRMODE1); + /* Write to TIMx SMCR */ + htim->Instance->SMCR = tmpsmcr; + break; + } + + case TIM_CLOCKSOURCE_ETRMODE2: + { + /* Check whether or not the timer instance supports external trigger input mode 2 (ETRF)*/ + assert_param(IS_TIM_CLOCKSOURCE_ETRMODE2_INSTANCE(htim->Instance)); + + /* Check ETR input conditioning related parameters */ + assert_param(IS_TIM_CLOCKPRESCALER(sClockSourceConfig->ClockPrescaler)); + assert_param(IS_TIM_CLOCKPOLARITY(sClockSourceConfig->ClockPolarity)); + assert_param(IS_TIM_CLOCKFILTER(sClockSourceConfig->ClockFilter)); + + /* Configure the ETR Clock source */ + TIM_ETR_SetConfig(htim->Instance, + sClockSourceConfig->ClockPrescaler, + sClockSourceConfig->ClockPolarity, + sClockSourceConfig->ClockFilter); + /* Enable the External clock mode2 */ + htim->Instance->SMCR |= TIM_SMCR_ECE; + break; + } + + case TIM_CLOCKSOURCE_TI1: + { + /* Check whether or not the timer instance supports external clock mode 1 */ + assert_param(IS_TIM_CLOCKSOURCE_TIX_INSTANCE(htim->Instance)); + + /* Check TI1 input conditioning related parameters */ + assert_param(IS_TIM_CLOCKPOLARITY(sClockSourceConfig->ClockPolarity)); + assert_param(IS_TIM_CLOCKFILTER(sClockSourceConfig->ClockFilter)); + + TIM_TI1_ConfigInputStage(htim->Instance, + sClockSourceConfig->ClockPolarity, + sClockSourceConfig->ClockFilter); + TIM_ITRx_SetConfig(htim->Instance, TIM_CLOCKSOURCE_TI1); + break; + } + + case TIM_CLOCKSOURCE_TI2: + { + /* Check whether or not the timer instance supports external clock mode 1 (ETRF)*/ + assert_param(IS_TIM_CLOCKSOURCE_TIX_INSTANCE(htim->Instance)); + + /* Check TI2 input conditioning related parameters */ + assert_param(IS_TIM_CLOCKPOLARITY(sClockSourceConfig->ClockPolarity)); + assert_param(IS_TIM_CLOCKFILTER(sClockSourceConfig->ClockFilter)); + + TIM_TI2_ConfigInputStage(htim->Instance, + sClockSourceConfig->ClockPolarity, + sClockSourceConfig->ClockFilter); + TIM_ITRx_SetConfig(htim->Instance, TIM_CLOCKSOURCE_TI2); + break; + } + + case TIM_CLOCKSOURCE_TI1ED: + { + /* Check whether or not the timer instance supports external clock mode 1 */ + assert_param(IS_TIM_CLOCKSOURCE_TIX_INSTANCE(htim->Instance)); + + /* Check TI1 input conditioning related parameters */ + assert_param(IS_TIM_CLOCKPOLARITY(sClockSourceConfig->ClockPolarity)); + assert_param(IS_TIM_CLOCKFILTER(sClockSourceConfig->ClockFilter)); + + TIM_TI1_ConfigInputStage(htim->Instance, + sClockSourceConfig->ClockPolarity, + sClockSourceConfig->ClockFilter); + TIM_ITRx_SetConfig(htim->Instance, TIM_CLOCKSOURCE_TI1ED); + break; + } + + case TIM_CLOCKSOURCE_ITR0: + case TIM_CLOCKSOURCE_ITR1: + case TIM_CLOCKSOURCE_ITR2: + case TIM_CLOCKSOURCE_ITR3: + case TIM_CLOCKSOURCE_ITR4: + case TIM_CLOCKSOURCE_ITR5: + case TIM_CLOCKSOURCE_ITR6: + case TIM_CLOCKSOURCE_ITR7: + case TIM_CLOCKSOURCE_ITR8: + { + /* Check whether or not the timer instance supports internal trigger input */ + assert_param(IS_TIM_CLOCKSOURCE_ITRX_INSTANCE(htim->Instance)); + + TIM_ITRx_SetConfig(htim->Instance, sClockSourceConfig->ClockSource); + break; + } + + default: + break; + } + htim->State = HAL_TIM_STATE_READY; + + __HAL_UNLOCK(htim); + + return HAL_OK; +} + +/** + * @brief Selects the signal connected to the TI1 input: direct from CH1_input + * or a XOR combination between CH1_input, CH2_input & CH3_input + * @param htim TIM handle. + * @param TI1_Selection Indicate whether or not channel 1 is connected to the + * output of a XOR gate. + * This parameter can be one of the following values: + * @arg TIM_TI1SELECTION_CH1: The TIMx_CH1 pin is connected to TI1 input + * @arg TIM_TI1SELECTION_XORCOMBINATION: The TIMx_CH1, CH2 and CH3 + * pins are connected to the TI1 input (XOR combination) + * @retval HAL status + */ +HAL_StatusTypeDef HAL_TIM_ConfigTI1Input(TIM_HandleTypeDef *htim, uint32_t TI1_Selection) +{ + uint32_t tmpcr2; + + /* Check the parameters */ + assert_param(IS_TIM_XOR_INSTANCE(htim->Instance)); + assert_param(IS_TIM_TI1SELECTION(TI1_Selection)); + + /* Get the TIMx CR2 register value */ + tmpcr2 = htim->Instance->CR2; + + /* Reset the TI1 selection */ + tmpcr2 &= ~TIM_CR2_TI1S; + + /* Set the TI1 selection */ + tmpcr2 |= TI1_Selection; + + /* Write to TIMxCR2 */ + htim->Instance->CR2 = tmpcr2; + + return HAL_OK; +} + +/** + * @brief Configures the TIM in Slave mode + * @param htim TIM handle. + * @param sSlaveConfig pointer to a TIM_SlaveConfigTypeDef structure that + * contains the selected trigger (internal trigger input, filtered + * timer input or external trigger input) and the Slave mode + * (Disable, Reset, Gated, Trigger, External clock mode 1). + * @retval HAL status + */ +HAL_StatusTypeDef HAL_TIM_SlaveConfigSynchro(TIM_HandleTypeDef *htim, TIM_SlaveConfigTypeDef *sSlaveConfig) +{ + /* Check the parameters */ + assert_param(IS_TIM_SLAVE_INSTANCE(htim->Instance)); + assert_param(IS_TIM_SLAVE_MODE(sSlaveConfig->SlaveMode)); + assert_param(IS_TIM_TRIGGER_SELECTION(sSlaveConfig->InputTrigger)); + + __HAL_LOCK(htim); + + htim->State = HAL_TIM_STATE_BUSY; + + if (TIM_SlaveTimer_SetConfig(htim, sSlaveConfig) != HAL_OK) + { + htim->State = HAL_TIM_STATE_READY; + __HAL_UNLOCK(htim); + return HAL_ERROR; + } + + /* Disable Trigger Interrupt */ + __HAL_TIM_DISABLE_IT(htim, TIM_IT_TRIGGER); + + /* Disable Trigger DMA request */ + __HAL_TIM_DISABLE_DMA(htim, TIM_DMA_TRIGGER); + + htim->State = HAL_TIM_STATE_READY; + + __HAL_UNLOCK(htim); + + return HAL_OK; +} + +/** + * @brief Configures the TIM in Slave mode in interrupt mode + * @param htim TIM handle. + * @param sSlaveConfig pointer to a TIM_SlaveConfigTypeDef structure that + * contains the selected trigger (internal trigger input, filtered + * timer input or external trigger input) and the Slave mode + * (Disable, Reset, Gated, Trigger, External clock mode 1). + * @retval HAL status + */ +HAL_StatusTypeDef HAL_TIM_SlaveConfigSynchro_IT(TIM_HandleTypeDef *htim, + TIM_SlaveConfigTypeDef *sSlaveConfig) +{ + /* Check the parameters */ + assert_param(IS_TIM_SLAVE_INSTANCE(htim->Instance)); + assert_param(IS_TIM_SLAVE_MODE(sSlaveConfig->SlaveMode)); + assert_param(IS_TIM_TRIGGER_SELECTION(sSlaveConfig->InputTrigger)); + + __HAL_LOCK(htim); + + htim->State = HAL_TIM_STATE_BUSY; + + if (TIM_SlaveTimer_SetConfig(htim, sSlaveConfig) != HAL_OK) + { + htim->State = HAL_TIM_STATE_READY; + __HAL_UNLOCK(htim); + return HAL_ERROR; + } + + /* Enable Trigger Interrupt */ + __HAL_TIM_ENABLE_IT(htim, TIM_IT_TRIGGER); + + /* Disable Trigger DMA request */ + __HAL_TIM_DISABLE_DMA(htim, TIM_DMA_TRIGGER); + + htim->State = HAL_TIM_STATE_READY; + + __HAL_UNLOCK(htim); + + return HAL_OK; +} + +/** + * @brief Read the captured value from Capture Compare unit + * @param htim TIM handle. + * @param Channel TIM Channels to be enabled + * This parameter can be one of the following values: + * @arg TIM_CHANNEL_1: TIM Channel 1 selected + * @arg TIM_CHANNEL_2: TIM Channel 2 selected + * @arg TIM_CHANNEL_3: TIM Channel 3 selected + * @arg TIM_CHANNEL_4: TIM Channel 4 selected + * @retval Captured value + */ +uint32_t HAL_TIM_ReadCapturedValue(TIM_HandleTypeDef *htim, uint32_t Channel) +{ + uint32_t tmpreg = 0U; + + switch (Channel) + { + case TIM_CHANNEL_1: + { + /* Check the parameters */ + assert_param(IS_TIM_CC1_INSTANCE(htim->Instance)); + + /* Return the capture 1 value */ + tmpreg = htim->Instance->CCR1; + + break; + } + case TIM_CHANNEL_2: + { + /* Check the parameters */ + assert_param(IS_TIM_CC2_INSTANCE(htim->Instance)); + + /* Return the capture 2 value */ + tmpreg = htim->Instance->CCR2; + + break; + } + + case TIM_CHANNEL_3: + { + /* Check the parameters */ + assert_param(IS_TIM_CC3_INSTANCE(htim->Instance)); + + /* Return the capture 3 value */ + tmpreg = htim->Instance->CCR3; + + break; + } + + case TIM_CHANNEL_4: + { + /* Check the parameters */ + assert_param(IS_TIM_CC4_INSTANCE(htim->Instance)); + + /* Return the capture 4 value */ + tmpreg = htim->Instance->CCR4; + + break; + } + + default: + break; + } + + return tmpreg; +} + +/** + * @} + */ + +/** @defgroup TIM_Exported_Functions_Group9 TIM Callbacks functions + * @brief TIM Callbacks functions + * +@verbatim + ============================================================================== + ##### TIM Callbacks functions ##### + ============================================================================== + [..] + This section provides TIM callback functions: + (+) TIM Period elapsed callback + (+) TIM Output Compare callback + (+) TIM Input capture callback + (+) TIM Trigger callback + (+) TIM Error callback + +@endverbatim + * @{ + */ + +/** + * @brief Period elapsed callback in non-blocking mode + * @param htim TIM handle + * @retval None + */ +__weak void HAL_TIM_PeriodElapsedCallback(TIM_HandleTypeDef *htim) +{ + /* Prevent unused argument(s) compilation warning */ + UNUSED(htim); + + /* NOTE : This function should not be modified, when the callback is needed, + the HAL_TIM_PeriodElapsedCallback could be implemented in the user file + */ +} + +/** + * @brief Period elapsed half complete callback in non-blocking mode + * @param htim TIM handle + * @retval None + */ +__weak void HAL_TIM_PeriodElapsedHalfCpltCallback(TIM_HandleTypeDef *htim) +{ + /* Prevent unused argument(s) compilation warning */ + UNUSED(htim); + + /* NOTE : This function should not be modified, when the callback is needed, + the HAL_TIM_PeriodElapsedHalfCpltCallback could be implemented in the user file + */ +} + +/** + * @brief Output Compare callback in non-blocking mode + * @param htim TIM OC handle + * @retval None + */ +__weak void HAL_TIM_OC_DelayElapsedCallback(TIM_HandleTypeDef *htim) +{ + /* Prevent unused argument(s) compilation warning */ + UNUSED(htim); + + /* NOTE : This function should not be modified, when the callback is needed, + the HAL_TIM_OC_DelayElapsedCallback could be implemented in the user file + */ +} + +/** + * @brief Input Capture callback in non-blocking mode + * @param htim TIM IC handle + * @retval None + */ +__weak void HAL_TIM_IC_CaptureCallback(TIM_HandleTypeDef *htim) +{ + /* Prevent unused argument(s) compilation warning */ + UNUSED(htim); + + /* NOTE : This function should not be modified, when the callback is needed, + the HAL_TIM_IC_CaptureCallback could be implemented in the user file + */ +} + +/** + * @brief Input Capture half complete callback in non-blocking mode + * @param htim TIM IC handle + * @retval None + */ +__weak void HAL_TIM_IC_CaptureHalfCpltCallback(TIM_HandleTypeDef *htim) +{ + /* Prevent unused argument(s) compilation warning */ + UNUSED(htim); + + /* NOTE : This function should not be modified, when the callback is needed, + the HAL_TIM_IC_CaptureHalfCpltCallback could be implemented in the user file + */ +} + +/** + * @brief PWM Pulse finished callback in non-blocking mode + * @param htim TIM handle + * @retval None + */ +__weak void HAL_TIM_PWM_PulseFinishedCallback(TIM_HandleTypeDef *htim) +{ + /* Prevent unused argument(s) compilation warning */ + UNUSED(htim); + + /* NOTE : This function should not be modified, when the callback is needed, + the HAL_TIM_PWM_PulseFinishedCallback could be implemented in the user file + */ +} + +/** + * @brief PWM Pulse finished half complete callback in non-blocking mode + * @param htim TIM handle + * @retval None + */ +__weak void HAL_TIM_PWM_PulseFinishedHalfCpltCallback(TIM_HandleTypeDef *htim) +{ + /* Prevent unused argument(s) compilation warning */ + UNUSED(htim); + + /* NOTE : This function should not be modified, when the callback is needed, + the HAL_TIM_PWM_PulseFinishedHalfCpltCallback could be implemented in the user file + */ +} + +/** + * @brief Hall Trigger detection callback in non-blocking mode + * @param htim TIM handle + * @retval None + */ +__weak void HAL_TIM_TriggerCallback(TIM_HandleTypeDef *htim) +{ + /* Prevent unused argument(s) compilation warning */ + UNUSED(htim); + + /* NOTE : This function should not be modified, when the callback is needed, + the HAL_TIM_TriggerCallback could be implemented in the user file + */ +} + +/** + * @brief Hall Trigger detection half complete callback in non-blocking mode + * @param htim TIM handle + * @retval None + */ +__weak void HAL_TIM_TriggerHalfCpltCallback(TIM_HandleTypeDef *htim) +{ + /* Prevent unused argument(s) compilation warning */ + UNUSED(htim); + + /* NOTE : This function should not be modified, when the callback is needed, + the HAL_TIM_TriggerHalfCpltCallback could be implemented in the user file + */ +} + +/** + * @brief Timer error callback in non-blocking mode + * @param htim TIM handle + * @retval None + */ +__weak void HAL_TIM_ErrorCallback(TIM_HandleTypeDef *htim) +{ + /* Prevent unused argument(s) compilation warning */ + UNUSED(htim); + + /* NOTE : This function should not be modified, when the callback is needed, + the HAL_TIM_ErrorCallback could be implemented in the user file + */ +} + +#if (USE_HAL_TIM_REGISTER_CALLBACKS == 1) +/** + * @brief Register a User TIM callback to be used instead of the weak predefined callback + * @param htim tim handle + * @param CallbackID ID of the callback to be registered + * This parameter can be one of the following values: + * @arg @ref HAL_TIM_BASE_MSPINIT_CB_ID Base MspInit Callback ID + * @arg @ref HAL_TIM_BASE_MSPDEINIT_CB_ID Base MspDeInit Callback ID + * @arg @ref HAL_TIM_IC_MSPINIT_CB_ID IC MspInit Callback ID + * @arg @ref HAL_TIM_IC_MSPDEINIT_CB_ID IC MspDeInit Callback ID + * @arg @ref HAL_TIM_OC_MSPINIT_CB_ID OC MspInit Callback ID + * @arg @ref HAL_TIM_OC_MSPDEINIT_CB_ID OC MspDeInit Callback ID + * @arg @ref HAL_TIM_PWM_MSPINIT_CB_ID PWM MspInit Callback ID + * @arg @ref HAL_TIM_PWM_MSPDEINIT_CB_ID PWM MspDeInit Callback ID + * @arg @ref HAL_TIM_ONE_PULSE_MSPINIT_CB_ID One Pulse MspInit Callback ID + * @arg @ref HAL_TIM_ONE_PULSE_MSPDEINIT_CB_ID One Pulse MspDeInit Callback ID + * @arg @ref HAL_TIM_ENCODER_MSPINIT_CB_ID Encoder MspInit Callback ID + * @arg @ref HAL_TIM_ENCODER_MSPDEINIT_CB_ID Encoder MspDeInit Callback ID + * @arg @ref HAL_TIM_HALL_SENSOR_MSPINIT_CB_ID Hall Sensor MspInit Callback ID + * @arg @ref HAL_TIM_HALL_SENSOR_MSPDEINIT_CB_ID Hall Sensor MspDeInit Callback ID + * @arg @ref HAL_TIM_PERIOD_ELAPSED_CB_ID Period Elapsed Callback ID + * @arg @ref HAL_TIM_PERIOD_ELAPSED_HALF_CB_ID Period Elapsed half complete Callback ID + * @arg @ref HAL_TIM_TRIGGER_CB_ID Trigger Callback ID + * @arg @ref HAL_TIM_TRIGGER_HALF_CB_ID Trigger half complete Callback ID + * @arg @ref HAL_TIM_IC_CAPTURE_CB_ID Input Capture Callback ID + * @arg @ref HAL_TIM_IC_CAPTURE_HALF_CB_ID Input Capture half complete Callback ID + * @arg @ref HAL_TIM_OC_DELAY_ELAPSED_CB_ID Output Compare Delay Elapsed Callback ID + * @arg @ref HAL_TIM_PWM_PULSE_FINISHED_CB_ID PWM Pulse Finished Callback ID + * @arg @ref HAL_TIM_PWM_PULSE_FINISHED_HALF_CB_ID PWM Pulse Finished half complete Callback ID + * @arg @ref HAL_TIM_ERROR_CB_ID Error Callback ID + * @arg @ref HAL_TIM_COMMUTATION_CB_ID Commutation Callback ID + * @arg @ref HAL_TIM_COMMUTATION_HALF_CB_ID Commutation half complete Callback ID + * @arg @ref HAL_TIM_BREAK_CB_ID Break Callback ID + * @arg @ref HAL_TIM_BREAK2_CB_ID Break2 Callback ID + * @param pCallback pointer to the callback function + * @retval status + */ +HAL_StatusTypeDef HAL_TIM_RegisterCallback(TIM_HandleTypeDef *htim, HAL_TIM_CallbackIDTypeDef CallbackID, + pTIM_CallbackTypeDef pCallback) +{ + HAL_StatusTypeDef status = HAL_OK; + + if (pCallback == NULL) + { + return HAL_ERROR; + } + /* Process locked */ + __HAL_LOCK(htim); + + if (htim->State == HAL_TIM_STATE_READY) + { + switch (CallbackID) + { + case HAL_TIM_BASE_MSPINIT_CB_ID : + htim->Base_MspInitCallback = pCallback; + break; + + case HAL_TIM_BASE_MSPDEINIT_CB_ID : + htim->Base_MspDeInitCallback = pCallback; + break; + + case HAL_TIM_IC_MSPINIT_CB_ID : + htim->IC_MspInitCallback = pCallback; + break; + + case HAL_TIM_IC_MSPDEINIT_CB_ID : + htim->IC_MspDeInitCallback = pCallback; + break; + + case HAL_TIM_OC_MSPINIT_CB_ID : + htim->OC_MspInitCallback = pCallback; + break; + + case HAL_TIM_OC_MSPDEINIT_CB_ID : + htim->OC_MspDeInitCallback = pCallback; + break; + + case HAL_TIM_PWM_MSPINIT_CB_ID : + htim->PWM_MspInitCallback = pCallback; + break; + + case HAL_TIM_PWM_MSPDEINIT_CB_ID : + htim->PWM_MspDeInitCallback = pCallback; + break; + + case HAL_TIM_ONE_PULSE_MSPINIT_CB_ID : + htim->OnePulse_MspInitCallback = pCallback; + break; + + case HAL_TIM_ONE_PULSE_MSPDEINIT_CB_ID : + htim->OnePulse_MspDeInitCallback = pCallback; + break; + + case HAL_TIM_ENCODER_MSPINIT_CB_ID : + htim->Encoder_MspInitCallback = pCallback; + break; + + case HAL_TIM_ENCODER_MSPDEINIT_CB_ID : + htim->Encoder_MspDeInitCallback = pCallback; + break; + + case HAL_TIM_HALL_SENSOR_MSPINIT_CB_ID : + htim->HallSensor_MspInitCallback = pCallback; + break; + + case HAL_TIM_HALL_SENSOR_MSPDEINIT_CB_ID : + htim->HallSensor_MspDeInitCallback = pCallback; + break; + + case HAL_TIM_PERIOD_ELAPSED_CB_ID : + htim->PeriodElapsedCallback = pCallback; + break; + + case HAL_TIM_PERIOD_ELAPSED_HALF_CB_ID : + htim->PeriodElapsedHalfCpltCallback = pCallback; + break; + + case HAL_TIM_TRIGGER_CB_ID : + htim->TriggerCallback = pCallback; + break; + + case HAL_TIM_TRIGGER_HALF_CB_ID : + htim->TriggerHalfCpltCallback = pCallback; + break; + + case HAL_TIM_IC_CAPTURE_CB_ID : + htim->IC_CaptureCallback = pCallback; + break; + + case HAL_TIM_IC_CAPTURE_HALF_CB_ID : + htim->IC_CaptureHalfCpltCallback = pCallback; + break; + + case HAL_TIM_OC_DELAY_ELAPSED_CB_ID : + htim->OC_DelayElapsedCallback = pCallback; + break; + + case HAL_TIM_PWM_PULSE_FINISHED_CB_ID : + htim->PWM_PulseFinishedCallback = pCallback; + break; + + case HAL_TIM_PWM_PULSE_FINISHED_HALF_CB_ID : + htim->PWM_PulseFinishedHalfCpltCallback = pCallback; + break; + + case HAL_TIM_ERROR_CB_ID : + htim->ErrorCallback = pCallback; + break; + + case HAL_TIM_COMMUTATION_CB_ID : + htim->CommutationCallback = pCallback; + break; + + case HAL_TIM_COMMUTATION_HALF_CB_ID : + htim->CommutationHalfCpltCallback = pCallback; + break; + + case HAL_TIM_BREAK_CB_ID : + htim->BreakCallback = pCallback; + break; + + case HAL_TIM_BREAK2_CB_ID : + htim->Break2Callback = pCallback; + break; + + default : + /* Return error status */ + status = HAL_ERROR; + break; + } + } + else if (htim->State == HAL_TIM_STATE_RESET) + { + switch (CallbackID) + { + case HAL_TIM_BASE_MSPINIT_CB_ID : + htim->Base_MspInitCallback = pCallback; + break; + + case HAL_TIM_BASE_MSPDEINIT_CB_ID : + htim->Base_MspDeInitCallback = pCallback; + break; + + case HAL_TIM_IC_MSPINIT_CB_ID : + htim->IC_MspInitCallback = pCallback; + break; + + case HAL_TIM_IC_MSPDEINIT_CB_ID : + htim->IC_MspDeInitCallback = pCallback; + break; + + case HAL_TIM_OC_MSPINIT_CB_ID : + htim->OC_MspInitCallback = pCallback; + break; + + case HAL_TIM_OC_MSPDEINIT_CB_ID : + htim->OC_MspDeInitCallback = pCallback; + break; + + case HAL_TIM_PWM_MSPINIT_CB_ID : + htim->PWM_MspInitCallback = pCallback; + break; + + case HAL_TIM_PWM_MSPDEINIT_CB_ID : + htim->PWM_MspDeInitCallback = pCallback; + break; + + case HAL_TIM_ONE_PULSE_MSPINIT_CB_ID : + htim->OnePulse_MspInitCallback = pCallback; + break; + + case HAL_TIM_ONE_PULSE_MSPDEINIT_CB_ID : + htim->OnePulse_MspDeInitCallback = pCallback; + break; + + case HAL_TIM_ENCODER_MSPINIT_CB_ID : + htim->Encoder_MspInitCallback = pCallback; + break; + + case HAL_TIM_ENCODER_MSPDEINIT_CB_ID : + htim->Encoder_MspDeInitCallback = pCallback; + break; + + case HAL_TIM_HALL_SENSOR_MSPINIT_CB_ID : + htim->HallSensor_MspInitCallback = pCallback; + break; + + case HAL_TIM_HALL_SENSOR_MSPDEINIT_CB_ID : + htim->HallSensor_MspDeInitCallback = pCallback; + break; + + default : + /* Return error status */ + status = HAL_ERROR; + break; + } + } + else + { + /* Return error status */ + status = HAL_ERROR; + } + + /* Release Lock */ + __HAL_UNLOCK(htim); + + return status; +} + +/** + * @brief Unregister a TIM callback + * TIM callback is redirected to the weak predefined callback + * @param htim tim handle + * @param CallbackID ID of the callback to be unregistered + * This parameter can be one of the following values: + * @arg @ref HAL_TIM_BASE_MSPINIT_CB_ID Base MspInit Callback ID + * @arg @ref HAL_TIM_BASE_MSPDEINIT_CB_ID Base MspDeInit Callback ID + * @arg @ref HAL_TIM_IC_MSPINIT_CB_ID IC MspInit Callback ID + * @arg @ref HAL_TIM_IC_MSPDEINIT_CB_ID IC MspDeInit Callback ID + * @arg @ref HAL_TIM_OC_MSPINIT_CB_ID OC MspInit Callback ID + * @arg @ref HAL_TIM_OC_MSPDEINIT_CB_ID OC MspDeInit Callback ID + * @arg @ref HAL_TIM_PWM_MSPINIT_CB_ID PWM MspInit Callback ID + * @arg @ref HAL_TIM_PWM_MSPDEINIT_CB_ID PWM MspDeInit Callback ID + * @arg @ref HAL_TIM_ONE_PULSE_MSPINIT_CB_ID One Pulse MspInit Callback ID + * @arg @ref HAL_TIM_ONE_PULSE_MSPDEINIT_CB_ID One Pulse MspDeInit Callback ID + * @arg @ref HAL_TIM_ENCODER_MSPINIT_CB_ID Encoder MspInit Callback ID + * @arg @ref HAL_TIM_ENCODER_MSPDEINIT_CB_ID Encoder MspDeInit Callback ID + * @arg @ref HAL_TIM_HALL_SENSOR_MSPINIT_CB_ID Hall Sensor MspInit Callback ID + * @arg @ref HAL_TIM_HALL_SENSOR_MSPDEINIT_CB_ID Hall Sensor MspDeInit Callback ID + * @arg @ref HAL_TIM_PERIOD_ELAPSED_CB_ID Period Elapsed Callback ID + * @arg @ref HAL_TIM_PERIOD_ELAPSED_HALF_CB_ID Period Elapsed half complete Callback ID + * @arg @ref HAL_TIM_TRIGGER_CB_ID Trigger Callback ID + * @arg @ref HAL_TIM_TRIGGER_HALF_CB_ID Trigger half complete Callback ID + * @arg @ref HAL_TIM_IC_CAPTURE_CB_ID Input Capture Callback ID + * @arg @ref HAL_TIM_IC_CAPTURE_HALF_CB_ID Input Capture half complete Callback ID + * @arg @ref HAL_TIM_OC_DELAY_ELAPSED_CB_ID Output Compare Delay Elapsed Callback ID + * @arg @ref HAL_TIM_PWM_PULSE_FINISHED_CB_ID PWM Pulse Finished Callback ID + * @arg @ref HAL_TIM_PWM_PULSE_FINISHED_HALF_CB_ID PWM Pulse Finished half complete Callback ID + * @arg @ref HAL_TIM_ERROR_CB_ID Error Callback ID + * @arg @ref HAL_TIM_COMMUTATION_CB_ID Commutation Callback ID + * @arg @ref HAL_TIM_COMMUTATION_HALF_CB_ID Commutation half complete Callback ID + * @arg @ref HAL_TIM_BREAK_CB_ID Break Callback ID + * @arg @ref HAL_TIM_BREAK2_CB_ID Break2 Callback ID + * @retval status + */ +HAL_StatusTypeDef HAL_TIM_UnRegisterCallback(TIM_HandleTypeDef *htim, HAL_TIM_CallbackIDTypeDef CallbackID) +{ + HAL_StatusTypeDef status = HAL_OK; + + /* Process locked */ + __HAL_LOCK(htim); + + if (htim->State == HAL_TIM_STATE_READY) + { + switch (CallbackID) + { + case HAL_TIM_BASE_MSPINIT_CB_ID : + htim->Base_MspInitCallback = HAL_TIM_Base_MspInit; /* Legacy weak Base MspInit Callback */ + break; + + case HAL_TIM_BASE_MSPDEINIT_CB_ID : + htim->Base_MspDeInitCallback = HAL_TIM_Base_MspDeInit; /* Legacy weak Base Msp DeInit Callback */ + break; + + case HAL_TIM_IC_MSPINIT_CB_ID : + htim->IC_MspInitCallback = HAL_TIM_IC_MspInit; /* Legacy weak IC Msp Init Callback */ + break; + + case HAL_TIM_IC_MSPDEINIT_CB_ID : + htim->IC_MspDeInitCallback = HAL_TIM_IC_MspDeInit; /* Legacy weak IC Msp DeInit Callback */ + break; + + case HAL_TIM_OC_MSPINIT_CB_ID : + htim->OC_MspInitCallback = HAL_TIM_OC_MspInit; /* Legacy weak OC Msp Init Callback */ + break; + + case HAL_TIM_OC_MSPDEINIT_CB_ID : + htim->OC_MspDeInitCallback = HAL_TIM_OC_MspDeInit; /* Legacy weak OC Msp DeInit Callback */ + break; + + case HAL_TIM_PWM_MSPINIT_CB_ID : + htim->PWM_MspInitCallback = HAL_TIM_PWM_MspInit; /* Legacy weak PWM Msp Init Callback */ + break; + + case HAL_TIM_PWM_MSPDEINIT_CB_ID : + htim->PWM_MspDeInitCallback = HAL_TIM_PWM_MspDeInit; /* Legacy weak PWM Msp DeInit Callback */ + break; + + case HAL_TIM_ONE_PULSE_MSPINIT_CB_ID : + htim->OnePulse_MspInitCallback = HAL_TIM_OnePulse_MspInit; /* Legacy weak One Pulse Msp Init Callback */ + break; + + case HAL_TIM_ONE_PULSE_MSPDEINIT_CB_ID : + htim->OnePulse_MspDeInitCallback = HAL_TIM_OnePulse_MspDeInit; /* Legacy weak One Pulse Msp DeInit Callback */ + break; + + case HAL_TIM_ENCODER_MSPINIT_CB_ID : + htim->Encoder_MspInitCallback = HAL_TIM_Encoder_MspInit; /* Legacy weak Encoder Msp Init Callback */ + break; + + case HAL_TIM_ENCODER_MSPDEINIT_CB_ID : + htim->Encoder_MspDeInitCallback = HAL_TIM_Encoder_MspDeInit; /* Legacy weak Encoder Msp DeInit Callback */ + break; + + case HAL_TIM_HALL_SENSOR_MSPINIT_CB_ID : + htim->HallSensor_MspInitCallback = HAL_TIMEx_HallSensor_MspInit; /* Legacy weak Hall Sensor Msp Init Callback */ + break; + + case HAL_TIM_HALL_SENSOR_MSPDEINIT_CB_ID : + htim->HallSensor_MspDeInitCallback = HAL_TIMEx_HallSensor_MspDeInit; /* Legacy weak Hall Sensor Msp DeInit Callback */ + break; + + case HAL_TIM_PERIOD_ELAPSED_CB_ID : + htim->PeriodElapsedCallback = HAL_TIM_PeriodElapsedCallback; /* Legacy weak Period Elapsed Callback */ + break; + + case HAL_TIM_PERIOD_ELAPSED_HALF_CB_ID : + htim->PeriodElapsedHalfCpltCallback = HAL_TIM_PeriodElapsedHalfCpltCallback; /* Legacy weak Period Elapsed half complete Callback */ + break; + + case HAL_TIM_TRIGGER_CB_ID : + htim->TriggerCallback = HAL_TIM_TriggerCallback; /* Legacy weak Trigger Callback */ + break; + + case HAL_TIM_TRIGGER_HALF_CB_ID : + htim->TriggerHalfCpltCallback = HAL_TIM_TriggerHalfCpltCallback; /* Legacy weak Trigger half complete Callback */ + break; + + case HAL_TIM_IC_CAPTURE_CB_ID : + htim->IC_CaptureCallback = HAL_TIM_IC_CaptureCallback; /* Legacy weak IC Capture Callback */ + break; + + case HAL_TIM_IC_CAPTURE_HALF_CB_ID : + htim->IC_CaptureHalfCpltCallback = HAL_TIM_IC_CaptureHalfCpltCallback; /* Legacy weak IC Capture half complete Callback */ + break; + + case HAL_TIM_OC_DELAY_ELAPSED_CB_ID : + htim->OC_DelayElapsedCallback = HAL_TIM_OC_DelayElapsedCallback; /* Legacy weak OC Delay Elapsed Callback */ + break; + + case HAL_TIM_PWM_PULSE_FINISHED_CB_ID : + htim->PWM_PulseFinishedCallback = HAL_TIM_PWM_PulseFinishedCallback; /* Legacy weak PWM Pulse Finished Callback */ + break; + + case HAL_TIM_PWM_PULSE_FINISHED_HALF_CB_ID : + htim->PWM_PulseFinishedHalfCpltCallback = HAL_TIM_PWM_PulseFinishedHalfCpltCallback; /* Legacy weak PWM Pulse Finished half complete Callback */ + break; + + case HAL_TIM_ERROR_CB_ID : + htim->ErrorCallback = HAL_TIM_ErrorCallback; /* Legacy weak Error Callback */ + break; + + case HAL_TIM_COMMUTATION_CB_ID : + htim->CommutationCallback = HAL_TIMEx_CommutCallback; /* Legacy weak Commutation Callback */ + break; + + case HAL_TIM_COMMUTATION_HALF_CB_ID : + htim->CommutationHalfCpltCallback = HAL_TIMEx_CommutHalfCpltCallback; /* Legacy weak Commutation half complete Callback */ + break; + + case HAL_TIM_BREAK_CB_ID : + htim->BreakCallback = HAL_TIMEx_BreakCallback; /* Legacy weak Break Callback */ + break; + + case HAL_TIM_BREAK2_CB_ID : + htim->Break2Callback = HAL_TIMEx_Break2Callback; /* Legacy weak Break2 Callback */ + break; + + default : + /* Return error status */ + status = HAL_ERROR; + break; + } + } + else if (htim->State == HAL_TIM_STATE_RESET) + { + switch (CallbackID) + { + case HAL_TIM_BASE_MSPINIT_CB_ID : + htim->Base_MspInitCallback = HAL_TIM_Base_MspInit; /* Legacy weak Base MspInit Callback */ + break; + + case HAL_TIM_BASE_MSPDEINIT_CB_ID : + htim->Base_MspDeInitCallback = HAL_TIM_Base_MspDeInit; /* Legacy weak Base Msp DeInit Callback */ + break; + + case HAL_TIM_IC_MSPINIT_CB_ID : + htim->IC_MspInitCallback = HAL_TIM_IC_MspInit; /* Legacy weak IC Msp Init Callback */ + break; + + case HAL_TIM_IC_MSPDEINIT_CB_ID : + htim->IC_MspDeInitCallback = HAL_TIM_IC_MspDeInit; /* Legacy weak IC Msp DeInit Callback */ + break; + + case HAL_TIM_OC_MSPINIT_CB_ID : + htim->OC_MspInitCallback = HAL_TIM_OC_MspInit; /* Legacy weak OC Msp Init Callback */ + break; + + case HAL_TIM_OC_MSPDEINIT_CB_ID : + htim->OC_MspDeInitCallback = HAL_TIM_OC_MspDeInit; /* Legacy weak OC Msp DeInit Callback */ + break; + + case HAL_TIM_PWM_MSPINIT_CB_ID : + htim->PWM_MspInitCallback = HAL_TIM_PWM_MspInit; /* Legacy weak PWM Msp Init Callback */ + break; + + case HAL_TIM_PWM_MSPDEINIT_CB_ID : + htim->PWM_MspDeInitCallback = HAL_TIM_PWM_MspDeInit; /* Legacy weak PWM Msp DeInit Callback */ + break; + + case HAL_TIM_ONE_PULSE_MSPINIT_CB_ID : + htim->OnePulse_MspInitCallback = HAL_TIM_OnePulse_MspInit; /* Legacy weak One Pulse Msp Init Callback */ + break; + + case HAL_TIM_ONE_PULSE_MSPDEINIT_CB_ID : + htim->OnePulse_MspDeInitCallback = HAL_TIM_OnePulse_MspDeInit; /* Legacy weak One Pulse Msp DeInit Callback */ + break; + + case HAL_TIM_ENCODER_MSPINIT_CB_ID : + htim->Encoder_MspInitCallback = HAL_TIM_Encoder_MspInit; /* Legacy weak Encoder Msp Init Callback */ + break; + + case HAL_TIM_ENCODER_MSPDEINIT_CB_ID : + htim->Encoder_MspDeInitCallback = HAL_TIM_Encoder_MspDeInit; /* Legacy weak Encoder Msp DeInit Callback */ + break; + + case HAL_TIM_HALL_SENSOR_MSPINIT_CB_ID : + htim->HallSensor_MspInitCallback = HAL_TIMEx_HallSensor_MspInit; /* Legacy weak Hall Sensor Msp Init Callback */ + break; + + case HAL_TIM_HALL_SENSOR_MSPDEINIT_CB_ID : + htim->HallSensor_MspDeInitCallback = HAL_TIMEx_HallSensor_MspDeInit; /* Legacy weak Hall Sensor Msp DeInit Callback */ + break; + + default : + /* Return error status */ + status = HAL_ERROR; + break; + } + } + else + { + /* Return error status */ + status = HAL_ERROR; + } + + /* Release Lock */ + __HAL_UNLOCK(htim); + + return status; +} +#endif /* USE_HAL_TIM_REGISTER_CALLBACKS */ + +/** + * @} + */ + +/** @defgroup TIM_Exported_Functions_Group10 TIM Peripheral State functions + * @brief TIM Peripheral State functions + * +@verbatim + ============================================================================== + ##### Peripheral State functions ##### + ============================================================================== + [..] + This subsection permits to get in run-time the status of the peripheral + and the data flow. + +@endverbatim + * @{ + */ + +/** + * @brief Return the TIM Base handle state. + * @param htim TIM Base handle + * @retval HAL state + */ +HAL_TIM_StateTypeDef HAL_TIM_Base_GetState(TIM_HandleTypeDef *htim) +{ + return htim->State; +} + +/** + * @brief Return the TIM OC handle state. + * @param htim TIM Output Compare handle + * @retval HAL state + */ +HAL_TIM_StateTypeDef HAL_TIM_OC_GetState(TIM_HandleTypeDef *htim) +{ + return htim->State; +} + +/** + * @brief Return the TIM PWM handle state. + * @param htim TIM handle + * @retval HAL state + */ +HAL_TIM_StateTypeDef HAL_TIM_PWM_GetState(TIM_HandleTypeDef *htim) +{ + return htim->State; +} + +/** + * @brief Return the TIM Input Capture handle state. + * @param htim TIM IC handle + * @retval HAL state + */ +HAL_TIM_StateTypeDef HAL_TIM_IC_GetState(TIM_HandleTypeDef *htim) +{ + return htim->State; +} + +/** + * @brief Return the TIM One Pulse Mode handle state. + * @param htim TIM OPM handle + * @retval HAL state + */ +HAL_TIM_StateTypeDef HAL_TIM_OnePulse_GetState(TIM_HandleTypeDef *htim) +{ + return htim->State; +} + +/** + * @brief Return the TIM Encoder Mode handle state. + * @param htim TIM Encoder Interface handle + * @retval HAL state + */ +HAL_TIM_StateTypeDef HAL_TIM_Encoder_GetState(TIM_HandleTypeDef *htim) +{ + return htim->State; +} + +/** + * @} + */ + +/** + * @} + */ + +/** @defgroup TIM_Private_Functions TIM Private Functions + * @{ + */ + +/** + * @brief TIM DMA error callback + * @param hdma pointer to DMA handle. + * @retval None + */ +void TIM_DMAError(DMA_HandleTypeDef *hdma) +{ + TIM_HandleTypeDef *htim = (TIM_HandleTypeDef *)((DMA_HandleTypeDef *)hdma)->Parent; + + htim->State = HAL_TIM_STATE_READY; + +#if (USE_HAL_TIM_REGISTER_CALLBACKS == 1) + htim->ErrorCallback(htim); +#else + HAL_TIM_ErrorCallback(htim); +#endif /* USE_HAL_TIM_REGISTER_CALLBACKS */ +} + +/** + * @brief TIM DMA Delay Pulse complete callback. + * @param hdma pointer to DMA handle. + * @retval None + */ +void TIM_DMADelayPulseCplt(DMA_HandleTypeDef *hdma) +{ + TIM_HandleTypeDef *htim = (TIM_HandleTypeDef *)((DMA_HandleTypeDef *)hdma)->Parent; + + htim->State = HAL_TIM_STATE_READY; + + if (hdma == htim->hdma[TIM_DMA_ID_CC1]) + { + htim->Channel = HAL_TIM_ACTIVE_CHANNEL_1; + } + else if (hdma == htim->hdma[TIM_DMA_ID_CC2]) + { + htim->Channel = HAL_TIM_ACTIVE_CHANNEL_2; + } + else if (hdma == htim->hdma[TIM_DMA_ID_CC3]) + { + htim->Channel = HAL_TIM_ACTIVE_CHANNEL_3; + } + else if (hdma == htim->hdma[TIM_DMA_ID_CC4]) + { + htim->Channel = HAL_TIM_ACTIVE_CHANNEL_4; + } + else + { + /* nothing to do */ + } + +#if (USE_HAL_TIM_REGISTER_CALLBACKS == 1) + htim->PWM_PulseFinishedCallback(htim); +#else + HAL_TIM_PWM_PulseFinishedCallback(htim); +#endif /* USE_HAL_TIM_REGISTER_CALLBACKS */ + + htim->Channel = HAL_TIM_ACTIVE_CHANNEL_CLEARED; +} + +/** + * @brief TIM DMA Delay Pulse half complete callback. + * @param hdma pointer to DMA handle. + * @retval None + */ +void TIM_DMADelayPulseHalfCplt(DMA_HandleTypeDef *hdma) +{ + TIM_HandleTypeDef *htim = (TIM_HandleTypeDef *)((DMA_HandleTypeDef *)hdma)->Parent; + + htim->State = HAL_TIM_STATE_READY; + + if (hdma == htim->hdma[TIM_DMA_ID_CC1]) + { + htim->Channel = HAL_TIM_ACTIVE_CHANNEL_1; + } + else if (hdma == htim->hdma[TIM_DMA_ID_CC2]) + { + htim->Channel = HAL_TIM_ACTIVE_CHANNEL_2; + } + else if (hdma == htim->hdma[TIM_DMA_ID_CC3]) + { + htim->Channel = HAL_TIM_ACTIVE_CHANNEL_3; + } + else if (hdma == htim->hdma[TIM_DMA_ID_CC4]) + { + htim->Channel = HAL_TIM_ACTIVE_CHANNEL_4; + } + else + { + /* nothing to do */ + } + +#if (USE_HAL_TIM_REGISTER_CALLBACKS == 1) + htim->PWM_PulseFinishedHalfCpltCallback(htim); +#else + HAL_TIM_PWM_PulseFinishedHalfCpltCallback(htim); +#endif /* USE_HAL_TIM_REGISTER_CALLBACKS */ + + htim->Channel = HAL_TIM_ACTIVE_CHANNEL_CLEARED; +} + +/** + * @brief TIM DMA Capture complete callback. + * @param hdma pointer to DMA handle. + * @retval None + */ +void TIM_DMACaptureCplt(DMA_HandleTypeDef *hdma) +{ + TIM_HandleTypeDef *htim = (TIM_HandleTypeDef *)((DMA_HandleTypeDef *)hdma)->Parent; + + htim->State = HAL_TIM_STATE_READY; + + if (hdma == htim->hdma[TIM_DMA_ID_CC1]) + { + htim->Channel = HAL_TIM_ACTIVE_CHANNEL_1; + } + else if (hdma == htim->hdma[TIM_DMA_ID_CC2]) + { + htim->Channel = HAL_TIM_ACTIVE_CHANNEL_2; + } + else if (hdma == htim->hdma[TIM_DMA_ID_CC3]) + { + htim->Channel = HAL_TIM_ACTIVE_CHANNEL_3; + } + else if (hdma == htim->hdma[TIM_DMA_ID_CC4]) + { + htim->Channel = HAL_TIM_ACTIVE_CHANNEL_4; + } + else + { + /* nothing to do */ + } + +#if (USE_HAL_TIM_REGISTER_CALLBACKS == 1) + htim->IC_CaptureCallback(htim); +#else + HAL_TIM_IC_CaptureCallback(htim); +#endif /* USE_HAL_TIM_REGISTER_CALLBACKS */ + + htim->Channel = HAL_TIM_ACTIVE_CHANNEL_CLEARED; +} + +/** + * @brief TIM DMA Capture half complete callback. + * @param hdma pointer to DMA handle. + * @retval None + */ +void TIM_DMACaptureHalfCplt(DMA_HandleTypeDef *hdma) +{ + TIM_HandleTypeDef *htim = (TIM_HandleTypeDef *)((DMA_HandleTypeDef *)hdma)->Parent; + + htim->State = HAL_TIM_STATE_READY; + + if (hdma == htim->hdma[TIM_DMA_ID_CC1]) + { + htim->Channel = HAL_TIM_ACTIVE_CHANNEL_1; + } + else if (hdma == htim->hdma[TIM_DMA_ID_CC2]) + { + htim->Channel = HAL_TIM_ACTIVE_CHANNEL_2; + } + else if (hdma == htim->hdma[TIM_DMA_ID_CC3]) + { + htim->Channel = HAL_TIM_ACTIVE_CHANNEL_3; + } + else if (hdma == htim->hdma[TIM_DMA_ID_CC4]) + { + htim->Channel = HAL_TIM_ACTIVE_CHANNEL_4; + } + else + { + /* nothing to do */ + } + +#if (USE_HAL_TIM_REGISTER_CALLBACKS == 1) + htim->IC_CaptureHalfCpltCallback(htim); +#else + HAL_TIM_IC_CaptureHalfCpltCallback(htim); +#endif /* USE_HAL_TIM_REGISTER_CALLBACKS */ + + htim->Channel = HAL_TIM_ACTIVE_CHANNEL_CLEARED; +} + +/** + * @brief TIM DMA Period Elapse complete callback. + * @param hdma pointer to DMA handle. + * @retval None + */ +static void TIM_DMAPeriodElapsedCplt(DMA_HandleTypeDef *hdma) +{ + TIM_HandleTypeDef *htim = (TIM_HandleTypeDef *)((DMA_HandleTypeDef *)hdma)->Parent; + + htim->State = HAL_TIM_STATE_READY; + +#if (USE_HAL_TIM_REGISTER_CALLBACKS == 1) + htim->PeriodElapsedCallback(htim); +#else + HAL_TIM_PeriodElapsedCallback(htim); +#endif /* USE_HAL_TIM_REGISTER_CALLBACKS */ +} + +/** + * @brief TIM DMA Period Elapse half complete callback. + * @param hdma pointer to DMA handle. + * @retval None + */ +static void TIM_DMAPeriodElapsedHalfCplt(DMA_HandleTypeDef *hdma) +{ + TIM_HandleTypeDef *htim = (TIM_HandleTypeDef *)((DMA_HandleTypeDef *)hdma)->Parent; + + htim->State = HAL_TIM_STATE_READY; + +#if (USE_HAL_TIM_REGISTER_CALLBACKS == 1) + htim->PeriodElapsedHalfCpltCallback(htim); +#else + HAL_TIM_PeriodElapsedHalfCpltCallback(htim); +#endif /* USE_HAL_TIM_REGISTER_CALLBACKS */ +} + +/** + * @brief TIM DMA Trigger callback. + * @param hdma pointer to DMA handle. + * @retval None + */ +static void TIM_DMATriggerCplt(DMA_HandleTypeDef *hdma) +{ + TIM_HandleTypeDef *htim = (TIM_HandleTypeDef *)((DMA_HandleTypeDef *)hdma)->Parent; + + htim->State = HAL_TIM_STATE_READY; + +#if (USE_HAL_TIM_REGISTER_CALLBACKS == 1) + htim->TriggerCallback(htim); +#else + HAL_TIM_TriggerCallback(htim); +#endif /* USE_HAL_TIM_REGISTER_CALLBACKS */ +} + +/** + * @brief TIM DMA Trigger half complete callback. + * @param hdma pointer to DMA handle. + * @retval None + */ +static void TIM_DMATriggerHalfCplt(DMA_HandleTypeDef *hdma) +{ + TIM_HandleTypeDef *htim = (TIM_HandleTypeDef *)((DMA_HandleTypeDef *)hdma)->Parent; + + htim->State = HAL_TIM_STATE_READY; + +#if (USE_HAL_TIM_REGISTER_CALLBACKS == 1) + htim->TriggerHalfCpltCallback(htim); +#else + HAL_TIM_TriggerHalfCpltCallback(htim); +#endif /* USE_HAL_TIM_REGISTER_CALLBACKS */ +} + +/** + * @brief Time Base configuration + * @param TIMx TIM peripheral + * @param Structure TIM Base configuration structure + * @retval None + */ +void TIM_Base_SetConfig(TIM_TypeDef *TIMx, TIM_Base_InitTypeDef *Structure) +{ + uint32_t tmpcr1; + tmpcr1 = TIMx->CR1; + + /* Set TIM Time Base Unit parameters ---------------------------------------*/ + if (IS_TIM_COUNTER_MODE_SELECT_INSTANCE(TIMx)) + { + /* Select the Counter Mode */ + tmpcr1 &= ~(TIM_CR1_DIR | TIM_CR1_CMS); + tmpcr1 |= Structure->CounterMode; + } + + if (IS_TIM_CLOCK_DIVISION_INSTANCE(TIMx)) + { + /* Set the clock division */ + tmpcr1 &= ~TIM_CR1_CKD; + tmpcr1 |= (uint32_t)Structure->ClockDivision; + } + + /* Set the auto-reload preload */ + MODIFY_REG(tmpcr1, TIM_CR1_ARPE, Structure->AutoReloadPreload); + + TIMx->CR1 = tmpcr1; + + /* Set the Autoreload value */ + TIMx->ARR = (uint32_t)Structure->Period ; + + /* Set the Prescaler value */ + TIMx->PSC = Structure->Prescaler; + + if (IS_TIM_REPETITION_COUNTER_INSTANCE(TIMx)) + { + /* Set the Repetition Counter value */ + TIMx->RCR = Structure->RepetitionCounter; + } + + /* Generate an update event to reload the Prescaler + and the repetition counter (only for advanced timer) value immediately */ + TIMx->EGR = TIM_EGR_UG; +} + +/** + * @brief Timer Output Compare 1 configuration + * @param TIMx to select the TIM peripheral + * @param OC_Config The ouput configuration structure + * @retval None + */ +static void TIM_OC1_SetConfig(TIM_TypeDef *TIMx, TIM_OC_InitTypeDef *OC_Config) +{ + uint32_t tmpccmrx; + uint32_t tmpccer; + uint32_t tmpcr2; + + /* Disable the Channel 1: Reset the CC1E Bit */ + TIMx->CCER &= ~TIM_CCER_CC1E; + + /* Get the TIMx CCER register value */ + tmpccer = TIMx->CCER; + /* Get the TIMx CR2 register value */ + tmpcr2 = TIMx->CR2; + + /* Get the TIMx CCMR1 register value */ + tmpccmrx = TIMx->CCMR1; + + /* Reset the Output Compare Mode Bits */ + tmpccmrx &= ~TIM_CCMR1_OC1M; + tmpccmrx &= ~TIM_CCMR1_CC1S; + /* Select the Output Compare Mode */ + tmpccmrx |= OC_Config->OCMode; + + /* Reset the Output Polarity level */ + tmpccer &= ~TIM_CCER_CC1P; + /* Set the Output Compare Polarity */ + tmpccer |= OC_Config->OCPolarity; + + if (IS_TIM_CCXN_INSTANCE(TIMx, TIM_CHANNEL_1)) + { + /* Check parameters */ + assert_param(IS_TIM_OCN_POLARITY(OC_Config->OCNPolarity)); + + /* Reset the Output N Polarity level */ + tmpccer &= ~TIM_CCER_CC1NP; + /* Set the Output N Polarity */ + tmpccer |= OC_Config->OCNPolarity; + /* Reset the Output N State */ + tmpccer &= ~TIM_CCER_CC1NE; + } + + if (IS_TIM_BREAK_INSTANCE(TIMx)) + { + /* Check parameters */ + assert_param(IS_TIM_OCNIDLE_STATE(OC_Config->OCNIdleState)); + assert_param(IS_TIM_OCIDLE_STATE(OC_Config->OCIdleState)); + + /* Reset the Output Compare and Output Compare N IDLE State */ + tmpcr2 &= ~TIM_CR2_OIS1; + tmpcr2 &= ~TIM_CR2_OIS1N; + /* Set the Output Idle state */ + tmpcr2 |= OC_Config->OCIdleState; + /* Set the Output N Idle state */ + tmpcr2 |= OC_Config->OCNIdleState; + } + + /* Write to TIMx CR2 */ + TIMx->CR2 = tmpcr2; + + /* Write to TIMx CCMR1 */ + TIMx->CCMR1 = tmpccmrx; + + /* Set the Capture Compare Register value */ + TIMx->CCR1 = OC_Config->Pulse; + + /* Write to TIMx CCER */ + TIMx->CCER = tmpccer; +} + +/** + * @brief Timer Output Compare 2 configuration + * @param TIMx to select the TIM peripheral + * @param OC_Config The ouput configuration structure + * @retval None + */ +void TIM_OC2_SetConfig(TIM_TypeDef *TIMx, TIM_OC_InitTypeDef *OC_Config) +{ + uint32_t tmpccmrx; + uint32_t tmpccer; + uint32_t tmpcr2; + + /* Disable the Channel 2: Reset the CC2E Bit */ + TIMx->CCER &= ~TIM_CCER_CC2E; + + /* Get the TIMx CCER register value */ + tmpccer = TIMx->CCER; + /* Get the TIMx CR2 register value */ + tmpcr2 = TIMx->CR2; + + /* Get the TIMx CCMR1 register value */ + tmpccmrx = TIMx->CCMR1; + + /* Reset the Output Compare mode and Capture/Compare selection Bits */ + tmpccmrx &= ~TIM_CCMR1_OC2M; + tmpccmrx &= ~TIM_CCMR1_CC2S; + + /* Select the Output Compare Mode */ + tmpccmrx |= (OC_Config->OCMode << 8U); + + /* Reset the Output Polarity level */ + tmpccer &= ~TIM_CCER_CC2P; + /* Set the Output Compare Polarity */ + tmpccer |= (OC_Config->OCPolarity << 4U); + + if (IS_TIM_CCXN_INSTANCE(TIMx, TIM_CHANNEL_2)) + { + assert_param(IS_TIM_OCN_POLARITY(OC_Config->OCNPolarity)); + + /* Reset the Output N Polarity level */ + tmpccer &= ~TIM_CCER_CC2NP; + /* Set the Output N Polarity */ + tmpccer |= (OC_Config->OCNPolarity << 4U); + /* Reset the Output N State */ + tmpccer &= ~TIM_CCER_CC2NE; + + } + + if (IS_TIM_BREAK_INSTANCE(TIMx)) + { + /* Check parameters */ + assert_param(IS_TIM_OCNIDLE_STATE(OC_Config->OCNIdleState)); + assert_param(IS_TIM_OCIDLE_STATE(OC_Config->OCIdleState)); + + /* Reset the Output Compare and Output Compare N IDLE State */ + tmpcr2 &= ~TIM_CR2_OIS2; + tmpcr2 &= ~TIM_CR2_OIS2N; + /* Set the Output Idle state */ + tmpcr2 |= (OC_Config->OCIdleState << 2U); + /* Set the Output N Idle state */ + tmpcr2 |= (OC_Config->OCNIdleState << 2U); + } + + /* Write to TIMx CR2 */ + TIMx->CR2 = tmpcr2; + + /* Write to TIMx CCMR1 */ + TIMx->CCMR1 = tmpccmrx; + + /* Set the Capture Compare Register value */ + TIMx->CCR2 = OC_Config->Pulse; + + /* Write to TIMx CCER */ + TIMx->CCER = tmpccer; +} + +/** + * @brief Timer Output Compare 3 configuration + * @param TIMx to select the TIM peripheral + * @param OC_Config The ouput configuration structure + * @retval None + */ +static void TIM_OC3_SetConfig(TIM_TypeDef *TIMx, TIM_OC_InitTypeDef *OC_Config) +{ + uint32_t tmpccmrx; + uint32_t tmpccer; + uint32_t tmpcr2; + + /* Disable the Channel 3: Reset the CC2E Bit */ + TIMx->CCER &= ~TIM_CCER_CC3E; + + /* Get the TIMx CCER register value */ + tmpccer = TIMx->CCER; + /* Get the TIMx CR2 register value */ + tmpcr2 = TIMx->CR2; + + /* Get the TIMx CCMR2 register value */ + tmpccmrx = TIMx->CCMR2; + + /* Reset the Output Compare mode and Capture/Compare selection Bits */ + tmpccmrx &= ~TIM_CCMR2_OC3M; + tmpccmrx &= ~TIM_CCMR2_CC3S; + /* Select the Output Compare Mode */ + tmpccmrx |= OC_Config->OCMode; + + /* Reset the Output Polarity level */ + tmpccer &= ~TIM_CCER_CC3P; + /* Set the Output Compare Polarity */ + tmpccer |= (OC_Config->OCPolarity << 8U); + + if (IS_TIM_CCXN_INSTANCE(TIMx, TIM_CHANNEL_3)) + { + assert_param(IS_TIM_OCN_POLARITY(OC_Config->OCNPolarity)); + + /* Reset the Output N Polarity level */ + tmpccer &= ~TIM_CCER_CC3NP; + /* Set the Output N Polarity */ + tmpccer |= (OC_Config->OCNPolarity << 8U); + /* Reset the Output N State */ + tmpccer &= ~TIM_CCER_CC3NE; + } + + if (IS_TIM_BREAK_INSTANCE(TIMx)) + { + /* Check parameters */ + assert_param(IS_TIM_OCNIDLE_STATE(OC_Config->OCNIdleState)); + assert_param(IS_TIM_OCIDLE_STATE(OC_Config->OCIdleState)); + + /* Reset the Output Compare and Output Compare N IDLE State */ + tmpcr2 &= ~TIM_CR2_OIS3; + tmpcr2 &= ~TIM_CR2_OIS3N; + /* Set the Output Idle state */ + tmpcr2 |= (OC_Config->OCIdleState << 4U); + /* Set the Output N Idle state */ + tmpcr2 |= (OC_Config->OCNIdleState << 4U); + } + + /* Write to TIMx CR2 */ + TIMx->CR2 = tmpcr2; + + /* Write to TIMx CCMR2 */ + TIMx->CCMR2 = tmpccmrx; + + /* Set the Capture Compare Register value */ + TIMx->CCR3 = OC_Config->Pulse; + + /* Write to TIMx CCER */ + TIMx->CCER = tmpccer; +} + +/** + * @brief Timer Output Compare 4 configuration + * @param TIMx to select the TIM peripheral + * @param OC_Config The ouput configuration structure + * @retval None + */ +static void TIM_OC4_SetConfig(TIM_TypeDef *TIMx, TIM_OC_InitTypeDef *OC_Config) +{ + uint32_t tmpccmrx; + uint32_t tmpccer; + uint32_t tmpcr2; + + /* Disable the Channel 4: Reset the CC4E Bit */ + TIMx->CCER &= ~TIM_CCER_CC4E; + + /* Get the TIMx CCER register value */ + tmpccer = TIMx->CCER; + /* Get the TIMx CR2 register value */ + tmpcr2 = TIMx->CR2; + + /* Get the TIMx CCMR2 register value */ + tmpccmrx = TIMx->CCMR2; + + /* Reset the Output Compare mode and Capture/Compare selection Bits */ + tmpccmrx &= ~TIM_CCMR2_OC4M; + tmpccmrx &= ~TIM_CCMR2_CC4S; + + /* Select the Output Compare Mode */ + tmpccmrx |= (OC_Config->OCMode << 8U); + + /* Reset the Output Polarity level */ + tmpccer &= ~TIM_CCER_CC4P; + /* Set the Output Compare Polarity */ + tmpccer |= (OC_Config->OCPolarity << 12U); + + if (IS_TIM_BREAK_INSTANCE(TIMx)) + { + /* Check parameters */ + assert_param(IS_TIM_OCIDLE_STATE(OC_Config->OCIdleState)); + + /* Reset the Output Compare IDLE State */ + tmpcr2 &= ~TIM_CR2_OIS4; + + /* Set the Output Idle state */ + tmpcr2 |= (OC_Config->OCIdleState << 6U); + } + + /* Write to TIMx CR2 */ + TIMx->CR2 = tmpcr2; + + /* Write to TIMx CCMR2 */ + TIMx->CCMR2 = tmpccmrx; + + /* Set the Capture Compare Register value */ + TIMx->CCR4 = OC_Config->Pulse; + + /* Write to TIMx CCER */ + TIMx->CCER = tmpccer; +} + +/** + * @brief Timer Output Compare 5 configuration + * @param TIMx to select the TIM peripheral + * @param OC_Config The ouput configuration structure + * @retval None + */ +static void TIM_OC5_SetConfig(TIM_TypeDef *TIMx, + TIM_OC_InitTypeDef *OC_Config) +{ + uint32_t tmpccmrx; + uint32_t tmpccer; + uint32_t tmpcr2; + + /* Disable the output: Reset the CCxE Bit */ + TIMx->CCER &= ~TIM_CCER_CC5E; + + /* Get the TIMx CCER register value */ + tmpccer = TIMx->CCER; + /* Get the TIMx CR2 register value */ + tmpcr2 = TIMx->CR2; + /* Get the TIMx CCMR1 register value */ + tmpccmrx = TIMx->CCMR3; + + /* Reset the Output Compare Mode Bits */ + tmpccmrx &= ~(TIM_CCMR3_OC5M); + /* Select the Output Compare Mode */ + tmpccmrx |= OC_Config->OCMode; + + /* Reset the Output Polarity level */ + tmpccer &= ~TIM_CCER_CC5P; + /* Set the Output Compare Polarity */ + tmpccer |= (OC_Config->OCPolarity << 16U); + + if (IS_TIM_BREAK_INSTANCE(TIMx)) + { + /* Reset the Output Compare IDLE State */ + tmpcr2 &= ~TIM_CR2_OIS5; + /* Set the Output Idle state */ + tmpcr2 |= (OC_Config->OCIdleState << 8U); + } + /* Write to TIMx CR2 */ + TIMx->CR2 = tmpcr2; + + /* Write to TIMx CCMR3 */ + TIMx->CCMR3 = tmpccmrx; + + /* Set the Capture Compare Register value */ + TIMx->CCR5 = OC_Config->Pulse; + + /* Write to TIMx CCER */ + TIMx->CCER = tmpccer; +} + +/** + * @brief Timer Output Compare 6 configuration + * @param TIMx to select the TIM peripheral + * @param OC_Config The ouput configuration structure + * @retval None + */ +static void TIM_OC6_SetConfig(TIM_TypeDef *TIMx, + TIM_OC_InitTypeDef *OC_Config) +{ + uint32_t tmpccmrx; + uint32_t tmpccer; + uint32_t tmpcr2; + + /* Disable the output: Reset the CCxE Bit */ + TIMx->CCER &= ~TIM_CCER_CC6E; + + /* Get the TIMx CCER register value */ + tmpccer = TIMx->CCER; + /* Get the TIMx CR2 register value */ + tmpcr2 = TIMx->CR2; + /* Get the TIMx CCMR1 register value */ + tmpccmrx = TIMx->CCMR3; + + /* Reset the Output Compare Mode Bits */ + tmpccmrx &= ~(TIM_CCMR3_OC6M); + /* Select the Output Compare Mode */ + tmpccmrx |= (OC_Config->OCMode << 8U); + + /* Reset the Output Polarity level */ + tmpccer &= (uint32_t)~TIM_CCER_CC6P; + /* Set the Output Compare Polarity */ + tmpccer |= (OC_Config->OCPolarity << 20U); + + if (IS_TIM_BREAK_INSTANCE(TIMx)) + { + /* Reset the Output Compare IDLE State */ + tmpcr2 &= ~TIM_CR2_OIS6; + /* Set the Output Idle state */ + tmpcr2 |= (OC_Config->OCIdleState << 10U); + } + + /* Write to TIMx CR2 */ + TIMx->CR2 = tmpcr2; + + /* Write to TIMx CCMR3 */ + TIMx->CCMR3 = tmpccmrx; + + /* Set the Capture Compare Register value */ + TIMx->CCR6 = OC_Config->Pulse; + + /* Write to TIMx CCER */ + TIMx->CCER = tmpccer; +} + +/** + * @brief Slave Timer configuration function + * @param htim TIM handle + * @param sSlaveConfig Slave timer configuration + * @retval None + */ +static HAL_StatusTypeDef TIM_SlaveTimer_SetConfig(TIM_HandleTypeDef *htim, + TIM_SlaveConfigTypeDef *sSlaveConfig) +{ + uint32_t tmpsmcr; + uint32_t tmpccmr1; + uint32_t tmpccer; + + /* Get the TIMx SMCR register value */ + tmpsmcr = htim->Instance->SMCR; + + /* Reset the Trigger Selection Bits */ + tmpsmcr &= ~TIM_SMCR_TS; + /* Set the Input Trigger source */ + tmpsmcr |= sSlaveConfig->InputTrigger; + + /* Reset the slave mode Bits */ + tmpsmcr &= ~TIM_SMCR_SMS; + /* Set the slave mode */ + tmpsmcr |= sSlaveConfig->SlaveMode; + + /* Write to TIMx SMCR */ + htim->Instance->SMCR = tmpsmcr; + + /* Configure the trigger prescaler, filter, and polarity */ + switch (sSlaveConfig->InputTrigger) + { + case TIM_TS_ETRF: + { + /* Check the parameters */ + assert_param(IS_TIM_CLOCKSOURCE_ETRMODE1_INSTANCE(htim->Instance)); + assert_param(IS_TIM_TRIGGERPRESCALER(sSlaveConfig->TriggerPrescaler)); + assert_param(IS_TIM_TRIGGERPOLARITY(sSlaveConfig->TriggerPolarity)); + assert_param(IS_TIM_TRIGGERFILTER(sSlaveConfig->TriggerFilter)); + /* Configure the ETR Trigger source */ + TIM_ETR_SetConfig(htim->Instance, + sSlaveConfig->TriggerPrescaler, + sSlaveConfig->TriggerPolarity, + sSlaveConfig->TriggerFilter); + break; + } + + case TIM_TS_TI1F_ED: + { + /* Check the parameters */ + assert_param(IS_TIM_CC1_INSTANCE(htim->Instance)); + assert_param(IS_TIM_TRIGGERFILTER(sSlaveConfig->TriggerFilter)); + + if(sSlaveConfig->SlaveMode == TIM_SLAVEMODE_GATED) + { + return HAL_ERROR; + } + + /* Disable the Channel 1: Reset the CC1E Bit */ + tmpccer = htim->Instance->CCER; + htim->Instance->CCER &= ~TIM_CCER_CC1E; + tmpccmr1 = htim->Instance->CCMR1; + + /* Set the filter */ + tmpccmr1 &= ~TIM_CCMR1_IC1F; + tmpccmr1 |= ((sSlaveConfig->TriggerFilter) << 4U); + + /* Write to TIMx CCMR1 and CCER registers */ + htim->Instance->CCMR1 = tmpccmr1; + htim->Instance->CCER = tmpccer; + break; + } + + case TIM_TS_TI1FP1: + { + /* Check the parameters */ + assert_param(IS_TIM_CC1_INSTANCE(htim->Instance)); + assert_param(IS_TIM_TRIGGERPOLARITY(sSlaveConfig->TriggerPolarity)); + assert_param(IS_TIM_TRIGGERFILTER(sSlaveConfig->TriggerFilter)); + + /* Configure TI1 Filter and Polarity */ + TIM_TI1_ConfigInputStage(htim->Instance, + sSlaveConfig->TriggerPolarity, + sSlaveConfig->TriggerFilter); + break; + } + + case TIM_TS_TI2FP2: + { + /* Check the parameters */ + assert_param(IS_TIM_CC2_INSTANCE(htim->Instance)); + assert_param(IS_TIM_TRIGGERPOLARITY(sSlaveConfig->TriggerPolarity)); + assert_param(IS_TIM_TRIGGERFILTER(sSlaveConfig->TriggerFilter)); + + /* Configure TI2 Filter and Polarity */ + TIM_TI2_ConfigInputStage(htim->Instance, + sSlaveConfig->TriggerPolarity, + sSlaveConfig->TriggerFilter); + break; + } + + case TIM_TS_ITR0: + case TIM_TS_ITR1: + case TIM_TS_ITR2: + case TIM_TS_ITR3: + case TIM_TS_ITR4: + case TIM_TS_ITR5: + case TIM_TS_ITR6: + case TIM_TS_ITR7: + case TIM_TS_ITR8: + case TIM_TS_ITR9: + case TIM_TS_ITR10: + case TIM_TS_ITR11: + case TIM_TS_ITR12: + case TIM_TS_ITR13: + { + /* Check the parameter */ + assert_param(IS_TIM_CC2_INSTANCE(htim->Instance)); + break; + } + + default: + break; + } + return HAL_OK; +} + +/** + * @brief Configure the TI1 as Input. + * @param TIMx to select the TIM peripheral. + * @param TIM_ICPolarity The Input Polarity. + * This parameter can be one of the following values: + * @arg TIM_ICPOLARITY_RISING + * @arg TIM_ICPOLARITY_FALLING + * @arg TIM_ICPOLARITY_BOTHEDGE + * @param TIM_ICSelection specifies the input to be used. + * This parameter can be one of the following values: + * @arg TIM_ICSELECTION_DIRECTTI: TIM Input 1 is selected to be connected to IC1. + * @arg TIM_ICSELECTION_INDIRECTTI: TIM Input 1 is selected to be connected to IC2. + * @arg TIM_ICSELECTION_TRC: TIM Input 1 is selected to be connected to TRC. + * @param TIM_ICFilter Specifies the Input Capture Filter. + * This parameter must be a value between 0x00 and 0x0F. + * @retval None + * @note TIM_ICFilter and TIM_ICPolarity are not used in INDIRECT mode as TI2FP1 + * (on channel2 path) is used as the input signal. Therefore CCMR1 must be + * protected against un-initialized filter and polarity values. + */ +void TIM_TI1_SetConfig(TIM_TypeDef *TIMx, uint32_t TIM_ICPolarity, uint32_t TIM_ICSelection, + uint32_t TIM_ICFilter) +{ + uint32_t tmpccmr1; + uint32_t tmpccer; + + /* Disable the Channel 1: Reset the CC1E Bit */ + TIMx->CCER &= ~TIM_CCER_CC1E; + tmpccmr1 = TIMx->CCMR1; + tmpccer = TIMx->CCER; + + /* Select the Input */ + if (IS_TIM_CC2_INSTANCE(TIMx) != RESET) + { + tmpccmr1 &= ~TIM_CCMR1_CC1S; + tmpccmr1 |= TIM_ICSelection; + } + else + { + tmpccmr1 |= TIM_CCMR1_CC1S_0; + } + + /* Set the filter */ + tmpccmr1 &= ~TIM_CCMR1_IC1F; + tmpccmr1 |= ((TIM_ICFilter << 4U) & TIM_CCMR1_IC1F); + + /* Select the Polarity and set the CC1E Bit */ + tmpccer &= ~(TIM_CCER_CC1P | TIM_CCER_CC1NP); + tmpccer |= (TIM_ICPolarity & (TIM_CCER_CC1P | TIM_CCER_CC1NP)); + + /* Write to TIMx CCMR1 and CCER registers */ + TIMx->CCMR1 = tmpccmr1; + TIMx->CCER = tmpccer; +} + +/** + * @brief Configure the Polarity and Filter for TI1. + * @param TIMx to select the TIM peripheral. + * @param TIM_ICPolarity The Input Polarity. + * This parameter can be one of the following values: + * @arg TIM_ICPOLARITY_RISING + * @arg TIM_ICPOLARITY_FALLING + * @arg TIM_ICPOLARITY_BOTHEDGE + * @param TIM_ICFilter Specifies the Input Capture Filter. + * This parameter must be a value between 0x00 and 0x0F. + * @retval None + */ +static void TIM_TI1_ConfigInputStage(TIM_TypeDef *TIMx, uint32_t TIM_ICPolarity, uint32_t TIM_ICFilter) +{ + uint32_t tmpccmr1; + uint32_t tmpccer; + + /* Disable the Channel 1: Reset the CC1E Bit */ + tmpccer = TIMx->CCER; + TIMx->CCER &= ~TIM_CCER_CC1E; + tmpccmr1 = TIMx->CCMR1; + + /* Set the filter */ + tmpccmr1 &= ~TIM_CCMR1_IC1F; + tmpccmr1 |= (TIM_ICFilter << 4U); + + /* Select the Polarity and set the CC1E Bit */ + tmpccer &= ~(TIM_CCER_CC1P | TIM_CCER_CC1NP); + tmpccer |= TIM_ICPolarity; + + /* Write to TIMx CCMR1 and CCER registers */ + TIMx->CCMR1 = tmpccmr1; + TIMx->CCER = tmpccer; +} + +/** + * @brief Configure the TI2 as Input. + * @param TIMx to select the TIM peripheral + * @param TIM_ICPolarity The Input Polarity. + * This parameter can be one of the following values: + * @arg TIM_ICPOLARITY_RISING + * @arg TIM_ICPOLARITY_FALLING + * @arg TIM_ICPOLARITY_BOTHEDGE + * @param TIM_ICSelection specifies the input to be used. + * This parameter can be one of the following values: + * @arg TIM_ICSELECTION_DIRECTTI: TIM Input 2 is selected to be connected to IC2. + * @arg TIM_ICSELECTION_INDIRECTTI: TIM Input 2 is selected to be connected to IC1. + * @arg TIM_ICSELECTION_TRC: TIM Input 2 is selected to be connected to TRC. + * @param TIM_ICFilter Specifies the Input Capture Filter. + * This parameter must be a value between 0x00 and 0x0F. + * @retval None + * @note TIM_ICFilter and TIM_ICPolarity are not used in INDIRECT mode as TI1FP2 + * (on channel1 path) is used as the input signal. Therefore CCMR1 must be + * protected against un-initialized filter and polarity values. + */ +static void TIM_TI2_SetConfig(TIM_TypeDef *TIMx, uint32_t TIM_ICPolarity, uint32_t TIM_ICSelection, + uint32_t TIM_ICFilter) +{ + uint32_t tmpccmr1; + uint32_t tmpccer; + + /* Disable the Channel 2: Reset the CC2E Bit */ + TIMx->CCER &= ~TIM_CCER_CC2E; + tmpccmr1 = TIMx->CCMR1; + tmpccer = TIMx->CCER; + + /* Select the Input */ + tmpccmr1 &= ~TIM_CCMR1_CC2S; + tmpccmr1 |= (TIM_ICSelection << 8U); + + /* Set the filter */ + tmpccmr1 &= ~TIM_CCMR1_IC2F; + tmpccmr1 |= ((TIM_ICFilter << 12U) & TIM_CCMR1_IC2F); + + /* Select the Polarity and set the CC2E Bit */ + tmpccer &= ~(TIM_CCER_CC2P | TIM_CCER_CC2NP); + tmpccer |= ((TIM_ICPolarity << 4U) & (TIM_CCER_CC2P | TIM_CCER_CC2NP)); + + /* Write to TIMx CCMR1 and CCER registers */ + TIMx->CCMR1 = tmpccmr1 ; + TIMx->CCER = tmpccer; +} + +/** + * @brief Configure the Polarity and Filter for TI2. + * @param TIMx to select the TIM peripheral. + * @param TIM_ICPolarity The Input Polarity. + * This parameter can be one of the following values: + * @arg TIM_ICPOLARITY_RISING + * @arg TIM_ICPOLARITY_FALLING + * @arg TIM_ICPOLARITY_BOTHEDGE + * @param TIM_ICFilter Specifies the Input Capture Filter. + * This parameter must be a value between 0x00 and 0x0F. + * @retval None + */ +static void TIM_TI2_ConfigInputStage(TIM_TypeDef *TIMx, uint32_t TIM_ICPolarity, uint32_t TIM_ICFilter) +{ + uint32_t tmpccmr1; + uint32_t tmpccer; + + /* Disable the Channel 2: Reset the CC2E Bit */ + TIMx->CCER &= ~TIM_CCER_CC2E; + tmpccmr1 = TIMx->CCMR1; + tmpccer = TIMx->CCER; + + /* Set the filter */ + tmpccmr1 &= ~TIM_CCMR1_IC2F; + tmpccmr1 |= (TIM_ICFilter << 12U); + + /* Select the Polarity and set the CC2E Bit */ + tmpccer &= ~(TIM_CCER_CC2P | TIM_CCER_CC2NP); + tmpccer |= (TIM_ICPolarity << 4U); + + /* Write to TIMx CCMR1 and CCER registers */ + TIMx->CCMR1 = tmpccmr1 ; + TIMx->CCER = tmpccer; +} + +/** + * @brief Configure the TI3 as Input. + * @param TIMx to select the TIM peripheral + * @param TIM_ICPolarity The Input Polarity. + * This parameter can be one of the following values: + * @arg TIM_ICPOLARITY_RISING + * @arg TIM_ICPOLARITY_FALLING + * @arg TIM_ICPOLARITY_BOTHEDGE + * @param TIM_ICSelection specifies the input to be used. + * This parameter can be one of the following values: + * @arg TIM_ICSELECTION_DIRECTTI: TIM Input 3 is selected to be connected to IC3. + * @arg TIM_ICSELECTION_INDIRECTTI: TIM Input 3 is selected to be connected to IC4. + * @arg TIM_ICSELECTION_TRC: TIM Input 3 is selected to be connected to TRC. + * @param TIM_ICFilter Specifies the Input Capture Filter. + * This parameter must be a value between 0x00 and 0x0F. + * @retval None + * @note TIM_ICFilter and TIM_ICPolarity are not used in INDIRECT mode as TI3FP4 + * (on channel1 path) is used as the input signal. Therefore CCMR2 must be + * protected against un-initialized filter and polarity values. + */ +static void TIM_TI3_SetConfig(TIM_TypeDef *TIMx, uint32_t TIM_ICPolarity, uint32_t TIM_ICSelection, + uint32_t TIM_ICFilter) +{ + uint32_t tmpccmr2; + uint32_t tmpccer; + + /* Disable the Channel 3: Reset the CC3E Bit */ + TIMx->CCER &= ~TIM_CCER_CC3E; + tmpccmr2 = TIMx->CCMR2; + tmpccer = TIMx->CCER; + + /* Select the Input */ + tmpccmr2 &= ~TIM_CCMR2_CC3S; + tmpccmr2 |= TIM_ICSelection; + + /* Set the filter */ + tmpccmr2 &= ~TIM_CCMR2_IC3F; + tmpccmr2 |= ((TIM_ICFilter << 4U) & TIM_CCMR2_IC3F); + + /* Select the Polarity and set the CC3E Bit */ + tmpccer &= ~(TIM_CCER_CC3P | TIM_CCER_CC3NP); + tmpccer |= ((TIM_ICPolarity << 8U) & (TIM_CCER_CC3P | TIM_CCER_CC3NP)); + + /* Write to TIMx CCMR2 and CCER registers */ + TIMx->CCMR2 = tmpccmr2; + TIMx->CCER = tmpccer; +} + +/** + * @brief Configure the TI4 as Input. + * @param TIMx to select the TIM peripheral + * @param TIM_ICPolarity The Input Polarity. + * This parameter can be one of the following values: + * @arg TIM_ICPOLARITY_RISING + * @arg TIM_ICPOLARITY_FALLING + * @arg TIM_ICPOLARITY_BOTHEDGE + * @param TIM_ICSelection specifies the input to be used. + * This parameter can be one of the following values: + * @arg TIM_ICSELECTION_DIRECTTI: TIM Input 4 is selected to be connected to IC4. + * @arg TIM_ICSELECTION_INDIRECTTI: TIM Input 4 is selected to be connected to IC3. + * @arg TIM_ICSELECTION_TRC: TIM Input 4 is selected to be connected to TRC. + * @param TIM_ICFilter Specifies the Input Capture Filter. + * This parameter must be a value between 0x00 and 0x0F. + * @note TIM_ICFilter and TIM_ICPolarity are not used in INDIRECT mode as TI4FP3 + * (on channel1 path) is used as the input signal. Therefore CCMR2 must be + * protected against un-initialized filter and polarity values. + * @retval None + */ +static void TIM_TI4_SetConfig(TIM_TypeDef *TIMx, uint32_t TIM_ICPolarity, uint32_t TIM_ICSelection, + uint32_t TIM_ICFilter) +{ + uint32_t tmpccmr2; + uint32_t tmpccer; + + /* Disable the Channel 4: Reset the CC4E Bit */ + TIMx->CCER &= ~TIM_CCER_CC4E; + tmpccmr2 = TIMx->CCMR2; + tmpccer = TIMx->CCER; + + /* Select the Input */ + tmpccmr2 &= ~TIM_CCMR2_CC4S; + tmpccmr2 |= (TIM_ICSelection << 8U); + + /* Set the filter */ + tmpccmr2 &= ~TIM_CCMR2_IC4F; + tmpccmr2 |= ((TIM_ICFilter << 12U) & TIM_CCMR2_IC4F); + + /* Select the Polarity and set the CC4E Bit */ + tmpccer &= ~(TIM_CCER_CC4P | TIM_CCER_CC4NP); + tmpccer |= ((TIM_ICPolarity << 12U) & (TIM_CCER_CC4P | TIM_CCER_CC4NP)); + + /* Write to TIMx CCMR2 and CCER registers */ + TIMx->CCMR2 = tmpccmr2; + TIMx->CCER = tmpccer ; +} + +/** + * @brief Selects the Input Trigger source + * @param TIMx to select the TIM peripheral + * @param InputTriggerSource The Input Trigger source. + * This parameter can be one of the following values: + * @arg TIM_TS_ITR0: Internal Trigger 0 + * @arg TIM_TS_ITR1: Internal Trigger 1 + * @arg TIM_TS_ITR2: Internal Trigger 2 + * @arg TIM_TS_ITR3: Internal Trigger 3 + * @arg TIM_TS_TI1F_ED: TI1 Edge Detector + * @arg TIM_TS_TI1FP1: Filtered Timer Input 1 + * @arg TIM_TS_TI2FP2: Filtered Timer Input 2 + * @arg TIM_TS_ETRF: External Trigger input + * @arg TIM_TS_ITR4: Internal Trigger 4 (*) + * @arg TIM_TS_ITR5: Internal Trigger 5 + * @arg TIM_TS_ITR6: Internal Trigger 6 + * @arg TIM_TS_ITR7: Internal Trigger 7 + * @arg TIM_TS_ITR8: Internal Trigger 8 (*) + * @arg TIM_TS_ITR9: Internal Trigger 9 (*) + * @arg TIM_TS_ITR10: Internal Trigger 10 (*) + * @arg TIM_TS_ITR11: Internal Trigger 11 (*) + * @arg TIM_TS_ITR12: Internal Trigger 12 (*) + * @arg TIM_TS_ITR13: Internal Trigger 13 (*) + * + * (*) Value not defined in all devices. + * + * @retval None + */ +static void TIM_ITRx_SetConfig(TIM_TypeDef *TIMx, uint32_t InputTriggerSource) +{ + uint32_t tmpsmcr; + + /* Get the TIMx SMCR register value */ + tmpsmcr = TIMx->SMCR; + /* Reset the TS Bits */ + tmpsmcr &= ~TIM_SMCR_TS; + /* Set the Input Trigger source and the slave mode*/ + tmpsmcr |= (InputTriggerSource | TIM_SLAVEMODE_EXTERNAL1); + /* Write to TIMx SMCR */ + TIMx->SMCR = tmpsmcr; +} +/** + * @brief Configures the TIMx External Trigger (ETR). + * @param TIMx to select the TIM peripheral + * @param TIM_ExtTRGPrescaler The external Trigger Prescaler. + * This parameter can be one of the following values: + * @arg TIM_ETRPRESCALER_DIV1: ETRP Prescaler OFF. + * @arg TIM_ETRPRESCALER_DIV2: ETRP frequency divided by 2. + * @arg TIM_ETRPRESCALER_DIV4: ETRP frequency divided by 4. + * @arg TIM_ETRPRESCALER_DIV8: ETRP frequency divided by 8. + * @param TIM_ExtTRGPolarity The external Trigger Polarity. + * This parameter can be one of the following values: + * @arg TIM_ETRPOLARITY_INVERTED: active low or falling edge active. + * @arg TIM_ETRPOLARITY_NONINVERTED: active high or rising edge active. + * @param ExtTRGFilter External Trigger Filter. + * This parameter must be a value between 0x00 and 0x0F + * @retval None + */ +void TIM_ETR_SetConfig(TIM_TypeDef *TIMx, uint32_t TIM_ExtTRGPrescaler, + uint32_t TIM_ExtTRGPolarity, uint32_t ExtTRGFilter) +{ + uint32_t tmpsmcr; + + tmpsmcr = TIMx->SMCR; + + /* Reset the ETR Bits */ + tmpsmcr &= ~(TIM_SMCR_ETF | TIM_SMCR_ETPS | TIM_SMCR_ECE | TIM_SMCR_ETP); + + /* Set the Prescaler, the Filter value and the Polarity */ + tmpsmcr |= (uint32_t)(TIM_ExtTRGPrescaler | (TIM_ExtTRGPolarity | (ExtTRGFilter << 8U))); + + /* Write to TIMx SMCR */ + TIMx->SMCR = tmpsmcr; +} + +/** + * @brief Enables or disables the TIM Capture Compare Channel x. + * @param TIMx to select the TIM peripheral + * @param Channel specifies the TIM Channel + * This parameter can be one of the following values: + * @arg TIM_CHANNEL_1: TIM Channel 1 + * @arg TIM_CHANNEL_2: TIM Channel 2 + * @arg TIM_CHANNEL_3: TIM Channel 3 + * @arg TIM_CHANNEL_4: TIM Channel 4 + * @arg TIM_CHANNEL_5: TIM Channel 5 selected + * @arg TIM_CHANNEL_6: TIM Channel 6 selected + * @param ChannelState specifies the TIM Channel CCxE bit new state. + * This parameter can be: TIM_CCx_ENABLE or TIM_CCx_DISABLE. + * @retval None + */ +void TIM_CCxChannelCmd(TIM_TypeDef *TIMx, uint32_t Channel, uint32_t ChannelState) +{ + uint32_t tmp; + + /* Check the parameters */ + assert_param(IS_TIM_CC1_INSTANCE(TIMx)); + assert_param(IS_TIM_CHANNELS(Channel)); + + tmp = TIM_CCER_CC1E << (Channel & 0x1FU); /* 0x1FU = 31 bits max shift */ + + /* Reset the CCxE Bit */ + TIMx->CCER &= ~tmp; + + /* Set or reset the CCxE Bit */ + TIMx->CCER |= (uint32_t)(ChannelState << (Channel & 0x1FU)); /* 0x1FU = 31 bits max shift */ +} + +#if (USE_HAL_TIM_REGISTER_CALLBACKS == 1) +/** + * @brief Reset interrupt callbacks to the legacy weak callbacks. + * @param htim pointer to a TIM_HandleTypeDef structure that contains + * the configuration information for TIM module. + * @retval None + */ +void TIM_ResetCallback(TIM_HandleTypeDef *htim) +{ + /* Reset the TIM callback to the legacy weak callbacks */ + htim->PeriodElapsedCallback = HAL_TIM_PeriodElapsedCallback; /* Legacy weak PeriodElapsedCallback */ + htim->PeriodElapsedHalfCpltCallback = HAL_TIM_PeriodElapsedHalfCpltCallback; /* Legacy weak PeriodElapsedHalfCpltCallback */ + htim->TriggerCallback = HAL_TIM_TriggerCallback; /* Legacy weak TriggerCallback */ + htim->TriggerHalfCpltCallback = HAL_TIM_TriggerHalfCpltCallback; /* Legacy weak TriggerHalfCpltCallback */ + htim->IC_CaptureCallback = HAL_TIM_IC_CaptureCallback; /* Legacy weak IC_CaptureCallback */ + htim->IC_CaptureHalfCpltCallback = HAL_TIM_IC_CaptureHalfCpltCallback; /* Legacy weak IC_CaptureHalfCpltCallback */ + htim->OC_DelayElapsedCallback = HAL_TIM_OC_DelayElapsedCallback; /* Legacy weak OC_DelayElapsedCallback */ + htim->PWM_PulseFinishedCallback = HAL_TIM_PWM_PulseFinishedCallback; /* Legacy weak PWM_PulseFinishedCallback */ + htim->PWM_PulseFinishedHalfCpltCallback = HAL_TIM_PWM_PulseFinishedHalfCpltCallback; /* Legacy weak PWM_PulseFinishedHalfCpltCallback */ + htim->ErrorCallback = HAL_TIM_ErrorCallback; /* Legacy weak ErrorCallback */ + htim->CommutationCallback = HAL_TIMEx_CommutCallback; /* Legacy weak CommutationCallback */ + htim->CommutationHalfCpltCallback = HAL_TIMEx_CommutHalfCpltCallback; /* Legacy weak CommutationHalfCpltCallback */ + htim->BreakCallback = HAL_TIMEx_BreakCallback; /* Legacy weak BreakCallback */ + htim->Break2Callback = HAL_TIMEx_Break2Callback; /* Legacy weak Break2Callback */ +} +#endif /* USE_HAL_TIM_REGISTER_CALLBACKS */ + +/** + * @} + */ + +#endif /* HAL_TIM_MODULE_ENABLED */ +/** + * @} + */ + +/** + * @} + */ +/************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/ diff --git a/source/hic_hal/stm32/stm32h743ii/STM32H7xx_HAL_Driver/Src/stm32h7xx_ll_adc.c b/source/hic_hal/stm32/stm32h743ii/STM32H7xx_HAL_Driver/Src/stm32h7xx_ll_adc.c new file mode 100644 index 000000000..151c9f6df --- /dev/null +++ b/source/hic_hal/stm32/stm32h743ii/STM32H7xx_HAL_Driver/Src/stm32h7xx_ll_adc.c @@ -0,0 +1,1080 @@ +/** + ****************************************************************************** + * @file stm32h7xx_ll_adc.c + * @author MCD Application Team + * @brief ADC LL module driver + ****************************************************************************** + * @attention + * + *

© Copyright (c) 2017 STMicroelectronics. + * All rights reserved.

+ * + * This software component is licensed by ST under BSD 3-Clause license, + * the "License"; You may not use this file except in compliance with the + * License. You may obtain a copy of the License at: + * opensource.org/licenses/BSD-3-Clause + * + ****************************************************************************** + */ +#if defined(USE_FULL_LL_DRIVER) + +/* Includes ------------------------------------------------------------------*/ +#include "stm32h7xx_ll_adc.h" +#include "stm32h7xx_ll_bus.h" + +#ifdef USE_FULL_ASSERT +#include "stm32_assert.h" +#else +#define assert_param(expr) ((void)0U) +#endif + +/** @addtogroup STM32H7xx_LL_Driver + * @{ + */ + +#if defined (ADC1) || defined (ADC2) || defined (ADC3) + +/** @addtogroup ADC_LL ADC + * @{ + */ + +/* Private types -------------------------------------------------------------*/ +/* Private variables ---------------------------------------------------------*/ +/* Private constants ---------------------------------------------------------*/ +/** @addtogroup ADC_LL_Private_Constants + * @{ + */ + +/* Definitions of ADC hardware constraints delays */ +/* Note: Only ADC peripheral HW delays are defined in ADC LL driver driver, */ +/* not timeout values: */ +/* Timeout values for ADC operations are dependent to device clock */ +/* configuration (system clock versus ADC clock), */ +/* and therefore must be defined in user application. */ +/* Refer to @ref ADC_LL_EC_HW_DELAYS for description of ADC timeout */ +/* values definition. */ +/* Note: ADC timeout values are defined here in CPU cycles to be independent */ +/* of device clock setting. */ +/* In user application, ADC timeout values should be defined with */ +/* temporal values, in function of device clock settings. */ +/* Highest ratio CPU clock frequency vs ADC clock frequency: */ +/* - ADC clock from synchronous clock with AHB prescaler 512, */ +/* APB prescaler 16, ADC prescaler 4. */ +/* - ADC clock from asynchronous clock (PLL) with prescaler 1, */ +/* with highest ratio CPU clock frequency vs HSI clock frequency */ +/* Unit: CPU cycles. */ +#define ADC_CLOCK_RATIO_VS_CPU_HIGHEST (512UL * 16UL * 4UL) +#define ADC_TIMEOUT_DISABLE_CPU_CYCLES (ADC_CLOCK_RATIO_VS_CPU_HIGHEST * 1UL) +#define ADC_TIMEOUT_STOP_CONVERSION_CPU_CYCLES (ADC_CLOCK_RATIO_VS_CPU_HIGHEST * 1UL) + +/** + * @} + */ + +/* Private macros ------------------------------------------------------------*/ + +/** @addtogroup ADC_LL_Private_Macros + * @{ + */ + +/* Check of parameters for configuration of ADC hierarchical scope: */ +/* common to several ADC instances. */ +#define IS_LL_ADC_COMMON_CLOCK(__CLOCK__) \ + ( ((__CLOCK__) == LL_ADC_CLOCK_SYNC_PCLK_DIV1) \ + || ((__CLOCK__) == LL_ADC_CLOCK_SYNC_PCLK_DIV2) \ + || ((__CLOCK__) == LL_ADC_CLOCK_SYNC_PCLK_DIV4) \ + || ((__CLOCK__) == LL_ADC_CLOCK_ASYNC_DIV1) \ + || ((__CLOCK__) == LL_ADC_CLOCK_ASYNC_DIV2) \ + || ((__CLOCK__) == LL_ADC_CLOCK_ASYNC_DIV4) \ + || ((__CLOCK__) == LL_ADC_CLOCK_ASYNC_DIV6) \ + || ((__CLOCK__) == LL_ADC_CLOCK_ASYNC_DIV8) \ + || ((__CLOCK__) == LL_ADC_CLOCK_ASYNC_DIV10) \ + || ((__CLOCK__) == LL_ADC_CLOCK_ASYNC_DIV12) \ + || ((__CLOCK__) == LL_ADC_CLOCK_ASYNC_DIV16) \ + || ((__CLOCK__) == LL_ADC_CLOCK_ASYNC_DIV32) \ + || ((__CLOCK__) == LL_ADC_CLOCK_ASYNC_DIV64) \ + || ((__CLOCK__) == LL_ADC_CLOCK_ASYNC_DIV128) \ + || ((__CLOCK__) == LL_ADC_CLOCK_ASYNC_DIV256) \ + ) + +/* Check of parameters for configuration of ADC hierarchical scope: */ +/* ADC instance. */ +#define IS_LL_ADC_RESOLUTION(__RESOLUTION__) \ + ( ((__RESOLUTION__) == LL_ADC_RESOLUTION_16B) \ + || ((__RESOLUTION__) == LL_ADC_RESOLUTION_14B) \ + || ((__RESOLUTION__) == LL_ADC_RESOLUTION_12B) \ + || ((__RESOLUTION__) == LL_ADC_RESOLUTION_10B) \ + || ((__RESOLUTION__) == LL_ADC_RESOLUTION_8B) \ + ) + +#define IS_LL_ADC_LEFT_BIT_SHIFT(__LEFT_BIT_SHIFT__) \ + ( ((__LEFT_BIT_SHIFT__) == LL_ADC_LEFT_BIT_SHIFT_NONE) \ + || ((__LEFT_BIT_SHIFT__) == LL_ADC_LEFT_BIT_SHIFT_1) \ + || ((__LEFT_BIT_SHIFT__) == LL_ADC_LEFT_BIT_SHIFT_2) \ + || ((__LEFT_BIT_SHIFT__) == LL_ADC_LEFT_BIT_SHIFT_3) \ + || ((__LEFT_BIT_SHIFT__) == LL_ADC_LEFT_BIT_SHIFT_4) \ + || ((__LEFT_BIT_SHIFT__) == LL_ADC_LEFT_BIT_SHIFT_5) \ + || ((__LEFT_BIT_SHIFT__) == LL_ADC_LEFT_BIT_SHIFT_6) \ + || ((__LEFT_BIT_SHIFT__) == LL_ADC_LEFT_BIT_SHIFT_7) \ + || ((__LEFT_BIT_SHIFT__) == LL_ADC_LEFT_BIT_SHIFT_8) \ + || ((__LEFT_BIT_SHIFT__) == LL_ADC_LEFT_BIT_SHIFT_9) \ + || ((__LEFT_BIT_SHIFT__) == LL_ADC_LEFT_BIT_SHIFT_10) \ + || ((__LEFT_BIT_SHIFT__) == LL_ADC_LEFT_BIT_SHIFT_11) \ + || ((__LEFT_BIT_SHIFT__) == LL_ADC_LEFT_BIT_SHIFT_12) \ + || ((__LEFT_BIT_SHIFT__) == LL_ADC_LEFT_BIT_SHIFT_13) \ + || ((__LEFT_BIT_SHIFT__) == LL_ADC_LEFT_BIT_SHIFT_14) \ + || ((__LEFT_BIT_SHIFT__) == LL_ADC_LEFT_BIT_SHIFT_15) \ + ) + +#define IS_LL_ADC_LOW_POWER(__LOW_POWER__) \ + ( ((__LOW_POWER__) == LL_ADC_LP_MODE_NONE) \ + || ((__LOW_POWER__) == LL_ADC_LP_AUTOWAIT) \ + ) + +/* Check of parameters for configuration of ADC hierarchical scope: */ +/* ADC group regular */ +#define IS_LL_ADC_REG_TRIG_SOURCE(__REG_TRIG_SOURCE__) \ + ( ((__REG_TRIG_SOURCE__) == LL_ADC_REG_TRIG_SOFTWARE) \ + || ((__REG_TRIG_SOURCE__) == LL_ADC_REG_TRIG_EXT_TIM1_CH1) \ + || ((__REG_TRIG_SOURCE__) == LL_ADC_REG_TRIG_EXT_TIM1_CH2) \ + || ((__REG_TRIG_SOURCE__) == LL_ADC_REG_TRIG_EXT_TIM1_CH3) \ + || ((__REG_TRIG_SOURCE__) == LL_ADC_REG_TRIG_EXT_TIM2_CH2) \ + || ((__REG_TRIG_SOURCE__) == LL_ADC_REG_TRIG_EXT_TIM3_TRGO) \ + || ((__REG_TRIG_SOURCE__) == LL_ADC_REG_TRIG_EXT_TIM4_CH4) \ + || ((__REG_TRIG_SOURCE__) == LL_ADC_REG_TRIG_EXT_EXTI_LINE11) \ + || ((__REG_TRIG_SOURCE__) == LL_ADC_REG_TRIG_EXT_TIM8_TRGO) \ + || ((__REG_TRIG_SOURCE__) == LL_ADC_REG_TRIG_EXT_TIM8_TRGO2) \ + || ((__REG_TRIG_SOURCE__) == LL_ADC_REG_TRIG_EXT_TIM1_TRGO) \ + || ((__REG_TRIG_SOURCE__) == LL_ADC_REG_TRIG_EXT_TIM1_TRGO2) \ + || ((__REG_TRIG_SOURCE__) == LL_ADC_REG_TRIG_EXT_TIM2_TRGO) \ + || ((__REG_TRIG_SOURCE__) == LL_ADC_REG_TRIG_EXT_TIM4_TRGO) \ + || ((__REG_TRIG_SOURCE__) == LL_ADC_REG_TRIG_EXT_TIM6_TRGO) \ + || ((__REG_TRIG_SOURCE__) == LL_ADC_REG_TRIG_EXT_TIM15_TRGO) \ + || ((__REG_TRIG_SOURCE__) == LL_ADC_REG_TRIG_EXT_TIM3_CH4) \ + || ((__REG_TRIG_SOURCE__) == LL_ADC_REG_TRIG_EXT_HRTIM_TRG1) \ + || ((__REG_TRIG_SOURCE__) == LL_ADC_REG_TRIG_EXT_HRTIM_TRG3) \ + || ((__REG_TRIG_SOURCE__) == LL_ADC_REG_TRIG_EXT_LPTIM1_OUT) \ + || ((__REG_TRIG_SOURCE__) == LL_ADC_REG_TRIG_EXT_LPTIM2_OUT) \ + || ((__REG_TRIG_SOURCE__) == LL_ADC_REG_TRIG_EXT_LPTIM3_OUT) \ + ) + +#define IS_LL_ADC_REG_CONTINUOUS_MODE(__REG_CONTINUOUS_MODE__) \ + ( ((__REG_CONTINUOUS_MODE__) == LL_ADC_REG_CONV_SINGLE) \ + || ((__REG_CONTINUOUS_MODE__) == LL_ADC_REG_CONV_CONTINUOUS) \ + ) + +#define IS_LL_ADC_REG_DATA_TRANSFER_MODE(__REG_DATA_TRANSFER_MODE__) \ + ( ((__REG_DATA_TRANSFER_MODE__) == LL_ADC_REG_DR_TRANSFER) \ + || ((__REG_DATA_TRANSFER_MODE__) == LL_ADC_REG_DMA_TRANSFER_LIMITED) \ + || ((__REG_DATA_TRANSFER_MODE__) == LL_ADC_REG_DMA_TRANSFER_UNLIMITED) \ + || ((__REG_DATA_TRANSFER_MODE__) == LL_ADC_REG_DFSDM_TRANSFER) \ + ) + +#define IS_LL_ADC_REG_OVR_DATA_BEHAVIOR(__REG_OVR_DATA_BEHAVIOR__) \ + ( ((__REG_OVR_DATA_BEHAVIOR__) == LL_ADC_REG_OVR_DATA_PRESERVED) \ + || ((__REG_OVR_DATA_BEHAVIOR__) == LL_ADC_REG_OVR_DATA_OVERWRITTEN) \ + ) + +#define IS_LL_ADC_REG_SEQ_SCAN_LENGTH(__REG_SEQ_SCAN_LENGTH__) \ + ( ((__REG_SEQ_SCAN_LENGTH__) == LL_ADC_REG_SEQ_SCAN_DISABLE) \ + || ((__REG_SEQ_SCAN_LENGTH__) == LL_ADC_REG_SEQ_SCAN_ENABLE_2RANKS) \ + || ((__REG_SEQ_SCAN_LENGTH__) == LL_ADC_REG_SEQ_SCAN_ENABLE_3RANKS) \ + || ((__REG_SEQ_SCAN_LENGTH__) == LL_ADC_REG_SEQ_SCAN_ENABLE_4RANKS) \ + || ((__REG_SEQ_SCAN_LENGTH__) == LL_ADC_REG_SEQ_SCAN_ENABLE_5RANKS) \ + || ((__REG_SEQ_SCAN_LENGTH__) == LL_ADC_REG_SEQ_SCAN_ENABLE_6RANKS) \ + || ((__REG_SEQ_SCAN_LENGTH__) == LL_ADC_REG_SEQ_SCAN_ENABLE_7RANKS) \ + || ((__REG_SEQ_SCAN_LENGTH__) == LL_ADC_REG_SEQ_SCAN_ENABLE_8RANKS) \ + || ((__REG_SEQ_SCAN_LENGTH__) == LL_ADC_REG_SEQ_SCAN_ENABLE_9RANKS) \ + || ((__REG_SEQ_SCAN_LENGTH__) == LL_ADC_REG_SEQ_SCAN_ENABLE_10RANKS) \ + || ((__REG_SEQ_SCAN_LENGTH__) == LL_ADC_REG_SEQ_SCAN_ENABLE_11RANKS) \ + || ((__REG_SEQ_SCAN_LENGTH__) == LL_ADC_REG_SEQ_SCAN_ENABLE_12RANKS) \ + || ((__REG_SEQ_SCAN_LENGTH__) == LL_ADC_REG_SEQ_SCAN_ENABLE_13RANKS) \ + || ((__REG_SEQ_SCAN_LENGTH__) == LL_ADC_REG_SEQ_SCAN_ENABLE_14RANKS) \ + || ((__REG_SEQ_SCAN_LENGTH__) == LL_ADC_REG_SEQ_SCAN_ENABLE_15RANKS) \ + || ((__REG_SEQ_SCAN_LENGTH__) == LL_ADC_REG_SEQ_SCAN_ENABLE_16RANKS) \ + ) + +#define IS_LL_ADC_REG_SEQ_SCAN_DISCONT_MODE(__REG_SEQ_DISCONT_MODE__) \ + ( ((__REG_SEQ_DISCONT_MODE__) == LL_ADC_REG_SEQ_DISCONT_DISABLE) \ + || ((__REG_SEQ_DISCONT_MODE__) == LL_ADC_REG_SEQ_DISCONT_1RANK) \ + || ((__REG_SEQ_DISCONT_MODE__) == LL_ADC_REG_SEQ_DISCONT_2RANKS) \ + || ((__REG_SEQ_DISCONT_MODE__) == LL_ADC_REG_SEQ_DISCONT_3RANKS) \ + || ((__REG_SEQ_DISCONT_MODE__) == LL_ADC_REG_SEQ_DISCONT_4RANKS) \ + || ((__REG_SEQ_DISCONT_MODE__) == LL_ADC_REG_SEQ_DISCONT_5RANKS) \ + || ((__REG_SEQ_DISCONT_MODE__) == LL_ADC_REG_SEQ_DISCONT_6RANKS) \ + || ((__REG_SEQ_DISCONT_MODE__) == LL_ADC_REG_SEQ_DISCONT_7RANKS) \ + || ((__REG_SEQ_DISCONT_MODE__) == LL_ADC_REG_SEQ_DISCONT_8RANKS) \ + ) + +/* Check of parameters for configuration of ADC hierarchical scope: */ +/* ADC group injected */ +#define IS_LL_ADC_INJ_TRIG_SOURCE(__INJ_TRIG_SOURCE__) \ + ( ((__INJ_TRIG_SOURCE__) == LL_ADC_INJ_TRIG_SOFTWARE) \ + || ((__INJ_TRIG_SOURCE__) == LL_ADC_INJ_TRIG_EXT_TIM1_TRGO) \ + || ((__INJ_TRIG_SOURCE__) == LL_ADC_INJ_TRIG_EXT_TIM1_CH4) \ + || ((__INJ_TRIG_SOURCE__) == LL_ADC_INJ_TRIG_EXT_TIM2_TRGO) \ + || ((__INJ_TRIG_SOURCE__) == LL_ADC_INJ_TRIG_EXT_TIM2_CH1) \ + || ((__INJ_TRIG_SOURCE__) == LL_ADC_INJ_TRIG_EXT_TIM3_CH4) \ + || ((__INJ_TRIG_SOURCE__) == LL_ADC_INJ_TRIG_EXT_TIM4_TRGO) \ + || ((__INJ_TRIG_SOURCE__) == LL_ADC_INJ_TRIG_EXT_EXTI_LINE15) \ + || ((__INJ_TRIG_SOURCE__) == LL_ADC_INJ_TRIG_EXT_TIM8_CH4) \ + || ((__INJ_TRIG_SOURCE__) == LL_ADC_INJ_TRIG_EXT_TIM1_TRGO2) \ + || ((__INJ_TRIG_SOURCE__) == LL_ADC_INJ_TRIG_EXT_TIM8_TRGO) \ + || ((__INJ_TRIG_SOURCE__) == LL_ADC_INJ_TRIG_EXT_TIM8_TRGO2) \ + || ((__INJ_TRIG_SOURCE__) == LL_ADC_INJ_TRIG_EXT_TIM3_CH3) \ + || ((__INJ_TRIG_SOURCE__) == LL_ADC_INJ_TRIG_EXT_TIM3_TRGO) \ + || ((__INJ_TRIG_SOURCE__) == LL_ADC_INJ_TRIG_EXT_TIM3_CH1) \ + || ((__INJ_TRIG_SOURCE__) == LL_ADC_INJ_TRIG_EXT_TIM6_TRGO) \ + || ((__INJ_TRIG_SOURCE__) == LL_ADC_INJ_TRIG_EXT_TIM15_TRGO) \ + || ((__INJ_TRIG_SOURCE__) == LL_ADC_INJ_TRIG_EXT_HRTIM_TRG2) \ + || ((__INJ_TRIG_SOURCE__) == LL_ADC_INJ_TRIG_EXT_HRTIM_TRG4) \ + || ((__INJ_TRIG_SOURCE__) == LL_ADC_INJ_TRIG_EXT_LPTIM1_OUT) \ + || ((__INJ_TRIG_SOURCE__) == LL_ADC_INJ_TRIG_EXT_LPTIM2_OUT) \ + || ((__INJ_TRIG_SOURCE__) == LL_ADC_INJ_TRIG_EXT_LPTIM3_OUT) \ + ) + +#define IS_LL_ADC_INJ_TRIG_EXT_EDGE(__INJ_TRIG_EXT_EDGE__) \ + ( ((__INJ_TRIG_EXT_EDGE__) == LL_ADC_INJ_TRIG_EXT_RISING) \ + || ((__INJ_TRIG_EXT_EDGE__) == LL_ADC_INJ_TRIG_EXT_FALLING) \ + || ((__INJ_TRIG_EXT_EDGE__) == LL_ADC_INJ_TRIG_EXT_RISINGFALLING) \ + ) + +#define IS_LL_ADC_INJ_TRIG_AUTO(__INJ_TRIG_AUTO__) \ + ( ((__INJ_TRIG_AUTO__) == LL_ADC_INJ_TRIG_INDEPENDENT) \ + || ((__INJ_TRIG_AUTO__) == LL_ADC_INJ_TRIG_FROM_GRP_REGULAR) \ + ) + +#define IS_LL_ADC_INJ_SEQ_SCAN_LENGTH(__INJ_SEQ_SCAN_LENGTH__) \ + ( ((__INJ_SEQ_SCAN_LENGTH__) == LL_ADC_INJ_SEQ_SCAN_DISABLE) \ + || ((__INJ_SEQ_SCAN_LENGTH__) == LL_ADC_INJ_SEQ_SCAN_ENABLE_2RANKS) \ + || ((__INJ_SEQ_SCAN_LENGTH__) == LL_ADC_INJ_SEQ_SCAN_ENABLE_3RANKS) \ + || ((__INJ_SEQ_SCAN_LENGTH__) == LL_ADC_INJ_SEQ_SCAN_ENABLE_4RANKS) \ + ) + +#define IS_LL_ADC_INJ_SEQ_SCAN_DISCONT_MODE(__INJ_SEQ_DISCONT_MODE__) \ + ( ((__INJ_SEQ_DISCONT_MODE__) == LL_ADC_INJ_SEQ_DISCONT_DISABLE) \ + || ((__INJ_SEQ_DISCONT_MODE__) == LL_ADC_INJ_SEQ_DISCONT_1RANK) \ + ) + +/* Check of parameters for configuration of ADC hierarchical scope: */ +/* multimode. */ +#define IS_LL_ADC_MULTI_MODE(__MULTI_MODE__) \ + ( ((__MULTI_MODE__) == LL_ADC_MULTI_INDEPENDENT) \ + || ((__MULTI_MODE__) == LL_ADC_MULTI_DUAL_REG_SIMULT) \ + || ((__MULTI_MODE__) == LL_ADC_MULTI_DUAL_REG_INTERL) \ + || ((__MULTI_MODE__) == LL_ADC_MULTI_DUAL_INJ_SIMULT) \ + || ((__MULTI_MODE__) == LL_ADC_MULTI_DUAL_INJ_ALTERN) \ + || ((__MULTI_MODE__) == LL_ADC_MULTI_DUAL_REG_SIM_INJ_SIM) \ + || ((__MULTI_MODE__) == LL_ADC_MULTI_DUAL_REG_SIM_INJ_ALT) \ + || ((__MULTI_MODE__) == LL_ADC_MULTI_DUAL_REG_INT_INJ_SIM) \ + ) + +#define IS_LL_ADC_MULTI_DMA_TRANSFER(__MULTI_DMA_TRANSFER__) \ + ( ((__MULTI_DMA_TRANSFER__) == LL_ADC_MULTI_REG_DMA_EACH_ADC) \ + || ((__MULTI_DMA_TRANSFER__) == LL_ADC_MULTI_REG_DMA_RES_32_10B) \ + || ((__MULTI_DMA_TRANSFER__) == LL_ADC_MULTI_REG_DMA_RES_8B) \ + ) +#define IS_LL_ADC_MULTI_TWOSMP_DELAY(__MULTI_TWOSMP_DELAY__) \ + ( ((__MULTI_TWOSMP_DELAY__) == LL_ADC_MULTI_TWOSMP_DELAY_1CYCLE_5) \ + || ((__MULTI_TWOSMP_DELAY__) == LL_ADC_MULTI_TWOSMP_DELAY_2CYCLES_5) \ + || ((__MULTI_TWOSMP_DELAY__) == LL_ADC_MULTI_TWOSMP_DELAY_3CYCLES_5) \ + || ((__MULTI_TWOSMP_DELAY__) == LL_ADC_MULTI_TWOSMP_DELAY_4CYCLES_5) \ + || ((__MULTI_TWOSMP_DELAY__) == LL_ADC_MULTI_TWOSMP_DELAY_4CYCLES_5_8_BITS) \ + || ((__MULTI_TWOSMP_DELAY__) == LL_ADC_MULTI_TWOSMP_DELAY_5CYCLES_5) \ + || ((__MULTI_TWOSMP_DELAY__) == LL_ADC_MULTI_TWOSMP_DELAY_5CYCLES_5_10_BITS) \ + || ((__MULTI_TWOSMP_DELAY__) == LL_ADC_MULTI_TWOSMP_DELAY_6CYCLES) \ + || ((__MULTI_TWOSMP_DELAY__) == LL_ADC_MULTI_TWOSMP_DELAY_6CYCLES_5) \ + || ((__MULTI_TWOSMP_DELAY__) == LL_ADC_MULTI_TWOSMP_DELAY_6CYCLES_5_12_BITS) \ + || ((__MULTI_TWOSMP_DELAY__) == LL_ADC_MULTI_TWOSMP_DELAY_7CYCLES_5) \ + || ((__MULTI_TWOSMP_DELAY__) == LL_ADC_MULTI_TWOSMP_DELAY_8CYCLES) \ + || ((__MULTI_TWOSMP_DELAY__) == LL_ADC_MULTI_TWOSMP_DELAY_9CYCLES) \ + ) + +#define IS_LL_ADC_MULTI_MASTER_SLAVE(__MULTI_MASTER_SLAVE__) \ + ( ((__MULTI_MASTER_SLAVE__) == LL_ADC_MULTI_MASTER) \ + || ((__MULTI_MASTER_SLAVE__) == LL_ADC_MULTI_SLAVE) \ + || ((__MULTI_MASTER_SLAVE__) == LL_ADC_MULTI_MASTER_SLAVE) \ + ) + +/** + * @} + */ + + +/* Private function prototypes -----------------------------------------------*/ + +/* Exported functions --------------------------------------------------------*/ +/** @addtogroup ADC_LL_Exported_Functions + * @{ + */ + +/** @addtogroup ADC_LL_EF_Init + * @{ + */ + +/** + * @brief De-initialize registers of all ADC instances belonging to + * the same ADC common instance to their default reset values. + * @note This function is performing a hard reset, using high level + * clock source RCC ADC reset. + * Caution: On this STM32 serie, if several ADC instances are available + * on the selected device, RCC ADC reset will reset + * all ADC instances belonging to the common ADC instance. + * To de-initialize only 1 ADC instance, use + * function @ref LL_ADC_DeInit(). + * @param ADCxy_COMMON ADC common instance + * (can be set directly from CMSIS definition or by using helper macro @ref __LL_ADC_COMMON_INSTANCE() ) + * @retval An ErrorStatus enumeration value: + * - SUCCESS: ADC common registers are de-initialized + * - ERROR: not applicable + */ +ErrorStatus LL_ADC_CommonDeInit(ADC_Common_TypeDef *ADCxy_COMMON) +{ + /* Check the parameters */ + assert_param(IS_ADC_COMMON_INSTANCE(ADCxy_COMMON)); + + if(ADCxy_COMMON == ADC12_COMMON) + { + /* Force reset of ADC clock (core clock) */ + LL_AHB1_GRP1_ForceReset(LL_AHB1_GRP1_PERIPH_ADC12); + + /* Release reset of ADC clock (core clock) */ + LL_AHB1_GRP1_ReleaseReset(LL_AHB1_GRP1_PERIPH_ADC12); + } + else + { +#if defined (ADC3) + /* Force reset of ADC clock (core clock) */ + LL_AHB4_GRP1_ForceReset(LL_AHB4_GRP1_PERIPH_ADC3); + + /* Release reset of ADC clock (core clock) */ + LL_AHB4_GRP1_ReleaseReset(LL_AHB4_GRP1_PERIPH_ADC3); +#endif + } + + return SUCCESS; +} + +/** + * @brief Initialize some features of ADC common parameters + * (all ADC instances belonging to the same ADC common instance) + * and multimode (for devices with several ADC instances available). + * @note The setting of ADC common parameters is conditioned to + * ADC instances state: + * All ADC instances belonging to the same ADC common instance + * must be disabled. + * @param ADCxy_COMMON ADC common instance + * (can be set directly from CMSIS definition or by using helper macro @ref __LL_ADC_COMMON_INSTANCE() ) + * @param ADC_CommonInitStruct Pointer to a @ref LL_ADC_CommonInitTypeDef structure + * @retval An ErrorStatus enumeration value: + * - SUCCESS: ADC common registers are initialized + * - ERROR: ADC common registers are not initialized + */ +ErrorStatus LL_ADC_CommonInit(ADC_Common_TypeDef *ADCxy_COMMON, LL_ADC_CommonInitTypeDef *ADC_CommonInitStruct) +{ + ErrorStatus status = SUCCESS; + + /* Check the parameters */ + assert_param(IS_ADC_COMMON_INSTANCE(ADCxy_COMMON)); + assert_param(IS_LL_ADC_COMMON_CLOCK(ADC_CommonInitStruct->CommonClock)); + + assert_param(IS_LL_ADC_MULTI_MODE(ADC_CommonInitStruct->Multimode)); + if (ADC_CommonInitStruct->Multimode != LL_ADC_MULTI_INDEPENDENT) + { + assert_param(IS_LL_ADC_MULTI_DMA_TRANSFER(ADC_CommonInitStruct->MultiDMATransfer)); + assert_param(IS_LL_ADC_MULTI_TWOSMP_DELAY(ADC_CommonInitStruct->MultiTwoSamplingDelay)); + } + + /* Note: Hardware constraint (refer to description of functions */ + /* "LL_ADC_SetCommonXXX()" and "LL_ADC_SetMultiXXX()"): */ + /* On this STM32 serie, setting of these features is conditioned to */ + /* ADC state: */ + /* All ADC instances of the ADC common group must be disabled. */ + if (__LL_ADC_IS_ENABLED_ALL_COMMON_INSTANCE(ADCxy_COMMON) == 0UL) + { + /* Configuration of ADC hierarchical scope: */ + /* - common to several ADC */ + /* (all ADC instances belonging to the same ADC common instance) */ + /* - Set ADC clock (conversion clock) */ + /* - multimode (if several ADC instances available on the */ + /* selected device) */ + /* - Set ADC multimode configuration */ + /* - Set ADC multimode DMA transfer */ + /* - Set ADC multimode: delay between 2 sampling phases */ + if (ADC_CommonInitStruct->Multimode != LL_ADC_MULTI_INDEPENDENT) + { + MODIFY_REG(ADCxy_COMMON->CCR, + ADC_CCR_CKMODE + | ADC_CCR_PRESC + | ADC_CCR_DUAL + | ADC_CCR_DAMDF + | ADC_CCR_DELAY + , + ADC_CommonInitStruct->CommonClock + | ADC_CommonInitStruct->Multimode + | ADC_CommonInitStruct->MultiDMATransfer + | ADC_CommonInitStruct->MultiTwoSamplingDelay + ); + } + else + { + MODIFY_REG(ADCxy_COMMON->CCR, + ADC_CCR_CKMODE + | ADC_CCR_PRESC + | ADC_CCR_DUAL + | ADC_CCR_DAMDF + | ADC_CCR_DELAY + , + ADC_CommonInitStruct->CommonClock + | LL_ADC_MULTI_INDEPENDENT + ); + } + } + else + { + /* Initialization error: One or several ADC instances belonging to */ + /* the same ADC common instance are not disabled. */ + status = ERROR; + } + + return status; +} + +/** + * @brief Set each @ref LL_ADC_CommonInitTypeDef field to default value. + * @param ADC_CommonInitStruct Pointer to a @ref LL_ADC_CommonInitTypeDef structure + * whose fields will be set to default values. + * @retval None + */ +void LL_ADC_CommonStructInit(LL_ADC_CommonInitTypeDef *ADC_CommonInitStruct) +{ + /* Set ADC_CommonInitStruct fields to default values */ + /* Set fields of ADC common */ + /* (all ADC instances belonging to the same ADC common instance) */ + ADC_CommonInitStruct->CommonClock = LL_ADC_CLOCK_SYNC_PCLK_DIV2; + + /* Set fields of ADC multimode */ + ADC_CommonInitStruct->Multimode = LL_ADC_MULTI_INDEPENDENT; + ADC_CommonInitStruct->MultiDMATransfer = LL_ADC_MULTI_REG_DMA_EACH_ADC; + ADC_CommonInitStruct->MultiTwoSamplingDelay = LL_ADC_MULTI_TWOSMP_DELAY_1CYCLE_5; +} + +/** + * @brief De-initialize registers of the selected ADC instance + * to their default reset values. + * @note To reset all ADC instances quickly (perform a hard reset), + * use function @ref LL_ADC_CommonDeInit(). + * @note If this functions returns error status, it means that ADC instance + * is in an unknown state. + * In this case, perform a hard reset using high level + * clock source RCC ADC reset. + * Caution: On this STM32 serie, if several ADC instances are available + * on the selected device, RCC ADC reset will reset + * all ADC instances belonging to the common ADC instance. + * Refer to function @ref LL_ADC_CommonDeInit(). + * @param ADCx ADC instance + * @retval An ErrorStatus enumeration value: + * - SUCCESS: ADC registers are de-initialized + * - ERROR: ADC registers are not de-initialized + */ +ErrorStatus LL_ADC_DeInit(ADC_TypeDef *ADCx) +{ + ErrorStatus status = SUCCESS; + + __IO uint32_t timeout_cpu_cycles = 0UL; + + /* Check the parameters */ + assert_param(IS_ADC_ALL_INSTANCE(ADCx)); + + /* Disable ADC instance if not already disabled. */ + if (LL_ADC_IsEnabled(ADCx) == 1UL) + { + /* Set ADC group regular trigger source to SW start to ensure to not */ + /* have an external trigger event occurring during the conversion stop */ + /* ADC disable process. */ + LL_ADC_REG_SetTriggerSource(ADCx, LL_ADC_REG_TRIG_SOFTWARE); + + /* Stop potential ADC conversion on going on ADC group regular. */ + if (LL_ADC_REG_IsConversionOngoing(ADCx) != 0UL) + { + if (LL_ADC_REG_IsStopConversionOngoing(ADCx) == 0UL) + { + LL_ADC_REG_StopConversion(ADCx); + } + } + + /* Set ADC group injected trigger source to SW start to ensure to not */ + /* have an external trigger event occurring during the conversion stop */ + /* ADC disable process. */ + LL_ADC_INJ_SetTriggerSource(ADCx, LL_ADC_INJ_TRIG_SOFTWARE); + + /* Stop potential ADC conversion on going on ADC group injected. */ + if (LL_ADC_INJ_IsConversionOngoing(ADCx) != 0UL) + { + if (LL_ADC_INJ_IsStopConversionOngoing(ADCx) == 0UL) + { + LL_ADC_INJ_StopConversion(ADCx); + } + } + + /* Wait for ADC conversions are effectively stopped */ + timeout_cpu_cycles = ADC_TIMEOUT_STOP_CONVERSION_CPU_CYCLES; + while ((LL_ADC_REG_IsStopConversionOngoing(ADCx) + | LL_ADC_INJ_IsStopConversionOngoing(ADCx)) == 1UL) + { + timeout_cpu_cycles--; + if (timeout_cpu_cycles == 0UL) + { + /* Time-out error */ + status = ERROR; + break; + } + } + + /* Flush group injected contexts queue (register JSQR): */ + /* Note: Bit JQM must be set to empty the contexts queue (otherwise */ + /* contexts queue is maintained with the last active context). */ + LL_ADC_INJ_SetQueueMode(ADCx, LL_ADC_INJ_QUEUE_2CONTEXTS_END_EMPTY); + + /* Disable the ADC instance */ + LL_ADC_Disable(ADCx); + + /* Wait for ADC instance is effectively disabled */ + timeout_cpu_cycles = ADC_TIMEOUT_DISABLE_CPU_CYCLES; + while (LL_ADC_IsDisableOngoing(ADCx) == 1UL) + { + timeout_cpu_cycles--; + if (timeout_cpu_cycles == 0UL) + { + /* Time-out error */ + status = ERROR; + break; + } + } + } + + /* Check whether ADC state is compliant with expected state */ + if (READ_BIT(ADCx->CR, + (ADC_CR_JADSTP | ADC_CR_ADSTP | ADC_CR_JADSTART | ADC_CR_ADSTART + | ADC_CR_ADDIS | ADC_CR_ADEN) + ) + == 0UL) + { + /* ========== Reset ADC registers ========== */ + /* Reset register IER */ + CLEAR_BIT(ADCx->IER, + (LL_ADC_IT_ADRDY + | LL_ADC_IT_EOC + | LL_ADC_IT_EOS + | LL_ADC_IT_OVR + | LL_ADC_IT_EOSMP + | LL_ADC_IT_JEOC + | LL_ADC_IT_JEOS + | LL_ADC_IT_JQOVF + | LL_ADC_IT_AWD1 + | LL_ADC_IT_AWD2 + | LL_ADC_IT_AWD3 + ) + ); + + /* Reset register ISR */ + SET_BIT(ADCx->ISR, + (LL_ADC_FLAG_ADRDY + | LL_ADC_FLAG_EOC + | LL_ADC_FLAG_EOS + | LL_ADC_FLAG_OVR + | LL_ADC_FLAG_EOSMP + | LL_ADC_FLAG_JEOC + | LL_ADC_FLAG_JEOS + | LL_ADC_FLAG_JQOVF + | LL_ADC_FLAG_AWD1 + | LL_ADC_FLAG_AWD2 + | LL_ADC_FLAG_AWD3 + ) + ); + + /* Reset register CR */ + /* - Bits ADC_CR_JADSTP, ADC_CR_ADSTP, ADC_CR_JADSTART, ADC_CR_ADSTART, */ + /* ADC_CR_ADCAL, ADC_CR_ADDIS, ADC_CR_ADEN are in */ + /* access mode "read-set": no direct reset applicable. */ + /* - Reset Calibration mode to default setting (single ended). */ + /* - Disable ADC internal voltage regulator. */ + /* - Enable ADC deep power down. */ + /* Note: ADC internal voltage regulator disable and ADC deep power */ + /* down enable are conditioned to ADC state disabled: */ + /* already done above. */ + CLEAR_BIT(ADCx->CR, ADC_CR_ADVREGEN | ADC_CR_ADCALDIF); + SET_BIT(ADCx->CR, ADC_CR_DEEPPWD); + + /* Reset register CFGR */ + CLEAR_BIT(ADCx->CFGR, + ( ADC_CFGR_AWD1CH | ADC_CFGR_JAUTO | ADC_CFGR_JAWD1EN + | ADC_CFGR_AWD1EN | ADC_CFGR_AWD1SGL | ADC_CFGR_JQM + | ADC_CFGR_JDISCEN | ADC_CFGR_DISCNUM | ADC_CFGR_DISCEN + | ADC_CFGR_AUTDLY | ADC_CFGR_CONT | ADC_CFGR_OVRMOD + | ADC_CFGR_EXTEN | ADC_CFGR_EXTSEL | ADC_CFGR_RES + | ADC_CFGR_DMNGT ) + ); + + SET_BIT(ADCx->CFGR, ADC_CFGR_JQDIS); + + /* Reset register CFGR2 */ + CLEAR_BIT(ADCx->CFGR2, + ( ADC_CFGR2_LSHIFT | ADC_CFGR2_OVSR | ADC_CFGR2_RSHIFT1 + | ADC_CFGR2_RSHIFT4 | ADC_CFGR2_RSHIFT3 | ADC_CFGR2_RSHIFT2 + | ADC_CFGR2_RSHIFT1 | ADC_CFGR2_ROVSM | ADC_CFGR2_TROVS + | ADC_CFGR2_OVSS | ADC_CFGR2_JOVSE | ADC_CFGR2_ROVSE) + ); + + /* Reset register SMPR1 */ + CLEAR_BIT(ADCx->SMPR1, + (ADC_SMPR1_SMP9 | ADC_SMPR1_SMP8 | ADC_SMPR1_SMP7 + | ADC_SMPR1_SMP6 | ADC_SMPR1_SMP5 | ADC_SMPR1_SMP4 + | ADC_SMPR1_SMP3 | ADC_SMPR1_SMP2 | ADC_SMPR1_SMP1) + ); + + /* Reset register SMPR2 */ + CLEAR_BIT(ADCx->SMPR2, + (ADC_SMPR2_SMP19 | ADC_SMPR2_SMP18 | ADC_SMPR2_SMP17 + | ADC_SMPR2_SMP16 | ADC_SMPR2_SMP15 | ADC_SMPR2_SMP14 + | ADC_SMPR2_SMP13 | ADC_SMPR2_SMP12 | ADC_SMPR2_SMP11 + | ADC_SMPR2_SMP10) + ); + + /* Reset register TR1 */ + CLEAR_BIT(ADCx->LTR1, ADC_LTR_LT); + SET_BIT(ADCx->HTR1, ADC_HTR_HT); + + CLEAR_BIT(ADCx->LTR2, ADC_LTR_LT); + SET_BIT(ADCx->HTR2, ADC_HTR_HT); + CLEAR_BIT(ADCx->LTR3, ADC_LTR_LT); + SET_BIT(ADCx->HTR3, ADC_HTR_HT); + + /* Reset register SQR1 */ + CLEAR_BIT(ADCx->SQR1, + (ADC_SQR1_SQ4 | ADC_SQR1_SQ3 | ADC_SQR1_SQ2 + | ADC_SQR1_SQ1 | ADC_SQR1_L) + ); + + /* Reset register SQR2 */ + CLEAR_BIT(ADCx->SQR2, + (ADC_SQR2_SQ9 | ADC_SQR2_SQ8 | ADC_SQR2_SQ7 + | ADC_SQR2_SQ6 | ADC_SQR2_SQ5) + ); + + /* Reset register SQR3 */ + CLEAR_BIT(ADCx->SQR3, + (ADC_SQR3_SQ14 | ADC_SQR3_SQ13 | ADC_SQR3_SQ12 + | ADC_SQR3_SQ11 | ADC_SQR3_SQ10) + ); + + /* Reset register SQR4 */ + CLEAR_BIT(ADCx->SQR4, ADC_SQR4_SQ16 | ADC_SQR4_SQ15); + + /* Reset register JSQR */ + CLEAR_BIT(ADCx->JSQR, + (ADC_JSQR_JL + | ADC_JSQR_JEXTSEL | ADC_JSQR_JEXTEN + | ADC_JSQR_JSQ4 | ADC_JSQR_JSQ3 + | ADC_JSQR_JSQ2 | ADC_JSQR_JSQ1) + ); + + /* Reset register DR */ + /* Note: bits in access mode read only, no direct reset applicable */ + + /* Reset register OFR1 */ + CLEAR_BIT(ADCx->OFR1, ADC_OFR1_OFFSET1 | ADC_OFR1_OFFSET1_CH | ADC_OFR1_SSATE); + /* Reset register OFR2 */ + CLEAR_BIT(ADCx->OFR2, ADC_OFR2_OFFSET2 | ADC_OFR2_OFFSET2_CH | ADC_OFR2_SSATE); + /* Reset register OFR3 */ + CLEAR_BIT(ADCx->OFR3, ADC_OFR3_OFFSET3 | ADC_OFR3_OFFSET3_CH | ADC_OFR3_SSATE); + /* Reset register OFR4 */ + CLEAR_BIT(ADCx->OFR4, ADC_OFR4_OFFSET4 | ADC_OFR4_OFFSET4_CH | ADC_OFR4_SSATE); + + /* Reset registers JDR1, JDR2, JDR3, JDR4 */ + /* Note: bits in access mode read only, no direct reset applicable */ + + /* Reset register AWD2CR */ + CLEAR_BIT(ADCx->AWD2CR, ADC_AWD2CR_AWD2CH); + + /* Reset register AWD3CR */ + CLEAR_BIT(ADCx->AWD3CR, ADC_AWD3CR_AWD3CH); + + /* Reset register DIFSEL */ + CLEAR_BIT(ADCx->DIFSEL, ADC_DIFSEL_DIFSEL); + + /* Reset register CALFACT */ + CLEAR_BIT(ADCx->CALFACT, ADC_CALFACT_CALFACT_D | ADC_CALFACT_CALFACT_S); + + /* Reset register CALFACT2 */ + CLEAR_BIT(ADCx->CALFACT2, ADC_CALFACT2_LINCALFACT); + } + else + { + /* ADC instance is in an unknown state */ + /* Need to performing a hard reset of ADC instance, using high level */ + /* clock source RCC ADC reset. */ + /* Caution: On this STM32 serie, if several ADC instances are available */ + /* on the selected device, RCC ADC reset will reset */ + /* all ADC instances belonging to the common ADC instance. */ + /* Caution: On this STM32 serie, if several ADC instances are available */ + /* on the selected device, RCC ADC reset will reset */ + /* all ADC instances belonging to the common ADC instance. */ + status = ERROR; + } + + return status; +} + +/** + * @brief Initialize some features of ADC instance. + * @note These parameters have an impact on ADC scope: ADC instance. + * Affects both group regular and group injected (availability + * of ADC group injected depends on STM32 families). + * Refer to corresponding unitary functions into + * @ref ADC_LL_EF_Configuration_ADC_Instance . + * @note The setting of these parameters by function @ref LL_ADC_Init() + * is conditioned to ADC state: + * ADC instance must be disabled. + * This condition is applied to all ADC features, for efficiency + * and compatibility over all STM32 families. However, the different + * features can be set under different ADC state conditions + * (setting possible with ADC enabled without conversion on going, + * ADC enabled with conversion on going, ...) + * Each feature can be updated afterwards with a unitary function + * and potentially with ADC in a different state than disabled, + * refer to description of each function for setting + * conditioned to ADC state. + * @note After using this function, some other features must be configured + * using LL unitary functions. + * The minimum configuration remaining to be done is: + * - Set ADC group regular or group injected sequencer: + * map channel on the selected sequencer rank. + * Refer to function @ref LL_ADC_REG_SetSequencerRanks(). + * - Set ADC channel sampling time + * Refer to function LL_ADC_SetChannelSamplingTime(); + * @param ADCx ADC instance + * @param ADC_InitStruct Pointer to a @ref LL_ADC_REG_InitTypeDef structure + * @retval An ErrorStatus enumeration value: + * - SUCCESS: ADC registers are initialized + * - ERROR: ADC registers are not initialized + */ +ErrorStatus LL_ADC_Init(ADC_TypeDef *ADCx, LL_ADC_InitTypeDef *ADC_InitStruct) +{ + ErrorStatus status = SUCCESS; + + /* Check the parameters */ + assert_param(IS_ADC_ALL_INSTANCE(ADCx)); + + assert_param(IS_LL_ADC_RESOLUTION(ADC_InitStruct->Resolution)); + assert_param(IS_LL_ADC_LEFT_BIT_SHIFT(ADC_InitStruct->LeftBitShift)); + assert_param(IS_LL_ADC_LOW_POWER(ADC_InitStruct->LowPowerMode)); + + /* Note: Hardware constraint (refer to description of this function): */ + /* ADC instance must be disabled. */ + if (LL_ADC_IsEnabled(ADCx) == 0UL) + { + /* Configuration of ADC hierarchical scope: */ + /* - ADC instance */ + /* - Set ADC data resolution */ + /* - Set ADC conversion data alignment */ + /* - Set ADC low power mode */ + MODIFY_REG(ADCx->CFGR, + ADC_CFGR_RES + | ADC_CFGR_AUTDLY + , + ADC_InitStruct->Resolution + | ADC_InitStruct->LowPowerMode + ); + + MODIFY_REG(ADCx->CFGR2, ADC_CFGR2_LSHIFT, ADC_InitStruct->LeftBitShift); + } + else + { + /* Initialization error: ADC instance is not disabled. */ + status = ERROR; + } + return status; +} + +/** + * @brief Set each @ref LL_ADC_InitTypeDef field to default value. + * @param ADC_InitStruct Pointer to a @ref LL_ADC_InitTypeDef structure + * whose fields will be set to default values. + * @retval None + */ +void LL_ADC_StructInit(LL_ADC_InitTypeDef *ADC_InitStruct) +{ + /* Set ADC_InitStruct fields to default values */ + /* Set fields of ADC instance */ + ADC_InitStruct->Resolution = LL_ADC_RESOLUTION_16B; + ADC_InitStruct->LeftBitShift = LL_ADC_LEFT_BIT_SHIFT_NONE; + ADC_InitStruct->LowPowerMode = LL_ADC_LP_MODE_NONE; + +} + +/** + * @brief Initialize some features of ADC group regular. + * @note These parameters have an impact on ADC scope: ADC group regular. + * Refer to corresponding unitary functions into + * @ref ADC_LL_EF_Configuration_ADC_Group_Regular + * (functions with prefix "REG"). + * @note The setting of these parameters by function @ref LL_ADC_Init() + * is conditioned to ADC state: + * ADC instance must be disabled. + * This condition is applied to all ADC features, for efficiency + * and compatibility over all STM32 families. However, the different + * features can be set under different ADC state conditions + * (setting possible with ADC enabled without conversion on going, + * ADC enabled with conversion on going, ...) + * Each feature can be updated afterwards with a unitary function + * and potentially with ADC in a different state than disabled, + * refer to description of each function for setting + * conditioned to ADC state. + * @note After using this function, other features must be configured + * using LL unitary functions. + * The minimum configuration remaining to be done is: + * - Set ADC group regular or group injected sequencer: + * map channel on the selected sequencer rank. + * Refer to function @ref LL_ADC_REG_SetSequencerRanks(). + * - Set ADC channel sampling time + * Refer to function LL_ADC_SetChannelSamplingTime(); + * @param ADCx ADC instance + * @param ADC_REG_InitStruct Pointer to a @ref LL_ADC_REG_InitTypeDef structure + * @retval An ErrorStatus enumeration value: + * - SUCCESS: ADC registers are initialized + * - ERROR: ADC registers are not initialized + */ +ErrorStatus LL_ADC_REG_Init(ADC_TypeDef *ADCx, LL_ADC_REG_InitTypeDef *ADC_REG_InitStruct) +{ + ErrorStatus status = SUCCESS; + + /* Check the parameters */ + assert_param(IS_ADC_ALL_INSTANCE(ADCx)); + assert_param(IS_LL_ADC_REG_TRIG_SOURCE(ADC_REG_InitStruct->TriggerSource)); + assert_param(IS_LL_ADC_REG_SEQ_SCAN_LENGTH(ADC_REG_InitStruct->SequencerLength)); + if (ADC_REG_InitStruct->SequencerLength != LL_ADC_REG_SEQ_SCAN_DISABLE) + { + assert_param(IS_LL_ADC_REG_SEQ_SCAN_DISCONT_MODE(ADC_REG_InitStruct->SequencerDiscont)); + } + assert_param(IS_LL_ADC_REG_CONTINUOUS_MODE(ADC_REG_InitStruct->ContinuousMode)); + assert_param(IS_LL_ADC_REG_DATA_TRANSFER_MODE(ADC_REG_InitStruct->DataTransferMode)); + assert_param(IS_LL_ADC_REG_OVR_DATA_BEHAVIOR(ADC_REG_InitStruct->Overrun)); + + /* Note: Hardware constraint (refer to description of this function): */ + /* ADC instance must be disabled. */ + if (LL_ADC_IsEnabled(ADCx) == 0UL) + { + /* Configuration of ADC hierarchical scope: */ + /* - ADC group regular */ + /* - Set ADC group regular trigger source */ + /* - Set ADC group regular sequencer length */ + /* - Set ADC group regular sequencer discontinuous mode */ + /* - Set ADC group regular continuous mode */ + /* - Set ADC group regular conversion data transfer: no transfer or */ + /* transfer by DMA, and DMA requests mode */ + /* - Set ADC group regular overrun behavior */ + /* Note: On this STM32 serie, ADC trigger edge is set to value 0x0 by */ + /* setting of trigger source to SW start. */ + if (ADC_REG_InitStruct->SequencerLength != LL_ADC_REG_SEQ_SCAN_DISABLE) + { + MODIFY_REG(ADCx->CFGR, + ADC_CFGR_EXTSEL + | ADC_CFGR_EXTEN + | ADC_CFGR_DISCEN + | ADC_CFGR_DISCNUM + | ADC_CFGR_CONT + | ADC_CFGR_DMNGT + | ADC_CFGR_OVRMOD + , + ADC_REG_InitStruct->TriggerSource + | ADC_REG_InitStruct->SequencerDiscont + | ADC_REG_InitStruct->ContinuousMode + | ADC_REG_InitStruct->DataTransferMode + | ADC_REG_InitStruct->Overrun + ); + } + else + { + MODIFY_REG(ADCx->CFGR, + ADC_CFGR_EXTSEL + | ADC_CFGR_EXTEN + | ADC_CFGR_DISCEN + | ADC_CFGR_DISCNUM + | ADC_CFGR_CONT + | ADC_CFGR_DMNGT + | ADC_CFGR_OVRMOD + , + ADC_REG_InitStruct->TriggerSource + | LL_ADC_REG_SEQ_DISCONT_DISABLE + | ADC_REG_InitStruct->ContinuousMode + | ADC_REG_InitStruct->DataTransferMode + | ADC_REG_InitStruct->Overrun + ); + } + + /* Set ADC group regular sequencer length and scan direction */ + LL_ADC_REG_SetSequencerLength(ADCx, ADC_REG_InitStruct->SequencerLength); + } + else + { + /* Initialization error: ADC instance is not disabled. */ + status = ERROR; + } + return status; +} + +/** + * @brief Set each @ref LL_ADC_REG_InitTypeDef field to default value. + * @param ADC_REG_InitStruct Pointer to a @ref LL_ADC_REG_InitTypeDef structure + * whose fields will be set to default values. + * @retval None + */ +void LL_ADC_REG_StructInit(LL_ADC_REG_InitTypeDef *ADC_REG_InitStruct) +{ + /* Set ADC_REG_InitStruct fields to default values */ + /* Set fields of ADC group regular */ + /* Note: On this STM32 serie, ADC trigger edge is set to value 0x0 by */ + /* setting of trigger source to SW start. */ + ADC_REG_InitStruct->TriggerSource = LL_ADC_REG_TRIG_SOFTWARE; + ADC_REG_InitStruct->SequencerLength = LL_ADC_REG_SEQ_SCAN_DISABLE; + ADC_REG_InitStruct->SequencerDiscont = LL_ADC_REG_SEQ_DISCONT_DISABLE; + ADC_REG_InitStruct->ContinuousMode = LL_ADC_REG_CONV_SINGLE; + ADC_REG_InitStruct->DataTransferMode = LL_ADC_REG_DR_TRANSFER; + ADC_REG_InitStruct->Overrun = LL_ADC_REG_OVR_DATA_OVERWRITTEN; +} + +/** + * @brief Initialize some features of ADC group injected. + * @note These parameters have an impact on ADC scope: ADC group injected. + * Refer to corresponding unitary functions into + * @ref ADC_LL_EF_Configuration_ADC_Group_Regular + * (functions with prefix "INJ"). + * @note The setting of these parameters by function @ref LL_ADC_Init() + * is conditioned to ADC state: + * ADC instance must be disabled. + * This condition is applied to all ADC features, for efficiency + * and compatibility over all STM32 families. However, the different + * features can be set under different ADC state conditions + * (setting possible with ADC enabled without conversion on going, + * ADC enabled with conversion on going, ...) + * Each feature can be updated afterwards with a unitary function + * and potentially with ADC in a different state than disabled, + * refer to description of each function for setting + * conditioned to ADC state. + * @note After using this function, other features must be configured + * using LL unitary functions. + * The minimum configuration remaining to be done is: + * - Set ADC group injected sequencer: + * map channel on the selected sequencer rank. + * Refer to function @ref LL_ADC_INJ_SetSequencerRanks(). + * - Set ADC channel sampling time + * Refer to function LL_ADC_SetChannelSamplingTime(); + * @param ADCx ADC instance + * @param ADC_INJ_InitStruct Pointer to a @ref LL_ADC_INJ_InitTypeDef structure + * @retval An ErrorStatus enumeration value: + * - SUCCESS: ADC registers are initialized + * - ERROR: ADC registers are not initialized + */ +ErrorStatus LL_ADC_INJ_Init(ADC_TypeDef *ADCx, LL_ADC_INJ_InitTypeDef *ADC_INJ_InitStruct) +{ + ErrorStatus status = SUCCESS; + + /* Check the parameters */ + assert_param(IS_ADC_ALL_INSTANCE(ADCx)); + assert_param(IS_LL_ADC_INJ_TRIG_SOURCE(ADC_INJ_InitStruct->TriggerSource)); + assert_param(IS_LL_ADC_INJ_SEQ_SCAN_LENGTH(ADC_INJ_InitStruct->SequencerLength)); + if (ADC_INJ_InitStruct->SequencerLength != LL_ADC_INJ_SEQ_SCAN_DISABLE) + { + assert_param(IS_LL_ADC_INJ_SEQ_SCAN_DISCONT_MODE(ADC_INJ_InitStruct->SequencerDiscont)); + } + assert_param(IS_LL_ADC_INJ_TRIG_AUTO(ADC_INJ_InitStruct->TrigAuto)); + + /* Note: Hardware constraint (refer to description of this function): */ + /* ADC instance must be disabled. */ + if (LL_ADC_IsEnabled(ADCx) == 0UL) + { + /* Configuration of ADC hierarchical scope: */ + /* - ADC group injected */ + /* - Set ADC group injected trigger source */ + /* - Set ADC group injected sequencer length */ + /* - Set ADC group injected sequencer discontinuous mode */ + /* - Set ADC group injected conversion trigger: independent or */ + /* from ADC group regular */ + /* Note: On this STM32 serie, ADC trigger edge is set to value 0x0 by */ + /* setting of trigger source to SW start. */ + if (ADC_INJ_InitStruct->SequencerLength != LL_ADC_REG_SEQ_SCAN_DISABLE) + { + MODIFY_REG(ADCx->CFGR, + ADC_CFGR_JDISCEN + | ADC_CFGR_JAUTO + , + ADC_INJ_InitStruct->SequencerDiscont + | ADC_INJ_InitStruct->TrigAuto + ); + } + else + { + MODIFY_REG(ADCx->CFGR, + ADC_CFGR_JDISCEN + | ADC_CFGR_JAUTO + , + LL_ADC_REG_SEQ_DISCONT_DISABLE + | ADC_INJ_InitStruct->TrigAuto + ); + } + + MODIFY_REG(ADCx->JSQR, + ADC_JSQR_JEXTSEL + | ADC_JSQR_JEXTEN + | ADC_JSQR_JL + , + ADC_INJ_InitStruct->TriggerSource + | ADC_INJ_InitStruct->SequencerLength + ); + } + else + { + /* Initialization error: ADC instance is not disabled. */ + status = ERROR; + } + return status; +} + +/** + * @brief Set each @ref LL_ADC_INJ_InitTypeDef field to default value. + * @param ADC_INJ_InitStruct Pointer to a @ref LL_ADC_INJ_InitTypeDef structure + * whose fields will be set to default values. + * @retval None + */ +void LL_ADC_INJ_StructInit(LL_ADC_INJ_InitTypeDef *ADC_INJ_InitStruct) +{ + /* Set ADC_INJ_InitStruct fields to default values */ + /* Set fields of ADC group injected */ + ADC_INJ_InitStruct->TriggerSource = LL_ADC_INJ_TRIG_SOFTWARE; + ADC_INJ_InitStruct->SequencerLength = LL_ADC_INJ_SEQ_SCAN_DISABLE; + ADC_INJ_InitStruct->SequencerDiscont = LL_ADC_INJ_SEQ_DISCONT_DISABLE; + ADC_INJ_InitStruct->TrigAuto = LL_ADC_INJ_TRIG_INDEPENDENT; +} + +/** + * @} + */ + +/** + * @} + */ + +/** + * @} + */ + +#endif /* ADC1 || ADC2 || ADC3 */ + +/** + * @} + */ + +#endif /* USE_FULL_LL_DRIVER */ + +/************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/ diff --git a/source/hic_hal/stm32/stm32h743ii/STM32H7xx_HAL_Driver/Src/stm32h7xx_ll_pwr.c b/source/hic_hal/stm32/stm32h743ii/STM32H7xx_HAL_Driver/Src/stm32h7xx_ll_pwr.c new file mode 100644 index 000000000..31045a9b6 --- /dev/null +++ b/source/hic_hal/stm32/stm32h743ii/STM32H7xx_HAL_Driver/Src/stm32h7xx_ll_pwr.c @@ -0,0 +1,82 @@ +/** + ****************************************************************************** + * @file stm32h7xx_ll_pwr.c + * @author MCD Application Team + * @brief PWR LL module driver. + ****************************************************************************** + * @attention + * + *

© COPYRIGHT(c) 2017 STMicroelectronics. + * All rights reserved.

+ * + * This software component is licensed by ST under BSD 3-Clause license, + * the "License"; You may not use this file except in compliance with the + * License. You may obtain a copy of the License at: + * opensource.org/licenses/BSD-3-Clause + * + ****************************************************************************** + */ + +#if defined (USE_FULL_LL_DRIVER) + +/* Includes ------------------------------------------------------------------*/ +#include "stm32h7xx_ll_pwr.h" + +/** @addtogroup STM32H7xx_LL_Driver + * @{ + */ + +#if defined (PWR) + +/** @defgroup PWR_LL PWR + * @{ + */ + +/* Private types -------------------------------------------------------------*/ +/* Private variables ---------------------------------------------------------*/ +/* Private constants ---------------------------------------------------------*/ +/* Private macros ------------------------------------------------------------*/ +/* Private function prototypes -----------------------------------------------*/ + +/* Exported functions --------------------------------------------------------*/ +/** @addtogroup PWR_LL_Exported_Functions + * @{ + */ + +/** @addtogroup PWR_LL_EF_Init + * @{ + */ + +/** + * @brief De-initialize the PWR registers to their default reset values. + * @retval An ErrorStatus enumeration value: + * - SUCCESS: PWR registers are de-initialized + * - ERROR: not applicable + */ +ErrorStatus LL_PWR_DeInit(void) +{ + WRITE_REG(PWR->WKUPCR, (PWR_WKUPCR_WKUPC1 | PWR_WKUPCR_WKUPC2 | PWR_WKUPCR_WKUPC3 | \ + PWR_WKUPCR_WKUPC4 | PWR_WKUPCR_WKUPC5 | PWR_WKUPCR_WKUPC6)); + + return SUCCESS; +} + +/** + * @} + */ + +/** + * @} + */ + +/** + * @} + */ +#endif /* defined (PWR) */ +/** + * @} + */ + +#endif /* defined (USE_FULL_LL_DRIVER) */ + +/************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/ diff --git a/source/hic_hal/stm32/stm32h743ii/STM32H7xx_HAL_Driver/Src/stm32h7xx_ll_usb.c b/source/hic_hal/stm32/stm32h743ii/STM32H7xx_HAL_Driver/Src/stm32h7xx_ll_usb.c new file mode 100644 index 000000000..d4ff8a5a5 --- /dev/null +++ b/source/hic_hal/stm32/stm32h743ii/STM32H7xx_HAL_Driver/Src/stm32h7xx_ll_usb.c @@ -0,0 +1,1992 @@ +/** + ****************************************************************************** + * @file stm32h7xx_ll_usb.c + * @author MCD Application Team + * @brief USB Low Layer HAL module driver. + * + * This file provides firmware functions to manage the following + * functionalities of the USB Peripheral Controller: + * + Initialization/de-initialization functions + * + I/O operation functions + * + Peripheral Control functions + * + Peripheral State functions + * + @verbatim + ============================================================================== + ##### How to use this driver ##### + ============================================================================== + [..] + (#) Fill parameters of Init structure in USB_OTG_CfgTypeDef structure. + + (#) Call USB_CoreInit() API to initialize the USB Core peripheral. + + (#) The upper HAL HCD/PCD driver will call the right routines for its internal processes. + + @endverbatim + ****************************************************************************** + * @attention + * + *

© Copyright (c) 2017 STMicroelectronics. + * All rights reserved.

+ * + * This software component is licensed by ST under BSD 3-Clause license, + * the "License"; You may not use this file except in compliance with the + * License. You may obtain a copy of the License at: + * opensource.org/licenses/BSD-3-Clause + * + ****************************************************************************** + * + * Modified by Arm + ****************************************************************************** + */ + +/* Includes ------------------------------------------------------------------*/ +#include "stm32h7xx_hal.h" + +/** @addtogroup STM32H7xx_LL_USB_DRIVER + * @{ + */ + +#if defined (HAL_PCD_MODULE_ENABLED) || defined (HAL_HCD_MODULE_ENABLED) +#if defined (USB_OTG_FS) || defined (USB_OTG_HS) +/* Private typedef -----------------------------------------------------------*/ +/* Private define ------------------------------------------------------------*/ +/* Private macro -------------------------------------------------------------*/ +/* Private variables ---------------------------------------------------------*/ +/* Private function prototypes -----------------------------------------------*/ +/* Private functions ---------------------------------------------------------*/ +#if defined (USB_OTG_FS) || defined (USB_OTG_HS) +static HAL_StatusTypeDef USB_CoreReset(USB_OTG_GlobalTypeDef *USBx); + +/* Exported functions --------------------------------------------------------*/ +/** @defgroup USB_LL_Exported_Functions USB Low Layer Exported Functions + * @{ + */ + +/** @defgroup USB_LL_Exported_Functions_Group1 Initialization/de-initialization functions + * @brief Initialization and Configuration functions + * +@verbatim + =============================================================================== + ##### Initialization/de-initialization functions ##### + =============================================================================== + +@endverbatim + * @{ + */ + +/** + * @brief Initializes the USB Core + * @param USBx USB Instance + * @param cfg pointer to a USB_OTG_CfgTypeDef structure that contains + * the configuration information for the specified USBx peripheral. + * @retval HAL status + */ +HAL_StatusTypeDef USB_CoreInit(USB_OTG_GlobalTypeDef *USBx, USB_OTG_CfgTypeDef cfg) +{ + HAL_StatusTypeDef ret; + + if (cfg.phy_itface == USB_OTG_ULPI_PHY) + { + USBx->GCCFG &= ~(USB_OTG_GCCFG_PWRDWN); + + /* Init The ULPI Interface */ + USBx->GUSBCFG &= ~(USB_OTG_GUSBCFG_TSDPS | USB_OTG_GUSBCFG_ULPIFSLS | USB_OTG_GUSBCFG_PHYSEL); + + /* Select vbus source */ + USBx->GUSBCFG &= ~(USB_OTG_GUSBCFG_ULPIEVBUSD | USB_OTG_GUSBCFG_ULPIEVBUSI); + if (cfg.use_external_vbus == 1U) + { + USBx->GUSBCFG |= USB_OTG_GUSBCFG_ULPIEVBUSD; + } + /* Reset after a PHY select */ + ret = USB_CoreReset(USBx); + } + else /* FS interface (embedded Phy) */ + { + /* Select FS Embedded PHY */ + USBx->GUSBCFG |= USB_OTG_GUSBCFG_PHYSEL; + + /* Reset after a PHY select and set Host mode */ + ret = USB_CoreReset(USBx); + + if (cfg.battery_charging_enable == 0U) + { + /* Activate the USB Transceiver */ + USBx->GCCFG |= USB_OTG_GCCFG_PWRDWN; + } + else + { + /* Deactivate the USB Transceiver */ + USBx->GCCFG &= ~(USB_OTG_GCCFG_PWRDWN); + } + } + + if (cfg.dma_enable == 1U) + { + USBx->GAHBCFG |= USB_OTG_GAHBCFG_HBSTLEN_2; + USBx->GAHBCFG |= USB_OTG_GAHBCFG_DMAEN; + } + + return ret; +} + + +/** + * @brief Set the USB turnaround time + * @param USBx USB Instance + * @param hclk: AHB clock frequency + * @retval USB turnaround time In PHY Clocks number + */ +HAL_StatusTypeDef USB_SetTurnaroundTime(USB_OTG_GlobalTypeDef *USBx, + uint32_t hclk, uint8_t speed) +{ + uint32_t UsbTrd; + + /* The USBTRD is configured according to the tables below, depending on AHB frequency + used by application. In the low AHB frequency range it is used to stretch enough the USB response + time to IN tokens, the USB turnaround time, so to compensate for the longer AHB read access + latency to the Data FIFO */ + if (speed == USBD_FS_SPEED) + { + if ((hclk >= 14200000U) && (hclk < 15000000U)) + { + /* hclk Clock Range between 14.2-15 MHz */ + UsbTrd = 0xFU; + } + else if ((hclk >= 15000000U) && (hclk < 16000000U)) + { + /* hclk Clock Range between 15-16 MHz */ + UsbTrd = 0xEU; + } + else if ((hclk >= 16000000U) && (hclk < 17200000U)) + { + /* hclk Clock Range between 16-17.2 MHz */ + UsbTrd = 0xDU; + } + else if ((hclk >= 17200000U) && (hclk < 18500000U)) + { + /* hclk Clock Range between 17.2-18.5 MHz */ + UsbTrd = 0xCU; + } + else if ((hclk >= 18500000U) && (hclk < 20000000U)) + { + /* hclk Clock Range between 18.5-20 MHz */ + UsbTrd = 0xBU; + } + else if ((hclk >= 20000000U) && (hclk < 21800000U)) + { + /* hclk Clock Range between 20-21.8 MHz */ + UsbTrd = 0xAU; + } + else if ((hclk >= 21800000U) && (hclk < 24000000U)) + { + /* hclk Clock Range between 21.8-24 MHz */ + UsbTrd = 0x9U; + } + else if ((hclk >= 24000000U) && (hclk < 27700000U)) + { + /* hclk Clock Range between 24-27.7 MHz */ + UsbTrd = 0x8U; + } + else if ((hclk >= 27700000U) && (hclk < 32000000U)) + { + /* hclk Clock Range between 27.7-32 MHz */ + UsbTrd = 0x7U; + } + else /* if(hclk >= 32000000) */ + { + /* hclk Clock Range between 32-200 MHz */ + UsbTrd = 0x6U; + } + } + else if (speed == USBD_HS_SPEED) + { + UsbTrd = USBD_HS_TRDT_VALUE; + } + else + { + UsbTrd = USBD_DEFAULT_TRDT_VALUE; + } + + USBx->GUSBCFG &= ~USB_OTG_GUSBCFG_TRDT; + USBx->GUSBCFG |= (uint32_t)((UsbTrd << 10) & USB_OTG_GUSBCFG_TRDT); + + return HAL_OK; +} + +/** + * @brief USB_EnableGlobalInt + * Enables the controller's Global Int in the AHB Config reg + * @param USBx Selected device + * @retval HAL status + */ +HAL_StatusTypeDef USB_EnableGlobalInt(USB_OTG_GlobalTypeDef *USBx) +{ + USBx->GAHBCFG |= USB_OTG_GAHBCFG_GINT; + return HAL_OK; +} + +/** + * @brief USB_DisableGlobalInt + * Disable the controller's Global Int in the AHB Config reg + * @param USBx Selected device + * @retval HAL status +*/ +HAL_StatusTypeDef USB_DisableGlobalInt(USB_OTG_GlobalTypeDef *USBx) +{ + USBx->GAHBCFG &= ~USB_OTG_GAHBCFG_GINT; + return HAL_OK; +} + +/** + * @brief USB_SetCurrentMode : Set functional mode + * @param USBx Selected device + * @param mode current core mode + * This parameter can be one of these values: + * @arg USB_DEVICE_MODE: Peripheral mode + * @arg USB_HOST_MODE: Host mode + * @arg USB_DRD_MODE: Dual Role Device mode + * @retval HAL status + */ +HAL_StatusTypeDef USB_SetCurrentMode(USB_OTG_GlobalTypeDef *USBx, USB_OTG_ModeTypeDef mode) +{ + USBx->GUSBCFG &= ~(USB_OTG_GUSBCFG_FHMOD | USB_OTG_GUSBCFG_FDMOD); + + if (mode == USB_HOST_MODE) + { + USBx->GUSBCFG |= USB_OTG_GUSBCFG_FHMOD; + } + else if (mode == USB_DEVICE_MODE) + { + USBx->GUSBCFG |= USB_OTG_GUSBCFG_FDMOD; + } + else + { + return HAL_ERROR; + } + HAL_Delay(50U); + + return HAL_OK; +} + +/** + * @brief USB_DevInit : Initializes the USB_OTG controller registers + * for device mode + * @param USBx Selected device + * @param cfg pointer to a USB_OTG_CfgTypeDef structure that contains + * the configuration information for the specified USBx peripheral. + * @retval HAL status + */ +HAL_StatusTypeDef USB_DevInit(USB_OTG_GlobalTypeDef *USBx, USB_OTG_CfgTypeDef cfg) +{ + HAL_StatusTypeDef ret = HAL_OK; + uint32_t USBx_BASE = (uint32_t)USBx; + uint32_t i; + + for (i = 0U; i < 15U; i++) + { + USBx->DIEPTXF[i] = 0U; + } + + /* VBUS Sensing setup */ + if (cfg.vbus_sensing_enable == 0U) + { + USBx_DEVICE->DCTL |= USB_OTG_DCTL_SDIS; + + /* Deactivate VBUS Sensing B */ + USBx->GCCFG &= ~USB_OTG_GCCFG_VBDEN; + + /* B-peripheral session valid override enable */ + USBx->GOTGCTL |= USB_OTG_GOTGCTL_BVALOEN; + USBx->GOTGCTL |= USB_OTG_GOTGCTL_BVALOVAL; + } + else + { + /* Enable HW VBUS sensing */ + USBx->GCCFG |= USB_OTG_GCCFG_VBDEN; + } + + /* Restart the Phy Clock */ + USBx_PCGCCTL = 0U; + + /* Device mode configuration */ + USBx_DEVICE->DCFG |= DCFG_FRAME_INTERVAL_80; + + if (cfg.phy_itface == USB_OTG_ULPI_PHY) + { + if (cfg.speed == USBD_HS_SPEED) + { + /* Set Core speed to High speed mode */ + (void)USB_SetDevSpeed(USBx, USB_OTG_SPEED_HIGH); + } + else + { + /* Set Core speed to Full speed mode */ + (void)USB_SetDevSpeed(USBx, USB_OTG_SPEED_HIGH_IN_FULL); + } + } + else + { + /* Set Core speed to Full speed mode */ + (void)USB_SetDevSpeed(USBx, USB_OTG_SPEED_FULL); + } + + /* Flush the FIFOs */ + if (USB_FlushTxFifo(USBx, 0x10U) != HAL_OK) /* all Tx FIFOs */ + { + ret = HAL_ERROR; + } + + if (USB_FlushRxFifo(USBx) != HAL_OK) + { + ret = HAL_ERROR; + } + + /* Clear all pending Device Interrupts */ + USBx_DEVICE->DIEPMSK = 0U; + USBx_DEVICE->DOEPMSK = 0U; + USBx_DEVICE->DAINTMSK = 0U; + + for (i = 0U; i < cfg.dev_endpoints; i++) + { + if ((USBx_INEP(i)->DIEPCTL & USB_OTG_DIEPCTL_EPENA) == USB_OTG_DIEPCTL_EPENA) + { + if (i == 0U) + { + USBx_INEP(i)->DIEPCTL = USB_OTG_DIEPCTL_SNAK; + } + else + { + USBx_INEP(i)->DIEPCTL = USB_OTG_DIEPCTL_EPDIS | USB_OTG_DIEPCTL_SNAK; + } + } + else + { + USBx_INEP(i)->DIEPCTL = 0U; + } + + USBx_INEP(i)->DIEPTSIZ = 0U; + USBx_INEP(i)->DIEPINT = 0xFB7FU; + } + + for (i = 0U; i < cfg.dev_endpoints; i++) + { + if ((USBx_OUTEP(i)->DOEPCTL & USB_OTG_DOEPCTL_EPENA) == USB_OTG_DOEPCTL_EPENA) + { + if (i == 0U) + { + USBx_OUTEP(i)->DOEPCTL = USB_OTG_DOEPCTL_SNAK; + } + else + { + USBx_OUTEP(i)->DOEPCTL = USB_OTG_DOEPCTL_EPDIS | USB_OTG_DOEPCTL_SNAK; + } + } + else + { + USBx_OUTEP(i)->DOEPCTL = 0U; + } + + USBx_OUTEP(i)->DOEPTSIZ = 0U; + USBx_OUTEP(i)->DOEPINT = 0xFB7FU; + } + + USBx_DEVICE->DIEPMSK &= ~(USB_OTG_DIEPMSK_TXFURM); + + /* Disable all interrupts. */ + USBx->GINTMSK = 0U; + + /* Clear any pending interrupts */ + USBx->GINTSTS = 0xBFFFFFFFU; + + /* Enable the common interrupts */ + if (cfg.dma_enable == 0U) + { + USBx->GINTMSK |= USB_OTG_GINTMSK_RXFLVLM; + } + + /* Enable interrupts matching to the Device mode ONLY */ + USBx->GINTMSK |= USB_OTG_GINTMSK_USBSUSPM | USB_OTG_GINTMSK_USBRST | + USB_OTG_GINTMSK_ENUMDNEM | USB_OTG_GINTMSK_IEPINT | + USB_OTG_GINTMSK_OEPINT | USB_OTG_GINTMSK_IISOIXFRM | + USB_OTG_GINTMSK_PXFRM_IISOOXFRM | USB_OTG_GINTMSK_WUIM; + + if (cfg.Sof_enable != 0U) + { + USBx->GINTMSK |= USB_OTG_GINTMSK_SOFM; + } + + if (cfg.vbus_sensing_enable == 1U) + { + USBx->GINTMSK |= (USB_OTG_GINTMSK_SRQIM | USB_OTG_GINTMSK_OTGINT); + } + + return ret; +} + +/** + * @brief USB_OTG_FlushTxFifo : Flush a Tx FIFO + * @param USBx Selected device + * @param num FIFO number + * This parameter can be a value from 1 to 15 + 15 means Flush all Tx FIFOs + * @retval HAL status + */ +HAL_StatusTypeDef USB_FlushTxFifo(USB_OTG_GlobalTypeDef *USBx, uint32_t num) +{ + uint32_t count = 0U; + + USBx->GRSTCTL = (USB_OTG_GRSTCTL_TXFFLSH | (num << 6)); + + do + { + if (++count > 200000U) + { + return HAL_TIMEOUT; + } + } + while ((USBx->GRSTCTL & USB_OTG_GRSTCTL_TXFFLSH) == USB_OTG_GRSTCTL_TXFFLSH); + + return HAL_OK; +} + +/** + * @brief USB_FlushRxFifo : Flush Rx FIFO + * @param USBx Selected device + * @retval HAL status + */ +HAL_StatusTypeDef USB_FlushRxFifo(USB_OTG_GlobalTypeDef *USBx) +{ + uint32_t count = 0; + + USBx->GRSTCTL = USB_OTG_GRSTCTL_RXFFLSH; + + do + { + if (++count > 200000U) + { + return HAL_TIMEOUT; + } + } + while ((USBx->GRSTCTL & USB_OTG_GRSTCTL_RXFFLSH) == USB_OTG_GRSTCTL_RXFFLSH); + + return HAL_OK; +} + +/** + * @brief USB_SetDevSpeed Initializes the DevSpd field of DCFG register + * depending the PHY type and the enumeration speed of the device. + * @param USBx Selected device + * @param speed device speed + * This parameter can be one of these values: + * @arg USB_OTG_SPEED_HIGH: High speed mode + * @arg USB_OTG_SPEED_HIGH_IN_FULL: High speed core in Full Speed mode + * @arg USB_OTG_SPEED_FULL: Full speed mode + * @retval Hal status + */ +HAL_StatusTypeDef USB_SetDevSpeed(USB_OTG_GlobalTypeDef *USBx, uint8_t speed) +{ + uint32_t USBx_BASE = (uint32_t)USBx; + + USBx_DEVICE->DCFG |= speed; + return HAL_OK; +} + +/** + * @brief USB_GetDevSpeed Return the Dev Speed + * @param USBx Selected device + * @retval speed device speed + * This parameter can be one of these values: + * @arg PCD_SPEED_HIGH: High speed mode + * @arg PCD_SPEED_FULL: Full speed mode + */ +uint8_t USB_GetDevSpeed(USB_OTG_GlobalTypeDef *USBx) +{ + uint32_t USBx_BASE = (uint32_t)USBx; + uint8_t speed; + uint32_t DevEnumSpeed = USBx_DEVICE->DSTS & USB_OTG_DSTS_ENUMSPD; + + if (DevEnumSpeed == DSTS_ENUMSPD_HS_PHY_30MHZ_OR_60MHZ) + { + speed = USBD_HS_SPEED; + } + else if ((DevEnumSpeed == DSTS_ENUMSPD_FS_PHY_30MHZ_OR_60MHZ) || + (DevEnumSpeed == DSTS_ENUMSPD_FS_PHY_48MHZ)) + { + speed = USBD_FS_SPEED; + } + else + { + speed = 0xFU; + } + + return speed; +} + +/** + * @brief Activate and configure an endpoint + * @param USBx Selected device + * @param ep pointer to endpoint structure + * @retval HAL status + */ +HAL_StatusTypeDef USB_ActivateEndpoint(USB_OTG_GlobalTypeDef *USBx, USB_OTG_EPTypeDef *ep) +{ + uint32_t USBx_BASE = (uint32_t)USBx; + uint32_t epnum = (uint32_t)ep->num; + + if (ep->is_in == 1U) + { + USBx_DEVICE->DAINTMSK |= USB_OTG_DAINTMSK_IEPM & (uint32_t)(1UL << (ep->num & EP_ADDR_MSK)); + + if ((USBx_INEP(epnum)->DIEPCTL & USB_OTG_DIEPCTL_USBAEP) == 0U) + { + USBx_INEP(epnum)->DIEPCTL |= (ep->maxpacket & USB_OTG_DIEPCTL_MPSIZ) | + ((uint32_t)ep->type << 18) | (epnum << 22) | + USB_OTG_DIEPCTL_SD0PID_SEVNFRM | + USB_OTG_DIEPCTL_USBAEP; + } + } + else + { + USBx_DEVICE->DAINTMSK |= USB_OTG_DAINTMSK_OEPM & ((uint32_t)(1UL << (ep->num & EP_ADDR_MSK)) << 16); + + if (((USBx_OUTEP(epnum)->DOEPCTL) & USB_OTG_DOEPCTL_USBAEP) == 0U) + { + USBx_OUTEP(epnum)->DOEPCTL |= (ep->maxpacket & USB_OTG_DOEPCTL_MPSIZ) | + ((uint32_t)ep->type << 18) | + USB_OTG_DIEPCTL_SD0PID_SEVNFRM | + USB_OTG_DOEPCTL_USBAEP; + } + } + return HAL_OK; +} + +/** + * @brief Activate and configure a dedicated endpoint + * @param USBx Selected device + * @param ep pointer to endpoint structure + * @retval HAL status + */ +HAL_StatusTypeDef USB_ActivateDedicatedEndpoint(USB_OTG_GlobalTypeDef *USBx, USB_OTG_EPTypeDef *ep) +{ + uint32_t USBx_BASE = (uint32_t)USBx; + uint32_t epnum = (uint32_t)ep->num; + + /* Read DEPCTLn register */ + if (ep->is_in == 1U) + { + if (((USBx_INEP(epnum)->DIEPCTL) & USB_OTG_DIEPCTL_USBAEP) == 0U) + { + USBx_INEP(epnum)->DIEPCTL |= (ep->maxpacket & USB_OTG_DIEPCTL_MPSIZ) | + ((uint32_t)ep->type << 18) | (epnum << 22) | + USB_OTG_DIEPCTL_SD0PID_SEVNFRM | + USB_OTG_DIEPCTL_USBAEP; + } + + USBx_DEVICE->DEACHMSK |= USB_OTG_DAINTMSK_IEPM & (uint32_t)(1UL << (ep->num & EP_ADDR_MSK)); + } + else + { + if (((USBx_OUTEP(epnum)->DOEPCTL) & USB_OTG_DOEPCTL_USBAEP) == 0U) + { + USBx_OUTEP(epnum)->DOEPCTL |= (ep->maxpacket & USB_OTG_DOEPCTL_MPSIZ) | + ((uint32_t)ep->type << 18) | (epnum << 22) | + USB_OTG_DOEPCTL_USBAEP; + } + + USBx_DEVICE->DEACHMSK |= USB_OTG_DAINTMSK_OEPM & ((uint32_t)(1UL << (ep->num & EP_ADDR_MSK)) << 16); + } + + return HAL_OK; +} + +/** + * @brief De-activate and de-initialize an endpoint + * @param USBx Selected device + * @param ep pointer to endpoint structure + * @retval HAL status + */ +HAL_StatusTypeDef USB_DeactivateEndpoint(USB_OTG_GlobalTypeDef *USBx, USB_OTG_EPTypeDef *ep) +{ + uint32_t USBx_BASE = (uint32_t)USBx; + uint32_t epnum = (uint32_t)ep->num; + + /* Read DEPCTLn register */ + if (ep->is_in == 1U) + { + USBx_DEVICE->DEACHMSK &= ~(USB_OTG_DAINTMSK_IEPM & (uint32_t)(1UL << (ep->num & EP_ADDR_MSK))); + USBx_DEVICE->DAINTMSK &= ~(USB_OTG_DAINTMSK_IEPM & (uint32_t)(1UL << (ep->num & EP_ADDR_MSK))); + USBx_INEP(epnum)->DIEPCTL &= ~(USB_OTG_DIEPCTL_USBAEP | + USB_OTG_DIEPCTL_MPSIZ | + USB_OTG_DIEPCTL_TXFNUM | + USB_OTG_DIEPCTL_SD0PID_SEVNFRM | + USB_OTG_DIEPCTL_EPTYP); + } + else + { + USBx_DEVICE->DEACHMSK &= ~(USB_OTG_DAINTMSK_OEPM & ((uint32_t)(1UL << (ep->num & EP_ADDR_MSK)) << 16)); + USBx_DEVICE->DAINTMSK &= ~(USB_OTG_DAINTMSK_OEPM & ((uint32_t)(1UL << (ep->num & EP_ADDR_MSK)) << 16)); + USBx_OUTEP(epnum)->DOEPCTL &= ~(USB_OTG_DOEPCTL_USBAEP | + USB_OTG_DOEPCTL_MPSIZ | + USB_OTG_DOEPCTL_SD0PID_SEVNFRM | + USB_OTG_DOEPCTL_EPTYP); + } + + return HAL_OK; +} + +/** + * @brief De-activate and de-initialize a dedicated endpoint + * @param USBx Selected device + * @param ep pointer to endpoint structure + * @retval HAL status + */ +HAL_StatusTypeDef USB_DeactivateDedicatedEndpoint(USB_OTG_GlobalTypeDef *USBx, USB_OTG_EPTypeDef *ep) +{ + uint32_t USBx_BASE = (uint32_t)USBx; + uint32_t epnum = (uint32_t)ep->num; + + /* Read DEPCTLn register */ + if (ep->is_in == 1U) + { + USBx_INEP(epnum)->DIEPCTL &= ~ USB_OTG_DIEPCTL_USBAEP; + USBx_DEVICE->DAINTMSK &= ~(USB_OTG_DAINTMSK_IEPM & (uint32_t)(1UL << (ep->num & EP_ADDR_MSK))); + } + else + { + USBx_OUTEP(epnum)->DOEPCTL &= ~USB_OTG_DOEPCTL_USBAEP; + USBx_DEVICE->DAINTMSK &= ~(USB_OTG_DAINTMSK_OEPM & ((uint32_t)(1UL << (ep->num & EP_ADDR_MSK)) << 16)); + } + + return HAL_OK; +} + +/** + * @brief USB_EPStartXfer : setup and starts a transfer over an EP + * @param USBx Selected device + * @param ep pointer to endpoint structure + * @param dma USB dma enabled or disabled + * This parameter can be one of these values: + * 0 : DMA feature not used + * 1 : DMA feature used + * @retval HAL status + */ +HAL_StatusTypeDef USB_EPStartXfer(USB_OTG_GlobalTypeDef *USBx, USB_OTG_EPTypeDef *ep, uint8_t dma) +{ + uint32_t USBx_BASE = (uint32_t)USBx; + uint32_t epnum = (uint32_t)ep->num; + uint16_t pktcnt; + + /* IN endpoint */ + if (ep->is_in == 1U) + { + /* Zero Length Packet? */ + if (ep->xfer_len == 0U) + { + USBx_INEP(epnum)->DIEPTSIZ &= ~(USB_OTG_DIEPTSIZ_PKTCNT); + USBx_INEP(epnum)->DIEPTSIZ |= (USB_OTG_DIEPTSIZ_PKTCNT & (1U << 19)); + USBx_INEP(epnum)->DIEPTSIZ &= ~(USB_OTG_DIEPTSIZ_XFRSIZ); + } + else + { + /* Program the transfer size and packet count + * as follows: xfersize = N * maxpacket + + * short_packet pktcnt = N + (short_packet + * exist ? 1 : 0) + */ + USBx_INEP(epnum)->DIEPTSIZ &= ~(USB_OTG_DIEPTSIZ_XFRSIZ); + USBx_INEP(epnum)->DIEPTSIZ &= ~(USB_OTG_DIEPTSIZ_PKTCNT); + USBx_INEP(epnum)->DIEPTSIZ |= (USB_OTG_DIEPTSIZ_PKTCNT & (((ep->xfer_len + ep->maxpacket - 1U) / ep->maxpacket) << 19)); + USBx_INEP(epnum)->DIEPTSIZ |= (USB_OTG_DIEPTSIZ_XFRSIZ & ep->xfer_len); + + if (ep->type == EP_TYPE_ISOC) + { + USBx_INEP(epnum)->DIEPTSIZ &= ~(USB_OTG_DIEPTSIZ_MULCNT); + USBx_INEP(epnum)->DIEPTSIZ |= (USB_OTG_DIEPTSIZ_MULCNT & (1U << 29)); + } + } + + if (dma == 1U) + { + if ((uint32_t)ep->dma_addr != 0U) + { + USBx_INEP(epnum)->DIEPDMA = (uint32_t)(ep->dma_addr); + } + + if (ep->type == EP_TYPE_ISOC) + { + if ((USBx_DEVICE->DSTS & (1U << 8)) == 0U) + { + USBx_INEP(epnum)->DIEPCTL |= USB_OTG_DIEPCTL_SODDFRM; + } + else + { + USBx_INEP(epnum)->DIEPCTL |= USB_OTG_DIEPCTL_SD0PID_SEVNFRM; + } + } + + /* EP enable, IN data in FIFO */ + USBx_INEP(epnum)->DIEPCTL |= (USB_OTG_DIEPCTL_CNAK | USB_OTG_DIEPCTL_EPENA); + } + else + { + /* EP enable, IN data in FIFO */ + USBx_INEP(epnum)->DIEPCTL |= (USB_OTG_DIEPCTL_CNAK | USB_OTG_DIEPCTL_EPENA); + + if (ep->type != EP_TYPE_ISOC) + { + /* Enable the Tx FIFO Empty Interrupt for this EP */ + if (ep->xfer_len > 0U) + { + USBx_DEVICE->DIEPEMPMSK |= 1UL << (ep->num & EP_ADDR_MSK); + } + } + else + { + if ((USBx_DEVICE->DSTS & (1U << 8)) == 0U) + { + USBx_INEP(epnum)->DIEPCTL |= USB_OTG_DIEPCTL_SODDFRM; + } + else + { + USBx_INEP(epnum)->DIEPCTL |= USB_OTG_DIEPCTL_SD0PID_SEVNFRM; + } + + (void)USB_WritePacket(USBx, ep->xfer_buff, ep->num, (uint16_t)ep->xfer_len, dma); + } + } + } + else /* OUT endpoint */ + { + /* Program the transfer size and packet count as follows: + * pktcnt = N + * xfersize = N * maxpacket + */ + USBx_OUTEP(epnum)->DOEPTSIZ &= ~(USB_OTG_DOEPTSIZ_XFRSIZ); + USBx_OUTEP(epnum)->DOEPTSIZ &= ~(USB_OTG_DOEPTSIZ_PKTCNT); + + if (ep->xfer_len == 0U) + { + USBx_OUTEP(epnum)->DOEPTSIZ |= (USB_OTG_DOEPTSIZ_XFRSIZ & ep->maxpacket); + USBx_OUTEP(epnum)->DOEPTSIZ |= (USB_OTG_DOEPTSIZ_PKTCNT & (1U << 19)); + } + else + { + pktcnt = (uint16_t)((ep->xfer_len + ep->maxpacket - 1U) / ep->maxpacket); + USBx_OUTEP(epnum)->DOEPTSIZ |= USB_OTG_DOEPTSIZ_PKTCNT & ((uint32_t)pktcnt << 19); + USBx_OUTEP(epnum)->DOEPTSIZ |= USB_OTG_DOEPTSIZ_XFRSIZ & (ep->maxpacket * pktcnt); + } + + if (dma == 1U) + { + if ((uint32_t)ep->xfer_buff != 0U) + { + USBx_OUTEP(epnum)->DOEPDMA = (uint32_t)(ep->xfer_buff); + } + } + + if (ep->type == EP_TYPE_ISOC) + { + if ((USBx_DEVICE->DSTS & (1U << 8)) == 0U) + { + USBx_OUTEP(epnum)->DOEPCTL |= USB_OTG_DOEPCTL_SODDFRM; + } + else + { + USBx_OUTEP(epnum)->DOEPCTL |= USB_OTG_DOEPCTL_SD0PID_SEVNFRM; + } + } + /* EP enable */ + USBx_OUTEP(epnum)->DOEPCTL |= (USB_OTG_DOEPCTL_CNAK | USB_OTG_DOEPCTL_EPENA); + } + + return HAL_OK; +} + +/** + * @brief USB_EP0StartXfer : setup and starts a transfer over the EP 0 + * @param USBx Selected device + * @param ep pointer to endpoint structure + * @param dma USB dma enabled or disabled + * This parameter can be one of these values: + * 0 : DMA feature not used + * 1 : DMA feature used + * @retval HAL status + */ +HAL_StatusTypeDef USB_EP0StartXfer(USB_OTG_GlobalTypeDef *USBx, USB_OTG_EPTypeDef *ep, uint8_t dma) +{ + uint32_t USBx_BASE = (uint32_t)USBx; + uint32_t epnum = (uint32_t)ep->num; + + /* IN endpoint */ + if (ep->is_in == 1U) + { + /* Zero Length Packet? */ + if (ep->xfer_len == 0U) + { + USBx_INEP(epnum)->DIEPTSIZ &= ~(USB_OTG_DIEPTSIZ_PKTCNT); + USBx_INEP(epnum)->DIEPTSIZ |= (USB_OTG_DIEPTSIZ_PKTCNT & (1U << 19)); + USBx_INEP(epnum)->DIEPTSIZ &= ~(USB_OTG_DIEPTSIZ_XFRSIZ); + } + else + { + /* Program the transfer size and packet count + * as follows: xfersize = N * maxpacket + + * short_packet pktcnt = N + (short_packet + * exist ? 1 : 0) + */ + USBx_INEP(epnum)->DIEPTSIZ &= ~(USB_OTG_DIEPTSIZ_XFRSIZ); + USBx_INEP(epnum)->DIEPTSIZ &= ~(USB_OTG_DIEPTSIZ_PKTCNT); + + if (ep->xfer_len > ep->maxpacket) + { + ep->xfer_len = ep->maxpacket; + } + USBx_INEP(epnum)->DIEPTSIZ |= (USB_OTG_DIEPTSIZ_PKTCNT & (1U << 19)); + USBx_INEP(epnum)->DIEPTSIZ |= (USB_OTG_DIEPTSIZ_XFRSIZ & ep->xfer_len); + } + + if (dma == 1U) + { + if ((uint32_t)ep->dma_addr != 0U) + { + USBx_INEP(epnum)->DIEPDMA = (uint32_t)(ep->dma_addr); + } + + /* EP enable, IN data in FIFO */ + USBx_INEP(epnum)->DIEPCTL |= (USB_OTG_DIEPCTL_CNAK | USB_OTG_DIEPCTL_EPENA); + } + else + { + /* EP enable, IN data in FIFO */ + USBx_INEP(epnum)->DIEPCTL |= (USB_OTG_DIEPCTL_CNAK | USB_OTG_DIEPCTL_EPENA); + + /* Enable the Tx FIFO Empty Interrupt for this EP */ + if (ep->xfer_len > 0U) + { + USBx_DEVICE->DIEPEMPMSK |= 1UL << (ep->num & EP_ADDR_MSK); + } + } + } + else /* OUT endpoint */ + { + /* Program the transfer size and packet count as follows: + * pktcnt = N + * xfersize = N * maxpacket + */ + USBx_OUTEP(epnum)->DOEPTSIZ &= ~(USB_OTG_DOEPTSIZ_XFRSIZ); + USBx_OUTEP(epnum)->DOEPTSIZ &= ~(USB_OTG_DOEPTSIZ_PKTCNT); + + if (ep->xfer_len > 0U) + { + ep->xfer_len = ep->maxpacket; + } + + USBx_OUTEP(epnum)->DOEPTSIZ |= (USB_OTG_DOEPTSIZ_PKTCNT & (1U << 19)); + USBx_OUTEP(epnum)->DOEPTSIZ |= (USB_OTG_DOEPTSIZ_XFRSIZ & (ep->maxpacket)); + + if (dma == 1U) + { + if ((uint32_t)ep->xfer_buff != 0U) + { + USBx_OUTEP(epnum)->DOEPDMA = (uint32_t)(ep->xfer_buff); + } + } + + /* EP enable */ + USBx_OUTEP(epnum)->DOEPCTL |= (USB_OTG_DOEPCTL_CNAK | USB_OTG_DOEPCTL_EPENA); + } + + return HAL_OK; +} + +/** + * @brief USB_WritePacket : Writes a packet into the Tx FIFO associated + * with the EP/channel + * @param USBx Selected device + * @param src pointer to source buffer + * @param ch_ep_num endpoint or host channel number + * @param len Number of bytes to write + * @param dma USB dma enabled or disabled + * This parameter can be one of these values: + * 0 : DMA feature not used + * 1 : DMA feature used + * @retval HAL status + */ +HAL_StatusTypeDef USB_WritePacket(USB_OTG_GlobalTypeDef *USBx, uint8_t *src, uint8_t ch_ep_num, uint16_t len, uint8_t dma) +{ + uint32_t USBx_BASE = (uint32_t)USBx; + uint8_t *pSrc = src; + uint32_t count32b, i; + + if (dma == 0U) + { + count32b = ((uint32_t)len + 3U) / 4U; + for (i = 0U; i < count32b; i++) + { + USBx_DFIFO((uint32_t)ch_ep_num) = __UNALIGNED_UINT32_READ(pSrc); + pSrc += 4; + } + } + + return HAL_OK; +} + +/** + * @brief USB_ReadPacket : read a packet from the RX FIFO + * @param USBx Selected device + * @param dest source pointer + * @param len Number of bytes to read + * @retval pointer to destination buffer + */ +void *USB_ReadPacket(USB_OTG_GlobalTypeDef *USBx, uint8_t *dest, uint16_t len) +{ + uint32_t USBx_BASE = (uint32_t)USBx; + uint8_t *pDest = dest; + uint32_t i; + uint32_t count32b = ((uint32_t)len + 3U) / 4U; + + for (i = 0U; i < count32b; i++) + { + __UNALIGNED_UINT32_WRITE(pDest, USBx_DFIFO(0U)); + pDest += 4; + } + + return ((void *)pDest); +} + +/** + * @brief USB_EPSetStall : set a stall condition over an EP + * @param USBx Selected device + * @param ep pointer to endpoint structure + * @retval HAL status + */ +HAL_StatusTypeDef USB_EPSetStall(USB_OTG_GlobalTypeDef *USBx, USB_OTG_EPTypeDef *ep) +{ + uint32_t USBx_BASE = (uint32_t)USBx; + uint32_t epnum = (uint32_t)ep->num; + + if (ep->is_in == 1U) + { + if (((USBx_INEP(epnum)->DIEPCTL & USB_OTG_DIEPCTL_EPENA) == 0U) && (epnum != 0U)) + { + USBx_INEP(epnum)->DIEPCTL &= ~(USB_OTG_DIEPCTL_EPDIS); + } + USBx_INEP(epnum)->DIEPCTL |= USB_OTG_DIEPCTL_STALL; + } + else + { + if (((USBx_OUTEP(epnum)->DOEPCTL & USB_OTG_DOEPCTL_EPENA) == 0U) && (epnum != 0U)) + { + USBx_OUTEP(epnum)->DOEPCTL &= ~(USB_OTG_DOEPCTL_EPDIS); + } + USBx_OUTEP(epnum)->DOEPCTL |= USB_OTG_DOEPCTL_STALL; + } + + return HAL_OK; +} + +/** + * @brief USB_EPClearStall : Clear a stall condition over an EP + * @param USBx Selected device + * @param ep pointer to endpoint structure + * @retval HAL status + */ +HAL_StatusTypeDef USB_EPClearStall(USB_OTG_GlobalTypeDef *USBx, USB_OTG_EPTypeDef *ep) +{ + uint32_t USBx_BASE = (uint32_t)USBx; + uint32_t epnum = (uint32_t)ep->num; + + if (ep->is_in == 1U) + { + USBx_INEP(epnum)->DIEPCTL &= ~USB_OTG_DIEPCTL_STALL; + if ((ep->type == EP_TYPE_INTR) || (ep->type == EP_TYPE_BULK)) + { + USBx_INEP(epnum)->DIEPCTL |= USB_OTG_DIEPCTL_SD0PID_SEVNFRM; /* DATA0 */ + } + } + else + { + USBx_OUTEP(epnum)->DOEPCTL &= ~USB_OTG_DOEPCTL_STALL; + if ((ep->type == EP_TYPE_INTR) || (ep->type == EP_TYPE_BULK)) + { + USBx_OUTEP(epnum)->DOEPCTL |= USB_OTG_DOEPCTL_SD0PID_SEVNFRM; /* DATA0 */ + } + } + return HAL_OK; +} + +/** + * @brief USB_StopDevice : Stop the usb device mode + * @param USBx Selected device + * @retval HAL status + */ +HAL_StatusTypeDef USB_StopDevice(USB_OTG_GlobalTypeDef *USBx) +{ + HAL_StatusTypeDef ret; + uint32_t USBx_BASE = (uint32_t)USBx; + uint32_t i; + + /* Clear Pending interrupt */ + for (i = 0U; i < 15U; i++) + { + USBx_INEP(i)->DIEPINT = 0xFB7FU; + USBx_OUTEP(i)->DOEPINT = 0xFB7FU; + } + + /* Clear interrupt masks */ + USBx_DEVICE->DIEPMSK = 0U; + USBx_DEVICE->DOEPMSK = 0U; + USBx_DEVICE->DAINTMSK = 0U; + + /* Flush the FIFO */ + ret = USB_FlushRxFifo(USBx); + if (ret != HAL_OK) + { + return ret; + } + + ret = USB_FlushTxFifo(USBx, 0x10U); + if (ret != HAL_OK) + { + return ret; + } + + return ret; +} + +/** + * @brief USB_SetDevAddress : Stop the usb device mode + * @param USBx Selected device + * @param address new device address to be assigned + * This parameter can be a value from 0 to 255 + * @retval HAL status + */ +HAL_StatusTypeDef USB_SetDevAddress(USB_OTG_GlobalTypeDef *USBx, uint8_t address) +{ + uint32_t USBx_BASE = (uint32_t)USBx; + + USBx_DEVICE->DCFG &= ~(USB_OTG_DCFG_DAD); + USBx_DEVICE->DCFG |= ((uint32_t)address << 4) & USB_OTG_DCFG_DAD; + + return HAL_OK; +} + +/** + * @brief USB_DevConnect : Connect the USB device by enabling the pull-up/pull-down + * @param USBx Selected device + * @retval HAL status + */ +HAL_StatusTypeDef USB_DevConnect(USB_OTG_GlobalTypeDef *USBx) +{ + uint32_t USBx_BASE = (uint32_t)USBx; + + USBx_DEVICE->DCTL &= ~USB_OTG_DCTL_SDIS; + HAL_Delay(3U); + + return HAL_OK; +} + +/** + * @brief USB_DevDisconnect : Disconnect the USB device by disabling the pull-up/pull-down + * @param USBx Selected device + * @retval HAL status + */ +HAL_StatusTypeDef USB_DevDisconnect(USB_OTG_GlobalTypeDef *USBx) +{ + uint32_t USBx_BASE = (uint32_t)USBx; + + USBx_DEVICE->DCTL |= USB_OTG_DCTL_SDIS; + HAL_Delay(3U); + + return HAL_OK; +} + +/** + * @brief USB_ReadInterrupts: return the global USB interrupt status + * @param USBx Selected device + * @retval HAL status + */ +uint32_t USB_ReadInterrupts(USB_OTG_GlobalTypeDef *USBx) +{ + uint32_t tmpreg; + + tmpreg = USBx->GINTSTS; + tmpreg &= USBx->GINTMSK; + + return tmpreg; +} + +/** + * @brief USB_ReadDevAllOutEpInterrupt: return the USB device OUT endpoints interrupt status + * @param USBx Selected device + * @retval HAL status + */ +uint32_t USB_ReadDevAllOutEpInterrupt(USB_OTG_GlobalTypeDef *USBx) +{ + uint32_t USBx_BASE = (uint32_t)USBx; + uint32_t tmpreg; + + tmpreg = USBx_DEVICE->DAINT; + tmpreg &= USBx_DEVICE->DAINTMSK; + + return ((tmpreg & 0xffff0000U) >> 16); +} + +/** + * @brief USB_ReadDevAllInEpInterrupt: return the USB device IN endpoints interrupt status + * @param USBx Selected device + * @retval HAL status + */ +uint32_t USB_ReadDevAllInEpInterrupt(USB_OTG_GlobalTypeDef *USBx) +{ + uint32_t USBx_BASE = (uint32_t)USBx; + uint32_t tmpreg; + + tmpreg = USBx_DEVICE->DAINT; + tmpreg &= USBx_DEVICE->DAINTMSK; + + return ((tmpreg & 0xFFFFU)); +} + +/** + * @brief Returns Device OUT EP Interrupt register + * @param USBx Selected device + * @param epnum endpoint number + * This parameter can be a value from 0 to 15 + * @retval Device OUT EP Interrupt register + */ +uint32_t USB_ReadDevOutEPInterrupt(USB_OTG_GlobalTypeDef *USBx, uint8_t epnum) +{ + uint32_t USBx_BASE = (uint32_t)USBx; + uint32_t tmpreg; + + tmpreg = USBx_OUTEP((uint32_t)epnum)->DOEPINT; + tmpreg &= USBx_DEVICE->DOEPMSK; + + return tmpreg; +} + +/** + * @brief Returns Device IN EP Interrupt register + * @param USBx Selected device + * @param epnum endpoint number + * This parameter can be a value from 0 to 15 + * @retval Device IN EP Interrupt register + */ +uint32_t USB_ReadDevInEPInterrupt(USB_OTG_GlobalTypeDef *USBx, uint8_t epnum) +{ + uint32_t USBx_BASE = (uint32_t)USBx; + uint32_t tmpreg, msk, emp; + + msk = USBx_DEVICE->DIEPMSK; + emp = USBx_DEVICE->DIEPEMPMSK; + msk |= ((emp >> (epnum & EP_ADDR_MSK)) & 0x1U) << 7; + tmpreg = USBx_INEP((uint32_t)epnum)->DIEPINT & msk; + + return tmpreg; +} + +/** + * @brief USB_ClearInterrupts: clear a USB interrupt + * @param USBx Selected device + * @param interrupt interrupt flag + * @retval None + */ +void USB_ClearInterrupts(USB_OTG_GlobalTypeDef *USBx, uint32_t interrupt) +{ + USBx->GINTSTS |= interrupt; +} + +/** + * @brief Returns USB core mode + * @param USBx Selected device + * @retval return core mode : Host or Device + * This parameter can be one of these values: + * 0 : Host + * 1 : Device + */ +uint32_t USB_GetMode(USB_OTG_GlobalTypeDef *USBx) +{ + return ((USBx->GINTSTS) & 0x1U); +} + +/** + * @brief Activate EP0 for Setup transactions + * @param USBx Selected device + * @retval HAL status + */ +HAL_StatusTypeDef USB_ActivateSetup(USB_OTG_GlobalTypeDef *USBx) +{ + uint32_t USBx_BASE = (uint32_t)USBx; + + /* Set the MPS of the IN EP0 to 64 bytes */ + USBx_INEP(0U)->DIEPCTL &= ~USB_OTG_DIEPCTL_MPSIZ; + + USBx_DEVICE->DCTL |= USB_OTG_DCTL_CGINAK; + + return HAL_OK; +} + +/** + * @brief Prepare the EP0 to start the first control setup + * @param USBx Selected device + * @param dma USB dma enabled or disabled + * This parameter can be one of these values: + * 0 : DMA feature not used + * 1 : DMA feature used + * @param psetup pointer to setup packet + * @retval HAL status + */ +HAL_StatusTypeDef USB_EP0_OutStart(USB_OTG_GlobalTypeDef *USBx, uint8_t dma, uint8_t *psetup) +{ + uint32_t USBx_BASE = (uint32_t)USBx; + uint32_t gSNPSiD = *(__IO uint32_t *)(&USBx->CID + 0x1U); + + if (gSNPSiD > USB_OTG_CORE_ID_300A) + { + if ((USBx_OUTEP(0U)->DOEPCTL & USB_OTG_DOEPCTL_EPENA) == USB_OTG_DOEPCTL_EPENA) + { + return HAL_OK; + } + } + + USBx_OUTEP(0U)->DOEPTSIZ = 0U; + USBx_OUTEP(0U)->DOEPTSIZ |= (USB_OTG_DOEPTSIZ_PKTCNT & (1U << 19)); + USBx_OUTEP(0U)->DOEPTSIZ |= (3U * 8U); + USBx_OUTEP(0U)->DOEPTSIZ |= USB_OTG_DOEPTSIZ_STUPCNT; + + if (dma == 1U) + { + USBx_OUTEP(0U)->DOEPDMA = (uint32_t)psetup; + /* EP enable */ + USBx_OUTEP(0U)->DOEPCTL |= USB_OTG_DOEPCTL_EPENA | USB_OTG_DOEPCTL_USBAEP; + } + + return HAL_OK; +} + +/** + * @brief Reset the USB Core (needed after USB clock settings change) + * @param USBx Selected device + * @retval HAL status + */ +static HAL_StatusTypeDef USB_CoreReset(USB_OTG_GlobalTypeDef *USBx) +{ + uint32_t count = 0U; + + /* Wait for AHB master IDLE state. */ + do + { + if (++count > 200000U) + { + return HAL_TIMEOUT; + } + } + while ((USBx->GRSTCTL & USB_OTG_GRSTCTL_AHBIDL) == 0U); + + /* Core Soft Reset */ + count = 0U; + USBx->GRSTCTL |= USB_OTG_GRSTCTL_CSRST; + + do + { + if (++count > 200000U) + { + return HAL_TIMEOUT; + } + } + while ((USBx->GRSTCTL & USB_OTG_GRSTCTL_CSRST) == USB_OTG_GRSTCTL_CSRST); + + return HAL_OK; +} + +/** + * @brief USB_HostInit : Initializes the USB OTG controller registers + * for Host mode + * @param USBx Selected device + * @param cfg pointer to a USB_OTG_CfgTypeDef structure that contains + * the configuration information for the specified USBx peripheral. + * @retval HAL status + */ +HAL_StatusTypeDef USB_HostInit(USB_OTG_GlobalTypeDef *USBx, USB_OTG_CfgTypeDef cfg) +{ + uint32_t USBx_BASE = (uint32_t)USBx; + uint32_t i; + + /* Restart the Phy Clock */ + USBx_PCGCCTL = 0U; + + /* Disable VBUS sensing */ + USBx->GCCFG &= ~(USB_OTG_GCCFG_VBDEN); + + /* Disable Battery chargin detector */ + USBx->GCCFG &= ~(USB_OTG_GCCFG_BCDEN); + + + if ((USBx->CID & (0x1U << 8)) != 0U) + { + if (cfg.speed == USB_OTG_SPEED_FULL) + { + /* Force Device Enumeration to FS/LS mode only */ + USBx_HOST->HCFG |= USB_OTG_HCFG_FSLSS; + } + else + { + /* Set default Max speed support */ + USBx_HOST->HCFG &= ~(USB_OTG_HCFG_FSLSS); + } + } + else + { + /* Set default Max speed support */ + USBx_HOST->HCFG &= ~(USB_OTG_HCFG_FSLSS); + } + + /* Make sure the FIFOs are flushed. */ + (void)USB_FlushTxFifo(USBx, 0x10U); /* all Tx FIFOs */ + (void)USB_FlushRxFifo(USBx); + + /* Clear all pending HC Interrupts */ + for (i = 0U; i < cfg.Host_channels; i++) + { + USBx_HC(i)->HCINT = 0xFFFFFFFFU; + USBx_HC(i)->HCINTMSK = 0U; + } + + /* Enable VBUS driving */ + (void)USB_DriveVbus(USBx, 1U); + + HAL_Delay(200U); + + /* Disable all interrupts. */ + USBx->GINTMSK = 0U; + + /* Clear any pending interrupts */ + USBx->GINTSTS = 0xFFFFFFFFU; + + if ((USBx->CID & (0x1U << 8)) != 0U) + { + /* set Rx FIFO size */ + USBx->GRXFSIZ = 0x200U; + USBx->DIEPTXF0_HNPTXFSIZ = (uint32_t)(((0x100U << 16) & USB_OTG_NPTXFD) | 0x200U); + USBx->HPTXFSIZ = (uint32_t)(((0xE0U << 16) & USB_OTG_HPTXFSIZ_PTXFD) | 0x300U); + } + else + { + /* set Rx FIFO size */ + USBx->GRXFSIZ = 0x80U; + USBx->DIEPTXF0_HNPTXFSIZ = (uint32_t)(((0x60U << 16) & USB_OTG_NPTXFD) | 0x80U); + USBx->HPTXFSIZ = (uint32_t)(((0x40U << 16)& USB_OTG_HPTXFSIZ_PTXFD) | 0xE0U); + } + + /* Enable the common interrupts */ + if (cfg.dma_enable == 0U) + { + USBx->GINTMSK |= USB_OTG_GINTMSK_RXFLVLM; + } + + /* Enable interrupts matching to the Host mode ONLY */ + USBx->GINTMSK |= (USB_OTG_GINTMSK_PRTIM | USB_OTG_GINTMSK_HCIM | \ + USB_OTG_GINTMSK_SOFM | USB_OTG_GINTSTS_DISCINT | \ + USB_OTG_GINTMSK_PXFRM_IISOOXFRM | USB_OTG_GINTMSK_WUIM); + + return HAL_OK; +} + +/** + * @brief USB_InitFSLSPClkSel : Initializes the FSLSPClkSel field of the + * HCFG register on the PHY type and set the right frame interval + * @param USBx Selected device + * @param freq clock frequency + * This parameter can be one of these values: + * HCFG_48_MHZ : Full Speed 48 MHz Clock + * HCFG_6_MHZ : Low Speed 6 MHz Clock + * @retval HAL status + */ +HAL_StatusTypeDef USB_InitFSLSPClkSel(USB_OTG_GlobalTypeDef *USBx, uint8_t freq) +{ + uint32_t USBx_BASE = (uint32_t)USBx; + + USBx_HOST->HCFG &= ~(USB_OTG_HCFG_FSLSPCS); + USBx_HOST->HCFG |= (uint32_t)freq & USB_OTG_HCFG_FSLSPCS; + + if (freq == HCFG_48_MHZ) + { + USBx_HOST->HFIR = 48000U; + } + else if (freq == HCFG_6_MHZ) + { + USBx_HOST->HFIR = 6000U; + } + else + { + /* ... */ + } + + return HAL_OK; +} + +/** +* @brief USB_OTG_ResetPort : Reset Host Port + * @param USBx Selected device + * @retval HAL status + * @note (1)The application must wait at least 10 ms + * before clearing the reset bit. + */ +HAL_StatusTypeDef USB_ResetPort(USB_OTG_GlobalTypeDef *USBx) +{ + uint32_t USBx_BASE = (uint32_t)USBx; + + __IO uint32_t hprt0 = 0U; + + hprt0 = USBx_HPRT0; + + hprt0 &= ~(USB_OTG_HPRT_PENA | USB_OTG_HPRT_PCDET | + USB_OTG_HPRT_PENCHNG | USB_OTG_HPRT_POCCHNG); + + USBx_HPRT0 = (USB_OTG_HPRT_PRST | hprt0); + HAL_Delay(100U); /* See Note #1 */ + USBx_HPRT0 = ((~USB_OTG_HPRT_PRST) & hprt0); + HAL_Delay(10U); + + return HAL_OK; +} + +/** + * @brief USB_DriveVbus : activate or de-activate vbus + * @param state VBUS state + * This parameter can be one of these values: + * 0 : VBUS Active + * 1 : VBUS Inactive + * @retval HAL status +*/ +HAL_StatusTypeDef USB_DriveVbus(USB_OTG_GlobalTypeDef *USBx, uint8_t state) +{ + uint32_t USBx_BASE = (uint32_t)USBx; + __IO uint32_t hprt0 = 0U; + + hprt0 = USBx_HPRT0; + + hprt0 &= ~(USB_OTG_HPRT_PENA | USB_OTG_HPRT_PCDET | + USB_OTG_HPRT_PENCHNG | USB_OTG_HPRT_POCCHNG); + + if (((hprt0 & USB_OTG_HPRT_PPWR) == 0U) && (state == 1U)) + { + USBx_HPRT0 = (USB_OTG_HPRT_PPWR | hprt0); + } + if (((hprt0 & USB_OTG_HPRT_PPWR) == USB_OTG_HPRT_PPWR) && (state == 0U)) + { + USBx_HPRT0 = ((~USB_OTG_HPRT_PPWR) & hprt0); + } + return HAL_OK; +} + +/** + * @brief Return Host Core speed + * @param USBx Selected device + * @retval speed : Host speed + * This parameter can be one of these values: + * @arg HCD_SPEED_HIGH: High speed mode + * @arg HCD_SPEED_FULL: Full speed mode + * @arg HCD_SPEED_LOW: Low speed mode + */ +uint32_t USB_GetHostSpeed(USB_OTG_GlobalTypeDef *USBx) +{ + uint32_t USBx_BASE = (uint32_t)USBx; + __IO uint32_t hprt0 = 0U; + + hprt0 = USBx_HPRT0; + return ((hprt0 & USB_OTG_HPRT_PSPD) >> 17); +} + +/** + * @brief Return Host Current Frame number + * @param USBx Selected device + * @retval current frame number +*/ +uint32_t USB_GetCurrentFrame(USB_OTG_GlobalTypeDef *USBx) +{ + uint32_t USBx_BASE = (uint32_t)USBx; + + return (USBx_HOST->HFNUM & USB_OTG_HFNUM_FRNUM); +} + +/** + * @brief Initialize a host channel + * @param USBx Selected device + * @param ch_num Channel number + * This parameter can be a value from 1 to 15 + * @param epnum Endpoint number + * This parameter can be a value from 1 to 15 + * @param dev_address Current device address + * This parameter can be a value from 0 to 255 + * @param speed Current device speed + * This parameter can be one of these values: + * @arg USB_OTG_SPEED_HIGH: High speed mode + * @arg USB_OTG_SPEED_FULL: Full speed mode + * @arg USB_OTG_SPEED_LOW: Low speed mode + * @param ep_type Endpoint Type + * This parameter can be one of these values: + * @arg EP_TYPE_CTRL: Control type + * @arg EP_TYPE_ISOC: Isochronous type + * @arg EP_TYPE_BULK: Bulk type + * @arg EP_TYPE_INTR: Interrupt type + * @param mps Max Packet Size + * This parameter can be a value from 0 to32K + * @retval HAL state + */ +HAL_StatusTypeDef USB_HC_Init(USB_OTG_GlobalTypeDef *USBx, + uint8_t ch_num, + uint8_t epnum, + uint8_t dev_address, + uint8_t speed, + uint8_t ep_type, + uint16_t mps) +{ + HAL_StatusTypeDef ret = HAL_OK; + uint32_t USBx_BASE = (uint32_t)USBx; + uint32_t HCcharEpDir, HCcharLowSpeed; + + /* Clear old interrupt conditions for this host channel. */ + USBx_HC((uint32_t)ch_num)->HCINT = 0xFFFFFFFFU; + + /* Enable channel interrupts required for this transfer. */ + switch (ep_type) + { + case EP_TYPE_CTRL: + case EP_TYPE_BULK: + USBx_HC((uint32_t)ch_num)->HCINTMSK = USB_OTG_HCINTMSK_XFRCM | + USB_OTG_HCINTMSK_STALLM | + USB_OTG_HCINTMSK_TXERRM | + USB_OTG_HCINTMSK_DTERRM | + USB_OTG_HCINTMSK_AHBERR | + USB_OTG_HCINTMSK_NAKM; + + if ((epnum & 0x80U) == 0x80U) + { + USBx_HC((uint32_t)ch_num)->HCINTMSK |= USB_OTG_HCINTMSK_BBERRM; + } + else + { + if ((USBx->CID & (0x1U << 8)) != 0U) + { + USBx_HC((uint32_t)ch_num)->HCINTMSK |= (USB_OTG_HCINTMSK_NYET | USB_OTG_HCINTMSK_ACKM); + } + } + break; + + case EP_TYPE_INTR: + USBx_HC((uint32_t)ch_num)->HCINTMSK = USB_OTG_HCINTMSK_XFRCM | + USB_OTG_HCINTMSK_STALLM | + USB_OTG_HCINTMSK_TXERRM | + USB_OTG_HCINTMSK_DTERRM | + USB_OTG_HCINTMSK_NAKM | + USB_OTG_HCINTMSK_AHBERR | + USB_OTG_HCINTMSK_FRMORM; + + if ((epnum & 0x80U) == 0x80U) + { + USBx_HC((uint32_t)ch_num)->HCINTMSK |= USB_OTG_HCINTMSK_BBERRM; + } + + break; + + case EP_TYPE_ISOC: + USBx_HC((uint32_t)ch_num)->HCINTMSK = USB_OTG_HCINTMSK_XFRCM | + USB_OTG_HCINTMSK_ACKM | + USB_OTG_HCINTMSK_AHBERR | + USB_OTG_HCINTMSK_FRMORM; + + if ((epnum & 0x80U) == 0x80U) + { + USBx_HC((uint32_t)ch_num)->HCINTMSK |= (USB_OTG_HCINTMSK_TXERRM | USB_OTG_HCINTMSK_BBERRM); + } + break; + + default: + ret = HAL_ERROR; + break; + } + + /* Enable the top level host channel interrupt. */ + USBx_HOST->HAINTMSK |= 1UL << (ch_num & 0xFU); + + /* Make sure host channel interrupts are enabled. */ + USBx->GINTMSK |= USB_OTG_GINTMSK_HCIM; + + /* Program the HCCHAR register */ + if ((epnum & 0x80U) == 0x80U) + { + HCcharEpDir = (0x1U << 15) & USB_OTG_HCCHAR_EPDIR; + } + else + { + HCcharEpDir = 0U; + } + + if (speed == HPRT0_PRTSPD_LOW_SPEED) + { + HCcharLowSpeed = (0x1U << 17) & USB_OTG_HCCHAR_LSDEV; + } + else + { + HCcharLowSpeed = 0U; + } + + USBx_HC((uint32_t)ch_num)->HCCHAR = (((uint32_t)dev_address << 22) & USB_OTG_HCCHAR_DAD) | + ((((uint32_t)epnum & 0x7FU) << 11) & USB_OTG_HCCHAR_EPNUM) | + (((uint32_t)ep_type << 18) & USB_OTG_HCCHAR_EPTYP) | + ((uint32_t)mps & USB_OTG_HCCHAR_MPSIZ) | HCcharEpDir | HCcharLowSpeed; + + if (ep_type == EP_TYPE_INTR) + { + USBx_HC((uint32_t)ch_num)->HCCHAR |= USB_OTG_HCCHAR_ODDFRM ; + } + + return ret; +} + +/** + * @brief Start a transfer over a host channel + * @param USBx Selected device + * @param hc pointer to host channel structure + * @param dma USB dma enabled or disabled + * This parameter can be one of these values: + * 0 : DMA feature not used + * 1 : DMA feature used + * @retval HAL state + */ +HAL_StatusTypeDef USB_HC_StartXfer(USB_OTG_GlobalTypeDef *USBx, USB_OTG_HCTypeDef *hc, uint8_t dma) +{ + uint32_t USBx_BASE = (uint32_t)USBx; + uint32_t ch_num = (uint32_t)hc->ch_num; + static __IO uint32_t tmpreg = 0U; + uint8_t is_oddframe; + uint16_t len_words; + uint16_t num_packets; + uint16_t max_hc_pkt_count = 256U; + + if (((USBx->CID & (0x1U << 8)) != 0U) && (hc->speed == USBH_HS_SPEED)) + { + if ((dma == 0U) && (hc->do_ping == 1U)) + { + (void)USB_DoPing(USBx, hc->ch_num); + return HAL_OK; + } + else if (dma == 1U) + { + USBx_HC(ch_num)->HCINTMSK &= ~(USB_OTG_HCINTMSK_NYET | USB_OTG_HCINTMSK_ACKM); + hc->do_ping = 0U; + } + else + { + /* ... */ + } + } + + /* Compute the expected number of packets associated to the transfer */ + if (hc->xfer_len > 0U) + { + num_packets = (uint16_t)((hc->xfer_len + hc->max_packet - 1U) / hc->max_packet); + + if (num_packets > max_hc_pkt_count) + { + num_packets = max_hc_pkt_count; + hc->xfer_len = (uint32_t)num_packets * hc->max_packet; + } + } + else + { + num_packets = 1U; + } + if (hc->ep_is_in != 0U) + { + hc->xfer_len = (uint32_t)num_packets * hc->max_packet; + } + + /* Initialize the HCTSIZn register */ + USBx_HC(ch_num)->HCTSIZ = (hc->xfer_len & USB_OTG_HCTSIZ_XFRSIZ) | + (((uint32_t)num_packets << 19) & USB_OTG_HCTSIZ_PKTCNT) | + (((uint32_t)hc->data_pid << 29) & USB_OTG_HCTSIZ_DPID); + + if (dma != 0U) + { + /* xfer_buff MUST be 32-bits aligned */ + USBx_HC(ch_num)->HCDMA = (uint32_t)hc->xfer_buff; + } + + is_oddframe = (((uint32_t)USBx_HOST->HFNUM & 0x01U) != 0U) ? 0U : 1U; + USBx_HC(ch_num)->HCCHAR &= ~USB_OTG_HCCHAR_ODDFRM; + USBx_HC(ch_num)->HCCHAR |= (uint32_t)is_oddframe << 29; + + /* Set host channel enable */ + tmpreg = USBx_HC(ch_num)->HCCHAR; + tmpreg &= ~USB_OTG_HCCHAR_CHDIS; + + /* make sure to set the correct ep direction */ + if (hc->ep_is_in != 0U) + { + tmpreg |= USB_OTG_HCCHAR_EPDIR; + } + else + { + tmpreg &= ~USB_OTG_HCCHAR_EPDIR; + } + tmpreg |= USB_OTG_HCCHAR_CHENA; + USBx_HC(ch_num)->HCCHAR = tmpreg; + + if (dma == 0U) /* Slave mode */ + { + if ((hc->ep_is_in == 0U) && (hc->xfer_len > 0U)) + { + switch (hc->ep_type) + { + /* Non periodic transfer */ + case EP_TYPE_CTRL: + case EP_TYPE_BULK: + + len_words = (uint16_t)((hc->xfer_len + 3U) / 4U); + + /* check if there is enough space in FIFO space */ + if (len_words > (USBx->HNPTXSTS & 0xFFFFU)) + { + /* need to process data in nptxfempty interrupt */ + USBx->GINTMSK |= USB_OTG_GINTMSK_NPTXFEM; + } + break; + + /* Periodic transfer */ + case EP_TYPE_INTR: + case EP_TYPE_ISOC: + len_words = (uint16_t)((hc->xfer_len + 3U) / 4U); + /* check if there is enough space in FIFO space */ + if (len_words > (USBx_HOST->HPTXSTS & 0xFFFFU)) /* split the transfer */ + { + /* need to process data in ptxfempty interrupt */ + USBx->GINTMSK |= USB_OTG_GINTMSK_PTXFEM; + } + break; + + default: + break; + } + + /* Write packet into the Tx FIFO. */ + (void)USB_WritePacket(USBx, hc->xfer_buff, hc->ch_num, (uint16_t)hc->xfer_len, 0); + } + } + + return HAL_OK; +} + +/** + * @brief Read all host channel interrupts status + * @param USBx Selected device + * @retval HAL state + */ +uint32_t USB_HC_ReadInterrupt(USB_OTG_GlobalTypeDef *USBx) +{ + uint32_t USBx_BASE = (uint32_t)USBx; + + return ((USBx_HOST->HAINT) & 0xFFFFU); +} + +/** + * @brief Halt a host channel + * @param USBx Selected device + * @param hc_num Host Channel number + * This parameter can be a value from 1 to 15 + * @retval HAL state + */ +HAL_StatusTypeDef USB_HC_Halt(USB_OTG_GlobalTypeDef *USBx, uint8_t hc_num) +{ + uint32_t USBx_BASE = (uint32_t)USBx; + uint32_t hcnum = (uint32_t)hc_num; + uint32_t count = 0U; + uint32_t HcEpType = (USBx_HC(hcnum)->HCCHAR & USB_OTG_HCCHAR_EPTYP) >> 18; + + /* Check for space in the request queue to issue the halt. */ + if ((HcEpType == HCCHAR_CTRL) || (HcEpType == HCCHAR_BULK)) + { + USBx_HC(hcnum)->HCCHAR |= USB_OTG_HCCHAR_CHDIS; + + if ((USBx->HNPTXSTS & (0xFFU << 16)) == 0U) + { + USBx_HC(hcnum)->HCCHAR &= ~USB_OTG_HCCHAR_CHENA; + USBx_HC(hcnum)->HCCHAR |= USB_OTG_HCCHAR_CHENA; + USBx_HC(hcnum)->HCCHAR &= ~USB_OTG_HCCHAR_EPDIR; + do + { + if (++count > 1000U) + { + break; + } + } + while ((USBx_HC(hcnum)->HCCHAR & USB_OTG_HCCHAR_CHENA) == USB_OTG_HCCHAR_CHENA); + } + else + { + USBx_HC(hcnum)->HCCHAR |= USB_OTG_HCCHAR_CHENA; + } + } + else + { + USBx_HC(hcnum)->HCCHAR |= USB_OTG_HCCHAR_CHDIS; + + if ((USBx_HOST->HPTXSTS & (0xFFU << 16)) == 0U) + { + USBx_HC(hcnum)->HCCHAR &= ~USB_OTG_HCCHAR_CHENA; + USBx_HC(hcnum)->HCCHAR |= USB_OTG_HCCHAR_CHENA; + USBx_HC(hcnum)->HCCHAR &= ~USB_OTG_HCCHAR_EPDIR; + do + { + if (++count > 1000U) + { + break; + } + } + while ((USBx_HC(hcnum)->HCCHAR & USB_OTG_HCCHAR_CHENA) == USB_OTG_HCCHAR_CHENA); + } + else + { + USBx_HC(hcnum)->HCCHAR |= USB_OTG_HCCHAR_CHENA; + } + } + + return HAL_OK; +} + +/** + * @brief Initiate Do Ping protocol + * @param USBx Selected device + * @param hc_num Host Channel number + * This parameter can be a value from 1 to 15 + * @retval HAL state + */ +HAL_StatusTypeDef USB_DoPing(USB_OTG_GlobalTypeDef *USBx, uint8_t ch_num) +{ + uint32_t USBx_BASE = (uint32_t)USBx; + uint32_t chnum = (uint32_t)ch_num; + uint32_t num_packets = 1U; + uint32_t tmpreg; + + USBx_HC(chnum)->HCTSIZ = ((num_packets << 19) & USB_OTG_HCTSIZ_PKTCNT) | + USB_OTG_HCTSIZ_DOPING; + + /* Set host channel enable */ + tmpreg = USBx_HC(chnum)->HCCHAR; + tmpreg &= ~USB_OTG_HCCHAR_CHDIS; + tmpreg |= USB_OTG_HCCHAR_CHENA; + USBx_HC(chnum)->HCCHAR = tmpreg; + + return HAL_OK; +} + +/** + * @brief Stop Host Core + * @param USBx Selected device + * @retval HAL state + */ +HAL_StatusTypeDef USB_StopHost(USB_OTG_GlobalTypeDef *USBx) +{ + uint32_t USBx_BASE = (uint32_t)USBx; + uint32_t count = 0U; + uint32_t value; + uint32_t i; + + (void)USB_DisableGlobalInt(USBx); + + /* Flush FIFO */ + (void)USB_FlushTxFifo(USBx, 0x10U); + (void)USB_FlushRxFifo(USBx); + + /* Flush out any leftover queued requests. */ + for (i = 0U; i <= 15U; i++) + { + value = USBx_HC(i)->HCCHAR; + value |= USB_OTG_HCCHAR_CHDIS; + value &= ~USB_OTG_HCCHAR_CHENA; + value &= ~USB_OTG_HCCHAR_EPDIR; + USBx_HC(i)->HCCHAR = value; + } + + /* Halt all channels to put them into a known state. */ + for (i = 0U; i <= 15U; i++) + { + value = USBx_HC(i)->HCCHAR; + value |= USB_OTG_HCCHAR_CHDIS; + value |= USB_OTG_HCCHAR_CHENA; + value &= ~USB_OTG_HCCHAR_EPDIR; + USBx_HC(i)->HCCHAR = value; + + do + { + if (++count > 1000U) + { + break; + } + } + while ((USBx_HC(i)->HCCHAR & USB_OTG_HCCHAR_CHENA) == USB_OTG_HCCHAR_CHENA); + } + + /* Clear any pending Host interrupts */ + USBx_HOST->HAINT = 0xFFFFFFFFU; + USBx->GINTSTS = 0xFFFFFFFFU; + + (void)USB_EnableGlobalInt(USBx); + + return HAL_OK; +} + +/** + * @brief USB_ActivateRemoteWakeup active remote wakeup signalling + * @param USBx Selected device + * @retval HAL status + */ +HAL_StatusTypeDef USB_ActivateRemoteWakeup(USB_OTG_GlobalTypeDef *USBx) +{ + uint32_t USBx_BASE = (uint32_t)USBx; + + if ((USBx_DEVICE->DSTS & USB_OTG_DSTS_SUSPSTS) == USB_OTG_DSTS_SUSPSTS) + { + /* active Remote wakeup signalling */ + USBx_DEVICE->DCTL |= USB_OTG_DCTL_RWUSIG; + } + + return HAL_OK; +} + +/** + * @brief USB_DeActivateRemoteWakeup de-active remote wakeup signalling + * @param USBx Selected device + * @retval HAL status + */ +HAL_StatusTypeDef USB_DeActivateRemoteWakeup(USB_OTG_GlobalTypeDef *USBx) +{ + uint32_t USBx_BASE = (uint32_t)USBx; + + /* active Remote wakeup signalling */ + USBx_DEVICE->DCTL &= ~(USB_OTG_DCTL_RWUSIG); + + return HAL_OK; +} +#endif /* defined (USB_OTG_FS) || defined (USB_OTG_HS) */ + + +/** + * @} + */ + +/** + * @} + */ +#endif /* defined (USB_OTG_FS) || defined (USB_OTG_HS) */ +#endif /* defined (HAL_PCD_MODULE_ENABLED) || defined (HAL_HCD_MODULE_ENABLED) */ + +/** + * @} + */ + +/************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/ diff --git a/source/hic_hal/stm32/stm32h743ii/extended_features/console/include/shell_cmd_adapter_type.h b/source/hic_hal/stm32/stm32h743ii/extended_features/console/include/shell_cmd_adapter_type.h new file mode 100644 index 000000000..2620beda0 --- /dev/null +++ b/source/hic_hal/stm32/stm32h743ii/extended_features/console/include/shell_cmd_adapter_type.h @@ -0,0 +1,10 @@ +#ifndef SHELL_COMMAND_ADAPTER_TYPE_H +#define SHELL_COMMAND_ADAPTER_TYPE_H + +#define UIF_CMD_ADAPTER_TYPE \ + DECLARE_UIF_CMD("adapter_type", 0, UIF_MAX_ARGS, 0, cmd_adapter_type, \ + "adapter flex type connected to the 60-pin UDC\t", "") \ + +void cmd_adapter_type(int argc, char *argv[]); + +#endif // SHELL_COMMAND_ADAPTER_TYPE_H diff --git a/source/hic_hal/stm32/stm32h743ii/extended_features/console/include/shell_cmd_btn.h b/source/hic_hal/stm32/stm32h743ii/extended_features/console/include/shell_cmd_btn.h new file mode 100644 index 000000000..f3fd1b7eb --- /dev/null +++ b/source/hic_hal/stm32/stm32h743ii/extended_features/console/include/shell_cmd_btn.h @@ -0,0 +1,20 @@ +#ifndef SHELL_CMD_BTN_H +#define SHELL_CMD_BTN_H + +#define UIF_CMD_BTN_MIN_ARGS (2) +#define UIF_CMD_BTN_MAX_ARGS (2) + +#define UIF_CMD_BTN \ + DECLARE_UIF_CMD("btn", UIF_CMD_BTN_MIN_ARGS, UIF_CMD_BTN_MAX_ARGS, 0, cmd_btn, \ + "The UDB board has a number of buttons to control gpio lines going to the DUTs. Use this command to remotely press the button.\n", " \n" \ + " - can be RST0_L, BOOT0_L, BTN0_L, RST1, BOOT1, BTN1\n" \ + " RST0_L - reset button for DUT 0 (active low)\n" \ + " BOOT0_L - boot button for DUT 0 (active low)\n" \ + " BTN0_L - user button for DUT 0 (active low)\n" \ + " RST1 - reset button for DUT 1 (active high)\n" \ + " BOOT1 - boot button for DUT 1 (active high)\n" \ + " BTN1 - user button for DUT 1 (active high)") \ + +void cmd_btn(int argc, char *argv[]); + +#endif // SHELL_CMD_BTN_H diff --git a/source/hic_hal/stm32/stm32h743ii/extended_features/console/include/shell_cmd_dut_reset.h b/source/hic_hal/stm32/stm32h743ii/extended_features/console/include/shell_cmd_dut_reset.h new file mode 100644 index 000000000..2a269da79 --- /dev/null +++ b/source/hic_hal/stm32/stm32h743ii/extended_features/console/include/shell_cmd_dut_reset.h @@ -0,0 +1,11 @@ +#ifndef SHELL_CMD_DUT_RESET_H +#define SHELL_CMD_DUT_RESET_H + +#define UIF_CMD_DUT_RESET \ + DECLARE_UIF_CMD("dut_reset", 1, 1, 0, cmd_dut_reset, \ + "Reset DUT", "\n" \ + " - can be 0 or 1") \ + +void cmd_dut_reset(int argc, char *argv[]); + +#endif // SHELL_CMD_DUT_RESET_H diff --git a/source/hic_hal/stm32/stm32h743ii/extended_features/console/include/shell_cmd_ext_relay.h b/source/hic_hal/stm32/stm32h743ii/extended_features/console/include/shell_cmd_ext_relay.h new file mode 100644 index 000000000..1cc4a8e4f --- /dev/null +++ b/source/hic_hal/stm32/stm32h743ii/extended_features/console/include/shell_cmd_ext_relay.h @@ -0,0 +1,13 @@ +#ifndef SHELL_CMD_EXT_RELAY_H +#define SHELL_CMD_EXT_RELAY_H + +#define SHELL_CMD_EXT_RELAY_MIN_ARGS (1) +#define SHELL_CMD_EXT_RELAY_MAX_ARGS (1) + +#define UIF_CMD_EXT_RELAY \ + DECLARE_UIF_CMD("ext_relay", SHELL_CMD_EXT_RELAY_MIN_ARGS, SHELL_CMD_EXT_RELAY_MAX_ARGS, 0, cmd_ext_relay, \ + "control external relay", "on|off|status") \ + +void cmd_ext_relay(int argc, char *argv[]); + +#endif // SHELL_CMD_EXT_RELAY_H diff --git a/source/hic_hal/stm32/stm32h743ii/extended_features/console/include/shell_cmd_fault.h b/source/hic_hal/stm32/stm32h743ii/extended_features/console/include/shell_cmd_fault.h new file mode 100644 index 000000000..c2eb07e00 --- /dev/null +++ b/source/hic_hal/stm32/stm32h743ii/extended_features/console/include/shell_cmd_fault.h @@ -0,0 +1,10 @@ +#ifndef SHELL_COMMAND_FAULT_H +#define SHELL_COMMAND_FAULT_H + +#define UIF_CMD_FAULT \ + DECLARE_UIF_CMD("fault", 1, UIF_MAX_ARGS, 0, cmd_fault, \ + "Fault testing command", "test_assert|test_watchdog") \ + +void cmd_fault(int argc, char *argv[]); + +#endif // SHELL_COMMAND_FAULT_H diff --git a/source/hic_hal/stm32/stm32h743ii/extended_features/console/include/shell_cmd_fault_info.h b/source/hic_hal/stm32/stm32h743ii/extended_features/console/include/shell_cmd_fault_info.h new file mode 100644 index 000000000..2ef355a35 --- /dev/null +++ b/source/hic_hal/stm32/stm32h743ii/extended_features/console/include/shell_cmd_fault_info.h @@ -0,0 +1,15 @@ +#ifndef SHELL_CMD_FAULT_INFO_H +#define SHELL_CMD_FAULT_INFO_H + +#define UIF_CMD_FAULT_INFO_MIN_ARGS (1) +#define UIF_CMD_FAULT_INFO_MAX_ARGS (1) + +#define UIF_CMD_FAULT_INFO \ + DECLARE_UIF_CMD("fault_info", UIF_CMD_FAULT_INFO_MIN_ARGS, UIF_CMD_FAULT_INFO_MAX_ARGS, 0, cmd_fault_info, \ + "fault info utility", "print|clear\n" \ + " fault_info print - print fault info\n" \ + " fault_info clear - clear fault info\n") \ + +void cmd_fault_info(int argc, char *argv[]); + +#endif // SHELL_CMD_FAULT_INFO_H diff --git a/source/hic_hal/stm32/stm32h743ii/extended_features/console/include/shell_cmd_gpio.h b/source/hic_hal/stm32/stm32h743ii/extended_features/console/include/shell_cmd_gpio.h new file mode 100644 index 000000000..8cfb48336 --- /dev/null +++ b/source/hic_hal/stm32/stm32h743ii/extended_features/console/include/shell_cmd_gpio.h @@ -0,0 +1,11 @@ +#ifndef SHELL_COMMAND_GPIO_H +#define SHELL_COMMAND_GPIO_H + +#define UIF_CMD_GPIO \ + DECLARE_UIF_CMD("gpio", 3, UIF_MAX_ARGS, 0, cmd_gpio, \ + "GPIO utility", \ + "read|in|pp_set|in_pu|in_pd|pp_clear|toggle ") \ + +void cmd_gpio(int argc, char *argv[]); + +#endif // SHELL_COMMAND_GPIO_H diff --git a/source/hic_hal/stm32/stm32h743ii/extended_features/console/include/shell_cmd_i2c.h b/source/hic_hal/stm32/stm32h743ii/extended_features/console/include/shell_cmd_i2c.h new file mode 100644 index 000000000..dafa8dd9e --- /dev/null +++ b/source/hic_hal/stm32/stm32h743ii/extended_features/console/include/shell_cmd_i2c.h @@ -0,0 +1,17 @@ +#ifndef SHELL_COMMAND_I2C_H +#define SHELL_COMMAND_I2C_H + +#define UIF_CMD_I2C \ + DECLARE_UIF_CMD("i2c", 2, UIF_MAX_ARGS, 0, cmd_i2c, \ + "I2C2 utility", "probe |
[]\n" \ + " i2c probe - Probe for slaves\n" \ + " i2c
[] - Send and receive bits\n" \ + "\t - i2c bus (UDB only supports bus 2)\n" \ + "\t
- Chip address\n" \ + "\t - Register addr to start transfer at\n" \ + "\t - Number of bytes to xfer(read max: 32, write max: 4)\n" \ + "\t - Data to be sent. Omit if reading") \ + +void cmd_i2c(int argc, char *argv[]); + +#endif // SHELL_COMMAND_I2C_H diff --git a/source/hic_hal/stm32/stm32h743ii/extended_features/console/include/shell_cmd_measure_power.h b/source/hic_hal/stm32/stm32h743ii/extended_features/console/include/shell_cmd_measure_power.h new file mode 100644 index 000000000..f78fdb828 --- /dev/null +++ b/source/hic_hal/stm32/stm32h743ii/extended_features/console/include/shell_cmd_measure_power.h @@ -0,0 +1,11 @@ +#ifndef SHELL_COMMAND_MEASURE_POWER_H +#define SHELL_COMMAND_MEASURE_POWER_H + +#define UIF_CMD_MEASURE_POWER \ + DECLARE_UIF_CMD("measure_power", 0, UIF_MAX_ARGS, 0, cmd_measure_power, \ + "measure the voltage and current going through the type-c usb" \ + " and the usb on the debug adapter board connected to UDC\t", "") \ + +void cmd_measure_power(int argc, char *argv[]); + +#endif // SHELL_COMMAND_MEASURE_POWER_H diff --git a/source/hic_hal/stm32/stm32h743ii/extended_features/console/include/shell_cmd_pwm.h b/source/hic_hal/stm32/stm32h743ii/extended_features/console/include/shell_cmd_pwm.h new file mode 100644 index 000000000..85de27fe2 --- /dev/null +++ b/source/hic_hal/stm32/stm32h743ii/extended_features/console/include/shell_cmd_pwm.h @@ -0,0 +1,11 @@ +#ifndef SHELL_COMMAND_PWM_H +#define SHELL_COMMAND_PWM_H + +#define UIF_CMD_PWM \ + DECLARE_UIF_CMD("pwm", 1, UIF_MAX_ARGS, 0, cmd_pwm, \ + "PWM utility", \ + "start |stop - Start to output TIM1 CH1 1.8V PWM to GPIOE 9 pin or stop it\n") \ + +void cmd_pwm(int argc, char *argv[]); + +#endif // SHELL_COMMAND_PWM_H diff --git a/source/hic_hal/stm32/stm32h743ii/extended_features/console/include/shell_cmd_reset.h b/source/hic_hal/stm32/stm32h743ii/extended_features/console/include/shell_cmd_reset.h new file mode 100644 index 000000000..e6334e717 --- /dev/null +++ b/source/hic_hal/stm32/stm32h743ii/extended_features/console/include/shell_cmd_reset.h @@ -0,0 +1,10 @@ +#ifndef SHELL_COMMAND_RESET_H +#define SHELL_COMMAND_RESET_H + +#define UIF_CMD_RESET \ + DECLARE_UIF_CMD("reset", 0, UIF_MAX_ARGS, 0, cmd_reset, \ + "Reset UDB", "") \ + +void cmd_reset(int argc, char *argv[]); + +#endif // SHELL_COMMAND_RESET_H diff --git a/source/hic_hal/stm32/stm32h743ii/extended_features/console/include/shell_cmd_reset_into_swu_mode.h b/source/hic_hal/stm32/stm32h743ii/extended_features/console/include/shell_cmd_reset_into_swu_mode.h new file mode 100644 index 000000000..7fe1ff436 --- /dev/null +++ b/source/hic_hal/stm32/stm32h743ii/extended_features/console/include/shell_cmd_reset_into_swu_mode.h @@ -0,0 +1,10 @@ +#ifndef SHELL_COMMAND_RESET_INTO_SWU_MODE_H +#define SHELL_COMMAND_RESET_INTO_SWU_MODE_H + +#define UIF_CMD_RESET_INTO_SWU_MODE \ + DECLARE_UIF_CMD("reset_into_swu_mode", 0, UIF_MAX_ARGS, 0, cmd_reset_into_swu_mode, \ + "Request to stay in bootloader mode for SWU\t", "") \ + +void cmd_reset_into_swu_mode(int argc, char *argv[]); + +#endif // SHELL_COMMAND_RESET_INTO_SWU_MODE_H diff --git a/source/hic_hal/stm32/stm32h743ii/extended_features/console/include/shell_cmd_swd_dut.h b/source/hic_hal/stm32/stm32h743ii/extended_features/console/include/shell_cmd_swd_dut.h new file mode 100644 index 000000000..76a5317f5 --- /dev/null +++ b/source/hic_hal/stm32/stm32h743ii/extended_features/console/include/shell_cmd_swd_dut.h @@ -0,0 +1,16 @@ +#ifndef SHELL_CMD_SWD_DUT_H +#define SHELL_CMD_SWD_DUT_H + +#define SHELL_CMD_SWD_DUT_MIN_ARGS (0) +#define SHELL_CMD_SWD_DUT_MAX_ARGS (1) + +#define UIF_CMD_SWD_DUT \ + DECLARE_UIF_CMD("swd_dut", SHELL_CMD_SWD_DUT_MIN_ARGS, SHELL_CMD_SWD_DUT_MAX_ARGS, 0, cmd_swd_dut, \ + "You can redirect SWD communication over UDB to either the default DUT0 or to the DUT1 connection. Use this command to switch between the two\n", "[0|1]\n" \ + " swd_dut 0 - use DUT 0 SWD\n" \ + " swd_dut 1 - use DUT 1 SWD\n" \ + " swd_dut - examine which DUT is in use") \ + +void cmd_swd_dut(int argc, char *argv[]); + +#endif // SHELL_CMD_SWD_DUT_H diff --git a/source/hic_hal/stm32/stm32h743ii/extended_features/console/include/shell_cmd_uptime.h b/source/hic_hal/stm32/stm32h743ii/extended_features/console/include/shell_cmd_uptime.h new file mode 100644 index 000000000..61c189878 --- /dev/null +++ b/source/hic_hal/stm32/stm32h743ii/extended_features/console/include/shell_cmd_uptime.h @@ -0,0 +1,10 @@ +#ifndef SHELL_CMD_UPTIME_H +#define SHELL_CMD_UPTIME_H + +#define UIF_CMD_UPTIME \ + DECLARE_UIF_CMD("uptime", 0, 0, 0, cmd_uptime, \ + "UDB uptime", "") \ + +void cmd_uptime(int argc, char *argv[]); + +#endif // SHELL_CMD_UPTIME_H diff --git a/source/hic_hal/stm32/stm32h743ii/extended_features/console/include/shell_cmd_version.h b/source/hic_hal/stm32/stm32h743ii/extended_features/console/include/shell_cmd_version.h new file mode 100644 index 000000000..91279f2ce --- /dev/null +++ b/source/hic_hal/stm32/stm32h743ii/extended_features/console/include/shell_cmd_version.h @@ -0,0 +1,10 @@ +#ifndef SHELL_COMMAND_VERSION_H +#define SHELL_COMMAND_VERSION_H + +#define UIF_CMD_VERSION \ + DECLARE_UIF_CMD("version", 0, UIF_MAX_ARGS, 0, cmd_version, \ + "Print UDB version", "") \ + +void cmd_version(int argc, char *argv[]); + +#endif // SHELL_COMMAND_VERSION_H diff --git a/source/hic_hal/stm32/stm32h743ii/extended_features/console/source/shell_cmd_adapter_type.c b/source/hic_hal/stm32/stm32h743ii/extended_features/console/source/shell_cmd_adapter_type.c new file mode 100644 index 000000000..0847419fd --- /dev/null +++ b/source/hic_hal/stm32/stm32h743ii/extended_features/console/source/shell_cmd_adapter_type.c @@ -0,0 +1,9 @@ +#include +#include "shell_cmd_adapter_type.h" +#include "udb_adapter_detector.h" + +void cmd_adapter_type(int argc, char *argv[]) +{ + udb_adapter_type_t adapter_type = udb_adapter_detector_get_adapter_type_adc(); + printf("%s\n", udb_adapter_detector_get_adapter_type_name(adapter_type)); +} diff --git a/source/hic_hal/stm32/stm32h743ii/extended_features/console/source/shell_cmd_btn.c b/source/hic_hal/stm32/stm32h743ii/extended_features/console/source/shell_cmd_btn.c new file mode 100644 index 000000000..5040a037e --- /dev/null +++ b/source/hic_hal/stm32/stm32h743ii/extended_features/console/source/shell_cmd_btn.c @@ -0,0 +1,88 @@ +#include "shell_cmd_btn.h" + +#include +#include +#include +#include +#include +#include "IO_Config.h" + +static const char *s_dut_btn_names[DUT_PIN_GROUP_ID_COUNT] = +{ + [DUT_PIN_GROUP_ID_UDC0_RST_L] = "RST0_L", + [DUT_PIN_GROUP_ID_UDC0_BOOT_L] = "BOOT0_L", + [DUT_PIN_GROUP_ID_UDC0_BUTTON_L] = "BTN0_L", + [DUT_PIN_GROUP_ID_UDC1_RST] = "RST1", + [DUT_PIN_GROUP_ID_UDC1_BOOT] = "BOOT1", + [DUT_PIN_GROUP_ID_UDC1_BUTTON] = "BTN1", +}; + +void cmd_btn(int argc, char *argv[]) +{ + dut_pin_group_id_t dut_pin_grp = DUT_PIN_GROUP_ID_COUNT; + GPIO_PinState pin_state; + + for (dut_pin_group_id_t grp_id = 0; grp_id < DUT_PIN_GROUP_ID_COUNT; ++grp_id) + { + if (strcmp(argv[1], s_dut_btn_names[grp_id]) == 0) + { + dut_pin_grp = grp_id; + break; + } + } + + if (dut_pin_grp < DUT_PIN_GROUP_ID_COUNT) + { + if (strcmp(argv[2], "press") == 0) + { + if (gpio_dut_pin_group_is_active_high(dut_pin_grp) == true) + { + gpio_config_dut_pin_group(dut_pin_grp, DUT_PIN_GROUP_STATE_OUTPUT, GPIO_PULLUP); + } + else + { + gpio_config_dut_pin_group(dut_pin_grp, DUT_PIN_GROUP_STATE_OUTPUT, GPIO_PULLDOWN); + } + HAL_Delay(GPIO_CONFIG_DUT_DELAY_MS); + } + else if (strcmp(argv[2], "release") == 0) + { + if (gpio_dut_pin_group_is_active_high(dut_pin_grp) == true) + { + gpio_config_dut_pin_group(dut_pin_grp, DUT_PIN_GROUP_STATE_OUTPUT, GPIO_PULLDOWN); + } + else + { + gpio_config_dut_pin_group(dut_pin_grp, DUT_PIN_GROUP_STATE_OUTPUT, GPIO_PULLUP); + } + HAL_Delay(GPIO_CONFIG_DUT_DELAY_MS); + gpio_config_dut_pin_group(dut_pin_grp, DUT_PIN_GROUP_STATE_INPUT, GPIO_NOPULL); + } + else if (strcmp(argv[2], "tap") == 0) + { + if (gpio_dut_pin_group_is_active_high(dut_pin_grp) == true) + { + gpio_config_dut_pin_group(dut_pin_grp, DUT_PIN_GROUP_STATE_OUTPUT, GPIO_PULLUP); + HAL_Delay(GPIO_CONFIG_DUT_DELAY_MS); + gpio_write_dut_pin(dut_pin_grp, GPIO_PIN_RESET); + HAL_Delay(GPIO_WRITE_DUT_DELAY_MS); + } + else + { + gpio_config_dut_pin_group(dut_pin_grp, DUT_PIN_GROUP_STATE_OUTPUT, GPIO_PULLDOWN); + HAL_Delay(GPIO_CONFIG_DUT_DELAY_MS); + gpio_write_dut_pin(dut_pin_grp, GPIO_PIN_SET); + HAL_Delay(GPIO_WRITE_DUT_DELAY_MS); + } + gpio_config_dut_pin_group(dut_pin_grp, DUT_PIN_GROUP_STATE_INPUT, GPIO_NOPULL); + } + else + { + printf("%s is not a valid cmd\n", argv[2]); + } + } + else + { + printf("%s is not a valid button name\n", argv[1]); + } +} diff --git a/source/hic_hal/stm32/stm32h743ii/extended_features/console/source/shell_cmd_dut_reset.c b/source/hic_hal/stm32/stm32h743ii/extended_features/console/source/shell_cmd_dut_reset.c new file mode 100644 index 000000000..8557eb103 --- /dev/null +++ b/source/hic_hal/stm32/stm32h743ii/extended_features/console/source/shell_cmd_dut_reset.c @@ -0,0 +1,40 @@ +#include "shell_cmd_dut_reset.h" + +#include +#include +#include +#include "IO_Config.h" + +/* + * Reset pins going to the DUT go through level shifters. + * We can only drive DUT pins by programming the pull-up/pull-down registers. + * If we change a DUT pin to output, it will conflict with the level-transition IC. + * + * To reset DUT0, we change the direction to output, drive UDC0_RST_L low, delay, + * drive UDC0_RST_L high, delay, change direction back to input. + * To reset DUT1, we change the direction to output, drive UDC1_RST high, delay, + * drive UDC1_RST low, delay, change direction back to input. + */ +void cmd_dut_reset(int argc, char *argv[]) +{ + if (strcmp(argv[1], "0") == 0) + { + gpio_config_dut_pin_group(DUT_PIN_GROUP_ID_UDC0_RST_L, DUT_PIN_GROUP_STATE_OUTPUT, GPIO_PULLDOWN); + HAL_Delay(GPIO_CONFIG_DUT_DELAY_MS); + gpio_write_dut_pin(DUT_PIN_GROUP_ID_UDC0_RST_L, GPIO_PIN_SET); + HAL_Delay(GPIO_WRITE_DUT_DELAY_MS); + gpio_config_dut_pin_group(DUT_PIN_GROUP_ID_UDC0_RST_L, DUT_PIN_GROUP_STATE_INPUT, GPIO_NOPULL); + } + else if (strcmp(argv[1], "1") == 0) + { + gpio_config_dut_pin_group(DUT_PIN_GROUP_ID_UDC1_RST, DUT_PIN_GROUP_STATE_OUTPUT, GPIO_PULLUP); + HAL_Delay(GPIO_CONFIG_DUT_DELAY_MS); + gpio_write_dut_pin(DUT_PIN_GROUP_ID_UDC1_RST, GPIO_PIN_RESET); + HAL_Delay(GPIO_WRITE_DUT_DELAY_MS); + gpio_config_dut_pin_group(DUT_PIN_GROUP_ID_UDC1_RST, DUT_PIN_GROUP_STATE_INPUT, GPIO_NOPULL); + } + else + { + printf("dut_reset can not reset dut %s\n", argv[1]); + } +} diff --git a/source/hic_hal/stm32/stm32h743ii/extended_features/console/source/shell_cmd_ext_relay.c b/source/hic_hal/stm32/stm32h743ii/extended_features/console/source/shell_cmd_ext_relay.c new file mode 100644 index 000000000..a83aa256f --- /dev/null +++ b/source/hic_hal/stm32/stm32h743ii/extended_features/console/source/shell_cmd_ext_relay.c @@ -0,0 +1,34 @@ +#include "shell_cmd_ext_relay.h" + +#include +#include +#include + +#include "IO_Config.h" + +void cmd_ext_relay(int argc, char * argv[]) +{ + if (strcmp(argv[1], "on") == 0) + { + HAL_GPIO_WritePin(UDC_EXT_RELAY_PORT, UDC_EXT_RELAY_PIN, GPIO_PIN_SET); + } + else if (strcmp(argv[1], "off") == 0) + { + HAL_GPIO_WritePin(UDC_EXT_RELAY_PORT, UDC_EXT_RELAY_PIN, GPIO_PIN_RESET); + } + else if (strcmp(argv[1], "status") == 0) + { + if (HAL_GPIO_ReadPin(UDC_EXT_RELAY_PORT, UDC_EXT_RELAY_PIN) == GPIO_PIN_SET) + { + printf("external relay is on\n"); + } + else + { + printf("external relay is off\n"); + } + } + else + { + printf("Invalid arg: %s\n", argv[1]); + } +} diff --git a/source/hic_hal/stm32/stm32h743ii/extended_features/console/source/shell_cmd_fault.c b/source/hic_hal/stm32/stm32h743ii/extended_features/console/source/shell_cmd_fault.c new file mode 100644 index 000000000..468ba33b2 --- /dev/null +++ b/source/hic_hal/stm32/stm32h743ii/extended_features/console/source/shell_cmd_fault.c @@ -0,0 +1,20 @@ +#include "shell_cmd_fault.h" +#include "util.h" +#include +#include + +void cmd_fault(int argc, char *argv[]) +{ + if (strcmp(argv[1], "test_assert") == 0) + { + util_assert(false); + } + else if (strcmp(argv[1], "test_watchdog") == 0) + { + while (1) {} + } + else + { + printf("ERROR: unknown cmd\n"); + } +} diff --git a/source/hic_hal/stm32/stm32h743ii/extended_features/console/source/shell_cmd_fault_info.c b/source/hic_hal/stm32/stm32h743ii/extended_features/console/source/shell_cmd_fault_info.c new file mode 100644 index 000000000..e3ca4e067 --- /dev/null +++ b/source/hic_hal/stm32/stm32h743ii/extended_features/console/source/shell_cmd_fault_info.c @@ -0,0 +1,28 @@ +#include "shell_cmd_fault_info.h" + +#include +#include +#include "udb_fault_info.h" + +void cmd_fault_info(int argc, char *argv[]) +{ + if (strcmp(argv[1], "print") == 0) + { + if (udb_is_fault_info_uncleared()) + { + udb_print_fault_info(); + } + else + { + printf("There's no saved fault info\n"); + } + } + else if (strcmp(argv[1], "clear") == 0) + { + udb_clear_fault_info(); + } + else + { + printf("Error: wrong args\n"); + } +} diff --git a/source/hic_hal/stm32/stm32h743ii/extended_features/console/source/shell_cmd_gpio.c b/source/hic_hal/stm32/stm32h743ii/extended_features/console/source/shell_cmd_gpio.c new file mode 100644 index 000000000..b82babfe6 --- /dev/null +++ b/source/hic_hal/stm32/stm32h743ii/extended_features/console/source/shell_cmd_gpio.c @@ -0,0 +1,81 @@ +#include +#include +#include +#include +#include +#include "shell_cmd_gpio.h" + +void cmd_gpio(int argc, char * argv[]) +{ + bool skip_request = false; + GPIO_PinState value = 0; + GPIO_InitTypeDef GPIO_InitStructure = {0}; + GPIO_TypeDef * port; + uint16_t pin; + + int port_arg = argv[2][0] - 'A'; + uint16_t pin_arg = strtoul(argv[3], NULL, 10); + + if ((port_arg < 0) || + (port_arg > (int)('I' - 'A')) || + (pin_arg > 15)) + { + printf("Port: %d Pin %u is not valid.\n", port_arg, pin_arg); + goto done; + } + + pin = (uint16_t)0x0001 << pin_arg; + port = (GPIO_TypeDef *)(D3_AHB1PERIPH_BASE + (port_arg * 0x0400UL)); + + if (strcmp(argv[1], "read") == 0) + { + skip_request = true; + } + else if (strcmp(argv[1], "in") == 0) + { + GPIO_InitStructure.Mode = GPIO_MODE_INPUT; + GPIO_InitStructure.Pull = GPIO_NOPULL; + } + else if (strcmp(argv[1], "in_pu") == 0) + { + GPIO_InitStructure.Mode = GPIO_MODE_INPUT; + GPIO_InitStructure.Pull = GPIO_PULLUP; + } + else if (strcmp(argv[1], "in_pd") == 0) + { + GPIO_InitStructure.Mode = GPIO_MODE_INPUT; + GPIO_InitStructure.Pull = GPIO_PULLDOWN; + } + else if (strcmp(argv[1], "pp_clear") == 0) + { + HAL_GPIO_WritePin(port, pin, GPIO_PIN_RESET); + GPIO_InitStructure.Mode = GPIO_MODE_OUTPUT_PP; + } + else if (strcmp(argv[1], "pp_set") == 0) + { + HAL_GPIO_WritePin(port, pin, GPIO_PIN_SET); + GPIO_InitStructure.Mode = GPIO_MODE_OUTPUT_PP; + } + else if (strcmp(argv[1], "toggle") == 0) + { + HAL_GPIO_TogglePin(port, pin); + skip_request = true; + } + else + { + printf("Unknown command '%s'\n", argv[1]); + goto done; + } + + if (!skip_request) + { + GPIO_InitStructure.Pin = pin; + GPIO_InitStructure.Speed = GPIO_SPEED_FREQ_HIGH; + HAL_GPIO_Init(port, &GPIO_InitStructure); + } + value = HAL_GPIO_ReadPin(port, pin); + printf("GPIO port %c pin %u is %u\n", argv[2][0], pin_arg, value); + +done: + return; +} \ No newline at end of file diff --git a/source/hic_hal/stm32/stm32h743ii/extended_features/console/source/shell_cmd_i2c.c b/source/hic_hal/stm32/stm32h743ii/extended_features/console/source/shell_cmd_i2c.c new file mode 100644 index 000000000..aea3653df --- /dev/null +++ b/source/hic_hal/stm32/stm32h743ii/extended_features/console/source/shell_cmd_i2c.c @@ -0,0 +1,120 @@ +#include "shell_cmd_i2c.h" +#include "i2c.h" +#include +#include +#include + +#define I2C_ARGC_READ (5) +#define I2C_ARGC_WRITE (I2C_ARGC_READ + 1) + +// range for 7-bit addressing +#define I2C_SLAVE_ADDR_MIN (0x08) +#define I2C_SLAVE_ADDR_MAX (0x77) +#define UDB_I2C_CMD_READ_BUFFER_SIZE (32) +#define I2C_WRITE_MAX_LEN (sizeof(uint32_t) / sizeof(uint8_t)) + +void cmd_i2c(int argc, char *argv[]) +{ + if (strcmp(argv[1], "probe") == 0) + { + printf("probing...\n"); + + uint8_t bus_id = strtoul(argv[2], NULL, 0); + + if (bus_id < I2C_BUS_COUNT) + { + i2c_slave_t slave = + { + .bus_id = bus_id, + }; + + i2c_request(&slave); + for (uint16_t addr = I2C_SLAVE_ADDR_MIN; addr <= I2C_SLAVE_ADDR_MAX; ++addr) + { + slave.slave_addr = addr; + if (i2c_write(&slave, 0, 0, 0) == UDB_SUCCESS) + { + printf("%#.*x\n", 2, addr); + } + } + i2c_release(&slave); + } + else + { + printf("Error: UDB doesn't have bus %u\n", bus_id); + } + } + else if ((argc == I2C_ARGC_READ) || (argc == I2C_ARGC_WRITE)) + { + uint8_t bus_id = strtoul(argv[1], NULL, 0); + uint16_t slave_addr = strtoul(argv[2], NULL, 0); + uint8_t start_reg = strtoul(argv[3], NULL, 0); + uint16_t len = strtoul(argv[4], NULL, 0); + + i2c_slave_t slave = + { + .bus_id = bus_id, + .slave_addr = slave_addr, + }; + if (bus_id < I2C_BUS_COUNT) + { + if (argc == I2C_ARGC_READ) + { + printf("reading..\n"); + + uint8_t buffer[UDB_I2C_CMD_READ_BUFFER_SIZE]; + + if (len > UDB_I2C_CMD_READ_BUFFER_SIZE) + { + len = UDB_I2C_CMD_READ_BUFFER_SIZE; + printf("Error: max buffer size is %u\n", UDB_I2C_CMD_READ_BUFFER_SIZE); + } + + i2c_request(&slave); + + if (i2c_read(&slave, start_reg, buffer, len) == UDB_SUCCESS) + { + for (int i = 0; i < len; ++i) + { + printf("%d:0x%x\n", i, buffer[i]); + } + } + else + { + printf("Error: i2c read failed\n"); + } + + i2c_release(&slave); + } + else + { + printf("writing...\n"); + + uint32_t val = strtoul(argv[5], NULL, 0); + + if (len > I2C_WRITE_MAX_LEN) + { + len = I2C_WRITE_MAX_LEN; + printf("Error: max buffer size is %u\n", I2C_WRITE_MAX_LEN); + } + + i2c_request(&slave); + + if (i2c_write(&slave, start_reg, (uint8_t *)&val, len) != UDB_SUCCESS) + { + printf("Error: i2c write failed\n"); + } + + i2c_release(&slave); + } + } + else + { + printf("Error: UDB doesn't have bus %u\n", bus_id); + } + } + else + { + printf("Error: Invalid i2c command\n"); + } +} diff --git a/source/hic_hal/stm32/stm32h743ii/extended_features/console/source/shell_cmd_measure_power.c b/source/hic_hal/stm32/stm32h743ii/extended_features/console/source/shell_cmd_measure_power.c new file mode 100644 index 000000000..af6362b73 --- /dev/null +++ b/source/hic_hal/stm32/stm32h743ii/extended_features/console/source/shell_cmd_measure_power.c @@ -0,0 +1,65 @@ +#include +#include "shell_cmd_measure_power.h" +#include "udb_power_measurement.h" +#include "udb_errno.h" +#include "udb_version.h" + +void cmd_measure_power(int argc, char *argv[]) +{ + uint16_t voltage_mV; + uint32_t current_uA; + + int ret = udb_power_measurement_measure(); + + if (ret == UDB_SUCCESS) + { + for (udb_power_measurement_target_t target_type = 0; target_type < UDB_POWER_MEASUREMENT_TARGET_COUNT; ++target_type) + { + if (udb_power_measurement_can_measure_target(target_type) == false) + { + continue; + } + + printf("Target: %s\n", udb_power_measurement_get_target_name(target_type)); + + if (udb_power_measurement_can_measure_voltage(target_type) == true) + { + ret = udb_power_measurement_read_voltage_mV(target_type, &voltage_mV); + if (ret == UDB_SUCCESS) + { + printf("\tvoltage: %u mV\n", voltage_mV); + } + else + { + printf("\tERROR: can not read voltage\n"); + } + } + else + { + printf("\tDoesn't support reading %s voltage\n", udb_power_measurement_get_target_name(target_type)); + } + + if (udb_power_measurement_can_measure_current(target_type) == true) + { + ret = udb_power_measurement_read_current_uA(target_type, ¤t_uA); + + if (ret == UDB_SUCCESS) + { + printf("\tcurrent: %lu uA\n", current_uA); + } + else + { + printf("\tERROR: can not read current\n"); + } + } + else + { + printf("\tDoesn't support reading %s current\n", udb_power_measurement_get_target_name(target_type)); + } + } + } + else + { + printf("ERROR: can not measure UDB power\n"); + } +} diff --git a/source/hic_hal/stm32/stm32h743ii/extended_features/console/source/shell_cmd_pwm.c b/source/hic_hal/stm32/stm32h743ii/extended_features/console/source/shell_cmd_pwm.c new file mode 100644 index 000000000..09fc997a9 --- /dev/null +++ b/source/hic_hal/stm32/stm32h743ii/extended_features/console/source/shell_cmd_pwm.c @@ -0,0 +1,186 @@ +#include +#include +#include +#include +#include +#include +#include "shell_cmd_pwm.h" + +#define TIM_PRESCALER 256 + +static TIM_HandleTypeDef timer = {.Instance = TIM1}; + +static uint32_t tim1_clk_div(uint32_t apb2clkdiv) +{ + switch (apb2clkdiv) { + case RCC_APB2_DIV1: + return 1; + case RCC_APB2_DIV4: + return 2; + case RCC_APB2_DIV8: + return 4; + default: // RCC_CFGR_PPRE2_DIV1 + util_assert(false); + return 1; + } +} + +static uint32_t ahb_clk_div(uint32_t ahbclkdiv) +{ + switch (ahbclkdiv) { + case RCC_HCLK_DIV1: + return 1; + case RCC_HCLK_DIV2: + return 2; + case RCC_HCLK_DIV4: + return 4; + case RCC_HCLK_DIV8: + return 8; + case RCC_HCLK_DIV16: + return 16; + default: + util_assert(false); + return 1; + } +} + +static void pwm_stop(void) +{ + __HAL_RCC_TIM1_CLK_ENABLE(); + + if (HAL_TIM_PWM_Stop(&timer, TIM_CHANNEL_1) != HAL_OK) + { + util_assert(false); + } + + if (HAL_TIM_Base_Stop(&timer) != HAL_OK) + { + util_assert(false); + } + + HAL_GPIO_DeInit(GPIOE, GPIO_PIN_9); + + if (HAL_TIM_Base_DeInit(&timer) != HAL_OK) { + util_assert(false); + } + + if (HAL_TIM_PWM_DeInit(&timer) != HAL_OK) { + util_assert(false); + } + + __HAL_RCC_TIM1_CLK_DISABLE(); +} + +static void pwm_start(uint16_t freq, uint16_t duty_cycle) +{ + RCC_ClkInitTypeDef clk_init = {0}; + TIM_OC_InitTypeDef pwm_config = {0}; + GPIO_InitTypeDef GPIO_InitStruct = {0}; + TIM_MasterConfigTypeDef sMasterConfig = {0}; + + uint16_t pulse; + uint32_t unused; + uint16_t period; + uint32_t tim_clock; + + HAL_RCC_GetClockConfig(&clk_init, &unused); + tim_clock = SystemCoreClock / tim1_clk_div(clk_init.APB2CLKDivider) / ahb_clk_div(clk_init.AHBCLKDivider) / TIM_PRESCALER; + + if ((duty_cycle < 1) || (duty_cycle > 99)) + { + printf("ERROR: wrong duty cycle value\n"); + return; + } + + if ((freq < 1) || (freq > (tim_clock / 3))) + { + printf("ERROR: wrong freq value\n"); + return; + } + + period = tim_clock / freq; + pulse = (period * (100 - duty_cycle) / 100); + + timer.Init.Prescaler = TIM_PRESCALER - 1; + timer.Init.ClockDivision = 0; + timer.Init.CounterMode = TIM_COUNTERMODE_UP; + timer.Init.RepetitionCounter = 0; + timer.Init.Period = period - 1; + + sMasterConfig.MasterOutputTrigger = TIM_TRGO_RESET; + sMasterConfig.MasterSlaveMode = TIM_MASTERSLAVEMODE_DISABLE; + + GPIO_InitStruct.Pin = GPIO_PIN_9; + GPIO_InitStruct.Mode = GPIO_MODE_AF_PP; + GPIO_InitStruct.Speed = GPIO_SPEED_LOW; + GPIO_InitStruct.Alternate = GPIO_AF1_TIM1; + + pwm_config.OCMode = TIM_OCMODE_PWM1; + pwm_config.Pulse = pulse; + pwm_config.OCPolarity = TIM_OCPOLARITY_HIGH; + pwm_config.OCNPolarity = TIM_OCPOLARITY_HIGH; + pwm_config.OCFastMode = TIM_OCFAST_DISABLE; + pwm_config.OCIdleState = TIM_OCIDLESTATE_RESET; + pwm_config.OCNIdleState = TIM_OCIDLESTATE_RESET; + + __HAL_RCC_TIM1_CLK_ENABLE(); + + if (HAL_TIM_Base_Init(&timer) != HAL_OK) + { + util_assert(false); + } + + if (HAL_TIM_PWM_Init(&timer) != HAL_OK) + { + util_assert(false); + } + + if (HAL_TIMEx_MasterConfigSynchronization(&timer, &sMasterConfig) != HAL_OK) + { + util_assert(false); + } + + HAL_GPIO_Init(GPIOE, &GPIO_InitStruct); + + if (HAL_TIM_PWM_ConfigChannel(&timer, &pwm_config, TIM_CHANNEL_1) != HAL_OK) + { + util_assert(false); + } + + if (HAL_TIM_Base_Start(&timer) != HAL_OK) + { + util_assert(false); + } + + if (HAL_TIM_PWM_Start(&timer, TIM_CHANNEL_1) != HAL_OK) + { + util_assert(false); + } +} + +void cmd_pwm(int argc, char *argv[]) +{ + if (strcmp(argv[1], "start") == 0) + { + if (argc < 4) + { + printf("ERROR: missing args\n"); + return; + } + + uint16_t freq = strtoul(argv[2], NULL, 10); + uint16_t duty_cycle = strtoul(argv[3], NULL, 10); + + pwm_start(freq, duty_cycle); + } + else if (strcmp(argv[1], "stop") == 0) + { + pwm_stop(); + } + else + { + printf("ERROR: unknown cmd\n"); + } + + return; +} diff --git a/source/hic_hal/stm32/stm32h743ii/extended_features/console/source/shell_cmd_reset.c b/source/hic_hal/stm32/stm32h743ii/extended_features/console/source/shell_cmd_reset.c new file mode 100644 index 000000000..2494912f9 --- /dev/null +++ b/source/hic_hal/stm32/stm32h743ii/extended_features/console/source/shell_cmd_reset.c @@ -0,0 +1,8 @@ +#include +#include "shell_cmd_reset.h" +#include "udb_reset.h" + +void cmd_reset(int argc, char *argv[]) +{ + udb_reset(); +} diff --git a/source/hic_hal/stm32/stm32h743ii/extended_features/console/source/shell_cmd_reset_into_swu_mode.c b/source/hic_hal/stm32/stm32h743ii/extended_features/console/source/shell_cmd_reset_into_swu_mode.c new file mode 100644 index 000000000..599ecbb09 --- /dev/null +++ b/source/hic_hal/stm32/stm32h743ii/extended_features/console/source/shell_cmd_reset_into_swu_mode.c @@ -0,0 +1,14 @@ +#include +#include "shell_cmd_reset_into_swu_mode.h" +#include "settings.h" +#include "udb_reset.h" +#include "stm32h7xx.h" + +void cmd_reset_into_swu_mode(int argc, char *argv[]) +{ + config_ram_set_hold_in_bl(true); + // need some delay to write the config + // if you reset immediately, it will not go to SWU mode + HAL_Delay(10); + udb_reset(); +} diff --git a/source/hic_hal/stm32/stm32h743ii/extended_features/console/source/shell_cmd_swd_dut.c b/source/hic_hal/stm32/stm32h743ii/extended_features/console/source/shell_cmd_swd_dut.c new file mode 100644 index 000000000..5649a6486 --- /dev/null +++ b/source/hic_hal/stm32/stm32h743ii/extended_features/console/source/shell_cmd_swd_dut.c @@ -0,0 +1,25 @@ +#include "shell_cmd_swd_dut.h" + +#include +#include +#include "DAP_config.h" + +void cmd_swd_dut(int argc, char *argv[]) +{ + if (argc == 1) + { + printf("DUT %u\n", g_cur_swd_dut); + } + else if (strcmp(argv[1], "0") == 0) + { + change_swd_dut(SWD_DUT0); + } + else if (strcmp(argv[1], "1") == 0) + { + change_swd_dut(SWD_DUT1); + } + else + { + printf("Invalid arg %s\n", argv[1]); + } +} diff --git a/source/hic_hal/stm32/stm32h743ii/extended_features/console/source/shell_cmd_uptime.c b/source/hic_hal/stm32/stm32h743ii/extended_features/console/source/shell_cmd_uptime.c new file mode 100644 index 000000000..60f1dcfab --- /dev/null +++ b/source/hic_hal/stm32/stm32h743ii/extended_features/console/source/shell_cmd_uptime.c @@ -0,0 +1,10 @@ +#include "shell_cmd_uptime.h" +#include +#include + +#include "udb_uptime.h" + +void cmd_uptime(int argc, char *argv[]) +{ + udb_uptime_print(); +} diff --git a/source/hic_hal/stm32/stm32h743ii/extended_features/console/source/shell_cmd_version.c b/source/hic_hal/stm32/stm32h743ii/extended_features/console/source/shell_cmd_version.c new file mode 100644 index 000000000..b92d1f388 --- /dev/null +++ b/source/hic_hal/stm32/stm32h743ii/extended_features/console/source/shell_cmd_version.c @@ -0,0 +1,12 @@ +#include "shell_cmd_version.h" +#include "udb_version.h" +#include + +void cmd_version(int argc, char *argv[]) +{ + char buf[UDB_VERSION_MAX_LENGTH]; + udb_get_interface_version((uint8_t*)buf, UDB_VERSION_MAX_LENGTH); + printf("Interface ver: %s\n", buf); + udb_get_bootloader_version((uint8_t*)buf, UDB_VERSION_MAX_LENGTH); + printf("Bootloader ver: %s\n\n", buf); +} diff --git a/source/hic_hal/stm32/stm32h743ii/extended_features/console/source/uif-cmdtab.c b/source/hic_hal/stm32/stm32h743ii/extended_features/console/source/uif-cmdtab.c new file mode 100644 index 000000000..6a0ecc99d --- /dev/null +++ b/source/hic_hal/stm32/stm32h743ii/extended_features/console/source/uif-cmdtab.c @@ -0,0 +1,42 @@ +#include "nluif_udb-daplink.h" +#include "shell_cmd_gpio.h" +#include "shell_cmd_pwm.h" +#include "shell_cmd_version.h" +#include "shell_cmd_fault.h" +#include "shell_cmd_reset.h" +#include "shell_cmd_adapter_type.h" +#include "shell_cmd_measure_power.h" +#include "shell_cmd_reset_into_swu_mode.h" +#include "shell_cmd_i2c.h" +#include "shell_cmd_dut_reset.h" +#include "shell_cmd_fault_info.h" +#include "shell_cmd_uptime.h" +#include "shell_cmd_ext_relay.h" +#include "shell_cmd_swd_dut.h" +#include "shell_cmd_btn.h" + +const UIF_CMD UIF_CMDTAB[] = { + UIF_CMD_HELP, + UIF_CMD_GPIO, + UIF_CMD_PWM, + UIF_CMD_VERSION, + UIF_CMD_FAULT, + UIF_CMD_RESET, + UIF_CMD_ADAPTER_TYPE, + UIF_CMD_MEASURE_POWER, + UIF_CMD_RESET_INTO_SWU_MODE, + UIF_CMD_I2C, + UIF_CMD_DUT_RESET, + UIF_CMD_FAULT_INFO, + UIF_CMD_UPTIME, + UIF_CMD_EXT_RELAY, + UIF_CMD_SWD_DUT, + UIF_CMD_BTN, +}; + +const int UIF_NUM_CMD = sizeof (UIF_CMDTAB) / sizeof (UIF_CMDTAB[0]); + +const UIF_SETCMD UIF_SETCMDTAB[0] = { +}; + +const int UIF_NUM_SETCMD = 0; diff --git a/source/hic_hal/stm32/stm32h743ii/extended_features/include/DAP_vendor_ex.h b/source/hic_hal/stm32/stm32h743ii/extended_features/include/DAP_vendor_ex.h new file mode 100644 index 000000000..4e930a16c --- /dev/null +++ b/source/hic_hal/stm32/stm32h743ii/extended_features/include/DAP_vendor_ex.h @@ -0,0 +1,22 @@ +#ifndef DAP_VENDOR_EX_H +#define DAP_VENDOR_EX_H + +typedef enum +{ + ID_DAP_VendorEx32_I2C_READ = ID_DAP_VendorExFirst, + ID_DAP_VendorEx33_I2C_WRITE, + ID_DAP_VendorEx34_DUT_PIN_GROUP_WRITE, + ID_DAP_VendorEx35_DUT_PWR_CTRL, + ID_DAP_VendorEx36_INTERFACE_VERSION_DETAILS, + ID_DAP_VendorEx37_HOLD_IN_BL, + ID_DAP_VendorEx38_RESET_DAPLINK, + ID_DAP_VendorEx39_READ_UDC_ADAPTER_TYPE_ADC, + ID_DAP_VendorEx40_MEASURE_POWER, + ID_DAP_VendorEx41_BOOTLOADER_VERSION_DETAILS, + ID_DAP_VendorEx42_CHANGE_SWD_DUT, + + // Add new commands before the last command + ID_DAP_VendorEx126_LAST = ID_DAP_VendorExLast, +} DAP_vendor_ex_cmd_t; + +#endif // DAP_VENDOR_EX_H diff --git a/source/hic_hal/stm32/stm32h743ii/extended_features/include/adc.h b/source/hic_hal/stm32/stm32h743ii/extended_features/include/adc.h new file mode 100644 index 000000000..4d70131f3 --- /dev/null +++ b/source/hic_hal/stm32/stm32h743ii/extended_features/include/adc.h @@ -0,0 +1,39 @@ +/** + * @file adc.h + * @brief + * + * DAPLink Interface Firmware + * Copyright 2020 NXP + * SPDX-License-Identifier: Apache-2.0 + * + * Licensed under the Apache License, Version 2.0 (the "License"); you may + * not use this file except in compliance with the License. + * You may obtain a copy of the License at + * + * http://www.apache.org/licenses/LICENSE-2.0 + * + * Unless required by applicable law or agreed to in writing, software + * distributed under the License is distributed on an "AS IS" BASIS, WITHOUT + * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + * See the License for the specific language governing permissions and + * limitations under the License. + */ + +#ifndef ADC_H +#define ADC_H + +#include "IO_Config.h" + +#ifdef __cplusplus +extern "C" { +#endif + +void adc_init(void); +void adc_init_pins(void); +uint32_t adc_read_channel(uint32_t channelGroup, uint32_t channelNumber, uint32_t channelMux); + +#ifdef __cplusplus +} +#endif + +#endif diff --git a/source/hic_hal/stm32/stm32h743ii/extended_features/include/i2c.h b/source/hic_hal/stm32/stm32h743ii/extended_features/include/i2c.h new file mode 100644 index 000000000..6b96124e3 --- /dev/null +++ b/source/hic_hal/stm32/stm32h743ii/extended_features/include/i2c.h @@ -0,0 +1,52 @@ +#ifndef I2C_H +#define I2C_H + +#include +#include +#include "udb_errno.h" +#include "I2C_STM32H7xx.h" + +typedef enum { + I2C_BUS_0, + I2C_BUS_1, + I2C_BUS_2, + I2C_BUS_COUNT, +} i2c_bus_t; + +typedef struct +{ + i2c_bus_t bus_id; + uint16_t slave_addr; +} i2c_slave_t; + +// Setup up I2C bus and enables interrupts +int i2c_init(void); + +void i2c_request(const i2c_slave_t *i2c_slave); +void i2c_release(const i2c_slave_t *i2c_slave); + +/* + * i2c_write + * + * i2c_slave: Target (slave) device to be communicated with + * reg_addr: Target device register to start writing to + * in_buf: bytes to be written to target device + * len: length of data, or number of bytes to be sequentially written + * + * Write sequential bytes, starting at given register address, on target I2C device + */ +int i2c_write(const i2c_slave_t *i2c_slave, uint8_t reg_addr, const uint8_t* in_buf, uint32_t len); + +/* + * i2c_read + * + * i2c_slave: Target (slave) device to be communicated with + * reg_addr: Target device register to start reading from + * out_buf: buffer to store data read from target device + * len: number of bytes to be read + * + * Read sequential bytes, starting at given register address, on target I2C device + */ +int i2c_read(const i2c_slave_t *i2c_slave, uint8_t reg_addr, uint8_t* out_buf, uint32_t len); + +#endif /* I2C_H */ diff --git a/source/hic_hal/stm32/stm32h743ii/extended_features/include/pac193x.h b/source/hic_hal/stm32/stm32h743ii/extended_features/include/pac193x.h new file mode 100644 index 000000000..41407ff8c --- /dev/null +++ b/source/hic_hal/stm32/stm32h743ii/extended_features/include/pac193x.h @@ -0,0 +1,181 @@ +/* + * Description: + * Define an interface for PMIC pac193xx. + */ +#ifndef _PAC193x_H_INCLUDED_ +#define _PAC193x_H_INCLUDED_ + +#include + +typedef enum +{ + PAC193X_REFRESH_REG = 0x00, + PAC193X_CTRL_REG = 0x01, + PAC193X_ACC_COUNT_REG = 0x02, + PAC193X_VPOWER1ACC_REG = 0x03, + PAC193X_VPOWER2ACC_REG = 0x04, + PAC193X_VPOWER3ACC_REG = 0x05, + PAC193X_VPOWER4ACC_REG = 0x06, + PAC193X_VBUS1_REG = 0x07, + PAC193X_VBUS2_REG = 0x08, + PAC193X_VBUS3_REG = 0x09, + PAC193X_VBUS4_REG = 0x0a, + PAC193X_VSENSE1_REG = 0x0b, + PAC193X_VSENSE2_REG = 0x0c, + PAC193X_VSENSE3_REG = 0x0d, + PAC193X_VSENSE4_REG = 0x0e, + PAC193X_VBUS1_AVG_REG = 0x0f, + PAC193X_VBUS2_AVG_REG = 0x10, + PAC193X_VBUS3_AVG_REG = 0x11, + PAC193X_VBUS4_AVG_REG = 0x12, + PAC193X_VSENSE1_AVG_REG = 0x13, + PAC193X_VSENSE2_AVG_REG = 0x14, + PAC193X_VSENSE3_AVG_REG = 0x15, + PAC193X_VSENSE4_AVG_REG = 0x16, + PAC193X_VPOWER1_AVG_REG = 0x17, + PAC193X_VPOWER2_AVG_REG = 0x18, + PAC193X_VPOWER3_AVG_REG = 0x19, + PAC193X_VPOWER4_AVG_REG = 0x1a, + PAC193X_CHANNEL_DIS_REG = 0x1c, + PAC193X_NEG_PWR_REG = 0x1d, + PAC193X_REFRESH_G_REG = 0x1e, + PAC193X_REFRESH_V_REG = 0x1f, + PAC193X_SLOW_REG = 0x20, + PAC193X_CTRL_ACT_REG = 0x21, + PAC193X_CHANNEL_DIS_ACT_REG = 0x22, + PAC193X_NEG_PWR_ACT_REG = 0x23, + PAC193X_CTRL_LAT_REG = 0x24, + PAC193X_CHANNEL_DIS_LAT_REG = 0x25, + PAC193X_NEG_PWR_LAT_REG = 0x26, + PAC193X_INVALID_REG = 0x30, + PAC193X_PRODUCT_ID_REG = 0xfd, + PAC193X_MANUFACTURER_ID_REG = 0xfe, + PAC193X_REVISION_ID_REG = 0xff, +} pac193x_reg_t; + +#define PAC193X_ACC_COUNT_REG_SIZE (3) +#define PAC193X_VPOWERNACC_REG_SIZE (6) +#define PAC193X_VBUSN_REG_SIZE (2) +#define PAC193X_VSENSEN_REG_SIZE (2) +#define PAC193X_VBUSN_AVG_REG_SIZE (2) +#define PAC193X_VSENSEN_AVG_REG_SIZE (2) +#define PAC193X_VPOWERN_AVG_REG_SIZE (4) +#define PAC193X_DEFAULT_REG_SIZE (1) + +typedef union +{ + struct + { + uint8_t ovf:1; + uint8_t ovf_alert_en:1; + uint8_t conv_alert_en:1; + uint8_t alert_pin_en:1; + uint8_t sing_mode:1; + uint8_t sleep_mode:1; + uint8_t sample_rate:2; + }; + uint8_t val; +} pac193x_ctrl_reg_t; + +typedef enum +{ + PAC193X_SAMPLE_RATE_1024 = 0x00, + PAC193X_SAMPLE_RATE_256 = 0x01, + PAC193X_SAMPLE_RATE_64 = 0x02, + PAC193X_SAMPLE_RATE_32 = 0x03 +} pac193x_sample_rate_t; + +#define PAC193X_CTRL_POR_VALUE (0x00) + +typedef union +{ + struct + { + uint8_t nop:1; + uint8_t noskip_en:1; + uint8_t byte_count_en:1; + uint8_t timeout_en:1; + uint8_t ch4_dis:1; + uint8_t ch3_dis:1; + uint8_t ch2_dis:1; + uint8_t ch1_dis:1; + }; + uint8_t val; +} pac193x_chan_dis_reg_t; + +#define PAC1931_CHANNEL_DIS_POR_VALUE (0x70) +#define PAC1932_CHANNEL_DIS_POR_VALUE (0x30) +#define PAC1933_CHANNEL_DIS_POR_VALUE (0x10) +#define PAC1934_CHANNEL_DIS_POR_VALUE (0x00) + +typedef union +{ + struct + { + uint8_t vbus4_bi_en:1; + uint8_t vbus3_bi_en:1; + uint8_t vbus2_bi_en:1; + uint8_t vbus1_bi_en:1; + uint8_t vsense4_bi_en:1; + uint8_t vsense3_bi_en:1; + uint8_t vsense2_bi_en:1; + uint8_t vsense1_bi_en:1; + }; + uint8_t val; +} pac193x_neg_pwr_reg_t; + +#define PAC193X_NEG_PWR_POR_VALUE (0x00) + +typedef union +{ + struct + { + uint8_t por_status:1; + uint8_t fall_refresh_v_en:1; + uint8_t fall_refresh_en:1; + uint8_t rise_refresh_v_en:1; + uint8_t rise_refresh_en:1; + uint8_t is_hi_to_lo:1; + uint8_t is_lo_to_hi:1; + uint8_t is_pull_high:1; + }; + uint8_t val; +} pac193x_slow_reg_t; + +#define PAC193X_SLOW_POR_VALUE (0x15) + +typedef struct +{ + pac193x_ctrl_reg_t ctrl_cfg; + pac193x_chan_dis_reg_t chan_dis_cfg; + pac193x_neg_pwr_reg_t neg_pwr_cfg; + pac193x_slow_reg_t slow_cfg; +} pac193x_cfg_t; + +typedef enum +{ + PAC193X_COMMAND_REFRESH = 0, + PAC193X_COMMAND_REFRESH_V = 1, + PAC193X_COMMAND_REFRESH_G = 2, + + // This is not a real command, it represents how many commands there are. + PAC193X_COMMAND_SIZE = 3, +} pac193x_command_type_t; + +// Need 1 ms for REFRESH to take effect, choose 3 to have some margin +#define PAC193X_REFRESH_STABLIZATION_TIME_MS (3) +// Although data sheet mentions 14.25 ms for the time to first communication, +// choose 100 based on experiments +#define PAC193X_INIT_STABLIZATION_TIME_MS (100) + +#define PAC193X_FULL_SCALE_VOLTAGE_MV (32000) +#define PAC193X_FULL_SCALE_RANGE_MV (100) + +#define PAC193X_UNIPOLAR_DENOMINATOR (1<<16) +#define PAC193X_BIPOLAR_DENOMINATOR (1<<15) + +int pac193x_init(const pac193x_cfg_t* cfg); +int pac193x_send_command(pac193x_command_type_t command_type); +int pac193x_read_reg(pac193x_reg_t reg_addr, uint32_t reg_size, void* out); + +#endif // _PAC193x_H_INCLUDED_ diff --git a/source/hic_hal/stm32/stm32h743ii/extended_features/include/udb.ld b/source/hic_hal/stm32/stm32h743ii/extended_features/include/udb.ld new file mode 100644 index 000000000..e5e7e79a1 --- /dev/null +++ b/source/hic_hal/stm32/stm32h743ii/extended_features/include/udb.ld @@ -0,0 +1,21 @@ +#include "daplink_addr.h" + +MEMORY +{ + m_cfgrom_bl (RW) : ORIGIN = DAPLINK_ROM_CONFIG_ADMIN_START, LENGTH = DAPLINK_ROM_CONFIG_ADMIN_SIZE +} + +SECTIONS +{ + .cfgrom_bl : + { + KEEP(*(cfgrom_bl)) + FILL(0xffffffff) + . = ORIGIN(m_cfgrom_bl) + LENGTH(m_cfgrom_bl) - 4; + /* Need some contents in this section or it won't be copied to bin or hex. The CRC will + * be placed here by post_build_script.py. */ + LONG(0x55555555) + } > m_cfgrom_bl +} + +#include "daplink.ld" diff --git a/source/hic_hal/stm32/stm32h743ii/extended_features/include/udb_adapter_detector.h b/source/hic_hal/stm32/stm32h743ii/extended_features/include/udb_adapter_detector.h new file mode 100644 index 000000000..ee10d0f27 --- /dev/null +++ b/source/hic_hal/stm32/stm32h743ii/extended_features/include/udb_adapter_detector.h @@ -0,0 +1,32 @@ +#ifndef _UDB_ADAPTER_DETECTOR_H_INCLUDED_ +#define _UDB_ADAPTER_DETECTOR_H_INCLUDED_ + +#include + +typedef enum +{ + ADAPTER_UDB_13_FLEX = 0, + ADAPTER_JOKER_FLEX = 1, + ADAPTER_UDB_6_FLEX = 2, + ADAPTER_UDB_17_FLEX = 3, + ADAPTER_UDB_12_FLEX = 4, + ADAPTER_TYPE_5 = 5, + ADAPTER_TYPE_6 = 6, + ADAPTER_TYPE_7 = 7, + ADAPTER_TYPE_8 = 8, + ADAPTER_TYPE_9 = 9, + ADAPTER_TYPE_10 = 10, + ADAPTER_TYPE_11 = 11, + ADAPTER_TYPE_12 = 12, + ADAPTER_TYPE_13 = 13, + ADAPTER_TYPE_14 = 14, + ADAPTER_TYPE_15 = 15, + ADAPTER_UNKNOWN = 16, + ADAPTER_NONE = 17 +} udb_adapter_type_t; + +void udb_adapter_detector_update_adapter_type_adc(void); +udb_adapter_type_t udb_adapter_detector_get_adapter_type_adc(void); +const char* udb_adapter_detector_get_adapter_type_name(udb_adapter_type_t type); + +#endif diff --git a/source/hic_hal/stm32/stm32h743ii/extended_features/include/udb_errno.h b/source/hic_hal/stm32/stm32h743ii/extended_features/include/udb_errno.h new file mode 100644 index 000000000..b00940911 --- /dev/null +++ b/source/hic_hal/stm32/stm32h743ii/extended_features/include/udb_errno.h @@ -0,0 +1,8 @@ +#ifndef _UDB_ERRNO_H_INCLUDED_ +#define _UDB_ERRNO_H_INCLUDED_ + +#define UDB_SUCCESS 0 +#define UDB_ERROR 1 +#define UDB_BUSY 2 + +#endif // _UDB_ERRNO_H_INCLUDED_ diff --git a/source/hic_hal/stm32/stm32h743ii/extended_features/include/udb_extended_features_task.h b/source/hic_hal/stm32/stm32h743ii/extended_features/include/udb_extended_features_task.h new file mode 100644 index 000000000..0bae68ebc --- /dev/null +++ b/source/hic_hal/stm32/stm32h743ii/extended_features/include/udb_extended_features_task.h @@ -0,0 +1,11 @@ +/* + * Description: + * Create an auxiliary task so that we don't need to put UDB's logic in the main task. + * + */ +#ifndef _UDB_EXTENDED_FEATURES_TASK_INCLUDED_H_ +#define _UDB_EXTENDED_FEATURES_TASK_INCLUDED_H_ + +void udb_extended_features_task_create(void); + +#endif // _UDB_EXTENDED_FEATURE_TASK_INCLUDED_H_ diff --git a/source/hic_hal/stm32/stm32h743ii/extended_features/include/udb_fault_info.h b/source/hic_hal/stm32/stm32h743ii/extended_features/include/udb_fault_info.h new file mode 100644 index 000000000..e200462a8 --- /dev/null +++ b/source/hic_hal/stm32/stm32h743ii/extended_features/include/udb_fault_info.h @@ -0,0 +1,15 @@ +#ifndef UDB_FAULT_INFO_H +#define UDB_FAULT_INFO_H + +#include +#include + +#define UDB_WRITE_BACKTRACE_INFO_DELAY_MS (100U) + +void udb_write_backtrace_info(const char *file, uint16_t line, uint32_t pc, uint32_t sp); +bool udb_is_fault_info_uncleared(void); +void udb_print_fault_info(void); +void udb_clear_fault_info(void); +void udb_check_unexpected_watchdog_reset(void); + +#endif // UDB_FAULT_INFO_H diff --git a/source/hic_hal/stm32/stm32h743ii/extended_features/include/udb_log.h b/source/hic_hal/stm32/stm32h743ii/extended_features/include/udb_log.h new file mode 100644 index 000000000..aaca8dd4e --- /dev/null +++ b/source/hic_hal/stm32/stm32h743ii/extended_features/include/udb_log.h @@ -0,0 +1,15 @@ +#ifndef _UDB_LOG_H_INCLUDED_ +#define _UDB_LOG_H_INCLUDED_ + +#include +#include + +bool udb_log_cdc_ready(); +void udb_log_set_cdc_ready(bool ready); +void udb_log_push(char *ptr, uint16_t size); +/* + * Flush the logs to CDC_3 endpoint + */ +void udb_log_flush(void); + +#endif // _UDB_LOG_H_INCLUDED_ diff --git a/source/hic_hal/stm32/stm32h743ii/extended_features/include/udb_power_measurement.h b/source/hic_hal/stm32/stm32h743ii/extended_features/include/udb_power_measurement.h new file mode 100644 index 000000000..4b1a3f4cf --- /dev/null +++ b/source/hic_hal/stm32/stm32h743ii/extended_features/include/udb_power_measurement.h @@ -0,0 +1,47 @@ +/* + * Description: + * Provide an interface to measure the power on UDB + */ +#ifndef _UDB_POWER_MEASUREMENT_H_INCLUDED_ +#define _UDB_POWER_MEASUREMENT_H_INCLUDED_ + +#include +#include + +/* + * Before P3, only two channels are available. + * channel 1: mainboard usb + * channel 2: adapter usb + * + * P3 and after, four channels are available but DUT0 and DUT1 can only measure voltage. + * channel 1: DUT0 + * channel 2: DUT1 + * channel 3: mainboard usb + * channel 4: adapter usb + */ +typedef enum +{ + UDB_POWER_MEASUREMENT_TARGET_MAINBOARD_USB = 0, + UDB_POWER_MEASUREMENT_TARGET_ADAPTER_USB = 1, + UDB_POWER_MEASUREMENT_TARGET_DUT0 = 2, + UDB_POWER_MEASUREMENT_TARGET_DUT1 = 3, + UDB_POWER_MEASUREMENT_TARGET_COUNT = 4, +} udb_power_measurement_target_t; + +typedef struct +{ + uint8_t voltage_reg[UDB_POWER_MEASUREMENT_TARGET_COUNT]; + uint8_t current_reg[UDB_POWER_MEASUREMENT_TARGET_COUNT]; +} pwr_measurement_dev_t; + +int udb_power_measurement_init(void); +int udb_power_measurement_measure(void); +int udb_power_measurement_read_voltage_mV(udb_power_measurement_target_t target, uint16_t *voltage_mV); +int udb_power_measurement_read_current_uA(udb_power_measurement_target_t target, uint32_t *current_uA); + +const char* udb_power_measurement_get_target_name(udb_power_measurement_target_t target); +bool udb_power_measurement_can_measure_voltage(udb_power_measurement_target_t target); +bool udb_power_measurement_can_measure_current(udb_power_measurement_target_t target); +bool udb_power_measurement_can_measure_target(udb_power_measurement_target_t target); + +#endif // _UDB_POWER_MEASUREMENT_H_INCLUDED_ diff --git a/source/hic_hal/stm32/stm32h743ii/extended_features/include/udb_reset.h b/source/hic_hal/stm32/stm32h743ii/extended_features/include/udb_reset.h new file mode 100644 index 000000000..d6027894c --- /dev/null +++ b/source/hic_hal/stm32/stm32h743ii/extended_features/include/udb_reset.h @@ -0,0 +1,14 @@ +/* + Description: + UDB's own system reset functions. + */ +#ifndef _UDB_RESET_H_INCLUDED_ +#define _UDB_RESET_H_INCLUDED_ + +#include + +void udb_reset(void); + +void udb_reset_async(uint32_t delay_ms); + +#endif diff --git a/source/hic_hal/stm32/stm32h743ii/extended_features/include/udb_uart_b.h b/source/hic_hal/stm32/stm32h743ii/extended_features/include/udb_uart_b.h new file mode 100644 index 000000000..aaf57244a --- /dev/null +++ b/source/hic_hal/stm32/stm32h743ii/extended_features/include/udb_uart_b.h @@ -0,0 +1,18 @@ +#ifndef UDB_UART_B_H +#define UDB_UART_B_H + +#include +#include + +int32_t udb_uart_b_initialize(void); +int32_t udb_uart_b_uninitialize(void); +int32_t udb_uart_b_reset(void); +int32_t udb_uart_b_set_configuration(UART_Configuration *config); +int32_t udb_uart_b_get_configuration(UART_Configuration *config); +void udb_uart_b_set_control_line_state(uint16_t ctrl_bmp); +int32_t udb_uart_b_write_free(void); +int32_t udb_uart_b_write_data(uint8_t *data, uint16_t size); +int32_t udb_uart_b_read_data(uint8_t *data, uint16_t size); +void UART_B_IRQn_Handler(void); + +#endif // UDB_UART_B_H \ No newline at end of file diff --git a/source/hic_hal/stm32/stm32h743ii/extended_features/include/udb_uptime.h b/source/hic_hal/stm32/stm32h743ii/extended_features/include/udb_uptime.h new file mode 100644 index 000000000..82015ff2f --- /dev/null +++ b/source/hic_hal/stm32/stm32h743ii/extended_features/include/udb_uptime.h @@ -0,0 +1,11 @@ +#ifndef UDB_UPTIME_H +#define UDB_UPTIME_H + +#include + +void udb_uptime_init(void); +void udb_uptime_update(void); +void udb_uptime_print(void); +uint64_t udb_uptime_now_ms(void); + +#endif // UDB_UPTIME_H diff --git a/source/hic_hal/stm32/stm32h743ii/extended_features/include/udb_util.h b/source/hic_hal/stm32/stm32h743ii/extended_features/include/udb_util.h new file mode 100644 index 000000000..d6be69a5e --- /dev/null +++ b/source/hic_hal/stm32/stm32h743ii/extended_features/include/udb_util.h @@ -0,0 +1,8 @@ +#ifndef UDB_UTIL_H +#define UDB_UTIL_H + +#include + +void print_time_from_ms(uint64_t time_ms); + +#endif // UDB_UTIL_H diff --git a/source/hic_hal/stm32/stm32h743ii/extended_features/include/udb_version.h b/source/hic_hal/stm32/stm32h743ii/extended_features/include/udb_version.h new file mode 100644 index 000000000..061b8f32e --- /dev/null +++ b/source/hic_hal/stm32/stm32h743ii/extended_features/include/udb_version.h @@ -0,0 +1,33 @@ +/* + * udb_version.h + * Yang-te Chen + * yangtechen@google.com + * September 7, 2021 + * + */ + +#ifndef UDB_VERSION_H_ +#define UDB_VERSION_H_ + +#include "stm32h7xx.h" +#include "DAP_config.h" + +#define UDB_VERSION_MAX_LENGTH DAP_PACKET_SIZE + +typedef enum +{ + HW_VERSION_UNKNOWN, + HW_VERSION_P1, + HW_VERSION_P2, + HW_VERSION_P3, + HW_VERSION_P4, + HW_VERSION_P5, + HW_VERSION_COUNT, +} hw_version_t; + +void udb_read_hw_version(void); +int udb_get_interface_version(uint8_t *buffer, unsigned size); +int udb_get_bootloader_version(uint8_t *buffer, unsigned size); +hw_version_t udb_get_hw_version(void); + +#endif diff --git a/source/hic_hal/stm32/stm32h743ii/extended_features/include/udb_watchdog.h b/source/hic_hal/stm32/stm32h743ii/extended_features/include/udb_watchdog.h new file mode 100644 index 000000000..8e3d36df0 --- /dev/null +++ b/source/hic_hal/stm32/stm32h743ii/extended_features/include/udb_watchdog.h @@ -0,0 +1,10 @@ +#ifndef UDB_WATCHDOG_H +#define UDB_WATCHDOG_H + +#include + +void udb_watchdog_init(uint32_t timeout_s); + +void udb_watchdog_refresh(void); + +#endif // UDB_WATCHDOG_H diff --git a/source/hic_hal/stm32/stm32h743ii/extended_features/lib/nlbacktrace/include/nlbacktrace_udb.h b/source/hic_hal/stm32/stm32h743ii/extended_features/lib/nlbacktrace/include/nlbacktrace_udb.h new file mode 100644 index 000000000..8448a96e5 --- /dev/null +++ b/source/hic_hal/stm32/stm32h743ii/extended_features/lib/nlbacktrace/include/nlbacktrace_udb.h @@ -0,0 +1,22 @@ +#ifndef __NLBACKTRACE_H_INCLUDED__ +#define __NLBACKTRACE_H_INCLUDED__ + +#include +#include +#include +#include + +int nlbacktrace(uint32_t initialPC, uint32_t initialSP, uint32_t stackTop, uint32_t* buffer, size_t maxLen); +int nlbacktrace_with_lr(uint32_t initialPC, uint32_t initialLR, uint32_t initialSP, uint32_t stackTop, uint32_t* buffer, size_t maxLen); +int nlbacktrace_no_context(uint32_t initialSP, uint32_t stackTop, uint32_t* buffer, size_t maxLen, size_t minLen, size_t maxAttempts); + +/* Weak functions that can be overrided by a product to provide + * more product specific checks for validity. Current checks + * assume all of RAM is valid for stacks. Also, all of RAM, + * and the FLASH regions for bootloader and app are valid for + * code. + */ +bool isAddressValidForCode(uint32_t addr); +bool isAddressValidForStack(uint32_t addr); + +#endif // __NLBACKTRACE_H_INCLUDED__ diff --git a/source/hic_hal/stm32/stm32h743ii/extended_features/lib/nlbacktrace/source/nlbacktrace_udb.c b/source/hic_hal/stm32/stm32h743ii/extended_features/lib/nlbacktrace/source/nlbacktrace_udb.c new file mode 100644 index 000000000..96b61b3e6 --- /dev/null +++ b/source/hic_hal/stm32/stm32h743ii/extended_features/lib/nlbacktrace/source/nlbacktrace_udb.c @@ -0,0 +1,536 @@ +// -*- Mode: C++; tab-width: 4 indent-tabs-mode: nil -*- +// +// Copyright (c) 2013 Nest Labs, Inc. +// All rights reserved. +// +// This document is the property of Nest. It is considered +// confidential and proprietary information. +// +// This document may not be reproduced or transmitted in any form, +// in whole or in part, without the express written permission of +// Nest. +// +// Description: +// This file implements the nlbacktrace() function. +// It's used to retrieve the backtrace after a crash without prior knowledge +// on what the stack frames look like (i.e. no need for frame pointer) +// + +/* + Theory of operation + + There are two types of functions: + - non-leaf: functions that make a call to another function + - leaf: functions that don't call other function. + + For non-leaf functions, the compiler always follows the pattern below when generating the code: + + The prologue of the function looks like this: a push (or store multiple and decrement with SP as destination), + And an optional SP decrement for local variables. + push/stmd sp!, {rx, ry, ....., lr} + sub sp, sp, #xx + + The epilogue has to undo what the prologue did in order to leave the SP where it was before the function call + add sp, sp, #xx + pop/ldm sp!, {rx, ry, ....., pc} + + The nlbacktrace function takes two parameters: initialPC, initialSP. + The logic to follow is: + - make currentPC=initialPC, currentSP=initialSP. + - walk backward from the currentPC until we find either a push or a stmfd with SP as destination + - decode the push/stmfd instruction to find out how many registers got pushed. + - look for the "sub sp" instruction and decode it (it's usually the first or second instruction down from the push. + - check if there was an additional "sub sp" before the push (this appears to be used in conjunction with variable arguments) + - compute currentSP = SP + 4 * num_of_registers_pushed + space that was subtracted for the local variables. + - compute LR = currentSP[-1] + - lather, rinse and repeat + + This procedure works fairly well for non-leaf function but doesn't work for leafs. + So if we get a crasher in a leaf we don't get the right backtrace. Unfortunately leafs are + just as likely to crash. + As a first level heuristics, we call the nlbacktrace function twice: once with PC and once with LR, + and we keep the deepest stack trace we receive. For non-leaf functions, stack traces based on the + PC should always be greater or equal in length to stack traces based on the LR. For leaf functions, + stack traces based on the PC will often be wrong because there won't be a push/stmfd in the leaf + function and the search finds the push/stmfd of some other functon instead, and unwinds the SP + incorrectly. The stack trace based on the LR should give better results for the leaf case. + This takes care of the vast majority of the crasher and lets us put together automated tools for stack tracing. + + When a stack is for a FreeRTOS task, FreeRTOS puts at the top of the stack + at the LR position the address of a function set by configTASK_RETURN_ADDRESS. + If not defined, it is a static function in FreeRTOS port.c typically called + prvTaskExitError(). It's purpose is to assert if a task's main function + ever returns, because that is not a valid usage case (a task is supposed + to call vTaskDelete() if it every is done executing). + + To help backtrace find the end, it's recommended that projects set + configTASK_RETURN_ADDRESS to &abort, and make sure abort is a terminal + leaf function (something like have it do __builtin_trap()). This function + has no push/stmfd since the compiler knows it's never going to return, + and if we find it on a backtrace, we're confident that we cannot have unwound + to it (since nothing is called from it) so it must be the end of backtrace marker. + + If configTASK_RETURN_ADDRESS isn't set to &abort or abort isn't a terminal + leaf function, backtrace will probably just keep unwinding and finding some + false LR values. +*/ + +#include "nlbacktrace_udb.h" + +#define INVALID_PC (0xffffffff) + +// Not currently defined in nllibc-lite, though it is in stdlib.h +// Some platforms have it, like nlplatform_em358x, but just in case +// we define a weak default. +void abort(void) __attribute__((weak)); + +void abort(void) +{ + __builtin_trap(); +} + +// K&R style count bit set +unsigned countBitSet(uint32_t value) +{ + unsigned i; + for (i = 0; value ; i++) + { + value &= (value - 1); + } + return i; +} + +/* Make weak to allow a product to override with a narrower check. + * This default version is very lenient, and is not aware of possible + * restrictions like having an MPU that prevents execute from RAM, + * or has guard regions in RAM with no access. + */ +bool isAddressValidForCode(uint32_t addr) __attribute__((weak)); +bool isAddressValidForCode(uint32_t addr) +{ + return true; +} + +/* Make weak to allow a product to override with a narrower check. + * This default version is very lenient, and is not aware of possible + * restrictions like having an MPU that prevents execute from RAM, + * or has guard regions in RAM with no access. + */ +bool isAddressValidForStack(uint32_t addr) __attribute__((weak)); +bool isAddressValidForStack(uint32_t addr) +{ + return true; +} + +bool checkSP(uint32_t addr, uint32_t stackTop) +{ + bool result; + if (stackTop) + { + result = addr < stackTop; + } + else + { + result = isAddressValidForStack(addr); + } + return result; +} + +static uint32_t get_modified_immediate_constant(uint32_t inst) +{ + uint8_t i_imm3_a; + + /* imm_const will be set below but Coverity can't figure it out. */ + uint32_t imm_const = 0; + + /* See A5.3.2 "Modified immediate constants in Thumb instructions" in the + * ARMv7-M Architectural Reference Manual, which explains how constants + * are encoded. + */ + i_imm3_a = ((inst & (0x1 << 26)) >> 22) | ((inst & (0x7 << 12)) >> 11) | ((inst & 0x80) >> 7); + + if (i_imm3_a < 0x8) + { + uint32_t imm8 = inst & 0xff; + + /* When i:imm3:a is less than 8, the lower two bits of imm3 give the + * following special encodings. */ + switch (i_imm3_a >> 1) + { + case 0x0: + imm_const = imm8; + break; + + case 0x1: + imm_const = imm8 << 16 | imm8; + break; + + case 0x2: + imm_const = imm8 << 24 | imm8 << 8; + break; + + case 0x3: + imm_const = imm8 << 24 | imm8 << 16 | imm8 << 8 | imm8; + break; + } + } + else + { + /* When i:imm3:a is greater than or equal to 8, it encodes a shift of + * imm8. Since i:imm3:a is 5-bits, its range here will be between 8 and + * 31 inclusive. */ + imm_const = ((inst & 0x7f) | 0x80) << (32 - i_imm3_a); + } + + return imm_const; +} + +/* Unwind the stack frame indicated by pc and sp. + * + * The return value is INVALID_PC if no lr-push could be found. Otherwise it is + * the found lr. + * + * sp is modified according to any stack pointer adjustments found in the + * current frame. + * + * The functions iterates backwards from pc, instruction by instruction, in two + * phases: + * + * 1. "lr search": + * Searching backwards from a (likely) faulting pc, looking for the + * instruction which pushed the link register. Along the way, any stack + * pointer adjustments from sub-sp instructions should be counted. This + * search continues indefinitely until either the push is found or an + * invalid pc is encountered. + * + * 2. "prologue search": + * If the lr search phase is successful, the search for sp modifying + * instructions continues for PROLOGUE_SEARCH_LEN instructions. This search + * includes both sub-sp instructions and non-lr pushing instructions. + */ +static uint32_t find_lr_and_sp_for_frame(uint32_t pc, uint32_t *sp, uint32_t stackTop) +{ +#define ARM_PUSH_T1_MASK 0xFF00 +#define ARM_PUSH_W_LR_T1_COMP 0xB500 +#define ARM_PUSH_NO_LR_T1_COMP 0xB400 +#define ARM_PUSH_T1_REG_MASK 0x01FF + +#define ARM_PUSH_T2_MASK 0xFFFFE000 +#define ARM_PUSH_W_LR_T2_COMP 0xE92D4000 +#define ARM_PUSH_NO_LR_T2_COMP 0xE92D0000 +#define ARM_PUSH_T2_REG_MASK 0x0000FFFF + +#define ARM_SUB_SP_IMM_T1_MASK 0xFF80 +#define ARM_SUB_SP_IMM_T1_COMP 0xB080 +#define ARM_SUB_SP_IMM_T2_MASK 0xFBEF8F00 +#define ARM_SUB_SP_IMM_T2_COMP 0xF1AD0D00 +#define ARM_SUB_SP_IMM_T3_MASK 0xFBFF8F00 +#define ARM_SUB_SP_IMM_T3_COMP 0xF2AD0D00 + +#define ARM_VPUSH_MASK 0xFFBF0E00 +#define ARM_VPUSH_COMP 0xED2D0A00 +#define ARM_VPUSH_REG_MASK 0x000000FF +#define ARM_VPUSH_REG_POS 0 + +#define PROLOGUE_SEARCH_LEN 2 + + uint32_t return_lr = INVALID_PC; + + /* sp_mod is used to accumulate stack pointer modifications in register + * (4-byte) increments. */ + uint32_t sp_mod = 0; + + /* Only match lr-pushes during lr search. */ + uint32_t push32_comp = ARM_PUSH_W_LR_T2_COMP; + uint16_t push16_comp = ARM_PUSH_W_LR_T1_COMP; + + uint16_t prologue_search_len = PROLOGUE_SEARCH_LEN; + + enum + { + lr_search, + lr_search_done, + prologue_search + } search_phase = lr_search; + + uint16_t inst16 = 0; + + while (1) + { + uint16_t last_inst16; + uint32_t inst32; + + if (!isAddressValidForCode(pc)) + { + break; + } + + last_inst16 = inst16; + inst16 = *((uint16_t *) pc); + inst32 = (inst16 << 16) | last_inst16; + + /* Look for relevant instructions. There are seven total, listed here + * with the referenced section from the ARMv7-M Architecture Reference + * Manual. + * 1. 32-bit push PUSH.W A7.7.99 (T2) + * 2. 32-bit sub sp SUB{S}.W ,SP,# A7.7.173 (T2) + * 3. 32-bit sub sp SUBW ,SP,# A7.7.173 (T3) + * 4. 16-bit push PUSH A7.7.99 (T1) + * 5. 16-bit sub sp SUB SP,SP,# A7.7.173 (T1) + * 6. 32-bit vpush 64 VPUSH <64-bit registers> A7.7.249 (T1) + * 7. 32-bit vpush 32 VPUSH <32-bit registers> A7.7.249 (T2) + */ + { + if ((inst32 & ARM_PUSH_T2_MASK) == push32_comp) + { + uint32_t regs_pushed; + + regs_pushed = countBitSet(inst32 & ARM_PUSH_T2_REG_MASK); + sp_mod += regs_pushed; + + if (search_phase == lr_search) + { + search_phase = lr_search_done; + } + } + else if ((inst32 & ARM_SUB_SP_IMM_T2_MASK) == ARM_SUB_SP_IMM_T2_COMP) + { + uint32_t imm32; + + /* Encoding T2 of SUB (SP minus immediate) encodes the immediate + * constant as a 'modified immediate constant'. */ + imm32 = get_modified_immediate_constant(inst32); + sp_mod += imm32/4; + } + else if ((inst32 & ARM_SUB_SP_IMM_T3_MASK) == ARM_SUB_SP_IMM_T3_COMP) + { + uint32_t imm32; + + /* Encoding T3 of SUB (SP minus immediate) encodes the immediate + * constant in three disjoint bitfields, i:imm3:imm8. */ + imm32 = ((inst32 & (0x1 << 26)) >> 15) | ((inst32 & (0x7 << 12)) >> 4) | (inst32 & 0xff); + sp_mod += imm32/4; + } + else if ((inst16 & ARM_PUSH_T1_MASK) == push16_comp) + { + uint32_t regs_pushed; + + regs_pushed = countBitSet(inst16 & ARM_PUSH_T1_REG_MASK); + sp_mod += regs_pushed; + + if (search_phase == lr_search) + { + search_phase = lr_search_done; + } + } + else if ((inst16 & ARM_SUB_SP_IMM_T1_MASK) == ARM_SUB_SP_IMM_T1_COMP) + { + uint32_t imm32; + + /* Encoding T1 of SUB (SP minus immediate) encodes the immediate + * constant in the lower 7 bits (imm7). It is interpreted as imm7:'00' + * so that it doesn't need to be divided by 4 before being added to + * sp_change. */ + imm32 = inst16 & 0x7f; + sp_mod += imm32; + } +/* Our compiler will set this flag indicating that we are using ARM's vector + * floating point extension. */ +#if defined(__VFP_FP__) + else if ((inst32 & ARM_VPUSH_MASK) == ARM_VPUSH_COMP) + { + uint32_t words_pushed; + + /* We can handle both encodings of VPUSH here since both encode + * the total number of words pushed directly regardless of + * whether they are ultimately pushing double or single registers. */ + words_pushed = (inst32 & ARM_VPUSH_REG_MASK) >> ARM_VPUSH_REG_POS; + sp_mod += words_pushed; + } +#endif + } + + if (search_phase == lr_search_done) + { + /* Found the lr push. Check the modified sp before + * dereferencing. */ + uint32_t tmp_lr; + uint32_t *tmp_sp = (uint32_t *)(*sp) + sp_mod; + + if (!checkSP((uint32_t)tmp_sp, stackTop)) + { + break; + } + + /* lr should be last register pushed, which on a descending stack + * means that it is at -1 offset. */ + tmp_lr = tmp_sp[-1]; + + if (!isAddressValidForCode(tmp_lr)) + { + break; + } + + return_lr = tmp_lr; + + /* Switch to prologue search. */ + search_phase = prologue_search; + push32_comp = ARM_PUSH_NO_LR_T2_COMP; + push16_comp = ARM_PUSH_NO_LR_T1_COMP; + } + + if ((search_phase == prologue_search) && (prologue_search_len-- == 0)) + { + break; + } + + /* Decrement the pc by one 16-bit instruction. */ + pc -= 2; + } + + *sp += sp_mod*4; + + return return_lr; +} + + +int nlbacktrace(uint32_t initialPC, uint32_t initialSP, uint32_t stackTop, uint32_t* buffer, size_t maxLen) +{ + size_t level = 0; + uint32_t currentSP = initialSP; + uint32_t currentPC = initialPC; + + // we assume that initialPC is valid + + while (level < maxLen) + { + // save the PC + *buffer++ = currentPC; + level++; + + // strip the Thumb bit before passing to find_lr_and_sp_for_frame + currentPC = currentPC & ~0x1; + + currentPC = find_lr_and_sp_for_frame(currentPC, ¤tSP, stackTop); + + if (currentPC == INVALID_PC) + { + break; + } + + // stop if lr is &abort since that's our special indicator + // of top of task stack. A real abort() would always be a leaf + // and at end of stack, not somewhere in the middle. + if (currentPC == (uint32_t)&abort) + { + break; + } + } + + return (int)level; +} + +int nlbacktrace_with_lr(uint32_t initialPC, uint32_t initialLR, uint32_t initialSP, uint32_t stackTop, uint32_t* buffer, size_t maxLen) +{ + /* Generally, the backtrace from the PC is the best. However, + * if the PC is in a leaf function (which has no preamble that pushes + * registers), the backtrace function will return either no result + * or a wrong result because the search for the PUSH instruction will + * find the PUSH of the wrong function. + */ + int num_backtraces_lr; + int num_backtraces; + bool pc_is_valid = isAddressValidForCode(initialPC); + if (((initialLR & ~0x1) == initialPC) || !isAddressValidForCode(initialLR)) + { + /* If the LR is invalid, or same as the PC, don't bother */ + num_backtraces_lr = 0; + } + else + { + /* Regardless of whether the PC is valid or not, try a LR + * based backtrace first + */ + num_backtraces_lr = nlbacktrace(initialLR, initialSP, stackTop, buffer+1, maxLen-1); + + /* If num_backtraces_lr is 0, but PC is valid, we add the PC to + * the buffer and increment num_backtraces_lr by 1. + * If num_backtraces_lr > 0, regardless of whether PC is valid or not, + * we add the PC to the buffer and increment num_backtraces_lr by 1 + * (this latter can happen if the fault was a bl to a bad address like 0x0). + * Only case where we don't want to do the increment is if num_backtraces_lr + * is 0 and PC is not valid. + */ + if ((num_backtraces_lr > 0) || pc_is_valid) + { + buffer[0] = initialPC; + num_backtraces_lr++; + } + } + /* Get a backtrace from the PC if it is valid */ + if (!pc_is_valid) + { + /* Return the LR backtrace count, if any */ + num_backtraces = num_backtraces_lr; + } + else + { + num_backtraces = nlbacktrace(initialPC, initialSP, stackTop, buffer, maxLen); + + /* Check if the LR backtrace was deeper, which can happen if the PC + * was in a leaf function without a preamble + */ + if (num_backtraces_lr > num_backtraces) + { + /* Redo lr backtrace to the buffer*/ + buffer[0] = initialPC; + num_backtraces = nlbacktrace(initialLR, initialSP, stackTop, buffer+1, maxLen-1) + 1; + } + } + return num_backtraces; +} + +/* We don't have a starting PC or LR. Look in the stack for a possible + * LR and backtrace from it. We check at most maxAttempts from the stack + * for a LR value that nlbacktrace() returns a backtrace of at least minLen + * size. If none is found using nlbacktrace(), we then fall back to + * just returning an array of possible LR values scanning from the initialSP + * to stackTop, stopping at maxLen entries or when we hit an invalid SP, + * whichever is hit first. + */ +int nlbacktrace_no_context(uint32_t initialSP, uint32_t stackTop, uint32_t* buffer, size_t maxLen, size_t minLen, size_t maxAttempts) +{ + size_t i; + uint32_t* currentSP = (uint32_t*)initialSP; + int num_backtraces = 0; + for (i = 0; i < maxAttempts && checkSP((uint32_t)currentSP, stackTop); i++) + { + uint32_t possibleLR = *currentSP++; + if ((possibleLR & 0x1) && isAddressValidForCode(possibleLR)) + { + num_backtraces = nlbacktrace(possibleLR, (uint32_t)currentSP, stackTop, buffer, maxLen); + if ((size_t)num_backtraces >= minLen) + { + goto done; + } + } + } + if ((size_t)num_backtraces < minLen) + { + /* nlbacktrace unable to find a valid backtrace, just return + * guesses of possible LRs + */ + currentSP = (uint32_t*)initialSP; + num_backtraces = 0; + while ((size_t)num_backtraces < maxLen && checkSP((uint32_t)currentSP, stackTop)) + { + uint32_t possibleLR = *currentSP++; + if ((possibleLR & 0x1) && isAddressValidForCode(possibleLR)) + { + buffer[num_backtraces++] = possibleLR; + } + } + } +done: + return num_backtraces; +} diff --git a/source/hic_hal/stm32/stm32h743ii/extended_features/lib/nlutilities/include/nluif_udb-daplink.h b/source/hic_hal/stm32/stm32h743ii/extended_features/lib/nlutilities/include/nluif_udb-daplink.h new file mode 100644 index 000000000..eac8e452b --- /dev/null +++ b/source/hic_hal/stm32/stm32h743ii/extended_features/lib/nlutilities/include/nluif_udb-daplink.h @@ -0,0 +1,331 @@ +/* + * + * Copyright (c) 2012-2018 Nest Labs, Inc. + * All rights reserved. + * + * Licensed under the Apache License, Version 2.0 (the "License"); + * you may not use this file except in compliance with the License. + * You may obtain a copy of the License at + * + * http://www.apache.org/licenses/LICENSE-2.0 + * + * Unless required by applicable law or agreed to in writing, software + * distributed under the License is distributed on an "AS IS" BASIS, + * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + * See the License for the specific language governing permissions and + * limitations under the License. + */ + +/** + * @file + * This file defines a framework for an interactive command line + * user interface. + * + * @note The actual commands, set/show parameters, and prompt are + * configured at the project level. + * + */ + +/* + * Copied to this repository from platform/nlutilities on 2021-12-22 and + * removed dependencies on other unneeded headers. + */ + +#ifndef NLUTILITIES_NLUIF_H +#define NLUTILITIES_NLUIF_H + +#include +#include + +/********************************************************************/ + +#ifdef __cplusplus +extern "C" { +#endif + +/** + * @def NLUIF_USE_MINISHELL + * + * @brief + * The minishell build feature uses smaller default values for max-args, + * max-line and max-prompt, and uses a pared down UIF command + * structure, eliding both syntax and descripton. + */ +#ifndef NLUIF_USE_MINISHELL +#define NLUIF_USE_MINISHELL 0 +#endif /* NLUIF_USE_MINISHELL */ + +/** + * @def NLUIF_USE_VERBOSE + * + * @brief + * The verbose build feature enables both usage syntax and command + * description UIF fields. + */ +#ifndef NLUIF_USE_VERBOSE +#define NLUIF_USE_VERBOSE !NLUIF_USE_MINISHELL +#endif /* NLUIF_USE_VERBOSE */ + +/** + * @def NLUIF_USE_DESCRIPTION + * + * @brief + * The description build feature enables the UIF description field. + */ +#ifndef NLUIF_USE_DESCRIPTION +#define NLUIF_USE_DESCRIPTION (NLUIF_USE_VERBOSE && !NLUIF_USE_MINISHELL) +#endif /* NLUIF_USE_DESCRIPTION */ + +/** + * @def NLUIF_USE_SYNTAX + * + * @brief + * The syntax build feature enables the UIF command syntax UIF field. + */ +#ifndef NLUIF_USE_SYNTAX +#define NLUIF_USE_SYNTAX (NLUIF_USE_VERBOSE && !NLUIF_USE_MINISHELL) +#endif /* NLUIF_USE_SYNTAX */ + +/** + * @def NLUIF_USE_VOID_FUNCS + * + * @brief + * The void functions build feature enables shell function entry + * points that have a void return value; otherwise, shell function + * entry points return a signed integer. + */ +#ifndef NLUIF_USE_VOID_FUNCS +#define NLUIF_USE_VOID_FUNCS 1 +#endif /* NLUIF_USE_VOID_FUNCS */ + +/** + * @def NLUIF_PRINT_RESULT + * + * @brief + * Enable the printing of the return code after a command is run, + * in the format of "DONE %d" + */ +#ifndef NLUIF_PRINT_RESULT +#define NLUIF_PRINT_RESULT 0 +#endif /* NLUIF_PRINT_RESULT */ + +#if !NLUIF_USE_MINISHELL +/* + * Maximum command line arguments + */ +#ifndef UIF_MAX_ARGS +#define UIF_MAX_ARGS 29 +#endif + +/* + * Maximum length of the command line + */ +#ifndef UIF_MAX_LINE +#define UIF_MAX_LINE 768 +#endif + +/* + * Maximum length of the prompt string + */ +#ifndef UIF_MAX_PROMPT +#define UIF_MAX_PROMPT 8 +#endif + +#else /* !NLUIF_USE_MINISHELL */ + +/* + * Maximum command line arguments + */ +#ifndef UIF_MAX_ARGS +#define UIF_MAX_ARGS 3 +#endif + +/* + * Maximum length of the command line + */ +#ifndef UIF_MAX_LINE +#define UIF_MAX_LINE 100 +#endif + +/* + * Maximum length of the prompt string + */ +#ifndef UIF_MAX_PROMPT +#define UIF_MAX_PROMPT 2 +#endif + +#endif /* !NLUIF_USE_MINISHELL */ + +/* + * Function prototypes + */ +void +uif_set_prompt(const char *s); + +void +uif_prompt(void); + +int +uif_handle_input_char(int ch); + +uint32_t +uif_get_value (const char *, bool *, int); + +void +uif_run_cmd (void); + +void +uif_run_cmd_string (const char *command); + +void +uif_cmd_help (int, char **); + +int +uif_cmd_minishell_help (int, char **); + +void +uif_cmd_set (int, char **); + +void +uif_cmd_show (int, char **); + +#define UIF_HISTORY_CNT 5 + +/* + * The command table entry data structure + */ + +#if NLUIF_USE_VOID_FUNCS +typedef void nl_uif_shell_func_return_t; +#else +typedef int nl_uif_shell_func_return_t; +#endif /* NLUIF_USE_VOID_FUNCS */ + +typedef nl_uif_shell_func_return_t (* nl_uif_shell_func_t)(int argc, char **argv); + +typedef struct +{ + const char * cmd; /* command name user types, ie. GO */ + nl_uif_shell_func_t func; /* actual function to call */ +#if !NLUIF_USE_MINISHELL + int min_args; /* min num of args command accepts */ + int max_args; /* max num of args command accepts */ + int flags; /* command flags (e.g. repeat) */ +#endif /* !NLUIF_USE_MINISHELL */ +#if NLUIF_USE_DESCRIPTION + const char * description; /* brief description of command */ +#endif /* NLUIF_USE_DESCRIPTION */ +#if !NLUIF_USE_MINISHELL +#if NLUIF_USE_SYNTAX + const void * syntax; /* syntax of command */ +#endif /* NLUIF_USE_SYNTAX*/ +#endif /* !NLUIF_USE_MINISHELL */ +} UIF_CMD; + +typedef UIF_CMD nl_uif_cmd_t; + +typedef void (*UIF_SYNTAX_FUNC)(const char *name); + +#if NLUIF_USE_DESCRIPTION && NLUIF_USE_SYNTAX +#define DECLARE_UIF_CMD(name, min, max, flags, func, desc, syntax) \ + { name, func, min, max, flags, desc, syntax } +#elif NLUIF_USE_DESCRIPTION && !NLUIF_USE_SYNTAX && !NLUIF_USE_MINISHELL +#define DECLARE_UIF_CMD(name, min, max, flags, func, desc, syntax) \ + { name, func, min, max, flags, desc } +#elif !NLUIF_USE_DESCRIPTION && NLUIF_USE_SYNTAX +#define DECLARE_UIF_CMD(name, min, max, flags, func, desc, syntax) \ + { name, func, min, max, flags, syntax } +#elif NLUIF_USE_MINISHELL && !NLUIF_USE_DESCRIPTION +#define DECLARE_UIF_CMD(name, min, max, flags, func, desc, syntax) \ + { name, func } +#define DECLARE_UIF_MINISHELL_CMD(name, func) \ + DECLARE_UIF_CMD(name, 0, 0, 0, func, NULL, NULL) +#elif NLUIF_USE_MINISHELL && NLUIF_USE_DESCRIPTION +#define DECLARE_UIF_CMD(name, min, max, flags, func, desc, syntax) \ + { name, func, desc } +#define DECLARE_UIF_MINISHELL_CMD(name, func) \ + DECLARE_UIF_CMD(name, 0, 0, 0, func, #func, NULL) +#else +#define DECLARE_UIF_CMD(name, min, max, flags, func, desc, syntax) \ + { name, func, min, max, flags } +#endif /* UIF_USE_DESCRIPTION && UIF_USE_SYNTAX */ + +/* + * Prototype and macro for size of the command table + */ +extern const UIF_CMD UIF_CMDTAB[]; +extern const int UIF_NUM_CMD; +#define UIF_CMDTAB_SIZE (sizeof(UIF_CMDTAB)/sizeof(UIF_CMD)) + +#define UIF_CMD_FLAG_REPEAT 0x1 +#define UIF_CMD_FLAG_SYNTAX_FUNC 0x2 + +/* + * Macros for User InterFace command table entries + */ +#ifndef UIF_CMD_HELP +#define UIF_CMD_HELP \ + DECLARE_UIF_CMD("?", 0, 1, 0, uif_cmd_help, "show available commands", ""), \ + DECLARE_UIF_CMD("help", 0, 1, 0, uif_cmd_help, "show available commands", "") +#endif + +#ifndef UIF_CMD_SET +#define UIF_CMD_SET \ + DECLARE_UIF_CMD("set", 0, 2, 0, uif_cmd_set, "Set Config", "