forked from THUDM/ChatGLM3
-
Notifications
You must be signed in to change notification settings - Fork 0
/
tensorrt_llm_cli_demo.py
255 lines (211 loc) · 10.6 KB
/
tensorrt_llm_cli_demo.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
"""
This script is a part of a larger project for generating text using large language models.
It includes functionalities for finding engine files, parsing arguments, setting up configurations for different models,
and executing the generation process with various settings.
This script particularly supports models like ChatGLM3-6B and its variants,
handling quantization, serialization, and runtime aspects.
Copyright (c) 2022-2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
Modifications made by Yuxuan.Zhang @ ZhipuAI on 2023-12-24.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
Modifications:
1. Removed input_file, tokenizer_type, and other parameters unrelated to dialogue. Set num_beams to 1.
2. Adapted single turn dialogue into ChatGLM3-6B template and implemented multi-turn conversations.
"""
import argparse
import json
import torch
import transformers
from pathlib import Path
from typing import List
import tensorrt_llm
from tensorrt_llm.quantization import QuantMode
from tensorrt_llm.runtime import (GenerationSession, ModelConfig, SamplingConfig)
def find_engines(dir: Path, model_name: str = "*", dtype: str = "*", tp_size: str = "*", rank: str = "*") -> List[Path]:
"""
Searches for engine files matching a specified pattern within a directory.
This is typically used to locate compiled model files for efficient execution on specific hardware.
Parameters:
- dir: The directory to search.
- model_name, dtype, tp_size, rank:
Pattern matching parameters to filter engine files by model name, data type,
tensor parallel size, and rank respectively.
Returns:
- A list of Paths pointing to the engine files.
"""
template = f"{model_name}_{dtype}_tp{tp_size}_rank{rank}.engine"
return list(dir.glob(template))
def parse_arguments(args=None):
parser = argparse.ArgumentParser()
parser.add_argument('--model_name',
type=str,
choices=[
"chatglm3_6b",
"chatglm3_6b_base",
"chatglm3_6b_32k"
],
default="chatglm3_6b",
help='the name of the model')
parser.add_argument('--max_output_len', type=int, default=4096)
parser.add_argument('--engine_dir', type=str, default=None)
parser.add_argument('--tokenizer_dir', type=str, default=None)
parser.add_argument('--temperature', type=float, default=0.95)
parser.add_argument('--top_k', type=int, default=1)
parser.add_argument('--top_p', type=float, default=0.8)
parser.add_argument('--random_seed', type=int, default=2023)
parser.add_argument('--streaming', default=True, action='store_true')
args = parser.parse_args(args)
return args
def main():
"""
The main execution function of the script. It orchestrates the text generation process
by performing several key steps:
- Parses command-line arguments to configure model details, output specifications,
and other user-defined parameters.
- Loads the model configuration from a specified directory and prepares the environment for text generation
based on the model and hardware specifics.
- Sets up the generation session with the appropriate model, tokenizer, and runtime configurations.
- Enters a loop to continuously accept user input, generate text based on the provided prompts, and output
the model's responses.
- Handles special commands such as 'stop' to end the conversation and 'clear' to reset the chat history.
- Manages resources and ensures that the generated text is properly formatted and presented to the user.
The function is designed to be the entry point of the script, invoking all necessary components and managing the
flow of data and control throughout the execution.
"""
args = parse_arguments()
config_path = Path(args.engine_dir) / 'config.json'
with open(config_path, 'r') as f:
config = json.load(f)
dtype = config['builder_config']['precision']
max_output_len = min(config['builder_config']['max_output_len'], args.max_output_len)
use_gpt_attention_plugin = config['plugin_config']['gpt_attention_plugin']
remove_input_padding = config['builder_config']['remove_input_padding']
tp_size = config['builder_config']['tensor_parallel']
pp_size = config['builder_config']['pipeline_parallel']
world_size = tp_size * pp_size
assert world_size == tensorrt_llm.mpi_world_size(), f'Engine world size ({tp_size} * {pp_size}) != Runtime world size ({tensorrt_llm.mpi_world_size()})'
max_output_len = min(max_output_len, args.max_output_len)
runtime_rank = tensorrt_llm.mpi_rank()
runtime_mapping = tensorrt_llm.Mapping(world_size, runtime_rank, tp_size=world_size)
torch.cuda.set_device(runtime_rank % runtime_mapping.gpus_per_node)
serialize_path = find_engines(
dir=Path(args.engine_dir),
model_name=args.model_name,
dtype=dtype,
tp_size=world_size,
rank=runtime_rank)[0]
tokenizer = transformers.AutoTokenizer.from_pretrained(args.tokenizer_dir, trust_remote_code=True)
model_config = ModelConfig(vocab_size=config['builder_config']['vocab_size'],
num_layers=config['builder_config']['num_layers'],
num_heads=config['builder_config']['num_heads'] // tp_size,
num_kv_heads=(config['builder_config']['num_kv_heads'] + tp_size - 1) // tp_size,
hidden_size=config['builder_config']['hidden_size'] // tp_size,
gpt_attention_plugin=use_gpt_attention_plugin,
remove_input_padding=config['builder_config']['remove_input_padding'],
model_name=args.model_name,
paged_kv_cache=config['builder_config']['paged_kv_cache'],
quant_mode=QuantMode(config['builder_config']['quant_mode']),
dtype=dtype)
sampling_config = SamplingConfig(
end_id=tokenizer.eos_token_id,
pad_id=tokenizer.pad_token_id,
num_beams=1,
temperature=args.temperature,
top_k=args.top_k,
top_p=args.top_p
)
sampling_config.random_seed = args.random_seed
with open(serialize_path, 'rb') as f:
engine_buffer = f.read()
session = GenerationSession
decoder = session(model_config, engine_buffer, runtime_mapping)
history = []
while True:
input_text_with_history = ""
max_input_len = config['builder_config']['max_input_len']
input_text = input("用户: ")
if input_text.lower() == 'stop':
break
if input_text.lower() == 'clear':
history = []
print("ChatGLM3-6B: 对话历史已清空")
continue
history.append(input_text)
for idx, content in enumerate(history):
if idx % 2 != 0:
input_text_with_history += "{}\n".format(content)
else:
input_text_with_history += "<|user|>{}\n<|assistant|>".format(content)
tokenized = tokenizer(
input_text_with_history,
return_tensors="pt",
padding=True,
return_length=True
)
input_ids = tokenized['input_ids'].int()
input_lengths = tokenized['length'].int()
max_input_len_real = torch.max(input_lengths)
if max_input_len_real > max_input_len:
input_ids = input_ids[:, :max_input_len]
input_lengths = torch.where(input_lengths > max_input_len, max_input_len, input_lengths)
else:
max_input_len = max_input_len_real
if remove_input_padding:
input_ids_no_padding = (torch.zeros(1, torch.sum(input_lengths), dtype=torch.int32))
lengths_acc = torch.cumsum(torch.cat([torch.IntTensor([0]), input_lengths]), dim=0)
for i in range(len(input_ids)):
input_ids_no_padding[0, lengths_acc[i]:lengths_acc[i + 1]] = torch.IntTensor(
input_ids[i, max_input_len - input_lengths[i]:max_input_len])
input_ids = input_ids_no_padding
elif use_gpt_attention_plugin:
input_ids_padding_right = torch.zeros_like(input_ids) + sampling_config.end_id
for i, sample in enumerate(input_ids):
nPadding = 0
for token in sample:
if token == sampling_config.pad_id:
nPadding += 1
else:
break
input_ids_padding_right[i, :len(sample[nPadding:])] = sample[nPadding:]
input_ids = input_ids_padding_right
input_lengths = torch.tensor([input_ids.shape[-1]], dtype=torch.int32)
decoder.setup(1, max_input_len, max_output_len, 1)
output = decoder.decode(
input_ids.contiguous().cuda(),
input_lengths.contiguous().cuda(),
sampling_config,
output_sequence_lengths=True,
return_dict=True,
streaming=args.streaming
)
print("ChatGLM3-6B:", end="")
generated_text = ""
if args.streaming:
for output_item in output:
output_id = output_item["output_ids"]
output_sequence_lengths = output_item["sequence_lengths"]
output_id = output_id[0, 0, output_sequence_lengths[0, 0] - 1]
output_word = tokenizer.convert_ids_to_tokens(int(output_id))
output_word = output_word.replace("▁", " ")
output_word = tokenizer.convert_tokens_to_string(output_word)
print(output_word, end="", flush=True)
generated_text += output_word
print("\n")
else:
torch.cuda.synchronize()
output_ids = output["output_ids"][0]
output = output_ids[0, input_lengths.item():]
generated_text = tokenizer.decode(output, skip_special_tokens=True)
print(generated_text)
history.append(generated_text)
del decoder
print(f"Good bye!")
if __name__ == '__main__':
main()