-
Notifications
You must be signed in to change notification settings - Fork 18
/
ROI_pooling_frcnn.py
123 lines (94 loc) · 4.4 KB
/
ROI_pooling_frcnn.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
from keras.engine.topology import Layer
import keras.backend as K
if K.backend() == 'tensorflow':
import tensorflow as tf
class RoiPoolingConv(Layer):
'''ROI pooling layer for 2D inputs.
See Spatial Pyramid Pooling in Deep Convolutional Networks for Visual Recognition,
K. He, X. Zhang, S. Ren, J. Sun
# Arguments
pool_size: int
Size of pooling region to use. pool_size = 7 will result in a 7x7 region.
num_rois: number of regions of interest to be used
# Input shape
list of two 4D tensors [X_img,X_roi] with shape:
X_img:
`(1, channels, rows, cols)` if dim_ordering='th'
or 4D tensor with shape:
`(1, rows, cols, channels)` if dim_ordering='tf'.
X_roi:
`(1,num_rois,4)` list of rois, with ordering (x,y,w,h)
# Output shape
3D tensor with shape:
`(1, num_rois, channels, pool_size, pool_size)`
'''
def __init__(self, pool_size, num_rois, **kwargs):
self.dim_ordering = K.image_dim_ordering()
assert self.dim_ordering in {'tf', 'th'}, 'dim_ordering must be in {tf, th}'
self.pool_size = pool_size
self.num_rois = num_rois
super(RoiPoolingConv, self).__init__(**kwargs)
def build(self, input_shape):
if self.dim_ordering == 'th':
self.nb_channels = input_shape[0][1]
elif self.dim_ordering == 'tf':
self.nb_channels = input_shape[0][3]
def compute_output_shape(self, input_shape):
if self.dim_ordering == 'th':
return None, self.num_rois, self.nb_channels, self.pool_size, self.pool_size
else:
return None, self.num_rois, self.pool_size, self.pool_size, self.nb_channels
def call(self, x, mask=None):
assert(len(x) == 2)
img = x[0]
rois = x[1]
input_shape = K.shape(img)
outputs = []
for roi_idx in range(self.num_rois):
x = rois[0, roi_idx, 0]
y = rois[0, roi_idx, 1]
w = rois[0, roi_idx, 2]
h = rois[0, roi_idx, 3]
row_length = w / float(self.pool_size)
col_length = h / float(self.pool_size)
num_pool_regions = self.pool_size
#NOTE: the RoiPooling implementation differs between theano and tensorflow due to the lack of a resize op
# in theano. The theano implementation is much less efficient and leads to long compile times
if self.dim_ordering == 'th':
for jy in range(num_pool_regions):
for ix in range(num_pool_regions):
x1 = x + ix * row_length
x2 = x1 + row_length
y1 = y + jy * col_length
y2 = y1 + col_length
x1 = K.cast(x1, 'int32')
x2 = K.cast(x2, 'int32')
y1 = K.cast(y1, 'int32')
y2 = K.cast(y2, 'int32')
x2 = x1 + K.maximum(1,x2-x1)
y2 = y1 + K.maximum(1,y2-y1)
new_shape = [input_shape[0], input_shape[1],
y2 - y1, x2 - x1]
x_crop = img[:, :, y1:y2, x1:x2]
xm = K.reshape(x_crop, new_shape)
pooled_val = K.max(xm, axis=(2, 3))
outputs.append(pooled_val)
elif self.dim_ordering == 'tf':
x = K.cast(x, 'int32')
y = K.cast(y, 'int32')
w = K.cast(w, 'int32')
h = K.cast(h, 'int32')
rs = tf.image.resize_images(img[:, y:y+h, x:x+w, :], (self.pool_size, self.pool_size))
outputs.append(rs)
final_output = K.concatenate(outputs, axis=0)
final_output = K.reshape(final_output, (1, self.num_rois, self.pool_size, self.pool_size, self.nb_channels))
if self.dim_ordering == 'th':
final_output = K.permute_dimensions(final_output, (0, 1, 4, 2, 3))
else:
final_output = K.permute_dimensions(final_output, (0, 1, 2, 3, 4))
return final_output
def get_config(self):
config = {'pool_size': self.pool_size,
'num_rois': self.num_rois}
base_config = super(RoiPoolingConv, self).get_config()
return dict(list(base_config.items()) + list(config.items()))