-
Notifications
You must be signed in to change notification settings - Fork 18
/
roi_data_generator.py
executable file
·254 lines (195 loc) · 7.72 KB
/
roi_data_generator.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
"""
Created on Tue Aug 4 19:53:02 2020
@author: asabater
"""
from PIL import Image
import numpy as np
import cv2
MIN_PERC_AREA = 0.65
np.random.seed(0)
def preprocess_img_roi(img, roi, input_shape, downsample_rate, random):
img = cv2.imread(img)
roi = np.array(list(map(float, roi.split(','))))
# height, width, channel
ih, iw, _ = img.shape
h, w = input_shape
# resize image
scale = min(w/iw, h/ih)
nw = int(iw*scale)
nh = int(ih*scale)
dx = (w-nw)//2
dy = (h-nh)//2
# resize
new_image, image_data = None, None
image = cv2.resize(img, (nw, nh), interpolation=cv2.INTER_AREA)
# convert into PIL Image object
image = Image.fromarray(image[:, :, ::-1])
new_image = Image.new('RGB', (w,h), (128,128,128))
new_image.paste(image, (dx, dy))
# convert into numpy array: RGB, 0-1
image_data = np.array(new_image)/255.
# correct boxes
roi[[0,2]] = roi[[0,2]]*scale + dx
roi[[1,3]] = roi[[1,3]]*scale + dy
# bbox to roi
roi = roi/downsample_rate
# Min width must be 1. to be processed by RoiPoolingLayer
roi[[2]] = np.maximum(roi[[2]] - roi[[0]],1.) # Transform x2 to w
roi[[3]] = np.maximum(roi[[3]] - roi[[1]],1.) # Transform y2 to h
return image_data, np.expand_dims(roi, axis=0)
def rand(a=0, b=1):
return np.random.rand()*(b-a) + a
def preprocess_img_roi_rand(imgs, rois, path_dataset, input_shape, downsample_rate, random=True, fix_coords=True, jitter=.3, hue=.1, sat=1.5, val=1.5, proc_img=True):
'''random preprocessing for real-time data augmentation'''
# numpy array: BGR, 0-255
images = [ cv2.imread(path_dataset + i) for i in imgs ]
# height, width, channel
ih, iw, _ = images[0].shape
h, w = input_shape
rois = [ np.array(list(map(float, roi.split(',')))) for roi in rois ]
if not random:
# resize image
scale = min(w/iw, h/ih)
nw = int(iw*scale)
nh = int(ih*scale)
dx = (w-nw)//2
dy = (h-nh)//2
# resize
for i in range(len(images)):
new_image = None
img = images[i]
image = cv2.resize(img, (nw, nh), interpolation=cv2.INTER_AREA)
# convert into PIL Image object
image = Image.fromarray(image[:, :, ::-1])
new_image = Image.new('RGB', (w,h), (128,128,128))
new_image.paste(image, (dx, dy))
# convert into numpy array: RGB, 0-1
images[i] = np.array(new_image)/255.
for i in range(len(rois)):
roi = rois[i]
# correct boxes
roi[[0,2]] = roi[[0,2]]*scale + dx
roi[[1,3]] = roi[[1,3]]*scale + dy
# bbox to roi
roi = roi/downsample_rate
# Min width must be 1. to be processed by RoiPoolingLayer
if fix_coords:
roi[[2]] = np.maximum(roi[[2]] - roi[[0]],1.) # Transform x2 to w
roi[[3]] = np.maximum(roi[[3]] - roi[[1]],1.) # Transform y2 to hs_data)
else:
roi[[2]] = roi[[2]] - roi[[0]] # Transform x2 to w
roi[[3]] = roi[[3]] - roi[[1]] # Transform y2 to hs_data)
rois[i] = np.expand_dims(roi, axis=0)
return images, rois
# resize image
new_ar = w/h * rand(1-jitter,1+jitter)/rand(1-jitter,1+jitter)
scale = rand(.6, 2)
if new_ar < 1:
nh = int(scale*h)
nw = int(nh*new_ar)
else:
nw = int(scale*w)
nh = int(nw/new_ar)
# resize
images = [ cv2.resize(image, (nw, nh), interpolation=cv2.INTER_AREA) for image in images ]
images = [ Image.fromarray(image[:, :, ::-1]) for image in images ]
# place image
dx = int(rand(0, w-nw))
dy = int(rand(0, h-nh))
new_images = [ Image.new('RGB', (w,h), (128,128,128)) for i in range(len(images)) ]
for i in range(len(images)): new_images[i].paste(images[i], (dx, dy))
# convert into numpy array: BGR, 0-255
images = [ np.asarray(new_image)[:, :, ::-1] for new_image in new_images ]
# horizontal flip (faster than cv2.flip())
h_flip = rand() < 0.5
if h_flip:
images = [ image[:, ::-1] for image in images ]
# distort image
hue = rand(-hue, hue) * 179
sat = rand(1, sat) if rand()<.5 else 1/rand(1, sat)
val = rand(1, val) if rand()<.5 else 1/rand(1, val)
images_data = []
for i in range(len(images)):
img_hsv = cv2.cvtColor(images[i], cv2.COLOR_BGR2HSV)
H = img_hsv[:, :, 0].astype(np.float32)
S = img_hsv[:, :, 1].astype(np.float32)
V = img_hsv[:, :, 2].astype(np.float32)
H += hue
np.clip(H, a_min=0, a_max=179, out=H)
S *= sat
np.clip(S, a_min=0, a_max=255, out=S)
V *= val
np.clip(V, a_min=0, a_max=255, out=V)
img_hsv[:, :, 0] = H.astype(np.uint8)
img_hsv[:, :, 1] = S.astype(np.uint8)
img_hsv[:, :, 2] = V.astype(np.uint8)
# convert into numpy array: RGB, 0-1
images_data.append(cv2.cvtColor(img_hsv, cv2.COLOR_HSV2RGB) / 255.0)
# correct boxes
for i in range(len(rois)):
rois[i][[0,2]] = rois[i][[0,2]]*nw/iw + dx
rois[i][[1,3]] = rois[i][[1,3]]*nh/ih + dy
if rois[i][0] > w or rois[i][1] > h or rois[i][2] < 0 or rois[i][3] < 0:
return None, None
if h_flip:
rois[i][[0,2]] = w - rois[i][[2,0]]
init_area = (rois[i][2]-rois[i][0])*(rois[i][3]-rois[i][1])
rois[i][0:2][rois[i][0:2]<0] = 0
rois[i][2:3][rois[i][2:3]>w] = w
rois[i][3:4][rois[i][3:4]>h] = h
end_area = (rois[i][2]-rois[i][0])*(rois[i][3]-rois[i][1])
perc_area = end_area/init_area
if perc_area < MIN_PERC_AREA: return None, None
rois[i] = rois[i]/downsample_rate
if fix_coords:
rois[i][[2]] = np.maximum(rois[i][[2]] - rois[i][[0]],1.) # Transform x2 to w
rois[i][[3]] = np.maximum(rois[i][[3]] - rois[i][[1]],1.) # Transform y2 to h
else:
rois[i][[2]] = rois[i][[2]] - rois[i][[0]] # Transform x2 to w
rois[i][[3]] = rois[i][[3]] - rois[i][[1]] # Transform y2 to h
rois[i] = np.expand_dims(rois[i], axis=0)
# images_data = images_data[0] if len(images_data) == 1 else np.stack(images_data)
return images_data, rois
# Perform data augmentation over an annotation line
# An annotation line can contain more than one frame that will be processed
# with the same augmentation parameters
# Return augmented image with its augmented ROI coordinates
def get_random_data_cv2(annotation_line, path_dataset, input_shape, downsample_rate, random=False, fix_coords=True):
'''random preprocessing for real-time data augmentation'''
line = annotation_line.split()
videos = [ '/'.join(img.split('/')[:-1]) for img in line[:3] ]
# Apply same transformations if anchor and negative belong to the same video
if videos[0] == videos[2]:
images, rois = None, None
while images is None:
images, rois = preprocess_img_roi_rand(line[:3], line[3:], path_dataset, input_shape, downsample_rate, random, fix_coords)
else:
images, rois = None, None
while images is None:
images, rois = preprocess_img_roi_rand(line[:2], line[3:5], path_dataset, input_shape, downsample_rate, random, fix_coords)
images_N, rois_N = None, None
while images_N is None:
images_N, rois_N = preprocess_img_roi_rand([line[2]], [line[5]], path_dataset, input_shape, downsample_rate, random, fix_coords)
images += images_N; rois += rois_N
return images + rois
def data_generator(annotation_lines, batch_size, input_shape, downsample_rate, random, shuffle, fix_coords=True):
'''data generator for fit_generator'''
n = len(annotation_lines)
i = 0
while True:
batch_data = []
for b in range(batch_size):
if shuffle and i==0:
np.random.shuffle(annotation_lines)
data = get_random_data_cv2(annotation_lines[i], path_dataset, input_shape, downsample_rate, random=random, fix_coords=fix_coords)
batch_data.append(data)
i = (i+1) % n
data = [ np.stack([ bd[i] for bd in batch_data ]) for i in range(len(data)) ]
yield data, np.zeros((batch_size,64*3))
def data_generator_wrapper(annotation_lines, batch_size, input_shape,
downsample_rate, random, shuffle=True, fix_coords=True, **kwargs):
n = len(annotation_lines)
if n==0 or batch_size<=0: return None
return data_generator(annotation_lines, path_dataset, batch_size, input_shape, downsample_rate, random, shuffle, fix_coords)