-
Notifications
You must be signed in to change notification settings - Fork 2
/
fft.cpp
179 lines (166 loc) · 4.02 KB
/
fft.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
#include <iostream>
#include <vector>
#include <algorithm>
#include <string>
#include <time.h>
#include <vector>
#include <list>
#include <cassert>
#include <set>
#include <map>
#include <string>
#include <queue>
#include <cstdio>
#include <cmath>
#include <memory>
using namespace std;
typedef long long li;
#define all(a) a.begin(), a.end()
#define mp make_pair
template <typename T>
class myComplex {
private:
T x, y;
public:
myComplex() {}
myComplex (T x, T y):x(x), y(y) {}
myComplex(T x):x(x), y(0) {}
T getReal() {
return x;
}
T getImag() {
return y;
}
T getSqrDist() {
return x * x + y * y;
}
double getDist() {
return sqrt(1.0 * getSqrDist());
}
myComplex operator + (const myComplex& other) const { return myComplex(x + other.x, y + other.y); }
myComplex operator - () { return myComplex(-x, -y); }
myComplex operator - (const myComplex& other) const { return myComplex(x - other.x, y - other.y); }
myComplex operator * (T number) { return myComplex(x * number, y * number); }
myComplex operator / (T number) { return myComplex(x / number, y / number); }
myComplex operator * (const myComplex& other) const { return myComplex(x * other.x - y * other.y, x * other.y + y * other.x); }
void print() const {
cout << x;
if (y > 0)
cout << "+";
if (y != 0)
cout << y << "i";
cout << "\n";
}
};
typedef myComplex<double> complex;
void fft (vector<complex>& input, bool invert) {
int curSize = input.size();
if (curSize == 1)
return;
vector<complex> rec[2];
for (int w = 0; w < 2; ++w)
rec[w].resize(curSize / 2);
for (int i = 0; i < input.size(); i += 2) {
rec[0][i / 2] = input[i];
rec[1][i / 2] = input[i + 1];
}
for (int w = 0; w < 2; ++w)
fft(rec[w], invert);
double alpha = 2 * acos(-1.0) / curSize * (invert ? -1 : 1);
complex wn = complex(cos(alpha), sin(alpha));
complex w = 1;
for (int i = 0; i < curSize / 2; ++i) {
input[i] = rec[0][i] + w * rec[1][i];
input[i + curSize / 2] = rec[0][i] - w * rec[1][i];
if (invert) {
input[i] = input[i] / 2;
input[i + curSize / 2] = input[i + curSize / 2] / 2;
}
w = w * wn;
}
}
vector <double> multiply(const vector<double>& a, const vector<double>& b) {
int n = 1;
while (n <= a.size() || n <= b.size())
n <<= 1;
n <<= 1;
vector<complex> input[2];
for (int w = 0; w < 2; ++w)
input[w].assign(n, complex(0,0));
for (int i = 0; i < a.size(); ++i)
input[0][i] = a[i];
for (int i = 0; i < b.size(); ++i)
input[1][i] = b[i];
for (int w = 0; w < 2; ++w) {
fft(input[w], false);
}
vector <complex> res(n);
for (int i = 0; i < n; ++i)
res[i] = input[0][i] * input[1][i];
fft(res, true);
vector<double> answer;
for (int i = 0; i < n; ++i)
answer.push_back(res[i].getReal());
return answer;
}
vector <double> naive (vector<double> a, vector<double> b) {
vector<double> res(a.size() + b.size() - 1);
for (int i = 0; i < a.size(); ++i)
for (int j = 0; j < b.size(); ++j)
res[i + j] += a[i] * b[j];
return res;
}
int main() {
#ifdef PROGA
freopen("in.txt", "r", stdin);
#endif
int t;
//t = 1;
cin >> t;
int MAGIC = 5;
int base = 100000;
while (t--) {
vector<double> a[2];
for (int w = 0; w < 2; ++w) {
string s;
cin >> s;
reverse(all(s));
for (int i = 0; ; i += MAGIC) {
int cur = 0;
for (int w = min(i + MAGIC, (int)s.length()) - 1; w >= i; --w)
cur = cur * 10 + (int)(s[w] - '0');
a[w].push_back(cur);
if (i + MAGIC >= s.length())
break;
}
}
vector<double> resFFT = multiply(a[0], a[1]);
vector <long long> res;
for (int i = 0; i < resFFT.size(); ++i)
res.push_back(resFFT[i] + 0.5);
for (int i = 0; i + 1 < res.size(); ++i) {
res[i + 1] += res[i] / base;
res[i] %= base;
}
bool flag = false;
int first = -1;
for (int i = res.size() - 1; i >= 0; --i) {
if (res[i] != 0) {
flag = true;
if (first == -1)
first = i;
}
if (flag) {
if (i != first) {
for (int w = base / 10; w > 1; w /= 10)
if (res[i] < w)
printf("0");
}
printf("%d", res[i]);
}
}
if (!flag)
printf("0");
printf("\n");
}
}