-
Notifications
You must be signed in to change notification settings - Fork 19
/
Copy pathutils.py
79 lines (67 loc) · 1.91 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
import torch
import torch.nn.functional as F
class Timing:
"""
Timing environment
usage:
with Timing("message"):
your commands here
will print CUDA runtime in ms
"""
def __init__(self, name, debug=False):
self.name = name
self.debug = debug
def __enter__(self):
if not self.debug:
return
self.start = torch.cuda.Event(enable_timing=True)
self.end = torch.cuda.Event(enable_timing=True)
self.start.record()
def __exit__(self, type, value, traceback):
if not self.debug:
return
self.end.record()
torch.cuda.synchronize()
print(self.name, "elapsed", self.start.elapsed_time(self.end), "ms")
@torch.no_grad()
def unshuffle(x, downscale_factor=2):
'''
Args:
x: [N, H, W, C]
or
x: [H, W, C]
Ret:
[N, W//fac, H//fac, C, fac*fac]
or
[W//fac, H//fac, C, fac*fac]
'''
if len(x.shape) == 4:
x = x.permute(0,3,1,2).unsqueeze(2)
x = F.pixel_unshuffle(x, downscale_factor=downscale_factor).permute(0,3,4,1,2)
elif len(x.shape) == 3:
x = x.permute(2,0,1).unsqueeze(1)
x = F.pixel_unshuffle(x, downscale_factor=downscale_factor).permute(2,3,0,1)
else:
raise NotImplementedError
return x
@torch.no_grad()
def shuffle(x, upscale_factor=2):
'''
Args:
[N, W//fac, H//fac, C, fac*fac]
or
[W//fac, H//fac, C, fac*fac]
Ret:
[N, H, W, C]
or
[H, W, C]
'''
if len(x.shape) == 5:
x = x.permute(0,3,4,1,2)
x = F.pixel_shuffle(x, upscale_factor=upscale_factor).squeeze(2).permute(0,2,3,1)
elif len(x.shape) == 4:
x = x.permute(2,3,0,1)
x = F.pixel_shuffle(x, upscale_factor=upscale_factor).squeeze(1).permute(1,2,0)
else:
raise NotImplementedError
return x