Skip to content

Latest commit

 

History

History
136 lines (118 loc) · 4.91 KB

generate-data.md

File metadata and controls

136 lines (118 loc) · 4.91 KB

本文介绍如何在ACK上,使用EMR Spark和TPC-DS生成测试数据。

前提条件

  • ACK标准集群,节点规格选用ecs.d1ne.6xlarge大数据型,共20个Worker节点。
  • 阿里云OSS,并创建一个bucket,用来替换YAML文件中的OSS配置。

环境准备

  • 安装ack-spark-operator

    通过安装ack-spark-operator组件,您可以使用ACK Spark Operator简化提交作业的操作。

    1). 登录容器服务管理控制台。

    2). 在控制台左侧导航栏中,选择市场 > 应用目录

    3). 在应用目录页面,找到并单击ack-spark-operator

    4). 在应用目录 - ack-spark-operator页面右侧,单击创建

  • 安装ack-spark-history-server(可选)

    ACK Spark History Server通过记录Spark执行任务过程中的日志和事件信息,并提供UI界面,帮助排查问题。

    在创建ack-spark-history-server组件时,您需在参数页签配置OSS相关的信息,用于存储Spark历史数据。

    1). 登录容器服务管理控制台。

    2). 在控制台左侧导航栏中,选择市场 > 应用目录

    3). 在应用目录页面,找到并单击ack-spark-history-server

    4). 在应用目录 - ack-spark-history-server页面右侧,单击创建

提交Spark作业

apiVersion: "sparkoperator.k8s.io/v1beta2"
kind: SparkApplication
metadata:
  name: tpcds-data-generation-10t
  namespace: default
spec:
  type: Scala
  mode: cluster
  image: registry.cn-beijing.aliyuncs.com/zf-spark/spark-2.4.5:for-tpc-ds-2
  imagePullPolicy: Always
  mainClass: com.databricks.spark.sql.perf.tpcds.TPCDS_Standalone
  mainApplicationFile: "oss://<YOUR-BUCKET>/jars/spark-sql-perf-assembly-0.5.0-SNAPSHOT.jar"
  arguments:
    - "--dataset_location"
    - "oss://<YOUR-BUCKET>/datasets/"
    - "--output_location"
    - "oss://<YOUR-BUCKET>/outputs/ack-pr-10t-emr"
    - "--iterations"
    - "1"
    - "--shuffle_partitions"
    - "1000"
    - "--scale_factor"
    - "10000" #指定生成数据大小,默认单位为GB
    - "--regenerate_dataset"
    - "true"
    - "--regenerate_metadata"
    - "true"
    - "--only_generate_data_and_meta"
    - "true"
    - "--format"
    - "parquet"
  sparkVersion: 2.4.5
  restartPolicy:
    type: Never
  sparkConf:
    spark.eventLog.enabled: "true"
    spark.eventLog.dir: "oss://<YOUR-BUCKET>/spark/eventlogs"
    spark.driver.extraJavaOptions: "-XX:-PrintGC -XX:+PrintGCDetails -XX:+PrintGCTimeStamps -XX:+PrintGCDateStamps"
    spark.driver.maxResultSize: 40g
    spark.executor.extraJavaOptions: "-XX:MaxDirectMemorySize=32g -XX:-PrintGC -XX:+PrintGCDetails -XX:+PrintGCTimeStamps -XX:+PrintGCDateStamps"
    spark.locality.wait.node: "0"
    spark.locality.wait.process: "0"
    spark.locality.wait.rack: "0"
    spark.locality.wait: "0"
    spark.memory.fraction: "0.8"
    spark.memory.offHeap.enabled: "false"
    spark.memory.offHeap.size: "17179869184"
    spark.sql.adaptive.bloomFilterJoin.enabled: "false"
    spark.sql.adaptive.enabled: "false"
    spark.sql.analyze.column.async.delay: "200"
    spark.sql.auto.reused.cte.enabled: "true"
    spark.sql.broadcastTimeout: "3600"
    spark.sql.columnVector.offheap.enabled: "false"
    spark.sql.crossJoin.enabled: "true"
    spark.sql.delete.optimizeInSubquery: "true"
    spark.sql.dynamic.runtime.filter.bbf.enabled: "false"
    spark.sql.dynamic.runtime.filter.enabled: "true"
    spark.sql.dynamic.runtime.filter.exact.enabled: "true"
    spark.sql.dynamic.runtime.filter.table.size.lower.limit: "1069547520"
    spark.sql.dynamic.runtime.filter.table.size.upper.limit: "5368709120"
    spark.sql.files.openCostInBytes: "34108864"
    spark.sql.inMemoryColumnarStorage.compressed: "true"
    spark.sql.join.preferNativeJoin: "false"
    spark.sql.native.codecache: "true"
    spark.sql.native.codegen.wholeStage: "false"
    spark.sql.native.nativewrite: "false"
    spark.sql.pkfk.optimize.enable: "true"
    spark.sql.pkfk.riJoinElimination: "true"
    spark.sql.shuffle.partitions: "1000"
    spark.sql.simplifyDecimal.enabled: "true"
    spark.sql.sources.parallelPartitionDiscovery.parallelism: "432"
    spark.sql.sources.parallelPartitionDiscovery.threshold: "32"
    spark.shuffle.reduceLocality.enabled: "false"
    spark.shuffle.service.enabled: "true"
    spark.dynamicAllocation.enabled: "false"
  driver:
    cores: 15
    coreLimit: 15000m
    memory: 30g
    labels:
      version: 2.4.5
    serviceAccount: spark
    env:
      - name: TZ
        value: "Asia/Shanghai"
  executor:
    cores: 8
    coreLimit: 8000m
    instances: 20
    memory: 24g
    labels:
      version: 2.4.5
    env:
      - name: TZ
        value: "Asia/Shanghai"

完整YAML文件可参考tpcds-data-generation,其中spec.mainApplicationFile中的jar包 可通过这里下载,放在自己的OSS中。