-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathclassification.py
57 lines (41 loc) · 1.72 KB
/
classification.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
import yaml
import time
import numpy as np
from classification.nn_utils import NearestNeighbour
from classification.config_utils import load_config
from classification.dataset_utils import Dataset
def main():
try:
# Get the configs
config = load_config()
# Load the dataset
dataset = Dataset(config)
avg_error = 0.0
accumulative_time = 0.0
for _ in range(dataset.get_cross_validation_folds()):
dataset_dict = dataset.get_next_dataset()
# Obtain the train/test data/labels
train_data = dataset_dict["train_x"]
train_labels = dataset_dict["train_y"]
test_data = dataset_dict["test_x"]
test_labels = dataset_dict["test_y"]
# Create the model
start_time = time.time()
nn = NearestNeighbour(train_data, train_labels, config["preprocess_method"])
test_predictions = nn.mass_predict(test_data)
# Predict the whole test set and record times
end_time = time.time()
# Report time
print("Classification time (seconds): ", end_time - start_time)
accumulative_time += end_time - start_time
# Calculate and report error
err_positions = np.not_equal(test_predictions, test_labels)
error = float(np.sum(err_positions))/len(test_labels)
print("Error of nearest neighbor classifier: ", error)
avg_error += error
print("Average error:", avg_error / dataset.get_cross_validation_folds())
print("Accumulative time:", accumulative_time)
except KeyboardInterrupt:
print("Exiting early...")
if __name__ == "__main__":
main()