forked from roman-vygon/triplet_loss_kws
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathTripletEncoder.py
255 lines (194 loc) · 8.49 KB
/
TripletEncoder.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
import os
import math
import json
import nemo
import nemo.collections.asr as nemo_asr
from nemo.utils.lr_policies import CosineAnnealing
from layers.helper import (monitor_triplet_encoder_training_progress,
process_encoder_evaluation_batch,
process_encoder_evaluation_epoch)
from functools import partial
from ruamel.yaml import YAML
from loss.triplet import OnlineTripletLoss
from loss.utils import RandomNegativeTripletSelector
from layers.datalayer import BalancedAudioToSpeechLabelDataLayer
from models.resnet import Res15, Res8
import argparse
import numpy as np
import logging
from layers.l2 import L2Regularizer
from layers.embedding_callback import EmbeddingEvaluatorCallback
from layers.classify_callback import RunClassifierCallback
from models.fc import LinearLayer
data_dir = '.'
parser = argparse.ArgumentParser(description='Triplet loss encoder')
parser.add_argument('--lr', type=float, help='initial learning rate', default=1e-3)
parser.add_argument('--lr_end', type=float, help='final learning rate', default=8e-5)
parser.add_argument('--batch_classes', type=int, help='how many classes should be in a single batch', default=35)
parser.add_argument('--per_class', type=int, help='how many objects of each class should be in a single batch',
default=10)
parser.add_argument('--num_epochs', type=int, help='number of epochs', default=15)
parser.add_argument('--margin', type=float, help='margin for triplet loss', default=0.5)
parser.add_argument('--hidden_size', type=int, help='number of feature maps for resnet model', default=45)
parser.add_argument('--augment', dest='augment', help='whether to use augmentation', action='store_true', default=False)
parser.add_argument('--save_emb', dest='save_emb', help='whether to save validation set embeddings for tf projector',
action='store_true', default=False)
parser.add_argument('--cl', dest='cl', help='whether to run classification phase', action='store_true', default=False)
parser.add_argument('--gpu', type=int, help='gpu#', default=0)
parser.add_argument('--classify_gpu', type=int, help='which gpu to use for classification', default=1)
parser.add_argument('--manifest', type=str,
help='manifest number, 10-10000 for LibriWords, 36 for GoogleSpeechCommands', default='100')
parser.add_argument('--model', type=str, help='encoder architecture, can be Res8, Res15, Quartz', default='Res8')
parser.add_argument('--data_probs', type=int, help='sampling method (0-6)', default=0)
parser.add_argument('--name', type=str, help='logdir name', default='test')
args = parser.parse_args()
manifests = json.load(open('/content/triplet_loss_kws/manifests.json', 'r'))
background_dataset = data_dir + '/google_dataset_v2/google_speech_recognition_v2/background_manifest.json'
train_dataset = manifests[args.manifest]['train']
val_dataset = manifests[args.manifest]['dev']
yaml = YAML(typ="safe")
config_name = f'words{args.manifest}.yaml'
with open("/content/triplet_loss_kws/configs/" + config_name) as f:
jasper_params = yaml.load(f)
labels = jasper_params['labels']
sample_rate = jasper_params['sample_rate']
dists = np.load('dists.npy')
man_number = int(args.manifest)
probs = np.load(f'files/class_probs{man_number}.npy')
if args.manifest == '10000':
man_number = 9998
dists = dists[:man_number]
dists = dists[np.where(dists < man_number)]
dists = dists.reshape((man_number, man_number))
os.environ['CUDA_VISIBLE_DEVICES'] = str(args.gpu)
lr = args.lr
num_epochs = args.num_epochs
batch_size = args.batch_classes * args.per_class
weight_decay = 0.001
num_classes = len(labels)
neural_factory = nemo.core.NeuralModuleFactory(
log_dir=data_dir + '/runs/' + args.name,
create_tb_writer=True)
tb_writer = neural_factory.tb_writer
audio_augmentor = None
if args.augment:
audio_augmentor = jasper_params.get('AudioAugmentor', None)
audio_augmentor['noise']['manifest_path'] = background_dataset
train_data_layer = BalancedAudioToSpeechLabelDataLayer(
manifest_filepath=train_dataset,
labels=labels,
sample_rate=sample_rate,
batch_size=args.batch_classes * args.per_class,
num_workers=0,
augmentor=audio_augmentor,
shuffle=True,
num_classes=args.batch_classes,
class_dists=dists,
class_probs=probs,
probs_num=args.data_probs
)
eval_data_layer = nemo_asr.AudioToSpeechLabelDataLayer(
manifest_filepath=val_dataset,
sample_rate=sample_rate,
labels=labels,
batch_size=batch_size,
num_workers=0,
shuffle=True,
)
data_preprocessor = nemo_asr.AudioToMelSpectrogramPreprocessor(
sample_rate=sample_rate, **jasper_params["AudioToMelSpectrogramPreprocessor"],
)
N = len(train_data_layer)
steps_per_epoch = math.ceil(N / float(batch_size) + 1)
logging.info("Steps per epoch : {0}".format(steps_per_epoch))
logging.info('Have {0} examples to train on.'.format(N))
spectr_augment_config = jasper_params.get('SpectrogramAugmentation', None)
if spectr_augment_config:
data_spectr_augmentation = nemo_asr.SpectrogramAugmentation(**spectr_augment_config)
l2_regularizer = L2Regularizer()
assert args.model in ['Res8', 'Res15', 'Quartz']
if args.model == 'Res8':
encoder = Res8(args.hidden_size).to('cuda')
elif args.model == 'Res15':
encoder = Res15(args.hidden_size).to('cuda')
elif args.model == 'Quartz':
encoder = nemo_asr.JasperEncoder(**jasper_params["JasperEncoder"])
fc = LinearLayer(64 * 256) # TODO find shape from jasper_params
triplet_loss = OnlineTripletLoss(args.margin, RandomNegativeTripletSelector(args.margin))
logging.info('================================')
logging.info(f"Number of parameters in encoder: {encoder.num_weights}")
logging.info('================================')
audio_signal, audio_signal_len, commands, command_len = train_data_layer()
processed_signal, processed_signal_len = data_preprocessor(input_signal=audio_signal, length=audio_signal_len)
if spectr_augment_config:
processed_signal = data_spectr_augmentation(input_spec=processed_signal)
encoded, encoded_len = encoder(audio_signal=processed_signal, length=processed_signal_len)
if args.model == 'Quartz':
encoded = fc(encoder_output=encoded)
encoded = l2_regularizer(embeds=encoded)
train_loss = triplet_loss(embeds=encoded, targets=commands)
test_audio_signal, test_audio_signal_len, test_commands, test_command_len = eval_data_layer()
test_processed_signal, test_processed_signal_len = data_preprocessor(
input_signal=test_audio_signal, length=test_audio_signal_len
)
test_encoded, test_encoded_len = encoder(audio_signal=test_processed_signal, length=test_processed_signal_len)
if args.model == 'Quartz':
test_encoded = fc(encoder_output=test_encoded)
test_encoded = l2_regularizer(embeds=test_encoded)
test_loss = triplet_loss(embeds=test_encoded, targets=test_commands)
"""SETUP CALLBACKS"""
train_callback = nemo.core.SimpleLossLoggerCallback(
tensors=[train_loss],
print_func=partial(monitor_triplet_encoder_training_progress, eval_metric=None),
get_tb_values=lambda x: [("loss", x[0])],
tb_writer=neural_factory.tb_writer,
)
chpt_callback = nemo.core.CheckpointCallback(
folder=neural_factory.checkpoint_dir,
step_freq=100,
checkpoints_to_keep=100
)
callbacks = [train_callback, chpt_callback]
if args.save_emb:
eval_callback = EmbeddingEvaluatorCallback(
eval_tensors=[test_loss, test_commands, test_encoded],
user_iter_callback=partial(process_encoder_evaluation_batch),
user_epochs_done_callback=partial(process_encoder_evaluation_epoch, tag='TestSet'),
eval_step=100,
tb_writer=neural_factory.tb_writer,
eval_at_start=False
)
callbacks.append(eval_callback)
if args.cl:
classify_callback = RunClassifierCallback(
eval_step=100,
name=args.name,
num_classes=len(labels),
gpu=args.classify_gpu,
hidden_size=args.hidden_size,
manifest=args.manifest,
model=args.model
)
callbacks.append(classify_callback)
lr_policy = CosineAnnealing(
total_steps=num_epochs * steps_per_epoch,
warmup_ratio=0.05,
min_lr=args.lr_end,
)
logging.info(f"Using `{lr_policy}` Learning Rate Scheduler")
neural_factory.train(
tensors_to_optimize=[train_loss],
callbacks=callbacks,
lr_policy=lr_policy,
optimizer="novograd",
optimization_params={
"num_epochs": num_epochs,
"max_steps": None,
"lr": lr,
"momentum": 0.95,
"betas": (0.98, 0.5),
"weight_decay": weight_decay,
"grad_norm_clip": None,
},
batches_per_step=1,
)