Skip to content

Latest commit

 

History

History
420 lines (355 loc) · 10.8 KB

File metadata and controls

420 lines (355 loc) · 10.8 KB
comments difficulty edit_url tags
true
中等
数组
动态规划
矩阵

English Version

题目描述

一个机器人位于一个 m x n 网格的左上角 (起始点在下图中标记为 “Start” )。

机器人每次只能向下或者向右移动一步。机器人试图达到网格的右下角(在下图中标记为 “Finish”)。

现在考虑网格中有障碍物。那么从左上角到右下角将会有多少条不同的路径?

网格中的障碍物和空位置分别用 10 来表示。

 

示例 1:

输入:obstacleGrid = [[0,0,0],[0,1,0],[0,0,0]]
输出:2
解释:3x3 网格的正中间有一个障碍物。
从左上角到右下角一共有 2 条不同的路径:
1. 向右 -> 向右 -> 向下 -> 向下
2. 向下 -> 向下 -> 向右 -> 向右

示例 2:

输入:obstacleGrid = [[0,1],[0,0]]
输出:1

 

提示:

  • m == obstacleGrid.length
  • n == obstacleGrid[i].length
  • 1 <= m, n <= 100
  • obstacleGrid[i][j]01

解法

方法一:记忆化搜索

我们设计一个函数 $dfs(i, j)$ 表示从网格 $(i, j)$ 到网格 $(m - 1, n - 1)$ 的路径数。其中 $m$$n$ 分别是网格的行数和列数。

函数 $dfs(i, j)$ 的执行过程如下:

  • 如果 $i \ge m$ 或者 $j \ge n$,或者 $obstacleGrid[i][j] = 1$,则路径数为 $0$
  • 如果 $i = m - 1$$j = n - 1$,则路径数为 $1$
  • 否则,路径数为 $dfs(i + 1, j) + dfs(i, j + 1)$

为了避免重复计算,我们可以使用记忆化搜索的方法。

时间复杂度 $O(m \times n)$,空间复杂度 $O(m \times n)$。其中 $m$$n$ 分别是网格的行数和列数。

Python3

class Solution:
    def uniquePathsWithObstacles(self, obstacleGrid: List[List[int]]) -> int:
        @cache
        def dfs(i: int, j: int) -> int:
            if i >= m or j >= n or obstacleGrid[i][j]:
                return 0
            if i == m - 1 and j == n - 1:
                return 1
            return dfs(i + 1, j) + dfs(i, j + 1)

        m, n = len(obstacleGrid), len(obstacleGrid[0])
        return dfs(0, 0)

Java

class Solution {
    private Integer[][] f;
    private int[][] obstacleGrid;
    private int m;
    private int n;

    public int uniquePathsWithObstacles(int[][] obstacleGrid) {
        m = obstacleGrid.length;
        n = obstacleGrid[0].length;
        this.obstacleGrid = obstacleGrid;
        f = new Integer[m][n];
        return dfs(0, 0);
    }

    private int dfs(int i, int j) {
        if (i >= m || j >= n || obstacleGrid[i][j] == 1) {
            return 0;
        }
        if (i == m - 1 && j == n - 1) {
            return 1;
        }
        if (f[i][j] == null) {
            f[i][j] = dfs(i + 1, j) + dfs(i, j + 1);
        }
        return f[i][j];
    }
}

C++

class Solution {
public:
    int uniquePathsWithObstacles(vector<vector<int>>& obstacleGrid) {
        int m = obstacleGrid.size(), n = obstacleGrid[0].size();
        int f[m][n];
        memset(f, -1, sizeof(f));
        function<int(int, int)> dfs = [&](int i, int j) {
            if (i >= m || j >= n || obstacleGrid[i][j]) {
                return 0;
            }
            if (i == m - 1 && j == n - 1) {
                return 1;
            }
            if (f[i][j] == -1) {
                f[i][j] = dfs(i + 1, j) + dfs(i, j + 1);
            }
            return f[i][j];
        };
        return dfs(0, 0);
    }
};

Go

func uniquePathsWithObstacles(obstacleGrid [][]int) int {
	m, n := len(obstacleGrid), len(obstacleGrid[0])
	f := make([][]int, m)
	for i := range f {
		f[i] = make([]int, n)
		for j := range f[i] {
			f[i][j] = -1
		}
	}
	var dfs func(i, j int) int
	dfs = func(i, j int) int {
		if i >= m || j >= n || obstacleGrid[i][j] == 1 {
			return 0
		}
		if i == m-1 && j == n-1 {
			return 1
		}
		if f[i][j] == -1 {
			f[i][j] = dfs(i+1, j) + dfs(i, j+1)
		}
		return f[i][j]
	}
	return dfs(0, 0)
}

TypeScript

function uniquePathsWithObstacles(obstacleGrid: number[][]): number {
    const m = obstacleGrid.length;
    const n = obstacleGrid[0].length;
    const f: number[][] = Array.from({ length: m }, () => Array(n).fill(-1));
    const dfs = (i: number, j: number): number => {
        if (i >= m || j >= n || obstacleGrid[i][j] === 1) {
            return 0;
        }
        if (i === m - 1 && j === n - 1) {
            return 1;
        }
        if (f[i][j] === -1) {
            f[i][j] = dfs(i + 1, j) + dfs(i, j + 1);
        }
        return f[i][j];
    };
    return dfs(0, 0);
}

方法二:动态规划

我们定义 $f[i][j]$ 表示到达网格 $(i,j)$ 的路径数。

首先初始化 $f$ 第一列和第一行的所有值,然后遍历其它行和列,有两种情况:

  • $obstacleGrid[i][j] = 1$,说明路径数为 $0$,那么 $f[i][j] = 0$
  • $obstacleGrid[i][j] = 0$,则 $f[i][j] = f[i - 1][j] + f[i][j - 1]$

最后返回 $f[m - 1][n - 1]$ 即可。

时间复杂度 $O(m \times n)$,空间复杂度 $O(m \times n)$。其中 $m$$n$ 分别是网格的行数和列数。

Python3

class Solution:
    def uniquePathsWithObstacles(self, obstacleGrid: List[List[int]]) -> int:
        m, n = len(obstacleGrid), len(obstacleGrid[0])
        f = [[0] * n for _ in range(m)]
        for i in range(m):
            if obstacleGrid[i][0] == 1:
                break
            f[i][0] = 1
        for j in range(n):
            if obstacleGrid[0][j] == 1:
                break
            f[0][j] = 1
        for i in range(1, m):
            for j in range(1, n):
                if obstacleGrid[i][j] == 0:
                    f[i][j] = f[i - 1][j] + f[i][j - 1]
        return f[-1][-1]

Java

class Solution {
    public int uniquePathsWithObstacles(int[][] obstacleGrid) {
        int m = obstacleGrid.length, n = obstacleGrid[0].length;
        int[][] f = new int[m][n];
        for (int i = 0; i < m && obstacleGrid[i][0] == 0; ++i) {
            f[i][0] = 1;
        }
        for (int j = 0; j < n && obstacleGrid[0][j] == 0; ++j) {
            f[0][j] = 1;
        }
        for (int i = 1; i < m; ++i) {
            for (int j = 1; j < n; ++j) {
                if (obstacleGrid[i][j] == 0) {
                    f[i][j] = f[i - 1][j] + f[i][j - 1];
                }
            }
        }
        return f[m - 1][n - 1];
    }
}

C++

class Solution {
public:
    int uniquePathsWithObstacles(vector<vector<int>>& obstacleGrid) {
        int m = obstacleGrid.size(), n = obstacleGrid[0].size();
        vector<vector<int>> f(m, vector<int>(n));
        for (int i = 0; i < m && obstacleGrid[i][0] == 0; ++i) {
            f[i][0] = 1;
        }
        for (int j = 0; j < n && obstacleGrid[0][j] == 0; ++j) {
            f[0][j] = 1;
        }
        for (int i = 1; i < m; ++i) {
            for (int j = 1; j < n; ++j) {
                if (obstacleGrid[i][j] == 0) {
                    f[i][j] = f[i - 1][j] + f[i][j - 1];
                }
            }
        }
        return f[m - 1][n - 1];
    }
};

Go

func uniquePathsWithObstacles(obstacleGrid [][]int) int {
	m, n := len(obstacleGrid), len(obstacleGrid[0])
	f := make([][]int, m)
	for i := 0; i < m; i++ {
		f[i] = make([]int, n)
	}
	for i := 0; i < m && obstacleGrid[i][0] == 0; i++ {
		f[i][0] = 1
	}
	for j := 0; j < n && obstacleGrid[0][j] == 0; j++ {
		f[0][j] = 1
	}
	for i := 1; i < m; i++ {
		for j := 1; j < n; j++ {
			if obstacleGrid[i][j] == 0 {
				f[i][j] = f[i-1][j] + f[i][j-1]
			}
		}
	}
	return f[m-1][n-1]
}

TypeScript

function uniquePathsWithObstacles(obstacleGrid: number[][]): number {
    const m = obstacleGrid.length;
    const n = obstacleGrid[0].length;
    const f = Array.from({ length: m }, () => Array(n).fill(0));
    for (let i = 0; i < m; i++) {
        if (obstacleGrid[i][0] === 1) {
            break;
        }
        f[i][0] = 1;
    }
    for (let i = 0; i < n; i++) {
        if (obstacleGrid[0][i] === 1) {
            break;
        }
        f[0][i] = 1;
    }
    for (let i = 1; i < m; i++) {
        for (let j = 1; j < n; j++) {
            if (obstacleGrid[i][j] === 1) {
                continue;
            }
            f[i][j] = f[i - 1][j] + f[i][j - 1];
        }
    }
    return f[m - 1][n - 1];
}

TypeScript

function uniquePathsWithObstacles(obstacleGrid: number[][]): number {
    const m = obstacleGrid.length;
    const n = obstacleGrid[0].length;
    const f: number[][] = Array.from({ length: m }, () => Array(n).fill(-1));
    const dfs = (i: number, j: number): number => {
        if (i >= m || j >= n || obstacleGrid[i][j] === 1) {
            return 0;
        }
        if (i === m - 1 && j === n - 1) {
            return 1;
        }
        if (f[i][j] === -1) {
            f[i][j] = dfs(i + 1, j) + dfs(i, j + 1);
        }
        return f[i][j];
    };
    return dfs(0, 0);
}

Rust

impl Solution {
    pub fn unique_paths_with_obstacles(obstacle_grid: Vec<Vec<i32>>) -> i32 {
        let m = obstacle_grid.len();
        let n = obstacle_grid[0].len();
        let mut f = vec![vec![0; n]; m];
        for i in 0..n {
            if obstacle_grid[0][i] == 1 {
                break;
            }
            f[0][i] = 1;
        }
        for i in 0..m {
            if obstacle_grid[i][0] == 1 {
                break;
            }
            f[i][0] = 1;
        }
        for i in 1..m {
            for j in 1..n {
                if obstacle_grid[i][j] == 1 {
                    continue;
                }
                f[i][j] = f[i - 1][j] + f[i][j - 1];
            }
        }
        f[m - 1][n - 1]
    }
}