comments | difficulty | edit_url | tags | |||
---|---|---|---|---|---|---|
true |
中等 |
|
我们可以为二叉树 T 定义一个 翻转操作 ,如下所示:选择任意节点,然后交换它的左子树和右子树。
只要经过一定次数的翻转操作后,能使 X 等于 Y,我们就称二叉树 X 翻转 等价 于二叉树 Y。
这些树由根节点 root1
和 root2
给出。如果两个二叉树是否是翻转 等价 的函数,则返回 true
,否则返回 false
。
示例 1:
输入:root1 = [1,2,3,4,5,6,null,null,null,7,8], root2 = [1,3,2,null,6,4,5,null,null,null,null,8,7] 输出:true 解释:我们翻转值为 1,3 以及 5 的三个节点。
示例 2:
输入: root1 = [], root2 = [] 输出: true
示例 3:
输入: root1 = [], root2 = [1] 输出: false
提示:
- 每棵树节点数在
[0, 100]
范围内 - 每棵树中的每个值都是唯一的、在
[0, 99]
范围内的整数
# Definition for a binary tree node.
# class TreeNode:
# def __init__(self, val=0, left=None, right=None):
# self.val = val
# self.left = left
# self.right = right
class Solution:
def flipEquiv(self, root1: Optional[TreeNode], root2: Optional[TreeNode]) -> bool:
def dfs(root1, root2):
if root1 == root2 or (root1 is None and root2 is None):
return True
if root1 is None or root2 is None or root1.val != root2.val:
return False
return (dfs(root1.left, root2.left) and dfs(root1.right, root2.right)) or (
dfs(root1.left, root2.right) and dfs(root1.right, root2.left)
)
return dfs(root1, root2)
/**
* Definition for a binary tree node.
* public class TreeNode {
* int val;
* TreeNode left;
* TreeNode right;
* TreeNode() {}
* TreeNode(int val) { this.val = val; }
* TreeNode(int val, TreeNode left, TreeNode right) {
* this.val = val;
* this.left = left;
* this.right = right;
* }
* }
*/
class Solution {
public boolean flipEquiv(TreeNode root1, TreeNode root2) {
return dfs(root1, root2);
}
private boolean dfs(TreeNode root1, TreeNode root2) {
if (root1 == root2 || (root1 == null && root2 == null)) {
return true;
}
if (root1 == null || root2 == null || root1.val != root2.val) {
return false;
}
return (dfs(root1.left, root2.left) && dfs(root1.right, root2.right))
|| (dfs(root1.left, root2.right) && dfs(root1.right, root2.left));
}
}
/**
* Definition for a binary tree node.
* struct TreeNode {
* int val;
* TreeNode *left;
* TreeNode *right;
* TreeNode() : val(0), left(nullptr), right(nullptr) {}
* TreeNode(int x) : val(x), left(nullptr), right(nullptr) {}
* TreeNode(int x, TreeNode *left, TreeNode *right) : val(x), left(left), right(right) {}
* };
*/
class Solution {
public:
bool flipEquiv(TreeNode* root1, TreeNode* root2) {
return dfs(root1, root2);
}
bool dfs(TreeNode* root1, TreeNode* root2) {
if (root1 == root2 || (!root1 && !root2)) return true;
if (!root1 || !root2 || root1->val != root2->val) return false;
return (dfs(root1->left, root2->left) && dfs(root1->right, root2->right)) || (dfs(root1->left, root2->right) && dfs(root1->right, root2->left));
}
};
/**
* Definition for a binary tree node.
* type TreeNode struct {
* Val int
* Left *TreeNode
* Right *TreeNode
* }
*/
func flipEquiv(root1 *TreeNode, root2 *TreeNode) bool {
var dfs func(root1, root2 *TreeNode) bool
dfs = func(root1, root2 *TreeNode) bool {
if root1 == root2 || (root1 == nil && root2 == nil) {
return true
}
if root1 == nil || root2 == nil || root1.Val != root2.Val {
return false
}
return (dfs(root1.Left, root2.Left) && dfs(root1.Right, root2.Right)) || (dfs(root1.Left, root2.Right) && dfs(root1.Right, root2.Left))
}
return dfs(root1, root2)
}