Skip to content

Latest commit

 

History

History
210 lines (169 loc) · 6.25 KB

File metadata and controls

210 lines (169 loc) · 6.25 KB
comments difficulty edit_url rating source tags
true
中等
1418
第 138 场周赛 Q2
数组
滑动窗口

English Version

题目描述

有一个书店老板,他的书店开了 n 分钟。每分钟都有一些顾客进入这家商店。给定一个长度为 n 的整数数组 customers ,其中 customers[i] 是在第 i 分钟开始时进入商店的顾客数量,所有这些顾客在第 i 分钟结束后离开。

在某些时候,书店老板会生气。 如果书店老板在第 i 分钟生气,那么 grumpy[i] = 1,否则 grumpy[i] = 0

当书店老板生气时,那一分钟的顾客就会不满意,若老板不生气则顾客是满意的。

书店老板知道一个秘密技巧,能抑制自己的情绪,可以让自己连续 minutes 分钟不生气,但却只能使用一次。

请你返回 这一天营业下来,最多有多少客户能够感到满意
 

示例 1:

输入:customers = [1,0,1,2,1,1,7,5], grumpy = [0,1,0,1,0,1,0,1], minutes = 3
输出:16
解释:书店老板在最后 3 分钟保持冷静。
感到满意的最大客户数量 = 1 + 1 + 1 + 1 + 7 + 5 = 16.

示例 2:

输入:customers = [1], grumpy = [0], minutes = 1
输出:1

 

提示:

  • n == customers.length == grumpy.length
  • 1 <= minutes <= n <= 2 * 104
  • 0 <= customers[i] <= 1000
  • grumpy[i] == 0 or 1

解法

方法一:滑动窗口

根据题目描述,我们只需要统计老板不生气时的客户数量 $tot$,再加上一个大小为 minutes 的滑动窗口中,老板生气时的客户数量的最大值 $mx$ 即可。

我们定义一个变量 $cnt$ 来记录滑动窗口中老板生气时的客户数量,初始值为前 minutes 分钟老板生气时的客户数量。然后我们遍历数组,每次移动滑动窗口时,更新 $cnt$ 的值,同时更新 $mx$ 的值。

最后返回 $tot + mx$ 即可。

时间复杂度 $O(n)$,其中 $n$ 为数组 customers 的长度。空间复杂度 $O(1)$

Python3

class Solution:
    def maxSatisfied(
        self, customers: List[int], grumpy: List[int], minutes: int
    ) -> int:
        mx = cnt = sum(c * g for c, g in zip(customers[:minutes], grumpy))
        for i in range(minutes, len(customers)):
            cnt += customers[i] * grumpy[i]
            cnt -= customers[i - minutes] * grumpy[i - minutes]
            mx = max(mx, cnt)
        return sum(c * (g ^ 1) for c, g in zip(customers, grumpy)) + mx

Java

class Solution {
    public int maxSatisfied(int[] customers, int[] grumpy, int minutes) {
        int cnt = 0;
        int tot = 0;
        for (int i = 0; i < minutes; ++i) {
            cnt += customers[i] * grumpy[i];
            tot += customers[i] * (grumpy[i] ^ 1);
        }
        int mx = cnt;
        int n = customers.length;
        for (int i = minutes; i < n; ++i) {
            cnt += customers[i] * grumpy[i];
            cnt -= customers[i - minutes] * grumpy[i - minutes];
            mx = Math.max(mx, cnt);
            tot += customers[i] * (grumpy[i] ^ 1);
        }
        return tot + mx;
    }
}

C++

class Solution {
public:
    int maxSatisfied(vector<int>& customers, vector<int>& grumpy, int minutes) {
        int cnt = 0;
        int tot = 0;
        for (int i = 0; i < minutes; ++i) {
            cnt += customers[i] * grumpy[i];
            tot += customers[i] * (grumpy[i] ^ 1);
        }
        int mx = cnt;
        int n = customers.size();
        for (int i = minutes; i < n; ++i) {
            cnt += customers[i] * grumpy[i];
            cnt -= customers[i - minutes] * grumpy[i - minutes];
            mx = max(mx, cnt);
            tot += customers[i] * (grumpy[i] ^ 1);
        }
        return tot + mx;
    }
};

Go

func maxSatisfied(customers []int, grumpy []int, minutes int) int {
	var cnt, tot int
	for i, c := range customers[:minutes] {
		cnt += c * grumpy[i]
		tot += c * (grumpy[i] ^ 1)
	}
	mx := cnt
	for i := minutes; i < len(customers); i++ {
		cnt += customers[i] * grumpy[i]
		cnt -= customers[i-minutes] * grumpy[i-minutes]
		mx = max(mx, cnt)
		tot += customers[i] * (grumpy[i] ^ 1)
	}
	return tot + mx
}

TypeScript

function maxSatisfied(customers: number[], grumpy: number[], minutes: number): number {
    let [cnt, tot] = [0, 0];
    for (let i = 0; i < minutes; ++i) {
        cnt += customers[i] * grumpy[i];
        tot += customers[i] * (grumpy[i] ^ 1);
    }
    let mx = cnt;
    for (let i = minutes; i < customers.length; ++i) {
        cnt += customers[i] * grumpy[i];
        cnt -= customers[i - minutes] * grumpy[i - minutes];
        mx = Math.max(mx, cnt);
        tot += customers[i] * (grumpy[i] ^ 1);
    }
    return tot + mx;
}

Rust

impl Solution {
    pub fn max_satisfied(customers: Vec<i32>, grumpy: Vec<i32>, minutes: i32) -> i32 {
        let mut cnt = 0;
        let mut tot = 0;
        let minutes = minutes as usize;
        for i in 0..minutes {
            cnt += customers[i] * grumpy[i];
            tot += customers[i] * (1 - grumpy[i]);
        }
        let mut mx = cnt;
        let n = customers.len();
        for i in minutes..n {
            cnt += customers[i] * grumpy[i];
            cnt -= customers[i - minutes] * grumpy[i - minutes];
            mx = mx.max(cnt);
            tot += customers[i] * (1 - grumpy[i]);
        }
        tot + mx
    }
}