Skip to content

Latest commit

 

History

History
219 lines (184 loc) · 5.06 KB

File metadata and controls

219 lines (184 loc) · 5.06 KB
comments difficulty edit_url rating source tags
true
中等
1674
第 10 场双周赛 Q3
广度优先搜索
回溯

English Version

题目描述

如果一个整数上的每一位数字与其相邻位上的数字的绝对差都是 1,那么这个数就是一个「步进数」。

例如,321 是一个步进数,而 421 不是。

给你两个整数,low 和 high,请你找出在 [low, high] 范围内的所有步进数,并返回 排序后 的结果。

 

示例:

输入:low = 0, high = 21
输出:[0,1,2,3,4,5,6,7,8,9,10,12,21]

 

提示:

  • 0 <= low <= high <= 2 * 10^9

解法

方法一:BFS

首先,如果 $low$$0$,那么我们需要将 $0$ 加入答案中。

接下来,我们创建一个队列 $q$,并将 $1 \sim 9$ 加入队列中。然后我们不断从队列中取出元素,记当前元素为 $v$,如果 $v$ 大于 $high$,那么我们就停止搜索;如果 $v$$[low, high]$ 的范围内,那么我们将 $v$ 加入答案中。然后,我们需要将 $v$ 的最后一位数字记为 $x$,如果 $x \gt 0$,那么我们将 $v \times 10 + x - 1$ 加入队列中;如果 $x \lt 9$,那么我们将 $v \times 10 + x + 1$ 加入队列中。重复上述操作,直到队列为空。

时间复杂度 $O(10 \times 2^{\log M})$,空间复杂度 $O(2^{\log M})$,其中 $M$$high$ 的位数。

Python3

class Solution:
    def countSteppingNumbers(self, low: int, high: int) -> List[int]:
        ans = []
        if low == 0:
            ans.append(0)
        q = deque(range(1, 10))
        while q:
            v = q.popleft()
            if v > high:
                break
            if v >= low:
                ans.append(v)
            x = v % 10
            if x:
                q.append(v * 10 + x - 1)
            if x < 9:
                q.append(v * 10 + x + 1)
        return ans

Java

class Solution {
    public List<Integer> countSteppingNumbers(int low, int high) {
        List<Integer> ans = new ArrayList<>();
        if (low == 0) {
            ans.add(0);
        }
        Deque<Long> q = new ArrayDeque<>();
        for (long i = 1; i < 10; ++i) {
            q.offer(i);
        }
        while (!q.isEmpty()) {
            long v = q.pollFirst();
            if (v > high) {
                break;
            }
            if (v >= low) {
                ans.add((int) v);
            }
            int x = (int) v % 10;
            if (x > 0) {
                q.offer(v * 10 + x - 1);
            }
            if (x < 9) {
                q.offer(v * 10 + x + 1);
            }
        }
        return ans;
    }
}

C++

class Solution {
public:
    vector<int> countSteppingNumbers(int low, int high) {
        vector<int> ans;
        if (low == 0) {
            ans.push_back(0);
        }
        queue<long long> q;
        for (int i = 1; i < 10; ++i) {
            q.push(i);
        }
        while (!q.empty()) {
            long long v = q.front();
            q.pop();
            if (v > high) {
                break;
            }
            if (v >= low) {
                ans.push_back(v);
            }
            int x = v % 10;
            if (x > 0) {
                q.push(v * 10 + x - 1);
            }
            if (x < 9) {
                q.push(v * 10 + x + 1);
            }
        }
        return ans;
    }
};

Go

func countSteppingNumbers(low int, high int) []int {
	ans := []int{}
	if low == 0 {
		ans = append(ans, 0)
	}
	q := []int{1, 2, 3, 4, 5, 6, 7, 8, 9}
	for len(q) > 0 {
		v := q[0]
		q = q[1:]
		if v > high {
			break
		}
		if v >= low {
			ans = append(ans, v)
		}
		x := v % 10
		if x > 0 {
			q = append(q, v*10+x-1)
		}
		if x < 9 {
			q = append(q, v*10+x+1)
		}
	}
	return ans
}

TypeScript

function countSteppingNumbers(low: number, high: number): number[] {
    const ans: number[] = [];
    if (low === 0) {
        ans.push(0);
    }
    const q: number[] = [];
    for (let i = 1; i < 10; ++i) {
        q.push(i);
    }
    while (q.length) {
        const v = q.shift()!;
        if (v > high) {
            break;
        }
        if (v >= low) {
            ans.push(v);
        }
        const x = v % 10;
        if (x > 0) {
            q.push(v * 10 + x - 1);
        }
        if (x < 9) {
            q.push(v * 10 + x + 1);
        }
    }
    return ans;
}