Skip to content

Latest commit

 

History

History
680 lines (587 loc) · 16.9 KB

File metadata and controls

680 lines (587 loc) · 16.9 KB
comments difficulty edit_url rating source tags
true
中等
1658
第 162 场周赛 Q3
深度优先搜索
广度优先搜索
并查集
数组
矩阵

English Version

题目描述

二维矩阵 grid 由 0 (土地)和 1 (水)组成。岛是由最大的4个方向连通的 0 组成的群,封闭岛是一个 完全 由1包围(左、上、右、下)的岛。

请返回 封闭岛屿 的数目。

 

示例 1:

输入:grid = [[1,1,1,1,1,1,1,0],[1,0,0,0,0,1,1,0],[1,0,1,0,1,1,1,0],[1,0,0,0,0,1,0,1],[1,1,1,1,1,1,1,0]]
输出:2
解释:
灰色区域的岛屿是封闭岛屿,因为这座岛屿完全被水域包围(即被 1 区域包围)。

示例 2:

输入:grid = [[0,0,1,0,0],[0,1,0,1,0],[0,1,1,1,0]]
输出:1

示例 3:

输入:grid = [[1,1,1,1,1,1,1],
             [1,0,0,0,0,0,1],
             [1,0,1,1,1,0,1],
             [1,0,1,0,1,0,1],
             [1,0,1,1,1,0,1],
             [1,0,0,0,0,0,1],
             [1,1,1,1,1,1,1]]
输出:2

 

提示:

  • 1 <= grid.length, grid[0].length <= 100
  • 0 <= grid[i][j] <=1

解法

方法一:DFS

遍历矩阵,对于每个陆地,我们进行深度优先搜索,找到与其相连的所有陆地,然后判断是否存在边界上的陆地,如果存在,则不是封闭岛屿,否则是封闭岛屿,答案加一。

最后返回答案即可。

时间复杂度 $O(m \times n)$,空间复杂度 $O(m \times n)$。其中 $m$$n$ 分别是矩阵的行数和列数。

Python3

class Solution:
    def closedIsland(self, grid: List[List[int]]) -> int:
        def dfs(i: int, j: int) -> int:
            res = int(0 < i < m - 1 and 0 < j < n - 1)
            grid[i][j] = 1
            for a, b in pairwise(dirs):
                x, y = i + a, j + b
                if 0 <= x < m and 0 <= y < n and grid[x][y] == 0:
                    res &= dfs(x, y)
            return res

        m, n = len(grid), len(grid[0])
        dirs = (-1, 0, 1, 0, -1)
        return sum(grid[i][j] == 0 and dfs(i, j) for i in range(m) for j in range(n))

Java

class Solution {
    private int m;
    private int n;
    private int[][] grid;

    public int closedIsland(int[][] grid) {
        m = grid.length;
        n = grid[0].length;
        this.grid = grid;
        int ans = 0;
        for (int i = 0; i < m; ++i) {
            for (int j = 0; j < n; ++j) {
                if (grid[i][j] == 0) {
                    ans += dfs(i, j);
                }
            }
        }
        return ans;
    }

    private int dfs(int i, int j) {
        int res = i > 0 && i < m - 1 && j > 0 && j < n - 1 ? 1 : 0;
        grid[i][j] = 1;
        int[] dirs = {-1, 0, 1, 0, -1};
        for (int k = 0; k < 4; ++k) {
            int x = i + dirs[k], y = j + dirs[k + 1];
            if (x >= 0 && x < m && y >= 0 && y < n && grid[x][y] == 0) {
                res &= dfs(x, y);
            }
        }
        return res;
    }
}

C++

class Solution {
public:
    int closedIsland(vector<vector<int>>& grid) {
        int m = grid.size(), n = grid[0].size();
        int ans = 0;
        int dirs[5] = {-1, 0, 1, 0, -1};
        function<int(int, int)> dfs = [&](int i, int j) -> int {
            int res = i > 0 && i < m - 1 && j > 0 && j < n - 1 ? 1 : 0;
            grid[i][j] = 1;
            for (int k = 0; k < 4; ++k) {
                int x = i + dirs[k], y = j + dirs[k + 1];
                if (x >= 0 && x < m && y >= 0 && y < n && grid[x][y] == 0) {
                    res &= dfs(x, y);
                }
            }
            return res;
        };
        for (int i = 0; i < m; ++i) {
            for (int j = 0; j < n; ++j) {
                ans += grid[i][j] == 0 && dfs(i, j);
            }
        }
        return ans;
    }
};

Go

func closedIsland(grid [][]int) (ans int) {
	m, n := len(grid), len(grid[0])
	dirs := [5]int{-1, 0, 1, 0, -1}
	var dfs func(i, j int) int
	dfs = func(i, j int) int {
		res := 1
		if i == 0 || i == m-1 || j == 0 || j == n-1 {
			res = 0
		}
		grid[i][j] = 1
		for k := 0; k < 4; k++ {
			x, y := i+dirs[k], j+dirs[k+1]
			if x >= 0 && x < m && y >= 0 && y < n && grid[x][y] == 0 {
				res &= dfs(x, y)
			}
		}
		return res
	}
	for i, row := range grid {
		for j, v := range row {
			if v == 0 {
				ans += dfs(i, j)
			}
		}
	}
	return
}

TypeScript

function closedIsland(grid: number[][]): number {
    const m = grid.length;
    const n = grid[0].length;
    const dirs = [-1, 0, 1, 0, -1];
    const dfs = (i: number, j: number): number => {
        let res = i > 0 && j > 0 && i < m - 1 && j < n - 1 ? 1 : 0;
        grid[i][j] = 1;
        for (let k = 0; k < 4; ++k) {
            const [x, y] = [i + dirs[k], j + dirs[k + 1]];
            if (x >= 0 && y >= 0 && x < m && y < n && grid[x][y] === 0) {
                res &= dfs(x, y);
            }
        }
        return res;
    };
    let ans = 0;
    for (let i = 0; i < m; ++i) {
        for (let j = 0; j < n; j++) {
            if (grid[i][j] === 0) {
                ans += dfs(i, j);
            }
        }
    }
    return ans;
}

C#

public class Solution {
    private int m;
    private int n;
    private int[][] grid;

    public int ClosedIsland(int[][] grid) {
        m = grid.Length;
        n = grid[0].Length;
        this.grid = grid;
        int ans = 0;
        for (int i = 0; i < m; ++i) {
            for (int j = 0; j < n; ++j) {
                if (grid[i][j] == 0) {
                    ans += dfs(i, j);
                }
            }
        }
        return ans;
    }

    private int dfs(int i, int j) {
        int res = i > 0 && i < m - 1 && j > 0 && j < n - 1 ? 1 : 0;
        grid[i][j] = 1;
        int[] dirs = {-1, 0, 1, 0, -1};
        for (int k = 0; k < 4; ++k) {
            int x = i + dirs[k], y = j + dirs[k + 1];
            if (x >= 0 && x < m && y >= 0 && y < n && grid[x][y] == 0) {
                res &= dfs(x, y);
            }
        }
        return res;
    }
}

方法二:并查集

我们可以用并查集维护每一块连通的陆地。

遍历矩阵,如果当前位置是在边界上,我们将其与虚拟节点 $m \times n$ 连接。如果当前位置是陆地,我们将其与下方和右方的陆地连接。

接着,我们再次遍历矩阵,对于每一块陆地,如果其根节点就是本身,那么答案加一。

最后返回答案即可。

时间复杂度 $O(m \times n \times \alpha(m \times n))$,空间复杂度 $O(m \times n)$。其中 $m$$n$ 分别是矩阵的行数和列数。

Python3

class UnionFind:
    def __init__(self, n: int):
        self.p = list(range(n))
        self.size = [1] * n

    def find(self, x: int) -> int:
        if self.p[x] != x:
            self.p[x] = self.find(self.p[x])
        return self.p[x]

    def union(self, a: int, b: int):
        pa, pb = self.find(a), self.find(b)
        if pa != pb:
            if self.size[pa] > self.size[pb]:
                self.p[pb] = pa
                self.size[pa] += self.size[pb]
            else:
                self.p[pa] = pb
                self.size[pb] += self.size[pa]


class Solution:
    def closedIsland(self, grid: List[List[int]]) -> int:
        m, n = len(grid), len(grid[0])
        uf = UnionFind(m * n + 1)
        for i in range(m):
            for j in range(n):
                if i == 0 or i == m - 1 or j == 0 or j == n - 1:
                    uf.union(i * n + j, m * n)
                if grid[i][j] == 0:
                    if i < m - 1 and grid[i + 1][j] == 0:
                        uf.union(i * n + j, (i + 1) * n + j)
                    if j < n - 1 and grid[i][j + 1] == 0:
                        uf.union(i * n + j, i * n + j + 1)
        ans = 0
        for i in range(m):
            for j in range(n):
                ans += grid[i][j] == 0 and uf.find(i * n + j) == i * n + j
        return ans

Java

class UnionFind {
    private int[] p;
    private int[] size;

    public UnionFind(int n) {
        p = new int[n];
        size = new int[n];
        for (int i = 0; i < n; ++i) {
            p[i] = i;
            size[i] = 1;
        }
    }

    public int find(int x) {
        if (p[x] != x) {
            p[x] = find(p[x]);
        }
        return p[x];
    }

    public void union(int a, int b) {
        int pa = find(a), pb = find(b);
        if (pa != pb) {
            if (size[pa] > size[pb]) {
                p[pb] = pa;
                size[pa] += size[pb];
            } else {
                p[pa] = pb;
                size[pb] += size[pa];
            }
        }
    }
}

class Solution {
    public int closedIsland(int[][] grid) {
        int m = grid.length, n = grid[0].length;
        UnionFind uf = new UnionFind(m * n + 1);
        for (int i = 0; i < m; ++i) {
            for (int j = 0; j < n; ++j) {
                if (i == 0 || i == m - 1 || j == 0 || j == n - 1) {
                    uf.union(i * n + j, m * n);
                }
                if (grid[i][j] == 0) {
                    if (i + 1 < m && grid[i + 1][j] == 0) {
                        uf.union(i * n + j, (i + 1) * n + j);
                    }
                    if (j + 1 < n && grid[i][j + 1] == 0) {
                        uf.union(i * n + j, i * n + j + 1);
                    }
                }
            }
        }
        int ans = 0;
        for (int i = 0; i < m; ++i) {
            for (int j = 0; j < n; ++j) {
                if (grid[i][j] == 0 && uf.find(i * n + j) == i * n + j) {
                    ++ans;
                }
            }
        }
        return ans;
    }
}

C++

class UnionFind {
public:
    UnionFind(int n) {
        p = vector<int>(n);
        size = vector<int>(n, 1);
        iota(p.begin(), p.end(), 0);
    }

    void unite(int a, int b) {
        int pa = find(a), pb = find(b);
        if (pa != pb) {
            if (size[pa] > size[pb]) {
                p[pb] = pa;
                size[pa] += size[pb];
            } else {
                p[pa] = pb;
                size[pb] += size[pa];
            }
        }
    }

    int find(int x) {
        if (p[x] != x) {
            p[x] = find(p[x]);
        }
        return p[x];
    }

private:
    vector<int> p, size;
};

class Solution {
public:
    int closedIsland(vector<vector<int>>& grid) {
        int m = grid.size(), n = grid[0].size();
        UnionFind uf(m * n + 1);
        for (int i = 0; i < m; ++i) {
            for (int j = 0; j < n; ++j) {
                if (i == 0 || i == m - 1 || j == 0 || j == n - 1) {
                    uf.unite(i * n + j, m * n);
                }
                if (grid[i][j] == 0) {
                    if (i + 1 < m && grid[i + 1][j] == 0) {
                        uf.unite(i * n + j, (i + 1) * n + j);
                    }
                    if (j + 1 < n && grid[i][j + 1] == 0) {
                        uf.unite(i * n + j, i * n + j + 1);
                    }
                }
            }
        }
        int ans = 0;
        for (int i = 0; i < m; ++i) {
            for (int j = 0; j < n; ++j) {
                ans += grid[i][j] == 0 && uf.find(i * n + j) == i * n + j;
            }
        }
        return ans;
    }
};

Go

type unionFind struct {
	p, size []int
}

func newUnionFind(n int) *unionFind {
	p := make([]int, n)
	size := make([]int, n)
	for i := range p {
		p[i] = i
		size[i] = 1
	}
	return &unionFind{p, size}
}

func (uf *unionFind) find(x int) int {
	if uf.p[x] != x {
		uf.p[x] = uf.find(uf.p[x])
	}
	return uf.p[x]
}

func (uf *unionFind) union(a, b int) {
	pa, pb := uf.find(a), uf.find(b)
	if pa != pb {
		if uf.size[pa] > uf.size[pb] {
			uf.p[pb] = pa
			uf.size[pa] += uf.size[pb]
		} else {
			uf.p[pa] = pb
			uf.size[pb] += uf.size[pa]
		}
	}
}

func closedIsland(grid [][]int) (ans int) {
	m, n := len(grid), len(grid[0])
	uf := newUnionFind(m*n + 1)
	for i, row := range grid {
		for j, v := range row {
			if i == 0 || i == m-1 || j == 0 || j == n-1 {
				uf.union(i*n+j, m*n)
			}
			if v == 0 {
				if i+1 < m && grid[i+1][j] == 0 {
					uf.union(i*n+j, (i+1)*n+j)
				}
				if j+1 < n && grid[i][j+1] == 0 {
					uf.union(i*n+j, i*n+j+1)
				}
			}
		}
	}
	for i, row := range grid {
		for j, v := range row {
			if v == 0 && uf.find(i*n+j) == i*n+j {
				ans++
			}
		}
	}
	return
}

TypeScript

function closedIsland(grid: number[][]): number {
    const m = grid.length;
    const n = grid[0].length;
    const uf = new UnionFind(m * n + 1);
    for (let i = 0; i < m; ++i) {
        for (let j = 0; j < n; ++j) {
            if (i === 0 || i === m - 1 || j === 0 || j === n - 1) {
                uf.union(i * n + j, m * n);
            }
            if (grid[i][j] === 0) {
                if (i + 1 < m && grid[i + 1][j] === 0) {
                    uf.union(i * n + j, (i + 1) * n + j);
                }
                if (j + 1 < n && grid[i][j + 1] === 0) {
                    uf.union(i * n + j, i * n + j + 1);
                }
            }
        }
    }
    let ans = 0;
    for (let i = 0; i < m; ++i) {
        for (let j = 0; j < n; j++) {
            if (grid[i][j] === 0 && uf.find(i * n + j) === i * n + j) {
                ++ans;
            }
        }
    }
    return ans;
}

class UnionFind {
    private p: number[];
    private size: number[];

    constructor(n: number) {
        this.p = Array(n)
            .fill(0)
            .map((_, i) => i);
        this.size = Array(n).fill(1);
    }

    find(x: number): number {
        if (this.p[x] !== x) {
            this.p[x] = this.find(this.p[x]);
        }
        return this.p[x];
    }

    union(a: number, b: number): void {
        const [pa, pb] = [this.find(a), this.find(b)];
        if (pa === pb) {
            return;
        }
        if (this.size[pa] > this.size[pb]) {
            this.p[pb] = pa;
            this.size[pa] += this.size[pb];
        } else {
            this.p[pa] = pb;
            this.size[pb] += this.size[pa];
        }
    }
}

C#

class UnionFind {
    private int[] p;
    private int[] size;

    public UnionFind(int n) {
        p = new int[n];
        size = new int[n];
        for (int i = 0; i < n; ++i) {
            p[i] = i;
            size[i] = 1;
        }
    }

    public int find(int x) {
        if (p[x] != x) {
            p[x] = find(p[x]);
        }
        return p[x];
    }

    public void union(int a, int b) {
        int pa = find(a), pb = find(b);
        if (pa != pb) {
            if (size[pa] > size[pb]) {
                p[pb] = pa;
                size[pa] += size[pb];
            } else {
                p[pa] = pb;
                size[pb] += size[pa];
            }
        }
    }
}

public class Solution {
    public int ClosedIsland(int[][] grid) {
        int m = grid.Length, n = grid[0].Length;
        UnionFind uf = new UnionFind(m * n + 1);
        for (int i = 0; i < m; ++i) {
            for (int j = 0; j < n; ++j) {
                if (i == 0 || i == m - 1 || j == 0 || j == n - 1) {
                    uf.union(i * n + j, m * n);
                }
                if (grid[i][j] == 0) {
                    if (i + 1 < m && grid[i + 1][j] == 0) {
                        uf.union(i * n + j, (i + 1) * n + j);
                    }
                    if (j + 1 < n && grid[i][j + 1] == 0) {
                        uf.union(i * n + j, i * n + j + 1);
                    }
                }
            }
        }
        int ans = 0;
        for (int i = 0; i < m; ++i) {
            for (int j = 0; j < n; ++j) {
                if (grid[i][j] == 0 && uf.find(i * n + j) == i * n + j) {
                    ++ans;
                }
            }
        }
        return ans;
    }
}