comments | difficulty | edit_url | rating | source | tags | ||
---|---|---|---|---|---|---|---|
true |
困难 |
1823 |
第 190 场周赛 Q4 |
|
给你两个数组 nums1
和 nums2
。
请你返回 nums1
和 nums2
中两个长度相同的 非空 子序列的最大点积。
数组的非空子序列是通过删除原数组中某些元素(可能一个也不删除)后剩余数字组成的序列,但不能改变数字间相对顺序。比方说,[2,3,5]
是 [1,2,3,4,5]
的一个子序列而 [1,5,3]
不是。
示例 1:
输入:nums1 = [2,1,-2,5], nums2 = [3,0,-6] 输出:18 解释:从 nums1 中得到子序列 [2,-2] ,从 nums2 中得到子序列 [3,-6] 。 它们的点积为 (2*3 + (-2)*(-6)) = 18 。
示例 2:
输入:nums1 = [3,-2], nums2 = [2,-6,7] 输出:21 解释:从 nums1 中得到子序列 [3] ,从 nums2 中得到子序列 [7] 。 它们的点积为 (3*7) = 21 。
示例 3:
输入:nums1 = [-1,-1], nums2 = [1,1] 输出:-1 解释:从 nums1 中得到子序列 [-1] ,从 nums2 中得到子序列 [1] 。 它们的点积为 -1 。
提示:
1 <= nums1.length, nums2.length <= 500
-1000 <= nums1[i], nums2[i] <= 100
点积:
定义a = [a1, a2,…, an]
和b
= [b1, b2,…, bn]
的点积为: 这里的 Σ 指示总和符号。
我们定义
对于
- 不选
$\textit{nums1}[i-1]$ 或者不选$\textit{nums2}[j-1]$ ,即$f[i][j] = \max(f[i-1][j], f[i][j-1])$ ; - 选
$\textit{nums1}[i-1]$ 和$\textit{nums2}[j-1]$ ,即$f[i][j] = \max(f[i][j], \max(0, f[i-1][j-1]) + \textit{nums1}[i-1] \times \textit{nums2}[j-1])$ 。
最终答案即为
时间复杂度
class Solution:
def maxDotProduct(self, nums1: List[int], nums2: List[int]) -> int:
m, n = len(nums1), len(nums2)
f = [[-inf] * (n + 1) for _ in range(m + 1)]
for i, x in enumerate(nums1, 1):
for j, y in enumerate(nums2, 1):
v = x * y
f[i][j] = max(f[i - 1][j], f[i][j - 1], max(0, f[i - 1][j - 1]) + v)
return f[m][n]
class Solution {
public int maxDotProduct(int[] nums1, int[] nums2) {
int m = nums1.length, n = nums2.length;
int[][] f = new int[m + 1][n + 1];
for (var g : f) {
Arrays.fill(g, Integer.MIN_VALUE);
}
for (int i = 1; i <= m; ++i) {
for (int j = 1; j <= n; ++j) {
int v = nums1[i - 1] * nums2[j - 1];
f[i][j] = Math.max(f[i - 1][j], f[i][j - 1]);
f[i][j] = Math.max(f[i][j], Math.max(f[i - 1][j - 1], 0) + v);
}
}
return f[m][n];
}
}
class Solution {
public:
int maxDotProduct(vector<int>& nums1, vector<int>& nums2) {
int m = nums1.size(), n = nums2.size();
int f[m + 1][n + 1];
memset(f, 0xc0, sizeof f);
for (int i = 1; i <= m; ++i) {
for (int j = 1; j <= n; ++j) {
int v = nums1[i - 1] * nums2[j - 1];
f[i][j] = max(f[i - 1][j], f[i][j - 1]);
f[i][j] = max(f[i][j], max(0, f[i - 1][j - 1]) + v);
}
}
return f[m][n];
}
};
func maxDotProduct(nums1 []int, nums2 []int) int {
m, n := len(nums1), len(nums2)
f := make([][]int, m+1)
for i := range f {
f[i] = make([]int, n+1)
for j := range f[i] {
f[i][j] = math.MinInt32
}
}
for i := 1; i <= m; i++ {
for j := 1; j <= n; j++ {
v := nums1[i-1] * nums2[j-1]
f[i][j] = max(f[i-1][j], f[i][j-1])
f[i][j] = max(f[i][j], max(0, f[i-1][j-1])+v)
}
}
return f[m][n]
}
function maxDotProduct(nums1: number[], nums2: number[]): number {
const m = nums1.length;
const n = nums2.length;
const f = Array.from({ length: m + 1 }, () => Array.from({ length: n + 1 }, () => -Infinity));
for (let i = 1; i <= m; ++i) {
for (let j = 1; j <= n; ++j) {
const v = nums1[i - 1] * nums2[j - 1];
f[i][j] = Math.max(f[i - 1][j], f[i][j - 1]);
f[i][j] = Math.max(f[i][j], Math.max(0, f[i - 1][j - 1]) + v);
}
}
return f[m][n];
}
impl Solution {
pub fn max_dot_product(nums1: Vec<i32>, nums2: Vec<i32>) -> i32 {
let m = nums1.len();
let n = nums2.len();
let mut f = vec![vec![i32::MIN; n + 1]; m + 1];
for i in 1..=m {
for j in 1..=n {
let v = nums1[i - 1] * nums2[j - 1];
f[i][j] = f[i][j].max(f[i - 1][j]).max(f[i][j - 1]);
f[i][j] = f[i][j].max(f[i - 1][j - 1].max(0) + v);
}
}
f[m][n]
}
}