Skip to content

Latest commit

 

History

History
390 lines (344 loc) · 11.6 KB

File metadata and controls

390 lines (344 loc) · 11.6 KB
comments difficulty edit_url rating source tags
true
困难
2607
第 368 场周赛 Q4
双指针
字符串
动态规划

English Version

题目描述

给你一个字符串 s 和一个整数 k ,请你将 s 分成 k 个 子字符串 ,使得每个 子字符串 变成 半回文串 需要修改的字符数目最少。

请你返回一个整数,表示需要修改的 最少 字符数目。

注意:

  • 如果一个字符串从左往右和从右往左读是一样的,那么它是一个 回文串 。
  • 如果长度为 len 的字符串存在一个满足 1 <= d < len 的正整数 d ,len % d == 0 成立且所有对 d 做除法余数相同的下标对应的字符连起来得到的字符串都是 回文串 ,那么我们说这个字符串是 半回文串 。比方说 "aa" ,"aba""adbgad" 和 "abab" 都是 半回文串 ,而 "a" ,"ab" 和 "abca" 不是。
  • 子字符串 指的是一个字符串中一段连续的字符序列。

 

示例 1:

输入:s = "abcac", k = 2
输出:1
解释:我们可以将 s 分成子字符串 "ab" 和 "cac" 。子字符串 "cac" 已经是半回文串。如果我们将 "ab" 变成 "aa" ,它也会变成一个 d = 1 的半回文串。
该方案是将 s 分成 2 个子字符串的前提下,得到 2 个半回文子字符串需要的最少修改次数。所以答案为 1 。

示例 2:

输入:s = "abcdef", k = 2
输出:2
解释:我们可以将 s 分成子字符串 "abc" 和 "def" 。子字符串 "abc" 和 "def" 都需要修改一个字符得到半回文串,所以我们总共需要 2 次字符修改使所有子字符串变成半回文串。
该方案是将 s 分成 2 个子字符串的前提下,得到 2 个半回文子字符串需要的最少修改次数。所以答案为 2 。

示例 3:

输入:s = "aabbaa", k = 3
输出:0
解释:我们可以将 s 分成子字符串 "aa" ,"bb" 和 "aa" 。
字符串 "aa" 和 "bb" 都已经是半回文串了。所以答案为 0 。

 

提示:

  • 2 <= s.length <= 200
  • 1 <= k <= s.length / 2
  • s 只包含小写英文字母。

解法

方法一

Python3

class Solution:
    def minimumChanges(self, s: str, k: int) -> int:
        n = len(s)
        g = [[inf] * (n + 1) for _ in range(n + 1)]
        for i in range(1, n + 1):
            for j in range(i, n + 1):
                m = j - i + 1
                for d in range(1, m):
                    if m % d == 0:
                        cnt = 0
                        for l in range(m):
                            r = (m // d - 1 - l // d) * d + l % d
                            if l >= r:
                                break
                            if s[i - 1 + l] != s[i - 1 + r]:
                                cnt += 1
                        g[i][j] = min(g[i][j], cnt)

        f = [[inf] * (k + 1) for _ in range(n + 1)]
        f[0][0] = 0
        for i in range(1, n + 1):
            for j in range(1, k + 1):
                for h in range(i - 1):
                    f[i][j] = min(f[i][j], f[h][j - 1] + g[h + 1][i])
        return f[n][k]

Java

class Solution {
    public int minimumChanges(String s, int k) {
        int n = s.length();
        int[][] g = new int[n + 1][n + 1];
        int[][] f = new int[n + 1][k + 1];
        final int inf = 1 << 30;
        for (int i = 0; i <= n; ++i) {
            Arrays.fill(g[i], inf);
            Arrays.fill(f[i], inf);
        }
        for (int i = 1; i <= n; ++i) {
            for (int j = i; j <= n; ++j) {
                int m = j - i + 1;
                for (int d = 1; d < m; ++d) {
                    if (m % d == 0) {
                        int cnt = 0;
                        for (int l = 0; l < m; ++l) {
                            int r = (m / d - 1 - l / d) * d + l % d;
                            if (l >= r) {
                                break;
                            }
                            if (s.charAt(i - 1 + l) != s.charAt(i - 1 + r)) {
                                ++cnt;
                            }
                        }
                        g[i][j] = Math.min(g[i][j], cnt);
                    }
                }
            }
        }
        f[0][0] = 0;
        for (int i = 1; i <= n; ++i) {
            for (int j = 1; j <= k; ++j) {
                for (int h = 0; h < i - 1; ++h) {
                    f[i][j] = Math.min(f[i][j], f[h][j - 1] + g[h + 1][i]);
                }
            }
        }
        return f[n][k];
    }
}

C++

class Solution {
public:
    int minimumChanges(string s, int k) {
        int n = s.size();
        int g[n + 1][n + 1];
        int f[n + 1][k + 1];
        memset(g, 0x3f, sizeof(g));
        memset(f, 0x3f, sizeof(f));
        f[0][0] = 0;
        for (int i = 1; i <= n; ++i) {
            for (int j = i; j <= n; ++j) {
                int m = j - i + 1;
                for (int d = 1; d < m; ++d) {
                    if (m % d == 0) {
                        int cnt = 0;
                        for (int l = 0; l < m; ++l) {
                            int r = (m / d - 1 - l / d) * d + l % d;
                            if (l >= r) {
                                break;
                            }
                            if (s[i - 1 + l] != s[i - 1 + r]) {
                                ++cnt;
                            }
                        }
                        g[i][j] = min(g[i][j], cnt);
                    }
                }
            }
        }
        for (int i = 1; i <= n; ++i) {
            for (int j = 1; j <= k; ++j) {
                for (int h = 0; h < i - 1; ++h) {
                    f[i][j] = min(f[i][j], f[h][j - 1] + g[h + 1][i]);
                }
            }
        }
        return f[n][k];
    }
};

Go

func minimumChanges(s string, k int) int {
	n := len(s)
	g := make([][]int, n+1)
	f := make([][]int, n+1)
	const inf int = 1 << 30
	for i := range g {
		g[i] = make([]int, n+1)
		f[i] = make([]int, k+1)
		for j := range g[i] {
			g[i][j] = inf
		}
		for j := range f[i] {
			f[i][j] = inf
		}
	}
	f[0][0] = 0
	for i := 1; i <= n; i++ {
		for j := i; j <= n; j++ {
			m := j - i + 1
			for d := 1; d < m; d++ {
				if m%d == 0 {
					cnt := 0
					for l := 0; l < m; l++ {
						r := (m/d-1-l/d)*d + l%d
						if l >= r {
							break
						}
						if s[i-1+l] != s[i-1+r] {
							cnt++
						}
					}
					g[i][j] = min(g[i][j], cnt)
				}
			}
		}
	}
	for i := 1; i <= n; i++ {
		for j := 1; j <= k; j++ {
			for h := 0; h < i-1; h++ {
				f[i][j] = min(f[i][j], f[h][j-1]+g[h+1][i])
			}
		}
	}
	return f[n][k]
}

TypeScript

function minimumChanges(s: string, k: number): number {
    const n = s.length;
    const g = Array.from({ length: n + 1 }, () => Array.from({ length: n + 1 }, () => Infinity));
    const f = Array.from({ length: n + 1 }, () => Array.from({ length: k + 1 }, () => Infinity));
    f[0][0] = 0;
    for (let i = 1; i <= n; ++i) {
        for (let j = 1; j <= n; ++j) {
            const m = j - i + 1;
            for (let d = 1; d < m; ++d) {
                if (m % d === 0) {
                    let cnt = 0;
                    for (let l = 0; l < m; ++l) {
                        const r = (((m / d) | 0) - 1 - ((l / d) | 0)) * d + (l % d);
                        if (l >= r) {
                            break;
                        }
                        if (s[i - 1 + l] !== s[i - 1 + r]) {
                            ++cnt;
                        }
                    }
                    g[i][j] = Math.min(g[i][j], cnt);
                }
            }
        }
    }
    for (let i = 1; i <= n; ++i) {
        for (let j = 1; j <= k; ++j) {
            for (let h = 0; h < i - 1; ++h) {
                f[i][j] = Math.min(f[i][j], f[h][j - 1] + g[h + 1][i]);
            }
        }
    }
    return f[n][k];
}

方法二

Java

class Solution {
    static int inf = 200;
    List<Integer>[] factorLists;
    int n;
    int k;
    char[] ch;
    Integer[][] cost;
    public int minimumChanges(String s, int k) {
        this.k = k;
        n = s.length();
        ch = s.toCharArray();

        factorLists = getFactorLists(n);
        cost = new Integer[n + 1][n + 1];
        return calcDP();
    }
    static List<Integer>[] getFactorLists(int n) {
        List<Integer>[] l = new ArrayList[n + 1];
        for (int i = 1; i <= n; i++) {
            l[i] = new ArrayList<>();
            l[i].add(1);
        }
        for (int factor = 2; factor < n; factor++) {
            for (int num = factor + factor; num <= n; num += factor) {
                l[num].add(factor);
            }
        }
        return l;
    }
    int calcDP() {
        int[] dp = new int[n];
        for (int i = n - k * 2 + 1; i >= 1; i--) {
            dp[i] = getCost(0, i);
        }
        int bound = 0;
        for (int subs = 2; subs <= k; subs++) {
            bound = subs * 2;
            for (int i = n - 1 - k * 2 + subs * 2; i >= bound - 1; i--) {
                dp[i] = inf;
                for (int prev = bound - 3; prev < i - 1; prev++) {
                    dp[i] = Math.min(dp[i], dp[prev] + getCost(prev + 1, i));
                }
            }
        }
        return dp[n - 1];
    }
    int getCost(int l, int r) {
        if (l >= r) {
            return inf;
        }
        if (cost[l][r] != null) {
            return cost[l][r];
        }
        cost[l][r] = inf;
        for (int factor : factorLists[r - l + 1]) {
            cost[l][r] = Math.min(cost[l][r], getStepwiseCost(l, r, factor));
        }
        return cost[l][r];
    }
    int getStepwiseCost(int l, int r, int stepsize) {
        if (l >= r) {
            return 0;
        }
        int left = 0;
        int right = 0;
        int count = 0;
        for (int i = 0; i < stepsize; i++) {
            left = l + i;
            right = r - stepsize + 1 + i;
            while (left + stepsize <= right) {
                if (ch[left] != ch[right]) {
                    count++;
                }
                left += stepsize;
                right -= stepsize;
            }
        }
        return count;
    }
}