Skip to content

Latest commit

 

History

History
273 lines (228 loc) · 7.83 KB

File metadata and controls

273 lines (228 loc) · 7.83 KB
comments difficulty edit_url tags
true
困难
哈希表
字符串
二分查找
前缀和

English Version

题目描述

Given a string s, your task is to find the length of the longest self-contained substring of s.

A substring t of a string s is called self-contained if t != s and for every character in t, it doesn't exist in the rest of s.

Return the length of the longest self-contained substring of s if it exists, otherwise, return -1.

 

Example 1:

Input: s = "abba"

Output: 2

Explanation:
Let's check the substring "bb". You can see that no other "b" is outside of this substring. Hence the answer is 2.

Example 2:

Input: s = "abab"

Output: -1

Explanation:
Every substring we choose does not satisfy the described property (there is some character which is inside and outside of that substring). So the answer would be -1.

Example 3:

Input: s = "abacd"

Output: 4

Explanation:
Let's check the substring "abac". There is only one character outside of this substring and that is "d". There is no "d" inside the chosen substring, so it satisfies the condition and the answer is 4.

 

Constraints:

  • 2 <= s.length <= 5 * 104
  • s consists only of lowercase English letters.

解法

方法一:枚举

我们注意到,满足条件的子串的开头一定是某个字符第一次出现的位置。

因此,我们可以用两个数组或哈希表 firstlast 分别记录每个字符第一次和最后一次出现的位置。

接下来,我们枚举每个字符 c,假设 c 第一次出现的位置是 $i$,最后一次出现的位置是 $mx$,那么我们可以从 $i$ 开始向后遍历,对于每个位置 $j$,我们找到 $s[j]$ 第一次出现的位置 $a$ 和最后一次出现的位置 $b$,如果 $a &lt; i$,说明 $s[j]$$c$ 的左边,不符合枚举条件,我们可以直接退出循环。否则,我们更新 $mx = \max(mx, b)$。如果 $mx = j$$j - i + 1 &lt; n$,我们更新答案为 $ans = \max(ans, j - i + 1)$

最后返回答案即可。

时间复杂度 $O(n \times |\Sigma|)$,空间复杂度 $O(|\Sigma|)$。其中 $n$ 是字符串 $s$ 的长度;而 $|\Sigma|$ 是字符集的大小,本题中字符集为小写字母,所以 $|\Sigma| = 26$

Python3

class Solution:
    def maxSubstringLength(self, s: str) -> int:
        first, last = {}, {}
        for i, c in enumerate(s):
            if c not in first:
                first[c] = i
            last[c] = i
        ans, n = -1, len(s)
        for c, i in first.items():
            mx = last[c]
            for j in range(i, n):
                a, b = first[s[j]], last[s[j]]
                if a < i:
                    break
                mx = max(mx, b)
                if mx == j and j - i + 1 < n:
                    ans = max(ans, j - i + 1)
        return ans

Java

class Solution {
    public int maxSubstringLength(String s) {
        int[] first = new int[26];
        int[] last = new int[26];
        Arrays.fill(first, -1);
        int n = s.length();
        for (int i = 0; i < n; ++i) {
            int j = s.charAt(i) - 'a';
            if (first[j] == -1) {
                first[j] = i;
            }
            last[j] = i;
        }
        int ans = -1;
        for (int k = 0; k < 26; ++k) {
            int i = first[k];
            if (i == -1) {
                continue;
            }
            int mx = last[k];
            for (int j = i; j < n; ++j) {
                int a = first[s.charAt(j) - 'a'];
                int b = last[s.charAt(j) - 'a'];
                if (a < i) {
                    break;
                }
                mx = Math.max(mx, b);
                if (mx == j && j - i + 1 < n) {
                    ans = Math.max(ans, j - i + 1);
                }
            }
        }
        return ans;
    }
}

C++

class Solution {
public:
    int maxSubstringLength(string s) {
        vector<int> first(26, -1);
        vector<int> last(26);
        int n = s.length();
        for (int i = 0; i < n; ++i) {
            int j = s[i] - 'a';
            if (first[j] == -1) {
                first[j] = i;
            }
            last[j] = i;
        }
        int ans = -1;
        for (int k = 0; k < 26; ++k) {
            int i = first[k];
            if (i == -1) {
                continue;
            }
            int mx = last[k];
            for (int j = i; j < n; ++j) {
                int a = first[s[j] - 'a'];
                int b = last[s[j] - 'a'];
                if (a < i) {
                    break;
                }
                mx = max(mx, b);
                if (mx == j && j - i + 1 < n) {
                    ans = max(ans, j - i + 1);
                }
            }
        }
        return ans;
    }
};

Go

func maxSubstringLength(s string) int {
	first := [26]int{}
	last := [26]int{}
	for i := range first {
		first[i] = -1
	}
	n := len(s)
	for i, c := range s {
		j := int(c - 'a')
		if first[j] == -1 {
			first[j] = i
		}
		last[j] = i
	}
	ans := -1
	for k := 0; k < 26; k++ {
		i := first[k]
		if i == -1 {
			continue
		}
		mx := last[k]
		for j := i; j < n; j++ {
			a, b := first[s[j]-'a'], last[s[j]-'a']
			if a < i {
				break
			}
			mx = max(mx, b)
			if mx == j && j-i+1 < n {
				ans = max(ans, j-i+1)
			}
		}
	}
	return ans
}

TypeScript

function maxSubstringLength(s: string): number {
    const first: number[] = Array(26).fill(-1);
    const last: number[] = Array(26).fill(0);
    const n = s.length;
    for (let i = 0; i < n; ++i) {
        const j = s.charCodeAt(i) - 97;
        if (first[j] === -1) {
            first[j] = i;
        }
        last[j] = i;
    }
    let ans = -1;
    for (let k = 0; k < 26; ++k) {
        const i = first[k];
        if (i === -1) {
            continue;
        }
        let mx = last[k];
        for (let j = i; j < n; ++j) {
            const a = first[s.charCodeAt(j) - 97];
            if (a < i) {
                break;
            }
            const b = last[s.charCodeAt(j) - 97];
            mx = Math.max(mx, b);
            if (mx === j && j - i + 1 < n) {
                ans = Math.max(ans, j - i + 1);
            }
        }
    }
    return ans;
}