Logistic Regression is a regression model where the dependent variable is categorical, thus also a classification model. It is simple but effective, widely used in a variety of applications such as the traditional advertising recommender system.
Logistic regression is a simple classification method. It assumes that the probability mass of class label y conditional on data point x, P(y|x), takes the logistic form:
Combining the two expressions above, we get:
The objective function of logistic regression is a weighted sum of log loss and L2 penalty:
where is the regularization term using the L2 norm.
LR algorithm can be abstracted as a 1×N PSModel, denoted by w, as shown in the following figure:
Angel MLLib provides LR algorithm trained with the mini-batch gradient descent method.
-
Worker:
In each iteration, worker pulls the up-to-date w from PS, updates the model parameters, △w, using the mini-batch gradient descent optimization method, and push △w back to PS. -
PS:
In each iteration, PS receives △w from all workers, add their average to w,obtaining a new model. -
Decaying learning rate
The learning rate decays along iterations as , where:- α is the decay rate
- T is the iteration/epoch
-
Model Type The LR algorithm supports three types of models: DoubleDense, DoubleSparse, DoubleSparseLongKey. Use
ml.lr.model.type
to configure.- DoubleDense
- Parameters: -- ml.lr.model.type: T_DOUBLE_DENSE
- Description: DoubleDense type model is suitable for dense data; model saved as array to save space; quick access and high performance
- DoubleSparse
- Parameters: -- ml.lr.model.type:T_DOUBLE_SPARSE
- Description: DoubleSparse type model is suitable for sparse data; model saved as map, where K is feature ID and V is feature value; range of K same as range of Int
- DoubleSparseLongKey
- Parameters: -- ml.lr.model.type:T_DOUBLE_SPARSE_LONGKEY
- DoubleSparseLongKey type model is suitable for highly sparse data; model saved as map, where K is feature ID and V is feature value; range of K same as range of Long
- DoubleDense
- Data fromat is set in "ml.data.type", supporting "libsvm" and "dummy" types. For details, see Angel Data Format
- Feature vector's dimension is set in "ml.feature.index.range"
-
Algorithm Parameters
- ml.epoch.num: number of iterations/epochs
- ml.model.size: the size of model. for some sparse model, there are features that all samples are zero at those indices (invalidate indices). ml.model.size = ml.feature.index.range - number of invalidate indices
- ml.batch.sample.ratio: sampling rate for each iteration
- ml.num.update.per.epoch: number update in each iteration
- ml.data.validate.ratio: proportion of data used for validation, no validation when set to 0
- ml.learn.rate: initial learning rate
- ml.learn.decay: decay rate of the learning rate
- ml.lr.reg.l2: coefficient of the L2 penalty
-
I/O Parameters
- angel.train.data.path: input path for train
- angel.predict.data.path: input path for predict
- ml.feature.num: number of features
- ml.data.type: Angel Data Format, supporting "dummy" and "libsvm"
- angel.save.model.path: save path for trained model
- angel.predict.out.path: output path for predict
- angel.log.path: save path for the log
-
Resource Parameters
- angel.workergroup.number: number of workers
- angel.worker.memory.mb: worker's memory requested in G
- angel.worker.task.number: number of tasks on each worker, default is 1
- angel.ps.number: number of PS
- angel.ps.memory.mb: PS's memory requested in G
- Training Job
./bin/angel-submit \
--action.type train \
--angel.app.submit.class com.tencent.angel.ml.classification.lr.LRRunner \
--angel.train.data.path $input_path \
--angel.save.model.path $model_path \
--angel.log.path $logpath \
--ml.epoch.num 10 \
--ml.num.update.per.epoch 10 \
--ml.feature.index.range 10000 \
--ml.data.validate.ratio 0.1 \
--ml.data.type dummy \
--ml.learn.rate 1 \
--ml.learn.decay 0.1 \
--ml.lr.reg.l2 0 \
--angel.workergroup.number 3 \
--angel.worker.task.number 3 \
--angel.ps.number 1 \
--angel.ps.memory.mb 5000 \
--angel.job.name=angel_lr_smalldata
- Prediction Job
./bin/angel-submit \
--action.type predict \
--angel.app.submit.class com.tencent.angel.ml.classification.lr.LRRunner \
--angel.load.model.path $model_path \
--angel.predict.out.path $predict_path \
--angel.train.data.path $input_path \
--angel.workergroup.number 3 \
--ml.data.type dummy \
--angel.worker.memory.mb 8000 \
--angel.worker.task.number 3 \
--angel.ps.number 1 \
--angel.ps.memory.mb 5000 \
--angel.job.name angel_lr_predict
- Data: internal video recommendation, 5×10^7 features, 8×10^7 data points
- Resources:
- Spark: executor: 50, 14G memory, 4 cores; driver: 5, 5G memory
- Angel: executor: 50, 10G memory, 4 tasks; ps: 20, 5G memory
- Time of 100 epochs:
- Angel: 20min
- Spark: 145min