-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathGroupShuffleNorm2d.py
44 lines (42 loc) · 1.43 KB
/
GroupShuffleNorm2d.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
import torch
import torch.nn as nn
import numpy as np
def ShuffledArray(G,C):
a = []
count = 1
if(G == 1):
sG = 1
elif(G == C):
sG = C
else:
sG = G
for i in range(1,C+1):
a.append(count)
if(i%(C//sG) == 0):
count = count + 1
a = np.array(a)
np.random.shuffle(a)
return a
class GroupShuffleNorm2d(nn.Module):
def __init__(self, in_features, in_groups, epsilon=1e-5):
super(GroupShuffleNorm2d, self).__init__()
self.in_groups = in_groups
self.epsilon = epsilon
self.gamma = nn.Parameter(torch.ones(1,in_features,1,1))
self.beta = nn.Parameter(torch.zeros(1,in_features,1,1))
def forward(self, x):
samples,channels,dim1,dim2 = x.shape
s_array = ShuffledArray(self.in_groups,channels)
attach_mean = {}
index = 0
for j in range(channels):
if s_array[index] not in attach_mean:
attach_mean[s_array[index]] = [index]
else:
attach_mean[s_array[index]].append(index)
index +=1
for i in attach_mean.keys():
mean_is = torch.mean(x[:,attach_mean[i],:,:,],axis = (1,-1,2)).unsqueeze(1).unsqueeze(2).unsqueeze(3)
var_is = torch.var(x[:,attach_mean[i],:,:,],axis = (1,-1,2)).unsqueeze(1).unsqueeze(2).unsqueeze(3)
x[:,attach_mean[i],:,:,] = (x[:,attach_mean[i],:,:,] - mean_is) / (var_is+self.epsilon).sqrt()
return x * self.gamma + self.beta