-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathrun_model.py
105 lines (91 loc) · 3.43 KB
/
run_model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
import torch
import torch.nn as nn
import torch.nn.functional as F
import torchvision
import torchvision.transforms as transforms
from ResnetGroupShuffleNorm import ResNetShuffle,BasicBlockShuffle
from ResnetGroupNorm import ResNet,BasicBlock
import numpy as np
import matplotlib.pyplot as plt
device = torch.device('cuda:0' if torch.cuda.is_available() else 'cpu')
batch_is = 128
transform_train = transforms.Compose([
transforms.RandomHorizontalFlip(),
transforms.ToTensor(),
transforms.Normalize(mean = [0.4914, 0.4822, 0.4465], std = [0.247, 0.243, 0.261])
])
transform_test = transforms.Compose([
transforms.ToTensor(),
transforms.Normalize(mean = [0.4914, 0.4822, 0.4465], std = [0.247, 0.243, 0.261])
])
trainset = torchvision.datasets.CIFAR10(root='./data', train=True,
download=True, transform=transform_train)
trainloader = torch.utils.data.DataLoader(trainset, batch_size=batch_is,
shuffle=True, num_workers=1,pin_memory=True)
testset = torchvision.datasets.CIFAR10(root='./data', train=False,
download=True, transform=transform_test)
testloader = torch.utils.data.DataLoader(testset, batch_size=batch_is,
shuffle=False, num_workers=1,pin_memory=True)
SEED = 213
def accuracy(y_hat,y_true):
y_hat = F.softmax(y_hat,dim = 1)
_, predicted = torch.max(y_hat, 1)
total_correct = (predicted.reshape(-1,1) == y_true.reshape(-1,1)).sum().item()
return total_correct
def train(model,epochs,loader):
model.train()
correct = 0
cc = 0
loss_list = []
for i,j in loader:
inputs,labels = i.to(device),j.to(device)
opt.zero_grad()
outputs = model(inputs)
loss_is = loss(outputs,labels)
loss_is.backward()
opt.step()
loss_list.append(loss_is.item())
correct = correct + accuracy(outputs,labels)
print("[%d/%d] Training Accuracy : %f"%(epochs,total_epochs, (correct/len(loader.dataset)) * 100))
return sum(loss_list)/len(loss_list),(correct/len(loader.dataset)) * 100
def test(model,epochs,loader):
model.eval()
correct = 0
with torch.no_grad():
for i,j in loader:
inputs,labels = i.to(device),j.to(device)
outputs = model(inputs)
correct = correct + accuracy(outputs,labels)
print("[%d/%d] Test Accuracy : %f"%(epochs,total_epochs,(correct/len(loader.dataset))*100))
print('---------------------------------------------------------------------')
return (correct/len(loader.dataset)) * 100
dtype = torch.cuda.FloatTensor
torch.manual_seed(SEED)
net_shuffle = ResNetShuffle(BasicBlockShuffle,[2,2,2,2]).to(device)
opt = torch.optim.Adam(net_shuffle.parameters(),lr = 0.001)
loss = nn.CrossEntropyLoss().type(dtype)
total_epochs = 20
train_loss_shuffle = []
train_acc_shuffle = []
test_acc_shuffle = []
for s in range(1,total_epochs + 1):
a,b = train(net_shuffle,s,trainloader)
c = test(net_shuffle,s,testloader)
train_loss_shuffle.append(a)
train_acc_shuffle.append(b)
test_acc_shuffle.append(c)
dtype = torch.cuda.FloatTensor
torch.manual_seed(SEED)
net = ResNet(BasicBlock,[2,2,2,2]).to(device)
opt = torch.optim.Adam(net.parameters(),lr = 0.001)
loss = nn.CrossEntropyLoss().type(dtype)
total_epochs = 20
train_loss = []
train_acc = []
test_acc = []
for s in range(1,total_epochs + 1):
a,b = train(net,s,trainloader)
c = test(net,s,testloader)
train_loss.append(a)
train_acc.append(b)
test_acc.append(c)