-
Notifications
You must be signed in to change notification settings - Fork 1
/
lane_streamlit.py
284 lines (225 loc) · 10.7 KB
/
lane_streamlit.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
import streamlit as st
import cv2
import torch
import numpy as np
from PIL import Image
import torchvision.transforms as transforms
from model import UNet # Ensure this is in the same directory
from ultralytics import YOLO
import time
import os
import tempfile
import subprocess
# Initialize session state variables
if 'previous_inverted_mask' not in st.session_state:
st.session_state.previous_inverted_mask = None
if 'previous_center' not in st.session_state:
st.session_state.previous_center = None
if 'previous_time' not in st.session_state:
st.session_state.previous_time = None
if 'speeds' not in st.session_state:
st.session_state.speeds = []
if 'frame_count' not in st.session_state:
st.session_state.frame_count = 0
if 'total_distance' not in st.session_state:
st.session_state.total_distance = 0
# Load models
@st.cache_resource
def load_models():
lane_model = UNet(in_channels=3, out_channels=1)
lane_model.load_state_dict(torch.load('quantized_unet_lane_detection.pth', map_location=torch.device('cpu')))
lane_model.eval()
yolo_model = YOLO('yolov8n.pt')
return lane_model, yolo_model
lane_model, yolo_model = load_models()
def get_traffic_light_color(frame, x1, y1, x2, y2):
# Extract the traffic light region
light = frame[y1:y2, x1:x2]
# Convert to HSV color space
hsv = cv2.cvtColor(light, cv2.COLOR_BGR2HSV)
# Define color ranges
lower_red = np.array([0, 120, 70])
upper_red = np.array([10, 255, 255])
lower_yellow = np.array([20, 100, 100])
upper_yellow = np.array([30, 255, 255])
lower_green = np.array([40, 50, 50])
upper_green = np.array([90, 255, 255])
# Create masks for each color
mask_red = cv2.inRange(hsv, lower_red, upper_red)
mask_yellow = cv2.inRange(hsv, lower_yellow, upper_yellow)
mask_green = cv2.inRange(hsv, lower_green, upper_green)
# Count pixels for each color
red_pixels = cv2.countNonZero(mask_red)
yellow_pixels = cv2.countNonZero(mask_yellow)
green_pixels = cv2.countNonZero(mask_green)
# Determine the dominant color
max_pixels = max(red_pixels, yellow_pixels, green_pixels)
if max_pixels == red_pixels:
return "Red"
elif max_pixels == yellow_pixels:
return "Yellow"
elif max_pixels == green_pixels:
return "Green"
else:
return "Unknown"
def calculate_lane_center(inverted_mask):
height, width = inverted_mask.shape
bottom_quarter = inverted_mask[3*height//4:, :]
left_boundary = np.argmax(bottom_quarter < 0.5, axis=1)
right_boundary = width - np.argmax(np.fliplr(bottom_quarter) < 0.5, axis=1)
valid_left = left_boundary[left_boundary > 0]
valid_right = right_boundary[right_boundary < width]
if len(valid_left) > 0 and len(valid_right) > 0:
lane_center = (np.mean(valid_left) + np.mean(valid_right)) / 2
else:
lane_center = width / 2
return lane_center
def calculate_speed(current_center, previous_center, time_diff, pixel_to_meter):
if previous_center is None or time_diff == 0:
return 0
distance = abs(current_center - previous_center) * pixel_to_meter
speed = (distance / time_diff) * 3.6
return speed
def process_frame(frame, lane_model, yolo_model, transform, yolo_conf, detection_alpha, interpolation_factor, pixel_to_meter):
current_time = time.time()
pil_image = Image.fromarray(cv2.cvtColor(frame, cv2.COLOR_BGR2RGB))
input_tensor = transform(pil_image).unsqueeze(0)
with torch.no_grad():
output = lane_model(input_tensor)
mask = output.squeeze().cpu().numpy()
mask = cv2.resize(mask, (frame.shape[1], frame.shape[0]))
inverted_mask = 1 - mask
if st.session_state.previous_inverted_mask is not None:
inverted_mask = cv2.addWeighted(st.session_state.previous_inverted_mask, 1 - interpolation_factor, inverted_mask, interpolation_factor, 0)
st.session_state.previous_inverted_mask = inverted_mask.copy()
inverted_mask = cv2.GaussianBlur(inverted_mask, (15, 15), 0)
lane_center = calculate_lane_center(inverted_mask)
frame_center = frame.shape[1] // 2
distance_from_center = (lane_center - frame_center) * pixel_to_meter
speed = 0
if st.session_state.previous_time is not None and st.session_state.previous_center is not None:
time_diff = current_time - st.session_state.previous_time
speed = calculate_speed(lane_center, st.session_state.previous_center, time_diff, pixel_to_meter)
st.session_state.speeds.append(speed)
st.session_state.total_distance += abs(lane_center - st.session_state.previous_center) * pixel_to_meter
avg_speed = np.mean(st.session_state.speeds) if st.session_state.speeds else 0
st.session_state.previous_center = lane_center
st.session_state.previous_time = current_time
st.session_state.frame_count += 1
green_overlay = np.zeros_like(frame)
green_overlay[:, :, 1] = 255
mask_3d = np.stack([inverted_mask, inverted_mask, inverted_mask], axis=2)
green_mask = (mask_3d * green_overlay).astype(np.uint8)
result = cv2.addWeighted(frame, 1, green_mask, 0.9, 0)
yolo_results = yolo_model(frame, conf=yolo_conf)
yolo_overlay = np.zeros_like(frame, dtype=np.uint8)
for r in yolo_results:
boxes = r.boxes
for box in boxes:
x1, y1, x2, y2 = box.xyxy[0]
x1, y1, x2, y2 = int(x1), int(y1), int(x2), int(y2)
conf = box.conf[0]
cls = int(box.cls[0])
if conf > yolo_conf:
class_name = yolo_model.names[cls]
color = (0, 255, 0)
if class_name == "traffic light":
light_color = get_traffic_light_color(frame, x1, y1, x2, y2)
label = f'Traffic Light ({light_color}) {conf:.2f}'
if light_color == "Red":
color = (0, 0, 255)
elif light_color == "Yellow":
color = (0, 255, 255)
elif light_color == "Green":
color = (0, 255, 0)
else:
label = f'{class_name} {conf:.2f}'
cv2.rectangle(yolo_overlay, (x1, y1), (x2, y2), color, 2)
cv2.putText(yolo_overlay, label, (x1, y1 - 10), cv2.FONT_HERSHEY_SIMPLEX, 0.9, color, 2)
cv2.addWeighted(result, 1, yolo_overlay, detection_alpha, 0, result)
cv2.putText(result, f'Distance from center: {distance_from_center:.2f} m', (10, 30), cv2.FONT_HERSHEY_SIMPLEX, 0.7, (255, 255, 255), 2)
cv2.putText(result, f'Current speed: {speed:.2f} km/h', (10, 60), cv2.FONT_HERSHEY_SIMPLEX, 0.7, (255, 255, 255), 2)
cv2.putText(result, f'Average speed: {avg_speed:.2f} km/h', (10, 90), cv2.FONT_HERSHEY_SIMPLEX, 0.7, (255, 255, 255), 2)
return result
def convert_video_to_web_friendly(input_file, output_file):
command = [
'ffmpeg',
'-i', input_file,
'-vcodec', 'libx264',
'-acodec', 'aac',
'-movflags', 'faststart',
'-y', # Overwrite output file if it exists
output_file
]
try:
subprocess.run(command, check=True, capture_output=True)
except subprocess.CalledProcessError as e:
st.error(f"Error converting video: {e.stderr.decode()}")
return False
return True
def main():
st.title("Lane Detection and Object Recognition App")
# Move controls to sidebar
st.sidebar.title("Controls")
uploaded_file = st.sidebar.file_uploader("Choose a video file", type=["mp4", "avi", "mov"])
if uploaded_file is not None:
# User controls in sidebar
yolo_conf = st.sidebar.slider("YOLO Confidence Threshold", 0.0, 1.0, 0.5)
detection_alpha = st.sidebar.slider("Detection Transparency", 0.0, 1.0, 0.5)
interpolation_factor = st.sidebar.slider("Interpolation Factor", 0.0, 1.0, 0.7)
pixel_to_meter = st.sidebar.number_input("Pixel to Meter Ratio", 0.001, 0.1, 0.01)
if st.sidebar.button("Process Video"):
# Reset session state
st.session_state.previous_inverted_mask = None
st.session_state.previous_center = None
st.session_state.previous_time = None
st.session_state.speeds = []
st.session_state.frame_count = 0
st.session_state.total_distance = 0
# Create a temporary file
with tempfile.NamedTemporaryFile(delete=False, suffix='.mp4') as tmpfile:
tmpfile.write(uploaded_file.getbuffer())
temp_file_name = tmpfile.name
# Process video
transform = transforms.Compose([
transforms.Resize((256, 256)),
transforms.ToTensor(),
])
cap = cv2.VideoCapture(temp_file_name)
width = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH))
height = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
fps = int(cap.get(cv2.CAP_PROP_FPS))
# Ensure the output directory exists
os.makedirs("outputs", exist_ok=True)
output_file = "outputs/processed_video_raw.mp4"
fourcc = cv2.VideoWriter_fourcc(*'mp4v')
out = cv2.VideoWriter(output_file, fourcc, fps, (width, height))
progress_bar = st.progress(0)
frame_count = int(cap.get(cv2.CAP_PROP_FRAME_COUNT))
while cap.isOpened():
ret, frame = cap.read()
if not ret:
break
processed_frame = process_frame(frame, lane_model, yolo_model, transform, yolo_conf, detection_alpha, interpolation_factor, pixel_to_meter)
out.write(processed_frame)
# Update progress bar
progress = int(cap.get(cv2.CAP_PROP_POS_FRAMES)) / frame_count
progress_bar.progress(progress)
cap.release()
out.release()
# Clean up temporary file
os.unlink(temp_file_name)
st.success("Video processing complete!")
# Convert the processed video to a web-friendly format
web_friendly_output = "outputs/processed_video_web.mp4"
st.info("Converting video to web-friendly format...")
if convert_video_to_web_friendly(output_file, web_friendly_output):
st.success("Video conversion complete!")
# Display the processed video
video_file = open(web_friendly_output, 'rb')
video_bytes = video_file.read()
st.video(video_bytes)
else:
st.error("Failed to convert the video. Please check the logs.")
if __name__ == "__main__":
main()