-
Notifications
You must be signed in to change notification settings - Fork 415
/
Minimal_Example.py
74 lines (59 loc) · 2.31 KB
/
Minimal_Example.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
import os
import subprocess
import time
def make_call_string(arglist):
result_string = ""
for arg in arglist:
result_string += "".join(["--", arg[0], " ", arg[1], " "])
return result_string
root_folder = os.path.dirname(os.path.abspath(__file__))
data_folder = os.path.join(root_folder, "Data")
model_folder = os.path.join(data_folder, "Model_Weights")
image_folder = os.path.join(data_folder, "Source_Images")
input_folder = os.path.join(image_folder, "Test_Images")
output_folder = os.path.join(image_folder, "Test_Image_Detection_Results")
if not os.path.exists(output_folder):
os.mkdir(output_folder)
# First download the pre-trained weights from https://drive.google.com/u/0/uc?id=1MGXAP_XD_w4OExPP10UHsejWrMww8Tu7&export=download
if not os.path.isfile(os.path.join(model_folder, "trained_weights_final.h5")):
print("\n", "Downloading Pretrained Weights", "\n")
if not os.path.exists(output_folder):
os.mkdir(model_folder)
start = time.time()
call_string = " ".join(
[
"cd",
model_folder,
"\n",
"gdown",
"https://drive.google.com/uc?id=1MGXAP_XD_w4OExPP10UHsejWrMww8Tu7",
]
)
subprocess.call(call_string, shell=True)
end = time.time()
print("Downloaded Pretrained Weights in {0:.1f} seconds".format(end - start), "\n")
# Now run the cat face detector
detector_script = os.path.join(
os.path.dirname(os.path.abspath(__file__)), "3_Inference", "Detector.py"
)
result_file = os.path.join(output_folder, "Detection_Results.csv")
model_weights = os.path.join(model_folder, "trained_weights_final.h5")
classes_file = os.path.join(model_folder, "data_classes.txt")
anchors = os.path.join(
root_folder, "2_Training", "src", "keras_yolo3", "model_data", "yolo_anchors.txt"
)
arglist = [
["input_path", input_folder],
["classes", classes_file],
["output", output_folder],
["yolo_model", model_weights],
["box_file", result_file],
["anchors", anchors],
["file_types", ".jpg .jpeg .png"],
]
call_string = " ".join(["python", detector_script, make_call_string(arglist)])
print("Detecting Cat Faces by calling: \n\n", call_string, "\n")
start = time.time()
subprocess.call(call_string, shell=True)
end = time.time()
print("Detected Cat Faces in {0:.1f} seconds".format(end - start))