-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathmain_iwr6843_AoP.py
299 lines (233 loc) · 9.43 KB
/
main_iwr6843_AoP.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
import datetime
import time
from iwr6843_utils import serial_iwr6843
import collections
from pyqtgraph.Qt import QtGui
import pyqtgraph as pg
from threading import Thread, Event
import matplotlib.pyplot as plt
import os
import pickle
# data queue global
from utils.data_utils import produce_voxel, StreamingMovingAverage, linear_process, Queue
import numpy as np
import pyautogui
timestep = 5
data_q = Queue(maxlen=timestep)
data_list = []
processed_data_list = []
data_shape = (1, 25, 25, 25)
# set up graph
# START QtAPP for the plot;
app = QtGui.QApplication([])
thm_gui_size = 640, 480
# Set the xy plot
pg.setConfigOption('background', 'w')
win = pg.GraphicsWindow(title="2D scatter plot")
fig_z_y = win.addPlot()
fig_z_y.setXRange(-0.5, 0.5)
fig_z_y.setYRange(0, 1.5)
fig_z_y.setLabel('left', text='Y position (m)')
fig_z_y.setLabel('bottom', text='X position (m)')
xy_graph = fig_z_y.plot([], [], pen=None, symbol='o')
# set the zv plot'
fig_z_v = win.addPlot()
fig_z_v.setXRange(-1, 1)
fig_z_v.setYRange(-1, 1)
fig_z_v.setLabel('left', text='Z position (m)')
fig_z_v.setLabel('bottom', text='Doppler (m/s)')
zd_graph = fig_z_v.plot([], [], pen=None, symbol='o')
# set the thumouse plot
fig_thumouse = win.addPlot()
fig_thumouse.setXRange(0, thm_gui_size[0])
fig_thumouse.setYRange(0, thm_gui_size[1])
thumouse_graph = fig_thumouse.plot([], [], pen=None, symbol='o')
# thread variables
main_stop_flag = False
is_points = False
today = datetime.datetime.now()
root_dn = 'data/f_data-' + str(today).replace(':', '-').replace(' ', '_')
# Model Globals
is_simulate = False
is_predict = False
if is_predict:
from utils.model_wrapper import NeuralNetwork, onehot_decoder
class InputThread(Thread):
def __init__(self, thread_id):
Thread.__init__(self)
self.thread_id = thread_id
def run(self):
global is_collecting_started
input()
is_collecting_started = True
x_list = []
class PredictionThread(Thread):
def __init__(self, thread_id, model_encoder_dict, thumouse_gui=None, mode=None):
Thread.__init__(self)
self.thread_id = thread_id
self.model_encoder_dict = model_encoder_dict
# create a sequence buffer of shape: timestemp * shape of the data
self.mode = mode
if 'thm' in mode:
self.thumouse_gui = thumouse_gui
if 'idp' in mode:
pass
def run(self):
global main_stop_flag
global thm_gui_size
global data_shape
global is_points
# disable the failsafe
pyautogui.FAILSAFE = False
# thumouse related vars
x_a, y_a, z_a = -500000.0, 0.0, 0.0
x_b, y_b, z_b = -25.0, 0.0, 0.0
# x_a, y_a, z_a = 0.0, 100000.0, 0.0
# x_b, y_b, z_b = 0.0, 15.0, 0.0
ma_x = StreamingMovingAverage(window_size=1)
ma_y = StreamingMovingAverage(window_size=3)
if 'thm' in self.mode:
thm_model = self.model_encoder_dict['thm'][0]
thm_decoder = self.model_encoder_dict['thm'][1]
gui_wid_hei = thm_gui_size
# idp related vars
if 'idp' in self.mode:
idp_model = self.model_encoder_dict['idp'][0]
idp_threshold = 0.75
idp_pred_dict = {0: 'A', 1: 'D', 2: 'L', 3: 'M', 4: 'P', 5: 'nothing'}
while True:
try:
time.sleep(0.05)
start = time.time()
# retrieve the data from deque
if main_stop_flag:
break
if 'idp' in self.mode:
pass
# time.sleep(0.5)
# idp_pre_result = idp_model.predict(x=sequence_buffer)
# pre_argmax = np.argmax(idp_pre_result)
# pre_amax = np.amax(idp_pre_result)
#
# if pre_amax > idp_threshold: # a character is written
# if pre_argmax == 5:
# print('No One is Writing' + ' amax = ' + str(pre_amax))
# else:
# print('You just wrote: ' + idp_pred_dict[int(pre_argmax)] + ' amax = ' + str(pre_amax))
# # clear the buffer
# sequence_buffer = np.zeros(tuple([buffer_size] + list(data_shape)))
# else:
# print('No writing, amax = ' + str(pre_amax))
if 'thm' in self.mode:
if len(data_q) == timestep and is_points:
thm_pred_result = thm_model.predict(x=np.expand_dims(data_q.get_list(), axis=0))
# expand dim for single sample batch
decoded_result = thm_decoder.inverse_transform(thm_pred_result)
delta_x = linear_process(a=x_a, b=x_b, x=decoded_result[0][0]);
delta_y = linear_process(a=y_a, b=y_b, x=decoded_result[0][1]);
delta_x = ma_x.process(delta_x)
delta_y = ma_y.process(delta_y)
x_list.append(delta_x)
# move the actual mouse
pyautogui.moveRel(delta_x, delta_y)
print(str(delta_x) + ' ' + str(delta_y) + ' len of data queue' + str(len(data_q)))
except KeyboardInterrupt:
return
def load_model(model_path, encoder=None):
model = NeuralNetwork()
model.load(file_name=model_path)
if encoder is not None:
if type(encoder) == str:
encoder = pickle.load(open(encoder, 'rb'))
return model, encoder
else:
return model
def main():
global main_stop_event
global thumouse_graph
global is_predict
global main_stop_flag
global is_points
if is_predict:
my_mode = ['thm']
thm_model_path = 'models/121019.h5'
thm_scaler_path = 'models/120519_data_scaler.p'
# idp_model_path = 'D:/code/DoubleMU/models/palmPad_model.h5'
model_dict = {'thm': load_model(thm_model_path,
encoder=thm_scaler_path),
# 'idp': load_model(idp_model_path,
# encoder=onehot_decoder())
}
pred_thread = PredictionThread(1, model_encoder_dict=model_dict, thumouse_gui=thumouse_graph, mode=my_mode)
pred_thread.start()
# start input thread
# input_thread = InputThread(1)
# input_thread.start()
configFileName = 'profiles/20fps_04RR_14VR_12CT_8DT.cfg'
dataPortName = 'COM14'
userPortName = 'COM3'
# open the serial por20fpst to the radar
user_port, data_port = serial_iwr6843.serialConfig(configFileName, dataPortName=dataPortName,
userPortName=userPortName)
serial_iwr6843.clear_serial_buffer(user_port, data_port)
# give some time for the board to boot
time.sleep(2)
serial_iwr6843.sensor_start(user_port)
time.sleep(2)
input('Press Enter to Start...')
serial_iwr6843.clear_serial_buffer(user_port, data_port)
print('Started! Press CTRL+C to interrupt...')
while True:
try:
detected_points = serial_iwr6843.parse_stream(data_port)
if detected_points is not None:
frame_timestamp = time.time()
processed_data = produce_voxel(detected_points)
data_list.append((frame_timestamp, detected_points))
processed_data_list.append((frame_timestamp, processed_data))
is_points = len(detected_points) > 0
data_q.push_right(processed_data)
xy_graph.setData(detected_points[:, 0], detected_points[:, 1])
zd_graph.setData(detected_points[:, 2], detected_points[:, 3])
else:
pass
QtGui.QApplication.processEvents()
except KeyboardInterrupt as ki:
break
time.sleep(1)
# close the connection to the sensor
print('Sending Stop Command')
serial_iwr6843.sensor_stop(user_port)
serial_iwr6843.close_connection(user_port, data_port)
# close qtgui window
win.close()
# print the information about the frames collected
if len(data_list) > 0:
print('The number of frame collected is ' + str(len(data_list)))
time_record = max(x[0] for x in data_list) - min(x[0] for x in data_list)
expected_frame_num = time_record * 20
frame_drop_rate = len(data_list) / expected_frame_num
print('Recording time is ' + str(time_record))
print('The expected frame num is ' + str(expected_frame_num))
print('Frame drop rate is ' + str(1 - frame_drop_rate))
# close all the threads
main_stop_flag = True
if is_predict:
pred_thread.join()
is_save = input('do you wish to save the recorded frames? [y/n]')
# do you wish to save the recorded frames?
if is_save == 'y':
os.mkdir(root_dn)
# save the points file
point_file_path = os.path.join(root_dn, 'f_data_points.p')
with open(point_file_path, 'wb') as pickle_file:
pickle.dump(data_list, pickle_file)
# save the processed file
voxel_file_path = os.path.join(root_dn, 'f_data_voxel.p')
with open(voxel_file_path, 'wb') as pickle_file:
pickle.dump(processed_data_list, pickle_file)
else:
print('exit without saving')
if __name__ == '__main__':
main()
print('Finished!')